xref: /linux/net/core/dev.c (revision d3d344a1ca69d8fb2413e29e6400f3ad58a05c06)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *	Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:	Ross Biro
7  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *	Additional Authors:
11  *		Florian la Roche <rzsfl@rz.uni-sb.de>
12  *		Alan Cox <gw4pts@gw4pts.ampr.org>
13  *		David Hinds <dahinds@users.sourceforge.net>
14  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *		Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *	Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *		Alan Cox	:	device private ioctl copies fields back.
24  *		Alan Cox	:	Transmit queue code does relevant
25  *					stunts to keep the queue safe.
26  *		Alan Cox	:	Fixed double lock.
27  *		Alan Cox	:	Fixed promisc NULL pointer trap
28  *		????????	:	Support the full private ioctl range
29  *		Alan Cox	:	Moved ioctl permission check into
30  *					drivers
31  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
32  *		Alan Cox	:	100 backlog just doesn't cut it when
33  *					you start doing multicast video 8)
34  *		Alan Cox	:	Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *		Alan Cox	:	Took out transmit every packet pass
37  *					Saved a few bytes in the ioctl handler
38  *		Alan Cox	:	Network driver sets packet type before
39  *					calling netif_rx. Saves a function
40  *					call a packet.
41  *		Alan Cox	:	Hashed net_bh()
42  *		Richard Kooijman:	Timestamp fixes.
43  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
44  *		Alan Cox	:	Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *					changes.
47  *		Rudi Cilibrasi	:	Pass the right thing to
48  *					set_mac_address()
49  *		Dave Miller	:	32bit quantity for the device lock to
50  *					make it work out on a Sparc.
51  *		Bjorn Ekwall	:	Added KERNELD hack.
52  *		Alan Cox	:	Cleaned up the backlog initialise.
53  *		Craig Metz	:	SIOCGIFCONF fix if space for under
54  *					1 device.
55  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
56  *					is no device open function.
57  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
58  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
59  *		Cyrus Durgin	:	Cleaned for KMOD
60  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
61  *					A network device unload needs to purge
62  *					the backlog queue.
63  *	Paul Rusty Russell	:	SIOCSIFNAME
64  *              Pekka Riikonen  :	Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *				        - netif_rx() feedback
69  */
70 
71 #include <linux/uaccess.h>
72 #include <linux/bitmap.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/rwsem.h>
83 #include <linux/string.h>
84 #include <linux/mm.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/errno.h>
88 #include <linux/interrupt.h>
89 #include <linux/if_ether.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/ethtool.h>
93 #include <linux/skbuff.h>
94 #include <linux/kthread.h>
95 #include <linux/bpf.h>
96 #include <linux/bpf_trace.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <net/busy_poll.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/stat.h>
102 #include <net/dsa.h>
103 #include <net/dst.h>
104 #include <net/dst_metadata.h>
105 #include <net/gro.h>
106 #include <net/pkt_sched.h>
107 #include <net/pkt_cls.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <net/tcx.h>
111 #include <linux/highmem.h>
112 #include <linux/init.h>
113 #include <linux/module.h>
114 #include <linux/netpoll.h>
115 #include <linux/rcupdate.h>
116 #include <linux/delay.h>
117 #include <net/iw_handler.h>
118 #include <asm/current.h>
119 #include <linux/audit.h>
120 #include <linux/dmaengine.h>
121 #include <linux/err.h>
122 #include <linux/ctype.h>
123 #include <linux/if_arp.h>
124 #include <linux/if_vlan.h>
125 #include <linux/ip.h>
126 #include <net/ip.h>
127 #include <net/mpls.h>
128 #include <linux/ipv6.h>
129 #include <linux/in.h>
130 #include <linux/jhash.h>
131 #include <linux/random.h>
132 #include <trace/events/napi.h>
133 #include <trace/events/net.h>
134 #include <trace/events/skb.h>
135 #include <trace/events/qdisc.h>
136 #include <trace/events/xdp.h>
137 #include <linux/inetdevice.h>
138 #include <linux/cpu_rmap.h>
139 #include <linux/static_key.h>
140 #include <linux/hashtable.h>
141 #include <linux/vmalloc.h>
142 #include <linux/if_macvlan.h>
143 #include <linux/errqueue.h>
144 #include <linux/hrtimer.h>
145 #include <linux/netfilter_netdev.h>
146 #include <linux/crash_dump.h>
147 #include <linux/sctp.h>
148 #include <net/udp_tunnel.h>
149 #include <linux/net_namespace.h>
150 #include <linux/indirect_call_wrapper.h>
151 #include <net/devlink.h>
152 #include <linux/pm_runtime.h>
153 #include <linux/prandom.h>
154 #include <linux/once_lite.h>
155 #include <net/netdev_rx_queue.h>
156 #include <linux/phy_link_topology_core.h>
157 
158 #include "dev.h"
159 #include "net-sysfs.h"
160 
161 static DEFINE_SPINLOCK(ptype_lock);
162 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
163 struct list_head ptype_all __read_mostly;	/* Taps */
164 
165 static int netif_rx_internal(struct sk_buff *skb);
166 static int call_netdevice_notifiers_extack(unsigned long val,
167 					   struct net_device *dev,
168 					   struct netlink_ext_ack *extack);
169 
170 /*
171  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
172  * semaphore.
173  *
174  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
175  *
176  * Writers must hold the rtnl semaphore while they loop through the
177  * dev_base_head list, and hold dev_base_lock for writing when they do the
178  * actual updates.  This allows pure readers to access the list even
179  * while a writer is preparing to update it.
180  *
181  * To put it another way, dev_base_lock is held for writing only to
182  * protect against pure readers; the rtnl semaphore provides the
183  * protection against other writers.
184  *
185  * See, for example usages, register_netdevice() and
186  * unregister_netdevice(), which must be called with the rtnl
187  * semaphore held.
188  */
189 DEFINE_RWLOCK(dev_base_lock);
190 EXPORT_SYMBOL(dev_base_lock);
191 
192 static DEFINE_MUTEX(ifalias_mutex);
193 
194 /* protects napi_hash addition/deletion and napi_gen_id */
195 static DEFINE_SPINLOCK(napi_hash_lock);
196 
197 static unsigned int napi_gen_id = NR_CPUS;
198 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
199 
200 static DECLARE_RWSEM(devnet_rename_sem);
201 
202 static inline void dev_base_seq_inc(struct net *net)
203 {
204 	while (++net->dev_base_seq == 0)
205 		;
206 }
207 
208 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
209 {
210 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
211 
212 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
213 }
214 
215 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
216 {
217 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
218 }
219 
220 static inline void rps_lock_irqsave(struct softnet_data *sd,
221 				    unsigned long *flags)
222 {
223 	if (IS_ENABLED(CONFIG_RPS))
224 		spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags);
225 	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
226 		local_irq_save(*flags);
227 }
228 
229 static inline void rps_lock_irq_disable(struct softnet_data *sd)
230 {
231 	if (IS_ENABLED(CONFIG_RPS))
232 		spin_lock_irq(&sd->input_pkt_queue.lock);
233 	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
234 		local_irq_disable();
235 }
236 
237 static inline void rps_unlock_irq_restore(struct softnet_data *sd,
238 					  unsigned long *flags)
239 {
240 	if (IS_ENABLED(CONFIG_RPS))
241 		spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags);
242 	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
243 		local_irq_restore(*flags);
244 }
245 
246 static inline void rps_unlock_irq_enable(struct softnet_data *sd)
247 {
248 	if (IS_ENABLED(CONFIG_RPS))
249 		spin_unlock_irq(&sd->input_pkt_queue.lock);
250 	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
251 		local_irq_enable();
252 }
253 
254 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
255 						       const char *name)
256 {
257 	struct netdev_name_node *name_node;
258 
259 	name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
260 	if (!name_node)
261 		return NULL;
262 	INIT_HLIST_NODE(&name_node->hlist);
263 	name_node->dev = dev;
264 	name_node->name = name;
265 	return name_node;
266 }
267 
268 static struct netdev_name_node *
269 netdev_name_node_head_alloc(struct net_device *dev)
270 {
271 	struct netdev_name_node *name_node;
272 
273 	name_node = netdev_name_node_alloc(dev, dev->name);
274 	if (!name_node)
275 		return NULL;
276 	INIT_LIST_HEAD(&name_node->list);
277 	return name_node;
278 }
279 
280 static void netdev_name_node_free(struct netdev_name_node *name_node)
281 {
282 	kfree(name_node);
283 }
284 
285 static void netdev_name_node_add(struct net *net,
286 				 struct netdev_name_node *name_node)
287 {
288 	hlist_add_head_rcu(&name_node->hlist,
289 			   dev_name_hash(net, name_node->name));
290 }
291 
292 static void netdev_name_node_del(struct netdev_name_node *name_node)
293 {
294 	hlist_del_rcu(&name_node->hlist);
295 }
296 
297 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
298 							const char *name)
299 {
300 	struct hlist_head *head = dev_name_hash(net, name);
301 	struct netdev_name_node *name_node;
302 
303 	hlist_for_each_entry(name_node, head, hlist)
304 		if (!strcmp(name_node->name, name))
305 			return name_node;
306 	return NULL;
307 }
308 
309 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
310 							    const char *name)
311 {
312 	struct hlist_head *head = dev_name_hash(net, name);
313 	struct netdev_name_node *name_node;
314 
315 	hlist_for_each_entry_rcu(name_node, head, hlist)
316 		if (!strcmp(name_node->name, name))
317 			return name_node;
318 	return NULL;
319 }
320 
321 bool netdev_name_in_use(struct net *net, const char *name)
322 {
323 	return netdev_name_node_lookup(net, name);
324 }
325 EXPORT_SYMBOL(netdev_name_in_use);
326 
327 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
328 {
329 	struct netdev_name_node *name_node;
330 	struct net *net = dev_net(dev);
331 
332 	name_node = netdev_name_node_lookup(net, name);
333 	if (name_node)
334 		return -EEXIST;
335 	name_node = netdev_name_node_alloc(dev, name);
336 	if (!name_node)
337 		return -ENOMEM;
338 	netdev_name_node_add(net, name_node);
339 	/* The node that holds dev->name acts as a head of per-device list. */
340 	list_add_tail(&name_node->list, &dev->name_node->list);
341 
342 	return 0;
343 }
344 
345 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
346 {
347 	list_del(&name_node->list);
348 	kfree(name_node->name);
349 	netdev_name_node_free(name_node);
350 }
351 
352 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
353 {
354 	struct netdev_name_node *name_node;
355 	struct net *net = dev_net(dev);
356 
357 	name_node = netdev_name_node_lookup(net, name);
358 	if (!name_node)
359 		return -ENOENT;
360 	/* lookup might have found our primary name or a name belonging
361 	 * to another device.
362 	 */
363 	if (name_node == dev->name_node || name_node->dev != dev)
364 		return -EINVAL;
365 
366 	netdev_name_node_del(name_node);
367 	synchronize_rcu();
368 	__netdev_name_node_alt_destroy(name_node);
369 
370 	return 0;
371 }
372 
373 static void netdev_name_node_alt_flush(struct net_device *dev)
374 {
375 	struct netdev_name_node *name_node, *tmp;
376 
377 	list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
378 		__netdev_name_node_alt_destroy(name_node);
379 }
380 
381 /* Device list insertion */
382 static void list_netdevice(struct net_device *dev)
383 {
384 	struct netdev_name_node *name_node;
385 	struct net *net = dev_net(dev);
386 
387 	ASSERT_RTNL();
388 
389 	write_lock(&dev_base_lock);
390 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
391 	netdev_name_node_add(net, dev->name_node);
392 	hlist_add_head_rcu(&dev->index_hlist,
393 			   dev_index_hash(net, dev->ifindex));
394 	write_unlock(&dev_base_lock);
395 
396 	netdev_for_each_altname(dev, name_node)
397 		netdev_name_node_add(net, name_node);
398 
399 	/* We reserved the ifindex, this can't fail */
400 	WARN_ON(xa_store(&net->dev_by_index, dev->ifindex, dev, GFP_KERNEL));
401 
402 	dev_base_seq_inc(net);
403 }
404 
405 /* Device list removal
406  * caller must respect a RCU grace period before freeing/reusing dev
407  */
408 static void unlist_netdevice(struct net_device *dev, bool lock)
409 {
410 	struct netdev_name_node *name_node;
411 	struct net *net = dev_net(dev);
412 
413 	ASSERT_RTNL();
414 
415 	xa_erase(&net->dev_by_index, dev->ifindex);
416 
417 	netdev_for_each_altname(dev, name_node)
418 		netdev_name_node_del(name_node);
419 
420 	/* Unlink dev from the device chain */
421 	if (lock)
422 		write_lock(&dev_base_lock);
423 	list_del_rcu(&dev->dev_list);
424 	netdev_name_node_del(dev->name_node);
425 	hlist_del_rcu(&dev->index_hlist);
426 	if (lock)
427 		write_unlock(&dev_base_lock);
428 
429 	dev_base_seq_inc(dev_net(dev));
430 }
431 
432 /*
433  *	Our notifier list
434  */
435 
436 static RAW_NOTIFIER_HEAD(netdev_chain);
437 
438 /*
439  *	Device drivers call our routines to queue packets here. We empty the
440  *	queue in the local softnet handler.
441  */
442 
443 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
444 EXPORT_PER_CPU_SYMBOL(softnet_data);
445 
446 #ifdef CONFIG_LOCKDEP
447 /*
448  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
449  * according to dev->type
450  */
451 static const unsigned short netdev_lock_type[] = {
452 	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
453 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
454 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
455 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
456 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
457 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
458 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
459 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
460 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
461 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
462 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
463 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
464 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
465 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
466 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
467 
468 static const char *const netdev_lock_name[] = {
469 	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
470 	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
471 	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
472 	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
473 	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
474 	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
475 	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
476 	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
477 	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
478 	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
479 	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
480 	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
481 	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
482 	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
483 	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
484 
485 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
486 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
487 
488 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
489 {
490 	int i;
491 
492 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
493 		if (netdev_lock_type[i] == dev_type)
494 			return i;
495 	/* the last key is used by default */
496 	return ARRAY_SIZE(netdev_lock_type) - 1;
497 }
498 
499 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
500 						 unsigned short dev_type)
501 {
502 	int i;
503 
504 	i = netdev_lock_pos(dev_type);
505 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
506 				   netdev_lock_name[i]);
507 }
508 
509 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
510 {
511 	int i;
512 
513 	i = netdev_lock_pos(dev->type);
514 	lockdep_set_class_and_name(&dev->addr_list_lock,
515 				   &netdev_addr_lock_key[i],
516 				   netdev_lock_name[i]);
517 }
518 #else
519 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
520 						 unsigned short dev_type)
521 {
522 }
523 
524 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
525 {
526 }
527 #endif
528 
529 /*******************************************************************************
530  *
531  *		Protocol management and registration routines
532  *
533  *******************************************************************************/
534 
535 
536 /*
537  *	Add a protocol ID to the list. Now that the input handler is
538  *	smarter we can dispense with all the messy stuff that used to be
539  *	here.
540  *
541  *	BEWARE!!! Protocol handlers, mangling input packets,
542  *	MUST BE last in hash buckets and checking protocol handlers
543  *	MUST start from promiscuous ptype_all chain in net_bh.
544  *	It is true now, do not change it.
545  *	Explanation follows: if protocol handler, mangling packet, will
546  *	be the first on list, it is not able to sense, that packet
547  *	is cloned and should be copied-on-write, so that it will
548  *	change it and subsequent readers will get broken packet.
549  *							--ANK (980803)
550  */
551 
552 static inline struct list_head *ptype_head(const struct packet_type *pt)
553 {
554 	if (pt->type == htons(ETH_P_ALL))
555 		return pt->dev ? &pt->dev->ptype_all : &ptype_all;
556 	else
557 		return pt->dev ? &pt->dev->ptype_specific :
558 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
559 }
560 
561 /**
562  *	dev_add_pack - add packet handler
563  *	@pt: packet type declaration
564  *
565  *	Add a protocol handler to the networking stack. The passed &packet_type
566  *	is linked into kernel lists and may not be freed until it has been
567  *	removed from the kernel lists.
568  *
569  *	This call does not sleep therefore it can not
570  *	guarantee all CPU's that are in middle of receiving packets
571  *	will see the new packet type (until the next received packet).
572  */
573 
574 void dev_add_pack(struct packet_type *pt)
575 {
576 	struct list_head *head = ptype_head(pt);
577 
578 	spin_lock(&ptype_lock);
579 	list_add_rcu(&pt->list, head);
580 	spin_unlock(&ptype_lock);
581 }
582 EXPORT_SYMBOL(dev_add_pack);
583 
584 /**
585  *	__dev_remove_pack	 - remove packet handler
586  *	@pt: packet type declaration
587  *
588  *	Remove a protocol handler that was previously added to the kernel
589  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
590  *	from the kernel lists and can be freed or reused once this function
591  *	returns.
592  *
593  *      The packet type might still be in use by receivers
594  *	and must not be freed until after all the CPU's have gone
595  *	through a quiescent state.
596  */
597 void __dev_remove_pack(struct packet_type *pt)
598 {
599 	struct list_head *head = ptype_head(pt);
600 	struct packet_type *pt1;
601 
602 	spin_lock(&ptype_lock);
603 
604 	list_for_each_entry(pt1, head, list) {
605 		if (pt == pt1) {
606 			list_del_rcu(&pt->list);
607 			goto out;
608 		}
609 	}
610 
611 	pr_warn("dev_remove_pack: %p not found\n", pt);
612 out:
613 	spin_unlock(&ptype_lock);
614 }
615 EXPORT_SYMBOL(__dev_remove_pack);
616 
617 /**
618  *	dev_remove_pack	 - remove packet handler
619  *	@pt: packet type declaration
620  *
621  *	Remove a protocol handler that was previously added to the kernel
622  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
623  *	from the kernel lists and can be freed or reused once this function
624  *	returns.
625  *
626  *	This call sleeps to guarantee that no CPU is looking at the packet
627  *	type after return.
628  */
629 void dev_remove_pack(struct packet_type *pt)
630 {
631 	__dev_remove_pack(pt);
632 
633 	synchronize_net();
634 }
635 EXPORT_SYMBOL(dev_remove_pack);
636 
637 
638 /*******************************************************************************
639  *
640  *			    Device Interface Subroutines
641  *
642  *******************************************************************************/
643 
644 /**
645  *	dev_get_iflink	- get 'iflink' value of a interface
646  *	@dev: targeted interface
647  *
648  *	Indicates the ifindex the interface is linked to.
649  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
650  */
651 
652 int dev_get_iflink(const struct net_device *dev)
653 {
654 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
655 		return dev->netdev_ops->ndo_get_iflink(dev);
656 
657 	return dev->ifindex;
658 }
659 EXPORT_SYMBOL(dev_get_iflink);
660 
661 /**
662  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
663  *	@dev: targeted interface
664  *	@skb: The packet.
665  *
666  *	For better visibility of tunnel traffic OVS needs to retrieve
667  *	egress tunnel information for a packet. Following API allows
668  *	user to get this info.
669  */
670 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
671 {
672 	struct ip_tunnel_info *info;
673 
674 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
675 		return -EINVAL;
676 
677 	info = skb_tunnel_info_unclone(skb);
678 	if (!info)
679 		return -ENOMEM;
680 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
681 		return -EINVAL;
682 
683 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
684 }
685 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
686 
687 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
688 {
689 	int k = stack->num_paths++;
690 
691 	if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
692 		return NULL;
693 
694 	return &stack->path[k];
695 }
696 
697 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
698 			  struct net_device_path_stack *stack)
699 {
700 	const struct net_device *last_dev;
701 	struct net_device_path_ctx ctx = {
702 		.dev	= dev,
703 	};
704 	struct net_device_path *path;
705 	int ret = 0;
706 
707 	memcpy(ctx.daddr, daddr, sizeof(ctx.daddr));
708 	stack->num_paths = 0;
709 	while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
710 		last_dev = ctx.dev;
711 		path = dev_fwd_path(stack);
712 		if (!path)
713 			return -1;
714 
715 		memset(path, 0, sizeof(struct net_device_path));
716 		ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
717 		if (ret < 0)
718 			return -1;
719 
720 		if (WARN_ON_ONCE(last_dev == ctx.dev))
721 			return -1;
722 	}
723 
724 	if (!ctx.dev)
725 		return ret;
726 
727 	path = dev_fwd_path(stack);
728 	if (!path)
729 		return -1;
730 	path->type = DEV_PATH_ETHERNET;
731 	path->dev = ctx.dev;
732 
733 	return ret;
734 }
735 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
736 
737 /**
738  *	__dev_get_by_name	- find a device by its name
739  *	@net: the applicable net namespace
740  *	@name: name to find
741  *
742  *	Find an interface by name. Must be called under RTNL semaphore
743  *	or @dev_base_lock. If the name is found a pointer to the device
744  *	is returned. If the name is not found then %NULL is returned. The
745  *	reference counters are not incremented so the caller must be
746  *	careful with locks.
747  */
748 
749 struct net_device *__dev_get_by_name(struct net *net, const char *name)
750 {
751 	struct netdev_name_node *node_name;
752 
753 	node_name = netdev_name_node_lookup(net, name);
754 	return node_name ? node_name->dev : NULL;
755 }
756 EXPORT_SYMBOL(__dev_get_by_name);
757 
758 /**
759  * dev_get_by_name_rcu	- find a device by its name
760  * @net: the applicable net namespace
761  * @name: name to find
762  *
763  * Find an interface by name.
764  * If the name is found a pointer to the device is returned.
765  * If the name is not found then %NULL is returned.
766  * The reference counters are not incremented so the caller must be
767  * careful with locks. The caller must hold RCU lock.
768  */
769 
770 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
771 {
772 	struct netdev_name_node *node_name;
773 
774 	node_name = netdev_name_node_lookup_rcu(net, name);
775 	return node_name ? node_name->dev : NULL;
776 }
777 EXPORT_SYMBOL(dev_get_by_name_rcu);
778 
779 /* Deprecated for new users, call netdev_get_by_name() instead */
780 struct net_device *dev_get_by_name(struct net *net, const char *name)
781 {
782 	struct net_device *dev;
783 
784 	rcu_read_lock();
785 	dev = dev_get_by_name_rcu(net, name);
786 	dev_hold(dev);
787 	rcu_read_unlock();
788 	return dev;
789 }
790 EXPORT_SYMBOL(dev_get_by_name);
791 
792 /**
793  *	netdev_get_by_name() - find a device by its name
794  *	@net: the applicable net namespace
795  *	@name: name to find
796  *	@tracker: tracking object for the acquired reference
797  *	@gfp: allocation flags for the tracker
798  *
799  *	Find an interface by name. This can be called from any
800  *	context and does its own locking. The returned handle has
801  *	the usage count incremented and the caller must use netdev_put() to
802  *	release it when it is no longer needed. %NULL is returned if no
803  *	matching device is found.
804  */
805 struct net_device *netdev_get_by_name(struct net *net, const char *name,
806 				      netdevice_tracker *tracker, gfp_t gfp)
807 {
808 	struct net_device *dev;
809 
810 	dev = dev_get_by_name(net, name);
811 	if (dev)
812 		netdev_tracker_alloc(dev, tracker, gfp);
813 	return dev;
814 }
815 EXPORT_SYMBOL(netdev_get_by_name);
816 
817 /**
818  *	__dev_get_by_index - find a device by its ifindex
819  *	@net: the applicable net namespace
820  *	@ifindex: index of device
821  *
822  *	Search for an interface by index. Returns %NULL if the device
823  *	is not found or a pointer to the device. The device has not
824  *	had its reference counter increased so the caller must be careful
825  *	about locking. The caller must hold either the RTNL semaphore
826  *	or @dev_base_lock.
827  */
828 
829 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
830 {
831 	struct net_device *dev;
832 	struct hlist_head *head = dev_index_hash(net, ifindex);
833 
834 	hlist_for_each_entry(dev, head, index_hlist)
835 		if (dev->ifindex == ifindex)
836 			return dev;
837 
838 	return NULL;
839 }
840 EXPORT_SYMBOL(__dev_get_by_index);
841 
842 /**
843  *	dev_get_by_index_rcu - find a device by its ifindex
844  *	@net: the applicable net namespace
845  *	@ifindex: index of device
846  *
847  *	Search for an interface by index. Returns %NULL if the device
848  *	is not found or a pointer to the device. The device has not
849  *	had its reference counter increased so the caller must be careful
850  *	about locking. The caller must hold RCU lock.
851  */
852 
853 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
854 {
855 	struct net_device *dev;
856 	struct hlist_head *head = dev_index_hash(net, ifindex);
857 
858 	hlist_for_each_entry_rcu(dev, head, index_hlist)
859 		if (dev->ifindex == ifindex)
860 			return dev;
861 
862 	return NULL;
863 }
864 EXPORT_SYMBOL(dev_get_by_index_rcu);
865 
866 /* Deprecated for new users, call netdev_get_by_index() instead */
867 struct net_device *dev_get_by_index(struct net *net, int ifindex)
868 {
869 	struct net_device *dev;
870 
871 	rcu_read_lock();
872 	dev = dev_get_by_index_rcu(net, ifindex);
873 	dev_hold(dev);
874 	rcu_read_unlock();
875 	return dev;
876 }
877 EXPORT_SYMBOL(dev_get_by_index);
878 
879 /**
880  *	netdev_get_by_index() - find a device by its ifindex
881  *	@net: the applicable net namespace
882  *	@ifindex: index of device
883  *	@tracker: tracking object for the acquired reference
884  *	@gfp: allocation flags for the tracker
885  *
886  *	Search for an interface by index. Returns NULL if the device
887  *	is not found or a pointer to the device. The device returned has
888  *	had a reference added and the pointer is safe until the user calls
889  *	netdev_put() to indicate they have finished with it.
890  */
891 struct net_device *netdev_get_by_index(struct net *net, int ifindex,
892 				       netdevice_tracker *tracker, gfp_t gfp)
893 {
894 	struct net_device *dev;
895 
896 	dev = dev_get_by_index(net, ifindex);
897 	if (dev)
898 		netdev_tracker_alloc(dev, tracker, gfp);
899 	return dev;
900 }
901 EXPORT_SYMBOL(netdev_get_by_index);
902 
903 /**
904  *	dev_get_by_napi_id - find a device by napi_id
905  *	@napi_id: ID of the NAPI struct
906  *
907  *	Search for an interface by NAPI ID. Returns %NULL if the device
908  *	is not found or a pointer to the device. The device has not had
909  *	its reference counter increased so the caller must be careful
910  *	about locking. The caller must hold RCU lock.
911  */
912 
913 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
914 {
915 	struct napi_struct *napi;
916 
917 	WARN_ON_ONCE(!rcu_read_lock_held());
918 
919 	if (napi_id < MIN_NAPI_ID)
920 		return NULL;
921 
922 	napi = napi_by_id(napi_id);
923 
924 	return napi ? napi->dev : NULL;
925 }
926 EXPORT_SYMBOL(dev_get_by_napi_id);
927 
928 /**
929  *	netdev_get_name - get a netdevice name, knowing its ifindex.
930  *	@net: network namespace
931  *	@name: a pointer to the buffer where the name will be stored.
932  *	@ifindex: the ifindex of the interface to get the name from.
933  */
934 int netdev_get_name(struct net *net, char *name, int ifindex)
935 {
936 	struct net_device *dev;
937 	int ret;
938 
939 	down_read(&devnet_rename_sem);
940 	rcu_read_lock();
941 
942 	dev = dev_get_by_index_rcu(net, ifindex);
943 	if (!dev) {
944 		ret = -ENODEV;
945 		goto out;
946 	}
947 
948 	strcpy(name, dev->name);
949 
950 	ret = 0;
951 out:
952 	rcu_read_unlock();
953 	up_read(&devnet_rename_sem);
954 	return ret;
955 }
956 
957 /**
958  *	dev_getbyhwaddr_rcu - find a device by its hardware address
959  *	@net: the applicable net namespace
960  *	@type: media type of device
961  *	@ha: hardware address
962  *
963  *	Search for an interface by MAC address. Returns NULL if the device
964  *	is not found or a pointer to the device.
965  *	The caller must hold RCU or RTNL.
966  *	The returned device has not had its ref count increased
967  *	and the caller must therefore be careful about locking
968  *
969  */
970 
971 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
972 				       const char *ha)
973 {
974 	struct net_device *dev;
975 
976 	for_each_netdev_rcu(net, dev)
977 		if (dev->type == type &&
978 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
979 			return dev;
980 
981 	return NULL;
982 }
983 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
984 
985 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
986 {
987 	struct net_device *dev, *ret = NULL;
988 
989 	rcu_read_lock();
990 	for_each_netdev_rcu(net, dev)
991 		if (dev->type == type) {
992 			dev_hold(dev);
993 			ret = dev;
994 			break;
995 		}
996 	rcu_read_unlock();
997 	return ret;
998 }
999 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1000 
1001 /**
1002  *	__dev_get_by_flags - find any device with given flags
1003  *	@net: the applicable net namespace
1004  *	@if_flags: IFF_* values
1005  *	@mask: bitmask of bits in if_flags to check
1006  *
1007  *	Search for any interface with the given flags. Returns NULL if a device
1008  *	is not found or a pointer to the device. Must be called inside
1009  *	rtnl_lock(), and result refcount is unchanged.
1010  */
1011 
1012 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1013 				      unsigned short mask)
1014 {
1015 	struct net_device *dev, *ret;
1016 
1017 	ASSERT_RTNL();
1018 
1019 	ret = NULL;
1020 	for_each_netdev(net, dev) {
1021 		if (((dev->flags ^ if_flags) & mask) == 0) {
1022 			ret = dev;
1023 			break;
1024 		}
1025 	}
1026 	return ret;
1027 }
1028 EXPORT_SYMBOL(__dev_get_by_flags);
1029 
1030 /**
1031  *	dev_valid_name - check if name is okay for network device
1032  *	@name: name string
1033  *
1034  *	Network device names need to be valid file names to
1035  *	allow sysfs to work.  We also disallow any kind of
1036  *	whitespace.
1037  */
1038 bool dev_valid_name(const char *name)
1039 {
1040 	if (*name == '\0')
1041 		return false;
1042 	if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1043 		return false;
1044 	if (!strcmp(name, ".") || !strcmp(name, ".."))
1045 		return false;
1046 
1047 	while (*name) {
1048 		if (*name == '/' || *name == ':' || isspace(*name))
1049 			return false;
1050 		name++;
1051 	}
1052 	return true;
1053 }
1054 EXPORT_SYMBOL(dev_valid_name);
1055 
1056 /**
1057  *	__dev_alloc_name - allocate a name for a device
1058  *	@net: network namespace to allocate the device name in
1059  *	@name: name format string
1060  *	@res: result name string
1061  *
1062  *	Passed a format string - eg "lt%d" it will try and find a suitable
1063  *	id. It scans list of devices to build up a free map, then chooses
1064  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1065  *	while allocating the name and adding the device in order to avoid
1066  *	duplicates.
1067  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1068  *	Returns the number of the unit assigned or a negative errno code.
1069  */
1070 
1071 static int __dev_alloc_name(struct net *net, const char *name, char *res)
1072 {
1073 	int i = 0;
1074 	const char *p;
1075 	const int max_netdevices = 8*PAGE_SIZE;
1076 	unsigned long *inuse;
1077 	struct net_device *d;
1078 	char buf[IFNAMSIZ];
1079 
1080 	/* Verify the string as this thing may have come from the user.
1081 	 * There must be one "%d" and no other "%" characters.
1082 	 */
1083 	p = strchr(name, '%');
1084 	if (!p || p[1] != 'd' || strchr(p + 2, '%'))
1085 		return -EINVAL;
1086 
1087 	/* Use one page as a bit array of possible slots */
1088 	inuse = bitmap_zalloc(max_netdevices, GFP_ATOMIC);
1089 	if (!inuse)
1090 		return -ENOMEM;
1091 
1092 	for_each_netdev(net, d) {
1093 		struct netdev_name_node *name_node;
1094 
1095 		netdev_for_each_altname(d, name_node) {
1096 			if (!sscanf(name_node->name, name, &i))
1097 				continue;
1098 			if (i < 0 || i >= max_netdevices)
1099 				continue;
1100 
1101 			/* avoid cases where sscanf is not exact inverse of printf */
1102 			snprintf(buf, IFNAMSIZ, name, i);
1103 			if (!strncmp(buf, name_node->name, IFNAMSIZ))
1104 				__set_bit(i, inuse);
1105 		}
1106 		if (!sscanf(d->name, name, &i))
1107 			continue;
1108 		if (i < 0 || i >= max_netdevices)
1109 			continue;
1110 
1111 		/* avoid cases where sscanf is not exact inverse of printf */
1112 		snprintf(buf, IFNAMSIZ, name, i);
1113 		if (!strncmp(buf, d->name, IFNAMSIZ))
1114 			__set_bit(i, inuse);
1115 	}
1116 
1117 	i = find_first_zero_bit(inuse, max_netdevices);
1118 	bitmap_free(inuse);
1119 	if (i == max_netdevices)
1120 		return -ENFILE;
1121 
1122 	/* 'res' and 'name' could overlap, use 'buf' as an intermediate buffer */
1123 	strscpy(buf, name, IFNAMSIZ);
1124 	snprintf(res, IFNAMSIZ, buf, i);
1125 	return i;
1126 }
1127 
1128 /* Returns negative errno or allocated unit id (see __dev_alloc_name()) */
1129 static int dev_prep_valid_name(struct net *net, struct net_device *dev,
1130 			       const char *want_name, char *out_name,
1131 			       int dup_errno)
1132 {
1133 	if (!dev_valid_name(want_name))
1134 		return -EINVAL;
1135 
1136 	if (strchr(want_name, '%'))
1137 		return __dev_alloc_name(net, want_name, out_name);
1138 
1139 	if (netdev_name_in_use(net, want_name))
1140 		return -dup_errno;
1141 	if (out_name != want_name)
1142 		strscpy(out_name, want_name, IFNAMSIZ);
1143 	return 0;
1144 }
1145 
1146 /**
1147  *	dev_alloc_name - allocate a name for a device
1148  *	@dev: device
1149  *	@name: name format string
1150  *
1151  *	Passed a format string - eg "lt%d" it will try and find a suitable
1152  *	id. It scans list of devices to build up a free map, then chooses
1153  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1154  *	while allocating the name and adding the device in order to avoid
1155  *	duplicates.
1156  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1157  *	Returns the number of the unit assigned or a negative errno code.
1158  */
1159 
1160 int dev_alloc_name(struct net_device *dev, const char *name)
1161 {
1162 	return dev_prep_valid_name(dev_net(dev), dev, name, dev->name, ENFILE);
1163 }
1164 EXPORT_SYMBOL(dev_alloc_name);
1165 
1166 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1167 			      const char *name)
1168 {
1169 	int ret;
1170 
1171 	ret = dev_prep_valid_name(net, dev, name, dev->name, EEXIST);
1172 	return ret < 0 ? ret : 0;
1173 }
1174 
1175 /**
1176  *	dev_change_name - change name of a device
1177  *	@dev: device
1178  *	@newname: name (or format string) must be at least IFNAMSIZ
1179  *
1180  *	Change name of a device, can pass format strings "eth%d".
1181  *	for wildcarding.
1182  */
1183 int dev_change_name(struct net_device *dev, const char *newname)
1184 {
1185 	unsigned char old_assign_type;
1186 	char oldname[IFNAMSIZ];
1187 	int err = 0;
1188 	int ret;
1189 	struct net *net;
1190 
1191 	ASSERT_RTNL();
1192 	BUG_ON(!dev_net(dev));
1193 
1194 	net = dev_net(dev);
1195 
1196 	down_write(&devnet_rename_sem);
1197 
1198 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1199 		up_write(&devnet_rename_sem);
1200 		return 0;
1201 	}
1202 
1203 	memcpy(oldname, dev->name, IFNAMSIZ);
1204 
1205 	err = dev_get_valid_name(net, dev, newname);
1206 	if (err < 0) {
1207 		up_write(&devnet_rename_sem);
1208 		return err;
1209 	}
1210 
1211 	if (oldname[0] && !strchr(oldname, '%'))
1212 		netdev_info(dev, "renamed from %s%s\n", oldname,
1213 			    dev->flags & IFF_UP ? " (while UP)" : "");
1214 
1215 	old_assign_type = dev->name_assign_type;
1216 	dev->name_assign_type = NET_NAME_RENAMED;
1217 
1218 rollback:
1219 	ret = device_rename(&dev->dev, dev->name);
1220 	if (ret) {
1221 		memcpy(dev->name, oldname, IFNAMSIZ);
1222 		dev->name_assign_type = old_assign_type;
1223 		up_write(&devnet_rename_sem);
1224 		return ret;
1225 	}
1226 
1227 	up_write(&devnet_rename_sem);
1228 
1229 	netdev_adjacent_rename_links(dev, oldname);
1230 
1231 	write_lock(&dev_base_lock);
1232 	netdev_name_node_del(dev->name_node);
1233 	write_unlock(&dev_base_lock);
1234 
1235 	synchronize_rcu();
1236 
1237 	write_lock(&dev_base_lock);
1238 	netdev_name_node_add(net, dev->name_node);
1239 	write_unlock(&dev_base_lock);
1240 
1241 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1242 	ret = notifier_to_errno(ret);
1243 
1244 	if (ret) {
1245 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1246 		if (err >= 0) {
1247 			err = ret;
1248 			down_write(&devnet_rename_sem);
1249 			memcpy(dev->name, oldname, IFNAMSIZ);
1250 			memcpy(oldname, newname, IFNAMSIZ);
1251 			dev->name_assign_type = old_assign_type;
1252 			old_assign_type = NET_NAME_RENAMED;
1253 			goto rollback;
1254 		} else {
1255 			netdev_err(dev, "name change rollback failed: %d\n",
1256 				   ret);
1257 		}
1258 	}
1259 
1260 	return err;
1261 }
1262 
1263 /**
1264  *	dev_set_alias - change ifalias of a device
1265  *	@dev: device
1266  *	@alias: name up to IFALIASZ
1267  *	@len: limit of bytes to copy from info
1268  *
1269  *	Set ifalias for a device,
1270  */
1271 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1272 {
1273 	struct dev_ifalias *new_alias = NULL;
1274 
1275 	if (len >= IFALIASZ)
1276 		return -EINVAL;
1277 
1278 	if (len) {
1279 		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1280 		if (!new_alias)
1281 			return -ENOMEM;
1282 
1283 		memcpy(new_alias->ifalias, alias, len);
1284 		new_alias->ifalias[len] = 0;
1285 	}
1286 
1287 	mutex_lock(&ifalias_mutex);
1288 	new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1289 					mutex_is_locked(&ifalias_mutex));
1290 	mutex_unlock(&ifalias_mutex);
1291 
1292 	if (new_alias)
1293 		kfree_rcu(new_alias, rcuhead);
1294 
1295 	return len;
1296 }
1297 EXPORT_SYMBOL(dev_set_alias);
1298 
1299 /**
1300  *	dev_get_alias - get ifalias of a device
1301  *	@dev: device
1302  *	@name: buffer to store name of ifalias
1303  *	@len: size of buffer
1304  *
1305  *	get ifalias for a device.  Caller must make sure dev cannot go
1306  *	away,  e.g. rcu read lock or own a reference count to device.
1307  */
1308 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1309 {
1310 	const struct dev_ifalias *alias;
1311 	int ret = 0;
1312 
1313 	rcu_read_lock();
1314 	alias = rcu_dereference(dev->ifalias);
1315 	if (alias)
1316 		ret = snprintf(name, len, "%s", alias->ifalias);
1317 	rcu_read_unlock();
1318 
1319 	return ret;
1320 }
1321 
1322 /**
1323  *	netdev_features_change - device changes features
1324  *	@dev: device to cause notification
1325  *
1326  *	Called to indicate a device has changed features.
1327  */
1328 void netdev_features_change(struct net_device *dev)
1329 {
1330 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1331 }
1332 EXPORT_SYMBOL(netdev_features_change);
1333 
1334 /**
1335  *	netdev_state_change - device changes state
1336  *	@dev: device to cause notification
1337  *
1338  *	Called to indicate a device has changed state. This function calls
1339  *	the notifier chains for netdev_chain and sends a NEWLINK message
1340  *	to the routing socket.
1341  */
1342 void netdev_state_change(struct net_device *dev)
1343 {
1344 	if (dev->flags & IFF_UP) {
1345 		struct netdev_notifier_change_info change_info = {
1346 			.info.dev = dev,
1347 		};
1348 
1349 		call_netdevice_notifiers_info(NETDEV_CHANGE,
1350 					      &change_info.info);
1351 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL, 0, NULL);
1352 	}
1353 }
1354 EXPORT_SYMBOL(netdev_state_change);
1355 
1356 /**
1357  * __netdev_notify_peers - notify network peers about existence of @dev,
1358  * to be called when rtnl lock is already held.
1359  * @dev: network device
1360  *
1361  * Generate traffic such that interested network peers are aware of
1362  * @dev, such as by generating a gratuitous ARP. This may be used when
1363  * a device wants to inform the rest of the network about some sort of
1364  * reconfiguration such as a failover event or virtual machine
1365  * migration.
1366  */
1367 void __netdev_notify_peers(struct net_device *dev)
1368 {
1369 	ASSERT_RTNL();
1370 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1371 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1372 }
1373 EXPORT_SYMBOL(__netdev_notify_peers);
1374 
1375 /**
1376  * netdev_notify_peers - notify network peers about existence of @dev
1377  * @dev: network device
1378  *
1379  * Generate traffic such that interested network peers are aware of
1380  * @dev, such as by generating a gratuitous ARP. This may be used when
1381  * a device wants to inform the rest of the network about some sort of
1382  * reconfiguration such as a failover event or virtual machine
1383  * migration.
1384  */
1385 void netdev_notify_peers(struct net_device *dev)
1386 {
1387 	rtnl_lock();
1388 	__netdev_notify_peers(dev);
1389 	rtnl_unlock();
1390 }
1391 EXPORT_SYMBOL(netdev_notify_peers);
1392 
1393 static int napi_threaded_poll(void *data);
1394 
1395 static int napi_kthread_create(struct napi_struct *n)
1396 {
1397 	int err = 0;
1398 
1399 	/* Create and wake up the kthread once to put it in
1400 	 * TASK_INTERRUPTIBLE mode to avoid the blocked task
1401 	 * warning and work with loadavg.
1402 	 */
1403 	n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1404 				n->dev->name, n->napi_id);
1405 	if (IS_ERR(n->thread)) {
1406 		err = PTR_ERR(n->thread);
1407 		pr_err("kthread_run failed with err %d\n", err);
1408 		n->thread = NULL;
1409 	}
1410 
1411 	return err;
1412 }
1413 
1414 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1415 {
1416 	const struct net_device_ops *ops = dev->netdev_ops;
1417 	int ret;
1418 
1419 	ASSERT_RTNL();
1420 	dev_addr_check(dev);
1421 
1422 	if (!netif_device_present(dev)) {
1423 		/* may be detached because parent is runtime-suspended */
1424 		if (dev->dev.parent)
1425 			pm_runtime_resume(dev->dev.parent);
1426 		if (!netif_device_present(dev))
1427 			return -ENODEV;
1428 	}
1429 
1430 	/* Block netpoll from trying to do any rx path servicing.
1431 	 * If we don't do this there is a chance ndo_poll_controller
1432 	 * or ndo_poll may be running while we open the device
1433 	 */
1434 	netpoll_poll_disable(dev);
1435 
1436 	ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1437 	ret = notifier_to_errno(ret);
1438 	if (ret)
1439 		return ret;
1440 
1441 	set_bit(__LINK_STATE_START, &dev->state);
1442 
1443 	if (ops->ndo_validate_addr)
1444 		ret = ops->ndo_validate_addr(dev);
1445 
1446 	if (!ret && ops->ndo_open)
1447 		ret = ops->ndo_open(dev);
1448 
1449 	netpoll_poll_enable(dev);
1450 
1451 	if (ret)
1452 		clear_bit(__LINK_STATE_START, &dev->state);
1453 	else {
1454 		dev->flags |= IFF_UP;
1455 		dev_set_rx_mode(dev);
1456 		dev_activate(dev);
1457 		add_device_randomness(dev->dev_addr, dev->addr_len);
1458 	}
1459 
1460 	return ret;
1461 }
1462 
1463 /**
1464  *	dev_open	- prepare an interface for use.
1465  *	@dev: device to open
1466  *	@extack: netlink extended ack
1467  *
1468  *	Takes a device from down to up state. The device's private open
1469  *	function is invoked and then the multicast lists are loaded. Finally
1470  *	the device is moved into the up state and a %NETDEV_UP message is
1471  *	sent to the netdev notifier chain.
1472  *
1473  *	Calling this function on an active interface is a nop. On a failure
1474  *	a negative errno code is returned.
1475  */
1476 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1477 {
1478 	int ret;
1479 
1480 	if (dev->flags & IFF_UP)
1481 		return 0;
1482 
1483 	ret = __dev_open(dev, extack);
1484 	if (ret < 0)
1485 		return ret;
1486 
1487 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1488 	call_netdevice_notifiers(NETDEV_UP, dev);
1489 
1490 	return ret;
1491 }
1492 EXPORT_SYMBOL(dev_open);
1493 
1494 static void __dev_close_many(struct list_head *head)
1495 {
1496 	struct net_device *dev;
1497 
1498 	ASSERT_RTNL();
1499 	might_sleep();
1500 
1501 	list_for_each_entry(dev, head, close_list) {
1502 		/* Temporarily disable netpoll until the interface is down */
1503 		netpoll_poll_disable(dev);
1504 
1505 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1506 
1507 		clear_bit(__LINK_STATE_START, &dev->state);
1508 
1509 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1510 		 * can be even on different cpu. So just clear netif_running().
1511 		 *
1512 		 * dev->stop() will invoke napi_disable() on all of it's
1513 		 * napi_struct instances on this device.
1514 		 */
1515 		smp_mb__after_atomic(); /* Commit netif_running(). */
1516 	}
1517 
1518 	dev_deactivate_many(head);
1519 
1520 	list_for_each_entry(dev, head, close_list) {
1521 		const struct net_device_ops *ops = dev->netdev_ops;
1522 
1523 		/*
1524 		 *	Call the device specific close. This cannot fail.
1525 		 *	Only if device is UP
1526 		 *
1527 		 *	We allow it to be called even after a DETACH hot-plug
1528 		 *	event.
1529 		 */
1530 		if (ops->ndo_stop)
1531 			ops->ndo_stop(dev);
1532 
1533 		dev->flags &= ~IFF_UP;
1534 		netpoll_poll_enable(dev);
1535 	}
1536 }
1537 
1538 static void __dev_close(struct net_device *dev)
1539 {
1540 	LIST_HEAD(single);
1541 
1542 	list_add(&dev->close_list, &single);
1543 	__dev_close_many(&single);
1544 	list_del(&single);
1545 }
1546 
1547 void dev_close_many(struct list_head *head, bool unlink)
1548 {
1549 	struct net_device *dev, *tmp;
1550 
1551 	/* Remove the devices that don't need to be closed */
1552 	list_for_each_entry_safe(dev, tmp, head, close_list)
1553 		if (!(dev->flags & IFF_UP))
1554 			list_del_init(&dev->close_list);
1555 
1556 	__dev_close_many(head);
1557 
1558 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1559 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1560 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1561 		if (unlink)
1562 			list_del_init(&dev->close_list);
1563 	}
1564 }
1565 EXPORT_SYMBOL(dev_close_many);
1566 
1567 /**
1568  *	dev_close - shutdown an interface.
1569  *	@dev: device to shutdown
1570  *
1571  *	This function moves an active device into down state. A
1572  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1573  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1574  *	chain.
1575  */
1576 void dev_close(struct net_device *dev)
1577 {
1578 	if (dev->flags & IFF_UP) {
1579 		LIST_HEAD(single);
1580 
1581 		list_add(&dev->close_list, &single);
1582 		dev_close_many(&single, true);
1583 		list_del(&single);
1584 	}
1585 }
1586 EXPORT_SYMBOL(dev_close);
1587 
1588 
1589 /**
1590  *	dev_disable_lro - disable Large Receive Offload on a device
1591  *	@dev: device
1592  *
1593  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1594  *	called under RTNL.  This is needed if received packets may be
1595  *	forwarded to another interface.
1596  */
1597 void dev_disable_lro(struct net_device *dev)
1598 {
1599 	struct net_device *lower_dev;
1600 	struct list_head *iter;
1601 
1602 	dev->wanted_features &= ~NETIF_F_LRO;
1603 	netdev_update_features(dev);
1604 
1605 	if (unlikely(dev->features & NETIF_F_LRO))
1606 		netdev_WARN(dev, "failed to disable LRO!\n");
1607 
1608 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1609 		dev_disable_lro(lower_dev);
1610 }
1611 EXPORT_SYMBOL(dev_disable_lro);
1612 
1613 /**
1614  *	dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1615  *	@dev: device
1616  *
1617  *	Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1618  *	called under RTNL.  This is needed if Generic XDP is installed on
1619  *	the device.
1620  */
1621 static void dev_disable_gro_hw(struct net_device *dev)
1622 {
1623 	dev->wanted_features &= ~NETIF_F_GRO_HW;
1624 	netdev_update_features(dev);
1625 
1626 	if (unlikely(dev->features & NETIF_F_GRO_HW))
1627 		netdev_WARN(dev, "failed to disable GRO_HW!\n");
1628 }
1629 
1630 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1631 {
1632 #define N(val) 						\
1633 	case NETDEV_##val:				\
1634 		return "NETDEV_" __stringify(val);
1635 	switch (cmd) {
1636 	N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1637 	N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1638 	N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1639 	N(POST_INIT) N(PRE_UNINIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN)
1640 	N(CHANGEUPPER) N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA)
1641 	N(BONDING_INFO) N(PRECHANGEUPPER) N(CHANGELOWERSTATE)
1642 	N(UDP_TUNNEL_PUSH_INFO) N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1643 	N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1644 	N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1645 	N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE)
1646 	N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA)
1647 	N(XDP_FEAT_CHANGE)
1648 	}
1649 #undef N
1650 	return "UNKNOWN_NETDEV_EVENT";
1651 }
1652 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1653 
1654 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1655 				   struct net_device *dev)
1656 {
1657 	struct netdev_notifier_info info = {
1658 		.dev = dev,
1659 	};
1660 
1661 	return nb->notifier_call(nb, val, &info);
1662 }
1663 
1664 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1665 					     struct net_device *dev)
1666 {
1667 	int err;
1668 
1669 	err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1670 	err = notifier_to_errno(err);
1671 	if (err)
1672 		return err;
1673 
1674 	if (!(dev->flags & IFF_UP))
1675 		return 0;
1676 
1677 	call_netdevice_notifier(nb, NETDEV_UP, dev);
1678 	return 0;
1679 }
1680 
1681 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1682 						struct net_device *dev)
1683 {
1684 	if (dev->flags & IFF_UP) {
1685 		call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1686 					dev);
1687 		call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1688 	}
1689 	call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1690 }
1691 
1692 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1693 						 struct net *net)
1694 {
1695 	struct net_device *dev;
1696 	int err;
1697 
1698 	for_each_netdev(net, dev) {
1699 		err = call_netdevice_register_notifiers(nb, dev);
1700 		if (err)
1701 			goto rollback;
1702 	}
1703 	return 0;
1704 
1705 rollback:
1706 	for_each_netdev_continue_reverse(net, dev)
1707 		call_netdevice_unregister_notifiers(nb, dev);
1708 	return err;
1709 }
1710 
1711 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1712 						    struct net *net)
1713 {
1714 	struct net_device *dev;
1715 
1716 	for_each_netdev(net, dev)
1717 		call_netdevice_unregister_notifiers(nb, dev);
1718 }
1719 
1720 static int dev_boot_phase = 1;
1721 
1722 /**
1723  * register_netdevice_notifier - register a network notifier block
1724  * @nb: notifier
1725  *
1726  * Register a notifier to be called when network device events occur.
1727  * The notifier passed is linked into the kernel structures and must
1728  * not be reused until it has been unregistered. A negative errno code
1729  * is returned on a failure.
1730  *
1731  * When registered all registration and up events are replayed
1732  * to the new notifier to allow device to have a race free
1733  * view of the network device list.
1734  */
1735 
1736 int register_netdevice_notifier(struct notifier_block *nb)
1737 {
1738 	struct net *net;
1739 	int err;
1740 
1741 	/* Close race with setup_net() and cleanup_net() */
1742 	down_write(&pernet_ops_rwsem);
1743 	rtnl_lock();
1744 	err = raw_notifier_chain_register(&netdev_chain, nb);
1745 	if (err)
1746 		goto unlock;
1747 	if (dev_boot_phase)
1748 		goto unlock;
1749 	for_each_net(net) {
1750 		err = call_netdevice_register_net_notifiers(nb, net);
1751 		if (err)
1752 			goto rollback;
1753 	}
1754 
1755 unlock:
1756 	rtnl_unlock();
1757 	up_write(&pernet_ops_rwsem);
1758 	return err;
1759 
1760 rollback:
1761 	for_each_net_continue_reverse(net)
1762 		call_netdevice_unregister_net_notifiers(nb, net);
1763 
1764 	raw_notifier_chain_unregister(&netdev_chain, nb);
1765 	goto unlock;
1766 }
1767 EXPORT_SYMBOL(register_netdevice_notifier);
1768 
1769 /**
1770  * unregister_netdevice_notifier - unregister a network notifier block
1771  * @nb: notifier
1772  *
1773  * Unregister a notifier previously registered by
1774  * register_netdevice_notifier(). The notifier is unlinked into the
1775  * kernel structures and may then be reused. A negative errno code
1776  * is returned on a failure.
1777  *
1778  * After unregistering unregister and down device events are synthesized
1779  * for all devices on the device list to the removed notifier to remove
1780  * the need for special case cleanup code.
1781  */
1782 
1783 int unregister_netdevice_notifier(struct notifier_block *nb)
1784 {
1785 	struct net *net;
1786 	int err;
1787 
1788 	/* Close race with setup_net() and cleanup_net() */
1789 	down_write(&pernet_ops_rwsem);
1790 	rtnl_lock();
1791 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1792 	if (err)
1793 		goto unlock;
1794 
1795 	for_each_net(net)
1796 		call_netdevice_unregister_net_notifiers(nb, net);
1797 
1798 unlock:
1799 	rtnl_unlock();
1800 	up_write(&pernet_ops_rwsem);
1801 	return err;
1802 }
1803 EXPORT_SYMBOL(unregister_netdevice_notifier);
1804 
1805 static int __register_netdevice_notifier_net(struct net *net,
1806 					     struct notifier_block *nb,
1807 					     bool ignore_call_fail)
1808 {
1809 	int err;
1810 
1811 	err = raw_notifier_chain_register(&net->netdev_chain, nb);
1812 	if (err)
1813 		return err;
1814 	if (dev_boot_phase)
1815 		return 0;
1816 
1817 	err = call_netdevice_register_net_notifiers(nb, net);
1818 	if (err && !ignore_call_fail)
1819 		goto chain_unregister;
1820 
1821 	return 0;
1822 
1823 chain_unregister:
1824 	raw_notifier_chain_unregister(&net->netdev_chain, nb);
1825 	return err;
1826 }
1827 
1828 static int __unregister_netdevice_notifier_net(struct net *net,
1829 					       struct notifier_block *nb)
1830 {
1831 	int err;
1832 
1833 	err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1834 	if (err)
1835 		return err;
1836 
1837 	call_netdevice_unregister_net_notifiers(nb, net);
1838 	return 0;
1839 }
1840 
1841 /**
1842  * register_netdevice_notifier_net - register a per-netns network notifier block
1843  * @net: network namespace
1844  * @nb: notifier
1845  *
1846  * Register a notifier to be called when network device events occur.
1847  * The notifier passed is linked into the kernel structures and must
1848  * not be reused until it has been unregistered. A negative errno code
1849  * is returned on a failure.
1850  *
1851  * When registered all registration and up events are replayed
1852  * to the new notifier to allow device to have a race free
1853  * view of the network device list.
1854  */
1855 
1856 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1857 {
1858 	int err;
1859 
1860 	rtnl_lock();
1861 	err = __register_netdevice_notifier_net(net, nb, false);
1862 	rtnl_unlock();
1863 	return err;
1864 }
1865 EXPORT_SYMBOL(register_netdevice_notifier_net);
1866 
1867 /**
1868  * unregister_netdevice_notifier_net - unregister a per-netns
1869  *                                     network notifier block
1870  * @net: network namespace
1871  * @nb: notifier
1872  *
1873  * Unregister a notifier previously registered by
1874  * register_netdevice_notifier_net(). The notifier is unlinked from the
1875  * kernel structures and may then be reused. A negative errno code
1876  * is returned on a failure.
1877  *
1878  * After unregistering unregister and down device events are synthesized
1879  * for all devices on the device list to the removed notifier to remove
1880  * the need for special case cleanup code.
1881  */
1882 
1883 int unregister_netdevice_notifier_net(struct net *net,
1884 				      struct notifier_block *nb)
1885 {
1886 	int err;
1887 
1888 	rtnl_lock();
1889 	err = __unregister_netdevice_notifier_net(net, nb);
1890 	rtnl_unlock();
1891 	return err;
1892 }
1893 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1894 
1895 static void __move_netdevice_notifier_net(struct net *src_net,
1896 					  struct net *dst_net,
1897 					  struct notifier_block *nb)
1898 {
1899 	__unregister_netdevice_notifier_net(src_net, nb);
1900 	__register_netdevice_notifier_net(dst_net, nb, true);
1901 }
1902 
1903 int register_netdevice_notifier_dev_net(struct net_device *dev,
1904 					struct notifier_block *nb,
1905 					struct netdev_net_notifier *nn)
1906 {
1907 	int err;
1908 
1909 	rtnl_lock();
1910 	err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1911 	if (!err) {
1912 		nn->nb = nb;
1913 		list_add(&nn->list, &dev->net_notifier_list);
1914 	}
1915 	rtnl_unlock();
1916 	return err;
1917 }
1918 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1919 
1920 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1921 					  struct notifier_block *nb,
1922 					  struct netdev_net_notifier *nn)
1923 {
1924 	int err;
1925 
1926 	rtnl_lock();
1927 	list_del(&nn->list);
1928 	err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1929 	rtnl_unlock();
1930 	return err;
1931 }
1932 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1933 
1934 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1935 					     struct net *net)
1936 {
1937 	struct netdev_net_notifier *nn;
1938 
1939 	list_for_each_entry(nn, &dev->net_notifier_list, list)
1940 		__move_netdevice_notifier_net(dev_net(dev), net, nn->nb);
1941 }
1942 
1943 /**
1944  *	call_netdevice_notifiers_info - call all network notifier blocks
1945  *	@val: value passed unmodified to notifier function
1946  *	@info: notifier information data
1947  *
1948  *	Call all network notifier blocks.  Parameters and return value
1949  *	are as for raw_notifier_call_chain().
1950  */
1951 
1952 int call_netdevice_notifiers_info(unsigned long val,
1953 				  struct netdev_notifier_info *info)
1954 {
1955 	struct net *net = dev_net(info->dev);
1956 	int ret;
1957 
1958 	ASSERT_RTNL();
1959 
1960 	/* Run per-netns notifier block chain first, then run the global one.
1961 	 * Hopefully, one day, the global one is going to be removed after
1962 	 * all notifier block registrators get converted to be per-netns.
1963 	 */
1964 	ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
1965 	if (ret & NOTIFY_STOP_MASK)
1966 		return ret;
1967 	return raw_notifier_call_chain(&netdev_chain, val, info);
1968 }
1969 
1970 /**
1971  *	call_netdevice_notifiers_info_robust - call per-netns notifier blocks
1972  *	                                       for and rollback on error
1973  *	@val_up: value passed unmodified to notifier function
1974  *	@val_down: value passed unmodified to the notifier function when
1975  *	           recovering from an error on @val_up
1976  *	@info: notifier information data
1977  *
1978  *	Call all per-netns network notifier blocks, but not notifier blocks on
1979  *	the global notifier chain. Parameters and return value are as for
1980  *	raw_notifier_call_chain_robust().
1981  */
1982 
1983 static int
1984 call_netdevice_notifiers_info_robust(unsigned long val_up,
1985 				     unsigned long val_down,
1986 				     struct netdev_notifier_info *info)
1987 {
1988 	struct net *net = dev_net(info->dev);
1989 
1990 	ASSERT_RTNL();
1991 
1992 	return raw_notifier_call_chain_robust(&net->netdev_chain,
1993 					      val_up, val_down, info);
1994 }
1995 
1996 static int call_netdevice_notifiers_extack(unsigned long val,
1997 					   struct net_device *dev,
1998 					   struct netlink_ext_ack *extack)
1999 {
2000 	struct netdev_notifier_info info = {
2001 		.dev = dev,
2002 		.extack = extack,
2003 	};
2004 
2005 	return call_netdevice_notifiers_info(val, &info);
2006 }
2007 
2008 /**
2009  *	call_netdevice_notifiers - call all network notifier blocks
2010  *      @val: value passed unmodified to notifier function
2011  *      @dev: net_device pointer passed unmodified to notifier function
2012  *
2013  *	Call all network notifier blocks.  Parameters and return value
2014  *	are as for raw_notifier_call_chain().
2015  */
2016 
2017 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2018 {
2019 	return call_netdevice_notifiers_extack(val, dev, NULL);
2020 }
2021 EXPORT_SYMBOL(call_netdevice_notifiers);
2022 
2023 /**
2024  *	call_netdevice_notifiers_mtu - call all network notifier blocks
2025  *	@val: value passed unmodified to notifier function
2026  *	@dev: net_device pointer passed unmodified to notifier function
2027  *	@arg: additional u32 argument passed to the notifier function
2028  *
2029  *	Call all network notifier blocks.  Parameters and return value
2030  *	are as for raw_notifier_call_chain().
2031  */
2032 static int call_netdevice_notifiers_mtu(unsigned long val,
2033 					struct net_device *dev, u32 arg)
2034 {
2035 	struct netdev_notifier_info_ext info = {
2036 		.info.dev = dev,
2037 		.ext.mtu = arg,
2038 	};
2039 
2040 	BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2041 
2042 	return call_netdevice_notifiers_info(val, &info.info);
2043 }
2044 
2045 #ifdef CONFIG_NET_INGRESS
2046 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2047 
2048 void net_inc_ingress_queue(void)
2049 {
2050 	static_branch_inc(&ingress_needed_key);
2051 }
2052 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2053 
2054 void net_dec_ingress_queue(void)
2055 {
2056 	static_branch_dec(&ingress_needed_key);
2057 }
2058 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2059 #endif
2060 
2061 #ifdef CONFIG_NET_EGRESS
2062 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2063 
2064 void net_inc_egress_queue(void)
2065 {
2066 	static_branch_inc(&egress_needed_key);
2067 }
2068 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2069 
2070 void net_dec_egress_queue(void)
2071 {
2072 	static_branch_dec(&egress_needed_key);
2073 }
2074 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2075 #endif
2076 
2077 DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2078 EXPORT_SYMBOL(netstamp_needed_key);
2079 #ifdef CONFIG_JUMP_LABEL
2080 static atomic_t netstamp_needed_deferred;
2081 static atomic_t netstamp_wanted;
2082 static void netstamp_clear(struct work_struct *work)
2083 {
2084 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2085 	int wanted;
2086 
2087 	wanted = atomic_add_return(deferred, &netstamp_wanted);
2088 	if (wanted > 0)
2089 		static_branch_enable(&netstamp_needed_key);
2090 	else
2091 		static_branch_disable(&netstamp_needed_key);
2092 }
2093 static DECLARE_WORK(netstamp_work, netstamp_clear);
2094 #endif
2095 
2096 void net_enable_timestamp(void)
2097 {
2098 #ifdef CONFIG_JUMP_LABEL
2099 	int wanted = atomic_read(&netstamp_wanted);
2100 
2101 	while (wanted > 0) {
2102 		if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted + 1))
2103 			return;
2104 	}
2105 	atomic_inc(&netstamp_needed_deferred);
2106 	schedule_work(&netstamp_work);
2107 #else
2108 	static_branch_inc(&netstamp_needed_key);
2109 #endif
2110 }
2111 EXPORT_SYMBOL(net_enable_timestamp);
2112 
2113 void net_disable_timestamp(void)
2114 {
2115 #ifdef CONFIG_JUMP_LABEL
2116 	int wanted = atomic_read(&netstamp_wanted);
2117 
2118 	while (wanted > 1) {
2119 		if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted - 1))
2120 			return;
2121 	}
2122 	atomic_dec(&netstamp_needed_deferred);
2123 	schedule_work(&netstamp_work);
2124 #else
2125 	static_branch_dec(&netstamp_needed_key);
2126 #endif
2127 }
2128 EXPORT_SYMBOL(net_disable_timestamp);
2129 
2130 static inline void net_timestamp_set(struct sk_buff *skb)
2131 {
2132 	skb->tstamp = 0;
2133 	skb->mono_delivery_time = 0;
2134 	if (static_branch_unlikely(&netstamp_needed_key))
2135 		skb->tstamp = ktime_get_real();
2136 }
2137 
2138 #define net_timestamp_check(COND, SKB)				\
2139 	if (static_branch_unlikely(&netstamp_needed_key)) {	\
2140 		if ((COND) && !(SKB)->tstamp)			\
2141 			(SKB)->tstamp = ktime_get_real();	\
2142 	}							\
2143 
2144 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2145 {
2146 	return __is_skb_forwardable(dev, skb, true);
2147 }
2148 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2149 
2150 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2151 			      bool check_mtu)
2152 {
2153 	int ret = ____dev_forward_skb(dev, skb, check_mtu);
2154 
2155 	if (likely(!ret)) {
2156 		skb->protocol = eth_type_trans(skb, dev);
2157 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2158 	}
2159 
2160 	return ret;
2161 }
2162 
2163 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2164 {
2165 	return __dev_forward_skb2(dev, skb, true);
2166 }
2167 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2168 
2169 /**
2170  * dev_forward_skb - loopback an skb to another netif
2171  *
2172  * @dev: destination network device
2173  * @skb: buffer to forward
2174  *
2175  * return values:
2176  *	NET_RX_SUCCESS	(no congestion)
2177  *	NET_RX_DROP     (packet was dropped, but freed)
2178  *
2179  * dev_forward_skb can be used for injecting an skb from the
2180  * start_xmit function of one device into the receive queue
2181  * of another device.
2182  *
2183  * The receiving device may be in another namespace, so
2184  * we have to clear all information in the skb that could
2185  * impact namespace isolation.
2186  */
2187 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2188 {
2189 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2190 }
2191 EXPORT_SYMBOL_GPL(dev_forward_skb);
2192 
2193 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2194 {
2195 	return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2196 }
2197 
2198 static inline int deliver_skb(struct sk_buff *skb,
2199 			      struct packet_type *pt_prev,
2200 			      struct net_device *orig_dev)
2201 {
2202 	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2203 		return -ENOMEM;
2204 	refcount_inc(&skb->users);
2205 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2206 }
2207 
2208 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2209 					  struct packet_type **pt,
2210 					  struct net_device *orig_dev,
2211 					  __be16 type,
2212 					  struct list_head *ptype_list)
2213 {
2214 	struct packet_type *ptype, *pt_prev = *pt;
2215 
2216 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2217 		if (ptype->type != type)
2218 			continue;
2219 		if (pt_prev)
2220 			deliver_skb(skb, pt_prev, orig_dev);
2221 		pt_prev = ptype;
2222 	}
2223 	*pt = pt_prev;
2224 }
2225 
2226 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2227 {
2228 	if (!ptype->af_packet_priv || !skb->sk)
2229 		return false;
2230 
2231 	if (ptype->id_match)
2232 		return ptype->id_match(ptype, skb->sk);
2233 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2234 		return true;
2235 
2236 	return false;
2237 }
2238 
2239 /**
2240  * dev_nit_active - return true if any network interface taps are in use
2241  *
2242  * @dev: network device to check for the presence of taps
2243  */
2244 bool dev_nit_active(struct net_device *dev)
2245 {
2246 	return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2247 }
2248 EXPORT_SYMBOL_GPL(dev_nit_active);
2249 
2250 /*
2251  *	Support routine. Sends outgoing frames to any network
2252  *	taps currently in use.
2253  */
2254 
2255 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2256 {
2257 	struct packet_type *ptype;
2258 	struct sk_buff *skb2 = NULL;
2259 	struct packet_type *pt_prev = NULL;
2260 	struct list_head *ptype_list = &ptype_all;
2261 
2262 	rcu_read_lock();
2263 again:
2264 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2265 		if (ptype->ignore_outgoing)
2266 			continue;
2267 
2268 		/* Never send packets back to the socket
2269 		 * they originated from - MvS (miquels@drinkel.ow.org)
2270 		 */
2271 		if (skb_loop_sk(ptype, skb))
2272 			continue;
2273 
2274 		if (pt_prev) {
2275 			deliver_skb(skb2, pt_prev, skb->dev);
2276 			pt_prev = ptype;
2277 			continue;
2278 		}
2279 
2280 		/* need to clone skb, done only once */
2281 		skb2 = skb_clone(skb, GFP_ATOMIC);
2282 		if (!skb2)
2283 			goto out_unlock;
2284 
2285 		net_timestamp_set(skb2);
2286 
2287 		/* skb->nh should be correctly
2288 		 * set by sender, so that the second statement is
2289 		 * just protection against buggy protocols.
2290 		 */
2291 		skb_reset_mac_header(skb2);
2292 
2293 		if (skb_network_header(skb2) < skb2->data ||
2294 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2295 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2296 					     ntohs(skb2->protocol),
2297 					     dev->name);
2298 			skb_reset_network_header(skb2);
2299 		}
2300 
2301 		skb2->transport_header = skb2->network_header;
2302 		skb2->pkt_type = PACKET_OUTGOING;
2303 		pt_prev = ptype;
2304 	}
2305 
2306 	if (ptype_list == &ptype_all) {
2307 		ptype_list = &dev->ptype_all;
2308 		goto again;
2309 	}
2310 out_unlock:
2311 	if (pt_prev) {
2312 		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2313 			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2314 		else
2315 			kfree_skb(skb2);
2316 	}
2317 	rcu_read_unlock();
2318 }
2319 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2320 
2321 /**
2322  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2323  * @dev: Network device
2324  * @txq: number of queues available
2325  *
2326  * If real_num_tx_queues is changed the tc mappings may no longer be
2327  * valid. To resolve this verify the tc mapping remains valid and if
2328  * not NULL the mapping. With no priorities mapping to this
2329  * offset/count pair it will no longer be used. In the worst case TC0
2330  * is invalid nothing can be done so disable priority mappings. If is
2331  * expected that drivers will fix this mapping if they can before
2332  * calling netif_set_real_num_tx_queues.
2333  */
2334 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2335 {
2336 	int i;
2337 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2338 
2339 	/* If TC0 is invalidated disable TC mapping */
2340 	if (tc->offset + tc->count > txq) {
2341 		netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2342 		dev->num_tc = 0;
2343 		return;
2344 	}
2345 
2346 	/* Invalidated prio to tc mappings set to TC0 */
2347 	for (i = 1; i < TC_BITMASK + 1; i++) {
2348 		int q = netdev_get_prio_tc_map(dev, i);
2349 
2350 		tc = &dev->tc_to_txq[q];
2351 		if (tc->offset + tc->count > txq) {
2352 			netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2353 				    i, q);
2354 			netdev_set_prio_tc_map(dev, i, 0);
2355 		}
2356 	}
2357 }
2358 
2359 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2360 {
2361 	if (dev->num_tc) {
2362 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2363 		int i;
2364 
2365 		/* walk through the TCs and see if it falls into any of them */
2366 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2367 			if ((txq - tc->offset) < tc->count)
2368 				return i;
2369 		}
2370 
2371 		/* didn't find it, just return -1 to indicate no match */
2372 		return -1;
2373 	}
2374 
2375 	return 0;
2376 }
2377 EXPORT_SYMBOL(netdev_txq_to_tc);
2378 
2379 #ifdef CONFIG_XPS
2380 static struct static_key xps_needed __read_mostly;
2381 static struct static_key xps_rxqs_needed __read_mostly;
2382 static DEFINE_MUTEX(xps_map_mutex);
2383 #define xmap_dereference(P)		\
2384 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2385 
2386 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2387 			     struct xps_dev_maps *old_maps, int tci, u16 index)
2388 {
2389 	struct xps_map *map = NULL;
2390 	int pos;
2391 
2392 	map = xmap_dereference(dev_maps->attr_map[tci]);
2393 	if (!map)
2394 		return false;
2395 
2396 	for (pos = map->len; pos--;) {
2397 		if (map->queues[pos] != index)
2398 			continue;
2399 
2400 		if (map->len > 1) {
2401 			map->queues[pos] = map->queues[--map->len];
2402 			break;
2403 		}
2404 
2405 		if (old_maps)
2406 			RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2407 		RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2408 		kfree_rcu(map, rcu);
2409 		return false;
2410 	}
2411 
2412 	return true;
2413 }
2414 
2415 static bool remove_xps_queue_cpu(struct net_device *dev,
2416 				 struct xps_dev_maps *dev_maps,
2417 				 int cpu, u16 offset, u16 count)
2418 {
2419 	int num_tc = dev_maps->num_tc;
2420 	bool active = false;
2421 	int tci;
2422 
2423 	for (tci = cpu * num_tc; num_tc--; tci++) {
2424 		int i, j;
2425 
2426 		for (i = count, j = offset; i--; j++) {
2427 			if (!remove_xps_queue(dev_maps, NULL, tci, j))
2428 				break;
2429 		}
2430 
2431 		active |= i < 0;
2432 	}
2433 
2434 	return active;
2435 }
2436 
2437 static void reset_xps_maps(struct net_device *dev,
2438 			   struct xps_dev_maps *dev_maps,
2439 			   enum xps_map_type type)
2440 {
2441 	static_key_slow_dec_cpuslocked(&xps_needed);
2442 	if (type == XPS_RXQS)
2443 		static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2444 
2445 	RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2446 
2447 	kfree_rcu(dev_maps, rcu);
2448 }
2449 
2450 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2451 			   u16 offset, u16 count)
2452 {
2453 	struct xps_dev_maps *dev_maps;
2454 	bool active = false;
2455 	int i, j;
2456 
2457 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2458 	if (!dev_maps)
2459 		return;
2460 
2461 	for (j = 0; j < dev_maps->nr_ids; j++)
2462 		active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2463 	if (!active)
2464 		reset_xps_maps(dev, dev_maps, type);
2465 
2466 	if (type == XPS_CPUS) {
2467 		for (i = offset + (count - 1); count--; i--)
2468 			netdev_queue_numa_node_write(
2469 				netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2470 	}
2471 }
2472 
2473 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2474 				   u16 count)
2475 {
2476 	if (!static_key_false(&xps_needed))
2477 		return;
2478 
2479 	cpus_read_lock();
2480 	mutex_lock(&xps_map_mutex);
2481 
2482 	if (static_key_false(&xps_rxqs_needed))
2483 		clean_xps_maps(dev, XPS_RXQS, offset, count);
2484 
2485 	clean_xps_maps(dev, XPS_CPUS, offset, count);
2486 
2487 	mutex_unlock(&xps_map_mutex);
2488 	cpus_read_unlock();
2489 }
2490 
2491 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2492 {
2493 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2494 }
2495 
2496 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2497 				      u16 index, bool is_rxqs_map)
2498 {
2499 	struct xps_map *new_map;
2500 	int alloc_len = XPS_MIN_MAP_ALLOC;
2501 	int i, pos;
2502 
2503 	for (pos = 0; map && pos < map->len; pos++) {
2504 		if (map->queues[pos] != index)
2505 			continue;
2506 		return map;
2507 	}
2508 
2509 	/* Need to add tx-queue to this CPU's/rx-queue's existing map */
2510 	if (map) {
2511 		if (pos < map->alloc_len)
2512 			return map;
2513 
2514 		alloc_len = map->alloc_len * 2;
2515 	}
2516 
2517 	/* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2518 	 *  map
2519 	 */
2520 	if (is_rxqs_map)
2521 		new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2522 	else
2523 		new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2524 				       cpu_to_node(attr_index));
2525 	if (!new_map)
2526 		return NULL;
2527 
2528 	for (i = 0; i < pos; i++)
2529 		new_map->queues[i] = map->queues[i];
2530 	new_map->alloc_len = alloc_len;
2531 	new_map->len = pos;
2532 
2533 	return new_map;
2534 }
2535 
2536 /* Copy xps maps at a given index */
2537 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2538 			      struct xps_dev_maps *new_dev_maps, int index,
2539 			      int tc, bool skip_tc)
2540 {
2541 	int i, tci = index * dev_maps->num_tc;
2542 	struct xps_map *map;
2543 
2544 	/* copy maps belonging to foreign traffic classes */
2545 	for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2546 		if (i == tc && skip_tc)
2547 			continue;
2548 
2549 		/* fill in the new device map from the old device map */
2550 		map = xmap_dereference(dev_maps->attr_map[tci]);
2551 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2552 	}
2553 }
2554 
2555 /* Must be called under cpus_read_lock */
2556 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2557 			  u16 index, enum xps_map_type type)
2558 {
2559 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2560 	const unsigned long *online_mask = NULL;
2561 	bool active = false, copy = false;
2562 	int i, j, tci, numa_node_id = -2;
2563 	int maps_sz, num_tc = 1, tc = 0;
2564 	struct xps_map *map, *new_map;
2565 	unsigned int nr_ids;
2566 
2567 	WARN_ON_ONCE(index >= dev->num_tx_queues);
2568 
2569 	if (dev->num_tc) {
2570 		/* Do not allow XPS on subordinate device directly */
2571 		num_tc = dev->num_tc;
2572 		if (num_tc < 0)
2573 			return -EINVAL;
2574 
2575 		/* If queue belongs to subordinate dev use its map */
2576 		dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2577 
2578 		tc = netdev_txq_to_tc(dev, index);
2579 		if (tc < 0)
2580 			return -EINVAL;
2581 	}
2582 
2583 	mutex_lock(&xps_map_mutex);
2584 
2585 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2586 	if (type == XPS_RXQS) {
2587 		maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2588 		nr_ids = dev->num_rx_queues;
2589 	} else {
2590 		maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2591 		if (num_possible_cpus() > 1)
2592 			online_mask = cpumask_bits(cpu_online_mask);
2593 		nr_ids = nr_cpu_ids;
2594 	}
2595 
2596 	if (maps_sz < L1_CACHE_BYTES)
2597 		maps_sz = L1_CACHE_BYTES;
2598 
2599 	/* The old dev_maps could be larger or smaller than the one we're
2600 	 * setting up now, as dev->num_tc or nr_ids could have been updated in
2601 	 * between. We could try to be smart, but let's be safe instead and only
2602 	 * copy foreign traffic classes if the two map sizes match.
2603 	 */
2604 	if (dev_maps &&
2605 	    dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2606 		copy = true;
2607 
2608 	/* allocate memory for queue storage */
2609 	for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2610 	     j < nr_ids;) {
2611 		if (!new_dev_maps) {
2612 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2613 			if (!new_dev_maps) {
2614 				mutex_unlock(&xps_map_mutex);
2615 				return -ENOMEM;
2616 			}
2617 
2618 			new_dev_maps->nr_ids = nr_ids;
2619 			new_dev_maps->num_tc = num_tc;
2620 		}
2621 
2622 		tci = j * num_tc + tc;
2623 		map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2624 
2625 		map = expand_xps_map(map, j, index, type == XPS_RXQS);
2626 		if (!map)
2627 			goto error;
2628 
2629 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2630 	}
2631 
2632 	if (!new_dev_maps)
2633 		goto out_no_new_maps;
2634 
2635 	if (!dev_maps) {
2636 		/* Increment static keys at most once per type */
2637 		static_key_slow_inc_cpuslocked(&xps_needed);
2638 		if (type == XPS_RXQS)
2639 			static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2640 	}
2641 
2642 	for (j = 0; j < nr_ids; j++) {
2643 		bool skip_tc = false;
2644 
2645 		tci = j * num_tc + tc;
2646 		if (netif_attr_test_mask(j, mask, nr_ids) &&
2647 		    netif_attr_test_online(j, online_mask, nr_ids)) {
2648 			/* add tx-queue to CPU/rx-queue maps */
2649 			int pos = 0;
2650 
2651 			skip_tc = true;
2652 
2653 			map = xmap_dereference(new_dev_maps->attr_map[tci]);
2654 			while ((pos < map->len) && (map->queues[pos] != index))
2655 				pos++;
2656 
2657 			if (pos == map->len)
2658 				map->queues[map->len++] = index;
2659 #ifdef CONFIG_NUMA
2660 			if (type == XPS_CPUS) {
2661 				if (numa_node_id == -2)
2662 					numa_node_id = cpu_to_node(j);
2663 				else if (numa_node_id != cpu_to_node(j))
2664 					numa_node_id = -1;
2665 			}
2666 #endif
2667 		}
2668 
2669 		if (copy)
2670 			xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2671 					  skip_tc);
2672 	}
2673 
2674 	rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2675 
2676 	/* Cleanup old maps */
2677 	if (!dev_maps)
2678 		goto out_no_old_maps;
2679 
2680 	for (j = 0; j < dev_maps->nr_ids; j++) {
2681 		for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2682 			map = xmap_dereference(dev_maps->attr_map[tci]);
2683 			if (!map)
2684 				continue;
2685 
2686 			if (copy) {
2687 				new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2688 				if (map == new_map)
2689 					continue;
2690 			}
2691 
2692 			RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2693 			kfree_rcu(map, rcu);
2694 		}
2695 	}
2696 
2697 	old_dev_maps = dev_maps;
2698 
2699 out_no_old_maps:
2700 	dev_maps = new_dev_maps;
2701 	active = true;
2702 
2703 out_no_new_maps:
2704 	if (type == XPS_CPUS)
2705 		/* update Tx queue numa node */
2706 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2707 					     (numa_node_id >= 0) ?
2708 					     numa_node_id : NUMA_NO_NODE);
2709 
2710 	if (!dev_maps)
2711 		goto out_no_maps;
2712 
2713 	/* removes tx-queue from unused CPUs/rx-queues */
2714 	for (j = 0; j < dev_maps->nr_ids; j++) {
2715 		tci = j * dev_maps->num_tc;
2716 
2717 		for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2718 			if (i == tc &&
2719 			    netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2720 			    netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2721 				continue;
2722 
2723 			active |= remove_xps_queue(dev_maps,
2724 						   copy ? old_dev_maps : NULL,
2725 						   tci, index);
2726 		}
2727 	}
2728 
2729 	if (old_dev_maps)
2730 		kfree_rcu(old_dev_maps, rcu);
2731 
2732 	/* free map if not active */
2733 	if (!active)
2734 		reset_xps_maps(dev, dev_maps, type);
2735 
2736 out_no_maps:
2737 	mutex_unlock(&xps_map_mutex);
2738 
2739 	return 0;
2740 error:
2741 	/* remove any maps that we added */
2742 	for (j = 0; j < nr_ids; j++) {
2743 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2744 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2745 			map = copy ?
2746 			      xmap_dereference(dev_maps->attr_map[tci]) :
2747 			      NULL;
2748 			if (new_map && new_map != map)
2749 				kfree(new_map);
2750 		}
2751 	}
2752 
2753 	mutex_unlock(&xps_map_mutex);
2754 
2755 	kfree(new_dev_maps);
2756 	return -ENOMEM;
2757 }
2758 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2759 
2760 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2761 			u16 index)
2762 {
2763 	int ret;
2764 
2765 	cpus_read_lock();
2766 	ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2767 	cpus_read_unlock();
2768 
2769 	return ret;
2770 }
2771 EXPORT_SYMBOL(netif_set_xps_queue);
2772 
2773 #endif
2774 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2775 {
2776 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2777 
2778 	/* Unbind any subordinate channels */
2779 	while (txq-- != &dev->_tx[0]) {
2780 		if (txq->sb_dev)
2781 			netdev_unbind_sb_channel(dev, txq->sb_dev);
2782 	}
2783 }
2784 
2785 void netdev_reset_tc(struct net_device *dev)
2786 {
2787 #ifdef CONFIG_XPS
2788 	netif_reset_xps_queues_gt(dev, 0);
2789 #endif
2790 	netdev_unbind_all_sb_channels(dev);
2791 
2792 	/* Reset TC configuration of device */
2793 	dev->num_tc = 0;
2794 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2795 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2796 }
2797 EXPORT_SYMBOL(netdev_reset_tc);
2798 
2799 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2800 {
2801 	if (tc >= dev->num_tc)
2802 		return -EINVAL;
2803 
2804 #ifdef CONFIG_XPS
2805 	netif_reset_xps_queues(dev, offset, count);
2806 #endif
2807 	dev->tc_to_txq[tc].count = count;
2808 	dev->tc_to_txq[tc].offset = offset;
2809 	return 0;
2810 }
2811 EXPORT_SYMBOL(netdev_set_tc_queue);
2812 
2813 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2814 {
2815 	if (num_tc > TC_MAX_QUEUE)
2816 		return -EINVAL;
2817 
2818 #ifdef CONFIG_XPS
2819 	netif_reset_xps_queues_gt(dev, 0);
2820 #endif
2821 	netdev_unbind_all_sb_channels(dev);
2822 
2823 	dev->num_tc = num_tc;
2824 	return 0;
2825 }
2826 EXPORT_SYMBOL(netdev_set_num_tc);
2827 
2828 void netdev_unbind_sb_channel(struct net_device *dev,
2829 			      struct net_device *sb_dev)
2830 {
2831 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2832 
2833 #ifdef CONFIG_XPS
2834 	netif_reset_xps_queues_gt(sb_dev, 0);
2835 #endif
2836 	memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2837 	memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2838 
2839 	while (txq-- != &dev->_tx[0]) {
2840 		if (txq->sb_dev == sb_dev)
2841 			txq->sb_dev = NULL;
2842 	}
2843 }
2844 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2845 
2846 int netdev_bind_sb_channel_queue(struct net_device *dev,
2847 				 struct net_device *sb_dev,
2848 				 u8 tc, u16 count, u16 offset)
2849 {
2850 	/* Make certain the sb_dev and dev are already configured */
2851 	if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2852 		return -EINVAL;
2853 
2854 	/* We cannot hand out queues we don't have */
2855 	if ((offset + count) > dev->real_num_tx_queues)
2856 		return -EINVAL;
2857 
2858 	/* Record the mapping */
2859 	sb_dev->tc_to_txq[tc].count = count;
2860 	sb_dev->tc_to_txq[tc].offset = offset;
2861 
2862 	/* Provide a way for Tx queue to find the tc_to_txq map or
2863 	 * XPS map for itself.
2864 	 */
2865 	while (count--)
2866 		netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2867 
2868 	return 0;
2869 }
2870 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2871 
2872 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2873 {
2874 	/* Do not use a multiqueue device to represent a subordinate channel */
2875 	if (netif_is_multiqueue(dev))
2876 		return -ENODEV;
2877 
2878 	/* We allow channels 1 - 32767 to be used for subordinate channels.
2879 	 * Channel 0 is meant to be "native" mode and used only to represent
2880 	 * the main root device. We allow writing 0 to reset the device back
2881 	 * to normal mode after being used as a subordinate channel.
2882 	 */
2883 	if (channel > S16_MAX)
2884 		return -EINVAL;
2885 
2886 	dev->num_tc = -channel;
2887 
2888 	return 0;
2889 }
2890 EXPORT_SYMBOL(netdev_set_sb_channel);
2891 
2892 /*
2893  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2894  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2895  */
2896 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2897 {
2898 	bool disabling;
2899 	int rc;
2900 
2901 	disabling = txq < dev->real_num_tx_queues;
2902 
2903 	if (txq < 1 || txq > dev->num_tx_queues)
2904 		return -EINVAL;
2905 
2906 	if (dev->reg_state == NETREG_REGISTERED ||
2907 	    dev->reg_state == NETREG_UNREGISTERING) {
2908 		ASSERT_RTNL();
2909 
2910 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2911 						  txq);
2912 		if (rc)
2913 			return rc;
2914 
2915 		if (dev->num_tc)
2916 			netif_setup_tc(dev, txq);
2917 
2918 		dev_qdisc_change_real_num_tx(dev, txq);
2919 
2920 		dev->real_num_tx_queues = txq;
2921 
2922 		if (disabling) {
2923 			synchronize_net();
2924 			qdisc_reset_all_tx_gt(dev, txq);
2925 #ifdef CONFIG_XPS
2926 			netif_reset_xps_queues_gt(dev, txq);
2927 #endif
2928 		}
2929 	} else {
2930 		dev->real_num_tx_queues = txq;
2931 	}
2932 
2933 	return 0;
2934 }
2935 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2936 
2937 #ifdef CONFIG_SYSFS
2938 /**
2939  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2940  *	@dev: Network device
2941  *	@rxq: Actual number of RX queues
2942  *
2943  *	This must be called either with the rtnl_lock held or before
2944  *	registration of the net device.  Returns 0 on success, or a
2945  *	negative error code.  If called before registration, it always
2946  *	succeeds.
2947  */
2948 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2949 {
2950 	int rc;
2951 
2952 	if (rxq < 1 || rxq > dev->num_rx_queues)
2953 		return -EINVAL;
2954 
2955 	if (dev->reg_state == NETREG_REGISTERED) {
2956 		ASSERT_RTNL();
2957 
2958 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2959 						  rxq);
2960 		if (rc)
2961 			return rc;
2962 	}
2963 
2964 	dev->real_num_rx_queues = rxq;
2965 	return 0;
2966 }
2967 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2968 #endif
2969 
2970 /**
2971  *	netif_set_real_num_queues - set actual number of RX and TX queues used
2972  *	@dev: Network device
2973  *	@txq: Actual number of TX queues
2974  *	@rxq: Actual number of RX queues
2975  *
2976  *	Set the real number of both TX and RX queues.
2977  *	Does nothing if the number of queues is already correct.
2978  */
2979 int netif_set_real_num_queues(struct net_device *dev,
2980 			      unsigned int txq, unsigned int rxq)
2981 {
2982 	unsigned int old_rxq = dev->real_num_rx_queues;
2983 	int err;
2984 
2985 	if (txq < 1 || txq > dev->num_tx_queues ||
2986 	    rxq < 1 || rxq > dev->num_rx_queues)
2987 		return -EINVAL;
2988 
2989 	/* Start from increases, so the error path only does decreases -
2990 	 * decreases can't fail.
2991 	 */
2992 	if (rxq > dev->real_num_rx_queues) {
2993 		err = netif_set_real_num_rx_queues(dev, rxq);
2994 		if (err)
2995 			return err;
2996 	}
2997 	if (txq > dev->real_num_tx_queues) {
2998 		err = netif_set_real_num_tx_queues(dev, txq);
2999 		if (err)
3000 			goto undo_rx;
3001 	}
3002 	if (rxq < dev->real_num_rx_queues)
3003 		WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
3004 	if (txq < dev->real_num_tx_queues)
3005 		WARN_ON(netif_set_real_num_tx_queues(dev, txq));
3006 
3007 	return 0;
3008 undo_rx:
3009 	WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
3010 	return err;
3011 }
3012 EXPORT_SYMBOL(netif_set_real_num_queues);
3013 
3014 /**
3015  * netif_set_tso_max_size() - set the max size of TSO frames supported
3016  * @dev:	netdev to update
3017  * @size:	max skb->len of a TSO frame
3018  *
3019  * Set the limit on the size of TSO super-frames the device can handle.
3020  * Unless explicitly set the stack will assume the value of
3021  * %GSO_LEGACY_MAX_SIZE.
3022  */
3023 void netif_set_tso_max_size(struct net_device *dev, unsigned int size)
3024 {
3025 	dev->tso_max_size = min(GSO_MAX_SIZE, size);
3026 	if (size < READ_ONCE(dev->gso_max_size))
3027 		netif_set_gso_max_size(dev, size);
3028 	if (size < READ_ONCE(dev->gso_ipv4_max_size))
3029 		netif_set_gso_ipv4_max_size(dev, size);
3030 }
3031 EXPORT_SYMBOL(netif_set_tso_max_size);
3032 
3033 /**
3034  * netif_set_tso_max_segs() - set the max number of segs supported for TSO
3035  * @dev:	netdev to update
3036  * @segs:	max number of TCP segments
3037  *
3038  * Set the limit on the number of TCP segments the device can generate from
3039  * a single TSO super-frame.
3040  * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS.
3041  */
3042 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs)
3043 {
3044 	dev->tso_max_segs = segs;
3045 	if (segs < READ_ONCE(dev->gso_max_segs))
3046 		netif_set_gso_max_segs(dev, segs);
3047 }
3048 EXPORT_SYMBOL(netif_set_tso_max_segs);
3049 
3050 /**
3051  * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper
3052  * @to:		netdev to update
3053  * @from:	netdev from which to copy the limits
3054  */
3055 void netif_inherit_tso_max(struct net_device *to, const struct net_device *from)
3056 {
3057 	netif_set_tso_max_size(to, from->tso_max_size);
3058 	netif_set_tso_max_segs(to, from->tso_max_segs);
3059 }
3060 EXPORT_SYMBOL(netif_inherit_tso_max);
3061 
3062 /**
3063  * netif_get_num_default_rss_queues - default number of RSS queues
3064  *
3065  * Default value is the number of physical cores if there are only 1 or 2, or
3066  * divided by 2 if there are more.
3067  */
3068 int netif_get_num_default_rss_queues(void)
3069 {
3070 	cpumask_var_t cpus;
3071 	int cpu, count = 0;
3072 
3073 	if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL)))
3074 		return 1;
3075 
3076 	cpumask_copy(cpus, cpu_online_mask);
3077 	for_each_cpu(cpu, cpus) {
3078 		++count;
3079 		cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu));
3080 	}
3081 	free_cpumask_var(cpus);
3082 
3083 	return count > 2 ? DIV_ROUND_UP(count, 2) : count;
3084 }
3085 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3086 
3087 static void __netif_reschedule(struct Qdisc *q)
3088 {
3089 	struct softnet_data *sd;
3090 	unsigned long flags;
3091 
3092 	local_irq_save(flags);
3093 	sd = this_cpu_ptr(&softnet_data);
3094 	q->next_sched = NULL;
3095 	*sd->output_queue_tailp = q;
3096 	sd->output_queue_tailp = &q->next_sched;
3097 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3098 	local_irq_restore(flags);
3099 }
3100 
3101 void __netif_schedule(struct Qdisc *q)
3102 {
3103 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3104 		__netif_reschedule(q);
3105 }
3106 EXPORT_SYMBOL(__netif_schedule);
3107 
3108 struct dev_kfree_skb_cb {
3109 	enum skb_drop_reason reason;
3110 };
3111 
3112 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3113 {
3114 	return (struct dev_kfree_skb_cb *)skb->cb;
3115 }
3116 
3117 void netif_schedule_queue(struct netdev_queue *txq)
3118 {
3119 	rcu_read_lock();
3120 	if (!netif_xmit_stopped(txq)) {
3121 		struct Qdisc *q = rcu_dereference(txq->qdisc);
3122 
3123 		__netif_schedule(q);
3124 	}
3125 	rcu_read_unlock();
3126 }
3127 EXPORT_SYMBOL(netif_schedule_queue);
3128 
3129 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3130 {
3131 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3132 		struct Qdisc *q;
3133 
3134 		rcu_read_lock();
3135 		q = rcu_dereference(dev_queue->qdisc);
3136 		__netif_schedule(q);
3137 		rcu_read_unlock();
3138 	}
3139 }
3140 EXPORT_SYMBOL(netif_tx_wake_queue);
3141 
3142 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3143 {
3144 	unsigned long flags;
3145 
3146 	if (unlikely(!skb))
3147 		return;
3148 
3149 	if (likely(refcount_read(&skb->users) == 1)) {
3150 		smp_rmb();
3151 		refcount_set(&skb->users, 0);
3152 	} else if (likely(!refcount_dec_and_test(&skb->users))) {
3153 		return;
3154 	}
3155 	get_kfree_skb_cb(skb)->reason = reason;
3156 	local_irq_save(flags);
3157 	skb->next = __this_cpu_read(softnet_data.completion_queue);
3158 	__this_cpu_write(softnet_data.completion_queue, skb);
3159 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3160 	local_irq_restore(flags);
3161 }
3162 EXPORT_SYMBOL(dev_kfree_skb_irq_reason);
3163 
3164 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3165 {
3166 	if (in_hardirq() || irqs_disabled())
3167 		dev_kfree_skb_irq_reason(skb, reason);
3168 	else
3169 		kfree_skb_reason(skb, reason);
3170 }
3171 EXPORT_SYMBOL(dev_kfree_skb_any_reason);
3172 
3173 
3174 /**
3175  * netif_device_detach - mark device as removed
3176  * @dev: network device
3177  *
3178  * Mark device as removed from system and therefore no longer available.
3179  */
3180 void netif_device_detach(struct net_device *dev)
3181 {
3182 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3183 	    netif_running(dev)) {
3184 		netif_tx_stop_all_queues(dev);
3185 	}
3186 }
3187 EXPORT_SYMBOL(netif_device_detach);
3188 
3189 /**
3190  * netif_device_attach - mark device as attached
3191  * @dev: network device
3192  *
3193  * Mark device as attached from system and restart if needed.
3194  */
3195 void netif_device_attach(struct net_device *dev)
3196 {
3197 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3198 	    netif_running(dev)) {
3199 		netif_tx_wake_all_queues(dev);
3200 		__netdev_watchdog_up(dev);
3201 	}
3202 }
3203 EXPORT_SYMBOL(netif_device_attach);
3204 
3205 /*
3206  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3207  * to be used as a distribution range.
3208  */
3209 static u16 skb_tx_hash(const struct net_device *dev,
3210 		       const struct net_device *sb_dev,
3211 		       struct sk_buff *skb)
3212 {
3213 	u32 hash;
3214 	u16 qoffset = 0;
3215 	u16 qcount = dev->real_num_tx_queues;
3216 
3217 	if (dev->num_tc) {
3218 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3219 
3220 		qoffset = sb_dev->tc_to_txq[tc].offset;
3221 		qcount = sb_dev->tc_to_txq[tc].count;
3222 		if (unlikely(!qcount)) {
3223 			net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3224 					     sb_dev->name, qoffset, tc);
3225 			qoffset = 0;
3226 			qcount = dev->real_num_tx_queues;
3227 		}
3228 	}
3229 
3230 	if (skb_rx_queue_recorded(skb)) {
3231 		DEBUG_NET_WARN_ON_ONCE(qcount == 0);
3232 		hash = skb_get_rx_queue(skb);
3233 		if (hash >= qoffset)
3234 			hash -= qoffset;
3235 		while (unlikely(hash >= qcount))
3236 			hash -= qcount;
3237 		return hash + qoffset;
3238 	}
3239 
3240 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3241 }
3242 
3243 void skb_warn_bad_offload(const struct sk_buff *skb)
3244 {
3245 	static const netdev_features_t null_features;
3246 	struct net_device *dev = skb->dev;
3247 	const char *name = "";
3248 
3249 	if (!net_ratelimit())
3250 		return;
3251 
3252 	if (dev) {
3253 		if (dev->dev.parent)
3254 			name = dev_driver_string(dev->dev.parent);
3255 		else
3256 			name = netdev_name(dev);
3257 	}
3258 	skb_dump(KERN_WARNING, skb, false);
3259 	WARN(1, "%s: caps=(%pNF, %pNF)\n",
3260 	     name, dev ? &dev->features : &null_features,
3261 	     skb->sk ? &skb->sk->sk_route_caps : &null_features);
3262 }
3263 
3264 /*
3265  * Invalidate hardware checksum when packet is to be mangled, and
3266  * complete checksum manually on outgoing path.
3267  */
3268 int skb_checksum_help(struct sk_buff *skb)
3269 {
3270 	__wsum csum;
3271 	int ret = 0, offset;
3272 
3273 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3274 		goto out_set_summed;
3275 
3276 	if (unlikely(skb_is_gso(skb))) {
3277 		skb_warn_bad_offload(skb);
3278 		return -EINVAL;
3279 	}
3280 
3281 	/* Before computing a checksum, we should make sure no frag could
3282 	 * be modified by an external entity : checksum could be wrong.
3283 	 */
3284 	if (skb_has_shared_frag(skb)) {
3285 		ret = __skb_linearize(skb);
3286 		if (ret)
3287 			goto out;
3288 	}
3289 
3290 	offset = skb_checksum_start_offset(skb);
3291 	ret = -EINVAL;
3292 	if (unlikely(offset >= skb_headlen(skb))) {
3293 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3294 		WARN_ONCE(true, "offset (%d) >= skb_headlen() (%u)\n",
3295 			  offset, skb_headlen(skb));
3296 		goto out;
3297 	}
3298 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
3299 
3300 	offset += skb->csum_offset;
3301 	if (unlikely(offset + sizeof(__sum16) > skb_headlen(skb))) {
3302 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3303 		WARN_ONCE(true, "offset+2 (%zu) > skb_headlen() (%u)\n",
3304 			  offset + sizeof(__sum16), skb_headlen(skb));
3305 		goto out;
3306 	}
3307 	ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3308 	if (ret)
3309 		goto out;
3310 
3311 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3312 out_set_summed:
3313 	skb->ip_summed = CHECKSUM_NONE;
3314 out:
3315 	return ret;
3316 }
3317 EXPORT_SYMBOL(skb_checksum_help);
3318 
3319 int skb_crc32c_csum_help(struct sk_buff *skb)
3320 {
3321 	__le32 crc32c_csum;
3322 	int ret = 0, offset, start;
3323 
3324 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3325 		goto out;
3326 
3327 	if (unlikely(skb_is_gso(skb)))
3328 		goto out;
3329 
3330 	/* Before computing a checksum, we should make sure no frag could
3331 	 * be modified by an external entity : checksum could be wrong.
3332 	 */
3333 	if (unlikely(skb_has_shared_frag(skb))) {
3334 		ret = __skb_linearize(skb);
3335 		if (ret)
3336 			goto out;
3337 	}
3338 	start = skb_checksum_start_offset(skb);
3339 	offset = start + offsetof(struct sctphdr, checksum);
3340 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3341 		ret = -EINVAL;
3342 		goto out;
3343 	}
3344 
3345 	ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3346 	if (ret)
3347 		goto out;
3348 
3349 	crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3350 						  skb->len - start, ~(__u32)0,
3351 						  crc32c_csum_stub));
3352 	*(__le32 *)(skb->data + offset) = crc32c_csum;
3353 	skb_reset_csum_not_inet(skb);
3354 out:
3355 	return ret;
3356 }
3357 
3358 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3359 {
3360 	__be16 type = skb->protocol;
3361 
3362 	/* Tunnel gso handlers can set protocol to ethernet. */
3363 	if (type == htons(ETH_P_TEB)) {
3364 		struct ethhdr *eth;
3365 
3366 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3367 			return 0;
3368 
3369 		eth = (struct ethhdr *)skb->data;
3370 		type = eth->h_proto;
3371 	}
3372 
3373 	return vlan_get_protocol_and_depth(skb, type, depth);
3374 }
3375 
3376 
3377 /* Take action when hardware reception checksum errors are detected. */
3378 #ifdef CONFIG_BUG
3379 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3380 {
3381 	netdev_err(dev, "hw csum failure\n");
3382 	skb_dump(KERN_ERR, skb, true);
3383 	dump_stack();
3384 }
3385 
3386 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3387 {
3388 	DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3389 }
3390 EXPORT_SYMBOL(netdev_rx_csum_fault);
3391 #endif
3392 
3393 /* XXX: check that highmem exists at all on the given machine. */
3394 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3395 {
3396 #ifdef CONFIG_HIGHMEM
3397 	int i;
3398 
3399 	if (!(dev->features & NETIF_F_HIGHDMA)) {
3400 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3401 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3402 
3403 			if (PageHighMem(skb_frag_page(frag)))
3404 				return 1;
3405 		}
3406 	}
3407 #endif
3408 	return 0;
3409 }
3410 
3411 /* If MPLS offload request, verify we are testing hardware MPLS features
3412  * instead of standard features for the netdev.
3413  */
3414 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3415 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3416 					   netdev_features_t features,
3417 					   __be16 type)
3418 {
3419 	if (eth_p_mpls(type))
3420 		features &= skb->dev->mpls_features;
3421 
3422 	return features;
3423 }
3424 #else
3425 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3426 					   netdev_features_t features,
3427 					   __be16 type)
3428 {
3429 	return features;
3430 }
3431 #endif
3432 
3433 static netdev_features_t harmonize_features(struct sk_buff *skb,
3434 	netdev_features_t features)
3435 {
3436 	__be16 type;
3437 
3438 	type = skb_network_protocol(skb, NULL);
3439 	features = net_mpls_features(skb, features, type);
3440 
3441 	if (skb->ip_summed != CHECKSUM_NONE &&
3442 	    !can_checksum_protocol(features, type)) {
3443 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3444 	}
3445 	if (illegal_highdma(skb->dev, skb))
3446 		features &= ~NETIF_F_SG;
3447 
3448 	return features;
3449 }
3450 
3451 netdev_features_t passthru_features_check(struct sk_buff *skb,
3452 					  struct net_device *dev,
3453 					  netdev_features_t features)
3454 {
3455 	return features;
3456 }
3457 EXPORT_SYMBOL(passthru_features_check);
3458 
3459 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3460 					     struct net_device *dev,
3461 					     netdev_features_t features)
3462 {
3463 	return vlan_features_check(skb, features);
3464 }
3465 
3466 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3467 					    struct net_device *dev,
3468 					    netdev_features_t features)
3469 {
3470 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
3471 
3472 	if (gso_segs > READ_ONCE(dev->gso_max_segs))
3473 		return features & ~NETIF_F_GSO_MASK;
3474 
3475 	if (unlikely(skb->len >= READ_ONCE(dev->gso_max_size)))
3476 		return features & ~NETIF_F_GSO_MASK;
3477 
3478 	if (!skb_shinfo(skb)->gso_type) {
3479 		skb_warn_bad_offload(skb);
3480 		return features & ~NETIF_F_GSO_MASK;
3481 	}
3482 
3483 	/* Support for GSO partial features requires software
3484 	 * intervention before we can actually process the packets
3485 	 * so we need to strip support for any partial features now
3486 	 * and we can pull them back in after we have partially
3487 	 * segmented the frame.
3488 	 */
3489 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3490 		features &= ~dev->gso_partial_features;
3491 
3492 	/* Make sure to clear the IPv4 ID mangling feature if the
3493 	 * IPv4 header has the potential to be fragmented.
3494 	 */
3495 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3496 		struct iphdr *iph = skb->encapsulation ?
3497 				    inner_ip_hdr(skb) : ip_hdr(skb);
3498 
3499 		if (!(iph->frag_off & htons(IP_DF)))
3500 			features &= ~NETIF_F_TSO_MANGLEID;
3501 	}
3502 
3503 	return features;
3504 }
3505 
3506 netdev_features_t netif_skb_features(struct sk_buff *skb)
3507 {
3508 	struct net_device *dev = skb->dev;
3509 	netdev_features_t features = dev->features;
3510 
3511 	if (skb_is_gso(skb))
3512 		features = gso_features_check(skb, dev, features);
3513 
3514 	/* If encapsulation offload request, verify we are testing
3515 	 * hardware encapsulation features instead of standard
3516 	 * features for the netdev
3517 	 */
3518 	if (skb->encapsulation)
3519 		features &= dev->hw_enc_features;
3520 
3521 	if (skb_vlan_tagged(skb))
3522 		features = netdev_intersect_features(features,
3523 						     dev->vlan_features |
3524 						     NETIF_F_HW_VLAN_CTAG_TX |
3525 						     NETIF_F_HW_VLAN_STAG_TX);
3526 
3527 	if (dev->netdev_ops->ndo_features_check)
3528 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
3529 								features);
3530 	else
3531 		features &= dflt_features_check(skb, dev, features);
3532 
3533 	return harmonize_features(skb, features);
3534 }
3535 EXPORT_SYMBOL(netif_skb_features);
3536 
3537 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3538 		    struct netdev_queue *txq, bool more)
3539 {
3540 	unsigned int len;
3541 	int rc;
3542 
3543 	if (dev_nit_active(dev))
3544 		dev_queue_xmit_nit(skb, dev);
3545 
3546 	len = skb->len;
3547 	trace_net_dev_start_xmit(skb, dev);
3548 	rc = netdev_start_xmit(skb, dev, txq, more);
3549 	trace_net_dev_xmit(skb, rc, dev, len);
3550 
3551 	return rc;
3552 }
3553 
3554 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3555 				    struct netdev_queue *txq, int *ret)
3556 {
3557 	struct sk_buff *skb = first;
3558 	int rc = NETDEV_TX_OK;
3559 
3560 	while (skb) {
3561 		struct sk_buff *next = skb->next;
3562 
3563 		skb_mark_not_on_list(skb);
3564 		rc = xmit_one(skb, dev, txq, next != NULL);
3565 		if (unlikely(!dev_xmit_complete(rc))) {
3566 			skb->next = next;
3567 			goto out;
3568 		}
3569 
3570 		skb = next;
3571 		if (netif_tx_queue_stopped(txq) && skb) {
3572 			rc = NETDEV_TX_BUSY;
3573 			break;
3574 		}
3575 	}
3576 
3577 out:
3578 	*ret = rc;
3579 	return skb;
3580 }
3581 
3582 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3583 					  netdev_features_t features)
3584 {
3585 	if (skb_vlan_tag_present(skb) &&
3586 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3587 		skb = __vlan_hwaccel_push_inside(skb);
3588 	return skb;
3589 }
3590 
3591 int skb_csum_hwoffload_help(struct sk_buff *skb,
3592 			    const netdev_features_t features)
3593 {
3594 	if (unlikely(skb_csum_is_sctp(skb)))
3595 		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3596 			skb_crc32c_csum_help(skb);
3597 
3598 	if (features & NETIF_F_HW_CSUM)
3599 		return 0;
3600 
3601 	if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3602 		switch (skb->csum_offset) {
3603 		case offsetof(struct tcphdr, check):
3604 		case offsetof(struct udphdr, check):
3605 			return 0;
3606 		}
3607 	}
3608 
3609 	return skb_checksum_help(skb);
3610 }
3611 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3612 
3613 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3614 {
3615 	netdev_features_t features;
3616 
3617 	features = netif_skb_features(skb);
3618 	skb = validate_xmit_vlan(skb, features);
3619 	if (unlikely(!skb))
3620 		goto out_null;
3621 
3622 	skb = sk_validate_xmit_skb(skb, dev);
3623 	if (unlikely(!skb))
3624 		goto out_null;
3625 
3626 	if (netif_needs_gso(skb, features)) {
3627 		struct sk_buff *segs;
3628 
3629 		segs = skb_gso_segment(skb, features);
3630 		if (IS_ERR(segs)) {
3631 			goto out_kfree_skb;
3632 		} else if (segs) {
3633 			consume_skb(skb);
3634 			skb = segs;
3635 		}
3636 	} else {
3637 		if (skb_needs_linearize(skb, features) &&
3638 		    __skb_linearize(skb))
3639 			goto out_kfree_skb;
3640 
3641 		/* If packet is not checksummed and device does not
3642 		 * support checksumming for this protocol, complete
3643 		 * checksumming here.
3644 		 */
3645 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3646 			if (skb->encapsulation)
3647 				skb_set_inner_transport_header(skb,
3648 							       skb_checksum_start_offset(skb));
3649 			else
3650 				skb_set_transport_header(skb,
3651 							 skb_checksum_start_offset(skb));
3652 			if (skb_csum_hwoffload_help(skb, features))
3653 				goto out_kfree_skb;
3654 		}
3655 	}
3656 
3657 	skb = validate_xmit_xfrm(skb, features, again);
3658 
3659 	return skb;
3660 
3661 out_kfree_skb:
3662 	kfree_skb(skb);
3663 out_null:
3664 	dev_core_stats_tx_dropped_inc(dev);
3665 	return NULL;
3666 }
3667 
3668 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3669 {
3670 	struct sk_buff *next, *head = NULL, *tail;
3671 
3672 	for (; skb != NULL; skb = next) {
3673 		next = skb->next;
3674 		skb_mark_not_on_list(skb);
3675 
3676 		/* in case skb wont be segmented, point to itself */
3677 		skb->prev = skb;
3678 
3679 		skb = validate_xmit_skb(skb, dev, again);
3680 		if (!skb)
3681 			continue;
3682 
3683 		if (!head)
3684 			head = skb;
3685 		else
3686 			tail->next = skb;
3687 		/* If skb was segmented, skb->prev points to
3688 		 * the last segment. If not, it still contains skb.
3689 		 */
3690 		tail = skb->prev;
3691 	}
3692 	return head;
3693 }
3694 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3695 
3696 static void qdisc_pkt_len_init(struct sk_buff *skb)
3697 {
3698 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3699 
3700 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3701 
3702 	/* To get more precise estimation of bytes sent on wire,
3703 	 * we add to pkt_len the headers size of all segments
3704 	 */
3705 	if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3706 		u16 gso_segs = shinfo->gso_segs;
3707 		unsigned int hdr_len;
3708 
3709 		/* mac layer + network layer */
3710 		hdr_len = skb_transport_offset(skb);
3711 
3712 		/* + transport layer */
3713 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3714 			const struct tcphdr *th;
3715 			struct tcphdr _tcphdr;
3716 
3717 			th = skb_header_pointer(skb, hdr_len,
3718 						sizeof(_tcphdr), &_tcphdr);
3719 			if (likely(th))
3720 				hdr_len += __tcp_hdrlen(th);
3721 		} else {
3722 			struct udphdr _udphdr;
3723 
3724 			if (skb_header_pointer(skb, hdr_len,
3725 					       sizeof(_udphdr), &_udphdr))
3726 				hdr_len += sizeof(struct udphdr);
3727 		}
3728 
3729 		if (shinfo->gso_type & SKB_GSO_DODGY)
3730 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3731 						shinfo->gso_size);
3732 
3733 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3734 	}
3735 }
3736 
3737 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
3738 			     struct sk_buff **to_free,
3739 			     struct netdev_queue *txq)
3740 {
3741 	int rc;
3742 
3743 	rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
3744 	if (rc == NET_XMIT_SUCCESS)
3745 		trace_qdisc_enqueue(q, txq, skb);
3746 	return rc;
3747 }
3748 
3749 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3750 				 struct net_device *dev,
3751 				 struct netdev_queue *txq)
3752 {
3753 	spinlock_t *root_lock = qdisc_lock(q);
3754 	struct sk_buff *to_free = NULL;
3755 	bool contended;
3756 	int rc;
3757 
3758 	qdisc_calculate_pkt_len(skb, q);
3759 
3760 	tcf_set_drop_reason(skb, SKB_DROP_REASON_QDISC_DROP);
3761 
3762 	if (q->flags & TCQ_F_NOLOCK) {
3763 		if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
3764 		    qdisc_run_begin(q)) {
3765 			/* Retest nolock_qdisc_is_empty() within the protection
3766 			 * of q->seqlock to protect from racing with requeuing.
3767 			 */
3768 			if (unlikely(!nolock_qdisc_is_empty(q))) {
3769 				rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3770 				__qdisc_run(q);
3771 				qdisc_run_end(q);
3772 
3773 				goto no_lock_out;
3774 			}
3775 
3776 			qdisc_bstats_cpu_update(q, skb);
3777 			if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
3778 			    !nolock_qdisc_is_empty(q))
3779 				__qdisc_run(q);
3780 
3781 			qdisc_run_end(q);
3782 			return NET_XMIT_SUCCESS;
3783 		}
3784 
3785 		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3786 		qdisc_run(q);
3787 
3788 no_lock_out:
3789 		if (unlikely(to_free))
3790 			kfree_skb_list_reason(to_free,
3791 					      tcf_get_drop_reason(to_free));
3792 		return rc;
3793 	}
3794 
3795 	/*
3796 	 * Heuristic to force contended enqueues to serialize on a
3797 	 * separate lock before trying to get qdisc main lock.
3798 	 * This permits qdisc->running owner to get the lock more
3799 	 * often and dequeue packets faster.
3800 	 * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit
3801 	 * and then other tasks will only enqueue packets. The packets will be
3802 	 * sent after the qdisc owner is scheduled again. To prevent this
3803 	 * scenario the task always serialize on the lock.
3804 	 */
3805 	contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT);
3806 	if (unlikely(contended))
3807 		spin_lock(&q->busylock);
3808 
3809 	spin_lock(root_lock);
3810 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3811 		__qdisc_drop(skb, &to_free);
3812 		rc = NET_XMIT_DROP;
3813 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3814 		   qdisc_run_begin(q)) {
3815 		/*
3816 		 * This is a work-conserving queue; there are no old skbs
3817 		 * waiting to be sent out; and the qdisc is not running -
3818 		 * xmit the skb directly.
3819 		 */
3820 
3821 		qdisc_bstats_update(q, skb);
3822 
3823 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3824 			if (unlikely(contended)) {
3825 				spin_unlock(&q->busylock);
3826 				contended = false;
3827 			}
3828 			__qdisc_run(q);
3829 		}
3830 
3831 		qdisc_run_end(q);
3832 		rc = NET_XMIT_SUCCESS;
3833 	} else {
3834 		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3835 		if (qdisc_run_begin(q)) {
3836 			if (unlikely(contended)) {
3837 				spin_unlock(&q->busylock);
3838 				contended = false;
3839 			}
3840 			__qdisc_run(q);
3841 			qdisc_run_end(q);
3842 		}
3843 	}
3844 	spin_unlock(root_lock);
3845 	if (unlikely(to_free))
3846 		kfree_skb_list_reason(to_free,
3847 				      tcf_get_drop_reason(to_free));
3848 	if (unlikely(contended))
3849 		spin_unlock(&q->busylock);
3850 	return rc;
3851 }
3852 
3853 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3854 static void skb_update_prio(struct sk_buff *skb)
3855 {
3856 	const struct netprio_map *map;
3857 	const struct sock *sk;
3858 	unsigned int prioidx;
3859 
3860 	if (skb->priority)
3861 		return;
3862 	map = rcu_dereference_bh(skb->dev->priomap);
3863 	if (!map)
3864 		return;
3865 	sk = skb_to_full_sk(skb);
3866 	if (!sk)
3867 		return;
3868 
3869 	prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3870 
3871 	if (prioidx < map->priomap_len)
3872 		skb->priority = map->priomap[prioidx];
3873 }
3874 #else
3875 #define skb_update_prio(skb)
3876 #endif
3877 
3878 /**
3879  *	dev_loopback_xmit - loop back @skb
3880  *	@net: network namespace this loopback is happening in
3881  *	@sk:  sk needed to be a netfilter okfn
3882  *	@skb: buffer to transmit
3883  */
3884 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3885 {
3886 	skb_reset_mac_header(skb);
3887 	__skb_pull(skb, skb_network_offset(skb));
3888 	skb->pkt_type = PACKET_LOOPBACK;
3889 	if (skb->ip_summed == CHECKSUM_NONE)
3890 		skb->ip_summed = CHECKSUM_UNNECESSARY;
3891 	DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb));
3892 	skb_dst_force(skb);
3893 	netif_rx(skb);
3894 	return 0;
3895 }
3896 EXPORT_SYMBOL(dev_loopback_xmit);
3897 
3898 #ifdef CONFIG_NET_EGRESS
3899 static struct netdev_queue *
3900 netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb)
3901 {
3902 	int qm = skb_get_queue_mapping(skb);
3903 
3904 	return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm));
3905 }
3906 
3907 static bool netdev_xmit_txqueue_skipped(void)
3908 {
3909 	return __this_cpu_read(softnet_data.xmit.skip_txqueue);
3910 }
3911 
3912 void netdev_xmit_skip_txqueue(bool skip)
3913 {
3914 	__this_cpu_write(softnet_data.xmit.skip_txqueue, skip);
3915 }
3916 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
3917 #endif /* CONFIG_NET_EGRESS */
3918 
3919 #ifdef CONFIG_NET_XGRESS
3920 static int tc_run(struct tcx_entry *entry, struct sk_buff *skb,
3921 		  enum skb_drop_reason *drop_reason)
3922 {
3923 	int ret = TC_ACT_UNSPEC;
3924 #ifdef CONFIG_NET_CLS_ACT
3925 	struct mini_Qdisc *miniq = rcu_dereference_bh(entry->miniq);
3926 	struct tcf_result res;
3927 
3928 	if (!miniq)
3929 		return ret;
3930 
3931 	tc_skb_cb(skb)->mru = 0;
3932 	tc_skb_cb(skb)->post_ct = false;
3933 	tcf_set_drop_reason(skb, *drop_reason);
3934 
3935 	mini_qdisc_bstats_cpu_update(miniq, skb);
3936 	ret = tcf_classify(skb, miniq->block, miniq->filter_list, &res, false);
3937 	/* Only tcf related quirks below. */
3938 	switch (ret) {
3939 	case TC_ACT_SHOT:
3940 		*drop_reason = tcf_get_drop_reason(skb);
3941 		mini_qdisc_qstats_cpu_drop(miniq);
3942 		break;
3943 	case TC_ACT_OK:
3944 	case TC_ACT_RECLASSIFY:
3945 		skb->tc_index = TC_H_MIN(res.classid);
3946 		break;
3947 	}
3948 #endif /* CONFIG_NET_CLS_ACT */
3949 	return ret;
3950 }
3951 
3952 static DEFINE_STATIC_KEY_FALSE(tcx_needed_key);
3953 
3954 void tcx_inc(void)
3955 {
3956 	static_branch_inc(&tcx_needed_key);
3957 }
3958 
3959 void tcx_dec(void)
3960 {
3961 	static_branch_dec(&tcx_needed_key);
3962 }
3963 
3964 static __always_inline enum tcx_action_base
3965 tcx_run(const struct bpf_mprog_entry *entry, struct sk_buff *skb,
3966 	const bool needs_mac)
3967 {
3968 	const struct bpf_mprog_fp *fp;
3969 	const struct bpf_prog *prog;
3970 	int ret = TCX_NEXT;
3971 
3972 	if (needs_mac)
3973 		__skb_push(skb, skb->mac_len);
3974 	bpf_mprog_foreach_prog(entry, fp, prog) {
3975 		bpf_compute_data_pointers(skb);
3976 		ret = bpf_prog_run(prog, skb);
3977 		if (ret != TCX_NEXT)
3978 			break;
3979 	}
3980 	if (needs_mac)
3981 		__skb_pull(skb, skb->mac_len);
3982 	return tcx_action_code(skb, ret);
3983 }
3984 
3985 static __always_inline struct sk_buff *
3986 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
3987 		   struct net_device *orig_dev, bool *another)
3988 {
3989 	struct bpf_mprog_entry *entry = rcu_dereference_bh(skb->dev->tcx_ingress);
3990 	enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_INGRESS;
3991 	int sch_ret;
3992 
3993 	if (!entry)
3994 		return skb;
3995 	if (*pt_prev) {
3996 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
3997 		*pt_prev = NULL;
3998 	}
3999 
4000 	qdisc_skb_cb(skb)->pkt_len = skb->len;
4001 	tcx_set_ingress(skb, true);
4002 
4003 	if (static_branch_unlikely(&tcx_needed_key)) {
4004 		sch_ret = tcx_run(entry, skb, true);
4005 		if (sch_ret != TC_ACT_UNSPEC)
4006 			goto ingress_verdict;
4007 	}
4008 	sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4009 ingress_verdict:
4010 	switch (sch_ret) {
4011 	case TC_ACT_REDIRECT:
4012 		/* skb_mac_header check was done by BPF, so we can safely
4013 		 * push the L2 header back before redirecting to another
4014 		 * netdev.
4015 		 */
4016 		__skb_push(skb, skb->mac_len);
4017 		if (skb_do_redirect(skb) == -EAGAIN) {
4018 			__skb_pull(skb, skb->mac_len);
4019 			*another = true;
4020 			break;
4021 		}
4022 		*ret = NET_RX_SUCCESS;
4023 		return NULL;
4024 	case TC_ACT_SHOT:
4025 		kfree_skb_reason(skb, drop_reason);
4026 		*ret = NET_RX_DROP;
4027 		return NULL;
4028 	/* used by tc_run */
4029 	case TC_ACT_STOLEN:
4030 	case TC_ACT_QUEUED:
4031 	case TC_ACT_TRAP:
4032 		consume_skb(skb);
4033 		fallthrough;
4034 	case TC_ACT_CONSUMED:
4035 		*ret = NET_RX_SUCCESS;
4036 		return NULL;
4037 	}
4038 
4039 	return skb;
4040 }
4041 
4042 static __always_inline struct sk_buff *
4043 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4044 {
4045 	struct bpf_mprog_entry *entry = rcu_dereference_bh(dev->tcx_egress);
4046 	enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_EGRESS;
4047 	int sch_ret;
4048 
4049 	if (!entry)
4050 		return skb;
4051 
4052 	/* qdisc_skb_cb(skb)->pkt_len & tcx_set_ingress() was
4053 	 * already set by the caller.
4054 	 */
4055 	if (static_branch_unlikely(&tcx_needed_key)) {
4056 		sch_ret = tcx_run(entry, skb, false);
4057 		if (sch_ret != TC_ACT_UNSPEC)
4058 			goto egress_verdict;
4059 	}
4060 	sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4061 egress_verdict:
4062 	switch (sch_ret) {
4063 	case TC_ACT_REDIRECT:
4064 		/* No need to push/pop skb's mac_header here on egress! */
4065 		skb_do_redirect(skb);
4066 		*ret = NET_XMIT_SUCCESS;
4067 		return NULL;
4068 	case TC_ACT_SHOT:
4069 		kfree_skb_reason(skb, drop_reason);
4070 		*ret = NET_XMIT_DROP;
4071 		return NULL;
4072 	/* used by tc_run */
4073 	case TC_ACT_STOLEN:
4074 	case TC_ACT_QUEUED:
4075 	case TC_ACT_TRAP:
4076 		consume_skb(skb);
4077 		fallthrough;
4078 	case TC_ACT_CONSUMED:
4079 		*ret = NET_XMIT_SUCCESS;
4080 		return NULL;
4081 	}
4082 
4083 	return skb;
4084 }
4085 #else
4086 static __always_inline struct sk_buff *
4087 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4088 		   struct net_device *orig_dev, bool *another)
4089 {
4090 	return skb;
4091 }
4092 
4093 static __always_inline struct sk_buff *
4094 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4095 {
4096 	return skb;
4097 }
4098 #endif /* CONFIG_NET_XGRESS */
4099 
4100 #ifdef CONFIG_XPS
4101 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
4102 			       struct xps_dev_maps *dev_maps, unsigned int tci)
4103 {
4104 	int tc = netdev_get_prio_tc_map(dev, skb->priority);
4105 	struct xps_map *map;
4106 	int queue_index = -1;
4107 
4108 	if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
4109 		return queue_index;
4110 
4111 	tci *= dev_maps->num_tc;
4112 	tci += tc;
4113 
4114 	map = rcu_dereference(dev_maps->attr_map[tci]);
4115 	if (map) {
4116 		if (map->len == 1)
4117 			queue_index = map->queues[0];
4118 		else
4119 			queue_index = map->queues[reciprocal_scale(
4120 						skb_get_hash(skb), map->len)];
4121 		if (unlikely(queue_index >= dev->real_num_tx_queues))
4122 			queue_index = -1;
4123 	}
4124 	return queue_index;
4125 }
4126 #endif
4127 
4128 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4129 			 struct sk_buff *skb)
4130 {
4131 #ifdef CONFIG_XPS
4132 	struct xps_dev_maps *dev_maps;
4133 	struct sock *sk = skb->sk;
4134 	int queue_index = -1;
4135 
4136 	if (!static_key_false(&xps_needed))
4137 		return -1;
4138 
4139 	rcu_read_lock();
4140 	if (!static_key_false(&xps_rxqs_needed))
4141 		goto get_cpus_map;
4142 
4143 	dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4144 	if (dev_maps) {
4145 		int tci = sk_rx_queue_get(sk);
4146 
4147 		if (tci >= 0)
4148 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4149 							  tci);
4150 	}
4151 
4152 get_cpus_map:
4153 	if (queue_index < 0) {
4154 		dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4155 		if (dev_maps) {
4156 			unsigned int tci = skb->sender_cpu - 1;
4157 
4158 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4159 							  tci);
4160 		}
4161 	}
4162 	rcu_read_unlock();
4163 
4164 	return queue_index;
4165 #else
4166 	return -1;
4167 #endif
4168 }
4169 
4170 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4171 		     struct net_device *sb_dev)
4172 {
4173 	return 0;
4174 }
4175 EXPORT_SYMBOL(dev_pick_tx_zero);
4176 
4177 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
4178 		       struct net_device *sb_dev)
4179 {
4180 	return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4181 }
4182 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4183 
4184 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4185 		     struct net_device *sb_dev)
4186 {
4187 	struct sock *sk = skb->sk;
4188 	int queue_index = sk_tx_queue_get(sk);
4189 
4190 	sb_dev = sb_dev ? : dev;
4191 
4192 	if (queue_index < 0 || skb->ooo_okay ||
4193 	    queue_index >= dev->real_num_tx_queues) {
4194 		int new_index = get_xps_queue(dev, sb_dev, skb);
4195 
4196 		if (new_index < 0)
4197 			new_index = skb_tx_hash(dev, sb_dev, skb);
4198 
4199 		if (queue_index != new_index && sk &&
4200 		    sk_fullsock(sk) &&
4201 		    rcu_access_pointer(sk->sk_dst_cache))
4202 			sk_tx_queue_set(sk, new_index);
4203 
4204 		queue_index = new_index;
4205 	}
4206 
4207 	return queue_index;
4208 }
4209 EXPORT_SYMBOL(netdev_pick_tx);
4210 
4211 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4212 					 struct sk_buff *skb,
4213 					 struct net_device *sb_dev)
4214 {
4215 	int queue_index = 0;
4216 
4217 #ifdef CONFIG_XPS
4218 	u32 sender_cpu = skb->sender_cpu - 1;
4219 
4220 	if (sender_cpu >= (u32)NR_CPUS)
4221 		skb->sender_cpu = raw_smp_processor_id() + 1;
4222 #endif
4223 
4224 	if (dev->real_num_tx_queues != 1) {
4225 		const struct net_device_ops *ops = dev->netdev_ops;
4226 
4227 		if (ops->ndo_select_queue)
4228 			queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4229 		else
4230 			queue_index = netdev_pick_tx(dev, skb, sb_dev);
4231 
4232 		queue_index = netdev_cap_txqueue(dev, queue_index);
4233 	}
4234 
4235 	skb_set_queue_mapping(skb, queue_index);
4236 	return netdev_get_tx_queue(dev, queue_index);
4237 }
4238 
4239 /**
4240  * __dev_queue_xmit() - transmit a buffer
4241  * @skb:	buffer to transmit
4242  * @sb_dev:	suboordinate device used for L2 forwarding offload
4243  *
4244  * Queue a buffer for transmission to a network device. The caller must
4245  * have set the device and priority and built the buffer before calling
4246  * this function. The function can be called from an interrupt.
4247  *
4248  * When calling this method, interrupts MUST be enabled. This is because
4249  * the BH enable code must have IRQs enabled so that it will not deadlock.
4250  *
4251  * Regardless of the return value, the skb is consumed, so it is currently
4252  * difficult to retry a send to this method. (You can bump the ref count
4253  * before sending to hold a reference for retry if you are careful.)
4254  *
4255  * Return:
4256  * * 0				- buffer successfully transmitted
4257  * * positive qdisc return code	- NET_XMIT_DROP etc.
4258  * * negative errno		- other errors
4259  */
4260 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4261 {
4262 	struct net_device *dev = skb->dev;
4263 	struct netdev_queue *txq = NULL;
4264 	struct Qdisc *q;
4265 	int rc = -ENOMEM;
4266 	bool again = false;
4267 
4268 	skb_reset_mac_header(skb);
4269 	skb_assert_len(skb);
4270 
4271 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4272 		__skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4273 
4274 	/* Disable soft irqs for various locks below. Also
4275 	 * stops preemption for RCU.
4276 	 */
4277 	rcu_read_lock_bh();
4278 
4279 	skb_update_prio(skb);
4280 
4281 	qdisc_pkt_len_init(skb);
4282 	tcx_set_ingress(skb, false);
4283 #ifdef CONFIG_NET_EGRESS
4284 	if (static_branch_unlikely(&egress_needed_key)) {
4285 		if (nf_hook_egress_active()) {
4286 			skb = nf_hook_egress(skb, &rc, dev);
4287 			if (!skb)
4288 				goto out;
4289 		}
4290 
4291 		netdev_xmit_skip_txqueue(false);
4292 
4293 		nf_skip_egress(skb, true);
4294 		skb = sch_handle_egress(skb, &rc, dev);
4295 		if (!skb)
4296 			goto out;
4297 		nf_skip_egress(skb, false);
4298 
4299 		if (netdev_xmit_txqueue_skipped())
4300 			txq = netdev_tx_queue_mapping(dev, skb);
4301 	}
4302 #endif
4303 	/* If device/qdisc don't need skb->dst, release it right now while
4304 	 * its hot in this cpu cache.
4305 	 */
4306 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4307 		skb_dst_drop(skb);
4308 	else
4309 		skb_dst_force(skb);
4310 
4311 	if (!txq)
4312 		txq = netdev_core_pick_tx(dev, skb, sb_dev);
4313 
4314 	q = rcu_dereference_bh(txq->qdisc);
4315 
4316 	trace_net_dev_queue(skb);
4317 	if (q->enqueue) {
4318 		rc = __dev_xmit_skb(skb, q, dev, txq);
4319 		goto out;
4320 	}
4321 
4322 	/* The device has no queue. Common case for software devices:
4323 	 * loopback, all the sorts of tunnels...
4324 
4325 	 * Really, it is unlikely that netif_tx_lock protection is necessary
4326 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4327 	 * counters.)
4328 	 * However, it is possible, that they rely on protection
4329 	 * made by us here.
4330 
4331 	 * Check this and shot the lock. It is not prone from deadlocks.
4332 	 *Either shot noqueue qdisc, it is even simpler 8)
4333 	 */
4334 	if (dev->flags & IFF_UP) {
4335 		int cpu = smp_processor_id(); /* ok because BHs are off */
4336 
4337 		/* Other cpus might concurrently change txq->xmit_lock_owner
4338 		 * to -1 or to their cpu id, but not to our id.
4339 		 */
4340 		if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4341 			if (dev_xmit_recursion())
4342 				goto recursion_alert;
4343 
4344 			skb = validate_xmit_skb(skb, dev, &again);
4345 			if (!skb)
4346 				goto out;
4347 
4348 			HARD_TX_LOCK(dev, txq, cpu);
4349 
4350 			if (!netif_xmit_stopped(txq)) {
4351 				dev_xmit_recursion_inc();
4352 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4353 				dev_xmit_recursion_dec();
4354 				if (dev_xmit_complete(rc)) {
4355 					HARD_TX_UNLOCK(dev, txq);
4356 					goto out;
4357 				}
4358 			}
4359 			HARD_TX_UNLOCK(dev, txq);
4360 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4361 					     dev->name);
4362 		} else {
4363 			/* Recursion is detected! It is possible,
4364 			 * unfortunately
4365 			 */
4366 recursion_alert:
4367 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4368 					     dev->name);
4369 		}
4370 	}
4371 
4372 	rc = -ENETDOWN;
4373 	rcu_read_unlock_bh();
4374 
4375 	dev_core_stats_tx_dropped_inc(dev);
4376 	kfree_skb_list(skb);
4377 	return rc;
4378 out:
4379 	rcu_read_unlock_bh();
4380 	return rc;
4381 }
4382 EXPORT_SYMBOL(__dev_queue_xmit);
4383 
4384 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4385 {
4386 	struct net_device *dev = skb->dev;
4387 	struct sk_buff *orig_skb = skb;
4388 	struct netdev_queue *txq;
4389 	int ret = NETDEV_TX_BUSY;
4390 	bool again = false;
4391 
4392 	if (unlikely(!netif_running(dev) ||
4393 		     !netif_carrier_ok(dev)))
4394 		goto drop;
4395 
4396 	skb = validate_xmit_skb_list(skb, dev, &again);
4397 	if (skb != orig_skb)
4398 		goto drop;
4399 
4400 	skb_set_queue_mapping(skb, queue_id);
4401 	txq = skb_get_tx_queue(dev, skb);
4402 
4403 	local_bh_disable();
4404 
4405 	dev_xmit_recursion_inc();
4406 	HARD_TX_LOCK(dev, txq, smp_processor_id());
4407 	if (!netif_xmit_frozen_or_drv_stopped(txq))
4408 		ret = netdev_start_xmit(skb, dev, txq, false);
4409 	HARD_TX_UNLOCK(dev, txq);
4410 	dev_xmit_recursion_dec();
4411 
4412 	local_bh_enable();
4413 	return ret;
4414 drop:
4415 	dev_core_stats_tx_dropped_inc(dev);
4416 	kfree_skb_list(skb);
4417 	return NET_XMIT_DROP;
4418 }
4419 EXPORT_SYMBOL(__dev_direct_xmit);
4420 
4421 /*************************************************************************
4422  *			Receiver routines
4423  *************************************************************************/
4424 
4425 int netdev_max_backlog __read_mostly = 1000;
4426 EXPORT_SYMBOL(netdev_max_backlog);
4427 
4428 int netdev_tstamp_prequeue __read_mostly = 1;
4429 unsigned int sysctl_skb_defer_max __read_mostly = 64;
4430 int netdev_budget __read_mostly = 300;
4431 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4432 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4433 int weight_p __read_mostly = 64;           /* old backlog weight */
4434 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4435 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4436 int dev_rx_weight __read_mostly = 64;
4437 int dev_tx_weight __read_mostly = 64;
4438 
4439 /* Called with irq disabled */
4440 static inline void ____napi_schedule(struct softnet_data *sd,
4441 				     struct napi_struct *napi)
4442 {
4443 	struct task_struct *thread;
4444 
4445 	lockdep_assert_irqs_disabled();
4446 
4447 	if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4448 		/* Paired with smp_mb__before_atomic() in
4449 		 * napi_enable()/dev_set_threaded().
4450 		 * Use READ_ONCE() to guarantee a complete
4451 		 * read on napi->thread. Only call
4452 		 * wake_up_process() when it's not NULL.
4453 		 */
4454 		thread = READ_ONCE(napi->thread);
4455 		if (thread) {
4456 			/* Avoid doing set_bit() if the thread is in
4457 			 * INTERRUPTIBLE state, cause napi_thread_wait()
4458 			 * makes sure to proceed with napi polling
4459 			 * if the thread is explicitly woken from here.
4460 			 */
4461 			if (READ_ONCE(thread->__state) != TASK_INTERRUPTIBLE)
4462 				set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4463 			wake_up_process(thread);
4464 			return;
4465 		}
4466 	}
4467 
4468 	list_add_tail(&napi->poll_list, &sd->poll_list);
4469 	WRITE_ONCE(napi->list_owner, smp_processor_id());
4470 	/* If not called from net_rx_action()
4471 	 * we have to raise NET_RX_SOFTIRQ.
4472 	 */
4473 	if (!sd->in_net_rx_action)
4474 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4475 }
4476 
4477 #ifdef CONFIG_RPS
4478 
4479 /* One global table that all flow-based protocols share. */
4480 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4481 EXPORT_SYMBOL(rps_sock_flow_table);
4482 u32 rps_cpu_mask __read_mostly;
4483 EXPORT_SYMBOL(rps_cpu_mask);
4484 
4485 struct static_key_false rps_needed __read_mostly;
4486 EXPORT_SYMBOL(rps_needed);
4487 struct static_key_false rfs_needed __read_mostly;
4488 EXPORT_SYMBOL(rfs_needed);
4489 
4490 static struct rps_dev_flow *
4491 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4492 	    struct rps_dev_flow *rflow, u16 next_cpu)
4493 {
4494 	if (next_cpu < nr_cpu_ids) {
4495 #ifdef CONFIG_RFS_ACCEL
4496 		struct netdev_rx_queue *rxqueue;
4497 		struct rps_dev_flow_table *flow_table;
4498 		struct rps_dev_flow *old_rflow;
4499 		u32 flow_id;
4500 		u16 rxq_index;
4501 		int rc;
4502 
4503 		/* Should we steer this flow to a different hardware queue? */
4504 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4505 		    !(dev->features & NETIF_F_NTUPLE))
4506 			goto out;
4507 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4508 		if (rxq_index == skb_get_rx_queue(skb))
4509 			goto out;
4510 
4511 		rxqueue = dev->_rx + rxq_index;
4512 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
4513 		if (!flow_table)
4514 			goto out;
4515 		flow_id = skb_get_hash(skb) & flow_table->mask;
4516 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4517 							rxq_index, flow_id);
4518 		if (rc < 0)
4519 			goto out;
4520 		old_rflow = rflow;
4521 		rflow = &flow_table->flows[flow_id];
4522 		rflow->filter = rc;
4523 		if (old_rflow->filter == rflow->filter)
4524 			old_rflow->filter = RPS_NO_FILTER;
4525 	out:
4526 #endif
4527 		rflow->last_qtail =
4528 			per_cpu(softnet_data, next_cpu).input_queue_head;
4529 	}
4530 
4531 	rflow->cpu = next_cpu;
4532 	return rflow;
4533 }
4534 
4535 /*
4536  * get_rps_cpu is called from netif_receive_skb and returns the target
4537  * CPU from the RPS map of the receiving queue for a given skb.
4538  * rcu_read_lock must be held on entry.
4539  */
4540 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4541 		       struct rps_dev_flow **rflowp)
4542 {
4543 	const struct rps_sock_flow_table *sock_flow_table;
4544 	struct netdev_rx_queue *rxqueue = dev->_rx;
4545 	struct rps_dev_flow_table *flow_table;
4546 	struct rps_map *map;
4547 	int cpu = -1;
4548 	u32 tcpu;
4549 	u32 hash;
4550 
4551 	if (skb_rx_queue_recorded(skb)) {
4552 		u16 index = skb_get_rx_queue(skb);
4553 
4554 		if (unlikely(index >= dev->real_num_rx_queues)) {
4555 			WARN_ONCE(dev->real_num_rx_queues > 1,
4556 				  "%s received packet on queue %u, but number "
4557 				  "of RX queues is %u\n",
4558 				  dev->name, index, dev->real_num_rx_queues);
4559 			goto done;
4560 		}
4561 		rxqueue += index;
4562 	}
4563 
4564 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4565 
4566 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4567 	map = rcu_dereference(rxqueue->rps_map);
4568 	if (!flow_table && !map)
4569 		goto done;
4570 
4571 	skb_reset_network_header(skb);
4572 	hash = skb_get_hash(skb);
4573 	if (!hash)
4574 		goto done;
4575 
4576 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
4577 	if (flow_table && sock_flow_table) {
4578 		struct rps_dev_flow *rflow;
4579 		u32 next_cpu;
4580 		u32 ident;
4581 
4582 		/* First check into global flow table if there is a match.
4583 		 * This READ_ONCE() pairs with WRITE_ONCE() from rps_record_sock_flow().
4584 		 */
4585 		ident = READ_ONCE(sock_flow_table->ents[hash & sock_flow_table->mask]);
4586 		if ((ident ^ hash) & ~rps_cpu_mask)
4587 			goto try_rps;
4588 
4589 		next_cpu = ident & rps_cpu_mask;
4590 
4591 		/* OK, now we know there is a match,
4592 		 * we can look at the local (per receive queue) flow table
4593 		 */
4594 		rflow = &flow_table->flows[hash & flow_table->mask];
4595 		tcpu = rflow->cpu;
4596 
4597 		/*
4598 		 * If the desired CPU (where last recvmsg was done) is
4599 		 * different from current CPU (one in the rx-queue flow
4600 		 * table entry), switch if one of the following holds:
4601 		 *   - Current CPU is unset (>= nr_cpu_ids).
4602 		 *   - Current CPU is offline.
4603 		 *   - The current CPU's queue tail has advanced beyond the
4604 		 *     last packet that was enqueued using this table entry.
4605 		 *     This guarantees that all previous packets for the flow
4606 		 *     have been dequeued, thus preserving in order delivery.
4607 		 */
4608 		if (unlikely(tcpu != next_cpu) &&
4609 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4610 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4611 		      rflow->last_qtail)) >= 0)) {
4612 			tcpu = next_cpu;
4613 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4614 		}
4615 
4616 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4617 			*rflowp = rflow;
4618 			cpu = tcpu;
4619 			goto done;
4620 		}
4621 	}
4622 
4623 try_rps:
4624 
4625 	if (map) {
4626 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4627 		if (cpu_online(tcpu)) {
4628 			cpu = tcpu;
4629 			goto done;
4630 		}
4631 	}
4632 
4633 done:
4634 	return cpu;
4635 }
4636 
4637 #ifdef CONFIG_RFS_ACCEL
4638 
4639 /**
4640  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4641  * @dev: Device on which the filter was set
4642  * @rxq_index: RX queue index
4643  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4644  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4645  *
4646  * Drivers that implement ndo_rx_flow_steer() should periodically call
4647  * this function for each installed filter and remove the filters for
4648  * which it returns %true.
4649  */
4650 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4651 			 u32 flow_id, u16 filter_id)
4652 {
4653 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4654 	struct rps_dev_flow_table *flow_table;
4655 	struct rps_dev_flow *rflow;
4656 	bool expire = true;
4657 	unsigned int cpu;
4658 
4659 	rcu_read_lock();
4660 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4661 	if (flow_table && flow_id <= flow_table->mask) {
4662 		rflow = &flow_table->flows[flow_id];
4663 		cpu = READ_ONCE(rflow->cpu);
4664 		if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4665 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4666 			   rflow->last_qtail) <
4667 		     (int)(10 * flow_table->mask)))
4668 			expire = false;
4669 	}
4670 	rcu_read_unlock();
4671 	return expire;
4672 }
4673 EXPORT_SYMBOL(rps_may_expire_flow);
4674 
4675 #endif /* CONFIG_RFS_ACCEL */
4676 
4677 /* Called from hardirq (IPI) context */
4678 static void rps_trigger_softirq(void *data)
4679 {
4680 	struct softnet_data *sd = data;
4681 
4682 	____napi_schedule(sd, &sd->backlog);
4683 	sd->received_rps++;
4684 }
4685 
4686 #endif /* CONFIG_RPS */
4687 
4688 /* Called from hardirq (IPI) context */
4689 static void trigger_rx_softirq(void *data)
4690 {
4691 	struct softnet_data *sd = data;
4692 
4693 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4694 	smp_store_release(&sd->defer_ipi_scheduled, 0);
4695 }
4696 
4697 /*
4698  * After we queued a packet into sd->input_pkt_queue,
4699  * we need to make sure this queue is serviced soon.
4700  *
4701  * - If this is another cpu queue, link it to our rps_ipi_list,
4702  *   and make sure we will process rps_ipi_list from net_rx_action().
4703  *
4704  * - If this is our own queue, NAPI schedule our backlog.
4705  *   Note that this also raises NET_RX_SOFTIRQ.
4706  */
4707 static void napi_schedule_rps(struct softnet_data *sd)
4708 {
4709 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4710 
4711 #ifdef CONFIG_RPS
4712 	if (sd != mysd) {
4713 		sd->rps_ipi_next = mysd->rps_ipi_list;
4714 		mysd->rps_ipi_list = sd;
4715 
4716 		/* If not called from net_rx_action() or napi_threaded_poll()
4717 		 * we have to raise NET_RX_SOFTIRQ.
4718 		 */
4719 		if (!mysd->in_net_rx_action && !mysd->in_napi_threaded_poll)
4720 			__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4721 		return;
4722 	}
4723 #endif /* CONFIG_RPS */
4724 	__napi_schedule_irqoff(&mysd->backlog);
4725 }
4726 
4727 #ifdef CONFIG_NET_FLOW_LIMIT
4728 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4729 #endif
4730 
4731 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4732 {
4733 #ifdef CONFIG_NET_FLOW_LIMIT
4734 	struct sd_flow_limit *fl;
4735 	struct softnet_data *sd;
4736 	unsigned int old_flow, new_flow;
4737 
4738 	if (qlen < (READ_ONCE(netdev_max_backlog) >> 1))
4739 		return false;
4740 
4741 	sd = this_cpu_ptr(&softnet_data);
4742 
4743 	rcu_read_lock();
4744 	fl = rcu_dereference(sd->flow_limit);
4745 	if (fl) {
4746 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4747 		old_flow = fl->history[fl->history_head];
4748 		fl->history[fl->history_head] = new_flow;
4749 
4750 		fl->history_head++;
4751 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4752 
4753 		if (likely(fl->buckets[old_flow]))
4754 			fl->buckets[old_flow]--;
4755 
4756 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4757 			fl->count++;
4758 			rcu_read_unlock();
4759 			return true;
4760 		}
4761 	}
4762 	rcu_read_unlock();
4763 #endif
4764 	return false;
4765 }
4766 
4767 /*
4768  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4769  * queue (may be a remote CPU queue).
4770  */
4771 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4772 			      unsigned int *qtail)
4773 {
4774 	enum skb_drop_reason reason;
4775 	struct softnet_data *sd;
4776 	unsigned long flags;
4777 	unsigned int qlen;
4778 
4779 	reason = SKB_DROP_REASON_NOT_SPECIFIED;
4780 	sd = &per_cpu(softnet_data, cpu);
4781 
4782 	rps_lock_irqsave(sd, &flags);
4783 	if (!netif_running(skb->dev))
4784 		goto drop;
4785 	qlen = skb_queue_len(&sd->input_pkt_queue);
4786 	if (qlen <= READ_ONCE(netdev_max_backlog) && !skb_flow_limit(skb, qlen)) {
4787 		if (qlen) {
4788 enqueue:
4789 			__skb_queue_tail(&sd->input_pkt_queue, skb);
4790 			input_queue_tail_incr_save(sd, qtail);
4791 			rps_unlock_irq_restore(sd, &flags);
4792 			return NET_RX_SUCCESS;
4793 		}
4794 
4795 		/* Schedule NAPI for backlog device
4796 		 * We can use non atomic operation since we own the queue lock
4797 		 */
4798 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state))
4799 			napi_schedule_rps(sd);
4800 		goto enqueue;
4801 	}
4802 	reason = SKB_DROP_REASON_CPU_BACKLOG;
4803 
4804 drop:
4805 	sd->dropped++;
4806 	rps_unlock_irq_restore(sd, &flags);
4807 
4808 	dev_core_stats_rx_dropped_inc(skb->dev);
4809 	kfree_skb_reason(skb, reason);
4810 	return NET_RX_DROP;
4811 }
4812 
4813 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4814 {
4815 	struct net_device *dev = skb->dev;
4816 	struct netdev_rx_queue *rxqueue;
4817 
4818 	rxqueue = dev->_rx;
4819 
4820 	if (skb_rx_queue_recorded(skb)) {
4821 		u16 index = skb_get_rx_queue(skb);
4822 
4823 		if (unlikely(index >= dev->real_num_rx_queues)) {
4824 			WARN_ONCE(dev->real_num_rx_queues > 1,
4825 				  "%s received packet on queue %u, but number "
4826 				  "of RX queues is %u\n",
4827 				  dev->name, index, dev->real_num_rx_queues);
4828 
4829 			return rxqueue; /* Return first rxqueue */
4830 		}
4831 		rxqueue += index;
4832 	}
4833 	return rxqueue;
4834 }
4835 
4836 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
4837 			     struct bpf_prog *xdp_prog)
4838 {
4839 	void *orig_data, *orig_data_end, *hard_start;
4840 	struct netdev_rx_queue *rxqueue;
4841 	bool orig_bcast, orig_host;
4842 	u32 mac_len, frame_sz;
4843 	__be16 orig_eth_type;
4844 	struct ethhdr *eth;
4845 	u32 metalen, act;
4846 	int off;
4847 
4848 	/* The XDP program wants to see the packet starting at the MAC
4849 	 * header.
4850 	 */
4851 	mac_len = skb->data - skb_mac_header(skb);
4852 	hard_start = skb->data - skb_headroom(skb);
4853 
4854 	/* SKB "head" area always have tailroom for skb_shared_info */
4855 	frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4856 	frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4857 
4858 	rxqueue = netif_get_rxqueue(skb);
4859 	xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4860 	xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4861 			 skb_headlen(skb) + mac_len, true);
4862 
4863 	orig_data_end = xdp->data_end;
4864 	orig_data = xdp->data;
4865 	eth = (struct ethhdr *)xdp->data;
4866 	orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
4867 	orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4868 	orig_eth_type = eth->h_proto;
4869 
4870 	act = bpf_prog_run_xdp(xdp_prog, xdp);
4871 
4872 	/* check if bpf_xdp_adjust_head was used */
4873 	off = xdp->data - orig_data;
4874 	if (off) {
4875 		if (off > 0)
4876 			__skb_pull(skb, off);
4877 		else if (off < 0)
4878 			__skb_push(skb, -off);
4879 
4880 		skb->mac_header += off;
4881 		skb_reset_network_header(skb);
4882 	}
4883 
4884 	/* check if bpf_xdp_adjust_tail was used */
4885 	off = xdp->data_end - orig_data_end;
4886 	if (off != 0) {
4887 		skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4888 		skb->len += off; /* positive on grow, negative on shrink */
4889 	}
4890 
4891 	/* check if XDP changed eth hdr such SKB needs update */
4892 	eth = (struct ethhdr *)xdp->data;
4893 	if ((orig_eth_type != eth->h_proto) ||
4894 	    (orig_host != ether_addr_equal_64bits(eth->h_dest,
4895 						  skb->dev->dev_addr)) ||
4896 	    (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4897 		__skb_push(skb, ETH_HLEN);
4898 		skb->pkt_type = PACKET_HOST;
4899 		skb->protocol = eth_type_trans(skb, skb->dev);
4900 	}
4901 
4902 	/* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
4903 	 * before calling us again on redirect path. We do not call do_redirect
4904 	 * as we leave that up to the caller.
4905 	 *
4906 	 * Caller is responsible for managing lifetime of skb (i.e. calling
4907 	 * kfree_skb in response to actions it cannot handle/XDP_DROP).
4908 	 */
4909 	switch (act) {
4910 	case XDP_REDIRECT:
4911 	case XDP_TX:
4912 		__skb_push(skb, mac_len);
4913 		break;
4914 	case XDP_PASS:
4915 		metalen = xdp->data - xdp->data_meta;
4916 		if (metalen)
4917 			skb_metadata_set(skb, metalen);
4918 		break;
4919 	}
4920 
4921 	return act;
4922 }
4923 
4924 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4925 				     struct xdp_buff *xdp,
4926 				     struct bpf_prog *xdp_prog)
4927 {
4928 	u32 act = XDP_DROP;
4929 
4930 	/* Reinjected packets coming from act_mirred or similar should
4931 	 * not get XDP generic processing.
4932 	 */
4933 	if (skb_is_redirected(skb))
4934 		return XDP_PASS;
4935 
4936 	/* XDP packets must be linear and must have sufficient headroom
4937 	 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4938 	 * native XDP provides, thus we need to do it here as well.
4939 	 */
4940 	if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4941 	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4942 		int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4943 		int troom = skb->tail + skb->data_len - skb->end;
4944 
4945 		/* In case we have to go down the path and also linearize,
4946 		 * then lets do the pskb_expand_head() work just once here.
4947 		 */
4948 		if (pskb_expand_head(skb,
4949 				     hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4950 				     troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4951 			goto do_drop;
4952 		if (skb_linearize(skb))
4953 			goto do_drop;
4954 	}
4955 
4956 	act = bpf_prog_run_generic_xdp(skb, xdp, xdp_prog);
4957 	switch (act) {
4958 	case XDP_REDIRECT:
4959 	case XDP_TX:
4960 	case XDP_PASS:
4961 		break;
4962 	default:
4963 		bpf_warn_invalid_xdp_action(skb->dev, xdp_prog, act);
4964 		fallthrough;
4965 	case XDP_ABORTED:
4966 		trace_xdp_exception(skb->dev, xdp_prog, act);
4967 		fallthrough;
4968 	case XDP_DROP:
4969 	do_drop:
4970 		kfree_skb(skb);
4971 		break;
4972 	}
4973 
4974 	return act;
4975 }
4976 
4977 /* When doing generic XDP we have to bypass the qdisc layer and the
4978  * network taps in order to match in-driver-XDP behavior. This also means
4979  * that XDP packets are able to starve other packets going through a qdisc,
4980  * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX
4981  * queues, so they do not have this starvation issue.
4982  */
4983 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4984 {
4985 	struct net_device *dev = skb->dev;
4986 	struct netdev_queue *txq;
4987 	bool free_skb = true;
4988 	int cpu, rc;
4989 
4990 	txq = netdev_core_pick_tx(dev, skb, NULL);
4991 	cpu = smp_processor_id();
4992 	HARD_TX_LOCK(dev, txq, cpu);
4993 	if (!netif_xmit_frozen_or_drv_stopped(txq)) {
4994 		rc = netdev_start_xmit(skb, dev, txq, 0);
4995 		if (dev_xmit_complete(rc))
4996 			free_skb = false;
4997 	}
4998 	HARD_TX_UNLOCK(dev, txq);
4999 	if (free_skb) {
5000 		trace_xdp_exception(dev, xdp_prog, XDP_TX);
5001 		dev_core_stats_tx_dropped_inc(dev);
5002 		kfree_skb(skb);
5003 	}
5004 }
5005 
5006 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
5007 
5008 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
5009 {
5010 	if (xdp_prog) {
5011 		struct xdp_buff xdp;
5012 		u32 act;
5013 		int err;
5014 
5015 		act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
5016 		if (act != XDP_PASS) {
5017 			switch (act) {
5018 			case XDP_REDIRECT:
5019 				err = xdp_do_generic_redirect(skb->dev, skb,
5020 							      &xdp, xdp_prog);
5021 				if (err)
5022 					goto out_redir;
5023 				break;
5024 			case XDP_TX:
5025 				generic_xdp_tx(skb, xdp_prog);
5026 				break;
5027 			}
5028 			return XDP_DROP;
5029 		}
5030 	}
5031 	return XDP_PASS;
5032 out_redir:
5033 	kfree_skb_reason(skb, SKB_DROP_REASON_XDP);
5034 	return XDP_DROP;
5035 }
5036 EXPORT_SYMBOL_GPL(do_xdp_generic);
5037 
5038 static int netif_rx_internal(struct sk_buff *skb)
5039 {
5040 	int ret;
5041 
5042 	net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5043 
5044 	trace_netif_rx(skb);
5045 
5046 #ifdef CONFIG_RPS
5047 	if (static_branch_unlikely(&rps_needed)) {
5048 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5049 		int cpu;
5050 
5051 		rcu_read_lock();
5052 
5053 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
5054 		if (cpu < 0)
5055 			cpu = smp_processor_id();
5056 
5057 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5058 
5059 		rcu_read_unlock();
5060 	} else
5061 #endif
5062 	{
5063 		unsigned int qtail;
5064 
5065 		ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail);
5066 	}
5067 	return ret;
5068 }
5069 
5070 /**
5071  *	__netif_rx	-	Slightly optimized version of netif_rx
5072  *	@skb: buffer to post
5073  *
5074  *	This behaves as netif_rx except that it does not disable bottom halves.
5075  *	As a result this function may only be invoked from the interrupt context
5076  *	(either hard or soft interrupt).
5077  */
5078 int __netif_rx(struct sk_buff *skb)
5079 {
5080 	int ret;
5081 
5082 	lockdep_assert_once(hardirq_count() | softirq_count());
5083 
5084 	trace_netif_rx_entry(skb);
5085 	ret = netif_rx_internal(skb);
5086 	trace_netif_rx_exit(ret);
5087 	return ret;
5088 }
5089 EXPORT_SYMBOL(__netif_rx);
5090 
5091 /**
5092  *	netif_rx	-	post buffer to the network code
5093  *	@skb: buffer to post
5094  *
5095  *	This function receives a packet from a device driver and queues it for
5096  *	the upper (protocol) levels to process via the backlog NAPI device. It
5097  *	always succeeds. The buffer may be dropped during processing for
5098  *	congestion control or by the protocol layers.
5099  *	The network buffer is passed via the backlog NAPI device. Modern NIC
5100  *	driver should use NAPI and GRO.
5101  *	This function can used from interrupt and from process context. The
5102  *	caller from process context must not disable interrupts before invoking
5103  *	this function.
5104  *
5105  *	return values:
5106  *	NET_RX_SUCCESS	(no congestion)
5107  *	NET_RX_DROP     (packet was dropped)
5108  *
5109  */
5110 int netif_rx(struct sk_buff *skb)
5111 {
5112 	bool need_bh_off = !(hardirq_count() | softirq_count());
5113 	int ret;
5114 
5115 	if (need_bh_off)
5116 		local_bh_disable();
5117 	trace_netif_rx_entry(skb);
5118 	ret = netif_rx_internal(skb);
5119 	trace_netif_rx_exit(ret);
5120 	if (need_bh_off)
5121 		local_bh_enable();
5122 	return ret;
5123 }
5124 EXPORT_SYMBOL(netif_rx);
5125 
5126 static __latent_entropy void net_tx_action(struct softirq_action *h)
5127 {
5128 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5129 
5130 	if (sd->completion_queue) {
5131 		struct sk_buff *clist;
5132 
5133 		local_irq_disable();
5134 		clist = sd->completion_queue;
5135 		sd->completion_queue = NULL;
5136 		local_irq_enable();
5137 
5138 		while (clist) {
5139 			struct sk_buff *skb = clist;
5140 
5141 			clist = clist->next;
5142 
5143 			WARN_ON(refcount_read(&skb->users));
5144 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_CONSUMED))
5145 				trace_consume_skb(skb, net_tx_action);
5146 			else
5147 				trace_kfree_skb(skb, net_tx_action,
5148 						get_kfree_skb_cb(skb)->reason);
5149 
5150 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5151 				__kfree_skb(skb);
5152 			else
5153 				__napi_kfree_skb(skb,
5154 						 get_kfree_skb_cb(skb)->reason);
5155 		}
5156 	}
5157 
5158 	if (sd->output_queue) {
5159 		struct Qdisc *head;
5160 
5161 		local_irq_disable();
5162 		head = sd->output_queue;
5163 		sd->output_queue = NULL;
5164 		sd->output_queue_tailp = &sd->output_queue;
5165 		local_irq_enable();
5166 
5167 		rcu_read_lock();
5168 
5169 		while (head) {
5170 			struct Qdisc *q = head;
5171 			spinlock_t *root_lock = NULL;
5172 
5173 			head = head->next_sched;
5174 
5175 			/* We need to make sure head->next_sched is read
5176 			 * before clearing __QDISC_STATE_SCHED
5177 			 */
5178 			smp_mb__before_atomic();
5179 
5180 			if (!(q->flags & TCQ_F_NOLOCK)) {
5181 				root_lock = qdisc_lock(q);
5182 				spin_lock(root_lock);
5183 			} else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5184 						     &q->state))) {
5185 				/* There is a synchronize_net() between
5186 				 * STATE_DEACTIVATED flag being set and
5187 				 * qdisc_reset()/some_qdisc_is_busy() in
5188 				 * dev_deactivate(), so we can safely bail out
5189 				 * early here to avoid data race between
5190 				 * qdisc_deactivate() and some_qdisc_is_busy()
5191 				 * for lockless qdisc.
5192 				 */
5193 				clear_bit(__QDISC_STATE_SCHED, &q->state);
5194 				continue;
5195 			}
5196 
5197 			clear_bit(__QDISC_STATE_SCHED, &q->state);
5198 			qdisc_run(q);
5199 			if (root_lock)
5200 				spin_unlock(root_lock);
5201 		}
5202 
5203 		rcu_read_unlock();
5204 	}
5205 
5206 	xfrm_dev_backlog(sd);
5207 }
5208 
5209 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5210 /* This hook is defined here for ATM LANE */
5211 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5212 			     unsigned char *addr) __read_mostly;
5213 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5214 #endif
5215 
5216 /**
5217  *	netdev_is_rx_handler_busy - check if receive handler is registered
5218  *	@dev: device to check
5219  *
5220  *	Check if a receive handler is already registered for a given device.
5221  *	Return true if there one.
5222  *
5223  *	The caller must hold the rtnl_mutex.
5224  */
5225 bool netdev_is_rx_handler_busy(struct net_device *dev)
5226 {
5227 	ASSERT_RTNL();
5228 	return dev && rtnl_dereference(dev->rx_handler);
5229 }
5230 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5231 
5232 /**
5233  *	netdev_rx_handler_register - register receive handler
5234  *	@dev: device to register a handler for
5235  *	@rx_handler: receive handler to register
5236  *	@rx_handler_data: data pointer that is used by rx handler
5237  *
5238  *	Register a receive handler for a device. This handler will then be
5239  *	called from __netif_receive_skb. A negative errno code is returned
5240  *	on a failure.
5241  *
5242  *	The caller must hold the rtnl_mutex.
5243  *
5244  *	For a general description of rx_handler, see enum rx_handler_result.
5245  */
5246 int netdev_rx_handler_register(struct net_device *dev,
5247 			       rx_handler_func_t *rx_handler,
5248 			       void *rx_handler_data)
5249 {
5250 	if (netdev_is_rx_handler_busy(dev))
5251 		return -EBUSY;
5252 
5253 	if (dev->priv_flags & IFF_NO_RX_HANDLER)
5254 		return -EINVAL;
5255 
5256 	/* Note: rx_handler_data must be set before rx_handler */
5257 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5258 	rcu_assign_pointer(dev->rx_handler, rx_handler);
5259 
5260 	return 0;
5261 }
5262 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5263 
5264 /**
5265  *	netdev_rx_handler_unregister - unregister receive handler
5266  *	@dev: device to unregister a handler from
5267  *
5268  *	Unregister a receive handler from a device.
5269  *
5270  *	The caller must hold the rtnl_mutex.
5271  */
5272 void netdev_rx_handler_unregister(struct net_device *dev)
5273 {
5274 
5275 	ASSERT_RTNL();
5276 	RCU_INIT_POINTER(dev->rx_handler, NULL);
5277 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5278 	 * section has a guarantee to see a non NULL rx_handler_data
5279 	 * as well.
5280 	 */
5281 	synchronize_net();
5282 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5283 }
5284 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5285 
5286 /*
5287  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5288  * the special handling of PFMEMALLOC skbs.
5289  */
5290 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5291 {
5292 	switch (skb->protocol) {
5293 	case htons(ETH_P_ARP):
5294 	case htons(ETH_P_IP):
5295 	case htons(ETH_P_IPV6):
5296 	case htons(ETH_P_8021Q):
5297 	case htons(ETH_P_8021AD):
5298 		return true;
5299 	default:
5300 		return false;
5301 	}
5302 }
5303 
5304 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5305 			     int *ret, struct net_device *orig_dev)
5306 {
5307 	if (nf_hook_ingress_active(skb)) {
5308 		int ingress_retval;
5309 
5310 		if (*pt_prev) {
5311 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
5312 			*pt_prev = NULL;
5313 		}
5314 
5315 		rcu_read_lock();
5316 		ingress_retval = nf_hook_ingress(skb);
5317 		rcu_read_unlock();
5318 		return ingress_retval;
5319 	}
5320 	return 0;
5321 }
5322 
5323 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5324 				    struct packet_type **ppt_prev)
5325 {
5326 	struct packet_type *ptype, *pt_prev;
5327 	rx_handler_func_t *rx_handler;
5328 	struct sk_buff *skb = *pskb;
5329 	struct net_device *orig_dev;
5330 	bool deliver_exact = false;
5331 	int ret = NET_RX_DROP;
5332 	__be16 type;
5333 
5334 	net_timestamp_check(!READ_ONCE(netdev_tstamp_prequeue), skb);
5335 
5336 	trace_netif_receive_skb(skb);
5337 
5338 	orig_dev = skb->dev;
5339 
5340 	skb_reset_network_header(skb);
5341 	if (!skb_transport_header_was_set(skb))
5342 		skb_reset_transport_header(skb);
5343 	skb_reset_mac_len(skb);
5344 
5345 	pt_prev = NULL;
5346 
5347 another_round:
5348 	skb->skb_iif = skb->dev->ifindex;
5349 
5350 	__this_cpu_inc(softnet_data.processed);
5351 
5352 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
5353 		int ret2;
5354 
5355 		migrate_disable();
5356 		ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5357 		migrate_enable();
5358 
5359 		if (ret2 != XDP_PASS) {
5360 			ret = NET_RX_DROP;
5361 			goto out;
5362 		}
5363 	}
5364 
5365 	if (eth_type_vlan(skb->protocol)) {
5366 		skb = skb_vlan_untag(skb);
5367 		if (unlikely(!skb))
5368 			goto out;
5369 	}
5370 
5371 	if (skb_skip_tc_classify(skb))
5372 		goto skip_classify;
5373 
5374 	if (pfmemalloc)
5375 		goto skip_taps;
5376 
5377 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
5378 		if (pt_prev)
5379 			ret = deliver_skb(skb, pt_prev, orig_dev);
5380 		pt_prev = ptype;
5381 	}
5382 
5383 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5384 		if (pt_prev)
5385 			ret = deliver_skb(skb, pt_prev, orig_dev);
5386 		pt_prev = ptype;
5387 	}
5388 
5389 skip_taps:
5390 #ifdef CONFIG_NET_INGRESS
5391 	if (static_branch_unlikely(&ingress_needed_key)) {
5392 		bool another = false;
5393 
5394 		nf_skip_egress(skb, true);
5395 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5396 					 &another);
5397 		if (another)
5398 			goto another_round;
5399 		if (!skb)
5400 			goto out;
5401 
5402 		nf_skip_egress(skb, false);
5403 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5404 			goto out;
5405 	}
5406 #endif
5407 	skb_reset_redirect(skb);
5408 skip_classify:
5409 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5410 		goto drop;
5411 
5412 	if (skb_vlan_tag_present(skb)) {
5413 		if (pt_prev) {
5414 			ret = deliver_skb(skb, pt_prev, orig_dev);
5415 			pt_prev = NULL;
5416 		}
5417 		if (vlan_do_receive(&skb))
5418 			goto another_round;
5419 		else if (unlikely(!skb))
5420 			goto out;
5421 	}
5422 
5423 	rx_handler = rcu_dereference(skb->dev->rx_handler);
5424 	if (rx_handler) {
5425 		if (pt_prev) {
5426 			ret = deliver_skb(skb, pt_prev, orig_dev);
5427 			pt_prev = NULL;
5428 		}
5429 		switch (rx_handler(&skb)) {
5430 		case RX_HANDLER_CONSUMED:
5431 			ret = NET_RX_SUCCESS;
5432 			goto out;
5433 		case RX_HANDLER_ANOTHER:
5434 			goto another_round;
5435 		case RX_HANDLER_EXACT:
5436 			deliver_exact = true;
5437 			break;
5438 		case RX_HANDLER_PASS:
5439 			break;
5440 		default:
5441 			BUG();
5442 		}
5443 	}
5444 
5445 	if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5446 check_vlan_id:
5447 		if (skb_vlan_tag_get_id(skb)) {
5448 			/* Vlan id is non 0 and vlan_do_receive() above couldn't
5449 			 * find vlan device.
5450 			 */
5451 			skb->pkt_type = PACKET_OTHERHOST;
5452 		} else if (eth_type_vlan(skb->protocol)) {
5453 			/* Outer header is 802.1P with vlan 0, inner header is
5454 			 * 802.1Q or 802.1AD and vlan_do_receive() above could
5455 			 * not find vlan dev for vlan id 0.
5456 			 */
5457 			__vlan_hwaccel_clear_tag(skb);
5458 			skb = skb_vlan_untag(skb);
5459 			if (unlikely(!skb))
5460 				goto out;
5461 			if (vlan_do_receive(&skb))
5462 				/* After stripping off 802.1P header with vlan 0
5463 				 * vlan dev is found for inner header.
5464 				 */
5465 				goto another_round;
5466 			else if (unlikely(!skb))
5467 				goto out;
5468 			else
5469 				/* We have stripped outer 802.1P vlan 0 header.
5470 				 * But could not find vlan dev.
5471 				 * check again for vlan id to set OTHERHOST.
5472 				 */
5473 				goto check_vlan_id;
5474 		}
5475 		/* Note: we might in the future use prio bits
5476 		 * and set skb->priority like in vlan_do_receive()
5477 		 * For the time being, just ignore Priority Code Point
5478 		 */
5479 		__vlan_hwaccel_clear_tag(skb);
5480 	}
5481 
5482 	type = skb->protocol;
5483 
5484 	/* deliver only exact match when indicated */
5485 	if (likely(!deliver_exact)) {
5486 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5487 				       &ptype_base[ntohs(type) &
5488 						   PTYPE_HASH_MASK]);
5489 	}
5490 
5491 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5492 			       &orig_dev->ptype_specific);
5493 
5494 	if (unlikely(skb->dev != orig_dev)) {
5495 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5496 				       &skb->dev->ptype_specific);
5497 	}
5498 
5499 	if (pt_prev) {
5500 		if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5501 			goto drop;
5502 		*ppt_prev = pt_prev;
5503 	} else {
5504 drop:
5505 		if (!deliver_exact)
5506 			dev_core_stats_rx_dropped_inc(skb->dev);
5507 		else
5508 			dev_core_stats_rx_nohandler_inc(skb->dev);
5509 		kfree_skb_reason(skb, SKB_DROP_REASON_UNHANDLED_PROTO);
5510 		/* Jamal, now you will not able to escape explaining
5511 		 * me how you were going to use this. :-)
5512 		 */
5513 		ret = NET_RX_DROP;
5514 	}
5515 
5516 out:
5517 	/* The invariant here is that if *ppt_prev is not NULL
5518 	 * then skb should also be non-NULL.
5519 	 *
5520 	 * Apparently *ppt_prev assignment above holds this invariant due to
5521 	 * skb dereferencing near it.
5522 	 */
5523 	*pskb = skb;
5524 	return ret;
5525 }
5526 
5527 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5528 {
5529 	struct net_device *orig_dev = skb->dev;
5530 	struct packet_type *pt_prev = NULL;
5531 	int ret;
5532 
5533 	ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5534 	if (pt_prev)
5535 		ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5536 					 skb->dev, pt_prev, orig_dev);
5537 	return ret;
5538 }
5539 
5540 /**
5541  *	netif_receive_skb_core - special purpose version of netif_receive_skb
5542  *	@skb: buffer to process
5543  *
5544  *	More direct receive version of netif_receive_skb().  It should
5545  *	only be used by callers that have a need to skip RPS and Generic XDP.
5546  *	Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5547  *
5548  *	This function may only be called from softirq context and interrupts
5549  *	should be enabled.
5550  *
5551  *	Return values (usually ignored):
5552  *	NET_RX_SUCCESS: no congestion
5553  *	NET_RX_DROP: packet was dropped
5554  */
5555 int netif_receive_skb_core(struct sk_buff *skb)
5556 {
5557 	int ret;
5558 
5559 	rcu_read_lock();
5560 	ret = __netif_receive_skb_one_core(skb, false);
5561 	rcu_read_unlock();
5562 
5563 	return ret;
5564 }
5565 EXPORT_SYMBOL(netif_receive_skb_core);
5566 
5567 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5568 						  struct packet_type *pt_prev,
5569 						  struct net_device *orig_dev)
5570 {
5571 	struct sk_buff *skb, *next;
5572 
5573 	if (!pt_prev)
5574 		return;
5575 	if (list_empty(head))
5576 		return;
5577 	if (pt_prev->list_func != NULL)
5578 		INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5579 				   ip_list_rcv, head, pt_prev, orig_dev);
5580 	else
5581 		list_for_each_entry_safe(skb, next, head, list) {
5582 			skb_list_del_init(skb);
5583 			pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5584 		}
5585 }
5586 
5587 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5588 {
5589 	/* Fast-path assumptions:
5590 	 * - There is no RX handler.
5591 	 * - Only one packet_type matches.
5592 	 * If either of these fails, we will end up doing some per-packet
5593 	 * processing in-line, then handling the 'last ptype' for the whole
5594 	 * sublist.  This can't cause out-of-order delivery to any single ptype,
5595 	 * because the 'last ptype' must be constant across the sublist, and all
5596 	 * other ptypes are handled per-packet.
5597 	 */
5598 	/* Current (common) ptype of sublist */
5599 	struct packet_type *pt_curr = NULL;
5600 	/* Current (common) orig_dev of sublist */
5601 	struct net_device *od_curr = NULL;
5602 	struct list_head sublist;
5603 	struct sk_buff *skb, *next;
5604 
5605 	INIT_LIST_HEAD(&sublist);
5606 	list_for_each_entry_safe(skb, next, head, list) {
5607 		struct net_device *orig_dev = skb->dev;
5608 		struct packet_type *pt_prev = NULL;
5609 
5610 		skb_list_del_init(skb);
5611 		__netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5612 		if (!pt_prev)
5613 			continue;
5614 		if (pt_curr != pt_prev || od_curr != orig_dev) {
5615 			/* dispatch old sublist */
5616 			__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5617 			/* start new sublist */
5618 			INIT_LIST_HEAD(&sublist);
5619 			pt_curr = pt_prev;
5620 			od_curr = orig_dev;
5621 		}
5622 		list_add_tail(&skb->list, &sublist);
5623 	}
5624 
5625 	/* dispatch final sublist */
5626 	__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5627 }
5628 
5629 static int __netif_receive_skb(struct sk_buff *skb)
5630 {
5631 	int ret;
5632 
5633 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5634 		unsigned int noreclaim_flag;
5635 
5636 		/*
5637 		 * PFMEMALLOC skbs are special, they should
5638 		 * - be delivered to SOCK_MEMALLOC sockets only
5639 		 * - stay away from userspace
5640 		 * - have bounded memory usage
5641 		 *
5642 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
5643 		 * context down to all allocation sites.
5644 		 */
5645 		noreclaim_flag = memalloc_noreclaim_save();
5646 		ret = __netif_receive_skb_one_core(skb, true);
5647 		memalloc_noreclaim_restore(noreclaim_flag);
5648 	} else
5649 		ret = __netif_receive_skb_one_core(skb, false);
5650 
5651 	return ret;
5652 }
5653 
5654 static void __netif_receive_skb_list(struct list_head *head)
5655 {
5656 	unsigned long noreclaim_flag = 0;
5657 	struct sk_buff *skb, *next;
5658 	bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5659 
5660 	list_for_each_entry_safe(skb, next, head, list) {
5661 		if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5662 			struct list_head sublist;
5663 
5664 			/* Handle the previous sublist */
5665 			list_cut_before(&sublist, head, &skb->list);
5666 			if (!list_empty(&sublist))
5667 				__netif_receive_skb_list_core(&sublist, pfmemalloc);
5668 			pfmemalloc = !pfmemalloc;
5669 			/* See comments in __netif_receive_skb */
5670 			if (pfmemalloc)
5671 				noreclaim_flag = memalloc_noreclaim_save();
5672 			else
5673 				memalloc_noreclaim_restore(noreclaim_flag);
5674 		}
5675 	}
5676 	/* Handle the remaining sublist */
5677 	if (!list_empty(head))
5678 		__netif_receive_skb_list_core(head, pfmemalloc);
5679 	/* Restore pflags */
5680 	if (pfmemalloc)
5681 		memalloc_noreclaim_restore(noreclaim_flag);
5682 }
5683 
5684 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5685 {
5686 	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5687 	struct bpf_prog *new = xdp->prog;
5688 	int ret = 0;
5689 
5690 	switch (xdp->command) {
5691 	case XDP_SETUP_PROG:
5692 		rcu_assign_pointer(dev->xdp_prog, new);
5693 		if (old)
5694 			bpf_prog_put(old);
5695 
5696 		if (old && !new) {
5697 			static_branch_dec(&generic_xdp_needed_key);
5698 		} else if (new && !old) {
5699 			static_branch_inc(&generic_xdp_needed_key);
5700 			dev_disable_lro(dev);
5701 			dev_disable_gro_hw(dev);
5702 		}
5703 		break;
5704 
5705 	default:
5706 		ret = -EINVAL;
5707 		break;
5708 	}
5709 
5710 	return ret;
5711 }
5712 
5713 static int netif_receive_skb_internal(struct sk_buff *skb)
5714 {
5715 	int ret;
5716 
5717 	net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5718 
5719 	if (skb_defer_rx_timestamp(skb))
5720 		return NET_RX_SUCCESS;
5721 
5722 	rcu_read_lock();
5723 #ifdef CONFIG_RPS
5724 	if (static_branch_unlikely(&rps_needed)) {
5725 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5726 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5727 
5728 		if (cpu >= 0) {
5729 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5730 			rcu_read_unlock();
5731 			return ret;
5732 		}
5733 	}
5734 #endif
5735 	ret = __netif_receive_skb(skb);
5736 	rcu_read_unlock();
5737 	return ret;
5738 }
5739 
5740 void netif_receive_skb_list_internal(struct list_head *head)
5741 {
5742 	struct sk_buff *skb, *next;
5743 	struct list_head sublist;
5744 
5745 	INIT_LIST_HEAD(&sublist);
5746 	list_for_each_entry_safe(skb, next, head, list) {
5747 		net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5748 		skb_list_del_init(skb);
5749 		if (!skb_defer_rx_timestamp(skb))
5750 			list_add_tail(&skb->list, &sublist);
5751 	}
5752 	list_splice_init(&sublist, head);
5753 
5754 	rcu_read_lock();
5755 #ifdef CONFIG_RPS
5756 	if (static_branch_unlikely(&rps_needed)) {
5757 		list_for_each_entry_safe(skb, next, head, list) {
5758 			struct rps_dev_flow voidflow, *rflow = &voidflow;
5759 			int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5760 
5761 			if (cpu >= 0) {
5762 				/* Will be handled, remove from list */
5763 				skb_list_del_init(skb);
5764 				enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5765 			}
5766 		}
5767 	}
5768 #endif
5769 	__netif_receive_skb_list(head);
5770 	rcu_read_unlock();
5771 }
5772 
5773 /**
5774  *	netif_receive_skb - process receive buffer from network
5775  *	@skb: buffer to process
5776  *
5777  *	netif_receive_skb() is the main receive data processing function.
5778  *	It always succeeds. The buffer may be dropped during processing
5779  *	for congestion control or by the protocol layers.
5780  *
5781  *	This function may only be called from softirq context and interrupts
5782  *	should be enabled.
5783  *
5784  *	Return values (usually ignored):
5785  *	NET_RX_SUCCESS: no congestion
5786  *	NET_RX_DROP: packet was dropped
5787  */
5788 int netif_receive_skb(struct sk_buff *skb)
5789 {
5790 	int ret;
5791 
5792 	trace_netif_receive_skb_entry(skb);
5793 
5794 	ret = netif_receive_skb_internal(skb);
5795 	trace_netif_receive_skb_exit(ret);
5796 
5797 	return ret;
5798 }
5799 EXPORT_SYMBOL(netif_receive_skb);
5800 
5801 /**
5802  *	netif_receive_skb_list - process many receive buffers from network
5803  *	@head: list of skbs to process.
5804  *
5805  *	Since return value of netif_receive_skb() is normally ignored, and
5806  *	wouldn't be meaningful for a list, this function returns void.
5807  *
5808  *	This function may only be called from softirq context and interrupts
5809  *	should be enabled.
5810  */
5811 void netif_receive_skb_list(struct list_head *head)
5812 {
5813 	struct sk_buff *skb;
5814 
5815 	if (list_empty(head))
5816 		return;
5817 	if (trace_netif_receive_skb_list_entry_enabled()) {
5818 		list_for_each_entry(skb, head, list)
5819 			trace_netif_receive_skb_list_entry(skb);
5820 	}
5821 	netif_receive_skb_list_internal(head);
5822 	trace_netif_receive_skb_list_exit(0);
5823 }
5824 EXPORT_SYMBOL(netif_receive_skb_list);
5825 
5826 static DEFINE_PER_CPU(struct work_struct, flush_works);
5827 
5828 /* Network device is going away, flush any packets still pending */
5829 static void flush_backlog(struct work_struct *work)
5830 {
5831 	struct sk_buff *skb, *tmp;
5832 	struct softnet_data *sd;
5833 
5834 	local_bh_disable();
5835 	sd = this_cpu_ptr(&softnet_data);
5836 
5837 	rps_lock_irq_disable(sd);
5838 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5839 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5840 			__skb_unlink(skb, &sd->input_pkt_queue);
5841 			dev_kfree_skb_irq(skb);
5842 			input_queue_head_incr(sd);
5843 		}
5844 	}
5845 	rps_unlock_irq_enable(sd);
5846 
5847 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5848 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5849 			__skb_unlink(skb, &sd->process_queue);
5850 			kfree_skb(skb);
5851 			input_queue_head_incr(sd);
5852 		}
5853 	}
5854 	local_bh_enable();
5855 }
5856 
5857 static bool flush_required(int cpu)
5858 {
5859 #if IS_ENABLED(CONFIG_RPS)
5860 	struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5861 	bool do_flush;
5862 
5863 	rps_lock_irq_disable(sd);
5864 
5865 	/* as insertion into process_queue happens with the rps lock held,
5866 	 * process_queue access may race only with dequeue
5867 	 */
5868 	do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5869 		   !skb_queue_empty_lockless(&sd->process_queue);
5870 	rps_unlock_irq_enable(sd);
5871 
5872 	return do_flush;
5873 #endif
5874 	/* without RPS we can't safely check input_pkt_queue: during a
5875 	 * concurrent remote skb_queue_splice() we can detect as empty both
5876 	 * input_pkt_queue and process_queue even if the latter could end-up
5877 	 * containing a lot of packets.
5878 	 */
5879 	return true;
5880 }
5881 
5882 static void flush_all_backlogs(void)
5883 {
5884 	static cpumask_t flush_cpus;
5885 	unsigned int cpu;
5886 
5887 	/* since we are under rtnl lock protection we can use static data
5888 	 * for the cpumask and avoid allocating on stack the possibly
5889 	 * large mask
5890 	 */
5891 	ASSERT_RTNL();
5892 
5893 	cpus_read_lock();
5894 
5895 	cpumask_clear(&flush_cpus);
5896 	for_each_online_cpu(cpu) {
5897 		if (flush_required(cpu)) {
5898 			queue_work_on(cpu, system_highpri_wq,
5899 				      per_cpu_ptr(&flush_works, cpu));
5900 			cpumask_set_cpu(cpu, &flush_cpus);
5901 		}
5902 	}
5903 
5904 	/* we can have in flight packet[s] on the cpus we are not flushing,
5905 	 * synchronize_net() in unregister_netdevice_many() will take care of
5906 	 * them
5907 	 */
5908 	for_each_cpu(cpu, &flush_cpus)
5909 		flush_work(per_cpu_ptr(&flush_works, cpu));
5910 
5911 	cpus_read_unlock();
5912 }
5913 
5914 static void net_rps_send_ipi(struct softnet_data *remsd)
5915 {
5916 #ifdef CONFIG_RPS
5917 	while (remsd) {
5918 		struct softnet_data *next = remsd->rps_ipi_next;
5919 
5920 		if (cpu_online(remsd->cpu))
5921 			smp_call_function_single_async(remsd->cpu, &remsd->csd);
5922 		remsd = next;
5923 	}
5924 #endif
5925 }
5926 
5927 /*
5928  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5929  * Note: called with local irq disabled, but exits with local irq enabled.
5930  */
5931 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5932 {
5933 #ifdef CONFIG_RPS
5934 	struct softnet_data *remsd = sd->rps_ipi_list;
5935 
5936 	if (remsd) {
5937 		sd->rps_ipi_list = NULL;
5938 
5939 		local_irq_enable();
5940 
5941 		/* Send pending IPI's to kick RPS processing on remote cpus. */
5942 		net_rps_send_ipi(remsd);
5943 	} else
5944 #endif
5945 		local_irq_enable();
5946 }
5947 
5948 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5949 {
5950 #ifdef CONFIG_RPS
5951 	return sd->rps_ipi_list != NULL;
5952 #else
5953 	return false;
5954 #endif
5955 }
5956 
5957 static int process_backlog(struct napi_struct *napi, int quota)
5958 {
5959 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5960 	bool again = true;
5961 	int work = 0;
5962 
5963 	/* Check if we have pending ipi, its better to send them now,
5964 	 * not waiting net_rx_action() end.
5965 	 */
5966 	if (sd_has_rps_ipi_waiting(sd)) {
5967 		local_irq_disable();
5968 		net_rps_action_and_irq_enable(sd);
5969 	}
5970 
5971 	napi->weight = READ_ONCE(dev_rx_weight);
5972 	while (again) {
5973 		struct sk_buff *skb;
5974 
5975 		while ((skb = __skb_dequeue(&sd->process_queue))) {
5976 			rcu_read_lock();
5977 			__netif_receive_skb(skb);
5978 			rcu_read_unlock();
5979 			input_queue_head_incr(sd);
5980 			if (++work >= quota)
5981 				return work;
5982 
5983 		}
5984 
5985 		rps_lock_irq_disable(sd);
5986 		if (skb_queue_empty(&sd->input_pkt_queue)) {
5987 			/*
5988 			 * Inline a custom version of __napi_complete().
5989 			 * only current cpu owns and manipulates this napi,
5990 			 * and NAPI_STATE_SCHED is the only possible flag set
5991 			 * on backlog.
5992 			 * We can use a plain write instead of clear_bit(),
5993 			 * and we dont need an smp_mb() memory barrier.
5994 			 */
5995 			napi->state = 0;
5996 			again = false;
5997 		} else {
5998 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
5999 						   &sd->process_queue);
6000 		}
6001 		rps_unlock_irq_enable(sd);
6002 	}
6003 
6004 	return work;
6005 }
6006 
6007 /**
6008  * __napi_schedule - schedule for receive
6009  * @n: entry to schedule
6010  *
6011  * The entry's receive function will be scheduled to run.
6012  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6013  */
6014 void __napi_schedule(struct napi_struct *n)
6015 {
6016 	unsigned long flags;
6017 
6018 	local_irq_save(flags);
6019 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
6020 	local_irq_restore(flags);
6021 }
6022 EXPORT_SYMBOL(__napi_schedule);
6023 
6024 /**
6025  *	napi_schedule_prep - check if napi can be scheduled
6026  *	@n: napi context
6027  *
6028  * Test if NAPI routine is already running, and if not mark
6029  * it as running.  This is used as a condition variable to
6030  * insure only one NAPI poll instance runs.  We also make
6031  * sure there is no pending NAPI disable.
6032  */
6033 bool napi_schedule_prep(struct napi_struct *n)
6034 {
6035 	unsigned long new, val = READ_ONCE(n->state);
6036 
6037 	do {
6038 		if (unlikely(val & NAPIF_STATE_DISABLE))
6039 			return false;
6040 		new = val | NAPIF_STATE_SCHED;
6041 
6042 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
6043 		 * This was suggested by Alexander Duyck, as compiler
6044 		 * emits better code than :
6045 		 * if (val & NAPIF_STATE_SCHED)
6046 		 *     new |= NAPIF_STATE_MISSED;
6047 		 */
6048 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6049 						   NAPIF_STATE_MISSED;
6050 	} while (!try_cmpxchg(&n->state, &val, new));
6051 
6052 	return !(val & NAPIF_STATE_SCHED);
6053 }
6054 EXPORT_SYMBOL(napi_schedule_prep);
6055 
6056 /**
6057  * __napi_schedule_irqoff - schedule for receive
6058  * @n: entry to schedule
6059  *
6060  * Variant of __napi_schedule() assuming hard irqs are masked.
6061  *
6062  * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6063  * because the interrupt disabled assumption might not be true
6064  * due to force-threaded interrupts and spinlock substitution.
6065  */
6066 void __napi_schedule_irqoff(struct napi_struct *n)
6067 {
6068 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6069 		____napi_schedule(this_cpu_ptr(&softnet_data), n);
6070 	else
6071 		__napi_schedule(n);
6072 }
6073 EXPORT_SYMBOL(__napi_schedule_irqoff);
6074 
6075 bool napi_complete_done(struct napi_struct *n, int work_done)
6076 {
6077 	unsigned long flags, val, new, timeout = 0;
6078 	bool ret = true;
6079 
6080 	/*
6081 	 * 1) Don't let napi dequeue from the cpu poll list
6082 	 *    just in case its running on a different cpu.
6083 	 * 2) If we are busy polling, do nothing here, we have
6084 	 *    the guarantee we will be called later.
6085 	 */
6086 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6087 				 NAPIF_STATE_IN_BUSY_POLL)))
6088 		return false;
6089 
6090 	if (work_done) {
6091 		if (n->gro_bitmask)
6092 			timeout = READ_ONCE(n->dev->gro_flush_timeout);
6093 		n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6094 	}
6095 	if (n->defer_hard_irqs_count > 0) {
6096 		n->defer_hard_irqs_count--;
6097 		timeout = READ_ONCE(n->dev->gro_flush_timeout);
6098 		if (timeout)
6099 			ret = false;
6100 	}
6101 	if (n->gro_bitmask) {
6102 		/* When the NAPI instance uses a timeout and keeps postponing
6103 		 * it, we need to bound somehow the time packets are kept in
6104 		 * the GRO layer
6105 		 */
6106 		napi_gro_flush(n, !!timeout);
6107 	}
6108 
6109 	gro_normal_list(n);
6110 
6111 	if (unlikely(!list_empty(&n->poll_list))) {
6112 		/* If n->poll_list is not empty, we need to mask irqs */
6113 		local_irq_save(flags);
6114 		list_del_init(&n->poll_list);
6115 		local_irq_restore(flags);
6116 	}
6117 	WRITE_ONCE(n->list_owner, -1);
6118 
6119 	val = READ_ONCE(n->state);
6120 	do {
6121 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6122 
6123 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6124 			      NAPIF_STATE_SCHED_THREADED |
6125 			      NAPIF_STATE_PREFER_BUSY_POLL);
6126 
6127 		/* If STATE_MISSED was set, leave STATE_SCHED set,
6128 		 * because we will call napi->poll() one more time.
6129 		 * This C code was suggested by Alexander Duyck to help gcc.
6130 		 */
6131 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6132 						    NAPIF_STATE_SCHED;
6133 	} while (!try_cmpxchg(&n->state, &val, new));
6134 
6135 	if (unlikely(val & NAPIF_STATE_MISSED)) {
6136 		__napi_schedule(n);
6137 		return false;
6138 	}
6139 
6140 	if (timeout)
6141 		hrtimer_start(&n->timer, ns_to_ktime(timeout),
6142 			      HRTIMER_MODE_REL_PINNED);
6143 	return ret;
6144 }
6145 EXPORT_SYMBOL(napi_complete_done);
6146 
6147 /* must be called under rcu_read_lock(), as we dont take a reference */
6148 struct napi_struct *napi_by_id(unsigned int napi_id)
6149 {
6150 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6151 	struct napi_struct *napi;
6152 
6153 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6154 		if (napi->napi_id == napi_id)
6155 			return napi;
6156 
6157 	return NULL;
6158 }
6159 
6160 #if defined(CONFIG_NET_RX_BUSY_POLL)
6161 
6162 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6163 {
6164 	if (!skip_schedule) {
6165 		gro_normal_list(napi);
6166 		__napi_schedule(napi);
6167 		return;
6168 	}
6169 
6170 	if (napi->gro_bitmask) {
6171 		/* flush too old packets
6172 		 * If HZ < 1000, flush all packets.
6173 		 */
6174 		napi_gro_flush(napi, HZ >= 1000);
6175 	}
6176 
6177 	gro_normal_list(napi);
6178 	clear_bit(NAPI_STATE_SCHED, &napi->state);
6179 }
6180 
6181 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll,
6182 			   u16 budget)
6183 {
6184 	bool skip_schedule = false;
6185 	unsigned long timeout;
6186 	int rc;
6187 
6188 	/* Busy polling means there is a high chance device driver hard irq
6189 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6190 	 * set in napi_schedule_prep().
6191 	 * Since we are about to call napi->poll() once more, we can safely
6192 	 * clear NAPI_STATE_MISSED.
6193 	 *
6194 	 * Note: x86 could use a single "lock and ..." instruction
6195 	 * to perform these two clear_bit()
6196 	 */
6197 	clear_bit(NAPI_STATE_MISSED, &napi->state);
6198 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6199 
6200 	local_bh_disable();
6201 
6202 	if (prefer_busy_poll) {
6203 		napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6204 		timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6205 		if (napi->defer_hard_irqs_count && timeout) {
6206 			hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6207 			skip_schedule = true;
6208 		}
6209 	}
6210 
6211 	/* All we really want here is to re-enable device interrupts.
6212 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6213 	 */
6214 	rc = napi->poll(napi, budget);
6215 	/* We can't gro_normal_list() here, because napi->poll() might have
6216 	 * rearmed the napi (napi_complete_done()) in which case it could
6217 	 * already be running on another CPU.
6218 	 */
6219 	trace_napi_poll(napi, rc, budget);
6220 	netpoll_poll_unlock(have_poll_lock);
6221 	if (rc == budget)
6222 		__busy_poll_stop(napi, skip_schedule);
6223 	local_bh_enable();
6224 }
6225 
6226 void napi_busy_loop(unsigned int napi_id,
6227 		    bool (*loop_end)(void *, unsigned long),
6228 		    void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6229 {
6230 	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6231 	int (*napi_poll)(struct napi_struct *napi, int budget);
6232 	void *have_poll_lock = NULL;
6233 	struct napi_struct *napi;
6234 
6235 restart:
6236 	napi_poll = NULL;
6237 
6238 	rcu_read_lock();
6239 
6240 	napi = napi_by_id(napi_id);
6241 	if (!napi)
6242 		goto out;
6243 
6244 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6245 		preempt_disable();
6246 	for (;;) {
6247 		int work = 0;
6248 
6249 		local_bh_disable();
6250 		if (!napi_poll) {
6251 			unsigned long val = READ_ONCE(napi->state);
6252 
6253 			/* If multiple threads are competing for this napi,
6254 			 * we avoid dirtying napi->state as much as we can.
6255 			 */
6256 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6257 				   NAPIF_STATE_IN_BUSY_POLL)) {
6258 				if (prefer_busy_poll)
6259 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6260 				goto count;
6261 			}
6262 			if (cmpxchg(&napi->state, val,
6263 				    val | NAPIF_STATE_IN_BUSY_POLL |
6264 					  NAPIF_STATE_SCHED) != val) {
6265 				if (prefer_busy_poll)
6266 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6267 				goto count;
6268 			}
6269 			have_poll_lock = netpoll_poll_lock(napi);
6270 			napi_poll = napi->poll;
6271 		}
6272 		work = napi_poll(napi, budget);
6273 		trace_napi_poll(napi, work, budget);
6274 		gro_normal_list(napi);
6275 count:
6276 		if (work > 0)
6277 			__NET_ADD_STATS(dev_net(napi->dev),
6278 					LINUX_MIB_BUSYPOLLRXPACKETS, work);
6279 		local_bh_enable();
6280 
6281 		if (!loop_end || loop_end(loop_end_arg, start_time))
6282 			break;
6283 
6284 		if (unlikely(need_resched())) {
6285 			if (napi_poll)
6286 				busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6287 			if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6288 				preempt_enable();
6289 			rcu_read_unlock();
6290 			cond_resched();
6291 			if (loop_end(loop_end_arg, start_time))
6292 				return;
6293 			goto restart;
6294 		}
6295 		cpu_relax();
6296 	}
6297 	if (napi_poll)
6298 		busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6299 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6300 		preempt_enable();
6301 out:
6302 	rcu_read_unlock();
6303 }
6304 EXPORT_SYMBOL(napi_busy_loop);
6305 
6306 #endif /* CONFIG_NET_RX_BUSY_POLL */
6307 
6308 static void napi_hash_add(struct napi_struct *napi)
6309 {
6310 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6311 		return;
6312 
6313 	spin_lock(&napi_hash_lock);
6314 
6315 	/* 0..NR_CPUS range is reserved for sender_cpu use */
6316 	do {
6317 		if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6318 			napi_gen_id = MIN_NAPI_ID;
6319 	} while (napi_by_id(napi_gen_id));
6320 	napi->napi_id = napi_gen_id;
6321 
6322 	hlist_add_head_rcu(&napi->napi_hash_node,
6323 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6324 
6325 	spin_unlock(&napi_hash_lock);
6326 }
6327 
6328 /* Warning : caller is responsible to make sure rcu grace period
6329  * is respected before freeing memory containing @napi
6330  */
6331 static void napi_hash_del(struct napi_struct *napi)
6332 {
6333 	spin_lock(&napi_hash_lock);
6334 
6335 	hlist_del_init_rcu(&napi->napi_hash_node);
6336 
6337 	spin_unlock(&napi_hash_lock);
6338 }
6339 
6340 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6341 {
6342 	struct napi_struct *napi;
6343 
6344 	napi = container_of(timer, struct napi_struct, timer);
6345 
6346 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
6347 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6348 	 */
6349 	if (!napi_disable_pending(napi) &&
6350 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6351 		clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6352 		__napi_schedule_irqoff(napi);
6353 	}
6354 
6355 	return HRTIMER_NORESTART;
6356 }
6357 
6358 static void init_gro_hash(struct napi_struct *napi)
6359 {
6360 	int i;
6361 
6362 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6363 		INIT_LIST_HEAD(&napi->gro_hash[i].list);
6364 		napi->gro_hash[i].count = 0;
6365 	}
6366 	napi->gro_bitmask = 0;
6367 }
6368 
6369 int dev_set_threaded(struct net_device *dev, bool threaded)
6370 {
6371 	struct napi_struct *napi;
6372 	int err = 0;
6373 
6374 	if (dev->threaded == threaded)
6375 		return 0;
6376 
6377 	if (threaded) {
6378 		list_for_each_entry(napi, &dev->napi_list, dev_list) {
6379 			if (!napi->thread) {
6380 				err = napi_kthread_create(napi);
6381 				if (err) {
6382 					threaded = false;
6383 					break;
6384 				}
6385 			}
6386 		}
6387 	}
6388 
6389 	dev->threaded = threaded;
6390 
6391 	/* Make sure kthread is created before THREADED bit
6392 	 * is set.
6393 	 */
6394 	smp_mb__before_atomic();
6395 
6396 	/* Setting/unsetting threaded mode on a napi might not immediately
6397 	 * take effect, if the current napi instance is actively being
6398 	 * polled. In this case, the switch between threaded mode and
6399 	 * softirq mode will happen in the next round of napi_schedule().
6400 	 * This should not cause hiccups/stalls to the live traffic.
6401 	 */
6402 	list_for_each_entry(napi, &dev->napi_list, dev_list)
6403 		assign_bit(NAPI_STATE_THREADED, &napi->state, threaded);
6404 
6405 	return err;
6406 }
6407 EXPORT_SYMBOL(dev_set_threaded);
6408 
6409 /**
6410  * netif_queue_set_napi - Associate queue with the napi
6411  * @dev: device to which NAPI and queue belong
6412  * @queue_index: Index of queue
6413  * @type: queue type as RX or TX
6414  * @napi: NAPI context, pass NULL to clear previously set NAPI
6415  *
6416  * Set queue with its corresponding napi context. This should be done after
6417  * registering the NAPI handler for the queue-vector and the queues have been
6418  * mapped to the corresponding interrupt vector.
6419  */
6420 void netif_queue_set_napi(struct net_device *dev, unsigned int queue_index,
6421 			  enum netdev_queue_type type, struct napi_struct *napi)
6422 {
6423 	struct netdev_rx_queue *rxq;
6424 	struct netdev_queue *txq;
6425 
6426 	if (WARN_ON_ONCE(napi && !napi->dev))
6427 		return;
6428 	if (dev->reg_state >= NETREG_REGISTERED)
6429 		ASSERT_RTNL();
6430 
6431 	switch (type) {
6432 	case NETDEV_QUEUE_TYPE_RX:
6433 		rxq = __netif_get_rx_queue(dev, queue_index);
6434 		rxq->napi = napi;
6435 		return;
6436 	case NETDEV_QUEUE_TYPE_TX:
6437 		txq = netdev_get_tx_queue(dev, queue_index);
6438 		txq->napi = napi;
6439 		return;
6440 	default:
6441 		return;
6442 	}
6443 }
6444 EXPORT_SYMBOL(netif_queue_set_napi);
6445 
6446 void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi,
6447 			   int (*poll)(struct napi_struct *, int), int weight)
6448 {
6449 	if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6450 		return;
6451 
6452 	INIT_LIST_HEAD(&napi->poll_list);
6453 	INIT_HLIST_NODE(&napi->napi_hash_node);
6454 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6455 	napi->timer.function = napi_watchdog;
6456 	init_gro_hash(napi);
6457 	napi->skb = NULL;
6458 	INIT_LIST_HEAD(&napi->rx_list);
6459 	napi->rx_count = 0;
6460 	napi->poll = poll;
6461 	if (weight > NAPI_POLL_WEIGHT)
6462 		netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6463 				weight);
6464 	napi->weight = weight;
6465 	napi->dev = dev;
6466 #ifdef CONFIG_NETPOLL
6467 	napi->poll_owner = -1;
6468 #endif
6469 	napi->list_owner = -1;
6470 	set_bit(NAPI_STATE_SCHED, &napi->state);
6471 	set_bit(NAPI_STATE_NPSVC, &napi->state);
6472 	list_add_rcu(&napi->dev_list, &dev->napi_list);
6473 	napi_hash_add(napi);
6474 	napi_get_frags_check(napi);
6475 	/* Create kthread for this napi if dev->threaded is set.
6476 	 * Clear dev->threaded if kthread creation failed so that
6477 	 * threaded mode will not be enabled in napi_enable().
6478 	 */
6479 	if (dev->threaded && napi_kthread_create(napi))
6480 		dev->threaded = 0;
6481 	netif_napi_set_irq(napi, -1);
6482 }
6483 EXPORT_SYMBOL(netif_napi_add_weight);
6484 
6485 void napi_disable(struct napi_struct *n)
6486 {
6487 	unsigned long val, new;
6488 
6489 	might_sleep();
6490 	set_bit(NAPI_STATE_DISABLE, &n->state);
6491 
6492 	val = READ_ONCE(n->state);
6493 	do {
6494 		while (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
6495 			usleep_range(20, 200);
6496 			val = READ_ONCE(n->state);
6497 		}
6498 
6499 		new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
6500 		new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL);
6501 	} while (!try_cmpxchg(&n->state, &val, new));
6502 
6503 	hrtimer_cancel(&n->timer);
6504 
6505 	clear_bit(NAPI_STATE_DISABLE, &n->state);
6506 }
6507 EXPORT_SYMBOL(napi_disable);
6508 
6509 /**
6510  *	napi_enable - enable NAPI scheduling
6511  *	@n: NAPI context
6512  *
6513  * Resume NAPI from being scheduled on this context.
6514  * Must be paired with napi_disable.
6515  */
6516 void napi_enable(struct napi_struct *n)
6517 {
6518 	unsigned long new, val = READ_ONCE(n->state);
6519 
6520 	do {
6521 		BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
6522 
6523 		new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
6524 		if (n->dev->threaded && n->thread)
6525 			new |= NAPIF_STATE_THREADED;
6526 	} while (!try_cmpxchg(&n->state, &val, new));
6527 }
6528 EXPORT_SYMBOL(napi_enable);
6529 
6530 static void flush_gro_hash(struct napi_struct *napi)
6531 {
6532 	int i;
6533 
6534 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6535 		struct sk_buff *skb, *n;
6536 
6537 		list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6538 			kfree_skb(skb);
6539 		napi->gro_hash[i].count = 0;
6540 	}
6541 }
6542 
6543 /* Must be called in process context */
6544 void __netif_napi_del(struct napi_struct *napi)
6545 {
6546 	if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6547 		return;
6548 
6549 	napi_hash_del(napi);
6550 	list_del_rcu(&napi->dev_list);
6551 	napi_free_frags(napi);
6552 
6553 	flush_gro_hash(napi);
6554 	napi->gro_bitmask = 0;
6555 
6556 	if (napi->thread) {
6557 		kthread_stop(napi->thread);
6558 		napi->thread = NULL;
6559 	}
6560 }
6561 EXPORT_SYMBOL(__netif_napi_del);
6562 
6563 static int __napi_poll(struct napi_struct *n, bool *repoll)
6564 {
6565 	int work, weight;
6566 
6567 	weight = n->weight;
6568 
6569 	/* This NAPI_STATE_SCHED test is for avoiding a race
6570 	 * with netpoll's poll_napi().  Only the entity which
6571 	 * obtains the lock and sees NAPI_STATE_SCHED set will
6572 	 * actually make the ->poll() call.  Therefore we avoid
6573 	 * accidentally calling ->poll() when NAPI is not scheduled.
6574 	 */
6575 	work = 0;
6576 	if (napi_is_scheduled(n)) {
6577 		work = n->poll(n, weight);
6578 		trace_napi_poll(n, work, weight);
6579 
6580 		xdp_do_check_flushed(n);
6581 	}
6582 
6583 	if (unlikely(work > weight))
6584 		netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6585 				n->poll, work, weight);
6586 
6587 	if (likely(work < weight))
6588 		return work;
6589 
6590 	/* Drivers must not modify the NAPI state if they
6591 	 * consume the entire weight.  In such cases this code
6592 	 * still "owns" the NAPI instance and therefore can
6593 	 * move the instance around on the list at-will.
6594 	 */
6595 	if (unlikely(napi_disable_pending(n))) {
6596 		napi_complete(n);
6597 		return work;
6598 	}
6599 
6600 	/* The NAPI context has more processing work, but busy-polling
6601 	 * is preferred. Exit early.
6602 	 */
6603 	if (napi_prefer_busy_poll(n)) {
6604 		if (napi_complete_done(n, work)) {
6605 			/* If timeout is not set, we need to make sure
6606 			 * that the NAPI is re-scheduled.
6607 			 */
6608 			napi_schedule(n);
6609 		}
6610 		return work;
6611 	}
6612 
6613 	if (n->gro_bitmask) {
6614 		/* flush too old packets
6615 		 * If HZ < 1000, flush all packets.
6616 		 */
6617 		napi_gro_flush(n, HZ >= 1000);
6618 	}
6619 
6620 	gro_normal_list(n);
6621 
6622 	/* Some drivers may have called napi_schedule
6623 	 * prior to exhausting their budget.
6624 	 */
6625 	if (unlikely(!list_empty(&n->poll_list))) {
6626 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6627 			     n->dev ? n->dev->name : "backlog");
6628 		return work;
6629 	}
6630 
6631 	*repoll = true;
6632 
6633 	return work;
6634 }
6635 
6636 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6637 {
6638 	bool do_repoll = false;
6639 	void *have;
6640 	int work;
6641 
6642 	list_del_init(&n->poll_list);
6643 
6644 	have = netpoll_poll_lock(n);
6645 
6646 	work = __napi_poll(n, &do_repoll);
6647 
6648 	if (do_repoll)
6649 		list_add_tail(&n->poll_list, repoll);
6650 
6651 	netpoll_poll_unlock(have);
6652 
6653 	return work;
6654 }
6655 
6656 static int napi_thread_wait(struct napi_struct *napi)
6657 {
6658 	bool woken = false;
6659 
6660 	set_current_state(TASK_INTERRUPTIBLE);
6661 
6662 	while (!kthread_should_stop()) {
6663 		/* Testing SCHED_THREADED bit here to make sure the current
6664 		 * kthread owns this napi and could poll on this napi.
6665 		 * Testing SCHED bit is not enough because SCHED bit might be
6666 		 * set by some other busy poll thread or by napi_disable().
6667 		 */
6668 		if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) {
6669 			WARN_ON(!list_empty(&napi->poll_list));
6670 			__set_current_state(TASK_RUNNING);
6671 			return 0;
6672 		}
6673 
6674 		schedule();
6675 		/* woken being true indicates this thread owns this napi. */
6676 		woken = true;
6677 		set_current_state(TASK_INTERRUPTIBLE);
6678 	}
6679 	__set_current_state(TASK_RUNNING);
6680 
6681 	return -1;
6682 }
6683 
6684 static void skb_defer_free_flush(struct softnet_data *sd)
6685 {
6686 	struct sk_buff *skb, *next;
6687 
6688 	/* Paired with WRITE_ONCE() in skb_attempt_defer_free() */
6689 	if (!READ_ONCE(sd->defer_list))
6690 		return;
6691 
6692 	spin_lock(&sd->defer_lock);
6693 	skb = sd->defer_list;
6694 	sd->defer_list = NULL;
6695 	sd->defer_count = 0;
6696 	spin_unlock(&sd->defer_lock);
6697 
6698 	while (skb != NULL) {
6699 		next = skb->next;
6700 		napi_consume_skb(skb, 1);
6701 		skb = next;
6702 	}
6703 }
6704 
6705 static int napi_threaded_poll(void *data)
6706 {
6707 	struct napi_struct *napi = data;
6708 	struct softnet_data *sd;
6709 	void *have;
6710 
6711 	while (!napi_thread_wait(napi)) {
6712 		for (;;) {
6713 			bool repoll = false;
6714 
6715 			local_bh_disable();
6716 			sd = this_cpu_ptr(&softnet_data);
6717 			sd->in_napi_threaded_poll = true;
6718 
6719 			have = netpoll_poll_lock(napi);
6720 			__napi_poll(napi, &repoll);
6721 			netpoll_poll_unlock(have);
6722 
6723 			sd->in_napi_threaded_poll = false;
6724 			barrier();
6725 
6726 			if (sd_has_rps_ipi_waiting(sd)) {
6727 				local_irq_disable();
6728 				net_rps_action_and_irq_enable(sd);
6729 			}
6730 			skb_defer_free_flush(sd);
6731 			local_bh_enable();
6732 
6733 			if (!repoll)
6734 				break;
6735 
6736 			cond_resched();
6737 		}
6738 	}
6739 	return 0;
6740 }
6741 
6742 static __latent_entropy void net_rx_action(struct softirq_action *h)
6743 {
6744 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6745 	unsigned long time_limit = jiffies +
6746 		usecs_to_jiffies(READ_ONCE(netdev_budget_usecs));
6747 	int budget = READ_ONCE(netdev_budget);
6748 	LIST_HEAD(list);
6749 	LIST_HEAD(repoll);
6750 
6751 start:
6752 	sd->in_net_rx_action = true;
6753 	local_irq_disable();
6754 	list_splice_init(&sd->poll_list, &list);
6755 	local_irq_enable();
6756 
6757 	for (;;) {
6758 		struct napi_struct *n;
6759 
6760 		skb_defer_free_flush(sd);
6761 
6762 		if (list_empty(&list)) {
6763 			if (list_empty(&repoll)) {
6764 				sd->in_net_rx_action = false;
6765 				barrier();
6766 				/* We need to check if ____napi_schedule()
6767 				 * had refilled poll_list while
6768 				 * sd->in_net_rx_action was true.
6769 				 */
6770 				if (!list_empty(&sd->poll_list))
6771 					goto start;
6772 				if (!sd_has_rps_ipi_waiting(sd))
6773 					goto end;
6774 			}
6775 			break;
6776 		}
6777 
6778 		n = list_first_entry(&list, struct napi_struct, poll_list);
6779 		budget -= napi_poll(n, &repoll);
6780 
6781 		/* If softirq window is exhausted then punt.
6782 		 * Allow this to run for 2 jiffies since which will allow
6783 		 * an average latency of 1.5/HZ.
6784 		 */
6785 		if (unlikely(budget <= 0 ||
6786 			     time_after_eq(jiffies, time_limit))) {
6787 			sd->time_squeeze++;
6788 			break;
6789 		}
6790 	}
6791 
6792 	local_irq_disable();
6793 
6794 	list_splice_tail_init(&sd->poll_list, &list);
6795 	list_splice_tail(&repoll, &list);
6796 	list_splice(&list, &sd->poll_list);
6797 	if (!list_empty(&sd->poll_list))
6798 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
6799 	else
6800 		sd->in_net_rx_action = false;
6801 
6802 	net_rps_action_and_irq_enable(sd);
6803 end:;
6804 }
6805 
6806 struct netdev_adjacent {
6807 	struct net_device *dev;
6808 	netdevice_tracker dev_tracker;
6809 
6810 	/* upper master flag, there can only be one master device per list */
6811 	bool master;
6812 
6813 	/* lookup ignore flag */
6814 	bool ignore;
6815 
6816 	/* counter for the number of times this device was added to us */
6817 	u16 ref_nr;
6818 
6819 	/* private field for the users */
6820 	void *private;
6821 
6822 	struct list_head list;
6823 	struct rcu_head rcu;
6824 };
6825 
6826 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6827 						 struct list_head *adj_list)
6828 {
6829 	struct netdev_adjacent *adj;
6830 
6831 	list_for_each_entry(adj, adj_list, list) {
6832 		if (adj->dev == adj_dev)
6833 			return adj;
6834 	}
6835 	return NULL;
6836 }
6837 
6838 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
6839 				    struct netdev_nested_priv *priv)
6840 {
6841 	struct net_device *dev = (struct net_device *)priv->data;
6842 
6843 	return upper_dev == dev;
6844 }
6845 
6846 /**
6847  * netdev_has_upper_dev - Check if device is linked to an upper device
6848  * @dev: device
6849  * @upper_dev: upper device to check
6850  *
6851  * Find out if a device is linked to specified upper device and return true
6852  * in case it is. Note that this checks only immediate upper device,
6853  * not through a complete stack of devices. The caller must hold the RTNL lock.
6854  */
6855 bool netdev_has_upper_dev(struct net_device *dev,
6856 			  struct net_device *upper_dev)
6857 {
6858 	struct netdev_nested_priv priv = {
6859 		.data = (void *)upper_dev,
6860 	};
6861 
6862 	ASSERT_RTNL();
6863 
6864 	return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6865 					     &priv);
6866 }
6867 EXPORT_SYMBOL(netdev_has_upper_dev);
6868 
6869 /**
6870  * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
6871  * @dev: device
6872  * @upper_dev: upper device to check
6873  *
6874  * Find out if a device is linked to specified upper device and return true
6875  * in case it is. Note that this checks the entire upper device chain.
6876  * The caller must hold rcu lock.
6877  */
6878 
6879 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6880 				  struct net_device *upper_dev)
6881 {
6882 	struct netdev_nested_priv priv = {
6883 		.data = (void *)upper_dev,
6884 	};
6885 
6886 	return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6887 					       &priv);
6888 }
6889 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6890 
6891 /**
6892  * netdev_has_any_upper_dev - Check if device is linked to some device
6893  * @dev: device
6894  *
6895  * Find out if a device is linked to an upper device and return true in case
6896  * it is. The caller must hold the RTNL lock.
6897  */
6898 bool netdev_has_any_upper_dev(struct net_device *dev)
6899 {
6900 	ASSERT_RTNL();
6901 
6902 	return !list_empty(&dev->adj_list.upper);
6903 }
6904 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6905 
6906 /**
6907  * netdev_master_upper_dev_get - Get master upper device
6908  * @dev: device
6909  *
6910  * Find a master upper device and return pointer to it or NULL in case
6911  * it's not there. The caller must hold the RTNL lock.
6912  */
6913 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6914 {
6915 	struct netdev_adjacent *upper;
6916 
6917 	ASSERT_RTNL();
6918 
6919 	if (list_empty(&dev->adj_list.upper))
6920 		return NULL;
6921 
6922 	upper = list_first_entry(&dev->adj_list.upper,
6923 				 struct netdev_adjacent, list);
6924 	if (likely(upper->master))
6925 		return upper->dev;
6926 	return NULL;
6927 }
6928 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6929 
6930 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
6931 {
6932 	struct netdev_adjacent *upper;
6933 
6934 	ASSERT_RTNL();
6935 
6936 	if (list_empty(&dev->adj_list.upper))
6937 		return NULL;
6938 
6939 	upper = list_first_entry(&dev->adj_list.upper,
6940 				 struct netdev_adjacent, list);
6941 	if (likely(upper->master) && !upper->ignore)
6942 		return upper->dev;
6943 	return NULL;
6944 }
6945 
6946 /**
6947  * netdev_has_any_lower_dev - Check if device is linked to some device
6948  * @dev: device
6949  *
6950  * Find out if a device is linked to a lower device and return true in case
6951  * it is. The caller must hold the RTNL lock.
6952  */
6953 static bool netdev_has_any_lower_dev(struct net_device *dev)
6954 {
6955 	ASSERT_RTNL();
6956 
6957 	return !list_empty(&dev->adj_list.lower);
6958 }
6959 
6960 void *netdev_adjacent_get_private(struct list_head *adj_list)
6961 {
6962 	struct netdev_adjacent *adj;
6963 
6964 	adj = list_entry(adj_list, struct netdev_adjacent, list);
6965 
6966 	return adj->private;
6967 }
6968 EXPORT_SYMBOL(netdev_adjacent_get_private);
6969 
6970 /**
6971  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6972  * @dev: device
6973  * @iter: list_head ** of the current position
6974  *
6975  * Gets the next device from the dev's upper list, starting from iter
6976  * position. The caller must hold RCU read lock.
6977  */
6978 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6979 						 struct list_head **iter)
6980 {
6981 	struct netdev_adjacent *upper;
6982 
6983 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6984 
6985 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6986 
6987 	if (&upper->list == &dev->adj_list.upper)
6988 		return NULL;
6989 
6990 	*iter = &upper->list;
6991 
6992 	return upper->dev;
6993 }
6994 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6995 
6996 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
6997 						  struct list_head **iter,
6998 						  bool *ignore)
6999 {
7000 	struct netdev_adjacent *upper;
7001 
7002 	upper = list_entry((*iter)->next, struct netdev_adjacent, list);
7003 
7004 	if (&upper->list == &dev->adj_list.upper)
7005 		return NULL;
7006 
7007 	*iter = &upper->list;
7008 	*ignore = upper->ignore;
7009 
7010 	return upper->dev;
7011 }
7012 
7013 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
7014 						    struct list_head **iter)
7015 {
7016 	struct netdev_adjacent *upper;
7017 
7018 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7019 
7020 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7021 
7022 	if (&upper->list == &dev->adj_list.upper)
7023 		return NULL;
7024 
7025 	*iter = &upper->list;
7026 
7027 	return upper->dev;
7028 }
7029 
7030 static int __netdev_walk_all_upper_dev(struct net_device *dev,
7031 				       int (*fn)(struct net_device *dev,
7032 					 struct netdev_nested_priv *priv),
7033 				       struct netdev_nested_priv *priv)
7034 {
7035 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7036 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7037 	int ret, cur = 0;
7038 	bool ignore;
7039 
7040 	now = dev;
7041 	iter = &dev->adj_list.upper;
7042 
7043 	while (1) {
7044 		if (now != dev) {
7045 			ret = fn(now, priv);
7046 			if (ret)
7047 				return ret;
7048 		}
7049 
7050 		next = NULL;
7051 		while (1) {
7052 			udev = __netdev_next_upper_dev(now, &iter, &ignore);
7053 			if (!udev)
7054 				break;
7055 			if (ignore)
7056 				continue;
7057 
7058 			next = udev;
7059 			niter = &udev->adj_list.upper;
7060 			dev_stack[cur] = now;
7061 			iter_stack[cur++] = iter;
7062 			break;
7063 		}
7064 
7065 		if (!next) {
7066 			if (!cur)
7067 				return 0;
7068 			next = dev_stack[--cur];
7069 			niter = iter_stack[cur];
7070 		}
7071 
7072 		now = next;
7073 		iter = niter;
7074 	}
7075 
7076 	return 0;
7077 }
7078 
7079 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7080 				  int (*fn)(struct net_device *dev,
7081 					    struct netdev_nested_priv *priv),
7082 				  struct netdev_nested_priv *priv)
7083 {
7084 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7085 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7086 	int ret, cur = 0;
7087 
7088 	now = dev;
7089 	iter = &dev->adj_list.upper;
7090 
7091 	while (1) {
7092 		if (now != dev) {
7093 			ret = fn(now, priv);
7094 			if (ret)
7095 				return ret;
7096 		}
7097 
7098 		next = NULL;
7099 		while (1) {
7100 			udev = netdev_next_upper_dev_rcu(now, &iter);
7101 			if (!udev)
7102 				break;
7103 
7104 			next = udev;
7105 			niter = &udev->adj_list.upper;
7106 			dev_stack[cur] = now;
7107 			iter_stack[cur++] = iter;
7108 			break;
7109 		}
7110 
7111 		if (!next) {
7112 			if (!cur)
7113 				return 0;
7114 			next = dev_stack[--cur];
7115 			niter = iter_stack[cur];
7116 		}
7117 
7118 		now = next;
7119 		iter = niter;
7120 	}
7121 
7122 	return 0;
7123 }
7124 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7125 
7126 static bool __netdev_has_upper_dev(struct net_device *dev,
7127 				   struct net_device *upper_dev)
7128 {
7129 	struct netdev_nested_priv priv = {
7130 		.flags = 0,
7131 		.data = (void *)upper_dev,
7132 	};
7133 
7134 	ASSERT_RTNL();
7135 
7136 	return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7137 					   &priv);
7138 }
7139 
7140 /**
7141  * netdev_lower_get_next_private - Get the next ->private from the
7142  *				   lower neighbour list
7143  * @dev: device
7144  * @iter: list_head ** of the current position
7145  *
7146  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7147  * list, starting from iter position. The caller must hold either hold the
7148  * RTNL lock or its own locking that guarantees that the neighbour lower
7149  * list will remain unchanged.
7150  */
7151 void *netdev_lower_get_next_private(struct net_device *dev,
7152 				    struct list_head **iter)
7153 {
7154 	struct netdev_adjacent *lower;
7155 
7156 	lower = list_entry(*iter, struct netdev_adjacent, list);
7157 
7158 	if (&lower->list == &dev->adj_list.lower)
7159 		return NULL;
7160 
7161 	*iter = lower->list.next;
7162 
7163 	return lower->private;
7164 }
7165 EXPORT_SYMBOL(netdev_lower_get_next_private);
7166 
7167 /**
7168  * netdev_lower_get_next_private_rcu - Get the next ->private from the
7169  *				       lower neighbour list, RCU
7170  *				       variant
7171  * @dev: device
7172  * @iter: list_head ** of the current position
7173  *
7174  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7175  * list, starting from iter position. The caller must hold RCU read lock.
7176  */
7177 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7178 					struct list_head **iter)
7179 {
7180 	struct netdev_adjacent *lower;
7181 
7182 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
7183 
7184 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7185 
7186 	if (&lower->list == &dev->adj_list.lower)
7187 		return NULL;
7188 
7189 	*iter = &lower->list;
7190 
7191 	return lower->private;
7192 }
7193 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7194 
7195 /**
7196  * netdev_lower_get_next - Get the next device from the lower neighbour
7197  *                         list
7198  * @dev: device
7199  * @iter: list_head ** of the current position
7200  *
7201  * Gets the next netdev_adjacent from the dev's lower neighbour
7202  * list, starting from iter position. The caller must hold RTNL lock or
7203  * its own locking that guarantees that the neighbour lower
7204  * list will remain unchanged.
7205  */
7206 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7207 {
7208 	struct netdev_adjacent *lower;
7209 
7210 	lower = list_entry(*iter, struct netdev_adjacent, list);
7211 
7212 	if (&lower->list == &dev->adj_list.lower)
7213 		return NULL;
7214 
7215 	*iter = lower->list.next;
7216 
7217 	return lower->dev;
7218 }
7219 EXPORT_SYMBOL(netdev_lower_get_next);
7220 
7221 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7222 						struct list_head **iter)
7223 {
7224 	struct netdev_adjacent *lower;
7225 
7226 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7227 
7228 	if (&lower->list == &dev->adj_list.lower)
7229 		return NULL;
7230 
7231 	*iter = &lower->list;
7232 
7233 	return lower->dev;
7234 }
7235 
7236 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7237 						  struct list_head **iter,
7238 						  bool *ignore)
7239 {
7240 	struct netdev_adjacent *lower;
7241 
7242 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7243 
7244 	if (&lower->list == &dev->adj_list.lower)
7245 		return NULL;
7246 
7247 	*iter = &lower->list;
7248 	*ignore = lower->ignore;
7249 
7250 	return lower->dev;
7251 }
7252 
7253 int netdev_walk_all_lower_dev(struct net_device *dev,
7254 			      int (*fn)(struct net_device *dev,
7255 					struct netdev_nested_priv *priv),
7256 			      struct netdev_nested_priv *priv)
7257 {
7258 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7259 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7260 	int ret, cur = 0;
7261 
7262 	now = dev;
7263 	iter = &dev->adj_list.lower;
7264 
7265 	while (1) {
7266 		if (now != dev) {
7267 			ret = fn(now, priv);
7268 			if (ret)
7269 				return ret;
7270 		}
7271 
7272 		next = NULL;
7273 		while (1) {
7274 			ldev = netdev_next_lower_dev(now, &iter);
7275 			if (!ldev)
7276 				break;
7277 
7278 			next = ldev;
7279 			niter = &ldev->adj_list.lower;
7280 			dev_stack[cur] = now;
7281 			iter_stack[cur++] = iter;
7282 			break;
7283 		}
7284 
7285 		if (!next) {
7286 			if (!cur)
7287 				return 0;
7288 			next = dev_stack[--cur];
7289 			niter = iter_stack[cur];
7290 		}
7291 
7292 		now = next;
7293 		iter = niter;
7294 	}
7295 
7296 	return 0;
7297 }
7298 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7299 
7300 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7301 				       int (*fn)(struct net_device *dev,
7302 					 struct netdev_nested_priv *priv),
7303 				       struct netdev_nested_priv *priv)
7304 {
7305 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7306 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7307 	int ret, cur = 0;
7308 	bool ignore;
7309 
7310 	now = dev;
7311 	iter = &dev->adj_list.lower;
7312 
7313 	while (1) {
7314 		if (now != dev) {
7315 			ret = fn(now, priv);
7316 			if (ret)
7317 				return ret;
7318 		}
7319 
7320 		next = NULL;
7321 		while (1) {
7322 			ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7323 			if (!ldev)
7324 				break;
7325 			if (ignore)
7326 				continue;
7327 
7328 			next = ldev;
7329 			niter = &ldev->adj_list.lower;
7330 			dev_stack[cur] = now;
7331 			iter_stack[cur++] = iter;
7332 			break;
7333 		}
7334 
7335 		if (!next) {
7336 			if (!cur)
7337 				return 0;
7338 			next = dev_stack[--cur];
7339 			niter = iter_stack[cur];
7340 		}
7341 
7342 		now = next;
7343 		iter = niter;
7344 	}
7345 
7346 	return 0;
7347 }
7348 
7349 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7350 					     struct list_head **iter)
7351 {
7352 	struct netdev_adjacent *lower;
7353 
7354 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7355 	if (&lower->list == &dev->adj_list.lower)
7356 		return NULL;
7357 
7358 	*iter = &lower->list;
7359 
7360 	return lower->dev;
7361 }
7362 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7363 
7364 static u8 __netdev_upper_depth(struct net_device *dev)
7365 {
7366 	struct net_device *udev;
7367 	struct list_head *iter;
7368 	u8 max_depth = 0;
7369 	bool ignore;
7370 
7371 	for (iter = &dev->adj_list.upper,
7372 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7373 	     udev;
7374 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7375 		if (ignore)
7376 			continue;
7377 		if (max_depth < udev->upper_level)
7378 			max_depth = udev->upper_level;
7379 	}
7380 
7381 	return max_depth;
7382 }
7383 
7384 static u8 __netdev_lower_depth(struct net_device *dev)
7385 {
7386 	struct net_device *ldev;
7387 	struct list_head *iter;
7388 	u8 max_depth = 0;
7389 	bool ignore;
7390 
7391 	for (iter = &dev->adj_list.lower,
7392 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7393 	     ldev;
7394 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7395 		if (ignore)
7396 			continue;
7397 		if (max_depth < ldev->lower_level)
7398 			max_depth = ldev->lower_level;
7399 	}
7400 
7401 	return max_depth;
7402 }
7403 
7404 static int __netdev_update_upper_level(struct net_device *dev,
7405 				       struct netdev_nested_priv *__unused)
7406 {
7407 	dev->upper_level = __netdev_upper_depth(dev) + 1;
7408 	return 0;
7409 }
7410 
7411 #ifdef CONFIG_LOCKDEP
7412 static LIST_HEAD(net_unlink_list);
7413 
7414 static void net_unlink_todo(struct net_device *dev)
7415 {
7416 	if (list_empty(&dev->unlink_list))
7417 		list_add_tail(&dev->unlink_list, &net_unlink_list);
7418 }
7419 #endif
7420 
7421 static int __netdev_update_lower_level(struct net_device *dev,
7422 				       struct netdev_nested_priv *priv)
7423 {
7424 	dev->lower_level = __netdev_lower_depth(dev) + 1;
7425 
7426 #ifdef CONFIG_LOCKDEP
7427 	if (!priv)
7428 		return 0;
7429 
7430 	if (priv->flags & NESTED_SYNC_IMM)
7431 		dev->nested_level = dev->lower_level - 1;
7432 	if (priv->flags & NESTED_SYNC_TODO)
7433 		net_unlink_todo(dev);
7434 #endif
7435 	return 0;
7436 }
7437 
7438 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7439 				  int (*fn)(struct net_device *dev,
7440 					    struct netdev_nested_priv *priv),
7441 				  struct netdev_nested_priv *priv)
7442 {
7443 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7444 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7445 	int ret, cur = 0;
7446 
7447 	now = dev;
7448 	iter = &dev->adj_list.lower;
7449 
7450 	while (1) {
7451 		if (now != dev) {
7452 			ret = fn(now, priv);
7453 			if (ret)
7454 				return ret;
7455 		}
7456 
7457 		next = NULL;
7458 		while (1) {
7459 			ldev = netdev_next_lower_dev_rcu(now, &iter);
7460 			if (!ldev)
7461 				break;
7462 
7463 			next = ldev;
7464 			niter = &ldev->adj_list.lower;
7465 			dev_stack[cur] = now;
7466 			iter_stack[cur++] = iter;
7467 			break;
7468 		}
7469 
7470 		if (!next) {
7471 			if (!cur)
7472 				return 0;
7473 			next = dev_stack[--cur];
7474 			niter = iter_stack[cur];
7475 		}
7476 
7477 		now = next;
7478 		iter = niter;
7479 	}
7480 
7481 	return 0;
7482 }
7483 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7484 
7485 /**
7486  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7487  *				       lower neighbour list, RCU
7488  *				       variant
7489  * @dev: device
7490  *
7491  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7492  * list. The caller must hold RCU read lock.
7493  */
7494 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7495 {
7496 	struct netdev_adjacent *lower;
7497 
7498 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
7499 			struct netdev_adjacent, list);
7500 	if (lower)
7501 		return lower->private;
7502 	return NULL;
7503 }
7504 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7505 
7506 /**
7507  * netdev_master_upper_dev_get_rcu - Get master upper device
7508  * @dev: device
7509  *
7510  * Find a master upper device and return pointer to it or NULL in case
7511  * it's not there. The caller must hold the RCU read lock.
7512  */
7513 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7514 {
7515 	struct netdev_adjacent *upper;
7516 
7517 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
7518 				       struct netdev_adjacent, list);
7519 	if (upper && likely(upper->master))
7520 		return upper->dev;
7521 	return NULL;
7522 }
7523 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7524 
7525 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7526 			      struct net_device *adj_dev,
7527 			      struct list_head *dev_list)
7528 {
7529 	char linkname[IFNAMSIZ+7];
7530 
7531 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7532 		"upper_%s" : "lower_%s", adj_dev->name);
7533 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7534 				 linkname);
7535 }
7536 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7537 			       char *name,
7538 			       struct list_head *dev_list)
7539 {
7540 	char linkname[IFNAMSIZ+7];
7541 
7542 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7543 		"upper_%s" : "lower_%s", name);
7544 	sysfs_remove_link(&(dev->dev.kobj), linkname);
7545 }
7546 
7547 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7548 						 struct net_device *adj_dev,
7549 						 struct list_head *dev_list)
7550 {
7551 	return (dev_list == &dev->adj_list.upper ||
7552 		dev_list == &dev->adj_list.lower) &&
7553 		net_eq(dev_net(dev), dev_net(adj_dev));
7554 }
7555 
7556 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7557 					struct net_device *adj_dev,
7558 					struct list_head *dev_list,
7559 					void *private, bool master)
7560 {
7561 	struct netdev_adjacent *adj;
7562 	int ret;
7563 
7564 	adj = __netdev_find_adj(adj_dev, dev_list);
7565 
7566 	if (adj) {
7567 		adj->ref_nr += 1;
7568 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7569 			 dev->name, adj_dev->name, adj->ref_nr);
7570 
7571 		return 0;
7572 	}
7573 
7574 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7575 	if (!adj)
7576 		return -ENOMEM;
7577 
7578 	adj->dev = adj_dev;
7579 	adj->master = master;
7580 	adj->ref_nr = 1;
7581 	adj->private = private;
7582 	adj->ignore = false;
7583 	netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL);
7584 
7585 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7586 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7587 
7588 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7589 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7590 		if (ret)
7591 			goto free_adj;
7592 	}
7593 
7594 	/* Ensure that master link is always the first item in list. */
7595 	if (master) {
7596 		ret = sysfs_create_link(&(dev->dev.kobj),
7597 					&(adj_dev->dev.kobj), "master");
7598 		if (ret)
7599 			goto remove_symlinks;
7600 
7601 		list_add_rcu(&adj->list, dev_list);
7602 	} else {
7603 		list_add_tail_rcu(&adj->list, dev_list);
7604 	}
7605 
7606 	return 0;
7607 
7608 remove_symlinks:
7609 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7610 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7611 free_adj:
7612 	netdev_put(adj_dev, &adj->dev_tracker);
7613 	kfree(adj);
7614 
7615 	return ret;
7616 }
7617 
7618 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7619 					 struct net_device *adj_dev,
7620 					 u16 ref_nr,
7621 					 struct list_head *dev_list)
7622 {
7623 	struct netdev_adjacent *adj;
7624 
7625 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7626 		 dev->name, adj_dev->name, ref_nr);
7627 
7628 	adj = __netdev_find_adj(adj_dev, dev_list);
7629 
7630 	if (!adj) {
7631 		pr_err("Adjacency does not exist for device %s from %s\n",
7632 		       dev->name, adj_dev->name);
7633 		WARN_ON(1);
7634 		return;
7635 	}
7636 
7637 	if (adj->ref_nr > ref_nr) {
7638 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7639 			 dev->name, adj_dev->name, ref_nr,
7640 			 adj->ref_nr - ref_nr);
7641 		adj->ref_nr -= ref_nr;
7642 		return;
7643 	}
7644 
7645 	if (adj->master)
7646 		sysfs_remove_link(&(dev->dev.kobj), "master");
7647 
7648 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7649 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7650 
7651 	list_del_rcu(&adj->list);
7652 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7653 		 adj_dev->name, dev->name, adj_dev->name);
7654 	netdev_put(adj_dev, &adj->dev_tracker);
7655 	kfree_rcu(adj, rcu);
7656 }
7657 
7658 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7659 					    struct net_device *upper_dev,
7660 					    struct list_head *up_list,
7661 					    struct list_head *down_list,
7662 					    void *private, bool master)
7663 {
7664 	int ret;
7665 
7666 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7667 					   private, master);
7668 	if (ret)
7669 		return ret;
7670 
7671 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7672 					   private, false);
7673 	if (ret) {
7674 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7675 		return ret;
7676 	}
7677 
7678 	return 0;
7679 }
7680 
7681 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7682 					       struct net_device *upper_dev,
7683 					       u16 ref_nr,
7684 					       struct list_head *up_list,
7685 					       struct list_head *down_list)
7686 {
7687 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7688 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7689 }
7690 
7691 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7692 						struct net_device *upper_dev,
7693 						void *private, bool master)
7694 {
7695 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7696 						&dev->adj_list.upper,
7697 						&upper_dev->adj_list.lower,
7698 						private, master);
7699 }
7700 
7701 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7702 						   struct net_device *upper_dev)
7703 {
7704 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7705 					   &dev->adj_list.upper,
7706 					   &upper_dev->adj_list.lower);
7707 }
7708 
7709 static int __netdev_upper_dev_link(struct net_device *dev,
7710 				   struct net_device *upper_dev, bool master,
7711 				   void *upper_priv, void *upper_info,
7712 				   struct netdev_nested_priv *priv,
7713 				   struct netlink_ext_ack *extack)
7714 {
7715 	struct netdev_notifier_changeupper_info changeupper_info = {
7716 		.info = {
7717 			.dev = dev,
7718 			.extack = extack,
7719 		},
7720 		.upper_dev = upper_dev,
7721 		.master = master,
7722 		.linking = true,
7723 		.upper_info = upper_info,
7724 	};
7725 	struct net_device *master_dev;
7726 	int ret = 0;
7727 
7728 	ASSERT_RTNL();
7729 
7730 	if (dev == upper_dev)
7731 		return -EBUSY;
7732 
7733 	/* To prevent loops, check if dev is not upper device to upper_dev. */
7734 	if (__netdev_has_upper_dev(upper_dev, dev))
7735 		return -EBUSY;
7736 
7737 	if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7738 		return -EMLINK;
7739 
7740 	if (!master) {
7741 		if (__netdev_has_upper_dev(dev, upper_dev))
7742 			return -EEXIST;
7743 	} else {
7744 		master_dev = __netdev_master_upper_dev_get(dev);
7745 		if (master_dev)
7746 			return master_dev == upper_dev ? -EEXIST : -EBUSY;
7747 	}
7748 
7749 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7750 					    &changeupper_info.info);
7751 	ret = notifier_to_errno(ret);
7752 	if (ret)
7753 		return ret;
7754 
7755 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7756 						   master);
7757 	if (ret)
7758 		return ret;
7759 
7760 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7761 					    &changeupper_info.info);
7762 	ret = notifier_to_errno(ret);
7763 	if (ret)
7764 		goto rollback;
7765 
7766 	__netdev_update_upper_level(dev, NULL);
7767 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7768 
7769 	__netdev_update_lower_level(upper_dev, priv);
7770 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7771 				    priv);
7772 
7773 	return 0;
7774 
7775 rollback:
7776 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7777 
7778 	return ret;
7779 }
7780 
7781 /**
7782  * netdev_upper_dev_link - Add a link to the upper device
7783  * @dev: device
7784  * @upper_dev: new upper device
7785  * @extack: netlink extended ack
7786  *
7787  * Adds a link to device which is upper to this one. The caller must hold
7788  * the RTNL lock. On a failure a negative errno code is returned.
7789  * On success the reference counts are adjusted and the function
7790  * returns zero.
7791  */
7792 int netdev_upper_dev_link(struct net_device *dev,
7793 			  struct net_device *upper_dev,
7794 			  struct netlink_ext_ack *extack)
7795 {
7796 	struct netdev_nested_priv priv = {
7797 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7798 		.data = NULL,
7799 	};
7800 
7801 	return __netdev_upper_dev_link(dev, upper_dev, false,
7802 				       NULL, NULL, &priv, extack);
7803 }
7804 EXPORT_SYMBOL(netdev_upper_dev_link);
7805 
7806 /**
7807  * netdev_master_upper_dev_link - Add a master link to the upper device
7808  * @dev: device
7809  * @upper_dev: new upper device
7810  * @upper_priv: upper device private
7811  * @upper_info: upper info to be passed down via notifier
7812  * @extack: netlink extended ack
7813  *
7814  * Adds a link to device which is upper to this one. In this case, only
7815  * one master upper device can be linked, although other non-master devices
7816  * might be linked as well. The caller must hold the RTNL lock.
7817  * On a failure a negative errno code is returned. On success the reference
7818  * counts are adjusted and the function returns zero.
7819  */
7820 int netdev_master_upper_dev_link(struct net_device *dev,
7821 				 struct net_device *upper_dev,
7822 				 void *upper_priv, void *upper_info,
7823 				 struct netlink_ext_ack *extack)
7824 {
7825 	struct netdev_nested_priv priv = {
7826 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7827 		.data = NULL,
7828 	};
7829 
7830 	return __netdev_upper_dev_link(dev, upper_dev, true,
7831 				       upper_priv, upper_info, &priv, extack);
7832 }
7833 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7834 
7835 static void __netdev_upper_dev_unlink(struct net_device *dev,
7836 				      struct net_device *upper_dev,
7837 				      struct netdev_nested_priv *priv)
7838 {
7839 	struct netdev_notifier_changeupper_info changeupper_info = {
7840 		.info = {
7841 			.dev = dev,
7842 		},
7843 		.upper_dev = upper_dev,
7844 		.linking = false,
7845 	};
7846 
7847 	ASSERT_RTNL();
7848 
7849 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7850 
7851 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7852 				      &changeupper_info.info);
7853 
7854 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7855 
7856 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7857 				      &changeupper_info.info);
7858 
7859 	__netdev_update_upper_level(dev, NULL);
7860 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7861 
7862 	__netdev_update_lower_level(upper_dev, priv);
7863 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7864 				    priv);
7865 }
7866 
7867 /**
7868  * netdev_upper_dev_unlink - Removes a link to upper device
7869  * @dev: device
7870  * @upper_dev: new upper device
7871  *
7872  * Removes a link to device which is upper to this one. The caller must hold
7873  * the RTNL lock.
7874  */
7875 void netdev_upper_dev_unlink(struct net_device *dev,
7876 			     struct net_device *upper_dev)
7877 {
7878 	struct netdev_nested_priv priv = {
7879 		.flags = NESTED_SYNC_TODO,
7880 		.data = NULL,
7881 	};
7882 
7883 	__netdev_upper_dev_unlink(dev, upper_dev, &priv);
7884 }
7885 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7886 
7887 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7888 				      struct net_device *lower_dev,
7889 				      bool val)
7890 {
7891 	struct netdev_adjacent *adj;
7892 
7893 	adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7894 	if (adj)
7895 		adj->ignore = val;
7896 
7897 	adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7898 	if (adj)
7899 		adj->ignore = val;
7900 }
7901 
7902 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
7903 					struct net_device *lower_dev)
7904 {
7905 	__netdev_adjacent_dev_set(upper_dev, lower_dev, true);
7906 }
7907 
7908 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
7909 				       struct net_device *lower_dev)
7910 {
7911 	__netdev_adjacent_dev_set(upper_dev, lower_dev, false);
7912 }
7913 
7914 int netdev_adjacent_change_prepare(struct net_device *old_dev,
7915 				   struct net_device *new_dev,
7916 				   struct net_device *dev,
7917 				   struct netlink_ext_ack *extack)
7918 {
7919 	struct netdev_nested_priv priv = {
7920 		.flags = 0,
7921 		.data = NULL,
7922 	};
7923 	int err;
7924 
7925 	if (!new_dev)
7926 		return 0;
7927 
7928 	if (old_dev && new_dev != old_dev)
7929 		netdev_adjacent_dev_disable(dev, old_dev);
7930 	err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
7931 				      extack);
7932 	if (err) {
7933 		if (old_dev && new_dev != old_dev)
7934 			netdev_adjacent_dev_enable(dev, old_dev);
7935 		return err;
7936 	}
7937 
7938 	return 0;
7939 }
7940 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
7941 
7942 void netdev_adjacent_change_commit(struct net_device *old_dev,
7943 				   struct net_device *new_dev,
7944 				   struct net_device *dev)
7945 {
7946 	struct netdev_nested_priv priv = {
7947 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7948 		.data = NULL,
7949 	};
7950 
7951 	if (!new_dev || !old_dev)
7952 		return;
7953 
7954 	if (new_dev == old_dev)
7955 		return;
7956 
7957 	netdev_adjacent_dev_enable(dev, old_dev);
7958 	__netdev_upper_dev_unlink(old_dev, dev, &priv);
7959 }
7960 EXPORT_SYMBOL(netdev_adjacent_change_commit);
7961 
7962 void netdev_adjacent_change_abort(struct net_device *old_dev,
7963 				  struct net_device *new_dev,
7964 				  struct net_device *dev)
7965 {
7966 	struct netdev_nested_priv priv = {
7967 		.flags = 0,
7968 		.data = NULL,
7969 	};
7970 
7971 	if (!new_dev)
7972 		return;
7973 
7974 	if (old_dev && new_dev != old_dev)
7975 		netdev_adjacent_dev_enable(dev, old_dev);
7976 
7977 	__netdev_upper_dev_unlink(new_dev, dev, &priv);
7978 }
7979 EXPORT_SYMBOL(netdev_adjacent_change_abort);
7980 
7981 /**
7982  * netdev_bonding_info_change - Dispatch event about slave change
7983  * @dev: device
7984  * @bonding_info: info to dispatch
7985  *
7986  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7987  * The caller must hold the RTNL lock.
7988  */
7989 void netdev_bonding_info_change(struct net_device *dev,
7990 				struct netdev_bonding_info *bonding_info)
7991 {
7992 	struct netdev_notifier_bonding_info info = {
7993 		.info.dev = dev,
7994 	};
7995 
7996 	memcpy(&info.bonding_info, bonding_info,
7997 	       sizeof(struct netdev_bonding_info));
7998 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7999 				      &info.info);
8000 }
8001 EXPORT_SYMBOL(netdev_bonding_info_change);
8002 
8003 static int netdev_offload_xstats_enable_l3(struct net_device *dev,
8004 					   struct netlink_ext_ack *extack)
8005 {
8006 	struct netdev_notifier_offload_xstats_info info = {
8007 		.info.dev = dev,
8008 		.info.extack = extack,
8009 		.type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
8010 	};
8011 	int err;
8012 	int rc;
8013 
8014 	dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3),
8015 					 GFP_KERNEL);
8016 	if (!dev->offload_xstats_l3)
8017 		return -ENOMEM;
8018 
8019 	rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE,
8020 						  NETDEV_OFFLOAD_XSTATS_DISABLE,
8021 						  &info.info);
8022 	err = notifier_to_errno(rc);
8023 	if (err)
8024 		goto free_stats;
8025 
8026 	return 0;
8027 
8028 free_stats:
8029 	kfree(dev->offload_xstats_l3);
8030 	dev->offload_xstats_l3 = NULL;
8031 	return err;
8032 }
8033 
8034 int netdev_offload_xstats_enable(struct net_device *dev,
8035 				 enum netdev_offload_xstats_type type,
8036 				 struct netlink_ext_ack *extack)
8037 {
8038 	ASSERT_RTNL();
8039 
8040 	if (netdev_offload_xstats_enabled(dev, type))
8041 		return -EALREADY;
8042 
8043 	switch (type) {
8044 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8045 		return netdev_offload_xstats_enable_l3(dev, extack);
8046 	}
8047 
8048 	WARN_ON(1);
8049 	return -EINVAL;
8050 }
8051 EXPORT_SYMBOL(netdev_offload_xstats_enable);
8052 
8053 static void netdev_offload_xstats_disable_l3(struct net_device *dev)
8054 {
8055 	struct netdev_notifier_offload_xstats_info info = {
8056 		.info.dev = dev,
8057 		.type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
8058 	};
8059 
8060 	call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE,
8061 				      &info.info);
8062 	kfree(dev->offload_xstats_l3);
8063 	dev->offload_xstats_l3 = NULL;
8064 }
8065 
8066 int netdev_offload_xstats_disable(struct net_device *dev,
8067 				  enum netdev_offload_xstats_type type)
8068 {
8069 	ASSERT_RTNL();
8070 
8071 	if (!netdev_offload_xstats_enabled(dev, type))
8072 		return -EALREADY;
8073 
8074 	switch (type) {
8075 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8076 		netdev_offload_xstats_disable_l3(dev);
8077 		return 0;
8078 	}
8079 
8080 	WARN_ON(1);
8081 	return -EINVAL;
8082 }
8083 EXPORT_SYMBOL(netdev_offload_xstats_disable);
8084 
8085 static void netdev_offload_xstats_disable_all(struct net_device *dev)
8086 {
8087 	netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3);
8088 }
8089 
8090 static struct rtnl_hw_stats64 *
8091 netdev_offload_xstats_get_ptr(const struct net_device *dev,
8092 			      enum netdev_offload_xstats_type type)
8093 {
8094 	switch (type) {
8095 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8096 		return dev->offload_xstats_l3;
8097 	}
8098 
8099 	WARN_ON(1);
8100 	return NULL;
8101 }
8102 
8103 bool netdev_offload_xstats_enabled(const struct net_device *dev,
8104 				   enum netdev_offload_xstats_type type)
8105 {
8106 	ASSERT_RTNL();
8107 
8108 	return netdev_offload_xstats_get_ptr(dev, type);
8109 }
8110 EXPORT_SYMBOL(netdev_offload_xstats_enabled);
8111 
8112 struct netdev_notifier_offload_xstats_ru {
8113 	bool used;
8114 };
8115 
8116 struct netdev_notifier_offload_xstats_rd {
8117 	struct rtnl_hw_stats64 stats;
8118 	bool used;
8119 };
8120 
8121 static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest,
8122 				  const struct rtnl_hw_stats64 *src)
8123 {
8124 	dest->rx_packets	  += src->rx_packets;
8125 	dest->tx_packets	  += src->tx_packets;
8126 	dest->rx_bytes		  += src->rx_bytes;
8127 	dest->tx_bytes		  += src->tx_bytes;
8128 	dest->rx_errors		  += src->rx_errors;
8129 	dest->tx_errors		  += src->tx_errors;
8130 	dest->rx_dropped	  += src->rx_dropped;
8131 	dest->tx_dropped	  += src->tx_dropped;
8132 	dest->multicast		  += src->multicast;
8133 }
8134 
8135 static int netdev_offload_xstats_get_used(struct net_device *dev,
8136 					  enum netdev_offload_xstats_type type,
8137 					  bool *p_used,
8138 					  struct netlink_ext_ack *extack)
8139 {
8140 	struct netdev_notifier_offload_xstats_ru report_used = {};
8141 	struct netdev_notifier_offload_xstats_info info = {
8142 		.info.dev = dev,
8143 		.info.extack = extack,
8144 		.type = type,
8145 		.report_used = &report_used,
8146 	};
8147 	int rc;
8148 
8149 	WARN_ON(!netdev_offload_xstats_enabled(dev, type));
8150 	rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED,
8151 					   &info.info);
8152 	*p_used = report_used.used;
8153 	return notifier_to_errno(rc);
8154 }
8155 
8156 static int netdev_offload_xstats_get_stats(struct net_device *dev,
8157 					   enum netdev_offload_xstats_type type,
8158 					   struct rtnl_hw_stats64 *p_stats,
8159 					   bool *p_used,
8160 					   struct netlink_ext_ack *extack)
8161 {
8162 	struct netdev_notifier_offload_xstats_rd report_delta = {};
8163 	struct netdev_notifier_offload_xstats_info info = {
8164 		.info.dev = dev,
8165 		.info.extack = extack,
8166 		.type = type,
8167 		.report_delta = &report_delta,
8168 	};
8169 	struct rtnl_hw_stats64 *stats;
8170 	int rc;
8171 
8172 	stats = netdev_offload_xstats_get_ptr(dev, type);
8173 	if (WARN_ON(!stats))
8174 		return -EINVAL;
8175 
8176 	rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
8177 					   &info.info);
8178 
8179 	/* Cache whatever we got, even if there was an error, otherwise the
8180 	 * successful stats retrievals would get lost.
8181 	 */
8182 	netdev_hw_stats64_add(stats, &report_delta.stats);
8183 
8184 	if (p_stats)
8185 		*p_stats = *stats;
8186 	*p_used = report_delta.used;
8187 
8188 	return notifier_to_errno(rc);
8189 }
8190 
8191 int netdev_offload_xstats_get(struct net_device *dev,
8192 			      enum netdev_offload_xstats_type type,
8193 			      struct rtnl_hw_stats64 *p_stats, bool *p_used,
8194 			      struct netlink_ext_ack *extack)
8195 {
8196 	ASSERT_RTNL();
8197 
8198 	if (p_stats)
8199 		return netdev_offload_xstats_get_stats(dev, type, p_stats,
8200 						       p_used, extack);
8201 	else
8202 		return netdev_offload_xstats_get_used(dev, type, p_used,
8203 						      extack);
8204 }
8205 EXPORT_SYMBOL(netdev_offload_xstats_get);
8206 
8207 void
8208 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta,
8209 				   const struct rtnl_hw_stats64 *stats)
8210 {
8211 	report_delta->used = true;
8212 	netdev_hw_stats64_add(&report_delta->stats, stats);
8213 }
8214 EXPORT_SYMBOL(netdev_offload_xstats_report_delta);
8215 
8216 void
8217 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used)
8218 {
8219 	report_used->used = true;
8220 }
8221 EXPORT_SYMBOL(netdev_offload_xstats_report_used);
8222 
8223 void netdev_offload_xstats_push_delta(struct net_device *dev,
8224 				      enum netdev_offload_xstats_type type,
8225 				      const struct rtnl_hw_stats64 *p_stats)
8226 {
8227 	struct rtnl_hw_stats64 *stats;
8228 
8229 	ASSERT_RTNL();
8230 
8231 	stats = netdev_offload_xstats_get_ptr(dev, type);
8232 	if (WARN_ON(!stats))
8233 		return;
8234 
8235 	netdev_hw_stats64_add(stats, p_stats);
8236 }
8237 EXPORT_SYMBOL(netdev_offload_xstats_push_delta);
8238 
8239 /**
8240  * netdev_get_xmit_slave - Get the xmit slave of master device
8241  * @dev: device
8242  * @skb: The packet
8243  * @all_slaves: assume all the slaves are active
8244  *
8245  * The reference counters are not incremented so the caller must be
8246  * careful with locks. The caller must hold RCU lock.
8247  * %NULL is returned if no slave is found.
8248  */
8249 
8250 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8251 					 struct sk_buff *skb,
8252 					 bool all_slaves)
8253 {
8254 	const struct net_device_ops *ops = dev->netdev_ops;
8255 
8256 	if (!ops->ndo_get_xmit_slave)
8257 		return NULL;
8258 	return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8259 }
8260 EXPORT_SYMBOL(netdev_get_xmit_slave);
8261 
8262 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8263 						  struct sock *sk)
8264 {
8265 	const struct net_device_ops *ops = dev->netdev_ops;
8266 
8267 	if (!ops->ndo_sk_get_lower_dev)
8268 		return NULL;
8269 	return ops->ndo_sk_get_lower_dev(dev, sk);
8270 }
8271 
8272 /**
8273  * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8274  * @dev: device
8275  * @sk: the socket
8276  *
8277  * %NULL is returned if no lower device is found.
8278  */
8279 
8280 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8281 					    struct sock *sk)
8282 {
8283 	struct net_device *lower;
8284 
8285 	lower = netdev_sk_get_lower_dev(dev, sk);
8286 	while (lower) {
8287 		dev = lower;
8288 		lower = netdev_sk_get_lower_dev(dev, sk);
8289 	}
8290 
8291 	return dev;
8292 }
8293 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8294 
8295 static void netdev_adjacent_add_links(struct net_device *dev)
8296 {
8297 	struct netdev_adjacent *iter;
8298 
8299 	struct net *net = dev_net(dev);
8300 
8301 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8302 		if (!net_eq(net, dev_net(iter->dev)))
8303 			continue;
8304 		netdev_adjacent_sysfs_add(iter->dev, dev,
8305 					  &iter->dev->adj_list.lower);
8306 		netdev_adjacent_sysfs_add(dev, iter->dev,
8307 					  &dev->adj_list.upper);
8308 	}
8309 
8310 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8311 		if (!net_eq(net, dev_net(iter->dev)))
8312 			continue;
8313 		netdev_adjacent_sysfs_add(iter->dev, dev,
8314 					  &iter->dev->adj_list.upper);
8315 		netdev_adjacent_sysfs_add(dev, iter->dev,
8316 					  &dev->adj_list.lower);
8317 	}
8318 }
8319 
8320 static void netdev_adjacent_del_links(struct net_device *dev)
8321 {
8322 	struct netdev_adjacent *iter;
8323 
8324 	struct net *net = dev_net(dev);
8325 
8326 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8327 		if (!net_eq(net, dev_net(iter->dev)))
8328 			continue;
8329 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
8330 					  &iter->dev->adj_list.lower);
8331 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
8332 					  &dev->adj_list.upper);
8333 	}
8334 
8335 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8336 		if (!net_eq(net, dev_net(iter->dev)))
8337 			continue;
8338 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
8339 					  &iter->dev->adj_list.upper);
8340 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
8341 					  &dev->adj_list.lower);
8342 	}
8343 }
8344 
8345 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8346 {
8347 	struct netdev_adjacent *iter;
8348 
8349 	struct net *net = dev_net(dev);
8350 
8351 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8352 		if (!net_eq(net, dev_net(iter->dev)))
8353 			continue;
8354 		netdev_adjacent_sysfs_del(iter->dev, oldname,
8355 					  &iter->dev->adj_list.lower);
8356 		netdev_adjacent_sysfs_add(iter->dev, dev,
8357 					  &iter->dev->adj_list.lower);
8358 	}
8359 
8360 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8361 		if (!net_eq(net, dev_net(iter->dev)))
8362 			continue;
8363 		netdev_adjacent_sysfs_del(iter->dev, oldname,
8364 					  &iter->dev->adj_list.upper);
8365 		netdev_adjacent_sysfs_add(iter->dev, dev,
8366 					  &iter->dev->adj_list.upper);
8367 	}
8368 }
8369 
8370 void *netdev_lower_dev_get_private(struct net_device *dev,
8371 				   struct net_device *lower_dev)
8372 {
8373 	struct netdev_adjacent *lower;
8374 
8375 	if (!lower_dev)
8376 		return NULL;
8377 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8378 	if (!lower)
8379 		return NULL;
8380 
8381 	return lower->private;
8382 }
8383 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8384 
8385 
8386 /**
8387  * netdev_lower_state_changed - Dispatch event about lower device state change
8388  * @lower_dev: device
8389  * @lower_state_info: state to dispatch
8390  *
8391  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8392  * The caller must hold the RTNL lock.
8393  */
8394 void netdev_lower_state_changed(struct net_device *lower_dev,
8395 				void *lower_state_info)
8396 {
8397 	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8398 		.info.dev = lower_dev,
8399 	};
8400 
8401 	ASSERT_RTNL();
8402 	changelowerstate_info.lower_state_info = lower_state_info;
8403 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8404 				      &changelowerstate_info.info);
8405 }
8406 EXPORT_SYMBOL(netdev_lower_state_changed);
8407 
8408 static void dev_change_rx_flags(struct net_device *dev, int flags)
8409 {
8410 	const struct net_device_ops *ops = dev->netdev_ops;
8411 
8412 	if (ops->ndo_change_rx_flags)
8413 		ops->ndo_change_rx_flags(dev, flags);
8414 }
8415 
8416 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8417 {
8418 	unsigned int old_flags = dev->flags;
8419 	kuid_t uid;
8420 	kgid_t gid;
8421 
8422 	ASSERT_RTNL();
8423 
8424 	dev->flags |= IFF_PROMISC;
8425 	dev->promiscuity += inc;
8426 	if (dev->promiscuity == 0) {
8427 		/*
8428 		 * Avoid overflow.
8429 		 * If inc causes overflow, untouch promisc and return error.
8430 		 */
8431 		if (inc < 0)
8432 			dev->flags &= ~IFF_PROMISC;
8433 		else {
8434 			dev->promiscuity -= inc;
8435 			netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
8436 			return -EOVERFLOW;
8437 		}
8438 	}
8439 	if (dev->flags != old_flags) {
8440 		netdev_info(dev, "%s promiscuous mode\n",
8441 			    dev->flags & IFF_PROMISC ? "entered" : "left");
8442 		if (audit_enabled) {
8443 			current_uid_gid(&uid, &gid);
8444 			audit_log(audit_context(), GFP_ATOMIC,
8445 				  AUDIT_ANOM_PROMISCUOUS,
8446 				  "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8447 				  dev->name, (dev->flags & IFF_PROMISC),
8448 				  (old_flags & IFF_PROMISC),
8449 				  from_kuid(&init_user_ns, audit_get_loginuid(current)),
8450 				  from_kuid(&init_user_ns, uid),
8451 				  from_kgid(&init_user_ns, gid),
8452 				  audit_get_sessionid(current));
8453 		}
8454 
8455 		dev_change_rx_flags(dev, IFF_PROMISC);
8456 	}
8457 	if (notify)
8458 		__dev_notify_flags(dev, old_flags, IFF_PROMISC, 0, NULL);
8459 	return 0;
8460 }
8461 
8462 /**
8463  *	dev_set_promiscuity	- update promiscuity count on a device
8464  *	@dev: device
8465  *	@inc: modifier
8466  *
8467  *	Add or remove promiscuity from a device. While the count in the device
8468  *	remains above zero the interface remains promiscuous. Once it hits zero
8469  *	the device reverts back to normal filtering operation. A negative inc
8470  *	value is used to drop promiscuity on the device.
8471  *	Return 0 if successful or a negative errno code on error.
8472  */
8473 int dev_set_promiscuity(struct net_device *dev, int inc)
8474 {
8475 	unsigned int old_flags = dev->flags;
8476 	int err;
8477 
8478 	err = __dev_set_promiscuity(dev, inc, true);
8479 	if (err < 0)
8480 		return err;
8481 	if (dev->flags != old_flags)
8482 		dev_set_rx_mode(dev);
8483 	return err;
8484 }
8485 EXPORT_SYMBOL(dev_set_promiscuity);
8486 
8487 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8488 {
8489 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8490 
8491 	ASSERT_RTNL();
8492 
8493 	dev->flags |= IFF_ALLMULTI;
8494 	dev->allmulti += inc;
8495 	if (dev->allmulti == 0) {
8496 		/*
8497 		 * Avoid overflow.
8498 		 * If inc causes overflow, untouch allmulti and return error.
8499 		 */
8500 		if (inc < 0)
8501 			dev->flags &= ~IFF_ALLMULTI;
8502 		else {
8503 			dev->allmulti -= inc;
8504 			netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
8505 			return -EOVERFLOW;
8506 		}
8507 	}
8508 	if (dev->flags ^ old_flags) {
8509 		netdev_info(dev, "%s allmulticast mode\n",
8510 			    dev->flags & IFF_ALLMULTI ? "entered" : "left");
8511 		dev_change_rx_flags(dev, IFF_ALLMULTI);
8512 		dev_set_rx_mode(dev);
8513 		if (notify)
8514 			__dev_notify_flags(dev, old_flags,
8515 					   dev->gflags ^ old_gflags, 0, NULL);
8516 	}
8517 	return 0;
8518 }
8519 
8520 /**
8521  *	dev_set_allmulti	- update allmulti count on a device
8522  *	@dev: device
8523  *	@inc: modifier
8524  *
8525  *	Add or remove reception of all multicast frames to a device. While the
8526  *	count in the device remains above zero the interface remains listening
8527  *	to all interfaces. Once it hits zero the device reverts back to normal
8528  *	filtering operation. A negative @inc value is used to drop the counter
8529  *	when releasing a resource needing all multicasts.
8530  *	Return 0 if successful or a negative errno code on error.
8531  */
8532 
8533 int dev_set_allmulti(struct net_device *dev, int inc)
8534 {
8535 	return __dev_set_allmulti(dev, inc, true);
8536 }
8537 EXPORT_SYMBOL(dev_set_allmulti);
8538 
8539 /*
8540  *	Upload unicast and multicast address lists to device and
8541  *	configure RX filtering. When the device doesn't support unicast
8542  *	filtering it is put in promiscuous mode while unicast addresses
8543  *	are present.
8544  */
8545 void __dev_set_rx_mode(struct net_device *dev)
8546 {
8547 	const struct net_device_ops *ops = dev->netdev_ops;
8548 
8549 	/* dev_open will call this function so the list will stay sane. */
8550 	if (!(dev->flags&IFF_UP))
8551 		return;
8552 
8553 	if (!netif_device_present(dev))
8554 		return;
8555 
8556 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8557 		/* Unicast addresses changes may only happen under the rtnl,
8558 		 * therefore calling __dev_set_promiscuity here is safe.
8559 		 */
8560 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8561 			__dev_set_promiscuity(dev, 1, false);
8562 			dev->uc_promisc = true;
8563 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8564 			__dev_set_promiscuity(dev, -1, false);
8565 			dev->uc_promisc = false;
8566 		}
8567 	}
8568 
8569 	if (ops->ndo_set_rx_mode)
8570 		ops->ndo_set_rx_mode(dev);
8571 }
8572 
8573 void dev_set_rx_mode(struct net_device *dev)
8574 {
8575 	netif_addr_lock_bh(dev);
8576 	__dev_set_rx_mode(dev);
8577 	netif_addr_unlock_bh(dev);
8578 }
8579 
8580 /**
8581  *	dev_get_flags - get flags reported to userspace
8582  *	@dev: device
8583  *
8584  *	Get the combination of flag bits exported through APIs to userspace.
8585  */
8586 unsigned int dev_get_flags(const struct net_device *dev)
8587 {
8588 	unsigned int flags;
8589 
8590 	flags = (dev->flags & ~(IFF_PROMISC |
8591 				IFF_ALLMULTI |
8592 				IFF_RUNNING |
8593 				IFF_LOWER_UP |
8594 				IFF_DORMANT)) |
8595 		(dev->gflags & (IFF_PROMISC |
8596 				IFF_ALLMULTI));
8597 
8598 	if (netif_running(dev)) {
8599 		if (netif_oper_up(dev))
8600 			flags |= IFF_RUNNING;
8601 		if (netif_carrier_ok(dev))
8602 			flags |= IFF_LOWER_UP;
8603 		if (netif_dormant(dev))
8604 			flags |= IFF_DORMANT;
8605 	}
8606 
8607 	return flags;
8608 }
8609 EXPORT_SYMBOL(dev_get_flags);
8610 
8611 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8612 		       struct netlink_ext_ack *extack)
8613 {
8614 	unsigned int old_flags = dev->flags;
8615 	int ret;
8616 
8617 	ASSERT_RTNL();
8618 
8619 	/*
8620 	 *	Set the flags on our device.
8621 	 */
8622 
8623 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8624 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8625 			       IFF_AUTOMEDIA)) |
8626 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8627 				    IFF_ALLMULTI));
8628 
8629 	/*
8630 	 *	Load in the correct multicast list now the flags have changed.
8631 	 */
8632 
8633 	if ((old_flags ^ flags) & IFF_MULTICAST)
8634 		dev_change_rx_flags(dev, IFF_MULTICAST);
8635 
8636 	dev_set_rx_mode(dev);
8637 
8638 	/*
8639 	 *	Have we downed the interface. We handle IFF_UP ourselves
8640 	 *	according to user attempts to set it, rather than blindly
8641 	 *	setting it.
8642 	 */
8643 
8644 	ret = 0;
8645 	if ((old_flags ^ flags) & IFF_UP) {
8646 		if (old_flags & IFF_UP)
8647 			__dev_close(dev);
8648 		else
8649 			ret = __dev_open(dev, extack);
8650 	}
8651 
8652 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
8653 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
8654 		unsigned int old_flags = dev->flags;
8655 
8656 		dev->gflags ^= IFF_PROMISC;
8657 
8658 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
8659 			if (dev->flags != old_flags)
8660 				dev_set_rx_mode(dev);
8661 	}
8662 
8663 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8664 	 * is important. Some (broken) drivers set IFF_PROMISC, when
8665 	 * IFF_ALLMULTI is requested not asking us and not reporting.
8666 	 */
8667 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8668 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8669 
8670 		dev->gflags ^= IFF_ALLMULTI;
8671 		__dev_set_allmulti(dev, inc, false);
8672 	}
8673 
8674 	return ret;
8675 }
8676 
8677 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8678 			unsigned int gchanges, u32 portid,
8679 			const struct nlmsghdr *nlh)
8680 {
8681 	unsigned int changes = dev->flags ^ old_flags;
8682 
8683 	if (gchanges)
8684 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC, portid, nlh);
8685 
8686 	if (changes & IFF_UP) {
8687 		if (dev->flags & IFF_UP)
8688 			call_netdevice_notifiers(NETDEV_UP, dev);
8689 		else
8690 			call_netdevice_notifiers(NETDEV_DOWN, dev);
8691 	}
8692 
8693 	if (dev->flags & IFF_UP &&
8694 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8695 		struct netdev_notifier_change_info change_info = {
8696 			.info = {
8697 				.dev = dev,
8698 			},
8699 			.flags_changed = changes,
8700 		};
8701 
8702 		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8703 	}
8704 }
8705 
8706 /**
8707  *	dev_change_flags - change device settings
8708  *	@dev: device
8709  *	@flags: device state flags
8710  *	@extack: netlink extended ack
8711  *
8712  *	Change settings on device based state flags. The flags are
8713  *	in the userspace exported format.
8714  */
8715 int dev_change_flags(struct net_device *dev, unsigned int flags,
8716 		     struct netlink_ext_ack *extack)
8717 {
8718 	int ret;
8719 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8720 
8721 	ret = __dev_change_flags(dev, flags, extack);
8722 	if (ret < 0)
8723 		return ret;
8724 
8725 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8726 	__dev_notify_flags(dev, old_flags, changes, 0, NULL);
8727 	return ret;
8728 }
8729 EXPORT_SYMBOL(dev_change_flags);
8730 
8731 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8732 {
8733 	const struct net_device_ops *ops = dev->netdev_ops;
8734 
8735 	if (ops->ndo_change_mtu)
8736 		return ops->ndo_change_mtu(dev, new_mtu);
8737 
8738 	/* Pairs with all the lockless reads of dev->mtu in the stack */
8739 	WRITE_ONCE(dev->mtu, new_mtu);
8740 	return 0;
8741 }
8742 EXPORT_SYMBOL(__dev_set_mtu);
8743 
8744 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8745 		     struct netlink_ext_ack *extack)
8746 {
8747 	/* MTU must be positive, and in range */
8748 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8749 		NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8750 		return -EINVAL;
8751 	}
8752 
8753 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8754 		NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8755 		return -EINVAL;
8756 	}
8757 	return 0;
8758 }
8759 
8760 /**
8761  *	dev_set_mtu_ext - Change maximum transfer unit
8762  *	@dev: device
8763  *	@new_mtu: new transfer unit
8764  *	@extack: netlink extended ack
8765  *
8766  *	Change the maximum transfer size of the network device.
8767  */
8768 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8769 		    struct netlink_ext_ack *extack)
8770 {
8771 	int err, orig_mtu;
8772 
8773 	if (new_mtu == dev->mtu)
8774 		return 0;
8775 
8776 	err = dev_validate_mtu(dev, new_mtu, extack);
8777 	if (err)
8778 		return err;
8779 
8780 	if (!netif_device_present(dev))
8781 		return -ENODEV;
8782 
8783 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8784 	err = notifier_to_errno(err);
8785 	if (err)
8786 		return err;
8787 
8788 	orig_mtu = dev->mtu;
8789 	err = __dev_set_mtu(dev, new_mtu);
8790 
8791 	if (!err) {
8792 		err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8793 						   orig_mtu);
8794 		err = notifier_to_errno(err);
8795 		if (err) {
8796 			/* setting mtu back and notifying everyone again,
8797 			 * so that they have a chance to revert changes.
8798 			 */
8799 			__dev_set_mtu(dev, orig_mtu);
8800 			call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8801 						     new_mtu);
8802 		}
8803 	}
8804 	return err;
8805 }
8806 
8807 int dev_set_mtu(struct net_device *dev, int new_mtu)
8808 {
8809 	struct netlink_ext_ack extack;
8810 	int err;
8811 
8812 	memset(&extack, 0, sizeof(extack));
8813 	err = dev_set_mtu_ext(dev, new_mtu, &extack);
8814 	if (err && extack._msg)
8815 		net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8816 	return err;
8817 }
8818 EXPORT_SYMBOL(dev_set_mtu);
8819 
8820 /**
8821  *	dev_change_tx_queue_len - Change TX queue length of a netdevice
8822  *	@dev: device
8823  *	@new_len: new tx queue length
8824  */
8825 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8826 {
8827 	unsigned int orig_len = dev->tx_queue_len;
8828 	int res;
8829 
8830 	if (new_len != (unsigned int)new_len)
8831 		return -ERANGE;
8832 
8833 	if (new_len != orig_len) {
8834 		dev->tx_queue_len = new_len;
8835 		res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8836 		res = notifier_to_errno(res);
8837 		if (res)
8838 			goto err_rollback;
8839 		res = dev_qdisc_change_tx_queue_len(dev);
8840 		if (res)
8841 			goto err_rollback;
8842 	}
8843 
8844 	return 0;
8845 
8846 err_rollback:
8847 	netdev_err(dev, "refused to change device tx_queue_len\n");
8848 	dev->tx_queue_len = orig_len;
8849 	return res;
8850 }
8851 
8852 /**
8853  *	dev_set_group - Change group this device belongs to
8854  *	@dev: device
8855  *	@new_group: group this device should belong to
8856  */
8857 void dev_set_group(struct net_device *dev, int new_group)
8858 {
8859 	dev->group = new_group;
8860 }
8861 
8862 /**
8863  *	dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8864  *	@dev: device
8865  *	@addr: new address
8866  *	@extack: netlink extended ack
8867  */
8868 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8869 			      struct netlink_ext_ack *extack)
8870 {
8871 	struct netdev_notifier_pre_changeaddr_info info = {
8872 		.info.dev = dev,
8873 		.info.extack = extack,
8874 		.dev_addr = addr,
8875 	};
8876 	int rc;
8877 
8878 	rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8879 	return notifier_to_errno(rc);
8880 }
8881 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8882 
8883 /**
8884  *	dev_set_mac_address - Change Media Access Control Address
8885  *	@dev: device
8886  *	@sa: new address
8887  *	@extack: netlink extended ack
8888  *
8889  *	Change the hardware (MAC) address of the device
8890  */
8891 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8892 			struct netlink_ext_ack *extack)
8893 {
8894 	const struct net_device_ops *ops = dev->netdev_ops;
8895 	int err;
8896 
8897 	if (!ops->ndo_set_mac_address)
8898 		return -EOPNOTSUPP;
8899 	if (sa->sa_family != dev->type)
8900 		return -EINVAL;
8901 	if (!netif_device_present(dev))
8902 		return -ENODEV;
8903 	err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8904 	if (err)
8905 		return err;
8906 	if (memcmp(dev->dev_addr, sa->sa_data, dev->addr_len)) {
8907 		err = ops->ndo_set_mac_address(dev, sa);
8908 		if (err)
8909 			return err;
8910 	}
8911 	dev->addr_assign_type = NET_ADDR_SET;
8912 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8913 	add_device_randomness(dev->dev_addr, dev->addr_len);
8914 	return 0;
8915 }
8916 EXPORT_SYMBOL(dev_set_mac_address);
8917 
8918 static DECLARE_RWSEM(dev_addr_sem);
8919 
8920 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
8921 			     struct netlink_ext_ack *extack)
8922 {
8923 	int ret;
8924 
8925 	down_write(&dev_addr_sem);
8926 	ret = dev_set_mac_address(dev, sa, extack);
8927 	up_write(&dev_addr_sem);
8928 	return ret;
8929 }
8930 EXPORT_SYMBOL(dev_set_mac_address_user);
8931 
8932 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
8933 {
8934 	size_t size = sizeof(sa->sa_data_min);
8935 	struct net_device *dev;
8936 	int ret = 0;
8937 
8938 	down_read(&dev_addr_sem);
8939 	rcu_read_lock();
8940 
8941 	dev = dev_get_by_name_rcu(net, dev_name);
8942 	if (!dev) {
8943 		ret = -ENODEV;
8944 		goto unlock;
8945 	}
8946 	if (!dev->addr_len)
8947 		memset(sa->sa_data, 0, size);
8948 	else
8949 		memcpy(sa->sa_data, dev->dev_addr,
8950 		       min_t(size_t, size, dev->addr_len));
8951 	sa->sa_family = dev->type;
8952 
8953 unlock:
8954 	rcu_read_unlock();
8955 	up_read(&dev_addr_sem);
8956 	return ret;
8957 }
8958 EXPORT_SYMBOL(dev_get_mac_address);
8959 
8960 /**
8961  *	dev_change_carrier - Change device carrier
8962  *	@dev: device
8963  *	@new_carrier: new value
8964  *
8965  *	Change device carrier
8966  */
8967 int dev_change_carrier(struct net_device *dev, bool new_carrier)
8968 {
8969 	const struct net_device_ops *ops = dev->netdev_ops;
8970 
8971 	if (!ops->ndo_change_carrier)
8972 		return -EOPNOTSUPP;
8973 	if (!netif_device_present(dev))
8974 		return -ENODEV;
8975 	return ops->ndo_change_carrier(dev, new_carrier);
8976 }
8977 
8978 /**
8979  *	dev_get_phys_port_id - Get device physical port ID
8980  *	@dev: device
8981  *	@ppid: port ID
8982  *
8983  *	Get device physical port ID
8984  */
8985 int dev_get_phys_port_id(struct net_device *dev,
8986 			 struct netdev_phys_item_id *ppid)
8987 {
8988 	const struct net_device_ops *ops = dev->netdev_ops;
8989 
8990 	if (!ops->ndo_get_phys_port_id)
8991 		return -EOPNOTSUPP;
8992 	return ops->ndo_get_phys_port_id(dev, ppid);
8993 }
8994 
8995 /**
8996  *	dev_get_phys_port_name - Get device physical port name
8997  *	@dev: device
8998  *	@name: port name
8999  *	@len: limit of bytes to copy to name
9000  *
9001  *	Get device physical port name
9002  */
9003 int dev_get_phys_port_name(struct net_device *dev,
9004 			   char *name, size_t len)
9005 {
9006 	const struct net_device_ops *ops = dev->netdev_ops;
9007 	int err;
9008 
9009 	if (ops->ndo_get_phys_port_name) {
9010 		err = ops->ndo_get_phys_port_name(dev, name, len);
9011 		if (err != -EOPNOTSUPP)
9012 			return err;
9013 	}
9014 	return devlink_compat_phys_port_name_get(dev, name, len);
9015 }
9016 
9017 /**
9018  *	dev_get_port_parent_id - Get the device's port parent identifier
9019  *	@dev: network device
9020  *	@ppid: pointer to a storage for the port's parent identifier
9021  *	@recurse: allow/disallow recursion to lower devices
9022  *
9023  *	Get the devices's port parent identifier
9024  */
9025 int dev_get_port_parent_id(struct net_device *dev,
9026 			   struct netdev_phys_item_id *ppid,
9027 			   bool recurse)
9028 {
9029 	const struct net_device_ops *ops = dev->netdev_ops;
9030 	struct netdev_phys_item_id first = { };
9031 	struct net_device *lower_dev;
9032 	struct list_head *iter;
9033 	int err;
9034 
9035 	if (ops->ndo_get_port_parent_id) {
9036 		err = ops->ndo_get_port_parent_id(dev, ppid);
9037 		if (err != -EOPNOTSUPP)
9038 			return err;
9039 	}
9040 
9041 	err = devlink_compat_switch_id_get(dev, ppid);
9042 	if (!recurse || err != -EOPNOTSUPP)
9043 		return err;
9044 
9045 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
9046 		err = dev_get_port_parent_id(lower_dev, ppid, true);
9047 		if (err)
9048 			break;
9049 		if (!first.id_len)
9050 			first = *ppid;
9051 		else if (memcmp(&first, ppid, sizeof(*ppid)))
9052 			return -EOPNOTSUPP;
9053 	}
9054 
9055 	return err;
9056 }
9057 EXPORT_SYMBOL(dev_get_port_parent_id);
9058 
9059 /**
9060  *	netdev_port_same_parent_id - Indicate if two network devices have
9061  *	the same port parent identifier
9062  *	@a: first network device
9063  *	@b: second network device
9064  */
9065 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
9066 {
9067 	struct netdev_phys_item_id a_id = { };
9068 	struct netdev_phys_item_id b_id = { };
9069 
9070 	if (dev_get_port_parent_id(a, &a_id, true) ||
9071 	    dev_get_port_parent_id(b, &b_id, true))
9072 		return false;
9073 
9074 	return netdev_phys_item_id_same(&a_id, &b_id);
9075 }
9076 EXPORT_SYMBOL(netdev_port_same_parent_id);
9077 
9078 static void netdev_dpll_pin_assign(struct net_device *dev, struct dpll_pin *dpll_pin)
9079 {
9080 #if IS_ENABLED(CONFIG_DPLL)
9081 	rtnl_lock();
9082 	dev->dpll_pin = dpll_pin;
9083 	rtnl_unlock();
9084 #endif
9085 }
9086 
9087 void netdev_dpll_pin_set(struct net_device *dev, struct dpll_pin *dpll_pin)
9088 {
9089 	WARN_ON(!dpll_pin);
9090 	netdev_dpll_pin_assign(dev, dpll_pin);
9091 }
9092 EXPORT_SYMBOL(netdev_dpll_pin_set);
9093 
9094 void netdev_dpll_pin_clear(struct net_device *dev)
9095 {
9096 	netdev_dpll_pin_assign(dev, NULL);
9097 }
9098 EXPORT_SYMBOL(netdev_dpll_pin_clear);
9099 
9100 /**
9101  *	dev_change_proto_down - set carrier according to proto_down.
9102  *
9103  *	@dev: device
9104  *	@proto_down: new value
9105  */
9106 int dev_change_proto_down(struct net_device *dev, bool proto_down)
9107 {
9108 	if (!(dev->priv_flags & IFF_CHANGE_PROTO_DOWN))
9109 		return -EOPNOTSUPP;
9110 	if (!netif_device_present(dev))
9111 		return -ENODEV;
9112 	if (proto_down)
9113 		netif_carrier_off(dev);
9114 	else
9115 		netif_carrier_on(dev);
9116 	dev->proto_down = proto_down;
9117 	return 0;
9118 }
9119 
9120 /**
9121  *	dev_change_proto_down_reason - proto down reason
9122  *
9123  *	@dev: device
9124  *	@mask: proto down mask
9125  *	@value: proto down value
9126  */
9127 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
9128 				  u32 value)
9129 {
9130 	int b;
9131 
9132 	if (!mask) {
9133 		dev->proto_down_reason = value;
9134 	} else {
9135 		for_each_set_bit(b, &mask, 32) {
9136 			if (value & (1 << b))
9137 				dev->proto_down_reason |= BIT(b);
9138 			else
9139 				dev->proto_down_reason &= ~BIT(b);
9140 		}
9141 	}
9142 }
9143 
9144 struct bpf_xdp_link {
9145 	struct bpf_link link;
9146 	struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9147 	int flags;
9148 };
9149 
9150 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9151 {
9152 	if (flags & XDP_FLAGS_HW_MODE)
9153 		return XDP_MODE_HW;
9154 	if (flags & XDP_FLAGS_DRV_MODE)
9155 		return XDP_MODE_DRV;
9156 	if (flags & XDP_FLAGS_SKB_MODE)
9157 		return XDP_MODE_SKB;
9158 	return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9159 }
9160 
9161 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9162 {
9163 	switch (mode) {
9164 	case XDP_MODE_SKB:
9165 		return generic_xdp_install;
9166 	case XDP_MODE_DRV:
9167 	case XDP_MODE_HW:
9168 		return dev->netdev_ops->ndo_bpf;
9169 	default:
9170 		return NULL;
9171 	}
9172 }
9173 
9174 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9175 					 enum bpf_xdp_mode mode)
9176 {
9177 	return dev->xdp_state[mode].link;
9178 }
9179 
9180 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9181 				     enum bpf_xdp_mode mode)
9182 {
9183 	struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9184 
9185 	if (link)
9186 		return link->link.prog;
9187 	return dev->xdp_state[mode].prog;
9188 }
9189 
9190 u8 dev_xdp_prog_count(struct net_device *dev)
9191 {
9192 	u8 count = 0;
9193 	int i;
9194 
9195 	for (i = 0; i < __MAX_XDP_MODE; i++)
9196 		if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9197 			count++;
9198 	return count;
9199 }
9200 EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
9201 
9202 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9203 {
9204 	struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9205 
9206 	return prog ? prog->aux->id : 0;
9207 }
9208 
9209 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9210 			     struct bpf_xdp_link *link)
9211 {
9212 	dev->xdp_state[mode].link = link;
9213 	dev->xdp_state[mode].prog = NULL;
9214 }
9215 
9216 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9217 			     struct bpf_prog *prog)
9218 {
9219 	dev->xdp_state[mode].link = NULL;
9220 	dev->xdp_state[mode].prog = prog;
9221 }
9222 
9223 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9224 			   bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9225 			   u32 flags, struct bpf_prog *prog)
9226 {
9227 	struct netdev_bpf xdp;
9228 	int err;
9229 
9230 	memset(&xdp, 0, sizeof(xdp));
9231 	xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9232 	xdp.extack = extack;
9233 	xdp.flags = flags;
9234 	xdp.prog = prog;
9235 
9236 	/* Drivers assume refcnt is already incremented (i.e, prog pointer is
9237 	 * "moved" into driver), so they don't increment it on their own, but
9238 	 * they do decrement refcnt when program is detached or replaced.
9239 	 * Given net_device also owns link/prog, we need to bump refcnt here
9240 	 * to prevent drivers from underflowing it.
9241 	 */
9242 	if (prog)
9243 		bpf_prog_inc(prog);
9244 	err = bpf_op(dev, &xdp);
9245 	if (err) {
9246 		if (prog)
9247 			bpf_prog_put(prog);
9248 		return err;
9249 	}
9250 
9251 	if (mode != XDP_MODE_HW)
9252 		bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9253 
9254 	return 0;
9255 }
9256 
9257 static void dev_xdp_uninstall(struct net_device *dev)
9258 {
9259 	struct bpf_xdp_link *link;
9260 	struct bpf_prog *prog;
9261 	enum bpf_xdp_mode mode;
9262 	bpf_op_t bpf_op;
9263 
9264 	ASSERT_RTNL();
9265 
9266 	for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9267 		prog = dev_xdp_prog(dev, mode);
9268 		if (!prog)
9269 			continue;
9270 
9271 		bpf_op = dev_xdp_bpf_op(dev, mode);
9272 		if (!bpf_op)
9273 			continue;
9274 
9275 		WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9276 
9277 		/* auto-detach link from net device */
9278 		link = dev_xdp_link(dev, mode);
9279 		if (link)
9280 			link->dev = NULL;
9281 		else
9282 			bpf_prog_put(prog);
9283 
9284 		dev_xdp_set_link(dev, mode, NULL);
9285 	}
9286 }
9287 
9288 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9289 			  struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9290 			  struct bpf_prog *old_prog, u32 flags)
9291 {
9292 	unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9293 	struct bpf_prog *cur_prog;
9294 	struct net_device *upper;
9295 	struct list_head *iter;
9296 	enum bpf_xdp_mode mode;
9297 	bpf_op_t bpf_op;
9298 	int err;
9299 
9300 	ASSERT_RTNL();
9301 
9302 	/* either link or prog attachment, never both */
9303 	if (link && (new_prog || old_prog))
9304 		return -EINVAL;
9305 	/* link supports only XDP mode flags */
9306 	if (link && (flags & ~XDP_FLAGS_MODES)) {
9307 		NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9308 		return -EINVAL;
9309 	}
9310 	/* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9311 	if (num_modes > 1) {
9312 		NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9313 		return -EINVAL;
9314 	}
9315 	/* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9316 	if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9317 		NL_SET_ERR_MSG(extack,
9318 			       "More than one program loaded, unset mode is ambiguous");
9319 		return -EINVAL;
9320 	}
9321 	/* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9322 	if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9323 		NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9324 		return -EINVAL;
9325 	}
9326 
9327 	mode = dev_xdp_mode(dev, flags);
9328 	/* can't replace attached link */
9329 	if (dev_xdp_link(dev, mode)) {
9330 		NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9331 		return -EBUSY;
9332 	}
9333 
9334 	/* don't allow if an upper device already has a program */
9335 	netdev_for_each_upper_dev_rcu(dev, upper, iter) {
9336 		if (dev_xdp_prog_count(upper) > 0) {
9337 			NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
9338 			return -EEXIST;
9339 		}
9340 	}
9341 
9342 	cur_prog = dev_xdp_prog(dev, mode);
9343 	/* can't replace attached prog with link */
9344 	if (link && cur_prog) {
9345 		NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9346 		return -EBUSY;
9347 	}
9348 	if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9349 		NL_SET_ERR_MSG(extack, "Active program does not match expected");
9350 		return -EEXIST;
9351 	}
9352 
9353 	/* put effective new program into new_prog */
9354 	if (link)
9355 		new_prog = link->link.prog;
9356 
9357 	if (new_prog) {
9358 		bool offload = mode == XDP_MODE_HW;
9359 		enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9360 					       ? XDP_MODE_DRV : XDP_MODE_SKB;
9361 
9362 		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9363 			NL_SET_ERR_MSG(extack, "XDP program already attached");
9364 			return -EBUSY;
9365 		}
9366 		if (!offload && dev_xdp_prog(dev, other_mode)) {
9367 			NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9368 			return -EEXIST;
9369 		}
9370 		if (!offload && bpf_prog_is_offloaded(new_prog->aux)) {
9371 			NL_SET_ERR_MSG(extack, "Using offloaded program without HW_MODE flag is not supported");
9372 			return -EINVAL;
9373 		}
9374 		if (bpf_prog_is_dev_bound(new_prog->aux) && !bpf_offload_dev_match(new_prog, dev)) {
9375 			NL_SET_ERR_MSG(extack, "Program bound to different device");
9376 			return -EINVAL;
9377 		}
9378 		if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9379 			NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9380 			return -EINVAL;
9381 		}
9382 		if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9383 			NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9384 			return -EINVAL;
9385 		}
9386 	}
9387 
9388 	/* don't call drivers if the effective program didn't change */
9389 	if (new_prog != cur_prog) {
9390 		bpf_op = dev_xdp_bpf_op(dev, mode);
9391 		if (!bpf_op) {
9392 			NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9393 			return -EOPNOTSUPP;
9394 		}
9395 
9396 		err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9397 		if (err)
9398 			return err;
9399 	}
9400 
9401 	if (link)
9402 		dev_xdp_set_link(dev, mode, link);
9403 	else
9404 		dev_xdp_set_prog(dev, mode, new_prog);
9405 	if (cur_prog)
9406 		bpf_prog_put(cur_prog);
9407 
9408 	return 0;
9409 }
9410 
9411 static int dev_xdp_attach_link(struct net_device *dev,
9412 			       struct netlink_ext_ack *extack,
9413 			       struct bpf_xdp_link *link)
9414 {
9415 	return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9416 }
9417 
9418 static int dev_xdp_detach_link(struct net_device *dev,
9419 			       struct netlink_ext_ack *extack,
9420 			       struct bpf_xdp_link *link)
9421 {
9422 	enum bpf_xdp_mode mode;
9423 	bpf_op_t bpf_op;
9424 
9425 	ASSERT_RTNL();
9426 
9427 	mode = dev_xdp_mode(dev, link->flags);
9428 	if (dev_xdp_link(dev, mode) != link)
9429 		return -EINVAL;
9430 
9431 	bpf_op = dev_xdp_bpf_op(dev, mode);
9432 	WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9433 	dev_xdp_set_link(dev, mode, NULL);
9434 	return 0;
9435 }
9436 
9437 static void bpf_xdp_link_release(struct bpf_link *link)
9438 {
9439 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9440 
9441 	rtnl_lock();
9442 
9443 	/* if racing with net_device's tear down, xdp_link->dev might be
9444 	 * already NULL, in which case link was already auto-detached
9445 	 */
9446 	if (xdp_link->dev) {
9447 		WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9448 		xdp_link->dev = NULL;
9449 	}
9450 
9451 	rtnl_unlock();
9452 }
9453 
9454 static int bpf_xdp_link_detach(struct bpf_link *link)
9455 {
9456 	bpf_xdp_link_release(link);
9457 	return 0;
9458 }
9459 
9460 static void bpf_xdp_link_dealloc(struct bpf_link *link)
9461 {
9462 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9463 
9464 	kfree(xdp_link);
9465 }
9466 
9467 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9468 				     struct seq_file *seq)
9469 {
9470 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9471 	u32 ifindex = 0;
9472 
9473 	rtnl_lock();
9474 	if (xdp_link->dev)
9475 		ifindex = xdp_link->dev->ifindex;
9476 	rtnl_unlock();
9477 
9478 	seq_printf(seq, "ifindex:\t%u\n", ifindex);
9479 }
9480 
9481 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9482 				       struct bpf_link_info *info)
9483 {
9484 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9485 	u32 ifindex = 0;
9486 
9487 	rtnl_lock();
9488 	if (xdp_link->dev)
9489 		ifindex = xdp_link->dev->ifindex;
9490 	rtnl_unlock();
9491 
9492 	info->xdp.ifindex = ifindex;
9493 	return 0;
9494 }
9495 
9496 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9497 			       struct bpf_prog *old_prog)
9498 {
9499 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9500 	enum bpf_xdp_mode mode;
9501 	bpf_op_t bpf_op;
9502 	int err = 0;
9503 
9504 	rtnl_lock();
9505 
9506 	/* link might have been auto-released already, so fail */
9507 	if (!xdp_link->dev) {
9508 		err = -ENOLINK;
9509 		goto out_unlock;
9510 	}
9511 
9512 	if (old_prog && link->prog != old_prog) {
9513 		err = -EPERM;
9514 		goto out_unlock;
9515 	}
9516 	old_prog = link->prog;
9517 	if (old_prog->type != new_prog->type ||
9518 	    old_prog->expected_attach_type != new_prog->expected_attach_type) {
9519 		err = -EINVAL;
9520 		goto out_unlock;
9521 	}
9522 
9523 	if (old_prog == new_prog) {
9524 		/* no-op, don't disturb drivers */
9525 		bpf_prog_put(new_prog);
9526 		goto out_unlock;
9527 	}
9528 
9529 	mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9530 	bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9531 	err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9532 			      xdp_link->flags, new_prog);
9533 	if (err)
9534 		goto out_unlock;
9535 
9536 	old_prog = xchg(&link->prog, new_prog);
9537 	bpf_prog_put(old_prog);
9538 
9539 out_unlock:
9540 	rtnl_unlock();
9541 	return err;
9542 }
9543 
9544 static const struct bpf_link_ops bpf_xdp_link_lops = {
9545 	.release = bpf_xdp_link_release,
9546 	.dealloc = bpf_xdp_link_dealloc,
9547 	.detach = bpf_xdp_link_detach,
9548 	.show_fdinfo = bpf_xdp_link_show_fdinfo,
9549 	.fill_link_info = bpf_xdp_link_fill_link_info,
9550 	.update_prog = bpf_xdp_link_update,
9551 };
9552 
9553 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9554 {
9555 	struct net *net = current->nsproxy->net_ns;
9556 	struct bpf_link_primer link_primer;
9557 	struct netlink_ext_ack extack = {};
9558 	struct bpf_xdp_link *link;
9559 	struct net_device *dev;
9560 	int err, fd;
9561 
9562 	rtnl_lock();
9563 	dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9564 	if (!dev) {
9565 		rtnl_unlock();
9566 		return -EINVAL;
9567 	}
9568 
9569 	link = kzalloc(sizeof(*link), GFP_USER);
9570 	if (!link) {
9571 		err = -ENOMEM;
9572 		goto unlock;
9573 	}
9574 
9575 	bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9576 	link->dev = dev;
9577 	link->flags = attr->link_create.flags;
9578 
9579 	err = bpf_link_prime(&link->link, &link_primer);
9580 	if (err) {
9581 		kfree(link);
9582 		goto unlock;
9583 	}
9584 
9585 	err = dev_xdp_attach_link(dev, &extack, link);
9586 	rtnl_unlock();
9587 
9588 	if (err) {
9589 		link->dev = NULL;
9590 		bpf_link_cleanup(&link_primer);
9591 		trace_bpf_xdp_link_attach_failed(extack._msg);
9592 		goto out_put_dev;
9593 	}
9594 
9595 	fd = bpf_link_settle(&link_primer);
9596 	/* link itself doesn't hold dev's refcnt to not complicate shutdown */
9597 	dev_put(dev);
9598 	return fd;
9599 
9600 unlock:
9601 	rtnl_unlock();
9602 
9603 out_put_dev:
9604 	dev_put(dev);
9605 	return err;
9606 }
9607 
9608 /**
9609  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
9610  *	@dev: device
9611  *	@extack: netlink extended ack
9612  *	@fd: new program fd or negative value to clear
9613  *	@expected_fd: old program fd that userspace expects to replace or clear
9614  *	@flags: xdp-related flags
9615  *
9616  *	Set or clear a bpf program for a device
9617  */
9618 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9619 		      int fd, int expected_fd, u32 flags)
9620 {
9621 	enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9622 	struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9623 	int err;
9624 
9625 	ASSERT_RTNL();
9626 
9627 	if (fd >= 0) {
9628 		new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9629 						 mode != XDP_MODE_SKB);
9630 		if (IS_ERR(new_prog))
9631 			return PTR_ERR(new_prog);
9632 	}
9633 
9634 	if (expected_fd >= 0) {
9635 		old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9636 						 mode != XDP_MODE_SKB);
9637 		if (IS_ERR(old_prog)) {
9638 			err = PTR_ERR(old_prog);
9639 			old_prog = NULL;
9640 			goto err_out;
9641 		}
9642 	}
9643 
9644 	err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9645 
9646 err_out:
9647 	if (err && new_prog)
9648 		bpf_prog_put(new_prog);
9649 	if (old_prog)
9650 		bpf_prog_put(old_prog);
9651 	return err;
9652 }
9653 
9654 /**
9655  * dev_index_reserve() - allocate an ifindex in a namespace
9656  * @net: the applicable net namespace
9657  * @ifindex: requested ifindex, pass %0 to get one allocated
9658  *
9659  * Allocate a ifindex for a new device. Caller must either use the ifindex
9660  * to store the device (via list_netdevice()) or call dev_index_release()
9661  * to give the index up.
9662  *
9663  * Return: a suitable unique value for a new device interface number or -errno.
9664  */
9665 static int dev_index_reserve(struct net *net, u32 ifindex)
9666 {
9667 	int err;
9668 
9669 	if (ifindex > INT_MAX) {
9670 		DEBUG_NET_WARN_ON_ONCE(1);
9671 		return -EINVAL;
9672 	}
9673 
9674 	if (!ifindex)
9675 		err = xa_alloc_cyclic(&net->dev_by_index, &ifindex, NULL,
9676 				      xa_limit_31b, &net->ifindex, GFP_KERNEL);
9677 	else
9678 		err = xa_insert(&net->dev_by_index, ifindex, NULL, GFP_KERNEL);
9679 	if (err < 0)
9680 		return err;
9681 
9682 	return ifindex;
9683 }
9684 
9685 static void dev_index_release(struct net *net, int ifindex)
9686 {
9687 	/* Expect only unused indexes, unlist_netdevice() removes the used */
9688 	WARN_ON(xa_erase(&net->dev_by_index, ifindex));
9689 }
9690 
9691 /* Delayed registration/unregisteration */
9692 LIST_HEAD(net_todo_list);
9693 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9694 
9695 static void net_set_todo(struct net_device *dev)
9696 {
9697 	list_add_tail(&dev->todo_list, &net_todo_list);
9698 	atomic_inc(&dev_net(dev)->dev_unreg_count);
9699 }
9700 
9701 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9702 	struct net_device *upper, netdev_features_t features)
9703 {
9704 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9705 	netdev_features_t feature;
9706 	int feature_bit;
9707 
9708 	for_each_netdev_feature(upper_disables, feature_bit) {
9709 		feature = __NETIF_F_BIT(feature_bit);
9710 		if (!(upper->wanted_features & feature)
9711 		    && (features & feature)) {
9712 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9713 				   &feature, upper->name);
9714 			features &= ~feature;
9715 		}
9716 	}
9717 
9718 	return features;
9719 }
9720 
9721 static void netdev_sync_lower_features(struct net_device *upper,
9722 	struct net_device *lower, netdev_features_t features)
9723 {
9724 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9725 	netdev_features_t feature;
9726 	int feature_bit;
9727 
9728 	for_each_netdev_feature(upper_disables, feature_bit) {
9729 		feature = __NETIF_F_BIT(feature_bit);
9730 		if (!(features & feature) && (lower->features & feature)) {
9731 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9732 				   &feature, lower->name);
9733 			lower->wanted_features &= ~feature;
9734 			__netdev_update_features(lower);
9735 
9736 			if (unlikely(lower->features & feature))
9737 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9738 					    &feature, lower->name);
9739 			else
9740 				netdev_features_change(lower);
9741 		}
9742 	}
9743 }
9744 
9745 static netdev_features_t netdev_fix_features(struct net_device *dev,
9746 	netdev_features_t features)
9747 {
9748 	/* Fix illegal checksum combinations */
9749 	if ((features & NETIF_F_HW_CSUM) &&
9750 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9751 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9752 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9753 	}
9754 
9755 	/* TSO requires that SG is present as well. */
9756 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9757 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9758 		features &= ~NETIF_F_ALL_TSO;
9759 	}
9760 
9761 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9762 					!(features & NETIF_F_IP_CSUM)) {
9763 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9764 		features &= ~NETIF_F_TSO;
9765 		features &= ~NETIF_F_TSO_ECN;
9766 	}
9767 
9768 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9769 					 !(features & NETIF_F_IPV6_CSUM)) {
9770 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9771 		features &= ~NETIF_F_TSO6;
9772 	}
9773 
9774 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9775 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9776 		features &= ~NETIF_F_TSO_MANGLEID;
9777 
9778 	/* TSO ECN requires that TSO is present as well. */
9779 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9780 		features &= ~NETIF_F_TSO_ECN;
9781 
9782 	/* Software GSO depends on SG. */
9783 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9784 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9785 		features &= ~NETIF_F_GSO;
9786 	}
9787 
9788 	/* GSO partial features require GSO partial be set */
9789 	if ((features & dev->gso_partial_features) &&
9790 	    !(features & NETIF_F_GSO_PARTIAL)) {
9791 		netdev_dbg(dev,
9792 			   "Dropping partially supported GSO features since no GSO partial.\n");
9793 		features &= ~dev->gso_partial_features;
9794 	}
9795 
9796 	if (!(features & NETIF_F_RXCSUM)) {
9797 		/* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9798 		 * successfully merged by hardware must also have the
9799 		 * checksum verified by hardware.  If the user does not
9800 		 * want to enable RXCSUM, logically, we should disable GRO_HW.
9801 		 */
9802 		if (features & NETIF_F_GRO_HW) {
9803 			netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9804 			features &= ~NETIF_F_GRO_HW;
9805 		}
9806 	}
9807 
9808 	/* LRO/HW-GRO features cannot be combined with RX-FCS */
9809 	if (features & NETIF_F_RXFCS) {
9810 		if (features & NETIF_F_LRO) {
9811 			netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9812 			features &= ~NETIF_F_LRO;
9813 		}
9814 
9815 		if (features & NETIF_F_GRO_HW) {
9816 			netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9817 			features &= ~NETIF_F_GRO_HW;
9818 		}
9819 	}
9820 
9821 	if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
9822 		netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
9823 		features &= ~NETIF_F_LRO;
9824 	}
9825 
9826 	if (features & NETIF_F_HW_TLS_TX) {
9827 		bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9828 			(NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9829 		bool hw_csum = features & NETIF_F_HW_CSUM;
9830 
9831 		if (!ip_csum && !hw_csum) {
9832 			netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9833 			features &= ~NETIF_F_HW_TLS_TX;
9834 		}
9835 	}
9836 
9837 	if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9838 		netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9839 		features &= ~NETIF_F_HW_TLS_RX;
9840 	}
9841 
9842 	return features;
9843 }
9844 
9845 int __netdev_update_features(struct net_device *dev)
9846 {
9847 	struct net_device *upper, *lower;
9848 	netdev_features_t features;
9849 	struct list_head *iter;
9850 	int err = -1;
9851 
9852 	ASSERT_RTNL();
9853 
9854 	features = netdev_get_wanted_features(dev);
9855 
9856 	if (dev->netdev_ops->ndo_fix_features)
9857 		features = dev->netdev_ops->ndo_fix_features(dev, features);
9858 
9859 	/* driver might be less strict about feature dependencies */
9860 	features = netdev_fix_features(dev, features);
9861 
9862 	/* some features can't be enabled if they're off on an upper device */
9863 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
9864 		features = netdev_sync_upper_features(dev, upper, features);
9865 
9866 	if (dev->features == features)
9867 		goto sync_lower;
9868 
9869 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9870 		&dev->features, &features);
9871 
9872 	if (dev->netdev_ops->ndo_set_features)
9873 		err = dev->netdev_ops->ndo_set_features(dev, features);
9874 	else
9875 		err = 0;
9876 
9877 	if (unlikely(err < 0)) {
9878 		netdev_err(dev,
9879 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
9880 			err, &features, &dev->features);
9881 		/* return non-0 since some features might have changed and
9882 		 * it's better to fire a spurious notification than miss it
9883 		 */
9884 		return -1;
9885 	}
9886 
9887 sync_lower:
9888 	/* some features must be disabled on lower devices when disabled
9889 	 * on an upper device (think: bonding master or bridge)
9890 	 */
9891 	netdev_for_each_lower_dev(dev, lower, iter)
9892 		netdev_sync_lower_features(dev, lower, features);
9893 
9894 	if (!err) {
9895 		netdev_features_t diff = features ^ dev->features;
9896 
9897 		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9898 			/* udp_tunnel_{get,drop}_rx_info both need
9899 			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9900 			 * device, or they won't do anything.
9901 			 * Thus we need to update dev->features
9902 			 * *before* calling udp_tunnel_get_rx_info,
9903 			 * but *after* calling udp_tunnel_drop_rx_info.
9904 			 */
9905 			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9906 				dev->features = features;
9907 				udp_tunnel_get_rx_info(dev);
9908 			} else {
9909 				udp_tunnel_drop_rx_info(dev);
9910 			}
9911 		}
9912 
9913 		if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9914 			if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9915 				dev->features = features;
9916 				err |= vlan_get_rx_ctag_filter_info(dev);
9917 			} else {
9918 				vlan_drop_rx_ctag_filter_info(dev);
9919 			}
9920 		}
9921 
9922 		if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9923 			if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9924 				dev->features = features;
9925 				err |= vlan_get_rx_stag_filter_info(dev);
9926 			} else {
9927 				vlan_drop_rx_stag_filter_info(dev);
9928 			}
9929 		}
9930 
9931 		dev->features = features;
9932 	}
9933 
9934 	return err < 0 ? 0 : 1;
9935 }
9936 
9937 /**
9938  *	netdev_update_features - recalculate device features
9939  *	@dev: the device to check
9940  *
9941  *	Recalculate dev->features set and send notifications if it
9942  *	has changed. Should be called after driver or hardware dependent
9943  *	conditions might have changed that influence the features.
9944  */
9945 void netdev_update_features(struct net_device *dev)
9946 {
9947 	if (__netdev_update_features(dev))
9948 		netdev_features_change(dev);
9949 }
9950 EXPORT_SYMBOL(netdev_update_features);
9951 
9952 /**
9953  *	netdev_change_features - recalculate device features
9954  *	@dev: the device to check
9955  *
9956  *	Recalculate dev->features set and send notifications even
9957  *	if they have not changed. Should be called instead of
9958  *	netdev_update_features() if also dev->vlan_features might
9959  *	have changed to allow the changes to be propagated to stacked
9960  *	VLAN devices.
9961  */
9962 void netdev_change_features(struct net_device *dev)
9963 {
9964 	__netdev_update_features(dev);
9965 	netdev_features_change(dev);
9966 }
9967 EXPORT_SYMBOL(netdev_change_features);
9968 
9969 /**
9970  *	netif_stacked_transfer_operstate -	transfer operstate
9971  *	@rootdev: the root or lower level device to transfer state from
9972  *	@dev: the device to transfer operstate to
9973  *
9974  *	Transfer operational state from root to device. This is normally
9975  *	called when a stacking relationship exists between the root
9976  *	device and the device(a leaf device).
9977  */
9978 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9979 					struct net_device *dev)
9980 {
9981 	if (rootdev->operstate == IF_OPER_DORMANT)
9982 		netif_dormant_on(dev);
9983 	else
9984 		netif_dormant_off(dev);
9985 
9986 	if (rootdev->operstate == IF_OPER_TESTING)
9987 		netif_testing_on(dev);
9988 	else
9989 		netif_testing_off(dev);
9990 
9991 	if (netif_carrier_ok(rootdev))
9992 		netif_carrier_on(dev);
9993 	else
9994 		netif_carrier_off(dev);
9995 }
9996 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9997 
9998 static int netif_alloc_rx_queues(struct net_device *dev)
9999 {
10000 	unsigned int i, count = dev->num_rx_queues;
10001 	struct netdev_rx_queue *rx;
10002 	size_t sz = count * sizeof(*rx);
10003 	int err = 0;
10004 
10005 	BUG_ON(count < 1);
10006 
10007 	rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10008 	if (!rx)
10009 		return -ENOMEM;
10010 
10011 	dev->_rx = rx;
10012 
10013 	for (i = 0; i < count; i++) {
10014 		rx[i].dev = dev;
10015 
10016 		/* XDP RX-queue setup */
10017 		err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
10018 		if (err < 0)
10019 			goto err_rxq_info;
10020 	}
10021 	return 0;
10022 
10023 err_rxq_info:
10024 	/* Rollback successful reg's and free other resources */
10025 	while (i--)
10026 		xdp_rxq_info_unreg(&rx[i].xdp_rxq);
10027 	kvfree(dev->_rx);
10028 	dev->_rx = NULL;
10029 	return err;
10030 }
10031 
10032 static void netif_free_rx_queues(struct net_device *dev)
10033 {
10034 	unsigned int i, count = dev->num_rx_queues;
10035 
10036 	/* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
10037 	if (!dev->_rx)
10038 		return;
10039 
10040 	for (i = 0; i < count; i++)
10041 		xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
10042 
10043 	kvfree(dev->_rx);
10044 }
10045 
10046 static void netdev_init_one_queue(struct net_device *dev,
10047 				  struct netdev_queue *queue, void *_unused)
10048 {
10049 	/* Initialize queue lock */
10050 	spin_lock_init(&queue->_xmit_lock);
10051 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
10052 	queue->xmit_lock_owner = -1;
10053 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
10054 	queue->dev = dev;
10055 #ifdef CONFIG_BQL
10056 	dql_init(&queue->dql, HZ);
10057 #endif
10058 }
10059 
10060 static void netif_free_tx_queues(struct net_device *dev)
10061 {
10062 	kvfree(dev->_tx);
10063 }
10064 
10065 static int netif_alloc_netdev_queues(struct net_device *dev)
10066 {
10067 	unsigned int count = dev->num_tx_queues;
10068 	struct netdev_queue *tx;
10069 	size_t sz = count * sizeof(*tx);
10070 
10071 	if (count < 1 || count > 0xffff)
10072 		return -EINVAL;
10073 
10074 	tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10075 	if (!tx)
10076 		return -ENOMEM;
10077 
10078 	dev->_tx = tx;
10079 
10080 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
10081 	spin_lock_init(&dev->tx_global_lock);
10082 
10083 	return 0;
10084 }
10085 
10086 void netif_tx_stop_all_queues(struct net_device *dev)
10087 {
10088 	unsigned int i;
10089 
10090 	for (i = 0; i < dev->num_tx_queues; i++) {
10091 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
10092 
10093 		netif_tx_stop_queue(txq);
10094 	}
10095 }
10096 EXPORT_SYMBOL(netif_tx_stop_all_queues);
10097 
10098 static int netdev_do_alloc_pcpu_stats(struct net_device *dev)
10099 {
10100 	void __percpu *v;
10101 
10102 	/* Drivers implementing ndo_get_peer_dev must support tstat
10103 	 * accounting, so that skb_do_redirect() can bump the dev's
10104 	 * RX stats upon network namespace switch.
10105 	 */
10106 	if (dev->netdev_ops->ndo_get_peer_dev &&
10107 	    dev->pcpu_stat_type != NETDEV_PCPU_STAT_TSTATS)
10108 		return -EOPNOTSUPP;
10109 
10110 	switch (dev->pcpu_stat_type) {
10111 	case NETDEV_PCPU_STAT_NONE:
10112 		return 0;
10113 	case NETDEV_PCPU_STAT_LSTATS:
10114 		v = dev->lstats = netdev_alloc_pcpu_stats(struct pcpu_lstats);
10115 		break;
10116 	case NETDEV_PCPU_STAT_TSTATS:
10117 		v = dev->tstats = netdev_alloc_pcpu_stats(struct pcpu_sw_netstats);
10118 		break;
10119 	case NETDEV_PCPU_STAT_DSTATS:
10120 		v = dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
10121 		break;
10122 	default:
10123 		return -EINVAL;
10124 	}
10125 
10126 	return v ? 0 : -ENOMEM;
10127 }
10128 
10129 static void netdev_do_free_pcpu_stats(struct net_device *dev)
10130 {
10131 	switch (dev->pcpu_stat_type) {
10132 	case NETDEV_PCPU_STAT_NONE:
10133 		return;
10134 	case NETDEV_PCPU_STAT_LSTATS:
10135 		free_percpu(dev->lstats);
10136 		break;
10137 	case NETDEV_PCPU_STAT_TSTATS:
10138 		free_percpu(dev->tstats);
10139 		break;
10140 	case NETDEV_PCPU_STAT_DSTATS:
10141 		free_percpu(dev->dstats);
10142 		break;
10143 	}
10144 }
10145 
10146 /**
10147  * register_netdevice() - register a network device
10148  * @dev: device to register
10149  *
10150  * Take a prepared network device structure and make it externally accessible.
10151  * A %NETDEV_REGISTER message is sent to the netdev notifier chain.
10152  * Callers must hold the rtnl lock - you may want register_netdev()
10153  * instead of this.
10154  */
10155 int register_netdevice(struct net_device *dev)
10156 {
10157 	int ret;
10158 	struct net *net = dev_net(dev);
10159 
10160 	BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
10161 		     NETDEV_FEATURE_COUNT);
10162 	BUG_ON(dev_boot_phase);
10163 	ASSERT_RTNL();
10164 
10165 	might_sleep();
10166 
10167 	/* When net_device's are persistent, this will be fatal. */
10168 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
10169 	BUG_ON(!net);
10170 
10171 	ret = ethtool_check_ops(dev->ethtool_ops);
10172 	if (ret)
10173 		return ret;
10174 
10175 	spin_lock_init(&dev->addr_list_lock);
10176 	netdev_set_addr_lockdep_class(dev);
10177 
10178 	ret = dev_get_valid_name(net, dev, dev->name);
10179 	if (ret < 0)
10180 		goto out;
10181 
10182 	ret = -ENOMEM;
10183 	dev->name_node = netdev_name_node_head_alloc(dev);
10184 	if (!dev->name_node)
10185 		goto out;
10186 
10187 	/* Init, if this function is available */
10188 	if (dev->netdev_ops->ndo_init) {
10189 		ret = dev->netdev_ops->ndo_init(dev);
10190 		if (ret) {
10191 			if (ret > 0)
10192 				ret = -EIO;
10193 			goto err_free_name;
10194 		}
10195 	}
10196 
10197 	if (((dev->hw_features | dev->features) &
10198 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
10199 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10200 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10201 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10202 		ret = -EINVAL;
10203 		goto err_uninit;
10204 	}
10205 
10206 	ret = netdev_do_alloc_pcpu_stats(dev);
10207 	if (ret)
10208 		goto err_uninit;
10209 
10210 	ret = dev_index_reserve(net, dev->ifindex);
10211 	if (ret < 0)
10212 		goto err_free_pcpu;
10213 	dev->ifindex = ret;
10214 
10215 	/* Transfer changeable features to wanted_features and enable
10216 	 * software offloads (GSO and GRO).
10217 	 */
10218 	dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10219 	dev->features |= NETIF_F_SOFT_FEATURES;
10220 
10221 	if (dev->udp_tunnel_nic_info) {
10222 		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10223 		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10224 	}
10225 
10226 	dev->wanted_features = dev->features & dev->hw_features;
10227 
10228 	if (!(dev->flags & IFF_LOOPBACK))
10229 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
10230 
10231 	/* If IPv4 TCP segmentation offload is supported we should also
10232 	 * allow the device to enable segmenting the frame with the option
10233 	 * of ignoring a static IP ID value.  This doesn't enable the
10234 	 * feature itself but allows the user to enable it later.
10235 	 */
10236 	if (dev->hw_features & NETIF_F_TSO)
10237 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
10238 	if (dev->vlan_features & NETIF_F_TSO)
10239 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10240 	if (dev->mpls_features & NETIF_F_TSO)
10241 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10242 	if (dev->hw_enc_features & NETIF_F_TSO)
10243 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10244 
10245 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10246 	 */
10247 	dev->vlan_features |= NETIF_F_HIGHDMA;
10248 
10249 	/* Make NETIF_F_SG inheritable to tunnel devices.
10250 	 */
10251 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10252 
10253 	/* Make NETIF_F_SG inheritable to MPLS.
10254 	 */
10255 	dev->mpls_features |= NETIF_F_SG;
10256 
10257 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10258 	ret = notifier_to_errno(ret);
10259 	if (ret)
10260 		goto err_ifindex_release;
10261 
10262 	ret = netdev_register_kobject(dev);
10263 	write_lock(&dev_base_lock);
10264 	dev->reg_state = ret ? NETREG_UNREGISTERED : NETREG_REGISTERED;
10265 	write_unlock(&dev_base_lock);
10266 	if (ret)
10267 		goto err_uninit_notify;
10268 
10269 	__netdev_update_features(dev);
10270 
10271 	/*
10272 	 *	Default initial state at registry is that the
10273 	 *	device is present.
10274 	 */
10275 
10276 	set_bit(__LINK_STATE_PRESENT, &dev->state);
10277 
10278 	linkwatch_init_dev(dev);
10279 
10280 	dev_init_scheduler(dev);
10281 
10282 	netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL);
10283 	list_netdevice(dev);
10284 
10285 	add_device_randomness(dev->dev_addr, dev->addr_len);
10286 
10287 	/* If the device has permanent device address, driver should
10288 	 * set dev_addr and also addr_assign_type should be set to
10289 	 * NET_ADDR_PERM (default value).
10290 	 */
10291 	if (dev->addr_assign_type == NET_ADDR_PERM)
10292 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10293 
10294 	/* Notify protocols, that a new device appeared. */
10295 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10296 	ret = notifier_to_errno(ret);
10297 	if (ret) {
10298 		/* Expect explicit free_netdev() on failure */
10299 		dev->needs_free_netdev = false;
10300 		unregister_netdevice_queue(dev, NULL);
10301 		goto out;
10302 	}
10303 	/*
10304 	 *	Prevent userspace races by waiting until the network
10305 	 *	device is fully setup before sending notifications.
10306 	 */
10307 	if (!dev->rtnl_link_ops ||
10308 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10309 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
10310 
10311 out:
10312 	return ret;
10313 
10314 err_uninit_notify:
10315 	call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
10316 err_ifindex_release:
10317 	dev_index_release(net, dev->ifindex);
10318 err_free_pcpu:
10319 	netdev_do_free_pcpu_stats(dev);
10320 err_uninit:
10321 	if (dev->netdev_ops->ndo_uninit)
10322 		dev->netdev_ops->ndo_uninit(dev);
10323 	if (dev->priv_destructor)
10324 		dev->priv_destructor(dev);
10325 err_free_name:
10326 	netdev_name_node_free(dev->name_node);
10327 	goto out;
10328 }
10329 EXPORT_SYMBOL(register_netdevice);
10330 
10331 /**
10332  *	init_dummy_netdev	- init a dummy network device for NAPI
10333  *	@dev: device to init
10334  *
10335  *	This takes a network device structure and initialize the minimum
10336  *	amount of fields so it can be used to schedule NAPI polls without
10337  *	registering a full blown interface. This is to be used by drivers
10338  *	that need to tie several hardware interfaces to a single NAPI
10339  *	poll scheduler due to HW limitations.
10340  */
10341 int init_dummy_netdev(struct net_device *dev)
10342 {
10343 	/* Clear everything. Note we don't initialize spinlocks
10344 	 * are they aren't supposed to be taken by any of the
10345 	 * NAPI code and this dummy netdev is supposed to be
10346 	 * only ever used for NAPI polls
10347 	 */
10348 	memset(dev, 0, sizeof(struct net_device));
10349 
10350 	/* make sure we BUG if trying to hit standard
10351 	 * register/unregister code path
10352 	 */
10353 	dev->reg_state = NETREG_DUMMY;
10354 
10355 	/* NAPI wants this */
10356 	INIT_LIST_HEAD(&dev->napi_list);
10357 
10358 	/* a dummy interface is started by default */
10359 	set_bit(__LINK_STATE_PRESENT, &dev->state);
10360 	set_bit(__LINK_STATE_START, &dev->state);
10361 
10362 	/* napi_busy_loop stats accounting wants this */
10363 	dev_net_set(dev, &init_net);
10364 
10365 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
10366 	 * because users of this 'device' dont need to change
10367 	 * its refcount.
10368 	 */
10369 
10370 	return 0;
10371 }
10372 EXPORT_SYMBOL_GPL(init_dummy_netdev);
10373 
10374 
10375 /**
10376  *	register_netdev	- register a network device
10377  *	@dev: device to register
10378  *
10379  *	Take a completed network device structure and add it to the kernel
10380  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10381  *	chain. 0 is returned on success. A negative errno code is returned
10382  *	on a failure to set up the device, or if the name is a duplicate.
10383  *
10384  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
10385  *	and expands the device name if you passed a format string to
10386  *	alloc_netdev.
10387  */
10388 int register_netdev(struct net_device *dev)
10389 {
10390 	int err;
10391 
10392 	if (rtnl_lock_killable())
10393 		return -EINTR;
10394 	err = register_netdevice(dev);
10395 	rtnl_unlock();
10396 	return err;
10397 }
10398 EXPORT_SYMBOL(register_netdev);
10399 
10400 int netdev_refcnt_read(const struct net_device *dev)
10401 {
10402 #ifdef CONFIG_PCPU_DEV_REFCNT
10403 	int i, refcnt = 0;
10404 
10405 	for_each_possible_cpu(i)
10406 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10407 	return refcnt;
10408 #else
10409 	return refcount_read(&dev->dev_refcnt);
10410 #endif
10411 }
10412 EXPORT_SYMBOL(netdev_refcnt_read);
10413 
10414 int netdev_unregister_timeout_secs __read_mostly = 10;
10415 
10416 #define WAIT_REFS_MIN_MSECS 1
10417 #define WAIT_REFS_MAX_MSECS 250
10418 /**
10419  * netdev_wait_allrefs_any - wait until all references are gone.
10420  * @list: list of net_devices to wait on
10421  *
10422  * This is called when unregistering network devices.
10423  *
10424  * Any protocol or device that holds a reference should register
10425  * for netdevice notification, and cleanup and put back the
10426  * reference if they receive an UNREGISTER event.
10427  * We can get stuck here if buggy protocols don't correctly
10428  * call dev_put.
10429  */
10430 static struct net_device *netdev_wait_allrefs_any(struct list_head *list)
10431 {
10432 	unsigned long rebroadcast_time, warning_time;
10433 	struct net_device *dev;
10434 	int wait = 0;
10435 
10436 	rebroadcast_time = warning_time = jiffies;
10437 
10438 	list_for_each_entry(dev, list, todo_list)
10439 		if (netdev_refcnt_read(dev) == 1)
10440 			return dev;
10441 
10442 	while (true) {
10443 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10444 			rtnl_lock();
10445 
10446 			/* Rebroadcast unregister notification */
10447 			list_for_each_entry(dev, list, todo_list)
10448 				call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10449 
10450 			__rtnl_unlock();
10451 			rcu_barrier();
10452 			rtnl_lock();
10453 
10454 			list_for_each_entry(dev, list, todo_list)
10455 				if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10456 					     &dev->state)) {
10457 					/* We must not have linkwatch events
10458 					 * pending on unregister. If this
10459 					 * happens, we simply run the queue
10460 					 * unscheduled, resulting in a noop
10461 					 * for this device.
10462 					 */
10463 					linkwatch_run_queue();
10464 					break;
10465 				}
10466 
10467 			__rtnl_unlock();
10468 
10469 			rebroadcast_time = jiffies;
10470 		}
10471 
10472 		if (!wait) {
10473 			rcu_barrier();
10474 			wait = WAIT_REFS_MIN_MSECS;
10475 		} else {
10476 			msleep(wait);
10477 			wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10478 		}
10479 
10480 		list_for_each_entry(dev, list, todo_list)
10481 			if (netdev_refcnt_read(dev) == 1)
10482 				return dev;
10483 
10484 		if (time_after(jiffies, warning_time +
10485 			       READ_ONCE(netdev_unregister_timeout_secs) * HZ)) {
10486 			list_for_each_entry(dev, list, todo_list) {
10487 				pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10488 					 dev->name, netdev_refcnt_read(dev));
10489 				ref_tracker_dir_print(&dev->refcnt_tracker, 10);
10490 			}
10491 
10492 			warning_time = jiffies;
10493 		}
10494 	}
10495 }
10496 
10497 /* The sequence is:
10498  *
10499  *	rtnl_lock();
10500  *	...
10501  *	register_netdevice(x1);
10502  *	register_netdevice(x2);
10503  *	...
10504  *	unregister_netdevice(y1);
10505  *	unregister_netdevice(y2);
10506  *      ...
10507  *	rtnl_unlock();
10508  *	free_netdev(y1);
10509  *	free_netdev(y2);
10510  *
10511  * We are invoked by rtnl_unlock().
10512  * This allows us to deal with problems:
10513  * 1) We can delete sysfs objects which invoke hotplug
10514  *    without deadlocking with linkwatch via keventd.
10515  * 2) Since we run with the RTNL semaphore not held, we can sleep
10516  *    safely in order to wait for the netdev refcnt to drop to zero.
10517  *
10518  * We must not return until all unregister events added during
10519  * the interval the lock was held have been completed.
10520  */
10521 void netdev_run_todo(void)
10522 {
10523 	struct net_device *dev, *tmp;
10524 	struct list_head list;
10525 #ifdef CONFIG_LOCKDEP
10526 	struct list_head unlink_list;
10527 
10528 	list_replace_init(&net_unlink_list, &unlink_list);
10529 
10530 	while (!list_empty(&unlink_list)) {
10531 		struct net_device *dev = list_first_entry(&unlink_list,
10532 							  struct net_device,
10533 							  unlink_list);
10534 		list_del_init(&dev->unlink_list);
10535 		dev->nested_level = dev->lower_level - 1;
10536 	}
10537 #endif
10538 
10539 	/* Snapshot list, allow later requests */
10540 	list_replace_init(&net_todo_list, &list);
10541 
10542 	__rtnl_unlock();
10543 
10544 	/* Wait for rcu callbacks to finish before next phase */
10545 	if (!list_empty(&list))
10546 		rcu_barrier();
10547 
10548 	list_for_each_entry_safe(dev, tmp, &list, todo_list) {
10549 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10550 			netdev_WARN(dev, "run_todo but not unregistering\n");
10551 			list_del(&dev->todo_list);
10552 			continue;
10553 		}
10554 
10555 		write_lock(&dev_base_lock);
10556 		dev->reg_state = NETREG_UNREGISTERED;
10557 		write_unlock(&dev_base_lock);
10558 		linkwatch_sync_dev(dev);
10559 	}
10560 
10561 	while (!list_empty(&list)) {
10562 		dev = netdev_wait_allrefs_any(&list);
10563 		list_del(&dev->todo_list);
10564 
10565 		/* paranoia */
10566 		BUG_ON(netdev_refcnt_read(dev) != 1);
10567 		BUG_ON(!list_empty(&dev->ptype_all));
10568 		BUG_ON(!list_empty(&dev->ptype_specific));
10569 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
10570 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10571 
10572 		netdev_do_free_pcpu_stats(dev);
10573 		if (dev->priv_destructor)
10574 			dev->priv_destructor(dev);
10575 		if (dev->needs_free_netdev)
10576 			free_netdev(dev);
10577 
10578 		if (atomic_dec_and_test(&dev_net(dev)->dev_unreg_count))
10579 			wake_up(&netdev_unregistering_wq);
10580 
10581 		/* Free network device */
10582 		kobject_put(&dev->dev.kobj);
10583 	}
10584 }
10585 
10586 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10587  * all the same fields in the same order as net_device_stats, with only
10588  * the type differing, but rtnl_link_stats64 may have additional fields
10589  * at the end for newer counters.
10590  */
10591 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10592 			     const struct net_device_stats *netdev_stats)
10593 {
10594 	size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t);
10595 	const atomic_long_t *src = (atomic_long_t *)netdev_stats;
10596 	u64 *dst = (u64 *)stats64;
10597 
10598 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10599 	for (i = 0; i < n; i++)
10600 		dst[i] = (unsigned long)atomic_long_read(&src[i]);
10601 	/* zero out counters that only exist in rtnl_link_stats64 */
10602 	memset((char *)stats64 + n * sizeof(u64), 0,
10603 	       sizeof(*stats64) - n * sizeof(u64));
10604 }
10605 EXPORT_SYMBOL(netdev_stats_to_stats64);
10606 
10607 static __cold struct net_device_core_stats __percpu *netdev_core_stats_alloc(
10608 		struct net_device *dev)
10609 {
10610 	struct net_device_core_stats __percpu *p;
10611 
10612 	p = alloc_percpu_gfp(struct net_device_core_stats,
10613 			     GFP_ATOMIC | __GFP_NOWARN);
10614 
10615 	if (p && cmpxchg(&dev->core_stats, NULL, p))
10616 		free_percpu(p);
10617 
10618 	/* This READ_ONCE() pairs with the cmpxchg() above */
10619 	return READ_ONCE(dev->core_stats);
10620 }
10621 
10622 noinline void netdev_core_stats_inc(struct net_device *dev, u32 offset)
10623 {
10624 	/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
10625 	struct net_device_core_stats __percpu *p = READ_ONCE(dev->core_stats);
10626 	unsigned long __percpu *field;
10627 
10628 	if (unlikely(!p)) {
10629 		p = netdev_core_stats_alloc(dev);
10630 		if (!p)
10631 			return;
10632 	}
10633 
10634 	field = (__force unsigned long __percpu *)((__force void *)p + offset);
10635 	this_cpu_inc(*field);
10636 }
10637 EXPORT_SYMBOL_GPL(netdev_core_stats_inc);
10638 
10639 /**
10640  *	dev_get_stats	- get network device statistics
10641  *	@dev: device to get statistics from
10642  *	@storage: place to store stats
10643  *
10644  *	Get network statistics from device. Return @storage.
10645  *	The device driver may provide its own method by setting
10646  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10647  *	otherwise the internal statistics structure is used.
10648  */
10649 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10650 					struct rtnl_link_stats64 *storage)
10651 {
10652 	const struct net_device_ops *ops = dev->netdev_ops;
10653 	const struct net_device_core_stats __percpu *p;
10654 
10655 	if (ops->ndo_get_stats64) {
10656 		memset(storage, 0, sizeof(*storage));
10657 		ops->ndo_get_stats64(dev, storage);
10658 	} else if (ops->ndo_get_stats) {
10659 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10660 	} else {
10661 		netdev_stats_to_stats64(storage, &dev->stats);
10662 	}
10663 
10664 	/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
10665 	p = READ_ONCE(dev->core_stats);
10666 	if (p) {
10667 		const struct net_device_core_stats *core_stats;
10668 		int i;
10669 
10670 		for_each_possible_cpu(i) {
10671 			core_stats = per_cpu_ptr(p, i);
10672 			storage->rx_dropped += READ_ONCE(core_stats->rx_dropped);
10673 			storage->tx_dropped += READ_ONCE(core_stats->tx_dropped);
10674 			storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler);
10675 			storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped);
10676 		}
10677 	}
10678 	return storage;
10679 }
10680 EXPORT_SYMBOL(dev_get_stats);
10681 
10682 /**
10683  *	dev_fetch_sw_netstats - get per-cpu network device statistics
10684  *	@s: place to store stats
10685  *	@netstats: per-cpu network stats to read from
10686  *
10687  *	Read per-cpu network statistics and populate the related fields in @s.
10688  */
10689 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10690 			   const struct pcpu_sw_netstats __percpu *netstats)
10691 {
10692 	int cpu;
10693 
10694 	for_each_possible_cpu(cpu) {
10695 		u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
10696 		const struct pcpu_sw_netstats *stats;
10697 		unsigned int start;
10698 
10699 		stats = per_cpu_ptr(netstats, cpu);
10700 		do {
10701 			start = u64_stats_fetch_begin(&stats->syncp);
10702 			rx_packets = u64_stats_read(&stats->rx_packets);
10703 			rx_bytes   = u64_stats_read(&stats->rx_bytes);
10704 			tx_packets = u64_stats_read(&stats->tx_packets);
10705 			tx_bytes   = u64_stats_read(&stats->tx_bytes);
10706 		} while (u64_stats_fetch_retry(&stats->syncp, start));
10707 
10708 		s->rx_packets += rx_packets;
10709 		s->rx_bytes   += rx_bytes;
10710 		s->tx_packets += tx_packets;
10711 		s->tx_bytes   += tx_bytes;
10712 	}
10713 }
10714 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10715 
10716 /**
10717  *	dev_get_tstats64 - ndo_get_stats64 implementation
10718  *	@dev: device to get statistics from
10719  *	@s: place to store stats
10720  *
10721  *	Populate @s from dev->stats and dev->tstats. Can be used as
10722  *	ndo_get_stats64() callback.
10723  */
10724 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10725 {
10726 	netdev_stats_to_stats64(s, &dev->stats);
10727 	dev_fetch_sw_netstats(s, dev->tstats);
10728 }
10729 EXPORT_SYMBOL_GPL(dev_get_tstats64);
10730 
10731 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10732 {
10733 	struct netdev_queue *queue = dev_ingress_queue(dev);
10734 
10735 #ifdef CONFIG_NET_CLS_ACT
10736 	if (queue)
10737 		return queue;
10738 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10739 	if (!queue)
10740 		return NULL;
10741 	netdev_init_one_queue(dev, queue, NULL);
10742 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10743 	RCU_INIT_POINTER(queue->qdisc_sleeping, &noop_qdisc);
10744 	rcu_assign_pointer(dev->ingress_queue, queue);
10745 #endif
10746 	return queue;
10747 }
10748 
10749 static const struct ethtool_ops default_ethtool_ops;
10750 
10751 void netdev_set_default_ethtool_ops(struct net_device *dev,
10752 				    const struct ethtool_ops *ops)
10753 {
10754 	if (dev->ethtool_ops == &default_ethtool_ops)
10755 		dev->ethtool_ops = ops;
10756 }
10757 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10758 
10759 /**
10760  * netdev_sw_irq_coalesce_default_on() - enable SW IRQ coalescing by default
10761  * @dev: netdev to enable the IRQ coalescing on
10762  *
10763  * Sets a conservative default for SW IRQ coalescing. Users can use
10764  * sysfs attributes to override the default values.
10765  */
10766 void netdev_sw_irq_coalesce_default_on(struct net_device *dev)
10767 {
10768 	WARN_ON(dev->reg_state == NETREG_REGISTERED);
10769 
10770 	if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
10771 		dev->gro_flush_timeout = 20000;
10772 		dev->napi_defer_hard_irqs = 1;
10773 	}
10774 }
10775 EXPORT_SYMBOL_GPL(netdev_sw_irq_coalesce_default_on);
10776 
10777 void netdev_freemem(struct net_device *dev)
10778 {
10779 	char *addr = (char *)dev - dev->padded;
10780 
10781 	kvfree(addr);
10782 }
10783 
10784 /**
10785  * alloc_netdev_mqs - allocate network device
10786  * @sizeof_priv: size of private data to allocate space for
10787  * @name: device name format string
10788  * @name_assign_type: origin of device name
10789  * @setup: callback to initialize device
10790  * @txqs: the number of TX subqueues to allocate
10791  * @rxqs: the number of RX subqueues to allocate
10792  *
10793  * Allocates a struct net_device with private data area for driver use
10794  * and performs basic initialization.  Also allocates subqueue structs
10795  * for each queue on the device.
10796  */
10797 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10798 		unsigned char name_assign_type,
10799 		void (*setup)(struct net_device *),
10800 		unsigned int txqs, unsigned int rxqs)
10801 {
10802 	struct net_device *dev;
10803 	unsigned int alloc_size;
10804 	struct net_device *p;
10805 
10806 	BUG_ON(strlen(name) >= sizeof(dev->name));
10807 
10808 	if (txqs < 1) {
10809 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10810 		return NULL;
10811 	}
10812 
10813 	if (rxqs < 1) {
10814 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10815 		return NULL;
10816 	}
10817 
10818 	alloc_size = sizeof(struct net_device);
10819 	if (sizeof_priv) {
10820 		/* ensure 32-byte alignment of private area */
10821 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10822 		alloc_size += sizeof_priv;
10823 	}
10824 	/* ensure 32-byte alignment of whole construct */
10825 	alloc_size += NETDEV_ALIGN - 1;
10826 
10827 	p = kvzalloc(alloc_size, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10828 	if (!p)
10829 		return NULL;
10830 
10831 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
10832 	dev->padded = (char *)dev - (char *)p;
10833 
10834 	ref_tracker_dir_init(&dev->refcnt_tracker, 128, name);
10835 #ifdef CONFIG_PCPU_DEV_REFCNT
10836 	dev->pcpu_refcnt = alloc_percpu(int);
10837 	if (!dev->pcpu_refcnt)
10838 		goto free_dev;
10839 	__dev_hold(dev);
10840 #else
10841 	refcount_set(&dev->dev_refcnt, 1);
10842 #endif
10843 
10844 	if (dev_addr_init(dev))
10845 		goto free_pcpu;
10846 
10847 	dev_mc_init(dev);
10848 	dev_uc_init(dev);
10849 
10850 	dev_net_set(dev, &init_net);
10851 
10852 	dev->gso_max_size = GSO_LEGACY_MAX_SIZE;
10853 	dev->xdp_zc_max_segs = 1;
10854 	dev->gso_max_segs = GSO_MAX_SEGS;
10855 	dev->gro_max_size = GRO_LEGACY_MAX_SIZE;
10856 	dev->gso_ipv4_max_size = GSO_LEGACY_MAX_SIZE;
10857 	dev->gro_ipv4_max_size = GRO_LEGACY_MAX_SIZE;
10858 	dev->tso_max_size = TSO_LEGACY_MAX_SIZE;
10859 	dev->tso_max_segs = TSO_MAX_SEGS;
10860 	dev->upper_level = 1;
10861 	dev->lower_level = 1;
10862 #ifdef CONFIG_LOCKDEP
10863 	dev->nested_level = 0;
10864 	INIT_LIST_HEAD(&dev->unlink_list);
10865 #endif
10866 
10867 	INIT_LIST_HEAD(&dev->napi_list);
10868 	INIT_LIST_HEAD(&dev->unreg_list);
10869 	INIT_LIST_HEAD(&dev->close_list);
10870 	INIT_LIST_HEAD(&dev->link_watch_list);
10871 	INIT_LIST_HEAD(&dev->adj_list.upper);
10872 	INIT_LIST_HEAD(&dev->adj_list.lower);
10873 	INIT_LIST_HEAD(&dev->ptype_all);
10874 	INIT_LIST_HEAD(&dev->ptype_specific);
10875 	INIT_LIST_HEAD(&dev->net_notifier_list);
10876 #ifdef CONFIG_NET_SCHED
10877 	hash_init(dev->qdisc_hash);
10878 #endif
10879 	phy_link_topo_init(&dev->link_topo);
10880 
10881 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10882 	setup(dev);
10883 
10884 	if (!dev->tx_queue_len) {
10885 		dev->priv_flags |= IFF_NO_QUEUE;
10886 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10887 	}
10888 
10889 	dev->num_tx_queues = txqs;
10890 	dev->real_num_tx_queues = txqs;
10891 	if (netif_alloc_netdev_queues(dev))
10892 		goto free_all;
10893 
10894 	dev->num_rx_queues = rxqs;
10895 	dev->real_num_rx_queues = rxqs;
10896 	if (netif_alloc_rx_queues(dev))
10897 		goto free_all;
10898 
10899 	strcpy(dev->name, name);
10900 	dev->name_assign_type = name_assign_type;
10901 	dev->group = INIT_NETDEV_GROUP;
10902 	if (!dev->ethtool_ops)
10903 		dev->ethtool_ops = &default_ethtool_ops;
10904 
10905 	nf_hook_netdev_init(dev);
10906 
10907 	return dev;
10908 
10909 free_all:
10910 	free_netdev(dev);
10911 	return NULL;
10912 
10913 free_pcpu:
10914 #ifdef CONFIG_PCPU_DEV_REFCNT
10915 	free_percpu(dev->pcpu_refcnt);
10916 free_dev:
10917 #endif
10918 	netdev_freemem(dev);
10919 	return NULL;
10920 }
10921 EXPORT_SYMBOL(alloc_netdev_mqs);
10922 
10923 /**
10924  * free_netdev - free network device
10925  * @dev: device
10926  *
10927  * This function does the last stage of destroying an allocated device
10928  * interface. The reference to the device object is released. If this
10929  * is the last reference then it will be freed.Must be called in process
10930  * context.
10931  */
10932 void free_netdev(struct net_device *dev)
10933 {
10934 	struct napi_struct *p, *n;
10935 
10936 	might_sleep();
10937 
10938 	/* When called immediately after register_netdevice() failed the unwind
10939 	 * handling may still be dismantling the device. Handle that case by
10940 	 * deferring the free.
10941 	 */
10942 	if (dev->reg_state == NETREG_UNREGISTERING) {
10943 		ASSERT_RTNL();
10944 		dev->needs_free_netdev = true;
10945 		return;
10946 	}
10947 
10948 	netif_free_tx_queues(dev);
10949 	netif_free_rx_queues(dev);
10950 
10951 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10952 
10953 	/* Flush device addresses */
10954 	dev_addr_flush(dev);
10955 
10956 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10957 		netif_napi_del(p);
10958 
10959 	ref_tracker_dir_exit(&dev->refcnt_tracker);
10960 #ifdef CONFIG_PCPU_DEV_REFCNT
10961 	free_percpu(dev->pcpu_refcnt);
10962 	dev->pcpu_refcnt = NULL;
10963 #endif
10964 	free_percpu(dev->core_stats);
10965 	dev->core_stats = NULL;
10966 	free_percpu(dev->xdp_bulkq);
10967 	dev->xdp_bulkq = NULL;
10968 
10969 	/*  Compatibility with error handling in drivers */
10970 	if (dev->reg_state == NETREG_UNINITIALIZED) {
10971 		netdev_freemem(dev);
10972 		return;
10973 	}
10974 
10975 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10976 	dev->reg_state = NETREG_RELEASED;
10977 
10978 	/* will free via device release */
10979 	put_device(&dev->dev);
10980 }
10981 EXPORT_SYMBOL(free_netdev);
10982 
10983 /**
10984  *	synchronize_net -  Synchronize with packet receive processing
10985  *
10986  *	Wait for packets currently being received to be done.
10987  *	Does not block later packets from starting.
10988  */
10989 void synchronize_net(void)
10990 {
10991 	might_sleep();
10992 	if (rtnl_is_locked())
10993 		synchronize_rcu_expedited();
10994 	else
10995 		synchronize_rcu();
10996 }
10997 EXPORT_SYMBOL(synchronize_net);
10998 
10999 /**
11000  *	unregister_netdevice_queue - remove device from the kernel
11001  *	@dev: device
11002  *	@head: list
11003  *
11004  *	This function shuts down a device interface and removes it
11005  *	from the kernel tables.
11006  *	If head not NULL, device is queued to be unregistered later.
11007  *
11008  *	Callers must hold the rtnl semaphore.  You may want
11009  *	unregister_netdev() instead of this.
11010  */
11011 
11012 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
11013 {
11014 	ASSERT_RTNL();
11015 
11016 	if (head) {
11017 		list_move_tail(&dev->unreg_list, head);
11018 	} else {
11019 		LIST_HEAD(single);
11020 
11021 		list_add(&dev->unreg_list, &single);
11022 		unregister_netdevice_many(&single);
11023 	}
11024 }
11025 EXPORT_SYMBOL(unregister_netdevice_queue);
11026 
11027 void unregister_netdevice_many_notify(struct list_head *head,
11028 				      u32 portid, const struct nlmsghdr *nlh)
11029 {
11030 	struct net_device *dev, *tmp;
11031 	LIST_HEAD(close_head);
11032 
11033 	BUG_ON(dev_boot_phase);
11034 	ASSERT_RTNL();
11035 
11036 	if (list_empty(head))
11037 		return;
11038 
11039 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
11040 		/* Some devices call without registering
11041 		 * for initialization unwind. Remove those
11042 		 * devices and proceed with the remaining.
11043 		 */
11044 		if (dev->reg_state == NETREG_UNINITIALIZED) {
11045 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
11046 				 dev->name, dev);
11047 
11048 			WARN_ON(1);
11049 			list_del(&dev->unreg_list);
11050 			continue;
11051 		}
11052 		dev->dismantle = true;
11053 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
11054 	}
11055 
11056 	/* If device is running, close it first. */
11057 	list_for_each_entry(dev, head, unreg_list)
11058 		list_add_tail(&dev->close_list, &close_head);
11059 	dev_close_many(&close_head, true);
11060 
11061 	list_for_each_entry(dev, head, unreg_list) {
11062 		/* And unlink it from device chain. */
11063 		write_lock(&dev_base_lock);
11064 		unlist_netdevice(dev, false);
11065 		dev->reg_state = NETREG_UNREGISTERING;
11066 		write_unlock(&dev_base_lock);
11067 	}
11068 	flush_all_backlogs();
11069 
11070 	synchronize_net();
11071 
11072 	list_for_each_entry(dev, head, unreg_list) {
11073 		struct sk_buff *skb = NULL;
11074 
11075 		/* Shutdown queueing discipline. */
11076 		dev_shutdown(dev);
11077 		dev_tcx_uninstall(dev);
11078 		dev_xdp_uninstall(dev);
11079 		bpf_dev_bound_netdev_unregister(dev);
11080 
11081 		netdev_offload_xstats_disable_all(dev);
11082 
11083 		/* Notify protocols, that we are about to destroy
11084 		 * this device. They should clean all the things.
11085 		 */
11086 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11087 
11088 		if (!dev->rtnl_link_ops ||
11089 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
11090 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
11091 						     GFP_KERNEL, NULL, 0,
11092 						     portid, nlh);
11093 
11094 		/*
11095 		 *	Flush the unicast and multicast chains
11096 		 */
11097 		dev_uc_flush(dev);
11098 		dev_mc_flush(dev);
11099 
11100 		netdev_name_node_alt_flush(dev);
11101 		netdev_name_node_free(dev->name_node);
11102 
11103 		call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
11104 
11105 		if (dev->netdev_ops->ndo_uninit)
11106 			dev->netdev_ops->ndo_uninit(dev);
11107 
11108 		if (skb)
11109 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL, portid, nlh);
11110 
11111 		/* Notifier chain MUST detach us all upper devices. */
11112 		WARN_ON(netdev_has_any_upper_dev(dev));
11113 		WARN_ON(netdev_has_any_lower_dev(dev));
11114 
11115 		/* Remove entries from kobject tree */
11116 		netdev_unregister_kobject(dev);
11117 #ifdef CONFIG_XPS
11118 		/* Remove XPS queueing entries */
11119 		netif_reset_xps_queues_gt(dev, 0);
11120 #endif
11121 	}
11122 
11123 	synchronize_net();
11124 
11125 	list_for_each_entry(dev, head, unreg_list) {
11126 		netdev_put(dev, &dev->dev_registered_tracker);
11127 		net_set_todo(dev);
11128 	}
11129 
11130 	list_del(head);
11131 }
11132 
11133 /**
11134  *	unregister_netdevice_many - unregister many devices
11135  *	@head: list of devices
11136  *
11137  *  Note: As most callers use a stack allocated list_head,
11138  *  we force a list_del() to make sure stack wont be corrupted later.
11139  */
11140 void unregister_netdevice_many(struct list_head *head)
11141 {
11142 	unregister_netdevice_many_notify(head, 0, NULL);
11143 }
11144 EXPORT_SYMBOL(unregister_netdevice_many);
11145 
11146 /**
11147  *	unregister_netdev - remove device from the kernel
11148  *	@dev: device
11149  *
11150  *	This function shuts down a device interface and removes it
11151  *	from the kernel tables.
11152  *
11153  *	This is just a wrapper for unregister_netdevice that takes
11154  *	the rtnl semaphore.  In general you want to use this and not
11155  *	unregister_netdevice.
11156  */
11157 void unregister_netdev(struct net_device *dev)
11158 {
11159 	rtnl_lock();
11160 	unregister_netdevice(dev);
11161 	rtnl_unlock();
11162 }
11163 EXPORT_SYMBOL(unregister_netdev);
11164 
11165 /**
11166  *	__dev_change_net_namespace - move device to different nethost namespace
11167  *	@dev: device
11168  *	@net: network namespace
11169  *	@pat: If not NULL name pattern to try if the current device name
11170  *	      is already taken in the destination network namespace.
11171  *	@new_ifindex: If not zero, specifies device index in the target
11172  *	              namespace.
11173  *
11174  *	This function shuts down a device interface and moves it
11175  *	to a new network namespace. On success 0 is returned, on
11176  *	a failure a netagive errno code is returned.
11177  *
11178  *	Callers must hold the rtnl semaphore.
11179  */
11180 
11181 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
11182 			       const char *pat, int new_ifindex)
11183 {
11184 	struct netdev_name_node *name_node;
11185 	struct net *net_old = dev_net(dev);
11186 	char new_name[IFNAMSIZ] = {};
11187 	int err, new_nsid;
11188 
11189 	ASSERT_RTNL();
11190 
11191 	/* Don't allow namespace local devices to be moved. */
11192 	err = -EINVAL;
11193 	if (dev->features & NETIF_F_NETNS_LOCAL)
11194 		goto out;
11195 
11196 	/* Ensure the device has been registrered */
11197 	if (dev->reg_state != NETREG_REGISTERED)
11198 		goto out;
11199 
11200 	/* Get out if there is nothing todo */
11201 	err = 0;
11202 	if (net_eq(net_old, net))
11203 		goto out;
11204 
11205 	/* Pick the destination device name, and ensure
11206 	 * we can use it in the destination network namespace.
11207 	 */
11208 	err = -EEXIST;
11209 	if (netdev_name_in_use(net, dev->name)) {
11210 		/* We get here if we can't use the current device name */
11211 		if (!pat)
11212 			goto out;
11213 		err = dev_prep_valid_name(net, dev, pat, new_name, EEXIST);
11214 		if (err < 0)
11215 			goto out;
11216 	}
11217 	/* Check that none of the altnames conflicts. */
11218 	err = -EEXIST;
11219 	netdev_for_each_altname(dev, name_node)
11220 		if (netdev_name_in_use(net, name_node->name))
11221 			goto out;
11222 
11223 	/* Check that new_ifindex isn't used yet. */
11224 	if (new_ifindex) {
11225 		err = dev_index_reserve(net, new_ifindex);
11226 		if (err < 0)
11227 			goto out;
11228 	} else {
11229 		/* If there is an ifindex conflict assign a new one */
11230 		err = dev_index_reserve(net, dev->ifindex);
11231 		if (err == -EBUSY)
11232 			err = dev_index_reserve(net, 0);
11233 		if (err < 0)
11234 			goto out;
11235 		new_ifindex = err;
11236 	}
11237 
11238 	/*
11239 	 * And now a mini version of register_netdevice unregister_netdevice.
11240 	 */
11241 
11242 	/* If device is running close it first. */
11243 	dev_close(dev);
11244 
11245 	/* And unlink it from device chain */
11246 	unlist_netdevice(dev, true);
11247 
11248 	synchronize_net();
11249 
11250 	/* Shutdown queueing discipline. */
11251 	dev_shutdown(dev);
11252 
11253 	/* Notify protocols, that we are about to destroy
11254 	 * this device. They should clean all the things.
11255 	 *
11256 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
11257 	 * This is wanted because this way 8021q and macvlan know
11258 	 * the device is just moving and can keep their slaves up.
11259 	 */
11260 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11261 	rcu_barrier();
11262 
11263 	new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
11264 
11265 	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
11266 			    new_ifindex);
11267 
11268 	/*
11269 	 *	Flush the unicast and multicast chains
11270 	 */
11271 	dev_uc_flush(dev);
11272 	dev_mc_flush(dev);
11273 
11274 	/* Send a netdev-removed uevent to the old namespace */
11275 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
11276 	netdev_adjacent_del_links(dev);
11277 
11278 	/* Move per-net netdevice notifiers that are following the netdevice */
11279 	move_netdevice_notifiers_dev_net(dev, net);
11280 
11281 	/* Actually switch the network namespace */
11282 	dev_net_set(dev, net);
11283 	dev->ifindex = new_ifindex;
11284 
11285 	if (new_name[0]) /* Rename the netdev to prepared name */
11286 		strscpy(dev->name, new_name, IFNAMSIZ);
11287 
11288 	/* Fixup kobjects */
11289 	dev_set_uevent_suppress(&dev->dev, 1);
11290 	err = device_rename(&dev->dev, dev->name);
11291 	dev_set_uevent_suppress(&dev->dev, 0);
11292 	WARN_ON(err);
11293 
11294 	/* Send a netdev-add uevent to the new namespace */
11295 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
11296 	netdev_adjacent_add_links(dev);
11297 
11298 	/* Adapt owner in case owning user namespace of target network
11299 	 * namespace is different from the original one.
11300 	 */
11301 	err = netdev_change_owner(dev, net_old, net);
11302 	WARN_ON(err);
11303 
11304 	/* Add the device back in the hashes */
11305 	list_netdevice(dev);
11306 
11307 	/* Notify protocols, that a new device appeared. */
11308 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
11309 
11310 	/*
11311 	 *	Prevent userspace races by waiting until the network
11312 	 *	device is fully setup before sending notifications.
11313 	 */
11314 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
11315 
11316 	synchronize_net();
11317 	err = 0;
11318 out:
11319 	return err;
11320 }
11321 EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
11322 
11323 static int dev_cpu_dead(unsigned int oldcpu)
11324 {
11325 	struct sk_buff **list_skb;
11326 	struct sk_buff *skb;
11327 	unsigned int cpu;
11328 	struct softnet_data *sd, *oldsd, *remsd = NULL;
11329 
11330 	local_irq_disable();
11331 	cpu = smp_processor_id();
11332 	sd = &per_cpu(softnet_data, cpu);
11333 	oldsd = &per_cpu(softnet_data, oldcpu);
11334 
11335 	/* Find end of our completion_queue. */
11336 	list_skb = &sd->completion_queue;
11337 	while (*list_skb)
11338 		list_skb = &(*list_skb)->next;
11339 	/* Append completion queue from offline CPU. */
11340 	*list_skb = oldsd->completion_queue;
11341 	oldsd->completion_queue = NULL;
11342 
11343 	/* Append output queue from offline CPU. */
11344 	if (oldsd->output_queue) {
11345 		*sd->output_queue_tailp = oldsd->output_queue;
11346 		sd->output_queue_tailp = oldsd->output_queue_tailp;
11347 		oldsd->output_queue = NULL;
11348 		oldsd->output_queue_tailp = &oldsd->output_queue;
11349 	}
11350 	/* Append NAPI poll list from offline CPU, with one exception :
11351 	 * process_backlog() must be called by cpu owning percpu backlog.
11352 	 * We properly handle process_queue & input_pkt_queue later.
11353 	 */
11354 	while (!list_empty(&oldsd->poll_list)) {
11355 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11356 							    struct napi_struct,
11357 							    poll_list);
11358 
11359 		list_del_init(&napi->poll_list);
11360 		if (napi->poll == process_backlog)
11361 			napi->state = 0;
11362 		else
11363 			____napi_schedule(sd, napi);
11364 	}
11365 
11366 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
11367 	local_irq_enable();
11368 
11369 #ifdef CONFIG_RPS
11370 	remsd = oldsd->rps_ipi_list;
11371 	oldsd->rps_ipi_list = NULL;
11372 #endif
11373 	/* send out pending IPI's on offline CPU */
11374 	net_rps_send_ipi(remsd);
11375 
11376 	/* Process offline CPU's input_pkt_queue */
11377 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11378 		netif_rx(skb);
11379 		input_queue_head_incr(oldsd);
11380 	}
11381 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11382 		netif_rx(skb);
11383 		input_queue_head_incr(oldsd);
11384 	}
11385 
11386 	return 0;
11387 }
11388 
11389 /**
11390  *	netdev_increment_features - increment feature set by one
11391  *	@all: current feature set
11392  *	@one: new feature set
11393  *	@mask: mask feature set
11394  *
11395  *	Computes a new feature set after adding a device with feature set
11396  *	@one to the master device with current feature set @all.  Will not
11397  *	enable anything that is off in @mask. Returns the new feature set.
11398  */
11399 netdev_features_t netdev_increment_features(netdev_features_t all,
11400 	netdev_features_t one, netdev_features_t mask)
11401 {
11402 	if (mask & NETIF_F_HW_CSUM)
11403 		mask |= NETIF_F_CSUM_MASK;
11404 	mask |= NETIF_F_VLAN_CHALLENGED;
11405 
11406 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11407 	all &= one | ~NETIF_F_ALL_FOR_ALL;
11408 
11409 	/* If one device supports hw checksumming, set for all. */
11410 	if (all & NETIF_F_HW_CSUM)
11411 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11412 
11413 	return all;
11414 }
11415 EXPORT_SYMBOL(netdev_increment_features);
11416 
11417 static struct hlist_head * __net_init netdev_create_hash(void)
11418 {
11419 	int i;
11420 	struct hlist_head *hash;
11421 
11422 	hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11423 	if (hash != NULL)
11424 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
11425 			INIT_HLIST_HEAD(&hash[i]);
11426 
11427 	return hash;
11428 }
11429 
11430 /* Initialize per network namespace state */
11431 static int __net_init netdev_init(struct net *net)
11432 {
11433 	BUILD_BUG_ON(GRO_HASH_BUCKETS >
11434 		     8 * sizeof_field(struct napi_struct, gro_bitmask));
11435 
11436 	INIT_LIST_HEAD(&net->dev_base_head);
11437 
11438 	net->dev_name_head = netdev_create_hash();
11439 	if (net->dev_name_head == NULL)
11440 		goto err_name;
11441 
11442 	net->dev_index_head = netdev_create_hash();
11443 	if (net->dev_index_head == NULL)
11444 		goto err_idx;
11445 
11446 	xa_init_flags(&net->dev_by_index, XA_FLAGS_ALLOC1);
11447 
11448 	RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11449 
11450 	return 0;
11451 
11452 err_idx:
11453 	kfree(net->dev_name_head);
11454 err_name:
11455 	return -ENOMEM;
11456 }
11457 
11458 /**
11459  *	netdev_drivername - network driver for the device
11460  *	@dev: network device
11461  *
11462  *	Determine network driver for device.
11463  */
11464 const char *netdev_drivername(const struct net_device *dev)
11465 {
11466 	const struct device_driver *driver;
11467 	const struct device *parent;
11468 	const char *empty = "";
11469 
11470 	parent = dev->dev.parent;
11471 	if (!parent)
11472 		return empty;
11473 
11474 	driver = parent->driver;
11475 	if (driver && driver->name)
11476 		return driver->name;
11477 	return empty;
11478 }
11479 
11480 static void __netdev_printk(const char *level, const struct net_device *dev,
11481 			    struct va_format *vaf)
11482 {
11483 	if (dev && dev->dev.parent) {
11484 		dev_printk_emit(level[1] - '0',
11485 				dev->dev.parent,
11486 				"%s %s %s%s: %pV",
11487 				dev_driver_string(dev->dev.parent),
11488 				dev_name(dev->dev.parent),
11489 				netdev_name(dev), netdev_reg_state(dev),
11490 				vaf);
11491 	} else if (dev) {
11492 		printk("%s%s%s: %pV",
11493 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
11494 	} else {
11495 		printk("%s(NULL net_device): %pV", level, vaf);
11496 	}
11497 }
11498 
11499 void netdev_printk(const char *level, const struct net_device *dev,
11500 		   const char *format, ...)
11501 {
11502 	struct va_format vaf;
11503 	va_list args;
11504 
11505 	va_start(args, format);
11506 
11507 	vaf.fmt = format;
11508 	vaf.va = &args;
11509 
11510 	__netdev_printk(level, dev, &vaf);
11511 
11512 	va_end(args);
11513 }
11514 EXPORT_SYMBOL(netdev_printk);
11515 
11516 #define define_netdev_printk_level(func, level)			\
11517 void func(const struct net_device *dev, const char *fmt, ...)	\
11518 {								\
11519 	struct va_format vaf;					\
11520 	va_list args;						\
11521 								\
11522 	va_start(args, fmt);					\
11523 								\
11524 	vaf.fmt = fmt;						\
11525 	vaf.va = &args;						\
11526 								\
11527 	__netdev_printk(level, dev, &vaf);			\
11528 								\
11529 	va_end(args);						\
11530 }								\
11531 EXPORT_SYMBOL(func);
11532 
11533 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11534 define_netdev_printk_level(netdev_alert, KERN_ALERT);
11535 define_netdev_printk_level(netdev_crit, KERN_CRIT);
11536 define_netdev_printk_level(netdev_err, KERN_ERR);
11537 define_netdev_printk_level(netdev_warn, KERN_WARNING);
11538 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11539 define_netdev_printk_level(netdev_info, KERN_INFO);
11540 
11541 static void __net_exit netdev_exit(struct net *net)
11542 {
11543 	kfree(net->dev_name_head);
11544 	kfree(net->dev_index_head);
11545 	xa_destroy(&net->dev_by_index);
11546 	if (net != &init_net)
11547 		WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11548 }
11549 
11550 static struct pernet_operations __net_initdata netdev_net_ops = {
11551 	.init = netdev_init,
11552 	.exit = netdev_exit,
11553 };
11554 
11555 static void __net_exit default_device_exit_net(struct net *net)
11556 {
11557 	struct net_device *dev, *aux;
11558 	/*
11559 	 * Push all migratable network devices back to the
11560 	 * initial network namespace
11561 	 */
11562 	ASSERT_RTNL();
11563 	for_each_netdev_safe(net, dev, aux) {
11564 		int err;
11565 		char fb_name[IFNAMSIZ];
11566 
11567 		/* Ignore unmoveable devices (i.e. loopback) */
11568 		if (dev->features & NETIF_F_NETNS_LOCAL)
11569 			continue;
11570 
11571 		/* Leave virtual devices for the generic cleanup */
11572 		if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11573 			continue;
11574 
11575 		/* Push remaining network devices to init_net */
11576 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11577 		if (netdev_name_in_use(&init_net, fb_name))
11578 			snprintf(fb_name, IFNAMSIZ, "dev%%d");
11579 		err = dev_change_net_namespace(dev, &init_net, fb_name);
11580 		if (err) {
11581 			pr_emerg("%s: failed to move %s to init_net: %d\n",
11582 				 __func__, dev->name, err);
11583 			BUG();
11584 		}
11585 	}
11586 }
11587 
11588 static void __net_exit default_device_exit_batch(struct list_head *net_list)
11589 {
11590 	/* At exit all network devices most be removed from a network
11591 	 * namespace.  Do this in the reverse order of registration.
11592 	 * Do this across as many network namespaces as possible to
11593 	 * improve batching efficiency.
11594 	 */
11595 	struct net_device *dev;
11596 	struct net *net;
11597 	LIST_HEAD(dev_kill_list);
11598 
11599 	rtnl_lock();
11600 	list_for_each_entry(net, net_list, exit_list) {
11601 		default_device_exit_net(net);
11602 		cond_resched();
11603 	}
11604 
11605 	list_for_each_entry(net, net_list, exit_list) {
11606 		for_each_netdev_reverse(net, dev) {
11607 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11608 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11609 			else
11610 				unregister_netdevice_queue(dev, &dev_kill_list);
11611 		}
11612 	}
11613 	unregister_netdevice_many(&dev_kill_list);
11614 	rtnl_unlock();
11615 }
11616 
11617 static struct pernet_operations __net_initdata default_device_ops = {
11618 	.exit_batch = default_device_exit_batch,
11619 };
11620 
11621 static void __init net_dev_struct_check(void)
11622 {
11623 	/* TX read-mostly hotpath */
11624 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, priv_flags);
11625 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, netdev_ops);
11626 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, header_ops);
11627 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, _tx);
11628 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, real_num_tx_queues);
11629 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_size);
11630 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_ipv4_max_size);
11631 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_segs);
11632 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_partial_features);
11633 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, num_tc);
11634 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, mtu);
11635 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, needed_headroom);
11636 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tc_to_txq);
11637 #ifdef CONFIG_XPS
11638 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, xps_maps);
11639 #endif
11640 #ifdef CONFIG_NETFILTER_EGRESS
11641 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, nf_hooks_egress);
11642 #endif
11643 #ifdef CONFIG_NET_XGRESS
11644 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tcx_egress);
11645 #endif
11646 	CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_tx, 160);
11647 
11648 	/* TXRX read-mostly hotpath */
11649 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, flags);
11650 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, hard_header_len);
11651 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, features);
11652 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, ip6_ptr);
11653 	CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_txrx, 30);
11654 
11655 	/* RX read-mostly hotpath */
11656 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ptype_specific);
11657 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ifindex);
11658 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, real_num_rx_queues);
11659 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, _rx);
11660 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_flush_timeout);
11661 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, napi_defer_hard_irqs);
11662 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_max_size);
11663 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_ipv4_max_size);
11664 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler);
11665 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler_data);
11666 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, nd_net);
11667 #ifdef CONFIG_NETPOLL
11668 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, npinfo);
11669 #endif
11670 #ifdef CONFIG_NET_XGRESS
11671 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, tcx_ingress);
11672 #endif
11673 	CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_rx, 104);
11674 }
11675 
11676 /*
11677  *	Initialize the DEV module. At boot time this walks the device list and
11678  *	unhooks any devices that fail to initialise (normally hardware not
11679  *	present) and leaves us with a valid list of present and active devices.
11680  *
11681  */
11682 
11683 /*
11684  *       This is called single threaded during boot, so no need
11685  *       to take the rtnl semaphore.
11686  */
11687 static int __init net_dev_init(void)
11688 {
11689 	int i, rc = -ENOMEM;
11690 
11691 	BUG_ON(!dev_boot_phase);
11692 
11693 	net_dev_struct_check();
11694 
11695 	if (dev_proc_init())
11696 		goto out;
11697 
11698 	if (netdev_kobject_init())
11699 		goto out;
11700 
11701 	INIT_LIST_HEAD(&ptype_all);
11702 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
11703 		INIT_LIST_HEAD(&ptype_base[i]);
11704 
11705 	if (register_pernet_subsys(&netdev_net_ops))
11706 		goto out;
11707 
11708 	/*
11709 	 *	Initialise the packet receive queues.
11710 	 */
11711 
11712 	for_each_possible_cpu(i) {
11713 		struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11714 		struct softnet_data *sd = &per_cpu(softnet_data, i);
11715 
11716 		INIT_WORK(flush, flush_backlog);
11717 
11718 		skb_queue_head_init(&sd->input_pkt_queue);
11719 		skb_queue_head_init(&sd->process_queue);
11720 #ifdef CONFIG_XFRM_OFFLOAD
11721 		skb_queue_head_init(&sd->xfrm_backlog);
11722 #endif
11723 		INIT_LIST_HEAD(&sd->poll_list);
11724 		sd->output_queue_tailp = &sd->output_queue;
11725 #ifdef CONFIG_RPS
11726 		INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
11727 		sd->cpu = i;
11728 #endif
11729 		INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd);
11730 		spin_lock_init(&sd->defer_lock);
11731 
11732 		init_gro_hash(&sd->backlog);
11733 		sd->backlog.poll = process_backlog;
11734 		sd->backlog.weight = weight_p;
11735 	}
11736 
11737 	dev_boot_phase = 0;
11738 
11739 	/* The loopback device is special if any other network devices
11740 	 * is present in a network namespace the loopback device must
11741 	 * be present. Since we now dynamically allocate and free the
11742 	 * loopback device ensure this invariant is maintained by
11743 	 * keeping the loopback device as the first device on the
11744 	 * list of network devices.  Ensuring the loopback devices
11745 	 * is the first device that appears and the last network device
11746 	 * that disappears.
11747 	 */
11748 	if (register_pernet_device(&loopback_net_ops))
11749 		goto out;
11750 
11751 	if (register_pernet_device(&default_device_ops))
11752 		goto out;
11753 
11754 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11755 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11756 
11757 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11758 				       NULL, dev_cpu_dead);
11759 	WARN_ON(rc < 0);
11760 	rc = 0;
11761 out:
11762 	return rc;
11763 }
11764 
11765 subsys_initcall(net_dev_init);
11766