xref: /linux/net/core/dev.c (revision c75c5ab575af7db707689cdbb5a5c458e9a034bb)
1 /*
2  * 	NET3	Protocol independent device support routines.
3  *
4  *		This program is free software; you can redistribute it and/or
5  *		modify it under the terms of the GNU General Public License
6  *		as published by the Free Software Foundation; either version
7  *		2 of the License, or (at your option) any later version.
8  *
9  *	Derived from the non IP parts of dev.c 1.0.19
10  * 		Authors:	Ross Biro
11  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *	Additional Authors:
15  *		Florian la Roche <rzsfl@rz.uni-sb.de>
16  *		Alan Cox <gw4pts@gw4pts.ampr.org>
17  *		David Hinds <dahinds@users.sourceforge.net>
18  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *		Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *	Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *              			to 2 if register_netdev gets called
25  *              			before net_dev_init & also removed a
26  *              			few lines of code in the process.
27  *		Alan Cox	:	device private ioctl copies fields back.
28  *		Alan Cox	:	Transmit queue code does relevant
29  *					stunts to keep the queue safe.
30  *		Alan Cox	:	Fixed double lock.
31  *		Alan Cox	:	Fixed promisc NULL pointer trap
32  *		????????	:	Support the full private ioctl range
33  *		Alan Cox	:	Moved ioctl permission check into
34  *					drivers
35  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
36  *		Alan Cox	:	100 backlog just doesn't cut it when
37  *					you start doing multicast video 8)
38  *		Alan Cox	:	Rewrote net_bh and list manager.
39  *		Alan Cox	: 	Fix ETH_P_ALL echoback lengths.
40  *		Alan Cox	:	Took out transmit every packet pass
41  *					Saved a few bytes in the ioctl handler
42  *		Alan Cox	:	Network driver sets packet type before
43  *					calling netif_rx. Saves a function
44  *					call a packet.
45  *		Alan Cox	:	Hashed net_bh()
46  *		Richard Kooijman:	Timestamp fixes.
47  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
48  *		Alan Cox	:	Device lock protection.
49  *		Alan Cox	: 	Fixed nasty side effect of device close
50  *					changes.
51  *		Rudi Cilibrasi	:	Pass the right thing to
52  *					set_mac_address()
53  *		Dave Miller	:	32bit quantity for the device lock to
54  *					make it work out on a Sparc.
55  *		Bjorn Ekwall	:	Added KERNELD hack.
56  *		Alan Cox	:	Cleaned up the backlog initialise.
57  *		Craig Metz	:	SIOCGIFCONF fix if space for under
58  *					1 device.
59  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
60  *					is no device open function.
61  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
62  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
63  *		Cyrus Durgin	:	Cleaned for KMOD
64  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
65  *					A network device unload needs to purge
66  *					the backlog queue.
67  *	Paul Rusty Russell	:	SIOCSIFNAME
68  *              Pekka Riikonen  :	Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *              			indefinitely on dev->refcnt
71  * 		J Hadi Salim	:	- Backlog queue sampling
72  *				        - netif_rx() feedback
73  */
74 
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/stat.h>
101 #include <net/dst.h>
102 #include <net/pkt_sched.h>
103 #include <net/checksum.h>
104 #include <net/xfrm.h>
105 #include <linux/highmem.h>
106 #include <linux/init.h>
107 #include <linux/module.h>
108 #include <linux/netpoll.h>
109 #include <linux/rcupdate.h>
110 #include <linux/delay.h>
111 #include <net/iw_handler.h>
112 #include <asm/current.h>
113 #include <linux/audit.h>
114 #include <linux/dmaengine.h>
115 #include <linux/err.h>
116 #include <linux/ctype.h>
117 #include <linux/if_arp.h>
118 #include <linux/if_vlan.h>
119 #include <linux/ip.h>
120 #include <net/ip.h>
121 #include <linux/ipv6.h>
122 #include <linux/in.h>
123 #include <linux/jhash.h>
124 #include <linux/random.h>
125 #include <trace/events/napi.h>
126 #include <trace/events/net.h>
127 #include <trace/events/skb.h>
128 #include <linux/pci.h>
129 #include <linux/inetdevice.h>
130 #include <linux/cpu_rmap.h>
131 #include <linux/static_key.h>
132 
133 #include "net-sysfs.h"
134 
135 /* Instead of increasing this, you should create a hash table. */
136 #define MAX_GRO_SKBS 8
137 
138 /* This should be increased if a protocol with a bigger head is added. */
139 #define GRO_MAX_HEAD (MAX_HEADER + 128)
140 
141 static DEFINE_SPINLOCK(ptype_lock);
142 static DEFINE_SPINLOCK(offload_lock);
143 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
144 struct list_head ptype_all __read_mostly;	/* Taps */
145 static struct list_head offload_base __read_mostly;
146 
147 /*
148  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
149  * semaphore.
150  *
151  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
152  *
153  * Writers must hold the rtnl semaphore while they loop through the
154  * dev_base_head list, and hold dev_base_lock for writing when they do the
155  * actual updates.  This allows pure readers to access the list even
156  * while a writer is preparing to update it.
157  *
158  * To put it another way, dev_base_lock is held for writing only to
159  * protect against pure readers; the rtnl semaphore provides the
160  * protection against other writers.
161  *
162  * See, for example usages, register_netdevice() and
163  * unregister_netdevice(), which must be called with the rtnl
164  * semaphore held.
165  */
166 DEFINE_RWLOCK(dev_base_lock);
167 EXPORT_SYMBOL(dev_base_lock);
168 
169 seqcount_t devnet_rename_seq;
170 
171 static inline void dev_base_seq_inc(struct net *net)
172 {
173 	while (++net->dev_base_seq == 0);
174 }
175 
176 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
177 {
178 	unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
179 
180 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
181 }
182 
183 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
184 {
185 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
186 }
187 
188 static inline void rps_lock(struct softnet_data *sd)
189 {
190 #ifdef CONFIG_RPS
191 	spin_lock(&sd->input_pkt_queue.lock);
192 #endif
193 }
194 
195 static inline void rps_unlock(struct softnet_data *sd)
196 {
197 #ifdef CONFIG_RPS
198 	spin_unlock(&sd->input_pkt_queue.lock);
199 #endif
200 }
201 
202 /* Device list insertion */
203 static int list_netdevice(struct net_device *dev)
204 {
205 	struct net *net = dev_net(dev);
206 
207 	ASSERT_RTNL();
208 
209 	write_lock_bh(&dev_base_lock);
210 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
211 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
212 	hlist_add_head_rcu(&dev->index_hlist,
213 			   dev_index_hash(net, dev->ifindex));
214 	write_unlock_bh(&dev_base_lock);
215 
216 	dev_base_seq_inc(net);
217 
218 	return 0;
219 }
220 
221 /* Device list removal
222  * caller must respect a RCU grace period before freeing/reusing dev
223  */
224 static void unlist_netdevice(struct net_device *dev)
225 {
226 	ASSERT_RTNL();
227 
228 	/* Unlink dev from the device chain */
229 	write_lock_bh(&dev_base_lock);
230 	list_del_rcu(&dev->dev_list);
231 	hlist_del_rcu(&dev->name_hlist);
232 	hlist_del_rcu(&dev->index_hlist);
233 	write_unlock_bh(&dev_base_lock);
234 
235 	dev_base_seq_inc(dev_net(dev));
236 }
237 
238 /*
239  *	Our notifier list
240  */
241 
242 static RAW_NOTIFIER_HEAD(netdev_chain);
243 
244 /*
245  *	Device drivers call our routines to queue packets here. We empty the
246  *	queue in the local softnet handler.
247  */
248 
249 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
250 EXPORT_PER_CPU_SYMBOL(softnet_data);
251 
252 #ifdef CONFIG_LOCKDEP
253 /*
254  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
255  * according to dev->type
256  */
257 static const unsigned short netdev_lock_type[] =
258 	{ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
259 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
260 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
261 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
262 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
263 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
264 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
265 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
266 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
267 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
268 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
269 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
270 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
271 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
272 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
273 
274 static const char *const netdev_lock_name[] =
275 	{"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
276 	 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
277 	 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
278 	 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
279 	 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
280 	 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
281 	 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
282 	 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
283 	 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
284 	 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
285 	 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
286 	 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
287 	 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
288 	 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
289 	 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
290 
291 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
292 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
293 
294 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
295 {
296 	int i;
297 
298 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
299 		if (netdev_lock_type[i] == dev_type)
300 			return i;
301 	/* the last key is used by default */
302 	return ARRAY_SIZE(netdev_lock_type) - 1;
303 }
304 
305 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
306 						 unsigned short dev_type)
307 {
308 	int i;
309 
310 	i = netdev_lock_pos(dev_type);
311 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
312 				   netdev_lock_name[i]);
313 }
314 
315 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
316 {
317 	int i;
318 
319 	i = netdev_lock_pos(dev->type);
320 	lockdep_set_class_and_name(&dev->addr_list_lock,
321 				   &netdev_addr_lock_key[i],
322 				   netdev_lock_name[i]);
323 }
324 #else
325 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
326 						 unsigned short dev_type)
327 {
328 }
329 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
330 {
331 }
332 #endif
333 
334 /*******************************************************************************
335 
336 		Protocol management and registration routines
337 
338 *******************************************************************************/
339 
340 /*
341  *	Add a protocol ID to the list. Now that the input handler is
342  *	smarter we can dispense with all the messy stuff that used to be
343  *	here.
344  *
345  *	BEWARE!!! Protocol handlers, mangling input packets,
346  *	MUST BE last in hash buckets and checking protocol handlers
347  *	MUST start from promiscuous ptype_all chain in net_bh.
348  *	It is true now, do not change it.
349  *	Explanation follows: if protocol handler, mangling packet, will
350  *	be the first on list, it is not able to sense, that packet
351  *	is cloned and should be copied-on-write, so that it will
352  *	change it and subsequent readers will get broken packet.
353  *							--ANK (980803)
354  */
355 
356 static inline struct list_head *ptype_head(const struct packet_type *pt)
357 {
358 	if (pt->type == htons(ETH_P_ALL))
359 		return &ptype_all;
360 	else
361 		return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
362 }
363 
364 /**
365  *	dev_add_pack - add packet handler
366  *	@pt: packet type declaration
367  *
368  *	Add a protocol handler to the networking stack. The passed &packet_type
369  *	is linked into kernel lists and may not be freed until it has been
370  *	removed from the kernel lists.
371  *
372  *	This call does not sleep therefore it can not
373  *	guarantee all CPU's that are in middle of receiving packets
374  *	will see the new packet type (until the next received packet).
375  */
376 
377 void dev_add_pack(struct packet_type *pt)
378 {
379 	struct list_head *head = ptype_head(pt);
380 
381 	spin_lock(&ptype_lock);
382 	list_add_rcu(&pt->list, head);
383 	spin_unlock(&ptype_lock);
384 }
385 EXPORT_SYMBOL(dev_add_pack);
386 
387 /**
388  *	__dev_remove_pack	 - remove packet handler
389  *	@pt: packet type declaration
390  *
391  *	Remove a protocol handler that was previously added to the kernel
392  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
393  *	from the kernel lists and can be freed or reused once this function
394  *	returns.
395  *
396  *      The packet type might still be in use by receivers
397  *	and must not be freed until after all the CPU's have gone
398  *	through a quiescent state.
399  */
400 void __dev_remove_pack(struct packet_type *pt)
401 {
402 	struct list_head *head = ptype_head(pt);
403 	struct packet_type *pt1;
404 
405 	spin_lock(&ptype_lock);
406 
407 	list_for_each_entry(pt1, head, list) {
408 		if (pt == pt1) {
409 			list_del_rcu(&pt->list);
410 			goto out;
411 		}
412 	}
413 
414 	pr_warn("dev_remove_pack: %p not found\n", pt);
415 out:
416 	spin_unlock(&ptype_lock);
417 }
418 EXPORT_SYMBOL(__dev_remove_pack);
419 
420 /**
421  *	dev_remove_pack	 - remove packet handler
422  *	@pt: packet type declaration
423  *
424  *	Remove a protocol handler that was previously added to the kernel
425  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
426  *	from the kernel lists and can be freed or reused once this function
427  *	returns.
428  *
429  *	This call sleeps to guarantee that no CPU is looking at the packet
430  *	type after return.
431  */
432 void dev_remove_pack(struct packet_type *pt)
433 {
434 	__dev_remove_pack(pt);
435 
436 	synchronize_net();
437 }
438 EXPORT_SYMBOL(dev_remove_pack);
439 
440 
441 /**
442  *	dev_add_offload - register offload handlers
443  *	@po: protocol offload declaration
444  *
445  *	Add protocol offload handlers to the networking stack. The passed
446  *	&proto_offload is linked into kernel lists and may not be freed until
447  *	it has been removed from the kernel lists.
448  *
449  *	This call does not sleep therefore it can not
450  *	guarantee all CPU's that are in middle of receiving packets
451  *	will see the new offload handlers (until the next received packet).
452  */
453 void dev_add_offload(struct packet_offload *po)
454 {
455 	struct list_head *head = &offload_base;
456 
457 	spin_lock(&offload_lock);
458 	list_add_rcu(&po->list, head);
459 	spin_unlock(&offload_lock);
460 }
461 EXPORT_SYMBOL(dev_add_offload);
462 
463 /**
464  *	__dev_remove_offload	 - remove offload handler
465  *	@po: packet offload declaration
466  *
467  *	Remove a protocol offload handler that was previously added to the
468  *	kernel offload handlers by dev_add_offload(). The passed &offload_type
469  *	is removed from the kernel lists and can be freed or reused once this
470  *	function returns.
471  *
472  *      The packet type might still be in use by receivers
473  *	and must not be freed until after all the CPU's have gone
474  *	through a quiescent state.
475  */
476 void __dev_remove_offload(struct packet_offload *po)
477 {
478 	struct list_head *head = &offload_base;
479 	struct packet_offload *po1;
480 
481 	spin_lock(&offload_lock);
482 
483 	list_for_each_entry(po1, head, list) {
484 		if (po == po1) {
485 			list_del_rcu(&po->list);
486 			goto out;
487 		}
488 	}
489 
490 	pr_warn("dev_remove_offload: %p not found\n", po);
491 out:
492 	spin_unlock(&offload_lock);
493 }
494 EXPORT_SYMBOL(__dev_remove_offload);
495 
496 /**
497  *	dev_remove_offload	 - remove packet offload handler
498  *	@po: packet offload declaration
499  *
500  *	Remove a packet offload handler that was previously added to the kernel
501  *	offload handlers by dev_add_offload(). The passed &offload_type is
502  *	removed from the kernel lists and can be freed or reused once this
503  *	function returns.
504  *
505  *	This call sleeps to guarantee that no CPU is looking at the packet
506  *	type after return.
507  */
508 void dev_remove_offload(struct packet_offload *po)
509 {
510 	__dev_remove_offload(po);
511 
512 	synchronize_net();
513 }
514 EXPORT_SYMBOL(dev_remove_offload);
515 
516 /******************************************************************************
517 
518 		      Device Boot-time Settings Routines
519 
520 *******************************************************************************/
521 
522 /* Boot time configuration table */
523 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
524 
525 /**
526  *	netdev_boot_setup_add	- add new setup entry
527  *	@name: name of the device
528  *	@map: configured settings for the device
529  *
530  *	Adds new setup entry to the dev_boot_setup list.  The function
531  *	returns 0 on error and 1 on success.  This is a generic routine to
532  *	all netdevices.
533  */
534 static int netdev_boot_setup_add(char *name, struct ifmap *map)
535 {
536 	struct netdev_boot_setup *s;
537 	int i;
538 
539 	s = dev_boot_setup;
540 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
541 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
542 			memset(s[i].name, 0, sizeof(s[i].name));
543 			strlcpy(s[i].name, name, IFNAMSIZ);
544 			memcpy(&s[i].map, map, sizeof(s[i].map));
545 			break;
546 		}
547 	}
548 
549 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
550 }
551 
552 /**
553  *	netdev_boot_setup_check	- check boot time settings
554  *	@dev: the netdevice
555  *
556  * 	Check boot time settings for the device.
557  *	The found settings are set for the device to be used
558  *	later in the device probing.
559  *	Returns 0 if no settings found, 1 if they are.
560  */
561 int netdev_boot_setup_check(struct net_device *dev)
562 {
563 	struct netdev_boot_setup *s = dev_boot_setup;
564 	int i;
565 
566 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
567 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
568 		    !strcmp(dev->name, s[i].name)) {
569 			dev->irq 	= s[i].map.irq;
570 			dev->base_addr 	= s[i].map.base_addr;
571 			dev->mem_start 	= s[i].map.mem_start;
572 			dev->mem_end 	= s[i].map.mem_end;
573 			return 1;
574 		}
575 	}
576 	return 0;
577 }
578 EXPORT_SYMBOL(netdev_boot_setup_check);
579 
580 
581 /**
582  *	netdev_boot_base	- get address from boot time settings
583  *	@prefix: prefix for network device
584  *	@unit: id for network device
585  *
586  * 	Check boot time settings for the base address of device.
587  *	The found settings are set for the device to be used
588  *	later in the device probing.
589  *	Returns 0 if no settings found.
590  */
591 unsigned long netdev_boot_base(const char *prefix, int unit)
592 {
593 	const struct netdev_boot_setup *s = dev_boot_setup;
594 	char name[IFNAMSIZ];
595 	int i;
596 
597 	sprintf(name, "%s%d", prefix, unit);
598 
599 	/*
600 	 * If device already registered then return base of 1
601 	 * to indicate not to probe for this interface
602 	 */
603 	if (__dev_get_by_name(&init_net, name))
604 		return 1;
605 
606 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
607 		if (!strcmp(name, s[i].name))
608 			return s[i].map.base_addr;
609 	return 0;
610 }
611 
612 /*
613  * Saves at boot time configured settings for any netdevice.
614  */
615 int __init netdev_boot_setup(char *str)
616 {
617 	int ints[5];
618 	struct ifmap map;
619 
620 	str = get_options(str, ARRAY_SIZE(ints), ints);
621 	if (!str || !*str)
622 		return 0;
623 
624 	/* Save settings */
625 	memset(&map, 0, sizeof(map));
626 	if (ints[0] > 0)
627 		map.irq = ints[1];
628 	if (ints[0] > 1)
629 		map.base_addr = ints[2];
630 	if (ints[0] > 2)
631 		map.mem_start = ints[3];
632 	if (ints[0] > 3)
633 		map.mem_end = ints[4];
634 
635 	/* Add new entry to the list */
636 	return netdev_boot_setup_add(str, &map);
637 }
638 
639 __setup("netdev=", netdev_boot_setup);
640 
641 /*******************************************************************************
642 
643 			    Device Interface Subroutines
644 
645 *******************************************************************************/
646 
647 /**
648  *	__dev_get_by_name	- find a device by its name
649  *	@net: the applicable net namespace
650  *	@name: name to find
651  *
652  *	Find an interface by name. Must be called under RTNL semaphore
653  *	or @dev_base_lock. If the name is found a pointer to the device
654  *	is returned. If the name is not found then %NULL is returned. The
655  *	reference counters are not incremented so the caller must be
656  *	careful with locks.
657  */
658 
659 struct net_device *__dev_get_by_name(struct net *net, const char *name)
660 {
661 	struct net_device *dev;
662 	struct hlist_head *head = dev_name_hash(net, name);
663 
664 	hlist_for_each_entry(dev, head, name_hlist)
665 		if (!strncmp(dev->name, name, IFNAMSIZ))
666 			return dev;
667 
668 	return NULL;
669 }
670 EXPORT_SYMBOL(__dev_get_by_name);
671 
672 /**
673  *	dev_get_by_name_rcu	- find a device by its name
674  *	@net: the applicable net namespace
675  *	@name: name to find
676  *
677  *	Find an interface by name.
678  *	If the name is found a pointer to the device is returned.
679  * 	If the name is not found then %NULL is returned.
680  *	The reference counters are not incremented so the caller must be
681  *	careful with locks. The caller must hold RCU lock.
682  */
683 
684 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
685 {
686 	struct net_device *dev;
687 	struct hlist_head *head = dev_name_hash(net, name);
688 
689 	hlist_for_each_entry_rcu(dev, head, name_hlist)
690 		if (!strncmp(dev->name, name, IFNAMSIZ))
691 			return dev;
692 
693 	return NULL;
694 }
695 EXPORT_SYMBOL(dev_get_by_name_rcu);
696 
697 /**
698  *	dev_get_by_name		- find a device by its name
699  *	@net: the applicable net namespace
700  *	@name: name to find
701  *
702  *	Find an interface by name. This can be called from any
703  *	context and does its own locking. The returned handle has
704  *	the usage count incremented and the caller must use dev_put() to
705  *	release it when it is no longer needed. %NULL is returned if no
706  *	matching device is found.
707  */
708 
709 struct net_device *dev_get_by_name(struct net *net, const char *name)
710 {
711 	struct net_device *dev;
712 
713 	rcu_read_lock();
714 	dev = dev_get_by_name_rcu(net, name);
715 	if (dev)
716 		dev_hold(dev);
717 	rcu_read_unlock();
718 	return dev;
719 }
720 EXPORT_SYMBOL(dev_get_by_name);
721 
722 /**
723  *	__dev_get_by_index - find a device by its ifindex
724  *	@net: the applicable net namespace
725  *	@ifindex: index of device
726  *
727  *	Search for an interface by index. Returns %NULL if the device
728  *	is not found or a pointer to the device. The device has not
729  *	had its reference counter increased so the caller must be careful
730  *	about locking. The caller must hold either the RTNL semaphore
731  *	or @dev_base_lock.
732  */
733 
734 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
735 {
736 	struct net_device *dev;
737 	struct hlist_head *head = dev_index_hash(net, ifindex);
738 
739 	hlist_for_each_entry(dev, head, index_hlist)
740 		if (dev->ifindex == ifindex)
741 			return dev;
742 
743 	return NULL;
744 }
745 EXPORT_SYMBOL(__dev_get_by_index);
746 
747 /**
748  *	dev_get_by_index_rcu - find a device by its ifindex
749  *	@net: the applicable net namespace
750  *	@ifindex: index of device
751  *
752  *	Search for an interface by index. Returns %NULL if the device
753  *	is not found or a pointer to the device. The device has not
754  *	had its reference counter increased so the caller must be careful
755  *	about locking. The caller must hold RCU lock.
756  */
757 
758 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
759 {
760 	struct net_device *dev;
761 	struct hlist_head *head = dev_index_hash(net, ifindex);
762 
763 	hlist_for_each_entry_rcu(dev, head, index_hlist)
764 		if (dev->ifindex == ifindex)
765 			return dev;
766 
767 	return NULL;
768 }
769 EXPORT_SYMBOL(dev_get_by_index_rcu);
770 
771 
772 /**
773  *	dev_get_by_index - find a device by its ifindex
774  *	@net: the applicable net namespace
775  *	@ifindex: index of device
776  *
777  *	Search for an interface by index. Returns NULL if the device
778  *	is not found or a pointer to the device. The device returned has
779  *	had a reference added and the pointer is safe until the user calls
780  *	dev_put to indicate they have finished with it.
781  */
782 
783 struct net_device *dev_get_by_index(struct net *net, int ifindex)
784 {
785 	struct net_device *dev;
786 
787 	rcu_read_lock();
788 	dev = dev_get_by_index_rcu(net, ifindex);
789 	if (dev)
790 		dev_hold(dev);
791 	rcu_read_unlock();
792 	return dev;
793 }
794 EXPORT_SYMBOL(dev_get_by_index);
795 
796 /**
797  *	dev_getbyhwaddr_rcu - find a device by its hardware address
798  *	@net: the applicable net namespace
799  *	@type: media type of device
800  *	@ha: hardware address
801  *
802  *	Search for an interface by MAC address. Returns NULL if the device
803  *	is not found or a pointer to the device.
804  *	The caller must hold RCU or RTNL.
805  *	The returned device has not had its ref count increased
806  *	and the caller must therefore be careful about locking
807  *
808  */
809 
810 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
811 				       const char *ha)
812 {
813 	struct net_device *dev;
814 
815 	for_each_netdev_rcu(net, dev)
816 		if (dev->type == type &&
817 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
818 			return dev;
819 
820 	return NULL;
821 }
822 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
823 
824 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
825 {
826 	struct net_device *dev;
827 
828 	ASSERT_RTNL();
829 	for_each_netdev(net, dev)
830 		if (dev->type == type)
831 			return dev;
832 
833 	return NULL;
834 }
835 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
836 
837 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
838 {
839 	struct net_device *dev, *ret = NULL;
840 
841 	rcu_read_lock();
842 	for_each_netdev_rcu(net, dev)
843 		if (dev->type == type) {
844 			dev_hold(dev);
845 			ret = dev;
846 			break;
847 		}
848 	rcu_read_unlock();
849 	return ret;
850 }
851 EXPORT_SYMBOL(dev_getfirstbyhwtype);
852 
853 /**
854  *	dev_get_by_flags_rcu - find any device with given flags
855  *	@net: the applicable net namespace
856  *	@if_flags: IFF_* values
857  *	@mask: bitmask of bits in if_flags to check
858  *
859  *	Search for any interface with the given flags. Returns NULL if a device
860  *	is not found or a pointer to the device. Must be called inside
861  *	rcu_read_lock(), and result refcount is unchanged.
862  */
863 
864 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
865 				    unsigned short mask)
866 {
867 	struct net_device *dev, *ret;
868 
869 	ret = NULL;
870 	for_each_netdev_rcu(net, dev) {
871 		if (((dev->flags ^ if_flags) & mask) == 0) {
872 			ret = dev;
873 			break;
874 		}
875 	}
876 	return ret;
877 }
878 EXPORT_SYMBOL(dev_get_by_flags_rcu);
879 
880 /**
881  *	dev_valid_name - check if name is okay for network device
882  *	@name: name string
883  *
884  *	Network device names need to be valid file names to
885  *	to allow sysfs to work.  We also disallow any kind of
886  *	whitespace.
887  */
888 bool dev_valid_name(const char *name)
889 {
890 	if (*name == '\0')
891 		return false;
892 	if (strlen(name) >= IFNAMSIZ)
893 		return false;
894 	if (!strcmp(name, ".") || !strcmp(name, ".."))
895 		return false;
896 
897 	while (*name) {
898 		if (*name == '/' || isspace(*name))
899 			return false;
900 		name++;
901 	}
902 	return true;
903 }
904 EXPORT_SYMBOL(dev_valid_name);
905 
906 /**
907  *	__dev_alloc_name - allocate a name for a device
908  *	@net: network namespace to allocate the device name in
909  *	@name: name format string
910  *	@buf:  scratch buffer and result name string
911  *
912  *	Passed a format string - eg "lt%d" it will try and find a suitable
913  *	id. It scans list of devices to build up a free map, then chooses
914  *	the first empty slot. The caller must hold the dev_base or rtnl lock
915  *	while allocating the name and adding the device in order to avoid
916  *	duplicates.
917  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
918  *	Returns the number of the unit assigned or a negative errno code.
919  */
920 
921 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
922 {
923 	int i = 0;
924 	const char *p;
925 	const int max_netdevices = 8*PAGE_SIZE;
926 	unsigned long *inuse;
927 	struct net_device *d;
928 
929 	p = strnchr(name, IFNAMSIZ-1, '%');
930 	if (p) {
931 		/*
932 		 * Verify the string as this thing may have come from
933 		 * the user.  There must be either one "%d" and no other "%"
934 		 * characters.
935 		 */
936 		if (p[1] != 'd' || strchr(p + 2, '%'))
937 			return -EINVAL;
938 
939 		/* Use one page as a bit array of possible slots */
940 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
941 		if (!inuse)
942 			return -ENOMEM;
943 
944 		for_each_netdev(net, d) {
945 			if (!sscanf(d->name, name, &i))
946 				continue;
947 			if (i < 0 || i >= max_netdevices)
948 				continue;
949 
950 			/*  avoid cases where sscanf is not exact inverse of printf */
951 			snprintf(buf, IFNAMSIZ, name, i);
952 			if (!strncmp(buf, d->name, IFNAMSIZ))
953 				set_bit(i, inuse);
954 		}
955 
956 		i = find_first_zero_bit(inuse, max_netdevices);
957 		free_page((unsigned long) inuse);
958 	}
959 
960 	if (buf != name)
961 		snprintf(buf, IFNAMSIZ, name, i);
962 	if (!__dev_get_by_name(net, buf))
963 		return i;
964 
965 	/* It is possible to run out of possible slots
966 	 * when the name is long and there isn't enough space left
967 	 * for the digits, or if all bits are used.
968 	 */
969 	return -ENFILE;
970 }
971 
972 /**
973  *	dev_alloc_name - allocate a name for a device
974  *	@dev: device
975  *	@name: name format string
976  *
977  *	Passed a format string - eg "lt%d" it will try and find a suitable
978  *	id. It scans list of devices to build up a free map, then chooses
979  *	the first empty slot. The caller must hold the dev_base or rtnl lock
980  *	while allocating the name and adding the device in order to avoid
981  *	duplicates.
982  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
983  *	Returns the number of the unit assigned or a negative errno code.
984  */
985 
986 int dev_alloc_name(struct net_device *dev, const char *name)
987 {
988 	char buf[IFNAMSIZ];
989 	struct net *net;
990 	int ret;
991 
992 	BUG_ON(!dev_net(dev));
993 	net = dev_net(dev);
994 	ret = __dev_alloc_name(net, name, buf);
995 	if (ret >= 0)
996 		strlcpy(dev->name, buf, IFNAMSIZ);
997 	return ret;
998 }
999 EXPORT_SYMBOL(dev_alloc_name);
1000 
1001 static int dev_alloc_name_ns(struct net *net,
1002 			     struct net_device *dev,
1003 			     const char *name)
1004 {
1005 	char buf[IFNAMSIZ];
1006 	int ret;
1007 
1008 	ret = __dev_alloc_name(net, name, buf);
1009 	if (ret >= 0)
1010 		strlcpy(dev->name, buf, IFNAMSIZ);
1011 	return ret;
1012 }
1013 
1014 static int dev_get_valid_name(struct net *net,
1015 			      struct net_device *dev,
1016 			      const char *name)
1017 {
1018 	BUG_ON(!net);
1019 
1020 	if (!dev_valid_name(name))
1021 		return -EINVAL;
1022 
1023 	if (strchr(name, '%'))
1024 		return dev_alloc_name_ns(net, dev, name);
1025 	else if (__dev_get_by_name(net, name))
1026 		return -EEXIST;
1027 	else if (dev->name != name)
1028 		strlcpy(dev->name, name, IFNAMSIZ);
1029 
1030 	return 0;
1031 }
1032 
1033 /**
1034  *	dev_change_name - change name of a device
1035  *	@dev: device
1036  *	@newname: name (or format string) must be at least IFNAMSIZ
1037  *
1038  *	Change name of a device, can pass format strings "eth%d".
1039  *	for wildcarding.
1040  */
1041 int dev_change_name(struct net_device *dev, const char *newname)
1042 {
1043 	char oldname[IFNAMSIZ];
1044 	int err = 0;
1045 	int ret;
1046 	struct net *net;
1047 
1048 	ASSERT_RTNL();
1049 	BUG_ON(!dev_net(dev));
1050 
1051 	net = dev_net(dev);
1052 	if (dev->flags & IFF_UP)
1053 		return -EBUSY;
1054 
1055 	write_seqcount_begin(&devnet_rename_seq);
1056 
1057 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1058 		write_seqcount_end(&devnet_rename_seq);
1059 		return 0;
1060 	}
1061 
1062 	memcpy(oldname, dev->name, IFNAMSIZ);
1063 
1064 	err = dev_get_valid_name(net, dev, newname);
1065 	if (err < 0) {
1066 		write_seqcount_end(&devnet_rename_seq);
1067 		return err;
1068 	}
1069 
1070 rollback:
1071 	ret = device_rename(&dev->dev, dev->name);
1072 	if (ret) {
1073 		memcpy(dev->name, oldname, IFNAMSIZ);
1074 		write_seqcount_end(&devnet_rename_seq);
1075 		return ret;
1076 	}
1077 
1078 	write_seqcount_end(&devnet_rename_seq);
1079 
1080 	write_lock_bh(&dev_base_lock);
1081 	hlist_del_rcu(&dev->name_hlist);
1082 	write_unlock_bh(&dev_base_lock);
1083 
1084 	synchronize_rcu();
1085 
1086 	write_lock_bh(&dev_base_lock);
1087 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1088 	write_unlock_bh(&dev_base_lock);
1089 
1090 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1091 	ret = notifier_to_errno(ret);
1092 
1093 	if (ret) {
1094 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1095 		if (err >= 0) {
1096 			err = ret;
1097 			write_seqcount_begin(&devnet_rename_seq);
1098 			memcpy(dev->name, oldname, IFNAMSIZ);
1099 			goto rollback;
1100 		} else {
1101 			pr_err("%s: name change rollback failed: %d\n",
1102 			       dev->name, ret);
1103 		}
1104 	}
1105 
1106 	return err;
1107 }
1108 
1109 /**
1110  *	dev_set_alias - change ifalias of a device
1111  *	@dev: device
1112  *	@alias: name up to IFALIASZ
1113  *	@len: limit of bytes to copy from info
1114  *
1115  *	Set ifalias for a device,
1116  */
1117 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1118 {
1119 	char *new_ifalias;
1120 
1121 	ASSERT_RTNL();
1122 
1123 	if (len >= IFALIASZ)
1124 		return -EINVAL;
1125 
1126 	if (!len) {
1127 		kfree(dev->ifalias);
1128 		dev->ifalias = NULL;
1129 		return 0;
1130 	}
1131 
1132 	new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1133 	if (!new_ifalias)
1134 		return -ENOMEM;
1135 	dev->ifalias = new_ifalias;
1136 
1137 	strlcpy(dev->ifalias, alias, len+1);
1138 	return len;
1139 }
1140 
1141 
1142 /**
1143  *	netdev_features_change - device changes features
1144  *	@dev: device to cause notification
1145  *
1146  *	Called to indicate a device has changed features.
1147  */
1148 void netdev_features_change(struct net_device *dev)
1149 {
1150 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1151 }
1152 EXPORT_SYMBOL(netdev_features_change);
1153 
1154 /**
1155  *	netdev_state_change - device changes state
1156  *	@dev: device to cause notification
1157  *
1158  *	Called to indicate a device has changed state. This function calls
1159  *	the notifier chains for netdev_chain and sends a NEWLINK message
1160  *	to the routing socket.
1161  */
1162 void netdev_state_change(struct net_device *dev)
1163 {
1164 	if (dev->flags & IFF_UP) {
1165 		call_netdevice_notifiers(NETDEV_CHANGE, dev);
1166 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1167 	}
1168 }
1169 EXPORT_SYMBOL(netdev_state_change);
1170 
1171 /**
1172  * 	netdev_notify_peers - notify network peers about existence of @dev
1173  * 	@dev: network device
1174  *
1175  * Generate traffic such that interested network peers are aware of
1176  * @dev, such as by generating a gratuitous ARP. This may be used when
1177  * a device wants to inform the rest of the network about some sort of
1178  * reconfiguration such as a failover event or virtual machine
1179  * migration.
1180  */
1181 void netdev_notify_peers(struct net_device *dev)
1182 {
1183 	rtnl_lock();
1184 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1185 	rtnl_unlock();
1186 }
1187 EXPORT_SYMBOL(netdev_notify_peers);
1188 
1189 static int __dev_open(struct net_device *dev)
1190 {
1191 	const struct net_device_ops *ops = dev->netdev_ops;
1192 	int ret;
1193 
1194 	ASSERT_RTNL();
1195 
1196 	if (!netif_device_present(dev))
1197 		return -ENODEV;
1198 
1199 	/* Block netpoll from trying to do any rx path servicing.
1200 	 * If we don't do this there is a chance ndo_poll_controller
1201 	 * or ndo_poll may be running while we open the device
1202 	 */
1203 	ret = netpoll_rx_disable(dev);
1204 	if (ret)
1205 		return ret;
1206 
1207 	ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1208 	ret = notifier_to_errno(ret);
1209 	if (ret)
1210 		return ret;
1211 
1212 	set_bit(__LINK_STATE_START, &dev->state);
1213 
1214 	if (ops->ndo_validate_addr)
1215 		ret = ops->ndo_validate_addr(dev);
1216 
1217 	if (!ret && ops->ndo_open)
1218 		ret = ops->ndo_open(dev);
1219 
1220 	netpoll_rx_enable(dev);
1221 
1222 	if (ret)
1223 		clear_bit(__LINK_STATE_START, &dev->state);
1224 	else {
1225 		dev->flags |= IFF_UP;
1226 		net_dmaengine_get();
1227 		dev_set_rx_mode(dev);
1228 		dev_activate(dev);
1229 		add_device_randomness(dev->dev_addr, dev->addr_len);
1230 	}
1231 
1232 	return ret;
1233 }
1234 
1235 /**
1236  *	dev_open	- prepare an interface for use.
1237  *	@dev:	device to open
1238  *
1239  *	Takes a device from down to up state. The device's private open
1240  *	function is invoked and then the multicast lists are loaded. Finally
1241  *	the device is moved into the up state and a %NETDEV_UP message is
1242  *	sent to the netdev notifier chain.
1243  *
1244  *	Calling this function on an active interface is a nop. On a failure
1245  *	a negative errno code is returned.
1246  */
1247 int dev_open(struct net_device *dev)
1248 {
1249 	int ret;
1250 
1251 	if (dev->flags & IFF_UP)
1252 		return 0;
1253 
1254 	ret = __dev_open(dev);
1255 	if (ret < 0)
1256 		return ret;
1257 
1258 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1259 	call_netdevice_notifiers(NETDEV_UP, dev);
1260 
1261 	return ret;
1262 }
1263 EXPORT_SYMBOL(dev_open);
1264 
1265 static int __dev_close_many(struct list_head *head)
1266 {
1267 	struct net_device *dev;
1268 
1269 	ASSERT_RTNL();
1270 	might_sleep();
1271 
1272 	list_for_each_entry(dev, head, unreg_list) {
1273 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1274 
1275 		clear_bit(__LINK_STATE_START, &dev->state);
1276 
1277 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1278 		 * can be even on different cpu. So just clear netif_running().
1279 		 *
1280 		 * dev->stop() will invoke napi_disable() on all of it's
1281 		 * napi_struct instances on this device.
1282 		 */
1283 		smp_mb__after_clear_bit(); /* Commit netif_running(). */
1284 	}
1285 
1286 	dev_deactivate_many(head);
1287 
1288 	list_for_each_entry(dev, head, unreg_list) {
1289 		const struct net_device_ops *ops = dev->netdev_ops;
1290 
1291 		/*
1292 		 *	Call the device specific close. This cannot fail.
1293 		 *	Only if device is UP
1294 		 *
1295 		 *	We allow it to be called even after a DETACH hot-plug
1296 		 *	event.
1297 		 */
1298 		if (ops->ndo_stop)
1299 			ops->ndo_stop(dev);
1300 
1301 		dev->flags &= ~IFF_UP;
1302 		net_dmaengine_put();
1303 	}
1304 
1305 	return 0;
1306 }
1307 
1308 static int __dev_close(struct net_device *dev)
1309 {
1310 	int retval;
1311 	LIST_HEAD(single);
1312 
1313 	/* Temporarily disable netpoll until the interface is down */
1314 	retval = netpoll_rx_disable(dev);
1315 	if (retval)
1316 		return retval;
1317 
1318 	list_add(&dev->unreg_list, &single);
1319 	retval = __dev_close_many(&single);
1320 	list_del(&single);
1321 
1322 	netpoll_rx_enable(dev);
1323 	return retval;
1324 }
1325 
1326 static int dev_close_many(struct list_head *head)
1327 {
1328 	struct net_device *dev, *tmp;
1329 	LIST_HEAD(tmp_list);
1330 
1331 	list_for_each_entry_safe(dev, tmp, head, unreg_list)
1332 		if (!(dev->flags & IFF_UP))
1333 			list_move(&dev->unreg_list, &tmp_list);
1334 
1335 	__dev_close_many(head);
1336 
1337 	list_for_each_entry(dev, head, unreg_list) {
1338 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1339 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1340 	}
1341 
1342 	/* rollback_registered_many needs the complete original list */
1343 	list_splice(&tmp_list, head);
1344 	return 0;
1345 }
1346 
1347 /**
1348  *	dev_close - shutdown an interface.
1349  *	@dev: device to shutdown
1350  *
1351  *	This function moves an active device into down state. A
1352  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1353  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1354  *	chain.
1355  */
1356 int dev_close(struct net_device *dev)
1357 {
1358 	int ret = 0;
1359 	if (dev->flags & IFF_UP) {
1360 		LIST_HEAD(single);
1361 
1362 		/* Block netpoll rx while the interface is going down */
1363 		ret = netpoll_rx_disable(dev);
1364 		if (ret)
1365 			return ret;
1366 
1367 		list_add(&dev->unreg_list, &single);
1368 		dev_close_many(&single);
1369 		list_del(&single);
1370 
1371 		netpoll_rx_enable(dev);
1372 	}
1373 	return ret;
1374 }
1375 EXPORT_SYMBOL(dev_close);
1376 
1377 
1378 /**
1379  *	dev_disable_lro - disable Large Receive Offload on a device
1380  *	@dev: device
1381  *
1382  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1383  *	called under RTNL.  This is needed if received packets may be
1384  *	forwarded to another interface.
1385  */
1386 void dev_disable_lro(struct net_device *dev)
1387 {
1388 	/*
1389 	 * If we're trying to disable lro on a vlan device
1390 	 * use the underlying physical device instead
1391 	 */
1392 	if (is_vlan_dev(dev))
1393 		dev = vlan_dev_real_dev(dev);
1394 
1395 	dev->wanted_features &= ~NETIF_F_LRO;
1396 	netdev_update_features(dev);
1397 
1398 	if (unlikely(dev->features & NETIF_F_LRO))
1399 		netdev_WARN(dev, "failed to disable LRO!\n");
1400 }
1401 EXPORT_SYMBOL(dev_disable_lro);
1402 
1403 
1404 static int dev_boot_phase = 1;
1405 
1406 /**
1407  *	register_netdevice_notifier - register a network notifier block
1408  *	@nb: notifier
1409  *
1410  *	Register a notifier to be called when network device events occur.
1411  *	The notifier passed is linked into the kernel structures and must
1412  *	not be reused until it has been unregistered. A negative errno code
1413  *	is returned on a failure.
1414  *
1415  * 	When registered all registration and up events are replayed
1416  *	to the new notifier to allow device to have a race free
1417  *	view of the network device list.
1418  */
1419 
1420 int register_netdevice_notifier(struct notifier_block *nb)
1421 {
1422 	struct net_device *dev;
1423 	struct net_device *last;
1424 	struct net *net;
1425 	int err;
1426 
1427 	rtnl_lock();
1428 	err = raw_notifier_chain_register(&netdev_chain, nb);
1429 	if (err)
1430 		goto unlock;
1431 	if (dev_boot_phase)
1432 		goto unlock;
1433 	for_each_net(net) {
1434 		for_each_netdev(net, dev) {
1435 			err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1436 			err = notifier_to_errno(err);
1437 			if (err)
1438 				goto rollback;
1439 
1440 			if (!(dev->flags & IFF_UP))
1441 				continue;
1442 
1443 			nb->notifier_call(nb, NETDEV_UP, dev);
1444 		}
1445 	}
1446 
1447 unlock:
1448 	rtnl_unlock();
1449 	return err;
1450 
1451 rollback:
1452 	last = dev;
1453 	for_each_net(net) {
1454 		for_each_netdev(net, dev) {
1455 			if (dev == last)
1456 				goto outroll;
1457 
1458 			if (dev->flags & IFF_UP) {
1459 				nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1460 				nb->notifier_call(nb, NETDEV_DOWN, dev);
1461 			}
1462 			nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1463 		}
1464 	}
1465 
1466 outroll:
1467 	raw_notifier_chain_unregister(&netdev_chain, nb);
1468 	goto unlock;
1469 }
1470 EXPORT_SYMBOL(register_netdevice_notifier);
1471 
1472 /**
1473  *	unregister_netdevice_notifier - unregister a network notifier block
1474  *	@nb: notifier
1475  *
1476  *	Unregister a notifier previously registered by
1477  *	register_netdevice_notifier(). The notifier is unlinked into the
1478  *	kernel structures and may then be reused. A negative errno code
1479  *	is returned on a failure.
1480  *
1481  * 	After unregistering unregister and down device events are synthesized
1482  *	for all devices on the device list to the removed notifier to remove
1483  *	the need for special case cleanup code.
1484  */
1485 
1486 int unregister_netdevice_notifier(struct notifier_block *nb)
1487 {
1488 	struct net_device *dev;
1489 	struct net *net;
1490 	int err;
1491 
1492 	rtnl_lock();
1493 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1494 	if (err)
1495 		goto unlock;
1496 
1497 	for_each_net(net) {
1498 		for_each_netdev(net, dev) {
1499 			if (dev->flags & IFF_UP) {
1500 				nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1501 				nb->notifier_call(nb, NETDEV_DOWN, dev);
1502 			}
1503 			nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1504 		}
1505 	}
1506 unlock:
1507 	rtnl_unlock();
1508 	return err;
1509 }
1510 EXPORT_SYMBOL(unregister_netdevice_notifier);
1511 
1512 /**
1513  *	call_netdevice_notifiers - call all network notifier blocks
1514  *      @val: value passed unmodified to notifier function
1515  *      @dev: net_device pointer passed unmodified to notifier function
1516  *
1517  *	Call all network notifier blocks.  Parameters and return value
1518  *	are as for raw_notifier_call_chain().
1519  */
1520 
1521 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1522 {
1523 	ASSERT_RTNL();
1524 	return raw_notifier_call_chain(&netdev_chain, val, dev);
1525 }
1526 EXPORT_SYMBOL(call_netdevice_notifiers);
1527 
1528 static struct static_key netstamp_needed __read_mostly;
1529 #ifdef HAVE_JUMP_LABEL
1530 /* We are not allowed to call static_key_slow_dec() from irq context
1531  * If net_disable_timestamp() is called from irq context, defer the
1532  * static_key_slow_dec() calls.
1533  */
1534 static atomic_t netstamp_needed_deferred;
1535 #endif
1536 
1537 void net_enable_timestamp(void)
1538 {
1539 #ifdef HAVE_JUMP_LABEL
1540 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1541 
1542 	if (deferred) {
1543 		while (--deferred)
1544 			static_key_slow_dec(&netstamp_needed);
1545 		return;
1546 	}
1547 #endif
1548 	static_key_slow_inc(&netstamp_needed);
1549 }
1550 EXPORT_SYMBOL(net_enable_timestamp);
1551 
1552 void net_disable_timestamp(void)
1553 {
1554 #ifdef HAVE_JUMP_LABEL
1555 	if (in_interrupt()) {
1556 		atomic_inc(&netstamp_needed_deferred);
1557 		return;
1558 	}
1559 #endif
1560 	static_key_slow_dec(&netstamp_needed);
1561 }
1562 EXPORT_SYMBOL(net_disable_timestamp);
1563 
1564 static inline void net_timestamp_set(struct sk_buff *skb)
1565 {
1566 	skb->tstamp.tv64 = 0;
1567 	if (static_key_false(&netstamp_needed))
1568 		__net_timestamp(skb);
1569 }
1570 
1571 #define net_timestamp_check(COND, SKB)			\
1572 	if (static_key_false(&netstamp_needed)) {		\
1573 		if ((COND) && !(SKB)->tstamp.tv64)	\
1574 			__net_timestamp(SKB);		\
1575 	}						\
1576 
1577 static inline bool is_skb_forwardable(struct net_device *dev,
1578 				      struct sk_buff *skb)
1579 {
1580 	unsigned int len;
1581 
1582 	if (!(dev->flags & IFF_UP))
1583 		return false;
1584 
1585 	len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1586 	if (skb->len <= len)
1587 		return true;
1588 
1589 	/* if TSO is enabled, we don't care about the length as the packet
1590 	 * could be forwarded without being segmented before
1591 	 */
1592 	if (skb_is_gso(skb))
1593 		return true;
1594 
1595 	return false;
1596 }
1597 
1598 /**
1599  * dev_forward_skb - loopback an skb to another netif
1600  *
1601  * @dev: destination network device
1602  * @skb: buffer to forward
1603  *
1604  * return values:
1605  *	NET_RX_SUCCESS	(no congestion)
1606  *	NET_RX_DROP     (packet was dropped, but freed)
1607  *
1608  * dev_forward_skb can be used for injecting an skb from the
1609  * start_xmit function of one device into the receive queue
1610  * of another device.
1611  *
1612  * The receiving device may be in another namespace, so
1613  * we have to clear all information in the skb that could
1614  * impact namespace isolation.
1615  */
1616 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1617 {
1618 	if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1619 		if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1620 			atomic_long_inc(&dev->rx_dropped);
1621 			kfree_skb(skb);
1622 			return NET_RX_DROP;
1623 		}
1624 	}
1625 
1626 	skb_orphan(skb);
1627 
1628 	if (unlikely(!is_skb_forwardable(dev, skb))) {
1629 		atomic_long_inc(&dev->rx_dropped);
1630 		kfree_skb(skb);
1631 		return NET_RX_DROP;
1632 	}
1633 	skb->skb_iif = 0;
1634 	skb->dev = dev;
1635 	skb_dst_drop(skb);
1636 	skb->tstamp.tv64 = 0;
1637 	skb->pkt_type = PACKET_HOST;
1638 	skb->protocol = eth_type_trans(skb, dev);
1639 	skb->mark = 0;
1640 	secpath_reset(skb);
1641 	nf_reset(skb);
1642 	nf_reset_trace(skb);
1643 	return netif_rx(skb);
1644 }
1645 EXPORT_SYMBOL_GPL(dev_forward_skb);
1646 
1647 static inline int deliver_skb(struct sk_buff *skb,
1648 			      struct packet_type *pt_prev,
1649 			      struct net_device *orig_dev)
1650 {
1651 	if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1652 		return -ENOMEM;
1653 	atomic_inc(&skb->users);
1654 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1655 }
1656 
1657 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1658 {
1659 	if (!ptype->af_packet_priv || !skb->sk)
1660 		return false;
1661 
1662 	if (ptype->id_match)
1663 		return ptype->id_match(ptype, skb->sk);
1664 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1665 		return true;
1666 
1667 	return false;
1668 }
1669 
1670 /*
1671  *	Support routine. Sends outgoing frames to any network
1672  *	taps currently in use.
1673  */
1674 
1675 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1676 {
1677 	struct packet_type *ptype;
1678 	struct sk_buff *skb2 = NULL;
1679 	struct packet_type *pt_prev = NULL;
1680 
1681 	rcu_read_lock();
1682 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
1683 		/* Never send packets back to the socket
1684 		 * they originated from - MvS (miquels@drinkel.ow.org)
1685 		 */
1686 		if ((ptype->dev == dev || !ptype->dev) &&
1687 		    (!skb_loop_sk(ptype, skb))) {
1688 			if (pt_prev) {
1689 				deliver_skb(skb2, pt_prev, skb->dev);
1690 				pt_prev = ptype;
1691 				continue;
1692 			}
1693 
1694 			skb2 = skb_clone(skb, GFP_ATOMIC);
1695 			if (!skb2)
1696 				break;
1697 
1698 			net_timestamp_set(skb2);
1699 
1700 			/* skb->nh should be correctly
1701 			   set by sender, so that the second statement is
1702 			   just protection against buggy protocols.
1703 			 */
1704 			skb_reset_mac_header(skb2);
1705 
1706 			if (skb_network_header(skb2) < skb2->data ||
1707 			    skb2->network_header > skb2->tail) {
1708 				net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1709 						     ntohs(skb2->protocol),
1710 						     dev->name);
1711 				skb_reset_network_header(skb2);
1712 			}
1713 
1714 			skb2->transport_header = skb2->network_header;
1715 			skb2->pkt_type = PACKET_OUTGOING;
1716 			pt_prev = ptype;
1717 		}
1718 	}
1719 	if (pt_prev)
1720 		pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1721 	rcu_read_unlock();
1722 }
1723 
1724 /**
1725  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1726  * @dev: Network device
1727  * @txq: number of queues available
1728  *
1729  * If real_num_tx_queues is changed the tc mappings may no longer be
1730  * valid. To resolve this verify the tc mapping remains valid and if
1731  * not NULL the mapping. With no priorities mapping to this
1732  * offset/count pair it will no longer be used. In the worst case TC0
1733  * is invalid nothing can be done so disable priority mappings. If is
1734  * expected that drivers will fix this mapping if they can before
1735  * calling netif_set_real_num_tx_queues.
1736  */
1737 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1738 {
1739 	int i;
1740 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1741 
1742 	/* If TC0 is invalidated disable TC mapping */
1743 	if (tc->offset + tc->count > txq) {
1744 		pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1745 		dev->num_tc = 0;
1746 		return;
1747 	}
1748 
1749 	/* Invalidated prio to tc mappings set to TC0 */
1750 	for (i = 1; i < TC_BITMASK + 1; i++) {
1751 		int q = netdev_get_prio_tc_map(dev, i);
1752 
1753 		tc = &dev->tc_to_txq[q];
1754 		if (tc->offset + tc->count > txq) {
1755 			pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1756 				i, q);
1757 			netdev_set_prio_tc_map(dev, i, 0);
1758 		}
1759 	}
1760 }
1761 
1762 #ifdef CONFIG_XPS
1763 static DEFINE_MUTEX(xps_map_mutex);
1764 #define xmap_dereference(P)		\
1765 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1766 
1767 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1768 					int cpu, u16 index)
1769 {
1770 	struct xps_map *map = NULL;
1771 	int pos;
1772 
1773 	if (dev_maps)
1774 		map = xmap_dereference(dev_maps->cpu_map[cpu]);
1775 
1776 	for (pos = 0; map && pos < map->len; pos++) {
1777 		if (map->queues[pos] == index) {
1778 			if (map->len > 1) {
1779 				map->queues[pos] = map->queues[--map->len];
1780 			} else {
1781 				RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1782 				kfree_rcu(map, rcu);
1783 				map = NULL;
1784 			}
1785 			break;
1786 		}
1787 	}
1788 
1789 	return map;
1790 }
1791 
1792 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1793 {
1794 	struct xps_dev_maps *dev_maps;
1795 	int cpu, i;
1796 	bool active = false;
1797 
1798 	mutex_lock(&xps_map_mutex);
1799 	dev_maps = xmap_dereference(dev->xps_maps);
1800 
1801 	if (!dev_maps)
1802 		goto out_no_maps;
1803 
1804 	for_each_possible_cpu(cpu) {
1805 		for (i = index; i < dev->num_tx_queues; i++) {
1806 			if (!remove_xps_queue(dev_maps, cpu, i))
1807 				break;
1808 		}
1809 		if (i == dev->num_tx_queues)
1810 			active = true;
1811 	}
1812 
1813 	if (!active) {
1814 		RCU_INIT_POINTER(dev->xps_maps, NULL);
1815 		kfree_rcu(dev_maps, rcu);
1816 	}
1817 
1818 	for (i = index; i < dev->num_tx_queues; i++)
1819 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
1820 					     NUMA_NO_NODE);
1821 
1822 out_no_maps:
1823 	mutex_unlock(&xps_map_mutex);
1824 }
1825 
1826 static struct xps_map *expand_xps_map(struct xps_map *map,
1827 				      int cpu, u16 index)
1828 {
1829 	struct xps_map *new_map;
1830 	int alloc_len = XPS_MIN_MAP_ALLOC;
1831 	int i, pos;
1832 
1833 	for (pos = 0; map && pos < map->len; pos++) {
1834 		if (map->queues[pos] != index)
1835 			continue;
1836 		return map;
1837 	}
1838 
1839 	/* Need to add queue to this CPU's existing map */
1840 	if (map) {
1841 		if (pos < map->alloc_len)
1842 			return map;
1843 
1844 		alloc_len = map->alloc_len * 2;
1845 	}
1846 
1847 	/* Need to allocate new map to store queue on this CPU's map */
1848 	new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
1849 			       cpu_to_node(cpu));
1850 	if (!new_map)
1851 		return NULL;
1852 
1853 	for (i = 0; i < pos; i++)
1854 		new_map->queues[i] = map->queues[i];
1855 	new_map->alloc_len = alloc_len;
1856 	new_map->len = pos;
1857 
1858 	return new_map;
1859 }
1860 
1861 int netif_set_xps_queue(struct net_device *dev, struct cpumask *mask, u16 index)
1862 {
1863 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
1864 	struct xps_map *map, *new_map;
1865 	int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
1866 	int cpu, numa_node_id = -2;
1867 	bool active = false;
1868 
1869 	mutex_lock(&xps_map_mutex);
1870 
1871 	dev_maps = xmap_dereference(dev->xps_maps);
1872 
1873 	/* allocate memory for queue storage */
1874 	for_each_online_cpu(cpu) {
1875 		if (!cpumask_test_cpu(cpu, mask))
1876 			continue;
1877 
1878 		if (!new_dev_maps)
1879 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
1880 		if (!new_dev_maps) {
1881 			mutex_unlock(&xps_map_mutex);
1882 			return -ENOMEM;
1883 		}
1884 
1885 		map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
1886 				 NULL;
1887 
1888 		map = expand_xps_map(map, cpu, index);
1889 		if (!map)
1890 			goto error;
1891 
1892 		RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
1893 	}
1894 
1895 	if (!new_dev_maps)
1896 		goto out_no_new_maps;
1897 
1898 	for_each_possible_cpu(cpu) {
1899 		if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
1900 			/* add queue to CPU maps */
1901 			int pos = 0;
1902 
1903 			map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
1904 			while ((pos < map->len) && (map->queues[pos] != index))
1905 				pos++;
1906 
1907 			if (pos == map->len)
1908 				map->queues[map->len++] = index;
1909 #ifdef CONFIG_NUMA
1910 			if (numa_node_id == -2)
1911 				numa_node_id = cpu_to_node(cpu);
1912 			else if (numa_node_id != cpu_to_node(cpu))
1913 				numa_node_id = -1;
1914 #endif
1915 		} else if (dev_maps) {
1916 			/* fill in the new device map from the old device map */
1917 			map = xmap_dereference(dev_maps->cpu_map[cpu]);
1918 			RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
1919 		}
1920 
1921 	}
1922 
1923 	rcu_assign_pointer(dev->xps_maps, new_dev_maps);
1924 
1925 	/* Cleanup old maps */
1926 	if (dev_maps) {
1927 		for_each_possible_cpu(cpu) {
1928 			new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
1929 			map = xmap_dereference(dev_maps->cpu_map[cpu]);
1930 			if (map && map != new_map)
1931 				kfree_rcu(map, rcu);
1932 		}
1933 
1934 		kfree_rcu(dev_maps, rcu);
1935 	}
1936 
1937 	dev_maps = new_dev_maps;
1938 	active = true;
1939 
1940 out_no_new_maps:
1941 	/* update Tx queue numa node */
1942 	netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
1943 				     (numa_node_id >= 0) ? numa_node_id :
1944 				     NUMA_NO_NODE);
1945 
1946 	if (!dev_maps)
1947 		goto out_no_maps;
1948 
1949 	/* removes queue from unused CPUs */
1950 	for_each_possible_cpu(cpu) {
1951 		if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
1952 			continue;
1953 
1954 		if (remove_xps_queue(dev_maps, cpu, index))
1955 			active = true;
1956 	}
1957 
1958 	/* free map if not active */
1959 	if (!active) {
1960 		RCU_INIT_POINTER(dev->xps_maps, NULL);
1961 		kfree_rcu(dev_maps, rcu);
1962 	}
1963 
1964 out_no_maps:
1965 	mutex_unlock(&xps_map_mutex);
1966 
1967 	return 0;
1968 error:
1969 	/* remove any maps that we added */
1970 	for_each_possible_cpu(cpu) {
1971 		new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
1972 		map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
1973 				 NULL;
1974 		if (new_map && new_map != map)
1975 			kfree(new_map);
1976 	}
1977 
1978 	mutex_unlock(&xps_map_mutex);
1979 
1980 	kfree(new_dev_maps);
1981 	return -ENOMEM;
1982 }
1983 EXPORT_SYMBOL(netif_set_xps_queue);
1984 
1985 #endif
1986 /*
1987  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
1988  * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
1989  */
1990 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
1991 {
1992 	int rc;
1993 
1994 	if (txq < 1 || txq > dev->num_tx_queues)
1995 		return -EINVAL;
1996 
1997 	if (dev->reg_state == NETREG_REGISTERED ||
1998 	    dev->reg_state == NETREG_UNREGISTERING) {
1999 		ASSERT_RTNL();
2000 
2001 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2002 						  txq);
2003 		if (rc)
2004 			return rc;
2005 
2006 		if (dev->num_tc)
2007 			netif_setup_tc(dev, txq);
2008 
2009 		if (txq < dev->real_num_tx_queues) {
2010 			qdisc_reset_all_tx_gt(dev, txq);
2011 #ifdef CONFIG_XPS
2012 			netif_reset_xps_queues_gt(dev, txq);
2013 #endif
2014 		}
2015 	}
2016 
2017 	dev->real_num_tx_queues = txq;
2018 	return 0;
2019 }
2020 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2021 
2022 #ifdef CONFIG_RPS
2023 /**
2024  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2025  *	@dev: Network device
2026  *	@rxq: Actual number of RX queues
2027  *
2028  *	This must be called either with the rtnl_lock held or before
2029  *	registration of the net device.  Returns 0 on success, or a
2030  *	negative error code.  If called before registration, it always
2031  *	succeeds.
2032  */
2033 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2034 {
2035 	int rc;
2036 
2037 	if (rxq < 1 || rxq > dev->num_rx_queues)
2038 		return -EINVAL;
2039 
2040 	if (dev->reg_state == NETREG_REGISTERED) {
2041 		ASSERT_RTNL();
2042 
2043 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2044 						  rxq);
2045 		if (rc)
2046 			return rc;
2047 	}
2048 
2049 	dev->real_num_rx_queues = rxq;
2050 	return 0;
2051 }
2052 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2053 #endif
2054 
2055 /**
2056  * netif_get_num_default_rss_queues - default number of RSS queues
2057  *
2058  * This routine should set an upper limit on the number of RSS queues
2059  * used by default by multiqueue devices.
2060  */
2061 int netif_get_num_default_rss_queues(void)
2062 {
2063 	return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2064 }
2065 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2066 
2067 static inline void __netif_reschedule(struct Qdisc *q)
2068 {
2069 	struct softnet_data *sd;
2070 	unsigned long flags;
2071 
2072 	local_irq_save(flags);
2073 	sd = &__get_cpu_var(softnet_data);
2074 	q->next_sched = NULL;
2075 	*sd->output_queue_tailp = q;
2076 	sd->output_queue_tailp = &q->next_sched;
2077 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2078 	local_irq_restore(flags);
2079 }
2080 
2081 void __netif_schedule(struct Qdisc *q)
2082 {
2083 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2084 		__netif_reschedule(q);
2085 }
2086 EXPORT_SYMBOL(__netif_schedule);
2087 
2088 void dev_kfree_skb_irq(struct sk_buff *skb)
2089 {
2090 	if (atomic_dec_and_test(&skb->users)) {
2091 		struct softnet_data *sd;
2092 		unsigned long flags;
2093 
2094 		local_irq_save(flags);
2095 		sd = &__get_cpu_var(softnet_data);
2096 		skb->next = sd->completion_queue;
2097 		sd->completion_queue = skb;
2098 		raise_softirq_irqoff(NET_TX_SOFTIRQ);
2099 		local_irq_restore(flags);
2100 	}
2101 }
2102 EXPORT_SYMBOL(dev_kfree_skb_irq);
2103 
2104 void dev_kfree_skb_any(struct sk_buff *skb)
2105 {
2106 	if (in_irq() || irqs_disabled())
2107 		dev_kfree_skb_irq(skb);
2108 	else
2109 		dev_kfree_skb(skb);
2110 }
2111 EXPORT_SYMBOL(dev_kfree_skb_any);
2112 
2113 
2114 /**
2115  * netif_device_detach - mark device as removed
2116  * @dev: network device
2117  *
2118  * Mark device as removed from system and therefore no longer available.
2119  */
2120 void netif_device_detach(struct net_device *dev)
2121 {
2122 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2123 	    netif_running(dev)) {
2124 		netif_tx_stop_all_queues(dev);
2125 	}
2126 }
2127 EXPORT_SYMBOL(netif_device_detach);
2128 
2129 /**
2130  * netif_device_attach - mark device as attached
2131  * @dev: network device
2132  *
2133  * Mark device as attached from system and restart if needed.
2134  */
2135 void netif_device_attach(struct net_device *dev)
2136 {
2137 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2138 	    netif_running(dev)) {
2139 		netif_tx_wake_all_queues(dev);
2140 		__netdev_watchdog_up(dev);
2141 	}
2142 }
2143 EXPORT_SYMBOL(netif_device_attach);
2144 
2145 static void skb_warn_bad_offload(const struct sk_buff *skb)
2146 {
2147 	static const netdev_features_t null_features = 0;
2148 	struct net_device *dev = skb->dev;
2149 	const char *driver = "";
2150 
2151 	if (!net_ratelimit())
2152 		return;
2153 
2154 	if (dev && dev->dev.parent)
2155 		driver = dev_driver_string(dev->dev.parent);
2156 
2157 	WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2158 	     "gso_type=%d ip_summed=%d\n",
2159 	     driver, dev ? &dev->features : &null_features,
2160 	     skb->sk ? &skb->sk->sk_route_caps : &null_features,
2161 	     skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2162 	     skb_shinfo(skb)->gso_type, skb->ip_summed);
2163 }
2164 
2165 /*
2166  * Invalidate hardware checksum when packet is to be mangled, and
2167  * complete checksum manually on outgoing path.
2168  */
2169 int skb_checksum_help(struct sk_buff *skb)
2170 {
2171 	__wsum csum;
2172 	int ret = 0, offset;
2173 
2174 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2175 		goto out_set_summed;
2176 
2177 	if (unlikely(skb_shinfo(skb)->gso_size)) {
2178 		skb_warn_bad_offload(skb);
2179 		return -EINVAL;
2180 	}
2181 
2182 	/* Before computing a checksum, we should make sure no frag could
2183 	 * be modified by an external entity : checksum could be wrong.
2184 	 */
2185 	if (skb_has_shared_frag(skb)) {
2186 		ret = __skb_linearize(skb);
2187 		if (ret)
2188 			goto out;
2189 	}
2190 
2191 	offset = skb_checksum_start_offset(skb);
2192 	BUG_ON(offset >= skb_headlen(skb));
2193 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
2194 
2195 	offset += skb->csum_offset;
2196 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2197 
2198 	if (skb_cloned(skb) &&
2199 	    !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2200 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2201 		if (ret)
2202 			goto out;
2203 	}
2204 
2205 	*(__sum16 *)(skb->data + offset) = csum_fold(csum);
2206 out_set_summed:
2207 	skb->ip_summed = CHECKSUM_NONE;
2208 out:
2209 	return ret;
2210 }
2211 EXPORT_SYMBOL(skb_checksum_help);
2212 
2213 /**
2214  *	skb_mac_gso_segment - mac layer segmentation handler.
2215  *	@skb: buffer to segment
2216  *	@features: features for the output path (see dev->features)
2217  */
2218 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2219 				    netdev_features_t features)
2220 {
2221 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2222 	struct packet_offload *ptype;
2223 	__be16 type = skb->protocol;
2224 	int vlan_depth = ETH_HLEN;
2225 
2226 	while (type == htons(ETH_P_8021Q)) {
2227 		struct vlan_hdr *vh;
2228 
2229 		if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN)))
2230 			return ERR_PTR(-EINVAL);
2231 
2232 		vh = (struct vlan_hdr *)(skb->data + vlan_depth);
2233 		type = vh->h_vlan_encapsulated_proto;
2234 		vlan_depth += VLAN_HLEN;
2235 	}
2236 
2237 	__skb_pull(skb, skb->mac_len);
2238 
2239 	rcu_read_lock();
2240 	list_for_each_entry_rcu(ptype, &offload_base, list) {
2241 		if (ptype->type == type && ptype->callbacks.gso_segment) {
2242 			if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
2243 				int err;
2244 
2245 				err = ptype->callbacks.gso_send_check(skb);
2246 				segs = ERR_PTR(err);
2247 				if (err || skb_gso_ok(skb, features))
2248 					break;
2249 				__skb_push(skb, (skb->data -
2250 						 skb_network_header(skb)));
2251 			}
2252 			segs = ptype->callbacks.gso_segment(skb, features);
2253 			break;
2254 		}
2255 	}
2256 	rcu_read_unlock();
2257 
2258 	__skb_push(skb, skb->data - skb_mac_header(skb));
2259 
2260 	return segs;
2261 }
2262 EXPORT_SYMBOL(skb_mac_gso_segment);
2263 
2264 
2265 /* openvswitch calls this on rx path, so we need a different check.
2266  */
2267 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2268 {
2269 	if (tx_path)
2270 		return skb->ip_summed != CHECKSUM_PARTIAL;
2271 	else
2272 		return skb->ip_summed == CHECKSUM_NONE;
2273 }
2274 
2275 /**
2276  *	__skb_gso_segment - Perform segmentation on skb.
2277  *	@skb: buffer to segment
2278  *	@features: features for the output path (see dev->features)
2279  *	@tx_path: whether it is called in TX path
2280  *
2281  *	This function segments the given skb and returns a list of segments.
2282  *
2283  *	It may return NULL if the skb requires no segmentation.  This is
2284  *	only possible when GSO is used for verifying header integrity.
2285  */
2286 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2287 				  netdev_features_t features, bool tx_path)
2288 {
2289 	if (unlikely(skb_needs_check(skb, tx_path))) {
2290 		int err;
2291 
2292 		skb_warn_bad_offload(skb);
2293 
2294 		if (skb_header_cloned(skb) &&
2295 		    (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
2296 			return ERR_PTR(err);
2297 	}
2298 
2299 	SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2300 	skb_reset_mac_header(skb);
2301 	skb_reset_mac_len(skb);
2302 
2303 	return skb_mac_gso_segment(skb, features);
2304 }
2305 EXPORT_SYMBOL(__skb_gso_segment);
2306 
2307 /* Take action when hardware reception checksum errors are detected. */
2308 #ifdef CONFIG_BUG
2309 void netdev_rx_csum_fault(struct net_device *dev)
2310 {
2311 	if (net_ratelimit()) {
2312 		pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2313 		dump_stack();
2314 	}
2315 }
2316 EXPORT_SYMBOL(netdev_rx_csum_fault);
2317 #endif
2318 
2319 /* Actually, we should eliminate this check as soon as we know, that:
2320  * 1. IOMMU is present and allows to map all the memory.
2321  * 2. No high memory really exists on this machine.
2322  */
2323 
2324 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2325 {
2326 #ifdef CONFIG_HIGHMEM
2327 	int i;
2328 	if (!(dev->features & NETIF_F_HIGHDMA)) {
2329 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2330 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2331 			if (PageHighMem(skb_frag_page(frag)))
2332 				return 1;
2333 		}
2334 	}
2335 
2336 	if (PCI_DMA_BUS_IS_PHYS) {
2337 		struct device *pdev = dev->dev.parent;
2338 
2339 		if (!pdev)
2340 			return 0;
2341 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2342 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2343 			dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2344 			if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2345 				return 1;
2346 		}
2347 	}
2348 #endif
2349 	return 0;
2350 }
2351 
2352 struct dev_gso_cb {
2353 	void (*destructor)(struct sk_buff *skb);
2354 };
2355 
2356 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
2357 
2358 static void dev_gso_skb_destructor(struct sk_buff *skb)
2359 {
2360 	struct dev_gso_cb *cb;
2361 
2362 	do {
2363 		struct sk_buff *nskb = skb->next;
2364 
2365 		skb->next = nskb->next;
2366 		nskb->next = NULL;
2367 		kfree_skb(nskb);
2368 	} while (skb->next);
2369 
2370 	cb = DEV_GSO_CB(skb);
2371 	if (cb->destructor)
2372 		cb->destructor(skb);
2373 }
2374 
2375 /**
2376  *	dev_gso_segment - Perform emulated hardware segmentation on skb.
2377  *	@skb: buffer to segment
2378  *	@features: device features as applicable to this skb
2379  *
2380  *	This function segments the given skb and stores the list of segments
2381  *	in skb->next.
2382  */
2383 static int dev_gso_segment(struct sk_buff *skb, netdev_features_t features)
2384 {
2385 	struct sk_buff *segs;
2386 
2387 	segs = skb_gso_segment(skb, features);
2388 
2389 	/* Verifying header integrity only. */
2390 	if (!segs)
2391 		return 0;
2392 
2393 	if (IS_ERR(segs))
2394 		return PTR_ERR(segs);
2395 
2396 	skb->next = segs;
2397 	DEV_GSO_CB(skb)->destructor = skb->destructor;
2398 	skb->destructor = dev_gso_skb_destructor;
2399 
2400 	return 0;
2401 }
2402 
2403 static bool can_checksum_protocol(netdev_features_t features, __be16 protocol)
2404 {
2405 	return ((features & NETIF_F_GEN_CSUM) ||
2406 		((features & NETIF_F_V4_CSUM) &&
2407 		 protocol == htons(ETH_P_IP)) ||
2408 		((features & NETIF_F_V6_CSUM) &&
2409 		 protocol == htons(ETH_P_IPV6)) ||
2410 		((features & NETIF_F_FCOE_CRC) &&
2411 		 protocol == htons(ETH_P_FCOE)));
2412 }
2413 
2414 static netdev_features_t harmonize_features(struct sk_buff *skb,
2415 	__be16 protocol, netdev_features_t features)
2416 {
2417 	if (skb->ip_summed != CHECKSUM_NONE &&
2418 	    !can_checksum_protocol(features, protocol)) {
2419 		features &= ~NETIF_F_ALL_CSUM;
2420 		features &= ~NETIF_F_SG;
2421 	} else if (illegal_highdma(skb->dev, skb)) {
2422 		features &= ~NETIF_F_SG;
2423 	}
2424 
2425 	return features;
2426 }
2427 
2428 netdev_features_t netif_skb_features(struct sk_buff *skb)
2429 {
2430 	__be16 protocol = skb->protocol;
2431 	netdev_features_t features = skb->dev->features;
2432 
2433 	if (skb_shinfo(skb)->gso_segs > skb->dev->gso_max_segs)
2434 		features &= ~NETIF_F_GSO_MASK;
2435 
2436 	if (protocol == htons(ETH_P_8021Q)) {
2437 		struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2438 		protocol = veh->h_vlan_encapsulated_proto;
2439 	} else if (!vlan_tx_tag_present(skb)) {
2440 		return harmonize_features(skb, protocol, features);
2441 	}
2442 
2443 	features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_TX);
2444 
2445 	if (protocol != htons(ETH_P_8021Q)) {
2446 		return harmonize_features(skb, protocol, features);
2447 	} else {
2448 		features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST |
2449 				NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_TX;
2450 		return harmonize_features(skb, protocol, features);
2451 	}
2452 }
2453 EXPORT_SYMBOL(netif_skb_features);
2454 
2455 /*
2456  * Returns true if either:
2457  *	1. skb has frag_list and the device doesn't support FRAGLIST, or
2458  *	2. skb is fragmented and the device does not support SG.
2459  */
2460 static inline int skb_needs_linearize(struct sk_buff *skb,
2461 				      int features)
2462 {
2463 	return skb_is_nonlinear(skb) &&
2464 			((skb_has_frag_list(skb) &&
2465 				!(features & NETIF_F_FRAGLIST)) ||
2466 			(skb_shinfo(skb)->nr_frags &&
2467 				!(features & NETIF_F_SG)));
2468 }
2469 
2470 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2471 			struct netdev_queue *txq)
2472 {
2473 	const struct net_device_ops *ops = dev->netdev_ops;
2474 	int rc = NETDEV_TX_OK;
2475 	unsigned int skb_len;
2476 
2477 	if (likely(!skb->next)) {
2478 		netdev_features_t features;
2479 
2480 		/*
2481 		 * If device doesn't need skb->dst, release it right now while
2482 		 * its hot in this cpu cache
2483 		 */
2484 		if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2485 			skb_dst_drop(skb);
2486 
2487 		features = netif_skb_features(skb);
2488 
2489 		if (vlan_tx_tag_present(skb) &&
2490 		    !(features & NETIF_F_HW_VLAN_TX)) {
2491 			skb = __vlan_put_tag(skb, vlan_tx_tag_get(skb));
2492 			if (unlikely(!skb))
2493 				goto out;
2494 
2495 			skb->vlan_tci = 0;
2496 		}
2497 
2498 		/* If encapsulation offload request, verify we are testing
2499 		 * hardware encapsulation features instead of standard
2500 		 * features for the netdev
2501 		 */
2502 		if (skb->encapsulation)
2503 			features &= dev->hw_enc_features;
2504 
2505 		if (netif_needs_gso(skb, features)) {
2506 			if (unlikely(dev_gso_segment(skb, features)))
2507 				goto out_kfree_skb;
2508 			if (skb->next)
2509 				goto gso;
2510 		} else {
2511 			if (skb_needs_linearize(skb, features) &&
2512 			    __skb_linearize(skb))
2513 				goto out_kfree_skb;
2514 
2515 			/* If packet is not checksummed and device does not
2516 			 * support checksumming for this protocol, complete
2517 			 * checksumming here.
2518 			 */
2519 			if (skb->ip_summed == CHECKSUM_PARTIAL) {
2520 				if (skb->encapsulation)
2521 					skb_set_inner_transport_header(skb,
2522 						skb_checksum_start_offset(skb));
2523 				else
2524 					skb_set_transport_header(skb,
2525 						skb_checksum_start_offset(skb));
2526 				if (!(features & NETIF_F_ALL_CSUM) &&
2527 				     skb_checksum_help(skb))
2528 					goto out_kfree_skb;
2529 			}
2530 		}
2531 
2532 		if (!list_empty(&ptype_all))
2533 			dev_queue_xmit_nit(skb, dev);
2534 
2535 		skb_len = skb->len;
2536 		rc = ops->ndo_start_xmit(skb, dev);
2537 		trace_net_dev_xmit(skb, rc, dev, skb_len);
2538 		if (rc == NETDEV_TX_OK)
2539 			txq_trans_update(txq);
2540 		return rc;
2541 	}
2542 
2543 gso:
2544 	do {
2545 		struct sk_buff *nskb = skb->next;
2546 
2547 		skb->next = nskb->next;
2548 		nskb->next = NULL;
2549 
2550 		/*
2551 		 * If device doesn't need nskb->dst, release it right now while
2552 		 * its hot in this cpu cache
2553 		 */
2554 		if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2555 			skb_dst_drop(nskb);
2556 
2557 		if (!list_empty(&ptype_all))
2558 			dev_queue_xmit_nit(nskb, dev);
2559 
2560 		skb_len = nskb->len;
2561 		rc = ops->ndo_start_xmit(nskb, dev);
2562 		trace_net_dev_xmit(nskb, rc, dev, skb_len);
2563 		if (unlikely(rc != NETDEV_TX_OK)) {
2564 			if (rc & ~NETDEV_TX_MASK)
2565 				goto out_kfree_gso_skb;
2566 			nskb->next = skb->next;
2567 			skb->next = nskb;
2568 			return rc;
2569 		}
2570 		txq_trans_update(txq);
2571 		if (unlikely(netif_xmit_stopped(txq) && skb->next))
2572 			return NETDEV_TX_BUSY;
2573 	} while (skb->next);
2574 
2575 out_kfree_gso_skb:
2576 	if (likely(skb->next == NULL))
2577 		skb->destructor = DEV_GSO_CB(skb)->destructor;
2578 out_kfree_skb:
2579 	kfree_skb(skb);
2580 out:
2581 	return rc;
2582 }
2583 
2584 static void qdisc_pkt_len_init(struct sk_buff *skb)
2585 {
2586 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
2587 
2588 	qdisc_skb_cb(skb)->pkt_len = skb->len;
2589 
2590 	/* To get more precise estimation of bytes sent on wire,
2591 	 * we add to pkt_len the headers size of all segments
2592 	 */
2593 	if (shinfo->gso_size)  {
2594 		unsigned int hdr_len;
2595 
2596 		/* mac layer + network layer */
2597 		hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
2598 
2599 		/* + transport layer */
2600 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
2601 			hdr_len += tcp_hdrlen(skb);
2602 		else
2603 			hdr_len += sizeof(struct udphdr);
2604 		qdisc_skb_cb(skb)->pkt_len += (shinfo->gso_segs - 1) * hdr_len;
2605 	}
2606 }
2607 
2608 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2609 				 struct net_device *dev,
2610 				 struct netdev_queue *txq)
2611 {
2612 	spinlock_t *root_lock = qdisc_lock(q);
2613 	bool contended;
2614 	int rc;
2615 
2616 	qdisc_pkt_len_init(skb);
2617 	qdisc_calculate_pkt_len(skb, q);
2618 	/*
2619 	 * Heuristic to force contended enqueues to serialize on a
2620 	 * separate lock before trying to get qdisc main lock.
2621 	 * This permits __QDISC_STATE_RUNNING owner to get the lock more often
2622 	 * and dequeue packets faster.
2623 	 */
2624 	contended = qdisc_is_running(q);
2625 	if (unlikely(contended))
2626 		spin_lock(&q->busylock);
2627 
2628 	spin_lock(root_lock);
2629 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2630 		kfree_skb(skb);
2631 		rc = NET_XMIT_DROP;
2632 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2633 		   qdisc_run_begin(q)) {
2634 		/*
2635 		 * This is a work-conserving queue; there are no old skbs
2636 		 * waiting to be sent out; and the qdisc is not running -
2637 		 * xmit the skb directly.
2638 		 */
2639 		if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2640 			skb_dst_force(skb);
2641 
2642 		qdisc_bstats_update(q, skb);
2643 
2644 		if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2645 			if (unlikely(contended)) {
2646 				spin_unlock(&q->busylock);
2647 				contended = false;
2648 			}
2649 			__qdisc_run(q);
2650 		} else
2651 			qdisc_run_end(q);
2652 
2653 		rc = NET_XMIT_SUCCESS;
2654 	} else {
2655 		skb_dst_force(skb);
2656 		rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2657 		if (qdisc_run_begin(q)) {
2658 			if (unlikely(contended)) {
2659 				spin_unlock(&q->busylock);
2660 				contended = false;
2661 			}
2662 			__qdisc_run(q);
2663 		}
2664 	}
2665 	spin_unlock(root_lock);
2666 	if (unlikely(contended))
2667 		spin_unlock(&q->busylock);
2668 	return rc;
2669 }
2670 
2671 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP)
2672 static void skb_update_prio(struct sk_buff *skb)
2673 {
2674 	struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2675 
2676 	if (!skb->priority && skb->sk && map) {
2677 		unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2678 
2679 		if (prioidx < map->priomap_len)
2680 			skb->priority = map->priomap[prioidx];
2681 	}
2682 }
2683 #else
2684 #define skb_update_prio(skb)
2685 #endif
2686 
2687 static DEFINE_PER_CPU(int, xmit_recursion);
2688 #define RECURSION_LIMIT 10
2689 
2690 /**
2691  *	dev_loopback_xmit - loop back @skb
2692  *	@skb: buffer to transmit
2693  */
2694 int dev_loopback_xmit(struct sk_buff *skb)
2695 {
2696 	skb_reset_mac_header(skb);
2697 	__skb_pull(skb, skb_network_offset(skb));
2698 	skb->pkt_type = PACKET_LOOPBACK;
2699 	skb->ip_summed = CHECKSUM_UNNECESSARY;
2700 	WARN_ON(!skb_dst(skb));
2701 	skb_dst_force(skb);
2702 	netif_rx_ni(skb);
2703 	return 0;
2704 }
2705 EXPORT_SYMBOL(dev_loopback_xmit);
2706 
2707 /**
2708  *	dev_queue_xmit - transmit a buffer
2709  *	@skb: buffer to transmit
2710  *
2711  *	Queue a buffer for transmission to a network device. The caller must
2712  *	have set the device and priority and built the buffer before calling
2713  *	this function. The function can be called from an interrupt.
2714  *
2715  *	A negative errno code is returned on a failure. A success does not
2716  *	guarantee the frame will be transmitted as it may be dropped due
2717  *	to congestion or traffic shaping.
2718  *
2719  * -----------------------------------------------------------------------------------
2720  *      I notice this method can also return errors from the queue disciplines,
2721  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
2722  *      be positive.
2723  *
2724  *      Regardless of the return value, the skb is consumed, so it is currently
2725  *      difficult to retry a send to this method.  (You can bump the ref count
2726  *      before sending to hold a reference for retry if you are careful.)
2727  *
2728  *      When calling this method, interrupts MUST be enabled.  This is because
2729  *      the BH enable code must have IRQs enabled so that it will not deadlock.
2730  *          --BLG
2731  */
2732 int dev_queue_xmit(struct sk_buff *skb)
2733 {
2734 	struct net_device *dev = skb->dev;
2735 	struct netdev_queue *txq;
2736 	struct Qdisc *q;
2737 	int rc = -ENOMEM;
2738 
2739 	skb_reset_mac_header(skb);
2740 
2741 	/* Disable soft irqs for various locks below. Also
2742 	 * stops preemption for RCU.
2743 	 */
2744 	rcu_read_lock_bh();
2745 
2746 	skb_update_prio(skb);
2747 
2748 	txq = netdev_pick_tx(dev, skb);
2749 	q = rcu_dereference_bh(txq->qdisc);
2750 
2751 #ifdef CONFIG_NET_CLS_ACT
2752 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2753 #endif
2754 	trace_net_dev_queue(skb);
2755 	if (q->enqueue) {
2756 		rc = __dev_xmit_skb(skb, q, dev, txq);
2757 		goto out;
2758 	}
2759 
2760 	/* The device has no queue. Common case for software devices:
2761 	   loopback, all the sorts of tunnels...
2762 
2763 	   Really, it is unlikely that netif_tx_lock protection is necessary
2764 	   here.  (f.e. loopback and IP tunnels are clean ignoring statistics
2765 	   counters.)
2766 	   However, it is possible, that they rely on protection
2767 	   made by us here.
2768 
2769 	   Check this and shot the lock. It is not prone from deadlocks.
2770 	   Either shot noqueue qdisc, it is even simpler 8)
2771 	 */
2772 	if (dev->flags & IFF_UP) {
2773 		int cpu = smp_processor_id(); /* ok because BHs are off */
2774 
2775 		if (txq->xmit_lock_owner != cpu) {
2776 
2777 			if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2778 				goto recursion_alert;
2779 
2780 			HARD_TX_LOCK(dev, txq, cpu);
2781 
2782 			if (!netif_xmit_stopped(txq)) {
2783 				__this_cpu_inc(xmit_recursion);
2784 				rc = dev_hard_start_xmit(skb, dev, txq);
2785 				__this_cpu_dec(xmit_recursion);
2786 				if (dev_xmit_complete(rc)) {
2787 					HARD_TX_UNLOCK(dev, txq);
2788 					goto out;
2789 				}
2790 			}
2791 			HARD_TX_UNLOCK(dev, txq);
2792 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
2793 					     dev->name);
2794 		} else {
2795 			/* Recursion is detected! It is possible,
2796 			 * unfortunately
2797 			 */
2798 recursion_alert:
2799 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
2800 					     dev->name);
2801 		}
2802 	}
2803 
2804 	rc = -ENETDOWN;
2805 	rcu_read_unlock_bh();
2806 
2807 	kfree_skb(skb);
2808 	return rc;
2809 out:
2810 	rcu_read_unlock_bh();
2811 	return rc;
2812 }
2813 EXPORT_SYMBOL(dev_queue_xmit);
2814 
2815 
2816 /*=======================================================================
2817 			Receiver routines
2818   =======================================================================*/
2819 
2820 int netdev_max_backlog __read_mostly = 1000;
2821 EXPORT_SYMBOL(netdev_max_backlog);
2822 
2823 int netdev_tstamp_prequeue __read_mostly = 1;
2824 int netdev_budget __read_mostly = 300;
2825 int weight_p __read_mostly = 64;            /* old backlog weight */
2826 
2827 /* Called with irq disabled */
2828 static inline void ____napi_schedule(struct softnet_data *sd,
2829 				     struct napi_struct *napi)
2830 {
2831 	list_add_tail(&napi->poll_list, &sd->poll_list);
2832 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
2833 }
2834 
2835 #ifdef CONFIG_RPS
2836 
2837 /* One global table that all flow-based protocols share. */
2838 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
2839 EXPORT_SYMBOL(rps_sock_flow_table);
2840 
2841 struct static_key rps_needed __read_mostly;
2842 
2843 static struct rps_dev_flow *
2844 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2845 	    struct rps_dev_flow *rflow, u16 next_cpu)
2846 {
2847 	if (next_cpu != RPS_NO_CPU) {
2848 #ifdef CONFIG_RFS_ACCEL
2849 		struct netdev_rx_queue *rxqueue;
2850 		struct rps_dev_flow_table *flow_table;
2851 		struct rps_dev_flow *old_rflow;
2852 		u32 flow_id;
2853 		u16 rxq_index;
2854 		int rc;
2855 
2856 		/* Should we steer this flow to a different hardware queue? */
2857 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
2858 		    !(dev->features & NETIF_F_NTUPLE))
2859 			goto out;
2860 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
2861 		if (rxq_index == skb_get_rx_queue(skb))
2862 			goto out;
2863 
2864 		rxqueue = dev->_rx + rxq_index;
2865 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
2866 		if (!flow_table)
2867 			goto out;
2868 		flow_id = skb->rxhash & flow_table->mask;
2869 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
2870 							rxq_index, flow_id);
2871 		if (rc < 0)
2872 			goto out;
2873 		old_rflow = rflow;
2874 		rflow = &flow_table->flows[flow_id];
2875 		rflow->filter = rc;
2876 		if (old_rflow->filter == rflow->filter)
2877 			old_rflow->filter = RPS_NO_FILTER;
2878 	out:
2879 #endif
2880 		rflow->last_qtail =
2881 			per_cpu(softnet_data, next_cpu).input_queue_head;
2882 	}
2883 
2884 	rflow->cpu = next_cpu;
2885 	return rflow;
2886 }
2887 
2888 /*
2889  * get_rps_cpu is called from netif_receive_skb and returns the target
2890  * CPU from the RPS map of the receiving queue for a given skb.
2891  * rcu_read_lock must be held on entry.
2892  */
2893 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2894 		       struct rps_dev_flow **rflowp)
2895 {
2896 	struct netdev_rx_queue *rxqueue;
2897 	struct rps_map *map;
2898 	struct rps_dev_flow_table *flow_table;
2899 	struct rps_sock_flow_table *sock_flow_table;
2900 	int cpu = -1;
2901 	u16 tcpu;
2902 
2903 	if (skb_rx_queue_recorded(skb)) {
2904 		u16 index = skb_get_rx_queue(skb);
2905 		if (unlikely(index >= dev->real_num_rx_queues)) {
2906 			WARN_ONCE(dev->real_num_rx_queues > 1,
2907 				  "%s received packet on queue %u, but number "
2908 				  "of RX queues is %u\n",
2909 				  dev->name, index, dev->real_num_rx_queues);
2910 			goto done;
2911 		}
2912 		rxqueue = dev->_rx + index;
2913 	} else
2914 		rxqueue = dev->_rx;
2915 
2916 	map = rcu_dereference(rxqueue->rps_map);
2917 	if (map) {
2918 		if (map->len == 1 &&
2919 		    !rcu_access_pointer(rxqueue->rps_flow_table)) {
2920 			tcpu = map->cpus[0];
2921 			if (cpu_online(tcpu))
2922 				cpu = tcpu;
2923 			goto done;
2924 		}
2925 	} else if (!rcu_access_pointer(rxqueue->rps_flow_table)) {
2926 		goto done;
2927 	}
2928 
2929 	skb_reset_network_header(skb);
2930 	if (!skb_get_rxhash(skb))
2931 		goto done;
2932 
2933 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
2934 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
2935 	if (flow_table && sock_flow_table) {
2936 		u16 next_cpu;
2937 		struct rps_dev_flow *rflow;
2938 
2939 		rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
2940 		tcpu = rflow->cpu;
2941 
2942 		next_cpu = sock_flow_table->ents[skb->rxhash &
2943 		    sock_flow_table->mask];
2944 
2945 		/*
2946 		 * If the desired CPU (where last recvmsg was done) is
2947 		 * different from current CPU (one in the rx-queue flow
2948 		 * table entry), switch if one of the following holds:
2949 		 *   - Current CPU is unset (equal to RPS_NO_CPU).
2950 		 *   - Current CPU is offline.
2951 		 *   - The current CPU's queue tail has advanced beyond the
2952 		 *     last packet that was enqueued using this table entry.
2953 		 *     This guarantees that all previous packets for the flow
2954 		 *     have been dequeued, thus preserving in order delivery.
2955 		 */
2956 		if (unlikely(tcpu != next_cpu) &&
2957 		    (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
2958 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
2959 		      rflow->last_qtail)) >= 0)) {
2960 			tcpu = next_cpu;
2961 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
2962 		}
2963 
2964 		if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
2965 			*rflowp = rflow;
2966 			cpu = tcpu;
2967 			goto done;
2968 		}
2969 	}
2970 
2971 	if (map) {
2972 		tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
2973 
2974 		if (cpu_online(tcpu)) {
2975 			cpu = tcpu;
2976 			goto done;
2977 		}
2978 	}
2979 
2980 done:
2981 	return cpu;
2982 }
2983 
2984 #ifdef CONFIG_RFS_ACCEL
2985 
2986 /**
2987  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
2988  * @dev: Device on which the filter was set
2989  * @rxq_index: RX queue index
2990  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
2991  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
2992  *
2993  * Drivers that implement ndo_rx_flow_steer() should periodically call
2994  * this function for each installed filter and remove the filters for
2995  * which it returns %true.
2996  */
2997 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
2998 			 u32 flow_id, u16 filter_id)
2999 {
3000 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3001 	struct rps_dev_flow_table *flow_table;
3002 	struct rps_dev_flow *rflow;
3003 	bool expire = true;
3004 	int cpu;
3005 
3006 	rcu_read_lock();
3007 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
3008 	if (flow_table && flow_id <= flow_table->mask) {
3009 		rflow = &flow_table->flows[flow_id];
3010 		cpu = ACCESS_ONCE(rflow->cpu);
3011 		if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
3012 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3013 			   rflow->last_qtail) <
3014 		     (int)(10 * flow_table->mask)))
3015 			expire = false;
3016 	}
3017 	rcu_read_unlock();
3018 	return expire;
3019 }
3020 EXPORT_SYMBOL(rps_may_expire_flow);
3021 
3022 #endif /* CONFIG_RFS_ACCEL */
3023 
3024 /* Called from hardirq (IPI) context */
3025 static void rps_trigger_softirq(void *data)
3026 {
3027 	struct softnet_data *sd = data;
3028 
3029 	____napi_schedule(sd, &sd->backlog);
3030 	sd->received_rps++;
3031 }
3032 
3033 #endif /* CONFIG_RPS */
3034 
3035 /*
3036  * Check if this softnet_data structure is another cpu one
3037  * If yes, queue it to our IPI list and return 1
3038  * If no, return 0
3039  */
3040 static int rps_ipi_queued(struct softnet_data *sd)
3041 {
3042 #ifdef CONFIG_RPS
3043 	struct softnet_data *mysd = &__get_cpu_var(softnet_data);
3044 
3045 	if (sd != mysd) {
3046 		sd->rps_ipi_next = mysd->rps_ipi_list;
3047 		mysd->rps_ipi_list = sd;
3048 
3049 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3050 		return 1;
3051 	}
3052 #endif /* CONFIG_RPS */
3053 	return 0;
3054 }
3055 
3056 /*
3057  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3058  * queue (may be a remote CPU queue).
3059  */
3060 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3061 			      unsigned int *qtail)
3062 {
3063 	struct softnet_data *sd;
3064 	unsigned long flags;
3065 
3066 	sd = &per_cpu(softnet_data, cpu);
3067 
3068 	local_irq_save(flags);
3069 
3070 	rps_lock(sd);
3071 	if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) {
3072 		if (skb_queue_len(&sd->input_pkt_queue)) {
3073 enqueue:
3074 			__skb_queue_tail(&sd->input_pkt_queue, skb);
3075 			input_queue_tail_incr_save(sd, qtail);
3076 			rps_unlock(sd);
3077 			local_irq_restore(flags);
3078 			return NET_RX_SUCCESS;
3079 		}
3080 
3081 		/* Schedule NAPI for backlog device
3082 		 * We can use non atomic operation since we own the queue lock
3083 		 */
3084 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3085 			if (!rps_ipi_queued(sd))
3086 				____napi_schedule(sd, &sd->backlog);
3087 		}
3088 		goto enqueue;
3089 	}
3090 
3091 	sd->dropped++;
3092 	rps_unlock(sd);
3093 
3094 	local_irq_restore(flags);
3095 
3096 	atomic_long_inc(&skb->dev->rx_dropped);
3097 	kfree_skb(skb);
3098 	return NET_RX_DROP;
3099 }
3100 
3101 /**
3102  *	netif_rx	-	post buffer to the network code
3103  *	@skb: buffer to post
3104  *
3105  *	This function receives a packet from a device driver and queues it for
3106  *	the upper (protocol) levels to process.  It always succeeds. The buffer
3107  *	may be dropped during processing for congestion control or by the
3108  *	protocol layers.
3109  *
3110  *	return values:
3111  *	NET_RX_SUCCESS	(no congestion)
3112  *	NET_RX_DROP     (packet was dropped)
3113  *
3114  */
3115 
3116 int netif_rx(struct sk_buff *skb)
3117 {
3118 	int ret;
3119 
3120 	/* if netpoll wants it, pretend we never saw it */
3121 	if (netpoll_rx(skb))
3122 		return NET_RX_DROP;
3123 
3124 	net_timestamp_check(netdev_tstamp_prequeue, skb);
3125 
3126 	trace_netif_rx(skb);
3127 #ifdef CONFIG_RPS
3128 	if (static_key_false(&rps_needed)) {
3129 		struct rps_dev_flow voidflow, *rflow = &voidflow;
3130 		int cpu;
3131 
3132 		preempt_disable();
3133 		rcu_read_lock();
3134 
3135 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
3136 		if (cpu < 0)
3137 			cpu = smp_processor_id();
3138 
3139 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3140 
3141 		rcu_read_unlock();
3142 		preempt_enable();
3143 	} else
3144 #endif
3145 	{
3146 		unsigned int qtail;
3147 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3148 		put_cpu();
3149 	}
3150 	return ret;
3151 }
3152 EXPORT_SYMBOL(netif_rx);
3153 
3154 int netif_rx_ni(struct sk_buff *skb)
3155 {
3156 	int err;
3157 
3158 	preempt_disable();
3159 	err = netif_rx(skb);
3160 	if (local_softirq_pending())
3161 		do_softirq();
3162 	preempt_enable();
3163 
3164 	return err;
3165 }
3166 EXPORT_SYMBOL(netif_rx_ni);
3167 
3168 static void net_tx_action(struct softirq_action *h)
3169 {
3170 	struct softnet_data *sd = &__get_cpu_var(softnet_data);
3171 
3172 	if (sd->completion_queue) {
3173 		struct sk_buff *clist;
3174 
3175 		local_irq_disable();
3176 		clist = sd->completion_queue;
3177 		sd->completion_queue = NULL;
3178 		local_irq_enable();
3179 
3180 		while (clist) {
3181 			struct sk_buff *skb = clist;
3182 			clist = clist->next;
3183 
3184 			WARN_ON(atomic_read(&skb->users));
3185 			trace_kfree_skb(skb, net_tx_action);
3186 			__kfree_skb(skb);
3187 		}
3188 	}
3189 
3190 	if (sd->output_queue) {
3191 		struct Qdisc *head;
3192 
3193 		local_irq_disable();
3194 		head = sd->output_queue;
3195 		sd->output_queue = NULL;
3196 		sd->output_queue_tailp = &sd->output_queue;
3197 		local_irq_enable();
3198 
3199 		while (head) {
3200 			struct Qdisc *q = head;
3201 			spinlock_t *root_lock;
3202 
3203 			head = head->next_sched;
3204 
3205 			root_lock = qdisc_lock(q);
3206 			if (spin_trylock(root_lock)) {
3207 				smp_mb__before_clear_bit();
3208 				clear_bit(__QDISC_STATE_SCHED,
3209 					  &q->state);
3210 				qdisc_run(q);
3211 				spin_unlock(root_lock);
3212 			} else {
3213 				if (!test_bit(__QDISC_STATE_DEACTIVATED,
3214 					      &q->state)) {
3215 					__netif_reschedule(q);
3216 				} else {
3217 					smp_mb__before_clear_bit();
3218 					clear_bit(__QDISC_STATE_SCHED,
3219 						  &q->state);
3220 				}
3221 			}
3222 		}
3223 	}
3224 }
3225 
3226 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3227     (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3228 /* This hook is defined here for ATM LANE */
3229 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3230 			     unsigned char *addr) __read_mostly;
3231 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3232 #endif
3233 
3234 #ifdef CONFIG_NET_CLS_ACT
3235 /* TODO: Maybe we should just force sch_ingress to be compiled in
3236  * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3237  * a compare and 2 stores extra right now if we dont have it on
3238  * but have CONFIG_NET_CLS_ACT
3239  * NOTE: This doesn't stop any functionality; if you dont have
3240  * the ingress scheduler, you just can't add policies on ingress.
3241  *
3242  */
3243 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
3244 {
3245 	struct net_device *dev = skb->dev;
3246 	u32 ttl = G_TC_RTTL(skb->tc_verd);
3247 	int result = TC_ACT_OK;
3248 	struct Qdisc *q;
3249 
3250 	if (unlikely(MAX_RED_LOOP < ttl++)) {
3251 		net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n",
3252 				     skb->skb_iif, dev->ifindex);
3253 		return TC_ACT_SHOT;
3254 	}
3255 
3256 	skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3257 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3258 
3259 	q = rxq->qdisc;
3260 	if (q != &noop_qdisc) {
3261 		spin_lock(qdisc_lock(q));
3262 		if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3263 			result = qdisc_enqueue_root(skb, q);
3264 		spin_unlock(qdisc_lock(q));
3265 	}
3266 
3267 	return result;
3268 }
3269 
3270 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3271 					 struct packet_type **pt_prev,
3272 					 int *ret, struct net_device *orig_dev)
3273 {
3274 	struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3275 
3276 	if (!rxq || rxq->qdisc == &noop_qdisc)
3277 		goto out;
3278 
3279 	if (*pt_prev) {
3280 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
3281 		*pt_prev = NULL;
3282 	}
3283 
3284 	switch (ing_filter(skb, rxq)) {
3285 	case TC_ACT_SHOT:
3286 	case TC_ACT_STOLEN:
3287 		kfree_skb(skb);
3288 		return NULL;
3289 	}
3290 
3291 out:
3292 	skb->tc_verd = 0;
3293 	return skb;
3294 }
3295 #endif
3296 
3297 /**
3298  *	netdev_rx_handler_register - register receive handler
3299  *	@dev: device to register a handler for
3300  *	@rx_handler: receive handler to register
3301  *	@rx_handler_data: data pointer that is used by rx handler
3302  *
3303  *	Register a receive hander for a device. This handler will then be
3304  *	called from __netif_receive_skb. A negative errno code is returned
3305  *	on a failure.
3306  *
3307  *	The caller must hold the rtnl_mutex.
3308  *
3309  *	For a general description of rx_handler, see enum rx_handler_result.
3310  */
3311 int netdev_rx_handler_register(struct net_device *dev,
3312 			       rx_handler_func_t *rx_handler,
3313 			       void *rx_handler_data)
3314 {
3315 	ASSERT_RTNL();
3316 
3317 	if (dev->rx_handler)
3318 		return -EBUSY;
3319 
3320 	/* Note: rx_handler_data must be set before rx_handler */
3321 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3322 	rcu_assign_pointer(dev->rx_handler, rx_handler);
3323 
3324 	return 0;
3325 }
3326 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3327 
3328 /**
3329  *	netdev_rx_handler_unregister - unregister receive handler
3330  *	@dev: device to unregister a handler from
3331  *
3332  *	Unregister a receive hander from a device.
3333  *
3334  *	The caller must hold the rtnl_mutex.
3335  */
3336 void netdev_rx_handler_unregister(struct net_device *dev)
3337 {
3338 
3339 	ASSERT_RTNL();
3340 	RCU_INIT_POINTER(dev->rx_handler, NULL);
3341 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3342 	 * section has a guarantee to see a non NULL rx_handler_data
3343 	 * as well.
3344 	 */
3345 	synchronize_net();
3346 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3347 }
3348 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3349 
3350 /*
3351  * Limit the use of PFMEMALLOC reserves to those protocols that implement
3352  * the special handling of PFMEMALLOC skbs.
3353  */
3354 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3355 {
3356 	switch (skb->protocol) {
3357 	case __constant_htons(ETH_P_ARP):
3358 	case __constant_htons(ETH_P_IP):
3359 	case __constant_htons(ETH_P_IPV6):
3360 	case __constant_htons(ETH_P_8021Q):
3361 		return true;
3362 	default:
3363 		return false;
3364 	}
3365 }
3366 
3367 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
3368 {
3369 	struct packet_type *ptype, *pt_prev;
3370 	rx_handler_func_t *rx_handler;
3371 	struct net_device *orig_dev;
3372 	struct net_device *null_or_dev;
3373 	bool deliver_exact = false;
3374 	int ret = NET_RX_DROP;
3375 	__be16 type;
3376 
3377 	net_timestamp_check(!netdev_tstamp_prequeue, skb);
3378 
3379 	trace_netif_receive_skb(skb);
3380 
3381 	/* if we've gotten here through NAPI, check netpoll */
3382 	if (netpoll_receive_skb(skb))
3383 		goto out;
3384 
3385 	orig_dev = skb->dev;
3386 
3387 	skb_reset_network_header(skb);
3388 	if (!skb_transport_header_was_set(skb))
3389 		skb_reset_transport_header(skb);
3390 	skb_reset_mac_len(skb);
3391 
3392 	pt_prev = NULL;
3393 
3394 	rcu_read_lock();
3395 
3396 another_round:
3397 	skb->skb_iif = skb->dev->ifindex;
3398 
3399 	__this_cpu_inc(softnet_data.processed);
3400 
3401 	if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) {
3402 		skb = vlan_untag(skb);
3403 		if (unlikely(!skb))
3404 			goto unlock;
3405 	}
3406 
3407 #ifdef CONFIG_NET_CLS_ACT
3408 	if (skb->tc_verd & TC_NCLS) {
3409 		skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3410 		goto ncls;
3411 	}
3412 #endif
3413 
3414 	if (pfmemalloc)
3415 		goto skip_taps;
3416 
3417 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
3418 		if (!ptype->dev || ptype->dev == skb->dev) {
3419 			if (pt_prev)
3420 				ret = deliver_skb(skb, pt_prev, orig_dev);
3421 			pt_prev = ptype;
3422 		}
3423 	}
3424 
3425 skip_taps:
3426 #ifdef CONFIG_NET_CLS_ACT
3427 	skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3428 	if (!skb)
3429 		goto unlock;
3430 ncls:
3431 #endif
3432 
3433 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
3434 		goto drop;
3435 
3436 	if (vlan_tx_tag_present(skb)) {
3437 		if (pt_prev) {
3438 			ret = deliver_skb(skb, pt_prev, orig_dev);
3439 			pt_prev = NULL;
3440 		}
3441 		if (vlan_do_receive(&skb))
3442 			goto another_round;
3443 		else if (unlikely(!skb))
3444 			goto unlock;
3445 	}
3446 
3447 	rx_handler = rcu_dereference(skb->dev->rx_handler);
3448 	if (rx_handler) {
3449 		if (pt_prev) {
3450 			ret = deliver_skb(skb, pt_prev, orig_dev);
3451 			pt_prev = NULL;
3452 		}
3453 		switch (rx_handler(&skb)) {
3454 		case RX_HANDLER_CONSUMED:
3455 			ret = NET_RX_SUCCESS;
3456 			goto unlock;
3457 		case RX_HANDLER_ANOTHER:
3458 			goto another_round;
3459 		case RX_HANDLER_EXACT:
3460 			deliver_exact = true;
3461 		case RX_HANDLER_PASS:
3462 			break;
3463 		default:
3464 			BUG();
3465 		}
3466 	}
3467 
3468 	if (vlan_tx_nonzero_tag_present(skb))
3469 		skb->pkt_type = PACKET_OTHERHOST;
3470 
3471 	/* deliver only exact match when indicated */
3472 	null_or_dev = deliver_exact ? skb->dev : NULL;
3473 
3474 	type = skb->protocol;
3475 	list_for_each_entry_rcu(ptype,
3476 			&ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3477 		if (ptype->type == type &&
3478 		    (ptype->dev == null_or_dev || ptype->dev == skb->dev ||
3479 		     ptype->dev == orig_dev)) {
3480 			if (pt_prev)
3481 				ret = deliver_skb(skb, pt_prev, orig_dev);
3482 			pt_prev = ptype;
3483 		}
3484 	}
3485 
3486 	if (pt_prev) {
3487 		if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
3488 			goto drop;
3489 		else
3490 			ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3491 	} else {
3492 drop:
3493 		atomic_long_inc(&skb->dev->rx_dropped);
3494 		kfree_skb(skb);
3495 		/* Jamal, now you will not able to escape explaining
3496 		 * me how you were going to use this. :-)
3497 		 */
3498 		ret = NET_RX_DROP;
3499 	}
3500 
3501 unlock:
3502 	rcu_read_unlock();
3503 out:
3504 	return ret;
3505 }
3506 
3507 static int __netif_receive_skb(struct sk_buff *skb)
3508 {
3509 	int ret;
3510 
3511 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
3512 		unsigned long pflags = current->flags;
3513 
3514 		/*
3515 		 * PFMEMALLOC skbs are special, they should
3516 		 * - be delivered to SOCK_MEMALLOC sockets only
3517 		 * - stay away from userspace
3518 		 * - have bounded memory usage
3519 		 *
3520 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
3521 		 * context down to all allocation sites.
3522 		 */
3523 		current->flags |= PF_MEMALLOC;
3524 		ret = __netif_receive_skb_core(skb, true);
3525 		tsk_restore_flags(current, pflags, PF_MEMALLOC);
3526 	} else
3527 		ret = __netif_receive_skb_core(skb, false);
3528 
3529 	return ret;
3530 }
3531 
3532 /**
3533  *	netif_receive_skb - process receive buffer from network
3534  *	@skb: buffer to process
3535  *
3536  *	netif_receive_skb() is the main receive data processing function.
3537  *	It always succeeds. The buffer may be dropped during processing
3538  *	for congestion control or by the protocol layers.
3539  *
3540  *	This function may only be called from softirq context and interrupts
3541  *	should be enabled.
3542  *
3543  *	Return values (usually ignored):
3544  *	NET_RX_SUCCESS: no congestion
3545  *	NET_RX_DROP: packet was dropped
3546  */
3547 int netif_receive_skb(struct sk_buff *skb)
3548 {
3549 	net_timestamp_check(netdev_tstamp_prequeue, skb);
3550 
3551 	if (skb_defer_rx_timestamp(skb))
3552 		return NET_RX_SUCCESS;
3553 
3554 #ifdef CONFIG_RPS
3555 	if (static_key_false(&rps_needed)) {
3556 		struct rps_dev_flow voidflow, *rflow = &voidflow;
3557 		int cpu, ret;
3558 
3559 		rcu_read_lock();
3560 
3561 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
3562 
3563 		if (cpu >= 0) {
3564 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3565 			rcu_read_unlock();
3566 			return ret;
3567 		}
3568 		rcu_read_unlock();
3569 	}
3570 #endif
3571 	return __netif_receive_skb(skb);
3572 }
3573 EXPORT_SYMBOL(netif_receive_skb);
3574 
3575 /* Network device is going away, flush any packets still pending
3576  * Called with irqs disabled.
3577  */
3578 static void flush_backlog(void *arg)
3579 {
3580 	struct net_device *dev = arg;
3581 	struct softnet_data *sd = &__get_cpu_var(softnet_data);
3582 	struct sk_buff *skb, *tmp;
3583 
3584 	rps_lock(sd);
3585 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3586 		if (skb->dev == dev) {
3587 			__skb_unlink(skb, &sd->input_pkt_queue);
3588 			kfree_skb(skb);
3589 			input_queue_head_incr(sd);
3590 		}
3591 	}
3592 	rps_unlock(sd);
3593 
3594 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3595 		if (skb->dev == dev) {
3596 			__skb_unlink(skb, &sd->process_queue);
3597 			kfree_skb(skb);
3598 			input_queue_head_incr(sd);
3599 		}
3600 	}
3601 }
3602 
3603 static int napi_gro_complete(struct sk_buff *skb)
3604 {
3605 	struct packet_offload *ptype;
3606 	__be16 type = skb->protocol;
3607 	struct list_head *head = &offload_base;
3608 	int err = -ENOENT;
3609 
3610 	BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
3611 
3612 	if (NAPI_GRO_CB(skb)->count == 1) {
3613 		skb_shinfo(skb)->gso_size = 0;
3614 		goto out;
3615 	}
3616 
3617 	rcu_read_lock();
3618 	list_for_each_entry_rcu(ptype, head, list) {
3619 		if (ptype->type != type || !ptype->callbacks.gro_complete)
3620 			continue;
3621 
3622 		err = ptype->callbacks.gro_complete(skb);
3623 		break;
3624 	}
3625 	rcu_read_unlock();
3626 
3627 	if (err) {
3628 		WARN_ON(&ptype->list == head);
3629 		kfree_skb(skb);
3630 		return NET_RX_SUCCESS;
3631 	}
3632 
3633 out:
3634 	return netif_receive_skb(skb);
3635 }
3636 
3637 /* napi->gro_list contains packets ordered by age.
3638  * youngest packets at the head of it.
3639  * Complete skbs in reverse order to reduce latencies.
3640  */
3641 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
3642 {
3643 	struct sk_buff *skb, *prev = NULL;
3644 
3645 	/* scan list and build reverse chain */
3646 	for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
3647 		skb->prev = prev;
3648 		prev = skb;
3649 	}
3650 
3651 	for (skb = prev; skb; skb = prev) {
3652 		skb->next = NULL;
3653 
3654 		if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
3655 			return;
3656 
3657 		prev = skb->prev;
3658 		napi_gro_complete(skb);
3659 		napi->gro_count--;
3660 	}
3661 
3662 	napi->gro_list = NULL;
3663 }
3664 EXPORT_SYMBOL(napi_gro_flush);
3665 
3666 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
3667 {
3668 	struct sk_buff *p;
3669 	unsigned int maclen = skb->dev->hard_header_len;
3670 
3671 	for (p = napi->gro_list; p; p = p->next) {
3672 		unsigned long diffs;
3673 
3674 		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3675 		diffs |= p->vlan_tci ^ skb->vlan_tci;
3676 		if (maclen == ETH_HLEN)
3677 			diffs |= compare_ether_header(skb_mac_header(p),
3678 						      skb_gro_mac_header(skb));
3679 		else if (!diffs)
3680 			diffs = memcmp(skb_mac_header(p),
3681 				       skb_gro_mac_header(skb),
3682 				       maclen);
3683 		NAPI_GRO_CB(p)->same_flow = !diffs;
3684 		NAPI_GRO_CB(p)->flush = 0;
3685 	}
3686 }
3687 
3688 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3689 {
3690 	struct sk_buff **pp = NULL;
3691 	struct packet_offload *ptype;
3692 	__be16 type = skb->protocol;
3693 	struct list_head *head = &offload_base;
3694 	int same_flow;
3695 	enum gro_result ret;
3696 
3697 	if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb))
3698 		goto normal;
3699 
3700 	if (skb_is_gso(skb) || skb_has_frag_list(skb))
3701 		goto normal;
3702 
3703 	gro_list_prepare(napi, skb);
3704 
3705 	rcu_read_lock();
3706 	list_for_each_entry_rcu(ptype, head, list) {
3707 		if (ptype->type != type || !ptype->callbacks.gro_receive)
3708 			continue;
3709 
3710 		skb_set_network_header(skb, skb_gro_offset(skb));
3711 		skb_reset_mac_len(skb);
3712 		NAPI_GRO_CB(skb)->same_flow = 0;
3713 		NAPI_GRO_CB(skb)->flush = 0;
3714 		NAPI_GRO_CB(skb)->free = 0;
3715 
3716 		pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
3717 		break;
3718 	}
3719 	rcu_read_unlock();
3720 
3721 	if (&ptype->list == head)
3722 		goto normal;
3723 
3724 	same_flow = NAPI_GRO_CB(skb)->same_flow;
3725 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3726 
3727 	if (pp) {
3728 		struct sk_buff *nskb = *pp;
3729 
3730 		*pp = nskb->next;
3731 		nskb->next = NULL;
3732 		napi_gro_complete(nskb);
3733 		napi->gro_count--;
3734 	}
3735 
3736 	if (same_flow)
3737 		goto ok;
3738 
3739 	if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
3740 		goto normal;
3741 
3742 	napi->gro_count++;
3743 	NAPI_GRO_CB(skb)->count = 1;
3744 	NAPI_GRO_CB(skb)->age = jiffies;
3745 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3746 	skb->next = napi->gro_list;
3747 	napi->gro_list = skb;
3748 	ret = GRO_HELD;
3749 
3750 pull:
3751 	if (skb_headlen(skb) < skb_gro_offset(skb)) {
3752 		int grow = skb_gro_offset(skb) - skb_headlen(skb);
3753 
3754 		BUG_ON(skb->end - skb->tail < grow);
3755 
3756 		memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3757 
3758 		skb->tail += grow;
3759 		skb->data_len -= grow;
3760 
3761 		skb_shinfo(skb)->frags[0].page_offset += grow;
3762 		skb_frag_size_sub(&skb_shinfo(skb)->frags[0], grow);
3763 
3764 		if (unlikely(!skb_frag_size(&skb_shinfo(skb)->frags[0]))) {
3765 			skb_frag_unref(skb, 0);
3766 			memmove(skb_shinfo(skb)->frags,
3767 				skb_shinfo(skb)->frags + 1,
3768 				--skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t));
3769 		}
3770 	}
3771 
3772 ok:
3773 	return ret;
3774 
3775 normal:
3776 	ret = GRO_NORMAL;
3777 	goto pull;
3778 }
3779 
3780 
3781 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
3782 {
3783 	switch (ret) {
3784 	case GRO_NORMAL:
3785 		if (netif_receive_skb(skb))
3786 			ret = GRO_DROP;
3787 		break;
3788 
3789 	case GRO_DROP:
3790 		kfree_skb(skb);
3791 		break;
3792 
3793 	case GRO_MERGED_FREE:
3794 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
3795 			kmem_cache_free(skbuff_head_cache, skb);
3796 		else
3797 			__kfree_skb(skb);
3798 		break;
3799 
3800 	case GRO_HELD:
3801 	case GRO_MERGED:
3802 		break;
3803 	}
3804 
3805 	return ret;
3806 }
3807 
3808 static void skb_gro_reset_offset(struct sk_buff *skb)
3809 {
3810 	const struct skb_shared_info *pinfo = skb_shinfo(skb);
3811 	const skb_frag_t *frag0 = &pinfo->frags[0];
3812 
3813 	NAPI_GRO_CB(skb)->data_offset = 0;
3814 	NAPI_GRO_CB(skb)->frag0 = NULL;
3815 	NAPI_GRO_CB(skb)->frag0_len = 0;
3816 
3817 	if (skb->mac_header == skb->tail &&
3818 	    pinfo->nr_frags &&
3819 	    !PageHighMem(skb_frag_page(frag0))) {
3820 		NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
3821 		NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
3822 	}
3823 }
3824 
3825 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3826 {
3827 	skb_gro_reset_offset(skb);
3828 
3829 	return napi_skb_finish(dev_gro_receive(napi, skb), skb);
3830 }
3831 EXPORT_SYMBOL(napi_gro_receive);
3832 
3833 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
3834 {
3835 	__skb_pull(skb, skb_headlen(skb));
3836 	/* restore the reserve we had after netdev_alloc_skb_ip_align() */
3837 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
3838 	skb->vlan_tci = 0;
3839 	skb->dev = napi->dev;
3840 	skb->skb_iif = 0;
3841 
3842 	napi->skb = skb;
3843 }
3844 
3845 struct sk_buff *napi_get_frags(struct napi_struct *napi)
3846 {
3847 	struct sk_buff *skb = napi->skb;
3848 
3849 	if (!skb) {
3850 		skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3851 		if (skb)
3852 			napi->skb = skb;
3853 	}
3854 	return skb;
3855 }
3856 EXPORT_SYMBOL(napi_get_frags);
3857 
3858 static gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3859 			       gro_result_t ret)
3860 {
3861 	switch (ret) {
3862 	case GRO_NORMAL:
3863 	case GRO_HELD:
3864 		skb->protocol = eth_type_trans(skb, skb->dev);
3865 
3866 		if (ret == GRO_HELD)
3867 			skb_gro_pull(skb, -ETH_HLEN);
3868 		else if (netif_receive_skb(skb))
3869 			ret = GRO_DROP;
3870 		break;
3871 
3872 	case GRO_DROP:
3873 	case GRO_MERGED_FREE:
3874 		napi_reuse_skb(napi, skb);
3875 		break;
3876 
3877 	case GRO_MERGED:
3878 		break;
3879 	}
3880 
3881 	return ret;
3882 }
3883 
3884 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
3885 {
3886 	struct sk_buff *skb = napi->skb;
3887 	struct ethhdr *eth;
3888 	unsigned int hlen;
3889 	unsigned int off;
3890 
3891 	napi->skb = NULL;
3892 
3893 	skb_reset_mac_header(skb);
3894 	skb_gro_reset_offset(skb);
3895 
3896 	off = skb_gro_offset(skb);
3897 	hlen = off + sizeof(*eth);
3898 	eth = skb_gro_header_fast(skb, off);
3899 	if (skb_gro_header_hard(skb, hlen)) {
3900 		eth = skb_gro_header_slow(skb, hlen, off);
3901 		if (unlikely(!eth)) {
3902 			napi_reuse_skb(napi, skb);
3903 			skb = NULL;
3904 			goto out;
3905 		}
3906 	}
3907 
3908 	skb_gro_pull(skb, sizeof(*eth));
3909 
3910 	/*
3911 	 * This works because the only protocols we care about don't require
3912 	 * special handling.  We'll fix it up properly at the end.
3913 	 */
3914 	skb->protocol = eth->h_proto;
3915 
3916 out:
3917 	return skb;
3918 }
3919 
3920 gro_result_t napi_gro_frags(struct napi_struct *napi)
3921 {
3922 	struct sk_buff *skb = napi_frags_skb(napi);
3923 
3924 	if (!skb)
3925 		return GRO_DROP;
3926 
3927 	return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
3928 }
3929 EXPORT_SYMBOL(napi_gro_frags);
3930 
3931 /*
3932  * net_rps_action sends any pending IPI's for rps.
3933  * Note: called with local irq disabled, but exits with local irq enabled.
3934  */
3935 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
3936 {
3937 #ifdef CONFIG_RPS
3938 	struct softnet_data *remsd = sd->rps_ipi_list;
3939 
3940 	if (remsd) {
3941 		sd->rps_ipi_list = NULL;
3942 
3943 		local_irq_enable();
3944 
3945 		/* Send pending IPI's to kick RPS processing on remote cpus. */
3946 		while (remsd) {
3947 			struct softnet_data *next = remsd->rps_ipi_next;
3948 
3949 			if (cpu_online(remsd->cpu))
3950 				__smp_call_function_single(remsd->cpu,
3951 							   &remsd->csd, 0);
3952 			remsd = next;
3953 		}
3954 	} else
3955 #endif
3956 		local_irq_enable();
3957 }
3958 
3959 static int process_backlog(struct napi_struct *napi, int quota)
3960 {
3961 	int work = 0;
3962 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
3963 
3964 #ifdef CONFIG_RPS
3965 	/* Check if we have pending ipi, its better to send them now,
3966 	 * not waiting net_rx_action() end.
3967 	 */
3968 	if (sd->rps_ipi_list) {
3969 		local_irq_disable();
3970 		net_rps_action_and_irq_enable(sd);
3971 	}
3972 #endif
3973 	napi->weight = weight_p;
3974 	local_irq_disable();
3975 	while (work < quota) {
3976 		struct sk_buff *skb;
3977 		unsigned int qlen;
3978 
3979 		while ((skb = __skb_dequeue(&sd->process_queue))) {
3980 			local_irq_enable();
3981 			__netif_receive_skb(skb);
3982 			local_irq_disable();
3983 			input_queue_head_incr(sd);
3984 			if (++work >= quota) {
3985 				local_irq_enable();
3986 				return work;
3987 			}
3988 		}
3989 
3990 		rps_lock(sd);
3991 		qlen = skb_queue_len(&sd->input_pkt_queue);
3992 		if (qlen)
3993 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
3994 						   &sd->process_queue);
3995 
3996 		if (qlen < quota - work) {
3997 			/*
3998 			 * Inline a custom version of __napi_complete().
3999 			 * only current cpu owns and manipulates this napi,
4000 			 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
4001 			 * we can use a plain write instead of clear_bit(),
4002 			 * and we dont need an smp_mb() memory barrier.
4003 			 */
4004 			list_del(&napi->poll_list);
4005 			napi->state = 0;
4006 
4007 			quota = work + qlen;
4008 		}
4009 		rps_unlock(sd);
4010 	}
4011 	local_irq_enable();
4012 
4013 	return work;
4014 }
4015 
4016 /**
4017  * __napi_schedule - schedule for receive
4018  * @n: entry to schedule
4019  *
4020  * The entry's receive function will be scheduled to run
4021  */
4022 void __napi_schedule(struct napi_struct *n)
4023 {
4024 	unsigned long flags;
4025 
4026 	local_irq_save(flags);
4027 	____napi_schedule(&__get_cpu_var(softnet_data), n);
4028 	local_irq_restore(flags);
4029 }
4030 EXPORT_SYMBOL(__napi_schedule);
4031 
4032 void __napi_complete(struct napi_struct *n)
4033 {
4034 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4035 	BUG_ON(n->gro_list);
4036 
4037 	list_del(&n->poll_list);
4038 	smp_mb__before_clear_bit();
4039 	clear_bit(NAPI_STATE_SCHED, &n->state);
4040 }
4041 EXPORT_SYMBOL(__napi_complete);
4042 
4043 void napi_complete(struct napi_struct *n)
4044 {
4045 	unsigned long flags;
4046 
4047 	/*
4048 	 * don't let napi dequeue from the cpu poll list
4049 	 * just in case its running on a different cpu
4050 	 */
4051 	if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4052 		return;
4053 
4054 	napi_gro_flush(n, false);
4055 	local_irq_save(flags);
4056 	__napi_complete(n);
4057 	local_irq_restore(flags);
4058 }
4059 EXPORT_SYMBOL(napi_complete);
4060 
4061 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
4062 		    int (*poll)(struct napi_struct *, int), int weight)
4063 {
4064 	INIT_LIST_HEAD(&napi->poll_list);
4065 	napi->gro_count = 0;
4066 	napi->gro_list = NULL;
4067 	napi->skb = NULL;
4068 	napi->poll = poll;
4069 	napi->weight = weight;
4070 	list_add(&napi->dev_list, &dev->napi_list);
4071 	napi->dev = dev;
4072 #ifdef CONFIG_NETPOLL
4073 	spin_lock_init(&napi->poll_lock);
4074 	napi->poll_owner = -1;
4075 #endif
4076 	set_bit(NAPI_STATE_SCHED, &napi->state);
4077 }
4078 EXPORT_SYMBOL(netif_napi_add);
4079 
4080 void netif_napi_del(struct napi_struct *napi)
4081 {
4082 	struct sk_buff *skb, *next;
4083 
4084 	list_del_init(&napi->dev_list);
4085 	napi_free_frags(napi);
4086 
4087 	for (skb = napi->gro_list; skb; skb = next) {
4088 		next = skb->next;
4089 		skb->next = NULL;
4090 		kfree_skb(skb);
4091 	}
4092 
4093 	napi->gro_list = NULL;
4094 	napi->gro_count = 0;
4095 }
4096 EXPORT_SYMBOL(netif_napi_del);
4097 
4098 static void net_rx_action(struct softirq_action *h)
4099 {
4100 	struct softnet_data *sd = &__get_cpu_var(softnet_data);
4101 	unsigned long time_limit = jiffies + 2;
4102 	int budget = netdev_budget;
4103 	void *have;
4104 
4105 	local_irq_disable();
4106 
4107 	while (!list_empty(&sd->poll_list)) {
4108 		struct napi_struct *n;
4109 		int work, weight;
4110 
4111 		/* If softirq window is exhuasted then punt.
4112 		 * Allow this to run for 2 jiffies since which will allow
4113 		 * an average latency of 1.5/HZ.
4114 		 */
4115 		if (unlikely(budget <= 0 || time_after_eq(jiffies, time_limit)))
4116 			goto softnet_break;
4117 
4118 		local_irq_enable();
4119 
4120 		/* Even though interrupts have been re-enabled, this
4121 		 * access is safe because interrupts can only add new
4122 		 * entries to the tail of this list, and only ->poll()
4123 		 * calls can remove this head entry from the list.
4124 		 */
4125 		n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
4126 
4127 		have = netpoll_poll_lock(n);
4128 
4129 		weight = n->weight;
4130 
4131 		/* This NAPI_STATE_SCHED test is for avoiding a race
4132 		 * with netpoll's poll_napi().  Only the entity which
4133 		 * obtains the lock and sees NAPI_STATE_SCHED set will
4134 		 * actually make the ->poll() call.  Therefore we avoid
4135 		 * accidentally calling ->poll() when NAPI is not scheduled.
4136 		 */
4137 		work = 0;
4138 		if (test_bit(NAPI_STATE_SCHED, &n->state)) {
4139 			work = n->poll(n, weight);
4140 			trace_napi_poll(n);
4141 		}
4142 
4143 		WARN_ON_ONCE(work > weight);
4144 
4145 		budget -= work;
4146 
4147 		local_irq_disable();
4148 
4149 		/* Drivers must not modify the NAPI state if they
4150 		 * consume the entire weight.  In such cases this code
4151 		 * still "owns" the NAPI instance and therefore can
4152 		 * move the instance around on the list at-will.
4153 		 */
4154 		if (unlikely(work == weight)) {
4155 			if (unlikely(napi_disable_pending(n))) {
4156 				local_irq_enable();
4157 				napi_complete(n);
4158 				local_irq_disable();
4159 			} else {
4160 				if (n->gro_list) {
4161 					/* flush too old packets
4162 					 * If HZ < 1000, flush all packets.
4163 					 */
4164 					local_irq_enable();
4165 					napi_gro_flush(n, HZ >= 1000);
4166 					local_irq_disable();
4167 				}
4168 				list_move_tail(&n->poll_list, &sd->poll_list);
4169 			}
4170 		}
4171 
4172 		netpoll_poll_unlock(have);
4173 	}
4174 out:
4175 	net_rps_action_and_irq_enable(sd);
4176 
4177 #ifdef CONFIG_NET_DMA
4178 	/*
4179 	 * There may not be any more sk_buffs coming right now, so push
4180 	 * any pending DMA copies to hardware
4181 	 */
4182 	dma_issue_pending_all();
4183 #endif
4184 
4185 	return;
4186 
4187 softnet_break:
4188 	sd->time_squeeze++;
4189 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4190 	goto out;
4191 }
4192 
4193 struct netdev_upper {
4194 	struct net_device *dev;
4195 	bool master;
4196 	struct list_head list;
4197 	struct rcu_head rcu;
4198 	struct list_head search_list;
4199 };
4200 
4201 static void __append_search_uppers(struct list_head *search_list,
4202 				   struct net_device *dev)
4203 {
4204 	struct netdev_upper *upper;
4205 
4206 	list_for_each_entry(upper, &dev->upper_dev_list, list) {
4207 		/* check if this upper is not already in search list */
4208 		if (list_empty(&upper->search_list))
4209 			list_add_tail(&upper->search_list, search_list);
4210 	}
4211 }
4212 
4213 static bool __netdev_search_upper_dev(struct net_device *dev,
4214 				      struct net_device *upper_dev)
4215 {
4216 	LIST_HEAD(search_list);
4217 	struct netdev_upper *upper;
4218 	struct netdev_upper *tmp;
4219 	bool ret = false;
4220 
4221 	__append_search_uppers(&search_list, dev);
4222 	list_for_each_entry(upper, &search_list, search_list) {
4223 		if (upper->dev == upper_dev) {
4224 			ret = true;
4225 			break;
4226 		}
4227 		__append_search_uppers(&search_list, upper->dev);
4228 	}
4229 	list_for_each_entry_safe(upper, tmp, &search_list, search_list)
4230 		INIT_LIST_HEAD(&upper->search_list);
4231 	return ret;
4232 }
4233 
4234 static struct netdev_upper *__netdev_find_upper(struct net_device *dev,
4235 						struct net_device *upper_dev)
4236 {
4237 	struct netdev_upper *upper;
4238 
4239 	list_for_each_entry(upper, &dev->upper_dev_list, list) {
4240 		if (upper->dev == upper_dev)
4241 			return upper;
4242 	}
4243 	return NULL;
4244 }
4245 
4246 /**
4247  * netdev_has_upper_dev - Check if device is linked to an upper device
4248  * @dev: device
4249  * @upper_dev: upper device to check
4250  *
4251  * Find out if a device is linked to specified upper device and return true
4252  * in case it is. Note that this checks only immediate upper device,
4253  * not through a complete stack of devices. The caller must hold the RTNL lock.
4254  */
4255 bool netdev_has_upper_dev(struct net_device *dev,
4256 			  struct net_device *upper_dev)
4257 {
4258 	ASSERT_RTNL();
4259 
4260 	return __netdev_find_upper(dev, upper_dev);
4261 }
4262 EXPORT_SYMBOL(netdev_has_upper_dev);
4263 
4264 /**
4265  * netdev_has_any_upper_dev - Check if device is linked to some device
4266  * @dev: device
4267  *
4268  * Find out if a device is linked to an upper device and return true in case
4269  * it is. The caller must hold the RTNL lock.
4270  */
4271 bool netdev_has_any_upper_dev(struct net_device *dev)
4272 {
4273 	ASSERT_RTNL();
4274 
4275 	return !list_empty(&dev->upper_dev_list);
4276 }
4277 EXPORT_SYMBOL(netdev_has_any_upper_dev);
4278 
4279 /**
4280  * netdev_master_upper_dev_get - Get master upper device
4281  * @dev: device
4282  *
4283  * Find a master upper device and return pointer to it or NULL in case
4284  * it's not there. The caller must hold the RTNL lock.
4285  */
4286 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
4287 {
4288 	struct netdev_upper *upper;
4289 
4290 	ASSERT_RTNL();
4291 
4292 	if (list_empty(&dev->upper_dev_list))
4293 		return NULL;
4294 
4295 	upper = list_first_entry(&dev->upper_dev_list,
4296 				 struct netdev_upper, list);
4297 	if (likely(upper->master))
4298 		return upper->dev;
4299 	return NULL;
4300 }
4301 EXPORT_SYMBOL(netdev_master_upper_dev_get);
4302 
4303 /**
4304  * netdev_master_upper_dev_get_rcu - Get master upper device
4305  * @dev: device
4306  *
4307  * Find a master upper device and return pointer to it or NULL in case
4308  * it's not there. The caller must hold the RCU read lock.
4309  */
4310 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
4311 {
4312 	struct netdev_upper *upper;
4313 
4314 	upper = list_first_or_null_rcu(&dev->upper_dev_list,
4315 				       struct netdev_upper, list);
4316 	if (upper && likely(upper->master))
4317 		return upper->dev;
4318 	return NULL;
4319 }
4320 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
4321 
4322 static int __netdev_upper_dev_link(struct net_device *dev,
4323 				   struct net_device *upper_dev, bool master)
4324 {
4325 	struct netdev_upper *upper;
4326 
4327 	ASSERT_RTNL();
4328 
4329 	if (dev == upper_dev)
4330 		return -EBUSY;
4331 
4332 	/* To prevent loops, check if dev is not upper device to upper_dev. */
4333 	if (__netdev_search_upper_dev(upper_dev, dev))
4334 		return -EBUSY;
4335 
4336 	if (__netdev_find_upper(dev, upper_dev))
4337 		return -EEXIST;
4338 
4339 	if (master && netdev_master_upper_dev_get(dev))
4340 		return -EBUSY;
4341 
4342 	upper = kmalloc(sizeof(*upper), GFP_KERNEL);
4343 	if (!upper)
4344 		return -ENOMEM;
4345 
4346 	upper->dev = upper_dev;
4347 	upper->master = master;
4348 	INIT_LIST_HEAD(&upper->search_list);
4349 
4350 	/* Ensure that master upper link is always the first item in list. */
4351 	if (master)
4352 		list_add_rcu(&upper->list, &dev->upper_dev_list);
4353 	else
4354 		list_add_tail_rcu(&upper->list, &dev->upper_dev_list);
4355 	dev_hold(upper_dev);
4356 
4357 	return 0;
4358 }
4359 
4360 /**
4361  * netdev_upper_dev_link - Add a link to the upper device
4362  * @dev: device
4363  * @upper_dev: new upper device
4364  *
4365  * Adds a link to device which is upper to this one. The caller must hold
4366  * the RTNL lock. On a failure a negative errno code is returned.
4367  * On success the reference counts are adjusted and the function
4368  * returns zero.
4369  */
4370 int netdev_upper_dev_link(struct net_device *dev,
4371 			  struct net_device *upper_dev)
4372 {
4373 	return __netdev_upper_dev_link(dev, upper_dev, false);
4374 }
4375 EXPORT_SYMBOL(netdev_upper_dev_link);
4376 
4377 /**
4378  * netdev_master_upper_dev_link - Add a master link to the upper device
4379  * @dev: device
4380  * @upper_dev: new upper device
4381  *
4382  * Adds a link to device which is upper to this one. In this case, only
4383  * one master upper device can be linked, although other non-master devices
4384  * might be linked as well. The caller must hold the RTNL lock.
4385  * On a failure a negative errno code is returned. On success the reference
4386  * counts are adjusted and the function returns zero.
4387  */
4388 int netdev_master_upper_dev_link(struct net_device *dev,
4389 				 struct net_device *upper_dev)
4390 {
4391 	return __netdev_upper_dev_link(dev, upper_dev, true);
4392 }
4393 EXPORT_SYMBOL(netdev_master_upper_dev_link);
4394 
4395 /**
4396  * netdev_upper_dev_unlink - Removes a link to upper device
4397  * @dev: device
4398  * @upper_dev: new upper device
4399  *
4400  * Removes a link to device which is upper to this one. The caller must hold
4401  * the RTNL lock.
4402  */
4403 void netdev_upper_dev_unlink(struct net_device *dev,
4404 			     struct net_device *upper_dev)
4405 {
4406 	struct netdev_upper *upper;
4407 
4408 	ASSERT_RTNL();
4409 
4410 	upper = __netdev_find_upper(dev, upper_dev);
4411 	if (!upper)
4412 		return;
4413 	list_del_rcu(&upper->list);
4414 	dev_put(upper_dev);
4415 	kfree_rcu(upper, rcu);
4416 }
4417 EXPORT_SYMBOL(netdev_upper_dev_unlink);
4418 
4419 static void dev_change_rx_flags(struct net_device *dev, int flags)
4420 {
4421 	const struct net_device_ops *ops = dev->netdev_ops;
4422 
4423 	if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
4424 		ops->ndo_change_rx_flags(dev, flags);
4425 }
4426 
4427 static int __dev_set_promiscuity(struct net_device *dev, int inc)
4428 {
4429 	unsigned int old_flags = dev->flags;
4430 	kuid_t uid;
4431 	kgid_t gid;
4432 
4433 	ASSERT_RTNL();
4434 
4435 	dev->flags |= IFF_PROMISC;
4436 	dev->promiscuity += inc;
4437 	if (dev->promiscuity == 0) {
4438 		/*
4439 		 * Avoid overflow.
4440 		 * If inc causes overflow, untouch promisc and return error.
4441 		 */
4442 		if (inc < 0)
4443 			dev->flags &= ~IFF_PROMISC;
4444 		else {
4445 			dev->promiscuity -= inc;
4446 			pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
4447 				dev->name);
4448 			return -EOVERFLOW;
4449 		}
4450 	}
4451 	if (dev->flags != old_flags) {
4452 		pr_info("device %s %s promiscuous mode\n",
4453 			dev->name,
4454 			dev->flags & IFF_PROMISC ? "entered" : "left");
4455 		if (audit_enabled) {
4456 			current_uid_gid(&uid, &gid);
4457 			audit_log(current->audit_context, GFP_ATOMIC,
4458 				AUDIT_ANOM_PROMISCUOUS,
4459 				"dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
4460 				dev->name, (dev->flags & IFF_PROMISC),
4461 				(old_flags & IFF_PROMISC),
4462 				from_kuid(&init_user_ns, audit_get_loginuid(current)),
4463 				from_kuid(&init_user_ns, uid),
4464 				from_kgid(&init_user_ns, gid),
4465 				audit_get_sessionid(current));
4466 		}
4467 
4468 		dev_change_rx_flags(dev, IFF_PROMISC);
4469 	}
4470 	return 0;
4471 }
4472 
4473 /**
4474  *	dev_set_promiscuity	- update promiscuity count on a device
4475  *	@dev: device
4476  *	@inc: modifier
4477  *
4478  *	Add or remove promiscuity from a device. While the count in the device
4479  *	remains above zero the interface remains promiscuous. Once it hits zero
4480  *	the device reverts back to normal filtering operation. A negative inc
4481  *	value is used to drop promiscuity on the device.
4482  *	Return 0 if successful or a negative errno code on error.
4483  */
4484 int dev_set_promiscuity(struct net_device *dev, int inc)
4485 {
4486 	unsigned int old_flags = dev->flags;
4487 	int err;
4488 
4489 	err = __dev_set_promiscuity(dev, inc);
4490 	if (err < 0)
4491 		return err;
4492 	if (dev->flags != old_flags)
4493 		dev_set_rx_mode(dev);
4494 	return err;
4495 }
4496 EXPORT_SYMBOL(dev_set_promiscuity);
4497 
4498 /**
4499  *	dev_set_allmulti	- update allmulti count on a device
4500  *	@dev: device
4501  *	@inc: modifier
4502  *
4503  *	Add or remove reception of all multicast frames to a device. While the
4504  *	count in the device remains above zero the interface remains listening
4505  *	to all interfaces. Once it hits zero the device reverts back to normal
4506  *	filtering operation. A negative @inc value is used to drop the counter
4507  *	when releasing a resource needing all multicasts.
4508  *	Return 0 if successful or a negative errno code on error.
4509  */
4510 
4511 int dev_set_allmulti(struct net_device *dev, int inc)
4512 {
4513 	unsigned int old_flags = dev->flags;
4514 
4515 	ASSERT_RTNL();
4516 
4517 	dev->flags |= IFF_ALLMULTI;
4518 	dev->allmulti += inc;
4519 	if (dev->allmulti == 0) {
4520 		/*
4521 		 * Avoid overflow.
4522 		 * If inc causes overflow, untouch allmulti and return error.
4523 		 */
4524 		if (inc < 0)
4525 			dev->flags &= ~IFF_ALLMULTI;
4526 		else {
4527 			dev->allmulti -= inc;
4528 			pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
4529 				dev->name);
4530 			return -EOVERFLOW;
4531 		}
4532 	}
4533 	if (dev->flags ^ old_flags) {
4534 		dev_change_rx_flags(dev, IFF_ALLMULTI);
4535 		dev_set_rx_mode(dev);
4536 	}
4537 	return 0;
4538 }
4539 EXPORT_SYMBOL(dev_set_allmulti);
4540 
4541 /*
4542  *	Upload unicast and multicast address lists to device and
4543  *	configure RX filtering. When the device doesn't support unicast
4544  *	filtering it is put in promiscuous mode while unicast addresses
4545  *	are present.
4546  */
4547 void __dev_set_rx_mode(struct net_device *dev)
4548 {
4549 	const struct net_device_ops *ops = dev->netdev_ops;
4550 
4551 	/* dev_open will call this function so the list will stay sane. */
4552 	if (!(dev->flags&IFF_UP))
4553 		return;
4554 
4555 	if (!netif_device_present(dev))
4556 		return;
4557 
4558 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
4559 		/* Unicast addresses changes may only happen under the rtnl,
4560 		 * therefore calling __dev_set_promiscuity here is safe.
4561 		 */
4562 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
4563 			__dev_set_promiscuity(dev, 1);
4564 			dev->uc_promisc = true;
4565 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
4566 			__dev_set_promiscuity(dev, -1);
4567 			dev->uc_promisc = false;
4568 		}
4569 	}
4570 
4571 	if (ops->ndo_set_rx_mode)
4572 		ops->ndo_set_rx_mode(dev);
4573 }
4574 
4575 void dev_set_rx_mode(struct net_device *dev)
4576 {
4577 	netif_addr_lock_bh(dev);
4578 	__dev_set_rx_mode(dev);
4579 	netif_addr_unlock_bh(dev);
4580 }
4581 
4582 /**
4583  *	dev_get_flags - get flags reported to userspace
4584  *	@dev: device
4585  *
4586  *	Get the combination of flag bits exported through APIs to userspace.
4587  */
4588 unsigned int dev_get_flags(const struct net_device *dev)
4589 {
4590 	unsigned int flags;
4591 
4592 	flags = (dev->flags & ~(IFF_PROMISC |
4593 				IFF_ALLMULTI |
4594 				IFF_RUNNING |
4595 				IFF_LOWER_UP |
4596 				IFF_DORMANT)) |
4597 		(dev->gflags & (IFF_PROMISC |
4598 				IFF_ALLMULTI));
4599 
4600 	if (netif_running(dev)) {
4601 		if (netif_oper_up(dev))
4602 			flags |= IFF_RUNNING;
4603 		if (netif_carrier_ok(dev))
4604 			flags |= IFF_LOWER_UP;
4605 		if (netif_dormant(dev))
4606 			flags |= IFF_DORMANT;
4607 	}
4608 
4609 	return flags;
4610 }
4611 EXPORT_SYMBOL(dev_get_flags);
4612 
4613 int __dev_change_flags(struct net_device *dev, unsigned int flags)
4614 {
4615 	unsigned int old_flags = dev->flags;
4616 	int ret;
4617 
4618 	ASSERT_RTNL();
4619 
4620 	/*
4621 	 *	Set the flags on our device.
4622 	 */
4623 
4624 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4625 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4626 			       IFF_AUTOMEDIA)) |
4627 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4628 				    IFF_ALLMULTI));
4629 
4630 	/*
4631 	 *	Load in the correct multicast list now the flags have changed.
4632 	 */
4633 
4634 	if ((old_flags ^ flags) & IFF_MULTICAST)
4635 		dev_change_rx_flags(dev, IFF_MULTICAST);
4636 
4637 	dev_set_rx_mode(dev);
4638 
4639 	/*
4640 	 *	Have we downed the interface. We handle IFF_UP ourselves
4641 	 *	according to user attempts to set it, rather than blindly
4642 	 *	setting it.
4643 	 */
4644 
4645 	ret = 0;
4646 	if ((old_flags ^ flags) & IFF_UP) {	/* Bit is different  ? */
4647 		ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
4648 
4649 		if (!ret)
4650 			dev_set_rx_mode(dev);
4651 	}
4652 
4653 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
4654 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
4655 
4656 		dev->gflags ^= IFF_PROMISC;
4657 		dev_set_promiscuity(dev, inc);
4658 	}
4659 
4660 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4661 	   is important. Some (broken) drivers set IFF_PROMISC, when
4662 	   IFF_ALLMULTI is requested not asking us and not reporting.
4663 	 */
4664 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4665 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4666 
4667 		dev->gflags ^= IFF_ALLMULTI;
4668 		dev_set_allmulti(dev, inc);
4669 	}
4670 
4671 	return ret;
4672 }
4673 
4674 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
4675 {
4676 	unsigned int changes = dev->flags ^ old_flags;
4677 
4678 	if (changes & IFF_UP) {
4679 		if (dev->flags & IFF_UP)
4680 			call_netdevice_notifiers(NETDEV_UP, dev);
4681 		else
4682 			call_netdevice_notifiers(NETDEV_DOWN, dev);
4683 	}
4684 
4685 	if (dev->flags & IFF_UP &&
4686 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE)))
4687 		call_netdevice_notifiers(NETDEV_CHANGE, dev);
4688 }
4689 
4690 /**
4691  *	dev_change_flags - change device settings
4692  *	@dev: device
4693  *	@flags: device state flags
4694  *
4695  *	Change settings on device based state flags. The flags are
4696  *	in the userspace exported format.
4697  */
4698 int dev_change_flags(struct net_device *dev, unsigned int flags)
4699 {
4700 	int ret;
4701 	unsigned int changes, old_flags = dev->flags;
4702 
4703 	ret = __dev_change_flags(dev, flags);
4704 	if (ret < 0)
4705 		return ret;
4706 
4707 	changes = old_flags ^ dev->flags;
4708 	if (changes)
4709 		rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4710 
4711 	__dev_notify_flags(dev, old_flags);
4712 	return ret;
4713 }
4714 EXPORT_SYMBOL(dev_change_flags);
4715 
4716 /**
4717  *	dev_set_mtu - Change maximum transfer unit
4718  *	@dev: device
4719  *	@new_mtu: new transfer unit
4720  *
4721  *	Change the maximum transfer size of the network device.
4722  */
4723 int dev_set_mtu(struct net_device *dev, int new_mtu)
4724 {
4725 	const struct net_device_ops *ops = dev->netdev_ops;
4726 	int err;
4727 
4728 	if (new_mtu == dev->mtu)
4729 		return 0;
4730 
4731 	/*	MTU must be positive.	 */
4732 	if (new_mtu < 0)
4733 		return -EINVAL;
4734 
4735 	if (!netif_device_present(dev))
4736 		return -ENODEV;
4737 
4738 	err = 0;
4739 	if (ops->ndo_change_mtu)
4740 		err = ops->ndo_change_mtu(dev, new_mtu);
4741 	else
4742 		dev->mtu = new_mtu;
4743 
4744 	if (!err)
4745 		call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4746 	return err;
4747 }
4748 EXPORT_SYMBOL(dev_set_mtu);
4749 
4750 /**
4751  *	dev_set_group - Change group this device belongs to
4752  *	@dev: device
4753  *	@new_group: group this device should belong to
4754  */
4755 void dev_set_group(struct net_device *dev, int new_group)
4756 {
4757 	dev->group = new_group;
4758 }
4759 EXPORT_SYMBOL(dev_set_group);
4760 
4761 /**
4762  *	dev_set_mac_address - Change Media Access Control Address
4763  *	@dev: device
4764  *	@sa: new address
4765  *
4766  *	Change the hardware (MAC) address of the device
4767  */
4768 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4769 {
4770 	const struct net_device_ops *ops = dev->netdev_ops;
4771 	int err;
4772 
4773 	if (!ops->ndo_set_mac_address)
4774 		return -EOPNOTSUPP;
4775 	if (sa->sa_family != dev->type)
4776 		return -EINVAL;
4777 	if (!netif_device_present(dev))
4778 		return -ENODEV;
4779 	err = ops->ndo_set_mac_address(dev, sa);
4780 	if (err)
4781 		return err;
4782 	dev->addr_assign_type = NET_ADDR_SET;
4783 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4784 	add_device_randomness(dev->dev_addr, dev->addr_len);
4785 	return 0;
4786 }
4787 EXPORT_SYMBOL(dev_set_mac_address);
4788 
4789 /**
4790  *	dev_change_carrier - Change device carrier
4791  *	@dev: device
4792  *	@new_carrier: new value
4793  *
4794  *	Change device carrier
4795  */
4796 int dev_change_carrier(struct net_device *dev, bool new_carrier)
4797 {
4798 	const struct net_device_ops *ops = dev->netdev_ops;
4799 
4800 	if (!ops->ndo_change_carrier)
4801 		return -EOPNOTSUPP;
4802 	if (!netif_device_present(dev))
4803 		return -ENODEV;
4804 	return ops->ndo_change_carrier(dev, new_carrier);
4805 }
4806 EXPORT_SYMBOL(dev_change_carrier);
4807 
4808 /**
4809  *	dev_new_index	-	allocate an ifindex
4810  *	@net: the applicable net namespace
4811  *
4812  *	Returns a suitable unique value for a new device interface
4813  *	number.  The caller must hold the rtnl semaphore or the
4814  *	dev_base_lock to be sure it remains unique.
4815  */
4816 static int dev_new_index(struct net *net)
4817 {
4818 	int ifindex = net->ifindex;
4819 	for (;;) {
4820 		if (++ifindex <= 0)
4821 			ifindex = 1;
4822 		if (!__dev_get_by_index(net, ifindex))
4823 			return net->ifindex = ifindex;
4824 	}
4825 }
4826 
4827 /* Delayed registration/unregisteration */
4828 static LIST_HEAD(net_todo_list);
4829 
4830 static void net_set_todo(struct net_device *dev)
4831 {
4832 	list_add_tail(&dev->todo_list, &net_todo_list);
4833 }
4834 
4835 static void rollback_registered_many(struct list_head *head)
4836 {
4837 	struct net_device *dev, *tmp;
4838 
4839 	BUG_ON(dev_boot_phase);
4840 	ASSERT_RTNL();
4841 
4842 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
4843 		/* Some devices call without registering
4844 		 * for initialization unwind. Remove those
4845 		 * devices and proceed with the remaining.
4846 		 */
4847 		if (dev->reg_state == NETREG_UNINITIALIZED) {
4848 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
4849 				 dev->name, dev);
4850 
4851 			WARN_ON(1);
4852 			list_del(&dev->unreg_list);
4853 			continue;
4854 		}
4855 		dev->dismantle = true;
4856 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
4857 	}
4858 
4859 	/* If device is running, close it first. */
4860 	dev_close_many(head);
4861 
4862 	list_for_each_entry(dev, head, unreg_list) {
4863 		/* And unlink it from device chain. */
4864 		unlist_netdevice(dev);
4865 
4866 		dev->reg_state = NETREG_UNREGISTERING;
4867 	}
4868 
4869 	synchronize_net();
4870 
4871 	list_for_each_entry(dev, head, unreg_list) {
4872 		/* Shutdown queueing discipline. */
4873 		dev_shutdown(dev);
4874 
4875 
4876 		/* Notify protocols, that we are about to destroy
4877 		   this device. They should clean all the things.
4878 		*/
4879 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4880 
4881 		if (!dev->rtnl_link_ops ||
4882 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
4883 			rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
4884 
4885 		/*
4886 		 *	Flush the unicast and multicast chains
4887 		 */
4888 		dev_uc_flush(dev);
4889 		dev_mc_flush(dev);
4890 
4891 		if (dev->netdev_ops->ndo_uninit)
4892 			dev->netdev_ops->ndo_uninit(dev);
4893 
4894 		/* Notifier chain MUST detach us all upper devices. */
4895 		WARN_ON(netdev_has_any_upper_dev(dev));
4896 
4897 		/* Remove entries from kobject tree */
4898 		netdev_unregister_kobject(dev);
4899 #ifdef CONFIG_XPS
4900 		/* Remove XPS queueing entries */
4901 		netif_reset_xps_queues_gt(dev, 0);
4902 #endif
4903 	}
4904 
4905 	synchronize_net();
4906 
4907 	list_for_each_entry(dev, head, unreg_list)
4908 		dev_put(dev);
4909 }
4910 
4911 static void rollback_registered(struct net_device *dev)
4912 {
4913 	LIST_HEAD(single);
4914 
4915 	list_add(&dev->unreg_list, &single);
4916 	rollback_registered_many(&single);
4917 	list_del(&single);
4918 }
4919 
4920 static netdev_features_t netdev_fix_features(struct net_device *dev,
4921 	netdev_features_t features)
4922 {
4923 	/* Fix illegal checksum combinations */
4924 	if ((features & NETIF_F_HW_CSUM) &&
4925 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
4926 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
4927 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4928 	}
4929 
4930 	/* Fix illegal SG+CSUM combinations. */
4931 	if ((features & NETIF_F_SG) &&
4932 	    !(features & NETIF_F_ALL_CSUM)) {
4933 		netdev_dbg(dev,
4934 			"Dropping NETIF_F_SG since no checksum feature.\n");
4935 		features &= ~NETIF_F_SG;
4936 	}
4937 
4938 	/* TSO requires that SG is present as well. */
4939 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
4940 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
4941 		features &= ~NETIF_F_ALL_TSO;
4942 	}
4943 
4944 	/* TSO ECN requires that TSO is present as well. */
4945 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
4946 		features &= ~NETIF_F_TSO_ECN;
4947 
4948 	/* Software GSO depends on SG. */
4949 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
4950 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
4951 		features &= ~NETIF_F_GSO;
4952 	}
4953 
4954 	/* UFO needs SG and checksumming */
4955 	if (features & NETIF_F_UFO) {
4956 		/* maybe split UFO into V4 and V6? */
4957 		if (!((features & NETIF_F_GEN_CSUM) ||
4958 		    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
4959 			    == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
4960 			netdev_dbg(dev,
4961 				"Dropping NETIF_F_UFO since no checksum offload features.\n");
4962 			features &= ~NETIF_F_UFO;
4963 		}
4964 
4965 		if (!(features & NETIF_F_SG)) {
4966 			netdev_dbg(dev,
4967 				"Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
4968 			features &= ~NETIF_F_UFO;
4969 		}
4970 	}
4971 
4972 	return features;
4973 }
4974 
4975 int __netdev_update_features(struct net_device *dev)
4976 {
4977 	netdev_features_t features;
4978 	int err = 0;
4979 
4980 	ASSERT_RTNL();
4981 
4982 	features = netdev_get_wanted_features(dev);
4983 
4984 	if (dev->netdev_ops->ndo_fix_features)
4985 		features = dev->netdev_ops->ndo_fix_features(dev, features);
4986 
4987 	/* driver might be less strict about feature dependencies */
4988 	features = netdev_fix_features(dev, features);
4989 
4990 	if (dev->features == features)
4991 		return 0;
4992 
4993 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
4994 		&dev->features, &features);
4995 
4996 	if (dev->netdev_ops->ndo_set_features)
4997 		err = dev->netdev_ops->ndo_set_features(dev, features);
4998 
4999 	if (unlikely(err < 0)) {
5000 		netdev_err(dev,
5001 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
5002 			err, &features, &dev->features);
5003 		return -1;
5004 	}
5005 
5006 	if (!err)
5007 		dev->features = features;
5008 
5009 	return 1;
5010 }
5011 
5012 /**
5013  *	netdev_update_features - recalculate device features
5014  *	@dev: the device to check
5015  *
5016  *	Recalculate dev->features set and send notifications if it
5017  *	has changed. Should be called after driver or hardware dependent
5018  *	conditions might have changed that influence the features.
5019  */
5020 void netdev_update_features(struct net_device *dev)
5021 {
5022 	if (__netdev_update_features(dev))
5023 		netdev_features_change(dev);
5024 }
5025 EXPORT_SYMBOL(netdev_update_features);
5026 
5027 /**
5028  *	netdev_change_features - recalculate device features
5029  *	@dev: the device to check
5030  *
5031  *	Recalculate dev->features set and send notifications even
5032  *	if they have not changed. Should be called instead of
5033  *	netdev_update_features() if also dev->vlan_features might
5034  *	have changed to allow the changes to be propagated to stacked
5035  *	VLAN devices.
5036  */
5037 void netdev_change_features(struct net_device *dev)
5038 {
5039 	__netdev_update_features(dev);
5040 	netdev_features_change(dev);
5041 }
5042 EXPORT_SYMBOL(netdev_change_features);
5043 
5044 /**
5045  *	netif_stacked_transfer_operstate -	transfer operstate
5046  *	@rootdev: the root or lower level device to transfer state from
5047  *	@dev: the device to transfer operstate to
5048  *
5049  *	Transfer operational state from root to device. This is normally
5050  *	called when a stacking relationship exists between the root
5051  *	device and the device(a leaf device).
5052  */
5053 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5054 					struct net_device *dev)
5055 {
5056 	if (rootdev->operstate == IF_OPER_DORMANT)
5057 		netif_dormant_on(dev);
5058 	else
5059 		netif_dormant_off(dev);
5060 
5061 	if (netif_carrier_ok(rootdev)) {
5062 		if (!netif_carrier_ok(dev))
5063 			netif_carrier_on(dev);
5064 	} else {
5065 		if (netif_carrier_ok(dev))
5066 			netif_carrier_off(dev);
5067 	}
5068 }
5069 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5070 
5071 #ifdef CONFIG_RPS
5072 static int netif_alloc_rx_queues(struct net_device *dev)
5073 {
5074 	unsigned int i, count = dev->num_rx_queues;
5075 	struct netdev_rx_queue *rx;
5076 
5077 	BUG_ON(count < 1);
5078 
5079 	rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5080 	if (!rx)
5081 		return -ENOMEM;
5082 
5083 	dev->_rx = rx;
5084 
5085 	for (i = 0; i < count; i++)
5086 		rx[i].dev = dev;
5087 	return 0;
5088 }
5089 #endif
5090 
5091 static void netdev_init_one_queue(struct net_device *dev,
5092 				  struct netdev_queue *queue, void *_unused)
5093 {
5094 	/* Initialize queue lock */
5095 	spin_lock_init(&queue->_xmit_lock);
5096 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
5097 	queue->xmit_lock_owner = -1;
5098 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
5099 	queue->dev = dev;
5100 #ifdef CONFIG_BQL
5101 	dql_init(&queue->dql, HZ);
5102 #endif
5103 }
5104 
5105 static int netif_alloc_netdev_queues(struct net_device *dev)
5106 {
5107 	unsigned int count = dev->num_tx_queues;
5108 	struct netdev_queue *tx;
5109 
5110 	BUG_ON(count < 1);
5111 
5112 	tx = kcalloc(count, sizeof(struct netdev_queue), GFP_KERNEL);
5113 	if (!tx)
5114 		return -ENOMEM;
5115 
5116 	dev->_tx = tx;
5117 
5118 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5119 	spin_lock_init(&dev->tx_global_lock);
5120 
5121 	return 0;
5122 }
5123 
5124 /**
5125  *	register_netdevice	- register a network device
5126  *	@dev: device to register
5127  *
5128  *	Take a completed network device structure and add it to the kernel
5129  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5130  *	chain. 0 is returned on success. A negative errno code is returned
5131  *	on a failure to set up the device, or if the name is a duplicate.
5132  *
5133  *	Callers must hold the rtnl semaphore. You may want
5134  *	register_netdev() instead of this.
5135  *
5136  *	BUGS:
5137  *	The locking appears insufficient to guarantee two parallel registers
5138  *	will not get the same name.
5139  */
5140 
5141 int register_netdevice(struct net_device *dev)
5142 {
5143 	int ret;
5144 	struct net *net = dev_net(dev);
5145 
5146 	BUG_ON(dev_boot_phase);
5147 	ASSERT_RTNL();
5148 
5149 	might_sleep();
5150 
5151 	/* When net_device's are persistent, this will be fatal. */
5152 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
5153 	BUG_ON(!net);
5154 
5155 	spin_lock_init(&dev->addr_list_lock);
5156 	netdev_set_addr_lockdep_class(dev);
5157 
5158 	dev->iflink = -1;
5159 
5160 	ret = dev_get_valid_name(net, dev, dev->name);
5161 	if (ret < 0)
5162 		goto out;
5163 
5164 	/* Init, if this function is available */
5165 	if (dev->netdev_ops->ndo_init) {
5166 		ret = dev->netdev_ops->ndo_init(dev);
5167 		if (ret) {
5168 			if (ret > 0)
5169 				ret = -EIO;
5170 			goto out;
5171 		}
5172 	}
5173 
5174 	if (((dev->hw_features | dev->features) & NETIF_F_HW_VLAN_FILTER) &&
5175 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
5176 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
5177 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
5178 		ret = -EINVAL;
5179 		goto err_uninit;
5180 	}
5181 
5182 	ret = -EBUSY;
5183 	if (!dev->ifindex)
5184 		dev->ifindex = dev_new_index(net);
5185 	else if (__dev_get_by_index(net, dev->ifindex))
5186 		goto err_uninit;
5187 
5188 	if (dev->iflink == -1)
5189 		dev->iflink = dev->ifindex;
5190 
5191 	/* Transfer changeable features to wanted_features and enable
5192 	 * software offloads (GSO and GRO).
5193 	 */
5194 	dev->hw_features |= NETIF_F_SOFT_FEATURES;
5195 	dev->features |= NETIF_F_SOFT_FEATURES;
5196 	dev->wanted_features = dev->features & dev->hw_features;
5197 
5198 	/* Turn on no cache copy if HW is doing checksum */
5199 	if (!(dev->flags & IFF_LOOPBACK)) {
5200 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
5201 		if (dev->features & NETIF_F_ALL_CSUM) {
5202 			dev->wanted_features |= NETIF_F_NOCACHE_COPY;
5203 			dev->features |= NETIF_F_NOCACHE_COPY;
5204 		}
5205 	}
5206 
5207 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
5208 	 */
5209 	dev->vlan_features |= NETIF_F_HIGHDMA;
5210 
5211 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5212 	ret = notifier_to_errno(ret);
5213 	if (ret)
5214 		goto err_uninit;
5215 
5216 	ret = netdev_register_kobject(dev);
5217 	if (ret)
5218 		goto err_uninit;
5219 	dev->reg_state = NETREG_REGISTERED;
5220 
5221 	__netdev_update_features(dev);
5222 
5223 	/*
5224 	 *	Default initial state at registry is that the
5225 	 *	device is present.
5226 	 */
5227 
5228 	set_bit(__LINK_STATE_PRESENT, &dev->state);
5229 
5230 	linkwatch_init_dev(dev);
5231 
5232 	dev_init_scheduler(dev);
5233 	dev_hold(dev);
5234 	list_netdevice(dev);
5235 	add_device_randomness(dev->dev_addr, dev->addr_len);
5236 
5237 	/* If the device has permanent device address, driver should
5238 	 * set dev_addr and also addr_assign_type should be set to
5239 	 * NET_ADDR_PERM (default value).
5240 	 */
5241 	if (dev->addr_assign_type == NET_ADDR_PERM)
5242 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
5243 
5244 	/* Notify protocols, that a new device appeared. */
5245 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5246 	ret = notifier_to_errno(ret);
5247 	if (ret) {
5248 		rollback_registered(dev);
5249 		dev->reg_state = NETREG_UNREGISTERED;
5250 	}
5251 	/*
5252 	 *	Prevent userspace races by waiting until the network
5253 	 *	device is fully setup before sending notifications.
5254 	 */
5255 	if (!dev->rtnl_link_ops ||
5256 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5257 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5258 
5259 out:
5260 	return ret;
5261 
5262 err_uninit:
5263 	if (dev->netdev_ops->ndo_uninit)
5264 		dev->netdev_ops->ndo_uninit(dev);
5265 	goto out;
5266 }
5267 EXPORT_SYMBOL(register_netdevice);
5268 
5269 /**
5270  *	init_dummy_netdev	- init a dummy network device for NAPI
5271  *	@dev: device to init
5272  *
5273  *	This takes a network device structure and initialize the minimum
5274  *	amount of fields so it can be used to schedule NAPI polls without
5275  *	registering a full blown interface. This is to be used by drivers
5276  *	that need to tie several hardware interfaces to a single NAPI
5277  *	poll scheduler due to HW limitations.
5278  */
5279 int init_dummy_netdev(struct net_device *dev)
5280 {
5281 	/* Clear everything. Note we don't initialize spinlocks
5282 	 * are they aren't supposed to be taken by any of the
5283 	 * NAPI code and this dummy netdev is supposed to be
5284 	 * only ever used for NAPI polls
5285 	 */
5286 	memset(dev, 0, sizeof(struct net_device));
5287 
5288 	/* make sure we BUG if trying to hit standard
5289 	 * register/unregister code path
5290 	 */
5291 	dev->reg_state = NETREG_DUMMY;
5292 
5293 	/* NAPI wants this */
5294 	INIT_LIST_HEAD(&dev->napi_list);
5295 
5296 	/* a dummy interface is started by default */
5297 	set_bit(__LINK_STATE_PRESENT, &dev->state);
5298 	set_bit(__LINK_STATE_START, &dev->state);
5299 
5300 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
5301 	 * because users of this 'device' dont need to change
5302 	 * its refcount.
5303 	 */
5304 
5305 	return 0;
5306 }
5307 EXPORT_SYMBOL_GPL(init_dummy_netdev);
5308 
5309 
5310 /**
5311  *	register_netdev	- register a network device
5312  *	@dev: device to register
5313  *
5314  *	Take a completed network device structure and add it to the kernel
5315  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5316  *	chain. 0 is returned on success. A negative errno code is returned
5317  *	on a failure to set up the device, or if the name is a duplicate.
5318  *
5319  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
5320  *	and expands the device name if you passed a format string to
5321  *	alloc_netdev.
5322  */
5323 int register_netdev(struct net_device *dev)
5324 {
5325 	int err;
5326 
5327 	rtnl_lock();
5328 	err = register_netdevice(dev);
5329 	rtnl_unlock();
5330 	return err;
5331 }
5332 EXPORT_SYMBOL(register_netdev);
5333 
5334 int netdev_refcnt_read(const struct net_device *dev)
5335 {
5336 	int i, refcnt = 0;
5337 
5338 	for_each_possible_cpu(i)
5339 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
5340 	return refcnt;
5341 }
5342 EXPORT_SYMBOL(netdev_refcnt_read);
5343 
5344 /**
5345  * netdev_wait_allrefs - wait until all references are gone.
5346  * @dev: target net_device
5347  *
5348  * This is called when unregistering network devices.
5349  *
5350  * Any protocol or device that holds a reference should register
5351  * for netdevice notification, and cleanup and put back the
5352  * reference if they receive an UNREGISTER event.
5353  * We can get stuck here if buggy protocols don't correctly
5354  * call dev_put.
5355  */
5356 static void netdev_wait_allrefs(struct net_device *dev)
5357 {
5358 	unsigned long rebroadcast_time, warning_time;
5359 	int refcnt;
5360 
5361 	linkwatch_forget_dev(dev);
5362 
5363 	rebroadcast_time = warning_time = jiffies;
5364 	refcnt = netdev_refcnt_read(dev);
5365 
5366 	while (refcnt != 0) {
5367 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5368 			rtnl_lock();
5369 
5370 			/* Rebroadcast unregister notification */
5371 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5372 
5373 			__rtnl_unlock();
5374 			rcu_barrier();
5375 			rtnl_lock();
5376 
5377 			call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
5378 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5379 				     &dev->state)) {
5380 				/* We must not have linkwatch events
5381 				 * pending on unregister. If this
5382 				 * happens, we simply run the queue
5383 				 * unscheduled, resulting in a noop
5384 				 * for this device.
5385 				 */
5386 				linkwatch_run_queue();
5387 			}
5388 
5389 			__rtnl_unlock();
5390 
5391 			rebroadcast_time = jiffies;
5392 		}
5393 
5394 		msleep(250);
5395 
5396 		refcnt = netdev_refcnt_read(dev);
5397 
5398 		if (time_after(jiffies, warning_time + 10 * HZ)) {
5399 			pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
5400 				 dev->name, refcnt);
5401 			warning_time = jiffies;
5402 		}
5403 	}
5404 }
5405 
5406 /* The sequence is:
5407  *
5408  *	rtnl_lock();
5409  *	...
5410  *	register_netdevice(x1);
5411  *	register_netdevice(x2);
5412  *	...
5413  *	unregister_netdevice(y1);
5414  *	unregister_netdevice(y2);
5415  *      ...
5416  *	rtnl_unlock();
5417  *	free_netdev(y1);
5418  *	free_netdev(y2);
5419  *
5420  * We are invoked by rtnl_unlock().
5421  * This allows us to deal with problems:
5422  * 1) We can delete sysfs objects which invoke hotplug
5423  *    without deadlocking with linkwatch via keventd.
5424  * 2) Since we run with the RTNL semaphore not held, we can sleep
5425  *    safely in order to wait for the netdev refcnt to drop to zero.
5426  *
5427  * We must not return until all unregister events added during
5428  * the interval the lock was held have been completed.
5429  */
5430 void netdev_run_todo(void)
5431 {
5432 	struct list_head list;
5433 
5434 	/* Snapshot list, allow later requests */
5435 	list_replace_init(&net_todo_list, &list);
5436 
5437 	__rtnl_unlock();
5438 
5439 
5440 	/* Wait for rcu callbacks to finish before next phase */
5441 	if (!list_empty(&list))
5442 		rcu_barrier();
5443 
5444 	while (!list_empty(&list)) {
5445 		struct net_device *dev
5446 			= list_first_entry(&list, struct net_device, todo_list);
5447 		list_del(&dev->todo_list);
5448 
5449 		rtnl_lock();
5450 		call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
5451 		__rtnl_unlock();
5452 
5453 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5454 			pr_err("network todo '%s' but state %d\n",
5455 			       dev->name, dev->reg_state);
5456 			dump_stack();
5457 			continue;
5458 		}
5459 
5460 		dev->reg_state = NETREG_UNREGISTERED;
5461 
5462 		on_each_cpu(flush_backlog, dev, 1);
5463 
5464 		netdev_wait_allrefs(dev);
5465 
5466 		/* paranoia */
5467 		BUG_ON(netdev_refcnt_read(dev));
5468 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
5469 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
5470 		WARN_ON(dev->dn_ptr);
5471 
5472 		if (dev->destructor)
5473 			dev->destructor(dev);
5474 
5475 		/* Free network device */
5476 		kobject_put(&dev->dev.kobj);
5477 	}
5478 }
5479 
5480 /* Convert net_device_stats to rtnl_link_stats64.  They have the same
5481  * fields in the same order, with only the type differing.
5482  */
5483 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
5484 			     const struct net_device_stats *netdev_stats)
5485 {
5486 #if BITS_PER_LONG == 64
5487 	BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
5488 	memcpy(stats64, netdev_stats, sizeof(*stats64));
5489 #else
5490 	size_t i, n = sizeof(*stats64) / sizeof(u64);
5491 	const unsigned long *src = (const unsigned long *)netdev_stats;
5492 	u64 *dst = (u64 *)stats64;
5493 
5494 	BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
5495 		     sizeof(*stats64) / sizeof(u64));
5496 	for (i = 0; i < n; i++)
5497 		dst[i] = src[i];
5498 #endif
5499 }
5500 EXPORT_SYMBOL(netdev_stats_to_stats64);
5501 
5502 /**
5503  *	dev_get_stats	- get network device statistics
5504  *	@dev: device to get statistics from
5505  *	@storage: place to store stats
5506  *
5507  *	Get network statistics from device. Return @storage.
5508  *	The device driver may provide its own method by setting
5509  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
5510  *	otherwise the internal statistics structure is used.
5511  */
5512 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
5513 					struct rtnl_link_stats64 *storage)
5514 {
5515 	const struct net_device_ops *ops = dev->netdev_ops;
5516 
5517 	if (ops->ndo_get_stats64) {
5518 		memset(storage, 0, sizeof(*storage));
5519 		ops->ndo_get_stats64(dev, storage);
5520 	} else if (ops->ndo_get_stats) {
5521 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
5522 	} else {
5523 		netdev_stats_to_stats64(storage, &dev->stats);
5524 	}
5525 	storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
5526 	return storage;
5527 }
5528 EXPORT_SYMBOL(dev_get_stats);
5529 
5530 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
5531 {
5532 	struct netdev_queue *queue = dev_ingress_queue(dev);
5533 
5534 #ifdef CONFIG_NET_CLS_ACT
5535 	if (queue)
5536 		return queue;
5537 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
5538 	if (!queue)
5539 		return NULL;
5540 	netdev_init_one_queue(dev, queue, NULL);
5541 	queue->qdisc = &noop_qdisc;
5542 	queue->qdisc_sleeping = &noop_qdisc;
5543 	rcu_assign_pointer(dev->ingress_queue, queue);
5544 #endif
5545 	return queue;
5546 }
5547 
5548 static const struct ethtool_ops default_ethtool_ops;
5549 
5550 void netdev_set_default_ethtool_ops(struct net_device *dev,
5551 				    const struct ethtool_ops *ops)
5552 {
5553 	if (dev->ethtool_ops == &default_ethtool_ops)
5554 		dev->ethtool_ops = ops;
5555 }
5556 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
5557 
5558 /**
5559  *	alloc_netdev_mqs - allocate network device
5560  *	@sizeof_priv:	size of private data to allocate space for
5561  *	@name:		device name format string
5562  *	@setup:		callback to initialize device
5563  *	@txqs:		the number of TX subqueues to allocate
5564  *	@rxqs:		the number of RX subqueues to allocate
5565  *
5566  *	Allocates a struct net_device with private data area for driver use
5567  *	and performs basic initialization.  Also allocates subquue structs
5568  *	for each queue on the device.
5569  */
5570 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
5571 		void (*setup)(struct net_device *),
5572 		unsigned int txqs, unsigned int rxqs)
5573 {
5574 	struct net_device *dev;
5575 	size_t alloc_size;
5576 	struct net_device *p;
5577 
5578 	BUG_ON(strlen(name) >= sizeof(dev->name));
5579 
5580 	if (txqs < 1) {
5581 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
5582 		return NULL;
5583 	}
5584 
5585 #ifdef CONFIG_RPS
5586 	if (rxqs < 1) {
5587 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
5588 		return NULL;
5589 	}
5590 #endif
5591 
5592 	alloc_size = sizeof(struct net_device);
5593 	if (sizeof_priv) {
5594 		/* ensure 32-byte alignment of private area */
5595 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
5596 		alloc_size += sizeof_priv;
5597 	}
5598 	/* ensure 32-byte alignment of whole construct */
5599 	alloc_size += NETDEV_ALIGN - 1;
5600 
5601 	p = kzalloc(alloc_size, GFP_KERNEL);
5602 	if (!p)
5603 		return NULL;
5604 
5605 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
5606 	dev->padded = (char *)dev - (char *)p;
5607 
5608 	dev->pcpu_refcnt = alloc_percpu(int);
5609 	if (!dev->pcpu_refcnt)
5610 		goto free_p;
5611 
5612 	if (dev_addr_init(dev))
5613 		goto free_pcpu;
5614 
5615 	dev_mc_init(dev);
5616 	dev_uc_init(dev);
5617 
5618 	dev_net_set(dev, &init_net);
5619 
5620 	dev->gso_max_size = GSO_MAX_SIZE;
5621 	dev->gso_max_segs = GSO_MAX_SEGS;
5622 
5623 	INIT_LIST_HEAD(&dev->napi_list);
5624 	INIT_LIST_HEAD(&dev->unreg_list);
5625 	INIT_LIST_HEAD(&dev->link_watch_list);
5626 	INIT_LIST_HEAD(&dev->upper_dev_list);
5627 	dev->priv_flags = IFF_XMIT_DST_RELEASE;
5628 	setup(dev);
5629 
5630 	dev->num_tx_queues = txqs;
5631 	dev->real_num_tx_queues = txqs;
5632 	if (netif_alloc_netdev_queues(dev))
5633 		goto free_all;
5634 
5635 #ifdef CONFIG_RPS
5636 	dev->num_rx_queues = rxqs;
5637 	dev->real_num_rx_queues = rxqs;
5638 	if (netif_alloc_rx_queues(dev))
5639 		goto free_all;
5640 #endif
5641 
5642 	strcpy(dev->name, name);
5643 	dev->group = INIT_NETDEV_GROUP;
5644 	if (!dev->ethtool_ops)
5645 		dev->ethtool_ops = &default_ethtool_ops;
5646 	return dev;
5647 
5648 free_all:
5649 	free_netdev(dev);
5650 	return NULL;
5651 
5652 free_pcpu:
5653 	free_percpu(dev->pcpu_refcnt);
5654 	kfree(dev->_tx);
5655 #ifdef CONFIG_RPS
5656 	kfree(dev->_rx);
5657 #endif
5658 
5659 free_p:
5660 	kfree(p);
5661 	return NULL;
5662 }
5663 EXPORT_SYMBOL(alloc_netdev_mqs);
5664 
5665 /**
5666  *	free_netdev - free network device
5667  *	@dev: device
5668  *
5669  *	This function does the last stage of destroying an allocated device
5670  * 	interface. The reference to the device object is released.
5671  *	If this is the last reference then it will be freed.
5672  */
5673 void free_netdev(struct net_device *dev)
5674 {
5675 	struct napi_struct *p, *n;
5676 
5677 	release_net(dev_net(dev));
5678 
5679 	kfree(dev->_tx);
5680 #ifdef CONFIG_RPS
5681 	kfree(dev->_rx);
5682 #endif
5683 
5684 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
5685 
5686 	/* Flush device addresses */
5687 	dev_addr_flush(dev);
5688 
5689 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
5690 		netif_napi_del(p);
5691 
5692 	free_percpu(dev->pcpu_refcnt);
5693 	dev->pcpu_refcnt = NULL;
5694 
5695 	/*  Compatibility with error handling in drivers */
5696 	if (dev->reg_state == NETREG_UNINITIALIZED) {
5697 		kfree((char *)dev - dev->padded);
5698 		return;
5699 	}
5700 
5701 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
5702 	dev->reg_state = NETREG_RELEASED;
5703 
5704 	/* will free via device release */
5705 	put_device(&dev->dev);
5706 }
5707 EXPORT_SYMBOL(free_netdev);
5708 
5709 /**
5710  *	synchronize_net -  Synchronize with packet receive processing
5711  *
5712  *	Wait for packets currently being received to be done.
5713  *	Does not block later packets from starting.
5714  */
5715 void synchronize_net(void)
5716 {
5717 	might_sleep();
5718 	if (rtnl_is_locked())
5719 		synchronize_rcu_expedited();
5720 	else
5721 		synchronize_rcu();
5722 }
5723 EXPORT_SYMBOL(synchronize_net);
5724 
5725 /**
5726  *	unregister_netdevice_queue - remove device from the kernel
5727  *	@dev: device
5728  *	@head: list
5729  *
5730  *	This function shuts down a device interface and removes it
5731  *	from the kernel tables.
5732  *	If head not NULL, device is queued to be unregistered later.
5733  *
5734  *	Callers must hold the rtnl semaphore.  You may want
5735  *	unregister_netdev() instead of this.
5736  */
5737 
5738 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
5739 {
5740 	ASSERT_RTNL();
5741 
5742 	if (head) {
5743 		list_move_tail(&dev->unreg_list, head);
5744 	} else {
5745 		rollback_registered(dev);
5746 		/* Finish processing unregister after unlock */
5747 		net_set_todo(dev);
5748 	}
5749 }
5750 EXPORT_SYMBOL(unregister_netdevice_queue);
5751 
5752 /**
5753  *	unregister_netdevice_many - unregister many devices
5754  *	@head: list of devices
5755  */
5756 void unregister_netdevice_many(struct list_head *head)
5757 {
5758 	struct net_device *dev;
5759 
5760 	if (!list_empty(head)) {
5761 		rollback_registered_many(head);
5762 		list_for_each_entry(dev, head, unreg_list)
5763 			net_set_todo(dev);
5764 	}
5765 }
5766 EXPORT_SYMBOL(unregister_netdevice_many);
5767 
5768 /**
5769  *	unregister_netdev - remove device from the kernel
5770  *	@dev: device
5771  *
5772  *	This function shuts down a device interface and removes it
5773  *	from the kernel tables.
5774  *
5775  *	This is just a wrapper for unregister_netdevice that takes
5776  *	the rtnl semaphore.  In general you want to use this and not
5777  *	unregister_netdevice.
5778  */
5779 void unregister_netdev(struct net_device *dev)
5780 {
5781 	rtnl_lock();
5782 	unregister_netdevice(dev);
5783 	rtnl_unlock();
5784 }
5785 EXPORT_SYMBOL(unregister_netdev);
5786 
5787 /**
5788  *	dev_change_net_namespace - move device to different nethost namespace
5789  *	@dev: device
5790  *	@net: network namespace
5791  *	@pat: If not NULL name pattern to try if the current device name
5792  *	      is already taken in the destination network namespace.
5793  *
5794  *	This function shuts down a device interface and moves it
5795  *	to a new network namespace. On success 0 is returned, on
5796  *	a failure a netagive errno code is returned.
5797  *
5798  *	Callers must hold the rtnl semaphore.
5799  */
5800 
5801 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
5802 {
5803 	int err;
5804 
5805 	ASSERT_RTNL();
5806 
5807 	/* Don't allow namespace local devices to be moved. */
5808 	err = -EINVAL;
5809 	if (dev->features & NETIF_F_NETNS_LOCAL)
5810 		goto out;
5811 
5812 	/* Ensure the device has been registrered */
5813 	if (dev->reg_state != NETREG_REGISTERED)
5814 		goto out;
5815 
5816 	/* Get out if there is nothing todo */
5817 	err = 0;
5818 	if (net_eq(dev_net(dev), net))
5819 		goto out;
5820 
5821 	/* Pick the destination device name, and ensure
5822 	 * we can use it in the destination network namespace.
5823 	 */
5824 	err = -EEXIST;
5825 	if (__dev_get_by_name(net, dev->name)) {
5826 		/* We get here if we can't use the current device name */
5827 		if (!pat)
5828 			goto out;
5829 		if (dev_get_valid_name(net, dev, pat) < 0)
5830 			goto out;
5831 	}
5832 
5833 	/*
5834 	 * And now a mini version of register_netdevice unregister_netdevice.
5835 	 */
5836 
5837 	/* If device is running close it first. */
5838 	dev_close(dev);
5839 
5840 	/* And unlink it from device chain */
5841 	err = -ENODEV;
5842 	unlist_netdevice(dev);
5843 
5844 	synchronize_net();
5845 
5846 	/* Shutdown queueing discipline. */
5847 	dev_shutdown(dev);
5848 
5849 	/* Notify protocols, that we are about to destroy
5850 	   this device. They should clean all the things.
5851 
5852 	   Note that dev->reg_state stays at NETREG_REGISTERED.
5853 	   This is wanted because this way 8021q and macvlan know
5854 	   the device is just moving and can keep their slaves up.
5855 	*/
5856 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5857 	rcu_barrier();
5858 	call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
5859 	rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
5860 
5861 	/*
5862 	 *	Flush the unicast and multicast chains
5863 	 */
5864 	dev_uc_flush(dev);
5865 	dev_mc_flush(dev);
5866 
5867 	/* Send a netdev-removed uevent to the old namespace */
5868 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
5869 
5870 	/* Actually switch the network namespace */
5871 	dev_net_set(dev, net);
5872 
5873 	/* If there is an ifindex conflict assign a new one */
5874 	if (__dev_get_by_index(net, dev->ifindex)) {
5875 		int iflink = (dev->iflink == dev->ifindex);
5876 		dev->ifindex = dev_new_index(net);
5877 		if (iflink)
5878 			dev->iflink = dev->ifindex;
5879 	}
5880 
5881 	/* Send a netdev-add uevent to the new namespace */
5882 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
5883 
5884 	/* Fixup kobjects */
5885 	err = device_rename(&dev->dev, dev->name);
5886 	WARN_ON(err);
5887 
5888 	/* Add the device back in the hashes */
5889 	list_netdevice(dev);
5890 
5891 	/* Notify protocols, that a new device appeared. */
5892 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
5893 
5894 	/*
5895 	 *	Prevent userspace races by waiting until the network
5896 	 *	device is fully setup before sending notifications.
5897 	 */
5898 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5899 
5900 	synchronize_net();
5901 	err = 0;
5902 out:
5903 	return err;
5904 }
5905 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
5906 
5907 static int dev_cpu_callback(struct notifier_block *nfb,
5908 			    unsigned long action,
5909 			    void *ocpu)
5910 {
5911 	struct sk_buff **list_skb;
5912 	struct sk_buff *skb;
5913 	unsigned int cpu, oldcpu = (unsigned long)ocpu;
5914 	struct softnet_data *sd, *oldsd;
5915 
5916 	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
5917 		return NOTIFY_OK;
5918 
5919 	local_irq_disable();
5920 	cpu = smp_processor_id();
5921 	sd = &per_cpu(softnet_data, cpu);
5922 	oldsd = &per_cpu(softnet_data, oldcpu);
5923 
5924 	/* Find end of our completion_queue. */
5925 	list_skb = &sd->completion_queue;
5926 	while (*list_skb)
5927 		list_skb = &(*list_skb)->next;
5928 	/* Append completion queue from offline CPU. */
5929 	*list_skb = oldsd->completion_queue;
5930 	oldsd->completion_queue = NULL;
5931 
5932 	/* Append output queue from offline CPU. */
5933 	if (oldsd->output_queue) {
5934 		*sd->output_queue_tailp = oldsd->output_queue;
5935 		sd->output_queue_tailp = oldsd->output_queue_tailp;
5936 		oldsd->output_queue = NULL;
5937 		oldsd->output_queue_tailp = &oldsd->output_queue;
5938 	}
5939 	/* Append NAPI poll list from offline CPU. */
5940 	if (!list_empty(&oldsd->poll_list)) {
5941 		list_splice_init(&oldsd->poll_list, &sd->poll_list);
5942 		raise_softirq_irqoff(NET_RX_SOFTIRQ);
5943 	}
5944 
5945 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
5946 	local_irq_enable();
5947 
5948 	/* Process offline CPU's input_pkt_queue */
5949 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
5950 		netif_rx(skb);
5951 		input_queue_head_incr(oldsd);
5952 	}
5953 	while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
5954 		netif_rx(skb);
5955 		input_queue_head_incr(oldsd);
5956 	}
5957 
5958 	return NOTIFY_OK;
5959 }
5960 
5961 
5962 /**
5963  *	netdev_increment_features - increment feature set by one
5964  *	@all: current feature set
5965  *	@one: new feature set
5966  *	@mask: mask feature set
5967  *
5968  *	Computes a new feature set after adding a device with feature set
5969  *	@one to the master device with current feature set @all.  Will not
5970  *	enable anything that is off in @mask. Returns the new feature set.
5971  */
5972 netdev_features_t netdev_increment_features(netdev_features_t all,
5973 	netdev_features_t one, netdev_features_t mask)
5974 {
5975 	if (mask & NETIF_F_GEN_CSUM)
5976 		mask |= NETIF_F_ALL_CSUM;
5977 	mask |= NETIF_F_VLAN_CHALLENGED;
5978 
5979 	all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
5980 	all &= one | ~NETIF_F_ALL_FOR_ALL;
5981 
5982 	/* If one device supports hw checksumming, set for all. */
5983 	if (all & NETIF_F_GEN_CSUM)
5984 		all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
5985 
5986 	return all;
5987 }
5988 EXPORT_SYMBOL(netdev_increment_features);
5989 
5990 static struct hlist_head *netdev_create_hash(void)
5991 {
5992 	int i;
5993 	struct hlist_head *hash;
5994 
5995 	hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
5996 	if (hash != NULL)
5997 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
5998 			INIT_HLIST_HEAD(&hash[i]);
5999 
6000 	return hash;
6001 }
6002 
6003 /* Initialize per network namespace state */
6004 static int __net_init netdev_init(struct net *net)
6005 {
6006 	if (net != &init_net)
6007 		INIT_LIST_HEAD(&net->dev_base_head);
6008 
6009 	net->dev_name_head = netdev_create_hash();
6010 	if (net->dev_name_head == NULL)
6011 		goto err_name;
6012 
6013 	net->dev_index_head = netdev_create_hash();
6014 	if (net->dev_index_head == NULL)
6015 		goto err_idx;
6016 
6017 	return 0;
6018 
6019 err_idx:
6020 	kfree(net->dev_name_head);
6021 err_name:
6022 	return -ENOMEM;
6023 }
6024 
6025 /**
6026  *	netdev_drivername - network driver for the device
6027  *	@dev: network device
6028  *
6029  *	Determine network driver for device.
6030  */
6031 const char *netdev_drivername(const struct net_device *dev)
6032 {
6033 	const struct device_driver *driver;
6034 	const struct device *parent;
6035 	const char *empty = "";
6036 
6037 	parent = dev->dev.parent;
6038 	if (!parent)
6039 		return empty;
6040 
6041 	driver = parent->driver;
6042 	if (driver && driver->name)
6043 		return driver->name;
6044 	return empty;
6045 }
6046 
6047 static int __netdev_printk(const char *level, const struct net_device *dev,
6048 			   struct va_format *vaf)
6049 {
6050 	int r;
6051 
6052 	if (dev && dev->dev.parent) {
6053 		r = dev_printk_emit(level[1] - '0',
6054 				    dev->dev.parent,
6055 				    "%s %s %s: %pV",
6056 				    dev_driver_string(dev->dev.parent),
6057 				    dev_name(dev->dev.parent),
6058 				    netdev_name(dev), vaf);
6059 	} else if (dev) {
6060 		r = printk("%s%s: %pV", level, netdev_name(dev), vaf);
6061 	} else {
6062 		r = printk("%s(NULL net_device): %pV", level, vaf);
6063 	}
6064 
6065 	return r;
6066 }
6067 
6068 int netdev_printk(const char *level, const struct net_device *dev,
6069 		  const char *format, ...)
6070 {
6071 	struct va_format vaf;
6072 	va_list args;
6073 	int r;
6074 
6075 	va_start(args, format);
6076 
6077 	vaf.fmt = format;
6078 	vaf.va = &args;
6079 
6080 	r = __netdev_printk(level, dev, &vaf);
6081 
6082 	va_end(args);
6083 
6084 	return r;
6085 }
6086 EXPORT_SYMBOL(netdev_printk);
6087 
6088 #define define_netdev_printk_level(func, level)			\
6089 int func(const struct net_device *dev, const char *fmt, ...)	\
6090 {								\
6091 	int r;							\
6092 	struct va_format vaf;					\
6093 	va_list args;						\
6094 								\
6095 	va_start(args, fmt);					\
6096 								\
6097 	vaf.fmt = fmt;						\
6098 	vaf.va = &args;						\
6099 								\
6100 	r = __netdev_printk(level, dev, &vaf);			\
6101 								\
6102 	va_end(args);						\
6103 								\
6104 	return r;						\
6105 }								\
6106 EXPORT_SYMBOL(func);
6107 
6108 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
6109 define_netdev_printk_level(netdev_alert, KERN_ALERT);
6110 define_netdev_printk_level(netdev_crit, KERN_CRIT);
6111 define_netdev_printk_level(netdev_err, KERN_ERR);
6112 define_netdev_printk_level(netdev_warn, KERN_WARNING);
6113 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
6114 define_netdev_printk_level(netdev_info, KERN_INFO);
6115 
6116 static void __net_exit netdev_exit(struct net *net)
6117 {
6118 	kfree(net->dev_name_head);
6119 	kfree(net->dev_index_head);
6120 }
6121 
6122 static struct pernet_operations __net_initdata netdev_net_ops = {
6123 	.init = netdev_init,
6124 	.exit = netdev_exit,
6125 };
6126 
6127 static void __net_exit default_device_exit(struct net *net)
6128 {
6129 	struct net_device *dev, *aux;
6130 	/*
6131 	 * Push all migratable network devices back to the
6132 	 * initial network namespace
6133 	 */
6134 	rtnl_lock();
6135 	for_each_netdev_safe(net, dev, aux) {
6136 		int err;
6137 		char fb_name[IFNAMSIZ];
6138 
6139 		/* Ignore unmoveable devices (i.e. loopback) */
6140 		if (dev->features & NETIF_F_NETNS_LOCAL)
6141 			continue;
6142 
6143 		/* Leave virtual devices for the generic cleanup */
6144 		if (dev->rtnl_link_ops)
6145 			continue;
6146 
6147 		/* Push remaining network devices to init_net */
6148 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
6149 		err = dev_change_net_namespace(dev, &init_net, fb_name);
6150 		if (err) {
6151 			pr_emerg("%s: failed to move %s to init_net: %d\n",
6152 				 __func__, dev->name, err);
6153 			BUG();
6154 		}
6155 	}
6156 	rtnl_unlock();
6157 }
6158 
6159 static void __net_exit default_device_exit_batch(struct list_head *net_list)
6160 {
6161 	/* At exit all network devices most be removed from a network
6162 	 * namespace.  Do this in the reverse order of registration.
6163 	 * Do this across as many network namespaces as possible to
6164 	 * improve batching efficiency.
6165 	 */
6166 	struct net_device *dev;
6167 	struct net *net;
6168 	LIST_HEAD(dev_kill_list);
6169 
6170 	rtnl_lock();
6171 	list_for_each_entry(net, net_list, exit_list) {
6172 		for_each_netdev_reverse(net, dev) {
6173 			if (dev->rtnl_link_ops)
6174 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
6175 			else
6176 				unregister_netdevice_queue(dev, &dev_kill_list);
6177 		}
6178 	}
6179 	unregister_netdevice_many(&dev_kill_list);
6180 	list_del(&dev_kill_list);
6181 	rtnl_unlock();
6182 }
6183 
6184 static struct pernet_operations __net_initdata default_device_ops = {
6185 	.exit = default_device_exit,
6186 	.exit_batch = default_device_exit_batch,
6187 };
6188 
6189 /*
6190  *	Initialize the DEV module. At boot time this walks the device list and
6191  *	unhooks any devices that fail to initialise (normally hardware not
6192  *	present) and leaves us with a valid list of present and active devices.
6193  *
6194  */
6195 
6196 /*
6197  *       This is called single threaded during boot, so no need
6198  *       to take the rtnl semaphore.
6199  */
6200 static int __init net_dev_init(void)
6201 {
6202 	int i, rc = -ENOMEM;
6203 
6204 	BUG_ON(!dev_boot_phase);
6205 
6206 	if (dev_proc_init())
6207 		goto out;
6208 
6209 	if (netdev_kobject_init())
6210 		goto out;
6211 
6212 	INIT_LIST_HEAD(&ptype_all);
6213 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
6214 		INIT_LIST_HEAD(&ptype_base[i]);
6215 
6216 	INIT_LIST_HEAD(&offload_base);
6217 
6218 	if (register_pernet_subsys(&netdev_net_ops))
6219 		goto out;
6220 
6221 	/*
6222 	 *	Initialise the packet receive queues.
6223 	 */
6224 
6225 	for_each_possible_cpu(i) {
6226 		struct softnet_data *sd = &per_cpu(softnet_data, i);
6227 
6228 		memset(sd, 0, sizeof(*sd));
6229 		skb_queue_head_init(&sd->input_pkt_queue);
6230 		skb_queue_head_init(&sd->process_queue);
6231 		sd->completion_queue = NULL;
6232 		INIT_LIST_HEAD(&sd->poll_list);
6233 		sd->output_queue = NULL;
6234 		sd->output_queue_tailp = &sd->output_queue;
6235 #ifdef CONFIG_RPS
6236 		sd->csd.func = rps_trigger_softirq;
6237 		sd->csd.info = sd;
6238 		sd->csd.flags = 0;
6239 		sd->cpu = i;
6240 #endif
6241 
6242 		sd->backlog.poll = process_backlog;
6243 		sd->backlog.weight = weight_p;
6244 		sd->backlog.gro_list = NULL;
6245 		sd->backlog.gro_count = 0;
6246 	}
6247 
6248 	dev_boot_phase = 0;
6249 
6250 	/* The loopback device is special if any other network devices
6251 	 * is present in a network namespace the loopback device must
6252 	 * be present. Since we now dynamically allocate and free the
6253 	 * loopback device ensure this invariant is maintained by
6254 	 * keeping the loopback device as the first device on the
6255 	 * list of network devices.  Ensuring the loopback devices
6256 	 * is the first device that appears and the last network device
6257 	 * that disappears.
6258 	 */
6259 	if (register_pernet_device(&loopback_net_ops))
6260 		goto out;
6261 
6262 	if (register_pernet_device(&default_device_ops))
6263 		goto out;
6264 
6265 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
6266 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
6267 
6268 	hotcpu_notifier(dev_cpu_callback, 0);
6269 	dst_init();
6270 	rc = 0;
6271 out:
6272 	return rc;
6273 }
6274 
6275 subsys_initcall(net_dev_init);
6276