xref: /linux/net/core/dev.c (revision d1e879ec600f9b3bdd253167533959facfefb17b)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *	Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:	Ross Biro
7  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *	Additional Authors:
11  *		Florian la Roche <rzsfl@rz.uni-sb.de>
12  *		Alan Cox <gw4pts@gw4pts.ampr.org>
13  *		David Hinds <dahinds@users.sourceforge.net>
14  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *		Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *	Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *		Alan Cox	:	device private ioctl copies fields back.
24  *		Alan Cox	:	Transmit queue code does relevant
25  *					stunts to keep the queue safe.
26  *		Alan Cox	:	Fixed double lock.
27  *		Alan Cox	:	Fixed promisc NULL pointer trap
28  *		????????	:	Support the full private ioctl range
29  *		Alan Cox	:	Moved ioctl permission check into
30  *					drivers
31  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
32  *		Alan Cox	:	100 backlog just doesn't cut it when
33  *					you start doing multicast video 8)
34  *		Alan Cox	:	Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *		Alan Cox	:	Took out transmit every packet pass
37  *					Saved a few bytes in the ioctl handler
38  *		Alan Cox	:	Network driver sets packet type before
39  *					calling netif_rx. Saves a function
40  *					call a packet.
41  *		Alan Cox	:	Hashed net_bh()
42  *		Richard Kooijman:	Timestamp fixes.
43  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
44  *		Alan Cox	:	Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *					changes.
47  *		Rudi Cilibrasi	:	Pass the right thing to
48  *					set_mac_address()
49  *		Dave Miller	:	32bit quantity for the device lock to
50  *					make it work out on a Sparc.
51  *		Bjorn Ekwall	:	Added KERNELD hack.
52  *		Alan Cox	:	Cleaned up the backlog initialise.
53  *		Craig Metz	:	SIOCGIFCONF fix if space for under
54  *					1 device.
55  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
56  *					is no device open function.
57  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
58  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
59  *		Cyrus Durgin	:	Cleaned for KMOD
60  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
61  *					A network device unload needs to purge
62  *					the backlog queue.
63  *	Paul Rusty Russell	:	SIOCSIFNAME
64  *              Pekka Riikonen  :	Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *				        - netif_rx() feedback
69  */
70 
71 #include <linux/uaccess.h>
72 #include <linux/bitmap.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/isolation.h>
81 #include <linux/sched/mm.h>
82 #include <linux/smpboot.h>
83 #include <linux/mutex.h>
84 #include <linux/rwsem.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/ethtool_netlink.h>
96 #include <linux/skbuff.h>
97 #include <linux/kthread.h>
98 #include <linux/bpf.h>
99 #include <linux/bpf_trace.h>
100 #include <net/net_namespace.h>
101 #include <net/sock.h>
102 #include <net/busy_poll.h>
103 #include <linux/rtnetlink.h>
104 #include <linux/stat.h>
105 #include <net/dsa.h>
106 #include <net/dst.h>
107 #include <net/dst_metadata.h>
108 #include <net/gro.h>
109 #include <net/netdev_queues.h>
110 #include <net/pkt_sched.h>
111 #include <net/pkt_cls.h>
112 #include <net/checksum.h>
113 #include <net/xfrm.h>
114 #include <net/tcx.h>
115 #include <linux/highmem.h>
116 #include <linux/init.h>
117 #include <linux/module.h>
118 #include <linux/netpoll.h>
119 #include <linux/rcupdate.h>
120 #include <linux/delay.h>
121 #include <net/iw_handler.h>
122 #include <asm/current.h>
123 #include <linux/audit.h>
124 #include <linux/dmaengine.h>
125 #include <linux/err.h>
126 #include <linux/ctype.h>
127 #include <linux/if_arp.h>
128 #include <linux/if_vlan.h>
129 #include <linux/ip.h>
130 #include <net/ip.h>
131 #include <net/mpls.h>
132 #include <linux/ipv6.h>
133 #include <linux/in.h>
134 #include <linux/jhash.h>
135 #include <linux/random.h>
136 #include <trace/events/napi.h>
137 #include <trace/events/net.h>
138 #include <trace/events/skb.h>
139 #include <trace/events/qdisc.h>
140 #include <trace/events/xdp.h>
141 #include <linux/inetdevice.h>
142 #include <linux/cpu_rmap.h>
143 #include <linux/static_key.h>
144 #include <linux/hashtable.h>
145 #include <linux/vmalloc.h>
146 #include <linux/if_macvlan.h>
147 #include <linux/errqueue.h>
148 #include <linux/hrtimer.h>
149 #include <linux/netfilter_netdev.h>
150 #include <linux/crash_dump.h>
151 #include <linux/sctp.h>
152 #include <net/udp_tunnel.h>
153 #include <linux/net_namespace.h>
154 #include <linux/indirect_call_wrapper.h>
155 #include <net/devlink.h>
156 #include <linux/pm_runtime.h>
157 #include <linux/prandom.h>
158 #include <linux/once_lite.h>
159 #include <net/netdev_rx_queue.h>
160 #include <net/page_pool/types.h>
161 #include <net/page_pool/helpers.h>
162 #include <net/page_pool/memory_provider.h>
163 #include <net/rps.h>
164 #include <linux/phy_link_topology.h>
165 
166 #include "dev.h"
167 #include "devmem.h"
168 #include "net-sysfs.h"
169 
170 static DEFINE_SPINLOCK(ptype_lock);
171 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
172 
173 static int netif_rx_internal(struct sk_buff *skb);
174 static int call_netdevice_notifiers_extack(unsigned long val,
175 					   struct net_device *dev,
176 					   struct netlink_ext_ack *extack);
177 
178 static DEFINE_MUTEX(ifalias_mutex);
179 
180 /* protects napi_hash addition/deletion and napi_gen_id */
181 static DEFINE_SPINLOCK(napi_hash_lock);
182 
183 static unsigned int napi_gen_id = NR_CPUS;
184 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
185 
186 static inline void dev_base_seq_inc(struct net *net)
187 {
188 	unsigned int val = net->dev_base_seq + 1;
189 
190 	WRITE_ONCE(net->dev_base_seq, val ?: 1);
191 }
192 
193 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
194 {
195 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
196 
197 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
198 }
199 
200 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
201 {
202 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
203 }
204 
205 #ifndef CONFIG_PREEMPT_RT
206 
207 static DEFINE_STATIC_KEY_FALSE(use_backlog_threads_key);
208 
209 static int __init setup_backlog_napi_threads(char *arg)
210 {
211 	static_branch_enable(&use_backlog_threads_key);
212 	return 0;
213 }
214 early_param("thread_backlog_napi", setup_backlog_napi_threads);
215 
216 static bool use_backlog_threads(void)
217 {
218 	return static_branch_unlikely(&use_backlog_threads_key);
219 }
220 
221 #else
222 
223 static bool use_backlog_threads(void)
224 {
225 	return true;
226 }
227 
228 #endif
229 
230 static inline void backlog_lock_irq_save(struct softnet_data *sd,
231 					 unsigned long *flags)
232 {
233 	if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
234 		spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags);
235 	else
236 		local_irq_save(*flags);
237 }
238 
239 static inline void backlog_lock_irq_disable(struct softnet_data *sd)
240 {
241 	if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
242 		spin_lock_irq(&sd->input_pkt_queue.lock);
243 	else
244 		local_irq_disable();
245 }
246 
247 static inline void backlog_unlock_irq_restore(struct softnet_data *sd,
248 					      unsigned long *flags)
249 {
250 	if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
251 		spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags);
252 	else
253 		local_irq_restore(*flags);
254 }
255 
256 static inline void backlog_unlock_irq_enable(struct softnet_data *sd)
257 {
258 	if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
259 		spin_unlock_irq(&sd->input_pkt_queue.lock);
260 	else
261 		local_irq_enable();
262 }
263 
264 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
265 						       const char *name)
266 {
267 	struct netdev_name_node *name_node;
268 
269 	name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
270 	if (!name_node)
271 		return NULL;
272 	INIT_HLIST_NODE(&name_node->hlist);
273 	name_node->dev = dev;
274 	name_node->name = name;
275 	return name_node;
276 }
277 
278 static struct netdev_name_node *
279 netdev_name_node_head_alloc(struct net_device *dev)
280 {
281 	struct netdev_name_node *name_node;
282 
283 	name_node = netdev_name_node_alloc(dev, dev->name);
284 	if (!name_node)
285 		return NULL;
286 	INIT_LIST_HEAD(&name_node->list);
287 	return name_node;
288 }
289 
290 static void netdev_name_node_free(struct netdev_name_node *name_node)
291 {
292 	kfree(name_node);
293 }
294 
295 static void netdev_name_node_add(struct net *net,
296 				 struct netdev_name_node *name_node)
297 {
298 	hlist_add_head_rcu(&name_node->hlist,
299 			   dev_name_hash(net, name_node->name));
300 }
301 
302 static void netdev_name_node_del(struct netdev_name_node *name_node)
303 {
304 	hlist_del_rcu(&name_node->hlist);
305 }
306 
307 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
308 							const char *name)
309 {
310 	struct hlist_head *head = dev_name_hash(net, name);
311 	struct netdev_name_node *name_node;
312 
313 	hlist_for_each_entry(name_node, head, hlist)
314 		if (!strcmp(name_node->name, name))
315 			return name_node;
316 	return NULL;
317 }
318 
319 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
320 							    const char *name)
321 {
322 	struct hlist_head *head = dev_name_hash(net, name);
323 	struct netdev_name_node *name_node;
324 
325 	hlist_for_each_entry_rcu(name_node, head, hlist)
326 		if (!strcmp(name_node->name, name))
327 			return name_node;
328 	return NULL;
329 }
330 
331 bool netdev_name_in_use(struct net *net, const char *name)
332 {
333 	return netdev_name_node_lookup(net, name);
334 }
335 EXPORT_SYMBOL(netdev_name_in_use);
336 
337 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
338 {
339 	struct netdev_name_node *name_node;
340 	struct net *net = dev_net(dev);
341 
342 	name_node = netdev_name_node_lookup(net, name);
343 	if (name_node)
344 		return -EEXIST;
345 	name_node = netdev_name_node_alloc(dev, name);
346 	if (!name_node)
347 		return -ENOMEM;
348 	netdev_name_node_add(net, name_node);
349 	/* The node that holds dev->name acts as a head of per-device list. */
350 	list_add_tail_rcu(&name_node->list, &dev->name_node->list);
351 
352 	return 0;
353 }
354 
355 static void netdev_name_node_alt_free(struct rcu_head *head)
356 {
357 	struct netdev_name_node *name_node =
358 		container_of(head, struct netdev_name_node, rcu);
359 
360 	kfree(name_node->name);
361 	netdev_name_node_free(name_node);
362 }
363 
364 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
365 {
366 	netdev_name_node_del(name_node);
367 	list_del(&name_node->list);
368 	call_rcu(&name_node->rcu, netdev_name_node_alt_free);
369 }
370 
371 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
372 {
373 	struct netdev_name_node *name_node;
374 	struct net *net = dev_net(dev);
375 
376 	name_node = netdev_name_node_lookup(net, name);
377 	if (!name_node)
378 		return -ENOENT;
379 	/* lookup might have found our primary name or a name belonging
380 	 * to another device.
381 	 */
382 	if (name_node == dev->name_node || name_node->dev != dev)
383 		return -EINVAL;
384 
385 	__netdev_name_node_alt_destroy(name_node);
386 	return 0;
387 }
388 
389 static void netdev_name_node_alt_flush(struct net_device *dev)
390 {
391 	struct netdev_name_node *name_node, *tmp;
392 
393 	list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list) {
394 		list_del(&name_node->list);
395 		netdev_name_node_alt_free(&name_node->rcu);
396 	}
397 }
398 
399 /* Device list insertion */
400 static void list_netdevice(struct net_device *dev)
401 {
402 	struct netdev_name_node *name_node;
403 	struct net *net = dev_net(dev);
404 
405 	ASSERT_RTNL();
406 
407 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
408 	netdev_name_node_add(net, dev->name_node);
409 	hlist_add_head_rcu(&dev->index_hlist,
410 			   dev_index_hash(net, dev->ifindex));
411 
412 	netdev_for_each_altname(dev, name_node)
413 		netdev_name_node_add(net, name_node);
414 
415 	/* We reserved the ifindex, this can't fail */
416 	WARN_ON(xa_store(&net->dev_by_index, dev->ifindex, dev, GFP_KERNEL));
417 
418 	dev_base_seq_inc(net);
419 }
420 
421 /* Device list removal
422  * caller must respect a RCU grace period before freeing/reusing dev
423  */
424 static void unlist_netdevice(struct net_device *dev)
425 {
426 	struct netdev_name_node *name_node;
427 	struct net *net = dev_net(dev);
428 
429 	ASSERT_RTNL();
430 
431 	xa_erase(&net->dev_by_index, dev->ifindex);
432 
433 	netdev_for_each_altname(dev, name_node)
434 		netdev_name_node_del(name_node);
435 
436 	/* Unlink dev from the device chain */
437 	list_del_rcu(&dev->dev_list);
438 	netdev_name_node_del(dev->name_node);
439 	hlist_del_rcu(&dev->index_hlist);
440 
441 	dev_base_seq_inc(dev_net(dev));
442 }
443 
444 /*
445  *	Our notifier list
446  */
447 
448 static RAW_NOTIFIER_HEAD(netdev_chain);
449 
450 /*
451  *	Device drivers call our routines to queue packets here. We empty the
452  *	queue in the local softnet handler.
453  */
454 
455 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data) = {
456 	.process_queue_bh_lock = INIT_LOCAL_LOCK(process_queue_bh_lock),
457 };
458 EXPORT_PER_CPU_SYMBOL(softnet_data);
459 
460 /* Page_pool has a lockless array/stack to alloc/recycle pages.
461  * PP consumers must pay attention to run APIs in the appropriate context
462  * (e.g. NAPI context).
463  */
464 DEFINE_PER_CPU(struct page_pool *, system_page_pool);
465 
466 #ifdef CONFIG_LOCKDEP
467 /*
468  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
469  * according to dev->type
470  */
471 static const unsigned short netdev_lock_type[] = {
472 	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
473 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
474 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
475 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
476 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
477 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
478 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
479 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
480 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
481 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
482 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
483 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
484 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
485 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
486 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
487 
488 static const char *const netdev_lock_name[] = {
489 	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
490 	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
491 	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
492 	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
493 	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
494 	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
495 	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
496 	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
497 	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
498 	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
499 	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
500 	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
501 	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
502 	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
503 	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
504 
505 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
506 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
507 
508 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
509 {
510 	int i;
511 
512 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
513 		if (netdev_lock_type[i] == dev_type)
514 			return i;
515 	/* the last key is used by default */
516 	return ARRAY_SIZE(netdev_lock_type) - 1;
517 }
518 
519 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
520 						 unsigned short dev_type)
521 {
522 	int i;
523 
524 	i = netdev_lock_pos(dev_type);
525 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
526 				   netdev_lock_name[i]);
527 }
528 
529 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
530 {
531 	int i;
532 
533 	i = netdev_lock_pos(dev->type);
534 	lockdep_set_class_and_name(&dev->addr_list_lock,
535 				   &netdev_addr_lock_key[i],
536 				   netdev_lock_name[i]);
537 }
538 #else
539 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
540 						 unsigned short dev_type)
541 {
542 }
543 
544 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
545 {
546 }
547 #endif
548 
549 /*******************************************************************************
550  *
551  *		Protocol management and registration routines
552  *
553  *******************************************************************************/
554 
555 
556 /*
557  *	Add a protocol ID to the list. Now that the input handler is
558  *	smarter we can dispense with all the messy stuff that used to be
559  *	here.
560  *
561  *	BEWARE!!! Protocol handlers, mangling input packets,
562  *	MUST BE last in hash buckets and checking protocol handlers
563  *	MUST start from promiscuous ptype_all chain in net_bh.
564  *	It is true now, do not change it.
565  *	Explanation follows: if protocol handler, mangling packet, will
566  *	be the first on list, it is not able to sense, that packet
567  *	is cloned and should be copied-on-write, so that it will
568  *	change it and subsequent readers will get broken packet.
569  *							--ANK (980803)
570  */
571 
572 static inline struct list_head *ptype_head(const struct packet_type *pt)
573 {
574 	if (pt->type == htons(ETH_P_ALL))
575 		return pt->dev ? &pt->dev->ptype_all : &net_hotdata.ptype_all;
576 	else
577 		return pt->dev ? &pt->dev->ptype_specific :
578 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
579 }
580 
581 /**
582  *	dev_add_pack - add packet handler
583  *	@pt: packet type declaration
584  *
585  *	Add a protocol handler to the networking stack. The passed &packet_type
586  *	is linked into kernel lists and may not be freed until it has been
587  *	removed from the kernel lists.
588  *
589  *	This call does not sleep therefore it can not
590  *	guarantee all CPU's that are in middle of receiving packets
591  *	will see the new packet type (until the next received packet).
592  */
593 
594 void dev_add_pack(struct packet_type *pt)
595 {
596 	struct list_head *head = ptype_head(pt);
597 
598 	spin_lock(&ptype_lock);
599 	list_add_rcu(&pt->list, head);
600 	spin_unlock(&ptype_lock);
601 }
602 EXPORT_SYMBOL(dev_add_pack);
603 
604 /**
605  *	__dev_remove_pack	 - remove packet handler
606  *	@pt: packet type declaration
607  *
608  *	Remove a protocol handler that was previously added to the kernel
609  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
610  *	from the kernel lists and can be freed or reused once this function
611  *	returns.
612  *
613  *      The packet type might still be in use by receivers
614  *	and must not be freed until after all the CPU's have gone
615  *	through a quiescent state.
616  */
617 void __dev_remove_pack(struct packet_type *pt)
618 {
619 	struct list_head *head = ptype_head(pt);
620 	struct packet_type *pt1;
621 
622 	spin_lock(&ptype_lock);
623 
624 	list_for_each_entry(pt1, head, list) {
625 		if (pt == pt1) {
626 			list_del_rcu(&pt->list);
627 			goto out;
628 		}
629 	}
630 
631 	pr_warn("dev_remove_pack: %p not found\n", pt);
632 out:
633 	spin_unlock(&ptype_lock);
634 }
635 EXPORT_SYMBOL(__dev_remove_pack);
636 
637 /**
638  *	dev_remove_pack	 - remove packet handler
639  *	@pt: packet type declaration
640  *
641  *	Remove a protocol handler that was previously added to the kernel
642  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
643  *	from the kernel lists and can be freed or reused once this function
644  *	returns.
645  *
646  *	This call sleeps to guarantee that no CPU is looking at the packet
647  *	type after return.
648  */
649 void dev_remove_pack(struct packet_type *pt)
650 {
651 	__dev_remove_pack(pt);
652 
653 	synchronize_net();
654 }
655 EXPORT_SYMBOL(dev_remove_pack);
656 
657 
658 /*******************************************************************************
659  *
660  *			    Device Interface Subroutines
661  *
662  *******************************************************************************/
663 
664 /**
665  *	dev_get_iflink	- get 'iflink' value of a interface
666  *	@dev: targeted interface
667  *
668  *	Indicates the ifindex the interface is linked to.
669  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
670  */
671 
672 int dev_get_iflink(const struct net_device *dev)
673 {
674 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
675 		return dev->netdev_ops->ndo_get_iflink(dev);
676 
677 	return READ_ONCE(dev->ifindex);
678 }
679 EXPORT_SYMBOL(dev_get_iflink);
680 
681 /**
682  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
683  *	@dev: targeted interface
684  *	@skb: The packet.
685  *
686  *	For better visibility of tunnel traffic OVS needs to retrieve
687  *	egress tunnel information for a packet. Following API allows
688  *	user to get this info.
689  */
690 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
691 {
692 	struct ip_tunnel_info *info;
693 
694 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
695 		return -EINVAL;
696 
697 	info = skb_tunnel_info_unclone(skb);
698 	if (!info)
699 		return -ENOMEM;
700 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
701 		return -EINVAL;
702 
703 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
704 }
705 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
706 
707 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
708 {
709 	int k = stack->num_paths++;
710 
711 	if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
712 		return NULL;
713 
714 	return &stack->path[k];
715 }
716 
717 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
718 			  struct net_device_path_stack *stack)
719 {
720 	const struct net_device *last_dev;
721 	struct net_device_path_ctx ctx = {
722 		.dev	= dev,
723 	};
724 	struct net_device_path *path;
725 	int ret = 0;
726 
727 	memcpy(ctx.daddr, daddr, sizeof(ctx.daddr));
728 	stack->num_paths = 0;
729 	while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
730 		last_dev = ctx.dev;
731 		path = dev_fwd_path(stack);
732 		if (!path)
733 			return -1;
734 
735 		memset(path, 0, sizeof(struct net_device_path));
736 		ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
737 		if (ret < 0)
738 			return -1;
739 
740 		if (WARN_ON_ONCE(last_dev == ctx.dev))
741 			return -1;
742 	}
743 
744 	if (!ctx.dev)
745 		return ret;
746 
747 	path = dev_fwd_path(stack);
748 	if (!path)
749 		return -1;
750 	path->type = DEV_PATH_ETHERNET;
751 	path->dev = ctx.dev;
752 
753 	return ret;
754 }
755 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
756 
757 /* must be called under rcu_read_lock(), as we dont take a reference */
758 static struct napi_struct *napi_by_id(unsigned int napi_id)
759 {
760 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
761 	struct napi_struct *napi;
762 
763 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
764 		if (napi->napi_id == napi_id)
765 			return napi;
766 
767 	return NULL;
768 }
769 
770 /* must be called under rcu_read_lock(), as we dont take a reference */
771 static struct napi_struct *
772 netdev_napi_by_id(struct net *net, unsigned int napi_id)
773 {
774 	struct napi_struct *napi;
775 
776 	napi = napi_by_id(napi_id);
777 	if (!napi)
778 		return NULL;
779 
780 	if (WARN_ON_ONCE(!napi->dev))
781 		return NULL;
782 	if (!net_eq(net, dev_net(napi->dev)))
783 		return NULL;
784 
785 	return napi;
786 }
787 
788 /**
789  *	netdev_napi_by_id_lock() - find a device by NAPI ID and lock it
790  *	@net: the applicable net namespace
791  *	@napi_id: ID of a NAPI of a target device
792  *
793  *	Find a NAPI instance with @napi_id. Lock its device.
794  *	The device must be in %NETREG_REGISTERED state for lookup to succeed.
795  *	netdev_unlock() must be called to release it.
796  *
797  *	Return: pointer to NAPI, its device with lock held, NULL if not found.
798  */
799 struct napi_struct *
800 netdev_napi_by_id_lock(struct net *net, unsigned int napi_id)
801 {
802 	struct napi_struct *napi;
803 	struct net_device *dev;
804 
805 	rcu_read_lock();
806 	napi = netdev_napi_by_id(net, napi_id);
807 	if (!napi || READ_ONCE(napi->dev->reg_state) != NETREG_REGISTERED) {
808 		rcu_read_unlock();
809 		return NULL;
810 	}
811 
812 	dev = napi->dev;
813 	dev_hold(dev);
814 	rcu_read_unlock();
815 
816 	dev = __netdev_put_lock(dev);
817 	if (!dev)
818 		return NULL;
819 
820 	rcu_read_lock();
821 	napi = netdev_napi_by_id(net, napi_id);
822 	if (napi && napi->dev != dev)
823 		napi = NULL;
824 	rcu_read_unlock();
825 
826 	if (!napi)
827 		netdev_unlock(dev);
828 	return napi;
829 }
830 
831 /**
832  *	__dev_get_by_name	- find a device by its name
833  *	@net: the applicable net namespace
834  *	@name: name to find
835  *
836  *	Find an interface by name. Must be called under RTNL semaphore.
837  *	If the name is found a pointer to the device is returned.
838  *	If the name is not found then %NULL is returned. The
839  *	reference counters are not incremented so the caller must be
840  *	careful with locks.
841  */
842 
843 struct net_device *__dev_get_by_name(struct net *net, const char *name)
844 {
845 	struct netdev_name_node *node_name;
846 
847 	node_name = netdev_name_node_lookup(net, name);
848 	return node_name ? node_name->dev : NULL;
849 }
850 EXPORT_SYMBOL(__dev_get_by_name);
851 
852 /**
853  * dev_get_by_name_rcu	- find a device by its name
854  * @net: the applicable net namespace
855  * @name: name to find
856  *
857  * Find an interface by name.
858  * If the name is found a pointer to the device is returned.
859  * If the name is not found then %NULL is returned.
860  * The reference counters are not incremented so the caller must be
861  * careful with locks. The caller must hold RCU lock.
862  */
863 
864 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
865 {
866 	struct netdev_name_node *node_name;
867 
868 	node_name = netdev_name_node_lookup_rcu(net, name);
869 	return node_name ? node_name->dev : NULL;
870 }
871 EXPORT_SYMBOL(dev_get_by_name_rcu);
872 
873 /* Deprecated for new users, call netdev_get_by_name() instead */
874 struct net_device *dev_get_by_name(struct net *net, const char *name)
875 {
876 	struct net_device *dev;
877 
878 	rcu_read_lock();
879 	dev = dev_get_by_name_rcu(net, name);
880 	dev_hold(dev);
881 	rcu_read_unlock();
882 	return dev;
883 }
884 EXPORT_SYMBOL(dev_get_by_name);
885 
886 /**
887  *	netdev_get_by_name() - find a device by its name
888  *	@net: the applicable net namespace
889  *	@name: name to find
890  *	@tracker: tracking object for the acquired reference
891  *	@gfp: allocation flags for the tracker
892  *
893  *	Find an interface by name. This can be called from any
894  *	context and does its own locking. The returned handle has
895  *	the usage count incremented and the caller must use netdev_put() to
896  *	release it when it is no longer needed. %NULL is returned if no
897  *	matching device is found.
898  */
899 struct net_device *netdev_get_by_name(struct net *net, const char *name,
900 				      netdevice_tracker *tracker, gfp_t gfp)
901 {
902 	struct net_device *dev;
903 
904 	dev = dev_get_by_name(net, name);
905 	if (dev)
906 		netdev_tracker_alloc(dev, tracker, gfp);
907 	return dev;
908 }
909 EXPORT_SYMBOL(netdev_get_by_name);
910 
911 /**
912  *	__dev_get_by_index - find a device by its ifindex
913  *	@net: the applicable net namespace
914  *	@ifindex: index of device
915  *
916  *	Search for an interface by index. Returns %NULL if the device
917  *	is not found or a pointer to the device. The device has not
918  *	had its reference counter increased so the caller must be careful
919  *	about locking. The caller must hold the RTNL semaphore.
920  */
921 
922 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
923 {
924 	struct net_device *dev;
925 	struct hlist_head *head = dev_index_hash(net, ifindex);
926 
927 	hlist_for_each_entry(dev, head, index_hlist)
928 		if (dev->ifindex == ifindex)
929 			return dev;
930 
931 	return NULL;
932 }
933 EXPORT_SYMBOL(__dev_get_by_index);
934 
935 /**
936  *	dev_get_by_index_rcu - find a device by its ifindex
937  *	@net: the applicable net namespace
938  *	@ifindex: index of device
939  *
940  *	Search for an interface by index. Returns %NULL if the device
941  *	is not found or a pointer to the device. The device has not
942  *	had its reference counter increased so the caller must be careful
943  *	about locking. The caller must hold RCU lock.
944  */
945 
946 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
947 {
948 	struct net_device *dev;
949 	struct hlist_head *head = dev_index_hash(net, ifindex);
950 
951 	hlist_for_each_entry_rcu(dev, head, index_hlist)
952 		if (dev->ifindex == ifindex)
953 			return dev;
954 
955 	return NULL;
956 }
957 EXPORT_SYMBOL(dev_get_by_index_rcu);
958 
959 /* Deprecated for new users, call netdev_get_by_index() instead */
960 struct net_device *dev_get_by_index(struct net *net, int ifindex)
961 {
962 	struct net_device *dev;
963 
964 	rcu_read_lock();
965 	dev = dev_get_by_index_rcu(net, ifindex);
966 	dev_hold(dev);
967 	rcu_read_unlock();
968 	return dev;
969 }
970 EXPORT_SYMBOL(dev_get_by_index);
971 
972 /**
973  *	netdev_get_by_index() - find a device by its ifindex
974  *	@net: the applicable net namespace
975  *	@ifindex: index of device
976  *	@tracker: tracking object for the acquired reference
977  *	@gfp: allocation flags for the tracker
978  *
979  *	Search for an interface by index. Returns NULL if the device
980  *	is not found or a pointer to the device. The device returned has
981  *	had a reference added and the pointer is safe until the user calls
982  *	netdev_put() to indicate they have finished with it.
983  */
984 struct net_device *netdev_get_by_index(struct net *net, int ifindex,
985 				       netdevice_tracker *tracker, gfp_t gfp)
986 {
987 	struct net_device *dev;
988 
989 	dev = dev_get_by_index(net, ifindex);
990 	if (dev)
991 		netdev_tracker_alloc(dev, tracker, gfp);
992 	return dev;
993 }
994 EXPORT_SYMBOL(netdev_get_by_index);
995 
996 /**
997  *	dev_get_by_napi_id - find a device by napi_id
998  *	@napi_id: ID of the NAPI struct
999  *
1000  *	Search for an interface by NAPI ID. Returns %NULL if the device
1001  *	is not found or a pointer to the device. The device has not had
1002  *	its reference counter increased so the caller must be careful
1003  *	about locking. The caller must hold RCU lock.
1004  */
1005 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
1006 {
1007 	struct napi_struct *napi;
1008 
1009 	WARN_ON_ONCE(!rcu_read_lock_held());
1010 
1011 	if (!napi_id_valid(napi_id))
1012 		return NULL;
1013 
1014 	napi = napi_by_id(napi_id);
1015 
1016 	return napi ? napi->dev : NULL;
1017 }
1018 
1019 /* Release the held reference on the net_device, and if the net_device
1020  * is still registered try to lock the instance lock. If device is being
1021  * unregistered NULL will be returned (but the reference has been released,
1022  * either way!)
1023  *
1024  * This helper is intended for locking net_device after it has been looked up
1025  * using a lockless lookup helper. Lock prevents the instance from going away.
1026  */
1027 struct net_device *__netdev_put_lock(struct net_device *dev)
1028 {
1029 	netdev_lock(dev);
1030 	if (dev->reg_state > NETREG_REGISTERED) {
1031 		netdev_unlock(dev);
1032 		dev_put(dev);
1033 		return NULL;
1034 	}
1035 	dev_put(dev);
1036 	return dev;
1037 }
1038 
1039 /**
1040  *	netdev_get_by_index_lock() - find a device by its ifindex
1041  *	@net: the applicable net namespace
1042  *	@ifindex: index of device
1043  *
1044  *	Search for an interface by index. If a valid device
1045  *	with @ifindex is found it will be returned with netdev->lock held.
1046  *	netdev_unlock() must be called to release it.
1047  *
1048  *	Return: pointer to a device with lock held, NULL if not found.
1049  */
1050 struct net_device *netdev_get_by_index_lock(struct net *net, int ifindex)
1051 {
1052 	struct net_device *dev;
1053 
1054 	dev = dev_get_by_index(net, ifindex);
1055 	if (!dev)
1056 		return NULL;
1057 
1058 	return __netdev_put_lock(dev);
1059 }
1060 
1061 struct net_device *
1062 netdev_xa_find_lock(struct net *net, struct net_device *dev,
1063 		    unsigned long *index)
1064 {
1065 	if (dev)
1066 		netdev_unlock(dev);
1067 
1068 	do {
1069 		rcu_read_lock();
1070 		dev = xa_find(&net->dev_by_index, index, ULONG_MAX, XA_PRESENT);
1071 		if (!dev) {
1072 			rcu_read_unlock();
1073 			return NULL;
1074 		}
1075 		dev_hold(dev);
1076 		rcu_read_unlock();
1077 
1078 		dev = __netdev_put_lock(dev);
1079 		if (dev)
1080 			return dev;
1081 
1082 		(*index)++;
1083 	} while (true);
1084 }
1085 
1086 static DEFINE_SEQLOCK(netdev_rename_lock);
1087 
1088 void netdev_copy_name(struct net_device *dev, char *name)
1089 {
1090 	unsigned int seq;
1091 
1092 	do {
1093 		seq = read_seqbegin(&netdev_rename_lock);
1094 		strscpy(name, dev->name, IFNAMSIZ);
1095 	} while (read_seqretry(&netdev_rename_lock, seq));
1096 }
1097 
1098 /**
1099  *	netdev_get_name - get a netdevice name, knowing its ifindex.
1100  *	@net: network namespace
1101  *	@name: a pointer to the buffer where the name will be stored.
1102  *	@ifindex: the ifindex of the interface to get the name from.
1103  */
1104 int netdev_get_name(struct net *net, char *name, int ifindex)
1105 {
1106 	struct net_device *dev;
1107 	int ret;
1108 
1109 	rcu_read_lock();
1110 
1111 	dev = dev_get_by_index_rcu(net, ifindex);
1112 	if (!dev) {
1113 		ret = -ENODEV;
1114 		goto out;
1115 	}
1116 
1117 	netdev_copy_name(dev, name);
1118 
1119 	ret = 0;
1120 out:
1121 	rcu_read_unlock();
1122 	return ret;
1123 }
1124 
1125 static bool dev_addr_cmp(struct net_device *dev, unsigned short type,
1126 			 const char *ha)
1127 {
1128 	return dev->type == type && !memcmp(dev->dev_addr, ha, dev->addr_len);
1129 }
1130 
1131 /**
1132  *	dev_getbyhwaddr_rcu - find a device by its hardware address
1133  *	@net: the applicable net namespace
1134  *	@type: media type of device
1135  *	@ha: hardware address
1136  *
1137  *	Search for an interface by MAC address. Returns NULL if the device
1138  *	is not found or a pointer to the device.
1139  *	The caller must hold RCU.
1140  *	The returned device has not had its ref count increased
1141  *	and the caller must therefore be careful about locking
1142  *
1143  */
1144 
1145 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1146 				       const char *ha)
1147 {
1148 	struct net_device *dev;
1149 
1150 	for_each_netdev_rcu(net, dev)
1151 		if (dev_addr_cmp(dev, type, ha))
1152 			return dev;
1153 
1154 	return NULL;
1155 }
1156 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
1157 
1158 /**
1159  * dev_getbyhwaddr() - find a device by its hardware address
1160  * @net: the applicable net namespace
1161  * @type: media type of device
1162  * @ha: hardware address
1163  *
1164  * Similar to dev_getbyhwaddr_rcu(), but the owner needs to hold
1165  * rtnl_lock.
1166  *
1167  * Context: rtnl_lock() must be held.
1168  * Return: pointer to the net_device, or NULL if not found
1169  */
1170 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type,
1171 				   const char *ha)
1172 {
1173 	struct net_device *dev;
1174 
1175 	ASSERT_RTNL();
1176 	for_each_netdev(net, dev)
1177 		if (dev_addr_cmp(dev, type, ha))
1178 			return dev;
1179 
1180 	return NULL;
1181 }
1182 EXPORT_SYMBOL(dev_getbyhwaddr);
1183 
1184 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1185 {
1186 	struct net_device *dev, *ret = NULL;
1187 
1188 	rcu_read_lock();
1189 	for_each_netdev_rcu(net, dev)
1190 		if (dev->type == type) {
1191 			dev_hold(dev);
1192 			ret = dev;
1193 			break;
1194 		}
1195 	rcu_read_unlock();
1196 	return ret;
1197 }
1198 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1199 
1200 /**
1201  *	__dev_get_by_flags - find any device with given flags
1202  *	@net: the applicable net namespace
1203  *	@if_flags: IFF_* values
1204  *	@mask: bitmask of bits in if_flags to check
1205  *
1206  *	Search for any interface with the given flags. Returns NULL if a device
1207  *	is not found or a pointer to the device. Must be called inside
1208  *	rtnl_lock(), and result refcount is unchanged.
1209  */
1210 
1211 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1212 				      unsigned short mask)
1213 {
1214 	struct net_device *dev, *ret;
1215 
1216 	ASSERT_RTNL();
1217 
1218 	ret = NULL;
1219 	for_each_netdev(net, dev) {
1220 		if (((dev->flags ^ if_flags) & mask) == 0) {
1221 			ret = dev;
1222 			break;
1223 		}
1224 	}
1225 	return ret;
1226 }
1227 EXPORT_SYMBOL(__dev_get_by_flags);
1228 
1229 /**
1230  *	dev_valid_name - check if name is okay for network device
1231  *	@name: name string
1232  *
1233  *	Network device names need to be valid file names to
1234  *	allow sysfs to work.  We also disallow any kind of
1235  *	whitespace.
1236  */
1237 bool dev_valid_name(const char *name)
1238 {
1239 	if (*name == '\0')
1240 		return false;
1241 	if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1242 		return false;
1243 	if (!strcmp(name, ".") || !strcmp(name, ".."))
1244 		return false;
1245 
1246 	while (*name) {
1247 		if (*name == '/' || *name == ':' || isspace(*name))
1248 			return false;
1249 		name++;
1250 	}
1251 	return true;
1252 }
1253 EXPORT_SYMBOL(dev_valid_name);
1254 
1255 /**
1256  *	__dev_alloc_name - allocate a name for a device
1257  *	@net: network namespace to allocate the device name in
1258  *	@name: name format string
1259  *	@res: result name string
1260  *
1261  *	Passed a format string - eg "lt%d" it will try and find a suitable
1262  *	id. It scans list of devices to build up a free map, then chooses
1263  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1264  *	while allocating the name and adding the device in order to avoid
1265  *	duplicates.
1266  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1267  *	Returns the number of the unit assigned or a negative errno code.
1268  */
1269 
1270 static int __dev_alloc_name(struct net *net, const char *name, char *res)
1271 {
1272 	int i = 0;
1273 	const char *p;
1274 	const int max_netdevices = 8*PAGE_SIZE;
1275 	unsigned long *inuse;
1276 	struct net_device *d;
1277 	char buf[IFNAMSIZ];
1278 
1279 	/* Verify the string as this thing may have come from the user.
1280 	 * There must be one "%d" and no other "%" characters.
1281 	 */
1282 	p = strchr(name, '%');
1283 	if (!p || p[1] != 'd' || strchr(p + 2, '%'))
1284 		return -EINVAL;
1285 
1286 	/* Use one page as a bit array of possible slots */
1287 	inuse = bitmap_zalloc(max_netdevices, GFP_ATOMIC);
1288 	if (!inuse)
1289 		return -ENOMEM;
1290 
1291 	for_each_netdev(net, d) {
1292 		struct netdev_name_node *name_node;
1293 
1294 		netdev_for_each_altname(d, name_node) {
1295 			if (!sscanf(name_node->name, name, &i))
1296 				continue;
1297 			if (i < 0 || i >= max_netdevices)
1298 				continue;
1299 
1300 			/* avoid cases where sscanf is not exact inverse of printf */
1301 			snprintf(buf, IFNAMSIZ, name, i);
1302 			if (!strncmp(buf, name_node->name, IFNAMSIZ))
1303 				__set_bit(i, inuse);
1304 		}
1305 		if (!sscanf(d->name, name, &i))
1306 			continue;
1307 		if (i < 0 || i >= max_netdevices)
1308 			continue;
1309 
1310 		/* avoid cases where sscanf is not exact inverse of printf */
1311 		snprintf(buf, IFNAMSIZ, name, i);
1312 		if (!strncmp(buf, d->name, IFNAMSIZ))
1313 			__set_bit(i, inuse);
1314 	}
1315 
1316 	i = find_first_zero_bit(inuse, max_netdevices);
1317 	bitmap_free(inuse);
1318 	if (i == max_netdevices)
1319 		return -ENFILE;
1320 
1321 	/* 'res' and 'name' could overlap, use 'buf' as an intermediate buffer */
1322 	strscpy(buf, name, IFNAMSIZ);
1323 	snprintf(res, IFNAMSIZ, buf, i);
1324 	return i;
1325 }
1326 
1327 /* Returns negative errno or allocated unit id (see __dev_alloc_name()) */
1328 static int dev_prep_valid_name(struct net *net, struct net_device *dev,
1329 			       const char *want_name, char *out_name,
1330 			       int dup_errno)
1331 {
1332 	if (!dev_valid_name(want_name))
1333 		return -EINVAL;
1334 
1335 	if (strchr(want_name, '%'))
1336 		return __dev_alloc_name(net, want_name, out_name);
1337 
1338 	if (netdev_name_in_use(net, want_name))
1339 		return -dup_errno;
1340 	if (out_name != want_name)
1341 		strscpy(out_name, want_name, IFNAMSIZ);
1342 	return 0;
1343 }
1344 
1345 /**
1346  *	dev_alloc_name - allocate a name for a device
1347  *	@dev: device
1348  *	@name: name format string
1349  *
1350  *	Passed a format string - eg "lt%d" it will try and find a suitable
1351  *	id. It scans list of devices to build up a free map, then chooses
1352  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1353  *	while allocating the name and adding the device in order to avoid
1354  *	duplicates.
1355  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1356  *	Returns the number of the unit assigned or a negative errno code.
1357  */
1358 
1359 int dev_alloc_name(struct net_device *dev, const char *name)
1360 {
1361 	return dev_prep_valid_name(dev_net(dev), dev, name, dev->name, ENFILE);
1362 }
1363 EXPORT_SYMBOL(dev_alloc_name);
1364 
1365 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1366 			      const char *name)
1367 {
1368 	int ret;
1369 
1370 	ret = dev_prep_valid_name(net, dev, name, dev->name, EEXIST);
1371 	return ret < 0 ? ret : 0;
1372 }
1373 
1374 /**
1375  *	dev_change_name - change name of a device
1376  *	@dev: device
1377  *	@newname: name (or format string) must be at least IFNAMSIZ
1378  *
1379  *	Change name of a device, can pass format strings "eth%d".
1380  *	for wildcarding.
1381  */
1382 int dev_change_name(struct net_device *dev, const char *newname)
1383 {
1384 	struct net *net = dev_net(dev);
1385 	unsigned char old_assign_type;
1386 	char oldname[IFNAMSIZ];
1387 	int err = 0;
1388 	int ret;
1389 
1390 	ASSERT_RTNL_NET(net);
1391 
1392 	if (!strncmp(newname, dev->name, IFNAMSIZ))
1393 		return 0;
1394 
1395 	memcpy(oldname, dev->name, IFNAMSIZ);
1396 
1397 	write_seqlock_bh(&netdev_rename_lock);
1398 	err = dev_get_valid_name(net, dev, newname);
1399 	write_sequnlock_bh(&netdev_rename_lock);
1400 
1401 	if (err < 0)
1402 		return err;
1403 
1404 	if (oldname[0] && !strchr(oldname, '%'))
1405 		netdev_info(dev, "renamed from %s%s\n", oldname,
1406 			    dev->flags & IFF_UP ? " (while UP)" : "");
1407 
1408 	old_assign_type = dev->name_assign_type;
1409 	WRITE_ONCE(dev->name_assign_type, NET_NAME_RENAMED);
1410 
1411 rollback:
1412 	ret = device_rename(&dev->dev, dev->name);
1413 	if (ret) {
1414 		write_seqlock_bh(&netdev_rename_lock);
1415 		memcpy(dev->name, oldname, IFNAMSIZ);
1416 		write_sequnlock_bh(&netdev_rename_lock);
1417 		WRITE_ONCE(dev->name_assign_type, old_assign_type);
1418 		return ret;
1419 	}
1420 
1421 	netdev_adjacent_rename_links(dev, oldname);
1422 
1423 	netdev_name_node_del(dev->name_node);
1424 
1425 	synchronize_net();
1426 
1427 	netdev_name_node_add(net, dev->name_node);
1428 
1429 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1430 	ret = notifier_to_errno(ret);
1431 
1432 	if (ret) {
1433 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1434 		if (err >= 0) {
1435 			err = ret;
1436 			write_seqlock_bh(&netdev_rename_lock);
1437 			memcpy(dev->name, oldname, IFNAMSIZ);
1438 			write_sequnlock_bh(&netdev_rename_lock);
1439 			memcpy(oldname, newname, IFNAMSIZ);
1440 			WRITE_ONCE(dev->name_assign_type, old_assign_type);
1441 			old_assign_type = NET_NAME_RENAMED;
1442 			goto rollback;
1443 		} else {
1444 			netdev_err(dev, "name change rollback failed: %d\n",
1445 				   ret);
1446 		}
1447 	}
1448 
1449 	return err;
1450 }
1451 
1452 /**
1453  *	dev_set_alias - change ifalias of a device
1454  *	@dev: device
1455  *	@alias: name up to IFALIASZ
1456  *	@len: limit of bytes to copy from info
1457  *
1458  *	Set ifalias for a device,
1459  */
1460 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1461 {
1462 	struct dev_ifalias *new_alias = NULL;
1463 
1464 	if (len >= IFALIASZ)
1465 		return -EINVAL;
1466 
1467 	if (len) {
1468 		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1469 		if (!new_alias)
1470 			return -ENOMEM;
1471 
1472 		memcpy(new_alias->ifalias, alias, len);
1473 		new_alias->ifalias[len] = 0;
1474 	}
1475 
1476 	mutex_lock(&ifalias_mutex);
1477 	new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1478 					mutex_is_locked(&ifalias_mutex));
1479 	mutex_unlock(&ifalias_mutex);
1480 
1481 	if (new_alias)
1482 		kfree_rcu(new_alias, rcuhead);
1483 
1484 	return len;
1485 }
1486 EXPORT_SYMBOL(dev_set_alias);
1487 
1488 /**
1489  *	dev_get_alias - get ifalias of a device
1490  *	@dev: device
1491  *	@name: buffer to store name of ifalias
1492  *	@len: size of buffer
1493  *
1494  *	get ifalias for a device.  Caller must make sure dev cannot go
1495  *	away,  e.g. rcu read lock or own a reference count to device.
1496  */
1497 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1498 {
1499 	const struct dev_ifalias *alias;
1500 	int ret = 0;
1501 
1502 	rcu_read_lock();
1503 	alias = rcu_dereference(dev->ifalias);
1504 	if (alias)
1505 		ret = snprintf(name, len, "%s", alias->ifalias);
1506 	rcu_read_unlock();
1507 
1508 	return ret;
1509 }
1510 
1511 /**
1512  *	netdev_features_change - device changes features
1513  *	@dev: device to cause notification
1514  *
1515  *	Called to indicate a device has changed features.
1516  */
1517 void netdev_features_change(struct net_device *dev)
1518 {
1519 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1520 }
1521 EXPORT_SYMBOL(netdev_features_change);
1522 
1523 /**
1524  *	netdev_state_change - device changes state
1525  *	@dev: device to cause notification
1526  *
1527  *	Called to indicate a device has changed state. This function calls
1528  *	the notifier chains for netdev_chain and sends a NEWLINK message
1529  *	to the routing socket.
1530  */
1531 void netdev_state_change(struct net_device *dev)
1532 {
1533 	if (dev->flags & IFF_UP) {
1534 		struct netdev_notifier_change_info change_info = {
1535 			.info.dev = dev,
1536 		};
1537 
1538 		call_netdevice_notifiers_info(NETDEV_CHANGE,
1539 					      &change_info.info);
1540 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL, 0, NULL);
1541 	}
1542 }
1543 EXPORT_SYMBOL(netdev_state_change);
1544 
1545 /**
1546  * __netdev_notify_peers - notify network peers about existence of @dev,
1547  * to be called when rtnl lock is already held.
1548  * @dev: network device
1549  *
1550  * Generate traffic such that interested network peers are aware of
1551  * @dev, such as by generating a gratuitous ARP. This may be used when
1552  * a device wants to inform the rest of the network about some sort of
1553  * reconfiguration such as a failover event or virtual machine
1554  * migration.
1555  */
1556 void __netdev_notify_peers(struct net_device *dev)
1557 {
1558 	ASSERT_RTNL();
1559 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1560 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1561 }
1562 EXPORT_SYMBOL(__netdev_notify_peers);
1563 
1564 /**
1565  * netdev_notify_peers - notify network peers about existence of @dev
1566  * @dev: network device
1567  *
1568  * Generate traffic such that interested network peers are aware of
1569  * @dev, such as by generating a gratuitous ARP. This may be used when
1570  * a device wants to inform the rest of the network about some sort of
1571  * reconfiguration such as a failover event or virtual machine
1572  * migration.
1573  */
1574 void netdev_notify_peers(struct net_device *dev)
1575 {
1576 	rtnl_lock();
1577 	__netdev_notify_peers(dev);
1578 	rtnl_unlock();
1579 }
1580 EXPORT_SYMBOL(netdev_notify_peers);
1581 
1582 static int napi_threaded_poll(void *data);
1583 
1584 static int napi_kthread_create(struct napi_struct *n)
1585 {
1586 	int err = 0;
1587 
1588 	/* Create and wake up the kthread once to put it in
1589 	 * TASK_INTERRUPTIBLE mode to avoid the blocked task
1590 	 * warning and work with loadavg.
1591 	 */
1592 	n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1593 				n->dev->name, n->napi_id);
1594 	if (IS_ERR(n->thread)) {
1595 		err = PTR_ERR(n->thread);
1596 		pr_err("kthread_run failed with err %d\n", err);
1597 		n->thread = NULL;
1598 	}
1599 
1600 	return err;
1601 }
1602 
1603 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1604 {
1605 	const struct net_device_ops *ops = dev->netdev_ops;
1606 	int ret;
1607 
1608 	ASSERT_RTNL();
1609 	dev_addr_check(dev);
1610 
1611 	if (!netif_device_present(dev)) {
1612 		/* may be detached because parent is runtime-suspended */
1613 		if (dev->dev.parent)
1614 			pm_runtime_resume(dev->dev.parent);
1615 		if (!netif_device_present(dev))
1616 			return -ENODEV;
1617 	}
1618 
1619 	/* Block netpoll from trying to do any rx path servicing.
1620 	 * If we don't do this there is a chance ndo_poll_controller
1621 	 * or ndo_poll may be running while we open the device
1622 	 */
1623 	netpoll_poll_disable(dev);
1624 
1625 	ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1626 	ret = notifier_to_errno(ret);
1627 	if (ret)
1628 		return ret;
1629 
1630 	set_bit(__LINK_STATE_START, &dev->state);
1631 
1632 	if (ops->ndo_validate_addr)
1633 		ret = ops->ndo_validate_addr(dev);
1634 
1635 	if (!ret && ops->ndo_open)
1636 		ret = ops->ndo_open(dev);
1637 
1638 	netpoll_poll_enable(dev);
1639 
1640 	if (ret)
1641 		clear_bit(__LINK_STATE_START, &dev->state);
1642 	else {
1643 		netif_set_up(dev, true);
1644 		dev_set_rx_mode(dev);
1645 		dev_activate(dev);
1646 		add_device_randomness(dev->dev_addr, dev->addr_len);
1647 	}
1648 
1649 	return ret;
1650 }
1651 
1652 /**
1653  *	dev_open	- prepare an interface for use.
1654  *	@dev: device to open
1655  *	@extack: netlink extended ack
1656  *
1657  *	Takes a device from down to up state. The device's private open
1658  *	function is invoked and then the multicast lists are loaded. Finally
1659  *	the device is moved into the up state and a %NETDEV_UP message is
1660  *	sent to the netdev notifier chain.
1661  *
1662  *	Calling this function on an active interface is a nop. On a failure
1663  *	a negative errno code is returned.
1664  */
1665 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1666 {
1667 	int ret;
1668 
1669 	if (dev->flags & IFF_UP)
1670 		return 0;
1671 
1672 	ret = __dev_open(dev, extack);
1673 	if (ret < 0)
1674 		return ret;
1675 
1676 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1677 	call_netdevice_notifiers(NETDEV_UP, dev);
1678 
1679 	return ret;
1680 }
1681 EXPORT_SYMBOL(dev_open);
1682 
1683 static void __dev_close_many(struct list_head *head)
1684 {
1685 	struct net_device *dev;
1686 
1687 	ASSERT_RTNL();
1688 	might_sleep();
1689 
1690 	list_for_each_entry(dev, head, close_list) {
1691 		/* Temporarily disable netpoll until the interface is down */
1692 		netpoll_poll_disable(dev);
1693 
1694 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1695 
1696 		clear_bit(__LINK_STATE_START, &dev->state);
1697 
1698 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1699 		 * can be even on different cpu. So just clear netif_running().
1700 		 *
1701 		 * dev->stop() will invoke napi_disable() on all of it's
1702 		 * napi_struct instances on this device.
1703 		 */
1704 		smp_mb__after_atomic(); /* Commit netif_running(). */
1705 	}
1706 
1707 	dev_deactivate_many(head);
1708 
1709 	list_for_each_entry(dev, head, close_list) {
1710 		const struct net_device_ops *ops = dev->netdev_ops;
1711 
1712 		/*
1713 		 *	Call the device specific close. This cannot fail.
1714 		 *	Only if device is UP
1715 		 *
1716 		 *	We allow it to be called even after a DETACH hot-plug
1717 		 *	event.
1718 		 */
1719 		if (ops->ndo_stop)
1720 			ops->ndo_stop(dev);
1721 
1722 		netif_set_up(dev, false);
1723 		netpoll_poll_enable(dev);
1724 	}
1725 }
1726 
1727 static void __dev_close(struct net_device *dev)
1728 {
1729 	LIST_HEAD(single);
1730 
1731 	list_add(&dev->close_list, &single);
1732 	__dev_close_many(&single);
1733 	list_del(&single);
1734 }
1735 
1736 void dev_close_many(struct list_head *head, bool unlink)
1737 {
1738 	struct net_device *dev, *tmp;
1739 
1740 	/* Remove the devices that don't need to be closed */
1741 	list_for_each_entry_safe(dev, tmp, head, close_list)
1742 		if (!(dev->flags & IFF_UP))
1743 			list_del_init(&dev->close_list);
1744 
1745 	__dev_close_many(head);
1746 
1747 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1748 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1749 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1750 		if (unlink)
1751 			list_del_init(&dev->close_list);
1752 	}
1753 }
1754 EXPORT_SYMBOL(dev_close_many);
1755 
1756 /**
1757  *	dev_close - shutdown an interface.
1758  *	@dev: device to shutdown
1759  *
1760  *	This function moves an active device into down state. A
1761  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1762  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1763  *	chain.
1764  */
1765 void dev_close(struct net_device *dev)
1766 {
1767 	if (dev->flags & IFF_UP) {
1768 		LIST_HEAD(single);
1769 
1770 		list_add(&dev->close_list, &single);
1771 		dev_close_many(&single, true);
1772 		list_del(&single);
1773 	}
1774 }
1775 EXPORT_SYMBOL(dev_close);
1776 
1777 
1778 /**
1779  *	dev_disable_lro - disable Large Receive Offload on a device
1780  *	@dev: device
1781  *
1782  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1783  *	called under RTNL.  This is needed if received packets may be
1784  *	forwarded to another interface.
1785  */
1786 void dev_disable_lro(struct net_device *dev)
1787 {
1788 	struct net_device *lower_dev;
1789 	struct list_head *iter;
1790 
1791 	dev->wanted_features &= ~NETIF_F_LRO;
1792 	netdev_update_features(dev);
1793 
1794 	if (unlikely(dev->features & NETIF_F_LRO))
1795 		netdev_WARN(dev, "failed to disable LRO!\n");
1796 
1797 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1798 		dev_disable_lro(lower_dev);
1799 }
1800 EXPORT_SYMBOL(dev_disable_lro);
1801 
1802 /**
1803  *	dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1804  *	@dev: device
1805  *
1806  *	Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1807  *	called under RTNL.  This is needed if Generic XDP is installed on
1808  *	the device.
1809  */
1810 static void dev_disable_gro_hw(struct net_device *dev)
1811 {
1812 	dev->wanted_features &= ~NETIF_F_GRO_HW;
1813 	netdev_update_features(dev);
1814 
1815 	if (unlikely(dev->features & NETIF_F_GRO_HW))
1816 		netdev_WARN(dev, "failed to disable GRO_HW!\n");
1817 }
1818 
1819 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1820 {
1821 #define N(val) 						\
1822 	case NETDEV_##val:				\
1823 		return "NETDEV_" __stringify(val);
1824 	switch (cmd) {
1825 	N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1826 	N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1827 	N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1828 	N(POST_INIT) N(PRE_UNINIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN)
1829 	N(CHANGEUPPER) N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA)
1830 	N(BONDING_INFO) N(PRECHANGEUPPER) N(CHANGELOWERSTATE)
1831 	N(UDP_TUNNEL_PUSH_INFO) N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1832 	N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1833 	N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1834 	N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE)
1835 	N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA)
1836 	N(XDP_FEAT_CHANGE)
1837 	}
1838 #undef N
1839 	return "UNKNOWN_NETDEV_EVENT";
1840 }
1841 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1842 
1843 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1844 				   struct net_device *dev)
1845 {
1846 	struct netdev_notifier_info info = {
1847 		.dev = dev,
1848 	};
1849 
1850 	return nb->notifier_call(nb, val, &info);
1851 }
1852 
1853 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1854 					     struct net_device *dev)
1855 {
1856 	int err;
1857 
1858 	err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1859 	err = notifier_to_errno(err);
1860 	if (err)
1861 		return err;
1862 
1863 	if (!(dev->flags & IFF_UP))
1864 		return 0;
1865 
1866 	call_netdevice_notifier(nb, NETDEV_UP, dev);
1867 	return 0;
1868 }
1869 
1870 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1871 						struct net_device *dev)
1872 {
1873 	if (dev->flags & IFF_UP) {
1874 		call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1875 					dev);
1876 		call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1877 	}
1878 	call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1879 }
1880 
1881 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1882 						 struct net *net)
1883 {
1884 	struct net_device *dev;
1885 	int err;
1886 
1887 	for_each_netdev(net, dev) {
1888 		err = call_netdevice_register_notifiers(nb, dev);
1889 		if (err)
1890 			goto rollback;
1891 	}
1892 	return 0;
1893 
1894 rollback:
1895 	for_each_netdev_continue_reverse(net, dev)
1896 		call_netdevice_unregister_notifiers(nb, dev);
1897 	return err;
1898 }
1899 
1900 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1901 						    struct net *net)
1902 {
1903 	struct net_device *dev;
1904 
1905 	for_each_netdev(net, dev)
1906 		call_netdevice_unregister_notifiers(nb, dev);
1907 }
1908 
1909 static int dev_boot_phase = 1;
1910 
1911 /**
1912  * register_netdevice_notifier - register a network notifier block
1913  * @nb: notifier
1914  *
1915  * Register a notifier to be called when network device events occur.
1916  * The notifier passed is linked into the kernel structures and must
1917  * not be reused until it has been unregistered. A negative errno code
1918  * is returned on a failure.
1919  *
1920  * When registered all registration and up events are replayed
1921  * to the new notifier to allow device to have a race free
1922  * view of the network device list.
1923  */
1924 
1925 int register_netdevice_notifier(struct notifier_block *nb)
1926 {
1927 	struct net *net;
1928 	int err;
1929 
1930 	/* Close race with setup_net() and cleanup_net() */
1931 	down_write(&pernet_ops_rwsem);
1932 
1933 	/* When RTNL is removed, we need protection for netdev_chain. */
1934 	rtnl_lock();
1935 
1936 	err = raw_notifier_chain_register(&netdev_chain, nb);
1937 	if (err)
1938 		goto unlock;
1939 	if (dev_boot_phase)
1940 		goto unlock;
1941 	for_each_net(net) {
1942 		__rtnl_net_lock(net);
1943 		err = call_netdevice_register_net_notifiers(nb, net);
1944 		__rtnl_net_unlock(net);
1945 		if (err)
1946 			goto rollback;
1947 	}
1948 
1949 unlock:
1950 	rtnl_unlock();
1951 	up_write(&pernet_ops_rwsem);
1952 	return err;
1953 
1954 rollback:
1955 	for_each_net_continue_reverse(net) {
1956 		__rtnl_net_lock(net);
1957 		call_netdevice_unregister_net_notifiers(nb, net);
1958 		__rtnl_net_unlock(net);
1959 	}
1960 
1961 	raw_notifier_chain_unregister(&netdev_chain, nb);
1962 	goto unlock;
1963 }
1964 EXPORT_SYMBOL(register_netdevice_notifier);
1965 
1966 /**
1967  * unregister_netdevice_notifier - unregister a network notifier block
1968  * @nb: notifier
1969  *
1970  * Unregister a notifier previously registered by
1971  * register_netdevice_notifier(). The notifier is unlinked into the
1972  * kernel structures and may then be reused. A negative errno code
1973  * is returned on a failure.
1974  *
1975  * After unregistering unregister and down device events are synthesized
1976  * for all devices on the device list to the removed notifier to remove
1977  * the need for special case cleanup code.
1978  */
1979 
1980 int unregister_netdevice_notifier(struct notifier_block *nb)
1981 {
1982 	struct net *net;
1983 	int err;
1984 
1985 	/* Close race with setup_net() and cleanup_net() */
1986 	down_write(&pernet_ops_rwsem);
1987 	rtnl_lock();
1988 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1989 	if (err)
1990 		goto unlock;
1991 
1992 	for_each_net(net) {
1993 		__rtnl_net_lock(net);
1994 		call_netdevice_unregister_net_notifiers(nb, net);
1995 		__rtnl_net_unlock(net);
1996 	}
1997 
1998 unlock:
1999 	rtnl_unlock();
2000 	up_write(&pernet_ops_rwsem);
2001 	return err;
2002 }
2003 EXPORT_SYMBOL(unregister_netdevice_notifier);
2004 
2005 static int __register_netdevice_notifier_net(struct net *net,
2006 					     struct notifier_block *nb,
2007 					     bool ignore_call_fail)
2008 {
2009 	int err;
2010 
2011 	err = raw_notifier_chain_register(&net->netdev_chain, nb);
2012 	if (err)
2013 		return err;
2014 	if (dev_boot_phase)
2015 		return 0;
2016 
2017 	err = call_netdevice_register_net_notifiers(nb, net);
2018 	if (err && !ignore_call_fail)
2019 		goto chain_unregister;
2020 
2021 	return 0;
2022 
2023 chain_unregister:
2024 	raw_notifier_chain_unregister(&net->netdev_chain, nb);
2025 	return err;
2026 }
2027 
2028 static int __unregister_netdevice_notifier_net(struct net *net,
2029 					       struct notifier_block *nb)
2030 {
2031 	int err;
2032 
2033 	err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
2034 	if (err)
2035 		return err;
2036 
2037 	call_netdevice_unregister_net_notifiers(nb, net);
2038 	return 0;
2039 }
2040 
2041 /**
2042  * register_netdevice_notifier_net - register a per-netns network notifier block
2043  * @net: network namespace
2044  * @nb: notifier
2045  *
2046  * Register a notifier to be called when network device events occur.
2047  * The notifier passed is linked into the kernel structures and must
2048  * not be reused until it has been unregistered. A negative errno code
2049  * is returned on a failure.
2050  *
2051  * When registered all registration and up events are replayed
2052  * to the new notifier to allow device to have a race free
2053  * view of the network device list.
2054  */
2055 
2056 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
2057 {
2058 	int err;
2059 
2060 	rtnl_net_lock(net);
2061 	err = __register_netdevice_notifier_net(net, nb, false);
2062 	rtnl_net_unlock(net);
2063 
2064 	return err;
2065 }
2066 EXPORT_SYMBOL(register_netdevice_notifier_net);
2067 
2068 /**
2069  * unregister_netdevice_notifier_net - unregister a per-netns
2070  *                                     network notifier block
2071  * @net: network namespace
2072  * @nb: notifier
2073  *
2074  * Unregister a notifier previously registered by
2075  * register_netdevice_notifier_net(). The notifier is unlinked from the
2076  * kernel structures and may then be reused. A negative errno code
2077  * is returned on a failure.
2078  *
2079  * After unregistering unregister and down device events are synthesized
2080  * for all devices on the device list to the removed notifier to remove
2081  * the need for special case cleanup code.
2082  */
2083 
2084 int unregister_netdevice_notifier_net(struct net *net,
2085 				      struct notifier_block *nb)
2086 {
2087 	int err;
2088 
2089 	rtnl_net_lock(net);
2090 	err = __unregister_netdevice_notifier_net(net, nb);
2091 	rtnl_net_unlock(net);
2092 
2093 	return err;
2094 }
2095 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
2096 
2097 static void __move_netdevice_notifier_net(struct net *src_net,
2098 					  struct net *dst_net,
2099 					  struct notifier_block *nb)
2100 {
2101 	__unregister_netdevice_notifier_net(src_net, nb);
2102 	__register_netdevice_notifier_net(dst_net, nb, true);
2103 }
2104 
2105 static void rtnl_net_dev_lock(struct net_device *dev)
2106 {
2107 	bool again;
2108 
2109 	do {
2110 		struct net *net;
2111 
2112 		again = false;
2113 
2114 		/* netns might be being dismantled. */
2115 		rcu_read_lock();
2116 		net = dev_net_rcu(dev);
2117 		net_passive_inc(net);
2118 		rcu_read_unlock();
2119 
2120 		rtnl_net_lock(net);
2121 
2122 #ifdef CONFIG_NET_NS
2123 		/* dev might have been moved to another netns. */
2124 		if (!net_eq(net, rcu_access_pointer(dev->nd_net.net))) {
2125 			rtnl_net_unlock(net);
2126 			net_passive_dec(net);
2127 			again = true;
2128 		}
2129 #endif
2130 	} while (again);
2131 }
2132 
2133 static void rtnl_net_dev_unlock(struct net_device *dev)
2134 {
2135 	struct net *net = dev_net(dev);
2136 
2137 	rtnl_net_unlock(net);
2138 	net_passive_dec(net);
2139 }
2140 
2141 int register_netdevice_notifier_dev_net(struct net_device *dev,
2142 					struct notifier_block *nb,
2143 					struct netdev_net_notifier *nn)
2144 {
2145 	int err;
2146 
2147 	rtnl_net_dev_lock(dev);
2148 	err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
2149 	if (!err) {
2150 		nn->nb = nb;
2151 		list_add(&nn->list, &dev->net_notifier_list);
2152 	}
2153 	rtnl_net_dev_unlock(dev);
2154 
2155 	return err;
2156 }
2157 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
2158 
2159 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2160 					  struct notifier_block *nb,
2161 					  struct netdev_net_notifier *nn)
2162 {
2163 	int err;
2164 
2165 	rtnl_net_dev_lock(dev);
2166 	list_del(&nn->list);
2167 	err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
2168 	rtnl_net_dev_unlock(dev);
2169 
2170 	return err;
2171 }
2172 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
2173 
2174 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
2175 					     struct net *net)
2176 {
2177 	struct netdev_net_notifier *nn;
2178 
2179 	list_for_each_entry(nn, &dev->net_notifier_list, list)
2180 		__move_netdevice_notifier_net(dev_net(dev), net, nn->nb);
2181 }
2182 
2183 /**
2184  *	call_netdevice_notifiers_info - call all network notifier blocks
2185  *	@val: value passed unmodified to notifier function
2186  *	@info: notifier information data
2187  *
2188  *	Call all network notifier blocks.  Parameters and return value
2189  *	are as for raw_notifier_call_chain().
2190  */
2191 
2192 int call_netdevice_notifiers_info(unsigned long val,
2193 				  struct netdev_notifier_info *info)
2194 {
2195 	struct net *net = dev_net(info->dev);
2196 	int ret;
2197 
2198 	ASSERT_RTNL();
2199 
2200 	/* Run per-netns notifier block chain first, then run the global one.
2201 	 * Hopefully, one day, the global one is going to be removed after
2202 	 * all notifier block registrators get converted to be per-netns.
2203 	 */
2204 	ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
2205 	if (ret & NOTIFY_STOP_MASK)
2206 		return ret;
2207 	return raw_notifier_call_chain(&netdev_chain, val, info);
2208 }
2209 
2210 /**
2211  *	call_netdevice_notifiers_info_robust - call per-netns notifier blocks
2212  *	                                       for and rollback on error
2213  *	@val_up: value passed unmodified to notifier function
2214  *	@val_down: value passed unmodified to the notifier function when
2215  *	           recovering from an error on @val_up
2216  *	@info: notifier information data
2217  *
2218  *	Call all per-netns network notifier blocks, but not notifier blocks on
2219  *	the global notifier chain. Parameters and return value are as for
2220  *	raw_notifier_call_chain_robust().
2221  */
2222 
2223 static int
2224 call_netdevice_notifiers_info_robust(unsigned long val_up,
2225 				     unsigned long val_down,
2226 				     struct netdev_notifier_info *info)
2227 {
2228 	struct net *net = dev_net(info->dev);
2229 
2230 	ASSERT_RTNL();
2231 
2232 	return raw_notifier_call_chain_robust(&net->netdev_chain,
2233 					      val_up, val_down, info);
2234 }
2235 
2236 static int call_netdevice_notifiers_extack(unsigned long val,
2237 					   struct net_device *dev,
2238 					   struct netlink_ext_ack *extack)
2239 {
2240 	struct netdev_notifier_info info = {
2241 		.dev = dev,
2242 		.extack = extack,
2243 	};
2244 
2245 	return call_netdevice_notifiers_info(val, &info);
2246 }
2247 
2248 /**
2249  *	call_netdevice_notifiers - call all network notifier blocks
2250  *      @val: value passed unmodified to notifier function
2251  *      @dev: net_device pointer passed unmodified to notifier function
2252  *
2253  *	Call all network notifier blocks.  Parameters and return value
2254  *	are as for raw_notifier_call_chain().
2255  */
2256 
2257 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2258 {
2259 	return call_netdevice_notifiers_extack(val, dev, NULL);
2260 }
2261 EXPORT_SYMBOL(call_netdevice_notifiers);
2262 
2263 /**
2264  *	call_netdevice_notifiers_mtu - call all network notifier blocks
2265  *	@val: value passed unmodified to notifier function
2266  *	@dev: net_device pointer passed unmodified to notifier function
2267  *	@arg: additional u32 argument passed to the notifier function
2268  *
2269  *	Call all network notifier blocks.  Parameters and return value
2270  *	are as for raw_notifier_call_chain().
2271  */
2272 static int call_netdevice_notifiers_mtu(unsigned long val,
2273 					struct net_device *dev, u32 arg)
2274 {
2275 	struct netdev_notifier_info_ext info = {
2276 		.info.dev = dev,
2277 		.ext.mtu = arg,
2278 	};
2279 
2280 	BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2281 
2282 	return call_netdevice_notifiers_info(val, &info.info);
2283 }
2284 
2285 #ifdef CONFIG_NET_INGRESS
2286 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2287 
2288 void net_inc_ingress_queue(void)
2289 {
2290 	static_branch_inc(&ingress_needed_key);
2291 }
2292 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2293 
2294 void net_dec_ingress_queue(void)
2295 {
2296 	static_branch_dec(&ingress_needed_key);
2297 }
2298 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2299 #endif
2300 
2301 #ifdef CONFIG_NET_EGRESS
2302 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2303 
2304 void net_inc_egress_queue(void)
2305 {
2306 	static_branch_inc(&egress_needed_key);
2307 }
2308 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2309 
2310 void net_dec_egress_queue(void)
2311 {
2312 	static_branch_dec(&egress_needed_key);
2313 }
2314 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2315 #endif
2316 
2317 #ifdef CONFIG_NET_CLS_ACT
2318 DEFINE_STATIC_KEY_FALSE(tcf_sw_enabled_key);
2319 EXPORT_SYMBOL(tcf_sw_enabled_key);
2320 #endif
2321 
2322 DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2323 EXPORT_SYMBOL(netstamp_needed_key);
2324 #ifdef CONFIG_JUMP_LABEL
2325 static atomic_t netstamp_needed_deferred;
2326 static atomic_t netstamp_wanted;
2327 static void netstamp_clear(struct work_struct *work)
2328 {
2329 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2330 	int wanted;
2331 
2332 	wanted = atomic_add_return(deferred, &netstamp_wanted);
2333 	if (wanted > 0)
2334 		static_branch_enable(&netstamp_needed_key);
2335 	else
2336 		static_branch_disable(&netstamp_needed_key);
2337 }
2338 static DECLARE_WORK(netstamp_work, netstamp_clear);
2339 #endif
2340 
2341 void net_enable_timestamp(void)
2342 {
2343 #ifdef CONFIG_JUMP_LABEL
2344 	int wanted = atomic_read(&netstamp_wanted);
2345 
2346 	while (wanted > 0) {
2347 		if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted + 1))
2348 			return;
2349 	}
2350 	atomic_inc(&netstamp_needed_deferred);
2351 	schedule_work(&netstamp_work);
2352 #else
2353 	static_branch_inc(&netstamp_needed_key);
2354 #endif
2355 }
2356 EXPORT_SYMBOL(net_enable_timestamp);
2357 
2358 void net_disable_timestamp(void)
2359 {
2360 #ifdef CONFIG_JUMP_LABEL
2361 	int wanted = atomic_read(&netstamp_wanted);
2362 
2363 	while (wanted > 1) {
2364 		if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted - 1))
2365 			return;
2366 	}
2367 	atomic_dec(&netstamp_needed_deferred);
2368 	schedule_work(&netstamp_work);
2369 #else
2370 	static_branch_dec(&netstamp_needed_key);
2371 #endif
2372 }
2373 EXPORT_SYMBOL(net_disable_timestamp);
2374 
2375 static inline void net_timestamp_set(struct sk_buff *skb)
2376 {
2377 	skb->tstamp = 0;
2378 	skb->tstamp_type = SKB_CLOCK_REALTIME;
2379 	if (static_branch_unlikely(&netstamp_needed_key))
2380 		skb->tstamp = ktime_get_real();
2381 }
2382 
2383 #define net_timestamp_check(COND, SKB)				\
2384 	if (static_branch_unlikely(&netstamp_needed_key)) {	\
2385 		if ((COND) && !(SKB)->tstamp)			\
2386 			(SKB)->tstamp = ktime_get_real();	\
2387 	}							\
2388 
2389 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2390 {
2391 	return __is_skb_forwardable(dev, skb, true);
2392 }
2393 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2394 
2395 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2396 			      bool check_mtu)
2397 {
2398 	int ret = ____dev_forward_skb(dev, skb, check_mtu);
2399 
2400 	if (likely(!ret)) {
2401 		skb->protocol = eth_type_trans(skb, dev);
2402 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2403 	}
2404 
2405 	return ret;
2406 }
2407 
2408 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2409 {
2410 	return __dev_forward_skb2(dev, skb, true);
2411 }
2412 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2413 
2414 /**
2415  * dev_forward_skb - loopback an skb to another netif
2416  *
2417  * @dev: destination network device
2418  * @skb: buffer to forward
2419  *
2420  * return values:
2421  *	NET_RX_SUCCESS	(no congestion)
2422  *	NET_RX_DROP     (packet was dropped, but freed)
2423  *
2424  * dev_forward_skb can be used for injecting an skb from the
2425  * start_xmit function of one device into the receive queue
2426  * of another device.
2427  *
2428  * The receiving device may be in another namespace, so
2429  * we have to clear all information in the skb that could
2430  * impact namespace isolation.
2431  */
2432 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2433 {
2434 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2435 }
2436 EXPORT_SYMBOL_GPL(dev_forward_skb);
2437 
2438 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2439 {
2440 	return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2441 }
2442 
2443 static inline int deliver_skb(struct sk_buff *skb,
2444 			      struct packet_type *pt_prev,
2445 			      struct net_device *orig_dev)
2446 {
2447 	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2448 		return -ENOMEM;
2449 	refcount_inc(&skb->users);
2450 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2451 }
2452 
2453 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2454 					  struct packet_type **pt,
2455 					  struct net_device *orig_dev,
2456 					  __be16 type,
2457 					  struct list_head *ptype_list)
2458 {
2459 	struct packet_type *ptype, *pt_prev = *pt;
2460 
2461 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2462 		if (ptype->type != type)
2463 			continue;
2464 		if (pt_prev)
2465 			deliver_skb(skb, pt_prev, orig_dev);
2466 		pt_prev = ptype;
2467 	}
2468 	*pt = pt_prev;
2469 }
2470 
2471 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2472 {
2473 	if (!ptype->af_packet_priv || !skb->sk)
2474 		return false;
2475 
2476 	if (ptype->id_match)
2477 		return ptype->id_match(ptype, skb->sk);
2478 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2479 		return true;
2480 
2481 	return false;
2482 }
2483 
2484 /**
2485  * dev_nit_active - return true if any network interface taps are in use
2486  *
2487  * @dev: network device to check for the presence of taps
2488  */
2489 bool dev_nit_active(struct net_device *dev)
2490 {
2491 	return !list_empty(&net_hotdata.ptype_all) ||
2492 	       !list_empty(&dev->ptype_all);
2493 }
2494 EXPORT_SYMBOL_GPL(dev_nit_active);
2495 
2496 /*
2497  *	Support routine. Sends outgoing frames to any network
2498  *	taps currently in use.
2499  */
2500 
2501 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2502 {
2503 	struct list_head *ptype_list = &net_hotdata.ptype_all;
2504 	struct packet_type *ptype, *pt_prev = NULL;
2505 	struct sk_buff *skb2 = NULL;
2506 
2507 	rcu_read_lock();
2508 again:
2509 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2510 		if (READ_ONCE(ptype->ignore_outgoing))
2511 			continue;
2512 
2513 		/* Never send packets back to the socket
2514 		 * they originated from - MvS (miquels@drinkel.ow.org)
2515 		 */
2516 		if (skb_loop_sk(ptype, skb))
2517 			continue;
2518 
2519 		if (pt_prev) {
2520 			deliver_skb(skb2, pt_prev, skb->dev);
2521 			pt_prev = ptype;
2522 			continue;
2523 		}
2524 
2525 		/* need to clone skb, done only once */
2526 		skb2 = skb_clone(skb, GFP_ATOMIC);
2527 		if (!skb2)
2528 			goto out_unlock;
2529 
2530 		net_timestamp_set(skb2);
2531 
2532 		/* skb->nh should be correctly
2533 		 * set by sender, so that the second statement is
2534 		 * just protection against buggy protocols.
2535 		 */
2536 		skb_reset_mac_header(skb2);
2537 
2538 		if (skb_network_header(skb2) < skb2->data ||
2539 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2540 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2541 					     ntohs(skb2->protocol),
2542 					     dev->name);
2543 			skb_reset_network_header(skb2);
2544 		}
2545 
2546 		skb2->transport_header = skb2->network_header;
2547 		skb2->pkt_type = PACKET_OUTGOING;
2548 		pt_prev = ptype;
2549 	}
2550 
2551 	if (ptype_list == &net_hotdata.ptype_all) {
2552 		ptype_list = &dev->ptype_all;
2553 		goto again;
2554 	}
2555 out_unlock:
2556 	if (pt_prev) {
2557 		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2558 			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2559 		else
2560 			kfree_skb(skb2);
2561 	}
2562 	rcu_read_unlock();
2563 }
2564 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2565 
2566 /**
2567  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2568  * @dev: Network device
2569  * @txq: number of queues available
2570  *
2571  * If real_num_tx_queues is changed the tc mappings may no longer be
2572  * valid. To resolve this verify the tc mapping remains valid and if
2573  * not NULL the mapping. With no priorities mapping to this
2574  * offset/count pair it will no longer be used. In the worst case TC0
2575  * is invalid nothing can be done so disable priority mappings. If is
2576  * expected that drivers will fix this mapping if they can before
2577  * calling netif_set_real_num_tx_queues.
2578  */
2579 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2580 {
2581 	int i;
2582 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2583 
2584 	/* If TC0 is invalidated disable TC mapping */
2585 	if (tc->offset + tc->count > txq) {
2586 		netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2587 		dev->num_tc = 0;
2588 		return;
2589 	}
2590 
2591 	/* Invalidated prio to tc mappings set to TC0 */
2592 	for (i = 1; i < TC_BITMASK + 1; i++) {
2593 		int q = netdev_get_prio_tc_map(dev, i);
2594 
2595 		tc = &dev->tc_to_txq[q];
2596 		if (tc->offset + tc->count > txq) {
2597 			netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2598 				    i, q);
2599 			netdev_set_prio_tc_map(dev, i, 0);
2600 		}
2601 	}
2602 }
2603 
2604 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2605 {
2606 	if (dev->num_tc) {
2607 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2608 		int i;
2609 
2610 		/* walk through the TCs and see if it falls into any of them */
2611 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2612 			if ((txq - tc->offset) < tc->count)
2613 				return i;
2614 		}
2615 
2616 		/* didn't find it, just return -1 to indicate no match */
2617 		return -1;
2618 	}
2619 
2620 	return 0;
2621 }
2622 EXPORT_SYMBOL(netdev_txq_to_tc);
2623 
2624 #ifdef CONFIG_XPS
2625 static struct static_key xps_needed __read_mostly;
2626 static struct static_key xps_rxqs_needed __read_mostly;
2627 static DEFINE_MUTEX(xps_map_mutex);
2628 #define xmap_dereference(P)		\
2629 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2630 
2631 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2632 			     struct xps_dev_maps *old_maps, int tci, u16 index)
2633 {
2634 	struct xps_map *map = NULL;
2635 	int pos;
2636 
2637 	map = xmap_dereference(dev_maps->attr_map[tci]);
2638 	if (!map)
2639 		return false;
2640 
2641 	for (pos = map->len; pos--;) {
2642 		if (map->queues[pos] != index)
2643 			continue;
2644 
2645 		if (map->len > 1) {
2646 			map->queues[pos] = map->queues[--map->len];
2647 			break;
2648 		}
2649 
2650 		if (old_maps)
2651 			RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2652 		RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2653 		kfree_rcu(map, rcu);
2654 		return false;
2655 	}
2656 
2657 	return true;
2658 }
2659 
2660 static bool remove_xps_queue_cpu(struct net_device *dev,
2661 				 struct xps_dev_maps *dev_maps,
2662 				 int cpu, u16 offset, u16 count)
2663 {
2664 	int num_tc = dev_maps->num_tc;
2665 	bool active = false;
2666 	int tci;
2667 
2668 	for (tci = cpu * num_tc; num_tc--; tci++) {
2669 		int i, j;
2670 
2671 		for (i = count, j = offset; i--; j++) {
2672 			if (!remove_xps_queue(dev_maps, NULL, tci, j))
2673 				break;
2674 		}
2675 
2676 		active |= i < 0;
2677 	}
2678 
2679 	return active;
2680 }
2681 
2682 static void reset_xps_maps(struct net_device *dev,
2683 			   struct xps_dev_maps *dev_maps,
2684 			   enum xps_map_type type)
2685 {
2686 	static_key_slow_dec_cpuslocked(&xps_needed);
2687 	if (type == XPS_RXQS)
2688 		static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2689 
2690 	RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2691 
2692 	kfree_rcu(dev_maps, rcu);
2693 }
2694 
2695 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2696 			   u16 offset, u16 count)
2697 {
2698 	struct xps_dev_maps *dev_maps;
2699 	bool active = false;
2700 	int i, j;
2701 
2702 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2703 	if (!dev_maps)
2704 		return;
2705 
2706 	for (j = 0; j < dev_maps->nr_ids; j++)
2707 		active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2708 	if (!active)
2709 		reset_xps_maps(dev, dev_maps, type);
2710 
2711 	if (type == XPS_CPUS) {
2712 		for (i = offset + (count - 1); count--; i--)
2713 			netdev_queue_numa_node_write(
2714 				netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2715 	}
2716 }
2717 
2718 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2719 				   u16 count)
2720 {
2721 	if (!static_key_false(&xps_needed))
2722 		return;
2723 
2724 	cpus_read_lock();
2725 	mutex_lock(&xps_map_mutex);
2726 
2727 	if (static_key_false(&xps_rxqs_needed))
2728 		clean_xps_maps(dev, XPS_RXQS, offset, count);
2729 
2730 	clean_xps_maps(dev, XPS_CPUS, offset, count);
2731 
2732 	mutex_unlock(&xps_map_mutex);
2733 	cpus_read_unlock();
2734 }
2735 
2736 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2737 {
2738 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2739 }
2740 
2741 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2742 				      u16 index, bool is_rxqs_map)
2743 {
2744 	struct xps_map *new_map;
2745 	int alloc_len = XPS_MIN_MAP_ALLOC;
2746 	int i, pos;
2747 
2748 	for (pos = 0; map && pos < map->len; pos++) {
2749 		if (map->queues[pos] != index)
2750 			continue;
2751 		return map;
2752 	}
2753 
2754 	/* Need to add tx-queue to this CPU's/rx-queue's existing map */
2755 	if (map) {
2756 		if (pos < map->alloc_len)
2757 			return map;
2758 
2759 		alloc_len = map->alloc_len * 2;
2760 	}
2761 
2762 	/* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2763 	 *  map
2764 	 */
2765 	if (is_rxqs_map)
2766 		new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2767 	else
2768 		new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2769 				       cpu_to_node(attr_index));
2770 	if (!new_map)
2771 		return NULL;
2772 
2773 	for (i = 0; i < pos; i++)
2774 		new_map->queues[i] = map->queues[i];
2775 	new_map->alloc_len = alloc_len;
2776 	new_map->len = pos;
2777 
2778 	return new_map;
2779 }
2780 
2781 /* Copy xps maps at a given index */
2782 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2783 			      struct xps_dev_maps *new_dev_maps, int index,
2784 			      int tc, bool skip_tc)
2785 {
2786 	int i, tci = index * dev_maps->num_tc;
2787 	struct xps_map *map;
2788 
2789 	/* copy maps belonging to foreign traffic classes */
2790 	for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2791 		if (i == tc && skip_tc)
2792 			continue;
2793 
2794 		/* fill in the new device map from the old device map */
2795 		map = xmap_dereference(dev_maps->attr_map[tci]);
2796 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2797 	}
2798 }
2799 
2800 /* Must be called under cpus_read_lock */
2801 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2802 			  u16 index, enum xps_map_type type)
2803 {
2804 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2805 	const unsigned long *online_mask = NULL;
2806 	bool active = false, copy = false;
2807 	int i, j, tci, numa_node_id = -2;
2808 	int maps_sz, num_tc = 1, tc = 0;
2809 	struct xps_map *map, *new_map;
2810 	unsigned int nr_ids;
2811 
2812 	WARN_ON_ONCE(index >= dev->num_tx_queues);
2813 
2814 	if (dev->num_tc) {
2815 		/* Do not allow XPS on subordinate device directly */
2816 		num_tc = dev->num_tc;
2817 		if (num_tc < 0)
2818 			return -EINVAL;
2819 
2820 		/* If queue belongs to subordinate dev use its map */
2821 		dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2822 
2823 		tc = netdev_txq_to_tc(dev, index);
2824 		if (tc < 0)
2825 			return -EINVAL;
2826 	}
2827 
2828 	mutex_lock(&xps_map_mutex);
2829 
2830 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2831 	if (type == XPS_RXQS) {
2832 		maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2833 		nr_ids = dev->num_rx_queues;
2834 	} else {
2835 		maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2836 		if (num_possible_cpus() > 1)
2837 			online_mask = cpumask_bits(cpu_online_mask);
2838 		nr_ids = nr_cpu_ids;
2839 	}
2840 
2841 	if (maps_sz < L1_CACHE_BYTES)
2842 		maps_sz = L1_CACHE_BYTES;
2843 
2844 	/* The old dev_maps could be larger or smaller than the one we're
2845 	 * setting up now, as dev->num_tc or nr_ids could have been updated in
2846 	 * between. We could try to be smart, but let's be safe instead and only
2847 	 * copy foreign traffic classes if the two map sizes match.
2848 	 */
2849 	if (dev_maps &&
2850 	    dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2851 		copy = true;
2852 
2853 	/* allocate memory for queue storage */
2854 	for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2855 	     j < nr_ids;) {
2856 		if (!new_dev_maps) {
2857 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2858 			if (!new_dev_maps) {
2859 				mutex_unlock(&xps_map_mutex);
2860 				return -ENOMEM;
2861 			}
2862 
2863 			new_dev_maps->nr_ids = nr_ids;
2864 			new_dev_maps->num_tc = num_tc;
2865 		}
2866 
2867 		tci = j * num_tc + tc;
2868 		map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2869 
2870 		map = expand_xps_map(map, j, index, type == XPS_RXQS);
2871 		if (!map)
2872 			goto error;
2873 
2874 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2875 	}
2876 
2877 	if (!new_dev_maps)
2878 		goto out_no_new_maps;
2879 
2880 	if (!dev_maps) {
2881 		/* Increment static keys at most once per type */
2882 		static_key_slow_inc_cpuslocked(&xps_needed);
2883 		if (type == XPS_RXQS)
2884 			static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2885 	}
2886 
2887 	for (j = 0; j < nr_ids; j++) {
2888 		bool skip_tc = false;
2889 
2890 		tci = j * num_tc + tc;
2891 		if (netif_attr_test_mask(j, mask, nr_ids) &&
2892 		    netif_attr_test_online(j, online_mask, nr_ids)) {
2893 			/* add tx-queue to CPU/rx-queue maps */
2894 			int pos = 0;
2895 
2896 			skip_tc = true;
2897 
2898 			map = xmap_dereference(new_dev_maps->attr_map[tci]);
2899 			while ((pos < map->len) && (map->queues[pos] != index))
2900 				pos++;
2901 
2902 			if (pos == map->len)
2903 				map->queues[map->len++] = index;
2904 #ifdef CONFIG_NUMA
2905 			if (type == XPS_CPUS) {
2906 				if (numa_node_id == -2)
2907 					numa_node_id = cpu_to_node(j);
2908 				else if (numa_node_id != cpu_to_node(j))
2909 					numa_node_id = -1;
2910 			}
2911 #endif
2912 		}
2913 
2914 		if (copy)
2915 			xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2916 					  skip_tc);
2917 	}
2918 
2919 	rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2920 
2921 	/* Cleanup old maps */
2922 	if (!dev_maps)
2923 		goto out_no_old_maps;
2924 
2925 	for (j = 0; j < dev_maps->nr_ids; j++) {
2926 		for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2927 			map = xmap_dereference(dev_maps->attr_map[tci]);
2928 			if (!map)
2929 				continue;
2930 
2931 			if (copy) {
2932 				new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2933 				if (map == new_map)
2934 					continue;
2935 			}
2936 
2937 			RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2938 			kfree_rcu(map, rcu);
2939 		}
2940 	}
2941 
2942 	old_dev_maps = dev_maps;
2943 
2944 out_no_old_maps:
2945 	dev_maps = new_dev_maps;
2946 	active = true;
2947 
2948 out_no_new_maps:
2949 	if (type == XPS_CPUS)
2950 		/* update Tx queue numa node */
2951 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2952 					     (numa_node_id >= 0) ?
2953 					     numa_node_id : NUMA_NO_NODE);
2954 
2955 	if (!dev_maps)
2956 		goto out_no_maps;
2957 
2958 	/* removes tx-queue from unused CPUs/rx-queues */
2959 	for (j = 0; j < dev_maps->nr_ids; j++) {
2960 		tci = j * dev_maps->num_tc;
2961 
2962 		for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2963 			if (i == tc &&
2964 			    netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2965 			    netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2966 				continue;
2967 
2968 			active |= remove_xps_queue(dev_maps,
2969 						   copy ? old_dev_maps : NULL,
2970 						   tci, index);
2971 		}
2972 	}
2973 
2974 	if (old_dev_maps)
2975 		kfree_rcu(old_dev_maps, rcu);
2976 
2977 	/* free map if not active */
2978 	if (!active)
2979 		reset_xps_maps(dev, dev_maps, type);
2980 
2981 out_no_maps:
2982 	mutex_unlock(&xps_map_mutex);
2983 
2984 	return 0;
2985 error:
2986 	/* remove any maps that we added */
2987 	for (j = 0; j < nr_ids; j++) {
2988 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2989 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2990 			map = copy ?
2991 			      xmap_dereference(dev_maps->attr_map[tci]) :
2992 			      NULL;
2993 			if (new_map && new_map != map)
2994 				kfree(new_map);
2995 		}
2996 	}
2997 
2998 	mutex_unlock(&xps_map_mutex);
2999 
3000 	kfree(new_dev_maps);
3001 	return -ENOMEM;
3002 }
3003 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
3004 
3005 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3006 			u16 index)
3007 {
3008 	int ret;
3009 
3010 	cpus_read_lock();
3011 	ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
3012 	cpus_read_unlock();
3013 
3014 	return ret;
3015 }
3016 EXPORT_SYMBOL(netif_set_xps_queue);
3017 
3018 #endif
3019 static void netdev_unbind_all_sb_channels(struct net_device *dev)
3020 {
3021 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
3022 
3023 	/* Unbind any subordinate channels */
3024 	while (txq-- != &dev->_tx[0]) {
3025 		if (txq->sb_dev)
3026 			netdev_unbind_sb_channel(dev, txq->sb_dev);
3027 	}
3028 }
3029 
3030 void netdev_reset_tc(struct net_device *dev)
3031 {
3032 #ifdef CONFIG_XPS
3033 	netif_reset_xps_queues_gt(dev, 0);
3034 #endif
3035 	netdev_unbind_all_sb_channels(dev);
3036 
3037 	/* Reset TC configuration of device */
3038 	dev->num_tc = 0;
3039 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
3040 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
3041 }
3042 EXPORT_SYMBOL(netdev_reset_tc);
3043 
3044 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
3045 {
3046 	if (tc >= dev->num_tc)
3047 		return -EINVAL;
3048 
3049 #ifdef CONFIG_XPS
3050 	netif_reset_xps_queues(dev, offset, count);
3051 #endif
3052 	dev->tc_to_txq[tc].count = count;
3053 	dev->tc_to_txq[tc].offset = offset;
3054 	return 0;
3055 }
3056 EXPORT_SYMBOL(netdev_set_tc_queue);
3057 
3058 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
3059 {
3060 	if (num_tc > TC_MAX_QUEUE)
3061 		return -EINVAL;
3062 
3063 #ifdef CONFIG_XPS
3064 	netif_reset_xps_queues_gt(dev, 0);
3065 #endif
3066 	netdev_unbind_all_sb_channels(dev);
3067 
3068 	dev->num_tc = num_tc;
3069 	return 0;
3070 }
3071 EXPORT_SYMBOL(netdev_set_num_tc);
3072 
3073 void netdev_unbind_sb_channel(struct net_device *dev,
3074 			      struct net_device *sb_dev)
3075 {
3076 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
3077 
3078 #ifdef CONFIG_XPS
3079 	netif_reset_xps_queues_gt(sb_dev, 0);
3080 #endif
3081 	memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
3082 	memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
3083 
3084 	while (txq-- != &dev->_tx[0]) {
3085 		if (txq->sb_dev == sb_dev)
3086 			txq->sb_dev = NULL;
3087 	}
3088 }
3089 EXPORT_SYMBOL(netdev_unbind_sb_channel);
3090 
3091 int netdev_bind_sb_channel_queue(struct net_device *dev,
3092 				 struct net_device *sb_dev,
3093 				 u8 tc, u16 count, u16 offset)
3094 {
3095 	/* Make certain the sb_dev and dev are already configured */
3096 	if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
3097 		return -EINVAL;
3098 
3099 	/* We cannot hand out queues we don't have */
3100 	if ((offset + count) > dev->real_num_tx_queues)
3101 		return -EINVAL;
3102 
3103 	/* Record the mapping */
3104 	sb_dev->tc_to_txq[tc].count = count;
3105 	sb_dev->tc_to_txq[tc].offset = offset;
3106 
3107 	/* Provide a way for Tx queue to find the tc_to_txq map or
3108 	 * XPS map for itself.
3109 	 */
3110 	while (count--)
3111 		netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
3112 
3113 	return 0;
3114 }
3115 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
3116 
3117 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
3118 {
3119 	/* Do not use a multiqueue device to represent a subordinate channel */
3120 	if (netif_is_multiqueue(dev))
3121 		return -ENODEV;
3122 
3123 	/* We allow channels 1 - 32767 to be used for subordinate channels.
3124 	 * Channel 0 is meant to be "native" mode and used only to represent
3125 	 * the main root device. We allow writing 0 to reset the device back
3126 	 * to normal mode after being used as a subordinate channel.
3127 	 */
3128 	if (channel > S16_MAX)
3129 		return -EINVAL;
3130 
3131 	dev->num_tc = -channel;
3132 
3133 	return 0;
3134 }
3135 EXPORT_SYMBOL(netdev_set_sb_channel);
3136 
3137 /*
3138  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
3139  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
3140  */
3141 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
3142 {
3143 	bool disabling;
3144 	int rc;
3145 
3146 	disabling = txq < dev->real_num_tx_queues;
3147 
3148 	if (txq < 1 || txq > dev->num_tx_queues)
3149 		return -EINVAL;
3150 
3151 	if (dev->reg_state == NETREG_REGISTERED ||
3152 	    dev->reg_state == NETREG_UNREGISTERING) {
3153 		ASSERT_RTNL();
3154 
3155 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
3156 						  txq);
3157 		if (rc)
3158 			return rc;
3159 
3160 		if (dev->num_tc)
3161 			netif_setup_tc(dev, txq);
3162 
3163 		net_shaper_set_real_num_tx_queues(dev, txq);
3164 
3165 		dev_qdisc_change_real_num_tx(dev, txq);
3166 
3167 		dev->real_num_tx_queues = txq;
3168 
3169 		if (disabling) {
3170 			synchronize_net();
3171 			qdisc_reset_all_tx_gt(dev, txq);
3172 #ifdef CONFIG_XPS
3173 			netif_reset_xps_queues_gt(dev, txq);
3174 #endif
3175 		}
3176 	} else {
3177 		dev->real_num_tx_queues = txq;
3178 	}
3179 
3180 	return 0;
3181 }
3182 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
3183 
3184 #ifdef CONFIG_SYSFS
3185 /**
3186  *	netif_set_real_num_rx_queues - set actual number of RX queues used
3187  *	@dev: Network device
3188  *	@rxq: Actual number of RX queues
3189  *
3190  *	This must be called either with the rtnl_lock held or before
3191  *	registration of the net device.  Returns 0 on success, or a
3192  *	negative error code.  If called before registration, it always
3193  *	succeeds.
3194  */
3195 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
3196 {
3197 	int rc;
3198 
3199 	if (rxq < 1 || rxq > dev->num_rx_queues)
3200 		return -EINVAL;
3201 
3202 	if (dev->reg_state == NETREG_REGISTERED) {
3203 		ASSERT_RTNL();
3204 
3205 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
3206 						  rxq);
3207 		if (rc)
3208 			return rc;
3209 	}
3210 
3211 	dev->real_num_rx_queues = rxq;
3212 	return 0;
3213 }
3214 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
3215 #endif
3216 
3217 /**
3218  *	netif_set_real_num_queues - set actual number of RX and TX queues used
3219  *	@dev: Network device
3220  *	@txq: Actual number of TX queues
3221  *	@rxq: Actual number of RX queues
3222  *
3223  *	Set the real number of both TX and RX queues.
3224  *	Does nothing if the number of queues is already correct.
3225  */
3226 int netif_set_real_num_queues(struct net_device *dev,
3227 			      unsigned int txq, unsigned int rxq)
3228 {
3229 	unsigned int old_rxq = dev->real_num_rx_queues;
3230 	int err;
3231 
3232 	if (txq < 1 || txq > dev->num_tx_queues ||
3233 	    rxq < 1 || rxq > dev->num_rx_queues)
3234 		return -EINVAL;
3235 
3236 	/* Start from increases, so the error path only does decreases -
3237 	 * decreases can't fail.
3238 	 */
3239 	if (rxq > dev->real_num_rx_queues) {
3240 		err = netif_set_real_num_rx_queues(dev, rxq);
3241 		if (err)
3242 			return err;
3243 	}
3244 	if (txq > dev->real_num_tx_queues) {
3245 		err = netif_set_real_num_tx_queues(dev, txq);
3246 		if (err)
3247 			goto undo_rx;
3248 	}
3249 	if (rxq < dev->real_num_rx_queues)
3250 		WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
3251 	if (txq < dev->real_num_tx_queues)
3252 		WARN_ON(netif_set_real_num_tx_queues(dev, txq));
3253 
3254 	return 0;
3255 undo_rx:
3256 	WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
3257 	return err;
3258 }
3259 EXPORT_SYMBOL(netif_set_real_num_queues);
3260 
3261 /**
3262  * netif_set_tso_max_size() - set the max size of TSO frames supported
3263  * @dev:	netdev to update
3264  * @size:	max skb->len of a TSO frame
3265  *
3266  * Set the limit on the size of TSO super-frames the device can handle.
3267  * Unless explicitly set the stack will assume the value of
3268  * %GSO_LEGACY_MAX_SIZE.
3269  */
3270 void netif_set_tso_max_size(struct net_device *dev, unsigned int size)
3271 {
3272 	dev->tso_max_size = min(GSO_MAX_SIZE, size);
3273 	if (size < READ_ONCE(dev->gso_max_size))
3274 		netif_set_gso_max_size(dev, size);
3275 	if (size < READ_ONCE(dev->gso_ipv4_max_size))
3276 		netif_set_gso_ipv4_max_size(dev, size);
3277 }
3278 EXPORT_SYMBOL(netif_set_tso_max_size);
3279 
3280 /**
3281  * netif_set_tso_max_segs() - set the max number of segs supported for TSO
3282  * @dev:	netdev to update
3283  * @segs:	max number of TCP segments
3284  *
3285  * Set the limit on the number of TCP segments the device can generate from
3286  * a single TSO super-frame.
3287  * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS.
3288  */
3289 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs)
3290 {
3291 	dev->tso_max_segs = segs;
3292 	if (segs < READ_ONCE(dev->gso_max_segs))
3293 		netif_set_gso_max_segs(dev, segs);
3294 }
3295 EXPORT_SYMBOL(netif_set_tso_max_segs);
3296 
3297 /**
3298  * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper
3299  * @to:		netdev to update
3300  * @from:	netdev from which to copy the limits
3301  */
3302 void netif_inherit_tso_max(struct net_device *to, const struct net_device *from)
3303 {
3304 	netif_set_tso_max_size(to, from->tso_max_size);
3305 	netif_set_tso_max_segs(to, from->tso_max_segs);
3306 }
3307 EXPORT_SYMBOL(netif_inherit_tso_max);
3308 
3309 /**
3310  * netif_get_num_default_rss_queues - default number of RSS queues
3311  *
3312  * Default value is the number of physical cores if there are only 1 or 2, or
3313  * divided by 2 if there are more.
3314  */
3315 int netif_get_num_default_rss_queues(void)
3316 {
3317 	cpumask_var_t cpus;
3318 	int cpu, count = 0;
3319 
3320 	if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL)))
3321 		return 1;
3322 
3323 	cpumask_copy(cpus, cpu_online_mask);
3324 	for_each_cpu(cpu, cpus) {
3325 		++count;
3326 		cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu));
3327 	}
3328 	free_cpumask_var(cpus);
3329 
3330 	return count > 2 ? DIV_ROUND_UP(count, 2) : count;
3331 }
3332 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3333 
3334 static void __netif_reschedule(struct Qdisc *q)
3335 {
3336 	struct softnet_data *sd;
3337 	unsigned long flags;
3338 
3339 	local_irq_save(flags);
3340 	sd = this_cpu_ptr(&softnet_data);
3341 	q->next_sched = NULL;
3342 	*sd->output_queue_tailp = q;
3343 	sd->output_queue_tailp = &q->next_sched;
3344 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3345 	local_irq_restore(flags);
3346 }
3347 
3348 void __netif_schedule(struct Qdisc *q)
3349 {
3350 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3351 		__netif_reschedule(q);
3352 }
3353 EXPORT_SYMBOL(__netif_schedule);
3354 
3355 struct dev_kfree_skb_cb {
3356 	enum skb_drop_reason reason;
3357 };
3358 
3359 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3360 {
3361 	return (struct dev_kfree_skb_cb *)skb->cb;
3362 }
3363 
3364 void netif_schedule_queue(struct netdev_queue *txq)
3365 {
3366 	rcu_read_lock();
3367 	if (!netif_xmit_stopped(txq)) {
3368 		struct Qdisc *q = rcu_dereference(txq->qdisc);
3369 
3370 		__netif_schedule(q);
3371 	}
3372 	rcu_read_unlock();
3373 }
3374 EXPORT_SYMBOL(netif_schedule_queue);
3375 
3376 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3377 {
3378 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3379 		struct Qdisc *q;
3380 
3381 		rcu_read_lock();
3382 		q = rcu_dereference(dev_queue->qdisc);
3383 		__netif_schedule(q);
3384 		rcu_read_unlock();
3385 	}
3386 }
3387 EXPORT_SYMBOL(netif_tx_wake_queue);
3388 
3389 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3390 {
3391 	unsigned long flags;
3392 
3393 	if (unlikely(!skb))
3394 		return;
3395 
3396 	if (likely(refcount_read(&skb->users) == 1)) {
3397 		smp_rmb();
3398 		refcount_set(&skb->users, 0);
3399 	} else if (likely(!refcount_dec_and_test(&skb->users))) {
3400 		return;
3401 	}
3402 	get_kfree_skb_cb(skb)->reason = reason;
3403 	local_irq_save(flags);
3404 	skb->next = __this_cpu_read(softnet_data.completion_queue);
3405 	__this_cpu_write(softnet_data.completion_queue, skb);
3406 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3407 	local_irq_restore(flags);
3408 }
3409 EXPORT_SYMBOL(dev_kfree_skb_irq_reason);
3410 
3411 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3412 {
3413 	if (in_hardirq() || irqs_disabled())
3414 		dev_kfree_skb_irq_reason(skb, reason);
3415 	else
3416 		kfree_skb_reason(skb, reason);
3417 }
3418 EXPORT_SYMBOL(dev_kfree_skb_any_reason);
3419 
3420 
3421 /**
3422  * netif_device_detach - mark device as removed
3423  * @dev: network device
3424  *
3425  * Mark device as removed from system and therefore no longer available.
3426  */
3427 void netif_device_detach(struct net_device *dev)
3428 {
3429 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3430 	    netif_running(dev)) {
3431 		netif_tx_stop_all_queues(dev);
3432 	}
3433 }
3434 EXPORT_SYMBOL(netif_device_detach);
3435 
3436 /**
3437  * netif_device_attach - mark device as attached
3438  * @dev: network device
3439  *
3440  * Mark device as attached from system and restart if needed.
3441  */
3442 void netif_device_attach(struct net_device *dev)
3443 {
3444 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3445 	    netif_running(dev)) {
3446 		netif_tx_wake_all_queues(dev);
3447 		netdev_watchdog_up(dev);
3448 	}
3449 }
3450 EXPORT_SYMBOL(netif_device_attach);
3451 
3452 /*
3453  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3454  * to be used as a distribution range.
3455  */
3456 static u16 skb_tx_hash(const struct net_device *dev,
3457 		       const struct net_device *sb_dev,
3458 		       struct sk_buff *skb)
3459 {
3460 	u32 hash;
3461 	u16 qoffset = 0;
3462 	u16 qcount = dev->real_num_tx_queues;
3463 
3464 	if (dev->num_tc) {
3465 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3466 
3467 		qoffset = sb_dev->tc_to_txq[tc].offset;
3468 		qcount = sb_dev->tc_to_txq[tc].count;
3469 		if (unlikely(!qcount)) {
3470 			net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3471 					     sb_dev->name, qoffset, tc);
3472 			qoffset = 0;
3473 			qcount = dev->real_num_tx_queues;
3474 		}
3475 	}
3476 
3477 	if (skb_rx_queue_recorded(skb)) {
3478 		DEBUG_NET_WARN_ON_ONCE(qcount == 0);
3479 		hash = skb_get_rx_queue(skb);
3480 		if (hash >= qoffset)
3481 			hash -= qoffset;
3482 		while (unlikely(hash >= qcount))
3483 			hash -= qcount;
3484 		return hash + qoffset;
3485 	}
3486 
3487 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3488 }
3489 
3490 void skb_warn_bad_offload(const struct sk_buff *skb)
3491 {
3492 	static const netdev_features_t null_features;
3493 	struct net_device *dev = skb->dev;
3494 	const char *name = "";
3495 
3496 	if (!net_ratelimit())
3497 		return;
3498 
3499 	if (dev) {
3500 		if (dev->dev.parent)
3501 			name = dev_driver_string(dev->dev.parent);
3502 		else
3503 			name = netdev_name(dev);
3504 	}
3505 	skb_dump(KERN_WARNING, skb, false);
3506 	WARN(1, "%s: caps=(%pNF, %pNF)\n",
3507 	     name, dev ? &dev->features : &null_features,
3508 	     skb->sk ? &skb->sk->sk_route_caps : &null_features);
3509 }
3510 
3511 /*
3512  * Invalidate hardware checksum when packet is to be mangled, and
3513  * complete checksum manually on outgoing path.
3514  */
3515 int skb_checksum_help(struct sk_buff *skb)
3516 {
3517 	__wsum csum;
3518 	int ret = 0, offset;
3519 
3520 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3521 		goto out_set_summed;
3522 
3523 	if (unlikely(skb_is_gso(skb))) {
3524 		skb_warn_bad_offload(skb);
3525 		return -EINVAL;
3526 	}
3527 
3528 	if (!skb_frags_readable(skb)) {
3529 		return -EFAULT;
3530 	}
3531 
3532 	/* Before computing a checksum, we should make sure no frag could
3533 	 * be modified by an external entity : checksum could be wrong.
3534 	 */
3535 	if (skb_has_shared_frag(skb)) {
3536 		ret = __skb_linearize(skb);
3537 		if (ret)
3538 			goto out;
3539 	}
3540 
3541 	offset = skb_checksum_start_offset(skb);
3542 	ret = -EINVAL;
3543 	if (unlikely(offset >= skb_headlen(skb))) {
3544 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3545 		WARN_ONCE(true, "offset (%d) >= skb_headlen() (%u)\n",
3546 			  offset, skb_headlen(skb));
3547 		goto out;
3548 	}
3549 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
3550 
3551 	offset += skb->csum_offset;
3552 	if (unlikely(offset + sizeof(__sum16) > skb_headlen(skb))) {
3553 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3554 		WARN_ONCE(true, "offset+2 (%zu) > skb_headlen() (%u)\n",
3555 			  offset + sizeof(__sum16), skb_headlen(skb));
3556 		goto out;
3557 	}
3558 	ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3559 	if (ret)
3560 		goto out;
3561 
3562 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3563 out_set_summed:
3564 	skb->ip_summed = CHECKSUM_NONE;
3565 out:
3566 	return ret;
3567 }
3568 EXPORT_SYMBOL(skb_checksum_help);
3569 
3570 int skb_crc32c_csum_help(struct sk_buff *skb)
3571 {
3572 	__le32 crc32c_csum;
3573 	int ret = 0, offset, start;
3574 
3575 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3576 		goto out;
3577 
3578 	if (unlikely(skb_is_gso(skb)))
3579 		goto out;
3580 
3581 	/* Before computing a checksum, we should make sure no frag could
3582 	 * be modified by an external entity : checksum could be wrong.
3583 	 */
3584 	if (unlikely(skb_has_shared_frag(skb))) {
3585 		ret = __skb_linearize(skb);
3586 		if (ret)
3587 			goto out;
3588 	}
3589 	start = skb_checksum_start_offset(skb);
3590 	offset = start + offsetof(struct sctphdr, checksum);
3591 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3592 		ret = -EINVAL;
3593 		goto out;
3594 	}
3595 
3596 	ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3597 	if (ret)
3598 		goto out;
3599 
3600 	crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3601 						  skb->len - start, ~(__u32)0,
3602 						  crc32c_csum_stub));
3603 	*(__le32 *)(skb->data + offset) = crc32c_csum;
3604 	skb_reset_csum_not_inet(skb);
3605 out:
3606 	return ret;
3607 }
3608 EXPORT_SYMBOL(skb_crc32c_csum_help);
3609 
3610 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3611 {
3612 	__be16 type = skb->protocol;
3613 
3614 	/* Tunnel gso handlers can set protocol to ethernet. */
3615 	if (type == htons(ETH_P_TEB)) {
3616 		struct ethhdr *eth;
3617 
3618 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3619 			return 0;
3620 
3621 		eth = (struct ethhdr *)skb->data;
3622 		type = eth->h_proto;
3623 	}
3624 
3625 	return vlan_get_protocol_and_depth(skb, type, depth);
3626 }
3627 
3628 
3629 /* Take action when hardware reception checksum errors are detected. */
3630 #ifdef CONFIG_BUG
3631 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3632 {
3633 	netdev_err(dev, "hw csum failure\n");
3634 	skb_dump(KERN_ERR, skb, true);
3635 	dump_stack();
3636 }
3637 
3638 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3639 {
3640 	DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3641 }
3642 EXPORT_SYMBOL(netdev_rx_csum_fault);
3643 #endif
3644 
3645 /* XXX: check that highmem exists at all on the given machine. */
3646 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3647 {
3648 #ifdef CONFIG_HIGHMEM
3649 	int i;
3650 
3651 	if (!(dev->features & NETIF_F_HIGHDMA)) {
3652 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3653 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3654 			struct page *page = skb_frag_page(frag);
3655 
3656 			if (page && PageHighMem(page))
3657 				return 1;
3658 		}
3659 	}
3660 #endif
3661 	return 0;
3662 }
3663 
3664 /* If MPLS offload request, verify we are testing hardware MPLS features
3665  * instead of standard features for the netdev.
3666  */
3667 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3668 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3669 					   netdev_features_t features,
3670 					   __be16 type)
3671 {
3672 	if (eth_p_mpls(type))
3673 		features &= skb->dev->mpls_features;
3674 
3675 	return features;
3676 }
3677 #else
3678 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3679 					   netdev_features_t features,
3680 					   __be16 type)
3681 {
3682 	return features;
3683 }
3684 #endif
3685 
3686 static netdev_features_t harmonize_features(struct sk_buff *skb,
3687 	netdev_features_t features)
3688 {
3689 	__be16 type;
3690 
3691 	type = skb_network_protocol(skb, NULL);
3692 	features = net_mpls_features(skb, features, type);
3693 
3694 	if (skb->ip_summed != CHECKSUM_NONE &&
3695 	    !can_checksum_protocol(features, type)) {
3696 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3697 	}
3698 	if (illegal_highdma(skb->dev, skb))
3699 		features &= ~NETIF_F_SG;
3700 
3701 	return features;
3702 }
3703 
3704 netdev_features_t passthru_features_check(struct sk_buff *skb,
3705 					  struct net_device *dev,
3706 					  netdev_features_t features)
3707 {
3708 	return features;
3709 }
3710 EXPORT_SYMBOL(passthru_features_check);
3711 
3712 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3713 					     struct net_device *dev,
3714 					     netdev_features_t features)
3715 {
3716 	return vlan_features_check(skb, features);
3717 }
3718 
3719 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3720 					    struct net_device *dev,
3721 					    netdev_features_t features)
3722 {
3723 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
3724 
3725 	if (gso_segs > READ_ONCE(dev->gso_max_segs))
3726 		return features & ~NETIF_F_GSO_MASK;
3727 
3728 	if (unlikely(skb->len >= netif_get_gso_max_size(dev, skb)))
3729 		return features & ~NETIF_F_GSO_MASK;
3730 
3731 	if (!skb_shinfo(skb)->gso_type) {
3732 		skb_warn_bad_offload(skb);
3733 		return features & ~NETIF_F_GSO_MASK;
3734 	}
3735 
3736 	/* Support for GSO partial features requires software
3737 	 * intervention before we can actually process the packets
3738 	 * so we need to strip support for any partial features now
3739 	 * and we can pull them back in after we have partially
3740 	 * segmented the frame.
3741 	 */
3742 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3743 		features &= ~dev->gso_partial_features;
3744 
3745 	/* Make sure to clear the IPv4 ID mangling feature if the
3746 	 * IPv4 header has the potential to be fragmented.
3747 	 */
3748 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3749 		struct iphdr *iph = skb->encapsulation ?
3750 				    inner_ip_hdr(skb) : ip_hdr(skb);
3751 
3752 		if (!(iph->frag_off & htons(IP_DF)))
3753 			features &= ~NETIF_F_TSO_MANGLEID;
3754 	}
3755 
3756 	return features;
3757 }
3758 
3759 netdev_features_t netif_skb_features(struct sk_buff *skb)
3760 {
3761 	struct net_device *dev = skb->dev;
3762 	netdev_features_t features = dev->features;
3763 
3764 	if (skb_is_gso(skb))
3765 		features = gso_features_check(skb, dev, features);
3766 
3767 	/* If encapsulation offload request, verify we are testing
3768 	 * hardware encapsulation features instead of standard
3769 	 * features for the netdev
3770 	 */
3771 	if (skb->encapsulation)
3772 		features &= dev->hw_enc_features;
3773 
3774 	if (skb_vlan_tagged(skb))
3775 		features = netdev_intersect_features(features,
3776 						     dev->vlan_features |
3777 						     NETIF_F_HW_VLAN_CTAG_TX |
3778 						     NETIF_F_HW_VLAN_STAG_TX);
3779 
3780 	if (dev->netdev_ops->ndo_features_check)
3781 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
3782 								features);
3783 	else
3784 		features &= dflt_features_check(skb, dev, features);
3785 
3786 	return harmonize_features(skb, features);
3787 }
3788 EXPORT_SYMBOL(netif_skb_features);
3789 
3790 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3791 		    struct netdev_queue *txq, bool more)
3792 {
3793 	unsigned int len;
3794 	int rc;
3795 
3796 	if (dev_nit_active(dev))
3797 		dev_queue_xmit_nit(skb, dev);
3798 
3799 	len = skb->len;
3800 	trace_net_dev_start_xmit(skb, dev);
3801 	rc = netdev_start_xmit(skb, dev, txq, more);
3802 	trace_net_dev_xmit(skb, rc, dev, len);
3803 
3804 	return rc;
3805 }
3806 
3807 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3808 				    struct netdev_queue *txq, int *ret)
3809 {
3810 	struct sk_buff *skb = first;
3811 	int rc = NETDEV_TX_OK;
3812 
3813 	while (skb) {
3814 		struct sk_buff *next = skb->next;
3815 
3816 		skb_mark_not_on_list(skb);
3817 		rc = xmit_one(skb, dev, txq, next != NULL);
3818 		if (unlikely(!dev_xmit_complete(rc))) {
3819 			skb->next = next;
3820 			goto out;
3821 		}
3822 
3823 		skb = next;
3824 		if (netif_tx_queue_stopped(txq) && skb) {
3825 			rc = NETDEV_TX_BUSY;
3826 			break;
3827 		}
3828 	}
3829 
3830 out:
3831 	*ret = rc;
3832 	return skb;
3833 }
3834 
3835 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3836 					  netdev_features_t features)
3837 {
3838 	if (skb_vlan_tag_present(skb) &&
3839 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3840 		skb = __vlan_hwaccel_push_inside(skb);
3841 	return skb;
3842 }
3843 
3844 int skb_csum_hwoffload_help(struct sk_buff *skb,
3845 			    const netdev_features_t features)
3846 {
3847 	if (unlikely(skb_csum_is_sctp(skb)))
3848 		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3849 			skb_crc32c_csum_help(skb);
3850 
3851 	if (features & NETIF_F_HW_CSUM)
3852 		return 0;
3853 
3854 	if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3855 		if (vlan_get_protocol(skb) == htons(ETH_P_IPV6) &&
3856 		    skb_network_header_len(skb) != sizeof(struct ipv6hdr) &&
3857 		    !ipv6_has_hopopt_jumbo(skb))
3858 			goto sw_checksum;
3859 
3860 		switch (skb->csum_offset) {
3861 		case offsetof(struct tcphdr, check):
3862 		case offsetof(struct udphdr, check):
3863 			return 0;
3864 		}
3865 	}
3866 
3867 sw_checksum:
3868 	return skb_checksum_help(skb);
3869 }
3870 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3871 
3872 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3873 {
3874 	netdev_features_t features;
3875 
3876 	features = netif_skb_features(skb);
3877 	skb = validate_xmit_vlan(skb, features);
3878 	if (unlikely(!skb))
3879 		goto out_null;
3880 
3881 	skb = sk_validate_xmit_skb(skb, dev);
3882 	if (unlikely(!skb))
3883 		goto out_null;
3884 
3885 	if (netif_needs_gso(skb, features)) {
3886 		struct sk_buff *segs;
3887 
3888 		segs = skb_gso_segment(skb, features);
3889 		if (IS_ERR(segs)) {
3890 			goto out_kfree_skb;
3891 		} else if (segs) {
3892 			consume_skb(skb);
3893 			skb = segs;
3894 		}
3895 	} else {
3896 		if (skb_needs_linearize(skb, features) &&
3897 		    __skb_linearize(skb))
3898 			goto out_kfree_skb;
3899 
3900 		/* If packet is not checksummed and device does not
3901 		 * support checksumming for this protocol, complete
3902 		 * checksumming here.
3903 		 */
3904 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3905 			if (skb->encapsulation)
3906 				skb_set_inner_transport_header(skb,
3907 							       skb_checksum_start_offset(skb));
3908 			else
3909 				skb_set_transport_header(skb,
3910 							 skb_checksum_start_offset(skb));
3911 			if (skb_csum_hwoffload_help(skb, features))
3912 				goto out_kfree_skb;
3913 		}
3914 	}
3915 
3916 	skb = validate_xmit_xfrm(skb, features, again);
3917 
3918 	return skb;
3919 
3920 out_kfree_skb:
3921 	kfree_skb(skb);
3922 out_null:
3923 	dev_core_stats_tx_dropped_inc(dev);
3924 	return NULL;
3925 }
3926 
3927 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3928 {
3929 	struct sk_buff *next, *head = NULL, *tail;
3930 
3931 	for (; skb != NULL; skb = next) {
3932 		next = skb->next;
3933 		skb_mark_not_on_list(skb);
3934 
3935 		/* in case skb won't be segmented, point to itself */
3936 		skb->prev = skb;
3937 
3938 		skb = validate_xmit_skb(skb, dev, again);
3939 		if (!skb)
3940 			continue;
3941 
3942 		if (!head)
3943 			head = skb;
3944 		else
3945 			tail->next = skb;
3946 		/* If skb was segmented, skb->prev points to
3947 		 * the last segment. If not, it still contains skb.
3948 		 */
3949 		tail = skb->prev;
3950 	}
3951 	return head;
3952 }
3953 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3954 
3955 static void qdisc_pkt_len_init(struct sk_buff *skb)
3956 {
3957 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3958 
3959 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3960 
3961 	/* To get more precise estimation of bytes sent on wire,
3962 	 * we add to pkt_len the headers size of all segments
3963 	 */
3964 	if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3965 		u16 gso_segs = shinfo->gso_segs;
3966 		unsigned int hdr_len;
3967 
3968 		/* mac layer + network layer */
3969 		hdr_len = skb_transport_offset(skb);
3970 
3971 		/* + transport layer */
3972 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3973 			const struct tcphdr *th;
3974 			struct tcphdr _tcphdr;
3975 
3976 			th = skb_header_pointer(skb, hdr_len,
3977 						sizeof(_tcphdr), &_tcphdr);
3978 			if (likely(th))
3979 				hdr_len += __tcp_hdrlen(th);
3980 		} else if (shinfo->gso_type & SKB_GSO_UDP_L4) {
3981 			struct udphdr _udphdr;
3982 
3983 			if (skb_header_pointer(skb, hdr_len,
3984 					       sizeof(_udphdr), &_udphdr))
3985 				hdr_len += sizeof(struct udphdr);
3986 		}
3987 
3988 		if (unlikely(shinfo->gso_type & SKB_GSO_DODGY)) {
3989 			int payload = skb->len - hdr_len;
3990 
3991 			/* Malicious packet. */
3992 			if (payload <= 0)
3993 				return;
3994 			gso_segs = DIV_ROUND_UP(payload, shinfo->gso_size);
3995 		}
3996 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3997 	}
3998 }
3999 
4000 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
4001 			     struct sk_buff **to_free,
4002 			     struct netdev_queue *txq)
4003 {
4004 	int rc;
4005 
4006 	rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
4007 	if (rc == NET_XMIT_SUCCESS)
4008 		trace_qdisc_enqueue(q, txq, skb);
4009 	return rc;
4010 }
4011 
4012 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
4013 				 struct net_device *dev,
4014 				 struct netdev_queue *txq)
4015 {
4016 	spinlock_t *root_lock = qdisc_lock(q);
4017 	struct sk_buff *to_free = NULL;
4018 	bool contended;
4019 	int rc;
4020 
4021 	qdisc_calculate_pkt_len(skb, q);
4022 
4023 	tcf_set_drop_reason(skb, SKB_DROP_REASON_QDISC_DROP);
4024 
4025 	if (q->flags & TCQ_F_NOLOCK) {
4026 		if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
4027 		    qdisc_run_begin(q)) {
4028 			/* Retest nolock_qdisc_is_empty() within the protection
4029 			 * of q->seqlock to protect from racing with requeuing.
4030 			 */
4031 			if (unlikely(!nolock_qdisc_is_empty(q))) {
4032 				rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
4033 				__qdisc_run(q);
4034 				qdisc_run_end(q);
4035 
4036 				goto no_lock_out;
4037 			}
4038 
4039 			qdisc_bstats_cpu_update(q, skb);
4040 			if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
4041 			    !nolock_qdisc_is_empty(q))
4042 				__qdisc_run(q);
4043 
4044 			qdisc_run_end(q);
4045 			return NET_XMIT_SUCCESS;
4046 		}
4047 
4048 		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
4049 		qdisc_run(q);
4050 
4051 no_lock_out:
4052 		if (unlikely(to_free))
4053 			kfree_skb_list_reason(to_free,
4054 					      tcf_get_drop_reason(to_free));
4055 		return rc;
4056 	}
4057 
4058 	if (unlikely(READ_ONCE(q->owner) == smp_processor_id())) {
4059 		kfree_skb_reason(skb, SKB_DROP_REASON_TC_RECLASSIFY_LOOP);
4060 		return NET_XMIT_DROP;
4061 	}
4062 	/*
4063 	 * Heuristic to force contended enqueues to serialize on a
4064 	 * separate lock before trying to get qdisc main lock.
4065 	 * This permits qdisc->running owner to get the lock more
4066 	 * often and dequeue packets faster.
4067 	 * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit
4068 	 * and then other tasks will only enqueue packets. The packets will be
4069 	 * sent after the qdisc owner is scheduled again. To prevent this
4070 	 * scenario the task always serialize on the lock.
4071 	 */
4072 	contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT);
4073 	if (unlikely(contended))
4074 		spin_lock(&q->busylock);
4075 
4076 	spin_lock(root_lock);
4077 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
4078 		__qdisc_drop(skb, &to_free);
4079 		rc = NET_XMIT_DROP;
4080 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
4081 		   qdisc_run_begin(q)) {
4082 		/*
4083 		 * This is a work-conserving queue; there are no old skbs
4084 		 * waiting to be sent out; and the qdisc is not running -
4085 		 * xmit the skb directly.
4086 		 */
4087 
4088 		qdisc_bstats_update(q, skb);
4089 
4090 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
4091 			if (unlikely(contended)) {
4092 				spin_unlock(&q->busylock);
4093 				contended = false;
4094 			}
4095 			__qdisc_run(q);
4096 		}
4097 
4098 		qdisc_run_end(q);
4099 		rc = NET_XMIT_SUCCESS;
4100 	} else {
4101 		WRITE_ONCE(q->owner, smp_processor_id());
4102 		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
4103 		WRITE_ONCE(q->owner, -1);
4104 		if (qdisc_run_begin(q)) {
4105 			if (unlikely(contended)) {
4106 				spin_unlock(&q->busylock);
4107 				contended = false;
4108 			}
4109 			__qdisc_run(q);
4110 			qdisc_run_end(q);
4111 		}
4112 	}
4113 	spin_unlock(root_lock);
4114 	if (unlikely(to_free))
4115 		kfree_skb_list_reason(to_free,
4116 				      tcf_get_drop_reason(to_free));
4117 	if (unlikely(contended))
4118 		spin_unlock(&q->busylock);
4119 	return rc;
4120 }
4121 
4122 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
4123 static void skb_update_prio(struct sk_buff *skb)
4124 {
4125 	const struct netprio_map *map;
4126 	const struct sock *sk;
4127 	unsigned int prioidx;
4128 
4129 	if (skb->priority)
4130 		return;
4131 	map = rcu_dereference_bh(skb->dev->priomap);
4132 	if (!map)
4133 		return;
4134 	sk = skb_to_full_sk(skb);
4135 	if (!sk)
4136 		return;
4137 
4138 	prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
4139 
4140 	if (prioidx < map->priomap_len)
4141 		skb->priority = map->priomap[prioidx];
4142 }
4143 #else
4144 #define skb_update_prio(skb)
4145 #endif
4146 
4147 /**
4148  *	dev_loopback_xmit - loop back @skb
4149  *	@net: network namespace this loopback is happening in
4150  *	@sk:  sk needed to be a netfilter okfn
4151  *	@skb: buffer to transmit
4152  */
4153 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
4154 {
4155 	skb_reset_mac_header(skb);
4156 	__skb_pull(skb, skb_network_offset(skb));
4157 	skb->pkt_type = PACKET_LOOPBACK;
4158 	if (skb->ip_summed == CHECKSUM_NONE)
4159 		skb->ip_summed = CHECKSUM_UNNECESSARY;
4160 	DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb));
4161 	skb_dst_force(skb);
4162 	netif_rx(skb);
4163 	return 0;
4164 }
4165 EXPORT_SYMBOL(dev_loopback_xmit);
4166 
4167 #ifdef CONFIG_NET_EGRESS
4168 static struct netdev_queue *
4169 netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb)
4170 {
4171 	int qm = skb_get_queue_mapping(skb);
4172 
4173 	return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm));
4174 }
4175 
4176 #ifndef CONFIG_PREEMPT_RT
4177 static bool netdev_xmit_txqueue_skipped(void)
4178 {
4179 	return __this_cpu_read(softnet_data.xmit.skip_txqueue);
4180 }
4181 
4182 void netdev_xmit_skip_txqueue(bool skip)
4183 {
4184 	__this_cpu_write(softnet_data.xmit.skip_txqueue, skip);
4185 }
4186 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
4187 
4188 #else
4189 static bool netdev_xmit_txqueue_skipped(void)
4190 {
4191 	return current->net_xmit.skip_txqueue;
4192 }
4193 
4194 void netdev_xmit_skip_txqueue(bool skip)
4195 {
4196 	current->net_xmit.skip_txqueue = skip;
4197 }
4198 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
4199 #endif
4200 #endif /* CONFIG_NET_EGRESS */
4201 
4202 #ifdef CONFIG_NET_XGRESS
4203 static int tc_run(struct tcx_entry *entry, struct sk_buff *skb,
4204 		  enum skb_drop_reason *drop_reason)
4205 {
4206 	int ret = TC_ACT_UNSPEC;
4207 #ifdef CONFIG_NET_CLS_ACT
4208 	struct mini_Qdisc *miniq = rcu_dereference_bh(entry->miniq);
4209 	struct tcf_result res;
4210 
4211 	if (!miniq)
4212 		return ret;
4213 
4214 	/* Global bypass */
4215 	if (!static_branch_likely(&tcf_sw_enabled_key))
4216 		return ret;
4217 
4218 	/* Block-wise bypass */
4219 	if (tcf_block_bypass_sw(miniq->block))
4220 		return ret;
4221 
4222 	tc_skb_cb(skb)->mru = 0;
4223 	tc_skb_cb(skb)->post_ct = false;
4224 	tcf_set_drop_reason(skb, *drop_reason);
4225 
4226 	mini_qdisc_bstats_cpu_update(miniq, skb);
4227 	ret = tcf_classify(skb, miniq->block, miniq->filter_list, &res, false);
4228 	/* Only tcf related quirks below. */
4229 	switch (ret) {
4230 	case TC_ACT_SHOT:
4231 		*drop_reason = tcf_get_drop_reason(skb);
4232 		mini_qdisc_qstats_cpu_drop(miniq);
4233 		break;
4234 	case TC_ACT_OK:
4235 	case TC_ACT_RECLASSIFY:
4236 		skb->tc_index = TC_H_MIN(res.classid);
4237 		break;
4238 	}
4239 #endif /* CONFIG_NET_CLS_ACT */
4240 	return ret;
4241 }
4242 
4243 static DEFINE_STATIC_KEY_FALSE(tcx_needed_key);
4244 
4245 void tcx_inc(void)
4246 {
4247 	static_branch_inc(&tcx_needed_key);
4248 }
4249 
4250 void tcx_dec(void)
4251 {
4252 	static_branch_dec(&tcx_needed_key);
4253 }
4254 
4255 static __always_inline enum tcx_action_base
4256 tcx_run(const struct bpf_mprog_entry *entry, struct sk_buff *skb,
4257 	const bool needs_mac)
4258 {
4259 	const struct bpf_mprog_fp *fp;
4260 	const struct bpf_prog *prog;
4261 	int ret = TCX_NEXT;
4262 
4263 	if (needs_mac)
4264 		__skb_push(skb, skb->mac_len);
4265 	bpf_mprog_foreach_prog(entry, fp, prog) {
4266 		bpf_compute_data_pointers(skb);
4267 		ret = bpf_prog_run(prog, skb);
4268 		if (ret != TCX_NEXT)
4269 			break;
4270 	}
4271 	if (needs_mac)
4272 		__skb_pull(skb, skb->mac_len);
4273 	return tcx_action_code(skb, ret);
4274 }
4275 
4276 static __always_inline struct sk_buff *
4277 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4278 		   struct net_device *orig_dev, bool *another)
4279 {
4280 	struct bpf_mprog_entry *entry = rcu_dereference_bh(skb->dev->tcx_ingress);
4281 	enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_INGRESS;
4282 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
4283 	int sch_ret;
4284 
4285 	if (!entry)
4286 		return skb;
4287 
4288 	bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
4289 	if (*pt_prev) {
4290 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
4291 		*pt_prev = NULL;
4292 	}
4293 
4294 	qdisc_skb_cb(skb)->pkt_len = skb->len;
4295 	tcx_set_ingress(skb, true);
4296 
4297 	if (static_branch_unlikely(&tcx_needed_key)) {
4298 		sch_ret = tcx_run(entry, skb, true);
4299 		if (sch_ret != TC_ACT_UNSPEC)
4300 			goto ingress_verdict;
4301 	}
4302 	sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4303 ingress_verdict:
4304 	switch (sch_ret) {
4305 	case TC_ACT_REDIRECT:
4306 		/* skb_mac_header check was done by BPF, so we can safely
4307 		 * push the L2 header back before redirecting to another
4308 		 * netdev.
4309 		 */
4310 		__skb_push(skb, skb->mac_len);
4311 		if (skb_do_redirect(skb) == -EAGAIN) {
4312 			__skb_pull(skb, skb->mac_len);
4313 			*another = true;
4314 			break;
4315 		}
4316 		*ret = NET_RX_SUCCESS;
4317 		bpf_net_ctx_clear(bpf_net_ctx);
4318 		return NULL;
4319 	case TC_ACT_SHOT:
4320 		kfree_skb_reason(skb, drop_reason);
4321 		*ret = NET_RX_DROP;
4322 		bpf_net_ctx_clear(bpf_net_ctx);
4323 		return NULL;
4324 	/* used by tc_run */
4325 	case TC_ACT_STOLEN:
4326 	case TC_ACT_QUEUED:
4327 	case TC_ACT_TRAP:
4328 		consume_skb(skb);
4329 		fallthrough;
4330 	case TC_ACT_CONSUMED:
4331 		*ret = NET_RX_SUCCESS;
4332 		bpf_net_ctx_clear(bpf_net_ctx);
4333 		return NULL;
4334 	}
4335 	bpf_net_ctx_clear(bpf_net_ctx);
4336 
4337 	return skb;
4338 }
4339 
4340 static __always_inline struct sk_buff *
4341 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4342 {
4343 	struct bpf_mprog_entry *entry = rcu_dereference_bh(dev->tcx_egress);
4344 	enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_EGRESS;
4345 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
4346 	int sch_ret;
4347 
4348 	if (!entry)
4349 		return skb;
4350 
4351 	bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
4352 
4353 	/* qdisc_skb_cb(skb)->pkt_len & tcx_set_ingress() was
4354 	 * already set by the caller.
4355 	 */
4356 	if (static_branch_unlikely(&tcx_needed_key)) {
4357 		sch_ret = tcx_run(entry, skb, false);
4358 		if (sch_ret != TC_ACT_UNSPEC)
4359 			goto egress_verdict;
4360 	}
4361 	sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4362 egress_verdict:
4363 	switch (sch_ret) {
4364 	case TC_ACT_REDIRECT:
4365 		/* No need to push/pop skb's mac_header here on egress! */
4366 		skb_do_redirect(skb);
4367 		*ret = NET_XMIT_SUCCESS;
4368 		bpf_net_ctx_clear(bpf_net_ctx);
4369 		return NULL;
4370 	case TC_ACT_SHOT:
4371 		kfree_skb_reason(skb, drop_reason);
4372 		*ret = NET_XMIT_DROP;
4373 		bpf_net_ctx_clear(bpf_net_ctx);
4374 		return NULL;
4375 	/* used by tc_run */
4376 	case TC_ACT_STOLEN:
4377 	case TC_ACT_QUEUED:
4378 	case TC_ACT_TRAP:
4379 		consume_skb(skb);
4380 		fallthrough;
4381 	case TC_ACT_CONSUMED:
4382 		*ret = NET_XMIT_SUCCESS;
4383 		bpf_net_ctx_clear(bpf_net_ctx);
4384 		return NULL;
4385 	}
4386 	bpf_net_ctx_clear(bpf_net_ctx);
4387 
4388 	return skb;
4389 }
4390 #else
4391 static __always_inline struct sk_buff *
4392 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4393 		   struct net_device *orig_dev, bool *another)
4394 {
4395 	return skb;
4396 }
4397 
4398 static __always_inline struct sk_buff *
4399 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4400 {
4401 	return skb;
4402 }
4403 #endif /* CONFIG_NET_XGRESS */
4404 
4405 #ifdef CONFIG_XPS
4406 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
4407 			       struct xps_dev_maps *dev_maps, unsigned int tci)
4408 {
4409 	int tc = netdev_get_prio_tc_map(dev, skb->priority);
4410 	struct xps_map *map;
4411 	int queue_index = -1;
4412 
4413 	if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
4414 		return queue_index;
4415 
4416 	tci *= dev_maps->num_tc;
4417 	tci += tc;
4418 
4419 	map = rcu_dereference(dev_maps->attr_map[tci]);
4420 	if (map) {
4421 		if (map->len == 1)
4422 			queue_index = map->queues[0];
4423 		else
4424 			queue_index = map->queues[reciprocal_scale(
4425 						skb_get_hash(skb), map->len)];
4426 		if (unlikely(queue_index >= dev->real_num_tx_queues))
4427 			queue_index = -1;
4428 	}
4429 	return queue_index;
4430 }
4431 #endif
4432 
4433 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4434 			 struct sk_buff *skb)
4435 {
4436 #ifdef CONFIG_XPS
4437 	struct xps_dev_maps *dev_maps;
4438 	struct sock *sk = skb->sk;
4439 	int queue_index = -1;
4440 
4441 	if (!static_key_false(&xps_needed))
4442 		return -1;
4443 
4444 	rcu_read_lock();
4445 	if (!static_key_false(&xps_rxqs_needed))
4446 		goto get_cpus_map;
4447 
4448 	dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4449 	if (dev_maps) {
4450 		int tci = sk_rx_queue_get(sk);
4451 
4452 		if (tci >= 0)
4453 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4454 							  tci);
4455 	}
4456 
4457 get_cpus_map:
4458 	if (queue_index < 0) {
4459 		dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4460 		if (dev_maps) {
4461 			unsigned int tci = skb->sender_cpu - 1;
4462 
4463 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4464 							  tci);
4465 		}
4466 	}
4467 	rcu_read_unlock();
4468 
4469 	return queue_index;
4470 #else
4471 	return -1;
4472 #endif
4473 }
4474 
4475 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4476 		     struct net_device *sb_dev)
4477 {
4478 	return 0;
4479 }
4480 EXPORT_SYMBOL(dev_pick_tx_zero);
4481 
4482 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4483 		     struct net_device *sb_dev)
4484 {
4485 	struct sock *sk = skb->sk;
4486 	int queue_index = sk_tx_queue_get(sk);
4487 
4488 	sb_dev = sb_dev ? : dev;
4489 
4490 	if (queue_index < 0 || skb->ooo_okay ||
4491 	    queue_index >= dev->real_num_tx_queues) {
4492 		int new_index = get_xps_queue(dev, sb_dev, skb);
4493 
4494 		if (new_index < 0)
4495 			new_index = skb_tx_hash(dev, sb_dev, skb);
4496 
4497 		if (queue_index != new_index && sk &&
4498 		    sk_fullsock(sk) &&
4499 		    rcu_access_pointer(sk->sk_dst_cache))
4500 			sk_tx_queue_set(sk, new_index);
4501 
4502 		queue_index = new_index;
4503 	}
4504 
4505 	return queue_index;
4506 }
4507 EXPORT_SYMBOL(netdev_pick_tx);
4508 
4509 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4510 					 struct sk_buff *skb,
4511 					 struct net_device *sb_dev)
4512 {
4513 	int queue_index = 0;
4514 
4515 #ifdef CONFIG_XPS
4516 	u32 sender_cpu = skb->sender_cpu - 1;
4517 
4518 	if (sender_cpu >= (u32)NR_CPUS)
4519 		skb->sender_cpu = raw_smp_processor_id() + 1;
4520 #endif
4521 
4522 	if (dev->real_num_tx_queues != 1) {
4523 		const struct net_device_ops *ops = dev->netdev_ops;
4524 
4525 		if (ops->ndo_select_queue)
4526 			queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4527 		else
4528 			queue_index = netdev_pick_tx(dev, skb, sb_dev);
4529 
4530 		queue_index = netdev_cap_txqueue(dev, queue_index);
4531 	}
4532 
4533 	skb_set_queue_mapping(skb, queue_index);
4534 	return netdev_get_tx_queue(dev, queue_index);
4535 }
4536 
4537 /**
4538  * __dev_queue_xmit() - transmit a buffer
4539  * @skb:	buffer to transmit
4540  * @sb_dev:	suboordinate device used for L2 forwarding offload
4541  *
4542  * Queue a buffer for transmission to a network device. The caller must
4543  * have set the device and priority and built the buffer before calling
4544  * this function. The function can be called from an interrupt.
4545  *
4546  * When calling this method, interrupts MUST be enabled. This is because
4547  * the BH enable code must have IRQs enabled so that it will not deadlock.
4548  *
4549  * Regardless of the return value, the skb is consumed, so it is currently
4550  * difficult to retry a send to this method. (You can bump the ref count
4551  * before sending to hold a reference for retry if you are careful.)
4552  *
4553  * Return:
4554  * * 0				- buffer successfully transmitted
4555  * * positive qdisc return code	- NET_XMIT_DROP etc.
4556  * * negative errno		- other errors
4557  */
4558 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4559 {
4560 	struct net_device *dev = skb->dev;
4561 	struct netdev_queue *txq = NULL;
4562 	struct Qdisc *q;
4563 	int rc = -ENOMEM;
4564 	bool again = false;
4565 
4566 	skb_reset_mac_header(skb);
4567 	skb_assert_len(skb);
4568 
4569 	if (unlikely(skb_shinfo(skb)->tx_flags &
4570 		     (SKBTX_SCHED_TSTAMP | SKBTX_BPF)))
4571 		__skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4572 
4573 	/* Disable soft irqs for various locks below. Also
4574 	 * stops preemption for RCU.
4575 	 */
4576 	rcu_read_lock_bh();
4577 
4578 	skb_update_prio(skb);
4579 
4580 	qdisc_pkt_len_init(skb);
4581 	tcx_set_ingress(skb, false);
4582 #ifdef CONFIG_NET_EGRESS
4583 	if (static_branch_unlikely(&egress_needed_key)) {
4584 		if (nf_hook_egress_active()) {
4585 			skb = nf_hook_egress(skb, &rc, dev);
4586 			if (!skb)
4587 				goto out;
4588 		}
4589 
4590 		netdev_xmit_skip_txqueue(false);
4591 
4592 		nf_skip_egress(skb, true);
4593 		skb = sch_handle_egress(skb, &rc, dev);
4594 		if (!skb)
4595 			goto out;
4596 		nf_skip_egress(skb, false);
4597 
4598 		if (netdev_xmit_txqueue_skipped())
4599 			txq = netdev_tx_queue_mapping(dev, skb);
4600 	}
4601 #endif
4602 	/* If device/qdisc don't need skb->dst, release it right now while
4603 	 * its hot in this cpu cache.
4604 	 */
4605 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4606 		skb_dst_drop(skb);
4607 	else
4608 		skb_dst_force(skb);
4609 
4610 	if (!txq)
4611 		txq = netdev_core_pick_tx(dev, skb, sb_dev);
4612 
4613 	q = rcu_dereference_bh(txq->qdisc);
4614 
4615 	trace_net_dev_queue(skb);
4616 	if (q->enqueue) {
4617 		rc = __dev_xmit_skb(skb, q, dev, txq);
4618 		goto out;
4619 	}
4620 
4621 	/* The device has no queue. Common case for software devices:
4622 	 * loopback, all the sorts of tunnels...
4623 
4624 	 * Really, it is unlikely that netif_tx_lock protection is necessary
4625 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4626 	 * counters.)
4627 	 * However, it is possible, that they rely on protection
4628 	 * made by us here.
4629 
4630 	 * Check this and shot the lock. It is not prone from deadlocks.
4631 	 *Either shot noqueue qdisc, it is even simpler 8)
4632 	 */
4633 	if (dev->flags & IFF_UP) {
4634 		int cpu = smp_processor_id(); /* ok because BHs are off */
4635 
4636 		/* Other cpus might concurrently change txq->xmit_lock_owner
4637 		 * to -1 or to their cpu id, but not to our id.
4638 		 */
4639 		if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4640 			if (dev_xmit_recursion())
4641 				goto recursion_alert;
4642 
4643 			skb = validate_xmit_skb(skb, dev, &again);
4644 			if (!skb)
4645 				goto out;
4646 
4647 			HARD_TX_LOCK(dev, txq, cpu);
4648 
4649 			if (!netif_xmit_stopped(txq)) {
4650 				dev_xmit_recursion_inc();
4651 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4652 				dev_xmit_recursion_dec();
4653 				if (dev_xmit_complete(rc)) {
4654 					HARD_TX_UNLOCK(dev, txq);
4655 					goto out;
4656 				}
4657 			}
4658 			HARD_TX_UNLOCK(dev, txq);
4659 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4660 					     dev->name);
4661 		} else {
4662 			/* Recursion is detected! It is possible,
4663 			 * unfortunately
4664 			 */
4665 recursion_alert:
4666 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4667 					     dev->name);
4668 		}
4669 	}
4670 
4671 	rc = -ENETDOWN;
4672 	rcu_read_unlock_bh();
4673 
4674 	dev_core_stats_tx_dropped_inc(dev);
4675 	kfree_skb_list(skb);
4676 	return rc;
4677 out:
4678 	rcu_read_unlock_bh();
4679 	return rc;
4680 }
4681 EXPORT_SYMBOL(__dev_queue_xmit);
4682 
4683 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4684 {
4685 	struct net_device *dev = skb->dev;
4686 	struct sk_buff *orig_skb = skb;
4687 	struct netdev_queue *txq;
4688 	int ret = NETDEV_TX_BUSY;
4689 	bool again = false;
4690 
4691 	if (unlikely(!netif_running(dev) ||
4692 		     !netif_carrier_ok(dev)))
4693 		goto drop;
4694 
4695 	skb = validate_xmit_skb_list(skb, dev, &again);
4696 	if (skb != orig_skb)
4697 		goto drop;
4698 
4699 	skb_set_queue_mapping(skb, queue_id);
4700 	txq = skb_get_tx_queue(dev, skb);
4701 
4702 	local_bh_disable();
4703 
4704 	dev_xmit_recursion_inc();
4705 	HARD_TX_LOCK(dev, txq, smp_processor_id());
4706 	if (!netif_xmit_frozen_or_drv_stopped(txq))
4707 		ret = netdev_start_xmit(skb, dev, txq, false);
4708 	HARD_TX_UNLOCK(dev, txq);
4709 	dev_xmit_recursion_dec();
4710 
4711 	local_bh_enable();
4712 	return ret;
4713 drop:
4714 	dev_core_stats_tx_dropped_inc(dev);
4715 	kfree_skb_list(skb);
4716 	return NET_XMIT_DROP;
4717 }
4718 EXPORT_SYMBOL(__dev_direct_xmit);
4719 
4720 /*************************************************************************
4721  *			Receiver routines
4722  *************************************************************************/
4723 static DEFINE_PER_CPU(struct task_struct *, backlog_napi);
4724 
4725 int weight_p __read_mostly = 64;           /* old backlog weight */
4726 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4727 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4728 
4729 /* Called with irq disabled */
4730 static inline void ____napi_schedule(struct softnet_data *sd,
4731 				     struct napi_struct *napi)
4732 {
4733 	struct task_struct *thread;
4734 
4735 	lockdep_assert_irqs_disabled();
4736 
4737 	if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4738 		/* Paired with smp_mb__before_atomic() in
4739 		 * napi_enable()/dev_set_threaded().
4740 		 * Use READ_ONCE() to guarantee a complete
4741 		 * read on napi->thread. Only call
4742 		 * wake_up_process() when it's not NULL.
4743 		 */
4744 		thread = READ_ONCE(napi->thread);
4745 		if (thread) {
4746 			if (use_backlog_threads() && thread == raw_cpu_read(backlog_napi))
4747 				goto use_local_napi;
4748 
4749 			set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4750 			wake_up_process(thread);
4751 			return;
4752 		}
4753 	}
4754 
4755 use_local_napi:
4756 	list_add_tail(&napi->poll_list, &sd->poll_list);
4757 	WRITE_ONCE(napi->list_owner, smp_processor_id());
4758 	/* If not called from net_rx_action()
4759 	 * we have to raise NET_RX_SOFTIRQ.
4760 	 */
4761 	if (!sd->in_net_rx_action)
4762 		raise_softirq_irqoff(NET_RX_SOFTIRQ);
4763 }
4764 
4765 #ifdef CONFIG_RPS
4766 
4767 struct static_key_false rps_needed __read_mostly;
4768 EXPORT_SYMBOL(rps_needed);
4769 struct static_key_false rfs_needed __read_mostly;
4770 EXPORT_SYMBOL(rfs_needed);
4771 
4772 static struct rps_dev_flow *
4773 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4774 	    struct rps_dev_flow *rflow, u16 next_cpu)
4775 {
4776 	if (next_cpu < nr_cpu_ids) {
4777 		u32 head;
4778 #ifdef CONFIG_RFS_ACCEL
4779 		struct netdev_rx_queue *rxqueue;
4780 		struct rps_dev_flow_table *flow_table;
4781 		struct rps_dev_flow *old_rflow;
4782 		u16 rxq_index;
4783 		u32 flow_id;
4784 		int rc;
4785 
4786 		/* Should we steer this flow to a different hardware queue? */
4787 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4788 		    !(dev->features & NETIF_F_NTUPLE))
4789 			goto out;
4790 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4791 		if (rxq_index == skb_get_rx_queue(skb))
4792 			goto out;
4793 
4794 		rxqueue = dev->_rx + rxq_index;
4795 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
4796 		if (!flow_table)
4797 			goto out;
4798 		flow_id = skb_get_hash(skb) & flow_table->mask;
4799 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4800 							rxq_index, flow_id);
4801 		if (rc < 0)
4802 			goto out;
4803 		old_rflow = rflow;
4804 		rflow = &flow_table->flows[flow_id];
4805 		WRITE_ONCE(rflow->filter, rc);
4806 		if (old_rflow->filter == rc)
4807 			WRITE_ONCE(old_rflow->filter, RPS_NO_FILTER);
4808 	out:
4809 #endif
4810 		head = READ_ONCE(per_cpu(softnet_data, next_cpu).input_queue_head);
4811 		rps_input_queue_tail_save(&rflow->last_qtail, head);
4812 	}
4813 
4814 	WRITE_ONCE(rflow->cpu, next_cpu);
4815 	return rflow;
4816 }
4817 
4818 /*
4819  * get_rps_cpu is called from netif_receive_skb and returns the target
4820  * CPU from the RPS map of the receiving queue for a given skb.
4821  * rcu_read_lock must be held on entry.
4822  */
4823 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4824 		       struct rps_dev_flow **rflowp)
4825 {
4826 	const struct rps_sock_flow_table *sock_flow_table;
4827 	struct netdev_rx_queue *rxqueue = dev->_rx;
4828 	struct rps_dev_flow_table *flow_table;
4829 	struct rps_map *map;
4830 	int cpu = -1;
4831 	u32 tcpu;
4832 	u32 hash;
4833 
4834 	if (skb_rx_queue_recorded(skb)) {
4835 		u16 index = skb_get_rx_queue(skb);
4836 
4837 		if (unlikely(index >= dev->real_num_rx_queues)) {
4838 			WARN_ONCE(dev->real_num_rx_queues > 1,
4839 				  "%s received packet on queue %u, but number "
4840 				  "of RX queues is %u\n",
4841 				  dev->name, index, dev->real_num_rx_queues);
4842 			goto done;
4843 		}
4844 		rxqueue += index;
4845 	}
4846 
4847 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4848 
4849 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4850 	map = rcu_dereference(rxqueue->rps_map);
4851 	if (!flow_table && !map)
4852 		goto done;
4853 
4854 	skb_reset_network_header(skb);
4855 	hash = skb_get_hash(skb);
4856 	if (!hash)
4857 		goto done;
4858 
4859 	sock_flow_table = rcu_dereference(net_hotdata.rps_sock_flow_table);
4860 	if (flow_table && sock_flow_table) {
4861 		struct rps_dev_flow *rflow;
4862 		u32 next_cpu;
4863 		u32 ident;
4864 
4865 		/* First check into global flow table if there is a match.
4866 		 * This READ_ONCE() pairs with WRITE_ONCE() from rps_record_sock_flow().
4867 		 */
4868 		ident = READ_ONCE(sock_flow_table->ents[hash & sock_flow_table->mask]);
4869 		if ((ident ^ hash) & ~net_hotdata.rps_cpu_mask)
4870 			goto try_rps;
4871 
4872 		next_cpu = ident & net_hotdata.rps_cpu_mask;
4873 
4874 		/* OK, now we know there is a match,
4875 		 * we can look at the local (per receive queue) flow table
4876 		 */
4877 		rflow = &flow_table->flows[hash & flow_table->mask];
4878 		tcpu = rflow->cpu;
4879 
4880 		/*
4881 		 * If the desired CPU (where last recvmsg was done) is
4882 		 * different from current CPU (one in the rx-queue flow
4883 		 * table entry), switch if one of the following holds:
4884 		 *   - Current CPU is unset (>= nr_cpu_ids).
4885 		 *   - Current CPU is offline.
4886 		 *   - The current CPU's queue tail has advanced beyond the
4887 		 *     last packet that was enqueued using this table entry.
4888 		 *     This guarantees that all previous packets for the flow
4889 		 *     have been dequeued, thus preserving in order delivery.
4890 		 */
4891 		if (unlikely(tcpu != next_cpu) &&
4892 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4893 		     ((int)(READ_ONCE(per_cpu(softnet_data, tcpu).input_queue_head) -
4894 		      rflow->last_qtail)) >= 0)) {
4895 			tcpu = next_cpu;
4896 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4897 		}
4898 
4899 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4900 			*rflowp = rflow;
4901 			cpu = tcpu;
4902 			goto done;
4903 		}
4904 	}
4905 
4906 try_rps:
4907 
4908 	if (map) {
4909 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4910 		if (cpu_online(tcpu)) {
4911 			cpu = tcpu;
4912 			goto done;
4913 		}
4914 	}
4915 
4916 done:
4917 	return cpu;
4918 }
4919 
4920 #ifdef CONFIG_RFS_ACCEL
4921 
4922 /**
4923  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4924  * @dev: Device on which the filter was set
4925  * @rxq_index: RX queue index
4926  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4927  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4928  *
4929  * Drivers that implement ndo_rx_flow_steer() should periodically call
4930  * this function for each installed filter and remove the filters for
4931  * which it returns %true.
4932  */
4933 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4934 			 u32 flow_id, u16 filter_id)
4935 {
4936 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4937 	struct rps_dev_flow_table *flow_table;
4938 	struct rps_dev_flow *rflow;
4939 	bool expire = true;
4940 	unsigned int cpu;
4941 
4942 	rcu_read_lock();
4943 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4944 	if (flow_table && flow_id <= flow_table->mask) {
4945 		rflow = &flow_table->flows[flow_id];
4946 		cpu = READ_ONCE(rflow->cpu);
4947 		if (READ_ONCE(rflow->filter) == filter_id && cpu < nr_cpu_ids &&
4948 		    ((int)(READ_ONCE(per_cpu(softnet_data, cpu).input_queue_head) -
4949 			   READ_ONCE(rflow->last_qtail)) <
4950 		     (int)(10 * flow_table->mask)))
4951 			expire = false;
4952 	}
4953 	rcu_read_unlock();
4954 	return expire;
4955 }
4956 EXPORT_SYMBOL(rps_may_expire_flow);
4957 
4958 #endif /* CONFIG_RFS_ACCEL */
4959 
4960 /* Called from hardirq (IPI) context */
4961 static void rps_trigger_softirq(void *data)
4962 {
4963 	struct softnet_data *sd = data;
4964 
4965 	____napi_schedule(sd, &sd->backlog);
4966 	sd->received_rps++;
4967 }
4968 
4969 #endif /* CONFIG_RPS */
4970 
4971 /* Called from hardirq (IPI) context */
4972 static void trigger_rx_softirq(void *data)
4973 {
4974 	struct softnet_data *sd = data;
4975 
4976 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4977 	smp_store_release(&sd->defer_ipi_scheduled, 0);
4978 }
4979 
4980 /*
4981  * After we queued a packet into sd->input_pkt_queue,
4982  * we need to make sure this queue is serviced soon.
4983  *
4984  * - If this is another cpu queue, link it to our rps_ipi_list,
4985  *   and make sure we will process rps_ipi_list from net_rx_action().
4986  *
4987  * - If this is our own queue, NAPI schedule our backlog.
4988  *   Note that this also raises NET_RX_SOFTIRQ.
4989  */
4990 static void napi_schedule_rps(struct softnet_data *sd)
4991 {
4992 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4993 
4994 #ifdef CONFIG_RPS
4995 	if (sd != mysd) {
4996 		if (use_backlog_threads()) {
4997 			__napi_schedule_irqoff(&sd->backlog);
4998 			return;
4999 		}
5000 
5001 		sd->rps_ipi_next = mysd->rps_ipi_list;
5002 		mysd->rps_ipi_list = sd;
5003 
5004 		/* If not called from net_rx_action() or napi_threaded_poll()
5005 		 * we have to raise NET_RX_SOFTIRQ.
5006 		 */
5007 		if (!mysd->in_net_rx_action && !mysd->in_napi_threaded_poll)
5008 			__raise_softirq_irqoff(NET_RX_SOFTIRQ);
5009 		return;
5010 	}
5011 #endif /* CONFIG_RPS */
5012 	__napi_schedule_irqoff(&mysd->backlog);
5013 }
5014 
5015 void kick_defer_list_purge(struct softnet_data *sd, unsigned int cpu)
5016 {
5017 	unsigned long flags;
5018 
5019 	if (use_backlog_threads()) {
5020 		backlog_lock_irq_save(sd, &flags);
5021 
5022 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state))
5023 			__napi_schedule_irqoff(&sd->backlog);
5024 
5025 		backlog_unlock_irq_restore(sd, &flags);
5026 
5027 	} else if (!cmpxchg(&sd->defer_ipi_scheduled, 0, 1)) {
5028 		smp_call_function_single_async(cpu, &sd->defer_csd);
5029 	}
5030 }
5031 
5032 #ifdef CONFIG_NET_FLOW_LIMIT
5033 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
5034 #endif
5035 
5036 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
5037 {
5038 #ifdef CONFIG_NET_FLOW_LIMIT
5039 	struct sd_flow_limit *fl;
5040 	struct softnet_data *sd;
5041 	unsigned int old_flow, new_flow;
5042 
5043 	if (qlen < (READ_ONCE(net_hotdata.max_backlog) >> 1))
5044 		return false;
5045 
5046 	sd = this_cpu_ptr(&softnet_data);
5047 
5048 	rcu_read_lock();
5049 	fl = rcu_dereference(sd->flow_limit);
5050 	if (fl) {
5051 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
5052 		old_flow = fl->history[fl->history_head];
5053 		fl->history[fl->history_head] = new_flow;
5054 
5055 		fl->history_head++;
5056 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
5057 
5058 		if (likely(fl->buckets[old_flow]))
5059 			fl->buckets[old_flow]--;
5060 
5061 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
5062 			fl->count++;
5063 			rcu_read_unlock();
5064 			return true;
5065 		}
5066 	}
5067 	rcu_read_unlock();
5068 #endif
5069 	return false;
5070 }
5071 
5072 /*
5073  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
5074  * queue (may be a remote CPU queue).
5075  */
5076 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
5077 			      unsigned int *qtail)
5078 {
5079 	enum skb_drop_reason reason;
5080 	struct softnet_data *sd;
5081 	unsigned long flags;
5082 	unsigned int qlen;
5083 	int max_backlog;
5084 	u32 tail;
5085 
5086 	reason = SKB_DROP_REASON_DEV_READY;
5087 	if (!netif_running(skb->dev))
5088 		goto bad_dev;
5089 
5090 	reason = SKB_DROP_REASON_CPU_BACKLOG;
5091 	sd = &per_cpu(softnet_data, cpu);
5092 
5093 	qlen = skb_queue_len_lockless(&sd->input_pkt_queue);
5094 	max_backlog = READ_ONCE(net_hotdata.max_backlog);
5095 	if (unlikely(qlen > max_backlog))
5096 		goto cpu_backlog_drop;
5097 	backlog_lock_irq_save(sd, &flags);
5098 	qlen = skb_queue_len(&sd->input_pkt_queue);
5099 	if (qlen <= max_backlog && !skb_flow_limit(skb, qlen)) {
5100 		if (!qlen) {
5101 			/* Schedule NAPI for backlog device. We can use
5102 			 * non atomic operation as we own the queue lock.
5103 			 */
5104 			if (!__test_and_set_bit(NAPI_STATE_SCHED,
5105 						&sd->backlog.state))
5106 				napi_schedule_rps(sd);
5107 		}
5108 		__skb_queue_tail(&sd->input_pkt_queue, skb);
5109 		tail = rps_input_queue_tail_incr(sd);
5110 		backlog_unlock_irq_restore(sd, &flags);
5111 
5112 		/* save the tail outside of the critical section */
5113 		rps_input_queue_tail_save(qtail, tail);
5114 		return NET_RX_SUCCESS;
5115 	}
5116 
5117 	backlog_unlock_irq_restore(sd, &flags);
5118 
5119 cpu_backlog_drop:
5120 	atomic_inc(&sd->dropped);
5121 bad_dev:
5122 	dev_core_stats_rx_dropped_inc(skb->dev);
5123 	kfree_skb_reason(skb, reason);
5124 	return NET_RX_DROP;
5125 }
5126 
5127 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
5128 {
5129 	struct net_device *dev = skb->dev;
5130 	struct netdev_rx_queue *rxqueue;
5131 
5132 	rxqueue = dev->_rx;
5133 
5134 	if (skb_rx_queue_recorded(skb)) {
5135 		u16 index = skb_get_rx_queue(skb);
5136 
5137 		if (unlikely(index >= dev->real_num_rx_queues)) {
5138 			WARN_ONCE(dev->real_num_rx_queues > 1,
5139 				  "%s received packet on queue %u, but number "
5140 				  "of RX queues is %u\n",
5141 				  dev->name, index, dev->real_num_rx_queues);
5142 
5143 			return rxqueue; /* Return first rxqueue */
5144 		}
5145 		rxqueue += index;
5146 	}
5147 	return rxqueue;
5148 }
5149 
5150 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
5151 			     const struct bpf_prog *xdp_prog)
5152 {
5153 	void *orig_data, *orig_data_end, *hard_start;
5154 	struct netdev_rx_queue *rxqueue;
5155 	bool orig_bcast, orig_host;
5156 	u32 mac_len, frame_sz;
5157 	__be16 orig_eth_type;
5158 	struct ethhdr *eth;
5159 	u32 metalen, act;
5160 	int off;
5161 
5162 	/* The XDP program wants to see the packet starting at the MAC
5163 	 * header.
5164 	 */
5165 	mac_len = skb->data - skb_mac_header(skb);
5166 	hard_start = skb->data - skb_headroom(skb);
5167 
5168 	/* SKB "head" area always have tailroom for skb_shared_info */
5169 	frame_sz = (void *)skb_end_pointer(skb) - hard_start;
5170 	frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
5171 
5172 	rxqueue = netif_get_rxqueue(skb);
5173 	xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
5174 	xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
5175 			 skb_headlen(skb) + mac_len, true);
5176 	if (skb_is_nonlinear(skb)) {
5177 		skb_shinfo(skb)->xdp_frags_size = skb->data_len;
5178 		xdp_buff_set_frags_flag(xdp);
5179 	} else {
5180 		xdp_buff_clear_frags_flag(xdp);
5181 	}
5182 
5183 	orig_data_end = xdp->data_end;
5184 	orig_data = xdp->data;
5185 	eth = (struct ethhdr *)xdp->data;
5186 	orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
5187 	orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
5188 	orig_eth_type = eth->h_proto;
5189 
5190 	act = bpf_prog_run_xdp(xdp_prog, xdp);
5191 
5192 	/* check if bpf_xdp_adjust_head was used */
5193 	off = xdp->data - orig_data;
5194 	if (off) {
5195 		if (off > 0)
5196 			__skb_pull(skb, off);
5197 		else if (off < 0)
5198 			__skb_push(skb, -off);
5199 
5200 		skb->mac_header += off;
5201 		skb_reset_network_header(skb);
5202 	}
5203 
5204 	/* check if bpf_xdp_adjust_tail was used */
5205 	off = xdp->data_end - orig_data_end;
5206 	if (off != 0) {
5207 		skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
5208 		skb->len += off; /* positive on grow, negative on shrink */
5209 	}
5210 
5211 	/* XDP frag metadata (e.g. nr_frags) are updated in eBPF helpers
5212 	 * (e.g. bpf_xdp_adjust_tail), we need to update data_len here.
5213 	 */
5214 	if (xdp_buff_has_frags(xdp))
5215 		skb->data_len = skb_shinfo(skb)->xdp_frags_size;
5216 	else
5217 		skb->data_len = 0;
5218 
5219 	/* check if XDP changed eth hdr such SKB needs update */
5220 	eth = (struct ethhdr *)xdp->data;
5221 	if ((orig_eth_type != eth->h_proto) ||
5222 	    (orig_host != ether_addr_equal_64bits(eth->h_dest,
5223 						  skb->dev->dev_addr)) ||
5224 	    (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
5225 		__skb_push(skb, ETH_HLEN);
5226 		skb->pkt_type = PACKET_HOST;
5227 		skb->protocol = eth_type_trans(skb, skb->dev);
5228 	}
5229 
5230 	/* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
5231 	 * before calling us again on redirect path. We do not call do_redirect
5232 	 * as we leave that up to the caller.
5233 	 *
5234 	 * Caller is responsible for managing lifetime of skb (i.e. calling
5235 	 * kfree_skb in response to actions it cannot handle/XDP_DROP).
5236 	 */
5237 	switch (act) {
5238 	case XDP_REDIRECT:
5239 	case XDP_TX:
5240 		__skb_push(skb, mac_len);
5241 		break;
5242 	case XDP_PASS:
5243 		metalen = xdp->data - xdp->data_meta;
5244 		if (metalen)
5245 			skb_metadata_set(skb, metalen);
5246 		break;
5247 	}
5248 
5249 	return act;
5250 }
5251 
5252 static int
5253 netif_skb_check_for_xdp(struct sk_buff **pskb, const struct bpf_prog *prog)
5254 {
5255 	struct sk_buff *skb = *pskb;
5256 	int err, hroom, troom;
5257 
5258 	if (!skb_cow_data_for_xdp(this_cpu_read(system_page_pool), pskb, prog))
5259 		return 0;
5260 
5261 	/* In case we have to go down the path and also linearize,
5262 	 * then lets do the pskb_expand_head() work just once here.
5263 	 */
5264 	hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
5265 	troom = skb->tail + skb->data_len - skb->end;
5266 	err = pskb_expand_head(skb,
5267 			       hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
5268 			       troom > 0 ? troom + 128 : 0, GFP_ATOMIC);
5269 	if (err)
5270 		return err;
5271 
5272 	return skb_linearize(skb);
5273 }
5274 
5275 static u32 netif_receive_generic_xdp(struct sk_buff **pskb,
5276 				     struct xdp_buff *xdp,
5277 				     const struct bpf_prog *xdp_prog)
5278 {
5279 	struct sk_buff *skb = *pskb;
5280 	u32 mac_len, act = XDP_DROP;
5281 
5282 	/* Reinjected packets coming from act_mirred or similar should
5283 	 * not get XDP generic processing.
5284 	 */
5285 	if (skb_is_redirected(skb))
5286 		return XDP_PASS;
5287 
5288 	/* XDP packets must have sufficient headroom of XDP_PACKET_HEADROOM
5289 	 * bytes. This is the guarantee that also native XDP provides,
5290 	 * thus we need to do it here as well.
5291 	 */
5292 	mac_len = skb->data - skb_mac_header(skb);
5293 	__skb_push(skb, mac_len);
5294 
5295 	if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
5296 	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
5297 		if (netif_skb_check_for_xdp(pskb, xdp_prog))
5298 			goto do_drop;
5299 	}
5300 
5301 	__skb_pull(*pskb, mac_len);
5302 
5303 	act = bpf_prog_run_generic_xdp(*pskb, xdp, xdp_prog);
5304 	switch (act) {
5305 	case XDP_REDIRECT:
5306 	case XDP_TX:
5307 	case XDP_PASS:
5308 		break;
5309 	default:
5310 		bpf_warn_invalid_xdp_action((*pskb)->dev, xdp_prog, act);
5311 		fallthrough;
5312 	case XDP_ABORTED:
5313 		trace_xdp_exception((*pskb)->dev, xdp_prog, act);
5314 		fallthrough;
5315 	case XDP_DROP:
5316 	do_drop:
5317 		kfree_skb(*pskb);
5318 		break;
5319 	}
5320 
5321 	return act;
5322 }
5323 
5324 /* When doing generic XDP we have to bypass the qdisc layer and the
5325  * network taps in order to match in-driver-XDP behavior. This also means
5326  * that XDP packets are able to starve other packets going through a qdisc,
5327  * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX
5328  * queues, so they do not have this starvation issue.
5329  */
5330 void generic_xdp_tx(struct sk_buff *skb, const struct bpf_prog *xdp_prog)
5331 {
5332 	struct net_device *dev = skb->dev;
5333 	struct netdev_queue *txq;
5334 	bool free_skb = true;
5335 	int cpu, rc;
5336 
5337 	txq = netdev_core_pick_tx(dev, skb, NULL);
5338 	cpu = smp_processor_id();
5339 	HARD_TX_LOCK(dev, txq, cpu);
5340 	if (!netif_xmit_frozen_or_drv_stopped(txq)) {
5341 		rc = netdev_start_xmit(skb, dev, txq, 0);
5342 		if (dev_xmit_complete(rc))
5343 			free_skb = false;
5344 	}
5345 	HARD_TX_UNLOCK(dev, txq);
5346 	if (free_skb) {
5347 		trace_xdp_exception(dev, xdp_prog, XDP_TX);
5348 		dev_core_stats_tx_dropped_inc(dev);
5349 		kfree_skb(skb);
5350 	}
5351 }
5352 
5353 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
5354 
5355 int do_xdp_generic(const struct bpf_prog *xdp_prog, struct sk_buff **pskb)
5356 {
5357 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
5358 
5359 	if (xdp_prog) {
5360 		struct xdp_buff xdp;
5361 		u32 act;
5362 		int err;
5363 
5364 		bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
5365 		act = netif_receive_generic_xdp(pskb, &xdp, xdp_prog);
5366 		if (act != XDP_PASS) {
5367 			switch (act) {
5368 			case XDP_REDIRECT:
5369 				err = xdp_do_generic_redirect((*pskb)->dev, *pskb,
5370 							      &xdp, xdp_prog);
5371 				if (err)
5372 					goto out_redir;
5373 				break;
5374 			case XDP_TX:
5375 				generic_xdp_tx(*pskb, xdp_prog);
5376 				break;
5377 			}
5378 			bpf_net_ctx_clear(bpf_net_ctx);
5379 			return XDP_DROP;
5380 		}
5381 		bpf_net_ctx_clear(bpf_net_ctx);
5382 	}
5383 	return XDP_PASS;
5384 out_redir:
5385 	bpf_net_ctx_clear(bpf_net_ctx);
5386 	kfree_skb_reason(*pskb, SKB_DROP_REASON_XDP);
5387 	return XDP_DROP;
5388 }
5389 EXPORT_SYMBOL_GPL(do_xdp_generic);
5390 
5391 static int netif_rx_internal(struct sk_buff *skb)
5392 {
5393 	int ret;
5394 
5395 	net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb);
5396 
5397 	trace_netif_rx(skb);
5398 
5399 #ifdef CONFIG_RPS
5400 	if (static_branch_unlikely(&rps_needed)) {
5401 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5402 		int cpu;
5403 
5404 		rcu_read_lock();
5405 
5406 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
5407 		if (cpu < 0)
5408 			cpu = smp_processor_id();
5409 
5410 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5411 
5412 		rcu_read_unlock();
5413 	} else
5414 #endif
5415 	{
5416 		unsigned int qtail;
5417 
5418 		ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail);
5419 	}
5420 	return ret;
5421 }
5422 
5423 /**
5424  *	__netif_rx	-	Slightly optimized version of netif_rx
5425  *	@skb: buffer to post
5426  *
5427  *	This behaves as netif_rx except that it does not disable bottom halves.
5428  *	As a result this function may only be invoked from the interrupt context
5429  *	(either hard or soft interrupt).
5430  */
5431 int __netif_rx(struct sk_buff *skb)
5432 {
5433 	int ret;
5434 
5435 	lockdep_assert_once(hardirq_count() | softirq_count());
5436 
5437 	trace_netif_rx_entry(skb);
5438 	ret = netif_rx_internal(skb);
5439 	trace_netif_rx_exit(ret);
5440 	return ret;
5441 }
5442 EXPORT_SYMBOL(__netif_rx);
5443 
5444 /**
5445  *	netif_rx	-	post buffer to the network code
5446  *	@skb: buffer to post
5447  *
5448  *	This function receives a packet from a device driver and queues it for
5449  *	the upper (protocol) levels to process via the backlog NAPI device. It
5450  *	always succeeds. The buffer may be dropped during processing for
5451  *	congestion control or by the protocol layers.
5452  *	The network buffer is passed via the backlog NAPI device. Modern NIC
5453  *	driver should use NAPI and GRO.
5454  *	This function can used from interrupt and from process context. The
5455  *	caller from process context must not disable interrupts before invoking
5456  *	this function.
5457  *
5458  *	return values:
5459  *	NET_RX_SUCCESS	(no congestion)
5460  *	NET_RX_DROP     (packet was dropped)
5461  *
5462  */
5463 int netif_rx(struct sk_buff *skb)
5464 {
5465 	bool need_bh_off = !(hardirq_count() | softirq_count());
5466 	int ret;
5467 
5468 	if (need_bh_off)
5469 		local_bh_disable();
5470 	trace_netif_rx_entry(skb);
5471 	ret = netif_rx_internal(skb);
5472 	trace_netif_rx_exit(ret);
5473 	if (need_bh_off)
5474 		local_bh_enable();
5475 	return ret;
5476 }
5477 EXPORT_SYMBOL(netif_rx);
5478 
5479 static __latent_entropy void net_tx_action(void)
5480 {
5481 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5482 
5483 	if (sd->completion_queue) {
5484 		struct sk_buff *clist;
5485 
5486 		local_irq_disable();
5487 		clist = sd->completion_queue;
5488 		sd->completion_queue = NULL;
5489 		local_irq_enable();
5490 
5491 		while (clist) {
5492 			struct sk_buff *skb = clist;
5493 
5494 			clist = clist->next;
5495 
5496 			WARN_ON(refcount_read(&skb->users));
5497 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_CONSUMED))
5498 				trace_consume_skb(skb, net_tx_action);
5499 			else
5500 				trace_kfree_skb(skb, net_tx_action,
5501 						get_kfree_skb_cb(skb)->reason, NULL);
5502 
5503 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5504 				__kfree_skb(skb);
5505 			else
5506 				__napi_kfree_skb(skb,
5507 						 get_kfree_skb_cb(skb)->reason);
5508 		}
5509 	}
5510 
5511 	if (sd->output_queue) {
5512 		struct Qdisc *head;
5513 
5514 		local_irq_disable();
5515 		head = sd->output_queue;
5516 		sd->output_queue = NULL;
5517 		sd->output_queue_tailp = &sd->output_queue;
5518 		local_irq_enable();
5519 
5520 		rcu_read_lock();
5521 
5522 		while (head) {
5523 			struct Qdisc *q = head;
5524 			spinlock_t *root_lock = NULL;
5525 
5526 			head = head->next_sched;
5527 
5528 			/* We need to make sure head->next_sched is read
5529 			 * before clearing __QDISC_STATE_SCHED
5530 			 */
5531 			smp_mb__before_atomic();
5532 
5533 			if (!(q->flags & TCQ_F_NOLOCK)) {
5534 				root_lock = qdisc_lock(q);
5535 				spin_lock(root_lock);
5536 			} else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5537 						     &q->state))) {
5538 				/* There is a synchronize_net() between
5539 				 * STATE_DEACTIVATED flag being set and
5540 				 * qdisc_reset()/some_qdisc_is_busy() in
5541 				 * dev_deactivate(), so we can safely bail out
5542 				 * early here to avoid data race between
5543 				 * qdisc_deactivate() and some_qdisc_is_busy()
5544 				 * for lockless qdisc.
5545 				 */
5546 				clear_bit(__QDISC_STATE_SCHED, &q->state);
5547 				continue;
5548 			}
5549 
5550 			clear_bit(__QDISC_STATE_SCHED, &q->state);
5551 			qdisc_run(q);
5552 			if (root_lock)
5553 				spin_unlock(root_lock);
5554 		}
5555 
5556 		rcu_read_unlock();
5557 	}
5558 
5559 	xfrm_dev_backlog(sd);
5560 }
5561 
5562 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5563 /* This hook is defined here for ATM LANE */
5564 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5565 			     unsigned char *addr) __read_mostly;
5566 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5567 #endif
5568 
5569 /**
5570  *	netdev_is_rx_handler_busy - check if receive handler is registered
5571  *	@dev: device to check
5572  *
5573  *	Check if a receive handler is already registered for a given device.
5574  *	Return true if there one.
5575  *
5576  *	The caller must hold the rtnl_mutex.
5577  */
5578 bool netdev_is_rx_handler_busy(struct net_device *dev)
5579 {
5580 	ASSERT_RTNL();
5581 	return dev && rtnl_dereference(dev->rx_handler);
5582 }
5583 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5584 
5585 /**
5586  *	netdev_rx_handler_register - register receive handler
5587  *	@dev: device to register a handler for
5588  *	@rx_handler: receive handler to register
5589  *	@rx_handler_data: data pointer that is used by rx handler
5590  *
5591  *	Register a receive handler for a device. This handler will then be
5592  *	called from __netif_receive_skb. A negative errno code is returned
5593  *	on a failure.
5594  *
5595  *	The caller must hold the rtnl_mutex.
5596  *
5597  *	For a general description of rx_handler, see enum rx_handler_result.
5598  */
5599 int netdev_rx_handler_register(struct net_device *dev,
5600 			       rx_handler_func_t *rx_handler,
5601 			       void *rx_handler_data)
5602 {
5603 	if (netdev_is_rx_handler_busy(dev))
5604 		return -EBUSY;
5605 
5606 	if (dev->priv_flags & IFF_NO_RX_HANDLER)
5607 		return -EINVAL;
5608 
5609 	/* Note: rx_handler_data must be set before rx_handler */
5610 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5611 	rcu_assign_pointer(dev->rx_handler, rx_handler);
5612 
5613 	return 0;
5614 }
5615 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5616 
5617 /**
5618  *	netdev_rx_handler_unregister - unregister receive handler
5619  *	@dev: device to unregister a handler from
5620  *
5621  *	Unregister a receive handler from a device.
5622  *
5623  *	The caller must hold the rtnl_mutex.
5624  */
5625 void netdev_rx_handler_unregister(struct net_device *dev)
5626 {
5627 
5628 	ASSERT_RTNL();
5629 	RCU_INIT_POINTER(dev->rx_handler, NULL);
5630 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5631 	 * section has a guarantee to see a non NULL rx_handler_data
5632 	 * as well.
5633 	 */
5634 	synchronize_net();
5635 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5636 }
5637 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5638 
5639 /*
5640  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5641  * the special handling of PFMEMALLOC skbs.
5642  */
5643 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5644 {
5645 	switch (skb->protocol) {
5646 	case htons(ETH_P_ARP):
5647 	case htons(ETH_P_IP):
5648 	case htons(ETH_P_IPV6):
5649 	case htons(ETH_P_8021Q):
5650 	case htons(ETH_P_8021AD):
5651 		return true;
5652 	default:
5653 		return false;
5654 	}
5655 }
5656 
5657 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5658 			     int *ret, struct net_device *orig_dev)
5659 {
5660 	if (nf_hook_ingress_active(skb)) {
5661 		int ingress_retval;
5662 
5663 		if (*pt_prev) {
5664 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
5665 			*pt_prev = NULL;
5666 		}
5667 
5668 		rcu_read_lock();
5669 		ingress_retval = nf_hook_ingress(skb);
5670 		rcu_read_unlock();
5671 		return ingress_retval;
5672 	}
5673 	return 0;
5674 }
5675 
5676 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5677 				    struct packet_type **ppt_prev)
5678 {
5679 	struct packet_type *ptype, *pt_prev;
5680 	rx_handler_func_t *rx_handler;
5681 	struct sk_buff *skb = *pskb;
5682 	struct net_device *orig_dev;
5683 	bool deliver_exact = false;
5684 	int ret = NET_RX_DROP;
5685 	__be16 type;
5686 
5687 	net_timestamp_check(!READ_ONCE(net_hotdata.tstamp_prequeue), skb);
5688 
5689 	trace_netif_receive_skb(skb);
5690 
5691 	orig_dev = skb->dev;
5692 
5693 	skb_reset_network_header(skb);
5694 #if !defined(CONFIG_DEBUG_NET)
5695 	/* We plan to no longer reset the transport header here.
5696 	 * Give some time to fuzzers and dev build to catch bugs
5697 	 * in network stacks.
5698 	 */
5699 	if (!skb_transport_header_was_set(skb))
5700 		skb_reset_transport_header(skb);
5701 #endif
5702 	skb_reset_mac_len(skb);
5703 
5704 	pt_prev = NULL;
5705 
5706 another_round:
5707 	skb->skb_iif = skb->dev->ifindex;
5708 
5709 	__this_cpu_inc(softnet_data.processed);
5710 
5711 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
5712 		int ret2;
5713 
5714 		migrate_disable();
5715 		ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog),
5716 				      &skb);
5717 		migrate_enable();
5718 
5719 		if (ret2 != XDP_PASS) {
5720 			ret = NET_RX_DROP;
5721 			goto out;
5722 		}
5723 	}
5724 
5725 	if (eth_type_vlan(skb->protocol)) {
5726 		skb = skb_vlan_untag(skb);
5727 		if (unlikely(!skb))
5728 			goto out;
5729 	}
5730 
5731 	if (skb_skip_tc_classify(skb))
5732 		goto skip_classify;
5733 
5734 	if (pfmemalloc)
5735 		goto skip_taps;
5736 
5737 	list_for_each_entry_rcu(ptype, &net_hotdata.ptype_all, list) {
5738 		if (pt_prev)
5739 			ret = deliver_skb(skb, pt_prev, orig_dev);
5740 		pt_prev = ptype;
5741 	}
5742 
5743 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5744 		if (pt_prev)
5745 			ret = deliver_skb(skb, pt_prev, orig_dev);
5746 		pt_prev = ptype;
5747 	}
5748 
5749 skip_taps:
5750 #ifdef CONFIG_NET_INGRESS
5751 	if (static_branch_unlikely(&ingress_needed_key)) {
5752 		bool another = false;
5753 
5754 		nf_skip_egress(skb, true);
5755 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5756 					 &another);
5757 		if (another)
5758 			goto another_round;
5759 		if (!skb)
5760 			goto out;
5761 
5762 		nf_skip_egress(skb, false);
5763 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5764 			goto out;
5765 	}
5766 #endif
5767 	skb_reset_redirect(skb);
5768 skip_classify:
5769 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5770 		goto drop;
5771 
5772 	if (skb_vlan_tag_present(skb)) {
5773 		if (pt_prev) {
5774 			ret = deliver_skb(skb, pt_prev, orig_dev);
5775 			pt_prev = NULL;
5776 		}
5777 		if (vlan_do_receive(&skb))
5778 			goto another_round;
5779 		else if (unlikely(!skb))
5780 			goto out;
5781 	}
5782 
5783 	rx_handler = rcu_dereference(skb->dev->rx_handler);
5784 	if (rx_handler) {
5785 		if (pt_prev) {
5786 			ret = deliver_skb(skb, pt_prev, orig_dev);
5787 			pt_prev = NULL;
5788 		}
5789 		switch (rx_handler(&skb)) {
5790 		case RX_HANDLER_CONSUMED:
5791 			ret = NET_RX_SUCCESS;
5792 			goto out;
5793 		case RX_HANDLER_ANOTHER:
5794 			goto another_round;
5795 		case RX_HANDLER_EXACT:
5796 			deliver_exact = true;
5797 			break;
5798 		case RX_HANDLER_PASS:
5799 			break;
5800 		default:
5801 			BUG();
5802 		}
5803 	}
5804 
5805 	if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5806 check_vlan_id:
5807 		if (skb_vlan_tag_get_id(skb)) {
5808 			/* Vlan id is non 0 and vlan_do_receive() above couldn't
5809 			 * find vlan device.
5810 			 */
5811 			skb->pkt_type = PACKET_OTHERHOST;
5812 		} else if (eth_type_vlan(skb->protocol)) {
5813 			/* Outer header is 802.1P with vlan 0, inner header is
5814 			 * 802.1Q or 802.1AD and vlan_do_receive() above could
5815 			 * not find vlan dev for vlan id 0.
5816 			 */
5817 			__vlan_hwaccel_clear_tag(skb);
5818 			skb = skb_vlan_untag(skb);
5819 			if (unlikely(!skb))
5820 				goto out;
5821 			if (vlan_do_receive(&skb))
5822 				/* After stripping off 802.1P header with vlan 0
5823 				 * vlan dev is found for inner header.
5824 				 */
5825 				goto another_round;
5826 			else if (unlikely(!skb))
5827 				goto out;
5828 			else
5829 				/* We have stripped outer 802.1P vlan 0 header.
5830 				 * But could not find vlan dev.
5831 				 * check again for vlan id to set OTHERHOST.
5832 				 */
5833 				goto check_vlan_id;
5834 		}
5835 		/* Note: we might in the future use prio bits
5836 		 * and set skb->priority like in vlan_do_receive()
5837 		 * For the time being, just ignore Priority Code Point
5838 		 */
5839 		__vlan_hwaccel_clear_tag(skb);
5840 	}
5841 
5842 	type = skb->protocol;
5843 
5844 	/* deliver only exact match when indicated */
5845 	if (likely(!deliver_exact)) {
5846 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5847 				       &ptype_base[ntohs(type) &
5848 						   PTYPE_HASH_MASK]);
5849 	}
5850 
5851 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5852 			       &orig_dev->ptype_specific);
5853 
5854 	if (unlikely(skb->dev != orig_dev)) {
5855 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5856 				       &skb->dev->ptype_specific);
5857 	}
5858 
5859 	if (pt_prev) {
5860 		if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5861 			goto drop;
5862 		*ppt_prev = pt_prev;
5863 	} else {
5864 drop:
5865 		if (!deliver_exact)
5866 			dev_core_stats_rx_dropped_inc(skb->dev);
5867 		else
5868 			dev_core_stats_rx_nohandler_inc(skb->dev);
5869 		kfree_skb_reason(skb, SKB_DROP_REASON_UNHANDLED_PROTO);
5870 		/* Jamal, now you will not able to escape explaining
5871 		 * me how you were going to use this. :-)
5872 		 */
5873 		ret = NET_RX_DROP;
5874 	}
5875 
5876 out:
5877 	/* The invariant here is that if *ppt_prev is not NULL
5878 	 * then skb should also be non-NULL.
5879 	 *
5880 	 * Apparently *ppt_prev assignment above holds this invariant due to
5881 	 * skb dereferencing near it.
5882 	 */
5883 	*pskb = skb;
5884 	return ret;
5885 }
5886 
5887 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5888 {
5889 	struct net_device *orig_dev = skb->dev;
5890 	struct packet_type *pt_prev = NULL;
5891 	int ret;
5892 
5893 	ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5894 	if (pt_prev)
5895 		ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5896 					 skb->dev, pt_prev, orig_dev);
5897 	return ret;
5898 }
5899 
5900 /**
5901  *	netif_receive_skb_core - special purpose version of netif_receive_skb
5902  *	@skb: buffer to process
5903  *
5904  *	More direct receive version of netif_receive_skb().  It should
5905  *	only be used by callers that have a need to skip RPS and Generic XDP.
5906  *	Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5907  *
5908  *	This function may only be called from softirq context and interrupts
5909  *	should be enabled.
5910  *
5911  *	Return values (usually ignored):
5912  *	NET_RX_SUCCESS: no congestion
5913  *	NET_RX_DROP: packet was dropped
5914  */
5915 int netif_receive_skb_core(struct sk_buff *skb)
5916 {
5917 	int ret;
5918 
5919 	rcu_read_lock();
5920 	ret = __netif_receive_skb_one_core(skb, false);
5921 	rcu_read_unlock();
5922 
5923 	return ret;
5924 }
5925 EXPORT_SYMBOL(netif_receive_skb_core);
5926 
5927 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5928 						  struct packet_type *pt_prev,
5929 						  struct net_device *orig_dev)
5930 {
5931 	struct sk_buff *skb, *next;
5932 
5933 	if (!pt_prev)
5934 		return;
5935 	if (list_empty(head))
5936 		return;
5937 	if (pt_prev->list_func != NULL)
5938 		INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5939 				   ip_list_rcv, head, pt_prev, orig_dev);
5940 	else
5941 		list_for_each_entry_safe(skb, next, head, list) {
5942 			skb_list_del_init(skb);
5943 			pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5944 		}
5945 }
5946 
5947 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5948 {
5949 	/* Fast-path assumptions:
5950 	 * - There is no RX handler.
5951 	 * - Only one packet_type matches.
5952 	 * If either of these fails, we will end up doing some per-packet
5953 	 * processing in-line, then handling the 'last ptype' for the whole
5954 	 * sublist.  This can't cause out-of-order delivery to any single ptype,
5955 	 * because the 'last ptype' must be constant across the sublist, and all
5956 	 * other ptypes are handled per-packet.
5957 	 */
5958 	/* Current (common) ptype of sublist */
5959 	struct packet_type *pt_curr = NULL;
5960 	/* Current (common) orig_dev of sublist */
5961 	struct net_device *od_curr = NULL;
5962 	struct sk_buff *skb, *next;
5963 	LIST_HEAD(sublist);
5964 
5965 	list_for_each_entry_safe(skb, next, head, list) {
5966 		struct net_device *orig_dev = skb->dev;
5967 		struct packet_type *pt_prev = NULL;
5968 
5969 		skb_list_del_init(skb);
5970 		__netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5971 		if (!pt_prev)
5972 			continue;
5973 		if (pt_curr != pt_prev || od_curr != orig_dev) {
5974 			/* dispatch old sublist */
5975 			__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5976 			/* start new sublist */
5977 			INIT_LIST_HEAD(&sublist);
5978 			pt_curr = pt_prev;
5979 			od_curr = orig_dev;
5980 		}
5981 		list_add_tail(&skb->list, &sublist);
5982 	}
5983 
5984 	/* dispatch final sublist */
5985 	__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5986 }
5987 
5988 static int __netif_receive_skb(struct sk_buff *skb)
5989 {
5990 	int ret;
5991 
5992 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5993 		unsigned int noreclaim_flag;
5994 
5995 		/*
5996 		 * PFMEMALLOC skbs are special, they should
5997 		 * - be delivered to SOCK_MEMALLOC sockets only
5998 		 * - stay away from userspace
5999 		 * - have bounded memory usage
6000 		 *
6001 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
6002 		 * context down to all allocation sites.
6003 		 */
6004 		noreclaim_flag = memalloc_noreclaim_save();
6005 		ret = __netif_receive_skb_one_core(skb, true);
6006 		memalloc_noreclaim_restore(noreclaim_flag);
6007 	} else
6008 		ret = __netif_receive_skb_one_core(skb, false);
6009 
6010 	return ret;
6011 }
6012 
6013 static void __netif_receive_skb_list(struct list_head *head)
6014 {
6015 	unsigned long noreclaim_flag = 0;
6016 	struct sk_buff *skb, *next;
6017 	bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
6018 
6019 	list_for_each_entry_safe(skb, next, head, list) {
6020 		if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
6021 			struct list_head sublist;
6022 
6023 			/* Handle the previous sublist */
6024 			list_cut_before(&sublist, head, &skb->list);
6025 			if (!list_empty(&sublist))
6026 				__netif_receive_skb_list_core(&sublist, pfmemalloc);
6027 			pfmemalloc = !pfmemalloc;
6028 			/* See comments in __netif_receive_skb */
6029 			if (pfmemalloc)
6030 				noreclaim_flag = memalloc_noreclaim_save();
6031 			else
6032 				memalloc_noreclaim_restore(noreclaim_flag);
6033 		}
6034 	}
6035 	/* Handle the remaining sublist */
6036 	if (!list_empty(head))
6037 		__netif_receive_skb_list_core(head, pfmemalloc);
6038 	/* Restore pflags */
6039 	if (pfmemalloc)
6040 		memalloc_noreclaim_restore(noreclaim_flag);
6041 }
6042 
6043 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
6044 {
6045 	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
6046 	struct bpf_prog *new = xdp->prog;
6047 	int ret = 0;
6048 
6049 	switch (xdp->command) {
6050 	case XDP_SETUP_PROG:
6051 		rcu_assign_pointer(dev->xdp_prog, new);
6052 		if (old)
6053 			bpf_prog_put(old);
6054 
6055 		if (old && !new) {
6056 			static_branch_dec(&generic_xdp_needed_key);
6057 		} else if (new && !old) {
6058 			static_branch_inc(&generic_xdp_needed_key);
6059 			dev_disable_lro(dev);
6060 			dev_disable_gro_hw(dev);
6061 		}
6062 		break;
6063 
6064 	default:
6065 		ret = -EINVAL;
6066 		break;
6067 	}
6068 
6069 	return ret;
6070 }
6071 
6072 static int netif_receive_skb_internal(struct sk_buff *skb)
6073 {
6074 	int ret;
6075 
6076 	net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb);
6077 
6078 	if (skb_defer_rx_timestamp(skb))
6079 		return NET_RX_SUCCESS;
6080 
6081 	rcu_read_lock();
6082 #ifdef CONFIG_RPS
6083 	if (static_branch_unlikely(&rps_needed)) {
6084 		struct rps_dev_flow voidflow, *rflow = &voidflow;
6085 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
6086 
6087 		if (cpu >= 0) {
6088 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
6089 			rcu_read_unlock();
6090 			return ret;
6091 		}
6092 	}
6093 #endif
6094 	ret = __netif_receive_skb(skb);
6095 	rcu_read_unlock();
6096 	return ret;
6097 }
6098 
6099 void netif_receive_skb_list_internal(struct list_head *head)
6100 {
6101 	struct sk_buff *skb, *next;
6102 	LIST_HEAD(sublist);
6103 
6104 	list_for_each_entry_safe(skb, next, head, list) {
6105 		net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue),
6106 				    skb);
6107 		skb_list_del_init(skb);
6108 		if (!skb_defer_rx_timestamp(skb))
6109 			list_add_tail(&skb->list, &sublist);
6110 	}
6111 	list_splice_init(&sublist, head);
6112 
6113 	rcu_read_lock();
6114 #ifdef CONFIG_RPS
6115 	if (static_branch_unlikely(&rps_needed)) {
6116 		list_for_each_entry_safe(skb, next, head, list) {
6117 			struct rps_dev_flow voidflow, *rflow = &voidflow;
6118 			int cpu = get_rps_cpu(skb->dev, skb, &rflow);
6119 
6120 			if (cpu >= 0) {
6121 				/* Will be handled, remove from list */
6122 				skb_list_del_init(skb);
6123 				enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
6124 			}
6125 		}
6126 	}
6127 #endif
6128 	__netif_receive_skb_list(head);
6129 	rcu_read_unlock();
6130 }
6131 
6132 /**
6133  *	netif_receive_skb - process receive buffer from network
6134  *	@skb: buffer to process
6135  *
6136  *	netif_receive_skb() is the main receive data processing function.
6137  *	It always succeeds. The buffer may be dropped during processing
6138  *	for congestion control or by the protocol layers.
6139  *
6140  *	This function may only be called from softirq context and interrupts
6141  *	should be enabled.
6142  *
6143  *	Return values (usually ignored):
6144  *	NET_RX_SUCCESS: no congestion
6145  *	NET_RX_DROP: packet was dropped
6146  */
6147 int netif_receive_skb(struct sk_buff *skb)
6148 {
6149 	int ret;
6150 
6151 	trace_netif_receive_skb_entry(skb);
6152 
6153 	ret = netif_receive_skb_internal(skb);
6154 	trace_netif_receive_skb_exit(ret);
6155 
6156 	return ret;
6157 }
6158 EXPORT_SYMBOL(netif_receive_skb);
6159 
6160 /**
6161  *	netif_receive_skb_list - process many receive buffers from network
6162  *	@head: list of skbs to process.
6163  *
6164  *	Since return value of netif_receive_skb() is normally ignored, and
6165  *	wouldn't be meaningful for a list, this function returns void.
6166  *
6167  *	This function may only be called from softirq context and interrupts
6168  *	should be enabled.
6169  */
6170 void netif_receive_skb_list(struct list_head *head)
6171 {
6172 	struct sk_buff *skb;
6173 
6174 	if (list_empty(head))
6175 		return;
6176 	if (trace_netif_receive_skb_list_entry_enabled()) {
6177 		list_for_each_entry(skb, head, list)
6178 			trace_netif_receive_skb_list_entry(skb);
6179 	}
6180 	netif_receive_skb_list_internal(head);
6181 	trace_netif_receive_skb_list_exit(0);
6182 }
6183 EXPORT_SYMBOL(netif_receive_skb_list);
6184 
6185 /* Network device is going away, flush any packets still pending */
6186 static void flush_backlog(struct work_struct *work)
6187 {
6188 	struct sk_buff *skb, *tmp;
6189 	struct sk_buff_head list;
6190 	struct softnet_data *sd;
6191 
6192 	__skb_queue_head_init(&list);
6193 	local_bh_disable();
6194 	sd = this_cpu_ptr(&softnet_data);
6195 
6196 	backlog_lock_irq_disable(sd);
6197 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
6198 		if (READ_ONCE(skb->dev->reg_state) == NETREG_UNREGISTERING) {
6199 			__skb_unlink(skb, &sd->input_pkt_queue);
6200 			__skb_queue_tail(&list, skb);
6201 			rps_input_queue_head_incr(sd);
6202 		}
6203 	}
6204 	backlog_unlock_irq_enable(sd);
6205 
6206 	local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6207 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
6208 		if (READ_ONCE(skb->dev->reg_state) == NETREG_UNREGISTERING) {
6209 			__skb_unlink(skb, &sd->process_queue);
6210 			__skb_queue_tail(&list, skb);
6211 			rps_input_queue_head_incr(sd);
6212 		}
6213 	}
6214 	local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6215 	local_bh_enable();
6216 
6217 	__skb_queue_purge_reason(&list, SKB_DROP_REASON_DEV_READY);
6218 }
6219 
6220 static bool flush_required(int cpu)
6221 {
6222 #if IS_ENABLED(CONFIG_RPS)
6223 	struct softnet_data *sd = &per_cpu(softnet_data, cpu);
6224 	bool do_flush;
6225 
6226 	backlog_lock_irq_disable(sd);
6227 
6228 	/* as insertion into process_queue happens with the rps lock held,
6229 	 * process_queue access may race only with dequeue
6230 	 */
6231 	do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
6232 		   !skb_queue_empty_lockless(&sd->process_queue);
6233 	backlog_unlock_irq_enable(sd);
6234 
6235 	return do_flush;
6236 #endif
6237 	/* without RPS we can't safely check input_pkt_queue: during a
6238 	 * concurrent remote skb_queue_splice() we can detect as empty both
6239 	 * input_pkt_queue and process_queue even if the latter could end-up
6240 	 * containing a lot of packets.
6241 	 */
6242 	return true;
6243 }
6244 
6245 struct flush_backlogs {
6246 	cpumask_t		flush_cpus;
6247 	struct work_struct	w[];
6248 };
6249 
6250 static struct flush_backlogs *flush_backlogs_alloc(void)
6251 {
6252 	return kmalloc(struct_size_t(struct flush_backlogs, w, nr_cpu_ids),
6253 		       GFP_KERNEL);
6254 }
6255 
6256 static struct flush_backlogs *flush_backlogs_fallback;
6257 static DEFINE_MUTEX(flush_backlogs_mutex);
6258 
6259 static void flush_all_backlogs(void)
6260 {
6261 	struct flush_backlogs *ptr = flush_backlogs_alloc();
6262 	unsigned int cpu;
6263 
6264 	if (!ptr) {
6265 		mutex_lock(&flush_backlogs_mutex);
6266 		ptr = flush_backlogs_fallback;
6267 	}
6268 	cpumask_clear(&ptr->flush_cpus);
6269 
6270 	cpus_read_lock();
6271 
6272 	for_each_online_cpu(cpu) {
6273 		if (flush_required(cpu)) {
6274 			INIT_WORK(&ptr->w[cpu], flush_backlog);
6275 			queue_work_on(cpu, system_highpri_wq, &ptr->w[cpu]);
6276 			__cpumask_set_cpu(cpu, &ptr->flush_cpus);
6277 		}
6278 	}
6279 
6280 	/* we can have in flight packet[s] on the cpus we are not flushing,
6281 	 * synchronize_net() in unregister_netdevice_many() will take care of
6282 	 * them.
6283 	 */
6284 	for_each_cpu(cpu, &ptr->flush_cpus)
6285 		flush_work(&ptr->w[cpu]);
6286 
6287 	cpus_read_unlock();
6288 
6289 	if (ptr != flush_backlogs_fallback)
6290 		kfree(ptr);
6291 	else
6292 		mutex_unlock(&flush_backlogs_mutex);
6293 }
6294 
6295 static void net_rps_send_ipi(struct softnet_data *remsd)
6296 {
6297 #ifdef CONFIG_RPS
6298 	while (remsd) {
6299 		struct softnet_data *next = remsd->rps_ipi_next;
6300 
6301 		if (cpu_online(remsd->cpu))
6302 			smp_call_function_single_async(remsd->cpu, &remsd->csd);
6303 		remsd = next;
6304 	}
6305 #endif
6306 }
6307 
6308 /*
6309  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6310  * Note: called with local irq disabled, but exits with local irq enabled.
6311  */
6312 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6313 {
6314 #ifdef CONFIG_RPS
6315 	struct softnet_data *remsd = sd->rps_ipi_list;
6316 
6317 	if (!use_backlog_threads() && remsd) {
6318 		sd->rps_ipi_list = NULL;
6319 
6320 		local_irq_enable();
6321 
6322 		/* Send pending IPI's to kick RPS processing on remote cpus. */
6323 		net_rps_send_ipi(remsd);
6324 	} else
6325 #endif
6326 		local_irq_enable();
6327 }
6328 
6329 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6330 {
6331 #ifdef CONFIG_RPS
6332 	return !use_backlog_threads() && sd->rps_ipi_list;
6333 #else
6334 	return false;
6335 #endif
6336 }
6337 
6338 static int process_backlog(struct napi_struct *napi, int quota)
6339 {
6340 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6341 	bool again = true;
6342 	int work = 0;
6343 
6344 	/* Check if we have pending ipi, its better to send them now,
6345 	 * not waiting net_rx_action() end.
6346 	 */
6347 	if (sd_has_rps_ipi_waiting(sd)) {
6348 		local_irq_disable();
6349 		net_rps_action_and_irq_enable(sd);
6350 	}
6351 
6352 	napi->weight = READ_ONCE(net_hotdata.dev_rx_weight);
6353 	while (again) {
6354 		struct sk_buff *skb;
6355 
6356 		local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6357 		while ((skb = __skb_dequeue(&sd->process_queue))) {
6358 			local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6359 			rcu_read_lock();
6360 			__netif_receive_skb(skb);
6361 			rcu_read_unlock();
6362 			if (++work >= quota) {
6363 				rps_input_queue_head_add(sd, work);
6364 				return work;
6365 			}
6366 
6367 			local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6368 		}
6369 		local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6370 
6371 		backlog_lock_irq_disable(sd);
6372 		if (skb_queue_empty(&sd->input_pkt_queue)) {
6373 			/*
6374 			 * Inline a custom version of __napi_complete().
6375 			 * only current cpu owns and manipulates this napi,
6376 			 * and NAPI_STATE_SCHED is the only possible flag set
6377 			 * on backlog.
6378 			 * We can use a plain write instead of clear_bit(),
6379 			 * and we dont need an smp_mb() memory barrier.
6380 			 */
6381 			napi->state &= NAPIF_STATE_THREADED;
6382 			again = false;
6383 		} else {
6384 			local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6385 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
6386 						   &sd->process_queue);
6387 			local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6388 		}
6389 		backlog_unlock_irq_enable(sd);
6390 	}
6391 
6392 	if (work)
6393 		rps_input_queue_head_add(sd, work);
6394 	return work;
6395 }
6396 
6397 /**
6398  * __napi_schedule - schedule for receive
6399  * @n: entry to schedule
6400  *
6401  * The entry's receive function will be scheduled to run.
6402  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6403  */
6404 void __napi_schedule(struct napi_struct *n)
6405 {
6406 	unsigned long flags;
6407 
6408 	local_irq_save(flags);
6409 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
6410 	local_irq_restore(flags);
6411 }
6412 EXPORT_SYMBOL(__napi_schedule);
6413 
6414 /**
6415  *	napi_schedule_prep - check if napi can be scheduled
6416  *	@n: napi context
6417  *
6418  * Test if NAPI routine is already running, and if not mark
6419  * it as running.  This is used as a condition variable to
6420  * insure only one NAPI poll instance runs.  We also make
6421  * sure there is no pending NAPI disable.
6422  */
6423 bool napi_schedule_prep(struct napi_struct *n)
6424 {
6425 	unsigned long new, val = READ_ONCE(n->state);
6426 
6427 	do {
6428 		if (unlikely(val & NAPIF_STATE_DISABLE))
6429 			return false;
6430 		new = val | NAPIF_STATE_SCHED;
6431 
6432 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
6433 		 * This was suggested by Alexander Duyck, as compiler
6434 		 * emits better code than :
6435 		 * if (val & NAPIF_STATE_SCHED)
6436 		 *     new |= NAPIF_STATE_MISSED;
6437 		 */
6438 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6439 						   NAPIF_STATE_MISSED;
6440 	} while (!try_cmpxchg(&n->state, &val, new));
6441 
6442 	return !(val & NAPIF_STATE_SCHED);
6443 }
6444 EXPORT_SYMBOL(napi_schedule_prep);
6445 
6446 /**
6447  * __napi_schedule_irqoff - schedule for receive
6448  * @n: entry to schedule
6449  *
6450  * Variant of __napi_schedule() assuming hard irqs are masked.
6451  *
6452  * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6453  * because the interrupt disabled assumption might not be true
6454  * due to force-threaded interrupts and spinlock substitution.
6455  */
6456 void __napi_schedule_irqoff(struct napi_struct *n)
6457 {
6458 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6459 		____napi_schedule(this_cpu_ptr(&softnet_data), n);
6460 	else
6461 		__napi_schedule(n);
6462 }
6463 EXPORT_SYMBOL(__napi_schedule_irqoff);
6464 
6465 bool napi_complete_done(struct napi_struct *n, int work_done)
6466 {
6467 	unsigned long flags, val, new, timeout = 0;
6468 	bool ret = true;
6469 
6470 	/*
6471 	 * 1) Don't let napi dequeue from the cpu poll list
6472 	 *    just in case its running on a different cpu.
6473 	 * 2) If we are busy polling, do nothing here, we have
6474 	 *    the guarantee we will be called later.
6475 	 */
6476 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6477 				 NAPIF_STATE_IN_BUSY_POLL)))
6478 		return false;
6479 
6480 	if (work_done) {
6481 		if (n->gro.bitmask)
6482 			timeout = napi_get_gro_flush_timeout(n);
6483 		n->defer_hard_irqs_count = napi_get_defer_hard_irqs(n);
6484 	}
6485 	if (n->defer_hard_irqs_count > 0) {
6486 		n->defer_hard_irqs_count--;
6487 		timeout = napi_get_gro_flush_timeout(n);
6488 		if (timeout)
6489 			ret = false;
6490 	}
6491 
6492 	/*
6493 	 * When the NAPI instance uses a timeout and keeps postponing
6494 	 * it, we need to bound somehow the time packets are kept in
6495 	 * the GRO layer.
6496 	 */
6497 	gro_flush(&n->gro, !!timeout);
6498 	gro_normal_list(&n->gro);
6499 
6500 	if (unlikely(!list_empty(&n->poll_list))) {
6501 		/* If n->poll_list is not empty, we need to mask irqs */
6502 		local_irq_save(flags);
6503 		list_del_init(&n->poll_list);
6504 		local_irq_restore(flags);
6505 	}
6506 	WRITE_ONCE(n->list_owner, -1);
6507 
6508 	val = READ_ONCE(n->state);
6509 	do {
6510 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6511 
6512 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6513 			      NAPIF_STATE_SCHED_THREADED |
6514 			      NAPIF_STATE_PREFER_BUSY_POLL);
6515 
6516 		/* If STATE_MISSED was set, leave STATE_SCHED set,
6517 		 * because we will call napi->poll() one more time.
6518 		 * This C code was suggested by Alexander Duyck to help gcc.
6519 		 */
6520 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6521 						    NAPIF_STATE_SCHED;
6522 	} while (!try_cmpxchg(&n->state, &val, new));
6523 
6524 	if (unlikely(val & NAPIF_STATE_MISSED)) {
6525 		__napi_schedule(n);
6526 		return false;
6527 	}
6528 
6529 	if (timeout)
6530 		hrtimer_start(&n->timer, ns_to_ktime(timeout),
6531 			      HRTIMER_MODE_REL_PINNED);
6532 	return ret;
6533 }
6534 EXPORT_SYMBOL(napi_complete_done);
6535 
6536 static void skb_defer_free_flush(struct softnet_data *sd)
6537 {
6538 	struct sk_buff *skb, *next;
6539 
6540 	/* Paired with WRITE_ONCE() in skb_attempt_defer_free() */
6541 	if (!READ_ONCE(sd->defer_list))
6542 		return;
6543 
6544 	spin_lock(&sd->defer_lock);
6545 	skb = sd->defer_list;
6546 	sd->defer_list = NULL;
6547 	sd->defer_count = 0;
6548 	spin_unlock(&sd->defer_lock);
6549 
6550 	while (skb != NULL) {
6551 		next = skb->next;
6552 		napi_consume_skb(skb, 1);
6553 		skb = next;
6554 	}
6555 }
6556 
6557 #if defined(CONFIG_NET_RX_BUSY_POLL)
6558 
6559 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6560 {
6561 	if (!skip_schedule) {
6562 		gro_normal_list(&napi->gro);
6563 		__napi_schedule(napi);
6564 		return;
6565 	}
6566 
6567 	/* Flush too old packets. If HZ < 1000, flush all packets */
6568 	gro_flush(&napi->gro, HZ >= 1000);
6569 	gro_normal_list(&napi->gro);
6570 
6571 	clear_bit(NAPI_STATE_SCHED, &napi->state);
6572 }
6573 
6574 enum {
6575 	NAPI_F_PREFER_BUSY_POLL	= 1,
6576 	NAPI_F_END_ON_RESCHED	= 2,
6577 };
6578 
6579 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock,
6580 			   unsigned flags, u16 budget)
6581 {
6582 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
6583 	bool skip_schedule = false;
6584 	unsigned long timeout;
6585 	int rc;
6586 
6587 	/* Busy polling means there is a high chance device driver hard irq
6588 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6589 	 * set in napi_schedule_prep().
6590 	 * Since we are about to call napi->poll() once more, we can safely
6591 	 * clear NAPI_STATE_MISSED.
6592 	 *
6593 	 * Note: x86 could use a single "lock and ..." instruction
6594 	 * to perform these two clear_bit()
6595 	 */
6596 	clear_bit(NAPI_STATE_MISSED, &napi->state);
6597 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6598 
6599 	local_bh_disable();
6600 	bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
6601 
6602 	if (flags & NAPI_F_PREFER_BUSY_POLL) {
6603 		napi->defer_hard_irqs_count = napi_get_defer_hard_irqs(napi);
6604 		timeout = napi_get_gro_flush_timeout(napi);
6605 		if (napi->defer_hard_irqs_count && timeout) {
6606 			hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6607 			skip_schedule = true;
6608 		}
6609 	}
6610 
6611 	/* All we really want here is to re-enable device interrupts.
6612 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6613 	 */
6614 	rc = napi->poll(napi, budget);
6615 	/* We can't gro_normal_list() here, because napi->poll() might have
6616 	 * rearmed the napi (napi_complete_done()) in which case it could
6617 	 * already be running on another CPU.
6618 	 */
6619 	trace_napi_poll(napi, rc, budget);
6620 	netpoll_poll_unlock(have_poll_lock);
6621 	if (rc == budget)
6622 		__busy_poll_stop(napi, skip_schedule);
6623 	bpf_net_ctx_clear(bpf_net_ctx);
6624 	local_bh_enable();
6625 }
6626 
6627 static void __napi_busy_loop(unsigned int napi_id,
6628 		      bool (*loop_end)(void *, unsigned long),
6629 		      void *loop_end_arg, unsigned flags, u16 budget)
6630 {
6631 	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6632 	int (*napi_poll)(struct napi_struct *napi, int budget);
6633 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
6634 	void *have_poll_lock = NULL;
6635 	struct napi_struct *napi;
6636 
6637 	WARN_ON_ONCE(!rcu_read_lock_held());
6638 
6639 restart:
6640 	napi_poll = NULL;
6641 
6642 	napi = napi_by_id(napi_id);
6643 	if (!napi)
6644 		return;
6645 
6646 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6647 		preempt_disable();
6648 	for (;;) {
6649 		int work = 0;
6650 
6651 		local_bh_disable();
6652 		bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
6653 		if (!napi_poll) {
6654 			unsigned long val = READ_ONCE(napi->state);
6655 
6656 			/* If multiple threads are competing for this napi,
6657 			 * we avoid dirtying napi->state as much as we can.
6658 			 */
6659 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6660 				   NAPIF_STATE_IN_BUSY_POLL)) {
6661 				if (flags & NAPI_F_PREFER_BUSY_POLL)
6662 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6663 				goto count;
6664 			}
6665 			if (cmpxchg(&napi->state, val,
6666 				    val | NAPIF_STATE_IN_BUSY_POLL |
6667 					  NAPIF_STATE_SCHED) != val) {
6668 				if (flags & NAPI_F_PREFER_BUSY_POLL)
6669 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6670 				goto count;
6671 			}
6672 			have_poll_lock = netpoll_poll_lock(napi);
6673 			napi_poll = napi->poll;
6674 		}
6675 		work = napi_poll(napi, budget);
6676 		trace_napi_poll(napi, work, budget);
6677 		gro_normal_list(&napi->gro);
6678 count:
6679 		if (work > 0)
6680 			__NET_ADD_STATS(dev_net(napi->dev),
6681 					LINUX_MIB_BUSYPOLLRXPACKETS, work);
6682 		skb_defer_free_flush(this_cpu_ptr(&softnet_data));
6683 		bpf_net_ctx_clear(bpf_net_ctx);
6684 		local_bh_enable();
6685 
6686 		if (!loop_end || loop_end(loop_end_arg, start_time))
6687 			break;
6688 
6689 		if (unlikely(need_resched())) {
6690 			if (flags & NAPI_F_END_ON_RESCHED)
6691 				break;
6692 			if (napi_poll)
6693 				busy_poll_stop(napi, have_poll_lock, flags, budget);
6694 			if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6695 				preempt_enable();
6696 			rcu_read_unlock();
6697 			cond_resched();
6698 			rcu_read_lock();
6699 			if (loop_end(loop_end_arg, start_time))
6700 				return;
6701 			goto restart;
6702 		}
6703 		cpu_relax();
6704 	}
6705 	if (napi_poll)
6706 		busy_poll_stop(napi, have_poll_lock, flags, budget);
6707 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6708 		preempt_enable();
6709 }
6710 
6711 void napi_busy_loop_rcu(unsigned int napi_id,
6712 			bool (*loop_end)(void *, unsigned long),
6713 			void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6714 {
6715 	unsigned flags = NAPI_F_END_ON_RESCHED;
6716 
6717 	if (prefer_busy_poll)
6718 		flags |= NAPI_F_PREFER_BUSY_POLL;
6719 
6720 	__napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget);
6721 }
6722 
6723 void napi_busy_loop(unsigned int napi_id,
6724 		    bool (*loop_end)(void *, unsigned long),
6725 		    void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6726 {
6727 	unsigned flags = prefer_busy_poll ? NAPI_F_PREFER_BUSY_POLL : 0;
6728 
6729 	rcu_read_lock();
6730 	__napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget);
6731 	rcu_read_unlock();
6732 }
6733 EXPORT_SYMBOL(napi_busy_loop);
6734 
6735 void napi_suspend_irqs(unsigned int napi_id)
6736 {
6737 	struct napi_struct *napi;
6738 
6739 	rcu_read_lock();
6740 	napi = napi_by_id(napi_id);
6741 	if (napi) {
6742 		unsigned long timeout = napi_get_irq_suspend_timeout(napi);
6743 
6744 		if (timeout)
6745 			hrtimer_start(&napi->timer, ns_to_ktime(timeout),
6746 				      HRTIMER_MODE_REL_PINNED);
6747 	}
6748 	rcu_read_unlock();
6749 }
6750 
6751 void napi_resume_irqs(unsigned int napi_id)
6752 {
6753 	struct napi_struct *napi;
6754 
6755 	rcu_read_lock();
6756 	napi = napi_by_id(napi_id);
6757 	if (napi) {
6758 		/* If irq_suspend_timeout is set to 0 between the call to
6759 		 * napi_suspend_irqs and now, the original value still
6760 		 * determines the safety timeout as intended and napi_watchdog
6761 		 * will resume irq processing.
6762 		 */
6763 		if (napi_get_irq_suspend_timeout(napi)) {
6764 			local_bh_disable();
6765 			napi_schedule(napi);
6766 			local_bh_enable();
6767 		}
6768 	}
6769 	rcu_read_unlock();
6770 }
6771 
6772 #endif /* CONFIG_NET_RX_BUSY_POLL */
6773 
6774 static void __napi_hash_add_with_id(struct napi_struct *napi,
6775 				    unsigned int napi_id)
6776 {
6777 	napi->gro.cached_napi_id = napi_id;
6778 
6779 	WRITE_ONCE(napi->napi_id, napi_id);
6780 	hlist_add_head_rcu(&napi->napi_hash_node,
6781 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6782 }
6783 
6784 static void napi_hash_add_with_id(struct napi_struct *napi,
6785 				  unsigned int napi_id)
6786 {
6787 	unsigned long flags;
6788 
6789 	spin_lock_irqsave(&napi_hash_lock, flags);
6790 	WARN_ON_ONCE(napi_by_id(napi_id));
6791 	__napi_hash_add_with_id(napi, napi_id);
6792 	spin_unlock_irqrestore(&napi_hash_lock, flags);
6793 }
6794 
6795 static void napi_hash_add(struct napi_struct *napi)
6796 {
6797 	unsigned long flags;
6798 
6799 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6800 		return;
6801 
6802 	spin_lock_irqsave(&napi_hash_lock, flags);
6803 
6804 	/* 0..NR_CPUS range is reserved for sender_cpu use */
6805 	do {
6806 		if (unlikely(!napi_id_valid(++napi_gen_id)))
6807 			napi_gen_id = MIN_NAPI_ID;
6808 	} while (napi_by_id(napi_gen_id));
6809 
6810 	__napi_hash_add_with_id(napi, napi_gen_id);
6811 
6812 	spin_unlock_irqrestore(&napi_hash_lock, flags);
6813 }
6814 
6815 /* Warning : caller is responsible to make sure rcu grace period
6816  * is respected before freeing memory containing @napi
6817  */
6818 static void napi_hash_del(struct napi_struct *napi)
6819 {
6820 	unsigned long flags;
6821 
6822 	spin_lock_irqsave(&napi_hash_lock, flags);
6823 
6824 	hlist_del_init_rcu(&napi->napi_hash_node);
6825 
6826 	spin_unlock_irqrestore(&napi_hash_lock, flags);
6827 }
6828 
6829 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6830 {
6831 	struct napi_struct *napi;
6832 
6833 	napi = container_of(timer, struct napi_struct, timer);
6834 
6835 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
6836 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6837 	 */
6838 	if (!napi_disable_pending(napi) &&
6839 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6840 		clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6841 		__napi_schedule_irqoff(napi);
6842 	}
6843 
6844 	return HRTIMER_NORESTART;
6845 }
6846 
6847 int dev_set_threaded(struct net_device *dev, bool threaded)
6848 {
6849 	struct napi_struct *napi;
6850 	int err = 0;
6851 
6852 	netdev_assert_locked_or_invisible(dev);
6853 
6854 	if (dev->threaded == threaded)
6855 		return 0;
6856 
6857 	if (threaded) {
6858 		list_for_each_entry(napi, &dev->napi_list, dev_list) {
6859 			if (!napi->thread) {
6860 				err = napi_kthread_create(napi);
6861 				if (err) {
6862 					threaded = false;
6863 					break;
6864 				}
6865 			}
6866 		}
6867 	}
6868 
6869 	WRITE_ONCE(dev->threaded, threaded);
6870 
6871 	/* Make sure kthread is created before THREADED bit
6872 	 * is set.
6873 	 */
6874 	smp_mb__before_atomic();
6875 
6876 	/* Setting/unsetting threaded mode on a napi might not immediately
6877 	 * take effect, if the current napi instance is actively being
6878 	 * polled. In this case, the switch between threaded mode and
6879 	 * softirq mode will happen in the next round of napi_schedule().
6880 	 * This should not cause hiccups/stalls to the live traffic.
6881 	 */
6882 	list_for_each_entry(napi, &dev->napi_list, dev_list)
6883 		assign_bit(NAPI_STATE_THREADED, &napi->state, threaded);
6884 
6885 	return err;
6886 }
6887 EXPORT_SYMBOL(dev_set_threaded);
6888 
6889 /**
6890  * netif_queue_set_napi - Associate queue with the napi
6891  * @dev: device to which NAPI and queue belong
6892  * @queue_index: Index of queue
6893  * @type: queue type as RX or TX
6894  * @napi: NAPI context, pass NULL to clear previously set NAPI
6895  *
6896  * Set queue with its corresponding napi context. This should be done after
6897  * registering the NAPI handler for the queue-vector and the queues have been
6898  * mapped to the corresponding interrupt vector.
6899  */
6900 void netif_queue_set_napi(struct net_device *dev, unsigned int queue_index,
6901 			  enum netdev_queue_type type, struct napi_struct *napi)
6902 {
6903 	struct netdev_rx_queue *rxq;
6904 	struct netdev_queue *txq;
6905 
6906 	if (WARN_ON_ONCE(napi && !napi->dev))
6907 		return;
6908 	if (dev->reg_state >= NETREG_REGISTERED)
6909 		ASSERT_RTNL();
6910 
6911 	switch (type) {
6912 	case NETDEV_QUEUE_TYPE_RX:
6913 		rxq = __netif_get_rx_queue(dev, queue_index);
6914 		rxq->napi = napi;
6915 		return;
6916 	case NETDEV_QUEUE_TYPE_TX:
6917 		txq = netdev_get_tx_queue(dev, queue_index);
6918 		txq->napi = napi;
6919 		return;
6920 	default:
6921 		return;
6922 	}
6923 }
6924 EXPORT_SYMBOL(netif_queue_set_napi);
6925 
6926 static void
6927 netif_napi_irq_notify(struct irq_affinity_notify *notify,
6928 		      const cpumask_t *mask)
6929 {
6930 	struct napi_struct *napi =
6931 		container_of(notify, struct napi_struct, notify);
6932 #ifdef CONFIG_RFS_ACCEL
6933 	struct cpu_rmap *rmap = napi->dev->rx_cpu_rmap;
6934 	int err;
6935 #endif
6936 
6937 	if (napi->config && napi->dev->irq_affinity_auto)
6938 		cpumask_copy(&napi->config->affinity_mask, mask);
6939 
6940 #ifdef CONFIG_RFS_ACCEL
6941 	if (napi->dev->rx_cpu_rmap_auto) {
6942 		err = cpu_rmap_update(rmap, napi->napi_rmap_idx, mask);
6943 		if (err)
6944 			netdev_warn(napi->dev, "RMAP update failed (%d)\n",
6945 				    err);
6946 	}
6947 #endif
6948 }
6949 
6950 #ifdef CONFIG_RFS_ACCEL
6951 static void netif_napi_affinity_release(struct kref *ref)
6952 {
6953 	struct napi_struct *napi =
6954 		container_of(ref, struct napi_struct, notify.kref);
6955 	struct cpu_rmap *rmap = napi->dev->rx_cpu_rmap;
6956 
6957 	netdev_assert_locked(napi->dev);
6958 	WARN_ON(test_and_clear_bit(NAPI_STATE_HAS_NOTIFIER,
6959 				   &napi->state));
6960 
6961 	if (!napi->dev->rx_cpu_rmap_auto)
6962 		return;
6963 	rmap->obj[napi->napi_rmap_idx] = NULL;
6964 	napi->napi_rmap_idx = -1;
6965 	cpu_rmap_put(rmap);
6966 }
6967 
6968 int netif_enable_cpu_rmap(struct net_device *dev, unsigned int num_irqs)
6969 {
6970 	if (dev->rx_cpu_rmap_auto)
6971 		return 0;
6972 
6973 	dev->rx_cpu_rmap = alloc_irq_cpu_rmap(num_irqs);
6974 	if (!dev->rx_cpu_rmap)
6975 		return -ENOMEM;
6976 
6977 	dev->rx_cpu_rmap_auto = true;
6978 	return 0;
6979 }
6980 EXPORT_SYMBOL(netif_enable_cpu_rmap);
6981 
6982 static void netif_del_cpu_rmap(struct net_device *dev)
6983 {
6984 	struct cpu_rmap *rmap = dev->rx_cpu_rmap;
6985 
6986 	if (!dev->rx_cpu_rmap_auto)
6987 		return;
6988 
6989 	/* Free the rmap */
6990 	cpu_rmap_put(rmap);
6991 	dev->rx_cpu_rmap = NULL;
6992 	dev->rx_cpu_rmap_auto = false;
6993 }
6994 
6995 #else
6996 static void netif_napi_affinity_release(struct kref *ref)
6997 {
6998 }
6999 
7000 int netif_enable_cpu_rmap(struct net_device *dev, unsigned int num_irqs)
7001 {
7002 	return 0;
7003 }
7004 EXPORT_SYMBOL(netif_enable_cpu_rmap);
7005 
7006 static void netif_del_cpu_rmap(struct net_device *dev)
7007 {
7008 }
7009 #endif
7010 
7011 void netif_set_affinity_auto(struct net_device *dev)
7012 {
7013 	unsigned int i, maxqs, numa;
7014 
7015 	maxqs = max(dev->num_tx_queues, dev->num_rx_queues);
7016 	numa = dev_to_node(&dev->dev);
7017 
7018 	for (i = 0; i < maxqs; i++)
7019 		cpumask_set_cpu(cpumask_local_spread(i, numa),
7020 				&dev->napi_config[i].affinity_mask);
7021 
7022 	dev->irq_affinity_auto = true;
7023 }
7024 EXPORT_SYMBOL(netif_set_affinity_auto);
7025 
7026 void netif_napi_set_irq_locked(struct napi_struct *napi, int irq)
7027 {
7028 	int rc;
7029 
7030 	netdev_assert_locked_or_invisible(napi->dev);
7031 
7032 	if (napi->irq == irq)
7033 		return;
7034 
7035 	/* Remove existing resources */
7036 	if (test_and_clear_bit(NAPI_STATE_HAS_NOTIFIER, &napi->state))
7037 		irq_set_affinity_notifier(napi->irq, NULL);
7038 
7039 	napi->irq = irq;
7040 	if (irq < 0 ||
7041 	    (!napi->dev->rx_cpu_rmap_auto && !napi->dev->irq_affinity_auto))
7042 		return;
7043 
7044 	/* Abort for buggy drivers */
7045 	if (napi->dev->irq_affinity_auto && WARN_ON_ONCE(!napi->config))
7046 		return;
7047 
7048 #ifdef CONFIG_RFS_ACCEL
7049 	if (napi->dev->rx_cpu_rmap_auto) {
7050 		rc = cpu_rmap_add(napi->dev->rx_cpu_rmap, napi);
7051 		if (rc < 0)
7052 			return;
7053 
7054 		cpu_rmap_get(napi->dev->rx_cpu_rmap);
7055 		napi->napi_rmap_idx = rc;
7056 	}
7057 #endif
7058 
7059 	/* Use core IRQ notifier */
7060 	napi->notify.notify = netif_napi_irq_notify;
7061 	napi->notify.release = netif_napi_affinity_release;
7062 	rc = irq_set_affinity_notifier(irq, &napi->notify);
7063 	if (rc) {
7064 		netdev_warn(napi->dev, "Unable to set IRQ notifier (%d)\n",
7065 			    rc);
7066 		goto put_rmap;
7067 	}
7068 
7069 	set_bit(NAPI_STATE_HAS_NOTIFIER, &napi->state);
7070 	return;
7071 
7072 put_rmap:
7073 #ifdef CONFIG_RFS_ACCEL
7074 	if (napi->dev->rx_cpu_rmap_auto) {
7075 		cpu_rmap_put(napi->dev->rx_cpu_rmap);
7076 		napi->dev->rx_cpu_rmap->obj[napi->napi_rmap_idx] = NULL;
7077 		napi->napi_rmap_idx = -1;
7078 	}
7079 #endif
7080 	napi->notify.notify = NULL;
7081 	napi->notify.release = NULL;
7082 }
7083 EXPORT_SYMBOL(netif_napi_set_irq_locked);
7084 
7085 static void napi_restore_config(struct napi_struct *n)
7086 {
7087 	n->defer_hard_irqs = n->config->defer_hard_irqs;
7088 	n->gro_flush_timeout = n->config->gro_flush_timeout;
7089 	n->irq_suspend_timeout = n->config->irq_suspend_timeout;
7090 
7091 	if (n->dev->irq_affinity_auto &&
7092 	    test_bit(NAPI_STATE_HAS_NOTIFIER, &n->state))
7093 		irq_set_affinity(n->irq, &n->config->affinity_mask);
7094 
7095 	/* a NAPI ID might be stored in the config, if so use it. if not, use
7096 	 * napi_hash_add to generate one for us.
7097 	 */
7098 	if (n->config->napi_id) {
7099 		napi_hash_add_with_id(n, n->config->napi_id);
7100 	} else {
7101 		napi_hash_add(n);
7102 		n->config->napi_id = n->napi_id;
7103 	}
7104 }
7105 
7106 static void napi_save_config(struct napi_struct *n)
7107 {
7108 	n->config->defer_hard_irqs = n->defer_hard_irqs;
7109 	n->config->gro_flush_timeout = n->gro_flush_timeout;
7110 	n->config->irq_suspend_timeout = n->irq_suspend_timeout;
7111 	napi_hash_del(n);
7112 }
7113 
7114 /* Netlink wants the NAPI list to be sorted by ID, if adding a NAPI which will
7115  * inherit an existing ID try to insert it at the right position.
7116  */
7117 static void
7118 netif_napi_dev_list_add(struct net_device *dev, struct napi_struct *napi)
7119 {
7120 	unsigned int new_id, pos_id;
7121 	struct list_head *higher;
7122 	struct napi_struct *pos;
7123 
7124 	new_id = UINT_MAX;
7125 	if (napi->config && napi->config->napi_id)
7126 		new_id = napi->config->napi_id;
7127 
7128 	higher = &dev->napi_list;
7129 	list_for_each_entry(pos, &dev->napi_list, dev_list) {
7130 		if (napi_id_valid(pos->napi_id))
7131 			pos_id = pos->napi_id;
7132 		else if (pos->config)
7133 			pos_id = pos->config->napi_id;
7134 		else
7135 			pos_id = UINT_MAX;
7136 
7137 		if (pos_id <= new_id)
7138 			break;
7139 		higher = &pos->dev_list;
7140 	}
7141 	list_add_rcu(&napi->dev_list, higher); /* adds after higher */
7142 }
7143 
7144 /* Double check that napi_get_frags() allocates skbs with
7145  * skb->head being backed by slab, not a page fragment.
7146  * This is to make sure bug fixed in 3226b158e67c
7147  * ("net: avoid 32 x truesize under-estimation for tiny skbs")
7148  * does not accidentally come back.
7149  */
7150 static void napi_get_frags_check(struct napi_struct *napi)
7151 {
7152 	struct sk_buff *skb;
7153 
7154 	local_bh_disable();
7155 	skb = napi_get_frags(napi);
7156 	WARN_ON_ONCE(skb && skb->head_frag);
7157 	napi_free_frags(napi);
7158 	local_bh_enable();
7159 }
7160 
7161 void netif_napi_add_weight_locked(struct net_device *dev,
7162 				  struct napi_struct *napi,
7163 				  int (*poll)(struct napi_struct *, int),
7164 				  int weight)
7165 {
7166 	netdev_assert_locked(dev);
7167 	if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
7168 		return;
7169 
7170 	INIT_LIST_HEAD(&napi->poll_list);
7171 	INIT_HLIST_NODE(&napi->napi_hash_node);
7172 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
7173 	napi->timer.function = napi_watchdog;
7174 	gro_init(&napi->gro);
7175 	napi->skb = NULL;
7176 	napi->poll = poll;
7177 	if (weight > NAPI_POLL_WEIGHT)
7178 		netdev_err_once(dev, "%s() called with weight %d\n", __func__,
7179 				weight);
7180 	napi->weight = weight;
7181 	napi->dev = dev;
7182 #ifdef CONFIG_NETPOLL
7183 	napi->poll_owner = -1;
7184 #endif
7185 	napi->list_owner = -1;
7186 	set_bit(NAPI_STATE_SCHED, &napi->state);
7187 	set_bit(NAPI_STATE_NPSVC, &napi->state);
7188 	netif_napi_dev_list_add(dev, napi);
7189 
7190 	/* default settings from sysfs are applied to all NAPIs. any per-NAPI
7191 	 * configuration will be loaded in napi_enable
7192 	 */
7193 	napi_set_defer_hard_irqs(napi, READ_ONCE(dev->napi_defer_hard_irqs));
7194 	napi_set_gro_flush_timeout(napi, READ_ONCE(dev->gro_flush_timeout));
7195 
7196 	napi_get_frags_check(napi);
7197 	/* Create kthread for this napi if dev->threaded is set.
7198 	 * Clear dev->threaded if kthread creation failed so that
7199 	 * threaded mode will not be enabled in napi_enable().
7200 	 */
7201 	if (dev->threaded && napi_kthread_create(napi))
7202 		dev->threaded = false;
7203 	netif_napi_set_irq_locked(napi, -1);
7204 }
7205 EXPORT_SYMBOL(netif_napi_add_weight_locked);
7206 
7207 void napi_disable_locked(struct napi_struct *n)
7208 {
7209 	unsigned long val, new;
7210 
7211 	might_sleep();
7212 	netdev_assert_locked(n->dev);
7213 
7214 	set_bit(NAPI_STATE_DISABLE, &n->state);
7215 
7216 	val = READ_ONCE(n->state);
7217 	do {
7218 		while (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
7219 			usleep_range(20, 200);
7220 			val = READ_ONCE(n->state);
7221 		}
7222 
7223 		new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
7224 		new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL);
7225 	} while (!try_cmpxchg(&n->state, &val, new));
7226 
7227 	hrtimer_cancel(&n->timer);
7228 
7229 	if (n->config)
7230 		napi_save_config(n);
7231 	else
7232 		napi_hash_del(n);
7233 
7234 	clear_bit(NAPI_STATE_DISABLE, &n->state);
7235 }
7236 EXPORT_SYMBOL(napi_disable_locked);
7237 
7238 /**
7239  * napi_disable() - prevent NAPI from scheduling
7240  * @n: NAPI context
7241  *
7242  * Stop NAPI from being scheduled on this context.
7243  * Waits till any outstanding processing completes.
7244  * Takes netdev_lock() for associated net_device.
7245  */
7246 void napi_disable(struct napi_struct *n)
7247 {
7248 	netdev_lock(n->dev);
7249 	napi_disable_locked(n);
7250 	netdev_unlock(n->dev);
7251 }
7252 EXPORT_SYMBOL(napi_disable);
7253 
7254 void napi_enable_locked(struct napi_struct *n)
7255 {
7256 	unsigned long new, val = READ_ONCE(n->state);
7257 
7258 	if (n->config)
7259 		napi_restore_config(n);
7260 	else
7261 		napi_hash_add(n);
7262 
7263 	do {
7264 		BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
7265 
7266 		new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
7267 		if (n->dev->threaded && n->thread)
7268 			new |= NAPIF_STATE_THREADED;
7269 	} while (!try_cmpxchg(&n->state, &val, new));
7270 }
7271 EXPORT_SYMBOL(napi_enable_locked);
7272 
7273 /**
7274  * napi_enable() - enable NAPI scheduling
7275  * @n: NAPI context
7276  *
7277  * Enable scheduling of a NAPI instance.
7278  * Must be paired with napi_disable().
7279  * Takes netdev_lock() for associated net_device.
7280  */
7281 void napi_enable(struct napi_struct *n)
7282 {
7283 	netdev_lock(n->dev);
7284 	napi_enable_locked(n);
7285 	netdev_unlock(n->dev);
7286 }
7287 EXPORT_SYMBOL(napi_enable);
7288 
7289 /* Must be called in process context */
7290 void __netif_napi_del_locked(struct napi_struct *napi)
7291 {
7292 	netdev_assert_locked(napi->dev);
7293 
7294 	if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
7295 		return;
7296 
7297 	/* Make sure NAPI is disabled (or was never enabled). */
7298 	WARN_ON(!test_bit(NAPI_STATE_SCHED, &napi->state));
7299 
7300 	if (test_and_clear_bit(NAPI_STATE_HAS_NOTIFIER, &napi->state))
7301 		irq_set_affinity_notifier(napi->irq, NULL);
7302 
7303 	if (napi->config) {
7304 		napi->index = -1;
7305 		napi->config = NULL;
7306 	}
7307 
7308 	list_del_rcu(&napi->dev_list);
7309 	napi_free_frags(napi);
7310 
7311 	gro_cleanup(&napi->gro);
7312 
7313 	if (napi->thread) {
7314 		kthread_stop(napi->thread);
7315 		napi->thread = NULL;
7316 	}
7317 }
7318 EXPORT_SYMBOL(__netif_napi_del_locked);
7319 
7320 static int __napi_poll(struct napi_struct *n, bool *repoll)
7321 {
7322 	int work, weight;
7323 
7324 	weight = n->weight;
7325 
7326 	/* This NAPI_STATE_SCHED test is for avoiding a race
7327 	 * with netpoll's poll_napi().  Only the entity which
7328 	 * obtains the lock and sees NAPI_STATE_SCHED set will
7329 	 * actually make the ->poll() call.  Therefore we avoid
7330 	 * accidentally calling ->poll() when NAPI is not scheduled.
7331 	 */
7332 	work = 0;
7333 	if (napi_is_scheduled(n)) {
7334 		work = n->poll(n, weight);
7335 		trace_napi_poll(n, work, weight);
7336 
7337 		xdp_do_check_flushed(n);
7338 	}
7339 
7340 	if (unlikely(work > weight))
7341 		netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
7342 				n->poll, work, weight);
7343 
7344 	if (likely(work < weight))
7345 		return work;
7346 
7347 	/* Drivers must not modify the NAPI state if they
7348 	 * consume the entire weight.  In such cases this code
7349 	 * still "owns" the NAPI instance and therefore can
7350 	 * move the instance around on the list at-will.
7351 	 */
7352 	if (unlikely(napi_disable_pending(n))) {
7353 		napi_complete(n);
7354 		return work;
7355 	}
7356 
7357 	/* The NAPI context has more processing work, but busy-polling
7358 	 * is preferred. Exit early.
7359 	 */
7360 	if (napi_prefer_busy_poll(n)) {
7361 		if (napi_complete_done(n, work)) {
7362 			/* If timeout is not set, we need to make sure
7363 			 * that the NAPI is re-scheduled.
7364 			 */
7365 			napi_schedule(n);
7366 		}
7367 		return work;
7368 	}
7369 
7370 	/* Flush too old packets. If HZ < 1000, flush all packets */
7371 	gro_flush(&n->gro, HZ >= 1000);
7372 	gro_normal_list(&n->gro);
7373 
7374 	/* Some drivers may have called napi_schedule
7375 	 * prior to exhausting their budget.
7376 	 */
7377 	if (unlikely(!list_empty(&n->poll_list))) {
7378 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
7379 			     n->dev ? n->dev->name : "backlog");
7380 		return work;
7381 	}
7382 
7383 	*repoll = true;
7384 
7385 	return work;
7386 }
7387 
7388 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
7389 {
7390 	bool do_repoll = false;
7391 	void *have;
7392 	int work;
7393 
7394 	list_del_init(&n->poll_list);
7395 
7396 	have = netpoll_poll_lock(n);
7397 
7398 	work = __napi_poll(n, &do_repoll);
7399 
7400 	if (do_repoll)
7401 		list_add_tail(&n->poll_list, repoll);
7402 
7403 	netpoll_poll_unlock(have);
7404 
7405 	return work;
7406 }
7407 
7408 static int napi_thread_wait(struct napi_struct *napi)
7409 {
7410 	set_current_state(TASK_INTERRUPTIBLE);
7411 
7412 	while (!kthread_should_stop()) {
7413 		/* Testing SCHED_THREADED bit here to make sure the current
7414 		 * kthread owns this napi and could poll on this napi.
7415 		 * Testing SCHED bit is not enough because SCHED bit might be
7416 		 * set by some other busy poll thread or by napi_disable().
7417 		 */
7418 		if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state)) {
7419 			WARN_ON(!list_empty(&napi->poll_list));
7420 			__set_current_state(TASK_RUNNING);
7421 			return 0;
7422 		}
7423 
7424 		schedule();
7425 		set_current_state(TASK_INTERRUPTIBLE);
7426 	}
7427 	__set_current_state(TASK_RUNNING);
7428 
7429 	return -1;
7430 }
7431 
7432 static void napi_threaded_poll_loop(struct napi_struct *napi)
7433 {
7434 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
7435 	struct softnet_data *sd;
7436 	unsigned long last_qs = jiffies;
7437 
7438 	for (;;) {
7439 		bool repoll = false;
7440 		void *have;
7441 
7442 		local_bh_disable();
7443 		bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
7444 
7445 		sd = this_cpu_ptr(&softnet_data);
7446 		sd->in_napi_threaded_poll = true;
7447 
7448 		have = netpoll_poll_lock(napi);
7449 		__napi_poll(napi, &repoll);
7450 		netpoll_poll_unlock(have);
7451 
7452 		sd->in_napi_threaded_poll = false;
7453 		barrier();
7454 
7455 		if (sd_has_rps_ipi_waiting(sd)) {
7456 			local_irq_disable();
7457 			net_rps_action_and_irq_enable(sd);
7458 		}
7459 		skb_defer_free_flush(sd);
7460 		bpf_net_ctx_clear(bpf_net_ctx);
7461 		local_bh_enable();
7462 
7463 		if (!repoll)
7464 			break;
7465 
7466 		rcu_softirq_qs_periodic(last_qs);
7467 		cond_resched();
7468 	}
7469 }
7470 
7471 static int napi_threaded_poll(void *data)
7472 {
7473 	struct napi_struct *napi = data;
7474 
7475 	while (!napi_thread_wait(napi))
7476 		napi_threaded_poll_loop(napi);
7477 
7478 	return 0;
7479 }
7480 
7481 static __latent_entropy void net_rx_action(void)
7482 {
7483 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
7484 	unsigned long time_limit = jiffies +
7485 		usecs_to_jiffies(READ_ONCE(net_hotdata.netdev_budget_usecs));
7486 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
7487 	int budget = READ_ONCE(net_hotdata.netdev_budget);
7488 	LIST_HEAD(list);
7489 	LIST_HEAD(repoll);
7490 
7491 	bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
7492 start:
7493 	sd->in_net_rx_action = true;
7494 	local_irq_disable();
7495 	list_splice_init(&sd->poll_list, &list);
7496 	local_irq_enable();
7497 
7498 	for (;;) {
7499 		struct napi_struct *n;
7500 
7501 		skb_defer_free_flush(sd);
7502 
7503 		if (list_empty(&list)) {
7504 			if (list_empty(&repoll)) {
7505 				sd->in_net_rx_action = false;
7506 				barrier();
7507 				/* We need to check if ____napi_schedule()
7508 				 * had refilled poll_list while
7509 				 * sd->in_net_rx_action was true.
7510 				 */
7511 				if (!list_empty(&sd->poll_list))
7512 					goto start;
7513 				if (!sd_has_rps_ipi_waiting(sd))
7514 					goto end;
7515 			}
7516 			break;
7517 		}
7518 
7519 		n = list_first_entry(&list, struct napi_struct, poll_list);
7520 		budget -= napi_poll(n, &repoll);
7521 
7522 		/* If softirq window is exhausted then punt.
7523 		 * Allow this to run for 2 jiffies since which will allow
7524 		 * an average latency of 1.5/HZ.
7525 		 */
7526 		if (unlikely(budget <= 0 ||
7527 			     time_after_eq(jiffies, time_limit))) {
7528 			sd->time_squeeze++;
7529 			break;
7530 		}
7531 	}
7532 
7533 	local_irq_disable();
7534 
7535 	list_splice_tail_init(&sd->poll_list, &list);
7536 	list_splice_tail(&repoll, &list);
7537 	list_splice(&list, &sd->poll_list);
7538 	if (!list_empty(&sd->poll_list))
7539 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
7540 	else
7541 		sd->in_net_rx_action = false;
7542 
7543 	net_rps_action_and_irq_enable(sd);
7544 end:
7545 	bpf_net_ctx_clear(bpf_net_ctx);
7546 }
7547 
7548 struct netdev_adjacent {
7549 	struct net_device *dev;
7550 	netdevice_tracker dev_tracker;
7551 
7552 	/* upper master flag, there can only be one master device per list */
7553 	bool master;
7554 
7555 	/* lookup ignore flag */
7556 	bool ignore;
7557 
7558 	/* counter for the number of times this device was added to us */
7559 	u16 ref_nr;
7560 
7561 	/* private field for the users */
7562 	void *private;
7563 
7564 	struct list_head list;
7565 	struct rcu_head rcu;
7566 };
7567 
7568 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
7569 						 struct list_head *adj_list)
7570 {
7571 	struct netdev_adjacent *adj;
7572 
7573 	list_for_each_entry(adj, adj_list, list) {
7574 		if (adj->dev == adj_dev)
7575 			return adj;
7576 	}
7577 	return NULL;
7578 }
7579 
7580 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
7581 				    struct netdev_nested_priv *priv)
7582 {
7583 	struct net_device *dev = (struct net_device *)priv->data;
7584 
7585 	return upper_dev == dev;
7586 }
7587 
7588 /**
7589  * netdev_has_upper_dev - Check if device is linked to an upper device
7590  * @dev: device
7591  * @upper_dev: upper device to check
7592  *
7593  * Find out if a device is linked to specified upper device and return true
7594  * in case it is. Note that this checks only immediate upper device,
7595  * not through a complete stack of devices. The caller must hold the RTNL lock.
7596  */
7597 bool netdev_has_upper_dev(struct net_device *dev,
7598 			  struct net_device *upper_dev)
7599 {
7600 	struct netdev_nested_priv priv = {
7601 		.data = (void *)upper_dev,
7602 	};
7603 
7604 	ASSERT_RTNL();
7605 
7606 	return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7607 					     &priv);
7608 }
7609 EXPORT_SYMBOL(netdev_has_upper_dev);
7610 
7611 /**
7612  * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
7613  * @dev: device
7614  * @upper_dev: upper device to check
7615  *
7616  * Find out if a device is linked to specified upper device and return true
7617  * in case it is. Note that this checks the entire upper device chain.
7618  * The caller must hold rcu lock.
7619  */
7620 
7621 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
7622 				  struct net_device *upper_dev)
7623 {
7624 	struct netdev_nested_priv priv = {
7625 		.data = (void *)upper_dev,
7626 	};
7627 
7628 	return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7629 					       &priv);
7630 }
7631 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
7632 
7633 /**
7634  * netdev_has_any_upper_dev - Check if device is linked to some device
7635  * @dev: device
7636  *
7637  * Find out if a device is linked to an upper device and return true in case
7638  * it is. The caller must hold the RTNL lock.
7639  */
7640 bool netdev_has_any_upper_dev(struct net_device *dev)
7641 {
7642 	ASSERT_RTNL();
7643 
7644 	return !list_empty(&dev->adj_list.upper);
7645 }
7646 EXPORT_SYMBOL(netdev_has_any_upper_dev);
7647 
7648 /**
7649  * netdev_master_upper_dev_get - Get master upper device
7650  * @dev: device
7651  *
7652  * Find a master upper device and return pointer to it or NULL in case
7653  * it's not there. The caller must hold the RTNL lock.
7654  */
7655 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
7656 {
7657 	struct netdev_adjacent *upper;
7658 
7659 	ASSERT_RTNL();
7660 
7661 	if (list_empty(&dev->adj_list.upper))
7662 		return NULL;
7663 
7664 	upper = list_first_entry(&dev->adj_list.upper,
7665 				 struct netdev_adjacent, list);
7666 	if (likely(upper->master))
7667 		return upper->dev;
7668 	return NULL;
7669 }
7670 EXPORT_SYMBOL(netdev_master_upper_dev_get);
7671 
7672 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
7673 {
7674 	struct netdev_adjacent *upper;
7675 
7676 	ASSERT_RTNL();
7677 
7678 	if (list_empty(&dev->adj_list.upper))
7679 		return NULL;
7680 
7681 	upper = list_first_entry(&dev->adj_list.upper,
7682 				 struct netdev_adjacent, list);
7683 	if (likely(upper->master) && !upper->ignore)
7684 		return upper->dev;
7685 	return NULL;
7686 }
7687 
7688 /**
7689  * netdev_has_any_lower_dev - Check if device is linked to some device
7690  * @dev: device
7691  *
7692  * Find out if a device is linked to a lower device and return true in case
7693  * it is. The caller must hold the RTNL lock.
7694  */
7695 static bool netdev_has_any_lower_dev(struct net_device *dev)
7696 {
7697 	ASSERT_RTNL();
7698 
7699 	return !list_empty(&dev->adj_list.lower);
7700 }
7701 
7702 void *netdev_adjacent_get_private(struct list_head *adj_list)
7703 {
7704 	struct netdev_adjacent *adj;
7705 
7706 	adj = list_entry(adj_list, struct netdev_adjacent, list);
7707 
7708 	return adj->private;
7709 }
7710 EXPORT_SYMBOL(netdev_adjacent_get_private);
7711 
7712 /**
7713  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
7714  * @dev: device
7715  * @iter: list_head ** of the current position
7716  *
7717  * Gets the next device from the dev's upper list, starting from iter
7718  * position. The caller must hold RCU read lock.
7719  */
7720 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
7721 						 struct list_head **iter)
7722 {
7723 	struct netdev_adjacent *upper;
7724 
7725 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7726 
7727 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7728 
7729 	if (&upper->list == &dev->adj_list.upper)
7730 		return NULL;
7731 
7732 	*iter = &upper->list;
7733 
7734 	return upper->dev;
7735 }
7736 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
7737 
7738 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
7739 						  struct list_head **iter,
7740 						  bool *ignore)
7741 {
7742 	struct netdev_adjacent *upper;
7743 
7744 	upper = list_entry((*iter)->next, struct netdev_adjacent, list);
7745 
7746 	if (&upper->list == &dev->adj_list.upper)
7747 		return NULL;
7748 
7749 	*iter = &upper->list;
7750 	*ignore = upper->ignore;
7751 
7752 	return upper->dev;
7753 }
7754 
7755 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
7756 						    struct list_head **iter)
7757 {
7758 	struct netdev_adjacent *upper;
7759 
7760 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7761 
7762 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7763 
7764 	if (&upper->list == &dev->adj_list.upper)
7765 		return NULL;
7766 
7767 	*iter = &upper->list;
7768 
7769 	return upper->dev;
7770 }
7771 
7772 static int __netdev_walk_all_upper_dev(struct net_device *dev,
7773 				       int (*fn)(struct net_device *dev,
7774 					 struct netdev_nested_priv *priv),
7775 				       struct netdev_nested_priv *priv)
7776 {
7777 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7778 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7779 	int ret, cur = 0;
7780 	bool ignore;
7781 
7782 	now = dev;
7783 	iter = &dev->adj_list.upper;
7784 
7785 	while (1) {
7786 		if (now != dev) {
7787 			ret = fn(now, priv);
7788 			if (ret)
7789 				return ret;
7790 		}
7791 
7792 		next = NULL;
7793 		while (1) {
7794 			udev = __netdev_next_upper_dev(now, &iter, &ignore);
7795 			if (!udev)
7796 				break;
7797 			if (ignore)
7798 				continue;
7799 
7800 			next = udev;
7801 			niter = &udev->adj_list.upper;
7802 			dev_stack[cur] = now;
7803 			iter_stack[cur++] = iter;
7804 			break;
7805 		}
7806 
7807 		if (!next) {
7808 			if (!cur)
7809 				return 0;
7810 			next = dev_stack[--cur];
7811 			niter = iter_stack[cur];
7812 		}
7813 
7814 		now = next;
7815 		iter = niter;
7816 	}
7817 
7818 	return 0;
7819 }
7820 
7821 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7822 				  int (*fn)(struct net_device *dev,
7823 					    struct netdev_nested_priv *priv),
7824 				  struct netdev_nested_priv *priv)
7825 {
7826 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7827 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7828 	int ret, cur = 0;
7829 
7830 	now = dev;
7831 	iter = &dev->adj_list.upper;
7832 
7833 	while (1) {
7834 		if (now != dev) {
7835 			ret = fn(now, priv);
7836 			if (ret)
7837 				return ret;
7838 		}
7839 
7840 		next = NULL;
7841 		while (1) {
7842 			udev = netdev_next_upper_dev_rcu(now, &iter);
7843 			if (!udev)
7844 				break;
7845 
7846 			next = udev;
7847 			niter = &udev->adj_list.upper;
7848 			dev_stack[cur] = now;
7849 			iter_stack[cur++] = iter;
7850 			break;
7851 		}
7852 
7853 		if (!next) {
7854 			if (!cur)
7855 				return 0;
7856 			next = dev_stack[--cur];
7857 			niter = iter_stack[cur];
7858 		}
7859 
7860 		now = next;
7861 		iter = niter;
7862 	}
7863 
7864 	return 0;
7865 }
7866 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7867 
7868 static bool __netdev_has_upper_dev(struct net_device *dev,
7869 				   struct net_device *upper_dev)
7870 {
7871 	struct netdev_nested_priv priv = {
7872 		.flags = 0,
7873 		.data = (void *)upper_dev,
7874 	};
7875 
7876 	ASSERT_RTNL();
7877 
7878 	return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7879 					   &priv);
7880 }
7881 
7882 /**
7883  * netdev_lower_get_next_private - Get the next ->private from the
7884  *				   lower neighbour list
7885  * @dev: device
7886  * @iter: list_head ** of the current position
7887  *
7888  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7889  * list, starting from iter position. The caller must hold either hold the
7890  * RTNL lock or its own locking that guarantees that the neighbour lower
7891  * list will remain unchanged.
7892  */
7893 void *netdev_lower_get_next_private(struct net_device *dev,
7894 				    struct list_head **iter)
7895 {
7896 	struct netdev_adjacent *lower;
7897 
7898 	lower = list_entry(*iter, struct netdev_adjacent, list);
7899 
7900 	if (&lower->list == &dev->adj_list.lower)
7901 		return NULL;
7902 
7903 	*iter = lower->list.next;
7904 
7905 	return lower->private;
7906 }
7907 EXPORT_SYMBOL(netdev_lower_get_next_private);
7908 
7909 /**
7910  * netdev_lower_get_next_private_rcu - Get the next ->private from the
7911  *				       lower neighbour list, RCU
7912  *				       variant
7913  * @dev: device
7914  * @iter: list_head ** of the current position
7915  *
7916  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7917  * list, starting from iter position. The caller must hold RCU read lock.
7918  */
7919 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7920 					struct list_head **iter)
7921 {
7922 	struct netdev_adjacent *lower;
7923 
7924 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
7925 
7926 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7927 
7928 	if (&lower->list == &dev->adj_list.lower)
7929 		return NULL;
7930 
7931 	*iter = &lower->list;
7932 
7933 	return lower->private;
7934 }
7935 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7936 
7937 /**
7938  * netdev_lower_get_next - Get the next device from the lower neighbour
7939  *                         list
7940  * @dev: device
7941  * @iter: list_head ** of the current position
7942  *
7943  * Gets the next netdev_adjacent from the dev's lower neighbour
7944  * list, starting from iter position. The caller must hold RTNL lock or
7945  * its own locking that guarantees that the neighbour lower
7946  * list will remain unchanged.
7947  */
7948 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7949 {
7950 	struct netdev_adjacent *lower;
7951 
7952 	lower = list_entry(*iter, struct netdev_adjacent, list);
7953 
7954 	if (&lower->list == &dev->adj_list.lower)
7955 		return NULL;
7956 
7957 	*iter = lower->list.next;
7958 
7959 	return lower->dev;
7960 }
7961 EXPORT_SYMBOL(netdev_lower_get_next);
7962 
7963 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7964 						struct list_head **iter)
7965 {
7966 	struct netdev_adjacent *lower;
7967 
7968 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7969 
7970 	if (&lower->list == &dev->adj_list.lower)
7971 		return NULL;
7972 
7973 	*iter = &lower->list;
7974 
7975 	return lower->dev;
7976 }
7977 
7978 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7979 						  struct list_head **iter,
7980 						  bool *ignore)
7981 {
7982 	struct netdev_adjacent *lower;
7983 
7984 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7985 
7986 	if (&lower->list == &dev->adj_list.lower)
7987 		return NULL;
7988 
7989 	*iter = &lower->list;
7990 	*ignore = lower->ignore;
7991 
7992 	return lower->dev;
7993 }
7994 
7995 int netdev_walk_all_lower_dev(struct net_device *dev,
7996 			      int (*fn)(struct net_device *dev,
7997 					struct netdev_nested_priv *priv),
7998 			      struct netdev_nested_priv *priv)
7999 {
8000 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
8001 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
8002 	int ret, cur = 0;
8003 
8004 	now = dev;
8005 	iter = &dev->adj_list.lower;
8006 
8007 	while (1) {
8008 		if (now != dev) {
8009 			ret = fn(now, priv);
8010 			if (ret)
8011 				return ret;
8012 		}
8013 
8014 		next = NULL;
8015 		while (1) {
8016 			ldev = netdev_next_lower_dev(now, &iter);
8017 			if (!ldev)
8018 				break;
8019 
8020 			next = ldev;
8021 			niter = &ldev->adj_list.lower;
8022 			dev_stack[cur] = now;
8023 			iter_stack[cur++] = iter;
8024 			break;
8025 		}
8026 
8027 		if (!next) {
8028 			if (!cur)
8029 				return 0;
8030 			next = dev_stack[--cur];
8031 			niter = iter_stack[cur];
8032 		}
8033 
8034 		now = next;
8035 		iter = niter;
8036 	}
8037 
8038 	return 0;
8039 }
8040 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
8041 
8042 static int __netdev_walk_all_lower_dev(struct net_device *dev,
8043 				       int (*fn)(struct net_device *dev,
8044 					 struct netdev_nested_priv *priv),
8045 				       struct netdev_nested_priv *priv)
8046 {
8047 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
8048 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
8049 	int ret, cur = 0;
8050 	bool ignore;
8051 
8052 	now = dev;
8053 	iter = &dev->adj_list.lower;
8054 
8055 	while (1) {
8056 		if (now != dev) {
8057 			ret = fn(now, priv);
8058 			if (ret)
8059 				return ret;
8060 		}
8061 
8062 		next = NULL;
8063 		while (1) {
8064 			ldev = __netdev_next_lower_dev(now, &iter, &ignore);
8065 			if (!ldev)
8066 				break;
8067 			if (ignore)
8068 				continue;
8069 
8070 			next = ldev;
8071 			niter = &ldev->adj_list.lower;
8072 			dev_stack[cur] = now;
8073 			iter_stack[cur++] = iter;
8074 			break;
8075 		}
8076 
8077 		if (!next) {
8078 			if (!cur)
8079 				return 0;
8080 			next = dev_stack[--cur];
8081 			niter = iter_stack[cur];
8082 		}
8083 
8084 		now = next;
8085 		iter = niter;
8086 	}
8087 
8088 	return 0;
8089 }
8090 
8091 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
8092 					     struct list_head **iter)
8093 {
8094 	struct netdev_adjacent *lower;
8095 
8096 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
8097 	if (&lower->list == &dev->adj_list.lower)
8098 		return NULL;
8099 
8100 	*iter = &lower->list;
8101 
8102 	return lower->dev;
8103 }
8104 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
8105 
8106 static u8 __netdev_upper_depth(struct net_device *dev)
8107 {
8108 	struct net_device *udev;
8109 	struct list_head *iter;
8110 	u8 max_depth = 0;
8111 	bool ignore;
8112 
8113 	for (iter = &dev->adj_list.upper,
8114 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore);
8115 	     udev;
8116 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
8117 		if (ignore)
8118 			continue;
8119 		if (max_depth < udev->upper_level)
8120 			max_depth = udev->upper_level;
8121 	}
8122 
8123 	return max_depth;
8124 }
8125 
8126 static u8 __netdev_lower_depth(struct net_device *dev)
8127 {
8128 	struct net_device *ldev;
8129 	struct list_head *iter;
8130 	u8 max_depth = 0;
8131 	bool ignore;
8132 
8133 	for (iter = &dev->adj_list.lower,
8134 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
8135 	     ldev;
8136 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
8137 		if (ignore)
8138 			continue;
8139 		if (max_depth < ldev->lower_level)
8140 			max_depth = ldev->lower_level;
8141 	}
8142 
8143 	return max_depth;
8144 }
8145 
8146 static int __netdev_update_upper_level(struct net_device *dev,
8147 				       struct netdev_nested_priv *__unused)
8148 {
8149 	dev->upper_level = __netdev_upper_depth(dev) + 1;
8150 	return 0;
8151 }
8152 
8153 #ifdef CONFIG_LOCKDEP
8154 static LIST_HEAD(net_unlink_list);
8155 
8156 static void net_unlink_todo(struct net_device *dev)
8157 {
8158 	if (list_empty(&dev->unlink_list))
8159 		list_add_tail(&dev->unlink_list, &net_unlink_list);
8160 }
8161 #endif
8162 
8163 static int __netdev_update_lower_level(struct net_device *dev,
8164 				       struct netdev_nested_priv *priv)
8165 {
8166 	dev->lower_level = __netdev_lower_depth(dev) + 1;
8167 
8168 #ifdef CONFIG_LOCKDEP
8169 	if (!priv)
8170 		return 0;
8171 
8172 	if (priv->flags & NESTED_SYNC_IMM)
8173 		dev->nested_level = dev->lower_level - 1;
8174 	if (priv->flags & NESTED_SYNC_TODO)
8175 		net_unlink_todo(dev);
8176 #endif
8177 	return 0;
8178 }
8179 
8180 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
8181 				  int (*fn)(struct net_device *dev,
8182 					    struct netdev_nested_priv *priv),
8183 				  struct netdev_nested_priv *priv)
8184 {
8185 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
8186 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
8187 	int ret, cur = 0;
8188 
8189 	now = dev;
8190 	iter = &dev->adj_list.lower;
8191 
8192 	while (1) {
8193 		if (now != dev) {
8194 			ret = fn(now, priv);
8195 			if (ret)
8196 				return ret;
8197 		}
8198 
8199 		next = NULL;
8200 		while (1) {
8201 			ldev = netdev_next_lower_dev_rcu(now, &iter);
8202 			if (!ldev)
8203 				break;
8204 
8205 			next = ldev;
8206 			niter = &ldev->adj_list.lower;
8207 			dev_stack[cur] = now;
8208 			iter_stack[cur++] = iter;
8209 			break;
8210 		}
8211 
8212 		if (!next) {
8213 			if (!cur)
8214 				return 0;
8215 			next = dev_stack[--cur];
8216 			niter = iter_stack[cur];
8217 		}
8218 
8219 		now = next;
8220 		iter = niter;
8221 	}
8222 
8223 	return 0;
8224 }
8225 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
8226 
8227 /**
8228  * netdev_lower_get_first_private_rcu - Get the first ->private from the
8229  *				       lower neighbour list, RCU
8230  *				       variant
8231  * @dev: device
8232  *
8233  * Gets the first netdev_adjacent->private from the dev's lower neighbour
8234  * list. The caller must hold RCU read lock.
8235  */
8236 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
8237 {
8238 	struct netdev_adjacent *lower;
8239 
8240 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
8241 			struct netdev_adjacent, list);
8242 	if (lower)
8243 		return lower->private;
8244 	return NULL;
8245 }
8246 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
8247 
8248 /**
8249  * netdev_master_upper_dev_get_rcu - Get master upper device
8250  * @dev: device
8251  *
8252  * Find a master upper device and return pointer to it or NULL in case
8253  * it's not there. The caller must hold the RCU read lock.
8254  */
8255 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
8256 {
8257 	struct netdev_adjacent *upper;
8258 
8259 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
8260 				       struct netdev_adjacent, list);
8261 	if (upper && likely(upper->master))
8262 		return upper->dev;
8263 	return NULL;
8264 }
8265 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
8266 
8267 static int netdev_adjacent_sysfs_add(struct net_device *dev,
8268 			      struct net_device *adj_dev,
8269 			      struct list_head *dev_list)
8270 {
8271 	char linkname[IFNAMSIZ+7];
8272 
8273 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
8274 		"upper_%s" : "lower_%s", adj_dev->name);
8275 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
8276 				 linkname);
8277 }
8278 static void netdev_adjacent_sysfs_del(struct net_device *dev,
8279 			       char *name,
8280 			       struct list_head *dev_list)
8281 {
8282 	char linkname[IFNAMSIZ+7];
8283 
8284 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
8285 		"upper_%s" : "lower_%s", name);
8286 	sysfs_remove_link(&(dev->dev.kobj), linkname);
8287 }
8288 
8289 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
8290 						 struct net_device *adj_dev,
8291 						 struct list_head *dev_list)
8292 {
8293 	return (dev_list == &dev->adj_list.upper ||
8294 		dev_list == &dev->adj_list.lower) &&
8295 		net_eq(dev_net(dev), dev_net(adj_dev));
8296 }
8297 
8298 static int __netdev_adjacent_dev_insert(struct net_device *dev,
8299 					struct net_device *adj_dev,
8300 					struct list_head *dev_list,
8301 					void *private, bool master)
8302 {
8303 	struct netdev_adjacent *adj;
8304 	int ret;
8305 
8306 	adj = __netdev_find_adj(adj_dev, dev_list);
8307 
8308 	if (adj) {
8309 		adj->ref_nr += 1;
8310 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
8311 			 dev->name, adj_dev->name, adj->ref_nr);
8312 
8313 		return 0;
8314 	}
8315 
8316 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
8317 	if (!adj)
8318 		return -ENOMEM;
8319 
8320 	adj->dev = adj_dev;
8321 	adj->master = master;
8322 	adj->ref_nr = 1;
8323 	adj->private = private;
8324 	adj->ignore = false;
8325 	netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL);
8326 
8327 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
8328 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
8329 
8330 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
8331 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
8332 		if (ret)
8333 			goto free_adj;
8334 	}
8335 
8336 	/* Ensure that master link is always the first item in list. */
8337 	if (master) {
8338 		ret = sysfs_create_link(&(dev->dev.kobj),
8339 					&(adj_dev->dev.kobj), "master");
8340 		if (ret)
8341 			goto remove_symlinks;
8342 
8343 		list_add_rcu(&adj->list, dev_list);
8344 	} else {
8345 		list_add_tail_rcu(&adj->list, dev_list);
8346 	}
8347 
8348 	return 0;
8349 
8350 remove_symlinks:
8351 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
8352 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
8353 free_adj:
8354 	netdev_put(adj_dev, &adj->dev_tracker);
8355 	kfree(adj);
8356 
8357 	return ret;
8358 }
8359 
8360 static void __netdev_adjacent_dev_remove(struct net_device *dev,
8361 					 struct net_device *adj_dev,
8362 					 u16 ref_nr,
8363 					 struct list_head *dev_list)
8364 {
8365 	struct netdev_adjacent *adj;
8366 
8367 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
8368 		 dev->name, adj_dev->name, ref_nr);
8369 
8370 	adj = __netdev_find_adj(adj_dev, dev_list);
8371 
8372 	if (!adj) {
8373 		pr_err("Adjacency does not exist for device %s from %s\n",
8374 		       dev->name, adj_dev->name);
8375 		WARN_ON(1);
8376 		return;
8377 	}
8378 
8379 	if (adj->ref_nr > ref_nr) {
8380 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
8381 			 dev->name, adj_dev->name, ref_nr,
8382 			 adj->ref_nr - ref_nr);
8383 		adj->ref_nr -= ref_nr;
8384 		return;
8385 	}
8386 
8387 	if (adj->master)
8388 		sysfs_remove_link(&(dev->dev.kobj), "master");
8389 
8390 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
8391 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
8392 
8393 	list_del_rcu(&adj->list);
8394 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
8395 		 adj_dev->name, dev->name, adj_dev->name);
8396 	netdev_put(adj_dev, &adj->dev_tracker);
8397 	kfree_rcu(adj, rcu);
8398 }
8399 
8400 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
8401 					    struct net_device *upper_dev,
8402 					    struct list_head *up_list,
8403 					    struct list_head *down_list,
8404 					    void *private, bool master)
8405 {
8406 	int ret;
8407 
8408 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
8409 					   private, master);
8410 	if (ret)
8411 		return ret;
8412 
8413 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
8414 					   private, false);
8415 	if (ret) {
8416 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
8417 		return ret;
8418 	}
8419 
8420 	return 0;
8421 }
8422 
8423 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
8424 					       struct net_device *upper_dev,
8425 					       u16 ref_nr,
8426 					       struct list_head *up_list,
8427 					       struct list_head *down_list)
8428 {
8429 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
8430 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
8431 }
8432 
8433 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
8434 						struct net_device *upper_dev,
8435 						void *private, bool master)
8436 {
8437 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
8438 						&dev->adj_list.upper,
8439 						&upper_dev->adj_list.lower,
8440 						private, master);
8441 }
8442 
8443 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
8444 						   struct net_device *upper_dev)
8445 {
8446 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
8447 					   &dev->adj_list.upper,
8448 					   &upper_dev->adj_list.lower);
8449 }
8450 
8451 static int __netdev_upper_dev_link(struct net_device *dev,
8452 				   struct net_device *upper_dev, bool master,
8453 				   void *upper_priv, void *upper_info,
8454 				   struct netdev_nested_priv *priv,
8455 				   struct netlink_ext_ack *extack)
8456 {
8457 	struct netdev_notifier_changeupper_info changeupper_info = {
8458 		.info = {
8459 			.dev = dev,
8460 			.extack = extack,
8461 		},
8462 		.upper_dev = upper_dev,
8463 		.master = master,
8464 		.linking = true,
8465 		.upper_info = upper_info,
8466 	};
8467 	struct net_device *master_dev;
8468 	int ret = 0;
8469 
8470 	ASSERT_RTNL();
8471 
8472 	if (dev == upper_dev)
8473 		return -EBUSY;
8474 
8475 	/* To prevent loops, check if dev is not upper device to upper_dev. */
8476 	if (__netdev_has_upper_dev(upper_dev, dev))
8477 		return -EBUSY;
8478 
8479 	if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
8480 		return -EMLINK;
8481 
8482 	if (!master) {
8483 		if (__netdev_has_upper_dev(dev, upper_dev))
8484 			return -EEXIST;
8485 	} else {
8486 		master_dev = __netdev_master_upper_dev_get(dev);
8487 		if (master_dev)
8488 			return master_dev == upper_dev ? -EEXIST : -EBUSY;
8489 	}
8490 
8491 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8492 					    &changeupper_info.info);
8493 	ret = notifier_to_errno(ret);
8494 	if (ret)
8495 		return ret;
8496 
8497 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
8498 						   master);
8499 	if (ret)
8500 		return ret;
8501 
8502 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8503 					    &changeupper_info.info);
8504 	ret = notifier_to_errno(ret);
8505 	if (ret)
8506 		goto rollback;
8507 
8508 	__netdev_update_upper_level(dev, NULL);
8509 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8510 
8511 	__netdev_update_lower_level(upper_dev, priv);
8512 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8513 				    priv);
8514 
8515 	return 0;
8516 
8517 rollback:
8518 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8519 
8520 	return ret;
8521 }
8522 
8523 /**
8524  * netdev_upper_dev_link - Add a link to the upper device
8525  * @dev: device
8526  * @upper_dev: new upper device
8527  * @extack: netlink extended ack
8528  *
8529  * Adds a link to device which is upper to this one. The caller must hold
8530  * the RTNL lock. On a failure a negative errno code is returned.
8531  * On success the reference counts are adjusted and the function
8532  * returns zero.
8533  */
8534 int netdev_upper_dev_link(struct net_device *dev,
8535 			  struct net_device *upper_dev,
8536 			  struct netlink_ext_ack *extack)
8537 {
8538 	struct netdev_nested_priv priv = {
8539 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8540 		.data = NULL,
8541 	};
8542 
8543 	return __netdev_upper_dev_link(dev, upper_dev, false,
8544 				       NULL, NULL, &priv, extack);
8545 }
8546 EXPORT_SYMBOL(netdev_upper_dev_link);
8547 
8548 /**
8549  * netdev_master_upper_dev_link - Add a master link to the upper device
8550  * @dev: device
8551  * @upper_dev: new upper device
8552  * @upper_priv: upper device private
8553  * @upper_info: upper info to be passed down via notifier
8554  * @extack: netlink extended ack
8555  *
8556  * Adds a link to device which is upper to this one. In this case, only
8557  * one master upper device can be linked, although other non-master devices
8558  * might be linked as well. The caller must hold the RTNL lock.
8559  * On a failure a negative errno code is returned. On success the reference
8560  * counts are adjusted and the function returns zero.
8561  */
8562 int netdev_master_upper_dev_link(struct net_device *dev,
8563 				 struct net_device *upper_dev,
8564 				 void *upper_priv, void *upper_info,
8565 				 struct netlink_ext_ack *extack)
8566 {
8567 	struct netdev_nested_priv priv = {
8568 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8569 		.data = NULL,
8570 	};
8571 
8572 	return __netdev_upper_dev_link(dev, upper_dev, true,
8573 				       upper_priv, upper_info, &priv, extack);
8574 }
8575 EXPORT_SYMBOL(netdev_master_upper_dev_link);
8576 
8577 static void __netdev_upper_dev_unlink(struct net_device *dev,
8578 				      struct net_device *upper_dev,
8579 				      struct netdev_nested_priv *priv)
8580 {
8581 	struct netdev_notifier_changeupper_info changeupper_info = {
8582 		.info = {
8583 			.dev = dev,
8584 		},
8585 		.upper_dev = upper_dev,
8586 		.linking = false,
8587 	};
8588 
8589 	ASSERT_RTNL();
8590 
8591 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
8592 
8593 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8594 				      &changeupper_info.info);
8595 
8596 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8597 
8598 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8599 				      &changeupper_info.info);
8600 
8601 	__netdev_update_upper_level(dev, NULL);
8602 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8603 
8604 	__netdev_update_lower_level(upper_dev, priv);
8605 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8606 				    priv);
8607 }
8608 
8609 /**
8610  * netdev_upper_dev_unlink - Removes a link to upper device
8611  * @dev: device
8612  * @upper_dev: new upper device
8613  *
8614  * Removes a link to device which is upper to this one. The caller must hold
8615  * the RTNL lock.
8616  */
8617 void netdev_upper_dev_unlink(struct net_device *dev,
8618 			     struct net_device *upper_dev)
8619 {
8620 	struct netdev_nested_priv priv = {
8621 		.flags = NESTED_SYNC_TODO,
8622 		.data = NULL,
8623 	};
8624 
8625 	__netdev_upper_dev_unlink(dev, upper_dev, &priv);
8626 }
8627 EXPORT_SYMBOL(netdev_upper_dev_unlink);
8628 
8629 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
8630 				      struct net_device *lower_dev,
8631 				      bool val)
8632 {
8633 	struct netdev_adjacent *adj;
8634 
8635 	adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
8636 	if (adj)
8637 		adj->ignore = val;
8638 
8639 	adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
8640 	if (adj)
8641 		adj->ignore = val;
8642 }
8643 
8644 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
8645 					struct net_device *lower_dev)
8646 {
8647 	__netdev_adjacent_dev_set(upper_dev, lower_dev, true);
8648 }
8649 
8650 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
8651 				       struct net_device *lower_dev)
8652 {
8653 	__netdev_adjacent_dev_set(upper_dev, lower_dev, false);
8654 }
8655 
8656 int netdev_adjacent_change_prepare(struct net_device *old_dev,
8657 				   struct net_device *new_dev,
8658 				   struct net_device *dev,
8659 				   struct netlink_ext_ack *extack)
8660 {
8661 	struct netdev_nested_priv priv = {
8662 		.flags = 0,
8663 		.data = NULL,
8664 	};
8665 	int err;
8666 
8667 	if (!new_dev)
8668 		return 0;
8669 
8670 	if (old_dev && new_dev != old_dev)
8671 		netdev_adjacent_dev_disable(dev, old_dev);
8672 	err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
8673 				      extack);
8674 	if (err) {
8675 		if (old_dev && new_dev != old_dev)
8676 			netdev_adjacent_dev_enable(dev, old_dev);
8677 		return err;
8678 	}
8679 
8680 	return 0;
8681 }
8682 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
8683 
8684 void netdev_adjacent_change_commit(struct net_device *old_dev,
8685 				   struct net_device *new_dev,
8686 				   struct net_device *dev)
8687 {
8688 	struct netdev_nested_priv priv = {
8689 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8690 		.data = NULL,
8691 	};
8692 
8693 	if (!new_dev || !old_dev)
8694 		return;
8695 
8696 	if (new_dev == old_dev)
8697 		return;
8698 
8699 	netdev_adjacent_dev_enable(dev, old_dev);
8700 	__netdev_upper_dev_unlink(old_dev, dev, &priv);
8701 }
8702 EXPORT_SYMBOL(netdev_adjacent_change_commit);
8703 
8704 void netdev_adjacent_change_abort(struct net_device *old_dev,
8705 				  struct net_device *new_dev,
8706 				  struct net_device *dev)
8707 {
8708 	struct netdev_nested_priv priv = {
8709 		.flags = 0,
8710 		.data = NULL,
8711 	};
8712 
8713 	if (!new_dev)
8714 		return;
8715 
8716 	if (old_dev && new_dev != old_dev)
8717 		netdev_adjacent_dev_enable(dev, old_dev);
8718 
8719 	__netdev_upper_dev_unlink(new_dev, dev, &priv);
8720 }
8721 EXPORT_SYMBOL(netdev_adjacent_change_abort);
8722 
8723 /**
8724  * netdev_bonding_info_change - Dispatch event about slave change
8725  * @dev: device
8726  * @bonding_info: info to dispatch
8727  *
8728  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
8729  * The caller must hold the RTNL lock.
8730  */
8731 void netdev_bonding_info_change(struct net_device *dev,
8732 				struct netdev_bonding_info *bonding_info)
8733 {
8734 	struct netdev_notifier_bonding_info info = {
8735 		.info.dev = dev,
8736 	};
8737 
8738 	memcpy(&info.bonding_info, bonding_info,
8739 	       sizeof(struct netdev_bonding_info));
8740 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
8741 				      &info.info);
8742 }
8743 EXPORT_SYMBOL(netdev_bonding_info_change);
8744 
8745 static int netdev_offload_xstats_enable_l3(struct net_device *dev,
8746 					   struct netlink_ext_ack *extack)
8747 {
8748 	struct netdev_notifier_offload_xstats_info info = {
8749 		.info.dev = dev,
8750 		.info.extack = extack,
8751 		.type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
8752 	};
8753 	int err;
8754 	int rc;
8755 
8756 	dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3),
8757 					 GFP_KERNEL);
8758 	if (!dev->offload_xstats_l3)
8759 		return -ENOMEM;
8760 
8761 	rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE,
8762 						  NETDEV_OFFLOAD_XSTATS_DISABLE,
8763 						  &info.info);
8764 	err = notifier_to_errno(rc);
8765 	if (err)
8766 		goto free_stats;
8767 
8768 	return 0;
8769 
8770 free_stats:
8771 	kfree(dev->offload_xstats_l3);
8772 	dev->offload_xstats_l3 = NULL;
8773 	return err;
8774 }
8775 
8776 int netdev_offload_xstats_enable(struct net_device *dev,
8777 				 enum netdev_offload_xstats_type type,
8778 				 struct netlink_ext_ack *extack)
8779 {
8780 	ASSERT_RTNL();
8781 
8782 	if (netdev_offload_xstats_enabled(dev, type))
8783 		return -EALREADY;
8784 
8785 	switch (type) {
8786 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8787 		return netdev_offload_xstats_enable_l3(dev, extack);
8788 	}
8789 
8790 	WARN_ON(1);
8791 	return -EINVAL;
8792 }
8793 EXPORT_SYMBOL(netdev_offload_xstats_enable);
8794 
8795 static void netdev_offload_xstats_disable_l3(struct net_device *dev)
8796 {
8797 	struct netdev_notifier_offload_xstats_info info = {
8798 		.info.dev = dev,
8799 		.type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
8800 	};
8801 
8802 	call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE,
8803 				      &info.info);
8804 	kfree(dev->offload_xstats_l3);
8805 	dev->offload_xstats_l3 = NULL;
8806 }
8807 
8808 int netdev_offload_xstats_disable(struct net_device *dev,
8809 				  enum netdev_offload_xstats_type type)
8810 {
8811 	ASSERT_RTNL();
8812 
8813 	if (!netdev_offload_xstats_enabled(dev, type))
8814 		return -EALREADY;
8815 
8816 	switch (type) {
8817 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8818 		netdev_offload_xstats_disable_l3(dev);
8819 		return 0;
8820 	}
8821 
8822 	WARN_ON(1);
8823 	return -EINVAL;
8824 }
8825 EXPORT_SYMBOL(netdev_offload_xstats_disable);
8826 
8827 static void netdev_offload_xstats_disable_all(struct net_device *dev)
8828 {
8829 	netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3);
8830 }
8831 
8832 static struct rtnl_hw_stats64 *
8833 netdev_offload_xstats_get_ptr(const struct net_device *dev,
8834 			      enum netdev_offload_xstats_type type)
8835 {
8836 	switch (type) {
8837 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8838 		return dev->offload_xstats_l3;
8839 	}
8840 
8841 	WARN_ON(1);
8842 	return NULL;
8843 }
8844 
8845 bool netdev_offload_xstats_enabled(const struct net_device *dev,
8846 				   enum netdev_offload_xstats_type type)
8847 {
8848 	ASSERT_RTNL();
8849 
8850 	return netdev_offload_xstats_get_ptr(dev, type);
8851 }
8852 EXPORT_SYMBOL(netdev_offload_xstats_enabled);
8853 
8854 struct netdev_notifier_offload_xstats_ru {
8855 	bool used;
8856 };
8857 
8858 struct netdev_notifier_offload_xstats_rd {
8859 	struct rtnl_hw_stats64 stats;
8860 	bool used;
8861 };
8862 
8863 static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest,
8864 				  const struct rtnl_hw_stats64 *src)
8865 {
8866 	dest->rx_packets	  += src->rx_packets;
8867 	dest->tx_packets	  += src->tx_packets;
8868 	dest->rx_bytes		  += src->rx_bytes;
8869 	dest->tx_bytes		  += src->tx_bytes;
8870 	dest->rx_errors		  += src->rx_errors;
8871 	dest->tx_errors		  += src->tx_errors;
8872 	dest->rx_dropped	  += src->rx_dropped;
8873 	dest->tx_dropped	  += src->tx_dropped;
8874 	dest->multicast		  += src->multicast;
8875 }
8876 
8877 static int netdev_offload_xstats_get_used(struct net_device *dev,
8878 					  enum netdev_offload_xstats_type type,
8879 					  bool *p_used,
8880 					  struct netlink_ext_ack *extack)
8881 {
8882 	struct netdev_notifier_offload_xstats_ru report_used = {};
8883 	struct netdev_notifier_offload_xstats_info info = {
8884 		.info.dev = dev,
8885 		.info.extack = extack,
8886 		.type = type,
8887 		.report_used = &report_used,
8888 	};
8889 	int rc;
8890 
8891 	WARN_ON(!netdev_offload_xstats_enabled(dev, type));
8892 	rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED,
8893 					   &info.info);
8894 	*p_used = report_used.used;
8895 	return notifier_to_errno(rc);
8896 }
8897 
8898 static int netdev_offload_xstats_get_stats(struct net_device *dev,
8899 					   enum netdev_offload_xstats_type type,
8900 					   struct rtnl_hw_stats64 *p_stats,
8901 					   bool *p_used,
8902 					   struct netlink_ext_ack *extack)
8903 {
8904 	struct netdev_notifier_offload_xstats_rd report_delta = {};
8905 	struct netdev_notifier_offload_xstats_info info = {
8906 		.info.dev = dev,
8907 		.info.extack = extack,
8908 		.type = type,
8909 		.report_delta = &report_delta,
8910 	};
8911 	struct rtnl_hw_stats64 *stats;
8912 	int rc;
8913 
8914 	stats = netdev_offload_xstats_get_ptr(dev, type);
8915 	if (WARN_ON(!stats))
8916 		return -EINVAL;
8917 
8918 	rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
8919 					   &info.info);
8920 
8921 	/* Cache whatever we got, even if there was an error, otherwise the
8922 	 * successful stats retrievals would get lost.
8923 	 */
8924 	netdev_hw_stats64_add(stats, &report_delta.stats);
8925 
8926 	if (p_stats)
8927 		*p_stats = *stats;
8928 	*p_used = report_delta.used;
8929 
8930 	return notifier_to_errno(rc);
8931 }
8932 
8933 int netdev_offload_xstats_get(struct net_device *dev,
8934 			      enum netdev_offload_xstats_type type,
8935 			      struct rtnl_hw_stats64 *p_stats, bool *p_used,
8936 			      struct netlink_ext_ack *extack)
8937 {
8938 	ASSERT_RTNL();
8939 
8940 	if (p_stats)
8941 		return netdev_offload_xstats_get_stats(dev, type, p_stats,
8942 						       p_used, extack);
8943 	else
8944 		return netdev_offload_xstats_get_used(dev, type, p_used,
8945 						      extack);
8946 }
8947 EXPORT_SYMBOL(netdev_offload_xstats_get);
8948 
8949 void
8950 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta,
8951 				   const struct rtnl_hw_stats64 *stats)
8952 {
8953 	report_delta->used = true;
8954 	netdev_hw_stats64_add(&report_delta->stats, stats);
8955 }
8956 EXPORT_SYMBOL(netdev_offload_xstats_report_delta);
8957 
8958 void
8959 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used)
8960 {
8961 	report_used->used = true;
8962 }
8963 EXPORT_SYMBOL(netdev_offload_xstats_report_used);
8964 
8965 void netdev_offload_xstats_push_delta(struct net_device *dev,
8966 				      enum netdev_offload_xstats_type type,
8967 				      const struct rtnl_hw_stats64 *p_stats)
8968 {
8969 	struct rtnl_hw_stats64 *stats;
8970 
8971 	ASSERT_RTNL();
8972 
8973 	stats = netdev_offload_xstats_get_ptr(dev, type);
8974 	if (WARN_ON(!stats))
8975 		return;
8976 
8977 	netdev_hw_stats64_add(stats, p_stats);
8978 }
8979 EXPORT_SYMBOL(netdev_offload_xstats_push_delta);
8980 
8981 /**
8982  * netdev_get_xmit_slave - Get the xmit slave of master device
8983  * @dev: device
8984  * @skb: The packet
8985  * @all_slaves: assume all the slaves are active
8986  *
8987  * The reference counters are not incremented so the caller must be
8988  * careful with locks. The caller must hold RCU lock.
8989  * %NULL is returned if no slave is found.
8990  */
8991 
8992 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8993 					 struct sk_buff *skb,
8994 					 bool all_slaves)
8995 {
8996 	const struct net_device_ops *ops = dev->netdev_ops;
8997 
8998 	if (!ops->ndo_get_xmit_slave)
8999 		return NULL;
9000 	return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
9001 }
9002 EXPORT_SYMBOL(netdev_get_xmit_slave);
9003 
9004 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
9005 						  struct sock *sk)
9006 {
9007 	const struct net_device_ops *ops = dev->netdev_ops;
9008 
9009 	if (!ops->ndo_sk_get_lower_dev)
9010 		return NULL;
9011 	return ops->ndo_sk_get_lower_dev(dev, sk);
9012 }
9013 
9014 /**
9015  * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
9016  * @dev: device
9017  * @sk: the socket
9018  *
9019  * %NULL is returned if no lower device is found.
9020  */
9021 
9022 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
9023 					    struct sock *sk)
9024 {
9025 	struct net_device *lower;
9026 
9027 	lower = netdev_sk_get_lower_dev(dev, sk);
9028 	while (lower) {
9029 		dev = lower;
9030 		lower = netdev_sk_get_lower_dev(dev, sk);
9031 	}
9032 
9033 	return dev;
9034 }
9035 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
9036 
9037 static void netdev_adjacent_add_links(struct net_device *dev)
9038 {
9039 	struct netdev_adjacent *iter;
9040 
9041 	struct net *net = dev_net(dev);
9042 
9043 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
9044 		if (!net_eq(net, dev_net(iter->dev)))
9045 			continue;
9046 		netdev_adjacent_sysfs_add(iter->dev, dev,
9047 					  &iter->dev->adj_list.lower);
9048 		netdev_adjacent_sysfs_add(dev, iter->dev,
9049 					  &dev->adj_list.upper);
9050 	}
9051 
9052 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
9053 		if (!net_eq(net, dev_net(iter->dev)))
9054 			continue;
9055 		netdev_adjacent_sysfs_add(iter->dev, dev,
9056 					  &iter->dev->adj_list.upper);
9057 		netdev_adjacent_sysfs_add(dev, iter->dev,
9058 					  &dev->adj_list.lower);
9059 	}
9060 }
9061 
9062 static void netdev_adjacent_del_links(struct net_device *dev)
9063 {
9064 	struct netdev_adjacent *iter;
9065 
9066 	struct net *net = dev_net(dev);
9067 
9068 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
9069 		if (!net_eq(net, dev_net(iter->dev)))
9070 			continue;
9071 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
9072 					  &iter->dev->adj_list.lower);
9073 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
9074 					  &dev->adj_list.upper);
9075 	}
9076 
9077 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
9078 		if (!net_eq(net, dev_net(iter->dev)))
9079 			continue;
9080 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
9081 					  &iter->dev->adj_list.upper);
9082 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
9083 					  &dev->adj_list.lower);
9084 	}
9085 }
9086 
9087 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
9088 {
9089 	struct netdev_adjacent *iter;
9090 
9091 	struct net *net = dev_net(dev);
9092 
9093 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
9094 		if (!net_eq(net, dev_net(iter->dev)))
9095 			continue;
9096 		netdev_adjacent_sysfs_del(iter->dev, oldname,
9097 					  &iter->dev->adj_list.lower);
9098 		netdev_adjacent_sysfs_add(iter->dev, dev,
9099 					  &iter->dev->adj_list.lower);
9100 	}
9101 
9102 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
9103 		if (!net_eq(net, dev_net(iter->dev)))
9104 			continue;
9105 		netdev_adjacent_sysfs_del(iter->dev, oldname,
9106 					  &iter->dev->adj_list.upper);
9107 		netdev_adjacent_sysfs_add(iter->dev, dev,
9108 					  &iter->dev->adj_list.upper);
9109 	}
9110 }
9111 
9112 void *netdev_lower_dev_get_private(struct net_device *dev,
9113 				   struct net_device *lower_dev)
9114 {
9115 	struct netdev_adjacent *lower;
9116 
9117 	if (!lower_dev)
9118 		return NULL;
9119 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
9120 	if (!lower)
9121 		return NULL;
9122 
9123 	return lower->private;
9124 }
9125 EXPORT_SYMBOL(netdev_lower_dev_get_private);
9126 
9127 
9128 /**
9129  * netdev_lower_state_changed - Dispatch event about lower device state change
9130  * @lower_dev: device
9131  * @lower_state_info: state to dispatch
9132  *
9133  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
9134  * The caller must hold the RTNL lock.
9135  */
9136 void netdev_lower_state_changed(struct net_device *lower_dev,
9137 				void *lower_state_info)
9138 {
9139 	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
9140 		.info.dev = lower_dev,
9141 	};
9142 
9143 	ASSERT_RTNL();
9144 	changelowerstate_info.lower_state_info = lower_state_info;
9145 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
9146 				      &changelowerstate_info.info);
9147 }
9148 EXPORT_SYMBOL(netdev_lower_state_changed);
9149 
9150 static void dev_change_rx_flags(struct net_device *dev, int flags)
9151 {
9152 	const struct net_device_ops *ops = dev->netdev_ops;
9153 
9154 	if (ops->ndo_change_rx_flags)
9155 		ops->ndo_change_rx_flags(dev, flags);
9156 }
9157 
9158 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
9159 {
9160 	unsigned int old_flags = dev->flags;
9161 	unsigned int promiscuity, flags;
9162 	kuid_t uid;
9163 	kgid_t gid;
9164 
9165 	ASSERT_RTNL();
9166 
9167 	promiscuity = dev->promiscuity + inc;
9168 	if (promiscuity == 0) {
9169 		/*
9170 		 * Avoid overflow.
9171 		 * If inc causes overflow, untouch promisc and return error.
9172 		 */
9173 		if (unlikely(inc > 0)) {
9174 			netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
9175 			return -EOVERFLOW;
9176 		}
9177 		flags = old_flags & ~IFF_PROMISC;
9178 	} else {
9179 		flags = old_flags | IFF_PROMISC;
9180 	}
9181 	WRITE_ONCE(dev->promiscuity, promiscuity);
9182 	if (flags != old_flags) {
9183 		WRITE_ONCE(dev->flags, flags);
9184 		netdev_info(dev, "%s promiscuous mode\n",
9185 			    dev->flags & IFF_PROMISC ? "entered" : "left");
9186 		if (audit_enabled) {
9187 			current_uid_gid(&uid, &gid);
9188 			audit_log(audit_context(), GFP_ATOMIC,
9189 				  AUDIT_ANOM_PROMISCUOUS,
9190 				  "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
9191 				  dev->name, (dev->flags & IFF_PROMISC),
9192 				  (old_flags & IFF_PROMISC),
9193 				  from_kuid(&init_user_ns, audit_get_loginuid(current)),
9194 				  from_kuid(&init_user_ns, uid),
9195 				  from_kgid(&init_user_ns, gid),
9196 				  audit_get_sessionid(current));
9197 		}
9198 
9199 		dev_change_rx_flags(dev, IFF_PROMISC);
9200 	}
9201 	if (notify)
9202 		__dev_notify_flags(dev, old_flags, IFF_PROMISC, 0, NULL);
9203 	return 0;
9204 }
9205 
9206 /**
9207  *	dev_set_promiscuity	- update promiscuity count on a device
9208  *	@dev: device
9209  *	@inc: modifier
9210  *
9211  *	Add or remove promiscuity from a device. While the count in the device
9212  *	remains above zero the interface remains promiscuous. Once it hits zero
9213  *	the device reverts back to normal filtering operation. A negative inc
9214  *	value is used to drop promiscuity on the device.
9215  *	Return 0 if successful or a negative errno code on error.
9216  */
9217 int dev_set_promiscuity(struct net_device *dev, int inc)
9218 {
9219 	unsigned int old_flags = dev->flags;
9220 	int err;
9221 
9222 	err = __dev_set_promiscuity(dev, inc, true);
9223 	if (err < 0)
9224 		return err;
9225 	if (dev->flags != old_flags)
9226 		dev_set_rx_mode(dev);
9227 	return err;
9228 }
9229 EXPORT_SYMBOL(dev_set_promiscuity);
9230 
9231 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
9232 {
9233 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
9234 	unsigned int allmulti, flags;
9235 
9236 	ASSERT_RTNL();
9237 
9238 	allmulti = dev->allmulti + inc;
9239 	if (allmulti == 0) {
9240 		/*
9241 		 * Avoid overflow.
9242 		 * If inc causes overflow, untouch allmulti and return error.
9243 		 */
9244 		if (unlikely(inc > 0)) {
9245 			netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
9246 			return -EOVERFLOW;
9247 		}
9248 		flags = old_flags & ~IFF_ALLMULTI;
9249 	} else {
9250 		flags = old_flags | IFF_ALLMULTI;
9251 	}
9252 	WRITE_ONCE(dev->allmulti, allmulti);
9253 	if (flags != old_flags) {
9254 		WRITE_ONCE(dev->flags, flags);
9255 		netdev_info(dev, "%s allmulticast mode\n",
9256 			    dev->flags & IFF_ALLMULTI ? "entered" : "left");
9257 		dev_change_rx_flags(dev, IFF_ALLMULTI);
9258 		dev_set_rx_mode(dev);
9259 		if (notify)
9260 			__dev_notify_flags(dev, old_flags,
9261 					   dev->gflags ^ old_gflags, 0, NULL);
9262 	}
9263 	return 0;
9264 }
9265 
9266 /**
9267  *	dev_set_allmulti	- update allmulti count on a device
9268  *	@dev: device
9269  *	@inc: modifier
9270  *
9271  *	Add or remove reception of all multicast frames to a device. While the
9272  *	count in the device remains above zero the interface remains listening
9273  *	to all interfaces. Once it hits zero the device reverts back to normal
9274  *	filtering operation. A negative @inc value is used to drop the counter
9275  *	when releasing a resource needing all multicasts.
9276  *	Return 0 if successful or a negative errno code on error.
9277  */
9278 
9279 int dev_set_allmulti(struct net_device *dev, int inc)
9280 {
9281 	return __dev_set_allmulti(dev, inc, true);
9282 }
9283 EXPORT_SYMBOL(dev_set_allmulti);
9284 
9285 /*
9286  *	Upload unicast and multicast address lists to device and
9287  *	configure RX filtering. When the device doesn't support unicast
9288  *	filtering it is put in promiscuous mode while unicast addresses
9289  *	are present.
9290  */
9291 void __dev_set_rx_mode(struct net_device *dev)
9292 {
9293 	const struct net_device_ops *ops = dev->netdev_ops;
9294 
9295 	/* dev_open will call this function so the list will stay sane. */
9296 	if (!(dev->flags&IFF_UP))
9297 		return;
9298 
9299 	if (!netif_device_present(dev))
9300 		return;
9301 
9302 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
9303 		/* Unicast addresses changes may only happen under the rtnl,
9304 		 * therefore calling __dev_set_promiscuity here is safe.
9305 		 */
9306 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
9307 			__dev_set_promiscuity(dev, 1, false);
9308 			dev->uc_promisc = true;
9309 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
9310 			__dev_set_promiscuity(dev, -1, false);
9311 			dev->uc_promisc = false;
9312 		}
9313 	}
9314 
9315 	if (ops->ndo_set_rx_mode)
9316 		ops->ndo_set_rx_mode(dev);
9317 }
9318 
9319 void dev_set_rx_mode(struct net_device *dev)
9320 {
9321 	netif_addr_lock_bh(dev);
9322 	__dev_set_rx_mode(dev);
9323 	netif_addr_unlock_bh(dev);
9324 }
9325 
9326 /**
9327  *	dev_get_flags - get flags reported to userspace
9328  *	@dev: device
9329  *
9330  *	Get the combination of flag bits exported through APIs to userspace.
9331  */
9332 unsigned int dev_get_flags(const struct net_device *dev)
9333 {
9334 	unsigned int flags;
9335 
9336 	flags = (READ_ONCE(dev->flags) & ~(IFF_PROMISC |
9337 				IFF_ALLMULTI |
9338 				IFF_RUNNING |
9339 				IFF_LOWER_UP |
9340 				IFF_DORMANT)) |
9341 		(READ_ONCE(dev->gflags) & (IFF_PROMISC |
9342 				IFF_ALLMULTI));
9343 
9344 	if (netif_running(dev)) {
9345 		if (netif_oper_up(dev))
9346 			flags |= IFF_RUNNING;
9347 		if (netif_carrier_ok(dev))
9348 			flags |= IFF_LOWER_UP;
9349 		if (netif_dormant(dev))
9350 			flags |= IFF_DORMANT;
9351 	}
9352 
9353 	return flags;
9354 }
9355 EXPORT_SYMBOL(dev_get_flags);
9356 
9357 int __dev_change_flags(struct net_device *dev, unsigned int flags,
9358 		       struct netlink_ext_ack *extack)
9359 {
9360 	unsigned int old_flags = dev->flags;
9361 	int ret;
9362 
9363 	ASSERT_RTNL();
9364 
9365 	/*
9366 	 *	Set the flags on our device.
9367 	 */
9368 
9369 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
9370 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
9371 			       IFF_AUTOMEDIA)) |
9372 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
9373 				    IFF_ALLMULTI));
9374 
9375 	/*
9376 	 *	Load in the correct multicast list now the flags have changed.
9377 	 */
9378 
9379 	if ((old_flags ^ flags) & IFF_MULTICAST)
9380 		dev_change_rx_flags(dev, IFF_MULTICAST);
9381 
9382 	dev_set_rx_mode(dev);
9383 
9384 	/*
9385 	 *	Have we downed the interface. We handle IFF_UP ourselves
9386 	 *	according to user attempts to set it, rather than blindly
9387 	 *	setting it.
9388 	 */
9389 
9390 	ret = 0;
9391 	if ((old_flags ^ flags) & IFF_UP) {
9392 		if (old_flags & IFF_UP)
9393 			__dev_close(dev);
9394 		else
9395 			ret = __dev_open(dev, extack);
9396 	}
9397 
9398 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
9399 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
9400 		old_flags = dev->flags;
9401 
9402 		dev->gflags ^= IFF_PROMISC;
9403 
9404 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
9405 			if (dev->flags != old_flags)
9406 				dev_set_rx_mode(dev);
9407 	}
9408 
9409 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
9410 	 * is important. Some (broken) drivers set IFF_PROMISC, when
9411 	 * IFF_ALLMULTI is requested not asking us and not reporting.
9412 	 */
9413 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
9414 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
9415 
9416 		dev->gflags ^= IFF_ALLMULTI;
9417 		__dev_set_allmulti(dev, inc, false);
9418 	}
9419 
9420 	return ret;
9421 }
9422 
9423 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
9424 			unsigned int gchanges, u32 portid,
9425 			const struct nlmsghdr *nlh)
9426 {
9427 	unsigned int changes = dev->flags ^ old_flags;
9428 
9429 	if (gchanges)
9430 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC, portid, nlh);
9431 
9432 	if (changes & IFF_UP) {
9433 		if (dev->flags & IFF_UP)
9434 			call_netdevice_notifiers(NETDEV_UP, dev);
9435 		else
9436 			call_netdevice_notifiers(NETDEV_DOWN, dev);
9437 	}
9438 
9439 	if (dev->flags & IFF_UP &&
9440 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
9441 		struct netdev_notifier_change_info change_info = {
9442 			.info = {
9443 				.dev = dev,
9444 			},
9445 			.flags_changed = changes,
9446 		};
9447 
9448 		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
9449 	}
9450 }
9451 
9452 /**
9453  *	dev_change_flags - change device settings
9454  *	@dev: device
9455  *	@flags: device state flags
9456  *	@extack: netlink extended ack
9457  *
9458  *	Change settings on device based state flags. The flags are
9459  *	in the userspace exported format.
9460  */
9461 int dev_change_flags(struct net_device *dev, unsigned int flags,
9462 		     struct netlink_ext_ack *extack)
9463 {
9464 	int ret;
9465 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
9466 
9467 	ret = __dev_change_flags(dev, flags, extack);
9468 	if (ret < 0)
9469 		return ret;
9470 
9471 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
9472 	__dev_notify_flags(dev, old_flags, changes, 0, NULL);
9473 	return ret;
9474 }
9475 EXPORT_SYMBOL(dev_change_flags);
9476 
9477 int __dev_set_mtu(struct net_device *dev, int new_mtu)
9478 {
9479 	const struct net_device_ops *ops = dev->netdev_ops;
9480 
9481 	if (ops->ndo_change_mtu)
9482 		return ops->ndo_change_mtu(dev, new_mtu);
9483 
9484 	/* Pairs with all the lockless reads of dev->mtu in the stack */
9485 	WRITE_ONCE(dev->mtu, new_mtu);
9486 	return 0;
9487 }
9488 EXPORT_SYMBOL(__dev_set_mtu);
9489 
9490 int dev_validate_mtu(struct net_device *dev, int new_mtu,
9491 		     struct netlink_ext_ack *extack)
9492 {
9493 	/* MTU must be positive, and in range */
9494 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
9495 		NL_SET_ERR_MSG(extack, "mtu less than device minimum");
9496 		return -EINVAL;
9497 	}
9498 
9499 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
9500 		NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
9501 		return -EINVAL;
9502 	}
9503 	return 0;
9504 }
9505 
9506 /**
9507  *	dev_set_mtu_ext - Change maximum transfer unit
9508  *	@dev: device
9509  *	@new_mtu: new transfer unit
9510  *	@extack: netlink extended ack
9511  *
9512  *	Change the maximum transfer size of the network device.
9513  */
9514 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
9515 		    struct netlink_ext_ack *extack)
9516 {
9517 	int err, orig_mtu;
9518 
9519 	if (new_mtu == dev->mtu)
9520 		return 0;
9521 
9522 	err = dev_validate_mtu(dev, new_mtu, extack);
9523 	if (err)
9524 		return err;
9525 
9526 	if (!netif_device_present(dev))
9527 		return -ENODEV;
9528 
9529 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
9530 	err = notifier_to_errno(err);
9531 	if (err)
9532 		return err;
9533 
9534 	orig_mtu = dev->mtu;
9535 	err = __dev_set_mtu(dev, new_mtu);
9536 
9537 	if (!err) {
9538 		err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
9539 						   orig_mtu);
9540 		err = notifier_to_errno(err);
9541 		if (err) {
9542 			/* setting mtu back and notifying everyone again,
9543 			 * so that they have a chance to revert changes.
9544 			 */
9545 			__dev_set_mtu(dev, orig_mtu);
9546 			call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
9547 						     new_mtu);
9548 		}
9549 	}
9550 	return err;
9551 }
9552 
9553 int dev_set_mtu(struct net_device *dev, int new_mtu)
9554 {
9555 	struct netlink_ext_ack extack;
9556 	int err;
9557 
9558 	memset(&extack, 0, sizeof(extack));
9559 	err = dev_set_mtu_ext(dev, new_mtu, &extack);
9560 	if (err && extack._msg)
9561 		net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
9562 	return err;
9563 }
9564 EXPORT_SYMBOL(dev_set_mtu);
9565 
9566 /**
9567  *	dev_change_tx_queue_len - Change TX queue length of a netdevice
9568  *	@dev: device
9569  *	@new_len: new tx queue length
9570  */
9571 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
9572 {
9573 	unsigned int orig_len = dev->tx_queue_len;
9574 	int res;
9575 
9576 	if (new_len != (unsigned int)new_len)
9577 		return -ERANGE;
9578 
9579 	if (new_len != orig_len) {
9580 		WRITE_ONCE(dev->tx_queue_len, new_len);
9581 		res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
9582 		res = notifier_to_errno(res);
9583 		if (res)
9584 			goto err_rollback;
9585 		res = dev_qdisc_change_tx_queue_len(dev);
9586 		if (res)
9587 			goto err_rollback;
9588 	}
9589 
9590 	return 0;
9591 
9592 err_rollback:
9593 	netdev_err(dev, "refused to change device tx_queue_len\n");
9594 	WRITE_ONCE(dev->tx_queue_len, orig_len);
9595 	return res;
9596 }
9597 
9598 /**
9599  *	dev_set_group - Change group this device belongs to
9600  *	@dev: device
9601  *	@new_group: group this device should belong to
9602  */
9603 void dev_set_group(struct net_device *dev, int new_group)
9604 {
9605 	dev->group = new_group;
9606 }
9607 
9608 /**
9609  *	dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
9610  *	@dev: device
9611  *	@addr: new address
9612  *	@extack: netlink extended ack
9613  */
9614 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
9615 			      struct netlink_ext_ack *extack)
9616 {
9617 	struct netdev_notifier_pre_changeaddr_info info = {
9618 		.info.dev = dev,
9619 		.info.extack = extack,
9620 		.dev_addr = addr,
9621 	};
9622 	int rc;
9623 
9624 	rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
9625 	return notifier_to_errno(rc);
9626 }
9627 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
9628 
9629 /**
9630  *	dev_set_mac_address - Change Media Access Control Address
9631  *	@dev: device
9632  *	@sa: new address
9633  *	@extack: netlink extended ack
9634  *
9635  *	Change the hardware (MAC) address of the device
9636  */
9637 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
9638 			struct netlink_ext_ack *extack)
9639 {
9640 	const struct net_device_ops *ops = dev->netdev_ops;
9641 	int err;
9642 
9643 	if (!ops->ndo_set_mac_address)
9644 		return -EOPNOTSUPP;
9645 	if (sa->sa_family != dev->type)
9646 		return -EINVAL;
9647 	if (!netif_device_present(dev))
9648 		return -ENODEV;
9649 	err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
9650 	if (err)
9651 		return err;
9652 	if (memcmp(dev->dev_addr, sa->sa_data, dev->addr_len)) {
9653 		err = ops->ndo_set_mac_address(dev, sa);
9654 		if (err)
9655 			return err;
9656 	}
9657 	dev->addr_assign_type = NET_ADDR_SET;
9658 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
9659 	add_device_randomness(dev->dev_addr, dev->addr_len);
9660 	return 0;
9661 }
9662 EXPORT_SYMBOL(dev_set_mac_address);
9663 
9664 DECLARE_RWSEM(dev_addr_sem);
9665 
9666 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
9667 			     struct netlink_ext_ack *extack)
9668 {
9669 	int ret;
9670 
9671 	down_write(&dev_addr_sem);
9672 	ret = dev_set_mac_address(dev, sa, extack);
9673 	up_write(&dev_addr_sem);
9674 	return ret;
9675 }
9676 EXPORT_SYMBOL(dev_set_mac_address_user);
9677 
9678 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
9679 {
9680 	size_t size = sizeof(sa->sa_data_min);
9681 	struct net_device *dev;
9682 	int ret = 0;
9683 
9684 	down_read(&dev_addr_sem);
9685 	rcu_read_lock();
9686 
9687 	dev = dev_get_by_name_rcu(net, dev_name);
9688 	if (!dev) {
9689 		ret = -ENODEV;
9690 		goto unlock;
9691 	}
9692 	if (!dev->addr_len)
9693 		memset(sa->sa_data, 0, size);
9694 	else
9695 		memcpy(sa->sa_data, dev->dev_addr,
9696 		       min_t(size_t, size, dev->addr_len));
9697 	sa->sa_family = dev->type;
9698 
9699 unlock:
9700 	rcu_read_unlock();
9701 	up_read(&dev_addr_sem);
9702 	return ret;
9703 }
9704 EXPORT_SYMBOL(dev_get_mac_address);
9705 
9706 /**
9707  *	dev_change_carrier - Change device carrier
9708  *	@dev: device
9709  *	@new_carrier: new value
9710  *
9711  *	Change device carrier
9712  */
9713 int dev_change_carrier(struct net_device *dev, bool new_carrier)
9714 {
9715 	const struct net_device_ops *ops = dev->netdev_ops;
9716 
9717 	if (!ops->ndo_change_carrier)
9718 		return -EOPNOTSUPP;
9719 	if (!netif_device_present(dev))
9720 		return -ENODEV;
9721 	return ops->ndo_change_carrier(dev, new_carrier);
9722 }
9723 
9724 /**
9725  *	dev_get_phys_port_id - Get device physical port ID
9726  *	@dev: device
9727  *	@ppid: port ID
9728  *
9729  *	Get device physical port ID
9730  */
9731 int dev_get_phys_port_id(struct net_device *dev,
9732 			 struct netdev_phys_item_id *ppid)
9733 {
9734 	const struct net_device_ops *ops = dev->netdev_ops;
9735 
9736 	if (!ops->ndo_get_phys_port_id)
9737 		return -EOPNOTSUPP;
9738 	return ops->ndo_get_phys_port_id(dev, ppid);
9739 }
9740 
9741 /**
9742  *	dev_get_phys_port_name - Get device physical port name
9743  *	@dev: device
9744  *	@name: port name
9745  *	@len: limit of bytes to copy to name
9746  *
9747  *	Get device physical port name
9748  */
9749 int dev_get_phys_port_name(struct net_device *dev,
9750 			   char *name, size_t len)
9751 {
9752 	const struct net_device_ops *ops = dev->netdev_ops;
9753 	int err;
9754 
9755 	if (ops->ndo_get_phys_port_name) {
9756 		err = ops->ndo_get_phys_port_name(dev, name, len);
9757 		if (err != -EOPNOTSUPP)
9758 			return err;
9759 	}
9760 	return devlink_compat_phys_port_name_get(dev, name, len);
9761 }
9762 
9763 /**
9764  *	dev_get_port_parent_id - Get the device's port parent identifier
9765  *	@dev: network device
9766  *	@ppid: pointer to a storage for the port's parent identifier
9767  *	@recurse: allow/disallow recursion to lower devices
9768  *
9769  *	Get the devices's port parent identifier
9770  */
9771 int dev_get_port_parent_id(struct net_device *dev,
9772 			   struct netdev_phys_item_id *ppid,
9773 			   bool recurse)
9774 {
9775 	const struct net_device_ops *ops = dev->netdev_ops;
9776 	struct netdev_phys_item_id first = { };
9777 	struct net_device *lower_dev;
9778 	struct list_head *iter;
9779 	int err;
9780 
9781 	if (ops->ndo_get_port_parent_id) {
9782 		err = ops->ndo_get_port_parent_id(dev, ppid);
9783 		if (err != -EOPNOTSUPP)
9784 			return err;
9785 	}
9786 
9787 	err = devlink_compat_switch_id_get(dev, ppid);
9788 	if (!recurse || err != -EOPNOTSUPP)
9789 		return err;
9790 
9791 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
9792 		err = dev_get_port_parent_id(lower_dev, ppid, true);
9793 		if (err)
9794 			break;
9795 		if (!first.id_len)
9796 			first = *ppid;
9797 		else if (memcmp(&first, ppid, sizeof(*ppid)))
9798 			return -EOPNOTSUPP;
9799 	}
9800 
9801 	return err;
9802 }
9803 EXPORT_SYMBOL(dev_get_port_parent_id);
9804 
9805 /**
9806  *	netdev_port_same_parent_id - Indicate if two network devices have
9807  *	the same port parent identifier
9808  *	@a: first network device
9809  *	@b: second network device
9810  */
9811 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
9812 {
9813 	struct netdev_phys_item_id a_id = { };
9814 	struct netdev_phys_item_id b_id = { };
9815 
9816 	if (dev_get_port_parent_id(a, &a_id, true) ||
9817 	    dev_get_port_parent_id(b, &b_id, true))
9818 		return false;
9819 
9820 	return netdev_phys_item_id_same(&a_id, &b_id);
9821 }
9822 EXPORT_SYMBOL(netdev_port_same_parent_id);
9823 
9824 /**
9825  *	dev_change_proto_down - set carrier according to proto_down.
9826  *
9827  *	@dev: device
9828  *	@proto_down: new value
9829  */
9830 int dev_change_proto_down(struct net_device *dev, bool proto_down)
9831 {
9832 	if (!dev->change_proto_down)
9833 		return -EOPNOTSUPP;
9834 	if (!netif_device_present(dev))
9835 		return -ENODEV;
9836 	if (proto_down)
9837 		netif_carrier_off(dev);
9838 	else
9839 		netif_carrier_on(dev);
9840 	WRITE_ONCE(dev->proto_down, proto_down);
9841 	return 0;
9842 }
9843 
9844 /**
9845  *	dev_change_proto_down_reason - proto down reason
9846  *
9847  *	@dev: device
9848  *	@mask: proto down mask
9849  *	@value: proto down value
9850  */
9851 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
9852 				  u32 value)
9853 {
9854 	u32 proto_down_reason;
9855 	int b;
9856 
9857 	if (!mask) {
9858 		proto_down_reason = value;
9859 	} else {
9860 		proto_down_reason = dev->proto_down_reason;
9861 		for_each_set_bit(b, &mask, 32) {
9862 			if (value & (1 << b))
9863 				proto_down_reason |= BIT(b);
9864 			else
9865 				proto_down_reason &= ~BIT(b);
9866 		}
9867 	}
9868 	WRITE_ONCE(dev->proto_down_reason, proto_down_reason);
9869 }
9870 
9871 struct bpf_xdp_link {
9872 	struct bpf_link link;
9873 	struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9874 	int flags;
9875 };
9876 
9877 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9878 {
9879 	if (flags & XDP_FLAGS_HW_MODE)
9880 		return XDP_MODE_HW;
9881 	if (flags & XDP_FLAGS_DRV_MODE)
9882 		return XDP_MODE_DRV;
9883 	if (flags & XDP_FLAGS_SKB_MODE)
9884 		return XDP_MODE_SKB;
9885 	return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9886 }
9887 
9888 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9889 {
9890 	switch (mode) {
9891 	case XDP_MODE_SKB:
9892 		return generic_xdp_install;
9893 	case XDP_MODE_DRV:
9894 	case XDP_MODE_HW:
9895 		return dev->netdev_ops->ndo_bpf;
9896 	default:
9897 		return NULL;
9898 	}
9899 }
9900 
9901 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9902 					 enum bpf_xdp_mode mode)
9903 {
9904 	return dev->xdp_state[mode].link;
9905 }
9906 
9907 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9908 				     enum bpf_xdp_mode mode)
9909 {
9910 	struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9911 
9912 	if (link)
9913 		return link->link.prog;
9914 	return dev->xdp_state[mode].prog;
9915 }
9916 
9917 u8 dev_xdp_prog_count(struct net_device *dev)
9918 {
9919 	u8 count = 0;
9920 	int i;
9921 
9922 	for (i = 0; i < __MAX_XDP_MODE; i++)
9923 		if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9924 			count++;
9925 	return count;
9926 }
9927 EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
9928 
9929 u8 dev_xdp_sb_prog_count(struct net_device *dev)
9930 {
9931 	u8 count = 0;
9932 	int i;
9933 
9934 	for (i = 0; i < __MAX_XDP_MODE; i++)
9935 		if (dev->xdp_state[i].prog &&
9936 		    !dev->xdp_state[i].prog->aux->xdp_has_frags)
9937 			count++;
9938 	return count;
9939 }
9940 
9941 int dev_xdp_propagate(struct net_device *dev, struct netdev_bpf *bpf)
9942 {
9943 	if (!dev->netdev_ops->ndo_bpf)
9944 		return -EOPNOTSUPP;
9945 
9946 	if (dev->cfg->hds_config == ETHTOOL_TCP_DATA_SPLIT_ENABLED &&
9947 	    bpf->command == XDP_SETUP_PROG &&
9948 	    bpf->prog && !bpf->prog->aux->xdp_has_frags) {
9949 		NL_SET_ERR_MSG(bpf->extack,
9950 			       "unable to propagate XDP to device using tcp-data-split");
9951 		return -EBUSY;
9952 	}
9953 
9954 	if (dev_get_min_mp_channel_count(dev)) {
9955 		NL_SET_ERR_MSG(bpf->extack, "unable to propagate XDP to device using memory provider");
9956 		return -EBUSY;
9957 	}
9958 
9959 	return dev->netdev_ops->ndo_bpf(dev, bpf);
9960 }
9961 EXPORT_SYMBOL_GPL(dev_xdp_propagate);
9962 
9963 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9964 {
9965 	struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9966 
9967 	return prog ? prog->aux->id : 0;
9968 }
9969 
9970 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9971 			     struct bpf_xdp_link *link)
9972 {
9973 	dev->xdp_state[mode].link = link;
9974 	dev->xdp_state[mode].prog = NULL;
9975 }
9976 
9977 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9978 			     struct bpf_prog *prog)
9979 {
9980 	dev->xdp_state[mode].link = NULL;
9981 	dev->xdp_state[mode].prog = prog;
9982 }
9983 
9984 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9985 			   bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9986 			   u32 flags, struct bpf_prog *prog)
9987 {
9988 	struct netdev_bpf xdp;
9989 	int err;
9990 
9991 	if (dev->cfg->hds_config == ETHTOOL_TCP_DATA_SPLIT_ENABLED &&
9992 	    prog && !prog->aux->xdp_has_frags) {
9993 		NL_SET_ERR_MSG(extack, "unable to install XDP to device using tcp-data-split");
9994 		return -EBUSY;
9995 	}
9996 
9997 	if (dev_get_min_mp_channel_count(dev)) {
9998 		NL_SET_ERR_MSG(extack, "unable to install XDP to device using memory provider");
9999 		return -EBUSY;
10000 	}
10001 
10002 	memset(&xdp, 0, sizeof(xdp));
10003 	xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
10004 	xdp.extack = extack;
10005 	xdp.flags = flags;
10006 	xdp.prog = prog;
10007 
10008 	/* Drivers assume refcnt is already incremented (i.e, prog pointer is
10009 	 * "moved" into driver), so they don't increment it on their own, but
10010 	 * they do decrement refcnt when program is detached or replaced.
10011 	 * Given net_device also owns link/prog, we need to bump refcnt here
10012 	 * to prevent drivers from underflowing it.
10013 	 */
10014 	if (prog)
10015 		bpf_prog_inc(prog);
10016 	err = bpf_op(dev, &xdp);
10017 	if (err) {
10018 		if (prog)
10019 			bpf_prog_put(prog);
10020 		return err;
10021 	}
10022 
10023 	if (mode != XDP_MODE_HW)
10024 		bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
10025 
10026 	return 0;
10027 }
10028 
10029 static void dev_xdp_uninstall(struct net_device *dev)
10030 {
10031 	struct bpf_xdp_link *link;
10032 	struct bpf_prog *prog;
10033 	enum bpf_xdp_mode mode;
10034 	bpf_op_t bpf_op;
10035 
10036 	ASSERT_RTNL();
10037 
10038 	for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
10039 		prog = dev_xdp_prog(dev, mode);
10040 		if (!prog)
10041 			continue;
10042 
10043 		bpf_op = dev_xdp_bpf_op(dev, mode);
10044 		if (!bpf_op)
10045 			continue;
10046 
10047 		WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
10048 
10049 		/* auto-detach link from net device */
10050 		link = dev_xdp_link(dev, mode);
10051 		if (link)
10052 			link->dev = NULL;
10053 		else
10054 			bpf_prog_put(prog);
10055 
10056 		dev_xdp_set_link(dev, mode, NULL);
10057 	}
10058 }
10059 
10060 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
10061 			  struct bpf_xdp_link *link, struct bpf_prog *new_prog,
10062 			  struct bpf_prog *old_prog, u32 flags)
10063 {
10064 	unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
10065 	struct bpf_prog *cur_prog;
10066 	struct net_device *upper;
10067 	struct list_head *iter;
10068 	enum bpf_xdp_mode mode;
10069 	bpf_op_t bpf_op;
10070 	int err;
10071 
10072 	ASSERT_RTNL();
10073 
10074 	/* either link or prog attachment, never both */
10075 	if (link && (new_prog || old_prog))
10076 		return -EINVAL;
10077 	/* link supports only XDP mode flags */
10078 	if (link && (flags & ~XDP_FLAGS_MODES)) {
10079 		NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
10080 		return -EINVAL;
10081 	}
10082 	/* just one XDP mode bit should be set, zero defaults to drv/skb mode */
10083 	if (num_modes > 1) {
10084 		NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
10085 		return -EINVAL;
10086 	}
10087 	/* avoid ambiguity if offload + drv/skb mode progs are both loaded */
10088 	if (!num_modes && dev_xdp_prog_count(dev) > 1) {
10089 		NL_SET_ERR_MSG(extack,
10090 			       "More than one program loaded, unset mode is ambiguous");
10091 		return -EINVAL;
10092 	}
10093 	/* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
10094 	if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
10095 		NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
10096 		return -EINVAL;
10097 	}
10098 
10099 	mode = dev_xdp_mode(dev, flags);
10100 	/* can't replace attached link */
10101 	if (dev_xdp_link(dev, mode)) {
10102 		NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
10103 		return -EBUSY;
10104 	}
10105 
10106 	/* don't allow if an upper device already has a program */
10107 	netdev_for_each_upper_dev_rcu(dev, upper, iter) {
10108 		if (dev_xdp_prog_count(upper) > 0) {
10109 			NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
10110 			return -EEXIST;
10111 		}
10112 	}
10113 
10114 	cur_prog = dev_xdp_prog(dev, mode);
10115 	/* can't replace attached prog with link */
10116 	if (link && cur_prog) {
10117 		NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
10118 		return -EBUSY;
10119 	}
10120 	if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
10121 		NL_SET_ERR_MSG(extack, "Active program does not match expected");
10122 		return -EEXIST;
10123 	}
10124 
10125 	/* put effective new program into new_prog */
10126 	if (link)
10127 		new_prog = link->link.prog;
10128 
10129 	if (new_prog) {
10130 		bool offload = mode == XDP_MODE_HW;
10131 		enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
10132 					       ? XDP_MODE_DRV : XDP_MODE_SKB;
10133 
10134 		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
10135 			NL_SET_ERR_MSG(extack, "XDP program already attached");
10136 			return -EBUSY;
10137 		}
10138 		if (!offload && dev_xdp_prog(dev, other_mode)) {
10139 			NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
10140 			return -EEXIST;
10141 		}
10142 		if (!offload && bpf_prog_is_offloaded(new_prog->aux)) {
10143 			NL_SET_ERR_MSG(extack, "Using offloaded program without HW_MODE flag is not supported");
10144 			return -EINVAL;
10145 		}
10146 		if (bpf_prog_is_dev_bound(new_prog->aux) && !bpf_offload_dev_match(new_prog, dev)) {
10147 			NL_SET_ERR_MSG(extack, "Program bound to different device");
10148 			return -EINVAL;
10149 		}
10150 		if (bpf_prog_is_dev_bound(new_prog->aux) && mode == XDP_MODE_SKB) {
10151 			NL_SET_ERR_MSG(extack, "Can't attach device-bound programs in generic mode");
10152 			return -EINVAL;
10153 		}
10154 		if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
10155 			NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
10156 			return -EINVAL;
10157 		}
10158 		if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
10159 			NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
10160 			return -EINVAL;
10161 		}
10162 	}
10163 
10164 	/* don't call drivers if the effective program didn't change */
10165 	if (new_prog != cur_prog) {
10166 		bpf_op = dev_xdp_bpf_op(dev, mode);
10167 		if (!bpf_op) {
10168 			NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
10169 			return -EOPNOTSUPP;
10170 		}
10171 
10172 		err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
10173 		if (err)
10174 			return err;
10175 	}
10176 
10177 	if (link)
10178 		dev_xdp_set_link(dev, mode, link);
10179 	else
10180 		dev_xdp_set_prog(dev, mode, new_prog);
10181 	if (cur_prog)
10182 		bpf_prog_put(cur_prog);
10183 
10184 	return 0;
10185 }
10186 
10187 static int dev_xdp_attach_link(struct net_device *dev,
10188 			       struct netlink_ext_ack *extack,
10189 			       struct bpf_xdp_link *link)
10190 {
10191 	return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
10192 }
10193 
10194 static int dev_xdp_detach_link(struct net_device *dev,
10195 			       struct netlink_ext_ack *extack,
10196 			       struct bpf_xdp_link *link)
10197 {
10198 	enum bpf_xdp_mode mode;
10199 	bpf_op_t bpf_op;
10200 
10201 	ASSERT_RTNL();
10202 
10203 	mode = dev_xdp_mode(dev, link->flags);
10204 	if (dev_xdp_link(dev, mode) != link)
10205 		return -EINVAL;
10206 
10207 	bpf_op = dev_xdp_bpf_op(dev, mode);
10208 	WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
10209 	dev_xdp_set_link(dev, mode, NULL);
10210 	return 0;
10211 }
10212 
10213 static void bpf_xdp_link_release(struct bpf_link *link)
10214 {
10215 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10216 
10217 	rtnl_lock();
10218 
10219 	/* if racing with net_device's tear down, xdp_link->dev might be
10220 	 * already NULL, in which case link was already auto-detached
10221 	 */
10222 	if (xdp_link->dev) {
10223 		WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
10224 		xdp_link->dev = NULL;
10225 	}
10226 
10227 	rtnl_unlock();
10228 }
10229 
10230 static int bpf_xdp_link_detach(struct bpf_link *link)
10231 {
10232 	bpf_xdp_link_release(link);
10233 	return 0;
10234 }
10235 
10236 static void bpf_xdp_link_dealloc(struct bpf_link *link)
10237 {
10238 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10239 
10240 	kfree(xdp_link);
10241 }
10242 
10243 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
10244 				     struct seq_file *seq)
10245 {
10246 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10247 	u32 ifindex = 0;
10248 
10249 	rtnl_lock();
10250 	if (xdp_link->dev)
10251 		ifindex = xdp_link->dev->ifindex;
10252 	rtnl_unlock();
10253 
10254 	seq_printf(seq, "ifindex:\t%u\n", ifindex);
10255 }
10256 
10257 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
10258 				       struct bpf_link_info *info)
10259 {
10260 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10261 	u32 ifindex = 0;
10262 
10263 	rtnl_lock();
10264 	if (xdp_link->dev)
10265 		ifindex = xdp_link->dev->ifindex;
10266 	rtnl_unlock();
10267 
10268 	info->xdp.ifindex = ifindex;
10269 	return 0;
10270 }
10271 
10272 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
10273 			       struct bpf_prog *old_prog)
10274 {
10275 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10276 	enum bpf_xdp_mode mode;
10277 	bpf_op_t bpf_op;
10278 	int err = 0;
10279 
10280 	rtnl_lock();
10281 
10282 	/* link might have been auto-released already, so fail */
10283 	if (!xdp_link->dev) {
10284 		err = -ENOLINK;
10285 		goto out_unlock;
10286 	}
10287 
10288 	if (old_prog && link->prog != old_prog) {
10289 		err = -EPERM;
10290 		goto out_unlock;
10291 	}
10292 	old_prog = link->prog;
10293 	if (old_prog->type != new_prog->type ||
10294 	    old_prog->expected_attach_type != new_prog->expected_attach_type) {
10295 		err = -EINVAL;
10296 		goto out_unlock;
10297 	}
10298 
10299 	if (old_prog == new_prog) {
10300 		/* no-op, don't disturb drivers */
10301 		bpf_prog_put(new_prog);
10302 		goto out_unlock;
10303 	}
10304 
10305 	mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
10306 	bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
10307 	err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
10308 			      xdp_link->flags, new_prog);
10309 	if (err)
10310 		goto out_unlock;
10311 
10312 	old_prog = xchg(&link->prog, new_prog);
10313 	bpf_prog_put(old_prog);
10314 
10315 out_unlock:
10316 	rtnl_unlock();
10317 	return err;
10318 }
10319 
10320 static const struct bpf_link_ops bpf_xdp_link_lops = {
10321 	.release = bpf_xdp_link_release,
10322 	.dealloc = bpf_xdp_link_dealloc,
10323 	.detach = bpf_xdp_link_detach,
10324 	.show_fdinfo = bpf_xdp_link_show_fdinfo,
10325 	.fill_link_info = bpf_xdp_link_fill_link_info,
10326 	.update_prog = bpf_xdp_link_update,
10327 };
10328 
10329 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
10330 {
10331 	struct net *net = current->nsproxy->net_ns;
10332 	struct bpf_link_primer link_primer;
10333 	struct netlink_ext_ack extack = {};
10334 	struct bpf_xdp_link *link;
10335 	struct net_device *dev;
10336 	int err, fd;
10337 
10338 	rtnl_lock();
10339 	dev = dev_get_by_index(net, attr->link_create.target_ifindex);
10340 	if (!dev) {
10341 		rtnl_unlock();
10342 		return -EINVAL;
10343 	}
10344 
10345 	link = kzalloc(sizeof(*link), GFP_USER);
10346 	if (!link) {
10347 		err = -ENOMEM;
10348 		goto unlock;
10349 	}
10350 
10351 	bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
10352 	link->dev = dev;
10353 	link->flags = attr->link_create.flags;
10354 
10355 	err = bpf_link_prime(&link->link, &link_primer);
10356 	if (err) {
10357 		kfree(link);
10358 		goto unlock;
10359 	}
10360 
10361 	err = dev_xdp_attach_link(dev, &extack, link);
10362 	rtnl_unlock();
10363 
10364 	if (err) {
10365 		link->dev = NULL;
10366 		bpf_link_cleanup(&link_primer);
10367 		trace_bpf_xdp_link_attach_failed(extack._msg);
10368 		goto out_put_dev;
10369 	}
10370 
10371 	fd = bpf_link_settle(&link_primer);
10372 	/* link itself doesn't hold dev's refcnt to not complicate shutdown */
10373 	dev_put(dev);
10374 	return fd;
10375 
10376 unlock:
10377 	rtnl_unlock();
10378 
10379 out_put_dev:
10380 	dev_put(dev);
10381 	return err;
10382 }
10383 
10384 /**
10385  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
10386  *	@dev: device
10387  *	@extack: netlink extended ack
10388  *	@fd: new program fd or negative value to clear
10389  *	@expected_fd: old program fd that userspace expects to replace or clear
10390  *	@flags: xdp-related flags
10391  *
10392  *	Set or clear a bpf program for a device
10393  */
10394 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
10395 		      int fd, int expected_fd, u32 flags)
10396 {
10397 	enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
10398 	struct bpf_prog *new_prog = NULL, *old_prog = NULL;
10399 	int err;
10400 
10401 	ASSERT_RTNL();
10402 
10403 	if (fd >= 0) {
10404 		new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
10405 						 mode != XDP_MODE_SKB);
10406 		if (IS_ERR(new_prog))
10407 			return PTR_ERR(new_prog);
10408 	}
10409 
10410 	if (expected_fd >= 0) {
10411 		old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
10412 						 mode != XDP_MODE_SKB);
10413 		if (IS_ERR(old_prog)) {
10414 			err = PTR_ERR(old_prog);
10415 			old_prog = NULL;
10416 			goto err_out;
10417 		}
10418 	}
10419 
10420 	err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
10421 
10422 err_out:
10423 	if (err && new_prog)
10424 		bpf_prog_put(new_prog);
10425 	if (old_prog)
10426 		bpf_prog_put(old_prog);
10427 	return err;
10428 }
10429 
10430 u32 dev_get_min_mp_channel_count(const struct net_device *dev)
10431 {
10432 	int i;
10433 
10434 	ASSERT_RTNL();
10435 
10436 	for (i = dev->real_num_rx_queues - 1; i >= 0; i--)
10437 		if (dev->_rx[i].mp_params.mp_priv)
10438 			/* The channel count is the idx plus 1. */
10439 			return i + 1;
10440 
10441 	return 0;
10442 }
10443 
10444 /**
10445  * dev_index_reserve() - allocate an ifindex in a namespace
10446  * @net: the applicable net namespace
10447  * @ifindex: requested ifindex, pass %0 to get one allocated
10448  *
10449  * Allocate a ifindex for a new device. Caller must either use the ifindex
10450  * to store the device (via list_netdevice()) or call dev_index_release()
10451  * to give the index up.
10452  *
10453  * Return: a suitable unique value for a new device interface number or -errno.
10454  */
10455 static int dev_index_reserve(struct net *net, u32 ifindex)
10456 {
10457 	int err;
10458 
10459 	if (ifindex > INT_MAX) {
10460 		DEBUG_NET_WARN_ON_ONCE(1);
10461 		return -EINVAL;
10462 	}
10463 
10464 	if (!ifindex)
10465 		err = xa_alloc_cyclic(&net->dev_by_index, &ifindex, NULL,
10466 				      xa_limit_31b, &net->ifindex, GFP_KERNEL);
10467 	else
10468 		err = xa_insert(&net->dev_by_index, ifindex, NULL, GFP_KERNEL);
10469 	if (err < 0)
10470 		return err;
10471 
10472 	return ifindex;
10473 }
10474 
10475 static void dev_index_release(struct net *net, int ifindex)
10476 {
10477 	/* Expect only unused indexes, unlist_netdevice() removes the used */
10478 	WARN_ON(xa_erase(&net->dev_by_index, ifindex));
10479 }
10480 
10481 static bool from_cleanup_net(void)
10482 {
10483 #ifdef CONFIG_NET_NS
10484 	return current == cleanup_net_task;
10485 #else
10486 	return false;
10487 #endif
10488 }
10489 
10490 /* Delayed registration/unregisteration */
10491 LIST_HEAD(net_todo_list);
10492 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
10493 atomic_t dev_unreg_count = ATOMIC_INIT(0);
10494 
10495 static void net_set_todo(struct net_device *dev)
10496 {
10497 	list_add_tail(&dev->todo_list, &net_todo_list);
10498 }
10499 
10500 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
10501 	struct net_device *upper, netdev_features_t features)
10502 {
10503 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
10504 	netdev_features_t feature;
10505 	int feature_bit;
10506 
10507 	for_each_netdev_feature(upper_disables, feature_bit) {
10508 		feature = __NETIF_F_BIT(feature_bit);
10509 		if (!(upper->wanted_features & feature)
10510 		    && (features & feature)) {
10511 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
10512 				   &feature, upper->name);
10513 			features &= ~feature;
10514 		}
10515 	}
10516 
10517 	return features;
10518 }
10519 
10520 static void netdev_sync_lower_features(struct net_device *upper,
10521 	struct net_device *lower, netdev_features_t features)
10522 {
10523 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
10524 	netdev_features_t feature;
10525 	int feature_bit;
10526 
10527 	for_each_netdev_feature(upper_disables, feature_bit) {
10528 		feature = __NETIF_F_BIT(feature_bit);
10529 		if (!(features & feature) && (lower->features & feature)) {
10530 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
10531 				   &feature, lower->name);
10532 			lower->wanted_features &= ~feature;
10533 			__netdev_update_features(lower);
10534 
10535 			if (unlikely(lower->features & feature))
10536 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
10537 					    &feature, lower->name);
10538 			else
10539 				netdev_features_change(lower);
10540 		}
10541 	}
10542 }
10543 
10544 static bool netdev_has_ip_or_hw_csum(netdev_features_t features)
10545 {
10546 	netdev_features_t ip_csum_mask = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
10547 	bool ip_csum = (features & ip_csum_mask) == ip_csum_mask;
10548 	bool hw_csum = features & NETIF_F_HW_CSUM;
10549 
10550 	return ip_csum || hw_csum;
10551 }
10552 
10553 static netdev_features_t netdev_fix_features(struct net_device *dev,
10554 	netdev_features_t features)
10555 {
10556 	/* Fix illegal checksum combinations */
10557 	if ((features & NETIF_F_HW_CSUM) &&
10558 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
10559 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
10560 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
10561 	}
10562 
10563 	/* TSO requires that SG is present as well. */
10564 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
10565 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
10566 		features &= ~NETIF_F_ALL_TSO;
10567 	}
10568 
10569 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
10570 					!(features & NETIF_F_IP_CSUM)) {
10571 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
10572 		features &= ~NETIF_F_TSO;
10573 		features &= ~NETIF_F_TSO_ECN;
10574 	}
10575 
10576 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
10577 					 !(features & NETIF_F_IPV6_CSUM)) {
10578 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
10579 		features &= ~NETIF_F_TSO6;
10580 	}
10581 
10582 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
10583 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
10584 		features &= ~NETIF_F_TSO_MANGLEID;
10585 
10586 	/* TSO ECN requires that TSO is present as well. */
10587 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
10588 		features &= ~NETIF_F_TSO_ECN;
10589 
10590 	/* Software GSO depends on SG. */
10591 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
10592 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
10593 		features &= ~NETIF_F_GSO;
10594 	}
10595 
10596 	/* GSO partial features require GSO partial be set */
10597 	if ((features & dev->gso_partial_features) &&
10598 	    !(features & NETIF_F_GSO_PARTIAL)) {
10599 		netdev_dbg(dev,
10600 			   "Dropping partially supported GSO features since no GSO partial.\n");
10601 		features &= ~dev->gso_partial_features;
10602 	}
10603 
10604 	if (!(features & NETIF_F_RXCSUM)) {
10605 		/* NETIF_F_GRO_HW implies doing RXCSUM since every packet
10606 		 * successfully merged by hardware must also have the
10607 		 * checksum verified by hardware.  If the user does not
10608 		 * want to enable RXCSUM, logically, we should disable GRO_HW.
10609 		 */
10610 		if (features & NETIF_F_GRO_HW) {
10611 			netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
10612 			features &= ~NETIF_F_GRO_HW;
10613 		}
10614 	}
10615 
10616 	/* LRO/HW-GRO features cannot be combined with RX-FCS */
10617 	if (features & NETIF_F_RXFCS) {
10618 		if (features & NETIF_F_LRO) {
10619 			netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
10620 			features &= ~NETIF_F_LRO;
10621 		}
10622 
10623 		if (features & NETIF_F_GRO_HW) {
10624 			netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
10625 			features &= ~NETIF_F_GRO_HW;
10626 		}
10627 	}
10628 
10629 	if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
10630 		netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
10631 		features &= ~NETIF_F_LRO;
10632 	}
10633 
10634 	if ((features & NETIF_F_HW_TLS_TX) && !netdev_has_ip_or_hw_csum(features)) {
10635 		netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
10636 		features &= ~NETIF_F_HW_TLS_TX;
10637 	}
10638 
10639 	if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
10640 		netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
10641 		features &= ~NETIF_F_HW_TLS_RX;
10642 	}
10643 
10644 	if ((features & NETIF_F_GSO_UDP_L4) && !netdev_has_ip_or_hw_csum(features)) {
10645 		netdev_dbg(dev, "Dropping USO feature since no CSUM feature.\n");
10646 		features &= ~NETIF_F_GSO_UDP_L4;
10647 	}
10648 
10649 	return features;
10650 }
10651 
10652 int __netdev_update_features(struct net_device *dev)
10653 {
10654 	struct net_device *upper, *lower;
10655 	netdev_features_t features;
10656 	struct list_head *iter;
10657 	int err = -1;
10658 
10659 	ASSERT_RTNL();
10660 
10661 	features = netdev_get_wanted_features(dev);
10662 
10663 	if (dev->netdev_ops->ndo_fix_features)
10664 		features = dev->netdev_ops->ndo_fix_features(dev, features);
10665 
10666 	/* driver might be less strict about feature dependencies */
10667 	features = netdev_fix_features(dev, features);
10668 
10669 	/* some features can't be enabled if they're off on an upper device */
10670 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
10671 		features = netdev_sync_upper_features(dev, upper, features);
10672 
10673 	if (dev->features == features)
10674 		goto sync_lower;
10675 
10676 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
10677 		&dev->features, &features);
10678 
10679 	if (dev->netdev_ops->ndo_set_features)
10680 		err = dev->netdev_ops->ndo_set_features(dev, features);
10681 	else
10682 		err = 0;
10683 
10684 	if (unlikely(err < 0)) {
10685 		netdev_err(dev,
10686 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
10687 			err, &features, &dev->features);
10688 		/* return non-0 since some features might have changed and
10689 		 * it's better to fire a spurious notification than miss it
10690 		 */
10691 		return -1;
10692 	}
10693 
10694 sync_lower:
10695 	/* some features must be disabled on lower devices when disabled
10696 	 * on an upper device (think: bonding master or bridge)
10697 	 */
10698 	netdev_for_each_lower_dev(dev, lower, iter)
10699 		netdev_sync_lower_features(dev, lower, features);
10700 
10701 	if (!err) {
10702 		netdev_features_t diff = features ^ dev->features;
10703 
10704 		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
10705 			/* udp_tunnel_{get,drop}_rx_info both need
10706 			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
10707 			 * device, or they won't do anything.
10708 			 * Thus we need to update dev->features
10709 			 * *before* calling udp_tunnel_get_rx_info,
10710 			 * but *after* calling udp_tunnel_drop_rx_info.
10711 			 */
10712 			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
10713 				dev->features = features;
10714 				udp_tunnel_get_rx_info(dev);
10715 			} else {
10716 				udp_tunnel_drop_rx_info(dev);
10717 			}
10718 		}
10719 
10720 		if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
10721 			if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
10722 				dev->features = features;
10723 				err |= vlan_get_rx_ctag_filter_info(dev);
10724 			} else {
10725 				vlan_drop_rx_ctag_filter_info(dev);
10726 			}
10727 		}
10728 
10729 		if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
10730 			if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
10731 				dev->features = features;
10732 				err |= vlan_get_rx_stag_filter_info(dev);
10733 			} else {
10734 				vlan_drop_rx_stag_filter_info(dev);
10735 			}
10736 		}
10737 
10738 		dev->features = features;
10739 	}
10740 
10741 	return err < 0 ? 0 : 1;
10742 }
10743 
10744 /**
10745  *	netdev_update_features - recalculate device features
10746  *	@dev: the device to check
10747  *
10748  *	Recalculate dev->features set and send notifications if it
10749  *	has changed. Should be called after driver or hardware dependent
10750  *	conditions might have changed that influence the features.
10751  */
10752 void netdev_update_features(struct net_device *dev)
10753 {
10754 	if (__netdev_update_features(dev))
10755 		netdev_features_change(dev);
10756 }
10757 EXPORT_SYMBOL(netdev_update_features);
10758 
10759 /**
10760  *	netdev_change_features - recalculate device features
10761  *	@dev: the device to check
10762  *
10763  *	Recalculate dev->features set and send notifications even
10764  *	if they have not changed. Should be called instead of
10765  *	netdev_update_features() if also dev->vlan_features might
10766  *	have changed to allow the changes to be propagated to stacked
10767  *	VLAN devices.
10768  */
10769 void netdev_change_features(struct net_device *dev)
10770 {
10771 	__netdev_update_features(dev);
10772 	netdev_features_change(dev);
10773 }
10774 EXPORT_SYMBOL(netdev_change_features);
10775 
10776 /**
10777  *	netif_stacked_transfer_operstate -	transfer operstate
10778  *	@rootdev: the root or lower level device to transfer state from
10779  *	@dev: the device to transfer operstate to
10780  *
10781  *	Transfer operational state from root to device. This is normally
10782  *	called when a stacking relationship exists between the root
10783  *	device and the device(a leaf device).
10784  */
10785 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
10786 					struct net_device *dev)
10787 {
10788 	if (rootdev->operstate == IF_OPER_DORMANT)
10789 		netif_dormant_on(dev);
10790 	else
10791 		netif_dormant_off(dev);
10792 
10793 	if (rootdev->operstate == IF_OPER_TESTING)
10794 		netif_testing_on(dev);
10795 	else
10796 		netif_testing_off(dev);
10797 
10798 	if (netif_carrier_ok(rootdev))
10799 		netif_carrier_on(dev);
10800 	else
10801 		netif_carrier_off(dev);
10802 }
10803 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
10804 
10805 static int netif_alloc_rx_queues(struct net_device *dev)
10806 {
10807 	unsigned int i, count = dev->num_rx_queues;
10808 	struct netdev_rx_queue *rx;
10809 	size_t sz = count * sizeof(*rx);
10810 	int err = 0;
10811 
10812 	BUG_ON(count < 1);
10813 
10814 	rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10815 	if (!rx)
10816 		return -ENOMEM;
10817 
10818 	dev->_rx = rx;
10819 
10820 	for (i = 0; i < count; i++) {
10821 		rx[i].dev = dev;
10822 
10823 		/* XDP RX-queue setup */
10824 		err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
10825 		if (err < 0)
10826 			goto err_rxq_info;
10827 	}
10828 	return 0;
10829 
10830 err_rxq_info:
10831 	/* Rollback successful reg's and free other resources */
10832 	while (i--)
10833 		xdp_rxq_info_unreg(&rx[i].xdp_rxq);
10834 	kvfree(dev->_rx);
10835 	dev->_rx = NULL;
10836 	return err;
10837 }
10838 
10839 static void netif_free_rx_queues(struct net_device *dev)
10840 {
10841 	unsigned int i, count = dev->num_rx_queues;
10842 
10843 	/* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
10844 	if (!dev->_rx)
10845 		return;
10846 
10847 	for (i = 0; i < count; i++)
10848 		xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
10849 
10850 	kvfree(dev->_rx);
10851 }
10852 
10853 static void netdev_init_one_queue(struct net_device *dev,
10854 				  struct netdev_queue *queue, void *_unused)
10855 {
10856 	/* Initialize queue lock */
10857 	spin_lock_init(&queue->_xmit_lock);
10858 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
10859 	queue->xmit_lock_owner = -1;
10860 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
10861 	queue->dev = dev;
10862 #ifdef CONFIG_BQL
10863 	dql_init(&queue->dql, HZ);
10864 #endif
10865 }
10866 
10867 static void netif_free_tx_queues(struct net_device *dev)
10868 {
10869 	kvfree(dev->_tx);
10870 }
10871 
10872 static int netif_alloc_netdev_queues(struct net_device *dev)
10873 {
10874 	unsigned int count = dev->num_tx_queues;
10875 	struct netdev_queue *tx;
10876 	size_t sz = count * sizeof(*tx);
10877 
10878 	if (count < 1 || count > 0xffff)
10879 		return -EINVAL;
10880 
10881 	tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10882 	if (!tx)
10883 		return -ENOMEM;
10884 
10885 	dev->_tx = tx;
10886 
10887 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
10888 	spin_lock_init(&dev->tx_global_lock);
10889 
10890 	return 0;
10891 }
10892 
10893 void netif_tx_stop_all_queues(struct net_device *dev)
10894 {
10895 	unsigned int i;
10896 
10897 	for (i = 0; i < dev->num_tx_queues; i++) {
10898 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
10899 
10900 		netif_tx_stop_queue(txq);
10901 	}
10902 }
10903 EXPORT_SYMBOL(netif_tx_stop_all_queues);
10904 
10905 static int netdev_do_alloc_pcpu_stats(struct net_device *dev)
10906 {
10907 	void __percpu *v;
10908 
10909 	/* Drivers implementing ndo_get_peer_dev must support tstat
10910 	 * accounting, so that skb_do_redirect() can bump the dev's
10911 	 * RX stats upon network namespace switch.
10912 	 */
10913 	if (dev->netdev_ops->ndo_get_peer_dev &&
10914 	    dev->pcpu_stat_type != NETDEV_PCPU_STAT_TSTATS)
10915 		return -EOPNOTSUPP;
10916 
10917 	switch (dev->pcpu_stat_type) {
10918 	case NETDEV_PCPU_STAT_NONE:
10919 		return 0;
10920 	case NETDEV_PCPU_STAT_LSTATS:
10921 		v = dev->lstats = netdev_alloc_pcpu_stats(struct pcpu_lstats);
10922 		break;
10923 	case NETDEV_PCPU_STAT_TSTATS:
10924 		v = dev->tstats = netdev_alloc_pcpu_stats(struct pcpu_sw_netstats);
10925 		break;
10926 	case NETDEV_PCPU_STAT_DSTATS:
10927 		v = dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
10928 		break;
10929 	default:
10930 		return -EINVAL;
10931 	}
10932 
10933 	return v ? 0 : -ENOMEM;
10934 }
10935 
10936 static void netdev_do_free_pcpu_stats(struct net_device *dev)
10937 {
10938 	switch (dev->pcpu_stat_type) {
10939 	case NETDEV_PCPU_STAT_NONE:
10940 		return;
10941 	case NETDEV_PCPU_STAT_LSTATS:
10942 		free_percpu(dev->lstats);
10943 		break;
10944 	case NETDEV_PCPU_STAT_TSTATS:
10945 		free_percpu(dev->tstats);
10946 		break;
10947 	case NETDEV_PCPU_STAT_DSTATS:
10948 		free_percpu(dev->dstats);
10949 		break;
10950 	}
10951 }
10952 
10953 static void netdev_free_phy_link_topology(struct net_device *dev)
10954 {
10955 	struct phy_link_topology *topo = dev->link_topo;
10956 
10957 	if (IS_ENABLED(CONFIG_PHYLIB) && topo) {
10958 		xa_destroy(&topo->phys);
10959 		kfree(topo);
10960 		dev->link_topo = NULL;
10961 	}
10962 }
10963 
10964 /**
10965  * register_netdevice() - register a network device
10966  * @dev: device to register
10967  *
10968  * Take a prepared network device structure and make it externally accessible.
10969  * A %NETDEV_REGISTER message is sent to the netdev notifier chain.
10970  * Callers must hold the rtnl lock - you may want register_netdev()
10971  * instead of this.
10972  */
10973 int register_netdevice(struct net_device *dev)
10974 {
10975 	int ret;
10976 	struct net *net = dev_net(dev);
10977 
10978 	BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
10979 		     NETDEV_FEATURE_COUNT);
10980 	BUG_ON(dev_boot_phase);
10981 	ASSERT_RTNL();
10982 
10983 	might_sleep();
10984 
10985 	/* When net_device's are persistent, this will be fatal. */
10986 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
10987 	BUG_ON(!net);
10988 
10989 	ret = ethtool_check_ops(dev->ethtool_ops);
10990 	if (ret)
10991 		return ret;
10992 
10993 	/* rss ctx ID 0 is reserved for the default context, start from 1 */
10994 	xa_init_flags(&dev->ethtool->rss_ctx, XA_FLAGS_ALLOC1);
10995 	mutex_init(&dev->ethtool->rss_lock);
10996 
10997 	spin_lock_init(&dev->addr_list_lock);
10998 	netdev_set_addr_lockdep_class(dev);
10999 
11000 	ret = dev_get_valid_name(net, dev, dev->name);
11001 	if (ret < 0)
11002 		goto out;
11003 
11004 	ret = -ENOMEM;
11005 	dev->name_node = netdev_name_node_head_alloc(dev);
11006 	if (!dev->name_node)
11007 		goto out;
11008 
11009 	/* Init, if this function is available */
11010 	if (dev->netdev_ops->ndo_init) {
11011 		ret = dev->netdev_ops->ndo_init(dev);
11012 		if (ret) {
11013 			if (ret > 0)
11014 				ret = -EIO;
11015 			goto err_free_name;
11016 		}
11017 	}
11018 
11019 	if (((dev->hw_features | dev->features) &
11020 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
11021 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
11022 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
11023 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
11024 		ret = -EINVAL;
11025 		goto err_uninit;
11026 	}
11027 
11028 	ret = netdev_do_alloc_pcpu_stats(dev);
11029 	if (ret)
11030 		goto err_uninit;
11031 
11032 	ret = dev_index_reserve(net, dev->ifindex);
11033 	if (ret < 0)
11034 		goto err_free_pcpu;
11035 	dev->ifindex = ret;
11036 
11037 	/* Transfer changeable features to wanted_features and enable
11038 	 * software offloads (GSO and GRO).
11039 	 */
11040 	dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
11041 	dev->features |= NETIF_F_SOFT_FEATURES;
11042 
11043 	if (dev->udp_tunnel_nic_info) {
11044 		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
11045 		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
11046 	}
11047 
11048 	dev->wanted_features = dev->features & dev->hw_features;
11049 
11050 	if (!(dev->flags & IFF_LOOPBACK))
11051 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
11052 
11053 	/* If IPv4 TCP segmentation offload is supported we should also
11054 	 * allow the device to enable segmenting the frame with the option
11055 	 * of ignoring a static IP ID value.  This doesn't enable the
11056 	 * feature itself but allows the user to enable it later.
11057 	 */
11058 	if (dev->hw_features & NETIF_F_TSO)
11059 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
11060 	if (dev->vlan_features & NETIF_F_TSO)
11061 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
11062 	if (dev->mpls_features & NETIF_F_TSO)
11063 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
11064 	if (dev->hw_enc_features & NETIF_F_TSO)
11065 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
11066 
11067 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
11068 	 */
11069 	dev->vlan_features |= NETIF_F_HIGHDMA;
11070 
11071 	/* Make NETIF_F_SG inheritable to tunnel devices.
11072 	 */
11073 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
11074 
11075 	/* Make NETIF_F_SG inheritable to MPLS.
11076 	 */
11077 	dev->mpls_features |= NETIF_F_SG;
11078 
11079 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
11080 	ret = notifier_to_errno(ret);
11081 	if (ret)
11082 		goto err_ifindex_release;
11083 
11084 	ret = netdev_register_kobject(dev);
11085 
11086 	netdev_lock(dev);
11087 	WRITE_ONCE(dev->reg_state, ret ? NETREG_UNREGISTERED : NETREG_REGISTERED);
11088 	netdev_unlock(dev);
11089 
11090 	if (ret)
11091 		goto err_uninit_notify;
11092 
11093 	__netdev_update_features(dev);
11094 
11095 	/*
11096 	 *	Default initial state at registry is that the
11097 	 *	device is present.
11098 	 */
11099 
11100 	set_bit(__LINK_STATE_PRESENT, &dev->state);
11101 
11102 	linkwatch_init_dev(dev);
11103 
11104 	dev_init_scheduler(dev);
11105 
11106 	netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL);
11107 	list_netdevice(dev);
11108 
11109 	add_device_randomness(dev->dev_addr, dev->addr_len);
11110 
11111 	/* If the device has permanent device address, driver should
11112 	 * set dev_addr and also addr_assign_type should be set to
11113 	 * NET_ADDR_PERM (default value).
11114 	 */
11115 	if (dev->addr_assign_type == NET_ADDR_PERM)
11116 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
11117 
11118 	/* Notify protocols, that a new device appeared. */
11119 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
11120 	ret = notifier_to_errno(ret);
11121 	if (ret) {
11122 		/* Expect explicit free_netdev() on failure */
11123 		dev->needs_free_netdev = false;
11124 		unregister_netdevice_queue(dev, NULL);
11125 		goto out;
11126 	}
11127 	/*
11128 	 *	Prevent userspace races by waiting until the network
11129 	 *	device is fully setup before sending notifications.
11130 	 */
11131 	if (!dev->rtnl_link_ops ||
11132 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
11133 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
11134 
11135 out:
11136 	return ret;
11137 
11138 err_uninit_notify:
11139 	call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
11140 err_ifindex_release:
11141 	dev_index_release(net, dev->ifindex);
11142 err_free_pcpu:
11143 	netdev_do_free_pcpu_stats(dev);
11144 err_uninit:
11145 	if (dev->netdev_ops->ndo_uninit)
11146 		dev->netdev_ops->ndo_uninit(dev);
11147 	if (dev->priv_destructor)
11148 		dev->priv_destructor(dev);
11149 err_free_name:
11150 	netdev_name_node_free(dev->name_node);
11151 	goto out;
11152 }
11153 EXPORT_SYMBOL(register_netdevice);
11154 
11155 /* Initialize the core of a dummy net device.
11156  * The setup steps dummy netdevs need which normal netdevs get by going
11157  * through register_netdevice().
11158  */
11159 static void init_dummy_netdev(struct net_device *dev)
11160 {
11161 	/* make sure we BUG if trying to hit standard
11162 	 * register/unregister code path
11163 	 */
11164 	dev->reg_state = NETREG_DUMMY;
11165 
11166 	/* a dummy interface is started by default */
11167 	set_bit(__LINK_STATE_PRESENT, &dev->state);
11168 	set_bit(__LINK_STATE_START, &dev->state);
11169 
11170 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
11171 	 * because users of this 'device' dont need to change
11172 	 * its refcount.
11173 	 */
11174 }
11175 
11176 /**
11177  *	register_netdev	- register a network device
11178  *	@dev: device to register
11179  *
11180  *	Take a completed network device structure and add it to the kernel
11181  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
11182  *	chain. 0 is returned on success. A negative errno code is returned
11183  *	on a failure to set up the device, or if the name is a duplicate.
11184  *
11185  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
11186  *	and expands the device name if you passed a format string to
11187  *	alloc_netdev.
11188  */
11189 int register_netdev(struct net_device *dev)
11190 {
11191 	struct net *net = dev_net(dev);
11192 	int err;
11193 
11194 	if (rtnl_net_lock_killable(net))
11195 		return -EINTR;
11196 
11197 	err = register_netdevice(dev);
11198 
11199 	rtnl_net_unlock(net);
11200 
11201 	return err;
11202 }
11203 EXPORT_SYMBOL(register_netdev);
11204 
11205 int netdev_refcnt_read(const struct net_device *dev)
11206 {
11207 #ifdef CONFIG_PCPU_DEV_REFCNT
11208 	int i, refcnt = 0;
11209 
11210 	for_each_possible_cpu(i)
11211 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
11212 	return refcnt;
11213 #else
11214 	return refcount_read(&dev->dev_refcnt);
11215 #endif
11216 }
11217 EXPORT_SYMBOL(netdev_refcnt_read);
11218 
11219 int netdev_unregister_timeout_secs __read_mostly = 10;
11220 
11221 #define WAIT_REFS_MIN_MSECS 1
11222 #define WAIT_REFS_MAX_MSECS 250
11223 /**
11224  * netdev_wait_allrefs_any - wait until all references are gone.
11225  * @list: list of net_devices to wait on
11226  *
11227  * This is called when unregistering network devices.
11228  *
11229  * Any protocol or device that holds a reference should register
11230  * for netdevice notification, and cleanup and put back the
11231  * reference if they receive an UNREGISTER event.
11232  * We can get stuck here if buggy protocols don't correctly
11233  * call dev_put.
11234  */
11235 static struct net_device *netdev_wait_allrefs_any(struct list_head *list)
11236 {
11237 	unsigned long rebroadcast_time, warning_time;
11238 	struct net_device *dev;
11239 	int wait = 0;
11240 
11241 	rebroadcast_time = warning_time = jiffies;
11242 
11243 	list_for_each_entry(dev, list, todo_list)
11244 		if (netdev_refcnt_read(dev) == 1)
11245 			return dev;
11246 
11247 	while (true) {
11248 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
11249 			rtnl_lock();
11250 
11251 			/* Rebroadcast unregister notification */
11252 			list_for_each_entry(dev, list, todo_list)
11253 				call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11254 
11255 			__rtnl_unlock();
11256 			rcu_barrier();
11257 			rtnl_lock();
11258 
11259 			list_for_each_entry(dev, list, todo_list)
11260 				if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
11261 					     &dev->state)) {
11262 					/* We must not have linkwatch events
11263 					 * pending on unregister. If this
11264 					 * happens, we simply run the queue
11265 					 * unscheduled, resulting in a noop
11266 					 * for this device.
11267 					 */
11268 					linkwatch_run_queue();
11269 					break;
11270 				}
11271 
11272 			__rtnl_unlock();
11273 
11274 			rebroadcast_time = jiffies;
11275 		}
11276 
11277 		rcu_barrier();
11278 
11279 		if (!wait) {
11280 			wait = WAIT_REFS_MIN_MSECS;
11281 		} else {
11282 			msleep(wait);
11283 			wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
11284 		}
11285 
11286 		list_for_each_entry(dev, list, todo_list)
11287 			if (netdev_refcnt_read(dev) == 1)
11288 				return dev;
11289 
11290 		if (time_after(jiffies, warning_time +
11291 			       READ_ONCE(netdev_unregister_timeout_secs) * HZ)) {
11292 			list_for_each_entry(dev, list, todo_list) {
11293 				pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
11294 					 dev->name, netdev_refcnt_read(dev));
11295 				ref_tracker_dir_print(&dev->refcnt_tracker, 10);
11296 			}
11297 
11298 			warning_time = jiffies;
11299 		}
11300 	}
11301 }
11302 
11303 /* The sequence is:
11304  *
11305  *	rtnl_lock();
11306  *	...
11307  *	register_netdevice(x1);
11308  *	register_netdevice(x2);
11309  *	...
11310  *	unregister_netdevice(y1);
11311  *	unregister_netdevice(y2);
11312  *      ...
11313  *	rtnl_unlock();
11314  *	free_netdev(y1);
11315  *	free_netdev(y2);
11316  *
11317  * We are invoked by rtnl_unlock().
11318  * This allows us to deal with problems:
11319  * 1) We can delete sysfs objects which invoke hotplug
11320  *    without deadlocking with linkwatch via keventd.
11321  * 2) Since we run with the RTNL semaphore not held, we can sleep
11322  *    safely in order to wait for the netdev refcnt to drop to zero.
11323  *
11324  * We must not return until all unregister events added during
11325  * the interval the lock was held have been completed.
11326  */
11327 void netdev_run_todo(void)
11328 {
11329 	struct net_device *dev, *tmp;
11330 	struct list_head list;
11331 	int cnt;
11332 #ifdef CONFIG_LOCKDEP
11333 	struct list_head unlink_list;
11334 
11335 	list_replace_init(&net_unlink_list, &unlink_list);
11336 
11337 	while (!list_empty(&unlink_list)) {
11338 		dev = list_first_entry(&unlink_list, struct net_device,
11339 				       unlink_list);
11340 		list_del_init(&dev->unlink_list);
11341 		dev->nested_level = dev->lower_level - 1;
11342 	}
11343 #endif
11344 
11345 	/* Snapshot list, allow later requests */
11346 	list_replace_init(&net_todo_list, &list);
11347 
11348 	__rtnl_unlock();
11349 
11350 	/* Wait for rcu callbacks to finish before next phase */
11351 	if (!list_empty(&list))
11352 		rcu_barrier();
11353 
11354 	list_for_each_entry_safe(dev, tmp, &list, todo_list) {
11355 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
11356 			netdev_WARN(dev, "run_todo but not unregistering\n");
11357 			list_del(&dev->todo_list);
11358 			continue;
11359 		}
11360 
11361 		netdev_lock(dev);
11362 		WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERED);
11363 		netdev_unlock(dev);
11364 		linkwatch_sync_dev(dev);
11365 	}
11366 
11367 	cnt = 0;
11368 	while (!list_empty(&list)) {
11369 		dev = netdev_wait_allrefs_any(&list);
11370 		list_del(&dev->todo_list);
11371 
11372 		/* paranoia */
11373 		BUG_ON(netdev_refcnt_read(dev) != 1);
11374 		BUG_ON(!list_empty(&dev->ptype_all));
11375 		BUG_ON(!list_empty(&dev->ptype_specific));
11376 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
11377 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
11378 
11379 		netdev_do_free_pcpu_stats(dev);
11380 		if (dev->priv_destructor)
11381 			dev->priv_destructor(dev);
11382 		if (dev->needs_free_netdev)
11383 			free_netdev(dev);
11384 
11385 		cnt++;
11386 
11387 		/* Free network device */
11388 		kobject_put(&dev->dev.kobj);
11389 	}
11390 	if (cnt && atomic_sub_and_test(cnt, &dev_unreg_count))
11391 		wake_up(&netdev_unregistering_wq);
11392 }
11393 
11394 /* Collate per-cpu network dstats statistics
11395  *
11396  * Read per-cpu network statistics from dev->dstats and populate the related
11397  * fields in @s.
11398  */
11399 static void dev_fetch_dstats(struct rtnl_link_stats64 *s,
11400 			     const struct pcpu_dstats __percpu *dstats)
11401 {
11402 	int cpu;
11403 
11404 	for_each_possible_cpu(cpu) {
11405 		u64 rx_packets, rx_bytes, rx_drops;
11406 		u64 tx_packets, tx_bytes, tx_drops;
11407 		const struct pcpu_dstats *stats;
11408 		unsigned int start;
11409 
11410 		stats = per_cpu_ptr(dstats, cpu);
11411 		do {
11412 			start = u64_stats_fetch_begin(&stats->syncp);
11413 			rx_packets = u64_stats_read(&stats->rx_packets);
11414 			rx_bytes   = u64_stats_read(&stats->rx_bytes);
11415 			rx_drops   = u64_stats_read(&stats->rx_drops);
11416 			tx_packets = u64_stats_read(&stats->tx_packets);
11417 			tx_bytes   = u64_stats_read(&stats->tx_bytes);
11418 			tx_drops   = u64_stats_read(&stats->tx_drops);
11419 		} while (u64_stats_fetch_retry(&stats->syncp, start));
11420 
11421 		s->rx_packets += rx_packets;
11422 		s->rx_bytes   += rx_bytes;
11423 		s->rx_dropped += rx_drops;
11424 		s->tx_packets += tx_packets;
11425 		s->tx_bytes   += tx_bytes;
11426 		s->tx_dropped += tx_drops;
11427 	}
11428 }
11429 
11430 /* ndo_get_stats64 implementation for dtstats-based accounting.
11431  *
11432  * Populate @s from dev->stats and dev->dstats. This is used internally by the
11433  * core for NETDEV_PCPU_STAT_DSTAT-type stats collection.
11434  */
11435 static void dev_get_dstats64(const struct net_device *dev,
11436 			     struct rtnl_link_stats64 *s)
11437 {
11438 	netdev_stats_to_stats64(s, &dev->stats);
11439 	dev_fetch_dstats(s, dev->dstats);
11440 }
11441 
11442 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
11443  * all the same fields in the same order as net_device_stats, with only
11444  * the type differing, but rtnl_link_stats64 may have additional fields
11445  * at the end for newer counters.
11446  */
11447 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
11448 			     const struct net_device_stats *netdev_stats)
11449 {
11450 	size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t);
11451 	const atomic_long_t *src = (atomic_long_t *)netdev_stats;
11452 	u64 *dst = (u64 *)stats64;
11453 
11454 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
11455 	for (i = 0; i < n; i++)
11456 		dst[i] = (unsigned long)atomic_long_read(&src[i]);
11457 	/* zero out counters that only exist in rtnl_link_stats64 */
11458 	memset((char *)stats64 + n * sizeof(u64), 0,
11459 	       sizeof(*stats64) - n * sizeof(u64));
11460 }
11461 EXPORT_SYMBOL(netdev_stats_to_stats64);
11462 
11463 static __cold struct net_device_core_stats __percpu *netdev_core_stats_alloc(
11464 		struct net_device *dev)
11465 {
11466 	struct net_device_core_stats __percpu *p;
11467 
11468 	p = alloc_percpu_gfp(struct net_device_core_stats,
11469 			     GFP_ATOMIC | __GFP_NOWARN);
11470 
11471 	if (p && cmpxchg(&dev->core_stats, NULL, p))
11472 		free_percpu(p);
11473 
11474 	/* This READ_ONCE() pairs with the cmpxchg() above */
11475 	return READ_ONCE(dev->core_stats);
11476 }
11477 
11478 noinline void netdev_core_stats_inc(struct net_device *dev, u32 offset)
11479 {
11480 	/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
11481 	struct net_device_core_stats __percpu *p = READ_ONCE(dev->core_stats);
11482 	unsigned long __percpu *field;
11483 
11484 	if (unlikely(!p)) {
11485 		p = netdev_core_stats_alloc(dev);
11486 		if (!p)
11487 			return;
11488 	}
11489 
11490 	field = (unsigned long __percpu *)((void __percpu *)p + offset);
11491 	this_cpu_inc(*field);
11492 }
11493 EXPORT_SYMBOL_GPL(netdev_core_stats_inc);
11494 
11495 /**
11496  *	dev_get_stats	- get network device statistics
11497  *	@dev: device to get statistics from
11498  *	@storage: place to store stats
11499  *
11500  *	Get network statistics from device. Return @storage.
11501  *	The device driver may provide its own method by setting
11502  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
11503  *	otherwise the internal statistics structure is used.
11504  */
11505 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
11506 					struct rtnl_link_stats64 *storage)
11507 {
11508 	const struct net_device_ops *ops = dev->netdev_ops;
11509 	const struct net_device_core_stats __percpu *p;
11510 
11511 	/*
11512 	 * IPv{4,6} and udp tunnels share common stat helpers and use
11513 	 * different stat type (NETDEV_PCPU_STAT_TSTATS vs
11514 	 * NETDEV_PCPU_STAT_DSTATS). Ensure the accounting is consistent.
11515 	 */
11516 	BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, rx_bytes) !=
11517 		     offsetof(struct pcpu_dstats, rx_bytes));
11518 	BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, rx_packets) !=
11519 		     offsetof(struct pcpu_dstats, rx_packets));
11520 	BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, tx_bytes) !=
11521 		     offsetof(struct pcpu_dstats, tx_bytes));
11522 	BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, tx_packets) !=
11523 		     offsetof(struct pcpu_dstats, tx_packets));
11524 
11525 	if (ops->ndo_get_stats64) {
11526 		memset(storage, 0, sizeof(*storage));
11527 		ops->ndo_get_stats64(dev, storage);
11528 	} else if (ops->ndo_get_stats) {
11529 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
11530 	} else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_TSTATS) {
11531 		dev_get_tstats64(dev, storage);
11532 	} else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_DSTATS) {
11533 		dev_get_dstats64(dev, storage);
11534 	} else {
11535 		netdev_stats_to_stats64(storage, &dev->stats);
11536 	}
11537 
11538 	/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
11539 	p = READ_ONCE(dev->core_stats);
11540 	if (p) {
11541 		const struct net_device_core_stats *core_stats;
11542 		int i;
11543 
11544 		for_each_possible_cpu(i) {
11545 			core_stats = per_cpu_ptr(p, i);
11546 			storage->rx_dropped += READ_ONCE(core_stats->rx_dropped);
11547 			storage->tx_dropped += READ_ONCE(core_stats->tx_dropped);
11548 			storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler);
11549 			storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped);
11550 		}
11551 	}
11552 	return storage;
11553 }
11554 EXPORT_SYMBOL(dev_get_stats);
11555 
11556 /**
11557  *	dev_fetch_sw_netstats - get per-cpu network device statistics
11558  *	@s: place to store stats
11559  *	@netstats: per-cpu network stats to read from
11560  *
11561  *	Read per-cpu network statistics and populate the related fields in @s.
11562  */
11563 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
11564 			   const struct pcpu_sw_netstats __percpu *netstats)
11565 {
11566 	int cpu;
11567 
11568 	for_each_possible_cpu(cpu) {
11569 		u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
11570 		const struct pcpu_sw_netstats *stats;
11571 		unsigned int start;
11572 
11573 		stats = per_cpu_ptr(netstats, cpu);
11574 		do {
11575 			start = u64_stats_fetch_begin(&stats->syncp);
11576 			rx_packets = u64_stats_read(&stats->rx_packets);
11577 			rx_bytes   = u64_stats_read(&stats->rx_bytes);
11578 			tx_packets = u64_stats_read(&stats->tx_packets);
11579 			tx_bytes   = u64_stats_read(&stats->tx_bytes);
11580 		} while (u64_stats_fetch_retry(&stats->syncp, start));
11581 
11582 		s->rx_packets += rx_packets;
11583 		s->rx_bytes   += rx_bytes;
11584 		s->tx_packets += tx_packets;
11585 		s->tx_bytes   += tx_bytes;
11586 	}
11587 }
11588 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
11589 
11590 /**
11591  *	dev_get_tstats64 - ndo_get_stats64 implementation
11592  *	@dev: device to get statistics from
11593  *	@s: place to store stats
11594  *
11595  *	Populate @s from dev->stats and dev->tstats. Can be used as
11596  *	ndo_get_stats64() callback.
11597  */
11598 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
11599 {
11600 	netdev_stats_to_stats64(s, &dev->stats);
11601 	dev_fetch_sw_netstats(s, dev->tstats);
11602 }
11603 EXPORT_SYMBOL_GPL(dev_get_tstats64);
11604 
11605 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
11606 {
11607 	struct netdev_queue *queue = dev_ingress_queue(dev);
11608 
11609 #ifdef CONFIG_NET_CLS_ACT
11610 	if (queue)
11611 		return queue;
11612 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
11613 	if (!queue)
11614 		return NULL;
11615 	netdev_init_one_queue(dev, queue, NULL);
11616 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
11617 	RCU_INIT_POINTER(queue->qdisc_sleeping, &noop_qdisc);
11618 	rcu_assign_pointer(dev->ingress_queue, queue);
11619 #endif
11620 	return queue;
11621 }
11622 
11623 static const struct ethtool_ops default_ethtool_ops;
11624 
11625 void netdev_set_default_ethtool_ops(struct net_device *dev,
11626 				    const struct ethtool_ops *ops)
11627 {
11628 	if (dev->ethtool_ops == &default_ethtool_ops)
11629 		dev->ethtool_ops = ops;
11630 }
11631 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
11632 
11633 /**
11634  * netdev_sw_irq_coalesce_default_on() - enable SW IRQ coalescing by default
11635  * @dev: netdev to enable the IRQ coalescing on
11636  *
11637  * Sets a conservative default for SW IRQ coalescing. Users can use
11638  * sysfs attributes to override the default values.
11639  */
11640 void netdev_sw_irq_coalesce_default_on(struct net_device *dev)
11641 {
11642 	WARN_ON(dev->reg_state == NETREG_REGISTERED);
11643 
11644 	if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
11645 		netdev_set_gro_flush_timeout(dev, 20000);
11646 		netdev_set_defer_hard_irqs(dev, 1);
11647 	}
11648 }
11649 EXPORT_SYMBOL_GPL(netdev_sw_irq_coalesce_default_on);
11650 
11651 /**
11652  * alloc_netdev_mqs - allocate network device
11653  * @sizeof_priv: size of private data to allocate space for
11654  * @name: device name format string
11655  * @name_assign_type: origin of device name
11656  * @setup: callback to initialize device
11657  * @txqs: the number of TX subqueues to allocate
11658  * @rxqs: the number of RX subqueues to allocate
11659  *
11660  * Allocates a struct net_device with private data area for driver use
11661  * and performs basic initialization.  Also allocates subqueue structs
11662  * for each queue on the device.
11663  */
11664 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
11665 		unsigned char name_assign_type,
11666 		void (*setup)(struct net_device *),
11667 		unsigned int txqs, unsigned int rxqs)
11668 {
11669 	struct net_device *dev;
11670 	size_t napi_config_sz;
11671 	unsigned int maxqs;
11672 
11673 	BUG_ON(strlen(name) >= sizeof(dev->name));
11674 
11675 	if (txqs < 1) {
11676 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
11677 		return NULL;
11678 	}
11679 
11680 	if (rxqs < 1) {
11681 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
11682 		return NULL;
11683 	}
11684 
11685 	maxqs = max(txqs, rxqs);
11686 
11687 	dev = kvzalloc(struct_size(dev, priv, sizeof_priv),
11688 		       GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
11689 	if (!dev)
11690 		return NULL;
11691 
11692 	dev->priv_len = sizeof_priv;
11693 
11694 	ref_tracker_dir_init(&dev->refcnt_tracker, 128, name);
11695 #ifdef CONFIG_PCPU_DEV_REFCNT
11696 	dev->pcpu_refcnt = alloc_percpu(int);
11697 	if (!dev->pcpu_refcnt)
11698 		goto free_dev;
11699 	__dev_hold(dev);
11700 #else
11701 	refcount_set(&dev->dev_refcnt, 1);
11702 #endif
11703 
11704 	if (dev_addr_init(dev))
11705 		goto free_pcpu;
11706 
11707 	dev_mc_init(dev);
11708 	dev_uc_init(dev);
11709 
11710 	dev_net_set(dev, &init_net);
11711 
11712 	dev->gso_max_size = GSO_LEGACY_MAX_SIZE;
11713 	dev->xdp_zc_max_segs = 1;
11714 	dev->gso_max_segs = GSO_MAX_SEGS;
11715 	dev->gro_max_size = GRO_LEGACY_MAX_SIZE;
11716 	dev->gso_ipv4_max_size = GSO_LEGACY_MAX_SIZE;
11717 	dev->gro_ipv4_max_size = GRO_LEGACY_MAX_SIZE;
11718 	dev->tso_max_size = TSO_LEGACY_MAX_SIZE;
11719 	dev->tso_max_segs = TSO_MAX_SEGS;
11720 	dev->upper_level = 1;
11721 	dev->lower_level = 1;
11722 #ifdef CONFIG_LOCKDEP
11723 	dev->nested_level = 0;
11724 	INIT_LIST_HEAD(&dev->unlink_list);
11725 #endif
11726 
11727 	INIT_LIST_HEAD(&dev->napi_list);
11728 	INIT_LIST_HEAD(&dev->unreg_list);
11729 	INIT_LIST_HEAD(&dev->close_list);
11730 	INIT_LIST_HEAD(&dev->link_watch_list);
11731 	INIT_LIST_HEAD(&dev->adj_list.upper);
11732 	INIT_LIST_HEAD(&dev->adj_list.lower);
11733 	INIT_LIST_HEAD(&dev->ptype_all);
11734 	INIT_LIST_HEAD(&dev->ptype_specific);
11735 	INIT_LIST_HEAD(&dev->net_notifier_list);
11736 #ifdef CONFIG_NET_SCHED
11737 	hash_init(dev->qdisc_hash);
11738 #endif
11739 
11740 	mutex_init(&dev->lock);
11741 
11742 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
11743 	setup(dev);
11744 
11745 	if (!dev->tx_queue_len) {
11746 		dev->priv_flags |= IFF_NO_QUEUE;
11747 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
11748 	}
11749 
11750 	dev->num_tx_queues = txqs;
11751 	dev->real_num_tx_queues = txqs;
11752 	if (netif_alloc_netdev_queues(dev))
11753 		goto free_all;
11754 
11755 	dev->num_rx_queues = rxqs;
11756 	dev->real_num_rx_queues = rxqs;
11757 	if (netif_alloc_rx_queues(dev))
11758 		goto free_all;
11759 	dev->ethtool = kzalloc(sizeof(*dev->ethtool), GFP_KERNEL_ACCOUNT);
11760 	if (!dev->ethtool)
11761 		goto free_all;
11762 
11763 	dev->cfg = kzalloc(sizeof(*dev->cfg), GFP_KERNEL_ACCOUNT);
11764 	if (!dev->cfg)
11765 		goto free_all;
11766 	dev->cfg_pending = dev->cfg;
11767 
11768 	napi_config_sz = array_size(maxqs, sizeof(*dev->napi_config));
11769 	dev->napi_config = kvzalloc(napi_config_sz, GFP_KERNEL_ACCOUNT);
11770 	if (!dev->napi_config)
11771 		goto free_all;
11772 
11773 	strscpy(dev->name, name);
11774 	dev->name_assign_type = name_assign_type;
11775 	dev->group = INIT_NETDEV_GROUP;
11776 	if (!dev->ethtool_ops)
11777 		dev->ethtool_ops = &default_ethtool_ops;
11778 
11779 	nf_hook_netdev_init(dev);
11780 
11781 	return dev;
11782 
11783 free_all:
11784 	free_netdev(dev);
11785 	return NULL;
11786 
11787 free_pcpu:
11788 #ifdef CONFIG_PCPU_DEV_REFCNT
11789 	free_percpu(dev->pcpu_refcnt);
11790 free_dev:
11791 #endif
11792 	kvfree(dev);
11793 	return NULL;
11794 }
11795 EXPORT_SYMBOL(alloc_netdev_mqs);
11796 
11797 static void netdev_napi_exit(struct net_device *dev)
11798 {
11799 	if (!list_empty(&dev->napi_list)) {
11800 		struct napi_struct *p, *n;
11801 
11802 		netdev_lock(dev);
11803 		list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
11804 			__netif_napi_del_locked(p);
11805 		netdev_unlock(dev);
11806 
11807 		synchronize_net();
11808 	}
11809 
11810 	kvfree(dev->napi_config);
11811 }
11812 
11813 /**
11814  * free_netdev - free network device
11815  * @dev: device
11816  *
11817  * This function does the last stage of destroying an allocated device
11818  * interface. The reference to the device object is released. If this
11819  * is the last reference then it will be freed.Must be called in process
11820  * context.
11821  */
11822 void free_netdev(struct net_device *dev)
11823 {
11824 	might_sleep();
11825 
11826 	/* When called immediately after register_netdevice() failed the unwind
11827 	 * handling may still be dismantling the device. Handle that case by
11828 	 * deferring the free.
11829 	 */
11830 	if (dev->reg_state == NETREG_UNREGISTERING) {
11831 		ASSERT_RTNL();
11832 		dev->needs_free_netdev = true;
11833 		return;
11834 	}
11835 
11836 	WARN_ON(dev->cfg != dev->cfg_pending);
11837 	kfree(dev->cfg);
11838 	kfree(dev->ethtool);
11839 	netif_free_tx_queues(dev);
11840 	netif_free_rx_queues(dev);
11841 
11842 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
11843 
11844 	/* Flush device addresses */
11845 	dev_addr_flush(dev);
11846 
11847 	netdev_napi_exit(dev);
11848 
11849 	netif_del_cpu_rmap(dev);
11850 
11851 	ref_tracker_dir_exit(&dev->refcnt_tracker);
11852 #ifdef CONFIG_PCPU_DEV_REFCNT
11853 	free_percpu(dev->pcpu_refcnt);
11854 	dev->pcpu_refcnt = NULL;
11855 #endif
11856 	free_percpu(dev->core_stats);
11857 	dev->core_stats = NULL;
11858 	free_percpu(dev->xdp_bulkq);
11859 	dev->xdp_bulkq = NULL;
11860 
11861 	netdev_free_phy_link_topology(dev);
11862 
11863 	mutex_destroy(&dev->lock);
11864 
11865 	/*  Compatibility with error handling in drivers */
11866 	if (dev->reg_state == NETREG_UNINITIALIZED ||
11867 	    dev->reg_state == NETREG_DUMMY) {
11868 		kvfree(dev);
11869 		return;
11870 	}
11871 
11872 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
11873 	WRITE_ONCE(dev->reg_state, NETREG_RELEASED);
11874 
11875 	/* will free via device release */
11876 	put_device(&dev->dev);
11877 }
11878 EXPORT_SYMBOL(free_netdev);
11879 
11880 /**
11881  * alloc_netdev_dummy - Allocate and initialize a dummy net device.
11882  * @sizeof_priv: size of private data to allocate space for
11883  *
11884  * Return: the allocated net_device on success, NULL otherwise
11885  */
11886 struct net_device *alloc_netdev_dummy(int sizeof_priv)
11887 {
11888 	return alloc_netdev(sizeof_priv, "dummy#", NET_NAME_UNKNOWN,
11889 			    init_dummy_netdev);
11890 }
11891 EXPORT_SYMBOL_GPL(alloc_netdev_dummy);
11892 
11893 /**
11894  *	synchronize_net -  Synchronize with packet receive processing
11895  *
11896  *	Wait for packets currently being received to be done.
11897  *	Does not block later packets from starting.
11898  */
11899 void synchronize_net(void)
11900 {
11901 	might_sleep();
11902 	if (from_cleanup_net() || rtnl_is_locked())
11903 		synchronize_rcu_expedited();
11904 	else
11905 		synchronize_rcu();
11906 }
11907 EXPORT_SYMBOL(synchronize_net);
11908 
11909 static void netdev_rss_contexts_free(struct net_device *dev)
11910 {
11911 	struct ethtool_rxfh_context *ctx;
11912 	unsigned long context;
11913 
11914 	mutex_lock(&dev->ethtool->rss_lock);
11915 	xa_for_each(&dev->ethtool->rss_ctx, context, ctx) {
11916 		struct ethtool_rxfh_param rxfh;
11917 
11918 		rxfh.indir = ethtool_rxfh_context_indir(ctx);
11919 		rxfh.key = ethtool_rxfh_context_key(ctx);
11920 		rxfh.hfunc = ctx->hfunc;
11921 		rxfh.input_xfrm = ctx->input_xfrm;
11922 		rxfh.rss_context = context;
11923 		rxfh.rss_delete = true;
11924 
11925 		xa_erase(&dev->ethtool->rss_ctx, context);
11926 		if (dev->ethtool_ops->create_rxfh_context)
11927 			dev->ethtool_ops->remove_rxfh_context(dev, ctx,
11928 							      context, NULL);
11929 		else
11930 			dev->ethtool_ops->set_rxfh(dev, &rxfh, NULL);
11931 		kfree(ctx);
11932 	}
11933 	xa_destroy(&dev->ethtool->rss_ctx);
11934 	mutex_unlock(&dev->ethtool->rss_lock);
11935 }
11936 
11937 /**
11938  *	unregister_netdevice_queue - remove device from the kernel
11939  *	@dev: device
11940  *	@head: list
11941  *
11942  *	This function shuts down a device interface and removes it
11943  *	from the kernel tables.
11944  *	If head not NULL, device is queued to be unregistered later.
11945  *
11946  *	Callers must hold the rtnl semaphore.  You may want
11947  *	unregister_netdev() instead of this.
11948  */
11949 
11950 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
11951 {
11952 	ASSERT_RTNL();
11953 
11954 	if (head) {
11955 		list_move_tail(&dev->unreg_list, head);
11956 	} else {
11957 		LIST_HEAD(single);
11958 
11959 		list_add(&dev->unreg_list, &single);
11960 		unregister_netdevice_many(&single);
11961 	}
11962 }
11963 EXPORT_SYMBOL(unregister_netdevice_queue);
11964 
11965 static void dev_memory_provider_uninstall(struct net_device *dev)
11966 {
11967 	unsigned int i;
11968 
11969 	for (i = 0; i < dev->real_num_rx_queues; i++) {
11970 		struct netdev_rx_queue *rxq = &dev->_rx[i];
11971 		struct pp_memory_provider_params *p = &rxq->mp_params;
11972 
11973 		if (p->mp_ops && p->mp_ops->uninstall)
11974 			p->mp_ops->uninstall(rxq->mp_params.mp_priv, rxq);
11975 	}
11976 }
11977 
11978 void unregister_netdevice_many_notify(struct list_head *head,
11979 				      u32 portid, const struct nlmsghdr *nlh)
11980 {
11981 	struct net_device *dev, *tmp;
11982 	LIST_HEAD(close_head);
11983 	int cnt = 0;
11984 
11985 	BUG_ON(dev_boot_phase);
11986 	ASSERT_RTNL();
11987 
11988 	if (list_empty(head))
11989 		return;
11990 
11991 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
11992 		/* Some devices call without registering
11993 		 * for initialization unwind. Remove those
11994 		 * devices and proceed with the remaining.
11995 		 */
11996 		if (dev->reg_state == NETREG_UNINITIALIZED) {
11997 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
11998 				 dev->name, dev);
11999 
12000 			WARN_ON(1);
12001 			list_del(&dev->unreg_list);
12002 			continue;
12003 		}
12004 		dev->dismantle = true;
12005 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
12006 	}
12007 
12008 	/* If device is running, close it first. */
12009 	list_for_each_entry(dev, head, unreg_list)
12010 		list_add_tail(&dev->close_list, &close_head);
12011 	dev_close_many(&close_head, true);
12012 
12013 	list_for_each_entry(dev, head, unreg_list) {
12014 		/* And unlink it from device chain. */
12015 		unlist_netdevice(dev);
12016 		netdev_lock(dev);
12017 		WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERING);
12018 		netdev_unlock(dev);
12019 	}
12020 	flush_all_backlogs();
12021 
12022 	synchronize_net();
12023 
12024 	list_for_each_entry(dev, head, unreg_list) {
12025 		struct sk_buff *skb = NULL;
12026 
12027 		/* Shutdown queueing discipline. */
12028 		dev_shutdown(dev);
12029 		dev_tcx_uninstall(dev);
12030 		dev_xdp_uninstall(dev);
12031 		bpf_dev_bound_netdev_unregister(dev);
12032 		dev_memory_provider_uninstall(dev);
12033 
12034 		netdev_offload_xstats_disable_all(dev);
12035 
12036 		/* Notify protocols, that we are about to destroy
12037 		 * this device. They should clean all the things.
12038 		 */
12039 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
12040 
12041 		if (!dev->rtnl_link_ops ||
12042 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
12043 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
12044 						     GFP_KERNEL, NULL, 0,
12045 						     portid, nlh);
12046 
12047 		/*
12048 		 *	Flush the unicast and multicast chains
12049 		 */
12050 		dev_uc_flush(dev);
12051 		dev_mc_flush(dev);
12052 
12053 		netdev_name_node_alt_flush(dev);
12054 		netdev_name_node_free(dev->name_node);
12055 
12056 		netdev_rss_contexts_free(dev);
12057 
12058 		call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
12059 
12060 		if (dev->netdev_ops->ndo_uninit)
12061 			dev->netdev_ops->ndo_uninit(dev);
12062 
12063 		mutex_destroy(&dev->ethtool->rss_lock);
12064 
12065 		net_shaper_flush_netdev(dev);
12066 
12067 		if (skb)
12068 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL, portid, nlh);
12069 
12070 		/* Notifier chain MUST detach us all upper devices. */
12071 		WARN_ON(netdev_has_any_upper_dev(dev));
12072 		WARN_ON(netdev_has_any_lower_dev(dev));
12073 
12074 		/* Remove entries from kobject tree */
12075 		netdev_unregister_kobject(dev);
12076 #ifdef CONFIG_XPS
12077 		/* Remove XPS queueing entries */
12078 		netif_reset_xps_queues_gt(dev, 0);
12079 #endif
12080 	}
12081 
12082 	synchronize_net();
12083 
12084 	list_for_each_entry(dev, head, unreg_list) {
12085 		netdev_put(dev, &dev->dev_registered_tracker);
12086 		net_set_todo(dev);
12087 		cnt++;
12088 	}
12089 	atomic_add(cnt, &dev_unreg_count);
12090 
12091 	list_del(head);
12092 }
12093 
12094 /**
12095  *	unregister_netdevice_many - unregister many devices
12096  *	@head: list of devices
12097  *
12098  *  Note: As most callers use a stack allocated list_head,
12099  *  we force a list_del() to make sure stack won't be corrupted later.
12100  */
12101 void unregister_netdevice_many(struct list_head *head)
12102 {
12103 	unregister_netdevice_many_notify(head, 0, NULL);
12104 }
12105 EXPORT_SYMBOL(unregister_netdevice_many);
12106 
12107 /**
12108  *	unregister_netdev - remove device from the kernel
12109  *	@dev: device
12110  *
12111  *	This function shuts down a device interface and removes it
12112  *	from the kernel tables.
12113  *
12114  *	This is just a wrapper for unregister_netdevice that takes
12115  *	the rtnl semaphore.  In general you want to use this and not
12116  *	unregister_netdevice.
12117  */
12118 void unregister_netdev(struct net_device *dev)
12119 {
12120 	rtnl_net_dev_lock(dev);
12121 	unregister_netdevice(dev);
12122 	rtnl_net_dev_unlock(dev);
12123 }
12124 EXPORT_SYMBOL(unregister_netdev);
12125 
12126 /**
12127  *	__dev_change_net_namespace - move device to different nethost namespace
12128  *	@dev: device
12129  *	@net: network namespace
12130  *	@pat: If not NULL name pattern to try if the current device name
12131  *	      is already taken in the destination network namespace.
12132  *	@new_ifindex: If not zero, specifies device index in the target
12133  *	              namespace.
12134  *	@extack: netlink extended ack
12135  *
12136  *	This function shuts down a device interface and moves it
12137  *	to a new network namespace. On success 0 is returned, on
12138  *	a failure a netagive errno code is returned.
12139  *
12140  *	Callers must hold the rtnl semaphore.
12141  */
12142 
12143 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
12144 			       const char *pat, int new_ifindex,
12145 			       struct netlink_ext_ack *extack)
12146 {
12147 	struct netdev_name_node *name_node;
12148 	struct net *net_old = dev_net(dev);
12149 	char new_name[IFNAMSIZ] = {};
12150 	int err, new_nsid;
12151 
12152 	ASSERT_RTNL();
12153 
12154 	/* Don't allow namespace local devices to be moved. */
12155 	err = -EINVAL;
12156 	if (dev->netns_immutable) {
12157 		NL_SET_ERR_MSG(extack, "The interface netns is immutable");
12158 		goto out;
12159 	}
12160 
12161 	/* Ensure the device has been registered */
12162 	if (dev->reg_state != NETREG_REGISTERED) {
12163 		NL_SET_ERR_MSG(extack, "The interface isn't registered");
12164 		goto out;
12165 	}
12166 
12167 	/* Get out if there is nothing todo */
12168 	err = 0;
12169 	if (net_eq(net_old, net))
12170 		goto out;
12171 
12172 	/* Pick the destination device name, and ensure
12173 	 * we can use it in the destination network namespace.
12174 	 */
12175 	err = -EEXIST;
12176 	if (netdev_name_in_use(net, dev->name)) {
12177 		/* We get here if we can't use the current device name */
12178 		if (!pat) {
12179 			NL_SET_ERR_MSG(extack,
12180 				       "An interface with the same name exists in the target netns");
12181 			goto out;
12182 		}
12183 		err = dev_prep_valid_name(net, dev, pat, new_name, EEXIST);
12184 		if (err < 0) {
12185 			NL_SET_ERR_MSG_FMT(extack,
12186 					   "Unable to use '%s' for the new interface name in the target netns",
12187 					   pat);
12188 			goto out;
12189 		}
12190 	}
12191 	/* Check that none of the altnames conflicts. */
12192 	err = -EEXIST;
12193 	netdev_for_each_altname(dev, name_node) {
12194 		if (netdev_name_in_use(net, name_node->name)) {
12195 			NL_SET_ERR_MSG_FMT(extack,
12196 					   "An interface with the altname %s exists in the target netns",
12197 					   name_node->name);
12198 			goto out;
12199 		}
12200 	}
12201 
12202 	/* Check that new_ifindex isn't used yet. */
12203 	if (new_ifindex) {
12204 		err = dev_index_reserve(net, new_ifindex);
12205 		if (err < 0) {
12206 			NL_SET_ERR_MSG_FMT(extack,
12207 					   "The ifindex %d is not available in the target netns",
12208 					   new_ifindex);
12209 			goto out;
12210 		}
12211 	} else {
12212 		/* If there is an ifindex conflict assign a new one */
12213 		err = dev_index_reserve(net, dev->ifindex);
12214 		if (err == -EBUSY)
12215 			err = dev_index_reserve(net, 0);
12216 		if (err < 0) {
12217 			NL_SET_ERR_MSG(extack,
12218 				       "Unable to allocate a new ifindex in the target netns");
12219 			goto out;
12220 		}
12221 		new_ifindex = err;
12222 	}
12223 
12224 	/*
12225 	 * And now a mini version of register_netdevice unregister_netdevice.
12226 	 */
12227 
12228 	/* If device is running close it first. */
12229 	dev_close(dev);
12230 
12231 	/* And unlink it from device chain */
12232 	unlist_netdevice(dev);
12233 
12234 	synchronize_net();
12235 
12236 	/* Shutdown queueing discipline. */
12237 	dev_shutdown(dev);
12238 
12239 	/* Notify protocols, that we are about to destroy
12240 	 * this device. They should clean all the things.
12241 	 *
12242 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
12243 	 * This is wanted because this way 8021q and macvlan know
12244 	 * the device is just moving and can keep their slaves up.
12245 	 */
12246 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
12247 	rcu_barrier();
12248 
12249 	new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
12250 
12251 	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
12252 			    new_ifindex);
12253 
12254 	/*
12255 	 *	Flush the unicast and multicast chains
12256 	 */
12257 	dev_uc_flush(dev);
12258 	dev_mc_flush(dev);
12259 
12260 	/* Send a netdev-removed uevent to the old namespace */
12261 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
12262 	netdev_adjacent_del_links(dev);
12263 
12264 	/* Move per-net netdevice notifiers that are following the netdevice */
12265 	move_netdevice_notifiers_dev_net(dev, net);
12266 
12267 	/* Actually switch the network namespace */
12268 	dev_net_set(dev, net);
12269 	dev->ifindex = new_ifindex;
12270 
12271 	if (new_name[0]) {
12272 		/* Rename the netdev to prepared name */
12273 		write_seqlock_bh(&netdev_rename_lock);
12274 		strscpy(dev->name, new_name, IFNAMSIZ);
12275 		write_sequnlock_bh(&netdev_rename_lock);
12276 	}
12277 
12278 	/* Fixup kobjects */
12279 	dev_set_uevent_suppress(&dev->dev, 1);
12280 	err = device_rename(&dev->dev, dev->name);
12281 	dev_set_uevent_suppress(&dev->dev, 0);
12282 	WARN_ON(err);
12283 
12284 	/* Send a netdev-add uevent to the new namespace */
12285 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
12286 	netdev_adjacent_add_links(dev);
12287 
12288 	/* Adapt owner in case owning user namespace of target network
12289 	 * namespace is different from the original one.
12290 	 */
12291 	err = netdev_change_owner(dev, net_old, net);
12292 	WARN_ON(err);
12293 
12294 	/* Add the device back in the hashes */
12295 	list_netdevice(dev);
12296 
12297 	/* Notify protocols, that a new device appeared. */
12298 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
12299 
12300 	/*
12301 	 *	Prevent userspace races by waiting until the network
12302 	 *	device is fully setup before sending notifications.
12303 	 */
12304 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
12305 
12306 	synchronize_net();
12307 	err = 0;
12308 out:
12309 	return err;
12310 }
12311 EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
12312 
12313 static int dev_cpu_dead(unsigned int oldcpu)
12314 {
12315 	struct sk_buff **list_skb;
12316 	struct sk_buff *skb;
12317 	unsigned int cpu;
12318 	struct softnet_data *sd, *oldsd, *remsd = NULL;
12319 
12320 	local_irq_disable();
12321 	cpu = smp_processor_id();
12322 	sd = &per_cpu(softnet_data, cpu);
12323 	oldsd = &per_cpu(softnet_data, oldcpu);
12324 
12325 	/* Find end of our completion_queue. */
12326 	list_skb = &sd->completion_queue;
12327 	while (*list_skb)
12328 		list_skb = &(*list_skb)->next;
12329 	/* Append completion queue from offline CPU. */
12330 	*list_skb = oldsd->completion_queue;
12331 	oldsd->completion_queue = NULL;
12332 
12333 	/* Append output queue from offline CPU. */
12334 	if (oldsd->output_queue) {
12335 		*sd->output_queue_tailp = oldsd->output_queue;
12336 		sd->output_queue_tailp = oldsd->output_queue_tailp;
12337 		oldsd->output_queue = NULL;
12338 		oldsd->output_queue_tailp = &oldsd->output_queue;
12339 	}
12340 	/* Append NAPI poll list from offline CPU, with one exception :
12341 	 * process_backlog() must be called by cpu owning percpu backlog.
12342 	 * We properly handle process_queue & input_pkt_queue later.
12343 	 */
12344 	while (!list_empty(&oldsd->poll_list)) {
12345 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
12346 							    struct napi_struct,
12347 							    poll_list);
12348 
12349 		list_del_init(&napi->poll_list);
12350 		if (napi->poll == process_backlog)
12351 			napi->state &= NAPIF_STATE_THREADED;
12352 		else
12353 			____napi_schedule(sd, napi);
12354 	}
12355 
12356 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
12357 	local_irq_enable();
12358 
12359 	if (!use_backlog_threads()) {
12360 #ifdef CONFIG_RPS
12361 		remsd = oldsd->rps_ipi_list;
12362 		oldsd->rps_ipi_list = NULL;
12363 #endif
12364 		/* send out pending IPI's on offline CPU */
12365 		net_rps_send_ipi(remsd);
12366 	}
12367 
12368 	/* Process offline CPU's input_pkt_queue */
12369 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
12370 		netif_rx(skb);
12371 		rps_input_queue_head_incr(oldsd);
12372 	}
12373 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
12374 		netif_rx(skb);
12375 		rps_input_queue_head_incr(oldsd);
12376 	}
12377 
12378 	return 0;
12379 }
12380 
12381 /**
12382  *	netdev_increment_features - increment feature set by one
12383  *	@all: current feature set
12384  *	@one: new feature set
12385  *	@mask: mask feature set
12386  *
12387  *	Computes a new feature set after adding a device with feature set
12388  *	@one to the master device with current feature set @all.  Will not
12389  *	enable anything that is off in @mask. Returns the new feature set.
12390  */
12391 netdev_features_t netdev_increment_features(netdev_features_t all,
12392 	netdev_features_t one, netdev_features_t mask)
12393 {
12394 	if (mask & NETIF_F_HW_CSUM)
12395 		mask |= NETIF_F_CSUM_MASK;
12396 	mask |= NETIF_F_VLAN_CHALLENGED;
12397 
12398 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
12399 	all &= one | ~NETIF_F_ALL_FOR_ALL;
12400 
12401 	/* If one device supports hw checksumming, set for all. */
12402 	if (all & NETIF_F_HW_CSUM)
12403 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
12404 
12405 	return all;
12406 }
12407 EXPORT_SYMBOL(netdev_increment_features);
12408 
12409 static struct hlist_head * __net_init netdev_create_hash(void)
12410 {
12411 	int i;
12412 	struct hlist_head *hash;
12413 
12414 	hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
12415 	if (hash != NULL)
12416 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
12417 			INIT_HLIST_HEAD(&hash[i]);
12418 
12419 	return hash;
12420 }
12421 
12422 /* Initialize per network namespace state */
12423 static int __net_init netdev_init(struct net *net)
12424 {
12425 	BUILD_BUG_ON(GRO_HASH_BUCKETS >
12426 		     BITS_PER_BYTE * sizeof_field(struct gro_node, bitmask));
12427 
12428 	INIT_LIST_HEAD(&net->dev_base_head);
12429 
12430 	net->dev_name_head = netdev_create_hash();
12431 	if (net->dev_name_head == NULL)
12432 		goto err_name;
12433 
12434 	net->dev_index_head = netdev_create_hash();
12435 	if (net->dev_index_head == NULL)
12436 		goto err_idx;
12437 
12438 	xa_init_flags(&net->dev_by_index, XA_FLAGS_ALLOC1);
12439 
12440 	RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
12441 
12442 	return 0;
12443 
12444 err_idx:
12445 	kfree(net->dev_name_head);
12446 err_name:
12447 	return -ENOMEM;
12448 }
12449 
12450 /**
12451  *	netdev_drivername - network driver for the device
12452  *	@dev: network device
12453  *
12454  *	Determine network driver for device.
12455  */
12456 const char *netdev_drivername(const struct net_device *dev)
12457 {
12458 	const struct device_driver *driver;
12459 	const struct device *parent;
12460 	const char *empty = "";
12461 
12462 	parent = dev->dev.parent;
12463 	if (!parent)
12464 		return empty;
12465 
12466 	driver = parent->driver;
12467 	if (driver && driver->name)
12468 		return driver->name;
12469 	return empty;
12470 }
12471 
12472 static void __netdev_printk(const char *level, const struct net_device *dev,
12473 			    struct va_format *vaf)
12474 {
12475 	if (dev && dev->dev.parent) {
12476 		dev_printk_emit(level[1] - '0',
12477 				dev->dev.parent,
12478 				"%s %s %s%s: %pV",
12479 				dev_driver_string(dev->dev.parent),
12480 				dev_name(dev->dev.parent),
12481 				netdev_name(dev), netdev_reg_state(dev),
12482 				vaf);
12483 	} else if (dev) {
12484 		printk("%s%s%s: %pV",
12485 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
12486 	} else {
12487 		printk("%s(NULL net_device): %pV", level, vaf);
12488 	}
12489 }
12490 
12491 void netdev_printk(const char *level, const struct net_device *dev,
12492 		   const char *format, ...)
12493 {
12494 	struct va_format vaf;
12495 	va_list args;
12496 
12497 	va_start(args, format);
12498 
12499 	vaf.fmt = format;
12500 	vaf.va = &args;
12501 
12502 	__netdev_printk(level, dev, &vaf);
12503 
12504 	va_end(args);
12505 }
12506 EXPORT_SYMBOL(netdev_printk);
12507 
12508 #define define_netdev_printk_level(func, level)			\
12509 void func(const struct net_device *dev, const char *fmt, ...)	\
12510 {								\
12511 	struct va_format vaf;					\
12512 	va_list args;						\
12513 								\
12514 	va_start(args, fmt);					\
12515 								\
12516 	vaf.fmt = fmt;						\
12517 	vaf.va = &args;						\
12518 								\
12519 	__netdev_printk(level, dev, &vaf);			\
12520 								\
12521 	va_end(args);						\
12522 }								\
12523 EXPORT_SYMBOL(func);
12524 
12525 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
12526 define_netdev_printk_level(netdev_alert, KERN_ALERT);
12527 define_netdev_printk_level(netdev_crit, KERN_CRIT);
12528 define_netdev_printk_level(netdev_err, KERN_ERR);
12529 define_netdev_printk_level(netdev_warn, KERN_WARNING);
12530 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
12531 define_netdev_printk_level(netdev_info, KERN_INFO);
12532 
12533 static void __net_exit netdev_exit(struct net *net)
12534 {
12535 	kfree(net->dev_name_head);
12536 	kfree(net->dev_index_head);
12537 	xa_destroy(&net->dev_by_index);
12538 	if (net != &init_net)
12539 		WARN_ON_ONCE(!list_empty(&net->dev_base_head));
12540 }
12541 
12542 static struct pernet_operations __net_initdata netdev_net_ops = {
12543 	.init = netdev_init,
12544 	.exit = netdev_exit,
12545 };
12546 
12547 static void __net_exit default_device_exit_net(struct net *net)
12548 {
12549 	struct netdev_name_node *name_node, *tmp;
12550 	struct net_device *dev, *aux;
12551 	/*
12552 	 * Push all migratable network devices back to the
12553 	 * initial network namespace
12554 	 */
12555 	ASSERT_RTNL();
12556 	for_each_netdev_safe(net, dev, aux) {
12557 		int err;
12558 		char fb_name[IFNAMSIZ];
12559 
12560 		/* Ignore unmoveable devices (i.e. loopback) */
12561 		if (dev->netns_immutable)
12562 			continue;
12563 
12564 		/* Leave virtual devices for the generic cleanup */
12565 		if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
12566 			continue;
12567 
12568 		/* Push remaining network devices to init_net */
12569 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
12570 		if (netdev_name_in_use(&init_net, fb_name))
12571 			snprintf(fb_name, IFNAMSIZ, "dev%%d");
12572 
12573 		netdev_for_each_altname_safe(dev, name_node, tmp)
12574 			if (netdev_name_in_use(&init_net, name_node->name))
12575 				__netdev_name_node_alt_destroy(name_node);
12576 
12577 		err = dev_change_net_namespace(dev, &init_net, fb_name);
12578 		if (err) {
12579 			pr_emerg("%s: failed to move %s to init_net: %d\n",
12580 				 __func__, dev->name, err);
12581 			BUG();
12582 		}
12583 	}
12584 }
12585 
12586 static void __net_exit default_device_exit_batch(struct list_head *net_list)
12587 {
12588 	/* At exit all network devices most be removed from a network
12589 	 * namespace.  Do this in the reverse order of registration.
12590 	 * Do this across as many network namespaces as possible to
12591 	 * improve batching efficiency.
12592 	 */
12593 	struct net_device *dev;
12594 	struct net *net;
12595 	LIST_HEAD(dev_kill_list);
12596 
12597 	rtnl_lock();
12598 	list_for_each_entry(net, net_list, exit_list) {
12599 		default_device_exit_net(net);
12600 		cond_resched();
12601 	}
12602 
12603 	list_for_each_entry(net, net_list, exit_list) {
12604 		for_each_netdev_reverse(net, dev) {
12605 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
12606 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
12607 			else
12608 				unregister_netdevice_queue(dev, &dev_kill_list);
12609 		}
12610 	}
12611 	unregister_netdevice_many(&dev_kill_list);
12612 	rtnl_unlock();
12613 }
12614 
12615 static struct pernet_operations __net_initdata default_device_ops = {
12616 	.exit_batch = default_device_exit_batch,
12617 };
12618 
12619 static void __init net_dev_struct_check(void)
12620 {
12621 	/* TX read-mostly hotpath */
12622 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, priv_flags_fast);
12623 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, netdev_ops);
12624 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, header_ops);
12625 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, _tx);
12626 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, real_num_tx_queues);
12627 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_size);
12628 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_ipv4_max_size);
12629 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_segs);
12630 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_partial_features);
12631 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, num_tc);
12632 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, mtu);
12633 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, needed_headroom);
12634 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tc_to_txq);
12635 #ifdef CONFIG_XPS
12636 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, xps_maps);
12637 #endif
12638 #ifdef CONFIG_NETFILTER_EGRESS
12639 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, nf_hooks_egress);
12640 #endif
12641 #ifdef CONFIG_NET_XGRESS
12642 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tcx_egress);
12643 #endif
12644 	CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_tx, 160);
12645 
12646 	/* TXRX read-mostly hotpath */
12647 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, lstats);
12648 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, state);
12649 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, flags);
12650 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, hard_header_len);
12651 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, features);
12652 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, ip6_ptr);
12653 	CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_txrx, 46);
12654 
12655 	/* RX read-mostly hotpath */
12656 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ptype_specific);
12657 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ifindex);
12658 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, real_num_rx_queues);
12659 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, _rx);
12660 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_max_size);
12661 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_ipv4_max_size);
12662 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler);
12663 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler_data);
12664 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, nd_net);
12665 #ifdef CONFIG_NETPOLL
12666 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, npinfo);
12667 #endif
12668 #ifdef CONFIG_NET_XGRESS
12669 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, tcx_ingress);
12670 #endif
12671 	CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_rx, 92);
12672 }
12673 
12674 /*
12675  *	Initialize the DEV module. At boot time this walks the device list and
12676  *	unhooks any devices that fail to initialise (normally hardware not
12677  *	present) and leaves us with a valid list of present and active devices.
12678  *
12679  */
12680 
12681 /* We allocate 256 pages for each CPU if PAGE_SHIFT is 12 */
12682 #define SYSTEM_PERCPU_PAGE_POOL_SIZE	((1 << 20) / PAGE_SIZE)
12683 
12684 static int net_page_pool_create(int cpuid)
12685 {
12686 #if IS_ENABLED(CONFIG_PAGE_POOL)
12687 	struct page_pool_params page_pool_params = {
12688 		.pool_size = SYSTEM_PERCPU_PAGE_POOL_SIZE,
12689 		.flags = PP_FLAG_SYSTEM_POOL,
12690 		.nid = cpu_to_mem(cpuid),
12691 	};
12692 	struct page_pool *pp_ptr;
12693 	int err;
12694 
12695 	pp_ptr = page_pool_create_percpu(&page_pool_params, cpuid);
12696 	if (IS_ERR(pp_ptr))
12697 		return -ENOMEM;
12698 
12699 	err = xdp_reg_page_pool(pp_ptr);
12700 	if (err) {
12701 		page_pool_destroy(pp_ptr);
12702 		return err;
12703 	}
12704 
12705 	per_cpu(system_page_pool, cpuid) = pp_ptr;
12706 #endif
12707 	return 0;
12708 }
12709 
12710 static int backlog_napi_should_run(unsigned int cpu)
12711 {
12712 	struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
12713 	struct napi_struct *napi = &sd->backlog;
12714 
12715 	return test_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
12716 }
12717 
12718 static void run_backlog_napi(unsigned int cpu)
12719 {
12720 	struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
12721 
12722 	napi_threaded_poll_loop(&sd->backlog);
12723 }
12724 
12725 static void backlog_napi_setup(unsigned int cpu)
12726 {
12727 	struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
12728 	struct napi_struct *napi = &sd->backlog;
12729 
12730 	napi->thread = this_cpu_read(backlog_napi);
12731 	set_bit(NAPI_STATE_THREADED, &napi->state);
12732 }
12733 
12734 static struct smp_hotplug_thread backlog_threads = {
12735 	.store			= &backlog_napi,
12736 	.thread_should_run	= backlog_napi_should_run,
12737 	.thread_fn		= run_backlog_napi,
12738 	.thread_comm		= "backlog_napi/%u",
12739 	.setup			= backlog_napi_setup,
12740 };
12741 
12742 /*
12743  *       This is called single threaded during boot, so no need
12744  *       to take the rtnl semaphore.
12745  */
12746 static int __init net_dev_init(void)
12747 {
12748 	int i, rc = -ENOMEM;
12749 
12750 	BUG_ON(!dev_boot_phase);
12751 
12752 	net_dev_struct_check();
12753 
12754 	if (dev_proc_init())
12755 		goto out;
12756 
12757 	if (netdev_kobject_init())
12758 		goto out;
12759 
12760 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
12761 		INIT_LIST_HEAD(&ptype_base[i]);
12762 
12763 	if (register_pernet_subsys(&netdev_net_ops))
12764 		goto out;
12765 
12766 	/*
12767 	 *	Initialise the packet receive queues.
12768 	 */
12769 
12770 	flush_backlogs_fallback = flush_backlogs_alloc();
12771 	if (!flush_backlogs_fallback)
12772 		goto out;
12773 
12774 	for_each_possible_cpu(i) {
12775 		struct softnet_data *sd = &per_cpu(softnet_data, i);
12776 
12777 		skb_queue_head_init(&sd->input_pkt_queue);
12778 		skb_queue_head_init(&sd->process_queue);
12779 #ifdef CONFIG_XFRM_OFFLOAD
12780 		skb_queue_head_init(&sd->xfrm_backlog);
12781 #endif
12782 		INIT_LIST_HEAD(&sd->poll_list);
12783 		sd->output_queue_tailp = &sd->output_queue;
12784 #ifdef CONFIG_RPS
12785 		INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
12786 		sd->cpu = i;
12787 #endif
12788 		INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd);
12789 		spin_lock_init(&sd->defer_lock);
12790 
12791 		gro_init(&sd->backlog.gro);
12792 		sd->backlog.poll = process_backlog;
12793 		sd->backlog.weight = weight_p;
12794 		INIT_LIST_HEAD(&sd->backlog.poll_list);
12795 
12796 		if (net_page_pool_create(i))
12797 			goto out;
12798 	}
12799 	if (use_backlog_threads())
12800 		smpboot_register_percpu_thread(&backlog_threads);
12801 
12802 	dev_boot_phase = 0;
12803 
12804 	/* The loopback device is special if any other network devices
12805 	 * is present in a network namespace the loopback device must
12806 	 * be present. Since we now dynamically allocate and free the
12807 	 * loopback device ensure this invariant is maintained by
12808 	 * keeping the loopback device as the first device on the
12809 	 * list of network devices.  Ensuring the loopback devices
12810 	 * is the first device that appears and the last network device
12811 	 * that disappears.
12812 	 */
12813 	if (register_pernet_device(&loopback_net_ops))
12814 		goto out;
12815 
12816 	if (register_pernet_device(&default_device_ops))
12817 		goto out;
12818 
12819 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
12820 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
12821 
12822 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
12823 				       NULL, dev_cpu_dead);
12824 	WARN_ON(rc < 0);
12825 	rc = 0;
12826 
12827 	/* avoid static key IPIs to isolated CPUs */
12828 	if (housekeeping_enabled(HK_TYPE_MISC))
12829 		net_enable_timestamp();
12830 out:
12831 	if (rc < 0) {
12832 		for_each_possible_cpu(i) {
12833 			struct page_pool *pp_ptr;
12834 
12835 			pp_ptr = per_cpu(system_page_pool, i);
12836 			if (!pp_ptr)
12837 				continue;
12838 
12839 			xdp_unreg_page_pool(pp_ptr);
12840 			page_pool_destroy(pp_ptr);
12841 			per_cpu(system_page_pool, i) = NULL;
12842 		}
12843 	}
12844 
12845 	return rc;
12846 }
12847 
12848 subsys_initcall(net_dev_init);
12849