xref: /linux/net/core/dev.c (revision ccde82e909467abdf098a8ee6f63e1ecf9a47ce5)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *	Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:	Ross Biro
7  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *	Additional Authors:
11  *		Florian la Roche <rzsfl@rz.uni-sb.de>
12  *		Alan Cox <gw4pts@gw4pts.ampr.org>
13  *		David Hinds <dahinds@users.sourceforge.net>
14  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *		Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *	Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *		Alan Cox	:	device private ioctl copies fields back.
24  *		Alan Cox	:	Transmit queue code does relevant
25  *					stunts to keep the queue safe.
26  *		Alan Cox	:	Fixed double lock.
27  *		Alan Cox	:	Fixed promisc NULL pointer trap
28  *		????????	:	Support the full private ioctl range
29  *		Alan Cox	:	Moved ioctl permission check into
30  *					drivers
31  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
32  *		Alan Cox	:	100 backlog just doesn't cut it when
33  *					you start doing multicast video 8)
34  *		Alan Cox	:	Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *		Alan Cox	:	Took out transmit every packet pass
37  *					Saved a few bytes in the ioctl handler
38  *		Alan Cox	:	Network driver sets packet type before
39  *					calling netif_rx. Saves a function
40  *					call a packet.
41  *		Alan Cox	:	Hashed net_bh()
42  *		Richard Kooijman:	Timestamp fixes.
43  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
44  *		Alan Cox	:	Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *					changes.
47  *		Rudi Cilibrasi	:	Pass the right thing to
48  *					set_mac_address()
49  *		Dave Miller	:	32bit quantity for the device lock to
50  *					make it work out on a Sparc.
51  *		Bjorn Ekwall	:	Added KERNELD hack.
52  *		Alan Cox	:	Cleaned up the backlog initialise.
53  *		Craig Metz	:	SIOCGIFCONF fix if space for under
54  *					1 device.
55  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
56  *					is no device open function.
57  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
58  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
59  *		Cyrus Durgin	:	Cleaned for KMOD
60  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
61  *					A network device unload needs to purge
62  *					the backlog queue.
63  *	Paul Rusty Russell	:	SIOCSIFNAME
64  *              Pekka Riikonen  :	Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *				        - netif_rx() feedback
69  */
70 
71 #include <linux/uaccess.h>
72 #include <linux/bitmap.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/isolation.h>
81 #include <linux/sched/mm.h>
82 #include <linux/smpboot.h>
83 #include <linux/mutex.h>
84 #include <linux/rwsem.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/ethtool_netlink.h>
96 #include <linux/skbuff.h>
97 #include <linux/kthread.h>
98 #include <linux/bpf.h>
99 #include <linux/bpf_trace.h>
100 #include <net/net_namespace.h>
101 #include <net/sock.h>
102 #include <net/busy_poll.h>
103 #include <linux/rtnetlink.h>
104 #include <linux/stat.h>
105 #include <net/dsa.h>
106 #include <net/dst.h>
107 #include <net/dst_metadata.h>
108 #include <net/gro.h>
109 #include <net/netdev_queues.h>
110 #include <net/pkt_sched.h>
111 #include <net/pkt_cls.h>
112 #include <net/checksum.h>
113 #include <net/xfrm.h>
114 #include <net/tcx.h>
115 #include <linux/highmem.h>
116 #include <linux/init.h>
117 #include <linux/module.h>
118 #include <linux/netpoll.h>
119 #include <linux/rcupdate.h>
120 #include <linux/delay.h>
121 #include <net/iw_handler.h>
122 #include <asm/current.h>
123 #include <linux/audit.h>
124 #include <linux/dmaengine.h>
125 #include <linux/err.h>
126 #include <linux/ctype.h>
127 #include <linux/if_arp.h>
128 #include <linux/if_vlan.h>
129 #include <linux/ip.h>
130 #include <net/ip.h>
131 #include <net/mpls.h>
132 #include <linux/ipv6.h>
133 #include <linux/in.h>
134 #include <linux/jhash.h>
135 #include <linux/random.h>
136 #include <trace/events/napi.h>
137 #include <trace/events/net.h>
138 #include <trace/events/skb.h>
139 #include <trace/events/qdisc.h>
140 #include <trace/events/xdp.h>
141 #include <linux/inetdevice.h>
142 #include <linux/cpu_rmap.h>
143 #include <linux/static_key.h>
144 #include <linux/hashtable.h>
145 #include <linux/vmalloc.h>
146 #include <linux/if_macvlan.h>
147 #include <linux/errqueue.h>
148 #include <linux/hrtimer.h>
149 #include <linux/netfilter_netdev.h>
150 #include <linux/crash_dump.h>
151 #include <linux/sctp.h>
152 #include <net/udp_tunnel.h>
153 #include <linux/net_namespace.h>
154 #include <linux/indirect_call_wrapper.h>
155 #include <net/devlink.h>
156 #include <linux/pm_runtime.h>
157 #include <linux/prandom.h>
158 #include <linux/once_lite.h>
159 #include <net/netdev_lock.h>
160 #include <net/netdev_rx_queue.h>
161 #include <net/page_pool/types.h>
162 #include <net/page_pool/helpers.h>
163 #include <net/page_pool/memory_provider.h>
164 #include <net/rps.h>
165 #include <linux/phy_link_topology.h>
166 
167 #include "dev.h"
168 #include "devmem.h"
169 #include "net-sysfs.h"
170 
171 static DEFINE_SPINLOCK(ptype_lock);
172 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
173 
174 static int netif_rx_internal(struct sk_buff *skb);
175 static int call_netdevice_notifiers_extack(unsigned long val,
176 					   struct net_device *dev,
177 					   struct netlink_ext_ack *extack);
178 
179 static DEFINE_MUTEX(ifalias_mutex);
180 
181 /* protects napi_hash addition/deletion and napi_gen_id */
182 static DEFINE_SPINLOCK(napi_hash_lock);
183 
184 static unsigned int napi_gen_id = NR_CPUS;
185 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
186 
187 static inline void dev_base_seq_inc(struct net *net)
188 {
189 	unsigned int val = net->dev_base_seq + 1;
190 
191 	WRITE_ONCE(net->dev_base_seq, val ?: 1);
192 }
193 
194 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
195 {
196 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
197 
198 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
199 }
200 
201 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
202 {
203 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
204 }
205 
206 #ifndef CONFIG_PREEMPT_RT
207 
208 static DEFINE_STATIC_KEY_FALSE(use_backlog_threads_key);
209 
210 static int __init setup_backlog_napi_threads(char *arg)
211 {
212 	static_branch_enable(&use_backlog_threads_key);
213 	return 0;
214 }
215 early_param("thread_backlog_napi", setup_backlog_napi_threads);
216 
217 static bool use_backlog_threads(void)
218 {
219 	return static_branch_unlikely(&use_backlog_threads_key);
220 }
221 
222 #else
223 
224 static bool use_backlog_threads(void)
225 {
226 	return true;
227 }
228 
229 #endif
230 
231 static inline void backlog_lock_irq_save(struct softnet_data *sd,
232 					 unsigned long *flags)
233 {
234 	if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
235 		spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags);
236 	else
237 		local_irq_save(*flags);
238 }
239 
240 static inline void backlog_lock_irq_disable(struct softnet_data *sd)
241 {
242 	if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
243 		spin_lock_irq(&sd->input_pkt_queue.lock);
244 	else
245 		local_irq_disable();
246 }
247 
248 static inline void backlog_unlock_irq_restore(struct softnet_data *sd,
249 					      unsigned long *flags)
250 {
251 	if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
252 		spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags);
253 	else
254 		local_irq_restore(*flags);
255 }
256 
257 static inline void backlog_unlock_irq_enable(struct softnet_data *sd)
258 {
259 	if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
260 		spin_unlock_irq(&sd->input_pkt_queue.lock);
261 	else
262 		local_irq_enable();
263 }
264 
265 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
266 						       const char *name)
267 {
268 	struct netdev_name_node *name_node;
269 
270 	name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
271 	if (!name_node)
272 		return NULL;
273 	INIT_HLIST_NODE(&name_node->hlist);
274 	name_node->dev = dev;
275 	name_node->name = name;
276 	return name_node;
277 }
278 
279 static struct netdev_name_node *
280 netdev_name_node_head_alloc(struct net_device *dev)
281 {
282 	struct netdev_name_node *name_node;
283 
284 	name_node = netdev_name_node_alloc(dev, dev->name);
285 	if (!name_node)
286 		return NULL;
287 	INIT_LIST_HEAD(&name_node->list);
288 	return name_node;
289 }
290 
291 static void netdev_name_node_free(struct netdev_name_node *name_node)
292 {
293 	kfree(name_node);
294 }
295 
296 static void netdev_name_node_add(struct net *net,
297 				 struct netdev_name_node *name_node)
298 {
299 	hlist_add_head_rcu(&name_node->hlist,
300 			   dev_name_hash(net, name_node->name));
301 }
302 
303 static void netdev_name_node_del(struct netdev_name_node *name_node)
304 {
305 	hlist_del_rcu(&name_node->hlist);
306 }
307 
308 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
309 							const char *name)
310 {
311 	struct hlist_head *head = dev_name_hash(net, name);
312 	struct netdev_name_node *name_node;
313 
314 	hlist_for_each_entry(name_node, head, hlist)
315 		if (!strcmp(name_node->name, name))
316 			return name_node;
317 	return NULL;
318 }
319 
320 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
321 							    const char *name)
322 {
323 	struct hlist_head *head = dev_name_hash(net, name);
324 	struct netdev_name_node *name_node;
325 
326 	hlist_for_each_entry_rcu(name_node, head, hlist)
327 		if (!strcmp(name_node->name, name))
328 			return name_node;
329 	return NULL;
330 }
331 
332 bool netdev_name_in_use(struct net *net, const char *name)
333 {
334 	return netdev_name_node_lookup(net, name);
335 }
336 EXPORT_SYMBOL(netdev_name_in_use);
337 
338 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
339 {
340 	struct netdev_name_node *name_node;
341 	struct net *net = dev_net(dev);
342 
343 	name_node = netdev_name_node_lookup(net, name);
344 	if (name_node)
345 		return -EEXIST;
346 	name_node = netdev_name_node_alloc(dev, name);
347 	if (!name_node)
348 		return -ENOMEM;
349 	netdev_name_node_add(net, name_node);
350 	/* The node that holds dev->name acts as a head of per-device list. */
351 	list_add_tail_rcu(&name_node->list, &dev->name_node->list);
352 
353 	return 0;
354 }
355 
356 static void netdev_name_node_alt_free(struct rcu_head *head)
357 {
358 	struct netdev_name_node *name_node =
359 		container_of(head, struct netdev_name_node, rcu);
360 
361 	kfree(name_node->name);
362 	netdev_name_node_free(name_node);
363 }
364 
365 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
366 {
367 	netdev_name_node_del(name_node);
368 	list_del(&name_node->list);
369 	call_rcu(&name_node->rcu, netdev_name_node_alt_free);
370 }
371 
372 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
373 {
374 	struct netdev_name_node *name_node;
375 	struct net *net = dev_net(dev);
376 
377 	name_node = netdev_name_node_lookup(net, name);
378 	if (!name_node)
379 		return -ENOENT;
380 	/* lookup might have found our primary name or a name belonging
381 	 * to another device.
382 	 */
383 	if (name_node == dev->name_node || name_node->dev != dev)
384 		return -EINVAL;
385 
386 	__netdev_name_node_alt_destroy(name_node);
387 	return 0;
388 }
389 
390 static void netdev_name_node_alt_flush(struct net_device *dev)
391 {
392 	struct netdev_name_node *name_node, *tmp;
393 
394 	list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list) {
395 		list_del(&name_node->list);
396 		netdev_name_node_alt_free(&name_node->rcu);
397 	}
398 }
399 
400 /* Device list insertion */
401 static void list_netdevice(struct net_device *dev)
402 {
403 	struct netdev_name_node *name_node;
404 	struct net *net = dev_net(dev);
405 
406 	ASSERT_RTNL();
407 
408 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
409 	netdev_name_node_add(net, dev->name_node);
410 	hlist_add_head_rcu(&dev->index_hlist,
411 			   dev_index_hash(net, dev->ifindex));
412 
413 	netdev_for_each_altname(dev, name_node)
414 		netdev_name_node_add(net, name_node);
415 
416 	/* We reserved the ifindex, this can't fail */
417 	WARN_ON(xa_store(&net->dev_by_index, dev->ifindex, dev, GFP_KERNEL));
418 
419 	dev_base_seq_inc(net);
420 }
421 
422 /* Device list removal
423  * caller must respect a RCU grace period before freeing/reusing dev
424  */
425 static void unlist_netdevice(struct net_device *dev)
426 {
427 	struct netdev_name_node *name_node;
428 	struct net *net = dev_net(dev);
429 
430 	ASSERT_RTNL();
431 
432 	xa_erase(&net->dev_by_index, dev->ifindex);
433 
434 	netdev_for_each_altname(dev, name_node)
435 		netdev_name_node_del(name_node);
436 
437 	/* Unlink dev from the device chain */
438 	list_del_rcu(&dev->dev_list);
439 	netdev_name_node_del(dev->name_node);
440 	hlist_del_rcu(&dev->index_hlist);
441 
442 	dev_base_seq_inc(dev_net(dev));
443 }
444 
445 /*
446  *	Our notifier list
447  */
448 
449 static RAW_NOTIFIER_HEAD(netdev_chain);
450 
451 /*
452  *	Device drivers call our routines to queue packets here. We empty the
453  *	queue in the local softnet handler.
454  */
455 
456 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data) = {
457 	.process_queue_bh_lock = INIT_LOCAL_LOCK(process_queue_bh_lock),
458 };
459 EXPORT_PER_CPU_SYMBOL(softnet_data);
460 
461 /* Page_pool has a lockless array/stack to alloc/recycle pages.
462  * PP consumers must pay attention to run APIs in the appropriate context
463  * (e.g. NAPI context).
464  */
465 DEFINE_PER_CPU(struct page_pool_bh, system_page_pool) = {
466 	.bh_lock = INIT_LOCAL_LOCK(bh_lock),
467 };
468 
469 #ifdef CONFIG_LOCKDEP
470 /*
471  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
472  * according to dev->type
473  */
474 static const unsigned short netdev_lock_type[] = {
475 	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
476 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
477 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
478 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
479 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
480 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
481 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
482 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
483 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
484 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
485 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
486 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
487 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
488 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
489 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
490 
491 static const char *const netdev_lock_name[] = {
492 	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
493 	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
494 	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
495 	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
496 	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
497 	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
498 	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
499 	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
500 	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
501 	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
502 	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
503 	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
504 	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
505 	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
506 	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
507 
508 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
509 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
510 
511 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
512 {
513 	int i;
514 
515 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
516 		if (netdev_lock_type[i] == dev_type)
517 			return i;
518 	/* the last key is used by default */
519 	return ARRAY_SIZE(netdev_lock_type) - 1;
520 }
521 
522 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
523 						 unsigned short dev_type)
524 {
525 	int i;
526 
527 	i = netdev_lock_pos(dev_type);
528 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
529 				   netdev_lock_name[i]);
530 }
531 
532 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
533 {
534 	int i;
535 
536 	i = netdev_lock_pos(dev->type);
537 	lockdep_set_class_and_name(&dev->addr_list_lock,
538 				   &netdev_addr_lock_key[i],
539 				   netdev_lock_name[i]);
540 }
541 #else
542 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
543 						 unsigned short dev_type)
544 {
545 }
546 
547 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
548 {
549 }
550 #endif
551 
552 /*******************************************************************************
553  *
554  *		Protocol management and registration routines
555  *
556  *******************************************************************************/
557 
558 
559 /*
560  *	Add a protocol ID to the list. Now that the input handler is
561  *	smarter we can dispense with all the messy stuff that used to be
562  *	here.
563  *
564  *	BEWARE!!! Protocol handlers, mangling input packets,
565  *	MUST BE last in hash buckets and checking protocol handlers
566  *	MUST start from promiscuous ptype_all chain in net_bh.
567  *	It is true now, do not change it.
568  *	Explanation follows: if protocol handler, mangling packet, will
569  *	be the first on list, it is not able to sense, that packet
570  *	is cloned and should be copied-on-write, so that it will
571  *	change it and subsequent readers will get broken packet.
572  *							--ANK (980803)
573  */
574 
575 static inline struct list_head *ptype_head(const struct packet_type *pt)
576 {
577 	if (pt->type == htons(ETH_P_ALL)) {
578 		if (!pt->af_packet_net && !pt->dev)
579 			return NULL;
580 
581 		return pt->dev ? &pt->dev->ptype_all :
582 				 &pt->af_packet_net->ptype_all;
583 	}
584 
585 	if (pt->dev)
586 		return &pt->dev->ptype_specific;
587 
588 	return pt->af_packet_net ? &pt->af_packet_net->ptype_specific :
589 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
590 }
591 
592 /**
593  *	dev_add_pack - add packet handler
594  *	@pt: packet type declaration
595  *
596  *	Add a protocol handler to the networking stack. The passed &packet_type
597  *	is linked into kernel lists and may not be freed until it has been
598  *	removed from the kernel lists.
599  *
600  *	This call does not sleep therefore it can not
601  *	guarantee all CPU's that are in middle of receiving packets
602  *	will see the new packet type (until the next received packet).
603  */
604 
605 void dev_add_pack(struct packet_type *pt)
606 {
607 	struct list_head *head = ptype_head(pt);
608 
609 	if (WARN_ON_ONCE(!head))
610 		return;
611 
612 	spin_lock(&ptype_lock);
613 	list_add_rcu(&pt->list, head);
614 	spin_unlock(&ptype_lock);
615 }
616 EXPORT_SYMBOL(dev_add_pack);
617 
618 /**
619  *	__dev_remove_pack	 - remove packet handler
620  *	@pt: packet type declaration
621  *
622  *	Remove a protocol handler that was previously added to the kernel
623  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
624  *	from the kernel lists and can be freed or reused once this function
625  *	returns.
626  *
627  *      The packet type might still be in use by receivers
628  *	and must not be freed until after all the CPU's have gone
629  *	through a quiescent state.
630  */
631 void __dev_remove_pack(struct packet_type *pt)
632 {
633 	struct list_head *head = ptype_head(pt);
634 	struct packet_type *pt1;
635 
636 	if (!head)
637 		return;
638 
639 	spin_lock(&ptype_lock);
640 
641 	list_for_each_entry(pt1, head, list) {
642 		if (pt == pt1) {
643 			list_del_rcu(&pt->list);
644 			goto out;
645 		}
646 	}
647 
648 	pr_warn("dev_remove_pack: %p not found\n", pt);
649 out:
650 	spin_unlock(&ptype_lock);
651 }
652 EXPORT_SYMBOL(__dev_remove_pack);
653 
654 /**
655  *	dev_remove_pack	 - remove packet handler
656  *	@pt: packet type declaration
657  *
658  *	Remove a protocol handler that was previously added to the kernel
659  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
660  *	from the kernel lists and can be freed or reused once this function
661  *	returns.
662  *
663  *	This call sleeps to guarantee that no CPU is looking at the packet
664  *	type after return.
665  */
666 void dev_remove_pack(struct packet_type *pt)
667 {
668 	__dev_remove_pack(pt);
669 
670 	synchronize_net();
671 }
672 EXPORT_SYMBOL(dev_remove_pack);
673 
674 
675 /*******************************************************************************
676  *
677  *			    Device Interface Subroutines
678  *
679  *******************************************************************************/
680 
681 /**
682  *	dev_get_iflink	- get 'iflink' value of a interface
683  *	@dev: targeted interface
684  *
685  *	Indicates the ifindex the interface is linked to.
686  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
687  */
688 
689 int dev_get_iflink(const struct net_device *dev)
690 {
691 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
692 		return dev->netdev_ops->ndo_get_iflink(dev);
693 
694 	return READ_ONCE(dev->ifindex);
695 }
696 EXPORT_SYMBOL(dev_get_iflink);
697 
698 /**
699  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
700  *	@dev: targeted interface
701  *	@skb: The packet.
702  *
703  *	For better visibility of tunnel traffic OVS needs to retrieve
704  *	egress tunnel information for a packet. Following API allows
705  *	user to get this info.
706  */
707 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
708 {
709 	struct ip_tunnel_info *info;
710 
711 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
712 		return -EINVAL;
713 
714 	info = skb_tunnel_info_unclone(skb);
715 	if (!info)
716 		return -ENOMEM;
717 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
718 		return -EINVAL;
719 
720 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
721 }
722 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
723 
724 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
725 {
726 	int k = stack->num_paths++;
727 
728 	if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
729 		return NULL;
730 
731 	return &stack->path[k];
732 }
733 
734 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
735 			  struct net_device_path_stack *stack)
736 {
737 	const struct net_device *last_dev;
738 	struct net_device_path_ctx ctx = {
739 		.dev	= dev,
740 	};
741 	struct net_device_path *path;
742 	int ret = 0;
743 
744 	memcpy(ctx.daddr, daddr, sizeof(ctx.daddr));
745 	stack->num_paths = 0;
746 	while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
747 		last_dev = ctx.dev;
748 		path = dev_fwd_path(stack);
749 		if (!path)
750 			return -1;
751 
752 		memset(path, 0, sizeof(struct net_device_path));
753 		ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
754 		if (ret < 0)
755 			return -1;
756 
757 		if (WARN_ON_ONCE(last_dev == ctx.dev))
758 			return -1;
759 	}
760 
761 	if (!ctx.dev)
762 		return ret;
763 
764 	path = dev_fwd_path(stack);
765 	if (!path)
766 		return -1;
767 	path->type = DEV_PATH_ETHERNET;
768 	path->dev = ctx.dev;
769 
770 	return ret;
771 }
772 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
773 
774 /* must be called under rcu_read_lock(), as we dont take a reference */
775 static struct napi_struct *napi_by_id(unsigned int napi_id)
776 {
777 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
778 	struct napi_struct *napi;
779 
780 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
781 		if (napi->napi_id == napi_id)
782 			return napi;
783 
784 	return NULL;
785 }
786 
787 /* must be called under rcu_read_lock(), as we dont take a reference */
788 static struct napi_struct *
789 netdev_napi_by_id(struct net *net, unsigned int napi_id)
790 {
791 	struct napi_struct *napi;
792 
793 	napi = napi_by_id(napi_id);
794 	if (!napi)
795 		return NULL;
796 
797 	if (WARN_ON_ONCE(!napi->dev))
798 		return NULL;
799 	if (!net_eq(net, dev_net(napi->dev)))
800 		return NULL;
801 
802 	return napi;
803 }
804 
805 /**
806  *	netdev_napi_by_id_lock() - find a device by NAPI ID and lock it
807  *	@net: the applicable net namespace
808  *	@napi_id: ID of a NAPI of a target device
809  *
810  *	Find a NAPI instance with @napi_id. Lock its device.
811  *	The device must be in %NETREG_REGISTERED state for lookup to succeed.
812  *	netdev_unlock() must be called to release it.
813  *
814  *	Return: pointer to NAPI, its device with lock held, NULL if not found.
815  */
816 struct napi_struct *
817 netdev_napi_by_id_lock(struct net *net, unsigned int napi_id)
818 {
819 	struct napi_struct *napi;
820 	struct net_device *dev;
821 
822 	rcu_read_lock();
823 	napi = netdev_napi_by_id(net, napi_id);
824 	if (!napi || READ_ONCE(napi->dev->reg_state) != NETREG_REGISTERED) {
825 		rcu_read_unlock();
826 		return NULL;
827 	}
828 
829 	dev = napi->dev;
830 	dev_hold(dev);
831 	rcu_read_unlock();
832 
833 	dev = __netdev_put_lock(dev, net);
834 	if (!dev)
835 		return NULL;
836 
837 	rcu_read_lock();
838 	napi = netdev_napi_by_id(net, napi_id);
839 	if (napi && napi->dev != dev)
840 		napi = NULL;
841 	rcu_read_unlock();
842 
843 	if (!napi)
844 		netdev_unlock(dev);
845 	return napi;
846 }
847 
848 /**
849  *	__dev_get_by_name	- find a device by its name
850  *	@net: the applicable net namespace
851  *	@name: name to find
852  *
853  *	Find an interface by name. Must be called under RTNL semaphore.
854  *	If the name is found a pointer to the device is returned.
855  *	If the name is not found then %NULL is returned. The
856  *	reference counters are not incremented so the caller must be
857  *	careful with locks.
858  */
859 
860 struct net_device *__dev_get_by_name(struct net *net, const char *name)
861 {
862 	struct netdev_name_node *node_name;
863 
864 	node_name = netdev_name_node_lookup(net, name);
865 	return node_name ? node_name->dev : NULL;
866 }
867 EXPORT_SYMBOL(__dev_get_by_name);
868 
869 /**
870  * dev_get_by_name_rcu	- find a device by its name
871  * @net: the applicable net namespace
872  * @name: name to find
873  *
874  * Find an interface by name.
875  * If the name is found a pointer to the device is returned.
876  * If the name is not found then %NULL is returned.
877  * The reference counters are not incremented so the caller must be
878  * careful with locks. The caller must hold RCU lock.
879  */
880 
881 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
882 {
883 	struct netdev_name_node *node_name;
884 
885 	node_name = netdev_name_node_lookup_rcu(net, name);
886 	return node_name ? node_name->dev : NULL;
887 }
888 EXPORT_SYMBOL(dev_get_by_name_rcu);
889 
890 /* Deprecated for new users, call netdev_get_by_name() instead */
891 struct net_device *dev_get_by_name(struct net *net, const char *name)
892 {
893 	struct net_device *dev;
894 
895 	rcu_read_lock();
896 	dev = dev_get_by_name_rcu(net, name);
897 	dev_hold(dev);
898 	rcu_read_unlock();
899 	return dev;
900 }
901 EXPORT_SYMBOL(dev_get_by_name);
902 
903 /**
904  *	netdev_get_by_name() - find a device by its name
905  *	@net: the applicable net namespace
906  *	@name: name to find
907  *	@tracker: tracking object for the acquired reference
908  *	@gfp: allocation flags for the tracker
909  *
910  *	Find an interface by name. This can be called from any
911  *	context and does its own locking. The returned handle has
912  *	the usage count incremented and the caller must use netdev_put() to
913  *	release it when it is no longer needed. %NULL is returned if no
914  *	matching device is found.
915  */
916 struct net_device *netdev_get_by_name(struct net *net, const char *name,
917 				      netdevice_tracker *tracker, gfp_t gfp)
918 {
919 	struct net_device *dev;
920 
921 	dev = dev_get_by_name(net, name);
922 	if (dev)
923 		netdev_tracker_alloc(dev, tracker, gfp);
924 	return dev;
925 }
926 EXPORT_SYMBOL(netdev_get_by_name);
927 
928 /**
929  *	__dev_get_by_index - find a device by its ifindex
930  *	@net: the applicable net namespace
931  *	@ifindex: index of device
932  *
933  *	Search for an interface by index. Returns %NULL if the device
934  *	is not found or a pointer to the device. The device has not
935  *	had its reference counter increased so the caller must be careful
936  *	about locking. The caller must hold the RTNL semaphore.
937  */
938 
939 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
940 {
941 	struct net_device *dev;
942 	struct hlist_head *head = dev_index_hash(net, ifindex);
943 
944 	hlist_for_each_entry(dev, head, index_hlist)
945 		if (dev->ifindex == ifindex)
946 			return dev;
947 
948 	return NULL;
949 }
950 EXPORT_SYMBOL(__dev_get_by_index);
951 
952 /**
953  *	dev_get_by_index_rcu - find a device by its ifindex
954  *	@net: the applicable net namespace
955  *	@ifindex: index of device
956  *
957  *	Search for an interface by index. Returns %NULL if the device
958  *	is not found or a pointer to the device. The device has not
959  *	had its reference counter increased so the caller must be careful
960  *	about locking. The caller must hold RCU lock.
961  */
962 
963 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
964 {
965 	struct net_device *dev;
966 	struct hlist_head *head = dev_index_hash(net, ifindex);
967 
968 	hlist_for_each_entry_rcu(dev, head, index_hlist)
969 		if (dev->ifindex == ifindex)
970 			return dev;
971 
972 	return NULL;
973 }
974 EXPORT_SYMBOL(dev_get_by_index_rcu);
975 
976 /* Deprecated for new users, call netdev_get_by_index() instead */
977 struct net_device *dev_get_by_index(struct net *net, int ifindex)
978 {
979 	struct net_device *dev;
980 
981 	rcu_read_lock();
982 	dev = dev_get_by_index_rcu(net, ifindex);
983 	dev_hold(dev);
984 	rcu_read_unlock();
985 	return dev;
986 }
987 EXPORT_SYMBOL(dev_get_by_index);
988 
989 /**
990  *	netdev_get_by_index() - find a device by its ifindex
991  *	@net: the applicable net namespace
992  *	@ifindex: index of device
993  *	@tracker: tracking object for the acquired reference
994  *	@gfp: allocation flags for the tracker
995  *
996  *	Search for an interface by index. Returns NULL if the device
997  *	is not found or a pointer to the device. The device returned has
998  *	had a reference added and the pointer is safe until the user calls
999  *	netdev_put() to indicate they have finished with it.
1000  */
1001 struct net_device *netdev_get_by_index(struct net *net, int ifindex,
1002 				       netdevice_tracker *tracker, gfp_t gfp)
1003 {
1004 	struct net_device *dev;
1005 
1006 	dev = dev_get_by_index(net, ifindex);
1007 	if (dev)
1008 		netdev_tracker_alloc(dev, tracker, gfp);
1009 	return dev;
1010 }
1011 EXPORT_SYMBOL(netdev_get_by_index);
1012 
1013 /**
1014  *	dev_get_by_napi_id - find a device by napi_id
1015  *	@napi_id: ID of the NAPI struct
1016  *
1017  *	Search for an interface by NAPI ID. Returns %NULL if the device
1018  *	is not found or a pointer to the device. The device has not had
1019  *	its reference counter increased so the caller must be careful
1020  *	about locking. The caller must hold RCU lock.
1021  */
1022 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
1023 {
1024 	struct napi_struct *napi;
1025 
1026 	WARN_ON_ONCE(!rcu_read_lock_held());
1027 
1028 	if (!napi_id_valid(napi_id))
1029 		return NULL;
1030 
1031 	napi = napi_by_id(napi_id);
1032 
1033 	return napi ? napi->dev : NULL;
1034 }
1035 
1036 /* Release the held reference on the net_device, and if the net_device
1037  * is still registered try to lock the instance lock. If device is being
1038  * unregistered NULL will be returned (but the reference has been released,
1039  * either way!)
1040  *
1041  * This helper is intended for locking net_device after it has been looked up
1042  * using a lockless lookup helper. Lock prevents the instance from going away.
1043  */
1044 struct net_device *__netdev_put_lock(struct net_device *dev, struct net *net)
1045 {
1046 	netdev_lock(dev);
1047 	if (dev->reg_state > NETREG_REGISTERED ||
1048 	    dev->moving_ns || !net_eq(dev_net(dev), net)) {
1049 		netdev_unlock(dev);
1050 		dev_put(dev);
1051 		return NULL;
1052 	}
1053 	dev_put(dev);
1054 	return dev;
1055 }
1056 
1057 static struct net_device *
1058 __netdev_put_lock_ops_compat(struct net_device *dev, struct net *net)
1059 {
1060 	netdev_lock_ops_compat(dev);
1061 	if (dev->reg_state > NETREG_REGISTERED ||
1062 	    dev->moving_ns || !net_eq(dev_net(dev), net)) {
1063 		netdev_unlock_ops_compat(dev);
1064 		dev_put(dev);
1065 		return NULL;
1066 	}
1067 	dev_put(dev);
1068 	return dev;
1069 }
1070 
1071 /**
1072  *	netdev_get_by_index_lock() - find a device by its ifindex
1073  *	@net: the applicable net namespace
1074  *	@ifindex: index of device
1075  *
1076  *	Search for an interface by index. If a valid device
1077  *	with @ifindex is found it will be returned with netdev->lock held.
1078  *	netdev_unlock() must be called to release it.
1079  *
1080  *	Return: pointer to a device with lock held, NULL if not found.
1081  */
1082 struct net_device *netdev_get_by_index_lock(struct net *net, int ifindex)
1083 {
1084 	struct net_device *dev;
1085 
1086 	dev = dev_get_by_index(net, ifindex);
1087 	if (!dev)
1088 		return NULL;
1089 
1090 	return __netdev_put_lock(dev, net);
1091 }
1092 
1093 struct net_device *
1094 netdev_get_by_index_lock_ops_compat(struct net *net, int ifindex)
1095 {
1096 	struct net_device *dev;
1097 
1098 	dev = dev_get_by_index(net, ifindex);
1099 	if (!dev)
1100 		return NULL;
1101 
1102 	return __netdev_put_lock_ops_compat(dev, net);
1103 }
1104 
1105 struct net_device *
1106 netdev_xa_find_lock(struct net *net, struct net_device *dev,
1107 		    unsigned long *index)
1108 {
1109 	if (dev)
1110 		netdev_unlock(dev);
1111 
1112 	do {
1113 		rcu_read_lock();
1114 		dev = xa_find(&net->dev_by_index, index, ULONG_MAX, XA_PRESENT);
1115 		if (!dev) {
1116 			rcu_read_unlock();
1117 			return NULL;
1118 		}
1119 		dev_hold(dev);
1120 		rcu_read_unlock();
1121 
1122 		dev = __netdev_put_lock(dev, net);
1123 		if (dev)
1124 			return dev;
1125 
1126 		(*index)++;
1127 	} while (true);
1128 }
1129 
1130 struct net_device *
1131 netdev_xa_find_lock_ops_compat(struct net *net, struct net_device *dev,
1132 			       unsigned long *index)
1133 {
1134 	if (dev)
1135 		netdev_unlock_ops_compat(dev);
1136 
1137 	do {
1138 		rcu_read_lock();
1139 		dev = xa_find(&net->dev_by_index, index, ULONG_MAX, XA_PRESENT);
1140 		if (!dev) {
1141 			rcu_read_unlock();
1142 			return NULL;
1143 		}
1144 		dev_hold(dev);
1145 		rcu_read_unlock();
1146 
1147 		dev = __netdev_put_lock_ops_compat(dev, net);
1148 		if (dev)
1149 			return dev;
1150 
1151 		(*index)++;
1152 	} while (true);
1153 }
1154 
1155 static DEFINE_SEQLOCK(netdev_rename_lock);
1156 
1157 void netdev_copy_name(struct net_device *dev, char *name)
1158 {
1159 	unsigned int seq;
1160 
1161 	do {
1162 		seq = read_seqbegin(&netdev_rename_lock);
1163 		strscpy(name, dev->name, IFNAMSIZ);
1164 	} while (read_seqretry(&netdev_rename_lock, seq));
1165 }
1166 
1167 /**
1168  *	netdev_get_name - get a netdevice name, knowing its ifindex.
1169  *	@net: network namespace
1170  *	@name: a pointer to the buffer where the name will be stored.
1171  *	@ifindex: the ifindex of the interface to get the name from.
1172  */
1173 int netdev_get_name(struct net *net, char *name, int ifindex)
1174 {
1175 	struct net_device *dev;
1176 	int ret;
1177 
1178 	rcu_read_lock();
1179 
1180 	dev = dev_get_by_index_rcu(net, ifindex);
1181 	if (!dev) {
1182 		ret = -ENODEV;
1183 		goto out;
1184 	}
1185 
1186 	netdev_copy_name(dev, name);
1187 
1188 	ret = 0;
1189 out:
1190 	rcu_read_unlock();
1191 	return ret;
1192 }
1193 
1194 static bool dev_addr_cmp(struct net_device *dev, unsigned short type,
1195 			 const char *ha)
1196 {
1197 	return dev->type == type && !memcmp(dev->dev_addr, ha, dev->addr_len);
1198 }
1199 
1200 /**
1201  *	dev_getbyhwaddr_rcu - find a device by its hardware address
1202  *	@net: the applicable net namespace
1203  *	@type: media type of device
1204  *	@ha: hardware address
1205  *
1206  *	Search for an interface by MAC address. Returns NULL if the device
1207  *	is not found or a pointer to the device.
1208  *	The caller must hold RCU.
1209  *	The returned device has not had its ref count increased
1210  *	and the caller must therefore be careful about locking
1211  *
1212  */
1213 
1214 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1215 				       const char *ha)
1216 {
1217 	struct net_device *dev;
1218 
1219 	for_each_netdev_rcu(net, dev)
1220 		if (dev_addr_cmp(dev, type, ha))
1221 			return dev;
1222 
1223 	return NULL;
1224 }
1225 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
1226 
1227 /**
1228  * dev_getbyhwaddr() - find a device by its hardware address
1229  * @net: the applicable net namespace
1230  * @type: media type of device
1231  * @ha: hardware address
1232  *
1233  * Similar to dev_getbyhwaddr_rcu(), but the owner needs to hold
1234  * rtnl_lock.
1235  *
1236  * Context: rtnl_lock() must be held.
1237  * Return: pointer to the net_device, or NULL if not found
1238  */
1239 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type,
1240 				   const char *ha)
1241 {
1242 	struct net_device *dev;
1243 
1244 	ASSERT_RTNL();
1245 	for_each_netdev(net, dev)
1246 		if (dev_addr_cmp(dev, type, ha))
1247 			return dev;
1248 
1249 	return NULL;
1250 }
1251 EXPORT_SYMBOL(dev_getbyhwaddr);
1252 
1253 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1254 {
1255 	struct net_device *dev, *ret = NULL;
1256 
1257 	rcu_read_lock();
1258 	for_each_netdev_rcu(net, dev)
1259 		if (dev->type == type) {
1260 			dev_hold(dev);
1261 			ret = dev;
1262 			break;
1263 		}
1264 	rcu_read_unlock();
1265 	return ret;
1266 }
1267 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1268 
1269 /**
1270  * netdev_get_by_flags_rcu - find any device with given flags
1271  * @net: the applicable net namespace
1272  * @tracker: tracking object for the acquired reference
1273  * @if_flags: IFF_* values
1274  * @mask: bitmask of bits in if_flags to check
1275  *
1276  * Search for any interface with the given flags.
1277  *
1278  * Context: rcu_read_lock() must be held.
1279  * Returns: NULL if a device is not found or a pointer to the device.
1280  */
1281 struct net_device *netdev_get_by_flags_rcu(struct net *net, netdevice_tracker *tracker,
1282 					   unsigned short if_flags, unsigned short mask)
1283 {
1284 	struct net_device *dev;
1285 
1286 	for_each_netdev_rcu(net, dev) {
1287 		if (((READ_ONCE(dev->flags) ^ if_flags) & mask) == 0) {
1288 			netdev_hold(dev, tracker, GFP_ATOMIC);
1289 			return dev;
1290 		}
1291 	}
1292 
1293 	return NULL;
1294 }
1295 EXPORT_IPV6_MOD(netdev_get_by_flags_rcu);
1296 
1297 /**
1298  *	dev_valid_name - check if name is okay for network device
1299  *	@name: name string
1300  *
1301  *	Network device names need to be valid file names to
1302  *	allow sysfs to work.  We also disallow any kind of
1303  *	whitespace.
1304  */
1305 bool dev_valid_name(const char *name)
1306 {
1307 	if (*name == '\0')
1308 		return false;
1309 	if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1310 		return false;
1311 	if (!strcmp(name, ".") || !strcmp(name, ".."))
1312 		return false;
1313 
1314 	while (*name) {
1315 		if (*name == '/' || *name == ':' || isspace(*name))
1316 			return false;
1317 		name++;
1318 	}
1319 	return true;
1320 }
1321 EXPORT_SYMBOL(dev_valid_name);
1322 
1323 /**
1324  *	__dev_alloc_name - allocate a name for a device
1325  *	@net: network namespace to allocate the device name in
1326  *	@name: name format string
1327  *	@res: result name string
1328  *
1329  *	Passed a format string - eg "lt%d" it will try and find a suitable
1330  *	id. It scans list of devices to build up a free map, then chooses
1331  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1332  *	while allocating the name and adding the device in order to avoid
1333  *	duplicates.
1334  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1335  *	Returns the number of the unit assigned or a negative errno code.
1336  */
1337 
1338 static int __dev_alloc_name(struct net *net, const char *name, char *res)
1339 {
1340 	int i = 0;
1341 	const char *p;
1342 	const int max_netdevices = 8*PAGE_SIZE;
1343 	unsigned long *inuse;
1344 	struct net_device *d;
1345 	char buf[IFNAMSIZ];
1346 
1347 	/* Verify the string as this thing may have come from the user.
1348 	 * There must be one "%d" and no other "%" characters.
1349 	 */
1350 	p = strchr(name, '%');
1351 	if (!p || p[1] != 'd' || strchr(p + 2, '%'))
1352 		return -EINVAL;
1353 
1354 	/* Use one page as a bit array of possible slots */
1355 	inuse = bitmap_zalloc(max_netdevices, GFP_ATOMIC);
1356 	if (!inuse)
1357 		return -ENOMEM;
1358 
1359 	for_each_netdev(net, d) {
1360 		struct netdev_name_node *name_node;
1361 
1362 		netdev_for_each_altname(d, name_node) {
1363 			if (!sscanf(name_node->name, name, &i))
1364 				continue;
1365 			if (i < 0 || i >= max_netdevices)
1366 				continue;
1367 
1368 			/* avoid cases where sscanf is not exact inverse of printf */
1369 			snprintf(buf, IFNAMSIZ, name, i);
1370 			if (!strncmp(buf, name_node->name, IFNAMSIZ))
1371 				__set_bit(i, inuse);
1372 		}
1373 		if (!sscanf(d->name, name, &i))
1374 			continue;
1375 		if (i < 0 || i >= max_netdevices)
1376 			continue;
1377 
1378 		/* avoid cases where sscanf is not exact inverse of printf */
1379 		snprintf(buf, IFNAMSIZ, name, i);
1380 		if (!strncmp(buf, d->name, IFNAMSIZ))
1381 			__set_bit(i, inuse);
1382 	}
1383 
1384 	i = find_first_zero_bit(inuse, max_netdevices);
1385 	bitmap_free(inuse);
1386 	if (i == max_netdevices)
1387 		return -ENFILE;
1388 
1389 	/* 'res' and 'name' could overlap, use 'buf' as an intermediate buffer */
1390 	strscpy(buf, name, IFNAMSIZ);
1391 	snprintf(res, IFNAMSIZ, buf, i);
1392 	return i;
1393 }
1394 
1395 /* Returns negative errno or allocated unit id (see __dev_alloc_name()) */
1396 static int dev_prep_valid_name(struct net *net, struct net_device *dev,
1397 			       const char *want_name, char *out_name,
1398 			       int dup_errno)
1399 {
1400 	if (!dev_valid_name(want_name))
1401 		return -EINVAL;
1402 
1403 	if (strchr(want_name, '%'))
1404 		return __dev_alloc_name(net, want_name, out_name);
1405 
1406 	if (netdev_name_in_use(net, want_name))
1407 		return -dup_errno;
1408 	if (out_name != want_name)
1409 		strscpy(out_name, want_name, IFNAMSIZ);
1410 	return 0;
1411 }
1412 
1413 /**
1414  *	dev_alloc_name - allocate a name for a device
1415  *	@dev: device
1416  *	@name: name format string
1417  *
1418  *	Passed a format string - eg "lt%d" it will try and find a suitable
1419  *	id. It scans list of devices to build up a free map, then chooses
1420  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1421  *	while allocating the name and adding the device in order to avoid
1422  *	duplicates.
1423  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1424  *	Returns the number of the unit assigned or a negative errno code.
1425  */
1426 
1427 int dev_alloc_name(struct net_device *dev, const char *name)
1428 {
1429 	return dev_prep_valid_name(dev_net(dev), dev, name, dev->name, ENFILE);
1430 }
1431 EXPORT_SYMBOL(dev_alloc_name);
1432 
1433 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1434 			      const char *name)
1435 {
1436 	int ret;
1437 
1438 	ret = dev_prep_valid_name(net, dev, name, dev->name, EEXIST);
1439 	return ret < 0 ? ret : 0;
1440 }
1441 
1442 int netif_change_name(struct net_device *dev, const char *newname)
1443 {
1444 	struct net *net = dev_net(dev);
1445 	unsigned char old_assign_type;
1446 	char oldname[IFNAMSIZ];
1447 	int err = 0;
1448 	int ret;
1449 
1450 	ASSERT_RTNL_NET(net);
1451 
1452 	if (!strncmp(newname, dev->name, IFNAMSIZ))
1453 		return 0;
1454 
1455 	memcpy(oldname, dev->name, IFNAMSIZ);
1456 
1457 	write_seqlock_bh(&netdev_rename_lock);
1458 	err = dev_get_valid_name(net, dev, newname);
1459 	write_sequnlock_bh(&netdev_rename_lock);
1460 
1461 	if (err < 0)
1462 		return err;
1463 
1464 	if (oldname[0] && !strchr(oldname, '%'))
1465 		netdev_info(dev, "renamed from %s%s\n", oldname,
1466 			    dev->flags & IFF_UP ? " (while UP)" : "");
1467 
1468 	old_assign_type = dev->name_assign_type;
1469 	WRITE_ONCE(dev->name_assign_type, NET_NAME_RENAMED);
1470 
1471 rollback:
1472 	ret = device_rename(&dev->dev, dev->name);
1473 	if (ret) {
1474 		write_seqlock_bh(&netdev_rename_lock);
1475 		memcpy(dev->name, oldname, IFNAMSIZ);
1476 		write_sequnlock_bh(&netdev_rename_lock);
1477 		WRITE_ONCE(dev->name_assign_type, old_assign_type);
1478 		return ret;
1479 	}
1480 
1481 	netdev_adjacent_rename_links(dev, oldname);
1482 
1483 	netdev_name_node_del(dev->name_node);
1484 
1485 	synchronize_net();
1486 
1487 	netdev_name_node_add(net, dev->name_node);
1488 
1489 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1490 	ret = notifier_to_errno(ret);
1491 
1492 	if (ret) {
1493 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1494 		if (err >= 0) {
1495 			err = ret;
1496 			write_seqlock_bh(&netdev_rename_lock);
1497 			memcpy(dev->name, oldname, IFNAMSIZ);
1498 			write_sequnlock_bh(&netdev_rename_lock);
1499 			memcpy(oldname, newname, IFNAMSIZ);
1500 			WRITE_ONCE(dev->name_assign_type, old_assign_type);
1501 			old_assign_type = NET_NAME_RENAMED;
1502 			goto rollback;
1503 		} else {
1504 			netdev_err(dev, "name change rollback failed: %d\n",
1505 				   ret);
1506 		}
1507 	}
1508 
1509 	return err;
1510 }
1511 
1512 int netif_set_alias(struct net_device *dev, const char *alias, size_t len)
1513 {
1514 	struct dev_ifalias *new_alias = NULL;
1515 
1516 	if (len >= IFALIASZ)
1517 		return -EINVAL;
1518 
1519 	if (len) {
1520 		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1521 		if (!new_alias)
1522 			return -ENOMEM;
1523 
1524 		memcpy(new_alias->ifalias, alias, len);
1525 		new_alias->ifalias[len] = 0;
1526 	}
1527 
1528 	mutex_lock(&ifalias_mutex);
1529 	new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1530 					mutex_is_locked(&ifalias_mutex));
1531 	mutex_unlock(&ifalias_mutex);
1532 
1533 	if (new_alias)
1534 		kfree_rcu(new_alias, rcuhead);
1535 
1536 	return len;
1537 }
1538 
1539 /**
1540  *	dev_get_alias - get ifalias of a device
1541  *	@dev: device
1542  *	@name: buffer to store name of ifalias
1543  *	@len: size of buffer
1544  *
1545  *	get ifalias for a device.  Caller must make sure dev cannot go
1546  *	away,  e.g. rcu read lock or own a reference count to device.
1547  */
1548 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1549 {
1550 	const struct dev_ifalias *alias;
1551 	int ret = 0;
1552 
1553 	rcu_read_lock();
1554 	alias = rcu_dereference(dev->ifalias);
1555 	if (alias)
1556 		ret = snprintf(name, len, "%s", alias->ifalias);
1557 	rcu_read_unlock();
1558 
1559 	return ret;
1560 }
1561 
1562 /**
1563  *	netdev_features_change - device changes features
1564  *	@dev: device to cause notification
1565  *
1566  *	Called to indicate a device has changed features.
1567  */
1568 void netdev_features_change(struct net_device *dev)
1569 {
1570 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1571 }
1572 EXPORT_SYMBOL(netdev_features_change);
1573 
1574 void netif_state_change(struct net_device *dev)
1575 {
1576 	netdev_ops_assert_locked_or_invisible(dev);
1577 
1578 	if (dev->flags & IFF_UP) {
1579 		struct netdev_notifier_change_info change_info = {
1580 			.info.dev = dev,
1581 		};
1582 
1583 		call_netdevice_notifiers_info(NETDEV_CHANGE,
1584 					      &change_info.info);
1585 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL, 0, NULL);
1586 	}
1587 }
1588 
1589 /**
1590  * __netdev_notify_peers - notify network peers about existence of @dev,
1591  * to be called when rtnl lock is already held.
1592  * @dev: network device
1593  *
1594  * Generate traffic such that interested network peers are aware of
1595  * @dev, such as by generating a gratuitous ARP. This may be used when
1596  * a device wants to inform the rest of the network about some sort of
1597  * reconfiguration such as a failover event or virtual machine
1598  * migration.
1599  */
1600 void __netdev_notify_peers(struct net_device *dev)
1601 {
1602 	ASSERT_RTNL();
1603 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1604 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1605 }
1606 EXPORT_SYMBOL(__netdev_notify_peers);
1607 
1608 /**
1609  * netdev_notify_peers - notify network peers about existence of @dev
1610  * @dev: network device
1611  *
1612  * Generate traffic such that interested network peers are aware of
1613  * @dev, such as by generating a gratuitous ARP. This may be used when
1614  * a device wants to inform the rest of the network about some sort of
1615  * reconfiguration such as a failover event or virtual machine
1616  * migration.
1617  */
1618 void netdev_notify_peers(struct net_device *dev)
1619 {
1620 	rtnl_lock();
1621 	__netdev_notify_peers(dev);
1622 	rtnl_unlock();
1623 }
1624 EXPORT_SYMBOL(netdev_notify_peers);
1625 
1626 static int napi_threaded_poll(void *data);
1627 
1628 static int napi_kthread_create(struct napi_struct *n)
1629 {
1630 	int err = 0;
1631 
1632 	/* Create and wake up the kthread once to put it in
1633 	 * TASK_INTERRUPTIBLE mode to avoid the blocked task
1634 	 * warning and work with loadavg.
1635 	 */
1636 	n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1637 				n->dev->name, n->napi_id);
1638 	if (IS_ERR(n->thread)) {
1639 		err = PTR_ERR(n->thread);
1640 		pr_err("kthread_run failed with err %d\n", err);
1641 		n->thread = NULL;
1642 	}
1643 
1644 	return err;
1645 }
1646 
1647 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1648 {
1649 	const struct net_device_ops *ops = dev->netdev_ops;
1650 	int ret;
1651 
1652 	ASSERT_RTNL();
1653 	dev_addr_check(dev);
1654 
1655 	if (!netif_device_present(dev)) {
1656 		/* may be detached because parent is runtime-suspended */
1657 		if (dev->dev.parent)
1658 			pm_runtime_resume(dev->dev.parent);
1659 		if (!netif_device_present(dev))
1660 			return -ENODEV;
1661 	}
1662 
1663 	/* Block netpoll from trying to do any rx path servicing.
1664 	 * If we don't do this there is a chance ndo_poll_controller
1665 	 * or ndo_poll may be running while we open the device
1666 	 */
1667 	netpoll_poll_disable(dev);
1668 
1669 	ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1670 	ret = notifier_to_errno(ret);
1671 	if (ret)
1672 		return ret;
1673 
1674 	set_bit(__LINK_STATE_START, &dev->state);
1675 
1676 	netdev_ops_assert_locked(dev);
1677 
1678 	if (ops->ndo_validate_addr)
1679 		ret = ops->ndo_validate_addr(dev);
1680 
1681 	if (!ret && ops->ndo_open)
1682 		ret = ops->ndo_open(dev);
1683 
1684 	netpoll_poll_enable(dev);
1685 
1686 	if (ret)
1687 		clear_bit(__LINK_STATE_START, &dev->state);
1688 	else {
1689 		netif_set_up(dev, true);
1690 		dev_set_rx_mode(dev);
1691 		dev_activate(dev);
1692 		add_device_randomness(dev->dev_addr, dev->addr_len);
1693 	}
1694 
1695 	return ret;
1696 }
1697 
1698 int netif_open(struct net_device *dev, struct netlink_ext_ack *extack)
1699 {
1700 	int ret;
1701 
1702 	if (dev->flags & IFF_UP)
1703 		return 0;
1704 
1705 	ret = __dev_open(dev, extack);
1706 	if (ret < 0)
1707 		return ret;
1708 
1709 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1710 	call_netdevice_notifiers(NETDEV_UP, dev);
1711 
1712 	return ret;
1713 }
1714 
1715 static void __dev_close_many(struct list_head *head)
1716 {
1717 	struct net_device *dev;
1718 
1719 	ASSERT_RTNL();
1720 	might_sleep();
1721 
1722 	list_for_each_entry(dev, head, close_list) {
1723 		/* Temporarily disable netpoll until the interface is down */
1724 		netpoll_poll_disable(dev);
1725 
1726 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1727 
1728 		clear_bit(__LINK_STATE_START, &dev->state);
1729 
1730 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1731 		 * can be even on different cpu. So just clear netif_running().
1732 		 *
1733 		 * dev->stop() will invoke napi_disable() on all of it's
1734 		 * napi_struct instances on this device.
1735 		 */
1736 		smp_mb__after_atomic(); /* Commit netif_running(). */
1737 	}
1738 
1739 	dev_deactivate_many(head);
1740 
1741 	list_for_each_entry(dev, head, close_list) {
1742 		const struct net_device_ops *ops = dev->netdev_ops;
1743 
1744 		/*
1745 		 *	Call the device specific close. This cannot fail.
1746 		 *	Only if device is UP
1747 		 *
1748 		 *	We allow it to be called even after a DETACH hot-plug
1749 		 *	event.
1750 		 */
1751 
1752 		netdev_ops_assert_locked(dev);
1753 
1754 		if (ops->ndo_stop)
1755 			ops->ndo_stop(dev);
1756 
1757 		netif_set_up(dev, false);
1758 		netpoll_poll_enable(dev);
1759 	}
1760 }
1761 
1762 static void __dev_close(struct net_device *dev)
1763 {
1764 	LIST_HEAD(single);
1765 
1766 	list_add(&dev->close_list, &single);
1767 	__dev_close_many(&single);
1768 	list_del(&single);
1769 }
1770 
1771 void netif_close_many(struct list_head *head, bool unlink)
1772 {
1773 	struct net_device *dev, *tmp;
1774 
1775 	/* Remove the devices that don't need to be closed */
1776 	list_for_each_entry_safe(dev, tmp, head, close_list)
1777 		if (!(dev->flags & IFF_UP))
1778 			list_del_init(&dev->close_list);
1779 
1780 	__dev_close_many(head);
1781 
1782 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1783 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1784 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1785 		if (unlink)
1786 			list_del_init(&dev->close_list);
1787 	}
1788 }
1789 EXPORT_SYMBOL_NS_GPL(netif_close_many, "NETDEV_INTERNAL");
1790 
1791 void netif_close(struct net_device *dev)
1792 {
1793 	if (dev->flags & IFF_UP) {
1794 		LIST_HEAD(single);
1795 
1796 		list_add(&dev->close_list, &single);
1797 		netif_close_many(&single, true);
1798 		list_del(&single);
1799 	}
1800 }
1801 EXPORT_SYMBOL(netif_close);
1802 
1803 void netif_disable_lro(struct net_device *dev)
1804 {
1805 	struct net_device *lower_dev;
1806 	struct list_head *iter;
1807 
1808 	dev->wanted_features &= ~NETIF_F_LRO;
1809 	netdev_update_features(dev);
1810 
1811 	if (unlikely(dev->features & NETIF_F_LRO))
1812 		netdev_WARN(dev, "failed to disable LRO!\n");
1813 
1814 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
1815 		netdev_lock_ops(lower_dev);
1816 		netif_disable_lro(lower_dev);
1817 		netdev_unlock_ops(lower_dev);
1818 	}
1819 }
1820 EXPORT_IPV6_MOD(netif_disable_lro);
1821 
1822 /**
1823  *	dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1824  *	@dev: device
1825  *
1826  *	Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1827  *	called under RTNL.  This is needed if Generic XDP is installed on
1828  *	the device.
1829  */
1830 static void dev_disable_gro_hw(struct net_device *dev)
1831 {
1832 	dev->wanted_features &= ~NETIF_F_GRO_HW;
1833 	netdev_update_features(dev);
1834 
1835 	if (unlikely(dev->features & NETIF_F_GRO_HW))
1836 		netdev_WARN(dev, "failed to disable GRO_HW!\n");
1837 }
1838 
1839 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1840 {
1841 #define N(val) 						\
1842 	case NETDEV_##val:				\
1843 		return "NETDEV_" __stringify(val);
1844 	switch (cmd) {
1845 	N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1846 	N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1847 	N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1848 	N(POST_INIT) N(PRE_UNINIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN)
1849 	N(CHANGEUPPER) N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA)
1850 	N(BONDING_INFO) N(PRECHANGEUPPER) N(CHANGELOWERSTATE)
1851 	N(UDP_TUNNEL_PUSH_INFO) N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1852 	N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1853 	N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1854 	N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE)
1855 	N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA)
1856 	N(XDP_FEAT_CHANGE)
1857 	}
1858 #undef N
1859 	return "UNKNOWN_NETDEV_EVENT";
1860 }
1861 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1862 
1863 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1864 				   struct net_device *dev)
1865 {
1866 	struct netdev_notifier_info info = {
1867 		.dev = dev,
1868 	};
1869 
1870 	return nb->notifier_call(nb, val, &info);
1871 }
1872 
1873 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1874 					     struct net_device *dev)
1875 {
1876 	int err;
1877 
1878 	err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1879 	err = notifier_to_errno(err);
1880 	if (err)
1881 		return err;
1882 
1883 	if (!(dev->flags & IFF_UP))
1884 		return 0;
1885 
1886 	call_netdevice_notifier(nb, NETDEV_UP, dev);
1887 	return 0;
1888 }
1889 
1890 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1891 						struct net_device *dev)
1892 {
1893 	if (dev->flags & IFF_UP) {
1894 		call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1895 					dev);
1896 		call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1897 	}
1898 	call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1899 }
1900 
1901 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1902 						 struct net *net)
1903 {
1904 	struct net_device *dev;
1905 	int err;
1906 
1907 	for_each_netdev(net, dev) {
1908 		netdev_lock_ops(dev);
1909 		err = call_netdevice_register_notifiers(nb, dev);
1910 		netdev_unlock_ops(dev);
1911 		if (err)
1912 			goto rollback;
1913 	}
1914 	return 0;
1915 
1916 rollback:
1917 	for_each_netdev_continue_reverse(net, dev)
1918 		call_netdevice_unregister_notifiers(nb, dev);
1919 	return err;
1920 }
1921 
1922 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1923 						    struct net *net)
1924 {
1925 	struct net_device *dev;
1926 
1927 	for_each_netdev(net, dev)
1928 		call_netdevice_unregister_notifiers(nb, dev);
1929 }
1930 
1931 static int dev_boot_phase = 1;
1932 
1933 /**
1934  * register_netdevice_notifier - register a network notifier block
1935  * @nb: notifier
1936  *
1937  * Register a notifier to be called when network device events occur.
1938  * The notifier passed is linked into the kernel structures and must
1939  * not be reused until it has been unregistered. A negative errno code
1940  * is returned on a failure.
1941  *
1942  * When registered all registration and up events are replayed
1943  * to the new notifier to allow device to have a race free
1944  * view of the network device list.
1945  */
1946 
1947 int register_netdevice_notifier(struct notifier_block *nb)
1948 {
1949 	struct net *net;
1950 	int err;
1951 
1952 	/* Close race with setup_net() and cleanup_net() */
1953 	down_write(&pernet_ops_rwsem);
1954 
1955 	/* When RTNL is removed, we need protection for netdev_chain. */
1956 	rtnl_lock();
1957 
1958 	err = raw_notifier_chain_register(&netdev_chain, nb);
1959 	if (err)
1960 		goto unlock;
1961 	if (dev_boot_phase)
1962 		goto unlock;
1963 	for_each_net(net) {
1964 		__rtnl_net_lock(net);
1965 		err = call_netdevice_register_net_notifiers(nb, net);
1966 		__rtnl_net_unlock(net);
1967 		if (err)
1968 			goto rollback;
1969 	}
1970 
1971 unlock:
1972 	rtnl_unlock();
1973 	up_write(&pernet_ops_rwsem);
1974 	return err;
1975 
1976 rollback:
1977 	for_each_net_continue_reverse(net) {
1978 		__rtnl_net_lock(net);
1979 		call_netdevice_unregister_net_notifiers(nb, net);
1980 		__rtnl_net_unlock(net);
1981 	}
1982 
1983 	raw_notifier_chain_unregister(&netdev_chain, nb);
1984 	goto unlock;
1985 }
1986 EXPORT_SYMBOL(register_netdevice_notifier);
1987 
1988 /**
1989  * unregister_netdevice_notifier - unregister a network notifier block
1990  * @nb: notifier
1991  *
1992  * Unregister a notifier previously registered by
1993  * register_netdevice_notifier(). The notifier is unlinked into the
1994  * kernel structures and may then be reused. A negative errno code
1995  * is returned on a failure.
1996  *
1997  * After unregistering unregister and down device events are synthesized
1998  * for all devices on the device list to the removed notifier to remove
1999  * the need for special case cleanup code.
2000  */
2001 
2002 int unregister_netdevice_notifier(struct notifier_block *nb)
2003 {
2004 	struct net *net;
2005 	int err;
2006 
2007 	/* Close race with setup_net() and cleanup_net() */
2008 	down_write(&pernet_ops_rwsem);
2009 	rtnl_lock();
2010 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
2011 	if (err)
2012 		goto unlock;
2013 
2014 	for_each_net(net) {
2015 		__rtnl_net_lock(net);
2016 		call_netdevice_unregister_net_notifiers(nb, net);
2017 		__rtnl_net_unlock(net);
2018 	}
2019 
2020 unlock:
2021 	rtnl_unlock();
2022 	up_write(&pernet_ops_rwsem);
2023 	return err;
2024 }
2025 EXPORT_SYMBOL(unregister_netdevice_notifier);
2026 
2027 static int __register_netdevice_notifier_net(struct net *net,
2028 					     struct notifier_block *nb,
2029 					     bool ignore_call_fail)
2030 {
2031 	int err;
2032 
2033 	err = raw_notifier_chain_register(&net->netdev_chain, nb);
2034 	if (err)
2035 		return err;
2036 	if (dev_boot_phase)
2037 		return 0;
2038 
2039 	err = call_netdevice_register_net_notifiers(nb, net);
2040 	if (err && !ignore_call_fail)
2041 		goto chain_unregister;
2042 
2043 	return 0;
2044 
2045 chain_unregister:
2046 	raw_notifier_chain_unregister(&net->netdev_chain, nb);
2047 	return err;
2048 }
2049 
2050 static int __unregister_netdevice_notifier_net(struct net *net,
2051 					       struct notifier_block *nb)
2052 {
2053 	int err;
2054 
2055 	err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
2056 	if (err)
2057 		return err;
2058 
2059 	call_netdevice_unregister_net_notifiers(nb, net);
2060 	return 0;
2061 }
2062 
2063 /**
2064  * register_netdevice_notifier_net - register a per-netns network notifier block
2065  * @net: network namespace
2066  * @nb: notifier
2067  *
2068  * Register a notifier to be called when network device events occur.
2069  * The notifier passed is linked into the kernel structures and must
2070  * not be reused until it has been unregistered. A negative errno code
2071  * is returned on a failure.
2072  *
2073  * When registered all registration and up events are replayed
2074  * to the new notifier to allow device to have a race free
2075  * view of the network device list.
2076  */
2077 
2078 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
2079 {
2080 	int err;
2081 
2082 	rtnl_net_lock(net);
2083 	err = __register_netdevice_notifier_net(net, nb, false);
2084 	rtnl_net_unlock(net);
2085 
2086 	return err;
2087 }
2088 EXPORT_SYMBOL(register_netdevice_notifier_net);
2089 
2090 /**
2091  * unregister_netdevice_notifier_net - unregister a per-netns
2092  *                                     network notifier block
2093  * @net: network namespace
2094  * @nb: notifier
2095  *
2096  * Unregister a notifier previously registered by
2097  * register_netdevice_notifier_net(). The notifier is unlinked from the
2098  * kernel structures and may then be reused. A negative errno code
2099  * is returned on a failure.
2100  *
2101  * After unregistering unregister and down device events are synthesized
2102  * for all devices on the device list to the removed notifier to remove
2103  * the need for special case cleanup code.
2104  */
2105 
2106 int unregister_netdevice_notifier_net(struct net *net,
2107 				      struct notifier_block *nb)
2108 {
2109 	int err;
2110 
2111 	rtnl_net_lock(net);
2112 	err = __unregister_netdevice_notifier_net(net, nb);
2113 	rtnl_net_unlock(net);
2114 
2115 	return err;
2116 }
2117 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
2118 
2119 static void __move_netdevice_notifier_net(struct net *src_net,
2120 					  struct net *dst_net,
2121 					  struct notifier_block *nb)
2122 {
2123 	__unregister_netdevice_notifier_net(src_net, nb);
2124 	__register_netdevice_notifier_net(dst_net, nb, true);
2125 }
2126 
2127 static void rtnl_net_dev_lock(struct net_device *dev)
2128 {
2129 	bool again;
2130 
2131 	do {
2132 		struct net *net;
2133 
2134 		again = false;
2135 
2136 		/* netns might be being dismantled. */
2137 		rcu_read_lock();
2138 		net = dev_net_rcu(dev);
2139 		net_passive_inc(net);
2140 		rcu_read_unlock();
2141 
2142 		rtnl_net_lock(net);
2143 
2144 #ifdef CONFIG_NET_NS
2145 		/* dev might have been moved to another netns. */
2146 		if (!net_eq(net, rcu_access_pointer(dev->nd_net.net))) {
2147 			rtnl_net_unlock(net);
2148 			net_passive_dec(net);
2149 			again = true;
2150 		}
2151 #endif
2152 	} while (again);
2153 }
2154 
2155 static void rtnl_net_dev_unlock(struct net_device *dev)
2156 {
2157 	struct net *net = dev_net(dev);
2158 
2159 	rtnl_net_unlock(net);
2160 	net_passive_dec(net);
2161 }
2162 
2163 int register_netdevice_notifier_dev_net(struct net_device *dev,
2164 					struct notifier_block *nb,
2165 					struct netdev_net_notifier *nn)
2166 {
2167 	int err;
2168 
2169 	rtnl_net_dev_lock(dev);
2170 	err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
2171 	if (!err) {
2172 		nn->nb = nb;
2173 		list_add(&nn->list, &dev->net_notifier_list);
2174 	}
2175 	rtnl_net_dev_unlock(dev);
2176 
2177 	return err;
2178 }
2179 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
2180 
2181 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2182 					  struct notifier_block *nb,
2183 					  struct netdev_net_notifier *nn)
2184 {
2185 	int err;
2186 
2187 	rtnl_net_dev_lock(dev);
2188 	list_del(&nn->list);
2189 	err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
2190 	rtnl_net_dev_unlock(dev);
2191 
2192 	return err;
2193 }
2194 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
2195 
2196 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
2197 					     struct net *net)
2198 {
2199 	struct netdev_net_notifier *nn;
2200 
2201 	list_for_each_entry(nn, &dev->net_notifier_list, list)
2202 		__move_netdevice_notifier_net(dev_net(dev), net, nn->nb);
2203 }
2204 
2205 /**
2206  *	call_netdevice_notifiers_info - call all network notifier blocks
2207  *	@val: value passed unmodified to notifier function
2208  *	@info: notifier information data
2209  *
2210  *	Call all network notifier blocks.  Parameters and return value
2211  *	are as for raw_notifier_call_chain().
2212  */
2213 
2214 int call_netdevice_notifiers_info(unsigned long val,
2215 				  struct netdev_notifier_info *info)
2216 {
2217 	struct net *net = dev_net(info->dev);
2218 	int ret;
2219 
2220 	ASSERT_RTNL();
2221 
2222 	/* Run per-netns notifier block chain first, then run the global one.
2223 	 * Hopefully, one day, the global one is going to be removed after
2224 	 * all notifier block registrators get converted to be per-netns.
2225 	 */
2226 	ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
2227 	if (ret & NOTIFY_STOP_MASK)
2228 		return ret;
2229 	return raw_notifier_call_chain(&netdev_chain, val, info);
2230 }
2231 
2232 /**
2233  *	call_netdevice_notifiers_info_robust - call per-netns notifier blocks
2234  *	                                       for and rollback on error
2235  *	@val_up: value passed unmodified to notifier function
2236  *	@val_down: value passed unmodified to the notifier function when
2237  *	           recovering from an error on @val_up
2238  *	@info: notifier information data
2239  *
2240  *	Call all per-netns network notifier blocks, but not notifier blocks on
2241  *	the global notifier chain. Parameters and return value are as for
2242  *	raw_notifier_call_chain_robust().
2243  */
2244 
2245 static int
2246 call_netdevice_notifiers_info_robust(unsigned long val_up,
2247 				     unsigned long val_down,
2248 				     struct netdev_notifier_info *info)
2249 {
2250 	struct net *net = dev_net(info->dev);
2251 
2252 	ASSERT_RTNL();
2253 
2254 	return raw_notifier_call_chain_robust(&net->netdev_chain,
2255 					      val_up, val_down, info);
2256 }
2257 
2258 static int call_netdevice_notifiers_extack(unsigned long val,
2259 					   struct net_device *dev,
2260 					   struct netlink_ext_ack *extack)
2261 {
2262 	struct netdev_notifier_info info = {
2263 		.dev = dev,
2264 		.extack = extack,
2265 	};
2266 
2267 	return call_netdevice_notifiers_info(val, &info);
2268 }
2269 
2270 /**
2271  *	call_netdevice_notifiers - call all network notifier blocks
2272  *      @val: value passed unmodified to notifier function
2273  *      @dev: net_device pointer passed unmodified to notifier function
2274  *
2275  *	Call all network notifier blocks.  Parameters and return value
2276  *	are as for raw_notifier_call_chain().
2277  */
2278 
2279 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2280 {
2281 	return call_netdevice_notifiers_extack(val, dev, NULL);
2282 }
2283 EXPORT_SYMBOL(call_netdevice_notifiers);
2284 
2285 /**
2286  *	call_netdevice_notifiers_mtu - call all network notifier blocks
2287  *	@val: value passed unmodified to notifier function
2288  *	@dev: net_device pointer passed unmodified to notifier function
2289  *	@arg: additional u32 argument passed to the notifier function
2290  *
2291  *	Call all network notifier blocks.  Parameters and return value
2292  *	are as for raw_notifier_call_chain().
2293  */
2294 static int call_netdevice_notifiers_mtu(unsigned long val,
2295 					struct net_device *dev, u32 arg)
2296 {
2297 	struct netdev_notifier_info_ext info = {
2298 		.info.dev = dev,
2299 		.ext.mtu = arg,
2300 	};
2301 
2302 	BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2303 
2304 	return call_netdevice_notifiers_info(val, &info.info);
2305 }
2306 
2307 #ifdef CONFIG_NET_INGRESS
2308 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2309 
2310 void net_inc_ingress_queue(void)
2311 {
2312 	static_branch_inc(&ingress_needed_key);
2313 }
2314 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2315 
2316 void net_dec_ingress_queue(void)
2317 {
2318 	static_branch_dec(&ingress_needed_key);
2319 }
2320 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2321 #endif
2322 
2323 #ifdef CONFIG_NET_EGRESS
2324 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2325 
2326 void net_inc_egress_queue(void)
2327 {
2328 	static_branch_inc(&egress_needed_key);
2329 }
2330 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2331 
2332 void net_dec_egress_queue(void)
2333 {
2334 	static_branch_dec(&egress_needed_key);
2335 }
2336 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2337 #endif
2338 
2339 #ifdef CONFIG_NET_CLS_ACT
2340 DEFINE_STATIC_KEY_FALSE(tcf_sw_enabled_key);
2341 EXPORT_SYMBOL(tcf_sw_enabled_key);
2342 #endif
2343 
2344 DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2345 EXPORT_SYMBOL(netstamp_needed_key);
2346 #ifdef CONFIG_JUMP_LABEL
2347 static atomic_t netstamp_needed_deferred;
2348 static atomic_t netstamp_wanted;
2349 static void netstamp_clear(struct work_struct *work)
2350 {
2351 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2352 	int wanted;
2353 
2354 	wanted = atomic_add_return(deferred, &netstamp_wanted);
2355 	if (wanted > 0)
2356 		static_branch_enable(&netstamp_needed_key);
2357 	else
2358 		static_branch_disable(&netstamp_needed_key);
2359 }
2360 static DECLARE_WORK(netstamp_work, netstamp_clear);
2361 #endif
2362 
2363 void net_enable_timestamp(void)
2364 {
2365 #ifdef CONFIG_JUMP_LABEL
2366 	int wanted = atomic_read(&netstamp_wanted);
2367 
2368 	while (wanted > 0) {
2369 		if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted + 1))
2370 			return;
2371 	}
2372 	atomic_inc(&netstamp_needed_deferred);
2373 	schedule_work(&netstamp_work);
2374 #else
2375 	static_branch_inc(&netstamp_needed_key);
2376 #endif
2377 }
2378 EXPORT_SYMBOL(net_enable_timestamp);
2379 
2380 void net_disable_timestamp(void)
2381 {
2382 #ifdef CONFIG_JUMP_LABEL
2383 	int wanted = atomic_read(&netstamp_wanted);
2384 
2385 	while (wanted > 1) {
2386 		if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted - 1))
2387 			return;
2388 	}
2389 	atomic_dec(&netstamp_needed_deferred);
2390 	schedule_work(&netstamp_work);
2391 #else
2392 	static_branch_dec(&netstamp_needed_key);
2393 #endif
2394 }
2395 EXPORT_SYMBOL(net_disable_timestamp);
2396 
2397 static inline void net_timestamp_set(struct sk_buff *skb)
2398 {
2399 	skb->tstamp = 0;
2400 	skb->tstamp_type = SKB_CLOCK_REALTIME;
2401 	if (static_branch_unlikely(&netstamp_needed_key))
2402 		skb->tstamp = ktime_get_real();
2403 }
2404 
2405 #define net_timestamp_check(COND, SKB)				\
2406 	if (static_branch_unlikely(&netstamp_needed_key)) {	\
2407 		if ((COND) && !(SKB)->tstamp)			\
2408 			(SKB)->tstamp = ktime_get_real();	\
2409 	}							\
2410 
2411 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2412 {
2413 	return __is_skb_forwardable(dev, skb, true);
2414 }
2415 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2416 
2417 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2418 			      bool check_mtu)
2419 {
2420 	int ret = ____dev_forward_skb(dev, skb, check_mtu);
2421 
2422 	if (likely(!ret)) {
2423 		skb->protocol = eth_type_trans(skb, dev);
2424 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2425 	}
2426 
2427 	return ret;
2428 }
2429 
2430 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2431 {
2432 	return __dev_forward_skb2(dev, skb, true);
2433 }
2434 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2435 
2436 /**
2437  * dev_forward_skb - loopback an skb to another netif
2438  *
2439  * @dev: destination network device
2440  * @skb: buffer to forward
2441  *
2442  * return values:
2443  *	NET_RX_SUCCESS	(no congestion)
2444  *	NET_RX_DROP     (packet was dropped, but freed)
2445  *
2446  * dev_forward_skb can be used for injecting an skb from the
2447  * start_xmit function of one device into the receive queue
2448  * of another device.
2449  *
2450  * The receiving device may be in another namespace, so
2451  * we have to clear all information in the skb that could
2452  * impact namespace isolation.
2453  */
2454 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2455 {
2456 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2457 }
2458 EXPORT_SYMBOL_GPL(dev_forward_skb);
2459 
2460 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2461 {
2462 	return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2463 }
2464 
2465 static inline int deliver_skb(struct sk_buff *skb,
2466 			      struct packet_type *pt_prev,
2467 			      struct net_device *orig_dev)
2468 {
2469 	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2470 		return -ENOMEM;
2471 	refcount_inc(&skb->users);
2472 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2473 }
2474 
2475 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2476 					  struct packet_type **pt,
2477 					  struct net_device *orig_dev,
2478 					  __be16 type,
2479 					  struct list_head *ptype_list)
2480 {
2481 	struct packet_type *ptype, *pt_prev = *pt;
2482 
2483 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2484 		if (ptype->type != type)
2485 			continue;
2486 		if (pt_prev)
2487 			deliver_skb(skb, pt_prev, orig_dev);
2488 		pt_prev = ptype;
2489 	}
2490 	*pt = pt_prev;
2491 }
2492 
2493 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2494 {
2495 	if (!ptype->af_packet_priv || !skb->sk)
2496 		return false;
2497 
2498 	if (ptype->id_match)
2499 		return ptype->id_match(ptype, skb->sk);
2500 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2501 		return true;
2502 
2503 	return false;
2504 }
2505 
2506 /**
2507  * dev_nit_active_rcu - return true if any network interface taps are in use
2508  *
2509  * The caller must hold the RCU lock
2510  *
2511  * @dev: network device to check for the presence of taps
2512  */
2513 bool dev_nit_active_rcu(const struct net_device *dev)
2514 {
2515 	/* Callers may hold either RCU or RCU BH lock */
2516 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
2517 
2518 	return !list_empty(&dev_net(dev)->ptype_all) ||
2519 	       !list_empty(&dev->ptype_all);
2520 }
2521 EXPORT_SYMBOL_GPL(dev_nit_active_rcu);
2522 
2523 /*
2524  *	Support routine. Sends outgoing frames to any network
2525  *	taps currently in use.
2526  */
2527 
2528 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2529 {
2530 	struct packet_type *ptype, *pt_prev = NULL;
2531 	struct list_head *ptype_list;
2532 	struct sk_buff *skb2 = NULL;
2533 
2534 	rcu_read_lock();
2535 	ptype_list = &dev_net_rcu(dev)->ptype_all;
2536 again:
2537 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2538 		if (READ_ONCE(ptype->ignore_outgoing))
2539 			continue;
2540 
2541 		/* Never send packets back to the socket
2542 		 * they originated from - MvS (miquels@drinkel.ow.org)
2543 		 */
2544 		if (skb_loop_sk(ptype, skb))
2545 			continue;
2546 
2547 		if (pt_prev) {
2548 			deliver_skb(skb2, pt_prev, skb->dev);
2549 			pt_prev = ptype;
2550 			continue;
2551 		}
2552 
2553 		/* need to clone skb, done only once */
2554 		skb2 = skb_clone(skb, GFP_ATOMIC);
2555 		if (!skb2)
2556 			goto out_unlock;
2557 
2558 		net_timestamp_set(skb2);
2559 
2560 		/* skb->nh should be correctly
2561 		 * set by sender, so that the second statement is
2562 		 * just protection against buggy protocols.
2563 		 */
2564 		skb_reset_mac_header(skb2);
2565 
2566 		if (skb_network_header(skb2) < skb2->data ||
2567 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2568 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2569 					     ntohs(skb2->protocol),
2570 					     dev->name);
2571 			skb_reset_network_header(skb2);
2572 		}
2573 
2574 		skb2->transport_header = skb2->network_header;
2575 		skb2->pkt_type = PACKET_OUTGOING;
2576 		pt_prev = ptype;
2577 	}
2578 
2579 	if (ptype_list != &dev->ptype_all) {
2580 		ptype_list = &dev->ptype_all;
2581 		goto again;
2582 	}
2583 out_unlock:
2584 	if (pt_prev) {
2585 		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2586 			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2587 		else
2588 			kfree_skb(skb2);
2589 	}
2590 	rcu_read_unlock();
2591 }
2592 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2593 
2594 /**
2595  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2596  * @dev: Network device
2597  * @txq: number of queues available
2598  *
2599  * If real_num_tx_queues is changed the tc mappings may no longer be
2600  * valid. To resolve this verify the tc mapping remains valid and if
2601  * not NULL the mapping. With no priorities mapping to this
2602  * offset/count pair it will no longer be used. In the worst case TC0
2603  * is invalid nothing can be done so disable priority mappings. If is
2604  * expected that drivers will fix this mapping if they can before
2605  * calling netif_set_real_num_tx_queues.
2606  */
2607 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2608 {
2609 	int i;
2610 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2611 
2612 	/* If TC0 is invalidated disable TC mapping */
2613 	if (tc->offset + tc->count > txq) {
2614 		netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2615 		dev->num_tc = 0;
2616 		return;
2617 	}
2618 
2619 	/* Invalidated prio to tc mappings set to TC0 */
2620 	for (i = 1; i < TC_BITMASK + 1; i++) {
2621 		int q = netdev_get_prio_tc_map(dev, i);
2622 
2623 		tc = &dev->tc_to_txq[q];
2624 		if (tc->offset + tc->count > txq) {
2625 			netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2626 				    i, q);
2627 			netdev_set_prio_tc_map(dev, i, 0);
2628 		}
2629 	}
2630 }
2631 
2632 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2633 {
2634 	if (dev->num_tc) {
2635 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2636 		int i;
2637 
2638 		/* walk through the TCs and see if it falls into any of them */
2639 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2640 			if ((txq - tc->offset) < tc->count)
2641 				return i;
2642 		}
2643 
2644 		/* didn't find it, just return -1 to indicate no match */
2645 		return -1;
2646 	}
2647 
2648 	return 0;
2649 }
2650 EXPORT_SYMBOL(netdev_txq_to_tc);
2651 
2652 #ifdef CONFIG_XPS
2653 static struct static_key xps_needed __read_mostly;
2654 static struct static_key xps_rxqs_needed __read_mostly;
2655 static DEFINE_MUTEX(xps_map_mutex);
2656 #define xmap_dereference(P)		\
2657 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2658 
2659 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2660 			     struct xps_dev_maps *old_maps, int tci, u16 index)
2661 {
2662 	struct xps_map *map = NULL;
2663 	int pos;
2664 
2665 	map = xmap_dereference(dev_maps->attr_map[tci]);
2666 	if (!map)
2667 		return false;
2668 
2669 	for (pos = map->len; pos--;) {
2670 		if (map->queues[pos] != index)
2671 			continue;
2672 
2673 		if (map->len > 1) {
2674 			map->queues[pos] = map->queues[--map->len];
2675 			break;
2676 		}
2677 
2678 		if (old_maps)
2679 			RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2680 		RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2681 		kfree_rcu(map, rcu);
2682 		return false;
2683 	}
2684 
2685 	return true;
2686 }
2687 
2688 static bool remove_xps_queue_cpu(struct net_device *dev,
2689 				 struct xps_dev_maps *dev_maps,
2690 				 int cpu, u16 offset, u16 count)
2691 {
2692 	int num_tc = dev_maps->num_tc;
2693 	bool active = false;
2694 	int tci;
2695 
2696 	for (tci = cpu * num_tc; num_tc--; tci++) {
2697 		int i, j;
2698 
2699 		for (i = count, j = offset; i--; j++) {
2700 			if (!remove_xps_queue(dev_maps, NULL, tci, j))
2701 				break;
2702 		}
2703 
2704 		active |= i < 0;
2705 	}
2706 
2707 	return active;
2708 }
2709 
2710 static void reset_xps_maps(struct net_device *dev,
2711 			   struct xps_dev_maps *dev_maps,
2712 			   enum xps_map_type type)
2713 {
2714 	static_key_slow_dec_cpuslocked(&xps_needed);
2715 	if (type == XPS_RXQS)
2716 		static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2717 
2718 	RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2719 
2720 	kfree_rcu(dev_maps, rcu);
2721 }
2722 
2723 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2724 			   u16 offset, u16 count)
2725 {
2726 	struct xps_dev_maps *dev_maps;
2727 	bool active = false;
2728 	int i, j;
2729 
2730 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2731 	if (!dev_maps)
2732 		return;
2733 
2734 	for (j = 0; j < dev_maps->nr_ids; j++)
2735 		active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2736 	if (!active)
2737 		reset_xps_maps(dev, dev_maps, type);
2738 
2739 	if (type == XPS_CPUS) {
2740 		for (i = offset + (count - 1); count--; i--)
2741 			netdev_queue_numa_node_write(
2742 				netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2743 	}
2744 }
2745 
2746 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2747 				   u16 count)
2748 {
2749 	if (!static_key_false(&xps_needed))
2750 		return;
2751 
2752 	cpus_read_lock();
2753 	mutex_lock(&xps_map_mutex);
2754 
2755 	if (static_key_false(&xps_rxqs_needed))
2756 		clean_xps_maps(dev, XPS_RXQS, offset, count);
2757 
2758 	clean_xps_maps(dev, XPS_CPUS, offset, count);
2759 
2760 	mutex_unlock(&xps_map_mutex);
2761 	cpus_read_unlock();
2762 }
2763 
2764 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2765 {
2766 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2767 }
2768 
2769 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2770 				      u16 index, bool is_rxqs_map)
2771 {
2772 	struct xps_map *new_map;
2773 	int alloc_len = XPS_MIN_MAP_ALLOC;
2774 	int i, pos;
2775 
2776 	for (pos = 0; map && pos < map->len; pos++) {
2777 		if (map->queues[pos] != index)
2778 			continue;
2779 		return map;
2780 	}
2781 
2782 	/* Need to add tx-queue to this CPU's/rx-queue's existing map */
2783 	if (map) {
2784 		if (pos < map->alloc_len)
2785 			return map;
2786 
2787 		alloc_len = map->alloc_len * 2;
2788 	}
2789 
2790 	/* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2791 	 *  map
2792 	 */
2793 	if (is_rxqs_map)
2794 		new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2795 	else
2796 		new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2797 				       cpu_to_node(attr_index));
2798 	if (!new_map)
2799 		return NULL;
2800 
2801 	for (i = 0; i < pos; i++)
2802 		new_map->queues[i] = map->queues[i];
2803 	new_map->alloc_len = alloc_len;
2804 	new_map->len = pos;
2805 
2806 	return new_map;
2807 }
2808 
2809 /* Copy xps maps at a given index */
2810 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2811 			      struct xps_dev_maps *new_dev_maps, int index,
2812 			      int tc, bool skip_tc)
2813 {
2814 	int i, tci = index * dev_maps->num_tc;
2815 	struct xps_map *map;
2816 
2817 	/* copy maps belonging to foreign traffic classes */
2818 	for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2819 		if (i == tc && skip_tc)
2820 			continue;
2821 
2822 		/* fill in the new device map from the old device map */
2823 		map = xmap_dereference(dev_maps->attr_map[tci]);
2824 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2825 	}
2826 }
2827 
2828 /* Must be called under cpus_read_lock */
2829 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2830 			  u16 index, enum xps_map_type type)
2831 {
2832 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2833 	const unsigned long *online_mask = NULL;
2834 	bool active = false, copy = false;
2835 	int i, j, tci, numa_node_id = -2;
2836 	int maps_sz, num_tc = 1, tc = 0;
2837 	struct xps_map *map, *new_map;
2838 	unsigned int nr_ids;
2839 
2840 	WARN_ON_ONCE(index >= dev->num_tx_queues);
2841 
2842 	if (dev->num_tc) {
2843 		/* Do not allow XPS on subordinate device directly */
2844 		num_tc = dev->num_tc;
2845 		if (num_tc < 0)
2846 			return -EINVAL;
2847 
2848 		/* If queue belongs to subordinate dev use its map */
2849 		dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2850 
2851 		tc = netdev_txq_to_tc(dev, index);
2852 		if (tc < 0)
2853 			return -EINVAL;
2854 	}
2855 
2856 	mutex_lock(&xps_map_mutex);
2857 
2858 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2859 	if (type == XPS_RXQS) {
2860 		maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2861 		nr_ids = dev->num_rx_queues;
2862 	} else {
2863 		maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2864 		if (num_possible_cpus() > 1)
2865 			online_mask = cpumask_bits(cpu_online_mask);
2866 		nr_ids = nr_cpu_ids;
2867 	}
2868 
2869 	if (maps_sz < L1_CACHE_BYTES)
2870 		maps_sz = L1_CACHE_BYTES;
2871 
2872 	/* The old dev_maps could be larger or smaller than the one we're
2873 	 * setting up now, as dev->num_tc or nr_ids could have been updated in
2874 	 * between. We could try to be smart, but let's be safe instead and only
2875 	 * copy foreign traffic classes if the two map sizes match.
2876 	 */
2877 	if (dev_maps &&
2878 	    dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2879 		copy = true;
2880 
2881 	/* allocate memory for queue storage */
2882 	for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2883 	     j < nr_ids;) {
2884 		if (!new_dev_maps) {
2885 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2886 			if (!new_dev_maps) {
2887 				mutex_unlock(&xps_map_mutex);
2888 				return -ENOMEM;
2889 			}
2890 
2891 			new_dev_maps->nr_ids = nr_ids;
2892 			new_dev_maps->num_tc = num_tc;
2893 		}
2894 
2895 		tci = j * num_tc + tc;
2896 		map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2897 
2898 		map = expand_xps_map(map, j, index, type == XPS_RXQS);
2899 		if (!map)
2900 			goto error;
2901 
2902 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2903 	}
2904 
2905 	if (!new_dev_maps)
2906 		goto out_no_new_maps;
2907 
2908 	if (!dev_maps) {
2909 		/* Increment static keys at most once per type */
2910 		static_key_slow_inc_cpuslocked(&xps_needed);
2911 		if (type == XPS_RXQS)
2912 			static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2913 	}
2914 
2915 	for (j = 0; j < nr_ids; j++) {
2916 		bool skip_tc = false;
2917 
2918 		tci = j * num_tc + tc;
2919 		if (netif_attr_test_mask(j, mask, nr_ids) &&
2920 		    netif_attr_test_online(j, online_mask, nr_ids)) {
2921 			/* add tx-queue to CPU/rx-queue maps */
2922 			int pos = 0;
2923 
2924 			skip_tc = true;
2925 
2926 			map = xmap_dereference(new_dev_maps->attr_map[tci]);
2927 			while ((pos < map->len) && (map->queues[pos] != index))
2928 				pos++;
2929 
2930 			if (pos == map->len)
2931 				map->queues[map->len++] = index;
2932 #ifdef CONFIG_NUMA
2933 			if (type == XPS_CPUS) {
2934 				if (numa_node_id == -2)
2935 					numa_node_id = cpu_to_node(j);
2936 				else if (numa_node_id != cpu_to_node(j))
2937 					numa_node_id = -1;
2938 			}
2939 #endif
2940 		}
2941 
2942 		if (copy)
2943 			xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2944 					  skip_tc);
2945 	}
2946 
2947 	rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2948 
2949 	/* Cleanup old maps */
2950 	if (!dev_maps)
2951 		goto out_no_old_maps;
2952 
2953 	for (j = 0; j < dev_maps->nr_ids; j++) {
2954 		for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2955 			map = xmap_dereference(dev_maps->attr_map[tci]);
2956 			if (!map)
2957 				continue;
2958 
2959 			if (copy) {
2960 				new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2961 				if (map == new_map)
2962 					continue;
2963 			}
2964 
2965 			RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2966 			kfree_rcu(map, rcu);
2967 		}
2968 	}
2969 
2970 	old_dev_maps = dev_maps;
2971 
2972 out_no_old_maps:
2973 	dev_maps = new_dev_maps;
2974 	active = true;
2975 
2976 out_no_new_maps:
2977 	if (type == XPS_CPUS)
2978 		/* update Tx queue numa node */
2979 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2980 					     (numa_node_id >= 0) ?
2981 					     numa_node_id : NUMA_NO_NODE);
2982 
2983 	if (!dev_maps)
2984 		goto out_no_maps;
2985 
2986 	/* removes tx-queue from unused CPUs/rx-queues */
2987 	for (j = 0; j < dev_maps->nr_ids; j++) {
2988 		tci = j * dev_maps->num_tc;
2989 
2990 		for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2991 			if (i == tc &&
2992 			    netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2993 			    netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2994 				continue;
2995 
2996 			active |= remove_xps_queue(dev_maps,
2997 						   copy ? old_dev_maps : NULL,
2998 						   tci, index);
2999 		}
3000 	}
3001 
3002 	if (old_dev_maps)
3003 		kfree_rcu(old_dev_maps, rcu);
3004 
3005 	/* free map if not active */
3006 	if (!active)
3007 		reset_xps_maps(dev, dev_maps, type);
3008 
3009 out_no_maps:
3010 	mutex_unlock(&xps_map_mutex);
3011 
3012 	return 0;
3013 error:
3014 	/* remove any maps that we added */
3015 	for (j = 0; j < nr_ids; j++) {
3016 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
3017 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
3018 			map = copy ?
3019 			      xmap_dereference(dev_maps->attr_map[tci]) :
3020 			      NULL;
3021 			if (new_map && new_map != map)
3022 				kfree(new_map);
3023 		}
3024 	}
3025 
3026 	mutex_unlock(&xps_map_mutex);
3027 
3028 	kfree(new_dev_maps);
3029 	return -ENOMEM;
3030 }
3031 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
3032 
3033 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3034 			u16 index)
3035 {
3036 	int ret;
3037 
3038 	cpus_read_lock();
3039 	ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
3040 	cpus_read_unlock();
3041 
3042 	return ret;
3043 }
3044 EXPORT_SYMBOL(netif_set_xps_queue);
3045 
3046 #endif
3047 static void netdev_unbind_all_sb_channels(struct net_device *dev)
3048 {
3049 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
3050 
3051 	/* Unbind any subordinate channels */
3052 	while (txq-- != &dev->_tx[0]) {
3053 		if (txq->sb_dev)
3054 			netdev_unbind_sb_channel(dev, txq->sb_dev);
3055 	}
3056 }
3057 
3058 void netdev_reset_tc(struct net_device *dev)
3059 {
3060 #ifdef CONFIG_XPS
3061 	netif_reset_xps_queues_gt(dev, 0);
3062 #endif
3063 	netdev_unbind_all_sb_channels(dev);
3064 
3065 	/* Reset TC configuration of device */
3066 	dev->num_tc = 0;
3067 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
3068 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
3069 }
3070 EXPORT_SYMBOL(netdev_reset_tc);
3071 
3072 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
3073 {
3074 	if (tc >= dev->num_tc)
3075 		return -EINVAL;
3076 
3077 #ifdef CONFIG_XPS
3078 	netif_reset_xps_queues(dev, offset, count);
3079 #endif
3080 	dev->tc_to_txq[tc].count = count;
3081 	dev->tc_to_txq[tc].offset = offset;
3082 	return 0;
3083 }
3084 EXPORT_SYMBOL(netdev_set_tc_queue);
3085 
3086 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
3087 {
3088 	if (num_tc > TC_MAX_QUEUE)
3089 		return -EINVAL;
3090 
3091 #ifdef CONFIG_XPS
3092 	netif_reset_xps_queues_gt(dev, 0);
3093 #endif
3094 	netdev_unbind_all_sb_channels(dev);
3095 
3096 	dev->num_tc = num_tc;
3097 	return 0;
3098 }
3099 EXPORT_SYMBOL(netdev_set_num_tc);
3100 
3101 void netdev_unbind_sb_channel(struct net_device *dev,
3102 			      struct net_device *sb_dev)
3103 {
3104 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
3105 
3106 #ifdef CONFIG_XPS
3107 	netif_reset_xps_queues_gt(sb_dev, 0);
3108 #endif
3109 	memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
3110 	memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
3111 
3112 	while (txq-- != &dev->_tx[0]) {
3113 		if (txq->sb_dev == sb_dev)
3114 			txq->sb_dev = NULL;
3115 	}
3116 }
3117 EXPORT_SYMBOL(netdev_unbind_sb_channel);
3118 
3119 int netdev_bind_sb_channel_queue(struct net_device *dev,
3120 				 struct net_device *sb_dev,
3121 				 u8 tc, u16 count, u16 offset)
3122 {
3123 	/* Make certain the sb_dev and dev are already configured */
3124 	if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
3125 		return -EINVAL;
3126 
3127 	/* We cannot hand out queues we don't have */
3128 	if ((offset + count) > dev->real_num_tx_queues)
3129 		return -EINVAL;
3130 
3131 	/* Record the mapping */
3132 	sb_dev->tc_to_txq[tc].count = count;
3133 	sb_dev->tc_to_txq[tc].offset = offset;
3134 
3135 	/* Provide a way for Tx queue to find the tc_to_txq map or
3136 	 * XPS map for itself.
3137 	 */
3138 	while (count--)
3139 		netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
3140 
3141 	return 0;
3142 }
3143 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
3144 
3145 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
3146 {
3147 	/* Do not use a multiqueue device to represent a subordinate channel */
3148 	if (netif_is_multiqueue(dev))
3149 		return -ENODEV;
3150 
3151 	/* We allow channels 1 - 32767 to be used for subordinate channels.
3152 	 * Channel 0 is meant to be "native" mode and used only to represent
3153 	 * the main root device. We allow writing 0 to reset the device back
3154 	 * to normal mode after being used as a subordinate channel.
3155 	 */
3156 	if (channel > S16_MAX)
3157 		return -EINVAL;
3158 
3159 	dev->num_tc = -channel;
3160 
3161 	return 0;
3162 }
3163 EXPORT_SYMBOL(netdev_set_sb_channel);
3164 
3165 /*
3166  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
3167  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
3168  */
3169 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
3170 {
3171 	bool disabling;
3172 	int rc;
3173 
3174 	disabling = txq < dev->real_num_tx_queues;
3175 
3176 	if (txq < 1 || txq > dev->num_tx_queues)
3177 		return -EINVAL;
3178 
3179 	if (dev->reg_state == NETREG_REGISTERED ||
3180 	    dev->reg_state == NETREG_UNREGISTERING) {
3181 		netdev_ops_assert_locked(dev);
3182 
3183 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
3184 						  txq);
3185 		if (rc)
3186 			return rc;
3187 
3188 		if (dev->num_tc)
3189 			netif_setup_tc(dev, txq);
3190 
3191 		net_shaper_set_real_num_tx_queues(dev, txq);
3192 
3193 		dev_qdisc_change_real_num_tx(dev, txq);
3194 
3195 		dev->real_num_tx_queues = txq;
3196 
3197 		if (disabling) {
3198 			synchronize_net();
3199 			qdisc_reset_all_tx_gt(dev, txq);
3200 #ifdef CONFIG_XPS
3201 			netif_reset_xps_queues_gt(dev, txq);
3202 #endif
3203 		}
3204 	} else {
3205 		dev->real_num_tx_queues = txq;
3206 	}
3207 
3208 	return 0;
3209 }
3210 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
3211 
3212 /**
3213  *	netif_set_real_num_rx_queues - set actual number of RX queues used
3214  *	@dev: Network device
3215  *	@rxq: Actual number of RX queues
3216  *
3217  *	This must be called either with the rtnl_lock held or before
3218  *	registration of the net device.  Returns 0 on success, or a
3219  *	negative error code.  If called before registration, it always
3220  *	succeeds.
3221  */
3222 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
3223 {
3224 	int rc;
3225 
3226 	if (rxq < 1 || rxq > dev->num_rx_queues)
3227 		return -EINVAL;
3228 
3229 	if (dev->reg_state == NETREG_REGISTERED) {
3230 		netdev_ops_assert_locked(dev);
3231 
3232 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
3233 						  rxq);
3234 		if (rc)
3235 			return rc;
3236 	}
3237 
3238 	dev->real_num_rx_queues = rxq;
3239 	return 0;
3240 }
3241 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
3242 
3243 /**
3244  *	netif_set_real_num_queues - set actual number of RX and TX queues used
3245  *	@dev: Network device
3246  *	@txq: Actual number of TX queues
3247  *	@rxq: Actual number of RX queues
3248  *
3249  *	Set the real number of both TX and RX queues.
3250  *	Does nothing if the number of queues is already correct.
3251  */
3252 int netif_set_real_num_queues(struct net_device *dev,
3253 			      unsigned int txq, unsigned int rxq)
3254 {
3255 	unsigned int old_rxq = dev->real_num_rx_queues;
3256 	int err;
3257 
3258 	if (txq < 1 || txq > dev->num_tx_queues ||
3259 	    rxq < 1 || rxq > dev->num_rx_queues)
3260 		return -EINVAL;
3261 
3262 	/* Start from increases, so the error path only does decreases -
3263 	 * decreases can't fail.
3264 	 */
3265 	if (rxq > dev->real_num_rx_queues) {
3266 		err = netif_set_real_num_rx_queues(dev, rxq);
3267 		if (err)
3268 			return err;
3269 	}
3270 	if (txq > dev->real_num_tx_queues) {
3271 		err = netif_set_real_num_tx_queues(dev, txq);
3272 		if (err)
3273 			goto undo_rx;
3274 	}
3275 	if (rxq < dev->real_num_rx_queues)
3276 		WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
3277 	if (txq < dev->real_num_tx_queues)
3278 		WARN_ON(netif_set_real_num_tx_queues(dev, txq));
3279 
3280 	return 0;
3281 undo_rx:
3282 	WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
3283 	return err;
3284 }
3285 EXPORT_SYMBOL(netif_set_real_num_queues);
3286 
3287 /**
3288  * netif_set_tso_max_size() - set the max size of TSO frames supported
3289  * @dev:	netdev to update
3290  * @size:	max skb->len of a TSO frame
3291  *
3292  * Set the limit on the size of TSO super-frames the device can handle.
3293  * Unless explicitly set the stack will assume the value of
3294  * %GSO_LEGACY_MAX_SIZE.
3295  */
3296 void netif_set_tso_max_size(struct net_device *dev, unsigned int size)
3297 {
3298 	dev->tso_max_size = min(GSO_MAX_SIZE, size);
3299 	if (size < READ_ONCE(dev->gso_max_size))
3300 		netif_set_gso_max_size(dev, size);
3301 	if (size < READ_ONCE(dev->gso_ipv4_max_size))
3302 		netif_set_gso_ipv4_max_size(dev, size);
3303 }
3304 EXPORT_SYMBOL(netif_set_tso_max_size);
3305 
3306 /**
3307  * netif_set_tso_max_segs() - set the max number of segs supported for TSO
3308  * @dev:	netdev to update
3309  * @segs:	max number of TCP segments
3310  *
3311  * Set the limit on the number of TCP segments the device can generate from
3312  * a single TSO super-frame.
3313  * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS.
3314  */
3315 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs)
3316 {
3317 	dev->tso_max_segs = segs;
3318 	if (segs < READ_ONCE(dev->gso_max_segs))
3319 		netif_set_gso_max_segs(dev, segs);
3320 }
3321 EXPORT_SYMBOL(netif_set_tso_max_segs);
3322 
3323 /**
3324  * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper
3325  * @to:		netdev to update
3326  * @from:	netdev from which to copy the limits
3327  */
3328 void netif_inherit_tso_max(struct net_device *to, const struct net_device *from)
3329 {
3330 	netif_set_tso_max_size(to, from->tso_max_size);
3331 	netif_set_tso_max_segs(to, from->tso_max_segs);
3332 }
3333 EXPORT_SYMBOL(netif_inherit_tso_max);
3334 
3335 /**
3336  * netif_get_num_default_rss_queues - default number of RSS queues
3337  *
3338  * Default value is the number of physical cores if there are only 1 or 2, or
3339  * divided by 2 if there are more.
3340  */
3341 int netif_get_num_default_rss_queues(void)
3342 {
3343 	cpumask_var_t cpus;
3344 	int cpu, count = 0;
3345 
3346 	if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL)))
3347 		return 1;
3348 
3349 	cpumask_copy(cpus, cpu_online_mask);
3350 	for_each_cpu(cpu, cpus) {
3351 		++count;
3352 		cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu));
3353 	}
3354 	free_cpumask_var(cpus);
3355 
3356 	return count > 2 ? DIV_ROUND_UP(count, 2) : count;
3357 }
3358 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3359 
3360 static void __netif_reschedule(struct Qdisc *q)
3361 {
3362 	struct softnet_data *sd;
3363 	unsigned long flags;
3364 
3365 	local_irq_save(flags);
3366 	sd = this_cpu_ptr(&softnet_data);
3367 	q->next_sched = NULL;
3368 	*sd->output_queue_tailp = q;
3369 	sd->output_queue_tailp = &q->next_sched;
3370 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3371 	local_irq_restore(flags);
3372 }
3373 
3374 void __netif_schedule(struct Qdisc *q)
3375 {
3376 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3377 		__netif_reschedule(q);
3378 }
3379 EXPORT_SYMBOL(__netif_schedule);
3380 
3381 struct dev_kfree_skb_cb {
3382 	enum skb_drop_reason reason;
3383 };
3384 
3385 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3386 {
3387 	return (struct dev_kfree_skb_cb *)skb->cb;
3388 }
3389 
3390 void netif_schedule_queue(struct netdev_queue *txq)
3391 {
3392 	rcu_read_lock();
3393 	if (!netif_xmit_stopped(txq)) {
3394 		struct Qdisc *q = rcu_dereference(txq->qdisc);
3395 
3396 		__netif_schedule(q);
3397 	}
3398 	rcu_read_unlock();
3399 }
3400 EXPORT_SYMBOL(netif_schedule_queue);
3401 
3402 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3403 {
3404 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3405 		struct Qdisc *q;
3406 
3407 		rcu_read_lock();
3408 		q = rcu_dereference(dev_queue->qdisc);
3409 		__netif_schedule(q);
3410 		rcu_read_unlock();
3411 	}
3412 }
3413 EXPORT_SYMBOL(netif_tx_wake_queue);
3414 
3415 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3416 {
3417 	unsigned long flags;
3418 
3419 	if (unlikely(!skb))
3420 		return;
3421 
3422 	if (likely(refcount_read(&skb->users) == 1)) {
3423 		smp_rmb();
3424 		refcount_set(&skb->users, 0);
3425 	} else if (likely(!refcount_dec_and_test(&skb->users))) {
3426 		return;
3427 	}
3428 	get_kfree_skb_cb(skb)->reason = reason;
3429 	local_irq_save(flags);
3430 	skb->next = __this_cpu_read(softnet_data.completion_queue);
3431 	__this_cpu_write(softnet_data.completion_queue, skb);
3432 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3433 	local_irq_restore(flags);
3434 }
3435 EXPORT_SYMBOL(dev_kfree_skb_irq_reason);
3436 
3437 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3438 {
3439 	if (in_hardirq() || irqs_disabled())
3440 		dev_kfree_skb_irq_reason(skb, reason);
3441 	else
3442 		kfree_skb_reason(skb, reason);
3443 }
3444 EXPORT_SYMBOL(dev_kfree_skb_any_reason);
3445 
3446 
3447 /**
3448  * netif_device_detach - mark device as removed
3449  * @dev: network device
3450  *
3451  * Mark device as removed from system and therefore no longer available.
3452  */
3453 void netif_device_detach(struct net_device *dev)
3454 {
3455 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3456 	    netif_running(dev)) {
3457 		netif_tx_stop_all_queues(dev);
3458 	}
3459 }
3460 EXPORT_SYMBOL(netif_device_detach);
3461 
3462 /**
3463  * netif_device_attach - mark device as attached
3464  * @dev: network device
3465  *
3466  * Mark device as attached from system and restart if needed.
3467  */
3468 void netif_device_attach(struct net_device *dev)
3469 {
3470 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3471 	    netif_running(dev)) {
3472 		netif_tx_wake_all_queues(dev);
3473 		netdev_watchdog_up(dev);
3474 	}
3475 }
3476 EXPORT_SYMBOL(netif_device_attach);
3477 
3478 /*
3479  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3480  * to be used as a distribution range.
3481  */
3482 static u16 skb_tx_hash(const struct net_device *dev,
3483 		       const struct net_device *sb_dev,
3484 		       struct sk_buff *skb)
3485 {
3486 	u32 hash;
3487 	u16 qoffset = 0;
3488 	u16 qcount = dev->real_num_tx_queues;
3489 
3490 	if (dev->num_tc) {
3491 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3492 
3493 		qoffset = sb_dev->tc_to_txq[tc].offset;
3494 		qcount = sb_dev->tc_to_txq[tc].count;
3495 		if (unlikely(!qcount)) {
3496 			net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3497 					     sb_dev->name, qoffset, tc);
3498 			qoffset = 0;
3499 			qcount = dev->real_num_tx_queues;
3500 		}
3501 	}
3502 
3503 	if (skb_rx_queue_recorded(skb)) {
3504 		DEBUG_NET_WARN_ON_ONCE(qcount == 0);
3505 		hash = skb_get_rx_queue(skb);
3506 		if (hash >= qoffset)
3507 			hash -= qoffset;
3508 		while (unlikely(hash >= qcount))
3509 			hash -= qcount;
3510 		return hash + qoffset;
3511 	}
3512 
3513 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3514 }
3515 
3516 void skb_warn_bad_offload(const struct sk_buff *skb)
3517 {
3518 	static const netdev_features_t null_features;
3519 	struct net_device *dev = skb->dev;
3520 	const char *name = "";
3521 
3522 	if (!net_ratelimit())
3523 		return;
3524 
3525 	if (dev) {
3526 		if (dev->dev.parent)
3527 			name = dev_driver_string(dev->dev.parent);
3528 		else
3529 			name = netdev_name(dev);
3530 	}
3531 	skb_dump(KERN_WARNING, skb, false);
3532 	WARN(1, "%s: caps=(%pNF, %pNF)\n",
3533 	     name, dev ? &dev->features : &null_features,
3534 	     skb->sk ? &skb->sk->sk_route_caps : &null_features);
3535 }
3536 
3537 /*
3538  * Invalidate hardware checksum when packet is to be mangled, and
3539  * complete checksum manually on outgoing path.
3540  */
3541 int skb_checksum_help(struct sk_buff *skb)
3542 {
3543 	__wsum csum;
3544 	int ret = 0, offset;
3545 
3546 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3547 		goto out_set_summed;
3548 
3549 	if (unlikely(skb_is_gso(skb))) {
3550 		skb_warn_bad_offload(skb);
3551 		return -EINVAL;
3552 	}
3553 
3554 	if (!skb_frags_readable(skb)) {
3555 		return -EFAULT;
3556 	}
3557 
3558 	/* Before computing a checksum, we should make sure no frag could
3559 	 * be modified by an external entity : checksum could be wrong.
3560 	 */
3561 	if (skb_has_shared_frag(skb)) {
3562 		ret = __skb_linearize(skb);
3563 		if (ret)
3564 			goto out;
3565 	}
3566 
3567 	offset = skb_checksum_start_offset(skb);
3568 	ret = -EINVAL;
3569 	if (unlikely(offset >= skb_headlen(skb))) {
3570 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3571 		WARN_ONCE(true, "offset (%d) >= skb_headlen() (%u)\n",
3572 			  offset, skb_headlen(skb));
3573 		goto out;
3574 	}
3575 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
3576 
3577 	offset += skb->csum_offset;
3578 	if (unlikely(offset + sizeof(__sum16) > skb_headlen(skb))) {
3579 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3580 		WARN_ONCE(true, "offset+2 (%zu) > skb_headlen() (%u)\n",
3581 			  offset + sizeof(__sum16), skb_headlen(skb));
3582 		goto out;
3583 	}
3584 	ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3585 	if (ret)
3586 		goto out;
3587 
3588 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3589 out_set_summed:
3590 	skb->ip_summed = CHECKSUM_NONE;
3591 out:
3592 	return ret;
3593 }
3594 EXPORT_SYMBOL(skb_checksum_help);
3595 
3596 #ifdef CONFIG_NET_CRC32C
3597 int skb_crc32c_csum_help(struct sk_buff *skb)
3598 {
3599 	u32 crc;
3600 	int ret = 0, offset, start;
3601 
3602 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3603 		goto out;
3604 
3605 	if (unlikely(skb_is_gso(skb)))
3606 		goto out;
3607 
3608 	/* Before computing a checksum, we should make sure no frag could
3609 	 * be modified by an external entity : checksum could be wrong.
3610 	 */
3611 	if (unlikely(skb_has_shared_frag(skb))) {
3612 		ret = __skb_linearize(skb);
3613 		if (ret)
3614 			goto out;
3615 	}
3616 	start = skb_checksum_start_offset(skb);
3617 	offset = start + offsetof(struct sctphdr, checksum);
3618 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3619 		ret = -EINVAL;
3620 		goto out;
3621 	}
3622 
3623 	ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3624 	if (ret)
3625 		goto out;
3626 
3627 	crc = ~skb_crc32c(skb, start, skb->len - start, ~0);
3628 	*(__le32 *)(skb->data + offset) = cpu_to_le32(crc);
3629 	skb_reset_csum_not_inet(skb);
3630 out:
3631 	return ret;
3632 }
3633 EXPORT_SYMBOL(skb_crc32c_csum_help);
3634 #endif /* CONFIG_NET_CRC32C */
3635 
3636 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3637 {
3638 	__be16 type = skb->protocol;
3639 
3640 	/* Tunnel gso handlers can set protocol to ethernet. */
3641 	if (type == htons(ETH_P_TEB)) {
3642 		struct ethhdr *eth;
3643 
3644 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3645 			return 0;
3646 
3647 		eth = (struct ethhdr *)skb->data;
3648 		type = eth->h_proto;
3649 	}
3650 
3651 	return vlan_get_protocol_and_depth(skb, type, depth);
3652 }
3653 
3654 
3655 /* Take action when hardware reception checksum errors are detected. */
3656 #ifdef CONFIG_BUG
3657 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3658 {
3659 	netdev_err(dev, "hw csum failure\n");
3660 	skb_dump(KERN_ERR, skb, true);
3661 	dump_stack();
3662 }
3663 
3664 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3665 {
3666 	DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3667 }
3668 EXPORT_SYMBOL(netdev_rx_csum_fault);
3669 #endif
3670 
3671 /* XXX: check that highmem exists at all on the given machine. */
3672 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3673 {
3674 #ifdef CONFIG_HIGHMEM
3675 	int i;
3676 
3677 	if (!(dev->features & NETIF_F_HIGHDMA)) {
3678 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3679 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3680 			struct page *page = skb_frag_page(frag);
3681 
3682 			if (page && PageHighMem(page))
3683 				return 1;
3684 		}
3685 	}
3686 #endif
3687 	return 0;
3688 }
3689 
3690 /* If MPLS offload request, verify we are testing hardware MPLS features
3691  * instead of standard features for the netdev.
3692  */
3693 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3694 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3695 					   netdev_features_t features,
3696 					   __be16 type)
3697 {
3698 	if (eth_p_mpls(type))
3699 		features &= skb->dev->mpls_features;
3700 
3701 	return features;
3702 }
3703 #else
3704 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3705 					   netdev_features_t features,
3706 					   __be16 type)
3707 {
3708 	return features;
3709 }
3710 #endif
3711 
3712 static netdev_features_t harmonize_features(struct sk_buff *skb,
3713 	netdev_features_t features)
3714 {
3715 	__be16 type;
3716 
3717 	type = skb_network_protocol(skb, NULL);
3718 	features = net_mpls_features(skb, features, type);
3719 
3720 	if (skb->ip_summed != CHECKSUM_NONE &&
3721 	    !can_checksum_protocol(features, type)) {
3722 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3723 	}
3724 	if (illegal_highdma(skb->dev, skb))
3725 		features &= ~NETIF_F_SG;
3726 
3727 	return features;
3728 }
3729 
3730 netdev_features_t passthru_features_check(struct sk_buff *skb,
3731 					  struct net_device *dev,
3732 					  netdev_features_t features)
3733 {
3734 	return features;
3735 }
3736 EXPORT_SYMBOL(passthru_features_check);
3737 
3738 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3739 					     struct net_device *dev,
3740 					     netdev_features_t features)
3741 {
3742 	return vlan_features_check(skb, features);
3743 }
3744 
3745 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3746 					    struct net_device *dev,
3747 					    netdev_features_t features)
3748 {
3749 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
3750 
3751 	if (gso_segs > READ_ONCE(dev->gso_max_segs))
3752 		return features & ~NETIF_F_GSO_MASK;
3753 
3754 	if (unlikely(skb->len >= netif_get_gso_max_size(dev, skb)))
3755 		return features & ~NETIF_F_GSO_MASK;
3756 
3757 	if (!skb_shinfo(skb)->gso_type) {
3758 		skb_warn_bad_offload(skb);
3759 		return features & ~NETIF_F_GSO_MASK;
3760 	}
3761 
3762 	/* Support for GSO partial features requires software
3763 	 * intervention before we can actually process the packets
3764 	 * so we need to strip support for any partial features now
3765 	 * and we can pull them back in after we have partially
3766 	 * segmented the frame.
3767 	 */
3768 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3769 		features &= ~dev->gso_partial_features;
3770 
3771 	/* Make sure to clear the IPv4 ID mangling feature if the
3772 	 * IPv4 header has the potential to be fragmented.
3773 	 */
3774 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3775 		struct iphdr *iph = skb->encapsulation ?
3776 				    inner_ip_hdr(skb) : ip_hdr(skb);
3777 
3778 		if (!(iph->frag_off & htons(IP_DF)))
3779 			features &= ~NETIF_F_TSO_MANGLEID;
3780 	}
3781 
3782 	/* NETIF_F_IPV6_CSUM does not support IPv6 extension headers,
3783 	 * so neither does TSO that depends on it.
3784 	 */
3785 	if (features & NETIF_F_IPV6_CSUM &&
3786 	    (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6 ||
3787 	     (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4 &&
3788 	      vlan_get_protocol(skb) == htons(ETH_P_IPV6))) &&
3789 	    skb_transport_header_was_set(skb) &&
3790 	    skb_network_header_len(skb) != sizeof(struct ipv6hdr) &&
3791 	    !ipv6_has_hopopt_jumbo(skb))
3792 		features &= ~(NETIF_F_IPV6_CSUM | NETIF_F_TSO6 | NETIF_F_GSO_UDP_L4);
3793 
3794 	return features;
3795 }
3796 
3797 netdev_features_t netif_skb_features(struct sk_buff *skb)
3798 {
3799 	struct net_device *dev = skb->dev;
3800 	netdev_features_t features = dev->features;
3801 
3802 	if (skb_is_gso(skb))
3803 		features = gso_features_check(skb, dev, features);
3804 
3805 	/* If encapsulation offload request, verify we are testing
3806 	 * hardware encapsulation features instead of standard
3807 	 * features for the netdev
3808 	 */
3809 	if (skb->encapsulation)
3810 		features &= dev->hw_enc_features;
3811 
3812 	if (skb_vlan_tagged(skb))
3813 		features = netdev_intersect_features(features,
3814 						     dev->vlan_features |
3815 						     NETIF_F_HW_VLAN_CTAG_TX |
3816 						     NETIF_F_HW_VLAN_STAG_TX);
3817 
3818 	if (dev->netdev_ops->ndo_features_check)
3819 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
3820 								features);
3821 	else
3822 		features &= dflt_features_check(skb, dev, features);
3823 
3824 	return harmonize_features(skb, features);
3825 }
3826 EXPORT_SYMBOL(netif_skb_features);
3827 
3828 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3829 		    struct netdev_queue *txq, bool more)
3830 {
3831 	unsigned int len;
3832 	int rc;
3833 
3834 	if (dev_nit_active_rcu(dev))
3835 		dev_queue_xmit_nit(skb, dev);
3836 
3837 	len = skb->len;
3838 	trace_net_dev_start_xmit(skb, dev);
3839 	rc = netdev_start_xmit(skb, dev, txq, more);
3840 	trace_net_dev_xmit(skb, rc, dev, len);
3841 
3842 	return rc;
3843 }
3844 
3845 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3846 				    struct netdev_queue *txq, int *ret)
3847 {
3848 	struct sk_buff *skb = first;
3849 	int rc = NETDEV_TX_OK;
3850 
3851 	while (skb) {
3852 		struct sk_buff *next = skb->next;
3853 
3854 		skb_mark_not_on_list(skb);
3855 		rc = xmit_one(skb, dev, txq, next != NULL);
3856 		if (unlikely(!dev_xmit_complete(rc))) {
3857 			skb->next = next;
3858 			goto out;
3859 		}
3860 
3861 		skb = next;
3862 		if (netif_tx_queue_stopped(txq) && skb) {
3863 			rc = NETDEV_TX_BUSY;
3864 			break;
3865 		}
3866 	}
3867 
3868 out:
3869 	*ret = rc;
3870 	return skb;
3871 }
3872 
3873 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3874 					  netdev_features_t features)
3875 {
3876 	if (skb_vlan_tag_present(skb) &&
3877 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3878 		skb = __vlan_hwaccel_push_inside(skb);
3879 	return skb;
3880 }
3881 
3882 int skb_csum_hwoffload_help(struct sk_buff *skb,
3883 			    const netdev_features_t features)
3884 {
3885 	if (unlikely(skb_csum_is_sctp(skb)))
3886 		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3887 			skb_crc32c_csum_help(skb);
3888 
3889 	if (features & NETIF_F_HW_CSUM)
3890 		return 0;
3891 
3892 	if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3893 		if (vlan_get_protocol(skb) == htons(ETH_P_IPV6) &&
3894 		    skb_network_header_len(skb) != sizeof(struct ipv6hdr) &&
3895 		    !ipv6_has_hopopt_jumbo(skb))
3896 			goto sw_checksum;
3897 
3898 		switch (skb->csum_offset) {
3899 		case offsetof(struct tcphdr, check):
3900 		case offsetof(struct udphdr, check):
3901 			return 0;
3902 		}
3903 	}
3904 
3905 sw_checksum:
3906 	return skb_checksum_help(skb);
3907 }
3908 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3909 
3910 /* Checks if this SKB belongs to an HW offloaded socket
3911  * and whether any SW fallbacks are required based on dev.
3912  * Check decrypted mark in case skb_orphan() cleared socket.
3913  */
3914 static struct sk_buff *sk_validate_xmit_skb(struct sk_buff *skb,
3915 					    struct net_device *dev)
3916 {
3917 #ifdef CONFIG_SOCK_VALIDATE_XMIT
3918 	struct sk_buff *(*sk_validate)(struct sock *sk, struct net_device *dev,
3919 				       struct sk_buff *skb);
3920 	struct sock *sk = skb->sk;
3921 
3922 	sk_validate = NULL;
3923 	if (sk) {
3924 		if (sk_fullsock(sk))
3925 			sk_validate = sk->sk_validate_xmit_skb;
3926 		else if (sk_is_inet(sk) && sk->sk_state == TCP_TIME_WAIT)
3927 			sk_validate = inet_twsk(sk)->tw_validate_xmit_skb;
3928 	}
3929 
3930 	if (sk_validate) {
3931 		skb = sk_validate(sk, dev, skb);
3932 	} else if (unlikely(skb_is_decrypted(skb))) {
3933 		pr_warn_ratelimited("unencrypted skb with no associated socket - dropping\n");
3934 		kfree_skb(skb);
3935 		skb = NULL;
3936 	}
3937 #endif
3938 
3939 	return skb;
3940 }
3941 
3942 static struct sk_buff *validate_xmit_unreadable_skb(struct sk_buff *skb,
3943 						    struct net_device *dev)
3944 {
3945 	struct skb_shared_info *shinfo;
3946 	struct net_iov *niov;
3947 
3948 	if (likely(skb_frags_readable(skb)))
3949 		goto out;
3950 
3951 	if (!dev->netmem_tx)
3952 		goto out_free;
3953 
3954 	shinfo = skb_shinfo(skb);
3955 
3956 	if (shinfo->nr_frags > 0) {
3957 		niov = netmem_to_net_iov(skb_frag_netmem(&shinfo->frags[0]));
3958 		if (net_is_devmem_iov(niov) &&
3959 		    net_devmem_iov_binding(niov)->dev != dev)
3960 			goto out_free;
3961 	}
3962 
3963 out:
3964 	return skb;
3965 
3966 out_free:
3967 	kfree_skb(skb);
3968 	return NULL;
3969 }
3970 
3971 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3972 {
3973 	netdev_features_t features;
3974 
3975 	skb = validate_xmit_unreadable_skb(skb, dev);
3976 	if (unlikely(!skb))
3977 		goto out_null;
3978 
3979 	features = netif_skb_features(skb);
3980 	skb = validate_xmit_vlan(skb, features);
3981 	if (unlikely(!skb))
3982 		goto out_null;
3983 
3984 	skb = sk_validate_xmit_skb(skb, dev);
3985 	if (unlikely(!skb))
3986 		goto out_null;
3987 
3988 	if (netif_needs_gso(skb, features)) {
3989 		struct sk_buff *segs;
3990 
3991 		segs = skb_gso_segment(skb, features);
3992 		if (IS_ERR(segs)) {
3993 			goto out_kfree_skb;
3994 		} else if (segs) {
3995 			consume_skb(skb);
3996 			skb = segs;
3997 		}
3998 	} else {
3999 		if (skb_needs_linearize(skb, features) &&
4000 		    __skb_linearize(skb))
4001 			goto out_kfree_skb;
4002 
4003 		/* If packet is not checksummed and device does not
4004 		 * support checksumming for this protocol, complete
4005 		 * checksumming here.
4006 		 */
4007 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
4008 			if (skb->encapsulation)
4009 				skb_set_inner_transport_header(skb,
4010 							       skb_checksum_start_offset(skb));
4011 			else
4012 				skb_set_transport_header(skb,
4013 							 skb_checksum_start_offset(skb));
4014 			if (skb_csum_hwoffload_help(skb, features))
4015 				goto out_kfree_skb;
4016 		}
4017 	}
4018 
4019 	skb = validate_xmit_xfrm(skb, features, again);
4020 
4021 	return skb;
4022 
4023 out_kfree_skb:
4024 	kfree_skb(skb);
4025 out_null:
4026 	dev_core_stats_tx_dropped_inc(dev);
4027 	return NULL;
4028 }
4029 
4030 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
4031 {
4032 	struct sk_buff *next, *head = NULL, *tail;
4033 
4034 	for (; skb != NULL; skb = next) {
4035 		next = skb->next;
4036 		skb_mark_not_on_list(skb);
4037 
4038 		/* in case skb won't be segmented, point to itself */
4039 		skb->prev = skb;
4040 
4041 		skb = validate_xmit_skb(skb, dev, again);
4042 		if (!skb)
4043 			continue;
4044 
4045 		if (!head)
4046 			head = skb;
4047 		else
4048 			tail->next = skb;
4049 		/* If skb was segmented, skb->prev points to
4050 		 * the last segment. If not, it still contains skb.
4051 		 */
4052 		tail = skb->prev;
4053 	}
4054 	return head;
4055 }
4056 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
4057 
4058 static void qdisc_pkt_len_init(struct sk_buff *skb)
4059 {
4060 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
4061 
4062 	qdisc_skb_cb(skb)->pkt_len = skb->len;
4063 
4064 	/* To get more precise estimation of bytes sent on wire,
4065 	 * we add to pkt_len the headers size of all segments
4066 	 */
4067 	if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
4068 		u16 gso_segs = shinfo->gso_segs;
4069 		unsigned int hdr_len;
4070 
4071 		/* mac layer + network layer */
4072 		if (!skb->encapsulation)
4073 			hdr_len = skb_transport_offset(skb);
4074 		else
4075 			hdr_len = skb_inner_transport_offset(skb);
4076 
4077 		/* + transport layer */
4078 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
4079 			const struct tcphdr *th;
4080 			struct tcphdr _tcphdr;
4081 
4082 			th = skb_header_pointer(skb, hdr_len,
4083 						sizeof(_tcphdr), &_tcphdr);
4084 			if (likely(th))
4085 				hdr_len += __tcp_hdrlen(th);
4086 		} else if (shinfo->gso_type & SKB_GSO_UDP_L4) {
4087 			struct udphdr _udphdr;
4088 
4089 			if (skb_header_pointer(skb, hdr_len,
4090 					       sizeof(_udphdr), &_udphdr))
4091 				hdr_len += sizeof(struct udphdr);
4092 		}
4093 
4094 		if (unlikely(shinfo->gso_type & SKB_GSO_DODGY)) {
4095 			int payload = skb->len - hdr_len;
4096 
4097 			/* Malicious packet. */
4098 			if (payload <= 0)
4099 				return;
4100 			gso_segs = DIV_ROUND_UP(payload, shinfo->gso_size);
4101 		}
4102 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
4103 	}
4104 }
4105 
4106 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
4107 			     struct sk_buff **to_free,
4108 			     struct netdev_queue *txq)
4109 {
4110 	int rc;
4111 
4112 	rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
4113 	if (rc == NET_XMIT_SUCCESS)
4114 		trace_qdisc_enqueue(q, txq, skb);
4115 	return rc;
4116 }
4117 
4118 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
4119 				 struct net_device *dev,
4120 				 struct netdev_queue *txq)
4121 {
4122 	spinlock_t *root_lock = qdisc_lock(q);
4123 	struct sk_buff *to_free = NULL;
4124 	bool contended;
4125 	int rc;
4126 
4127 	qdisc_calculate_pkt_len(skb, q);
4128 
4129 	tcf_set_drop_reason(skb, SKB_DROP_REASON_QDISC_DROP);
4130 
4131 	if (q->flags & TCQ_F_NOLOCK) {
4132 		if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
4133 		    qdisc_run_begin(q)) {
4134 			/* Retest nolock_qdisc_is_empty() within the protection
4135 			 * of q->seqlock to protect from racing with requeuing.
4136 			 */
4137 			if (unlikely(!nolock_qdisc_is_empty(q))) {
4138 				rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
4139 				__qdisc_run(q);
4140 				qdisc_run_end(q);
4141 
4142 				goto no_lock_out;
4143 			}
4144 
4145 			qdisc_bstats_cpu_update(q, skb);
4146 			if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
4147 			    !nolock_qdisc_is_empty(q))
4148 				__qdisc_run(q);
4149 
4150 			qdisc_run_end(q);
4151 			return NET_XMIT_SUCCESS;
4152 		}
4153 
4154 		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
4155 		qdisc_run(q);
4156 
4157 no_lock_out:
4158 		if (unlikely(to_free))
4159 			kfree_skb_list_reason(to_free,
4160 					      tcf_get_drop_reason(to_free));
4161 		return rc;
4162 	}
4163 
4164 	if (unlikely(READ_ONCE(q->owner) == smp_processor_id())) {
4165 		kfree_skb_reason(skb, SKB_DROP_REASON_TC_RECLASSIFY_LOOP);
4166 		return NET_XMIT_DROP;
4167 	}
4168 	/*
4169 	 * Heuristic to force contended enqueues to serialize on a
4170 	 * separate lock before trying to get qdisc main lock.
4171 	 * This permits qdisc->running owner to get the lock more
4172 	 * often and dequeue packets faster.
4173 	 * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit
4174 	 * and then other tasks will only enqueue packets. The packets will be
4175 	 * sent after the qdisc owner is scheduled again. To prevent this
4176 	 * scenario the task always serialize on the lock.
4177 	 */
4178 	contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT);
4179 	if (unlikely(contended))
4180 		spin_lock(&q->busylock);
4181 
4182 	spin_lock(root_lock);
4183 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
4184 		__qdisc_drop(skb, &to_free);
4185 		rc = NET_XMIT_DROP;
4186 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
4187 		   qdisc_run_begin(q)) {
4188 		/*
4189 		 * This is a work-conserving queue; there are no old skbs
4190 		 * waiting to be sent out; and the qdisc is not running -
4191 		 * xmit the skb directly.
4192 		 */
4193 
4194 		qdisc_bstats_update(q, skb);
4195 
4196 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
4197 			if (unlikely(contended)) {
4198 				spin_unlock(&q->busylock);
4199 				contended = false;
4200 			}
4201 			__qdisc_run(q);
4202 		}
4203 
4204 		qdisc_run_end(q);
4205 		rc = NET_XMIT_SUCCESS;
4206 	} else {
4207 		WRITE_ONCE(q->owner, smp_processor_id());
4208 		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
4209 		WRITE_ONCE(q->owner, -1);
4210 		if (qdisc_run_begin(q)) {
4211 			if (unlikely(contended)) {
4212 				spin_unlock(&q->busylock);
4213 				contended = false;
4214 			}
4215 			__qdisc_run(q);
4216 			qdisc_run_end(q);
4217 		}
4218 	}
4219 	spin_unlock(root_lock);
4220 	if (unlikely(to_free))
4221 		kfree_skb_list_reason(to_free,
4222 				      tcf_get_drop_reason(to_free));
4223 	if (unlikely(contended))
4224 		spin_unlock(&q->busylock);
4225 	return rc;
4226 }
4227 
4228 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
4229 static void skb_update_prio(struct sk_buff *skb)
4230 {
4231 	const struct netprio_map *map;
4232 	const struct sock *sk;
4233 	unsigned int prioidx;
4234 
4235 	if (skb->priority)
4236 		return;
4237 	map = rcu_dereference_bh(skb->dev->priomap);
4238 	if (!map)
4239 		return;
4240 	sk = skb_to_full_sk(skb);
4241 	if (!sk)
4242 		return;
4243 
4244 	prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
4245 
4246 	if (prioidx < map->priomap_len)
4247 		skb->priority = map->priomap[prioidx];
4248 }
4249 #else
4250 #define skb_update_prio(skb)
4251 #endif
4252 
4253 /**
4254  *	dev_loopback_xmit - loop back @skb
4255  *	@net: network namespace this loopback is happening in
4256  *	@sk:  sk needed to be a netfilter okfn
4257  *	@skb: buffer to transmit
4258  */
4259 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
4260 {
4261 	skb_reset_mac_header(skb);
4262 	__skb_pull(skb, skb_network_offset(skb));
4263 	skb->pkt_type = PACKET_LOOPBACK;
4264 	if (skb->ip_summed == CHECKSUM_NONE)
4265 		skb->ip_summed = CHECKSUM_UNNECESSARY;
4266 	DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb));
4267 	skb_dst_force(skb);
4268 	netif_rx(skb);
4269 	return 0;
4270 }
4271 EXPORT_SYMBOL(dev_loopback_xmit);
4272 
4273 #ifdef CONFIG_NET_EGRESS
4274 static struct netdev_queue *
4275 netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb)
4276 {
4277 	int qm = skb_get_queue_mapping(skb);
4278 
4279 	return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm));
4280 }
4281 
4282 #ifndef CONFIG_PREEMPT_RT
4283 static bool netdev_xmit_txqueue_skipped(void)
4284 {
4285 	return __this_cpu_read(softnet_data.xmit.skip_txqueue);
4286 }
4287 
4288 void netdev_xmit_skip_txqueue(bool skip)
4289 {
4290 	__this_cpu_write(softnet_data.xmit.skip_txqueue, skip);
4291 }
4292 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
4293 
4294 #else
4295 static bool netdev_xmit_txqueue_skipped(void)
4296 {
4297 	return current->net_xmit.skip_txqueue;
4298 }
4299 
4300 void netdev_xmit_skip_txqueue(bool skip)
4301 {
4302 	current->net_xmit.skip_txqueue = skip;
4303 }
4304 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
4305 #endif
4306 #endif /* CONFIG_NET_EGRESS */
4307 
4308 #ifdef CONFIG_NET_XGRESS
4309 static int tc_run(struct tcx_entry *entry, struct sk_buff *skb,
4310 		  enum skb_drop_reason *drop_reason)
4311 {
4312 	int ret = TC_ACT_UNSPEC;
4313 #ifdef CONFIG_NET_CLS_ACT
4314 	struct mini_Qdisc *miniq = rcu_dereference_bh(entry->miniq);
4315 	struct tcf_result res;
4316 
4317 	if (!miniq)
4318 		return ret;
4319 
4320 	/* Global bypass */
4321 	if (!static_branch_likely(&tcf_sw_enabled_key))
4322 		return ret;
4323 
4324 	/* Block-wise bypass */
4325 	if (tcf_block_bypass_sw(miniq->block))
4326 		return ret;
4327 
4328 	tc_skb_cb(skb)->mru = 0;
4329 	tc_skb_cb(skb)->post_ct = false;
4330 	tcf_set_drop_reason(skb, *drop_reason);
4331 
4332 	mini_qdisc_bstats_cpu_update(miniq, skb);
4333 	ret = tcf_classify(skb, miniq->block, miniq->filter_list, &res, false);
4334 	/* Only tcf related quirks below. */
4335 	switch (ret) {
4336 	case TC_ACT_SHOT:
4337 		*drop_reason = tcf_get_drop_reason(skb);
4338 		mini_qdisc_qstats_cpu_drop(miniq);
4339 		break;
4340 	case TC_ACT_OK:
4341 	case TC_ACT_RECLASSIFY:
4342 		skb->tc_index = TC_H_MIN(res.classid);
4343 		break;
4344 	}
4345 #endif /* CONFIG_NET_CLS_ACT */
4346 	return ret;
4347 }
4348 
4349 static DEFINE_STATIC_KEY_FALSE(tcx_needed_key);
4350 
4351 void tcx_inc(void)
4352 {
4353 	static_branch_inc(&tcx_needed_key);
4354 }
4355 
4356 void tcx_dec(void)
4357 {
4358 	static_branch_dec(&tcx_needed_key);
4359 }
4360 
4361 static __always_inline enum tcx_action_base
4362 tcx_run(const struct bpf_mprog_entry *entry, struct sk_buff *skb,
4363 	const bool needs_mac)
4364 {
4365 	const struct bpf_mprog_fp *fp;
4366 	const struct bpf_prog *prog;
4367 	int ret = TCX_NEXT;
4368 
4369 	if (needs_mac)
4370 		__skb_push(skb, skb->mac_len);
4371 	bpf_mprog_foreach_prog(entry, fp, prog) {
4372 		bpf_compute_data_pointers(skb);
4373 		ret = bpf_prog_run(prog, skb);
4374 		if (ret != TCX_NEXT)
4375 			break;
4376 	}
4377 	if (needs_mac)
4378 		__skb_pull(skb, skb->mac_len);
4379 	return tcx_action_code(skb, ret);
4380 }
4381 
4382 static __always_inline struct sk_buff *
4383 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4384 		   struct net_device *orig_dev, bool *another)
4385 {
4386 	struct bpf_mprog_entry *entry = rcu_dereference_bh(skb->dev->tcx_ingress);
4387 	enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_INGRESS;
4388 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
4389 	int sch_ret;
4390 
4391 	if (!entry)
4392 		return skb;
4393 
4394 	bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
4395 	if (*pt_prev) {
4396 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
4397 		*pt_prev = NULL;
4398 	}
4399 
4400 	qdisc_skb_cb(skb)->pkt_len = skb->len;
4401 	tcx_set_ingress(skb, true);
4402 
4403 	if (static_branch_unlikely(&tcx_needed_key)) {
4404 		sch_ret = tcx_run(entry, skb, true);
4405 		if (sch_ret != TC_ACT_UNSPEC)
4406 			goto ingress_verdict;
4407 	}
4408 	sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4409 ingress_verdict:
4410 	switch (sch_ret) {
4411 	case TC_ACT_REDIRECT:
4412 		/* skb_mac_header check was done by BPF, so we can safely
4413 		 * push the L2 header back before redirecting to another
4414 		 * netdev.
4415 		 */
4416 		__skb_push(skb, skb->mac_len);
4417 		if (skb_do_redirect(skb) == -EAGAIN) {
4418 			__skb_pull(skb, skb->mac_len);
4419 			*another = true;
4420 			break;
4421 		}
4422 		*ret = NET_RX_SUCCESS;
4423 		bpf_net_ctx_clear(bpf_net_ctx);
4424 		return NULL;
4425 	case TC_ACT_SHOT:
4426 		kfree_skb_reason(skb, drop_reason);
4427 		*ret = NET_RX_DROP;
4428 		bpf_net_ctx_clear(bpf_net_ctx);
4429 		return NULL;
4430 	/* used by tc_run */
4431 	case TC_ACT_STOLEN:
4432 	case TC_ACT_QUEUED:
4433 	case TC_ACT_TRAP:
4434 		consume_skb(skb);
4435 		fallthrough;
4436 	case TC_ACT_CONSUMED:
4437 		*ret = NET_RX_SUCCESS;
4438 		bpf_net_ctx_clear(bpf_net_ctx);
4439 		return NULL;
4440 	}
4441 	bpf_net_ctx_clear(bpf_net_ctx);
4442 
4443 	return skb;
4444 }
4445 
4446 static __always_inline struct sk_buff *
4447 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4448 {
4449 	struct bpf_mprog_entry *entry = rcu_dereference_bh(dev->tcx_egress);
4450 	enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_EGRESS;
4451 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
4452 	int sch_ret;
4453 
4454 	if (!entry)
4455 		return skb;
4456 
4457 	bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
4458 
4459 	/* qdisc_skb_cb(skb)->pkt_len & tcx_set_ingress() was
4460 	 * already set by the caller.
4461 	 */
4462 	if (static_branch_unlikely(&tcx_needed_key)) {
4463 		sch_ret = tcx_run(entry, skb, false);
4464 		if (sch_ret != TC_ACT_UNSPEC)
4465 			goto egress_verdict;
4466 	}
4467 	sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4468 egress_verdict:
4469 	switch (sch_ret) {
4470 	case TC_ACT_REDIRECT:
4471 		/* No need to push/pop skb's mac_header here on egress! */
4472 		skb_do_redirect(skb);
4473 		*ret = NET_XMIT_SUCCESS;
4474 		bpf_net_ctx_clear(bpf_net_ctx);
4475 		return NULL;
4476 	case TC_ACT_SHOT:
4477 		kfree_skb_reason(skb, drop_reason);
4478 		*ret = NET_XMIT_DROP;
4479 		bpf_net_ctx_clear(bpf_net_ctx);
4480 		return NULL;
4481 	/* used by tc_run */
4482 	case TC_ACT_STOLEN:
4483 	case TC_ACT_QUEUED:
4484 	case TC_ACT_TRAP:
4485 		consume_skb(skb);
4486 		fallthrough;
4487 	case TC_ACT_CONSUMED:
4488 		*ret = NET_XMIT_SUCCESS;
4489 		bpf_net_ctx_clear(bpf_net_ctx);
4490 		return NULL;
4491 	}
4492 	bpf_net_ctx_clear(bpf_net_ctx);
4493 
4494 	return skb;
4495 }
4496 #else
4497 static __always_inline struct sk_buff *
4498 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4499 		   struct net_device *orig_dev, bool *another)
4500 {
4501 	return skb;
4502 }
4503 
4504 static __always_inline struct sk_buff *
4505 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4506 {
4507 	return skb;
4508 }
4509 #endif /* CONFIG_NET_XGRESS */
4510 
4511 #ifdef CONFIG_XPS
4512 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
4513 			       struct xps_dev_maps *dev_maps, unsigned int tci)
4514 {
4515 	int tc = netdev_get_prio_tc_map(dev, skb->priority);
4516 	struct xps_map *map;
4517 	int queue_index = -1;
4518 
4519 	if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
4520 		return queue_index;
4521 
4522 	tci *= dev_maps->num_tc;
4523 	tci += tc;
4524 
4525 	map = rcu_dereference(dev_maps->attr_map[tci]);
4526 	if (map) {
4527 		if (map->len == 1)
4528 			queue_index = map->queues[0];
4529 		else
4530 			queue_index = map->queues[reciprocal_scale(
4531 						skb_get_hash(skb), map->len)];
4532 		if (unlikely(queue_index >= dev->real_num_tx_queues))
4533 			queue_index = -1;
4534 	}
4535 	return queue_index;
4536 }
4537 #endif
4538 
4539 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4540 			 struct sk_buff *skb)
4541 {
4542 #ifdef CONFIG_XPS
4543 	struct xps_dev_maps *dev_maps;
4544 	struct sock *sk = skb->sk;
4545 	int queue_index = -1;
4546 
4547 	if (!static_key_false(&xps_needed))
4548 		return -1;
4549 
4550 	rcu_read_lock();
4551 	if (!static_key_false(&xps_rxqs_needed))
4552 		goto get_cpus_map;
4553 
4554 	dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4555 	if (dev_maps) {
4556 		int tci = sk_rx_queue_get(sk);
4557 
4558 		if (tci >= 0)
4559 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4560 							  tci);
4561 	}
4562 
4563 get_cpus_map:
4564 	if (queue_index < 0) {
4565 		dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4566 		if (dev_maps) {
4567 			unsigned int tci = skb->sender_cpu - 1;
4568 
4569 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4570 							  tci);
4571 		}
4572 	}
4573 	rcu_read_unlock();
4574 
4575 	return queue_index;
4576 #else
4577 	return -1;
4578 #endif
4579 }
4580 
4581 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4582 		     struct net_device *sb_dev)
4583 {
4584 	return 0;
4585 }
4586 EXPORT_SYMBOL(dev_pick_tx_zero);
4587 
4588 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4589 		     struct net_device *sb_dev)
4590 {
4591 	struct sock *sk = skb->sk;
4592 	int queue_index = sk_tx_queue_get(sk);
4593 
4594 	sb_dev = sb_dev ? : dev;
4595 
4596 	if (queue_index < 0 || skb->ooo_okay ||
4597 	    queue_index >= dev->real_num_tx_queues) {
4598 		int new_index = get_xps_queue(dev, sb_dev, skb);
4599 
4600 		if (new_index < 0)
4601 			new_index = skb_tx_hash(dev, sb_dev, skb);
4602 
4603 		if (queue_index != new_index && sk &&
4604 		    sk_fullsock(sk) &&
4605 		    rcu_access_pointer(sk->sk_dst_cache))
4606 			sk_tx_queue_set(sk, new_index);
4607 
4608 		queue_index = new_index;
4609 	}
4610 
4611 	return queue_index;
4612 }
4613 EXPORT_SYMBOL(netdev_pick_tx);
4614 
4615 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4616 					 struct sk_buff *skb,
4617 					 struct net_device *sb_dev)
4618 {
4619 	int queue_index = 0;
4620 
4621 #ifdef CONFIG_XPS
4622 	u32 sender_cpu = skb->sender_cpu - 1;
4623 
4624 	if (sender_cpu >= (u32)NR_CPUS)
4625 		skb->sender_cpu = raw_smp_processor_id() + 1;
4626 #endif
4627 
4628 	if (dev->real_num_tx_queues != 1) {
4629 		const struct net_device_ops *ops = dev->netdev_ops;
4630 
4631 		if (ops->ndo_select_queue)
4632 			queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4633 		else
4634 			queue_index = netdev_pick_tx(dev, skb, sb_dev);
4635 
4636 		queue_index = netdev_cap_txqueue(dev, queue_index);
4637 	}
4638 
4639 	skb_set_queue_mapping(skb, queue_index);
4640 	return netdev_get_tx_queue(dev, queue_index);
4641 }
4642 
4643 /**
4644  * __dev_queue_xmit() - transmit a buffer
4645  * @skb:	buffer to transmit
4646  * @sb_dev:	suboordinate device used for L2 forwarding offload
4647  *
4648  * Queue a buffer for transmission to a network device. The caller must
4649  * have set the device and priority and built the buffer before calling
4650  * this function. The function can be called from an interrupt.
4651  *
4652  * When calling this method, interrupts MUST be enabled. This is because
4653  * the BH enable code must have IRQs enabled so that it will not deadlock.
4654  *
4655  * Regardless of the return value, the skb is consumed, so it is currently
4656  * difficult to retry a send to this method. (You can bump the ref count
4657  * before sending to hold a reference for retry if you are careful.)
4658  *
4659  * Return:
4660  * * 0				- buffer successfully transmitted
4661  * * positive qdisc return code	- NET_XMIT_DROP etc.
4662  * * negative errno		- other errors
4663  */
4664 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4665 {
4666 	struct net_device *dev = skb->dev;
4667 	struct netdev_queue *txq = NULL;
4668 	struct Qdisc *q;
4669 	int rc = -ENOMEM;
4670 	bool again = false;
4671 
4672 	skb_reset_mac_header(skb);
4673 	skb_assert_len(skb);
4674 
4675 	if (unlikely(skb_shinfo(skb)->tx_flags &
4676 		     (SKBTX_SCHED_TSTAMP | SKBTX_BPF)))
4677 		__skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4678 
4679 	/* Disable soft irqs for various locks below. Also
4680 	 * stops preemption for RCU.
4681 	 */
4682 	rcu_read_lock_bh();
4683 
4684 	skb_update_prio(skb);
4685 
4686 	qdisc_pkt_len_init(skb);
4687 	tcx_set_ingress(skb, false);
4688 #ifdef CONFIG_NET_EGRESS
4689 	if (static_branch_unlikely(&egress_needed_key)) {
4690 		if (nf_hook_egress_active()) {
4691 			skb = nf_hook_egress(skb, &rc, dev);
4692 			if (!skb)
4693 				goto out;
4694 		}
4695 
4696 		netdev_xmit_skip_txqueue(false);
4697 
4698 		nf_skip_egress(skb, true);
4699 		skb = sch_handle_egress(skb, &rc, dev);
4700 		if (!skb)
4701 			goto out;
4702 		nf_skip_egress(skb, false);
4703 
4704 		if (netdev_xmit_txqueue_skipped())
4705 			txq = netdev_tx_queue_mapping(dev, skb);
4706 	}
4707 #endif
4708 	/* If device/qdisc don't need skb->dst, release it right now while
4709 	 * its hot in this cpu cache.
4710 	 */
4711 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4712 		skb_dst_drop(skb);
4713 	else
4714 		skb_dst_force(skb);
4715 
4716 	if (!txq)
4717 		txq = netdev_core_pick_tx(dev, skb, sb_dev);
4718 
4719 	q = rcu_dereference_bh(txq->qdisc);
4720 
4721 	trace_net_dev_queue(skb);
4722 	if (q->enqueue) {
4723 		rc = __dev_xmit_skb(skb, q, dev, txq);
4724 		goto out;
4725 	}
4726 
4727 	/* The device has no queue. Common case for software devices:
4728 	 * loopback, all the sorts of tunnels...
4729 
4730 	 * Really, it is unlikely that netif_tx_lock protection is necessary
4731 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4732 	 * counters.)
4733 	 * However, it is possible, that they rely on protection
4734 	 * made by us here.
4735 
4736 	 * Check this and shot the lock. It is not prone from deadlocks.
4737 	 *Either shot noqueue qdisc, it is even simpler 8)
4738 	 */
4739 	if (dev->flags & IFF_UP) {
4740 		int cpu = smp_processor_id(); /* ok because BHs are off */
4741 
4742 		/* Other cpus might concurrently change txq->xmit_lock_owner
4743 		 * to -1 or to their cpu id, but not to our id.
4744 		 */
4745 		if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4746 			if (dev_xmit_recursion())
4747 				goto recursion_alert;
4748 
4749 			skb = validate_xmit_skb(skb, dev, &again);
4750 			if (!skb)
4751 				goto out;
4752 
4753 			HARD_TX_LOCK(dev, txq, cpu);
4754 
4755 			if (!netif_xmit_stopped(txq)) {
4756 				dev_xmit_recursion_inc();
4757 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4758 				dev_xmit_recursion_dec();
4759 				if (dev_xmit_complete(rc)) {
4760 					HARD_TX_UNLOCK(dev, txq);
4761 					goto out;
4762 				}
4763 			}
4764 			HARD_TX_UNLOCK(dev, txq);
4765 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4766 					     dev->name);
4767 		} else {
4768 			/* Recursion is detected! It is possible,
4769 			 * unfortunately
4770 			 */
4771 recursion_alert:
4772 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4773 					     dev->name);
4774 		}
4775 	}
4776 
4777 	rc = -ENETDOWN;
4778 	rcu_read_unlock_bh();
4779 
4780 	dev_core_stats_tx_dropped_inc(dev);
4781 	kfree_skb_list(skb);
4782 	return rc;
4783 out:
4784 	rcu_read_unlock_bh();
4785 	return rc;
4786 }
4787 EXPORT_SYMBOL(__dev_queue_xmit);
4788 
4789 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4790 {
4791 	struct net_device *dev = skb->dev;
4792 	struct sk_buff *orig_skb = skb;
4793 	struct netdev_queue *txq;
4794 	int ret = NETDEV_TX_BUSY;
4795 	bool again = false;
4796 
4797 	if (unlikely(!netif_running(dev) ||
4798 		     !netif_carrier_ok(dev)))
4799 		goto drop;
4800 
4801 	skb = validate_xmit_skb_list(skb, dev, &again);
4802 	if (skb != orig_skb)
4803 		goto drop;
4804 
4805 	skb_set_queue_mapping(skb, queue_id);
4806 	txq = skb_get_tx_queue(dev, skb);
4807 
4808 	local_bh_disable();
4809 
4810 	dev_xmit_recursion_inc();
4811 	HARD_TX_LOCK(dev, txq, smp_processor_id());
4812 	if (!netif_xmit_frozen_or_drv_stopped(txq))
4813 		ret = netdev_start_xmit(skb, dev, txq, false);
4814 	HARD_TX_UNLOCK(dev, txq);
4815 	dev_xmit_recursion_dec();
4816 
4817 	local_bh_enable();
4818 	return ret;
4819 drop:
4820 	dev_core_stats_tx_dropped_inc(dev);
4821 	kfree_skb_list(skb);
4822 	return NET_XMIT_DROP;
4823 }
4824 EXPORT_SYMBOL(__dev_direct_xmit);
4825 
4826 /*************************************************************************
4827  *			Receiver routines
4828  *************************************************************************/
4829 static DEFINE_PER_CPU(struct task_struct *, backlog_napi);
4830 
4831 int weight_p __read_mostly = 64;           /* old backlog weight */
4832 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4833 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4834 
4835 /* Called with irq disabled */
4836 static inline void ____napi_schedule(struct softnet_data *sd,
4837 				     struct napi_struct *napi)
4838 {
4839 	struct task_struct *thread;
4840 
4841 	lockdep_assert_irqs_disabled();
4842 
4843 	if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4844 		/* Paired with smp_mb__before_atomic() in
4845 		 * napi_enable()/netif_set_threaded().
4846 		 * Use READ_ONCE() to guarantee a complete
4847 		 * read on napi->thread. Only call
4848 		 * wake_up_process() when it's not NULL.
4849 		 */
4850 		thread = READ_ONCE(napi->thread);
4851 		if (thread) {
4852 			if (use_backlog_threads() && thread == raw_cpu_read(backlog_napi))
4853 				goto use_local_napi;
4854 
4855 			set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4856 			wake_up_process(thread);
4857 			return;
4858 		}
4859 	}
4860 
4861 use_local_napi:
4862 	DEBUG_NET_WARN_ON_ONCE(!list_empty(&napi->poll_list));
4863 	list_add_tail(&napi->poll_list, &sd->poll_list);
4864 	WRITE_ONCE(napi->list_owner, smp_processor_id());
4865 	/* If not called from net_rx_action()
4866 	 * we have to raise NET_RX_SOFTIRQ.
4867 	 */
4868 	if (!sd->in_net_rx_action)
4869 		raise_softirq_irqoff(NET_RX_SOFTIRQ);
4870 }
4871 
4872 #ifdef CONFIG_RPS
4873 
4874 struct static_key_false rps_needed __read_mostly;
4875 EXPORT_SYMBOL(rps_needed);
4876 struct static_key_false rfs_needed __read_mostly;
4877 EXPORT_SYMBOL(rfs_needed);
4878 
4879 static u32 rfs_slot(u32 hash, const struct rps_dev_flow_table *flow_table)
4880 {
4881 	return hash_32(hash, flow_table->log);
4882 }
4883 
4884 #ifdef CONFIG_RFS_ACCEL
4885 /**
4886  * rps_flow_is_active - check whether the flow is recently active.
4887  * @rflow: Specific flow to check activity.
4888  * @flow_table: per-queue flowtable that @rflow belongs to.
4889  * @cpu: CPU saved in @rflow.
4890  *
4891  * If the CPU has processed many packets since the flow's last activity
4892  * (beyond 10 times the table size), the flow is considered stale.
4893  *
4894  * Return: true if flow was recently active.
4895  */
4896 static bool rps_flow_is_active(struct rps_dev_flow *rflow,
4897 			       struct rps_dev_flow_table *flow_table,
4898 			       unsigned int cpu)
4899 {
4900 	unsigned int flow_last_active;
4901 	unsigned int sd_input_head;
4902 
4903 	if (cpu >= nr_cpu_ids)
4904 		return false;
4905 
4906 	sd_input_head = READ_ONCE(per_cpu(softnet_data, cpu).input_queue_head);
4907 	flow_last_active = READ_ONCE(rflow->last_qtail);
4908 
4909 	return (int)(sd_input_head - flow_last_active) <
4910 		(int)(10 << flow_table->log);
4911 }
4912 #endif
4913 
4914 static struct rps_dev_flow *
4915 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4916 	    struct rps_dev_flow *rflow, u16 next_cpu, u32 hash,
4917 	    u32 flow_id)
4918 {
4919 	if (next_cpu < nr_cpu_ids) {
4920 		u32 head;
4921 #ifdef CONFIG_RFS_ACCEL
4922 		struct netdev_rx_queue *rxqueue;
4923 		struct rps_dev_flow_table *flow_table;
4924 		struct rps_dev_flow *old_rflow;
4925 		struct rps_dev_flow *tmp_rflow;
4926 		unsigned int tmp_cpu;
4927 		u16 rxq_index;
4928 		int rc;
4929 
4930 		/* Should we steer this flow to a different hardware queue? */
4931 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4932 		    !(dev->features & NETIF_F_NTUPLE))
4933 			goto out;
4934 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4935 		if (rxq_index == skb_get_rx_queue(skb))
4936 			goto out;
4937 
4938 		rxqueue = dev->_rx + rxq_index;
4939 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
4940 		if (!flow_table)
4941 			goto out;
4942 
4943 		tmp_rflow = &flow_table->flows[flow_id];
4944 		tmp_cpu = READ_ONCE(tmp_rflow->cpu);
4945 
4946 		if (READ_ONCE(tmp_rflow->filter) != RPS_NO_FILTER) {
4947 			if (rps_flow_is_active(tmp_rflow, flow_table,
4948 					       tmp_cpu)) {
4949 				if (hash != READ_ONCE(tmp_rflow->hash) ||
4950 				    next_cpu == tmp_cpu)
4951 					goto out;
4952 			}
4953 		}
4954 
4955 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4956 							rxq_index, flow_id);
4957 		if (rc < 0)
4958 			goto out;
4959 
4960 		old_rflow = rflow;
4961 		rflow = tmp_rflow;
4962 		WRITE_ONCE(rflow->filter, rc);
4963 		WRITE_ONCE(rflow->hash, hash);
4964 
4965 		if (old_rflow->filter == rc)
4966 			WRITE_ONCE(old_rflow->filter, RPS_NO_FILTER);
4967 	out:
4968 #endif
4969 		head = READ_ONCE(per_cpu(softnet_data, next_cpu).input_queue_head);
4970 		rps_input_queue_tail_save(&rflow->last_qtail, head);
4971 	}
4972 
4973 	WRITE_ONCE(rflow->cpu, next_cpu);
4974 	return rflow;
4975 }
4976 
4977 /*
4978  * get_rps_cpu is called from netif_receive_skb and returns the target
4979  * CPU from the RPS map of the receiving queue for a given skb.
4980  * rcu_read_lock must be held on entry.
4981  */
4982 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4983 		       struct rps_dev_flow **rflowp)
4984 {
4985 	const struct rps_sock_flow_table *sock_flow_table;
4986 	struct netdev_rx_queue *rxqueue = dev->_rx;
4987 	struct rps_dev_flow_table *flow_table;
4988 	struct rps_map *map;
4989 	int cpu = -1;
4990 	u32 flow_id;
4991 	u32 tcpu;
4992 	u32 hash;
4993 
4994 	if (skb_rx_queue_recorded(skb)) {
4995 		u16 index = skb_get_rx_queue(skb);
4996 
4997 		if (unlikely(index >= dev->real_num_rx_queues)) {
4998 			WARN_ONCE(dev->real_num_rx_queues > 1,
4999 				  "%s received packet on queue %u, but number "
5000 				  "of RX queues is %u\n",
5001 				  dev->name, index, dev->real_num_rx_queues);
5002 			goto done;
5003 		}
5004 		rxqueue += index;
5005 	}
5006 
5007 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
5008 
5009 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
5010 	map = rcu_dereference(rxqueue->rps_map);
5011 	if (!flow_table && !map)
5012 		goto done;
5013 
5014 	skb_reset_network_header(skb);
5015 	hash = skb_get_hash(skb);
5016 	if (!hash)
5017 		goto done;
5018 
5019 	sock_flow_table = rcu_dereference(net_hotdata.rps_sock_flow_table);
5020 	if (flow_table && sock_flow_table) {
5021 		struct rps_dev_flow *rflow;
5022 		u32 next_cpu;
5023 		u32 ident;
5024 
5025 		/* First check into global flow table if there is a match.
5026 		 * This READ_ONCE() pairs with WRITE_ONCE() from rps_record_sock_flow().
5027 		 */
5028 		ident = READ_ONCE(sock_flow_table->ents[hash & sock_flow_table->mask]);
5029 		if ((ident ^ hash) & ~net_hotdata.rps_cpu_mask)
5030 			goto try_rps;
5031 
5032 		next_cpu = ident & net_hotdata.rps_cpu_mask;
5033 
5034 		/* OK, now we know there is a match,
5035 		 * we can look at the local (per receive queue) flow table
5036 		 */
5037 		flow_id = rfs_slot(hash, flow_table);
5038 		rflow = &flow_table->flows[flow_id];
5039 		tcpu = rflow->cpu;
5040 
5041 		/*
5042 		 * If the desired CPU (where last recvmsg was done) is
5043 		 * different from current CPU (one in the rx-queue flow
5044 		 * table entry), switch if one of the following holds:
5045 		 *   - Current CPU is unset (>= nr_cpu_ids).
5046 		 *   - Current CPU is offline.
5047 		 *   - The current CPU's queue tail has advanced beyond the
5048 		 *     last packet that was enqueued using this table entry.
5049 		 *     This guarantees that all previous packets for the flow
5050 		 *     have been dequeued, thus preserving in order delivery.
5051 		 */
5052 		if (unlikely(tcpu != next_cpu) &&
5053 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
5054 		     ((int)(READ_ONCE(per_cpu(softnet_data, tcpu).input_queue_head) -
5055 		      rflow->last_qtail)) >= 0)) {
5056 			tcpu = next_cpu;
5057 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu, hash,
5058 					    flow_id);
5059 		}
5060 
5061 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
5062 			*rflowp = rflow;
5063 			cpu = tcpu;
5064 			goto done;
5065 		}
5066 	}
5067 
5068 try_rps:
5069 
5070 	if (map) {
5071 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
5072 		if (cpu_online(tcpu)) {
5073 			cpu = tcpu;
5074 			goto done;
5075 		}
5076 	}
5077 
5078 done:
5079 	return cpu;
5080 }
5081 
5082 #ifdef CONFIG_RFS_ACCEL
5083 
5084 /**
5085  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
5086  * @dev: Device on which the filter was set
5087  * @rxq_index: RX queue index
5088  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
5089  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
5090  *
5091  * Drivers that implement ndo_rx_flow_steer() should periodically call
5092  * this function for each installed filter and remove the filters for
5093  * which it returns %true.
5094  */
5095 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
5096 			 u32 flow_id, u16 filter_id)
5097 {
5098 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
5099 	struct rps_dev_flow_table *flow_table;
5100 	struct rps_dev_flow *rflow;
5101 	bool expire = true;
5102 
5103 	rcu_read_lock();
5104 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
5105 	if (flow_table && flow_id < (1UL << flow_table->log)) {
5106 		unsigned int cpu;
5107 
5108 		rflow = &flow_table->flows[flow_id];
5109 		cpu = READ_ONCE(rflow->cpu);
5110 		if (READ_ONCE(rflow->filter) == filter_id &&
5111 		    rps_flow_is_active(rflow, flow_table, cpu))
5112 			expire = false;
5113 	}
5114 	rcu_read_unlock();
5115 	return expire;
5116 }
5117 EXPORT_SYMBOL(rps_may_expire_flow);
5118 
5119 #endif /* CONFIG_RFS_ACCEL */
5120 
5121 /* Called from hardirq (IPI) context */
5122 static void rps_trigger_softirq(void *data)
5123 {
5124 	struct softnet_data *sd = data;
5125 
5126 	____napi_schedule(sd, &sd->backlog);
5127 	/* Pairs with READ_ONCE() in softnet_seq_show() */
5128 	WRITE_ONCE(sd->received_rps, sd->received_rps + 1);
5129 }
5130 
5131 #endif /* CONFIG_RPS */
5132 
5133 /* Called from hardirq (IPI) context */
5134 static void trigger_rx_softirq(void *data)
5135 {
5136 	struct softnet_data *sd = data;
5137 
5138 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
5139 	smp_store_release(&sd->defer_ipi_scheduled, 0);
5140 }
5141 
5142 /*
5143  * After we queued a packet into sd->input_pkt_queue,
5144  * we need to make sure this queue is serviced soon.
5145  *
5146  * - If this is another cpu queue, link it to our rps_ipi_list,
5147  *   and make sure we will process rps_ipi_list from net_rx_action().
5148  *
5149  * - If this is our own queue, NAPI schedule our backlog.
5150  *   Note that this also raises NET_RX_SOFTIRQ.
5151  */
5152 static void napi_schedule_rps(struct softnet_data *sd)
5153 {
5154 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
5155 
5156 #ifdef CONFIG_RPS
5157 	if (sd != mysd) {
5158 		if (use_backlog_threads()) {
5159 			__napi_schedule_irqoff(&sd->backlog);
5160 			return;
5161 		}
5162 
5163 		sd->rps_ipi_next = mysd->rps_ipi_list;
5164 		mysd->rps_ipi_list = sd;
5165 
5166 		/* If not called from net_rx_action() or napi_threaded_poll()
5167 		 * we have to raise NET_RX_SOFTIRQ.
5168 		 */
5169 		if (!mysd->in_net_rx_action && !mysd->in_napi_threaded_poll)
5170 			__raise_softirq_irqoff(NET_RX_SOFTIRQ);
5171 		return;
5172 	}
5173 #endif /* CONFIG_RPS */
5174 	__napi_schedule_irqoff(&mysd->backlog);
5175 }
5176 
5177 void kick_defer_list_purge(struct softnet_data *sd, unsigned int cpu)
5178 {
5179 	unsigned long flags;
5180 
5181 	if (use_backlog_threads()) {
5182 		backlog_lock_irq_save(sd, &flags);
5183 
5184 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state))
5185 			__napi_schedule_irqoff(&sd->backlog);
5186 
5187 		backlog_unlock_irq_restore(sd, &flags);
5188 
5189 	} else if (!cmpxchg(&sd->defer_ipi_scheduled, 0, 1)) {
5190 		smp_call_function_single_async(cpu, &sd->defer_csd);
5191 	}
5192 }
5193 
5194 #ifdef CONFIG_NET_FLOW_LIMIT
5195 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
5196 #endif
5197 
5198 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
5199 {
5200 #ifdef CONFIG_NET_FLOW_LIMIT
5201 	struct sd_flow_limit *fl;
5202 	struct softnet_data *sd;
5203 	unsigned int old_flow, new_flow;
5204 
5205 	if (qlen < (READ_ONCE(net_hotdata.max_backlog) >> 1))
5206 		return false;
5207 
5208 	sd = this_cpu_ptr(&softnet_data);
5209 
5210 	rcu_read_lock();
5211 	fl = rcu_dereference(sd->flow_limit);
5212 	if (fl) {
5213 		new_flow = hash_32(skb_get_hash(skb), fl->log_buckets);
5214 		old_flow = fl->history[fl->history_head];
5215 		fl->history[fl->history_head] = new_flow;
5216 
5217 		fl->history_head++;
5218 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
5219 
5220 		if (likely(fl->buckets[old_flow]))
5221 			fl->buckets[old_flow]--;
5222 
5223 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
5224 			/* Pairs with READ_ONCE() in softnet_seq_show() */
5225 			WRITE_ONCE(fl->count, fl->count + 1);
5226 			rcu_read_unlock();
5227 			return true;
5228 		}
5229 	}
5230 	rcu_read_unlock();
5231 #endif
5232 	return false;
5233 }
5234 
5235 /*
5236  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
5237  * queue (may be a remote CPU queue).
5238  */
5239 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
5240 			      unsigned int *qtail)
5241 {
5242 	enum skb_drop_reason reason;
5243 	struct softnet_data *sd;
5244 	unsigned long flags;
5245 	unsigned int qlen;
5246 	int max_backlog;
5247 	u32 tail;
5248 
5249 	reason = SKB_DROP_REASON_DEV_READY;
5250 	if (!netif_running(skb->dev))
5251 		goto bad_dev;
5252 
5253 	reason = SKB_DROP_REASON_CPU_BACKLOG;
5254 	sd = &per_cpu(softnet_data, cpu);
5255 
5256 	qlen = skb_queue_len_lockless(&sd->input_pkt_queue);
5257 	max_backlog = READ_ONCE(net_hotdata.max_backlog);
5258 	if (unlikely(qlen > max_backlog))
5259 		goto cpu_backlog_drop;
5260 	backlog_lock_irq_save(sd, &flags);
5261 	qlen = skb_queue_len(&sd->input_pkt_queue);
5262 	if (qlen <= max_backlog && !skb_flow_limit(skb, qlen)) {
5263 		if (!qlen) {
5264 			/* Schedule NAPI for backlog device. We can use
5265 			 * non atomic operation as we own the queue lock.
5266 			 */
5267 			if (!__test_and_set_bit(NAPI_STATE_SCHED,
5268 						&sd->backlog.state))
5269 				napi_schedule_rps(sd);
5270 		}
5271 		__skb_queue_tail(&sd->input_pkt_queue, skb);
5272 		tail = rps_input_queue_tail_incr(sd);
5273 		backlog_unlock_irq_restore(sd, &flags);
5274 
5275 		/* save the tail outside of the critical section */
5276 		rps_input_queue_tail_save(qtail, tail);
5277 		return NET_RX_SUCCESS;
5278 	}
5279 
5280 	backlog_unlock_irq_restore(sd, &flags);
5281 
5282 cpu_backlog_drop:
5283 	numa_drop_add(&sd->drop_counters, 1);
5284 bad_dev:
5285 	dev_core_stats_rx_dropped_inc(skb->dev);
5286 	kfree_skb_reason(skb, reason);
5287 	return NET_RX_DROP;
5288 }
5289 
5290 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
5291 {
5292 	struct net_device *dev = skb->dev;
5293 	struct netdev_rx_queue *rxqueue;
5294 
5295 	rxqueue = dev->_rx;
5296 
5297 	if (skb_rx_queue_recorded(skb)) {
5298 		u16 index = skb_get_rx_queue(skb);
5299 
5300 		if (unlikely(index >= dev->real_num_rx_queues)) {
5301 			WARN_ONCE(dev->real_num_rx_queues > 1,
5302 				  "%s received packet on queue %u, but number "
5303 				  "of RX queues is %u\n",
5304 				  dev->name, index, dev->real_num_rx_queues);
5305 
5306 			return rxqueue; /* Return first rxqueue */
5307 		}
5308 		rxqueue += index;
5309 	}
5310 	return rxqueue;
5311 }
5312 
5313 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
5314 			     const struct bpf_prog *xdp_prog)
5315 {
5316 	void *orig_data, *orig_data_end, *hard_start;
5317 	struct netdev_rx_queue *rxqueue;
5318 	bool orig_bcast, orig_host;
5319 	u32 mac_len, frame_sz;
5320 	__be16 orig_eth_type;
5321 	struct ethhdr *eth;
5322 	u32 metalen, act;
5323 	int off;
5324 
5325 	/* The XDP program wants to see the packet starting at the MAC
5326 	 * header.
5327 	 */
5328 	mac_len = skb->data - skb_mac_header(skb);
5329 	hard_start = skb->data - skb_headroom(skb);
5330 
5331 	/* SKB "head" area always have tailroom for skb_shared_info */
5332 	frame_sz = (void *)skb_end_pointer(skb) - hard_start;
5333 	frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
5334 
5335 	rxqueue = netif_get_rxqueue(skb);
5336 	xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
5337 	xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
5338 			 skb_headlen(skb) + mac_len, true);
5339 	if (skb_is_nonlinear(skb)) {
5340 		skb_shinfo(skb)->xdp_frags_size = skb->data_len;
5341 		xdp_buff_set_frags_flag(xdp);
5342 	} else {
5343 		xdp_buff_clear_frags_flag(xdp);
5344 	}
5345 
5346 	orig_data_end = xdp->data_end;
5347 	orig_data = xdp->data;
5348 	eth = (struct ethhdr *)xdp->data;
5349 	orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
5350 	orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
5351 	orig_eth_type = eth->h_proto;
5352 
5353 	act = bpf_prog_run_xdp(xdp_prog, xdp);
5354 
5355 	/* check if bpf_xdp_adjust_head was used */
5356 	off = xdp->data - orig_data;
5357 	if (off) {
5358 		if (off > 0)
5359 			__skb_pull(skb, off);
5360 		else if (off < 0)
5361 			__skb_push(skb, -off);
5362 
5363 		skb->mac_header += off;
5364 		skb_reset_network_header(skb);
5365 	}
5366 
5367 	/* check if bpf_xdp_adjust_tail was used */
5368 	off = xdp->data_end - orig_data_end;
5369 	if (off != 0) {
5370 		skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
5371 		skb->len += off; /* positive on grow, negative on shrink */
5372 	}
5373 
5374 	/* XDP frag metadata (e.g. nr_frags) are updated in eBPF helpers
5375 	 * (e.g. bpf_xdp_adjust_tail), we need to update data_len here.
5376 	 */
5377 	if (xdp_buff_has_frags(xdp))
5378 		skb->data_len = skb_shinfo(skb)->xdp_frags_size;
5379 	else
5380 		skb->data_len = 0;
5381 
5382 	/* check if XDP changed eth hdr such SKB needs update */
5383 	eth = (struct ethhdr *)xdp->data;
5384 	if ((orig_eth_type != eth->h_proto) ||
5385 	    (orig_host != ether_addr_equal_64bits(eth->h_dest,
5386 						  skb->dev->dev_addr)) ||
5387 	    (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
5388 		__skb_push(skb, ETH_HLEN);
5389 		skb->pkt_type = PACKET_HOST;
5390 		skb->protocol = eth_type_trans(skb, skb->dev);
5391 	}
5392 
5393 	/* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
5394 	 * before calling us again on redirect path. We do not call do_redirect
5395 	 * as we leave that up to the caller.
5396 	 *
5397 	 * Caller is responsible for managing lifetime of skb (i.e. calling
5398 	 * kfree_skb in response to actions it cannot handle/XDP_DROP).
5399 	 */
5400 	switch (act) {
5401 	case XDP_REDIRECT:
5402 	case XDP_TX:
5403 		__skb_push(skb, mac_len);
5404 		break;
5405 	case XDP_PASS:
5406 		metalen = xdp->data - xdp->data_meta;
5407 		if (metalen)
5408 			skb_metadata_set(skb, metalen);
5409 		break;
5410 	}
5411 
5412 	return act;
5413 }
5414 
5415 static int
5416 netif_skb_check_for_xdp(struct sk_buff **pskb, const struct bpf_prog *prog)
5417 {
5418 	struct sk_buff *skb = *pskb;
5419 	int err, hroom, troom;
5420 
5421 	local_lock_nested_bh(&system_page_pool.bh_lock);
5422 	err = skb_cow_data_for_xdp(this_cpu_read(system_page_pool.pool), pskb, prog);
5423 	local_unlock_nested_bh(&system_page_pool.bh_lock);
5424 	if (!err)
5425 		return 0;
5426 
5427 	/* In case we have to go down the path and also linearize,
5428 	 * then lets do the pskb_expand_head() work just once here.
5429 	 */
5430 	hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
5431 	troom = skb->tail + skb->data_len - skb->end;
5432 	err = pskb_expand_head(skb,
5433 			       hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
5434 			       troom > 0 ? troom + 128 : 0, GFP_ATOMIC);
5435 	if (err)
5436 		return err;
5437 
5438 	return skb_linearize(skb);
5439 }
5440 
5441 static u32 netif_receive_generic_xdp(struct sk_buff **pskb,
5442 				     struct xdp_buff *xdp,
5443 				     const struct bpf_prog *xdp_prog)
5444 {
5445 	struct sk_buff *skb = *pskb;
5446 	u32 mac_len, act = XDP_DROP;
5447 
5448 	/* Reinjected packets coming from act_mirred or similar should
5449 	 * not get XDP generic processing.
5450 	 */
5451 	if (skb_is_redirected(skb))
5452 		return XDP_PASS;
5453 
5454 	/* XDP packets must have sufficient headroom of XDP_PACKET_HEADROOM
5455 	 * bytes. This is the guarantee that also native XDP provides,
5456 	 * thus we need to do it here as well.
5457 	 */
5458 	mac_len = skb->data - skb_mac_header(skb);
5459 	__skb_push(skb, mac_len);
5460 
5461 	if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
5462 	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
5463 		if (netif_skb_check_for_xdp(pskb, xdp_prog))
5464 			goto do_drop;
5465 	}
5466 
5467 	__skb_pull(*pskb, mac_len);
5468 
5469 	act = bpf_prog_run_generic_xdp(*pskb, xdp, xdp_prog);
5470 	switch (act) {
5471 	case XDP_REDIRECT:
5472 	case XDP_TX:
5473 	case XDP_PASS:
5474 		break;
5475 	default:
5476 		bpf_warn_invalid_xdp_action((*pskb)->dev, xdp_prog, act);
5477 		fallthrough;
5478 	case XDP_ABORTED:
5479 		trace_xdp_exception((*pskb)->dev, xdp_prog, act);
5480 		fallthrough;
5481 	case XDP_DROP:
5482 	do_drop:
5483 		kfree_skb(*pskb);
5484 		break;
5485 	}
5486 
5487 	return act;
5488 }
5489 
5490 /* When doing generic XDP we have to bypass the qdisc layer and the
5491  * network taps in order to match in-driver-XDP behavior. This also means
5492  * that XDP packets are able to starve other packets going through a qdisc,
5493  * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX
5494  * queues, so they do not have this starvation issue.
5495  */
5496 void generic_xdp_tx(struct sk_buff *skb, const struct bpf_prog *xdp_prog)
5497 {
5498 	struct net_device *dev = skb->dev;
5499 	struct netdev_queue *txq;
5500 	bool free_skb = true;
5501 	int cpu, rc;
5502 
5503 	txq = netdev_core_pick_tx(dev, skb, NULL);
5504 	cpu = smp_processor_id();
5505 	HARD_TX_LOCK(dev, txq, cpu);
5506 	if (!netif_xmit_frozen_or_drv_stopped(txq)) {
5507 		rc = netdev_start_xmit(skb, dev, txq, 0);
5508 		if (dev_xmit_complete(rc))
5509 			free_skb = false;
5510 	}
5511 	HARD_TX_UNLOCK(dev, txq);
5512 	if (free_skb) {
5513 		trace_xdp_exception(dev, xdp_prog, XDP_TX);
5514 		dev_core_stats_tx_dropped_inc(dev);
5515 		kfree_skb(skb);
5516 	}
5517 }
5518 
5519 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
5520 
5521 int do_xdp_generic(const struct bpf_prog *xdp_prog, struct sk_buff **pskb)
5522 {
5523 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
5524 
5525 	if (xdp_prog) {
5526 		struct xdp_buff xdp;
5527 		u32 act;
5528 		int err;
5529 
5530 		bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
5531 		act = netif_receive_generic_xdp(pskb, &xdp, xdp_prog);
5532 		if (act != XDP_PASS) {
5533 			switch (act) {
5534 			case XDP_REDIRECT:
5535 				err = xdp_do_generic_redirect((*pskb)->dev, *pskb,
5536 							      &xdp, xdp_prog);
5537 				if (err)
5538 					goto out_redir;
5539 				break;
5540 			case XDP_TX:
5541 				generic_xdp_tx(*pskb, xdp_prog);
5542 				break;
5543 			}
5544 			bpf_net_ctx_clear(bpf_net_ctx);
5545 			return XDP_DROP;
5546 		}
5547 		bpf_net_ctx_clear(bpf_net_ctx);
5548 	}
5549 	return XDP_PASS;
5550 out_redir:
5551 	bpf_net_ctx_clear(bpf_net_ctx);
5552 	kfree_skb_reason(*pskb, SKB_DROP_REASON_XDP);
5553 	return XDP_DROP;
5554 }
5555 EXPORT_SYMBOL_GPL(do_xdp_generic);
5556 
5557 static int netif_rx_internal(struct sk_buff *skb)
5558 {
5559 	int ret;
5560 
5561 	net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb);
5562 
5563 	trace_netif_rx(skb);
5564 
5565 #ifdef CONFIG_RPS
5566 	if (static_branch_unlikely(&rps_needed)) {
5567 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5568 		int cpu;
5569 
5570 		rcu_read_lock();
5571 
5572 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
5573 		if (cpu < 0)
5574 			cpu = smp_processor_id();
5575 
5576 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5577 
5578 		rcu_read_unlock();
5579 	} else
5580 #endif
5581 	{
5582 		unsigned int qtail;
5583 
5584 		ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail);
5585 	}
5586 	return ret;
5587 }
5588 
5589 /**
5590  *	__netif_rx	-	Slightly optimized version of netif_rx
5591  *	@skb: buffer to post
5592  *
5593  *	This behaves as netif_rx except that it does not disable bottom halves.
5594  *	As a result this function may only be invoked from the interrupt context
5595  *	(either hard or soft interrupt).
5596  */
5597 int __netif_rx(struct sk_buff *skb)
5598 {
5599 	int ret;
5600 
5601 	lockdep_assert_once(hardirq_count() | softirq_count());
5602 
5603 	trace_netif_rx_entry(skb);
5604 	ret = netif_rx_internal(skb);
5605 	trace_netif_rx_exit(ret);
5606 	return ret;
5607 }
5608 EXPORT_SYMBOL(__netif_rx);
5609 
5610 /**
5611  *	netif_rx	-	post buffer to the network code
5612  *	@skb: buffer to post
5613  *
5614  *	This function receives a packet from a device driver and queues it for
5615  *	the upper (protocol) levels to process via the backlog NAPI device. It
5616  *	always succeeds. The buffer may be dropped during processing for
5617  *	congestion control or by the protocol layers.
5618  *	The network buffer is passed via the backlog NAPI device. Modern NIC
5619  *	driver should use NAPI and GRO.
5620  *	This function can used from interrupt and from process context. The
5621  *	caller from process context must not disable interrupts before invoking
5622  *	this function.
5623  *
5624  *	return values:
5625  *	NET_RX_SUCCESS	(no congestion)
5626  *	NET_RX_DROP     (packet was dropped)
5627  *
5628  */
5629 int netif_rx(struct sk_buff *skb)
5630 {
5631 	bool need_bh_off = !(hardirq_count() | softirq_count());
5632 	int ret;
5633 
5634 	if (need_bh_off)
5635 		local_bh_disable();
5636 	trace_netif_rx_entry(skb);
5637 	ret = netif_rx_internal(skb);
5638 	trace_netif_rx_exit(ret);
5639 	if (need_bh_off)
5640 		local_bh_enable();
5641 	return ret;
5642 }
5643 EXPORT_SYMBOL(netif_rx);
5644 
5645 static __latent_entropy void net_tx_action(void)
5646 {
5647 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5648 
5649 	if (sd->completion_queue) {
5650 		struct sk_buff *clist;
5651 
5652 		local_irq_disable();
5653 		clist = sd->completion_queue;
5654 		sd->completion_queue = NULL;
5655 		local_irq_enable();
5656 
5657 		while (clist) {
5658 			struct sk_buff *skb = clist;
5659 
5660 			clist = clist->next;
5661 
5662 			WARN_ON(refcount_read(&skb->users));
5663 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_CONSUMED))
5664 				trace_consume_skb(skb, net_tx_action);
5665 			else
5666 				trace_kfree_skb(skb, net_tx_action,
5667 						get_kfree_skb_cb(skb)->reason, NULL);
5668 
5669 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5670 				__kfree_skb(skb);
5671 			else
5672 				__napi_kfree_skb(skb,
5673 						 get_kfree_skb_cb(skb)->reason);
5674 		}
5675 	}
5676 
5677 	if (sd->output_queue) {
5678 		struct Qdisc *head;
5679 
5680 		local_irq_disable();
5681 		head = sd->output_queue;
5682 		sd->output_queue = NULL;
5683 		sd->output_queue_tailp = &sd->output_queue;
5684 		local_irq_enable();
5685 
5686 		rcu_read_lock();
5687 
5688 		while (head) {
5689 			struct Qdisc *q = head;
5690 			spinlock_t *root_lock = NULL;
5691 
5692 			head = head->next_sched;
5693 
5694 			/* We need to make sure head->next_sched is read
5695 			 * before clearing __QDISC_STATE_SCHED
5696 			 */
5697 			smp_mb__before_atomic();
5698 
5699 			if (!(q->flags & TCQ_F_NOLOCK)) {
5700 				root_lock = qdisc_lock(q);
5701 				spin_lock(root_lock);
5702 			} else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5703 						     &q->state))) {
5704 				/* There is a synchronize_net() between
5705 				 * STATE_DEACTIVATED flag being set and
5706 				 * qdisc_reset()/some_qdisc_is_busy() in
5707 				 * dev_deactivate(), so we can safely bail out
5708 				 * early here to avoid data race between
5709 				 * qdisc_deactivate() and some_qdisc_is_busy()
5710 				 * for lockless qdisc.
5711 				 */
5712 				clear_bit(__QDISC_STATE_SCHED, &q->state);
5713 				continue;
5714 			}
5715 
5716 			clear_bit(__QDISC_STATE_SCHED, &q->state);
5717 			qdisc_run(q);
5718 			if (root_lock)
5719 				spin_unlock(root_lock);
5720 		}
5721 
5722 		rcu_read_unlock();
5723 	}
5724 
5725 	xfrm_dev_backlog(sd);
5726 }
5727 
5728 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5729 /* This hook is defined here for ATM LANE */
5730 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5731 			     unsigned char *addr) __read_mostly;
5732 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5733 #endif
5734 
5735 /**
5736  *	netdev_is_rx_handler_busy - check if receive handler is registered
5737  *	@dev: device to check
5738  *
5739  *	Check if a receive handler is already registered for a given device.
5740  *	Return true if there one.
5741  *
5742  *	The caller must hold the rtnl_mutex.
5743  */
5744 bool netdev_is_rx_handler_busy(struct net_device *dev)
5745 {
5746 	ASSERT_RTNL();
5747 	return dev && rtnl_dereference(dev->rx_handler);
5748 }
5749 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5750 
5751 /**
5752  *	netdev_rx_handler_register - register receive handler
5753  *	@dev: device to register a handler for
5754  *	@rx_handler: receive handler to register
5755  *	@rx_handler_data: data pointer that is used by rx handler
5756  *
5757  *	Register a receive handler for a device. This handler will then be
5758  *	called from __netif_receive_skb. A negative errno code is returned
5759  *	on a failure.
5760  *
5761  *	The caller must hold the rtnl_mutex.
5762  *
5763  *	For a general description of rx_handler, see enum rx_handler_result.
5764  */
5765 int netdev_rx_handler_register(struct net_device *dev,
5766 			       rx_handler_func_t *rx_handler,
5767 			       void *rx_handler_data)
5768 {
5769 	if (netdev_is_rx_handler_busy(dev))
5770 		return -EBUSY;
5771 
5772 	if (dev->priv_flags & IFF_NO_RX_HANDLER)
5773 		return -EINVAL;
5774 
5775 	/* Note: rx_handler_data must be set before rx_handler */
5776 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5777 	rcu_assign_pointer(dev->rx_handler, rx_handler);
5778 
5779 	return 0;
5780 }
5781 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5782 
5783 /**
5784  *	netdev_rx_handler_unregister - unregister receive handler
5785  *	@dev: device to unregister a handler from
5786  *
5787  *	Unregister a receive handler from a device.
5788  *
5789  *	The caller must hold the rtnl_mutex.
5790  */
5791 void netdev_rx_handler_unregister(struct net_device *dev)
5792 {
5793 
5794 	ASSERT_RTNL();
5795 	RCU_INIT_POINTER(dev->rx_handler, NULL);
5796 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5797 	 * section has a guarantee to see a non NULL rx_handler_data
5798 	 * as well.
5799 	 */
5800 	synchronize_net();
5801 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5802 }
5803 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5804 
5805 /*
5806  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5807  * the special handling of PFMEMALLOC skbs.
5808  */
5809 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5810 {
5811 	switch (skb->protocol) {
5812 	case htons(ETH_P_ARP):
5813 	case htons(ETH_P_IP):
5814 	case htons(ETH_P_IPV6):
5815 	case htons(ETH_P_8021Q):
5816 	case htons(ETH_P_8021AD):
5817 		return true;
5818 	default:
5819 		return false;
5820 	}
5821 }
5822 
5823 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5824 			     int *ret, struct net_device *orig_dev)
5825 {
5826 	if (nf_hook_ingress_active(skb)) {
5827 		int ingress_retval;
5828 
5829 		if (*pt_prev) {
5830 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
5831 			*pt_prev = NULL;
5832 		}
5833 
5834 		rcu_read_lock();
5835 		ingress_retval = nf_hook_ingress(skb);
5836 		rcu_read_unlock();
5837 		return ingress_retval;
5838 	}
5839 	return 0;
5840 }
5841 
5842 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5843 				    struct packet_type **ppt_prev)
5844 {
5845 	enum skb_drop_reason drop_reason = SKB_DROP_REASON_UNHANDLED_PROTO;
5846 	struct packet_type *ptype, *pt_prev;
5847 	rx_handler_func_t *rx_handler;
5848 	struct sk_buff *skb = *pskb;
5849 	struct net_device *orig_dev;
5850 	bool deliver_exact = false;
5851 	int ret = NET_RX_DROP;
5852 	__be16 type;
5853 
5854 	net_timestamp_check(!READ_ONCE(net_hotdata.tstamp_prequeue), skb);
5855 
5856 	trace_netif_receive_skb(skb);
5857 
5858 	orig_dev = skb->dev;
5859 
5860 	skb_reset_network_header(skb);
5861 #if !defined(CONFIG_DEBUG_NET)
5862 	/* We plan to no longer reset the transport header here.
5863 	 * Give some time to fuzzers and dev build to catch bugs
5864 	 * in network stacks.
5865 	 */
5866 	if (!skb_transport_header_was_set(skb))
5867 		skb_reset_transport_header(skb);
5868 #endif
5869 	skb_reset_mac_len(skb);
5870 
5871 	pt_prev = NULL;
5872 
5873 another_round:
5874 	skb->skb_iif = skb->dev->ifindex;
5875 
5876 	__this_cpu_inc(softnet_data.processed);
5877 
5878 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
5879 		int ret2;
5880 
5881 		migrate_disable();
5882 		ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog),
5883 				      &skb);
5884 		migrate_enable();
5885 
5886 		if (ret2 != XDP_PASS) {
5887 			ret = NET_RX_DROP;
5888 			goto out;
5889 		}
5890 	}
5891 
5892 	if (eth_type_vlan(skb->protocol)) {
5893 		skb = skb_vlan_untag(skb);
5894 		if (unlikely(!skb))
5895 			goto out;
5896 	}
5897 
5898 	if (skb_skip_tc_classify(skb))
5899 		goto skip_classify;
5900 
5901 	if (pfmemalloc)
5902 		goto skip_taps;
5903 
5904 	list_for_each_entry_rcu(ptype, &dev_net_rcu(skb->dev)->ptype_all,
5905 				list) {
5906 		if (pt_prev)
5907 			ret = deliver_skb(skb, pt_prev, orig_dev);
5908 		pt_prev = ptype;
5909 	}
5910 
5911 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5912 		if (pt_prev)
5913 			ret = deliver_skb(skb, pt_prev, orig_dev);
5914 		pt_prev = ptype;
5915 	}
5916 
5917 skip_taps:
5918 #ifdef CONFIG_NET_INGRESS
5919 	if (static_branch_unlikely(&ingress_needed_key)) {
5920 		bool another = false;
5921 
5922 		nf_skip_egress(skb, true);
5923 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5924 					 &another);
5925 		if (another)
5926 			goto another_round;
5927 		if (!skb)
5928 			goto out;
5929 
5930 		nf_skip_egress(skb, false);
5931 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5932 			goto out;
5933 	}
5934 #endif
5935 	skb_reset_redirect(skb);
5936 skip_classify:
5937 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) {
5938 		drop_reason = SKB_DROP_REASON_PFMEMALLOC;
5939 		goto drop;
5940 	}
5941 
5942 	if (skb_vlan_tag_present(skb)) {
5943 		if (pt_prev) {
5944 			ret = deliver_skb(skb, pt_prev, orig_dev);
5945 			pt_prev = NULL;
5946 		}
5947 		if (vlan_do_receive(&skb))
5948 			goto another_round;
5949 		else if (unlikely(!skb))
5950 			goto out;
5951 	}
5952 
5953 	rx_handler = rcu_dereference(skb->dev->rx_handler);
5954 	if (rx_handler) {
5955 		if (pt_prev) {
5956 			ret = deliver_skb(skb, pt_prev, orig_dev);
5957 			pt_prev = NULL;
5958 		}
5959 		switch (rx_handler(&skb)) {
5960 		case RX_HANDLER_CONSUMED:
5961 			ret = NET_RX_SUCCESS;
5962 			goto out;
5963 		case RX_HANDLER_ANOTHER:
5964 			goto another_round;
5965 		case RX_HANDLER_EXACT:
5966 			deliver_exact = true;
5967 			break;
5968 		case RX_HANDLER_PASS:
5969 			break;
5970 		default:
5971 			BUG();
5972 		}
5973 	}
5974 
5975 	if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5976 check_vlan_id:
5977 		if (skb_vlan_tag_get_id(skb)) {
5978 			/* Vlan id is non 0 and vlan_do_receive() above couldn't
5979 			 * find vlan device.
5980 			 */
5981 			skb->pkt_type = PACKET_OTHERHOST;
5982 		} else if (eth_type_vlan(skb->protocol)) {
5983 			/* Outer header is 802.1P with vlan 0, inner header is
5984 			 * 802.1Q or 802.1AD and vlan_do_receive() above could
5985 			 * not find vlan dev for vlan id 0.
5986 			 */
5987 			__vlan_hwaccel_clear_tag(skb);
5988 			skb = skb_vlan_untag(skb);
5989 			if (unlikely(!skb))
5990 				goto out;
5991 			if (vlan_do_receive(&skb))
5992 				/* After stripping off 802.1P header with vlan 0
5993 				 * vlan dev is found for inner header.
5994 				 */
5995 				goto another_round;
5996 			else if (unlikely(!skb))
5997 				goto out;
5998 			else
5999 				/* We have stripped outer 802.1P vlan 0 header.
6000 				 * But could not find vlan dev.
6001 				 * check again for vlan id to set OTHERHOST.
6002 				 */
6003 				goto check_vlan_id;
6004 		}
6005 		/* Note: we might in the future use prio bits
6006 		 * and set skb->priority like in vlan_do_receive()
6007 		 * For the time being, just ignore Priority Code Point
6008 		 */
6009 		__vlan_hwaccel_clear_tag(skb);
6010 	}
6011 
6012 	type = skb->protocol;
6013 
6014 	/* deliver only exact match when indicated */
6015 	if (likely(!deliver_exact)) {
6016 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
6017 				       &ptype_base[ntohs(type) &
6018 						   PTYPE_HASH_MASK]);
6019 
6020 		/* orig_dev and skb->dev could belong to different netns;
6021 		 * Even in such case we need to traverse only the list
6022 		 * coming from skb->dev, as the ptype owner (packet socket)
6023 		 * will use dev_net(skb->dev) to do namespace filtering.
6024 		 */
6025 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
6026 				       &dev_net_rcu(skb->dev)->ptype_specific);
6027 	}
6028 
6029 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
6030 			       &orig_dev->ptype_specific);
6031 
6032 	if (unlikely(skb->dev != orig_dev)) {
6033 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
6034 				       &skb->dev->ptype_specific);
6035 	}
6036 
6037 	if (pt_prev) {
6038 		*ppt_prev = pt_prev;
6039 	} else {
6040 drop:
6041 		if (!deliver_exact)
6042 			dev_core_stats_rx_dropped_inc(skb->dev);
6043 		else
6044 			dev_core_stats_rx_nohandler_inc(skb->dev);
6045 
6046 		kfree_skb_reason(skb, drop_reason);
6047 		/* Jamal, now you will not able to escape explaining
6048 		 * me how you were going to use this. :-)
6049 		 */
6050 		ret = NET_RX_DROP;
6051 	}
6052 
6053 out:
6054 	/* The invariant here is that if *ppt_prev is not NULL
6055 	 * then skb should also be non-NULL.
6056 	 *
6057 	 * Apparently *ppt_prev assignment above holds this invariant due to
6058 	 * skb dereferencing near it.
6059 	 */
6060 	*pskb = skb;
6061 	return ret;
6062 }
6063 
6064 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
6065 {
6066 	struct net_device *orig_dev = skb->dev;
6067 	struct packet_type *pt_prev = NULL;
6068 	int ret;
6069 
6070 	ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
6071 	if (pt_prev)
6072 		ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
6073 					 skb->dev, pt_prev, orig_dev);
6074 	return ret;
6075 }
6076 
6077 /**
6078  *	netif_receive_skb_core - special purpose version of netif_receive_skb
6079  *	@skb: buffer to process
6080  *
6081  *	More direct receive version of netif_receive_skb().  It should
6082  *	only be used by callers that have a need to skip RPS and Generic XDP.
6083  *	Caller must also take care of handling if ``(page_is_)pfmemalloc``.
6084  *
6085  *	This function may only be called from softirq context and interrupts
6086  *	should be enabled.
6087  *
6088  *	Return values (usually ignored):
6089  *	NET_RX_SUCCESS: no congestion
6090  *	NET_RX_DROP: packet was dropped
6091  */
6092 int netif_receive_skb_core(struct sk_buff *skb)
6093 {
6094 	int ret;
6095 
6096 	rcu_read_lock();
6097 	ret = __netif_receive_skb_one_core(skb, false);
6098 	rcu_read_unlock();
6099 
6100 	return ret;
6101 }
6102 EXPORT_SYMBOL(netif_receive_skb_core);
6103 
6104 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
6105 						  struct packet_type *pt_prev,
6106 						  struct net_device *orig_dev)
6107 {
6108 	struct sk_buff *skb, *next;
6109 
6110 	if (!pt_prev)
6111 		return;
6112 	if (list_empty(head))
6113 		return;
6114 	if (pt_prev->list_func != NULL)
6115 		INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
6116 				   ip_list_rcv, head, pt_prev, orig_dev);
6117 	else
6118 		list_for_each_entry_safe(skb, next, head, list) {
6119 			skb_list_del_init(skb);
6120 			pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
6121 		}
6122 }
6123 
6124 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
6125 {
6126 	/* Fast-path assumptions:
6127 	 * - There is no RX handler.
6128 	 * - Only one packet_type matches.
6129 	 * If either of these fails, we will end up doing some per-packet
6130 	 * processing in-line, then handling the 'last ptype' for the whole
6131 	 * sublist.  This can't cause out-of-order delivery to any single ptype,
6132 	 * because the 'last ptype' must be constant across the sublist, and all
6133 	 * other ptypes are handled per-packet.
6134 	 */
6135 	/* Current (common) ptype of sublist */
6136 	struct packet_type *pt_curr = NULL;
6137 	/* Current (common) orig_dev of sublist */
6138 	struct net_device *od_curr = NULL;
6139 	struct sk_buff *skb, *next;
6140 	LIST_HEAD(sublist);
6141 
6142 	list_for_each_entry_safe(skb, next, head, list) {
6143 		struct net_device *orig_dev = skb->dev;
6144 		struct packet_type *pt_prev = NULL;
6145 
6146 		skb_list_del_init(skb);
6147 		__netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
6148 		if (!pt_prev)
6149 			continue;
6150 		if (pt_curr != pt_prev || od_curr != orig_dev) {
6151 			/* dispatch old sublist */
6152 			__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
6153 			/* start new sublist */
6154 			INIT_LIST_HEAD(&sublist);
6155 			pt_curr = pt_prev;
6156 			od_curr = orig_dev;
6157 		}
6158 		list_add_tail(&skb->list, &sublist);
6159 	}
6160 
6161 	/* dispatch final sublist */
6162 	__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
6163 }
6164 
6165 static int __netif_receive_skb(struct sk_buff *skb)
6166 {
6167 	int ret;
6168 
6169 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
6170 		unsigned int noreclaim_flag;
6171 
6172 		/*
6173 		 * PFMEMALLOC skbs are special, they should
6174 		 * - be delivered to SOCK_MEMALLOC sockets only
6175 		 * - stay away from userspace
6176 		 * - have bounded memory usage
6177 		 *
6178 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
6179 		 * context down to all allocation sites.
6180 		 */
6181 		noreclaim_flag = memalloc_noreclaim_save();
6182 		ret = __netif_receive_skb_one_core(skb, true);
6183 		memalloc_noreclaim_restore(noreclaim_flag);
6184 	} else
6185 		ret = __netif_receive_skb_one_core(skb, false);
6186 
6187 	return ret;
6188 }
6189 
6190 static void __netif_receive_skb_list(struct list_head *head)
6191 {
6192 	unsigned long noreclaim_flag = 0;
6193 	struct sk_buff *skb, *next;
6194 	bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
6195 
6196 	list_for_each_entry_safe(skb, next, head, list) {
6197 		if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
6198 			struct list_head sublist;
6199 
6200 			/* Handle the previous sublist */
6201 			list_cut_before(&sublist, head, &skb->list);
6202 			if (!list_empty(&sublist))
6203 				__netif_receive_skb_list_core(&sublist, pfmemalloc);
6204 			pfmemalloc = !pfmemalloc;
6205 			/* See comments in __netif_receive_skb */
6206 			if (pfmemalloc)
6207 				noreclaim_flag = memalloc_noreclaim_save();
6208 			else
6209 				memalloc_noreclaim_restore(noreclaim_flag);
6210 		}
6211 	}
6212 	/* Handle the remaining sublist */
6213 	if (!list_empty(head))
6214 		__netif_receive_skb_list_core(head, pfmemalloc);
6215 	/* Restore pflags */
6216 	if (pfmemalloc)
6217 		memalloc_noreclaim_restore(noreclaim_flag);
6218 }
6219 
6220 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
6221 {
6222 	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
6223 	struct bpf_prog *new = xdp->prog;
6224 	int ret = 0;
6225 
6226 	switch (xdp->command) {
6227 	case XDP_SETUP_PROG:
6228 		rcu_assign_pointer(dev->xdp_prog, new);
6229 		if (old)
6230 			bpf_prog_put(old);
6231 
6232 		if (old && !new) {
6233 			static_branch_dec(&generic_xdp_needed_key);
6234 		} else if (new && !old) {
6235 			static_branch_inc(&generic_xdp_needed_key);
6236 			netif_disable_lro(dev);
6237 			dev_disable_gro_hw(dev);
6238 		}
6239 		break;
6240 
6241 	default:
6242 		ret = -EINVAL;
6243 		break;
6244 	}
6245 
6246 	return ret;
6247 }
6248 
6249 static int netif_receive_skb_internal(struct sk_buff *skb)
6250 {
6251 	int ret;
6252 
6253 	net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb);
6254 
6255 	if (skb_defer_rx_timestamp(skb))
6256 		return NET_RX_SUCCESS;
6257 
6258 	rcu_read_lock();
6259 #ifdef CONFIG_RPS
6260 	if (static_branch_unlikely(&rps_needed)) {
6261 		struct rps_dev_flow voidflow, *rflow = &voidflow;
6262 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
6263 
6264 		if (cpu >= 0) {
6265 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
6266 			rcu_read_unlock();
6267 			return ret;
6268 		}
6269 	}
6270 #endif
6271 	ret = __netif_receive_skb(skb);
6272 	rcu_read_unlock();
6273 	return ret;
6274 }
6275 
6276 void netif_receive_skb_list_internal(struct list_head *head)
6277 {
6278 	struct sk_buff *skb, *next;
6279 	LIST_HEAD(sublist);
6280 
6281 	list_for_each_entry_safe(skb, next, head, list) {
6282 		net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue),
6283 				    skb);
6284 		skb_list_del_init(skb);
6285 		if (!skb_defer_rx_timestamp(skb))
6286 			list_add_tail(&skb->list, &sublist);
6287 	}
6288 	list_splice_init(&sublist, head);
6289 
6290 	rcu_read_lock();
6291 #ifdef CONFIG_RPS
6292 	if (static_branch_unlikely(&rps_needed)) {
6293 		list_for_each_entry_safe(skb, next, head, list) {
6294 			struct rps_dev_flow voidflow, *rflow = &voidflow;
6295 			int cpu = get_rps_cpu(skb->dev, skb, &rflow);
6296 
6297 			if (cpu >= 0) {
6298 				/* Will be handled, remove from list */
6299 				skb_list_del_init(skb);
6300 				enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
6301 			}
6302 		}
6303 	}
6304 #endif
6305 	__netif_receive_skb_list(head);
6306 	rcu_read_unlock();
6307 }
6308 
6309 /**
6310  *	netif_receive_skb - process receive buffer from network
6311  *	@skb: buffer to process
6312  *
6313  *	netif_receive_skb() is the main receive data processing function.
6314  *	It always succeeds. The buffer may be dropped during processing
6315  *	for congestion control or by the protocol layers.
6316  *
6317  *	This function may only be called from softirq context and interrupts
6318  *	should be enabled.
6319  *
6320  *	Return values (usually ignored):
6321  *	NET_RX_SUCCESS: no congestion
6322  *	NET_RX_DROP: packet was dropped
6323  */
6324 int netif_receive_skb(struct sk_buff *skb)
6325 {
6326 	int ret;
6327 
6328 	trace_netif_receive_skb_entry(skb);
6329 
6330 	ret = netif_receive_skb_internal(skb);
6331 	trace_netif_receive_skb_exit(ret);
6332 
6333 	return ret;
6334 }
6335 EXPORT_SYMBOL(netif_receive_skb);
6336 
6337 /**
6338  *	netif_receive_skb_list - process many receive buffers from network
6339  *	@head: list of skbs to process.
6340  *
6341  *	Since return value of netif_receive_skb() is normally ignored, and
6342  *	wouldn't be meaningful for a list, this function returns void.
6343  *
6344  *	This function may only be called from softirq context and interrupts
6345  *	should be enabled.
6346  */
6347 void netif_receive_skb_list(struct list_head *head)
6348 {
6349 	struct sk_buff *skb;
6350 
6351 	if (list_empty(head))
6352 		return;
6353 	if (trace_netif_receive_skb_list_entry_enabled()) {
6354 		list_for_each_entry(skb, head, list)
6355 			trace_netif_receive_skb_list_entry(skb);
6356 	}
6357 	netif_receive_skb_list_internal(head);
6358 	trace_netif_receive_skb_list_exit(0);
6359 }
6360 EXPORT_SYMBOL(netif_receive_skb_list);
6361 
6362 /* Network device is going away, flush any packets still pending */
6363 static void flush_backlog(struct work_struct *work)
6364 {
6365 	struct sk_buff *skb, *tmp;
6366 	struct sk_buff_head list;
6367 	struct softnet_data *sd;
6368 
6369 	__skb_queue_head_init(&list);
6370 	local_bh_disable();
6371 	sd = this_cpu_ptr(&softnet_data);
6372 
6373 	backlog_lock_irq_disable(sd);
6374 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
6375 		if (READ_ONCE(skb->dev->reg_state) == NETREG_UNREGISTERING) {
6376 			__skb_unlink(skb, &sd->input_pkt_queue);
6377 			__skb_queue_tail(&list, skb);
6378 			rps_input_queue_head_incr(sd);
6379 		}
6380 	}
6381 	backlog_unlock_irq_enable(sd);
6382 
6383 	local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6384 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
6385 		if (READ_ONCE(skb->dev->reg_state) == NETREG_UNREGISTERING) {
6386 			__skb_unlink(skb, &sd->process_queue);
6387 			__skb_queue_tail(&list, skb);
6388 			rps_input_queue_head_incr(sd);
6389 		}
6390 	}
6391 	local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6392 	local_bh_enable();
6393 
6394 	__skb_queue_purge_reason(&list, SKB_DROP_REASON_DEV_READY);
6395 }
6396 
6397 static bool flush_required(int cpu)
6398 {
6399 #if IS_ENABLED(CONFIG_RPS)
6400 	struct softnet_data *sd = &per_cpu(softnet_data, cpu);
6401 	bool do_flush;
6402 
6403 	backlog_lock_irq_disable(sd);
6404 
6405 	/* as insertion into process_queue happens with the rps lock held,
6406 	 * process_queue access may race only with dequeue
6407 	 */
6408 	do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
6409 		   !skb_queue_empty_lockless(&sd->process_queue);
6410 	backlog_unlock_irq_enable(sd);
6411 
6412 	return do_flush;
6413 #endif
6414 	/* without RPS we can't safely check input_pkt_queue: during a
6415 	 * concurrent remote skb_queue_splice() we can detect as empty both
6416 	 * input_pkt_queue and process_queue even if the latter could end-up
6417 	 * containing a lot of packets.
6418 	 */
6419 	return true;
6420 }
6421 
6422 struct flush_backlogs {
6423 	cpumask_t		flush_cpus;
6424 	struct work_struct	w[];
6425 };
6426 
6427 static struct flush_backlogs *flush_backlogs_alloc(void)
6428 {
6429 	return kmalloc(struct_size_t(struct flush_backlogs, w, nr_cpu_ids),
6430 		       GFP_KERNEL);
6431 }
6432 
6433 static struct flush_backlogs *flush_backlogs_fallback;
6434 static DEFINE_MUTEX(flush_backlogs_mutex);
6435 
6436 static void flush_all_backlogs(void)
6437 {
6438 	struct flush_backlogs *ptr = flush_backlogs_alloc();
6439 	unsigned int cpu;
6440 
6441 	if (!ptr) {
6442 		mutex_lock(&flush_backlogs_mutex);
6443 		ptr = flush_backlogs_fallback;
6444 	}
6445 	cpumask_clear(&ptr->flush_cpus);
6446 
6447 	cpus_read_lock();
6448 
6449 	for_each_online_cpu(cpu) {
6450 		if (flush_required(cpu)) {
6451 			INIT_WORK(&ptr->w[cpu], flush_backlog);
6452 			queue_work_on(cpu, system_highpri_wq, &ptr->w[cpu]);
6453 			__cpumask_set_cpu(cpu, &ptr->flush_cpus);
6454 		}
6455 	}
6456 
6457 	/* we can have in flight packet[s] on the cpus we are not flushing,
6458 	 * synchronize_net() in unregister_netdevice_many() will take care of
6459 	 * them.
6460 	 */
6461 	for_each_cpu(cpu, &ptr->flush_cpus)
6462 		flush_work(&ptr->w[cpu]);
6463 
6464 	cpus_read_unlock();
6465 
6466 	if (ptr != flush_backlogs_fallback)
6467 		kfree(ptr);
6468 	else
6469 		mutex_unlock(&flush_backlogs_mutex);
6470 }
6471 
6472 static void net_rps_send_ipi(struct softnet_data *remsd)
6473 {
6474 #ifdef CONFIG_RPS
6475 	while (remsd) {
6476 		struct softnet_data *next = remsd->rps_ipi_next;
6477 
6478 		if (cpu_online(remsd->cpu))
6479 			smp_call_function_single_async(remsd->cpu, &remsd->csd);
6480 		remsd = next;
6481 	}
6482 #endif
6483 }
6484 
6485 /*
6486  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6487  * Note: called with local irq disabled, but exits with local irq enabled.
6488  */
6489 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6490 {
6491 #ifdef CONFIG_RPS
6492 	struct softnet_data *remsd = sd->rps_ipi_list;
6493 
6494 	if (!use_backlog_threads() && remsd) {
6495 		sd->rps_ipi_list = NULL;
6496 
6497 		local_irq_enable();
6498 
6499 		/* Send pending IPI's to kick RPS processing on remote cpus. */
6500 		net_rps_send_ipi(remsd);
6501 	} else
6502 #endif
6503 		local_irq_enable();
6504 }
6505 
6506 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6507 {
6508 #ifdef CONFIG_RPS
6509 	return !use_backlog_threads() && sd->rps_ipi_list;
6510 #else
6511 	return false;
6512 #endif
6513 }
6514 
6515 static int process_backlog(struct napi_struct *napi, int quota)
6516 {
6517 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6518 	bool again = true;
6519 	int work = 0;
6520 
6521 	/* Check if we have pending ipi, its better to send them now,
6522 	 * not waiting net_rx_action() end.
6523 	 */
6524 	if (sd_has_rps_ipi_waiting(sd)) {
6525 		local_irq_disable();
6526 		net_rps_action_and_irq_enable(sd);
6527 	}
6528 
6529 	napi->weight = READ_ONCE(net_hotdata.dev_rx_weight);
6530 	while (again) {
6531 		struct sk_buff *skb;
6532 
6533 		local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6534 		while ((skb = __skb_dequeue(&sd->process_queue))) {
6535 			local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6536 			rcu_read_lock();
6537 			__netif_receive_skb(skb);
6538 			rcu_read_unlock();
6539 			if (++work >= quota) {
6540 				rps_input_queue_head_add(sd, work);
6541 				return work;
6542 			}
6543 
6544 			local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6545 		}
6546 		local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6547 
6548 		backlog_lock_irq_disable(sd);
6549 		if (skb_queue_empty(&sd->input_pkt_queue)) {
6550 			/*
6551 			 * Inline a custom version of __napi_complete().
6552 			 * only current cpu owns and manipulates this napi,
6553 			 * and NAPI_STATE_SCHED is the only possible flag set
6554 			 * on backlog.
6555 			 * We can use a plain write instead of clear_bit(),
6556 			 * and we dont need an smp_mb() memory barrier.
6557 			 */
6558 			napi->state &= NAPIF_STATE_THREADED;
6559 			again = false;
6560 		} else {
6561 			local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6562 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
6563 						   &sd->process_queue);
6564 			local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6565 		}
6566 		backlog_unlock_irq_enable(sd);
6567 	}
6568 
6569 	if (work)
6570 		rps_input_queue_head_add(sd, work);
6571 	return work;
6572 }
6573 
6574 /**
6575  * __napi_schedule - schedule for receive
6576  * @n: entry to schedule
6577  *
6578  * The entry's receive function will be scheduled to run.
6579  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6580  */
6581 void __napi_schedule(struct napi_struct *n)
6582 {
6583 	unsigned long flags;
6584 
6585 	local_irq_save(flags);
6586 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
6587 	local_irq_restore(flags);
6588 }
6589 EXPORT_SYMBOL(__napi_schedule);
6590 
6591 /**
6592  *	napi_schedule_prep - check if napi can be scheduled
6593  *	@n: napi context
6594  *
6595  * Test if NAPI routine is already running, and if not mark
6596  * it as running.  This is used as a condition variable to
6597  * insure only one NAPI poll instance runs.  We also make
6598  * sure there is no pending NAPI disable.
6599  */
6600 bool napi_schedule_prep(struct napi_struct *n)
6601 {
6602 	unsigned long new, val = READ_ONCE(n->state);
6603 
6604 	do {
6605 		if (unlikely(val & NAPIF_STATE_DISABLE))
6606 			return false;
6607 		new = val | NAPIF_STATE_SCHED;
6608 
6609 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
6610 		 * This was suggested by Alexander Duyck, as compiler
6611 		 * emits better code than :
6612 		 * if (val & NAPIF_STATE_SCHED)
6613 		 *     new |= NAPIF_STATE_MISSED;
6614 		 */
6615 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6616 						   NAPIF_STATE_MISSED;
6617 	} while (!try_cmpxchg(&n->state, &val, new));
6618 
6619 	return !(val & NAPIF_STATE_SCHED);
6620 }
6621 EXPORT_SYMBOL(napi_schedule_prep);
6622 
6623 /**
6624  * __napi_schedule_irqoff - schedule for receive
6625  * @n: entry to schedule
6626  *
6627  * Variant of __napi_schedule() assuming hard irqs are masked.
6628  *
6629  * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6630  * because the interrupt disabled assumption might not be true
6631  * due to force-threaded interrupts and spinlock substitution.
6632  */
6633 void __napi_schedule_irqoff(struct napi_struct *n)
6634 {
6635 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6636 		____napi_schedule(this_cpu_ptr(&softnet_data), n);
6637 	else
6638 		__napi_schedule(n);
6639 }
6640 EXPORT_SYMBOL(__napi_schedule_irqoff);
6641 
6642 bool napi_complete_done(struct napi_struct *n, int work_done)
6643 {
6644 	unsigned long flags, val, new, timeout = 0;
6645 	bool ret = true;
6646 
6647 	/*
6648 	 * 1) Don't let napi dequeue from the cpu poll list
6649 	 *    just in case its running on a different cpu.
6650 	 * 2) If we are busy polling, do nothing here, we have
6651 	 *    the guarantee we will be called later.
6652 	 */
6653 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6654 				 NAPIF_STATE_IN_BUSY_POLL)))
6655 		return false;
6656 
6657 	if (work_done) {
6658 		if (n->gro.bitmask)
6659 			timeout = napi_get_gro_flush_timeout(n);
6660 		n->defer_hard_irqs_count = napi_get_defer_hard_irqs(n);
6661 	}
6662 	if (n->defer_hard_irqs_count > 0) {
6663 		n->defer_hard_irqs_count--;
6664 		timeout = napi_get_gro_flush_timeout(n);
6665 		if (timeout)
6666 			ret = false;
6667 	}
6668 
6669 	/*
6670 	 * When the NAPI instance uses a timeout and keeps postponing
6671 	 * it, we need to bound somehow the time packets are kept in
6672 	 * the GRO layer.
6673 	 */
6674 	gro_flush_normal(&n->gro, !!timeout);
6675 
6676 	if (unlikely(!list_empty(&n->poll_list))) {
6677 		/* If n->poll_list is not empty, we need to mask irqs */
6678 		local_irq_save(flags);
6679 		list_del_init(&n->poll_list);
6680 		local_irq_restore(flags);
6681 	}
6682 	WRITE_ONCE(n->list_owner, -1);
6683 
6684 	val = READ_ONCE(n->state);
6685 	do {
6686 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6687 
6688 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6689 			      NAPIF_STATE_SCHED_THREADED |
6690 			      NAPIF_STATE_PREFER_BUSY_POLL);
6691 
6692 		/* If STATE_MISSED was set, leave STATE_SCHED set,
6693 		 * because we will call napi->poll() one more time.
6694 		 * This C code was suggested by Alexander Duyck to help gcc.
6695 		 */
6696 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6697 						    NAPIF_STATE_SCHED;
6698 	} while (!try_cmpxchg(&n->state, &val, new));
6699 
6700 	if (unlikely(val & NAPIF_STATE_MISSED)) {
6701 		__napi_schedule(n);
6702 		return false;
6703 	}
6704 
6705 	if (timeout)
6706 		hrtimer_start(&n->timer, ns_to_ktime(timeout),
6707 			      HRTIMER_MODE_REL_PINNED);
6708 	return ret;
6709 }
6710 EXPORT_SYMBOL(napi_complete_done);
6711 
6712 static void skb_defer_free_flush(struct softnet_data *sd)
6713 {
6714 	struct sk_buff *skb, *next;
6715 
6716 	/* Paired with WRITE_ONCE() in skb_attempt_defer_free() */
6717 	if (!READ_ONCE(sd->defer_list))
6718 		return;
6719 
6720 	spin_lock(&sd->defer_lock);
6721 	skb = sd->defer_list;
6722 	sd->defer_list = NULL;
6723 	sd->defer_count = 0;
6724 	spin_unlock(&sd->defer_lock);
6725 
6726 	while (skb != NULL) {
6727 		next = skb->next;
6728 		napi_consume_skb(skb, 1);
6729 		skb = next;
6730 	}
6731 }
6732 
6733 #if defined(CONFIG_NET_RX_BUSY_POLL)
6734 
6735 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6736 {
6737 	if (!skip_schedule) {
6738 		gro_normal_list(&napi->gro);
6739 		__napi_schedule(napi);
6740 		return;
6741 	}
6742 
6743 	/* Flush too old packets. If HZ < 1000, flush all packets */
6744 	gro_flush_normal(&napi->gro, HZ >= 1000);
6745 
6746 	clear_bit(NAPI_STATE_SCHED, &napi->state);
6747 }
6748 
6749 enum {
6750 	NAPI_F_PREFER_BUSY_POLL	= 1,
6751 	NAPI_F_END_ON_RESCHED	= 2,
6752 };
6753 
6754 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock,
6755 			   unsigned flags, u16 budget)
6756 {
6757 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
6758 	bool skip_schedule = false;
6759 	unsigned long timeout;
6760 	int rc;
6761 
6762 	/* Busy polling means there is a high chance device driver hard irq
6763 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6764 	 * set in napi_schedule_prep().
6765 	 * Since we are about to call napi->poll() once more, we can safely
6766 	 * clear NAPI_STATE_MISSED.
6767 	 *
6768 	 * Note: x86 could use a single "lock and ..." instruction
6769 	 * to perform these two clear_bit()
6770 	 */
6771 	clear_bit(NAPI_STATE_MISSED, &napi->state);
6772 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6773 
6774 	local_bh_disable();
6775 	bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
6776 
6777 	if (flags & NAPI_F_PREFER_BUSY_POLL) {
6778 		napi->defer_hard_irqs_count = napi_get_defer_hard_irqs(napi);
6779 		timeout = napi_get_gro_flush_timeout(napi);
6780 		if (napi->defer_hard_irqs_count && timeout) {
6781 			hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6782 			skip_schedule = true;
6783 		}
6784 	}
6785 
6786 	/* All we really want here is to re-enable device interrupts.
6787 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6788 	 */
6789 	rc = napi->poll(napi, budget);
6790 	/* We can't gro_normal_list() here, because napi->poll() might have
6791 	 * rearmed the napi (napi_complete_done()) in which case it could
6792 	 * already be running on another CPU.
6793 	 */
6794 	trace_napi_poll(napi, rc, budget);
6795 	netpoll_poll_unlock(have_poll_lock);
6796 	if (rc == budget)
6797 		__busy_poll_stop(napi, skip_schedule);
6798 	bpf_net_ctx_clear(bpf_net_ctx);
6799 	local_bh_enable();
6800 }
6801 
6802 static void __napi_busy_loop(unsigned int napi_id,
6803 		      bool (*loop_end)(void *, unsigned long),
6804 		      void *loop_end_arg, unsigned flags, u16 budget)
6805 {
6806 	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6807 	int (*napi_poll)(struct napi_struct *napi, int budget);
6808 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
6809 	void *have_poll_lock = NULL;
6810 	struct napi_struct *napi;
6811 
6812 	WARN_ON_ONCE(!rcu_read_lock_held());
6813 
6814 restart:
6815 	napi_poll = NULL;
6816 
6817 	napi = napi_by_id(napi_id);
6818 	if (!napi)
6819 		return;
6820 
6821 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6822 		preempt_disable();
6823 	for (;;) {
6824 		int work = 0;
6825 
6826 		local_bh_disable();
6827 		bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
6828 		if (!napi_poll) {
6829 			unsigned long val = READ_ONCE(napi->state);
6830 
6831 			/* If multiple threads are competing for this napi,
6832 			 * we avoid dirtying napi->state as much as we can.
6833 			 */
6834 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6835 				   NAPIF_STATE_IN_BUSY_POLL)) {
6836 				if (flags & NAPI_F_PREFER_BUSY_POLL)
6837 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6838 				goto count;
6839 			}
6840 			if (cmpxchg(&napi->state, val,
6841 				    val | NAPIF_STATE_IN_BUSY_POLL |
6842 					  NAPIF_STATE_SCHED) != val) {
6843 				if (flags & NAPI_F_PREFER_BUSY_POLL)
6844 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6845 				goto count;
6846 			}
6847 			have_poll_lock = netpoll_poll_lock(napi);
6848 			napi_poll = napi->poll;
6849 		}
6850 		work = napi_poll(napi, budget);
6851 		trace_napi_poll(napi, work, budget);
6852 		gro_normal_list(&napi->gro);
6853 count:
6854 		if (work > 0)
6855 			__NET_ADD_STATS(dev_net(napi->dev),
6856 					LINUX_MIB_BUSYPOLLRXPACKETS, work);
6857 		skb_defer_free_flush(this_cpu_ptr(&softnet_data));
6858 		bpf_net_ctx_clear(bpf_net_ctx);
6859 		local_bh_enable();
6860 
6861 		if (!loop_end || loop_end(loop_end_arg, start_time))
6862 			break;
6863 
6864 		if (unlikely(need_resched())) {
6865 			if (flags & NAPI_F_END_ON_RESCHED)
6866 				break;
6867 			if (napi_poll)
6868 				busy_poll_stop(napi, have_poll_lock, flags, budget);
6869 			if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6870 				preempt_enable();
6871 			rcu_read_unlock();
6872 			cond_resched();
6873 			rcu_read_lock();
6874 			if (loop_end(loop_end_arg, start_time))
6875 				return;
6876 			goto restart;
6877 		}
6878 		cpu_relax();
6879 	}
6880 	if (napi_poll)
6881 		busy_poll_stop(napi, have_poll_lock, flags, budget);
6882 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6883 		preempt_enable();
6884 }
6885 
6886 void napi_busy_loop_rcu(unsigned int napi_id,
6887 			bool (*loop_end)(void *, unsigned long),
6888 			void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6889 {
6890 	unsigned flags = NAPI_F_END_ON_RESCHED;
6891 
6892 	if (prefer_busy_poll)
6893 		flags |= NAPI_F_PREFER_BUSY_POLL;
6894 
6895 	__napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget);
6896 }
6897 
6898 void napi_busy_loop(unsigned int napi_id,
6899 		    bool (*loop_end)(void *, unsigned long),
6900 		    void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6901 {
6902 	unsigned flags = prefer_busy_poll ? NAPI_F_PREFER_BUSY_POLL : 0;
6903 
6904 	rcu_read_lock();
6905 	__napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget);
6906 	rcu_read_unlock();
6907 }
6908 EXPORT_SYMBOL(napi_busy_loop);
6909 
6910 void napi_suspend_irqs(unsigned int napi_id)
6911 {
6912 	struct napi_struct *napi;
6913 
6914 	rcu_read_lock();
6915 	napi = napi_by_id(napi_id);
6916 	if (napi) {
6917 		unsigned long timeout = napi_get_irq_suspend_timeout(napi);
6918 
6919 		if (timeout)
6920 			hrtimer_start(&napi->timer, ns_to_ktime(timeout),
6921 				      HRTIMER_MODE_REL_PINNED);
6922 	}
6923 	rcu_read_unlock();
6924 }
6925 
6926 void napi_resume_irqs(unsigned int napi_id)
6927 {
6928 	struct napi_struct *napi;
6929 
6930 	rcu_read_lock();
6931 	napi = napi_by_id(napi_id);
6932 	if (napi) {
6933 		/* If irq_suspend_timeout is set to 0 between the call to
6934 		 * napi_suspend_irqs and now, the original value still
6935 		 * determines the safety timeout as intended and napi_watchdog
6936 		 * will resume irq processing.
6937 		 */
6938 		if (napi_get_irq_suspend_timeout(napi)) {
6939 			local_bh_disable();
6940 			napi_schedule(napi);
6941 			local_bh_enable();
6942 		}
6943 	}
6944 	rcu_read_unlock();
6945 }
6946 
6947 #endif /* CONFIG_NET_RX_BUSY_POLL */
6948 
6949 static void __napi_hash_add_with_id(struct napi_struct *napi,
6950 				    unsigned int napi_id)
6951 {
6952 	napi->gro.cached_napi_id = napi_id;
6953 
6954 	WRITE_ONCE(napi->napi_id, napi_id);
6955 	hlist_add_head_rcu(&napi->napi_hash_node,
6956 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6957 }
6958 
6959 static void napi_hash_add_with_id(struct napi_struct *napi,
6960 				  unsigned int napi_id)
6961 {
6962 	unsigned long flags;
6963 
6964 	spin_lock_irqsave(&napi_hash_lock, flags);
6965 	WARN_ON_ONCE(napi_by_id(napi_id));
6966 	__napi_hash_add_with_id(napi, napi_id);
6967 	spin_unlock_irqrestore(&napi_hash_lock, flags);
6968 }
6969 
6970 static void napi_hash_add(struct napi_struct *napi)
6971 {
6972 	unsigned long flags;
6973 
6974 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6975 		return;
6976 
6977 	spin_lock_irqsave(&napi_hash_lock, flags);
6978 
6979 	/* 0..NR_CPUS range is reserved for sender_cpu use */
6980 	do {
6981 		if (unlikely(!napi_id_valid(++napi_gen_id)))
6982 			napi_gen_id = MIN_NAPI_ID;
6983 	} while (napi_by_id(napi_gen_id));
6984 
6985 	__napi_hash_add_with_id(napi, napi_gen_id);
6986 
6987 	spin_unlock_irqrestore(&napi_hash_lock, flags);
6988 }
6989 
6990 /* Warning : caller is responsible to make sure rcu grace period
6991  * is respected before freeing memory containing @napi
6992  */
6993 static void napi_hash_del(struct napi_struct *napi)
6994 {
6995 	unsigned long flags;
6996 
6997 	spin_lock_irqsave(&napi_hash_lock, flags);
6998 
6999 	hlist_del_init_rcu(&napi->napi_hash_node);
7000 
7001 	spin_unlock_irqrestore(&napi_hash_lock, flags);
7002 }
7003 
7004 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
7005 {
7006 	struct napi_struct *napi;
7007 
7008 	napi = container_of(timer, struct napi_struct, timer);
7009 
7010 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
7011 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
7012 	 */
7013 	if (!napi_disable_pending(napi) &&
7014 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
7015 		clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
7016 		__napi_schedule_irqoff(napi);
7017 	}
7018 
7019 	return HRTIMER_NORESTART;
7020 }
7021 
7022 static void napi_stop_kthread(struct napi_struct *napi)
7023 {
7024 	unsigned long val, new;
7025 
7026 	/* Wait until the napi STATE_THREADED is unset. */
7027 	while (true) {
7028 		val = READ_ONCE(napi->state);
7029 
7030 		/* If napi kthread own this napi or the napi is idle,
7031 		 * STATE_THREADED can be unset here.
7032 		 */
7033 		if ((val & NAPIF_STATE_SCHED_THREADED) ||
7034 		    !(val & NAPIF_STATE_SCHED)) {
7035 			new = val & (~NAPIF_STATE_THREADED);
7036 		} else {
7037 			msleep(20);
7038 			continue;
7039 		}
7040 
7041 		if (try_cmpxchg(&napi->state, &val, new))
7042 			break;
7043 	}
7044 
7045 	/* Once STATE_THREADED is unset, wait for SCHED_THREADED to be unset by
7046 	 * the kthread.
7047 	 */
7048 	while (true) {
7049 		if (!test_bit(NAPI_STATE_SCHED_THREADED, &napi->state))
7050 			break;
7051 
7052 		msleep(20);
7053 	}
7054 
7055 	kthread_stop(napi->thread);
7056 	napi->thread = NULL;
7057 }
7058 
7059 int napi_set_threaded(struct napi_struct *napi,
7060 		      enum netdev_napi_threaded threaded)
7061 {
7062 	if (threaded) {
7063 		if (!napi->thread) {
7064 			int err = napi_kthread_create(napi);
7065 
7066 			if (err)
7067 				return err;
7068 		}
7069 	}
7070 
7071 	if (napi->config)
7072 		napi->config->threaded = threaded;
7073 
7074 	/* Setting/unsetting threaded mode on a napi might not immediately
7075 	 * take effect, if the current napi instance is actively being
7076 	 * polled. In this case, the switch between threaded mode and
7077 	 * softirq mode will happen in the next round of napi_schedule().
7078 	 * This should not cause hiccups/stalls to the live traffic.
7079 	 */
7080 	if (!threaded && napi->thread) {
7081 		napi_stop_kthread(napi);
7082 	} else {
7083 		/* Make sure kthread is created before THREADED bit is set. */
7084 		smp_mb__before_atomic();
7085 		assign_bit(NAPI_STATE_THREADED, &napi->state, threaded);
7086 	}
7087 
7088 	return 0;
7089 }
7090 
7091 int netif_set_threaded(struct net_device *dev,
7092 		       enum netdev_napi_threaded threaded)
7093 {
7094 	struct napi_struct *napi;
7095 	int i, err = 0;
7096 
7097 	netdev_assert_locked_or_invisible(dev);
7098 
7099 	if (threaded) {
7100 		list_for_each_entry(napi, &dev->napi_list, dev_list) {
7101 			if (!napi->thread) {
7102 				err = napi_kthread_create(napi);
7103 				if (err) {
7104 					threaded = NETDEV_NAPI_THREADED_DISABLED;
7105 					break;
7106 				}
7107 			}
7108 		}
7109 	}
7110 
7111 	WRITE_ONCE(dev->threaded, threaded);
7112 
7113 	/* The error should not occur as the kthreads are already created. */
7114 	list_for_each_entry(napi, &dev->napi_list, dev_list)
7115 		WARN_ON_ONCE(napi_set_threaded(napi, threaded));
7116 
7117 	/* Override the config for all NAPIs even if currently not listed */
7118 	for (i = 0; i < dev->num_napi_configs; i++)
7119 		dev->napi_config[i].threaded = threaded;
7120 
7121 	return err;
7122 }
7123 
7124 /**
7125  * netif_threaded_enable() - enable threaded NAPIs
7126  * @dev: net_device instance
7127  *
7128  * Enable threaded mode for the NAPI instances of the device. This may be useful
7129  * for devices where multiple NAPI instances get scheduled by a single
7130  * interrupt. Threaded NAPI allows moving the NAPI processing to cores other
7131  * than the core where IRQ is mapped.
7132  *
7133  * This function should be called before @dev is registered.
7134  */
7135 void netif_threaded_enable(struct net_device *dev)
7136 {
7137 	WARN_ON_ONCE(netif_set_threaded(dev, NETDEV_NAPI_THREADED_ENABLED));
7138 }
7139 EXPORT_SYMBOL(netif_threaded_enable);
7140 
7141 /**
7142  * netif_queue_set_napi - Associate queue with the napi
7143  * @dev: device to which NAPI and queue belong
7144  * @queue_index: Index of queue
7145  * @type: queue type as RX or TX
7146  * @napi: NAPI context, pass NULL to clear previously set NAPI
7147  *
7148  * Set queue with its corresponding napi context. This should be done after
7149  * registering the NAPI handler for the queue-vector and the queues have been
7150  * mapped to the corresponding interrupt vector.
7151  */
7152 void netif_queue_set_napi(struct net_device *dev, unsigned int queue_index,
7153 			  enum netdev_queue_type type, struct napi_struct *napi)
7154 {
7155 	struct netdev_rx_queue *rxq;
7156 	struct netdev_queue *txq;
7157 
7158 	if (WARN_ON_ONCE(napi && !napi->dev))
7159 		return;
7160 	netdev_ops_assert_locked_or_invisible(dev);
7161 
7162 	switch (type) {
7163 	case NETDEV_QUEUE_TYPE_RX:
7164 		rxq = __netif_get_rx_queue(dev, queue_index);
7165 		rxq->napi = napi;
7166 		return;
7167 	case NETDEV_QUEUE_TYPE_TX:
7168 		txq = netdev_get_tx_queue(dev, queue_index);
7169 		txq->napi = napi;
7170 		return;
7171 	default:
7172 		return;
7173 	}
7174 }
7175 EXPORT_SYMBOL(netif_queue_set_napi);
7176 
7177 static void
7178 netif_napi_irq_notify(struct irq_affinity_notify *notify,
7179 		      const cpumask_t *mask)
7180 {
7181 	struct napi_struct *napi =
7182 		container_of(notify, struct napi_struct, notify);
7183 #ifdef CONFIG_RFS_ACCEL
7184 	struct cpu_rmap *rmap = napi->dev->rx_cpu_rmap;
7185 	int err;
7186 #endif
7187 
7188 	if (napi->config && napi->dev->irq_affinity_auto)
7189 		cpumask_copy(&napi->config->affinity_mask, mask);
7190 
7191 #ifdef CONFIG_RFS_ACCEL
7192 	if (napi->dev->rx_cpu_rmap_auto) {
7193 		err = cpu_rmap_update(rmap, napi->napi_rmap_idx, mask);
7194 		if (err)
7195 			netdev_warn(napi->dev, "RMAP update failed (%d)\n",
7196 				    err);
7197 	}
7198 #endif
7199 }
7200 
7201 #ifdef CONFIG_RFS_ACCEL
7202 static void netif_napi_affinity_release(struct kref *ref)
7203 {
7204 	struct napi_struct *napi =
7205 		container_of(ref, struct napi_struct, notify.kref);
7206 	struct cpu_rmap *rmap = napi->dev->rx_cpu_rmap;
7207 
7208 	netdev_assert_locked(napi->dev);
7209 	WARN_ON(test_and_clear_bit(NAPI_STATE_HAS_NOTIFIER,
7210 				   &napi->state));
7211 
7212 	if (!napi->dev->rx_cpu_rmap_auto)
7213 		return;
7214 	rmap->obj[napi->napi_rmap_idx] = NULL;
7215 	napi->napi_rmap_idx = -1;
7216 	cpu_rmap_put(rmap);
7217 }
7218 
7219 int netif_enable_cpu_rmap(struct net_device *dev, unsigned int num_irqs)
7220 {
7221 	if (dev->rx_cpu_rmap_auto)
7222 		return 0;
7223 
7224 	dev->rx_cpu_rmap = alloc_irq_cpu_rmap(num_irqs);
7225 	if (!dev->rx_cpu_rmap)
7226 		return -ENOMEM;
7227 
7228 	dev->rx_cpu_rmap_auto = true;
7229 	return 0;
7230 }
7231 EXPORT_SYMBOL(netif_enable_cpu_rmap);
7232 
7233 static void netif_del_cpu_rmap(struct net_device *dev)
7234 {
7235 	struct cpu_rmap *rmap = dev->rx_cpu_rmap;
7236 
7237 	if (!dev->rx_cpu_rmap_auto)
7238 		return;
7239 
7240 	/* Free the rmap */
7241 	cpu_rmap_put(rmap);
7242 	dev->rx_cpu_rmap = NULL;
7243 	dev->rx_cpu_rmap_auto = false;
7244 }
7245 
7246 #else
7247 static void netif_napi_affinity_release(struct kref *ref)
7248 {
7249 }
7250 
7251 int netif_enable_cpu_rmap(struct net_device *dev, unsigned int num_irqs)
7252 {
7253 	return 0;
7254 }
7255 EXPORT_SYMBOL(netif_enable_cpu_rmap);
7256 
7257 static void netif_del_cpu_rmap(struct net_device *dev)
7258 {
7259 }
7260 #endif
7261 
7262 void netif_set_affinity_auto(struct net_device *dev)
7263 {
7264 	unsigned int i, maxqs, numa;
7265 
7266 	maxqs = max(dev->num_tx_queues, dev->num_rx_queues);
7267 	numa = dev_to_node(&dev->dev);
7268 
7269 	for (i = 0; i < maxqs; i++)
7270 		cpumask_set_cpu(cpumask_local_spread(i, numa),
7271 				&dev->napi_config[i].affinity_mask);
7272 
7273 	dev->irq_affinity_auto = true;
7274 }
7275 EXPORT_SYMBOL(netif_set_affinity_auto);
7276 
7277 void netif_napi_set_irq_locked(struct napi_struct *napi, int irq)
7278 {
7279 	int rc;
7280 
7281 	netdev_assert_locked_or_invisible(napi->dev);
7282 
7283 	if (napi->irq == irq)
7284 		return;
7285 
7286 	/* Remove existing resources */
7287 	if (test_and_clear_bit(NAPI_STATE_HAS_NOTIFIER, &napi->state))
7288 		irq_set_affinity_notifier(napi->irq, NULL);
7289 
7290 	napi->irq = irq;
7291 	if (irq < 0 ||
7292 	    (!napi->dev->rx_cpu_rmap_auto && !napi->dev->irq_affinity_auto))
7293 		return;
7294 
7295 	/* Abort for buggy drivers */
7296 	if (napi->dev->irq_affinity_auto && WARN_ON_ONCE(!napi->config))
7297 		return;
7298 
7299 #ifdef CONFIG_RFS_ACCEL
7300 	if (napi->dev->rx_cpu_rmap_auto) {
7301 		rc = cpu_rmap_add(napi->dev->rx_cpu_rmap, napi);
7302 		if (rc < 0)
7303 			return;
7304 
7305 		cpu_rmap_get(napi->dev->rx_cpu_rmap);
7306 		napi->napi_rmap_idx = rc;
7307 	}
7308 #endif
7309 
7310 	/* Use core IRQ notifier */
7311 	napi->notify.notify = netif_napi_irq_notify;
7312 	napi->notify.release = netif_napi_affinity_release;
7313 	rc = irq_set_affinity_notifier(irq, &napi->notify);
7314 	if (rc) {
7315 		netdev_warn(napi->dev, "Unable to set IRQ notifier (%d)\n",
7316 			    rc);
7317 		goto put_rmap;
7318 	}
7319 
7320 	set_bit(NAPI_STATE_HAS_NOTIFIER, &napi->state);
7321 	return;
7322 
7323 put_rmap:
7324 #ifdef CONFIG_RFS_ACCEL
7325 	if (napi->dev->rx_cpu_rmap_auto) {
7326 		napi->dev->rx_cpu_rmap->obj[napi->napi_rmap_idx] = NULL;
7327 		cpu_rmap_put(napi->dev->rx_cpu_rmap);
7328 		napi->napi_rmap_idx = -1;
7329 	}
7330 #endif
7331 	napi->notify.notify = NULL;
7332 	napi->notify.release = NULL;
7333 }
7334 EXPORT_SYMBOL(netif_napi_set_irq_locked);
7335 
7336 static void napi_restore_config(struct napi_struct *n)
7337 {
7338 	n->defer_hard_irqs = n->config->defer_hard_irqs;
7339 	n->gro_flush_timeout = n->config->gro_flush_timeout;
7340 	n->irq_suspend_timeout = n->config->irq_suspend_timeout;
7341 
7342 	if (n->dev->irq_affinity_auto &&
7343 	    test_bit(NAPI_STATE_HAS_NOTIFIER, &n->state))
7344 		irq_set_affinity(n->irq, &n->config->affinity_mask);
7345 
7346 	/* a NAPI ID might be stored in the config, if so use it. if not, use
7347 	 * napi_hash_add to generate one for us.
7348 	 */
7349 	if (n->config->napi_id) {
7350 		napi_hash_add_with_id(n, n->config->napi_id);
7351 	} else {
7352 		napi_hash_add(n);
7353 		n->config->napi_id = n->napi_id;
7354 	}
7355 
7356 	WARN_ON_ONCE(napi_set_threaded(n, n->config->threaded));
7357 }
7358 
7359 static void napi_save_config(struct napi_struct *n)
7360 {
7361 	n->config->defer_hard_irqs = n->defer_hard_irqs;
7362 	n->config->gro_flush_timeout = n->gro_flush_timeout;
7363 	n->config->irq_suspend_timeout = n->irq_suspend_timeout;
7364 	napi_hash_del(n);
7365 }
7366 
7367 /* Netlink wants the NAPI list to be sorted by ID, if adding a NAPI which will
7368  * inherit an existing ID try to insert it at the right position.
7369  */
7370 static void
7371 netif_napi_dev_list_add(struct net_device *dev, struct napi_struct *napi)
7372 {
7373 	unsigned int new_id, pos_id;
7374 	struct list_head *higher;
7375 	struct napi_struct *pos;
7376 
7377 	new_id = UINT_MAX;
7378 	if (napi->config && napi->config->napi_id)
7379 		new_id = napi->config->napi_id;
7380 
7381 	higher = &dev->napi_list;
7382 	list_for_each_entry(pos, &dev->napi_list, dev_list) {
7383 		if (napi_id_valid(pos->napi_id))
7384 			pos_id = pos->napi_id;
7385 		else if (pos->config)
7386 			pos_id = pos->config->napi_id;
7387 		else
7388 			pos_id = UINT_MAX;
7389 
7390 		if (pos_id <= new_id)
7391 			break;
7392 		higher = &pos->dev_list;
7393 	}
7394 	list_add_rcu(&napi->dev_list, higher); /* adds after higher */
7395 }
7396 
7397 /* Double check that napi_get_frags() allocates skbs with
7398  * skb->head being backed by slab, not a page fragment.
7399  * This is to make sure bug fixed in 3226b158e67c
7400  * ("net: avoid 32 x truesize under-estimation for tiny skbs")
7401  * does not accidentally come back.
7402  */
7403 static void napi_get_frags_check(struct napi_struct *napi)
7404 {
7405 	struct sk_buff *skb;
7406 
7407 	local_bh_disable();
7408 	skb = napi_get_frags(napi);
7409 	WARN_ON_ONCE(skb && skb->head_frag);
7410 	napi_free_frags(napi);
7411 	local_bh_enable();
7412 }
7413 
7414 void netif_napi_add_weight_locked(struct net_device *dev,
7415 				  struct napi_struct *napi,
7416 				  int (*poll)(struct napi_struct *, int),
7417 				  int weight)
7418 {
7419 	netdev_assert_locked(dev);
7420 	if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
7421 		return;
7422 
7423 	INIT_LIST_HEAD(&napi->poll_list);
7424 	INIT_HLIST_NODE(&napi->napi_hash_node);
7425 	hrtimer_setup(&napi->timer, napi_watchdog, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
7426 	gro_init(&napi->gro);
7427 	napi->skb = NULL;
7428 	napi->poll = poll;
7429 	if (weight > NAPI_POLL_WEIGHT)
7430 		netdev_err_once(dev, "%s() called with weight %d\n", __func__,
7431 				weight);
7432 	napi->weight = weight;
7433 	napi->dev = dev;
7434 #ifdef CONFIG_NETPOLL
7435 	napi->poll_owner = -1;
7436 #endif
7437 	napi->list_owner = -1;
7438 	set_bit(NAPI_STATE_SCHED, &napi->state);
7439 	set_bit(NAPI_STATE_NPSVC, &napi->state);
7440 	netif_napi_dev_list_add(dev, napi);
7441 
7442 	/* default settings from sysfs are applied to all NAPIs. any per-NAPI
7443 	 * configuration will be loaded in napi_enable
7444 	 */
7445 	napi_set_defer_hard_irqs(napi, READ_ONCE(dev->napi_defer_hard_irqs));
7446 	napi_set_gro_flush_timeout(napi, READ_ONCE(dev->gro_flush_timeout));
7447 
7448 	napi_get_frags_check(napi);
7449 	/* Create kthread for this napi if dev->threaded is set.
7450 	 * Clear dev->threaded if kthread creation failed so that
7451 	 * threaded mode will not be enabled in napi_enable().
7452 	 */
7453 	if (napi_get_threaded_config(dev, napi))
7454 		if (napi_kthread_create(napi))
7455 			dev->threaded = NETDEV_NAPI_THREADED_DISABLED;
7456 	netif_napi_set_irq_locked(napi, -1);
7457 }
7458 EXPORT_SYMBOL(netif_napi_add_weight_locked);
7459 
7460 void napi_disable_locked(struct napi_struct *n)
7461 {
7462 	unsigned long val, new;
7463 
7464 	might_sleep();
7465 	netdev_assert_locked(n->dev);
7466 
7467 	set_bit(NAPI_STATE_DISABLE, &n->state);
7468 
7469 	val = READ_ONCE(n->state);
7470 	do {
7471 		while (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
7472 			usleep_range(20, 200);
7473 			val = READ_ONCE(n->state);
7474 		}
7475 
7476 		new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
7477 		new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL);
7478 	} while (!try_cmpxchg(&n->state, &val, new));
7479 
7480 	hrtimer_cancel(&n->timer);
7481 
7482 	if (n->config)
7483 		napi_save_config(n);
7484 	else
7485 		napi_hash_del(n);
7486 
7487 	clear_bit(NAPI_STATE_DISABLE, &n->state);
7488 }
7489 EXPORT_SYMBOL(napi_disable_locked);
7490 
7491 /**
7492  * napi_disable() - prevent NAPI from scheduling
7493  * @n: NAPI context
7494  *
7495  * Stop NAPI from being scheduled on this context.
7496  * Waits till any outstanding processing completes.
7497  * Takes netdev_lock() for associated net_device.
7498  */
7499 void napi_disable(struct napi_struct *n)
7500 {
7501 	netdev_lock(n->dev);
7502 	napi_disable_locked(n);
7503 	netdev_unlock(n->dev);
7504 }
7505 EXPORT_SYMBOL(napi_disable);
7506 
7507 void napi_enable_locked(struct napi_struct *n)
7508 {
7509 	unsigned long new, val = READ_ONCE(n->state);
7510 
7511 	if (n->config)
7512 		napi_restore_config(n);
7513 	else
7514 		napi_hash_add(n);
7515 
7516 	do {
7517 		BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
7518 
7519 		new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
7520 		if (n->dev->threaded && n->thread)
7521 			new |= NAPIF_STATE_THREADED;
7522 	} while (!try_cmpxchg(&n->state, &val, new));
7523 }
7524 EXPORT_SYMBOL(napi_enable_locked);
7525 
7526 /**
7527  * napi_enable() - enable NAPI scheduling
7528  * @n: NAPI context
7529  *
7530  * Enable scheduling of a NAPI instance.
7531  * Must be paired with napi_disable().
7532  * Takes netdev_lock() for associated net_device.
7533  */
7534 void napi_enable(struct napi_struct *n)
7535 {
7536 	netdev_lock(n->dev);
7537 	napi_enable_locked(n);
7538 	netdev_unlock(n->dev);
7539 }
7540 EXPORT_SYMBOL(napi_enable);
7541 
7542 /* Must be called in process context */
7543 void __netif_napi_del_locked(struct napi_struct *napi)
7544 {
7545 	netdev_assert_locked(napi->dev);
7546 
7547 	if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
7548 		return;
7549 
7550 	/* Make sure NAPI is disabled (or was never enabled). */
7551 	WARN_ON(!test_bit(NAPI_STATE_SCHED, &napi->state));
7552 
7553 	if (test_and_clear_bit(NAPI_STATE_HAS_NOTIFIER, &napi->state))
7554 		irq_set_affinity_notifier(napi->irq, NULL);
7555 
7556 	if (napi->config) {
7557 		napi->index = -1;
7558 		napi->config = NULL;
7559 	}
7560 
7561 	list_del_rcu(&napi->dev_list);
7562 	napi_free_frags(napi);
7563 
7564 	gro_cleanup(&napi->gro);
7565 
7566 	if (napi->thread) {
7567 		kthread_stop(napi->thread);
7568 		napi->thread = NULL;
7569 	}
7570 }
7571 EXPORT_SYMBOL(__netif_napi_del_locked);
7572 
7573 static int __napi_poll(struct napi_struct *n, bool *repoll)
7574 {
7575 	int work, weight;
7576 
7577 	weight = n->weight;
7578 
7579 	/* This NAPI_STATE_SCHED test is for avoiding a race
7580 	 * with netpoll's poll_napi().  Only the entity which
7581 	 * obtains the lock and sees NAPI_STATE_SCHED set will
7582 	 * actually make the ->poll() call.  Therefore we avoid
7583 	 * accidentally calling ->poll() when NAPI is not scheduled.
7584 	 */
7585 	work = 0;
7586 	if (napi_is_scheduled(n)) {
7587 		work = n->poll(n, weight);
7588 		trace_napi_poll(n, work, weight);
7589 
7590 		xdp_do_check_flushed(n);
7591 	}
7592 
7593 	if (unlikely(work > weight))
7594 		netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
7595 				n->poll, work, weight);
7596 
7597 	if (likely(work < weight))
7598 		return work;
7599 
7600 	/* Drivers must not modify the NAPI state if they
7601 	 * consume the entire weight.  In such cases this code
7602 	 * still "owns" the NAPI instance and therefore can
7603 	 * move the instance around on the list at-will.
7604 	 */
7605 	if (unlikely(napi_disable_pending(n))) {
7606 		napi_complete(n);
7607 		return work;
7608 	}
7609 
7610 	/* The NAPI context has more processing work, but busy-polling
7611 	 * is preferred. Exit early.
7612 	 */
7613 	if (napi_prefer_busy_poll(n)) {
7614 		if (napi_complete_done(n, work)) {
7615 			/* If timeout is not set, we need to make sure
7616 			 * that the NAPI is re-scheduled.
7617 			 */
7618 			napi_schedule(n);
7619 		}
7620 		return work;
7621 	}
7622 
7623 	/* Flush too old packets. If HZ < 1000, flush all packets */
7624 	gro_flush_normal(&n->gro, HZ >= 1000);
7625 
7626 	/* Some drivers may have called napi_schedule
7627 	 * prior to exhausting their budget.
7628 	 */
7629 	if (unlikely(!list_empty(&n->poll_list))) {
7630 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
7631 			     n->dev ? n->dev->name : "backlog");
7632 		return work;
7633 	}
7634 
7635 	*repoll = true;
7636 
7637 	return work;
7638 }
7639 
7640 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
7641 {
7642 	bool do_repoll = false;
7643 	void *have;
7644 	int work;
7645 
7646 	list_del_init(&n->poll_list);
7647 
7648 	have = netpoll_poll_lock(n);
7649 
7650 	work = __napi_poll(n, &do_repoll);
7651 
7652 	if (do_repoll) {
7653 #if defined(CONFIG_DEBUG_NET)
7654 		if (unlikely(!napi_is_scheduled(n)))
7655 			pr_crit("repoll requested for device %s %ps but napi is not scheduled.\n",
7656 				n->dev->name, n->poll);
7657 #endif
7658 		list_add_tail(&n->poll_list, repoll);
7659 	}
7660 	netpoll_poll_unlock(have);
7661 
7662 	return work;
7663 }
7664 
7665 static int napi_thread_wait(struct napi_struct *napi)
7666 {
7667 	set_current_state(TASK_INTERRUPTIBLE);
7668 
7669 	while (!kthread_should_stop()) {
7670 		/* Testing SCHED_THREADED bit here to make sure the current
7671 		 * kthread owns this napi and could poll on this napi.
7672 		 * Testing SCHED bit is not enough because SCHED bit might be
7673 		 * set by some other busy poll thread or by napi_disable().
7674 		 */
7675 		if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state)) {
7676 			WARN_ON(!list_empty(&napi->poll_list));
7677 			__set_current_state(TASK_RUNNING);
7678 			return 0;
7679 		}
7680 
7681 		schedule();
7682 		set_current_state(TASK_INTERRUPTIBLE);
7683 	}
7684 	__set_current_state(TASK_RUNNING);
7685 
7686 	return -1;
7687 }
7688 
7689 static void napi_threaded_poll_loop(struct napi_struct *napi)
7690 {
7691 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
7692 	struct softnet_data *sd;
7693 	unsigned long last_qs = jiffies;
7694 
7695 	for (;;) {
7696 		bool repoll = false;
7697 		void *have;
7698 
7699 		local_bh_disable();
7700 		bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
7701 
7702 		sd = this_cpu_ptr(&softnet_data);
7703 		sd->in_napi_threaded_poll = true;
7704 
7705 		have = netpoll_poll_lock(napi);
7706 		__napi_poll(napi, &repoll);
7707 		netpoll_poll_unlock(have);
7708 
7709 		sd->in_napi_threaded_poll = false;
7710 		barrier();
7711 
7712 		if (sd_has_rps_ipi_waiting(sd)) {
7713 			local_irq_disable();
7714 			net_rps_action_and_irq_enable(sd);
7715 		}
7716 		skb_defer_free_flush(sd);
7717 		bpf_net_ctx_clear(bpf_net_ctx);
7718 		local_bh_enable();
7719 
7720 		if (!repoll)
7721 			break;
7722 
7723 		rcu_softirq_qs_periodic(last_qs);
7724 		cond_resched();
7725 	}
7726 }
7727 
7728 static int napi_threaded_poll(void *data)
7729 {
7730 	struct napi_struct *napi = data;
7731 
7732 	while (!napi_thread_wait(napi))
7733 		napi_threaded_poll_loop(napi);
7734 
7735 	return 0;
7736 }
7737 
7738 static __latent_entropy void net_rx_action(void)
7739 {
7740 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
7741 	unsigned long time_limit = jiffies +
7742 		usecs_to_jiffies(READ_ONCE(net_hotdata.netdev_budget_usecs));
7743 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
7744 	int budget = READ_ONCE(net_hotdata.netdev_budget);
7745 	LIST_HEAD(list);
7746 	LIST_HEAD(repoll);
7747 
7748 	bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
7749 start:
7750 	sd->in_net_rx_action = true;
7751 	local_irq_disable();
7752 	list_splice_init(&sd->poll_list, &list);
7753 	local_irq_enable();
7754 
7755 	for (;;) {
7756 		struct napi_struct *n;
7757 
7758 		skb_defer_free_flush(sd);
7759 
7760 		if (list_empty(&list)) {
7761 			if (list_empty(&repoll)) {
7762 				sd->in_net_rx_action = false;
7763 				barrier();
7764 				/* We need to check if ____napi_schedule()
7765 				 * had refilled poll_list while
7766 				 * sd->in_net_rx_action was true.
7767 				 */
7768 				if (!list_empty(&sd->poll_list))
7769 					goto start;
7770 				if (!sd_has_rps_ipi_waiting(sd))
7771 					goto end;
7772 			}
7773 			break;
7774 		}
7775 
7776 		n = list_first_entry(&list, struct napi_struct, poll_list);
7777 		budget -= napi_poll(n, &repoll);
7778 
7779 		/* If softirq window is exhausted then punt.
7780 		 * Allow this to run for 2 jiffies since which will allow
7781 		 * an average latency of 1.5/HZ.
7782 		 */
7783 		if (unlikely(budget <= 0 ||
7784 			     time_after_eq(jiffies, time_limit))) {
7785 			/* Pairs with READ_ONCE() in softnet_seq_show() */
7786 			WRITE_ONCE(sd->time_squeeze, sd->time_squeeze + 1);
7787 			break;
7788 		}
7789 	}
7790 
7791 	local_irq_disable();
7792 
7793 	list_splice_tail_init(&sd->poll_list, &list);
7794 	list_splice_tail(&repoll, &list);
7795 	list_splice(&list, &sd->poll_list);
7796 	if (!list_empty(&sd->poll_list))
7797 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
7798 	else
7799 		sd->in_net_rx_action = false;
7800 
7801 	net_rps_action_and_irq_enable(sd);
7802 end:
7803 	bpf_net_ctx_clear(bpf_net_ctx);
7804 }
7805 
7806 struct netdev_adjacent {
7807 	struct net_device *dev;
7808 	netdevice_tracker dev_tracker;
7809 
7810 	/* upper master flag, there can only be one master device per list */
7811 	bool master;
7812 
7813 	/* lookup ignore flag */
7814 	bool ignore;
7815 
7816 	/* counter for the number of times this device was added to us */
7817 	u16 ref_nr;
7818 
7819 	/* private field for the users */
7820 	void *private;
7821 
7822 	struct list_head list;
7823 	struct rcu_head rcu;
7824 };
7825 
7826 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
7827 						 struct list_head *adj_list)
7828 {
7829 	struct netdev_adjacent *adj;
7830 
7831 	list_for_each_entry(adj, adj_list, list) {
7832 		if (adj->dev == adj_dev)
7833 			return adj;
7834 	}
7835 	return NULL;
7836 }
7837 
7838 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
7839 				    struct netdev_nested_priv *priv)
7840 {
7841 	struct net_device *dev = (struct net_device *)priv->data;
7842 
7843 	return upper_dev == dev;
7844 }
7845 
7846 /**
7847  * netdev_has_upper_dev - Check if device is linked to an upper device
7848  * @dev: device
7849  * @upper_dev: upper device to check
7850  *
7851  * Find out if a device is linked to specified upper device and return true
7852  * in case it is. Note that this checks only immediate upper device,
7853  * not through a complete stack of devices. The caller must hold the RTNL lock.
7854  */
7855 bool netdev_has_upper_dev(struct net_device *dev,
7856 			  struct net_device *upper_dev)
7857 {
7858 	struct netdev_nested_priv priv = {
7859 		.data = (void *)upper_dev,
7860 	};
7861 
7862 	ASSERT_RTNL();
7863 
7864 	return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7865 					     &priv);
7866 }
7867 EXPORT_SYMBOL(netdev_has_upper_dev);
7868 
7869 /**
7870  * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
7871  * @dev: device
7872  * @upper_dev: upper device to check
7873  *
7874  * Find out if a device is linked to specified upper device and return true
7875  * in case it is. Note that this checks the entire upper device chain.
7876  * The caller must hold rcu lock.
7877  */
7878 
7879 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
7880 				  struct net_device *upper_dev)
7881 {
7882 	struct netdev_nested_priv priv = {
7883 		.data = (void *)upper_dev,
7884 	};
7885 
7886 	return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7887 					       &priv);
7888 }
7889 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
7890 
7891 /**
7892  * netdev_has_any_upper_dev - Check if device is linked to some device
7893  * @dev: device
7894  *
7895  * Find out if a device is linked to an upper device and return true in case
7896  * it is. The caller must hold the RTNL lock.
7897  */
7898 bool netdev_has_any_upper_dev(struct net_device *dev)
7899 {
7900 	ASSERT_RTNL();
7901 
7902 	return !list_empty(&dev->adj_list.upper);
7903 }
7904 EXPORT_SYMBOL(netdev_has_any_upper_dev);
7905 
7906 /**
7907  * netdev_master_upper_dev_get - Get master upper device
7908  * @dev: device
7909  *
7910  * Find a master upper device and return pointer to it or NULL in case
7911  * it's not there. The caller must hold the RTNL lock.
7912  */
7913 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
7914 {
7915 	struct netdev_adjacent *upper;
7916 
7917 	ASSERT_RTNL();
7918 
7919 	if (list_empty(&dev->adj_list.upper))
7920 		return NULL;
7921 
7922 	upper = list_first_entry(&dev->adj_list.upper,
7923 				 struct netdev_adjacent, list);
7924 	if (likely(upper->master))
7925 		return upper->dev;
7926 	return NULL;
7927 }
7928 EXPORT_SYMBOL(netdev_master_upper_dev_get);
7929 
7930 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
7931 {
7932 	struct netdev_adjacent *upper;
7933 
7934 	ASSERT_RTNL();
7935 
7936 	if (list_empty(&dev->adj_list.upper))
7937 		return NULL;
7938 
7939 	upper = list_first_entry(&dev->adj_list.upper,
7940 				 struct netdev_adjacent, list);
7941 	if (likely(upper->master) && !upper->ignore)
7942 		return upper->dev;
7943 	return NULL;
7944 }
7945 
7946 /**
7947  * netdev_has_any_lower_dev - Check if device is linked to some device
7948  * @dev: device
7949  *
7950  * Find out if a device is linked to a lower device and return true in case
7951  * it is. The caller must hold the RTNL lock.
7952  */
7953 static bool netdev_has_any_lower_dev(struct net_device *dev)
7954 {
7955 	ASSERT_RTNL();
7956 
7957 	return !list_empty(&dev->adj_list.lower);
7958 }
7959 
7960 void *netdev_adjacent_get_private(struct list_head *adj_list)
7961 {
7962 	struct netdev_adjacent *adj;
7963 
7964 	adj = list_entry(adj_list, struct netdev_adjacent, list);
7965 
7966 	return adj->private;
7967 }
7968 EXPORT_SYMBOL(netdev_adjacent_get_private);
7969 
7970 /**
7971  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
7972  * @dev: device
7973  * @iter: list_head ** of the current position
7974  *
7975  * Gets the next device from the dev's upper list, starting from iter
7976  * position. The caller must hold RCU read lock.
7977  */
7978 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
7979 						 struct list_head **iter)
7980 {
7981 	struct netdev_adjacent *upper;
7982 
7983 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7984 
7985 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7986 
7987 	if (&upper->list == &dev->adj_list.upper)
7988 		return NULL;
7989 
7990 	*iter = &upper->list;
7991 
7992 	return upper->dev;
7993 }
7994 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
7995 
7996 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
7997 						  struct list_head **iter,
7998 						  bool *ignore)
7999 {
8000 	struct netdev_adjacent *upper;
8001 
8002 	upper = list_entry((*iter)->next, struct netdev_adjacent, list);
8003 
8004 	if (&upper->list == &dev->adj_list.upper)
8005 		return NULL;
8006 
8007 	*iter = &upper->list;
8008 	*ignore = upper->ignore;
8009 
8010 	return upper->dev;
8011 }
8012 
8013 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
8014 						    struct list_head **iter)
8015 {
8016 	struct netdev_adjacent *upper;
8017 
8018 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
8019 
8020 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
8021 
8022 	if (&upper->list == &dev->adj_list.upper)
8023 		return NULL;
8024 
8025 	*iter = &upper->list;
8026 
8027 	return upper->dev;
8028 }
8029 
8030 static int __netdev_walk_all_upper_dev(struct net_device *dev,
8031 				       int (*fn)(struct net_device *dev,
8032 					 struct netdev_nested_priv *priv),
8033 				       struct netdev_nested_priv *priv)
8034 {
8035 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
8036 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
8037 	int ret, cur = 0;
8038 	bool ignore;
8039 
8040 	now = dev;
8041 	iter = &dev->adj_list.upper;
8042 
8043 	while (1) {
8044 		if (now != dev) {
8045 			ret = fn(now, priv);
8046 			if (ret)
8047 				return ret;
8048 		}
8049 
8050 		next = NULL;
8051 		while (1) {
8052 			udev = __netdev_next_upper_dev(now, &iter, &ignore);
8053 			if (!udev)
8054 				break;
8055 			if (ignore)
8056 				continue;
8057 
8058 			next = udev;
8059 			niter = &udev->adj_list.upper;
8060 			dev_stack[cur] = now;
8061 			iter_stack[cur++] = iter;
8062 			break;
8063 		}
8064 
8065 		if (!next) {
8066 			if (!cur)
8067 				return 0;
8068 			next = dev_stack[--cur];
8069 			niter = iter_stack[cur];
8070 		}
8071 
8072 		now = next;
8073 		iter = niter;
8074 	}
8075 
8076 	return 0;
8077 }
8078 
8079 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
8080 				  int (*fn)(struct net_device *dev,
8081 					    struct netdev_nested_priv *priv),
8082 				  struct netdev_nested_priv *priv)
8083 {
8084 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
8085 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
8086 	int ret, cur = 0;
8087 
8088 	now = dev;
8089 	iter = &dev->adj_list.upper;
8090 
8091 	while (1) {
8092 		if (now != dev) {
8093 			ret = fn(now, priv);
8094 			if (ret)
8095 				return ret;
8096 		}
8097 
8098 		next = NULL;
8099 		while (1) {
8100 			udev = netdev_next_upper_dev_rcu(now, &iter);
8101 			if (!udev)
8102 				break;
8103 
8104 			next = udev;
8105 			niter = &udev->adj_list.upper;
8106 			dev_stack[cur] = now;
8107 			iter_stack[cur++] = iter;
8108 			break;
8109 		}
8110 
8111 		if (!next) {
8112 			if (!cur)
8113 				return 0;
8114 			next = dev_stack[--cur];
8115 			niter = iter_stack[cur];
8116 		}
8117 
8118 		now = next;
8119 		iter = niter;
8120 	}
8121 
8122 	return 0;
8123 }
8124 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
8125 
8126 static bool __netdev_has_upper_dev(struct net_device *dev,
8127 				   struct net_device *upper_dev)
8128 {
8129 	struct netdev_nested_priv priv = {
8130 		.flags = 0,
8131 		.data = (void *)upper_dev,
8132 	};
8133 
8134 	ASSERT_RTNL();
8135 
8136 	return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
8137 					   &priv);
8138 }
8139 
8140 /**
8141  * netdev_lower_get_next_private - Get the next ->private from the
8142  *				   lower neighbour list
8143  * @dev: device
8144  * @iter: list_head ** of the current position
8145  *
8146  * Gets the next netdev_adjacent->private from the dev's lower neighbour
8147  * list, starting from iter position. The caller must hold either hold the
8148  * RTNL lock or its own locking that guarantees that the neighbour lower
8149  * list will remain unchanged.
8150  */
8151 void *netdev_lower_get_next_private(struct net_device *dev,
8152 				    struct list_head **iter)
8153 {
8154 	struct netdev_adjacent *lower;
8155 
8156 	lower = list_entry(*iter, struct netdev_adjacent, list);
8157 
8158 	if (&lower->list == &dev->adj_list.lower)
8159 		return NULL;
8160 
8161 	*iter = lower->list.next;
8162 
8163 	return lower->private;
8164 }
8165 EXPORT_SYMBOL(netdev_lower_get_next_private);
8166 
8167 /**
8168  * netdev_lower_get_next_private_rcu - Get the next ->private from the
8169  *				       lower neighbour list, RCU
8170  *				       variant
8171  * @dev: device
8172  * @iter: list_head ** of the current position
8173  *
8174  * Gets the next netdev_adjacent->private from the dev's lower neighbour
8175  * list, starting from iter position. The caller must hold RCU read lock.
8176  */
8177 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
8178 					struct list_head **iter)
8179 {
8180 	struct netdev_adjacent *lower;
8181 
8182 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
8183 
8184 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
8185 
8186 	if (&lower->list == &dev->adj_list.lower)
8187 		return NULL;
8188 
8189 	*iter = &lower->list;
8190 
8191 	return lower->private;
8192 }
8193 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
8194 
8195 /**
8196  * netdev_lower_get_next - Get the next device from the lower neighbour
8197  *                         list
8198  * @dev: device
8199  * @iter: list_head ** of the current position
8200  *
8201  * Gets the next netdev_adjacent from the dev's lower neighbour
8202  * list, starting from iter position. The caller must hold RTNL lock or
8203  * its own locking that guarantees that the neighbour lower
8204  * list will remain unchanged.
8205  */
8206 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
8207 {
8208 	struct netdev_adjacent *lower;
8209 
8210 	lower = list_entry(*iter, struct netdev_adjacent, list);
8211 
8212 	if (&lower->list == &dev->adj_list.lower)
8213 		return NULL;
8214 
8215 	*iter = lower->list.next;
8216 
8217 	return lower->dev;
8218 }
8219 EXPORT_SYMBOL(netdev_lower_get_next);
8220 
8221 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
8222 						struct list_head **iter)
8223 {
8224 	struct netdev_adjacent *lower;
8225 
8226 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
8227 
8228 	if (&lower->list == &dev->adj_list.lower)
8229 		return NULL;
8230 
8231 	*iter = &lower->list;
8232 
8233 	return lower->dev;
8234 }
8235 
8236 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
8237 						  struct list_head **iter,
8238 						  bool *ignore)
8239 {
8240 	struct netdev_adjacent *lower;
8241 
8242 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
8243 
8244 	if (&lower->list == &dev->adj_list.lower)
8245 		return NULL;
8246 
8247 	*iter = &lower->list;
8248 	*ignore = lower->ignore;
8249 
8250 	return lower->dev;
8251 }
8252 
8253 int netdev_walk_all_lower_dev(struct net_device *dev,
8254 			      int (*fn)(struct net_device *dev,
8255 					struct netdev_nested_priv *priv),
8256 			      struct netdev_nested_priv *priv)
8257 {
8258 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
8259 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
8260 	int ret, cur = 0;
8261 
8262 	now = dev;
8263 	iter = &dev->adj_list.lower;
8264 
8265 	while (1) {
8266 		if (now != dev) {
8267 			ret = fn(now, priv);
8268 			if (ret)
8269 				return ret;
8270 		}
8271 
8272 		next = NULL;
8273 		while (1) {
8274 			ldev = netdev_next_lower_dev(now, &iter);
8275 			if (!ldev)
8276 				break;
8277 
8278 			next = ldev;
8279 			niter = &ldev->adj_list.lower;
8280 			dev_stack[cur] = now;
8281 			iter_stack[cur++] = iter;
8282 			break;
8283 		}
8284 
8285 		if (!next) {
8286 			if (!cur)
8287 				return 0;
8288 			next = dev_stack[--cur];
8289 			niter = iter_stack[cur];
8290 		}
8291 
8292 		now = next;
8293 		iter = niter;
8294 	}
8295 
8296 	return 0;
8297 }
8298 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
8299 
8300 static int __netdev_walk_all_lower_dev(struct net_device *dev,
8301 				       int (*fn)(struct net_device *dev,
8302 					 struct netdev_nested_priv *priv),
8303 				       struct netdev_nested_priv *priv)
8304 {
8305 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
8306 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
8307 	int ret, cur = 0;
8308 	bool ignore;
8309 
8310 	now = dev;
8311 	iter = &dev->adj_list.lower;
8312 
8313 	while (1) {
8314 		if (now != dev) {
8315 			ret = fn(now, priv);
8316 			if (ret)
8317 				return ret;
8318 		}
8319 
8320 		next = NULL;
8321 		while (1) {
8322 			ldev = __netdev_next_lower_dev(now, &iter, &ignore);
8323 			if (!ldev)
8324 				break;
8325 			if (ignore)
8326 				continue;
8327 
8328 			next = ldev;
8329 			niter = &ldev->adj_list.lower;
8330 			dev_stack[cur] = now;
8331 			iter_stack[cur++] = iter;
8332 			break;
8333 		}
8334 
8335 		if (!next) {
8336 			if (!cur)
8337 				return 0;
8338 			next = dev_stack[--cur];
8339 			niter = iter_stack[cur];
8340 		}
8341 
8342 		now = next;
8343 		iter = niter;
8344 	}
8345 
8346 	return 0;
8347 }
8348 
8349 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
8350 					     struct list_head **iter)
8351 {
8352 	struct netdev_adjacent *lower;
8353 
8354 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
8355 	if (&lower->list == &dev->adj_list.lower)
8356 		return NULL;
8357 
8358 	*iter = &lower->list;
8359 
8360 	return lower->dev;
8361 }
8362 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
8363 
8364 static u8 __netdev_upper_depth(struct net_device *dev)
8365 {
8366 	struct net_device *udev;
8367 	struct list_head *iter;
8368 	u8 max_depth = 0;
8369 	bool ignore;
8370 
8371 	for (iter = &dev->adj_list.upper,
8372 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore);
8373 	     udev;
8374 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
8375 		if (ignore)
8376 			continue;
8377 		if (max_depth < udev->upper_level)
8378 			max_depth = udev->upper_level;
8379 	}
8380 
8381 	return max_depth;
8382 }
8383 
8384 static u8 __netdev_lower_depth(struct net_device *dev)
8385 {
8386 	struct net_device *ldev;
8387 	struct list_head *iter;
8388 	u8 max_depth = 0;
8389 	bool ignore;
8390 
8391 	for (iter = &dev->adj_list.lower,
8392 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
8393 	     ldev;
8394 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
8395 		if (ignore)
8396 			continue;
8397 		if (max_depth < ldev->lower_level)
8398 			max_depth = ldev->lower_level;
8399 	}
8400 
8401 	return max_depth;
8402 }
8403 
8404 static int __netdev_update_upper_level(struct net_device *dev,
8405 				       struct netdev_nested_priv *__unused)
8406 {
8407 	dev->upper_level = __netdev_upper_depth(dev) + 1;
8408 	return 0;
8409 }
8410 
8411 #ifdef CONFIG_LOCKDEP
8412 static LIST_HEAD(net_unlink_list);
8413 
8414 static void net_unlink_todo(struct net_device *dev)
8415 {
8416 	if (list_empty(&dev->unlink_list))
8417 		list_add_tail(&dev->unlink_list, &net_unlink_list);
8418 }
8419 #endif
8420 
8421 static int __netdev_update_lower_level(struct net_device *dev,
8422 				       struct netdev_nested_priv *priv)
8423 {
8424 	dev->lower_level = __netdev_lower_depth(dev) + 1;
8425 
8426 #ifdef CONFIG_LOCKDEP
8427 	if (!priv)
8428 		return 0;
8429 
8430 	if (priv->flags & NESTED_SYNC_IMM)
8431 		dev->nested_level = dev->lower_level - 1;
8432 	if (priv->flags & NESTED_SYNC_TODO)
8433 		net_unlink_todo(dev);
8434 #endif
8435 	return 0;
8436 }
8437 
8438 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
8439 				  int (*fn)(struct net_device *dev,
8440 					    struct netdev_nested_priv *priv),
8441 				  struct netdev_nested_priv *priv)
8442 {
8443 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
8444 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
8445 	int ret, cur = 0;
8446 
8447 	now = dev;
8448 	iter = &dev->adj_list.lower;
8449 
8450 	while (1) {
8451 		if (now != dev) {
8452 			ret = fn(now, priv);
8453 			if (ret)
8454 				return ret;
8455 		}
8456 
8457 		next = NULL;
8458 		while (1) {
8459 			ldev = netdev_next_lower_dev_rcu(now, &iter);
8460 			if (!ldev)
8461 				break;
8462 
8463 			next = ldev;
8464 			niter = &ldev->adj_list.lower;
8465 			dev_stack[cur] = now;
8466 			iter_stack[cur++] = iter;
8467 			break;
8468 		}
8469 
8470 		if (!next) {
8471 			if (!cur)
8472 				return 0;
8473 			next = dev_stack[--cur];
8474 			niter = iter_stack[cur];
8475 		}
8476 
8477 		now = next;
8478 		iter = niter;
8479 	}
8480 
8481 	return 0;
8482 }
8483 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
8484 
8485 /**
8486  * netdev_lower_get_first_private_rcu - Get the first ->private from the
8487  *				       lower neighbour list, RCU
8488  *				       variant
8489  * @dev: device
8490  *
8491  * Gets the first netdev_adjacent->private from the dev's lower neighbour
8492  * list. The caller must hold RCU read lock.
8493  */
8494 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
8495 {
8496 	struct netdev_adjacent *lower;
8497 
8498 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
8499 			struct netdev_adjacent, list);
8500 	if (lower)
8501 		return lower->private;
8502 	return NULL;
8503 }
8504 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
8505 
8506 /**
8507  * netdev_master_upper_dev_get_rcu - Get master upper device
8508  * @dev: device
8509  *
8510  * Find a master upper device and return pointer to it or NULL in case
8511  * it's not there. The caller must hold the RCU read lock.
8512  */
8513 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
8514 {
8515 	struct netdev_adjacent *upper;
8516 
8517 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
8518 				       struct netdev_adjacent, list);
8519 	if (upper && likely(upper->master))
8520 		return upper->dev;
8521 	return NULL;
8522 }
8523 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
8524 
8525 static int netdev_adjacent_sysfs_add(struct net_device *dev,
8526 			      struct net_device *adj_dev,
8527 			      struct list_head *dev_list)
8528 {
8529 	char linkname[IFNAMSIZ+7];
8530 
8531 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
8532 		"upper_%s" : "lower_%s", adj_dev->name);
8533 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
8534 				 linkname);
8535 }
8536 static void netdev_adjacent_sysfs_del(struct net_device *dev,
8537 			       char *name,
8538 			       struct list_head *dev_list)
8539 {
8540 	char linkname[IFNAMSIZ+7];
8541 
8542 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
8543 		"upper_%s" : "lower_%s", name);
8544 	sysfs_remove_link(&(dev->dev.kobj), linkname);
8545 }
8546 
8547 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
8548 						 struct net_device *adj_dev,
8549 						 struct list_head *dev_list)
8550 {
8551 	return (dev_list == &dev->adj_list.upper ||
8552 		dev_list == &dev->adj_list.lower) &&
8553 		net_eq(dev_net(dev), dev_net(adj_dev));
8554 }
8555 
8556 static int __netdev_adjacent_dev_insert(struct net_device *dev,
8557 					struct net_device *adj_dev,
8558 					struct list_head *dev_list,
8559 					void *private, bool master)
8560 {
8561 	struct netdev_adjacent *adj;
8562 	int ret;
8563 
8564 	adj = __netdev_find_adj(adj_dev, dev_list);
8565 
8566 	if (adj) {
8567 		adj->ref_nr += 1;
8568 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
8569 			 dev->name, adj_dev->name, adj->ref_nr);
8570 
8571 		return 0;
8572 	}
8573 
8574 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
8575 	if (!adj)
8576 		return -ENOMEM;
8577 
8578 	adj->dev = adj_dev;
8579 	adj->master = master;
8580 	adj->ref_nr = 1;
8581 	adj->private = private;
8582 	adj->ignore = false;
8583 	netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL);
8584 
8585 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
8586 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
8587 
8588 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
8589 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
8590 		if (ret)
8591 			goto free_adj;
8592 	}
8593 
8594 	/* Ensure that master link is always the first item in list. */
8595 	if (master) {
8596 		ret = sysfs_create_link(&(dev->dev.kobj),
8597 					&(adj_dev->dev.kobj), "master");
8598 		if (ret)
8599 			goto remove_symlinks;
8600 
8601 		list_add_rcu(&adj->list, dev_list);
8602 	} else {
8603 		list_add_tail_rcu(&adj->list, dev_list);
8604 	}
8605 
8606 	return 0;
8607 
8608 remove_symlinks:
8609 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
8610 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
8611 free_adj:
8612 	netdev_put(adj_dev, &adj->dev_tracker);
8613 	kfree(adj);
8614 
8615 	return ret;
8616 }
8617 
8618 static void __netdev_adjacent_dev_remove(struct net_device *dev,
8619 					 struct net_device *adj_dev,
8620 					 u16 ref_nr,
8621 					 struct list_head *dev_list)
8622 {
8623 	struct netdev_adjacent *adj;
8624 
8625 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
8626 		 dev->name, adj_dev->name, ref_nr);
8627 
8628 	adj = __netdev_find_adj(adj_dev, dev_list);
8629 
8630 	if (!adj) {
8631 		pr_err("Adjacency does not exist for device %s from %s\n",
8632 		       dev->name, adj_dev->name);
8633 		WARN_ON(1);
8634 		return;
8635 	}
8636 
8637 	if (adj->ref_nr > ref_nr) {
8638 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
8639 			 dev->name, adj_dev->name, ref_nr,
8640 			 adj->ref_nr - ref_nr);
8641 		adj->ref_nr -= ref_nr;
8642 		return;
8643 	}
8644 
8645 	if (adj->master)
8646 		sysfs_remove_link(&(dev->dev.kobj), "master");
8647 
8648 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
8649 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
8650 
8651 	list_del_rcu(&adj->list);
8652 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
8653 		 adj_dev->name, dev->name, adj_dev->name);
8654 	netdev_put(adj_dev, &adj->dev_tracker);
8655 	kfree_rcu(adj, rcu);
8656 }
8657 
8658 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
8659 					    struct net_device *upper_dev,
8660 					    struct list_head *up_list,
8661 					    struct list_head *down_list,
8662 					    void *private, bool master)
8663 {
8664 	int ret;
8665 
8666 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
8667 					   private, master);
8668 	if (ret)
8669 		return ret;
8670 
8671 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
8672 					   private, false);
8673 	if (ret) {
8674 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
8675 		return ret;
8676 	}
8677 
8678 	return 0;
8679 }
8680 
8681 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
8682 					       struct net_device *upper_dev,
8683 					       u16 ref_nr,
8684 					       struct list_head *up_list,
8685 					       struct list_head *down_list)
8686 {
8687 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
8688 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
8689 }
8690 
8691 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
8692 						struct net_device *upper_dev,
8693 						void *private, bool master)
8694 {
8695 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
8696 						&dev->adj_list.upper,
8697 						&upper_dev->adj_list.lower,
8698 						private, master);
8699 }
8700 
8701 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
8702 						   struct net_device *upper_dev)
8703 {
8704 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
8705 					   &dev->adj_list.upper,
8706 					   &upper_dev->adj_list.lower);
8707 }
8708 
8709 static int __netdev_upper_dev_link(struct net_device *dev,
8710 				   struct net_device *upper_dev, bool master,
8711 				   void *upper_priv, void *upper_info,
8712 				   struct netdev_nested_priv *priv,
8713 				   struct netlink_ext_ack *extack)
8714 {
8715 	struct netdev_notifier_changeupper_info changeupper_info = {
8716 		.info = {
8717 			.dev = dev,
8718 			.extack = extack,
8719 		},
8720 		.upper_dev = upper_dev,
8721 		.master = master,
8722 		.linking = true,
8723 		.upper_info = upper_info,
8724 	};
8725 	struct net_device *master_dev;
8726 	int ret = 0;
8727 
8728 	ASSERT_RTNL();
8729 
8730 	if (dev == upper_dev)
8731 		return -EBUSY;
8732 
8733 	/* To prevent loops, check if dev is not upper device to upper_dev. */
8734 	if (__netdev_has_upper_dev(upper_dev, dev))
8735 		return -EBUSY;
8736 
8737 	if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
8738 		return -EMLINK;
8739 
8740 	if (!master) {
8741 		if (__netdev_has_upper_dev(dev, upper_dev))
8742 			return -EEXIST;
8743 	} else {
8744 		master_dev = __netdev_master_upper_dev_get(dev);
8745 		if (master_dev)
8746 			return master_dev == upper_dev ? -EEXIST : -EBUSY;
8747 	}
8748 
8749 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8750 					    &changeupper_info.info);
8751 	ret = notifier_to_errno(ret);
8752 	if (ret)
8753 		return ret;
8754 
8755 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
8756 						   master);
8757 	if (ret)
8758 		return ret;
8759 
8760 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8761 					    &changeupper_info.info);
8762 	ret = notifier_to_errno(ret);
8763 	if (ret)
8764 		goto rollback;
8765 
8766 	__netdev_update_upper_level(dev, NULL);
8767 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8768 
8769 	__netdev_update_lower_level(upper_dev, priv);
8770 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8771 				    priv);
8772 
8773 	return 0;
8774 
8775 rollback:
8776 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8777 
8778 	return ret;
8779 }
8780 
8781 /**
8782  * netdev_upper_dev_link - Add a link to the upper device
8783  * @dev: device
8784  * @upper_dev: new upper device
8785  * @extack: netlink extended ack
8786  *
8787  * Adds a link to device which is upper to this one. The caller must hold
8788  * the RTNL lock. On a failure a negative errno code is returned.
8789  * On success the reference counts are adjusted and the function
8790  * returns zero.
8791  */
8792 int netdev_upper_dev_link(struct net_device *dev,
8793 			  struct net_device *upper_dev,
8794 			  struct netlink_ext_ack *extack)
8795 {
8796 	struct netdev_nested_priv priv = {
8797 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8798 		.data = NULL,
8799 	};
8800 
8801 	return __netdev_upper_dev_link(dev, upper_dev, false,
8802 				       NULL, NULL, &priv, extack);
8803 }
8804 EXPORT_SYMBOL(netdev_upper_dev_link);
8805 
8806 /**
8807  * netdev_master_upper_dev_link - Add a master link to the upper device
8808  * @dev: device
8809  * @upper_dev: new upper device
8810  * @upper_priv: upper device private
8811  * @upper_info: upper info to be passed down via notifier
8812  * @extack: netlink extended ack
8813  *
8814  * Adds a link to device which is upper to this one. In this case, only
8815  * one master upper device can be linked, although other non-master devices
8816  * might be linked as well. The caller must hold the RTNL lock.
8817  * On a failure a negative errno code is returned. On success the reference
8818  * counts are adjusted and the function returns zero.
8819  */
8820 int netdev_master_upper_dev_link(struct net_device *dev,
8821 				 struct net_device *upper_dev,
8822 				 void *upper_priv, void *upper_info,
8823 				 struct netlink_ext_ack *extack)
8824 {
8825 	struct netdev_nested_priv priv = {
8826 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8827 		.data = NULL,
8828 	};
8829 
8830 	return __netdev_upper_dev_link(dev, upper_dev, true,
8831 				       upper_priv, upper_info, &priv, extack);
8832 }
8833 EXPORT_SYMBOL(netdev_master_upper_dev_link);
8834 
8835 static void __netdev_upper_dev_unlink(struct net_device *dev,
8836 				      struct net_device *upper_dev,
8837 				      struct netdev_nested_priv *priv)
8838 {
8839 	struct netdev_notifier_changeupper_info changeupper_info = {
8840 		.info = {
8841 			.dev = dev,
8842 		},
8843 		.upper_dev = upper_dev,
8844 		.linking = false,
8845 	};
8846 
8847 	ASSERT_RTNL();
8848 
8849 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
8850 
8851 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8852 				      &changeupper_info.info);
8853 
8854 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8855 
8856 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8857 				      &changeupper_info.info);
8858 
8859 	__netdev_update_upper_level(dev, NULL);
8860 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8861 
8862 	__netdev_update_lower_level(upper_dev, priv);
8863 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8864 				    priv);
8865 }
8866 
8867 /**
8868  * netdev_upper_dev_unlink - Removes a link to upper device
8869  * @dev: device
8870  * @upper_dev: new upper device
8871  *
8872  * Removes a link to device which is upper to this one. The caller must hold
8873  * the RTNL lock.
8874  */
8875 void netdev_upper_dev_unlink(struct net_device *dev,
8876 			     struct net_device *upper_dev)
8877 {
8878 	struct netdev_nested_priv priv = {
8879 		.flags = NESTED_SYNC_TODO,
8880 		.data = NULL,
8881 	};
8882 
8883 	__netdev_upper_dev_unlink(dev, upper_dev, &priv);
8884 }
8885 EXPORT_SYMBOL(netdev_upper_dev_unlink);
8886 
8887 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
8888 				      struct net_device *lower_dev,
8889 				      bool val)
8890 {
8891 	struct netdev_adjacent *adj;
8892 
8893 	adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
8894 	if (adj)
8895 		adj->ignore = val;
8896 
8897 	adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
8898 	if (adj)
8899 		adj->ignore = val;
8900 }
8901 
8902 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
8903 					struct net_device *lower_dev)
8904 {
8905 	__netdev_adjacent_dev_set(upper_dev, lower_dev, true);
8906 }
8907 
8908 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
8909 				       struct net_device *lower_dev)
8910 {
8911 	__netdev_adjacent_dev_set(upper_dev, lower_dev, false);
8912 }
8913 
8914 int netdev_adjacent_change_prepare(struct net_device *old_dev,
8915 				   struct net_device *new_dev,
8916 				   struct net_device *dev,
8917 				   struct netlink_ext_ack *extack)
8918 {
8919 	struct netdev_nested_priv priv = {
8920 		.flags = 0,
8921 		.data = NULL,
8922 	};
8923 	int err;
8924 
8925 	if (!new_dev)
8926 		return 0;
8927 
8928 	if (old_dev && new_dev != old_dev)
8929 		netdev_adjacent_dev_disable(dev, old_dev);
8930 	err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
8931 				      extack);
8932 	if (err) {
8933 		if (old_dev && new_dev != old_dev)
8934 			netdev_adjacent_dev_enable(dev, old_dev);
8935 		return err;
8936 	}
8937 
8938 	return 0;
8939 }
8940 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
8941 
8942 void netdev_adjacent_change_commit(struct net_device *old_dev,
8943 				   struct net_device *new_dev,
8944 				   struct net_device *dev)
8945 {
8946 	struct netdev_nested_priv priv = {
8947 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8948 		.data = NULL,
8949 	};
8950 
8951 	if (!new_dev || !old_dev)
8952 		return;
8953 
8954 	if (new_dev == old_dev)
8955 		return;
8956 
8957 	netdev_adjacent_dev_enable(dev, old_dev);
8958 	__netdev_upper_dev_unlink(old_dev, dev, &priv);
8959 }
8960 EXPORT_SYMBOL(netdev_adjacent_change_commit);
8961 
8962 void netdev_adjacent_change_abort(struct net_device *old_dev,
8963 				  struct net_device *new_dev,
8964 				  struct net_device *dev)
8965 {
8966 	struct netdev_nested_priv priv = {
8967 		.flags = 0,
8968 		.data = NULL,
8969 	};
8970 
8971 	if (!new_dev)
8972 		return;
8973 
8974 	if (old_dev && new_dev != old_dev)
8975 		netdev_adjacent_dev_enable(dev, old_dev);
8976 
8977 	__netdev_upper_dev_unlink(new_dev, dev, &priv);
8978 }
8979 EXPORT_SYMBOL(netdev_adjacent_change_abort);
8980 
8981 /**
8982  * netdev_bonding_info_change - Dispatch event about slave change
8983  * @dev: device
8984  * @bonding_info: info to dispatch
8985  *
8986  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
8987  * The caller must hold the RTNL lock.
8988  */
8989 void netdev_bonding_info_change(struct net_device *dev,
8990 				struct netdev_bonding_info *bonding_info)
8991 {
8992 	struct netdev_notifier_bonding_info info = {
8993 		.info.dev = dev,
8994 	};
8995 
8996 	memcpy(&info.bonding_info, bonding_info,
8997 	       sizeof(struct netdev_bonding_info));
8998 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
8999 				      &info.info);
9000 }
9001 EXPORT_SYMBOL(netdev_bonding_info_change);
9002 
9003 static int netdev_offload_xstats_enable_l3(struct net_device *dev,
9004 					   struct netlink_ext_ack *extack)
9005 {
9006 	struct netdev_notifier_offload_xstats_info info = {
9007 		.info.dev = dev,
9008 		.info.extack = extack,
9009 		.type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
9010 	};
9011 	int err;
9012 	int rc;
9013 
9014 	dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3),
9015 					 GFP_KERNEL);
9016 	if (!dev->offload_xstats_l3)
9017 		return -ENOMEM;
9018 
9019 	rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE,
9020 						  NETDEV_OFFLOAD_XSTATS_DISABLE,
9021 						  &info.info);
9022 	err = notifier_to_errno(rc);
9023 	if (err)
9024 		goto free_stats;
9025 
9026 	return 0;
9027 
9028 free_stats:
9029 	kfree(dev->offload_xstats_l3);
9030 	dev->offload_xstats_l3 = NULL;
9031 	return err;
9032 }
9033 
9034 int netdev_offload_xstats_enable(struct net_device *dev,
9035 				 enum netdev_offload_xstats_type type,
9036 				 struct netlink_ext_ack *extack)
9037 {
9038 	ASSERT_RTNL();
9039 
9040 	if (netdev_offload_xstats_enabled(dev, type))
9041 		return -EALREADY;
9042 
9043 	switch (type) {
9044 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
9045 		return netdev_offload_xstats_enable_l3(dev, extack);
9046 	}
9047 
9048 	WARN_ON(1);
9049 	return -EINVAL;
9050 }
9051 EXPORT_SYMBOL(netdev_offload_xstats_enable);
9052 
9053 static void netdev_offload_xstats_disable_l3(struct net_device *dev)
9054 {
9055 	struct netdev_notifier_offload_xstats_info info = {
9056 		.info.dev = dev,
9057 		.type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
9058 	};
9059 
9060 	call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE,
9061 				      &info.info);
9062 	kfree(dev->offload_xstats_l3);
9063 	dev->offload_xstats_l3 = NULL;
9064 }
9065 
9066 int netdev_offload_xstats_disable(struct net_device *dev,
9067 				  enum netdev_offload_xstats_type type)
9068 {
9069 	ASSERT_RTNL();
9070 
9071 	if (!netdev_offload_xstats_enabled(dev, type))
9072 		return -EALREADY;
9073 
9074 	switch (type) {
9075 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
9076 		netdev_offload_xstats_disable_l3(dev);
9077 		return 0;
9078 	}
9079 
9080 	WARN_ON(1);
9081 	return -EINVAL;
9082 }
9083 EXPORT_SYMBOL(netdev_offload_xstats_disable);
9084 
9085 static void netdev_offload_xstats_disable_all(struct net_device *dev)
9086 {
9087 	netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3);
9088 }
9089 
9090 static struct rtnl_hw_stats64 *
9091 netdev_offload_xstats_get_ptr(const struct net_device *dev,
9092 			      enum netdev_offload_xstats_type type)
9093 {
9094 	switch (type) {
9095 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
9096 		return dev->offload_xstats_l3;
9097 	}
9098 
9099 	WARN_ON(1);
9100 	return NULL;
9101 }
9102 
9103 bool netdev_offload_xstats_enabled(const struct net_device *dev,
9104 				   enum netdev_offload_xstats_type type)
9105 {
9106 	ASSERT_RTNL();
9107 
9108 	return netdev_offload_xstats_get_ptr(dev, type);
9109 }
9110 EXPORT_SYMBOL(netdev_offload_xstats_enabled);
9111 
9112 struct netdev_notifier_offload_xstats_ru {
9113 	bool used;
9114 };
9115 
9116 struct netdev_notifier_offload_xstats_rd {
9117 	struct rtnl_hw_stats64 stats;
9118 	bool used;
9119 };
9120 
9121 static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest,
9122 				  const struct rtnl_hw_stats64 *src)
9123 {
9124 	dest->rx_packets	  += src->rx_packets;
9125 	dest->tx_packets	  += src->tx_packets;
9126 	dest->rx_bytes		  += src->rx_bytes;
9127 	dest->tx_bytes		  += src->tx_bytes;
9128 	dest->rx_errors		  += src->rx_errors;
9129 	dest->tx_errors		  += src->tx_errors;
9130 	dest->rx_dropped	  += src->rx_dropped;
9131 	dest->tx_dropped	  += src->tx_dropped;
9132 	dest->multicast		  += src->multicast;
9133 }
9134 
9135 static int netdev_offload_xstats_get_used(struct net_device *dev,
9136 					  enum netdev_offload_xstats_type type,
9137 					  bool *p_used,
9138 					  struct netlink_ext_ack *extack)
9139 {
9140 	struct netdev_notifier_offload_xstats_ru report_used = {};
9141 	struct netdev_notifier_offload_xstats_info info = {
9142 		.info.dev = dev,
9143 		.info.extack = extack,
9144 		.type = type,
9145 		.report_used = &report_used,
9146 	};
9147 	int rc;
9148 
9149 	WARN_ON(!netdev_offload_xstats_enabled(dev, type));
9150 	rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED,
9151 					   &info.info);
9152 	*p_used = report_used.used;
9153 	return notifier_to_errno(rc);
9154 }
9155 
9156 static int netdev_offload_xstats_get_stats(struct net_device *dev,
9157 					   enum netdev_offload_xstats_type type,
9158 					   struct rtnl_hw_stats64 *p_stats,
9159 					   bool *p_used,
9160 					   struct netlink_ext_ack *extack)
9161 {
9162 	struct netdev_notifier_offload_xstats_rd report_delta = {};
9163 	struct netdev_notifier_offload_xstats_info info = {
9164 		.info.dev = dev,
9165 		.info.extack = extack,
9166 		.type = type,
9167 		.report_delta = &report_delta,
9168 	};
9169 	struct rtnl_hw_stats64 *stats;
9170 	int rc;
9171 
9172 	stats = netdev_offload_xstats_get_ptr(dev, type);
9173 	if (WARN_ON(!stats))
9174 		return -EINVAL;
9175 
9176 	rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
9177 					   &info.info);
9178 
9179 	/* Cache whatever we got, even if there was an error, otherwise the
9180 	 * successful stats retrievals would get lost.
9181 	 */
9182 	netdev_hw_stats64_add(stats, &report_delta.stats);
9183 
9184 	if (p_stats)
9185 		*p_stats = *stats;
9186 	*p_used = report_delta.used;
9187 
9188 	return notifier_to_errno(rc);
9189 }
9190 
9191 int netdev_offload_xstats_get(struct net_device *dev,
9192 			      enum netdev_offload_xstats_type type,
9193 			      struct rtnl_hw_stats64 *p_stats, bool *p_used,
9194 			      struct netlink_ext_ack *extack)
9195 {
9196 	ASSERT_RTNL();
9197 
9198 	if (p_stats)
9199 		return netdev_offload_xstats_get_stats(dev, type, p_stats,
9200 						       p_used, extack);
9201 	else
9202 		return netdev_offload_xstats_get_used(dev, type, p_used,
9203 						      extack);
9204 }
9205 EXPORT_SYMBOL(netdev_offload_xstats_get);
9206 
9207 void
9208 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta,
9209 				   const struct rtnl_hw_stats64 *stats)
9210 {
9211 	report_delta->used = true;
9212 	netdev_hw_stats64_add(&report_delta->stats, stats);
9213 }
9214 EXPORT_SYMBOL(netdev_offload_xstats_report_delta);
9215 
9216 void
9217 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used)
9218 {
9219 	report_used->used = true;
9220 }
9221 EXPORT_SYMBOL(netdev_offload_xstats_report_used);
9222 
9223 void netdev_offload_xstats_push_delta(struct net_device *dev,
9224 				      enum netdev_offload_xstats_type type,
9225 				      const struct rtnl_hw_stats64 *p_stats)
9226 {
9227 	struct rtnl_hw_stats64 *stats;
9228 
9229 	ASSERT_RTNL();
9230 
9231 	stats = netdev_offload_xstats_get_ptr(dev, type);
9232 	if (WARN_ON(!stats))
9233 		return;
9234 
9235 	netdev_hw_stats64_add(stats, p_stats);
9236 }
9237 EXPORT_SYMBOL(netdev_offload_xstats_push_delta);
9238 
9239 /**
9240  * netdev_get_xmit_slave - Get the xmit slave of master device
9241  * @dev: device
9242  * @skb: The packet
9243  * @all_slaves: assume all the slaves are active
9244  *
9245  * The reference counters are not incremented so the caller must be
9246  * careful with locks. The caller must hold RCU lock.
9247  * %NULL is returned if no slave is found.
9248  */
9249 
9250 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
9251 					 struct sk_buff *skb,
9252 					 bool all_slaves)
9253 {
9254 	const struct net_device_ops *ops = dev->netdev_ops;
9255 
9256 	if (!ops->ndo_get_xmit_slave)
9257 		return NULL;
9258 	return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
9259 }
9260 EXPORT_SYMBOL(netdev_get_xmit_slave);
9261 
9262 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
9263 						  struct sock *sk)
9264 {
9265 	const struct net_device_ops *ops = dev->netdev_ops;
9266 
9267 	if (!ops->ndo_sk_get_lower_dev)
9268 		return NULL;
9269 	return ops->ndo_sk_get_lower_dev(dev, sk);
9270 }
9271 
9272 /**
9273  * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
9274  * @dev: device
9275  * @sk: the socket
9276  *
9277  * %NULL is returned if no lower device is found.
9278  */
9279 
9280 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
9281 					    struct sock *sk)
9282 {
9283 	struct net_device *lower;
9284 
9285 	lower = netdev_sk_get_lower_dev(dev, sk);
9286 	while (lower) {
9287 		dev = lower;
9288 		lower = netdev_sk_get_lower_dev(dev, sk);
9289 	}
9290 
9291 	return dev;
9292 }
9293 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
9294 
9295 static void netdev_adjacent_add_links(struct net_device *dev)
9296 {
9297 	struct netdev_adjacent *iter;
9298 
9299 	struct net *net = dev_net(dev);
9300 
9301 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
9302 		if (!net_eq(net, dev_net(iter->dev)))
9303 			continue;
9304 		netdev_adjacent_sysfs_add(iter->dev, dev,
9305 					  &iter->dev->adj_list.lower);
9306 		netdev_adjacent_sysfs_add(dev, iter->dev,
9307 					  &dev->adj_list.upper);
9308 	}
9309 
9310 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
9311 		if (!net_eq(net, dev_net(iter->dev)))
9312 			continue;
9313 		netdev_adjacent_sysfs_add(iter->dev, dev,
9314 					  &iter->dev->adj_list.upper);
9315 		netdev_adjacent_sysfs_add(dev, iter->dev,
9316 					  &dev->adj_list.lower);
9317 	}
9318 }
9319 
9320 static void netdev_adjacent_del_links(struct net_device *dev)
9321 {
9322 	struct netdev_adjacent *iter;
9323 
9324 	struct net *net = dev_net(dev);
9325 
9326 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
9327 		if (!net_eq(net, dev_net(iter->dev)))
9328 			continue;
9329 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
9330 					  &iter->dev->adj_list.lower);
9331 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
9332 					  &dev->adj_list.upper);
9333 	}
9334 
9335 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
9336 		if (!net_eq(net, dev_net(iter->dev)))
9337 			continue;
9338 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
9339 					  &iter->dev->adj_list.upper);
9340 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
9341 					  &dev->adj_list.lower);
9342 	}
9343 }
9344 
9345 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
9346 {
9347 	struct netdev_adjacent *iter;
9348 
9349 	struct net *net = dev_net(dev);
9350 
9351 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
9352 		if (!net_eq(net, dev_net(iter->dev)))
9353 			continue;
9354 		netdev_adjacent_sysfs_del(iter->dev, oldname,
9355 					  &iter->dev->adj_list.lower);
9356 		netdev_adjacent_sysfs_add(iter->dev, dev,
9357 					  &iter->dev->adj_list.lower);
9358 	}
9359 
9360 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
9361 		if (!net_eq(net, dev_net(iter->dev)))
9362 			continue;
9363 		netdev_adjacent_sysfs_del(iter->dev, oldname,
9364 					  &iter->dev->adj_list.upper);
9365 		netdev_adjacent_sysfs_add(iter->dev, dev,
9366 					  &iter->dev->adj_list.upper);
9367 	}
9368 }
9369 
9370 void *netdev_lower_dev_get_private(struct net_device *dev,
9371 				   struct net_device *lower_dev)
9372 {
9373 	struct netdev_adjacent *lower;
9374 
9375 	if (!lower_dev)
9376 		return NULL;
9377 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
9378 	if (!lower)
9379 		return NULL;
9380 
9381 	return lower->private;
9382 }
9383 EXPORT_SYMBOL(netdev_lower_dev_get_private);
9384 
9385 
9386 /**
9387  * netdev_lower_state_changed - Dispatch event about lower device state change
9388  * @lower_dev: device
9389  * @lower_state_info: state to dispatch
9390  *
9391  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
9392  * The caller must hold the RTNL lock.
9393  */
9394 void netdev_lower_state_changed(struct net_device *lower_dev,
9395 				void *lower_state_info)
9396 {
9397 	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
9398 		.info.dev = lower_dev,
9399 	};
9400 
9401 	ASSERT_RTNL();
9402 	changelowerstate_info.lower_state_info = lower_state_info;
9403 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
9404 				      &changelowerstate_info.info);
9405 }
9406 EXPORT_SYMBOL(netdev_lower_state_changed);
9407 
9408 static void dev_change_rx_flags(struct net_device *dev, int flags)
9409 {
9410 	const struct net_device_ops *ops = dev->netdev_ops;
9411 
9412 	if (ops->ndo_change_rx_flags)
9413 		ops->ndo_change_rx_flags(dev, flags);
9414 }
9415 
9416 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
9417 {
9418 	unsigned int old_flags = dev->flags;
9419 	unsigned int promiscuity, flags;
9420 	kuid_t uid;
9421 	kgid_t gid;
9422 
9423 	ASSERT_RTNL();
9424 
9425 	promiscuity = dev->promiscuity + inc;
9426 	if (promiscuity == 0) {
9427 		/*
9428 		 * Avoid overflow.
9429 		 * If inc causes overflow, untouch promisc and return error.
9430 		 */
9431 		if (unlikely(inc > 0)) {
9432 			netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
9433 			return -EOVERFLOW;
9434 		}
9435 		flags = old_flags & ~IFF_PROMISC;
9436 	} else {
9437 		flags = old_flags | IFF_PROMISC;
9438 	}
9439 	WRITE_ONCE(dev->promiscuity, promiscuity);
9440 	if (flags != old_flags) {
9441 		WRITE_ONCE(dev->flags, flags);
9442 		netdev_info(dev, "%s promiscuous mode\n",
9443 			    dev->flags & IFF_PROMISC ? "entered" : "left");
9444 		if (audit_enabled) {
9445 			current_uid_gid(&uid, &gid);
9446 			audit_log(audit_context(), GFP_ATOMIC,
9447 				  AUDIT_ANOM_PROMISCUOUS,
9448 				  "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
9449 				  dev->name, (dev->flags & IFF_PROMISC),
9450 				  (old_flags & IFF_PROMISC),
9451 				  from_kuid(&init_user_ns, audit_get_loginuid(current)),
9452 				  from_kuid(&init_user_ns, uid),
9453 				  from_kgid(&init_user_ns, gid),
9454 				  audit_get_sessionid(current));
9455 		}
9456 
9457 		dev_change_rx_flags(dev, IFF_PROMISC);
9458 	}
9459 	if (notify) {
9460 		/* The ops lock is only required to ensure consistent locking
9461 		 * for `NETDEV_CHANGE` notifiers. This function is sometimes
9462 		 * called without the lock, even for devices that are ops
9463 		 * locked, such as in `dev_uc_sync_multiple` when using
9464 		 * bonding or teaming.
9465 		 */
9466 		netdev_ops_assert_locked(dev);
9467 		__dev_notify_flags(dev, old_flags, IFF_PROMISC, 0, NULL);
9468 	}
9469 	return 0;
9470 }
9471 
9472 int netif_set_promiscuity(struct net_device *dev, int inc)
9473 {
9474 	unsigned int old_flags = dev->flags;
9475 	int err;
9476 
9477 	err = __dev_set_promiscuity(dev, inc, true);
9478 	if (err < 0)
9479 		return err;
9480 	if (dev->flags != old_flags)
9481 		dev_set_rx_mode(dev);
9482 	return err;
9483 }
9484 
9485 int netif_set_allmulti(struct net_device *dev, int inc, bool notify)
9486 {
9487 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
9488 	unsigned int allmulti, flags;
9489 
9490 	ASSERT_RTNL();
9491 
9492 	allmulti = dev->allmulti + inc;
9493 	if (allmulti == 0) {
9494 		/*
9495 		 * Avoid overflow.
9496 		 * If inc causes overflow, untouch allmulti and return error.
9497 		 */
9498 		if (unlikely(inc > 0)) {
9499 			netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
9500 			return -EOVERFLOW;
9501 		}
9502 		flags = old_flags & ~IFF_ALLMULTI;
9503 	} else {
9504 		flags = old_flags | IFF_ALLMULTI;
9505 	}
9506 	WRITE_ONCE(dev->allmulti, allmulti);
9507 	if (flags != old_flags) {
9508 		WRITE_ONCE(dev->flags, flags);
9509 		netdev_info(dev, "%s allmulticast mode\n",
9510 			    dev->flags & IFF_ALLMULTI ? "entered" : "left");
9511 		dev_change_rx_flags(dev, IFF_ALLMULTI);
9512 		dev_set_rx_mode(dev);
9513 		if (notify)
9514 			__dev_notify_flags(dev, old_flags,
9515 					   dev->gflags ^ old_gflags, 0, NULL);
9516 	}
9517 	return 0;
9518 }
9519 
9520 /*
9521  *	Upload unicast and multicast address lists to device and
9522  *	configure RX filtering. When the device doesn't support unicast
9523  *	filtering it is put in promiscuous mode while unicast addresses
9524  *	are present.
9525  */
9526 void __dev_set_rx_mode(struct net_device *dev)
9527 {
9528 	const struct net_device_ops *ops = dev->netdev_ops;
9529 
9530 	/* dev_open will call this function so the list will stay sane. */
9531 	if (!(dev->flags&IFF_UP))
9532 		return;
9533 
9534 	if (!netif_device_present(dev))
9535 		return;
9536 
9537 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
9538 		/* Unicast addresses changes may only happen under the rtnl,
9539 		 * therefore calling __dev_set_promiscuity here is safe.
9540 		 */
9541 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
9542 			__dev_set_promiscuity(dev, 1, false);
9543 			dev->uc_promisc = true;
9544 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
9545 			__dev_set_promiscuity(dev, -1, false);
9546 			dev->uc_promisc = false;
9547 		}
9548 	}
9549 
9550 	if (ops->ndo_set_rx_mode)
9551 		ops->ndo_set_rx_mode(dev);
9552 }
9553 
9554 void dev_set_rx_mode(struct net_device *dev)
9555 {
9556 	netif_addr_lock_bh(dev);
9557 	__dev_set_rx_mode(dev);
9558 	netif_addr_unlock_bh(dev);
9559 }
9560 
9561 /**
9562  * netif_get_flags() - get flags reported to userspace
9563  * @dev: device
9564  *
9565  * Get the combination of flag bits exported through APIs to userspace.
9566  */
9567 unsigned int netif_get_flags(const struct net_device *dev)
9568 {
9569 	unsigned int flags;
9570 
9571 	flags = (READ_ONCE(dev->flags) & ~(IFF_PROMISC |
9572 				IFF_ALLMULTI |
9573 				IFF_RUNNING |
9574 				IFF_LOWER_UP |
9575 				IFF_DORMANT)) |
9576 		(READ_ONCE(dev->gflags) & (IFF_PROMISC |
9577 				IFF_ALLMULTI));
9578 
9579 	if (netif_running(dev)) {
9580 		if (netif_oper_up(dev))
9581 			flags |= IFF_RUNNING;
9582 		if (netif_carrier_ok(dev))
9583 			flags |= IFF_LOWER_UP;
9584 		if (netif_dormant(dev))
9585 			flags |= IFF_DORMANT;
9586 	}
9587 
9588 	return flags;
9589 }
9590 EXPORT_SYMBOL(netif_get_flags);
9591 
9592 int __dev_change_flags(struct net_device *dev, unsigned int flags,
9593 		       struct netlink_ext_ack *extack)
9594 {
9595 	unsigned int old_flags = dev->flags;
9596 	int ret;
9597 
9598 	ASSERT_RTNL();
9599 
9600 	/*
9601 	 *	Set the flags on our device.
9602 	 */
9603 
9604 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
9605 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
9606 			       IFF_AUTOMEDIA)) |
9607 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
9608 				    IFF_ALLMULTI));
9609 
9610 	/*
9611 	 *	Load in the correct multicast list now the flags have changed.
9612 	 */
9613 
9614 	if ((old_flags ^ flags) & IFF_MULTICAST)
9615 		dev_change_rx_flags(dev, IFF_MULTICAST);
9616 
9617 	dev_set_rx_mode(dev);
9618 
9619 	/*
9620 	 *	Have we downed the interface. We handle IFF_UP ourselves
9621 	 *	according to user attempts to set it, rather than blindly
9622 	 *	setting it.
9623 	 */
9624 
9625 	ret = 0;
9626 	if ((old_flags ^ flags) & IFF_UP) {
9627 		if (old_flags & IFF_UP)
9628 			__dev_close(dev);
9629 		else
9630 			ret = __dev_open(dev, extack);
9631 	}
9632 
9633 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
9634 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
9635 		old_flags = dev->flags;
9636 
9637 		dev->gflags ^= IFF_PROMISC;
9638 
9639 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
9640 			if (dev->flags != old_flags)
9641 				dev_set_rx_mode(dev);
9642 	}
9643 
9644 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
9645 	 * is important. Some (broken) drivers set IFF_PROMISC, when
9646 	 * IFF_ALLMULTI is requested not asking us and not reporting.
9647 	 */
9648 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
9649 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
9650 
9651 		dev->gflags ^= IFF_ALLMULTI;
9652 		netif_set_allmulti(dev, inc, false);
9653 	}
9654 
9655 	return ret;
9656 }
9657 
9658 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
9659 			unsigned int gchanges, u32 portid,
9660 			const struct nlmsghdr *nlh)
9661 {
9662 	unsigned int changes = dev->flags ^ old_flags;
9663 
9664 	if (gchanges)
9665 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC, portid, nlh);
9666 
9667 	if (changes & IFF_UP) {
9668 		if (dev->flags & IFF_UP)
9669 			call_netdevice_notifiers(NETDEV_UP, dev);
9670 		else
9671 			call_netdevice_notifiers(NETDEV_DOWN, dev);
9672 	}
9673 
9674 	if (dev->flags & IFF_UP &&
9675 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
9676 		struct netdev_notifier_change_info change_info = {
9677 			.info = {
9678 				.dev = dev,
9679 			},
9680 			.flags_changed = changes,
9681 		};
9682 
9683 		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
9684 	}
9685 }
9686 
9687 int netif_change_flags(struct net_device *dev, unsigned int flags,
9688 		       struct netlink_ext_ack *extack)
9689 {
9690 	int ret;
9691 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
9692 
9693 	ret = __dev_change_flags(dev, flags, extack);
9694 	if (ret < 0)
9695 		return ret;
9696 
9697 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
9698 	__dev_notify_flags(dev, old_flags, changes, 0, NULL);
9699 	return ret;
9700 }
9701 
9702 int __netif_set_mtu(struct net_device *dev, int new_mtu)
9703 {
9704 	const struct net_device_ops *ops = dev->netdev_ops;
9705 
9706 	if (ops->ndo_change_mtu)
9707 		return ops->ndo_change_mtu(dev, new_mtu);
9708 
9709 	/* Pairs with all the lockless reads of dev->mtu in the stack */
9710 	WRITE_ONCE(dev->mtu, new_mtu);
9711 	return 0;
9712 }
9713 EXPORT_SYMBOL_NS_GPL(__netif_set_mtu, "NETDEV_INTERNAL");
9714 
9715 int dev_validate_mtu(struct net_device *dev, int new_mtu,
9716 		     struct netlink_ext_ack *extack)
9717 {
9718 	/* MTU must be positive, and in range */
9719 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
9720 		NL_SET_ERR_MSG(extack, "mtu less than device minimum");
9721 		return -EINVAL;
9722 	}
9723 
9724 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
9725 		NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
9726 		return -EINVAL;
9727 	}
9728 	return 0;
9729 }
9730 
9731 /**
9732  * netif_set_mtu_ext() - Change maximum transfer unit
9733  * @dev: device
9734  * @new_mtu: new transfer unit
9735  * @extack: netlink extended ack
9736  *
9737  * Change the maximum transfer size of the network device.
9738  *
9739  * Return: 0 on success, -errno on failure.
9740  */
9741 int netif_set_mtu_ext(struct net_device *dev, int new_mtu,
9742 		      struct netlink_ext_ack *extack)
9743 {
9744 	int err, orig_mtu;
9745 
9746 	netdev_ops_assert_locked(dev);
9747 
9748 	if (new_mtu == dev->mtu)
9749 		return 0;
9750 
9751 	err = dev_validate_mtu(dev, new_mtu, extack);
9752 	if (err)
9753 		return err;
9754 
9755 	if (!netif_device_present(dev))
9756 		return -ENODEV;
9757 
9758 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
9759 	err = notifier_to_errno(err);
9760 	if (err)
9761 		return err;
9762 
9763 	orig_mtu = dev->mtu;
9764 	err = __netif_set_mtu(dev, new_mtu);
9765 
9766 	if (!err) {
9767 		err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
9768 						   orig_mtu);
9769 		err = notifier_to_errno(err);
9770 		if (err) {
9771 			/* setting mtu back and notifying everyone again,
9772 			 * so that they have a chance to revert changes.
9773 			 */
9774 			__netif_set_mtu(dev, orig_mtu);
9775 			call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
9776 						     new_mtu);
9777 		}
9778 	}
9779 	return err;
9780 }
9781 
9782 int netif_set_mtu(struct net_device *dev, int new_mtu)
9783 {
9784 	struct netlink_ext_ack extack;
9785 	int err;
9786 
9787 	memset(&extack, 0, sizeof(extack));
9788 	err = netif_set_mtu_ext(dev, new_mtu, &extack);
9789 	if (err && extack._msg)
9790 		net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
9791 	return err;
9792 }
9793 EXPORT_SYMBOL(netif_set_mtu);
9794 
9795 int netif_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
9796 {
9797 	unsigned int orig_len = dev->tx_queue_len;
9798 	int res;
9799 
9800 	if (new_len != (unsigned int)new_len)
9801 		return -ERANGE;
9802 
9803 	if (new_len != orig_len) {
9804 		WRITE_ONCE(dev->tx_queue_len, new_len);
9805 		res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
9806 		res = notifier_to_errno(res);
9807 		if (res)
9808 			goto err_rollback;
9809 		res = dev_qdisc_change_tx_queue_len(dev);
9810 		if (res)
9811 			goto err_rollback;
9812 	}
9813 
9814 	return 0;
9815 
9816 err_rollback:
9817 	netdev_err(dev, "refused to change device tx_queue_len\n");
9818 	WRITE_ONCE(dev->tx_queue_len, orig_len);
9819 	return res;
9820 }
9821 
9822 void netif_set_group(struct net_device *dev, int new_group)
9823 {
9824 	dev->group = new_group;
9825 }
9826 
9827 /**
9828  * netif_pre_changeaddr_notify() - Call NETDEV_PRE_CHANGEADDR.
9829  * @dev: device
9830  * @addr: new address
9831  * @extack: netlink extended ack
9832  *
9833  * Return: 0 on success, -errno on failure.
9834  */
9835 int netif_pre_changeaddr_notify(struct net_device *dev, const char *addr,
9836 				struct netlink_ext_ack *extack)
9837 {
9838 	struct netdev_notifier_pre_changeaddr_info info = {
9839 		.info.dev = dev,
9840 		.info.extack = extack,
9841 		.dev_addr = addr,
9842 	};
9843 	int rc;
9844 
9845 	rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
9846 	return notifier_to_errno(rc);
9847 }
9848 EXPORT_SYMBOL_NS_GPL(netif_pre_changeaddr_notify, "NETDEV_INTERNAL");
9849 
9850 int netif_set_mac_address(struct net_device *dev, struct sockaddr_storage *ss,
9851 			  struct netlink_ext_ack *extack)
9852 {
9853 	const struct net_device_ops *ops = dev->netdev_ops;
9854 	int err;
9855 
9856 	if (!ops->ndo_set_mac_address)
9857 		return -EOPNOTSUPP;
9858 	if (ss->ss_family != dev->type)
9859 		return -EINVAL;
9860 	if (!netif_device_present(dev))
9861 		return -ENODEV;
9862 	err = netif_pre_changeaddr_notify(dev, ss->__data, extack);
9863 	if (err)
9864 		return err;
9865 	if (memcmp(dev->dev_addr, ss->__data, dev->addr_len)) {
9866 		err = ops->ndo_set_mac_address(dev, ss);
9867 		if (err)
9868 			return err;
9869 	}
9870 	dev->addr_assign_type = NET_ADDR_SET;
9871 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
9872 	add_device_randomness(dev->dev_addr, dev->addr_len);
9873 	return 0;
9874 }
9875 
9876 DECLARE_RWSEM(dev_addr_sem);
9877 
9878 /* "sa" is a true struct sockaddr with limited "sa_data" member. */
9879 int netif_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
9880 {
9881 	size_t size = sizeof(sa->sa_data_min);
9882 	struct net_device *dev;
9883 	int ret = 0;
9884 
9885 	down_read(&dev_addr_sem);
9886 	rcu_read_lock();
9887 
9888 	dev = dev_get_by_name_rcu(net, dev_name);
9889 	if (!dev) {
9890 		ret = -ENODEV;
9891 		goto unlock;
9892 	}
9893 	if (!dev->addr_len)
9894 		memset(sa->sa_data, 0, size);
9895 	else
9896 		memcpy(sa->sa_data, dev->dev_addr,
9897 		       min_t(size_t, size, dev->addr_len));
9898 	sa->sa_family = dev->type;
9899 
9900 unlock:
9901 	rcu_read_unlock();
9902 	up_read(&dev_addr_sem);
9903 	return ret;
9904 }
9905 EXPORT_SYMBOL_NS_GPL(netif_get_mac_address, "NETDEV_INTERNAL");
9906 
9907 int netif_change_carrier(struct net_device *dev, bool new_carrier)
9908 {
9909 	const struct net_device_ops *ops = dev->netdev_ops;
9910 
9911 	if (!ops->ndo_change_carrier)
9912 		return -EOPNOTSUPP;
9913 	if (!netif_device_present(dev))
9914 		return -ENODEV;
9915 	return ops->ndo_change_carrier(dev, new_carrier);
9916 }
9917 
9918 /**
9919  *	dev_get_phys_port_id - Get device physical port ID
9920  *	@dev: device
9921  *	@ppid: port ID
9922  *
9923  *	Get device physical port ID
9924  */
9925 int dev_get_phys_port_id(struct net_device *dev,
9926 			 struct netdev_phys_item_id *ppid)
9927 {
9928 	const struct net_device_ops *ops = dev->netdev_ops;
9929 
9930 	if (!ops->ndo_get_phys_port_id)
9931 		return -EOPNOTSUPP;
9932 	return ops->ndo_get_phys_port_id(dev, ppid);
9933 }
9934 
9935 /**
9936  *	dev_get_phys_port_name - Get device physical port name
9937  *	@dev: device
9938  *	@name: port name
9939  *	@len: limit of bytes to copy to name
9940  *
9941  *	Get device physical port name
9942  */
9943 int dev_get_phys_port_name(struct net_device *dev,
9944 			   char *name, size_t len)
9945 {
9946 	const struct net_device_ops *ops = dev->netdev_ops;
9947 	int err;
9948 
9949 	if (ops->ndo_get_phys_port_name) {
9950 		err = ops->ndo_get_phys_port_name(dev, name, len);
9951 		if (err != -EOPNOTSUPP)
9952 			return err;
9953 	}
9954 	return devlink_compat_phys_port_name_get(dev, name, len);
9955 }
9956 
9957 /**
9958  * netif_get_port_parent_id() - Get the device's port parent identifier
9959  * @dev: network device
9960  * @ppid: pointer to a storage for the port's parent identifier
9961  * @recurse: allow/disallow recursion to lower devices
9962  *
9963  * Get the devices's port parent identifier.
9964  *
9965  * Return: 0 on success, -errno on failure.
9966  */
9967 int netif_get_port_parent_id(struct net_device *dev,
9968 			     struct netdev_phys_item_id *ppid, bool recurse)
9969 {
9970 	const struct net_device_ops *ops = dev->netdev_ops;
9971 	struct netdev_phys_item_id first = { };
9972 	struct net_device *lower_dev;
9973 	struct list_head *iter;
9974 	int err;
9975 
9976 	if (ops->ndo_get_port_parent_id) {
9977 		err = ops->ndo_get_port_parent_id(dev, ppid);
9978 		if (err != -EOPNOTSUPP)
9979 			return err;
9980 	}
9981 
9982 	err = devlink_compat_switch_id_get(dev, ppid);
9983 	if (!recurse || err != -EOPNOTSUPP)
9984 		return err;
9985 
9986 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
9987 		err = netif_get_port_parent_id(lower_dev, ppid, true);
9988 		if (err)
9989 			break;
9990 		if (!first.id_len)
9991 			first = *ppid;
9992 		else if (memcmp(&first, ppid, sizeof(*ppid)))
9993 			return -EOPNOTSUPP;
9994 	}
9995 
9996 	return err;
9997 }
9998 EXPORT_SYMBOL(netif_get_port_parent_id);
9999 
10000 /**
10001  *	netdev_port_same_parent_id - Indicate if two network devices have
10002  *	the same port parent identifier
10003  *	@a: first network device
10004  *	@b: second network device
10005  */
10006 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
10007 {
10008 	struct netdev_phys_item_id a_id = { };
10009 	struct netdev_phys_item_id b_id = { };
10010 
10011 	if (netif_get_port_parent_id(a, &a_id, true) ||
10012 	    netif_get_port_parent_id(b, &b_id, true))
10013 		return false;
10014 
10015 	return netdev_phys_item_id_same(&a_id, &b_id);
10016 }
10017 EXPORT_SYMBOL(netdev_port_same_parent_id);
10018 
10019 int netif_change_proto_down(struct net_device *dev, bool proto_down)
10020 {
10021 	if (!dev->change_proto_down)
10022 		return -EOPNOTSUPP;
10023 	if (!netif_device_present(dev))
10024 		return -ENODEV;
10025 	if (proto_down)
10026 		netif_carrier_off(dev);
10027 	else
10028 		netif_carrier_on(dev);
10029 	WRITE_ONCE(dev->proto_down, proto_down);
10030 	return 0;
10031 }
10032 
10033 /**
10034  *	netdev_change_proto_down_reason_locked - proto down reason
10035  *
10036  *	@dev: device
10037  *	@mask: proto down mask
10038  *	@value: proto down value
10039  */
10040 void netdev_change_proto_down_reason_locked(struct net_device *dev,
10041 					    unsigned long mask, u32 value)
10042 {
10043 	u32 proto_down_reason;
10044 	int b;
10045 
10046 	if (!mask) {
10047 		proto_down_reason = value;
10048 	} else {
10049 		proto_down_reason = dev->proto_down_reason;
10050 		for_each_set_bit(b, &mask, 32) {
10051 			if (value & (1 << b))
10052 				proto_down_reason |= BIT(b);
10053 			else
10054 				proto_down_reason &= ~BIT(b);
10055 		}
10056 	}
10057 	WRITE_ONCE(dev->proto_down_reason, proto_down_reason);
10058 }
10059 
10060 struct bpf_xdp_link {
10061 	struct bpf_link link;
10062 	struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
10063 	int flags;
10064 };
10065 
10066 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
10067 {
10068 	if (flags & XDP_FLAGS_HW_MODE)
10069 		return XDP_MODE_HW;
10070 	if (flags & XDP_FLAGS_DRV_MODE)
10071 		return XDP_MODE_DRV;
10072 	if (flags & XDP_FLAGS_SKB_MODE)
10073 		return XDP_MODE_SKB;
10074 	return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
10075 }
10076 
10077 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
10078 {
10079 	switch (mode) {
10080 	case XDP_MODE_SKB:
10081 		return generic_xdp_install;
10082 	case XDP_MODE_DRV:
10083 	case XDP_MODE_HW:
10084 		return dev->netdev_ops->ndo_bpf;
10085 	default:
10086 		return NULL;
10087 	}
10088 }
10089 
10090 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
10091 					 enum bpf_xdp_mode mode)
10092 {
10093 	return dev->xdp_state[mode].link;
10094 }
10095 
10096 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
10097 				     enum bpf_xdp_mode mode)
10098 {
10099 	struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
10100 
10101 	if (link)
10102 		return link->link.prog;
10103 	return dev->xdp_state[mode].prog;
10104 }
10105 
10106 u8 dev_xdp_prog_count(struct net_device *dev)
10107 {
10108 	u8 count = 0;
10109 	int i;
10110 
10111 	for (i = 0; i < __MAX_XDP_MODE; i++)
10112 		if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
10113 			count++;
10114 	return count;
10115 }
10116 EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
10117 
10118 u8 dev_xdp_sb_prog_count(struct net_device *dev)
10119 {
10120 	u8 count = 0;
10121 	int i;
10122 
10123 	for (i = 0; i < __MAX_XDP_MODE; i++)
10124 		if (dev->xdp_state[i].prog &&
10125 		    !dev->xdp_state[i].prog->aux->xdp_has_frags)
10126 			count++;
10127 	return count;
10128 }
10129 
10130 int netif_xdp_propagate(struct net_device *dev, struct netdev_bpf *bpf)
10131 {
10132 	if (!dev->netdev_ops->ndo_bpf)
10133 		return -EOPNOTSUPP;
10134 
10135 	if (dev->cfg->hds_config == ETHTOOL_TCP_DATA_SPLIT_ENABLED &&
10136 	    bpf->command == XDP_SETUP_PROG &&
10137 	    bpf->prog && !bpf->prog->aux->xdp_has_frags) {
10138 		NL_SET_ERR_MSG(bpf->extack,
10139 			       "unable to propagate XDP to device using tcp-data-split");
10140 		return -EBUSY;
10141 	}
10142 
10143 	if (dev_get_min_mp_channel_count(dev)) {
10144 		NL_SET_ERR_MSG(bpf->extack, "unable to propagate XDP to device using memory provider");
10145 		return -EBUSY;
10146 	}
10147 
10148 	return dev->netdev_ops->ndo_bpf(dev, bpf);
10149 }
10150 EXPORT_SYMBOL_GPL(netif_xdp_propagate);
10151 
10152 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
10153 {
10154 	struct bpf_prog *prog = dev_xdp_prog(dev, mode);
10155 
10156 	return prog ? prog->aux->id : 0;
10157 }
10158 
10159 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
10160 			     struct bpf_xdp_link *link)
10161 {
10162 	dev->xdp_state[mode].link = link;
10163 	dev->xdp_state[mode].prog = NULL;
10164 }
10165 
10166 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
10167 			     struct bpf_prog *prog)
10168 {
10169 	dev->xdp_state[mode].link = NULL;
10170 	dev->xdp_state[mode].prog = prog;
10171 }
10172 
10173 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
10174 			   bpf_op_t bpf_op, struct netlink_ext_ack *extack,
10175 			   u32 flags, struct bpf_prog *prog)
10176 {
10177 	struct netdev_bpf xdp;
10178 	int err;
10179 
10180 	netdev_ops_assert_locked(dev);
10181 
10182 	if (dev->cfg->hds_config == ETHTOOL_TCP_DATA_SPLIT_ENABLED &&
10183 	    prog && !prog->aux->xdp_has_frags) {
10184 		NL_SET_ERR_MSG(extack, "unable to install XDP to device using tcp-data-split");
10185 		return -EBUSY;
10186 	}
10187 
10188 	if (dev_get_min_mp_channel_count(dev)) {
10189 		NL_SET_ERR_MSG(extack, "unable to install XDP to device using memory provider");
10190 		return -EBUSY;
10191 	}
10192 
10193 	memset(&xdp, 0, sizeof(xdp));
10194 	xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
10195 	xdp.extack = extack;
10196 	xdp.flags = flags;
10197 	xdp.prog = prog;
10198 
10199 	/* Drivers assume refcnt is already incremented (i.e, prog pointer is
10200 	 * "moved" into driver), so they don't increment it on their own, but
10201 	 * they do decrement refcnt when program is detached or replaced.
10202 	 * Given net_device also owns link/prog, we need to bump refcnt here
10203 	 * to prevent drivers from underflowing it.
10204 	 */
10205 	if (prog)
10206 		bpf_prog_inc(prog);
10207 	err = bpf_op(dev, &xdp);
10208 	if (err) {
10209 		if (prog)
10210 			bpf_prog_put(prog);
10211 		return err;
10212 	}
10213 
10214 	if (mode != XDP_MODE_HW)
10215 		bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
10216 
10217 	return 0;
10218 }
10219 
10220 static void dev_xdp_uninstall(struct net_device *dev)
10221 {
10222 	struct bpf_xdp_link *link;
10223 	struct bpf_prog *prog;
10224 	enum bpf_xdp_mode mode;
10225 	bpf_op_t bpf_op;
10226 
10227 	ASSERT_RTNL();
10228 
10229 	for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
10230 		prog = dev_xdp_prog(dev, mode);
10231 		if (!prog)
10232 			continue;
10233 
10234 		bpf_op = dev_xdp_bpf_op(dev, mode);
10235 		if (!bpf_op)
10236 			continue;
10237 
10238 		WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
10239 
10240 		/* auto-detach link from net device */
10241 		link = dev_xdp_link(dev, mode);
10242 		if (link)
10243 			link->dev = NULL;
10244 		else
10245 			bpf_prog_put(prog);
10246 
10247 		dev_xdp_set_link(dev, mode, NULL);
10248 	}
10249 }
10250 
10251 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
10252 			  struct bpf_xdp_link *link, struct bpf_prog *new_prog,
10253 			  struct bpf_prog *old_prog, u32 flags)
10254 {
10255 	unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
10256 	struct bpf_prog *cur_prog;
10257 	struct net_device *upper;
10258 	struct list_head *iter;
10259 	enum bpf_xdp_mode mode;
10260 	bpf_op_t bpf_op;
10261 	int err;
10262 
10263 	ASSERT_RTNL();
10264 
10265 	/* either link or prog attachment, never both */
10266 	if (link && (new_prog || old_prog))
10267 		return -EINVAL;
10268 	/* link supports only XDP mode flags */
10269 	if (link && (flags & ~XDP_FLAGS_MODES)) {
10270 		NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
10271 		return -EINVAL;
10272 	}
10273 	/* just one XDP mode bit should be set, zero defaults to drv/skb mode */
10274 	if (num_modes > 1) {
10275 		NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
10276 		return -EINVAL;
10277 	}
10278 	/* avoid ambiguity if offload + drv/skb mode progs are both loaded */
10279 	if (!num_modes && dev_xdp_prog_count(dev) > 1) {
10280 		NL_SET_ERR_MSG(extack,
10281 			       "More than one program loaded, unset mode is ambiguous");
10282 		return -EINVAL;
10283 	}
10284 	/* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
10285 	if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
10286 		NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
10287 		return -EINVAL;
10288 	}
10289 
10290 	mode = dev_xdp_mode(dev, flags);
10291 	/* can't replace attached link */
10292 	if (dev_xdp_link(dev, mode)) {
10293 		NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
10294 		return -EBUSY;
10295 	}
10296 
10297 	/* don't allow if an upper device already has a program */
10298 	netdev_for_each_upper_dev_rcu(dev, upper, iter) {
10299 		if (dev_xdp_prog_count(upper) > 0) {
10300 			NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
10301 			return -EEXIST;
10302 		}
10303 	}
10304 
10305 	cur_prog = dev_xdp_prog(dev, mode);
10306 	/* can't replace attached prog with link */
10307 	if (link && cur_prog) {
10308 		NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
10309 		return -EBUSY;
10310 	}
10311 	if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
10312 		NL_SET_ERR_MSG(extack, "Active program does not match expected");
10313 		return -EEXIST;
10314 	}
10315 
10316 	/* put effective new program into new_prog */
10317 	if (link)
10318 		new_prog = link->link.prog;
10319 
10320 	if (new_prog) {
10321 		bool offload = mode == XDP_MODE_HW;
10322 		enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
10323 					       ? XDP_MODE_DRV : XDP_MODE_SKB;
10324 
10325 		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
10326 			NL_SET_ERR_MSG(extack, "XDP program already attached");
10327 			return -EBUSY;
10328 		}
10329 		if (!offload && dev_xdp_prog(dev, other_mode)) {
10330 			NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
10331 			return -EEXIST;
10332 		}
10333 		if (!offload && bpf_prog_is_offloaded(new_prog->aux)) {
10334 			NL_SET_ERR_MSG(extack, "Using offloaded program without HW_MODE flag is not supported");
10335 			return -EINVAL;
10336 		}
10337 		if (bpf_prog_is_dev_bound(new_prog->aux) && !bpf_offload_dev_match(new_prog, dev)) {
10338 			NL_SET_ERR_MSG(extack, "Program bound to different device");
10339 			return -EINVAL;
10340 		}
10341 		if (bpf_prog_is_dev_bound(new_prog->aux) && mode == XDP_MODE_SKB) {
10342 			NL_SET_ERR_MSG(extack, "Can't attach device-bound programs in generic mode");
10343 			return -EINVAL;
10344 		}
10345 		if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
10346 			NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
10347 			return -EINVAL;
10348 		}
10349 		if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
10350 			NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
10351 			return -EINVAL;
10352 		}
10353 	}
10354 
10355 	/* don't call drivers if the effective program didn't change */
10356 	if (new_prog != cur_prog) {
10357 		bpf_op = dev_xdp_bpf_op(dev, mode);
10358 		if (!bpf_op) {
10359 			NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
10360 			return -EOPNOTSUPP;
10361 		}
10362 
10363 		err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
10364 		if (err)
10365 			return err;
10366 	}
10367 
10368 	if (link)
10369 		dev_xdp_set_link(dev, mode, link);
10370 	else
10371 		dev_xdp_set_prog(dev, mode, new_prog);
10372 	if (cur_prog)
10373 		bpf_prog_put(cur_prog);
10374 
10375 	return 0;
10376 }
10377 
10378 static int dev_xdp_attach_link(struct net_device *dev,
10379 			       struct netlink_ext_ack *extack,
10380 			       struct bpf_xdp_link *link)
10381 {
10382 	return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
10383 }
10384 
10385 static int dev_xdp_detach_link(struct net_device *dev,
10386 			       struct netlink_ext_ack *extack,
10387 			       struct bpf_xdp_link *link)
10388 {
10389 	enum bpf_xdp_mode mode;
10390 	bpf_op_t bpf_op;
10391 
10392 	ASSERT_RTNL();
10393 
10394 	mode = dev_xdp_mode(dev, link->flags);
10395 	if (dev_xdp_link(dev, mode) != link)
10396 		return -EINVAL;
10397 
10398 	bpf_op = dev_xdp_bpf_op(dev, mode);
10399 	WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
10400 	dev_xdp_set_link(dev, mode, NULL);
10401 	return 0;
10402 }
10403 
10404 static void bpf_xdp_link_release(struct bpf_link *link)
10405 {
10406 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10407 
10408 	rtnl_lock();
10409 
10410 	/* if racing with net_device's tear down, xdp_link->dev might be
10411 	 * already NULL, in which case link was already auto-detached
10412 	 */
10413 	if (xdp_link->dev) {
10414 		netdev_lock_ops(xdp_link->dev);
10415 		WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
10416 		netdev_unlock_ops(xdp_link->dev);
10417 		xdp_link->dev = NULL;
10418 	}
10419 
10420 	rtnl_unlock();
10421 }
10422 
10423 static int bpf_xdp_link_detach(struct bpf_link *link)
10424 {
10425 	bpf_xdp_link_release(link);
10426 	return 0;
10427 }
10428 
10429 static void bpf_xdp_link_dealloc(struct bpf_link *link)
10430 {
10431 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10432 
10433 	kfree(xdp_link);
10434 }
10435 
10436 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
10437 				     struct seq_file *seq)
10438 {
10439 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10440 	u32 ifindex = 0;
10441 
10442 	rtnl_lock();
10443 	if (xdp_link->dev)
10444 		ifindex = xdp_link->dev->ifindex;
10445 	rtnl_unlock();
10446 
10447 	seq_printf(seq, "ifindex:\t%u\n", ifindex);
10448 }
10449 
10450 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
10451 				       struct bpf_link_info *info)
10452 {
10453 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10454 	u32 ifindex = 0;
10455 
10456 	rtnl_lock();
10457 	if (xdp_link->dev)
10458 		ifindex = xdp_link->dev->ifindex;
10459 	rtnl_unlock();
10460 
10461 	info->xdp.ifindex = ifindex;
10462 	return 0;
10463 }
10464 
10465 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
10466 			       struct bpf_prog *old_prog)
10467 {
10468 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10469 	enum bpf_xdp_mode mode;
10470 	bpf_op_t bpf_op;
10471 	int err = 0;
10472 
10473 	rtnl_lock();
10474 
10475 	/* link might have been auto-released already, so fail */
10476 	if (!xdp_link->dev) {
10477 		err = -ENOLINK;
10478 		goto out_unlock;
10479 	}
10480 
10481 	if (old_prog && link->prog != old_prog) {
10482 		err = -EPERM;
10483 		goto out_unlock;
10484 	}
10485 	old_prog = link->prog;
10486 	if (old_prog->type != new_prog->type ||
10487 	    old_prog->expected_attach_type != new_prog->expected_attach_type) {
10488 		err = -EINVAL;
10489 		goto out_unlock;
10490 	}
10491 
10492 	if (old_prog == new_prog) {
10493 		/* no-op, don't disturb drivers */
10494 		bpf_prog_put(new_prog);
10495 		goto out_unlock;
10496 	}
10497 
10498 	netdev_lock_ops(xdp_link->dev);
10499 	mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
10500 	bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
10501 	err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
10502 			      xdp_link->flags, new_prog);
10503 	netdev_unlock_ops(xdp_link->dev);
10504 	if (err)
10505 		goto out_unlock;
10506 
10507 	old_prog = xchg(&link->prog, new_prog);
10508 	bpf_prog_put(old_prog);
10509 
10510 out_unlock:
10511 	rtnl_unlock();
10512 	return err;
10513 }
10514 
10515 static const struct bpf_link_ops bpf_xdp_link_lops = {
10516 	.release = bpf_xdp_link_release,
10517 	.dealloc = bpf_xdp_link_dealloc,
10518 	.detach = bpf_xdp_link_detach,
10519 	.show_fdinfo = bpf_xdp_link_show_fdinfo,
10520 	.fill_link_info = bpf_xdp_link_fill_link_info,
10521 	.update_prog = bpf_xdp_link_update,
10522 };
10523 
10524 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
10525 {
10526 	struct net *net = current->nsproxy->net_ns;
10527 	struct bpf_link_primer link_primer;
10528 	struct netlink_ext_ack extack = {};
10529 	struct bpf_xdp_link *link;
10530 	struct net_device *dev;
10531 	int err, fd;
10532 
10533 	rtnl_lock();
10534 	dev = dev_get_by_index(net, attr->link_create.target_ifindex);
10535 	if (!dev) {
10536 		rtnl_unlock();
10537 		return -EINVAL;
10538 	}
10539 
10540 	link = kzalloc(sizeof(*link), GFP_USER);
10541 	if (!link) {
10542 		err = -ENOMEM;
10543 		goto unlock;
10544 	}
10545 
10546 	bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog,
10547 		      attr->link_create.attach_type);
10548 	link->dev = dev;
10549 	link->flags = attr->link_create.flags;
10550 
10551 	err = bpf_link_prime(&link->link, &link_primer);
10552 	if (err) {
10553 		kfree(link);
10554 		goto unlock;
10555 	}
10556 
10557 	netdev_lock_ops(dev);
10558 	err = dev_xdp_attach_link(dev, &extack, link);
10559 	netdev_unlock_ops(dev);
10560 	rtnl_unlock();
10561 
10562 	if (err) {
10563 		link->dev = NULL;
10564 		bpf_link_cleanup(&link_primer);
10565 		trace_bpf_xdp_link_attach_failed(extack._msg);
10566 		goto out_put_dev;
10567 	}
10568 
10569 	fd = bpf_link_settle(&link_primer);
10570 	/* link itself doesn't hold dev's refcnt to not complicate shutdown */
10571 	dev_put(dev);
10572 	return fd;
10573 
10574 unlock:
10575 	rtnl_unlock();
10576 
10577 out_put_dev:
10578 	dev_put(dev);
10579 	return err;
10580 }
10581 
10582 /**
10583  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
10584  *	@dev: device
10585  *	@extack: netlink extended ack
10586  *	@fd: new program fd or negative value to clear
10587  *	@expected_fd: old program fd that userspace expects to replace or clear
10588  *	@flags: xdp-related flags
10589  *
10590  *	Set or clear a bpf program for a device
10591  */
10592 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
10593 		      int fd, int expected_fd, u32 flags)
10594 {
10595 	enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
10596 	struct bpf_prog *new_prog = NULL, *old_prog = NULL;
10597 	int err;
10598 
10599 	ASSERT_RTNL();
10600 
10601 	if (fd >= 0) {
10602 		new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
10603 						 mode != XDP_MODE_SKB);
10604 		if (IS_ERR(new_prog))
10605 			return PTR_ERR(new_prog);
10606 	}
10607 
10608 	if (expected_fd >= 0) {
10609 		old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
10610 						 mode != XDP_MODE_SKB);
10611 		if (IS_ERR(old_prog)) {
10612 			err = PTR_ERR(old_prog);
10613 			old_prog = NULL;
10614 			goto err_out;
10615 		}
10616 	}
10617 
10618 	err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
10619 
10620 err_out:
10621 	if (err && new_prog)
10622 		bpf_prog_put(new_prog);
10623 	if (old_prog)
10624 		bpf_prog_put(old_prog);
10625 	return err;
10626 }
10627 
10628 u32 dev_get_min_mp_channel_count(const struct net_device *dev)
10629 {
10630 	int i;
10631 
10632 	netdev_ops_assert_locked(dev);
10633 
10634 	for (i = dev->real_num_rx_queues - 1; i >= 0; i--)
10635 		if (dev->_rx[i].mp_params.mp_priv)
10636 			/* The channel count is the idx plus 1. */
10637 			return i + 1;
10638 
10639 	return 0;
10640 }
10641 
10642 /**
10643  * dev_index_reserve() - allocate an ifindex in a namespace
10644  * @net: the applicable net namespace
10645  * @ifindex: requested ifindex, pass %0 to get one allocated
10646  *
10647  * Allocate a ifindex for a new device. Caller must either use the ifindex
10648  * to store the device (via list_netdevice()) or call dev_index_release()
10649  * to give the index up.
10650  *
10651  * Return: a suitable unique value for a new device interface number or -errno.
10652  */
10653 static int dev_index_reserve(struct net *net, u32 ifindex)
10654 {
10655 	int err;
10656 
10657 	if (ifindex > INT_MAX) {
10658 		DEBUG_NET_WARN_ON_ONCE(1);
10659 		return -EINVAL;
10660 	}
10661 
10662 	if (!ifindex)
10663 		err = xa_alloc_cyclic(&net->dev_by_index, &ifindex, NULL,
10664 				      xa_limit_31b, &net->ifindex, GFP_KERNEL);
10665 	else
10666 		err = xa_insert(&net->dev_by_index, ifindex, NULL, GFP_KERNEL);
10667 	if (err < 0)
10668 		return err;
10669 
10670 	return ifindex;
10671 }
10672 
10673 static void dev_index_release(struct net *net, int ifindex)
10674 {
10675 	/* Expect only unused indexes, unlist_netdevice() removes the used */
10676 	WARN_ON(xa_erase(&net->dev_by_index, ifindex));
10677 }
10678 
10679 static bool from_cleanup_net(void)
10680 {
10681 #ifdef CONFIG_NET_NS
10682 	return current == READ_ONCE(cleanup_net_task);
10683 #else
10684 	return false;
10685 #endif
10686 }
10687 
10688 /* Delayed registration/unregisteration */
10689 LIST_HEAD(net_todo_list);
10690 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
10691 atomic_t dev_unreg_count = ATOMIC_INIT(0);
10692 
10693 static void net_set_todo(struct net_device *dev)
10694 {
10695 	list_add_tail(&dev->todo_list, &net_todo_list);
10696 }
10697 
10698 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
10699 	struct net_device *upper, netdev_features_t features)
10700 {
10701 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
10702 	netdev_features_t feature;
10703 	int feature_bit;
10704 
10705 	for_each_netdev_feature(upper_disables, feature_bit) {
10706 		feature = __NETIF_F_BIT(feature_bit);
10707 		if (!(upper->wanted_features & feature)
10708 		    && (features & feature)) {
10709 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
10710 				   &feature, upper->name);
10711 			features &= ~feature;
10712 		}
10713 	}
10714 
10715 	return features;
10716 }
10717 
10718 static void netdev_sync_lower_features(struct net_device *upper,
10719 	struct net_device *lower, netdev_features_t features)
10720 {
10721 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
10722 	netdev_features_t feature;
10723 	int feature_bit;
10724 
10725 	for_each_netdev_feature(upper_disables, feature_bit) {
10726 		feature = __NETIF_F_BIT(feature_bit);
10727 		if (!(features & feature) && (lower->features & feature)) {
10728 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
10729 				   &feature, lower->name);
10730 			netdev_lock_ops(lower);
10731 			lower->wanted_features &= ~feature;
10732 			__netdev_update_features(lower);
10733 
10734 			if (unlikely(lower->features & feature))
10735 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
10736 					    &feature, lower->name);
10737 			else
10738 				netdev_features_change(lower);
10739 			netdev_unlock_ops(lower);
10740 		}
10741 	}
10742 }
10743 
10744 static bool netdev_has_ip_or_hw_csum(netdev_features_t features)
10745 {
10746 	netdev_features_t ip_csum_mask = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
10747 	bool ip_csum = (features & ip_csum_mask) == ip_csum_mask;
10748 	bool hw_csum = features & NETIF_F_HW_CSUM;
10749 
10750 	return ip_csum || hw_csum;
10751 }
10752 
10753 static netdev_features_t netdev_fix_features(struct net_device *dev,
10754 	netdev_features_t features)
10755 {
10756 	/* Fix illegal checksum combinations */
10757 	if ((features & NETIF_F_HW_CSUM) &&
10758 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
10759 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
10760 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
10761 	}
10762 
10763 	/* TSO requires that SG is present as well. */
10764 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
10765 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
10766 		features &= ~NETIF_F_ALL_TSO;
10767 	}
10768 
10769 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
10770 					!(features & NETIF_F_IP_CSUM)) {
10771 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
10772 		features &= ~NETIF_F_TSO;
10773 		features &= ~NETIF_F_TSO_ECN;
10774 	}
10775 
10776 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
10777 					 !(features & NETIF_F_IPV6_CSUM)) {
10778 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
10779 		features &= ~NETIF_F_TSO6;
10780 	}
10781 
10782 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
10783 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
10784 		features &= ~NETIF_F_TSO_MANGLEID;
10785 
10786 	/* TSO ECN requires that TSO is present as well. */
10787 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
10788 		features &= ~NETIF_F_TSO_ECN;
10789 
10790 	/* Software GSO depends on SG. */
10791 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
10792 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
10793 		features &= ~NETIF_F_GSO;
10794 	}
10795 
10796 	/* GSO partial features require GSO partial be set */
10797 	if ((features & dev->gso_partial_features) &&
10798 	    !(features & NETIF_F_GSO_PARTIAL)) {
10799 		netdev_dbg(dev,
10800 			   "Dropping partially supported GSO features since no GSO partial.\n");
10801 		features &= ~dev->gso_partial_features;
10802 	}
10803 
10804 	if (!(features & NETIF_F_RXCSUM)) {
10805 		/* NETIF_F_GRO_HW implies doing RXCSUM since every packet
10806 		 * successfully merged by hardware must also have the
10807 		 * checksum verified by hardware.  If the user does not
10808 		 * want to enable RXCSUM, logically, we should disable GRO_HW.
10809 		 */
10810 		if (features & NETIF_F_GRO_HW) {
10811 			netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
10812 			features &= ~NETIF_F_GRO_HW;
10813 		}
10814 	}
10815 
10816 	/* LRO/HW-GRO features cannot be combined with RX-FCS */
10817 	if (features & NETIF_F_RXFCS) {
10818 		if (features & NETIF_F_LRO) {
10819 			netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
10820 			features &= ~NETIF_F_LRO;
10821 		}
10822 
10823 		if (features & NETIF_F_GRO_HW) {
10824 			netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
10825 			features &= ~NETIF_F_GRO_HW;
10826 		}
10827 	}
10828 
10829 	if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
10830 		netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
10831 		features &= ~NETIF_F_LRO;
10832 	}
10833 
10834 	if ((features & NETIF_F_HW_TLS_TX) && !netdev_has_ip_or_hw_csum(features)) {
10835 		netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
10836 		features &= ~NETIF_F_HW_TLS_TX;
10837 	}
10838 
10839 	if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
10840 		netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
10841 		features &= ~NETIF_F_HW_TLS_RX;
10842 	}
10843 
10844 	if ((features & NETIF_F_GSO_UDP_L4) && !netdev_has_ip_or_hw_csum(features)) {
10845 		netdev_dbg(dev, "Dropping USO feature since no CSUM feature.\n");
10846 		features &= ~NETIF_F_GSO_UDP_L4;
10847 	}
10848 
10849 	return features;
10850 }
10851 
10852 int __netdev_update_features(struct net_device *dev)
10853 {
10854 	struct net_device *upper, *lower;
10855 	netdev_features_t features;
10856 	struct list_head *iter;
10857 	int err = -1;
10858 
10859 	ASSERT_RTNL();
10860 	netdev_ops_assert_locked(dev);
10861 
10862 	features = netdev_get_wanted_features(dev);
10863 
10864 	if (dev->netdev_ops->ndo_fix_features)
10865 		features = dev->netdev_ops->ndo_fix_features(dev, features);
10866 
10867 	/* driver might be less strict about feature dependencies */
10868 	features = netdev_fix_features(dev, features);
10869 
10870 	/* some features can't be enabled if they're off on an upper device */
10871 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
10872 		features = netdev_sync_upper_features(dev, upper, features);
10873 
10874 	if (dev->features == features)
10875 		goto sync_lower;
10876 
10877 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
10878 		&dev->features, &features);
10879 
10880 	if (dev->netdev_ops->ndo_set_features)
10881 		err = dev->netdev_ops->ndo_set_features(dev, features);
10882 	else
10883 		err = 0;
10884 
10885 	if (unlikely(err < 0)) {
10886 		netdev_err(dev,
10887 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
10888 			err, &features, &dev->features);
10889 		/* return non-0 since some features might have changed and
10890 		 * it's better to fire a spurious notification than miss it
10891 		 */
10892 		return -1;
10893 	}
10894 
10895 sync_lower:
10896 	/* some features must be disabled on lower devices when disabled
10897 	 * on an upper device (think: bonding master or bridge)
10898 	 */
10899 	netdev_for_each_lower_dev(dev, lower, iter)
10900 		netdev_sync_lower_features(dev, lower, features);
10901 
10902 	if (!err) {
10903 		netdev_features_t diff = features ^ dev->features;
10904 
10905 		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
10906 			/* udp_tunnel_{get,drop}_rx_info both need
10907 			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
10908 			 * device, or they won't do anything.
10909 			 * Thus we need to update dev->features
10910 			 * *before* calling udp_tunnel_get_rx_info,
10911 			 * but *after* calling udp_tunnel_drop_rx_info.
10912 			 */
10913 			udp_tunnel_nic_lock(dev);
10914 			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
10915 				dev->features = features;
10916 				udp_tunnel_get_rx_info(dev);
10917 			} else {
10918 				udp_tunnel_drop_rx_info(dev);
10919 			}
10920 			udp_tunnel_nic_unlock(dev);
10921 		}
10922 
10923 		if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
10924 			if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
10925 				dev->features = features;
10926 				err |= vlan_get_rx_ctag_filter_info(dev);
10927 			} else {
10928 				vlan_drop_rx_ctag_filter_info(dev);
10929 			}
10930 		}
10931 
10932 		if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
10933 			if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
10934 				dev->features = features;
10935 				err |= vlan_get_rx_stag_filter_info(dev);
10936 			} else {
10937 				vlan_drop_rx_stag_filter_info(dev);
10938 			}
10939 		}
10940 
10941 		dev->features = features;
10942 	}
10943 
10944 	return err < 0 ? 0 : 1;
10945 }
10946 
10947 /**
10948  *	netdev_update_features - recalculate device features
10949  *	@dev: the device to check
10950  *
10951  *	Recalculate dev->features set and send notifications if it
10952  *	has changed. Should be called after driver or hardware dependent
10953  *	conditions might have changed that influence the features.
10954  */
10955 void netdev_update_features(struct net_device *dev)
10956 {
10957 	if (__netdev_update_features(dev))
10958 		netdev_features_change(dev);
10959 }
10960 EXPORT_SYMBOL(netdev_update_features);
10961 
10962 /**
10963  *	netdev_change_features - recalculate device features
10964  *	@dev: the device to check
10965  *
10966  *	Recalculate dev->features set and send notifications even
10967  *	if they have not changed. Should be called instead of
10968  *	netdev_update_features() if also dev->vlan_features might
10969  *	have changed to allow the changes to be propagated to stacked
10970  *	VLAN devices.
10971  */
10972 void netdev_change_features(struct net_device *dev)
10973 {
10974 	__netdev_update_features(dev);
10975 	netdev_features_change(dev);
10976 }
10977 EXPORT_SYMBOL(netdev_change_features);
10978 
10979 /**
10980  *	netif_stacked_transfer_operstate -	transfer operstate
10981  *	@rootdev: the root or lower level device to transfer state from
10982  *	@dev: the device to transfer operstate to
10983  *
10984  *	Transfer operational state from root to device. This is normally
10985  *	called when a stacking relationship exists between the root
10986  *	device and the device(a leaf device).
10987  */
10988 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
10989 					struct net_device *dev)
10990 {
10991 	if (rootdev->operstate == IF_OPER_DORMANT)
10992 		netif_dormant_on(dev);
10993 	else
10994 		netif_dormant_off(dev);
10995 
10996 	if (rootdev->operstate == IF_OPER_TESTING)
10997 		netif_testing_on(dev);
10998 	else
10999 		netif_testing_off(dev);
11000 
11001 	if (netif_carrier_ok(rootdev))
11002 		netif_carrier_on(dev);
11003 	else
11004 		netif_carrier_off(dev);
11005 }
11006 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
11007 
11008 static int netif_alloc_rx_queues(struct net_device *dev)
11009 {
11010 	unsigned int i, count = dev->num_rx_queues;
11011 	struct netdev_rx_queue *rx;
11012 	size_t sz = count * sizeof(*rx);
11013 	int err = 0;
11014 
11015 	BUG_ON(count < 1);
11016 
11017 	rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
11018 	if (!rx)
11019 		return -ENOMEM;
11020 
11021 	dev->_rx = rx;
11022 
11023 	for (i = 0; i < count; i++) {
11024 		rx[i].dev = dev;
11025 
11026 		/* XDP RX-queue setup */
11027 		err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
11028 		if (err < 0)
11029 			goto err_rxq_info;
11030 	}
11031 	return 0;
11032 
11033 err_rxq_info:
11034 	/* Rollback successful reg's and free other resources */
11035 	while (i--)
11036 		xdp_rxq_info_unreg(&rx[i].xdp_rxq);
11037 	kvfree(dev->_rx);
11038 	dev->_rx = NULL;
11039 	return err;
11040 }
11041 
11042 static void netif_free_rx_queues(struct net_device *dev)
11043 {
11044 	unsigned int i, count = dev->num_rx_queues;
11045 
11046 	/* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
11047 	if (!dev->_rx)
11048 		return;
11049 
11050 	for (i = 0; i < count; i++)
11051 		xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
11052 
11053 	kvfree(dev->_rx);
11054 }
11055 
11056 static void netdev_init_one_queue(struct net_device *dev,
11057 				  struct netdev_queue *queue, void *_unused)
11058 {
11059 	/* Initialize queue lock */
11060 	spin_lock_init(&queue->_xmit_lock);
11061 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
11062 	queue->xmit_lock_owner = -1;
11063 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
11064 	queue->dev = dev;
11065 #ifdef CONFIG_BQL
11066 	dql_init(&queue->dql, HZ);
11067 #endif
11068 }
11069 
11070 static void netif_free_tx_queues(struct net_device *dev)
11071 {
11072 	kvfree(dev->_tx);
11073 }
11074 
11075 static int netif_alloc_netdev_queues(struct net_device *dev)
11076 {
11077 	unsigned int count = dev->num_tx_queues;
11078 	struct netdev_queue *tx;
11079 	size_t sz = count * sizeof(*tx);
11080 
11081 	if (count < 1 || count > 0xffff)
11082 		return -EINVAL;
11083 
11084 	tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
11085 	if (!tx)
11086 		return -ENOMEM;
11087 
11088 	dev->_tx = tx;
11089 
11090 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
11091 	spin_lock_init(&dev->tx_global_lock);
11092 
11093 	return 0;
11094 }
11095 
11096 void netif_tx_stop_all_queues(struct net_device *dev)
11097 {
11098 	unsigned int i;
11099 
11100 	for (i = 0; i < dev->num_tx_queues; i++) {
11101 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
11102 
11103 		netif_tx_stop_queue(txq);
11104 	}
11105 }
11106 EXPORT_SYMBOL(netif_tx_stop_all_queues);
11107 
11108 static int netdev_do_alloc_pcpu_stats(struct net_device *dev)
11109 {
11110 	void __percpu *v;
11111 
11112 	/* Drivers implementing ndo_get_peer_dev must support tstat
11113 	 * accounting, so that skb_do_redirect() can bump the dev's
11114 	 * RX stats upon network namespace switch.
11115 	 */
11116 	if (dev->netdev_ops->ndo_get_peer_dev &&
11117 	    dev->pcpu_stat_type != NETDEV_PCPU_STAT_TSTATS)
11118 		return -EOPNOTSUPP;
11119 
11120 	switch (dev->pcpu_stat_type) {
11121 	case NETDEV_PCPU_STAT_NONE:
11122 		return 0;
11123 	case NETDEV_PCPU_STAT_LSTATS:
11124 		v = dev->lstats = netdev_alloc_pcpu_stats(struct pcpu_lstats);
11125 		break;
11126 	case NETDEV_PCPU_STAT_TSTATS:
11127 		v = dev->tstats = netdev_alloc_pcpu_stats(struct pcpu_sw_netstats);
11128 		break;
11129 	case NETDEV_PCPU_STAT_DSTATS:
11130 		v = dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
11131 		break;
11132 	default:
11133 		return -EINVAL;
11134 	}
11135 
11136 	return v ? 0 : -ENOMEM;
11137 }
11138 
11139 static void netdev_do_free_pcpu_stats(struct net_device *dev)
11140 {
11141 	switch (dev->pcpu_stat_type) {
11142 	case NETDEV_PCPU_STAT_NONE:
11143 		return;
11144 	case NETDEV_PCPU_STAT_LSTATS:
11145 		free_percpu(dev->lstats);
11146 		break;
11147 	case NETDEV_PCPU_STAT_TSTATS:
11148 		free_percpu(dev->tstats);
11149 		break;
11150 	case NETDEV_PCPU_STAT_DSTATS:
11151 		free_percpu(dev->dstats);
11152 		break;
11153 	}
11154 }
11155 
11156 static void netdev_free_phy_link_topology(struct net_device *dev)
11157 {
11158 	struct phy_link_topology *topo = dev->link_topo;
11159 
11160 	if (IS_ENABLED(CONFIG_PHYLIB) && topo) {
11161 		xa_destroy(&topo->phys);
11162 		kfree(topo);
11163 		dev->link_topo = NULL;
11164 	}
11165 }
11166 
11167 /**
11168  * register_netdevice() - register a network device
11169  * @dev: device to register
11170  *
11171  * Take a prepared network device structure and make it externally accessible.
11172  * A %NETDEV_REGISTER message is sent to the netdev notifier chain.
11173  * Callers must hold the rtnl lock - you may want register_netdev()
11174  * instead of this.
11175  */
11176 int register_netdevice(struct net_device *dev)
11177 {
11178 	int ret;
11179 	struct net *net = dev_net(dev);
11180 
11181 	BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
11182 		     NETDEV_FEATURE_COUNT);
11183 	BUG_ON(dev_boot_phase);
11184 	ASSERT_RTNL();
11185 
11186 	might_sleep();
11187 
11188 	/* When net_device's are persistent, this will be fatal. */
11189 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
11190 	BUG_ON(!net);
11191 
11192 	ret = ethtool_check_ops(dev->ethtool_ops);
11193 	if (ret)
11194 		return ret;
11195 
11196 	/* rss ctx ID 0 is reserved for the default context, start from 1 */
11197 	xa_init_flags(&dev->ethtool->rss_ctx, XA_FLAGS_ALLOC1);
11198 	mutex_init(&dev->ethtool->rss_lock);
11199 
11200 	spin_lock_init(&dev->addr_list_lock);
11201 	netdev_set_addr_lockdep_class(dev);
11202 
11203 	ret = dev_get_valid_name(net, dev, dev->name);
11204 	if (ret < 0)
11205 		goto out;
11206 
11207 	ret = -ENOMEM;
11208 	dev->name_node = netdev_name_node_head_alloc(dev);
11209 	if (!dev->name_node)
11210 		goto out;
11211 
11212 	/* Init, if this function is available */
11213 	if (dev->netdev_ops->ndo_init) {
11214 		ret = dev->netdev_ops->ndo_init(dev);
11215 		if (ret) {
11216 			if (ret > 0)
11217 				ret = -EIO;
11218 			goto err_free_name;
11219 		}
11220 	}
11221 
11222 	if (((dev->hw_features | dev->features) &
11223 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
11224 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
11225 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
11226 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
11227 		ret = -EINVAL;
11228 		goto err_uninit;
11229 	}
11230 
11231 	ret = netdev_do_alloc_pcpu_stats(dev);
11232 	if (ret)
11233 		goto err_uninit;
11234 
11235 	ret = dev_index_reserve(net, dev->ifindex);
11236 	if (ret < 0)
11237 		goto err_free_pcpu;
11238 	dev->ifindex = ret;
11239 
11240 	/* Transfer changeable features to wanted_features and enable
11241 	 * software offloads (GSO and GRO).
11242 	 */
11243 	dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
11244 	dev->features |= NETIF_F_SOFT_FEATURES;
11245 
11246 	if (dev->udp_tunnel_nic_info) {
11247 		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
11248 		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
11249 	}
11250 
11251 	dev->wanted_features = dev->features & dev->hw_features;
11252 
11253 	if (!(dev->flags & IFF_LOOPBACK))
11254 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
11255 
11256 	/* If IPv4 TCP segmentation offload is supported we should also
11257 	 * allow the device to enable segmenting the frame with the option
11258 	 * of ignoring a static IP ID value.  This doesn't enable the
11259 	 * feature itself but allows the user to enable it later.
11260 	 */
11261 	if (dev->hw_features & NETIF_F_TSO)
11262 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
11263 	if (dev->vlan_features & NETIF_F_TSO)
11264 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
11265 	if (dev->mpls_features & NETIF_F_TSO)
11266 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
11267 	if (dev->hw_enc_features & NETIF_F_TSO)
11268 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
11269 
11270 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
11271 	 */
11272 	dev->vlan_features |= NETIF_F_HIGHDMA;
11273 
11274 	/* Make NETIF_F_SG inheritable to tunnel devices.
11275 	 */
11276 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
11277 
11278 	/* Make NETIF_F_SG inheritable to MPLS.
11279 	 */
11280 	dev->mpls_features |= NETIF_F_SG;
11281 
11282 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
11283 	ret = notifier_to_errno(ret);
11284 	if (ret)
11285 		goto err_ifindex_release;
11286 
11287 	ret = netdev_register_kobject(dev);
11288 
11289 	netdev_lock(dev);
11290 	WRITE_ONCE(dev->reg_state, ret ? NETREG_UNREGISTERED : NETREG_REGISTERED);
11291 	netdev_unlock(dev);
11292 
11293 	if (ret)
11294 		goto err_uninit_notify;
11295 
11296 	netdev_lock_ops(dev);
11297 	__netdev_update_features(dev);
11298 	netdev_unlock_ops(dev);
11299 
11300 	/*
11301 	 *	Default initial state at registry is that the
11302 	 *	device is present.
11303 	 */
11304 
11305 	set_bit(__LINK_STATE_PRESENT, &dev->state);
11306 
11307 	linkwatch_init_dev(dev);
11308 
11309 	dev_init_scheduler(dev);
11310 
11311 	netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL);
11312 	list_netdevice(dev);
11313 
11314 	add_device_randomness(dev->dev_addr, dev->addr_len);
11315 
11316 	/* If the device has permanent device address, driver should
11317 	 * set dev_addr and also addr_assign_type should be set to
11318 	 * NET_ADDR_PERM (default value).
11319 	 */
11320 	if (dev->addr_assign_type == NET_ADDR_PERM)
11321 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
11322 
11323 	/* Notify protocols, that a new device appeared. */
11324 	netdev_lock_ops(dev);
11325 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
11326 	netdev_unlock_ops(dev);
11327 	ret = notifier_to_errno(ret);
11328 	if (ret) {
11329 		/* Expect explicit free_netdev() on failure */
11330 		dev->needs_free_netdev = false;
11331 		unregister_netdevice_queue(dev, NULL);
11332 		goto out;
11333 	}
11334 	/*
11335 	 *	Prevent userspace races by waiting until the network
11336 	 *	device is fully setup before sending notifications.
11337 	 */
11338 	if (!(dev->rtnl_link_ops && dev->rtnl_link_initializing))
11339 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
11340 
11341 out:
11342 	return ret;
11343 
11344 err_uninit_notify:
11345 	call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
11346 err_ifindex_release:
11347 	dev_index_release(net, dev->ifindex);
11348 err_free_pcpu:
11349 	netdev_do_free_pcpu_stats(dev);
11350 err_uninit:
11351 	if (dev->netdev_ops->ndo_uninit)
11352 		dev->netdev_ops->ndo_uninit(dev);
11353 	if (dev->priv_destructor)
11354 		dev->priv_destructor(dev);
11355 err_free_name:
11356 	netdev_name_node_free(dev->name_node);
11357 	goto out;
11358 }
11359 EXPORT_SYMBOL(register_netdevice);
11360 
11361 /* Initialize the core of a dummy net device.
11362  * The setup steps dummy netdevs need which normal netdevs get by going
11363  * through register_netdevice().
11364  */
11365 static void init_dummy_netdev(struct net_device *dev)
11366 {
11367 	/* make sure we BUG if trying to hit standard
11368 	 * register/unregister code path
11369 	 */
11370 	dev->reg_state = NETREG_DUMMY;
11371 
11372 	/* a dummy interface is started by default */
11373 	set_bit(__LINK_STATE_PRESENT, &dev->state);
11374 	set_bit(__LINK_STATE_START, &dev->state);
11375 
11376 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
11377 	 * because users of this 'device' dont need to change
11378 	 * its refcount.
11379 	 */
11380 }
11381 
11382 /**
11383  *	register_netdev	- register a network device
11384  *	@dev: device to register
11385  *
11386  *	Take a completed network device structure and add it to the kernel
11387  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
11388  *	chain. 0 is returned on success. A negative errno code is returned
11389  *	on a failure to set up the device, or if the name is a duplicate.
11390  *
11391  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
11392  *	and expands the device name if you passed a format string to
11393  *	alloc_netdev.
11394  */
11395 int register_netdev(struct net_device *dev)
11396 {
11397 	struct net *net = dev_net(dev);
11398 	int err;
11399 
11400 	if (rtnl_net_lock_killable(net))
11401 		return -EINTR;
11402 
11403 	err = register_netdevice(dev);
11404 
11405 	rtnl_net_unlock(net);
11406 
11407 	return err;
11408 }
11409 EXPORT_SYMBOL(register_netdev);
11410 
11411 int netdev_refcnt_read(const struct net_device *dev)
11412 {
11413 #ifdef CONFIG_PCPU_DEV_REFCNT
11414 	int i, refcnt = 0;
11415 
11416 	for_each_possible_cpu(i)
11417 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
11418 	return refcnt;
11419 #else
11420 	return refcount_read(&dev->dev_refcnt);
11421 #endif
11422 }
11423 EXPORT_SYMBOL(netdev_refcnt_read);
11424 
11425 int netdev_unregister_timeout_secs __read_mostly = 10;
11426 
11427 #define WAIT_REFS_MIN_MSECS 1
11428 #define WAIT_REFS_MAX_MSECS 250
11429 /**
11430  * netdev_wait_allrefs_any - wait until all references are gone.
11431  * @list: list of net_devices to wait on
11432  *
11433  * This is called when unregistering network devices.
11434  *
11435  * Any protocol or device that holds a reference should register
11436  * for netdevice notification, and cleanup and put back the
11437  * reference if they receive an UNREGISTER event.
11438  * We can get stuck here if buggy protocols don't correctly
11439  * call dev_put.
11440  */
11441 static struct net_device *netdev_wait_allrefs_any(struct list_head *list)
11442 {
11443 	unsigned long rebroadcast_time, warning_time;
11444 	struct net_device *dev;
11445 	int wait = 0;
11446 
11447 	rebroadcast_time = warning_time = jiffies;
11448 
11449 	list_for_each_entry(dev, list, todo_list)
11450 		if (netdev_refcnt_read(dev) == 1)
11451 			return dev;
11452 
11453 	while (true) {
11454 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
11455 			rtnl_lock();
11456 
11457 			/* Rebroadcast unregister notification */
11458 			list_for_each_entry(dev, list, todo_list)
11459 				call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11460 
11461 			__rtnl_unlock();
11462 			rcu_barrier();
11463 			rtnl_lock();
11464 
11465 			list_for_each_entry(dev, list, todo_list)
11466 				if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
11467 					     &dev->state)) {
11468 					/* We must not have linkwatch events
11469 					 * pending on unregister. If this
11470 					 * happens, we simply run the queue
11471 					 * unscheduled, resulting in a noop
11472 					 * for this device.
11473 					 */
11474 					linkwatch_run_queue();
11475 					break;
11476 				}
11477 
11478 			__rtnl_unlock();
11479 
11480 			rebroadcast_time = jiffies;
11481 		}
11482 
11483 		rcu_barrier();
11484 
11485 		if (!wait) {
11486 			wait = WAIT_REFS_MIN_MSECS;
11487 		} else {
11488 			msleep(wait);
11489 			wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
11490 		}
11491 
11492 		list_for_each_entry(dev, list, todo_list)
11493 			if (netdev_refcnt_read(dev) == 1)
11494 				return dev;
11495 
11496 		if (time_after(jiffies, warning_time +
11497 			       READ_ONCE(netdev_unregister_timeout_secs) * HZ)) {
11498 			list_for_each_entry(dev, list, todo_list) {
11499 				pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
11500 					 dev->name, netdev_refcnt_read(dev));
11501 				ref_tracker_dir_print(&dev->refcnt_tracker, 10);
11502 			}
11503 
11504 			warning_time = jiffies;
11505 		}
11506 	}
11507 }
11508 
11509 /* The sequence is:
11510  *
11511  *	rtnl_lock();
11512  *	...
11513  *	register_netdevice(x1);
11514  *	register_netdevice(x2);
11515  *	...
11516  *	unregister_netdevice(y1);
11517  *	unregister_netdevice(y2);
11518  *      ...
11519  *	rtnl_unlock();
11520  *	free_netdev(y1);
11521  *	free_netdev(y2);
11522  *
11523  * We are invoked by rtnl_unlock().
11524  * This allows us to deal with problems:
11525  * 1) We can delete sysfs objects which invoke hotplug
11526  *    without deadlocking with linkwatch via keventd.
11527  * 2) Since we run with the RTNL semaphore not held, we can sleep
11528  *    safely in order to wait for the netdev refcnt to drop to zero.
11529  *
11530  * We must not return until all unregister events added during
11531  * the interval the lock was held have been completed.
11532  */
11533 void netdev_run_todo(void)
11534 {
11535 	struct net_device *dev, *tmp;
11536 	struct list_head list;
11537 	int cnt;
11538 #ifdef CONFIG_LOCKDEP
11539 	struct list_head unlink_list;
11540 
11541 	list_replace_init(&net_unlink_list, &unlink_list);
11542 
11543 	while (!list_empty(&unlink_list)) {
11544 		dev = list_first_entry(&unlink_list, struct net_device,
11545 				       unlink_list);
11546 		list_del_init(&dev->unlink_list);
11547 		dev->nested_level = dev->lower_level - 1;
11548 	}
11549 #endif
11550 
11551 	/* Snapshot list, allow later requests */
11552 	list_replace_init(&net_todo_list, &list);
11553 
11554 	__rtnl_unlock();
11555 
11556 	/* Wait for rcu callbacks to finish before next phase */
11557 	if (!list_empty(&list))
11558 		rcu_barrier();
11559 
11560 	list_for_each_entry_safe(dev, tmp, &list, todo_list) {
11561 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
11562 			netdev_WARN(dev, "run_todo but not unregistering\n");
11563 			list_del(&dev->todo_list);
11564 			continue;
11565 		}
11566 
11567 		netdev_lock(dev);
11568 		WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERED);
11569 		netdev_unlock(dev);
11570 		linkwatch_sync_dev(dev);
11571 	}
11572 
11573 	cnt = 0;
11574 	while (!list_empty(&list)) {
11575 		dev = netdev_wait_allrefs_any(&list);
11576 		list_del(&dev->todo_list);
11577 
11578 		/* paranoia */
11579 		BUG_ON(netdev_refcnt_read(dev) != 1);
11580 		BUG_ON(!list_empty(&dev->ptype_all));
11581 		BUG_ON(!list_empty(&dev->ptype_specific));
11582 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
11583 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
11584 
11585 		netdev_do_free_pcpu_stats(dev);
11586 		if (dev->priv_destructor)
11587 			dev->priv_destructor(dev);
11588 		if (dev->needs_free_netdev)
11589 			free_netdev(dev);
11590 
11591 		cnt++;
11592 
11593 		/* Free network device */
11594 		kobject_put(&dev->dev.kobj);
11595 	}
11596 	if (cnt && atomic_sub_and_test(cnt, &dev_unreg_count))
11597 		wake_up(&netdev_unregistering_wq);
11598 }
11599 
11600 /* Collate per-cpu network dstats statistics
11601  *
11602  * Read per-cpu network statistics from dev->dstats and populate the related
11603  * fields in @s.
11604  */
11605 static void dev_fetch_dstats(struct rtnl_link_stats64 *s,
11606 			     const struct pcpu_dstats __percpu *dstats)
11607 {
11608 	int cpu;
11609 
11610 	for_each_possible_cpu(cpu) {
11611 		u64 rx_packets, rx_bytes, rx_drops;
11612 		u64 tx_packets, tx_bytes, tx_drops;
11613 		const struct pcpu_dstats *stats;
11614 		unsigned int start;
11615 
11616 		stats = per_cpu_ptr(dstats, cpu);
11617 		do {
11618 			start = u64_stats_fetch_begin(&stats->syncp);
11619 			rx_packets = u64_stats_read(&stats->rx_packets);
11620 			rx_bytes   = u64_stats_read(&stats->rx_bytes);
11621 			rx_drops   = u64_stats_read(&stats->rx_drops);
11622 			tx_packets = u64_stats_read(&stats->tx_packets);
11623 			tx_bytes   = u64_stats_read(&stats->tx_bytes);
11624 			tx_drops   = u64_stats_read(&stats->tx_drops);
11625 		} while (u64_stats_fetch_retry(&stats->syncp, start));
11626 
11627 		s->rx_packets += rx_packets;
11628 		s->rx_bytes   += rx_bytes;
11629 		s->rx_dropped += rx_drops;
11630 		s->tx_packets += tx_packets;
11631 		s->tx_bytes   += tx_bytes;
11632 		s->tx_dropped += tx_drops;
11633 	}
11634 }
11635 
11636 /* ndo_get_stats64 implementation for dtstats-based accounting.
11637  *
11638  * Populate @s from dev->stats and dev->dstats. This is used internally by the
11639  * core for NETDEV_PCPU_STAT_DSTAT-type stats collection.
11640  */
11641 static void dev_get_dstats64(const struct net_device *dev,
11642 			     struct rtnl_link_stats64 *s)
11643 {
11644 	netdev_stats_to_stats64(s, &dev->stats);
11645 	dev_fetch_dstats(s, dev->dstats);
11646 }
11647 
11648 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
11649  * all the same fields in the same order as net_device_stats, with only
11650  * the type differing, but rtnl_link_stats64 may have additional fields
11651  * at the end for newer counters.
11652  */
11653 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
11654 			     const struct net_device_stats *netdev_stats)
11655 {
11656 	size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t);
11657 	const atomic_long_t *src = (atomic_long_t *)netdev_stats;
11658 	u64 *dst = (u64 *)stats64;
11659 
11660 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
11661 	for (i = 0; i < n; i++)
11662 		dst[i] = (unsigned long)atomic_long_read(&src[i]);
11663 	/* zero out counters that only exist in rtnl_link_stats64 */
11664 	memset((char *)stats64 + n * sizeof(u64), 0,
11665 	       sizeof(*stats64) - n * sizeof(u64));
11666 }
11667 EXPORT_SYMBOL(netdev_stats_to_stats64);
11668 
11669 static __cold struct net_device_core_stats __percpu *netdev_core_stats_alloc(
11670 		struct net_device *dev)
11671 {
11672 	struct net_device_core_stats __percpu *p;
11673 
11674 	p = alloc_percpu_gfp(struct net_device_core_stats,
11675 			     GFP_ATOMIC | __GFP_NOWARN);
11676 
11677 	if (p && cmpxchg(&dev->core_stats, NULL, p))
11678 		free_percpu(p);
11679 
11680 	/* This READ_ONCE() pairs with the cmpxchg() above */
11681 	return READ_ONCE(dev->core_stats);
11682 }
11683 
11684 noinline void netdev_core_stats_inc(struct net_device *dev, u32 offset)
11685 {
11686 	/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
11687 	struct net_device_core_stats __percpu *p = READ_ONCE(dev->core_stats);
11688 	unsigned long __percpu *field;
11689 
11690 	if (unlikely(!p)) {
11691 		p = netdev_core_stats_alloc(dev);
11692 		if (!p)
11693 			return;
11694 	}
11695 
11696 	field = (unsigned long __percpu *)((void __percpu *)p + offset);
11697 	this_cpu_inc(*field);
11698 }
11699 EXPORT_SYMBOL_GPL(netdev_core_stats_inc);
11700 
11701 /**
11702  *	dev_get_stats	- get network device statistics
11703  *	@dev: device to get statistics from
11704  *	@storage: place to store stats
11705  *
11706  *	Get network statistics from device. Return @storage.
11707  *	The device driver may provide its own method by setting
11708  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
11709  *	otherwise the internal statistics structure is used.
11710  */
11711 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
11712 					struct rtnl_link_stats64 *storage)
11713 {
11714 	const struct net_device_ops *ops = dev->netdev_ops;
11715 	const struct net_device_core_stats __percpu *p;
11716 
11717 	/*
11718 	 * IPv{4,6} and udp tunnels share common stat helpers and use
11719 	 * different stat type (NETDEV_PCPU_STAT_TSTATS vs
11720 	 * NETDEV_PCPU_STAT_DSTATS). Ensure the accounting is consistent.
11721 	 */
11722 	BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, rx_bytes) !=
11723 		     offsetof(struct pcpu_dstats, rx_bytes));
11724 	BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, rx_packets) !=
11725 		     offsetof(struct pcpu_dstats, rx_packets));
11726 	BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, tx_bytes) !=
11727 		     offsetof(struct pcpu_dstats, tx_bytes));
11728 	BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, tx_packets) !=
11729 		     offsetof(struct pcpu_dstats, tx_packets));
11730 
11731 	if (ops->ndo_get_stats64) {
11732 		memset(storage, 0, sizeof(*storage));
11733 		ops->ndo_get_stats64(dev, storage);
11734 	} else if (ops->ndo_get_stats) {
11735 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
11736 	} else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_TSTATS) {
11737 		dev_get_tstats64(dev, storage);
11738 	} else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_DSTATS) {
11739 		dev_get_dstats64(dev, storage);
11740 	} else {
11741 		netdev_stats_to_stats64(storage, &dev->stats);
11742 	}
11743 
11744 	/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
11745 	p = READ_ONCE(dev->core_stats);
11746 	if (p) {
11747 		const struct net_device_core_stats *core_stats;
11748 		int i;
11749 
11750 		for_each_possible_cpu(i) {
11751 			core_stats = per_cpu_ptr(p, i);
11752 			storage->rx_dropped += READ_ONCE(core_stats->rx_dropped);
11753 			storage->tx_dropped += READ_ONCE(core_stats->tx_dropped);
11754 			storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler);
11755 			storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped);
11756 		}
11757 	}
11758 	return storage;
11759 }
11760 EXPORT_SYMBOL(dev_get_stats);
11761 
11762 /**
11763  *	dev_fetch_sw_netstats - get per-cpu network device statistics
11764  *	@s: place to store stats
11765  *	@netstats: per-cpu network stats to read from
11766  *
11767  *	Read per-cpu network statistics and populate the related fields in @s.
11768  */
11769 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
11770 			   const struct pcpu_sw_netstats __percpu *netstats)
11771 {
11772 	int cpu;
11773 
11774 	for_each_possible_cpu(cpu) {
11775 		u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
11776 		const struct pcpu_sw_netstats *stats;
11777 		unsigned int start;
11778 
11779 		stats = per_cpu_ptr(netstats, cpu);
11780 		do {
11781 			start = u64_stats_fetch_begin(&stats->syncp);
11782 			rx_packets = u64_stats_read(&stats->rx_packets);
11783 			rx_bytes   = u64_stats_read(&stats->rx_bytes);
11784 			tx_packets = u64_stats_read(&stats->tx_packets);
11785 			tx_bytes   = u64_stats_read(&stats->tx_bytes);
11786 		} while (u64_stats_fetch_retry(&stats->syncp, start));
11787 
11788 		s->rx_packets += rx_packets;
11789 		s->rx_bytes   += rx_bytes;
11790 		s->tx_packets += tx_packets;
11791 		s->tx_bytes   += tx_bytes;
11792 	}
11793 }
11794 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
11795 
11796 /**
11797  *	dev_get_tstats64 - ndo_get_stats64 implementation
11798  *	@dev: device to get statistics from
11799  *	@s: place to store stats
11800  *
11801  *	Populate @s from dev->stats and dev->tstats. Can be used as
11802  *	ndo_get_stats64() callback.
11803  */
11804 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
11805 {
11806 	netdev_stats_to_stats64(s, &dev->stats);
11807 	dev_fetch_sw_netstats(s, dev->tstats);
11808 }
11809 EXPORT_SYMBOL_GPL(dev_get_tstats64);
11810 
11811 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
11812 {
11813 	struct netdev_queue *queue = dev_ingress_queue(dev);
11814 
11815 #ifdef CONFIG_NET_CLS_ACT
11816 	if (queue)
11817 		return queue;
11818 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
11819 	if (!queue)
11820 		return NULL;
11821 	netdev_init_one_queue(dev, queue, NULL);
11822 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
11823 	RCU_INIT_POINTER(queue->qdisc_sleeping, &noop_qdisc);
11824 	rcu_assign_pointer(dev->ingress_queue, queue);
11825 #endif
11826 	return queue;
11827 }
11828 
11829 static const struct ethtool_ops default_ethtool_ops;
11830 
11831 void netdev_set_default_ethtool_ops(struct net_device *dev,
11832 				    const struct ethtool_ops *ops)
11833 {
11834 	if (dev->ethtool_ops == &default_ethtool_ops)
11835 		dev->ethtool_ops = ops;
11836 }
11837 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
11838 
11839 /**
11840  * netdev_sw_irq_coalesce_default_on() - enable SW IRQ coalescing by default
11841  * @dev: netdev to enable the IRQ coalescing on
11842  *
11843  * Sets a conservative default for SW IRQ coalescing. Users can use
11844  * sysfs attributes to override the default values.
11845  */
11846 void netdev_sw_irq_coalesce_default_on(struct net_device *dev)
11847 {
11848 	WARN_ON(dev->reg_state == NETREG_REGISTERED);
11849 
11850 	if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
11851 		netdev_set_gro_flush_timeout(dev, 20000);
11852 		netdev_set_defer_hard_irqs(dev, 1);
11853 	}
11854 }
11855 EXPORT_SYMBOL_GPL(netdev_sw_irq_coalesce_default_on);
11856 
11857 /**
11858  * alloc_netdev_mqs - allocate network device
11859  * @sizeof_priv: size of private data to allocate space for
11860  * @name: device name format string
11861  * @name_assign_type: origin of device name
11862  * @setup: callback to initialize device
11863  * @txqs: the number of TX subqueues to allocate
11864  * @rxqs: the number of RX subqueues to allocate
11865  *
11866  * Allocates a struct net_device with private data area for driver use
11867  * and performs basic initialization.  Also allocates subqueue structs
11868  * for each queue on the device.
11869  */
11870 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
11871 		unsigned char name_assign_type,
11872 		void (*setup)(struct net_device *),
11873 		unsigned int txqs, unsigned int rxqs)
11874 {
11875 	struct net_device *dev;
11876 	size_t napi_config_sz;
11877 	unsigned int maxqs;
11878 
11879 	BUG_ON(strlen(name) >= sizeof(dev->name));
11880 
11881 	if (txqs < 1) {
11882 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
11883 		return NULL;
11884 	}
11885 
11886 	if (rxqs < 1) {
11887 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
11888 		return NULL;
11889 	}
11890 
11891 	maxqs = max(txqs, rxqs);
11892 
11893 	dev = kvzalloc(struct_size(dev, priv, sizeof_priv),
11894 		       GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
11895 	if (!dev)
11896 		return NULL;
11897 
11898 	dev->priv_len = sizeof_priv;
11899 
11900 	ref_tracker_dir_init(&dev->refcnt_tracker, 128, "netdev");
11901 #ifdef CONFIG_PCPU_DEV_REFCNT
11902 	dev->pcpu_refcnt = alloc_percpu(int);
11903 	if (!dev->pcpu_refcnt)
11904 		goto free_dev;
11905 	__dev_hold(dev);
11906 #else
11907 	refcount_set(&dev->dev_refcnt, 1);
11908 #endif
11909 
11910 	if (dev_addr_init(dev))
11911 		goto free_pcpu;
11912 
11913 	dev_mc_init(dev);
11914 	dev_uc_init(dev);
11915 
11916 	dev_net_set(dev, &init_net);
11917 
11918 	dev->gso_max_size = GSO_LEGACY_MAX_SIZE;
11919 	dev->xdp_zc_max_segs = 1;
11920 	dev->gso_max_segs = GSO_MAX_SEGS;
11921 	dev->gro_max_size = GRO_LEGACY_MAX_SIZE;
11922 	dev->gso_ipv4_max_size = GSO_LEGACY_MAX_SIZE;
11923 	dev->gro_ipv4_max_size = GRO_LEGACY_MAX_SIZE;
11924 	dev->tso_max_size = TSO_LEGACY_MAX_SIZE;
11925 	dev->tso_max_segs = TSO_MAX_SEGS;
11926 	dev->upper_level = 1;
11927 	dev->lower_level = 1;
11928 #ifdef CONFIG_LOCKDEP
11929 	dev->nested_level = 0;
11930 	INIT_LIST_HEAD(&dev->unlink_list);
11931 #endif
11932 
11933 	INIT_LIST_HEAD(&dev->napi_list);
11934 	INIT_LIST_HEAD(&dev->unreg_list);
11935 	INIT_LIST_HEAD(&dev->close_list);
11936 	INIT_LIST_HEAD(&dev->link_watch_list);
11937 	INIT_LIST_HEAD(&dev->adj_list.upper);
11938 	INIT_LIST_HEAD(&dev->adj_list.lower);
11939 	INIT_LIST_HEAD(&dev->ptype_all);
11940 	INIT_LIST_HEAD(&dev->ptype_specific);
11941 	INIT_LIST_HEAD(&dev->net_notifier_list);
11942 #ifdef CONFIG_NET_SCHED
11943 	hash_init(dev->qdisc_hash);
11944 #endif
11945 
11946 	mutex_init(&dev->lock);
11947 
11948 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
11949 	setup(dev);
11950 
11951 	if (!dev->tx_queue_len) {
11952 		dev->priv_flags |= IFF_NO_QUEUE;
11953 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
11954 	}
11955 
11956 	dev->num_tx_queues = txqs;
11957 	dev->real_num_tx_queues = txqs;
11958 	if (netif_alloc_netdev_queues(dev))
11959 		goto free_all;
11960 
11961 	dev->num_rx_queues = rxqs;
11962 	dev->real_num_rx_queues = rxqs;
11963 	if (netif_alloc_rx_queues(dev))
11964 		goto free_all;
11965 	dev->ethtool = kzalloc(sizeof(*dev->ethtool), GFP_KERNEL_ACCOUNT);
11966 	if (!dev->ethtool)
11967 		goto free_all;
11968 
11969 	dev->cfg = kzalloc(sizeof(*dev->cfg), GFP_KERNEL_ACCOUNT);
11970 	if (!dev->cfg)
11971 		goto free_all;
11972 	dev->cfg_pending = dev->cfg;
11973 
11974 	dev->num_napi_configs = maxqs;
11975 	napi_config_sz = array_size(maxqs, sizeof(*dev->napi_config));
11976 	dev->napi_config = kvzalloc(napi_config_sz, GFP_KERNEL_ACCOUNT);
11977 	if (!dev->napi_config)
11978 		goto free_all;
11979 
11980 	strscpy(dev->name, name);
11981 	dev->name_assign_type = name_assign_type;
11982 	dev->group = INIT_NETDEV_GROUP;
11983 	if (!dev->ethtool_ops)
11984 		dev->ethtool_ops = &default_ethtool_ops;
11985 
11986 	nf_hook_netdev_init(dev);
11987 
11988 	return dev;
11989 
11990 free_all:
11991 	free_netdev(dev);
11992 	return NULL;
11993 
11994 free_pcpu:
11995 #ifdef CONFIG_PCPU_DEV_REFCNT
11996 	free_percpu(dev->pcpu_refcnt);
11997 free_dev:
11998 #endif
11999 	kvfree(dev);
12000 	return NULL;
12001 }
12002 EXPORT_SYMBOL(alloc_netdev_mqs);
12003 
12004 static void netdev_napi_exit(struct net_device *dev)
12005 {
12006 	if (!list_empty(&dev->napi_list)) {
12007 		struct napi_struct *p, *n;
12008 
12009 		netdev_lock(dev);
12010 		list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
12011 			__netif_napi_del_locked(p);
12012 		netdev_unlock(dev);
12013 
12014 		synchronize_net();
12015 	}
12016 
12017 	kvfree(dev->napi_config);
12018 }
12019 
12020 /**
12021  * free_netdev - free network device
12022  * @dev: device
12023  *
12024  * This function does the last stage of destroying an allocated device
12025  * interface. The reference to the device object is released. If this
12026  * is the last reference then it will be freed.Must be called in process
12027  * context.
12028  */
12029 void free_netdev(struct net_device *dev)
12030 {
12031 	might_sleep();
12032 
12033 	/* When called immediately after register_netdevice() failed the unwind
12034 	 * handling may still be dismantling the device. Handle that case by
12035 	 * deferring the free.
12036 	 */
12037 	if (dev->reg_state == NETREG_UNREGISTERING) {
12038 		ASSERT_RTNL();
12039 		dev->needs_free_netdev = true;
12040 		return;
12041 	}
12042 
12043 	WARN_ON(dev->cfg != dev->cfg_pending);
12044 	kfree(dev->cfg);
12045 	kfree(dev->ethtool);
12046 	netif_free_tx_queues(dev);
12047 	netif_free_rx_queues(dev);
12048 
12049 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
12050 
12051 	/* Flush device addresses */
12052 	dev_addr_flush(dev);
12053 
12054 	netdev_napi_exit(dev);
12055 
12056 	netif_del_cpu_rmap(dev);
12057 
12058 	ref_tracker_dir_exit(&dev->refcnt_tracker);
12059 #ifdef CONFIG_PCPU_DEV_REFCNT
12060 	free_percpu(dev->pcpu_refcnt);
12061 	dev->pcpu_refcnt = NULL;
12062 #endif
12063 	free_percpu(dev->core_stats);
12064 	dev->core_stats = NULL;
12065 	free_percpu(dev->xdp_bulkq);
12066 	dev->xdp_bulkq = NULL;
12067 
12068 	netdev_free_phy_link_topology(dev);
12069 
12070 	mutex_destroy(&dev->lock);
12071 
12072 	/*  Compatibility with error handling in drivers */
12073 	if (dev->reg_state == NETREG_UNINITIALIZED ||
12074 	    dev->reg_state == NETREG_DUMMY) {
12075 		kvfree(dev);
12076 		return;
12077 	}
12078 
12079 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
12080 	WRITE_ONCE(dev->reg_state, NETREG_RELEASED);
12081 
12082 	/* will free via device release */
12083 	put_device(&dev->dev);
12084 }
12085 EXPORT_SYMBOL(free_netdev);
12086 
12087 /**
12088  * alloc_netdev_dummy - Allocate and initialize a dummy net device.
12089  * @sizeof_priv: size of private data to allocate space for
12090  *
12091  * Return: the allocated net_device on success, NULL otherwise
12092  */
12093 struct net_device *alloc_netdev_dummy(int sizeof_priv)
12094 {
12095 	return alloc_netdev(sizeof_priv, "dummy#", NET_NAME_UNKNOWN,
12096 			    init_dummy_netdev);
12097 }
12098 EXPORT_SYMBOL_GPL(alloc_netdev_dummy);
12099 
12100 /**
12101  *	synchronize_net -  Synchronize with packet receive processing
12102  *
12103  *	Wait for packets currently being received to be done.
12104  *	Does not block later packets from starting.
12105  */
12106 void synchronize_net(void)
12107 {
12108 	might_sleep();
12109 	if (from_cleanup_net() || rtnl_is_locked())
12110 		synchronize_rcu_expedited();
12111 	else
12112 		synchronize_rcu();
12113 }
12114 EXPORT_SYMBOL(synchronize_net);
12115 
12116 static void netdev_rss_contexts_free(struct net_device *dev)
12117 {
12118 	struct ethtool_rxfh_context *ctx;
12119 	unsigned long context;
12120 
12121 	mutex_lock(&dev->ethtool->rss_lock);
12122 	xa_for_each(&dev->ethtool->rss_ctx, context, ctx) {
12123 		xa_erase(&dev->ethtool->rss_ctx, context);
12124 		dev->ethtool_ops->remove_rxfh_context(dev, ctx, context, NULL);
12125 		kfree(ctx);
12126 	}
12127 	xa_destroy(&dev->ethtool->rss_ctx);
12128 	mutex_unlock(&dev->ethtool->rss_lock);
12129 }
12130 
12131 /**
12132  *	unregister_netdevice_queue - remove device from the kernel
12133  *	@dev: device
12134  *	@head: list
12135  *
12136  *	This function shuts down a device interface and removes it
12137  *	from the kernel tables.
12138  *	If head not NULL, device is queued to be unregistered later.
12139  *
12140  *	Callers must hold the rtnl semaphore.  You may want
12141  *	unregister_netdev() instead of this.
12142  */
12143 
12144 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
12145 {
12146 	ASSERT_RTNL();
12147 
12148 	if (head) {
12149 		list_move_tail(&dev->unreg_list, head);
12150 	} else {
12151 		LIST_HEAD(single);
12152 
12153 		list_add(&dev->unreg_list, &single);
12154 		unregister_netdevice_many(&single);
12155 	}
12156 }
12157 EXPORT_SYMBOL(unregister_netdevice_queue);
12158 
12159 static void dev_memory_provider_uninstall(struct net_device *dev)
12160 {
12161 	unsigned int i;
12162 
12163 	for (i = 0; i < dev->real_num_rx_queues; i++) {
12164 		struct netdev_rx_queue *rxq = &dev->_rx[i];
12165 		struct pp_memory_provider_params *p = &rxq->mp_params;
12166 
12167 		if (p->mp_ops && p->mp_ops->uninstall)
12168 			p->mp_ops->uninstall(rxq->mp_params.mp_priv, rxq);
12169 	}
12170 }
12171 
12172 void unregister_netdevice_many_notify(struct list_head *head,
12173 				      u32 portid, const struct nlmsghdr *nlh)
12174 {
12175 	struct net_device *dev, *tmp;
12176 	LIST_HEAD(close_head);
12177 	int cnt = 0;
12178 
12179 	BUG_ON(dev_boot_phase);
12180 	ASSERT_RTNL();
12181 
12182 	if (list_empty(head))
12183 		return;
12184 
12185 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
12186 		/* Some devices call without registering
12187 		 * for initialization unwind. Remove those
12188 		 * devices and proceed with the remaining.
12189 		 */
12190 		if (dev->reg_state == NETREG_UNINITIALIZED) {
12191 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
12192 				 dev->name, dev);
12193 
12194 			WARN_ON(1);
12195 			list_del(&dev->unreg_list);
12196 			continue;
12197 		}
12198 		dev->dismantle = true;
12199 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
12200 	}
12201 
12202 	/* If device is running, close it first. Start with ops locked... */
12203 	list_for_each_entry(dev, head, unreg_list) {
12204 		if (netdev_need_ops_lock(dev)) {
12205 			list_add_tail(&dev->close_list, &close_head);
12206 			netdev_lock(dev);
12207 		}
12208 	}
12209 	netif_close_many(&close_head, true);
12210 	/* ... now unlock them and go over the rest. */
12211 	list_for_each_entry(dev, head, unreg_list) {
12212 		if (netdev_need_ops_lock(dev))
12213 			netdev_unlock(dev);
12214 		else
12215 			list_add_tail(&dev->close_list, &close_head);
12216 	}
12217 	netif_close_many(&close_head, true);
12218 
12219 	list_for_each_entry(dev, head, unreg_list) {
12220 		/* And unlink it from device chain. */
12221 		unlist_netdevice(dev);
12222 		netdev_lock(dev);
12223 		WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERING);
12224 		netdev_unlock(dev);
12225 	}
12226 	flush_all_backlogs();
12227 
12228 	synchronize_net();
12229 
12230 	list_for_each_entry(dev, head, unreg_list) {
12231 		struct sk_buff *skb = NULL;
12232 
12233 		/* Shutdown queueing discipline. */
12234 		netdev_lock_ops(dev);
12235 		dev_shutdown(dev);
12236 		dev_tcx_uninstall(dev);
12237 		dev_xdp_uninstall(dev);
12238 		dev_memory_provider_uninstall(dev);
12239 		netdev_unlock_ops(dev);
12240 		bpf_dev_bound_netdev_unregister(dev);
12241 
12242 		netdev_offload_xstats_disable_all(dev);
12243 
12244 		/* Notify protocols, that we are about to destroy
12245 		 * this device. They should clean all the things.
12246 		 */
12247 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
12248 
12249 		if (!(dev->rtnl_link_ops && dev->rtnl_link_initializing))
12250 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
12251 						     GFP_KERNEL, NULL, 0,
12252 						     portid, nlh);
12253 
12254 		/*
12255 		 *	Flush the unicast and multicast chains
12256 		 */
12257 		dev_uc_flush(dev);
12258 		dev_mc_flush(dev);
12259 
12260 		netdev_name_node_alt_flush(dev);
12261 		netdev_name_node_free(dev->name_node);
12262 
12263 		netdev_rss_contexts_free(dev);
12264 
12265 		call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
12266 
12267 		if (dev->netdev_ops->ndo_uninit)
12268 			dev->netdev_ops->ndo_uninit(dev);
12269 
12270 		mutex_destroy(&dev->ethtool->rss_lock);
12271 
12272 		net_shaper_flush_netdev(dev);
12273 
12274 		if (skb)
12275 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL, portid, nlh);
12276 
12277 		/* Notifier chain MUST detach us all upper devices. */
12278 		WARN_ON(netdev_has_any_upper_dev(dev));
12279 		WARN_ON(netdev_has_any_lower_dev(dev));
12280 
12281 		/* Remove entries from kobject tree */
12282 		netdev_unregister_kobject(dev);
12283 #ifdef CONFIG_XPS
12284 		/* Remove XPS queueing entries */
12285 		netif_reset_xps_queues_gt(dev, 0);
12286 #endif
12287 	}
12288 
12289 	synchronize_net();
12290 
12291 	list_for_each_entry(dev, head, unreg_list) {
12292 		netdev_put(dev, &dev->dev_registered_tracker);
12293 		net_set_todo(dev);
12294 		cnt++;
12295 	}
12296 	atomic_add(cnt, &dev_unreg_count);
12297 
12298 	list_del(head);
12299 }
12300 
12301 /**
12302  *	unregister_netdevice_many - unregister many devices
12303  *	@head: list of devices
12304  *
12305  *  Note: As most callers use a stack allocated list_head,
12306  *  we force a list_del() to make sure stack won't be corrupted later.
12307  */
12308 void unregister_netdevice_many(struct list_head *head)
12309 {
12310 	unregister_netdevice_many_notify(head, 0, NULL);
12311 }
12312 EXPORT_SYMBOL(unregister_netdevice_many);
12313 
12314 /**
12315  *	unregister_netdev - remove device from the kernel
12316  *	@dev: device
12317  *
12318  *	This function shuts down a device interface and removes it
12319  *	from the kernel tables.
12320  *
12321  *	This is just a wrapper for unregister_netdevice that takes
12322  *	the rtnl semaphore.  In general you want to use this and not
12323  *	unregister_netdevice.
12324  */
12325 void unregister_netdev(struct net_device *dev)
12326 {
12327 	rtnl_net_dev_lock(dev);
12328 	unregister_netdevice(dev);
12329 	rtnl_net_dev_unlock(dev);
12330 }
12331 EXPORT_SYMBOL(unregister_netdev);
12332 
12333 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
12334 			       const char *pat, int new_ifindex,
12335 			       struct netlink_ext_ack *extack)
12336 {
12337 	struct netdev_name_node *name_node;
12338 	struct net *net_old = dev_net(dev);
12339 	char new_name[IFNAMSIZ] = {};
12340 	int err, new_nsid;
12341 
12342 	ASSERT_RTNL();
12343 
12344 	/* Don't allow namespace local devices to be moved. */
12345 	err = -EINVAL;
12346 	if (dev->netns_immutable) {
12347 		NL_SET_ERR_MSG(extack, "The interface netns is immutable");
12348 		goto out;
12349 	}
12350 
12351 	/* Ensure the device has been registered */
12352 	if (dev->reg_state != NETREG_REGISTERED) {
12353 		NL_SET_ERR_MSG(extack, "The interface isn't registered");
12354 		goto out;
12355 	}
12356 
12357 	/* Get out if there is nothing todo */
12358 	err = 0;
12359 	if (net_eq(net_old, net))
12360 		goto out;
12361 
12362 	/* Pick the destination device name, and ensure
12363 	 * we can use it in the destination network namespace.
12364 	 */
12365 	err = -EEXIST;
12366 	if (netdev_name_in_use(net, dev->name)) {
12367 		/* We get here if we can't use the current device name */
12368 		if (!pat) {
12369 			NL_SET_ERR_MSG(extack,
12370 				       "An interface with the same name exists in the target netns");
12371 			goto out;
12372 		}
12373 		err = dev_prep_valid_name(net, dev, pat, new_name, EEXIST);
12374 		if (err < 0) {
12375 			NL_SET_ERR_MSG_FMT(extack,
12376 					   "Unable to use '%s' for the new interface name in the target netns",
12377 					   pat);
12378 			goto out;
12379 		}
12380 	}
12381 	/* Check that none of the altnames conflicts. */
12382 	err = -EEXIST;
12383 	netdev_for_each_altname(dev, name_node) {
12384 		if (netdev_name_in_use(net, name_node->name)) {
12385 			NL_SET_ERR_MSG_FMT(extack,
12386 					   "An interface with the altname %s exists in the target netns",
12387 					   name_node->name);
12388 			goto out;
12389 		}
12390 	}
12391 
12392 	/* Check that new_ifindex isn't used yet. */
12393 	if (new_ifindex) {
12394 		err = dev_index_reserve(net, new_ifindex);
12395 		if (err < 0) {
12396 			NL_SET_ERR_MSG_FMT(extack,
12397 					   "The ifindex %d is not available in the target netns",
12398 					   new_ifindex);
12399 			goto out;
12400 		}
12401 	} else {
12402 		/* If there is an ifindex conflict assign a new one */
12403 		err = dev_index_reserve(net, dev->ifindex);
12404 		if (err == -EBUSY)
12405 			err = dev_index_reserve(net, 0);
12406 		if (err < 0) {
12407 			NL_SET_ERR_MSG(extack,
12408 				       "Unable to allocate a new ifindex in the target netns");
12409 			goto out;
12410 		}
12411 		new_ifindex = err;
12412 	}
12413 
12414 	/*
12415 	 * And now a mini version of register_netdevice unregister_netdevice.
12416 	 */
12417 
12418 	netdev_lock_ops(dev);
12419 	/* If device is running close it first. */
12420 	netif_close(dev);
12421 	/* And unlink it from device chain */
12422 	unlist_netdevice(dev);
12423 
12424 	if (!netdev_need_ops_lock(dev))
12425 		netdev_lock(dev);
12426 	dev->moving_ns = true;
12427 	netdev_unlock(dev);
12428 
12429 	synchronize_net();
12430 
12431 	/* Shutdown queueing discipline. */
12432 	netdev_lock_ops(dev);
12433 	dev_shutdown(dev);
12434 	netdev_unlock_ops(dev);
12435 
12436 	/* Notify protocols, that we are about to destroy
12437 	 * this device. They should clean all the things.
12438 	 *
12439 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
12440 	 * This is wanted because this way 8021q and macvlan know
12441 	 * the device is just moving and can keep their slaves up.
12442 	 */
12443 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
12444 	rcu_barrier();
12445 
12446 	new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
12447 
12448 	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
12449 			    new_ifindex);
12450 
12451 	/*
12452 	 *	Flush the unicast and multicast chains
12453 	 */
12454 	dev_uc_flush(dev);
12455 	dev_mc_flush(dev);
12456 
12457 	/* Send a netdev-removed uevent to the old namespace */
12458 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
12459 	netdev_adjacent_del_links(dev);
12460 
12461 	/* Move per-net netdevice notifiers that are following the netdevice */
12462 	move_netdevice_notifiers_dev_net(dev, net);
12463 
12464 	/* Actually switch the network namespace */
12465 	netdev_lock(dev);
12466 	dev_net_set(dev, net);
12467 	netdev_unlock(dev);
12468 	dev->ifindex = new_ifindex;
12469 
12470 	if (new_name[0]) {
12471 		/* Rename the netdev to prepared name */
12472 		write_seqlock_bh(&netdev_rename_lock);
12473 		strscpy(dev->name, new_name, IFNAMSIZ);
12474 		write_sequnlock_bh(&netdev_rename_lock);
12475 	}
12476 
12477 	/* Fixup kobjects */
12478 	dev_set_uevent_suppress(&dev->dev, 1);
12479 	err = device_rename(&dev->dev, dev->name);
12480 	dev_set_uevent_suppress(&dev->dev, 0);
12481 	WARN_ON(err);
12482 
12483 	/* Send a netdev-add uevent to the new namespace */
12484 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
12485 	netdev_adjacent_add_links(dev);
12486 
12487 	/* Adapt owner in case owning user namespace of target network
12488 	 * namespace is different from the original one.
12489 	 */
12490 	err = netdev_change_owner(dev, net_old, net);
12491 	WARN_ON(err);
12492 
12493 	netdev_lock(dev);
12494 	dev->moving_ns = false;
12495 	if (!netdev_need_ops_lock(dev))
12496 		netdev_unlock(dev);
12497 
12498 	/* Add the device back in the hashes */
12499 	list_netdevice(dev);
12500 	/* Notify protocols, that a new device appeared. */
12501 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
12502 	netdev_unlock_ops(dev);
12503 
12504 	/*
12505 	 *	Prevent userspace races by waiting until the network
12506 	 *	device is fully setup before sending notifications.
12507 	 */
12508 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
12509 
12510 	synchronize_net();
12511 	err = 0;
12512 out:
12513 	return err;
12514 }
12515 
12516 static int dev_cpu_dead(unsigned int oldcpu)
12517 {
12518 	struct sk_buff **list_skb;
12519 	struct sk_buff *skb;
12520 	unsigned int cpu;
12521 	struct softnet_data *sd, *oldsd, *remsd = NULL;
12522 
12523 	local_irq_disable();
12524 	cpu = smp_processor_id();
12525 	sd = &per_cpu(softnet_data, cpu);
12526 	oldsd = &per_cpu(softnet_data, oldcpu);
12527 
12528 	/* Find end of our completion_queue. */
12529 	list_skb = &sd->completion_queue;
12530 	while (*list_skb)
12531 		list_skb = &(*list_skb)->next;
12532 	/* Append completion queue from offline CPU. */
12533 	*list_skb = oldsd->completion_queue;
12534 	oldsd->completion_queue = NULL;
12535 
12536 	/* Append output queue from offline CPU. */
12537 	if (oldsd->output_queue) {
12538 		*sd->output_queue_tailp = oldsd->output_queue;
12539 		sd->output_queue_tailp = oldsd->output_queue_tailp;
12540 		oldsd->output_queue = NULL;
12541 		oldsd->output_queue_tailp = &oldsd->output_queue;
12542 	}
12543 	/* Append NAPI poll list from offline CPU, with one exception :
12544 	 * process_backlog() must be called by cpu owning percpu backlog.
12545 	 * We properly handle process_queue & input_pkt_queue later.
12546 	 */
12547 	while (!list_empty(&oldsd->poll_list)) {
12548 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
12549 							    struct napi_struct,
12550 							    poll_list);
12551 
12552 		list_del_init(&napi->poll_list);
12553 		if (napi->poll == process_backlog)
12554 			napi->state &= NAPIF_STATE_THREADED;
12555 		else
12556 			____napi_schedule(sd, napi);
12557 	}
12558 
12559 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
12560 	local_irq_enable();
12561 
12562 	if (!use_backlog_threads()) {
12563 #ifdef CONFIG_RPS
12564 		remsd = oldsd->rps_ipi_list;
12565 		oldsd->rps_ipi_list = NULL;
12566 #endif
12567 		/* send out pending IPI's on offline CPU */
12568 		net_rps_send_ipi(remsd);
12569 	}
12570 
12571 	/* Process offline CPU's input_pkt_queue */
12572 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
12573 		netif_rx(skb);
12574 		rps_input_queue_head_incr(oldsd);
12575 	}
12576 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
12577 		netif_rx(skb);
12578 		rps_input_queue_head_incr(oldsd);
12579 	}
12580 
12581 	return 0;
12582 }
12583 
12584 /**
12585  *	netdev_increment_features - increment feature set by one
12586  *	@all: current feature set
12587  *	@one: new feature set
12588  *	@mask: mask feature set
12589  *
12590  *	Computes a new feature set after adding a device with feature set
12591  *	@one to the master device with current feature set @all.  Will not
12592  *	enable anything that is off in @mask. Returns the new feature set.
12593  */
12594 netdev_features_t netdev_increment_features(netdev_features_t all,
12595 	netdev_features_t one, netdev_features_t mask)
12596 {
12597 	if (mask & NETIF_F_HW_CSUM)
12598 		mask |= NETIF_F_CSUM_MASK;
12599 	mask |= NETIF_F_VLAN_CHALLENGED;
12600 
12601 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
12602 	all &= one | ~NETIF_F_ALL_FOR_ALL;
12603 
12604 	/* If one device supports hw checksumming, set for all. */
12605 	if (all & NETIF_F_HW_CSUM)
12606 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
12607 
12608 	return all;
12609 }
12610 EXPORT_SYMBOL(netdev_increment_features);
12611 
12612 static struct hlist_head * __net_init netdev_create_hash(void)
12613 {
12614 	int i;
12615 	struct hlist_head *hash;
12616 
12617 	hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
12618 	if (hash != NULL)
12619 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
12620 			INIT_HLIST_HEAD(&hash[i]);
12621 
12622 	return hash;
12623 }
12624 
12625 /* Initialize per network namespace state */
12626 static int __net_init netdev_init(struct net *net)
12627 {
12628 	BUILD_BUG_ON(GRO_HASH_BUCKETS >
12629 		     BITS_PER_BYTE * sizeof_field(struct gro_node, bitmask));
12630 
12631 	INIT_LIST_HEAD(&net->dev_base_head);
12632 
12633 	net->dev_name_head = netdev_create_hash();
12634 	if (net->dev_name_head == NULL)
12635 		goto err_name;
12636 
12637 	net->dev_index_head = netdev_create_hash();
12638 	if (net->dev_index_head == NULL)
12639 		goto err_idx;
12640 
12641 	xa_init_flags(&net->dev_by_index, XA_FLAGS_ALLOC1);
12642 
12643 	RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
12644 
12645 	return 0;
12646 
12647 err_idx:
12648 	kfree(net->dev_name_head);
12649 err_name:
12650 	return -ENOMEM;
12651 }
12652 
12653 /**
12654  *	netdev_drivername - network driver for the device
12655  *	@dev: network device
12656  *
12657  *	Determine network driver for device.
12658  */
12659 const char *netdev_drivername(const struct net_device *dev)
12660 {
12661 	const struct device_driver *driver;
12662 	const struct device *parent;
12663 	const char *empty = "";
12664 
12665 	parent = dev->dev.parent;
12666 	if (!parent)
12667 		return empty;
12668 
12669 	driver = parent->driver;
12670 	if (driver && driver->name)
12671 		return driver->name;
12672 	return empty;
12673 }
12674 
12675 static void __netdev_printk(const char *level, const struct net_device *dev,
12676 			    struct va_format *vaf)
12677 {
12678 	if (dev && dev->dev.parent) {
12679 		dev_printk_emit(level[1] - '0',
12680 				dev->dev.parent,
12681 				"%s %s %s%s: %pV",
12682 				dev_driver_string(dev->dev.parent),
12683 				dev_name(dev->dev.parent),
12684 				netdev_name(dev), netdev_reg_state(dev),
12685 				vaf);
12686 	} else if (dev) {
12687 		printk("%s%s%s: %pV",
12688 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
12689 	} else {
12690 		printk("%s(NULL net_device): %pV", level, vaf);
12691 	}
12692 }
12693 
12694 void netdev_printk(const char *level, const struct net_device *dev,
12695 		   const char *format, ...)
12696 {
12697 	struct va_format vaf;
12698 	va_list args;
12699 
12700 	va_start(args, format);
12701 
12702 	vaf.fmt = format;
12703 	vaf.va = &args;
12704 
12705 	__netdev_printk(level, dev, &vaf);
12706 
12707 	va_end(args);
12708 }
12709 EXPORT_SYMBOL(netdev_printk);
12710 
12711 #define define_netdev_printk_level(func, level)			\
12712 void func(const struct net_device *dev, const char *fmt, ...)	\
12713 {								\
12714 	struct va_format vaf;					\
12715 	va_list args;						\
12716 								\
12717 	va_start(args, fmt);					\
12718 								\
12719 	vaf.fmt = fmt;						\
12720 	vaf.va = &args;						\
12721 								\
12722 	__netdev_printk(level, dev, &vaf);			\
12723 								\
12724 	va_end(args);						\
12725 }								\
12726 EXPORT_SYMBOL(func);
12727 
12728 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
12729 define_netdev_printk_level(netdev_alert, KERN_ALERT);
12730 define_netdev_printk_level(netdev_crit, KERN_CRIT);
12731 define_netdev_printk_level(netdev_err, KERN_ERR);
12732 define_netdev_printk_level(netdev_warn, KERN_WARNING);
12733 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
12734 define_netdev_printk_level(netdev_info, KERN_INFO);
12735 
12736 static void __net_exit netdev_exit(struct net *net)
12737 {
12738 	kfree(net->dev_name_head);
12739 	kfree(net->dev_index_head);
12740 	xa_destroy(&net->dev_by_index);
12741 	if (net != &init_net)
12742 		WARN_ON_ONCE(!list_empty(&net->dev_base_head));
12743 }
12744 
12745 static struct pernet_operations __net_initdata netdev_net_ops = {
12746 	.init = netdev_init,
12747 	.exit = netdev_exit,
12748 };
12749 
12750 static void __net_exit default_device_exit_net(struct net *net)
12751 {
12752 	struct netdev_name_node *name_node, *tmp;
12753 	struct net_device *dev, *aux;
12754 	/*
12755 	 * Push all migratable network devices back to the
12756 	 * initial network namespace
12757 	 */
12758 	ASSERT_RTNL();
12759 	for_each_netdev_safe(net, dev, aux) {
12760 		int err;
12761 		char fb_name[IFNAMSIZ];
12762 
12763 		/* Ignore unmoveable devices (i.e. loopback) */
12764 		if (dev->netns_immutable)
12765 			continue;
12766 
12767 		/* Leave virtual devices for the generic cleanup */
12768 		if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
12769 			continue;
12770 
12771 		/* Push remaining network devices to init_net */
12772 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
12773 		if (netdev_name_in_use(&init_net, fb_name))
12774 			snprintf(fb_name, IFNAMSIZ, "dev%%d");
12775 
12776 		netdev_for_each_altname_safe(dev, name_node, tmp)
12777 			if (netdev_name_in_use(&init_net, name_node->name))
12778 				__netdev_name_node_alt_destroy(name_node);
12779 
12780 		err = dev_change_net_namespace(dev, &init_net, fb_name);
12781 		if (err) {
12782 			pr_emerg("%s: failed to move %s to init_net: %d\n",
12783 				 __func__, dev->name, err);
12784 			BUG();
12785 		}
12786 	}
12787 }
12788 
12789 static void __net_exit default_device_exit_batch(struct list_head *net_list)
12790 {
12791 	/* At exit all network devices most be removed from a network
12792 	 * namespace.  Do this in the reverse order of registration.
12793 	 * Do this across as many network namespaces as possible to
12794 	 * improve batching efficiency.
12795 	 */
12796 	struct net_device *dev;
12797 	struct net *net;
12798 	LIST_HEAD(dev_kill_list);
12799 
12800 	rtnl_lock();
12801 	list_for_each_entry(net, net_list, exit_list) {
12802 		default_device_exit_net(net);
12803 		cond_resched();
12804 	}
12805 
12806 	list_for_each_entry(net, net_list, exit_list) {
12807 		for_each_netdev_reverse(net, dev) {
12808 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
12809 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
12810 			else
12811 				unregister_netdevice_queue(dev, &dev_kill_list);
12812 		}
12813 	}
12814 	unregister_netdevice_many(&dev_kill_list);
12815 	rtnl_unlock();
12816 }
12817 
12818 static struct pernet_operations __net_initdata default_device_ops = {
12819 	.exit_batch = default_device_exit_batch,
12820 };
12821 
12822 static void __init net_dev_struct_check(void)
12823 {
12824 	/* TX read-mostly hotpath */
12825 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, priv_flags_fast);
12826 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, netdev_ops);
12827 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, header_ops);
12828 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, _tx);
12829 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, real_num_tx_queues);
12830 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_size);
12831 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_ipv4_max_size);
12832 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_segs);
12833 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_partial_features);
12834 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, num_tc);
12835 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, mtu);
12836 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, needed_headroom);
12837 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tc_to_txq);
12838 #ifdef CONFIG_XPS
12839 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, xps_maps);
12840 #endif
12841 #ifdef CONFIG_NETFILTER_EGRESS
12842 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, nf_hooks_egress);
12843 #endif
12844 #ifdef CONFIG_NET_XGRESS
12845 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tcx_egress);
12846 #endif
12847 	CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_tx, 160);
12848 
12849 	/* TXRX read-mostly hotpath */
12850 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, lstats);
12851 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, state);
12852 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, flags);
12853 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, hard_header_len);
12854 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, features);
12855 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, ip6_ptr);
12856 	CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_txrx, 46);
12857 
12858 	/* RX read-mostly hotpath */
12859 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ptype_specific);
12860 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ifindex);
12861 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, real_num_rx_queues);
12862 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, _rx);
12863 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_max_size);
12864 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_ipv4_max_size);
12865 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler);
12866 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler_data);
12867 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, nd_net);
12868 #ifdef CONFIG_NETPOLL
12869 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, npinfo);
12870 #endif
12871 #ifdef CONFIG_NET_XGRESS
12872 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, tcx_ingress);
12873 #endif
12874 	CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_rx, 92);
12875 }
12876 
12877 /*
12878  *	Initialize the DEV module. At boot time this walks the device list and
12879  *	unhooks any devices that fail to initialise (normally hardware not
12880  *	present) and leaves us with a valid list of present and active devices.
12881  *
12882  */
12883 
12884 /* We allocate 256 pages for each CPU if PAGE_SHIFT is 12 */
12885 #define SYSTEM_PERCPU_PAGE_POOL_SIZE	((1 << 20) / PAGE_SIZE)
12886 
12887 static int net_page_pool_create(int cpuid)
12888 {
12889 #if IS_ENABLED(CONFIG_PAGE_POOL)
12890 	struct page_pool_params page_pool_params = {
12891 		.pool_size = SYSTEM_PERCPU_PAGE_POOL_SIZE,
12892 		.flags = PP_FLAG_SYSTEM_POOL,
12893 		.nid = cpu_to_mem(cpuid),
12894 	};
12895 	struct page_pool *pp_ptr;
12896 	int err;
12897 
12898 	pp_ptr = page_pool_create_percpu(&page_pool_params, cpuid);
12899 	if (IS_ERR(pp_ptr))
12900 		return -ENOMEM;
12901 
12902 	err = xdp_reg_page_pool(pp_ptr);
12903 	if (err) {
12904 		page_pool_destroy(pp_ptr);
12905 		return err;
12906 	}
12907 
12908 	per_cpu(system_page_pool.pool, cpuid) = pp_ptr;
12909 #endif
12910 	return 0;
12911 }
12912 
12913 static int backlog_napi_should_run(unsigned int cpu)
12914 {
12915 	struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
12916 	struct napi_struct *napi = &sd->backlog;
12917 
12918 	return test_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
12919 }
12920 
12921 static void run_backlog_napi(unsigned int cpu)
12922 {
12923 	struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
12924 
12925 	napi_threaded_poll_loop(&sd->backlog);
12926 }
12927 
12928 static void backlog_napi_setup(unsigned int cpu)
12929 {
12930 	struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
12931 	struct napi_struct *napi = &sd->backlog;
12932 
12933 	napi->thread = this_cpu_read(backlog_napi);
12934 	set_bit(NAPI_STATE_THREADED, &napi->state);
12935 }
12936 
12937 static struct smp_hotplug_thread backlog_threads = {
12938 	.store			= &backlog_napi,
12939 	.thread_should_run	= backlog_napi_should_run,
12940 	.thread_fn		= run_backlog_napi,
12941 	.thread_comm		= "backlog_napi/%u",
12942 	.setup			= backlog_napi_setup,
12943 };
12944 
12945 /*
12946  *       This is called single threaded during boot, so no need
12947  *       to take the rtnl semaphore.
12948  */
12949 static int __init net_dev_init(void)
12950 {
12951 	int i, rc = -ENOMEM;
12952 
12953 	BUG_ON(!dev_boot_phase);
12954 
12955 	net_dev_struct_check();
12956 
12957 	if (dev_proc_init())
12958 		goto out;
12959 
12960 	if (netdev_kobject_init())
12961 		goto out;
12962 
12963 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
12964 		INIT_LIST_HEAD(&ptype_base[i]);
12965 
12966 	if (register_pernet_subsys(&netdev_net_ops))
12967 		goto out;
12968 
12969 	/*
12970 	 *	Initialise the packet receive queues.
12971 	 */
12972 
12973 	flush_backlogs_fallback = flush_backlogs_alloc();
12974 	if (!flush_backlogs_fallback)
12975 		goto out;
12976 
12977 	for_each_possible_cpu(i) {
12978 		struct softnet_data *sd = &per_cpu(softnet_data, i);
12979 
12980 		skb_queue_head_init(&sd->input_pkt_queue);
12981 		skb_queue_head_init(&sd->process_queue);
12982 #ifdef CONFIG_XFRM_OFFLOAD
12983 		skb_queue_head_init(&sd->xfrm_backlog);
12984 #endif
12985 		INIT_LIST_HEAD(&sd->poll_list);
12986 		sd->output_queue_tailp = &sd->output_queue;
12987 #ifdef CONFIG_RPS
12988 		INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
12989 		sd->cpu = i;
12990 #endif
12991 		INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd);
12992 		spin_lock_init(&sd->defer_lock);
12993 
12994 		gro_init(&sd->backlog.gro);
12995 		sd->backlog.poll = process_backlog;
12996 		sd->backlog.weight = weight_p;
12997 		INIT_LIST_HEAD(&sd->backlog.poll_list);
12998 
12999 		if (net_page_pool_create(i))
13000 			goto out;
13001 	}
13002 	if (use_backlog_threads())
13003 		smpboot_register_percpu_thread(&backlog_threads);
13004 
13005 	dev_boot_phase = 0;
13006 
13007 	/* The loopback device is special if any other network devices
13008 	 * is present in a network namespace the loopback device must
13009 	 * be present. Since we now dynamically allocate and free the
13010 	 * loopback device ensure this invariant is maintained by
13011 	 * keeping the loopback device as the first device on the
13012 	 * list of network devices.  Ensuring the loopback devices
13013 	 * is the first device that appears and the last network device
13014 	 * that disappears.
13015 	 */
13016 	if (register_pernet_device(&loopback_net_ops))
13017 		goto out;
13018 
13019 	if (register_pernet_device(&default_device_ops))
13020 		goto out;
13021 
13022 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
13023 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
13024 
13025 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
13026 				       NULL, dev_cpu_dead);
13027 	WARN_ON(rc < 0);
13028 	rc = 0;
13029 
13030 	/* avoid static key IPIs to isolated CPUs */
13031 	if (housekeeping_enabled(HK_TYPE_MISC))
13032 		net_enable_timestamp();
13033 out:
13034 	if (rc < 0) {
13035 		for_each_possible_cpu(i) {
13036 			struct page_pool *pp_ptr;
13037 
13038 			pp_ptr = per_cpu(system_page_pool.pool, i);
13039 			if (!pp_ptr)
13040 				continue;
13041 
13042 			xdp_unreg_page_pool(pp_ptr);
13043 			page_pool_destroy(pp_ptr);
13044 			per_cpu(system_page_pool.pool, i) = NULL;
13045 		}
13046 	}
13047 
13048 	return rc;
13049 }
13050 
13051 subsys_initcall(net_dev_init);
13052