1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * NET3 Protocol independent device support routines. 4 * 5 * Derived from the non IP parts of dev.c 1.0.19 6 * Authors: Ross Biro 7 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 8 * Mark Evans, <evansmp@uhura.aston.ac.uk> 9 * 10 * Additional Authors: 11 * Florian la Roche <rzsfl@rz.uni-sb.de> 12 * Alan Cox <gw4pts@gw4pts.ampr.org> 13 * David Hinds <dahinds@users.sourceforge.net> 14 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 15 * Adam Sulmicki <adam@cfar.umd.edu> 16 * Pekka Riikonen <priikone@poesidon.pspt.fi> 17 * 18 * Changes: 19 * D.J. Barrow : Fixed bug where dev->refcnt gets set 20 * to 2 if register_netdev gets called 21 * before net_dev_init & also removed a 22 * few lines of code in the process. 23 * Alan Cox : device private ioctl copies fields back. 24 * Alan Cox : Transmit queue code does relevant 25 * stunts to keep the queue safe. 26 * Alan Cox : Fixed double lock. 27 * Alan Cox : Fixed promisc NULL pointer trap 28 * ???????? : Support the full private ioctl range 29 * Alan Cox : Moved ioctl permission check into 30 * drivers 31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 32 * Alan Cox : 100 backlog just doesn't cut it when 33 * you start doing multicast video 8) 34 * Alan Cox : Rewrote net_bh and list manager. 35 * Alan Cox : Fix ETH_P_ALL echoback lengths. 36 * Alan Cox : Took out transmit every packet pass 37 * Saved a few bytes in the ioctl handler 38 * Alan Cox : Network driver sets packet type before 39 * calling netif_rx. Saves a function 40 * call a packet. 41 * Alan Cox : Hashed net_bh() 42 * Richard Kooijman: Timestamp fixes. 43 * Alan Cox : Wrong field in SIOCGIFDSTADDR 44 * Alan Cox : Device lock protection. 45 * Alan Cox : Fixed nasty side effect of device close 46 * changes. 47 * Rudi Cilibrasi : Pass the right thing to 48 * set_mac_address() 49 * Dave Miller : 32bit quantity for the device lock to 50 * make it work out on a Sparc. 51 * Bjorn Ekwall : Added KERNELD hack. 52 * Alan Cox : Cleaned up the backlog initialise. 53 * Craig Metz : SIOCGIFCONF fix if space for under 54 * 1 device. 55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 56 * is no device open function. 57 * Andi Kleen : Fix error reporting for SIOCGIFCONF 58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 59 * Cyrus Durgin : Cleaned for KMOD 60 * Adam Sulmicki : Bug Fix : Network Device Unload 61 * A network device unload needs to purge 62 * the backlog queue. 63 * Paul Rusty Russell : SIOCSIFNAME 64 * Pekka Riikonen : Netdev boot-time settings code 65 * Andrew Morton : Make unregister_netdevice wait 66 * indefinitely on dev->refcnt 67 * J Hadi Salim : - Backlog queue sampling 68 * - netif_rx() feedback 69 */ 70 71 #include <linux/uaccess.h> 72 #include <linux/bitmap.h> 73 #include <linux/capability.h> 74 #include <linux/cpu.h> 75 #include <linux/types.h> 76 #include <linux/kernel.h> 77 #include <linux/hash.h> 78 #include <linux/slab.h> 79 #include <linux/sched.h> 80 #include <linux/sched/isolation.h> 81 #include <linux/sched/mm.h> 82 #include <linux/smpboot.h> 83 #include <linux/mutex.h> 84 #include <linux/rwsem.h> 85 #include <linux/string.h> 86 #include <linux/mm.h> 87 #include <linux/socket.h> 88 #include <linux/sockios.h> 89 #include <linux/errno.h> 90 #include <linux/interrupt.h> 91 #include <linux/if_ether.h> 92 #include <linux/netdevice.h> 93 #include <linux/etherdevice.h> 94 #include <linux/ethtool.h> 95 #include <linux/ethtool_netlink.h> 96 #include <linux/skbuff.h> 97 #include <linux/kthread.h> 98 #include <linux/bpf.h> 99 #include <linux/bpf_trace.h> 100 #include <net/net_namespace.h> 101 #include <net/sock.h> 102 #include <net/busy_poll.h> 103 #include <linux/rtnetlink.h> 104 #include <linux/stat.h> 105 #include <net/dsa.h> 106 #include <net/dst.h> 107 #include <net/dst_metadata.h> 108 #include <net/gro.h> 109 #include <net/netdev_queues.h> 110 #include <net/pkt_sched.h> 111 #include <net/pkt_cls.h> 112 #include <net/checksum.h> 113 #include <net/xfrm.h> 114 #include <net/tcx.h> 115 #include <linux/highmem.h> 116 #include <linux/init.h> 117 #include <linux/module.h> 118 #include <linux/netpoll.h> 119 #include <linux/rcupdate.h> 120 #include <linux/delay.h> 121 #include <net/iw_handler.h> 122 #include <asm/current.h> 123 #include <linux/audit.h> 124 #include <linux/dmaengine.h> 125 #include <linux/err.h> 126 #include <linux/ctype.h> 127 #include <linux/if_arp.h> 128 #include <linux/if_vlan.h> 129 #include <linux/ip.h> 130 #include <net/ip.h> 131 #include <net/mpls.h> 132 #include <linux/ipv6.h> 133 #include <linux/in.h> 134 #include <linux/jhash.h> 135 #include <linux/random.h> 136 #include <trace/events/napi.h> 137 #include <trace/events/net.h> 138 #include <trace/events/skb.h> 139 #include <trace/events/qdisc.h> 140 #include <trace/events/xdp.h> 141 #include <linux/inetdevice.h> 142 #include <linux/cpu_rmap.h> 143 #include <linux/static_key.h> 144 #include <linux/hashtable.h> 145 #include <linux/vmalloc.h> 146 #include <linux/if_macvlan.h> 147 #include <linux/errqueue.h> 148 #include <linux/hrtimer.h> 149 #include <linux/netfilter_netdev.h> 150 #include <linux/crash_dump.h> 151 #include <linux/sctp.h> 152 #include <net/udp_tunnel.h> 153 #include <linux/net_namespace.h> 154 #include <linux/indirect_call_wrapper.h> 155 #include <net/devlink.h> 156 #include <linux/pm_runtime.h> 157 #include <linux/prandom.h> 158 #include <linux/once_lite.h> 159 #include <net/netdev_lock.h> 160 #include <net/netdev_rx_queue.h> 161 #include <net/page_pool/types.h> 162 #include <net/page_pool/helpers.h> 163 #include <net/page_pool/memory_provider.h> 164 #include <net/rps.h> 165 #include <linux/phy_link_topology.h> 166 167 #include "dev.h" 168 #include "devmem.h" 169 #include "net-sysfs.h" 170 171 static DEFINE_SPINLOCK(ptype_lock); 172 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 173 174 static int netif_rx_internal(struct sk_buff *skb); 175 static int call_netdevice_notifiers_extack(unsigned long val, 176 struct net_device *dev, 177 struct netlink_ext_ack *extack); 178 179 static DEFINE_MUTEX(ifalias_mutex); 180 181 /* protects napi_hash addition/deletion and napi_gen_id */ 182 static DEFINE_SPINLOCK(napi_hash_lock); 183 184 static unsigned int napi_gen_id = NR_CPUS; 185 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8); 186 187 static inline void dev_base_seq_inc(struct net *net) 188 { 189 unsigned int val = net->dev_base_seq + 1; 190 191 WRITE_ONCE(net->dev_base_seq, val ?: 1); 192 } 193 194 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 195 { 196 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ)); 197 198 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 199 } 200 201 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 202 { 203 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 204 } 205 206 #ifndef CONFIG_PREEMPT_RT 207 208 static DEFINE_STATIC_KEY_FALSE(use_backlog_threads_key); 209 210 static int __init setup_backlog_napi_threads(char *arg) 211 { 212 static_branch_enable(&use_backlog_threads_key); 213 return 0; 214 } 215 early_param("thread_backlog_napi", setup_backlog_napi_threads); 216 217 static bool use_backlog_threads(void) 218 { 219 return static_branch_unlikely(&use_backlog_threads_key); 220 } 221 222 #else 223 224 static bool use_backlog_threads(void) 225 { 226 return true; 227 } 228 229 #endif 230 231 static inline void backlog_lock_irq_save(struct softnet_data *sd, 232 unsigned long *flags) 233 { 234 if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads()) 235 spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags); 236 else 237 local_irq_save(*flags); 238 } 239 240 static inline void backlog_lock_irq_disable(struct softnet_data *sd) 241 { 242 if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads()) 243 spin_lock_irq(&sd->input_pkt_queue.lock); 244 else 245 local_irq_disable(); 246 } 247 248 static inline void backlog_unlock_irq_restore(struct softnet_data *sd, 249 unsigned long *flags) 250 { 251 if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads()) 252 spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags); 253 else 254 local_irq_restore(*flags); 255 } 256 257 static inline void backlog_unlock_irq_enable(struct softnet_data *sd) 258 { 259 if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads()) 260 spin_unlock_irq(&sd->input_pkt_queue.lock); 261 else 262 local_irq_enable(); 263 } 264 265 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev, 266 const char *name) 267 { 268 struct netdev_name_node *name_node; 269 270 name_node = kmalloc(sizeof(*name_node), GFP_KERNEL); 271 if (!name_node) 272 return NULL; 273 INIT_HLIST_NODE(&name_node->hlist); 274 name_node->dev = dev; 275 name_node->name = name; 276 return name_node; 277 } 278 279 static struct netdev_name_node * 280 netdev_name_node_head_alloc(struct net_device *dev) 281 { 282 struct netdev_name_node *name_node; 283 284 name_node = netdev_name_node_alloc(dev, dev->name); 285 if (!name_node) 286 return NULL; 287 INIT_LIST_HEAD(&name_node->list); 288 return name_node; 289 } 290 291 static void netdev_name_node_free(struct netdev_name_node *name_node) 292 { 293 kfree(name_node); 294 } 295 296 static void netdev_name_node_add(struct net *net, 297 struct netdev_name_node *name_node) 298 { 299 hlist_add_head_rcu(&name_node->hlist, 300 dev_name_hash(net, name_node->name)); 301 } 302 303 static void netdev_name_node_del(struct netdev_name_node *name_node) 304 { 305 hlist_del_rcu(&name_node->hlist); 306 } 307 308 static struct netdev_name_node *netdev_name_node_lookup(struct net *net, 309 const char *name) 310 { 311 struct hlist_head *head = dev_name_hash(net, name); 312 struct netdev_name_node *name_node; 313 314 hlist_for_each_entry(name_node, head, hlist) 315 if (!strcmp(name_node->name, name)) 316 return name_node; 317 return NULL; 318 } 319 320 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net, 321 const char *name) 322 { 323 struct hlist_head *head = dev_name_hash(net, name); 324 struct netdev_name_node *name_node; 325 326 hlist_for_each_entry_rcu(name_node, head, hlist) 327 if (!strcmp(name_node->name, name)) 328 return name_node; 329 return NULL; 330 } 331 332 bool netdev_name_in_use(struct net *net, const char *name) 333 { 334 return netdev_name_node_lookup(net, name); 335 } 336 EXPORT_SYMBOL(netdev_name_in_use); 337 338 int netdev_name_node_alt_create(struct net_device *dev, const char *name) 339 { 340 struct netdev_name_node *name_node; 341 struct net *net = dev_net(dev); 342 343 name_node = netdev_name_node_lookup(net, name); 344 if (name_node) 345 return -EEXIST; 346 name_node = netdev_name_node_alloc(dev, name); 347 if (!name_node) 348 return -ENOMEM; 349 netdev_name_node_add(net, name_node); 350 /* The node that holds dev->name acts as a head of per-device list. */ 351 list_add_tail_rcu(&name_node->list, &dev->name_node->list); 352 353 return 0; 354 } 355 356 static void netdev_name_node_alt_free(struct rcu_head *head) 357 { 358 struct netdev_name_node *name_node = 359 container_of(head, struct netdev_name_node, rcu); 360 361 kfree(name_node->name); 362 netdev_name_node_free(name_node); 363 } 364 365 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node) 366 { 367 netdev_name_node_del(name_node); 368 list_del(&name_node->list); 369 call_rcu(&name_node->rcu, netdev_name_node_alt_free); 370 } 371 372 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name) 373 { 374 struct netdev_name_node *name_node; 375 struct net *net = dev_net(dev); 376 377 name_node = netdev_name_node_lookup(net, name); 378 if (!name_node) 379 return -ENOENT; 380 /* lookup might have found our primary name or a name belonging 381 * to another device. 382 */ 383 if (name_node == dev->name_node || name_node->dev != dev) 384 return -EINVAL; 385 386 __netdev_name_node_alt_destroy(name_node); 387 return 0; 388 } 389 390 static void netdev_name_node_alt_flush(struct net_device *dev) 391 { 392 struct netdev_name_node *name_node, *tmp; 393 394 list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list) { 395 list_del(&name_node->list); 396 netdev_name_node_alt_free(&name_node->rcu); 397 } 398 } 399 400 /* Device list insertion */ 401 static void list_netdevice(struct net_device *dev) 402 { 403 struct netdev_name_node *name_node; 404 struct net *net = dev_net(dev); 405 406 ASSERT_RTNL(); 407 408 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 409 netdev_name_node_add(net, dev->name_node); 410 hlist_add_head_rcu(&dev->index_hlist, 411 dev_index_hash(net, dev->ifindex)); 412 413 netdev_for_each_altname(dev, name_node) 414 netdev_name_node_add(net, name_node); 415 416 /* We reserved the ifindex, this can't fail */ 417 WARN_ON(xa_store(&net->dev_by_index, dev->ifindex, dev, GFP_KERNEL)); 418 419 dev_base_seq_inc(net); 420 } 421 422 /* Device list removal 423 * caller must respect a RCU grace period before freeing/reusing dev 424 */ 425 static void unlist_netdevice(struct net_device *dev) 426 { 427 struct netdev_name_node *name_node; 428 struct net *net = dev_net(dev); 429 430 ASSERT_RTNL(); 431 432 xa_erase(&net->dev_by_index, dev->ifindex); 433 434 netdev_for_each_altname(dev, name_node) 435 netdev_name_node_del(name_node); 436 437 /* Unlink dev from the device chain */ 438 list_del_rcu(&dev->dev_list); 439 netdev_name_node_del(dev->name_node); 440 hlist_del_rcu(&dev->index_hlist); 441 442 dev_base_seq_inc(dev_net(dev)); 443 } 444 445 /* 446 * Our notifier list 447 */ 448 449 static RAW_NOTIFIER_HEAD(netdev_chain); 450 451 /* 452 * Device drivers call our routines to queue packets here. We empty the 453 * queue in the local softnet handler. 454 */ 455 456 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data) = { 457 .process_queue_bh_lock = INIT_LOCAL_LOCK(process_queue_bh_lock), 458 }; 459 EXPORT_PER_CPU_SYMBOL(softnet_data); 460 461 /* Page_pool has a lockless array/stack to alloc/recycle pages. 462 * PP consumers must pay attention to run APIs in the appropriate context 463 * (e.g. NAPI context). 464 */ 465 DEFINE_PER_CPU(struct page_pool_bh, system_page_pool) = { 466 .bh_lock = INIT_LOCAL_LOCK(bh_lock), 467 }; 468 469 #ifdef CONFIG_LOCKDEP 470 /* 471 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 472 * according to dev->type 473 */ 474 static const unsigned short netdev_lock_type[] = { 475 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 476 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 477 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 478 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 479 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 480 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 481 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 482 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 483 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 484 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 485 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 486 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 487 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM, 488 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE, 489 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE}; 490 491 static const char *const netdev_lock_name[] = { 492 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 493 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 494 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 495 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 496 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 497 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 498 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 499 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 500 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 501 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 502 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 503 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 504 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM", 505 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE", 506 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"}; 507 508 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 509 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 510 511 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 512 { 513 int i; 514 515 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 516 if (netdev_lock_type[i] == dev_type) 517 return i; 518 /* the last key is used by default */ 519 return ARRAY_SIZE(netdev_lock_type) - 1; 520 } 521 522 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 523 unsigned short dev_type) 524 { 525 int i; 526 527 i = netdev_lock_pos(dev_type); 528 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 529 netdev_lock_name[i]); 530 } 531 532 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 533 { 534 int i; 535 536 i = netdev_lock_pos(dev->type); 537 lockdep_set_class_and_name(&dev->addr_list_lock, 538 &netdev_addr_lock_key[i], 539 netdev_lock_name[i]); 540 } 541 #else 542 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 543 unsigned short dev_type) 544 { 545 } 546 547 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 548 { 549 } 550 #endif 551 552 /******************************************************************************* 553 * 554 * Protocol management and registration routines 555 * 556 *******************************************************************************/ 557 558 559 /* 560 * Add a protocol ID to the list. Now that the input handler is 561 * smarter we can dispense with all the messy stuff that used to be 562 * here. 563 * 564 * BEWARE!!! Protocol handlers, mangling input packets, 565 * MUST BE last in hash buckets and checking protocol handlers 566 * MUST start from promiscuous ptype_all chain in net_bh. 567 * It is true now, do not change it. 568 * Explanation follows: if protocol handler, mangling packet, will 569 * be the first on list, it is not able to sense, that packet 570 * is cloned and should be copied-on-write, so that it will 571 * change it and subsequent readers will get broken packet. 572 * --ANK (980803) 573 */ 574 575 static inline struct list_head *ptype_head(const struct packet_type *pt) 576 { 577 if (pt->type == htons(ETH_P_ALL)) { 578 if (!pt->af_packet_net && !pt->dev) 579 return NULL; 580 581 return pt->dev ? &pt->dev->ptype_all : 582 &pt->af_packet_net->ptype_all; 583 } 584 585 if (pt->dev) 586 return &pt->dev->ptype_specific; 587 588 return pt->af_packet_net ? &pt->af_packet_net->ptype_specific : 589 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 590 } 591 592 /** 593 * dev_add_pack - add packet handler 594 * @pt: packet type declaration 595 * 596 * Add a protocol handler to the networking stack. The passed &packet_type 597 * is linked into kernel lists and may not be freed until it has been 598 * removed from the kernel lists. 599 * 600 * This call does not sleep therefore it can not 601 * guarantee all CPU's that are in middle of receiving packets 602 * will see the new packet type (until the next received packet). 603 */ 604 605 void dev_add_pack(struct packet_type *pt) 606 { 607 struct list_head *head = ptype_head(pt); 608 609 if (WARN_ON_ONCE(!head)) 610 return; 611 612 spin_lock(&ptype_lock); 613 list_add_rcu(&pt->list, head); 614 spin_unlock(&ptype_lock); 615 } 616 EXPORT_SYMBOL(dev_add_pack); 617 618 /** 619 * __dev_remove_pack - remove packet handler 620 * @pt: packet type declaration 621 * 622 * Remove a protocol handler that was previously added to the kernel 623 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 624 * from the kernel lists and can be freed or reused once this function 625 * returns. 626 * 627 * The packet type might still be in use by receivers 628 * and must not be freed until after all the CPU's have gone 629 * through a quiescent state. 630 */ 631 void __dev_remove_pack(struct packet_type *pt) 632 { 633 struct list_head *head = ptype_head(pt); 634 struct packet_type *pt1; 635 636 if (!head) 637 return; 638 639 spin_lock(&ptype_lock); 640 641 list_for_each_entry(pt1, head, list) { 642 if (pt == pt1) { 643 list_del_rcu(&pt->list); 644 goto out; 645 } 646 } 647 648 pr_warn("dev_remove_pack: %p not found\n", pt); 649 out: 650 spin_unlock(&ptype_lock); 651 } 652 EXPORT_SYMBOL(__dev_remove_pack); 653 654 /** 655 * dev_remove_pack - remove packet handler 656 * @pt: packet type declaration 657 * 658 * Remove a protocol handler that was previously added to the kernel 659 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 660 * from the kernel lists and can be freed or reused once this function 661 * returns. 662 * 663 * This call sleeps to guarantee that no CPU is looking at the packet 664 * type after return. 665 */ 666 void dev_remove_pack(struct packet_type *pt) 667 { 668 __dev_remove_pack(pt); 669 670 synchronize_net(); 671 } 672 EXPORT_SYMBOL(dev_remove_pack); 673 674 675 /******************************************************************************* 676 * 677 * Device Interface Subroutines 678 * 679 *******************************************************************************/ 680 681 /** 682 * dev_get_iflink - get 'iflink' value of a interface 683 * @dev: targeted interface 684 * 685 * Indicates the ifindex the interface is linked to. 686 * Physical interfaces have the same 'ifindex' and 'iflink' values. 687 */ 688 689 int dev_get_iflink(const struct net_device *dev) 690 { 691 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink) 692 return dev->netdev_ops->ndo_get_iflink(dev); 693 694 return READ_ONCE(dev->ifindex); 695 } 696 EXPORT_SYMBOL(dev_get_iflink); 697 698 /** 699 * dev_fill_metadata_dst - Retrieve tunnel egress information. 700 * @dev: targeted interface 701 * @skb: The packet. 702 * 703 * For better visibility of tunnel traffic OVS needs to retrieve 704 * egress tunnel information for a packet. Following API allows 705 * user to get this info. 706 */ 707 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb) 708 { 709 struct ip_tunnel_info *info; 710 711 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst) 712 return -EINVAL; 713 714 info = skb_tunnel_info_unclone(skb); 715 if (!info) 716 return -ENOMEM; 717 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX))) 718 return -EINVAL; 719 720 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb); 721 } 722 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst); 723 724 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack) 725 { 726 int k = stack->num_paths++; 727 728 if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX)) 729 return NULL; 730 731 return &stack->path[k]; 732 } 733 734 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr, 735 struct net_device_path_stack *stack) 736 { 737 const struct net_device *last_dev; 738 struct net_device_path_ctx ctx = { 739 .dev = dev, 740 }; 741 struct net_device_path *path; 742 int ret = 0; 743 744 memcpy(ctx.daddr, daddr, sizeof(ctx.daddr)); 745 stack->num_paths = 0; 746 while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) { 747 last_dev = ctx.dev; 748 path = dev_fwd_path(stack); 749 if (!path) 750 return -1; 751 752 memset(path, 0, sizeof(struct net_device_path)); 753 ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path); 754 if (ret < 0) 755 return -1; 756 757 if (WARN_ON_ONCE(last_dev == ctx.dev)) 758 return -1; 759 } 760 761 if (!ctx.dev) 762 return ret; 763 764 path = dev_fwd_path(stack); 765 if (!path) 766 return -1; 767 path->type = DEV_PATH_ETHERNET; 768 path->dev = ctx.dev; 769 770 return ret; 771 } 772 EXPORT_SYMBOL_GPL(dev_fill_forward_path); 773 774 /* must be called under rcu_read_lock(), as we dont take a reference */ 775 static struct napi_struct *napi_by_id(unsigned int napi_id) 776 { 777 unsigned int hash = napi_id % HASH_SIZE(napi_hash); 778 struct napi_struct *napi; 779 780 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node) 781 if (napi->napi_id == napi_id) 782 return napi; 783 784 return NULL; 785 } 786 787 /* must be called under rcu_read_lock(), as we dont take a reference */ 788 static struct napi_struct * 789 netdev_napi_by_id(struct net *net, unsigned int napi_id) 790 { 791 struct napi_struct *napi; 792 793 napi = napi_by_id(napi_id); 794 if (!napi) 795 return NULL; 796 797 if (WARN_ON_ONCE(!napi->dev)) 798 return NULL; 799 if (!net_eq(net, dev_net(napi->dev))) 800 return NULL; 801 802 return napi; 803 } 804 805 /** 806 * netdev_napi_by_id_lock() - find a device by NAPI ID and lock it 807 * @net: the applicable net namespace 808 * @napi_id: ID of a NAPI of a target device 809 * 810 * Find a NAPI instance with @napi_id. Lock its device. 811 * The device must be in %NETREG_REGISTERED state for lookup to succeed. 812 * netdev_unlock() must be called to release it. 813 * 814 * Return: pointer to NAPI, its device with lock held, NULL if not found. 815 */ 816 struct napi_struct * 817 netdev_napi_by_id_lock(struct net *net, unsigned int napi_id) 818 { 819 struct napi_struct *napi; 820 struct net_device *dev; 821 822 rcu_read_lock(); 823 napi = netdev_napi_by_id(net, napi_id); 824 if (!napi || READ_ONCE(napi->dev->reg_state) != NETREG_REGISTERED) { 825 rcu_read_unlock(); 826 return NULL; 827 } 828 829 dev = napi->dev; 830 dev_hold(dev); 831 rcu_read_unlock(); 832 833 dev = __netdev_put_lock(dev, net); 834 if (!dev) 835 return NULL; 836 837 rcu_read_lock(); 838 napi = netdev_napi_by_id(net, napi_id); 839 if (napi && napi->dev != dev) 840 napi = NULL; 841 rcu_read_unlock(); 842 843 if (!napi) 844 netdev_unlock(dev); 845 return napi; 846 } 847 848 /** 849 * __dev_get_by_name - find a device by its name 850 * @net: the applicable net namespace 851 * @name: name to find 852 * 853 * Find an interface by name. Must be called under RTNL semaphore. 854 * If the name is found a pointer to the device is returned. 855 * If the name is not found then %NULL is returned. The 856 * reference counters are not incremented so the caller must be 857 * careful with locks. 858 */ 859 860 struct net_device *__dev_get_by_name(struct net *net, const char *name) 861 { 862 struct netdev_name_node *node_name; 863 864 node_name = netdev_name_node_lookup(net, name); 865 return node_name ? node_name->dev : NULL; 866 } 867 EXPORT_SYMBOL(__dev_get_by_name); 868 869 /** 870 * dev_get_by_name_rcu - find a device by its name 871 * @net: the applicable net namespace 872 * @name: name to find 873 * 874 * Find an interface by name. 875 * If the name is found a pointer to the device is returned. 876 * If the name is not found then %NULL is returned. 877 * The reference counters are not incremented so the caller must be 878 * careful with locks. The caller must hold RCU lock. 879 */ 880 881 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 882 { 883 struct netdev_name_node *node_name; 884 885 node_name = netdev_name_node_lookup_rcu(net, name); 886 return node_name ? node_name->dev : NULL; 887 } 888 EXPORT_SYMBOL(dev_get_by_name_rcu); 889 890 /* Deprecated for new users, call netdev_get_by_name() instead */ 891 struct net_device *dev_get_by_name(struct net *net, const char *name) 892 { 893 struct net_device *dev; 894 895 rcu_read_lock(); 896 dev = dev_get_by_name_rcu(net, name); 897 dev_hold(dev); 898 rcu_read_unlock(); 899 return dev; 900 } 901 EXPORT_SYMBOL(dev_get_by_name); 902 903 /** 904 * netdev_get_by_name() - find a device by its name 905 * @net: the applicable net namespace 906 * @name: name to find 907 * @tracker: tracking object for the acquired reference 908 * @gfp: allocation flags for the tracker 909 * 910 * Find an interface by name. This can be called from any 911 * context and does its own locking. The returned handle has 912 * the usage count incremented and the caller must use netdev_put() to 913 * release it when it is no longer needed. %NULL is returned if no 914 * matching device is found. 915 */ 916 struct net_device *netdev_get_by_name(struct net *net, const char *name, 917 netdevice_tracker *tracker, gfp_t gfp) 918 { 919 struct net_device *dev; 920 921 dev = dev_get_by_name(net, name); 922 if (dev) 923 netdev_tracker_alloc(dev, tracker, gfp); 924 return dev; 925 } 926 EXPORT_SYMBOL(netdev_get_by_name); 927 928 /** 929 * __dev_get_by_index - find a device by its ifindex 930 * @net: the applicable net namespace 931 * @ifindex: index of device 932 * 933 * Search for an interface by index. Returns %NULL if the device 934 * is not found or a pointer to the device. The device has not 935 * had its reference counter increased so the caller must be careful 936 * about locking. The caller must hold the RTNL semaphore. 937 */ 938 939 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 940 { 941 struct net_device *dev; 942 struct hlist_head *head = dev_index_hash(net, ifindex); 943 944 hlist_for_each_entry(dev, head, index_hlist) 945 if (dev->ifindex == ifindex) 946 return dev; 947 948 return NULL; 949 } 950 EXPORT_SYMBOL(__dev_get_by_index); 951 952 /** 953 * dev_get_by_index_rcu - find a device by its ifindex 954 * @net: the applicable net namespace 955 * @ifindex: index of device 956 * 957 * Search for an interface by index. Returns %NULL if the device 958 * is not found or a pointer to the device. The device has not 959 * had its reference counter increased so the caller must be careful 960 * about locking. The caller must hold RCU lock. 961 */ 962 963 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 964 { 965 struct net_device *dev; 966 struct hlist_head *head = dev_index_hash(net, ifindex); 967 968 hlist_for_each_entry_rcu(dev, head, index_hlist) 969 if (dev->ifindex == ifindex) 970 return dev; 971 972 return NULL; 973 } 974 EXPORT_SYMBOL(dev_get_by_index_rcu); 975 976 /* Deprecated for new users, call netdev_get_by_index() instead */ 977 struct net_device *dev_get_by_index(struct net *net, int ifindex) 978 { 979 struct net_device *dev; 980 981 rcu_read_lock(); 982 dev = dev_get_by_index_rcu(net, ifindex); 983 dev_hold(dev); 984 rcu_read_unlock(); 985 return dev; 986 } 987 EXPORT_SYMBOL(dev_get_by_index); 988 989 /** 990 * netdev_get_by_index() - find a device by its ifindex 991 * @net: the applicable net namespace 992 * @ifindex: index of device 993 * @tracker: tracking object for the acquired reference 994 * @gfp: allocation flags for the tracker 995 * 996 * Search for an interface by index. Returns NULL if the device 997 * is not found or a pointer to the device. The device returned has 998 * had a reference added and the pointer is safe until the user calls 999 * netdev_put() to indicate they have finished with it. 1000 */ 1001 struct net_device *netdev_get_by_index(struct net *net, int ifindex, 1002 netdevice_tracker *tracker, gfp_t gfp) 1003 { 1004 struct net_device *dev; 1005 1006 dev = dev_get_by_index(net, ifindex); 1007 if (dev) 1008 netdev_tracker_alloc(dev, tracker, gfp); 1009 return dev; 1010 } 1011 EXPORT_SYMBOL(netdev_get_by_index); 1012 1013 /** 1014 * dev_get_by_napi_id - find a device by napi_id 1015 * @napi_id: ID of the NAPI struct 1016 * 1017 * Search for an interface by NAPI ID. Returns %NULL if the device 1018 * is not found or a pointer to the device. The device has not had 1019 * its reference counter increased so the caller must be careful 1020 * about locking. The caller must hold RCU lock. 1021 */ 1022 struct net_device *dev_get_by_napi_id(unsigned int napi_id) 1023 { 1024 struct napi_struct *napi; 1025 1026 WARN_ON_ONCE(!rcu_read_lock_held()); 1027 1028 if (!napi_id_valid(napi_id)) 1029 return NULL; 1030 1031 napi = napi_by_id(napi_id); 1032 1033 return napi ? napi->dev : NULL; 1034 } 1035 1036 /* Release the held reference on the net_device, and if the net_device 1037 * is still registered try to lock the instance lock. If device is being 1038 * unregistered NULL will be returned (but the reference has been released, 1039 * either way!) 1040 * 1041 * This helper is intended for locking net_device after it has been looked up 1042 * using a lockless lookup helper. Lock prevents the instance from going away. 1043 */ 1044 struct net_device *__netdev_put_lock(struct net_device *dev, struct net *net) 1045 { 1046 netdev_lock(dev); 1047 if (dev->reg_state > NETREG_REGISTERED || 1048 dev->moving_ns || !net_eq(dev_net(dev), net)) { 1049 netdev_unlock(dev); 1050 dev_put(dev); 1051 return NULL; 1052 } 1053 dev_put(dev); 1054 return dev; 1055 } 1056 1057 static struct net_device * 1058 __netdev_put_lock_ops_compat(struct net_device *dev, struct net *net) 1059 { 1060 netdev_lock_ops_compat(dev); 1061 if (dev->reg_state > NETREG_REGISTERED || 1062 dev->moving_ns || !net_eq(dev_net(dev), net)) { 1063 netdev_unlock_ops_compat(dev); 1064 dev_put(dev); 1065 return NULL; 1066 } 1067 dev_put(dev); 1068 return dev; 1069 } 1070 1071 /** 1072 * netdev_get_by_index_lock() - find a device by its ifindex 1073 * @net: the applicable net namespace 1074 * @ifindex: index of device 1075 * 1076 * Search for an interface by index. If a valid device 1077 * with @ifindex is found it will be returned with netdev->lock held. 1078 * netdev_unlock() must be called to release it. 1079 * 1080 * Return: pointer to a device with lock held, NULL if not found. 1081 */ 1082 struct net_device *netdev_get_by_index_lock(struct net *net, int ifindex) 1083 { 1084 struct net_device *dev; 1085 1086 dev = dev_get_by_index(net, ifindex); 1087 if (!dev) 1088 return NULL; 1089 1090 return __netdev_put_lock(dev, net); 1091 } 1092 1093 struct net_device * 1094 netdev_get_by_index_lock_ops_compat(struct net *net, int ifindex) 1095 { 1096 struct net_device *dev; 1097 1098 dev = dev_get_by_index(net, ifindex); 1099 if (!dev) 1100 return NULL; 1101 1102 return __netdev_put_lock_ops_compat(dev, net); 1103 } 1104 1105 struct net_device * 1106 netdev_xa_find_lock(struct net *net, struct net_device *dev, 1107 unsigned long *index) 1108 { 1109 if (dev) 1110 netdev_unlock(dev); 1111 1112 do { 1113 rcu_read_lock(); 1114 dev = xa_find(&net->dev_by_index, index, ULONG_MAX, XA_PRESENT); 1115 if (!dev) { 1116 rcu_read_unlock(); 1117 return NULL; 1118 } 1119 dev_hold(dev); 1120 rcu_read_unlock(); 1121 1122 dev = __netdev_put_lock(dev, net); 1123 if (dev) 1124 return dev; 1125 1126 (*index)++; 1127 } while (true); 1128 } 1129 1130 struct net_device * 1131 netdev_xa_find_lock_ops_compat(struct net *net, struct net_device *dev, 1132 unsigned long *index) 1133 { 1134 if (dev) 1135 netdev_unlock_ops_compat(dev); 1136 1137 do { 1138 rcu_read_lock(); 1139 dev = xa_find(&net->dev_by_index, index, ULONG_MAX, XA_PRESENT); 1140 if (!dev) { 1141 rcu_read_unlock(); 1142 return NULL; 1143 } 1144 dev_hold(dev); 1145 rcu_read_unlock(); 1146 1147 dev = __netdev_put_lock_ops_compat(dev, net); 1148 if (dev) 1149 return dev; 1150 1151 (*index)++; 1152 } while (true); 1153 } 1154 1155 static DEFINE_SEQLOCK(netdev_rename_lock); 1156 1157 void netdev_copy_name(struct net_device *dev, char *name) 1158 { 1159 unsigned int seq; 1160 1161 do { 1162 seq = read_seqbegin(&netdev_rename_lock); 1163 strscpy(name, dev->name, IFNAMSIZ); 1164 } while (read_seqretry(&netdev_rename_lock, seq)); 1165 } 1166 1167 /** 1168 * netdev_get_name - get a netdevice name, knowing its ifindex. 1169 * @net: network namespace 1170 * @name: a pointer to the buffer where the name will be stored. 1171 * @ifindex: the ifindex of the interface to get the name from. 1172 */ 1173 int netdev_get_name(struct net *net, char *name, int ifindex) 1174 { 1175 struct net_device *dev; 1176 int ret; 1177 1178 rcu_read_lock(); 1179 1180 dev = dev_get_by_index_rcu(net, ifindex); 1181 if (!dev) { 1182 ret = -ENODEV; 1183 goto out; 1184 } 1185 1186 netdev_copy_name(dev, name); 1187 1188 ret = 0; 1189 out: 1190 rcu_read_unlock(); 1191 return ret; 1192 } 1193 1194 static bool dev_addr_cmp(struct net_device *dev, unsigned short type, 1195 const char *ha) 1196 { 1197 return dev->type == type && !memcmp(dev->dev_addr, ha, dev->addr_len); 1198 } 1199 1200 /** 1201 * dev_getbyhwaddr_rcu - find a device by its hardware address 1202 * @net: the applicable net namespace 1203 * @type: media type of device 1204 * @ha: hardware address 1205 * 1206 * Search for an interface by MAC address. Returns NULL if the device 1207 * is not found or a pointer to the device. 1208 * The caller must hold RCU. 1209 * The returned device has not had its ref count increased 1210 * and the caller must therefore be careful about locking 1211 * 1212 */ 1213 1214 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 1215 const char *ha) 1216 { 1217 struct net_device *dev; 1218 1219 for_each_netdev_rcu(net, dev) 1220 if (dev_addr_cmp(dev, type, ha)) 1221 return dev; 1222 1223 return NULL; 1224 } 1225 EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 1226 1227 /** 1228 * dev_getbyhwaddr() - find a device by its hardware address 1229 * @net: the applicable net namespace 1230 * @type: media type of device 1231 * @ha: hardware address 1232 * 1233 * Similar to dev_getbyhwaddr_rcu(), but the owner needs to hold 1234 * rtnl_lock. 1235 * 1236 * Context: rtnl_lock() must be held. 1237 * Return: pointer to the net_device, or NULL if not found 1238 */ 1239 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, 1240 const char *ha) 1241 { 1242 struct net_device *dev; 1243 1244 ASSERT_RTNL(); 1245 for_each_netdev(net, dev) 1246 if (dev_addr_cmp(dev, type, ha)) 1247 return dev; 1248 1249 return NULL; 1250 } 1251 EXPORT_SYMBOL(dev_getbyhwaddr); 1252 1253 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 1254 { 1255 struct net_device *dev, *ret = NULL; 1256 1257 rcu_read_lock(); 1258 for_each_netdev_rcu(net, dev) 1259 if (dev->type == type) { 1260 dev_hold(dev); 1261 ret = dev; 1262 break; 1263 } 1264 rcu_read_unlock(); 1265 return ret; 1266 } 1267 EXPORT_SYMBOL(dev_getfirstbyhwtype); 1268 1269 /** 1270 * netdev_get_by_flags_rcu - find any device with given flags 1271 * @net: the applicable net namespace 1272 * @tracker: tracking object for the acquired reference 1273 * @if_flags: IFF_* values 1274 * @mask: bitmask of bits in if_flags to check 1275 * 1276 * Search for any interface with the given flags. 1277 * 1278 * Context: rcu_read_lock() must be held. 1279 * Returns: NULL if a device is not found or a pointer to the device. 1280 */ 1281 struct net_device *netdev_get_by_flags_rcu(struct net *net, netdevice_tracker *tracker, 1282 unsigned short if_flags, unsigned short mask) 1283 { 1284 struct net_device *dev; 1285 1286 for_each_netdev_rcu(net, dev) { 1287 if (((READ_ONCE(dev->flags) ^ if_flags) & mask) == 0) { 1288 netdev_hold(dev, tracker, GFP_ATOMIC); 1289 return dev; 1290 } 1291 } 1292 1293 return NULL; 1294 } 1295 EXPORT_IPV6_MOD(netdev_get_by_flags_rcu); 1296 1297 /** 1298 * dev_valid_name - check if name is okay for network device 1299 * @name: name string 1300 * 1301 * Network device names need to be valid file names to 1302 * allow sysfs to work. We also disallow any kind of 1303 * whitespace. 1304 */ 1305 bool dev_valid_name(const char *name) 1306 { 1307 if (*name == '\0') 1308 return false; 1309 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ) 1310 return false; 1311 if (!strcmp(name, ".") || !strcmp(name, "..")) 1312 return false; 1313 1314 while (*name) { 1315 if (*name == '/' || *name == ':' || isspace(*name)) 1316 return false; 1317 name++; 1318 } 1319 return true; 1320 } 1321 EXPORT_SYMBOL(dev_valid_name); 1322 1323 /** 1324 * __dev_alloc_name - allocate a name for a device 1325 * @net: network namespace to allocate the device name in 1326 * @name: name format string 1327 * @res: result name string 1328 * 1329 * Passed a format string - eg "lt%d" it will try and find a suitable 1330 * id. It scans list of devices to build up a free map, then chooses 1331 * the first empty slot. The caller must hold the dev_base or rtnl lock 1332 * while allocating the name and adding the device in order to avoid 1333 * duplicates. 1334 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1335 * Returns the number of the unit assigned or a negative errno code. 1336 */ 1337 1338 static int __dev_alloc_name(struct net *net, const char *name, char *res) 1339 { 1340 int i = 0; 1341 const char *p; 1342 const int max_netdevices = 8*PAGE_SIZE; 1343 unsigned long *inuse; 1344 struct net_device *d; 1345 char buf[IFNAMSIZ]; 1346 1347 /* Verify the string as this thing may have come from the user. 1348 * There must be one "%d" and no other "%" characters. 1349 */ 1350 p = strchr(name, '%'); 1351 if (!p || p[1] != 'd' || strchr(p + 2, '%')) 1352 return -EINVAL; 1353 1354 /* Use one page as a bit array of possible slots */ 1355 inuse = bitmap_zalloc(max_netdevices, GFP_ATOMIC); 1356 if (!inuse) 1357 return -ENOMEM; 1358 1359 for_each_netdev(net, d) { 1360 struct netdev_name_node *name_node; 1361 1362 netdev_for_each_altname(d, name_node) { 1363 if (!sscanf(name_node->name, name, &i)) 1364 continue; 1365 if (i < 0 || i >= max_netdevices) 1366 continue; 1367 1368 /* avoid cases where sscanf is not exact inverse of printf */ 1369 snprintf(buf, IFNAMSIZ, name, i); 1370 if (!strncmp(buf, name_node->name, IFNAMSIZ)) 1371 __set_bit(i, inuse); 1372 } 1373 if (!sscanf(d->name, name, &i)) 1374 continue; 1375 if (i < 0 || i >= max_netdevices) 1376 continue; 1377 1378 /* avoid cases where sscanf is not exact inverse of printf */ 1379 snprintf(buf, IFNAMSIZ, name, i); 1380 if (!strncmp(buf, d->name, IFNAMSIZ)) 1381 __set_bit(i, inuse); 1382 } 1383 1384 i = find_first_zero_bit(inuse, max_netdevices); 1385 bitmap_free(inuse); 1386 if (i == max_netdevices) 1387 return -ENFILE; 1388 1389 /* 'res' and 'name' could overlap, use 'buf' as an intermediate buffer */ 1390 strscpy(buf, name, IFNAMSIZ); 1391 snprintf(res, IFNAMSIZ, buf, i); 1392 return i; 1393 } 1394 1395 /* Returns negative errno or allocated unit id (see __dev_alloc_name()) */ 1396 static int dev_prep_valid_name(struct net *net, struct net_device *dev, 1397 const char *want_name, char *out_name, 1398 int dup_errno) 1399 { 1400 if (!dev_valid_name(want_name)) 1401 return -EINVAL; 1402 1403 if (strchr(want_name, '%')) 1404 return __dev_alloc_name(net, want_name, out_name); 1405 1406 if (netdev_name_in_use(net, want_name)) 1407 return -dup_errno; 1408 if (out_name != want_name) 1409 strscpy(out_name, want_name, IFNAMSIZ); 1410 return 0; 1411 } 1412 1413 /** 1414 * dev_alloc_name - allocate a name for a device 1415 * @dev: device 1416 * @name: name format string 1417 * 1418 * Passed a format string - eg "lt%d" it will try and find a suitable 1419 * id. It scans list of devices to build up a free map, then chooses 1420 * the first empty slot. The caller must hold the dev_base or rtnl lock 1421 * while allocating the name and adding the device in order to avoid 1422 * duplicates. 1423 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1424 * Returns the number of the unit assigned or a negative errno code. 1425 */ 1426 1427 int dev_alloc_name(struct net_device *dev, const char *name) 1428 { 1429 return dev_prep_valid_name(dev_net(dev), dev, name, dev->name, ENFILE); 1430 } 1431 EXPORT_SYMBOL(dev_alloc_name); 1432 1433 static int dev_get_valid_name(struct net *net, struct net_device *dev, 1434 const char *name) 1435 { 1436 int ret; 1437 1438 ret = dev_prep_valid_name(net, dev, name, dev->name, EEXIST); 1439 return ret < 0 ? ret : 0; 1440 } 1441 1442 int netif_change_name(struct net_device *dev, const char *newname) 1443 { 1444 struct net *net = dev_net(dev); 1445 unsigned char old_assign_type; 1446 char oldname[IFNAMSIZ]; 1447 int err = 0; 1448 int ret; 1449 1450 ASSERT_RTNL_NET(net); 1451 1452 if (!strncmp(newname, dev->name, IFNAMSIZ)) 1453 return 0; 1454 1455 memcpy(oldname, dev->name, IFNAMSIZ); 1456 1457 write_seqlock_bh(&netdev_rename_lock); 1458 err = dev_get_valid_name(net, dev, newname); 1459 write_sequnlock_bh(&netdev_rename_lock); 1460 1461 if (err < 0) 1462 return err; 1463 1464 if (oldname[0] && !strchr(oldname, '%')) 1465 netdev_info(dev, "renamed from %s%s\n", oldname, 1466 dev->flags & IFF_UP ? " (while UP)" : ""); 1467 1468 old_assign_type = dev->name_assign_type; 1469 WRITE_ONCE(dev->name_assign_type, NET_NAME_RENAMED); 1470 1471 rollback: 1472 ret = device_rename(&dev->dev, dev->name); 1473 if (ret) { 1474 write_seqlock_bh(&netdev_rename_lock); 1475 memcpy(dev->name, oldname, IFNAMSIZ); 1476 write_sequnlock_bh(&netdev_rename_lock); 1477 WRITE_ONCE(dev->name_assign_type, old_assign_type); 1478 return ret; 1479 } 1480 1481 netdev_adjacent_rename_links(dev, oldname); 1482 1483 netdev_name_node_del(dev->name_node); 1484 1485 synchronize_net(); 1486 1487 netdev_name_node_add(net, dev->name_node); 1488 1489 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1490 ret = notifier_to_errno(ret); 1491 1492 if (ret) { 1493 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1494 if (err >= 0) { 1495 err = ret; 1496 write_seqlock_bh(&netdev_rename_lock); 1497 memcpy(dev->name, oldname, IFNAMSIZ); 1498 write_sequnlock_bh(&netdev_rename_lock); 1499 memcpy(oldname, newname, IFNAMSIZ); 1500 WRITE_ONCE(dev->name_assign_type, old_assign_type); 1501 old_assign_type = NET_NAME_RENAMED; 1502 goto rollback; 1503 } else { 1504 netdev_err(dev, "name change rollback failed: %d\n", 1505 ret); 1506 } 1507 } 1508 1509 return err; 1510 } 1511 1512 int netif_set_alias(struct net_device *dev, const char *alias, size_t len) 1513 { 1514 struct dev_ifalias *new_alias = NULL; 1515 1516 if (len >= IFALIASZ) 1517 return -EINVAL; 1518 1519 if (len) { 1520 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL); 1521 if (!new_alias) 1522 return -ENOMEM; 1523 1524 memcpy(new_alias->ifalias, alias, len); 1525 new_alias->ifalias[len] = 0; 1526 } 1527 1528 mutex_lock(&ifalias_mutex); 1529 new_alias = rcu_replace_pointer(dev->ifalias, new_alias, 1530 mutex_is_locked(&ifalias_mutex)); 1531 mutex_unlock(&ifalias_mutex); 1532 1533 if (new_alias) 1534 kfree_rcu(new_alias, rcuhead); 1535 1536 return len; 1537 } 1538 1539 /** 1540 * dev_get_alias - get ifalias of a device 1541 * @dev: device 1542 * @name: buffer to store name of ifalias 1543 * @len: size of buffer 1544 * 1545 * get ifalias for a device. Caller must make sure dev cannot go 1546 * away, e.g. rcu read lock or own a reference count to device. 1547 */ 1548 int dev_get_alias(const struct net_device *dev, char *name, size_t len) 1549 { 1550 const struct dev_ifalias *alias; 1551 int ret = 0; 1552 1553 rcu_read_lock(); 1554 alias = rcu_dereference(dev->ifalias); 1555 if (alias) 1556 ret = snprintf(name, len, "%s", alias->ifalias); 1557 rcu_read_unlock(); 1558 1559 return ret; 1560 } 1561 1562 /** 1563 * netdev_features_change - device changes features 1564 * @dev: device to cause notification 1565 * 1566 * Called to indicate a device has changed features. 1567 */ 1568 void netdev_features_change(struct net_device *dev) 1569 { 1570 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1571 } 1572 EXPORT_SYMBOL(netdev_features_change); 1573 1574 void netif_state_change(struct net_device *dev) 1575 { 1576 netdev_ops_assert_locked_or_invisible(dev); 1577 1578 if (dev->flags & IFF_UP) { 1579 struct netdev_notifier_change_info change_info = { 1580 .info.dev = dev, 1581 }; 1582 1583 call_netdevice_notifiers_info(NETDEV_CHANGE, 1584 &change_info.info); 1585 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL, 0, NULL); 1586 } 1587 } 1588 1589 /** 1590 * __netdev_notify_peers - notify network peers about existence of @dev, 1591 * to be called when rtnl lock is already held. 1592 * @dev: network device 1593 * 1594 * Generate traffic such that interested network peers are aware of 1595 * @dev, such as by generating a gratuitous ARP. This may be used when 1596 * a device wants to inform the rest of the network about some sort of 1597 * reconfiguration such as a failover event or virtual machine 1598 * migration. 1599 */ 1600 void __netdev_notify_peers(struct net_device *dev) 1601 { 1602 ASSERT_RTNL(); 1603 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev); 1604 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev); 1605 } 1606 EXPORT_SYMBOL(__netdev_notify_peers); 1607 1608 /** 1609 * netdev_notify_peers - notify network peers about existence of @dev 1610 * @dev: network device 1611 * 1612 * Generate traffic such that interested network peers are aware of 1613 * @dev, such as by generating a gratuitous ARP. This may be used when 1614 * a device wants to inform the rest of the network about some sort of 1615 * reconfiguration such as a failover event or virtual machine 1616 * migration. 1617 */ 1618 void netdev_notify_peers(struct net_device *dev) 1619 { 1620 rtnl_lock(); 1621 __netdev_notify_peers(dev); 1622 rtnl_unlock(); 1623 } 1624 EXPORT_SYMBOL(netdev_notify_peers); 1625 1626 static int napi_threaded_poll(void *data); 1627 1628 static int napi_kthread_create(struct napi_struct *n) 1629 { 1630 int err = 0; 1631 1632 /* Create and wake up the kthread once to put it in 1633 * TASK_INTERRUPTIBLE mode to avoid the blocked task 1634 * warning and work with loadavg. 1635 */ 1636 n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d", 1637 n->dev->name, n->napi_id); 1638 if (IS_ERR(n->thread)) { 1639 err = PTR_ERR(n->thread); 1640 pr_err("kthread_run failed with err %d\n", err); 1641 n->thread = NULL; 1642 } 1643 1644 return err; 1645 } 1646 1647 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack) 1648 { 1649 const struct net_device_ops *ops = dev->netdev_ops; 1650 int ret; 1651 1652 ASSERT_RTNL(); 1653 dev_addr_check(dev); 1654 1655 if (!netif_device_present(dev)) { 1656 /* may be detached because parent is runtime-suspended */ 1657 if (dev->dev.parent) 1658 pm_runtime_resume(dev->dev.parent); 1659 if (!netif_device_present(dev)) 1660 return -ENODEV; 1661 } 1662 1663 /* Block netpoll from trying to do any rx path servicing. 1664 * If we don't do this there is a chance ndo_poll_controller 1665 * or ndo_poll may be running while we open the device 1666 */ 1667 netpoll_poll_disable(dev); 1668 1669 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack); 1670 ret = notifier_to_errno(ret); 1671 if (ret) 1672 return ret; 1673 1674 set_bit(__LINK_STATE_START, &dev->state); 1675 1676 netdev_ops_assert_locked(dev); 1677 1678 if (ops->ndo_validate_addr) 1679 ret = ops->ndo_validate_addr(dev); 1680 1681 if (!ret && ops->ndo_open) 1682 ret = ops->ndo_open(dev); 1683 1684 netpoll_poll_enable(dev); 1685 1686 if (ret) 1687 clear_bit(__LINK_STATE_START, &dev->state); 1688 else { 1689 netif_set_up(dev, true); 1690 dev_set_rx_mode(dev); 1691 dev_activate(dev); 1692 add_device_randomness(dev->dev_addr, dev->addr_len); 1693 } 1694 1695 return ret; 1696 } 1697 1698 int netif_open(struct net_device *dev, struct netlink_ext_ack *extack) 1699 { 1700 int ret; 1701 1702 if (dev->flags & IFF_UP) 1703 return 0; 1704 1705 ret = __dev_open(dev, extack); 1706 if (ret < 0) 1707 return ret; 1708 1709 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL); 1710 call_netdevice_notifiers(NETDEV_UP, dev); 1711 1712 return ret; 1713 } 1714 1715 static void __dev_close_many(struct list_head *head) 1716 { 1717 struct net_device *dev; 1718 1719 ASSERT_RTNL(); 1720 might_sleep(); 1721 1722 list_for_each_entry(dev, head, close_list) { 1723 /* Temporarily disable netpoll until the interface is down */ 1724 netpoll_poll_disable(dev); 1725 1726 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1727 1728 clear_bit(__LINK_STATE_START, &dev->state); 1729 1730 /* Synchronize to scheduled poll. We cannot touch poll list, it 1731 * can be even on different cpu. So just clear netif_running(). 1732 * 1733 * dev->stop() will invoke napi_disable() on all of it's 1734 * napi_struct instances on this device. 1735 */ 1736 smp_mb__after_atomic(); /* Commit netif_running(). */ 1737 } 1738 1739 dev_deactivate_many(head); 1740 1741 list_for_each_entry(dev, head, close_list) { 1742 const struct net_device_ops *ops = dev->netdev_ops; 1743 1744 /* 1745 * Call the device specific close. This cannot fail. 1746 * Only if device is UP 1747 * 1748 * We allow it to be called even after a DETACH hot-plug 1749 * event. 1750 */ 1751 1752 netdev_ops_assert_locked(dev); 1753 1754 if (ops->ndo_stop) 1755 ops->ndo_stop(dev); 1756 1757 netif_set_up(dev, false); 1758 netpoll_poll_enable(dev); 1759 } 1760 } 1761 1762 static void __dev_close(struct net_device *dev) 1763 { 1764 LIST_HEAD(single); 1765 1766 list_add(&dev->close_list, &single); 1767 __dev_close_many(&single); 1768 list_del(&single); 1769 } 1770 1771 void netif_close_many(struct list_head *head, bool unlink) 1772 { 1773 struct net_device *dev, *tmp; 1774 1775 /* Remove the devices that don't need to be closed */ 1776 list_for_each_entry_safe(dev, tmp, head, close_list) 1777 if (!(dev->flags & IFF_UP)) 1778 list_del_init(&dev->close_list); 1779 1780 __dev_close_many(head); 1781 1782 list_for_each_entry_safe(dev, tmp, head, close_list) { 1783 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL); 1784 call_netdevice_notifiers(NETDEV_DOWN, dev); 1785 if (unlink) 1786 list_del_init(&dev->close_list); 1787 } 1788 } 1789 EXPORT_SYMBOL_NS_GPL(netif_close_many, "NETDEV_INTERNAL"); 1790 1791 void netif_close(struct net_device *dev) 1792 { 1793 if (dev->flags & IFF_UP) { 1794 LIST_HEAD(single); 1795 1796 list_add(&dev->close_list, &single); 1797 netif_close_many(&single, true); 1798 list_del(&single); 1799 } 1800 } 1801 EXPORT_SYMBOL(netif_close); 1802 1803 void netif_disable_lro(struct net_device *dev) 1804 { 1805 struct net_device *lower_dev; 1806 struct list_head *iter; 1807 1808 dev->wanted_features &= ~NETIF_F_LRO; 1809 netdev_update_features(dev); 1810 1811 if (unlikely(dev->features & NETIF_F_LRO)) 1812 netdev_WARN(dev, "failed to disable LRO!\n"); 1813 1814 netdev_for_each_lower_dev(dev, lower_dev, iter) { 1815 netdev_lock_ops(lower_dev); 1816 netif_disable_lro(lower_dev); 1817 netdev_unlock_ops(lower_dev); 1818 } 1819 } 1820 EXPORT_IPV6_MOD(netif_disable_lro); 1821 1822 /** 1823 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device 1824 * @dev: device 1825 * 1826 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be 1827 * called under RTNL. This is needed if Generic XDP is installed on 1828 * the device. 1829 */ 1830 static void dev_disable_gro_hw(struct net_device *dev) 1831 { 1832 dev->wanted_features &= ~NETIF_F_GRO_HW; 1833 netdev_update_features(dev); 1834 1835 if (unlikely(dev->features & NETIF_F_GRO_HW)) 1836 netdev_WARN(dev, "failed to disable GRO_HW!\n"); 1837 } 1838 1839 const char *netdev_cmd_to_name(enum netdev_cmd cmd) 1840 { 1841 #define N(val) \ 1842 case NETDEV_##val: \ 1843 return "NETDEV_" __stringify(val); 1844 switch (cmd) { 1845 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER) 1846 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE) 1847 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE) 1848 N(POST_INIT) N(PRE_UNINIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) 1849 N(CHANGEUPPER) N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) 1850 N(BONDING_INFO) N(PRECHANGEUPPER) N(CHANGELOWERSTATE) 1851 N(UDP_TUNNEL_PUSH_INFO) N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN) 1852 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO) 1853 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO) 1854 N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE) 1855 N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA) 1856 N(XDP_FEAT_CHANGE) 1857 } 1858 #undef N 1859 return "UNKNOWN_NETDEV_EVENT"; 1860 } 1861 EXPORT_SYMBOL_GPL(netdev_cmd_to_name); 1862 1863 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val, 1864 struct net_device *dev) 1865 { 1866 struct netdev_notifier_info info = { 1867 .dev = dev, 1868 }; 1869 1870 return nb->notifier_call(nb, val, &info); 1871 } 1872 1873 static int call_netdevice_register_notifiers(struct notifier_block *nb, 1874 struct net_device *dev) 1875 { 1876 int err; 1877 1878 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev); 1879 err = notifier_to_errno(err); 1880 if (err) 1881 return err; 1882 1883 if (!(dev->flags & IFF_UP)) 1884 return 0; 1885 1886 call_netdevice_notifier(nb, NETDEV_UP, dev); 1887 return 0; 1888 } 1889 1890 static void call_netdevice_unregister_notifiers(struct notifier_block *nb, 1891 struct net_device *dev) 1892 { 1893 if (dev->flags & IFF_UP) { 1894 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1895 dev); 1896 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1897 } 1898 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1899 } 1900 1901 static int call_netdevice_register_net_notifiers(struct notifier_block *nb, 1902 struct net *net) 1903 { 1904 struct net_device *dev; 1905 int err; 1906 1907 for_each_netdev(net, dev) { 1908 netdev_lock_ops(dev); 1909 err = call_netdevice_register_notifiers(nb, dev); 1910 netdev_unlock_ops(dev); 1911 if (err) 1912 goto rollback; 1913 } 1914 return 0; 1915 1916 rollback: 1917 for_each_netdev_continue_reverse(net, dev) 1918 call_netdevice_unregister_notifiers(nb, dev); 1919 return err; 1920 } 1921 1922 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb, 1923 struct net *net) 1924 { 1925 struct net_device *dev; 1926 1927 for_each_netdev(net, dev) 1928 call_netdevice_unregister_notifiers(nb, dev); 1929 } 1930 1931 static int dev_boot_phase = 1; 1932 1933 /** 1934 * register_netdevice_notifier - register a network notifier block 1935 * @nb: notifier 1936 * 1937 * Register a notifier to be called when network device events occur. 1938 * The notifier passed is linked into the kernel structures and must 1939 * not be reused until it has been unregistered. A negative errno code 1940 * is returned on a failure. 1941 * 1942 * When registered all registration and up events are replayed 1943 * to the new notifier to allow device to have a race free 1944 * view of the network device list. 1945 */ 1946 1947 int register_netdevice_notifier(struct notifier_block *nb) 1948 { 1949 struct net *net; 1950 int err; 1951 1952 /* Close race with setup_net() and cleanup_net() */ 1953 down_write(&pernet_ops_rwsem); 1954 1955 /* When RTNL is removed, we need protection for netdev_chain. */ 1956 rtnl_lock(); 1957 1958 err = raw_notifier_chain_register(&netdev_chain, nb); 1959 if (err) 1960 goto unlock; 1961 if (dev_boot_phase) 1962 goto unlock; 1963 for_each_net(net) { 1964 __rtnl_net_lock(net); 1965 err = call_netdevice_register_net_notifiers(nb, net); 1966 __rtnl_net_unlock(net); 1967 if (err) 1968 goto rollback; 1969 } 1970 1971 unlock: 1972 rtnl_unlock(); 1973 up_write(&pernet_ops_rwsem); 1974 return err; 1975 1976 rollback: 1977 for_each_net_continue_reverse(net) { 1978 __rtnl_net_lock(net); 1979 call_netdevice_unregister_net_notifiers(nb, net); 1980 __rtnl_net_unlock(net); 1981 } 1982 1983 raw_notifier_chain_unregister(&netdev_chain, nb); 1984 goto unlock; 1985 } 1986 EXPORT_SYMBOL(register_netdevice_notifier); 1987 1988 /** 1989 * unregister_netdevice_notifier - unregister a network notifier block 1990 * @nb: notifier 1991 * 1992 * Unregister a notifier previously registered by 1993 * register_netdevice_notifier(). The notifier is unlinked into the 1994 * kernel structures and may then be reused. A negative errno code 1995 * is returned on a failure. 1996 * 1997 * After unregistering unregister and down device events are synthesized 1998 * for all devices on the device list to the removed notifier to remove 1999 * the need for special case cleanup code. 2000 */ 2001 2002 int unregister_netdevice_notifier(struct notifier_block *nb) 2003 { 2004 struct net *net; 2005 int err; 2006 2007 /* Close race with setup_net() and cleanup_net() */ 2008 down_write(&pernet_ops_rwsem); 2009 rtnl_lock(); 2010 err = raw_notifier_chain_unregister(&netdev_chain, nb); 2011 if (err) 2012 goto unlock; 2013 2014 for_each_net(net) { 2015 __rtnl_net_lock(net); 2016 call_netdevice_unregister_net_notifiers(nb, net); 2017 __rtnl_net_unlock(net); 2018 } 2019 2020 unlock: 2021 rtnl_unlock(); 2022 up_write(&pernet_ops_rwsem); 2023 return err; 2024 } 2025 EXPORT_SYMBOL(unregister_netdevice_notifier); 2026 2027 static int __register_netdevice_notifier_net(struct net *net, 2028 struct notifier_block *nb, 2029 bool ignore_call_fail) 2030 { 2031 int err; 2032 2033 err = raw_notifier_chain_register(&net->netdev_chain, nb); 2034 if (err) 2035 return err; 2036 if (dev_boot_phase) 2037 return 0; 2038 2039 err = call_netdevice_register_net_notifiers(nb, net); 2040 if (err && !ignore_call_fail) 2041 goto chain_unregister; 2042 2043 return 0; 2044 2045 chain_unregister: 2046 raw_notifier_chain_unregister(&net->netdev_chain, nb); 2047 return err; 2048 } 2049 2050 static int __unregister_netdevice_notifier_net(struct net *net, 2051 struct notifier_block *nb) 2052 { 2053 int err; 2054 2055 err = raw_notifier_chain_unregister(&net->netdev_chain, nb); 2056 if (err) 2057 return err; 2058 2059 call_netdevice_unregister_net_notifiers(nb, net); 2060 return 0; 2061 } 2062 2063 /** 2064 * register_netdevice_notifier_net - register a per-netns network notifier block 2065 * @net: network namespace 2066 * @nb: notifier 2067 * 2068 * Register a notifier to be called when network device events occur. 2069 * The notifier passed is linked into the kernel structures and must 2070 * not be reused until it has been unregistered. A negative errno code 2071 * is returned on a failure. 2072 * 2073 * When registered all registration and up events are replayed 2074 * to the new notifier to allow device to have a race free 2075 * view of the network device list. 2076 */ 2077 2078 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb) 2079 { 2080 int err; 2081 2082 rtnl_net_lock(net); 2083 err = __register_netdevice_notifier_net(net, nb, false); 2084 rtnl_net_unlock(net); 2085 2086 return err; 2087 } 2088 EXPORT_SYMBOL(register_netdevice_notifier_net); 2089 2090 /** 2091 * unregister_netdevice_notifier_net - unregister a per-netns 2092 * network notifier block 2093 * @net: network namespace 2094 * @nb: notifier 2095 * 2096 * Unregister a notifier previously registered by 2097 * register_netdevice_notifier_net(). The notifier is unlinked from the 2098 * kernel structures and may then be reused. A negative errno code 2099 * is returned on a failure. 2100 * 2101 * After unregistering unregister and down device events are synthesized 2102 * for all devices on the device list to the removed notifier to remove 2103 * the need for special case cleanup code. 2104 */ 2105 2106 int unregister_netdevice_notifier_net(struct net *net, 2107 struct notifier_block *nb) 2108 { 2109 int err; 2110 2111 rtnl_net_lock(net); 2112 err = __unregister_netdevice_notifier_net(net, nb); 2113 rtnl_net_unlock(net); 2114 2115 return err; 2116 } 2117 EXPORT_SYMBOL(unregister_netdevice_notifier_net); 2118 2119 static void __move_netdevice_notifier_net(struct net *src_net, 2120 struct net *dst_net, 2121 struct notifier_block *nb) 2122 { 2123 __unregister_netdevice_notifier_net(src_net, nb); 2124 __register_netdevice_notifier_net(dst_net, nb, true); 2125 } 2126 2127 static void rtnl_net_dev_lock(struct net_device *dev) 2128 { 2129 bool again; 2130 2131 do { 2132 struct net *net; 2133 2134 again = false; 2135 2136 /* netns might be being dismantled. */ 2137 rcu_read_lock(); 2138 net = dev_net_rcu(dev); 2139 net_passive_inc(net); 2140 rcu_read_unlock(); 2141 2142 rtnl_net_lock(net); 2143 2144 #ifdef CONFIG_NET_NS 2145 /* dev might have been moved to another netns. */ 2146 if (!net_eq(net, rcu_access_pointer(dev->nd_net.net))) { 2147 rtnl_net_unlock(net); 2148 net_passive_dec(net); 2149 again = true; 2150 } 2151 #endif 2152 } while (again); 2153 } 2154 2155 static void rtnl_net_dev_unlock(struct net_device *dev) 2156 { 2157 struct net *net = dev_net(dev); 2158 2159 rtnl_net_unlock(net); 2160 net_passive_dec(net); 2161 } 2162 2163 int register_netdevice_notifier_dev_net(struct net_device *dev, 2164 struct notifier_block *nb, 2165 struct netdev_net_notifier *nn) 2166 { 2167 int err; 2168 2169 rtnl_net_dev_lock(dev); 2170 err = __register_netdevice_notifier_net(dev_net(dev), nb, false); 2171 if (!err) { 2172 nn->nb = nb; 2173 list_add(&nn->list, &dev->net_notifier_list); 2174 } 2175 rtnl_net_dev_unlock(dev); 2176 2177 return err; 2178 } 2179 EXPORT_SYMBOL(register_netdevice_notifier_dev_net); 2180 2181 int unregister_netdevice_notifier_dev_net(struct net_device *dev, 2182 struct notifier_block *nb, 2183 struct netdev_net_notifier *nn) 2184 { 2185 int err; 2186 2187 rtnl_net_dev_lock(dev); 2188 list_del(&nn->list); 2189 err = __unregister_netdevice_notifier_net(dev_net(dev), nb); 2190 rtnl_net_dev_unlock(dev); 2191 2192 return err; 2193 } 2194 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net); 2195 2196 static void move_netdevice_notifiers_dev_net(struct net_device *dev, 2197 struct net *net) 2198 { 2199 struct netdev_net_notifier *nn; 2200 2201 list_for_each_entry(nn, &dev->net_notifier_list, list) 2202 __move_netdevice_notifier_net(dev_net(dev), net, nn->nb); 2203 } 2204 2205 /** 2206 * call_netdevice_notifiers_info - call all network notifier blocks 2207 * @val: value passed unmodified to notifier function 2208 * @info: notifier information data 2209 * 2210 * Call all network notifier blocks. Parameters and return value 2211 * are as for raw_notifier_call_chain(). 2212 */ 2213 2214 int call_netdevice_notifiers_info(unsigned long val, 2215 struct netdev_notifier_info *info) 2216 { 2217 struct net *net = dev_net(info->dev); 2218 int ret; 2219 2220 ASSERT_RTNL(); 2221 2222 /* Run per-netns notifier block chain first, then run the global one. 2223 * Hopefully, one day, the global one is going to be removed after 2224 * all notifier block registrators get converted to be per-netns. 2225 */ 2226 ret = raw_notifier_call_chain(&net->netdev_chain, val, info); 2227 if (ret & NOTIFY_STOP_MASK) 2228 return ret; 2229 return raw_notifier_call_chain(&netdev_chain, val, info); 2230 } 2231 2232 /** 2233 * call_netdevice_notifiers_info_robust - call per-netns notifier blocks 2234 * for and rollback on error 2235 * @val_up: value passed unmodified to notifier function 2236 * @val_down: value passed unmodified to the notifier function when 2237 * recovering from an error on @val_up 2238 * @info: notifier information data 2239 * 2240 * Call all per-netns network notifier blocks, but not notifier blocks on 2241 * the global notifier chain. Parameters and return value are as for 2242 * raw_notifier_call_chain_robust(). 2243 */ 2244 2245 static int 2246 call_netdevice_notifiers_info_robust(unsigned long val_up, 2247 unsigned long val_down, 2248 struct netdev_notifier_info *info) 2249 { 2250 struct net *net = dev_net(info->dev); 2251 2252 ASSERT_RTNL(); 2253 2254 return raw_notifier_call_chain_robust(&net->netdev_chain, 2255 val_up, val_down, info); 2256 } 2257 2258 static int call_netdevice_notifiers_extack(unsigned long val, 2259 struct net_device *dev, 2260 struct netlink_ext_ack *extack) 2261 { 2262 struct netdev_notifier_info info = { 2263 .dev = dev, 2264 .extack = extack, 2265 }; 2266 2267 return call_netdevice_notifiers_info(val, &info); 2268 } 2269 2270 /** 2271 * call_netdevice_notifiers - call all network notifier blocks 2272 * @val: value passed unmodified to notifier function 2273 * @dev: net_device pointer passed unmodified to notifier function 2274 * 2275 * Call all network notifier blocks. Parameters and return value 2276 * are as for raw_notifier_call_chain(). 2277 */ 2278 2279 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 2280 { 2281 return call_netdevice_notifiers_extack(val, dev, NULL); 2282 } 2283 EXPORT_SYMBOL(call_netdevice_notifiers); 2284 2285 /** 2286 * call_netdevice_notifiers_mtu - call all network notifier blocks 2287 * @val: value passed unmodified to notifier function 2288 * @dev: net_device pointer passed unmodified to notifier function 2289 * @arg: additional u32 argument passed to the notifier function 2290 * 2291 * Call all network notifier blocks. Parameters and return value 2292 * are as for raw_notifier_call_chain(). 2293 */ 2294 static int call_netdevice_notifiers_mtu(unsigned long val, 2295 struct net_device *dev, u32 arg) 2296 { 2297 struct netdev_notifier_info_ext info = { 2298 .info.dev = dev, 2299 .ext.mtu = arg, 2300 }; 2301 2302 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0); 2303 2304 return call_netdevice_notifiers_info(val, &info.info); 2305 } 2306 2307 #ifdef CONFIG_NET_INGRESS 2308 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key); 2309 2310 void net_inc_ingress_queue(void) 2311 { 2312 static_branch_inc(&ingress_needed_key); 2313 } 2314 EXPORT_SYMBOL_GPL(net_inc_ingress_queue); 2315 2316 void net_dec_ingress_queue(void) 2317 { 2318 static_branch_dec(&ingress_needed_key); 2319 } 2320 EXPORT_SYMBOL_GPL(net_dec_ingress_queue); 2321 #endif 2322 2323 #ifdef CONFIG_NET_EGRESS 2324 static DEFINE_STATIC_KEY_FALSE(egress_needed_key); 2325 2326 void net_inc_egress_queue(void) 2327 { 2328 static_branch_inc(&egress_needed_key); 2329 } 2330 EXPORT_SYMBOL_GPL(net_inc_egress_queue); 2331 2332 void net_dec_egress_queue(void) 2333 { 2334 static_branch_dec(&egress_needed_key); 2335 } 2336 EXPORT_SYMBOL_GPL(net_dec_egress_queue); 2337 #endif 2338 2339 #ifdef CONFIG_NET_CLS_ACT 2340 DEFINE_STATIC_KEY_FALSE(tcf_sw_enabled_key); 2341 EXPORT_SYMBOL(tcf_sw_enabled_key); 2342 #endif 2343 2344 DEFINE_STATIC_KEY_FALSE(netstamp_needed_key); 2345 EXPORT_SYMBOL(netstamp_needed_key); 2346 #ifdef CONFIG_JUMP_LABEL 2347 static atomic_t netstamp_needed_deferred; 2348 static atomic_t netstamp_wanted; 2349 static void netstamp_clear(struct work_struct *work) 2350 { 2351 int deferred = atomic_xchg(&netstamp_needed_deferred, 0); 2352 int wanted; 2353 2354 wanted = atomic_add_return(deferred, &netstamp_wanted); 2355 if (wanted > 0) 2356 static_branch_enable(&netstamp_needed_key); 2357 else 2358 static_branch_disable(&netstamp_needed_key); 2359 } 2360 static DECLARE_WORK(netstamp_work, netstamp_clear); 2361 #endif 2362 2363 void net_enable_timestamp(void) 2364 { 2365 #ifdef CONFIG_JUMP_LABEL 2366 int wanted = atomic_read(&netstamp_wanted); 2367 2368 while (wanted > 0) { 2369 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted + 1)) 2370 return; 2371 } 2372 atomic_inc(&netstamp_needed_deferred); 2373 schedule_work(&netstamp_work); 2374 #else 2375 static_branch_inc(&netstamp_needed_key); 2376 #endif 2377 } 2378 EXPORT_SYMBOL(net_enable_timestamp); 2379 2380 void net_disable_timestamp(void) 2381 { 2382 #ifdef CONFIG_JUMP_LABEL 2383 int wanted = atomic_read(&netstamp_wanted); 2384 2385 while (wanted > 1) { 2386 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted - 1)) 2387 return; 2388 } 2389 atomic_dec(&netstamp_needed_deferred); 2390 schedule_work(&netstamp_work); 2391 #else 2392 static_branch_dec(&netstamp_needed_key); 2393 #endif 2394 } 2395 EXPORT_SYMBOL(net_disable_timestamp); 2396 2397 static inline void net_timestamp_set(struct sk_buff *skb) 2398 { 2399 skb->tstamp = 0; 2400 skb->tstamp_type = SKB_CLOCK_REALTIME; 2401 if (static_branch_unlikely(&netstamp_needed_key)) 2402 skb->tstamp = ktime_get_real(); 2403 } 2404 2405 #define net_timestamp_check(COND, SKB) \ 2406 if (static_branch_unlikely(&netstamp_needed_key)) { \ 2407 if ((COND) && !(SKB)->tstamp) \ 2408 (SKB)->tstamp = ktime_get_real(); \ 2409 } \ 2410 2411 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb) 2412 { 2413 return __is_skb_forwardable(dev, skb, true); 2414 } 2415 EXPORT_SYMBOL_GPL(is_skb_forwardable); 2416 2417 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb, 2418 bool check_mtu) 2419 { 2420 int ret = ____dev_forward_skb(dev, skb, check_mtu); 2421 2422 if (likely(!ret)) { 2423 skb->protocol = eth_type_trans(skb, dev); 2424 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN); 2425 } 2426 2427 return ret; 2428 } 2429 2430 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 2431 { 2432 return __dev_forward_skb2(dev, skb, true); 2433 } 2434 EXPORT_SYMBOL_GPL(__dev_forward_skb); 2435 2436 /** 2437 * dev_forward_skb - loopback an skb to another netif 2438 * 2439 * @dev: destination network device 2440 * @skb: buffer to forward 2441 * 2442 * return values: 2443 * NET_RX_SUCCESS (no congestion) 2444 * NET_RX_DROP (packet was dropped, but freed) 2445 * 2446 * dev_forward_skb can be used for injecting an skb from the 2447 * start_xmit function of one device into the receive queue 2448 * of another device. 2449 * 2450 * The receiving device may be in another namespace, so 2451 * we have to clear all information in the skb that could 2452 * impact namespace isolation. 2453 */ 2454 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 2455 { 2456 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb); 2457 } 2458 EXPORT_SYMBOL_GPL(dev_forward_skb); 2459 2460 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb) 2461 { 2462 return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb); 2463 } 2464 2465 static inline int deliver_skb(struct sk_buff *skb, 2466 struct packet_type *pt_prev, 2467 struct net_device *orig_dev) 2468 { 2469 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 2470 return -ENOMEM; 2471 refcount_inc(&skb->users); 2472 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 2473 } 2474 2475 static inline void deliver_ptype_list_skb(struct sk_buff *skb, 2476 struct packet_type **pt, 2477 struct net_device *orig_dev, 2478 __be16 type, 2479 struct list_head *ptype_list) 2480 { 2481 struct packet_type *ptype, *pt_prev = *pt; 2482 2483 list_for_each_entry_rcu(ptype, ptype_list, list) { 2484 if (ptype->type != type) 2485 continue; 2486 if (pt_prev) 2487 deliver_skb(skb, pt_prev, orig_dev); 2488 pt_prev = ptype; 2489 } 2490 *pt = pt_prev; 2491 } 2492 2493 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb) 2494 { 2495 if (!ptype->af_packet_priv || !skb->sk) 2496 return false; 2497 2498 if (ptype->id_match) 2499 return ptype->id_match(ptype, skb->sk); 2500 else if ((struct sock *)ptype->af_packet_priv == skb->sk) 2501 return true; 2502 2503 return false; 2504 } 2505 2506 /** 2507 * dev_nit_active_rcu - return true if any network interface taps are in use 2508 * 2509 * The caller must hold the RCU lock 2510 * 2511 * @dev: network device to check for the presence of taps 2512 */ 2513 bool dev_nit_active_rcu(const struct net_device *dev) 2514 { 2515 /* Callers may hold either RCU or RCU BH lock */ 2516 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); 2517 2518 return !list_empty(&dev_net(dev)->ptype_all) || 2519 !list_empty(&dev->ptype_all); 2520 } 2521 EXPORT_SYMBOL_GPL(dev_nit_active_rcu); 2522 2523 /* 2524 * Support routine. Sends outgoing frames to any network 2525 * taps currently in use. 2526 */ 2527 2528 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 2529 { 2530 struct packet_type *ptype, *pt_prev = NULL; 2531 struct list_head *ptype_list; 2532 struct sk_buff *skb2 = NULL; 2533 2534 rcu_read_lock(); 2535 ptype_list = &dev_net_rcu(dev)->ptype_all; 2536 again: 2537 list_for_each_entry_rcu(ptype, ptype_list, list) { 2538 if (READ_ONCE(ptype->ignore_outgoing)) 2539 continue; 2540 2541 /* Never send packets back to the socket 2542 * they originated from - MvS (miquels@drinkel.ow.org) 2543 */ 2544 if (skb_loop_sk(ptype, skb)) 2545 continue; 2546 2547 if (pt_prev) { 2548 deliver_skb(skb2, pt_prev, skb->dev); 2549 pt_prev = ptype; 2550 continue; 2551 } 2552 2553 /* need to clone skb, done only once */ 2554 skb2 = skb_clone(skb, GFP_ATOMIC); 2555 if (!skb2) 2556 goto out_unlock; 2557 2558 net_timestamp_set(skb2); 2559 2560 /* skb->nh should be correctly 2561 * set by sender, so that the second statement is 2562 * just protection against buggy protocols. 2563 */ 2564 skb_reset_mac_header(skb2); 2565 2566 if (skb_network_header(skb2) < skb2->data || 2567 skb_network_header(skb2) > skb_tail_pointer(skb2)) { 2568 net_crit_ratelimited("protocol %04x is buggy, dev %s\n", 2569 ntohs(skb2->protocol), 2570 dev->name); 2571 skb_reset_network_header(skb2); 2572 } 2573 2574 skb2->transport_header = skb2->network_header; 2575 skb2->pkt_type = PACKET_OUTGOING; 2576 pt_prev = ptype; 2577 } 2578 2579 if (ptype_list != &dev->ptype_all) { 2580 ptype_list = &dev->ptype_all; 2581 goto again; 2582 } 2583 out_unlock: 2584 if (pt_prev) { 2585 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC)) 2586 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 2587 else 2588 kfree_skb(skb2); 2589 } 2590 rcu_read_unlock(); 2591 } 2592 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit); 2593 2594 /** 2595 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change 2596 * @dev: Network device 2597 * @txq: number of queues available 2598 * 2599 * If real_num_tx_queues is changed the tc mappings may no longer be 2600 * valid. To resolve this verify the tc mapping remains valid and if 2601 * not NULL the mapping. With no priorities mapping to this 2602 * offset/count pair it will no longer be used. In the worst case TC0 2603 * is invalid nothing can be done so disable priority mappings. If is 2604 * expected that drivers will fix this mapping if they can before 2605 * calling netif_set_real_num_tx_queues. 2606 */ 2607 static void netif_setup_tc(struct net_device *dev, unsigned int txq) 2608 { 2609 int i; 2610 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2611 2612 /* If TC0 is invalidated disable TC mapping */ 2613 if (tc->offset + tc->count > txq) { 2614 netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n"); 2615 dev->num_tc = 0; 2616 return; 2617 } 2618 2619 /* Invalidated prio to tc mappings set to TC0 */ 2620 for (i = 1; i < TC_BITMASK + 1; i++) { 2621 int q = netdev_get_prio_tc_map(dev, i); 2622 2623 tc = &dev->tc_to_txq[q]; 2624 if (tc->offset + tc->count > txq) { 2625 netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n", 2626 i, q); 2627 netdev_set_prio_tc_map(dev, i, 0); 2628 } 2629 } 2630 } 2631 2632 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq) 2633 { 2634 if (dev->num_tc) { 2635 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2636 int i; 2637 2638 /* walk through the TCs and see if it falls into any of them */ 2639 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) { 2640 if ((txq - tc->offset) < tc->count) 2641 return i; 2642 } 2643 2644 /* didn't find it, just return -1 to indicate no match */ 2645 return -1; 2646 } 2647 2648 return 0; 2649 } 2650 EXPORT_SYMBOL(netdev_txq_to_tc); 2651 2652 #ifdef CONFIG_XPS 2653 static struct static_key xps_needed __read_mostly; 2654 static struct static_key xps_rxqs_needed __read_mostly; 2655 static DEFINE_MUTEX(xps_map_mutex); 2656 #define xmap_dereference(P) \ 2657 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex)) 2658 2659 static bool remove_xps_queue(struct xps_dev_maps *dev_maps, 2660 struct xps_dev_maps *old_maps, int tci, u16 index) 2661 { 2662 struct xps_map *map = NULL; 2663 int pos; 2664 2665 map = xmap_dereference(dev_maps->attr_map[tci]); 2666 if (!map) 2667 return false; 2668 2669 for (pos = map->len; pos--;) { 2670 if (map->queues[pos] != index) 2671 continue; 2672 2673 if (map->len > 1) { 2674 map->queues[pos] = map->queues[--map->len]; 2675 break; 2676 } 2677 2678 if (old_maps) 2679 RCU_INIT_POINTER(old_maps->attr_map[tci], NULL); 2680 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL); 2681 kfree_rcu(map, rcu); 2682 return false; 2683 } 2684 2685 return true; 2686 } 2687 2688 static bool remove_xps_queue_cpu(struct net_device *dev, 2689 struct xps_dev_maps *dev_maps, 2690 int cpu, u16 offset, u16 count) 2691 { 2692 int num_tc = dev_maps->num_tc; 2693 bool active = false; 2694 int tci; 2695 2696 for (tci = cpu * num_tc; num_tc--; tci++) { 2697 int i, j; 2698 2699 for (i = count, j = offset; i--; j++) { 2700 if (!remove_xps_queue(dev_maps, NULL, tci, j)) 2701 break; 2702 } 2703 2704 active |= i < 0; 2705 } 2706 2707 return active; 2708 } 2709 2710 static void reset_xps_maps(struct net_device *dev, 2711 struct xps_dev_maps *dev_maps, 2712 enum xps_map_type type) 2713 { 2714 static_key_slow_dec_cpuslocked(&xps_needed); 2715 if (type == XPS_RXQS) 2716 static_key_slow_dec_cpuslocked(&xps_rxqs_needed); 2717 2718 RCU_INIT_POINTER(dev->xps_maps[type], NULL); 2719 2720 kfree_rcu(dev_maps, rcu); 2721 } 2722 2723 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type, 2724 u16 offset, u16 count) 2725 { 2726 struct xps_dev_maps *dev_maps; 2727 bool active = false; 2728 int i, j; 2729 2730 dev_maps = xmap_dereference(dev->xps_maps[type]); 2731 if (!dev_maps) 2732 return; 2733 2734 for (j = 0; j < dev_maps->nr_ids; j++) 2735 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count); 2736 if (!active) 2737 reset_xps_maps(dev, dev_maps, type); 2738 2739 if (type == XPS_CPUS) { 2740 for (i = offset + (count - 1); count--; i--) 2741 netdev_queue_numa_node_write( 2742 netdev_get_tx_queue(dev, i), NUMA_NO_NODE); 2743 } 2744 } 2745 2746 static void netif_reset_xps_queues(struct net_device *dev, u16 offset, 2747 u16 count) 2748 { 2749 if (!static_key_false(&xps_needed)) 2750 return; 2751 2752 cpus_read_lock(); 2753 mutex_lock(&xps_map_mutex); 2754 2755 if (static_key_false(&xps_rxqs_needed)) 2756 clean_xps_maps(dev, XPS_RXQS, offset, count); 2757 2758 clean_xps_maps(dev, XPS_CPUS, offset, count); 2759 2760 mutex_unlock(&xps_map_mutex); 2761 cpus_read_unlock(); 2762 } 2763 2764 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index) 2765 { 2766 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index); 2767 } 2768 2769 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index, 2770 u16 index, bool is_rxqs_map) 2771 { 2772 struct xps_map *new_map; 2773 int alloc_len = XPS_MIN_MAP_ALLOC; 2774 int i, pos; 2775 2776 for (pos = 0; map && pos < map->len; pos++) { 2777 if (map->queues[pos] != index) 2778 continue; 2779 return map; 2780 } 2781 2782 /* Need to add tx-queue to this CPU's/rx-queue's existing map */ 2783 if (map) { 2784 if (pos < map->alloc_len) 2785 return map; 2786 2787 alloc_len = map->alloc_len * 2; 2788 } 2789 2790 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's 2791 * map 2792 */ 2793 if (is_rxqs_map) 2794 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL); 2795 else 2796 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL, 2797 cpu_to_node(attr_index)); 2798 if (!new_map) 2799 return NULL; 2800 2801 for (i = 0; i < pos; i++) 2802 new_map->queues[i] = map->queues[i]; 2803 new_map->alloc_len = alloc_len; 2804 new_map->len = pos; 2805 2806 return new_map; 2807 } 2808 2809 /* Copy xps maps at a given index */ 2810 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps, 2811 struct xps_dev_maps *new_dev_maps, int index, 2812 int tc, bool skip_tc) 2813 { 2814 int i, tci = index * dev_maps->num_tc; 2815 struct xps_map *map; 2816 2817 /* copy maps belonging to foreign traffic classes */ 2818 for (i = 0; i < dev_maps->num_tc; i++, tci++) { 2819 if (i == tc && skip_tc) 2820 continue; 2821 2822 /* fill in the new device map from the old device map */ 2823 map = xmap_dereference(dev_maps->attr_map[tci]); 2824 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2825 } 2826 } 2827 2828 /* Must be called under cpus_read_lock */ 2829 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask, 2830 u16 index, enum xps_map_type type) 2831 { 2832 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL; 2833 const unsigned long *online_mask = NULL; 2834 bool active = false, copy = false; 2835 int i, j, tci, numa_node_id = -2; 2836 int maps_sz, num_tc = 1, tc = 0; 2837 struct xps_map *map, *new_map; 2838 unsigned int nr_ids; 2839 2840 WARN_ON_ONCE(index >= dev->num_tx_queues); 2841 2842 if (dev->num_tc) { 2843 /* Do not allow XPS on subordinate device directly */ 2844 num_tc = dev->num_tc; 2845 if (num_tc < 0) 2846 return -EINVAL; 2847 2848 /* If queue belongs to subordinate dev use its map */ 2849 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev; 2850 2851 tc = netdev_txq_to_tc(dev, index); 2852 if (tc < 0) 2853 return -EINVAL; 2854 } 2855 2856 mutex_lock(&xps_map_mutex); 2857 2858 dev_maps = xmap_dereference(dev->xps_maps[type]); 2859 if (type == XPS_RXQS) { 2860 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues); 2861 nr_ids = dev->num_rx_queues; 2862 } else { 2863 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc); 2864 if (num_possible_cpus() > 1) 2865 online_mask = cpumask_bits(cpu_online_mask); 2866 nr_ids = nr_cpu_ids; 2867 } 2868 2869 if (maps_sz < L1_CACHE_BYTES) 2870 maps_sz = L1_CACHE_BYTES; 2871 2872 /* The old dev_maps could be larger or smaller than the one we're 2873 * setting up now, as dev->num_tc or nr_ids could have been updated in 2874 * between. We could try to be smart, but let's be safe instead and only 2875 * copy foreign traffic classes if the two map sizes match. 2876 */ 2877 if (dev_maps && 2878 dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids) 2879 copy = true; 2880 2881 /* allocate memory for queue storage */ 2882 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids), 2883 j < nr_ids;) { 2884 if (!new_dev_maps) { 2885 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL); 2886 if (!new_dev_maps) { 2887 mutex_unlock(&xps_map_mutex); 2888 return -ENOMEM; 2889 } 2890 2891 new_dev_maps->nr_ids = nr_ids; 2892 new_dev_maps->num_tc = num_tc; 2893 } 2894 2895 tci = j * num_tc + tc; 2896 map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL; 2897 2898 map = expand_xps_map(map, j, index, type == XPS_RXQS); 2899 if (!map) 2900 goto error; 2901 2902 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2903 } 2904 2905 if (!new_dev_maps) 2906 goto out_no_new_maps; 2907 2908 if (!dev_maps) { 2909 /* Increment static keys at most once per type */ 2910 static_key_slow_inc_cpuslocked(&xps_needed); 2911 if (type == XPS_RXQS) 2912 static_key_slow_inc_cpuslocked(&xps_rxqs_needed); 2913 } 2914 2915 for (j = 0; j < nr_ids; j++) { 2916 bool skip_tc = false; 2917 2918 tci = j * num_tc + tc; 2919 if (netif_attr_test_mask(j, mask, nr_ids) && 2920 netif_attr_test_online(j, online_mask, nr_ids)) { 2921 /* add tx-queue to CPU/rx-queue maps */ 2922 int pos = 0; 2923 2924 skip_tc = true; 2925 2926 map = xmap_dereference(new_dev_maps->attr_map[tci]); 2927 while ((pos < map->len) && (map->queues[pos] != index)) 2928 pos++; 2929 2930 if (pos == map->len) 2931 map->queues[map->len++] = index; 2932 #ifdef CONFIG_NUMA 2933 if (type == XPS_CPUS) { 2934 if (numa_node_id == -2) 2935 numa_node_id = cpu_to_node(j); 2936 else if (numa_node_id != cpu_to_node(j)) 2937 numa_node_id = -1; 2938 } 2939 #endif 2940 } 2941 2942 if (copy) 2943 xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc, 2944 skip_tc); 2945 } 2946 2947 rcu_assign_pointer(dev->xps_maps[type], new_dev_maps); 2948 2949 /* Cleanup old maps */ 2950 if (!dev_maps) 2951 goto out_no_old_maps; 2952 2953 for (j = 0; j < dev_maps->nr_ids; j++) { 2954 for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) { 2955 map = xmap_dereference(dev_maps->attr_map[tci]); 2956 if (!map) 2957 continue; 2958 2959 if (copy) { 2960 new_map = xmap_dereference(new_dev_maps->attr_map[tci]); 2961 if (map == new_map) 2962 continue; 2963 } 2964 2965 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL); 2966 kfree_rcu(map, rcu); 2967 } 2968 } 2969 2970 old_dev_maps = dev_maps; 2971 2972 out_no_old_maps: 2973 dev_maps = new_dev_maps; 2974 active = true; 2975 2976 out_no_new_maps: 2977 if (type == XPS_CPUS) 2978 /* update Tx queue numa node */ 2979 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index), 2980 (numa_node_id >= 0) ? 2981 numa_node_id : NUMA_NO_NODE); 2982 2983 if (!dev_maps) 2984 goto out_no_maps; 2985 2986 /* removes tx-queue from unused CPUs/rx-queues */ 2987 for (j = 0; j < dev_maps->nr_ids; j++) { 2988 tci = j * dev_maps->num_tc; 2989 2990 for (i = 0; i < dev_maps->num_tc; i++, tci++) { 2991 if (i == tc && 2992 netif_attr_test_mask(j, mask, dev_maps->nr_ids) && 2993 netif_attr_test_online(j, online_mask, dev_maps->nr_ids)) 2994 continue; 2995 2996 active |= remove_xps_queue(dev_maps, 2997 copy ? old_dev_maps : NULL, 2998 tci, index); 2999 } 3000 } 3001 3002 if (old_dev_maps) 3003 kfree_rcu(old_dev_maps, rcu); 3004 3005 /* free map if not active */ 3006 if (!active) 3007 reset_xps_maps(dev, dev_maps, type); 3008 3009 out_no_maps: 3010 mutex_unlock(&xps_map_mutex); 3011 3012 return 0; 3013 error: 3014 /* remove any maps that we added */ 3015 for (j = 0; j < nr_ids; j++) { 3016 for (i = num_tc, tci = j * num_tc; i--; tci++) { 3017 new_map = xmap_dereference(new_dev_maps->attr_map[tci]); 3018 map = copy ? 3019 xmap_dereference(dev_maps->attr_map[tci]) : 3020 NULL; 3021 if (new_map && new_map != map) 3022 kfree(new_map); 3023 } 3024 } 3025 3026 mutex_unlock(&xps_map_mutex); 3027 3028 kfree(new_dev_maps); 3029 return -ENOMEM; 3030 } 3031 EXPORT_SYMBOL_GPL(__netif_set_xps_queue); 3032 3033 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 3034 u16 index) 3035 { 3036 int ret; 3037 3038 cpus_read_lock(); 3039 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS); 3040 cpus_read_unlock(); 3041 3042 return ret; 3043 } 3044 EXPORT_SYMBOL(netif_set_xps_queue); 3045 3046 #endif 3047 static void netdev_unbind_all_sb_channels(struct net_device *dev) 3048 { 3049 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues]; 3050 3051 /* Unbind any subordinate channels */ 3052 while (txq-- != &dev->_tx[0]) { 3053 if (txq->sb_dev) 3054 netdev_unbind_sb_channel(dev, txq->sb_dev); 3055 } 3056 } 3057 3058 void netdev_reset_tc(struct net_device *dev) 3059 { 3060 #ifdef CONFIG_XPS 3061 netif_reset_xps_queues_gt(dev, 0); 3062 #endif 3063 netdev_unbind_all_sb_channels(dev); 3064 3065 /* Reset TC configuration of device */ 3066 dev->num_tc = 0; 3067 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq)); 3068 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map)); 3069 } 3070 EXPORT_SYMBOL(netdev_reset_tc); 3071 3072 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset) 3073 { 3074 if (tc >= dev->num_tc) 3075 return -EINVAL; 3076 3077 #ifdef CONFIG_XPS 3078 netif_reset_xps_queues(dev, offset, count); 3079 #endif 3080 dev->tc_to_txq[tc].count = count; 3081 dev->tc_to_txq[tc].offset = offset; 3082 return 0; 3083 } 3084 EXPORT_SYMBOL(netdev_set_tc_queue); 3085 3086 int netdev_set_num_tc(struct net_device *dev, u8 num_tc) 3087 { 3088 if (num_tc > TC_MAX_QUEUE) 3089 return -EINVAL; 3090 3091 #ifdef CONFIG_XPS 3092 netif_reset_xps_queues_gt(dev, 0); 3093 #endif 3094 netdev_unbind_all_sb_channels(dev); 3095 3096 dev->num_tc = num_tc; 3097 return 0; 3098 } 3099 EXPORT_SYMBOL(netdev_set_num_tc); 3100 3101 void netdev_unbind_sb_channel(struct net_device *dev, 3102 struct net_device *sb_dev) 3103 { 3104 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues]; 3105 3106 #ifdef CONFIG_XPS 3107 netif_reset_xps_queues_gt(sb_dev, 0); 3108 #endif 3109 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq)); 3110 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map)); 3111 3112 while (txq-- != &dev->_tx[0]) { 3113 if (txq->sb_dev == sb_dev) 3114 txq->sb_dev = NULL; 3115 } 3116 } 3117 EXPORT_SYMBOL(netdev_unbind_sb_channel); 3118 3119 int netdev_bind_sb_channel_queue(struct net_device *dev, 3120 struct net_device *sb_dev, 3121 u8 tc, u16 count, u16 offset) 3122 { 3123 /* Make certain the sb_dev and dev are already configured */ 3124 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc) 3125 return -EINVAL; 3126 3127 /* We cannot hand out queues we don't have */ 3128 if ((offset + count) > dev->real_num_tx_queues) 3129 return -EINVAL; 3130 3131 /* Record the mapping */ 3132 sb_dev->tc_to_txq[tc].count = count; 3133 sb_dev->tc_to_txq[tc].offset = offset; 3134 3135 /* Provide a way for Tx queue to find the tc_to_txq map or 3136 * XPS map for itself. 3137 */ 3138 while (count--) 3139 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev; 3140 3141 return 0; 3142 } 3143 EXPORT_SYMBOL(netdev_bind_sb_channel_queue); 3144 3145 int netdev_set_sb_channel(struct net_device *dev, u16 channel) 3146 { 3147 /* Do not use a multiqueue device to represent a subordinate channel */ 3148 if (netif_is_multiqueue(dev)) 3149 return -ENODEV; 3150 3151 /* We allow channels 1 - 32767 to be used for subordinate channels. 3152 * Channel 0 is meant to be "native" mode and used only to represent 3153 * the main root device. We allow writing 0 to reset the device back 3154 * to normal mode after being used as a subordinate channel. 3155 */ 3156 if (channel > S16_MAX) 3157 return -EINVAL; 3158 3159 dev->num_tc = -channel; 3160 3161 return 0; 3162 } 3163 EXPORT_SYMBOL(netdev_set_sb_channel); 3164 3165 /* 3166 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 3167 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed. 3168 */ 3169 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 3170 { 3171 bool disabling; 3172 int rc; 3173 3174 disabling = txq < dev->real_num_tx_queues; 3175 3176 if (txq < 1 || txq > dev->num_tx_queues) 3177 return -EINVAL; 3178 3179 if (dev->reg_state == NETREG_REGISTERED || 3180 dev->reg_state == NETREG_UNREGISTERING) { 3181 netdev_ops_assert_locked(dev); 3182 3183 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 3184 txq); 3185 if (rc) 3186 return rc; 3187 3188 if (dev->num_tc) 3189 netif_setup_tc(dev, txq); 3190 3191 net_shaper_set_real_num_tx_queues(dev, txq); 3192 3193 dev_qdisc_change_real_num_tx(dev, txq); 3194 3195 dev->real_num_tx_queues = txq; 3196 3197 if (disabling) { 3198 synchronize_net(); 3199 qdisc_reset_all_tx_gt(dev, txq); 3200 #ifdef CONFIG_XPS 3201 netif_reset_xps_queues_gt(dev, txq); 3202 #endif 3203 } 3204 } else { 3205 dev->real_num_tx_queues = txq; 3206 } 3207 3208 return 0; 3209 } 3210 EXPORT_SYMBOL(netif_set_real_num_tx_queues); 3211 3212 /** 3213 * netif_set_real_num_rx_queues - set actual number of RX queues used 3214 * @dev: Network device 3215 * @rxq: Actual number of RX queues 3216 * 3217 * This must be called either with the rtnl_lock held or before 3218 * registration of the net device. Returns 0 on success, or a 3219 * negative error code. If called before registration, it always 3220 * succeeds. 3221 */ 3222 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 3223 { 3224 int rc; 3225 3226 if (rxq < 1 || rxq > dev->num_rx_queues) 3227 return -EINVAL; 3228 3229 if (dev->reg_state == NETREG_REGISTERED) { 3230 netdev_ops_assert_locked(dev); 3231 3232 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 3233 rxq); 3234 if (rc) 3235 return rc; 3236 } 3237 3238 dev->real_num_rx_queues = rxq; 3239 return 0; 3240 } 3241 EXPORT_SYMBOL(netif_set_real_num_rx_queues); 3242 3243 /** 3244 * netif_set_real_num_queues - set actual number of RX and TX queues used 3245 * @dev: Network device 3246 * @txq: Actual number of TX queues 3247 * @rxq: Actual number of RX queues 3248 * 3249 * Set the real number of both TX and RX queues. 3250 * Does nothing if the number of queues is already correct. 3251 */ 3252 int netif_set_real_num_queues(struct net_device *dev, 3253 unsigned int txq, unsigned int rxq) 3254 { 3255 unsigned int old_rxq = dev->real_num_rx_queues; 3256 int err; 3257 3258 if (txq < 1 || txq > dev->num_tx_queues || 3259 rxq < 1 || rxq > dev->num_rx_queues) 3260 return -EINVAL; 3261 3262 /* Start from increases, so the error path only does decreases - 3263 * decreases can't fail. 3264 */ 3265 if (rxq > dev->real_num_rx_queues) { 3266 err = netif_set_real_num_rx_queues(dev, rxq); 3267 if (err) 3268 return err; 3269 } 3270 if (txq > dev->real_num_tx_queues) { 3271 err = netif_set_real_num_tx_queues(dev, txq); 3272 if (err) 3273 goto undo_rx; 3274 } 3275 if (rxq < dev->real_num_rx_queues) 3276 WARN_ON(netif_set_real_num_rx_queues(dev, rxq)); 3277 if (txq < dev->real_num_tx_queues) 3278 WARN_ON(netif_set_real_num_tx_queues(dev, txq)); 3279 3280 return 0; 3281 undo_rx: 3282 WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq)); 3283 return err; 3284 } 3285 EXPORT_SYMBOL(netif_set_real_num_queues); 3286 3287 /** 3288 * netif_set_tso_max_size() - set the max size of TSO frames supported 3289 * @dev: netdev to update 3290 * @size: max skb->len of a TSO frame 3291 * 3292 * Set the limit on the size of TSO super-frames the device can handle. 3293 * Unless explicitly set the stack will assume the value of 3294 * %GSO_LEGACY_MAX_SIZE. 3295 */ 3296 void netif_set_tso_max_size(struct net_device *dev, unsigned int size) 3297 { 3298 dev->tso_max_size = min(GSO_MAX_SIZE, size); 3299 if (size < READ_ONCE(dev->gso_max_size)) 3300 netif_set_gso_max_size(dev, size); 3301 if (size < READ_ONCE(dev->gso_ipv4_max_size)) 3302 netif_set_gso_ipv4_max_size(dev, size); 3303 } 3304 EXPORT_SYMBOL(netif_set_tso_max_size); 3305 3306 /** 3307 * netif_set_tso_max_segs() - set the max number of segs supported for TSO 3308 * @dev: netdev to update 3309 * @segs: max number of TCP segments 3310 * 3311 * Set the limit on the number of TCP segments the device can generate from 3312 * a single TSO super-frame. 3313 * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS. 3314 */ 3315 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs) 3316 { 3317 dev->tso_max_segs = segs; 3318 if (segs < READ_ONCE(dev->gso_max_segs)) 3319 netif_set_gso_max_segs(dev, segs); 3320 } 3321 EXPORT_SYMBOL(netif_set_tso_max_segs); 3322 3323 /** 3324 * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper 3325 * @to: netdev to update 3326 * @from: netdev from which to copy the limits 3327 */ 3328 void netif_inherit_tso_max(struct net_device *to, const struct net_device *from) 3329 { 3330 netif_set_tso_max_size(to, from->tso_max_size); 3331 netif_set_tso_max_segs(to, from->tso_max_segs); 3332 } 3333 EXPORT_SYMBOL(netif_inherit_tso_max); 3334 3335 /** 3336 * netif_get_num_default_rss_queues - default number of RSS queues 3337 * 3338 * Default value is the number of physical cores if there are only 1 or 2, or 3339 * divided by 2 if there are more. 3340 */ 3341 int netif_get_num_default_rss_queues(void) 3342 { 3343 cpumask_var_t cpus; 3344 int cpu, count = 0; 3345 3346 if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL))) 3347 return 1; 3348 3349 cpumask_copy(cpus, cpu_online_mask); 3350 for_each_cpu(cpu, cpus) { 3351 ++count; 3352 cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu)); 3353 } 3354 free_cpumask_var(cpus); 3355 3356 return count > 2 ? DIV_ROUND_UP(count, 2) : count; 3357 } 3358 EXPORT_SYMBOL(netif_get_num_default_rss_queues); 3359 3360 static void __netif_reschedule(struct Qdisc *q) 3361 { 3362 struct softnet_data *sd; 3363 unsigned long flags; 3364 3365 local_irq_save(flags); 3366 sd = this_cpu_ptr(&softnet_data); 3367 q->next_sched = NULL; 3368 *sd->output_queue_tailp = q; 3369 sd->output_queue_tailp = &q->next_sched; 3370 raise_softirq_irqoff(NET_TX_SOFTIRQ); 3371 local_irq_restore(flags); 3372 } 3373 3374 void __netif_schedule(struct Qdisc *q) 3375 { 3376 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 3377 __netif_reschedule(q); 3378 } 3379 EXPORT_SYMBOL(__netif_schedule); 3380 3381 struct dev_kfree_skb_cb { 3382 enum skb_drop_reason reason; 3383 }; 3384 3385 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb) 3386 { 3387 return (struct dev_kfree_skb_cb *)skb->cb; 3388 } 3389 3390 void netif_schedule_queue(struct netdev_queue *txq) 3391 { 3392 rcu_read_lock(); 3393 if (!netif_xmit_stopped(txq)) { 3394 struct Qdisc *q = rcu_dereference(txq->qdisc); 3395 3396 __netif_schedule(q); 3397 } 3398 rcu_read_unlock(); 3399 } 3400 EXPORT_SYMBOL(netif_schedule_queue); 3401 3402 void netif_tx_wake_queue(struct netdev_queue *dev_queue) 3403 { 3404 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) { 3405 struct Qdisc *q; 3406 3407 rcu_read_lock(); 3408 q = rcu_dereference(dev_queue->qdisc); 3409 __netif_schedule(q); 3410 rcu_read_unlock(); 3411 } 3412 } 3413 EXPORT_SYMBOL(netif_tx_wake_queue); 3414 3415 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason) 3416 { 3417 unsigned long flags; 3418 3419 if (unlikely(!skb)) 3420 return; 3421 3422 if (likely(refcount_read(&skb->users) == 1)) { 3423 smp_rmb(); 3424 refcount_set(&skb->users, 0); 3425 } else if (likely(!refcount_dec_and_test(&skb->users))) { 3426 return; 3427 } 3428 get_kfree_skb_cb(skb)->reason = reason; 3429 local_irq_save(flags); 3430 skb->next = __this_cpu_read(softnet_data.completion_queue); 3431 __this_cpu_write(softnet_data.completion_queue, skb); 3432 raise_softirq_irqoff(NET_TX_SOFTIRQ); 3433 local_irq_restore(flags); 3434 } 3435 EXPORT_SYMBOL(dev_kfree_skb_irq_reason); 3436 3437 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason) 3438 { 3439 if (in_hardirq() || irqs_disabled()) 3440 dev_kfree_skb_irq_reason(skb, reason); 3441 else 3442 kfree_skb_reason(skb, reason); 3443 } 3444 EXPORT_SYMBOL(dev_kfree_skb_any_reason); 3445 3446 3447 /** 3448 * netif_device_detach - mark device as removed 3449 * @dev: network device 3450 * 3451 * Mark device as removed from system and therefore no longer available. 3452 */ 3453 void netif_device_detach(struct net_device *dev) 3454 { 3455 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 3456 netif_running(dev)) { 3457 netif_tx_stop_all_queues(dev); 3458 } 3459 } 3460 EXPORT_SYMBOL(netif_device_detach); 3461 3462 /** 3463 * netif_device_attach - mark device as attached 3464 * @dev: network device 3465 * 3466 * Mark device as attached from system and restart if needed. 3467 */ 3468 void netif_device_attach(struct net_device *dev) 3469 { 3470 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 3471 netif_running(dev)) { 3472 netif_tx_wake_all_queues(dev); 3473 netdev_watchdog_up(dev); 3474 } 3475 } 3476 EXPORT_SYMBOL(netif_device_attach); 3477 3478 /* 3479 * Returns a Tx hash based on the given packet descriptor a Tx queues' number 3480 * to be used as a distribution range. 3481 */ 3482 static u16 skb_tx_hash(const struct net_device *dev, 3483 const struct net_device *sb_dev, 3484 struct sk_buff *skb) 3485 { 3486 u32 hash; 3487 u16 qoffset = 0; 3488 u16 qcount = dev->real_num_tx_queues; 3489 3490 if (dev->num_tc) { 3491 u8 tc = netdev_get_prio_tc_map(dev, skb->priority); 3492 3493 qoffset = sb_dev->tc_to_txq[tc].offset; 3494 qcount = sb_dev->tc_to_txq[tc].count; 3495 if (unlikely(!qcount)) { 3496 net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n", 3497 sb_dev->name, qoffset, tc); 3498 qoffset = 0; 3499 qcount = dev->real_num_tx_queues; 3500 } 3501 } 3502 3503 if (skb_rx_queue_recorded(skb)) { 3504 DEBUG_NET_WARN_ON_ONCE(qcount == 0); 3505 hash = skb_get_rx_queue(skb); 3506 if (hash >= qoffset) 3507 hash -= qoffset; 3508 while (unlikely(hash >= qcount)) 3509 hash -= qcount; 3510 return hash + qoffset; 3511 } 3512 3513 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset; 3514 } 3515 3516 void skb_warn_bad_offload(const struct sk_buff *skb) 3517 { 3518 static const netdev_features_t null_features; 3519 struct net_device *dev = skb->dev; 3520 const char *name = ""; 3521 3522 if (!net_ratelimit()) 3523 return; 3524 3525 if (dev) { 3526 if (dev->dev.parent) 3527 name = dev_driver_string(dev->dev.parent); 3528 else 3529 name = netdev_name(dev); 3530 } 3531 skb_dump(KERN_WARNING, skb, false); 3532 WARN(1, "%s: caps=(%pNF, %pNF)\n", 3533 name, dev ? &dev->features : &null_features, 3534 skb->sk ? &skb->sk->sk_route_caps : &null_features); 3535 } 3536 3537 /* 3538 * Invalidate hardware checksum when packet is to be mangled, and 3539 * complete checksum manually on outgoing path. 3540 */ 3541 int skb_checksum_help(struct sk_buff *skb) 3542 { 3543 __wsum csum; 3544 int ret = 0, offset; 3545 3546 if (skb->ip_summed == CHECKSUM_COMPLETE) 3547 goto out_set_summed; 3548 3549 if (unlikely(skb_is_gso(skb))) { 3550 skb_warn_bad_offload(skb); 3551 return -EINVAL; 3552 } 3553 3554 if (!skb_frags_readable(skb)) { 3555 return -EFAULT; 3556 } 3557 3558 /* Before computing a checksum, we should make sure no frag could 3559 * be modified by an external entity : checksum could be wrong. 3560 */ 3561 if (skb_has_shared_frag(skb)) { 3562 ret = __skb_linearize(skb); 3563 if (ret) 3564 goto out; 3565 } 3566 3567 offset = skb_checksum_start_offset(skb); 3568 ret = -EINVAL; 3569 if (unlikely(offset >= skb_headlen(skb))) { 3570 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false); 3571 WARN_ONCE(true, "offset (%d) >= skb_headlen() (%u)\n", 3572 offset, skb_headlen(skb)); 3573 goto out; 3574 } 3575 csum = skb_checksum(skb, offset, skb->len - offset, 0); 3576 3577 offset += skb->csum_offset; 3578 if (unlikely(offset + sizeof(__sum16) > skb_headlen(skb))) { 3579 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false); 3580 WARN_ONCE(true, "offset+2 (%zu) > skb_headlen() (%u)\n", 3581 offset + sizeof(__sum16), skb_headlen(skb)); 3582 goto out; 3583 } 3584 ret = skb_ensure_writable(skb, offset + sizeof(__sum16)); 3585 if (ret) 3586 goto out; 3587 3588 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0; 3589 out_set_summed: 3590 skb->ip_summed = CHECKSUM_NONE; 3591 out: 3592 return ret; 3593 } 3594 EXPORT_SYMBOL(skb_checksum_help); 3595 3596 #ifdef CONFIG_NET_CRC32C 3597 int skb_crc32c_csum_help(struct sk_buff *skb) 3598 { 3599 u32 crc; 3600 int ret = 0, offset, start; 3601 3602 if (skb->ip_summed != CHECKSUM_PARTIAL) 3603 goto out; 3604 3605 if (unlikely(skb_is_gso(skb))) 3606 goto out; 3607 3608 /* Before computing a checksum, we should make sure no frag could 3609 * be modified by an external entity : checksum could be wrong. 3610 */ 3611 if (unlikely(skb_has_shared_frag(skb))) { 3612 ret = __skb_linearize(skb); 3613 if (ret) 3614 goto out; 3615 } 3616 start = skb_checksum_start_offset(skb); 3617 offset = start + offsetof(struct sctphdr, checksum); 3618 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) { 3619 ret = -EINVAL; 3620 goto out; 3621 } 3622 3623 ret = skb_ensure_writable(skb, offset + sizeof(__le32)); 3624 if (ret) 3625 goto out; 3626 3627 crc = ~skb_crc32c(skb, start, skb->len - start, ~0); 3628 *(__le32 *)(skb->data + offset) = cpu_to_le32(crc); 3629 skb_reset_csum_not_inet(skb); 3630 out: 3631 return ret; 3632 } 3633 EXPORT_SYMBOL(skb_crc32c_csum_help); 3634 #endif /* CONFIG_NET_CRC32C */ 3635 3636 __be16 skb_network_protocol(struct sk_buff *skb, int *depth) 3637 { 3638 __be16 type = skb->protocol; 3639 3640 /* Tunnel gso handlers can set protocol to ethernet. */ 3641 if (type == htons(ETH_P_TEB)) { 3642 struct ethhdr *eth; 3643 3644 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr)))) 3645 return 0; 3646 3647 eth = (struct ethhdr *)skb->data; 3648 type = eth->h_proto; 3649 } 3650 3651 return vlan_get_protocol_and_depth(skb, type, depth); 3652 } 3653 3654 3655 /* Take action when hardware reception checksum errors are detected. */ 3656 #ifdef CONFIG_BUG 3657 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb) 3658 { 3659 netdev_err(dev, "hw csum failure\n"); 3660 skb_dump(KERN_ERR, skb, true); 3661 dump_stack(); 3662 } 3663 3664 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb) 3665 { 3666 DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb); 3667 } 3668 EXPORT_SYMBOL(netdev_rx_csum_fault); 3669 #endif 3670 3671 /* XXX: check that highmem exists at all on the given machine. */ 3672 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 3673 { 3674 #ifdef CONFIG_HIGHMEM 3675 int i; 3676 3677 if (!(dev->features & NETIF_F_HIGHDMA)) { 3678 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3679 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3680 struct page *page = skb_frag_page(frag); 3681 3682 if (page && PageHighMem(page)) 3683 return 1; 3684 } 3685 } 3686 #endif 3687 return 0; 3688 } 3689 3690 /* If MPLS offload request, verify we are testing hardware MPLS features 3691 * instead of standard features for the netdev. 3692 */ 3693 #if IS_ENABLED(CONFIG_NET_MPLS_GSO) 3694 static netdev_features_t net_mpls_features(struct sk_buff *skb, 3695 netdev_features_t features, 3696 __be16 type) 3697 { 3698 if (eth_p_mpls(type)) 3699 features &= skb->dev->mpls_features; 3700 3701 return features; 3702 } 3703 #else 3704 static netdev_features_t net_mpls_features(struct sk_buff *skb, 3705 netdev_features_t features, 3706 __be16 type) 3707 { 3708 return features; 3709 } 3710 #endif 3711 3712 static netdev_features_t harmonize_features(struct sk_buff *skb, 3713 netdev_features_t features) 3714 { 3715 __be16 type; 3716 3717 type = skb_network_protocol(skb, NULL); 3718 features = net_mpls_features(skb, features, type); 3719 3720 if (skb->ip_summed != CHECKSUM_NONE && 3721 !can_checksum_protocol(features, type)) { 3722 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 3723 } 3724 if (illegal_highdma(skb->dev, skb)) 3725 features &= ~NETIF_F_SG; 3726 3727 return features; 3728 } 3729 3730 netdev_features_t passthru_features_check(struct sk_buff *skb, 3731 struct net_device *dev, 3732 netdev_features_t features) 3733 { 3734 return features; 3735 } 3736 EXPORT_SYMBOL(passthru_features_check); 3737 3738 static netdev_features_t dflt_features_check(struct sk_buff *skb, 3739 struct net_device *dev, 3740 netdev_features_t features) 3741 { 3742 return vlan_features_check(skb, features); 3743 } 3744 3745 static netdev_features_t gso_features_check(const struct sk_buff *skb, 3746 struct net_device *dev, 3747 netdev_features_t features) 3748 { 3749 u16 gso_segs = skb_shinfo(skb)->gso_segs; 3750 3751 if (gso_segs > READ_ONCE(dev->gso_max_segs)) 3752 return features & ~NETIF_F_GSO_MASK; 3753 3754 if (unlikely(skb->len >= netif_get_gso_max_size(dev, skb))) 3755 return features & ~NETIF_F_GSO_MASK; 3756 3757 if (!skb_shinfo(skb)->gso_type) { 3758 skb_warn_bad_offload(skb); 3759 return features & ~NETIF_F_GSO_MASK; 3760 } 3761 3762 /* Support for GSO partial features requires software 3763 * intervention before we can actually process the packets 3764 * so we need to strip support for any partial features now 3765 * and we can pull them back in after we have partially 3766 * segmented the frame. 3767 */ 3768 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL)) 3769 features &= ~dev->gso_partial_features; 3770 3771 /* Make sure to clear the IPv4 ID mangling feature if the 3772 * IPv4 header has the potential to be fragmented. 3773 */ 3774 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) { 3775 struct iphdr *iph = skb->encapsulation ? 3776 inner_ip_hdr(skb) : ip_hdr(skb); 3777 3778 if (!(iph->frag_off & htons(IP_DF))) 3779 features &= ~NETIF_F_TSO_MANGLEID; 3780 } 3781 3782 /* NETIF_F_IPV6_CSUM does not support IPv6 extension headers, 3783 * so neither does TSO that depends on it. 3784 */ 3785 if (features & NETIF_F_IPV6_CSUM && 3786 (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6 || 3787 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4 && 3788 vlan_get_protocol(skb) == htons(ETH_P_IPV6))) && 3789 skb_transport_header_was_set(skb) && 3790 skb_network_header_len(skb) != sizeof(struct ipv6hdr) && 3791 !ipv6_has_hopopt_jumbo(skb)) 3792 features &= ~(NETIF_F_IPV6_CSUM | NETIF_F_TSO6 | NETIF_F_GSO_UDP_L4); 3793 3794 return features; 3795 } 3796 3797 netdev_features_t netif_skb_features(struct sk_buff *skb) 3798 { 3799 struct net_device *dev = skb->dev; 3800 netdev_features_t features = dev->features; 3801 3802 if (skb_is_gso(skb)) 3803 features = gso_features_check(skb, dev, features); 3804 3805 /* If encapsulation offload request, verify we are testing 3806 * hardware encapsulation features instead of standard 3807 * features for the netdev 3808 */ 3809 if (skb->encapsulation) 3810 features &= dev->hw_enc_features; 3811 3812 if (skb_vlan_tagged(skb)) 3813 features = netdev_intersect_features(features, 3814 dev->vlan_features | 3815 NETIF_F_HW_VLAN_CTAG_TX | 3816 NETIF_F_HW_VLAN_STAG_TX); 3817 3818 if (dev->netdev_ops->ndo_features_check) 3819 features &= dev->netdev_ops->ndo_features_check(skb, dev, 3820 features); 3821 else 3822 features &= dflt_features_check(skb, dev, features); 3823 3824 return harmonize_features(skb, features); 3825 } 3826 EXPORT_SYMBOL(netif_skb_features); 3827 3828 static int xmit_one(struct sk_buff *skb, struct net_device *dev, 3829 struct netdev_queue *txq, bool more) 3830 { 3831 unsigned int len; 3832 int rc; 3833 3834 if (dev_nit_active_rcu(dev)) 3835 dev_queue_xmit_nit(skb, dev); 3836 3837 len = skb->len; 3838 trace_net_dev_start_xmit(skb, dev); 3839 rc = netdev_start_xmit(skb, dev, txq, more); 3840 trace_net_dev_xmit(skb, rc, dev, len); 3841 3842 return rc; 3843 } 3844 3845 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev, 3846 struct netdev_queue *txq, int *ret) 3847 { 3848 struct sk_buff *skb = first; 3849 int rc = NETDEV_TX_OK; 3850 3851 while (skb) { 3852 struct sk_buff *next = skb->next; 3853 3854 skb_mark_not_on_list(skb); 3855 rc = xmit_one(skb, dev, txq, next != NULL); 3856 if (unlikely(!dev_xmit_complete(rc))) { 3857 skb->next = next; 3858 goto out; 3859 } 3860 3861 skb = next; 3862 if (netif_tx_queue_stopped(txq) && skb) { 3863 rc = NETDEV_TX_BUSY; 3864 break; 3865 } 3866 } 3867 3868 out: 3869 *ret = rc; 3870 return skb; 3871 } 3872 3873 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb, 3874 netdev_features_t features) 3875 { 3876 if (skb_vlan_tag_present(skb) && 3877 !vlan_hw_offload_capable(features, skb->vlan_proto)) 3878 skb = __vlan_hwaccel_push_inside(skb); 3879 return skb; 3880 } 3881 3882 int skb_csum_hwoffload_help(struct sk_buff *skb, 3883 const netdev_features_t features) 3884 { 3885 if (unlikely(skb_csum_is_sctp(skb))) 3886 return !!(features & NETIF_F_SCTP_CRC) ? 0 : 3887 skb_crc32c_csum_help(skb); 3888 3889 if (features & NETIF_F_HW_CSUM) 3890 return 0; 3891 3892 if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) { 3893 if (vlan_get_protocol(skb) == htons(ETH_P_IPV6) && 3894 skb_network_header_len(skb) != sizeof(struct ipv6hdr) && 3895 !ipv6_has_hopopt_jumbo(skb)) 3896 goto sw_checksum; 3897 3898 switch (skb->csum_offset) { 3899 case offsetof(struct tcphdr, check): 3900 case offsetof(struct udphdr, check): 3901 return 0; 3902 } 3903 } 3904 3905 sw_checksum: 3906 return skb_checksum_help(skb); 3907 } 3908 EXPORT_SYMBOL(skb_csum_hwoffload_help); 3909 3910 /* Checks if this SKB belongs to an HW offloaded socket 3911 * and whether any SW fallbacks are required based on dev. 3912 * Check decrypted mark in case skb_orphan() cleared socket. 3913 */ 3914 static struct sk_buff *sk_validate_xmit_skb(struct sk_buff *skb, 3915 struct net_device *dev) 3916 { 3917 #ifdef CONFIG_SOCK_VALIDATE_XMIT 3918 struct sk_buff *(*sk_validate)(struct sock *sk, struct net_device *dev, 3919 struct sk_buff *skb); 3920 struct sock *sk = skb->sk; 3921 3922 sk_validate = NULL; 3923 if (sk) { 3924 if (sk_fullsock(sk)) 3925 sk_validate = sk->sk_validate_xmit_skb; 3926 else if (sk_is_inet(sk) && sk->sk_state == TCP_TIME_WAIT) 3927 sk_validate = inet_twsk(sk)->tw_validate_xmit_skb; 3928 } 3929 3930 if (sk_validate) { 3931 skb = sk_validate(sk, dev, skb); 3932 } else if (unlikely(skb_is_decrypted(skb))) { 3933 pr_warn_ratelimited("unencrypted skb with no associated socket - dropping\n"); 3934 kfree_skb(skb); 3935 skb = NULL; 3936 } 3937 #endif 3938 3939 return skb; 3940 } 3941 3942 static struct sk_buff *validate_xmit_unreadable_skb(struct sk_buff *skb, 3943 struct net_device *dev) 3944 { 3945 struct skb_shared_info *shinfo; 3946 struct net_iov *niov; 3947 3948 if (likely(skb_frags_readable(skb))) 3949 goto out; 3950 3951 if (!dev->netmem_tx) 3952 goto out_free; 3953 3954 shinfo = skb_shinfo(skb); 3955 3956 if (shinfo->nr_frags > 0) { 3957 niov = netmem_to_net_iov(skb_frag_netmem(&shinfo->frags[0])); 3958 if (net_is_devmem_iov(niov) && 3959 net_devmem_iov_binding(niov)->dev != dev) 3960 goto out_free; 3961 } 3962 3963 out: 3964 return skb; 3965 3966 out_free: 3967 kfree_skb(skb); 3968 return NULL; 3969 } 3970 3971 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again) 3972 { 3973 netdev_features_t features; 3974 3975 skb = validate_xmit_unreadable_skb(skb, dev); 3976 if (unlikely(!skb)) 3977 goto out_null; 3978 3979 features = netif_skb_features(skb); 3980 skb = validate_xmit_vlan(skb, features); 3981 if (unlikely(!skb)) 3982 goto out_null; 3983 3984 skb = sk_validate_xmit_skb(skb, dev); 3985 if (unlikely(!skb)) 3986 goto out_null; 3987 3988 if (netif_needs_gso(skb, features)) { 3989 struct sk_buff *segs; 3990 3991 segs = skb_gso_segment(skb, features); 3992 if (IS_ERR(segs)) { 3993 goto out_kfree_skb; 3994 } else if (segs) { 3995 consume_skb(skb); 3996 skb = segs; 3997 } 3998 } else { 3999 if (skb_needs_linearize(skb, features) && 4000 __skb_linearize(skb)) 4001 goto out_kfree_skb; 4002 4003 /* If packet is not checksummed and device does not 4004 * support checksumming for this protocol, complete 4005 * checksumming here. 4006 */ 4007 if (skb->ip_summed == CHECKSUM_PARTIAL) { 4008 if (skb->encapsulation) 4009 skb_set_inner_transport_header(skb, 4010 skb_checksum_start_offset(skb)); 4011 else 4012 skb_set_transport_header(skb, 4013 skb_checksum_start_offset(skb)); 4014 if (skb_csum_hwoffload_help(skb, features)) 4015 goto out_kfree_skb; 4016 } 4017 } 4018 4019 skb = validate_xmit_xfrm(skb, features, again); 4020 4021 return skb; 4022 4023 out_kfree_skb: 4024 kfree_skb(skb); 4025 out_null: 4026 dev_core_stats_tx_dropped_inc(dev); 4027 return NULL; 4028 } 4029 4030 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again) 4031 { 4032 struct sk_buff *next, *head = NULL, *tail; 4033 4034 for (; skb != NULL; skb = next) { 4035 next = skb->next; 4036 skb_mark_not_on_list(skb); 4037 4038 /* in case skb won't be segmented, point to itself */ 4039 skb->prev = skb; 4040 4041 skb = validate_xmit_skb(skb, dev, again); 4042 if (!skb) 4043 continue; 4044 4045 if (!head) 4046 head = skb; 4047 else 4048 tail->next = skb; 4049 /* If skb was segmented, skb->prev points to 4050 * the last segment. If not, it still contains skb. 4051 */ 4052 tail = skb->prev; 4053 } 4054 return head; 4055 } 4056 EXPORT_SYMBOL_GPL(validate_xmit_skb_list); 4057 4058 static void qdisc_pkt_len_init(struct sk_buff *skb) 4059 { 4060 const struct skb_shared_info *shinfo = skb_shinfo(skb); 4061 4062 qdisc_skb_cb(skb)->pkt_len = skb->len; 4063 4064 /* To get more precise estimation of bytes sent on wire, 4065 * we add to pkt_len the headers size of all segments 4066 */ 4067 if (shinfo->gso_size && skb_transport_header_was_set(skb)) { 4068 u16 gso_segs = shinfo->gso_segs; 4069 unsigned int hdr_len; 4070 4071 /* mac layer + network layer */ 4072 if (!skb->encapsulation) 4073 hdr_len = skb_transport_offset(skb); 4074 else 4075 hdr_len = skb_inner_transport_offset(skb); 4076 4077 /* + transport layer */ 4078 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) { 4079 const struct tcphdr *th; 4080 struct tcphdr _tcphdr; 4081 4082 th = skb_header_pointer(skb, hdr_len, 4083 sizeof(_tcphdr), &_tcphdr); 4084 if (likely(th)) 4085 hdr_len += __tcp_hdrlen(th); 4086 } else if (shinfo->gso_type & SKB_GSO_UDP_L4) { 4087 struct udphdr _udphdr; 4088 4089 if (skb_header_pointer(skb, hdr_len, 4090 sizeof(_udphdr), &_udphdr)) 4091 hdr_len += sizeof(struct udphdr); 4092 } 4093 4094 if (unlikely(shinfo->gso_type & SKB_GSO_DODGY)) { 4095 int payload = skb->len - hdr_len; 4096 4097 /* Malicious packet. */ 4098 if (payload <= 0) 4099 return; 4100 gso_segs = DIV_ROUND_UP(payload, shinfo->gso_size); 4101 } 4102 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len; 4103 } 4104 } 4105 4106 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q, 4107 struct sk_buff **to_free, 4108 struct netdev_queue *txq) 4109 { 4110 int rc; 4111 4112 rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK; 4113 if (rc == NET_XMIT_SUCCESS) 4114 trace_qdisc_enqueue(q, txq, skb); 4115 return rc; 4116 } 4117 4118 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 4119 struct net_device *dev, 4120 struct netdev_queue *txq) 4121 { 4122 spinlock_t *root_lock = qdisc_lock(q); 4123 struct sk_buff *to_free = NULL; 4124 bool contended; 4125 int rc; 4126 4127 qdisc_calculate_pkt_len(skb, q); 4128 4129 tcf_set_drop_reason(skb, SKB_DROP_REASON_QDISC_DROP); 4130 4131 if (q->flags & TCQ_F_NOLOCK) { 4132 if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) && 4133 qdisc_run_begin(q)) { 4134 /* Retest nolock_qdisc_is_empty() within the protection 4135 * of q->seqlock to protect from racing with requeuing. 4136 */ 4137 if (unlikely(!nolock_qdisc_is_empty(q))) { 4138 rc = dev_qdisc_enqueue(skb, q, &to_free, txq); 4139 __qdisc_run(q); 4140 qdisc_run_end(q); 4141 4142 goto no_lock_out; 4143 } 4144 4145 qdisc_bstats_cpu_update(q, skb); 4146 if (sch_direct_xmit(skb, q, dev, txq, NULL, true) && 4147 !nolock_qdisc_is_empty(q)) 4148 __qdisc_run(q); 4149 4150 qdisc_run_end(q); 4151 return NET_XMIT_SUCCESS; 4152 } 4153 4154 rc = dev_qdisc_enqueue(skb, q, &to_free, txq); 4155 qdisc_run(q); 4156 4157 no_lock_out: 4158 if (unlikely(to_free)) 4159 kfree_skb_list_reason(to_free, 4160 tcf_get_drop_reason(to_free)); 4161 return rc; 4162 } 4163 4164 if (unlikely(READ_ONCE(q->owner) == smp_processor_id())) { 4165 kfree_skb_reason(skb, SKB_DROP_REASON_TC_RECLASSIFY_LOOP); 4166 return NET_XMIT_DROP; 4167 } 4168 /* 4169 * Heuristic to force contended enqueues to serialize on a 4170 * separate lock before trying to get qdisc main lock. 4171 * This permits qdisc->running owner to get the lock more 4172 * often and dequeue packets faster. 4173 * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit 4174 * and then other tasks will only enqueue packets. The packets will be 4175 * sent after the qdisc owner is scheduled again. To prevent this 4176 * scenario the task always serialize on the lock. 4177 */ 4178 contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT); 4179 if (unlikely(contended)) 4180 spin_lock(&q->busylock); 4181 4182 spin_lock(root_lock); 4183 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 4184 __qdisc_drop(skb, &to_free); 4185 rc = NET_XMIT_DROP; 4186 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 4187 qdisc_run_begin(q)) { 4188 /* 4189 * This is a work-conserving queue; there are no old skbs 4190 * waiting to be sent out; and the qdisc is not running - 4191 * xmit the skb directly. 4192 */ 4193 4194 qdisc_bstats_update(q, skb); 4195 4196 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) { 4197 if (unlikely(contended)) { 4198 spin_unlock(&q->busylock); 4199 contended = false; 4200 } 4201 __qdisc_run(q); 4202 } 4203 4204 qdisc_run_end(q); 4205 rc = NET_XMIT_SUCCESS; 4206 } else { 4207 WRITE_ONCE(q->owner, smp_processor_id()); 4208 rc = dev_qdisc_enqueue(skb, q, &to_free, txq); 4209 WRITE_ONCE(q->owner, -1); 4210 if (qdisc_run_begin(q)) { 4211 if (unlikely(contended)) { 4212 spin_unlock(&q->busylock); 4213 contended = false; 4214 } 4215 __qdisc_run(q); 4216 qdisc_run_end(q); 4217 } 4218 } 4219 spin_unlock(root_lock); 4220 if (unlikely(to_free)) 4221 kfree_skb_list_reason(to_free, 4222 tcf_get_drop_reason(to_free)); 4223 if (unlikely(contended)) 4224 spin_unlock(&q->busylock); 4225 return rc; 4226 } 4227 4228 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 4229 static void skb_update_prio(struct sk_buff *skb) 4230 { 4231 const struct netprio_map *map; 4232 const struct sock *sk; 4233 unsigned int prioidx; 4234 4235 if (skb->priority) 4236 return; 4237 map = rcu_dereference_bh(skb->dev->priomap); 4238 if (!map) 4239 return; 4240 sk = skb_to_full_sk(skb); 4241 if (!sk) 4242 return; 4243 4244 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data); 4245 4246 if (prioidx < map->priomap_len) 4247 skb->priority = map->priomap[prioidx]; 4248 } 4249 #else 4250 #define skb_update_prio(skb) 4251 #endif 4252 4253 /** 4254 * dev_loopback_xmit - loop back @skb 4255 * @net: network namespace this loopback is happening in 4256 * @sk: sk needed to be a netfilter okfn 4257 * @skb: buffer to transmit 4258 */ 4259 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb) 4260 { 4261 skb_reset_mac_header(skb); 4262 __skb_pull(skb, skb_network_offset(skb)); 4263 skb->pkt_type = PACKET_LOOPBACK; 4264 if (skb->ip_summed == CHECKSUM_NONE) 4265 skb->ip_summed = CHECKSUM_UNNECESSARY; 4266 DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb)); 4267 skb_dst_force(skb); 4268 netif_rx(skb); 4269 return 0; 4270 } 4271 EXPORT_SYMBOL(dev_loopback_xmit); 4272 4273 #ifdef CONFIG_NET_EGRESS 4274 static struct netdev_queue * 4275 netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb) 4276 { 4277 int qm = skb_get_queue_mapping(skb); 4278 4279 return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm)); 4280 } 4281 4282 #ifndef CONFIG_PREEMPT_RT 4283 static bool netdev_xmit_txqueue_skipped(void) 4284 { 4285 return __this_cpu_read(softnet_data.xmit.skip_txqueue); 4286 } 4287 4288 void netdev_xmit_skip_txqueue(bool skip) 4289 { 4290 __this_cpu_write(softnet_data.xmit.skip_txqueue, skip); 4291 } 4292 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue); 4293 4294 #else 4295 static bool netdev_xmit_txqueue_skipped(void) 4296 { 4297 return current->net_xmit.skip_txqueue; 4298 } 4299 4300 void netdev_xmit_skip_txqueue(bool skip) 4301 { 4302 current->net_xmit.skip_txqueue = skip; 4303 } 4304 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue); 4305 #endif 4306 #endif /* CONFIG_NET_EGRESS */ 4307 4308 #ifdef CONFIG_NET_XGRESS 4309 static int tc_run(struct tcx_entry *entry, struct sk_buff *skb, 4310 enum skb_drop_reason *drop_reason) 4311 { 4312 int ret = TC_ACT_UNSPEC; 4313 #ifdef CONFIG_NET_CLS_ACT 4314 struct mini_Qdisc *miniq = rcu_dereference_bh(entry->miniq); 4315 struct tcf_result res; 4316 4317 if (!miniq) 4318 return ret; 4319 4320 /* Global bypass */ 4321 if (!static_branch_likely(&tcf_sw_enabled_key)) 4322 return ret; 4323 4324 /* Block-wise bypass */ 4325 if (tcf_block_bypass_sw(miniq->block)) 4326 return ret; 4327 4328 tc_skb_cb(skb)->mru = 0; 4329 tc_skb_cb(skb)->post_ct = false; 4330 tcf_set_drop_reason(skb, *drop_reason); 4331 4332 mini_qdisc_bstats_cpu_update(miniq, skb); 4333 ret = tcf_classify(skb, miniq->block, miniq->filter_list, &res, false); 4334 /* Only tcf related quirks below. */ 4335 switch (ret) { 4336 case TC_ACT_SHOT: 4337 *drop_reason = tcf_get_drop_reason(skb); 4338 mini_qdisc_qstats_cpu_drop(miniq); 4339 break; 4340 case TC_ACT_OK: 4341 case TC_ACT_RECLASSIFY: 4342 skb->tc_index = TC_H_MIN(res.classid); 4343 break; 4344 } 4345 #endif /* CONFIG_NET_CLS_ACT */ 4346 return ret; 4347 } 4348 4349 static DEFINE_STATIC_KEY_FALSE(tcx_needed_key); 4350 4351 void tcx_inc(void) 4352 { 4353 static_branch_inc(&tcx_needed_key); 4354 } 4355 4356 void tcx_dec(void) 4357 { 4358 static_branch_dec(&tcx_needed_key); 4359 } 4360 4361 static __always_inline enum tcx_action_base 4362 tcx_run(const struct bpf_mprog_entry *entry, struct sk_buff *skb, 4363 const bool needs_mac) 4364 { 4365 const struct bpf_mprog_fp *fp; 4366 const struct bpf_prog *prog; 4367 int ret = TCX_NEXT; 4368 4369 if (needs_mac) 4370 __skb_push(skb, skb->mac_len); 4371 bpf_mprog_foreach_prog(entry, fp, prog) { 4372 bpf_compute_data_pointers(skb); 4373 ret = bpf_prog_run(prog, skb); 4374 if (ret != TCX_NEXT) 4375 break; 4376 } 4377 if (needs_mac) 4378 __skb_pull(skb, skb->mac_len); 4379 return tcx_action_code(skb, ret); 4380 } 4381 4382 static __always_inline struct sk_buff * 4383 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret, 4384 struct net_device *orig_dev, bool *another) 4385 { 4386 struct bpf_mprog_entry *entry = rcu_dereference_bh(skb->dev->tcx_ingress); 4387 enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_INGRESS; 4388 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; 4389 int sch_ret; 4390 4391 if (!entry) 4392 return skb; 4393 4394 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx); 4395 if (*pt_prev) { 4396 *ret = deliver_skb(skb, *pt_prev, orig_dev); 4397 *pt_prev = NULL; 4398 } 4399 4400 qdisc_skb_cb(skb)->pkt_len = skb->len; 4401 tcx_set_ingress(skb, true); 4402 4403 if (static_branch_unlikely(&tcx_needed_key)) { 4404 sch_ret = tcx_run(entry, skb, true); 4405 if (sch_ret != TC_ACT_UNSPEC) 4406 goto ingress_verdict; 4407 } 4408 sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason); 4409 ingress_verdict: 4410 switch (sch_ret) { 4411 case TC_ACT_REDIRECT: 4412 /* skb_mac_header check was done by BPF, so we can safely 4413 * push the L2 header back before redirecting to another 4414 * netdev. 4415 */ 4416 __skb_push(skb, skb->mac_len); 4417 if (skb_do_redirect(skb) == -EAGAIN) { 4418 __skb_pull(skb, skb->mac_len); 4419 *another = true; 4420 break; 4421 } 4422 *ret = NET_RX_SUCCESS; 4423 bpf_net_ctx_clear(bpf_net_ctx); 4424 return NULL; 4425 case TC_ACT_SHOT: 4426 kfree_skb_reason(skb, drop_reason); 4427 *ret = NET_RX_DROP; 4428 bpf_net_ctx_clear(bpf_net_ctx); 4429 return NULL; 4430 /* used by tc_run */ 4431 case TC_ACT_STOLEN: 4432 case TC_ACT_QUEUED: 4433 case TC_ACT_TRAP: 4434 consume_skb(skb); 4435 fallthrough; 4436 case TC_ACT_CONSUMED: 4437 *ret = NET_RX_SUCCESS; 4438 bpf_net_ctx_clear(bpf_net_ctx); 4439 return NULL; 4440 } 4441 bpf_net_ctx_clear(bpf_net_ctx); 4442 4443 return skb; 4444 } 4445 4446 static __always_inline struct sk_buff * 4447 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev) 4448 { 4449 struct bpf_mprog_entry *entry = rcu_dereference_bh(dev->tcx_egress); 4450 enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_EGRESS; 4451 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; 4452 int sch_ret; 4453 4454 if (!entry) 4455 return skb; 4456 4457 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx); 4458 4459 /* qdisc_skb_cb(skb)->pkt_len & tcx_set_ingress() was 4460 * already set by the caller. 4461 */ 4462 if (static_branch_unlikely(&tcx_needed_key)) { 4463 sch_ret = tcx_run(entry, skb, false); 4464 if (sch_ret != TC_ACT_UNSPEC) 4465 goto egress_verdict; 4466 } 4467 sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason); 4468 egress_verdict: 4469 switch (sch_ret) { 4470 case TC_ACT_REDIRECT: 4471 /* No need to push/pop skb's mac_header here on egress! */ 4472 skb_do_redirect(skb); 4473 *ret = NET_XMIT_SUCCESS; 4474 bpf_net_ctx_clear(bpf_net_ctx); 4475 return NULL; 4476 case TC_ACT_SHOT: 4477 kfree_skb_reason(skb, drop_reason); 4478 *ret = NET_XMIT_DROP; 4479 bpf_net_ctx_clear(bpf_net_ctx); 4480 return NULL; 4481 /* used by tc_run */ 4482 case TC_ACT_STOLEN: 4483 case TC_ACT_QUEUED: 4484 case TC_ACT_TRAP: 4485 consume_skb(skb); 4486 fallthrough; 4487 case TC_ACT_CONSUMED: 4488 *ret = NET_XMIT_SUCCESS; 4489 bpf_net_ctx_clear(bpf_net_ctx); 4490 return NULL; 4491 } 4492 bpf_net_ctx_clear(bpf_net_ctx); 4493 4494 return skb; 4495 } 4496 #else 4497 static __always_inline struct sk_buff * 4498 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret, 4499 struct net_device *orig_dev, bool *another) 4500 { 4501 return skb; 4502 } 4503 4504 static __always_inline struct sk_buff * 4505 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev) 4506 { 4507 return skb; 4508 } 4509 #endif /* CONFIG_NET_XGRESS */ 4510 4511 #ifdef CONFIG_XPS 4512 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb, 4513 struct xps_dev_maps *dev_maps, unsigned int tci) 4514 { 4515 int tc = netdev_get_prio_tc_map(dev, skb->priority); 4516 struct xps_map *map; 4517 int queue_index = -1; 4518 4519 if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids) 4520 return queue_index; 4521 4522 tci *= dev_maps->num_tc; 4523 tci += tc; 4524 4525 map = rcu_dereference(dev_maps->attr_map[tci]); 4526 if (map) { 4527 if (map->len == 1) 4528 queue_index = map->queues[0]; 4529 else 4530 queue_index = map->queues[reciprocal_scale( 4531 skb_get_hash(skb), map->len)]; 4532 if (unlikely(queue_index >= dev->real_num_tx_queues)) 4533 queue_index = -1; 4534 } 4535 return queue_index; 4536 } 4537 #endif 4538 4539 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev, 4540 struct sk_buff *skb) 4541 { 4542 #ifdef CONFIG_XPS 4543 struct xps_dev_maps *dev_maps; 4544 struct sock *sk = skb->sk; 4545 int queue_index = -1; 4546 4547 if (!static_key_false(&xps_needed)) 4548 return -1; 4549 4550 rcu_read_lock(); 4551 if (!static_key_false(&xps_rxqs_needed)) 4552 goto get_cpus_map; 4553 4554 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]); 4555 if (dev_maps) { 4556 int tci = sk_rx_queue_get(sk); 4557 4558 if (tci >= 0) 4559 queue_index = __get_xps_queue_idx(dev, skb, dev_maps, 4560 tci); 4561 } 4562 4563 get_cpus_map: 4564 if (queue_index < 0) { 4565 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]); 4566 if (dev_maps) { 4567 unsigned int tci = skb->sender_cpu - 1; 4568 4569 queue_index = __get_xps_queue_idx(dev, skb, dev_maps, 4570 tci); 4571 } 4572 } 4573 rcu_read_unlock(); 4574 4575 return queue_index; 4576 #else 4577 return -1; 4578 #endif 4579 } 4580 4581 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb, 4582 struct net_device *sb_dev) 4583 { 4584 return 0; 4585 } 4586 EXPORT_SYMBOL(dev_pick_tx_zero); 4587 4588 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb, 4589 struct net_device *sb_dev) 4590 { 4591 struct sock *sk = skb->sk; 4592 int queue_index = sk_tx_queue_get(sk); 4593 4594 sb_dev = sb_dev ? : dev; 4595 4596 if (queue_index < 0 || skb->ooo_okay || 4597 queue_index >= dev->real_num_tx_queues) { 4598 int new_index = get_xps_queue(dev, sb_dev, skb); 4599 4600 if (new_index < 0) 4601 new_index = skb_tx_hash(dev, sb_dev, skb); 4602 4603 if (queue_index != new_index && sk && 4604 sk_fullsock(sk) && 4605 rcu_access_pointer(sk->sk_dst_cache)) 4606 sk_tx_queue_set(sk, new_index); 4607 4608 queue_index = new_index; 4609 } 4610 4611 return queue_index; 4612 } 4613 EXPORT_SYMBOL(netdev_pick_tx); 4614 4615 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev, 4616 struct sk_buff *skb, 4617 struct net_device *sb_dev) 4618 { 4619 int queue_index = 0; 4620 4621 #ifdef CONFIG_XPS 4622 u32 sender_cpu = skb->sender_cpu - 1; 4623 4624 if (sender_cpu >= (u32)NR_CPUS) 4625 skb->sender_cpu = raw_smp_processor_id() + 1; 4626 #endif 4627 4628 if (dev->real_num_tx_queues != 1) { 4629 const struct net_device_ops *ops = dev->netdev_ops; 4630 4631 if (ops->ndo_select_queue) 4632 queue_index = ops->ndo_select_queue(dev, skb, sb_dev); 4633 else 4634 queue_index = netdev_pick_tx(dev, skb, sb_dev); 4635 4636 queue_index = netdev_cap_txqueue(dev, queue_index); 4637 } 4638 4639 skb_set_queue_mapping(skb, queue_index); 4640 return netdev_get_tx_queue(dev, queue_index); 4641 } 4642 4643 /** 4644 * __dev_queue_xmit() - transmit a buffer 4645 * @skb: buffer to transmit 4646 * @sb_dev: suboordinate device used for L2 forwarding offload 4647 * 4648 * Queue a buffer for transmission to a network device. The caller must 4649 * have set the device and priority and built the buffer before calling 4650 * this function. The function can be called from an interrupt. 4651 * 4652 * When calling this method, interrupts MUST be enabled. This is because 4653 * the BH enable code must have IRQs enabled so that it will not deadlock. 4654 * 4655 * Regardless of the return value, the skb is consumed, so it is currently 4656 * difficult to retry a send to this method. (You can bump the ref count 4657 * before sending to hold a reference for retry if you are careful.) 4658 * 4659 * Return: 4660 * * 0 - buffer successfully transmitted 4661 * * positive qdisc return code - NET_XMIT_DROP etc. 4662 * * negative errno - other errors 4663 */ 4664 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev) 4665 { 4666 struct net_device *dev = skb->dev; 4667 struct netdev_queue *txq = NULL; 4668 struct Qdisc *q; 4669 int rc = -ENOMEM; 4670 bool again = false; 4671 4672 skb_reset_mac_header(skb); 4673 skb_assert_len(skb); 4674 4675 if (unlikely(skb_shinfo(skb)->tx_flags & 4676 (SKBTX_SCHED_TSTAMP | SKBTX_BPF))) 4677 __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED); 4678 4679 /* Disable soft irqs for various locks below. Also 4680 * stops preemption for RCU. 4681 */ 4682 rcu_read_lock_bh(); 4683 4684 skb_update_prio(skb); 4685 4686 qdisc_pkt_len_init(skb); 4687 tcx_set_ingress(skb, false); 4688 #ifdef CONFIG_NET_EGRESS 4689 if (static_branch_unlikely(&egress_needed_key)) { 4690 if (nf_hook_egress_active()) { 4691 skb = nf_hook_egress(skb, &rc, dev); 4692 if (!skb) 4693 goto out; 4694 } 4695 4696 netdev_xmit_skip_txqueue(false); 4697 4698 nf_skip_egress(skb, true); 4699 skb = sch_handle_egress(skb, &rc, dev); 4700 if (!skb) 4701 goto out; 4702 nf_skip_egress(skb, false); 4703 4704 if (netdev_xmit_txqueue_skipped()) 4705 txq = netdev_tx_queue_mapping(dev, skb); 4706 } 4707 #endif 4708 /* If device/qdisc don't need skb->dst, release it right now while 4709 * its hot in this cpu cache. 4710 */ 4711 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 4712 skb_dst_drop(skb); 4713 else 4714 skb_dst_force(skb); 4715 4716 if (!txq) 4717 txq = netdev_core_pick_tx(dev, skb, sb_dev); 4718 4719 q = rcu_dereference_bh(txq->qdisc); 4720 4721 trace_net_dev_queue(skb); 4722 if (q->enqueue) { 4723 rc = __dev_xmit_skb(skb, q, dev, txq); 4724 goto out; 4725 } 4726 4727 /* The device has no queue. Common case for software devices: 4728 * loopback, all the sorts of tunnels... 4729 4730 * Really, it is unlikely that netif_tx_lock protection is necessary 4731 * here. (f.e. loopback and IP tunnels are clean ignoring statistics 4732 * counters.) 4733 * However, it is possible, that they rely on protection 4734 * made by us here. 4735 4736 * Check this and shot the lock. It is not prone from deadlocks. 4737 *Either shot noqueue qdisc, it is even simpler 8) 4738 */ 4739 if (dev->flags & IFF_UP) { 4740 int cpu = smp_processor_id(); /* ok because BHs are off */ 4741 4742 /* Other cpus might concurrently change txq->xmit_lock_owner 4743 * to -1 or to their cpu id, but not to our id. 4744 */ 4745 if (READ_ONCE(txq->xmit_lock_owner) != cpu) { 4746 if (dev_xmit_recursion()) 4747 goto recursion_alert; 4748 4749 skb = validate_xmit_skb(skb, dev, &again); 4750 if (!skb) 4751 goto out; 4752 4753 HARD_TX_LOCK(dev, txq, cpu); 4754 4755 if (!netif_xmit_stopped(txq)) { 4756 dev_xmit_recursion_inc(); 4757 skb = dev_hard_start_xmit(skb, dev, txq, &rc); 4758 dev_xmit_recursion_dec(); 4759 if (dev_xmit_complete(rc)) { 4760 HARD_TX_UNLOCK(dev, txq); 4761 goto out; 4762 } 4763 } 4764 HARD_TX_UNLOCK(dev, txq); 4765 net_crit_ratelimited("Virtual device %s asks to queue packet!\n", 4766 dev->name); 4767 } else { 4768 /* Recursion is detected! It is possible, 4769 * unfortunately 4770 */ 4771 recursion_alert: 4772 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n", 4773 dev->name); 4774 } 4775 } 4776 4777 rc = -ENETDOWN; 4778 rcu_read_unlock_bh(); 4779 4780 dev_core_stats_tx_dropped_inc(dev); 4781 kfree_skb_list(skb); 4782 return rc; 4783 out: 4784 rcu_read_unlock_bh(); 4785 return rc; 4786 } 4787 EXPORT_SYMBOL(__dev_queue_xmit); 4788 4789 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id) 4790 { 4791 struct net_device *dev = skb->dev; 4792 struct sk_buff *orig_skb = skb; 4793 struct netdev_queue *txq; 4794 int ret = NETDEV_TX_BUSY; 4795 bool again = false; 4796 4797 if (unlikely(!netif_running(dev) || 4798 !netif_carrier_ok(dev))) 4799 goto drop; 4800 4801 skb = validate_xmit_skb_list(skb, dev, &again); 4802 if (skb != orig_skb) 4803 goto drop; 4804 4805 skb_set_queue_mapping(skb, queue_id); 4806 txq = skb_get_tx_queue(dev, skb); 4807 4808 local_bh_disable(); 4809 4810 dev_xmit_recursion_inc(); 4811 HARD_TX_LOCK(dev, txq, smp_processor_id()); 4812 if (!netif_xmit_frozen_or_drv_stopped(txq)) 4813 ret = netdev_start_xmit(skb, dev, txq, false); 4814 HARD_TX_UNLOCK(dev, txq); 4815 dev_xmit_recursion_dec(); 4816 4817 local_bh_enable(); 4818 return ret; 4819 drop: 4820 dev_core_stats_tx_dropped_inc(dev); 4821 kfree_skb_list(skb); 4822 return NET_XMIT_DROP; 4823 } 4824 EXPORT_SYMBOL(__dev_direct_xmit); 4825 4826 /************************************************************************* 4827 * Receiver routines 4828 *************************************************************************/ 4829 static DEFINE_PER_CPU(struct task_struct *, backlog_napi); 4830 4831 int weight_p __read_mostly = 64; /* old backlog weight */ 4832 int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */ 4833 int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */ 4834 4835 /* Called with irq disabled */ 4836 static inline void ____napi_schedule(struct softnet_data *sd, 4837 struct napi_struct *napi) 4838 { 4839 struct task_struct *thread; 4840 4841 lockdep_assert_irqs_disabled(); 4842 4843 if (test_bit(NAPI_STATE_THREADED, &napi->state)) { 4844 /* Paired with smp_mb__before_atomic() in 4845 * napi_enable()/netif_set_threaded(). 4846 * Use READ_ONCE() to guarantee a complete 4847 * read on napi->thread. Only call 4848 * wake_up_process() when it's not NULL. 4849 */ 4850 thread = READ_ONCE(napi->thread); 4851 if (thread) { 4852 if (use_backlog_threads() && thread == raw_cpu_read(backlog_napi)) 4853 goto use_local_napi; 4854 4855 set_bit(NAPI_STATE_SCHED_THREADED, &napi->state); 4856 wake_up_process(thread); 4857 return; 4858 } 4859 } 4860 4861 use_local_napi: 4862 DEBUG_NET_WARN_ON_ONCE(!list_empty(&napi->poll_list)); 4863 list_add_tail(&napi->poll_list, &sd->poll_list); 4864 WRITE_ONCE(napi->list_owner, smp_processor_id()); 4865 /* If not called from net_rx_action() 4866 * we have to raise NET_RX_SOFTIRQ. 4867 */ 4868 if (!sd->in_net_rx_action) 4869 raise_softirq_irqoff(NET_RX_SOFTIRQ); 4870 } 4871 4872 #ifdef CONFIG_RPS 4873 4874 struct static_key_false rps_needed __read_mostly; 4875 EXPORT_SYMBOL(rps_needed); 4876 struct static_key_false rfs_needed __read_mostly; 4877 EXPORT_SYMBOL(rfs_needed); 4878 4879 static u32 rfs_slot(u32 hash, const struct rps_dev_flow_table *flow_table) 4880 { 4881 return hash_32(hash, flow_table->log); 4882 } 4883 4884 #ifdef CONFIG_RFS_ACCEL 4885 /** 4886 * rps_flow_is_active - check whether the flow is recently active. 4887 * @rflow: Specific flow to check activity. 4888 * @flow_table: per-queue flowtable that @rflow belongs to. 4889 * @cpu: CPU saved in @rflow. 4890 * 4891 * If the CPU has processed many packets since the flow's last activity 4892 * (beyond 10 times the table size), the flow is considered stale. 4893 * 4894 * Return: true if flow was recently active. 4895 */ 4896 static bool rps_flow_is_active(struct rps_dev_flow *rflow, 4897 struct rps_dev_flow_table *flow_table, 4898 unsigned int cpu) 4899 { 4900 unsigned int flow_last_active; 4901 unsigned int sd_input_head; 4902 4903 if (cpu >= nr_cpu_ids) 4904 return false; 4905 4906 sd_input_head = READ_ONCE(per_cpu(softnet_data, cpu).input_queue_head); 4907 flow_last_active = READ_ONCE(rflow->last_qtail); 4908 4909 return (int)(sd_input_head - flow_last_active) < 4910 (int)(10 << flow_table->log); 4911 } 4912 #endif 4913 4914 static struct rps_dev_flow * 4915 set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 4916 struct rps_dev_flow *rflow, u16 next_cpu, u32 hash, 4917 u32 flow_id) 4918 { 4919 if (next_cpu < nr_cpu_ids) { 4920 u32 head; 4921 #ifdef CONFIG_RFS_ACCEL 4922 struct netdev_rx_queue *rxqueue; 4923 struct rps_dev_flow_table *flow_table; 4924 struct rps_dev_flow *old_rflow; 4925 struct rps_dev_flow *tmp_rflow; 4926 unsigned int tmp_cpu; 4927 u16 rxq_index; 4928 int rc; 4929 4930 /* Should we steer this flow to a different hardware queue? */ 4931 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 4932 !(dev->features & NETIF_F_NTUPLE)) 4933 goto out; 4934 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 4935 if (rxq_index == skb_get_rx_queue(skb)) 4936 goto out; 4937 4938 rxqueue = dev->_rx + rxq_index; 4939 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4940 if (!flow_table) 4941 goto out; 4942 4943 tmp_rflow = &flow_table->flows[flow_id]; 4944 tmp_cpu = READ_ONCE(tmp_rflow->cpu); 4945 4946 if (READ_ONCE(tmp_rflow->filter) != RPS_NO_FILTER) { 4947 if (rps_flow_is_active(tmp_rflow, flow_table, 4948 tmp_cpu)) { 4949 if (hash != READ_ONCE(tmp_rflow->hash) || 4950 next_cpu == tmp_cpu) 4951 goto out; 4952 } 4953 } 4954 4955 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 4956 rxq_index, flow_id); 4957 if (rc < 0) 4958 goto out; 4959 4960 old_rflow = rflow; 4961 rflow = tmp_rflow; 4962 WRITE_ONCE(rflow->filter, rc); 4963 WRITE_ONCE(rflow->hash, hash); 4964 4965 if (old_rflow->filter == rc) 4966 WRITE_ONCE(old_rflow->filter, RPS_NO_FILTER); 4967 out: 4968 #endif 4969 head = READ_ONCE(per_cpu(softnet_data, next_cpu).input_queue_head); 4970 rps_input_queue_tail_save(&rflow->last_qtail, head); 4971 } 4972 4973 WRITE_ONCE(rflow->cpu, next_cpu); 4974 return rflow; 4975 } 4976 4977 /* 4978 * get_rps_cpu is called from netif_receive_skb and returns the target 4979 * CPU from the RPS map of the receiving queue for a given skb. 4980 * rcu_read_lock must be held on entry. 4981 */ 4982 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 4983 struct rps_dev_flow **rflowp) 4984 { 4985 const struct rps_sock_flow_table *sock_flow_table; 4986 struct netdev_rx_queue *rxqueue = dev->_rx; 4987 struct rps_dev_flow_table *flow_table; 4988 struct rps_map *map; 4989 int cpu = -1; 4990 u32 flow_id; 4991 u32 tcpu; 4992 u32 hash; 4993 4994 if (skb_rx_queue_recorded(skb)) { 4995 u16 index = skb_get_rx_queue(skb); 4996 4997 if (unlikely(index >= dev->real_num_rx_queues)) { 4998 WARN_ONCE(dev->real_num_rx_queues > 1, 4999 "%s received packet on queue %u, but number " 5000 "of RX queues is %u\n", 5001 dev->name, index, dev->real_num_rx_queues); 5002 goto done; 5003 } 5004 rxqueue += index; 5005 } 5006 5007 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */ 5008 5009 flow_table = rcu_dereference(rxqueue->rps_flow_table); 5010 map = rcu_dereference(rxqueue->rps_map); 5011 if (!flow_table && !map) 5012 goto done; 5013 5014 skb_reset_network_header(skb); 5015 hash = skb_get_hash(skb); 5016 if (!hash) 5017 goto done; 5018 5019 sock_flow_table = rcu_dereference(net_hotdata.rps_sock_flow_table); 5020 if (flow_table && sock_flow_table) { 5021 struct rps_dev_flow *rflow; 5022 u32 next_cpu; 5023 u32 ident; 5024 5025 /* First check into global flow table if there is a match. 5026 * This READ_ONCE() pairs with WRITE_ONCE() from rps_record_sock_flow(). 5027 */ 5028 ident = READ_ONCE(sock_flow_table->ents[hash & sock_flow_table->mask]); 5029 if ((ident ^ hash) & ~net_hotdata.rps_cpu_mask) 5030 goto try_rps; 5031 5032 next_cpu = ident & net_hotdata.rps_cpu_mask; 5033 5034 /* OK, now we know there is a match, 5035 * we can look at the local (per receive queue) flow table 5036 */ 5037 flow_id = rfs_slot(hash, flow_table); 5038 rflow = &flow_table->flows[flow_id]; 5039 tcpu = rflow->cpu; 5040 5041 /* 5042 * If the desired CPU (where last recvmsg was done) is 5043 * different from current CPU (one in the rx-queue flow 5044 * table entry), switch if one of the following holds: 5045 * - Current CPU is unset (>= nr_cpu_ids). 5046 * - Current CPU is offline. 5047 * - The current CPU's queue tail has advanced beyond the 5048 * last packet that was enqueued using this table entry. 5049 * This guarantees that all previous packets for the flow 5050 * have been dequeued, thus preserving in order delivery. 5051 */ 5052 if (unlikely(tcpu != next_cpu) && 5053 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) || 5054 ((int)(READ_ONCE(per_cpu(softnet_data, tcpu).input_queue_head) - 5055 rflow->last_qtail)) >= 0)) { 5056 tcpu = next_cpu; 5057 rflow = set_rps_cpu(dev, skb, rflow, next_cpu, hash, 5058 flow_id); 5059 } 5060 5061 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) { 5062 *rflowp = rflow; 5063 cpu = tcpu; 5064 goto done; 5065 } 5066 } 5067 5068 try_rps: 5069 5070 if (map) { 5071 tcpu = map->cpus[reciprocal_scale(hash, map->len)]; 5072 if (cpu_online(tcpu)) { 5073 cpu = tcpu; 5074 goto done; 5075 } 5076 } 5077 5078 done: 5079 return cpu; 5080 } 5081 5082 #ifdef CONFIG_RFS_ACCEL 5083 5084 /** 5085 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 5086 * @dev: Device on which the filter was set 5087 * @rxq_index: RX queue index 5088 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 5089 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 5090 * 5091 * Drivers that implement ndo_rx_flow_steer() should periodically call 5092 * this function for each installed filter and remove the filters for 5093 * which it returns %true. 5094 */ 5095 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 5096 u32 flow_id, u16 filter_id) 5097 { 5098 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 5099 struct rps_dev_flow_table *flow_table; 5100 struct rps_dev_flow *rflow; 5101 bool expire = true; 5102 5103 rcu_read_lock(); 5104 flow_table = rcu_dereference(rxqueue->rps_flow_table); 5105 if (flow_table && flow_id < (1UL << flow_table->log)) { 5106 unsigned int cpu; 5107 5108 rflow = &flow_table->flows[flow_id]; 5109 cpu = READ_ONCE(rflow->cpu); 5110 if (READ_ONCE(rflow->filter) == filter_id && 5111 rps_flow_is_active(rflow, flow_table, cpu)) 5112 expire = false; 5113 } 5114 rcu_read_unlock(); 5115 return expire; 5116 } 5117 EXPORT_SYMBOL(rps_may_expire_flow); 5118 5119 #endif /* CONFIG_RFS_ACCEL */ 5120 5121 /* Called from hardirq (IPI) context */ 5122 static void rps_trigger_softirq(void *data) 5123 { 5124 struct softnet_data *sd = data; 5125 5126 ____napi_schedule(sd, &sd->backlog); 5127 /* Pairs with READ_ONCE() in softnet_seq_show() */ 5128 WRITE_ONCE(sd->received_rps, sd->received_rps + 1); 5129 } 5130 5131 #endif /* CONFIG_RPS */ 5132 5133 /* Called from hardirq (IPI) context */ 5134 static void trigger_rx_softirq(void *data) 5135 { 5136 struct softnet_data *sd = data; 5137 5138 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 5139 smp_store_release(&sd->defer_ipi_scheduled, 0); 5140 } 5141 5142 /* 5143 * After we queued a packet into sd->input_pkt_queue, 5144 * we need to make sure this queue is serviced soon. 5145 * 5146 * - If this is another cpu queue, link it to our rps_ipi_list, 5147 * and make sure we will process rps_ipi_list from net_rx_action(). 5148 * 5149 * - If this is our own queue, NAPI schedule our backlog. 5150 * Note that this also raises NET_RX_SOFTIRQ. 5151 */ 5152 static void napi_schedule_rps(struct softnet_data *sd) 5153 { 5154 struct softnet_data *mysd = this_cpu_ptr(&softnet_data); 5155 5156 #ifdef CONFIG_RPS 5157 if (sd != mysd) { 5158 if (use_backlog_threads()) { 5159 __napi_schedule_irqoff(&sd->backlog); 5160 return; 5161 } 5162 5163 sd->rps_ipi_next = mysd->rps_ipi_list; 5164 mysd->rps_ipi_list = sd; 5165 5166 /* If not called from net_rx_action() or napi_threaded_poll() 5167 * we have to raise NET_RX_SOFTIRQ. 5168 */ 5169 if (!mysd->in_net_rx_action && !mysd->in_napi_threaded_poll) 5170 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 5171 return; 5172 } 5173 #endif /* CONFIG_RPS */ 5174 __napi_schedule_irqoff(&mysd->backlog); 5175 } 5176 5177 void kick_defer_list_purge(struct softnet_data *sd, unsigned int cpu) 5178 { 5179 unsigned long flags; 5180 5181 if (use_backlog_threads()) { 5182 backlog_lock_irq_save(sd, &flags); 5183 5184 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) 5185 __napi_schedule_irqoff(&sd->backlog); 5186 5187 backlog_unlock_irq_restore(sd, &flags); 5188 5189 } else if (!cmpxchg(&sd->defer_ipi_scheduled, 0, 1)) { 5190 smp_call_function_single_async(cpu, &sd->defer_csd); 5191 } 5192 } 5193 5194 #ifdef CONFIG_NET_FLOW_LIMIT 5195 int netdev_flow_limit_table_len __read_mostly = (1 << 12); 5196 #endif 5197 5198 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen) 5199 { 5200 #ifdef CONFIG_NET_FLOW_LIMIT 5201 struct sd_flow_limit *fl; 5202 struct softnet_data *sd; 5203 unsigned int old_flow, new_flow; 5204 5205 if (qlen < (READ_ONCE(net_hotdata.max_backlog) >> 1)) 5206 return false; 5207 5208 sd = this_cpu_ptr(&softnet_data); 5209 5210 rcu_read_lock(); 5211 fl = rcu_dereference(sd->flow_limit); 5212 if (fl) { 5213 new_flow = hash_32(skb_get_hash(skb), fl->log_buckets); 5214 old_flow = fl->history[fl->history_head]; 5215 fl->history[fl->history_head] = new_flow; 5216 5217 fl->history_head++; 5218 fl->history_head &= FLOW_LIMIT_HISTORY - 1; 5219 5220 if (likely(fl->buckets[old_flow])) 5221 fl->buckets[old_flow]--; 5222 5223 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) { 5224 /* Pairs with READ_ONCE() in softnet_seq_show() */ 5225 WRITE_ONCE(fl->count, fl->count + 1); 5226 rcu_read_unlock(); 5227 return true; 5228 } 5229 } 5230 rcu_read_unlock(); 5231 #endif 5232 return false; 5233 } 5234 5235 /* 5236 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 5237 * queue (may be a remote CPU queue). 5238 */ 5239 static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 5240 unsigned int *qtail) 5241 { 5242 enum skb_drop_reason reason; 5243 struct softnet_data *sd; 5244 unsigned long flags; 5245 unsigned int qlen; 5246 int max_backlog; 5247 u32 tail; 5248 5249 reason = SKB_DROP_REASON_DEV_READY; 5250 if (!netif_running(skb->dev)) 5251 goto bad_dev; 5252 5253 reason = SKB_DROP_REASON_CPU_BACKLOG; 5254 sd = &per_cpu(softnet_data, cpu); 5255 5256 qlen = skb_queue_len_lockless(&sd->input_pkt_queue); 5257 max_backlog = READ_ONCE(net_hotdata.max_backlog); 5258 if (unlikely(qlen > max_backlog)) 5259 goto cpu_backlog_drop; 5260 backlog_lock_irq_save(sd, &flags); 5261 qlen = skb_queue_len(&sd->input_pkt_queue); 5262 if (qlen <= max_backlog && !skb_flow_limit(skb, qlen)) { 5263 if (!qlen) { 5264 /* Schedule NAPI for backlog device. We can use 5265 * non atomic operation as we own the queue lock. 5266 */ 5267 if (!__test_and_set_bit(NAPI_STATE_SCHED, 5268 &sd->backlog.state)) 5269 napi_schedule_rps(sd); 5270 } 5271 __skb_queue_tail(&sd->input_pkt_queue, skb); 5272 tail = rps_input_queue_tail_incr(sd); 5273 backlog_unlock_irq_restore(sd, &flags); 5274 5275 /* save the tail outside of the critical section */ 5276 rps_input_queue_tail_save(qtail, tail); 5277 return NET_RX_SUCCESS; 5278 } 5279 5280 backlog_unlock_irq_restore(sd, &flags); 5281 5282 cpu_backlog_drop: 5283 numa_drop_add(&sd->drop_counters, 1); 5284 bad_dev: 5285 dev_core_stats_rx_dropped_inc(skb->dev); 5286 kfree_skb_reason(skb, reason); 5287 return NET_RX_DROP; 5288 } 5289 5290 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb) 5291 { 5292 struct net_device *dev = skb->dev; 5293 struct netdev_rx_queue *rxqueue; 5294 5295 rxqueue = dev->_rx; 5296 5297 if (skb_rx_queue_recorded(skb)) { 5298 u16 index = skb_get_rx_queue(skb); 5299 5300 if (unlikely(index >= dev->real_num_rx_queues)) { 5301 WARN_ONCE(dev->real_num_rx_queues > 1, 5302 "%s received packet on queue %u, but number " 5303 "of RX queues is %u\n", 5304 dev->name, index, dev->real_num_rx_queues); 5305 5306 return rxqueue; /* Return first rxqueue */ 5307 } 5308 rxqueue += index; 5309 } 5310 return rxqueue; 5311 } 5312 5313 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp, 5314 const struct bpf_prog *xdp_prog) 5315 { 5316 void *orig_data, *orig_data_end, *hard_start; 5317 struct netdev_rx_queue *rxqueue; 5318 bool orig_bcast, orig_host; 5319 u32 mac_len, frame_sz; 5320 __be16 orig_eth_type; 5321 struct ethhdr *eth; 5322 u32 metalen, act; 5323 int off; 5324 5325 /* The XDP program wants to see the packet starting at the MAC 5326 * header. 5327 */ 5328 mac_len = skb->data - skb_mac_header(skb); 5329 hard_start = skb->data - skb_headroom(skb); 5330 5331 /* SKB "head" area always have tailroom for skb_shared_info */ 5332 frame_sz = (void *)skb_end_pointer(skb) - hard_start; 5333 frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 5334 5335 rxqueue = netif_get_rxqueue(skb); 5336 xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq); 5337 xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len, 5338 skb_headlen(skb) + mac_len, true); 5339 if (skb_is_nonlinear(skb)) { 5340 skb_shinfo(skb)->xdp_frags_size = skb->data_len; 5341 xdp_buff_set_frags_flag(xdp); 5342 } else { 5343 xdp_buff_clear_frags_flag(xdp); 5344 } 5345 5346 orig_data_end = xdp->data_end; 5347 orig_data = xdp->data; 5348 eth = (struct ethhdr *)xdp->data; 5349 orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr); 5350 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest); 5351 orig_eth_type = eth->h_proto; 5352 5353 act = bpf_prog_run_xdp(xdp_prog, xdp); 5354 5355 /* check if bpf_xdp_adjust_head was used */ 5356 off = xdp->data - orig_data; 5357 if (off) { 5358 if (off > 0) 5359 __skb_pull(skb, off); 5360 else if (off < 0) 5361 __skb_push(skb, -off); 5362 5363 skb->mac_header += off; 5364 skb_reset_network_header(skb); 5365 } 5366 5367 /* check if bpf_xdp_adjust_tail was used */ 5368 off = xdp->data_end - orig_data_end; 5369 if (off != 0) { 5370 skb_set_tail_pointer(skb, xdp->data_end - xdp->data); 5371 skb->len += off; /* positive on grow, negative on shrink */ 5372 } 5373 5374 /* XDP frag metadata (e.g. nr_frags) are updated in eBPF helpers 5375 * (e.g. bpf_xdp_adjust_tail), we need to update data_len here. 5376 */ 5377 if (xdp_buff_has_frags(xdp)) 5378 skb->data_len = skb_shinfo(skb)->xdp_frags_size; 5379 else 5380 skb->data_len = 0; 5381 5382 /* check if XDP changed eth hdr such SKB needs update */ 5383 eth = (struct ethhdr *)xdp->data; 5384 if ((orig_eth_type != eth->h_proto) || 5385 (orig_host != ether_addr_equal_64bits(eth->h_dest, 5386 skb->dev->dev_addr)) || 5387 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) { 5388 __skb_push(skb, ETH_HLEN); 5389 skb->pkt_type = PACKET_HOST; 5390 skb->protocol = eth_type_trans(skb, skb->dev); 5391 } 5392 5393 /* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull 5394 * before calling us again on redirect path. We do not call do_redirect 5395 * as we leave that up to the caller. 5396 * 5397 * Caller is responsible for managing lifetime of skb (i.e. calling 5398 * kfree_skb in response to actions it cannot handle/XDP_DROP). 5399 */ 5400 switch (act) { 5401 case XDP_REDIRECT: 5402 case XDP_TX: 5403 __skb_push(skb, mac_len); 5404 break; 5405 case XDP_PASS: 5406 metalen = xdp->data - xdp->data_meta; 5407 if (metalen) 5408 skb_metadata_set(skb, metalen); 5409 break; 5410 } 5411 5412 return act; 5413 } 5414 5415 static int 5416 netif_skb_check_for_xdp(struct sk_buff **pskb, const struct bpf_prog *prog) 5417 { 5418 struct sk_buff *skb = *pskb; 5419 int err, hroom, troom; 5420 5421 local_lock_nested_bh(&system_page_pool.bh_lock); 5422 err = skb_cow_data_for_xdp(this_cpu_read(system_page_pool.pool), pskb, prog); 5423 local_unlock_nested_bh(&system_page_pool.bh_lock); 5424 if (!err) 5425 return 0; 5426 5427 /* In case we have to go down the path and also linearize, 5428 * then lets do the pskb_expand_head() work just once here. 5429 */ 5430 hroom = XDP_PACKET_HEADROOM - skb_headroom(skb); 5431 troom = skb->tail + skb->data_len - skb->end; 5432 err = pskb_expand_head(skb, 5433 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0, 5434 troom > 0 ? troom + 128 : 0, GFP_ATOMIC); 5435 if (err) 5436 return err; 5437 5438 return skb_linearize(skb); 5439 } 5440 5441 static u32 netif_receive_generic_xdp(struct sk_buff **pskb, 5442 struct xdp_buff *xdp, 5443 const struct bpf_prog *xdp_prog) 5444 { 5445 struct sk_buff *skb = *pskb; 5446 u32 mac_len, act = XDP_DROP; 5447 5448 /* Reinjected packets coming from act_mirred or similar should 5449 * not get XDP generic processing. 5450 */ 5451 if (skb_is_redirected(skb)) 5452 return XDP_PASS; 5453 5454 /* XDP packets must have sufficient headroom of XDP_PACKET_HEADROOM 5455 * bytes. This is the guarantee that also native XDP provides, 5456 * thus we need to do it here as well. 5457 */ 5458 mac_len = skb->data - skb_mac_header(skb); 5459 __skb_push(skb, mac_len); 5460 5461 if (skb_cloned(skb) || skb_is_nonlinear(skb) || 5462 skb_headroom(skb) < XDP_PACKET_HEADROOM) { 5463 if (netif_skb_check_for_xdp(pskb, xdp_prog)) 5464 goto do_drop; 5465 } 5466 5467 __skb_pull(*pskb, mac_len); 5468 5469 act = bpf_prog_run_generic_xdp(*pskb, xdp, xdp_prog); 5470 switch (act) { 5471 case XDP_REDIRECT: 5472 case XDP_TX: 5473 case XDP_PASS: 5474 break; 5475 default: 5476 bpf_warn_invalid_xdp_action((*pskb)->dev, xdp_prog, act); 5477 fallthrough; 5478 case XDP_ABORTED: 5479 trace_xdp_exception((*pskb)->dev, xdp_prog, act); 5480 fallthrough; 5481 case XDP_DROP: 5482 do_drop: 5483 kfree_skb(*pskb); 5484 break; 5485 } 5486 5487 return act; 5488 } 5489 5490 /* When doing generic XDP we have to bypass the qdisc layer and the 5491 * network taps in order to match in-driver-XDP behavior. This also means 5492 * that XDP packets are able to starve other packets going through a qdisc, 5493 * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX 5494 * queues, so they do not have this starvation issue. 5495 */ 5496 void generic_xdp_tx(struct sk_buff *skb, const struct bpf_prog *xdp_prog) 5497 { 5498 struct net_device *dev = skb->dev; 5499 struct netdev_queue *txq; 5500 bool free_skb = true; 5501 int cpu, rc; 5502 5503 txq = netdev_core_pick_tx(dev, skb, NULL); 5504 cpu = smp_processor_id(); 5505 HARD_TX_LOCK(dev, txq, cpu); 5506 if (!netif_xmit_frozen_or_drv_stopped(txq)) { 5507 rc = netdev_start_xmit(skb, dev, txq, 0); 5508 if (dev_xmit_complete(rc)) 5509 free_skb = false; 5510 } 5511 HARD_TX_UNLOCK(dev, txq); 5512 if (free_skb) { 5513 trace_xdp_exception(dev, xdp_prog, XDP_TX); 5514 dev_core_stats_tx_dropped_inc(dev); 5515 kfree_skb(skb); 5516 } 5517 } 5518 5519 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key); 5520 5521 int do_xdp_generic(const struct bpf_prog *xdp_prog, struct sk_buff **pskb) 5522 { 5523 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; 5524 5525 if (xdp_prog) { 5526 struct xdp_buff xdp; 5527 u32 act; 5528 int err; 5529 5530 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx); 5531 act = netif_receive_generic_xdp(pskb, &xdp, xdp_prog); 5532 if (act != XDP_PASS) { 5533 switch (act) { 5534 case XDP_REDIRECT: 5535 err = xdp_do_generic_redirect((*pskb)->dev, *pskb, 5536 &xdp, xdp_prog); 5537 if (err) 5538 goto out_redir; 5539 break; 5540 case XDP_TX: 5541 generic_xdp_tx(*pskb, xdp_prog); 5542 break; 5543 } 5544 bpf_net_ctx_clear(bpf_net_ctx); 5545 return XDP_DROP; 5546 } 5547 bpf_net_ctx_clear(bpf_net_ctx); 5548 } 5549 return XDP_PASS; 5550 out_redir: 5551 bpf_net_ctx_clear(bpf_net_ctx); 5552 kfree_skb_reason(*pskb, SKB_DROP_REASON_XDP); 5553 return XDP_DROP; 5554 } 5555 EXPORT_SYMBOL_GPL(do_xdp_generic); 5556 5557 static int netif_rx_internal(struct sk_buff *skb) 5558 { 5559 int ret; 5560 5561 net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb); 5562 5563 trace_netif_rx(skb); 5564 5565 #ifdef CONFIG_RPS 5566 if (static_branch_unlikely(&rps_needed)) { 5567 struct rps_dev_flow voidflow, *rflow = &voidflow; 5568 int cpu; 5569 5570 rcu_read_lock(); 5571 5572 cpu = get_rps_cpu(skb->dev, skb, &rflow); 5573 if (cpu < 0) 5574 cpu = smp_processor_id(); 5575 5576 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 5577 5578 rcu_read_unlock(); 5579 } else 5580 #endif 5581 { 5582 unsigned int qtail; 5583 5584 ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail); 5585 } 5586 return ret; 5587 } 5588 5589 /** 5590 * __netif_rx - Slightly optimized version of netif_rx 5591 * @skb: buffer to post 5592 * 5593 * This behaves as netif_rx except that it does not disable bottom halves. 5594 * As a result this function may only be invoked from the interrupt context 5595 * (either hard or soft interrupt). 5596 */ 5597 int __netif_rx(struct sk_buff *skb) 5598 { 5599 int ret; 5600 5601 lockdep_assert_once(hardirq_count() | softirq_count()); 5602 5603 trace_netif_rx_entry(skb); 5604 ret = netif_rx_internal(skb); 5605 trace_netif_rx_exit(ret); 5606 return ret; 5607 } 5608 EXPORT_SYMBOL(__netif_rx); 5609 5610 /** 5611 * netif_rx - post buffer to the network code 5612 * @skb: buffer to post 5613 * 5614 * This function receives a packet from a device driver and queues it for 5615 * the upper (protocol) levels to process via the backlog NAPI device. It 5616 * always succeeds. The buffer may be dropped during processing for 5617 * congestion control or by the protocol layers. 5618 * The network buffer is passed via the backlog NAPI device. Modern NIC 5619 * driver should use NAPI and GRO. 5620 * This function can used from interrupt and from process context. The 5621 * caller from process context must not disable interrupts before invoking 5622 * this function. 5623 * 5624 * return values: 5625 * NET_RX_SUCCESS (no congestion) 5626 * NET_RX_DROP (packet was dropped) 5627 * 5628 */ 5629 int netif_rx(struct sk_buff *skb) 5630 { 5631 bool need_bh_off = !(hardirq_count() | softirq_count()); 5632 int ret; 5633 5634 if (need_bh_off) 5635 local_bh_disable(); 5636 trace_netif_rx_entry(skb); 5637 ret = netif_rx_internal(skb); 5638 trace_netif_rx_exit(ret); 5639 if (need_bh_off) 5640 local_bh_enable(); 5641 return ret; 5642 } 5643 EXPORT_SYMBOL(netif_rx); 5644 5645 static __latent_entropy void net_tx_action(void) 5646 { 5647 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 5648 5649 if (sd->completion_queue) { 5650 struct sk_buff *clist; 5651 5652 local_irq_disable(); 5653 clist = sd->completion_queue; 5654 sd->completion_queue = NULL; 5655 local_irq_enable(); 5656 5657 while (clist) { 5658 struct sk_buff *skb = clist; 5659 5660 clist = clist->next; 5661 5662 WARN_ON(refcount_read(&skb->users)); 5663 if (likely(get_kfree_skb_cb(skb)->reason == SKB_CONSUMED)) 5664 trace_consume_skb(skb, net_tx_action); 5665 else 5666 trace_kfree_skb(skb, net_tx_action, 5667 get_kfree_skb_cb(skb)->reason, NULL); 5668 5669 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) 5670 __kfree_skb(skb); 5671 else 5672 __napi_kfree_skb(skb, 5673 get_kfree_skb_cb(skb)->reason); 5674 } 5675 } 5676 5677 if (sd->output_queue) { 5678 struct Qdisc *head; 5679 5680 local_irq_disable(); 5681 head = sd->output_queue; 5682 sd->output_queue = NULL; 5683 sd->output_queue_tailp = &sd->output_queue; 5684 local_irq_enable(); 5685 5686 rcu_read_lock(); 5687 5688 while (head) { 5689 struct Qdisc *q = head; 5690 spinlock_t *root_lock = NULL; 5691 5692 head = head->next_sched; 5693 5694 /* We need to make sure head->next_sched is read 5695 * before clearing __QDISC_STATE_SCHED 5696 */ 5697 smp_mb__before_atomic(); 5698 5699 if (!(q->flags & TCQ_F_NOLOCK)) { 5700 root_lock = qdisc_lock(q); 5701 spin_lock(root_lock); 5702 } else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, 5703 &q->state))) { 5704 /* There is a synchronize_net() between 5705 * STATE_DEACTIVATED flag being set and 5706 * qdisc_reset()/some_qdisc_is_busy() in 5707 * dev_deactivate(), so we can safely bail out 5708 * early here to avoid data race between 5709 * qdisc_deactivate() and some_qdisc_is_busy() 5710 * for lockless qdisc. 5711 */ 5712 clear_bit(__QDISC_STATE_SCHED, &q->state); 5713 continue; 5714 } 5715 5716 clear_bit(__QDISC_STATE_SCHED, &q->state); 5717 qdisc_run(q); 5718 if (root_lock) 5719 spin_unlock(root_lock); 5720 } 5721 5722 rcu_read_unlock(); 5723 } 5724 5725 xfrm_dev_backlog(sd); 5726 } 5727 5728 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE) 5729 /* This hook is defined here for ATM LANE */ 5730 int (*br_fdb_test_addr_hook)(struct net_device *dev, 5731 unsigned char *addr) __read_mostly; 5732 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 5733 #endif 5734 5735 /** 5736 * netdev_is_rx_handler_busy - check if receive handler is registered 5737 * @dev: device to check 5738 * 5739 * Check if a receive handler is already registered for a given device. 5740 * Return true if there one. 5741 * 5742 * The caller must hold the rtnl_mutex. 5743 */ 5744 bool netdev_is_rx_handler_busy(struct net_device *dev) 5745 { 5746 ASSERT_RTNL(); 5747 return dev && rtnl_dereference(dev->rx_handler); 5748 } 5749 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy); 5750 5751 /** 5752 * netdev_rx_handler_register - register receive handler 5753 * @dev: device to register a handler for 5754 * @rx_handler: receive handler to register 5755 * @rx_handler_data: data pointer that is used by rx handler 5756 * 5757 * Register a receive handler for a device. This handler will then be 5758 * called from __netif_receive_skb. A negative errno code is returned 5759 * on a failure. 5760 * 5761 * The caller must hold the rtnl_mutex. 5762 * 5763 * For a general description of rx_handler, see enum rx_handler_result. 5764 */ 5765 int netdev_rx_handler_register(struct net_device *dev, 5766 rx_handler_func_t *rx_handler, 5767 void *rx_handler_data) 5768 { 5769 if (netdev_is_rx_handler_busy(dev)) 5770 return -EBUSY; 5771 5772 if (dev->priv_flags & IFF_NO_RX_HANDLER) 5773 return -EINVAL; 5774 5775 /* Note: rx_handler_data must be set before rx_handler */ 5776 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 5777 rcu_assign_pointer(dev->rx_handler, rx_handler); 5778 5779 return 0; 5780 } 5781 EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 5782 5783 /** 5784 * netdev_rx_handler_unregister - unregister receive handler 5785 * @dev: device to unregister a handler from 5786 * 5787 * Unregister a receive handler from a device. 5788 * 5789 * The caller must hold the rtnl_mutex. 5790 */ 5791 void netdev_rx_handler_unregister(struct net_device *dev) 5792 { 5793 5794 ASSERT_RTNL(); 5795 RCU_INIT_POINTER(dev->rx_handler, NULL); 5796 /* a reader seeing a non NULL rx_handler in a rcu_read_lock() 5797 * section has a guarantee to see a non NULL rx_handler_data 5798 * as well. 5799 */ 5800 synchronize_net(); 5801 RCU_INIT_POINTER(dev->rx_handler_data, NULL); 5802 } 5803 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 5804 5805 /* 5806 * Limit the use of PFMEMALLOC reserves to those protocols that implement 5807 * the special handling of PFMEMALLOC skbs. 5808 */ 5809 static bool skb_pfmemalloc_protocol(struct sk_buff *skb) 5810 { 5811 switch (skb->protocol) { 5812 case htons(ETH_P_ARP): 5813 case htons(ETH_P_IP): 5814 case htons(ETH_P_IPV6): 5815 case htons(ETH_P_8021Q): 5816 case htons(ETH_P_8021AD): 5817 return true; 5818 default: 5819 return false; 5820 } 5821 } 5822 5823 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev, 5824 int *ret, struct net_device *orig_dev) 5825 { 5826 if (nf_hook_ingress_active(skb)) { 5827 int ingress_retval; 5828 5829 if (*pt_prev) { 5830 *ret = deliver_skb(skb, *pt_prev, orig_dev); 5831 *pt_prev = NULL; 5832 } 5833 5834 rcu_read_lock(); 5835 ingress_retval = nf_hook_ingress(skb); 5836 rcu_read_unlock(); 5837 return ingress_retval; 5838 } 5839 return 0; 5840 } 5841 5842 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc, 5843 struct packet_type **ppt_prev) 5844 { 5845 enum skb_drop_reason drop_reason = SKB_DROP_REASON_UNHANDLED_PROTO; 5846 struct packet_type *ptype, *pt_prev; 5847 rx_handler_func_t *rx_handler; 5848 struct sk_buff *skb = *pskb; 5849 struct net_device *orig_dev; 5850 bool deliver_exact = false; 5851 int ret = NET_RX_DROP; 5852 __be16 type; 5853 5854 net_timestamp_check(!READ_ONCE(net_hotdata.tstamp_prequeue), skb); 5855 5856 trace_netif_receive_skb(skb); 5857 5858 orig_dev = skb->dev; 5859 5860 skb_reset_network_header(skb); 5861 #if !defined(CONFIG_DEBUG_NET) 5862 /* We plan to no longer reset the transport header here. 5863 * Give some time to fuzzers and dev build to catch bugs 5864 * in network stacks. 5865 */ 5866 if (!skb_transport_header_was_set(skb)) 5867 skb_reset_transport_header(skb); 5868 #endif 5869 skb_reset_mac_len(skb); 5870 5871 pt_prev = NULL; 5872 5873 another_round: 5874 skb->skb_iif = skb->dev->ifindex; 5875 5876 __this_cpu_inc(softnet_data.processed); 5877 5878 if (static_branch_unlikely(&generic_xdp_needed_key)) { 5879 int ret2; 5880 5881 migrate_disable(); 5882 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), 5883 &skb); 5884 migrate_enable(); 5885 5886 if (ret2 != XDP_PASS) { 5887 ret = NET_RX_DROP; 5888 goto out; 5889 } 5890 } 5891 5892 if (eth_type_vlan(skb->protocol)) { 5893 skb = skb_vlan_untag(skb); 5894 if (unlikely(!skb)) 5895 goto out; 5896 } 5897 5898 if (skb_skip_tc_classify(skb)) 5899 goto skip_classify; 5900 5901 if (pfmemalloc) 5902 goto skip_taps; 5903 5904 list_for_each_entry_rcu(ptype, &dev_net_rcu(skb->dev)->ptype_all, 5905 list) { 5906 if (pt_prev) 5907 ret = deliver_skb(skb, pt_prev, orig_dev); 5908 pt_prev = ptype; 5909 } 5910 5911 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) { 5912 if (pt_prev) 5913 ret = deliver_skb(skb, pt_prev, orig_dev); 5914 pt_prev = ptype; 5915 } 5916 5917 skip_taps: 5918 #ifdef CONFIG_NET_INGRESS 5919 if (static_branch_unlikely(&ingress_needed_key)) { 5920 bool another = false; 5921 5922 nf_skip_egress(skb, true); 5923 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev, 5924 &another); 5925 if (another) 5926 goto another_round; 5927 if (!skb) 5928 goto out; 5929 5930 nf_skip_egress(skb, false); 5931 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0) 5932 goto out; 5933 } 5934 #endif 5935 skb_reset_redirect(skb); 5936 skip_classify: 5937 if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) { 5938 drop_reason = SKB_DROP_REASON_PFMEMALLOC; 5939 goto drop; 5940 } 5941 5942 if (skb_vlan_tag_present(skb)) { 5943 if (pt_prev) { 5944 ret = deliver_skb(skb, pt_prev, orig_dev); 5945 pt_prev = NULL; 5946 } 5947 if (vlan_do_receive(&skb)) 5948 goto another_round; 5949 else if (unlikely(!skb)) 5950 goto out; 5951 } 5952 5953 rx_handler = rcu_dereference(skb->dev->rx_handler); 5954 if (rx_handler) { 5955 if (pt_prev) { 5956 ret = deliver_skb(skb, pt_prev, orig_dev); 5957 pt_prev = NULL; 5958 } 5959 switch (rx_handler(&skb)) { 5960 case RX_HANDLER_CONSUMED: 5961 ret = NET_RX_SUCCESS; 5962 goto out; 5963 case RX_HANDLER_ANOTHER: 5964 goto another_round; 5965 case RX_HANDLER_EXACT: 5966 deliver_exact = true; 5967 break; 5968 case RX_HANDLER_PASS: 5969 break; 5970 default: 5971 BUG(); 5972 } 5973 } 5974 5975 if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) { 5976 check_vlan_id: 5977 if (skb_vlan_tag_get_id(skb)) { 5978 /* Vlan id is non 0 and vlan_do_receive() above couldn't 5979 * find vlan device. 5980 */ 5981 skb->pkt_type = PACKET_OTHERHOST; 5982 } else if (eth_type_vlan(skb->protocol)) { 5983 /* Outer header is 802.1P with vlan 0, inner header is 5984 * 802.1Q or 802.1AD and vlan_do_receive() above could 5985 * not find vlan dev for vlan id 0. 5986 */ 5987 __vlan_hwaccel_clear_tag(skb); 5988 skb = skb_vlan_untag(skb); 5989 if (unlikely(!skb)) 5990 goto out; 5991 if (vlan_do_receive(&skb)) 5992 /* After stripping off 802.1P header with vlan 0 5993 * vlan dev is found for inner header. 5994 */ 5995 goto another_round; 5996 else if (unlikely(!skb)) 5997 goto out; 5998 else 5999 /* We have stripped outer 802.1P vlan 0 header. 6000 * But could not find vlan dev. 6001 * check again for vlan id to set OTHERHOST. 6002 */ 6003 goto check_vlan_id; 6004 } 6005 /* Note: we might in the future use prio bits 6006 * and set skb->priority like in vlan_do_receive() 6007 * For the time being, just ignore Priority Code Point 6008 */ 6009 __vlan_hwaccel_clear_tag(skb); 6010 } 6011 6012 type = skb->protocol; 6013 6014 /* deliver only exact match when indicated */ 6015 if (likely(!deliver_exact)) { 6016 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 6017 &ptype_base[ntohs(type) & 6018 PTYPE_HASH_MASK]); 6019 6020 /* orig_dev and skb->dev could belong to different netns; 6021 * Even in such case we need to traverse only the list 6022 * coming from skb->dev, as the ptype owner (packet socket) 6023 * will use dev_net(skb->dev) to do namespace filtering. 6024 */ 6025 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 6026 &dev_net_rcu(skb->dev)->ptype_specific); 6027 } 6028 6029 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 6030 &orig_dev->ptype_specific); 6031 6032 if (unlikely(skb->dev != orig_dev)) { 6033 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 6034 &skb->dev->ptype_specific); 6035 } 6036 6037 if (pt_prev) { 6038 *ppt_prev = pt_prev; 6039 } else { 6040 drop: 6041 if (!deliver_exact) 6042 dev_core_stats_rx_dropped_inc(skb->dev); 6043 else 6044 dev_core_stats_rx_nohandler_inc(skb->dev); 6045 6046 kfree_skb_reason(skb, drop_reason); 6047 /* Jamal, now you will not able to escape explaining 6048 * me how you were going to use this. :-) 6049 */ 6050 ret = NET_RX_DROP; 6051 } 6052 6053 out: 6054 /* The invariant here is that if *ppt_prev is not NULL 6055 * then skb should also be non-NULL. 6056 * 6057 * Apparently *ppt_prev assignment above holds this invariant due to 6058 * skb dereferencing near it. 6059 */ 6060 *pskb = skb; 6061 return ret; 6062 } 6063 6064 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc) 6065 { 6066 struct net_device *orig_dev = skb->dev; 6067 struct packet_type *pt_prev = NULL; 6068 int ret; 6069 6070 ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev); 6071 if (pt_prev) 6072 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb, 6073 skb->dev, pt_prev, orig_dev); 6074 return ret; 6075 } 6076 6077 /** 6078 * netif_receive_skb_core - special purpose version of netif_receive_skb 6079 * @skb: buffer to process 6080 * 6081 * More direct receive version of netif_receive_skb(). It should 6082 * only be used by callers that have a need to skip RPS and Generic XDP. 6083 * Caller must also take care of handling if ``(page_is_)pfmemalloc``. 6084 * 6085 * This function may only be called from softirq context and interrupts 6086 * should be enabled. 6087 * 6088 * Return values (usually ignored): 6089 * NET_RX_SUCCESS: no congestion 6090 * NET_RX_DROP: packet was dropped 6091 */ 6092 int netif_receive_skb_core(struct sk_buff *skb) 6093 { 6094 int ret; 6095 6096 rcu_read_lock(); 6097 ret = __netif_receive_skb_one_core(skb, false); 6098 rcu_read_unlock(); 6099 6100 return ret; 6101 } 6102 EXPORT_SYMBOL(netif_receive_skb_core); 6103 6104 static inline void __netif_receive_skb_list_ptype(struct list_head *head, 6105 struct packet_type *pt_prev, 6106 struct net_device *orig_dev) 6107 { 6108 struct sk_buff *skb, *next; 6109 6110 if (!pt_prev) 6111 return; 6112 if (list_empty(head)) 6113 return; 6114 if (pt_prev->list_func != NULL) 6115 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv, 6116 ip_list_rcv, head, pt_prev, orig_dev); 6117 else 6118 list_for_each_entry_safe(skb, next, head, list) { 6119 skb_list_del_init(skb); 6120 pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 6121 } 6122 } 6123 6124 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc) 6125 { 6126 /* Fast-path assumptions: 6127 * - There is no RX handler. 6128 * - Only one packet_type matches. 6129 * If either of these fails, we will end up doing some per-packet 6130 * processing in-line, then handling the 'last ptype' for the whole 6131 * sublist. This can't cause out-of-order delivery to any single ptype, 6132 * because the 'last ptype' must be constant across the sublist, and all 6133 * other ptypes are handled per-packet. 6134 */ 6135 /* Current (common) ptype of sublist */ 6136 struct packet_type *pt_curr = NULL; 6137 /* Current (common) orig_dev of sublist */ 6138 struct net_device *od_curr = NULL; 6139 struct sk_buff *skb, *next; 6140 LIST_HEAD(sublist); 6141 6142 list_for_each_entry_safe(skb, next, head, list) { 6143 struct net_device *orig_dev = skb->dev; 6144 struct packet_type *pt_prev = NULL; 6145 6146 skb_list_del_init(skb); 6147 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev); 6148 if (!pt_prev) 6149 continue; 6150 if (pt_curr != pt_prev || od_curr != orig_dev) { 6151 /* dispatch old sublist */ 6152 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr); 6153 /* start new sublist */ 6154 INIT_LIST_HEAD(&sublist); 6155 pt_curr = pt_prev; 6156 od_curr = orig_dev; 6157 } 6158 list_add_tail(&skb->list, &sublist); 6159 } 6160 6161 /* dispatch final sublist */ 6162 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr); 6163 } 6164 6165 static int __netif_receive_skb(struct sk_buff *skb) 6166 { 6167 int ret; 6168 6169 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) { 6170 unsigned int noreclaim_flag; 6171 6172 /* 6173 * PFMEMALLOC skbs are special, they should 6174 * - be delivered to SOCK_MEMALLOC sockets only 6175 * - stay away from userspace 6176 * - have bounded memory usage 6177 * 6178 * Use PF_MEMALLOC as this saves us from propagating the allocation 6179 * context down to all allocation sites. 6180 */ 6181 noreclaim_flag = memalloc_noreclaim_save(); 6182 ret = __netif_receive_skb_one_core(skb, true); 6183 memalloc_noreclaim_restore(noreclaim_flag); 6184 } else 6185 ret = __netif_receive_skb_one_core(skb, false); 6186 6187 return ret; 6188 } 6189 6190 static void __netif_receive_skb_list(struct list_head *head) 6191 { 6192 unsigned long noreclaim_flag = 0; 6193 struct sk_buff *skb, *next; 6194 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */ 6195 6196 list_for_each_entry_safe(skb, next, head, list) { 6197 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) { 6198 struct list_head sublist; 6199 6200 /* Handle the previous sublist */ 6201 list_cut_before(&sublist, head, &skb->list); 6202 if (!list_empty(&sublist)) 6203 __netif_receive_skb_list_core(&sublist, pfmemalloc); 6204 pfmemalloc = !pfmemalloc; 6205 /* See comments in __netif_receive_skb */ 6206 if (pfmemalloc) 6207 noreclaim_flag = memalloc_noreclaim_save(); 6208 else 6209 memalloc_noreclaim_restore(noreclaim_flag); 6210 } 6211 } 6212 /* Handle the remaining sublist */ 6213 if (!list_empty(head)) 6214 __netif_receive_skb_list_core(head, pfmemalloc); 6215 /* Restore pflags */ 6216 if (pfmemalloc) 6217 memalloc_noreclaim_restore(noreclaim_flag); 6218 } 6219 6220 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp) 6221 { 6222 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog); 6223 struct bpf_prog *new = xdp->prog; 6224 int ret = 0; 6225 6226 switch (xdp->command) { 6227 case XDP_SETUP_PROG: 6228 rcu_assign_pointer(dev->xdp_prog, new); 6229 if (old) 6230 bpf_prog_put(old); 6231 6232 if (old && !new) { 6233 static_branch_dec(&generic_xdp_needed_key); 6234 } else if (new && !old) { 6235 static_branch_inc(&generic_xdp_needed_key); 6236 netif_disable_lro(dev); 6237 dev_disable_gro_hw(dev); 6238 } 6239 break; 6240 6241 default: 6242 ret = -EINVAL; 6243 break; 6244 } 6245 6246 return ret; 6247 } 6248 6249 static int netif_receive_skb_internal(struct sk_buff *skb) 6250 { 6251 int ret; 6252 6253 net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb); 6254 6255 if (skb_defer_rx_timestamp(skb)) 6256 return NET_RX_SUCCESS; 6257 6258 rcu_read_lock(); 6259 #ifdef CONFIG_RPS 6260 if (static_branch_unlikely(&rps_needed)) { 6261 struct rps_dev_flow voidflow, *rflow = &voidflow; 6262 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 6263 6264 if (cpu >= 0) { 6265 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 6266 rcu_read_unlock(); 6267 return ret; 6268 } 6269 } 6270 #endif 6271 ret = __netif_receive_skb(skb); 6272 rcu_read_unlock(); 6273 return ret; 6274 } 6275 6276 void netif_receive_skb_list_internal(struct list_head *head) 6277 { 6278 struct sk_buff *skb, *next; 6279 LIST_HEAD(sublist); 6280 6281 list_for_each_entry_safe(skb, next, head, list) { 6282 net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), 6283 skb); 6284 skb_list_del_init(skb); 6285 if (!skb_defer_rx_timestamp(skb)) 6286 list_add_tail(&skb->list, &sublist); 6287 } 6288 list_splice_init(&sublist, head); 6289 6290 rcu_read_lock(); 6291 #ifdef CONFIG_RPS 6292 if (static_branch_unlikely(&rps_needed)) { 6293 list_for_each_entry_safe(skb, next, head, list) { 6294 struct rps_dev_flow voidflow, *rflow = &voidflow; 6295 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 6296 6297 if (cpu >= 0) { 6298 /* Will be handled, remove from list */ 6299 skb_list_del_init(skb); 6300 enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 6301 } 6302 } 6303 } 6304 #endif 6305 __netif_receive_skb_list(head); 6306 rcu_read_unlock(); 6307 } 6308 6309 /** 6310 * netif_receive_skb - process receive buffer from network 6311 * @skb: buffer to process 6312 * 6313 * netif_receive_skb() is the main receive data processing function. 6314 * It always succeeds. The buffer may be dropped during processing 6315 * for congestion control or by the protocol layers. 6316 * 6317 * This function may only be called from softirq context and interrupts 6318 * should be enabled. 6319 * 6320 * Return values (usually ignored): 6321 * NET_RX_SUCCESS: no congestion 6322 * NET_RX_DROP: packet was dropped 6323 */ 6324 int netif_receive_skb(struct sk_buff *skb) 6325 { 6326 int ret; 6327 6328 trace_netif_receive_skb_entry(skb); 6329 6330 ret = netif_receive_skb_internal(skb); 6331 trace_netif_receive_skb_exit(ret); 6332 6333 return ret; 6334 } 6335 EXPORT_SYMBOL(netif_receive_skb); 6336 6337 /** 6338 * netif_receive_skb_list - process many receive buffers from network 6339 * @head: list of skbs to process. 6340 * 6341 * Since return value of netif_receive_skb() is normally ignored, and 6342 * wouldn't be meaningful for a list, this function returns void. 6343 * 6344 * This function may only be called from softirq context and interrupts 6345 * should be enabled. 6346 */ 6347 void netif_receive_skb_list(struct list_head *head) 6348 { 6349 struct sk_buff *skb; 6350 6351 if (list_empty(head)) 6352 return; 6353 if (trace_netif_receive_skb_list_entry_enabled()) { 6354 list_for_each_entry(skb, head, list) 6355 trace_netif_receive_skb_list_entry(skb); 6356 } 6357 netif_receive_skb_list_internal(head); 6358 trace_netif_receive_skb_list_exit(0); 6359 } 6360 EXPORT_SYMBOL(netif_receive_skb_list); 6361 6362 /* Network device is going away, flush any packets still pending */ 6363 static void flush_backlog(struct work_struct *work) 6364 { 6365 struct sk_buff *skb, *tmp; 6366 struct sk_buff_head list; 6367 struct softnet_data *sd; 6368 6369 __skb_queue_head_init(&list); 6370 local_bh_disable(); 6371 sd = this_cpu_ptr(&softnet_data); 6372 6373 backlog_lock_irq_disable(sd); 6374 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 6375 if (READ_ONCE(skb->dev->reg_state) == NETREG_UNREGISTERING) { 6376 __skb_unlink(skb, &sd->input_pkt_queue); 6377 __skb_queue_tail(&list, skb); 6378 rps_input_queue_head_incr(sd); 6379 } 6380 } 6381 backlog_unlock_irq_enable(sd); 6382 6383 local_lock_nested_bh(&softnet_data.process_queue_bh_lock); 6384 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 6385 if (READ_ONCE(skb->dev->reg_state) == NETREG_UNREGISTERING) { 6386 __skb_unlink(skb, &sd->process_queue); 6387 __skb_queue_tail(&list, skb); 6388 rps_input_queue_head_incr(sd); 6389 } 6390 } 6391 local_unlock_nested_bh(&softnet_data.process_queue_bh_lock); 6392 local_bh_enable(); 6393 6394 __skb_queue_purge_reason(&list, SKB_DROP_REASON_DEV_READY); 6395 } 6396 6397 static bool flush_required(int cpu) 6398 { 6399 #if IS_ENABLED(CONFIG_RPS) 6400 struct softnet_data *sd = &per_cpu(softnet_data, cpu); 6401 bool do_flush; 6402 6403 backlog_lock_irq_disable(sd); 6404 6405 /* as insertion into process_queue happens with the rps lock held, 6406 * process_queue access may race only with dequeue 6407 */ 6408 do_flush = !skb_queue_empty(&sd->input_pkt_queue) || 6409 !skb_queue_empty_lockless(&sd->process_queue); 6410 backlog_unlock_irq_enable(sd); 6411 6412 return do_flush; 6413 #endif 6414 /* without RPS we can't safely check input_pkt_queue: during a 6415 * concurrent remote skb_queue_splice() we can detect as empty both 6416 * input_pkt_queue and process_queue even if the latter could end-up 6417 * containing a lot of packets. 6418 */ 6419 return true; 6420 } 6421 6422 struct flush_backlogs { 6423 cpumask_t flush_cpus; 6424 struct work_struct w[]; 6425 }; 6426 6427 static struct flush_backlogs *flush_backlogs_alloc(void) 6428 { 6429 return kmalloc(struct_size_t(struct flush_backlogs, w, nr_cpu_ids), 6430 GFP_KERNEL); 6431 } 6432 6433 static struct flush_backlogs *flush_backlogs_fallback; 6434 static DEFINE_MUTEX(flush_backlogs_mutex); 6435 6436 static void flush_all_backlogs(void) 6437 { 6438 struct flush_backlogs *ptr = flush_backlogs_alloc(); 6439 unsigned int cpu; 6440 6441 if (!ptr) { 6442 mutex_lock(&flush_backlogs_mutex); 6443 ptr = flush_backlogs_fallback; 6444 } 6445 cpumask_clear(&ptr->flush_cpus); 6446 6447 cpus_read_lock(); 6448 6449 for_each_online_cpu(cpu) { 6450 if (flush_required(cpu)) { 6451 INIT_WORK(&ptr->w[cpu], flush_backlog); 6452 queue_work_on(cpu, system_highpri_wq, &ptr->w[cpu]); 6453 __cpumask_set_cpu(cpu, &ptr->flush_cpus); 6454 } 6455 } 6456 6457 /* we can have in flight packet[s] on the cpus we are not flushing, 6458 * synchronize_net() in unregister_netdevice_many() will take care of 6459 * them. 6460 */ 6461 for_each_cpu(cpu, &ptr->flush_cpus) 6462 flush_work(&ptr->w[cpu]); 6463 6464 cpus_read_unlock(); 6465 6466 if (ptr != flush_backlogs_fallback) 6467 kfree(ptr); 6468 else 6469 mutex_unlock(&flush_backlogs_mutex); 6470 } 6471 6472 static void net_rps_send_ipi(struct softnet_data *remsd) 6473 { 6474 #ifdef CONFIG_RPS 6475 while (remsd) { 6476 struct softnet_data *next = remsd->rps_ipi_next; 6477 6478 if (cpu_online(remsd->cpu)) 6479 smp_call_function_single_async(remsd->cpu, &remsd->csd); 6480 remsd = next; 6481 } 6482 #endif 6483 } 6484 6485 /* 6486 * net_rps_action_and_irq_enable sends any pending IPI's for rps. 6487 * Note: called with local irq disabled, but exits with local irq enabled. 6488 */ 6489 static void net_rps_action_and_irq_enable(struct softnet_data *sd) 6490 { 6491 #ifdef CONFIG_RPS 6492 struct softnet_data *remsd = sd->rps_ipi_list; 6493 6494 if (!use_backlog_threads() && remsd) { 6495 sd->rps_ipi_list = NULL; 6496 6497 local_irq_enable(); 6498 6499 /* Send pending IPI's to kick RPS processing on remote cpus. */ 6500 net_rps_send_ipi(remsd); 6501 } else 6502 #endif 6503 local_irq_enable(); 6504 } 6505 6506 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd) 6507 { 6508 #ifdef CONFIG_RPS 6509 return !use_backlog_threads() && sd->rps_ipi_list; 6510 #else 6511 return false; 6512 #endif 6513 } 6514 6515 static int process_backlog(struct napi_struct *napi, int quota) 6516 { 6517 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 6518 bool again = true; 6519 int work = 0; 6520 6521 /* Check if we have pending ipi, its better to send them now, 6522 * not waiting net_rx_action() end. 6523 */ 6524 if (sd_has_rps_ipi_waiting(sd)) { 6525 local_irq_disable(); 6526 net_rps_action_and_irq_enable(sd); 6527 } 6528 6529 napi->weight = READ_ONCE(net_hotdata.dev_rx_weight); 6530 while (again) { 6531 struct sk_buff *skb; 6532 6533 local_lock_nested_bh(&softnet_data.process_queue_bh_lock); 6534 while ((skb = __skb_dequeue(&sd->process_queue))) { 6535 local_unlock_nested_bh(&softnet_data.process_queue_bh_lock); 6536 rcu_read_lock(); 6537 __netif_receive_skb(skb); 6538 rcu_read_unlock(); 6539 if (++work >= quota) { 6540 rps_input_queue_head_add(sd, work); 6541 return work; 6542 } 6543 6544 local_lock_nested_bh(&softnet_data.process_queue_bh_lock); 6545 } 6546 local_unlock_nested_bh(&softnet_data.process_queue_bh_lock); 6547 6548 backlog_lock_irq_disable(sd); 6549 if (skb_queue_empty(&sd->input_pkt_queue)) { 6550 /* 6551 * Inline a custom version of __napi_complete(). 6552 * only current cpu owns and manipulates this napi, 6553 * and NAPI_STATE_SCHED is the only possible flag set 6554 * on backlog. 6555 * We can use a plain write instead of clear_bit(), 6556 * and we dont need an smp_mb() memory barrier. 6557 */ 6558 napi->state &= NAPIF_STATE_THREADED; 6559 again = false; 6560 } else { 6561 local_lock_nested_bh(&softnet_data.process_queue_bh_lock); 6562 skb_queue_splice_tail_init(&sd->input_pkt_queue, 6563 &sd->process_queue); 6564 local_unlock_nested_bh(&softnet_data.process_queue_bh_lock); 6565 } 6566 backlog_unlock_irq_enable(sd); 6567 } 6568 6569 if (work) 6570 rps_input_queue_head_add(sd, work); 6571 return work; 6572 } 6573 6574 /** 6575 * __napi_schedule - schedule for receive 6576 * @n: entry to schedule 6577 * 6578 * The entry's receive function will be scheduled to run. 6579 * Consider using __napi_schedule_irqoff() if hard irqs are masked. 6580 */ 6581 void __napi_schedule(struct napi_struct *n) 6582 { 6583 unsigned long flags; 6584 6585 local_irq_save(flags); 6586 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 6587 local_irq_restore(flags); 6588 } 6589 EXPORT_SYMBOL(__napi_schedule); 6590 6591 /** 6592 * napi_schedule_prep - check if napi can be scheduled 6593 * @n: napi context 6594 * 6595 * Test if NAPI routine is already running, and if not mark 6596 * it as running. This is used as a condition variable to 6597 * insure only one NAPI poll instance runs. We also make 6598 * sure there is no pending NAPI disable. 6599 */ 6600 bool napi_schedule_prep(struct napi_struct *n) 6601 { 6602 unsigned long new, val = READ_ONCE(n->state); 6603 6604 do { 6605 if (unlikely(val & NAPIF_STATE_DISABLE)) 6606 return false; 6607 new = val | NAPIF_STATE_SCHED; 6608 6609 /* Sets STATE_MISSED bit if STATE_SCHED was already set 6610 * This was suggested by Alexander Duyck, as compiler 6611 * emits better code than : 6612 * if (val & NAPIF_STATE_SCHED) 6613 * new |= NAPIF_STATE_MISSED; 6614 */ 6615 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED * 6616 NAPIF_STATE_MISSED; 6617 } while (!try_cmpxchg(&n->state, &val, new)); 6618 6619 return !(val & NAPIF_STATE_SCHED); 6620 } 6621 EXPORT_SYMBOL(napi_schedule_prep); 6622 6623 /** 6624 * __napi_schedule_irqoff - schedule for receive 6625 * @n: entry to schedule 6626 * 6627 * Variant of __napi_schedule() assuming hard irqs are masked. 6628 * 6629 * On PREEMPT_RT enabled kernels this maps to __napi_schedule() 6630 * because the interrupt disabled assumption might not be true 6631 * due to force-threaded interrupts and spinlock substitution. 6632 */ 6633 void __napi_schedule_irqoff(struct napi_struct *n) 6634 { 6635 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 6636 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 6637 else 6638 __napi_schedule(n); 6639 } 6640 EXPORT_SYMBOL(__napi_schedule_irqoff); 6641 6642 bool napi_complete_done(struct napi_struct *n, int work_done) 6643 { 6644 unsigned long flags, val, new, timeout = 0; 6645 bool ret = true; 6646 6647 /* 6648 * 1) Don't let napi dequeue from the cpu poll list 6649 * just in case its running on a different cpu. 6650 * 2) If we are busy polling, do nothing here, we have 6651 * the guarantee we will be called later. 6652 */ 6653 if (unlikely(n->state & (NAPIF_STATE_NPSVC | 6654 NAPIF_STATE_IN_BUSY_POLL))) 6655 return false; 6656 6657 if (work_done) { 6658 if (n->gro.bitmask) 6659 timeout = napi_get_gro_flush_timeout(n); 6660 n->defer_hard_irqs_count = napi_get_defer_hard_irqs(n); 6661 } 6662 if (n->defer_hard_irqs_count > 0) { 6663 n->defer_hard_irqs_count--; 6664 timeout = napi_get_gro_flush_timeout(n); 6665 if (timeout) 6666 ret = false; 6667 } 6668 6669 /* 6670 * When the NAPI instance uses a timeout and keeps postponing 6671 * it, we need to bound somehow the time packets are kept in 6672 * the GRO layer. 6673 */ 6674 gro_flush_normal(&n->gro, !!timeout); 6675 6676 if (unlikely(!list_empty(&n->poll_list))) { 6677 /* If n->poll_list is not empty, we need to mask irqs */ 6678 local_irq_save(flags); 6679 list_del_init(&n->poll_list); 6680 local_irq_restore(flags); 6681 } 6682 WRITE_ONCE(n->list_owner, -1); 6683 6684 val = READ_ONCE(n->state); 6685 do { 6686 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED)); 6687 6688 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED | 6689 NAPIF_STATE_SCHED_THREADED | 6690 NAPIF_STATE_PREFER_BUSY_POLL); 6691 6692 /* If STATE_MISSED was set, leave STATE_SCHED set, 6693 * because we will call napi->poll() one more time. 6694 * This C code was suggested by Alexander Duyck to help gcc. 6695 */ 6696 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED * 6697 NAPIF_STATE_SCHED; 6698 } while (!try_cmpxchg(&n->state, &val, new)); 6699 6700 if (unlikely(val & NAPIF_STATE_MISSED)) { 6701 __napi_schedule(n); 6702 return false; 6703 } 6704 6705 if (timeout) 6706 hrtimer_start(&n->timer, ns_to_ktime(timeout), 6707 HRTIMER_MODE_REL_PINNED); 6708 return ret; 6709 } 6710 EXPORT_SYMBOL(napi_complete_done); 6711 6712 static void skb_defer_free_flush(struct softnet_data *sd) 6713 { 6714 struct sk_buff *skb, *next; 6715 6716 /* Paired with WRITE_ONCE() in skb_attempt_defer_free() */ 6717 if (!READ_ONCE(sd->defer_list)) 6718 return; 6719 6720 spin_lock(&sd->defer_lock); 6721 skb = sd->defer_list; 6722 sd->defer_list = NULL; 6723 sd->defer_count = 0; 6724 spin_unlock(&sd->defer_lock); 6725 6726 while (skb != NULL) { 6727 next = skb->next; 6728 napi_consume_skb(skb, 1); 6729 skb = next; 6730 } 6731 } 6732 6733 #if defined(CONFIG_NET_RX_BUSY_POLL) 6734 6735 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule) 6736 { 6737 if (!skip_schedule) { 6738 gro_normal_list(&napi->gro); 6739 __napi_schedule(napi); 6740 return; 6741 } 6742 6743 /* Flush too old packets. If HZ < 1000, flush all packets */ 6744 gro_flush_normal(&napi->gro, HZ >= 1000); 6745 6746 clear_bit(NAPI_STATE_SCHED, &napi->state); 6747 } 6748 6749 enum { 6750 NAPI_F_PREFER_BUSY_POLL = 1, 6751 NAPI_F_END_ON_RESCHED = 2, 6752 }; 6753 6754 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, 6755 unsigned flags, u16 budget) 6756 { 6757 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; 6758 bool skip_schedule = false; 6759 unsigned long timeout; 6760 int rc; 6761 6762 /* Busy polling means there is a high chance device driver hard irq 6763 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was 6764 * set in napi_schedule_prep(). 6765 * Since we are about to call napi->poll() once more, we can safely 6766 * clear NAPI_STATE_MISSED. 6767 * 6768 * Note: x86 could use a single "lock and ..." instruction 6769 * to perform these two clear_bit() 6770 */ 6771 clear_bit(NAPI_STATE_MISSED, &napi->state); 6772 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state); 6773 6774 local_bh_disable(); 6775 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx); 6776 6777 if (flags & NAPI_F_PREFER_BUSY_POLL) { 6778 napi->defer_hard_irqs_count = napi_get_defer_hard_irqs(napi); 6779 timeout = napi_get_gro_flush_timeout(napi); 6780 if (napi->defer_hard_irqs_count && timeout) { 6781 hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED); 6782 skip_schedule = true; 6783 } 6784 } 6785 6786 /* All we really want here is to re-enable device interrupts. 6787 * Ideally, a new ndo_busy_poll_stop() could avoid another round. 6788 */ 6789 rc = napi->poll(napi, budget); 6790 /* We can't gro_normal_list() here, because napi->poll() might have 6791 * rearmed the napi (napi_complete_done()) in which case it could 6792 * already be running on another CPU. 6793 */ 6794 trace_napi_poll(napi, rc, budget); 6795 netpoll_poll_unlock(have_poll_lock); 6796 if (rc == budget) 6797 __busy_poll_stop(napi, skip_schedule); 6798 bpf_net_ctx_clear(bpf_net_ctx); 6799 local_bh_enable(); 6800 } 6801 6802 static void __napi_busy_loop(unsigned int napi_id, 6803 bool (*loop_end)(void *, unsigned long), 6804 void *loop_end_arg, unsigned flags, u16 budget) 6805 { 6806 unsigned long start_time = loop_end ? busy_loop_current_time() : 0; 6807 int (*napi_poll)(struct napi_struct *napi, int budget); 6808 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; 6809 void *have_poll_lock = NULL; 6810 struct napi_struct *napi; 6811 6812 WARN_ON_ONCE(!rcu_read_lock_held()); 6813 6814 restart: 6815 napi_poll = NULL; 6816 6817 napi = napi_by_id(napi_id); 6818 if (!napi) 6819 return; 6820 6821 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 6822 preempt_disable(); 6823 for (;;) { 6824 int work = 0; 6825 6826 local_bh_disable(); 6827 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx); 6828 if (!napi_poll) { 6829 unsigned long val = READ_ONCE(napi->state); 6830 6831 /* If multiple threads are competing for this napi, 6832 * we avoid dirtying napi->state as much as we can. 6833 */ 6834 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED | 6835 NAPIF_STATE_IN_BUSY_POLL)) { 6836 if (flags & NAPI_F_PREFER_BUSY_POLL) 6837 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state); 6838 goto count; 6839 } 6840 if (cmpxchg(&napi->state, val, 6841 val | NAPIF_STATE_IN_BUSY_POLL | 6842 NAPIF_STATE_SCHED) != val) { 6843 if (flags & NAPI_F_PREFER_BUSY_POLL) 6844 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state); 6845 goto count; 6846 } 6847 have_poll_lock = netpoll_poll_lock(napi); 6848 napi_poll = napi->poll; 6849 } 6850 work = napi_poll(napi, budget); 6851 trace_napi_poll(napi, work, budget); 6852 gro_normal_list(&napi->gro); 6853 count: 6854 if (work > 0) 6855 __NET_ADD_STATS(dev_net(napi->dev), 6856 LINUX_MIB_BUSYPOLLRXPACKETS, work); 6857 skb_defer_free_flush(this_cpu_ptr(&softnet_data)); 6858 bpf_net_ctx_clear(bpf_net_ctx); 6859 local_bh_enable(); 6860 6861 if (!loop_end || loop_end(loop_end_arg, start_time)) 6862 break; 6863 6864 if (unlikely(need_resched())) { 6865 if (flags & NAPI_F_END_ON_RESCHED) 6866 break; 6867 if (napi_poll) 6868 busy_poll_stop(napi, have_poll_lock, flags, budget); 6869 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 6870 preempt_enable(); 6871 rcu_read_unlock(); 6872 cond_resched(); 6873 rcu_read_lock(); 6874 if (loop_end(loop_end_arg, start_time)) 6875 return; 6876 goto restart; 6877 } 6878 cpu_relax(); 6879 } 6880 if (napi_poll) 6881 busy_poll_stop(napi, have_poll_lock, flags, budget); 6882 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 6883 preempt_enable(); 6884 } 6885 6886 void napi_busy_loop_rcu(unsigned int napi_id, 6887 bool (*loop_end)(void *, unsigned long), 6888 void *loop_end_arg, bool prefer_busy_poll, u16 budget) 6889 { 6890 unsigned flags = NAPI_F_END_ON_RESCHED; 6891 6892 if (prefer_busy_poll) 6893 flags |= NAPI_F_PREFER_BUSY_POLL; 6894 6895 __napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget); 6896 } 6897 6898 void napi_busy_loop(unsigned int napi_id, 6899 bool (*loop_end)(void *, unsigned long), 6900 void *loop_end_arg, bool prefer_busy_poll, u16 budget) 6901 { 6902 unsigned flags = prefer_busy_poll ? NAPI_F_PREFER_BUSY_POLL : 0; 6903 6904 rcu_read_lock(); 6905 __napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget); 6906 rcu_read_unlock(); 6907 } 6908 EXPORT_SYMBOL(napi_busy_loop); 6909 6910 void napi_suspend_irqs(unsigned int napi_id) 6911 { 6912 struct napi_struct *napi; 6913 6914 rcu_read_lock(); 6915 napi = napi_by_id(napi_id); 6916 if (napi) { 6917 unsigned long timeout = napi_get_irq_suspend_timeout(napi); 6918 6919 if (timeout) 6920 hrtimer_start(&napi->timer, ns_to_ktime(timeout), 6921 HRTIMER_MODE_REL_PINNED); 6922 } 6923 rcu_read_unlock(); 6924 } 6925 6926 void napi_resume_irqs(unsigned int napi_id) 6927 { 6928 struct napi_struct *napi; 6929 6930 rcu_read_lock(); 6931 napi = napi_by_id(napi_id); 6932 if (napi) { 6933 /* If irq_suspend_timeout is set to 0 between the call to 6934 * napi_suspend_irqs and now, the original value still 6935 * determines the safety timeout as intended and napi_watchdog 6936 * will resume irq processing. 6937 */ 6938 if (napi_get_irq_suspend_timeout(napi)) { 6939 local_bh_disable(); 6940 napi_schedule(napi); 6941 local_bh_enable(); 6942 } 6943 } 6944 rcu_read_unlock(); 6945 } 6946 6947 #endif /* CONFIG_NET_RX_BUSY_POLL */ 6948 6949 static void __napi_hash_add_with_id(struct napi_struct *napi, 6950 unsigned int napi_id) 6951 { 6952 napi->gro.cached_napi_id = napi_id; 6953 6954 WRITE_ONCE(napi->napi_id, napi_id); 6955 hlist_add_head_rcu(&napi->napi_hash_node, 6956 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]); 6957 } 6958 6959 static void napi_hash_add_with_id(struct napi_struct *napi, 6960 unsigned int napi_id) 6961 { 6962 unsigned long flags; 6963 6964 spin_lock_irqsave(&napi_hash_lock, flags); 6965 WARN_ON_ONCE(napi_by_id(napi_id)); 6966 __napi_hash_add_with_id(napi, napi_id); 6967 spin_unlock_irqrestore(&napi_hash_lock, flags); 6968 } 6969 6970 static void napi_hash_add(struct napi_struct *napi) 6971 { 6972 unsigned long flags; 6973 6974 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state)) 6975 return; 6976 6977 spin_lock_irqsave(&napi_hash_lock, flags); 6978 6979 /* 0..NR_CPUS range is reserved for sender_cpu use */ 6980 do { 6981 if (unlikely(!napi_id_valid(++napi_gen_id))) 6982 napi_gen_id = MIN_NAPI_ID; 6983 } while (napi_by_id(napi_gen_id)); 6984 6985 __napi_hash_add_with_id(napi, napi_gen_id); 6986 6987 spin_unlock_irqrestore(&napi_hash_lock, flags); 6988 } 6989 6990 /* Warning : caller is responsible to make sure rcu grace period 6991 * is respected before freeing memory containing @napi 6992 */ 6993 static void napi_hash_del(struct napi_struct *napi) 6994 { 6995 unsigned long flags; 6996 6997 spin_lock_irqsave(&napi_hash_lock, flags); 6998 6999 hlist_del_init_rcu(&napi->napi_hash_node); 7000 7001 spin_unlock_irqrestore(&napi_hash_lock, flags); 7002 } 7003 7004 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer) 7005 { 7006 struct napi_struct *napi; 7007 7008 napi = container_of(timer, struct napi_struct, timer); 7009 7010 /* Note : we use a relaxed variant of napi_schedule_prep() not setting 7011 * NAPI_STATE_MISSED, since we do not react to a device IRQ. 7012 */ 7013 if (!napi_disable_pending(napi) && 7014 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) { 7015 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state); 7016 __napi_schedule_irqoff(napi); 7017 } 7018 7019 return HRTIMER_NORESTART; 7020 } 7021 7022 static void napi_stop_kthread(struct napi_struct *napi) 7023 { 7024 unsigned long val, new; 7025 7026 /* Wait until the napi STATE_THREADED is unset. */ 7027 while (true) { 7028 val = READ_ONCE(napi->state); 7029 7030 /* If napi kthread own this napi or the napi is idle, 7031 * STATE_THREADED can be unset here. 7032 */ 7033 if ((val & NAPIF_STATE_SCHED_THREADED) || 7034 !(val & NAPIF_STATE_SCHED)) { 7035 new = val & (~NAPIF_STATE_THREADED); 7036 } else { 7037 msleep(20); 7038 continue; 7039 } 7040 7041 if (try_cmpxchg(&napi->state, &val, new)) 7042 break; 7043 } 7044 7045 /* Once STATE_THREADED is unset, wait for SCHED_THREADED to be unset by 7046 * the kthread. 7047 */ 7048 while (true) { 7049 if (!test_bit(NAPI_STATE_SCHED_THREADED, &napi->state)) 7050 break; 7051 7052 msleep(20); 7053 } 7054 7055 kthread_stop(napi->thread); 7056 napi->thread = NULL; 7057 } 7058 7059 int napi_set_threaded(struct napi_struct *napi, 7060 enum netdev_napi_threaded threaded) 7061 { 7062 if (threaded) { 7063 if (!napi->thread) { 7064 int err = napi_kthread_create(napi); 7065 7066 if (err) 7067 return err; 7068 } 7069 } 7070 7071 if (napi->config) 7072 napi->config->threaded = threaded; 7073 7074 /* Setting/unsetting threaded mode on a napi might not immediately 7075 * take effect, if the current napi instance is actively being 7076 * polled. In this case, the switch between threaded mode and 7077 * softirq mode will happen in the next round of napi_schedule(). 7078 * This should not cause hiccups/stalls to the live traffic. 7079 */ 7080 if (!threaded && napi->thread) { 7081 napi_stop_kthread(napi); 7082 } else { 7083 /* Make sure kthread is created before THREADED bit is set. */ 7084 smp_mb__before_atomic(); 7085 assign_bit(NAPI_STATE_THREADED, &napi->state, threaded); 7086 } 7087 7088 return 0; 7089 } 7090 7091 int netif_set_threaded(struct net_device *dev, 7092 enum netdev_napi_threaded threaded) 7093 { 7094 struct napi_struct *napi; 7095 int i, err = 0; 7096 7097 netdev_assert_locked_or_invisible(dev); 7098 7099 if (threaded) { 7100 list_for_each_entry(napi, &dev->napi_list, dev_list) { 7101 if (!napi->thread) { 7102 err = napi_kthread_create(napi); 7103 if (err) { 7104 threaded = NETDEV_NAPI_THREADED_DISABLED; 7105 break; 7106 } 7107 } 7108 } 7109 } 7110 7111 WRITE_ONCE(dev->threaded, threaded); 7112 7113 /* The error should not occur as the kthreads are already created. */ 7114 list_for_each_entry(napi, &dev->napi_list, dev_list) 7115 WARN_ON_ONCE(napi_set_threaded(napi, threaded)); 7116 7117 /* Override the config for all NAPIs even if currently not listed */ 7118 for (i = 0; i < dev->num_napi_configs; i++) 7119 dev->napi_config[i].threaded = threaded; 7120 7121 return err; 7122 } 7123 7124 /** 7125 * netif_threaded_enable() - enable threaded NAPIs 7126 * @dev: net_device instance 7127 * 7128 * Enable threaded mode for the NAPI instances of the device. This may be useful 7129 * for devices where multiple NAPI instances get scheduled by a single 7130 * interrupt. Threaded NAPI allows moving the NAPI processing to cores other 7131 * than the core where IRQ is mapped. 7132 * 7133 * This function should be called before @dev is registered. 7134 */ 7135 void netif_threaded_enable(struct net_device *dev) 7136 { 7137 WARN_ON_ONCE(netif_set_threaded(dev, NETDEV_NAPI_THREADED_ENABLED)); 7138 } 7139 EXPORT_SYMBOL(netif_threaded_enable); 7140 7141 /** 7142 * netif_queue_set_napi - Associate queue with the napi 7143 * @dev: device to which NAPI and queue belong 7144 * @queue_index: Index of queue 7145 * @type: queue type as RX or TX 7146 * @napi: NAPI context, pass NULL to clear previously set NAPI 7147 * 7148 * Set queue with its corresponding napi context. This should be done after 7149 * registering the NAPI handler for the queue-vector and the queues have been 7150 * mapped to the corresponding interrupt vector. 7151 */ 7152 void netif_queue_set_napi(struct net_device *dev, unsigned int queue_index, 7153 enum netdev_queue_type type, struct napi_struct *napi) 7154 { 7155 struct netdev_rx_queue *rxq; 7156 struct netdev_queue *txq; 7157 7158 if (WARN_ON_ONCE(napi && !napi->dev)) 7159 return; 7160 netdev_ops_assert_locked_or_invisible(dev); 7161 7162 switch (type) { 7163 case NETDEV_QUEUE_TYPE_RX: 7164 rxq = __netif_get_rx_queue(dev, queue_index); 7165 rxq->napi = napi; 7166 return; 7167 case NETDEV_QUEUE_TYPE_TX: 7168 txq = netdev_get_tx_queue(dev, queue_index); 7169 txq->napi = napi; 7170 return; 7171 default: 7172 return; 7173 } 7174 } 7175 EXPORT_SYMBOL(netif_queue_set_napi); 7176 7177 static void 7178 netif_napi_irq_notify(struct irq_affinity_notify *notify, 7179 const cpumask_t *mask) 7180 { 7181 struct napi_struct *napi = 7182 container_of(notify, struct napi_struct, notify); 7183 #ifdef CONFIG_RFS_ACCEL 7184 struct cpu_rmap *rmap = napi->dev->rx_cpu_rmap; 7185 int err; 7186 #endif 7187 7188 if (napi->config && napi->dev->irq_affinity_auto) 7189 cpumask_copy(&napi->config->affinity_mask, mask); 7190 7191 #ifdef CONFIG_RFS_ACCEL 7192 if (napi->dev->rx_cpu_rmap_auto) { 7193 err = cpu_rmap_update(rmap, napi->napi_rmap_idx, mask); 7194 if (err) 7195 netdev_warn(napi->dev, "RMAP update failed (%d)\n", 7196 err); 7197 } 7198 #endif 7199 } 7200 7201 #ifdef CONFIG_RFS_ACCEL 7202 static void netif_napi_affinity_release(struct kref *ref) 7203 { 7204 struct napi_struct *napi = 7205 container_of(ref, struct napi_struct, notify.kref); 7206 struct cpu_rmap *rmap = napi->dev->rx_cpu_rmap; 7207 7208 netdev_assert_locked(napi->dev); 7209 WARN_ON(test_and_clear_bit(NAPI_STATE_HAS_NOTIFIER, 7210 &napi->state)); 7211 7212 if (!napi->dev->rx_cpu_rmap_auto) 7213 return; 7214 rmap->obj[napi->napi_rmap_idx] = NULL; 7215 napi->napi_rmap_idx = -1; 7216 cpu_rmap_put(rmap); 7217 } 7218 7219 int netif_enable_cpu_rmap(struct net_device *dev, unsigned int num_irqs) 7220 { 7221 if (dev->rx_cpu_rmap_auto) 7222 return 0; 7223 7224 dev->rx_cpu_rmap = alloc_irq_cpu_rmap(num_irqs); 7225 if (!dev->rx_cpu_rmap) 7226 return -ENOMEM; 7227 7228 dev->rx_cpu_rmap_auto = true; 7229 return 0; 7230 } 7231 EXPORT_SYMBOL(netif_enable_cpu_rmap); 7232 7233 static void netif_del_cpu_rmap(struct net_device *dev) 7234 { 7235 struct cpu_rmap *rmap = dev->rx_cpu_rmap; 7236 7237 if (!dev->rx_cpu_rmap_auto) 7238 return; 7239 7240 /* Free the rmap */ 7241 cpu_rmap_put(rmap); 7242 dev->rx_cpu_rmap = NULL; 7243 dev->rx_cpu_rmap_auto = false; 7244 } 7245 7246 #else 7247 static void netif_napi_affinity_release(struct kref *ref) 7248 { 7249 } 7250 7251 int netif_enable_cpu_rmap(struct net_device *dev, unsigned int num_irqs) 7252 { 7253 return 0; 7254 } 7255 EXPORT_SYMBOL(netif_enable_cpu_rmap); 7256 7257 static void netif_del_cpu_rmap(struct net_device *dev) 7258 { 7259 } 7260 #endif 7261 7262 void netif_set_affinity_auto(struct net_device *dev) 7263 { 7264 unsigned int i, maxqs, numa; 7265 7266 maxqs = max(dev->num_tx_queues, dev->num_rx_queues); 7267 numa = dev_to_node(&dev->dev); 7268 7269 for (i = 0; i < maxqs; i++) 7270 cpumask_set_cpu(cpumask_local_spread(i, numa), 7271 &dev->napi_config[i].affinity_mask); 7272 7273 dev->irq_affinity_auto = true; 7274 } 7275 EXPORT_SYMBOL(netif_set_affinity_auto); 7276 7277 void netif_napi_set_irq_locked(struct napi_struct *napi, int irq) 7278 { 7279 int rc; 7280 7281 netdev_assert_locked_or_invisible(napi->dev); 7282 7283 if (napi->irq == irq) 7284 return; 7285 7286 /* Remove existing resources */ 7287 if (test_and_clear_bit(NAPI_STATE_HAS_NOTIFIER, &napi->state)) 7288 irq_set_affinity_notifier(napi->irq, NULL); 7289 7290 napi->irq = irq; 7291 if (irq < 0 || 7292 (!napi->dev->rx_cpu_rmap_auto && !napi->dev->irq_affinity_auto)) 7293 return; 7294 7295 /* Abort for buggy drivers */ 7296 if (napi->dev->irq_affinity_auto && WARN_ON_ONCE(!napi->config)) 7297 return; 7298 7299 #ifdef CONFIG_RFS_ACCEL 7300 if (napi->dev->rx_cpu_rmap_auto) { 7301 rc = cpu_rmap_add(napi->dev->rx_cpu_rmap, napi); 7302 if (rc < 0) 7303 return; 7304 7305 cpu_rmap_get(napi->dev->rx_cpu_rmap); 7306 napi->napi_rmap_idx = rc; 7307 } 7308 #endif 7309 7310 /* Use core IRQ notifier */ 7311 napi->notify.notify = netif_napi_irq_notify; 7312 napi->notify.release = netif_napi_affinity_release; 7313 rc = irq_set_affinity_notifier(irq, &napi->notify); 7314 if (rc) { 7315 netdev_warn(napi->dev, "Unable to set IRQ notifier (%d)\n", 7316 rc); 7317 goto put_rmap; 7318 } 7319 7320 set_bit(NAPI_STATE_HAS_NOTIFIER, &napi->state); 7321 return; 7322 7323 put_rmap: 7324 #ifdef CONFIG_RFS_ACCEL 7325 if (napi->dev->rx_cpu_rmap_auto) { 7326 napi->dev->rx_cpu_rmap->obj[napi->napi_rmap_idx] = NULL; 7327 cpu_rmap_put(napi->dev->rx_cpu_rmap); 7328 napi->napi_rmap_idx = -1; 7329 } 7330 #endif 7331 napi->notify.notify = NULL; 7332 napi->notify.release = NULL; 7333 } 7334 EXPORT_SYMBOL(netif_napi_set_irq_locked); 7335 7336 static void napi_restore_config(struct napi_struct *n) 7337 { 7338 n->defer_hard_irqs = n->config->defer_hard_irqs; 7339 n->gro_flush_timeout = n->config->gro_flush_timeout; 7340 n->irq_suspend_timeout = n->config->irq_suspend_timeout; 7341 7342 if (n->dev->irq_affinity_auto && 7343 test_bit(NAPI_STATE_HAS_NOTIFIER, &n->state)) 7344 irq_set_affinity(n->irq, &n->config->affinity_mask); 7345 7346 /* a NAPI ID might be stored in the config, if so use it. if not, use 7347 * napi_hash_add to generate one for us. 7348 */ 7349 if (n->config->napi_id) { 7350 napi_hash_add_with_id(n, n->config->napi_id); 7351 } else { 7352 napi_hash_add(n); 7353 n->config->napi_id = n->napi_id; 7354 } 7355 7356 WARN_ON_ONCE(napi_set_threaded(n, n->config->threaded)); 7357 } 7358 7359 static void napi_save_config(struct napi_struct *n) 7360 { 7361 n->config->defer_hard_irqs = n->defer_hard_irqs; 7362 n->config->gro_flush_timeout = n->gro_flush_timeout; 7363 n->config->irq_suspend_timeout = n->irq_suspend_timeout; 7364 napi_hash_del(n); 7365 } 7366 7367 /* Netlink wants the NAPI list to be sorted by ID, if adding a NAPI which will 7368 * inherit an existing ID try to insert it at the right position. 7369 */ 7370 static void 7371 netif_napi_dev_list_add(struct net_device *dev, struct napi_struct *napi) 7372 { 7373 unsigned int new_id, pos_id; 7374 struct list_head *higher; 7375 struct napi_struct *pos; 7376 7377 new_id = UINT_MAX; 7378 if (napi->config && napi->config->napi_id) 7379 new_id = napi->config->napi_id; 7380 7381 higher = &dev->napi_list; 7382 list_for_each_entry(pos, &dev->napi_list, dev_list) { 7383 if (napi_id_valid(pos->napi_id)) 7384 pos_id = pos->napi_id; 7385 else if (pos->config) 7386 pos_id = pos->config->napi_id; 7387 else 7388 pos_id = UINT_MAX; 7389 7390 if (pos_id <= new_id) 7391 break; 7392 higher = &pos->dev_list; 7393 } 7394 list_add_rcu(&napi->dev_list, higher); /* adds after higher */ 7395 } 7396 7397 /* Double check that napi_get_frags() allocates skbs with 7398 * skb->head being backed by slab, not a page fragment. 7399 * This is to make sure bug fixed in 3226b158e67c 7400 * ("net: avoid 32 x truesize under-estimation for tiny skbs") 7401 * does not accidentally come back. 7402 */ 7403 static void napi_get_frags_check(struct napi_struct *napi) 7404 { 7405 struct sk_buff *skb; 7406 7407 local_bh_disable(); 7408 skb = napi_get_frags(napi); 7409 WARN_ON_ONCE(skb && skb->head_frag); 7410 napi_free_frags(napi); 7411 local_bh_enable(); 7412 } 7413 7414 void netif_napi_add_weight_locked(struct net_device *dev, 7415 struct napi_struct *napi, 7416 int (*poll)(struct napi_struct *, int), 7417 int weight) 7418 { 7419 netdev_assert_locked(dev); 7420 if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state))) 7421 return; 7422 7423 INIT_LIST_HEAD(&napi->poll_list); 7424 INIT_HLIST_NODE(&napi->napi_hash_node); 7425 hrtimer_setup(&napi->timer, napi_watchdog, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED); 7426 gro_init(&napi->gro); 7427 napi->skb = NULL; 7428 napi->poll = poll; 7429 if (weight > NAPI_POLL_WEIGHT) 7430 netdev_err_once(dev, "%s() called with weight %d\n", __func__, 7431 weight); 7432 napi->weight = weight; 7433 napi->dev = dev; 7434 #ifdef CONFIG_NETPOLL 7435 napi->poll_owner = -1; 7436 #endif 7437 napi->list_owner = -1; 7438 set_bit(NAPI_STATE_SCHED, &napi->state); 7439 set_bit(NAPI_STATE_NPSVC, &napi->state); 7440 netif_napi_dev_list_add(dev, napi); 7441 7442 /* default settings from sysfs are applied to all NAPIs. any per-NAPI 7443 * configuration will be loaded in napi_enable 7444 */ 7445 napi_set_defer_hard_irqs(napi, READ_ONCE(dev->napi_defer_hard_irqs)); 7446 napi_set_gro_flush_timeout(napi, READ_ONCE(dev->gro_flush_timeout)); 7447 7448 napi_get_frags_check(napi); 7449 /* Create kthread for this napi if dev->threaded is set. 7450 * Clear dev->threaded if kthread creation failed so that 7451 * threaded mode will not be enabled in napi_enable(). 7452 */ 7453 if (napi_get_threaded_config(dev, napi)) 7454 if (napi_kthread_create(napi)) 7455 dev->threaded = NETDEV_NAPI_THREADED_DISABLED; 7456 netif_napi_set_irq_locked(napi, -1); 7457 } 7458 EXPORT_SYMBOL(netif_napi_add_weight_locked); 7459 7460 void napi_disable_locked(struct napi_struct *n) 7461 { 7462 unsigned long val, new; 7463 7464 might_sleep(); 7465 netdev_assert_locked(n->dev); 7466 7467 set_bit(NAPI_STATE_DISABLE, &n->state); 7468 7469 val = READ_ONCE(n->state); 7470 do { 7471 while (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) { 7472 usleep_range(20, 200); 7473 val = READ_ONCE(n->state); 7474 } 7475 7476 new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC; 7477 new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL); 7478 } while (!try_cmpxchg(&n->state, &val, new)); 7479 7480 hrtimer_cancel(&n->timer); 7481 7482 if (n->config) 7483 napi_save_config(n); 7484 else 7485 napi_hash_del(n); 7486 7487 clear_bit(NAPI_STATE_DISABLE, &n->state); 7488 } 7489 EXPORT_SYMBOL(napi_disable_locked); 7490 7491 /** 7492 * napi_disable() - prevent NAPI from scheduling 7493 * @n: NAPI context 7494 * 7495 * Stop NAPI from being scheduled on this context. 7496 * Waits till any outstanding processing completes. 7497 * Takes netdev_lock() for associated net_device. 7498 */ 7499 void napi_disable(struct napi_struct *n) 7500 { 7501 netdev_lock(n->dev); 7502 napi_disable_locked(n); 7503 netdev_unlock(n->dev); 7504 } 7505 EXPORT_SYMBOL(napi_disable); 7506 7507 void napi_enable_locked(struct napi_struct *n) 7508 { 7509 unsigned long new, val = READ_ONCE(n->state); 7510 7511 if (n->config) 7512 napi_restore_config(n); 7513 else 7514 napi_hash_add(n); 7515 7516 do { 7517 BUG_ON(!test_bit(NAPI_STATE_SCHED, &val)); 7518 7519 new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC); 7520 if (n->dev->threaded && n->thread) 7521 new |= NAPIF_STATE_THREADED; 7522 } while (!try_cmpxchg(&n->state, &val, new)); 7523 } 7524 EXPORT_SYMBOL(napi_enable_locked); 7525 7526 /** 7527 * napi_enable() - enable NAPI scheduling 7528 * @n: NAPI context 7529 * 7530 * Enable scheduling of a NAPI instance. 7531 * Must be paired with napi_disable(). 7532 * Takes netdev_lock() for associated net_device. 7533 */ 7534 void napi_enable(struct napi_struct *n) 7535 { 7536 netdev_lock(n->dev); 7537 napi_enable_locked(n); 7538 netdev_unlock(n->dev); 7539 } 7540 EXPORT_SYMBOL(napi_enable); 7541 7542 /* Must be called in process context */ 7543 void __netif_napi_del_locked(struct napi_struct *napi) 7544 { 7545 netdev_assert_locked(napi->dev); 7546 7547 if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state)) 7548 return; 7549 7550 /* Make sure NAPI is disabled (or was never enabled). */ 7551 WARN_ON(!test_bit(NAPI_STATE_SCHED, &napi->state)); 7552 7553 if (test_and_clear_bit(NAPI_STATE_HAS_NOTIFIER, &napi->state)) 7554 irq_set_affinity_notifier(napi->irq, NULL); 7555 7556 if (napi->config) { 7557 napi->index = -1; 7558 napi->config = NULL; 7559 } 7560 7561 list_del_rcu(&napi->dev_list); 7562 napi_free_frags(napi); 7563 7564 gro_cleanup(&napi->gro); 7565 7566 if (napi->thread) { 7567 kthread_stop(napi->thread); 7568 napi->thread = NULL; 7569 } 7570 } 7571 EXPORT_SYMBOL(__netif_napi_del_locked); 7572 7573 static int __napi_poll(struct napi_struct *n, bool *repoll) 7574 { 7575 int work, weight; 7576 7577 weight = n->weight; 7578 7579 /* This NAPI_STATE_SCHED test is for avoiding a race 7580 * with netpoll's poll_napi(). Only the entity which 7581 * obtains the lock and sees NAPI_STATE_SCHED set will 7582 * actually make the ->poll() call. Therefore we avoid 7583 * accidentally calling ->poll() when NAPI is not scheduled. 7584 */ 7585 work = 0; 7586 if (napi_is_scheduled(n)) { 7587 work = n->poll(n, weight); 7588 trace_napi_poll(n, work, weight); 7589 7590 xdp_do_check_flushed(n); 7591 } 7592 7593 if (unlikely(work > weight)) 7594 netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n", 7595 n->poll, work, weight); 7596 7597 if (likely(work < weight)) 7598 return work; 7599 7600 /* Drivers must not modify the NAPI state if they 7601 * consume the entire weight. In such cases this code 7602 * still "owns" the NAPI instance and therefore can 7603 * move the instance around on the list at-will. 7604 */ 7605 if (unlikely(napi_disable_pending(n))) { 7606 napi_complete(n); 7607 return work; 7608 } 7609 7610 /* The NAPI context has more processing work, but busy-polling 7611 * is preferred. Exit early. 7612 */ 7613 if (napi_prefer_busy_poll(n)) { 7614 if (napi_complete_done(n, work)) { 7615 /* If timeout is not set, we need to make sure 7616 * that the NAPI is re-scheduled. 7617 */ 7618 napi_schedule(n); 7619 } 7620 return work; 7621 } 7622 7623 /* Flush too old packets. If HZ < 1000, flush all packets */ 7624 gro_flush_normal(&n->gro, HZ >= 1000); 7625 7626 /* Some drivers may have called napi_schedule 7627 * prior to exhausting their budget. 7628 */ 7629 if (unlikely(!list_empty(&n->poll_list))) { 7630 pr_warn_once("%s: Budget exhausted after napi rescheduled\n", 7631 n->dev ? n->dev->name : "backlog"); 7632 return work; 7633 } 7634 7635 *repoll = true; 7636 7637 return work; 7638 } 7639 7640 static int napi_poll(struct napi_struct *n, struct list_head *repoll) 7641 { 7642 bool do_repoll = false; 7643 void *have; 7644 int work; 7645 7646 list_del_init(&n->poll_list); 7647 7648 have = netpoll_poll_lock(n); 7649 7650 work = __napi_poll(n, &do_repoll); 7651 7652 if (do_repoll) { 7653 #if defined(CONFIG_DEBUG_NET) 7654 if (unlikely(!napi_is_scheduled(n))) 7655 pr_crit("repoll requested for device %s %ps but napi is not scheduled.\n", 7656 n->dev->name, n->poll); 7657 #endif 7658 list_add_tail(&n->poll_list, repoll); 7659 } 7660 netpoll_poll_unlock(have); 7661 7662 return work; 7663 } 7664 7665 static int napi_thread_wait(struct napi_struct *napi) 7666 { 7667 set_current_state(TASK_INTERRUPTIBLE); 7668 7669 while (!kthread_should_stop()) { 7670 /* Testing SCHED_THREADED bit here to make sure the current 7671 * kthread owns this napi and could poll on this napi. 7672 * Testing SCHED bit is not enough because SCHED bit might be 7673 * set by some other busy poll thread or by napi_disable(). 7674 */ 7675 if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state)) { 7676 WARN_ON(!list_empty(&napi->poll_list)); 7677 __set_current_state(TASK_RUNNING); 7678 return 0; 7679 } 7680 7681 schedule(); 7682 set_current_state(TASK_INTERRUPTIBLE); 7683 } 7684 __set_current_state(TASK_RUNNING); 7685 7686 return -1; 7687 } 7688 7689 static void napi_threaded_poll_loop(struct napi_struct *napi) 7690 { 7691 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; 7692 struct softnet_data *sd; 7693 unsigned long last_qs = jiffies; 7694 7695 for (;;) { 7696 bool repoll = false; 7697 void *have; 7698 7699 local_bh_disable(); 7700 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx); 7701 7702 sd = this_cpu_ptr(&softnet_data); 7703 sd->in_napi_threaded_poll = true; 7704 7705 have = netpoll_poll_lock(napi); 7706 __napi_poll(napi, &repoll); 7707 netpoll_poll_unlock(have); 7708 7709 sd->in_napi_threaded_poll = false; 7710 barrier(); 7711 7712 if (sd_has_rps_ipi_waiting(sd)) { 7713 local_irq_disable(); 7714 net_rps_action_and_irq_enable(sd); 7715 } 7716 skb_defer_free_flush(sd); 7717 bpf_net_ctx_clear(bpf_net_ctx); 7718 local_bh_enable(); 7719 7720 if (!repoll) 7721 break; 7722 7723 rcu_softirq_qs_periodic(last_qs); 7724 cond_resched(); 7725 } 7726 } 7727 7728 static int napi_threaded_poll(void *data) 7729 { 7730 struct napi_struct *napi = data; 7731 7732 while (!napi_thread_wait(napi)) 7733 napi_threaded_poll_loop(napi); 7734 7735 return 0; 7736 } 7737 7738 static __latent_entropy void net_rx_action(void) 7739 { 7740 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 7741 unsigned long time_limit = jiffies + 7742 usecs_to_jiffies(READ_ONCE(net_hotdata.netdev_budget_usecs)); 7743 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; 7744 int budget = READ_ONCE(net_hotdata.netdev_budget); 7745 LIST_HEAD(list); 7746 LIST_HEAD(repoll); 7747 7748 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx); 7749 start: 7750 sd->in_net_rx_action = true; 7751 local_irq_disable(); 7752 list_splice_init(&sd->poll_list, &list); 7753 local_irq_enable(); 7754 7755 for (;;) { 7756 struct napi_struct *n; 7757 7758 skb_defer_free_flush(sd); 7759 7760 if (list_empty(&list)) { 7761 if (list_empty(&repoll)) { 7762 sd->in_net_rx_action = false; 7763 barrier(); 7764 /* We need to check if ____napi_schedule() 7765 * had refilled poll_list while 7766 * sd->in_net_rx_action was true. 7767 */ 7768 if (!list_empty(&sd->poll_list)) 7769 goto start; 7770 if (!sd_has_rps_ipi_waiting(sd)) 7771 goto end; 7772 } 7773 break; 7774 } 7775 7776 n = list_first_entry(&list, struct napi_struct, poll_list); 7777 budget -= napi_poll(n, &repoll); 7778 7779 /* If softirq window is exhausted then punt. 7780 * Allow this to run for 2 jiffies since which will allow 7781 * an average latency of 1.5/HZ. 7782 */ 7783 if (unlikely(budget <= 0 || 7784 time_after_eq(jiffies, time_limit))) { 7785 /* Pairs with READ_ONCE() in softnet_seq_show() */ 7786 WRITE_ONCE(sd->time_squeeze, sd->time_squeeze + 1); 7787 break; 7788 } 7789 } 7790 7791 local_irq_disable(); 7792 7793 list_splice_tail_init(&sd->poll_list, &list); 7794 list_splice_tail(&repoll, &list); 7795 list_splice(&list, &sd->poll_list); 7796 if (!list_empty(&sd->poll_list)) 7797 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 7798 else 7799 sd->in_net_rx_action = false; 7800 7801 net_rps_action_and_irq_enable(sd); 7802 end: 7803 bpf_net_ctx_clear(bpf_net_ctx); 7804 } 7805 7806 struct netdev_adjacent { 7807 struct net_device *dev; 7808 netdevice_tracker dev_tracker; 7809 7810 /* upper master flag, there can only be one master device per list */ 7811 bool master; 7812 7813 /* lookup ignore flag */ 7814 bool ignore; 7815 7816 /* counter for the number of times this device was added to us */ 7817 u16 ref_nr; 7818 7819 /* private field for the users */ 7820 void *private; 7821 7822 struct list_head list; 7823 struct rcu_head rcu; 7824 }; 7825 7826 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev, 7827 struct list_head *adj_list) 7828 { 7829 struct netdev_adjacent *adj; 7830 7831 list_for_each_entry(adj, adj_list, list) { 7832 if (adj->dev == adj_dev) 7833 return adj; 7834 } 7835 return NULL; 7836 } 7837 7838 static int ____netdev_has_upper_dev(struct net_device *upper_dev, 7839 struct netdev_nested_priv *priv) 7840 { 7841 struct net_device *dev = (struct net_device *)priv->data; 7842 7843 return upper_dev == dev; 7844 } 7845 7846 /** 7847 * netdev_has_upper_dev - Check if device is linked to an upper device 7848 * @dev: device 7849 * @upper_dev: upper device to check 7850 * 7851 * Find out if a device is linked to specified upper device and return true 7852 * in case it is. Note that this checks only immediate upper device, 7853 * not through a complete stack of devices. The caller must hold the RTNL lock. 7854 */ 7855 bool netdev_has_upper_dev(struct net_device *dev, 7856 struct net_device *upper_dev) 7857 { 7858 struct netdev_nested_priv priv = { 7859 .data = (void *)upper_dev, 7860 }; 7861 7862 ASSERT_RTNL(); 7863 7864 return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev, 7865 &priv); 7866 } 7867 EXPORT_SYMBOL(netdev_has_upper_dev); 7868 7869 /** 7870 * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device 7871 * @dev: device 7872 * @upper_dev: upper device to check 7873 * 7874 * Find out if a device is linked to specified upper device and return true 7875 * in case it is. Note that this checks the entire upper device chain. 7876 * The caller must hold rcu lock. 7877 */ 7878 7879 bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 7880 struct net_device *upper_dev) 7881 { 7882 struct netdev_nested_priv priv = { 7883 .data = (void *)upper_dev, 7884 }; 7885 7886 return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev, 7887 &priv); 7888 } 7889 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu); 7890 7891 /** 7892 * netdev_has_any_upper_dev - Check if device is linked to some device 7893 * @dev: device 7894 * 7895 * Find out if a device is linked to an upper device and return true in case 7896 * it is. The caller must hold the RTNL lock. 7897 */ 7898 bool netdev_has_any_upper_dev(struct net_device *dev) 7899 { 7900 ASSERT_RTNL(); 7901 7902 return !list_empty(&dev->adj_list.upper); 7903 } 7904 EXPORT_SYMBOL(netdev_has_any_upper_dev); 7905 7906 /** 7907 * netdev_master_upper_dev_get - Get master upper device 7908 * @dev: device 7909 * 7910 * Find a master upper device and return pointer to it or NULL in case 7911 * it's not there. The caller must hold the RTNL lock. 7912 */ 7913 struct net_device *netdev_master_upper_dev_get(struct net_device *dev) 7914 { 7915 struct netdev_adjacent *upper; 7916 7917 ASSERT_RTNL(); 7918 7919 if (list_empty(&dev->adj_list.upper)) 7920 return NULL; 7921 7922 upper = list_first_entry(&dev->adj_list.upper, 7923 struct netdev_adjacent, list); 7924 if (likely(upper->master)) 7925 return upper->dev; 7926 return NULL; 7927 } 7928 EXPORT_SYMBOL(netdev_master_upper_dev_get); 7929 7930 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev) 7931 { 7932 struct netdev_adjacent *upper; 7933 7934 ASSERT_RTNL(); 7935 7936 if (list_empty(&dev->adj_list.upper)) 7937 return NULL; 7938 7939 upper = list_first_entry(&dev->adj_list.upper, 7940 struct netdev_adjacent, list); 7941 if (likely(upper->master) && !upper->ignore) 7942 return upper->dev; 7943 return NULL; 7944 } 7945 7946 /** 7947 * netdev_has_any_lower_dev - Check if device is linked to some device 7948 * @dev: device 7949 * 7950 * Find out if a device is linked to a lower device and return true in case 7951 * it is. The caller must hold the RTNL lock. 7952 */ 7953 static bool netdev_has_any_lower_dev(struct net_device *dev) 7954 { 7955 ASSERT_RTNL(); 7956 7957 return !list_empty(&dev->adj_list.lower); 7958 } 7959 7960 void *netdev_adjacent_get_private(struct list_head *adj_list) 7961 { 7962 struct netdev_adjacent *adj; 7963 7964 adj = list_entry(adj_list, struct netdev_adjacent, list); 7965 7966 return adj->private; 7967 } 7968 EXPORT_SYMBOL(netdev_adjacent_get_private); 7969 7970 /** 7971 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list 7972 * @dev: device 7973 * @iter: list_head ** of the current position 7974 * 7975 * Gets the next device from the dev's upper list, starting from iter 7976 * position. The caller must hold RCU read lock. 7977 */ 7978 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 7979 struct list_head **iter) 7980 { 7981 struct netdev_adjacent *upper; 7982 7983 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 7984 7985 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 7986 7987 if (&upper->list == &dev->adj_list.upper) 7988 return NULL; 7989 7990 *iter = &upper->list; 7991 7992 return upper->dev; 7993 } 7994 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu); 7995 7996 static struct net_device *__netdev_next_upper_dev(struct net_device *dev, 7997 struct list_head **iter, 7998 bool *ignore) 7999 { 8000 struct netdev_adjacent *upper; 8001 8002 upper = list_entry((*iter)->next, struct netdev_adjacent, list); 8003 8004 if (&upper->list == &dev->adj_list.upper) 8005 return NULL; 8006 8007 *iter = &upper->list; 8008 *ignore = upper->ignore; 8009 8010 return upper->dev; 8011 } 8012 8013 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev, 8014 struct list_head **iter) 8015 { 8016 struct netdev_adjacent *upper; 8017 8018 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 8019 8020 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 8021 8022 if (&upper->list == &dev->adj_list.upper) 8023 return NULL; 8024 8025 *iter = &upper->list; 8026 8027 return upper->dev; 8028 } 8029 8030 static int __netdev_walk_all_upper_dev(struct net_device *dev, 8031 int (*fn)(struct net_device *dev, 8032 struct netdev_nested_priv *priv), 8033 struct netdev_nested_priv *priv) 8034 { 8035 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 8036 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 8037 int ret, cur = 0; 8038 bool ignore; 8039 8040 now = dev; 8041 iter = &dev->adj_list.upper; 8042 8043 while (1) { 8044 if (now != dev) { 8045 ret = fn(now, priv); 8046 if (ret) 8047 return ret; 8048 } 8049 8050 next = NULL; 8051 while (1) { 8052 udev = __netdev_next_upper_dev(now, &iter, &ignore); 8053 if (!udev) 8054 break; 8055 if (ignore) 8056 continue; 8057 8058 next = udev; 8059 niter = &udev->adj_list.upper; 8060 dev_stack[cur] = now; 8061 iter_stack[cur++] = iter; 8062 break; 8063 } 8064 8065 if (!next) { 8066 if (!cur) 8067 return 0; 8068 next = dev_stack[--cur]; 8069 niter = iter_stack[cur]; 8070 } 8071 8072 now = next; 8073 iter = niter; 8074 } 8075 8076 return 0; 8077 } 8078 8079 int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 8080 int (*fn)(struct net_device *dev, 8081 struct netdev_nested_priv *priv), 8082 struct netdev_nested_priv *priv) 8083 { 8084 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 8085 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 8086 int ret, cur = 0; 8087 8088 now = dev; 8089 iter = &dev->adj_list.upper; 8090 8091 while (1) { 8092 if (now != dev) { 8093 ret = fn(now, priv); 8094 if (ret) 8095 return ret; 8096 } 8097 8098 next = NULL; 8099 while (1) { 8100 udev = netdev_next_upper_dev_rcu(now, &iter); 8101 if (!udev) 8102 break; 8103 8104 next = udev; 8105 niter = &udev->adj_list.upper; 8106 dev_stack[cur] = now; 8107 iter_stack[cur++] = iter; 8108 break; 8109 } 8110 8111 if (!next) { 8112 if (!cur) 8113 return 0; 8114 next = dev_stack[--cur]; 8115 niter = iter_stack[cur]; 8116 } 8117 8118 now = next; 8119 iter = niter; 8120 } 8121 8122 return 0; 8123 } 8124 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu); 8125 8126 static bool __netdev_has_upper_dev(struct net_device *dev, 8127 struct net_device *upper_dev) 8128 { 8129 struct netdev_nested_priv priv = { 8130 .flags = 0, 8131 .data = (void *)upper_dev, 8132 }; 8133 8134 ASSERT_RTNL(); 8135 8136 return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev, 8137 &priv); 8138 } 8139 8140 /** 8141 * netdev_lower_get_next_private - Get the next ->private from the 8142 * lower neighbour list 8143 * @dev: device 8144 * @iter: list_head ** of the current position 8145 * 8146 * Gets the next netdev_adjacent->private from the dev's lower neighbour 8147 * list, starting from iter position. The caller must hold either hold the 8148 * RTNL lock or its own locking that guarantees that the neighbour lower 8149 * list will remain unchanged. 8150 */ 8151 void *netdev_lower_get_next_private(struct net_device *dev, 8152 struct list_head **iter) 8153 { 8154 struct netdev_adjacent *lower; 8155 8156 lower = list_entry(*iter, struct netdev_adjacent, list); 8157 8158 if (&lower->list == &dev->adj_list.lower) 8159 return NULL; 8160 8161 *iter = lower->list.next; 8162 8163 return lower->private; 8164 } 8165 EXPORT_SYMBOL(netdev_lower_get_next_private); 8166 8167 /** 8168 * netdev_lower_get_next_private_rcu - Get the next ->private from the 8169 * lower neighbour list, RCU 8170 * variant 8171 * @dev: device 8172 * @iter: list_head ** of the current position 8173 * 8174 * Gets the next netdev_adjacent->private from the dev's lower neighbour 8175 * list, starting from iter position. The caller must hold RCU read lock. 8176 */ 8177 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 8178 struct list_head **iter) 8179 { 8180 struct netdev_adjacent *lower; 8181 8182 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); 8183 8184 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 8185 8186 if (&lower->list == &dev->adj_list.lower) 8187 return NULL; 8188 8189 *iter = &lower->list; 8190 8191 return lower->private; 8192 } 8193 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu); 8194 8195 /** 8196 * netdev_lower_get_next - Get the next device from the lower neighbour 8197 * list 8198 * @dev: device 8199 * @iter: list_head ** of the current position 8200 * 8201 * Gets the next netdev_adjacent from the dev's lower neighbour 8202 * list, starting from iter position. The caller must hold RTNL lock or 8203 * its own locking that guarantees that the neighbour lower 8204 * list will remain unchanged. 8205 */ 8206 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter) 8207 { 8208 struct netdev_adjacent *lower; 8209 8210 lower = list_entry(*iter, struct netdev_adjacent, list); 8211 8212 if (&lower->list == &dev->adj_list.lower) 8213 return NULL; 8214 8215 *iter = lower->list.next; 8216 8217 return lower->dev; 8218 } 8219 EXPORT_SYMBOL(netdev_lower_get_next); 8220 8221 static struct net_device *netdev_next_lower_dev(struct net_device *dev, 8222 struct list_head **iter) 8223 { 8224 struct netdev_adjacent *lower; 8225 8226 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 8227 8228 if (&lower->list == &dev->adj_list.lower) 8229 return NULL; 8230 8231 *iter = &lower->list; 8232 8233 return lower->dev; 8234 } 8235 8236 static struct net_device *__netdev_next_lower_dev(struct net_device *dev, 8237 struct list_head **iter, 8238 bool *ignore) 8239 { 8240 struct netdev_adjacent *lower; 8241 8242 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 8243 8244 if (&lower->list == &dev->adj_list.lower) 8245 return NULL; 8246 8247 *iter = &lower->list; 8248 *ignore = lower->ignore; 8249 8250 return lower->dev; 8251 } 8252 8253 int netdev_walk_all_lower_dev(struct net_device *dev, 8254 int (*fn)(struct net_device *dev, 8255 struct netdev_nested_priv *priv), 8256 struct netdev_nested_priv *priv) 8257 { 8258 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 8259 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 8260 int ret, cur = 0; 8261 8262 now = dev; 8263 iter = &dev->adj_list.lower; 8264 8265 while (1) { 8266 if (now != dev) { 8267 ret = fn(now, priv); 8268 if (ret) 8269 return ret; 8270 } 8271 8272 next = NULL; 8273 while (1) { 8274 ldev = netdev_next_lower_dev(now, &iter); 8275 if (!ldev) 8276 break; 8277 8278 next = ldev; 8279 niter = &ldev->adj_list.lower; 8280 dev_stack[cur] = now; 8281 iter_stack[cur++] = iter; 8282 break; 8283 } 8284 8285 if (!next) { 8286 if (!cur) 8287 return 0; 8288 next = dev_stack[--cur]; 8289 niter = iter_stack[cur]; 8290 } 8291 8292 now = next; 8293 iter = niter; 8294 } 8295 8296 return 0; 8297 } 8298 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev); 8299 8300 static int __netdev_walk_all_lower_dev(struct net_device *dev, 8301 int (*fn)(struct net_device *dev, 8302 struct netdev_nested_priv *priv), 8303 struct netdev_nested_priv *priv) 8304 { 8305 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 8306 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 8307 int ret, cur = 0; 8308 bool ignore; 8309 8310 now = dev; 8311 iter = &dev->adj_list.lower; 8312 8313 while (1) { 8314 if (now != dev) { 8315 ret = fn(now, priv); 8316 if (ret) 8317 return ret; 8318 } 8319 8320 next = NULL; 8321 while (1) { 8322 ldev = __netdev_next_lower_dev(now, &iter, &ignore); 8323 if (!ldev) 8324 break; 8325 if (ignore) 8326 continue; 8327 8328 next = ldev; 8329 niter = &ldev->adj_list.lower; 8330 dev_stack[cur] = now; 8331 iter_stack[cur++] = iter; 8332 break; 8333 } 8334 8335 if (!next) { 8336 if (!cur) 8337 return 0; 8338 next = dev_stack[--cur]; 8339 niter = iter_stack[cur]; 8340 } 8341 8342 now = next; 8343 iter = niter; 8344 } 8345 8346 return 0; 8347 } 8348 8349 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev, 8350 struct list_head **iter) 8351 { 8352 struct netdev_adjacent *lower; 8353 8354 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 8355 if (&lower->list == &dev->adj_list.lower) 8356 return NULL; 8357 8358 *iter = &lower->list; 8359 8360 return lower->dev; 8361 } 8362 EXPORT_SYMBOL(netdev_next_lower_dev_rcu); 8363 8364 static u8 __netdev_upper_depth(struct net_device *dev) 8365 { 8366 struct net_device *udev; 8367 struct list_head *iter; 8368 u8 max_depth = 0; 8369 bool ignore; 8370 8371 for (iter = &dev->adj_list.upper, 8372 udev = __netdev_next_upper_dev(dev, &iter, &ignore); 8373 udev; 8374 udev = __netdev_next_upper_dev(dev, &iter, &ignore)) { 8375 if (ignore) 8376 continue; 8377 if (max_depth < udev->upper_level) 8378 max_depth = udev->upper_level; 8379 } 8380 8381 return max_depth; 8382 } 8383 8384 static u8 __netdev_lower_depth(struct net_device *dev) 8385 { 8386 struct net_device *ldev; 8387 struct list_head *iter; 8388 u8 max_depth = 0; 8389 bool ignore; 8390 8391 for (iter = &dev->adj_list.lower, 8392 ldev = __netdev_next_lower_dev(dev, &iter, &ignore); 8393 ldev; 8394 ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) { 8395 if (ignore) 8396 continue; 8397 if (max_depth < ldev->lower_level) 8398 max_depth = ldev->lower_level; 8399 } 8400 8401 return max_depth; 8402 } 8403 8404 static int __netdev_update_upper_level(struct net_device *dev, 8405 struct netdev_nested_priv *__unused) 8406 { 8407 dev->upper_level = __netdev_upper_depth(dev) + 1; 8408 return 0; 8409 } 8410 8411 #ifdef CONFIG_LOCKDEP 8412 static LIST_HEAD(net_unlink_list); 8413 8414 static void net_unlink_todo(struct net_device *dev) 8415 { 8416 if (list_empty(&dev->unlink_list)) 8417 list_add_tail(&dev->unlink_list, &net_unlink_list); 8418 } 8419 #endif 8420 8421 static int __netdev_update_lower_level(struct net_device *dev, 8422 struct netdev_nested_priv *priv) 8423 { 8424 dev->lower_level = __netdev_lower_depth(dev) + 1; 8425 8426 #ifdef CONFIG_LOCKDEP 8427 if (!priv) 8428 return 0; 8429 8430 if (priv->flags & NESTED_SYNC_IMM) 8431 dev->nested_level = dev->lower_level - 1; 8432 if (priv->flags & NESTED_SYNC_TODO) 8433 net_unlink_todo(dev); 8434 #endif 8435 return 0; 8436 } 8437 8438 int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 8439 int (*fn)(struct net_device *dev, 8440 struct netdev_nested_priv *priv), 8441 struct netdev_nested_priv *priv) 8442 { 8443 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 8444 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 8445 int ret, cur = 0; 8446 8447 now = dev; 8448 iter = &dev->adj_list.lower; 8449 8450 while (1) { 8451 if (now != dev) { 8452 ret = fn(now, priv); 8453 if (ret) 8454 return ret; 8455 } 8456 8457 next = NULL; 8458 while (1) { 8459 ldev = netdev_next_lower_dev_rcu(now, &iter); 8460 if (!ldev) 8461 break; 8462 8463 next = ldev; 8464 niter = &ldev->adj_list.lower; 8465 dev_stack[cur] = now; 8466 iter_stack[cur++] = iter; 8467 break; 8468 } 8469 8470 if (!next) { 8471 if (!cur) 8472 return 0; 8473 next = dev_stack[--cur]; 8474 niter = iter_stack[cur]; 8475 } 8476 8477 now = next; 8478 iter = niter; 8479 } 8480 8481 return 0; 8482 } 8483 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu); 8484 8485 /** 8486 * netdev_lower_get_first_private_rcu - Get the first ->private from the 8487 * lower neighbour list, RCU 8488 * variant 8489 * @dev: device 8490 * 8491 * Gets the first netdev_adjacent->private from the dev's lower neighbour 8492 * list. The caller must hold RCU read lock. 8493 */ 8494 void *netdev_lower_get_first_private_rcu(struct net_device *dev) 8495 { 8496 struct netdev_adjacent *lower; 8497 8498 lower = list_first_or_null_rcu(&dev->adj_list.lower, 8499 struct netdev_adjacent, list); 8500 if (lower) 8501 return lower->private; 8502 return NULL; 8503 } 8504 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu); 8505 8506 /** 8507 * netdev_master_upper_dev_get_rcu - Get master upper device 8508 * @dev: device 8509 * 8510 * Find a master upper device and return pointer to it or NULL in case 8511 * it's not there. The caller must hold the RCU read lock. 8512 */ 8513 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev) 8514 { 8515 struct netdev_adjacent *upper; 8516 8517 upper = list_first_or_null_rcu(&dev->adj_list.upper, 8518 struct netdev_adjacent, list); 8519 if (upper && likely(upper->master)) 8520 return upper->dev; 8521 return NULL; 8522 } 8523 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu); 8524 8525 static int netdev_adjacent_sysfs_add(struct net_device *dev, 8526 struct net_device *adj_dev, 8527 struct list_head *dev_list) 8528 { 8529 char linkname[IFNAMSIZ+7]; 8530 8531 sprintf(linkname, dev_list == &dev->adj_list.upper ? 8532 "upper_%s" : "lower_%s", adj_dev->name); 8533 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj), 8534 linkname); 8535 } 8536 static void netdev_adjacent_sysfs_del(struct net_device *dev, 8537 char *name, 8538 struct list_head *dev_list) 8539 { 8540 char linkname[IFNAMSIZ+7]; 8541 8542 sprintf(linkname, dev_list == &dev->adj_list.upper ? 8543 "upper_%s" : "lower_%s", name); 8544 sysfs_remove_link(&(dev->dev.kobj), linkname); 8545 } 8546 8547 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev, 8548 struct net_device *adj_dev, 8549 struct list_head *dev_list) 8550 { 8551 return (dev_list == &dev->adj_list.upper || 8552 dev_list == &dev->adj_list.lower) && 8553 net_eq(dev_net(dev), dev_net(adj_dev)); 8554 } 8555 8556 static int __netdev_adjacent_dev_insert(struct net_device *dev, 8557 struct net_device *adj_dev, 8558 struct list_head *dev_list, 8559 void *private, bool master) 8560 { 8561 struct netdev_adjacent *adj; 8562 int ret; 8563 8564 adj = __netdev_find_adj(adj_dev, dev_list); 8565 8566 if (adj) { 8567 adj->ref_nr += 1; 8568 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n", 8569 dev->name, adj_dev->name, adj->ref_nr); 8570 8571 return 0; 8572 } 8573 8574 adj = kmalloc(sizeof(*adj), GFP_KERNEL); 8575 if (!adj) 8576 return -ENOMEM; 8577 8578 adj->dev = adj_dev; 8579 adj->master = master; 8580 adj->ref_nr = 1; 8581 adj->private = private; 8582 adj->ignore = false; 8583 netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL); 8584 8585 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n", 8586 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name); 8587 8588 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) { 8589 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list); 8590 if (ret) 8591 goto free_adj; 8592 } 8593 8594 /* Ensure that master link is always the first item in list. */ 8595 if (master) { 8596 ret = sysfs_create_link(&(dev->dev.kobj), 8597 &(adj_dev->dev.kobj), "master"); 8598 if (ret) 8599 goto remove_symlinks; 8600 8601 list_add_rcu(&adj->list, dev_list); 8602 } else { 8603 list_add_tail_rcu(&adj->list, dev_list); 8604 } 8605 8606 return 0; 8607 8608 remove_symlinks: 8609 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 8610 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 8611 free_adj: 8612 netdev_put(adj_dev, &adj->dev_tracker); 8613 kfree(adj); 8614 8615 return ret; 8616 } 8617 8618 static void __netdev_adjacent_dev_remove(struct net_device *dev, 8619 struct net_device *adj_dev, 8620 u16 ref_nr, 8621 struct list_head *dev_list) 8622 { 8623 struct netdev_adjacent *adj; 8624 8625 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n", 8626 dev->name, adj_dev->name, ref_nr); 8627 8628 adj = __netdev_find_adj(adj_dev, dev_list); 8629 8630 if (!adj) { 8631 pr_err("Adjacency does not exist for device %s from %s\n", 8632 dev->name, adj_dev->name); 8633 WARN_ON(1); 8634 return; 8635 } 8636 8637 if (adj->ref_nr > ref_nr) { 8638 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n", 8639 dev->name, adj_dev->name, ref_nr, 8640 adj->ref_nr - ref_nr); 8641 adj->ref_nr -= ref_nr; 8642 return; 8643 } 8644 8645 if (adj->master) 8646 sysfs_remove_link(&(dev->dev.kobj), "master"); 8647 8648 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 8649 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 8650 8651 list_del_rcu(&adj->list); 8652 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n", 8653 adj_dev->name, dev->name, adj_dev->name); 8654 netdev_put(adj_dev, &adj->dev_tracker); 8655 kfree_rcu(adj, rcu); 8656 } 8657 8658 static int __netdev_adjacent_dev_link_lists(struct net_device *dev, 8659 struct net_device *upper_dev, 8660 struct list_head *up_list, 8661 struct list_head *down_list, 8662 void *private, bool master) 8663 { 8664 int ret; 8665 8666 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, 8667 private, master); 8668 if (ret) 8669 return ret; 8670 8671 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, 8672 private, false); 8673 if (ret) { 8674 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list); 8675 return ret; 8676 } 8677 8678 return 0; 8679 } 8680 8681 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev, 8682 struct net_device *upper_dev, 8683 u16 ref_nr, 8684 struct list_head *up_list, 8685 struct list_head *down_list) 8686 { 8687 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list); 8688 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list); 8689 } 8690 8691 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev, 8692 struct net_device *upper_dev, 8693 void *private, bool master) 8694 { 8695 return __netdev_adjacent_dev_link_lists(dev, upper_dev, 8696 &dev->adj_list.upper, 8697 &upper_dev->adj_list.lower, 8698 private, master); 8699 } 8700 8701 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev, 8702 struct net_device *upper_dev) 8703 { 8704 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1, 8705 &dev->adj_list.upper, 8706 &upper_dev->adj_list.lower); 8707 } 8708 8709 static int __netdev_upper_dev_link(struct net_device *dev, 8710 struct net_device *upper_dev, bool master, 8711 void *upper_priv, void *upper_info, 8712 struct netdev_nested_priv *priv, 8713 struct netlink_ext_ack *extack) 8714 { 8715 struct netdev_notifier_changeupper_info changeupper_info = { 8716 .info = { 8717 .dev = dev, 8718 .extack = extack, 8719 }, 8720 .upper_dev = upper_dev, 8721 .master = master, 8722 .linking = true, 8723 .upper_info = upper_info, 8724 }; 8725 struct net_device *master_dev; 8726 int ret = 0; 8727 8728 ASSERT_RTNL(); 8729 8730 if (dev == upper_dev) 8731 return -EBUSY; 8732 8733 /* To prevent loops, check if dev is not upper device to upper_dev. */ 8734 if (__netdev_has_upper_dev(upper_dev, dev)) 8735 return -EBUSY; 8736 8737 if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV) 8738 return -EMLINK; 8739 8740 if (!master) { 8741 if (__netdev_has_upper_dev(dev, upper_dev)) 8742 return -EEXIST; 8743 } else { 8744 master_dev = __netdev_master_upper_dev_get(dev); 8745 if (master_dev) 8746 return master_dev == upper_dev ? -EEXIST : -EBUSY; 8747 } 8748 8749 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 8750 &changeupper_info.info); 8751 ret = notifier_to_errno(ret); 8752 if (ret) 8753 return ret; 8754 8755 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv, 8756 master); 8757 if (ret) 8758 return ret; 8759 8760 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 8761 &changeupper_info.info); 8762 ret = notifier_to_errno(ret); 8763 if (ret) 8764 goto rollback; 8765 8766 __netdev_update_upper_level(dev, NULL); 8767 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL); 8768 8769 __netdev_update_lower_level(upper_dev, priv); 8770 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level, 8771 priv); 8772 8773 return 0; 8774 8775 rollback: 8776 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 8777 8778 return ret; 8779 } 8780 8781 /** 8782 * netdev_upper_dev_link - Add a link to the upper device 8783 * @dev: device 8784 * @upper_dev: new upper device 8785 * @extack: netlink extended ack 8786 * 8787 * Adds a link to device which is upper to this one. The caller must hold 8788 * the RTNL lock. On a failure a negative errno code is returned. 8789 * On success the reference counts are adjusted and the function 8790 * returns zero. 8791 */ 8792 int netdev_upper_dev_link(struct net_device *dev, 8793 struct net_device *upper_dev, 8794 struct netlink_ext_ack *extack) 8795 { 8796 struct netdev_nested_priv priv = { 8797 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO, 8798 .data = NULL, 8799 }; 8800 8801 return __netdev_upper_dev_link(dev, upper_dev, false, 8802 NULL, NULL, &priv, extack); 8803 } 8804 EXPORT_SYMBOL(netdev_upper_dev_link); 8805 8806 /** 8807 * netdev_master_upper_dev_link - Add a master link to the upper device 8808 * @dev: device 8809 * @upper_dev: new upper device 8810 * @upper_priv: upper device private 8811 * @upper_info: upper info to be passed down via notifier 8812 * @extack: netlink extended ack 8813 * 8814 * Adds a link to device which is upper to this one. In this case, only 8815 * one master upper device can be linked, although other non-master devices 8816 * might be linked as well. The caller must hold the RTNL lock. 8817 * On a failure a negative errno code is returned. On success the reference 8818 * counts are adjusted and the function returns zero. 8819 */ 8820 int netdev_master_upper_dev_link(struct net_device *dev, 8821 struct net_device *upper_dev, 8822 void *upper_priv, void *upper_info, 8823 struct netlink_ext_ack *extack) 8824 { 8825 struct netdev_nested_priv priv = { 8826 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO, 8827 .data = NULL, 8828 }; 8829 8830 return __netdev_upper_dev_link(dev, upper_dev, true, 8831 upper_priv, upper_info, &priv, extack); 8832 } 8833 EXPORT_SYMBOL(netdev_master_upper_dev_link); 8834 8835 static void __netdev_upper_dev_unlink(struct net_device *dev, 8836 struct net_device *upper_dev, 8837 struct netdev_nested_priv *priv) 8838 { 8839 struct netdev_notifier_changeupper_info changeupper_info = { 8840 .info = { 8841 .dev = dev, 8842 }, 8843 .upper_dev = upper_dev, 8844 .linking = false, 8845 }; 8846 8847 ASSERT_RTNL(); 8848 8849 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev; 8850 8851 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 8852 &changeupper_info.info); 8853 8854 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 8855 8856 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 8857 &changeupper_info.info); 8858 8859 __netdev_update_upper_level(dev, NULL); 8860 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL); 8861 8862 __netdev_update_lower_level(upper_dev, priv); 8863 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level, 8864 priv); 8865 } 8866 8867 /** 8868 * netdev_upper_dev_unlink - Removes a link to upper device 8869 * @dev: device 8870 * @upper_dev: new upper device 8871 * 8872 * Removes a link to device which is upper to this one. The caller must hold 8873 * the RTNL lock. 8874 */ 8875 void netdev_upper_dev_unlink(struct net_device *dev, 8876 struct net_device *upper_dev) 8877 { 8878 struct netdev_nested_priv priv = { 8879 .flags = NESTED_SYNC_TODO, 8880 .data = NULL, 8881 }; 8882 8883 __netdev_upper_dev_unlink(dev, upper_dev, &priv); 8884 } 8885 EXPORT_SYMBOL(netdev_upper_dev_unlink); 8886 8887 static void __netdev_adjacent_dev_set(struct net_device *upper_dev, 8888 struct net_device *lower_dev, 8889 bool val) 8890 { 8891 struct netdev_adjacent *adj; 8892 8893 adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower); 8894 if (adj) 8895 adj->ignore = val; 8896 8897 adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper); 8898 if (adj) 8899 adj->ignore = val; 8900 } 8901 8902 static void netdev_adjacent_dev_disable(struct net_device *upper_dev, 8903 struct net_device *lower_dev) 8904 { 8905 __netdev_adjacent_dev_set(upper_dev, lower_dev, true); 8906 } 8907 8908 static void netdev_adjacent_dev_enable(struct net_device *upper_dev, 8909 struct net_device *lower_dev) 8910 { 8911 __netdev_adjacent_dev_set(upper_dev, lower_dev, false); 8912 } 8913 8914 int netdev_adjacent_change_prepare(struct net_device *old_dev, 8915 struct net_device *new_dev, 8916 struct net_device *dev, 8917 struct netlink_ext_ack *extack) 8918 { 8919 struct netdev_nested_priv priv = { 8920 .flags = 0, 8921 .data = NULL, 8922 }; 8923 int err; 8924 8925 if (!new_dev) 8926 return 0; 8927 8928 if (old_dev && new_dev != old_dev) 8929 netdev_adjacent_dev_disable(dev, old_dev); 8930 err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv, 8931 extack); 8932 if (err) { 8933 if (old_dev && new_dev != old_dev) 8934 netdev_adjacent_dev_enable(dev, old_dev); 8935 return err; 8936 } 8937 8938 return 0; 8939 } 8940 EXPORT_SYMBOL(netdev_adjacent_change_prepare); 8941 8942 void netdev_adjacent_change_commit(struct net_device *old_dev, 8943 struct net_device *new_dev, 8944 struct net_device *dev) 8945 { 8946 struct netdev_nested_priv priv = { 8947 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO, 8948 .data = NULL, 8949 }; 8950 8951 if (!new_dev || !old_dev) 8952 return; 8953 8954 if (new_dev == old_dev) 8955 return; 8956 8957 netdev_adjacent_dev_enable(dev, old_dev); 8958 __netdev_upper_dev_unlink(old_dev, dev, &priv); 8959 } 8960 EXPORT_SYMBOL(netdev_adjacent_change_commit); 8961 8962 void netdev_adjacent_change_abort(struct net_device *old_dev, 8963 struct net_device *new_dev, 8964 struct net_device *dev) 8965 { 8966 struct netdev_nested_priv priv = { 8967 .flags = 0, 8968 .data = NULL, 8969 }; 8970 8971 if (!new_dev) 8972 return; 8973 8974 if (old_dev && new_dev != old_dev) 8975 netdev_adjacent_dev_enable(dev, old_dev); 8976 8977 __netdev_upper_dev_unlink(new_dev, dev, &priv); 8978 } 8979 EXPORT_SYMBOL(netdev_adjacent_change_abort); 8980 8981 /** 8982 * netdev_bonding_info_change - Dispatch event about slave change 8983 * @dev: device 8984 * @bonding_info: info to dispatch 8985 * 8986 * Send NETDEV_BONDING_INFO to netdev notifiers with info. 8987 * The caller must hold the RTNL lock. 8988 */ 8989 void netdev_bonding_info_change(struct net_device *dev, 8990 struct netdev_bonding_info *bonding_info) 8991 { 8992 struct netdev_notifier_bonding_info info = { 8993 .info.dev = dev, 8994 }; 8995 8996 memcpy(&info.bonding_info, bonding_info, 8997 sizeof(struct netdev_bonding_info)); 8998 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, 8999 &info.info); 9000 } 9001 EXPORT_SYMBOL(netdev_bonding_info_change); 9002 9003 static int netdev_offload_xstats_enable_l3(struct net_device *dev, 9004 struct netlink_ext_ack *extack) 9005 { 9006 struct netdev_notifier_offload_xstats_info info = { 9007 .info.dev = dev, 9008 .info.extack = extack, 9009 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3, 9010 }; 9011 int err; 9012 int rc; 9013 9014 dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3), 9015 GFP_KERNEL); 9016 if (!dev->offload_xstats_l3) 9017 return -ENOMEM; 9018 9019 rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE, 9020 NETDEV_OFFLOAD_XSTATS_DISABLE, 9021 &info.info); 9022 err = notifier_to_errno(rc); 9023 if (err) 9024 goto free_stats; 9025 9026 return 0; 9027 9028 free_stats: 9029 kfree(dev->offload_xstats_l3); 9030 dev->offload_xstats_l3 = NULL; 9031 return err; 9032 } 9033 9034 int netdev_offload_xstats_enable(struct net_device *dev, 9035 enum netdev_offload_xstats_type type, 9036 struct netlink_ext_ack *extack) 9037 { 9038 ASSERT_RTNL(); 9039 9040 if (netdev_offload_xstats_enabled(dev, type)) 9041 return -EALREADY; 9042 9043 switch (type) { 9044 case NETDEV_OFFLOAD_XSTATS_TYPE_L3: 9045 return netdev_offload_xstats_enable_l3(dev, extack); 9046 } 9047 9048 WARN_ON(1); 9049 return -EINVAL; 9050 } 9051 EXPORT_SYMBOL(netdev_offload_xstats_enable); 9052 9053 static void netdev_offload_xstats_disable_l3(struct net_device *dev) 9054 { 9055 struct netdev_notifier_offload_xstats_info info = { 9056 .info.dev = dev, 9057 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3, 9058 }; 9059 9060 call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE, 9061 &info.info); 9062 kfree(dev->offload_xstats_l3); 9063 dev->offload_xstats_l3 = NULL; 9064 } 9065 9066 int netdev_offload_xstats_disable(struct net_device *dev, 9067 enum netdev_offload_xstats_type type) 9068 { 9069 ASSERT_RTNL(); 9070 9071 if (!netdev_offload_xstats_enabled(dev, type)) 9072 return -EALREADY; 9073 9074 switch (type) { 9075 case NETDEV_OFFLOAD_XSTATS_TYPE_L3: 9076 netdev_offload_xstats_disable_l3(dev); 9077 return 0; 9078 } 9079 9080 WARN_ON(1); 9081 return -EINVAL; 9082 } 9083 EXPORT_SYMBOL(netdev_offload_xstats_disable); 9084 9085 static void netdev_offload_xstats_disable_all(struct net_device *dev) 9086 { 9087 netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3); 9088 } 9089 9090 static struct rtnl_hw_stats64 * 9091 netdev_offload_xstats_get_ptr(const struct net_device *dev, 9092 enum netdev_offload_xstats_type type) 9093 { 9094 switch (type) { 9095 case NETDEV_OFFLOAD_XSTATS_TYPE_L3: 9096 return dev->offload_xstats_l3; 9097 } 9098 9099 WARN_ON(1); 9100 return NULL; 9101 } 9102 9103 bool netdev_offload_xstats_enabled(const struct net_device *dev, 9104 enum netdev_offload_xstats_type type) 9105 { 9106 ASSERT_RTNL(); 9107 9108 return netdev_offload_xstats_get_ptr(dev, type); 9109 } 9110 EXPORT_SYMBOL(netdev_offload_xstats_enabled); 9111 9112 struct netdev_notifier_offload_xstats_ru { 9113 bool used; 9114 }; 9115 9116 struct netdev_notifier_offload_xstats_rd { 9117 struct rtnl_hw_stats64 stats; 9118 bool used; 9119 }; 9120 9121 static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest, 9122 const struct rtnl_hw_stats64 *src) 9123 { 9124 dest->rx_packets += src->rx_packets; 9125 dest->tx_packets += src->tx_packets; 9126 dest->rx_bytes += src->rx_bytes; 9127 dest->tx_bytes += src->tx_bytes; 9128 dest->rx_errors += src->rx_errors; 9129 dest->tx_errors += src->tx_errors; 9130 dest->rx_dropped += src->rx_dropped; 9131 dest->tx_dropped += src->tx_dropped; 9132 dest->multicast += src->multicast; 9133 } 9134 9135 static int netdev_offload_xstats_get_used(struct net_device *dev, 9136 enum netdev_offload_xstats_type type, 9137 bool *p_used, 9138 struct netlink_ext_ack *extack) 9139 { 9140 struct netdev_notifier_offload_xstats_ru report_used = {}; 9141 struct netdev_notifier_offload_xstats_info info = { 9142 .info.dev = dev, 9143 .info.extack = extack, 9144 .type = type, 9145 .report_used = &report_used, 9146 }; 9147 int rc; 9148 9149 WARN_ON(!netdev_offload_xstats_enabled(dev, type)); 9150 rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED, 9151 &info.info); 9152 *p_used = report_used.used; 9153 return notifier_to_errno(rc); 9154 } 9155 9156 static int netdev_offload_xstats_get_stats(struct net_device *dev, 9157 enum netdev_offload_xstats_type type, 9158 struct rtnl_hw_stats64 *p_stats, 9159 bool *p_used, 9160 struct netlink_ext_ack *extack) 9161 { 9162 struct netdev_notifier_offload_xstats_rd report_delta = {}; 9163 struct netdev_notifier_offload_xstats_info info = { 9164 .info.dev = dev, 9165 .info.extack = extack, 9166 .type = type, 9167 .report_delta = &report_delta, 9168 }; 9169 struct rtnl_hw_stats64 *stats; 9170 int rc; 9171 9172 stats = netdev_offload_xstats_get_ptr(dev, type); 9173 if (WARN_ON(!stats)) 9174 return -EINVAL; 9175 9176 rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA, 9177 &info.info); 9178 9179 /* Cache whatever we got, even if there was an error, otherwise the 9180 * successful stats retrievals would get lost. 9181 */ 9182 netdev_hw_stats64_add(stats, &report_delta.stats); 9183 9184 if (p_stats) 9185 *p_stats = *stats; 9186 *p_used = report_delta.used; 9187 9188 return notifier_to_errno(rc); 9189 } 9190 9191 int netdev_offload_xstats_get(struct net_device *dev, 9192 enum netdev_offload_xstats_type type, 9193 struct rtnl_hw_stats64 *p_stats, bool *p_used, 9194 struct netlink_ext_ack *extack) 9195 { 9196 ASSERT_RTNL(); 9197 9198 if (p_stats) 9199 return netdev_offload_xstats_get_stats(dev, type, p_stats, 9200 p_used, extack); 9201 else 9202 return netdev_offload_xstats_get_used(dev, type, p_used, 9203 extack); 9204 } 9205 EXPORT_SYMBOL(netdev_offload_xstats_get); 9206 9207 void 9208 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta, 9209 const struct rtnl_hw_stats64 *stats) 9210 { 9211 report_delta->used = true; 9212 netdev_hw_stats64_add(&report_delta->stats, stats); 9213 } 9214 EXPORT_SYMBOL(netdev_offload_xstats_report_delta); 9215 9216 void 9217 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used) 9218 { 9219 report_used->used = true; 9220 } 9221 EXPORT_SYMBOL(netdev_offload_xstats_report_used); 9222 9223 void netdev_offload_xstats_push_delta(struct net_device *dev, 9224 enum netdev_offload_xstats_type type, 9225 const struct rtnl_hw_stats64 *p_stats) 9226 { 9227 struct rtnl_hw_stats64 *stats; 9228 9229 ASSERT_RTNL(); 9230 9231 stats = netdev_offload_xstats_get_ptr(dev, type); 9232 if (WARN_ON(!stats)) 9233 return; 9234 9235 netdev_hw_stats64_add(stats, p_stats); 9236 } 9237 EXPORT_SYMBOL(netdev_offload_xstats_push_delta); 9238 9239 /** 9240 * netdev_get_xmit_slave - Get the xmit slave of master device 9241 * @dev: device 9242 * @skb: The packet 9243 * @all_slaves: assume all the slaves are active 9244 * 9245 * The reference counters are not incremented so the caller must be 9246 * careful with locks. The caller must hold RCU lock. 9247 * %NULL is returned if no slave is found. 9248 */ 9249 9250 struct net_device *netdev_get_xmit_slave(struct net_device *dev, 9251 struct sk_buff *skb, 9252 bool all_slaves) 9253 { 9254 const struct net_device_ops *ops = dev->netdev_ops; 9255 9256 if (!ops->ndo_get_xmit_slave) 9257 return NULL; 9258 return ops->ndo_get_xmit_slave(dev, skb, all_slaves); 9259 } 9260 EXPORT_SYMBOL(netdev_get_xmit_slave); 9261 9262 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev, 9263 struct sock *sk) 9264 { 9265 const struct net_device_ops *ops = dev->netdev_ops; 9266 9267 if (!ops->ndo_sk_get_lower_dev) 9268 return NULL; 9269 return ops->ndo_sk_get_lower_dev(dev, sk); 9270 } 9271 9272 /** 9273 * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket 9274 * @dev: device 9275 * @sk: the socket 9276 * 9277 * %NULL is returned if no lower device is found. 9278 */ 9279 9280 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev, 9281 struct sock *sk) 9282 { 9283 struct net_device *lower; 9284 9285 lower = netdev_sk_get_lower_dev(dev, sk); 9286 while (lower) { 9287 dev = lower; 9288 lower = netdev_sk_get_lower_dev(dev, sk); 9289 } 9290 9291 return dev; 9292 } 9293 EXPORT_SYMBOL(netdev_sk_get_lowest_dev); 9294 9295 static void netdev_adjacent_add_links(struct net_device *dev) 9296 { 9297 struct netdev_adjacent *iter; 9298 9299 struct net *net = dev_net(dev); 9300 9301 list_for_each_entry(iter, &dev->adj_list.upper, list) { 9302 if (!net_eq(net, dev_net(iter->dev))) 9303 continue; 9304 netdev_adjacent_sysfs_add(iter->dev, dev, 9305 &iter->dev->adj_list.lower); 9306 netdev_adjacent_sysfs_add(dev, iter->dev, 9307 &dev->adj_list.upper); 9308 } 9309 9310 list_for_each_entry(iter, &dev->adj_list.lower, list) { 9311 if (!net_eq(net, dev_net(iter->dev))) 9312 continue; 9313 netdev_adjacent_sysfs_add(iter->dev, dev, 9314 &iter->dev->adj_list.upper); 9315 netdev_adjacent_sysfs_add(dev, iter->dev, 9316 &dev->adj_list.lower); 9317 } 9318 } 9319 9320 static void netdev_adjacent_del_links(struct net_device *dev) 9321 { 9322 struct netdev_adjacent *iter; 9323 9324 struct net *net = dev_net(dev); 9325 9326 list_for_each_entry(iter, &dev->adj_list.upper, list) { 9327 if (!net_eq(net, dev_net(iter->dev))) 9328 continue; 9329 netdev_adjacent_sysfs_del(iter->dev, dev->name, 9330 &iter->dev->adj_list.lower); 9331 netdev_adjacent_sysfs_del(dev, iter->dev->name, 9332 &dev->adj_list.upper); 9333 } 9334 9335 list_for_each_entry(iter, &dev->adj_list.lower, list) { 9336 if (!net_eq(net, dev_net(iter->dev))) 9337 continue; 9338 netdev_adjacent_sysfs_del(iter->dev, dev->name, 9339 &iter->dev->adj_list.upper); 9340 netdev_adjacent_sysfs_del(dev, iter->dev->name, 9341 &dev->adj_list.lower); 9342 } 9343 } 9344 9345 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname) 9346 { 9347 struct netdev_adjacent *iter; 9348 9349 struct net *net = dev_net(dev); 9350 9351 list_for_each_entry(iter, &dev->adj_list.upper, list) { 9352 if (!net_eq(net, dev_net(iter->dev))) 9353 continue; 9354 netdev_adjacent_sysfs_del(iter->dev, oldname, 9355 &iter->dev->adj_list.lower); 9356 netdev_adjacent_sysfs_add(iter->dev, dev, 9357 &iter->dev->adj_list.lower); 9358 } 9359 9360 list_for_each_entry(iter, &dev->adj_list.lower, list) { 9361 if (!net_eq(net, dev_net(iter->dev))) 9362 continue; 9363 netdev_adjacent_sysfs_del(iter->dev, oldname, 9364 &iter->dev->adj_list.upper); 9365 netdev_adjacent_sysfs_add(iter->dev, dev, 9366 &iter->dev->adj_list.upper); 9367 } 9368 } 9369 9370 void *netdev_lower_dev_get_private(struct net_device *dev, 9371 struct net_device *lower_dev) 9372 { 9373 struct netdev_adjacent *lower; 9374 9375 if (!lower_dev) 9376 return NULL; 9377 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower); 9378 if (!lower) 9379 return NULL; 9380 9381 return lower->private; 9382 } 9383 EXPORT_SYMBOL(netdev_lower_dev_get_private); 9384 9385 9386 /** 9387 * netdev_lower_state_changed - Dispatch event about lower device state change 9388 * @lower_dev: device 9389 * @lower_state_info: state to dispatch 9390 * 9391 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info. 9392 * The caller must hold the RTNL lock. 9393 */ 9394 void netdev_lower_state_changed(struct net_device *lower_dev, 9395 void *lower_state_info) 9396 { 9397 struct netdev_notifier_changelowerstate_info changelowerstate_info = { 9398 .info.dev = lower_dev, 9399 }; 9400 9401 ASSERT_RTNL(); 9402 changelowerstate_info.lower_state_info = lower_state_info; 9403 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, 9404 &changelowerstate_info.info); 9405 } 9406 EXPORT_SYMBOL(netdev_lower_state_changed); 9407 9408 static void dev_change_rx_flags(struct net_device *dev, int flags) 9409 { 9410 const struct net_device_ops *ops = dev->netdev_ops; 9411 9412 if (ops->ndo_change_rx_flags) 9413 ops->ndo_change_rx_flags(dev, flags); 9414 } 9415 9416 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify) 9417 { 9418 unsigned int old_flags = dev->flags; 9419 unsigned int promiscuity, flags; 9420 kuid_t uid; 9421 kgid_t gid; 9422 9423 ASSERT_RTNL(); 9424 9425 promiscuity = dev->promiscuity + inc; 9426 if (promiscuity == 0) { 9427 /* 9428 * Avoid overflow. 9429 * If inc causes overflow, untouch promisc and return error. 9430 */ 9431 if (unlikely(inc > 0)) { 9432 netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n"); 9433 return -EOVERFLOW; 9434 } 9435 flags = old_flags & ~IFF_PROMISC; 9436 } else { 9437 flags = old_flags | IFF_PROMISC; 9438 } 9439 WRITE_ONCE(dev->promiscuity, promiscuity); 9440 if (flags != old_flags) { 9441 WRITE_ONCE(dev->flags, flags); 9442 netdev_info(dev, "%s promiscuous mode\n", 9443 dev->flags & IFF_PROMISC ? "entered" : "left"); 9444 if (audit_enabled) { 9445 current_uid_gid(&uid, &gid); 9446 audit_log(audit_context(), GFP_ATOMIC, 9447 AUDIT_ANOM_PROMISCUOUS, 9448 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 9449 dev->name, (dev->flags & IFF_PROMISC), 9450 (old_flags & IFF_PROMISC), 9451 from_kuid(&init_user_ns, audit_get_loginuid(current)), 9452 from_kuid(&init_user_ns, uid), 9453 from_kgid(&init_user_ns, gid), 9454 audit_get_sessionid(current)); 9455 } 9456 9457 dev_change_rx_flags(dev, IFF_PROMISC); 9458 } 9459 if (notify) { 9460 /* The ops lock is only required to ensure consistent locking 9461 * for `NETDEV_CHANGE` notifiers. This function is sometimes 9462 * called without the lock, even for devices that are ops 9463 * locked, such as in `dev_uc_sync_multiple` when using 9464 * bonding or teaming. 9465 */ 9466 netdev_ops_assert_locked(dev); 9467 __dev_notify_flags(dev, old_flags, IFF_PROMISC, 0, NULL); 9468 } 9469 return 0; 9470 } 9471 9472 int netif_set_promiscuity(struct net_device *dev, int inc) 9473 { 9474 unsigned int old_flags = dev->flags; 9475 int err; 9476 9477 err = __dev_set_promiscuity(dev, inc, true); 9478 if (err < 0) 9479 return err; 9480 if (dev->flags != old_flags) 9481 dev_set_rx_mode(dev); 9482 return err; 9483 } 9484 9485 int netif_set_allmulti(struct net_device *dev, int inc, bool notify) 9486 { 9487 unsigned int old_flags = dev->flags, old_gflags = dev->gflags; 9488 unsigned int allmulti, flags; 9489 9490 ASSERT_RTNL(); 9491 9492 allmulti = dev->allmulti + inc; 9493 if (allmulti == 0) { 9494 /* 9495 * Avoid overflow. 9496 * If inc causes overflow, untouch allmulti and return error. 9497 */ 9498 if (unlikely(inc > 0)) { 9499 netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n"); 9500 return -EOVERFLOW; 9501 } 9502 flags = old_flags & ~IFF_ALLMULTI; 9503 } else { 9504 flags = old_flags | IFF_ALLMULTI; 9505 } 9506 WRITE_ONCE(dev->allmulti, allmulti); 9507 if (flags != old_flags) { 9508 WRITE_ONCE(dev->flags, flags); 9509 netdev_info(dev, "%s allmulticast mode\n", 9510 dev->flags & IFF_ALLMULTI ? "entered" : "left"); 9511 dev_change_rx_flags(dev, IFF_ALLMULTI); 9512 dev_set_rx_mode(dev); 9513 if (notify) 9514 __dev_notify_flags(dev, old_flags, 9515 dev->gflags ^ old_gflags, 0, NULL); 9516 } 9517 return 0; 9518 } 9519 9520 /* 9521 * Upload unicast and multicast address lists to device and 9522 * configure RX filtering. When the device doesn't support unicast 9523 * filtering it is put in promiscuous mode while unicast addresses 9524 * are present. 9525 */ 9526 void __dev_set_rx_mode(struct net_device *dev) 9527 { 9528 const struct net_device_ops *ops = dev->netdev_ops; 9529 9530 /* dev_open will call this function so the list will stay sane. */ 9531 if (!(dev->flags&IFF_UP)) 9532 return; 9533 9534 if (!netif_device_present(dev)) 9535 return; 9536 9537 if (!(dev->priv_flags & IFF_UNICAST_FLT)) { 9538 /* Unicast addresses changes may only happen under the rtnl, 9539 * therefore calling __dev_set_promiscuity here is safe. 9540 */ 9541 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 9542 __dev_set_promiscuity(dev, 1, false); 9543 dev->uc_promisc = true; 9544 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 9545 __dev_set_promiscuity(dev, -1, false); 9546 dev->uc_promisc = false; 9547 } 9548 } 9549 9550 if (ops->ndo_set_rx_mode) 9551 ops->ndo_set_rx_mode(dev); 9552 } 9553 9554 void dev_set_rx_mode(struct net_device *dev) 9555 { 9556 netif_addr_lock_bh(dev); 9557 __dev_set_rx_mode(dev); 9558 netif_addr_unlock_bh(dev); 9559 } 9560 9561 /** 9562 * netif_get_flags() - get flags reported to userspace 9563 * @dev: device 9564 * 9565 * Get the combination of flag bits exported through APIs to userspace. 9566 */ 9567 unsigned int netif_get_flags(const struct net_device *dev) 9568 { 9569 unsigned int flags; 9570 9571 flags = (READ_ONCE(dev->flags) & ~(IFF_PROMISC | 9572 IFF_ALLMULTI | 9573 IFF_RUNNING | 9574 IFF_LOWER_UP | 9575 IFF_DORMANT)) | 9576 (READ_ONCE(dev->gflags) & (IFF_PROMISC | 9577 IFF_ALLMULTI)); 9578 9579 if (netif_running(dev)) { 9580 if (netif_oper_up(dev)) 9581 flags |= IFF_RUNNING; 9582 if (netif_carrier_ok(dev)) 9583 flags |= IFF_LOWER_UP; 9584 if (netif_dormant(dev)) 9585 flags |= IFF_DORMANT; 9586 } 9587 9588 return flags; 9589 } 9590 EXPORT_SYMBOL(netif_get_flags); 9591 9592 int __dev_change_flags(struct net_device *dev, unsigned int flags, 9593 struct netlink_ext_ack *extack) 9594 { 9595 unsigned int old_flags = dev->flags; 9596 int ret; 9597 9598 ASSERT_RTNL(); 9599 9600 /* 9601 * Set the flags on our device. 9602 */ 9603 9604 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 9605 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 9606 IFF_AUTOMEDIA)) | 9607 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 9608 IFF_ALLMULTI)); 9609 9610 /* 9611 * Load in the correct multicast list now the flags have changed. 9612 */ 9613 9614 if ((old_flags ^ flags) & IFF_MULTICAST) 9615 dev_change_rx_flags(dev, IFF_MULTICAST); 9616 9617 dev_set_rx_mode(dev); 9618 9619 /* 9620 * Have we downed the interface. We handle IFF_UP ourselves 9621 * according to user attempts to set it, rather than blindly 9622 * setting it. 9623 */ 9624 9625 ret = 0; 9626 if ((old_flags ^ flags) & IFF_UP) { 9627 if (old_flags & IFF_UP) 9628 __dev_close(dev); 9629 else 9630 ret = __dev_open(dev, extack); 9631 } 9632 9633 if ((flags ^ dev->gflags) & IFF_PROMISC) { 9634 int inc = (flags & IFF_PROMISC) ? 1 : -1; 9635 old_flags = dev->flags; 9636 9637 dev->gflags ^= IFF_PROMISC; 9638 9639 if (__dev_set_promiscuity(dev, inc, false) >= 0) 9640 if (dev->flags != old_flags) 9641 dev_set_rx_mode(dev); 9642 } 9643 9644 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 9645 * is important. Some (broken) drivers set IFF_PROMISC, when 9646 * IFF_ALLMULTI is requested not asking us and not reporting. 9647 */ 9648 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 9649 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 9650 9651 dev->gflags ^= IFF_ALLMULTI; 9652 netif_set_allmulti(dev, inc, false); 9653 } 9654 9655 return ret; 9656 } 9657 9658 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags, 9659 unsigned int gchanges, u32 portid, 9660 const struct nlmsghdr *nlh) 9661 { 9662 unsigned int changes = dev->flags ^ old_flags; 9663 9664 if (gchanges) 9665 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC, portid, nlh); 9666 9667 if (changes & IFF_UP) { 9668 if (dev->flags & IFF_UP) 9669 call_netdevice_notifiers(NETDEV_UP, dev); 9670 else 9671 call_netdevice_notifiers(NETDEV_DOWN, dev); 9672 } 9673 9674 if (dev->flags & IFF_UP && 9675 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) { 9676 struct netdev_notifier_change_info change_info = { 9677 .info = { 9678 .dev = dev, 9679 }, 9680 .flags_changed = changes, 9681 }; 9682 9683 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info); 9684 } 9685 } 9686 9687 int netif_change_flags(struct net_device *dev, unsigned int flags, 9688 struct netlink_ext_ack *extack) 9689 { 9690 int ret; 9691 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags; 9692 9693 ret = __dev_change_flags(dev, flags, extack); 9694 if (ret < 0) 9695 return ret; 9696 9697 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags); 9698 __dev_notify_flags(dev, old_flags, changes, 0, NULL); 9699 return ret; 9700 } 9701 9702 int __netif_set_mtu(struct net_device *dev, int new_mtu) 9703 { 9704 const struct net_device_ops *ops = dev->netdev_ops; 9705 9706 if (ops->ndo_change_mtu) 9707 return ops->ndo_change_mtu(dev, new_mtu); 9708 9709 /* Pairs with all the lockless reads of dev->mtu in the stack */ 9710 WRITE_ONCE(dev->mtu, new_mtu); 9711 return 0; 9712 } 9713 EXPORT_SYMBOL_NS_GPL(__netif_set_mtu, "NETDEV_INTERNAL"); 9714 9715 int dev_validate_mtu(struct net_device *dev, int new_mtu, 9716 struct netlink_ext_ack *extack) 9717 { 9718 /* MTU must be positive, and in range */ 9719 if (new_mtu < 0 || new_mtu < dev->min_mtu) { 9720 NL_SET_ERR_MSG(extack, "mtu less than device minimum"); 9721 return -EINVAL; 9722 } 9723 9724 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) { 9725 NL_SET_ERR_MSG(extack, "mtu greater than device maximum"); 9726 return -EINVAL; 9727 } 9728 return 0; 9729 } 9730 9731 /** 9732 * netif_set_mtu_ext() - Change maximum transfer unit 9733 * @dev: device 9734 * @new_mtu: new transfer unit 9735 * @extack: netlink extended ack 9736 * 9737 * Change the maximum transfer size of the network device. 9738 * 9739 * Return: 0 on success, -errno on failure. 9740 */ 9741 int netif_set_mtu_ext(struct net_device *dev, int new_mtu, 9742 struct netlink_ext_ack *extack) 9743 { 9744 int err, orig_mtu; 9745 9746 netdev_ops_assert_locked(dev); 9747 9748 if (new_mtu == dev->mtu) 9749 return 0; 9750 9751 err = dev_validate_mtu(dev, new_mtu, extack); 9752 if (err) 9753 return err; 9754 9755 if (!netif_device_present(dev)) 9756 return -ENODEV; 9757 9758 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev); 9759 err = notifier_to_errno(err); 9760 if (err) 9761 return err; 9762 9763 orig_mtu = dev->mtu; 9764 err = __netif_set_mtu(dev, new_mtu); 9765 9766 if (!err) { 9767 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev, 9768 orig_mtu); 9769 err = notifier_to_errno(err); 9770 if (err) { 9771 /* setting mtu back and notifying everyone again, 9772 * so that they have a chance to revert changes. 9773 */ 9774 __netif_set_mtu(dev, orig_mtu); 9775 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev, 9776 new_mtu); 9777 } 9778 } 9779 return err; 9780 } 9781 9782 int netif_set_mtu(struct net_device *dev, int new_mtu) 9783 { 9784 struct netlink_ext_ack extack; 9785 int err; 9786 9787 memset(&extack, 0, sizeof(extack)); 9788 err = netif_set_mtu_ext(dev, new_mtu, &extack); 9789 if (err && extack._msg) 9790 net_err_ratelimited("%s: %s\n", dev->name, extack._msg); 9791 return err; 9792 } 9793 EXPORT_SYMBOL(netif_set_mtu); 9794 9795 int netif_change_tx_queue_len(struct net_device *dev, unsigned long new_len) 9796 { 9797 unsigned int orig_len = dev->tx_queue_len; 9798 int res; 9799 9800 if (new_len != (unsigned int)new_len) 9801 return -ERANGE; 9802 9803 if (new_len != orig_len) { 9804 WRITE_ONCE(dev->tx_queue_len, new_len); 9805 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev); 9806 res = notifier_to_errno(res); 9807 if (res) 9808 goto err_rollback; 9809 res = dev_qdisc_change_tx_queue_len(dev); 9810 if (res) 9811 goto err_rollback; 9812 } 9813 9814 return 0; 9815 9816 err_rollback: 9817 netdev_err(dev, "refused to change device tx_queue_len\n"); 9818 WRITE_ONCE(dev->tx_queue_len, orig_len); 9819 return res; 9820 } 9821 9822 void netif_set_group(struct net_device *dev, int new_group) 9823 { 9824 dev->group = new_group; 9825 } 9826 9827 /** 9828 * netif_pre_changeaddr_notify() - Call NETDEV_PRE_CHANGEADDR. 9829 * @dev: device 9830 * @addr: new address 9831 * @extack: netlink extended ack 9832 * 9833 * Return: 0 on success, -errno on failure. 9834 */ 9835 int netif_pre_changeaddr_notify(struct net_device *dev, const char *addr, 9836 struct netlink_ext_ack *extack) 9837 { 9838 struct netdev_notifier_pre_changeaddr_info info = { 9839 .info.dev = dev, 9840 .info.extack = extack, 9841 .dev_addr = addr, 9842 }; 9843 int rc; 9844 9845 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info); 9846 return notifier_to_errno(rc); 9847 } 9848 EXPORT_SYMBOL_NS_GPL(netif_pre_changeaddr_notify, "NETDEV_INTERNAL"); 9849 9850 int netif_set_mac_address(struct net_device *dev, struct sockaddr_storage *ss, 9851 struct netlink_ext_ack *extack) 9852 { 9853 const struct net_device_ops *ops = dev->netdev_ops; 9854 int err; 9855 9856 if (!ops->ndo_set_mac_address) 9857 return -EOPNOTSUPP; 9858 if (ss->ss_family != dev->type) 9859 return -EINVAL; 9860 if (!netif_device_present(dev)) 9861 return -ENODEV; 9862 err = netif_pre_changeaddr_notify(dev, ss->__data, extack); 9863 if (err) 9864 return err; 9865 if (memcmp(dev->dev_addr, ss->__data, dev->addr_len)) { 9866 err = ops->ndo_set_mac_address(dev, ss); 9867 if (err) 9868 return err; 9869 } 9870 dev->addr_assign_type = NET_ADDR_SET; 9871 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 9872 add_device_randomness(dev->dev_addr, dev->addr_len); 9873 return 0; 9874 } 9875 9876 DECLARE_RWSEM(dev_addr_sem); 9877 9878 /* "sa" is a true struct sockaddr with limited "sa_data" member. */ 9879 int netif_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name) 9880 { 9881 size_t size = sizeof(sa->sa_data_min); 9882 struct net_device *dev; 9883 int ret = 0; 9884 9885 down_read(&dev_addr_sem); 9886 rcu_read_lock(); 9887 9888 dev = dev_get_by_name_rcu(net, dev_name); 9889 if (!dev) { 9890 ret = -ENODEV; 9891 goto unlock; 9892 } 9893 if (!dev->addr_len) 9894 memset(sa->sa_data, 0, size); 9895 else 9896 memcpy(sa->sa_data, dev->dev_addr, 9897 min_t(size_t, size, dev->addr_len)); 9898 sa->sa_family = dev->type; 9899 9900 unlock: 9901 rcu_read_unlock(); 9902 up_read(&dev_addr_sem); 9903 return ret; 9904 } 9905 EXPORT_SYMBOL_NS_GPL(netif_get_mac_address, "NETDEV_INTERNAL"); 9906 9907 int netif_change_carrier(struct net_device *dev, bool new_carrier) 9908 { 9909 const struct net_device_ops *ops = dev->netdev_ops; 9910 9911 if (!ops->ndo_change_carrier) 9912 return -EOPNOTSUPP; 9913 if (!netif_device_present(dev)) 9914 return -ENODEV; 9915 return ops->ndo_change_carrier(dev, new_carrier); 9916 } 9917 9918 /** 9919 * dev_get_phys_port_id - Get device physical port ID 9920 * @dev: device 9921 * @ppid: port ID 9922 * 9923 * Get device physical port ID 9924 */ 9925 int dev_get_phys_port_id(struct net_device *dev, 9926 struct netdev_phys_item_id *ppid) 9927 { 9928 const struct net_device_ops *ops = dev->netdev_ops; 9929 9930 if (!ops->ndo_get_phys_port_id) 9931 return -EOPNOTSUPP; 9932 return ops->ndo_get_phys_port_id(dev, ppid); 9933 } 9934 9935 /** 9936 * dev_get_phys_port_name - Get device physical port name 9937 * @dev: device 9938 * @name: port name 9939 * @len: limit of bytes to copy to name 9940 * 9941 * Get device physical port name 9942 */ 9943 int dev_get_phys_port_name(struct net_device *dev, 9944 char *name, size_t len) 9945 { 9946 const struct net_device_ops *ops = dev->netdev_ops; 9947 int err; 9948 9949 if (ops->ndo_get_phys_port_name) { 9950 err = ops->ndo_get_phys_port_name(dev, name, len); 9951 if (err != -EOPNOTSUPP) 9952 return err; 9953 } 9954 return devlink_compat_phys_port_name_get(dev, name, len); 9955 } 9956 9957 /** 9958 * netif_get_port_parent_id() - Get the device's port parent identifier 9959 * @dev: network device 9960 * @ppid: pointer to a storage for the port's parent identifier 9961 * @recurse: allow/disallow recursion to lower devices 9962 * 9963 * Get the devices's port parent identifier. 9964 * 9965 * Return: 0 on success, -errno on failure. 9966 */ 9967 int netif_get_port_parent_id(struct net_device *dev, 9968 struct netdev_phys_item_id *ppid, bool recurse) 9969 { 9970 const struct net_device_ops *ops = dev->netdev_ops; 9971 struct netdev_phys_item_id first = { }; 9972 struct net_device *lower_dev; 9973 struct list_head *iter; 9974 int err; 9975 9976 if (ops->ndo_get_port_parent_id) { 9977 err = ops->ndo_get_port_parent_id(dev, ppid); 9978 if (err != -EOPNOTSUPP) 9979 return err; 9980 } 9981 9982 err = devlink_compat_switch_id_get(dev, ppid); 9983 if (!recurse || err != -EOPNOTSUPP) 9984 return err; 9985 9986 netdev_for_each_lower_dev(dev, lower_dev, iter) { 9987 err = netif_get_port_parent_id(lower_dev, ppid, true); 9988 if (err) 9989 break; 9990 if (!first.id_len) 9991 first = *ppid; 9992 else if (memcmp(&first, ppid, sizeof(*ppid))) 9993 return -EOPNOTSUPP; 9994 } 9995 9996 return err; 9997 } 9998 EXPORT_SYMBOL(netif_get_port_parent_id); 9999 10000 /** 10001 * netdev_port_same_parent_id - Indicate if two network devices have 10002 * the same port parent identifier 10003 * @a: first network device 10004 * @b: second network device 10005 */ 10006 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b) 10007 { 10008 struct netdev_phys_item_id a_id = { }; 10009 struct netdev_phys_item_id b_id = { }; 10010 10011 if (netif_get_port_parent_id(a, &a_id, true) || 10012 netif_get_port_parent_id(b, &b_id, true)) 10013 return false; 10014 10015 return netdev_phys_item_id_same(&a_id, &b_id); 10016 } 10017 EXPORT_SYMBOL(netdev_port_same_parent_id); 10018 10019 int netif_change_proto_down(struct net_device *dev, bool proto_down) 10020 { 10021 if (!dev->change_proto_down) 10022 return -EOPNOTSUPP; 10023 if (!netif_device_present(dev)) 10024 return -ENODEV; 10025 if (proto_down) 10026 netif_carrier_off(dev); 10027 else 10028 netif_carrier_on(dev); 10029 WRITE_ONCE(dev->proto_down, proto_down); 10030 return 0; 10031 } 10032 10033 /** 10034 * netdev_change_proto_down_reason_locked - proto down reason 10035 * 10036 * @dev: device 10037 * @mask: proto down mask 10038 * @value: proto down value 10039 */ 10040 void netdev_change_proto_down_reason_locked(struct net_device *dev, 10041 unsigned long mask, u32 value) 10042 { 10043 u32 proto_down_reason; 10044 int b; 10045 10046 if (!mask) { 10047 proto_down_reason = value; 10048 } else { 10049 proto_down_reason = dev->proto_down_reason; 10050 for_each_set_bit(b, &mask, 32) { 10051 if (value & (1 << b)) 10052 proto_down_reason |= BIT(b); 10053 else 10054 proto_down_reason &= ~BIT(b); 10055 } 10056 } 10057 WRITE_ONCE(dev->proto_down_reason, proto_down_reason); 10058 } 10059 10060 struct bpf_xdp_link { 10061 struct bpf_link link; 10062 struct net_device *dev; /* protected by rtnl_lock, no refcnt held */ 10063 int flags; 10064 }; 10065 10066 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags) 10067 { 10068 if (flags & XDP_FLAGS_HW_MODE) 10069 return XDP_MODE_HW; 10070 if (flags & XDP_FLAGS_DRV_MODE) 10071 return XDP_MODE_DRV; 10072 if (flags & XDP_FLAGS_SKB_MODE) 10073 return XDP_MODE_SKB; 10074 return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB; 10075 } 10076 10077 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode) 10078 { 10079 switch (mode) { 10080 case XDP_MODE_SKB: 10081 return generic_xdp_install; 10082 case XDP_MODE_DRV: 10083 case XDP_MODE_HW: 10084 return dev->netdev_ops->ndo_bpf; 10085 default: 10086 return NULL; 10087 } 10088 } 10089 10090 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev, 10091 enum bpf_xdp_mode mode) 10092 { 10093 return dev->xdp_state[mode].link; 10094 } 10095 10096 static struct bpf_prog *dev_xdp_prog(struct net_device *dev, 10097 enum bpf_xdp_mode mode) 10098 { 10099 struct bpf_xdp_link *link = dev_xdp_link(dev, mode); 10100 10101 if (link) 10102 return link->link.prog; 10103 return dev->xdp_state[mode].prog; 10104 } 10105 10106 u8 dev_xdp_prog_count(struct net_device *dev) 10107 { 10108 u8 count = 0; 10109 int i; 10110 10111 for (i = 0; i < __MAX_XDP_MODE; i++) 10112 if (dev->xdp_state[i].prog || dev->xdp_state[i].link) 10113 count++; 10114 return count; 10115 } 10116 EXPORT_SYMBOL_GPL(dev_xdp_prog_count); 10117 10118 u8 dev_xdp_sb_prog_count(struct net_device *dev) 10119 { 10120 u8 count = 0; 10121 int i; 10122 10123 for (i = 0; i < __MAX_XDP_MODE; i++) 10124 if (dev->xdp_state[i].prog && 10125 !dev->xdp_state[i].prog->aux->xdp_has_frags) 10126 count++; 10127 return count; 10128 } 10129 10130 int netif_xdp_propagate(struct net_device *dev, struct netdev_bpf *bpf) 10131 { 10132 if (!dev->netdev_ops->ndo_bpf) 10133 return -EOPNOTSUPP; 10134 10135 if (dev->cfg->hds_config == ETHTOOL_TCP_DATA_SPLIT_ENABLED && 10136 bpf->command == XDP_SETUP_PROG && 10137 bpf->prog && !bpf->prog->aux->xdp_has_frags) { 10138 NL_SET_ERR_MSG(bpf->extack, 10139 "unable to propagate XDP to device using tcp-data-split"); 10140 return -EBUSY; 10141 } 10142 10143 if (dev_get_min_mp_channel_count(dev)) { 10144 NL_SET_ERR_MSG(bpf->extack, "unable to propagate XDP to device using memory provider"); 10145 return -EBUSY; 10146 } 10147 10148 return dev->netdev_ops->ndo_bpf(dev, bpf); 10149 } 10150 EXPORT_SYMBOL_GPL(netif_xdp_propagate); 10151 10152 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode) 10153 { 10154 struct bpf_prog *prog = dev_xdp_prog(dev, mode); 10155 10156 return prog ? prog->aux->id : 0; 10157 } 10158 10159 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode, 10160 struct bpf_xdp_link *link) 10161 { 10162 dev->xdp_state[mode].link = link; 10163 dev->xdp_state[mode].prog = NULL; 10164 } 10165 10166 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode, 10167 struct bpf_prog *prog) 10168 { 10169 dev->xdp_state[mode].link = NULL; 10170 dev->xdp_state[mode].prog = prog; 10171 } 10172 10173 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode, 10174 bpf_op_t bpf_op, struct netlink_ext_ack *extack, 10175 u32 flags, struct bpf_prog *prog) 10176 { 10177 struct netdev_bpf xdp; 10178 int err; 10179 10180 netdev_ops_assert_locked(dev); 10181 10182 if (dev->cfg->hds_config == ETHTOOL_TCP_DATA_SPLIT_ENABLED && 10183 prog && !prog->aux->xdp_has_frags) { 10184 NL_SET_ERR_MSG(extack, "unable to install XDP to device using tcp-data-split"); 10185 return -EBUSY; 10186 } 10187 10188 if (dev_get_min_mp_channel_count(dev)) { 10189 NL_SET_ERR_MSG(extack, "unable to install XDP to device using memory provider"); 10190 return -EBUSY; 10191 } 10192 10193 memset(&xdp, 0, sizeof(xdp)); 10194 xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG; 10195 xdp.extack = extack; 10196 xdp.flags = flags; 10197 xdp.prog = prog; 10198 10199 /* Drivers assume refcnt is already incremented (i.e, prog pointer is 10200 * "moved" into driver), so they don't increment it on their own, but 10201 * they do decrement refcnt when program is detached or replaced. 10202 * Given net_device also owns link/prog, we need to bump refcnt here 10203 * to prevent drivers from underflowing it. 10204 */ 10205 if (prog) 10206 bpf_prog_inc(prog); 10207 err = bpf_op(dev, &xdp); 10208 if (err) { 10209 if (prog) 10210 bpf_prog_put(prog); 10211 return err; 10212 } 10213 10214 if (mode != XDP_MODE_HW) 10215 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog); 10216 10217 return 0; 10218 } 10219 10220 static void dev_xdp_uninstall(struct net_device *dev) 10221 { 10222 struct bpf_xdp_link *link; 10223 struct bpf_prog *prog; 10224 enum bpf_xdp_mode mode; 10225 bpf_op_t bpf_op; 10226 10227 ASSERT_RTNL(); 10228 10229 for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) { 10230 prog = dev_xdp_prog(dev, mode); 10231 if (!prog) 10232 continue; 10233 10234 bpf_op = dev_xdp_bpf_op(dev, mode); 10235 if (!bpf_op) 10236 continue; 10237 10238 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL)); 10239 10240 /* auto-detach link from net device */ 10241 link = dev_xdp_link(dev, mode); 10242 if (link) 10243 link->dev = NULL; 10244 else 10245 bpf_prog_put(prog); 10246 10247 dev_xdp_set_link(dev, mode, NULL); 10248 } 10249 } 10250 10251 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack, 10252 struct bpf_xdp_link *link, struct bpf_prog *new_prog, 10253 struct bpf_prog *old_prog, u32 flags) 10254 { 10255 unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES); 10256 struct bpf_prog *cur_prog; 10257 struct net_device *upper; 10258 struct list_head *iter; 10259 enum bpf_xdp_mode mode; 10260 bpf_op_t bpf_op; 10261 int err; 10262 10263 ASSERT_RTNL(); 10264 10265 /* either link or prog attachment, never both */ 10266 if (link && (new_prog || old_prog)) 10267 return -EINVAL; 10268 /* link supports only XDP mode flags */ 10269 if (link && (flags & ~XDP_FLAGS_MODES)) { 10270 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment"); 10271 return -EINVAL; 10272 } 10273 /* just one XDP mode bit should be set, zero defaults to drv/skb mode */ 10274 if (num_modes > 1) { 10275 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set"); 10276 return -EINVAL; 10277 } 10278 /* avoid ambiguity if offload + drv/skb mode progs are both loaded */ 10279 if (!num_modes && dev_xdp_prog_count(dev) > 1) { 10280 NL_SET_ERR_MSG(extack, 10281 "More than one program loaded, unset mode is ambiguous"); 10282 return -EINVAL; 10283 } 10284 /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */ 10285 if (old_prog && !(flags & XDP_FLAGS_REPLACE)) { 10286 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified"); 10287 return -EINVAL; 10288 } 10289 10290 mode = dev_xdp_mode(dev, flags); 10291 /* can't replace attached link */ 10292 if (dev_xdp_link(dev, mode)) { 10293 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link"); 10294 return -EBUSY; 10295 } 10296 10297 /* don't allow if an upper device already has a program */ 10298 netdev_for_each_upper_dev_rcu(dev, upper, iter) { 10299 if (dev_xdp_prog_count(upper) > 0) { 10300 NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program"); 10301 return -EEXIST; 10302 } 10303 } 10304 10305 cur_prog = dev_xdp_prog(dev, mode); 10306 /* can't replace attached prog with link */ 10307 if (link && cur_prog) { 10308 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link"); 10309 return -EBUSY; 10310 } 10311 if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) { 10312 NL_SET_ERR_MSG(extack, "Active program does not match expected"); 10313 return -EEXIST; 10314 } 10315 10316 /* put effective new program into new_prog */ 10317 if (link) 10318 new_prog = link->link.prog; 10319 10320 if (new_prog) { 10321 bool offload = mode == XDP_MODE_HW; 10322 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB 10323 ? XDP_MODE_DRV : XDP_MODE_SKB; 10324 10325 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) { 10326 NL_SET_ERR_MSG(extack, "XDP program already attached"); 10327 return -EBUSY; 10328 } 10329 if (!offload && dev_xdp_prog(dev, other_mode)) { 10330 NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time"); 10331 return -EEXIST; 10332 } 10333 if (!offload && bpf_prog_is_offloaded(new_prog->aux)) { 10334 NL_SET_ERR_MSG(extack, "Using offloaded program without HW_MODE flag is not supported"); 10335 return -EINVAL; 10336 } 10337 if (bpf_prog_is_dev_bound(new_prog->aux) && !bpf_offload_dev_match(new_prog, dev)) { 10338 NL_SET_ERR_MSG(extack, "Program bound to different device"); 10339 return -EINVAL; 10340 } 10341 if (bpf_prog_is_dev_bound(new_prog->aux) && mode == XDP_MODE_SKB) { 10342 NL_SET_ERR_MSG(extack, "Can't attach device-bound programs in generic mode"); 10343 return -EINVAL; 10344 } 10345 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) { 10346 NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device"); 10347 return -EINVAL; 10348 } 10349 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) { 10350 NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device"); 10351 return -EINVAL; 10352 } 10353 } 10354 10355 /* don't call drivers if the effective program didn't change */ 10356 if (new_prog != cur_prog) { 10357 bpf_op = dev_xdp_bpf_op(dev, mode); 10358 if (!bpf_op) { 10359 NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode"); 10360 return -EOPNOTSUPP; 10361 } 10362 10363 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog); 10364 if (err) 10365 return err; 10366 } 10367 10368 if (link) 10369 dev_xdp_set_link(dev, mode, link); 10370 else 10371 dev_xdp_set_prog(dev, mode, new_prog); 10372 if (cur_prog) 10373 bpf_prog_put(cur_prog); 10374 10375 return 0; 10376 } 10377 10378 static int dev_xdp_attach_link(struct net_device *dev, 10379 struct netlink_ext_ack *extack, 10380 struct bpf_xdp_link *link) 10381 { 10382 return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags); 10383 } 10384 10385 static int dev_xdp_detach_link(struct net_device *dev, 10386 struct netlink_ext_ack *extack, 10387 struct bpf_xdp_link *link) 10388 { 10389 enum bpf_xdp_mode mode; 10390 bpf_op_t bpf_op; 10391 10392 ASSERT_RTNL(); 10393 10394 mode = dev_xdp_mode(dev, link->flags); 10395 if (dev_xdp_link(dev, mode) != link) 10396 return -EINVAL; 10397 10398 bpf_op = dev_xdp_bpf_op(dev, mode); 10399 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL)); 10400 dev_xdp_set_link(dev, mode, NULL); 10401 return 0; 10402 } 10403 10404 static void bpf_xdp_link_release(struct bpf_link *link) 10405 { 10406 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 10407 10408 rtnl_lock(); 10409 10410 /* if racing with net_device's tear down, xdp_link->dev might be 10411 * already NULL, in which case link was already auto-detached 10412 */ 10413 if (xdp_link->dev) { 10414 netdev_lock_ops(xdp_link->dev); 10415 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link)); 10416 netdev_unlock_ops(xdp_link->dev); 10417 xdp_link->dev = NULL; 10418 } 10419 10420 rtnl_unlock(); 10421 } 10422 10423 static int bpf_xdp_link_detach(struct bpf_link *link) 10424 { 10425 bpf_xdp_link_release(link); 10426 return 0; 10427 } 10428 10429 static void bpf_xdp_link_dealloc(struct bpf_link *link) 10430 { 10431 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 10432 10433 kfree(xdp_link); 10434 } 10435 10436 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link, 10437 struct seq_file *seq) 10438 { 10439 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 10440 u32 ifindex = 0; 10441 10442 rtnl_lock(); 10443 if (xdp_link->dev) 10444 ifindex = xdp_link->dev->ifindex; 10445 rtnl_unlock(); 10446 10447 seq_printf(seq, "ifindex:\t%u\n", ifindex); 10448 } 10449 10450 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link, 10451 struct bpf_link_info *info) 10452 { 10453 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 10454 u32 ifindex = 0; 10455 10456 rtnl_lock(); 10457 if (xdp_link->dev) 10458 ifindex = xdp_link->dev->ifindex; 10459 rtnl_unlock(); 10460 10461 info->xdp.ifindex = ifindex; 10462 return 0; 10463 } 10464 10465 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog, 10466 struct bpf_prog *old_prog) 10467 { 10468 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 10469 enum bpf_xdp_mode mode; 10470 bpf_op_t bpf_op; 10471 int err = 0; 10472 10473 rtnl_lock(); 10474 10475 /* link might have been auto-released already, so fail */ 10476 if (!xdp_link->dev) { 10477 err = -ENOLINK; 10478 goto out_unlock; 10479 } 10480 10481 if (old_prog && link->prog != old_prog) { 10482 err = -EPERM; 10483 goto out_unlock; 10484 } 10485 old_prog = link->prog; 10486 if (old_prog->type != new_prog->type || 10487 old_prog->expected_attach_type != new_prog->expected_attach_type) { 10488 err = -EINVAL; 10489 goto out_unlock; 10490 } 10491 10492 if (old_prog == new_prog) { 10493 /* no-op, don't disturb drivers */ 10494 bpf_prog_put(new_prog); 10495 goto out_unlock; 10496 } 10497 10498 netdev_lock_ops(xdp_link->dev); 10499 mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags); 10500 bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode); 10501 err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL, 10502 xdp_link->flags, new_prog); 10503 netdev_unlock_ops(xdp_link->dev); 10504 if (err) 10505 goto out_unlock; 10506 10507 old_prog = xchg(&link->prog, new_prog); 10508 bpf_prog_put(old_prog); 10509 10510 out_unlock: 10511 rtnl_unlock(); 10512 return err; 10513 } 10514 10515 static const struct bpf_link_ops bpf_xdp_link_lops = { 10516 .release = bpf_xdp_link_release, 10517 .dealloc = bpf_xdp_link_dealloc, 10518 .detach = bpf_xdp_link_detach, 10519 .show_fdinfo = bpf_xdp_link_show_fdinfo, 10520 .fill_link_info = bpf_xdp_link_fill_link_info, 10521 .update_prog = bpf_xdp_link_update, 10522 }; 10523 10524 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog) 10525 { 10526 struct net *net = current->nsproxy->net_ns; 10527 struct bpf_link_primer link_primer; 10528 struct netlink_ext_ack extack = {}; 10529 struct bpf_xdp_link *link; 10530 struct net_device *dev; 10531 int err, fd; 10532 10533 rtnl_lock(); 10534 dev = dev_get_by_index(net, attr->link_create.target_ifindex); 10535 if (!dev) { 10536 rtnl_unlock(); 10537 return -EINVAL; 10538 } 10539 10540 link = kzalloc(sizeof(*link), GFP_USER); 10541 if (!link) { 10542 err = -ENOMEM; 10543 goto unlock; 10544 } 10545 10546 bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog, 10547 attr->link_create.attach_type); 10548 link->dev = dev; 10549 link->flags = attr->link_create.flags; 10550 10551 err = bpf_link_prime(&link->link, &link_primer); 10552 if (err) { 10553 kfree(link); 10554 goto unlock; 10555 } 10556 10557 netdev_lock_ops(dev); 10558 err = dev_xdp_attach_link(dev, &extack, link); 10559 netdev_unlock_ops(dev); 10560 rtnl_unlock(); 10561 10562 if (err) { 10563 link->dev = NULL; 10564 bpf_link_cleanup(&link_primer); 10565 trace_bpf_xdp_link_attach_failed(extack._msg); 10566 goto out_put_dev; 10567 } 10568 10569 fd = bpf_link_settle(&link_primer); 10570 /* link itself doesn't hold dev's refcnt to not complicate shutdown */ 10571 dev_put(dev); 10572 return fd; 10573 10574 unlock: 10575 rtnl_unlock(); 10576 10577 out_put_dev: 10578 dev_put(dev); 10579 return err; 10580 } 10581 10582 /** 10583 * dev_change_xdp_fd - set or clear a bpf program for a device rx path 10584 * @dev: device 10585 * @extack: netlink extended ack 10586 * @fd: new program fd or negative value to clear 10587 * @expected_fd: old program fd that userspace expects to replace or clear 10588 * @flags: xdp-related flags 10589 * 10590 * Set or clear a bpf program for a device 10591 */ 10592 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack, 10593 int fd, int expected_fd, u32 flags) 10594 { 10595 enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags); 10596 struct bpf_prog *new_prog = NULL, *old_prog = NULL; 10597 int err; 10598 10599 ASSERT_RTNL(); 10600 10601 if (fd >= 0) { 10602 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP, 10603 mode != XDP_MODE_SKB); 10604 if (IS_ERR(new_prog)) 10605 return PTR_ERR(new_prog); 10606 } 10607 10608 if (expected_fd >= 0) { 10609 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP, 10610 mode != XDP_MODE_SKB); 10611 if (IS_ERR(old_prog)) { 10612 err = PTR_ERR(old_prog); 10613 old_prog = NULL; 10614 goto err_out; 10615 } 10616 } 10617 10618 err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags); 10619 10620 err_out: 10621 if (err && new_prog) 10622 bpf_prog_put(new_prog); 10623 if (old_prog) 10624 bpf_prog_put(old_prog); 10625 return err; 10626 } 10627 10628 u32 dev_get_min_mp_channel_count(const struct net_device *dev) 10629 { 10630 int i; 10631 10632 netdev_ops_assert_locked(dev); 10633 10634 for (i = dev->real_num_rx_queues - 1; i >= 0; i--) 10635 if (dev->_rx[i].mp_params.mp_priv) 10636 /* The channel count is the idx plus 1. */ 10637 return i + 1; 10638 10639 return 0; 10640 } 10641 10642 /** 10643 * dev_index_reserve() - allocate an ifindex in a namespace 10644 * @net: the applicable net namespace 10645 * @ifindex: requested ifindex, pass %0 to get one allocated 10646 * 10647 * Allocate a ifindex for a new device. Caller must either use the ifindex 10648 * to store the device (via list_netdevice()) or call dev_index_release() 10649 * to give the index up. 10650 * 10651 * Return: a suitable unique value for a new device interface number or -errno. 10652 */ 10653 static int dev_index_reserve(struct net *net, u32 ifindex) 10654 { 10655 int err; 10656 10657 if (ifindex > INT_MAX) { 10658 DEBUG_NET_WARN_ON_ONCE(1); 10659 return -EINVAL; 10660 } 10661 10662 if (!ifindex) 10663 err = xa_alloc_cyclic(&net->dev_by_index, &ifindex, NULL, 10664 xa_limit_31b, &net->ifindex, GFP_KERNEL); 10665 else 10666 err = xa_insert(&net->dev_by_index, ifindex, NULL, GFP_KERNEL); 10667 if (err < 0) 10668 return err; 10669 10670 return ifindex; 10671 } 10672 10673 static void dev_index_release(struct net *net, int ifindex) 10674 { 10675 /* Expect only unused indexes, unlist_netdevice() removes the used */ 10676 WARN_ON(xa_erase(&net->dev_by_index, ifindex)); 10677 } 10678 10679 static bool from_cleanup_net(void) 10680 { 10681 #ifdef CONFIG_NET_NS 10682 return current == READ_ONCE(cleanup_net_task); 10683 #else 10684 return false; 10685 #endif 10686 } 10687 10688 /* Delayed registration/unregisteration */ 10689 LIST_HEAD(net_todo_list); 10690 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq); 10691 atomic_t dev_unreg_count = ATOMIC_INIT(0); 10692 10693 static void net_set_todo(struct net_device *dev) 10694 { 10695 list_add_tail(&dev->todo_list, &net_todo_list); 10696 } 10697 10698 static netdev_features_t netdev_sync_upper_features(struct net_device *lower, 10699 struct net_device *upper, netdev_features_t features) 10700 { 10701 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 10702 netdev_features_t feature; 10703 int feature_bit; 10704 10705 for_each_netdev_feature(upper_disables, feature_bit) { 10706 feature = __NETIF_F_BIT(feature_bit); 10707 if (!(upper->wanted_features & feature) 10708 && (features & feature)) { 10709 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n", 10710 &feature, upper->name); 10711 features &= ~feature; 10712 } 10713 } 10714 10715 return features; 10716 } 10717 10718 static void netdev_sync_lower_features(struct net_device *upper, 10719 struct net_device *lower, netdev_features_t features) 10720 { 10721 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 10722 netdev_features_t feature; 10723 int feature_bit; 10724 10725 for_each_netdev_feature(upper_disables, feature_bit) { 10726 feature = __NETIF_F_BIT(feature_bit); 10727 if (!(features & feature) && (lower->features & feature)) { 10728 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n", 10729 &feature, lower->name); 10730 netdev_lock_ops(lower); 10731 lower->wanted_features &= ~feature; 10732 __netdev_update_features(lower); 10733 10734 if (unlikely(lower->features & feature)) 10735 netdev_WARN(upper, "failed to disable %pNF on %s!\n", 10736 &feature, lower->name); 10737 else 10738 netdev_features_change(lower); 10739 netdev_unlock_ops(lower); 10740 } 10741 } 10742 } 10743 10744 static bool netdev_has_ip_or_hw_csum(netdev_features_t features) 10745 { 10746 netdev_features_t ip_csum_mask = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM; 10747 bool ip_csum = (features & ip_csum_mask) == ip_csum_mask; 10748 bool hw_csum = features & NETIF_F_HW_CSUM; 10749 10750 return ip_csum || hw_csum; 10751 } 10752 10753 static netdev_features_t netdev_fix_features(struct net_device *dev, 10754 netdev_features_t features) 10755 { 10756 /* Fix illegal checksum combinations */ 10757 if ((features & NETIF_F_HW_CSUM) && 10758 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 10759 netdev_warn(dev, "mixed HW and IP checksum settings.\n"); 10760 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 10761 } 10762 10763 /* TSO requires that SG is present as well. */ 10764 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { 10765 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); 10766 features &= ~NETIF_F_ALL_TSO; 10767 } 10768 10769 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) && 10770 !(features & NETIF_F_IP_CSUM)) { 10771 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n"); 10772 features &= ~NETIF_F_TSO; 10773 features &= ~NETIF_F_TSO_ECN; 10774 } 10775 10776 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) && 10777 !(features & NETIF_F_IPV6_CSUM)) { 10778 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n"); 10779 features &= ~NETIF_F_TSO6; 10780 } 10781 10782 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */ 10783 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO)) 10784 features &= ~NETIF_F_TSO_MANGLEID; 10785 10786 /* TSO ECN requires that TSO is present as well. */ 10787 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) 10788 features &= ~NETIF_F_TSO_ECN; 10789 10790 /* Software GSO depends on SG. */ 10791 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 10792 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 10793 features &= ~NETIF_F_GSO; 10794 } 10795 10796 /* GSO partial features require GSO partial be set */ 10797 if ((features & dev->gso_partial_features) && 10798 !(features & NETIF_F_GSO_PARTIAL)) { 10799 netdev_dbg(dev, 10800 "Dropping partially supported GSO features since no GSO partial.\n"); 10801 features &= ~dev->gso_partial_features; 10802 } 10803 10804 if (!(features & NETIF_F_RXCSUM)) { 10805 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet 10806 * successfully merged by hardware must also have the 10807 * checksum verified by hardware. If the user does not 10808 * want to enable RXCSUM, logically, we should disable GRO_HW. 10809 */ 10810 if (features & NETIF_F_GRO_HW) { 10811 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n"); 10812 features &= ~NETIF_F_GRO_HW; 10813 } 10814 } 10815 10816 /* LRO/HW-GRO features cannot be combined with RX-FCS */ 10817 if (features & NETIF_F_RXFCS) { 10818 if (features & NETIF_F_LRO) { 10819 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n"); 10820 features &= ~NETIF_F_LRO; 10821 } 10822 10823 if (features & NETIF_F_GRO_HW) { 10824 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n"); 10825 features &= ~NETIF_F_GRO_HW; 10826 } 10827 } 10828 10829 if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) { 10830 netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n"); 10831 features &= ~NETIF_F_LRO; 10832 } 10833 10834 if ((features & NETIF_F_HW_TLS_TX) && !netdev_has_ip_or_hw_csum(features)) { 10835 netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n"); 10836 features &= ~NETIF_F_HW_TLS_TX; 10837 } 10838 10839 if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) { 10840 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n"); 10841 features &= ~NETIF_F_HW_TLS_RX; 10842 } 10843 10844 if ((features & NETIF_F_GSO_UDP_L4) && !netdev_has_ip_or_hw_csum(features)) { 10845 netdev_dbg(dev, "Dropping USO feature since no CSUM feature.\n"); 10846 features &= ~NETIF_F_GSO_UDP_L4; 10847 } 10848 10849 return features; 10850 } 10851 10852 int __netdev_update_features(struct net_device *dev) 10853 { 10854 struct net_device *upper, *lower; 10855 netdev_features_t features; 10856 struct list_head *iter; 10857 int err = -1; 10858 10859 ASSERT_RTNL(); 10860 netdev_ops_assert_locked(dev); 10861 10862 features = netdev_get_wanted_features(dev); 10863 10864 if (dev->netdev_ops->ndo_fix_features) 10865 features = dev->netdev_ops->ndo_fix_features(dev, features); 10866 10867 /* driver might be less strict about feature dependencies */ 10868 features = netdev_fix_features(dev, features); 10869 10870 /* some features can't be enabled if they're off on an upper device */ 10871 netdev_for_each_upper_dev_rcu(dev, upper, iter) 10872 features = netdev_sync_upper_features(dev, upper, features); 10873 10874 if (dev->features == features) 10875 goto sync_lower; 10876 10877 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n", 10878 &dev->features, &features); 10879 10880 if (dev->netdev_ops->ndo_set_features) 10881 err = dev->netdev_ops->ndo_set_features(dev, features); 10882 else 10883 err = 0; 10884 10885 if (unlikely(err < 0)) { 10886 netdev_err(dev, 10887 "set_features() failed (%d); wanted %pNF, left %pNF\n", 10888 err, &features, &dev->features); 10889 /* return non-0 since some features might have changed and 10890 * it's better to fire a spurious notification than miss it 10891 */ 10892 return -1; 10893 } 10894 10895 sync_lower: 10896 /* some features must be disabled on lower devices when disabled 10897 * on an upper device (think: bonding master or bridge) 10898 */ 10899 netdev_for_each_lower_dev(dev, lower, iter) 10900 netdev_sync_lower_features(dev, lower, features); 10901 10902 if (!err) { 10903 netdev_features_t diff = features ^ dev->features; 10904 10905 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) { 10906 /* udp_tunnel_{get,drop}_rx_info both need 10907 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the 10908 * device, or they won't do anything. 10909 * Thus we need to update dev->features 10910 * *before* calling udp_tunnel_get_rx_info, 10911 * but *after* calling udp_tunnel_drop_rx_info. 10912 */ 10913 udp_tunnel_nic_lock(dev); 10914 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) { 10915 dev->features = features; 10916 udp_tunnel_get_rx_info(dev); 10917 } else { 10918 udp_tunnel_drop_rx_info(dev); 10919 } 10920 udp_tunnel_nic_unlock(dev); 10921 } 10922 10923 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) { 10924 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) { 10925 dev->features = features; 10926 err |= vlan_get_rx_ctag_filter_info(dev); 10927 } else { 10928 vlan_drop_rx_ctag_filter_info(dev); 10929 } 10930 } 10931 10932 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) { 10933 if (features & NETIF_F_HW_VLAN_STAG_FILTER) { 10934 dev->features = features; 10935 err |= vlan_get_rx_stag_filter_info(dev); 10936 } else { 10937 vlan_drop_rx_stag_filter_info(dev); 10938 } 10939 } 10940 10941 dev->features = features; 10942 } 10943 10944 return err < 0 ? 0 : 1; 10945 } 10946 10947 /** 10948 * netdev_update_features - recalculate device features 10949 * @dev: the device to check 10950 * 10951 * Recalculate dev->features set and send notifications if it 10952 * has changed. Should be called after driver or hardware dependent 10953 * conditions might have changed that influence the features. 10954 */ 10955 void netdev_update_features(struct net_device *dev) 10956 { 10957 if (__netdev_update_features(dev)) 10958 netdev_features_change(dev); 10959 } 10960 EXPORT_SYMBOL(netdev_update_features); 10961 10962 /** 10963 * netdev_change_features - recalculate device features 10964 * @dev: the device to check 10965 * 10966 * Recalculate dev->features set and send notifications even 10967 * if they have not changed. Should be called instead of 10968 * netdev_update_features() if also dev->vlan_features might 10969 * have changed to allow the changes to be propagated to stacked 10970 * VLAN devices. 10971 */ 10972 void netdev_change_features(struct net_device *dev) 10973 { 10974 __netdev_update_features(dev); 10975 netdev_features_change(dev); 10976 } 10977 EXPORT_SYMBOL(netdev_change_features); 10978 10979 /** 10980 * netif_stacked_transfer_operstate - transfer operstate 10981 * @rootdev: the root or lower level device to transfer state from 10982 * @dev: the device to transfer operstate to 10983 * 10984 * Transfer operational state from root to device. This is normally 10985 * called when a stacking relationship exists between the root 10986 * device and the device(a leaf device). 10987 */ 10988 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 10989 struct net_device *dev) 10990 { 10991 if (rootdev->operstate == IF_OPER_DORMANT) 10992 netif_dormant_on(dev); 10993 else 10994 netif_dormant_off(dev); 10995 10996 if (rootdev->operstate == IF_OPER_TESTING) 10997 netif_testing_on(dev); 10998 else 10999 netif_testing_off(dev); 11000 11001 if (netif_carrier_ok(rootdev)) 11002 netif_carrier_on(dev); 11003 else 11004 netif_carrier_off(dev); 11005 } 11006 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 11007 11008 static int netif_alloc_rx_queues(struct net_device *dev) 11009 { 11010 unsigned int i, count = dev->num_rx_queues; 11011 struct netdev_rx_queue *rx; 11012 size_t sz = count * sizeof(*rx); 11013 int err = 0; 11014 11015 BUG_ON(count < 1); 11016 11017 rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL); 11018 if (!rx) 11019 return -ENOMEM; 11020 11021 dev->_rx = rx; 11022 11023 for (i = 0; i < count; i++) { 11024 rx[i].dev = dev; 11025 11026 /* XDP RX-queue setup */ 11027 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0); 11028 if (err < 0) 11029 goto err_rxq_info; 11030 } 11031 return 0; 11032 11033 err_rxq_info: 11034 /* Rollback successful reg's and free other resources */ 11035 while (i--) 11036 xdp_rxq_info_unreg(&rx[i].xdp_rxq); 11037 kvfree(dev->_rx); 11038 dev->_rx = NULL; 11039 return err; 11040 } 11041 11042 static void netif_free_rx_queues(struct net_device *dev) 11043 { 11044 unsigned int i, count = dev->num_rx_queues; 11045 11046 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */ 11047 if (!dev->_rx) 11048 return; 11049 11050 for (i = 0; i < count; i++) 11051 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq); 11052 11053 kvfree(dev->_rx); 11054 } 11055 11056 static void netdev_init_one_queue(struct net_device *dev, 11057 struct netdev_queue *queue, void *_unused) 11058 { 11059 /* Initialize queue lock */ 11060 spin_lock_init(&queue->_xmit_lock); 11061 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); 11062 queue->xmit_lock_owner = -1; 11063 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 11064 queue->dev = dev; 11065 #ifdef CONFIG_BQL 11066 dql_init(&queue->dql, HZ); 11067 #endif 11068 } 11069 11070 static void netif_free_tx_queues(struct net_device *dev) 11071 { 11072 kvfree(dev->_tx); 11073 } 11074 11075 static int netif_alloc_netdev_queues(struct net_device *dev) 11076 { 11077 unsigned int count = dev->num_tx_queues; 11078 struct netdev_queue *tx; 11079 size_t sz = count * sizeof(*tx); 11080 11081 if (count < 1 || count > 0xffff) 11082 return -EINVAL; 11083 11084 tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL); 11085 if (!tx) 11086 return -ENOMEM; 11087 11088 dev->_tx = tx; 11089 11090 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 11091 spin_lock_init(&dev->tx_global_lock); 11092 11093 return 0; 11094 } 11095 11096 void netif_tx_stop_all_queues(struct net_device *dev) 11097 { 11098 unsigned int i; 11099 11100 for (i = 0; i < dev->num_tx_queues; i++) { 11101 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 11102 11103 netif_tx_stop_queue(txq); 11104 } 11105 } 11106 EXPORT_SYMBOL(netif_tx_stop_all_queues); 11107 11108 static int netdev_do_alloc_pcpu_stats(struct net_device *dev) 11109 { 11110 void __percpu *v; 11111 11112 /* Drivers implementing ndo_get_peer_dev must support tstat 11113 * accounting, so that skb_do_redirect() can bump the dev's 11114 * RX stats upon network namespace switch. 11115 */ 11116 if (dev->netdev_ops->ndo_get_peer_dev && 11117 dev->pcpu_stat_type != NETDEV_PCPU_STAT_TSTATS) 11118 return -EOPNOTSUPP; 11119 11120 switch (dev->pcpu_stat_type) { 11121 case NETDEV_PCPU_STAT_NONE: 11122 return 0; 11123 case NETDEV_PCPU_STAT_LSTATS: 11124 v = dev->lstats = netdev_alloc_pcpu_stats(struct pcpu_lstats); 11125 break; 11126 case NETDEV_PCPU_STAT_TSTATS: 11127 v = dev->tstats = netdev_alloc_pcpu_stats(struct pcpu_sw_netstats); 11128 break; 11129 case NETDEV_PCPU_STAT_DSTATS: 11130 v = dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats); 11131 break; 11132 default: 11133 return -EINVAL; 11134 } 11135 11136 return v ? 0 : -ENOMEM; 11137 } 11138 11139 static void netdev_do_free_pcpu_stats(struct net_device *dev) 11140 { 11141 switch (dev->pcpu_stat_type) { 11142 case NETDEV_PCPU_STAT_NONE: 11143 return; 11144 case NETDEV_PCPU_STAT_LSTATS: 11145 free_percpu(dev->lstats); 11146 break; 11147 case NETDEV_PCPU_STAT_TSTATS: 11148 free_percpu(dev->tstats); 11149 break; 11150 case NETDEV_PCPU_STAT_DSTATS: 11151 free_percpu(dev->dstats); 11152 break; 11153 } 11154 } 11155 11156 static void netdev_free_phy_link_topology(struct net_device *dev) 11157 { 11158 struct phy_link_topology *topo = dev->link_topo; 11159 11160 if (IS_ENABLED(CONFIG_PHYLIB) && topo) { 11161 xa_destroy(&topo->phys); 11162 kfree(topo); 11163 dev->link_topo = NULL; 11164 } 11165 } 11166 11167 /** 11168 * register_netdevice() - register a network device 11169 * @dev: device to register 11170 * 11171 * Take a prepared network device structure and make it externally accessible. 11172 * A %NETDEV_REGISTER message is sent to the netdev notifier chain. 11173 * Callers must hold the rtnl lock - you may want register_netdev() 11174 * instead of this. 11175 */ 11176 int register_netdevice(struct net_device *dev) 11177 { 11178 int ret; 11179 struct net *net = dev_net(dev); 11180 11181 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE < 11182 NETDEV_FEATURE_COUNT); 11183 BUG_ON(dev_boot_phase); 11184 ASSERT_RTNL(); 11185 11186 might_sleep(); 11187 11188 /* When net_device's are persistent, this will be fatal. */ 11189 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 11190 BUG_ON(!net); 11191 11192 ret = ethtool_check_ops(dev->ethtool_ops); 11193 if (ret) 11194 return ret; 11195 11196 /* rss ctx ID 0 is reserved for the default context, start from 1 */ 11197 xa_init_flags(&dev->ethtool->rss_ctx, XA_FLAGS_ALLOC1); 11198 mutex_init(&dev->ethtool->rss_lock); 11199 11200 spin_lock_init(&dev->addr_list_lock); 11201 netdev_set_addr_lockdep_class(dev); 11202 11203 ret = dev_get_valid_name(net, dev, dev->name); 11204 if (ret < 0) 11205 goto out; 11206 11207 ret = -ENOMEM; 11208 dev->name_node = netdev_name_node_head_alloc(dev); 11209 if (!dev->name_node) 11210 goto out; 11211 11212 /* Init, if this function is available */ 11213 if (dev->netdev_ops->ndo_init) { 11214 ret = dev->netdev_ops->ndo_init(dev); 11215 if (ret) { 11216 if (ret > 0) 11217 ret = -EIO; 11218 goto err_free_name; 11219 } 11220 } 11221 11222 if (((dev->hw_features | dev->features) & 11223 NETIF_F_HW_VLAN_CTAG_FILTER) && 11224 (!dev->netdev_ops->ndo_vlan_rx_add_vid || 11225 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) { 11226 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n"); 11227 ret = -EINVAL; 11228 goto err_uninit; 11229 } 11230 11231 ret = netdev_do_alloc_pcpu_stats(dev); 11232 if (ret) 11233 goto err_uninit; 11234 11235 ret = dev_index_reserve(net, dev->ifindex); 11236 if (ret < 0) 11237 goto err_free_pcpu; 11238 dev->ifindex = ret; 11239 11240 /* Transfer changeable features to wanted_features and enable 11241 * software offloads (GSO and GRO). 11242 */ 11243 dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF); 11244 dev->features |= NETIF_F_SOFT_FEATURES; 11245 11246 if (dev->udp_tunnel_nic_info) { 11247 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT; 11248 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT; 11249 } 11250 11251 dev->wanted_features = dev->features & dev->hw_features; 11252 11253 if (!(dev->flags & IFF_LOOPBACK)) 11254 dev->hw_features |= NETIF_F_NOCACHE_COPY; 11255 11256 /* If IPv4 TCP segmentation offload is supported we should also 11257 * allow the device to enable segmenting the frame with the option 11258 * of ignoring a static IP ID value. This doesn't enable the 11259 * feature itself but allows the user to enable it later. 11260 */ 11261 if (dev->hw_features & NETIF_F_TSO) 11262 dev->hw_features |= NETIF_F_TSO_MANGLEID; 11263 if (dev->vlan_features & NETIF_F_TSO) 11264 dev->vlan_features |= NETIF_F_TSO_MANGLEID; 11265 if (dev->mpls_features & NETIF_F_TSO) 11266 dev->mpls_features |= NETIF_F_TSO_MANGLEID; 11267 if (dev->hw_enc_features & NETIF_F_TSO) 11268 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 11269 11270 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. 11271 */ 11272 dev->vlan_features |= NETIF_F_HIGHDMA; 11273 11274 /* Make NETIF_F_SG inheritable to tunnel devices. 11275 */ 11276 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL; 11277 11278 /* Make NETIF_F_SG inheritable to MPLS. 11279 */ 11280 dev->mpls_features |= NETIF_F_SG; 11281 11282 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 11283 ret = notifier_to_errno(ret); 11284 if (ret) 11285 goto err_ifindex_release; 11286 11287 ret = netdev_register_kobject(dev); 11288 11289 netdev_lock(dev); 11290 WRITE_ONCE(dev->reg_state, ret ? NETREG_UNREGISTERED : NETREG_REGISTERED); 11291 netdev_unlock(dev); 11292 11293 if (ret) 11294 goto err_uninit_notify; 11295 11296 netdev_lock_ops(dev); 11297 __netdev_update_features(dev); 11298 netdev_unlock_ops(dev); 11299 11300 /* 11301 * Default initial state at registry is that the 11302 * device is present. 11303 */ 11304 11305 set_bit(__LINK_STATE_PRESENT, &dev->state); 11306 11307 linkwatch_init_dev(dev); 11308 11309 dev_init_scheduler(dev); 11310 11311 netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL); 11312 list_netdevice(dev); 11313 11314 add_device_randomness(dev->dev_addr, dev->addr_len); 11315 11316 /* If the device has permanent device address, driver should 11317 * set dev_addr and also addr_assign_type should be set to 11318 * NET_ADDR_PERM (default value). 11319 */ 11320 if (dev->addr_assign_type == NET_ADDR_PERM) 11321 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); 11322 11323 /* Notify protocols, that a new device appeared. */ 11324 netdev_lock_ops(dev); 11325 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 11326 netdev_unlock_ops(dev); 11327 ret = notifier_to_errno(ret); 11328 if (ret) { 11329 /* Expect explicit free_netdev() on failure */ 11330 dev->needs_free_netdev = false; 11331 unregister_netdevice_queue(dev, NULL); 11332 goto out; 11333 } 11334 /* 11335 * Prevent userspace races by waiting until the network 11336 * device is fully setup before sending notifications. 11337 */ 11338 if (!(dev->rtnl_link_ops && dev->rtnl_link_initializing)) 11339 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL); 11340 11341 out: 11342 return ret; 11343 11344 err_uninit_notify: 11345 call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev); 11346 err_ifindex_release: 11347 dev_index_release(net, dev->ifindex); 11348 err_free_pcpu: 11349 netdev_do_free_pcpu_stats(dev); 11350 err_uninit: 11351 if (dev->netdev_ops->ndo_uninit) 11352 dev->netdev_ops->ndo_uninit(dev); 11353 if (dev->priv_destructor) 11354 dev->priv_destructor(dev); 11355 err_free_name: 11356 netdev_name_node_free(dev->name_node); 11357 goto out; 11358 } 11359 EXPORT_SYMBOL(register_netdevice); 11360 11361 /* Initialize the core of a dummy net device. 11362 * The setup steps dummy netdevs need which normal netdevs get by going 11363 * through register_netdevice(). 11364 */ 11365 static void init_dummy_netdev(struct net_device *dev) 11366 { 11367 /* make sure we BUG if trying to hit standard 11368 * register/unregister code path 11369 */ 11370 dev->reg_state = NETREG_DUMMY; 11371 11372 /* a dummy interface is started by default */ 11373 set_bit(__LINK_STATE_PRESENT, &dev->state); 11374 set_bit(__LINK_STATE_START, &dev->state); 11375 11376 /* Note : We dont allocate pcpu_refcnt for dummy devices, 11377 * because users of this 'device' dont need to change 11378 * its refcount. 11379 */ 11380 } 11381 11382 /** 11383 * register_netdev - register a network device 11384 * @dev: device to register 11385 * 11386 * Take a completed network device structure and add it to the kernel 11387 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 11388 * chain. 0 is returned on success. A negative errno code is returned 11389 * on a failure to set up the device, or if the name is a duplicate. 11390 * 11391 * This is a wrapper around register_netdevice that takes the rtnl semaphore 11392 * and expands the device name if you passed a format string to 11393 * alloc_netdev. 11394 */ 11395 int register_netdev(struct net_device *dev) 11396 { 11397 struct net *net = dev_net(dev); 11398 int err; 11399 11400 if (rtnl_net_lock_killable(net)) 11401 return -EINTR; 11402 11403 err = register_netdevice(dev); 11404 11405 rtnl_net_unlock(net); 11406 11407 return err; 11408 } 11409 EXPORT_SYMBOL(register_netdev); 11410 11411 int netdev_refcnt_read(const struct net_device *dev) 11412 { 11413 #ifdef CONFIG_PCPU_DEV_REFCNT 11414 int i, refcnt = 0; 11415 11416 for_each_possible_cpu(i) 11417 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 11418 return refcnt; 11419 #else 11420 return refcount_read(&dev->dev_refcnt); 11421 #endif 11422 } 11423 EXPORT_SYMBOL(netdev_refcnt_read); 11424 11425 int netdev_unregister_timeout_secs __read_mostly = 10; 11426 11427 #define WAIT_REFS_MIN_MSECS 1 11428 #define WAIT_REFS_MAX_MSECS 250 11429 /** 11430 * netdev_wait_allrefs_any - wait until all references are gone. 11431 * @list: list of net_devices to wait on 11432 * 11433 * This is called when unregistering network devices. 11434 * 11435 * Any protocol or device that holds a reference should register 11436 * for netdevice notification, and cleanup and put back the 11437 * reference if they receive an UNREGISTER event. 11438 * We can get stuck here if buggy protocols don't correctly 11439 * call dev_put. 11440 */ 11441 static struct net_device *netdev_wait_allrefs_any(struct list_head *list) 11442 { 11443 unsigned long rebroadcast_time, warning_time; 11444 struct net_device *dev; 11445 int wait = 0; 11446 11447 rebroadcast_time = warning_time = jiffies; 11448 11449 list_for_each_entry(dev, list, todo_list) 11450 if (netdev_refcnt_read(dev) == 1) 11451 return dev; 11452 11453 while (true) { 11454 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 11455 rtnl_lock(); 11456 11457 /* Rebroadcast unregister notification */ 11458 list_for_each_entry(dev, list, todo_list) 11459 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 11460 11461 __rtnl_unlock(); 11462 rcu_barrier(); 11463 rtnl_lock(); 11464 11465 list_for_each_entry(dev, list, todo_list) 11466 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 11467 &dev->state)) { 11468 /* We must not have linkwatch events 11469 * pending on unregister. If this 11470 * happens, we simply run the queue 11471 * unscheduled, resulting in a noop 11472 * for this device. 11473 */ 11474 linkwatch_run_queue(); 11475 break; 11476 } 11477 11478 __rtnl_unlock(); 11479 11480 rebroadcast_time = jiffies; 11481 } 11482 11483 rcu_barrier(); 11484 11485 if (!wait) { 11486 wait = WAIT_REFS_MIN_MSECS; 11487 } else { 11488 msleep(wait); 11489 wait = min(wait << 1, WAIT_REFS_MAX_MSECS); 11490 } 11491 11492 list_for_each_entry(dev, list, todo_list) 11493 if (netdev_refcnt_read(dev) == 1) 11494 return dev; 11495 11496 if (time_after(jiffies, warning_time + 11497 READ_ONCE(netdev_unregister_timeout_secs) * HZ)) { 11498 list_for_each_entry(dev, list, todo_list) { 11499 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n", 11500 dev->name, netdev_refcnt_read(dev)); 11501 ref_tracker_dir_print(&dev->refcnt_tracker, 10); 11502 } 11503 11504 warning_time = jiffies; 11505 } 11506 } 11507 } 11508 11509 /* The sequence is: 11510 * 11511 * rtnl_lock(); 11512 * ... 11513 * register_netdevice(x1); 11514 * register_netdevice(x2); 11515 * ... 11516 * unregister_netdevice(y1); 11517 * unregister_netdevice(y2); 11518 * ... 11519 * rtnl_unlock(); 11520 * free_netdev(y1); 11521 * free_netdev(y2); 11522 * 11523 * We are invoked by rtnl_unlock(). 11524 * This allows us to deal with problems: 11525 * 1) We can delete sysfs objects which invoke hotplug 11526 * without deadlocking with linkwatch via keventd. 11527 * 2) Since we run with the RTNL semaphore not held, we can sleep 11528 * safely in order to wait for the netdev refcnt to drop to zero. 11529 * 11530 * We must not return until all unregister events added during 11531 * the interval the lock was held have been completed. 11532 */ 11533 void netdev_run_todo(void) 11534 { 11535 struct net_device *dev, *tmp; 11536 struct list_head list; 11537 int cnt; 11538 #ifdef CONFIG_LOCKDEP 11539 struct list_head unlink_list; 11540 11541 list_replace_init(&net_unlink_list, &unlink_list); 11542 11543 while (!list_empty(&unlink_list)) { 11544 dev = list_first_entry(&unlink_list, struct net_device, 11545 unlink_list); 11546 list_del_init(&dev->unlink_list); 11547 dev->nested_level = dev->lower_level - 1; 11548 } 11549 #endif 11550 11551 /* Snapshot list, allow later requests */ 11552 list_replace_init(&net_todo_list, &list); 11553 11554 __rtnl_unlock(); 11555 11556 /* Wait for rcu callbacks to finish before next phase */ 11557 if (!list_empty(&list)) 11558 rcu_barrier(); 11559 11560 list_for_each_entry_safe(dev, tmp, &list, todo_list) { 11561 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 11562 netdev_WARN(dev, "run_todo but not unregistering\n"); 11563 list_del(&dev->todo_list); 11564 continue; 11565 } 11566 11567 netdev_lock(dev); 11568 WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERED); 11569 netdev_unlock(dev); 11570 linkwatch_sync_dev(dev); 11571 } 11572 11573 cnt = 0; 11574 while (!list_empty(&list)) { 11575 dev = netdev_wait_allrefs_any(&list); 11576 list_del(&dev->todo_list); 11577 11578 /* paranoia */ 11579 BUG_ON(netdev_refcnt_read(dev) != 1); 11580 BUG_ON(!list_empty(&dev->ptype_all)); 11581 BUG_ON(!list_empty(&dev->ptype_specific)); 11582 WARN_ON(rcu_access_pointer(dev->ip_ptr)); 11583 WARN_ON(rcu_access_pointer(dev->ip6_ptr)); 11584 11585 netdev_do_free_pcpu_stats(dev); 11586 if (dev->priv_destructor) 11587 dev->priv_destructor(dev); 11588 if (dev->needs_free_netdev) 11589 free_netdev(dev); 11590 11591 cnt++; 11592 11593 /* Free network device */ 11594 kobject_put(&dev->dev.kobj); 11595 } 11596 if (cnt && atomic_sub_and_test(cnt, &dev_unreg_count)) 11597 wake_up(&netdev_unregistering_wq); 11598 } 11599 11600 /* Collate per-cpu network dstats statistics 11601 * 11602 * Read per-cpu network statistics from dev->dstats and populate the related 11603 * fields in @s. 11604 */ 11605 static void dev_fetch_dstats(struct rtnl_link_stats64 *s, 11606 const struct pcpu_dstats __percpu *dstats) 11607 { 11608 int cpu; 11609 11610 for_each_possible_cpu(cpu) { 11611 u64 rx_packets, rx_bytes, rx_drops; 11612 u64 tx_packets, tx_bytes, tx_drops; 11613 const struct pcpu_dstats *stats; 11614 unsigned int start; 11615 11616 stats = per_cpu_ptr(dstats, cpu); 11617 do { 11618 start = u64_stats_fetch_begin(&stats->syncp); 11619 rx_packets = u64_stats_read(&stats->rx_packets); 11620 rx_bytes = u64_stats_read(&stats->rx_bytes); 11621 rx_drops = u64_stats_read(&stats->rx_drops); 11622 tx_packets = u64_stats_read(&stats->tx_packets); 11623 tx_bytes = u64_stats_read(&stats->tx_bytes); 11624 tx_drops = u64_stats_read(&stats->tx_drops); 11625 } while (u64_stats_fetch_retry(&stats->syncp, start)); 11626 11627 s->rx_packets += rx_packets; 11628 s->rx_bytes += rx_bytes; 11629 s->rx_dropped += rx_drops; 11630 s->tx_packets += tx_packets; 11631 s->tx_bytes += tx_bytes; 11632 s->tx_dropped += tx_drops; 11633 } 11634 } 11635 11636 /* ndo_get_stats64 implementation for dtstats-based accounting. 11637 * 11638 * Populate @s from dev->stats and dev->dstats. This is used internally by the 11639 * core for NETDEV_PCPU_STAT_DSTAT-type stats collection. 11640 */ 11641 static void dev_get_dstats64(const struct net_device *dev, 11642 struct rtnl_link_stats64 *s) 11643 { 11644 netdev_stats_to_stats64(s, &dev->stats); 11645 dev_fetch_dstats(s, dev->dstats); 11646 } 11647 11648 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has 11649 * all the same fields in the same order as net_device_stats, with only 11650 * the type differing, but rtnl_link_stats64 may have additional fields 11651 * at the end for newer counters. 11652 */ 11653 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 11654 const struct net_device_stats *netdev_stats) 11655 { 11656 size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t); 11657 const atomic_long_t *src = (atomic_long_t *)netdev_stats; 11658 u64 *dst = (u64 *)stats64; 11659 11660 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64)); 11661 for (i = 0; i < n; i++) 11662 dst[i] = (unsigned long)atomic_long_read(&src[i]); 11663 /* zero out counters that only exist in rtnl_link_stats64 */ 11664 memset((char *)stats64 + n * sizeof(u64), 0, 11665 sizeof(*stats64) - n * sizeof(u64)); 11666 } 11667 EXPORT_SYMBOL(netdev_stats_to_stats64); 11668 11669 static __cold struct net_device_core_stats __percpu *netdev_core_stats_alloc( 11670 struct net_device *dev) 11671 { 11672 struct net_device_core_stats __percpu *p; 11673 11674 p = alloc_percpu_gfp(struct net_device_core_stats, 11675 GFP_ATOMIC | __GFP_NOWARN); 11676 11677 if (p && cmpxchg(&dev->core_stats, NULL, p)) 11678 free_percpu(p); 11679 11680 /* This READ_ONCE() pairs with the cmpxchg() above */ 11681 return READ_ONCE(dev->core_stats); 11682 } 11683 11684 noinline void netdev_core_stats_inc(struct net_device *dev, u32 offset) 11685 { 11686 /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */ 11687 struct net_device_core_stats __percpu *p = READ_ONCE(dev->core_stats); 11688 unsigned long __percpu *field; 11689 11690 if (unlikely(!p)) { 11691 p = netdev_core_stats_alloc(dev); 11692 if (!p) 11693 return; 11694 } 11695 11696 field = (unsigned long __percpu *)((void __percpu *)p + offset); 11697 this_cpu_inc(*field); 11698 } 11699 EXPORT_SYMBOL_GPL(netdev_core_stats_inc); 11700 11701 /** 11702 * dev_get_stats - get network device statistics 11703 * @dev: device to get statistics from 11704 * @storage: place to store stats 11705 * 11706 * Get network statistics from device. Return @storage. 11707 * The device driver may provide its own method by setting 11708 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 11709 * otherwise the internal statistics structure is used. 11710 */ 11711 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 11712 struct rtnl_link_stats64 *storage) 11713 { 11714 const struct net_device_ops *ops = dev->netdev_ops; 11715 const struct net_device_core_stats __percpu *p; 11716 11717 /* 11718 * IPv{4,6} and udp tunnels share common stat helpers and use 11719 * different stat type (NETDEV_PCPU_STAT_TSTATS vs 11720 * NETDEV_PCPU_STAT_DSTATS). Ensure the accounting is consistent. 11721 */ 11722 BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, rx_bytes) != 11723 offsetof(struct pcpu_dstats, rx_bytes)); 11724 BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, rx_packets) != 11725 offsetof(struct pcpu_dstats, rx_packets)); 11726 BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, tx_bytes) != 11727 offsetof(struct pcpu_dstats, tx_bytes)); 11728 BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, tx_packets) != 11729 offsetof(struct pcpu_dstats, tx_packets)); 11730 11731 if (ops->ndo_get_stats64) { 11732 memset(storage, 0, sizeof(*storage)); 11733 ops->ndo_get_stats64(dev, storage); 11734 } else if (ops->ndo_get_stats) { 11735 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 11736 } else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_TSTATS) { 11737 dev_get_tstats64(dev, storage); 11738 } else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_DSTATS) { 11739 dev_get_dstats64(dev, storage); 11740 } else { 11741 netdev_stats_to_stats64(storage, &dev->stats); 11742 } 11743 11744 /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */ 11745 p = READ_ONCE(dev->core_stats); 11746 if (p) { 11747 const struct net_device_core_stats *core_stats; 11748 int i; 11749 11750 for_each_possible_cpu(i) { 11751 core_stats = per_cpu_ptr(p, i); 11752 storage->rx_dropped += READ_ONCE(core_stats->rx_dropped); 11753 storage->tx_dropped += READ_ONCE(core_stats->tx_dropped); 11754 storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler); 11755 storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped); 11756 } 11757 } 11758 return storage; 11759 } 11760 EXPORT_SYMBOL(dev_get_stats); 11761 11762 /** 11763 * dev_fetch_sw_netstats - get per-cpu network device statistics 11764 * @s: place to store stats 11765 * @netstats: per-cpu network stats to read from 11766 * 11767 * Read per-cpu network statistics and populate the related fields in @s. 11768 */ 11769 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s, 11770 const struct pcpu_sw_netstats __percpu *netstats) 11771 { 11772 int cpu; 11773 11774 for_each_possible_cpu(cpu) { 11775 u64 rx_packets, rx_bytes, tx_packets, tx_bytes; 11776 const struct pcpu_sw_netstats *stats; 11777 unsigned int start; 11778 11779 stats = per_cpu_ptr(netstats, cpu); 11780 do { 11781 start = u64_stats_fetch_begin(&stats->syncp); 11782 rx_packets = u64_stats_read(&stats->rx_packets); 11783 rx_bytes = u64_stats_read(&stats->rx_bytes); 11784 tx_packets = u64_stats_read(&stats->tx_packets); 11785 tx_bytes = u64_stats_read(&stats->tx_bytes); 11786 } while (u64_stats_fetch_retry(&stats->syncp, start)); 11787 11788 s->rx_packets += rx_packets; 11789 s->rx_bytes += rx_bytes; 11790 s->tx_packets += tx_packets; 11791 s->tx_bytes += tx_bytes; 11792 } 11793 } 11794 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats); 11795 11796 /** 11797 * dev_get_tstats64 - ndo_get_stats64 implementation 11798 * @dev: device to get statistics from 11799 * @s: place to store stats 11800 * 11801 * Populate @s from dev->stats and dev->tstats. Can be used as 11802 * ndo_get_stats64() callback. 11803 */ 11804 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s) 11805 { 11806 netdev_stats_to_stats64(s, &dev->stats); 11807 dev_fetch_sw_netstats(s, dev->tstats); 11808 } 11809 EXPORT_SYMBOL_GPL(dev_get_tstats64); 11810 11811 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 11812 { 11813 struct netdev_queue *queue = dev_ingress_queue(dev); 11814 11815 #ifdef CONFIG_NET_CLS_ACT 11816 if (queue) 11817 return queue; 11818 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 11819 if (!queue) 11820 return NULL; 11821 netdev_init_one_queue(dev, queue, NULL); 11822 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc); 11823 RCU_INIT_POINTER(queue->qdisc_sleeping, &noop_qdisc); 11824 rcu_assign_pointer(dev->ingress_queue, queue); 11825 #endif 11826 return queue; 11827 } 11828 11829 static const struct ethtool_ops default_ethtool_ops; 11830 11831 void netdev_set_default_ethtool_ops(struct net_device *dev, 11832 const struct ethtool_ops *ops) 11833 { 11834 if (dev->ethtool_ops == &default_ethtool_ops) 11835 dev->ethtool_ops = ops; 11836 } 11837 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops); 11838 11839 /** 11840 * netdev_sw_irq_coalesce_default_on() - enable SW IRQ coalescing by default 11841 * @dev: netdev to enable the IRQ coalescing on 11842 * 11843 * Sets a conservative default for SW IRQ coalescing. Users can use 11844 * sysfs attributes to override the default values. 11845 */ 11846 void netdev_sw_irq_coalesce_default_on(struct net_device *dev) 11847 { 11848 WARN_ON(dev->reg_state == NETREG_REGISTERED); 11849 11850 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) { 11851 netdev_set_gro_flush_timeout(dev, 20000); 11852 netdev_set_defer_hard_irqs(dev, 1); 11853 } 11854 } 11855 EXPORT_SYMBOL_GPL(netdev_sw_irq_coalesce_default_on); 11856 11857 /** 11858 * alloc_netdev_mqs - allocate network device 11859 * @sizeof_priv: size of private data to allocate space for 11860 * @name: device name format string 11861 * @name_assign_type: origin of device name 11862 * @setup: callback to initialize device 11863 * @txqs: the number of TX subqueues to allocate 11864 * @rxqs: the number of RX subqueues to allocate 11865 * 11866 * Allocates a struct net_device with private data area for driver use 11867 * and performs basic initialization. Also allocates subqueue structs 11868 * for each queue on the device. 11869 */ 11870 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 11871 unsigned char name_assign_type, 11872 void (*setup)(struct net_device *), 11873 unsigned int txqs, unsigned int rxqs) 11874 { 11875 struct net_device *dev; 11876 size_t napi_config_sz; 11877 unsigned int maxqs; 11878 11879 BUG_ON(strlen(name) >= sizeof(dev->name)); 11880 11881 if (txqs < 1) { 11882 pr_err("alloc_netdev: Unable to allocate device with zero queues\n"); 11883 return NULL; 11884 } 11885 11886 if (rxqs < 1) { 11887 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n"); 11888 return NULL; 11889 } 11890 11891 maxqs = max(txqs, rxqs); 11892 11893 dev = kvzalloc(struct_size(dev, priv, sizeof_priv), 11894 GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL); 11895 if (!dev) 11896 return NULL; 11897 11898 dev->priv_len = sizeof_priv; 11899 11900 ref_tracker_dir_init(&dev->refcnt_tracker, 128, "netdev"); 11901 #ifdef CONFIG_PCPU_DEV_REFCNT 11902 dev->pcpu_refcnt = alloc_percpu(int); 11903 if (!dev->pcpu_refcnt) 11904 goto free_dev; 11905 __dev_hold(dev); 11906 #else 11907 refcount_set(&dev->dev_refcnt, 1); 11908 #endif 11909 11910 if (dev_addr_init(dev)) 11911 goto free_pcpu; 11912 11913 dev_mc_init(dev); 11914 dev_uc_init(dev); 11915 11916 dev_net_set(dev, &init_net); 11917 11918 dev->gso_max_size = GSO_LEGACY_MAX_SIZE; 11919 dev->xdp_zc_max_segs = 1; 11920 dev->gso_max_segs = GSO_MAX_SEGS; 11921 dev->gro_max_size = GRO_LEGACY_MAX_SIZE; 11922 dev->gso_ipv4_max_size = GSO_LEGACY_MAX_SIZE; 11923 dev->gro_ipv4_max_size = GRO_LEGACY_MAX_SIZE; 11924 dev->tso_max_size = TSO_LEGACY_MAX_SIZE; 11925 dev->tso_max_segs = TSO_MAX_SEGS; 11926 dev->upper_level = 1; 11927 dev->lower_level = 1; 11928 #ifdef CONFIG_LOCKDEP 11929 dev->nested_level = 0; 11930 INIT_LIST_HEAD(&dev->unlink_list); 11931 #endif 11932 11933 INIT_LIST_HEAD(&dev->napi_list); 11934 INIT_LIST_HEAD(&dev->unreg_list); 11935 INIT_LIST_HEAD(&dev->close_list); 11936 INIT_LIST_HEAD(&dev->link_watch_list); 11937 INIT_LIST_HEAD(&dev->adj_list.upper); 11938 INIT_LIST_HEAD(&dev->adj_list.lower); 11939 INIT_LIST_HEAD(&dev->ptype_all); 11940 INIT_LIST_HEAD(&dev->ptype_specific); 11941 INIT_LIST_HEAD(&dev->net_notifier_list); 11942 #ifdef CONFIG_NET_SCHED 11943 hash_init(dev->qdisc_hash); 11944 #endif 11945 11946 mutex_init(&dev->lock); 11947 11948 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM; 11949 setup(dev); 11950 11951 if (!dev->tx_queue_len) { 11952 dev->priv_flags |= IFF_NO_QUEUE; 11953 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN; 11954 } 11955 11956 dev->num_tx_queues = txqs; 11957 dev->real_num_tx_queues = txqs; 11958 if (netif_alloc_netdev_queues(dev)) 11959 goto free_all; 11960 11961 dev->num_rx_queues = rxqs; 11962 dev->real_num_rx_queues = rxqs; 11963 if (netif_alloc_rx_queues(dev)) 11964 goto free_all; 11965 dev->ethtool = kzalloc(sizeof(*dev->ethtool), GFP_KERNEL_ACCOUNT); 11966 if (!dev->ethtool) 11967 goto free_all; 11968 11969 dev->cfg = kzalloc(sizeof(*dev->cfg), GFP_KERNEL_ACCOUNT); 11970 if (!dev->cfg) 11971 goto free_all; 11972 dev->cfg_pending = dev->cfg; 11973 11974 dev->num_napi_configs = maxqs; 11975 napi_config_sz = array_size(maxqs, sizeof(*dev->napi_config)); 11976 dev->napi_config = kvzalloc(napi_config_sz, GFP_KERNEL_ACCOUNT); 11977 if (!dev->napi_config) 11978 goto free_all; 11979 11980 strscpy(dev->name, name); 11981 dev->name_assign_type = name_assign_type; 11982 dev->group = INIT_NETDEV_GROUP; 11983 if (!dev->ethtool_ops) 11984 dev->ethtool_ops = &default_ethtool_ops; 11985 11986 nf_hook_netdev_init(dev); 11987 11988 return dev; 11989 11990 free_all: 11991 free_netdev(dev); 11992 return NULL; 11993 11994 free_pcpu: 11995 #ifdef CONFIG_PCPU_DEV_REFCNT 11996 free_percpu(dev->pcpu_refcnt); 11997 free_dev: 11998 #endif 11999 kvfree(dev); 12000 return NULL; 12001 } 12002 EXPORT_SYMBOL(alloc_netdev_mqs); 12003 12004 static void netdev_napi_exit(struct net_device *dev) 12005 { 12006 if (!list_empty(&dev->napi_list)) { 12007 struct napi_struct *p, *n; 12008 12009 netdev_lock(dev); 12010 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 12011 __netif_napi_del_locked(p); 12012 netdev_unlock(dev); 12013 12014 synchronize_net(); 12015 } 12016 12017 kvfree(dev->napi_config); 12018 } 12019 12020 /** 12021 * free_netdev - free network device 12022 * @dev: device 12023 * 12024 * This function does the last stage of destroying an allocated device 12025 * interface. The reference to the device object is released. If this 12026 * is the last reference then it will be freed.Must be called in process 12027 * context. 12028 */ 12029 void free_netdev(struct net_device *dev) 12030 { 12031 might_sleep(); 12032 12033 /* When called immediately after register_netdevice() failed the unwind 12034 * handling may still be dismantling the device. Handle that case by 12035 * deferring the free. 12036 */ 12037 if (dev->reg_state == NETREG_UNREGISTERING) { 12038 ASSERT_RTNL(); 12039 dev->needs_free_netdev = true; 12040 return; 12041 } 12042 12043 WARN_ON(dev->cfg != dev->cfg_pending); 12044 kfree(dev->cfg); 12045 kfree(dev->ethtool); 12046 netif_free_tx_queues(dev); 12047 netif_free_rx_queues(dev); 12048 12049 kfree(rcu_dereference_protected(dev->ingress_queue, 1)); 12050 12051 /* Flush device addresses */ 12052 dev_addr_flush(dev); 12053 12054 netdev_napi_exit(dev); 12055 12056 netif_del_cpu_rmap(dev); 12057 12058 ref_tracker_dir_exit(&dev->refcnt_tracker); 12059 #ifdef CONFIG_PCPU_DEV_REFCNT 12060 free_percpu(dev->pcpu_refcnt); 12061 dev->pcpu_refcnt = NULL; 12062 #endif 12063 free_percpu(dev->core_stats); 12064 dev->core_stats = NULL; 12065 free_percpu(dev->xdp_bulkq); 12066 dev->xdp_bulkq = NULL; 12067 12068 netdev_free_phy_link_topology(dev); 12069 12070 mutex_destroy(&dev->lock); 12071 12072 /* Compatibility with error handling in drivers */ 12073 if (dev->reg_state == NETREG_UNINITIALIZED || 12074 dev->reg_state == NETREG_DUMMY) { 12075 kvfree(dev); 12076 return; 12077 } 12078 12079 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 12080 WRITE_ONCE(dev->reg_state, NETREG_RELEASED); 12081 12082 /* will free via device release */ 12083 put_device(&dev->dev); 12084 } 12085 EXPORT_SYMBOL(free_netdev); 12086 12087 /** 12088 * alloc_netdev_dummy - Allocate and initialize a dummy net device. 12089 * @sizeof_priv: size of private data to allocate space for 12090 * 12091 * Return: the allocated net_device on success, NULL otherwise 12092 */ 12093 struct net_device *alloc_netdev_dummy(int sizeof_priv) 12094 { 12095 return alloc_netdev(sizeof_priv, "dummy#", NET_NAME_UNKNOWN, 12096 init_dummy_netdev); 12097 } 12098 EXPORT_SYMBOL_GPL(alloc_netdev_dummy); 12099 12100 /** 12101 * synchronize_net - Synchronize with packet receive processing 12102 * 12103 * Wait for packets currently being received to be done. 12104 * Does not block later packets from starting. 12105 */ 12106 void synchronize_net(void) 12107 { 12108 might_sleep(); 12109 if (from_cleanup_net() || rtnl_is_locked()) 12110 synchronize_rcu_expedited(); 12111 else 12112 synchronize_rcu(); 12113 } 12114 EXPORT_SYMBOL(synchronize_net); 12115 12116 static void netdev_rss_contexts_free(struct net_device *dev) 12117 { 12118 struct ethtool_rxfh_context *ctx; 12119 unsigned long context; 12120 12121 mutex_lock(&dev->ethtool->rss_lock); 12122 xa_for_each(&dev->ethtool->rss_ctx, context, ctx) { 12123 xa_erase(&dev->ethtool->rss_ctx, context); 12124 dev->ethtool_ops->remove_rxfh_context(dev, ctx, context, NULL); 12125 kfree(ctx); 12126 } 12127 xa_destroy(&dev->ethtool->rss_ctx); 12128 mutex_unlock(&dev->ethtool->rss_lock); 12129 } 12130 12131 /** 12132 * unregister_netdevice_queue - remove device from the kernel 12133 * @dev: device 12134 * @head: list 12135 * 12136 * This function shuts down a device interface and removes it 12137 * from the kernel tables. 12138 * If head not NULL, device is queued to be unregistered later. 12139 * 12140 * Callers must hold the rtnl semaphore. You may want 12141 * unregister_netdev() instead of this. 12142 */ 12143 12144 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 12145 { 12146 ASSERT_RTNL(); 12147 12148 if (head) { 12149 list_move_tail(&dev->unreg_list, head); 12150 } else { 12151 LIST_HEAD(single); 12152 12153 list_add(&dev->unreg_list, &single); 12154 unregister_netdevice_many(&single); 12155 } 12156 } 12157 EXPORT_SYMBOL(unregister_netdevice_queue); 12158 12159 static void dev_memory_provider_uninstall(struct net_device *dev) 12160 { 12161 unsigned int i; 12162 12163 for (i = 0; i < dev->real_num_rx_queues; i++) { 12164 struct netdev_rx_queue *rxq = &dev->_rx[i]; 12165 struct pp_memory_provider_params *p = &rxq->mp_params; 12166 12167 if (p->mp_ops && p->mp_ops->uninstall) 12168 p->mp_ops->uninstall(rxq->mp_params.mp_priv, rxq); 12169 } 12170 } 12171 12172 void unregister_netdevice_many_notify(struct list_head *head, 12173 u32 portid, const struct nlmsghdr *nlh) 12174 { 12175 struct net_device *dev, *tmp; 12176 LIST_HEAD(close_head); 12177 int cnt = 0; 12178 12179 BUG_ON(dev_boot_phase); 12180 ASSERT_RTNL(); 12181 12182 if (list_empty(head)) 12183 return; 12184 12185 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 12186 /* Some devices call without registering 12187 * for initialization unwind. Remove those 12188 * devices and proceed with the remaining. 12189 */ 12190 if (dev->reg_state == NETREG_UNINITIALIZED) { 12191 pr_debug("unregister_netdevice: device %s/%p never was registered\n", 12192 dev->name, dev); 12193 12194 WARN_ON(1); 12195 list_del(&dev->unreg_list); 12196 continue; 12197 } 12198 dev->dismantle = true; 12199 BUG_ON(dev->reg_state != NETREG_REGISTERED); 12200 } 12201 12202 /* If device is running, close it first. Start with ops locked... */ 12203 list_for_each_entry(dev, head, unreg_list) { 12204 if (netdev_need_ops_lock(dev)) { 12205 list_add_tail(&dev->close_list, &close_head); 12206 netdev_lock(dev); 12207 } 12208 } 12209 netif_close_many(&close_head, true); 12210 /* ... now unlock them and go over the rest. */ 12211 list_for_each_entry(dev, head, unreg_list) { 12212 if (netdev_need_ops_lock(dev)) 12213 netdev_unlock(dev); 12214 else 12215 list_add_tail(&dev->close_list, &close_head); 12216 } 12217 netif_close_many(&close_head, true); 12218 12219 list_for_each_entry(dev, head, unreg_list) { 12220 /* And unlink it from device chain. */ 12221 unlist_netdevice(dev); 12222 netdev_lock(dev); 12223 WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERING); 12224 netdev_unlock(dev); 12225 } 12226 flush_all_backlogs(); 12227 12228 synchronize_net(); 12229 12230 list_for_each_entry(dev, head, unreg_list) { 12231 struct sk_buff *skb = NULL; 12232 12233 /* Shutdown queueing discipline. */ 12234 netdev_lock_ops(dev); 12235 dev_shutdown(dev); 12236 dev_tcx_uninstall(dev); 12237 dev_xdp_uninstall(dev); 12238 dev_memory_provider_uninstall(dev); 12239 netdev_unlock_ops(dev); 12240 bpf_dev_bound_netdev_unregister(dev); 12241 12242 netdev_offload_xstats_disable_all(dev); 12243 12244 /* Notify protocols, that we are about to destroy 12245 * this device. They should clean all the things. 12246 */ 12247 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 12248 12249 if (!(dev->rtnl_link_ops && dev->rtnl_link_initializing)) 12250 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0, 12251 GFP_KERNEL, NULL, 0, 12252 portid, nlh); 12253 12254 /* 12255 * Flush the unicast and multicast chains 12256 */ 12257 dev_uc_flush(dev); 12258 dev_mc_flush(dev); 12259 12260 netdev_name_node_alt_flush(dev); 12261 netdev_name_node_free(dev->name_node); 12262 12263 netdev_rss_contexts_free(dev); 12264 12265 call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev); 12266 12267 if (dev->netdev_ops->ndo_uninit) 12268 dev->netdev_ops->ndo_uninit(dev); 12269 12270 mutex_destroy(&dev->ethtool->rss_lock); 12271 12272 net_shaper_flush_netdev(dev); 12273 12274 if (skb) 12275 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL, portid, nlh); 12276 12277 /* Notifier chain MUST detach us all upper devices. */ 12278 WARN_ON(netdev_has_any_upper_dev(dev)); 12279 WARN_ON(netdev_has_any_lower_dev(dev)); 12280 12281 /* Remove entries from kobject tree */ 12282 netdev_unregister_kobject(dev); 12283 #ifdef CONFIG_XPS 12284 /* Remove XPS queueing entries */ 12285 netif_reset_xps_queues_gt(dev, 0); 12286 #endif 12287 } 12288 12289 synchronize_net(); 12290 12291 list_for_each_entry(dev, head, unreg_list) { 12292 netdev_put(dev, &dev->dev_registered_tracker); 12293 net_set_todo(dev); 12294 cnt++; 12295 } 12296 atomic_add(cnt, &dev_unreg_count); 12297 12298 list_del(head); 12299 } 12300 12301 /** 12302 * unregister_netdevice_many - unregister many devices 12303 * @head: list of devices 12304 * 12305 * Note: As most callers use a stack allocated list_head, 12306 * we force a list_del() to make sure stack won't be corrupted later. 12307 */ 12308 void unregister_netdevice_many(struct list_head *head) 12309 { 12310 unregister_netdevice_many_notify(head, 0, NULL); 12311 } 12312 EXPORT_SYMBOL(unregister_netdevice_many); 12313 12314 /** 12315 * unregister_netdev - remove device from the kernel 12316 * @dev: device 12317 * 12318 * This function shuts down a device interface and removes it 12319 * from the kernel tables. 12320 * 12321 * This is just a wrapper for unregister_netdevice that takes 12322 * the rtnl semaphore. In general you want to use this and not 12323 * unregister_netdevice. 12324 */ 12325 void unregister_netdev(struct net_device *dev) 12326 { 12327 rtnl_net_dev_lock(dev); 12328 unregister_netdevice(dev); 12329 rtnl_net_dev_unlock(dev); 12330 } 12331 EXPORT_SYMBOL(unregister_netdev); 12332 12333 int __dev_change_net_namespace(struct net_device *dev, struct net *net, 12334 const char *pat, int new_ifindex, 12335 struct netlink_ext_ack *extack) 12336 { 12337 struct netdev_name_node *name_node; 12338 struct net *net_old = dev_net(dev); 12339 char new_name[IFNAMSIZ] = {}; 12340 int err, new_nsid; 12341 12342 ASSERT_RTNL(); 12343 12344 /* Don't allow namespace local devices to be moved. */ 12345 err = -EINVAL; 12346 if (dev->netns_immutable) { 12347 NL_SET_ERR_MSG(extack, "The interface netns is immutable"); 12348 goto out; 12349 } 12350 12351 /* Ensure the device has been registered */ 12352 if (dev->reg_state != NETREG_REGISTERED) { 12353 NL_SET_ERR_MSG(extack, "The interface isn't registered"); 12354 goto out; 12355 } 12356 12357 /* Get out if there is nothing todo */ 12358 err = 0; 12359 if (net_eq(net_old, net)) 12360 goto out; 12361 12362 /* Pick the destination device name, and ensure 12363 * we can use it in the destination network namespace. 12364 */ 12365 err = -EEXIST; 12366 if (netdev_name_in_use(net, dev->name)) { 12367 /* We get here if we can't use the current device name */ 12368 if (!pat) { 12369 NL_SET_ERR_MSG(extack, 12370 "An interface with the same name exists in the target netns"); 12371 goto out; 12372 } 12373 err = dev_prep_valid_name(net, dev, pat, new_name, EEXIST); 12374 if (err < 0) { 12375 NL_SET_ERR_MSG_FMT(extack, 12376 "Unable to use '%s' for the new interface name in the target netns", 12377 pat); 12378 goto out; 12379 } 12380 } 12381 /* Check that none of the altnames conflicts. */ 12382 err = -EEXIST; 12383 netdev_for_each_altname(dev, name_node) { 12384 if (netdev_name_in_use(net, name_node->name)) { 12385 NL_SET_ERR_MSG_FMT(extack, 12386 "An interface with the altname %s exists in the target netns", 12387 name_node->name); 12388 goto out; 12389 } 12390 } 12391 12392 /* Check that new_ifindex isn't used yet. */ 12393 if (new_ifindex) { 12394 err = dev_index_reserve(net, new_ifindex); 12395 if (err < 0) { 12396 NL_SET_ERR_MSG_FMT(extack, 12397 "The ifindex %d is not available in the target netns", 12398 new_ifindex); 12399 goto out; 12400 } 12401 } else { 12402 /* If there is an ifindex conflict assign a new one */ 12403 err = dev_index_reserve(net, dev->ifindex); 12404 if (err == -EBUSY) 12405 err = dev_index_reserve(net, 0); 12406 if (err < 0) { 12407 NL_SET_ERR_MSG(extack, 12408 "Unable to allocate a new ifindex in the target netns"); 12409 goto out; 12410 } 12411 new_ifindex = err; 12412 } 12413 12414 /* 12415 * And now a mini version of register_netdevice unregister_netdevice. 12416 */ 12417 12418 netdev_lock_ops(dev); 12419 /* If device is running close it first. */ 12420 netif_close(dev); 12421 /* And unlink it from device chain */ 12422 unlist_netdevice(dev); 12423 12424 if (!netdev_need_ops_lock(dev)) 12425 netdev_lock(dev); 12426 dev->moving_ns = true; 12427 netdev_unlock(dev); 12428 12429 synchronize_net(); 12430 12431 /* Shutdown queueing discipline. */ 12432 netdev_lock_ops(dev); 12433 dev_shutdown(dev); 12434 netdev_unlock_ops(dev); 12435 12436 /* Notify protocols, that we are about to destroy 12437 * this device. They should clean all the things. 12438 * 12439 * Note that dev->reg_state stays at NETREG_REGISTERED. 12440 * This is wanted because this way 8021q and macvlan know 12441 * the device is just moving and can keep their slaves up. 12442 */ 12443 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 12444 rcu_barrier(); 12445 12446 new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL); 12447 12448 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid, 12449 new_ifindex); 12450 12451 /* 12452 * Flush the unicast and multicast chains 12453 */ 12454 dev_uc_flush(dev); 12455 dev_mc_flush(dev); 12456 12457 /* Send a netdev-removed uevent to the old namespace */ 12458 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE); 12459 netdev_adjacent_del_links(dev); 12460 12461 /* Move per-net netdevice notifiers that are following the netdevice */ 12462 move_netdevice_notifiers_dev_net(dev, net); 12463 12464 /* Actually switch the network namespace */ 12465 netdev_lock(dev); 12466 dev_net_set(dev, net); 12467 netdev_unlock(dev); 12468 dev->ifindex = new_ifindex; 12469 12470 if (new_name[0]) { 12471 /* Rename the netdev to prepared name */ 12472 write_seqlock_bh(&netdev_rename_lock); 12473 strscpy(dev->name, new_name, IFNAMSIZ); 12474 write_sequnlock_bh(&netdev_rename_lock); 12475 } 12476 12477 /* Fixup kobjects */ 12478 dev_set_uevent_suppress(&dev->dev, 1); 12479 err = device_rename(&dev->dev, dev->name); 12480 dev_set_uevent_suppress(&dev->dev, 0); 12481 WARN_ON(err); 12482 12483 /* Send a netdev-add uevent to the new namespace */ 12484 kobject_uevent(&dev->dev.kobj, KOBJ_ADD); 12485 netdev_adjacent_add_links(dev); 12486 12487 /* Adapt owner in case owning user namespace of target network 12488 * namespace is different from the original one. 12489 */ 12490 err = netdev_change_owner(dev, net_old, net); 12491 WARN_ON(err); 12492 12493 netdev_lock(dev); 12494 dev->moving_ns = false; 12495 if (!netdev_need_ops_lock(dev)) 12496 netdev_unlock(dev); 12497 12498 /* Add the device back in the hashes */ 12499 list_netdevice(dev); 12500 /* Notify protocols, that a new device appeared. */ 12501 call_netdevice_notifiers(NETDEV_REGISTER, dev); 12502 netdev_unlock_ops(dev); 12503 12504 /* 12505 * Prevent userspace races by waiting until the network 12506 * device is fully setup before sending notifications. 12507 */ 12508 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL); 12509 12510 synchronize_net(); 12511 err = 0; 12512 out: 12513 return err; 12514 } 12515 12516 static int dev_cpu_dead(unsigned int oldcpu) 12517 { 12518 struct sk_buff **list_skb; 12519 struct sk_buff *skb; 12520 unsigned int cpu; 12521 struct softnet_data *sd, *oldsd, *remsd = NULL; 12522 12523 local_irq_disable(); 12524 cpu = smp_processor_id(); 12525 sd = &per_cpu(softnet_data, cpu); 12526 oldsd = &per_cpu(softnet_data, oldcpu); 12527 12528 /* Find end of our completion_queue. */ 12529 list_skb = &sd->completion_queue; 12530 while (*list_skb) 12531 list_skb = &(*list_skb)->next; 12532 /* Append completion queue from offline CPU. */ 12533 *list_skb = oldsd->completion_queue; 12534 oldsd->completion_queue = NULL; 12535 12536 /* Append output queue from offline CPU. */ 12537 if (oldsd->output_queue) { 12538 *sd->output_queue_tailp = oldsd->output_queue; 12539 sd->output_queue_tailp = oldsd->output_queue_tailp; 12540 oldsd->output_queue = NULL; 12541 oldsd->output_queue_tailp = &oldsd->output_queue; 12542 } 12543 /* Append NAPI poll list from offline CPU, with one exception : 12544 * process_backlog() must be called by cpu owning percpu backlog. 12545 * We properly handle process_queue & input_pkt_queue later. 12546 */ 12547 while (!list_empty(&oldsd->poll_list)) { 12548 struct napi_struct *napi = list_first_entry(&oldsd->poll_list, 12549 struct napi_struct, 12550 poll_list); 12551 12552 list_del_init(&napi->poll_list); 12553 if (napi->poll == process_backlog) 12554 napi->state &= NAPIF_STATE_THREADED; 12555 else 12556 ____napi_schedule(sd, napi); 12557 } 12558 12559 raise_softirq_irqoff(NET_TX_SOFTIRQ); 12560 local_irq_enable(); 12561 12562 if (!use_backlog_threads()) { 12563 #ifdef CONFIG_RPS 12564 remsd = oldsd->rps_ipi_list; 12565 oldsd->rps_ipi_list = NULL; 12566 #endif 12567 /* send out pending IPI's on offline CPU */ 12568 net_rps_send_ipi(remsd); 12569 } 12570 12571 /* Process offline CPU's input_pkt_queue */ 12572 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 12573 netif_rx(skb); 12574 rps_input_queue_head_incr(oldsd); 12575 } 12576 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) { 12577 netif_rx(skb); 12578 rps_input_queue_head_incr(oldsd); 12579 } 12580 12581 return 0; 12582 } 12583 12584 /** 12585 * netdev_increment_features - increment feature set by one 12586 * @all: current feature set 12587 * @one: new feature set 12588 * @mask: mask feature set 12589 * 12590 * Computes a new feature set after adding a device with feature set 12591 * @one to the master device with current feature set @all. Will not 12592 * enable anything that is off in @mask. Returns the new feature set. 12593 */ 12594 netdev_features_t netdev_increment_features(netdev_features_t all, 12595 netdev_features_t one, netdev_features_t mask) 12596 { 12597 if (mask & NETIF_F_HW_CSUM) 12598 mask |= NETIF_F_CSUM_MASK; 12599 mask |= NETIF_F_VLAN_CHALLENGED; 12600 12601 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask; 12602 all &= one | ~NETIF_F_ALL_FOR_ALL; 12603 12604 /* If one device supports hw checksumming, set for all. */ 12605 if (all & NETIF_F_HW_CSUM) 12606 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM); 12607 12608 return all; 12609 } 12610 EXPORT_SYMBOL(netdev_increment_features); 12611 12612 static struct hlist_head * __net_init netdev_create_hash(void) 12613 { 12614 int i; 12615 struct hlist_head *hash; 12616 12617 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL); 12618 if (hash != NULL) 12619 for (i = 0; i < NETDEV_HASHENTRIES; i++) 12620 INIT_HLIST_HEAD(&hash[i]); 12621 12622 return hash; 12623 } 12624 12625 /* Initialize per network namespace state */ 12626 static int __net_init netdev_init(struct net *net) 12627 { 12628 BUILD_BUG_ON(GRO_HASH_BUCKETS > 12629 BITS_PER_BYTE * sizeof_field(struct gro_node, bitmask)); 12630 12631 INIT_LIST_HEAD(&net->dev_base_head); 12632 12633 net->dev_name_head = netdev_create_hash(); 12634 if (net->dev_name_head == NULL) 12635 goto err_name; 12636 12637 net->dev_index_head = netdev_create_hash(); 12638 if (net->dev_index_head == NULL) 12639 goto err_idx; 12640 12641 xa_init_flags(&net->dev_by_index, XA_FLAGS_ALLOC1); 12642 12643 RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain); 12644 12645 return 0; 12646 12647 err_idx: 12648 kfree(net->dev_name_head); 12649 err_name: 12650 return -ENOMEM; 12651 } 12652 12653 /** 12654 * netdev_drivername - network driver for the device 12655 * @dev: network device 12656 * 12657 * Determine network driver for device. 12658 */ 12659 const char *netdev_drivername(const struct net_device *dev) 12660 { 12661 const struct device_driver *driver; 12662 const struct device *parent; 12663 const char *empty = ""; 12664 12665 parent = dev->dev.parent; 12666 if (!parent) 12667 return empty; 12668 12669 driver = parent->driver; 12670 if (driver && driver->name) 12671 return driver->name; 12672 return empty; 12673 } 12674 12675 static void __netdev_printk(const char *level, const struct net_device *dev, 12676 struct va_format *vaf) 12677 { 12678 if (dev && dev->dev.parent) { 12679 dev_printk_emit(level[1] - '0', 12680 dev->dev.parent, 12681 "%s %s %s%s: %pV", 12682 dev_driver_string(dev->dev.parent), 12683 dev_name(dev->dev.parent), 12684 netdev_name(dev), netdev_reg_state(dev), 12685 vaf); 12686 } else if (dev) { 12687 printk("%s%s%s: %pV", 12688 level, netdev_name(dev), netdev_reg_state(dev), vaf); 12689 } else { 12690 printk("%s(NULL net_device): %pV", level, vaf); 12691 } 12692 } 12693 12694 void netdev_printk(const char *level, const struct net_device *dev, 12695 const char *format, ...) 12696 { 12697 struct va_format vaf; 12698 va_list args; 12699 12700 va_start(args, format); 12701 12702 vaf.fmt = format; 12703 vaf.va = &args; 12704 12705 __netdev_printk(level, dev, &vaf); 12706 12707 va_end(args); 12708 } 12709 EXPORT_SYMBOL(netdev_printk); 12710 12711 #define define_netdev_printk_level(func, level) \ 12712 void func(const struct net_device *dev, const char *fmt, ...) \ 12713 { \ 12714 struct va_format vaf; \ 12715 va_list args; \ 12716 \ 12717 va_start(args, fmt); \ 12718 \ 12719 vaf.fmt = fmt; \ 12720 vaf.va = &args; \ 12721 \ 12722 __netdev_printk(level, dev, &vaf); \ 12723 \ 12724 va_end(args); \ 12725 } \ 12726 EXPORT_SYMBOL(func); 12727 12728 define_netdev_printk_level(netdev_emerg, KERN_EMERG); 12729 define_netdev_printk_level(netdev_alert, KERN_ALERT); 12730 define_netdev_printk_level(netdev_crit, KERN_CRIT); 12731 define_netdev_printk_level(netdev_err, KERN_ERR); 12732 define_netdev_printk_level(netdev_warn, KERN_WARNING); 12733 define_netdev_printk_level(netdev_notice, KERN_NOTICE); 12734 define_netdev_printk_level(netdev_info, KERN_INFO); 12735 12736 static void __net_exit netdev_exit(struct net *net) 12737 { 12738 kfree(net->dev_name_head); 12739 kfree(net->dev_index_head); 12740 xa_destroy(&net->dev_by_index); 12741 if (net != &init_net) 12742 WARN_ON_ONCE(!list_empty(&net->dev_base_head)); 12743 } 12744 12745 static struct pernet_operations __net_initdata netdev_net_ops = { 12746 .init = netdev_init, 12747 .exit = netdev_exit, 12748 }; 12749 12750 static void __net_exit default_device_exit_net(struct net *net) 12751 { 12752 struct netdev_name_node *name_node, *tmp; 12753 struct net_device *dev, *aux; 12754 /* 12755 * Push all migratable network devices back to the 12756 * initial network namespace 12757 */ 12758 ASSERT_RTNL(); 12759 for_each_netdev_safe(net, dev, aux) { 12760 int err; 12761 char fb_name[IFNAMSIZ]; 12762 12763 /* Ignore unmoveable devices (i.e. loopback) */ 12764 if (dev->netns_immutable) 12765 continue; 12766 12767 /* Leave virtual devices for the generic cleanup */ 12768 if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund) 12769 continue; 12770 12771 /* Push remaining network devices to init_net */ 12772 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 12773 if (netdev_name_in_use(&init_net, fb_name)) 12774 snprintf(fb_name, IFNAMSIZ, "dev%%d"); 12775 12776 netdev_for_each_altname_safe(dev, name_node, tmp) 12777 if (netdev_name_in_use(&init_net, name_node->name)) 12778 __netdev_name_node_alt_destroy(name_node); 12779 12780 err = dev_change_net_namespace(dev, &init_net, fb_name); 12781 if (err) { 12782 pr_emerg("%s: failed to move %s to init_net: %d\n", 12783 __func__, dev->name, err); 12784 BUG(); 12785 } 12786 } 12787 } 12788 12789 static void __net_exit default_device_exit_batch(struct list_head *net_list) 12790 { 12791 /* At exit all network devices most be removed from a network 12792 * namespace. Do this in the reverse order of registration. 12793 * Do this across as many network namespaces as possible to 12794 * improve batching efficiency. 12795 */ 12796 struct net_device *dev; 12797 struct net *net; 12798 LIST_HEAD(dev_kill_list); 12799 12800 rtnl_lock(); 12801 list_for_each_entry(net, net_list, exit_list) { 12802 default_device_exit_net(net); 12803 cond_resched(); 12804 } 12805 12806 list_for_each_entry(net, net_list, exit_list) { 12807 for_each_netdev_reverse(net, dev) { 12808 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) 12809 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 12810 else 12811 unregister_netdevice_queue(dev, &dev_kill_list); 12812 } 12813 } 12814 unregister_netdevice_many(&dev_kill_list); 12815 rtnl_unlock(); 12816 } 12817 12818 static struct pernet_operations __net_initdata default_device_ops = { 12819 .exit_batch = default_device_exit_batch, 12820 }; 12821 12822 static void __init net_dev_struct_check(void) 12823 { 12824 /* TX read-mostly hotpath */ 12825 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, priv_flags_fast); 12826 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, netdev_ops); 12827 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, header_ops); 12828 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, _tx); 12829 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, real_num_tx_queues); 12830 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_size); 12831 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_ipv4_max_size); 12832 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_segs); 12833 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_partial_features); 12834 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, num_tc); 12835 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, mtu); 12836 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, needed_headroom); 12837 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tc_to_txq); 12838 #ifdef CONFIG_XPS 12839 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, xps_maps); 12840 #endif 12841 #ifdef CONFIG_NETFILTER_EGRESS 12842 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, nf_hooks_egress); 12843 #endif 12844 #ifdef CONFIG_NET_XGRESS 12845 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tcx_egress); 12846 #endif 12847 CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_tx, 160); 12848 12849 /* TXRX read-mostly hotpath */ 12850 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, lstats); 12851 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, state); 12852 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, flags); 12853 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, hard_header_len); 12854 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, features); 12855 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, ip6_ptr); 12856 CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_txrx, 46); 12857 12858 /* RX read-mostly hotpath */ 12859 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ptype_specific); 12860 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ifindex); 12861 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, real_num_rx_queues); 12862 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, _rx); 12863 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_max_size); 12864 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_ipv4_max_size); 12865 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler); 12866 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler_data); 12867 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, nd_net); 12868 #ifdef CONFIG_NETPOLL 12869 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, npinfo); 12870 #endif 12871 #ifdef CONFIG_NET_XGRESS 12872 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, tcx_ingress); 12873 #endif 12874 CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_rx, 92); 12875 } 12876 12877 /* 12878 * Initialize the DEV module. At boot time this walks the device list and 12879 * unhooks any devices that fail to initialise (normally hardware not 12880 * present) and leaves us with a valid list of present and active devices. 12881 * 12882 */ 12883 12884 /* We allocate 256 pages for each CPU if PAGE_SHIFT is 12 */ 12885 #define SYSTEM_PERCPU_PAGE_POOL_SIZE ((1 << 20) / PAGE_SIZE) 12886 12887 static int net_page_pool_create(int cpuid) 12888 { 12889 #if IS_ENABLED(CONFIG_PAGE_POOL) 12890 struct page_pool_params page_pool_params = { 12891 .pool_size = SYSTEM_PERCPU_PAGE_POOL_SIZE, 12892 .flags = PP_FLAG_SYSTEM_POOL, 12893 .nid = cpu_to_mem(cpuid), 12894 }; 12895 struct page_pool *pp_ptr; 12896 int err; 12897 12898 pp_ptr = page_pool_create_percpu(&page_pool_params, cpuid); 12899 if (IS_ERR(pp_ptr)) 12900 return -ENOMEM; 12901 12902 err = xdp_reg_page_pool(pp_ptr); 12903 if (err) { 12904 page_pool_destroy(pp_ptr); 12905 return err; 12906 } 12907 12908 per_cpu(system_page_pool.pool, cpuid) = pp_ptr; 12909 #endif 12910 return 0; 12911 } 12912 12913 static int backlog_napi_should_run(unsigned int cpu) 12914 { 12915 struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu); 12916 struct napi_struct *napi = &sd->backlog; 12917 12918 return test_bit(NAPI_STATE_SCHED_THREADED, &napi->state); 12919 } 12920 12921 static void run_backlog_napi(unsigned int cpu) 12922 { 12923 struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu); 12924 12925 napi_threaded_poll_loop(&sd->backlog); 12926 } 12927 12928 static void backlog_napi_setup(unsigned int cpu) 12929 { 12930 struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu); 12931 struct napi_struct *napi = &sd->backlog; 12932 12933 napi->thread = this_cpu_read(backlog_napi); 12934 set_bit(NAPI_STATE_THREADED, &napi->state); 12935 } 12936 12937 static struct smp_hotplug_thread backlog_threads = { 12938 .store = &backlog_napi, 12939 .thread_should_run = backlog_napi_should_run, 12940 .thread_fn = run_backlog_napi, 12941 .thread_comm = "backlog_napi/%u", 12942 .setup = backlog_napi_setup, 12943 }; 12944 12945 /* 12946 * This is called single threaded during boot, so no need 12947 * to take the rtnl semaphore. 12948 */ 12949 static int __init net_dev_init(void) 12950 { 12951 int i, rc = -ENOMEM; 12952 12953 BUG_ON(!dev_boot_phase); 12954 12955 net_dev_struct_check(); 12956 12957 if (dev_proc_init()) 12958 goto out; 12959 12960 if (netdev_kobject_init()) 12961 goto out; 12962 12963 for (i = 0; i < PTYPE_HASH_SIZE; i++) 12964 INIT_LIST_HEAD(&ptype_base[i]); 12965 12966 if (register_pernet_subsys(&netdev_net_ops)) 12967 goto out; 12968 12969 /* 12970 * Initialise the packet receive queues. 12971 */ 12972 12973 flush_backlogs_fallback = flush_backlogs_alloc(); 12974 if (!flush_backlogs_fallback) 12975 goto out; 12976 12977 for_each_possible_cpu(i) { 12978 struct softnet_data *sd = &per_cpu(softnet_data, i); 12979 12980 skb_queue_head_init(&sd->input_pkt_queue); 12981 skb_queue_head_init(&sd->process_queue); 12982 #ifdef CONFIG_XFRM_OFFLOAD 12983 skb_queue_head_init(&sd->xfrm_backlog); 12984 #endif 12985 INIT_LIST_HEAD(&sd->poll_list); 12986 sd->output_queue_tailp = &sd->output_queue; 12987 #ifdef CONFIG_RPS 12988 INIT_CSD(&sd->csd, rps_trigger_softirq, sd); 12989 sd->cpu = i; 12990 #endif 12991 INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd); 12992 spin_lock_init(&sd->defer_lock); 12993 12994 gro_init(&sd->backlog.gro); 12995 sd->backlog.poll = process_backlog; 12996 sd->backlog.weight = weight_p; 12997 INIT_LIST_HEAD(&sd->backlog.poll_list); 12998 12999 if (net_page_pool_create(i)) 13000 goto out; 13001 } 13002 if (use_backlog_threads()) 13003 smpboot_register_percpu_thread(&backlog_threads); 13004 13005 dev_boot_phase = 0; 13006 13007 /* The loopback device is special if any other network devices 13008 * is present in a network namespace the loopback device must 13009 * be present. Since we now dynamically allocate and free the 13010 * loopback device ensure this invariant is maintained by 13011 * keeping the loopback device as the first device on the 13012 * list of network devices. Ensuring the loopback devices 13013 * is the first device that appears and the last network device 13014 * that disappears. 13015 */ 13016 if (register_pernet_device(&loopback_net_ops)) 13017 goto out; 13018 13019 if (register_pernet_device(&default_device_ops)) 13020 goto out; 13021 13022 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 13023 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 13024 13025 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead", 13026 NULL, dev_cpu_dead); 13027 WARN_ON(rc < 0); 13028 rc = 0; 13029 13030 /* avoid static key IPIs to isolated CPUs */ 13031 if (housekeeping_enabled(HK_TYPE_MISC)) 13032 net_enable_timestamp(); 13033 out: 13034 if (rc < 0) { 13035 for_each_possible_cpu(i) { 13036 struct page_pool *pp_ptr; 13037 13038 pp_ptr = per_cpu(system_page_pool.pool, i); 13039 if (!pp_ptr) 13040 continue; 13041 13042 xdp_unreg_page_pool(pp_ptr); 13043 page_pool_destroy(pp_ptr); 13044 per_cpu(system_page_pool.pool, i) = NULL; 13045 } 13046 } 13047 13048 return rc; 13049 } 13050 13051 subsys_initcall(net_dev_init); 13052