1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * NET3 Protocol independent device support routines. 4 * 5 * Derived from the non IP parts of dev.c 1.0.19 6 * Authors: Ross Biro 7 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 8 * Mark Evans, <evansmp@uhura.aston.ac.uk> 9 * 10 * Additional Authors: 11 * Florian la Roche <rzsfl@rz.uni-sb.de> 12 * Alan Cox <gw4pts@gw4pts.ampr.org> 13 * David Hinds <dahinds@users.sourceforge.net> 14 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 15 * Adam Sulmicki <adam@cfar.umd.edu> 16 * Pekka Riikonen <priikone@poesidon.pspt.fi> 17 * 18 * Changes: 19 * D.J. Barrow : Fixed bug where dev->refcnt gets set 20 * to 2 if register_netdev gets called 21 * before net_dev_init & also removed a 22 * few lines of code in the process. 23 * Alan Cox : device private ioctl copies fields back. 24 * Alan Cox : Transmit queue code does relevant 25 * stunts to keep the queue safe. 26 * Alan Cox : Fixed double lock. 27 * Alan Cox : Fixed promisc NULL pointer trap 28 * ???????? : Support the full private ioctl range 29 * Alan Cox : Moved ioctl permission check into 30 * drivers 31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 32 * Alan Cox : 100 backlog just doesn't cut it when 33 * you start doing multicast video 8) 34 * Alan Cox : Rewrote net_bh and list manager. 35 * Alan Cox : Fix ETH_P_ALL echoback lengths. 36 * Alan Cox : Took out transmit every packet pass 37 * Saved a few bytes in the ioctl handler 38 * Alan Cox : Network driver sets packet type before 39 * calling netif_rx. Saves a function 40 * call a packet. 41 * Alan Cox : Hashed net_bh() 42 * Richard Kooijman: Timestamp fixes. 43 * Alan Cox : Wrong field in SIOCGIFDSTADDR 44 * Alan Cox : Device lock protection. 45 * Alan Cox : Fixed nasty side effect of device close 46 * changes. 47 * Rudi Cilibrasi : Pass the right thing to 48 * set_mac_address() 49 * Dave Miller : 32bit quantity for the device lock to 50 * make it work out on a Sparc. 51 * Bjorn Ekwall : Added KERNELD hack. 52 * Alan Cox : Cleaned up the backlog initialise. 53 * Craig Metz : SIOCGIFCONF fix if space for under 54 * 1 device. 55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 56 * is no device open function. 57 * Andi Kleen : Fix error reporting for SIOCGIFCONF 58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 59 * Cyrus Durgin : Cleaned for KMOD 60 * Adam Sulmicki : Bug Fix : Network Device Unload 61 * A network device unload needs to purge 62 * the backlog queue. 63 * Paul Rusty Russell : SIOCSIFNAME 64 * Pekka Riikonen : Netdev boot-time settings code 65 * Andrew Morton : Make unregister_netdevice wait 66 * indefinitely on dev->refcnt 67 * J Hadi Salim : - Backlog queue sampling 68 * - netif_rx() feedback 69 */ 70 71 #include <linux/uaccess.h> 72 #include <linux/bitops.h> 73 #include <linux/capability.h> 74 #include <linux/cpu.h> 75 #include <linux/types.h> 76 #include <linux/kernel.h> 77 #include <linux/hash.h> 78 #include <linux/slab.h> 79 #include <linux/sched.h> 80 #include <linux/sched/mm.h> 81 #include <linux/mutex.h> 82 #include <linux/string.h> 83 #include <linux/mm.h> 84 #include <linux/socket.h> 85 #include <linux/sockios.h> 86 #include <linux/errno.h> 87 #include <linux/interrupt.h> 88 #include <linux/if_ether.h> 89 #include <linux/netdevice.h> 90 #include <linux/etherdevice.h> 91 #include <linux/ethtool.h> 92 #include <linux/skbuff.h> 93 #include <linux/bpf.h> 94 #include <linux/bpf_trace.h> 95 #include <net/net_namespace.h> 96 #include <net/sock.h> 97 #include <net/busy_poll.h> 98 #include <linux/rtnetlink.h> 99 #include <linux/stat.h> 100 #include <net/dst.h> 101 #include <net/dst_metadata.h> 102 #include <net/pkt_sched.h> 103 #include <net/pkt_cls.h> 104 #include <net/checksum.h> 105 #include <net/xfrm.h> 106 #include <linux/highmem.h> 107 #include <linux/init.h> 108 #include <linux/module.h> 109 #include <linux/netpoll.h> 110 #include <linux/rcupdate.h> 111 #include <linux/delay.h> 112 #include <net/iw_handler.h> 113 #include <asm/current.h> 114 #include <linux/audit.h> 115 #include <linux/dmaengine.h> 116 #include <linux/err.h> 117 #include <linux/ctype.h> 118 #include <linux/if_arp.h> 119 #include <linux/if_vlan.h> 120 #include <linux/ip.h> 121 #include <net/ip.h> 122 #include <net/mpls.h> 123 #include <linux/ipv6.h> 124 #include <linux/in.h> 125 #include <linux/jhash.h> 126 #include <linux/random.h> 127 #include <trace/events/napi.h> 128 #include <trace/events/net.h> 129 #include <trace/events/skb.h> 130 #include <linux/inetdevice.h> 131 #include <linux/cpu_rmap.h> 132 #include <linux/static_key.h> 133 #include <linux/hashtable.h> 134 #include <linux/vmalloc.h> 135 #include <linux/if_macvlan.h> 136 #include <linux/errqueue.h> 137 #include <linux/hrtimer.h> 138 #include <linux/netfilter_ingress.h> 139 #include <linux/crash_dump.h> 140 #include <linux/sctp.h> 141 #include <net/udp_tunnel.h> 142 #include <linux/net_namespace.h> 143 #include <linux/indirect_call_wrapper.h> 144 #include <net/devlink.h> 145 146 #include "net-sysfs.h" 147 148 #define MAX_GRO_SKBS 8 149 #define MAX_NEST_DEV 8 150 151 /* This should be increased if a protocol with a bigger head is added. */ 152 #define GRO_MAX_HEAD (MAX_HEADER + 128) 153 154 static DEFINE_SPINLOCK(ptype_lock); 155 static DEFINE_SPINLOCK(offload_lock); 156 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 157 struct list_head ptype_all __read_mostly; /* Taps */ 158 static struct list_head offload_base __read_mostly; 159 160 static int netif_rx_internal(struct sk_buff *skb); 161 static int call_netdevice_notifiers_info(unsigned long val, 162 struct netdev_notifier_info *info); 163 static int call_netdevice_notifiers_extack(unsigned long val, 164 struct net_device *dev, 165 struct netlink_ext_ack *extack); 166 static struct napi_struct *napi_by_id(unsigned int napi_id); 167 168 /* 169 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 170 * semaphore. 171 * 172 * Pure readers hold dev_base_lock for reading, or rcu_read_lock() 173 * 174 * Writers must hold the rtnl semaphore while they loop through the 175 * dev_base_head list, and hold dev_base_lock for writing when they do the 176 * actual updates. This allows pure readers to access the list even 177 * while a writer is preparing to update it. 178 * 179 * To put it another way, dev_base_lock is held for writing only to 180 * protect against pure readers; the rtnl semaphore provides the 181 * protection against other writers. 182 * 183 * See, for example usages, register_netdevice() and 184 * unregister_netdevice(), which must be called with the rtnl 185 * semaphore held. 186 */ 187 DEFINE_RWLOCK(dev_base_lock); 188 EXPORT_SYMBOL(dev_base_lock); 189 190 static DEFINE_MUTEX(ifalias_mutex); 191 192 /* protects napi_hash addition/deletion and napi_gen_id */ 193 static DEFINE_SPINLOCK(napi_hash_lock); 194 195 static unsigned int napi_gen_id = NR_CPUS; 196 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8); 197 198 static seqcount_t devnet_rename_seq; 199 200 static inline void dev_base_seq_inc(struct net *net) 201 { 202 while (++net->dev_base_seq == 0) 203 ; 204 } 205 206 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 207 { 208 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ)); 209 210 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 211 } 212 213 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 214 { 215 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 216 } 217 218 static inline void rps_lock(struct softnet_data *sd) 219 { 220 #ifdef CONFIG_RPS 221 spin_lock(&sd->input_pkt_queue.lock); 222 #endif 223 } 224 225 static inline void rps_unlock(struct softnet_data *sd) 226 { 227 #ifdef CONFIG_RPS 228 spin_unlock(&sd->input_pkt_queue.lock); 229 #endif 230 } 231 232 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev, 233 const char *name) 234 { 235 struct netdev_name_node *name_node; 236 237 name_node = kmalloc(sizeof(*name_node), GFP_KERNEL); 238 if (!name_node) 239 return NULL; 240 INIT_HLIST_NODE(&name_node->hlist); 241 name_node->dev = dev; 242 name_node->name = name; 243 return name_node; 244 } 245 246 static struct netdev_name_node * 247 netdev_name_node_head_alloc(struct net_device *dev) 248 { 249 struct netdev_name_node *name_node; 250 251 name_node = netdev_name_node_alloc(dev, dev->name); 252 if (!name_node) 253 return NULL; 254 INIT_LIST_HEAD(&name_node->list); 255 return name_node; 256 } 257 258 static void netdev_name_node_free(struct netdev_name_node *name_node) 259 { 260 kfree(name_node); 261 } 262 263 static void netdev_name_node_add(struct net *net, 264 struct netdev_name_node *name_node) 265 { 266 hlist_add_head_rcu(&name_node->hlist, 267 dev_name_hash(net, name_node->name)); 268 } 269 270 static void netdev_name_node_del(struct netdev_name_node *name_node) 271 { 272 hlist_del_rcu(&name_node->hlist); 273 } 274 275 static struct netdev_name_node *netdev_name_node_lookup(struct net *net, 276 const char *name) 277 { 278 struct hlist_head *head = dev_name_hash(net, name); 279 struct netdev_name_node *name_node; 280 281 hlist_for_each_entry(name_node, head, hlist) 282 if (!strcmp(name_node->name, name)) 283 return name_node; 284 return NULL; 285 } 286 287 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net, 288 const char *name) 289 { 290 struct hlist_head *head = dev_name_hash(net, name); 291 struct netdev_name_node *name_node; 292 293 hlist_for_each_entry_rcu(name_node, head, hlist) 294 if (!strcmp(name_node->name, name)) 295 return name_node; 296 return NULL; 297 } 298 299 int netdev_name_node_alt_create(struct net_device *dev, const char *name) 300 { 301 struct netdev_name_node *name_node; 302 struct net *net = dev_net(dev); 303 304 name_node = netdev_name_node_lookup(net, name); 305 if (name_node) 306 return -EEXIST; 307 name_node = netdev_name_node_alloc(dev, name); 308 if (!name_node) 309 return -ENOMEM; 310 netdev_name_node_add(net, name_node); 311 /* The node that holds dev->name acts as a head of per-device list. */ 312 list_add_tail(&name_node->list, &dev->name_node->list); 313 314 return 0; 315 } 316 EXPORT_SYMBOL(netdev_name_node_alt_create); 317 318 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node) 319 { 320 list_del(&name_node->list); 321 netdev_name_node_del(name_node); 322 kfree(name_node->name); 323 netdev_name_node_free(name_node); 324 } 325 326 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name) 327 { 328 struct netdev_name_node *name_node; 329 struct net *net = dev_net(dev); 330 331 name_node = netdev_name_node_lookup(net, name); 332 if (!name_node) 333 return -ENOENT; 334 __netdev_name_node_alt_destroy(name_node); 335 336 return 0; 337 } 338 EXPORT_SYMBOL(netdev_name_node_alt_destroy); 339 340 static void netdev_name_node_alt_flush(struct net_device *dev) 341 { 342 struct netdev_name_node *name_node, *tmp; 343 344 list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list) 345 __netdev_name_node_alt_destroy(name_node); 346 } 347 348 /* Device list insertion */ 349 static void list_netdevice(struct net_device *dev) 350 { 351 struct net *net = dev_net(dev); 352 353 ASSERT_RTNL(); 354 355 write_lock_bh(&dev_base_lock); 356 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 357 netdev_name_node_add(net, dev->name_node); 358 hlist_add_head_rcu(&dev->index_hlist, 359 dev_index_hash(net, dev->ifindex)); 360 write_unlock_bh(&dev_base_lock); 361 362 dev_base_seq_inc(net); 363 } 364 365 /* Device list removal 366 * caller must respect a RCU grace period before freeing/reusing dev 367 */ 368 static void unlist_netdevice(struct net_device *dev) 369 { 370 ASSERT_RTNL(); 371 372 /* Unlink dev from the device chain */ 373 write_lock_bh(&dev_base_lock); 374 list_del_rcu(&dev->dev_list); 375 netdev_name_node_del(dev->name_node); 376 hlist_del_rcu(&dev->index_hlist); 377 write_unlock_bh(&dev_base_lock); 378 379 dev_base_seq_inc(dev_net(dev)); 380 } 381 382 /* 383 * Our notifier list 384 */ 385 386 static RAW_NOTIFIER_HEAD(netdev_chain); 387 388 /* 389 * Device drivers call our routines to queue packets here. We empty the 390 * queue in the local softnet handler. 391 */ 392 393 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 394 EXPORT_PER_CPU_SYMBOL(softnet_data); 395 396 /******************************************************************************* 397 * 398 * Protocol management and registration routines 399 * 400 *******************************************************************************/ 401 402 403 /* 404 * Add a protocol ID to the list. Now that the input handler is 405 * smarter we can dispense with all the messy stuff that used to be 406 * here. 407 * 408 * BEWARE!!! Protocol handlers, mangling input packets, 409 * MUST BE last in hash buckets and checking protocol handlers 410 * MUST start from promiscuous ptype_all chain in net_bh. 411 * It is true now, do not change it. 412 * Explanation follows: if protocol handler, mangling packet, will 413 * be the first on list, it is not able to sense, that packet 414 * is cloned and should be copied-on-write, so that it will 415 * change it and subsequent readers will get broken packet. 416 * --ANK (980803) 417 */ 418 419 static inline struct list_head *ptype_head(const struct packet_type *pt) 420 { 421 if (pt->type == htons(ETH_P_ALL)) 422 return pt->dev ? &pt->dev->ptype_all : &ptype_all; 423 else 424 return pt->dev ? &pt->dev->ptype_specific : 425 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 426 } 427 428 /** 429 * dev_add_pack - add packet handler 430 * @pt: packet type declaration 431 * 432 * Add a protocol handler to the networking stack. The passed &packet_type 433 * is linked into kernel lists and may not be freed until it has been 434 * removed from the kernel lists. 435 * 436 * This call does not sleep therefore it can not 437 * guarantee all CPU's that are in middle of receiving packets 438 * will see the new packet type (until the next received packet). 439 */ 440 441 void dev_add_pack(struct packet_type *pt) 442 { 443 struct list_head *head = ptype_head(pt); 444 445 spin_lock(&ptype_lock); 446 list_add_rcu(&pt->list, head); 447 spin_unlock(&ptype_lock); 448 } 449 EXPORT_SYMBOL(dev_add_pack); 450 451 /** 452 * __dev_remove_pack - remove packet handler 453 * @pt: packet type declaration 454 * 455 * Remove a protocol handler that was previously added to the kernel 456 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 457 * from the kernel lists and can be freed or reused once this function 458 * returns. 459 * 460 * The packet type might still be in use by receivers 461 * and must not be freed until after all the CPU's have gone 462 * through a quiescent state. 463 */ 464 void __dev_remove_pack(struct packet_type *pt) 465 { 466 struct list_head *head = ptype_head(pt); 467 struct packet_type *pt1; 468 469 spin_lock(&ptype_lock); 470 471 list_for_each_entry(pt1, head, list) { 472 if (pt == pt1) { 473 list_del_rcu(&pt->list); 474 goto out; 475 } 476 } 477 478 pr_warn("dev_remove_pack: %p not found\n", pt); 479 out: 480 spin_unlock(&ptype_lock); 481 } 482 EXPORT_SYMBOL(__dev_remove_pack); 483 484 /** 485 * dev_remove_pack - remove packet handler 486 * @pt: packet type declaration 487 * 488 * Remove a protocol handler that was previously added to the kernel 489 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 490 * from the kernel lists and can be freed or reused once this function 491 * returns. 492 * 493 * This call sleeps to guarantee that no CPU is looking at the packet 494 * type after return. 495 */ 496 void dev_remove_pack(struct packet_type *pt) 497 { 498 __dev_remove_pack(pt); 499 500 synchronize_net(); 501 } 502 EXPORT_SYMBOL(dev_remove_pack); 503 504 505 /** 506 * dev_add_offload - register offload handlers 507 * @po: protocol offload declaration 508 * 509 * Add protocol offload handlers to the networking stack. The passed 510 * &proto_offload is linked into kernel lists and may not be freed until 511 * it has been removed from the kernel lists. 512 * 513 * This call does not sleep therefore it can not 514 * guarantee all CPU's that are in middle of receiving packets 515 * will see the new offload handlers (until the next received packet). 516 */ 517 void dev_add_offload(struct packet_offload *po) 518 { 519 struct packet_offload *elem; 520 521 spin_lock(&offload_lock); 522 list_for_each_entry(elem, &offload_base, list) { 523 if (po->priority < elem->priority) 524 break; 525 } 526 list_add_rcu(&po->list, elem->list.prev); 527 spin_unlock(&offload_lock); 528 } 529 EXPORT_SYMBOL(dev_add_offload); 530 531 /** 532 * __dev_remove_offload - remove offload handler 533 * @po: packet offload declaration 534 * 535 * Remove a protocol offload handler that was previously added to the 536 * kernel offload handlers by dev_add_offload(). The passed &offload_type 537 * is removed from the kernel lists and can be freed or reused once this 538 * function returns. 539 * 540 * The packet type might still be in use by receivers 541 * and must not be freed until after all the CPU's have gone 542 * through a quiescent state. 543 */ 544 static void __dev_remove_offload(struct packet_offload *po) 545 { 546 struct list_head *head = &offload_base; 547 struct packet_offload *po1; 548 549 spin_lock(&offload_lock); 550 551 list_for_each_entry(po1, head, list) { 552 if (po == po1) { 553 list_del_rcu(&po->list); 554 goto out; 555 } 556 } 557 558 pr_warn("dev_remove_offload: %p not found\n", po); 559 out: 560 spin_unlock(&offload_lock); 561 } 562 563 /** 564 * dev_remove_offload - remove packet offload handler 565 * @po: packet offload declaration 566 * 567 * Remove a packet offload handler that was previously added to the kernel 568 * offload handlers by dev_add_offload(). The passed &offload_type is 569 * removed from the kernel lists and can be freed or reused once this 570 * function returns. 571 * 572 * This call sleeps to guarantee that no CPU is looking at the packet 573 * type after return. 574 */ 575 void dev_remove_offload(struct packet_offload *po) 576 { 577 __dev_remove_offload(po); 578 579 synchronize_net(); 580 } 581 EXPORT_SYMBOL(dev_remove_offload); 582 583 /****************************************************************************** 584 * 585 * Device Boot-time Settings Routines 586 * 587 ******************************************************************************/ 588 589 /* Boot time configuration table */ 590 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 591 592 /** 593 * netdev_boot_setup_add - add new setup entry 594 * @name: name of the device 595 * @map: configured settings for the device 596 * 597 * Adds new setup entry to the dev_boot_setup list. The function 598 * returns 0 on error and 1 on success. This is a generic routine to 599 * all netdevices. 600 */ 601 static int netdev_boot_setup_add(char *name, struct ifmap *map) 602 { 603 struct netdev_boot_setup *s; 604 int i; 605 606 s = dev_boot_setup; 607 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 608 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 609 memset(s[i].name, 0, sizeof(s[i].name)); 610 strlcpy(s[i].name, name, IFNAMSIZ); 611 memcpy(&s[i].map, map, sizeof(s[i].map)); 612 break; 613 } 614 } 615 616 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 617 } 618 619 /** 620 * netdev_boot_setup_check - check boot time settings 621 * @dev: the netdevice 622 * 623 * Check boot time settings for the device. 624 * The found settings are set for the device to be used 625 * later in the device probing. 626 * Returns 0 if no settings found, 1 if they are. 627 */ 628 int netdev_boot_setup_check(struct net_device *dev) 629 { 630 struct netdev_boot_setup *s = dev_boot_setup; 631 int i; 632 633 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 634 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 635 !strcmp(dev->name, s[i].name)) { 636 dev->irq = s[i].map.irq; 637 dev->base_addr = s[i].map.base_addr; 638 dev->mem_start = s[i].map.mem_start; 639 dev->mem_end = s[i].map.mem_end; 640 return 1; 641 } 642 } 643 return 0; 644 } 645 EXPORT_SYMBOL(netdev_boot_setup_check); 646 647 648 /** 649 * netdev_boot_base - get address from boot time settings 650 * @prefix: prefix for network device 651 * @unit: id for network device 652 * 653 * Check boot time settings for the base address of device. 654 * The found settings are set for the device to be used 655 * later in the device probing. 656 * Returns 0 if no settings found. 657 */ 658 unsigned long netdev_boot_base(const char *prefix, int unit) 659 { 660 const struct netdev_boot_setup *s = dev_boot_setup; 661 char name[IFNAMSIZ]; 662 int i; 663 664 sprintf(name, "%s%d", prefix, unit); 665 666 /* 667 * If device already registered then return base of 1 668 * to indicate not to probe for this interface 669 */ 670 if (__dev_get_by_name(&init_net, name)) 671 return 1; 672 673 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 674 if (!strcmp(name, s[i].name)) 675 return s[i].map.base_addr; 676 return 0; 677 } 678 679 /* 680 * Saves at boot time configured settings for any netdevice. 681 */ 682 int __init netdev_boot_setup(char *str) 683 { 684 int ints[5]; 685 struct ifmap map; 686 687 str = get_options(str, ARRAY_SIZE(ints), ints); 688 if (!str || !*str) 689 return 0; 690 691 /* Save settings */ 692 memset(&map, 0, sizeof(map)); 693 if (ints[0] > 0) 694 map.irq = ints[1]; 695 if (ints[0] > 1) 696 map.base_addr = ints[2]; 697 if (ints[0] > 2) 698 map.mem_start = ints[3]; 699 if (ints[0] > 3) 700 map.mem_end = ints[4]; 701 702 /* Add new entry to the list */ 703 return netdev_boot_setup_add(str, &map); 704 } 705 706 __setup("netdev=", netdev_boot_setup); 707 708 /******************************************************************************* 709 * 710 * Device Interface Subroutines 711 * 712 *******************************************************************************/ 713 714 /** 715 * dev_get_iflink - get 'iflink' value of a interface 716 * @dev: targeted interface 717 * 718 * Indicates the ifindex the interface is linked to. 719 * Physical interfaces have the same 'ifindex' and 'iflink' values. 720 */ 721 722 int dev_get_iflink(const struct net_device *dev) 723 { 724 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink) 725 return dev->netdev_ops->ndo_get_iflink(dev); 726 727 return dev->ifindex; 728 } 729 EXPORT_SYMBOL(dev_get_iflink); 730 731 /** 732 * dev_fill_metadata_dst - Retrieve tunnel egress information. 733 * @dev: targeted interface 734 * @skb: The packet. 735 * 736 * For better visibility of tunnel traffic OVS needs to retrieve 737 * egress tunnel information for a packet. Following API allows 738 * user to get this info. 739 */ 740 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb) 741 { 742 struct ip_tunnel_info *info; 743 744 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst) 745 return -EINVAL; 746 747 info = skb_tunnel_info_unclone(skb); 748 if (!info) 749 return -ENOMEM; 750 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX))) 751 return -EINVAL; 752 753 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb); 754 } 755 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst); 756 757 /** 758 * __dev_get_by_name - find a device by its name 759 * @net: the applicable net namespace 760 * @name: name to find 761 * 762 * Find an interface by name. Must be called under RTNL semaphore 763 * or @dev_base_lock. If the name is found a pointer to the device 764 * is returned. If the name is not found then %NULL is returned. The 765 * reference counters are not incremented so the caller must be 766 * careful with locks. 767 */ 768 769 struct net_device *__dev_get_by_name(struct net *net, const char *name) 770 { 771 struct netdev_name_node *node_name; 772 773 node_name = netdev_name_node_lookup(net, name); 774 return node_name ? node_name->dev : NULL; 775 } 776 EXPORT_SYMBOL(__dev_get_by_name); 777 778 /** 779 * dev_get_by_name_rcu - find a device by its name 780 * @net: the applicable net namespace 781 * @name: name to find 782 * 783 * Find an interface by name. 784 * If the name is found a pointer to the device is returned. 785 * If the name is not found then %NULL is returned. 786 * The reference counters are not incremented so the caller must be 787 * careful with locks. The caller must hold RCU lock. 788 */ 789 790 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 791 { 792 struct netdev_name_node *node_name; 793 794 node_name = netdev_name_node_lookup_rcu(net, name); 795 return node_name ? node_name->dev : NULL; 796 } 797 EXPORT_SYMBOL(dev_get_by_name_rcu); 798 799 /** 800 * dev_get_by_name - find a device by its name 801 * @net: the applicable net namespace 802 * @name: name to find 803 * 804 * Find an interface by name. This can be called from any 805 * context and does its own locking. The returned handle has 806 * the usage count incremented and the caller must use dev_put() to 807 * release it when it is no longer needed. %NULL is returned if no 808 * matching device is found. 809 */ 810 811 struct net_device *dev_get_by_name(struct net *net, const char *name) 812 { 813 struct net_device *dev; 814 815 rcu_read_lock(); 816 dev = dev_get_by_name_rcu(net, name); 817 if (dev) 818 dev_hold(dev); 819 rcu_read_unlock(); 820 return dev; 821 } 822 EXPORT_SYMBOL(dev_get_by_name); 823 824 /** 825 * __dev_get_by_index - find a device by its ifindex 826 * @net: the applicable net namespace 827 * @ifindex: index of device 828 * 829 * Search for an interface by index. Returns %NULL if the device 830 * is not found or a pointer to the device. The device has not 831 * had its reference counter increased so the caller must be careful 832 * about locking. The caller must hold either the RTNL semaphore 833 * or @dev_base_lock. 834 */ 835 836 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 837 { 838 struct net_device *dev; 839 struct hlist_head *head = dev_index_hash(net, ifindex); 840 841 hlist_for_each_entry(dev, head, index_hlist) 842 if (dev->ifindex == ifindex) 843 return dev; 844 845 return NULL; 846 } 847 EXPORT_SYMBOL(__dev_get_by_index); 848 849 /** 850 * dev_get_by_index_rcu - find a device by its ifindex 851 * @net: the applicable net namespace 852 * @ifindex: index of device 853 * 854 * Search for an interface by index. Returns %NULL if the device 855 * is not found or a pointer to the device. The device has not 856 * had its reference counter increased so the caller must be careful 857 * about locking. The caller must hold RCU lock. 858 */ 859 860 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 861 { 862 struct net_device *dev; 863 struct hlist_head *head = dev_index_hash(net, ifindex); 864 865 hlist_for_each_entry_rcu(dev, head, index_hlist) 866 if (dev->ifindex == ifindex) 867 return dev; 868 869 return NULL; 870 } 871 EXPORT_SYMBOL(dev_get_by_index_rcu); 872 873 874 /** 875 * dev_get_by_index - find a device by its ifindex 876 * @net: the applicable net namespace 877 * @ifindex: index of device 878 * 879 * Search for an interface by index. Returns NULL if the device 880 * is not found or a pointer to the device. The device returned has 881 * had a reference added and the pointer is safe until the user calls 882 * dev_put to indicate they have finished with it. 883 */ 884 885 struct net_device *dev_get_by_index(struct net *net, int ifindex) 886 { 887 struct net_device *dev; 888 889 rcu_read_lock(); 890 dev = dev_get_by_index_rcu(net, ifindex); 891 if (dev) 892 dev_hold(dev); 893 rcu_read_unlock(); 894 return dev; 895 } 896 EXPORT_SYMBOL(dev_get_by_index); 897 898 /** 899 * dev_get_by_napi_id - find a device by napi_id 900 * @napi_id: ID of the NAPI struct 901 * 902 * Search for an interface by NAPI ID. Returns %NULL if the device 903 * is not found or a pointer to the device. The device has not had 904 * its reference counter increased so the caller must be careful 905 * about locking. The caller must hold RCU lock. 906 */ 907 908 struct net_device *dev_get_by_napi_id(unsigned int napi_id) 909 { 910 struct napi_struct *napi; 911 912 WARN_ON_ONCE(!rcu_read_lock_held()); 913 914 if (napi_id < MIN_NAPI_ID) 915 return NULL; 916 917 napi = napi_by_id(napi_id); 918 919 return napi ? napi->dev : NULL; 920 } 921 EXPORT_SYMBOL(dev_get_by_napi_id); 922 923 /** 924 * netdev_get_name - get a netdevice name, knowing its ifindex. 925 * @net: network namespace 926 * @name: a pointer to the buffer where the name will be stored. 927 * @ifindex: the ifindex of the interface to get the name from. 928 * 929 * The use of raw_seqcount_begin() and cond_resched() before 930 * retrying is required as we want to give the writers a chance 931 * to complete when CONFIG_PREEMPT is not set. 932 */ 933 int netdev_get_name(struct net *net, char *name, int ifindex) 934 { 935 struct net_device *dev; 936 unsigned int seq; 937 938 retry: 939 seq = raw_seqcount_begin(&devnet_rename_seq); 940 rcu_read_lock(); 941 dev = dev_get_by_index_rcu(net, ifindex); 942 if (!dev) { 943 rcu_read_unlock(); 944 return -ENODEV; 945 } 946 947 strcpy(name, dev->name); 948 rcu_read_unlock(); 949 if (read_seqcount_retry(&devnet_rename_seq, seq)) { 950 cond_resched(); 951 goto retry; 952 } 953 954 return 0; 955 } 956 957 /** 958 * dev_getbyhwaddr_rcu - find a device by its hardware address 959 * @net: the applicable net namespace 960 * @type: media type of device 961 * @ha: hardware address 962 * 963 * Search for an interface by MAC address. Returns NULL if the device 964 * is not found or a pointer to the device. 965 * The caller must hold RCU or RTNL. 966 * The returned device has not had its ref count increased 967 * and the caller must therefore be careful about locking 968 * 969 */ 970 971 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 972 const char *ha) 973 { 974 struct net_device *dev; 975 976 for_each_netdev_rcu(net, dev) 977 if (dev->type == type && 978 !memcmp(dev->dev_addr, ha, dev->addr_len)) 979 return dev; 980 981 return NULL; 982 } 983 EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 984 985 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 986 { 987 struct net_device *dev; 988 989 ASSERT_RTNL(); 990 for_each_netdev(net, dev) 991 if (dev->type == type) 992 return dev; 993 994 return NULL; 995 } 996 EXPORT_SYMBOL(__dev_getfirstbyhwtype); 997 998 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 999 { 1000 struct net_device *dev, *ret = NULL; 1001 1002 rcu_read_lock(); 1003 for_each_netdev_rcu(net, dev) 1004 if (dev->type == type) { 1005 dev_hold(dev); 1006 ret = dev; 1007 break; 1008 } 1009 rcu_read_unlock(); 1010 return ret; 1011 } 1012 EXPORT_SYMBOL(dev_getfirstbyhwtype); 1013 1014 /** 1015 * __dev_get_by_flags - find any device with given flags 1016 * @net: the applicable net namespace 1017 * @if_flags: IFF_* values 1018 * @mask: bitmask of bits in if_flags to check 1019 * 1020 * Search for any interface with the given flags. Returns NULL if a device 1021 * is not found or a pointer to the device. Must be called inside 1022 * rtnl_lock(), and result refcount is unchanged. 1023 */ 1024 1025 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags, 1026 unsigned short mask) 1027 { 1028 struct net_device *dev, *ret; 1029 1030 ASSERT_RTNL(); 1031 1032 ret = NULL; 1033 for_each_netdev(net, dev) { 1034 if (((dev->flags ^ if_flags) & mask) == 0) { 1035 ret = dev; 1036 break; 1037 } 1038 } 1039 return ret; 1040 } 1041 EXPORT_SYMBOL(__dev_get_by_flags); 1042 1043 /** 1044 * dev_valid_name - check if name is okay for network device 1045 * @name: name string 1046 * 1047 * Network device names need to be valid file names to 1048 * to allow sysfs to work. We also disallow any kind of 1049 * whitespace. 1050 */ 1051 bool dev_valid_name(const char *name) 1052 { 1053 if (*name == '\0') 1054 return false; 1055 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ) 1056 return false; 1057 if (!strcmp(name, ".") || !strcmp(name, "..")) 1058 return false; 1059 1060 while (*name) { 1061 if (*name == '/' || *name == ':' || isspace(*name)) 1062 return false; 1063 name++; 1064 } 1065 return true; 1066 } 1067 EXPORT_SYMBOL(dev_valid_name); 1068 1069 /** 1070 * __dev_alloc_name - allocate a name for a device 1071 * @net: network namespace to allocate the device name in 1072 * @name: name format string 1073 * @buf: scratch buffer and result name string 1074 * 1075 * Passed a format string - eg "lt%d" it will try and find a suitable 1076 * id. It scans list of devices to build up a free map, then chooses 1077 * the first empty slot. The caller must hold the dev_base or rtnl lock 1078 * while allocating the name and adding the device in order to avoid 1079 * duplicates. 1080 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1081 * Returns the number of the unit assigned or a negative errno code. 1082 */ 1083 1084 static int __dev_alloc_name(struct net *net, const char *name, char *buf) 1085 { 1086 int i = 0; 1087 const char *p; 1088 const int max_netdevices = 8*PAGE_SIZE; 1089 unsigned long *inuse; 1090 struct net_device *d; 1091 1092 if (!dev_valid_name(name)) 1093 return -EINVAL; 1094 1095 p = strchr(name, '%'); 1096 if (p) { 1097 /* 1098 * Verify the string as this thing may have come from 1099 * the user. There must be either one "%d" and no other "%" 1100 * characters. 1101 */ 1102 if (p[1] != 'd' || strchr(p + 2, '%')) 1103 return -EINVAL; 1104 1105 /* Use one page as a bit array of possible slots */ 1106 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 1107 if (!inuse) 1108 return -ENOMEM; 1109 1110 for_each_netdev(net, d) { 1111 if (!sscanf(d->name, name, &i)) 1112 continue; 1113 if (i < 0 || i >= max_netdevices) 1114 continue; 1115 1116 /* avoid cases where sscanf is not exact inverse of printf */ 1117 snprintf(buf, IFNAMSIZ, name, i); 1118 if (!strncmp(buf, d->name, IFNAMSIZ)) 1119 set_bit(i, inuse); 1120 } 1121 1122 i = find_first_zero_bit(inuse, max_netdevices); 1123 free_page((unsigned long) inuse); 1124 } 1125 1126 snprintf(buf, IFNAMSIZ, name, i); 1127 if (!__dev_get_by_name(net, buf)) 1128 return i; 1129 1130 /* It is possible to run out of possible slots 1131 * when the name is long and there isn't enough space left 1132 * for the digits, or if all bits are used. 1133 */ 1134 return -ENFILE; 1135 } 1136 1137 static int dev_alloc_name_ns(struct net *net, 1138 struct net_device *dev, 1139 const char *name) 1140 { 1141 char buf[IFNAMSIZ]; 1142 int ret; 1143 1144 BUG_ON(!net); 1145 ret = __dev_alloc_name(net, name, buf); 1146 if (ret >= 0) 1147 strlcpy(dev->name, buf, IFNAMSIZ); 1148 return ret; 1149 } 1150 1151 /** 1152 * dev_alloc_name - allocate a name for a device 1153 * @dev: device 1154 * @name: name format string 1155 * 1156 * Passed a format string - eg "lt%d" it will try and find a suitable 1157 * id. It scans list of devices to build up a free map, then chooses 1158 * the first empty slot. The caller must hold the dev_base or rtnl lock 1159 * while allocating the name and adding the device in order to avoid 1160 * duplicates. 1161 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1162 * Returns the number of the unit assigned or a negative errno code. 1163 */ 1164 1165 int dev_alloc_name(struct net_device *dev, const char *name) 1166 { 1167 return dev_alloc_name_ns(dev_net(dev), dev, name); 1168 } 1169 EXPORT_SYMBOL(dev_alloc_name); 1170 1171 static int dev_get_valid_name(struct net *net, struct net_device *dev, 1172 const char *name) 1173 { 1174 BUG_ON(!net); 1175 1176 if (!dev_valid_name(name)) 1177 return -EINVAL; 1178 1179 if (strchr(name, '%')) 1180 return dev_alloc_name_ns(net, dev, name); 1181 else if (__dev_get_by_name(net, name)) 1182 return -EEXIST; 1183 else if (dev->name != name) 1184 strlcpy(dev->name, name, IFNAMSIZ); 1185 1186 return 0; 1187 } 1188 1189 /** 1190 * dev_change_name - change name of a device 1191 * @dev: device 1192 * @newname: name (or format string) must be at least IFNAMSIZ 1193 * 1194 * Change name of a device, can pass format strings "eth%d". 1195 * for wildcarding. 1196 */ 1197 int dev_change_name(struct net_device *dev, const char *newname) 1198 { 1199 unsigned char old_assign_type; 1200 char oldname[IFNAMSIZ]; 1201 int err = 0; 1202 int ret; 1203 struct net *net; 1204 1205 ASSERT_RTNL(); 1206 BUG_ON(!dev_net(dev)); 1207 1208 net = dev_net(dev); 1209 1210 /* Some auto-enslaved devices e.g. failover slaves are 1211 * special, as userspace might rename the device after 1212 * the interface had been brought up and running since 1213 * the point kernel initiated auto-enslavement. Allow 1214 * live name change even when these slave devices are 1215 * up and running. 1216 * 1217 * Typically, users of these auto-enslaving devices 1218 * don't actually care about slave name change, as 1219 * they are supposed to operate on master interface 1220 * directly. 1221 */ 1222 if (dev->flags & IFF_UP && 1223 likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK))) 1224 return -EBUSY; 1225 1226 write_seqcount_begin(&devnet_rename_seq); 1227 1228 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) { 1229 write_seqcount_end(&devnet_rename_seq); 1230 return 0; 1231 } 1232 1233 memcpy(oldname, dev->name, IFNAMSIZ); 1234 1235 err = dev_get_valid_name(net, dev, newname); 1236 if (err < 0) { 1237 write_seqcount_end(&devnet_rename_seq); 1238 return err; 1239 } 1240 1241 if (oldname[0] && !strchr(oldname, '%')) 1242 netdev_info(dev, "renamed from %s\n", oldname); 1243 1244 old_assign_type = dev->name_assign_type; 1245 dev->name_assign_type = NET_NAME_RENAMED; 1246 1247 rollback: 1248 ret = device_rename(&dev->dev, dev->name); 1249 if (ret) { 1250 memcpy(dev->name, oldname, IFNAMSIZ); 1251 dev->name_assign_type = old_assign_type; 1252 write_seqcount_end(&devnet_rename_seq); 1253 return ret; 1254 } 1255 1256 write_seqcount_end(&devnet_rename_seq); 1257 1258 netdev_adjacent_rename_links(dev, oldname); 1259 1260 write_lock_bh(&dev_base_lock); 1261 netdev_name_node_del(dev->name_node); 1262 write_unlock_bh(&dev_base_lock); 1263 1264 synchronize_rcu(); 1265 1266 write_lock_bh(&dev_base_lock); 1267 netdev_name_node_add(net, dev->name_node); 1268 write_unlock_bh(&dev_base_lock); 1269 1270 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1271 ret = notifier_to_errno(ret); 1272 1273 if (ret) { 1274 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1275 if (err >= 0) { 1276 err = ret; 1277 write_seqcount_begin(&devnet_rename_seq); 1278 memcpy(dev->name, oldname, IFNAMSIZ); 1279 memcpy(oldname, newname, IFNAMSIZ); 1280 dev->name_assign_type = old_assign_type; 1281 old_assign_type = NET_NAME_RENAMED; 1282 goto rollback; 1283 } else { 1284 pr_err("%s: name change rollback failed: %d\n", 1285 dev->name, ret); 1286 } 1287 } 1288 1289 return err; 1290 } 1291 1292 /** 1293 * dev_set_alias - change ifalias of a device 1294 * @dev: device 1295 * @alias: name up to IFALIASZ 1296 * @len: limit of bytes to copy from info 1297 * 1298 * Set ifalias for a device, 1299 */ 1300 int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1301 { 1302 struct dev_ifalias *new_alias = NULL; 1303 1304 if (len >= IFALIASZ) 1305 return -EINVAL; 1306 1307 if (len) { 1308 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL); 1309 if (!new_alias) 1310 return -ENOMEM; 1311 1312 memcpy(new_alias->ifalias, alias, len); 1313 new_alias->ifalias[len] = 0; 1314 } 1315 1316 mutex_lock(&ifalias_mutex); 1317 new_alias = rcu_replace_pointer(dev->ifalias, new_alias, 1318 mutex_is_locked(&ifalias_mutex)); 1319 mutex_unlock(&ifalias_mutex); 1320 1321 if (new_alias) 1322 kfree_rcu(new_alias, rcuhead); 1323 1324 return len; 1325 } 1326 EXPORT_SYMBOL(dev_set_alias); 1327 1328 /** 1329 * dev_get_alias - get ifalias of a device 1330 * @dev: device 1331 * @name: buffer to store name of ifalias 1332 * @len: size of buffer 1333 * 1334 * get ifalias for a device. Caller must make sure dev cannot go 1335 * away, e.g. rcu read lock or own a reference count to device. 1336 */ 1337 int dev_get_alias(const struct net_device *dev, char *name, size_t len) 1338 { 1339 const struct dev_ifalias *alias; 1340 int ret = 0; 1341 1342 rcu_read_lock(); 1343 alias = rcu_dereference(dev->ifalias); 1344 if (alias) 1345 ret = snprintf(name, len, "%s", alias->ifalias); 1346 rcu_read_unlock(); 1347 1348 return ret; 1349 } 1350 1351 /** 1352 * netdev_features_change - device changes features 1353 * @dev: device to cause notification 1354 * 1355 * Called to indicate a device has changed features. 1356 */ 1357 void netdev_features_change(struct net_device *dev) 1358 { 1359 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1360 } 1361 EXPORT_SYMBOL(netdev_features_change); 1362 1363 /** 1364 * netdev_state_change - device changes state 1365 * @dev: device to cause notification 1366 * 1367 * Called to indicate a device has changed state. This function calls 1368 * the notifier chains for netdev_chain and sends a NEWLINK message 1369 * to the routing socket. 1370 */ 1371 void netdev_state_change(struct net_device *dev) 1372 { 1373 if (dev->flags & IFF_UP) { 1374 struct netdev_notifier_change_info change_info = { 1375 .info.dev = dev, 1376 }; 1377 1378 call_netdevice_notifiers_info(NETDEV_CHANGE, 1379 &change_info.info); 1380 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL); 1381 } 1382 } 1383 EXPORT_SYMBOL(netdev_state_change); 1384 1385 /** 1386 * netdev_notify_peers - notify network peers about existence of @dev 1387 * @dev: network device 1388 * 1389 * Generate traffic such that interested network peers are aware of 1390 * @dev, such as by generating a gratuitous ARP. This may be used when 1391 * a device wants to inform the rest of the network about some sort of 1392 * reconfiguration such as a failover event or virtual machine 1393 * migration. 1394 */ 1395 void netdev_notify_peers(struct net_device *dev) 1396 { 1397 rtnl_lock(); 1398 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev); 1399 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev); 1400 rtnl_unlock(); 1401 } 1402 EXPORT_SYMBOL(netdev_notify_peers); 1403 1404 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack) 1405 { 1406 const struct net_device_ops *ops = dev->netdev_ops; 1407 int ret; 1408 1409 ASSERT_RTNL(); 1410 1411 if (!netif_device_present(dev)) 1412 return -ENODEV; 1413 1414 /* Block netpoll from trying to do any rx path servicing. 1415 * If we don't do this there is a chance ndo_poll_controller 1416 * or ndo_poll may be running while we open the device 1417 */ 1418 netpoll_poll_disable(dev); 1419 1420 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack); 1421 ret = notifier_to_errno(ret); 1422 if (ret) 1423 return ret; 1424 1425 set_bit(__LINK_STATE_START, &dev->state); 1426 1427 if (ops->ndo_validate_addr) 1428 ret = ops->ndo_validate_addr(dev); 1429 1430 if (!ret && ops->ndo_open) 1431 ret = ops->ndo_open(dev); 1432 1433 netpoll_poll_enable(dev); 1434 1435 if (ret) 1436 clear_bit(__LINK_STATE_START, &dev->state); 1437 else { 1438 dev->flags |= IFF_UP; 1439 dev_set_rx_mode(dev); 1440 dev_activate(dev); 1441 add_device_randomness(dev->dev_addr, dev->addr_len); 1442 } 1443 1444 return ret; 1445 } 1446 1447 /** 1448 * dev_open - prepare an interface for use. 1449 * @dev: device to open 1450 * @extack: netlink extended ack 1451 * 1452 * Takes a device from down to up state. The device's private open 1453 * function is invoked and then the multicast lists are loaded. Finally 1454 * the device is moved into the up state and a %NETDEV_UP message is 1455 * sent to the netdev notifier chain. 1456 * 1457 * Calling this function on an active interface is a nop. On a failure 1458 * a negative errno code is returned. 1459 */ 1460 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack) 1461 { 1462 int ret; 1463 1464 if (dev->flags & IFF_UP) 1465 return 0; 1466 1467 ret = __dev_open(dev, extack); 1468 if (ret < 0) 1469 return ret; 1470 1471 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1472 call_netdevice_notifiers(NETDEV_UP, dev); 1473 1474 return ret; 1475 } 1476 EXPORT_SYMBOL(dev_open); 1477 1478 static void __dev_close_many(struct list_head *head) 1479 { 1480 struct net_device *dev; 1481 1482 ASSERT_RTNL(); 1483 might_sleep(); 1484 1485 list_for_each_entry(dev, head, close_list) { 1486 /* Temporarily disable netpoll until the interface is down */ 1487 netpoll_poll_disable(dev); 1488 1489 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1490 1491 clear_bit(__LINK_STATE_START, &dev->state); 1492 1493 /* Synchronize to scheduled poll. We cannot touch poll list, it 1494 * can be even on different cpu. So just clear netif_running(). 1495 * 1496 * dev->stop() will invoke napi_disable() on all of it's 1497 * napi_struct instances on this device. 1498 */ 1499 smp_mb__after_atomic(); /* Commit netif_running(). */ 1500 } 1501 1502 dev_deactivate_many(head); 1503 1504 list_for_each_entry(dev, head, close_list) { 1505 const struct net_device_ops *ops = dev->netdev_ops; 1506 1507 /* 1508 * Call the device specific close. This cannot fail. 1509 * Only if device is UP 1510 * 1511 * We allow it to be called even after a DETACH hot-plug 1512 * event. 1513 */ 1514 if (ops->ndo_stop) 1515 ops->ndo_stop(dev); 1516 1517 dev->flags &= ~IFF_UP; 1518 netpoll_poll_enable(dev); 1519 } 1520 } 1521 1522 static void __dev_close(struct net_device *dev) 1523 { 1524 LIST_HEAD(single); 1525 1526 list_add(&dev->close_list, &single); 1527 __dev_close_many(&single); 1528 list_del(&single); 1529 } 1530 1531 void dev_close_many(struct list_head *head, bool unlink) 1532 { 1533 struct net_device *dev, *tmp; 1534 1535 /* Remove the devices that don't need to be closed */ 1536 list_for_each_entry_safe(dev, tmp, head, close_list) 1537 if (!(dev->flags & IFF_UP)) 1538 list_del_init(&dev->close_list); 1539 1540 __dev_close_many(head); 1541 1542 list_for_each_entry_safe(dev, tmp, head, close_list) { 1543 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1544 call_netdevice_notifiers(NETDEV_DOWN, dev); 1545 if (unlink) 1546 list_del_init(&dev->close_list); 1547 } 1548 } 1549 EXPORT_SYMBOL(dev_close_many); 1550 1551 /** 1552 * dev_close - shutdown an interface. 1553 * @dev: device to shutdown 1554 * 1555 * This function moves an active device into down state. A 1556 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1557 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1558 * chain. 1559 */ 1560 void dev_close(struct net_device *dev) 1561 { 1562 if (dev->flags & IFF_UP) { 1563 LIST_HEAD(single); 1564 1565 list_add(&dev->close_list, &single); 1566 dev_close_many(&single, true); 1567 list_del(&single); 1568 } 1569 } 1570 EXPORT_SYMBOL(dev_close); 1571 1572 1573 /** 1574 * dev_disable_lro - disable Large Receive Offload on a device 1575 * @dev: device 1576 * 1577 * Disable Large Receive Offload (LRO) on a net device. Must be 1578 * called under RTNL. This is needed if received packets may be 1579 * forwarded to another interface. 1580 */ 1581 void dev_disable_lro(struct net_device *dev) 1582 { 1583 struct net_device *lower_dev; 1584 struct list_head *iter; 1585 1586 dev->wanted_features &= ~NETIF_F_LRO; 1587 netdev_update_features(dev); 1588 1589 if (unlikely(dev->features & NETIF_F_LRO)) 1590 netdev_WARN(dev, "failed to disable LRO!\n"); 1591 1592 netdev_for_each_lower_dev(dev, lower_dev, iter) 1593 dev_disable_lro(lower_dev); 1594 } 1595 EXPORT_SYMBOL(dev_disable_lro); 1596 1597 /** 1598 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device 1599 * @dev: device 1600 * 1601 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be 1602 * called under RTNL. This is needed if Generic XDP is installed on 1603 * the device. 1604 */ 1605 static void dev_disable_gro_hw(struct net_device *dev) 1606 { 1607 dev->wanted_features &= ~NETIF_F_GRO_HW; 1608 netdev_update_features(dev); 1609 1610 if (unlikely(dev->features & NETIF_F_GRO_HW)) 1611 netdev_WARN(dev, "failed to disable GRO_HW!\n"); 1612 } 1613 1614 const char *netdev_cmd_to_name(enum netdev_cmd cmd) 1615 { 1616 #define N(val) \ 1617 case NETDEV_##val: \ 1618 return "NETDEV_" __stringify(val); 1619 switch (cmd) { 1620 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER) 1621 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE) 1622 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE) 1623 N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER) 1624 N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO) 1625 N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO) 1626 N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN) 1627 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO) 1628 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO) 1629 N(PRE_CHANGEADDR) 1630 } 1631 #undef N 1632 return "UNKNOWN_NETDEV_EVENT"; 1633 } 1634 EXPORT_SYMBOL_GPL(netdev_cmd_to_name); 1635 1636 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val, 1637 struct net_device *dev) 1638 { 1639 struct netdev_notifier_info info = { 1640 .dev = dev, 1641 }; 1642 1643 return nb->notifier_call(nb, val, &info); 1644 } 1645 1646 static int call_netdevice_register_notifiers(struct notifier_block *nb, 1647 struct net_device *dev) 1648 { 1649 int err; 1650 1651 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev); 1652 err = notifier_to_errno(err); 1653 if (err) 1654 return err; 1655 1656 if (!(dev->flags & IFF_UP)) 1657 return 0; 1658 1659 call_netdevice_notifier(nb, NETDEV_UP, dev); 1660 return 0; 1661 } 1662 1663 static void call_netdevice_unregister_notifiers(struct notifier_block *nb, 1664 struct net_device *dev) 1665 { 1666 if (dev->flags & IFF_UP) { 1667 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1668 dev); 1669 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1670 } 1671 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1672 } 1673 1674 static int call_netdevice_register_net_notifiers(struct notifier_block *nb, 1675 struct net *net) 1676 { 1677 struct net_device *dev; 1678 int err; 1679 1680 for_each_netdev(net, dev) { 1681 err = call_netdevice_register_notifiers(nb, dev); 1682 if (err) 1683 goto rollback; 1684 } 1685 return 0; 1686 1687 rollback: 1688 for_each_netdev_continue_reverse(net, dev) 1689 call_netdevice_unregister_notifiers(nb, dev); 1690 return err; 1691 } 1692 1693 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb, 1694 struct net *net) 1695 { 1696 struct net_device *dev; 1697 1698 for_each_netdev(net, dev) 1699 call_netdevice_unregister_notifiers(nb, dev); 1700 } 1701 1702 static int dev_boot_phase = 1; 1703 1704 /** 1705 * register_netdevice_notifier - register a network notifier block 1706 * @nb: notifier 1707 * 1708 * Register a notifier to be called when network device events occur. 1709 * The notifier passed is linked into the kernel structures and must 1710 * not be reused until it has been unregistered. A negative errno code 1711 * is returned on a failure. 1712 * 1713 * When registered all registration and up events are replayed 1714 * to the new notifier to allow device to have a race free 1715 * view of the network device list. 1716 */ 1717 1718 int register_netdevice_notifier(struct notifier_block *nb) 1719 { 1720 struct net *net; 1721 int err; 1722 1723 /* Close race with setup_net() and cleanup_net() */ 1724 down_write(&pernet_ops_rwsem); 1725 rtnl_lock(); 1726 err = raw_notifier_chain_register(&netdev_chain, nb); 1727 if (err) 1728 goto unlock; 1729 if (dev_boot_phase) 1730 goto unlock; 1731 for_each_net(net) { 1732 err = call_netdevice_register_net_notifiers(nb, net); 1733 if (err) 1734 goto rollback; 1735 } 1736 1737 unlock: 1738 rtnl_unlock(); 1739 up_write(&pernet_ops_rwsem); 1740 return err; 1741 1742 rollback: 1743 for_each_net_continue_reverse(net) 1744 call_netdevice_unregister_net_notifiers(nb, net); 1745 1746 raw_notifier_chain_unregister(&netdev_chain, nb); 1747 goto unlock; 1748 } 1749 EXPORT_SYMBOL(register_netdevice_notifier); 1750 1751 /** 1752 * unregister_netdevice_notifier - unregister a network notifier block 1753 * @nb: notifier 1754 * 1755 * Unregister a notifier previously registered by 1756 * register_netdevice_notifier(). The notifier is unlinked into the 1757 * kernel structures and may then be reused. A negative errno code 1758 * is returned on a failure. 1759 * 1760 * After unregistering unregister and down device events are synthesized 1761 * for all devices on the device list to the removed notifier to remove 1762 * the need for special case cleanup code. 1763 */ 1764 1765 int unregister_netdevice_notifier(struct notifier_block *nb) 1766 { 1767 struct net_device *dev; 1768 struct net *net; 1769 int err; 1770 1771 /* Close race with setup_net() and cleanup_net() */ 1772 down_write(&pernet_ops_rwsem); 1773 rtnl_lock(); 1774 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1775 if (err) 1776 goto unlock; 1777 1778 for_each_net(net) { 1779 for_each_netdev(net, dev) { 1780 if (dev->flags & IFF_UP) { 1781 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1782 dev); 1783 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1784 } 1785 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1786 } 1787 } 1788 unlock: 1789 rtnl_unlock(); 1790 up_write(&pernet_ops_rwsem); 1791 return err; 1792 } 1793 EXPORT_SYMBOL(unregister_netdevice_notifier); 1794 1795 /** 1796 * register_netdevice_notifier_net - register a per-netns network notifier block 1797 * @net: network namespace 1798 * @nb: notifier 1799 * 1800 * Register a notifier to be called when network device events occur. 1801 * The notifier passed is linked into the kernel structures and must 1802 * not be reused until it has been unregistered. A negative errno code 1803 * is returned on a failure. 1804 * 1805 * When registered all registration and up events are replayed 1806 * to the new notifier to allow device to have a race free 1807 * view of the network device list. 1808 */ 1809 1810 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb) 1811 { 1812 int err; 1813 1814 rtnl_lock(); 1815 err = raw_notifier_chain_register(&net->netdev_chain, nb); 1816 if (err) 1817 goto unlock; 1818 if (dev_boot_phase) 1819 goto unlock; 1820 1821 err = call_netdevice_register_net_notifiers(nb, net); 1822 if (err) 1823 goto chain_unregister; 1824 1825 unlock: 1826 rtnl_unlock(); 1827 return err; 1828 1829 chain_unregister: 1830 raw_notifier_chain_unregister(&netdev_chain, nb); 1831 goto unlock; 1832 } 1833 EXPORT_SYMBOL(register_netdevice_notifier_net); 1834 1835 /** 1836 * unregister_netdevice_notifier_net - unregister a per-netns 1837 * network notifier block 1838 * @net: network namespace 1839 * @nb: notifier 1840 * 1841 * Unregister a notifier previously registered by 1842 * register_netdevice_notifier(). The notifier is unlinked into the 1843 * kernel structures and may then be reused. A negative errno code 1844 * is returned on a failure. 1845 * 1846 * After unregistering unregister and down device events are synthesized 1847 * for all devices on the device list to the removed notifier to remove 1848 * the need for special case cleanup code. 1849 */ 1850 1851 int unregister_netdevice_notifier_net(struct net *net, 1852 struct notifier_block *nb) 1853 { 1854 int err; 1855 1856 rtnl_lock(); 1857 err = raw_notifier_chain_unregister(&net->netdev_chain, nb); 1858 if (err) 1859 goto unlock; 1860 1861 call_netdevice_unregister_net_notifiers(nb, net); 1862 1863 unlock: 1864 rtnl_unlock(); 1865 return err; 1866 } 1867 EXPORT_SYMBOL(unregister_netdevice_notifier_net); 1868 1869 /** 1870 * call_netdevice_notifiers_info - call all network notifier blocks 1871 * @val: value passed unmodified to notifier function 1872 * @info: notifier information data 1873 * 1874 * Call all network notifier blocks. Parameters and return value 1875 * are as for raw_notifier_call_chain(). 1876 */ 1877 1878 static int call_netdevice_notifiers_info(unsigned long val, 1879 struct netdev_notifier_info *info) 1880 { 1881 struct net *net = dev_net(info->dev); 1882 int ret; 1883 1884 ASSERT_RTNL(); 1885 1886 /* Run per-netns notifier block chain first, then run the global one. 1887 * Hopefully, one day, the global one is going to be removed after 1888 * all notifier block registrators get converted to be per-netns. 1889 */ 1890 ret = raw_notifier_call_chain(&net->netdev_chain, val, info); 1891 if (ret & NOTIFY_STOP_MASK) 1892 return ret; 1893 return raw_notifier_call_chain(&netdev_chain, val, info); 1894 } 1895 1896 static int call_netdevice_notifiers_extack(unsigned long val, 1897 struct net_device *dev, 1898 struct netlink_ext_ack *extack) 1899 { 1900 struct netdev_notifier_info info = { 1901 .dev = dev, 1902 .extack = extack, 1903 }; 1904 1905 return call_netdevice_notifiers_info(val, &info); 1906 } 1907 1908 /** 1909 * call_netdevice_notifiers - call all network notifier blocks 1910 * @val: value passed unmodified to notifier function 1911 * @dev: net_device pointer passed unmodified to notifier function 1912 * 1913 * Call all network notifier blocks. Parameters and return value 1914 * are as for raw_notifier_call_chain(). 1915 */ 1916 1917 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 1918 { 1919 return call_netdevice_notifiers_extack(val, dev, NULL); 1920 } 1921 EXPORT_SYMBOL(call_netdevice_notifiers); 1922 1923 /** 1924 * call_netdevice_notifiers_mtu - call all network notifier blocks 1925 * @val: value passed unmodified to notifier function 1926 * @dev: net_device pointer passed unmodified to notifier function 1927 * @arg: additional u32 argument passed to the notifier function 1928 * 1929 * Call all network notifier blocks. Parameters and return value 1930 * are as for raw_notifier_call_chain(). 1931 */ 1932 static int call_netdevice_notifiers_mtu(unsigned long val, 1933 struct net_device *dev, u32 arg) 1934 { 1935 struct netdev_notifier_info_ext info = { 1936 .info.dev = dev, 1937 .ext.mtu = arg, 1938 }; 1939 1940 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0); 1941 1942 return call_netdevice_notifiers_info(val, &info.info); 1943 } 1944 1945 #ifdef CONFIG_NET_INGRESS 1946 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key); 1947 1948 void net_inc_ingress_queue(void) 1949 { 1950 static_branch_inc(&ingress_needed_key); 1951 } 1952 EXPORT_SYMBOL_GPL(net_inc_ingress_queue); 1953 1954 void net_dec_ingress_queue(void) 1955 { 1956 static_branch_dec(&ingress_needed_key); 1957 } 1958 EXPORT_SYMBOL_GPL(net_dec_ingress_queue); 1959 #endif 1960 1961 #ifdef CONFIG_NET_EGRESS 1962 static DEFINE_STATIC_KEY_FALSE(egress_needed_key); 1963 1964 void net_inc_egress_queue(void) 1965 { 1966 static_branch_inc(&egress_needed_key); 1967 } 1968 EXPORT_SYMBOL_GPL(net_inc_egress_queue); 1969 1970 void net_dec_egress_queue(void) 1971 { 1972 static_branch_dec(&egress_needed_key); 1973 } 1974 EXPORT_SYMBOL_GPL(net_dec_egress_queue); 1975 #endif 1976 1977 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key); 1978 #ifdef CONFIG_JUMP_LABEL 1979 static atomic_t netstamp_needed_deferred; 1980 static atomic_t netstamp_wanted; 1981 static void netstamp_clear(struct work_struct *work) 1982 { 1983 int deferred = atomic_xchg(&netstamp_needed_deferred, 0); 1984 int wanted; 1985 1986 wanted = atomic_add_return(deferred, &netstamp_wanted); 1987 if (wanted > 0) 1988 static_branch_enable(&netstamp_needed_key); 1989 else 1990 static_branch_disable(&netstamp_needed_key); 1991 } 1992 static DECLARE_WORK(netstamp_work, netstamp_clear); 1993 #endif 1994 1995 void net_enable_timestamp(void) 1996 { 1997 #ifdef CONFIG_JUMP_LABEL 1998 int wanted; 1999 2000 while (1) { 2001 wanted = atomic_read(&netstamp_wanted); 2002 if (wanted <= 0) 2003 break; 2004 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted) 2005 return; 2006 } 2007 atomic_inc(&netstamp_needed_deferred); 2008 schedule_work(&netstamp_work); 2009 #else 2010 static_branch_inc(&netstamp_needed_key); 2011 #endif 2012 } 2013 EXPORT_SYMBOL(net_enable_timestamp); 2014 2015 void net_disable_timestamp(void) 2016 { 2017 #ifdef CONFIG_JUMP_LABEL 2018 int wanted; 2019 2020 while (1) { 2021 wanted = atomic_read(&netstamp_wanted); 2022 if (wanted <= 1) 2023 break; 2024 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted) 2025 return; 2026 } 2027 atomic_dec(&netstamp_needed_deferred); 2028 schedule_work(&netstamp_work); 2029 #else 2030 static_branch_dec(&netstamp_needed_key); 2031 #endif 2032 } 2033 EXPORT_SYMBOL(net_disable_timestamp); 2034 2035 static inline void net_timestamp_set(struct sk_buff *skb) 2036 { 2037 skb->tstamp = 0; 2038 if (static_branch_unlikely(&netstamp_needed_key)) 2039 __net_timestamp(skb); 2040 } 2041 2042 #define net_timestamp_check(COND, SKB) \ 2043 if (static_branch_unlikely(&netstamp_needed_key)) { \ 2044 if ((COND) && !(SKB)->tstamp) \ 2045 __net_timestamp(SKB); \ 2046 } \ 2047 2048 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb) 2049 { 2050 unsigned int len; 2051 2052 if (!(dev->flags & IFF_UP)) 2053 return false; 2054 2055 len = dev->mtu + dev->hard_header_len + VLAN_HLEN; 2056 if (skb->len <= len) 2057 return true; 2058 2059 /* if TSO is enabled, we don't care about the length as the packet 2060 * could be forwarded without being segmented before 2061 */ 2062 if (skb_is_gso(skb)) 2063 return true; 2064 2065 return false; 2066 } 2067 EXPORT_SYMBOL_GPL(is_skb_forwardable); 2068 2069 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 2070 { 2071 int ret = ____dev_forward_skb(dev, skb); 2072 2073 if (likely(!ret)) { 2074 skb->protocol = eth_type_trans(skb, dev); 2075 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN); 2076 } 2077 2078 return ret; 2079 } 2080 EXPORT_SYMBOL_GPL(__dev_forward_skb); 2081 2082 /** 2083 * dev_forward_skb - loopback an skb to another netif 2084 * 2085 * @dev: destination network device 2086 * @skb: buffer to forward 2087 * 2088 * return values: 2089 * NET_RX_SUCCESS (no congestion) 2090 * NET_RX_DROP (packet was dropped, but freed) 2091 * 2092 * dev_forward_skb can be used for injecting an skb from the 2093 * start_xmit function of one device into the receive queue 2094 * of another device. 2095 * 2096 * The receiving device may be in another namespace, so 2097 * we have to clear all information in the skb that could 2098 * impact namespace isolation. 2099 */ 2100 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 2101 { 2102 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb); 2103 } 2104 EXPORT_SYMBOL_GPL(dev_forward_skb); 2105 2106 static inline int deliver_skb(struct sk_buff *skb, 2107 struct packet_type *pt_prev, 2108 struct net_device *orig_dev) 2109 { 2110 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 2111 return -ENOMEM; 2112 refcount_inc(&skb->users); 2113 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 2114 } 2115 2116 static inline void deliver_ptype_list_skb(struct sk_buff *skb, 2117 struct packet_type **pt, 2118 struct net_device *orig_dev, 2119 __be16 type, 2120 struct list_head *ptype_list) 2121 { 2122 struct packet_type *ptype, *pt_prev = *pt; 2123 2124 list_for_each_entry_rcu(ptype, ptype_list, list) { 2125 if (ptype->type != type) 2126 continue; 2127 if (pt_prev) 2128 deliver_skb(skb, pt_prev, orig_dev); 2129 pt_prev = ptype; 2130 } 2131 *pt = pt_prev; 2132 } 2133 2134 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb) 2135 { 2136 if (!ptype->af_packet_priv || !skb->sk) 2137 return false; 2138 2139 if (ptype->id_match) 2140 return ptype->id_match(ptype, skb->sk); 2141 else if ((struct sock *)ptype->af_packet_priv == skb->sk) 2142 return true; 2143 2144 return false; 2145 } 2146 2147 /** 2148 * dev_nit_active - return true if any network interface taps are in use 2149 * 2150 * @dev: network device to check for the presence of taps 2151 */ 2152 bool dev_nit_active(struct net_device *dev) 2153 { 2154 return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all); 2155 } 2156 EXPORT_SYMBOL_GPL(dev_nit_active); 2157 2158 /* 2159 * Support routine. Sends outgoing frames to any network 2160 * taps currently in use. 2161 */ 2162 2163 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 2164 { 2165 struct packet_type *ptype; 2166 struct sk_buff *skb2 = NULL; 2167 struct packet_type *pt_prev = NULL; 2168 struct list_head *ptype_list = &ptype_all; 2169 2170 rcu_read_lock(); 2171 again: 2172 list_for_each_entry_rcu(ptype, ptype_list, list) { 2173 if (ptype->ignore_outgoing) 2174 continue; 2175 2176 /* Never send packets back to the socket 2177 * they originated from - MvS (miquels@drinkel.ow.org) 2178 */ 2179 if (skb_loop_sk(ptype, skb)) 2180 continue; 2181 2182 if (pt_prev) { 2183 deliver_skb(skb2, pt_prev, skb->dev); 2184 pt_prev = ptype; 2185 continue; 2186 } 2187 2188 /* need to clone skb, done only once */ 2189 skb2 = skb_clone(skb, GFP_ATOMIC); 2190 if (!skb2) 2191 goto out_unlock; 2192 2193 net_timestamp_set(skb2); 2194 2195 /* skb->nh should be correctly 2196 * set by sender, so that the second statement is 2197 * just protection against buggy protocols. 2198 */ 2199 skb_reset_mac_header(skb2); 2200 2201 if (skb_network_header(skb2) < skb2->data || 2202 skb_network_header(skb2) > skb_tail_pointer(skb2)) { 2203 net_crit_ratelimited("protocol %04x is buggy, dev %s\n", 2204 ntohs(skb2->protocol), 2205 dev->name); 2206 skb_reset_network_header(skb2); 2207 } 2208 2209 skb2->transport_header = skb2->network_header; 2210 skb2->pkt_type = PACKET_OUTGOING; 2211 pt_prev = ptype; 2212 } 2213 2214 if (ptype_list == &ptype_all) { 2215 ptype_list = &dev->ptype_all; 2216 goto again; 2217 } 2218 out_unlock: 2219 if (pt_prev) { 2220 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC)) 2221 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 2222 else 2223 kfree_skb(skb2); 2224 } 2225 rcu_read_unlock(); 2226 } 2227 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit); 2228 2229 /** 2230 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change 2231 * @dev: Network device 2232 * @txq: number of queues available 2233 * 2234 * If real_num_tx_queues is changed the tc mappings may no longer be 2235 * valid. To resolve this verify the tc mapping remains valid and if 2236 * not NULL the mapping. With no priorities mapping to this 2237 * offset/count pair it will no longer be used. In the worst case TC0 2238 * is invalid nothing can be done so disable priority mappings. If is 2239 * expected that drivers will fix this mapping if they can before 2240 * calling netif_set_real_num_tx_queues. 2241 */ 2242 static void netif_setup_tc(struct net_device *dev, unsigned int txq) 2243 { 2244 int i; 2245 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2246 2247 /* If TC0 is invalidated disable TC mapping */ 2248 if (tc->offset + tc->count > txq) { 2249 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n"); 2250 dev->num_tc = 0; 2251 return; 2252 } 2253 2254 /* Invalidated prio to tc mappings set to TC0 */ 2255 for (i = 1; i < TC_BITMASK + 1; i++) { 2256 int q = netdev_get_prio_tc_map(dev, i); 2257 2258 tc = &dev->tc_to_txq[q]; 2259 if (tc->offset + tc->count > txq) { 2260 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n", 2261 i, q); 2262 netdev_set_prio_tc_map(dev, i, 0); 2263 } 2264 } 2265 } 2266 2267 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq) 2268 { 2269 if (dev->num_tc) { 2270 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2271 int i; 2272 2273 /* walk through the TCs and see if it falls into any of them */ 2274 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) { 2275 if ((txq - tc->offset) < tc->count) 2276 return i; 2277 } 2278 2279 /* didn't find it, just return -1 to indicate no match */ 2280 return -1; 2281 } 2282 2283 return 0; 2284 } 2285 EXPORT_SYMBOL(netdev_txq_to_tc); 2286 2287 #ifdef CONFIG_XPS 2288 struct static_key xps_needed __read_mostly; 2289 EXPORT_SYMBOL(xps_needed); 2290 struct static_key xps_rxqs_needed __read_mostly; 2291 EXPORT_SYMBOL(xps_rxqs_needed); 2292 static DEFINE_MUTEX(xps_map_mutex); 2293 #define xmap_dereference(P) \ 2294 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex)) 2295 2296 static bool remove_xps_queue(struct xps_dev_maps *dev_maps, 2297 int tci, u16 index) 2298 { 2299 struct xps_map *map = NULL; 2300 int pos; 2301 2302 if (dev_maps) 2303 map = xmap_dereference(dev_maps->attr_map[tci]); 2304 if (!map) 2305 return false; 2306 2307 for (pos = map->len; pos--;) { 2308 if (map->queues[pos] != index) 2309 continue; 2310 2311 if (map->len > 1) { 2312 map->queues[pos] = map->queues[--map->len]; 2313 break; 2314 } 2315 2316 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL); 2317 kfree_rcu(map, rcu); 2318 return false; 2319 } 2320 2321 return true; 2322 } 2323 2324 static bool remove_xps_queue_cpu(struct net_device *dev, 2325 struct xps_dev_maps *dev_maps, 2326 int cpu, u16 offset, u16 count) 2327 { 2328 int num_tc = dev->num_tc ? : 1; 2329 bool active = false; 2330 int tci; 2331 2332 for (tci = cpu * num_tc; num_tc--; tci++) { 2333 int i, j; 2334 2335 for (i = count, j = offset; i--; j++) { 2336 if (!remove_xps_queue(dev_maps, tci, j)) 2337 break; 2338 } 2339 2340 active |= i < 0; 2341 } 2342 2343 return active; 2344 } 2345 2346 static void reset_xps_maps(struct net_device *dev, 2347 struct xps_dev_maps *dev_maps, 2348 bool is_rxqs_map) 2349 { 2350 if (is_rxqs_map) { 2351 static_key_slow_dec_cpuslocked(&xps_rxqs_needed); 2352 RCU_INIT_POINTER(dev->xps_rxqs_map, NULL); 2353 } else { 2354 RCU_INIT_POINTER(dev->xps_cpus_map, NULL); 2355 } 2356 static_key_slow_dec_cpuslocked(&xps_needed); 2357 kfree_rcu(dev_maps, rcu); 2358 } 2359 2360 static void clean_xps_maps(struct net_device *dev, const unsigned long *mask, 2361 struct xps_dev_maps *dev_maps, unsigned int nr_ids, 2362 u16 offset, u16 count, bool is_rxqs_map) 2363 { 2364 bool active = false; 2365 int i, j; 2366 2367 for (j = -1; j = netif_attrmask_next(j, mask, nr_ids), 2368 j < nr_ids;) 2369 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, 2370 count); 2371 if (!active) 2372 reset_xps_maps(dev, dev_maps, is_rxqs_map); 2373 2374 if (!is_rxqs_map) { 2375 for (i = offset + (count - 1); count--; i--) { 2376 netdev_queue_numa_node_write( 2377 netdev_get_tx_queue(dev, i), 2378 NUMA_NO_NODE); 2379 } 2380 } 2381 } 2382 2383 static void netif_reset_xps_queues(struct net_device *dev, u16 offset, 2384 u16 count) 2385 { 2386 const unsigned long *possible_mask = NULL; 2387 struct xps_dev_maps *dev_maps; 2388 unsigned int nr_ids; 2389 2390 if (!static_key_false(&xps_needed)) 2391 return; 2392 2393 cpus_read_lock(); 2394 mutex_lock(&xps_map_mutex); 2395 2396 if (static_key_false(&xps_rxqs_needed)) { 2397 dev_maps = xmap_dereference(dev->xps_rxqs_map); 2398 if (dev_maps) { 2399 nr_ids = dev->num_rx_queues; 2400 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, 2401 offset, count, true); 2402 } 2403 } 2404 2405 dev_maps = xmap_dereference(dev->xps_cpus_map); 2406 if (!dev_maps) 2407 goto out_no_maps; 2408 2409 if (num_possible_cpus() > 1) 2410 possible_mask = cpumask_bits(cpu_possible_mask); 2411 nr_ids = nr_cpu_ids; 2412 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count, 2413 false); 2414 2415 out_no_maps: 2416 mutex_unlock(&xps_map_mutex); 2417 cpus_read_unlock(); 2418 } 2419 2420 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index) 2421 { 2422 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index); 2423 } 2424 2425 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index, 2426 u16 index, bool is_rxqs_map) 2427 { 2428 struct xps_map *new_map; 2429 int alloc_len = XPS_MIN_MAP_ALLOC; 2430 int i, pos; 2431 2432 for (pos = 0; map && pos < map->len; pos++) { 2433 if (map->queues[pos] != index) 2434 continue; 2435 return map; 2436 } 2437 2438 /* Need to add tx-queue to this CPU's/rx-queue's existing map */ 2439 if (map) { 2440 if (pos < map->alloc_len) 2441 return map; 2442 2443 alloc_len = map->alloc_len * 2; 2444 } 2445 2446 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's 2447 * map 2448 */ 2449 if (is_rxqs_map) 2450 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL); 2451 else 2452 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL, 2453 cpu_to_node(attr_index)); 2454 if (!new_map) 2455 return NULL; 2456 2457 for (i = 0; i < pos; i++) 2458 new_map->queues[i] = map->queues[i]; 2459 new_map->alloc_len = alloc_len; 2460 new_map->len = pos; 2461 2462 return new_map; 2463 } 2464 2465 /* Must be called under cpus_read_lock */ 2466 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask, 2467 u16 index, bool is_rxqs_map) 2468 { 2469 const unsigned long *online_mask = NULL, *possible_mask = NULL; 2470 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL; 2471 int i, j, tci, numa_node_id = -2; 2472 int maps_sz, num_tc = 1, tc = 0; 2473 struct xps_map *map, *new_map; 2474 bool active = false; 2475 unsigned int nr_ids; 2476 2477 if (dev->num_tc) { 2478 /* Do not allow XPS on subordinate device directly */ 2479 num_tc = dev->num_tc; 2480 if (num_tc < 0) 2481 return -EINVAL; 2482 2483 /* If queue belongs to subordinate dev use its map */ 2484 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev; 2485 2486 tc = netdev_txq_to_tc(dev, index); 2487 if (tc < 0) 2488 return -EINVAL; 2489 } 2490 2491 mutex_lock(&xps_map_mutex); 2492 if (is_rxqs_map) { 2493 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues); 2494 dev_maps = xmap_dereference(dev->xps_rxqs_map); 2495 nr_ids = dev->num_rx_queues; 2496 } else { 2497 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc); 2498 if (num_possible_cpus() > 1) { 2499 online_mask = cpumask_bits(cpu_online_mask); 2500 possible_mask = cpumask_bits(cpu_possible_mask); 2501 } 2502 dev_maps = xmap_dereference(dev->xps_cpus_map); 2503 nr_ids = nr_cpu_ids; 2504 } 2505 2506 if (maps_sz < L1_CACHE_BYTES) 2507 maps_sz = L1_CACHE_BYTES; 2508 2509 /* allocate memory for queue storage */ 2510 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids), 2511 j < nr_ids;) { 2512 if (!new_dev_maps) 2513 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL); 2514 if (!new_dev_maps) { 2515 mutex_unlock(&xps_map_mutex); 2516 return -ENOMEM; 2517 } 2518 2519 tci = j * num_tc + tc; 2520 map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) : 2521 NULL; 2522 2523 map = expand_xps_map(map, j, index, is_rxqs_map); 2524 if (!map) 2525 goto error; 2526 2527 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2528 } 2529 2530 if (!new_dev_maps) 2531 goto out_no_new_maps; 2532 2533 if (!dev_maps) { 2534 /* Increment static keys at most once per type */ 2535 static_key_slow_inc_cpuslocked(&xps_needed); 2536 if (is_rxqs_map) 2537 static_key_slow_inc_cpuslocked(&xps_rxqs_needed); 2538 } 2539 2540 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids), 2541 j < nr_ids;) { 2542 /* copy maps belonging to foreign traffic classes */ 2543 for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) { 2544 /* fill in the new device map from the old device map */ 2545 map = xmap_dereference(dev_maps->attr_map[tci]); 2546 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2547 } 2548 2549 /* We need to explicitly update tci as prevous loop 2550 * could break out early if dev_maps is NULL. 2551 */ 2552 tci = j * num_tc + tc; 2553 2554 if (netif_attr_test_mask(j, mask, nr_ids) && 2555 netif_attr_test_online(j, online_mask, nr_ids)) { 2556 /* add tx-queue to CPU/rx-queue maps */ 2557 int pos = 0; 2558 2559 map = xmap_dereference(new_dev_maps->attr_map[tci]); 2560 while ((pos < map->len) && (map->queues[pos] != index)) 2561 pos++; 2562 2563 if (pos == map->len) 2564 map->queues[map->len++] = index; 2565 #ifdef CONFIG_NUMA 2566 if (!is_rxqs_map) { 2567 if (numa_node_id == -2) 2568 numa_node_id = cpu_to_node(j); 2569 else if (numa_node_id != cpu_to_node(j)) 2570 numa_node_id = -1; 2571 } 2572 #endif 2573 } else if (dev_maps) { 2574 /* fill in the new device map from the old device map */ 2575 map = xmap_dereference(dev_maps->attr_map[tci]); 2576 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2577 } 2578 2579 /* copy maps belonging to foreign traffic classes */ 2580 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) { 2581 /* fill in the new device map from the old device map */ 2582 map = xmap_dereference(dev_maps->attr_map[tci]); 2583 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2584 } 2585 } 2586 2587 if (is_rxqs_map) 2588 rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps); 2589 else 2590 rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps); 2591 2592 /* Cleanup old maps */ 2593 if (!dev_maps) 2594 goto out_no_old_maps; 2595 2596 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids), 2597 j < nr_ids;) { 2598 for (i = num_tc, tci = j * num_tc; i--; tci++) { 2599 new_map = xmap_dereference(new_dev_maps->attr_map[tci]); 2600 map = xmap_dereference(dev_maps->attr_map[tci]); 2601 if (map && map != new_map) 2602 kfree_rcu(map, rcu); 2603 } 2604 } 2605 2606 kfree_rcu(dev_maps, rcu); 2607 2608 out_no_old_maps: 2609 dev_maps = new_dev_maps; 2610 active = true; 2611 2612 out_no_new_maps: 2613 if (!is_rxqs_map) { 2614 /* update Tx queue numa node */ 2615 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index), 2616 (numa_node_id >= 0) ? 2617 numa_node_id : NUMA_NO_NODE); 2618 } 2619 2620 if (!dev_maps) 2621 goto out_no_maps; 2622 2623 /* removes tx-queue from unused CPUs/rx-queues */ 2624 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids), 2625 j < nr_ids;) { 2626 for (i = tc, tci = j * num_tc; i--; tci++) 2627 active |= remove_xps_queue(dev_maps, tci, index); 2628 if (!netif_attr_test_mask(j, mask, nr_ids) || 2629 !netif_attr_test_online(j, online_mask, nr_ids)) 2630 active |= remove_xps_queue(dev_maps, tci, index); 2631 for (i = num_tc - tc, tci++; --i; tci++) 2632 active |= remove_xps_queue(dev_maps, tci, index); 2633 } 2634 2635 /* free map if not active */ 2636 if (!active) 2637 reset_xps_maps(dev, dev_maps, is_rxqs_map); 2638 2639 out_no_maps: 2640 mutex_unlock(&xps_map_mutex); 2641 2642 return 0; 2643 error: 2644 /* remove any maps that we added */ 2645 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids), 2646 j < nr_ids;) { 2647 for (i = num_tc, tci = j * num_tc; i--; tci++) { 2648 new_map = xmap_dereference(new_dev_maps->attr_map[tci]); 2649 map = dev_maps ? 2650 xmap_dereference(dev_maps->attr_map[tci]) : 2651 NULL; 2652 if (new_map && new_map != map) 2653 kfree(new_map); 2654 } 2655 } 2656 2657 mutex_unlock(&xps_map_mutex); 2658 2659 kfree(new_dev_maps); 2660 return -ENOMEM; 2661 } 2662 EXPORT_SYMBOL_GPL(__netif_set_xps_queue); 2663 2664 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 2665 u16 index) 2666 { 2667 int ret; 2668 2669 cpus_read_lock(); 2670 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, false); 2671 cpus_read_unlock(); 2672 2673 return ret; 2674 } 2675 EXPORT_SYMBOL(netif_set_xps_queue); 2676 2677 #endif 2678 static void netdev_unbind_all_sb_channels(struct net_device *dev) 2679 { 2680 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues]; 2681 2682 /* Unbind any subordinate channels */ 2683 while (txq-- != &dev->_tx[0]) { 2684 if (txq->sb_dev) 2685 netdev_unbind_sb_channel(dev, txq->sb_dev); 2686 } 2687 } 2688 2689 void netdev_reset_tc(struct net_device *dev) 2690 { 2691 #ifdef CONFIG_XPS 2692 netif_reset_xps_queues_gt(dev, 0); 2693 #endif 2694 netdev_unbind_all_sb_channels(dev); 2695 2696 /* Reset TC configuration of device */ 2697 dev->num_tc = 0; 2698 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq)); 2699 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map)); 2700 } 2701 EXPORT_SYMBOL(netdev_reset_tc); 2702 2703 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset) 2704 { 2705 if (tc >= dev->num_tc) 2706 return -EINVAL; 2707 2708 #ifdef CONFIG_XPS 2709 netif_reset_xps_queues(dev, offset, count); 2710 #endif 2711 dev->tc_to_txq[tc].count = count; 2712 dev->tc_to_txq[tc].offset = offset; 2713 return 0; 2714 } 2715 EXPORT_SYMBOL(netdev_set_tc_queue); 2716 2717 int netdev_set_num_tc(struct net_device *dev, u8 num_tc) 2718 { 2719 if (num_tc > TC_MAX_QUEUE) 2720 return -EINVAL; 2721 2722 #ifdef CONFIG_XPS 2723 netif_reset_xps_queues_gt(dev, 0); 2724 #endif 2725 netdev_unbind_all_sb_channels(dev); 2726 2727 dev->num_tc = num_tc; 2728 return 0; 2729 } 2730 EXPORT_SYMBOL(netdev_set_num_tc); 2731 2732 void netdev_unbind_sb_channel(struct net_device *dev, 2733 struct net_device *sb_dev) 2734 { 2735 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues]; 2736 2737 #ifdef CONFIG_XPS 2738 netif_reset_xps_queues_gt(sb_dev, 0); 2739 #endif 2740 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq)); 2741 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map)); 2742 2743 while (txq-- != &dev->_tx[0]) { 2744 if (txq->sb_dev == sb_dev) 2745 txq->sb_dev = NULL; 2746 } 2747 } 2748 EXPORT_SYMBOL(netdev_unbind_sb_channel); 2749 2750 int netdev_bind_sb_channel_queue(struct net_device *dev, 2751 struct net_device *sb_dev, 2752 u8 tc, u16 count, u16 offset) 2753 { 2754 /* Make certain the sb_dev and dev are already configured */ 2755 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc) 2756 return -EINVAL; 2757 2758 /* We cannot hand out queues we don't have */ 2759 if ((offset + count) > dev->real_num_tx_queues) 2760 return -EINVAL; 2761 2762 /* Record the mapping */ 2763 sb_dev->tc_to_txq[tc].count = count; 2764 sb_dev->tc_to_txq[tc].offset = offset; 2765 2766 /* Provide a way for Tx queue to find the tc_to_txq map or 2767 * XPS map for itself. 2768 */ 2769 while (count--) 2770 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev; 2771 2772 return 0; 2773 } 2774 EXPORT_SYMBOL(netdev_bind_sb_channel_queue); 2775 2776 int netdev_set_sb_channel(struct net_device *dev, u16 channel) 2777 { 2778 /* Do not use a multiqueue device to represent a subordinate channel */ 2779 if (netif_is_multiqueue(dev)) 2780 return -ENODEV; 2781 2782 /* We allow channels 1 - 32767 to be used for subordinate channels. 2783 * Channel 0 is meant to be "native" mode and used only to represent 2784 * the main root device. We allow writing 0 to reset the device back 2785 * to normal mode after being used as a subordinate channel. 2786 */ 2787 if (channel > S16_MAX) 2788 return -EINVAL; 2789 2790 dev->num_tc = -channel; 2791 2792 return 0; 2793 } 2794 EXPORT_SYMBOL(netdev_set_sb_channel); 2795 2796 /* 2797 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 2798 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed. 2799 */ 2800 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 2801 { 2802 bool disabling; 2803 int rc; 2804 2805 disabling = txq < dev->real_num_tx_queues; 2806 2807 if (txq < 1 || txq > dev->num_tx_queues) 2808 return -EINVAL; 2809 2810 if (dev->reg_state == NETREG_REGISTERED || 2811 dev->reg_state == NETREG_UNREGISTERING) { 2812 ASSERT_RTNL(); 2813 2814 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 2815 txq); 2816 if (rc) 2817 return rc; 2818 2819 if (dev->num_tc) 2820 netif_setup_tc(dev, txq); 2821 2822 dev->real_num_tx_queues = txq; 2823 2824 if (disabling) { 2825 synchronize_net(); 2826 qdisc_reset_all_tx_gt(dev, txq); 2827 #ifdef CONFIG_XPS 2828 netif_reset_xps_queues_gt(dev, txq); 2829 #endif 2830 } 2831 } else { 2832 dev->real_num_tx_queues = txq; 2833 } 2834 2835 return 0; 2836 } 2837 EXPORT_SYMBOL(netif_set_real_num_tx_queues); 2838 2839 #ifdef CONFIG_SYSFS 2840 /** 2841 * netif_set_real_num_rx_queues - set actual number of RX queues used 2842 * @dev: Network device 2843 * @rxq: Actual number of RX queues 2844 * 2845 * This must be called either with the rtnl_lock held or before 2846 * registration of the net device. Returns 0 on success, or a 2847 * negative error code. If called before registration, it always 2848 * succeeds. 2849 */ 2850 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 2851 { 2852 int rc; 2853 2854 if (rxq < 1 || rxq > dev->num_rx_queues) 2855 return -EINVAL; 2856 2857 if (dev->reg_state == NETREG_REGISTERED) { 2858 ASSERT_RTNL(); 2859 2860 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 2861 rxq); 2862 if (rc) 2863 return rc; 2864 } 2865 2866 dev->real_num_rx_queues = rxq; 2867 return 0; 2868 } 2869 EXPORT_SYMBOL(netif_set_real_num_rx_queues); 2870 #endif 2871 2872 /** 2873 * netif_get_num_default_rss_queues - default number of RSS queues 2874 * 2875 * This routine should set an upper limit on the number of RSS queues 2876 * used by default by multiqueue devices. 2877 */ 2878 int netif_get_num_default_rss_queues(void) 2879 { 2880 return is_kdump_kernel() ? 2881 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus()); 2882 } 2883 EXPORT_SYMBOL(netif_get_num_default_rss_queues); 2884 2885 static void __netif_reschedule(struct Qdisc *q) 2886 { 2887 struct softnet_data *sd; 2888 unsigned long flags; 2889 2890 local_irq_save(flags); 2891 sd = this_cpu_ptr(&softnet_data); 2892 q->next_sched = NULL; 2893 *sd->output_queue_tailp = q; 2894 sd->output_queue_tailp = &q->next_sched; 2895 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2896 local_irq_restore(flags); 2897 } 2898 2899 void __netif_schedule(struct Qdisc *q) 2900 { 2901 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 2902 __netif_reschedule(q); 2903 } 2904 EXPORT_SYMBOL(__netif_schedule); 2905 2906 struct dev_kfree_skb_cb { 2907 enum skb_free_reason reason; 2908 }; 2909 2910 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb) 2911 { 2912 return (struct dev_kfree_skb_cb *)skb->cb; 2913 } 2914 2915 void netif_schedule_queue(struct netdev_queue *txq) 2916 { 2917 rcu_read_lock(); 2918 if (!netif_xmit_stopped(txq)) { 2919 struct Qdisc *q = rcu_dereference(txq->qdisc); 2920 2921 __netif_schedule(q); 2922 } 2923 rcu_read_unlock(); 2924 } 2925 EXPORT_SYMBOL(netif_schedule_queue); 2926 2927 void netif_tx_wake_queue(struct netdev_queue *dev_queue) 2928 { 2929 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) { 2930 struct Qdisc *q; 2931 2932 rcu_read_lock(); 2933 q = rcu_dereference(dev_queue->qdisc); 2934 __netif_schedule(q); 2935 rcu_read_unlock(); 2936 } 2937 } 2938 EXPORT_SYMBOL(netif_tx_wake_queue); 2939 2940 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason) 2941 { 2942 unsigned long flags; 2943 2944 if (unlikely(!skb)) 2945 return; 2946 2947 if (likely(refcount_read(&skb->users) == 1)) { 2948 smp_rmb(); 2949 refcount_set(&skb->users, 0); 2950 } else if (likely(!refcount_dec_and_test(&skb->users))) { 2951 return; 2952 } 2953 get_kfree_skb_cb(skb)->reason = reason; 2954 local_irq_save(flags); 2955 skb->next = __this_cpu_read(softnet_data.completion_queue); 2956 __this_cpu_write(softnet_data.completion_queue, skb); 2957 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2958 local_irq_restore(flags); 2959 } 2960 EXPORT_SYMBOL(__dev_kfree_skb_irq); 2961 2962 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason) 2963 { 2964 if (in_irq() || irqs_disabled()) 2965 __dev_kfree_skb_irq(skb, reason); 2966 else 2967 dev_kfree_skb(skb); 2968 } 2969 EXPORT_SYMBOL(__dev_kfree_skb_any); 2970 2971 2972 /** 2973 * netif_device_detach - mark device as removed 2974 * @dev: network device 2975 * 2976 * Mark device as removed from system and therefore no longer available. 2977 */ 2978 void netif_device_detach(struct net_device *dev) 2979 { 2980 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 2981 netif_running(dev)) { 2982 netif_tx_stop_all_queues(dev); 2983 } 2984 } 2985 EXPORT_SYMBOL(netif_device_detach); 2986 2987 /** 2988 * netif_device_attach - mark device as attached 2989 * @dev: network device 2990 * 2991 * Mark device as attached from system and restart if needed. 2992 */ 2993 void netif_device_attach(struct net_device *dev) 2994 { 2995 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 2996 netif_running(dev)) { 2997 netif_tx_wake_all_queues(dev); 2998 __netdev_watchdog_up(dev); 2999 } 3000 } 3001 EXPORT_SYMBOL(netif_device_attach); 3002 3003 /* 3004 * Returns a Tx hash based on the given packet descriptor a Tx queues' number 3005 * to be used as a distribution range. 3006 */ 3007 static u16 skb_tx_hash(const struct net_device *dev, 3008 const struct net_device *sb_dev, 3009 struct sk_buff *skb) 3010 { 3011 u32 hash; 3012 u16 qoffset = 0; 3013 u16 qcount = dev->real_num_tx_queues; 3014 3015 if (dev->num_tc) { 3016 u8 tc = netdev_get_prio_tc_map(dev, skb->priority); 3017 3018 qoffset = sb_dev->tc_to_txq[tc].offset; 3019 qcount = sb_dev->tc_to_txq[tc].count; 3020 } 3021 3022 if (skb_rx_queue_recorded(skb)) { 3023 hash = skb_get_rx_queue(skb); 3024 while (unlikely(hash >= qcount)) 3025 hash -= qcount; 3026 return hash + qoffset; 3027 } 3028 3029 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset; 3030 } 3031 3032 static void skb_warn_bad_offload(const struct sk_buff *skb) 3033 { 3034 static const netdev_features_t null_features; 3035 struct net_device *dev = skb->dev; 3036 const char *name = ""; 3037 3038 if (!net_ratelimit()) 3039 return; 3040 3041 if (dev) { 3042 if (dev->dev.parent) 3043 name = dev_driver_string(dev->dev.parent); 3044 else 3045 name = netdev_name(dev); 3046 } 3047 skb_dump(KERN_WARNING, skb, false); 3048 WARN(1, "%s: caps=(%pNF, %pNF)\n", 3049 name, dev ? &dev->features : &null_features, 3050 skb->sk ? &skb->sk->sk_route_caps : &null_features); 3051 } 3052 3053 /* 3054 * Invalidate hardware checksum when packet is to be mangled, and 3055 * complete checksum manually on outgoing path. 3056 */ 3057 int skb_checksum_help(struct sk_buff *skb) 3058 { 3059 __wsum csum; 3060 int ret = 0, offset; 3061 3062 if (skb->ip_summed == CHECKSUM_COMPLETE) 3063 goto out_set_summed; 3064 3065 if (unlikely(skb_shinfo(skb)->gso_size)) { 3066 skb_warn_bad_offload(skb); 3067 return -EINVAL; 3068 } 3069 3070 /* Before computing a checksum, we should make sure no frag could 3071 * be modified by an external entity : checksum could be wrong. 3072 */ 3073 if (skb_has_shared_frag(skb)) { 3074 ret = __skb_linearize(skb); 3075 if (ret) 3076 goto out; 3077 } 3078 3079 offset = skb_checksum_start_offset(skb); 3080 BUG_ON(offset >= skb_headlen(skb)); 3081 csum = skb_checksum(skb, offset, skb->len - offset, 0); 3082 3083 offset += skb->csum_offset; 3084 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 3085 3086 ret = skb_ensure_writable(skb, offset + sizeof(__sum16)); 3087 if (ret) 3088 goto out; 3089 3090 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0; 3091 out_set_summed: 3092 skb->ip_summed = CHECKSUM_NONE; 3093 out: 3094 return ret; 3095 } 3096 EXPORT_SYMBOL(skb_checksum_help); 3097 3098 int skb_crc32c_csum_help(struct sk_buff *skb) 3099 { 3100 __le32 crc32c_csum; 3101 int ret = 0, offset, start; 3102 3103 if (skb->ip_summed != CHECKSUM_PARTIAL) 3104 goto out; 3105 3106 if (unlikely(skb_is_gso(skb))) 3107 goto out; 3108 3109 /* Before computing a checksum, we should make sure no frag could 3110 * be modified by an external entity : checksum could be wrong. 3111 */ 3112 if (unlikely(skb_has_shared_frag(skb))) { 3113 ret = __skb_linearize(skb); 3114 if (ret) 3115 goto out; 3116 } 3117 start = skb_checksum_start_offset(skb); 3118 offset = start + offsetof(struct sctphdr, checksum); 3119 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) { 3120 ret = -EINVAL; 3121 goto out; 3122 } 3123 3124 ret = skb_ensure_writable(skb, offset + sizeof(__le32)); 3125 if (ret) 3126 goto out; 3127 3128 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start, 3129 skb->len - start, ~(__u32)0, 3130 crc32c_csum_stub)); 3131 *(__le32 *)(skb->data + offset) = crc32c_csum; 3132 skb->ip_summed = CHECKSUM_NONE; 3133 skb->csum_not_inet = 0; 3134 out: 3135 return ret; 3136 } 3137 3138 __be16 skb_network_protocol(struct sk_buff *skb, int *depth) 3139 { 3140 __be16 type = skb->protocol; 3141 3142 /* Tunnel gso handlers can set protocol to ethernet. */ 3143 if (type == htons(ETH_P_TEB)) { 3144 struct ethhdr *eth; 3145 3146 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr)))) 3147 return 0; 3148 3149 eth = (struct ethhdr *)skb->data; 3150 type = eth->h_proto; 3151 } 3152 3153 return __vlan_get_protocol(skb, type, depth); 3154 } 3155 3156 /** 3157 * skb_mac_gso_segment - mac layer segmentation handler. 3158 * @skb: buffer to segment 3159 * @features: features for the output path (see dev->features) 3160 */ 3161 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 3162 netdev_features_t features) 3163 { 3164 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 3165 struct packet_offload *ptype; 3166 int vlan_depth = skb->mac_len; 3167 __be16 type = skb_network_protocol(skb, &vlan_depth); 3168 3169 if (unlikely(!type)) 3170 return ERR_PTR(-EINVAL); 3171 3172 __skb_pull(skb, vlan_depth); 3173 3174 rcu_read_lock(); 3175 list_for_each_entry_rcu(ptype, &offload_base, list) { 3176 if (ptype->type == type && ptype->callbacks.gso_segment) { 3177 segs = ptype->callbacks.gso_segment(skb, features); 3178 break; 3179 } 3180 } 3181 rcu_read_unlock(); 3182 3183 __skb_push(skb, skb->data - skb_mac_header(skb)); 3184 3185 return segs; 3186 } 3187 EXPORT_SYMBOL(skb_mac_gso_segment); 3188 3189 3190 /* openvswitch calls this on rx path, so we need a different check. 3191 */ 3192 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path) 3193 { 3194 if (tx_path) 3195 return skb->ip_summed != CHECKSUM_PARTIAL && 3196 skb->ip_summed != CHECKSUM_UNNECESSARY; 3197 3198 return skb->ip_summed == CHECKSUM_NONE; 3199 } 3200 3201 /** 3202 * __skb_gso_segment - Perform segmentation on skb. 3203 * @skb: buffer to segment 3204 * @features: features for the output path (see dev->features) 3205 * @tx_path: whether it is called in TX path 3206 * 3207 * This function segments the given skb and returns a list of segments. 3208 * 3209 * It may return NULL if the skb requires no segmentation. This is 3210 * only possible when GSO is used for verifying header integrity. 3211 * 3212 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb. 3213 */ 3214 struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 3215 netdev_features_t features, bool tx_path) 3216 { 3217 struct sk_buff *segs; 3218 3219 if (unlikely(skb_needs_check(skb, tx_path))) { 3220 int err; 3221 3222 /* We're going to init ->check field in TCP or UDP header */ 3223 err = skb_cow_head(skb, 0); 3224 if (err < 0) 3225 return ERR_PTR(err); 3226 } 3227 3228 /* Only report GSO partial support if it will enable us to 3229 * support segmentation on this frame without needing additional 3230 * work. 3231 */ 3232 if (features & NETIF_F_GSO_PARTIAL) { 3233 netdev_features_t partial_features = NETIF_F_GSO_ROBUST; 3234 struct net_device *dev = skb->dev; 3235 3236 partial_features |= dev->features & dev->gso_partial_features; 3237 if (!skb_gso_ok(skb, features | partial_features)) 3238 features &= ~NETIF_F_GSO_PARTIAL; 3239 } 3240 3241 BUILD_BUG_ON(SKB_SGO_CB_OFFSET + 3242 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb)); 3243 3244 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb); 3245 SKB_GSO_CB(skb)->encap_level = 0; 3246 3247 skb_reset_mac_header(skb); 3248 skb_reset_mac_len(skb); 3249 3250 segs = skb_mac_gso_segment(skb, features); 3251 3252 if (unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs))) 3253 skb_warn_bad_offload(skb); 3254 3255 return segs; 3256 } 3257 EXPORT_SYMBOL(__skb_gso_segment); 3258 3259 /* Take action when hardware reception checksum errors are detected. */ 3260 #ifdef CONFIG_BUG 3261 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb) 3262 { 3263 if (net_ratelimit()) { 3264 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>"); 3265 skb_dump(KERN_ERR, skb, true); 3266 dump_stack(); 3267 } 3268 } 3269 EXPORT_SYMBOL(netdev_rx_csum_fault); 3270 #endif 3271 3272 /* XXX: check that highmem exists at all on the given machine. */ 3273 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 3274 { 3275 #ifdef CONFIG_HIGHMEM 3276 int i; 3277 3278 if (!(dev->features & NETIF_F_HIGHDMA)) { 3279 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3280 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3281 3282 if (PageHighMem(skb_frag_page(frag))) 3283 return 1; 3284 } 3285 } 3286 #endif 3287 return 0; 3288 } 3289 3290 /* If MPLS offload request, verify we are testing hardware MPLS features 3291 * instead of standard features for the netdev. 3292 */ 3293 #if IS_ENABLED(CONFIG_NET_MPLS_GSO) 3294 static netdev_features_t net_mpls_features(struct sk_buff *skb, 3295 netdev_features_t features, 3296 __be16 type) 3297 { 3298 if (eth_p_mpls(type)) 3299 features &= skb->dev->mpls_features; 3300 3301 return features; 3302 } 3303 #else 3304 static netdev_features_t net_mpls_features(struct sk_buff *skb, 3305 netdev_features_t features, 3306 __be16 type) 3307 { 3308 return features; 3309 } 3310 #endif 3311 3312 static netdev_features_t harmonize_features(struct sk_buff *skb, 3313 netdev_features_t features) 3314 { 3315 int tmp; 3316 __be16 type; 3317 3318 type = skb_network_protocol(skb, &tmp); 3319 features = net_mpls_features(skb, features, type); 3320 3321 if (skb->ip_summed != CHECKSUM_NONE && 3322 !can_checksum_protocol(features, type)) { 3323 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 3324 } 3325 if (illegal_highdma(skb->dev, skb)) 3326 features &= ~NETIF_F_SG; 3327 3328 return features; 3329 } 3330 3331 netdev_features_t passthru_features_check(struct sk_buff *skb, 3332 struct net_device *dev, 3333 netdev_features_t features) 3334 { 3335 return features; 3336 } 3337 EXPORT_SYMBOL(passthru_features_check); 3338 3339 static netdev_features_t dflt_features_check(struct sk_buff *skb, 3340 struct net_device *dev, 3341 netdev_features_t features) 3342 { 3343 return vlan_features_check(skb, features); 3344 } 3345 3346 static netdev_features_t gso_features_check(const struct sk_buff *skb, 3347 struct net_device *dev, 3348 netdev_features_t features) 3349 { 3350 u16 gso_segs = skb_shinfo(skb)->gso_segs; 3351 3352 if (gso_segs > dev->gso_max_segs) 3353 return features & ~NETIF_F_GSO_MASK; 3354 3355 /* Support for GSO partial features requires software 3356 * intervention before we can actually process the packets 3357 * so we need to strip support for any partial features now 3358 * and we can pull them back in after we have partially 3359 * segmented the frame. 3360 */ 3361 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL)) 3362 features &= ~dev->gso_partial_features; 3363 3364 /* Make sure to clear the IPv4 ID mangling feature if the 3365 * IPv4 header has the potential to be fragmented. 3366 */ 3367 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) { 3368 struct iphdr *iph = skb->encapsulation ? 3369 inner_ip_hdr(skb) : ip_hdr(skb); 3370 3371 if (!(iph->frag_off & htons(IP_DF))) 3372 features &= ~NETIF_F_TSO_MANGLEID; 3373 } 3374 3375 return features; 3376 } 3377 3378 netdev_features_t netif_skb_features(struct sk_buff *skb) 3379 { 3380 struct net_device *dev = skb->dev; 3381 netdev_features_t features = dev->features; 3382 3383 if (skb_is_gso(skb)) 3384 features = gso_features_check(skb, dev, features); 3385 3386 /* If encapsulation offload request, verify we are testing 3387 * hardware encapsulation features instead of standard 3388 * features for the netdev 3389 */ 3390 if (skb->encapsulation) 3391 features &= dev->hw_enc_features; 3392 3393 if (skb_vlan_tagged(skb)) 3394 features = netdev_intersect_features(features, 3395 dev->vlan_features | 3396 NETIF_F_HW_VLAN_CTAG_TX | 3397 NETIF_F_HW_VLAN_STAG_TX); 3398 3399 if (dev->netdev_ops->ndo_features_check) 3400 features &= dev->netdev_ops->ndo_features_check(skb, dev, 3401 features); 3402 else 3403 features &= dflt_features_check(skb, dev, features); 3404 3405 return harmonize_features(skb, features); 3406 } 3407 EXPORT_SYMBOL(netif_skb_features); 3408 3409 static int xmit_one(struct sk_buff *skb, struct net_device *dev, 3410 struct netdev_queue *txq, bool more) 3411 { 3412 unsigned int len; 3413 int rc; 3414 3415 if (dev_nit_active(dev)) 3416 dev_queue_xmit_nit(skb, dev); 3417 3418 len = skb->len; 3419 trace_net_dev_start_xmit(skb, dev); 3420 rc = netdev_start_xmit(skb, dev, txq, more); 3421 trace_net_dev_xmit(skb, rc, dev, len); 3422 3423 return rc; 3424 } 3425 3426 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev, 3427 struct netdev_queue *txq, int *ret) 3428 { 3429 struct sk_buff *skb = first; 3430 int rc = NETDEV_TX_OK; 3431 3432 while (skb) { 3433 struct sk_buff *next = skb->next; 3434 3435 skb_mark_not_on_list(skb); 3436 rc = xmit_one(skb, dev, txq, next != NULL); 3437 if (unlikely(!dev_xmit_complete(rc))) { 3438 skb->next = next; 3439 goto out; 3440 } 3441 3442 skb = next; 3443 if (netif_tx_queue_stopped(txq) && skb) { 3444 rc = NETDEV_TX_BUSY; 3445 break; 3446 } 3447 } 3448 3449 out: 3450 *ret = rc; 3451 return skb; 3452 } 3453 3454 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb, 3455 netdev_features_t features) 3456 { 3457 if (skb_vlan_tag_present(skb) && 3458 !vlan_hw_offload_capable(features, skb->vlan_proto)) 3459 skb = __vlan_hwaccel_push_inside(skb); 3460 return skb; 3461 } 3462 3463 int skb_csum_hwoffload_help(struct sk_buff *skb, 3464 const netdev_features_t features) 3465 { 3466 if (unlikely(skb->csum_not_inet)) 3467 return !!(features & NETIF_F_SCTP_CRC) ? 0 : 3468 skb_crc32c_csum_help(skb); 3469 3470 return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb); 3471 } 3472 EXPORT_SYMBOL(skb_csum_hwoffload_help); 3473 3474 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again) 3475 { 3476 netdev_features_t features; 3477 3478 features = netif_skb_features(skb); 3479 skb = validate_xmit_vlan(skb, features); 3480 if (unlikely(!skb)) 3481 goto out_null; 3482 3483 skb = sk_validate_xmit_skb(skb, dev); 3484 if (unlikely(!skb)) 3485 goto out_null; 3486 3487 if (netif_needs_gso(skb, features)) { 3488 struct sk_buff *segs; 3489 3490 segs = skb_gso_segment(skb, features); 3491 if (IS_ERR(segs)) { 3492 goto out_kfree_skb; 3493 } else if (segs) { 3494 consume_skb(skb); 3495 skb = segs; 3496 } 3497 } else { 3498 if (skb_needs_linearize(skb, features) && 3499 __skb_linearize(skb)) 3500 goto out_kfree_skb; 3501 3502 /* If packet is not checksummed and device does not 3503 * support checksumming for this protocol, complete 3504 * checksumming here. 3505 */ 3506 if (skb->ip_summed == CHECKSUM_PARTIAL) { 3507 if (skb->encapsulation) 3508 skb_set_inner_transport_header(skb, 3509 skb_checksum_start_offset(skb)); 3510 else 3511 skb_set_transport_header(skb, 3512 skb_checksum_start_offset(skb)); 3513 if (skb_csum_hwoffload_help(skb, features)) 3514 goto out_kfree_skb; 3515 } 3516 } 3517 3518 skb = validate_xmit_xfrm(skb, features, again); 3519 3520 return skb; 3521 3522 out_kfree_skb: 3523 kfree_skb(skb); 3524 out_null: 3525 atomic_long_inc(&dev->tx_dropped); 3526 return NULL; 3527 } 3528 3529 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again) 3530 { 3531 struct sk_buff *next, *head = NULL, *tail; 3532 3533 for (; skb != NULL; skb = next) { 3534 next = skb->next; 3535 skb_mark_not_on_list(skb); 3536 3537 /* in case skb wont be segmented, point to itself */ 3538 skb->prev = skb; 3539 3540 skb = validate_xmit_skb(skb, dev, again); 3541 if (!skb) 3542 continue; 3543 3544 if (!head) 3545 head = skb; 3546 else 3547 tail->next = skb; 3548 /* If skb was segmented, skb->prev points to 3549 * the last segment. If not, it still contains skb. 3550 */ 3551 tail = skb->prev; 3552 } 3553 return head; 3554 } 3555 EXPORT_SYMBOL_GPL(validate_xmit_skb_list); 3556 3557 static void qdisc_pkt_len_init(struct sk_buff *skb) 3558 { 3559 const struct skb_shared_info *shinfo = skb_shinfo(skb); 3560 3561 qdisc_skb_cb(skb)->pkt_len = skb->len; 3562 3563 /* To get more precise estimation of bytes sent on wire, 3564 * we add to pkt_len the headers size of all segments 3565 */ 3566 if (shinfo->gso_size && skb_transport_header_was_set(skb)) { 3567 unsigned int hdr_len; 3568 u16 gso_segs = shinfo->gso_segs; 3569 3570 /* mac layer + network layer */ 3571 hdr_len = skb_transport_header(skb) - skb_mac_header(skb); 3572 3573 /* + transport layer */ 3574 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) { 3575 const struct tcphdr *th; 3576 struct tcphdr _tcphdr; 3577 3578 th = skb_header_pointer(skb, skb_transport_offset(skb), 3579 sizeof(_tcphdr), &_tcphdr); 3580 if (likely(th)) 3581 hdr_len += __tcp_hdrlen(th); 3582 } else { 3583 struct udphdr _udphdr; 3584 3585 if (skb_header_pointer(skb, skb_transport_offset(skb), 3586 sizeof(_udphdr), &_udphdr)) 3587 hdr_len += sizeof(struct udphdr); 3588 } 3589 3590 if (shinfo->gso_type & SKB_GSO_DODGY) 3591 gso_segs = DIV_ROUND_UP(skb->len - hdr_len, 3592 shinfo->gso_size); 3593 3594 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len; 3595 } 3596 } 3597 3598 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 3599 struct net_device *dev, 3600 struct netdev_queue *txq) 3601 { 3602 spinlock_t *root_lock = qdisc_lock(q); 3603 struct sk_buff *to_free = NULL; 3604 bool contended; 3605 int rc; 3606 3607 qdisc_calculate_pkt_len(skb, q); 3608 3609 if (q->flags & TCQ_F_NOLOCK) { 3610 if ((q->flags & TCQ_F_CAN_BYPASS) && READ_ONCE(q->empty) && 3611 qdisc_run_begin(q)) { 3612 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, 3613 &q->state))) { 3614 __qdisc_drop(skb, &to_free); 3615 rc = NET_XMIT_DROP; 3616 goto end_run; 3617 } 3618 qdisc_bstats_cpu_update(q, skb); 3619 3620 rc = NET_XMIT_SUCCESS; 3621 if (sch_direct_xmit(skb, q, dev, txq, NULL, true)) 3622 __qdisc_run(q); 3623 3624 end_run: 3625 qdisc_run_end(q); 3626 } else { 3627 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK; 3628 qdisc_run(q); 3629 } 3630 3631 if (unlikely(to_free)) 3632 kfree_skb_list(to_free); 3633 return rc; 3634 } 3635 3636 /* 3637 * Heuristic to force contended enqueues to serialize on a 3638 * separate lock before trying to get qdisc main lock. 3639 * This permits qdisc->running owner to get the lock more 3640 * often and dequeue packets faster. 3641 */ 3642 contended = qdisc_is_running(q); 3643 if (unlikely(contended)) 3644 spin_lock(&q->busylock); 3645 3646 spin_lock(root_lock); 3647 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 3648 __qdisc_drop(skb, &to_free); 3649 rc = NET_XMIT_DROP; 3650 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 3651 qdisc_run_begin(q)) { 3652 /* 3653 * This is a work-conserving queue; there are no old skbs 3654 * waiting to be sent out; and the qdisc is not running - 3655 * xmit the skb directly. 3656 */ 3657 3658 qdisc_bstats_update(q, skb); 3659 3660 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) { 3661 if (unlikely(contended)) { 3662 spin_unlock(&q->busylock); 3663 contended = false; 3664 } 3665 __qdisc_run(q); 3666 } 3667 3668 qdisc_run_end(q); 3669 rc = NET_XMIT_SUCCESS; 3670 } else { 3671 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK; 3672 if (qdisc_run_begin(q)) { 3673 if (unlikely(contended)) { 3674 spin_unlock(&q->busylock); 3675 contended = false; 3676 } 3677 __qdisc_run(q); 3678 qdisc_run_end(q); 3679 } 3680 } 3681 spin_unlock(root_lock); 3682 if (unlikely(to_free)) 3683 kfree_skb_list(to_free); 3684 if (unlikely(contended)) 3685 spin_unlock(&q->busylock); 3686 return rc; 3687 } 3688 3689 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 3690 static void skb_update_prio(struct sk_buff *skb) 3691 { 3692 const struct netprio_map *map; 3693 const struct sock *sk; 3694 unsigned int prioidx; 3695 3696 if (skb->priority) 3697 return; 3698 map = rcu_dereference_bh(skb->dev->priomap); 3699 if (!map) 3700 return; 3701 sk = skb_to_full_sk(skb); 3702 if (!sk) 3703 return; 3704 3705 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data); 3706 3707 if (prioidx < map->priomap_len) 3708 skb->priority = map->priomap[prioidx]; 3709 } 3710 #else 3711 #define skb_update_prio(skb) 3712 #endif 3713 3714 /** 3715 * dev_loopback_xmit - loop back @skb 3716 * @net: network namespace this loopback is happening in 3717 * @sk: sk needed to be a netfilter okfn 3718 * @skb: buffer to transmit 3719 */ 3720 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb) 3721 { 3722 skb_reset_mac_header(skb); 3723 __skb_pull(skb, skb_network_offset(skb)); 3724 skb->pkt_type = PACKET_LOOPBACK; 3725 skb->ip_summed = CHECKSUM_UNNECESSARY; 3726 WARN_ON(!skb_dst(skb)); 3727 skb_dst_force(skb); 3728 netif_rx_ni(skb); 3729 return 0; 3730 } 3731 EXPORT_SYMBOL(dev_loopback_xmit); 3732 3733 #ifdef CONFIG_NET_EGRESS 3734 static struct sk_buff * 3735 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev) 3736 { 3737 struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress); 3738 struct tcf_result cl_res; 3739 3740 if (!miniq) 3741 return skb; 3742 3743 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */ 3744 mini_qdisc_bstats_cpu_update(miniq, skb); 3745 3746 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) { 3747 case TC_ACT_OK: 3748 case TC_ACT_RECLASSIFY: 3749 skb->tc_index = TC_H_MIN(cl_res.classid); 3750 break; 3751 case TC_ACT_SHOT: 3752 mini_qdisc_qstats_cpu_drop(miniq); 3753 *ret = NET_XMIT_DROP; 3754 kfree_skb(skb); 3755 return NULL; 3756 case TC_ACT_STOLEN: 3757 case TC_ACT_QUEUED: 3758 case TC_ACT_TRAP: 3759 *ret = NET_XMIT_SUCCESS; 3760 consume_skb(skb); 3761 return NULL; 3762 case TC_ACT_REDIRECT: 3763 /* No need to push/pop skb's mac_header here on egress! */ 3764 skb_do_redirect(skb); 3765 *ret = NET_XMIT_SUCCESS; 3766 return NULL; 3767 default: 3768 break; 3769 } 3770 3771 return skb; 3772 } 3773 #endif /* CONFIG_NET_EGRESS */ 3774 3775 #ifdef CONFIG_XPS 3776 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb, 3777 struct xps_dev_maps *dev_maps, unsigned int tci) 3778 { 3779 struct xps_map *map; 3780 int queue_index = -1; 3781 3782 if (dev->num_tc) { 3783 tci *= dev->num_tc; 3784 tci += netdev_get_prio_tc_map(dev, skb->priority); 3785 } 3786 3787 map = rcu_dereference(dev_maps->attr_map[tci]); 3788 if (map) { 3789 if (map->len == 1) 3790 queue_index = map->queues[0]; 3791 else 3792 queue_index = map->queues[reciprocal_scale( 3793 skb_get_hash(skb), map->len)]; 3794 if (unlikely(queue_index >= dev->real_num_tx_queues)) 3795 queue_index = -1; 3796 } 3797 return queue_index; 3798 } 3799 #endif 3800 3801 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev, 3802 struct sk_buff *skb) 3803 { 3804 #ifdef CONFIG_XPS 3805 struct xps_dev_maps *dev_maps; 3806 struct sock *sk = skb->sk; 3807 int queue_index = -1; 3808 3809 if (!static_key_false(&xps_needed)) 3810 return -1; 3811 3812 rcu_read_lock(); 3813 if (!static_key_false(&xps_rxqs_needed)) 3814 goto get_cpus_map; 3815 3816 dev_maps = rcu_dereference(sb_dev->xps_rxqs_map); 3817 if (dev_maps) { 3818 int tci = sk_rx_queue_get(sk); 3819 3820 if (tci >= 0 && tci < dev->num_rx_queues) 3821 queue_index = __get_xps_queue_idx(dev, skb, dev_maps, 3822 tci); 3823 } 3824 3825 get_cpus_map: 3826 if (queue_index < 0) { 3827 dev_maps = rcu_dereference(sb_dev->xps_cpus_map); 3828 if (dev_maps) { 3829 unsigned int tci = skb->sender_cpu - 1; 3830 3831 queue_index = __get_xps_queue_idx(dev, skb, dev_maps, 3832 tci); 3833 } 3834 } 3835 rcu_read_unlock(); 3836 3837 return queue_index; 3838 #else 3839 return -1; 3840 #endif 3841 } 3842 3843 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb, 3844 struct net_device *sb_dev) 3845 { 3846 return 0; 3847 } 3848 EXPORT_SYMBOL(dev_pick_tx_zero); 3849 3850 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb, 3851 struct net_device *sb_dev) 3852 { 3853 return (u16)raw_smp_processor_id() % dev->real_num_tx_queues; 3854 } 3855 EXPORT_SYMBOL(dev_pick_tx_cpu_id); 3856 3857 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb, 3858 struct net_device *sb_dev) 3859 { 3860 struct sock *sk = skb->sk; 3861 int queue_index = sk_tx_queue_get(sk); 3862 3863 sb_dev = sb_dev ? : dev; 3864 3865 if (queue_index < 0 || skb->ooo_okay || 3866 queue_index >= dev->real_num_tx_queues) { 3867 int new_index = get_xps_queue(dev, sb_dev, skb); 3868 3869 if (new_index < 0) 3870 new_index = skb_tx_hash(dev, sb_dev, skb); 3871 3872 if (queue_index != new_index && sk && 3873 sk_fullsock(sk) && 3874 rcu_access_pointer(sk->sk_dst_cache)) 3875 sk_tx_queue_set(sk, new_index); 3876 3877 queue_index = new_index; 3878 } 3879 3880 return queue_index; 3881 } 3882 EXPORT_SYMBOL(netdev_pick_tx); 3883 3884 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev, 3885 struct sk_buff *skb, 3886 struct net_device *sb_dev) 3887 { 3888 int queue_index = 0; 3889 3890 #ifdef CONFIG_XPS 3891 u32 sender_cpu = skb->sender_cpu - 1; 3892 3893 if (sender_cpu >= (u32)NR_CPUS) 3894 skb->sender_cpu = raw_smp_processor_id() + 1; 3895 #endif 3896 3897 if (dev->real_num_tx_queues != 1) { 3898 const struct net_device_ops *ops = dev->netdev_ops; 3899 3900 if (ops->ndo_select_queue) 3901 queue_index = ops->ndo_select_queue(dev, skb, sb_dev); 3902 else 3903 queue_index = netdev_pick_tx(dev, skb, sb_dev); 3904 3905 queue_index = netdev_cap_txqueue(dev, queue_index); 3906 } 3907 3908 skb_set_queue_mapping(skb, queue_index); 3909 return netdev_get_tx_queue(dev, queue_index); 3910 } 3911 3912 /** 3913 * __dev_queue_xmit - transmit a buffer 3914 * @skb: buffer to transmit 3915 * @sb_dev: suboordinate device used for L2 forwarding offload 3916 * 3917 * Queue a buffer for transmission to a network device. The caller must 3918 * have set the device and priority and built the buffer before calling 3919 * this function. The function can be called from an interrupt. 3920 * 3921 * A negative errno code is returned on a failure. A success does not 3922 * guarantee the frame will be transmitted as it may be dropped due 3923 * to congestion or traffic shaping. 3924 * 3925 * ----------------------------------------------------------------------------------- 3926 * I notice this method can also return errors from the queue disciplines, 3927 * including NET_XMIT_DROP, which is a positive value. So, errors can also 3928 * be positive. 3929 * 3930 * Regardless of the return value, the skb is consumed, so it is currently 3931 * difficult to retry a send to this method. (You can bump the ref count 3932 * before sending to hold a reference for retry if you are careful.) 3933 * 3934 * When calling this method, interrupts MUST be enabled. This is because 3935 * the BH enable code must have IRQs enabled so that it will not deadlock. 3936 * --BLG 3937 */ 3938 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev) 3939 { 3940 struct net_device *dev = skb->dev; 3941 struct netdev_queue *txq; 3942 struct Qdisc *q; 3943 int rc = -ENOMEM; 3944 bool again = false; 3945 3946 skb_reset_mac_header(skb); 3947 3948 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP)) 3949 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED); 3950 3951 /* Disable soft irqs for various locks below. Also 3952 * stops preemption for RCU. 3953 */ 3954 rcu_read_lock_bh(); 3955 3956 skb_update_prio(skb); 3957 3958 qdisc_pkt_len_init(skb); 3959 #ifdef CONFIG_NET_CLS_ACT 3960 skb->tc_at_ingress = 0; 3961 # ifdef CONFIG_NET_EGRESS 3962 if (static_branch_unlikely(&egress_needed_key)) { 3963 skb = sch_handle_egress(skb, &rc, dev); 3964 if (!skb) 3965 goto out; 3966 } 3967 # endif 3968 #endif 3969 /* If device/qdisc don't need skb->dst, release it right now while 3970 * its hot in this cpu cache. 3971 */ 3972 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 3973 skb_dst_drop(skb); 3974 else 3975 skb_dst_force(skb); 3976 3977 txq = netdev_core_pick_tx(dev, skb, sb_dev); 3978 q = rcu_dereference_bh(txq->qdisc); 3979 3980 trace_net_dev_queue(skb); 3981 if (q->enqueue) { 3982 rc = __dev_xmit_skb(skb, q, dev, txq); 3983 goto out; 3984 } 3985 3986 /* The device has no queue. Common case for software devices: 3987 * loopback, all the sorts of tunnels... 3988 3989 * Really, it is unlikely that netif_tx_lock protection is necessary 3990 * here. (f.e. loopback and IP tunnels are clean ignoring statistics 3991 * counters.) 3992 * However, it is possible, that they rely on protection 3993 * made by us here. 3994 3995 * Check this and shot the lock. It is not prone from deadlocks. 3996 *Either shot noqueue qdisc, it is even simpler 8) 3997 */ 3998 if (dev->flags & IFF_UP) { 3999 int cpu = smp_processor_id(); /* ok because BHs are off */ 4000 4001 if (txq->xmit_lock_owner != cpu) { 4002 if (dev_xmit_recursion()) 4003 goto recursion_alert; 4004 4005 skb = validate_xmit_skb(skb, dev, &again); 4006 if (!skb) 4007 goto out; 4008 4009 HARD_TX_LOCK(dev, txq, cpu); 4010 4011 if (!netif_xmit_stopped(txq)) { 4012 dev_xmit_recursion_inc(); 4013 skb = dev_hard_start_xmit(skb, dev, txq, &rc); 4014 dev_xmit_recursion_dec(); 4015 if (dev_xmit_complete(rc)) { 4016 HARD_TX_UNLOCK(dev, txq); 4017 goto out; 4018 } 4019 } 4020 HARD_TX_UNLOCK(dev, txq); 4021 net_crit_ratelimited("Virtual device %s asks to queue packet!\n", 4022 dev->name); 4023 } else { 4024 /* Recursion is detected! It is possible, 4025 * unfortunately 4026 */ 4027 recursion_alert: 4028 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n", 4029 dev->name); 4030 } 4031 } 4032 4033 rc = -ENETDOWN; 4034 rcu_read_unlock_bh(); 4035 4036 atomic_long_inc(&dev->tx_dropped); 4037 kfree_skb_list(skb); 4038 return rc; 4039 out: 4040 rcu_read_unlock_bh(); 4041 return rc; 4042 } 4043 4044 int dev_queue_xmit(struct sk_buff *skb) 4045 { 4046 return __dev_queue_xmit(skb, NULL); 4047 } 4048 EXPORT_SYMBOL(dev_queue_xmit); 4049 4050 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev) 4051 { 4052 return __dev_queue_xmit(skb, sb_dev); 4053 } 4054 EXPORT_SYMBOL(dev_queue_xmit_accel); 4055 4056 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id) 4057 { 4058 struct net_device *dev = skb->dev; 4059 struct sk_buff *orig_skb = skb; 4060 struct netdev_queue *txq; 4061 int ret = NETDEV_TX_BUSY; 4062 bool again = false; 4063 4064 if (unlikely(!netif_running(dev) || 4065 !netif_carrier_ok(dev))) 4066 goto drop; 4067 4068 skb = validate_xmit_skb_list(skb, dev, &again); 4069 if (skb != orig_skb) 4070 goto drop; 4071 4072 skb_set_queue_mapping(skb, queue_id); 4073 txq = skb_get_tx_queue(dev, skb); 4074 4075 local_bh_disable(); 4076 4077 HARD_TX_LOCK(dev, txq, smp_processor_id()); 4078 if (!netif_xmit_frozen_or_drv_stopped(txq)) 4079 ret = netdev_start_xmit(skb, dev, txq, false); 4080 HARD_TX_UNLOCK(dev, txq); 4081 4082 local_bh_enable(); 4083 4084 if (!dev_xmit_complete(ret)) 4085 kfree_skb(skb); 4086 4087 return ret; 4088 drop: 4089 atomic_long_inc(&dev->tx_dropped); 4090 kfree_skb_list(skb); 4091 return NET_XMIT_DROP; 4092 } 4093 EXPORT_SYMBOL(dev_direct_xmit); 4094 4095 /************************************************************************* 4096 * Receiver routines 4097 *************************************************************************/ 4098 4099 int netdev_max_backlog __read_mostly = 1000; 4100 EXPORT_SYMBOL(netdev_max_backlog); 4101 4102 int netdev_tstamp_prequeue __read_mostly = 1; 4103 int netdev_budget __read_mostly = 300; 4104 unsigned int __read_mostly netdev_budget_usecs = 2000; 4105 int weight_p __read_mostly = 64; /* old backlog weight */ 4106 int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */ 4107 int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */ 4108 int dev_rx_weight __read_mostly = 64; 4109 int dev_tx_weight __read_mostly = 64; 4110 /* Maximum number of GRO_NORMAL skbs to batch up for list-RX */ 4111 int gro_normal_batch __read_mostly = 8; 4112 4113 /* Called with irq disabled */ 4114 static inline void ____napi_schedule(struct softnet_data *sd, 4115 struct napi_struct *napi) 4116 { 4117 list_add_tail(&napi->poll_list, &sd->poll_list); 4118 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 4119 } 4120 4121 #ifdef CONFIG_RPS 4122 4123 /* One global table that all flow-based protocols share. */ 4124 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly; 4125 EXPORT_SYMBOL(rps_sock_flow_table); 4126 u32 rps_cpu_mask __read_mostly; 4127 EXPORT_SYMBOL(rps_cpu_mask); 4128 4129 struct static_key_false rps_needed __read_mostly; 4130 EXPORT_SYMBOL(rps_needed); 4131 struct static_key_false rfs_needed __read_mostly; 4132 EXPORT_SYMBOL(rfs_needed); 4133 4134 static struct rps_dev_flow * 4135 set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 4136 struct rps_dev_flow *rflow, u16 next_cpu) 4137 { 4138 if (next_cpu < nr_cpu_ids) { 4139 #ifdef CONFIG_RFS_ACCEL 4140 struct netdev_rx_queue *rxqueue; 4141 struct rps_dev_flow_table *flow_table; 4142 struct rps_dev_flow *old_rflow; 4143 u32 flow_id; 4144 u16 rxq_index; 4145 int rc; 4146 4147 /* Should we steer this flow to a different hardware queue? */ 4148 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 4149 !(dev->features & NETIF_F_NTUPLE)) 4150 goto out; 4151 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 4152 if (rxq_index == skb_get_rx_queue(skb)) 4153 goto out; 4154 4155 rxqueue = dev->_rx + rxq_index; 4156 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4157 if (!flow_table) 4158 goto out; 4159 flow_id = skb_get_hash(skb) & flow_table->mask; 4160 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 4161 rxq_index, flow_id); 4162 if (rc < 0) 4163 goto out; 4164 old_rflow = rflow; 4165 rflow = &flow_table->flows[flow_id]; 4166 rflow->filter = rc; 4167 if (old_rflow->filter == rflow->filter) 4168 old_rflow->filter = RPS_NO_FILTER; 4169 out: 4170 #endif 4171 rflow->last_qtail = 4172 per_cpu(softnet_data, next_cpu).input_queue_head; 4173 } 4174 4175 rflow->cpu = next_cpu; 4176 return rflow; 4177 } 4178 4179 /* 4180 * get_rps_cpu is called from netif_receive_skb and returns the target 4181 * CPU from the RPS map of the receiving queue for a given skb. 4182 * rcu_read_lock must be held on entry. 4183 */ 4184 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 4185 struct rps_dev_flow **rflowp) 4186 { 4187 const struct rps_sock_flow_table *sock_flow_table; 4188 struct netdev_rx_queue *rxqueue = dev->_rx; 4189 struct rps_dev_flow_table *flow_table; 4190 struct rps_map *map; 4191 int cpu = -1; 4192 u32 tcpu; 4193 u32 hash; 4194 4195 if (skb_rx_queue_recorded(skb)) { 4196 u16 index = skb_get_rx_queue(skb); 4197 4198 if (unlikely(index >= dev->real_num_rx_queues)) { 4199 WARN_ONCE(dev->real_num_rx_queues > 1, 4200 "%s received packet on queue %u, but number " 4201 "of RX queues is %u\n", 4202 dev->name, index, dev->real_num_rx_queues); 4203 goto done; 4204 } 4205 rxqueue += index; 4206 } 4207 4208 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */ 4209 4210 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4211 map = rcu_dereference(rxqueue->rps_map); 4212 if (!flow_table && !map) 4213 goto done; 4214 4215 skb_reset_network_header(skb); 4216 hash = skb_get_hash(skb); 4217 if (!hash) 4218 goto done; 4219 4220 sock_flow_table = rcu_dereference(rps_sock_flow_table); 4221 if (flow_table && sock_flow_table) { 4222 struct rps_dev_flow *rflow; 4223 u32 next_cpu; 4224 u32 ident; 4225 4226 /* First check into global flow table if there is a match */ 4227 ident = sock_flow_table->ents[hash & sock_flow_table->mask]; 4228 if ((ident ^ hash) & ~rps_cpu_mask) 4229 goto try_rps; 4230 4231 next_cpu = ident & rps_cpu_mask; 4232 4233 /* OK, now we know there is a match, 4234 * we can look at the local (per receive queue) flow table 4235 */ 4236 rflow = &flow_table->flows[hash & flow_table->mask]; 4237 tcpu = rflow->cpu; 4238 4239 /* 4240 * If the desired CPU (where last recvmsg was done) is 4241 * different from current CPU (one in the rx-queue flow 4242 * table entry), switch if one of the following holds: 4243 * - Current CPU is unset (>= nr_cpu_ids). 4244 * - Current CPU is offline. 4245 * - The current CPU's queue tail has advanced beyond the 4246 * last packet that was enqueued using this table entry. 4247 * This guarantees that all previous packets for the flow 4248 * have been dequeued, thus preserving in order delivery. 4249 */ 4250 if (unlikely(tcpu != next_cpu) && 4251 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) || 4252 ((int)(per_cpu(softnet_data, tcpu).input_queue_head - 4253 rflow->last_qtail)) >= 0)) { 4254 tcpu = next_cpu; 4255 rflow = set_rps_cpu(dev, skb, rflow, next_cpu); 4256 } 4257 4258 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) { 4259 *rflowp = rflow; 4260 cpu = tcpu; 4261 goto done; 4262 } 4263 } 4264 4265 try_rps: 4266 4267 if (map) { 4268 tcpu = map->cpus[reciprocal_scale(hash, map->len)]; 4269 if (cpu_online(tcpu)) { 4270 cpu = tcpu; 4271 goto done; 4272 } 4273 } 4274 4275 done: 4276 return cpu; 4277 } 4278 4279 #ifdef CONFIG_RFS_ACCEL 4280 4281 /** 4282 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 4283 * @dev: Device on which the filter was set 4284 * @rxq_index: RX queue index 4285 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 4286 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 4287 * 4288 * Drivers that implement ndo_rx_flow_steer() should periodically call 4289 * this function for each installed filter and remove the filters for 4290 * which it returns %true. 4291 */ 4292 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 4293 u32 flow_id, u16 filter_id) 4294 { 4295 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 4296 struct rps_dev_flow_table *flow_table; 4297 struct rps_dev_flow *rflow; 4298 bool expire = true; 4299 unsigned int cpu; 4300 4301 rcu_read_lock(); 4302 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4303 if (flow_table && flow_id <= flow_table->mask) { 4304 rflow = &flow_table->flows[flow_id]; 4305 cpu = READ_ONCE(rflow->cpu); 4306 if (rflow->filter == filter_id && cpu < nr_cpu_ids && 4307 ((int)(per_cpu(softnet_data, cpu).input_queue_head - 4308 rflow->last_qtail) < 4309 (int)(10 * flow_table->mask))) 4310 expire = false; 4311 } 4312 rcu_read_unlock(); 4313 return expire; 4314 } 4315 EXPORT_SYMBOL(rps_may_expire_flow); 4316 4317 #endif /* CONFIG_RFS_ACCEL */ 4318 4319 /* Called from hardirq (IPI) context */ 4320 static void rps_trigger_softirq(void *data) 4321 { 4322 struct softnet_data *sd = data; 4323 4324 ____napi_schedule(sd, &sd->backlog); 4325 sd->received_rps++; 4326 } 4327 4328 #endif /* CONFIG_RPS */ 4329 4330 /* 4331 * Check if this softnet_data structure is another cpu one 4332 * If yes, queue it to our IPI list and return 1 4333 * If no, return 0 4334 */ 4335 static int rps_ipi_queued(struct softnet_data *sd) 4336 { 4337 #ifdef CONFIG_RPS 4338 struct softnet_data *mysd = this_cpu_ptr(&softnet_data); 4339 4340 if (sd != mysd) { 4341 sd->rps_ipi_next = mysd->rps_ipi_list; 4342 mysd->rps_ipi_list = sd; 4343 4344 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 4345 return 1; 4346 } 4347 #endif /* CONFIG_RPS */ 4348 return 0; 4349 } 4350 4351 #ifdef CONFIG_NET_FLOW_LIMIT 4352 int netdev_flow_limit_table_len __read_mostly = (1 << 12); 4353 #endif 4354 4355 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen) 4356 { 4357 #ifdef CONFIG_NET_FLOW_LIMIT 4358 struct sd_flow_limit *fl; 4359 struct softnet_data *sd; 4360 unsigned int old_flow, new_flow; 4361 4362 if (qlen < (netdev_max_backlog >> 1)) 4363 return false; 4364 4365 sd = this_cpu_ptr(&softnet_data); 4366 4367 rcu_read_lock(); 4368 fl = rcu_dereference(sd->flow_limit); 4369 if (fl) { 4370 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1); 4371 old_flow = fl->history[fl->history_head]; 4372 fl->history[fl->history_head] = new_flow; 4373 4374 fl->history_head++; 4375 fl->history_head &= FLOW_LIMIT_HISTORY - 1; 4376 4377 if (likely(fl->buckets[old_flow])) 4378 fl->buckets[old_flow]--; 4379 4380 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) { 4381 fl->count++; 4382 rcu_read_unlock(); 4383 return true; 4384 } 4385 } 4386 rcu_read_unlock(); 4387 #endif 4388 return false; 4389 } 4390 4391 /* 4392 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 4393 * queue (may be a remote CPU queue). 4394 */ 4395 static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 4396 unsigned int *qtail) 4397 { 4398 struct softnet_data *sd; 4399 unsigned long flags; 4400 unsigned int qlen; 4401 4402 sd = &per_cpu(softnet_data, cpu); 4403 4404 local_irq_save(flags); 4405 4406 rps_lock(sd); 4407 if (!netif_running(skb->dev)) 4408 goto drop; 4409 qlen = skb_queue_len(&sd->input_pkt_queue); 4410 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) { 4411 if (qlen) { 4412 enqueue: 4413 __skb_queue_tail(&sd->input_pkt_queue, skb); 4414 input_queue_tail_incr_save(sd, qtail); 4415 rps_unlock(sd); 4416 local_irq_restore(flags); 4417 return NET_RX_SUCCESS; 4418 } 4419 4420 /* Schedule NAPI for backlog device 4421 * We can use non atomic operation since we own the queue lock 4422 */ 4423 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) { 4424 if (!rps_ipi_queued(sd)) 4425 ____napi_schedule(sd, &sd->backlog); 4426 } 4427 goto enqueue; 4428 } 4429 4430 drop: 4431 sd->dropped++; 4432 rps_unlock(sd); 4433 4434 local_irq_restore(flags); 4435 4436 atomic_long_inc(&skb->dev->rx_dropped); 4437 kfree_skb(skb); 4438 return NET_RX_DROP; 4439 } 4440 4441 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb) 4442 { 4443 struct net_device *dev = skb->dev; 4444 struct netdev_rx_queue *rxqueue; 4445 4446 rxqueue = dev->_rx; 4447 4448 if (skb_rx_queue_recorded(skb)) { 4449 u16 index = skb_get_rx_queue(skb); 4450 4451 if (unlikely(index >= dev->real_num_rx_queues)) { 4452 WARN_ONCE(dev->real_num_rx_queues > 1, 4453 "%s received packet on queue %u, but number " 4454 "of RX queues is %u\n", 4455 dev->name, index, dev->real_num_rx_queues); 4456 4457 return rxqueue; /* Return first rxqueue */ 4458 } 4459 rxqueue += index; 4460 } 4461 return rxqueue; 4462 } 4463 4464 static u32 netif_receive_generic_xdp(struct sk_buff *skb, 4465 struct xdp_buff *xdp, 4466 struct bpf_prog *xdp_prog) 4467 { 4468 struct netdev_rx_queue *rxqueue; 4469 void *orig_data, *orig_data_end; 4470 u32 metalen, act = XDP_DROP; 4471 __be16 orig_eth_type; 4472 struct ethhdr *eth; 4473 bool orig_bcast; 4474 int hlen, off; 4475 u32 mac_len; 4476 4477 /* Reinjected packets coming from act_mirred or similar should 4478 * not get XDP generic processing. 4479 */ 4480 if (skb_cloned(skb) || skb_is_tc_redirected(skb)) 4481 return XDP_PASS; 4482 4483 /* XDP packets must be linear and must have sufficient headroom 4484 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also 4485 * native XDP provides, thus we need to do it here as well. 4486 */ 4487 if (skb_is_nonlinear(skb) || 4488 skb_headroom(skb) < XDP_PACKET_HEADROOM) { 4489 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb); 4490 int troom = skb->tail + skb->data_len - skb->end; 4491 4492 /* In case we have to go down the path and also linearize, 4493 * then lets do the pskb_expand_head() work just once here. 4494 */ 4495 if (pskb_expand_head(skb, 4496 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0, 4497 troom > 0 ? troom + 128 : 0, GFP_ATOMIC)) 4498 goto do_drop; 4499 if (skb_linearize(skb)) 4500 goto do_drop; 4501 } 4502 4503 /* The XDP program wants to see the packet starting at the MAC 4504 * header. 4505 */ 4506 mac_len = skb->data - skb_mac_header(skb); 4507 hlen = skb_headlen(skb) + mac_len; 4508 xdp->data = skb->data - mac_len; 4509 xdp->data_meta = xdp->data; 4510 xdp->data_end = xdp->data + hlen; 4511 xdp->data_hard_start = skb->data - skb_headroom(skb); 4512 orig_data_end = xdp->data_end; 4513 orig_data = xdp->data; 4514 eth = (struct ethhdr *)xdp->data; 4515 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest); 4516 orig_eth_type = eth->h_proto; 4517 4518 rxqueue = netif_get_rxqueue(skb); 4519 xdp->rxq = &rxqueue->xdp_rxq; 4520 4521 act = bpf_prog_run_xdp(xdp_prog, xdp); 4522 4523 /* check if bpf_xdp_adjust_head was used */ 4524 off = xdp->data - orig_data; 4525 if (off) { 4526 if (off > 0) 4527 __skb_pull(skb, off); 4528 else if (off < 0) 4529 __skb_push(skb, -off); 4530 4531 skb->mac_header += off; 4532 skb_reset_network_header(skb); 4533 } 4534 4535 /* check if bpf_xdp_adjust_tail was used. it can only "shrink" 4536 * pckt. 4537 */ 4538 off = orig_data_end - xdp->data_end; 4539 if (off != 0) { 4540 skb_set_tail_pointer(skb, xdp->data_end - xdp->data); 4541 skb->len -= off; 4542 4543 } 4544 4545 /* check if XDP changed eth hdr such SKB needs update */ 4546 eth = (struct ethhdr *)xdp->data; 4547 if ((orig_eth_type != eth->h_proto) || 4548 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) { 4549 __skb_push(skb, ETH_HLEN); 4550 skb->protocol = eth_type_trans(skb, skb->dev); 4551 } 4552 4553 switch (act) { 4554 case XDP_REDIRECT: 4555 case XDP_TX: 4556 __skb_push(skb, mac_len); 4557 break; 4558 case XDP_PASS: 4559 metalen = xdp->data - xdp->data_meta; 4560 if (metalen) 4561 skb_metadata_set(skb, metalen); 4562 break; 4563 default: 4564 bpf_warn_invalid_xdp_action(act); 4565 /* fall through */ 4566 case XDP_ABORTED: 4567 trace_xdp_exception(skb->dev, xdp_prog, act); 4568 /* fall through */ 4569 case XDP_DROP: 4570 do_drop: 4571 kfree_skb(skb); 4572 break; 4573 } 4574 4575 return act; 4576 } 4577 4578 /* When doing generic XDP we have to bypass the qdisc layer and the 4579 * network taps in order to match in-driver-XDP behavior. 4580 */ 4581 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog) 4582 { 4583 struct net_device *dev = skb->dev; 4584 struct netdev_queue *txq; 4585 bool free_skb = true; 4586 int cpu, rc; 4587 4588 txq = netdev_core_pick_tx(dev, skb, NULL); 4589 cpu = smp_processor_id(); 4590 HARD_TX_LOCK(dev, txq, cpu); 4591 if (!netif_xmit_stopped(txq)) { 4592 rc = netdev_start_xmit(skb, dev, txq, 0); 4593 if (dev_xmit_complete(rc)) 4594 free_skb = false; 4595 } 4596 HARD_TX_UNLOCK(dev, txq); 4597 if (free_skb) { 4598 trace_xdp_exception(dev, xdp_prog, XDP_TX); 4599 kfree_skb(skb); 4600 } 4601 } 4602 EXPORT_SYMBOL_GPL(generic_xdp_tx); 4603 4604 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key); 4605 4606 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb) 4607 { 4608 if (xdp_prog) { 4609 struct xdp_buff xdp; 4610 u32 act; 4611 int err; 4612 4613 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog); 4614 if (act != XDP_PASS) { 4615 switch (act) { 4616 case XDP_REDIRECT: 4617 err = xdp_do_generic_redirect(skb->dev, skb, 4618 &xdp, xdp_prog); 4619 if (err) 4620 goto out_redir; 4621 break; 4622 case XDP_TX: 4623 generic_xdp_tx(skb, xdp_prog); 4624 break; 4625 } 4626 return XDP_DROP; 4627 } 4628 } 4629 return XDP_PASS; 4630 out_redir: 4631 kfree_skb(skb); 4632 return XDP_DROP; 4633 } 4634 EXPORT_SYMBOL_GPL(do_xdp_generic); 4635 4636 static int netif_rx_internal(struct sk_buff *skb) 4637 { 4638 int ret; 4639 4640 net_timestamp_check(netdev_tstamp_prequeue, skb); 4641 4642 trace_netif_rx(skb); 4643 4644 #ifdef CONFIG_RPS 4645 if (static_branch_unlikely(&rps_needed)) { 4646 struct rps_dev_flow voidflow, *rflow = &voidflow; 4647 int cpu; 4648 4649 preempt_disable(); 4650 rcu_read_lock(); 4651 4652 cpu = get_rps_cpu(skb->dev, skb, &rflow); 4653 if (cpu < 0) 4654 cpu = smp_processor_id(); 4655 4656 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 4657 4658 rcu_read_unlock(); 4659 preempt_enable(); 4660 } else 4661 #endif 4662 { 4663 unsigned int qtail; 4664 4665 ret = enqueue_to_backlog(skb, get_cpu(), &qtail); 4666 put_cpu(); 4667 } 4668 return ret; 4669 } 4670 4671 /** 4672 * netif_rx - post buffer to the network code 4673 * @skb: buffer to post 4674 * 4675 * This function receives a packet from a device driver and queues it for 4676 * the upper (protocol) levels to process. It always succeeds. The buffer 4677 * may be dropped during processing for congestion control or by the 4678 * protocol layers. 4679 * 4680 * return values: 4681 * NET_RX_SUCCESS (no congestion) 4682 * NET_RX_DROP (packet was dropped) 4683 * 4684 */ 4685 4686 int netif_rx(struct sk_buff *skb) 4687 { 4688 int ret; 4689 4690 trace_netif_rx_entry(skb); 4691 4692 ret = netif_rx_internal(skb); 4693 trace_netif_rx_exit(ret); 4694 4695 return ret; 4696 } 4697 EXPORT_SYMBOL(netif_rx); 4698 4699 int netif_rx_ni(struct sk_buff *skb) 4700 { 4701 int err; 4702 4703 trace_netif_rx_ni_entry(skb); 4704 4705 preempt_disable(); 4706 err = netif_rx_internal(skb); 4707 if (local_softirq_pending()) 4708 do_softirq(); 4709 preempt_enable(); 4710 trace_netif_rx_ni_exit(err); 4711 4712 return err; 4713 } 4714 EXPORT_SYMBOL(netif_rx_ni); 4715 4716 static __latent_entropy void net_tx_action(struct softirq_action *h) 4717 { 4718 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 4719 4720 if (sd->completion_queue) { 4721 struct sk_buff *clist; 4722 4723 local_irq_disable(); 4724 clist = sd->completion_queue; 4725 sd->completion_queue = NULL; 4726 local_irq_enable(); 4727 4728 while (clist) { 4729 struct sk_buff *skb = clist; 4730 4731 clist = clist->next; 4732 4733 WARN_ON(refcount_read(&skb->users)); 4734 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED)) 4735 trace_consume_skb(skb); 4736 else 4737 trace_kfree_skb(skb, net_tx_action); 4738 4739 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) 4740 __kfree_skb(skb); 4741 else 4742 __kfree_skb_defer(skb); 4743 } 4744 4745 __kfree_skb_flush(); 4746 } 4747 4748 if (sd->output_queue) { 4749 struct Qdisc *head; 4750 4751 local_irq_disable(); 4752 head = sd->output_queue; 4753 sd->output_queue = NULL; 4754 sd->output_queue_tailp = &sd->output_queue; 4755 local_irq_enable(); 4756 4757 while (head) { 4758 struct Qdisc *q = head; 4759 spinlock_t *root_lock = NULL; 4760 4761 head = head->next_sched; 4762 4763 if (!(q->flags & TCQ_F_NOLOCK)) { 4764 root_lock = qdisc_lock(q); 4765 spin_lock(root_lock); 4766 } 4767 /* We need to make sure head->next_sched is read 4768 * before clearing __QDISC_STATE_SCHED 4769 */ 4770 smp_mb__before_atomic(); 4771 clear_bit(__QDISC_STATE_SCHED, &q->state); 4772 qdisc_run(q); 4773 if (root_lock) 4774 spin_unlock(root_lock); 4775 } 4776 } 4777 4778 xfrm_dev_backlog(sd); 4779 } 4780 4781 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE) 4782 /* This hook is defined here for ATM LANE */ 4783 int (*br_fdb_test_addr_hook)(struct net_device *dev, 4784 unsigned char *addr) __read_mostly; 4785 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 4786 #endif 4787 4788 static inline struct sk_buff * 4789 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret, 4790 struct net_device *orig_dev) 4791 { 4792 #ifdef CONFIG_NET_CLS_ACT 4793 struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress); 4794 struct tcf_result cl_res; 4795 4796 /* If there's at least one ingress present somewhere (so 4797 * we get here via enabled static key), remaining devices 4798 * that are not configured with an ingress qdisc will bail 4799 * out here. 4800 */ 4801 if (!miniq) 4802 return skb; 4803 4804 if (*pt_prev) { 4805 *ret = deliver_skb(skb, *pt_prev, orig_dev); 4806 *pt_prev = NULL; 4807 } 4808 4809 qdisc_skb_cb(skb)->pkt_len = skb->len; 4810 skb->tc_at_ingress = 1; 4811 mini_qdisc_bstats_cpu_update(miniq, skb); 4812 4813 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) { 4814 case TC_ACT_OK: 4815 case TC_ACT_RECLASSIFY: 4816 skb->tc_index = TC_H_MIN(cl_res.classid); 4817 break; 4818 case TC_ACT_SHOT: 4819 mini_qdisc_qstats_cpu_drop(miniq); 4820 kfree_skb(skb); 4821 return NULL; 4822 case TC_ACT_STOLEN: 4823 case TC_ACT_QUEUED: 4824 case TC_ACT_TRAP: 4825 consume_skb(skb); 4826 return NULL; 4827 case TC_ACT_REDIRECT: 4828 /* skb_mac_header check was done by cls/act_bpf, so 4829 * we can safely push the L2 header back before 4830 * redirecting to another netdev 4831 */ 4832 __skb_push(skb, skb->mac_len); 4833 skb_do_redirect(skb); 4834 return NULL; 4835 case TC_ACT_CONSUMED: 4836 return NULL; 4837 default: 4838 break; 4839 } 4840 #endif /* CONFIG_NET_CLS_ACT */ 4841 return skb; 4842 } 4843 4844 /** 4845 * netdev_is_rx_handler_busy - check if receive handler is registered 4846 * @dev: device to check 4847 * 4848 * Check if a receive handler is already registered for a given device. 4849 * Return true if there one. 4850 * 4851 * The caller must hold the rtnl_mutex. 4852 */ 4853 bool netdev_is_rx_handler_busy(struct net_device *dev) 4854 { 4855 ASSERT_RTNL(); 4856 return dev && rtnl_dereference(dev->rx_handler); 4857 } 4858 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy); 4859 4860 /** 4861 * netdev_rx_handler_register - register receive handler 4862 * @dev: device to register a handler for 4863 * @rx_handler: receive handler to register 4864 * @rx_handler_data: data pointer that is used by rx handler 4865 * 4866 * Register a receive handler for a device. This handler will then be 4867 * called from __netif_receive_skb. A negative errno code is returned 4868 * on a failure. 4869 * 4870 * The caller must hold the rtnl_mutex. 4871 * 4872 * For a general description of rx_handler, see enum rx_handler_result. 4873 */ 4874 int netdev_rx_handler_register(struct net_device *dev, 4875 rx_handler_func_t *rx_handler, 4876 void *rx_handler_data) 4877 { 4878 if (netdev_is_rx_handler_busy(dev)) 4879 return -EBUSY; 4880 4881 if (dev->priv_flags & IFF_NO_RX_HANDLER) 4882 return -EINVAL; 4883 4884 /* Note: rx_handler_data must be set before rx_handler */ 4885 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 4886 rcu_assign_pointer(dev->rx_handler, rx_handler); 4887 4888 return 0; 4889 } 4890 EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 4891 4892 /** 4893 * netdev_rx_handler_unregister - unregister receive handler 4894 * @dev: device to unregister a handler from 4895 * 4896 * Unregister a receive handler from a device. 4897 * 4898 * The caller must hold the rtnl_mutex. 4899 */ 4900 void netdev_rx_handler_unregister(struct net_device *dev) 4901 { 4902 4903 ASSERT_RTNL(); 4904 RCU_INIT_POINTER(dev->rx_handler, NULL); 4905 /* a reader seeing a non NULL rx_handler in a rcu_read_lock() 4906 * section has a guarantee to see a non NULL rx_handler_data 4907 * as well. 4908 */ 4909 synchronize_net(); 4910 RCU_INIT_POINTER(dev->rx_handler_data, NULL); 4911 } 4912 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 4913 4914 /* 4915 * Limit the use of PFMEMALLOC reserves to those protocols that implement 4916 * the special handling of PFMEMALLOC skbs. 4917 */ 4918 static bool skb_pfmemalloc_protocol(struct sk_buff *skb) 4919 { 4920 switch (skb->protocol) { 4921 case htons(ETH_P_ARP): 4922 case htons(ETH_P_IP): 4923 case htons(ETH_P_IPV6): 4924 case htons(ETH_P_8021Q): 4925 case htons(ETH_P_8021AD): 4926 return true; 4927 default: 4928 return false; 4929 } 4930 } 4931 4932 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev, 4933 int *ret, struct net_device *orig_dev) 4934 { 4935 #ifdef CONFIG_NETFILTER_INGRESS 4936 if (nf_hook_ingress_active(skb)) { 4937 int ingress_retval; 4938 4939 if (*pt_prev) { 4940 *ret = deliver_skb(skb, *pt_prev, orig_dev); 4941 *pt_prev = NULL; 4942 } 4943 4944 rcu_read_lock(); 4945 ingress_retval = nf_hook_ingress(skb); 4946 rcu_read_unlock(); 4947 return ingress_retval; 4948 } 4949 #endif /* CONFIG_NETFILTER_INGRESS */ 4950 return 0; 4951 } 4952 4953 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc, 4954 struct packet_type **ppt_prev) 4955 { 4956 struct packet_type *ptype, *pt_prev; 4957 rx_handler_func_t *rx_handler; 4958 struct net_device *orig_dev; 4959 bool deliver_exact = false; 4960 int ret = NET_RX_DROP; 4961 __be16 type; 4962 4963 net_timestamp_check(!netdev_tstamp_prequeue, skb); 4964 4965 trace_netif_receive_skb(skb); 4966 4967 orig_dev = skb->dev; 4968 4969 skb_reset_network_header(skb); 4970 if (!skb_transport_header_was_set(skb)) 4971 skb_reset_transport_header(skb); 4972 skb_reset_mac_len(skb); 4973 4974 pt_prev = NULL; 4975 4976 another_round: 4977 skb->skb_iif = skb->dev->ifindex; 4978 4979 __this_cpu_inc(softnet_data.processed); 4980 4981 if (static_branch_unlikely(&generic_xdp_needed_key)) { 4982 int ret2; 4983 4984 preempt_disable(); 4985 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb); 4986 preempt_enable(); 4987 4988 if (ret2 != XDP_PASS) 4989 return NET_RX_DROP; 4990 skb_reset_mac_len(skb); 4991 } 4992 4993 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) || 4994 skb->protocol == cpu_to_be16(ETH_P_8021AD)) { 4995 skb = skb_vlan_untag(skb); 4996 if (unlikely(!skb)) 4997 goto out; 4998 } 4999 5000 if (skb_skip_tc_classify(skb)) 5001 goto skip_classify; 5002 5003 if (pfmemalloc) 5004 goto skip_taps; 5005 5006 list_for_each_entry_rcu(ptype, &ptype_all, list) { 5007 if (pt_prev) 5008 ret = deliver_skb(skb, pt_prev, orig_dev); 5009 pt_prev = ptype; 5010 } 5011 5012 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) { 5013 if (pt_prev) 5014 ret = deliver_skb(skb, pt_prev, orig_dev); 5015 pt_prev = ptype; 5016 } 5017 5018 skip_taps: 5019 #ifdef CONFIG_NET_INGRESS 5020 if (static_branch_unlikely(&ingress_needed_key)) { 5021 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev); 5022 if (!skb) 5023 goto out; 5024 5025 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0) 5026 goto out; 5027 } 5028 #endif 5029 skb_reset_tc(skb); 5030 skip_classify: 5031 if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) 5032 goto drop; 5033 5034 if (skb_vlan_tag_present(skb)) { 5035 if (pt_prev) { 5036 ret = deliver_skb(skb, pt_prev, orig_dev); 5037 pt_prev = NULL; 5038 } 5039 if (vlan_do_receive(&skb)) 5040 goto another_round; 5041 else if (unlikely(!skb)) 5042 goto out; 5043 } 5044 5045 rx_handler = rcu_dereference(skb->dev->rx_handler); 5046 if (rx_handler) { 5047 if (pt_prev) { 5048 ret = deliver_skb(skb, pt_prev, orig_dev); 5049 pt_prev = NULL; 5050 } 5051 switch (rx_handler(&skb)) { 5052 case RX_HANDLER_CONSUMED: 5053 ret = NET_RX_SUCCESS; 5054 goto out; 5055 case RX_HANDLER_ANOTHER: 5056 goto another_round; 5057 case RX_HANDLER_EXACT: 5058 deliver_exact = true; 5059 case RX_HANDLER_PASS: 5060 break; 5061 default: 5062 BUG(); 5063 } 5064 } 5065 5066 if (unlikely(skb_vlan_tag_present(skb))) { 5067 check_vlan_id: 5068 if (skb_vlan_tag_get_id(skb)) { 5069 /* Vlan id is non 0 and vlan_do_receive() above couldn't 5070 * find vlan device. 5071 */ 5072 skb->pkt_type = PACKET_OTHERHOST; 5073 } else if (skb->protocol == cpu_to_be16(ETH_P_8021Q) || 5074 skb->protocol == cpu_to_be16(ETH_P_8021AD)) { 5075 /* Outer header is 802.1P with vlan 0, inner header is 5076 * 802.1Q or 802.1AD and vlan_do_receive() above could 5077 * not find vlan dev for vlan id 0. 5078 */ 5079 __vlan_hwaccel_clear_tag(skb); 5080 skb = skb_vlan_untag(skb); 5081 if (unlikely(!skb)) 5082 goto out; 5083 if (vlan_do_receive(&skb)) 5084 /* After stripping off 802.1P header with vlan 0 5085 * vlan dev is found for inner header. 5086 */ 5087 goto another_round; 5088 else if (unlikely(!skb)) 5089 goto out; 5090 else 5091 /* We have stripped outer 802.1P vlan 0 header. 5092 * But could not find vlan dev. 5093 * check again for vlan id to set OTHERHOST. 5094 */ 5095 goto check_vlan_id; 5096 } 5097 /* Note: we might in the future use prio bits 5098 * and set skb->priority like in vlan_do_receive() 5099 * For the time being, just ignore Priority Code Point 5100 */ 5101 __vlan_hwaccel_clear_tag(skb); 5102 } 5103 5104 type = skb->protocol; 5105 5106 /* deliver only exact match when indicated */ 5107 if (likely(!deliver_exact)) { 5108 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 5109 &ptype_base[ntohs(type) & 5110 PTYPE_HASH_MASK]); 5111 } 5112 5113 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 5114 &orig_dev->ptype_specific); 5115 5116 if (unlikely(skb->dev != orig_dev)) { 5117 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 5118 &skb->dev->ptype_specific); 5119 } 5120 5121 if (pt_prev) { 5122 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 5123 goto drop; 5124 *ppt_prev = pt_prev; 5125 } else { 5126 drop: 5127 if (!deliver_exact) 5128 atomic_long_inc(&skb->dev->rx_dropped); 5129 else 5130 atomic_long_inc(&skb->dev->rx_nohandler); 5131 kfree_skb(skb); 5132 /* Jamal, now you will not able to escape explaining 5133 * me how you were going to use this. :-) 5134 */ 5135 ret = NET_RX_DROP; 5136 } 5137 5138 out: 5139 return ret; 5140 } 5141 5142 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc) 5143 { 5144 struct net_device *orig_dev = skb->dev; 5145 struct packet_type *pt_prev = NULL; 5146 int ret; 5147 5148 ret = __netif_receive_skb_core(skb, pfmemalloc, &pt_prev); 5149 if (pt_prev) 5150 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb, 5151 skb->dev, pt_prev, orig_dev); 5152 return ret; 5153 } 5154 5155 /** 5156 * netif_receive_skb_core - special purpose version of netif_receive_skb 5157 * @skb: buffer to process 5158 * 5159 * More direct receive version of netif_receive_skb(). It should 5160 * only be used by callers that have a need to skip RPS and Generic XDP. 5161 * Caller must also take care of handling if (page_is_)pfmemalloc. 5162 * 5163 * This function may only be called from softirq context and interrupts 5164 * should be enabled. 5165 * 5166 * Return values (usually ignored): 5167 * NET_RX_SUCCESS: no congestion 5168 * NET_RX_DROP: packet was dropped 5169 */ 5170 int netif_receive_skb_core(struct sk_buff *skb) 5171 { 5172 int ret; 5173 5174 rcu_read_lock(); 5175 ret = __netif_receive_skb_one_core(skb, false); 5176 rcu_read_unlock(); 5177 5178 return ret; 5179 } 5180 EXPORT_SYMBOL(netif_receive_skb_core); 5181 5182 static inline void __netif_receive_skb_list_ptype(struct list_head *head, 5183 struct packet_type *pt_prev, 5184 struct net_device *orig_dev) 5185 { 5186 struct sk_buff *skb, *next; 5187 5188 if (!pt_prev) 5189 return; 5190 if (list_empty(head)) 5191 return; 5192 if (pt_prev->list_func != NULL) 5193 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv, 5194 ip_list_rcv, head, pt_prev, orig_dev); 5195 else 5196 list_for_each_entry_safe(skb, next, head, list) { 5197 skb_list_del_init(skb); 5198 pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 5199 } 5200 } 5201 5202 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc) 5203 { 5204 /* Fast-path assumptions: 5205 * - There is no RX handler. 5206 * - Only one packet_type matches. 5207 * If either of these fails, we will end up doing some per-packet 5208 * processing in-line, then handling the 'last ptype' for the whole 5209 * sublist. This can't cause out-of-order delivery to any single ptype, 5210 * because the 'last ptype' must be constant across the sublist, and all 5211 * other ptypes are handled per-packet. 5212 */ 5213 /* Current (common) ptype of sublist */ 5214 struct packet_type *pt_curr = NULL; 5215 /* Current (common) orig_dev of sublist */ 5216 struct net_device *od_curr = NULL; 5217 struct list_head sublist; 5218 struct sk_buff *skb, *next; 5219 5220 INIT_LIST_HEAD(&sublist); 5221 list_for_each_entry_safe(skb, next, head, list) { 5222 struct net_device *orig_dev = skb->dev; 5223 struct packet_type *pt_prev = NULL; 5224 5225 skb_list_del_init(skb); 5226 __netif_receive_skb_core(skb, pfmemalloc, &pt_prev); 5227 if (!pt_prev) 5228 continue; 5229 if (pt_curr != pt_prev || od_curr != orig_dev) { 5230 /* dispatch old sublist */ 5231 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr); 5232 /* start new sublist */ 5233 INIT_LIST_HEAD(&sublist); 5234 pt_curr = pt_prev; 5235 od_curr = orig_dev; 5236 } 5237 list_add_tail(&skb->list, &sublist); 5238 } 5239 5240 /* dispatch final sublist */ 5241 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr); 5242 } 5243 5244 static int __netif_receive_skb(struct sk_buff *skb) 5245 { 5246 int ret; 5247 5248 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) { 5249 unsigned int noreclaim_flag; 5250 5251 /* 5252 * PFMEMALLOC skbs are special, they should 5253 * - be delivered to SOCK_MEMALLOC sockets only 5254 * - stay away from userspace 5255 * - have bounded memory usage 5256 * 5257 * Use PF_MEMALLOC as this saves us from propagating the allocation 5258 * context down to all allocation sites. 5259 */ 5260 noreclaim_flag = memalloc_noreclaim_save(); 5261 ret = __netif_receive_skb_one_core(skb, true); 5262 memalloc_noreclaim_restore(noreclaim_flag); 5263 } else 5264 ret = __netif_receive_skb_one_core(skb, false); 5265 5266 return ret; 5267 } 5268 5269 static void __netif_receive_skb_list(struct list_head *head) 5270 { 5271 unsigned long noreclaim_flag = 0; 5272 struct sk_buff *skb, *next; 5273 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */ 5274 5275 list_for_each_entry_safe(skb, next, head, list) { 5276 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) { 5277 struct list_head sublist; 5278 5279 /* Handle the previous sublist */ 5280 list_cut_before(&sublist, head, &skb->list); 5281 if (!list_empty(&sublist)) 5282 __netif_receive_skb_list_core(&sublist, pfmemalloc); 5283 pfmemalloc = !pfmemalloc; 5284 /* See comments in __netif_receive_skb */ 5285 if (pfmemalloc) 5286 noreclaim_flag = memalloc_noreclaim_save(); 5287 else 5288 memalloc_noreclaim_restore(noreclaim_flag); 5289 } 5290 } 5291 /* Handle the remaining sublist */ 5292 if (!list_empty(head)) 5293 __netif_receive_skb_list_core(head, pfmemalloc); 5294 /* Restore pflags */ 5295 if (pfmemalloc) 5296 memalloc_noreclaim_restore(noreclaim_flag); 5297 } 5298 5299 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp) 5300 { 5301 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog); 5302 struct bpf_prog *new = xdp->prog; 5303 int ret = 0; 5304 5305 switch (xdp->command) { 5306 case XDP_SETUP_PROG: 5307 rcu_assign_pointer(dev->xdp_prog, new); 5308 if (old) 5309 bpf_prog_put(old); 5310 5311 if (old && !new) { 5312 static_branch_dec(&generic_xdp_needed_key); 5313 } else if (new && !old) { 5314 static_branch_inc(&generic_xdp_needed_key); 5315 dev_disable_lro(dev); 5316 dev_disable_gro_hw(dev); 5317 } 5318 break; 5319 5320 case XDP_QUERY_PROG: 5321 xdp->prog_id = old ? old->aux->id : 0; 5322 break; 5323 5324 default: 5325 ret = -EINVAL; 5326 break; 5327 } 5328 5329 return ret; 5330 } 5331 5332 static int netif_receive_skb_internal(struct sk_buff *skb) 5333 { 5334 int ret; 5335 5336 net_timestamp_check(netdev_tstamp_prequeue, skb); 5337 5338 if (skb_defer_rx_timestamp(skb)) 5339 return NET_RX_SUCCESS; 5340 5341 rcu_read_lock(); 5342 #ifdef CONFIG_RPS 5343 if (static_branch_unlikely(&rps_needed)) { 5344 struct rps_dev_flow voidflow, *rflow = &voidflow; 5345 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 5346 5347 if (cpu >= 0) { 5348 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 5349 rcu_read_unlock(); 5350 return ret; 5351 } 5352 } 5353 #endif 5354 ret = __netif_receive_skb(skb); 5355 rcu_read_unlock(); 5356 return ret; 5357 } 5358 5359 static void netif_receive_skb_list_internal(struct list_head *head) 5360 { 5361 struct sk_buff *skb, *next; 5362 struct list_head sublist; 5363 5364 INIT_LIST_HEAD(&sublist); 5365 list_for_each_entry_safe(skb, next, head, list) { 5366 net_timestamp_check(netdev_tstamp_prequeue, skb); 5367 skb_list_del_init(skb); 5368 if (!skb_defer_rx_timestamp(skb)) 5369 list_add_tail(&skb->list, &sublist); 5370 } 5371 list_splice_init(&sublist, head); 5372 5373 rcu_read_lock(); 5374 #ifdef CONFIG_RPS 5375 if (static_branch_unlikely(&rps_needed)) { 5376 list_for_each_entry_safe(skb, next, head, list) { 5377 struct rps_dev_flow voidflow, *rflow = &voidflow; 5378 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 5379 5380 if (cpu >= 0) { 5381 /* Will be handled, remove from list */ 5382 skb_list_del_init(skb); 5383 enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 5384 } 5385 } 5386 } 5387 #endif 5388 __netif_receive_skb_list(head); 5389 rcu_read_unlock(); 5390 } 5391 5392 /** 5393 * netif_receive_skb - process receive buffer from network 5394 * @skb: buffer to process 5395 * 5396 * netif_receive_skb() is the main receive data processing function. 5397 * It always succeeds. The buffer may be dropped during processing 5398 * for congestion control or by the protocol layers. 5399 * 5400 * This function may only be called from softirq context and interrupts 5401 * should be enabled. 5402 * 5403 * Return values (usually ignored): 5404 * NET_RX_SUCCESS: no congestion 5405 * NET_RX_DROP: packet was dropped 5406 */ 5407 int netif_receive_skb(struct sk_buff *skb) 5408 { 5409 int ret; 5410 5411 trace_netif_receive_skb_entry(skb); 5412 5413 ret = netif_receive_skb_internal(skb); 5414 trace_netif_receive_skb_exit(ret); 5415 5416 return ret; 5417 } 5418 EXPORT_SYMBOL(netif_receive_skb); 5419 5420 /** 5421 * netif_receive_skb_list - process many receive buffers from network 5422 * @head: list of skbs to process. 5423 * 5424 * Since return value of netif_receive_skb() is normally ignored, and 5425 * wouldn't be meaningful for a list, this function returns void. 5426 * 5427 * This function may only be called from softirq context and interrupts 5428 * should be enabled. 5429 */ 5430 void netif_receive_skb_list(struct list_head *head) 5431 { 5432 struct sk_buff *skb; 5433 5434 if (list_empty(head)) 5435 return; 5436 if (trace_netif_receive_skb_list_entry_enabled()) { 5437 list_for_each_entry(skb, head, list) 5438 trace_netif_receive_skb_list_entry(skb); 5439 } 5440 netif_receive_skb_list_internal(head); 5441 trace_netif_receive_skb_list_exit(0); 5442 } 5443 EXPORT_SYMBOL(netif_receive_skb_list); 5444 5445 DEFINE_PER_CPU(struct work_struct, flush_works); 5446 5447 /* Network device is going away, flush any packets still pending */ 5448 static void flush_backlog(struct work_struct *work) 5449 { 5450 struct sk_buff *skb, *tmp; 5451 struct softnet_data *sd; 5452 5453 local_bh_disable(); 5454 sd = this_cpu_ptr(&softnet_data); 5455 5456 local_irq_disable(); 5457 rps_lock(sd); 5458 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 5459 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 5460 __skb_unlink(skb, &sd->input_pkt_queue); 5461 kfree_skb(skb); 5462 input_queue_head_incr(sd); 5463 } 5464 } 5465 rps_unlock(sd); 5466 local_irq_enable(); 5467 5468 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 5469 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 5470 __skb_unlink(skb, &sd->process_queue); 5471 kfree_skb(skb); 5472 input_queue_head_incr(sd); 5473 } 5474 } 5475 local_bh_enable(); 5476 } 5477 5478 static void flush_all_backlogs(void) 5479 { 5480 unsigned int cpu; 5481 5482 get_online_cpus(); 5483 5484 for_each_online_cpu(cpu) 5485 queue_work_on(cpu, system_highpri_wq, 5486 per_cpu_ptr(&flush_works, cpu)); 5487 5488 for_each_online_cpu(cpu) 5489 flush_work(per_cpu_ptr(&flush_works, cpu)); 5490 5491 put_online_cpus(); 5492 } 5493 5494 INDIRECT_CALLABLE_DECLARE(int inet_gro_complete(struct sk_buff *, int)); 5495 INDIRECT_CALLABLE_DECLARE(int ipv6_gro_complete(struct sk_buff *, int)); 5496 static int napi_gro_complete(struct sk_buff *skb) 5497 { 5498 struct packet_offload *ptype; 5499 __be16 type = skb->protocol; 5500 struct list_head *head = &offload_base; 5501 int err = -ENOENT; 5502 5503 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb)); 5504 5505 if (NAPI_GRO_CB(skb)->count == 1) { 5506 skb_shinfo(skb)->gso_size = 0; 5507 goto out; 5508 } 5509 5510 rcu_read_lock(); 5511 list_for_each_entry_rcu(ptype, head, list) { 5512 if (ptype->type != type || !ptype->callbacks.gro_complete) 5513 continue; 5514 5515 err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete, 5516 ipv6_gro_complete, inet_gro_complete, 5517 skb, 0); 5518 break; 5519 } 5520 rcu_read_unlock(); 5521 5522 if (err) { 5523 WARN_ON(&ptype->list == head); 5524 kfree_skb(skb); 5525 return NET_RX_SUCCESS; 5526 } 5527 5528 out: 5529 return netif_receive_skb_internal(skb); 5530 } 5531 5532 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index, 5533 bool flush_old) 5534 { 5535 struct list_head *head = &napi->gro_hash[index].list; 5536 struct sk_buff *skb, *p; 5537 5538 list_for_each_entry_safe_reverse(skb, p, head, list) { 5539 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies) 5540 return; 5541 skb_list_del_init(skb); 5542 napi_gro_complete(skb); 5543 napi->gro_hash[index].count--; 5544 } 5545 5546 if (!napi->gro_hash[index].count) 5547 __clear_bit(index, &napi->gro_bitmask); 5548 } 5549 5550 /* napi->gro_hash[].list contains packets ordered by age. 5551 * youngest packets at the head of it. 5552 * Complete skbs in reverse order to reduce latencies. 5553 */ 5554 void napi_gro_flush(struct napi_struct *napi, bool flush_old) 5555 { 5556 unsigned long bitmask = napi->gro_bitmask; 5557 unsigned int i, base = ~0U; 5558 5559 while ((i = ffs(bitmask)) != 0) { 5560 bitmask >>= i; 5561 base += i; 5562 __napi_gro_flush_chain(napi, base, flush_old); 5563 } 5564 } 5565 EXPORT_SYMBOL(napi_gro_flush); 5566 5567 static struct list_head *gro_list_prepare(struct napi_struct *napi, 5568 struct sk_buff *skb) 5569 { 5570 unsigned int maclen = skb->dev->hard_header_len; 5571 u32 hash = skb_get_hash_raw(skb); 5572 struct list_head *head; 5573 struct sk_buff *p; 5574 5575 head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list; 5576 list_for_each_entry(p, head, list) { 5577 unsigned long diffs; 5578 5579 NAPI_GRO_CB(p)->flush = 0; 5580 5581 if (hash != skb_get_hash_raw(p)) { 5582 NAPI_GRO_CB(p)->same_flow = 0; 5583 continue; 5584 } 5585 5586 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev; 5587 diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb); 5588 if (skb_vlan_tag_present(p)) 5589 diffs |= skb_vlan_tag_get(p) ^ skb_vlan_tag_get(skb); 5590 diffs |= skb_metadata_dst_cmp(p, skb); 5591 diffs |= skb_metadata_differs(p, skb); 5592 if (maclen == ETH_HLEN) 5593 diffs |= compare_ether_header(skb_mac_header(p), 5594 skb_mac_header(skb)); 5595 else if (!diffs) 5596 diffs = memcmp(skb_mac_header(p), 5597 skb_mac_header(skb), 5598 maclen); 5599 NAPI_GRO_CB(p)->same_flow = !diffs; 5600 } 5601 5602 return head; 5603 } 5604 5605 static void skb_gro_reset_offset(struct sk_buff *skb) 5606 { 5607 const struct skb_shared_info *pinfo = skb_shinfo(skb); 5608 const skb_frag_t *frag0 = &pinfo->frags[0]; 5609 5610 NAPI_GRO_CB(skb)->data_offset = 0; 5611 NAPI_GRO_CB(skb)->frag0 = NULL; 5612 NAPI_GRO_CB(skb)->frag0_len = 0; 5613 5614 if (!skb_headlen(skb) && pinfo->nr_frags && 5615 !PageHighMem(skb_frag_page(frag0))) { 5616 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0); 5617 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int, 5618 skb_frag_size(frag0), 5619 skb->end - skb->tail); 5620 } 5621 } 5622 5623 static void gro_pull_from_frag0(struct sk_buff *skb, int grow) 5624 { 5625 struct skb_shared_info *pinfo = skb_shinfo(skb); 5626 5627 BUG_ON(skb->end - skb->tail < grow); 5628 5629 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow); 5630 5631 skb->data_len -= grow; 5632 skb->tail += grow; 5633 5634 skb_frag_off_add(&pinfo->frags[0], grow); 5635 skb_frag_size_sub(&pinfo->frags[0], grow); 5636 5637 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) { 5638 skb_frag_unref(skb, 0); 5639 memmove(pinfo->frags, pinfo->frags + 1, 5640 --pinfo->nr_frags * sizeof(pinfo->frags[0])); 5641 } 5642 } 5643 5644 static void gro_flush_oldest(struct list_head *head) 5645 { 5646 struct sk_buff *oldest; 5647 5648 oldest = list_last_entry(head, struct sk_buff, list); 5649 5650 /* We are called with head length >= MAX_GRO_SKBS, so this is 5651 * impossible. 5652 */ 5653 if (WARN_ON_ONCE(!oldest)) 5654 return; 5655 5656 /* Do not adjust napi->gro_hash[].count, caller is adding a new 5657 * SKB to the chain. 5658 */ 5659 skb_list_del_init(oldest); 5660 napi_gro_complete(oldest); 5661 } 5662 5663 INDIRECT_CALLABLE_DECLARE(struct sk_buff *inet_gro_receive(struct list_head *, 5664 struct sk_buff *)); 5665 INDIRECT_CALLABLE_DECLARE(struct sk_buff *ipv6_gro_receive(struct list_head *, 5666 struct sk_buff *)); 5667 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 5668 { 5669 u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1); 5670 struct list_head *head = &offload_base; 5671 struct packet_offload *ptype; 5672 __be16 type = skb->protocol; 5673 struct list_head *gro_head; 5674 struct sk_buff *pp = NULL; 5675 enum gro_result ret; 5676 int same_flow; 5677 int grow; 5678 5679 if (netif_elide_gro(skb->dev)) 5680 goto normal; 5681 5682 gro_head = gro_list_prepare(napi, skb); 5683 5684 rcu_read_lock(); 5685 list_for_each_entry_rcu(ptype, head, list) { 5686 if (ptype->type != type || !ptype->callbacks.gro_receive) 5687 continue; 5688 5689 skb_set_network_header(skb, skb_gro_offset(skb)); 5690 skb_reset_mac_len(skb); 5691 NAPI_GRO_CB(skb)->same_flow = 0; 5692 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb); 5693 NAPI_GRO_CB(skb)->free = 0; 5694 NAPI_GRO_CB(skb)->encap_mark = 0; 5695 NAPI_GRO_CB(skb)->recursion_counter = 0; 5696 NAPI_GRO_CB(skb)->is_fou = 0; 5697 NAPI_GRO_CB(skb)->is_atomic = 1; 5698 NAPI_GRO_CB(skb)->gro_remcsum_start = 0; 5699 5700 /* Setup for GRO checksum validation */ 5701 switch (skb->ip_summed) { 5702 case CHECKSUM_COMPLETE: 5703 NAPI_GRO_CB(skb)->csum = skb->csum; 5704 NAPI_GRO_CB(skb)->csum_valid = 1; 5705 NAPI_GRO_CB(skb)->csum_cnt = 0; 5706 break; 5707 case CHECKSUM_UNNECESSARY: 5708 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1; 5709 NAPI_GRO_CB(skb)->csum_valid = 0; 5710 break; 5711 default: 5712 NAPI_GRO_CB(skb)->csum_cnt = 0; 5713 NAPI_GRO_CB(skb)->csum_valid = 0; 5714 } 5715 5716 pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive, 5717 ipv6_gro_receive, inet_gro_receive, 5718 gro_head, skb); 5719 break; 5720 } 5721 rcu_read_unlock(); 5722 5723 if (&ptype->list == head) 5724 goto normal; 5725 5726 if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) { 5727 ret = GRO_CONSUMED; 5728 goto ok; 5729 } 5730 5731 same_flow = NAPI_GRO_CB(skb)->same_flow; 5732 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED; 5733 5734 if (pp) { 5735 skb_list_del_init(pp); 5736 napi_gro_complete(pp); 5737 napi->gro_hash[hash].count--; 5738 } 5739 5740 if (same_flow) 5741 goto ok; 5742 5743 if (NAPI_GRO_CB(skb)->flush) 5744 goto normal; 5745 5746 if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) { 5747 gro_flush_oldest(gro_head); 5748 } else { 5749 napi->gro_hash[hash].count++; 5750 } 5751 NAPI_GRO_CB(skb)->count = 1; 5752 NAPI_GRO_CB(skb)->age = jiffies; 5753 NAPI_GRO_CB(skb)->last = skb; 5754 skb_shinfo(skb)->gso_size = skb_gro_len(skb); 5755 list_add(&skb->list, gro_head); 5756 ret = GRO_HELD; 5757 5758 pull: 5759 grow = skb_gro_offset(skb) - skb_headlen(skb); 5760 if (grow > 0) 5761 gro_pull_from_frag0(skb, grow); 5762 ok: 5763 if (napi->gro_hash[hash].count) { 5764 if (!test_bit(hash, &napi->gro_bitmask)) 5765 __set_bit(hash, &napi->gro_bitmask); 5766 } else if (test_bit(hash, &napi->gro_bitmask)) { 5767 __clear_bit(hash, &napi->gro_bitmask); 5768 } 5769 5770 return ret; 5771 5772 normal: 5773 ret = GRO_NORMAL; 5774 goto pull; 5775 } 5776 5777 struct packet_offload *gro_find_receive_by_type(__be16 type) 5778 { 5779 struct list_head *offload_head = &offload_base; 5780 struct packet_offload *ptype; 5781 5782 list_for_each_entry_rcu(ptype, offload_head, list) { 5783 if (ptype->type != type || !ptype->callbacks.gro_receive) 5784 continue; 5785 return ptype; 5786 } 5787 return NULL; 5788 } 5789 EXPORT_SYMBOL(gro_find_receive_by_type); 5790 5791 struct packet_offload *gro_find_complete_by_type(__be16 type) 5792 { 5793 struct list_head *offload_head = &offload_base; 5794 struct packet_offload *ptype; 5795 5796 list_for_each_entry_rcu(ptype, offload_head, list) { 5797 if (ptype->type != type || !ptype->callbacks.gro_complete) 5798 continue; 5799 return ptype; 5800 } 5801 return NULL; 5802 } 5803 EXPORT_SYMBOL(gro_find_complete_by_type); 5804 5805 /* Pass the currently batched GRO_NORMAL SKBs up to the stack. */ 5806 static void gro_normal_list(struct napi_struct *napi) 5807 { 5808 if (!napi->rx_count) 5809 return; 5810 netif_receive_skb_list_internal(&napi->rx_list); 5811 INIT_LIST_HEAD(&napi->rx_list); 5812 napi->rx_count = 0; 5813 } 5814 5815 /* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded, 5816 * pass the whole batch up to the stack. 5817 */ 5818 static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb) 5819 { 5820 list_add_tail(&skb->list, &napi->rx_list); 5821 if (++napi->rx_count >= gro_normal_batch) 5822 gro_normal_list(napi); 5823 } 5824 5825 static void napi_skb_free_stolen_head(struct sk_buff *skb) 5826 { 5827 skb_dst_drop(skb); 5828 skb_ext_put(skb); 5829 kmem_cache_free(skbuff_head_cache, skb); 5830 } 5831 5832 static gro_result_t napi_skb_finish(struct napi_struct *napi, 5833 struct sk_buff *skb, 5834 gro_result_t ret) 5835 { 5836 switch (ret) { 5837 case GRO_NORMAL: 5838 gro_normal_one(napi, skb); 5839 break; 5840 5841 case GRO_DROP: 5842 kfree_skb(skb); 5843 break; 5844 5845 case GRO_MERGED_FREE: 5846 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) 5847 napi_skb_free_stolen_head(skb); 5848 else 5849 __kfree_skb(skb); 5850 break; 5851 5852 case GRO_HELD: 5853 case GRO_MERGED: 5854 case GRO_CONSUMED: 5855 break; 5856 } 5857 5858 return ret; 5859 } 5860 5861 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 5862 { 5863 gro_result_t ret; 5864 5865 skb_mark_napi_id(skb, napi); 5866 trace_napi_gro_receive_entry(skb); 5867 5868 skb_gro_reset_offset(skb); 5869 5870 ret = napi_skb_finish(napi, skb, dev_gro_receive(napi, skb)); 5871 trace_napi_gro_receive_exit(ret); 5872 5873 return ret; 5874 } 5875 EXPORT_SYMBOL(napi_gro_receive); 5876 5877 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb) 5878 { 5879 if (unlikely(skb->pfmemalloc)) { 5880 consume_skb(skb); 5881 return; 5882 } 5883 __skb_pull(skb, skb_headlen(skb)); 5884 /* restore the reserve we had after netdev_alloc_skb_ip_align() */ 5885 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb)); 5886 __vlan_hwaccel_clear_tag(skb); 5887 skb->dev = napi->dev; 5888 skb->skb_iif = 0; 5889 5890 /* eth_type_trans() assumes pkt_type is PACKET_HOST */ 5891 skb->pkt_type = PACKET_HOST; 5892 5893 skb->encapsulation = 0; 5894 skb_shinfo(skb)->gso_type = 0; 5895 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 5896 skb_ext_reset(skb); 5897 5898 napi->skb = skb; 5899 } 5900 5901 struct sk_buff *napi_get_frags(struct napi_struct *napi) 5902 { 5903 struct sk_buff *skb = napi->skb; 5904 5905 if (!skb) { 5906 skb = napi_alloc_skb(napi, GRO_MAX_HEAD); 5907 if (skb) { 5908 napi->skb = skb; 5909 skb_mark_napi_id(skb, napi); 5910 } 5911 } 5912 return skb; 5913 } 5914 EXPORT_SYMBOL(napi_get_frags); 5915 5916 static gro_result_t napi_frags_finish(struct napi_struct *napi, 5917 struct sk_buff *skb, 5918 gro_result_t ret) 5919 { 5920 switch (ret) { 5921 case GRO_NORMAL: 5922 case GRO_HELD: 5923 __skb_push(skb, ETH_HLEN); 5924 skb->protocol = eth_type_trans(skb, skb->dev); 5925 if (ret == GRO_NORMAL) 5926 gro_normal_one(napi, skb); 5927 break; 5928 5929 case GRO_DROP: 5930 napi_reuse_skb(napi, skb); 5931 break; 5932 5933 case GRO_MERGED_FREE: 5934 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) 5935 napi_skb_free_stolen_head(skb); 5936 else 5937 napi_reuse_skb(napi, skb); 5938 break; 5939 5940 case GRO_MERGED: 5941 case GRO_CONSUMED: 5942 break; 5943 } 5944 5945 return ret; 5946 } 5947 5948 /* Upper GRO stack assumes network header starts at gro_offset=0 5949 * Drivers could call both napi_gro_frags() and napi_gro_receive() 5950 * We copy ethernet header into skb->data to have a common layout. 5951 */ 5952 static struct sk_buff *napi_frags_skb(struct napi_struct *napi) 5953 { 5954 struct sk_buff *skb = napi->skb; 5955 const struct ethhdr *eth; 5956 unsigned int hlen = sizeof(*eth); 5957 5958 napi->skb = NULL; 5959 5960 skb_reset_mac_header(skb); 5961 skb_gro_reset_offset(skb); 5962 5963 if (unlikely(skb_gro_header_hard(skb, hlen))) { 5964 eth = skb_gro_header_slow(skb, hlen, 0); 5965 if (unlikely(!eth)) { 5966 net_warn_ratelimited("%s: dropping impossible skb from %s\n", 5967 __func__, napi->dev->name); 5968 napi_reuse_skb(napi, skb); 5969 return NULL; 5970 } 5971 } else { 5972 eth = (const struct ethhdr *)skb->data; 5973 gro_pull_from_frag0(skb, hlen); 5974 NAPI_GRO_CB(skb)->frag0 += hlen; 5975 NAPI_GRO_CB(skb)->frag0_len -= hlen; 5976 } 5977 __skb_pull(skb, hlen); 5978 5979 /* 5980 * This works because the only protocols we care about don't require 5981 * special handling. 5982 * We'll fix it up properly in napi_frags_finish() 5983 */ 5984 skb->protocol = eth->h_proto; 5985 5986 return skb; 5987 } 5988 5989 gro_result_t napi_gro_frags(struct napi_struct *napi) 5990 { 5991 gro_result_t ret; 5992 struct sk_buff *skb = napi_frags_skb(napi); 5993 5994 if (!skb) 5995 return GRO_DROP; 5996 5997 trace_napi_gro_frags_entry(skb); 5998 5999 ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb)); 6000 trace_napi_gro_frags_exit(ret); 6001 6002 return ret; 6003 } 6004 EXPORT_SYMBOL(napi_gro_frags); 6005 6006 /* Compute the checksum from gro_offset and return the folded value 6007 * after adding in any pseudo checksum. 6008 */ 6009 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb) 6010 { 6011 __wsum wsum; 6012 __sum16 sum; 6013 6014 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0); 6015 6016 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */ 6017 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum)); 6018 /* See comments in __skb_checksum_complete(). */ 6019 if (likely(!sum)) { 6020 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 6021 !skb->csum_complete_sw) 6022 netdev_rx_csum_fault(skb->dev, skb); 6023 } 6024 6025 NAPI_GRO_CB(skb)->csum = wsum; 6026 NAPI_GRO_CB(skb)->csum_valid = 1; 6027 6028 return sum; 6029 } 6030 EXPORT_SYMBOL(__skb_gro_checksum_complete); 6031 6032 static void net_rps_send_ipi(struct softnet_data *remsd) 6033 { 6034 #ifdef CONFIG_RPS 6035 while (remsd) { 6036 struct softnet_data *next = remsd->rps_ipi_next; 6037 6038 if (cpu_online(remsd->cpu)) 6039 smp_call_function_single_async(remsd->cpu, &remsd->csd); 6040 remsd = next; 6041 } 6042 #endif 6043 } 6044 6045 /* 6046 * net_rps_action_and_irq_enable sends any pending IPI's for rps. 6047 * Note: called with local irq disabled, but exits with local irq enabled. 6048 */ 6049 static void net_rps_action_and_irq_enable(struct softnet_data *sd) 6050 { 6051 #ifdef CONFIG_RPS 6052 struct softnet_data *remsd = sd->rps_ipi_list; 6053 6054 if (remsd) { 6055 sd->rps_ipi_list = NULL; 6056 6057 local_irq_enable(); 6058 6059 /* Send pending IPI's to kick RPS processing on remote cpus. */ 6060 net_rps_send_ipi(remsd); 6061 } else 6062 #endif 6063 local_irq_enable(); 6064 } 6065 6066 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd) 6067 { 6068 #ifdef CONFIG_RPS 6069 return sd->rps_ipi_list != NULL; 6070 #else 6071 return false; 6072 #endif 6073 } 6074 6075 static int process_backlog(struct napi_struct *napi, int quota) 6076 { 6077 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 6078 bool again = true; 6079 int work = 0; 6080 6081 /* Check if we have pending ipi, its better to send them now, 6082 * not waiting net_rx_action() end. 6083 */ 6084 if (sd_has_rps_ipi_waiting(sd)) { 6085 local_irq_disable(); 6086 net_rps_action_and_irq_enable(sd); 6087 } 6088 6089 napi->weight = dev_rx_weight; 6090 while (again) { 6091 struct sk_buff *skb; 6092 6093 while ((skb = __skb_dequeue(&sd->process_queue))) { 6094 rcu_read_lock(); 6095 __netif_receive_skb(skb); 6096 rcu_read_unlock(); 6097 input_queue_head_incr(sd); 6098 if (++work >= quota) 6099 return work; 6100 6101 } 6102 6103 local_irq_disable(); 6104 rps_lock(sd); 6105 if (skb_queue_empty(&sd->input_pkt_queue)) { 6106 /* 6107 * Inline a custom version of __napi_complete(). 6108 * only current cpu owns and manipulates this napi, 6109 * and NAPI_STATE_SCHED is the only possible flag set 6110 * on backlog. 6111 * We can use a plain write instead of clear_bit(), 6112 * and we dont need an smp_mb() memory barrier. 6113 */ 6114 napi->state = 0; 6115 again = false; 6116 } else { 6117 skb_queue_splice_tail_init(&sd->input_pkt_queue, 6118 &sd->process_queue); 6119 } 6120 rps_unlock(sd); 6121 local_irq_enable(); 6122 } 6123 6124 return work; 6125 } 6126 6127 /** 6128 * __napi_schedule - schedule for receive 6129 * @n: entry to schedule 6130 * 6131 * The entry's receive function will be scheduled to run. 6132 * Consider using __napi_schedule_irqoff() if hard irqs are masked. 6133 */ 6134 void __napi_schedule(struct napi_struct *n) 6135 { 6136 unsigned long flags; 6137 6138 local_irq_save(flags); 6139 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 6140 local_irq_restore(flags); 6141 } 6142 EXPORT_SYMBOL(__napi_schedule); 6143 6144 /** 6145 * napi_schedule_prep - check if napi can be scheduled 6146 * @n: napi context 6147 * 6148 * Test if NAPI routine is already running, and if not mark 6149 * it as running. This is used as a condition variable 6150 * insure only one NAPI poll instance runs. We also make 6151 * sure there is no pending NAPI disable. 6152 */ 6153 bool napi_schedule_prep(struct napi_struct *n) 6154 { 6155 unsigned long val, new; 6156 6157 do { 6158 val = READ_ONCE(n->state); 6159 if (unlikely(val & NAPIF_STATE_DISABLE)) 6160 return false; 6161 new = val | NAPIF_STATE_SCHED; 6162 6163 /* Sets STATE_MISSED bit if STATE_SCHED was already set 6164 * This was suggested by Alexander Duyck, as compiler 6165 * emits better code than : 6166 * if (val & NAPIF_STATE_SCHED) 6167 * new |= NAPIF_STATE_MISSED; 6168 */ 6169 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED * 6170 NAPIF_STATE_MISSED; 6171 } while (cmpxchg(&n->state, val, new) != val); 6172 6173 return !(val & NAPIF_STATE_SCHED); 6174 } 6175 EXPORT_SYMBOL(napi_schedule_prep); 6176 6177 /** 6178 * __napi_schedule_irqoff - schedule for receive 6179 * @n: entry to schedule 6180 * 6181 * Variant of __napi_schedule() assuming hard irqs are masked 6182 */ 6183 void __napi_schedule_irqoff(struct napi_struct *n) 6184 { 6185 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 6186 } 6187 EXPORT_SYMBOL(__napi_schedule_irqoff); 6188 6189 bool napi_complete_done(struct napi_struct *n, int work_done) 6190 { 6191 unsigned long flags, val, new; 6192 6193 /* 6194 * 1) Don't let napi dequeue from the cpu poll list 6195 * just in case its running on a different cpu. 6196 * 2) If we are busy polling, do nothing here, we have 6197 * the guarantee we will be called later. 6198 */ 6199 if (unlikely(n->state & (NAPIF_STATE_NPSVC | 6200 NAPIF_STATE_IN_BUSY_POLL))) 6201 return false; 6202 6203 gro_normal_list(n); 6204 6205 if (n->gro_bitmask) { 6206 unsigned long timeout = 0; 6207 6208 if (work_done) 6209 timeout = n->dev->gro_flush_timeout; 6210 6211 /* When the NAPI instance uses a timeout and keeps postponing 6212 * it, we need to bound somehow the time packets are kept in 6213 * the GRO layer 6214 */ 6215 napi_gro_flush(n, !!timeout); 6216 if (timeout) 6217 hrtimer_start(&n->timer, ns_to_ktime(timeout), 6218 HRTIMER_MODE_REL_PINNED); 6219 } 6220 if (unlikely(!list_empty(&n->poll_list))) { 6221 /* If n->poll_list is not empty, we need to mask irqs */ 6222 local_irq_save(flags); 6223 list_del_init(&n->poll_list); 6224 local_irq_restore(flags); 6225 } 6226 6227 do { 6228 val = READ_ONCE(n->state); 6229 6230 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED)); 6231 6232 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED); 6233 6234 /* If STATE_MISSED was set, leave STATE_SCHED set, 6235 * because we will call napi->poll() one more time. 6236 * This C code was suggested by Alexander Duyck to help gcc. 6237 */ 6238 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED * 6239 NAPIF_STATE_SCHED; 6240 } while (cmpxchg(&n->state, val, new) != val); 6241 6242 if (unlikely(val & NAPIF_STATE_MISSED)) { 6243 __napi_schedule(n); 6244 return false; 6245 } 6246 6247 return true; 6248 } 6249 EXPORT_SYMBOL(napi_complete_done); 6250 6251 /* must be called under rcu_read_lock(), as we dont take a reference */ 6252 static struct napi_struct *napi_by_id(unsigned int napi_id) 6253 { 6254 unsigned int hash = napi_id % HASH_SIZE(napi_hash); 6255 struct napi_struct *napi; 6256 6257 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node) 6258 if (napi->napi_id == napi_id) 6259 return napi; 6260 6261 return NULL; 6262 } 6263 6264 #if defined(CONFIG_NET_RX_BUSY_POLL) 6265 6266 #define BUSY_POLL_BUDGET 8 6267 6268 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock) 6269 { 6270 int rc; 6271 6272 /* Busy polling means there is a high chance device driver hard irq 6273 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was 6274 * set in napi_schedule_prep(). 6275 * Since we are about to call napi->poll() once more, we can safely 6276 * clear NAPI_STATE_MISSED. 6277 * 6278 * Note: x86 could use a single "lock and ..." instruction 6279 * to perform these two clear_bit() 6280 */ 6281 clear_bit(NAPI_STATE_MISSED, &napi->state); 6282 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state); 6283 6284 local_bh_disable(); 6285 6286 /* All we really want here is to re-enable device interrupts. 6287 * Ideally, a new ndo_busy_poll_stop() could avoid another round. 6288 */ 6289 rc = napi->poll(napi, BUSY_POLL_BUDGET); 6290 /* We can't gro_normal_list() here, because napi->poll() might have 6291 * rearmed the napi (napi_complete_done()) in which case it could 6292 * already be running on another CPU. 6293 */ 6294 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET); 6295 netpoll_poll_unlock(have_poll_lock); 6296 if (rc == BUSY_POLL_BUDGET) { 6297 /* As the whole budget was spent, we still own the napi so can 6298 * safely handle the rx_list. 6299 */ 6300 gro_normal_list(napi); 6301 __napi_schedule(napi); 6302 } 6303 local_bh_enable(); 6304 } 6305 6306 void napi_busy_loop(unsigned int napi_id, 6307 bool (*loop_end)(void *, unsigned long), 6308 void *loop_end_arg) 6309 { 6310 unsigned long start_time = loop_end ? busy_loop_current_time() : 0; 6311 int (*napi_poll)(struct napi_struct *napi, int budget); 6312 void *have_poll_lock = NULL; 6313 struct napi_struct *napi; 6314 6315 restart: 6316 napi_poll = NULL; 6317 6318 rcu_read_lock(); 6319 6320 napi = napi_by_id(napi_id); 6321 if (!napi) 6322 goto out; 6323 6324 preempt_disable(); 6325 for (;;) { 6326 int work = 0; 6327 6328 local_bh_disable(); 6329 if (!napi_poll) { 6330 unsigned long val = READ_ONCE(napi->state); 6331 6332 /* If multiple threads are competing for this napi, 6333 * we avoid dirtying napi->state as much as we can. 6334 */ 6335 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED | 6336 NAPIF_STATE_IN_BUSY_POLL)) 6337 goto count; 6338 if (cmpxchg(&napi->state, val, 6339 val | NAPIF_STATE_IN_BUSY_POLL | 6340 NAPIF_STATE_SCHED) != val) 6341 goto count; 6342 have_poll_lock = netpoll_poll_lock(napi); 6343 napi_poll = napi->poll; 6344 } 6345 work = napi_poll(napi, BUSY_POLL_BUDGET); 6346 trace_napi_poll(napi, work, BUSY_POLL_BUDGET); 6347 gro_normal_list(napi); 6348 count: 6349 if (work > 0) 6350 __NET_ADD_STATS(dev_net(napi->dev), 6351 LINUX_MIB_BUSYPOLLRXPACKETS, work); 6352 local_bh_enable(); 6353 6354 if (!loop_end || loop_end(loop_end_arg, start_time)) 6355 break; 6356 6357 if (unlikely(need_resched())) { 6358 if (napi_poll) 6359 busy_poll_stop(napi, have_poll_lock); 6360 preempt_enable(); 6361 rcu_read_unlock(); 6362 cond_resched(); 6363 if (loop_end(loop_end_arg, start_time)) 6364 return; 6365 goto restart; 6366 } 6367 cpu_relax(); 6368 } 6369 if (napi_poll) 6370 busy_poll_stop(napi, have_poll_lock); 6371 preempt_enable(); 6372 out: 6373 rcu_read_unlock(); 6374 } 6375 EXPORT_SYMBOL(napi_busy_loop); 6376 6377 #endif /* CONFIG_NET_RX_BUSY_POLL */ 6378 6379 static void napi_hash_add(struct napi_struct *napi) 6380 { 6381 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) || 6382 test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) 6383 return; 6384 6385 spin_lock(&napi_hash_lock); 6386 6387 /* 0..NR_CPUS range is reserved for sender_cpu use */ 6388 do { 6389 if (unlikely(++napi_gen_id < MIN_NAPI_ID)) 6390 napi_gen_id = MIN_NAPI_ID; 6391 } while (napi_by_id(napi_gen_id)); 6392 napi->napi_id = napi_gen_id; 6393 6394 hlist_add_head_rcu(&napi->napi_hash_node, 6395 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]); 6396 6397 spin_unlock(&napi_hash_lock); 6398 } 6399 6400 /* Warning : caller is responsible to make sure rcu grace period 6401 * is respected before freeing memory containing @napi 6402 */ 6403 bool napi_hash_del(struct napi_struct *napi) 6404 { 6405 bool rcu_sync_needed = false; 6406 6407 spin_lock(&napi_hash_lock); 6408 6409 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) { 6410 rcu_sync_needed = true; 6411 hlist_del_rcu(&napi->napi_hash_node); 6412 } 6413 spin_unlock(&napi_hash_lock); 6414 return rcu_sync_needed; 6415 } 6416 EXPORT_SYMBOL_GPL(napi_hash_del); 6417 6418 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer) 6419 { 6420 struct napi_struct *napi; 6421 6422 napi = container_of(timer, struct napi_struct, timer); 6423 6424 /* Note : we use a relaxed variant of napi_schedule_prep() not setting 6425 * NAPI_STATE_MISSED, since we do not react to a device IRQ. 6426 */ 6427 if (napi->gro_bitmask && !napi_disable_pending(napi) && 6428 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) 6429 __napi_schedule_irqoff(napi); 6430 6431 return HRTIMER_NORESTART; 6432 } 6433 6434 static void init_gro_hash(struct napi_struct *napi) 6435 { 6436 int i; 6437 6438 for (i = 0; i < GRO_HASH_BUCKETS; i++) { 6439 INIT_LIST_HEAD(&napi->gro_hash[i].list); 6440 napi->gro_hash[i].count = 0; 6441 } 6442 napi->gro_bitmask = 0; 6443 } 6444 6445 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 6446 int (*poll)(struct napi_struct *, int), int weight) 6447 { 6448 INIT_LIST_HEAD(&napi->poll_list); 6449 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED); 6450 napi->timer.function = napi_watchdog; 6451 init_gro_hash(napi); 6452 napi->skb = NULL; 6453 INIT_LIST_HEAD(&napi->rx_list); 6454 napi->rx_count = 0; 6455 napi->poll = poll; 6456 if (weight > NAPI_POLL_WEIGHT) 6457 netdev_err_once(dev, "%s() called with weight %d\n", __func__, 6458 weight); 6459 napi->weight = weight; 6460 list_add(&napi->dev_list, &dev->napi_list); 6461 napi->dev = dev; 6462 #ifdef CONFIG_NETPOLL 6463 napi->poll_owner = -1; 6464 #endif 6465 set_bit(NAPI_STATE_SCHED, &napi->state); 6466 napi_hash_add(napi); 6467 } 6468 EXPORT_SYMBOL(netif_napi_add); 6469 6470 void napi_disable(struct napi_struct *n) 6471 { 6472 might_sleep(); 6473 set_bit(NAPI_STATE_DISABLE, &n->state); 6474 6475 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state)) 6476 msleep(1); 6477 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state)) 6478 msleep(1); 6479 6480 hrtimer_cancel(&n->timer); 6481 6482 clear_bit(NAPI_STATE_DISABLE, &n->state); 6483 } 6484 EXPORT_SYMBOL(napi_disable); 6485 6486 static void flush_gro_hash(struct napi_struct *napi) 6487 { 6488 int i; 6489 6490 for (i = 0; i < GRO_HASH_BUCKETS; i++) { 6491 struct sk_buff *skb, *n; 6492 6493 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list) 6494 kfree_skb(skb); 6495 napi->gro_hash[i].count = 0; 6496 } 6497 } 6498 6499 /* Must be called in process context */ 6500 void netif_napi_del(struct napi_struct *napi) 6501 { 6502 might_sleep(); 6503 if (napi_hash_del(napi)) 6504 synchronize_net(); 6505 list_del_init(&napi->dev_list); 6506 napi_free_frags(napi); 6507 6508 flush_gro_hash(napi); 6509 napi->gro_bitmask = 0; 6510 } 6511 EXPORT_SYMBOL(netif_napi_del); 6512 6513 static int napi_poll(struct napi_struct *n, struct list_head *repoll) 6514 { 6515 void *have; 6516 int work, weight; 6517 6518 list_del_init(&n->poll_list); 6519 6520 have = netpoll_poll_lock(n); 6521 6522 weight = n->weight; 6523 6524 /* This NAPI_STATE_SCHED test is for avoiding a race 6525 * with netpoll's poll_napi(). Only the entity which 6526 * obtains the lock and sees NAPI_STATE_SCHED set will 6527 * actually make the ->poll() call. Therefore we avoid 6528 * accidentally calling ->poll() when NAPI is not scheduled. 6529 */ 6530 work = 0; 6531 if (test_bit(NAPI_STATE_SCHED, &n->state)) { 6532 work = n->poll(n, weight); 6533 trace_napi_poll(n, work, weight); 6534 } 6535 6536 WARN_ON_ONCE(work > weight); 6537 6538 if (likely(work < weight)) 6539 goto out_unlock; 6540 6541 /* Drivers must not modify the NAPI state if they 6542 * consume the entire weight. In such cases this code 6543 * still "owns" the NAPI instance and therefore can 6544 * move the instance around on the list at-will. 6545 */ 6546 if (unlikely(napi_disable_pending(n))) { 6547 napi_complete(n); 6548 goto out_unlock; 6549 } 6550 6551 gro_normal_list(n); 6552 6553 if (n->gro_bitmask) { 6554 /* flush too old packets 6555 * If HZ < 1000, flush all packets. 6556 */ 6557 napi_gro_flush(n, HZ >= 1000); 6558 } 6559 6560 /* Some drivers may have called napi_schedule 6561 * prior to exhausting their budget. 6562 */ 6563 if (unlikely(!list_empty(&n->poll_list))) { 6564 pr_warn_once("%s: Budget exhausted after napi rescheduled\n", 6565 n->dev ? n->dev->name : "backlog"); 6566 goto out_unlock; 6567 } 6568 6569 list_add_tail(&n->poll_list, repoll); 6570 6571 out_unlock: 6572 netpoll_poll_unlock(have); 6573 6574 return work; 6575 } 6576 6577 static __latent_entropy void net_rx_action(struct softirq_action *h) 6578 { 6579 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 6580 unsigned long time_limit = jiffies + 6581 usecs_to_jiffies(netdev_budget_usecs); 6582 int budget = netdev_budget; 6583 LIST_HEAD(list); 6584 LIST_HEAD(repoll); 6585 6586 local_irq_disable(); 6587 list_splice_init(&sd->poll_list, &list); 6588 local_irq_enable(); 6589 6590 for (;;) { 6591 struct napi_struct *n; 6592 6593 if (list_empty(&list)) { 6594 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll)) 6595 goto out; 6596 break; 6597 } 6598 6599 n = list_first_entry(&list, struct napi_struct, poll_list); 6600 budget -= napi_poll(n, &repoll); 6601 6602 /* If softirq window is exhausted then punt. 6603 * Allow this to run for 2 jiffies since which will allow 6604 * an average latency of 1.5/HZ. 6605 */ 6606 if (unlikely(budget <= 0 || 6607 time_after_eq(jiffies, time_limit))) { 6608 sd->time_squeeze++; 6609 break; 6610 } 6611 } 6612 6613 local_irq_disable(); 6614 6615 list_splice_tail_init(&sd->poll_list, &list); 6616 list_splice_tail(&repoll, &list); 6617 list_splice(&list, &sd->poll_list); 6618 if (!list_empty(&sd->poll_list)) 6619 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 6620 6621 net_rps_action_and_irq_enable(sd); 6622 out: 6623 __kfree_skb_flush(); 6624 } 6625 6626 struct netdev_adjacent { 6627 struct net_device *dev; 6628 6629 /* upper master flag, there can only be one master device per list */ 6630 bool master; 6631 6632 /* lookup ignore flag */ 6633 bool ignore; 6634 6635 /* counter for the number of times this device was added to us */ 6636 u16 ref_nr; 6637 6638 /* private field for the users */ 6639 void *private; 6640 6641 struct list_head list; 6642 struct rcu_head rcu; 6643 }; 6644 6645 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev, 6646 struct list_head *adj_list) 6647 { 6648 struct netdev_adjacent *adj; 6649 6650 list_for_each_entry(adj, adj_list, list) { 6651 if (adj->dev == adj_dev) 6652 return adj; 6653 } 6654 return NULL; 6655 } 6656 6657 static int ____netdev_has_upper_dev(struct net_device *upper_dev, void *data) 6658 { 6659 struct net_device *dev = data; 6660 6661 return upper_dev == dev; 6662 } 6663 6664 /** 6665 * netdev_has_upper_dev - Check if device is linked to an upper device 6666 * @dev: device 6667 * @upper_dev: upper device to check 6668 * 6669 * Find out if a device is linked to specified upper device and return true 6670 * in case it is. Note that this checks only immediate upper device, 6671 * not through a complete stack of devices. The caller must hold the RTNL lock. 6672 */ 6673 bool netdev_has_upper_dev(struct net_device *dev, 6674 struct net_device *upper_dev) 6675 { 6676 ASSERT_RTNL(); 6677 6678 return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev, 6679 upper_dev); 6680 } 6681 EXPORT_SYMBOL(netdev_has_upper_dev); 6682 6683 /** 6684 * netdev_has_upper_dev_all - Check if device is linked to an upper device 6685 * @dev: device 6686 * @upper_dev: upper device to check 6687 * 6688 * Find out if a device is linked to specified upper device and return true 6689 * in case it is. Note that this checks the entire upper device chain. 6690 * The caller must hold rcu lock. 6691 */ 6692 6693 bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 6694 struct net_device *upper_dev) 6695 { 6696 return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev, 6697 upper_dev); 6698 } 6699 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu); 6700 6701 /** 6702 * netdev_has_any_upper_dev - Check if device is linked to some device 6703 * @dev: device 6704 * 6705 * Find out if a device is linked to an upper device and return true in case 6706 * it is. The caller must hold the RTNL lock. 6707 */ 6708 bool netdev_has_any_upper_dev(struct net_device *dev) 6709 { 6710 ASSERT_RTNL(); 6711 6712 return !list_empty(&dev->adj_list.upper); 6713 } 6714 EXPORT_SYMBOL(netdev_has_any_upper_dev); 6715 6716 /** 6717 * netdev_master_upper_dev_get - Get master upper device 6718 * @dev: device 6719 * 6720 * Find a master upper device and return pointer to it or NULL in case 6721 * it's not there. The caller must hold the RTNL lock. 6722 */ 6723 struct net_device *netdev_master_upper_dev_get(struct net_device *dev) 6724 { 6725 struct netdev_adjacent *upper; 6726 6727 ASSERT_RTNL(); 6728 6729 if (list_empty(&dev->adj_list.upper)) 6730 return NULL; 6731 6732 upper = list_first_entry(&dev->adj_list.upper, 6733 struct netdev_adjacent, list); 6734 if (likely(upper->master)) 6735 return upper->dev; 6736 return NULL; 6737 } 6738 EXPORT_SYMBOL(netdev_master_upper_dev_get); 6739 6740 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev) 6741 { 6742 struct netdev_adjacent *upper; 6743 6744 ASSERT_RTNL(); 6745 6746 if (list_empty(&dev->adj_list.upper)) 6747 return NULL; 6748 6749 upper = list_first_entry(&dev->adj_list.upper, 6750 struct netdev_adjacent, list); 6751 if (likely(upper->master) && !upper->ignore) 6752 return upper->dev; 6753 return NULL; 6754 } 6755 6756 /** 6757 * netdev_has_any_lower_dev - Check if device is linked to some device 6758 * @dev: device 6759 * 6760 * Find out if a device is linked to a lower device and return true in case 6761 * it is. The caller must hold the RTNL lock. 6762 */ 6763 static bool netdev_has_any_lower_dev(struct net_device *dev) 6764 { 6765 ASSERT_RTNL(); 6766 6767 return !list_empty(&dev->adj_list.lower); 6768 } 6769 6770 void *netdev_adjacent_get_private(struct list_head *adj_list) 6771 { 6772 struct netdev_adjacent *adj; 6773 6774 adj = list_entry(adj_list, struct netdev_adjacent, list); 6775 6776 return adj->private; 6777 } 6778 EXPORT_SYMBOL(netdev_adjacent_get_private); 6779 6780 /** 6781 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list 6782 * @dev: device 6783 * @iter: list_head ** of the current position 6784 * 6785 * Gets the next device from the dev's upper list, starting from iter 6786 * position. The caller must hold RCU read lock. 6787 */ 6788 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 6789 struct list_head **iter) 6790 { 6791 struct netdev_adjacent *upper; 6792 6793 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 6794 6795 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 6796 6797 if (&upper->list == &dev->adj_list.upper) 6798 return NULL; 6799 6800 *iter = &upper->list; 6801 6802 return upper->dev; 6803 } 6804 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu); 6805 6806 static struct net_device *__netdev_next_upper_dev(struct net_device *dev, 6807 struct list_head **iter, 6808 bool *ignore) 6809 { 6810 struct netdev_adjacent *upper; 6811 6812 upper = list_entry((*iter)->next, struct netdev_adjacent, list); 6813 6814 if (&upper->list == &dev->adj_list.upper) 6815 return NULL; 6816 6817 *iter = &upper->list; 6818 *ignore = upper->ignore; 6819 6820 return upper->dev; 6821 } 6822 6823 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev, 6824 struct list_head **iter) 6825 { 6826 struct netdev_adjacent *upper; 6827 6828 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 6829 6830 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 6831 6832 if (&upper->list == &dev->adj_list.upper) 6833 return NULL; 6834 6835 *iter = &upper->list; 6836 6837 return upper->dev; 6838 } 6839 6840 static int __netdev_walk_all_upper_dev(struct net_device *dev, 6841 int (*fn)(struct net_device *dev, 6842 void *data), 6843 void *data) 6844 { 6845 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 6846 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 6847 int ret, cur = 0; 6848 bool ignore; 6849 6850 now = dev; 6851 iter = &dev->adj_list.upper; 6852 6853 while (1) { 6854 if (now != dev) { 6855 ret = fn(now, data); 6856 if (ret) 6857 return ret; 6858 } 6859 6860 next = NULL; 6861 while (1) { 6862 udev = __netdev_next_upper_dev(now, &iter, &ignore); 6863 if (!udev) 6864 break; 6865 if (ignore) 6866 continue; 6867 6868 next = udev; 6869 niter = &udev->adj_list.upper; 6870 dev_stack[cur] = now; 6871 iter_stack[cur++] = iter; 6872 break; 6873 } 6874 6875 if (!next) { 6876 if (!cur) 6877 return 0; 6878 next = dev_stack[--cur]; 6879 niter = iter_stack[cur]; 6880 } 6881 6882 now = next; 6883 iter = niter; 6884 } 6885 6886 return 0; 6887 } 6888 6889 int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 6890 int (*fn)(struct net_device *dev, 6891 void *data), 6892 void *data) 6893 { 6894 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 6895 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 6896 int ret, cur = 0; 6897 6898 now = dev; 6899 iter = &dev->adj_list.upper; 6900 6901 while (1) { 6902 if (now != dev) { 6903 ret = fn(now, data); 6904 if (ret) 6905 return ret; 6906 } 6907 6908 next = NULL; 6909 while (1) { 6910 udev = netdev_next_upper_dev_rcu(now, &iter); 6911 if (!udev) 6912 break; 6913 6914 next = udev; 6915 niter = &udev->adj_list.upper; 6916 dev_stack[cur] = now; 6917 iter_stack[cur++] = iter; 6918 break; 6919 } 6920 6921 if (!next) { 6922 if (!cur) 6923 return 0; 6924 next = dev_stack[--cur]; 6925 niter = iter_stack[cur]; 6926 } 6927 6928 now = next; 6929 iter = niter; 6930 } 6931 6932 return 0; 6933 } 6934 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu); 6935 6936 static bool __netdev_has_upper_dev(struct net_device *dev, 6937 struct net_device *upper_dev) 6938 { 6939 ASSERT_RTNL(); 6940 6941 return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev, 6942 upper_dev); 6943 } 6944 6945 /** 6946 * netdev_lower_get_next_private - Get the next ->private from the 6947 * lower neighbour list 6948 * @dev: device 6949 * @iter: list_head ** of the current position 6950 * 6951 * Gets the next netdev_adjacent->private from the dev's lower neighbour 6952 * list, starting from iter position. The caller must hold either hold the 6953 * RTNL lock or its own locking that guarantees that the neighbour lower 6954 * list will remain unchanged. 6955 */ 6956 void *netdev_lower_get_next_private(struct net_device *dev, 6957 struct list_head **iter) 6958 { 6959 struct netdev_adjacent *lower; 6960 6961 lower = list_entry(*iter, struct netdev_adjacent, list); 6962 6963 if (&lower->list == &dev->adj_list.lower) 6964 return NULL; 6965 6966 *iter = lower->list.next; 6967 6968 return lower->private; 6969 } 6970 EXPORT_SYMBOL(netdev_lower_get_next_private); 6971 6972 /** 6973 * netdev_lower_get_next_private_rcu - Get the next ->private from the 6974 * lower neighbour list, RCU 6975 * variant 6976 * @dev: device 6977 * @iter: list_head ** of the current position 6978 * 6979 * Gets the next netdev_adjacent->private from the dev's lower neighbour 6980 * list, starting from iter position. The caller must hold RCU read lock. 6981 */ 6982 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 6983 struct list_head **iter) 6984 { 6985 struct netdev_adjacent *lower; 6986 6987 WARN_ON_ONCE(!rcu_read_lock_held()); 6988 6989 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 6990 6991 if (&lower->list == &dev->adj_list.lower) 6992 return NULL; 6993 6994 *iter = &lower->list; 6995 6996 return lower->private; 6997 } 6998 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu); 6999 7000 /** 7001 * netdev_lower_get_next - Get the next device from the lower neighbour 7002 * list 7003 * @dev: device 7004 * @iter: list_head ** of the current position 7005 * 7006 * Gets the next netdev_adjacent from the dev's lower neighbour 7007 * list, starting from iter position. The caller must hold RTNL lock or 7008 * its own locking that guarantees that the neighbour lower 7009 * list will remain unchanged. 7010 */ 7011 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter) 7012 { 7013 struct netdev_adjacent *lower; 7014 7015 lower = list_entry(*iter, struct netdev_adjacent, list); 7016 7017 if (&lower->list == &dev->adj_list.lower) 7018 return NULL; 7019 7020 *iter = lower->list.next; 7021 7022 return lower->dev; 7023 } 7024 EXPORT_SYMBOL(netdev_lower_get_next); 7025 7026 static struct net_device *netdev_next_lower_dev(struct net_device *dev, 7027 struct list_head **iter) 7028 { 7029 struct netdev_adjacent *lower; 7030 7031 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 7032 7033 if (&lower->list == &dev->adj_list.lower) 7034 return NULL; 7035 7036 *iter = &lower->list; 7037 7038 return lower->dev; 7039 } 7040 7041 static struct net_device *__netdev_next_lower_dev(struct net_device *dev, 7042 struct list_head **iter, 7043 bool *ignore) 7044 { 7045 struct netdev_adjacent *lower; 7046 7047 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 7048 7049 if (&lower->list == &dev->adj_list.lower) 7050 return NULL; 7051 7052 *iter = &lower->list; 7053 *ignore = lower->ignore; 7054 7055 return lower->dev; 7056 } 7057 7058 int netdev_walk_all_lower_dev(struct net_device *dev, 7059 int (*fn)(struct net_device *dev, 7060 void *data), 7061 void *data) 7062 { 7063 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7064 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7065 int ret, cur = 0; 7066 7067 now = dev; 7068 iter = &dev->adj_list.lower; 7069 7070 while (1) { 7071 if (now != dev) { 7072 ret = fn(now, data); 7073 if (ret) 7074 return ret; 7075 } 7076 7077 next = NULL; 7078 while (1) { 7079 ldev = netdev_next_lower_dev(now, &iter); 7080 if (!ldev) 7081 break; 7082 7083 next = ldev; 7084 niter = &ldev->adj_list.lower; 7085 dev_stack[cur] = now; 7086 iter_stack[cur++] = iter; 7087 break; 7088 } 7089 7090 if (!next) { 7091 if (!cur) 7092 return 0; 7093 next = dev_stack[--cur]; 7094 niter = iter_stack[cur]; 7095 } 7096 7097 now = next; 7098 iter = niter; 7099 } 7100 7101 return 0; 7102 } 7103 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev); 7104 7105 static int __netdev_walk_all_lower_dev(struct net_device *dev, 7106 int (*fn)(struct net_device *dev, 7107 void *data), 7108 void *data) 7109 { 7110 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7111 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7112 int ret, cur = 0; 7113 bool ignore; 7114 7115 now = dev; 7116 iter = &dev->adj_list.lower; 7117 7118 while (1) { 7119 if (now != dev) { 7120 ret = fn(now, data); 7121 if (ret) 7122 return ret; 7123 } 7124 7125 next = NULL; 7126 while (1) { 7127 ldev = __netdev_next_lower_dev(now, &iter, &ignore); 7128 if (!ldev) 7129 break; 7130 if (ignore) 7131 continue; 7132 7133 next = ldev; 7134 niter = &ldev->adj_list.lower; 7135 dev_stack[cur] = now; 7136 iter_stack[cur++] = iter; 7137 break; 7138 } 7139 7140 if (!next) { 7141 if (!cur) 7142 return 0; 7143 next = dev_stack[--cur]; 7144 niter = iter_stack[cur]; 7145 } 7146 7147 now = next; 7148 iter = niter; 7149 } 7150 7151 return 0; 7152 } 7153 7154 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev, 7155 struct list_head **iter) 7156 { 7157 struct netdev_adjacent *lower; 7158 7159 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 7160 if (&lower->list == &dev->adj_list.lower) 7161 return NULL; 7162 7163 *iter = &lower->list; 7164 7165 return lower->dev; 7166 } 7167 7168 static u8 __netdev_upper_depth(struct net_device *dev) 7169 { 7170 struct net_device *udev; 7171 struct list_head *iter; 7172 u8 max_depth = 0; 7173 bool ignore; 7174 7175 for (iter = &dev->adj_list.upper, 7176 udev = __netdev_next_upper_dev(dev, &iter, &ignore); 7177 udev; 7178 udev = __netdev_next_upper_dev(dev, &iter, &ignore)) { 7179 if (ignore) 7180 continue; 7181 if (max_depth < udev->upper_level) 7182 max_depth = udev->upper_level; 7183 } 7184 7185 return max_depth; 7186 } 7187 7188 static u8 __netdev_lower_depth(struct net_device *dev) 7189 { 7190 struct net_device *ldev; 7191 struct list_head *iter; 7192 u8 max_depth = 0; 7193 bool ignore; 7194 7195 for (iter = &dev->adj_list.lower, 7196 ldev = __netdev_next_lower_dev(dev, &iter, &ignore); 7197 ldev; 7198 ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) { 7199 if (ignore) 7200 continue; 7201 if (max_depth < ldev->lower_level) 7202 max_depth = ldev->lower_level; 7203 } 7204 7205 return max_depth; 7206 } 7207 7208 static int __netdev_update_upper_level(struct net_device *dev, void *data) 7209 { 7210 dev->upper_level = __netdev_upper_depth(dev) + 1; 7211 return 0; 7212 } 7213 7214 static int __netdev_update_lower_level(struct net_device *dev, void *data) 7215 { 7216 dev->lower_level = __netdev_lower_depth(dev) + 1; 7217 return 0; 7218 } 7219 7220 int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 7221 int (*fn)(struct net_device *dev, 7222 void *data), 7223 void *data) 7224 { 7225 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7226 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7227 int ret, cur = 0; 7228 7229 now = dev; 7230 iter = &dev->adj_list.lower; 7231 7232 while (1) { 7233 if (now != dev) { 7234 ret = fn(now, data); 7235 if (ret) 7236 return ret; 7237 } 7238 7239 next = NULL; 7240 while (1) { 7241 ldev = netdev_next_lower_dev_rcu(now, &iter); 7242 if (!ldev) 7243 break; 7244 7245 next = ldev; 7246 niter = &ldev->adj_list.lower; 7247 dev_stack[cur] = now; 7248 iter_stack[cur++] = iter; 7249 break; 7250 } 7251 7252 if (!next) { 7253 if (!cur) 7254 return 0; 7255 next = dev_stack[--cur]; 7256 niter = iter_stack[cur]; 7257 } 7258 7259 now = next; 7260 iter = niter; 7261 } 7262 7263 return 0; 7264 } 7265 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu); 7266 7267 /** 7268 * netdev_lower_get_first_private_rcu - Get the first ->private from the 7269 * lower neighbour list, RCU 7270 * variant 7271 * @dev: device 7272 * 7273 * Gets the first netdev_adjacent->private from the dev's lower neighbour 7274 * list. The caller must hold RCU read lock. 7275 */ 7276 void *netdev_lower_get_first_private_rcu(struct net_device *dev) 7277 { 7278 struct netdev_adjacent *lower; 7279 7280 lower = list_first_or_null_rcu(&dev->adj_list.lower, 7281 struct netdev_adjacent, list); 7282 if (lower) 7283 return lower->private; 7284 return NULL; 7285 } 7286 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu); 7287 7288 /** 7289 * netdev_master_upper_dev_get_rcu - Get master upper device 7290 * @dev: device 7291 * 7292 * Find a master upper device and return pointer to it or NULL in case 7293 * it's not there. The caller must hold the RCU read lock. 7294 */ 7295 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev) 7296 { 7297 struct netdev_adjacent *upper; 7298 7299 upper = list_first_or_null_rcu(&dev->adj_list.upper, 7300 struct netdev_adjacent, list); 7301 if (upper && likely(upper->master)) 7302 return upper->dev; 7303 return NULL; 7304 } 7305 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu); 7306 7307 static int netdev_adjacent_sysfs_add(struct net_device *dev, 7308 struct net_device *adj_dev, 7309 struct list_head *dev_list) 7310 { 7311 char linkname[IFNAMSIZ+7]; 7312 7313 sprintf(linkname, dev_list == &dev->adj_list.upper ? 7314 "upper_%s" : "lower_%s", adj_dev->name); 7315 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj), 7316 linkname); 7317 } 7318 static void netdev_adjacent_sysfs_del(struct net_device *dev, 7319 char *name, 7320 struct list_head *dev_list) 7321 { 7322 char linkname[IFNAMSIZ+7]; 7323 7324 sprintf(linkname, dev_list == &dev->adj_list.upper ? 7325 "upper_%s" : "lower_%s", name); 7326 sysfs_remove_link(&(dev->dev.kobj), linkname); 7327 } 7328 7329 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev, 7330 struct net_device *adj_dev, 7331 struct list_head *dev_list) 7332 { 7333 return (dev_list == &dev->adj_list.upper || 7334 dev_list == &dev->adj_list.lower) && 7335 net_eq(dev_net(dev), dev_net(adj_dev)); 7336 } 7337 7338 static int __netdev_adjacent_dev_insert(struct net_device *dev, 7339 struct net_device *adj_dev, 7340 struct list_head *dev_list, 7341 void *private, bool master) 7342 { 7343 struct netdev_adjacent *adj; 7344 int ret; 7345 7346 adj = __netdev_find_adj(adj_dev, dev_list); 7347 7348 if (adj) { 7349 adj->ref_nr += 1; 7350 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n", 7351 dev->name, adj_dev->name, adj->ref_nr); 7352 7353 return 0; 7354 } 7355 7356 adj = kmalloc(sizeof(*adj), GFP_KERNEL); 7357 if (!adj) 7358 return -ENOMEM; 7359 7360 adj->dev = adj_dev; 7361 adj->master = master; 7362 adj->ref_nr = 1; 7363 adj->private = private; 7364 adj->ignore = false; 7365 dev_hold(adj_dev); 7366 7367 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n", 7368 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name); 7369 7370 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) { 7371 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list); 7372 if (ret) 7373 goto free_adj; 7374 } 7375 7376 /* Ensure that master link is always the first item in list. */ 7377 if (master) { 7378 ret = sysfs_create_link(&(dev->dev.kobj), 7379 &(adj_dev->dev.kobj), "master"); 7380 if (ret) 7381 goto remove_symlinks; 7382 7383 list_add_rcu(&adj->list, dev_list); 7384 } else { 7385 list_add_tail_rcu(&adj->list, dev_list); 7386 } 7387 7388 return 0; 7389 7390 remove_symlinks: 7391 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 7392 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 7393 free_adj: 7394 kfree(adj); 7395 dev_put(adj_dev); 7396 7397 return ret; 7398 } 7399 7400 static void __netdev_adjacent_dev_remove(struct net_device *dev, 7401 struct net_device *adj_dev, 7402 u16 ref_nr, 7403 struct list_head *dev_list) 7404 { 7405 struct netdev_adjacent *adj; 7406 7407 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n", 7408 dev->name, adj_dev->name, ref_nr); 7409 7410 adj = __netdev_find_adj(adj_dev, dev_list); 7411 7412 if (!adj) { 7413 pr_err("Adjacency does not exist for device %s from %s\n", 7414 dev->name, adj_dev->name); 7415 WARN_ON(1); 7416 return; 7417 } 7418 7419 if (adj->ref_nr > ref_nr) { 7420 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n", 7421 dev->name, adj_dev->name, ref_nr, 7422 adj->ref_nr - ref_nr); 7423 adj->ref_nr -= ref_nr; 7424 return; 7425 } 7426 7427 if (adj->master) 7428 sysfs_remove_link(&(dev->dev.kobj), "master"); 7429 7430 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 7431 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 7432 7433 list_del_rcu(&adj->list); 7434 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n", 7435 adj_dev->name, dev->name, adj_dev->name); 7436 dev_put(adj_dev); 7437 kfree_rcu(adj, rcu); 7438 } 7439 7440 static int __netdev_adjacent_dev_link_lists(struct net_device *dev, 7441 struct net_device *upper_dev, 7442 struct list_head *up_list, 7443 struct list_head *down_list, 7444 void *private, bool master) 7445 { 7446 int ret; 7447 7448 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, 7449 private, master); 7450 if (ret) 7451 return ret; 7452 7453 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, 7454 private, false); 7455 if (ret) { 7456 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list); 7457 return ret; 7458 } 7459 7460 return 0; 7461 } 7462 7463 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev, 7464 struct net_device *upper_dev, 7465 u16 ref_nr, 7466 struct list_head *up_list, 7467 struct list_head *down_list) 7468 { 7469 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list); 7470 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list); 7471 } 7472 7473 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev, 7474 struct net_device *upper_dev, 7475 void *private, bool master) 7476 { 7477 return __netdev_adjacent_dev_link_lists(dev, upper_dev, 7478 &dev->adj_list.upper, 7479 &upper_dev->adj_list.lower, 7480 private, master); 7481 } 7482 7483 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev, 7484 struct net_device *upper_dev) 7485 { 7486 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1, 7487 &dev->adj_list.upper, 7488 &upper_dev->adj_list.lower); 7489 } 7490 7491 static int __netdev_upper_dev_link(struct net_device *dev, 7492 struct net_device *upper_dev, bool master, 7493 void *upper_priv, void *upper_info, 7494 struct netlink_ext_ack *extack) 7495 { 7496 struct netdev_notifier_changeupper_info changeupper_info = { 7497 .info = { 7498 .dev = dev, 7499 .extack = extack, 7500 }, 7501 .upper_dev = upper_dev, 7502 .master = master, 7503 .linking = true, 7504 .upper_info = upper_info, 7505 }; 7506 struct net_device *master_dev; 7507 int ret = 0; 7508 7509 ASSERT_RTNL(); 7510 7511 if (dev == upper_dev) 7512 return -EBUSY; 7513 7514 /* To prevent loops, check if dev is not upper device to upper_dev. */ 7515 if (__netdev_has_upper_dev(upper_dev, dev)) 7516 return -EBUSY; 7517 7518 if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV) 7519 return -EMLINK; 7520 7521 if (!master) { 7522 if (__netdev_has_upper_dev(dev, upper_dev)) 7523 return -EEXIST; 7524 } else { 7525 master_dev = __netdev_master_upper_dev_get(dev); 7526 if (master_dev) 7527 return master_dev == upper_dev ? -EEXIST : -EBUSY; 7528 } 7529 7530 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 7531 &changeupper_info.info); 7532 ret = notifier_to_errno(ret); 7533 if (ret) 7534 return ret; 7535 7536 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv, 7537 master); 7538 if (ret) 7539 return ret; 7540 7541 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 7542 &changeupper_info.info); 7543 ret = notifier_to_errno(ret); 7544 if (ret) 7545 goto rollback; 7546 7547 __netdev_update_upper_level(dev, NULL); 7548 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL); 7549 7550 __netdev_update_lower_level(upper_dev, NULL); 7551 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level, 7552 NULL); 7553 7554 return 0; 7555 7556 rollback: 7557 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 7558 7559 return ret; 7560 } 7561 7562 /** 7563 * netdev_upper_dev_link - Add a link to the upper device 7564 * @dev: device 7565 * @upper_dev: new upper device 7566 * @extack: netlink extended ack 7567 * 7568 * Adds a link to device which is upper to this one. The caller must hold 7569 * the RTNL lock. On a failure a negative errno code is returned. 7570 * On success the reference counts are adjusted and the function 7571 * returns zero. 7572 */ 7573 int netdev_upper_dev_link(struct net_device *dev, 7574 struct net_device *upper_dev, 7575 struct netlink_ext_ack *extack) 7576 { 7577 return __netdev_upper_dev_link(dev, upper_dev, false, 7578 NULL, NULL, extack); 7579 } 7580 EXPORT_SYMBOL(netdev_upper_dev_link); 7581 7582 /** 7583 * netdev_master_upper_dev_link - Add a master link to the upper device 7584 * @dev: device 7585 * @upper_dev: new upper device 7586 * @upper_priv: upper device private 7587 * @upper_info: upper info to be passed down via notifier 7588 * @extack: netlink extended ack 7589 * 7590 * Adds a link to device which is upper to this one. In this case, only 7591 * one master upper device can be linked, although other non-master devices 7592 * might be linked as well. The caller must hold the RTNL lock. 7593 * On a failure a negative errno code is returned. On success the reference 7594 * counts are adjusted and the function returns zero. 7595 */ 7596 int netdev_master_upper_dev_link(struct net_device *dev, 7597 struct net_device *upper_dev, 7598 void *upper_priv, void *upper_info, 7599 struct netlink_ext_ack *extack) 7600 { 7601 return __netdev_upper_dev_link(dev, upper_dev, true, 7602 upper_priv, upper_info, extack); 7603 } 7604 EXPORT_SYMBOL(netdev_master_upper_dev_link); 7605 7606 /** 7607 * netdev_upper_dev_unlink - Removes a link to upper device 7608 * @dev: device 7609 * @upper_dev: new upper device 7610 * 7611 * Removes a link to device which is upper to this one. The caller must hold 7612 * the RTNL lock. 7613 */ 7614 void netdev_upper_dev_unlink(struct net_device *dev, 7615 struct net_device *upper_dev) 7616 { 7617 struct netdev_notifier_changeupper_info changeupper_info = { 7618 .info = { 7619 .dev = dev, 7620 }, 7621 .upper_dev = upper_dev, 7622 .linking = false, 7623 }; 7624 7625 ASSERT_RTNL(); 7626 7627 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev; 7628 7629 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 7630 &changeupper_info.info); 7631 7632 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 7633 7634 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 7635 &changeupper_info.info); 7636 7637 __netdev_update_upper_level(dev, NULL); 7638 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL); 7639 7640 __netdev_update_lower_level(upper_dev, NULL); 7641 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level, 7642 NULL); 7643 } 7644 EXPORT_SYMBOL(netdev_upper_dev_unlink); 7645 7646 static void __netdev_adjacent_dev_set(struct net_device *upper_dev, 7647 struct net_device *lower_dev, 7648 bool val) 7649 { 7650 struct netdev_adjacent *adj; 7651 7652 adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower); 7653 if (adj) 7654 adj->ignore = val; 7655 7656 adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper); 7657 if (adj) 7658 adj->ignore = val; 7659 } 7660 7661 static void netdev_adjacent_dev_disable(struct net_device *upper_dev, 7662 struct net_device *lower_dev) 7663 { 7664 __netdev_adjacent_dev_set(upper_dev, lower_dev, true); 7665 } 7666 7667 static void netdev_adjacent_dev_enable(struct net_device *upper_dev, 7668 struct net_device *lower_dev) 7669 { 7670 __netdev_adjacent_dev_set(upper_dev, lower_dev, false); 7671 } 7672 7673 int netdev_adjacent_change_prepare(struct net_device *old_dev, 7674 struct net_device *new_dev, 7675 struct net_device *dev, 7676 struct netlink_ext_ack *extack) 7677 { 7678 int err; 7679 7680 if (!new_dev) 7681 return 0; 7682 7683 if (old_dev && new_dev != old_dev) 7684 netdev_adjacent_dev_disable(dev, old_dev); 7685 7686 err = netdev_upper_dev_link(new_dev, dev, extack); 7687 if (err) { 7688 if (old_dev && new_dev != old_dev) 7689 netdev_adjacent_dev_enable(dev, old_dev); 7690 return err; 7691 } 7692 7693 return 0; 7694 } 7695 EXPORT_SYMBOL(netdev_adjacent_change_prepare); 7696 7697 void netdev_adjacent_change_commit(struct net_device *old_dev, 7698 struct net_device *new_dev, 7699 struct net_device *dev) 7700 { 7701 if (!new_dev || !old_dev) 7702 return; 7703 7704 if (new_dev == old_dev) 7705 return; 7706 7707 netdev_adjacent_dev_enable(dev, old_dev); 7708 netdev_upper_dev_unlink(old_dev, dev); 7709 } 7710 EXPORT_SYMBOL(netdev_adjacent_change_commit); 7711 7712 void netdev_adjacent_change_abort(struct net_device *old_dev, 7713 struct net_device *new_dev, 7714 struct net_device *dev) 7715 { 7716 if (!new_dev) 7717 return; 7718 7719 if (old_dev && new_dev != old_dev) 7720 netdev_adjacent_dev_enable(dev, old_dev); 7721 7722 netdev_upper_dev_unlink(new_dev, dev); 7723 } 7724 EXPORT_SYMBOL(netdev_adjacent_change_abort); 7725 7726 /** 7727 * netdev_bonding_info_change - Dispatch event about slave change 7728 * @dev: device 7729 * @bonding_info: info to dispatch 7730 * 7731 * Send NETDEV_BONDING_INFO to netdev notifiers with info. 7732 * The caller must hold the RTNL lock. 7733 */ 7734 void netdev_bonding_info_change(struct net_device *dev, 7735 struct netdev_bonding_info *bonding_info) 7736 { 7737 struct netdev_notifier_bonding_info info = { 7738 .info.dev = dev, 7739 }; 7740 7741 memcpy(&info.bonding_info, bonding_info, 7742 sizeof(struct netdev_bonding_info)); 7743 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, 7744 &info.info); 7745 } 7746 EXPORT_SYMBOL(netdev_bonding_info_change); 7747 7748 static void netdev_adjacent_add_links(struct net_device *dev) 7749 { 7750 struct netdev_adjacent *iter; 7751 7752 struct net *net = dev_net(dev); 7753 7754 list_for_each_entry(iter, &dev->adj_list.upper, list) { 7755 if (!net_eq(net, dev_net(iter->dev))) 7756 continue; 7757 netdev_adjacent_sysfs_add(iter->dev, dev, 7758 &iter->dev->adj_list.lower); 7759 netdev_adjacent_sysfs_add(dev, iter->dev, 7760 &dev->adj_list.upper); 7761 } 7762 7763 list_for_each_entry(iter, &dev->adj_list.lower, list) { 7764 if (!net_eq(net, dev_net(iter->dev))) 7765 continue; 7766 netdev_adjacent_sysfs_add(iter->dev, dev, 7767 &iter->dev->adj_list.upper); 7768 netdev_adjacent_sysfs_add(dev, iter->dev, 7769 &dev->adj_list.lower); 7770 } 7771 } 7772 7773 static void netdev_adjacent_del_links(struct net_device *dev) 7774 { 7775 struct netdev_adjacent *iter; 7776 7777 struct net *net = dev_net(dev); 7778 7779 list_for_each_entry(iter, &dev->adj_list.upper, list) { 7780 if (!net_eq(net, dev_net(iter->dev))) 7781 continue; 7782 netdev_adjacent_sysfs_del(iter->dev, dev->name, 7783 &iter->dev->adj_list.lower); 7784 netdev_adjacent_sysfs_del(dev, iter->dev->name, 7785 &dev->adj_list.upper); 7786 } 7787 7788 list_for_each_entry(iter, &dev->adj_list.lower, list) { 7789 if (!net_eq(net, dev_net(iter->dev))) 7790 continue; 7791 netdev_adjacent_sysfs_del(iter->dev, dev->name, 7792 &iter->dev->adj_list.upper); 7793 netdev_adjacent_sysfs_del(dev, iter->dev->name, 7794 &dev->adj_list.lower); 7795 } 7796 } 7797 7798 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname) 7799 { 7800 struct netdev_adjacent *iter; 7801 7802 struct net *net = dev_net(dev); 7803 7804 list_for_each_entry(iter, &dev->adj_list.upper, list) { 7805 if (!net_eq(net, dev_net(iter->dev))) 7806 continue; 7807 netdev_adjacent_sysfs_del(iter->dev, oldname, 7808 &iter->dev->adj_list.lower); 7809 netdev_adjacent_sysfs_add(iter->dev, dev, 7810 &iter->dev->adj_list.lower); 7811 } 7812 7813 list_for_each_entry(iter, &dev->adj_list.lower, list) { 7814 if (!net_eq(net, dev_net(iter->dev))) 7815 continue; 7816 netdev_adjacent_sysfs_del(iter->dev, oldname, 7817 &iter->dev->adj_list.upper); 7818 netdev_adjacent_sysfs_add(iter->dev, dev, 7819 &iter->dev->adj_list.upper); 7820 } 7821 } 7822 7823 void *netdev_lower_dev_get_private(struct net_device *dev, 7824 struct net_device *lower_dev) 7825 { 7826 struct netdev_adjacent *lower; 7827 7828 if (!lower_dev) 7829 return NULL; 7830 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower); 7831 if (!lower) 7832 return NULL; 7833 7834 return lower->private; 7835 } 7836 EXPORT_SYMBOL(netdev_lower_dev_get_private); 7837 7838 7839 /** 7840 * netdev_lower_change - Dispatch event about lower device state change 7841 * @lower_dev: device 7842 * @lower_state_info: state to dispatch 7843 * 7844 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info. 7845 * The caller must hold the RTNL lock. 7846 */ 7847 void netdev_lower_state_changed(struct net_device *lower_dev, 7848 void *lower_state_info) 7849 { 7850 struct netdev_notifier_changelowerstate_info changelowerstate_info = { 7851 .info.dev = lower_dev, 7852 }; 7853 7854 ASSERT_RTNL(); 7855 changelowerstate_info.lower_state_info = lower_state_info; 7856 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, 7857 &changelowerstate_info.info); 7858 } 7859 EXPORT_SYMBOL(netdev_lower_state_changed); 7860 7861 static void dev_change_rx_flags(struct net_device *dev, int flags) 7862 { 7863 const struct net_device_ops *ops = dev->netdev_ops; 7864 7865 if (ops->ndo_change_rx_flags) 7866 ops->ndo_change_rx_flags(dev, flags); 7867 } 7868 7869 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify) 7870 { 7871 unsigned int old_flags = dev->flags; 7872 kuid_t uid; 7873 kgid_t gid; 7874 7875 ASSERT_RTNL(); 7876 7877 dev->flags |= IFF_PROMISC; 7878 dev->promiscuity += inc; 7879 if (dev->promiscuity == 0) { 7880 /* 7881 * Avoid overflow. 7882 * If inc causes overflow, untouch promisc and return error. 7883 */ 7884 if (inc < 0) 7885 dev->flags &= ~IFF_PROMISC; 7886 else { 7887 dev->promiscuity -= inc; 7888 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n", 7889 dev->name); 7890 return -EOVERFLOW; 7891 } 7892 } 7893 if (dev->flags != old_flags) { 7894 pr_info("device %s %s promiscuous mode\n", 7895 dev->name, 7896 dev->flags & IFF_PROMISC ? "entered" : "left"); 7897 if (audit_enabled) { 7898 current_uid_gid(&uid, &gid); 7899 audit_log(audit_context(), GFP_ATOMIC, 7900 AUDIT_ANOM_PROMISCUOUS, 7901 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 7902 dev->name, (dev->flags & IFF_PROMISC), 7903 (old_flags & IFF_PROMISC), 7904 from_kuid(&init_user_ns, audit_get_loginuid(current)), 7905 from_kuid(&init_user_ns, uid), 7906 from_kgid(&init_user_ns, gid), 7907 audit_get_sessionid(current)); 7908 } 7909 7910 dev_change_rx_flags(dev, IFF_PROMISC); 7911 } 7912 if (notify) 7913 __dev_notify_flags(dev, old_flags, IFF_PROMISC); 7914 return 0; 7915 } 7916 7917 /** 7918 * dev_set_promiscuity - update promiscuity count on a device 7919 * @dev: device 7920 * @inc: modifier 7921 * 7922 * Add or remove promiscuity from a device. While the count in the device 7923 * remains above zero the interface remains promiscuous. Once it hits zero 7924 * the device reverts back to normal filtering operation. A negative inc 7925 * value is used to drop promiscuity on the device. 7926 * Return 0 if successful or a negative errno code on error. 7927 */ 7928 int dev_set_promiscuity(struct net_device *dev, int inc) 7929 { 7930 unsigned int old_flags = dev->flags; 7931 int err; 7932 7933 err = __dev_set_promiscuity(dev, inc, true); 7934 if (err < 0) 7935 return err; 7936 if (dev->flags != old_flags) 7937 dev_set_rx_mode(dev); 7938 return err; 7939 } 7940 EXPORT_SYMBOL(dev_set_promiscuity); 7941 7942 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify) 7943 { 7944 unsigned int old_flags = dev->flags, old_gflags = dev->gflags; 7945 7946 ASSERT_RTNL(); 7947 7948 dev->flags |= IFF_ALLMULTI; 7949 dev->allmulti += inc; 7950 if (dev->allmulti == 0) { 7951 /* 7952 * Avoid overflow. 7953 * If inc causes overflow, untouch allmulti and return error. 7954 */ 7955 if (inc < 0) 7956 dev->flags &= ~IFF_ALLMULTI; 7957 else { 7958 dev->allmulti -= inc; 7959 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n", 7960 dev->name); 7961 return -EOVERFLOW; 7962 } 7963 } 7964 if (dev->flags ^ old_flags) { 7965 dev_change_rx_flags(dev, IFF_ALLMULTI); 7966 dev_set_rx_mode(dev); 7967 if (notify) 7968 __dev_notify_flags(dev, old_flags, 7969 dev->gflags ^ old_gflags); 7970 } 7971 return 0; 7972 } 7973 7974 /** 7975 * dev_set_allmulti - update allmulti count on a device 7976 * @dev: device 7977 * @inc: modifier 7978 * 7979 * Add or remove reception of all multicast frames to a device. While the 7980 * count in the device remains above zero the interface remains listening 7981 * to all interfaces. Once it hits zero the device reverts back to normal 7982 * filtering operation. A negative @inc value is used to drop the counter 7983 * when releasing a resource needing all multicasts. 7984 * Return 0 if successful or a negative errno code on error. 7985 */ 7986 7987 int dev_set_allmulti(struct net_device *dev, int inc) 7988 { 7989 return __dev_set_allmulti(dev, inc, true); 7990 } 7991 EXPORT_SYMBOL(dev_set_allmulti); 7992 7993 /* 7994 * Upload unicast and multicast address lists to device and 7995 * configure RX filtering. When the device doesn't support unicast 7996 * filtering it is put in promiscuous mode while unicast addresses 7997 * are present. 7998 */ 7999 void __dev_set_rx_mode(struct net_device *dev) 8000 { 8001 const struct net_device_ops *ops = dev->netdev_ops; 8002 8003 /* dev_open will call this function so the list will stay sane. */ 8004 if (!(dev->flags&IFF_UP)) 8005 return; 8006 8007 if (!netif_device_present(dev)) 8008 return; 8009 8010 if (!(dev->priv_flags & IFF_UNICAST_FLT)) { 8011 /* Unicast addresses changes may only happen under the rtnl, 8012 * therefore calling __dev_set_promiscuity here is safe. 8013 */ 8014 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 8015 __dev_set_promiscuity(dev, 1, false); 8016 dev->uc_promisc = true; 8017 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 8018 __dev_set_promiscuity(dev, -1, false); 8019 dev->uc_promisc = false; 8020 } 8021 } 8022 8023 if (ops->ndo_set_rx_mode) 8024 ops->ndo_set_rx_mode(dev); 8025 } 8026 8027 void dev_set_rx_mode(struct net_device *dev) 8028 { 8029 netif_addr_lock_bh(dev); 8030 __dev_set_rx_mode(dev); 8031 netif_addr_unlock_bh(dev); 8032 } 8033 8034 /** 8035 * dev_get_flags - get flags reported to userspace 8036 * @dev: device 8037 * 8038 * Get the combination of flag bits exported through APIs to userspace. 8039 */ 8040 unsigned int dev_get_flags(const struct net_device *dev) 8041 { 8042 unsigned int flags; 8043 8044 flags = (dev->flags & ~(IFF_PROMISC | 8045 IFF_ALLMULTI | 8046 IFF_RUNNING | 8047 IFF_LOWER_UP | 8048 IFF_DORMANT)) | 8049 (dev->gflags & (IFF_PROMISC | 8050 IFF_ALLMULTI)); 8051 8052 if (netif_running(dev)) { 8053 if (netif_oper_up(dev)) 8054 flags |= IFF_RUNNING; 8055 if (netif_carrier_ok(dev)) 8056 flags |= IFF_LOWER_UP; 8057 if (netif_dormant(dev)) 8058 flags |= IFF_DORMANT; 8059 } 8060 8061 return flags; 8062 } 8063 EXPORT_SYMBOL(dev_get_flags); 8064 8065 int __dev_change_flags(struct net_device *dev, unsigned int flags, 8066 struct netlink_ext_ack *extack) 8067 { 8068 unsigned int old_flags = dev->flags; 8069 int ret; 8070 8071 ASSERT_RTNL(); 8072 8073 /* 8074 * Set the flags on our device. 8075 */ 8076 8077 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 8078 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 8079 IFF_AUTOMEDIA)) | 8080 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 8081 IFF_ALLMULTI)); 8082 8083 /* 8084 * Load in the correct multicast list now the flags have changed. 8085 */ 8086 8087 if ((old_flags ^ flags) & IFF_MULTICAST) 8088 dev_change_rx_flags(dev, IFF_MULTICAST); 8089 8090 dev_set_rx_mode(dev); 8091 8092 /* 8093 * Have we downed the interface. We handle IFF_UP ourselves 8094 * according to user attempts to set it, rather than blindly 8095 * setting it. 8096 */ 8097 8098 ret = 0; 8099 if ((old_flags ^ flags) & IFF_UP) { 8100 if (old_flags & IFF_UP) 8101 __dev_close(dev); 8102 else 8103 ret = __dev_open(dev, extack); 8104 } 8105 8106 if ((flags ^ dev->gflags) & IFF_PROMISC) { 8107 int inc = (flags & IFF_PROMISC) ? 1 : -1; 8108 unsigned int old_flags = dev->flags; 8109 8110 dev->gflags ^= IFF_PROMISC; 8111 8112 if (__dev_set_promiscuity(dev, inc, false) >= 0) 8113 if (dev->flags != old_flags) 8114 dev_set_rx_mode(dev); 8115 } 8116 8117 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 8118 * is important. Some (broken) drivers set IFF_PROMISC, when 8119 * IFF_ALLMULTI is requested not asking us and not reporting. 8120 */ 8121 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 8122 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 8123 8124 dev->gflags ^= IFF_ALLMULTI; 8125 __dev_set_allmulti(dev, inc, false); 8126 } 8127 8128 return ret; 8129 } 8130 8131 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags, 8132 unsigned int gchanges) 8133 { 8134 unsigned int changes = dev->flags ^ old_flags; 8135 8136 if (gchanges) 8137 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC); 8138 8139 if (changes & IFF_UP) { 8140 if (dev->flags & IFF_UP) 8141 call_netdevice_notifiers(NETDEV_UP, dev); 8142 else 8143 call_netdevice_notifiers(NETDEV_DOWN, dev); 8144 } 8145 8146 if (dev->flags & IFF_UP && 8147 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) { 8148 struct netdev_notifier_change_info change_info = { 8149 .info = { 8150 .dev = dev, 8151 }, 8152 .flags_changed = changes, 8153 }; 8154 8155 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info); 8156 } 8157 } 8158 8159 /** 8160 * dev_change_flags - change device settings 8161 * @dev: device 8162 * @flags: device state flags 8163 * @extack: netlink extended ack 8164 * 8165 * Change settings on device based state flags. The flags are 8166 * in the userspace exported format. 8167 */ 8168 int dev_change_flags(struct net_device *dev, unsigned int flags, 8169 struct netlink_ext_ack *extack) 8170 { 8171 int ret; 8172 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags; 8173 8174 ret = __dev_change_flags(dev, flags, extack); 8175 if (ret < 0) 8176 return ret; 8177 8178 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags); 8179 __dev_notify_flags(dev, old_flags, changes); 8180 return ret; 8181 } 8182 EXPORT_SYMBOL(dev_change_flags); 8183 8184 int __dev_set_mtu(struct net_device *dev, int new_mtu) 8185 { 8186 const struct net_device_ops *ops = dev->netdev_ops; 8187 8188 if (ops->ndo_change_mtu) 8189 return ops->ndo_change_mtu(dev, new_mtu); 8190 8191 /* Pairs with all the lockless reads of dev->mtu in the stack */ 8192 WRITE_ONCE(dev->mtu, new_mtu); 8193 return 0; 8194 } 8195 EXPORT_SYMBOL(__dev_set_mtu); 8196 8197 /** 8198 * dev_set_mtu_ext - Change maximum transfer unit 8199 * @dev: device 8200 * @new_mtu: new transfer unit 8201 * @extack: netlink extended ack 8202 * 8203 * Change the maximum transfer size of the network device. 8204 */ 8205 int dev_set_mtu_ext(struct net_device *dev, int new_mtu, 8206 struct netlink_ext_ack *extack) 8207 { 8208 int err, orig_mtu; 8209 8210 if (new_mtu == dev->mtu) 8211 return 0; 8212 8213 /* MTU must be positive, and in range */ 8214 if (new_mtu < 0 || new_mtu < dev->min_mtu) { 8215 NL_SET_ERR_MSG(extack, "mtu less than device minimum"); 8216 return -EINVAL; 8217 } 8218 8219 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) { 8220 NL_SET_ERR_MSG(extack, "mtu greater than device maximum"); 8221 return -EINVAL; 8222 } 8223 8224 if (!netif_device_present(dev)) 8225 return -ENODEV; 8226 8227 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev); 8228 err = notifier_to_errno(err); 8229 if (err) 8230 return err; 8231 8232 orig_mtu = dev->mtu; 8233 err = __dev_set_mtu(dev, new_mtu); 8234 8235 if (!err) { 8236 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev, 8237 orig_mtu); 8238 err = notifier_to_errno(err); 8239 if (err) { 8240 /* setting mtu back and notifying everyone again, 8241 * so that they have a chance to revert changes. 8242 */ 8243 __dev_set_mtu(dev, orig_mtu); 8244 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev, 8245 new_mtu); 8246 } 8247 } 8248 return err; 8249 } 8250 8251 int dev_set_mtu(struct net_device *dev, int new_mtu) 8252 { 8253 struct netlink_ext_ack extack; 8254 int err; 8255 8256 memset(&extack, 0, sizeof(extack)); 8257 err = dev_set_mtu_ext(dev, new_mtu, &extack); 8258 if (err && extack._msg) 8259 net_err_ratelimited("%s: %s\n", dev->name, extack._msg); 8260 return err; 8261 } 8262 EXPORT_SYMBOL(dev_set_mtu); 8263 8264 /** 8265 * dev_change_tx_queue_len - Change TX queue length of a netdevice 8266 * @dev: device 8267 * @new_len: new tx queue length 8268 */ 8269 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len) 8270 { 8271 unsigned int orig_len = dev->tx_queue_len; 8272 int res; 8273 8274 if (new_len != (unsigned int)new_len) 8275 return -ERANGE; 8276 8277 if (new_len != orig_len) { 8278 dev->tx_queue_len = new_len; 8279 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev); 8280 res = notifier_to_errno(res); 8281 if (res) 8282 goto err_rollback; 8283 res = dev_qdisc_change_tx_queue_len(dev); 8284 if (res) 8285 goto err_rollback; 8286 } 8287 8288 return 0; 8289 8290 err_rollback: 8291 netdev_err(dev, "refused to change device tx_queue_len\n"); 8292 dev->tx_queue_len = orig_len; 8293 return res; 8294 } 8295 8296 /** 8297 * dev_set_group - Change group this device belongs to 8298 * @dev: device 8299 * @new_group: group this device should belong to 8300 */ 8301 void dev_set_group(struct net_device *dev, int new_group) 8302 { 8303 dev->group = new_group; 8304 } 8305 EXPORT_SYMBOL(dev_set_group); 8306 8307 /** 8308 * dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR. 8309 * @dev: device 8310 * @addr: new address 8311 * @extack: netlink extended ack 8312 */ 8313 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr, 8314 struct netlink_ext_ack *extack) 8315 { 8316 struct netdev_notifier_pre_changeaddr_info info = { 8317 .info.dev = dev, 8318 .info.extack = extack, 8319 .dev_addr = addr, 8320 }; 8321 int rc; 8322 8323 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info); 8324 return notifier_to_errno(rc); 8325 } 8326 EXPORT_SYMBOL(dev_pre_changeaddr_notify); 8327 8328 /** 8329 * dev_set_mac_address - Change Media Access Control Address 8330 * @dev: device 8331 * @sa: new address 8332 * @extack: netlink extended ack 8333 * 8334 * Change the hardware (MAC) address of the device 8335 */ 8336 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa, 8337 struct netlink_ext_ack *extack) 8338 { 8339 const struct net_device_ops *ops = dev->netdev_ops; 8340 int err; 8341 8342 if (!ops->ndo_set_mac_address) 8343 return -EOPNOTSUPP; 8344 if (sa->sa_family != dev->type) 8345 return -EINVAL; 8346 if (!netif_device_present(dev)) 8347 return -ENODEV; 8348 err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack); 8349 if (err) 8350 return err; 8351 err = ops->ndo_set_mac_address(dev, sa); 8352 if (err) 8353 return err; 8354 dev->addr_assign_type = NET_ADDR_SET; 8355 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 8356 add_device_randomness(dev->dev_addr, dev->addr_len); 8357 return 0; 8358 } 8359 EXPORT_SYMBOL(dev_set_mac_address); 8360 8361 /** 8362 * dev_change_carrier - Change device carrier 8363 * @dev: device 8364 * @new_carrier: new value 8365 * 8366 * Change device carrier 8367 */ 8368 int dev_change_carrier(struct net_device *dev, bool new_carrier) 8369 { 8370 const struct net_device_ops *ops = dev->netdev_ops; 8371 8372 if (!ops->ndo_change_carrier) 8373 return -EOPNOTSUPP; 8374 if (!netif_device_present(dev)) 8375 return -ENODEV; 8376 return ops->ndo_change_carrier(dev, new_carrier); 8377 } 8378 EXPORT_SYMBOL(dev_change_carrier); 8379 8380 /** 8381 * dev_get_phys_port_id - Get device physical port ID 8382 * @dev: device 8383 * @ppid: port ID 8384 * 8385 * Get device physical port ID 8386 */ 8387 int dev_get_phys_port_id(struct net_device *dev, 8388 struct netdev_phys_item_id *ppid) 8389 { 8390 const struct net_device_ops *ops = dev->netdev_ops; 8391 8392 if (!ops->ndo_get_phys_port_id) 8393 return -EOPNOTSUPP; 8394 return ops->ndo_get_phys_port_id(dev, ppid); 8395 } 8396 EXPORT_SYMBOL(dev_get_phys_port_id); 8397 8398 /** 8399 * dev_get_phys_port_name - Get device physical port name 8400 * @dev: device 8401 * @name: port name 8402 * @len: limit of bytes to copy to name 8403 * 8404 * Get device physical port name 8405 */ 8406 int dev_get_phys_port_name(struct net_device *dev, 8407 char *name, size_t len) 8408 { 8409 const struct net_device_ops *ops = dev->netdev_ops; 8410 int err; 8411 8412 if (ops->ndo_get_phys_port_name) { 8413 err = ops->ndo_get_phys_port_name(dev, name, len); 8414 if (err != -EOPNOTSUPP) 8415 return err; 8416 } 8417 return devlink_compat_phys_port_name_get(dev, name, len); 8418 } 8419 EXPORT_SYMBOL(dev_get_phys_port_name); 8420 8421 /** 8422 * dev_get_port_parent_id - Get the device's port parent identifier 8423 * @dev: network device 8424 * @ppid: pointer to a storage for the port's parent identifier 8425 * @recurse: allow/disallow recursion to lower devices 8426 * 8427 * Get the devices's port parent identifier 8428 */ 8429 int dev_get_port_parent_id(struct net_device *dev, 8430 struct netdev_phys_item_id *ppid, 8431 bool recurse) 8432 { 8433 const struct net_device_ops *ops = dev->netdev_ops; 8434 struct netdev_phys_item_id first = { }; 8435 struct net_device *lower_dev; 8436 struct list_head *iter; 8437 int err; 8438 8439 if (ops->ndo_get_port_parent_id) { 8440 err = ops->ndo_get_port_parent_id(dev, ppid); 8441 if (err != -EOPNOTSUPP) 8442 return err; 8443 } 8444 8445 err = devlink_compat_switch_id_get(dev, ppid); 8446 if (!err || err != -EOPNOTSUPP) 8447 return err; 8448 8449 if (!recurse) 8450 return -EOPNOTSUPP; 8451 8452 netdev_for_each_lower_dev(dev, lower_dev, iter) { 8453 err = dev_get_port_parent_id(lower_dev, ppid, recurse); 8454 if (err) 8455 break; 8456 if (!first.id_len) 8457 first = *ppid; 8458 else if (memcmp(&first, ppid, sizeof(*ppid))) 8459 return -ENODATA; 8460 } 8461 8462 return err; 8463 } 8464 EXPORT_SYMBOL(dev_get_port_parent_id); 8465 8466 /** 8467 * netdev_port_same_parent_id - Indicate if two network devices have 8468 * the same port parent identifier 8469 * @a: first network device 8470 * @b: second network device 8471 */ 8472 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b) 8473 { 8474 struct netdev_phys_item_id a_id = { }; 8475 struct netdev_phys_item_id b_id = { }; 8476 8477 if (dev_get_port_parent_id(a, &a_id, true) || 8478 dev_get_port_parent_id(b, &b_id, true)) 8479 return false; 8480 8481 return netdev_phys_item_id_same(&a_id, &b_id); 8482 } 8483 EXPORT_SYMBOL(netdev_port_same_parent_id); 8484 8485 /** 8486 * dev_change_proto_down - update protocol port state information 8487 * @dev: device 8488 * @proto_down: new value 8489 * 8490 * This info can be used by switch drivers to set the phys state of the 8491 * port. 8492 */ 8493 int dev_change_proto_down(struct net_device *dev, bool proto_down) 8494 { 8495 const struct net_device_ops *ops = dev->netdev_ops; 8496 8497 if (!ops->ndo_change_proto_down) 8498 return -EOPNOTSUPP; 8499 if (!netif_device_present(dev)) 8500 return -ENODEV; 8501 return ops->ndo_change_proto_down(dev, proto_down); 8502 } 8503 EXPORT_SYMBOL(dev_change_proto_down); 8504 8505 /** 8506 * dev_change_proto_down_generic - generic implementation for 8507 * ndo_change_proto_down that sets carrier according to 8508 * proto_down. 8509 * 8510 * @dev: device 8511 * @proto_down: new value 8512 */ 8513 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down) 8514 { 8515 if (proto_down) 8516 netif_carrier_off(dev); 8517 else 8518 netif_carrier_on(dev); 8519 dev->proto_down = proto_down; 8520 return 0; 8521 } 8522 EXPORT_SYMBOL(dev_change_proto_down_generic); 8523 8524 u32 __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op, 8525 enum bpf_netdev_command cmd) 8526 { 8527 struct netdev_bpf xdp; 8528 8529 if (!bpf_op) 8530 return 0; 8531 8532 memset(&xdp, 0, sizeof(xdp)); 8533 xdp.command = cmd; 8534 8535 /* Query must always succeed. */ 8536 WARN_ON(bpf_op(dev, &xdp) < 0 && cmd == XDP_QUERY_PROG); 8537 8538 return xdp.prog_id; 8539 } 8540 8541 static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op, 8542 struct netlink_ext_ack *extack, u32 flags, 8543 struct bpf_prog *prog) 8544 { 8545 struct netdev_bpf xdp; 8546 8547 memset(&xdp, 0, sizeof(xdp)); 8548 if (flags & XDP_FLAGS_HW_MODE) 8549 xdp.command = XDP_SETUP_PROG_HW; 8550 else 8551 xdp.command = XDP_SETUP_PROG; 8552 xdp.extack = extack; 8553 xdp.flags = flags; 8554 xdp.prog = prog; 8555 8556 return bpf_op(dev, &xdp); 8557 } 8558 8559 static void dev_xdp_uninstall(struct net_device *dev) 8560 { 8561 struct netdev_bpf xdp; 8562 bpf_op_t ndo_bpf; 8563 8564 /* Remove generic XDP */ 8565 WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL)); 8566 8567 /* Remove from the driver */ 8568 ndo_bpf = dev->netdev_ops->ndo_bpf; 8569 if (!ndo_bpf) 8570 return; 8571 8572 memset(&xdp, 0, sizeof(xdp)); 8573 xdp.command = XDP_QUERY_PROG; 8574 WARN_ON(ndo_bpf(dev, &xdp)); 8575 if (xdp.prog_id) 8576 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags, 8577 NULL)); 8578 8579 /* Remove HW offload */ 8580 memset(&xdp, 0, sizeof(xdp)); 8581 xdp.command = XDP_QUERY_PROG_HW; 8582 if (!ndo_bpf(dev, &xdp) && xdp.prog_id) 8583 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags, 8584 NULL)); 8585 } 8586 8587 /** 8588 * dev_change_xdp_fd - set or clear a bpf program for a device rx path 8589 * @dev: device 8590 * @extack: netlink extended ack 8591 * @fd: new program fd or negative value to clear 8592 * @flags: xdp-related flags 8593 * 8594 * Set or clear a bpf program for a device 8595 */ 8596 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack, 8597 int fd, u32 flags) 8598 { 8599 const struct net_device_ops *ops = dev->netdev_ops; 8600 enum bpf_netdev_command query; 8601 struct bpf_prog *prog = NULL; 8602 bpf_op_t bpf_op, bpf_chk; 8603 bool offload; 8604 int err; 8605 8606 ASSERT_RTNL(); 8607 8608 offload = flags & XDP_FLAGS_HW_MODE; 8609 query = offload ? XDP_QUERY_PROG_HW : XDP_QUERY_PROG; 8610 8611 bpf_op = bpf_chk = ops->ndo_bpf; 8612 if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE))) { 8613 NL_SET_ERR_MSG(extack, "underlying driver does not support XDP in native mode"); 8614 return -EOPNOTSUPP; 8615 } 8616 if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE)) 8617 bpf_op = generic_xdp_install; 8618 if (bpf_op == bpf_chk) 8619 bpf_chk = generic_xdp_install; 8620 8621 if (fd >= 0) { 8622 u32 prog_id; 8623 8624 if (!offload && __dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG)) { 8625 NL_SET_ERR_MSG(extack, "native and generic XDP can't be active at the same time"); 8626 return -EEXIST; 8627 } 8628 8629 prog_id = __dev_xdp_query(dev, bpf_op, query); 8630 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && prog_id) { 8631 NL_SET_ERR_MSG(extack, "XDP program already attached"); 8632 return -EBUSY; 8633 } 8634 8635 prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP, 8636 bpf_op == ops->ndo_bpf); 8637 if (IS_ERR(prog)) 8638 return PTR_ERR(prog); 8639 8640 if (!offload && bpf_prog_is_dev_bound(prog->aux)) { 8641 NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported"); 8642 bpf_prog_put(prog); 8643 return -EINVAL; 8644 } 8645 8646 /* prog->aux->id may be 0 for orphaned device-bound progs */ 8647 if (prog->aux->id && prog->aux->id == prog_id) { 8648 bpf_prog_put(prog); 8649 return 0; 8650 } 8651 } else { 8652 if (!__dev_xdp_query(dev, bpf_op, query)) 8653 return 0; 8654 } 8655 8656 err = dev_xdp_install(dev, bpf_op, extack, flags, prog); 8657 if (err < 0 && prog) 8658 bpf_prog_put(prog); 8659 8660 return err; 8661 } 8662 8663 /** 8664 * dev_new_index - allocate an ifindex 8665 * @net: the applicable net namespace 8666 * 8667 * Returns a suitable unique value for a new device interface 8668 * number. The caller must hold the rtnl semaphore or the 8669 * dev_base_lock to be sure it remains unique. 8670 */ 8671 static int dev_new_index(struct net *net) 8672 { 8673 int ifindex = net->ifindex; 8674 8675 for (;;) { 8676 if (++ifindex <= 0) 8677 ifindex = 1; 8678 if (!__dev_get_by_index(net, ifindex)) 8679 return net->ifindex = ifindex; 8680 } 8681 } 8682 8683 /* Delayed registration/unregisteration */ 8684 static LIST_HEAD(net_todo_list); 8685 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq); 8686 8687 static void net_set_todo(struct net_device *dev) 8688 { 8689 list_add_tail(&dev->todo_list, &net_todo_list); 8690 dev_net(dev)->dev_unreg_count++; 8691 } 8692 8693 static void rollback_registered_many(struct list_head *head) 8694 { 8695 struct net_device *dev, *tmp; 8696 LIST_HEAD(close_head); 8697 8698 BUG_ON(dev_boot_phase); 8699 ASSERT_RTNL(); 8700 8701 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 8702 /* Some devices call without registering 8703 * for initialization unwind. Remove those 8704 * devices and proceed with the remaining. 8705 */ 8706 if (dev->reg_state == NETREG_UNINITIALIZED) { 8707 pr_debug("unregister_netdevice: device %s/%p never was registered\n", 8708 dev->name, dev); 8709 8710 WARN_ON(1); 8711 list_del(&dev->unreg_list); 8712 continue; 8713 } 8714 dev->dismantle = true; 8715 BUG_ON(dev->reg_state != NETREG_REGISTERED); 8716 } 8717 8718 /* If device is running, close it first. */ 8719 list_for_each_entry(dev, head, unreg_list) 8720 list_add_tail(&dev->close_list, &close_head); 8721 dev_close_many(&close_head, true); 8722 8723 list_for_each_entry(dev, head, unreg_list) { 8724 /* And unlink it from device chain. */ 8725 unlist_netdevice(dev); 8726 8727 dev->reg_state = NETREG_UNREGISTERING; 8728 } 8729 flush_all_backlogs(); 8730 8731 synchronize_net(); 8732 8733 list_for_each_entry(dev, head, unreg_list) { 8734 struct sk_buff *skb = NULL; 8735 8736 /* Shutdown queueing discipline. */ 8737 dev_shutdown(dev); 8738 8739 dev_xdp_uninstall(dev); 8740 8741 /* Notify protocols, that we are about to destroy 8742 * this device. They should clean all the things. 8743 */ 8744 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 8745 8746 if (!dev->rtnl_link_ops || 8747 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 8748 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0, 8749 GFP_KERNEL, NULL, 0); 8750 8751 /* 8752 * Flush the unicast and multicast chains 8753 */ 8754 dev_uc_flush(dev); 8755 dev_mc_flush(dev); 8756 8757 netdev_name_node_alt_flush(dev); 8758 netdev_name_node_free(dev->name_node); 8759 8760 if (dev->netdev_ops->ndo_uninit) 8761 dev->netdev_ops->ndo_uninit(dev); 8762 8763 if (skb) 8764 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL); 8765 8766 /* Notifier chain MUST detach us all upper devices. */ 8767 WARN_ON(netdev_has_any_upper_dev(dev)); 8768 WARN_ON(netdev_has_any_lower_dev(dev)); 8769 8770 /* Remove entries from kobject tree */ 8771 netdev_unregister_kobject(dev); 8772 #ifdef CONFIG_XPS 8773 /* Remove XPS queueing entries */ 8774 netif_reset_xps_queues_gt(dev, 0); 8775 #endif 8776 } 8777 8778 synchronize_net(); 8779 8780 list_for_each_entry(dev, head, unreg_list) 8781 dev_put(dev); 8782 } 8783 8784 static void rollback_registered(struct net_device *dev) 8785 { 8786 LIST_HEAD(single); 8787 8788 list_add(&dev->unreg_list, &single); 8789 rollback_registered_many(&single); 8790 list_del(&single); 8791 } 8792 8793 static netdev_features_t netdev_sync_upper_features(struct net_device *lower, 8794 struct net_device *upper, netdev_features_t features) 8795 { 8796 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 8797 netdev_features_t feature; 8798 int feature_bit; 8799 8800 for_each_netdev_feature(upper_disables, feature_bit) { 8801 feature = __NETIF_F_BIT(feature_bit); 8802 if (!(upper->wanted_features & feature) 8803 && (features & feature)) { 8804 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n", 8805 &feature, upper->name); 8806 features &= ~feature; 8807 } 8808 } 8809 8810 return features; 8811 } 8812 8813 static void netdev_sync_lower_features(struct net_device *upper, 8814 struct net_device *lower, netdev_features_t features) 8815 { 8816 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 8817 netdev_features_t feature; 8818 int feature_bit; 8819 8820 for_each_netdev_feature(upper_disables, feature_bit) { 8821 feature = __NETIF_F_BIT(feature_bit); 8822 if (!(features & feature) && (lower->features & feature)) { 8823 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n", 8824 &feature, lower->name); 8825 lower->wanted_features &= ~feature; 8826 netdev_update_features(lower); 8827 8828 if (unlikely(lower->features & feature)) 8829 netdev_WARN(upper, "failed to disable %pNF on %s!\n", 8830 &feature, lower->name); 8831 } 8832 } 8833 } 8834 8835 static netdev_features_t netdev_fix_features(struct net_device *dev, 8836 netdev_features_t features) 8837 { 8838 /* Fix illegal checksum combinations */ 8839 if ((features & NETIF_F_HW_CSUM) && 8840 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 8841 netdev_warn(dev, "mixed HW and IP checksum settings.\n"); 8842 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 8843 } 8844 8845 /* TSO requires that SG is present as well. */ 8846 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { 8847 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); 8848 features &= ~NETIF_F_ALL_TSO; 8849 } 8850 8851 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) && 8852 !(features & NETIF_F_IP_CSUM)) { 8853 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n"); 8854 features &= ~NETIF_F_TSO; 8855 features &= ~NETIF_F_TSO_ECN; 8856 } 8857 8858 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) && 8859 !(features & NETIF_F_IPV6_CSUM)) { 8860 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n"); 8861 features &= ~NETIF_F_TSO6; 8862 } 8863 8864 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */ 8865 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO)) 8866 features &= ~NETIF_F_TSO_MANGLEID; 8867 8868 /* TSO ECN requires that TSO is present as well. */ 8869 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) 8870 features &= ~NETIF_F_TSO_ECN; 8871 8872 /* Software GSO depends on SG. */ 8873 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 8874 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 8875 features &= ~NETIF_F_GSO; 8876 } 8877 8878 /* GSO partial features require GSO partial be set */ 8879 if ((features & dev->gso_partial_features) && 8880 !(features & NETIF_F_GSO_PARTIAL)) { 8881 netdev_dbg(dev, 8882 "Dropping partially supported GSO features since no GSO partial.\n"); 8883 features &= ~dev->gso_partial_features; 8884 } 8885 8886 if (!(features & NETIF_F_RXCSUM)) { 8887 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet 8888 * successfully merged by hardware must also have the 8889 * checksum verified by hardware. If the user does not 8890 * want to enable RXCSUM, logically, we should disable GRO_HW. 8891 */ 8892 if (features & NETIF_F_GRO_HW) { 8893 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n"); 8894 features &= ~NETIF_F_GRO_HW; 8895 } 8896 } 8897 8898 /* LRO/HW-GRO features cannot be combined with RX-FCS */ 8899 if (features & NETIF_F_RXFCS) { 8900 if (features & NETIF_F_LRO) { 8901 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n"); 8902 features &= ~NETIF_F_LRO; 8903 } 8904 8905 if (features & NETIF_F_GRO_HW) { 8906 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n"); 8907 features &= ~NETIF_F_GRO_HW; 8908 } 8909 } 8910 8911 return features; 8912 } 8913 8914 int __netdev_update_features(struct net_device *dev) 8915 { 8916 struct net_device *upper, *lower; 8917 netdev_features_t features; 8918 struct list_head *iter; 8919 int err = -1; 8920 8921 ASSERT_RTNL(); 8922 8923 features = netdev_get_wanted_features(dev); 8924 8925 if (dev->netdev_ops->ndo_fix_features) 8926 features = dev->netdev_ops->ndo_fix_features(dev, features); 8927 8928 /* driver might be less strict about feature dependencies */ 8929 features = netdev_fix_features(dev, features); 8930 8931 /* some features can't be enabled if they're off an an upper device */ 8932 netdev_for_each_upper_dev_rcu(dev, upper, iter) 8933 features = netdev_sync_upper_features(dev, upper, features); 8934 8935 if (dev->features == features) 8936 goto sync_lower; 8937 8938 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n", 8939 &dev->features, &features); 8940 8941 if (dev->netdev_ops->ndo_set_features) 8942 err = dev->netdev_ops->ndo_set_features(dev, features); 8943 else 8944 err = 0; 8945 8946 if (unlikely(err < 0)) { 8947 netdev_err(dev, 8948 "set_features() failed (%d); wanted %pNF, left %pNF\n", 8949 err, &features, &dev->features); 8950 /* return non-0 since some features might have changed and 8951 * it's better to fire a spurious notification than miss it 8952 */ 8953 return -1; 8954 } 8955 8956 sync_lower: 8957 /* some features must be disabled on lower devices when disabled 8958 * on an upper device (think: bonding master or bridge) 8959 */ 8960 netdev_for_each_lower_dev(dev, lower, iter) 8961 netdev_sync_lower_features(dev, lower, features); 8962 8963 if (!err) { 8964 netdev_features_t diff = features ^ dev->features; 8965 8966 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) { 8967 /* udp_tunnel_{get,drop}_rx_info both need 8968 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the 8969 * device, or they won't do anything. 8970 * Thus we need to update dev->features 8971 * *before* calling udp_tunnel_get_rx_info, 8972 * but *after* calling udp_tunnel_drop_rx_info. 8973 */ 8974 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) { 8975 dev->features = features; 8976 udp_tunnel_get_rx_info(dev); 8977 } else { 8978 udp_tunnel_drop_rx_info(dev); 8979 } 8980 } 8981 8982 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) { 8983 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) { 8984 dev->features = features; 8985 err |= vlan_get_rx_ctag_filter_info(dev); 8986 } else { 8987 vlan_drop_rx_ctag_filter_info(dev); 8988 } 8989 } 8990 8991 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) { 8992 if (features & NETIF_F_HW_VLAN_STAG_FILTER) { 8993 dev->features = features; 8994 err |= vlan_get_rx_stag_filter_info(dev); 8995 } else { 8996 vlan_drop_rx_stag_filter_info(dev); 8997 } 8998 } 8999 9000 dev->features = features; 9001 } 9002 9003 return err < 0 ? 0 : 1; 9004 } 9005 9006 /** 9007 * netdev_update_features - recalculate device features 9008 * @dev: the device to check 9009 * 9010 * Recalculate dev->features set and send notifications if it 9011 * has changed. Should be called after driver or hardware dependent 9012 * conditions might have changed that influence the features. 9013 */ 9014 void netdev_update_features(struct net_device *dev) 9015 { 9016 if (__netdev_update_features(dev)) 9017 netdev_features_change(dev); 9018 } 9019 EXPORT_SYMBOL(netdev_update_features); 9020 9021 /** 9022 * netdev_change_features - recalculate device features 9023 * @dev: the device to check 9024 * 9025 * Recalculate dev->features set and send notifications even 9026 * if they have not changed. Should be called instead of 9027 * netdev_update_features() if also dev->vlan_features might 9028 * have changed to allow the changes to be propagated to stacked 9029 * VLAN devices. 9030 */ 9031 void netdev_change_features(struct net_device *dev) 9032 { 9033 __netdev_update_features(dev); 9034 netdev_features_change(dev); 9035 } 9036 EXPORT_SYMBOL(netdev_change_features); 9037 9038 /** 9039 * netif_stacked_transfer_operstate - transfer operstate 9040 * @rootdev: the root or lower level device to transfer state from 9041 * @dev: the device to transfer operstate to 9042 * 9043 * Transfer operational state from root to device. This is normally 9044 * called when a stacking relationship exists between the root 9045 * device and the device(a leaf device). 9046 */ 9047 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 9048 struct net_device *dev) 9049 { 9050 if (rootdev->operstate == IF_OPER_DORMANT) 9051 netif_dormant_on(dev); 9052 else 9053 netif_dormant_off(dev); 9054 9055 if (netif_carrier_ok(rootdev)) 9056 netif_carrier_on(dev); 9057 else 9058 netif_carrier_off(dev); 9059 } 9060 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 9061 9062 static int netif_alloc_rx_queues(struct net_device *dev) 9063 { 9064 unsigned int i, count = dev->num_rx_queues; 9065 struct netdev_rx_queue *rx; 9066 size_t sz = count * sizeof(*rx); 9067 int err = 0; 9068 9069 BUG_ON(count < 1); 9070 9071 rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 9072 if (!rx) 9073 return -ENOMEM; 9074 9075 dev->_rx = rx; 9076 9077 for (i = 0; i < count; i++) { 9078 rx[i].dev = dev; 9079 9080 /* XDP RX-queue setup */ 9081 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i); 9082 if (err < 0) 9083 goto err_rxq_info; 9084 } 9085 return 0; 9086 9087 err_rxq_info: 9088 /* Rollback successful reg's and free other resources */ 9089 while (i--) 9090 xdp_rxq_info_unreg(&rx[i].xdp_rxq); 9091 kvfree(dev->_rx); 9092 dev->_rx = NULL; 9093 return err; 9094 } 9095 9096 static void netif_free_rx_queues(struct net_device *dev) 9097 { 9098 unsigned int i, count = dev->num_rx_queues; 9099 9100 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */ 9101 if (!dev->_rx) 9102 return; 9103 9104 for (i = 0; i < count; i++) 9105 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq); 9106 9107 kvfree(dev->_rx); 9108 } 9109 9110 static void netdev_init_one_queue(struct net_device *dev, 9111 struct netdev_queue *queue, void *_unused) 9112 { 9113 /* Initialize queue lock */ 9114 spin_lock_init(&queue->_xmit_lock); 9115 lockdep_set_class(&queue->_xmit_lock, &dev->qdisc_xmit_lock_key); 9116 queue->xmit_lock_owner = -1; 9117 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 9118 queue->dev = dev; 9119 #ifdef CONFIG_BQL 9120 dql_init(&queue->dql, HZ); 9121 #endif 9122 } 9123 9124 static void netif_free_tx_queues(struct net_device *dev) 9125 { 9126 kvfree(dev->_tx); 9127 } 9128 9129 static int netif_alloc_netdev_queues(struct net_device *dev) 9130 { 9131 unsigned int count = dev->num_tx_queues; 9132 struct netdev_queue *tx; 9133 size_t sz = count * sizeof(*tx); 9134 9135 if (count < 1 || count > 0xffff) 9136 return -EINVAL; 9137 9138 tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 9139 if (!tx) 9140 return -ENOMEM; 9141 9142 dev->_tx = tx; 9143 9144 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 9145 spin_lock_init(&dev->tx_global_lock); 9146 9147 return 0; 9148 } 9149 9150 void netif_tx_stop_all_queues(struct net_device *dev) 9151 { 9152 unsigned int i; 9153 9154 for (i = 0; i < dev->num_tx_queues; i++) { 9155 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 9156 9157 netif_tx_stop_queue(txq); 9158 } 9159 } 9160 EXPORT_SYMBOL(netif_tx_stop_all_queues); 9161 9162 static void netdev_register_lockdep_key(struct net_device *dev) 9163 { 9164 lockdep_register_key(&dev->qdisc_tx_busylock_key); 9165 lockdep_register_key(&dev->qdisc_running_key); 9166 lockdep_register_key(&dev->qdisc_xmit_lock_key); 9167 lockdep_register_key(&dev->addr_list_lock_key); 9168 } 9169 9170 static void netdev_unregister_lockdep_key(struct net_device *dev) 9171 { 9172 lockdep_unregister_key(&dev->qdisc_tx_busylock_key); 9173 lockdep_unregister_key(&dev->qdisc_running_key); 9174 lockdep_unregister_key(&dev->qdisc_xmit_lock_key); 9175 lockdep_unregister_key(&dev->addr_list_lock_key); 9176 } 9177 9178 void netdev_update_lockdep_key(struct net_device *dev) 9179 { 9180 struct netdev_queue *queue; 9181 int i; 9182 9183 lockdep_unregister_key(&dev->qdisc_xmit_lock_key); 9184 lockdep_unregister_key(&dev->addr_list_lock_key); 9185 9186 lockdep_register_key(&dev->qdisc_xmit_lock_key); 9187 lockdep_register_key(&dev->addr_list_lock_key); 9188 9189 lockdep_set_class(&dev->addr_list_lock, &dev->addr_list_lock_key); 9190 for (i = 0; i < dev->num_tx_queues; i++) { 9191 queue = netdev_get_tx_queue(dev, i); 9192 9193 lockdep_set_class(&queue->_xmit_lock, 9194 &dev->qdisc_xmit_lock_key); 9195 } 9196 } 9197 EXPORT_SYMBOL(netdev_update_lockdep_key); 9198 9199 /** 9200 * register_netdevice - register a network device 9201 * @dev: device to register 9202 * 9203 * Take a completed network device structure and add it to the kernel 9204 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 9205 * chain. 0 is returned on success. A negative errno code is returned 9206 * on a failure to set up the device, or if the name is a duplicate. 9207 * 9208 * Callers must hold the rtnl semaphore. You may want 9209 * register_netdev() instead of this. 9210 * 9211 * BUGS: 9212 * The locking appears insufficient to guarantee two parallel registers 9213 * will not get the same name. 9214 */ 9215 9216 int register_netdevice(struct net_device *dev) 9217 { 9218 int ret; 9219 struct net *net = dev_net(dev); 9220 9221 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE < 9222 NETDEV_FEATURE_COUNT); 9223 BUG_ON(dev_boot_phase); 9224 ASSERT_RTNL(); 9225 9226 might_sleep(); 9227 9228 /* When net_device's are persistent, this will be fatal. */ 9229 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 9230 BUG_ON(!net); 9231 9232 spin_lock_init(&dev->addr_list_lock); 9233 lockdep_set_class(&dev->addr_list_lock, &dev->addr_list_lock_key); 9234 9235 ret = dev_get_valid_name(net, dev, dev->name); 9236 if (ret < 0) 9237 goto out; 9238 9239 ret = -ENOMEM; 9240 dev->name_node = netdev_name_node_head_alloc(dev); 9241 if (!dev->name_node) 9242 goto out; 9243 9244 /* Init, if this function is available */ 9245 if (dev->netdev_ops->ndo_init) { 9246 ret = dev->netdev_ops->ndo_init(dev); 9247 if (ret) { 9248 if (ret > 0) 9249 ret = -EIO; 9250 goto err_free_name; 9251 } 9252 } 9253 9254 if (((dev->hw_features | dev->features) & 9255 NETIF_F_HW_VLAN_CTAG_FILTER) && 9256 (!dev->netdev_ops->ndo_vlan_rx_add_vid || 9257 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) { 9258 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n"); 9259 ret = -EINVAL; 9260 goto err_uninit; 9261 } 9262 9263 ret = -EBUSY; 9264 if (!dev->ifindex) 9265 dev->ifindex = dev_new_index(net); 9266 else if (__dev_get_by_index(net, dev->ifindex)) 9267 goto err_uninit; 9268 9269 /* Transfer changeable features to wanted_features and enable 9270 * software offloads (GSO and GRO). 9271 */ 9272 dev->hw_features |= NETIF_F_SOFT_FEATURES; 9273 dev->features |= NETIF_F_SOFT_FEATURES; 9274 9275 if (dev->netdev_ops->ndo_udp_tunnel_add) { 9276 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT; 9277 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT; 9278 } 9279 9280 dev->wanted_features = dev->features & dev->hw_features; 9281 9282 if (!(dev->flags & IFF_LOOPBACK)) 9283 dev->hw_features |= NETIF_F_NOCACHE_COPY; 9284 9285 /* If IPv4 TCP segmentation offload is supported we should also 9286 * allow the device to enable segmenting the frame with the option 9287 * of ignoring a static IP ID value. This doesn't enable the 9288 * feature itself but allows the user to enable it later. 9289 */ 9290 if (dev->hw_features & NETIF_F_TSO) 9291 dev->hw_features |= NETIF_F_TSO_MANGLEID; 9292 if (dev->vlan_features & NETIF_F_TSO) 9293 dev->vlan_features |= NETIF_F_TSO_MANGLEID; 9294 if (dev->mpls_features & NETIF_F_TSO) 9295 dev->mpls_features |= NETIF_F_TSO_MANGLEID; 9296 if (dev->hw_enc_features & NETIF_F_TSO) 9297 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 9298 9299 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. 9300 */ 9301 dev->vlan_features |= NETIF_F_HIGHDMA; 9302 9303 /* Make NETIF_F_SG inheritable to tunnel devices. 9304 */ 9305 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL; 9306 9307 /* Make NETIF_F_SG inheritable to MPLS. 9308 */ 9309 dev->mpls_features |= NETIF_F_SG; 9310 9311 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 9312 ret = notifier_to_errno(ret); 9313 if (ret) 9314 goto err_uninit; 9315 9316 ret = netdev_register_kobject(dev); 9317 if (ret) 9318 goto err_uninit; 9319 dev->reg_state = NETREG_REGISTERED; 9320 9321 __netdev_update_features(dev); 9322 9323 /* 9324 * Default initial state at registry is that the 9325 * device is present. 9326 */ 9327 9328 set_bit(__LINK_STATE_PRESENT, &dev->state); 9329 9330 linkwatch_init_dev(dev); 9331 9332 dev_init_scheduler(dev); 9333 dev_hold(dev); 9334 list_netdevice(dev); 9335 add_device_randomness(dev->dev_addr, dev->addr_len); 9336 9337 /* If the device has permanent device address, driver should 9338 * set dev_addr and also addr_assign_type should be set to 9339 * NET_ADDR_PERM (default value). 9340 */ 9341 if (dev->addr_assign_type == NET_ADDR_PERM) 9342 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); 9343 9344 /* Notify protocols, that a new device appeared. */ 9345 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 9346 ret = notifier_to_errno(ret); 9347 if (ret) { 9348 rollback_registered(dev); 9349 rcu_barrier(); 9350 9351 dev->reg_state = NETREG_UNREGISTERED; 9352 } 9353 /* 9354 * Prevent userspace races by waiting until the network 9355 * device is fully setup before sending notifications. 9356 */ 9357 if (!dev->rtnl_link_ops || 9358 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 9359 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 9360 9361 out: 9362 return ret; 9363 9364 err_uninit: 9365 if (dev->netdev_ops->ndo_uninit) 9366 dev->netdev_ops->ndo_uninit(dev); 9367 if (dev->priv_destructor) 9368 dev->priv_destructor(dev); 9369 err_free_name: 9370 netdev_name_node_free(dev->name_node); 9371 goto out; 9372 } 9373 EXPORT_SYMBOL(register_netdevice); 9374 9375 /** 9376 * init_dummy_netdev - init a dummy network device for NAPI 9377 * @dev: device to init 9378 * 9379 * This takes a network device structure and initialize the minimum 9380 * amount of fields so it can be used to schedule NAPI polls without 9381 * registering a full blown interface. This is to be used by drivers 9382 * that need to tie several hardware interfaces to a single NAPI 9383 * poll scheduler due to HW limitations. 9384 */ 9385 int init_dummy_netdev(struct net_device *dev) 9386 { 9387 /* Clear everything. Note we don't initialize spinlocks 9388 * are they aren't supposed to be taken by any of the 9389 * NAPI code and this dummy netdev is supposed to be 9390 * only ever used for NAPI polls 9391 */ 9392 memset(dev, 0, sizeof(struct net_device)); 9393 9394 /* make sure we BUG if trying to hit standard 9395 * register/unregister code path 9396 */ 9397 dev->reg_state = NETREG_DUMMY; 9398 9399 /* NAPI wants this */ 9400 INIT_LIST_HEAD(&dev->napi_list); 9401 9402 /* a dummy interface is started by default */ 9403 set_bit(__LINK_STATE_PRESENT, &dev->state); 9404 set_bit(__LINK_STATE_START, &dev->state); 9405 9406 /* napi_busy_loop stats accounting wants this */ 9407 dev_net_set(dev, &init_net); 9408 9409 /* Note : We dont allocate pcpu_refcnt for dummy devices, 9410 * because users of this 'device' dont need to change 9411 * its refcount. 9412 */ 9413 9414 return 0; 9415 } 9416 EXPORT_SYMBOL_GPL(init_dummy_netdev); 9417 9418 9419 /** 9420 * register_netdev - register a network device 9421 * @dev: device to register 9422 * 9423 * Take a completed network device structure and add it to the kernel 9424 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 9425 * chain. 0 is returned on success. A negative errno code is returned 9426 * on a failure to set up the device, or if the name is a duplicate. 9427 * 9428 * This is a wrapper around register_netdevice that takes the rtnl semaphore 9429 * and expands the device name if you passed a format string to 9430 * alloc_netdev. 9431 */ 9432 int register_netdev(struct net_device *dev) 9433 { 9434 int err; 9435 9436 if (rtnl_lock_killable()) 9437 return -EINTR; 9438 err = register_netdevice(dev); 9439 rtnl_unlock(); 9440 return err; 9441 } 9442 EXPORT_SYMBOL(register_netdev); 9443 9444 int netdev_refcnt_read(const struct net_device *dev) 9445 { 9446 int i, refcnt = 0; 9447 9448 for_each_possible_cpu(i) 9449 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 9450 return refcnt; 9451 } 9452 EXPORT_SYMBOL(netdev_refcnt_read); 9453 9454 /** 9455 * netdev_wait_allrefs - wait until all references are gone. 9456 * @dev: target net_device 9457 * 9458 * This is called when unregistering network devices. 9459 * 9460 * Any protocol or device that holds a reference should register 9461 * for netdevice notification, and cleanup and put back the 9462 * reference if they receive an UNREGISTER event. 9463 * We can get stuck here if buggy protocols don't correctly 9464 * call dev_put. 9465 */ 9466 static void netdev_wait_allrefs(struct net_device *dev) 9467 { 9468 unsigned long rebroadcast_time, warning_time; 9469 int refcnt; 9470 9471 linkwatch_forget_dev(dev); 9472 9473 rebroadcast_time = warning_time = jiffies; 9474 refcnt = netdev_refcnt_read(dev); 9475 9476 while (refcnt != 0) { 9477 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 9478 rtnl_lock(); 9479 9480 /* Rebroadcast unregister notification */ 9481 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 9482 9483 __rtnl_unlock(); 9484 rcu_barrier(); 9485 rtnl_lock(); 9486 9487 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 9488 &dev->state)) { 9489 /* We must not have linkwatch events 9490 * pending on unregister. If this 9491 * happens, we simply run the queue 9492 * unscheduled, resulting in a noop 9493 * for this device. 9494 */ 9495 linkwatch_run_queue(); 9496 } 9497 9498 __rtnl_unlock(); 9499 9500 rebroadcast_time = jiffies; 9501 } 9502 9503 msleep(250); 9504 9505 refcnt = netdev_refcnt_read(dev); 9506 9507 if (refcnt && time_after(jiffies, warning_time + 10 * HZ)) { 9508 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n", 9509 dev->name, refcnt); 9510 warning_time = jiffies; 9511 } 9512 } 9513 } 9514 9515 /* The sequence is: 9516 * 9517 * rtnl_lock(); 9518 * ... 9519 * register_netdevice(x1); 9520 * register_netdevice(x2); 9521 * ... 9522 * unregister_netdevice(y1); 9523 * unregister_netdevice(y2); 9524 * ... 9525 * rtnl_unlock(); 9526 * free_netdev(y1); 9527 * free_netdev(y2); 9528 * 9529 * We are invoked by rtnl_unlock(). 9530 * This allows us to deal with problems: 9531 * 1) We can delete sysfs objects which invoke hotplug 9532 * without deadlocking with linkwatch via keventd. 9533 * 2) Since we run with the RTNL semaphore not held, we can sleep 9534 * safely in order to wait for the netdev refcnt to drop to zero. 9535 * 9536 * We must not return until all unregister events added during 9537 * the interval the lock was held have been completed. 9538 */ 9539 void netdev_run_todo(void) 9540 { 9541 struct list_head list; 9542 9543 /* Snapshot list, allow later requests */ 9544 list_replace_init(&net_todo_list, &list); 9545 9546 __rtnl_unlock(); 9547 9548 9549 /* Wait for rcu callbacks to finish before next phase */ 9550 if (!list_empty(&list)) 9551 rcu_barrier(); 9552 9553 while (!list_empty(&list)) { 9554 struct net_device *dev 9555 = list_first_entry(&list, struct net_device, todo_list); 9556 list_del(&dev->todo_list); 9557 9558 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 9559 pr_err("network todo '%s' but state %d\n", 9560 dev->name, dev->reg_state); 9561 dump_stack(); 9562 continue; 9563 } 9564 9565 dev->reg_state = NETREG_UNREGISTERED; 9566 9567 netdev_wait_allrefs(dev); 9568 9569 /* paranoia */ 9570 BUG_ON(netdev_refcnt_read(dev)); 9571 BUG_ON(!list_empty(&dev->ptype_all)); 9572 BUG_ON(!list_empty(&dev->ptype_specific)); 9573 WARN_ON(rcu_access_pointer(dev->ip_ptr)); 9574 WARN_ON(rcu_access_pointer(dev->ip6_ptr)); 9575 #if IS_ENABLED(CONFIG_DECNET) 9576 WARN_ON(dev->dn_ptr); 9577 #endif 9578 if (dev->priv_destructor) 9579 dev->priv_destructor(dev); 9580 if (dev->needs_free_netdev) 9581 free_netdev(dev); 9582 9583 /* Report a network device has been unregistered */ 9584 rtnl_lock(); 9585 dev_net(dev)->dev_unreg_count--; 9586 __rtnl_unlock(); 9587 wake_up(&netdev_unregistering_wq); 9588 9589 /* Free network device */ 9590 kobject_put(&dev->dev.kobj); 9591 } 9592 } 9593 9594 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has 9595 * all the same fields in the same order as net_device_stats, with only 9596 * the type differing, but rtnl_link_stats64 may have additional fields 9597 * at the end for newer counters. 9598 */ 9599 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 9600 const struct net_device_stats *netdev_stats) 9601 { 9602 #if BITS_PER_LONG == 64 9603 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats)); 9604 memcpy(stats64, netdev_stats, sizeof(*netdev_stats)); 9605 /* zero out counters that only exist in rtnl_link_stats64 */ 9606 memset((char *)stats64 + sizeof(*netdev_stats), 0, 9607 sizeof(*stats64) - sizeof(*netdev_stats)); 9608 #else 9609 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long); 9610 const unsigned long *src = (const unsigned long *)netdev_stats; 9611 u64 *dst = (u64 *)stats64; 9612 9613 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64)); 9614 for (i = 0; i < n; i++) 9615 dst[i] = src[i]; 9616 /* zero out counters that only exist in rtnl_link_stats64 */ 9617 memset((char *)stats64 + n * sizeof(u64), 0, 9618 sizeof(*stats64) - n * sizeof(u64)); 9619 #endif 9620 } 9621 EXPORT_SYMBOL(netdev_stats_to_stats64); 9622 9623 /** 9624 * dev_get_stats - get network device statistics 9625 * @dev: device to get statistics from 9626 * @storage: place to store stats 9627 * 9628 * Get network statistics from device. Return @storage. 9629 * The device driver may provide its own method by setting 9630 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 9631 * otherwise the internal statistics structure is used. 9632 */ 9633 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 9634 struct rtnl_link_stats64 *storage) 9635 { 9636 const struct net_device_ops *ops = dev->netdev_ops; 9637 9638 if (ops->ndo_get_stats64) { 9639 memset(storage, 0, sizeof(*storage)); 9640 ops->ndo_get_stats64(dev, storage); 9641 } else if (ops->ndo_get_stats) { 9642 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 9643 } else { 9644 netdev_stats_to_stats64(storage, &dev->stats); 9645 } 9646 storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped); 9647 storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped); 9648 storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler); 9649 return storage; 9650 } 9651 EXPORT_SYMBOL(dev_get_stats); 9652 9653 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 9654 { 9655 struct netdev_queue *queue = dev_ingress_queue(dev); 9656 9657 #ifdef CONFIG_NET_CLS_ACT 9658 if (queue) 9659 return queue; 9660 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 9661 if (!queue) 9662 return NULL; 9663 netdev_init_one_queue(dev, queue, NULL); 9664 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc); 9665 queue->qdisc_sleeping = &noop_qdisc; 9666 rcu_assign_pointer(dev->ingress_queue, queue); 9667 #endif 9668 return queue; 9669 } 9670 9671 static const struct ethtool_ops default_ethtool_ops; 9672 9673 void netdev_set_default_ethtool_ops(struct net_device *dev, 9674 const struct ethtool_ops *ops) 9675 { 9676 if (dev->ethtool_ops == &default_ethtool_ops) 9677 dev->ethtool_ops = ops; 9678 } 9679 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops); 9680 9681 void netdev_freemem(struct net_device *dev) 9682 { 9683 char *addr = (char *)dev - dev->padded; 9684 9685 kvfree(addr); 9686 } 9687 9688 /** 9689 * alloc_netdev_mqs - allocate network device 9690 * @sizeof_priv: size of private data to allocate space for 9691 * @name: device name format string 9692 * @name_assign_type: origin of device name 9693 * @setup: callback to initialize device 9694 * @txqs: the number of TX subqueues to allocate 9695 * @rxqs: the number of RX subqueues to allocate 9696 * 9697 * Allocates a struct net_device with private data area for driver use 9698 * and performs basic initialization. Also allocates subqueue structs 9699 * for each queue on the device. 9700 */ 9701 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 9702 unsigned char name_assign_type, 9703 void (*setup)(struct net_device *), 9704 unsigned int txqs, unsigned int rxqs) 9705 { 9706 struct net_device *dev; 9707 unsigned int alloc_size; 9708 struct net_device *p; 9709 9710 BUG_ON(strlen(name) >= sizeof(dev->name)); 9711 9712 if (txqs < 1) { 9713 pr_err("alloc_netdev: Unable to allocate device with zero queues\n"); 9714 return NULL; 9715 } 9716 9717 if (rxqs < 1) { 9718 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n"); 9719 return NULL; 9720 } 9721 9722 alloc_size = sizeof(struct net_device); 9723 if (sizeof_priv) { 9724 /* ensure 32-byte alignment of private area */ 9725 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); 9726 alloc_size += sizeof_priv; 9727 } 9728 /* ensure 32-byte alignment of whole construct */ 9729 alloc_size += NETDEV_ALIGN - 1; 9730 9731 p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 9732 if (!p) 9733 return NULL; 9734 9735 dev = PTR_ALIGN(p, NETDEV_ALIGN); 9736 dev->padded = (char *)dev - (char *)p; 9737 9738 dev->pcpu_refcnt = alloc_percpu(int); 9739 if (!dev->pcpu_refcnt) 9740 goto free_dev; 9741 9742 if (dev_addr_init(dev)) 9743 goto free_pcpu; 9744 9745 dev_mc_init(dev); 9746 dev_uc_init(dev); 9747 9748 dev_net_set(dev, &init_net); 9749 9750 netdev_register_lockdep_key(dev); 9751 9752 dev->gso_max_size = GSO_MAX_SIZE; 9753 dev->gso_max_segs = GSO_MAX_SEGS; 9754 dev->upper_level = 1; 9755 dev->lower_level = 1; 9756 9757 INIT_LIST_HEAD(&dev->napi_list); 9758 INIT_LIST_HEAD(&dev->unreg_list); 9759 INIT_LIST_HEAD(&dev->close_list); 9760 INIT_LIST_HEAD(&dev->link_watch_list); 9761 INIT_LIST_HEAD(&dev->adj_list.upper); 9762 INIT_LIST_HEAD(&dev->adj_list.lower); 9763 INIT_LIST_HEAD(&dev->ptype_all); 9764 INIT_LIST_HEAD(&dev->ptype_specific); 9765 #ifdef CONFIG_NET_SCHED 9766 hash_init(dev->qdisc_hash); 9767 #endif 9768 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM; 9769 setup(dev); 9770 9771 if (!dev->tx_queue_len) { 9772 dev->priv_flags |= IFF_NO_QUEUE; 9773 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN; 9774 } 9775 9776 dev->num_tx_queues = txqs; 9777 dev->real_num_tx_queues = txqs; 9778 if (netif_alloc_netdev_queues(dev)) 9779 goto free_all; 9780 9781 dev->num_rx_queues = rxqs; 9782 dev->real_num_rx_queues = rxqs; 9783 if (netif_alloc_rx_queues(dev)) 9784 goto free_all; 9785 9786 strcpy(dev->name, name); 9787 dev->name_assign_type = name_assign_type; 9788 dev->group = INIT_NETDEV_GROUP; 9789 if (!dev->ethtool_ops) 9790 dev->ethtool_ops = &default_ethtool_ops; 9791 9792 nf_hook_ingress_init(dev); 9793 9794 return dev; 9795 9796 free_all: 9797 free_netdev(dev); 9798 return NULL; 9799 9800 free_pcpu: 9801 free_percpu(dev->pcpu_refcnt); 9802 free_dev: 9803 netdev_freemem(dev); 9804 return NULL; 9805 } 9806 EXPORT_SYMBOL(alloc_netdev_mqs); 9807 9808 /** 9809 * free_netdev - free network device 9810 * @dev: device 9811 * 9812 * This function does the last stage of destroying an allocated device 9813 * interface. The reference to the device object is released. If this 9814 * is the last reference then it will be freed.Must be called in process 9815 * context. 9816 */ 9817 void free_netdev(struct net_device *dev) 9818 { 9819 struct napi_struct *p, *n; 9820 9821 might_sleep(); 9822 netif_free_tx_queues(dev); 9823 netif_free_rx_queues(dev); 9824 9825 kfree(rcu_dereference_protected(dev->ingress_queue, 1)); 9826 9827 /* Flush device addresses */ 9828 dev_addr_flush(dev); 9829 9830 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 9831 netif_napi_del(p); 9832 9833 free_percpu(dev->pcpu_refcnt); 9834 dev->pcpu_refcnt = NULL; 9835 9836 netdev_unregister_lockdep_key(dev); 9837 9838 /* Compatibility with error handling in drivers */ 9839 if (dev->reg_state == NETREG_UNINITIALIZED) { 9840 netdev_freemem(dev); 9841 return; 9842 } 9843 9844 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 9845 dev->reg_state = NETREG_RELEASED; 9846 9847 /* will free via device release */ 9848 put_device(&dev->dev); 9849 } 9850 EXPORT_SYMBOL(free_netdev); 9851 9852 /** 9853 * synchronize_net - Synchronize with packet receive processing 9854 * 9855 * Wait for packets currently being received to be done. 9856 * Does not block later packets from starting. 9857 */ 9858 void synchronize_net(void) 9859 { 9860 might_sleep(); 9861 if (rtnl_is_locked()) 9862 synchronize_rcu_expedited(); 9863 else 9864 synchronize_rcu(); 9865 } 9866 EXPORT_SYMBOL(synchronize_net); 9867 9868 /** 9869 * unregister_netdevice_queue - remove device from the kernel 9870 * @dev: device 9871 * @head: list 9872 * 9873 * This function shuts down a device interface and removes it 9874 * from the kernel tables. 9875 * If head not NULL, device is queued to be unregistered later. 9876 * 9877 * Callers must hold the rtnl semaphore. You may want 9878 * unregister_netdev() instead of this. 9879 */ 9880 9881 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 9882 { 9883 ASSERT_RTNL(); 9884 9885 if (head) { 9886 list_move_tail(&dev->unreg_list, head); 9887 } else { 9888 rollback_registered(dev); 9889 /* Finish processing unregister after unlock */ 9890 net_set_todo(dev); 9891 } 9892 } 9893 EXPORT_SYMBOL(unregister_netdevice_queue); 9894 9895 /** 9896 * unregister_netdevice_many - unregister many devices 9897 * @head: list of devices 9898 * 9899 * Note: As most callers use a stack allocated list_head, 9900 * we force a list_del() to make sure stack wont be corrupted later. 9901 */ 9902 void unregister_netdevice_many(struct list_head *head) 9903 { 9904 struct net_device *dev; 9905 9906 if (!list_empty(head)) { 9907 rollback_registered_many(head); 9908 list_for_each_entry(dev, head, unreg_list) 9909 net_set_todo(dev); 9910 list_del(head); 9911 } 9912 } 9913 EXPORT_SYMBOL(unregister_netdevice_many); 9914 9915 /** 9916 * unregister_netdev - remove device from the kernel 9917 * @dev: device 9918 * 9919 * This function shuts down a device interface and removes it 9920 * from the kernel tables. 9921 * 9922 * This is just a wrapper for unregister_netdevice that takes 9923 * the rtnl semaphore. In general you want to use this and not 9924 * unregister_netdevice. 9925 */ 9926 void unregister_netdev(struct net_device *dev) 9927 { 9928 rtnl_lock(); 9929 unregister_netdevice(dev); 9930 rtnl_unlock(); 9931 } 9932 EXPORT_SYMBOL(unregister_netdev); 9933 9934 /** 9935 * dev_change_net_namespace - move device to different nethost namespace 9936 * @dev: device 9937 * @net: network namespace 9938 * @pat: If not NULL name pattern to try if the current device name 9939 * is already taken in the destination network namespace. 9940 * 9941 * This function shuts down a device interface and moves it 9942 * to a new network namespace. On success 0 is returned, on 9943 * a failure a netagive errno code is returned. 9944 * 9945 * Callers must hold the rtnl semaphore. 9946 */ 9947 9948 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 9949 { 9950 int err, new_nsid, new_ifindex; 9951 9952 ASSERT_RTNL(); 9953 9954 /* Don't allow namespace local devices to be moved. */ 9955 err = -EINVAL; 9956 if (dev->features & NETIF_F_NETNS_LOCAL) 9957 goto out; 9958 9959 /* Ensure the device has been registrered */ 9960 if (dev->reg_state != NETREG_REGISTERED) 9961 goto out; 9962 9963 /* Get out if there is nothing todo */ 9964 err = 0; 9965 if (net_eq(dev_net(dev), net)) 9966 goto out; 9967 9968 /* Pick the destination device name, and ensure 9969 * we can use it in the destination network namespace. 9970 */ 9971 err = -EEXIST; 9972 if (__dev_get_by_name(net, dev->name)) { 9973 /* We get here if we can't use the current device name */ 9974 if (!pat) 9975 goto out; 9976 err = dev_get_valid_name(net, dev, pat); 9977 if (err < 0) 9978 goto out; 9979 } 9980 9981 /* 9982 * And now a mini version of register_netdevice unregister_netdevice. 9983 */ 9984 9985 /* If device is running close it first. */ 9986 dev_close(dev); 9987 9988 /* And unlink it from device chain */ 9989 unlist_netdevice(dev); 9990 9991 synchronize_net(); 9992 9993 /* Shutdown queueing discipline. */ 9994 dev_shutdown(dev); 9995 9996 /* Notify protocols, that we are about to destroy 9997 * this device. They should clean all the things. 9998 * 9999 * Note that dev->reg_state stays at NETREG_REGISTERED. 10000 * This is wanted because this way 8021q and macvlan know 10001 * the device is just moving and can keep their slaves up. 10002 */ 10003 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 10004 rcu_barrier(); 10005 10006 new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL); 10007 /* If there is an ifindex conflict assign a new one */ 10008 if (__dev_get_by_index(net, dev->ifindex)) 10009 new_ifindex = dev_new_index(net); 10010 else 10011 new_ifindex = dev->ifindex; 10012 10013 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid, 10014 new_ifindex); 10015 10016 /* 10017 * Flush the unicast and multicast chains 10018 */ 10019 dev_uc_flush(dev); 10020 dev_mc_flush(dev); 10021 10022 /* Send a netdev-removed uevent to the old namespace */ 10023 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE); 10024 netdev_adjacent_del_links(dev); 10025 10026 /* Actually switch the network namespace */ 10027 dev_net_set(dev, net); 10028 dev->ifindex = new_ifindex; 10029 10030 /* Send a netdev-add uevent to the new namespace */ 10031 kobject_uevent(&dev->dev.kobj, KOBJ_ADD); 10032 netdev_adjacent_add_links(dev); 10033 10034 /* Fixup kobjects */ 10035 err = device_rename(&dev->dev, dev->name); 10036 WARN_ON(err); 10037 10038 /* Add the device back in the hashes */ 10039 list_netdevice(dev); 10040 10041 /* Notify protocols, that a new device appeared. */ 10042 call_netdevice_notifiers(NETDEV_REGISTER, dev); 10043 10044 /* 10045 * Prevent userspace races by waiting until the network 10046 * device is fully setup before sending notifications. 10047 */ 10048 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 10049 10050 synchronize_net(); 10051 err = 0; 10052 out: 10053 return err; 10054 } 10055 EXPORT_SYMBOL_GPL(dev_change_net_namespace); 10056 10057 static int dev_cpu_dead(unsigned int oldcpu) 10058 { 10059 struct sk_buff **list_skb; 10060 struct sk_buff *skb; 10061 unsigned int cpu; 10062 struct softnet_data *sd, *oldsd, *remsd = NULL; 10063 10064 local_irq_disable(); 10065 cpu = smp_processor_id(); 10066 sd = &per_cpu(softnet_data, cpu); 10067 oldsd = &per_cpu(softnet_data, oldcpu); 10068 10069 /* Find end of our completion_queue. */ 10070 list_skb = &sd->completion_queue; 10071 while (*list_skb) 10072 list_skb = &(*list_skb)->next; 10073 /* Append completion queue from offline CPU. */ 10074 *list_skb = oldsd->completion_queue; 10075 oldsd->completion_queue = NULL; 10076 10077 /* Append output queue from offline CPU. */ 10078 if (oldsd->output_queue) { 10079 *sd->output_queue_tailp = oldsd->output_queue; 10080 sd->output_queue_tailp = oldsd->output_queue_tailp; 10081 oldsd->output_queue = NULL; 10082 oldsd->output_queue_tailp = &oldsd->output_queue; 10083 } 10084 /* Append NAPI poll list from offline CPU, with one exception : 10085 * process_backlog() must be called by cpu owning percpu backlog. 10086 * We properly handle process_queue & input_pkt_queue later. 10087 */ 10088 while (!list_empty(&oldsd->poll_list)) { 10089 struct napi_struct *napi = list_first_entry(&oldsd->poll_list, 10090 struct napi_struct, 10091 poll_list); 10092 10093 list_del_init(&napi->poll_list); 10094 if (napi->poll == process_backlog) 10095 napi->state = 0; 10096 else 10097 ____napi_schedule(sd, napi); 10098 } 10099 10100 raise_softirq_irqoff(NET_TX_SOFTIRQ); 10101 local_irq_enable(); 10102 10103 #ifdef CONFIG_RPS 10104 remsd = oldsd->rps_ipi_list; 10105 oldsd->rps_ipi_list = NULL; 10106 #endif 10107 /* send out pending IPI's on offline CPU */ 10108 net_rps_send_ipi(remsd); 10109 10110 /* Process offline CPU's input_pkt_queue */ 10111 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 10112 netif_rx_ni(skb); 10113 input_queue_head_incr(oldsd); 10114 } 10115 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) { 10116 netif_rx_ni(skb); 10117 input_queue_head_incr(oldsd); 10118 } 10119 10120 return 0; 10121 } 10122 10123 /** 10124 * netdev_increment_features - increment feature set by one 10125 * @all: current feature set 10126 * @one: new feature set 10127 * @mask: mask feature set 10128 * 10129 * Computes a new feature set after adding a device with feature set 10130 * @one to the master device with current feature set @all. Will not 10131 * enable anything that is off in @mask. Returns the new feature set. 10132 */ 10133 netdev_features_t netdev_increment_features(netdev_features_t all, 10134 netdev_features_t one, netdev_features_t mask) 10135 { 10136 if (mask & NETIF_F_HW_CSUM) 10137 mask |= NETIF_F_CSUM_MASK; 10138 mask |= NETIF_F_VLAN_CHALLENGED; 10139 10140 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask; 10141 all &= one | ~NETIF_F_ALL_FOR_ALL; 10142 10143 /* If one device supports hw checksumming, set for all. */ 10144 if (all & NETIF_F_HW_CSUM) 10145 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM); 10146 10147 return all; 10148 } 10149 EXPORT_SYMBOL(netdev_increment_features); 10150 10151 static struct hlist_head * __net_init netdev_create_hash(void) 10152 { 10153 int i; 10154 struct hlist_head *hash; 10155 10156 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL); 10157 if (hash != NULL) 10158 for (i = 0; i < NETDEV_HASHENTRIES; i++) 10159 INIT_HLIST_HEAD(&hash[i]); 10160 10161 return hash; 10162 } 10163 10164 /* Initialize per network namespace state */ 10165 static int __net_init netdev_init(struct net *net) 10166 { 10167 BUILD_BUG_ON(GRO_HASH_BUCKETS > 10168 8 * sizeof_field(struct napi_struct, gro_bitmask)); 10169 10170 if (net != &init_net) 10171 INIT_LIST_HEAD(&net->dev_base_head); 10172 10173 net->dev_name_head = netdev_create_hash(); 10174 if (net->dev_name_head == NULL) 10175 goto err_name; 10176 10177 net->dev_index_head = netdev_create_hash(); 10178 if (net->dev_index_head == NULL) 10179 goto err_idx; 10180 10181 RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain); 10182 10183 return 0; 10184 10185 err_idx: 10186 kfree(net->dev_name_head); 10187 err_name: 10188 return -ENOMEM; 10189 } 10190 10191 /** 10192 * netdev_drivername - network driver for the device 10193 * @dev: network device 10194 * 10195 * Determine network driver for device. 10196 */ 10197 const char *netdev_drivername(const struct net_device *dev) 10198 { 10199 const struct device_driver *driver; 10200 const struct device *parent; 10201 const char *empty = ""; 10202 10203 parent = dev->dev.parent; 10204 if (!parent) 10205 return empty; 10206 10207 driver = parent->driver; 10208 if (driver && driver->name) 10209 return driver->name; 10210 return empty; 10211 } 10212 10213 static void __netdev_printk(const char *level, const struct net_device *dev, 10214 struct va_format *vaf) 10215 { 10216 if (dev && dev->dev.parent) { 10217 dev_printk_emit(level[1] - '0', 10218 dev->dev.parent, 10219 "%s %s %s%s: %pV", 10220 dev_driver_string(dev->dev.parent), 10221 dev_name(dev->dev.parent), 10222 netdev_name(dev), netdev_reg_state(dev), 10223 vaf); 10224 } else if (dev) { 10225 printk("%s%s%s: %pV", 10226 level, netdev_name(dev), netdev_reg_state(dev), vaf); 10227 } else { 10228 printk("%s(NULL net_device): %pV", level, vaf); 10229 } 10230 } 10231 10232 void netdev_printk(const char *level, const struct net_device *dev, 10233 const char *format, ...) 10234 { 10235 struct va_format vaf; 10236 va_list args; 10237 10238 va_start(args, format); 10239 10240 vaf.fmt = format; 10241 vaf.va = &args; 10242 10243 __netdev_printk(level, dev, &vaf); 10244 10245 va_end(args); 10246 } 10247 EXPORT_SYMBOL(netdev_printk); 10248 10249 #define define_netdev_printk_level(func, level) \ 10250 void func(const struct net_device *dev, const char *fmt, ...) \ 10251 { \ 10252 struct va_format vaf; \ 10253 va_list args; \ 10254 \ 10255 va_start(args, fmt); \ 10256 \ 10257 vaf.fmt = fmt; \ 10258 vaf.va = &args; \ 10259 \ 10260 __netdev_printk(level, dev, &vaf); \ 10261 \ 10262 va_end(args); \ 10263 } \ 10264 EXPORT_SYMBOL(func); 10265 10266 define_netdev_printk_level(netdev_emerg, KERN_EMERG); 10267 define_netdev_printk_level(netdev_alert, KERN_ALERT); 10268 define_netdev_printk_level(netdev_crit, KERN_CRIT); 10269 define_netdev_printk_level(netdev_err, KERN_ERR); 10270 define_netdev_printk_level(netdev_warn, KERN_WARNING); 10271 define_netdev_printk_level(netdev_notice, KERN_NOTICE); 10272 define_netdev_printk_level(netdev_info, KERN_INFO); 10273 10274 static void __net_exit netdev_exit(struct net *net) 10275 { 10276 kfree(net->dev_name_head); 10277 kfree(net->dev_index_head); 10278 if (net != &init_net) 10279 WARN_ON_ONCE(!list_empty(&net->dev_base_head)); 10280 } 10281 10282 static struct pernet_operations __net_initdata netdev_net_ops = { 10283 .init = netdev_init, 10284 .exit = netdev_exit, 10285 }; 10286 10287 static void __net_exit default_device_exit(struct net *net) 10288 { 10289 struct net_device *dev, *aux; 10290 /* 10291 * Push all migratable network devices back to the 10292 * initial network namespace 10293 */ 10294 rtnl_lock(); 10295 for_each_netdev_safe(net, dev, aux) { 10296 int err; 10297 char fb_name[IFNAMSIZ]; 10298 10299 /* Ignore unmoveable devices (i.e. loopback) */ 10300 if (dev->features & NETIF_F_NETNS_LOCAL) 10301 continue; 10302 10303 /* Leave virtual devices for the generic cleanup */ 10304 if (dev->rtnl_link_ops) 10305 continue; 10306 10307 /* Push remaining network devices to init_net */ 10308 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 10309 if (__dev_get_by_name(&init_net, fb_name)) 10310 snprintf(fb_name, IFNAMSIZ, "dev%%d"); 10311 err = dev_change_net_namespace(dev, &init_net, fb_name); 10312 if (err) { 10313 pr_emerg("%s: failed to move %s to init_net: %d\n", 10314 __func__, dev->name, err); 10315 BUG(); 10316 } 10317 } 10318 rtnl_unlock(); 10319 } 10320 10321 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list) 10322 { 10323 /* Return with the rtnl_lock held when there are no network 10324 * devices unregistering in any network namespace in net_list. 10325 */ 10326 struct net *net; 10327 bool unregistering; 10328 DEFINE_WAIT_FUNC(wait, woken_wake_function); 10329 10330 add_wait_queue(&netdev_unregistering_wq, &wait); 10331 for (;;) { 10332 unregistering = false; 10333 rtnl_lock(); 10334 list_for_each_entry(net, net_list, exit_list) { 10335 if (net->dev_unreg_count > 0) { 10336 unregistering = true; 10337 break; 10338 } 10339 } 10340 if (!unregistering) 10341 break; 10342 __rtnl_unlock(); 10343 10344 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); 10345 } 10346 remove_wait_queue(&netdev_unregistering_wq, &wait); 10347 } 10348 10349 static void __net_exit default_device_exit_batch(struct list_head *net_list) 10350 { 10351 /* At exit all network devices most be removed from a network 10352 * namespace. Do this in the reverse order of registration. 10353 * Do this across as many network namespaces as possible to 10354 * improve batching efficiency. 10355 */ 10356 struct net_device *dev; 10357 struct net *net; 10358 LIST_HEAD(dev_kill_list); 10359 10360 /* To prevent network device cleanup code from dereferencing 10361 * loopback devices or network devices that have been freed 10362 * wait here for all pending unregistrations to complete, 10363 * before unregistring the loopback device and allowing the 10364 * network namespace be freed. 10365 * 10366 * The netdev todo list containing all network devices 10367 * unregistrations that happen in default_device_exit_batch 10368 * will run in the rtnl_unlock() at the end of 10369 * default_device_exit_batch. 10370 */ 10371 rtnl_lock_unregistering(net_list); 10372 list_for_each_entry(net, net_list, exit_list) { 10373 for_each_netdev_reverse(net, dev) { 10374 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) 10375 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 10376 else 10377 unregister_netdevice_queue(dev, &dev_kill_list); 10378 } 10379 } 10380 unregister_netdevice_many(&dev_kill_list); 10381 rtnl_unlock(); 10382 } 10383 10384 static struct pernet_operations __net_initdata default_device_ops = { 10385 .exit = default_device_exit, 10386 .exit_batch = default_device_exit_batch, 10387 }; 10388 10389 /* 10390 * Initialize the DEV module. At boot time this walks the device list and 10391 * unhooks any devices that fail to initialise (normally hardware not 10392 * present) and leaves us with a valid list of present and active devices. 10393 * 10394 */ 10395 10396 /* 10397 * This is called single threaded during boot, so no need 10398 * to take the rtnl semaphore. 10399 */ 10400 static int __init net_dev_init(void) 10401 { 10402 int i, rc = -ENOMEM; 10403 10404 BUG_ON(!dev_boot_phase); 10405 10406 if (dev_proc_init()) 10407 goto out; 10408 10409 if (netdev_kobject_init()) 10410 goto out; 10411 10412 INIT_LIST_HEAD(&ptype_all); 10413 for (i = 0; i < PTYPE_HASH_SIZE; i++) 10414 INIT_LIST_HEAD(&ptype_base[i]); 10415 10416 INIT_LIST_HEAD(&offload_base); 10417 10418 if (register_pernet_subsys(&netdev_net_ops)) 10419 goto out; 10420 10421 /* 10422 * Initialise the packet receive queues. 10423 */ 10424 10425 for_each_possible_cpu(i) { 10426 struct work_struct *flush = per_cpu_ptr(&flush_works, i); 10427 struct softnet_data *sd = &per_cpu(softnet_data, i); 10428 10429 INIT_WORK(flush, flush_backlog); 10430 10431 skb_queue_head_init(&sd->input_pkt_queue); 10432 skb_queue_head_init(&sd->process_queue); 10433 #ifdef CONFIG_XFRM_OFFLOAD 10434 skb_queue_head_init(&sd->xfrm_backlog); 10435 #endif 10436 INIT_LIST_HEAD(&sd->poll_list); 10437 sd->output_queue_tailp = &sd->output_queue; 10438 #ifdef CONFIG_RPS 10439 sd->csd.func = rps_trigger_softirq; 10440 sd->csd.info = sd; 10441 sd->cpu = i; 10442 #endif 10443 10444 init_gro_hash(&sd->backlog); 10445 sd->backlog.poll = process_backlog; 10446 sd->backlog.weight = weight_p; 10447 } 10448 10449 dev_boot_phase = 0; 10450 10451 /* The loopback device is special if any other network devices 10452 * is present in a network namespace the loopback device must 10453 * be present. Since we now dynamically allocate and free the 10454 * loopback device ensure this invariant is maintained by 10455 * keeping the loopback device as the first device on the 10456 * list of network devices. Ensuring the loopback devices 10457 * is the first device that appears and the last network device 10458 * that disappears. 10459 */ 10460 if (register_pernet_device(&loopback_net_ops)) 10461 goto out; 10462 10463 if (register_pernet_device(&default_device_ops)) 10464 goto out; 10465 10466 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 10467 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 10468 10469 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead", 10470 NULL, dev_cpu_dead); 10471 WARN_ON(rc < 0); 10472 rc = 0; 10473 out: 10474 return rc; 10475 } 10476 10477 subsys_initcall(net_dev_init); 10478