xref: /linux/net/core/dev.c (revision cf02820041668b14cbfa0fbd2bab45ac79bd6174)
1 /*
2  * 	NET3	Protocol independent device support routines.
3  *
4  *		This program is free software; you can redistribute it and/or
5  *		modify it under the terms of the GNU General Public License
6  *		as published by the Free Software Foundation; either version
7  *		2 of the License, or (at your option) any later version.
8  *
9  *	Derived from the non IP parts of dev.c 1.0.19
10  * 		Authors:	Ross Biro
11  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *	Additional Authors:
15  *		Florian la Roche <rzsfl@rz.uni-sb.de>
16  *		Alan Cox <gw4pts@gw4pts.ampr.org>
17  *		David Hinds <dahinds@users.sourceforge.net>
18  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *		Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *	Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *              			to 2 if register_netdev gets called
25  *              			before net_dev_init & also removed a
26  *              			few lines of code in the process.
27  *		Alan Cox	:	device private ioctl copies fields back.
28  *		Alan Cox	:	Transmit queue code does relevant
29  *					stunts to keep the queue safe.
30  *		Alan Cox	:	Fixed double lock.
31  *		Alan Cox	:	Fixed promisc NULL pointer trap
32  *		????????	:	Support the full private ioctl range
33  *		Alan Cox	:	Moved ioctl permission check into
34  *					drivers
35  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
36  *		Alan Cox	:	100 backlog just doesn't cut it when
37  *					you start doing multicast video 8)
38  *		Alan Cox	:	Rewrote net_bh and list manager.
39  *		Alan Cox	: 	Fix ETH_P_ALL echoback lengths.
40  *		Alan Cox	:	Took out transmit every packet pass
41  *					Saved a few bytes in the ioctl handler
42  *		Alan Cox	:	Network driver sets packet type before
43  *					calling netif_rx. Saves a function
44  *					call a packet.
45  *		Alan Cox	:	Hashed net_bh()
46  *		Richard Kooijman:	Timestamp fixes.
47  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
48  *		Alan Cox	:	Device lock protection.
49  *		Alan Cox	: 	Fixed nasty side effect of device close
50  *					changes.
51  *		Rudi Cilibrasi	:	Pass the right thing to
52  *					set_mac_address()
53  *		Dave Miller	:	32bit quantity for the device lock to
54  *					make it work out on a Sparc.
55  *		Bjorn Ekwall	:	Added KERNELD hack.
56  *		Alan Cox	:	Cleaned up the backlog initialise.
57  *		Craig Metz	:	SIOCGIFCONF fix if space for under
58  *					1 device.
59  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
60  *					is no device open function.
61  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
62  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
63  *		Cyrus Durgin	:	Cleaned for KMOD
64  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
65  *					A network device unload needs to purge
66  *					the backlog queue.
67  *	Paul Rusty Russell	:	SIOCSIFNAME
68  *              Pekka Riikonen  :	Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *              			indefinitely on dev->refcnt
71  * 		J Hadi Salim	:	- Backlog queue sampling
72  *				        - netif_rx() feedback
73  */
74 
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/proc_fs.h>
101 #include <linux/seq_file.h>
102 #include <linux/stat.h>
103 #include <net/dst.h>
104 #include <net/pkt_sched.h>
105 #include <net/checksum.h>
106 #include <net/xfrm.h>
107 #include <linux/highmem.h>
108 #include <linux/init.h>
109 #include <linux/kmod.h>
110 #include <linux/module.h>
111 #include <linux/netpoll.h>
112 #include <linux/rcupdate.h>
113 #include <linux/delay.h>
114 #include <net/wext.h>
115 #include <net/iw_handler.h>
116 #include <asm/current.h>
117 #include <linux/audit.h>
118 #include <linux/dmaengine.h>
119 #include <linux/err.h>
120 #include <linux/ctype.h>
121 #include <linux/if_arp.h>
122 #include <linux/if_vlan.h>
123 #include <linux/ip.h>
124 #include <net/ip.h>
125 #include <linux/ipv6.h>
126 #include <linux/in.h>
127 #include <linux/jhash.h>
128 #include <linux/random.h>
129 #include <trace/events/napi.h>
130 #include <trace/events/net.h>
131 #include <trace/events/skb.h>
132 #include <linux/pci.h>
133 #include <linux/inetdevice.h>
134 #include <linux/cpu_rmap.h>
135 #include <linux/net_tstamp.h>
136 #include <linux/static_key.h>
137 #include <net/flow_keys.h>
138 
139 #include "net-sysfs.h"
140 
141 /* Instead of increasing this, you should create a hash table. */
142 #define MAX_GRO_SKBS 8
143 
144 /* This should be increased if a protocol with a bigger head is added. */
145 #define GRO_MAX_HEAD (MAX_HEADER + 128)
146 
147 /*
148  *	The list of packet types we will receive (as opposed to discard)
149  *	and the routines to invoke.
150  *
151  *	Why 16. Because with 16 the only overlap we get on a hash of the
152  *	low nibble of the protocol value is RARP/SNAP/X.25.
153  *
154  *      NOTE:  That is no longer true with the addition of VLAN tags.  Not
155  *             sure which should go first, but I bet it won't make much
156  *             difference if we are running VLANs.  The good news is that
157  *             this protocol won't be in the list unless compiled in, so
158  *             the average user (w/out VLANs) will not be adversely affected.
159  *             --BLG
160  *
161  *		0800	IP
162  *		8100    802.1Q VLAN
163  *		0001	802.3
164  *		0002	AX.25
165  *		0004	802.2
166  *		8035	RARP
167  *		0005	SNAP
168  *		0805	X.25
169  *		0806	ARP
170  *		8137	IPX
171  *		0009	Localtalk
172  *		86DD	IPv6
173  */
174 
175 #define PTYPE_HASH_SIZE	(16)
176 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
177 
178 static DEFINE_SPINLOCK(ptype_lock);
179 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
180 static struct list_head ptype_all __read_mostly;	/* Taps */
181 
182 /*
183  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
184  * semaphore.
185  *
186  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
187  *
188  * Writers must hold the rtnl semaphore while they loop through the
189  * dev_base_head list, and hold dev_base_lock for writing when they do the
190  * actual updates.  This allows pure readers to access the list even
191  * while a writer is preparing to update it.
192  *
193  * To put it another way, dev_base_lock is held for writing only to
194  * protect against pure readers; the rtnl semaphore provides the
195  * protection against other writers.
196  *
197  * See, for example usages, register_netdevice() and
198  * unregister_netdevice(), which must be called with the rtnl
199  * semaphore held.
200  */
201 DEFINE_RWLOCK(dev_base_lock);
202 EXPORT_SYMBOL(dev_base_lock);
203 
204 static inline void dev_base_seq_inc(struct net *net)
205 {
206 	while (++net->dev_base_seq == 0);
207 }
208 
209 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
210 {
211 	unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
212 
213 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
214 }
215 
216 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
217 {
218 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
219 }
220 
221 static inline void rps_lock(struct softnet_data *sd)
222 {
223 #ifdef CONFIG_RPS
224 	spin_lock(&sd->input_pkt_queue.lock);
225 #endif
226 }
227 
228 static inline void rps_unlock(struct softnet_data *sd)
229 {
230 #ifdef CONFIG_RPS
231 	spin_unlock(&sd->input_pkt_queue.lock);
232 #endif
233 }
234 
235 /* Device list insertion */
236 static int list_netdevice(struct net_device *dev)
237 {
238 	struct net *net = dev_net(dev);
239 
240 	ASSERT_RTNL();
241 
242 	write_lock_bh(&dev_base_lock);
243 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
244 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
245 	hlist_add_head_rcu(&dev->index_hlist,
246 			   dev_index_hash(net, dev->ifindex));
247 	write_unlock_bh(&dev_base_lock);
248 
249 	dev_base_seq_inc(net);
250 
251 	return 0;
252 }
253 
254 /* Device list removal
255  * caller must respect a RCU grace period before freeing/reusing dev
256  */
257 static void unlist_netdevice(struct net_device *dev)
258 {
259 	ASSERT_RTNL();
260 
261 	/* Unlink dev from the device chain */
262 	write_lock_bh(&dev_base_lock);
263 	list_del_rcu(&dev->dev_list);
264 	hlist_del_rcu(&dev->name_hlist);
265 	hlist_del_rcu(&dev->index_hlist);
266 	write_unlock_bh(&dev_base_lock);
267 
268 	dev_base_seq_inc(dev_net(dev));
269 }
270 
271 /*
272  *	Our notifier list
273  */
274 
275 static RAW_NOTIFIER_HEAD(netdev_chain);
276 
277 /*
278  *	Device drivers call our routines to queue packets here. We empty the
279  *	queue in the local softnet handler.
280  */
281 
282 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
283 EXPORT_PER_CPU_SYMBOL(softnet_data);
284 
285 #ifdef CONFIG_LOCKDEP
286 /*
287  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
288  * according to dev->type
289  */
290 static const unsigned short netdev_lock_type[] =
291 	{ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
292 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
293 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
294 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
295 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
296 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
297 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
298 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
299 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
300 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
301 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
302 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
303 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
304 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
305 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
306 
307 static const char *const netdev_lock_name[] =
308 	{"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
309 	 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
310 	 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
311 	 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
312 	 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
313 	 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
314 	 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
315 	 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
316 	 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
317 	 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
318 	 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
319 	 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
320 	 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
321 	 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
322 	 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
323 
324 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
325 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
326 
327 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
328 {
329 	int i;
330 
331 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
332 		if (netdev_lock_type[i] == dev_type)
333 			return i;
334 	/* the last key is used by default */
335 	return ARRAY_SIZE(netdev_lock_type) - 1;
336 }
337 
338 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
339 						 unsigned short dev_type)
340 {
341 	int i;
342 
343 	i = netdev_lock_pos(dev_type);
344 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
345 				   netdev_lock_name[i]);
346 }
347 
348 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
349 {
350 	int i;
351 
352 	i = netdev_lock_pos(dev->type);
353 	lockdep_set_class_and_name(&dev->addr_list_lock,
354 				   &netdev_addr_lock_key[i],
355 				   netdev_lock_name[i]);
356 }
357 #else
358 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
359 						 unsigned short dev_type)
360 {
361 }
362 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
363 {
364 }
365 #endif
366 
367 /*******************************************************************************
368 
369 		Protocol management and registration routines
370 
371 *******************************************************************************/
372 
373 /*
374  *	Add a protocol ID to the list. Now that the input handler is
375  *	smarter we can dispense with all the messy stuff that used to be
376  *	here.
377  *
378  *	BEWARE!!! Protocol handlers, mangling input packets,
379  *	MUST BE last in hash buckets and checking protocol handlers
380  *	MUST start from promiscuous ptype_all chain in net_bh.
381  *	It is true now, do not change it.
382  *	Explanation follows: if protocol handler, mangling packet, will
383  *	be the first on list, it is not able to sense, that packet
384  *	is cloned and should be copied-on-write, so that it will
385  *	change it and subsequent readers will get broken packet.
386  *							--ANK (980803)
387  */
388 
389 static inline struct list_head *ptype_head(const struct packet_type *pt)
390 {
391 	if (pt->type == htons(ETH_P_ALL))
392 		return &ptype_all;
393 	else
394 		return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
395 }
396 
397 /**
398  *	dev_add_pack - add packet handler
399  *	@pt: packet type declaration
400  *
401  *	Add a protocol handler to the networking stack. The passed &packet_type
402  *	is linked into kernel lists and may not be freed until it has been
403  *	removed from the kernel lists.
404  *
405  *	This call does not sleep therefore it can not
406  *	guarantee all CPU's that are in middle of receiving packets
407  *	will see the new packet type (until the next received packet).
408  */
409 
410 void dev_add_pack(struct packet_type *pt)
411 {
412 	struct list_head *head = ptype_head(pt);
413 
414 	spin_lock(&ptype_lock);
415 	list_add_rcu(&pt->list, head);
416 	spin_unlock(&ptype_lock);
417 }
418 EXPORT_SYMBOL(dev_add_pack);
419 
420 /**
421  *	__dev_remove_pack	 - remove packet handler
422  *	@pt: packet type declaration
423  *
424  *	Remove a protocol handler that was previously added to the kernel
425  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
426  *	from the kernel lists and can be freed or reused once this function
427  *	returns.
428  *
429  *      The packet type might still be in use by receivers
430  *	and must not be freed until after all the CPU's have gone
431  *	through a quiescent state.
432  */
433 void __dev_remove_pack(struct packet_type *pt)
434 {
435 	struct list_head *head = ptype_head(pt);
436 	struct packet_type *pt1;
437 
438 	spin_lock(&ptype_lock);
439 
440 	list_for_each_entry(pt1, head, list) {
441 		if (pt == pt1) {
442 			list_del_rcu(&pt->list);
443 			goto out;
444 		}
445 	}
446 
447 	pr_warn("dev_remove_pack: %p not found\n", pt);
448 out:
449 	spin_unlock(&ptype_lock);
450 }
451 EXPORT_SYMBOL(__dev_remove_pack);
452 
453 /**
454  *	dev_remove_pack	 - remove packet handler
455  *	@pt: packet type declaration
456  *
457  *	Remove a protocol handler that was previously added to the kernel
458  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
459  *	from the kernel lists and can be freed or reused once this function
460  *	returns.
461  *
462  *	This call sleeps to guarantee that no CPU is looking at the packet
463  *	type after return.
464  */
465 void dev_remove_pack(struct packet_type *pt)
466 {
467 	__dev_remove_pack(pt);
468 
469 	synchronize_net();
470 }
471 EXPORT_SYMBOL(dev_remove_pack);
472 
473 /******************************************************************************
474 
475 		      Device Boot-time Settings Routines
476 
477 *******************************************************************************/
478 
479 /* Boot time configuration table */
480 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
481 
482 /**
483  *	netdev_boot_setup_add	- add new setup entry
484  *	@name: name of the device
485  *	@map: configured settings for the device
486  *
487  *	Adds new setup entry to the dev_boot_setup list.  The function
488  *	returns 0 on error and 1 on success.  This is a generic routine to
489  *	all netdevices.
490  */
491 static int netdev_boot_setup_add(char *name, struct ifmap *map)
492 {
493 	struct netdev_boot_setup *s;
494 	int i;
495 
496 	s = dev_boot_setup;
497 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
498 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
499 			memset(s[i].name, 0, sizeof(s[i].name));
500 			strlcpy(s[i].name, name, IFNAMSIZ);
501 			memcpy(&s[i].map, map, sizeof(s[i].map));
502 			break;
503 		}
504 	}
505 
506 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
507 }
508 
509 /**
510  *	netdev_boot_setup_check	- check boot time settings
511  *	@dev: the netdevice
512  *
513  * 	Check boot time settings for the device.
514  *	The found settings are set for the device to be used
515  *	later in the device probing.
516  *	Returns 0 if no settings found, 1 if they are.
517  */
518 int netdev_boot_setup_check(struct net_device *dev)
519 {
520 	struct netdev_boot_setup *s = dev_boot_setup;
521 	int i;
522 
523 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
524 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
525 		    !strcmp(dev->name, s[i].name)) {
526 			dev->irq 	= s[i].map.irq;
527 			dev->base_addr 	= s[i].map.base_addr;
528 			dev->mem_start 	= s[i].map.mem_start;
529 			dev->mem_end 	= s[i].map.mem_end;
530 			return 1;
531 		}
532 	}
533 	return 0;
534 }
535 EXPORT_SYMBOL(netdev_boot_setup_check);
536 
537 
538 /**
539  *	netdev_boot_base	- get address from boot time settings
540  *	@prefix: prefix for network device
541  *	@unit: id for network device
542  *
543  * 	Check boot time settings for the base address of device.
544  *	The found settings are set for the device to be used
545  *	later in the device probing.
546  *	Returns 0 if no settings found.
547  */
548 unsigned long netdev_boot_base(const char *prefix, int unit)
549 {
550 	const struct netdev_boot_setup *s = dev_boot_setup;
551 	char name[IFNAMSIZ];
552 	int i;
553 
554 	sprintf(name, "%s%d", prefix, unit);
555 
556 	/*
557 	 * If device already registered then return base of 1
558 	 * to indicate not to probe for this interface
559 	 */
560 	if (__dev_get_by_name(&init_net, name))
561 		return 1;
562 
563 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
564 		if (!strcmp(name, s[i].name))
565 			return s[i].map.base_addr;
566 	return 0;
567 }
568 
569 /*
570  * Saves at boot time configured settings for any netdevice.
571  */
572 int __init netdev_boot_setup(char *str)
573 {
574 	int ints[5];
575 	struct ifmap map;
576 
577 	str = get_options(str, ARRAY_SIZE(ints), ints);
578 	if (!str || !*str)
579 		return 0;
580 
581 	/* Save settings */
582 	memset(&map, 0, sizeof(map));
583 	if (ints[0] > 0)
584 		map.irq = ints[1];
585 	if (ints[0] > 1)
586 		map.base_addr = ints[2];
587 	if (ints[0] > 2)
588 		map.mem_start = ints[3];
589 	if (ints[0] > 3)
590 		map.mem_end = ints[4];
591 
592 	/* Add new entry to the list */
593 	return netdev_boot_setup_add(str, &map);
594 }
595 
596 __setup("netdev=", netdev_boot_setup);
597 
598 /*******************************************************************************
599 
600 			    Device Interface Subroutines
601 
602 *******************************************************************************/
603 
604 /**
605  *	__dev_get_by_name	- find a device by its name
606  *	@net: the applicable net namespace
607  *	@name: name to find
608  *
609  *	Find an interface by name. Must be called under RTNL semaphore
610  *	or @dev_base_lock. If the name is found a pointer to the device
611  *	is returned. If the name is not found then %NULL is returned. The
612  *	reference counters are not incremented so the caller must be
613  *	careful with locks.
614  */
615 
616 struct net_device *__dev_get_by_name(struct net *net, const char *name)
617 {
618 	struct hlist_node *p;
619 	struct net_device *dev;
620 	struct hlist_head *head = dev_name_hash(net, name);
621 
622 	hlist_for_each_entry(dev, p, head, name_hlist)
623 		if (!strncmp(dev->name, name, IFNAMSIZ))
624 			return dev;
625 
626 	return NULL;
627 }
628 EXPORT_SYMBOL(__dev_get_by_name);
629 
630 /**
631  *	dev_get_by_name_rcu	- find a device by its name
632  *	@net: the applicable net namespace
633  *	@name: name to find
634  *
635  *	Find an interface by name.
636  *	If the name is found a pointer to the device is returned.
637  * 	If the name is not found then %NULL is returned.
638  *	The reference counters are not incremented so the caller must be
639  *	careful with locks. The caller must hold RCU lock.
640  */
641 
642 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
643 {
644 	struct hlist_node *p;
645 	struct net_device *dev;
646 	struct hlist_head *head = dev_name_hash(net, name);
647 
648 	hlist_for_each_entry_rcu(dev, p, head, name_hlist)
649 		if (!strncmp(dev->name, name, IFNAMSIZ))
650 			return dev;
651 
652 	return NULL;
653 }
654 EXPORT_SYMBOL(dev_get_by_name_rcu);
655 
656 /**
657  *	dev_get_by_name		- find a device by its name
658  *	@net: the applicable net namespace
659  *	@name: name to find
660  *
661  *	Find an interface by name. This can be called from any
662  *	context and does its own locking. The returned handle has
663  *	the usage count incremented and the caller must use dev_put() to
664  *	release it when it is no longer needed. %NULL is returned if no
665  *	matching device is found.
666  */
667 
668 struct net_device *dev_get_by_name(struct net *net, const char *name)
669 {
670 	struct net_device *dev;
671 
672 	rcu_read_lock();
673 	dev = dev_get_by_name_rcu(net, name);
674 	if (dev)
675 		dev_hold(dev);
676 	rcu_read_unlock();
677 	return dev;
678 }
679 EXPORT_SYMBOL(dev_get_by_name);
680 
681 /**
682  *	__dev_get_by_index - find a device by its ifindex
683  *	@net: the applicable net namespace
684  *	@ifindex: index of device
685  *
686  *	Search for an interface by index. Returns %NULL if the device
687  *	is not found or a pointer to the device. The device has not
688  *	had its reference counter increased so the caller must be careful
689  *	about locking. The caller must hold either the RTNL semaphore
690  *	or @dev_base_lock.
691  */
692 
693 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
694 {
695 	struct hlist_node *p;
696 	struct net_device *dev;
697 	struct hlist_head *head = dev_index_hash(net, ifindex);
698 
699 	hlist_for_each_entry(dev, p, head, index_hlist)
700 		if (dev->ifindex == ifindex)
701 			return dev;
702 
703 	return NULL;
704 }
705 EXPORT_SYMBOL(__dev_get_by_index);
706 
707 /**
708  *	dev_get_by_index_rcu - find a device by its ifindex
709  *	@net: the applicable net namespace
710  *	@ifindex: index of device
711  *
712  *	Search for an interface by index. Returns %NULL if the device
713  *	is not found or a pointer to the device. The device has not
714  *	had its reference counter increased so the caller must be careful
715  *	about locking. The caller must hold RCU lock.
716  */
717 
718 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
719 {
720 	struct hlist_node *p;
721 	struct net_device *dev;
722 	struct hlist_head *head = dev_index_hash(net, ifindex);
723 
724 	hlist_for_each_entry_rcu(dev, p, head, index_hlist)
725 		if (dev->ifindex == ifindex)
726 			return dev;
727 
728 	return NULL;
729 }
730 EXPORT_SYMBOL(dev_get_by_index_rcu);
731 
732 
733 /**
734  *	dev_get_by_index - find a device by its ifindex
735  *	@net: the applicable net namespace
736  *	@ifindex: index of device
737  *
738  *	Search for an interface by index. Returns NULL if the device
739  *	is not found or a pointer to the device. The device returned has
740  *	had a reference added and the pointer is safe until the user calls
741  *	dev_put to indicate they have finished with it.
742  */
743 
744 struct net_device *dev_get_by_index(struct net *net, int ifindex)
745 {
746 	struct net_device *dev;
747 
748 	rcu_read_lock();
749 	dev = dev_get_by_index_rcu(net, ifindex);
750 	if (dev)
751 		dev_hold(dev);
752 	rcu_read_unlock();
753 	return dev;
754 }
755 EXPORT_SYMBOL(dev_get_by_index);
756 
757 /**
758  *	dev_getbyhwaddr_rcu - find a device by its hardware address
759  *	@net: the applicable net namespace
760  *	@type: media type of device
761  *	@ha: hardware address
762  *
763  *	Search for an interface by MAC address. Returns NULL if the device
764  *	is not found or a pointer to the device.
765  *	The caller must hold RCU or RTNL.
766  *	The returned device has not had its ref count increased
767  *	and the caller must therefore be careful about locking
768  *
769  */
770 
771 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
772 				       const char *ha)
773 {
774 	struct net_device *dev;
775 
776 	for_each_netdev_rcu(net, dev)
777 		if (dev->type == type &&
778 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
779 			return dev;
780 
781 	return NULL;
782 }
783 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
784 
785 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
786 {
787 	struct net_device *dev;
788 
789 	ASSERT_RTNL();
790 	for_each_netdev(net, dev)
791 		if (dev->type == type)
792 			return dev;
793 
794 	return NULL;
795 }
796 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
797 
798 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
799 {
800 	struct net_device *dev, *ret = NULL;
801 
802 	rcu_read_lock();
803 	for_each_netdev_rcu(net, dev)
804 		if (dev->type == type) {
805 			dev_hold(dev);
806 			ret = dev;
807 			break;
808 		}
809 	rcu_read_unlock();
810 	return ret;
811 }
812 EXPORT_SYMBOL(dev_getfirstbyhwtype);
813 
814 /**
815  *	dev_get_by_flags_rcu - find any device with given flags
816  *	@net: the applicable net namespace
817  *	@if_flags: IFF_* values
818  *	@mask: bitmask of bits in if_flags to check
819  *
820  *	Search for any interface with the given flags. Returns NULL if a device
821  *	is not found or a pointer to the device. Must be called inside
822  *	rcu_read_lock(), and result refcount is unchanged.
823  */
824 
825 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
826 				    unsigned short mask)
827 {
828 	struct net_device *dev, *ret;
829 
830 	ret = NULL;
831 	for_each_netdev_rcu(net, dev) {
832 		if (((dev->flags ^ if_flags) & mask) == 0) {
833 			ret = dev;
834 			break;
835 		}
836 	}
837 	return ret;
838 }
839 EXPORT_SYMBOL(dev_get_by_flags_rcu);
840 
841 /**
842  *	dev_valid_name - check if name is okay for network device
843  *	@name: name string
844  *
845  *	Network device names need to be valid file names to
846  *	to allow sysfs to work.  We also disallow any kind of
847  *	whitespace.
848  */
849 bool dev_valid_name(const char *name)
850 {
851 	if (*name == '\0')
852 		return false;
853 	if (strlen(name) >= IFNAMSIZ)
854 		return false;
855 	if (!strcmp(name, ".") || !strcmp(name, ".."))
856 		return false;
857 
858 	while (*name) {
859 		if (*name == '/' || isspace(*name))
860 			return false;
861 		name++;
862 	}
863 	return true;
864 }
865 EXPORT_SYMBOL(dev_valid_name);
866 
867 /**
868  *	__dev_alloc_name - allocate a name for a device
869  *	@net: network namespace to allocate the device name in
870  *	@name: name format string
871  *	@buf:  scratch buffer and result name string
872  *
873  *	Passed a format string - eg "lt%d" it will try and find a suitable
874  *	id. It scans list of devices to build up a free map, then chooses
875  *	the first empty slot. The caller must hold the dev_base or rtnl lock
876  *	while allocating the name and adding the device in order to avoid
877  *	duplicates.
878  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
879  *	Returns the number of the unit assigned or a negative errno code.
880  */
881 
882 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
883 {
884 	int i = 0;
885 	const char *p;
886 	const int max_netdevices = 8*PAGE_SIZE;
887 	unsigned long *inuse;
888 	struct net_device *d;
889 
890 	p = strnchr(name, IFNAMSIZ-1, '%');
891 	if (p) {
892 		/*
893 		 * Verify the string as this thing may have come from
894 		 * the user.  There must be either one "%d" and no other "%"
895 		 * characters.
896 		 */
897 		if (p[1] != 'd' || strchr(p + 2, '%'))
898 			return -EINVAL;
899 
900 		/* Use one page as a bit array of possible slots */
901 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
902 		if (!inuse)
903 			return -ENOMEM;
904 
905 		for_each_netdev(net, d) {
906 			if (!sscanf(d->name, name, &i))
907 				continue;
908 			if (i < 0 || i >= max_netdevices)
909 				continue;
910 
911 			/*  avoid cases where sscanf is not exact inverse of printf */
912 			snprintf(buf, IFNAMSIZ, name, i);
913 			if (!strncmp(buf, d->name, IFNAMSIZ))
914 				set_bit(i, inuse);
915 		}
916 
917 		i = find_first_zero_bit(inuse, max_netdevices);
918 		free_page((unsigned long) inuse);
919 	}
920 
921 	if (buf != name)
922 		snprintf(buf, IFNAMSIZ, name, i);
923 	if (!__dev_get_by_name(net, buf))
924 		return i;
925 
926 	/* It is possible to run out of possible slots
927 	 * when the name is long and there isn't enough space left
928 	 * for the digits, or if all bits are used.
929 	 */
930 	return -ENFILE;
931 }
932 
933 /**
934  *	dev_alloc_name - allocate a name for a device
935  *	@dev: device
936  *	@name: name format string
937  *
938  *	Passed a format string - eg "lt%d" it will try and find a suitable
939  *	id. It scans list of devices to build up a free map, then chooses
940  *	the first empty slot. The caller must hold the dev_base or rtnl lock
941  *	while allocating the name and adding the device in order to avoid
942  *	duplicates.
943  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
944  *	Returns the number of the unit assigned or a negative errno code.
945  */
946 
947 int dev_alloc_name(struct net_device *dev, const char *name)
948 {
949 	char buf[IFNAMSIZ];
950 	struct net *net;
951 	int ret;
952 
953 	BUG_ON(!dev_net(dev));
954 	net = dev_net(dev);
955 	ret = __dev_alloc_name(net, name, buf);
956 	if (ret >= 0)
957 		strlcpy(dev->name, buf, IFNAMSIZ);
958 	return ret;
959 }
960 EXPORT_SYMBOL(dev_alloc_name);
961 
962 static int dev_alloc_name_ns(struct net *net,
963 			     struct net_device *dev,
964 			     const char *name)
965 {
966 	char buf[IFNAMSIZ];
967 	int ret;
968 
969 	ret = __dev_alloc_name(net, name, buf);
970 	if (ret >= 0)
971 		strlcpy(dev->name, buf, IFNAMSIZ);
972 	return ret;
973 }
974 
975 static int dev_get_valid_name(struct net *net,
976 			      struct net_device *dev,
977 			      const char *name)
978 {
979 	BUG_ON(!net);
980 
981 	if (!dev_valid_name(name))
982 		return -EINVAL;
983 
984 	if (strchr(name, '%'))
985 		return dev_alloc_name_ns(net, dev, name);
986 	else if (__dev_get_by_name(net, name))
987 		return -EEXIST;
988 	else if (dev->name != name)
989 		strlcpy(dev->name, name, IFNAMSIZ);
990 
991 	return 0;
992 }
993 
994 /**
995  *	dev_change_name - change name of a device
996  *	@dev: device
997  *	@newname: name (or format string) must be at least IFNAMSIZ
998  *
999  *	Change name of a device, can pass format strings "eth%d".
1000  *	for wildcarding.
1001  */
1002 int dev_change_name(struct net_device *dev, const char *newname)
1003 {
1004 	char oldname[IFNAMSIZ];
1005 	int err = 0;
1006 	int ret;
1007 	struct net *net;
1008 
1009 	ASSERT_RTNL();
1010 	BUG_ON(!dev_net(dev));
1011 
1012 	net = dev_net(dev);
1013 	if (dev->flags & IFF_UP)
1014 		return -EBUSY;
1015 
1016 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
1017 		return 0;
1018 
1019 	memcpy(oldname, dev->name, IFNAMSIZ);
1020 
1021 	err = dev_get_valid_name(net, dev, newname);
1022 	if (err < 0)
1023 		return err;
1024 
1025 rollback:
1026 	ret = device_rename(&dev->dev, dev->name);
1027 	if (ret) {
1028 		memcpy(dev->name, oldname, IFNAMSIZ);
1029 		return ret;
1030 	}
1031 
1032 	write_lock_bh(&dev_base_lock);
1033 	hlist_del_rcu(&dev->name_hlist);
1034 	write_unlock_bh(&dev_base_lock);
1035 
1036 	synchronize_rcu();
1037 
1038 	write_lock_bh(&dev_base_lock);
1039 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1040 	write_unlock_bh(&dev_base_lock);
1041 
1042 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1043 	ret = notifier_to_errno(ret);
1044 
1045 	if (ret) {
1046 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1047 		if (err >= 0) {
1048 			err = ret;
1049 			memcpy(dev->name, oldname, IFNAMSIZ);
1050 			goto rollback;
1051 		} else {
1052 			pr_err("%s: name change rollback failed: %d\n",
1053 			       dev->name, ret);
1054 		}
1055 	}
1056 
1057 	return err;
1058 }
1059 
1060 /**
1061  *	dev_set_alias - change ifalias of a device
1062  *	@dev: device
1063  *	@alias: name up to IFALIASZ
1064  *	@len: limit of bytes to copy from info
1065  *
1066  *	Set ifalias for a device,
1067  */
1068 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1069 {
1070 	char *new_ifalias;
1071 
1072 	ASSERT_RTNL();
1073 
1074 	if (len >= IFALIASZ)
1075 		return -EINVAL;
1076 
1077 	if (!len) {
1078 		if (dev->ifalias) {
1079 			kfree(dev->ifalias);
1080 			dev->ifalias = NULL;
1081 		}
1082 		return 0;
1083 	}
1084 
1085 	new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1086 	if (!new_ifalias)
1087 		return -ENOMEM;
1088 	dev->ifalias = new_ifalias;
1089 
1090 	strlcpy(dev->ifalias, alias, len+1);
1091 	return len;
1092 }
1093 
1094 
1095 /**
1096  *	netdev_features_change - device changes features
1097  *	@dev: device to cause notification
1098  *
1099  *	Called to indicate a device has changed features.
1100  */
1101 void netdev_features_change(struct net_device *dev)
1102 {
1103 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1104 }
1105 EXPORT_SYMBOL(netdev_features_change);
1106 
1107 /**
1108  *	netdev_state_change - device changes state
1109  *	@dev: device to cause notification
1110  *
1111  *	Called to indicate a device has changed state. This function calls
1112  *	the notifier chains for netdev_chain and sends a NEWLINK message
1113  *	to the routing socket.
1114  */
1115 void netdev_state_change(struct net_device *dev)
1116 {
1117 	if (dev->flags & IFF_UP) {
1118 		call_netdevice_notifiers(NETDEV_CHANGE, dev);
1119 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1120 	}
1121 }
1122 EXPORT_SYMBOL(netdev_state_change);
1123 
1124 /**
1125  * 	netdev_notify_peers - notify network peers about existence of @dev
1126  * 	@dev: network device
1127  *
1128  * Generate traffic such that interested network peers are aware of
1129  * @dev, such as by generating a gratuitous ARP. This may be used when
1130  * a device wants to inform the rest of the network about some sort of
1131  * reconfiguration such as a failover event or virtual machine
1132  * migration.
1133  */
1134 void netdev_notify_peers(struct net_device *dev)
1135 {
1136 	rtnl_lock();
1137 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1138 	rtnl_unlock();
1139 }
1140 EXPORT_SYMBOL(netdev_notify_peers);
1141 
1142 /**
1143  *	dev_load 	- load a network module
1144  *	@net: the applicable net namespace
1145  *	@name: name of interface
1146  *
1147  *	If a network interface is not present and the process has suitable
1148  *	privileges this function loads the module. If module loading is not
1149  *	available in this kernel then it becomes a nop.
1150  */
1151 
1152 void dev_load(struct net *net, const char *name)
1153 {
1154 	struct net_device *dev;
1155 	int no_module;
1156 
1157 	rcu_read_lock();
1158 	dev = dev_get_by_name_rcu(net, name);
1159 	rcu_read_unlock();
1160 
1161 	no_module = !dev;
1162 	if (no_module && capable(CAP_NET_ADMIN))
1163 		no_module = request_module("netdev-%s", name);
1164 	if (no_module && capable(CAP_SYS_MODULE)) {
1165 		if (!request_module("%s", name))
1166 			pr_warn("Loading kernel module for a network device with CAP_SYS_MODULE (deprecated).  Use CAP_NET_ADMIN and alias netdev-%s instead.\n",
1167 				name);
1168 	}
1169 }
1170 EXPORT_SYMBOL(dev_load);
1171 
1172 static int __dev_open(struct net_device *dev)
1173 {
1174 	const struct net_device_ops *ops = dev->netdev_ops;
1175 	int ret;
1176 
1177 	ASSERT_RTNL();
1178 
1179 	if (!netif_device_present(dev))
1180 		return -ENODEV;
1181 
1182 	ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1183 	ret = notifier_to_errno(ret);
1184 	if (ret)
1185 		return ret;
1186 
1187 	set_bit(__LINK_STATE_START, &dev->state);
1188 
1189 	if (ops->ndo_validate_addr)
1190 		ret = ops->ndo_validate_addr(dev);
1191 
1192 	if (!ret && ops->ndo_open)
1193 		ret = ops->ndo_open(dev);
1194 
1195 	if (ret)
1196 		clear_bit(__LINK_STATE_START, &dev->state);
1197 	else {
1198 		dev->flags |= IFF_UP;
1199 		net_dmaengine_get();
1200 		dev_set_rx_mode(dev);
1201 		dev_activate(dev);
1202 		add_device_randomness(dev->dev_addr, dev->addr_len);
1203 	}
1204 
1205 	return ret;
1206 }
1207 
1208 /**
1209  *	dev_open	- prepare an interface for use.
1210  *	@dev:	device to open
1211  *
1212  *	Takes a device from down to up state. The device's private open
1213  *	function is invoked and then the multicast lists are loaded. Finally
1214  *	the device is moved into the up state and a %NETDEV_UP message is
1215  *	sent to the netdev notifier chain.
1216  *
1217  *	Calling this function on an active interface is a nop. On a failure
1218  *	a negative errno code is returned.
1219  */
1220 int dev_open(struct net_device *dev)
1221 {
1222 	int ret;
1223 
1224 	if (dev->flags & IFF_UP)
1225 		return 0;
1226 
1227 	ret = __dev_open(dev);
1228 	if (ret < 0)
1229 		return ret;
1230 
1231 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1232 	call_netdevice_notifiers(NETDEV_UP, dev);
1233 
1234 	return ret;
1235 }
1236 EXPORT_SYMBOL(dev_open);
1237 
1238 static int __dev_close_many(struct list_head *head)
1239 {
1240 	struct net_device *dev;
1241 
1242 	ASSERT_RTNL();
1243 	might_sleep();
1244 
1245 	list_for_each_entry(dev, head, unreg_list) {
1246 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1247 
1248 		clear_bit(__LINK_STATE_START, &dev->state);
1249 
1250 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1251 		 * can be even on different cpu. So just clear netif_running().
1252 		 *
1253 		 * dev->stop() will invoke napi_disable() on all of it's
1254 		 * napi_struct instances on this device.
1255 		 */
1256 		smp_mb__after_clear_bit(); /* Commit netif_running(). */
1257 	}
1258 
1259 	dev_deactivate_many(head);
1260 
1261 	list_for_each_entry(dev, head, unreg_list) {
1262 		const struct net_device_ops *ops = dev->netdev_ops;
1263 
1264 		/*
1265 		 *	Call the device specific close. This cannot fail.
1266 		 *	Only if device is UP
1267 		 *
1268 		 *	We allow it to be called even after a DETACH hot-plug
1269 		 *	event.
1270 		 */
1271 		if (ops->ndo_stop)
1272 			ops->ndo_stop(dev);
1273 
1274 		dev->flags &= ~IFF_UP;
1275 		net_dmaengine_put();
1276 	}
1277 
1278 	return 0;
1279 }
1280 
1281 static int __dev_close(struct net_device *dev)
1282 {
1283 	int retval;
1284 	LIST_HEAD(single);
1285 
1286 	list_add(&dev->unreg_list, &single);
1287 	retval = __dev_close_many(&single);
1288 	list_del(&single);
1289 	return retval;
1290 }
1291 
1292 static int dev_close_many(struct list_head *head)
1293 {
1294 	struct net_device *dev, *tmp;
1295 	LIST_HEAD(tmp_list);
1296 
1297 	list_for_each_entry_safe(dev, tmp, head, unreg_list)
1298 		if (!(dev->flags & IFF_UP))
1299 			list_move(&dev->unreg_list, &tmp_list);
1300 
1301 	__dev_close_many(head);
1302 
1303 	list_for_each_entry(dev, head, unreg_list) {
1304 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1305 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1306 	}
1307 
1308 	/* rollback_registered_many needs the complete original list */
1309 	list_splice(&tmp_list, head);
1310 	return 0;
1311 }
1312 
1313 /**
1314  *	dev_close - shutdown an interface.
1315  *	@dev: device to shutdown
1316  *
1317  *	This function moves an active device into down state. A
1318  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1319  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1320  *	chain.
1321  */
1322 int dev_close(struct net_device *dev)
1323 {
1324 	if (dev->flags & IFF_UP) {
1325 		LIST_HEAD(single);
1326 
1327 		list_add(&dev->unreg_list, &single);
1328 		dev_close_many(&single);
1329 		list_del(&single);
1330 	}
1331 	return 0;
1332 }
1333 EXPORT_SYMBOL(dev_close);
1334 
1335 
1336 /**
1337  *	dev_disable_lro - disable Large Receive Offload on a device
1338  *	@dev: device
1339  *
1340  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1341  *	called under RTNL.  This is needed if received packets may be
1342  *	forwarded to another interface.
1343  */
1344 void dev_disable_lro(struct net_device *dev)
1345 {
1346 	/*
1347 	 * If we're trying to disable lro on a vlan device
1348 	 * use the underlying physical device instead
1349 	 */
1350 	if (is_vlan_dev(dev))
1351 		dev = vlan_dev_real_dev(dev);
1352 
1353 	dev->wanted_features &= ~NETIF_F_LRO;
1354 	netdev_update_features(dev);
1355 
1356 	if (unlikely(dev->features & NETIF_F_LRO))
1357 		netdev_WARN(dev, "failed to disable LRO!\n");
1358 }
1359 EXPORT_SYMBOL(dev_disable_lro);
1360 
1361 
1362 static int dev_boot_phase = 1;
1363 
1364 /**
1365  *	register_netdevice_notifier - register a network notifier block
1366  *	@nb: notifier
1367  *
1368  *	Register a notifier to be called when network device events occur.
1369  *	The notifier passed is linked into the kernel structures and must
1370  *	not be reused until it has been unregistered. A negative errno code
1371  *	is returned on a failure.
1372  *
1373  * 	When registered all registration and up events are replayed
1374  *	to the new notifier to allow device to have a race free
1375  *	view of the network device list.
1376  */
1377 
1378 int register_netdevice_notifier(struct notifier_block *nb)
1379 {
1380 	struct net_device *dev;
1381 	struct net_device *last;
1382 	struct net *net;
1383 	int err;
1384 
1385 	rtnl_lock();
1386 	err = raw_notifier_chain_register(&netdev_chain, nb);
1387 	if (err)
1388 		goto unlock;
1389 	if (dev_boot_phase)
1390 		goto unlock;
1391 	for_each_net(net) {
1392 		for_each_netdev(net, dev) {
1393 			err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1394 			err = notifier_to_errno(err);
1395 			if (err)
1396 				goto rollback;
1397 
1398 			if (!(dev->flags & IFF_UP))
1399 				continue;
1400 
1401 			nb->notifier_call(nb, NETDEV_UP, dev);
1402 		}
1403 	}
1404 
1405 unlock:
1406 	rtnl_unlock();
1407 	return err;
1408 
1409 rollback:
1410 	last = dev;
1411 	for_each_net(net) {
1412 		for_each_netdev(net, dev) {
1413 			if (dev == last)
1414 				goto outroll;
1415 
1416 			if (dev->flags & IFF_UP) {
1417 				nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1418 				nb->notifier_call(nb, NETDEV_DOWN, dev);
1419 			}
1420 			nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1421 		}
1422 	}
1423 
1424 outroll:
1425 	raw_notifier_chain_unregister(&netdev_chain, nb);
1426 	goto unlock;
1427 }
1428 EXPORT_SYMBOL(register_netdevice_notifier);
1429 
1430 /**
1431  *	unregister_netdevice_notifier - unregister a network notifier block
1432  *	@nb: notifier
1433  *
1434  *	Unregister a notifier previously registered by
1435  *	register_netdevice_notifier(). The notifier is unlinked into the
1436  *	kernel structures and may then be reused. A negative errno code
1437  *	is returned on a failure.
1438  *
1439  * 	After unregistering unregister and down device events are synthesized
1440  *	for all devices on the device list to the removed notifier to remove
1441  *	the need for special case cleanup code.
1442  */
1443 
1444 int unregister_netdevice_notifier(struct notifier_block *nb)
1445 {
1446 	struct net_device *dev;
1447 	struct net *net;
1448 	int err;
1449 
1450 	rtnl_lock();
1451 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1452 	if (err)
1453 		goto unlock;
1454 
1455 	for_each_net(net) {
1456 		for_each_netdev(net, dev) {
1457 			if (dev->flags & IFF_UP) {
1458 				nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1459 				nb->notifier_call(nb, NETDEV_DOWN, dev);
1460 			}
1461 			nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1462 		}
1463 	}
1464 unlock:
1465 	rtnl_unlock();
1466 	return err;
1467 }
1468 EXPORT_SYMBOL(unregister_netdevice_notifier);
1469 
1470 /**
1471  *	call_netdevice_notifiers - call all network notifier blocks
1472  *      @val: value passed unmodified to notifier function
1473  *      @dev: net_device pointer passed unmodified to notifier function
1474  *
1475  *	Call all network notifier blocks.  Parameters and return value
1476  *	are as for raw_notifier_call_chain().
1477  */
1478 
1479 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1480 {
1481 	ASSERT_RTNL();
1482 	return raw_notifier_call_chain(&netdev_chain, val, dev);
1483 }
1484 EXPORT_SYMBOL(call_netdevice_notifiers);
1485 
1486 static struct static_key netstamp_needed __read_mostly;
1487 #ifdef HAVE_JUMP_LABEL
1488 /* We are not allowed to call static_key_slow_dec() from irq context
1489  * If net_disable_timestamp() is called from irq context, defer the
1490  * static_key_slow_dec() calls.
1491  */
1492 static atomic_t netstamp_needed_deferred;
1493 #endif
1494 
1495 void net_enable_timestamp(void)
1496 {
1497 #ifdef HAVE_JUMP_LABEL
1498 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1499 
1500 	if (deferred) {
1501 		while (--deferred)
1502 			static_key_slow_dec(&netstamp_needed);
1503 		return;
1504 	}
1505 #endif
1506 	WARN_ON(in_interrupt());
1507 	static_key_slow_inc(&netstamp_needed);
1508 }
1509 EXPORT_SYMBOL(net_enable_timestamp);
1510 
1511 void net_disable_timestamp(void)
1512 {
1513 #ifdef HAVE_JUMP_LABEL
1514 	if (in_interrupt()) {
1515 		atomic_inc(&netstamp_needed_deferred);
1516 		return;
1517 	}
1518 #endif
1519 	static_key_slow_dec(&netstamp_needed);
1520 }
1521 EXPORT_SYMBOL(net_disable_timestamp);
1522 
1523 static inline void net_timestamp_set(struct sk_buff *skb)
1524 {
1525 	skb->tstamp.tv64 = 0;
1526 	if (static_key_false(&netstamp_needed))
1527 		__net_timestamp(skb);
1528 }
1529 
1530 #define net_timestamp_check(COND, SKB)			\
1531 	if (static_key_false(&netstamp_needed)) {		\
1532 		if ((COND) && !(SKB)->tstamp.tv64)	\
1533 			__net_timestamp(SKB);		\
1534 	}						\
1535 
1536 static int net_hwtstamp_validate(struct ifreq *ifr)
1537 {
1538 	struct hwtstamp_config cfg;
1539 	enum hwtstamp_tx_types tx_type;
1540 	enum hwtstamp_rx_filters rx_filter;
1541 	int tx_type_valid = 0;
1542 	int rx_filter_valid = 0;
1543 
1544 	if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg)))
1545 		return -EFAULT;
1546 
1547 	if (cfg.flags) /* reserved for future extensions */
1548 		return -EINVAL;
1549 
1550 	tx_type = cfg.tx_type;
1551 	rx_filter = cfg.rx_filter;
1552 
1553 	switch (tx_type) {
1554 	case HWTSTAMP_TX_OFF:
1555 	case HWTSTAMP_TX_ON:
1556 	case HWTSTAMP_TX_ONESTEP_SYNC:
1557 		tx_type_valid = 1;
1558 		break;
1559 	}
1560 
1561 	switch (rx_filter) {
1562 	case HWTSTAMP_FILTER_NONE:
1563 	case HWTSTAMP_FILTER_ALL:
1564 	case HWTSTAMP_FILTER_SOME:
1565 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1566 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1567 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1568 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1569 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1570 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1571 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1572 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1573 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1574 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
1575 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
1576 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1577 		rx_filter_valid = 1;
1578 		break;
1579 	}
1580 
1581 	if (!tx_type_valid || !rx_filter_valid)
1582 		return -ERANGE;
1583 
1584 	return 0;
1585 }
1586 
1587 static inline bool is_skb_forwardable(struct net_device *dev,
1588 				      struct sk_buff *skb)
1589 {
1590 	unsigned int len;
1591 
1592 	if (!(dev->flags & IFF_UP))
1593 		return false;
1594 
1595 	len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1596 	if (skb->len <= len)
1597 		return true;
1598 
1599 	/* if TSO is enabled, we don't care about the length as the packet
1600 	 * could be forwarded without being segmented before
1601 	 */
1602 	if (skb_is_gso(skb))
1603 		return true;
1604 
1605 	return false;
1606 }
1607 
1608 /**
1609  * dev_forward_skb - loopback an skb to another netif
1610  *
1611  * @dev: destination network device
1612  * @skb: buffer to forward
1613  *
1614  * return values:
1615  *	NET_RX_SUCCESS	(no congestion)
1616  *	NET_RX_DROP     (packet was dropped, but freed)
1617  *
1618  * dev_forward_skb can be used for injecting an skb from the
1619  * start_xmit function of one device into the receive queue
1620  * of another device.
1621  *
1622  * The receiving device may be in another namespace, so
1623  * we have to clear all information in the skb that could
1624  * impact namespace isolation.
1625  */
1626 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1627 {
1628 	if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1629 		if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1630 			atomic_long_inc(&dev->rx_dropped);
1631 			kfree_skb(skb);
1632 			return NET_RX_DROP;
1633 		}
1634 	}
1635 
1636 	skb_orphan(skb);
1637 	nf_reset(skb);
1638 
1639 	if (unlikely(!is_skb_forwardable(dev, skb))) {
1640 		atomic_long_inc(&dev->rx_dropped);
1641 		kfree_skb(skb);
1642 		return NET_RX_DROP;
1643 	}
1644 	skb->skb_iif = 0;
1645 	skb->dev = dev;
1646 	skb_dst_drop(skb);
1647 	skb->tstamp.tv64 = 0;
1648 	skb->pkt_type = PACKET_HOST;
1649 	skb->protocol = eth_type_trans(skb, dev);
1650 	skb->mark = 0;
1651 	secpath_reset(skb);
1652 	nf_reset(skb);
1653 	return netif_rx(skb);
1654 }
1655 EXPORT_SYMBOL_GPL(dev_forward_skb);
1656 
1657 static inline int deliver_skb(struct sk_buff *skb,
1658 			      struct packet_type *pt_prev,
1659 			      struct net_device *orig_dev)
1660 {
1661 	if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1662 		return -ENOMEM;
1663 	atomic_inc(&skb->users);
1664 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1665 }
1666 
1667 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1668 {
1669 	if (!ptype->af_packet_priv || !skb->sk)
1670 		return false;
1671 
1672 	if (ptype->id_match)
1673 		return ptype->id_match(ptype, skb->sk);
1674 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1675 		return true;
1676 
1677 	return false;
1678 }
1679 
1680 /*
1681  *	Support routine. Sends outgoing frames to any network
1682  *	taps currently in use.
1683  */
1684 
1685 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1686 {
1687 	struct packet_type *ptype;
1688 	struct sk_buff *skb2 = NULL;
1689 	struct packet_type *pt_prev = NULL;
1690 
1691 	rcu_read_lock();
1692 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
1693 		/* Never send packets back to the socket
1694 		 * they originated from - MvS (miquels@drinkel.ow.org)
1695 		 */
1696 		if ((ptype->dev == dev || !ptype->dev) &&
1697 		    (!skb_loop_sk(ptype, skb))) {
1698 			if (pt_prev) {
1699 				deliver_skb(skb2, pt_prev, skb->dev);
1700 				pt_prev = ptype;
1701 				continue;
1702 			}
1703 
1704 			skb2 = skb_clone(skb, GFP_ATOMIC);
1705 			if (!skb2)
1706 				break;
1707 
1708 			net_timestamp_set(skb2);
1709 
1710 			/* skb->nh should be correctly
1711 			   set by sender, so that the second statement is
1712 			   just protection against buggy protocols.
1713 			 */
1714 			skb_reset_mac_header(skb2);
1715 
1716 			if (skb_network_header(skb2) < skb2->data ||
1717 			    skb2->network_header > skb2->tail) {
1718 				net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1719 						     ntohs(skb2->protocol),
1720 						     dev->name);
1721 				skb_reset_network_header(skb2);
1722 			}
1723 
1724 			skb2->transport_header = skb2->network_header;
1725 			skb2->pkt_type = PACKET_OUTGOING;
1726 			pt_prev = ptype;
1727 		}
1728 	}
1729 	if (pt_prev)
1730 		pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1731 	rcu_read_unlock();
1732 }
1733 
1734 /**
1735  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1736  * @dev: Network device
1737  * @txq: number of queues available
1738  *
1739  * If real_num_tx_queues is changed the tc mappings may no longer be
1740  * valid. To resolve this verify the tc mapping remains valid and if
1741  * not NULL the mapping. With no priorities mapping to this
1742  * offset/count pair it will no longer be used. In the worst case TC0
1743  * is invalid nothing can be done so disable priority mappings. If is
1744  * expected that drivers will fix this mapping if they can before
1745  * calling netif_set_real_num_tx_queues.
1746  */
1747 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1748 {
1749 	int i;
1750 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1751 
1752 	/* If TC0 is invalidated disable TC mapping */
1753 	if (tc->offset + tc->count > txq) {
1754 		pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1755 		dev->num_tc = 0;
1756 		return;
1757 	}
1758 
1759 	/* Invalidated prio to tc mappings set to TC0 */
1760 	for (i = 1; i < TC_BITMASK + 1; i++) {
1761 		int q = netdev_get_prio_tc_map(dev, i);
1762 
1763 		tc = &dev->tc_to_txq[q];
1764 		if (tc->offset + tc->count > txq) {
1765 			pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1766 				i, q);
1767 			netdev_set_prio_tc_map(dev, i, 0);
1768 		}
1769 	}
1770 }
1771 
1772 /*
1773  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
1774  * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
1775  */
1776 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
1777 {
1778 	int rc;
1779 
1780 	if (txq < 1 || txq > dev->num_tx_queues)
1781 		return -EINVAL;
1782 
1783 	if (dev->reg_state == NETREG_REGISTERED ||
1784 	    dev->reg_state == NETREG_UNREGISTERING) {
1785 		ASSERT_RTNL();
1786 
1787 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
1788 						  txq);
1789 		if (rc)
1790 			return rc;
1791 
1792 		if (dev->num_tc)
1793 			netif_setup_tc(dev, txq);
1794 
1795 		if (txq < dev->real_num_tx_queues)
1796 			qdisc_reset_all_tx_gt(dev, txq);
1797 	}
1798 
1799 	dev->real_num_tx_queues = txq;
1800 	return 0;
1801 }
1802 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
1803 
1804 #ifdef CONFIG_RPS
1805 /**
1806  *	netif_set_real_num_rx_queues - set actual number of RX queues used
1807  *	@dev: Network device
1808  *	@rxq: Actual number of RX queues
1809  *
1810  *	This must be called either with the rtnl_lock held or before
1811  *	registration of the net device.  Returns 0 on success, or a
1812  *	negative error code.  If called before registration, it always
1813  *	succeeds.
1814  */
1815 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
1816 {
1817 	int rc;
1818 
1819 	if (rxq < 1 || rxq > dev->num_rx_queues)
1820 		return -EINVAL;
1821 
1822 	if (dev->reg_state == NETREG_REGISTERED) {
1823 		ASSERT_RTNL();
1824 
1825 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
1826 						  rxq);
1827 		if (rc)
1828 			return rc;
1829 	}
1830 
1831 	dev->real_num_rx_queues = rxq;
1832 	return 0;
1833 }
1834 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
1835 #endif
1836 
1837 /**
1838  * netif_get_num_default_rss_queues - default number of RSS queues
1839  *
1840  * This routine should set an upper limit on the number of RSS queues
1841  * used by default by multiqueue devices.
1842  */
1843 int netif_get_num_default_rss_queues(void)
1844 {
1845 	return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
1846 }
1847 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
1848 
1849 static inline void __netif_reschedule(struct Qdisc *q)
1850 {
1851 	struct softnet_data *sd;
1852 	unsigned long flags;
1853 
1854 	local_irq_save(flags);
1855 	sd = &__get_cpu_var(softnet_data);
1856 	q->next_sched = NULL;
1857 	*sd->output_queue_tailp = q;
1858 	sd->output_queue_tailp = &q->next_sched;
1859 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
1860 	local_irq_restore(flags);
1861 }
1862 
1863 void __netif_schedule(struct Qdisc *q)
1864 {
1865 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1866 		__netif_reschedule(q);
1867 }
1868 EXPORT_SYMBOL(__netif_schedule);
1869 
1870 void dev_kfree_skb_irq(struct sk_buff *skb)
1871 {
1872 	if (atomic_dec_and_test(&skb->users)) {
1873 		struct softnet_data *sd;
1874 		unsigned long flags;
1875 
1876 		local_irq_save(flags);
1877 		sd = &__get_cpu_var(softnet_data);
1878 		skb->next = sd->completion_queue;
1879 		sd->completion_queue = skb;
1880 		raise_softirq_irqoff(NET_TX_SOFTIRQ);
1881 		local_irq_restore(flags);
1882 	}
1883 }
1884 EXPORT_SYMBOL(dev_kfree_skb_irq);
1885 
1886 void dev_kfree_skb_any(struct sk_buff *skb)
1887 {
1888 	if (in_irq() || irqs_disabled())
1889 		dev_kfree_skb_irq(skb);
1890 	else
1891 		dev_kfree_skb(skb);
1892 }
1893 EXPORT_SYMBOL(dev_kfree_skb_any);
1894 
1895 
1896 /**
1897  * netif_device_detach - mark device as removed
1898  * @dev: network device
1899  *
1900  * Mark device as removed from system and therefore no longer available.
1901  */
1902 void netif_device_detach(struct net_device *dev)
1903 {
1904 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1905 	    netif_running(dev)) {
1906 		netif_tx_stop_all_queues(dev);
1907 	}
1908 }
1909 EXPORT_SYMBOL(netif_device_detach);
1910 
1911 /**
1912  * netif_device_attach - mark device as attached
1913  * @dev: network device
1914  *
1915  * Mark device as attached from system and restart if needed.
1916  */
1917 void netif_device_attach(struct net_device *dev)
1918 {
1919 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1920 	    netif_running(dev)) {
1921 		netif_tx_wake_all_queues(dev);
1922 		__netdev_watchdog_up(dev);
1923 	}
1924 }
1925 EXPORT_SYMBOL(netif_device_attach);
1926 
1927 static void skb_warn_bad_offload(const struct sk_buff *skb)
1928 {
1929 	static const netdev_features_t null_features = 0;
1930 	struct net_device *dev = skb->dev;
1931 	const char *driver = "";
1932 
1933 	if (dev && dev->dev.parent)
1934 		driver = dev_driver_string(dev->dev.parent);
1935 
1936 	WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
1937 	     "gso_type=%d ip_summed=%d\n",
1938 	     driver, dev ? &dev->features : &null_features,
1939 	     skb->sk ? &skb->sk->sk_route_caps : &null_features,
1940 	     skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
1941 	     skb_shinfo(skb)->gso_type, skb->ip_summed);
1942 }
1943 
1944 /*
1945  * Invalidate hardware checksum when packet is to be mangled, and
1946  * complete checksum manually on outgoing path.
1947  */
1948 int skb_checksum_help(struct sk_buff *skb)
1949 {
1950 	__wsum csum;
1951 	int ret = 0, offset;
1952 
1953 	if (skb->ip_summed == CHECKSUM_COMPLETE)
1954 		goto out_set_summed;
1955 
1956 	if (unlikely(skb_shinfo(skb)->gso_size)) {
1957 		skb_warn_bad_offload(skb);
1958 		return -EINVAL;
1959 	}
1960 
1961 	offset = skb_checksum_start_offset(skb);
1962 	BUG_ON(offset >= skb_headlen(skb));
1963 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
1964 
1965 	offset += skb->csum_offset;
1966 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1967 
1968 	if (skb_cloned(skb) &&
1969 	    !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1970 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1971 		if (ret)
1972 			goto out;
1973 	}
1974 
1975 	*(__sum16 *)(skb->data + offset) = csum_fold(csum);
1976 out_set_summed:
1977 	skb->ip_summed = CHECKSUM_NONE;
1978 out:
1979 	return ret;
1980 }
1981 EXPORT_SYMBOL(skb_checksum_help);
1982 
1983 /**
1984  *	skb_gso_segment - Perform segmentation on skb.
1985  *	@skb: buffer to segment
1986  *	@features: features for the output path (see dev->features)
1987  *
1988  *	This function segments the given skb and returns a list of segments.
1989  *
1990  *	It may return NULL if the skb requires no segmentation.  This is
1991  *	only possible when GSO is used for verifying header integrity.
1992  */
1993 struct sk_buff *skb_gso_segment(struct sk_buff *skb,
1994 	netdev_features_t features)
1995 {
1996 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1997 	struct packet_type *ptype;
1998 	__be16 type = skb->protocol;
1999 	int vlan_depth = ETH_HLEN;
2000 	int err;
2001 
2002 	while (type == htons(ETH_P_8021Q)) {
2003 		struct vlan_hdr *vh;
2004 
2005 		if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN)))
2006 			return ERR_PTR(-EINVAL);
2007 
2008 		vh = (struct vlan_hdr *)(skb->data + vlan_depth);
2009 		type = vh->h_vlan_encapsulated_proto;
2010 		vlan_depth += VLAN_HLEN;
2011 	}
2012 
2013 	skb_reset_mac_header(skb);
2014 	skb->mac_len = skb->network_header - skb->mac_header;
2015 	__skb_pull(skb, skb->mac_len);
2016 
2017 	if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
2018 		skb_warn_bad_offload(skb);
2019 
2020 		if (skb_header_cloned(skb) &&
2021 		    (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
2022 			return ERR_PTR(err);
2023 	}
2024 
2025 	rcu_read_lock();
2026 	list_for_each_entry_rcu(ptype,
2027 			&ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
2028 		if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
2029 			if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
2030 				err = ptype->gso_send_check(skb);
2031 				segs = ERR_PTR(err);
2032 				if (err || skb_gso_ok(skb, features))
2033 					break;
2034 				__skb_push(skb, (skb->data -
2035 						 skb_network_header(skb)));
2036 			}
2037 			segs = ptype->gso_segment(skb, features);
2038 			break;
2039 		}
2040 	}
2041 	rcu_read_unlock();
2042 
2043 	__skb_push(skb, skb->data - skb_mac_header(skb));
2044 
2045 	return segs;
2046 }
2047 EXPORT_SYMBOL(skb_gso_segment);
2048 
2049 /* Take action when hardware reception checksum errors are detected. */
2050 #ifdef CONFIG_BUG
2051 void netdev_rx_csum_fault(struct net_device *dev)
2052 {
2053 	if (net_ratelimit()) {
2054 		pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2055 		dump_stack();
2056 	}
2057 }
2058 EXPORT_SYMBOL(netdev_rx_csum_fault);
2059 #endif
2060 
2061 /* Actually, we should eliminate this check as soon as we know, that:
2062  * 1. IOMMU is present and allows to map all the memory.
2063  * 2. No high memory really exists on this machine.
2064  */
2065 
2066 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2067 {
2068 #ifdef CONFIG_HIGHMEM
2069 	int i;
2070 	if (!(dev->features & NETIF_F_HIGHDMA)) {
2071 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2072 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2073 			if (PageHighMem(skb_frag_page(frag)))
2074 				return 1;
2075 		}
2076 	}
2077 
2078 	if (PCI_DMA_BUS_IS_PHYS) {
2079 		struct device *pdev = dev->dev.parent;
2080 
2081 		if (!pdev)
2082 			return 0;
2083 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2084 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2085 			dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2086 			if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2087 				return 1;
2088 		}
2089 	}
2090 #endif
2091 	return 0;
2092 }
2093 
2094 struct dev_gso_cb {
2095 	void (*destructor)(struct sk_buff *skb);
2096 };
2097 
2098 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
2099 
2100 static void dev_gso_skb_destructor(struct sk_buff *skb)
2101 {
2102 	struct dev_gso_cb *cb;
2103 
2104 	do {
2105 		struct sk_buff *nskb = skb->next;
2106 
2107 		skb->next = nskb->next;
2108 		nskb->next = NULL;
2109 		kfree_skb(nskb);
2110 	} while (skb->next);
2111 
2112 	cb = DEV_GSO_CB(skb);
2113 	if (cb->destructor)
2114 		cb->destructor(skb);
2115 }
2116 
2117 /**
2118  *	dev_gso_segment - Perform emulated hardware segmentation on skb.
2119  *	@skb: buffer to segment
2120  *	@features: device features as applicable to this skb
2121  *
2122  *	This function segments the given skb and stores the list of segments
2123  *	in skb->next.
2124  */
2125 static int dev_gso_segment(struct sk_buff *skb, netdev_features_t features)
2126 {
2127 	struct sk_buff *segs;
2128 
2129 	segs = skb_gso_segment(skb, features);
2130 
2131 	/* Verifying header integrity only. */
2132 	if (!segs)
2133 		return 0;
2134 
2135 	if (IS_ERR(segs))
2136 		return PTR_ERR(segs);
2137 
2138 	skb->next = segs;
2139 	DEV_GSO_CB(skb)->destructor = skb->destructor;
2140 	skb->destructor = dev_gso_skb_destructor;
2141 
2142 	return 0;
2143 }
2144 
2145 static bool can_checksum_protocol(netdev_features_t features, __be16 protocol)
2146 {
2147 	return ((features & NETIF_F_GEN_CSUM) ||
2148 		((features & NETIF_F_V4_CSUM) &&
2149 		 protocol == htons(ETH_P_IP)) ||
2150 		((features & NETIF_F_V6_CSUM) &&
2151 		 protocol == htons(ETH_P_IPV6)) ||
2152 		((features & NETIF_F_FCOE_CRC) &&
2153 		 protocol == htons(ETH_P_FCOE)));
2154 }
2155 
2156 static netdev_features_t harmonize_features(struct sk_buff *skb,
2157 	__be16 protocol, netdev_features_t features)
2158 {
2159 	if (skb->ip_summed != CHECKSUM_NONE &&
2160 	    !can_checksum_protocol(features, protocol)) {
2161 		features &= ~NETIF_F_ALL_CSUM;
2162 		features &= ~NETIF_F_SG;
2163 	} else if (illegal_highdma(skb->dev, skb)) {
2164 		features &= ~NETIF_F_SG;
2165 	}
2166 
2167 	return features;
2168 }
2169 
2170 netdev_features_t netif_skb_features(struct sk_buff *skb)
2171 {
2172 	__be16 protocol = skb->protocol;
2173 	netdev_features_t features = skb->dev->features;
2174 
2175 	if (skb_shinfo(skb)->gso_segs > skb->dev->gso_max_segs)
2176 		features &= ~NETIF_F_GSO_MASK;
2177 
2178 	if (protocol == htons(ETH_P_8021Q)) {
2179 		struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2180 		protocol = veh->h_vlan_encapsulated_proto;
2181 	} else if (!vlan_tx_tag_present(skb)) {
2182 		return harmonize_features(skb, protocol, features);
2183 	}
2184 
2185 	features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_TX);
2186 
2187 	if (protocol != htons(ETH_P_8021Q)) {
2188 		return harmonize_features(skb, protocol, features);
2189 	} else {
2190 		features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST |
2191 				NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_TX;
2192 		return harmonize_features(skb, protocol, features);
2193 	}
2194 }
2195 EXPORT_SYMBOL(netif_skb_features);
2196 
2197 /*
2198  * Returns true if either:
2199  *	1. skb has frag_list and the device doesn't support FRAGLIST, or
2200  *	2. skb is fragmented and the device does not support SG.
2201  */
2202 static inline int skb_needs_linearize(struct sk_buff *skb,
2203 				      int features)
2204 {
2205 	return skb_is_nonlinear(skb) &&
2206 			((skb_has_frag_list(skb) &&
2207 				!(features & NETIF_F_FRAGLIST)) ||
2208 			(skb_shinfo(skb)->nr_frags &&
2209 				!(features & NETIF_F_SG)));
2210 }
2211 
2212 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2213 			struct netdev_queue *txq)
2214 {
2215 	const struct net_device_ops *ops = dev->netdev_ops;
2216 	int rc = NETDEV_TX_OK;
2217 	unsigned int skb_len;
2218 
2219 	if (likely(!skb->next)) {
2220 		netdev_features_t features;
2221 
2222 		/*
2223 		 * If device doesn't need skb->dst, release it right now while
2224 		 * its hot in this cpu cache
2225 		 */
2226 		if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2227 			skb_dst_drop(skb);
2228 
2229 		features = netif_skb_features(skb);
2230 
2231 		if (vlan_tx_tag_present(skb) &&
2232 		    !(features & NETIF_F_HW_VLAN_TX)) {
2233 			skb = __vlan_put_tag(skb, vlan_tx_tag_get(skb));
2234 			if (unlikely(!skb))
2235 				goto out;
2236 
2237 			skb->vlan_tci = 0;
2238 		}
2239 
2240 		if (netif_needs_gso(skb, features)) {
2241 			if (unlikely(dev_gso_segment(skb, features)))
2242 				goto out_kfree_skb;
2243 			if (skb->next)
2244 				goto gso;
2245 		} else {
2246 			if (skb_needs_linearize(skb, features) &&
2247 			    __skb_linearize(skb))
2248 				goto out_kfree_skb;
2249 
2250 			/* If packet is not checksummed and device does not
2251 			 * support checksumming for this protocol, complete
2252 			 * checksumming here.
2253 			 */
2254 			if (skb->ip_summed == CHECKSUM_PARTIAL) {
2255 				skb_set_transport_header(skb,
2256 					skb_checksum_start_offset(skb));
2257 				if (!(features & NETIF_F_ALL_CSUM) &&
2258 				     skb_checksum_help(skb))
2259 					goto out_kfree_skb;
2260 			}
2261 		}
2262 
2263 		if (!list_empty(&ptype_all))
2264 			dev_queue_xmit_nit(skb, dev);
2265 
2266 		skb_len = skb->len;
2267 		rc = ops->ndo_start_xmit(skb, dev);
2268 		trace_net_dev_xmit(skb, rc, dev, skb_len);
2269 		if (rc == NETDEV_TX_OK)
2270 			txq_trans_update(txq);
2271 		return rc;
2272 	}
2273 
2274 gso:
2275 	do {
2276 		struct sk_buff *nskb = skb->next;
2277 
2278 		skb->next = nskb->next;
2279 		nskb->next = NULL;
2280 
2281 		/*
2282 		 * If device doesn't need nskb->dst, release it right now while
2283 		 * its hot in this cpu cache
2284 		 */
2285 		if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2286 			skb_dst_drop(nskb);
2287 
2288 		if (!list_empty(&ptype_all))
2289 			dev_queue_xmit_nit(nskb, dev);
2290 
2291 		skb_len = nskb->len;
2292 		rc = ops->ndo_start_xmit(nskb, dev);
2293 		trace_net_dev_xmit(nskb, rc, dev, skb_len);
2294 		if (unlikely(rc != NETDEV_TX_OK)) {
2295 			if (rc & ~NETDEV_TX_MASK)
2296 				goto out_kfree_gso_skb;
2297 			nskb->next = skb->next;
2298 			skb->next = nskb;
2299 			return rc;
2300 		}
2301 		txq_trans_update(txq);
2302 		if (unlikely(netif_xmit_stopped(txq) && skb->next))
2303 			return NETDEV_TX_BUSY;
2304 	} while (skb->next);
2305 
2306 out_kfree_gso_skb:
2307 	if (likely(skb->next == NULL))
2308 		skb->destructor = DEV_GSO_CB(skb)->destructor;
2309 out_kfree_skb:
2310 	kfree_skb(skb);
2311 out:
2312 	return rc;
2313 }
2314 
2315 static u32 hashrnd __read_mostly;
2316 
2317 /*
2318  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2319  * to be used as a distribution range.
2320  */
2321 u16 __skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb,
2322 		  unsigned int num_tx_queues)
2323 {
2324 	u32 hash;
2325 	u16 qoffset = 0;
2326 	u16 qcount = num_tx_queues;
2327 
2328 	if (skb_rx_queue_recorded(skb)) {
2329 		hash = skb_get_rx_queue(skb);
2330 		while (unlikely(hash >= num_tx_queues))
2331 			hash -= num_tx_queues;
2332 		return hash;
2333 	}
2334 
2335 	if (dev->num_tc) {
2336 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2337 		qoffset = dev->tc_to_txq[tc].offset;
2338 		qcount = dev->tc_to_txq[tc].count;
2339 	}
2340 
2341 	if (skb->sk && skb->sk->sk_hash)
2342 		hash = skb->sk->sk_hash;
2343 	else
2344 		hash = (__force u16) skb->protocol;
2345 	hash = jhash_1word(hash, hashrnd);
2346 
2347 	return (u16) (((u64) hash * qcount) >> 32) + qoffset;
2348 }
2349 EXPORT_SYMBOL(__skb_tx_hash);
2350 
2351 static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index)
2352 {
2353 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2354 		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
2355 				     dev->name, queue_index,
2356 				     dev->real_num_tx_queues);
2357 		return 0;
2358 	}
2359 	return queue_index;
2360 }
2361 
2362 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
2363 {
2364 #ifdef CONFIG_XPS
2365 	struct xps_dev_maps *dev_maps;
2366 	struct xps_map *map;
2367 	int queue_index = -1;
2368 
2369 	rcu_read_lock();
2370 	dev_maps = rcu_dereference(dev->xps_maps);
2371 	if (dev_maps) {
2372 		map = rcu_dereference(
2373 		    dev_maps->cpu_map[raw_smp_processor_id()]);
2374 		if (map) {
2375 			if (map->len == 1)
2376 				queue_index = map->queues[0];
2377 			else {
2378 				u32 hash;
2379 				if (skb->sk && skb->sk->sk_hash)
2380 					hash = skb->sk->sk_hash;
2381 				else
2382 					hash = (__force u16) skb->protocol ^
2383 					    skb->rxhash;
2384 				hash = jhash_1word(hash, hashrnd);
2385 				queue_index = map->queues[
2386 				    ((u64)hash * map->len) >> 32];
2387 			}
2388 			if (unlikely(queue_index >= dev->real_num_tx_queues))
2389 				queue_index = -1;
2390 		}
2391 	}
2392 	rcu_read_unlock();
2393 
2394 	return queue_index;
2395 #else
2396 	return -1;
2397 #endif
2398 }
2399 
2400 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
2401 				    struct sk_buff *skb)
2402 {
2403 	int queue_index;
2404 	const struct net_device_ops *ops = dev->netdev_ops;
2405 
2406 	if (dev->real_num_tx_queues == 1)
2407 		queue_index = 0;
2408 	else if (ops->ndo_select_queue) {
2409 		queue_index = ops->ndo_select_queue(dev, skb);
2410 		queue_index = dev_cap_txqueue(dev, queue_index);
2411 	} else {
2412 		struct sock *sk = skb->sk;
2413 		queue_index = sk_tx_queue_get(sk);
2414 
2415 		if (queue_index < 0 || skb->ooo_okay ||
2416 		    queue_index >= dev->real_num_tx_queues) {
2417 			int old_index = queue_index;
2418 
2419 			queue_index = get_xps_queue(dev, skb);
2420 			if (queue_index < 0)
2421 				queue_index = skb_tx_hash(dev, skb);
2422 
2423 			if (queue_index != old_index && sk) {
2424 				struct dst_entry *dst =
2425 				    rcu_dereference_check(sk->sk_dst_cache, 1);
2426 
2427 				if (dst && skb_dst(skb) == dst)
2428 					sk_tx_queue_set(sk, queue_index);
2429 			}
2430 		}
2431 	}
2432 
2433 	skb_set_queue_mapping(skb, queue_index);
2434 	return netdev_get_tx_queue(dev, queue_index);
2435 }
2436 
2437 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2438 				 struct net_device *dev,
2439 				 struct netdev_queue *txq)
2440 {
2441 	spinlock_t *root_lock = qdisc_lock(q);
2442 	bool contended;
2443 	int rc;
2444 
2445 	qdisc_skb_cb(skb)->pkt_len = skb->len;
2446 	qdisc_calculate_pkt_len(skb, q);
2447 	/*
2448 	 * Heuristic to force contended enqueues to serialize on a
2449 	 * separate lock before trying to get qdisc main lock.
2450 	 * This permits __QDISC_STATE_RUNNING owner to get the lock more often
2451 	 * and dequeue packets faster.
2452 	 */
2453 	contended = qdisc_is_running(q);
2454 	if (unlikely(contended))
2455 		spin_lock(&q->busylock);
2456 
2457 	spin_lock(root_lock);
2458 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2459 		kfree_skb(skb);
2460 		rc = NET_XMIT_DROP;
2461 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2462 		   qdisc_run_begin(q)) {
2463 		/*
2464 		 * This is a work-conserving queue; there are no old skbs
2465 		 * waiting to be sent out; and the qdisc is not running -
2466 		 * xmit the skb directly.
2467 		 */
2468 		if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2469 			skb_dst_force(skb);
2470 
2471 		qdisc_bstats_update(q, skb);
2472 
2473 		if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2474 			if (unlikely(contended)) {
2475 				spin_unlock(&q->busylock);
2476 				contended = false;
2477 			}
2478 			__qdisc_run(q);
2479 		} else
2480 			qdisc_run_end(q);
2481 
2482 		rc = NET_XMIT_SUCCESS;
2483 	} else {
2484 		skb_dst_force(skb);
2485 		rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2486 		if (qdisc_run_begin(q)) {
2487 			if (unlikely(contended)) {
2488 				spin_unlock(&q->busylock);
2489 				contended = false;
2490 			}
2491 			__qdisc_run(q);
2492 		}
2493 	}
2494 	spin_unlock(root_lock);
2495 	if (unlikely(contended))
2496 		spin_unlock(&q->busylock);
2497 	return rc;
2498 }
2499 
2500 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP)
2501 static void skb_update_prio(struct sk_buff *skb)
2502 {
2503 	struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2504 
2505 	if (!skb->priority && skb->sk && map) {
2506 		unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2507 
2508 		if (prioidx < map->priomap_len)
2509 			skb->priority = map->priomap[prioidx];
2510 	}
2511 }
2512 #else
2513 #define skb_update_prio(skb)
2514 #endif
2515 
2516 static DEFINE_PER_CPU(int, xmit_recursion);
2517 #define RECURSION_LIMIT 10
2518 
2519 /**
2520  *	dev_loopback_xmit - loop back @skb
2521  *	@skb: buffer to transmit
2522  */
2523 int dev_loopback_xmit(struct sk_buff *skb)
2524 {
2525 	skb_reset_mac_header(skb);
2526 	__skb_pull(skb, skb_network_offset(skb));
2527 	skb->pkt_type = PACKET_LOOPBACK;
2528 	skb->ip_summed = CHECKSUM_UNNECESSARY;
2529 	WARN_ON(!skb_dst(skb));
2530 	skb_dst_force(skb);
2531 	netif_rx_ni(skb);
2532 	return 0;
2533 }
2534 EXPORT_SYMBOL(dev_loopback_xmit);
2535 
2536 /**
2537  *	dev_queue_xmit - transmit a buffer
2538  *	@skb: buffer to transmit
2539  *
2540  *	Queue a buffer for transmission to a network device. The caller must
2541  *	have set the device and priority and built the buffer before calling
2542  *	this function. The function can be called from an interrupt.
2543  *
2544  *	A negative errno code is returned on a failure. A success does not
2545  *	guarantee the frame will be transmitted as it may be dropped due
2546  *	to congestion or traffic shaping.
2547  *
2548  * -----------------------------------------------------------------------------------
2549  *      I notice this method can also return errors from the queue disciplines,
2550  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
2551  *      be positive.
2552  *
2553  *      Regardless of the return value, the skb is consumed, so it is currently
2554  *      difficult to retry a send to this method.  (You can bump the ref count
2555  *      before sending to hold a reference for retry if you are careful.)
2556  *
2557  *      When calling this method, interrupts MUST be enabled.  This is because
2558  *      the BH enable code must have IRQs enabled so that it will not deadlock.
2559  *          --BLG
2560  */
2561 int dev_queue_xmit(struct sk_buff *skb)
2562 {
2563 	struct net_device *dev = skb->dev;
2564 	struct netdev_queue *txq;
2565 	struct Qdisc *q;
2566 	int rc = -ENOMEM;
2567 
2568 	/* Disable soft irqs for various locks below. Also
2569 	 * stops preemption for RCU.
2570 	 */
2571 	rcu_read_lock_bh();
2572 
2573 	skb_update_prio(skb);
2574 
2575 	txq = netdev_pick_tx(dev, skb);
2576 	q = rcu_dereference_bh(txq->qdisc);
2577 
2578 #ifdef CONFIG_NET_CLS_ACT
2579 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2580 #endif
2581 	trace_net_dev_queue(skb);
2582 	if (q->enqueue) {
2583 		rc = __dev_xmit_skb(skb, q, dev, txq);
2584 		goto out;
2585 	}
2586 
2587 	/* The device has no queue. Common case for software devices:
2588 	   loopback, all the sorts of tunnels...
2589 
2590 	   Really, it is unlikely that netif_tx_lock protection is necessary
2591 	   here.  (f.e. loopback and IP tunnels are clean ignoring statistics
2592 	   counters.)
2593 	   However, it is possible, that they rely on protection
2594 	   made by us here.
2595 
2596 	   Check this and shot the lock. It is not prone from deadlocks.
2597 	   Either shot noqueue qdisc, it is even simpler 8)
2598 	 */
2599 	if (dev->flags & IFF_UP) {
2600 		int cpu = smp_processor_id(); /* ok because BHs are off */
2601 
2602 		if (txq->xmit_lock_owner != cpu) {
2603 
2604 			if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2605 				goto recursion_alert;
2606 
2607 			HARD_TX_LOCK(dev, txq, cpu);
2608 
2609 			if (!netif_xmit_stopped(txq)) {
2610 				__this_cpu_inc(xmit_recursion);
2611 				rc = dev_hard_start_xmit(skb, dev, txq);
2612 				__this_cpu_dec(xmit_recursion);
2613 				if (dev_xmit_complete(rc)) {
2614 					HARD_TX_UNLOCK(dev, txq);
2615 					goto out;
2616 				}
2617 			}
2618 			HARD_TX_UNLOCK(dev, txq);
2619 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
2620 					     dev->name);
2621 		} else {
2622 			/* Recursion is detected! It is possible,
2623 			 * unfortunately
2624 			 */
2625 recursion_alert:
2626 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
2627 					     dev->name);
2628 		}
2629 	}
2630 
2631 	rc = -ENETDOWN;
2632 	rcu_read_unlock_bh();
2633 
2634 	kfree_skb(skb);
2635 	return rc;
2636 out:
2637 	rcu_read_unlock_bh();
2638 	return rc;
2639 }
2640 EXPORT_SYMBOL(dev_queue_xmit);
2641 
2642 
2643 /*=======================================================================
2644 			Receiver routines
2645   =======================================================================*/
2646 
2647 int netdev_max_backlog __read_mostly = 1000;
2648 EXPORT_SYMBOL(netdev_max_backlog);
2649 
2650 int netdev_tstamp_prequeue __read_mostly = 1;
2651 int netdev_budget __read_mostly = 300;
2652 int weight_p __read_mostly = 64;            /* old backlog weight */
2653 
2654 /* Called with irq disabled */
2655 static inline void ____napi_schedule(struct softnet_data *sd,
2656 				     struct napi_struct *napi)
2657 {
2658 	list_add_tail(&napi->poll_list, &sd->poll_list);
2659 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
2660 }
2661 
2662 /*
2663  * __skb_get_rxhash: calculate a flow hash based on src/dst addresses
2664  * and src/dst port numbers.  Sets rxhash in skb to non-zero hash value
2665  * on success, zero indicates no valid hash.  Also, sets l4_rxhash in skb
2666  * if hash is a canonical 4-tuple hash over transport ports.
2667  */
2668 void __skb_get_rxhash(struct sk_buff *skb)
2669 {
2670 	struct flow_keys keys;
2671 	u32 hash;
2672 
2673 	if (!skb_flow_dissect(skb, &keys))
2674 		return;
2675 
2676 	if (keys.ports)
2677 		skb->l4_rxhash = 1;
2678 
2679 	/* get a consistent hash (same value on both flow directions) */
2680 	if (((__force u32)keys.dst < (__force u32)keys.src) ||
2681 	    (((__force u32)keys.dst == (__force u32)keys.src) &&
2682 	     ((__force u16)keys.port16[1] < (__force u16)keys.port16[0]))) {
2683 		swap(keys.dst, keys.src);
2684 		swap(keys.port16[0], keys.port16[1]);
2685 	}
2686 
2687 	hash = jhash_3words((__force u32)keys.dst,
2688 			    (__force u32)keys.src,
2689 			    (__force u32)keys.ports, hashrnd);
2690 	if (!hash)
2691 		hash = 1;
2692 
2693 	skb->rxhash = hash;
2694 }
2695 EXPORT_SYMBOL(__skb_get_rxhash);
2696 
2697 #ifdef CONFIG_RPS
2698 
2699 /* One global table that all flow-based protocols share. */
2700 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
2701 EXPORT_SYMBOL(rps_sock_flow_table);
2702 
2703 struct static_key rps_needed __read_mostly;
2704 
2705 static struct rps_dev_flow *
2706 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2707 	    struct rps_dev_flow *rflow, u16 next_cpu)
2708 {
2709 	if (next_cpu != RPS_NO_CPU) {
2710 #ifdef CONFIG_RFS_ACCEL
2711 		struct netdev_rx_queue *rxqueue;
2712 		struct rps_dev_flow_table *flow_table;
2713 		struct rps_dev_flow *old_rflow;
2714 		u32 flow_id;
2715 		u16 rxq_index;
2716 		int rc;
2717 
2718 		/* Should we steer this flow to a different hardware queue? */
2719 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
2720 		    !(dev->features & NETIF_F_NTUPLE))
2721 			goto out;
2722 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
2723 		if (rxq_index == skb_get_rx_queue(skb))
2724 			goto out;
2725 
2726 		rxqueue = dev->_rx + rxq_index;
2727 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
2728 		if (!flow_table)
2729 			goto out;
2730 		flow_id = skb->rxhash & flow_table->mask;
2731 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
2732 							rxq_index, flow_id);
2733 		if (rc < 0)
2734 			goto out;
2735 		old_rflow = rflow;
2736 		rflow = &flow_table->flows[flow_id];
2737 		rflow->filter = rc;
2738 		if (old_rflow->filter == rflow->filter)
2739 			old_rflow->filter = RPS_NO_FILTER;
2740 	out:
2741 #endif
2742 		rflow->last_qtail =
2743 			per_cpu(softnet_data, next_cpu).input_queue_head;
2744 	}
2745 
2746 	rflow->cpu = next_cpu;
2747 	return rflow;
2748 }
2749 
2750 /*
2751  * get_rps_cpu is called from netif_receive_skb and returns the target
2752  * CPU from the RPS map of the receiving queue for a given skb.
2753  * rcu_read_lock must be held on entry.
2754  */
2755 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2756 		       struct rps_dev_flow **rflowp)
2757 {
2758 	struct netdev_rx_queue *rxqueue;
2759 	struct rps_map *map;
2760 	struct rps_dev_flow_table *flow_table;
2761 	struct rps_sock_flow_table *sock_flow_table;
2762 	int cpu = -1;
2763 	u16 tcpu;
2764 
2765 	if (skb_rx_queue_recorded(skb)) {
2766 		u16 index = skb_get_rx_queue(skb);
2767 		if (unlikely(index >= dev->real_num_rx_queues)) {
2768 			WARN_ONCE(dev->real_num_rx_queues > 1,
2769 				  "%s received packet on queue %u, but number "
2770 				  "of RX queues is %u\n",
2771 				  dev->name, index, dev->real_num_rx_queues);
2772 			goto done;
2773 		}
2774 		rxqueue = dev->_rx + index;
2775 	} else
2776 		rxqueue = dev->_rx;
2777 
2778 	map = rcu_dereference(rxqueue->rps_map);
2779 	if (map) {
2780 		if (map->len == 1 &&
2781 		    !rcu_access_pointer(rxqueue->rps_flow_table)) {
2782 			tcpu = map->cpus[0];
2783 			if (cpu_online(tcpu))
2784 				cpu = tcpu;
2785 			goto done;
2786 		}
2787 	} else if (!rcu_access_pointer(rxqueue->rps_flow_table)) {
2788 		goto done;
2789 	}
2790 
2791 	skb_reset_network_header(skb);
2792 	if (!skb_get_rxhash(skb))
2793 		goto done;
2794 
2795 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
2796 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
2797 	if (flow_table && sock_flow_table) {
2798 		u16 next_cpu;
2799 		struct rps_dev_flow *rflow;
2800 
2801 		rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
2802 		tcpu = rflow->cpu;
2803 
2804 		next_cpu = sock_flow_table->ents[skb->rxhash &
2805 		    sock_flow_table->mask];
2806 
2807 		/*
2808 		 * If the desired CPU (where last recvmsg was done) is
2809 		 * different from current CPU (one in the rx-queue flow
2810 		 * table entry), switch if one of the following holds:
2811 		 *   - Current CPU is unset (equal to RPS_NO_CPU).
2812 		 *   - Current CPU is offline.
2813 		 *   - The current CPU's queue tail has advanced beyond the
2814 		 *     last packet that was enqueued using this table entry.
2815 		 *     This guarantees that all previous packets for the flow
2816 		 *     have been dequeued, thus preserving in order delivery.
2817 		 */
2818 		if (unlikely(tcpu != next_cpu) &&
2819 		    (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
2820 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
2821 		      rflow->last_qtail)) >= 0)) {
2822 			tcpu = next_cpu;
2823 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
2824 		}
2825 
2826 		if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
2827 			*rflowp = rflow;
2828 			cpu = tcpu;
2829 			goto done;
2830 		}
2831 	}
2832 
2833 	if (map) {
2834 		tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
2835 
2836 		if (cpu_online(tcpu)) {
2837 			cpu = tcpu;
2838 			goto done;
2839 		}
2840 	}
2841 
2842 done:
2843 	return cpu;
2844 }
2845 
2846 #ifdef CONFIG_RFS_ACCEL
2847 
2848 /**
2849  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
2850  * @dev: Device on which the filter was set
2851  * @rxq_index: RX queue index
2852  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
2853  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
2854  *
2855  * Drivers that implement ndo_rx_flow_steer() should periodically call
2856  * this function for each installed filter and remove the filters for
2857  * which it returns %true.
2858  */
2859 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
2860 			 u32 flow_id, u16 filter_id)
2861 {
2862 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
2863 	struct rps_dev_flow_table *flow_table;
2864 	struct rps_dev_flow *rflow;
2865 	bool expire = true;
2866 	int cpu;
2867 
2868 	rcu_read_lock();
2869 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
2870 	if (flow_table && flow_id <= flow_table->mask) {
2871 		rflow = &flow_table->flows[flow_id];
2872 		cpu = ACCESS_ONCE(rflow->cpu);
2873 		if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
2874 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
2875 			   rflow->last_qtail) <
2876 		     (int)(10 * flow_table->mask)))
2877 			expire = false;
2878 	}
2879 	rcu_read_unlock();
2880 	return expire;
2881 }
2882 EXPORT_SYMBOL(rps_may_expire_flow);
2883 
2884 #endif /* CONFIG_RFS_ACCEL */
2885 
2886 /* Called from hardirq (IPI) context */
2887 static void rps_trigger_softirq(void *data)
2888 {
2889 	struct softnet_data *sd = data;
2890 
2891 	____napi_schedule(sd, &sd->backlog);
2892 	sd->received_rps++;
2893 }
2894 
2895 #endif /* CONFIG_RPS */
2896 
2897 /*
2898  * Check if this softnet_data structure is another cpu one
2899  * If yes, queue it to our IPI list and return 1
2900  * If no, return 0
2901  */
2902 static int rps_ipi_queued(struct softnet_data *sd)
2903 {
2904 #ifdef CONFIG_RPS
2905 	struct softnet_data *mysd = &__get_cpu_var(softnet_data);
2906 
2907 	if (sd != mysd) {
2908 		sd->rps_ipi_next = mysd->rps_ipi_list;
2909 		mysd->rps_ipi_list = sd;
2910 
2911 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
2912 		return 1;
2913 	}
2914 #endif /* CONFIG_RPS */
2915 	return 0;
2916 }
2917 
2918 /*
2919  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
2920  * queue (may be a remote CPU queue).
2921  */
2922 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
2923 			      unsigned int *qtail)
2924 {
2925 	struct softnet_data *sd;
2926 	unsigned long flags;
2927 
2928 	sd = &per_cpu(softnet_data, cpu);
2929 
2930 	local_irq_save(flags);
2931 
2932 	rps_lock(sd);
2933 	if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) {
2934 		if (skb_queue_len(&sd->input_pkt_queue)) {
2935 enqueue:
2936 			__skb_queue_tail(&sd->input_pkt_queue, skb);
2937 			input_queue_tail_incr_save(sd, qtail);
2938 			rps_unlock(sd);
2939 			local_irq_restore(flags);
2940 			return NET_RX_SUCCESS;
2941 		}
2942 
2943 		/* Schedule NAPI for backlog device
2944 		 * We can use non atomic operation since we own the queue lock
2945 		 */
2946 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
2947 			if (!rps_ipi_queued(sd))
2948 				____napi_schedule(sd, &sd->backlog);
2949 		}
2950 		goto enqueue;
2951 	}
2952 
2953 	sd->dropped++;
2954 	rps_unlock(sd);
2955 
2956 	local_irq_restore(flags);
2957 
2958 	atomic_long_inc(&skb->dev->rx_dropped);
2959 	kfree_skb(skb);
2960 	return NET_RX_DROP;
2961 }
2962 
2963 /**
2964  *	netif_rx	-	post buffer to the network code
2965  *	@skb: buffer to post
2966  *
2967  *	This function receives a packet from a device driver and queues it for
2968  *	the upper (protocol) levels to process.  It always succeeds. The buffer
2969  *	may be dropped during processing for congestion control or by the
2970  *	protocol layers.
2971  *
2972  *	return values:
2973  *	NET_RX_SUCCESS	(no congestion)
2974  *	NET_RX_DROP     (packet was dropped)
2975  *
2976  */
2977 
2978 int netif_rx(struct sk_buff *skb)
2979 {
2980 	int ret;
2981 
2982 	/* if netpoll wants it, pretend we never saw it */
2983 	if (netpoll_rx(skb))
2984 		return NET_RX_DROP;
2985 
2986 	net_timestamp_check(netdev_tstamp_prequeue, skb);
2987 
2988 	trace_netif_rx(skb);
2989 #ifdef CONFIG_RPS
2990 	if (static_key_false(&rps_needed)) {
2991 		struct rps_dev_flow voidflow, *rflow = &voidflow;
2992 		int cpu;
2993 
2994 		preempt_disable();
2995 		rcu_read_lock();
2996 
2997 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
2998 		if (cpu < 0)
2999 			cpu = smp_processor_id();
3000 
3001 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3002 
3003 		rcu_read_unlock();
3004 		preempt_enable();
3005 	} else
3006 #endif
3007 	{
3008 		unsigned int qtail;
3009 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3010 		put_cpu();
3011 	}
3012 	return ret;
3013 }
3014 EXPORT_SYMBOL(netif_rx);
3015 
3016 int netif_rx_ni(struct sk_buff *skb)
3017 {
3018 	int err;
3019 
3020 	preempt_disable();
3021 	err = netif_rx(skb);
3022 	if (local_softirq_pending())
3023 		do_softirq();
3024 	preempt_enable();
3025 
3026 	return err;
3027 }
3028 EXPORT_SYMBOL(netif_rx_ni);
3029 
3030 static void net_tx_action(struct softirq_action *h)
3031 {
3032 	struct softnet_data *sd = &__get_cpu_var(softnet_data);
3033 
3034 	if (sd->completion_queue) {
3035 		struct sk_buff *clist;
3036 
3037 		local_irq_disable();
3038 		clist = sd->completion_queue;
3039 		sd->completion_queue = NULL;
3040 		local_irq_enable();
3041 
3042 		while (clist) {
3043 			struct sk_buff *skb = clist;
3044 			clist = clist->next;
3045 
3046 			WARN_ON(atomic_read(&skb->users));
3047 			trace_kfree_skb(skb, net_tx_action);
3048 			__kfree_skb(skb);
3049 		}
3050 	}
3051 
3052 	if (sd->output_queue) {
3053 		struct Qdisc *head;
3054 
3055 		local_irq_disable();
3056 		head = sd->output_queue;
3057 		sd->output_queue = NULL;
3058 		sd->output_queue_tailp = &sd->output_queue;
3059 		local_irq_enable();
3060 
3061 		while (head) {
3062 			struct Qdisc *q = head;
3063 			spinlock_t *root_lock;
3064 
3065 			head = head->next_sched;
3066 
3067 			root_lock = qdisc_lock(q);
3068 			if (spin_trylock(root_lock)) {
3069 				smp_mb__before_clear_bit();
3070 				clear_bit(__QDISC_STATE_SCHED,
3071 					  &q->state);
3072 				qdisc_run(q);
3073 				spin_unlock(root_lock);
3074 			} else {
3075 				if (!test_bit(__QDISC_STATE_DEACTIVATED,
3076 					      &q->state)) {
3077 					__netif_reschedule(q);
3078 				} else {
3079 					smp_mb__before_clear_bit();
3080 					clear_bit(__QDISC_STATE_SCHED,
3081 						  &q->state);
3082 				}
3083 			}
3084 		}
3085 	}
3086 }
3087 
3088 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3089     (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3090 /* This hook is defined here for ATM LANE */
3091 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3092 			     unsigned char *addr) __read_mostly;
3093 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3094 #endif
3095 
3096 #ifdef CONFIG_NET_CLS_ACT
3097 /* TODO: Maybe we should just force sch_ingress to be compiled in
3098  * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3099  * a compare and 2 stores extra right now if we dont have it on
3100  * but have CONFIG_NET_CLS_ACT
3101  * NOTE: This doesn't stop any functionality; if you dont have
3102  * the ingress scheduler, you just can't add policies on ingress.
3103  *
3104  */
3105 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
3106 {
3107 	struct net_device *dev = skb->dev;
3108 	u32 ttl = G_TC_RTTL(skb->tc_verd);
3109 	int result = TC_ACT_OK;
3110 	struct Qdisc *q;
3111 
3112 	if (unlikely(MAX_RED_LOOP < ttl++)) {
3113 		net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n",
3114 				     skb->skb_iif, dev->ifindex);
3115 		return TC_ACT_SHOT;
3116 	}
3117 
3118 	skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3119 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3120 
3121 	q = rxq->qdisc;
3122 	if (q != &noop_qdisc) {
3123 		spin_lock(qdisc_lock(q));
3124 		if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3125 			result = qdisc_enqueue_root(skb, q);
3126 		spin_unlock(qdisc_lock(q));
3127 	}
3128 
3129 	return result;
3130 }
3131 
3132 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3133 					 struct packet_type **pt_prev,
3134 					 int *ret, struct net_device *orig_dev)
3135 {
3136 	struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3137 
3138 	if (!rxq || rxq->qdisc == &noop_qdisc)
3139 		goto out;
3140 
3141 	if (*pt_prev) {
3142 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
3143 		*pt_prev = NULL;
3144 	}
3145 
3146 	switch (ing_filter(skb, rxq)) {
3147 	case TC_ACT_SHOT:
3148 	case TC_ACT_STOLEN:
3149 		kfree_skb(skb);
3150 		return NULL;
3151 	}
3152 
3153 out:
3154 	skb->tc_verd = 0;
3155 	return skb;
3156 }
3157 #endif
3158 
3159 /**
3160  *	netdev_rx_handler_register - register receive handler
3161  *	@dev: device to register a handler for
3162  *	@rx_handler: receive handler to register
3163  *	@rx_handler_data: data pointer that is used by rx handler
3164  *
3165  *	Register a receive hander for a device. This handler will then be
3166  *	called from __netif_receive_skb. A negative errno code is returned
3167  *	on a failure.
3168  *
3169  *	The caller must hold the rtnl_mutex.
3170  *
3171  *	For a general description of rx_handler, see enum rx_handler_result.
3172  */
3173 int netdev_rx_handler_register(struct net_device *dev,
3174 			       rx_handler_func_t *rx_handler,
3175 			       void *rx_handler_data)
3176 {
3177 	ASSERT_RTNL();
3178 
3179 	if (dev->rx_handler)
3180 		return -EBUSY;
3181 
3182 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3183 	rcu_assign_pointer(dev->rx_handler, rx_handler);
3184 
3185 	return 0;
3186 }
3187 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3188 
3189 /**
3190  *	netdev_rx_handler_unregister - unregister receive handler
3191  *	@dev: device to unregister a handler from
3192  *
3193  *	Unregister a receive hander from a device.
3194  *
3195  *	The caller must hold the rtnl_mutex.
3196  */
3197 void netdev_rx_handler_unregister(struct net_device *dev)
3198 {
3199 
3200 	ASSERT_RTNL();
3201 	RCU_INIT_POINTER(dev->rx_handler, NULL);
3202 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3203 }
3204 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3205 
3206 /*
3207  * Limit the use of PFMEMALLOC reserves to those protocols that implement
3208  * the special handling of PFMEMALLOC skbs.
3209  */
3210 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3211 {
3212 	switch (skb->protocol) {
3213 	case __constant_htons(ETH_P_ARP):
3214 	case __constant_htons(ETH_P_IP):
3215 	case __constant_htons(ETH_P_IPV6):
3216 	case __constant_htons(ETH_P_8021Q):
3217 		return true;
3218 	default:
3219 		return false;
3220 	}
3221 }
3222 
3223 static int __netif_receive_skb(struct sk_buff *skb)
3224 {
3225 	struct packet_type *ptype, *pt_prev;
3226 	rx_handler_func_t *rx_handler;
3227 	struct net_device *orig_dev;
3228 	struct net_device *null_or_dev;
3229 	bool deliver_exact = false;
3230 	int ret = NET_RX_DROP;
3231 	__be16 type;
3232 	unsigned long pflags = current->flags;
3233 
3234 	net_timestamp_check(!netdev_tstamp_prequeue, skb);
3235 
3236 	trace_netif_receive_skb(skb);
3237 
3238 	/*
3239 	 * PFMEMALLOC skbs are special, they should
3240 	 * - be delivered to SOCK_MEMALLOC sockets only
3241 	 * - stay away from userspace
3242 	 * - have bounded memory usage
3243 	 *
3244 	 * Use PF_MEMALLOC as this saves us from propagating the allocation
3245 	 * context down to all allocation sites.
3246 	 */
3247 	if (sk_memalloc_socks() && skb_pfmemalloc(skb))
3248 		current->flags |= PF_MEMALLOC;
3249 
3250 	/* if we've gotten here through NAPI, check netpoll */
3251 	if (netpoll_receive_skb(skb))
3252 		goto out;
3253 
3254 	orig_dev = skb->dev;
3255 
3256 	skb_reset_network_header(skb);
3257 	skb_reset_transport_header(skb);
3258 	skb_reset_mac_len(skb);
3259 
3260 	pt_prev = NULL;
3261 
3262 	rcu_read_lock();
3263 
3264 another_round:
3265 	skb->skb_iif = skb->dev->ifindex;
3266 
3267 	__this_cpu_inc(softnet_data.processed);
3268 
3269 	if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) {
3270 		skb = vlan_untag(skb);
3271 		if (unlikely(!skb))
3272 			goto unlock;
3273 	}
3274 
3275 #ifdef CONFIG_NET_CLS_ACT
3276 	if (skb->tc_verd & TC_NCLS) {
3277 		skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3278 		goto ncls;
3279 	}
3280 #endif
3281 
3282 	if (sk_memalloc_socks() && skb_pfmemalloc(skb))
3283 		goto skip_taps;
3284 
3285 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
3286 		if (!ptype->dev || ptype->dev == skb->dev) {
3287 			if (pt_prev)
3288 				ret = deliver_skb(skb, pt_prev, orig_dev);
3289 			pt_prev = ptype;
3290 		}
3291 	}
3292 
3293 skip_taps:
3294 #ifdef CONFIG_NET_CLS_ACT
3295 	skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3296 	if (!skb)
3297 		goto unlock;
3298 ncls:
3299 #endif
3300 
3301 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)
3302 				&& !skb_pfmemalloc_protocol(skb))
3303 		goto drop;
3304 
3305 	if (vlan_tx_tag_present(skb)) {
3306 		if (pt_prev) {
3307 			ret = deliver_skb(skb, pt_prev, orig_dev);
3308 			pt_prev = NULL;
3309 		}
3310 		if (vlan_do_receive(&skb))
3311 			goto another_round;
3312 		else if (unlikely(!skb))
3313 			goto unlock;
3314 	}
3315 
3316 	rx_handler = rcu_dereference(skb->dev->rx_handler);
3317 	if (rx_handler) {
3318 		if (pt_prev) {
3319 			ret = deliver_skb(skb, pt_prev, orig_dev);
3320 			pt_prev = NULL;
3321 		}
3322 		switch (rx_handler(&skb)) {
3323 		case RX_HANDLER_CONSUMED:
3324 			goto unlock;
3325 		case RX_HANDLER_ANOTHER:
3326 			goto another_round;
3327 		case RX_HANDLER_EXACT:
3328 			deliver_exact = true;
3329 		case RX_HANDLER_PASS:
3330 			break;
3331 		default:
3332 			BUG();
3333 		}
3334 	}
3335 
3336 	if (vlan_tx_nonzero_tag_present(skb))
3337 		skb->pkt_type = PACKET_OTHERHOST;
3338 
3339 	/* deliver only exact match when indicated */
3340 	null_or_dev = deliver_exact ? skb->dev : NULL;
3341 
3342 	type = skb->protocol;
3343 	list_for_each_entry_rcu(ptype,
3344 			&ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3345 		if (ptype->type == type &&
3346 		    (ptype->dev == null_or_dev || ptype->dev == skb->dev ||
3347 		     ptype->dev == orig_dev)) {
3348 			if (pt_prev)
3349 				ret = deliver_skb(skb, pt_prev, orig_dev);
3350 			pt_prev = ptype;
3351 		}
3352 	}
3353 
3354 	if (pt_prev) {
3355 		if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
3356 			goto drop;
3357 		else
3358 			ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3359 	} else {
3360 drop:
3361 		atomic_long_inc(&skb->dev->rx_dropped);
3362 		kfree_skb(skb);
3363 		/* Jamal, now you will not able to escape explaining
3364 		 * me how you were going to use this. :-)
3365 		 */
3366 		ret = NET_RX_DROP;
3367 	}
3368 
3369 unlock:
3370 	rcu_read_unlock();
3371 out:
3372 	tsk_restore_flags(current, pflags, PF_MEMALLOC);
3373 	return ret;
3374 }
3375 
3376 /**
3377  *	netif_receive_skb - process receive buffer from network
3378  *	@skb: buffer to process
3379  *
3380  *	netif_receive_skb() is the main receive data processing function.
3381  *	It always succeeds. The buffer may be dropped during processing
3382  *	for congestion control or by the protocol layers.
3383  *
3384  *	This function may only be called from softirq context and interrupts
3385  *	should be enabled.
3386  *
3387  *	Return values (usually ignored):
3388  *	NET_RX_SUCCESS: no congestion
3389  *	NET_RX_DROP: packet was dropped
3390  */
3391 int netif_receive_skb(struct sk_buff *skb)
3392 {
3393 	net_timestamp_check(netdev_tstamp_prequeue, skb);
3394 
3395 	if (skb_defer_rx_timestamp(skb))
3396 		return NET_RX_SUCCESS;
3397 
3398 #ifdef CONFIG_RPS
3399 	if (static_key_false(&rps_needed)) {
3400 		struct rps_dev_flow voidflow, *rflow = &voidflow;
3401 		int cpu, ret;
3402 
3403 		rcu_read_lock();
3404 
3405 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
3406 
3407 		if (cpu >= 0) {
3408 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3409 			rcu_read_unlock();
3410 			return ret;
3411 		}
3412 		rcu_read_unlock();
3413 	}
3414 #endif
3415 	return __netif_receive_skb(skb);
3416 }
3417 EXPORT_SYMBOL(netif_receive_skb);
3418 
3419 /* Network device is going away, flush any packets still pending
3420  * Called with irqs disabled.
3421  */
3422 static void flush_backlog(void *arg)
3423 {
3424 	struct net_device *dev = arg;
3425 	struct softnet_data *sd = &__get_cpu_var(softnet_data);
3426 	struct sk_buff *skb, *tmp;
3427 
3428 	rps_lock(sd);
3429 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3430 		if (skb->dev == dev) {
3431 			__skb_unlink(skb, &sd->input_pkt_queue);
3432 			kfree_skb(skb);
3433 			input_queue_head_incr(sd);
3434 		}
3435 	}
3436 	rps_unlock(sd);
3437 
3438 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3439 		if (skb->dev == dev) {
3440 			__skb_unlink(skb, &sd->process_queue);
3441 			kfree_skb(skb);
3442 			input_queue_head_incr(sd);
3443 		}
3444 	}
3445 }
3446 
3447 static int napi_gro_complete(struct sk_buff *skb)
3448 {
3449 	struct packet_type *ptype;
3450 	__be16 type = skb->protocol;
3451 	struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3452 	int err = -ENOENT;
3453 
3454 	if (NAPI_GRO_CB(skb)->count == 1) {
3455 		skb_shinfo(skb)->gso_size = 0;
3456 		goto out;
3457 	}
3458 
3459 	rcu_read_lock();
3460 	list_for_each_entry_rcu(ptype, head, list) {
3461 		if (ptype->type != type || ptype->dev || !ptype->gro_complete)
3462 			continue;
3463 
3464 		err = ptype->gro_complete(skb);
3465 		break;
3466 	}
3467 	rcu_read_unlock();
3468 
3469 	if (err) {
3470 		WARN_ON(&ptype->list == head);
3471 		kfree_skb(skb);
3472 		return NET_RX_SUCCESS;
3473 	}
3474 
3475 out:
3476 	return netif_receive_skb(skb);
3477 }
3478 
3479 /* napi->gro_list contains packets ordered by age.
3480  * youngest packets at the head of it.
3481  * Complete skbs in reverse order to reduce latencies.
3482  */
3483 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
3484 {
3485 	struct sk_buff *skb, *prev = NULL;
3486 
3487 	/* scan list and build reverse chain */
3488 	for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
3489 		skb->prev = prev;
3490 		prev = skb;
3491 	}
3492 
3493 	for (skb = prev; skb; skb = prev) {
3494 		skb->next = NULL;
3495 
3496 		if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
3497 			return;
3498 
3499 		prev = skb->prev;
3500 		napi_gro_complete(skb);
3501 		napi->gro_count--;
3502 	}
3503 
3504 	napi->gro_list = NULL;
3505 }
3506 EXPORT_SYMBOL(napi_gro_flush);
3507 
3508 enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3509 {
3510 	struct sk_buff **pp = NULL;
3511 	struct packet_type *ptype;
3512 	__be16 type = skb->protocol;
3513 	struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3514 	int same_flow;
3515 	int mac_len;
3516 	enum gro_result ret;
3517 
3518 	if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb))
3519 		goto normal;
3520 
3521 	if (skb_is_gso(skb) || skb_has_frag_list(skb))
3522 		goto normal;
3523 
3524 	rcu_read_lock();
3525 	list_for_each_entry_rcu(ptype, head, list) {
3526 		if (ptype->type != type || ptype->dev || !ptype->gro_receive)
3527 			continue;
3528 
3529 		skb_set_network_header(skb, skb_gro_offset(skb));
3530 		mac_len = skb->network_header - skb->mac_header;
3531 		skb->mac_len = mac_len;
3532 		NAPI_GRO_CB(skb)->same_flow = 0;
3533 		NAPI_GRO_CB(skb)->flush = 0;
3534 		NAPI_GRO_CB(skb)->free = 0;
3535 
3536 		pp = ptype->gro_receive(&napi->gro_list, skb);
3537 		break;
3538 	}
3539 	rcu_read_unlock();
3540 
3541 	if (&ptype->list == head)
3542 		goto normal;
3543 
3544 	same_flow = NAPI_GRO_CB(skb)->same_flow;
3545 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3546 
3547 	if (pp) {
3548 		struct sk_buff *nskb = *pp;
3549 
3550 		*pp = nskb->next;
3551 		nskb->next = NULL;
3552 		napi_gro_complete(nskb);
3553 		napi->gro_count--;
3554 	}
3555 
3556 	if (same_flow)
3557 		goto ok;
3558 
3559 	if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
3560 		goto normal;
3561 
3562 	napi->gro_count++;
3563 	NAPI_GRO_CB(skb)->count = 1;
3564 	NAPI_GRO_CB(skb)->age = jiffies;
3565 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3566 	skb->next = napi->gro_list;
3567 	napi->gro_list = skb;
3568 	ret = GRO_HELD;
3569 
3570 pull:
3571 	if (skb_headlen(skb) < skb_gro_offset(skb)) {
3572 		int grow = skb_gro_offset(skb) - skb_headlen(skb);
3573 
3574 		BUG_ON(skb->end - skb->tail < grow);
3575 
3576 		memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3577 
3578 		skb->tail += grow;
3579 		skb->data_len -= grow;
3580 
3581 		skb_shinfo(skb)->frags[0].page_offset += grow;
3582 		skb_frag_size_sub(&skb_shinfo(skb)->frags[0], grow);
3583 
3584 		if (unlikely(!skb_frag_size(&skb_shinfo(skb)->frags[0]))) {
3585 			skb_frag_unref(skb, 0);
3586 			memmove(skb_shinfo(skb)->frags,
3587 				skb_shinfo(skb)->frags + 1,
3588 				--skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t));
3589 		}
3590 	}
3591 
3592 ok:
3593 	return ret;
3594 
3595 normal:
3596 	ret = GRO_NORMAL;
3597 	goto pull;
3598 }
3599 EXPORT_SYMBOL(dev_gro_receive);
3600 
3601 static inline gro_result_t
3602 __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3603 {
3604 	struct sk_buff *p;
3605 	unsigned int maclen = skb->dev->hard_header_len;
3606 
3607 	for (p = napi->gro_list; p; p = p->next) {
3608 		unsigned long diffs;
3609 
3610 		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3611 		diffs |= p->vlan_tci ^ skb->vlan_tci;
3612 		if (maclen == ETH_HLEN)
3613 			diffs |= compare_ether_header(skb_mac_header(p),
3614 						      skb_gro_mac_header(skb));
3615 		else if (!diffs)
3616 			diffs = memcmp(skb_mac_header(p),
3617 				       skb_gro_mac_header(skb),
3618 				       maclen);
3619 		NAPI_GRO_CB(p)->same_flow = !diffs;
3620 		NAPI_GRO_CB(p)->flush = 0;
3621 	}
3622 
3623 	return dev_gro_receive(napi, skb);
3624 }
3625 
3626 gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
3627 {
3628 	switch (ret) {
3629 	case GRO_NORMAL:
3630 		if (netif_receive_skb(skb))
3631 			ret = GRO_DROP;
3632 		break;
3633 
3634 	case GRO_DROP:
3635 		kfree_skb(skb);
3636 		break;
3637 
3638 	case GRO_MERGED_FREE:
3639 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
3640 			kmem_cache_free(skbuff_head_cache, skb);
3641 		else
3642 			__kfree_skb(skb);
3643 		break;
3644 
3645 	case GRO_HELD:
3646 	case GRO_MERGED:
3647 		break;
3648 	}
3649 
3650 	return ret;
3651 }
3652 EXPORT_SYMBOL(napi_skb_finish);
3653 
3654 static void skb_gro_reset_offset(struct sk_buff *skb)
3655 {
3656 	const struct skb_shared_info *pinfo = skb_shinfo(skb);
3657 	const skb_frag_t *frag0 = &pinfo->frags[0];
3658 
3659 	NAPI_GRO_CB(skb)->data_offset = 0;
3660 	NAPI_GRO_CB(skb)->frag0 = NULL;
3661 	NAPI_GRO_CB(skb)->frag0_len = 0;
3662 
3663 	if (skb->mac_header == skb->tail &&
3664 	    pinfo->nr_frags &&
3665 	    !PageHighMem(skb_frag_page(frag0))) {
3666 		NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
3667 		NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
3668 	}
3669 }
3670 
3671 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3672 {
3673 	skb_gro_reset_offset(skb);
3674 
3675 	return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
3676 }
3677 EXPORT_SYMBOL(napi_gro_receive);
3678 
3679 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
3680 {
3681 	__skb_pull(skb, skb_headlen(skb));
3682 	/* restore the reserve we had after netdev_alloc_skb_ip_align() */
3683 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
3684 	skb->vlan_tci = 0;
3685 	skb->dev = napi->dev;
3686 	skb->skb_iif = 0;
3687 
3688 	napi->skb = skb;
3689 }
3690 
3691 struct sk_buff *napi_get_frags(struct napi_struct *napi)
3692 {
3693 	struct sk_buff *skb = napi->skb;
3694 
3695 	if (!skb) {
3696 		skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3697 		if (skb)
3698 			napi->skb = skb;
3699 	}
3700 	return skb;
3701 }
3702 EXPORT_SYMBOL(napi_get_frags);
3703 
3704 gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3705 			       gro_result_t ret)
3706 {
3707 	switch (ret) {
3708 	case GRO_NORMAL:
3709 	case GRO_HELD:
3710 		skb->protocol = eth_type_trans(skb, skb->dev);
3711 
3712 		if (ret == GRO_HELD)
3713 			skb_gro_pull(skb, -ETH_HLEN);
3714 		else if (netif_receive_skb(skb))
3715 			ret = GRO_DROP;
3716 		break;
3717 
3718 	case GRO_DROP:
3719 	case GRO_MERGED_FREE:
3720 		napi_reuse_skb(napi, skb);
3721 		break;
3722 
3723 	case GRO_MERGED:
3724 		break;
3725 	}
3726 
3727 	return ret;
3728 }
3729 EXPORT_SYMBOL(napi_frags_finish);
3730 
3731 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
3732 {
3733 	struct sk_buff *skb = napi->skb;
3734 	struct ethhdr *eth;
3735 	unsigned int hlen;
3736 	unsigned int off;
3737 
3738 	napi->skb = NULL;
3739 
3740 	skb_reset_mac_header(skb);
3741 	skb_gro_reset_offset(skb);
3742 
3743 	off = skb_gro_offset(skb);
3744 	hlen = off + sizeof(*eth);
3745 	eth = skb_gro_header_fast(skb, off);
3746 	if (skb_gro_header_hard(skb, hlen)) {
3747 		eth = skb_gro_header_slow(skb, hlen, off);
3748 		if (unlikely(!eth)) {
3749 			napi_reuse_skb(napi, skb);
3750 			skb = NULL;
3751 			goto out;
3752 		}
3753 	}
3754 
3755 	skb_gro_pull(skb, sizeof(*eth));
3756 
3757 	/*
3758 	 * This works because the only protocols we care about don't require
3759 	 * special handling.  We'll fix it up properly at the end.
3760 	 */
3761 	skb->protocol = eth->h_proto;
3762 
3763 out:
3764 	return skb;
3765 }
3766 
3767 gro_result_t napi_gro_frags(struct napi_struct *napi)
3768 {
3769 	struct sk_buff *skb = napi_frags_skb(napi);
3770 
3771 	if (!skb)
3772 		return GRO_DROP;
3773 
3774 	return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
3775 }
3776 EXPORT_SYMBOL(napi_gro_frags);
3777 
3778 /*
3779  * net_rps_action sends any pending IPI's for rps.
3780  * Note: called with local irq disabled, but exits with local irq enabled.
3781  */
3782 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
3783 {
3784 #ifdef CONFIG_RPS
3785 	struct softnet_data *remsd = sd->rps_ipi_list;
3786 
3787 	if (remsd) {
3788 		sd->rps_ipi_list = NULL;
3789 
3790 		local_irq_enable();
3791 
3792 		/* Send pending IPI's to kick RPS processing on remote cpus. */
3793 		while (remsd) {
3794 			struct softnet_data *next = remsd->rps_ipi_next;
3795 
3796 			if (cpu_online(remsd->cpu))
3797 				__smp_call_function_single(remsd->cpu,
3798 							   &remsd->csd, 0);
3799 			remsd = next;
3800 		}
3801 	} else
3802 #endif
3803 		local_irq_enable();
3804 }
3805 
3806 static int process_backlog(struct napi_struct *napi, int quota)
3807 {
3808 	int work = 0;
3809 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
3810 
3811 #ifdef CONFIG_RPS
3812 	/* Check if we have pending ipi, its better to send them now,
3813 	 * not waiting net_rx_action() end.
3814 	 */
3815 	if (sd->rps_ipi_list) {
3816 		local_irq_disable();
3817 		net_rps_action_and_irq_enable(sd);
3818 	}
3819 #endif
3820 	napi->weight = weight_p;
3821 	local_irq_disable();
3822 	while (work < quota) {
3823 		struct sk_buff *skb;
3824 		unsigned int qlen;
3825 
3826 		while ((skb = __skb_dequeue(&sd->process_queue))) {
3827 			local_irq_enable();
3828 			__netif_receive_skb(skb);
3829 			local_irq_disable();
3830 			input_queue_head_incr(sd);
3831 			if (++work >= quota) {
3832 				local_irq_enable();
3833 				return work;
3834 			}
3835 		}
3836 
3837 		rps_lock(sd);
3838 		qlen = skb_queue_len(&sd->input_pkt_queue);
3839 		if (qlen)
3840 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
3841 						   &sd->process_queue);
3842 
3843 		if (qlen < quota - work) {
3844 			/*
3845 			 * Inline a custom version of __napi_complete().
3846 			 * only current cpu owns and manipulates this napi,
3847 			 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
3848 			 * we can use a plain write instead of clear_bit(),
3849 			 * and we dont need an smp_mb() memory barrier.
3850 			 */
3851 			list_del(&napi->poll_list);
3852 			napi->state = 0;
3853 
3854 			quota = work + qlen;
3855 		}
3856 		rps_unlock(sd);
3857 	}
3858 	local_irq_enable();
3859 
3860 	return work;
3861 }
3862 
3863 /**
3864  * __napi_schedule - schedule for receive
3865  * @n: entry to schedule
3866  *
3867  * The entry's receive function will be scheduled to run
3868  */
3869 void __napi_schedule(struct napi_struct *n)
3870 {
3871 	unsigned long flags;
3872 
3873 	local_irq_save(flags);
3874 	____napi_schedule(&__get_cpu_var(softnet_data), n);
3875 	local_irq_restore(flags);
3876 }
3877 EXPORT_SYMBOL(__napi_schedule);
3878 
3879 void __napi_complete(struct napi_struct *n)
3880 {
3881 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
3882 	BUG_ON(n->gro_list);
3883 
3884 	list_del(&n->poll_list);
3885 	smp_mb__before_clear_bit();
3886 	clear_bit(NAPI_STATE_SCHED, &n->state);
3887 }
3888 EXPORT_SYMBOL(__napi_complete);
3889 
3890 void napi_complete(struct napi_struct *n)
3891 {
3892 	unsigned long flags;
3893 
3894 	/*
3895 	 * don't let napi dequeue from the cpu poll list
3896 	 * just in case its running on a different cpu
3897 	 */
3898 	if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
3899 		return;
3900 
3901 	napi_gro_flush(n, false);
3902 	local_irq_save(flags);
3903 	__napi_complete(n);
3904 	local_irq_restore(flags);
3905 }
3906 EXPORT_SYMBOL(napi_complete);
3907 
3908 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
3909 		    int (*poll)(struct napi_struct *, int), int weight)
3910 {
3911 	INIT_LIST_HEAD(&napi->poll_list);
3912 	napi->gro_count = 0;
3913 	napi->gro_list = NULL;
3914 	napi->skb = NULL;
3915 	napi->poll = poll;
3916 	napi->weight = weight;
3917 	list_add(&napi->dev_list, &dev->napi_list);
3918 	napi->dev = dev;
3919 #ifdef CONFIG_NETPOLL
3920 	spin_lock_init(&napi->poll_lock);
3921 	napi->poll_owner = -1;
3922 #endif
3923 	set_bit(NAPI_STATE_SCHED, &napi->state);
3924 }
3925 EXPORT_SYMBOL(netif_napi_add);
3926 
3927 void netif_napi_del(struct napi_struct *napi)
3928 {
3929 	struct sk_buff *skb, *next;
3930 
3931 	list_del_init(&napi->dev_list);
3932 	napi_free_frags(napi);
3933 
3934 	for (skb = napi->gro_list; skb; skb = next) {
3935 		next = skb->next;
3936 		skb->next = NULL;
3937 		kfree_skb(skb);
3938 	}
3939 
3940 	napi->gro_list = NULL;
3941 	napi->gro_count = 0;
3942 }
3943 EXPORT_SYMBOL(netif_napi_del);
3944 
3945 static void net_rx_action(struct softirq_action *h)
3946 {
3947 	struct softnet_data *sd = &__get_cpu_var(softnet_data);
3948 	unsigned long time_limit = jiffies + 2;
3949 	int budget = netdev_budget;
3950 	void *have;
3951 
3952 	local_irq_disable();
3953 
3954 	while (!list_empty(&sd->poll_list)) {
3955 		struct napi_struct *n;
3956 		int work, weight;
3957 
3958 		/* If softirq window is exhuasted then punt.
3959 		 * Allow this to run for 2 jiffies since which will allow
3960 		 * an average latency of 1.5/HZ.
3961 		 */
3962 		if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
3963 			goto softnet_break;
3964 
3965 		local_irq_enable();
3966 
3967 		/* Even though interrupts have been re-enabled, this
3968 		 * access is safe because interrupts can only add new
3969 		 * entries to the tail of this list, and only ->poll()
3970 		 * calls can remove this head entry from the list.
3971 		 */
3972 		n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
3973 
3974 		have = netpoll_poll_lock(n);
3975 
3976 		weight = n->weight;
3977 
3978 		/* This NAPI_STATE_SCHED test is for avoiding a race
3979 		 * with netpoll's poll_napi().  Only the entity which
3980 		 * obtains the lock and sees NAPI_STATE_SCHED set will
3981 		 * actually make the ->poll() call.  Therefore we avoid
3982 		 * accidentally calling ->poll() when NAPI is not scheduled.
3983 		 */
3984 		work = 0;
3985 		if (test_bit(NAPI_STATE_SCHED, &n->state)) {
3986 			work = n->poll(n, weight);
3987 			trace_napi_poll(n);
3988 		}
3989 
3990 		WARN_ON_ONCE(work > weight);
3991 
3992 		budget -= work;
3993 
3994 		local_irq_disable();
3995 
3996 		/* Drivers must not modify the NAPI state if they
3997 		 * consume the entire weight.  In such cases this code
3998 		 * still "owns" the NAPI instance and therefore can
3999 		 * move the instance around on the list at-will.
4000 		 */
4001 		if (unlikely(work == weight)) {
4002 			if (unlikely(napi_disable_pending(n))) {
4003 				local_irq_enable();
4004 				napi_complete(n);
4005 				local_irq_disable();
4006 			} else {
4007 				if (n->gro_list) {
4008 					/* flush too old packets
4009 					 * If HZ < 1000, flush all packets.
4010 					 */
4011 					local_irq_enable();
4012 					napi_gro_flush(n, HZ >= 1000);
4013 					local_irq_disable();
4014 				}
4015 				list_move_tail(&n->poll_list, &sd->poll_list);
4016 			}
4017 		}
4018 
4019 		netpoll_poll_unlock(have);
4020 	}
4021 out:
4022 	net_rps_action_and_irq_enable(sd);
4023 
4024 #ifdef CONFIG_NET_DMA
4025 	/*
4026 	 * There may not be any more sk_buffs coming right now, so push
4027 	 * any pending DMA copies to hardware
4028 	 */
4029 	dma_issue_pending_all();
4030 #endif
4031 
4032 	return;
4033 
4034 softnet_break:
4035 	sd->time_squeeze++;
4036 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4037 	goto out;
4038 }
4039 
4040 static gifconf_func_t *gifconf_list[NPROTO];
4041 
4042 /**
4043  *	register_gifconf	-	register a SIOCGIF handler
4044  *	@family: Address family
4045  *	@gifconf: Function handler
4046  *
4047  *	Register protocol dependent address dumping routines. The handler
4048  *	that is passed must not be freed or reused until it has been replaced
4049  *	by another handler.
4050  */
4051 int register_gifconf(unsigned int family, gifconf_func_t *gifconf)
4052 {
4053 	if (family >= NPROTO)
4054 		return -EINVAL;
4055 	gifconf_list[family] = gifconf;
4056 	return 0;
4057 }
4058 EXPORT_SYMBOL(register_gifconf);
4059 
4060 
4061 /*
4062  *	Map an interface index to its name (SIOCGIFNAME)
4063  */
4064 
4065 /*
4066  *	We need this ioctl for efficient implementation of the
4067  *	if_indextoname() function required by the IPv6 API.  Without
4068  *	it, we would have to search all the interfaces to find a
4069  *	match.  --pb
4070  */
4071 
4072 static int dev_ifname(struct net *net, struct ifreq __user *arg)
4073 {
4074 	struct net_device *dev;
4075 	struct ifreq ifr;
4076 
4077 	/*
4078 	 *	Fetch the caller's info block.
4079 	 */
4080 
4081 	if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
4082 		return -EFAULT;
4083 
4084 	rcu_read_lock();
4085 	dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex);
4086 	if (!dev) {
4087 		rcu_read_unlock();
4088 		return -ENODEV;
4089 	}
4090 
4091 	strcpy(ifr.ifr_name, dev->name);
4092 	rcu_read_unlock();
4093 
4094 	if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
4095 		return -EFAULT;
4096 	return 0;
4097 }
4098 
4099 /*
4100  *	Perform a SIOCGIFCONF call. This structure will change
4101  *	size eventually, and there is nothing I can do about it.
4102  *	Thus we will need a 'compatibility mode'.
4103  */
4104 
4105 static int dev_ifconf(struct net *net, char __user *arg)
4106 {
4107 	struct ifconf ifc;
4108 	struct net_device *dev;
4109 	char __user *pos;
4110 	int len;
4111 	int total;
4112 	int i;
4113 
4114 	/*
4115 	 *	Fetch the caller's info block.
4116 	 */
4117 
4118 	if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
4119 		return -EFAULT;
4120 
4121 	pos = ifc.ifc_buf;
4122 	len = ifc.ifc_len;
4123 
4124 	/*
4125 	 *	Loop over the interfaces, and write an info block for each.
4126 	 */
4127 
4128 	total = 0;
4129 	for_each_netdev(net, dev) {
4130 		for (i = 0; i < NPROTO; i++) {
4131 			if (gifconf_list[i]) {
4132 				int done;
4133 				if (!pos)
4134 					done = gifconf_list[i](dev, NULL, 0);
4135 				else
4136 					done = gifconf_list[i](dev, pos + total,
4137 							       len - total);
4138 				if (done < 0)
4139 					return -EFAULT;
4140 				total += done;
4141 			}
4142 		}
4143 	}
4144 
4145 	/*
4146 	 *	All done.  Write the updated control block back to the caller.
4147 	 */
4148 	ifc.ifc_len = total;
4149 
4150 	/*
4151 	 * 	Both BSD and Solaris return 0 here, so we do too.
4152 	 */
4153 	return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
4154 }
4155 
4156 #ifdef CONFIG_PROC_FS
4157 
4158 #define BUCKET_SPACE (32 - NETDEV_HASHBITS - 1)
4159 
4160 #define get_bucket(x) ((x) >> BUCKET_SPACE)
4161 #define get_offset(x) ((x) & ((1 << BUCKET_SPACE) - 1))
4162 #define set_bucket_offset(b, o) ((b) << BUCKET_SPACE | (o))
4163 
4164 static inline struct net_device *dev_from_same_bucket(struct seq_file *seq, loff_t *pos)
4165 {
4166 	struct net *net = seq_file_net(seq);
4167 	struct net_device *dev;
4168 	struct hlist_node *p;
4169 	struct hlist_head *h;
4170 	unsigned int count = 0, offset = get_offset(*pos);
4171 
4172 	h = &net->dev_name_head[get_bucket(*pos)];
4173 	hlist_for_each_entry_rcu(dev, p, h, name_hlist) {
4174 		if (++count == offset)
4175 			return dev;
4176 	}
4177 
4178 	return NULL;
4179 }
4180 
4181 static inline struct net_device *dev_from_bucket(struct seq_file *seq, loff_t *pos)
4182 {
4183 	struct net_device *dev;
4184 	unsigned int bucket;
4185 
4186 	do {
4187 		dev = dev_from_same_bucket(seq, pos);
4188 		if (dev)
4189 			return dev;
4190 
4191 		bucket = get_bucket(*pos) + 1;
4192 		*pos = set_bucket_offset(bucket, 1);
4193 	} while (bucket < NETDEV_HASHENTRIES);
4194 
4195 	return NULL;
4196 }
4197 
4198 /*
4199  *	This is invoked by the /proc filesystem handler to display a device
4200  *	in detail.
4201  */
4202 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
4203 	__acquires(RCU)
4204 {
4205 	rcu_read_lock();
4206 	if (!*pos)
4207 		return SEQ_START_TOKEN;
4208 
4209 	if (get_bucket(*pos) >= NETDEV_HASHENTRIES)
4210 		return NULL;
4211 
4212 	return dev_from_bucket(seq, pos);
4213 }
4214 
4215 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4216 {
4217 	++*pos;
4218 	return dev_from_bucket(seq, pos);
4219 }
4220 
4221 void dev_seq_stop(struct seq_file *seq, void *v)
4222 	__releases(RCU)
4223 {
4224 	rcu_read_unlock();
4225 }
4226 
4227 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
4228 {
4229 	struct rtnl_link_stats64 temp;
4230 	const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp);
4231 
4232 	seq_printf(seq, "%6s: %7llu %7llu %4llu %4llu %4llu %5llu %10llu %9llu "
4233 		   "%8llu %7llu %4llu %4llu %4llu %5llu %7llu %10llu\n",
4234 		   dev->name, stats->rx_bytes, stats->rx_packets,
4235 		   stats->rx_errors,
4236 		   stats->rx_dropped + stats->rx_missed_errors,
4237 		   stats->rx_fifo_errors,
4238 		   stats->rx_length_errors + stats->rx_over_errors +
4239 		    stats->rx_crc_errors + stats->rx_frame_errors,
4240 		   stats->rx_compressed, stats->multicast,
4241 		   stats->tx_bytes, stats->tx_packets,
4242 		   stats->tx_errors, stats->tx_dropped,
4243 		   stats->tx_fifo_errors, stats->collisions,
4244 		   stats->tx_carrier_errors +
4245 		    stats->tx_aborted_errors +
4246 		    stats->tx_window_errors +
4247 		    stats->tx_heartbeat_errors,
4248 		   stats->tx_compressed);
4249 }
4250 
4251 /*
4252  *	Called from the PROCfs module. This now uses the new arbitrary sized
4253  *	/proc/net interface to create /proc/net/dev
4254  */
4255 static int dev_seq_show(struct seq_file *seq, void *v)
4256 {
4257 	if (v == SEQ_START_TOKEN)
4258 		seq_puts(seq, "Inter-|   Receive                            "
4259 			      "                    |  Transmit\n"
4260 			      " face |bytes    packets errs drop fifo frame "
4261 			      "compressed multicast|bytes    packets errs "
4262 			      "drop fifo colls carrier compressed\n");
4263 	else
4264 		dev_seq_printf_stats(seq, v);
4265 	return 0;
4266 }
4267 
4268 static struct softnet_data *softnet_get_online(loff_t *pos)
4269 {
4270 	struct softnet_data *sd = NULL;
4271 
4272 	while (*pos < nr_cpu_ids)
4273 		if (cpu_online(*pos)) {
4274 			sd = &per_cpu(softnet_data, *pos);
4275 			break;
4276 		} else
4277 			++*pos;
4278 	return sd;
4279 }
4280 
4281 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
4282 {
4283 	return softnet_get_online(pos);
4284 }
4285 
4286 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4287 {
4288 	++*pos;
4289 	return softnet_get_online(pos);
4290 }
4291 
4292 static void softnet_seq_stop(struct seq_file *seq, void *v)
4293 {
4294 }
4295 
4296 static int softnet_seq_show(struct seq_file *seq, void *v)
4297 {
4298 	struct softnet_data *sd = v;
4299 
4300 	seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
4301 		   sd->processed, sd->dropped, sd->time_squeeze, 0,
4302 		   0, 0, 0, 0, /* was fastroute */
4303 		   sd->cpu_collision, sd->received_rps);
4304 	return 0;
4305 }
4306 
4307 static const struct seq_operations dev_seq_ops = {
4308 	.start = dev_seq_start,
4309 	.next  = dev_seq_next,
4310 	.stop  = dev_seq_stop,
4311 	.show  = dev_seq_show,
4312 };
4313 
4314 static int dev_seq_open(struct inode *inode, struct file *file)
4315 {
4316 	return seq_open_net(inode, file, &dev_seq_ops,
4317 			    sizeof(struct seq_net_private));
4318 }
4319 
4320 static const struct file_operations dev_seq_fops = {
4321 	.owner	 = THIS_MODULE,
4322 	.open    = dev_seq_open,
4323 	.read    = seq_read,
4324 	.llseek  = seq_lseek,
4325 	.release = seq_release_net,
4326 };
4327 
4328 static const struct seq_operations softnet_seq_ops = {
4329 	.start = softnet_seq_start,
4330 	.next  = softnet_seq_next,
4331 	.stop  = softnet_seq_stop,
4332 	.show  = softnet_seq_show,
4333 };
4334 
4335 static int softnet_seq_open(struct inode *inode, struct file *file)
4336 {
4337 	return seq_open(file, &softnet_seq_ops);
4338 }
4339 
4340 static const struct file_operations softnet_seq_fops = {
4341 	.owner	 = THIS_MODULE,
4342 	.open    = softnet_seq_open,
4343 	.read    = seq_read,
4344 	.llseek  = seq_lseek,
4345 	.release = seq_release,
4346 };
4347 
4348 static void *ptype_get_idx(loff_t pos)
4349 {
4350 	struct packet_type *pt = NULL;
4351 	loff_t i = 0;
4352 	int t;
4353 
4354 	list_for_each_entry_rcu(pt, &ptype_all, list) {
4355 		if (i == pos)
4356 			return pt;
4357 		++i;
4358 	}
4359 
4360 	for (t = 0; t < PTYPE_HASH_SIZE; t++) {
4361 		list_for_each_entry_rcu(pt, &ptype_base[t], list) {
4362 			if (i == pos)
4363 				return pt;
4364 			++i;
4365 		}
4366 	}
4367 	return NULL;
4368 }
4369 
4370 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
4371 	__acquires(RCU)
4372 {
4373 	rcu_read_lock();
4374 	return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
4375 }
4376 
4377 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4378 {
4379 	struct packet_type *pt;
4380 	struct list_head *nxt;
4381 	int hash;
4382 
4383 	++*pos;
4384 	if (v == SEQ_START_TOKEN)
4385 		return ptype_get_idx(0);
4386 
4387 	pt = v;
4388 	nxt = pt->list.next;
4389 	if (pt->type == htons(ETH_P_ALL)) {
4390 		if (nxt != &ptype_all)
4391 			goto found;
4392 		hash = 0;
4393 		nxt = ptype_base[0].next;
4394 	} else
4395 		hash = ntohs(pt->type) & PTYPE_HASH_MASK;
4396 
4397 	while (nxt == &ptype_base[hash]) {
4398 		if (++hash >= PTYPE_HASH_SIZE)
4399 			return NULL;
4400 		nxt = ptype_base[hash].next;
4401 	}
4402 found:
4403 	return list_entry(nxt, struct packet_type, list);
4404 }
4405 
4406 static void ptype_seq_stop(struct seq_file *seq, void *v)
4407 	__releases(RCU)
4408 {
4409 	rcu_read_unlock();
4410 }
4411 
4412 static int ptype_seq_show(struct seq_file *seq, void *v)
4413 {
4414 	struct packet_type *pt = v;
4415 
4416 	if (v == SEQ_START_TOKEN)
4417 		seq_puts(seq, "Type Device      Function\n");
4418 	else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
4419 		if (pt->type == htons(ETH_P_ALL))
4420 			seq_puts(seq, "ALL ");
4421 		else
4422 			seq_printf(seq, "%04x", ntohs(pt->type));
4423 
4424 		seq_printf(seq, " %-8s %pF\n",
4425 			   pt->dev ? pt->dev->name : "", pt->func);
4426 	}
4427 
4428 	return 0;
4429 }
4430 
4431 static const struct seq_operations ptype_seq_ops = {
4432 	.start = ptype_seq_start,
4433 	.next  = ptype_seq_next,
4434 	.stop  = ptype_seq_stop,
4435 	.show  = ptype_seq_show,
4436 };
4437 
4438 static int ptype_seq_open(struct inode *inode, struct file *file)
4439 {
4440 	return seq_open_net(inode, file, &ptype_seq_ops,
4441 			sizeof(struct seq_net_private));
4442 }
4443 
4444 static const struct file_operations ptype_seq_fops = {
4445 	.owner	 = THIS_MODULE,
4446 	.open    = ptype_seq_open,
4447 	.read    = seq_read,
4448 	.llseek  = seq_lseek,
4449 	.release = seq_release_net,
4450 };
4451 
4452 
4453 static int __net_init dev_proc_net_init(struct net *net)
4454 {
4455 	int rc = -ENOMEM;
4456 
4457 	if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
4458 		goto out;
4459 	if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
4460 		goto out_dev;
4461 	if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
4462 		goto out_softnet;
4463 
4464 	if (wext_proc_init(net))
4465 		goto out_ptype;
4466 	rc = 0;
4467 out:
4468 	return rc;
4469 out_ptype:
4470 	proc_net_remove(net, "ptype");
4471 out_softnet:
4472 	proc_net_remove(net, "softnet_stat");
4473 out_dev:
4474 	proc_net_remove(net, "dev");
4475 	goto out;
4476 }
4477 
4478 static void __net_exit dev_proc_net_exit(struct net *net)
4479 {
4480 	wext_proc_exit(net);
4481 
4482 	proc_net_remove(net, "ptype");
4483 	proc_net_remove(net, "softnet_stat");
4484 	proc_net_remove(net, "dev");
4485 }
4486 
4487 static struct pernet_operations __net_initdata dev_proc_ops = {
4488 	.init = dev_proc_net_init,
4489 	.exit = dev_proc_net_exit,
4490 };
4491 
4492 static int __init dev_proc_init(void)
4493 {
4494 	return register_pernet_subsys(&dev_proc_ops);
4495 }
4496 #else
4497 #define dev_proc_init() 0
4498 #endif	/* CONFIG_PROC_FS */
4499 
4500 
4501 /**
4502  *	netdev_set_master	-	set up master pointer
4503  *	@slave: slave device
4504  *	@master: new master device
4505  *
4506  *	Changes the master device of the slave. Pass %NULL to break the
4507  *	bonding. The caller must hold the RTNL semaphore. On a failure
4508  *	a negative errno code is returned. On success the reference counts
4509  *	are adjusted and the function returns zero.
4510  */
4511 int netdev_set_master(struct net_device *slave, struct net_device *master)
4512 {
4513 	struct net_device *old = slave->master;
4514 
4515 	ASSERT_RTNL();
4516 
4517 	if (master) {
4518 		if (old)
4519 			return -EBUSY;
4520 		dev_hold(master);
4521 	}
4522 
4523 	slave->master = master;
4524 
4525 	if (old)
4526 		dev_put(old);
4527 	return 0;
4528 }
4529 EXPORT_SYMBOL(netdev_set_master);
4530 
4531 /**
4532  *	netdev_set_bond_master	-	set up bonding master/slave pair
4533  *	@slave: slave device
4534  *	@master: new master device
4535  *
4536  *	Changes the master device of the slave. Pass %NULL to break the
4537  *	bonding. The caller must hold the RTNL semaphore. On a failure
4538  *	a negative errno code is returned. On success %RTM_NEWLINK is sent
4539  *	to the routing socket and the function returns zero.
4540  */
4541 int netdev_set_bond_master(struct net_device *slave, struct net_device *master)
4542 {
4543 	int err;
4544 
4545 	ASSERT_RTNL();
4546 
4547 	err = netdev_set_master(slave, master);
4548 	if (err)
4549 		return err;
4550 	if (master)
4551 		slave->flags |= IFF_SLAVE;
4552 	else
4553 		slave->flags &= ~IFF_SLAVE;
4554 
4555 	rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
4556 	return 0;
4557 }
4558 EXPORT_SYMBOL(netdev_set_bond_master);
4559 
4560 static void dev_change_rx_flags(struct net_device *dev, int flags)
4561 {
4562 	const struct net_device_ops *ops = dev->netdev_ops;
4563 
4564 	if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
4565 		ops->ndo_change_rx_flags(dev, flags);
4566 }
4567 
4568 static int __dev_set_promiscuity(struct net_device *dev, int inc)
4569 {
4570 	unsigned int old_flags = dev->flags;
4571 	kuid_t uid;
4572 	kgid_t gid;
4573 
4574 	ASSERT_RTNL();
4575 
4576 	dev->flags |= IFF_PROMISC;
4577 	dev->promiscuity += inc;
4578 	if (dev->promiscuity == 0) {
4579 		/*
4580 		 * Avoid overflow.
4581 		 * If inc causes overflow, untouch promisc and return error.
4582 		 */
4583 		if (inc < 0)
4584 			dev->flags &= ~IFF_PROMISC;
4585 		else {
4586 			dev->promiscuity -= inc;
4587 			pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
4588 				dev->name);
4589 			return -EOVERFLOW;
4590 		}
4591 	}
4592 	if (dev->flags != old_flags) {
4593 		pr_info("device %s %s promiscuous mode\n",
4594 			dev->name,
4595 			dev->flags & IFF_PROMISC ? "entered" : "left");
4596 		if (audit_enabled) {
4597 			current_uid_gid(&uid, &gid);
4598 			audit_log(current->audit_context, GFP_ATOMIC,
4599 				AUDIT_ANOM_PROMISCUOUS,
4600 				"dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
4601 				dev->name, (dev->flags & IFF_PROMISC),
4602 				(old_flags & IFF_PROMISC),
4603 				from_kuid(&init_user_ns, audit_get_loginuid(current)),
4604 				from_kuid(&init_user_ns, uid),
4605 				from_kgid(&init_user_ns, gid),
4606 				audit_get_sessionid(current));
4607 		}
4608 
4609 		dev_change_rx_flags(dev, IFF_PROMISC);
4610 	}
4611 	return 0;
4612 }
4613 
4614 /**
4615  *	dev_set_promiscuity	- update promiscuity count on a device
4616  *	@dev: device
4617  *	@inc: modifier
4618  *
4619  *	Add or remove promiscuity from a device. While the count in the device
4620  *	remains above zero the interface remains promiscuous. Once it hits zero
4621  *	the device reverts back to normal filtering operation. A negative inc
4622  *	value is used to drop promiscuity on the device.
4623  *	Return 0 if successful or a negative errno code on error.
4624  */
4625 int dev_set_promiscuity(struct net_device *dev, int inc)
4626 {
4627 	unsigned int old_flags = dev->flags;
4628 	int err;
4629 
4630 	err = __dev_set_promiscuity(dev, inc);
4631 	if (err < 0)
4632 		return err;
4633 	if (dev->flags != old_flags)
4634 		dev_set_rx_mode(dev);
4635 	return err;
4636 }
4637 EXPORT_SYMBOL(dev_set_promiscuity);
4638 
4639 /**
4640  *	dev_set_allmulti	- update allmulti count on a device
4641  *	@dev: device
4642  *	@inc: modifier
4643  *
4644  *	Add or remove reception of all multicast frames to a device. While the
4645  *	count in the device remains above zero the interface remains listening
4646  *	to all interfaces. Once it hits zero the device reverts back to normal
4647  *	filtering operation. A negative @inc value is used to drop the counter
4648  *	when releasing a resource needing all multicasts.
4649  *	Return 0 if successful or a negative errno code on error.
4650  */
4651 
4652 int dev_set_allmulti(struct net_device *dev, int inc)
4653 {
4654 	unsigned int old_flags = dev->flags;
4655 
4656 	ASSERT_RTNL();
4657 
4658 	dev->flags |= IFF_ALLMULTI;
4659 	dev->allmulti += inc;
4660 	if (dev->allmulti == 0) {
4661 		/*
4662 		 * Avoid overflow.
4663 		 * If inc causes overflow, untouch allmulti and return error.
4664 		 */
4665 		if (inc < 0)
4666 			dev->flags &= ~IFF_ALLMULTI;
4667 		else {
4668 			dev->allmulti -= inc;
4669 			pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
4670 				dev->name);
4671 			return -EOVERFLOW;
4672 		}
4673 	}
4674 	if (dev->flags ^ old_flags) {
4675 		dev_change_rx_flags(dev, IFF_ALLMULTI);
4676 		dev_set_rx_mode(dev);
4677 	}
4678 	return 0;
4679 }
4680 EXPORT_SYMBOL(dev_set_allmulti);
4681 
4682 /*
4683  *	Upload unicast and multicast address lists to device and
4684  *	configure RX filtering. When the device doesn't support unicast
4685  *	filtering it is put in promiscuous mode while unicast addresses
4686  *	are present.
4687  */
4688 void __dev_set_rx_mode(struct net_device *dev)
4689 {
4690 	const struct net_device_ops *ops = dev->netdev_ops;
4691 
4692 	/* dev_open will call this function so the list will stay sane. */
4693 	if (!(dev->flags&IFF_UP))
4694 		return;
4695 
4696 	if (!netif_device_present(dev))
4697 		return;
4698 
4699 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
4700 		/* Unicast addresses changes may only happen under the rtnl,
4701 		 * therefore calling __dev_set_promiscuity here is safe.
4702 		 */
4703 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
4704 			__dev_set_promiscuity(dev, 1);
4705 			dev->uc_promisc = true;
4706 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
4707 			__dev_set_promiscuity(dev, -1);
4708 			dev->uc_promisc = false;
4709 		}
4710 	}
4711 
4712 	if (ops->ndo_set_rx_mode)
4713 		ops->ndo_set_rx_mode(dev);
4714 }
4715 
4716 void dev_set_rx_mode(struct net_device *dev)
4717 {
4718 	netif_addr_lock_bh(dev);
4719 	__dev_set_rx_mode(dev);
4720 	netif_addr_unlock_bh(dev);
4721 }
4722 
4723 /**
4724  *	dev_get_flags - get flags reported to userspace
4725  *	@dev: device
4726  *
4727  *	Get the combination of flag bits exported through APIs to userspace.
4728  */
4729 unsigned int dev_get_flags(const struct net_device *dev)
4730 {
4731 	unsigned int flags;
4732 
4733 	flags = (dev->flags & ~(IFF_PROMISC |
4734 				IFF_ALLMULTI |
4735 				IFF_RUNNING |
4736 				IFF_LOWER_UP |
4737 				IFF_DORMANT)) |
4738 		(dev->gflags & (IFF_PROMISC |
4739 				IFF_ALLMULTI));
4740 
4741 	if (netif_running(dev)) {
4742 		if (netif_oper_up(dev))
4743 			flags |= IFF_RUNNING;
4744 		if (netif_carrier_ok(dev))
4745 			flags |= IFF_LOWER_UP;
4746 		if (netif_dormant(dev))
4747 			flags |= IFF_DORMANT;
4748 	}
4749 
4750 	return flags;
4751 }
4752 EXPORT_SYMBOL(dev_get_flags);
4753 
4754 int __dev_change_flags(struct net_device *dev, unsigned int flags)
4755 {
4756 	unsigned int old_flags = dev->flags;
4757 	int ret;
4758 
4759 	ASSERT_RTNL();
4760 
4761 	/*
4762 	 *	Set the flags on our device.
4763 	 */
4764 
4765 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4766 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4767 			       IFF_AUTOMEDIA)) |
4768 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4769 				    IFF_ALLMULTI));
4770 
4771 	/*
4772 	 *	Load in the correct multicast list now the flags have changed.
4773 	 */
4774 
4775 	if ((old_flags ^ flags) & IFF_MULTICAST)
4776 		dev_change_rx_flags(dev, IFF_MULTICAST);
4777 
4778 	dev_set_rx_mode(dev);
4779 
4780 	/*
4781 	 *	Have we downed the interface. We handle IFF_UP ourselves
4782 	 *	according to user attempts to set it, rather than blindly
4783 	 *	setting it.
4784 	 */
4785 
4786 	ret = 0;
4787 	if ((old_flags ^ flags) & IFF_UP) {	/* Bit is different  ? */
4788 		ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
4789 
4790 		if (!ret)
4791 			dev_set_rx_mode(dev);
4792 	}
4793 
4794 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
4795 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
4796 
4797 		dev->gflags ^= IFF_PROMISC;
4798 		dev_set_promiscuity(dev, inc);
4799 	}
4800 
4801 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4802 	   is important. Some (broken) drivers set IFF_PROMISC, when
4803 	   IFF_ALLMULTI is requested not asking us and not reporting.
4804 	 */
4805 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4806 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4807 
4808 		dev->gflags ^= IFF_ALLMULTI;
4809 		dev_set_allmulti(dev, inc);
4810 	}
4811 
4812 	return ret;
4813 }
4814 
4815 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
4816 {
4817 	unsigned int changes = dev->flags ^ old_flags;
4818 
4819 	if (changes & IFF_UP) {
4820 		if (dev->flags & IFF_UP)
4821 			call_netdevice_notifiers(NETDEV_UP, dev);
4822 		else
4823 			call_netdevice_notifiers(NETDEV_DOWN, dev);
4824 	}
4825 
4826 	if (dev->flags & IFF_UP &&
4827 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE)))
4828 		call_netdevice_notifiers(NETDEV_CHANGE, dev);
4829 }
4830 
4831 /**
4832  *	dev_change_flags - change device settings
4833  *	@dev: device
4834  *	@flags: device state flags
4835  *
4836  *	Change settings on device based state flags. The flags are
4837  *	in the userspace exported format.
4838  */
4839 int dev_change_flags(struct net_device *dev, unsigned int flags)
4840 {
4841 	int ret;
4842 	unsigned int changes, old_flags = dev->flags;
4843 
4844 	ret = __dev_change_flags(dev, flags);
4845 	if (ret < 0)
4846 		return ret;
4847 
4848 	changes = old_flags ^ dev->flags;
4849 	if (changes)
4850 		rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4851 
4852 	__dev_notify_flags(dev, old_flags);
4853 	return ret;
4854 }
4855 EXPORT_SYMBOL(dev_change_flags);
4856 
4857 /**
4858  *	dev_set_mtu - Change maximum transfer unit
4859  *	@dev: device
4860  *	@new_mtu: new transfer unit
4861  *
4862  *	Change the maximum transfer size of the network device.
4863  */
4864 int dev_set_mtu(struct net_device *dev, int new_mtu)
4865 {
4866 	const struct net_device_ops *ops = dev->netdev_ops;
4867 	int err;
4868 
4869 	if (new_mtu == dev->mtu)
4870 		return 0;
4871 
4872 	/*	MTU must be positive.	 */
4873 	if (new_mtu < 0)
4874 		return -EINVAL;
4875 
4876 	if (!netif_device_present(dev))
4877 		return -ENODEV;
4878 
4879 	err = 0;
4880 	if (ops->ndo_change_mtu)
4881 		err = ops->ndo_change_mtu(dev, new_mtu);
4882 	else
4883 		dev->mtu = new_mtu;
4884 
4885 	if (!err && dev->flags & IFF_UP)
4886 		call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4887 	return err;
4888 }
4889 EXPORT_SYMBOL(dev_set_mtu);
4890 
4891 /**
4892  *	dev_set_group - Change group this device belongs to
4893  *	@dev: device
4894  *	@new_group: group this device should belong to
4895  */
4896 void dev_set_group(struct net_device *dev, int new_group)
4897 {
4898 	dev->group = new_group;
4899 }
4900 EXPORT_SYMBOL(dev_set_group);
4901 
4902 /**
4903  *	dev_set_mac_address - Change Media Access Control Address
4904  *	@dev: device
4905  *	@sa: new address
4906  *
4907  *	Change the hardware (MAC) address of the device
4908  */
4909 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4910 {
4911 	const struct net_device_ops *ops = dev->netdev_ops;
4912 	int err;
4913 
4914 	if (!ops->ndo_set_mac_address)
4915 		return -EOPNOTSUPP;
4916 	if (sa->sa_family != dev->type)
4917 		return -EINVAL;
4918 	if (!netif_device_present(dev))
4919 		return -ENODEV;
4920 	err = ops->ndo_set_mac_address(dev, sa);
4921 	if (!err)
4922 		call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4923 	add_device_randomness(dev->dev_addr, dev->addr_len);
4924 	return err;
4925 }
4926 EXPORT_SYMBOL(dev_set_mac_address);
4927 
4928 /*
4929  *	Perform the SIOCxIFxxx calls, inside rcu_read_lock()
4930  */
4931 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
4932 {
4933 	int err;
4934 	struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name);
4935 
4936 	if (!dev)
4937 		return -ENODEV;
4938 
4939 	switch (cmd) {
4940 	case SIOCGIFFLAGS:	/* Get interface flags */
4941 		ifr->ifr_flags = (short) dev_get_flags(dev);
4942 		return 0;
4943 
4944 	case SIOCGIFMETRIC:	/* Get the metric on the interface
4945 				   (currently unused) */
4946 		ifr->ifr_metric = 0;
4947 		return 0;
4948 
4949 	case SIOCGIFMTU:	/* Get the MTU of a device */
4950 		ifr->ifr_mtu = dev->mtu;
4951 		return 0;
4952 
4953 	case SIOCGIFHWADDR:
4954 		if (!dev->addr_len)
4955 			memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
4956 		else
4957 			memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
4958 			       min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4959 		ifr->ifr_hwaddr.sa_family = dev->type;
4960 		return 0;
4961 
4962 	case SIOCGIFSLAVE:
4963 		err = -EINVAL;
4964 		break;
4965 
4966 	case SIOCGIFMAP:
4967 		ifr->ifr_map.mem_start = dev->mem_start;
4968 		ifr->ifr_map.mem_end   = dev->mem_end;
4969 		ifr->ifr_map.base_addr = dev->base_addr;
4970 		ifr->ifr_map.irq       = dev->irq;
4971 		ifr->ifr_map.dma       = dev->dma;
4972 		ifr->ifr_map.port      = dev->if_port;
4973 		return 0;
4974 
4975 	case SIOCGIFINDEX:
4976 		ifr->ifr_ifindex = dev->ifindex;
4977 		return 0;
4978 
4979 	case SIOCGIFTXQLEN:
4980 		ifr->ifr_qlen = dev->tx_queue_len;
4981 		return 0;
4982 
4983 	default:
4984 		/* dev_ioctl() should ensure this case
4985 		 * is never reached
4986 		 */
4987 		WARN_ON(1);
4988 		err = -ENOTTY;
4989 		break;
4990 
4991 	}
4992 	return err;
4993 }
4994 
4995 /*
4996  *	Perform the SIOCxIFxxx calls, inside rtnl_lock()
4997  */
4998 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
4999 {
5000 	int err;
5001 	struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
5002 	const struct net_device_ops *ops;
5003 
5004 	if (!dev)
5005 		return -ENODEV;
5006 
5007 	ops = dev->netdev_ops;
5008 
5009 	switch (cmd) {
5010 	case SIOCSIFFLAGS:	/* Set interface flags */
5011 		return dev_change_flags(dev, ifr->ifr_flags);
5012 
5013 	case SIOCSIFMETRIC:	/* Set the metric on the interface
5014 				   (currently unused) */
5015 		return -EOPNOTSUPP;
5016 
5017 	case SIOCSIFMTU:	/* Set the MTU of a device */
5018 		return dev_set_mtu(dev, ifr->ifr_mtu);
5019 
5020 	case SIOCSIFHWADDR:
5021 		return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
5022 
5023 	case SIOCSIFHWBROADCAST:
5024 		if (ifr->ifr_hwaddr.sa_family != dev->type)
5025 			return -EINVAL;
5026 		memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
5027 		       min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
5028 		call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
5029 		return 0;
5030 
5031 	case SIOCSIFMAP:
5032 		if (ops->ndo_set_config) {
5033 			if (!netif_device_present(dev))
5034 				return -ENODEV;
5035 			return ops->ndo_set_config(dev, &ifr->ifr_map);
5036 		}
5037 		return -EOPNOTSUPP;
5038 
5039 	case SIOCADDMULTI:
5040 		if (!ops->ndo_set_rx_mode ||
5041 		    ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
5042 			return -EINVAL;
5043 		if (!netif_device_present(dev))
5044 			return -ENODEV;
5045 		return dev_mc_add_global(dev, ifr->ifr_hwaddr.sa_data);
5046 
5047 	case SIOCDELMULTI:
5048 		if (!ops->ndo_set_rx_mode ||
5049 		    ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
5050 			return -EINVAL;
5051 		if (!netif_device_present(dev))
5052 			return -ENODEV;
5053 		return dev_mc_del_global(dev, ifr->ifr_hwaddr.sa_data);
5054 
5055 	case SIOCSIFTXQLEN:
5056 		if (ifr->ifr_qlen < 0)
5057 			return -EINVAL;
5058 		dev->tx_queue_len = ifr->ifr_qlen;
5059 		return 0;
5060 
5061 	case SIOCSIFNAME:
5062 		ifr->ifr_newname[IFNAMSIZ-1] = '\0';
5063 		return dev_change_name(dev, ifr->ifr_newname);
5064 
5065 	case SIOCSHWTSTAMP:
5066 		err = net_hwtstamp_validate(ifr);
5067 		if (err)
5068 			return err;
5069 		/* fall through */
5070 
5071 	/*
5072 	 *	Unknown or private ioctl
5073 	 */
5074 	default:
5075 		if ((cmd >= SIOCDEVPRIVATE &&
5076 		    cmd <= SIOCDEVPRIVATE + 15) ||
5077 		    cmd == SIOCBONDENSLAVE ||
5078 		    cmd == SIOCBONDRELEASE ||
5079 		    cmd == SIOCBONDSETHWADDR ||
5080 		    cmd == SIOCBONDSLAVEINFOQUERY ||
5081 		    cmd == SIOCBONDINFOQUERY ||
5082 		    cmd == SIOCBONDCHANGEACTIVE ||
5083 		    cmd == SIOCGMIIPHY ||
5084 		    cmd == SIOCGMIIREG ||
5085 		    cmd == SIOCSMIIREG ||
5086 		    cmd == SIOCBRADDIF ||
5087 		    cmd == SIOCBRDELIF ||
5088 		    cmd == SIOCSHWTSTAMP ||
5089 		    cmd == SIOCWANDEV) {
5090 			err = -EOPNOTSUPP;
5091 			if (ops->ndo_do_ioctl) {
5092 				if (netif_device_present(dev))
5093 					err = ops->ndo_do_ioctl(dev, ifr, cmd);
5094 				else
5095 					err = -ENODEV;
5096 			}
5097 		} else
5098 			err = -EINVAL;
5099 
5100 	}
5101 	return err;
5102 }
5103 
5104 /*
5105  *	This function handles all "interface"-type I/O control requests. The actual
5106  *	'doing' part of this is dev_ifsioc above.
5107  */
5108 
5109 /**
5110  *	dev_ioctl	-	network device ioctl
5111  *	@net: the applicable net namespace
5112  *	@cmd: command to issue
5113  *	@arg: pointer to a struct ifreq in user space
5114  *
5115  *	Issue ioctl functions to devices. This is normally called by the
5116  *	user space syscall interfaces but can sometimes be useful for
5117  *	other purposes. The return value is the return from the syscall if
5118  *	positive or a negative errno code on error.
5119  */
5120 
5121 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
5122 {
5123 	struct ifreq ifr;
5124 	int ret;
5125 	char *colon;
5126 
5127 	/* One special case: SIOCGIFCONF takes ifconf argument
5128 	   and requires shared lock, because it sleeps writing
5129 	   to user space.
5130 	 */
5131 
5132 	if (cmd == SIOCGIFCONF) {
5133 		rtnl_lock();
5134 		ret = dev_ifconf(net, (char __user *) arg);
5135 		rtnl_unlock();
5136 		return ret;
5137 	}
5138 	if (cmd == SIOCGIFNAME)
5139 		return dev_ifname(net, (struct ifreq __user *)arg);
5140 
5141 	if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
5142 		return -EFAULT;
5143 
5144 	ifr.ifr_name[IFNAMSIZ-1] = 0;
5145 
5146 	colon = strchr(ifr.ifr_name, ':');
5147 	if (colon)
5148 		*colon = 0;
5149 
5150 	/*
5151 	 *	See which interface the caller is talking about.
5152 	 */
5153 
5154 	switch (cmd) {
5155 	/*
5156 	 *	These ioctl calls:
5157 	 *	- can be done by all.
5158 	 *	- atomic and do not require locking.
5159 	 *	- return a value
5160 	 */
5161 	case SIOCGIFFLAGS:
5162 	case SIOCGIFMETRIC:
5163 	case SIOCGIFMTU:
5164 	case SIOCGIFHWADDR:
5165 	case SIOCGIFSLAVE:
5166 	case SIOCGIFMAP:
5167 	case SIOCGIFINDEX:
5168 	case SIOCGIFTXQLEN:
5169 		dev_load(net, ifr.ifr_name);
5170 		rcu_read_lock();
5171 		ret = dev_ifsioc_locked(net, &ifr, cmd);
5172 		rcu_read_unlock();
5173 		if (!ret) {
5174 			if (colon)
5175 				*colon = ':';
5176 			if (copy_to_user(arg, &ifr,
5177 					 sizeof(struct ifreq)))
5178 				ret = -EFAULT;
5179 		}
5180 		return ret;
5181 
5182 	case SIOCETHTOOL:
5183 		dev_load(net, ifr.ifr_name);
5184 		rtnl_lock();
5185 		ret = dev_ethtool(net, &ifr);
5186 		rtnl_unlock();
5187 		if (!ret) {
5188 			if (colon)
5189 				*colon = ':';
5190 			if (copy_to_user(arg, &ifr,
5191 					 sizeof(struct ifreq)))
5192 				ret = -EFAULT;
5193 		}
5194 		return ret;
5195 
5196 	/*
5197 	 *	These ioctl calls:
5198 	 *	- require superuser power.
5199 	 *	- require strict serialization.
5200 	 *	- return a value
5201 	 */
5202 	case SIOCGMIIPHY:
5203 	case SIOCGMIIREG:
5204 	case SIOCSIFNAME:
5205 		if (!capable(CAP_NET_ADMIN))
5206 			return -EPERM;
5207 		dev_load(net, ifr.ifr_name);
5208 		rtnl_lock();
5209 		ret = dev_ifsioc(net, &ifr, cmd);
5210 		rtnl_unlock();
5211 		if (!ret) {
5212 			if (colon)
5213 				*colon = ':';
5214 			if (copy_to_user(arg, &ifr,
5215 					 sizeof(struct ifreq)))
5216 				ret = -EFAULT;
5217 		}
5218 		return ret;
5219 
5220 	/*
5221 	 *	These ioctl calls:
5222 	 *	- require superuser power.
5223 	 *	- require strict serialization.
5224 	 *	- do not return a value
5225 	 */
5226 	case SIOCSIFFLAGS:
5227 	case SIOCSIFMETRIC:
5228 	case SIOCSIFMTU:
5229 	case SIOCSIFMAP:
5230 	case SIOCSIFHWADDR:
5231 	case SIOCSIFSLAVE:
5232 	case SIOCADDMULTI:
5233 	case SIOCDELMULTI:
5234 	case SIOCSIFHWBROADCAST:
5235 	case SIOCSIFTXQLEN:
5236 	case SIOCSMIIREG:
5237 	case SIOCBONDENSLAVE:
5238 	case SIOCBONDRELEASE:
5239 	case SIOCBONDSETHWADDR:
5240 	case SIOCBONDCHANGEACTIVE:
5241 	case SIOCBRADDIF:
5242 	case SIOCBRDELIF:
5243 	case SIOCSHWTSTAMP:
5244 		if (!capable(CAP_NET_ADMIN))
5245 			return -EPERM;
5246 		/* fall through */
5247 	case SIOCBONDSLAVEINFOQUERY:
5248 	case SIOCBONDINFOQUERY:
5249 		dev_load(net, ifr.ifr_name);
5250 		rtnl_lock();
5251 		ret = dev_ifsioc(net, &ifr, cmd);
5252 		rtnl_unlock();
5253 		return ret;
5254 
5255 	case SIOCGIFMEM:
5256 		/* Get the per device memory space. We can add this but
5257 		 * currently do not support it */
5258 	case SIOCSIFMEM:
5259 		/* Set the per device memory buffer space.
5260 		 * Not applicable in our case */
5261 	case SIOCSIFLINK:
5262 		return -ENOTTY;
5263 
5264 	/*
5265 	 *	Unknown or private ioctl.
5266 	 */
5267 	default:
5268 		if (cmd == SIOCWANDEV ||
5269 		    (cmd >= SIOCDEVPRIVATE &&
5270 		     cmd <= SIOCDEVPRIVATE + 15)) {
5271 			dev_load(net, ifr.ifr_name);
5272 			rtnl_lock();
5273 			ret = dev_ifsioc(net, &ifr, cmd);
5274 			rtnl_unlock();
5275 			if (!ret && copy_to_user(arg, &ifr,
5276 						 sizeof(struct ifreq)))
5277 				ret = -EFAULT;
5278 			return ret;
5279 		}
5280 		/* Take care of Wireless Extensions */
5281 		if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
5282 			return wext_handle_ioctl(net, &ifr, cmd, arg);
5283 		return -ENOTTY;
5284 	}
5285 }
5286 
5287 
5288 /**
5289  *	dev_new_index	-	allocate an ifindex
5290  *	@net: the applicable net namespace
5291  *
5292  *	Returns a suitable unique value for a new device interface
5293  *	number.  The caller must hold the rtnl semaphore or the
5294  *	dev_base_lock to be sure it remains unique.
5295  */
5296 static int dev_new_index(struct net *net)
5297 {
5298 	int ifindex = net->ifindex;
5299 	for (;;) {
5300 		if (++ifindex <= 0)
5301 			ifindex = 1;
5302 		if (!__dev_get_by_index(net, ifindex))
5303 			return net->ifindex = ifindex;
5304 	}
5305 }
5306 
5307 /* Delayed registration/unregisteration */
5308 static LIST_HEAD(net_todo_list);
5309 
5310 static void net_set_todo(struct net_device *dev)
5311 {
5312 	list_add_tail(&dev->todo_list, &net_todo_list);
5313 }
5314 
5315 static void rollback_registered_many(struct list_head *head)
5316 {
5317 	struct net_device *dev, *tmp;
5318 
5319 	BUG_ON(dev_boot_phase);
5320 	ASSERT_RTNL();
5321 
5322 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
5323 		/* Some devices call without registering
5324 		 * for initialization unwind. Remove those
5325 		 * devices and proceed with the remaining.
5326 		 */
5327 		if (dev->reg_state == NETREG_UNINITIALIZED) {
5328 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
5329 				 dev->name, dev);
5330 
5331 			WARN_ON(1);
5332 			list_del(&dev->unreg_list);
5333 			continue;
5334 		}
5335 		dev->dismantle = true;
5336 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
5337 	}
5338 
5339 	/* If device is running, close it first. */
5340 	dev_close_many(head);
5341 
5342 	list_for_each_entry(dev, head, unreg_list) {
5343 		/* And unlink it from device chain. */
5344 		unlist_netdevice(dev);
5345 
5346 		dev->reg_state = NETREG_UNREGISTERING;
5347 	}
5348 
5349 	synchronize_net();
5350 
5351 	list_for_each_entry(dev, head, unreg_list) {
5352 		/* Shutdown queueing discipline. */
5353 		dev_shutdown(dev);
5354 
5355 
5356 		/* Notify protocols, that we are about to destroy
5357 		   this device. They should clean all the things.
5358 		*/
5359 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5360 
5361 		if (!dev->rtnl_link_ops ||
5362 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5363 			rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
5364 
5365 		/*
5366 		 *	Flush the unicast and multicast chains
5367 		 */
5368 		dev_uc_flush(dev);
5369 		dev_mc_flush(dev);
5370 
5371 		if (dev->netdev_ops->ndo_uninit)
5372 			dev->netdev_ops->ndo_uninit(dev);
5373 
5374 		/* Notifier chain MUST detach us from master device. */
5375 		WARN_ON(dev->master);
5376 
5377 		/* Remove entries from kobject tree */
5378 		netdev_unregister_kobject(dev);
5379 	}
5380 
5381 	synchronize_net();
5382 
5383 	list_for_each_entry(dev, head, unreg_list)
5384 		dev_put(dev);
5385 }
5386 
5387 static void rollback_registered(struct net_device *dev)
5388 {
5389 	LIST_HEAD(single);
5390 
5391 	list_add(&dev->unreg_list, &single);
5392 	rollback_registered_many(&single);
5393 	list_del(&single);
5394 }
5395 
5396 static netdev_features_t netdev_fix_features(struct net_device *dev,
5397 	netdev_features_t features)
5398 {
5399 	/* Fix illegal checksum combinations */
5400 	if ((features & NETIF_F_HW_CSUM) &&
5401 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5402 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
5403 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5404 	}
5405 
5406 	/* Fix illegal SG+CSUM combinations. */
5407 	if ((features & NETIF_F_SG) &&
5408 	    !(features & NETIF_F_ALL_CSUM)) {
5409 		netdev_dbg(dev,
5410 			"Dropping NETIF_F_SG since no checksum feature.\n");
5411 		features &= ~NETIF_F_SG;
5412 	}
5413 
5414 	/* TSO requires that SG is present as well. */
5415 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
5416 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
5417 		features &= ~NETIF_F_ALL_TSO;
5418 	}
5419 
5420 	/* TSO ECN requires that TSO is present as well. */
5421 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
5422 		features &= ~NETIF_F_TSO_ECN;
5423 
5424 	/* Software GSO depends on SG. */
5425 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
5426 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
5427 		features &= ~NETIF_F_GSO;
5428 	}
5429 
5430 	/* UFO needs SG and checksumming */
5431 	if (features & NETIF_F_UFO) {
5432 		/* maybe split UFO into V4 and V6? */
5433 		if (!((features & NETIF_F_GEN_CSUM) ||
5434 		    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
5435 			    == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5436 			netdev_dbg(dev,
5437 				"Dropping NETIF_F_UFO since no checksum offload features.\n");
5438 			features &= ~NETIF_F_UFO;
5439 		}
5440 
5441 		if (!(features & NETIF_F_SG)) {
5442 			netdev_dbg(dev,
5443 				"Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
5444 			features &= ~NETIF_F_UFO;
5445 		}
5446 	}
5447 
5448 	return features;
5449 }
5450 
5451 int __netdev_update_features(struct net_device *dev)
5452 {
5453 	netdev_features_t features;
5454 	int err = 0;
5455 
5456 	ASSERT_RTNL();
5457 
5458 	features = netdev_get_wanted_features(dev);
5459 
5460 	if (dev->netdev_ops->ndo_fix_features)
5461 		features = dev->netdev_ops->ndo_fix_features(dev, features);
5462 
5463 	/* driver might be less strict about feature dependencies */
5464 	features = netdev_fix_features(dev, features);
5465 
5466 	if (dev->features == features)
5467 		return 0;
5468 
5469 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
5470 		&dev->features, &features);
5471 
5472 	if (dev->netdev_ops->ndo_set_features)
5473 		err = dev->netdev_ops->ndo_set_features(dev, features);
5474 
5475 	if (unlikely(err < 0)) {
5476 		netdev_err(dev,
5477 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
5478 			err, &features, &dev->features);
5479 		return -1;
5480 	}
5481 
5482 	if (!err)
5483 		dev->features = features;
5484 
5485 	return 1;
5486 }
5487 
5488 /**
5489  *	netdev_update_features - recalculate device features
5490  *	@dev: the device to check
5491  *
5492  *	Recalculate dev->features set and send notifications if it
5493  *	has changed. Should be called after driver or hardware dependent
5494  *	conditions might have changed that influence the features.
5495  */
5496 void netdev_update_features(struct net_device *dev)
5497 {
5498 	if (__netdev_update_features(dev))
5499 		netdev_features_change(dev);
5500 }
5501 EXPORT_SYMBOL(netdev_update_features);
5502 
5503 /**
5504  *	netdev_change_features - recalculate device features
5505  *	@dev: the device to check
5506  *
5507  *	Recalculate dev->features set and send notifications even
5508  *	if they have not changed. Should be called instead of
5509  *	netdev_update_features() if also dev->vlan_features might
5510  *	have changed to allow the changes to be propagated to stacked
5511  *	VLAN devices.
5512  */
5513 void netdev_change_features(struct net_device *dev)
5514 {
5515 	__netdev_update_features(dev);
5516 	netdev_features_change(dev);
5517 }
5518 EXPORT_SYMBOL(netdev_change_features);
5519 
5520 /**
5521  *	netif_stacked_transfer_operstate -	transfer operstate
5522  *	@rootdev: the root or lower level device to transfer state from
5523  *	@dev: the device to transfer operstate to
5524  *
5525  *	Transfer operational state from root to device. This is normally
5526  *	called when a stacking relationship exists between the root
5527  *	device and the device(a leaf device).
5528  */
5529 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5530 					struct net_device *dev)
5531 {
5532 	if (rootdev->operstate == IF_OPER_DORMANT)
5533 		netif_dormant_on(dev);
5534 	else
5535 		netif_dormant_off(dev);
5536 
5537 	if (netif_carrier_ok(rootdev)) {
5538 		if (!netif_carrier_ok(dev))
5539 			netif_carrier_on(dev);
5540 	} else {
5541 		if (netif_carrier_ok(dev))
5542 			netif_carrier_off(dev);
5543 	}
5544 }
5545 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5546 
5547 #ifdef CONFIG_RPS
5548 static int netif_alloc_rx_queues(struct net_device *dev)
5549 {
5550 	unsigned int i, count = dev->num_rx_queues;
5551 	struct netdev_rx_queue *rx;
5552 
5553 	BUG_ON(count < 1);
5554 
5555 	rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5556 	if (!rx) {
5557 		pr_err("netdev: Unable to allocate %u rx queues\n", count);
5558 		return -ENOMEM;
5559 	}
5560 	dev->_rx = rx;
5561 
5562 	for (i = 0; i < count; i++)
5563 		rx[i].dev = dev;
5564 	return 0;
5565 }
5566 #endif
5567 
5568 static void netdev_init_one_queue(struct net_device *dev,
5569 				  struct netdev_queue *queue, void *_unused)
5570 {
5571 	/* Initialize queue lock */
5572 	spin_lock_init(&queue->_xmit_lock);
5573 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
5574 	queue->xmit_lock_owner = -1;
5575 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
5576 	queue->dev = dev;
5577 #ifdef CONFIG_BQL
5578 	dql_init(&queue->dql, HZ);
5579 #endif
5580 }
5581 
5582 static int netif_alloc_netdev_queues(struct net_device *dev)
5583 {
5584 	unsigned int count = dev->num_tx_queues;
5585 	struct netdev_queue *tx;
5586 
5587 	BUG_ON(count < 1);
5588 
5589 	tx = kcalloc(count, sizeof(struct netdev_queue), GFP_KERNEL);
5590 	if (!tx) {
5591 		pr_err("netdev: Unable to allocate %u tx queues\n", count);
5592 		return -ENOMEM;
5593 	}
5594 	dev->_tx = tx;
5595 
5596 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5597 	spin_lock_init(&dev->tx_global_lock);
5598 
5599 	return 0;
5600 }
5601 
5602 /**
5603  *	register_netdevice	- register a network device
5604  *	@dev: device to register
5605  *
5606  *	Take a completed network device structure and add it to the kernel
5607  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5608  *	chain. 0 is returned on success. A negative errno code is returned
5609  *	on a failure to set up the device, or if the name is a duplicate.
5610  *
5611  *	Callers must hold the rtnl semaphore. You may want
5612  *	register_netdev() instead of this.
5613  *
5614  *	BUGS:
5615  *	The locking appears insufficient to guarantee two parallel registers
5616  *	will not get the same name.
5617  */
5618 
5619 int register_netdevice(struct net_device *dev)
5620 {
5621 	int ret;
5622 	struct net *net = dev_net(dev);
5623 
5624 	BUG_ON(dev_boot_phase);
5625 	ASSERT_RTNL();
5626 
5627 	might_sleep();
5628 
5629 	/* When net_device's are persistent, this will be fatal. */
5630 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
5631 	BUG_ON(!net);
5632 
5633 	spin_lock_init(&dev->addr_list_lock);
5634 	netdev_set_addr_lockdep_class(dev);
5635 
5636 	dev->iflink = -1;
5637 
5638 	ret = dev_get_valid_name(net, dev, dev->name);
5639 	if (ret < 0)
5640 		goto out;
5641 
5642 	/* Init, if this function is available */
5643 	if (dev->netdev_ops->ndo_init) {
5644 		ret = dev->netdev_ops->ndo_init(dev);
5645 		if (ret) {
5646 			if (ret > 0)
5647 				ret = -EIO;
5648 			goto out;
5649 		}
5650 	}
5651 
5652 	ret = -EBUSY;
5653 	if (!dev->ifindex)
5654 		dev->ifindex = dev_new_index(net);
5655 	else if (__dev_get_by_index(net, dev->ifindex))
5656 		goto err_uninit;
5657 
5658 	if (dev->iflink == -1)
5659 		dev->iflink = dev->ifindex;
5660 
5661 	/* Transfer changeable features to wanted_features and enable
5662 	 * software offloads (GSO and GRO).
5663 	 */
5664 	dev->hw_features |= NETIF_F_SOFT_FEATURES;
5665 	dev->features |= NETIF_F_SOFT_FEATURES;
5666 	dev->wanted_features = dev->features & dev->hw_features;
5667 
5668 	/* Turn on no cache copy if HW is doing checksum */
5669 	if (!(dev->flags & IFF_LOOPBACK)) {
5670 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
5671 		if (dev->features & NETIF_F_ALL_CSUM) {
5672 			dev->wanted_features |= NETIF_F_NOCACHE_COPY;
5673 			dev->features |= NETIF_F_NOCACHE_COPY;
5674 		}
5675 	}
5676 
5677 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
5678 	 */
5679 	dev->vlan_features |= NETIF_F_HIGHDMA;
5680 
5681 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5682 	ret = notifier_to_errno(ret);
5683 	if (ret)
5684 		goto err_uninit;
5685 
5686 	ret = netdev_register_kobject(dev);
5687 	if (ret)
5688 		goto err_uninit;
5689 	dev->reg_state = NETREG_REGISTERED;
5690 
5691 	__netdev_update_features(dev);
5692 
5693 	/*
5694 	 *	Default initial state at registry is that the
5695 	 *	device is present.
5696 	 */
5697 
5698 	set_bit(__LINK_STATE_PRESENT, &dev->state);
5699 
5700 	linkwatch_init_dev(dev);
5701 
5702 	dev_init_scheduler(dev);
5703 	dev_hold(dev);
5704 	list_netdevice(dev);
5705 	add_device_randomness(dev->dev_addr, dev->addr_len);
5706 
5707 	/* Notify protocols, that a new device appeared. */
5708 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5709 	ret = notifier_to_errno(ret);
5710 	if (ret) {
5711 		rollback_registered(dev);
5712 		dev->reg_state = NETREG_UNREGISTERED;
5713 	}
5714 	/*
5715 	 *	Prevent userspace races by waiting until the network
5716 	 *	device is fully setup before sending notifications.
5717 	 */
5718 	if (!dev->rtnl_link_ops ||
5719 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5720 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5721 
5722 out:
5723 	return ret;
5724 
5725 err_uninit:
5726 	if (dev->netdev_ops->ndo_uninit)
5727 		dev->netdev_ops->ndo_uninit(dev);
5728 	goto out;
5729 }
5730 EXPORT_SYMBOL(register_netdevice);
5731 
5732 /**
5733  *	init_dummy_netdev	- init a dummy network device for NAPI
5734  *	@dev: device to init
5735  *
5736  *	This takes a network device structure and initialize the minimum
5737  *	amount of fields so it can be used to schedule NAPI polls without
5738  *	registering a full blown interface. This is to be used by drivers
5739  *	that need to tie several hardware interfaces to a single NAPI
5740  *	poll scheduler due to HW limitations.
5741  */
5742 int init_dummy_netdev(struct net_device *dev)
5743 {
5744 	/* Clear everything. Note we don't initialize spinlocks
5745 	 * are they aren't supposed to be taken by any of the
5746 	 * NAPI code and this dummy netdev is supposed to be
5747 	 * only ever used for NAPI polls
5748 	 */
5749 	memset(dev, 0, sizeof(struct net_device));
5750 
5751 	/* make sure we BUG if trying to hit standard
5752 	 * register/unregister code path
5753 	 */
5754 	dev->reg_state = NETREG_DUMMY;
5755 
5756 	/* NAPI wants this */
5757 	INIT_LIST_HEAD(&dev->napi_list);
5758 
5759 	/* a dummy interface is started by default */
5760 	set_bit(__LINK_STATE_PRESENT, &dev->state);
5761 	set_bit(__LINK_STATE_START, &dev->state);
5762 
5763 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
5764 	 * because users of this 'device' dont need to change
5765 	 * its refcount.
5766 	 */
5767 
5768 	return 0;
5769 }
5770 EXPORT_SYMBOL_GPL(init_dummy_netdev);
5771 
5772 
5773 /**
5774  *	register_netdev	- register a network device
5775  *	@dev: device to register
5776  *
5777  *	Take a completed network device structure and add it to the kernel
5778  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5779  *	chain. 0 is returned on success. A negative errno code is returned
5780  *	on a failure to set up the device, or if the name is a duplicate.
5781  *
5782  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
5783  *	and expands the device name if you passed a format string to
5784  *	alloc_netdev.
5785  */
5786 int register_netdev(struct net_device *dev)
5787 {
5788 	int err;
5789 
5790 	rtnl_lock();
5791 	err = register_netdevice(dev);
5792 	rtnl_unlock();
5793 	return err;
5794 }
5795 EXPORT_SYMBOL(register_netdev);
5796 
5797 int netdev_refcnt_read(const struct net_device *dev)
5798 {
5799 	int i, refcnt = 0;
5800 
5801 	for_each_possible_cpu(i)
5802 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
5803 	return refcnt;
5804 }
5805 EXPORT_SYMBOL(netdev_refcnt_read);
5806 
5807 /**
5808  * netdev_wait_allrefs - wait until all references are gone.
5809  * @dev: target net_device
5810  *
5811  * This is called when unregistering network devices.
5812  *
5813  * Any protocol or device that holds a reference should register
5814  * for netdevice notification, and cleanup and put back the
5815  * reference if they receive an UNREGISTER event.
5816  * We can get stuck here if buggy protocols don't correctly
5817  * call dev_put.
5818  */
5819 static void netdev_wait_allrefs(struct net_device *dev)
5820 {
5821 	unsigned long rebroadcast_time, warning_time;
5822 	int refcnt;
5823 
5824 	linkwatch_forget_dev(dev);
5825 
5826 	rebroadcast_time = warning_time = jiffies;
5827 	refcnt = netdev_refcnt_read(dev);
5828 
5829 	while (refcnt != 0) {
5830 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5831 			rtnl_lock();
5832 
5833 			/* Rebroadcast unregister notification */
5834 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5835 
5836 			__rtnl_unlock();
5837 			rcu_barrier();
5838 			rtnl_lock();
5839 
5840 			call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
5841 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5842 				     &dev->state)) {
5843 				/* We must not have linkwatch events
5844 				 * pending on unregister. If this
5845 				 * happens, we simply run the queue
5846 				 * unscheduled, resulting in a noop
5847 				 * for this device.
5848 				 */
5849 				linkwatch_run_queue();
5850 			}
5851 
5852 			__rtnl_unlock();
5853 
5854 			rebroadcast_time = jiffies;
5855 		}
5856 
5857 		msleep(250);
5858 
5859 		refcnt = netdev_refcnt_read(dev);
5860 
5861 		if (time_after(jiffies, warning_time + 10 * HZ)) {
5862 			pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
5863 				 dev->name, refcnt);
5864 			warning_time = jiffies;
5865 		}
5866 	}
5867 }
5868 
5869 /* The sequence is:
5870  *
5871  *	rtnl_lock();
5872  *	...
5873  *	register_netdevice(x1);
5874  *	register_netdevice(x2);
5875  *	...
5876  *	unregister_netdevice(y1);
5877  *	unregister_netdevice(y2);
5878  *      ...
5879  *	rtnl_unlock();
5880  *	free_netdev(y1);
5881  *	free_netdev(y2);
5882  *
5883  * We are invoked by rtnl_unlock().
5884  * This allows us to deal with problems:
5885  * 1) We can delete sysfs objects which invoke hotplug
5886  *    without deadlocking with linkwatch via keventd.
5887  * 2) Since we run with the RTNL semaphore not held, we can sleep
5888  *    safely in order to wait for the netdev refcnt to drop to zero.
5889  *
5890  * We must not return until all unregister events added during
5891  * the interval the lock was held have been completed.
5892  */
5893 void netdev_run_todo(void)
5894 {
5895 	struct list_head list;
5896 
5897 	/* Snapshot list, allow later requests */
5898 	list_replace_init(&net_todo_list, &list);
5899 
5900 	__rtnl_unlock();
5901 
5902 
5903 	/* Wait for rcu callbacks to finish before next phase */
5904 	if (!list_empty(&list))
5905 		rcu_barrier();
5906 
5907 	while (!list_empty(&list)) {
5908 		struct net_device *dev
5909 			= list_first_entry(&list, struct net_device, todo_list);
5910 		list_del(&dev->todo_list);
5911 
5912 		rtnl_lock();
5913 		call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
5914 		__rtnl_unlock();
5915 
5916 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5917 			pr_err("network todo '%s' but state %d\n",
5918 			       dev->name, dev->reg_state);
5919 			dump_stack();
5920 			continue;
5921 		}
5922 
5923 		dev->reg_state = NETREG_UNREGISTERED;
5924 
5925 		on_each_cpu(flush_backlog, dev, 1);
5926 
5927 		netdev_wait_allrefs(dev);
5928 
5929 		/* paranoia */
5930 		BUG_ON(netdev_refcnt_read(dev));
5931 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
5932 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
5933 		WARN_ON(dev->dn_ptr);
5934 
5935 		if (dev->destructor)
5936 			dev->destructor(dev);
5937 
5938 		/* Free network device */
5939 		kobject_put(&dev->dev.kobj);
5940 	}
5941 }
5942 
5943 /* Convert net_device_stats to rtnl_link_stats64.  They have the same
5944  * fields in the same order, with only the type differing.
5945  */
5946 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
5947 			     const struct net_device_stats *netdev_stats)
5948 {
5949 #if BITS_PER_LONG == 64
5950 	BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
5951 	memcpy(stats64, netdev_stats, sizeof(*stats64));
5952 #else
5953 	size_t i, n = sizeof(*stats64) / sizeof(u64);
5954 	const unsigned long *src = (const unsigned long *)netdev_stats;
5955 	u64 *dst = (u64 *)stats64;
5956 
5957 	BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
5958 		     sizeof(*stats64) / sizeof(u64));
5959 	for (i = 0; i < n; i++)
5960 		dst[i] = src[i];
5961 #endif
5962 }
5963 EXPORT_SYMBOL(netdev_stats_to_stats64);
5964 
5965 /**
5966  *	dev_get_stats	- get network device statistics
5967  *	@dev: device to get statistics from
5968  *	@storage: place to store stats
5969  *
5970  *	Get network statistics from device. Return @storage.
5971  *	The device driver may provide its own method by setting
5972  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
5973  *	otherwise the internal statistics structure is used.
5974  */
5975 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
5976 					struct rtnl_link_stats64 *storage)
5977 {
5978 	const struct net_device_ops *ops = dev->netdev_ops;
5979 
5980 	if (ops->ndo_get_stats64) {
5981 		memset(storage, 0, sizeof(*storage));
5982 		ops->ndo_get_stats64(dev, storage);
5983 	} else if (ops->ndo_get_stats) {
5984 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
5985 	} else {
5986 		netdev_stats_to_stats64(storage, &dev->stats);
5987 	}
5988 	storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
5989 	return storage;
5990 }
5991 EXPORT_SYMBOL(dev_get_stats);
5992 
5993 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
5994 {
5995 	struct netdev_queue *queue = dev_ingress_queue(dev);
5996 
5997 #ifdef CONFIG_NET_CLS_ACT
5998 	if (queue)
5999 		return queue;
6000 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
6001 	if (!queue)
6002 		return NULL;
6003 	netdev_init_one_queue(dev, queue, NULL);
6004 	queue->qdisc = &noop_qdisc;
6005 	queue->qdisc_sleeping = &noop_qdisc;
6006 	rcu_assign_pointer(dev->ingress_queue, queue);
6007 #endif
6008 	return queue;
6009 }
6010 
6011 static const struct ethtool_ops default_ethtool_ops;
6012 
6013 /**
6014  *	alloc_netdev_mqs - allocate network device
6015  *	@sizeof_priv:	size of private data to allocate space for
6016  *	@name:		device name format string
6017  *	@setup:		callback to initialize device
6018  *	@txqs:		the number of TX subqueues to allocate
6019  *	@rxqs:		the number of RX subqueues to allocate
6020  *
6021  *	Allocates a struct net_device with private data area for driver use
6022  *	and performs basic initialization.  Also allocates subquue structs
6023  *	for each queue on the device.
6024  */
6025 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
6026 		void (*setup)(struct net_device *),
6027 		unsigned int txqs, unsigned int rxqs)
6028 {
6029 	struct net_device *dev;
6030 	size_t alloc_size;
6031 	struct net_device *p;
6032 
6033 	BUG_ON(strlen(name) >= sizeof(dev->name));
6034 
6035 	if (txqs < 1) {
6036 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
6037 		return NULL;
6038 	}
6039 
6040 #ifdef CONFIG_RPS
6041 	if (rxqs < 1) {
6042 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
6043 		return NULL;
6044 	}
6045 #endif
6046 
6047 	alloc_size = sizeof(struct net_device);
6048 	if (sizeof_priv) {
6049 		/* ensure 32-byte alignment of private area */
6050 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
6051 		alloc_size += sizeof_priv;
6052 	}
6053 	/* ensure 32-byte alignment of whole construct */
6054 	alloc_size += NETDEV_ALIGN - 1;
6055 
6056 	p = kzalloc(alloc_size, GFP_KERNEL);
6057 	if (!p) {
6058 		pr_err("alloc_netdev: Unable to allocate device\n");
6059 		return NULL;
6060 	}
6061 
6062 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
6063 	dev->padded = (char *)dev - (char *)p;
6064 
6065 	dev->pcpu_refcnt = alloc_percpu(int);
6066 	if (!dev->pcpu_refcnt)
6067 		goto free_p;
6068 
6069 	if (dev_addr_init(dev))
6070 		goto free_pcpu;
6071 
6072 	dev_mc_init(dev);
6073 	dev_uc_init(dev);
6074 
6075 	dev_net_set(dev, &init_net);
6076 
6077 	dev->gso_max_size = GSO_MAX_SIZE;
6078 	dev->gso_max_segs = GSO_MAX_SEGS;
6079 
6080 	INIT_LIST_HEAD(&dev->napi_list);
6081 	INIT_LIST_HEAD(&dev->unreg_list);
6082 	INIT_LIST_HEAD(&dev->link_watch_list);
6083 	dev->priv_flags = IFF_XMIT_DST_RELEASE;
6084 	setup(dev);
6085 
6086 	dev->num_tx_queues = txqs;
6087 	dev->real_num_tx_queues = txqs;
6088 	if (netif_alloc_netdev_queues(dev))
6089 		goto free_all;
6090 
6091 #ifdef CONFIG_RPS
6092 	dev->num_rx_queues = rxqs;
6093 	dev->real_num_rx_queues = rxqs;
6094 	if (netif_alloc_rx_queues(dev))
6095 		goto free_all;
6096 #endif
6097 
6098 	strcpy(dev->name, name);
6099 	dev->group = INIT_NETDEV_GROUP;
6100 	if (!dev->ethtool_ops)
6101 		dev->ethtool_ops = &default_ethtool_ops;
6102 	return dev;
6103 
6104 free_all:
6105 	free_netdev(dev);
6106 	return NULL;
6107 
6108 free_pcpu:
6109 	free_percpu(dev->pcpu_refcnt);
6110 	kfree(dev->_tx);
6111 #ifdef CONFIG_RPS
6112 	kfree(dev->_rx);
6113 #endif
6114 
6115 free_p:
6116 	kfree(p);
6117 	return NULL;
6118 }
6119 EXPORT_SYMBOL(alloc_netdev_mqs);
6120 
6121 /**
6122  *	free_netdev - free network device
6123  *	@dev: device
6124  *
6125  *	This function does the last stage of destroying an allocated device
6126  * 	interface. The reference to the device object is released.
6127  *	If this is the last reference then it will be freed.
6128  */
6129 void free_netdev(struct net_device *dev)
6130 {
6131 	struct napi_struct *p, *n;
6132 
6133 	release_net(dev_net(dev));
6134 
6135 	kfree(dev->_tx);
6136 #ifdef CONFIG_RPS
6137 	kfree(dev->_rx);
6138 #endif
6139 
6140 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
6141 
6142 	/* Flush device addresses */
6143 	dev_addr_flush(dev);
6144 
6145 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
6146 		netif_napi_del(p);
6147 
6148 	free_percpu(dev->pcpu_refcnt);
6149 	dev->pcpu_refcnt = NULL;
6150 
6151 	/*  Compatibility with error handling in drivers */
6152 	if (dev->reg_state == NETREG_UNINITIALIZED) {
6153 		kfree((char *)dev - dev->padded);
6154 		return;
6155 	}
6156 
6157 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
6158 	dev->reg_state = NETREG_RELEASED;
6159 
6160 	/* will free via device release */
6161 	put_device(&dev->dev);
6162 }
6163 EXPORT_SYMBOL(free_netdev);
6164 
6165 /**
6166  *	synchronize_net -  Synchronize with packet receive processing
6167  *
6168  *	Wait for packets currently being received to be done.
6169  *	Does not block later packets from starting.
6170  */
6171 void synchronize_net(void)
6172 {
6173 	might_sleep();
6174 	if (rtnl_is_locked())
6175 		synchronize_rcu_expedited();
6176 	else
6177 		synchronize_rcu();
6178 }
6179 EXPORT_SYMBOL(synchronize_net);
6180 
6181 /**
6182  *	unregister_netdevice_queue - remove device from the kernel
6183  *	@dev: device
6184  *	@head: list
6185  *
6186  *	This function shuts down a device interface and removes it
6187  *	from the kernel tables.
6188  *	If head not NULL, device is queued to be unregistered later.
6189  *
6190  *	Callers must hold the rtnl semaphore.  You may want
6191  *	unregister_netdev() instead of this.
6192  */
6193 
6194 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
6195 {
6196 	ASSERT_RTNL();
6197 
6198 	if (head) {
6199 		list_move_tail(&dev->unreg_list, head);
6200 	} else {
6201 		rollback_registered(dev);
6202 		/* Finish processing unregister after unlock */
6203 		net_set_todo(dev);
6204 	}
6205 }
6206 EXPORT_SYMBOL(unregister_netdevice_queue);
6207 
6208 /**
6209  *	unregister_netdevice_many - unregister many devices
6210  *	@head: list of devices
6211  */
6212 void unregister_netdevice_many(struct list_head *head)
6213 {
6214 	struct net_device *dev;
6215 
6216 	if (!list_empty(head)) {
6217 		rollback_registered_many(head);
6218 		list_for_each_entry(dev, head, unreg_list)
6219 			net_set_todo(dev);
6220 	}
6221 }
6222 EXPORT_SYMBOL(unregister_netdevice_many);
6223 
6224 /**
6225  *	unregister_netdev - remove device from the kernel
6226  *	@dev: device
6227  *
6228  *	This function shuts down a device interface and removes it
6229  *	from the kernel tables.
6230  *
6231  *	This is just a wrapper for unregister_netdevice that takes
6232  *	the rtnl semaphore.  In general you want to use this and not
6233  *	unregister_netdevice.
6234  */
6235 void unregister_netdev(struct net_device *dev)
6236 {
6237 	rtnl_lock();
6238 	unregister_netdevice(dev);
6239 	rtnl_unlock();
6240 }
6241 EXPORT_SYMBOL(unregister_netdev);
6242 
6243 /**
6244  *	dev_change_net_namespace - move device to different nethost namespace
6245  *	@dev: device
6246  *	@net: network namespace
6247  *	@pat: If not NULL name pattern to try if the current device name
6248  *	      is already taken in the destination network namespace.
6249  *
6250  *	This function shuts down a device interface and moves it
6251  *	to a new network namespace. On success 0 is returned, on
6252  *	a failure a netagive errno code is returned.
6253  *
6254  *	Callers must hold the rtnl semaphore.
6255  */
6256 
6257 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
6258 {
6259 	int err;
6260 
6261 	ASSERT_RTNL();
6262 
6263 	/* Don't allow namespace local devices to be moved. */
6264 	err = -EINVAL;
6265 	if (dev->features & NETIF_F_NETNS_LOCAL)
6266 		goto out;
6267 
6268 	/* Ensure the device has been registrered */
6269 	err = -EINVAL;
6270 	if (dev->reg_state != NETREG_REGISTERED)
6271 		goto out;
6272 
6273 	/* Get out if there is nothing todo */
6274 	err = 0;
6275 	if (net_eq(dev_net(dev), net))
6276 		goto out;
6277 
6278 	/* Pick the destination device name, and ensure
6279 	 * we can use it in the destination network namespace.
6280 	 */
6281 	err = -EEXIST;
6282 	if (__dev_get_by_name(net, dev->name)) {
6283 		/* We get here if we can't use the current device name */
6284 		if (!pat)
6285 			goto out;
6286 		if (dev_get_valid_name(net, dev, pat) < 0)
6287 			goto out;
6288 	}
6289 
6290 	/*
6291 	 * And now a mini version of register_netdevice unregister_netdevice.
6292 	 */
6293 
6294 	/* If device is running close it first. */
6295 	dev_close(dev);
6296 
6297 	/* And unlink it from device chain */
6298 	err = -ENODEV;
6299 	unlist_netdevice(dev);
6300 
6301 	synchronize_net();
6302 
6303 	/* Shutdown queueing discipline. */
6304 	dev_shutdown(dev);
6305 
6306 	/* Notify protocols, that we are about to destroy
6307 	   this device. They should clean all the things.
6308 
6309 	   Note that dev->reg_state stays at NETREG_REGISTERED.
6310 	   This is wanted because this way 8021q and macvlan know
6311 	   the device is just moving and can keep their slaves up.
6312 	*/
6313 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6314 	rcu_barrier();
6315 	call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6316 	rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
6317 
6318 	/*
6319 	 *	Flush the unicast and multicast chains
6320 	 */
6321 	dev_uc_flush(dev);
6322 	dev_mc_flush(dev);
6323 
6324 	/* Actually switch the network namespace */
6325 	dev_net_set(dev, net);
6326 
6327 	/* If there is an ifindex conflict assign a new one */
6328 	if (__dev_get_by_index(net, dev->ifindex)) {
6329 		int iflink = (dev->iflink == dev->ifindex);
6330 		dev->ifindex = dev_new_index(net);
6331 		if (iflink)
6332 			dev->iflink = dev->ifindex;
6333 	}
6334 
6335 	/* Fixup kobjects */
6336 	err = device_rename(&dev->dev, dev->name);
6337 	WARN_ON(err);
6338 
6339 	/* Add the device back in the hashes */
6340 	list_netdevice(dev);
6341 
6342 	/* Notify protocols, that a new device appeared. */
6343 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
6344 
6345 	/*
6346 	 *	Prevent userspace races by waiting until the network
6347 	 *	device is fully setup before sending notifications.
6348 	 */
6349 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
6350 
6351 	synchronize_net();
6352 	err = 0;
6353 out:
6354 	return err;
6355 }
6356 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
6357 
6358 static int dev_cpu_callback(struct notifier_block *nfb,
6359 			    unsigned long action,
6360 			    void *ocpu)
6361 {
6362 	struct sk_buff **list_skb;
6363 	struct sk_buff *skb;
6364 	unsigned int cpu, oldcpu = (unsigned long)ocpu;
6365 	struct softnet_data *sd, *oldsd;
6366 
6367 	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
6368 		return NOTIFY_OK;
6369 
6370 	local_irq_disable();
6371 	cpu = smp_processor_id();
6372 	sd = &per_cpu(softnet_data, cpu);
6373 	oldsd = &per_cpu(softnet_data, oldcpu);
6374 
6375 	/* Find end of our completion_queue. */
6376 	list_skb = &sd->completion_queue;
6377 	while (*list_skb)
6378 		list_skb = &(*list_skb)->next;
6379 	/* Append completion queue from offline CPU. */
6380 	*list_skb = oldsd->completion_queue;
6381 	oldsd->completion_queue = NULL;
6382 
6383 	/* Append output queue from offline CPU. */
6384 	if (oldsd->output_queue) {
6385 		*sd->output_queue_tailp = oldsd->output_queue;
6386 		sd->output_queue_tailp = oldsd->output_queue_tailp;
6387 		oldsd->output_queue = NULL;
6388 		oldsd->output_queue_tailp = &oldsd->output_queue;
6389 	}
6390 	/* Append NAPI poll list from offline CPU. */
6391 	if (!list_empty(&oldsd->poll_list)) {
6392 		list_splice_init(&oldsd->poll_list, &sd->poll_list);
6393 		raise_softirq_irqoff(NET_RX_SOFTIRQ);
6394 	}
6395 
6396 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
6397 	local_irq_enable();
6398 
6399 	/* Process offline CPU's input_pkt_queue */
6400 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
6401 		netif_rx(skb);
6402 		input_queue_head_incr(oldsd);
6403 	}
6404 	while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
6405 		netif_rx(skb);
6406 		input_queue_head_incr(oldsd);
6407 	}
6408 
6409 	return NOTIFY_OK;
6410 }
6411 
6412 
6413 /**
6414  *	netdev_increment_features - increment feature set by one
6415  *	@all: current feature set
6416  *	@one: new feature set
6417  *	@mask: mask feature set
6418  *
6419  *	Computes a new feature set after adding a device with feature set
6420  *	@one to the master device with current feature set @all.  Will not
6421  *	enable anything that is off in @mask. Returns the new feature set.
6422  */
6423 netdev_features_t netdev_increment_features(netdev_features_t all,
6424 	netdev_features_t one, netdev_features_t mask)
6425 {
6426 	if (mask & NETIF_F_GEN_CSUM)
6427 		mask |= NETIF_F_ALL_CSUM;
6428 	mask |= NETIF_F_VLAN_CHALLENGED;
6429 
6430 	all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
6431 	all &= one | ~NETIF_F_ALL_FOR_ALL;
6432 
6433 	/* If one device supports hw checksumming, set for all. */
6434 	if (all & NETIF_F_GEN_CSUM)
6435 		all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
6436 
6437 	return all;
6438 }
6439 EXPORT_SYMBOL(netdev_increment_features);
6440 
6441 static struct hlist_head *netdev_create_hash(void)
6442 {
6443 	int i;
6444 	struct hlist_head *hash;
6445 
6446 	hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
6447 	if (hash != NULL)
6448 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
6449 			INIT_HLIST_HEAD(&hash[i]);
6450 
6451 	return hash;
6452 }
6453 
6454 /* Initialize per network namespace state */
6455 static int __net_init netdev_init(struct net *net)
6456 {
6457 	if (net != &init_net)
6458 		INIT_LIST_HEAD(&net->dev_base_head);
6459 
6460 	net->dev_name_head = netdev_create_hash();
6461 	if (net->dev_name_head == NULL)
6462 		goto err_name;
6463 
6464 	net->dev_index_head = netdev_create_hash();
6465 	if (net->dev_index_head == NULL)
6466 		goto err_idx;
6467 
6468 	return 0;
6469 
6470 err_idx:
6471 	kfree(net->dev_name_head);
6472 err_name:
6473 	return -ENOMEM;
6474 }
6475 
6476 /**
6477  *	netdev_drivername - network driver for the device
6478  *	@dev: network device
6479  *
6480  *	Determine network driver for device.
6481  */
6482 const char *netdev_drivername(const struct net_device *dev)
6483 {
6484 	const struct device_driver *driver;
6485 	const struct device *parent;
6486 	const char *empty = "";
6487 
6488 	parent = dev->dev.parent;
6489 	if (!parent)
6490 		return empty;
6491 
6492 	driver = parent->driver;
6493 	if (driver && driver->name)
6494 		return driver->name;
6495 	return empty;
6496 }
6497 
6498 static int __netdev_printk(const char *level, const struct net_device *dev,
6499 			   struct va_format *vaf)
6500 {
6501 	int r;
6502 
6503 	if (dev && dev->dev.parent) {
6504 		r = dev_printk_emit(level[1] - '0',
6505 				    dev->dev.parent,
6506 				    "%s %s %s: %pV",
6507 				    dev_driver_string(dev->dev.parent),
6508 				    dev_name(dev->dev.parent),
6509 				    netdev_name(dev), vaf);
6510 	} else if (dev) {
6511 		r = printk("%s%s: %pV", level, netdev_name(dev), vaf);
6512 	} else {
6513 		r = printk("%s(NULL net_device): %pV", level, vaf);
6514 	}
6515 
6516 	return r;
6517 }
6518 
6519 int netdev_printk(const char *level, const struct net_device *dev,
6520 		  const char *format, ...)
6521 {
6522 	struct va_format vaf;
6523 	va_list args;
6524 	int r;
6525 
6526 	va_start(args, format);
6527 
6528 	vaf.fmt = format;
6529 	vaf.va = &args;
6530 
6531 	r = __netdev_printk(level, dev, &vaf);
6532 
6533 	va_end(args);
6534 
6535 	return r;
6536 }
6537 EXPORT_SYMBOL(netdev_printk);
6538 
6539 #define define_netdev_printk_level(func, level)			\
6540 int func(const struct net_device *dev, const char *fmt, ...)	\
6541 {								\
6542 	int r;							\
6543 	struct va_format vaf;					\
6544 	va_list args;						\
6545 								\
6546 	va_start(args, fmt);					\
6547 								\
6548 	vaf.fmt = fmt;						\
6549 	vaf.va = &args;						\
6550 								\
6551 	r = __netdev_printk(level, dev, &vaf);			\
6552 								\
6553 	va_end(args);						\
6554 								\
6555 	return r;						\
6556 }								\
6557 EXPORT_SYMBOL(func);
6558 
6559 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
6560 define_netdev_printk_level(netdev_alert, KERN_ALERT);
6561 define_netdev_printk_level(netdev_crit, KERN_CRIT);
6562 define_netdev_printk_level(netdev_err, KERN_ERR);
6563 define_netdev_printk_level(netdev_warn, KERN_WARNING);
6564 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
6565 define_netdev_printk_level(netdev_info, KERN_INFO);
6566 
6567 static void __net_exit netdev_exit(struct net *net)
6568 {
6569 	kfree(net->dev_name_head);
6570 	kfree(net->dev_index_head);
6571 }
6572 
6573 static struct pernet_operations __net_initdata netdev_net_ops = {
6574 	.init = netdev_init,
6575 	.exit = netdev_exit,
6576 };
6577 
6578 static void __net_exit default_device_exit(struct net *net)
6579 {
6580 	struct net_device *dev, *aux;
6581 	/*
6582 	 * Push all migratable network devices back to the
6583 	 * initial network namespace
6584 	 */
6585 	rtnl_lock();
6586 	for_each_netdev_safe(net, dev, aux) {
6587 		int err;
6588 		char fb_name[IFNAMSIZ];
6589 
6590 		/* Ignore unmoveable devices (i.e. loopback) */
6591 		if (dev->features & NETIF_F_NETNS_LOCAL)
6592 			continue;
6593 
6594 		/* Leave virtual devices for the generic cleanup */
6595 		if (dev->rtnl_link_ops)
6596 			continue;
6597 
6598 		/* Push remaining network devices to init_net */
6599 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
6600 		err = dev_change_net_namespace(dev, &init_net, fb_name);
6601 		if (err) {
6602 			pr_emerg("%s: failed to move %s to init_net: %d\n",
6603 				 __func__, dev->name, err);
6604 			BUG();
6605 		}
6606 	}
6607 	rtnl_unlock();
6608 }
6609 
6610 static void __net_exit default_device_exit_batch(struct list_head *net_list)
6611 {
6612 	/* At exit all network devices most be removed from a network
6613 	 * namespace.  Do this in the reverse order of registration.
6614 	 * Do this across as many network namespaces as possible to
6615 	 * improve batching efficiency.
6616 	 */
6617 	struct net_device *dev;
6618 	struct net *net;
6619 	LIST_HEAD(dev_kill_list);
6620 
6621 	rtnl_lock();
6622 	list_for_each_entry(net, net_list, exit_list) {
6623 		for_each_netdev_reverse(net, dev) {
6624 			if (dev->rtnl_link_ops)
6625 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
6626 			else
6627 				unregister_netdevice_queue(dev, &dev_kill_list);
6628 		}
6629 	}
6630 	unregister_netdevice_many(&dev_kill_list);
6631 	list_del(&dev_kill_list);
6632 	rtnl_unlock();
6633 }
6634 
6635 static struct pernet_operations __net_initdata default_device_ops = {
6636 	.exit = default_device_exit,
6637 	.exit_batch = default_device_exit_batch,
6638 };
6639 
6640 /*
6641  *	Initialize the DEV module. At boot time this walks the device list and
6642  *	unhooks any devices that fail to initialise (normally hardware not
6643  *	present) and leaves us with a valid list of present and active devices.
6644  *
6645  */
6646 
6647 /*
6648  *       This is called single threaded during boot, so no need
6649  *       to take the rtnl semaphore.
6650  */
6651 static int __init net_dev_init(void)
6652 {
6653 	int i, rc = -ENOMEM;
6654 
6655 	BUG_ON(!dev_boot_phase);
6656 
6657 	if (dev_proc_init())
6658 		goto out;
6659 
6660 	if (netdev_kobject_init())
6661 		goto out;
6662 
6663 	INIT_LIST_HEAD(&ptype_all);
6664 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
6665 		INIT_LIST_HEAD(&ptype_base[i]);
6666 
6667 	if (register_pernet_subsys(&netdev_net_ops))
6668 		goto out;
6669 
6670 	/*
6671 	 *	Initialise the packet receive queues.
6672 	 */
6673 
6674 	for_each_possible_cpu(i) {
6675 		struct softnet_data *sd = &per_cpu(softnet_data, i);
6676 
6677 		memset(sd, 0, sizeof(*sd));
6678 		skb_queue_head_init(&sd->input_pkt_queue);
6679 		skb_queue_head_init(&sd->process_queue);
6680 		sd->completion_queue = NULL;
6681 		INIT_LIST_HEAD(&sd->poll_list);
6682 		sd->output_queue = NULL;
6683 		sd->output_queue_tailp = &sd->output_queue;
6684 #ifdef CONFIG_RPS
6685 		sd->csd.func = rps_trigger_softirq;
6686 		sd->csd.info = sd;
6687 		sd->csd.flags = 0;
6688 		sd->cpu = i;
6689 #endif
6690 
6691 		sd->backlog.poll = process_backlog;
6692 		sd->backlog.weight = weight_p;
6693 		sd->backlog.gro_list = NULL;
6694 		sd->backlog.gro_count = 0;
6695 	}
6696 
6697 	dev_boot_phase = 0;
6698 
6699 	/* The loopback device is special if any other network devices
6700 	 * is present in a network namespace the loopback device must
6701 	 * be present. Since we now dynamically allocate and free the
6702 	 * loopback device ensure this invariant is maintained by
6703 	 * keeping the loopback device as the first device on the
6704 	 * list of network devices.  Ensuring the loopback devices
6705 	 * is the first device that appears and the last network device
6706 	 * that disappears.
6707 	 */
6708 	if (register_pernet_device(&loopback_net_ops))
6709 		goto out;
6710 
6711 	if (register_pernet_device(&default_device_ops))
6712 		goto out;
6713 
6714 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
6715 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
6716 
6717 	hotcpu_notifier(dev_cpu_callback, 0);
6718 	dst_init();
6719 	dev_mcast_init();
6720 	rc = 0;
6721 out:
6722 	return rc;
6723 }
6724 
6725 subsys_initcall(net_dev_init);
6726 
6727 static int __init initialize_hashrnd(void)
6728 {
6729 	get_random_bytes(&hashrnd, sizeof(hashrnd));
6730 	return 0;
6731 }
6732 
6733 late_initcall_sync(initialize_hashrnd);
6734 
6735