1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * NET3 Protocol independent device support routines. 4 * 5 * Derived from the non IP parts of dev.c 1.0.19 6 * Authors: Ross Biro 7 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 8 * Mark Evans, <evansmp@uhura.aston.ac.uk> 9 * 10 * Additional Authors: 11 * Florian la Roche <rzsfl@rz.uni-sb.de> 12 * Alan Cox <gw4pts@gw4pts.ampr.org> 13 * David Hinds <dahinds@users.sourceforge.net> 14 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 15 * Adam Sulmicki <adam@cfar.umd.edu> 16 * Pekka Riikonen <priikone@poesidon.pspt.fi> 17 * 18 * Changes: 19 * D.J. Barrow : Fixed bug where dev->refcnt gets set 20 * to 2 if register_netdev gets called 21 * before net_dev_init & also removed a 22 * few lines of code in the process. 23 * Alan Cox : device private ioctl copies fields back. 24 * Alan Cox : Transmit queue code does relevant 25 * stunts to keep the queue safe. 26 * Alan Cox : Fixed double lock. 27 * Alan Cox : Fixed promisc NULL pointer trap 28 * ???????? : Support the full private ioctl range 29 * Alan Cox : Moved ioctl permission check into 30 * drivers 31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 32 * Alan Cox : 100 backlog just doesn't cut it when 33 * you start doing multicast video 8) 34 * Alan Cox : Rewrote net_bh and list manager. 35 * Alan Cox : Fix ETH_P_ALL echoback lengths. 36 * Alan Cox : Took out transmit every packet pass 37 * Saved a few bytes in the ioctl handler 38 * Alan Cox : Network driver sets packet type before 39 * calling netif_rx. Saves a function 40 * call a packet. 41 * Alan Cox : Hashed net_bh() 42 * Richard Kooijman: Timestamp fixes. 43 * Alan Cox : Wrong field in SIOCGIFDSTADDR 44 * Alan Cox : Device lock protection. 45 * Alan Cox : Fixed nasty side effect of device close 46 * changes. 47 * Rudi Cilibrasi : Pass the right thing to 48 * set_mac_address() 49 * Dave Miller : 32bit quantity for the device lock to 50 * make it work out on a Sparc. 51 * Bjorn Ekwall : Added KERNELD hack. 52 * Alan Cox : Cleaned up the backlog initialise. 53 * Craig Metz : SIOCGIFCONF fix if space for under 54 * 1 device. 55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 56 * is no device open function. 57 * Andi Kleen : Fix error reporting for SIOCGIFCONF 58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 59 * Cyrus Durgin : Cleaned for KMOD 60 * Adam Sulmicki : Bug Fix : Network Device Unload 61 * A network device unload needs to purge 62 * the backlog queue. 63 * Paul Rusty Russell : SIOCSIFNAME 64 * Pekka Riikonen : Netdev boot-time settings code 65 * Andrew Morton : Make unregister_netdevice wait 66 * indefinitely on dev->refcnt 67 * J Hadi Salim : - Backlog queue sampling 68 * - netif_rx() feedback 69 */ 70 71 #include <linux/uaccess.h> 72 #include <linux/bitmap.h> 73 #include <linux/capability.h> 74 #include <linux/cpu.h> 75 #include <linux/types.h> 76 #include <linux/kernel.h> 77 #include <linux/hash.h> 78 #include <linux/slab.h> 79 #include <linux/sched.h> 80 #include <linux/sched/isolation.h> 81 #include <linux/sched/mm.h> 82 #include <linux/smpboot.h> 83 #include <linux/mutex.h> 84 #include <linux/rwsem.h> 85 #include <linux/string.h> 86 #include <linux/mm.h> 87 #include <linux/socket.h> 88 #include <linux/sockios.h> 89 #include <linux/errno.h> 90 #include <linux/interrupt.h> 91 #include <linux/if_ether.h> 92 #include <linux/netdevice.h> 93 #include <linux/etherdevice.h> 94 #include <linux/ethtool.h> 95 #include <linux/ethtool_netlink.h> 96 #include <linux/skbuff.h> 97 #include <linux/kthread.h> 98 #include <linux/bpf.h> 99 #include <linux/bpf_trace.h> 100 #include <net/net_namespace.h> 101 #include <net/sock.h> 102 #include <net/busy_poll.h> 103 #include <linux/rtnetlink.h> 104 #include <linux/stat.h> 105 #include <net/dsa.h> 106 #include <net/dst.h> 107 #include <net/dst_metadata.h> 108 #include <net/gro.h> 109 #include <net/netdev_queues.h> 110 #include <net/pkt_sched.h> 111 #include <net/pkt_cls.h> 112 #include <net/checksum.h> 113 #include <net/xfrm.h> 114 #include <net/tcx.h> 115 #include <linux/highmem.h> 116 #include <linux/init.h> 117 #include <linux/module.h> 118 #include <linux/netpoll.h> 119 #include <linux/rcupdate.h> 120 #include <linux/delay.h> 121 #include <net/iw_handler.h> 122 #include <asm/current.h> 123 #include <linux/audit.h> 124 #include <linux/dmaengine.h> 125 #include <linux/err.h> 126 #include <linux/ctype.h> 127 #include <linux/if_arp.h> 128 #include <linux/if_vlan.h> 129 #include <linux/ip.h> 130 #include <net/ip.h> 131 #include <net/mpls.h> 132 #include <linux/ipv6.h> 133 #include <linux/in.h> 134 #include <linux/jhash.h> 135 #include <linux/random.h> 136 #include <trace/events/napi.h> 137 #include <trace/events/net.h> 138 #include <trace/events/skb.h> 139 #include <trace/events/qdisc.h> 140 #include <trace/events/xdp.h> 141 #include <linux/inetdevice.h> 142 #include <linux/cpu_rmap.h> 143 #include <linux/static_key.h> 144 #include <linux/hashtable.h> 145 #include <linux/vmalloc.h> 146 #include <linux/if_macvlan.h> 147 #include <linux/errqueue.h> 148 #include <linux/hrtimer.h> 149 #include <linux/netfilter_netdev.h> 150 #include <linux/crash_dump.h> 151 #include <linux/sctp.h> 152 #include <net/udp_tunnel.h> 153 #include <linux/net_namespace.h> 154 #include <linux/indirect_call_wrapper.h> 155 #include <net/devlink.h> 156 #include <linux/pm_runtime.h> 157 #include <linux/prandom.h> 158 #include <linux/once_lite.h> 159 #include <net/netdev_lock.h> 160 #include <net/netdev_rx_queue.h> 161 #include <net/page_pool/types.h> 162 #include <net/page_pool/helpers.h> 163 #include <net/page_pool/memory_provider.h> 164 #include <net/rps.h> 165 #include <linux/phy_link_topology.h> 166 167 #include "dev.h" 168 #include "devmem.h" 169 #include "net-sysfs.h" 170 171 static DEFINE_SPINLOCK(ptype_lock); 172 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 173 174 static int netif_rx_internal(struct sk_buff *skb); 175 static int call_netdevice_notifiers_extack(unsigned long val, 176 struct net_device *dev, 177 struct netlink_ext_ack *extack); 178 179 static DEFINE_MUTEX(ifalias_mutex); 180 181 /* protects napi_hash addition/deletion and napi_gen_id */ 182 static DEFINE_SPINLOCK(napi_hash_lock); 183 184 static unsigned int napi_gen_id = NR_CPUS; 185 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8); 186 187 static inline void dev_base_seq_inc(struct net *net) 188 { 189 unsigned int val = net->dev_base_seq + 1; 190 191 WRITE_ONCE(net->dev_base_seq, val ?: 1); 192 } 193 194 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 195 { 196 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ)); 197 198 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 199 } 200 201 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 202 { 203 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 204 } 205 206 #ifndef CONFIG_PREEMPT_RT 207 208 static DEFINE_STATIC_KEY_FALSE(use_backlog_threads_key); 209 210 static int __init setup_backlog_napi_threads(char *arg) 211 { 212 static_branch_enable(&use_backlog_threads_key); 213 return 0; 214 } 215 early_param("thread_backlog_napi", setup_backlog_napi_threads); 216 217 static bool use_backlog_threads(void) 218 { 219 return static_branch_unlikely(&use_backlog_threads_key); 220 } 221 222 #else 223 224 static bool use_backlog_threads(void) 225 { 226 return true; 227 } 228 229 #endif 230 231 static inline void backlog_lock_irq_save(struct softnet_data *sd, 232 unsigned long *flags) 233 { 234 if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads()) 235 spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags); 236 else 237 local_irq_save(*flags); 238 } 239 240 static inline void backlog_lock_irq_disable(struct softnet_data *sd) 241 { 242 if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads()) 243 spin_lock_irq(&sd->input_pkt_queue.lock); 244 else 245 local_irq_disable(); 246 } 247 248 static inline void backlog_unlock_irq_restore(struct softnet_data *sd, 249 unsigned long *flags) 250 { 251 if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads()) 252 spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags); 253 else 254 local_irq_restore(*flags); 255 } 256 257 static inline void backlog_unlock_irq_enable(struct softnet_data *sd) 258 { 259 if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads()) 260 spin_unlock_irq(&sd->input_pkt_queue.lock); 261 else 262 local_irq_enable(); 263 } 264 265 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev, 266 const char *name) 267 { 268 struct netdev_name_node *name_node; 269 270 name_node = kmalloc(sizeof(*name_node), GFP_KERNEL); 271 if (!name_node) 272 return NULL; 273 INIT_HLIST_NODE(&name_node->hlist); 274 name_node->dev = dev; 275 name_node->name = name; 276 return name_node; 277 } 278 279 static struct netdev_name_node * 280 netdev_name_node_head_alloc(struct net_device *dev) 281 { 282 struct netdev_name_node *name_node; 283 284 name_node = netdev_name_node_alloc(dev, dev->name); 285 if (!name_node) 286 return NULL; 287 INIT_LIST_HEAD(&name_node->list); 288 return name_node; 289 } 290 291 static void netdev_name_node_free(struct netdev_name_node *name_node) 292 { 293 kfree(name_node); 294 } 295 296 static void netdev_name_node_add(struct net *net, 297 struct netdev_name_node *name_node) 298 { 299 hlist_add_head_rcu(&name_node->hlist, 300 dev_name_hash(net, name_node->name)); 301 } 302 303 static void netdev_name_node_del(struct netdev_name_node *name_node) 304 { 305 hlist_del_rcu(&name_node->hlist); 306 } 307 308 static struct netdev_name_node *netdev_name_node_lookup(struct net *net, 309 const char *name) 310 { 311 struct hlist_head *head = dev_name_hash(net, name); 312 struct netdev_name_node *name_node; 313 314 hlist_for_each_entry(name_node, head, hlist) 315 if (!strcmp(name_node->name, name)) 316 return name_node; 317 return NULL; 318 } 319 320 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net, 321 const char *name) 322 { 323 struct hlist_head *head = dev_name_hash(net, name); 324 struct netdev_name_node *name_node; 325 326 hlist_for_each_entry_rcu(name_node, head, hlist) 327 if (!strcmp(name_node->name, name)) 328 return name_node; 329 return NULL; 330 } 331 332 bool netdev_name_in_use(struct net *net, const char *name) 333 { 334 return netdev_name_node_lookup(net, name); 335 } 336 EXPORT_SYMBOL(netdev_name_in_use); 337 338 int netdev_name_node_alt_create(struct net_device *dev, const char *name) 339 { 340 struct netdev_name_node *name_node; 341 struct net *net = dev_net(dev); 342 343 name_node = netdev_name_node_lookup(net, name); 344 if (name_node) 345 return -EEXIST; 346 name_node = netdev_name_node_alloc(dev, name); 347 if (!name_node) 348 return -ENOMEM; 349 netdev_name_node_add(net, name_node); 350 /* The node that holds dev->name acts as a head of per-device list. */ 351 list_add_tail_rcu(&name_node->list, &dev->name_node->list); 352 353 return 0; 354 } 355 356 static void netdev_name_node_alt_free(struct rcu_head *head) 357 { 358 struct netdev_name_node *name_node = 359 container_of(head, struct netdev_name_node, rcu); 360 361 kfree(name_node->name); 362 netdev_name_node_free(name_node); 363 } 364 365 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node) 366 { 367 netdev_name_node_del(name_node); 368 list_del(&name_node->list); 369 call_rcu(&name_node->rcu, netdev_name_node_alt_free); 370 } 371 372 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name) 373 { 374 struct netdev_name_node *name_node; 375 struct net *net = dev_net(dev); 376 377 name_node = netdev_name_node_lookup(net, name); 378 if (!name_node) 379 return -ENOENT; 380 /* lookup might have found our primary name or a name belonging 381 * to another device. 382 */ 383 if (name_node == dev->name_node || name_node->dev != dev) 384 return -EINVAL; 385 386 __netdev_name_node_alt_destroy(name_node); 387 return 0; 388 } 389 390 static void netdev_name_node_alt_flush(struct net_device *dev) 391 { 392 struct netdev_name_node *name_node, *tmp; 393 394 list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list) { 395 list_del(&name_node->list); 396 netdev_name_node_alt_free(&name_node->rcu); 397 } 398 } 399 400 /* Device list insertion */ 401 static void list_netdevice(struct net_device *dev) 402 { 403 struct netdev_name_node *name_node; 404 struct net *net = dev_net(dev); 405 406 ASSERT_RTNL(); 407 408 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 409 netdev_name_node_add(net, dev->name_node); 410 hlist_add_head_rcu(&dev->index_hlist, 411 dev_index_hash(net, dev->ifindex)); 412 413 netdev_for_each_altname(dev, name_node) 414 netdev_name_node_add(net, name_node); 415 416 /* We reserved the ifindex, this can't fail */ 417 WARN_ON(xa_store(&net->dev_by_index, dev->ifindex, dev, GFP_KERNEL)); 418 419 dev_base_seq_inc(net); 420 } 421 422 /* Device list removal 423 * caller must respect a RCU grace period before freeing/reusing dev 424 */ 425 static void unlist_netdevice(struct net_device *dev) 426 { 427 struct netdev_name_node *name_node; 428 struct net *net = dev_net(dev); 429 430 ASSERT_RTNL(); 431 432 xa_erase(&net->dev_by_index, dev->ifindex); 433 434 netdev_for_each_altname(dev, name_node) 435 netdev_name_node_del(name_node); 436 437 /* Unlink dev from the device chain */ 438 list_del_rcu(&dev->dev_list); 439 netdev_name_node_del(dev->name_node); 440 hlist_del_rcu(&dev->index_hlist); 441 442 dev_base_seq_inc(dev_net(dev)); 443 } 444 445 /* 446 * Our notifier list 447 */ 448 449 static RAW_NOTIFIER_HEAD(netdev_chain); 450 451 /* 452 * Device drivers call our routines to queue packets here. We empty the 453 * queue in the local softnet handler. 454 */ 455 456 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data) = { 457 .process_queue_bh_lock = INIT_LOCAL_LOCK(process_queue_bh_lock), 458 }; 459 EXPORT_PER_CPU_SYMBOL(softnet_data); 460 461 /* Page_pool has a lockless array/stack to alloc/recycle pages. 462 * PP consumers must pay attention to run APIs in the appropriate context 463 * (e.g. NAPI context). 464 */ 465 DEFINE_PER_CPU(struct page_pool_bh, system_page_pool) = { 466 .bh_lock = INIT_LOCAL_LOCK(bh_lock), 467 }; 468 469 #ifdef CONFIG_LOCKDEP 470 /* 471 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 472 * according to dev->type 473 */ 474 static const unsigned short netdev_lock_type[] = { 475 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 476 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 477 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 478 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 479 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 480 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 481 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 482 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 483 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 484 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 485 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 486 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 487 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM, 488 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE, 489 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE}; 490 491 static const char *const netdev_lock_name[] = { 492 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 493 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 494 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 495 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 496 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 497 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 498 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 499 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 500 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 501 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 502 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 503 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 504 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM", 505 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE", 506 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"}; 507 508 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 509 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 510 511 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 512 { 513 int i; 514 515 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 516 if (netdev_lock_type[i] == dev_type) 517 return i; 518 /* the last key is used by default */ 519 return ARRAY_SIZE(netdev_lock_type) - 1; 520 } 521 522 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 523 unsigned short dev_type) 524 { 525 int i; 526 527 i = netdev_lock_pos(dev_type); 528 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 529 netdev_lock_name[i]); 530 } 531 532 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 533 { 534 int i; 535 536 i = netdev_lock_pos(dev->type); 537 lockdep_set_class_and_name(&dev->addr_list_lock, 538 &netdev_addr_lock_key[i], 539 netdev_lock_name[i]); 540 } 541 #else 542 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 543 unsigned short dev_type) 544 { 545 } 546 547 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 548 { 549 } 550 #endif 551 552 /******************************************************************************* 553 * 554 * Protocol management and registration routines 555 * 556 *******************************************************************************/ 557 558 559 /* 560 * Add a protocol ID to the list. Now that the input handler is 561 * smarter we can dispense with all the messy stuff that used to be 562 * here. 563 * 564 * BEWARE!!! Protocol handlers, mangling input packets, 565 * MUST BE last in hash buckets and checking protocol handlers 566 * MUST start from promiscuous ptype_all chain in net_bh. 567 * It is true now, do not change it. 568 * Explanation follows: if protocol handler, mangling packet, will 569 * be the first on list, it is not able to sense, that packet 570 * is cloned and should be copied-on-write, so that it will 571 * change it and subsequent readers will get broken packet. 572 * --ANK (980803) 573 */ 574 575 static inline struct list_head *ptype_head(const struct packet_type *pt) 576 { 577 if (pt->type == htons(ETH_P_ALL)) { 578 if (!pt->af_packet_net && !pt->dev) 579 return NULL; 580 581 return pt->dev ? &pt->dev->ptype_all : 582 &pt->af_packet_net->ptype_all; 583 } 584 585 if (pt->dev) 586 return &pt->dev->ptype_specific; 587 588 return pt->af_packet_net ? &pt->af_packet_net->ptype_specific : 589 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 590 } 591 592 /** 593 * dev_add_pack - add packet handler 594 * @pt: packet type declaration 595 * 596 * Add a protocol handler to the networking stack. The passed &packet_type 597 * is linked into kernel lists and may not be freed until it has been 598 * removed from the kernel lists. 599 * 600 * This call does not sleep therefore it can not 601 * guarantee all CPU's that are in middle of receiving packets 602 * will see the new packet type (until the next received packet). 603 */ 604 605 void dev_add_pack(struct packet_type *pt) 606 { 607 struct list_head *head = ptype_head(pt); 608 609 if (WARN_ON_ONCE(!head)) 610 return; 611 612 spin_lock(&ptype_lock); 613 list_add_rcu(&pt->list, head); 614 spin_unlock(&ptype_lock); 615 } 616 EXPORT_SYMBOL(dev_add_pack); 617 618 /** 619 * __dev_remove_pack - remove packet handler 620 * @pt: packet type declaration 621 * 622 * Remove a protocol handler that was previously added to the kernel 623 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 624 * from the kernel lists and can be freed or reused once this function 625 * returns. 626 * 627 * The packet type might still be in use by receivers 628 * and must not be freed until after all the CPU's have gone 629 * through a quiescent state. 630 */ 631 void __dev_remove_pack(struct packet_type *pt) 632 { 633 struct list_head *head = ptype_head(pt); 634 struct packet_type *pt1; 635 636 if (!head) 637 return; 638 639 spin_lock(&ptype_lock); 640 641 list_for_each_entry(pt1, head, list) { 642 if (pt == pt1) { 643 list_del_rcu(&pt->list); 644 goto out; 645 } 646 } 647 648 pr_warn("dev_remove_pack: %p not found\n", pt); 649 out: 650 spin_unlock(&ptype_lock); 651 } 652 EXPORT_SYMBOL(__dev_remove_pack); 653 654 /** 655 * dev_remove_pack - remove packet handler 656 * @pt: packet type declaration 657 * 658 * Remove a protocol handler that was previously added to the kernel 659 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 660 * from the kernel lists and can be freed or reused once this function 661 * returns. 662 * 663 * This call sleeps to guarantee that no CPU is looking at the packet 664 * type after return. 665 */ 666 void dev_remove_pack(struct packet_type *pt) 667 { 668 __dev_remove_pack(pt); 669 670 synchronize_net(); 671 } 672 EXPORT_SYMBOL(dev_remove_pack); 673 674 675 /******************************************************************************* 676 * 677 * Device Interface Subroutines 678 * 679 *******************************************************************************/ 680 681 /** 682 * dev_get_iflink - get 'iflink' value of a interface 683 * @dev: targeted interface 684 * 685 * Indicates the ifindex the interface is linked to. 686 * Physical interfaces have the same 'ifindex' and 'iflink' values. 687 */ 688 689 int dev_get_iflink(const struct net_device *dev) 690 { 691 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink) 692 return dev->netdev_ops->ndo_get_iflink(dev); 693 694 return READ_ONCE(dev->ifindex); 695 } 696 EXPORT_SYMBOL(dev_get_iflink); 697 698 /** 699 * dev_fill_metadata_dst - Retrieve tunnel egress information. 700 * @dev: targeted interface 701 * @skb: The packet. 702 * 703 * For better visibility of tunnel traffic OVS needs to retrieve 704 * egress tunnel information for a packet. Following API allows 705 * user to get this info. 706 */ 707 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb) 708 { 709 struct ip_tunnel_info *info; 710 711 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst) 712 return -EINVAL; 713 714 info = skb_tunnel_info_unclone(skb); 715 if (!info) 716 return -ENOMEM; 717 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX))) 718 return -EINVAL; 719 720 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb); 721 } 722 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst); 723 724 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack) 725 { 726 int k = stack->num_paths++; 727 728 if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX)) 729 return NULL; 730 731 return &stack->path[k]; 732 } 733 734 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr, 735 struct net_device_path_stack *stack) 736 { 737 const struct net_device *last_dev; 738 struct net_device_path_ctx ctx = { 739 .dev = dev, 740 }; 741 struct net_device_path *path; 742 int ret = 0; 743 744 memcpy(ctx.daddr, daddr, sizeof(ctx.daddr)); 745 stack->num_paths = 0; 746 while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) { 747 last_dev = ctx.dev; 748 path = dev_fwd_path(stack); 749 if (!path) 750 return -1; 751 752 memset(path, 0, sizeof(struct net_device_path)); 753 ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path); 754 if (ret < 0) 755 return -1; 756 757 if (WARN_ON_ONCE(last_dev == ctx.dev)) 758 return -1; 759 } 760 761 if (!ctx.dev) 762 return ret; 763 764 path = dev_fwd_path(stack); 765 if (!path) 766 return -1; 767 path->type = DEV_PATH_ETHERNET; 768 path->dev = ctx.dev; 769 770 return ret; 771 } 772 EXPORT_SYMBOL_GPL(dev_fill_forward_path); 773 774 /* must be called under rcu_read_lock(), as we dont take a reference */ 775 static struct napi_struct *napi_by_id(unsigned int napi_id) 776 { 777 unsigned int hash = napi_id % HASH_SIZE(napi_hash); 778 struct napi_struct *napi; 779 780 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node) 781 if (napi->napi_id == napi_id) 782 return napi; 783 784 return NULL; 785 } 786 787 /* must be called under rcu_read_lock(), as we dont take a reference */ 788 static struct napi_struct * 789 netdev_napi_by_id(struct net *net, unsigned int napi_id) 790 { 791 struct napi_struct *napi; 792 793 napi = napi_by_id(napi_id); 794 if (!napi) 795 return NULL; 796 797 if (WARN_ON_ONCE(!napi->dev)) 798 return NULL; 799 if (!net_eq(net, dev_net(napi->dev))) 800 return NULL; 801 802 return napi; 803 } 804 805 /** 806 * netdev_napi_by_id_lock() - find a device by NAPI ID and lock it 807 * @net: the applicable net namespace 808 * @napi_id: ID of a NAPI of a target device 809 * 810 * Find a NAPI instance with @napi_id. Lock its device. 811 * The device must be in %NETREG_REGISTERED state for lookup to succeed. 812 * netdev_unlock() must be called to release it. 813 * 814 * Return: pointer to NAPI, its device with lock held, NULL if not found. 815 */ 816 struct napi_struct * 817 netdev_napi_by_id_lock(struct net *net, unsigned int napi_id) 818 { 819 struct napi_struct *napi; 820 struct net_device *dev; 821 822 rcu_read_lock(); 823 napi = netdev_napi_by_id(net, napi_id); 824 if (!napi || READ_ONCE(napi->dev->reg_state) != NETREG_REGISTERED) { 825 rcu_read_unlock(); 826 return NULL; 827 } 828 829 dev = napi->dev; 830 dev_hold(dev); 831 rcu_read_unlock(); 832 833 dev = __netdev_put_lock(dev, net); 834 if (!dev) 835 return NULL; 836 837 rcu_read_lock(); 838 napi = netdev_napi_by_id(net, napi_id); 839 if (napi && napi->dev != dev) 840 napi = NULL; 841 rcu_read_unlock(); 842 843 if (!napi) 844 netdev_unlock(dev); 845 return napi; 846 } 847 848 /** 849 * __dev_get_by_name - find a device by its name 850 * @net: the applicable net namespace 851 * @name: name to find 852 * 853 * Find an interface by name. Must be called under RTNL semaphore. 854 * If the name is found a pointer to the device is returned. 855 * If the name is not found then %NULL is returned. The 856 * reference counters are not incremented so the caller must be 857 * careful with locks. 858 */ 859 860 struct net_device *__dev_get_by_name(struct net *net, const char *name) 861 { 862 struct netdev_name_node *node_name; 863 864 node_name = netdev_name_node_lookup(net, name); 865 return node_name ? node_name->dev : NULL; 866 } 867 EXPORT_SYMBOL(__dev_get_by_name); 868 869 /** 870 * dev_get_by_name_rcu - find a device by its name 871 * @net: the applicable net namespace 872 * @name: name to find 873 * 874 * Find an interface by name. 875 * If the name is found a pointer to the device is returned. 876 * If the name is not found then %NULL is returned. 877 * The reference counters are not incremented so the caller must be 878 * careful with locks. The caller must hold RCU lock. 879 */ 880 881 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 882 { 883 struct netdev_name_node *node_name; 884 885 node_name = netdev_name_node_lookup_rcu(net, name); 886 return node_name ? node_name->dev : NULL; 887 } 888 EXPORT_SYMBOL(dev_get_by_name_rcu); 889 890 /* Deprecated for new users, call netdev_get_by_name() instead */ 891 struct net_device *dev_get_by_name(struct net *net, const char *name) 892 { 893 struct net_device *dev; 894 895 rcu_read_lock(); 896 dev = dev_get_by_name_rcu(net, name); 897 dev_hold(dev); 898 rcu_read_unlock(); 899 return dev; 900 } 901 EXPORT_SYMBOL(dev_get_by_name); 902 903 /** 904 * netdev_get_by_name() - find a device by its name 905 * @net: the applicable net namespace 906 * @name: name to find 907 * @tracker: tracking object for the acquired reference 908 * @gfp: allocation flags for the tracker 909 * 910 * Find an interface by name. This can be called from any 911 * context and does its own locking. The returned handle has 912 * the usage count incremented and the caller must use netdev_put() to 913 * release it when it is no longer needed. %NULL is returned if no 914 * matching device is found. 915 */ 916 struct net_device *netdev_get_by_name(struct net *net, const char *name, 917 netdevice_tracker *tracker, gfp_t gfp) 918 { 919 struct net_device *dev; 920 921 dev = dev_get_by_name(net, name); 922 if (dev) 923 netdev_tracker_alloc(dev, tracker, gfp); 924 return dev; 925 } 926 EXPORT_SYMBOL(netdev_get_by_name); 927 928 /** 929 * __dev_get_by_index - find a device by its ifindex 930 * @net: the applicable net namespace 931 * @ifindex: index of device 932 * 933 * Search for an interface by index. Returns %NULL if the device 934 * is not found or a pointer to the device. The device has not 935 * had its reference counter increased so the caller must be careful 936 * about locking. The caller must hold the RTNL semaphore. 937 */ 938 939 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 940 { 941 struct net_device *dev; 942 struct hlist_head *head = dev_index_hash(net, ifindex); 943 944 hlist_for_each_entry(dev, head, index_hlist) 945 if (dev->ifindex == ifindex) 946 return dev; 947 948 return NULL; 949 } 950 EXPORT_SYMBOL(__dev_get_by_index); 951 952 /** 953 * dev_get_by_index_rcu - find a device by its ifindex 954 * @net: the applicable net namespace 955 * @ifindex: index of device 956 * 957 * Search for an interface by index. Returns %NULL if the device 958 * is not found or a pointer to the device. The device has not 959 * had its reference counter increased so the caller must be careful 960 * about locking. The caller must hold RCU lock. 961 */ 962 963 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 964 { 965 struct net_device *dev; 966 struct hlist_head *head = dev_index_hash(net, ifindex); 967 968 hlist_for_each_entry_rcu(dev, head, index_hlist) 969 if (dev->ifindex == ifindex) 970 return dev; 971 972 return NULL; 973 } 974 EXPORT_SYMBOL(dev_get_by_index_rcu); 975 976 /* Deprecated for new users, call netdev_get_by_index() instead */ 977 struct net_device *dev_get_by_index(struct net *net, int ifindex) 978 { 979 struct net_device *dev; 980 981 rcu_read_lock(); 982 dev = dev_get_by_index_rcu(net, ifindex); 983 dev_hold(dev); 984 rcu_read_unlock(); 985 return dev; 986 } 987 EXPORT_SYMBOL(dev_get_by_index); 988 989 /** 990 * netdev_get_by_index() - find a device by its ifindex 991 * @net: the applicable net namespace 992 * @ifindex: index of device 993 * @tracker: tracking object for the acquired reference 994 * @gfp: allocation flags for the tracker 995 * 996 * Search for an interface by index. Returns NULL if the device 997 * is not found or a pointer to the device. The device returned has 998 * had a reference added and the pointer is safe until the user calls 999 * netdev_put() to indicate they have finished with it. 1000 */ 1001 struct net_device *netdev_get_by_index(struct net *net, int ifindex, 1002 netdevice_tracker *tracker, gfp_t gfp) 1003 { 1004 struct net_device *dev; 1005 1006 dev = dev_get_by_index(net, ifindex); 1007 if (dev) 1008 netdev_tracker_alloc(dev, tracker, gfp); 1009 return dev; 1010 } 1011 EXPORT_SYMBOL(netdev_get_by_index); 1012 1013 /** 1014 * dev_get_by_napi_id - find a device by napi_id 1015 * @napi_id: ID of the NAPI struct 1016 * 1017 * Search for an interface by NAPI ID. Returns %NULL if the device 1018 * is not found or a pointer to the device. The device has not had 1019 * its reference counter increased so the caller must be careful 1020 * about locking. The caller must hold RCU lock. 1021 */ 1022 struct net_device *dev_get_by_napi_id(unsigned int napi_id) 1023 { 1024 struct napi_struct *napi; 1025 1026 WARN_ON_ONCE(!rcu_read_lock_held()); 1027 1028 if (!napi_id_valid(napi_id)) 1029 return NULL; 1030 1031 napi = napi_by_id(napi_id); 1032 1033 return napi ? napi->dev : NULL; 1034 } 1035 1036 /* Release the held reference on the net_device, and if the net_device 1037 * is still registered try to lock the instance lock. If device is being 1038 * unregistered NULL will be returned (but the reference has been released, 1039 * either way!) 1040 * 1041 * This helper is intended for locking net_device after it has been looked up 1042 * using a lockless lookup helper. Lock prevents the instance from going away. 1043 */ 1044 struct net_device *__netdev_put_lock(struct net_device *dev, struct net *net) 1045 { 1046 netdev_lock(dev); 1047 if (dev->reg_state > NETREG_REGISTERED || 1048 dev->moving_ns || !net_eq(dev_net(dev), net)) { 1049 netdev_unlock(dev); 1050 dev_put(dev); 1051 return NULL; 1052 } 1053 dev_put(dev); 1054 return dev; 1055 } 1056 1057 static struct net_device * 1058 __netdev_put_lock_ops_compat(struct net_device *dev, struct net *net) 1059 { 1060 netdev_lock_ops_compat(dev); 1061 if (dev->reg_state > NETREG_REGISTERED || 1062 dev->moving_ns || !net_eq(dev_net(dev), net)) { 1063 netdev_unlock_ops_compat(dev); 1064 dev_put(dev); 1065 return NULL; 1066 } 1067 dev_put(dev); 1068 return dev; 1069 } 1070 1071 /** 1072 * netdev_get_by_index_lock() - find a device by its ifindex 1073 * @net: the applicable net namespace 1074 * @ifindex: index of device 1075 * 1076 * Search for an interface by index. If a valid device 1077 * with @ifindex is found it will be returned with netdev->lock held. 1078 * netdev_unlock() must be called to release it. 1079 * 1080 * Return: pointer to a device with lock held, NULL if not found. 1081 */ 1082 struct net_device *netdev_get_by_index_lock(struct net *net, int ifindex) 1083 { 1084 struct net_device *dev; 1085 1086 dev = dev_get_by_index(net, ifindex); 1087 if (!dev) 1088 return NULL; 1089 1090 return __netdev_put_lock(dev, net); 1091 } 1092 1093 struct net_device * 1094 netdev_get_by_index_lock_ops_compat(struct net *net, int ifindex) 1095 { 1096 struct net_device *dev; 1097 1098 dev = dev_get_by_index(net, ifindex); 1099 if (!dev) 1100 return NULL; 1101 1102 return __netdev_put_lock_ops_compat(dev, net); 1103 } 1104 1105 struct net_device * 1106 netdev_xa_find_lock(struct net *net, struct net_device *dev, 1107 unsigned long *index) 1108 { 1109 if (dev) 1110 netdev_unlock(dev); 1111 1112 do { 1113 rcu_read_lock(); 1114 dev = xa_find(&net->dev_by_index, index, ULONG_MAX, XA_PRESENT); 1115 if (!dev) { 1116 rcu_read_unlock(); 1117 return NULL; 1118 } 1119 dev_hold(dev); 1120 rcu_read_unlock(); 1121 1122 dev = __netdev_put_lock(dev, net); 1123 if (dev) 1124 return dev; 1125 1126 (*index)++; 1127 } while (true); 1128 } 1129 1130 struct net_device * 1131 netdev_xa_find_lock_ops_compat(struct net *net, struct net_device *dev, 1132 unsigned long *index) 1133 { 1134 if (dev) 1135 netdev_unlock_ops_compat(dev); 1136 1137 do { 1138 rcu_read_lock(); 1139 dev = xa_find(&net->dev_by_index, index, ULONG_MAX, XA_PRESENT); 1140 if (!dev) { 1141 rcu_read_unlock(); 1142 return NULL; 1143 } 1144 dev_hold(dev); 1145 rcu_read_unlock(); 1146 1147 dev = __netdev_put_lock_ops_compat(dev, net); 1148 if (dev) 1149 return dev; 1150 1151 (*index)++; 1152 } while (true); 1153 } 1154 1155 static DEFINE_SEQLOCK(netdev_rename_lock); 1156 1157 void netdev_copy_name(struct net_device *dev, char *name) 1158 { 1159 unsigned int seq; 1160 1161 do { 1162 seq = read_seqbegin(&netdev_rename_lock); 1163 strscpy(name, dev->name, IFNAMSIZ); 1164 } while (read_seqretry(&netdev_rename_lock, seq)); 1165 } 1166 1167 /** 1168 * netdev_get_name - get a netdevice name, knowing its ifindex. 1169 * @net: network namespace 1170 * @name: a pointer to the buffer where the name will be stored. 1171 * @ifindex: the ifindex of the interface to get the name from. 1172 */ 1173 int netdev_get_name(struct net *net, char *name, int ifindex) 1174 { 1175 struct net_device *dev; 1176 int ret; 1177 1178 rcu_read_lock(); 1179 1180 dev = dev_get_by_index_rcu(net, ifindex); 1181 if (!dev) { 1182 ret = -ENODEV; 1183 goto out; 1184 } 1185 1186 netdev_copy_name(dev, name); 1187 1188 ret = 0; 1189 out: 1190 rcu_read_unlock(); 1191 return ret; 1192 } 1193 1194 static bool dev_addr_cmp(struct net_device *dev, unsigned short type, 1195 const char *ha) 1196 { 1197 return dev->type == type && !memcmp(dev->dev_addr, ha, dev->addr_len); 1198 } 1199 1200 /** 1201 * dev_getbyhwaddr_rcu - find a device by its hardware address 1202 * @net: the applicable net namespace 1203 * @type: media type of device 1204 * @ha: hardware address 1205 * 1206 * Search for an interface by MAC address. Returns NULL if the device 1207 * is not found or a pointer to the device. 1208 * The caller must hold RCU. 1209 * The returned device has not had its ref count increased 1210 * and the caller must therefore be careful about locking 1211 * 1212 */ 1213 1214 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 1215 const char *ha) 1216 { 1217 struct net_device *dev; 1218 1219 for_each_netdev_rcu(net, dev) 1220 if (dev_addr_cmp(dev, type, ha)) 1221 return dev; 1222 1223 return NULL; 1224 } 1225 EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 1226 1227 /** 1228 * dev_getbyhwaddr() - find a device by its hardware address 1229 * @net: the applicable net namespace 1230 * @type: media type of device 1231 * @ha: hardware address 1232 * 1233 * Similar to dev_getbyhwaddr_rcu(), but the owner needs to hold 1234 * rtnl_lock. 1235 * 1236 * Context: rtnl_lock() must be held. 1237 * Return: pointer to the net_device, or NULL if not found 1238 */ 1239 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, 1240 const char *ha) 1241 { 1242 struct net_device *dev; 1243 1244 ASSERT_RTNL(); 1245 for_each_netdev(net, dev) 1246 if (dev_addr_cmp(dev, type, ha)) 1247 return dev; 1248 1249 return NULL; 1250 } 1251 EXPORT_SYMBOL(dev_getbyhwaddr); 1252 1253 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 1254 { 1255 struct net_device *dev, *ret = NULL; 1256 1257 rcu_read_lock(); 1258 for_each_netdev_rcu(net, dev) 1259 if (dev->type == type) { 1260 dev_hold(dev); 1261 ret = dev; 1262 break; 1263 } 1264 rcu_read_unlock(); 1265 return ret; 1266 } 1267 EXPORT_SYMBOL(dev_getfirstbyhwtype); 1268 1269 /** 1270 * __dev_get_by_flags - find any device with given flags 1271 * @net: the applicable net namespace 1272 * @if_flags: IFF_* values 1273 * @mask: bitmask of bits in if_flags to check 1274 * 1275 * Search for any interface with the given flags. Returns NULL if a device 1276 * is not found or a pointer to the device. Must be called inside 1277 * rtnl_lock(), and result refcount is unchanged. 1278 */ 1279 1280 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags, 1281 unsigned short mask) 1282 { 1283 struct net_device *dev, *ret; 1284 1285 ASSERT_RTNL(); 1286 1287 ret = NULL; 1288 for_each_netdev(net, dev) { 1289 if (((dev->flags ^ if_flags) & mask) == 0) { 1290 ret = dev; 1291 break; 1292 } 1293 } 1294 return ret; 1295 } 1296 EXPORT_SYMBOL(__dev_get_by_flags); 1297 1298 /** 1299 * dev_valid_name - check if name is okay for network device 1300 * @name: name string 1301 * 1302 * Network device names need to be valid file names to 1303 * allow sysfs to work. We also disallow any kind of 1304 * whitespace. 1305 */ 1306 bool dev_valid_name(const char *name) 1307 { 1308 if (*name == '\0') 1309 return false; 1310 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ) 1311 return false; 1312 if (!strcmp(name, ".") || !strcmp(name, "..")) 1313 return false; 1314 1315 while (*name) { 1316 if (*name == '/' || *name == ':' || isspace(*name)) 1317 return false; 1318 name++; 1319 } 1320 return true; 1321 } 1322 EXPORT_SYMBOL(dev_valid_name); 1323 1324 /** 1325 * __dev_alloc_name - allocate a name for a device 1326 * @net: network namespace to allocate the device name in 1327 * @name: name format string 1328 * @res: result name string 1329 * 1330 * Passed a format string - eg "lt%d" it will try and find a suitable 1331 * id. It scans list of devices to build up a free map, then chooses 1332 * the first empty slot. The caller must hold the dev_base or rtnl lock 1333 * while allocating the name and adding the device in order to avoid 1334 * duplicates. 1335 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1336 * Returns the number of the unit assigned or a negative errno code. 1337 */ 1338 1339 static int __dev_alloc_name(struct net *net, const char *name, char *res) 1340 { 1341 int i = 0; 1342 const char *p; 1343 const int max_netdevices = 8*PAGE_SIZE; 1344 unsigned long *inuse; 1345 struct net_device *d; 1346 char buf[IFNAMSIZ]; 1347 1348 /* Verify the string as this thing may have come from the user. 1349 * There must be one "%d" and no other "%" characters. 1350 */ 1351 p = strchr(name, '%'); 1352 if (!p || p[1] != 'd' || strchr(p + 2, '%')) 1353 return -EINVAL; 1354 1355 /* Use one page as a bit array of possible slots */ 1356 inuse = bitmap_zalloc(max_netdevices, GFP_ATOMIC); 1357 if (!inuse) 1358 return -ENOMEM; 1359 1360 for_each_netdev(net, d) { 1361 struct netdev_name_node *name_node; 1362 1363 netdev_for_each_altname(d, name_node) { 1364 if (!sscanf(name_node->name, name, &i)) 1365 continue; 1366 if (i < 0 || i >= max_netdevices) 1367 continue; 1368 1369 /* avoid cases where sscanf is not exact inverse of printf */ 1370 snprintf(buf, IFNAMSIZ, name, i); 1371 if (!strncmp(buf, name_node->name, IFNAMSIZ)) 1372 __set_bit(i, inuse); 1373 } 1374 if (!sscanf(d->name, name, &i)) 1375 continue; 1376 if (i < 0 || i >= max_netdevices) 1377 continue; 1378 1379 /* avoid cases where sscanf is not exact inverse of printf */ 1380 snprintf(buf, IFNAMSIZ, name, i); 1381 if (!strncmp(buf, d->name, IFNAMSIZ)) 1382 __set_bit(i, inuse); 1383 } 1384 1385 i = find_first_zero_bit(inuse, max_netdevices); 1386 bitmap_free(inuse); 1387 if (i == max_netdevices) 1388 return -ENFILE; 1389 1390 /* 'res' and 'name' could overlap, use 'buf' as an intermediate buffer */ 1391 strscpy(buf, name, IFNAMSIZ); 1392 snprintf(res, IFNAMSIZ, buf, i); 1393 return i; 1394 } 1395 1396 /* Returns negative errno or allocated unit id (see __dev_alloc_name()) */ 1397 static int dev_prep_valid_name(struct net *net, struct net_device *dev, 1398 const char *want_name, char *out_name, 1399 int dup_errno) 1400 { 1401 if (!dev_valid_name(want_name)) 1402 return -EINVAL; 1403 1404 if (strchr(want_name, '%')) 1405 return __dev_alloc_name(net, want_name, out_name); 1406 1407 if (netdev_name_in_use(net, want_name)) 1408 return -dup_errno; 1409 if (out_name != want_name) 1410 strscpy(out_name, want_name, IFNAMSIZ); 1411 return 0; 1412 } 1413 1414 /** 1415 * dev_alloc_name - allocate a name for a device 1416 * @dev: device 1417 * @name: name format string 1418 * 1419 * Passed a format string - eg "lt%d" it will try and find a suitable 1420 * id. It scans list of devices to build up a free map, then chooses 1421 * the first empty slot. The caller must hold the dev_base or rtnl lock 1422 * while allocating the name and adding the device in order to avoid 1423 * duplicates. 1424 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1425 * Returns the number of the unit assigned or a negative errno code. 1426 */ 1427 1428 int dev_alloc_name(struct net_device *dev, const char *name) 1429 { 1430 return dev_prep_valid_name(dev_net(dev), dev, name, dev->name, ENFILE); 1431 } 1432 EXPORT_SYMBOL(dev_alloc_name); 1433 1434 static int dev_get_valid_name(struct net *net, struct net_device *dev, 1435 const char *name) 1436 { 1437 int ret; 1438 1439 ret = dev_prep_valid_name(net, dev, name, dev->name, EEXIST); 1440 return ret < 0 ? ret : 0; 1441 } 1442 1443 int netif_change_name(struct net_device *dev, const char *newname) 1444 { 1445 struct net *net = dev_net(dev); 1446 unsigned char old_assign_type; 1447 char oldname[IFNAMSIZ]; 1448 int err = 0; 1449 int ret; 1450 1451 ASSERT_RTNL_NET(net); 1452 1453 if (!strncmp(newname, dev->name, IFNAMSIZ)) 1454 return 0; 1455 1456 memcpy(oldname, dev->name, IFNAMSIZ); 1457 1458 write_seqlock_bh(&netdev_rename_lock); 1459 err = dev_get_valid_name(net, dev, newname); 1460 write_sequnlock_bh(&netdev_rename_lock); 1461 1462 if (err < 0) 1463 return err; 1464 1465 if (oldname[0] && !strchr(oldname, '%')) 1466 netdev_info(dev, "renamed from %s%s\n", oldname, 1467 dev->flags & IFF_UP ? " (while UP)" : ""); 1468 1469 old_assign_type = dev->name_assign_type; 1470 WRITE_ONCE(dev->name_assign_type, NET_NAME_RENAMED); 1471 1472 rollback: 1473 ret = device_rename(&dev->dev, dev->name); 1474 if (ret) { 1475 write_seqlock_bh(&netdev_rename_lock); 1476 memcpy(dev->name, oldname, IFNAMSIZ); 1477 write_sequnlock_bh(&netdev_rename_lock); 1478 WRITE_ONCE(dev->name_assign_type, old_assign_type); 1479 return ret; 1480 } 1481 1482 netdev_adjacent_rename_links(dev, oldname); 1483 1484 netdev_name_node_del(dev->name_node); 1485 1486 synchronize_net(); 1487 1488 netdev_name_node_add(net, dev->name_node); 1489 1490 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1491 ret = notifier_to_errno(ret); 1492 1493 if (ret) { 1494 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1495 if (err >= 0) { 1496 err = ret; 1497 write_seqlock_bh(&netdev_rename_lock); 1498 memcpy(dev->name, oldname, IFNAMSIZ); 1499 write_sequnlock_bh(&netdev_rename_lock); 1500 memcpy(oldname, newname, IFNAMSIZ); 1501 WRITE_ONCE(dev->name_assign_type, old_assign_type); 1502 old_assign_type = NET_NAME_RENAMED; 1503 goto rollback; 1504 } else { 1505 netdev_err(dev, "name change rollback failed: %d\n", 1506 ret); 1507 } 1508 } 1509 1510 return err; 1511 } 1512 1513 int netif_set_alias(struct net_device *dev, const char *alias, size_t len) 1514 { 1515 struct dev_ifalias *new_alias = NULL; 1516 1517 if (len >= IFALIASZ) 1518 return -EINVAL; 1519 1520 if (len) { 1521 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL); 1522 if (!new_alias) 1523 return -ENOMEM; 1524 1525 memcpy(new_alias->ifalias, alias, len); 1526 new_alias->ifalias[len] = 0; 1527 } 1528 1529 mutex_lock(&ifalias_mutex); 1530 new_alias = rcu_replace_pointer(dev->ifalias, new_alias, 1531 mutex_is_locked(&ifalias_mutex)); 1532 mutex_unlock(&ifalias_mutex); 1533 1534 if (new_alias) 1535 kfree_rcu(new_alias, rcuhead); 1536 1537 return len; 1538 } 1539 1540 /** 1541 * dev_get_alias - get ifalias of a device 1542 * @dev: device 1543 * @name: buffer to store name of ifalias 1544 * @len: size of buffer 1545 * 1546 * get ifalias for a device. Caller must make sure dev cannot go 1547 * away, e.g. rcu read lock or own a reference count to device. 1548 */ 1549 int dev_get_alias(const struct net_device *dev, char *name, size_t len) 1550 { 1551 const struct dev_ifalias *alias; 1552 int ret = 0; 1553 1554 rcu_read_lock(); 1555 alias = rcu_dereference(dev->ifalias); 1556 if (alias) 1557 ret = snprintf(name, len, "%s", alias->ifalias); 1558 rcu_read_unlock(); 1559 1560 return ret; 1561 } 1562 1563 /** 1564 * netdev_features_change - device changes features 1565 * @dev: device to cause notification 1566 * 1567 * Called to indicate a device has changed features. 1568 */ 1569 void netdev_features_change(struct net_device *dev) 1570 { 1571 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1572 } 1573 EXPORT_SYMBOL(netdev_features_change); 1574 1575 void netif_state_change(struct net_device *dev) 1576 { 1577 netdev_ops_assert_locked_or_invisible(dev); 1578 1579 if (dev->flags & IFF_UP) { 1580 struct netdev_notifier_change_info change_info = { 1581 .info.dev = dev, 1582 }; 1583 1584 call_netdevice_notifiers_info(NETDEV_CHANGE, 1585 &change_info.info); 1586 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL, 0, NULL); 1587 } 1588 } 1589 1590 /** 1591 * __netdev_notify_peers - notify network peers about existence of @dev, 1592 * to be called when rtnl lock is already held. 1593 * @dev: network device 1594 * 1595 * Generate traffic such that interested network peers are aware of 1596 * @dev, such as by generating a gratuitous ARP. This may be used when 1597 * a device wants to inform the rest of the network about some sort of 1598 * reconfiguration such as a failover event or virtual machine 1599 * migration. 1600 */ 1601 void __netdev_notify_peers(struct net_device *dev) 1602 { 1603 ASSERT_RTNL(); 1604 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev); 1605 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev); 1606 } 1607 EXPORT_SYMBOL(__netdev_notify_peers); 1608 1609 /** 1610 * netdev_notify_peers - notify network peers about existence of @dev 1611 * @dev: network device 1612 * 1613 * Generate traffic such that interested network peers are aware of 1614 * @dev, such as by generating a gratuitous ARP. This may be used when 1615 * a device wants to inform the rest of the network about some sort of 1616 * reconfiguration such as a failover event or virtual machine 1617 * migration. 1618 */ 1619 void netdev_notify_peers(struct net_device *dev) 1620 { 1621 rtnl_lock(); 1622 __netdev_notify_peers(dev); 1623 rtnl_unlock(); 1624 } 1625 EXPORT_SYMBOL(netdev_notify_peers); 1626 1627 static int napi_threaded_poll(void *data); 1628 1629 static int napi_kthread_create(struct napi_struct *n) 1630 { 1631 int err = 0; 1632 1633 /* Create and wake up the kthread once to put it in 1634 * TASK_INTERRUPTIBLE mode to avoid the blocked task 1635 * warning and work with loadavg. 1636 */ 1637 n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d", 1638 n->dev->name, n->napi_id); 1639 if (IS_ERR(n->thread)) { 1640 err = PTR_ERR(n->thread); 1641 pr_err("kthread_run failed with err %d\n", err); 1642 n->thread = NULL; 1643 } 1644 1645 return err; 1646 } 1647 1648 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack) 1649 { 1650 const struct net_device_ops *ops = dev->netdev_ops; 1651 int ret; 1652 1653 ASSERT_RTNL(); 1654 dev_addr_check(dev); 1655 1656 if (!netif_device_present(dev)) { 1657 /* may be detached because parent is runtime-suspended */ 1658 if (dev->dev.parent) 1659 pm_runtime_resume(dev->dev.parent); 1660 if (!netif_device_present(dev)) 1661 return -ENODEV; 1662 } 1663 1664 /* Block netpoll from trying to do any rx path servicing. 1665 * If we don't do this there is a chance ndo_poll_controller 1666 * or ndo_poll may be running while we open the device 1667 */ 1668 netpoll_poll_disable(dev); 1669 1670 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack); 1671 ret = notifier_to_errno(ret); 1672 if (ret) 1673 return ret; 1674 1675 set_bit(__LINK_STATE_START, &dev->state); 1676 1677 netdev_ops_assert_locked(dev); 1678 1679 if (ops->ndo_validate_addr) 1680 ret = ops->ndo_validate_addr(dev); 1681 1682 if (!ret && ops->ndo_open) 1683 ret = ops->ndo_open(dev); 1684 1685 netpoll_poll_enable(dev); 1686 1687 if (ret) 1688 clear_bit(__LINK_STATE_START, &dev->state); 1689 else { 1690 netif_set_up(dev, true); 1691 dev_set_rx_mode(dev); 1692 dev_activate(dev); 1693 add_device_randomness(dev->dev_addr, dev->addr_len); 1694 } 1695 1696 return ret; 1697 } 1698 1699 int netif_open(struct net_device *dev, struct netlink_ext_ack *extack) 1700 { 1701 int ret; 1702 1703 if (dev->flags & IFF_UP) 1704 return 0; 1705 1706 ret = __dev_open(dev, extack); 1707 if (ret < 0) 1708 return ret; 1709 1710 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL); 1711 call_netdevice_notifiers(NETDEV_UP, dev); 1712 1713 return ret; 1714 } 1715 1716 static void __dev_close_many(struct list_head *head) 1717 { 1718 struct net_device *dev; 1719 1720 ASSERT_RTNL(); 1721 might_sleep(); 1722 1723 list_for_each_entry(dev, head, close_list) { 1724 /* Temporarily disable netpoll until the interface is down */ 1725 netpoll_poll_disable(dev); 1726 1727 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1728 1729 clear_bit(__LINK_STATE_START, &dev->state); 1730 1731 /* Synchronize to scheduled poll. We cannot touch poll list, it 1732 * can be even on different cpu. So just clear netif_running(). 1733 * 1734 * dev->stop() will invoke napi_disable() on all of it's 1735 * napi_struct instances on this device. 1736 */ 1737 smp_mb__after_atomic(); /* Commit netif_running(). */ 1738 } 1739 1740 dev_deactivate_many(head); 1741 1742 list_for_each_entry(dev, head, close_list) { 1743 const struct net_device_ops *ops = dev->netdev_ops; 1744 1745 /* 1746 * Call the device specific close. This cannot fail. 1747 * Only if device is UP 1748 * 1749 * We allow it to be called even after a DETACH hot-plug 1750 * event. 1751 */ 1752 1753 netdev_ops_assert_locked(dev); 1754 1755 if (ops->ndo_stop) 1756 ops->ndo_stop(dev); 1757 1758 netif_set_up(dev, false); 1759 netpoll_poll_enable(dev); 1760 } 1761 } 1762 1763 static void __dev_close(struct net_device *dev) 1764 { 1765 LIST_HEAD(single); 1766 1767 list_add(&dev->close_list, &single); 1768 __dev_close_many(&single); 1769 list_del(&single); 1770 } 1771 1772 void dev_close_many(struct list_head *head, bool unlink) 1773 { 1774 struct net_device *dev, *tmp; 1775 1776 /* Remove the devices that don't need to be closed */ 1777 list_for_each_entry_safe(dev, tmp, head, close_list) 1778 if (!(dev->flags & IFF_UP)) 1779 list_del_init(&dev->close_list); 1780 1781 __dev_close_many(head); 1782 1783 list_for_each_entry_safe(dev, tmp, head, close_list) { 1784 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL); 1785 call_netdevice_notifiers(NETDEV_DOWN, dev); 1786 if (unlink) 1787 list_del_init(&dev->close_list); 1788 } 1789 } 1790 EXPORT_SYMBOL(dev_close_many); 1791 1792 void netif_close(struct net_device *dev) 1793 { 1794 if (dev->flags & IFF_UP) { 1795 LIST_HEAD(single); 1796 1797 list_add(&dev->close_list, &single); 1798 dev_close_many(&single, true); 1799 list_del(&single); 1800 } 1801 } 1802 EXPORT_SYMBOL(netif_close); 1803 1804 void netif_disable_lro(struct net_device *dev) 1805 { 1806 struct net_device *lower_dev; 1807 struct list_head *iter; 1808 1809 dev->wanted_features &= ~NETIF_F_LRO; 1810 netdev_update_features(dev); 1811 1812 if (unlikely(dev->features & NETIF_F_LRO)) 1813 netdev_WARN(dev, "failed to disable LRO!\n"); 1814 1815 netdev_for_each_lower_dev(dev, lower_dev, iter) { 1816 netdev_lock_ops(lower_dev); 1817 netif_disable_lro(lower_dev); 1818 netdev_unlock_ops(lower_dev); 1819 } 1820 } 1821 EXPORT_IPV6_MOD(netif_disable_lro); 1822 1823 /** 1824 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device 1825 * @dev: device 1826 * 1827 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be 1828 * called under RTNL. This is needed if Generic XDP is installed on 1829 * the device. 1830 */ 1831 static void dev_disable_gro_hw(struct net_device *dev) 1832 { 1833 dev->wanted_features &= ~NETIF_F_GRO_HW; 1834 netdev_update_features(dev); 1835 1836 if (unlikely(dev->features & NETIF_F_GRO_HW)) 1837 netdev_WARN(dev, "failed to disable GRO_HW!\n"); 1838 } 1839 1840 const char *netdev_cmd_to_name(enum netdev_cmd cmd) 1841 { 1842 #define N(val) \ 1843 case NETDEV_##val: \ 1844 return "NETDEV_" __stringify(val); 1845 switch (cmd) { 1846 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER) 1847 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE) 1848 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE) 1849 N(POST_INIT) N(PRE_UNINIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) 1850 N(CHANGEUPPER) N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) 1851 N(BONDING_INFO) N(PRECHANGEUPPER) N(CHANGELOWERSTATE) 1852 N(UDP_TUNNEL_PUSH_INFO) N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN) 1853 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO) 1854 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO) 1855 N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE) 1856 N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA) 1857 N(XDP_FEAT_CHANGE) 1858 } 1859 #undef N 1860 return "UNKNOWN_NETDEV_EVENT"; 1861 } 1862 EXPORT_SYMBOL_GPL(netdev_cmd_to_name); 1863 1864 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val, 1865 struct net_device *dev) 1866 { 1867 struct netdev_notifier_info info = { 1868 .dev = dev, 1869 }; 1870 1871 return nb->notifier_call(nb, val, &info); 1872 } 1873 1874 static int call_netdevice_register_notifiers(struct notifier_block *nb, 1875 struct net_device *dev) 1876 { 1877 int err; 1878 1879 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev); 1880 err = notifier_to_errno(err); 1881 if (err) 1882 return err; 1883 1884 if (!(dev->flags & IFF_UP)) 1885 return 0; 1886 1887 call_netdevice_notifier(nb, NETDEV_UP, dev); 1888 return 0; 1889 } 1890 1891 static void call_netdevice_unregister_notifiers(struct notifier_block *nb, 1892 struct net_device *dev) 1893 { 1894 if (dev->flags & IFF_UP) { 1895 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1896 dev); 1897 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1898 } 1899 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1900 } 1901 1902 static int call_netdevice_register_net_notifiers(struct notifier_block *nb, 1903 struct net *net) 1904 { 1905 struct net_device *dev; 1906 int err; 1907 1908 for_each_netdev(net, dev) { 1909 netdev_lock_ops(dev); 1910 err = call_netdevice_register_notifiers(nb, dev); 1911 netdev_unlock_ops(dev); 1912 if (err) 1913 goto rollback; 1914 } 1915 return 0; 1916 1917 rollback: 1918 for_each_netdev_continue_reverse(net, dev) 1919 call_netdevice_unregister_notifiers(nb, dev); 1920 return err; 1921 } 1922 1923 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb, 1924 struct net *net) 1925 { 1926 struct net_device *dev; 1927 1928 for_each_netdev(net, dev) 1929 call_netdevice_unregister_notifiers(nb, dev); 1930 } 1931 1932 static int dev_boot_phase = 1; 1933 1934 /** 1935 * register_netdevice_notifier - register a network notifier block 1936 * @nb: notifier 1937 * 1938 * Register a notifier to be called when network device events occur. 1939 * The notifier passed is linked into the kernel structures and must 1940 * not be reused until it has been unregistered. A negative errno code 1941 * is returned on a failure. 1942 * 1943 * When registered all registration and up events are replayed 1944 * to the new notifier to allow device to have a race free 1945 * view of the network device list. 1946 */ 1947 1948 int register_netdevice_notifier(struct notifier_block *nb) 1949 { 1950 struct net *net; 1951 int err; 1952 1953 /* Close race with setup_net() and cleanup_net() */ 1954 down_write(&pernet_ops_rwsem); 1955 1956 /* When RTNL is removed, we need protection for netdev_chain. */ 1957 rtnl_lock(); 1958 1959 err = raw_notifier_chain_register(&netdev_chain, nb); 1960 if (err) 1961 goto unlock; 1962 if (dev_boot_phase) 1963 goto unlock; 1964 for_each_net(net) { 1965 __rtnl_net_lock(net); 1966 err = call_netdevice_register_net_notifiers(nb, net); 1967 __rtnl_net_unlock(net); 1968 if (err) 1969 goto rollback; 1970 } 1971 1972 unlock: 1973 rtnl_unlock(); 1974 up_write(&pernet_ops_rwsem); 1975 return err; 1976 1977 rollback: 1978 for_each_net_continue_reverse(net) { 1979 __rtnl_net_lock(net); 1980 call_netdevice_unregister_net_notifiers(nb, net); 1981 __rtnl_net_unlock(net); 1982 } 1983 1984 raw_notifier_chain_unregister(&netdev_chain, nb); 1985 goto unlock; 1986 } 1987 EXPORT_SYMBOL(register_netdevice_notifier); 1988 1989 /** 1990 * unregister_netdevice_notifier - unregister a network notifier block 1991 * @nb: notifier 1992 * 1993 * Unregister a notifier previously registered by 1994 * register_netdevice_notifier(). The notifier is unlinked into the 1995 * kernel structures and may then be reused. A negative errno code 1996 * is returned on a failure. 1997 * 1998 * After unregistering unregister and down device events are synthesized 1999 * for all devices on the device list to the removed notifier to remove 2000 * the need for special case cleanup code. 2001 */ 2002 2003 int unregister_netdevice_notifier(struct notifier_block *nb) 2004 { 2005 struct net *net; 2006 int err; 2007 2008 /* Close race with setup_net() and cleanup_net() */ 2009 down_write(&pernet_ops_rwsem); 2010 rtnl_lock(); 2011 err = raw_notifier_chain_unregister(&netdev_chain, nb); 2012 if (err) 2013 goto unlock; 2014 2015 for_each_net(net) { 2016 __rtnl_net_lock(net); 2017 call_netdevice_unregister_net_notifiers(nb, net); 2018 __rtnl_net_unlock(net); 2019 } 2020 2021 unlock: 2022 rtnl_unlock(); 2023 up_write(&pernet_ops_rwsem); 2024 return err; 2025 } 2026 EXPORT_SYMBOL(unregister_netdevice_notifier); 2027 2028 static int __register_netdevice_notifier_net(struct net *net, 2029 struct notifier_block *nb, 2030 bool ignore_call_fail) 2031 { 2032 int err; 2033 2034 err = raw_notifier_chain_register(&net->netdev_chain, nb); 2035 if (err) 2036 return err; 2037 if (dev_boot_phase) 2038 return 0; 2039 2040 err = call_netdevice_register_net_notifiers(nb, net); 2041 if (err && !ignore_call_fail) 2042 goto chain_unregister; 2043 2044 return 0; 2045 2046 chain_unregister: 2047 raw_notifier_chain_unregister(&net->netdev_chain, nb); 2048 return err; 2049 } 2050 2051 static int __unregister_netdevice_notifier_net(struct net *net, 2052 struct notifier_block *nb) 2053 { 2054 int err; 2055 2056 err = raw_notifier_chain_unregister(&net->netdev_chain, nb); 2057 if (err) 2058 return err; 2059 2060 call_netdevice_unregister_net_notifiers(nb, net); 2061 return 0; 2062 } 2063 2064 /** 2065 * register_netdevice_notifier_net - register a per-netns network notifier block 2066 * @net: network namespace 2067 * @nb: notifier 2068 * 2069 * Register a notifier to be called when network device events occur. 2070 * The notifier passed is linked into the kernel structures and must 2071 * not be reused until it has been unregistered. A negative errno code 2072 * is returned on a failure. 2073 * 2074 * When registered all registration and up events are replayed 2075 * to the new notifier to allow device to have a race free 2076 * view of the network device list. 2077 */ 2078 2079 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb) 2080 { 2081 int err; 2082 2083 rtnl_net_lock(net); 2084 err = __register_netdevice_notifier_net(net, nb, false); 2085 rtnl_net_unlock(net); 2086 2087 return err; 2088 } 2089 EXPORT_SYMBOL(register_netdevice_notifier_net); 2090 2091 /** 2092 * unregister_netdevice_notifier_net - unregister a per-netns 2093 * network notifier block 2094 * @net: network namespace 2095 * @nb: notifier 2096 * 2097 * Unregister a notifier previously registered by 2098 * register_netdevice_notifier_net(). The notifier is unlinked from the 2099 * kernel structures and may then be reused. A negative errno code 2100 * is returned on a failure. 2101 * 2102 * After unregistering unregister and down device events are synthesized 2103 * for all devices on the device list to the removed notifier to remove 2104 * the need for special case cleanup code. 2105 */ 2106 2107 int unregister_netdevice_notifier_net(struct net *net, 2108 struct notifier_block *nb) 2109 { 2110 int err; 2111 2112 rtnl_net_lock(net); 2113 err = __unregister_netdevice_notifier_net(net, nb); 2114 rtnl_net_unlock(net); 2115 2116 return err; 2117 } 2118 EXPORT_SYMBOL(unregister_netdevice_notifier_net); 2119 2120 static void __move_netdevice_notifier_net(struct net *src_net, 2121 struct net *dst_net, 2122 struct notifier_block *nb) 2123 { 2124 __unregister_netdevice_notifier_net(src_net, nb); 2125 __register_netdevice_notifier_net(dst_net, nb, true); 2126 } 2127 2128 static void rtnl_net_dev_lock(struct net_device *dev) 2129 { 2130 bool again; 2131 2132 do { 2133 struct net *net; 2134 2135 again = false; 2136 2137 /* netns might be being dismantled. */ 2138 rcu_read_lock(); 2139 net = dev_net_rcu(dev); 2140 net_passive_inc(net); 2141 rcu_read_unlock(); 2142 2143 rtnl_net_lock(net); 2144 2145 #ifdef CONFIG_NET_NS 2146 /* dev might have been moved to another netns. */ 2147 if (!net_eq(net, rcu_access_pointer(dev->nd_net.net))) { 2148 rtnl_net_unlock(net); 2149 net_passive_dec(net); 2150 again = true; 2151 } 2152 #endif 2153 } while (again); 2154 } 2155 2156 static void rtnl_net_dev_unlock(struct net_device *dev) 2157 { 2158 struct net *net = dev_net(dev); 2159 2160 rtnl_net_unlock(net); 2161 net_passive_dec(net); 2162 } 2163 2164 int register_netdevice_notifier_dev_net(struct net_device *dev, 2165 struct notifier_block *nb, 2166 struct netdev_net_notifier *nn) 2167 { 2168 int err; 2169 2170 rtnl_net_dev_lock(dev); 2171 err = __register_netdevice_notifier_net(dev_net(dev), nb, false); 2172 if (!err) { 2173 nn->nb = nb; 2174 list_add(&nn->list, &dev->net_notifier_list); 2175 } 2176 rtnl_net_dev_unlock(dev); 2177 2178 return err; 2179 } 2180 EXPORT_SYMBOL(register_netdevice_notifier_dev_net); 2181 2182 int unregister_netdevice_notifier_dev_net(struct net_device *dev, 2183 struct notifier_block *nb, 2184 struct netdev_net_notifier *nn) 2185 { 2186 int err; 2187 2188 rtnl_net_dev_lock(dev); 2189 list_del(&nn->list); 2190 err = __unregister_netdevice_notifier_net(dev_net(dev), nb); 2191 rtnl_net_dev_unlock(dev); 2192 2193 return err; 2194 } 2195 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net); 2196 2197 static void move_netdevice_notifiers_dev_net(struct net_device *dev, 2198 struct net *net) 2199 { 2200 struct netdev_net_notifier *nn; 2201 2202 list_for_each_entry(nn, &dev->net_notifier_list, list) 2203 __move_netdevice_notifier_net(dev_net(dev), net, nn->nb); 2204 } 2205 2206 /** 2207 * call_netdevice_notifiers_info - call all network notifier blocks 2208 * @val: value passed unmodified to notifier function 2209 * @info: notifier information data 2210 * 2211 * Call all network notifier blocks. Parameters and return value 2212 * are as for raw_notifier_call_chain(). 2213 */ 2214 2215 int call_netdevice_notifiers_info(unsigned long val, 2216 struct netdev_notifier_info *info) 2217 { 2218 struct net *net = dev_net(info->dev); 2219 int ret; 2220 2221 ASSERT_RTNL(); 2222 2223 /* Run per-netns notifier block chain first, then run the global one. 2224 * Hopefully, one day, the global one is going to be removed after 2225 * all notifier block registrators get converted to be per-netns. 2226 */ 2227 ret = raw_notifier_call_chain(&net->netdev_chain, val, info); 2228 if (ret & NOTIFY_STOP_MASK) 2229 return ret; 2230 return raw_notifier_call_chain(&netdev_chain, val, info); 2231 } 2232 2233 /** 2234 * call_netdevice_notifiers_info_robust - call per-netns notifier blocks 2235 * for and rollback on error 2236 * @val_up: value passed unmodified to notifier function 2237 * @val_down: value passed unmodified to the notifier function when 2238 * recovering from an error on @val_up 2239 * @info: notifier information data 2240 * 2241 * Call all per-netns network notifier blocks, but not notifier blocks on 2242 * the global notifier chain. Parameters and return value are as for 2243 * raw_notifier_call_chain_robust(). 2244 */ 2245 2246 static int 2247 call_netdevice_notifiers_info_robust(unsigned long val_up, 2248 unsigned long val_down, 2249 struct netdev_notifier_info *info) 2250 { 2251 struct net *net = dev_net(info->dev); 2252 2253 ASSERT_RTNL(); 2254 2255 return raw_notifier_call_chain_robust(&net->netdev_chain, 2256 val_up, val_down, info); 2257 } 2258 2259 static int call_netdevice_notifiers_extack(unsigned long val, 2260 struct net_device *dev, 2261 struct netlink_ext_ack *extack) 2262 { 2263 struct netdev_notifier_info info = { 2264 .dev = dev, 2265 .extack = extack, 2266 }; 2267 2268 return call_netdevice_notifiers_info(val, &info); 2269 } 2270 2271 /** 2272 * call_netdevice_notifiers - call all network notifier blocks 2273 * @val: value passed unmodified to notifier function 2274 * @dev: net_device pointer passed unmodified to notifier function 2275 * 2276 * Call all network notifier blocks. Parameters and return value 2277 * are as for raw_notifier_call_chain(). 2278 */ 2279 2280 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 2281 { 2282 return call_netdevice_notifiers_extack(val, dev, NULL); 2283 } 2284 EXPORT_SYMBOL(call_netdevice_notifiers); 2285 2286 /** 2287 * call_netdevice_notifiers_mtu - call all network notifier blocks 2288 * @val: value passed unmodified to notifier function 2289 * @dev: net_device pointer passed unmodified to notifier function 2290 * @arg: additional u32 argument passed to the notifier function 2291 * 2292 * Call all network notifier blocks. Parameters and return value 2293 * are as for raw_notifier_call_chain(). 2294 */ 2295 static int call_netdevice_notifiers_mtu(unsigned long val, 2296 struct net_device *dev, u32 arg) 2297 { 2298 struct netdev_notifier_info_ext info = { 2299 .info.dev = dev, 2300 .ext.mtu = arg, 2301 }; 2302 2303 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0); 2304 2305 return call_netdevice_notifiers_info(val, &info.info); 2306 } 2307 2308 #ifdef CONFIG_NET_INGRESS 2309 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key); 2310 2311 void net_inc_ingress_queue(void) 2312 { 2313 static_branch_inc(&ingress_needed_key); 2314 } 2315 EXPORT_SYMBOL_GPL(net_inc_ingress_queue); 2316 2317 void net_dec_ingress_queue(void) 2318 { 2319 static_branch_dec(&ingress_needed_key); 2320 } 2321 EXPORT_SYMBOL_GPL(net_dec_ingress_queue); 2322 #endif 2323 2324 #ifdef CONFIG_NET_EGRESS 2325 static DEFINE_STATIC_KEY_FALSE(egress_needed_key); 2326 2327 void net_inc_egress_queue(void) 2328 { 2329 static_branch_inc(&egress_needed_key); 2330 } 2331 EXPORT_SYMBOL_GPL(net_inc_egress_queue); 2332 2333 void net_dec_egress_queue(void) 2334 { 2335 static_branch_dec(&egress_needed_key); 2336 } 2337 EXPORT_SYMBOL_GPL(net_dec_egress_queue); 2338 #endif 2339 2340 #ifdef CONFIG_NET_CLS_ACT 2341 DEFINE_STATIC_KEY_FALSE(tcf_sw_enabled_key); 2342 EXPORT_SYMBOL(tcf_sw_enabled_key); 2343 #endif 2344 2345 DEFINE_STATIC_KEY_FALSE(netstamp_needed_key); 2346 EXPORT_SYMBOL(netstamp_needed_key); 2347 #ifdef CONFIG_JUMP_LABEL 2348 static atomic_t netstamp_needed_deferred; 2349 static atomic_t netstamp_wanted; 2350 static void netstamp_clear(struct work_struct *work) 2351 { 2352 int deferred = atomic_xchg(&netstamp_needed_deferred, 0); 2353 int wanted; 2354 2355 wanted = atomic_add_return(deferred, &netstamp_wanted); 2356 if (wanted > 0) 2357 static_branch_enable(&netstamp_needed_key); 2358 else 2359 static_branch_disable(&netstamp_needed_key); 2360 } 2361 static DECLARE_WORK(netstamp_work, netstamp_clear); 2362 #endif 2363 2364 void net_enable_timestamp(void) 2365 { 2366 #ifdef CONFIG_JUMP_LABEL 2367 int wanted = atomic_read(&netstamp_wanted); 2368 2369 while (wanted > 0) { 2370 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted + 1)) 2371 return; 2372 } 2373 atomic_inc(&netstamp_needed_deferred); 2374 schedule_work(&netstamp_work); 2375 #else 2376 static_branch_inc(&netstamp_needed_key); 2377 #endif 2378 } 2379 EXPORT_SYMBOL(net_enable_timestamp); 2380 2381 void net_disable_timestamp(void) 2382 { 2383 #ifdef CONFIG_JUMP_LABEL 2384 int wanted = atomic_read(&netstamp_wanted); 2385 2386 while (wanted > 1) { 2387 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted - 1)) 2388 return; 2389 } 2390 atomic_dec(&netstamp_needed_deferred); 2391 schedule_work(&netstamp_work); 2392 #else 2393 static_branch_dec(&netstamp_needed_key); 2394 #endif 2395 } 2396 EXPORT_SYMBOL(net_disable_timestamp); 2397 2398 static inline void net_timestamp_set(struct sk_buff *skb) 2399 { 2400 skb->tstamp = 0; 2401 skb->tstamp_type = SKB_CLOCK_REALTIME; 2402 if (static_branch_unlikely(&netstamp_needed_key)) 2403 skb->tstamp = ktime_get_real(); 2404 } 2405 2406 #define net_timestamp_check(COND, SKB) \ 2407 if (static_branch_unlikely(&netstamp_needed_key)) { \ 2408 if ((COND) && !(SKB)->tstamp) \ 2409 (SKB)->tstamp = ktime_get_real(); \ 2410 } \ 2411 2412 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb) 2413 { 2414 return __is_skb_forwardable(dev, skb, true); 2415 } 2416 EXPORT_SYMBOL_GPL(is_skb_forwardable); 2417 2418 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb, 2419 bool check_mtu) 2420 { 2421 int ret = ____dev_forward_skb(dev, skb, check_mtu); 2422 2423 if (likely(!ret)) { 2424 skb->protocol = eth_type_trans(skb, dev); 2425 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN); 2426 } 2427 2428 return ret; 2429 } 2430 2431 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 2432 { 2433 return __dev_forward_skb2(dev, skb, true); 2434 } 2435 EXPORT_SYMBOL_GPL(__dev_forward_skb); 2436 2437 /** 2438 * dev_forward_skb - loopback an skb to another netif 2439 * 2440 * @dev: destination network device 2441 * @skb: buffer to forward 2442 * 2443 * return values: 2444 * NET_RX_SUCCESS (no congestion) 2445 * NET_RX_DROP (packet was dropped, but freed) 2446 * 2447 * dev_forward_skb can be used for injecting an skb from the 2448 * start_xmit function of one device into the receive queue 2449 * of another device. 2450 * 2451 * The receiving device may be in another namespace, so 2452 * we have to clear all information in the skb that could 2453 * impact namespace isolation. 2454 */ 2455 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 2456 { 2457 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb); 2458 } 2459 EXPORT_SYMBOL_GPL(dev_forward_skb); 2460 2461 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb) 2462 { 2463 return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb); 2464 } 2465 2466 static inline int deliver_skb(struct sk_buff *skb, 2467 struct packet_type *pt_prev, 2468 struct net_device *orig_dev) 2469 { 2470 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 2471 return -ENOMEM; 2472 refcount_inc(&skb->users); 2473 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 2474 } 2475 2476 static inline void deliver_ptype_list_skb(struct sk_buff *skb, 2477 struct packet_type **pt, 2478 struct net_device *orig_dev, 2479 __be16 type, 2480 struct list_head *ptype_list) 2481 { 2482 struct packet_type *ptype, *pt_prev = *pt; 2483 2484 list_for_each_entry_rcu(ptype, ptype_list, list) { 2485 if (ptype->type != type) 2486 continue; 2487 if (pt_prev) 2488 deliver_skb(skb, pt_prev, orig_dev); 2489 pt_prev = ptype; 2490 } 2491 *pt = pt_prev; 2492 } 2493 2494 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb) 2495 { 2496 if (!ptype->af_packet_priv || !skb->sk) 2497 return false; 2498 2499 if (ptype->id_match) 2500 return ptype->id_match(ptype, skb->sk); 2501 else if ((struct sock *)ptype->af_packet_priv == skb->sk) 2502 return true; 2503 2504 return false; 2505 } 2506 2507 /** 2508 * dev_nit_active_rcu - return true if any network interface taps are in use 2509 * 2510 * The caller must hold the RCU lock 2511 * 2512 * @dev: network device to check for the presence of taps 2513 */ 2514 bool dev_nit_active_rcu(const struct net_device *dev) 2515 { 2516 /* Callers may hold either RCU or RCU BH lock */ 2517 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); 2518 2519 return !list_empty(&dev_net(dev)->ptype_all) || 2520 !list_empty(&dev->ptype_all); 2521 } 2522 EXPORT_SYMBOL_GPL(dev_nit_active_rcu); 2523 2524 /* 2525 * Support routine. Sends outgoing frames to any network 2526 * taps currently in use. 2527 */ 2528 2529 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 2530 { 2531 struct packet_type *ptype, *pt_prev = NULL; 2532 struct list_head *ptype_list; 2533 struct sk_buff *skb2 = NULL; 2534 2535 rcu_read_lock(); 2536 ptype_list = &dev_net_rcu(dev)->ptype_all; 2537 again: 2538 list_for_each_entry_rcu(ptype, ptype_list, list) { 2539 if (READ_ONCE(ptype->ignore_outgoing)) 2540 continue; 2541 2542 /* Never send packets back to the socket 2543 * they originated from - MvS (miquels@drinkel.ow.org) 2544 */ 2545 if (skb_loop_sk(ptype, skb)) 2546 continue; 2547 2548 if (pt_prev) { 2549 deliver_skb(skb2, pt_prev, skb->dev); 2550 pt_prev = ptype; 2551 continue; 2552 } 2553 2554 /* need to clone skb, done only once */ 2555 skb2 = skb_clone(skb, GFP_ATOMIC); 2556 if (!skb2) 2557 goto out_unlock; 2558 2559 net_timestamp_set(skb2); 2560 2561 /* skb->nh should be correctly 2562 * set by sender, so that the second statement is 2563 * just protection against buggy protocols. 2564 */ 2565 skb_reset_mac_header(skb2); 2566 2567 if (skb_network_header(skb2) < skb2->data || 2568 skb_network_header(skb2) > skb_tail_pointer(skb2)) { 2569 net_crit_ratelimited("protocol %04x is buggy, dev %s\n", 2570 ntohs(skb2->protocol), 2571 dev->name); 2572 skb_reset_network_header(skb2); 2573 } 2574 2575 skb2->transport_header = skb2->network_header; 2576 skb2->pkt_type = PACKET_OUTGOING; 2577 pt_prev = ptype; 2578 } 2579 2580 if (ptype_list != &dev->ptype_all) { 2581 ptype_list = &dev->ptype_all; 2582 goto again; 2583 } 2584 out_unlock: 2585 if (pt_prev) { 2586 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC)) 2587 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 2588 else 2589 kfree_skb(skb2); 2590 } 2591 rcu_read_unlock(); 2592 } 2593 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit); 2594 2595 /** 2596 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change 2597 * @dev: Network device 2598 * @txq: number of queues available 2599 * 2600 * If real_num_tx_queues is changed the tc mappings may no longer be 2601 * valid. To resolve this verify the tc mapping remains valid and if 2602 * not NULL the mapping. With no priorities mapping to this 2603 * offset/count pair it will no longer be used. In the worst case TC0 2604 * is invalid nothing can be done so disable priority mappings. If is 2605 * expected that drivers will fix this mapping if they can before 2606 * calling netif_set_real_num_tx_queues. 2607 */ 2608 static void netif_setup_tc(struct net_device *dev, unsigned int txq) 2609 { 2610 int i; 2611 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2612 2613 /* If TC0 is invalidated disable TC mapping */ 2614 if (tc->offset + tc->count > txq) { 2615 netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n"); 2616 dev->num_tc = 0; 2617 return; 2618 } 2619 2620 /* Invalidated prio to tc mappings set to TC0 */ 2621 for (i = 1; i < TC_BITMASK + 1; i++) { 2622 int q = netdev_get_prio_tc_map(dev, i); 2623 2624 tc = &dev->tc_to_txq[q]; 2625 if (tc->offset + tc->count > txq) { 2626 netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n", 2627 i, q); 2628 netdev_set_prio_tc_map(dev, i, 0); 2629 } 2630 } 2631 } 2632 2633 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq) 2634 { 2635 if (dev->num_tc) { 2636 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2637 int i; 2638 2639 /* walk through the TCs and see if it falls into any of them */ 2640 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) { 2641 if ((txq - tc->offset) < tc->count) 2642 return i; 2643 } 2644 2645 /* didn't find it, just return -1 to indicate no match */ 2646 return -1; 2647 } 2648 2649 return 0; 2650 } 2651 EXPORT_SYMBOL(netdev_txq_to_tc); 2652 2653 #ifdef CONFIG_XPS 2654 static struct static_key xps_needed __read_mostly; 2655 static struct static_key xps_rxqs_needed __read_mostly; 2656 static DEFINE_MUTEX(xps_map_mutex); 2657 #define xmap_dereference(P) \ 2658 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex)) 2659 2660 static bool remove_xps_queue(struct xps_dev_maps *dev_maps, 2661 struct xps_dev_maps *old_maps, int tci, u16 index) 2662 { 2663 struct xps_map *map = NULL; 2664 int pos; 2665 2666 map = xmap_dereference(dev_maps->attr_map[tci]); 2667 if (!map) 2668 return false; 2669 2670 for (pos = map->len; pos--;) { 2671 if (map->queues[pos] != index) 2672 continue; 2673 2674 if (map->len > 1) { 2675 map->queues[pos] = map->queues[--map->len]; 2676 break; 2677 } 2678 2679 if (old_maps) 2680 RCU_INIT_POINTER(old_maps->attr_map[tci], NULL); 2681 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL); 2682 kfree_rcu(map, rcu); 2683 return false; 2684 } 2685 2686 return true; 2687 } 2688 2689 static bool remove_xps_queue_cpu(struct net_device *dev, 2690 struct xps_dev_maps *dev_maps, 2691 int cpu, u16 offset, u16 count) 2692 { 2693 int num_tc = dev_maps->num_tc; 2694 bool active = false; 2695 int tci; 2696 2697 for (tci = cpu * num_tc; num_tc--; tci++) { 2698 int i, j; 2699 2700 for (i = count, j = offset; i--; j++) { 2701 if (!remove_xps_queue(dev_maps, NULL, tci, j)) 2702 break; 2703 } 2704 2705 active |= i < 0; 2706 } 2707 2708 return active; 2709 } 2710 2711 static void reset_xps_maps(struct net_device *dev, 2712 struct xps_dev_maps *dev_maps, 2713 enum xps_map_type type) 2714 { 2715 static_key_slow_dec_cpuslocked(&xps_needed); 2716 if (type == XPS_RXQS) 2717 static_key_slow_dec_cpuslocked(&xps_rxqs_needed); 2718 2719 RCU_INIT_POINTER(dev->xps_maps[type], NULL); 2720 2721 kfree_rcu(dev_maps, rcu); 2722 } 2723 2724 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type, 2725 u16 offset, u16 count) 2726 { 2727 struct xps_dev_maps *dev_maps; 2728 bool active = false; 2729 int i, j; 2730 2731 dev_maps = xmap_dereference(dev->xps_maps[type]); 2732 if (!dev_maps) 2733 return; 2734 2735 for (j = 0; j < dev_maps->nr_ids; j++) 2736 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count); 2737 if (!active) 2738 reset_xps_maps(dev, dev_maps, type); 2739 2740 if (type == XPS_CPUS) { 2741 for (i = offset + (count - 1); count--; i--) 2742 netdev_queue_numa_node_write( 2743 netdev_get_tx_queue(dev, i), NUMA_NO_NODE); 2744 } 2745 } 2746 2747 static void netif_reset_xps_queues(struct net_device *dev, u16 offset, 2748 u16 count) 2749 { 2750 if (!static_key_false(&xps_needed)) 2751 return; 2752 2753 cpus_read_lock(); 2754 mutex_lock(&xps_map_mutex); 2755 2756 if (static_key_false(&xps_rxqs_needed)) 2757 clean_xps_maps(dev, XPS_RXQS, offset, count); 2758 2759 clean_xps_maps(dev, XPS_CPUS, offset, count); 2760 2761 mutex_unlock(&xps_map_mutex); 2762 cpus_read_unlock(); 2763 } 2764 2765 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index) 2766 { 2767 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index); 2768 } 2769 2770 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index, 2771 u16 index, bool is_rxqs_map) 2772 { 2773 struct xps_map *new_map; 2774 int alloc_len = XPS_MIN_MAP_ALLOC; 2775 int i, pos; 2776 2777 for (pos = 0; map && pos < map->len; pos++) { 2778 if (map->queues[pos] != index) 2779 continue; 2780 return map; 2781 } 2782 2783 /* Need to add tx-queue to this CPU's/rx-queue's existing map */ 2784 if (map) { 2785 if (pos < map->alloc_len) 2786 return map; 2787 2788 alloc_len = map->alloc_len * 2; 2789 } 2790 2791 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's 2792 * map 2793 */ 2794 if (is_rxqs_map) 2795 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL); 2796 else 2797 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL, 2798 cpu_to_node(attr_index)); 2799 if (!new_map) 2800 return NULL; 2801 2802 for (i = 0; i < pos; i++) 2803 new_map->queues[i] = map->queues[i]; 2804 new_map->alloc_len = alloc_len; 2805 new_map->len = pos; 2806 2807 return new_map; 2808 } 2809 2810 /* Copy xps maps at a given index */ 2811 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps, 2812 struct xps_dev_maps *new_dev_maps, int index, 2813 int tc, bool skip_tc) 2814 { 2815 int i, tci = index * dev_maps->num_tc; 2816 struct xps_map *map; 2817 2818 /* copy maps belonging to foreign traffic classes */ 2819 for (i = 0; i < dev_maps->num_tc; i++, tci++) { 2820 if (i == tc && skip_tc) 2821 continue; 2822 2823 /* fill in the new device map from the old device map */ 2824 map = xmap_dereference(dev_maps->attr_map[tci]); 2825 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2826 } 2827 } 2828 2829 /* Must be called under cpus_read_lock */ 2830 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask, 2831 u16 index, enum xps_map_type type) 2832 { 2833 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL; 2834 const unsigned long *online_mask = NULL; 2835 bool active = false, copy = false; 2836 int i, j, tci, numa_node_id = -2; 2837 int maps_sz, num_tc = 1, tc = 0; 2838 struct xps_map *map, *new_map; 2839 unsigned int nr_ids; 2840 2841 WARN_ON_ONCE(index >= dev->num_tx_queues); 2842 2843 if (dev->num_tc) { 2844 /* Do not allow XPS on subordinate device directly */ 2845 num_tc = dev->num_tc; 2846 if (num_tc < 0) 2847 return -EINVAL; 2848 2849 /* If queue belongs to subordinate dev use its map */ 2850 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev; 2851 2852 tc = netdev_txq_to_tc(dev, index); 2853 if (tc < 0) 2854 return -EINVAL; 2855 } 2856 2857 mutex_lock(&xps_map_mutex); 2858 2859 dev_maps = xmap_dereference(dev->xps_maps[type]); 2860 if (type == XPS_RXQS) { 2861 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues); 2862 nr_ids = dev->num_rx_queues; 2863 } else { 2864 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc); 2865 if (num_possible_cpus() > 1) 2866 online_mask = cpumask_bits(cpu_online_mask); 2867 nr_ids = nr_cpu_ids; 2868 } 2869 2870 if (maps_sz < L1_CACHE_BYTES) 2871 maps_sz = L1_CACHE_BYTES; 2872 2873 /* The old dev_maps could be larger or smaller than the one we're 2874 * setting up now, as dev->num_tc or nr_ids could have been updated in 2875 * between. We could try to be smart, but let's be safe instead and only 2876 * copy foreign traffic classes if the two map sizes match. 2877 */ 2878 if (dev_maps && 2879 dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids) 2880 copy = true; 2881 2882 /* allocate memory for queue storage */ 2883 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids), 2884 j < nr_ids;) { 2885 if (!new_dev_maps) { 2886 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL); 2887 if (!new_dev_maps) { 2888 mutex_unlock(&xps_map_mutex); 2889 return -ENOMEM; 2890 } 2891 2892 new_dev_maps->nr_ids = nr_ids; 2893 new_dev_maps->num_tc = num_tc; 2894 } 2895 2896 tci = j * num_tc + tc; 2897 map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL; 2898 2899 map = expand_xps_map(map, j, index, type == XPS_RXQS); 2900 if (!map) 2901 goto error; 2902 2903 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2904 } 2905 2906 if (!new_dev_maps) 2907 goto out_no_new_maps; 2908 2909 if (!dev_maps) { 2910 /* Increment static keys at most once per type */ 2911 static_key_slow_inc_cpuslocked(&xps_needed); 2912 if (type == XPS_RXQS) 2913 static_key_slow_inc_cpuslocked(&xps_rxqs_needed); 2914 } 2915 2916 for (j = 0; j < nr_ids; j++) { 2917 bool skip_tc = false; 2918 2919 tci = j * num_tc + tc; 2920 if (netif_attr_test_mask(j, mask, nr_ids) && 2921 netif_attr_test_online(j, online_mask, nr_ids)) { 2922 /* add tx-queue to CPU/rx-queue maps */ 2923 int pos = 0; 2924 2925 skip_tc = true; 2926 2927 map = xmap_dereference(new_dev_maps->attr_map[tci]); 2928 while ((pos < map->len) && (map->queues[pos] != index)) 2929 pos++; 2930 2931 if (pos == map->len) 2932 map->queues[map->len++] = index; 2933 #ifdef CONFIG_NUMA 2934 if (type == XPS_CPUS) { 2935 if (numa_node_id == -2) 2936 numa_node_id = cpu_to_node(j); 2937 else if (numa_node_id != cpu_to_node(j)) 2938 numa_node_id = -1; 2939 } 2940 #endif 2941 } 2942 2943 if (copy) 2944 xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc, 2945 skip_tc); 2946 } 2947 2948 rcu_assign_pointer(dev->xps_maps[type], new_dev_maps); 2949 2950 /* Cleanup old maps */ 2951 if (!dev_maps) 2952 goto out_no_old_maps; 2953 2954 for (j = 0; j < dev_maps->nr_ids; j++) { 2955 for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) { 2956 map = xmap_dereference(dev_maps->attr_map[tci]); 2957 if (!map) 2958 continue; 2959 2960 if (copy) { 2961 new_map = xmap_dereference(new_dev_maps->attr_map[tci]); 2962 if (map == new_map) 2963 continue; 2964 } 2965 2966 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL); 2967 kfree_rcu(map, rcu); 2968 } 2969 } 2970 2971 old_dev_maps = dev_maps; 2972 2973 out_no_old_maps: 2974 dev_maps = new_dev_maps; 2975 active = true; 2976 2977 out_no_new_maps: 2978 if (type == XPS_CPUS) 2979 /* update Tx queue numa node */ 2980 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index), 2981 (numa_node_id >= 0) ? 2982 numa_node_id : NUMA_NO_NODE); 2983 2984 if (!dev_maps) 2985 goto out_no_maps; 2986 2987 /* removes tx-queue from unused CPUs/rx-queues */ 2988 for (j = 0; j < dev_maps->nr_ids; j++) { 2989 tci = j * dev_maps->num_tc; 2990 2991 for (i = 0; i < dev_maps->num_tc; i++, tci++) { 2992 if (i == tc && 2993 netif_attr_test_mask(j, mask, dev_maps->nr_ids) && 2994 netif_attr_test_online(j, online_mask, dev_maps->nr_ids)) 2995 continue; 2996 2997 active |= remove_xps_queue(dev_maps, 2998 copy ? old_dev_maps : NULL, 2999 tci, index); 3000 } 3001 } 3002 3003 if (old_dev_maps) 3004 kfree_rcu(old_dev_maps, rcu); 3005 3006 /* free map if not active */ 3007 if (!active) 3008 reset_xps_maps(dev, dev_maps, type); 3009 3010 out_no_maps: 3011 mutex_unlock(&xps_map_mutex); 3012 3013 return 0; 3014 error: 3015 /* remove any maps that we added */ 3016 for (j = 0; j < nr_ids; j++) { 3017 for (i = num_tc, tci = j * num_tc; i--; tci++) { 3018 new_map = xmap_dereference(new_dev_maps->attr_map[tci]); 3019 map = copy ? 3020 xmap_dereference(dev_maps->attr_map[tci]) : 3021 NULL; 3022 if (new_map && new_map != map) 3023 kfree(new_map); 3024 } 3025 } 3026 3027 mutex_unlock(&xps_map_mutex); 3028 3029 kfree(new_dev_maps); 3030 return -ENOMEM; 3031 } 3032 EXPORT_SYMBOL_GPL(__netif_set_xps_queue); 3033 3034 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 3035 u16 index) 3036 { 3037 int ret; 3038 3039 cpus_read_lock(); 3040 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS); 3041 cpus_read_unlock(); 3042 3043 return ret; 3044 } 3045 EXPORT_SYMBOL(netif_set_xps_queue); 3046 3047 #endif 3048 static void netdev_unbind_all_sb_channels(struct net_device *dev) 3049 { 3050 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues]; 3051 3052 /* Unbind any subordinate channels */ 3053 while (txq-- != &dev->_tx[0]) { 3054 if (txq->sb_dev) 3055 netdev_unbind_sb_channel(dev, txq->sb_dev); 3056 } 3057 } 3058 3059 void netdev_reset_tc(struct net_device *dev) 3060 { 3061 #ifdef CONFIG_XPS 3062 netif_reset_xps_queues_gt(dev, 0); 3063 #endif 3064 netdev_unbind_all_sb_channels(dev); 3065 3066 /* Reset TC configuration of device */ 3067 dev->num_tc = 0; 3068 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq)); 3069 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map)); 3070 } 3071 EXPORT_SYMBOL(netdev_reset_tc); 3072 3073 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset) 3074 { 3075 if (tc >= dev->num_tc) 3076 return -EINVAL; 3077 3078 #ifdef CONFIG_XPS 3079 netif_reset_xps_queues(dev, offset, count); 3080 #endif 3081 dev->tc_to_txq[tc].count = count; 3082 dev->tc_to_txq[tc].offset = offset; 3083 return 0; 3084 } 3085 EXPORT_SYMBOL(netdev_set_tc_queue); 3086 3087 int netdev_set_num_tc(struct net_device *dev, u8 num_tc) 3088 { 3089 if (num_tc > TC_MAX_QUEUE) 3090 return -EINVAL; 3091 3092 #ifdef CONFIG_XPS 3093 netif_reset_xps_queues_gt(dev, 0); 3094 #endif 3095 netdev_unbind_all_sb_channels(dev); 3096 3097 dev->num_tc = num_tc; 3098 return 0; 3099 } 3100 EXPORT_SYMBOL(netdev_set_num_tc); 3101 3102 void netdev_unbind_sb_channel(struct net_device *dev, 3103 struct net_device *sb_dev) 3104 { 3105 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues]; 3106 3107 #ifdef CONFIG_XPS 3108 netif_reset_xps_queues_gt(sb_dev, 0); 3109 #endif 3110 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq)); 3111 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map)); 3112 3113 while (txq-- != &dev->_tx[0]) { 3114 if (txq->sb_dev == sb_dev) 3115 txq->sb_dev = NULL; 3116 } 3117 } 3118 EXPORT_SYMBOL(netdev_unbind_sb_channel); 3119 3120 int netdev_bind_sb_channel_queue(struct net_device *dev, 3121 struct net_device *sb_dev, 3122 u8 tc, u16 count, u16 offset) 3123 { 3124 /* Make certain the sb_dev and dev are already configured */ 3125 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc) 3126 return -EINVAL; 3127 3128 /* We cannot hand out queues we don't have */ 3129 if ((offset + count) > dev->real_num_tx_queues) 3130 return -EINVAL; 3131 3132 /* Record the mapping */ 3133 sb_dev->tc_to_txq[tc].count = count; 3134 sb_dev->tc_to_txq[tc].offset = offset; 3135 3136 /* Provide a way for Tx queue to find the tc_to_txq map or 3137 * XPS map for itself. 3138 */ 3139 while (count--) 3140 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev; 3141 3142 return 0; 3143 } 3144 EXPORT_SYMBOL(netdev_bind_sb_channel_queue); 3145 3146 int netdev_set_sb_channel(struct net_device *dev, u16 channel) 3147 { 3148 /* Do not use a multiqueue device to represent a subordinate channel */ 3149 if (netif_is_multiqueue(dev)) 3150 return -ENODEV; 3151 3152 /* We allow channels 1 - 32767 to be used for subordinate channels. 3153 * Channel 0 is meant to be "native" mode and used only to represent 3154 * the main root device. We allow writing 0 to reset the device back 3155 * to normal mode after being used as a subordinate channel. 3156 */ 3157 if (channel > S16_MAX) 3158 return -EINVAL; 3159 3160 dev->num_tc = -channel; 3161 3162 return 0; 3163 } 3164 EXPORT_SYMBOL(netdev_set_sb_channel); 3165 3166 /* 3167 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 3168 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed. 3169 */ 3170 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 3171 { 3172 bool disabling; 3173 int rc; 3174 3175 disabling = txq < dev->real_num_tx_queues; 3176 3177 if (txq < 1 || txq > dev->num_tx_queues) 3178 return -EINVAL; 3179 3180 if (dev->reg_state == NETREG_REGISTERED || 3181 dev->reg_state == NETREG_UNREGISTERING) { 3182 netdev_ops_assert_locked(dev); 3183 3184 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 3185 txq); 3186 if (rc) 3187 return rc; 3188 3189 if (dev->num_tc) 3190 netif_setup_tc(dev, txq); 3191 3192 net_shaper_set_real_num_tx_queues(dev, txq); 3193 3194 dev_qdisc_change_real_num_tx(dev, txq); 3195 3196 dev->real_num_tx_queues = txq; 3197 3198 if (disabling) { 3199 synchronize_net(); 3200 qdisc_reset_all_tx_gt(dev, txq); 3201 #ifdef CONFIG_XPS 3202 netif_reset_xps_queues_gt(dev, txq); 3203 #endif 3204 } 3205 } else { 3206 dev->real_num_tx_queues = txq; 3207 } 3208 3209 return 0; 3210 } 3211 EXPORT_SYMBOL(netif_set_real_num_tx_queues); 3212 3213 /** 3214 * netif_set_real_num_rx_queues - set actual number of RX queues used 3215 * @dev: Network device 3216 * @rxq: Actual number of RX queues 3217 * 3218 * This must be called either with the rtnl_lock held or before 3219 * registration of the net device. Returns 0 on success, or a 3220 * negative error code. If called before registration, it always 3221 * succeeds. 3222 */ 3223 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 3224 { 3225 int rc; 3226 3227 if (rxq < 1 || rxq > dev->num_rx_queues) 3228 return -EINVAL; 3229 3230 if (dev->reg_state == NETREG_REGISTERED) { 3231 netdev_ops_assert_locked(dev); 3232 3233 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 3234 rxq); 3235 if (rc) 3236 return rc; 3237 } 3238 3239 dev->real_num_rx_queues = rxq; 3240 return 0; 3241 } 3242 EXPORT_SYMBOL(netif_set_real_num_rx_queues); 3243 3244 /** 3245 * netif_set_real_num_queues - set actual number of RX and TX queues used 3246 * @dev: Network device 3247 * @txq: Actual number of TX queues 3248 * @rxq: Actual number of RX queues 3249 * 3250 * Set the real number of both TX and RX queues. 3251 * Does nothing if the number of queues is already correct. 3252 */ 3253 int netif_set_real_num_queues(struct net_device *dev, 3254 unsigned int txq, unsigned int rxq) 3255 { 3256 unsigned int old_rxq = dev->real_num_rx_queues; 3257 int err; 3258 3259 if (txq < 1 || txq > dev->num_tx_queues || 3260 rxq < 1 || rxq > dev->num_rx_queues) 3261 return -EINVAL; 3262 3263 /* Start from increases, so the error path only does decreases - 3264 * decreases can't fail. 3265 */ 3266 if (rxq > dev->real_num_rx_queues) { 3267 err = netif_set_real_num_rx_queues(dev, rxq); 3268 if (err) 3269 return err; 3270 } 3271 if (txq > dev->real_num_tx_queues) { 3272 err = netif_set_real_num_tx_queues(dev, txq); 3273 if (err) 3274 goto undo_rx; 3275 } 3276 if (rxq < dev->real_num_rx_queues) 3277 WARN_ON(netif_set_real_num_rx_queues(dev, rxq)); 3278 if (txq < dev->real_num_tx_queues) 3279 WARN_ON(netif_set_real_num_tx_queues(dev, txq)); 3280 3281 return 0; 3282 undo_rx: 3283 WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq)); 3284 return err; 3285 } 3286 EXPORT_SYMBOL(netif_set_real_num_queues); 3287 3288 /** 3289 * netif_set_tso_max_size() - set the max size of TSO frames supported 3290 * @dev: netdev to update 3291 * @size: max skb->len of a TSO frame 3292 * 3293 * Set the limit on the size of TSO super-frames the device can handle. 3294 * Unless explicitly set the stack will assume the value of 3295 * %GSO_LEGACY_MAX_SIZE. 3296 */ 3297 void netif_set_tso_max_size(struct net_device *dev, unsigned int size) 3298 { 3299 dev->tso_max_size = min(GSO_MAX_SIZE, size); 3300 if (size < READ_ONCE(dev->gso_max_size)) 3301 netif_set_gso_max_size(dev, size); 3302 if (size < READ_ONCE(dev->gso_ipv4_max_size)) 3303 netif_set_gso_ipv4_max_size(dev, size); 3304 } 3305 EXPORT_SYMBOL(netif_set_tso_max_size); 3306 3307 /** 3308 * netif_set_tso_max_segs() - set the max number of segs supported for TSO 3309 * @dev: netdev to update 3310 * @segs: max number of TCP segments 3311 * 3312 * Set the limit on the number of TCP segments the device can generate from 3313 * a single TSO super-frame. 3314 * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS. 3315 */ 3316 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs) 3317 { 3318 dev->tso_max_segs = segs; 3319 if (segs < READ_ONCE(dev->gso_max_segs)) 3320 netif_set_gso_max_segs(dev, segs); 3321 } 3322 EXPORT_SYMBOL(netif_set_tso_max_segs); 3323 3324 /** 3325 * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper 3326 * @to: netdev to update 3327 * @from: netdev from which to copy the limits 3328 */ 3329 void netif_inherit_tso_max(struct net_device *to, const struct net_device *from) 3330 { 3331 netif_set_tso_max_size(to, from->tso_max_size); 3332 netif_set_tso_max_segs(to, from->tso_max_segs); 3333 } 3334 EXPORT_SYMBOL(netif_inherit_tso_max); 3335 3336 /** 3337 * netif_get_num_default_rss_queues - default number of RSS queues 3338 * 3339 * Default value is the number of physical cores if there are only 1 or 2, or 3340 * divided by 2 if there are more. 3341 */ 3342 int netif_get_num_default_rss_queues(void) 3343 { 3344 cpumask_var_t cpus; 3345 int cpu, count = 0; 3346 3347 if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL))) 3348 return 1; 3349 3350 cpumask_copy(cpus, cpu_online_mask); 3351 for_each_cpu(cpu, cpus) { 3352 ++count; 3353 cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu)); 3354 } 3355 free_cpumask_var(cpus); 3356 3357 return count > 2 ? DIV_ROUND_UP(count, 2) : count; 3358 } 3359 EXPORT_SYMBOL(netif_get_num_default_rss_queues); 3360 3361 static void __netif_reschedule(struct Qdisc *q) 3362 { 3363 struct softnet_data *sd; 3364 unsigned long flags; 3365 3366 local_irq_save(flags); 3367 sd = this_cpu_ptr(&softnet_data); 3368 q->next_sched = NULL; 3369 *sd->output_queue_tailp = q; 3370 sd->output_queue_tailp = &q->next_sched; 3371 raise_softirq_irqoff(NET_TX_SOFTIRQ); 3372 local_irq_restore(flags); 3373 } 3374 3375 void __netif_schedule(struct Qdisc *q) 3376 { 3377 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 3378 __netif_reschedule(q); 3379 } 3380 EXPORT_SYMBOL(__netif_schedule); 3381 3382 struct dev_kfree_skb_cb { 3383 enum skb_drop_reason reason; 3384 }; 3385 3386 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb) 3387 { 3388 return (struct dev_kfree_skb_cb *)skb->cb; 3389 } 3390 3391 void netif_schedule_queue(struct netdev_queue *txq) 3392 { 3393 rcu_read_lock(); 3394 if (!netif_xmit_stopped(txq)) { 3395 struct Qdisc *q = rcu_dereference(txq->qdisc); 3396 3397 __netif_schedule(q); 3398 } 3399 rcu_read_unlock(); 3400 } 3401 EXPORT_SYMBOL(netif_schedule_queue); 3402 3403 void netif_tx_wake_queue(struct netdev_queue *dev_queue) 3404 { 3405 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) { 3406 struct Qdisc *q; 3407 3408 rcu_read_lock(); 3409 q = rcu_dereference(dev_queue->qdisc); 3410 __netif_schedule(q); 3411 rcu_read_unlock(); 3412 } 3413 } 3414 EXPORT_SYMBOL(netif_tx_wake_queue); 3415 3416 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason) 3417 { 3418 unsigned long flags; 3419 3420 if (unlikely(!skb)) 3421 return; 3422 3423 if (likely(refcount_read(&skb->users) == 1)) { 3424 smp_rmb(); 3425 refcount_set(&skb->users, 0); 3426 } else if (likely(!refcount_dec_and_test(&skb->users))) { 3427 return; 3428 } 3429 get_kfree_skb_cb(skb)->reason = reason; 3430 local_irq_save(flags); 3431 skb->next = __this_cpu_read(softnet_data.completion_queue); 3432 __this_cpu_write(softnet_data.completion_queue, skb); 3433 raise_softirq_irqoff(NET_TX_SOFTIRQ); 3434 local_irq_restore(flags); 3435 } 3436 EXPORT_SYMBOL(dev_kfree_skb_irq_reason); 3437 3438 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason) 3439 { 3440 if (in_hardirq() || irqs_disabled()) 3441 dev_kfree_skb_irq_reason(skb, reason); 3442 else 3443 kfree_skb_reason(skb, reason); 3444 } 3445 EXPORT_SYMBOL(dev_kfree_skb_any_reason); 3446 3447 3448 /** 3449 * netif_device_detach - mark device as removed 3450 * @dev: network device 3451 * 3452 * Mark device as removed from system and therefore no longer available. 3453 */ 3454 void netif_device_detach(struct net_device *dev) 3455 { 3456 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 3457 netif_running(dev)) { 3458 netif_tx_stop_all_queues(dev); 3459 } 3460 } 3461 EXPORT_SYMBOL(netif_device_detach); 3462 3463 /** 3464 * netif_device_attach - mark device as attached 3465 * @dev: network device 3466 * 3467 * Mark device as attached from system and restart if needed. 3468 */ 3469 void netif_device_attach(struct net_device *dev) 3470 { 3471 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 3472 netif_running(dev)) { 3473 netif_tx_wake_all_queues(dev); 3474 netdev_watchdog_up(dev); 3475 } 3476 } 3477 EXPORT_SYMBOL(netif_device_attach); 3478 3479 /* 3480 * Returns a Tx hash based on the given packet descriptor a Tx queues' number 3481 * to be used as a distribution range. 3482 */ 3483 static u16 skb_tx_hash(const struct net_device *dev, 3484 const struct net_device *sb_dev, 3485 struct sk_buff *skb) 3486 { 3487 u32 hash; 3488 u16 qoffset = 0; 3489 u16 qcount = dev->real_num_tx_queues; 3490 3491 if (dev->num_tc) { 3492 u8 tc = netdev_get_prio_tc_map(dev, skb->priority); 3493 3494 qoffset = sb_dev->tc_to_txq[tc].offset; 3495 qcount = sb_dev->tc_to_txq[tc].count; 3496 if (unlikely(!qcount)) { 3497 net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n", 3498 sb_dev->name, qoffset, tc); 3499 qoffset = 0; 3500 qcount = dev->real_num_tx_queues; 3501 } 3502 } 3503 3504 if (skb_rx_queue_recorded(skb)) { 3505 DEBUG_NET_WARN_ON_ONCE(qcount == 0); 3506 hash = skb_get_rx_queue(skb); 3507 if (hash >= qoffset) 3508 hash -= qoffset; 3509 while (unlikely(hash >= qcount)) 3510 hash -= qcount; 3511 return hash + qoffset; 3512 } 3513 3514 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset; 3515 } 3516 3517 void skb_warn_bad_offload(const struct sk_buff *skb) 3518 { 3519 static const netdev_features_t null_features; 3520 struct net_device *dev = skb->dev; 3521 const char *name = ""; 3522 3523 if (!net_ratelimit()) 3524 return; 3525 3526 if (dev) { 3527 if (dev->dev.parent) 3528 name = dev_driver_string(dev->dev.parent); 3529 else 3530 name = netdev_name(dev); 3531 } 3532 skb_dump(KERN_WARNING, skb, false); 3533 WARN(1, "%s: caps=(%pNF, %pNF)\n", 3534 name, dev ? &dev->features : &null_features, 3535 skb->sk ? &skb->sk->sk_route_caps : &null_features); 3536 } 3537 3538 /* 3539 * Invalidate hardware checksum when packet is to be mangled, and 3540 * complete checksum manually on outgoing path. 3541 */ 3542 int skb_checksum_help(struct sk_buff *skb) 3543 { 3544 __wsum csum; 3545 int ret = 0, offset; 3546 3547 if (skb->ip_summed == CHECKSUM_COMPLETE) 3548 goto out_set_summed; 3549 3550 if (unlikely(skb_is_gso(skb))) { 3551 skb_warn_bad_offload(skb); 3552 return -EINVAL; 3553 } 3554 3555 if (!skb_frags_readable(skb)) { 3556 return -EFAULT; 3557 } 3558 3559 /* Before computing a checksum, we should make sure no frag could 3560 * be modified by an external entity : checksum could be wrong. 3561 */ 3562 if (skb_has_shared_frag(skb)) { 3563 ret = __skb_linearize(skb); 3564 if (ret) 3565 goto out; 3566 } 3567 3568 offset = skb_checksum_start_offset(skb); 3569 ret = -EINVAL; 3570 if (unlikely(offset >= skb_headlen(skb))) { 3571 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false); 3572 WARN_ONCE(true, "offset (%d) >= skb_headlen() (%u)\n", 3573 offset, skb_headlen(skb)); 3574 goto out; 3575 } 3576 csum = skb_checksum(skb, offset, skb->len - offset, 0); 3577 3578 offset += skb->csum_offset; 3579 if (unlikely(offset + sizeof(__sum16) > skb_headlen(skb))) { 3580 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false); 3581 WARN_ONCE(true, "offset+2 (%zu) > skb_headlen() (%u)\n", 3582 offset + sizeof(__sum16), skb_headlen(skb)); 3583 goto out; 3584 } 3585 ret = skb_ensure_writable(skb, offset + sizeof(__sum16)); 3586 if (ret) 3587 goto out; 3588 3589 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0; 3590 out_set_summed: 3591 skb->ip_summed = CHECKSUM_NONE; 3592 out: 3593 return ret; 3594 } 3595 EXPORT_SYMBOL(skb_checksum_help); 3596 3597 #ifdef CONFIG_NET_CRC32C 3598 int skb_crc32c_csum_help(struct sk_buff *skb) 3599 { 3600 u32 crc; 3601 int ret = 0, offset, start; 3602 3603 if (skb->ip_summed != CHECKSUM_PARTIAL) 3604 goto out; 3605 3606 if (unlikely(skb_is_gso(skb))) 3607 goto out; 3608 3609 /* Before computing a checksum, we should make sure no frag could 3610 * be modified by an external entity : checksum could be wrong. 3611 */ 3612 if (unlikely(skb_has_shared_frag(skb))) { 3613 ret = __skb_linearize(skb); 3614 if (ret) 3615 goto out; 3616 } 3617 start = skb_checksum_start_offset(skb); 3618 offset = start + offsetof(struct sctphdr, checksum); 3619 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) { 3620 ret = -EINVAL; 3621 goto out; 3622 } 3623 3624 ret = skb_ensure_writable(skb, offset + sizeof(__le32)); 3625 if (ret) 3626 goto out; 3627 3628 crc = ~skb_crc32c(skb, start, skb->len - start, ~0); 3629 *(__le32 *)(skb->data + offset) = cpu_to_le32(crc); 3630 skb_reset_csum_not_inet(skb); 3631 out: 3632 return ret; 3633 } 3634 EXPORT_SYMBOL(skb_crc32c_csum_help); 3635 #endif /* CONFIG_NET_CRC32C */ 3636 3637 __be16 skb_network_protocol(struct sk_buff *skb, int *depth) 3638 { 3639 __be16 type = skb->protocol; 3640 3641 /* Tunnel gso handlers can set protocol to ethernet. */ 3642 if (type == htons(ETH_P_TEB)) { 3643 struct ethhdr *eth; 3644 3645 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr)))) 3646 return 0; 3647 3648 eth = (struct ethhdr *)skb->data; 3649 type = eth->h_proto; 3650 } 3651 3652 return vlan_get_protocol_and_depth(skb, type, depth); 3653 } 3654 3655 3656 /* Take action when hardware reception checksum errors are detected. */ 3657 #ifdef CONFIG_BUG 3658 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb) 3659 { 3660 netdev_err(dev, "hw csum failure\n"); 3661 skb_dump(KERN_ERR, skb, true); 3662 dump_stack(); 3663 } 3664 3665 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb) 3666 { 3667 DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb); 3668 } 3669 EXPORT_SYMBOL(netdev_rx_csum_fault); 3670 #endif 3671 3672 /* XXX: check that highmem exists at all on the given machine. */ 3673 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 3674 { 3675 #ifdef CONFIG_HIGHMEM 3676 int i; 3677 3678 if (!(dev->features & NETIF_F_HIGHDMA)) { 3679 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3680 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3681 struct page *page = skb_frag_page(frag); 3682 3683 if (page && PageHighMem(page)) 3684 return 1; 3685 } 3686 } 3687 #endif 3688 return 0; 3689 } 3690 3691 /* If MPLS offload request, verify we are testing hardware MPLS features 3692 * instead of standard features for the netdev. 3693 */ 3694 #if IS_ENABLED(CONFIG_NET_MPLS_GSO) 3695 static netdev_features_t net_mpls_features(struct sk_buff *skb, 3696 netdev_features_t features, 3697 __be16 type) 3698 { 3699 if (eth_p_mpls(type)) 3700 features &= skb->dev->mpls_features; 3701 3702 return features; 3703 } 3704 #else 3705 static netdev_features_t net_mpls_features(struct sk_buff *skb, 3706 netdev_features_t features, 3707 __be16 type) 3708 { 3709 return features; 3710 } 3711 #endif 3712 3713 static netdev_features_t harmonize_features(struct sk_buff *skb, 3714 netdev_features_t features) 3715 { 3716 __be16 type; 3717 3718 type = skb_network_protocol(skb, NULL); 3719 features = net_mpls_features(skb, features, type); 3720 3721 if (skb->ip_summed != CHECKSUM_NONE && 3722 !can_checksum_protocol(features, type)) { 3723 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 3724 } 3725 if (illegal_highdma(skb->dev, skb)) 3726 features &= ~NETIF_F_SG; 3727 3728 return features; 3729 } 3730 3731 netdev_features_t passthru_features_check(struct sk_buff *skb, 3732 struct net_device *dev, 3733 netdev_features_t features) 3734 { 3735 return features; 3736 } 3737 EXPORT_SYMBOL(passthru_features_check); 3738 3739 static netdev_features_t dflt_features_check(struct sk_buff *skb, 3740 struct net_device *dev, 3741 netdev_features_t features) 3742 { 3743 return vlan_features_check(skb, features); 3744 } 3745 3746 static netdev_features_t gso_features_check(const struct sk_buff *skb, 3747 struct net_device *dev, 3748 netdev_features_t features) 3749 { 3750 u16 gso_segs = skb_shinfo(skb)->gso_segs; 3751 3752 if (gso_segs > READ_ONCE(dev->gso_max_segs)) 3753 return features & ~NETIF_F_GSO_MASK; 3754 3755 if (unlikely(skb->len >= netif_get_gso_max_size(dev, skb))) 3756 return features & ~NETIF_F_GSO_MASK; 3757 3758 if (!skb_shinfo(skb)->gso_type) { 3759 skb_warn_bad_offload(skb); 3760 return features & ~NETIF_F_GSO_MASK; 3761 } 3762 3763 /* Support for GSO partial features requires software 3764 * intervention before we can actually process the packets 3765 * so we need to strip support for any partial features now 3766 * and we can pull them back in after we have partially 3767 * segmented the frame. 3768 */ 3769 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL)) 3770 features &= ~dev->gso_partial_features; 3771 3772 /* Make sure to clear the IPv4 ID mangling feature if the 3773 * IPv4 header has the potential to be fragmented. 3774 */ 3775 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) { 3776 struct iphdr *iph = skb->encapsulation ? 3777 inner_ip_hdr(skb) : ip_hdr(skb); 3778 3779 if (!(iph->frag_off & htons(IP_DF))) 3780 features &= ~NETIF_F_TSO_MANGLEID; 3781 } 3782 3783 return features; 3784 } 3785 3786 netdev_features_t netif_skb_features(struct sk_buff *skb) 3787 { 3788 struct net_device *dev = skb->dev; 3789 netdev_features_t features = dev->features; 3790 3791 if (skb_is_gso(skb)) 3792 features = gso_features_check(skb, dev, features); 3793 3794 /* If encapsulation offload request, verify we are testing 3795 * hardware encapsulation features instead of standard 3796 * features for the netdev 3797 */ 3798 if (skb->encapsulation) 3799 features &= dev->hw_enc_features; 3800 3801 if (skb_vlan_tagged(skb)) 3802 features = netdev_intersect_features(features, 3803 dev->vlan_features | 3804 NETIF_F_HW_VLAN_CTAG_TX | 3805 NETIF_F_HW_VLAN_STAG_TX); 3806 3807 if (dev->netdev_ops->ndo_features_check) 3808 features &= dev->netdev_ops->ndo_features_check(skb, dev, 3809 features); 3810 else 3811 features &= dflt_features_check(skb, dev, features); 3812 3813 return harmonize_features(skb, features); 3814 } 3815 EXPORT_SYMBOL(netif_skb_features); 3816 3817 static int xmit_one(struct sk_buff *skb, struct net_device *dev, 3818 struct netdev_queue *txq, bool more) 3819 { 3820 unsigned int len; 3821 int rc; 3822 3823 if (dev_nit_active_rcu(dev)) 3824 dev_queue_xmit_nit(skb, dev); 3825 3826 len = skb->len; 3827 trace_net_dev_start_xmit(skb, dev); 3828 rc = netdev_start_xmit(skb, dev, txq, more); 3829 trace_net_dev_xmit(skb, rc, dev, len); 3830 3831 return rc; 3832 } 3833 3834 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev, 3835 struct netdev_queue *txq, int *ret) 3836 { 3837 struct sk_buff *skb = first; 3838 int rc = NETDEV_TX_OK; 3839 3840 while (skb) { 3841 struct sk_buff *next = skb->next; 3842 3843 skb_mark_not_on_list(skb); 3844 rc = xmit_one(skb, dev, txq, next != NULL); 3845 if (unlikely(!dev_xmit_complete(rc))) { 3846 skb->next = next; 3847 goto out; 3848 } 3849 3850 skb = next; 3851 if (netif_tx_queue_stopped(txq) && skb) { 3852 rc = NETDEV_TX_BUSY; 3853 break; 3854 } 3855 } 3856 3857 out: 3858 *ret = rc; 3859 return skb; 3860 } 3861 3862 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb, 3863 netdev_features_t features) 3864 { 3865 if (skb_vlan_tag_present(skb) && 3866 !vlan_hw_offload_capable(features, skb->vlan_proto)) 3867 skb = __vlan_hwaccel_push_inside(skb); 3868 return skb; 3869 } 3870 3871 int skb_csum_hwoffload_help(struct sk_buff *skb, 3872 const netdev_features_t features) 3873 { 3874 if (unlikely(skb_csum_is_sctp(skb))) 3875 return !!(features & NETIF_F_SCTP_CRC) ? 0 : 3876 skb_crc32c_csum_help(skb); 3877 3878 if (features & NETIF_F_HW_CSUM) 3879 return 0; 3880 3881 if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) { 3882 if (vlan_get_protocol(skb) == htons(ETH_P_IPV6) && 3883 skb_network_header_len(skb) != sizeof(struct ipv6hdr) && 3884 !ipv6_has_hopopt_jumbo(skb)) 3885 goto sw_checksum; 3886 3887 switch (skb->csum_offset) { 3888 case offsetof(struct tcphdr, check): 3889 case offsetof(struct udphdr, check): 3890 return 0; 3891 } 3892 } 3893 3894 sw_checksum: 3895 return skb_checksum_help(skb); 3896 } 3897 EXPORT_SYMBOL(skb_csum_hwoffload_help); 3898 3899 static struct sk_buff *validate_xmit_unreadable_skb(struct sk_buff *skb, 3900 struct net_device *dev) 3901 { 3902 struct skb_shared_info *shinfo; 3903 struct net_iov *niov; 3904 3905 if (likely(skb_frags_readable(skb))) 3906 goto out; 3907 3908 if (!dev->netmem_tx) 3909 goto out_free; 3910 3911 shinfo = skb_shinfo(skb); 3912 3913 if (shinfo->nr_frags > 0) { 3914 niov = netmem_to_net_iov(skb_frag_netmem(&shinfo->frags[0])); 3915 if (net_is_devmem_iov(niov) && 3916 net_devmem_iov_binding(niov)->dev != dev) 3917 goto out_free; 3918 } 3919 3920 out: 3921 return skb; 3922 3923 out_free: 3924 kfree_skb(skb); 3925 return NULL; 3926 } 3927 3928 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again) 3929 { 3930 netdev_features_t features; 3931 3932 skb = validate_xmit_unreadable_skb(skb, dev); 3933 if (unlikely(!skb)) 3934 goto out_null; 3935 3936 features = netif_skb_features(skb); 3937 skb = validate_xmit_vlan(skb, features); 3938 if (unlikely(!skb)) 3939 goto out_null; 3940 3941 skb = sk_validate_xmit_skb(skb, dev); 3942 if (unlikely(!skb)) 3943 goto out_null; 3944 3945 if (netif_needs_gso(skb, features)) { 3946 struct sk_buff *segs; 3947 3948 segs = skb_gso_segment(skb, features); 3949 if (IS_ERR(segs)) { 3950 goto out_kfree_skb; 3951 } else if (segs) { 3952 consume_skb(skb); 3953 skb = segs; 3954 } 3955 } else { 3956 if (skb_needs_linearize(skb, features) && 3957 __skb_linearize(skb)) 3958 goto out_kfree_skb; 3959 3960 /* If packet is not checksummed and device does not 3961 * support checksumming for this protocol, complete 3962 * checksumming here. 3963 */ 3964 if (skb->ip_summed == CHECKSUM_PARTIAL) { 3965 if (skb->encapsulation) 3966 skb_set_inner_transport_header(skb, 3967 skb_checksum_start_offset(skb)); 3968 else 3969 skb_set_transport_header(skb, 3970 skb_checksum_start_offset(skb)); 3971 if (skb_csum_hwoffload_help(skb, features)) 3972 goto out_kfree_skb; 3973 } 3974 } 3975 3976 skb = validate_xmit_xfrm(skb, features, again); 3977 3978 return skb; 3979 3980 out_kfree_skb: 3981 kfree_skb(skb); 3982 out_null: 3983 dev_core_stats_tx_dropped_inc(dev); 3984 return NULL; 3985 } 3986 3987 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again) 3988 { 3989 struct sk_buff *next, *head = NULL, *tail; 3990 3991 for (; skb != NULL; skb = next) { 3992 next = skb->next; 3993 skb_mark_not_on_list(skb); 3994 3995 /* in case skb won't be segmented, point to itself */ 3996 skb->prev = skb; 3997 3998 skb = validate_xmit_skb(skb, dev, again); 3999 if (!skb) 4000 continue; 4001 4002 if (!head) 4003 head = skb; 4004 else 4005 tail->next = skb; 4006 /* If skb was segmented, skb->prev points to 4007 * the last segment. If not, it still contains skb. 4008 */ 4009 tail = skb->prev; 4010 } 4011 return head; 4012 } 4013 EXPORT_SYMBOL_GPL(validate_xmit_skb_list); 4014 4015 static void qdisc_pkt_len_init(struct sk_buff *skb) 4016 { 4017 const struct skb_shared_info *shinfo = skb_shinfo(skb); 4018 4019 qdisc_skb_cb(skb)->pkt_len = skb->len; 4020 4021 /* To get more precise estimation of bytes sent on wire, 4022 * we add to pkt_len the headers size of all segments 4023 */ 4024 if (shinfo->gso_size && skb_transport_header_was_set(skb)) { 4025 u16 gso_segs = shinfo->gso_segs; 4026 unsigned int hdr_len; 4027 4028 /* mac layer + network layer */ 4029 hdr_len = skb_transport_offset(skb); 4030 4031 /* + transport layer */ 4032 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) { 4033 const struct tcphdr *th; 4034 struct tcphdr _tcphdr; 4035 4036 th = skb_header_pointer(skb, hdr_len, 4037 sizeof(_tcphdr), &_tcphdr); 4038 if (likely(th)) 4039 hdr_len += __tcp_hdrlen(th); 4040 } else if (shinfo->gso_type & SKB_GSO_UDP_L4) { 4041 struct udphdr _udphdr; 4042 4043 if (skb_header_pointer(skb, hdr_len, 4044 sizeof(_udphdr), &_udphdr)) 4045 hdr_len += sizeof(struct udphdr); 4046 } 4047 4048 if (unlikely(shinfo->gso_type & SKB_GSO_DODGY)) { 4049 int payload = skb->len - hdr_len; 4050 4051 /* Malicious packet. */ 4052 if (payload <= 0) 4053 return; 4054 gso_segs = DIV_ROUND_UP(payload, shinfo->gso_size); 4055 } 4056 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len; 4057 } 4058 } 4059 4060 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q, 4061 struct sk_buff **to_free, 4062 struct netdev_queue *txq) 4063 { 4064 int rc; 4065 4066 rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK; 4067 if (rc == NET_XMIT_SUCCESS) 4068 trace_qdisc_enqueue(q, txq, skb); 4069 return rc; 4070 } 4071 4072 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 4073 struct net_device *dev, 4074 struct netdev_queue *txq) 4075 { 4076 spinlock_t *root_lock = qdisc_lock(q); 4077 struct sk_buff *to_free = NULL; 4078 bool contended; 4079 int rc; 4080 4081 qdisc_calculate_pkt_len(skb, q); 4082 4083 tcf_set_drop_reason(skb, SKB_DROP_REASON_QDISC_DROP); 4084 4085 if (q->flags & TCQ_F_NOLOCK) { 4086 if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) && 4087 qdisc_run_begin(q)) { 4088 /* Retest nolock_qdisc_is_empty() within the protection 4089 * of q->seqlock to protect from racing with requeuing. 4090 */ 4091 if (unlikely(!nolock_qdisc_is_empty(q))) { 4092 rc = dev_qdisc_enqueue(skb, q, &to_free, txq); 4093 __qdisc_run(q); 4094 qdisc_run_end(q); 4095 4096 goto no_lock_out; 4097 } 4098 4099 qdisc_bstats_cpu_update(q, skb); 4100 if (sch_direct_xmit(skb, q, dev, txq, NULL, true) && 4101 !nolock_qdisc_is_empty(q)) 4102 __qdisc_run(q); 4103 4104 qdisc_run_end(q); 4105 return NET_XMIT_SUCCESS; 4106 } 4107 4108 rc = dev_qdisc_enqueue(skb, q, &to_free, txq); 4109 qdisc_run(q); 4110 4111 no_lock_out: 4112 if (unlikely(to_free)) 4113 kfree_skb_list_reason(to_free, 4114 tcf_get_drop_reason(to_free)); 4115 return rc; 4116 } 4117 4118 if (unlikely(READ_ONCE(q->owner) == smp_processor_id())) { 4119 kfree_skb_reason(skb, SKB_DROP_REASON_TC_RECLASSIFY_LOOP); 4120 return NET_XMIT_DROP; 4121 } 4122 /* 4123 * Heuristic to force contended enqueues to serialize on a 4124 * separate lock before trying to get qdisc main lock. 4125 * This permits qdisc->running owner to get the lock more 4126 * often and dequeue packets faster. 4127 * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit 4128 * and then other tasks will only enqueue packets. The packets will be 4129 * sent after the qdisc owner is scheduled again. To prevent this 4130 * scenario the task always serialize on the lock. 4131 */ 4132 contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT); 4133 if (unlikely(contended)) 4134 spin_lock(&q->busylock); 4135 4136 spin_lock(root_lock); 4137 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 4138 __qdisc_drop(skb, &to_free); 4139 rc = NET_XMIT_DROP; 4140 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 4141 qdisc_run_begin(q)) { 4142 /* 4143 * This is a work-conserving queue; there are no old skbs 4144 * waiting to be sent out; and the qdisc is not running - 4145 * xmit the skb directly. 4146 */ 4147 4148 qdisc_bstats_update(q, skb); 4149 4150 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) { 4151 if (unlikely(contended)) { 4152 spin_unlock(&q->busylock); 4153 contended = false; 4154 } 4155 __qdisc_run(q); 4156 } 4157 4158 qdisc_run_end(q); 4159 rc = NET_XMIT_SUCCESS; 4160 } else { 4161 WRITE_ONCE(q->owner, smp_processor_id()); 4162 rc = dev_qdisc_enqueue(skb, q, &to_free, txq); 4163 WRITE_ONCE(q->owner, -1); 4164 if (qdisc_run_begin(q)) { 4165 if (unlikely(contended)) { 4166 spin_unlock(&q->busylock); 4167 contended = false; 4168 } 4169 __qdisc_run(q); 4170 qdisc_run_end(q); 4171 } 4172 } 4173 spin_unlock(root_lock); 4174 if (unlikely(to_free)) 4175 kfree_skb_list_reason(to_free, 4176 tcf_get_drop_reason(to_free)); 4177 if (unlikely(contended)) 4178 spin_unlock(&q->busylock); 4179 return rc; 4180 } 4181 4182 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 4183 static void skb_update_prio(struct sk_buff *skb) 4184 { 4185 const struct netprio_map *map; 4186 const struct sock *sk; 4187 unsigned int prioidx; 4188 4189 if (skb->priority) 4190 return; 4191 map = rcu_dereference_bh(skb->dev->priomap); 4192 if (!map) 4193 return; 4194 sk = skb_to_full_sk(skb); 4195 if (!sk) 4196 return; 4197 4198 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data); 4199 4200 if (prioidx < map->priomap_len) 4201 skb->priority = map->priomap[prioidx]; 4202 } 4203 #else 4204 #define skb_update_prio(skb) 4205 #endif 4206 4207 /** 4208 * dev_loopback_xmit - loop back @skb 4209 * @net: network namespace this loopback is happening in 4210 * @sk: sk needed to be a netfilter okfn 4211 * @skb: buffer to transmit 4212 */ 4213 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb) 4214 { 4215 skb_reset_mac_header(skb); 4216 __skb_pull(skb, skb_network_offset(skb)); 4217 skb->pkt_type = PACKET_LOOPBACK; 4218 if (skb->ip_summed == CHECKSUM_NONE) 4219 skb->ip_summed = CHECKSUM_UNNECESSARY; 4220 DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb)); 4221 skb_dst_force(skb); 4222 netif_rx(skb); 4223 return 0; 4224 } 4225 EXPORT_SYMBOL(dev_loopback_xmit); 4226 4227 #ifdef CONFIG_NET_EGRESS 4228 static struct netdev_queue * 4229 netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb) 4230 { 4231 int qm = skb_get_queue_mapping(skb); 4232 4233 return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm)); 4234 } 4235 4236 #ifndef CONFIG_PREEMPT_RT 4237 static bool netdev_xmit_txqueue_skipped(void) 4238 { 4239 return __this_cpu_read(softnet_data.xmit.skip_txqueue); 4240 } 4241 4242 void netdev_xmit_skip_txqueue(bool skip) 4243 { 4244 __this_cpu_write(softnet_data.xmit.skip_txqueue, skip); 4245 } 4246 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue); 4247 4248 #else 4249 static bool netdev_xmit_txqueue_skipped(void) 4250 { 4251 return current->net_xmit.skip_txqueue; 4252 } 4253 4254 void netdev_xmit_skip_txqueue(bool skip) 4255 { 4256 current->net_xmit.skip_txqueue = skip; 4257 } 4258 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue); 4259 #endif 4260 #endif /* CONFIG_NET_EGRESS */ 4261 4262 #ifdef CONFIG_NET_XGRESS 4263 static int tc_run(struct tcx_entry *entry, struct sk_buff *skb, 4264 enum skb_drop_reason *drop_reason) 4265 { 4266 int ret = TC_ACT_UNSPEC; 4267 #ifdef CONFIG_NET_CLS_ACT 4268 struct mini_Qdisc *miniq = rcu_dereference_bh(entry->miniq); 4269 struct tcf_result res; 4270 4271 if (!miniq) 4272 return ret; 4273 4274 /* Global bypass */ 4275 if (!static_branch_likely(&tcf_sw_enabled_key)) 4276 return ret; 4277 4278 /* Block-wise bypass */ 4279 if (tcf_block_bypass_sw(miniq->block)) 4280 return ret; 4281 4282 tc_skb_cb(skb)->mru = 0; 4283 tc_skb_cb(skb)->post_ct = false; 4284 tcf_set_drop_reason(skb, *drop_reason); 4285 4286 mini_qdisc_bstats_cpu_update(miniq, skb); 4287 ret = tcf_classify(skb, miniq->block, miniq->filter_list, &res, false); 4288 /* Only tcf related quirks below. */ 4289 switch (ret) { 4290 case TC_ACT_SHOT: 4291 *drop_reason = tcf_get_drop_reason(skb); 4292 mini_qdisc_qstats_cpu_drop(miniq); 4293 break; 4294 case TC_ACT_OK: 4295 case TC_ACT_RECLASSIFY: 4296 skb->tc_index = TC_H_MIN(res.classid); 4297 break; 4298 } 4299 #endif /* CONFIG_NET_CLS_ACT */ 4300 return ret; 4301 } 4302 4303 static DEFINE_STATIC_KEY_FALSE(tcx_needed_key); 4304 4305 void tcx_inc(void) 4306 { 4307 static_branch_inc(&tcx_needed_key); 4308 } 4309 4310 void tcx_dec(void) 4311 { 4312 static_branch_dec(&tcx_needed_key); 4313 } 4314 4315 static __always_inline enum tcx_action_base 4316 tcx_run(const struct bpf_mprog_entry *entry, struct sk_buff *skb, 4317 const bool needs_mac) 4318 { 4319 const struct bpf_mprog_fp *fp; 4320 const struct bpf_prog *prog; 4321 int ret = TCX_NEXT; 4322 4323 if (needs_mac) 4324 __skb_push(skb, skb->mac_len); 4325 bpf_mprog_foreach_prog(entry, fp, prog) { 4326 bpf_compute_data_pointers(skb); 4327 ret = bpf_prog_run(prog, skb); 4328 if (ret != TCX_NEXT) 4329 break; 4330 } 4331 if (needs_mac) 4332 __skb_pull(skb, skb->mac_len); 4333 return tcx_action_code(skb, ret); 4334 } 4335 4336 static __always_inline struct sk_buff * 4337 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret, 4338 struct net_device *orig_dev, bool *another) 4339 { 4340 struct bpf_mprog_entry *entry = rcu_dereference_bh(skb->dev->tcx_ingress); 4341 enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_INGRESS; 4342 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; 4343 int sch_ret; 4344 4345 if (!entry) 4346 return skb; 4347 4348 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx); 4349 if (*pt_prev) { 4350 *ret = deliver_skb(skb, *pt_prev, orig_dev); 4351 *pt_prev = NULL; 4352 } 4353 4354 qdisc_skb_cb(skb)->pkt_len = skb->len; 4355 tcx_set_ingress(skb, true); 4356 4357 if (static_branch_unlikely(&tcx_needed_key)) { 4358 sch_ret = tcx_run(entry, skb, true); 4359 if (sch_ret != TC_ACT_UNSPEC) 4360 goto ingress_verdict; 4361 } 4362 sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason); 4363 ingress_verdict: 4364 switch (sch_ret) { 4365 case TC_ACT_REDIRECT: 4366 /* skb_mac_header check was done by BPF, so we can safely 4367 * push the L2 header back before redirecting to another 4368 * netdev. 4369 */ 4370 __skb_push(skb, skb->mac_len); 4371 if (skb_do_redirect(skb) == -EAGAIN) { 4372 __skb_pull(skb, skb->mac_len); 4373 *another = true; 4374 break; 4375 } 4376 *ret = NET_RX_SUCCESS; 4377 bpf_net_ctx_clear(bpf_net_ctx); 4378 return NULL; 4379 case TC_ACT_SHOT: 4380 kfree_skb_reason(skb, drop_reason); 4381 *ret = NET_RX_DROP; 4382 bpf_net_ctx_clear(bpf_net_ctx); 4383 return NULL; 4384 /* used by tc_run */ 4385 case TC_ACT_STOLEN: 4386 case TC_ACT_QUEUED: 4387 case TC_ACT_TRAP: 4388 consume_skb(skb); 4389 fallthrough; 4390 case TC_ACT_CONSUMED: 4391 *ret = NET_RX_SUCCESS; 4392 bpf_net_ctx_clear(bpf_net_ctx); 4393 return NULL; 4394 } 4395 bpf_net_ctx_clear(bpf_net_ctx); 4396 4397 return skb; 4398 } 4399 4400 static __always_inline struct sk_buff * 4401 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev) 4402 { 4403 struct bpf_mprog_entry *entry = rcu_dereference_bh(dev->tcx_egress); 4404 enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_EGRESS; 4405 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; 4406 int sch_ret; 4407 4408 if (!entry) 4409 return skb; 4410 4411 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx); 4412 4413 /* qdisc_skb_cb(skb)->pkt_len & tcx_set_ingress() was 4414 * already set by the caller. 4415 */ 4416 if (static_branch_unlikely(&tcx_needed_key)) { 4417 sch_ret = tcx_run(entry, skb, false); 4418 if (sch_ret != TC_ACT_UNSPEC) 4419 goto egress_verdict; 4420 } 4421 sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason); 4422 egress_verdict: 4423 switch (sch_ret) { 4424 case TC_ACT_REDIRECT: 4425 /* No need to push/pop skb's mac_header here on egress! */ 4426 skb_do_redirect(skb); 4427 *ret = NET_XMIT_SUCCESS; 4428 bpf_net_ctx_clear(bpf_net_ctx); 4429 return NULL; 4430 case TC_ACT_SHOT: 4431 kfree_skb_reason(skb, drop_reason); 4432 *ret = NET_XMIT_DROP; 4433 bpf_net_ctx_clear(bpf_net_ctx); 4434 return NULL; 4435 /* used by tc_run */ 4436 case TC_ACT_STOLEN: 4437 case TC_ACT_QUEUED: 4438 case TC_ACT_TRAP: 4439 consume_skb(skb); 4440 fallthrough; 4441 case TC_ACT_CONSUMED: 4442 *ret = NET_XMIT_SUCCESS; 4443 bpf_net_ctx_clear(bpf_net_ctx); 4444 return NULL; 4445 } 4446 bpf_net_ctx_clear(bpf_net_ctx); 4447 4448 return skb; 4449 } 4450 #else 4451 static __always_inline struct sk_buff * 4452 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret, 4453 struct net_device *orig_dev, bool *another) 4454 { 4455 return skb; 4456 } 4457 4458 static __always_inline struct sk_buff * 4459 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev) 4460 { 4461 return skb; 4462 } 4463 #endif /* CONFIG_NET_XGRESS */ 4464 4465 #ifdef CONFIG_XPS 4466 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb, 4467 struct xps_dev_maps *dev_maps, unsigned int tci) 4468 { 4469 int tc = netdev_get_prio_tc_map(dev, skb->priority); 4470 struct xps_map *map; 4471 int queue_index = -1; 4472 4473 if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids) 4474 return queue_index; 4475 4476 tci *= dev_maps->num_tc; 4477 tci += tc; 4478 4479 map = rcu_dereference(dev_maps->attr_map[tci]); 4480 if (map) { 4481 if (map->len == 1) 4482 queue_index = map->queues[0]; 4483 else 4484 queue_index = map->queues[reciprocal_scale( 4485 skb_get_hash(skb), map->len)]; 4486 if (unlikely(queue_index >= dev->real_num_tx_queues)) 4487 queue_index = -1; 4488 } 4489 return queue_index; 4490 } 4491 #endif 4492 4493 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev, 4494 struct sk_buff *skb) 4495 { 4496 #ifdef CONFIG_XPS 4497 struct xps_dev_maps *dev_maps; 4498 struct sock *sk = skb->sk; 4499 int queue_index = -1; 4500 4501 if (!static_key_false(&xps_needed)) 4502 return -1; 4503 4504 rcu_read_lock(); 4505 if (!static_key_false(&xps_rxqs_needed)) 4506 goto get_cpus_map; 4507 4508 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]); 4509 if (dev_maps) { 4510 int tci = sk_rx_queue_get(sk); 4511 4512 if (tci >= 0) 4513 queue_index = __get_xps_queue_idx(dev, skb, dev_maps, 4514 tci); 4515 } 4516 4517 get_cpus_map: 4518 if (queue_index < 0) { 4519 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]); 4520 if (dev_maps) { 4521 unsigned int tci = skb->sender_cpu - 1; 4522 4523 queue_index = __get_xps_queue_idx(dev, skb, dev_maps, 4524 tci); 4525 } 4526 } 4527 rcu_read_unlock(); 4528 4529 return queue_index; 4530 #else 4531 return -1; 4532 #endif 4533 } 4534 4535 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb, 4536 struct net_device *sb_dev) 4537 { 4538 return 0; 4539 } 4540 EXPORT_SYMBOL(dev_pick_tx_zero); 4541 4542 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb, 4543 struct net_device *sb_dev) 4544 { 4545 struct sock *sk = skb->sk; 4546 int queue_index = sk_tx_queue_get(sk); 4547 4548 sb_dev = sb_dev ? : dev; 4549 4550 if (queue_index < 0 || skb->ooo_okay || 4551 queue_index >= dev->real_num_tx_queues) { 4552 int new_index = get_xps_queue(dev, sb_dev, skb); 4553 4554 if (new_index < 0) 4555 new_index = skb_tx_hash(dev, sb_dev, skb); 4556 4557 if (queue_index != new_index && sk && 4558 sk_fullsock(sk) && 4559 rcu_access_pointer(sk->sk_dst_cache)) 4560 sk_tx_queue_set(sk, new_index); 4561 4562 queue_index = new_index; 4563 } 4564 4565 return queue_index; 4566 } 4567 EXPORT_SYMBOL(netdev_pick_tx); 4568 4569 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev, 4570 struct sk_buff *skb, 4571 struct net_device *sb_dev) 4572 { 4573 int queue_index = 0; 4574 4575 #ifdef CONFIG_XPS 4576 u32 sender_cpu = skb->sender_cpu - 1; 4577 4578 if (sender_cpu >= (u32)NR_CPUS) 4579 skb->sender_cpu = raw_smp_processor_id() + 1; 4580 #endif 4581 4582 if (dev->real_num_tx_queues != 1) { 4583 const struct net_device_ops *ops = dev->netdev_ops; 4584 4585 if (ops->ndo_select_queue) 4586 queue_index = ops->ndo_select_queue(dev, skb, sb_dev); 4587 else 4588 queue_index = netdev_pick_tx(dev, skb, sb_dev); 4589 4590 queue_index = netdev_cap_txqueue(dev, queue_index); 4591 } 4592 4593 skb_set_queue_mapping(skb, queue_index); 4594 return netdev_get_tx_queue(dev, queue_index); 4595 } 4596 4597 /** 4598 * __dev_queue_xmit() - transmit a buffer 4599 * @skb: buffer to transmit 4600 * @sb_dev: suboordinate device used for L2 forwarding offload 4601 * 4602 * Queue a buffer for transmission to a network device. The caller must 4603 * have set the device and priority and built the buffer before calling 4604 * this function. The function can be called from an interrupt. 4605 * 4606 * When calling this method, interrupts MUST be enabled. This is because 4607 * the BH enable code must have IRQs enabled so that it will not deadlock. 4608 * 4609 * Regardless of the return value, the skb is consumed, so it is currently 4610 * difficult to retry a send to this method. (You can bump the ref count 4611 * before sending to hold a reference for retry if you are careful.) 4612 * 4613 * Return: 4614 * * 0 - buffer successfully transmitted 4615 * * positive qdisc return code - NET_XMIT_DROP etc. 4616 * * negative errno - other errors 4617 */ 4618 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev) 4619 { 4620 struct net_device *dev = skb->dev; 4621 struct netdev_queue *txq = NULL; 4622 struct Qdisc *q; 4623 int rc = -ENOMEM; 4624 bool again = false; 4625 4626 skb_reset_mac_header(skb); 4627 skb_assert_len(skb); 4628 4629 if (unlikely(skb_shinfo(skb)->tx_flags & 4630 (SKBTX_SCHED_TSTAMP | SKBTX_BPF))) 4631 __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED); 4632 4633 /* Disable soft irqs for various locks below. Also 4634 * stops preemption for RCU. 4635 */ 4636 rcu_read_lock_bh(); 4637 4638 skb_update_prio(skb); 4639 4640 qdisc_pkt_len_init(skb); 4641 tcx_set_ingress(skb, false); 4642 #ifdef CONFIG_NET_EGRESS 4643 if (static_branch_unlikely(&egress_needed_key)) { 4644 if (nf_hook_egress_active()) { 4645 skb = nf_hook_egress(skb, &rc, dev); 4646 if (!skb) 4647 goto out; 4648 } 4649 4650 netdev_xmit_skip_txqueue(false); 4651 4652 nf_skip_egress(skb, true); 4653 skb = sch_handle_egress(skb, &rc, dev); 4654 if (!skb) 4655 goto out; 4656 nf_skip_egress(skb, false); 4657 4658 if (netdev_xmit_txqueue_skipped()) 4659 txq = netdev_tx_queue_mapping(dev, skb); 4660 } 4661 #endif 4662 /* If device/qdisc don't need skb->dst, release it right now while 4663 * its hot in this cpu cache. 4664 */ 4665 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 4666 skb_dst_drop(skb); 4667 else 4668 skb_dst_force(skb); 4669 4670 if (!txq) 4671 txq = netdev_core_pick_tx(dev, skb, sb_dev); 4672 4673 q = rcu_dereference_bh(txq->qdisc); 4674 4675 trace_net_dev_queue(skb); 4676 if (q->enqueue) { 4677 rc = __dev_xmit_skb(skb, q, dev, txq); 4678 goto out; 4679 } 4680 4681 /* The device has no queue. Common case for software devices: 4682 * loopback, all the sorts of tunnels... 4683 4684 * Really, it is unlikely that netif_tx_lock protection is necessary 4685 * here. (f.e. loopback and IP tunnels are clean ignoring statistics 4686 * counters.) 4687 * However, it is possible, that they rely on protection 4688 * made by us here. 4689 4690 * Check this and shot the lock. It is not prone from deadlocks. 4691 *Either shot noqueue qdisc, it is even simpler 8) 4692 */ 4693 if (dev->flags & IFF_UP) { 4694 int cpu = smp_processor_id(); /* ok because BHs are off */ 4695 4696 /* Other cpus might concurrently change txq->xmit_lock_owner 4697 * to -1 or to their cpu id, but not to our id. 4698 */ 4699 if (READ_ONCE(txq->xmit_lock_owner) != cpu) { 4700 if (dev_xmit_recursion()) 4701 goto recursion_alert; 4702 4703 skb = validate_xmit_skb(skb, dev, &again); 4704 if (!skb) 4705 goto out; 4706 4707 HARD_TX_LOCK(dev, txq, cpu); 4708 4709 if (!netif_xmit_stopped(txq)) { 4710 dev_xmit_recursion_inc(); 4711 skb = dev_hard_start_xmit(skb, dev, txq, &rc); 4712 dev_xmit_recursion_dec(); 4713 if (dev_xmit_complete(rc)) { 4714 HARD_TX_UNLOCK(dev, txq); 4715 goto out; 4716 } 4717 } 4718 HARD_TX_UNLOCK(dev, txq); 4719 net_crit_ratelimited("Virtual device %s asks to queue packet!\n", 4720 dev->name); 4721 } else { 4722 /* Recursion is detected! It is possible, 4723 * unfortunately 4724 */ 4725 recursion_alert: 4726 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n", 4727 dev->name); 4728 } 4729 } 4730 4731 rc = -ENETDOWN; 4732 rcu_read_unlock_bh(); 4733 4734 dev_core_stats_tx_dropped_inc(dev); 4735 kfree_skb_list(skb); 4736 return rc; 4737 out: 4738 rcu_read_unlock_bh(); 4739 return rc; 4740 } 4741 EXPORT_SYMBOL(__dev_queue_xmit); 4742 4743 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id) 4744 { 4745 struct net_device *dev = skb->dev; 4746 struct sk_buff *orig_skb = skb; 4747 struct netdev_queue *txq; 4748 int ret = NETDEV_TX_BUSY; 4749 bool again = false; 4750 4751 if (unlikely(!netif_running(dev) || 4752 !netif_carrier_ok(dev))) 4753 goto drop; 4754 4755 skb = validate_xmit_skb_list(skb, dev, &again); 4756 if (skb != orig_skb) 4757 goto drop; 4758 4759 skb_set_queue_mapping(skb, queue_id); 4760 txq = skb_get_tx_queue(dev, skb); 4761 4762 local_bh_disable(); 4763 4764 dev_xmit_recursion_inc(); 4765 HARD_TX_LOCK(dev, txq, smp_processor_id()); 4766 if (!netif_xmit_frozen_or_drv_stopped(txq)) 4767 ret = netdev_start_xmit(skb, dev, txq, false); 4768 HARD_TX_UNLOCK(dev, txq); 4769 dev_xmit_recursion_dec(); 4770 4771 local_bh_enable(); 4772 return ret; 4773 drop: 4774 dev_core_stats_tx_dropped_inc(dev); 4775 kfree_skb_list(skb); 4776 return NET_XMIT_DROP; 4777 } 4778 EXPORT_SYMBOL(__dev_direct_xmit); 4779 4780 /************************************************************************* 4781 * Receiver routines 4782 *************************************************************************/ 4783 static DEFINE_PER_CPU(struct task_struct *, backlog_napi); 4784 4785 int weight_p __read_mostly = 64; /* old backlog weight */ 4786 int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */ 4787 int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */ 4788 4789 /* Called with irq disabled */ 4790 static inline void ____napi_schedule(struct softnet_data *sd, 4791 struct napi_struct *napi) 4792 { 4793 struct task_struct *thread; 4794 4795 lockdep_assert_irqs_disabled(); 4796 4797 if (test_bit(NAPI_STATE_THREADED, &napi->state)) { 4798 /* Paired with smp_mb__before_atomic() in 4799 * napi_enable()/dev_set_threaded(). 4800 * Use READ_ONCE() to guarantee a complete 4801 * read on napi->thread. Only call 4802 * wake_up_process() when it's not NULL. 4803 */ 4804 thread = READ_ONCE(napi->thread); 4805 if (thread) { 4806 if (use_backlog_threads() && thread == raw_cpu_read(backlog_napi)) 4807 goto use_local_napi; 4808 4809 set_bit(NAPI_STATE_SCHED_THREADED, &napi->state); 4810 wake_up_process(thread); 4811 return; 4812 } 4813 } 4814 4815 use_local_napi: 4816 DEBUG_NET_WARN_ON_ONCE(!list_empty(&napi->poll_list)); 4817 list_add_tail(&napi->poll_list, &sd->poll_list); 4818 WRITE_ONCE(napi->list_owner, smp_processor_id()); 4819 /* If not called from net_rx_action() 4820 * we have to raise NET_RX_SOFTIRQ. 4821 */ 4822 if (!sd->in_net_rx_action) 4823 raise_softirq_irqoff(NET_RX_SOFTIRQ); 4824 } 4825 4826 #ifdef CONFIG_RPS 4827 4828 struct static_key_false rps_needed __read_mostly; 4829 EXPORT_SYMBOL(rps_needed); 4830 struct static_key_false rfs_needed __read_mostly; 4831 EXPORT_SYMBOL(rfs_needed); 4832 4833 static u32 rfs_slot(u32 hash, const struct rps_dev_flow_table *flow_table) 4834 { 4835 return hash_32(hash, flow_table->log); 4836 } 4837 4838 static struct rps_dev_flow * 4839 set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 4840 struct rps_dev_flow *rflow, u16 next_cpu) 4841 { 4842 if (next_cpu < nr_cpu_ids) { 4843 u32 head; 4844 #ifdef CONFIG_RFS_ACCEL 4845 struct netdev_rx_queue *rxqueue; 4846 struct rps_dev_flow_table *flow_table; 4847 struct rps_dev_flow *old_rflow; 4848 u16 rxq_index; 4849 u32 flow_id; 4850 int rc; 4851 4852 /* Should we steer this flow to a different hardware queue? */ 4853 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 4854 !(dev->features & NETIF_F_NTUPLE)) 4855 goto out; 4856 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 4857 if (rxq_index == skb_get_rx_queue(skb)) 4858 goto out; 4859 4860 rxqueue = dev->_rx + rxq_index; 4861 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4862 if (!flow_table) 4863 goto out; 4864 flow_id = rfs_slot(skb_get_hash(skb), flow_table); 4865 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 4866 rxq_index, flow_id); 4867 if (rc < 0) 4868 goto out; 4869 old_rflow = rflow; 4870 rflow = &flow_table->flows[flow_id]; 4871 WRITE_ONCE(rflow->filter, rc); 4872 if (old_rflow->filter == rc) 4873 WRITE_ONCE(old_rflow->filter, RPS_NO_FILTER); 4874 out: 4875 #endif 4876 head = READ_ONCE(per_cpu(softnet_data, next_cpu).input_queue_head); 4877 rps_input_queue_tail_save(&rflow->last_qtail, head); 4878 } 4879 4880 WRITE_ONCE(rflow->cpu, next_cpu); 4881 return rflow; 4882 } 4883 4884 /* 4885 * get_rps_cpu is called from netif_receive_skb and returns the target 4886 * CPU from the RPS map of the receiving queue for a given skb. 4887 * rcu_read_lock must be held on entry. 4888 */ 4889 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 4890 struct rps_dev_flow **rflowp) 4891 { 4892 const struct rps_sock_flow_table *sock_flow_table; 4893 struct netdev_rx_queue *rxqueue = dev->_rx; 4894 struct rps_dev_flow_table *flow_table; 4895 struct rps_map *map; 4896 int cpu = -1; 4897 u32 tcpu; 4898 u32 hash; 4899 4900 if (skb_rx_queue_recorded(skb)) { 4901 u16 index = skb_get_rx_queue(skb); 4902 4903 if (unlikely(index >= dev->real_num_rx_queues)) { 4904 WARN_ONCE(dev->real_num_rx_queues > 1, 4905 "%s received packet on queue %u, but number " 4906 "of RX queues is %u\n", 4907 dev->name, index, dev->real_num_rx_queues); 4908 goto done; 4909 } 4910 rxqueue += index; 4911 } 4912 4913 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */ 4914 4915 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4916 map = rcu_dereference(rxqueue->rps_map); 4917 if (!flow_table && !map) 4918 goto done; 4919 4920 skb_reset_network_header(skb); 4921 hash = skb_get_hash(skb); 4922 if (!hash) 4923 goto done; 4924 4925 sock_flow_table = rcu_dereference(net_hotdata.rps_sock_flow_table); 4926 if (flow_table && sock_flow_table) { 4927 struct rps_dev_flow *rflow; 4928 u32 next_cpu; 4929 u32 ident; 4930 4931 /* First check into global flow table if there is a match. 4932 * This READ_ONCE() pairs with WRITE_ONCE() from rps_record_sock_flow(). 4933 */ 4934 ident = READ_ONCE(sock_flow_table->ents[hash & sock_flow_table->mask]); 4935 if ((ident ^ hash) & ~net_hotdata.rps_cpu_mask) 4936 goto try_rps; 4937 4938 next_cpu = ident & net_hotdata.rps_cpu_mask; 4939 4940 /* OK, now we know there is a match, 4941 * we can look at the local (per receive queue) flow table 4942 */ 4943 rflow = &flow_table->flows[rfs_slot(hash, flow_table)]; 4944 tcpu = rflow->cpu; 4945 4946 /* 4947 * If the desired CPU (where last recvmsg was done) is 4948 * different from current CPU (one in the rx-queue flow 4949 * table entry), switch if one of the following holds: 4950 * - Current CPU is unset (>= nr_cpu_ids). 4951 * - Current CPU is offline. 4952 * - The current CPU's queue tail has advanced beyond the 4953 * last packet that was enqueued using this table entry. 4954 * This guarantees that all previous packets for the flow 4955 * have been dequeued, thus preserving in order delivery. 4956 */ 4957 if (unlikely(tcpu != next_cpu) && 4958 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) || 4959 ((int)(READ_ONCE(per_cpu(softnet_data, tcpu).input_queue_head) - 4960 rflow->last_qtail)) >= 0)) { 4961 tcpu = next_cpu; 4962 rflow = set_rps_cpu(dev, skb, rflow, next_cpu); 4963 } 4964 4965 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) { 4966 *rflowp = rflow; 4967 cpu = tcpu; 4968 goto done; 4969 } 4970 } 4971 4972 try_rps: 4973 4974 if (map) { 4975 tcpu = map->cpus[reciprocal_scale(hash, map->len)]; 4976 if (cpu_online(tcpu)) { 4977 cpu = tcpu; 4978 goto done; 4979 } 4980 } 4981 4982 done: 4983 return cpu; 4984 } 4985 4986 #ifdef CONFIG_RFS_ACCEL 4987 4988 /** 4989 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 4990 * @dev: Device on which the filter was set 4991 * @rxq_index: RX queue index 4992 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 4993 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 4994 * 4995 * Drivers that implement ndo_rx_flow_steer() should periodically call 4996 * this function for each installed filter and remove the filters for 4997 * which it returns %true. 4998 */ 4999 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 5000 u32 flow_id, u16 filter_id) 5001 { 5002 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 5003 struct rps_dev_flow_table *flow_table; 5004 struct rps_dev_flow *rflow; 5005 bool expire = true; 5006 unsigned int cpu; 5007 5008 rcu_read_lock(); 5009 flow_table = rcu_dereference(rxqueue->rps_flow_table); 5010 if (flow_table && flow_id < (1UL << flow_table->log)) { 5011 rflow = &flow_table->flows[flow_id]; 5012 cpu = READ_ONCE(rflow->cpu); 5013 if (READ_ONCE(rflow->filter) == filter_id && cpu < nr_cpu_ids && 5014 ((int)(READ_ONCE(per_cpu(softnet_data, cpu).input_queue_head) - 5015 READ_ONCE(rflow->last_qtail)) < 5016 (int)(10 << flow_table->log))) 5017 expire = false; 5018 } 5019 rcu_read_unlock(); 5020 return expire; 5021 } 5022 EXPORT_SYMBOL(rps_may_expire_flow); 5023 5024 #endif /* CONFIG_RFS_ACCEL */ 5025 5026 /* Called from hardirq (IPI) context */ 5027 static void rps_trigger_softirq(void *data) 5028 { 5029 struct softnet_data *sd = data; 5030 5031 ____napi_schedule(sd, &sd->backlog); 5032 /* Pairs with READ_ONCE() in softnet_seq_show() */ 5033 WRITE_ONCE(sd->received_rps, sd->received_rps + 1); 5034 } 5035 5036 #endif /* CONFIG_RPS */ 5037 5038 /* Called from hardirq (IPI) context */ 5039 static void trigger_rx_softirq(void *data) 5040 { 5041 struct softnet_data *sd = data; 5042 5043 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 5044 smp_store_release(&sd->defer_ipi_scheduled, 0); 5045 } 5046 5047 /* 5048 * After we queued a packet into sd->input_pkt_queue, 5049 * we need to make sure this queue is serviced soon. 5050 * 5051 * - If this is another cpu queue, link it to our rps_ipi_list, 5052 * and make sure we will process rps_ipi_list from net_rx_action(). 5053 * 5054 * - If this is our own queue, NAPI schedule our backlog. 5055 * Note that this also raises NET_RX_SOFTIRQ. 5056 */ 5057 static void napi_schedule_rps(struct softnet_data *sd) 5058 { 5059 struct softnet_data *mysd = this_cpu_ptr(&softnet_data); 5060 5061 #ifdef CONFIG_RPS 5062 if (sd != mysd) { 5063 if (use_backlog_threads()) { 5064 __napi_schedule_irqoff(&sd->backlog); 5065 return; 5066 } 5067 5068 sd->rps_ipi_next = mysd->rps_ipi_list; 5069 mysd->rps_ipi_list = sd; 5070 5071 /* If not called from net_rx_action() or napi_threaded_poll() 5072 * we have to raise NET_RX_SOFTIRQ. 5073 */ 5074 if (!mysd->in_net_rx_action && !mysd->in_napi_threaded_poll) 5075 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 5076 return; 5077 } 5078 #endif /* CONFIG_RPS */ 5079 __napi_schedule_irqoff(&mysd->backlog); 5080 } 5081 5082 void kick_defer_list_purge(struct softnet_data *sd, unsigned int cpu) 5083 { 5084 unsigned long flags; 5085 5086 if (use_backlog_threads()) { 5087 backlog_lock_irq_save(sd, &flags); 5088 5089 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) 5090 __napi_schedule_irqoff(&sd->backlog); 5091 5092 backlog_unlock_irq_restore(sd, &flags); 5093 5094 } else if (!cmpxchg(&sd->defer_ipi_scheduled, 0, 1)) { 5095 smp_call_function_single_async(cpu, &sd->defer_csd); 5096 } 5097 } 5098 5099 #ifdef CONFIG_NET_FLOW_LIMIT 5100 int netdev_flow_limit_table_len __read_mostly = (1 << 12); 5101 #endif 5102 5103 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen) 5104 { 5105 #ifdef CONFIG_NET_FLOW_LIMIT 5106 struct sd_flow_limit *fl; 5107 struct softnet_data *sd; 5108 unsigned int old_flow, new_flow; 5109 5110 if (qlen < (READ_ONCE(net_hotdata.max_backlog) >> 1)) 5111 return false; 5112 5113 sd = this_cpu_ptr(&softnet_data); 5114 5115 rcu_read_lock(); 5116 fl = rcu_dereference(sd->flow_limit); 5117 if (fl) { 5118 new_flow = hash_32(skb_get_hash(skb), fl->log_buckets); 5119 old_flow = fl->history[fl->history_head]; 5120 fl->history[fl->history_head] = new_flow; 5121 5122 fl->history_head++; 5123 fl->history_head &= FLOW_LIMIT_HISTORY - 1; 5124 5125 if (likely(fl->buckets[old_flow])) 5126 fl->buckets[old_flow]--; 5127 5128 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) { 5129 /* Pairs with READ_ONCE() in softnet_seq_show() */ 5130 WRITE_ONCE(fl->count, fl->count + 1); 5131 rcu_read_unlock(); 5132 return true; 5133 } 5134 } 5135 rcu_read_unlock(); 5136 #endif 5137 return false; 5138 } 5139 5140 /* 5141 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 5142 * queue (may be a remote CPU queue). 5143 */ 5144 static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 5145 unsigned int *qtail) 5146 { 5147 enum skb_drop_reason reason; 5148 struct softnet_data *sd; 5149 unsigned long flags; 5150 unsigned int qlen; 5151 int max_backlog; 5152 u32 tail; 5153 5154 reason = SKB_DROP_REASON_DEV_READY; 5155 if (!netif_running(skb->dev)) 5156 goto bad_dev; 5157 5158 reason = SKB_DROP_REASON_CPU_BACKLOG; 5159 sd = &per_cpu(softnet_data, cpu); 5160 5161 qlen = skb_queue_len_lockless(&sd->input_pkt_queue); 5162 max_backlog = READ_ONCE(net_hotdata.max_backlog); 5163 if (unlikely(qlen > max_backlog)) 5164 goto cpu_backlog_drop; 5165 backlog_lock_irq_save(sd, &flags); 5166 qlen = skb_queue_len(&sd->input_pkt_queue); 5167 if (qlen <= max_backlog && !skb_flow_limit(skb, qlen)) { 5168 if (!qlen) { 5169 /* Schedule NAPI for backlog device. We can use 5170 * non atomic operation as we own the queue lock. 5171 */ 5172 if (!__test_and_set_bit(NAPI_STATE_SCHED, 5173 &sd->backlog.state)) 5174 napi_schedule_rps(sd); 5175 } 5176 __skb_queue_tail(&sd->input_pkt_queue, skb); 5177 tail = rps_input_queue_tail_incr(sd); 5178 backlog_unlock_irq_restore(sd, &flags); 5179 5180 /* save the tail outside of the critical section */ 5181 rps_input_queue_tail_save(qtail, tail); 5182 return NET_RX_SUCCESS; 5183 } 5184 5185 backlog_unlock_irq_restore(sd, &flags); 5186 5187 cpu_backlog_drop: 5188 atomic_inc(&sd->dropped); 5189 bad_dev: 5190 dev_core_stats_rx_dropped_inc(skb->dev); 5191 kfree_skb_reason(skb, reason); 5192 return NET_RX_DROP; 5193 } 5194 5195 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb) 5196 { 5197 struct net_device *dev = skb->dev; 5198 struct netdev_rx_queue *rxqueue; 5199 5200 rxqueue = dev->_rx; 5201 5202 if (skb_rx_queue_recorded(skb)) { 5203 u16 index = skb_get_rx_queue(skb); 5204 5205 if (unlikely(index >= dev->real_num_rx_queues)) { 5206 WARN_ONCE(dev->real_num_rx_queues > 1, 5207 "%s received packet on queue %u, but number " 5208 "of RX queues is %u\n", 5209 dev->name, index, dev->real_num_rx_queues); 5210 5211 return rxqueue; /* Return first rxqueue */ 5212 } 5213 rxqueue += index; 5214 } 5215 return rxqueue; 5216 } 5217 5218 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp, 5219 const struct bpf_prog *xdp_prog) 5220 { 5221 void *orig_data, *orig_data_end, *hard_start; 5222 struct netdev_rx_queue *rxqueue; 5223 bool orig_bcast, orig_host; 5224 u32 mac_len, frame_sz; 5225 __be16 orig_eth_type; 5226 struct ethhdr *eth; 5227 u32 metalen, act; 5228 int off; 5229 5230 /* The XDP program wants to see the packet starting at the MAC 5231 * header. 5232 */ 5233 mac_len = skb->data - skb_mac_header(skb); 5234 hard_start = skb->data - skb_headroom(skb); 5235 5236 /* SKB "head" area always have tailroom for skb_shared_info */ 5237 frame_sz = (void *)skb_end_pointer(skb) - hard_start; 5238 frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 5239 5240 rxqueue = netif_get_rxqueue(skb); 5241 xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq); 5242 xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len, 5243 skb_headlen(skb) + mac_len, true); 5244 if (skb_is_nonlinear(skb)) { 5245 skb_shinfo(skb)->xdp_frags_size = skb->data_len; 5246 xdp_buff_set_frags_flag(xdp); 5247 } else { 5248 xdp_buff_clear_frags_flag(xdp); 5249 } 5250 5251 orig_data_end = xdp->data_end; 5252 orig_data = xdp->data; 5253 eth = (struct ethhdr *)xdp->data; 5254 orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr); 5255 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest); 5256 orig_eth_type = eth->h_proto; 5257 5258 act = bpf_prog_run_xdp(xdp_prog, xdp); 5259 5260 /* check if bpf_xdp_adjust_head was used */ 5261 off = xdp->data - orig_data; 5262 if (off) { 5263 if (off > 0) 5264 __skb_pull(skb, off); 5265 else if (off < 0) 5266 __skb_push(skb, -off); 5267 5268 skb->mac_header += off; 5269 skb_reset_network_header(skb); 5270 } 5271 5272 /* check if bpf_xdp_adjust_tail was used */ 5273 off = xdp->data_end - orig_data_end; 5274 if (off != 0) { 5275 skb_set_tail_pointer(skb, xdp->data_end - xdp->data); 5276 skb->len += off; /* positive on grow, negative on shrink */ 5277 } 5278 5279 /* XDP frag metadata (e.g. nr_frags) are updated in eBPF helpers 5280 * (e.g. bpf_xdp_adjust_tail), we need to update data_len here. 5281 */ 5282 if (xdp_buff_has_frags(xdp)) 5283 skb->data_len = skb_shinfo(skb)->xdp_frags_size; 5284 else 5285 skb->data_len = 0; 5286 5287 /* check if XDP changed eth hdr such SKB needs update */ 5288 eth = (struct ethhdr *)xdp->data; 5289 if ((orig_eth_type != eth->h_proto) || 5290 (orig_host != ether_addr_equal_64bits(eth->h_dest, 5291 skb->dev->dev_addr)) || 5292 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) { 5293 __skb_push(skb, ETH_HLEN); 5294 skb->pkt_type = PACKET_HOST; 5295 skb->protocol = eth_type_trans(skb, skb->dev); 5296 } 5297 5298 /* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull 5299 * before calling us again on redirect path. We do not call do_redirect 5300 * as we leave that up to the caller. 5301 * 5302 * Caller is responsible for managing lifetime of skb (i.e. calling 5303 * kfree_skb in response to actions it cannot handle/XDP_DROP). 5304 */ 5305 switch (act) { 5306 case XDP_REDIRECT: 5307 case XDP_TX: 5308 __skb_push(skb, mac_len); 5309 break; 5310 case XDP_PASS: 5311 metalen = xdp->data - xdp->data_meta; 5312 if (metalen) 5313 skb_metadata_set(skb, metalen); 5314 break; 5315 } 5316 5317 return act; 5318 } 5319 5320 static int 5321 netif_skb_check_for_xdp(struct sk_buff **pskb, const struct bpf_prog *prog) 5322 { 5323 struct sk_buff *skb = *pskb; 5324 int err, hroom, troom; 5325 5326 local_lock_nested_bh(&system_page_pool.bh_lock); 5327 err = skb_cow_data_for_xdp(this_cpu_read(system_page_pool.pool), pskb, prog); 5328 local_unlock_nested_bh(&system_page_pool.bh_lock); 5329 if (!err) 5330 return 0; 5331 5332 /* In case we have to go down the path and also linearize, 5333 * then lets do the pskb_expand_head() work just once here. 5334 */ 5335 hroom = XDP_PACKET_HEADROOM - skb_headroom(skb); 5336 troom = skb->tail + skb->data_len - skb->end; 5337 err = pskb_expand_head(skb, 5338 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0, 5339 troom > 0 ? troom + 128 : 0, GFP_ATOMIC); 5340 if (err) 5341 return err; 5342 5343 return skb_linearize(skb); 5344 } 5345 5346 static u32 netif_receive_generic_xdp(struct sk_buff **pskb, 5347 struct xdp_buff *xdp, 5348 const struct bpf_prog *xdp_prog) 5349 { 5350 struct sk_buff *skb = *pskb; 5351 u32 mac_len, act = XDP_DROP; 5352 5353 /* Reinjected packets coming from act_mirred or similar should 5354 * not get XDP generic processing. 5355 */ 5356 if (skb_is_redirected(skb)) 5357 return XDP_PASS; 5358 5359 /* XDP packets must have sufficient headroom of XDP_PACKET_HEADROOM 5360 * bytes. This is the guarantee that also native XDP provides, 5361 * thus we need to do it here as well. 5362 */ 5363 mac_len = skb->data - skb_mac_header(skb); 5364 __skb_push(skb, mac_len); 5365 5366 if (skb_cloned(skb) || skb_is_nonlinear(skb) || 5367 skb_headroom(skb) < XDP_PACKET_HEADROOM) { 5368 if (netif_skb_check_for_xdp(pskb, xdp_prog)) 5369 goto do_drop; 5370 } 5371 5372 __skb_pull(*pskb, mac_len); 5373 5374 act = bpf_prog_run_generic_xdp(*pskb, xdp, xdp_prog); 5375 switch (act) { 5376 case XDP_REDIRECT: 5377 case XDP_TX: 5378 case XDP_PASS: 5379 break; 5380 default: 5381 bpf_warn_invalid_xdp_action((*pskb)->dev, xdp_prog, act); 5382 fallthrough; 5383 case XDP_ABORTED: 5384 trace_xdp_exception((*pskb)->dev, xdp_prog, act); 5385 fallthrough; 5386 case XDP_DROP: 5387 do_drop: 5388 kfree_skb(*pskb); 5389 break; 5390 } 5391 5392 return act; 5393 } 5394 5395 /* When doing generic XDP we have to bypass the qdisc layer and the 5396 * network taps in order to match in-driver-XDP behavior. This also means 5397 * that XDP packets are able to starve other packets going through a qdisc, 5398 * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX 5399 * queues, so they do not have this starvation issue. 5400 */ 5401 void generic_xdp_tx(struct sk_buff *skb, const struct bpf_prog *xdp_prog) 5402 { 5403 struct net_device *dev = skb->dev; 5404 struct netdev_queue *txq; 5405 bool free_skb = true; 5406 int cpu, rc; 5407 5408 txq = netdev_core_pick_tx(dev, skb, NULL); 5409 cpu = smp_processor_id(); 5410 HARD_TX_LOCK(dev, txq, cpu); 5411 if (!netif_xmit_frozen_or_drv_stopped(txq)) { 5412 rc = netdev_start_xmit(skb, dev, txq, 0); 5413 if (dev_xmit_complete(rc)) 5414 free_skb = false; 5415 } 5416 HARD_TX_UNLOCK(dev, txq); 5417 if (free_skb) { 5418 trace_xdp_exception(dev, xdp_prog, XDP_TX); 5419 dev_core_stats_tx_dropped_inc(dev); 5420 kfree_skb(skb); 5421 } 5422 } 5423 5424 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key); 5425 5426 int do_xdp_generic(const struct bpf_prog *xdp_prog, struct sk_buff **pskb) 5427 { 5428 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; 5429 5430 if (xdp_prog) { 5431 struct xdp_buff xdp; 5432 u32 act; 5433 int err; 5434 5435 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx); 5436 act = netif_receive_generic_xdp(pskb, &xdp, xdp_prog); 5437 if (act != XDP_PASS) { 5438 switch (act) { 5439 case XDP_REDIRECT: 5440 err = xdp_do_generic_redirect((*pskb)->dev, *pskb, 5441 &xdp, xdp_prog); 5442 if (err) 5443 goto out_redir; 5444 break; 5445 case XDP_TX: 5446 generic_xdp_tx(*pskb, xdp_prog); 5447 break; 5448 } 5449 bpf_net_ctx_clear(bpf_net_ctx); 5450 return XDP_DROP; 5451 } 5452 bpf_net_ctx_clear(bpf_net_ctx); 5453 } 5454 return XDP_PASS; 5455 out_redir: 5456 bpf_net_ctx_clear(bpf_net_ctx); 5457 kfree_skb_reason(*pskb, SKB_DROP_REASON_XDP); 5458 return XDP_DROP; 5459 } 5460 EXPORT_SYMBOL_GPL(do_xdp_generic); 5461 5462 static int netif_rx_internal(struct sk_buff *skb) 5463 { 5464 int ret; 5465 5466 net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb); 5467 5468 trace_netif_rx(skb); 5469 5470 #ifdef CONFIG_RPS 5471 if (static_branch_unlikely(&rps_needed)) { 5472 struct rps_dev_flow voidflow, *rflow = &voidflow; 5473 int cpu; 5474 5475 rcu_read_lock(); 5476 5477 cpu = get_rps_cpu(skb->dev, skb, &rflow); 5478 if (cpu < 0) 5479 cpu = smp_processor_id(); 5480 5481 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 5482 5483 rcu_read_unlock(); 5484 } else 5485 #endif 5486 { 5487 unsigned int qtail; 5488 5489 ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail); 5490 } 5491 return ret; 5492 } 5493 5494 /** 5495 * __netif_rx - Slightly optimized version of netif_rx 5496 * @skb: buffer to post 5497 * 5498 * This behaves as netif_rx except that it does not disable bottom halves. 5499 * As a result this function may only be invoked from the interrupt context 5500 * (either hard or soft interrupt). 5501 */ 5502 int __netif_rx(struct sk_buff *skb) 5503 { 5504 int ret; 5505 5506 lockdep_assert_once(hardirq_count() | softirq_count()); 5507 5508 trace_netif_rx_entry(skb); 5509 ret = netif_rx_internal(skb); 5510 trace_netif_rx_exit(ret); 5511 return ret; 5512 } 5513 EXPORT_SYMBOL(__netif_rx); 5514 5515 /** 5516 * netif_rx - post buffer to the network code 5517 * @skb: buffer to post 5518 * 5519 * This function receives a packet from a device driver and queues it for 5520 * the upper (protocol) levels to process via the backlog NAPI device. It 5521 * always succeeds. The buffer may be dropped during processing for 5522 * congestion control or by the protocol layers. 5523 * The network buffer is passed via the backlog NAPI device. Modern NIC 5524 * driver should use NAPI and GRO. 5525 * This function can used from interrupt and from process context. The 5526 * caller from process context must not disable interrupts before invoking 5527 * this function. 5528 * 5529 * return values: 5530 * NET_RX_SUCCESS (no congestion) 5531 * NET_RX_DROP (packet was dropped) 5532 * 5533 */ 5534 int netif_rx(struct sk_buff *skb) 5535 { 5536 bool need_bh_off = !(hardirq_count() | softirq_count()); 5537 int ret; 5538 5539 if (need_bh_off) 5540 local_bh_disable(); 5541 trace_netif_rx_entry(skb); 5542 ret = netif_rx_internal(skb); 5543 trace_netif_rx_exit(ret); 5544 if (need_bh_off) 5545 local_bh_enable(); 5546 return ret; 5547 } 5548 EXPORT_SYMBOL(netif_rx); 5549 5550 static __latent_entropy void net_tx_action(void) 5551 { 5552 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 5553 5554 if (sd->completion_queue) { 5555 struct sk_buff *clist; 5556 5557 local_irq_disable(); 5558 clist = sd->completion_queue; 5559 sd->completion_queue = NULL; 5560 local_irq_enable(); 5561 5562 while (clist) { 5563 struct sk_buff *skb = clist; 5564 5565 clist = clist->next; 5566 5567 WARN_ON(refcount_read(&skb->users)); 5568 if (likely(get_kfree_skb_cb(skb)->reason == SKB_CONSUMED)) 5569 trace_consume_skb(skb, net_tx_action); 5570 else 5571 trace_kfree_skb(skb, net_tx_action, 5572 get_kfree_skb_cb(skb)->reason, NULL); 5573 5574 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) 5575 __kfree_skb(skb); 5576 else 5577 __napi_kfree_skb(skb, 5578 get_kfree_skb_cb(skb)->reason); 5579 } 5580 } 5581 5582 if (sd->output_queue) { 5583 struct Qdisc *head; 5584 5585 local_irq_disable(); 5586 head = sd->output_queue; 5587 sd->output_queue = NULL; 5588 sd->output_queue_tailp = &sd->output_queue; 5589 local_irq_enable(); 5590 5591 rcu_read_lock(); 5592 5593 while (head) { 5594 struct Qdisc *q = head; 5595 spinlock_t *root_lock = NULL; 5596 5597 head = head->next_sched; 5598 5599 /* We need to make sure head->next_sched is read 5600 * before clearing __QDISC_STATE_SCHED 5601 */ 5602 smp_mb__before_atomic(); 5603 5604 if (!(q->flags & TCQ_F_NOLOCK)) { 5605 root_lock = qdisc_lock(q); 5606 spin_lock(root_lock); 5607 } else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, 5608 &q->state))) { 5609 /* There is a synchronize_net() between 5610 * STATE_DEACTIVATED flag being set and 5611 * qdisc_reset()/some_qdisc_is_busy() in 5612 * dev_deactivate(), so we can safely bail out 5613 * early here to avoid data race between 5614 * qdisc_deactivate() and some_qdisc_is_busy() 5615 * for lockless qdisc. 5616 */ 5617 clear_bit(__QDISC_STATE_SCHED, &q->state); 5618 continue; 5619 } 5620 5621 clear_bit(__QDISC_STATE_SCHED, &q->state); 5622 qdisc_run(q); 5623 if (root_lock) 5624 spin_unlock(root_lock); 5625 } 5626 5627 rcu_read_unlock(); 5628 } 5629 5630 xfrm_dev_backlog(sd); 5631 } 5632 5633 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE) 5634 /* This hook is defined here for ATM LANE */ 5635 int (*br_fdb_test_addr_hook)(struct net_device *dev, 5636 unsigned char *addr) __read_mostly; 5637 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 5638 #endif 5639 5640 /** 5641 * netdev_is_rx_handler_busy - check if receive handler is registered 5642 * @dev: device to check 5643 * 5644 * Check if a receive handler is already registered for a given device. 5645 * Return true if there one. 5646 * 5647 * The caller must hold the rtnl_mutex. 5648 */ 5649 bool netdev_is_rx_handler_busy(struct net_device *dev) 5650 { 5651 ASSERT_RTNL(); 5652 return dev && rtnl_dereference(dev->rx_handler); 5653 } 5654 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy); 5655 5656 /** 5657 * netdev_rx_handler_register - register receive handler 5658 * @dev: device to register a handler for 5659 * @rx_handler: receive handler to register 5660 * @rx_handler_data: data pointer that is used by rx handler 5661 * 5662 * Register a receive handler for a device. This handler will then be 5663 * called from __netif_receive_skb. A negative errno code is returned 5664 * on a failure. 5665 * 5666 * The caller must hold the rtnl_mutex. 5667 * 5668 * For a general description of rx_handler, see enum rx_handler_result. 5669 */ 5670 int netdev_rx_handler_register(struct net_device *dev, 5671 rx_handler_func_t *rx_handler, 5672 void *rx_handler_data) 5673 { 5674 if (netdev_is_rx_handler_busy(dev)) 5675 return -EBUSY; 5676 5677 if (dev->priv_flags & IFF_NO_RX_HANDLER) 5678 return -EINVAL; 5679 5680 /* Note: rx_handler_data must be set before rx_handler */ 5681 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 5682 rcu_assign_pointer(dev->rx_handler, rx_handler); 5683 5684 return 0; 5685 } 5686 EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 5687 5688 /** 5689 * netdev_rx_handler_unregister - unregister receive handler 5690 * @dev: device to unregister a handler from 5691 * 5692 * Unregister a receive handler from a device. 5693 * 5694 * The caller must hold the rtnl_mutex. 5695 */ 5696 void netdev_rx_handler_unregister(struct net_device *dev) 5697 { 5698 5699 ASSERT_RTNL(); 5700 RCU_INIT_POINTER(dev->rx_handler, NULL); 5701 /* a reader seeing a non NULL rx_handler in a rcu_read_lock() 5702 * section has a guarantee to see a non NULL rx_handler_data 5703 * as well. 5704 */ 5705 synchronize_net(); 5706 RCU_INIT_POINTER(dev->rx_handler_data, NULL); 5707 } 5708 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 5709 5710 /* 5711 * Limit the use of PFMEMALLOC reserves to those protocols that implement 5712 * the special handling of PFMEMALLOC skbs. 5713 */ 5714 static bool skb_pfmemalloc_protocol(struct sk_buff *skb) 5715 { 5716 switch (skb->protocol) { 5717 case htons(ETH_P_ARP): 5718 case htons(ETH_P_IP): 5719 case htons(ETH_P_IPV6): 5720 case htons(ETH_P_8021Q): 5721 case htons(ETH_P_8021AD): 5722 return true; 5723 default: 5724 return false; 5725 } 5726 } 5727 5728 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev, 5729 int *ret, struct net_device *orig_dev) 5730 { 5731 if (nf_hook_ingress_active(skb)) { 5732 int ingress_retval; 5733 5734 if (*pt_prev) { 5735 *ret = deliver_skb(skb, *pt_prev, orig_dev); 5736 *pt_prev = NULL; 5737 } 5738 5739 rcu_read_lock(); 5740 ingress_retval = nf_hook_ingress(skb); 5741 rcu_read_unlock(); 5742 return ingress_retval; 5743 } 5744 return 0; 5745 } 5746 5747 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc, 5748 struct packet_type **ppt_prev) 5749 { 5750 struct packet_type *ptype, *pt_prev; 5751 rx_handler_func_t *rx_handler; 5752 struct sk_buff *skb = *pskb; 5753 struct net_device *orig_dev; 5754 bool deliver_exact = false; 5755 int ret = NET_RX_DROP; 5756 __be16 type; 5757 5758 net_timestamp_check(!READ_ONCE(net_hotdata.tstamp_prequeue), skb); 5759 5760 trace_netif_receive_skb(skb); 5761 5762 orig_dev = skb->dev; 5763 5764 skb_reset_network_header(skb); 5765 #if !defined(CONFIG_DEBUG_NET) 5766 /* We plan to no longer reset the transport header here. 5767 * Give some time to fuzzers and dev build to catch bugs 5768 * in network stacks. 5769 */ 5770 if (!skb_transport_header_was_set(skb)) 5771 skb_reset_transport_header(skb); 5772 #endif 5773 skb_reset_mac_len(skb); 5774 5775 pt_prev = NULL; 5776 5777 another_round: 5778 skb->skb_iif = skb->dev->ifindex; 5779 5780 __this_cpu_inc(softnet_data.processed); 5781 5782 if (static_branch_unlikely(&generic_xdp_needed_key)) { 5783 int ret2; 5784 5785 migrate_disable(); 5786 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), 5787 &skb); 5788 migrate_enable(); 5789 5790 if (ret2 != XDP_PASS) { 5791 ret = NET_RX_DROP; 5792 goto out; 5793 } 5794 } 5795 5796 if (eth_type_vlan(skb->protocol)) { 5797 skb = skb_vlan_untag(skb); 5798 if (unlikely(!skb)) 5799 goto out; 5800 } 5801 5802 if (skb_skip_tc_classify(skb)) 5803 goto skip_classify; 5804 5805 if (pfmemalloc) 5806 goto skip_taps; 5807 5808 list_for_each_entry_rcu(ptype, &dev_net_rcu(skb->dev)->ptype_all, 5809 list) { 5810 if (pt_prev) 5811 ret = deliver_skb(skb, pt_prev, orig_dev); 5812 pt_prev = ptype; 5813 } 5814 5815 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) { 5816 if (pt_prev) 5817 ret = deliver_skb(skb, pt_prev, orig_dev); 5818 pt_prev = ptype; 5819 } 5820 5821 skip_taps: 5822 #ifdef CONFIG_NET_INGRESS 5823 if (static_branch_unlikely(&ingress_needed_key)) { 5824 bool another = false; 5825 5826 nf_skip_egress(skb, true); 5827 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev, 5828 &another); 5829 if (another) 5830 goto another_round; 5831 if (!skb) 5832 goto out; 5833 5834 nf_skip_egress(skb, false); 5835 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0) 5836 goto out; 5837 } 5838 #endif 5839 skb_reset_redirect(skb); 5840 skip_classify: 5841 if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) 5842 goto drop; 5843 5844 if (skb_vlan_tag_present(skb)) { 5845 if (pt_prev) { 5846 ret = deliver_skb(skb, pt_prev, orig_dev); 5847 pt_prev = NULL; 5848 } 5849 if (vlan_do_receive(&skb)) 5850 goto another_round; 5851 else if (unlikely(!skb)) 5852 goto out; 5853 } 5854 5855 rx_handler = rcu_dereference(skb->dev->rx_handler); 5856 if (rx_handler) { 5857 if (pt_prev) { 5858 ret = deliver_skb(skb, pt_prev, orig_dev); 5859 pt_prev = NULL; 5860 } 5861 switch (rx_handler(&skb)) { 5862 case RX_HANDLER_CONSUMED: 5863 ret = NET_RX_SUCCESS; 5864 goto out; 5865 case RX_HANDLER_ANOTHER: 5866 goto another_round; 5867 case RX_HANDLER_EXACT: 5868 deliver_exact = true; 5869 break; 5870 case RX_HANDLER_PASS: 5871 break; 5872 default: 5873 BUG(); 5874 } 5875 } 5876 5877 if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) { 5878 check_vlan_id: 5879 if (skb_vlan_tag_get_id(skb)) { 5880 /* Vlan id is non 0 and vlan_do_receive() above couldn't 5881 * find vlan device. 5882 */ 5883 skb->pkt_type = PACKET_OTHERHOST; 5884 } else if (eth_type_vlan(skb->protocol)) { 5885 /* Outer header is 802.1P with vlan 0, inner header is 5886 * 802.1Q or 802.1AD and vlan_do_receive() above could 5887 * not find vlan dev for vlan id 0. 5888 */ 5889 __vlan_hwaccel_clear_tag(skb); 5890 skb = skb_vlan_untag(skb); 5891 if (unlikely(!skb)) 5892 goto out; 5893 if (vlan_do_receive(&skb)) 5894 /* After stripping off 802.1P header with vlan 0 5895 * vlan dev is found for inner header. 5896 */ 5897 goto another_round; 5898 else if (unlikely(!skb)) 5899 goto out; 5900 else 5901 /* We have stripped outer 802.1P vlan 0 header. 5902 * But could not find vlan dev. 5903 * check again for vlan id to set OTHERHOST. 5904 */ 5905 goto check_vlan_id; 5906 } 5907 /* Note: we might in the future use prio bits 5908 * and set skb->priority like in vlan_do_receive() 5909 * For the time being, just ignore Priority Code Point 5910 */ 5911 __vlan_hwaccel_clear_tag(skb); 5912 } 5913 5914 type = skb->protocol; 5915 5916 /* deliver only exact match when indicated */ 5917 if (likely(!deliver_exact)) { 5918 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 5919 &ptype_base[ntohs(type) & 5920 PTYPE_HASH_MASK]); 5921 5922 /* orig_dev and skb->dev could belong to different netns; 5923 * Even in such case we need to traverse only the list 5924 * coming from skb->dev, as the ptype owner (packet socket) 5925 * will use dev_net(skb->dev) to do namespace filtering. 5926 */ 5927 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 5928 &dev_net_rcu(skb->dev)->ptype_specific); 5929 } 5930 5931 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 5932 &orig_dev->ptype_specific); 5933 5934 if (unlikely(skb->dev != orig_dev)) { 5935 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 5936 &skb->dev->ptype_specific); 5937 } 5938 5939 if (pt_prev) { 5940 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 5941 goto drop; 5942 *ppt_prev = pt_prev; 5943 } else { 5944 drop: 5945 if (!deliver_exact) 5946 dev_core_stats_rx_dropped_inc(skb->dev); 5947 else 5948 dev_core_stats_rx_nohandler_inc(skb->dev); 5949 kfree_skb_reason(skb, SKB_DROP_REASON_UNHANDLED_PROTO); 5950 /* Jamal, now you will not able to escape explaining 5951 * me how you were going to use this. :-) 5952 */ 5953 ret = NET_RX_DROP; 5954 } 5955 5956 out: 5957 /* The invariant here is that if *ppt_prev is not NULL 5958 * then skb should also be non-NULL. 5959 * 5960 * Apparently *ppt_prev assignment above holds this invariant due to 5961 * skb dereferencing near it. 5962 */ 5963 *pskb = skb; 5964 return ret; 5965 } 5966 5967 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc) 5968 { 5969 struct net_device *orig_dev = skb->dev; 5970 struct packet_type *pt_prev = NULL; 5971 int ret; 5972 5973 ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev); 5974 if (pt_prev) 5975 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb, 5976 skb->dev, pt_prev, orig_dev); 5977 return ret; 5978 } 5979 5980 /** 5981 * netif_receive_skb_core - special purpose version of netif_receive_skb 5982 * @skb: buffer to process 5983 * 5984 * More direct receive version of netif_receive_skb(). It should 5985 * only be used by callers that have a need to skip RPS and Generic XDP. 5986 * Caller must also take care of handling if ``(page_is_)pfmemalloc``. 5987 * 5988 * This function may only be called from softirq context and interrupts 5989 * should be enabled. 5990 * 5991 * Return values (usually ignored): 5992 * NET_RX_SUCCESS: no congestion 5993 * NET_RX_DROP: packet was dropped 5994 */ 5995 int netif_receive_skb_core(struct sk_buff *skb) 5996 { 5997 int ret; 5998 5999 rcu_read_lock(); 6000 ret = __netif_receive_skb_one_core(skb, false); 6001 rcu_read_unlock(); 6002 6003 return ret; 6004 } 6005 EXPORT_SYMBOL(netif_receive_skb_core); 6006 6007 static inline void __netif_receive_skb_list_ptype(struct list_head *head, 6008 struct packet_type *pt_prev, 6009 struct net_device *orig_dev) 6010 { 6011 struct sk_buff *skb, *next; 6012 6013 if (!pt_prev) 6014 return; 6015 if (list_empty(head)) 6016 return; 6017 if (pt_prev->list_func != NULL) 6018 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv, 6019 ip_list_rcv, head, pt_prev, orig_dev); 6020 else 6021 list_for_each_entry_safe(skb, next, head, list) { 6022 skb_list_del_init(skb); 6023 pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 6024 } 6025 } 6026 6027 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc) 6028 { 6029 /* Fast-path assumptions: 6030 * - There is no RX handler. 6031 * - Only one packet_type matches. 6032 * If either of these fails, we will end up doing some per-packet 6033 * processing in-line, then handling the 'last ptype' for the whole 6034 * sublist. This can't cause out-of-order delivery to any single ptype, 6035 * because the 'last ptype' must be constant across the sublist, and all 6036 * other ptypes are handled per-packet. 6037 */ 6038 /* Current (common) ptype of sublist */ 6039 struct packet_type *pt_curr = NULL; 6040 /* Current (common) orig_dev of sublist */ 6041 struct net_device *od_curr = NULL; 6042 struct sk_buff *skb, *next; 6043 LIST_HEAD(sublist); 6044 6045 list_for_each_entry_safe(skb, next, head, list) { 6046 struct net_device *orig_dev = skb->dev; 6047 struct packet_type *pt_prev = NULL; 6048 6049 skb_list_del_init(skb); 6050 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev); 6051 if (!pt_prev) 6052 continue; 6053 if (pt_curr != pt_prev || od_curr != orig_dev) { 6054 /* dispatch old sublist */ 6055 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr); 6056 /* start new sublist */ 6057 INIT_LIST_HEAD(&sublist); 6058 pt_curr = pt_prev; 6059 od_curr = orig_dev; 6060 } 6061 list_add_tail(&skb->list, &sublist); 6062 } 6063 6064 /* dispatch final sublist */ 6065 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr); 6066 } 6067 6068 static int __netif_receive_skb(struct sk_buff *skb) 6069 { 6070 int ret; 6071 6072 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) { 6073 unsigned int noreclaim_flag; 6074 6075 /* 6076 * PFMEMALLOC skbs are special, they should 6077 * - be delivered to SOCK_MEMALLOC sockets only 6078 * - stay away from userspace 6079 * - have bounded memory usage 6080 * 6081 * Use PF_MEMALLOC as this saves us from propagating the allocation 6082 * context down to all allocation sites. 6083 */ 6084 noreclaim_flag = memalloc_noreclaim_save(); 6085 ret = __netif_receive_skb_one_core(skb, true); 6086 memalloc_noreclaim_restore(noreclaim_flag); 6087 } else 6088 ret = __netif_receive_skb_one_core(skb, false); 6089 6090 return ret; 6091 } 6092 6093 static void __netif_receive_skb_list(struct list_head *head) 6094 { 6095 unsigned long noreclaim_flag = 0; 6096 struct sk_buff *skb, *next; 6097 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */ 6098 6099 list_for_each_entry_safe(skb, next, head, list) { 6100 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) { 6101 struct list_head sublist; 6102 6103 /* Handle the previous sublist */ 6104 list_cut_before(&sublist, head, &skb->list); 6105 if (!list_empty(&sublist)) 6106 __netif_receive_skb_list_core(&sublist, pfmemalloc); 6107 pfmemalloc = !pfmemalloc; 6108 /* See comments in __netif_receive_skb */ 6109 if (pfmemalloc) 6110 noreclaim_flag = memalloc_noreclaim_save(); 6111 else 6112 memalloc_noreclaim_restore(noreclaim_flag); 6113 } 6114 } 6115 /* Handle the remaining sublist */ 6116 if (!list_empty(head)) 6117 __netif_receive_skb_list_core(head, pfmemalloc); 6118 /* Restore pflags */ 6119 if (pfmemalloc) 6120 memalloc_noreclaim_restore(noreclaim_flag); 6121 } 6122 6123 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp) 6124 { 6125 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog); 6126 struct bpf_prog *new = xdp->prog; 6127 int ret = 0; 6128 6129 switch (xdp->command) { 6130 case XDP_SETUP_PROG: 6131 rcu_assign_pointer(dev->xdp_prog, new); 6132 if (old) 6133 bpf_prog_put(old); 6134 6135 if (old && !new) { 6136 static_branch_dec(&generic_xdp_needed_key); 6137 } else if (new && !old) { 6138 static_branch_inc(&generic_xdp_needed_key); 6139 netif_disable_lro(dev); 6140 dev_disable_gro_hw(dev); 6141 } 6142 break; 6143 6144 default: 6145 ret = -EINVAL; 6146 break; 6147 } 6148 6149 return ret; 6150 } 6151 6152 static int netif_receive_skb_internal(struct sk_buff *skb) 6153 { 6154 int ret; 6155 6156 net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb); 6157 6158 if (skb_defer_rx_timestamp(skb)) 6159 return NET_RX_SUCCESS; 6160 6161 rcu_read_lock(); 6162 #ifdef CONFIG_RPS 6163 if (static_branch_unlikely(&rps_needed)) { 6164 struct rps_dev_flow voidflow, *rflow = &voidflow; 6165 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 6166 6167 if (cpu >= 0) { 6168 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 6169 rcu_read_unlock(); 6170 return ret; 6171 } 6172 } 6173 #endif 6174 ret = __netif_receive_skb(skb); 6175 rcu_read_unlock(); 6176 return ret; 6177 } 6178 6179 void netif_receive_skb_list_internal(struct list_head *head) 6180 { 6181 struct sk_buff *skb, *next; 6182 LIST_HEAD(sublist); 6183 6184 list_for_each_entry_safe(skb, next, head, list) { 6185 net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), 6186 skb); 6187 skb_list_del_init(skb); 6188 if (!skb_defer_rx_timestamp(skb)) 6189 list_add_tail(&skb->list, &sublist); 6190 } 6191 list_splice_init(&sublist, head); 6192 6193 rcu_read_lock(); 6194 #ifdef CONFIG_RPS 6195 if (static_branch_unlikely(&rps_needed)) { 6196 list_for_each_entry_safe(skb, next, head, list) { 6197 struct rps_dev_flow voidflow, *rflow = &voidflow; 6198 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 6199 6200 if (cpu >= 0) { 6201 /* Will be handled, remove from list */ 6202 skb_list_del_init(skb); 6203 enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 6204 } 6205 } 6206 } 6207 #endif 6208 __netif_receive_skb_list(head); 6209 rcu_read_unlock(); 6210 } 6211 6212 /** 6213 * netif_receive_skb - process receive buffer from network 6214 * @skb: buffer to process 6215 * 6216 * netif_receive_skb() is the main receive data processing function. 6217 * It always succeeds. The buffer may be dropped during processing 6218 * for congestion control or by the protocol layers. 6219 * 6220 * This function may only be called from softirq context and interrupts 6221 * should be enabled. 6222 * 6223 * Return values (usually ignored): 6224 * NET_RX_SUCCESS: no congestion 6225 * NET_RX_DROP: packet was dropped 6226 */ 6227 int netif_receive_skb(struct sk_buff *skb) 6228 { 6229 int ret; 6230 6231 trace_netif_receive_skb_entry(skb); 6232 6233 ret = netif_receive_skb_internal(skb); 6234 trace_netif_receive_skb_exit(ret); 6235 6236 return ret; 6237 } 6238 EXPORT_SYMBOL(netif_receive_skb); 6239 6240 /** 6241 * netif_receive_skb_list - process many receive buffers from network 6242 * @head: list of skbs to process. 6243 * 6244 * Since return value of netif_receive_skb() is normally ignored, and 6245 * wouldn't be meaningful for a list, this function returns void. 6246 * 6247 * This function may only be called from softirq context and interrupts 6248 * should be enabled. 6249 */ 6250 void netif_receive_skb_list(struct list_head *head) 6251 { 6252 struct sk_buff *skb; 6253 6254 if (list_empty(head)) 6255 return; 6256 if (trace_netif_receive_skb_list_entry_enabled()) { 6257 list_for_each_entry(skb, head, list) 6258 trace_netif_receive_skb_list_entry(skb); 6259 } 6260 netif_receive_skb_list_internal(head); 6261 trace_netif_receive_skb_list_exit(0); 6262 } 6263 EXPORT_SYMBOL(netif_receive_skb_list); 6264 6265 /* Network device is going away, flush any packets still pending */ 6266 static void flush_backlog(struct work_struct *work) 6267 { 6268 struct sk_buff *skb, *tmp; 6269 struct sk_buff_head list; 6270 struct softnet_data *sd; 6271 6272 __skb_queue_head_init(&list); 6273 local_bh_disable(); 6274 sd = this_cpu_ptr(&softnet_data); 6275 6276 backlog_lock_irq_disable(sd); 6277 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 6278 if (READ_ONCE(skb->dev->reg_state) == NETREG_UNREGISTERING) { 6279 __skb_unlink(skb, &sd->input_pkt_queue); 6280 __skb_queue_tail(&list, skb); 6281 rps_input_queue_head_incr(sd); 6282 } 6283 } 6284 backlog_unlock_irq_enable(sd); 6285 6286 local_lock_nested_bh(&softnet_data.process_queue_bh_lock); 6287 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 6288 if (READ_ONCE(skb->dev->reg_state) == NETREG_UNREGISTERING) { 6289 __skb_unlink(skb, &sd->process_queue); 6290 __skb_queue_tail(&list, skb); 6291 rps_input_queue_head_incr(sd); 6292 } 6293 } 6294 local_unlock_nested_bh(&softnet_data.process_queue_bh_lock); 6295 local_bh_enable(); 6296 6297 __skb_queue_purge_reason(&list, SKB_DROP_REASON_DEV_READY); 6298 } 6299 6300 static bool flush_required(int cpu) 6301 { 6302 #if IS_ENABLED(CONFIG_RPS) 6303 struct softnet_data *sd = &per_cpu(softnet_data, cpu); 6304 bool do_flush; 6305 6306 backlog_lock_irq_disable(sd); 6307 6308 /* as insertion into process_queue happens with the rps lock held, 6309 * process_queue access may race only with dequeue 6310 */ 6311 do_flush = !skb_queue_empty(&sd->input_pkt_queue) || 6312 !skb_queue_empty_lockless(&sd->process_queue); 6313 backlog_unlock_irq_enable(sd); 6314 6315 return do_flush; 6316 #endif 6317 /* without RPS we can't safely check input_pkt_queue: during a 6318 * concurrent remote skb_queue_splice() we can detect as empty both 6319 * input_pkt_queue and process_queue even if the latter could end-up 6320 * containing a lot of packets. 6321 */ 6322 return true; 6323 } 6324 6325 struct flush_backlogs { 6326 cpumask_t flush_cpus; 6327 struct work_struct w[]; 6328 }; 6329 6330 static struct flush_backlogs *flush_backlogs_alloc(void) 6331 { 6332 return kmalloc(struct_size_t(struct flush_backlogs, w, nr_cpu_ids), 6333 GFP_KERNEL); 6334 } 6335 6336 static struct flush_backlogs *flush_backlogs_fallback; 6337 static DEFINE_MUTEX(flush_backlogs_mutex); 6338 6339 static void flush_all_backlogs(void) 6340 { 6341 struct flush_backlogs *ptr = flush_backlogs_alloc(); 6342 unsigned int cpu; 6343 6344 if (!ptr) { 6345 mutex_lock(&flush_backlogs_mutex); 6346 ptr = flush_backlogs_fallback; 6347 } 6348 cpumask_clear(&ptr->flush_cpus); 6349 6350 cpus_read_lock(); 6351 6352 for_each_online_cpu(cpu) { 6353 if (flush_required(cpu)) { 6354 INIT_WORK(&ptr->w[cpu], flush_backlog); 6355 queue_work_on(cpu, system_highpri_wq, &ptr->w[cpu]); 6356 __cpumask_set_cpu(cpu, &ptr->flush_cpus); 6357 } 6358 } 6359 6360 /* we can have in flight packet[s] on the cpus we are not flushing, 6361 * synchronize_net() in unregister_netdevice_many() will take care of 6362 * them. 6363 */ 6364 for_each_cpu(cpu, &ptr->flush_cpus) 6365 flush_work(&ptr->w[cpu]); 6366 6367 cpus_read_unlock(); 6368 6369 if (ptr != flush_backlogs_fallback) 6370 kfree(ptr); 6371 else 6372 mutex_unlock(&flush_backlogs_mutex); 6373 } 6374 6375 static void net_rps_send_ipi(struct softnet_data *remsd) 6376 { 6377 #ifdef CONFIG_RPS 6378 while (remsd) { 6379 struct softnet_data *next = remsd->rps_ipi_next; 6380 6381 if (cpu_online(remsd->cpu)) 6382 smp_call_function_single_async(remsd->cpu, &remsd->csd); 6383 remsd = next; 6384 } 6385 #endif 6386 } 6387 6388 /* 6389 * net_rps_action_and_irq_enable sends any pending IPI's for rps. 6390 * Note: called with local irq disabled, but exits with local irq enabled. 6391 */ 6392 static void net_rps_action_and_irq_enable(struct softnet_data *sd) 6393 { 6394 #ifdef CONFIG_RPS 6395 struct softnet_data *remsd = sd->rps_ipi_list; 6396 6397 if (!use_backlog_threads() && remsd) { 6398 sd->rps_ipi_list = NULL; 6399 6400 local_irq_enable(); 6401 6402 /* Send pending IPI's to kick RPS processing on remote cpus. */ 6403 net_rps_send_ipi(remsd); 6404 } else 6405 #endif 6406 local_irq_enable(); 6407 } 6408 6409 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd) 6410 { 6411 #ifdef CONFIG_RPS 6412 return !use_backlog_threads() && sd->rps_ipi_list; 6413 #else 6414 return false; 6415 #endif 6416 } 6417 6418 static int process_backlog(struct napi_struct *napi, int quota) 6419 { 6420 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 6421 bool again = true; 6422 int work = 0; 6423 6424 /* Check if we have pending ipi, its better to send them now, 6425 * not waiting net_rx_action() end. 6426 */ 6427 if (sd_has_rps_ipi_waiting(sd)) { 6428 local_irq_disable(); 6429 net_rps_action_and_irq_enable(sd); 6430 } 6431 6432 napi->weight = READ_ONCE(net_hotdata.dev_rx_weight); 6433 while (again) { 6434 struct sk_buff *skb; 6435 6436 local_lock_nested_bh(&softnet_data.process_queue_bh_lock); 6437 while ((skb = __skb_dequeue(&sd->process_queue))) { 6438 local_unlock_nested_bh(&softnet_data.process_queue_bh_lock); 6439 rcu_read_lock(); 6440 __netif_receive_skb(skb); 6441 rcu_read_unlock(); 6442 if (++work >= quota) { 6443 rps_input_queue_head_add(sd, work); 6444 return work; 6445 } 6446 6447 local_lock_nested_bh(&softnet_data.process_queue_bh_lock); 6448 } 6449 local_unlock_nested_bh(&softnet_data.process_queue_bh_lock); 6450 6451 backlog_lock_irq_disable(sd); 6452 if (skb_queue_empty(&sd->input_pkt_queue)) { 6453 /* 6454 * Inline a custom version of __napi_complete(). 6455 * only current cpu owns and manipulates this napi, 6456 * and NAPI_STATE_SCHED is the only possible flag set 6457 * on backlog. 6458 * We can use a plain write instead of clear_bit(), 6459 * and we dont need an smp_mb() memory barrier. 6460 */ 6461 napi->state &= NAPIF_STATE_THREADED; 6462 again = false; 6463 } else { 6464 local_lock_nested_bh(&softnet_data.process_queue_bh_lock); 6465 skb_queue_splice_tail_init(&sd->input_pkt_queue, 6466 &sd->process_queue); 6467 local_unlock_nested_bh(&softnet_data.process_queue_bh_lock); 6468 } 6469 backlog_unlock_irq_enable(sd); 6470 } 6471 6472 if (work) 6473 rps_input_queue_head_add(sd, work); 6474 return work; 6475 } 6476 6477 /** 6478 * __napi_schedule - schedule for receive 6479 * @n: entry to schedule 6480 * 6481 * The entry's receive function will be scheduled to run. 6482 * Consider using __napi_schedule_irqoff() if hard irqs are masked. 6483 */ 6484 void __napi_schedule(struct napi_struct *n) 6485 { 6486 unsigned long flags; 6487 6488 local_irq_save(flags); 6489 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 6490 local_irq_restore(flags); 6491 } 6492 EXPORT_SYMBOL(__napi_schedule); 6493 6494 /** 6495 * napi_schedule_prep - check if napi can be scheduled 6496 * @n: napi context 6497 * 6498 * Test if NAPI routine is already running, and if not mark 6499 * it as running. This is used as a condition variable to 6500 * insure only one NAPI poll instance runs. We also make 6501 * sure there is no pending NAPI disable. 6502 */ 6503 bool napi_schedule_prep(struct napi_struct *n) 6504 { 6505 unsigned long new, val = READ_ONCE(n->state); 6506 6507 do { 6508 if (unlikely(val & NAPIF_STATE_DISABLE)) 6509 return false; 6510 new = val | NAPIF_STATE_SCHED; 6511 6512 /* Sets STATE_MISSED bit if STATE_SCHED was already set 6513 * This was suggested by Alexander Duyck, as compiler 6514 * emits better code than : 6515 * if (val & NAPIF_STATE_SCHED) 6516 * new |= NAPIF_STATE_MISSED; 6517 */ 6518 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED * 6519 NAPIF_STATE_MISSED; 6520 } while (!try_cmpxchg(&n->state, &val, new)); 6521 6522 return !(val & NAPIF_STATE_SCHED); 6523 } 6524 EXPORT_SYMBOL(napi_schedule_prep); 6525 6526 /** 6527 * __napi_schedule_irqoff - schedule for receive 6528 * @n: entry to schedule 6529 * 6530 * Variant of __napi_schedule() assuming hard irqs are masked. 6531 * 6532 * On PREEMPT_RT enabled kernels this maps to __napi_schedule() 6533 * because the interrupt disabled assumption might not be true 6534 * due to force-threaded interrupts and spinlock substitution. 6535 */ 6536 void __napi_schedule_irqoff(struct napi_struct *n) 6537 { 6538 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 6539 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 6540 else 6541 __napi_schedule(n); 6542 } 6543 EXPORT_SYMBOL(__napi_schedule_irqoff); 6544 6545 bool napi_complete_done(struct napi_struct *n, int work_done) 6546 { 6547 unsigned long flags, val, new, timeout = 0; 6548 bool ret = true; 6549 6550 /* 6551 * 1) Don't let napi dequeue from the cpu poll list 6552 * just in case its running on a different cpu. 6553 * 2) If we are busy polling, do nothing here, we have 6554 * the guarantee we will be called later. 6555 */ 6556 if (unlikely(n->state & (NAPIF_STATE_NPSVC | 6557 NAPIF_STATE_IN_BUSY_POLL))) 6558 return false; 6559 6560 if (work_done) { 6561 if (n->gro.bitmask) 6562 timeout = napi_get_gro_flush_timeout(n); 6563 n->defer_hard_irqs_count = napi_get_defer_hard_irqs(n); 6564 } 6565 if (n->defer_hard_irqs_count > 0) { 6566 n->defer_hard_irqs_count--; 6567 timeout = napi_get_gro_flush_timeout(n); 6568 if (timeout) 6569 ret = false; 6570 } 6571 6572 /* 6573 * When the NAPI instance uses a timeout and keeps postponing 6574 * it, we need to bound somehow the time packets are kept in 6575 * the GRO layer. 6576 */ 6577 gro_flush(&n->gro, !!timeout); 6578 gro_normal_list(&n->gro); 6579 6580 if (unlikely(!list_empty(&n->poll_list))) { 6581 /* If n->poll_list is not empty, we need to mask irqs */ 6582 local_irq_save(flags); 6583 list_del_init(&n->poll_list); 6584 local_irq_restore(flags); 6585 } 6586 WRITE_ONCE(n->list_owner, -1); 6587 6588 val = READ_ONCE(n->state); 6589 do { 6590 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED)); 6591 6592 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED | 6593 NAPIF_STATE_SCHED_THREADED | 6594 NAPIF_STATE_PREFER_BUSY_POLL); 6595 6596 /* If STATE_MISSED was set, leave STATE_SCHED set, 6597 * because we will call napi->poll() one more time. 6598 * This C code was suggested by Alexander Duyck to help gcc. 6599 */ 6600 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED * 6601 NAPIF_STATE_SCHED; 6602 } while (!try_cmpxchg(&n->state, &val, new)); 6603 6604 if (unlikely(val & NAPIF_STATE_MISSED)) { 6605 __napi_schedule(n); 6606 return false; 6607 } 6608 6609 if (timeout) 6610 hrtimer_start(&n->timer, ns_to_ktime(timeout), 6611 HRTIMER_MODE_REL_PINNED); 6612 return ret; 6613 } 6614 EXPORT_SYMBOL(napi_complete_done); 6615 6616 static void skb_defer_free_flush(struct softnet_data *sd) 6617 { 6618 struct sk_buff *skb, *next; 6619 6620 /* Paired with WRITE_ONCE() in skb_attempt_defer_free() */ 6621 if (!READ_ONCE(sd->defer_list)) 6622 return; 6623 6624 spin_lock(&sd->defer_lock); 6625 skb = sd->defer_list; 6626 sd->defer_list = NULL; 6627 sd->defer_count = 0; 6628 spin_unlock(&sd->defer_lock); 6629 6630 while (skb != NULL) { 6631 next = skb->next; 6632 napi_consume_skb(skb, 1); 6633 skb = next; 6634 } 6635 } 6636 6637 #if defined(CONFIG_NET_RX_BUSY_POLL) 6638 6639 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule) 6640 { 6641 if (!skip_schedule) { 6642 gro_normal_list(&napi->gro); 6643 __napi_schedule(napi); 6644 return; 6645 } 6646 6647 /* Flush too old packets. If HZ < 1000, flush all packets */ 6648 gro_flush(&napi->gro, HZ >= 1000); 6649 gro_normal_list(&napi->gro); 6650 6651 clear_bit(NAPI_STATE_SCHED, &napi->state); 6652 } 6653 6654 enum { 6655 NAPI_F_PREFER_BUSY_POLL = 1, 6656 NAPI_F_END_ON_RESCHED = 2, 6657 }; 6658 6659 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, 6660 unsigned flags, u16 budget) 6661 { 6662 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; 6663 bool skip_schedule = false; 6664 unsigned long timeout; 6665 int rc; 6666 6667 /* Busy polling means there is a high chance device driver hard irq 6668 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was 6669 * set in napi_schedule_prep(). 6670 * Since we are about to call napi->poll() once more, we can safely 6671 * clear NAPI_STATE_MISSED. 6672 * 6673 * Note: x86 could use a single "lock and ..." instruction 6674 * to perform these two clear_bit() 6675 */ 6676 clear_bit(NAPI_STATE_MISSED, &napi->state); 6677 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state); 6678 6679 local_bh_disable(); 6680 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx); 6681 6682 if (flags & NAPI_F_PREFER_BUSY_POLL) { 6683 napi->defer_hard_irqs_count = napi_get_defer_hard_irqs(napi); 6684 timeout = napi_get_gro_flush_timeout(napi); 6685 if (napi->defer_hard_irqs_count && timeout) { 6686 hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED); 6687 skip_schedule = true; 6688 } 6689 } 6690 6691 /* All we really want here is to re-enable device interrupts. 6692 * Ideally, a new ndo_busy_poll_stop() could avoid another round. 6693 */ 6694 rc = napi->poll(napi, budget); 6695 /* We can't gro_normal_list() here, because napi->poll() might have 6696 * rearmed the napi (napi_complete_done()) in which case it could 6697 * already be running on another CPU. 6698 */ 6699 trace_napi_poll(napi, rc, budget); 6700 netpoll_poll_unlock(have_poll_lock); 6701 if (rc == budget) 6702 __busy_poll_stop(napi, skip_schedule); 6703 bpf_net_ctx_clear(bpf_net_ctx); 6704 local_bh_enable(); 6705 } 6706 6707 static void __napi_busy_loop(unsigned int napi_id, 6708 bool (*loop_end)(void *, unsigned long), 6709 void *loop_end_arg, unsigned flags, u16 budget) 6710 { 6711 unsigned long start_time = loop_end ? busy_loop_current_time() : 0; 6712 int (*napi_poll)(struct napi_struct *napi, int budget); 6713 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; 6714 void *have_poll_lock = NULL; 6715 struct napi_struct *napi; 6716 6717 WARN_ON_ONCE(!rcu_read_lock_held()); 6718 6719 restart: 6720 napi_poll = NULL; 6721 6722 napi = napi_by_id(napi_id); 6723 if (!napi) 6724 return; 6725 6726 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 6727 preempt_disable(); 6728 for (;;) { 6729 int work = 0; 6730 6731 local_bh_disable(); 6732 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx); 6733 if (!napi_poll) { 6734 unsigned long val = READ_ONCE(napi->state); 6735 6736 /* If multiple threads are competing for this napi, 6737 * we avoid dirtying napi->state as much as we can. 6738 */ 6739 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED | 6740 NAPIF_STATE_IN_BUSY_POLL)) { 6741 if (flags & NAPI_F_PREFER_BUSY_POLL) 6742 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state); 6743 goto count; 6744 } 6745 if (cmpxchg(&napi->state, val, 6746 val | NAPIF_STATE_IN_BUSY_POLL | 6747 NAPIF_STATE_SCHED) != val) { 6748 if (flags & NAPI_F_PREFER_BUSY_POLL) 6749 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state); 6750 goto count; 6751 } 6752 have_poll_lock = netpoll_poll_lock(napi); 6753 napi_poll = napi->poll; 6754 } 6755 work = napi_poll(napi, budget); 6756 trace_napi_poll(napi, work, budget); 6757 gro_normal_list(&napi->gro); 6758 count: 6759 if (work > 0) 6760 __NET_ADD_STATS(dev_net(napi->dev), 6761 LINUX_MIB_BUSYPOLLRXPACKETS, work); 6762 skb_defer_free_flush(this_cpu_ptr(&softnet_data)); 6763 bpf_net_ctx_clear(bpf_net_ctx); 6764 local_bh_enable(); 6765 6766 if (!loop_end || loop_end(loop_end_arg, start_time)) 6767 break; 6768 6769 if (unlikely(need_resched())) { 6770 if (flags & NAPI_F_END_ON_RESCHED) 6771 break; 6772 if (napi_poll) 6773 busy_poll_stop(napi, have_poll_lock, flags, budget); 6774 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 6775 preempt_enable(); 6776 rcu_read_unlock(); 6777 cond_resched(); 6778 rcu_read_lock(); 6779 if (loop_end(loop_end_arg, start_time)) 6780 return; 6781 goto restart; 6782 } 6783 cpu_relax(); 6784 } 6785 if (napi_poll) 6786 busy_poll_stop(napi, have_poll_lock, flags, budget); 6787 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 6788 preempt_enable(); 6789 } 6790 6791 void napi_busy_loop_rcu(unsigned int napi_id, 6792 bool (*loop_end)(void *, unsigned long), 6793 void *loop_end_arg, bool prefer_busy_poll, u16 budget) 6794 { 6795 unsigned flags = NAPI_F_END_ON_RESCHED; 6796 6797 if (prefer_busy_poll) 6798 flags |= NAPI_F_PREFER_BUSY_POLL; 6799 6800 __napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget); 6801 } 6802 6803 void napi_busy_loop(unsigned int napi_id, 6804 bool (*loop_end)(void *, unsigned long), 6805 void *loop_end_arg, bool prefer_busy_poll, u16 budget) 6806 { 6807 unsigned flags = prefer_busy_poll ? NAPI_F_PREFER_BUSY_POLL : 0; 6808 6809 rcu_read_lock(); 6810 __napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget); 6811 rcu_read_unlock(); 6812 } 6813 EXPORT_SYMBOL(napi_busy_loop); 6814 6815 void napi_suspend_irqs(unsigned int napi_id) 6816 { 6817 struct napi_struct *napi; 6818 6819 rcu_read_lock(); 6820 napi = napi_by_id(napi_id); 6821 if (napi) { 6822 unsigned long timeout = napi_get_irq_suspend_timeout(napi); 6823 6824 if (timeout) 6825 hrtimer_start(&napi->timer, ns_to_ktime(timeout), 6826 HRTIMER_MODE_REL_PINNED); 6827 } 6828 rcu_read_unlock(); 6829 } 6830 6831 void napi_resume_irqs(unsigned int napi_id) 6832 { 6833 struct napi_struct *napi; 6834 6835 rcu_read_lock(); 6836 napi = napi_by_id(napi_id); 6837 if (napi) { 6838 /* If irq_suspend_timeout is set to 0 between the call to 6839 * napi_suspend_irqs and now, the original value still 6840 * determines the safety timeout as intended and napi_watchdog 6841 * will resume irq processing. 6842 */ 6843 if (napi_get_irq_suspend_timeout(napi)) { 6844 local_bh_disable(); 6845 napi_schedule(napi); 6846 local_bh_enable(); 6847 } 6848 } 6849 rcu_read_unlock(); 6850 } 6851 6852 #endif /* CONFIG_NET_RX_BUSY_POLL */ 6853 6854 static void __napi_hash_add_with_id(struct napi_struct *napi, 6855 unsigned int napi_id) 6856 { 6857 napi->gro.cached_napi_id = napi_id; 6858 6859 WRITE_ONCE(napi->napi_id, napi_id); 6860 hlist_add_head_rcu(&napi->napi_hash_node, 6861 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]); 6862 } 6863 6864 static void napi_hash_add_with_id(struct napi_struct *napi, 6865 unsigned int napi_id) 6866 { 6867 unsigned long flags; 6868 6869 spin_lock_irqsave(&napi_hash_lock, flags); 6870 WARN_ON_ONCE(napi_by_id(napi_id)); 6871 __napi_hash_add_with_id(napi, napi_id); 6872 spin_unlock_irqrestore(&napi_hash_lock, flags); 6873 } 6874 6875 static void napi_hash_add(struct napi_struct *napi) 6876 { 6877 unsigned long flags; 6878 6879 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state)) 6880 return; 6881 6882 spin_lock_irqsave(&napi_hash_lock, flags); 6883 6884 /* 0..NR_CPUS range is reserved for sender_cpu use */ 6885 do { 6886 if (unlikely(!napi_id_valid(++napi_gen_id))) 6887 napi_gen_id = MIN_NAPI_ID; 6888 } while (napi_by_id(napi_gen_id)); 6889 6890 __napi_hash_add_with_id(napi, napi_gen_id); 6891 6892 spin_unlock_irqrestore(&napi_hash_lock, flags); 6893 } 6894 6895 /* Warning : caller is responsible to make sure rcu grace period 6896 * is respected before freeing memory containing @napi 6897 */ 6898 static void napi_hash_del(struct napi_struct *napi) 6899 { 6900 unsigned long flags; 6901 6902 spin_lock_irqsave(&napi_hash_lock, flags); 6903 6904 hlist_del_init_rcu(&napi->napi_hash_node); 6905 6906 spin_unlock_irqrestore(&napi_hash_lock, flags); 6907 } 6908 6909 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer) 6910 { 6911 struct napi_struct *napi; 6912 6913 napi = container_of(timer, struct napi_struct, timer); 6914 6915 /* Note : we use a relaxed variant of napi_schedule_prep() not setting 6916 * NAPI_STATE_MISSED, since we do not react to a device IRQ. 6917 */ 6918 if (!napi_disable_pending(napi) && 6919 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) { 6920 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state); 6921 __napi_schedule_irqoff(napi); 6922 } 6923 6924 return HRTIMER_NORESTART; 6925 } 6926 6927 static void napi_stop_kthread(struct napi_struct *napi) 6928 { 6929 unsigned long val, new; 6930 6931 /* Wait until the napi STATE_THREADED is unset. */ 6932 while (true) { 6933 val = READ_ONCE(napi->state); 6934 6935 /* If napi kthread own this napi or the napi is idle, 6936 * STATE_THREADED can be unset here. 6937 */ 6938 if ((val & NAPIF_STATE_SCHED_THREADED) || 6939 !(val & NAPIF_STATE_SCHED)) { 6940 new = val & (~NAPIF_STATE_THREADED); 6941 } else { 6942 msleep(20); 6943 continue; 6944 } 6945 6946 if (try_cmpxchg(&napi->state, &val, new)) 6947 break; 6948 } 6949 6950 /* Once STATE_THREADED is unset, wait for SCHED_THREADED to be unset by 6951 * the kthread. 6952 */ 6953 while (true) { 6954 if (!test_bit(NAPIF_STATE_SCHED_THREADED, &napi->state)) 6955 break; 6956 6957 msleep(20); 6958 } 6959 6960 kthread_stop(napi->thread); 6961 napi->thread = NULL; 6962 } 6963 6964 int dev_set_threaded(struct net_device *dev, bool threaded) 6965 { 6966 struct napi_struct *napi; 6967 int err = 0; 6968 6969 netdev_assert_locked_or_invisible(dev); 6970 6971 if (dev->threaded == threaded) 6972 return 0; 6973 6974 if (threaded) { 6975 list_for_each_entry(napi, &dev->napi_list, dev_list) { 6976 if (!napi->thread) { 6977 err = napi_kthread_create(napi); 6978 if (err) { 6979 threaded = false; 6980 break; 6981 } 6982 } 6983 } 6984 } 6985 6986 WRITE_ONCE(dev->threaded, threaded); 6987 6988 /* Make sure kthread is created before THREADED bit 6989 * is set. 6990 */ 6991 smp_mb__before_atomic(); 6992 6993 /* Setting/unsetting threaded mode on a napi might not immediately 6994 * take effect, if the current napi instance is actively being 6995 * polled. In this case, the switch between threaded mode and 6996 * softirq mode will happen in the next round of napi_schedule(). 6997 * This should not cause hiccups/stalls to the live traffic. 6998 */ 6999 list_for_each_entry(napi, &dev->napi_list, dev_list) { 7000 if (!threaded && napi->thread) 7001 napi_stop_kthread(napi); 7002 else 7003 assign_bit(NAPI_STATE_THREADED, &napi->state, threaded); 7004 } 7005 7006 return err; 7007 } 7008 EXPORT_SYMBOL(dev_set_threaded); 7009 7010 /** 7011 * netif_queue_set_napi - Associate queue with the napi 7012 * @dev: device to which NAPI and queue belong 7013 * @queue_index: Index of queue 7014 * @type: queue type as RX or TX 7015 * @napi: NAPI context, pass NULL to clear previously set NAPI 7016 * 7017 * Set queue with its corresponding napi context. This should be done after 7018 * registering the NAPI handler for the queue-vector and the queues have been 7019 * mapped to the corresponding interrupt vector. 7020 */ 7021 void netif_queue_set_napi(struct net_device *dev, unsigned int queue_index, 7022 enum netdev_queue_type type, struct napi_struct *napi) 7023 { 7024 struct netdev_rx_queue *rxq; 7025 struct netdev_queue *txq; 7026 7027 if (WARN_ON_ONCE(napi && !napi->dev)) 7028 return; 7029 netdev_ops_assert_locked_or_invisible(dev); 7030 7031 switch (type) { 7032 case NETDEV_QUEUE_TYPE_RX: 7033 rxq = __netif_get_rx_queue(dev, queue_index); 7034 rxq->napi = napi; 7035 return; 7036 case NETDEV_QUEUE_TYPE_TX: 7037 txq = netdev_get_tx_queue(dev, queue_index); 7038 txq->napi = napi; 7039 return; 7040 default: 7041 return; 7042 } 7043 } 7044 EXPORT_SYMBOL(netif_queue_set_napi); 7045 7046 static void 7047 netif_napi_irq_notify(struct irq_affinity_notify *notify, 7048 const cpumask_t *mask) 7049 { 7050 struct napi_struct *napi = 7051 container_of(notify, struct napi_struct, notify); 7052 #ifdef CONFIG_RFS_ACCEL 7053 struct cpu_rmap *rmap = napi->dev->rx_cpu_rmap; 7054 int err; 7055 #endif 7056 7057 if (napi->config && napi->dev->irq_affinity_auto) 7058 cpumask_copy(&napi->config->affinity_mask, mask); 7059 7060 #ifdef CONFIG_RFS_ACCEL 7061 if (napi->dev->rx_cpu_rmap_auto) { 7062 err = cpu_rmap_update(rmap, napi->napi_rmap_idx, mask); 7063 if (err) 7064 netdev_warn(napi->dev, "RMAP update failed (%d)\n", 7065 err); 7066 } 7067 #endif 7068 } 7069 7070 #ifdef CONFIG_RFS_ACCEL 7071 static void netif_napi_affinity_release(struct kref *ref) 7072 { 7073 struct napi_struct *napi = 7074 container_of(ref, struct napi_struct, notify.kref); 7075 struct cpu_rmap *rmap = napi->dev->rx_cpu_rmap; 7076 7077 netdev_assert_locked(napi->dev); 7078 WARN_ON(test_and_clear_bit(NAPI_STATE_HAS_NOTIFIER, 7079 &napi->state)); 7080 7081 if (!napi->dev->rx_cpu_rmap_auto) 7082 return; 7083 rmap->obj[napi->napi_rmap_idx] = NULL; 7084 napi->napi_rmap_idx = -1; 7085 cpu_rmap_put(rmap); 7086 } 7087 7088 int netif_enable_cpu_rmap(struct net_device *dev, unsigned int num_irqs) 7089 { 7090 if (dev->rx_cpu_rmap_auto) 7091 return 0; 7092 7093 dev->rx_cpu_rmap = alloc_irq_cpu_rmap(num_irqs); 7094 if (!dev->rx_cpu_rmap) 7095 return -ENOMEM; 7096 7097 dev->rx_cpu_rmap_auto = true; 7098 return 0; 7099 } 7100 EXPORT_SYMBOL(netif_enable_cpu_rmap); 7101 7102 static void netif_del_cpu_rmap(struct net_device *dev) 7103 { 7104 struct cpu_rmap *rmap = dev->rx_cpu_rmap; 7105 7106 if (!dev->rx_cpu_rmap_auto) 7107 return; 7108 7109 /* Free the rmap */ 7110 cpu_rmap_put(rmap); 7111 dev->rx_cpu_rmap = NULL; 7112 dev->rx_cpu_rmap_auto = false; 7113 } 7114 7115 #else 7116 static void netif_napi_affinity_release(struct kref *ref) 7117 { 7118 } 7119 7120 int netif_enable_cpu_rmap(struct net_device *dev, unsigned int num_irqs) 7121 { 7122 return 0; 7123 } 7124 EXPORT_SYMBOL(netif_enable_cpu_rmap); 7125 7126 static void netif_del_cpu_rmap(struct net_device *dev) 7127 { 7128 } 7129 #endif 7130 7131 void netif_set_affinity_auto(struct net_device *dev) 7132 { 7133 unsigned int i, maxqs, numa; 7134 7135 maxqs = max(dev->num_tx_queues, dev->num_rx_queues); 7136 numa = dev_to_node(&dev->dev); 7137 7138 for (i = 0; i < maxqs; i++) 7139 cpumask_set_cpu(cpumask_local_spread(i, numa), 7140 &dev->napi_config[i].affinity_mask); 7141 7142 dev->irq_affinity_auto = true; 7143 } 7144 EXPORT_SYMBOL(netif_set_affinity_auto); 7145 7146 void netif_napi_set_irq_locked(struct napi_struct *napi, int irq) 7147 { 7148 int rc; 7149 7150 netdev_assert_locked_or_invisible(napi->dev); 7151 7152 if (napi->irq == irq) 7153 return; 7154 7155 /* Remove existing resources */ 7156 if (test_and_clear_bit(NAPI_STATE_HAS_NOTIFIER, &napi->state)) 7157 irq_set_affinity_notifier(napi->irq, NULL); 7158 7159 napi->irq = irq; 7160 if (irq < 0 || 7161 (!napi->dev->rx_cpu_rmap_auto && !napi->dev->irq_affinity_auto)) 7162 return; 7163 7164 /* Abort for buggy drivers */ 7165 if (napi->dev->irq_affinity_auto && WARN_ON_ONCE(!napi->config)) 7166 return; 7167 7168 #ifdef CONFIG_RFS_ACCEL 7169 if (napi->dev->rx_cpu_rmap_auto) { 7170 rc = cpu_rmap_add(napi->dev->rx_cpu_rmap, napi); 7171 if (rc < 0) 7172 return; 7173 7174 cpu_rmap_get(napi->dev->rx_cpu_rmap); 7175 napi->napi_rmap_idx = rc; 7176 } 7177 #endif 7178 7179 /* Use core IRQ notifier */ 7180 napi->notify.notify = netif_napi_irq_notify; 7181 napi->notify.release = netif_napi_affinity_release; 7182 rc = irq_set_affinity_notifier(irq, &napi->notify); 7183 if (rc) { 7184 netdev_warn(napi->dev, "Unable to set IRQ notifier (%d)\n", 7185 rc); 7186 goto put_rmap; 7187 } 7188 7189 set_bit(NAPI_STATE_HAS_NOTIFIER, &napi->state); 7190 return; 7191 7192 put_rmap: 7193 #ifdef CONFIG_RFS_ACCEL 7194 if (napi->dev->rx_cpu_rmap_auto) { 7195 napi->dev->rx_cpu_rmap->obj[napi->napi_rmap_idx] = NULL; 7196 cpu_rmap_put(napi->dev->rx_cpu_rmap); 7197 napi->napi_rmap_idx = -1; 7198 } 7199 #endif 7200 napi->notify.notify = NULL; 7201 napi->notify.release = NULL; 7202 } 7203 EXPORT_SYMBOL(netif_napi_set_irq_locked); 7204 7205 static void napi_restore_config(struct napi_struct *n) 7206 { 7207 n->defer_hard_irqs = n->config->defer_hard_irqs; 7208 n->gro_flush_timeout = n->config->gro_flush_timeout; 7209 n->irq_suspend_timeout = n->config->irq_suspend_timeout; 7210 7211 if (n->dev->irq_affinity_auto && 7212 test_bit(NAPI_STATE_HAS_NOTIFIER, &n->state)) 7213 irq_set_affinity(n->irq, &n->config->affinity_mask); 7214 7215 /* a NAPI ID might be stored in the config, if so use it. if not, use 7216 * napi_hash_add to generate one for us. 7217 */ 7218 if (n->config->napi_id) { 7219 napi_hash_add_with_id(n, n->config->napi_id); 7220 } else { 7221 napi_hash_add(n); 7222 n->config->napi_id = n->napi_id; 7223 } 7224 } 7225 7226 static void napi_save_config(struct napi_struct *n) 7227 { 7228 n->config->defer_hard_irqs = n->defer_hard_irqs; 7229 n->config->gro_flush_timeout = n->gro_flush_timeout; 7230 n->config->irq_suspend_timeout = n->irq_suspend_timeout; 7231 napi_hash_del(n); 7232 } 7233 7234 /* Netlink wants the NAPI list to be sorted by ID, if adding a NAPI which will 7235 * inherit an existing ID try to insert it at the right position. 7236 */ 7237 static void 7238 netif_napi_dev_list_add(struct net_device *dev, struct napi_struct *napi) 7239 { 7240 unsigned int new_id, pos_id; 7241 struct list_head *higher; 7242 struct napi_struct *pos; 7243 7244 new_id = UINT_MAX; 7245 if (napi->config && napi->config->napi_id) 7246 new_id = napi->config->napi_id; 7247 7248 higher = &dev->napi_list; 7249 list_for_each_entry(pos, &dev->napi_list, dev_list) { 7250 if (napi_id_valid(pos->napi_id)) 7251 pos_id = pos->napi_id; 7252 else if (pos->config) 7253 pos_id = pos->config->napi_id; 7254 else 7255 pos_id = UINT_MAX; 7256 7257 if (pos_id <= new_id) 7258 break; 7259 higher = &pos->dev_list; 7260 } 7261 list_add_rcu(&napi->dev_list, higher); /* adds after higher */ 7262 } 7263 7264 /* Double check that napi_get_frags() allocates skbs with 7265 * skb->head being backed by slab, not a page fragment. 7266 * This is to make sure bug fixed in 3226b158e67c 7267 * ("net: avoid 32 x truesize under-estimation for tiny skbs") 7268 * does not accidentally come back. 7269 */ 7270 static void napi_get_frags_check(struct napi_struct *napi) 7271 { 7272 struct sk_buff *skb; 7273 7274 local_bh_disable(); 7275 skb = napi_get_frags(napi); 7276 WARN_ON_ONCE(skb && skb->head_frag); 7277 napi_free_frags(napi); 7278 local_bh_enable(); 7279 } 7280 7281 void netif_napi_add_weight_locked(struct net_device *dev, 7282 struct napi_struct *napi, 7283 int (*poll)(struct napi_struct *, int), 7284 int weight) 7285 { 7286 netdev_assert_locked(dev); 7287 if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state))) 7288 return; 7289 7290 INIT_LIST_HEAD(&napi->poll_list); 7291 INIT_HLIST_NODE(&napi->napi_hash_node); 7292 hrtimer_setup(&napi->timer, napi_watchdog, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED); 7293 gro_init(&napi->gro); 7294 napi->skb = NULL; 7295 napi->poll = poll; 7296 if (weight > NAPI_POLL_WEIGHT) 7297 netdev_err_once(dev, "%s() called with weight %d\n", __func__, 7298 weight); 7299 napi->weight = weight; 7300 napi->dev = dev; 7301 #ifdef CONFIG_NETPOLL 7302 napi->poll_owner = -1; 7303 #endif 7304 napi->list_owner = -1; 7305 set_bit(NAPI_STATE_SCHED, &napi->state); 7306 set_bit(NAPI_STATE_NPSVC, &napi->state); 7307 netif_napi_dev_list_add(dev, napi); 7308 7309 /* default settings from sysfs are applied to all NAPIs. any per-NAPI 7310 * configuration will be loaded in napi_enable 7311 */ 7312 napi_set_defer_hard_irqs(napi, READ_ONCE(dev->napi_defer_hard_irqs)); 7313 napi_set_gro_flush_timeout(napi, READ_ONCE(dev->gro_flush_timeout)); 7314 7315 napi_get_frags_check(napi); 7316 /* Create kthread for this napi if dev->threaded is set. 7317 * Clear dev->threaded if kthread creation failed so that 7318 * threaded mode will not be enabled in napi_enable(). 7319 */ 7320 if (dev->threaded && napi_kthread_create(napi)) 7321 dev->threaded = false; 7322 netif_napi_set_irq_locked(napi, -1); 7323 } 7324 EXPORT_SYMBOL(netif_napi_add_weight_locked); 7325 7326 void napi_disable_locked(struct napi_struct *n) 7327 { 7328 unsigned long val, new; 7329 7330 might_sleep(); 7331 netdev_assert_locked(n->dev); 7332 7333 set_bit(NAPI_STATE_DISABLE, &n->state); 7334 7335 val = READ_ONCE(n->state); 7336 do { 7337 while (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) { 7338 usleep_range(20, 200); 7339 val = READ_ONCE(n->state); 7340 } 7341 7342 new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC; 7343 new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL); 7344 } while (!try_cmpxchg(&n->state, &val, new)); 7345 7346 hrtimer_cancel(&n->timer); 7347 7348 if (n->config) 7349 napi_save_config(n); 7350 else 7351 napi_hash_del(n); 7352 7353 clear_bit(NAPI_STATE_DISABLE, &n->state); 7354 } 7355 EXPORT_SYMBOL(napi_disable_locked); 7356 7357 /** 7358 * napi_disable() - prevent NAPI from scheduling 7359 * @n: NAPI context 7360 * 7361 * Stop NAPI from being scheduled on this context. 7362 * Waits till any outstanding processing completes. 7363 * Takes netdev_lock() for associated net_device. 7364 */ 7365 void napi_disable(struct napi_struct *n) 7366 { 7367 netdev_lock(n->dev); 7368 napi_disable_locked(n); 7369 netdev_unlock(n->dev); 7370 } 7371 EXPORT_SYMBOL(napi_disable); 7372 7373 void napi_enable_locked(struct napi_struct *n) 7374 { 7375 unsigned long new, val = READ_ONCE(n->state); 7376 7377 if (n->config) 7378 napi_restore_config(n); 7379 else 7380 napi_hash_add(n); 7381 7382 do { 7383 BUG_ON(!test_bit(NAPI_STATE_SCHED, &val)); 7384 7385 new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC); 7386 if (n->dev->threaded && n->thread) 7387 new |= NAPIF_STATE_THREADED; 7388 } while (!try_cmpxchg(&n->state, &val, new)); 7389 } 7390 EXPORT_SYMBOL(napi_enable_locked); 7391 7392 /** 7393 * napi_enable() - enable NAPI scheduling 7394 * @n: NAPI context 7395 * 7396 * Enable scheduling of a NAPI instance. 7397 * Must be paired with napi_disable(). 7398 * Takes netdev_lock() for associated net_device. 7399 */ 7400 void napi_enable(struct napi_struct *n) 7401 { 7402 netdev_lock(n->dev); 7403 napi_enable_locked(n); 7404 netdev_unlock(n->dev); 7405 } 7406 EXPORT_SYMBOL(napi_enable); 7407 7408 /* Must be called in process context */ 7409 void __netif_napi_del_locked(struct napi_struct *napi) 7410 { 7411 netdev_assert_locked(napi->dev); 7412 7413 if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state)) 7414 return; 7415 7416 /* Make sure NAPI is disabled (or was never enabled). */ 7417 WARN_ON(!test_bit(NAPI_STATE_SCHED, &napi->state)); 7418 7419 if (test_and_clear_bit(NAPI_STATE_HAS_NOTIFIER, &napi->state)) 7420 irq_set_affinity_notifier(napi->irq, NULL); 7421 7422 if (napi->config) { 7423 napi->index = -1; 7424 napi->config = NULL; 7425 } 7426 7427 list_del_rcu(&napi->dev_list); 7428 napi_free_frags(napi); 7429 7430 gro_cleanup(&napi->gro); 7431 7432 if (napi->thread) { 7433 kthread_stop(napi->thread); 7434 napi->thread = NULL; 7435 } 7436 } 7437 EXPORT_SYMBOL(__netif_napi_del_locked); 7438 7439 static int __napi_poll(struct napi_struct *n, bool *repoll) 7440 { 7441 int work, weight; 7442 7443 weight = n->weight; 7444 7445 /* This NAPI_STATE_SCHED test is for avoiding a race 7446 * with netpoll's poll_napi(). Only the entity which 7447 * obtains the lock and sees NAPI_STATE_SCHED set will 7448 * actually make the ->poll() call. Therefore we avoid 7449 * accidentally calling ->poll() when NAPI is not scheduled. 7450 */ 7451 work = 0; 7452 if (napi_is_scheduled(n)) { 7453 work = n->poll(n, weight); 7454 trace_napi_poll(n, work, weight); 7455 7456 xdp_do_check_flushed(n); 7457 } 7458 7459 if (unlikely(work > weight)) 7460 netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n", 7461 n->poll, work, weight); 7462 7463 if (likely(work < weight)) 7464 return work; 7465 7466 /* Drivers must not modify the NAPI state if they 7467 * consume the entire weight. In such cases this code 7468 * still "owns" the NAPI instance and therefore can 7469 * move the instance around on the list at-will. 7470 */ 7471 if (unlikely(napi_disable_pending(n))) { 7472 napi_complete(n); 7473 return work; 7474 } 7475 7476 /* The NAPI context has more processing work, but busy-polling 7477 * is preferred. Exit early. 7478 */ 7479 if (napi_prefer_busy_poll(n)) { 7480 if (napi_complete_done(n, work)) { 7481 /* If timeout is not set, we need to make sure 7482 * that the NAPI is re-scheduled. 7483 */ 7484 napi_schedule(n); 7485 } 7486 return work; 7487 } 7488 7489 /* Flush too old packets. If HZ < 1000, flush all packets */ 7490 gro_flush(&n->gro, HZ >= 1000); 7491 gro_normal_list(&n->gro); 7492 7493 /* Some drivers may have called napi_schedule 7494 * prior to exhausting their budget. 7495 */ 7496 if (unlikely(!list_empty(&n->poll_list))) { 7497 pr_warn_once("%s: Budget exhausted after napi rescheduled\n", 7498 n->dev ? n->dev->name : "backlog"); 7499 return work; 7500 } 7501 7502 *repoll = true; 7503 7504 return work; 7505 } 7506 7507 static int napi_poll(struct napi_struct *n, struct list_head *repoll) 7508 { 7509 bool do_repoll = false; 7510 void *have; 7511 int work; 7512 7513 list_del_init(&n->poll_list); 7514 7515 have = netpoll_poll_lock(n); 7516 7517 work = __napi_poll(n, &do_repoll); 7518 7519 if (do_repoll) { 7520 #if defined(CONFIG_DEBUG_NET) 7521 if (unlikely(!napi_is_scheduled(n))) 7522 pr_crit("repoll requested for device %s %ps but napi is not scheduled.\n", 7523 n->dev->name, n->poll); 7524 #endif 7525 list_add_tail(&n->poll_list, repoll); 7526 } 7527 netpoll_poll_unlock(have); 7528 7529 return work; 7530 } 7531 7532 static int napi_thread_wait(struct napi_struct *napi) 7533 { 7534 set_current_state(TASK_INTERRUPTIBLE); 7535 7536 while (!kthread_should_stop()) { 7537 /* Testing SCHED_THREADED bit here to make sure the current 7538 * kthread owns this napi and could poll on this napi. 7539 * Testing SCHED bit is not enough because SCHED bit might be 7540 * set by some other busy poll thread or by napi_disable(). 7541 */ 7542 if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state)) { 7543 WARN_ON(!list_empty(&napi->poll_list)); 7544 __set_current_state(TASK_RUNNING); 7545 return 0; 7546 } 7547 7548 schedule(); 7549 set_current_state(TASK_INTERRUPTIBLE); 7550 } 7551 __set_current_state(TASK_RUNNING); 7552 7553 return -1; 7554 } 7555 7556 static void napi_threaded_poll_loop(struct napi_struct *napi) 7557 { 7558 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; 7559 struct softnet_data *sd; 7560 unsigned long last_qs = jiffies; 7561 7562 for (;;) { 7563 bool repoll = false; 7564 void *have; 7565 7566 local_bh_disable(); 7567 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx); 7568 7569 sd = this_cpu_ptr(&softnet_data); 7570 sd->in_napi_threaded_poll = true; 7571 7572 have = netpoll_poll_lock(napi); 7573 __napi_poll(napi, &repoll); 7574 netpoll_poll_unlock(have); 7575 7576 sd->in_napi_threaded_poll = false; 7577 barrier(); 7578 7579 if (sd_has_rps_ipi_waiting(sd)) { 7580 local_irq_disable(); 7581 net_rps_action_and_irq_enable(sd); 7582 } 7583 skb_defer_free_flush(sd); 7584 bpf_net_ctx_clear(bpf_net_ctx); 7585 local_bh_enable(); 7586 7587 if (!repoll) 7588 break; 7589 7590 rcu_softirq_qs_periodic(last_qs); 7591 cond_resched(); 7592 } 7593 } 7594 7595 static int napi_threaded_poll(void *data) 7596 { 7597 struct napi_struct *napi = data; 7598 7599 while (!napi_thread_wait(napi)) 7600 napi_threaded_poll_loop(napi); 7601 7602 return 0; 7603 } 7604 7605 static __latent_entropy void net_rx_action(void) 7606 { 7607 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 7608 unsigned long time_limit = jiffies + 7609 usecs_to_jiffies(READ_ONCE(net_hotdata.netdev_budget_usecs)); 7610 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; 7611 int budget = READ_ONCE(net_hotdata.netdev_budget); 7612 LIST_HEAD(list); 7613 LIST_HEAD(repoll); 7614 7615 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx); 7616 start: 7617 sd->in_net_rx_action = true; 7618 local_irq_disable(); 7619 list_splice_init(&sd->poll_list, &list); 7620 local_irq_enable(); 7621 7622 for (;;) { 7623 struct napi_struct *n; 7624 7625 skb_defer_free_flush(sd); 7626 7627 if (list_empty(&list)) { 7628 if (list_empty(&repoll)) { 7629 sd->in_net_rx_action = false; 7630 barrier(); 7631 /* We need to check if ____napi_schedule() 7632 * had refilled poll_list while 7633 * sd->in_net_rx_action was true. 7634 */ 7635 if (!list_empty(&sd->poll_list)) 7636 goto start; 7637 if (!sd_has_rps_ipi_waiting(sd)) 7638 goto end; 7639 } 7640 break; 7641 } 7642 7643 n = list_first_entry(&list, struct napi_struct, poll_list); 7644 budget -= napi_poll(n, &repoll); 7645 7646 /* If softirq window is exhausted then punt. 7647 * Allow this to run for 2 jiffies since which will allow 7648 * an average latency of 1.5/HZ. 7649 */ 7650 if (unlikely(budget <= 0 || 7651 time_after_eq(jiffies, time_limit))) { 7652 /* Pairs with READ_ONCE() in softnet_seq_show() */ 7653 WRITE_ONCE(sd->time_squeeze, sd->time_squeeze + 1); 7654 break; 7655 } 7656 } 7657 7658 local_irq_disable(); 7659 7660 list_splice_tail_init(&sd->poll_list, &list); 7661 list_splice_tail(&repoll, &list); 7662 list_splice(&list, &sd->poll_list); 7663 if (!list_empty(&sd->poll_list)) 7664 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 7665 else 7666 sd->in_net_rx_action = false; 7667 7668 net_rps_action_and_irq_enable(sd); 7669 end: 7670 bpf_net_ctx_clear(bpf_net_ctx); 7671 } 7672 7673 struct netdev_adjacent { 7674 struct net_device *dev; 7675 netdevice_tracker dev_tracker; 7676 7677 /* upper master flag, there can only be one master device per list */ 7678 bool master; 7679 7680 /* lookup ignore flag */ 7681 bool ignore; 7682 7683 /* counter for the number of times this device was added to us */ 7684 u16 ref_nr; 7685 7686 /* private field for the users */ 7687 void *private; 7688 7689 struct list_head list; 7690 struct rcu_head rcu; 7691 }; 7692 7693 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev, 7694 struct list_head *adj_list) 7695 { 7696 struct netdev_adjacent *adj; 7697 7698 list_for_each_entry(adj, adj_list, list) { 7699 if (adj->dev == adj_dev) 7700 return adj; 7701 } 7702 return NULL; 7703 } 7704 7705 static int ____netdev_has_upper_dev(struct net_device *upper_dev, 7706 struct netdev_nested_priv *priv) 7707 { 7708 struct net_device *dev = (struct net_device *)priv->data; 7709 7710 return upper_dev == dev; 7711 } 7712 7713 /** 7714 * netdev_has_upper_dev - Check if device is linked to an upper device 7715 * @dev: device 7716 * @upper_dev: upper device to check 7717 * 7718 * Find out if a device is linked to specified upper device and return true 7719 * in case it is. Note that this checks only immediate upper device, 7720 * not through a complete stack of devices. The caller must hold the RTNL lock. 7721 */ 7722 bool netdev_has_upper_dev(struct net_device *dev, 7723 struct net_device *upper_dev) 7724 { 7725 struct netdev_nested_priv priv = { 7726 .data = (void *)upper_dev, 7727 }; 7728 7729 ASSERT_RTNL(); 7730 7731 return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev, 7732 &priv); 7733 } 7734 EXPORT_SYMBOL(netdev_has_upper_dev); 7735 7736 /** 7737 * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device 7738 * @dev: device 7739 * @upper_dev: upper device to check 7740 * 7741 * Find out if a device is linked to specified upper device and return true 7742 * in case it is. Note that this checks the entire upper device chain. 7743 * The caller must hold rcu lock. 7744 */ 7745 7746 bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 7747 struct net_device *upper_dev) 7748 { 7749 struct netdev_nested_priv priv = { 7750 .data = (void *)upper_dev, 7751 }; 7752 7753 return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev, 7754 &priv); 7755 } 7756 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu); 7757 7758 /** 7759 * netdev_has_any_upper_dev - Check if device is linked to some device 7760 * @dev: device 7761 * 7762 * Find out if a device is linked to an upper device and return true in case 7763 * it is. The caller must hold the RTNL lock. 7764 */ 7765 bool netdev_has_any_upper_dev(struct net_device *dev) 7766 { 7767 ASSERT_RTNL(); 7768 7769 return !list_empty(&dev->adj_list.upper); 7770 } 7771 EXPORT_SYMBOL(netdev_has_any_upper_dev); 7772 7773 /** 7774 * netdev_master_upper_dev_get - Get master upper device 7775 * @dev: device 7776 * 7777 * Find a master upper device and return pointer to it or NULL in case 7778 * it's not there. The caller must hold the RTNL lock. 7779 */ 7780 struct net_device *netdev_master_upper_dev_get(struct net_device *dev) 7781 { 7782 struct netdev_adjacent *upper; 7783 7784 ASSERT_RTNL(); 7785 7786 if (list_empty(&dev->adj_list.upper)) 7787 return NULL; 7788 7789 upper = list_first_entry(&dev->adj_list.upper, 7790 struct netdev_adjacent, list); 7791 if (likely(upper->master)) 7792 return upper->dev; 7793 return NULL; 7794 } 7795 EXPORT_SYMBOL(netdev_master_upper_dev_get); 7796 7797 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev) 7798 { 7799 struct netdev_adjacent *upper; 7800 7801 ASSERT_RTNL(); 7802 7803 if (list_empty(&dev->adj_list.upper)) 7804 return NULL; 7805 7806 upper = list_first_entry(&dev->adj_list.upper, 7807 struct netdev_adjacent, list); 7808 if (likely(upper->master) && !upper->ignore) 7809 return upper->dev; 7810 return NULL; 7811 } 7812 7813 /** 7814 * netdev_has_any_lower_dev - Check if device is linked to some device 7815 * @dev: device 7816 * 7817 * Find out if a device is linked to a lower device and return true in case 7818 * it is. The caller must hold the RTNL lock. 7819 */ 7820 static bool netdev_has_any_lower_dev(struct net_device *dev) 7821 { 7822 ASSERT_RTNL(); 7823 7824 return !list_empty(&dev->adj_list.lower); 7825 } 7826 7827 void *netdev_adjacent_get_private(struct list_head *adj_list) 7828 { 7829 struct netdev_adjacent *adj; 7830 7831 adj = list_entry(adj_list, struct netdev_adjacent, list); 7832 7833 return adj->private; 7834 } 7835 EXPORT_SYMBOL(netdev_adjacent_get_private); 7836 7837 /** 7838 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list 7839 * @dev: device 7840 * @iter: list_head ** of the current position 7841 * 7842 * Gets the next device from the dev's upper list, starting from iter 7843 * position. The caller must hold RCU read lock. 7844 */ 7845 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 7846 struct list_head **iter) 7847 { 7848 struct netdev_adjacent *upper; 7849 7850 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 7851 7852 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 7853 7854 if (&upper->list == &dev->adj_list.upper) 7855 return NULL; 7856 7857 *iter = &upper->list; 7858 7859 return upper->dev; 7860 } 7861 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu); 7862 7863 static struct net_device *__netdev_next_upper_dev(struct net_device *dev, 7864 struct list_head **iter, 7865 bool *ignore) 7866 { 7867 struct netdev_adjacent *upper; 7868 7869 upper = list_entry((*iter)->next, struct netdev_adjacent, list); 7870 7871 if (&upper->list == &dev->adj_list.upper) 7872 return NULL; 7873 7874 *iter = &upper->list; 7875 *ignore = upper->ignore; 7876 7877 return upper->dev; 7878 } 7879 7880 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev, 7881 struct list_head **iter) 7882 { 7883 struct netdev_adjacent *upper; 7884 7885 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 7886 7887 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 7888 7889 if (&upper->list == &dev->adj_list.upper) 7890 return NULL; 7891 7892 *iter = &upper->list; 7893 7894 return upper->dev; 7895 } 7896 7897 static int __netdev_walk_all_upper_dev(struct net_device *dev, 7898 int (*fn)(struct net_device *dev, 7899 struct netdev_nested_priv *priv), 7900 struct netdev_nested_priv *priv) 7901 { 7902 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7903 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7904 int ret, cur = 0; 7905 bool ignore; 7906 7907 now = dev; 7908 iter = &dev->adj_list.upper; 7909 7910 while (1) { 7911 if (now != dev) { 7912 ret = fn(now, priv); 7913 if (ret) 7914 return ret; 7915 } 7916 7917 next = NULL; 7918 while (1) { 7919 udev = __netdev_next_upper_dev(now, &iter, &ignore); 7920 if (!udev) 7921 break; 7922 if (ignore) 7923 continue; 7924 7925 next = udev; 7926 niter = &udev->adj_list.upper; 7927 dev_stack[cur] = now; 7928 iter_stack[cur++] = iter; 7929 break; 7930 } 7931 7932 if (!next) { 7933 if (!cur) 7934 return 0; 7935 next = dev_stack[--cur]; 7936 niter = iter_stack[cur]; 7937 } 7938 7939 now = next; 7940 iter = niter; 7941 } 7942 7943 return 0; 7944 } 7945 7946 int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 7947 int (*fn)(struct net_device *dev, 7948 struct netdev_nested_priv *priv), 7949 struct netdev_nested_priv *priv) 7950 { 7951 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7952 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7953 int ret, cur = 0; 7954 7955 now = dev; 7956 iter = &dev->adj_list.upper; 7957 7958 while (1) { 7959 if (now != dev) { 7960 ret = fn(now, priv); 7961 if (ret) 7962 return ret; 7963 } 7964 7965 next = NULL; 7966 while (1) { 7967 udev = netdev_next_upper_dev_rcu(now, &iter); 7968 if (!udev) 7969 break; 7970 7971 next = udev; 7972 niter = &udev->adj_list.upper; 7973 dev_stack[cur] = now; 7974 iter_stack[cur++] = iter; 7975 break; 7976 } 7977 7978 if (!next) { 7979 if (!cur) 7980 return 0; 7981 next = dev_stack[--cur]; 7982 niter = iter_stack[cur]; 7983 } 7984 7985 now = next; 7986 iter = niter; 7987 } 7988 7989 return 0; 7990 } 7991 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu); 7992 7993 static bool __netdev_has_upper_dev(struct net_device *dev, 7994 struct net_device *upper_dev) 7995 { 7996 struct netdev_nested_priv priv = { 7997 .flags = 0, 7998 .data = (void *)upper_dev, 7999 }; 8000 8001 ASSERT_RTNL(); 8002 8003 return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev, 8004 &priv); 8005 } 8006 8007 /** 8008 * netdev_lower_get_next_private - Get the next ->private from the 8009 * lower neighbour list 8010 * @dev: device 8011 * @iter: list_head ** of the current position 8012 * 8013 * Gets the next netdev_adjacent->private from the dev's lower neighbour 8014 * list, starting from iter position. The caller must hold either hold the 8015 * RTNL lock or its own locking that guarantees that the neighbour lower 8016 * list will remain unchanged. 8017 */ 8018 void *netdev_lower_get_next_private(struct net_device *dev, 8019 struct list_head **iter) 8020 { 8021 struct netdev_adjacent *lower; 8022 8023 lower = list_entry(*iter, struct netdev_adjacent, list); 8024 8025 if (&lower->list == &dev->adj_list.lower) 8026 return NULL; 8027 8028 *iter = lower->list.next; 8029 8030 return lower->private; 8031 } 8032 EXPORT_SYMBOL(netdev_lower_get_next_private); 8033 8034 /** 8035 * netdev_lower_get_next_private_rcu - Get the next ->private from the 8036 * lower neighbour list, RCU 8037 * variant 8038 * @dev: device 8039 * @iter: list_head ** of the current position 8040 * 8041 * Gets the next netdev_adjacent->private from the dev's lower neighbour 8042 * list, starting from iter position. The caller must hold RCU read lock. 8043 */ 8044 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 8045 struct list_head **iter) 8046 { 8047 struct netdev_adjacent *lower; 8048 8049 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); 8050 8051 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 8052 8053 if (&lower->list == &dev->adj_list.lower) 8054 return NULL; 8055 8056 *iter = &lower->list; 8057 8058 return lower->private; 8059 } 8060 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu); 8061 8062 /** 8063 * netdev_lower_get_next - Get the next device from the lower neighbour 8064 * list 8065 * @dev: device 8066 * @iter: list_head ** of the current position 8067 * 8068 * Gets the next netdev_adjacent from the dev's lower neighbour 8069 * list, starting from iter position. The caller must hold RTNL lock or 8070 * its own locking that guarantees that the neighbour lower 8071 * list will remain unchanged. 8072 */ 8073 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter) 8074 { 8075 struct netdev_adjacent *lower; 8076 8077 lower = list_entry(*iter, struct netdev_adjacent, list); 8078 8079 if (&lower->list == &dev->adj_list.lower) 8080 return NULL; 8081 8082 *iter = lower->list.next; 8083 8084 return lower->dev; 8085 } 8086 EXPORT_SYMBOL(netdev_lower_get_next); 8087 8088 static struct net_device *netdev_next_lower_dev(struct net_device *dev, 8089 struct list_head **iter) 8090 { 8091 struct netdev_adjacent *lower; 8092 8093 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 8094 8095 if (&lower->list == &dev->adj_list.lower) 8096 return NULL; 8097 8098 *iter = &lower->list; 8099 8100 return lower->dev; 8101 } 8102 8103 static struct net_device *__netdev_next_lower_dev(struct net_device *dev, 8104 struct list_head **iter, 8105 bool *ignore) 8106 { 8107 struct netdev_adjacent *lower; 8108 8109 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 8110 8111 if (&lower->list == &dev->adj_list.lower) 8112 return NULL; 8113 8114 *iter = &lower->list; 8115 *ignore = lower->ignore; 8116 8117 return lower->dev; 8118 } 8119 8120 int netdev_walk_all_lower_dev(struct net_device *dev, 8121 int (*fn)(struct net_device *dev, 8122 struct netdev_nested_priv *priv), 8123 struct netdev_nested_priv *priv) 8124 { 8125 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 8126 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 8127 int ret, cur = 0; 8128 8129 now = dev; 8130 iter = &dev->adj_list.lower; 8131 8132 while (1) { 8133 if (now != dev) { 8134 ret = fn(now, priv); 8135 if (ret) 8136 return ret; 8137 } 8138 8139 next = NULL; 8140 while (1) { 8141 ldev = netdev_next_lower_dev(now, &iter); 8142 if (!ldev) 8143 break; 8144 8145 next = ldev; 8146 niter = &ldev->adj_list.lower; 8147 dev_stack[cur] = now; 8148 iter_stack[cur++] = iter; 8149 break; 8150 } 8151 8152 if (!next) { 8153 if (!cur) 8154 return 0; 8155 next = dev_stack[--cur]; 8156 niter = iter_stack[cur]; 8157 } 8158 8159 now = next; 8160 iter = niter; 8161 } 8162 8163 return 0; 8164 } 8165 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev); 8166 8167 static int __netdev_walk_all_lower_dev(struct net_device *dev, 8168 int (*fn)(struct net_device *dev, 8169 struct netdev_nested_priv *priv), 8170 struct netdev_nested_priv *priv) 8171 { 8172 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 8173 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 8174 int ret, cur = 0; 8175 bool ignore; 8176 8177 now = dev; 8178 iter = &dev->adj_list.lower; 8179 8180 while (1) { 8181 if (now != dev) { 8182 ret = fn(now, priv); 8183 if (ret) 8184 return ret; 8185 } 8186 8187 next = NULL; 8188 while (1) { 8189 ldev = __netdev_next_lower_dev(now, &iter, &ignore); 8190 if (!ldev) 8191 break; 8192 if (ignore) 8193 continue; 8194 8195 next = ldev; 8196 niter = &ldev->adj_list.lower; 8197 dev_stack[cur] = now; 8198 iter_stack[cur++] = iter; 8199 break; 8200 } 8201 8202 if (!next) { 8203 if (!cur) 8204 return 0; 8205 next = dev_stack[--cur]; 8206 niter = iter_stack[cur]; 8207 } 8208 8209 now = next; 8210 iter = niter; 8211 } 8212 8213 return 0; 8214 } 8215 8216 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev, 8217 struct list_head **iter) 8218 { 8219 struct netdev_adjacent *lower; 8220 8221 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 8222 if (&lower->list == &dev->adj_list.lower) 8223 return NULL; 8224 8225 *iter = &lower->list; 8226 8227 return lower->dev; 8228 } 8229 EXPORT_SYMBOL(netdev_next_lower_dev_rcu); 8230 8231 static u8 __netdev_upper_depth(struct net_device *dev) 8232 { 8233 struct net_device *udev; 8234 struct list_head *iter; 8235 u8 max_depth = 0; 8236 bool ignore; 8237 8238 for (iter = &dev->adj_list.upper, 8239 udev = __netdev_next_upper_dev(dev, &iter, &ignore); 8240 udev; 8241 udev = __netdev_next_upper_dev(dev, &iter, &ignore)) { 8242 if (ignore) 8243 continue; 8244 if (max_depth < udev->upper_level) 8245 max_depth = udev->upper_level; 8246 } 8247 8248 return max_depth; 8249 } 8250 8251 static u8 __netdev_lower_depth(struct net_device *dev) 8252 { 8253 struct net_device *ldev; 8254 struct list_head *iter; 8255 u8 max_depth = 0; 8256 bool ignore; 8257 8258 for (iter = &dev->adj_list.lower, 8259 ldev = __netdev_next_lower_dev(dev, &iter, &ignore); 8260 ldev; 8261 ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) { 8262 if (ignore) 8263 continue; 8264 if (max_depth < ldev->lower_level) 8265 max_depth = ldev->lower_level; 8266 } 8267 8268 return max_depth; 8269 } 8270 8271 static int __netdev_update_upper_level(struct net_device *dev, 8272 struct netdev_nested_priv *__unused) 8273 { 8274 dev->upper_level = __netdev_upper_depth(dev) + 1; 8275 return 0; 8276 } 8277 8278 #ifdef CONFIG_LOCKDEP 8279 static LIST_HEAD(net_unlink_list); 8280 8281 static void net_unlink_todo(struct net_device *dev) 8282 { 8283 if (list_empty(&dev->unlink_list)) 8284 list_add_tail(&dev->unlink_list, &net_unlink_list); 8285 } 8286 #endif 8287 8288 static int __netdev_update_lower_level(struct net_device *dev, 8289 struct netdev_nested_priv *priv) 8290 { 8291 dev->lower_level = __netdev_lower_depth(dev) + 1; 8292 8293 #ifdef CONFIG_LOCKDEP 8294 if (!priv) 8295 return 0; 8296 8297 if (priv->flags & NESTED_SYNC_IMM) 8298 dev->nested_level = dev->lower_level - 1; 8299 if (priv->flags & NESTED_SYNC_TODO) 8300 net_unlink_todo(dev); 8301 #endif 8302 return 0; 8303 } 8304 8305 int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 8306 int (*fn)(struct net_device *dev, 8307 struct netdev_nested_priv *priv), 8308 struct netdev_nested_priv *priv) 8309 { 8310 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 8311 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 8312 int ret, cur = 0; 8313 8314 now = dev; 8315 iter = &dev->adj_list.lower; 8316 8317 while (1) { 8318 if (now != dev) { 8319 ret = fn(now, priv); 8320 if (ret) 8321 return ret; 8322 } 8323 8324 next = NULL; 8325 while (1) { 8326 ldev = netdev_next_lower_dev_rcu(now, &iter); 8327 if (!ldev) 8328 break; 8329 8330 next = ldev; 8331 niter = &ldev->adj_list.lower; 8332 dev_stack[cur] = now; 8333 iter_stack[cur++] = iter; 8334 break; 8335 } 8336 8337 if (!next) { 8338 if (!cur) 8339 return 0; 8340 next = dev_stack[--cur]; 8341 niter = iter_stack[cur]; 8342 } 8343 8344 now = next; 8345 iter = niter; 8346 } 8347 8348 return 0; 8349 } 8350 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu); 8351 8352 /** 8353 * netdev_lower_get_first_private_rcu - Get the first ->private from the 8354 * lower neighbour list, RCU 8355 * variant 8356 * @dev: device 8357 * 8358 * Gets the first netdev_adjacent->private from the dev's lower neighbour 8359 * list. The caller must hold RCU read lock. 8360 */ 8361 void *netdev_lower_get_first_private_rcu(struct net_device *dev) 8362 { 8363 struct netdev_adjacent *lower; 8364 8365 lower = list_first_or_null_rcu(&dev->adj_list.lower, 8366 struct netdev_adjacent, list); 8367 if (lower) 8368 return lower->private; 8369 return NULL; 8370 } 8371 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu); 8372 8373 /** 8374 * netdev_master_upper_dev_get_rcu - Get master upper device 8375 * @dev: device 8376 * 8377 * Find a master upper device and return pointer to it or NULL in case 8378 * it's not there. The caller must hold the RCU read lock. 8379 */ 8380 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev) 8381 { 8382 struct netdev_adjacent *upper; 8383 8384 upper = list_first_or_null_rcu(&dev->adj_list.upper, 8385 struct netdev_adjacent, list); 8386 if (upper && likely(upper->master)) 8387 return upper->dev; 8388 return NULL; 8389 } 8390 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu); 8391 8392 static int netdev_adjacent_sysfs_add(struct net_device *dev, 8393 struct net_device *adj_dev, 8394 struct list_head *dev_list) 8395 { 8396 char linkname[IFNAMSIZ+7]; 8397 8398 sprintf(linkname, dev_list == &dev->adj_list.upper ? 8399 "upper_%s" : "lower_%s", adj_dev->name); 8400 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj), 8401 linkname); 8402 } 8403 static void netdev_adjacent_sysfs_del(struct net_device *dev, 8404 char *name, 8405 struct list_head *dev_list) 8406 { 8407 char linkname[IFNAMSIZ+7]; 8408 8409 sprintf(linkname, dev_list == &dev->adj_list.upper ? 8410 "upper_%s" : "lower_%s", name); 8411 sysfs_remove_link(&(dev->dev.kobj), linkname); 8412 } 8413 8414 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev, 8415 struct net_device *adj_dev, 8416 struct list_head *dev_list) 8417 { 8418 return (dev_list == &dev->adj_list.upper || 8419 dev_list == &dev->adj_list.lower) && 8420 net_eq(dev_net(dev), dev_net(adj_dev)); 8421 } 8422 8423 static int __netdev_adjacent_dev_insert(struct net_device *dev, 8424 struct net_device *adj_dev, 8425 struct list_head *dev_list, 8426 void *private, bool master) 8427 { 8428 struct netdev_adjacent *adj; 8429 int ret; 8430 8431 adj = __netdev_find_adj(adj_dev, dev_list); 8432 8433 if (adj) { 8434 adj->ref_nr += 1; 8435 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n", 8436 dev->name, adj_dev->name, adj->ref_nr); 8437 8438 return 0; 8439 } 8440 8441 adj = kmalloc(sizeof(*adj), GFP_KERNEL); 8442 if (!adj) 8443 return -ENOMEM; 8444 8445 adj->dev = adj_dev; 8446 adj->master = master; 8447 adj->ref_nr = 1; 8448 adj->private = private; 8449 adj->ignore = false; 8450 netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL); 8451 8452 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n", 8453 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name); 8454 8455 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) { 8456 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list); 8457 if (ret) 8458 goto free_adj; 8459 } 8460 8461 /* Ensure that master link is always the first item in list. */ 8462 if (master) { 8463 ret = sysfs_create_link(&(dev->dev.kobj), 8464 &(adj_dev->dev.kobj), "master"); 8465 if (ret) 8466 goto remove_symlinks; 8467 8468 list_add_rcu(&adj->list, dev_list); 8469 } else { 8470 list_add_tail_rcu(&adj->list, dev_list); 8471 } 8472 8473 return 0; 8474 8475 remove_symlinks: 8476 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 8477 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 8478 free_adj: 8479 netdev_put(adj_dev, &adj->dev_tracker); 8480 kfree(adj); 8481 8482 return ret; 8483 } 8484 8485 static void __netdev_adjacent_dev_remove(struct net_device *dev, 8486 struct net_device *adj_dev, 8487 u16 ref_nr, 8488 struct list_head *dev_list) 8489 { 8490 struct netdev_adjacent *adj; 8491 8492 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n", 8493 dev->name, adj_dev->name, ref_nr); 8494 8495 adj = __netdev_find_adj(adj_dev, dev_list); 8496 8497 if (!adj) { 8498 pr_err("Adjacency does not exist for device %s from %s\n", 8499 dev->name, adj_dev->name); 8500 WARN_ON(1); 8501 return; 8502 } 8503 8504 if (adj->ref_nr > ref_nr) { 8505 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n", 8506 dev->name, adj_dev->name, ref_nr, 8507 adj->ref_nr - ref_nr); 8508 adj->ref_nr -= ref_nr; 8509 return; 8510 } 8511 8512 if (adj->master) 8513 sysfs_remove_link(&(dev->dev.kobj), "master"); 8514 8515 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 8516 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 8517 8518 list_del_rcu(&adj->list); 8519 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n", 8520 adj_dev->name, dev->name, adj_dev->name); 8521 netdev_put(adj_dev, &adj->dev_tracker); 8522 kfree_rcu(adj, rcu); 8523 } 8524 8525 static int __netdev_adjacent_dev_link_lists(struct net_device *dev, 8526 struct net_device *upper_dev, 8527 struct list_head *up_list, 8528 struct list_head *down_list, 8529 void *private, bool master) 8530 { 8531 int ret; 8532 8533 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, 8534 private, master); 8535 if (ret) 8536 return ret; 8537 8538 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, 8539 private, false); 8540 if (ret) { 8541 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list); 8542 return ret; 8543 } 8544 8545 return 0; 8546 } 8547 8548 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev, 8549 struct net_device *upper_dev, 8550 u16 ref_nr, 8551 struct list_head *up_list, 8552 struct list_head *down_list) 8553 { 8554 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list); 8555 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list); 8556 } 8557 8558 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev, 8559 struct net_device *upper_dev, 8560 void *private, bool master) 8561 { 8562 return __netdev_adjacent_dev_link_lists(dev, upper_dev, 8563 &dev->adj_list.upper, 8564 &upper_dev->adj_list.lower, 8565 private, master); 8566 } 8567 8568 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev, 8569 struct net_device *upper_dev) 8570 { 8571 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1, 8572 &dev->adj_list.upper, 8573 &upper_dev->adj_list.lower); 8574 } 8575 8576 static int __netdev_upper_dev_link(struct net_device *dev, 8577 struct net_device *upper_dev, bool master, 8578 void *upper_priv, void *upper_info, 8579 struct netdev_nested_priv *priv, 8580 struct netlink_ext_ack *extack) 8581 { 8582 struct netdev_notifier_changeupper_info changeupper_info = { 8583 .info = { 8584 .dev = dev, 8585 .extack = extack, 8586 }, 8587 .upper_dev = upper_dev, 8588 .master = master, 8589 .linking = true, 8590 .upper_info = upper_info, 8591 }; 8592 struct net_device *master_dev; 8593 int ret = 0; 8594 8595 ASSERT_RTNL(); 8596 8597 if (dev == upper_dev) 8598 return -EBUSY; 8599 8600 /* To prevent loops, check if dev is not upper device to upper_dev. */ 8601 if (__netdev_has_upper_dev(upper_dev, dev)) 8602 return -EBUSY; 8603 8604 if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV) 8605 return -EMLINK; 8606 8607 if (!master) { 8608 if (__netdev_has_upper_dev(dev, upper_dev)) 8609 return -EEXIST; 8610 } else { 8611 master_dev = __netdev_master_upper_dev_get(dev); 8612 if (master_dev) 8613 return master_dev == upper_dev ? -EEXIST : -EBUSY; 8614 } 8615 8616 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 8617 &changeupper_info.info); 8618 ret = notifier_to_errno(ret); 8619 if (ret) 8620 return ret; 8621 8622 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv, 8623 master); 8624 if (ret) 8625 return ret; 8626 8627 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 8628 &changeupper_info.info); 8629 ret = notifier_to_errno(ret); 8630 if (ret) 8631 goto rollback; 8632 8633 __netdev_update_upper_level(dev, NULL); 8634 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL); 8635 8636 __netdev_update_lower_level(upper_dev, priv); 8637 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level, 8638 priv); 8639 8640 return 0; 8641 8642 rollback: 8643 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 8644 8645 return ret; 8646 } 8647 8648 /** 8649 * netdev_upper_dev_link - Add a link to the upper device 8650 * @dev: device 8651 * @upper_dev: new upper device 8652 * @extack: netlink extended ack 8653 * 8654 * Adds a link to device which is upper to this one. The caller must hold 8655 * the RTNL lock. On a failure a negative errno code is returned. 8656 * On success the reference counts are adjusted and the function 8657 * returns zero. 8658 */ 8659 int netdev_upper_dev_link(struct net_device *dev, 8660 struct net_device *upper_dev, 8661 struct netlink_ext_ack *extack) 8662 { 8663 struct netdev_nested_priv priv = { 8664 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO, 8665 .data = NULL, 8666 }; 8667 8668 return __netdev_upper_dev_link(dev, upper_dev, false, 8669 NULL, NULL, &priv, extack); 8670 } 8671 EXPORT_SYMBOL(netdev_upper_dev_link); 8672 8673 /** 8674 * netdev_master_upper_dev_link - Add a master link to the upper device 8675 * @dev: device 8676 * @upper_dev: new upper device 8677 * @upper_priv: upper device private 8678 * @upper_info: upper info to be passed down via notifier 8679 * @extack: netlink extended ack 8680 * 8681 * Adds a link to device which is upper to this one. In this case, only 8682 * one master upper device can be linked, although other non-master devices 8683 * might be linked as well. The caller must hold the RTNL lock. 8684 * On a failure a negative errno code is returned. On success the reference 8685 * counts are adjusted and the function returns zero. 8686 */ 8687 int netdev_master_upper_dev_link(struct net_device *dev, 8688 struct net_device *upper_dev, 8689 void *upper_priv, void *upper_info, 8690 struct netlink_ext_ack *extack) 8691 { 8692 struct netdev_nested_priv priv = { 8693 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO, 8694 .data = NULL, 8695 }; 8696 8697 return __netdev_upper_dev_link(dev, upper_dev, true, 8698 upper_priv, upper_info, &priv, extack); 8699 } 8700 EXPORT_SYMBOL(netdev_master_upper_dev_link); 8701 8702 static void __netdev_upper_dev_unlink(struct net_device *dev, 8703 struct net_device *upper_dev, 8704 struct netdev_nested_priv *priv) 8705 { 8706 struct netdev_notifier_changeupper_info changeupper_info = { 8707 .info = { 8708 .dev = dev, 8709 }, 8710 .upper_dev = upper_dev, 8711 .linking = false, 8712 }; 8713 8714 ASSERT_RTNL(); 8715 8716 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev; 8717 8718 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 8719 &changeupper_info.info); 8720 8721 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 8722 8723 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 8724 &changeupper_info.info); 8725 8726 __netdev_update_upper_level(dev, NULL); 8727 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL); 8728 8729 __netdev_update_lower_level(upper_dev, priv); 8730 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level, 8731 priv); 8732 } 8733 8734 /** 8735 * netdev_upper_dev_unlink - Removes a link to upper device 8736 * @dev: device 8737 * @upper_dev: new upper device 8738 * 8739 * Removes a link to device which is upper to this one. The caller must hold 8740 * the RTNL lock. 8741 */ 8742 void netdev_upper_dev_unlink(struct net_device *dev, 8743 struct net_device *upper_dev) 8744 { 8745 struct netdev_nested_priv priv = { 8746 .flags = NESTED_SYNC_TODO, 8747 .data = NULL, 8748 }; 8749 8750 __netdev_upper_dev_unlink(dev, upper_dev, &priv); 8751 } 8752 EXPORT_SYMBOL(netdev_upper_dev_unlink); 8753 8754 static void __netdev_adjacent_dev_set(struct net_device *upper_dev, 8755 struct net_device *lower_dev, 8756 bool val) 8757 { 8758 struct netdev_adjacent *adj; 8759 8760 adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower); 8761 if (adj) 8762 adj->ignore = val; 8763 8764 adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper); 8765 if (adj) 8766 adj->ignore = val; 8767 } 8768 8769 static void netdev_adjacent_dev_disable(struct net_device *upper_dev, 8770 struct net_device *lower_dev) 8771 { 8772 __netdev_adjacent_dev_set(upper_dev, lower_dev, true); 8773 } 8774 8775 static void netdev_adjacent_dev_enable(struct net_device *upper_dev, 8776 struct net_device *lower_dev) 8777 { 8778 __netdev_adjacent_dev_set(upper_dev, lower_dev, false); 8779 } 8780 8781 int netdev_adjacent_change_prepare(struct net_device *old_dev, 8782 struct net_device *new_dev, 8783 struct net_device *dev, 8784 struct netlink_ext_ack *extack) 8785 { 8786 struct netdev_nested_priv priv = { 8787 .flags = 0, 8788 .data = NULL, 8789 }; 8790 int err; 8791 8792 if (!new_dev) 8793 return 0; 8794 8795 if (old_dev && new_dev != old_dev) 8796 netdev_adjacent_dev_disable(dev, old_dev); 8797 err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv, 8798 extack); 8799 if (err) { 8800 if (old_dev && new_dev != old_dev) 8801 netdev_adjacent_dev_enable(dev, old_dev); 8802 return err; 8803 } 8804 8805 return 0; 8806 } 8807 EXPORT_SYMBOL(netdev_adjacent_change_prepare); 8808 8809 void netdev_adjacent_change_commit(struct net_device *old_dev, 8810 struct net_device *new_dev, 8811 struct net_device *dev) 8812 { 8813 struct netdev_nested_priv priv = { 8814 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO, 8815 .data = NULL, 8816 }; 8817 8818 if (!new_dev || !old_dev) 8819 return; 8820 8821 if (new_dev == old_dev) 8822 return; 8823 8824 netdev_adjacent_dev_enable(dev, old_dev); 8825 __netdev_upper_dev_unlink(old_dev, dev, &priv); 8826 } 8827 EXPORT_SYMBOL(netdev_adjacent_change_commit); 8828 8829 void netdev_adjacent_change_abort(struct net_device *old_dev, 8830 struct net_device *new_dev, 8831 struct net_device *dev) 8832 { 8833 struct netdev_nested_priv priv = { 8834 .flags = 0, 8835 .data = NULL, 8836 }; 8837 8838 if (!new_dev) 8839 return; 8840 8841 if (old_dev && new_dev != old_dev) 8842 netdev_adjacent_dev_enable(dev, old_dev); 8843 8844 __netdev_upper_dev_unlink(new_dev, dev, &priv); 8845 } 8846 EXPORT_SYMBOL(netdev_adjacent_change_abort); 8847 8848 /** 8849 * netdev_bonding_info_change - Dispatch event about slave change 8850 * @dev: device 8851 * @bonding_info: info to dispatch 8852 * 8853 * Send NETDEV_BONDING_INFO to netdev notifiers with info. 8854 * The caller must hold the RTNL lock. 8855 */ 8856 void netdev_bonding_info_change(struct net_device *dev, 8857 struct netdev_bonding_info *bonding_info) 8858 { 8859 struct netdev_notifier_bonding_info info = { 8860 .info.dev = dev, 8861 }; 8862 8863 memcpy(&info.bonding_info, bonding_info, 8864 sizeof(struct netdev_bonding_info)); 8865 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, 8866 &info.info); 8867 } 8868 EXPORT_SYMBOL(netdev_bonding_info_change); 8869 8870 static int netdev_offload_xstats_enable_l3(struct net_device *dev, 8871 struct netlink_ext_ack *extack) 8872 { 8873 struct netdev_notifier_offload_xstats_info info = { 8874 .info.dev = dev, 8875 .info.extack = extack, 8876 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3, 8877 }; 8878 int err; 8879 int rc; 8880 8881 dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3), 8882 GFP_KERNEL); 8883 if (!dev->offload_xstats_l3) 8884 return -ENOMEM; 8885 8886 rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE, 8887 NETDEV_OFFLOAD_XSTATS_DISABLE, 8888 &info.info); 8889 err = notifier_to_errno(rc); 8890 if (err) 8891 goto free_stats; 8892 8893 return 0; 8894 8895 free_stats: 8896 kfree(dev->offload_xstats_l3); 8897 dev->offload_xstats_l3 = NULL; 8898 return err; 8899 } 8900 8901 int netdev_offload_xstats_enable(struct net_device *dev, 8902 enum netdev_offload_xstats_type type, 8903 struct netlink_ext_ack *extack) 8904 { 8905 ASSERT_RTNL(); 8906 8907 if (netdev_offload_xstats_enabled(dev, type)) 8908 return -EALREADY; 8909 8910 switch (type) { 8911 case NETDEV_OFFLOAD_XSTATS_TYPE_L3: 8912 return netdev_offload_xstats_enable_l3(dev, extack); 8913 } 8914 8915 WARN_ON(1); 8916 return -EINVAL; 8917 } 8918 EXPORT_SYMBOL(netdev_offload_xstats_enable); 8919 8920 static void netdev_offload_xstats_disable_l3(struct net_device *dev) 8921 { 8922 struct netdev_notifier_offload_xstats_info info = { 8923 .info.dev = dev, 8924 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3, 8925 }; 8926 8927 call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE, 8928 &info.info); 8929 kfree(dev->offload_xstats_l3); 8930 dev->offload_xstats_l3 = NULL; 8931 } 8932 8933 int netdev_offload_xstats_disable(struct net_device *dev, 8934 enum netdev_offload_xstats_type type) 8935 { 8936 ASSERT_RTNL(); 8937 8938 if (!netdev_offload_xstats_enabled(dev, type)) 8939 return -EALREADY; 8940 8941 switch (type) { 8942 case NETDEV_OFFLOAD_XSTATS_TYPE_L3: 8943 netdev_offload_xstats_disable_l3(dev); 8944 return 0; 8945 } 8946 8947 WARN_ON(1); 8948 return -EINVAL; 8949 } 8950 EXPORT_SYMBOL(netdev_offload_xstats_disable); 8951 8952 static void netdev_offload_xstats_disable_all(struct net_device *dev) 8953 { 8954 netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3); 8955 } 8956 8957 static struct rtnl_hw_stats64 * 8958 netdev_offload_xstats_get_ptr(const struct net_device *dev, 8959 enum netdev_offload_xstats_type type) 8960 { 8961 switch (type) { 8962 case NETDEV_OFFLOAD_XSTATS_TYPE_L3: 8963 return dev->offload_xstats_l3; 8964 } 8965 8966 WARN_ON(1); 8967 return NULL; 8968 } 8969 8970 bool netdev_offload_xstats_enabled(const struct net_device *dev, 8971 enum netdev_offload_xstats_type type) 8972 { 8973 ASSERT_RTNL(); 8974 8975 return netdev_offload_xstats_get_ptr(dev, type); 8976 } 8977 EXPORT_SYMBOL(netdev_offload_xstats_enabled); 8978 8979 struct netdev_notifier_offload_xstats_ru { 8980 bool used; 8981 }; 8982 8983 struct netdev_notifier_offload_xstats_rd { 8984 struct rtnl_hw_stats64 stats; 8985 bool used; 8986 }; 8987 8988 static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest, 8989 const struct rtnl_hw_stats64 *src) 8990 { 8991 dest->rx_packets += src->rx_packets; 8992 dest->tx_packets += src->tx_packets; 8993 dest->rx_bytes += src->rx_bytes; 8994 dest->tx_bytes += src->tx_bytes; 8995 dest->rx_errors += src->rx_errors; 8996 dest->tx_errors += src->tx_errors; 8997 dest->rx_dropped += src->rx_dropped; 8998 dest->tx_dropped += src->tx_dropped; 8999 dest->multicast += src->multicast; 9000 } 9001 9002 static int netdev_offload_xstats_get_used(struct net_device *dev, 9003 enum netdev_offload_xstats_type type, 9004 bool *p_used, 9005 struct netlink_ext_ack *extack) 9006 { 9007 struct netdev_notifier_offload_xstats_ru report_used = {}; 9008 struct netdev_notifier_offload_xstats_info info = { 9009 .info.dev = dev, 9010 .info.extack = extack, 9011 .type = type, 9012 .report_used = &report_used, 9013 }; 9014 int rc; 9015 9016 WARN_ON(!netdev_offload_xstats_enabled(dev, type)); 9017 rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED, 9018 &info.info); 9019 *p_used = report_used.used; 9020 return notifier_to_errno(rc); 9021 } 9022 9023 static int netdev_offload_xstats_get_stats(struct net_device *dev, 9024 enum netdev_offload_xstats_type type, 9025 struct rtnl_hw_stats64 *p_stats, 9026 bool *p_used, 9027 struct netlink_ext_ack *extack) 9028 { 9029 struct netdev_notifier_offload_xstats_rd report_delta = {}; 9030 struct netdev_notifier_offload_xstats_info info = { 9031 .info.dev = dev, 9032 .info.extack = extack, 9033 .type = type, 9034 .report_delta = &report_delta, 9035 }; 9036 struct rtnl_hw_stats64 *stats; 9037 int rc; 9038 9039 stats = netdev_offload_xstats_get_ptr(dev, type); 9040 if (WARN_ON(!stats)) 9041 return -EINVAL; 9042 9043 rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA, 9044 &info.info); 9045 9046 /* Cache whatever we got, even if there was an error, otherwise the 9047 * successful stats retrievals would get lost. 9048 */ 9049 netdev_hw_stats64_add(stats, &report_delta.stats); 9050 9051 if (p_stats) 9052 *p_stats = *stats; 9053 *p_used = report_delta.used; 9054 9055 return notifier_to_errno(rc); 9056 } 9057 9058 int netdev_offload_xstats_get(struct net_device *dev, 9059 enum netdev_offload_xstats_type type, 9060 struct rtnl_hw_stats64 *p_stats, bool *p_used, 9061 struct netlink_ext_ack *extack) 9062 { 9063 ASSERT_RTNL(); 9064 9065 if (p_stats) 9066 return netdev_offload_xstats_get_stats(dev, type, p_stats, 9067 p_used, extack); 9068 else 9069 return netdev_offload_xstats_get_used(dev, type, p_used, 9070 extack); 9071 } 9072 EXPORT_SYMBOL(netdev_offload_xstats_get); 9073 9074 void 9075 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta, 9076 const struct rtnl_hw_stats64 *stats) 9077 { 9078 report_delta->used = true; 9079 netdev_hw_stats64_add(&report_delta->stats, stats); 9080 } 9081 EXPORT_SYMBOL(netdev_offload_xstats_report_delta); 9082 9083 void 9084 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used) 9085 { 9086 report_used->used = true; 9087 } 9088 EXPORT_SYMBOL(netdev_offload_xstats_report_used); 9089 9090 void netdev_offload_xstats_push_delta(struct net_device *dev, 9091 enum netdev_offload_xstats_type type, 9092 const struct rtnl_hw_stats64 *p_stats) 9093 { 9094 struct rtnl_hw_stats64 *stats; 9095 9096 ASSERT_RTNL(); 9097 9098 stats = netdev_offload_xstats_get_ptr(dev, type); 9099 if (WARN_ON(!stats)) 9100 return; 9101 9102 netdev_hw_stats64_add(stats, p_stats); 9103 } 9104 EXPORT_SYMBOL(netdev_offload_xstats_push_delta); 9105 9106 /** 9107 * netdev_get_xmit_slave - Get the xmit slave of master device 9108 * @dev: device 9109 * @skb: The packet 9110 * @all_slaves: assume all the slaves are active 9111 * 9112 * The reference counters are not incremented so the caller must be 9113 * careful with locks. The caller must hold RCU lock. 9114 * %NULL is returned if no slave is found. 9115 */ 9116 9117 struct net_device *netdev_get_xmit_slave(struct net_device *dev, 9118 struct sk_buff *skb, 9119 bool all_slaves) 9120 { 9121 const struct net_device_ops *ops = dev->netdev_ops; 9122 9123 if (!ops->ndo_get_xmit_slave) 9124 return NULL; 9125 return ops->ndo_get_xmit_slave(dev, skb, all_slaves); 9126 } 9127 EXPORT_SYMBOL(netdev_get_xmit_slave); 9128 9129 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev, 9130 struct sock *sk) 9131 { 9132 const struct net_device_ops *ops = dev->netdev_ops; 9133 9134 if (!ops->ndo_sk_get_lower_dev) 9135 return NULL; 9136 return ops->ndo_sk_get_lower_dev(dev, sk); 9137 } 9138 9139 /** 9140 * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket 9141 * @dev: device 9142 * @sk: the socket 9143 * 9144 * %NULL is returned if no lower device is found. 9145 */ 9146 9147 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev, 9148 struct sock *sk) 9149 { 9150 struct net_device *lower; 9151 9152 lower = netdev_sk_get_lower_dev(dev, sk); 9153 while (lower) { 9154 dev = lower; 9155 lower = netdev_sk_get_lower_dev(dev, sk); 9156 } 9157 9158 return dev; 9159 } 9160 EXPORT_SYMBOL(netdev_sk_get_lowest_dev); 9161 9162 static void netdev_adjacent_add_links(struct net_device *dev) 9163 { 9164 struct netdev_adjacent *iter; 9165 9166 struct net *net = dev_net(dev); 9167 9168 list_for_each_entry(iter, &dev->adj_list.upper, list) { 9169 if (!net_eq(net, dev_net(iter->dev))) 9170 continue; 9171 netdev_adjacent_sysfs_add(iter->dev, dev, 9172 &iter->dev->adj_list.lower); 9173 netdev_adjacent_sysfs_add(dev, iter->dev, 9174 &dev->adj_list.upper); 9175 } 9176 9177 list_for_each_entry(iter, &dev->adj_list.lower, list) { 9178 if (!net_eq(net, dev_net(iter->dev))) 9179 continue; 9180 netdev_adjacent_sysfs_add(iter->dev, dev, 9181 &iter->dev->adj_list.upper); 9182 netdev_adjacent_sysfs_add(dev, iter->dev, 9183 &dev->adj_list.lower); 9184 } 9185 } 9186 9187 static void netdev_adjacent_del_links(struct net_device *dev) 9188 { 9189 struct netdev_adjacent *iter; 9190 9191 struct net *net = dev_net(dev); 9192 9193 list_for_each_entry(iter, &dev->adj_list.upper, list) { 9194 if (!net_eq(net, dev_net(iter->dev))) 9195 continue; 9196 netdev_adjacent_sysfs_del(iter->dev, dev->name, 9197 &iter->dev->adj_list.lower); 9198 netdev_adjacent_sysfs_del(dev, iter->dev->name, 9199 &dev->adj_list.upper); 9200 } 9201 9202 list_for_each_entry(iter, &dev->adj_list.lower, list) { 9203 if (!net_eq(net, dev_net(iter->dev))) 9204 continue; 9205 netdev_adjacent_sysfs_del(iter->dev, dev->name, 9206 &iter->dev->adj_list.upper); 9207 netdev_adjacent_sysfs_del(dev, iter->dev->name, 9208 &dev->adj_list.lower); 9209 } 9210 } 9211 9212 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname) 9213 { 9214 struct netdev_adjacent *iter; 9215 9216 struct net *net = dev_net(dev); 9217 9218 list_for_each_entry(iter, &dev->adj_list.upper, list) { 9219 if (!net_eq(net, dev_net(iter->dev))) 9220 continue; 9221 netdev_adjacent_sysfs_del(iter->dev, oldname, 9222 &iter->dev->adj_list.lower); 9223 netdev_adjacent_sysfs_add(iter->dev, dev, 9224 &iter->dev->adj_list.lower); 9225 } 9226 9227 list_for_each_entry(iter, &dev->adj_list.lower, list) { 9228 if (!net_eq(net, dev_net(iter->dev))) 9229 continue; 9230 netdev_adjacent_sysfs_del(iter->dev, oldname, 9231 &iter->dev->adj_list.upper); 9232 netdev_adjacent_sysfs_add(iter->dev, dev, 9233 &iter->dev->adj_list.upper); 9234 } 9235 } 9236 9237 void *netdev_lower_dev_get_private(struct net_device *dev, 9238 struct net_device *lower_dev) 9239 { 9240 struct netdev_adjacent *lower; 9241 9242 if (!lower_dev) 9243 return NULL; 9244 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower); 9245 if (!lower) 9246 return NULL; 9247 9248 return lower->private; 9249 } 9250 EXPORT_SYMBOL(netdev_lower_dev_get_private); 9251 9252 9253 /** 9254 * netdev_lower_state_changed - Dispatch event about lower device state change 9255 * @lower_dev: device 9256 * @lower_state_info: state to dispatch 9257 * 9258 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info. 9259 * The caller must hold the RTNL lock. 9260 */ 9261 void netdev_lower_state_changed(struct net_device *lower_dev, 9262 void *lower_state_info) 9263 { 9264 struct netdev_notifier_changelowerstate_info changelowerstate_info = { 9265 .info.dev = lower_dev, 9266 }; 9267 9268 ASSERT_RTNL(); 9269 changelowerstate_info.lower_state_info = lower_state_info; 9270 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, 9271 &changelowerstate_info.info); 9272 } 9273 EXPORT_SYMBOL(netdev_lower_state_changed); 9274 9275 static void dev_change_rx_flags(struct net_device *dev, int flags) 9276 { 9277 const struct net_device_ops *ops = dev->netdev_ops; 9278 9279 if (ops->ndo_change_rx_flags) 9280 ops->ndo_change_rx_flags(dev, flags); 9281 } 9282 9283 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify) 9284 { 9285 unsigned int old_flags = dev->flags; 9286 unsigned int promiscuity, flags; 9287 kuid_t uid; 9288 kgid_t gid; 9289 9290 ASSERT_RTNL(); 9291 9292 promiscuity = dev->promiscuity + inc; 9293 if (promiscuity == 0) { 9294 /* 9295 * Avoid overflow. 9296 * If inc causes overflow, untouch promisc and return error. 9297 */ 9298 if (unlikely(inc > 0)) { 9299 netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n"); 9300 return -EOVERFLOW; 9301 } 9302 flags = old_flags & ~IFF_PROMISC; 9303 } else { 9304 flags = old_flags | IFF_PROMISC; 9305 } 9306 WRITE_ONCE(dev->promiscuity, promiscuity); 9307 if (flags != old_flags) { 9308 WRITE_ONCE(dev->flags, flags); 9309 netdev_info(dev, "%s promiscuous mode\n", 9310 dev->flags & IFF_PROMISC ? "entered" : "left"); 9311 if (audit_enabled) { 9312 current_uid_gid(&uid, &gid); 9313 audit_log(audit_context(), GFP_ATOMIC, 9314 AUDIT_ANOM_PROMISCUOUS, 9315 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 9316 dev->name, (dev->flags & IFF_PROMISC), 9317 (old_flags & IFF_PROMISC), 9318 from_kuid(&init_user_ns, audit_get_loginuid(current)), 9319 from_kuid(&init_user_ns, uid), 9320 from_kgid(&init_user_ns, gid), 9321 audit_get_sessionid(current)); 9322 } 9323 9324 dev_change_rx_flags(dev, IFF_PROMISC); 9325 } 9326 if (notify) { 9327 /* The ops lock is only required to ensure consistent locking 9328 * for `NETDEV_CHANGE` notifiers. This function is sometimes 9329 * called without the lock, even for devices that are ops 9330 * locked, such as in `dev_uc_sync_multiple` when using 9331 * bonding or teaming. 9332 */ 9333 netdev_ops_assert_locked(dev); 9334 __dev_notify_flags(dev, old_flags, IFF_PROMISC, 0, NULL); 9335 } 9336 return 0; 9337 } 9338 9339 int netif_set_promiscuity(struct net_device *dev, int inc) 9340 { 9341 unsigned int old_flags = dev->flags; 9342 int err; 9343 9344 err = __dev_set_promiscuity(dev, inc, true); 9345 if (err < 0) 9346 return err; 9347 if (dev->flags != old_flags) 9348 dev_set_rx_mode(dev); 9349 return err; 9350 } 9351 9352 int netif_set_allmulti(struct net_device *dev, int inc, bool notify) 9353 { 9354 unsigned int old_flags = dev->flags, old_gflags = dev->gflags; 9355 unsigned int allmulti, flags; 9356 9357 ASSERT_RTNL(); 9358 9359 allmulti = dev->allmulti + inc; 9360 if (allmulti == 0) { 9361 /* 9362 * Avoid overflow. 9363 * If inc causes overflow, untouch allmulti and return error. 9364 */ 9365 if (unlikely(inc > 0)) { 9366 netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n"); 9367 return -EOVERFLOW; 9368 } 9369 flags = old_flags & ~IFF_ALLMULTI; 9370 } else { 9371 flags = old_flags | IFF_ALLMULTI; 9372 } 9373 WRITE_ONCE(dev->allmulti, allmulti); 9374 if (flags != old_flags) { 9375 WRITE_ONCE(dev->flags, flags); 9376 netdev_info(dev, "%s allmulticast mode\n", 9377 dev->flags & IFF_ALLMULTI ? "entered" : "left"); 9378 dev_change_rx_flags(dev, IFF_ALLMULTI); 9379 dev_set_rx_mode(dev); 9380 if (notify) 9381 __dev_notify_flags(dev, old_flags, 9382 dev->gflags ^ old_gflags, 0, NULL); 9383 } 9384 return 0; 9385 } 9386 9387 /* 9388 * Upload unicast and multicast address lists to device and 9389 * configure RX filtering. When the device doesn't support unicast 9390 * filtering it is put in promiscuous mode while unicast addresses 9391 * are present. 9392 */ 9393 void __dev_set_rx_mode(struct net_device *dev) 9394 { 9395 const struct net_device_ops *ops = dev->netdev_ops; 9396 9397 /* dev_open will call this function so the list will stay sane. */ 9398 if (!(dev->flags&IFF_UP)) 9399 return; 9400 9401 if (!netif_device_present(dev)) 9402 return; 9403 9404 if (!(dev->priv_flags & IFF_UNICAST_FLT)) { 9405 /* Unicast addresses changes may only happen under the rtnl, 9406 * therefore calling __dev_set_promiscuity here is safe. 9407 */ 9408 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 9409 __dev_set_promiscuity(dev, 1, false); 9410 dev->uc_promisc = true; 9411 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 9412 __dev_set_promiscuity(dev, -1, false); 9413 dev->uc_promisc = false; 9414 } 9415 } 9416 9417 if (ops->ndo_set_rx_mode) 9418 ops->ndo_set_rx_mode(dev); 9419 } 9420 9421 void dev_set_rx_mode(struct net_device *dev) 9422 { 9423 netif_addr_lock_bh(dev); 9424 __dev_set_rx_mode(dev); 9425 netif_addr_unlock_bh(dev); 9426 } 9427 9428 /** 9429 * dev_get_flags - get flags reported to userspace 9430 * @dev: device 9431 * 9432 * Get the combination of flag bits exported through APIs to userspace. 9433 */ 9434 unsigned int dev_get_flags(const struct net_device *dev) 9435 { 9436 unsigned int flags; 9437 9438 flags = (READ_ONCE(dev->flags) & ~(IFF_PROMISC | 9439 IFF_ALLMULTI | 9440 IFF_RUNNING | 9441 IFF_LOWER_UP | 9442 IFF_DORMANT)) | 9443 (READ_ONCE(dev->gflags) & (IFF_PROMISC | 9444 IFF_ALLMULTI)); 9445 9446 if (netif_running(dev)) { 9447 if (netif_oper_up(dev)) 9448 flags |= IFF_RUNNING; 9449 if (netif_carrier_ok(dev)) 9450 flags |= IFF_LOWER_UP; 9451 if (netif_dormant(dev)) 9452 flags |= IFF_DORMANT; 9453 } 9454 9455 return flags; 9456 } 9457 EXPORT_SYMBOL(dev_get_flags); 9458 9459 int __dev_change_flags(struct net_device *dev, unsigned int flags, 9460 struct netlink_ext_ack *extack) 9461 { 9462 unsigned int old_flags = dev->flags; 9463 int ret; 9464 9465 ASSERT_RTNL(); 9466 9467 /* 9468 * Set the flags on our device. 9469 */ 9470 9471 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 9472 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 9473 IFF_AUTOMEDIA)) | 9474 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 9475 IFF_ALLMULTI)); 9476 9477 /* 9478 * Load in the correct multicast list now the flags have changed. 9479 */ 9480 9481 if ((old_flags ^ flags) & IFF_MULTICAST) 9482 dev_change_rx_flags(dev, IFF_MULTICAST); 9483 9484 dev_set_rx_mode(dev); 9485 9486 /* 9487 * Have we downed the interface. We handle IFF_UP ourselves 9488 * according to user attempts to set it, rather than blindly 9489 * setting it. 9490 */ 9491 9492 ret = 0; 9493 if ((old_flags ^ flags) & IFF_UP) { 9494 if (old_flags & IFF_UP) 9495 __dev_close(dev); 9496 else 9497 ret = __dev_open(dev, extack); 9498 } 9499 9500 if ((flags ^ dev->gflags) & IFF_PROMISC) { 9501 int inc = (flags & IFF_PROMISC) ? 1 : -1; 9502 old_flags = dev->flags; 9503 9504 dev->gflags ^= IFF_PROMISC; 9505 9506 if (__dev_set_promiscuity(dev, inc, false) >= 0) 9507 if (dev->flags != old_flags) 9508 dev_set_rx_mode(dev); 9509 } 9510 9511 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 9512 * is important. Some (broken) drivers set IFF_PROMISC, when 9513 * IFF_ALLMULTI is requested not asking us and not reporting. 9514 */ 9515 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 9516 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 9517 9518 dev->gflags ^= IFF_ALLMULTI; 9519 netif_set_allmulti(dev, inc, false); 9520 } 9521 9522 return ret; 9523 } 9524 9525 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags, 9526 unsigned int gchanges, u32 portid, 9527 const struct nlmsghdr *nlh) 9528 { 9529 unsigned int changes = dev->flags ^ old_flags; 9530 9531 if (gchanges) 9532 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC, portid, nlh); 9533 9534 if (changes & IFF_UP) { 9535 if (dev->flags & IFF_UP) 9536 call_netdevice_notifiers(NETDEV_UP, dev); 9537 else 9538 call_netdevice_notifiers(NETDEV_DOWN, dev); 9539 } 9540 9541 if (dev->flags & IFF_UP && 9542 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) { 9543 struct netdev_notifier_change_info change_info = { 9544 .info = { 9545 .dev = dev, 9546 }, 9547 .flags_changed = changes, 9548 }; 9549 9550 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info); 9551 } 9552 } 9553 9554 int netif_change_flags(struct net_device *dev, unsigned int flags, 9555 struct netlink_ext_ack *extack) 9556 { 9557 int ret; 9558 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags; 9559 9560 ret = __dev_change_flags(dev, flags, extack); 9561 if (ret < 0) 9562 return ret; 9563 9564 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags); 9565 __dev_notify_flags(dev, old_flags, changes, 0, NULL); 9566 return ret; 9567 } 9568 9569 int __dev_set_mtu(struct net_device *dev, int new_mtu) 9570 { 9571 const struct net_device_ops *ops = dev->netdev_ops; 9572 9573 if (ops->ndo_change_mtu) 9574 return ops->ndo_change_mtu(dev, new_mtu); 9575 9576 /* Pairs with all the lockless reads of dev->mtu in the stack */ 9577 WRITE_ONCE(dev->mtu, new_mtu); 9578 return 0; 9579 } 9580 EXPORT_SYMBOL(__dev_set_mtu); 9581 9582 int dev_validate_mtu(struct net_device *dev, int new_mtu, 9583 struct netlink_ext_ack *extack) 9584 { 9585 /* MTU must be positive, and in range */ 9586 if (new_mtu < 0 || new_mtu < dev->min_mtu) { 9587 NL_SET_ERR_MSG(extack, "mtu less than device minimum"); 9588 return -EINVAL; 9589 } 9590 9591 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) { 9592 NL_SET_ERR_MSG(extack, "mtu greater than device maximum"); 9593 return -EINVAL; 9594 } 9595 return 0; 9596 } 9597 9598 /** 9599 * netif_set_mtu_ext - Change maximum transfer unit 9600 * @dev: device 9601 * @new_mtu: new transfer unit 9602 * @extack: netlink extended ack 9603 * 9604 * Change the maximum transfer size of the network device. 9605 */ 9606 int netif_set_mtu_ext(struct net_device *dev, int new_mtu, 9607 struct netlink_ext_ack *extack) 9608 { 9609 int err, orig_mtu; 9610 9611 if (new_mtu == dev->mtu) 9612 return 0; 9613 9614 err = dev_validate_mtu(dev, new_mtu, extack); 9615 if (err) 9616 return err; 9617 9618 if (!netif_device_present(dev)) 9619 return -ENODEV; 9620 9621 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev); 9622 err = notifier_to_errno(err); 9623 if (err) 9624 return err; 9625 9626 orig_mtu = dev->mtu; 9627 err = __dev_set_mtu(dev, new_mtu); 9628 9629 if (!err) { 9630 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev, 9631 orig_mtu); 9632 err = notifier_to_errno(err); 9633 if (err) { 9634 /* setting mtu back and notifying everyone again, 9635 * so that they have a chance to revert changes. 9636 */ 9637 __dev_set_mtu(dev, orig_mtu); 9638 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev, 9639 new_mtu); 9640 } 9641 } 9642 return err; 9643 } 9644 9645 int netif_set_mtu(struct net_device *dev, int new_mtu) 9646 { 9647 struct netlink_ext_ack extack; 9648 int err; 9649 9650 memset(&extack, 0, sizeof(extack)); 9651 err = netif_set_mtu_ext(dev, new_mtu, &extack); 9652 if (err && extack._msg) 9653 net_err_ratelimited("%s: %s\n", dev->name, extack._msg); 9654 return err; 9655 } 9656 EXPORT_SYMBOL(netif_set_mtu); 9657 9658 int netif_change_tx_queue_len(struct net_device *dev, unsigned long new_len) 9659 { 9660 unsigned int orig_len = dev->tx_queue_len; 9661 int res; 9662 9663 if (new_len != (unsigned int)new_len) 9664 return -ERANGE; 9665 9666 if (new_len != orig_len) { 9667 WRITE_ONCE(dev->tx_queue_len, new_len); 9668 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev); 9669 res = notifier_to_errno(res); 9670 if (res) 9671 goto err_rollback; 9672 res = dev_qdisc_change_tx_queue_len(dev); 9673 if (res) 9674 goto err_rollback; 9675 } 9676 9677 return 0; 9678 9679 err_rollback: 9680 netdev_err(dev, "refused to change device tx_queue_len\n"); 9681 WRITE_ONCE(dev->tx_queue_len, orig_len); 9682 return res; 9683 } 9684 9685 void netif_set_group(struct net_device *dev, int new_group) 9686 { 9687 dev->group = new_group; 9688 } 9689 9690 /** 9691 * dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR. 9692 * @dev: device 9693 * @addr: new address 9694 * @extack: netlink extended ack 9695 */ 9696 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr, 9697 struct netlink_ext_ack *extack) 9698 { 9699 struct netdev_notifier_pre_changeaddr_info info = { 9700 .info.dev = dev, 9701 .info.extack = extack, 9702 .dev_addr = addr, 9703 }; 9704 int rc; 9705 9706 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info); 9707 return notifier_to_errno(rc); 9708 } 9709 EXPORT_SYMBOL(dev_pre_changeaddr_notify); 9710 9711 int netif_set_mac_address(struct net_device *dev, struct sockaddr_storage *ss, 9712 struct netlink_ext_ack *extack) 9713 { 9714 const struct net_device_ops *ops = dev->netdev_ops; 9715 int err; 9716 9717 if (!ops->ndo_set_mac_address) 9718 return -EOPNOTSUPP; 9719 if (ss->ss_family != dev->type) 9720 return -EINVAL; 9721 if (!netif_device_present(dev)) 9722 return -ENODEV; 9723 err = dev_pre_changeaddr_notify(dev, ss->__data, extack); 9724 if (err) 9725 return err; 9726 if (memcmp(dev->dev_addr, ss->__data, dev->addr_len)) { 9727 err = ops->ndo_set_mac_address(dev, ss); 9728 if (err) 9729 return err; 9730 } 9731 dev->addr_assign_type = NET_ADDR_SET; 9732 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 9733 add_device_randomness(dev->dev_addr, dev->addr_len); 9734 return 0; 9735 } 9736 9737 DECLARE_RWSEM(dev_addr_sem); 9738 9739 /* "sa" is a true struct sockaddr with limited "sa_data" member. */ 9740 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name) 9741 { 9742 size_t size = sizeof(sa->sa_data_min); 9743 struct net_device *dev; 9744 int ret = 0; 9745 9746 down_read(&dev_addr_sem); 9747 rcu_read_lock(); 9748 9749 dev = dev_get_by_name_rcu(net, dev_name); 9750 if (!dev) { 9751 ret = -ENODEV; 9752 goto unlock; 9753 } 9754 if (!dev->addr_len) 9755 memset(sa->sa_data, 0, size); 9756 else 9757 memcpy(sa->sa_data, dev->dev_addr, 9758 min_t(size_t, size, dev->addr_len)); 9759 sa->sa_family = dev->type; 9760 9761 unlock: 9762 rcu_read_unlock(); 9763 up_read(&dev_addr_sem); 9764 return ret; 9765 } 9766 EXPORT_SYMBOL(dev_get_mac_address); 9767 9768 int netif_change_carrier(struct net_device *dev, bool new_carrier) 9769 { 9770 const struct net_device_ops *ops = dev->netdev_ops; 9771 9772 if (!ops->ndo_change_carrier) 9773 return -EOPNOTSUPP; 9774 if (!netif_device_present(dev)) 9775 return -ENODEV; 9776 return ops->ndo_change_carrier(dev, new_carrier); 9777 } 9778 9779 /** 9780 * dev_get_phys_port_id - Get device physical port ID 9781 * @dev: device 9782 * @ppid: port ID 9783 * 9784 * Get device physical port ID 9785 */ 9786 int dev_get_phys_port_id(struct net_device *dev, 9787 struct netdev_phys_item_id *ppid) 9788 { 9789 const struct net_device_ops *ops = dev->netdev_ops; 9790 9791 if (!ops->ndo_get_phys_port_id) 9792 return -EOPNOTSUPP; 9793 return ops->ndo_get_phys_port_id(dev, ppid); 9794 } 9795 9796 /** 9797 * dev_get_phys_port_name - Get device physical port name 9798 * @dev: device 9799 * @name: port name 9800 * @len: limit of bytes to copy to name 9801 * 9802 * Get device physical port name 9803 */ 9804 int dev_get_phys_port_name(struct net_device *dev, 9805 char *name, size_t len) 9806 { 9807 const struct net_device_ops *ops = dev->netdev_ops; 9808 int err; 9809 9810 if (ops->ndo_get_phys_port_name) { 9811 err = ops->ndo_get_phys_port_name(dev, name, len); 9812 if (err != -EOPNOTSUPP) 9813 return err; 9814 } 9815 return devlink_compat_phys_port_name_get(dev, name, len); 9816 } 9817 9818 /** 9819 * dev_get_port_parent_id - Get the device's port parent identifier 9820 * @dev: network device 9821 * @ppid: pointer to a storage for the port's parent identifier 9822 * @recurse: allow/disallow recursion to lower devices 9823 * 9824 * Get the devices's port parent identifier 9825 */ 9826 int dev_get_port_parent_id(struct net_device *dev, 9827 struct netdev_phys_item_id *ppid, 9828 bool recurse) 9829 { 9830 const struct net_device_ops *ops = dev->netdev_ops; 9831 struct netdev_phys_item_id first = { }; 9832 struct net_device *lower_dev; 9833 struct list_head *iter; 9834 int err; 9835 9836 if (ops->ndo_get_port_parent_id) { 9837 err = ops->ndo_get_port_parent_id(dev, ppid); 9838 if (err != -EOPNOTSUPP) 9839 return err; 9840 } 9841 9842 err = devlink_compat_switch_id_get(dev, ppid); 9843 if (!recurse || err != -EOPNOTSUPP) 9844 return err; 9845 9846 netdev_for_each_lower_dev(dev, lower_dev, iter) { 9847 err = dev_get_port_parent_id(lower_dev, ppid, true); 9848 if (err) 9849 break; 9850 if (!first.id_len) 9851 first = *ppid; 9852 else if (memcmp(&first, ppid, sizeof(*ppid))) 9853 return -EOPNOTSUPP; 9854 } 9855 9856 return err; 9857 } 9858 EXPORT_SYMBOL(dev_get_port_parent_id); 9859 9860 /** 9861 * netdev_port_same_parent_id - Indicate if two network devices have 9862 * the same port parent identifier 9863 * @a: first network device 9864 * @b: second network device 9865 */ 9866 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b) 9867 { 9868 struct netdev_phys_item_id a_id = { }; 9869 struct netdev_phys_item_id b_id = { }; 9870 9871 if (dev_get_port_parent_id(a, &a_id, true) || 9872 dev_get_port_parent_id(b, &b_id, true)) 9873 return false; 9874 9875 return netdev_phys_item_id_same(&a_id, &b_id); 9876 } 9877 EXPORT_SYMBOL(netdev_port_same_parent_id); 9878 9879 int netif_change_proto_down(struct net_device *dev, bool proto_down) 9880 { 9881 if (!dev->change_proto_down) 9882 return -EOPNOTSUPP; 9883 if (!netif_device_present(dev)) 9884 return -ENODEV; 9885 if (proto_down) 9886 netif_carrier_off(dev); 9887 else 9888 netif_carrier_on(dev); 9889 WRITE_ONCE(dev->proto_down, proto_down); 9890 return 0; 9891 } 9892 9893 /** 9894 * netdev_change_proto_down_reason_locked - proto down reason 9895 * 9896 * @dev: device 9897 * @mask: proto down mask 9898 * @value: proto down value 9899 */ 9900 void netdev_change_proto_down_reason_locked(struct net_device *dev, 9901 unsigned long mask, u32 value) 9902 { 9903 u32 proto_down_reason; 9904 int b; 9905 9906 if (!mask) { 9907 proto_down_reason = value; 9908 } else { 9909 proto_down_reason = dev->proto_down_reason; 9910 for_each_set_bit(b, &mask, 32) { 9911 if (value & (1 << b)) 9912 proto_down_reason |= BIT(b); 9913 else 9914 proto_down_reason &= ~BIT(b); 9915 } 9916 } 9917 WRITE_ONCE(dev->proto_down_reason, proto_down_reason); 9918 } 9919 9920 struct bpf_xdp_link { 9921 struct bpf_link link; 9922 struct net_device *dev; /* protected by rtnl_lock, no refcnt held */ 9923 int flags; 9924 }; 9925 9926 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags) 9927 { 9928 if (flags & XDP_FLAGS_HW_MODE) 9929 return XDP_MODE_HW; 9930 if (flags & XDP_FLAGS_DRV_MODE) 9931 return XDP_MODE_DRV; 9932 if (flags & XDP_FLAGS_SKB_MODE) 9933 return XDP_MODE_SKB; 9934 return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB; 9935 } 9936 9937 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode) 9938 { 9939 switch (mode) { 9940 case XDP_MODE_SKB: 9941 return generic_xdp_install; 9942 case XDP_MODE_DRV: 9943 case XDP_MODE_HW: 9944 return dev->netdev_ops->ndo_bpf; 9945 default: 9946 return NULL; 9947 } 9948 } 9949 9950 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev, 9951 enum bpf_xdp_mode mode) 9952 { 9953 return dev->xdp_state[mode].link; 9954 } 9955 9956 static struct bpf_prog *dev_xdp_prog(struct net_device *dev, 9957 enum bpf_xdp_mode mode) 9958 { 9959 struct bpf_xdp_link *link = dev_xdp_link(dev, mode); 9960 9961 if (link) 9962 return link->link.prog; 9963 return dev->xdp_state[mode].prog; 9964 } 9965 9966 u8 dev_xdp_prog_count(struct net_device *dev) 9967 { 9968 u8 count = 0; 9969 int i; 9970 9971 for (i = 0; i < __MAX_XDP_MODE; i++) 9972 if (dev->xdp_state[i].prog || dev->xdp_state[i].link) 9973 count++; 9974 return count; 9975 } 9976 EXPORT_SYMBOL_GPL(dev_xdp_prog_count); 9977 9978 u8 dev_xdp_sb_prog_count(struct net_device *dev) 9979 { 9980 u8 count = 0; 9981 int i; 9982 9983 for (i = 0; i < __MAX_XDP_MODE; i++) 9984 if (dev->xdp_state[i].prog && 9985 !dev->xdp_state[i].prog->aux->xdp_has_frags) 9986 count++; 9987 return count; 9988 } 9989 9990 int netif_xdp_propagate(struct net_device *dev, struct netdev_bpf *bpf) 9991 { 9992 if (!dev->netdev_ops->ndo_bpf) 9993 return -EOPNOTSUPP; 9994 9995 if (dev->cfg->hds_config == ETHTOOL_TCP_DATA_SPLIT_ENABLED && 9996 bpf->command == XDP_SETUP_PROG && 9997 bpf->prog && !bpf->prog->aux->xdp_has_frags) { 9998 NL_SET_ERR_MSG(bpf->extack, 9999 "unable to propagate XDP to device using tcp-data-split"); 10000 return -EBUSY; 10001 } 10002 10003 if (dev_get_min_mp_channel_count(dev)) { 10004 NL_SET_ERR_MSG(bpf->extack, "unable to propagate XDP to device using memory provider"); 10005 return -EBUSY; 10006 } 10007 10008 return dev->netdev_ops->ndo_bpf(dev, bpf); 10009 } 10010 EXPORT_SYMBOL_GPL(netif_xdp_propagate); 10011 10012 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode) 10013 { 10014 struct bpf_prog *prog = dev_xdp_prog(dev, mode); 10015 10016 return prog ? prog->aux->id : 0; 10017 } 10018 10019 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode, 10020 struct bpf_xdp_link *link) 10021 { 10022 dev->xdp_state[mode].link = link; 10023 dev->xdp_state[mode].prog = NULL; 10024 } 10025 10026 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode, 10027 struct bpf_prog *prog) 10028 { 10029 dev->xdp_state[mode].link = NULL; 10030 dev->xdp_state[mode].prog = prog; 10031 } 10032 10033 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode, 10034 bpf_op_t bpf_op, struct netlink_ext_ack *extack, 10035 u32 flags, struct bpf_prog *prog) 10036 { 10037 struct netdev_bpf xdp; 10038 int err; 10039 10040 netdev_ops_assert_locked(dev); 10041 10042 if (dev->cfg->hds_config == ETHTOOL_TCP_DATA_SPLIT_ENABLED && 10043 prog && !prog->aux->xdp_has_frags) { 10044 NL_SET_ERR_MSG(extack, "unable to install XDP to device using tcp-data-split"); 10045 return -EBUSY; 10046 } 10047 10048 if (dev_get_min_mp_channel_count(dev)) { 10049 NL_SET_ERR_MSG(extack, "unable to install XDP to device using memory provider"); 10050 return -EBUSY; 10051 } 10052 10053 memset(&xdp, 0, sizeof(xdp)); 10054 xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG; 10055 xdp.extack = extack; 10056 xdp.flags = flags; 10057 xdp.prog = prog; 10058 10059 /* Drivers assume refcnt is already incremented (i.e, prog pointer is 10060 * "moved" into driver), so they don't increment it on their own, but 10061 * they do decrement refcnt when program is detached or replaced. 10062 * Given net_device also owns link/prog, we need to bump refcnt here 10063 * to prevent drivers from underflowing it. 10064 */ 10065 if (prog) 10066 bpf_prog_inc(prog); 10067 err = bpf_op(dev, &xdp); 10068 if (err) { 10069 if (prog) 10070 bpf_prog_put(prog); 10071 return err; 10072 } 10073 10074 if (mode != XDP_MODE_HW) 10075 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog); 10076 10077 return 0; 10078 } 10079 10080 static void dev_xdp_uninstall(struct net_device *dev) 10081 { 10082 struct bpf_xdp_link *link; 10083 struct bpf_prog *prog; 10084 enum bpf_xdp_mode mode; 10085 bpf_op_t bpf_op; 10086 10087 ASSERT_RTNL(); 10088 10089 for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) { 10090 prog = dev_xdp_prog(dev, mode); 10091 if (!prog) 10092 continue; 10093 10094 bpf_op = dev_xdp_bpf_op(dev, mode); 10095 if (!bpf_op) 10096 continue; 10097 10098 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL)); 10099 10100 /* auto-detach link from net device */ 10101 link = dev_xdp_link(dev, mode); 10102 if (link) 10103 link->dev = NULL; 10104 else 10105 bpf_prog_put(prog); 10106 10107 dev_xdp_set_link(dev, mode, NULL); 10108 } 10109 } 10110 10111 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack, 10112 struct bpf_xdp_link *link, struct bpf_prog *new_prog, 10113 struct bpf_prog *old_prog, u32 flags) 10114 { 10115 unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES); 10116 struct bpf_prog *cur_prog; 10117 struct net_device *upper; 10118 struct list_head *iter; 10119 enum bpf_xdp_mode mode; 10120 bpf_op_t bpf_op; 10121 int err; 10122 10123 ASSERT_RTNL(); 10124 10125 /* either link or prog attachment, never both */ 10126 if (link && (new_prog || old_prog)) 10127 return -EINVAL; 10128 /* link supports only XDP mode flags */ 10129 if (link && (flags & ~XDP_FLAGS_MODES)) { 10130 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment"); 10131 return -EINVAL; 10132 } 10133 /* just one XDP mode bit should be set, zero defaults to drv/skb mode */ 10134 if (num_modes > 1) { 10135 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set"); 10136 return -EINVAL; 10137 } 10138 /* avoid ambiguity if offload + drv/skb mode progs are both loaded */ 10139 if (!num_modes && dev_xdp_prog_count(dev) > 1) { 10140 NL_SET_ERR_MSG(extack, 10141 "More than one program loaded, unset mode is ambiguous"); 10142 return -EINVAL; 10143 } 10144 /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */ 10145 if (old_prog && !(flags & XDP_FLAGS_REPLACE)) { 10146 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified"); 10147 return -EINVAL; 10148 } 10149 10150 mode = dev_xdp_mode(dev, flags); 10151 /* can't replace attached link */ 10152 if (dev_xdp_link(dev, mode)) { 10153 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link"); 10154 return -EBUSY; 10155 } 10156 10157 /* don't allow if an upper device already has a program */ 10158 netdev_for_each_upper_dev_rcu(dev, upper, iter) { 10159 if (dev_xdp_prog_count(upper) > 0) { 10160 NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program"); 10161 return -EEXIST; 10162 } 10163 } 10164 10165 cur_prog = dev_xdp_prog(dev, mode); 10166 /* can't replace attached prog with link */ 10167 if (link && cur_prog) { 10168 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link"); 10169 return -EBUSY; 10170 } 10171 if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) { 10172 NL_SET_ERR_MSG(extack, "Active program does not match expected"); 10173 return -EEXIST; 10174 } 10175 10176 /* put effective new program into new_prog */ 10177 if (link) 10178 new_prog = link->link.prog; 10179 10180 if (new_prog) { 10181 bool offload = mode == XDP_MODE_HW; 10182 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB 10183 ? XDP_MODE_DRV : XDP_MODE_SKB; 10184 10185 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) { 10186 NL_SET_ERR_MSG(extack, "XDP program already attached"); 10187 return -EBUSY; 10188 } 10189 if (!offload && dev_xdp_prog(dev, other_mode)) { 10190 NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time"); 10191 return -EEXIST; 10192 } 10193 if (!offload && bpf_prog_is_offloaded(new_prog->aux)) { 10194 NL_SET_ERR_MSG(extack, "Using offloaded program without HW_MODE flag is not supported"); 10195 return -EINVAL; 10196 } 10197 if (bpf_prog_is_dev_bound(new_prog->aux) && !bpf_offload_dev_match(new_prog, dev)) { 10198 NL_SET_ERR_MSG(extack, "Program bound to different device"); 10199 return -EINVAL; 10200 } 10201 if (bpf_prog_is_dev_bound(new_prog->aux) && mode == XDP_MODE_SKB) { 10202 NL_SET_ERR_MSG(extack, "Can't attach device-bound programs in generic mode"); 10203 return -EINVAL; 10204 } 10205 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) { 10206 NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device"); 10207 return -EINVAL; 10208 } 10209 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) { 10210 NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device"); 10211 return -EINVAL; 10212 } 10213 } 10214 10215 /* don't call drivers if the effective program didn't change */ 10216 if (new_prog != cur_prog) { 10217 bpf_op = dev_xdp_bpf_op(dev, mode); 10218 if (!bpf_op) { 10219 NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode"); 10220 return -EOPNOTSUPP; 10221 } 10222 10223 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog); 10224 if (err) 10225 return err; 10226 } 10227 10228 if (link) 10229 dev_xdp_set_link(dev, mode, link); 10230 else 10231 dev_xdp_set_prog(dev, mode, new_prog); 10232 if (cur_prog) 10233 bpf_prog_put(cur_prog); 10234 10235 return 0; 10236 } 10237 10238 static int dev_xdp_attach_link(struct net_device *dev, 10239 struct netlink_ext_ack *extack, 10240 struct bpf_xdp_link *link) 10241 { 10242 return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags); 10243 } 10244 10245 static int dev_xdp_detach_link(struct net_device *dev, 10246 struct netlink_ext_ack *extack, 10247 struct bpf_xdp_link *link) 10248 { 10249 enum bpf_xdp_mode mode; 10250 bpf_op_t bpf_op; 10251 10252 ASSERT_RTNL(); 10253 10254 mode = dev_xdp_mode(dev, link->flags); 10255 if (dev_xdp_link(dev, mode) != link) 10256 return -EINVAL; 10257 10258 bpf_op = dev_xdp_bpf_op(dev, mode); 10259 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL)); 10260 dev_xdp_set_link(dev, mode, NULL); 10261 return 0; 10262 } 10263 10264 static void bpf_xdp_link_release(struct bpf_link *link) 10265 { 10266 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 10267 10268 rtnl_lock(); 10269 10270 /* if racing with net_device's tear down, xdp_link->dev might be 10271 * already NULL, in which case link was already auto-detached 10272 */ 10273 if (xdp_link->dev) { 10274 netdev_lock_ops(xdp_link->dev); 10275 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link)); 10276 netdev_unlock_ops(xdp_link->dev); 10277 xdp_link->dev = NULL; 10278 } 10279 10280 rtnl_unlock(); 10281 } 10282 10283 static int bpf_xdp_link_detach(struct bpf_link *link) 10284 { 10285 bpf_xdp_link_release(link); 10286 return 0; 10287 } 10288 10289 static void bpf_xdp_link_dealloc(struct bpf_link *link) 10290 { 10291 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 10292 10293 kfree(xdp_link); 10294 } 10295 10296 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link, 10297 struct seq_file *seq) 10298 { 10299 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 10300 u32 ifindex = 0; 10301 10302 rtnl_lock(); 10303 if (xdp_link->dev) 10304 ifindex = xdp_link->dev->ifindex; 10305 rtnl_unlock(); 10306 10307 seq_printf(seq, "ifindex:\t%u\n", ifindex); 10308 } 10309 10310 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link, 10311 struct bpf_link_info *info) 10312 { 10313 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 10314 u32 ifindex = 0; 10315 10316 rtnl_lock(); 10317 if (xdp_link->dev) 10318 ifindex = xdp_link->dev->ifindex; 10319 rtnl_unlock(); 10320 10321 info->xdp.ifindex = ifindex; 10322 return 0; 10323 } 10324 10325 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog, 10326 struct bpf_prog *old_prog) 10327 { 10328 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 10329 enum bpf_xdp_mode mode; 10330 bpf_op_t bpf_op; 10331 int err = 0; 10332 10333 rtnl_lock(); 10334 10335 /* link might have been auto-released already, so fail */ 10336 if (!xdp_link->dev) { 10337 err = -ENOLINK; 10338 goto out_unlock; 10339 } 10340 10341 if (old_prog && link->prog != old_prog) { 10342 err = -EPERM; 10343 goto out_unlock; 10344 } 10345 old_prog = link->prog; 10346 if (old_prog->type != new_prog->type || 10347 old_prog->expected_attach_type != new_prog->expected_attach_type) { 10348 err = -EINVAL; 10349 goto out_unlock; 10350 } 10351 10352 if (old_prog == new_prog) { 10353 /* no-op, don't disturb drivers */ 10354 bpf_prog_put(new_prog); 10355 goto out_unlock; 10356 } 10357 10358 netdev_lock_ops(xdp_link->dev); 10359 mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags); 10360 bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode); 10361 err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL, 10362 xdp_link->flags, new_prog); 10363 netdev_unlock_ops(xdp_link->dev); 10364 if (err) 10365 goto out_unlock; 10366 10367 old_prog = xchg(&link->prog, new_prog); 10368 bpf_prog_put(old_prog); 10369 10370 out_unlock: 10371 rtnl_unlock(); 10372 return err; 10373 } 10374 10375 static const struct bpf_link_ops bpf_xdp_link_lops = { 10376 .release = bpf_xdp_link_release, 10377 .dealloc = bpf_xdp_link_dealloc, 10378 .detach = bpf_xdp_link_detach, 10379 .show_fdinfo = bpf_xdp_link_show_fdinfo, 10380 .fill_link_info = bpf_xdp_link_fill_link_info, 10381 .update_prog = bpf_xdp_link_update, 10382 }; 10383 10384 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog) 10385 { 10386 struct net *net = current->nsproxy->net_ns; 10387 struct bpf_link_primer link_primer; 10388 struct netlink_ext_ack extack = {}; 10389 struct bpf_xdp_link *link; 10390 struct net_device *dev; 10391 int err, fd; 10392 10393 rtnl_lock(); 10394 dev = dev_get_by_index(net, attr->link_create.target_ifindex); 10395 if (!dev) { 10396 rtnl_unlock(); 10397 return -EINVAL; 10398 } 10399 10400 link = kzalloc(sizeof(*link), GFP_USER); 10401 if (!link) { 10402 err = -ENOMEM; 10403 goto unlock; 10404 } 10405 10406 bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog); 10407 link->dev = dev; 10408 link->flags = attr->link_create.flags; 10409 10410 err = bpf_link_prime(&link->link, &link_primer); 10411 if (err) { 10412 kfree(link); 10413 goto unlock; 10414 } 10415 10416 netdev_lock_ops(dev); 10417 err = dev_xdp_attach_link(dev, &extack, link); 10418 netdev_unlock_ops(dev); 10419 rtnl_unlock(); 10420 10421 if (err) { 10422 link->dev = NULL; 10423 bpf_link_cleanup(&link_primer); 10424 trace_bpf_xdp_link_attach_failed(extack._msg); 10425 goto out_put_dev; 10426 } 10427 10428 fd = bpf_link_settle(&link_primer); 10429 /* link itself doesn't hold dev's refcnt to not complicate shutdown */ 10430 dev_put(dev); 10431 return fd; 10432 10433 unlock: 10434 rtnl_unlock(); 10435 10436 out_put_dev: 10437 dev_put(dev); 10438 return err; 10439 } 10440 10441 /** 10442 * dev_change_xdp_fd - set or clear a bpf program for a device rx path 10443 * @dev: device 10444 * @extack: netlink extended ack 10445 * @fd: new program fd or negative value to clear 10446 * @expected_fd: old program fd that userspace expects to replace or clear 10447 * @flags: xdp-related flags 10448 * 10449 * Set or clear a bpf program for a device 10450 */ 10451 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack, 10452 int fd, int expected_fd, u32 flags) 10453 { 10454 enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags); 10455 struct bpf_prog *new_prog = NULL, *old_prog = NULL; 10456 int err; 10457 10458 ASSERT_RTNL(); 10459 10460 if (fd >= 0) { 10461 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP, 10462 mode != XDP_MODE_SKB); 10463 if (IS_ERR(new_prog)) 10464 return PTR_ERR(new_prog); 10465 } 10466 10467 if (expected_fd >= 0) { 10468 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP, 10469 mode != XDP_MODE_SKB); 10470 if (IS_ERR(old_prog)) { 10471 err = PTR_ERR(old_prog); 10472 old_prog = NULL; 10473 goto err_out; 10474 } 10475 } 10476 10477 err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags); 10478 10479 err_out: 10480 if (err && new_prog) 10481 bpf_prog_put(new_prog); 10482 if (old_prog) 10483 bpf_prog_put(old_prog); 10484 return err; 10485 } 10486 10487 u32 dev_get_min_mp_channel_count(const struct net_device *dev) 10488 { 10489 int i; 10490 10491 netdev_ops_assert_locked(dev); 10492 10493 for (i = dev->real_num_rx_queues - 1; i >= 0; i--) 10494 if (dev->_rx[i].mp_params.mp_priv) 10495 /* The channel count is the idx plus 1. */ 10496 return i + 1; 10497 10498 return 0; 10499 } 10500 10501 /** 10502 * dev_index_reserve() - allocate an ifindex in a namespace 10503 * @net: the applicable net namespace 10504 * @ifindex: requested ifindex, pass %0 to get one allocated 10505 * 10506 * Allocate a ifindex for a new device. Caller must either use the ifindex 10507 * to store the device (via list_netdevice()) or call dev_index_release() 10508 * to give the index up. 10509 * 10510 * Return: a suitable unique value for a new device interface number or -errno. 10511 */ 10512 static int dev_index_reserve(struct net *net, u32 ifindex) 10513 { 10514 int err; 10515 10516 if (ifindex > INT_MAX) { 10517 DEBUG_NET_WARN_ON_ONCE(1); 10518 return -EINVAL; 10519 } 10520 10521 if (!ifindex) 10522 err = xa_alloc_cyclic(&net->dev_by_index, &ifindex, NULL, 10523 xa_limit_31b, &net->ifindex, GFP_KERNEL); 10524 else 10525 err = xa_insert(&net->dev_by_index, ifindex, NULL, GFP_KERNEL); 10526 if (err < 0) 10527 return err; 10528 10529 return ifindex; 10530 } 10531 10532 static void dev_index_release(struct net *net, int ifindex) 10533 { 10534 /* Expect only unused indexes, unlist_netdevice() removes the used */ 10535 WARN_ON(xa_erase(&net->dev_by_index, ifindex)); 10536 } 10537 10538 static bool from_cleanup_net(void) 10539 { 10540 #ifdef CONFIG_NET_NS 10541 return current == READ_ONCE(cleanup_net_task); 10542 #else 10543 return false; 10544 #endif 10545 } 10546 10547 /* Delayed registration/unregisteration */ 10548 LIST_HEAD(net_todo_list); 10549 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq); 10550 atomic_t dev_unreg_count = ATOMIC_INIT(0); 10551 10552 static void net_set_todo(struct net_device *dev) 10553 { 10554 list_add_tail(&dev->todo_list, &net_todo_list); 10555 } 10556 10557 static netdev_features_t netdev_sync_upper_features(struct net_device *lower, 10558 struct net_device *upper, netdev_features_t features) 10559 { 10560 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 10561 netdev_features_t feature; 10562 int feature_bit; 10563 10564 for_each_netdev_feature(upper_disables, feature_bit) { 10565 feature = __NETIF_F_BIT(feature_bit); 10566 if (!(upper->wanted_features & feature) 10567 && (features & feature)) { 10568 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n", 10569 &feature, upper->name); 10570 features &= ~feature; 10571 } 10572 } 10573 10574 return features; 10575 } 10576 10577 static void netdev_sync_lower_features(struct net_device *upper, 10578 struct net_device *lower, netdev_features_t features) 10579 { 10580 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 10581 netdev_features_t feature; 10582 int feature_bit; 10583 10584 for_each_netdev_feature(upper_disables, feature_bit) { 10585 feature = __NETIF_F_BIT(feature_bit); 10586 if (!(features & feature) && (lower->features & feature)) { 10587 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n", 10588 &feature, lower->name); 10589 netdev_lock_ops(lower); 10590 lower->wanted_features &= ~feature; 10591 __netdev_update_features(lower); 10592 10593 if (unlikely(lower->features & feature)) 10594 netdev_WARN(upper, "failed to disable %pNF on %s!\n", 10595 &feature, lower->name); 10596 else 10597 netdev_features_change(lower); 10598 netdev_unlock_ops(lower); 10599 } 10600 } 10601 } 10602 10603 static bool netdev_has_ip_or_hw_csum(netdev_features_t features) 10604 { 10605 netdev_features_t ip_csum_mask = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM; 10606 bool ip_csum = (features & ip_csum_mask) == ip_csum_mask; 10607 bool hw_csum = features & NETIF_F_HW_CSUM; 10608 10609 return ip_csum || hw_csum; 10610 } 10611 10612 static netdev_features_t netdev_fix_features(struct net_device *dev, 10613 netdev_features_t features) 10614 { 10615 /* Fix illegal checksum combinations */ 10616 if ((features & NETIF_F_HW_CSUM) && 10617 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 10618 netdev_warn(dev, "mixed HW and IP checksum settings.\n"); 10619 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 10620 } 10621 10622 /* TSO requires that SG is present as well. */ 10623 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { 10624 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); 10625 features &= ~NETIF_F_ALL_TSO; 10626 } 10627 10628 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) && 10629 !(features & NETIF_F_IP_CSUM)) { 10630 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n"); 10631 features &= ~NETIF_F_TSO; 10632 features &= ~NETIF_F_TSO_ECN; 10633 } 10634 10635 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) && 10636 !(features & NETIF_F_IPV6_CSUM)) { 10637 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n"); 10638 features &= ~NETIF_F_TSO6; 10639 } 10640 10641 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */ 10642 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO)) 10643 features &= ~NETIF_F_TSO_MANGLEID; 10644 10645 /* TSO ECN requires that TSO is present as well. */ 10646 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) 10647 features &= ~NETIF_F_TSO_ECN; 10648 10649 /* Software GSO depends on SG. */ 10650 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 10651 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 10652 features &= ~NETIF_F_GSO; 10653 } 10654 10655 /* GSO partial features require GSO partial be set */ 10656 if ((features & dev->gso_partial_features) && 10657 !(features & NETIF_F_GSO_PARTIAL)) { 10658 netdev_dbg(dev, 10659 "Dropping partially supported GSO features since no GSO partial.\n"); 10660 features &= ~dev->gso_partial_features; 10661 } 10662 10663 if (!(features & NETIF_F_RXCSUM)) { 10664 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet 10665 * successfully merged by hardware must also have the 10666 * checksum verified by hardware. If the user does not 10667 * want to enable RXCSUM, logically, we should disable GRO_HW. 10668 */ 10669 if (features & NETIF_F_GRO_HW) { 10670 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n"); 10671 features &= ~NETIF_F_GRO_HW; 10672 } 10673 } 10674 10675 /* LRO/HW-GRO features cannot be combined with RX-FCS */ 10676 if (features & NETIF_F_RXFCS) { 10677 if (features & NETIF_F_LRO) { 10678 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n"); 10679 features &= ~NETIF_F_LRO; 10680 } 10681 10682 if (features & NETIF_F_GRO_HW) { 10683 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n"); 10684 features &= ~NETIF_F_GRO_HW; 10685 } 10686 } 10687 10688 if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) { 10689 netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n"); 10690 features &= ~NETIF_F_LRO; 10691 } 10692 10693 if ((features & NETIF_F_HW_TLS_TX) && !netdev_has_ip_or_hw_csum(features)) { 10694 netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n"); 10695 features &= ~NETIF_F_HW_TLS_TX; 10696 } 10697 10698 if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) { 10699 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n"); 10700 features &= ~NETIF_F_HW_TLS_RX; 10701 } 10702 10703 if ((features & NETIF_F_GSO_UDP_L4) && !netdev_has_ip_or_hw_csum(features)) { 10704 netdev_dbg(dev, "Dropping USO feature since no CSUM feature.\n"); 10705 features &= ~NETIF_F_GSO_UDP_L4; 10706 } 10707 10708 return features; 10709 } 10710 10711 int __netdev_update_features(struct net_device *dev) 10712 { 10713 struct net_device *upper, *lower; 10714 netdev_features_t features; 10715 struct list_head *iter; 10716 int err = -1; 10717 10718 ASSERT_RTNL(); 10719 netdev_ops_assert_locked(dev); 10720 10721 features = netdev_get_wanted_features(dev); 10722 10723 if (dev->netdev_ops->ndo_fix_features) 10724 features = dev->netdev_ops->ndo_fix_features(dev, features); 10725 10726 /* driver might be less strict about feature dependencies */ 10727 features = netdev_fix_features(dev, features); 10728 10729 /* some features can't be enabled if they're off on an upper device */ 10730 netdev_for_each_upper_dev_rcu(dev, upper, iter) 10731 features = netdev_sync_upper_features(dev, upper, features); 10732 10733 if (dev->features == features) 10734 goto sync_lower; 10735 10736 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n", 10737 &dev->features, &features); 10738 10739 if (dev->netdev_ops->ndo_set_features) 10740 err = dev->netdev_ops->ndo_set_features(dev, features); 10741 else 10742 err = 0; 10743 10744 if (unlikely(err < 0)) { 10745 netdev_err(dev, 10746 "set_features() failed (%d); wanted %pNF, left %pNF\n", 10747 err, &features, &dev->features); 10748 /* return non-0 since some features might have changed and 10749 * it's better to fire a spurious notification than miss it 10750 */ 10751 return -1; 10752 } 10753 10754 sync_lower: 10755 /* some features must be disabled on lower devices when disabled 10756 * on an upper device (think: bonding master or bridge) 10757 */ 10758 netdev_for_each_lower_dev(dev, lower, iter) 10759 netdev_sync_lower_features(dev, lower, features); 10760 10761 if (!err) { 10762 netdev_features_t diff = features ^ dev->features; 10763 10764 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) { 10765 /* udp_tunnel_{get,drop}_rx_info both need 10766 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the 10767 * device, or they won't do anything. 10768 * Thus we need to update dev->features 10769 * *before* calling udp_tunnel_get_rx_info, 10770 * but *after* calling udp_tunnel_drop_rx_info. 10771 */ 10772 udp_tunnel_nic_lock(dev); 10773 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) { 10774 dev->features = features; 10775 udp_tunnel_get_rx_info(dev); 10776 } else { 10777 udp_tunnel_drop_rx_info(dev); 10778 } 10779 udp_tunnel_nic_unlock(dev); 10780 } 10781 10782 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) { 10783 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) { 10784 dev->features = features; 10785 err |= vlan_get_rx_ctag_filter_info(dev); 10786 } else { 10787 vlan_drop_rx_ctag_filter_info(dev); 10788 } 10789 } 10790 10791 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) { 10792 if (features & NETIF_F_HW_VLAN_STAG_FILTER) { 10793 dev->features = features; 10794 err |= vlan_get_rx_stag_filter_info(dev); 10795 } else { 10796 vlan_drop_rx_stag_filter_info(dev); 10797 } 10798 } 10799 10800 dev->features = features; 10801 } 10802 10803 return err < 0 ? 0 : 1; 10804 } 10805 10806 /** 10807 * netdev_update_features - recalculate device features 10808 * @dev: the device to check 10809 * 10810 * Recalculate dev->features set and send notifications if it 10811 * has changed. Should be called after driver or hardware dependent 10812 * conditions might have changed that influence the features. 10813 */ 10814 void netdev_update_features(struct net_device *dev) 10815 { 10816 if (__netdev_update_features(dev)) 10817 netdev_features_change(dev); 10818 } 10819 EXPORT_SYMBOL(netdev_update_features); 10820 10821 /** 10822 * netdev_change_features - recalculate device features 10823 * @dev: the device to check 10824 * 10825 * Recalculate dev->features set and send notifications even 10826 * if they have not changed. Should be called instead of 10827 * netdev_update_features() if also dev->vlan_features might 10828 * have changed to allow the changes to be propagated to stacked 10829 * VLAN devices. 10830 */ 10831 void netdev_change_features(struct net_device *dev) 10832 { 10833 __netdev_update_features(dev); 10834 netdev_features_change(dev); 10835 } 10836 EXPORT_SYMBOL(netdev_change_features); 10837 10838 /** 10839 * netif_stacked_transfer_operstate - transfer operstate 10840 * @rootdev: the root or lower level device to transfer state from 10841 * @dev: the device to transfer operstate to 10842 * 10843 * Transfer operational state from root to device. This is normally 10844 * called when a stacking relationship exists between the root 10845 * device and the device(a leaf device). 10846 */ 10847 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 10848 struct net_device *dev) 10849 { 10850 if (rootdev->operstate == IF_OPER_DORMANT) 10851 netif_dormant_on(dev); 10852 else 10853 netif_dormant_off(dev); 10854 10855 if (rootdev->operstate == IF_OPER_TESTING) 10856 netif_testing_on(dev); 10857 else 10858 netif_testing_off(dev); 10859 10860 if (netif_carrier_ok(rootdev)) 10861 netif_carrier_on(dev); 10862 else 10863 netif_carrier_off(dev); 10864 } 10865 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 10866 10867 static int netif_alloc_rx_queues(struct net_device *dev) 10868 { 10869 unsigned int i, count = dev->num_rx_queues; 10870 struct netdev_rx_queue *rx; 10871 size_t sz = count * sizeof(*rx); 10872 int err = 0; 10873 10874 BUG_ON(count < 1); 10875 10876 rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL); 10877 if (!rx) 10878 return -ENOMEM; 10879 10880 dev->_rx = rx; 10881 10882 for (i = 0; i < count; i++) { 10883 rx[i].dev = dev; 10884 10885 /* XDP RX-queue setup */ 10886 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0); 10887 if (err < 0) 10888 goto err_rxq_info; 10889 } 10890 return 0; 10891 10892 err_rxq_info: 10893 /* Rollback successful reg's and free other resources */ 10894 while (i--) 10895 xdp_rxq_info_unreg(&rx[i].xdp_rxq); 10896 kvfree(dev->_rx); 10897 dev->_rx = NULL; 10898 return err; 10899 } 10900 10901 static void netif_free_rx_queues(struct net_device *dev) 10902 { 10903 unsigned int i, count = dev->num_rx_queues; 10904 10905 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */ 10906 if (!dev->_rx) 10907 return; 10908 10909 for (i = 0; i < count; i++) 10910 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq); 10911 10912 kvfree(dev->_rx); 10913 } 10914 10915 static void netdev_init_one_queue(struct net_device *dev, 10916 struct netdev_queue *queue, void *_unused) 10917 { 10918 /* Initialize queue lock */ 10919 spin_lock_init(&queue->_xmit_lock); 10920 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); 10921 queue->xmit_lock_owner = -1; 10922 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 10923 queue->dev = dev; 10924 #ifdef CONFIG_BQL 10925 dql_init(&queue->dql, HZ); 10926 #endif 10927 } 10928 10929 static void netif_free_tx_queues(struct net_device *dev) 10930 { 10931 kvfree(dev->_tx); 10932 } 10933 10934 static int netif_alloc_netdev_queues(struct net_device *dev) 10935 { 10936 unsigned int count = dev->num_tx_queues; 10937 struct netdev_queue *tx; 10938 size_t sz = count * sizeof(*tx); 10939 10940 if (count < 1 || count > 0xffff) 10941 return -EINVAL; 10942 10943 tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL); 10944 if (!tx) 10945 return -ENOMEM; 10946 10947 dev->_tx = tx; 10948 10949 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 10950 spin_lock_init(&dev->tx_global_lock); 10951 10952 return 0; 10953 } 10954 10955 void netif_tx_stop_all_queues(struct net_device *dev) 10956 { 10957 unsigned int i; 10958 10959 for (i = 0; i < dev->num_tx_queues; i++) { 10960 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 10961 10962 netif_tx_stop_queue(txq); 10963 } 10964 } 10965 EXPORT_SYMBOL(netif_tx_stop_all_queues); 10966 10967 static int netdev_do_alloc_pcpu_stats(struct net_device *dev) 10968 { 10969 void __percpu *v; 10970 10971 /* Drivers implementing ndo_get_peer_dev must support tstat 10972 * accounting, so that skb_do_redirect() can bump the dev's 10973 * RX stats upon network namespace switch. 10974 */ 10975 if (dev->netdev_ops->ndo_get_peer_dev && 10976 dev->pcpu_stat_type != NETDEV_PCPU_STAT_TSTATS) 10977 return -EOPNOTSUPP; 10978 10979 switch (dev->pcpu_stat_type) { 10980 case NETDEV_PCPU_STAT_NONE: 10981 return 0; 10982 case NETDEV_PCPU_STAT_LSTATS: 10983 v = dev->lstats = netdev_alloc_pcpu_stats(struct pcpu_lstats); 10984 break; 10985 case NETDEV_PCPU_STAT_TSTATS: 10986 v = dev->tstats = netdev_alloc_pcpu_stats(struct pcpu_sw_netstats); 10987 break; 10988 case NETDEV_PCPU_STAT_DSTATS: 10989 v = dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats); 10990 break; 10991 default: 10992 return -EINVAL; 10993 } 10994 10995 return v ? 0 : -ENOMEM; 10996 } 10997 10998 static void netdev_do_free_pcpu_stats(struct net_device *dev) 10999 { 11000 switch (dev->pcpu_stat_type) { 11001 case NETDEV_PCPU_STAT_NONE: 11002 return; 11003 case NETDEV_PCPU_STAT_LSTATS: 11004 free_percpu(dev->lstats); 11005 break; 11006 case NETDEV_PCPU_STAT_TSTATS: 11007 free_percpu(dev->tstats); 11008 break; 11009 case NETDEV_PCPU_STAT_DSTATS: 11010 free_percpu(dev->dstats); 11011 break; 11012 } 11013 } 11014 11015 static void netdev_free_phy_link_topology(struct net_device *dev) 11016 { 11017 struct phy_link_topology *topo = dev->link_topo; 11018 11019 if (IS_ENABLED(CONFIG_PHYLIB) && topo) { 11020 xa_destroy(&topo->phys); 11021 kfree(topo); 11022 dev->link_topo = NULL; 11023 } 11024 } 11025 11026 /** 11027 * register_netdevice() - register a network device 11028 * @dev: device to register 11029 * 11030 * Take a prepared network device structure and make it externally accessible. 11031 * A %NETDEV_REGISTER message is sent to the netdev notifier chain. 11032 * Callers must hold the rtnl lock - you may want register_netdev() 11033 * instead of this. 11034 */ 11035 int register_netdevice(struct net_device *dev) 11036 { 11037 int ret; 11038 struct net *net = dev_net(dev); 11039 11040 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE < 11041 NETDEV_FEATURE_COUNT); 11042 BUG_ON(dev_boot_phase); 11043 ASSERT_RTNL(); 11044 11045 might_sleep(); 11046 11047 /* When net_device's are persistent, this will be fatal. */ 11048 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 11049 BUG_ON(!net); 11050 11051 ret = ethtool_check_ops(dev->ethtool_ops); 11052 if (ret) 11053 return ret; 11054 11055 /* rss ctx ID 0 is reserved for the default context, start from 1 */ 11056 xa_init_flags(&dev->ethtool->rss_ctx, XA_FLAGS_ALLOC1); 11057 mutex_init(&dev->ethtool->rss_lock); 11058 11059 spin_lock_init(&dev->addr_list_lock); 11060 netdev_set_addr_lockdep_class(dev); 11061 11062 ret = dev_get_valid_name(net, dev, dev->name); 11063 if (ret < 0) 11064 goto out; 11065 11066 ret = -ENOMEM; 11067 dev->name_node = netdev_name_node_head_alloc(dev); 11068 if (!dev->name_node) 11069 goto out; 11070 11071 /* Init, if this function is available */ 11072 if (dev->netdev_ops->ndo_init) { 11073 ret = dev->netdev_ops->ndo_init(dev); 11074 if (ret) { 11075 if (ret > 0) 11076 ret = -EIO; 11077 goto err_free_name; 11078 } 11079 } 11080 11081 if (((dev->hw_features | dev->features) & 11082 NETIF_F_HW_VLAN_CTAG_FILTER) && 11083 (!dev->netdev_ops->ndo_vlan_rx_add_vid || 11084 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) { 11085 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n"); 11086 ret = -EINVAL; 11087 goto err_uninit; 11088 } 11089 11090 ret = netdev_do_alloc_pcpu_stats(dev); 11091 if (ret) 11092 goto err_uninit; 11093 11094 ret = dev_index_reserve(net, dev->ifindex); 11095 if (ret < 0) 11096 goto err_free_pcpu; 11097 dev->ifindex = ret; 11098 11099 /* Transfer changeable features to wanted_features and enable 11100 * software offloads (GSO and GRO). 11101 */ 11102 dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF); 11103 dev->features |= NETIF_F_SOFT_FEATURES; 11104 11105 if (dev->udp_tunnel_nic_info) { 11106 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT; 11107 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT; 11108 } 11109 11110 dev->wanted_features = dev->features & dev->hw_features; 11111 11112 if (!(dev->flags & IFF_LOOPBACK)) 11113 dev->hw_features |= NETIF_F_NOCACHE_COPY; 11114 11115 /* If IPv4 TCP segmentation offload is supported we should also 11116 * allow the device to enable segmenting the frame with the option 11117 * of ignoring a static IP ID value. This doesn't enable the 11118 * feature itself but allows the user to enable it later. 11119 */ 11120 if (dev->hw_features & NETIF_F_TSO) 11121 dev->hw_features |= NETIF_F_TSO_MANGLEID; 11122 if (dev->vlan_features & NETIF_F_TSO) 11123 dev->vlan_features |= NETIF_F_TSO_MANGLEID; 11124 if (dev->mpls_features & NETIF_F_TSO) 11125 dev->mpls_features |= NETIF_F_TSO_MANGLEID; 11126 if (dev->hw_enc_features & NETIF_F_TSO) 11127 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 11128 11129 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. 11130 */ 11131 dev->vlan_features |= NETIF_F_HIGHDMA; 11132 11133 /* Make NETIF_F_SG inheritable to tunnel devices. 11134 */ 11135 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL; 11136 11137 /* Make NETIF_F_SG inheritable to MPLS. 11138 */ 11139 dev->mpls_features |= NETIF_F_SG; 11140 11141 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 11142 ret = notifier_to_errno(ret); 11143 if (ret) 11144 goto err_ifindex_release; 11145 11146 ret = netdev_register_kobject(dev); 11147 11148 netdev_lock(dev); 11149 WRITE_ONCE(dev->reg_state, ret ? NETREG_UNREGISTERED : NETREG_REGISTERED); 11150 netdev_unlock(dev); 11151 11152 if (ret) 11153 goto err_uninit_notify; 11154 11155 netdev_lock_ops(dev); 11156 __netdev_update_features(dev); 11157 netdev_unlock_ops(dev); 11158 11159 /* 11160 * Default initial state at registry is that the 11161 * device is present. 11162 */ 11163 11164 set_bit(__LINK_STATE_PRESENT, &dev->state); 11165 11166 linkwatch_init_dev(dev); 11167 11168 dev_init_scheduler(dev); 11169 11170 netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL); 11171 list_netdevice(dev); 11172 11173 add_device_randomness(dev->dev_addr, dev->addr_len); 11174 11175 /* If the device has permanent device address, driver should 11176 * set dev_addr and also addr_assign_type should be set to 11177 * NET_ADDR_PERM (default value). 11178 */ 11179 if (dev->addr_assign_type == NET_ADDR_PERM) 11180 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); 11181 11182 /* Notify protocols, that a new device appeared. */ 11183 netdev_lock_ops(dev); 11184 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 11185 netdev_unlock_ops(dev); 11186 ret = notifier_to_errno(ret); 11187 if (ret) { 11188 /* Expect explicit free_netdev() on failure */ 11189 dev->needs_free_netdev = false; 11190 unregister_netdevice_queue(dev, NULL); 11191 goto out; 11192 } 11193 /* 11194 * Prevent userspace races by waiting until the network 11195 * device is fully setup before sending notifications. 11196 */ 11197 if (!(dev->rtnl_link_ops && dev->rtnl_link_initializing)) 11198 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL); 11199 11200 out: 11201 return ret; 11202 11203 err_uninit_notify: 11204 call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev); 11205 err_ifindex_release: 11206 dev_index_release(net, dev->ifindex); 11207 err_free_pcpu: 11208 netdev_do_free_pcpu_stats(dev); 11209 err_uninit: 11210 if (dev->netdev_ops->ndo_uninit) 11211 dev->netdev_ops->ndo_uninit(dev); 11212 if (dev->priv_destructor) 11213 dev->priv_destructor(dev); 11214 err_free_name: 11215 netdev_name_node_free(dev->name_node); 11216 goto out; 11217 } 11218 EXPORT_SYMBOL(register_netdevice); 11219 11220 /* Initialize the core of a dummy net device. 11221 * The setup steps dummy netdevs need which normal netdevs get by going 11222 * through register_netdevice(). 11223 */ 11224 static void init_dummy_netdev(struct net_device *dev) 11225 { 11226 /* make sure we BUG if trying to hit standard 11227 * register/unregister code path 11228 */ 11229 dev->reg_state = NETREG_DUMMY; 11230 11231 /* a dummy interface is started by default */ 11232 set_bit(__LINK_STATE_PRESENT, &dev->state); 11233 set_bit(__LINK_STATE_START, &dev->state); 11234 11235 /* Note : We dont allocate pcpu_refcnt for dummy devices, 11236 * because users of this 'device' dont need to change 11237 * its refcount. 11238 */ 11239 } 11240 11241 /** 11242 * register_netdev - register a network device 11243 * @dev: device to register 11244 * 11245 * Take a completed network device structure and add it to the kernel 11246 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 11247 * chain. 0 is returned on success. A negative errno code is returned 11248 * on a failure to set up the device, or if the name is a duplicate. 11249 * 11250 * This is a wrapper around register_netdevice that takes the rtnl semaphore 11251 * and expands the device name if you passed a format string to 11252 * alloc_netdev. 11253 */ 11254 int register_netdev(struct net_device *dev) 11255 { 11256 struct net *net = dev_net(dev); 11257 int err; 11258 11259 if (rtnl_net_lock_killable(net)) 11260 return -EINTR; 11261 11262 err = register_netdevice(dev); 11263 11264 rtnl_net_unlock(net); 11265 11266 return err; 11267 } 11268 EXPORT_SYMBOL(register_netdev); 11269 11270 int netdev_refcnt_read(const struct net_device *dev) 11271 { 11272 #ifdef CONFIG_PCPU_DEV_REFCNT 11273 int i, refcnt = 0; 11274 11275 for_each_possible_cpu(i) 11276 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 11277 return refcnt; 11278 #else 11279 return refcount_read(&dev->dev_refcnt); 11280 #endif 11281 } 11282 EXPORT_SYMBOL(netdev_refcnt_read); 11283 11284 int netdev_unregister_timeout_secs __read_mostly = 10; 11285 11286 #define WAIT_REFS_MIN_MSECS 1 11287 #define WAIT_REFS_MAX_MSECS 250 11288 /** 11289 * netdev_wait_allrefs_any - wait until all references are gone. 11290 * @list: list of net_devices to wait on 11291 * 11292 * This is called when unregistering network devices. 11293 * 11294 * Any protocol or device that holds a reference should register 11295 * for netdevice notification, and cleanup and put back the 11296 * reference if they receive an UNREGISTER event. 11297 * We can get stuck here if buggy protocols don't correctly 11298 * call dev_put. 11299 */ 11300 static struct net_device *netdev_wait_allrefs_any(struct list_head *list) 11301 { 11302 unsigned long rebroadcast_time, warning_time; 11303 struct net_device *dev; 11304 int wait = 0; 11305 11306 rebroadcast_time = warning_time = jiffies; 11307 11308 list_for_each_entry(dev, list, todo_list) 11309 if (netdev_refcnt_read(dev) == 1) 11310 return dev; 11311 11312 while (true) { 11313 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 11314 rtnl_lock(); 11315 11316 /* Rebroadcast unregister notification */ 11317 list_for_each_entry(dev, list, todo_list) 11318 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 11319 11320 __rtnl_unlock(); 11321 rcu_barrier(); 11322 rtnl_lock(); 11323 11324 list_for_each_entry(dev, list, todo_list) 11325 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 11326 &dev->state)) { 11327 /* We must not have linkwatch events 11328 * pending on unregister. If this 11329 * happens, we simply run the queue 11330 * unscheduled, resulting in a noop 11331 * for this device. 11332 */ 11333 linkwatch_run_queue(); 11334 break; 11335 } 11336 11337 __rtnl_unlock(); 11338 11339 rebroadcast_time = jiffies; 11340 } 11341 11342 rcu_barrier(); 11343 11344 if (!wait) { 11345 wait = WAIT_REFS_MIN_MSECS; 11346 } else { 11347 msleep(wait); 11348 wait = min(wait << 1, WAIT_REFS_MAX_MSECS); 11349 } 11350 11351 list_for_each_entry(dev, list, todo_list) 11352 if (netdev_refcnt_read(dev) == 1) 11353 return dev; 11354 11355 if (time_after(jiffies, warning_time + 11356 READ_ONCE(netdev_unregister_timeout_secs) * HZ)) { 11357 list_for_each_entry(dev, list, todo_list) { 11358 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n", 11359 dev->name, netdev_refcnt_read(dev)); 11360 ref_tracker_dir_print(&dev->refcnt_tracker, 10); 11361 } 11362 11363 warning_time = jiffies; 11364 } 11365 } 11366 } 11367 11368 /* The sequence is: 11369 * 11370 * rtnl_lock(); 11371 * ... 11372 * register_netdevice(x1); 11373 * register_netdevice(x2); 11374 * ... 11375 * unregister_netdevice(y1); 11376 * unregister_netdevice(y2); 11377 * ... 11378 * rtnl_unlock(); 11379 * free_netdev(y1); 11380 * free_netdev(y2); 11381 * 11382 * We are invoked by rtnl_unlock(). 11383 * This allows us to deal with problems: 11384 * 1) We can delete sysfs objects which invoke hotplug 11385 * without deadlocking with linkwatch via keventd. 11386 * 2) Since we run with the RTNL semaphore not held, we can sleep 11387 * safely in order to wait for the netdev refcnt to drop to zero. 11388 * 11389 * We must not return until all unregister events added during 11390 * the interval the lock was held have been completed. 11391 */ 11392 void netdev_run_todo(void) 11393 { 11394 struct net_device *dev, *tmp; 11395 struct list_head list; 11396 int cnt; 11397 #ifdef CONFIG_LOCKDEP 11398 struct list_head unlink_list; 11399 11400 list_replace_init(&net_unlink_list, &unlink_list); 11401 11402 while (!list_empty(&unlink_list)) { 11403 dev = list_first_entry(&unlink_list, struct net_device, 11404 unlink_list); 11405 list_del_init(&dev->unlink_list); 11406 dev->nested_level = dev->lower_level - 1; 11407 } 11408 #endif 11409 11410 /* Snapshot list, allow later requests */ 11411 list_replace_init(&net_todo_list, &list); 11412 11413 __rtnl_unlock(); 11414 11415 /* Wait for rcu callbacks to finish before next phase */ 11416 if (!list_empty(&list)) 11417 rcu_barrier(); 11418 11419 list_for_each_entry_safe(dev, tmp, &list, todo_list) { 11420 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 11421 netdev_WARN(dev, "run_todo but not unregistering\n"); 11422 list_del(&dev->todo_list); 11423 continue; 11424 } 11425 11426 netdev_lock(dev); 11427 WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERED); 11428 netdev_unlock(dev); 11429 linkwatch_sync_dev(dev); 11430 } 11431 11432 cnt = 0; 11433 while (!list_empty(&list)) { 11434 dev = netdev_wait_allrefs_any(&list); 11435 list_del(&dev->todo_list); 11436 11437 /* paranoia */ 11438 BUG_ON(netdev_refcnt_read(dev) != 1); 11439 BUG_ON(!list_empty(&dev->ptype_all)); 11440 BUG_ON(!list_empty(&dev->ptype_specific)); 11441 WARN_ON(rcu_access_pointer(dev->ip_ptr)); 11442 WARN_ON(rcu_access_pointer(dev->ip6_ptr)); 11443 11444 netdev_do_free_pcpu_stats(dev); 11445 if (dev->priv_destructor) 11446 dev->priv_destructor(dev); 11447 if (dev->needs_free_netdev) 11448 free_netdev(dev); 11449 11450 cnt++; 11451 11452 /* Free network device */ 11453 kobject_put(&dev->dev.kobj); 11454 } 11455 if (cnt && atomic_sub_and_test(cnt, &dev_unreg_count)) 11456 wake_up(&netdev_unregistering_wq); 11457 } 11458 11459 /* Collate per-cpu network dstats statistics 11460 * 11461 * Read per-cpu network statistics from dev->dstats and populate the related 11462 * fields in @s. 11463 */ 11464 static void dev_fetch_dstats(struct rtnl_link_stats64 *s, 11465 const struct pcpu_dstats __percpu *dstats) 11466 { 11467 int cpu; 11468 11469 for_each_possible_cpu(cpu) { 11470 u64 rx_packets, rx_bytes, rx_drops; 11471 u64 tx_packets, tx_bytes, tx_drops; 11472 const struct pcpu_dstats *stats; 11473 unsigned int start; 11474 11475 stats = per_cpu_ptr(dstats, cpu); 11476 do { 11477 start = u64_stats_fetch_begin(&stats->syncp); 11478 rx_packets = u64_stats_read(&stats->rx_packets); 11479 rx_bytes = u64_stats_read(&stats->rx_bytes); 11480 rx_drops = u64_stats_read(&stats->rx_drops); 11481 tx_packets = u64_stats_read(&stats->tx_packets); 11482 tx_bytes = u64_stats_read(&stats->tx_bytes); 11483 tx_drops = u64_stats_read(&stats->tx_drops); 11484 } while (u64_stats_fetch_retry(&stats->syncp, start)); 11485 11486 s->rx_packets += rx_packets; 11487 s->rx_bytes += rx_bytes; 11488 s->rx_dropped += rx_drops; 11489 s->tx_packets += tx_packets; 11490 s->tx_bytes += tx_bytes; 11491 s->tx_dropped += tx_drops; 11492 } 11493 } 11494 11495 /* ndo_get_stats64 implementation for dtstats-based accounting. 11496 * 11497 * Populate @s from dev->stats and dev->dstats. This is used internally by the 11498 * core for NETDEV_PCPU_STAT_DSTAT-type stats collection. 11499 */ 11500 static void dev_get_dstats64(const struct net_device *dev, 11501 struct rtnl_link_stats64 *s) 11502 { 11503 netdev_stats_to_stats64(s, &dev->stats); 11504 dev_fetch_dstats(s, dev->dstats); 11505 } 11506 11507 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has 11508 * all the same fields in the same order as net_device_stats, with only 11509 * the type differing, but rtnl_link_stats64 may have additional fields 11510 * at the end for newer counters. 11511 */ 11512 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 11513 const struct net_device_stats *netdev_stats) 11514 { 11515 size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t); 11516 const atomic_long_t *src = (atomic_long_t *)netdev_stats; 11517 u64 *dst = (u64 *)stats64; 11518 11519 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64)); 11520 for (i = 0; i < n; i++) 11521 dst[i] = (unsigned long)atomic_long_read(&src[i]); 11522 /* zero out counters that only exist in rtnl_link_stats64 */ 11523 memset((char *)stats64 + n * sizeof(u64), 0, 11524 sizeof(*stats64) - n * sizeof(u64)); 11525 } 11526 EXPORT_SYMBOL(netdev_stats_to_stats64); 11527 11528 static __cold struct net_device_core_stats __percpu *netdev_core_stats_alloc( 11529 struct net_device *dev) 11530 { 11531 struct net_device_core_stats __percpu *p; 11532 11533 p = alloc_percpu_gfp(struct net_device_core_stats, 11534 GFP_ATOMIC | __GFP_NOWARN); 11535 11536 if (p && cmpxchg(&dev->core_stats, NULL, p)) 11537 free_percpu(p); 11538 11539 /* This READ_ONCE() pairs with the cmpxchg() above */ 11540 return READ_ONCE(dev->core_stats); 11541 } 11542 11543 noinline void netdev_core_stats_inc(struct net_device *dev, u32 offset) 11544 { 11545 /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */ 11546 struct net_device_core_stats __percpu *p = READ_ONCE(dev->core_stats); 11547 unsigned long __percpu *field; 11548 11549 if (unlikely(!p)) { 11550 p = netdev_core_stats_alloc(dev); 11551 if (!p) 11552 return; 11553 } 11554 11555 field = (unsigned long __percpu *)((void __percpu *)p + offset); 11556 this_cpu_inc(*field); 11557 } 11558 EXPORT_SYMBOL_GPL(netdev_core_stats_inc); 11559 11560 /** 11561 * dev_get_stats - get network device statistics 11562 * @dev: device to get statistics from 11563 * @storage: place to store stats 11564 * 11565 * Get network statistics from device. Return @storage. 11566 * The device driver may provide its own method by setting 11567 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 11568 * otherwise the internal statistics structure is used. 11569 */ 11570 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 11571 struct rtnl_link_stats64 *storage) 11572 { 11573 const struct net_device_ops *ops = dev->netdev_ops; 11574 const struct net_device_core_stats __percpu *p; 11575 11576 /* 11577 * IPv{4,6} and udp tunnels share common stat helpers and use 11578 * different stat type (NETDEV_PCPU_STAT_TSTATS vs 11579 * NETDEV_PCPU_STAT_DSTATS). Ensure the accounting is consistent. 11580 */ 11581 BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, rx_bytes) != 11582 offsetof(struct pcpu_dstats, rx_bytes)); 11583 BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, rx_packets) != 11584 offsetof(struct pcpu_dstats, rx_packets)); 11585 BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, tx_bytes) != 11586 offsetof(struct pcpu_dstats, tx_bytes)); 11587 BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, tx_packets) != 11588 offsetof(struct pcpu_dstats, tx_packets)); 11589 11590 if (ops->ndo_get_stats64) { 11591 memset(storage, 0, sizeof(*storage)); 11592 ops->ndo_get_stats64(dev, storage); 11593 } else if (ops->ndo_get_stats) { 11594 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 11595 } else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_TSTATS) { 11596 dev_get_tstats64(dev, storage); 11597 } else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_DSTATS) { 11598 dev_get_dstats64(dev, storage); 11599 } else { 11600 netdev_stats_to_stats64(storage, &dev->stats); 11601 } 11602 11603 /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */ 11604 p = READ_ONCE(dev->core_stats); 11605 if (p) { 11606 const struct net_device_core_stats *core_stats; 11607 int i; 11608 11609 for_each_possible_cpu(i) { 11610 core_stats = per_cpu_ptr(p, i); 11611 storage->rx_dropped += READ_ONCE(core_stats->rx_dropped); 11612 storage->tx_dropped += READ_ONCE(core_stats->tx_dropped); 11613 storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler); 11614 storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped); 11615 } 11616 } 11617 return storage; 11618 } 11619 EXPORT_SYMBOL(dev_get_stats); 11620 11621 /** 11622 * dev_fetch_sw_netstats - get per-cpu network device statistics 11623 * @s: place to store stats 11624 * @netstats: per-cpu network stats to read from 11625 * 11626 * Read per-cpu network statistics and populate the related fields in @s. 11627 */ 11628 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s, 11629 const struct pcpu_sw_netstats __percpu *netstats) 11630 { 11631 int cpu; 11632 11633 for_each_possible_cpu(cpu) { 11634 u64 rx_packets, rx_bytes, tx_packets, tx_bytes; 11635 const struct pcpu_sw_netstats *stats; 11636 unsigned int start; 11637 11638 stats = per_cpu_ptr(netstats, cpu); 11639 do { 11640 start = u64_stats_fetch_begin(&stats->syncp); 11641 rx_packets = u64_stats_read(&stats->rx_packets); 11642 rx_bytes = u64_stats_read(&stats->rx_bytes); 11643 tx_packets = u64_stats_read(&stats->tx_packets); 11644 tx_bytes = u64_stats_read(&stats->tx_bytes); 11645 } while (u64_stats_fetch_retry(&stats->syncp, start)); 11646 11647 s->rx_packets += rx_packets; 11648 s->rx_bytes += rx_bytes; 11649 s->tx_packets += tx_packets; 11650 s->tx_bytes += tx_bytes; 11651 } 11652 } 11653 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats); 11654 11655 /** 11656 * dev_get_tstats64 - ndo_get_stats64 implementation 11657 * @dev: device to get statistics from 11658 * @s: place to store stats 11659 * 11660 * Populate @s from dev->stats and dev->tstats. Can be used as 11661 * ndo_get_stats64() callback. 11662 */ 11663 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s) 11664 { 11665 netdev_stats_to_stats64(s, &dev->stats); 11666 dev_fetch_sw_netstats(s, dev->tstats); 11667 } 11668 EXPORT_SYMBOL_GPL(dev_get_tstats64); 11669 11670 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 11671 { 11672 struct netdev_queue *queue = dev_ingress_queue(dev); 11673 11674 #ifdef CONFIG_NET_CLS_ACT 11675 if (queue) 11676 return queue; 11677 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 11678 if (!queue) 11679 return NULL; 11680 netdev_init_one_queue(dev, queue, NULL); 11681 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc); 11682 RCU_INIT_POINTER(queue->qdisc_sleeping, &noop_qdisc); 11683 rcu_assign_pointer(dev->ingress_queue, queue); 11684 #endif 11685 return queue; 11686 } 11687 11688 static const struct ethtool_ops default_ethtool_ops; 11689 11690 void netdev_set_default_ethtool_ops(struct net_device *dev, 11691 const struct ethtool_ops *ops) 11692 { 11693 if (dev->ethtool_ops == &default_ethtool_ops) 11694 dev->ethtool_ops = ops; 11695 } 11696 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops); 11697 11698 /** 11699 * netdev_sw_irq_coalesce_default_on() - enable SW IRQ coalescing by default 11700 * @dev: netdev to enable the IRQ coalescing on 11701 * 11702 * Sets a conservative default for SW IRQ coalescing. Users can use 11703 * sysfs attributes to override the default values. 11704 */ 11705 void netdev_sw_irq_coalesce_default_on(struct net_device *dev) 11706 { 11707 WARN_ON(dev->reg_state == NETREG_REGISTERED); 11708 11709 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) { 11710 netdev_set_gro_flush_timeout(dev, 20000); 11711 netdev_set_defer_hard_irqs(dev, 1); 11712 } 11713 } 11714 EXPORT_SYMBOL_GPL(netdev_sw_irq_coalesce_default_on); 11715 11716 /** 11717 * alloc_netdev_mqs - allocate network device 11718 * @sizeof_priv: size of private data to allocate space for 11719 * @name: device name format string 11720 * @name_assign_type: origin of device name 11721 * @setup: callback to initialize device 11722 * @txqs: the number of TX subqueues to allocate 11723 * @rxqs: the number of RX subqueues to allocate 11724 * 11725 * Allocates a struct net_device with private data area for driver use 11726 * and performs basic initialization. Also allocates subqueue structs 11727 * for each queue on the device. 11728 */ 11729 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 11730 unsigned char name_assign_type, 11731 void (*setup)(struct net_device *), 11732 unsigned int txqs, unsigned int rxqs) 11733 { 11734 struct net_device *dev; 11735 size_t napi_config_sz; 11736 unsigned int maxqs; 11737 11738 BUG_ON(strlen(name) >= sizeof(dev->name)); 11739 11740 if (txqs < 1) { 11741 pr_err("alloc_netdev: Unable to allocate device with zero queues\n"); 11742 return NULL; 11743 } 11744 11745 if (rxqs < 1) { 11746 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n"); 11747 return NULL; 11748 } 11749 11750 maxqs = max(txqs, rxqs); 11751 11752 dev = kvzalloc(struct_size(dev, priv, sizeof_priv), 11753 GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL); 11754 if (!dev) 11755 return NULL; 11756 11757 dev->priv_len = sizeof_priv; 11758 11759 ref_tracker_dir_init(&dev->refcnt_tracker, 128, name); 11760 #ifdef CONFIG_PCPU_DEV_REFCNT 11761 dev->pcpu_refcnt = alloc_percpu(int); 11762 if (!dev->pcpu_refcnt) 11763 goto free_dev; 11764 __dev_hold(dev); 11765 #else 11766 refcount_set(&dev->dev_refcnt, 1); 11767 #endif 11768 11769 if (dev_addr_init(dev)) 11770 goto free_pcpu; 11771 11772 dev_mc_init(dev); 11773 dev_uc_init(dev); 11774 11775 dev_net_set(dev, &init_net); 11776 11777 dev->gso_max_size = GSO_LEGACY_MAX_SIZE; 11778 dev->xdp_zc_max_segs = 1; 11779 dev->gso_max_segs = GSO_MAX_SEGS; 11780 dev->gro_max_size = GRO_LEGACY_MAX_SIZE; 11781 dev->gso_ipv4_max_size = GSO_LEGACY_MAX_SIZE; 11782 dev->gro_ipv4_max_size = GRO_LEGACY_MAX_SIZE; 11783 dev->tso_max_size = TSO_LEGACY_MAX_SIZE; 11784 dev->tso_max_segs = TSO_MAX_SEGS; 11785 dev->upper_level = 1; 11786 dev->lower_level = 1; 11787 #ifdef CONFIG_LOCKDEP 11788 dev->nested_level = 0; 11789 INIT_LIST_HEAD(&dev->unlink_list); 11790 #endif 11791 11792 INIT_LIST_HEAD(&dev->napi_list); 11793 INIT_LIST_HEAD(&dev->unreg_list); 11794 INIT_LIST_HEAD(&dev->close_list); 11795 INIT_LIST_HEAD(&dev->link_watch_list); 11796 INIT_LIST_HEAD(&dev->adj_list.upper); 11797 INIT_LIST_HEAD(&dev->adj_list.lower); 11798 INIT_LIST_HEAD(&dev->ptype_all); 11799 INIT_LIST_HEAD(&dev->ptype_specific); 11800 INIT_LIST_HEAD(&dev->net_notifier_list); 11801 #ifdef CONFIG_NET_SCHED 11802 hash_init(dev->qdisc_hash); 11803 #endif 11804 11805 mutex_init(&dev->lock); 11806 11807 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM; 11808 setup(dev); 11809 11810 if (!dev->tx_queue_len) { 11811 dev->priv_flags |= IFF_NO_QUEUE; 11812 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN; 11813 } 11814 11815 dev->num_tx_queues = txqs; 11816 dev->real_num_tx_queues = txqs; 11817 if (netif_alloc_netdev_queues(dev)) 11818 goto free_all; 11819 11820 dev->num_rx_queues = rxqs; 11821 dev->real_num_rx_queues = rxqs; 11822 if (netif_alloc_rx_queues(dev)) 11823 goto free_all; 11824 dev->ethtool = kzalloc(sizeof(*dev->ethtool), GFP_KERNEL_ACCOUNT); 11825 if (!dev->ethtool) 11826 goto free_all; 11827 11828 dev->cfg = kzalloc(sizeof(*dev->cfg), GFP_KERNEL_ACCOUNT); 11829 if (!dev->cfg) 11830 goto free_all; 11831 dev->cfg_pending = dev->cfg; 11832 11833 napi_config_sz = array_size(maxqs, sizeof(*dev->napi_config)); 11834 dev->napi_config = kvzalloc(napi_config_sz, GFP_KERNEL_ACCOUNT); 11835 if (!dev->napi_config) 11836 goto free_all; 11837 11838 strscpy(dev->name, name); 11839 dev->name_assign_type = name_assign_type; 11840 dev->group = INIT_NETDEV_GROUP; 11841 if (!dev->ethtool_ops) 11842 dev->ethtool_ops = &default_ethtool_ops; 11843 11844 nf_hook_netdev_init(dev); 11845 11846 return dev; 11847 11848 free_all: 11849 free_netdev(dev); 11850 return NULL; 11851 11852 free_pcpu: 11853 #ifdef CONFIG_PCPU_DEV_REFCNT 11854 free_percpu(dev->pcpu_refcnt); 11855 free_dev: 11856 #endif 11857 kvfree(dev); 11858 return NULL; 11859 } 11860 EXPORT_SYMBOL(alloc_netdev_mqs); 11861 11862 static void netdev_napi_exit(struct net_device *dev) 11863 { 11864 if (!list_empty(&dev->napi_list)) { 11865 struct napi_struct *p, *n; 11866 11867 netdev_lock(dev); 11868 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 11869 __netif_napi_del_locked(p); 11870 netdev_unlock(dev); 11871 11872 synchronize_net(); 11873 } 11874 11875 kvfree(dev->napi_config); 11876 } 11877 11878 /** 11879 * free_netdev - free network device 11880 * @dev: device 11881 * 11882 * This function does the last stage of destroying an allocated device 11883 * interface. The reference to the device object is released. If this 11884 * is the last reference then it will be freed.Must be called in process 11885 * context. 11886 */ 11887 void free_netdev(struct net_device *dev) 11888 { 11889 might_sleep(); 11890 11891 /* When called immediately after register_netdevice() failed the unwind 11892 * handling may still be dismantling the device. Handle that case by 11893 * deferring the free. 11894 */ 11895 if (dev->reg_state == NETREG_UNREGISTERING) { 11896 ASSERT_RTNL(); 11897 dev->needs_free_netdev = true; 11898 return; 11899 } 11900 11901 WARN_ON(dev->cfg != dev->cfg_pending); 11902 kfree(dev->cfg); 11903 kfree(dev->ethtool); 11904 netif_free_tx_queues(dev); 11905 netif_free_rx_queues(dev); 11906 11907 kfree(rcu_dereference_protected(dev->ingress_queue, 1)); 11908 11909 /* Flush device addresses */ 11910 dev_addr_flush(dev); 11911 11912 netdev_napi_exit(dev); 11913 11914 netif_del_cpu_rmap(dev); 11915 11916 ref_tracker_dir_exit(&dev->refcnt_tracker); 11917 #ifdef CONFIG_PCPU_DEV_REFCNT 11918 free_percpu(dev->pcpu_refcnt); 11919 dev->pcpu_refcnt = NULL; 11920 #endif 11921 free_percpu(dev->core_stats); 11922 dev->core_stats = NULL; 11923 free_percpu(dev->xdp_bulkq); 11924 dev->xdp_bulkq = NULL; 11925 11926 netdev_free_phy_link_topology(dev); 11927 11928 mutex_destroy(&dev->lock); 11929 11930 /* Compatibility with error handling in drivers */ 11931 if (dev->reg_state == NETREG_UNINITIALIZED || 11932 dev->reg_state == NETREG_DUMMY) { 11933 kvfree(dev); 11934 return; 11935 } 11936 11937 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 11938 WRITE_ONCE(dev->reg_state, NETREG_RELEASED); 11939 11940 /* will free via device release */ 11941 put_device(&dev->dev); 11942 } 11943 EXPORT_SYMBOL(free_netdev); 11944 11945 /** 11946 * alloc_netdev_dummy - Allocate and initialize a dummy net device. 11947 * @sizeof_priv: size of private data to allocate space for 11948 * 11949 * Return: the allocated net_device on success, NULL otherwise 11950 */ 11951 struct net_device *alloc_netdev_dummy(int sizeof_priv) 11952 { 11953 return alloc_netdev(sizeof_priv, "dummy#", NET_NAME_UNKNOWN, 11954 init_dummy_netdev); 11955 } 11956 EXPORT_SYMBOL_GPL(alloc_netdev_dummy); 11957 11958 /** 11959 * synchronize_net - Synchronize with packet receive processing 11960 * 11961 * Wait for packets currently being received to be done. 11962 * Does not block later packets from starting. 11963 */ 11964 void synchronize_net(void) 11965 { 11966 might_sleep(); 11967 if (from_cleanup_net() || rtnl_is_locked()) 11968 synchronize_rcu_expedited(); 11969 else 11970 synchronize_rcu(); 11971 } 11972 EXPORT_SYMBOL(synchronize_net); 11973 11974 static void netdev_rss_contexts_free(struct net_device *dev) 11975 { 11976 struct ethtool_rxfh_context *ctx; 11977 unsigned long context; 11978 11979 mutex_lock(&dev->ethtool->rss_lock); 11980 xa_for_each(&dev->ethtool->rss_ctx, context, ctx) { 11981 struct ethtool_rxfh_param rxfh; 11982 11983 rxfh.indir = ethtool_rxfh_context_indir(ctx); 11984 rxfh.key = ethtool_rxfh_context_key(ctx); 11985 rxfh.hfunc = ctx->hfunc; 11986 rxfh.input_xfrm = ctx->input_xfrm; 11987 rxfh.rss_context = context; 11988 rxfh.rss_delete = true; 11989 11990 xa_erase(&dev->ethtool->rss_ctx, context); 11991 if (dev->ethtool_ops->create_rxfh_context) 11992 dev->ethtool_ops->remove_rxfh_context(dev, ctx, 11993 context, NULL); 11994 else 11995 dev->ethtool_ops->set_rxfh(dev, &rxfh, NULL); 11996 kfree(ctx); 11997 } 11998 xa_destroy(&dev->ethtool->rss_ctx); 11999 mutex_unlock(&dev->ethtool->rss_lock); 12000 } 12001 12002 /** 12003 * unregister_netdevice_queue - remove device from the kernel 12004 * @dev: device 12005 * @head: list 12006 * 12007 * This function shuts down a device interface and removes it 12008 * from the kernel tables. 12009 * If head not NULL, device is queued to be unregistered later. 12010 * 12011 * Callers must hold the rtnl semaphore. You may want 12012 * unregister_netdev() instead of this. 12013 */ 12014 12015 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 12016 { 12017 ASSERT_RTNL(); 12018 12019 if (head) { 12020 list_move_tail(&dev->unreg_list, head); 12021 } else { 12022 LIST_HEAD(single); 12023 12024 list_add(&dev->unreg_list, &single); 12025 unregister_netdevice_many(&single); 12026 } 12027 } 12028 EXPORT_SYMBOL(unregister_netdevice_queue); 12029 12030 static void dev_memory_provider_uninstall(struct net_device *dev) 12031 { 12032 unsigned int i; 12033 12034 for (i = 0; i < dev->real_num_rx_queues; i++) { 12035 struct netdev_rx_queue *rxq = &dev->_rx[i]; 12036 struct pp_memory_provider_params *p = &rxq->mp_params; 12037 12038 if (p->mp_ops && p->mp_ops->uninstall) 12039 p->mp_ops->uninstall(rxq->mp_params.mp_priv, rxq); 12040 } 12041 } 12042 12043 void unregister_netdevice_many_notify(struct list_head *head, 12044 u32 portid, const struct nlmsghdr *nlh) 12045 { 12046 struct net_device *dev, *tmp; 12047 LIST_HEAD(close_head); 12048 int cnt = 0; 12049 12050 BUG_ON(dev_boot_phase); 12051 ASSERT_RTNL(); 12052 12053 if (list_empty(head)) 12054 return; 12055 12056 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 12057 /* Some devices call without registering 12058 * for initialization unwind. Remove those 12059 * devices and proceed with the remaining. 12060 */ 12061 if (dev->reg_state == NETREG_UNINITIALIZED) { 12062 pr_debug("unregister_netdevice: device %s/%p never was registered\n", 12063 dev->name, dev); 12064 12065 WARN_ON(1); 12066 list_del(&dev->unreg_list); 12067 continue; 12068 } 12069 dev->dismantle = true; 12070 BUG_ON(dev->reg_state != NETREG_REGISTERED); 12071 } 12072 12073 /* If device is running, close it first. Start with ops locked... */ 12074 list_for_each_entry(dev, head, unreg_list) { 12075 if (netdev_need_ops_lock(dev)) { 12076 list_add_tail(&dev->close_list, &close_head); 12077 netdev_lock(dev); 12078 } 12079 } 12080 dev_close_many(&close_head, true); 12081 /* ... now unlock them and go over the rest. */ 12082 list_for_each_entry(dev, head, unreg_list) { 12083 if (netdev_need_ops_lock(dev)) 12084 netdev_unlock(dev); 12085 else 12086 list_add_tail(&dev->close_list, &close_head); 12087 } 12088 dev_close_many(&close_head, true); 12089 12090 list_for_each_entry(dev, head, unreg_list) { 12091 /* And unlink it from device chain. */ 12092 unlist_netdevice(dev); 12093 netdev_lock(dev); 12094 WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERING); 12095 netdev_unlock(dev); 12096 } 12097 flush_all_backlogs(); 12098 12099 synchronize_net(); 12100 12101 list_for_each_entry(dev, head, unreg_list) { 12102 struct sk_buff *skb = NULL; 12103 12104 /* Shutdown queueing discipline. */ 12105 netdev_lock_ops(dev); 12106 dev_shutdown(dev); 12107 dev_tcx_uninstall(dev); 12108 dev_xdp_uninstall(dev); 12109 dev_memory_provider_uninstall(dev); 12110 netdev_unlock_ops(dev); 12111 bpf_dev_bound_netdev_unregister(dev); 12112 12113 netdev_offload_xstats_disable_all(dev); 12114 12115 /* Notify protocols, that we are about to destroy 12116 * this device. They should clean all the things. 12117 */ 12118 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 12119 12120 if (!(dev->rtnl_link_ops && dev->rtnl_link_initializing)) 12121 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0, 12122 GFP_KERNEL, NULL, 0, 12123 portid, nlh); 12124 12125 /* 12126 * Flush the unicast and multicast chains 12127 */ 12128 dev_uc_flush(dev); 12129 dev_mc_flush(dev); 12130 12131 netdev_name_node_alt_flush(dev); 12132 netdev_name_node_free(dev->name_node); 12133 12134 netdev_rss_contexts_free(dev); 12135 12136 call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev); 12137 12138 if (dev->netdev_ops->ndo_uninit) 12139 dev->netdev_ops->ndo_uninit(dev); 12140 12141 mutex_destroy(&dev->ethtool->rss_lock); 12142 12143 net_shaper_flush_netdev(dev); 12144 12145 if (skb) 12146 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL, portid, nlh); 12147 12148 /* Notifier chain MUST detach us all upper devices. */ 12149 WARN_ON(netdev_has_any_upper_dev(dev)); 12150 WARN_ON(netdev_has_any_lower_dev(dev)); 12151 12152 /* Remove entries from kobject tree */ 12153 netdev_unregister_kobject(dev); 12154 #ifdef CONFIG_XPS 12155 /* Remove XPS queueing entries */ 12156 netif_reset_xps_queues_gt(dev, 0); 12157 #endif 12158 } 12159 12160 synchronize_net(); 12161 12162 list_for_each_entry(dev, head, unreg_list) { 12163 netdev_put(dev, &dev->dev_registered_tracker); 12164 net_set_todo(dev); 12165 cnt++; 12166 } 12167 atomic_add(cnt, &dev_unreg_count); 12168 12169 list_del(head); 12170 } 12171 12172 /** 12173 * unregister_netdevice_many - unregister many devices 12174 * @head: list of devices 12175 * 12176 * Note: As most callers use a stack allocated list_head, 12177 * we force a list_del() to make sure stack won't be corrupted later. 12178 */ 12179 void unregister_netdevice_many(struct list_head *head) 12180 { 12181 unregister_netdevice_many_notify(head, 0, NULL); 12182 } 12183 EXPORT_SYMBOL(unregister_netdevice_many); 12184 12185 /** 12186 * unregister_netdev - remove device from the kernel 12187 * @dev: device 12188 * 12189 * This function shuts down a device interface and removes it 12190 * from the kernel tables. 12191 * 12192 * This is just a wrapper for unregister_netdevice that takes 12193 * the rtnl semaphore. In general you want to use this and not 12194 * unregister_netdevice. 12195 */ 12196 void unregister_netdev(struct net_device *dev) 12197 { 12198 rtnl_net_dev_lock(dev); 12199 unregister_netdevice(dev); 12200 rtnl_net_dev_unlock(dev); 12201 } 12202 EXPORT_SYMBOL(unregister_netdev); 12203 12204 int __dev_change_net_namespace(struct net_device *dev, struct net *net, 12205 const char *pat, int new_ifindex, 12206 struct netlink_ext_ack *extack) 12207 { 12208 struct netdev_name_node *name_node; 12209 struct net *net_old = dev_net(dev); 12210 char new_name[IFNAMSIZ] = {}; 12211 int err, new_nsid; 12212 12213 ASSERT_RTNL(); 12214 12215 /* Don't allow namespace local devices to be moved. */ 12216 err = -EINVAL; 12217 if (dev->netns_immutable) { 12218 NL_SET_ERR_MSG(extack, "The interface netns is immutable"); 12219 goto out; 12220 } 12221 12222 /* Ensure the device has been registered */ 12223 if (dev->reg_state != NETREG_REGISTERED) { 12224 NL_SET_ERR_MSG(extack, "The interface isn't registered"); 12225 goto out; 12226 } 12227 12228 /* Get out if there is nothing todo */ 12229 err = 0; 12230 if (net_eq(net_old, net)) 12231 goto out; 12232 12233 /* Pick the destination device name, and ensure 12234 * we can use it in the destination network namespace. 12235 */ 12236 err = -EEXIST; 12237 if (netdev_name_in_use(net, dev->name)) { 12238 /* We get here if we can't use the current device name */ 12239 if (!pat) { 12240 NL_SET_ERR_MSG(extack, 12241 "An interface with the same name exists in the target netns"); 12242 goto out; 12243 } 12244 err = dev_prep_valid_name(net, dev, pat, new_name, EEXIST); 12245 if (err < 0) { 12246 NL_SET_ERR_MSG_FMT(extack, 12247 "Unable to use '%s' for the new interface name in the target netns", 12248 pat); 12249 goto out; 12250 } 12251 } 12252 /* Check that none of the altnames conflicts. */ 12253 err = -EEXIST; 12254 netdev_for_each_altname(dev, name_node) { 12255 if (netdev_name_in_use(net, name_node->name)) { 12256 NL_SET_ERR_MSG_FMT(extack, 12257 "An interface with the altname %s exists in the target netns", 12258 name_node->name); 12259 goto out; 12260 } 12261 } 12262 12263 /* Check that new_ifindex isn't used yet. */ 12264 if (new_ifindex) { 12265 err = dev_index_reserve(net, new_ifindex); 12266 if (err < 0) { 12267 NL_SET_ERR_MSG_FMT(extack, 12268 "The ifindex %d is not available in the target netns", 12269 new_ifindex); 12270 goto out; 12271 } 12272 } else { 12273 /* If there is an ifindex conflict assign a new one */ 12274 err = dev_index_reserve(net, dev->ifindex); 12275 if (err == -EBUSY) 12276 err = dev_index_reserve(net, 0); 12277 if (err < 0) { 12278 NL_SET_ERR_MSG(extack, 12279 "Unable to allocate a new ifindex in the target netns"); 12280 goto out; 12281 } 12282 new_ifindex = err; 12283 } 12284 12285 /* 12286 * And now a mini version of register_netdevice unregister_netdevice. 12287 */ 12288 12289 netdev_lock_ops(dev); 12290 /* If device is running close it first. */ 12291 netif_close(dev); 12292 /* And unlink it from device chain */ 12293 unlist_netdevice(dev); 12294 12295 if (!netdev_need_ops_lock(dev)) 12296 netdev_lock(dev); 12297 dev->moving_ns = true; 12298 netdev_unlock(dev); 12299 12300 synchronize_net(); 12301 12302 /* Shutdown queueing discipline. */ 12303 netdev_lock_ops(dev); 12304 dev_shutdown(dev); 12305 netdev_unlock_ops(dev); 12306 12307 /* Notify protocols, that we are about to destroy 12308 * this device. They should clean all the things. 12309 * 12310 * Note that dev->reg_state stays at NETREG_REGISTERED. 12311 * This is wanted because this way 8021q and macvlan know 12312 * the device is just moving and can keep their slaves up. 12313 */ 12314 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 12315 rcu_barrier(); 12316 12317 new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL); 12318 12319 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid, 12320 new_ifindex); 12321 12322 /* 12323 * Flush the unicast and multicast chains 12324 */ 12325 dev_uc_flush(dev); 12326 dev_mc_flush(dev); 12327 12328 /* Send a netdev-removed uevent to the old namespace */ 12329 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE); 12330 netdev_adjacent_del_links(dev); 12331 12332 /* Move per-net netdevice notifiers that are following the netdevice */ 12333 move_netdevice_notifiers_dev_net(dev, net); 12334 12335 /* Actually switch the network namespace */ 12336 netdev_lock(dev); 12337 dev_net_set(dev, net); 12338 netdev_unlock(dev); 12339 dev->ifindex = new_ifindex; 12340 12341 if (new_name[0]) { 12342 /* Rename the netdev to prepared name */ 12343 write_seqlock_bh(&netdev_rename_lock); 12344 strscpy(dev->name, new_name, IFNAMSIZ); 12345 write_sequnlock_bh(&netdev_rename_lock); 12346 } 12347 12348 /* Fixup kobjects */ 12349 dev_set_uevent_suppress(&dev->dev, 1); 12350 err = device_rename(&dev->dev, dev->name); 12351 dev_set_uevent_suppress(&dev->dev, 0); 12352 WARN_ON(err); 12353 12354 /* Send a netdev-add uevent to the new namespace */ 12355 kobject_uevent(&dev->dev.kobj, KOBJ_ADD); 12356 netdev_adjacent_add_links(dev); 12357 12358 /* Adapt owner in case owning user namespace of target network 12359 * namespace is different from the original one. 12360 */ 12361 err = netdev_change_owner(dev, net_old, net); 12362 WARN_ON(err); 12363 12364 netdev_lock(dev); 12365 dev->moving_ns = false; 12366 if (!netdev_need_ops_lock(dev)) 12367 netdev_unlock(dev); 12368 12369 /* Add the device back in the hashes */ 12370 list_netdevice(dev); 12371 /* Notify protocols, that a new device appeared. */ 12372 call_netdevice_notifiers(NETDEV_REGISTER, dev); 12373 netdev_unlock_ops(dev); 12374 12375 /* 12376 * Prevent userspace races by waiting until the network 12377 * device is fully setup before sending notifications. 12378 */ 12379 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL); 12380 12381 synchronize_net(); 12382 err = 0; 12383 out: 12384 return err; 12385 } 12386 12387 static int dev_cpu_dead(unsigned int oldcpu) 12388 { 12389 struct sk_buff **list_skb; 12390 struct sk_buff *skb; 12391 unsigned int cpu; 12392 struct softnet_data *sd, *oldsd, *remsd = NULL; 12393 12394 local_irq_disable(); 12395 cpu = smp_processor_id(); 12396 sd = &per_cpu(softnet_data, cpu); 12397 oldsd = &per_cpu(softnet_data, oldcpu); 12398 12399 /* Find end of our completion_queue. */ 12400 list_skb = &sd->completion_queue; 12401 while (*list_skb) 12402 list_skb = &(*list_skb)->next; 12403 /* Append completion queue from offline CPU. */ 12404 *list_skb = oldsd->completion_queue; 12405 oldsd->completion_queue = NULL; 12406 12407 /* Append output queue from offline CPU. */ 12408 if (oldsd->output_queue) { 12409 *sd->output_queue_tailp = oldsd->output_queue; 12410 sd->output_queue_tailp = oldsd->output_queue_tailp; 12411 oldsd->output_queue = NULL; 12412 oldsd->output_queue_tailp = &oldsd->output_queue; 12413 } 12414 /* Append NAPI poll list from offline CPU, with one exception : 12415 * process_backlog() must be called by cpu owning percpu backlog. 12416 * We properly handle process_queue & input_pkt_queue later. 12417 */ 12418 while (!list_empty(&oldsd->poll_list)) { 12419 struct napi_struct *napi = list_first_entry(&oldsd->poll_list, 12420 struct napi_struct, 12421 poll_list); 12422 12423 list_del_init(&napi->poll_list); 12424 if (napi->poll == process_backlog) 12425 napi->state &= NAPIF_STATE_THREADED; 12426 else 12427 ____napi_schedule(sd, napi); 12428 } 12429 12430 raise_softirq_irqoff(NET_TX_SOFTIRQ); 12431 local_irq_enable(); 12432 12433 if (!use_backlog_threads()) { 12434 #ifdef CONFIG_RPS 12435 remsd = oldsd->rps_ipi_list; 12436 oldsd->rps_ipi_list = NULL; 12437 #endif 12438 /* send out pending IPI's on offline CPU */ 12439 net_rps_send_ipi(remsd); 12440 } 12441 12442 /* Process offline CPU's input_pkt_queue */ 12443 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 12444 netif_rx(skb); 12445 rps_input_queue_head_incr(oldsd); 12446 } 12447 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) { 12448 netif_rx(skb); 12449 rps_input_queue_head_incr(oldsd); 12450 } 12451 12452 return 0; 12453 } 12454 12455 /** 12456 * netdev_increment_features - increment feature set by one 12457 * @all: current feature set 12458 * @one: new feature set 12459 * @mask: mask feature set 12460 * 12461 * Computes a new feature set after adding a device with feature set 12462 * @one to the master device with current feature set @all. Will not 12463 * enable anything that is off in @mask. Returns the new feature set. 12464 */ 12465 netdev_features_t netdev_increment_features(netdev_features_t all, 12466 netdev_features_t one, netdev_features_t mask) 12467 { 12468 if (mask & NETIF_F_HW_CSUM) 12469 mask |= NETIF_F_CSUM_MASK; 12470 mask |= NETIF_F_VLAN_CHALLENGED; 12471 12472 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask; 12473 all &= one | ~NETIF_F_ALL_FOR_ALL; 12474 12475 /* If one device supports hw checksumming, set for all. */ 12476 if (all & NETIF_F_HW_CSUM) 12477 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM); 12478 12479 return all; 12480 } 12481 EXPORT_SYMBOL(netdev_increment_features); 12482 12483 static struct hlist_head * __net_init netdev_create_hash(void) 12484 { 12485 int i; 12486 struct hlist_head *hash; 12487 12488 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL); 12489 if (hash != NULL) 12490 for (i = 0; i < NETDEV_HASHENTRIES; i++) 12491 INIT_HLIST_HEAD(&hash[i]); 12492 12493 return hash; 12494 } 12495 12496 /* Initialize per network namespace state */ 12497 static int __net_init netdev_init(struct net *net) 12498 { 12499 BUILD_BUG_ON(GRO_HASH_BUCKETS > 12500 BITS_PER_BYTE * sizeof_field(struct gro_node, bitmask)); 12501 12502 INIT_LIST_HEAD(&net->dev_base_head); 12503 12504 net->dev_name_head = netdev_create_hash(); 12505 if (net->dev_name_head == NULL) 12506 goto err_name; 12507 12508 net->dev_index_head = netdev_create_hash(); 12509 if (net->dev_index_head == NULL) 12510 goto err_idx; 12511 12512 xa_init_flags(&net->dev_by_index, XA_FLAGS_ALLOC1); 12513 12514 RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain); 12515 12516 return 0; 12517 12518 err_idx: 12519 kfree(net->dev_name_head); 12520 err_name: 12521 return -ENOMEM; 12522 } 12523 12524 /** 12525 * netdev_drivername - network driver for the device 12526 * @dev: network device 12527 * 12528 * Determine network driver for device. 12529 */ 12530 const char *netdev_drivername(const struct net_device *dev) 12531 { 12532 const struct device_driver *driver; 12533 const struct device *parent; 12534 const char *empty = ""; 12535 12536 parent = dev->dev.parent; 12537 if (!parent) 12538 return empty; 12539 12540 driver = parent->driver; 12541 if (driver && driver->name) 12542 return driver->name; 12543 return empty; 12544 } 12545 12546 static void __netdev_printk(const char *level, const struct net_device *dev, 12547 struct va_format *vaf) 12548 { 12549 if (dev && dev->dev.parent) { 12550 dev_printk_emit(level[1] - '0', 12551 dev->dev.parent, 12552 "%s %s %s%s: %pV", 12553 dev_driver_string(dev->dev.parent), 12554 dev_name(dev->dev.parent), 12555 netdev_name(dev), netdev_reg_state(dev), 12556 vaf); 12557 } else if (dev) { 12558 printk("%s%s%s: %pV", 12559 level, netdev_name(dev), netdev_reg_state(dev), vaf); 12560 } else { 12561 printk("%s(NULL net_device): %pV", level, vaf); 12562 } 12563 } 12564 12565 void netdev_printk(const char *level, const struct net_device *dev, 12566 const char *format, ...) 12567 { 12568 struct va_format vaf; 12569 va_list args; 12570 12571 va_start(args, format); 12572 12573 vaf.fmt = format; 12574 vaf.va = &args; 12575 12576 __netdev_printk(level, dev, &vaf); 12577 12578 va_end(args); 12579 } 12580 EXPORT_SYMBOL(netdev_printk); 12581 12582 #define define_netdev_printk_level(func, level) \ 12583 void func(const struct net_device *dev, const char *fmt, ...) \ 12584 { \ 12585 struct va_format vaf; \ 12586 va_list args; \ 12587 \ 12588 va_start(args, fmt); \ 12589 \ 12590 vaf.fmt = fmt; \ 12591 vaf.va = &args; \ 12592 \ 12593 __netdev_printk(level, dev, &vaf); \ 12594 \ 12595 va_end(args); \ 12596 } \ 12597 EXPORT_SYMBOL(func); 12598 12599 define_netdev_printk_level(netdev_emerg, KERN_EMERG); 12600 define_netdev_printk_level(netdev_alert, KERN_ALERT); 12601 define_netdev_printk_level(netdev_crit, KERN_CRIT); 12602 define_netdev_printk_level(netdev_err, KERN_ERR); 12603 define_netdev_printk_level(netdev_warn, KERN_WARNING); 12604 define_netdev_printk_level(netdev_notice, KERN_NOTICE); 12605 define_netdev_printk_level(netdev_info, KERN_INFO); 12606 12607 static void __net_exit netdev_exit(struct net *net) 12608 { 12609 kfree(net->dev_name_head); 12610 kfree(net->dev_index_head); 12611 xa_destroy(&net->dev_by_index); 12612 if (net != &init_net) 12613 WARN_ON_ONCE(!list_empty(&net->dev_base_head)); 12614 } 12615 12616 static struct pernet_operations __net_initdata netdev_net_ops = { 12617 .init = netdev_init, 12618 .exit = netdev_exit, 12619 }; 12620 12621 static void __net_exit default_device_exit_net(struct net *net) 12622 { 12623 struct netdev_name_node *name_node, *tmp; 12624 struct net_device *dev, *aux; 12625 /* 12626 * Push all migratable network devices back to the 12627 * initial network namespace 12628 */ 12629 ASSERT_RTNL(); 12630 for_each_netdev_safe(net, dev, aux) { 12631 int err; 12632 char fb_name[IFNAMSIZ]; 12633 12634 /* Ignore unmoveable devices (i.e. loopback) */ 12635 if (dev->netns_immutable) 12636 continue; 12637 12638 /* Leave virtual devices for the generic cleanup */ 12639 if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund) 12640 continue; 12641 12642 /* Push remaining network devices to init_net */ 12643 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 12644 if (netdev_name_in_use(&init_net, fb_name)) 12645 snprintf(fb_name, IFNAMSIZ, "dev%%d"); 12646 12647 netdev_for_each_altname_safe(dev, name_node, tmp) 12648 if (netdev_name_in_use(&init_net, name_node->name)) 12649 __netdev_name_node_alt_destroy(name_node); 12650 12651 err = dev_change_net_namespace(dev, &init_net, fb_name); 12652 if (err) { 12653 pr_emerg("%s: failed to move %s to init_net: %d\n", 12654 __func__, dev->name, err); 12655 BUG(); 12656 } 12657 } 12658 } 12659 12660 static void __net_exit default_device_exit_batch(struct list_head *net_list) 12661 { 12662 /* At exit all network devices most be removed from a network 12663 * namespace. Do this in the reverse order of registration. 12664 * Do this across as many network namespaces as possible to 12665 * improve batching efficiency. 12666 */ 12667 struct net_device *dev; 12668 struct net *net; 12669 LIST_HEAD(dev_kill_list); 12670 12671 rtnl_lock(); 12672 list_for_each_entry(net, net_list, exit_list) { 12673 default_device_exit_net(net); 12674 cond_resched(); 12675 } 12676 12677 list_for_each_entry(net, net_list, exit_list) { 12678 for_each_netdev_reverse(net, dev) { 12679 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) 12680 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 12681 else 12682 unregister_netdevice_queue(dev, &dev_kill_list); 12683 } 12684 } 12685 unregister_netdevice_many(&dev_kill_list); 12686 rtnl_unlock(); 12687 } 12688 12689 static struct pernet_operations __net_initdata default_device_ops = { 12690 .exit_batch = default_device_exit_batch, 12691 }; 12692 12693 static void __init net_dev_struct_check(void) 12694 { 12695 /* TX read-mostly hotpath */ 12696 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, priv_flags_fast); 12697 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, netdev_ops); 12698 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, header_ops); 12699 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, _tx); 12700 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, real_num_tx_queues); 12701 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_size); 12702 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_ipv4_max_size); 12703 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_segs); 12704 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_partial_features); 12705 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, num_tc); 12706 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, mtu); 12707 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, needed_headroom); 12708 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tc_to_txq); 12709 #ifdef CONFIG_XPS 12710 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, xps_maps); 12711 #endif 12712 #ifdef CONFIG_NETFILTER_EGRESS 12713 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, nf_hooks_egress); 12714 #endif 12715 #ifdef CONFIG_NET_XGRESS 12716 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tcx_egress); 12717 #endif 12718 CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_tx, 160); 12719 12720 /* TXRX read-mostly hotpath */ 12721 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, lstats); 12722 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, state); 12723 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, flags); 12724 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, hard_header_len); 12725 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, features); 12726 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, ip6_ptr); 12727 CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_txrx, 46); 12728 12729 /* RX read-mostly hotpath */ 12730 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ptype_specific); 12731 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ifindex); 12732 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, real_num_rx_queues); 12733 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, _rx); 12734 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_max_size); 12735 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_ipv4_max_size); 12736 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler); 12737 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler_data); 12738 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, nd_net); 12739 #ifdef CONFIG_NETPOLL 12740 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, npinfo); 12741 #endif 12742 #ifdef CONFIG_NET_XGRESS 12743 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, tcx_ingress); 12744 #endif 12745 CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_rx, 92); 12746 } 12747 12748 /* 12749 * Initialize the DEV module. At boot time this walks the device list and 12750 * unhooks any devices that fail to initialise (normally hardware not 12751 * present) and leaves us with a valid list of present and active devices. 12752 * 12753 */ 12754 12755 /* We allocate 256 pages for each CPU if PAGE_SHIFT is 12 */ 12756 #define SYSTEM_PERCPU_PAGE_POOL_SIZE ((1 << 20) / PAGE_SIZE) 12757 12758 static int net_page_pool_create(int cpuid) 12759 { 12760 #if IS_ENABLED(CONFIG_PAGE_POOL) 12761 struct page_pool_params page_pool_params = { 12762 .pool_size = SYSTEM_PERCPU_PAGE_POOL_SIZE, 12763 .flags = PP_FLAG_SYSTEM_POOL, 12764 .nid = cpu_to_mem(cpuid), 12765 }; 12766 struct page_pool *pp_ptr; 12767 int err; 12768 12769 pp_ptr = page_pool_create_percpu(&page_pool_params, cpuid); 12770 if (IS_ERR(pp_ptr)) 12771 return -ENOMEM; 12772 12773 err = xdp_reg_page_pool(pp_ptr); 12774 if (err) { 12775 page_pool_destroy(pp_ptr); 12776 return err; 12777 } 12778 12779 per_cpu(system_page_pool.pool, cpuid) = pp_ptr; 12780 #endif 12781 return 0; 12782 } 12783 12784 static int backlog_napi_should_run(unsigned int cpu) 12785 { 12786 struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu); 12787 struct napi_struct *napi = &sd->backlog; 12788 12789 return test_bit(NAPI_STATE_SCHED_THREADED, &napi->state); 12790 } 12791 12792 static void run_backlog_napi(unsigned int cpu) 12793 { 12794 struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu); 12795 12796 napi_threaded_poll_loop(&sd->backlog); 12797 } 12798 12799 static void backlog_napi_setup(unsigned int cpu) 12800 { 12801 struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu); 12802 struct napi_struct *napi = &sd->backlog; 12803 12804 napi->thread = this_cpu_read(backlog_napi); 12805 set_bit(NAPI_STATE_THREADED, &napi->state); 12806 } 12807 12808 static struct smp_hotplug_thread backlog_threads = { 12809 .store = &backlog_napi, 12810 .thread_should_run = backlog_napi_should_run, 12811 .thread_fn = run_backlog_napi, 12812 .thread_comm = "backlog_napi/%u", 12813 .setup = backlog_napi_setup, 12814 }; 12815 12816 /* 12817 * This is called single threaded during boot, so no need 12818 * to take the rtnl semaphore. 12819 */ 12820 static int __init net_dev_init(void) 12821 { 12822 int i, rc = -ENOMEM; 12823 12824 BUG_ON(!dev_boot_phase); 12825 12826 net_dev_struct_check(); 12827 12828 if (dev_proc_init()) 12829 goto out; 12830 12831 if (netdev_kobject_init()) 12832 goto out; 12833 12834 for (i = 0; i < PTYPE_HASH_SIZE; i++) 12835 INIT_LIST_HEAD(&ptype_base[i]); 12836 12837 if (register_pernet_subsys(&netdev_net_ops)) 12838 goto out; 12839 12840 /* 12841 * Initialise the packet receive queues. 12842 */ 12843 12844 flush_backlogs_fallback = flush_backlogs_alloc(); 12845 if (!flush_backlogs_fallback) 12846 goto out; 12847 12848 for_each_possible_cpu(i) { 12849 struct softnet_data *sd = &per_cpu(softnet_data, i); 12850 12851 skb_queue_head_init(&sd->input_pkt_queue); 12852 skb_queue_head_init(&sd->process_queue); 12853 #ifdef CONFIG_XFRM_OFFLOAD 12854 skb_queue_head_init(&sd->xfrm_backlog); 12855 #endif 12856 INIT_LIST_HEAD(&sd->poll_list); 12857 sd->output_queue_tailp = &sd->output_queue; 12858 #ifdef CONFIG_RPS 12859 INIT_CSD(&sd->csd, rps_trigger_softirq, sd); 12860 sd->cpu = i; 12861 #endif 12862 INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd); 12863 spin_lock_init(&sd->defer_lock); 12864 12865 gro_init(&sd->backlog.gro); 12866 sd->backlog.poll = process_backlog; 12867 sd->backlog.weight = weight_p; 12868 INIT_LIST_HEAD(&sd->backlog.poll_list); 12869 12870 if (net_page_pool_create(i)) 12871 goto out; 12872 } 12873 if (use_backlog_threads()) 12874 smpboot_register_percpu_thread(&backlog_threads); 12875 12876 dev_boot_phase = 0; 12877 12878 /* The loopback device is special if any other network devices 12879 * is present in a network namespace the loopback device must 12880 * be present. Since we now dynamically allocate and free the 12881 * loopback device ensure this invariant is maintained by 12882 * keeping the loopback device as the first device on the 12883 * list of network devices. Ensuring the loopback devices 12884 * is the first device that appears and the last network device 12885 * that disappears. 12886 */ 12887 if (register_pernet_device(&loopback_net_ops)) 12888 goto out; 12889 12890 if (register_pernet_device(&default_device_ops)) 12891 goto out; 12892 12893 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 12894 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 12895 12896 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead", 12897 NULL, dev_cpu_dead); 12898 WARN_ON(rc < 0); 12899 rc = 0; 12900 12901 /* avoid static key IPIs to isolated CPUs */ 12902 if (housekeeping_enabled(HK_TYPE_MISC)) 12903 net_enable_timestamp(); 12904 out: 12905 if (rc < 0) { 12906 for_each_possible_cpu(i) { 12907 struct page_pool *pp_ptr; 12908 12909 pp_ptr = per_cpu(system_page_pool.pool, i); 12910 if (!pp_ptr) 12911 continue; 12912 12913 xdp_unreg_page_pool(pp_ptr); 12914 page_pool_destroy(pp_ptr); 12915 per_cpu(system_page_pool.pool, i) = NULL; 12916 } 12917 } 12918 12919 return rc; 12920 } 12921 12922 subsys_initcall(net_dev_init); 12923