xref: /linux/net/core/dev.c (revision c7546e2c3cb739a3c1a2f5acaf9bb629d401afe5)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *	Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:	Ross Biro
7  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *	Additional Authors:
11  *		Florian la Roche <rzsfl@rz.uni-sb.de>
12  *		Alan Cox <gw4pts@gw4pts.ampr.org>
13  *		David Hinds <dahinds@users.sourceforge.net>
14  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *		Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *	Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *		Alan Cox	:	device private ioctl copies fields back.
24  *		Alan Cox	:	Transmit queue code does relevant
25  *					stunts to keep the queue safe.
26  *		Alan Cox	:	Fixed double lock.
27  *		Alan Cox	:	Fixed promisc NULL pointer trap
28  *		????????	:	Support the full private ioctl range
29  *		Alan Cox	:	Moved ioctl permission check into
30  *					drivers
31  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
32  *		Alan Cox	:	100 backlog just doesn't cut it when
33  *					you start doing multicast video 8)
34  *		Alan Cox	:	Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *		Alan Cox	:	Took out transmit every packet pass
37  *					Saved a few bytes in the ioctl handler
38  *		Alan Cox	:	Network driver sets packet type before
39  *					calling netif_rx. Saves a function
40  *					call a packet.
41  *		Alan Cox	:	Hashed net_bh()
42  *		Richard Kooijman:	Timestamp fixes.
43  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
44  *		Alan Cox	:	Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *					changes.
47  *		Rudi Cilibrasi	:	Pass the right thing to
48  *					set_mac_address()
49  *		Dave Miller	:	32bit quantity for the device lock to
50  *					make it work out on a Sparc.
51  *		Bjorn Ekwall	:	Added KERNELD hack.
52  *		Alan Cox	:	Cleaned up the backlog initialise.
53  *		Craig Metz	:	SIOCGIFCONF fix if space for under
54  *					1 device.
55  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
56  *					is no device open function.
57  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
58  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
59  *		Cyrus Durgin	:	Cleaned for KMOD
60  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
61  *					A network device unload needs to purge
62  *					the backlog queue.
63  *	Paul Rusty Russell	:	SIOCSIFNAME
64  *              Pekka Riikonen  :	Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *				        - netif_rx() feedback
69  */
70 
71 #include <linux/uaccess.h>
72 #include <linux/bitmap.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/isolation.h>
81 #include <linux/sched/mm.h>
82 #include <linux/smpboot.h>
83 #include <linux/mutex.h>
84 #include <linux/rwsem.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/skbuff.h>
96 #include <linux/kthread.h>
97 #include <linux/bpf.h>
98 #include <linux/bpf_trace.h>
99 #include <net/net_namespace.h>
100 #include <net/sock.h>
101 #include <net/busy_poll.h>
102 #include <linux/rtnetlink.h>
103 #include <linux/stat.h>
104 #include <net/dsa.h>
105 #include <net/dst.h>
106 #include <net/dst_metadata.h>
107 #include <net/gro.h>
108 #include <net/pkt_sched.h>
109 #include <net/pkt_cls.h>
110 #include <net/checksum.h>
111 #include <net/xfrm.h>
112 #include <net/tcx.h>
113 #include <linux/highmem.h>
114 #include <linux/init.h>
115 #include <linux/module.h>
116 #include <linux/netpoll.h>
117 #include <linux/rcupdate.h>
118 #include <linux/delay.h>
119 #include <net/iw_handler.h>
120 #include <asm/current.h>
121 #include <linux/audit.h>
122 #include <linux/dmaengine.h>
123 #include <linux/err.h>
124 #include <linux/ctype.h>
125 #include <linux/if_arp.h>
126 #include <linux/if_vlan.h>
127 #include <linux/ip.h>
128 #include <net/ip.h>
129 #include <net/mpls.h>
130 #include <linux/ipv6.h>
131 #include <linux/in.h>
132 #include <linux/jhash.h>
133 #include <linux/random.h>
134 #include <trace/events/napi.h>
135 #include <trace/events/net.h>
136 #include <trace/events/skb.h>
137 #include <trace/events/qdisc.h>
138 #include <trace/events/xdp.h>
139 #include <linux/inetdevice.h>
140 #include <linux/cpu_rmap.h>
141 #include <linux/static_key.h>
142 #include <linux/hashtable.h>
143 #include <linux/vmalloc.h>
144 #include <linux/if_macvlan.h>
145 #include <linux/errqueue.h>
146 #include <linux/hrtimer.h>
147 #include <linux/netfilter_netdev.h>
148 #include <linux/crash_dump.h>
149 #include <linux/sctp.h>
150 #include <net/udp_tunnel.h>
151 #include <linux/net_namespace.h>
152 #include <linux/indirect_call_wrapper.h>
153 #include <net/devlink.h>
154 #include <linux/pm_runtime.h>
155 #include <linux/prandom.h>
156 #include <linux/once_lite.h>
157 #include <net/netdev_rx_queue.h>
158 #include <net/page_pool/types.h>
159 #include <net/page_pool/helpers.h>
160 #include <net/rps.h>
161 #include <linux/phy_link_topology.h>
162 
163 #include "dev.h"
164 #include "devmem.h"
165 #include "net-sysfs.h"
166 
167 static DEFINE_SPINLOCK(ptype_lock);
168 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
169 
170 static int netif_rx_internal(struct sk_buff *skb);
171 static int call_netdevice_notifiers_extack(unsigned long val,
172 					   struct net_device *dev,
173 					   struct netlink_ext_ack *extack);
174 
175 static DEFINE_MUTEX(ifalias_mutex);
176 
177 /* protects napi_hash addition/deletion and napi_gen_id */
178 static DEFINE_SPINLOCK(napi_hash_lock);
179 
180 static unsigned int napi_gen_id = NR_CPUS;
181 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
182 
183 static DECLARE_RWSEM(devnet_rename_sem);
184 
185 static inline void dev_base_seq_inc(struct net *net)
186 {
187 	unsigned int val = net->dev_base_seq + 1;
188 
189 	WRITE_ONCE(net->dev_base_seq, val ?: 1);
190 }
191 
192 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
193 {
194 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
195 
196 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
197 }
198 
199 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
200 {
201 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
202 }
203 
204 #ifndef CONFIG_PREEMPT_RT
205 
206 static DEFINE_STATIC_KEY_FALSE(use_backlog_threads_key);
207 
208 static int __init setup_backlog_napi_threads(char *arg)
209 {
210 	static_branch_enable(&use_backlog_threads_key);
211 	return 0;
212 }
213 early_param("thread_backlog_napi", setup_backlog_napi_threads);
214 
215 static bool use_backlog_threads(void)
216 {
217 	return static_branch_unlikely(&use_backlog_threads_key);
218 }
219 
220 #else
221 
222 static bool use_backlog_threads(void)
223 {
224 	return true;
225 }
226 
227 #endif
228 
229 static inline void backlog_lock_irq_save(struct softnet_data *sd,
230 					 unsigned long *flags)
231 {
232 	if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
233 		spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags);
234 	else
235 		local_irq_save(*flags);
236 }
237 
238 static inline void backlog_lock_irq_disable(struct softnet_data *sd)
239 {
240 	if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
241 		spin_lock_irq(&sd->input_pkt_queue.lock);
242 	else
243 		local_irq_disable();
244 }
245 
246 static inline void backlog_unlock_irq_restore(struct softnet_data *sd,
247 					      unsigned long *flags)
248 {
249 	if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
250 		spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags);
251 	else
252 		local_irq_restore(*flags);
253 }
254 
255 static inline void backlog_unlock_irq_enable(struct softnet_data *sd)
256 {
257 	if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
258 		spin_unlock_irq(&sd->input_pkt_queue.lock);
259 	else
260 		local_irq_enable();
261 }
262 
263 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
264 						       const char *name)
265 {
266 	struct netdev_name_node *name_node;
267 
268 	name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
269 	if (!name_node)
270 		return NULL;
271 	INIT_HLIST_NODE(&name_node->hlist);
272 	name_node->dev = dev;
273 	name_node->name = name;
274 	return name_node;
275 }
276 
277 static struct netdev_name_node *
278 netdev_name_node_head_alloc(struct net_device *dev)
279 {
280 	struct netdev_name_node *name_node;
281 
282 	name_node = netdev_name_node_alloc(dev, dev->name);
283 	if (!name_node)
284 		return NULL;
285 	INIT_LIST_HEAD(&name_node->list);
286 	return name_node;
287 }
288 
289 static void netdev_name_node_free(struct netdev_name_node *name_node)
290 {
291 	kfree(name_node);
292 }
293 
294 static void netdev_name_node_add(struct net *net,
295 				 struct netdev_name_node *name_node)
296 {
297 	hlist_add_head_rcu(&name_node->hlist,
298 			   dev_name_hash(net, name_node->name));
299 }
300 
301 static void netdev_name_node_del(struct netdev_name_node *name_node)
302 {
303 	hlist_del_rcu(&name_node->hlist);
304 }
305 
306 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
307 							const char *name)
308 {
309 	struct hlist_head *head = dev_name_hash(net, name);
310 	struct netdev_name_node *name_node;
311 
312 	hlist_for_each_entry(name_node, head, hlist)
313 		if (!strcmp(name_node->name, name))
314 			return name_node;
315 	return NULL;
316 }
317 
318 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
319 							    const char *name)
320 {
321 	struct hlist_head *head = dev_name_hash(net, name);
322 	struct netdev_name_node *name_node;
323 
324 	hlist_for_each_entry_rcu(name_node, head, hlist)
325 		if (!strcmp(name_node->name, name))
326 			return name_node;
327 	return NULL;
328 }
329 
330 bool netdev_name_in_use(struct net *net, const char *name)
331 {
332 	return netdev_name_node_lookup(net, name);
333 }
334 EXPORT_SYMBOL(netdev_name_in_use);
335 
336 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
337 {
338 	struct netdev_name_node *name_node;
339 	struct net *net = dev_net(dev);
340 
341 	name_node = netdev_name_node_lookup(net, name);
342 	if (name_node)
343 		return -EEXIST;
344 	name_node = netdev_name_node_alloc(dev, name);
345 	if (!name_node)
346 		return -ENOMEM;
347 	netdev_name_node_add(net, name_node);
348 	/* The node that holds dev->name acts as a head of per-device list. */
349 	list_add_tail_rcu(&name_node->list, &dev->name_node->list);
350 
351 	return 0;
352 }
353 
354 static void netdev_name_node_alt_free(struct rcu_head *head)
355 {
356 	struct netdev_name_node *name_node =
357 		container_of(head, struct netdev_name_node, rcu);
358 
359 	kfree(name_node->name);
360 	netdev_name_node_free(name_node);
361 }
362 
363 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
364 {
365 	netdev_name_node_del(name_node);
366 	list_del(&name_node->list);
367 	call_rcu(&name_node->rcu, netdev_name_node_alt_free);
368 }
369 
370 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
371 {
372 	struct netdev_name_node *name_node;
373 	struct net *net = dev_net(dev);
374 
375 	name_node = netdev_name_node_lookup(net, name);
376 	if (!name_node)
377 		return -ENOENT;
378 	/* lookup might have found our primary name or a name belonging
379 	 * to another device.
380 	 */
381 	if (name_node == dev->name_node || name_node->dev != dev)
382 		return -EINVAL;
383 
384 	__netdev_name_node_alt_destroy(name_node);
385 	return 0;
386 }
387 
388 static void netdev_name_node_alt_flush(struct net_device *dev)
389 {
390 	struct netdev_name_node *name_node, *tmp;
391 
392 	list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list) {
393 		list_del(&name_node->list);
394 		netdev_name_node_alt_free(&name_node->rcu);
395 	}
396 }
397 
398 /* Device list insertion */
399 static void list_netdevice(struct net_device *dev)
400 {
401 	struct netdev_name_node *name_node;
402 	struct net *net = dev_net(dev);
403 
404 	ASSERT_RTNL();
405 
406 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
407 	netdev_name_node_add(net, dev->name_node);
408 	hlist_add_head_rcu(&dev->index_hlist,
409 			   dev_index_hash(net, dev->ifindex));
410 
411 	netdev_for_each_altname(dev, name_node)
412 		netdev_name_node_add(net, name_node);
413 
414 	/* We reserved the ifindex, this can't fail */
415 	WARN_ON(xa_store(&net->dev_by_index, dev->ifindex, dev, GFP_KERNEL));
416 
417 	dev_base_seq_inc(net);
418 }
419 
420 /* Device list removal
421  * caller must respect a RCU grace period before freeing/reusing dev
422  */
423 static void unlist_netdevice(struct net_device *dev)
424 {
425 	struct netdev_name_node *name_node;
426 	struct net *net = dev_net(dev);
427 
428 	ASSERT_RTNL();
429 
430 	xa_erase(&net->dev_by_index, dev->ifindex);
431 
432 	netdev_for_each_altname(dev, name_node)
433 		netdev_name_node_del(name_node);
434 
435 	/* Unlink dev from the device chain */
436 	list_del_rcu(&dev->dev_list);
437 	netdev_name_node_del(dev->name_node);
438 	hlist_del_rcu(&dev->index_hlist);
439 
440 	dev_base_seq_inc(dev_net(dev));
441 }
442 
443 /*
444  *	Our notifier list
445  */
446 
447 static RAW_NOTIFIER_HEAD(netdev_chain);
448 
449 /*
450  *	Device drivers call our routines to queue packets here. We empty the
451  *	queue in the local softnet handler.
452  */
453 
454 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data) = {
455 	.process_queue_bh_lock = INIT_LOCAL_LOCK(process_queue_bh_lock),
456 };
457 EXPORT_PER_CPU_SYMBOL(softnet_data);
458 
459 /* Page_pool has a lockless array/stack to alloc/recycle pages.
460  * PP consumers must pay attention to run APIs in the appropriate context
461  * (e.g. NAPI context).
462  */
463 static DEFINE_PER_CPU(struct page_pool *, system_page_pool);
464 
465 #ifdef CONFIG_LOCKDEP
466 /*
467  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
468  * according to dev->type
469  */
470 static const unsigned short netdev_lock_type[] = {
471 	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
472 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
473 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
474 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
475 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
476 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
477 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
478 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
479 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
480 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
481 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
482 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
483 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
484 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
485 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
486 
487 static const char *const netdev_lock_name[] = {
488 	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
489 	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
490 	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
491 	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
492 	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
493 	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
494 	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
495 	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
496 	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
497 	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
498 	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
499 	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
500 	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
501 	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
502 	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
503 
504 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
505 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
506 
507 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
508 {
509 	int i;
510 
511 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
512 		if (netdev_lock_type[i] == dev_type)
513 			return i;
514 	/* the last key is used by default */
515 	return ARRAY_SIZE(netdev_lock_type) - 1;
516 }
517 
518 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
519 						 unsigned short dev_type)
520 {
521 	int i;
522 
523 	i = netdev_lock_pos(dev_type);
524 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
525 				   netdev_lock_name[i]);
526 }
527 
528 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
529 {
530 	int i;
531 
532 	i = netdev_lock_pos(dev->type);
533 	lockdep_set_class_and_name(&dev->addr_list_lock,
534 				   &netdev_addr_lock_key[i],
535 				   netdev_lock_name[i]);
536 }
537 #else
538 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
539 						 unsigned short dev_type)
540 {
541 }
542 
543 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
544 {
545 }
546 #endif
547 
548 /*******************************************************************************
549  *
550  *		Protocol management and registration routines
551  *
552  *******************************************************************************/
553 
554 
555 /*
556  *	Add a protocol ID to the list. Now that the input handler is
557  *	smarter we can dispense with all the messy stuff that used to be
558  *	here.
559  *
560  *	BEWARE!!! Protocol handlers, mangling input packets,
561  *	MUST BE last in hash buckets and checking protocol handlers
562  *	MUST start from promiscuous ptype_all chain in net_bh.
563  *	It is true now, do not change it.
564  *	Explanation follows: if protocol handler, mangling packet, will
565  *	be the first on list, it is not able to sense, that packet
566  *	is cloned and should be copied-on-write, so that it will
567  *	change it and subsequent readers will get broken packet.
568  *							--ANK (980803)
569  */
570 
571 static inline struct list_head *ptype_head(const struct packet_type *pt)
572 {
573 	if (pt->type == htons(ETH_P_ALL))
574 		return pt->dev ? &pt->dev->ptype_all : &net_hotdata.ptype_all;
575 	else
576 		return pt->dev ? &pt->dev->ptype_specific :
577 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
578 }
579 
580 /**
581  *	dev_add_pack - add packet handler
582  *	@pt: packet type declaration
583  *
584  *	Add a protocol handler to the networking stack. The passed &packet_type
585  *	is linked into kernel lists and may not be freed until it has been
586  *	removed from the kernel lists.
587  *
588  *	This call does not sleep therefore it can not
589  *	guarantee all CPU's that are in middle of receiving packets
590  *	will see the new packet type (until the next received packet).
591  */
592 
593 void dev_add_pack(struct packet_type *pt)
594 {
595 	struct list_head *head = ptype_head(pt);
596 
597 	spin_lock(&ptype_lock);
598 	list_add_rcu(&pt->list, head);
599 	spin_unlock(&ptype_lock);
600 }
601 EXPORT_SYMBOL(dev_add_pack);
602 
603 /**
604  *	__dev_remove_pack	 - remove packet handler
605  *	@pt: packet type declaration
606  *
607  *	Remove a protocol handler that was previously added to the kernel
608  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
609  *	from the kernel lists and can be freed or reused once this function
610  *	returns.
611  *
612  *      The packet type might still be in use by receivers
613  *	and must not be freed until after all the CPU's have gone
614  *	through a quiescent state.
615  */
616 void __dev_remove_pack(struct packet_type *pt)
617 {
618 	struct list_head *head = ptype_head(pt);
619 	struct packet_type *pt1;
620 
621 	spin_lock(&ptype_lock);
622 
623 	list_for_each_entry(pt1, head, list) {
624 		if (pt == pt1) {
625 			list_del_rcu(&pt->list);
626 			goto out;
627 		}
628 	}
629 
630 	pr_warn("dev_remove_pack: %p not found\n", pt);
631 out:
632 	spin_unlock(&ptype_lock);
633 }
634 EXPORT_SYMBOL(__dev_remove_pack);
635 
636 /**
637  *	dev_remove_pack	 - remove packet handler
638  *	@pt: packet type declaration
639  *
640  *	Remove a protocol handler that was previously added to the kernel
641  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
642  *	from the kernel lists and can be freed or reused once this function
643  *	returns.
644  *
645  *	This call sleeps to guarantee that no CPU is looking at the packet
646  *	type after return.
647  */
648 void dev_remove_pack(struct packet_type *pt)
649 {
650 	__dev_remove_pack(pt);
651 
652 	synchronize_net();
653 }
654 EXPORT_SYMBOL(dev_remove_pack);
655 
656 
657 /*******************************************************************************
658  *
659  *			    Device Interface Subroutines
660  *
661  *******************************************************************************/
662 
663 /**
664  *	dev_get_iflink	- get 'iflink' value of a interface
665  *	@dev: targeted interface
666  *
667  *	Indicates the ifindex the interface is linked to.
668  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
669  */
670 
671 int dev_get_iflink(const struct net_device *dev)
672 {
673 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
674 		return dev->netdev_ops->ndo_get_iflink(dev);
675 
676 	return READ_ONCE(dev->ifindex);
677 }
678 EXPORT_SYMBOL(dev_get_iflink);
679 
680 /**
681  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
682  *	@dev: targeted interface
683  *	@skb: The packet.
684  *
685  *	For better visibility of tunnel traffic OVS needs to retrieve
686  *	egress tunnel information for a packet. Following API allows
687  *	user to get this info.
688  */
689 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
690 {
691 	struct ip_tunnel_info *info;
692 
693 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
694 		return -EINVAL;
695 
696 	info = skb_tunnel_info_unclone(skb);
697 	if (!info)
698 		return -ENOMEM;
699 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
700 		return -EINVAL;
701 
702 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
703 }
704 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
705 
706 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
707 {
708 	int k = stack->num_paths++;
709 
710 	if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
711 		return NULL;
712 
713 	return &stack->path[k];
714 }
715 
716 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
717 			  struct net_device_path_stack *stack)
718 {
719 	const struct net_device *last_dev;
720 	struct net_device_path_ctx ctx = {
721 		.dev	= dev,
722 	};
723 	struct net_device_path *path;
724 	int ret = 0;
725 
726 	memcpy(ctx.daddr, daddr, sizeof(ctx.daddr));
727 	stack->num_paths = 0;
728 	while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
729 		last_dev = ctx.dev;
730 		path = dev_fwd_path(stack);
731 		if (!path)
732 			return -1;
733 
734 		memset(path, 0, sizeof(struct net_device_path));
735 		ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
736 		if (ret < 0)
737 			return -1;
738 
739 		if (WARN_ON_ONCE(last_dev == ctx.dev))
740 			return -1;
741 	}
742 
743 	if (!ctx.dev)
744 		return ret;
745 
746 	path = dev_fwd_path(stack);
747 	if (!path)
748 		return -1;
749 	path->type = DEV_PATH_ETHERNET;
750 	path->dev = ctx.dev;
751 
752 	return ret;
753 }
754 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
755 
756 /**
757  *	__dev_get_by_name	- find a device by its name
758  *	@net: the applicable net namespace
759  *	@name: name to find
760  *
761  *	Find an interface by name. Must be called under RTNL semaphore.
762  *	If the name is found a pointer to the device is returned.
763  *	If the name is not found then %NULL is returned. The
764  *	reference counters are not incremented so the caller must be
765  *	careful with locks.
766  */
767 
768 struct net_device *__dev_get_by_name(struct net *net, const char *name)
769 {
770 	struct netdev_name_node *node_name;
771 
772 	node_name = netdev_name_node_lookup(net, name);
773 	return node_name ? node_name->dev : NULL;
774 }
775 EXPORT_SYMBOL(__dev_get_by_name);
776 
777 /**
778  * dev_get_by_name_rcu	- find a device by its name
779  * @net: the applicable net namespace
780  * @name: name to find
781  *
782  * Find an interface by name.
783  * If the name is found a pointer to the device is returned.
784  * If the name is not found then %NULL is returned.
785  * The reference counters are not incremented so the caller must be
786  * careful with locks. The caller must hold RCU lock.
787  */
788 
789 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
790 {
791 	struct netdev_name_node *node_name;
792 
793 	node_name = netdev_name_node_lookup_rcu(net, name);
794 	return node_name ? node_name->dev : NULL;
795 }
796 EXPORT_SYMBOL(dev_get_by_name_rcu);
797 
798 /* Deprecated for new users, call netdev_get_by_name() instead */
799 struct net_device *dev_get_by_name(struct net *net, const char *name)
800 {
801 	struct net_device *dev;
802 
803 	rcu_read_lock();
804 	dev = dev_get_by_name_rcu(net, name);
805 	dev_hold(dev);
806 	rcu_read_unlock();
807 	return dev;
808 }
809 EXPORT_SYMBOL(dev_get_by_name);
810 
811 /**
812  *	netdev_get_by_name() - find a device by its name
813  *	@net: the applicable net namespace
814  *	@name: name to find
815  *	@tracker: tracking object for the acquired reference
816  *	@gfp: allocation flags for the tracker
817  *
818  *	Find an interface by name. This can be called from any
819  *	context and does its own locking. The returned handle has
820  *	the usage count incremented and the caller must use netdev_put() to
821  *	release it when it is no longer needed. %NULL is returned if no
822  *	matching device is found.
823  */
824 struct net_device *netdev_get_by_name(struct net *net, const char *name,
825 				      netdevice_tracker *tracker, gfp_t gfp)
826 {
827 	struct net_device *dev;
828 
829 	dev = dev_get_by_name(net, name);
830 	if (dev)
831 		netdev_tracker_alloc(dev, tracker, gfp);
832 	return dev;
833 }
834 EXPORT_SYMBOL(netdev_get_by_name);
835 
836 /**
837  *	__dev_get_by_index - find a device by its ifindex
838  *	@net: the applicable net namespace
839  *	@ifindex: index of device
840  *
841  *	Search for an interface by index. Returns %NULL if the device
842  *	is not found or a pointer to the device. The device has not
843  *	had its reference counter increased so the caller must be careful
844  *	about locking. The caller must hold the RTNL semaphore.
845  */
846 
847 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
848 {
849 	struct net_device *dev;
850 	struct hlist_head *head = dev_index_hash(net, ifindex);
851 
852 	hlist_for_each_entry(dev, head, index_hlist)
853 		if (dev->ifindex == ifindex)
854 			return dev;
855 
856 	return NULL;
857 }
858 EXPORT_SYMBOL(__dev_get_by_index);
859 
860 /**
861  *	dev_get_by_index_rcu - find a device by its ifindex
862  *	@net: the applicable net namespace
863  *	@ifindex: index of device
864  *
865  *	Search for an interface by index. Returns %NULL if the device
866  *	is not found or a pointer to the device. The device has not
867  *	had its reference counter increased so the caller must be careful
868  *	about locking. The caller must hold RCU lock.
869  */
870 
871 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
872 {
873 	struct net_device *dev;
874 	struct hlist_head *head = dev_index_hash(net, ifindex);
875 
876 	hlist_for_each_entry_rcu(dev, head, index_hlist)
877 		if (dev->ifindex == ifindex)
878 			return dev;
879 
880 	return NULL;
881 }
882 EXPORT_SYMBOL(dev_get_by_index_rcu);
883 
884 /* Deprecated for new users, call netdev_get_by_index() instead */
885 struct net_device *dev_get_by_index(struct net *net, int ifindex)
886 {
887 	struct net_device *dev;
888 
889 	rcu_read_lock();
890 	dev = dev_get_by_index_rcu(net, ifindex);
891 	dev_hold(dev);
892 	rcu_read_unlock();
893 	return dev;
894 }
895 EXPORT_SYMBOL(dev_get_by_index);
896 
897 /**
898  *	netdev_get_by_index() - find a device by its ifindex
899  *	@net: the applicable net namespace
900  *	@ifindex: index of device
901  *	@tracker: tracking object for the acquired reference
902  *	@gfp: allocation flags for the tracker
903  *
904  *	Search for an interface by index. Returns NULL if the device
905  *	is not found or a pointer to the device. The device returned has
906  *	had a reference added and the pointer is safe until the user calls
907  *	netdev_put() to indicate they have finished with it.
908  */
909 struct net_device *netdev_get_by_index(struct net *net, int ifindex,
910 				       netdevice_tracker *tracker, gfp_t gfp)
911 {
912 	struct net_device *dev;
913 
914 	dev = dev_get_by_index(net, ifindex);
915 	if (dev)
916 		netdev_tracker_alloc(dev, tracker, gfp);
917 	return dev;
918 }
919 EXPORT_SYMBOL(netdev_get_by_index);
920 
921 /**
922  *	dev_get_by_napi_id - find a device by napi_id
923  *	@napi_id: ID of the NAPI struct
924  *
925  *	Search for an interface by NAPI ID. Returns %NULL if the device
926  *	is not found or a pointer to the device. The device has not had
927  *	its reference counter increased so the caller must be careful
928  *	about locking. The caller must hold RCU lock.
929  */
930 
931 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
932 {
933 	struct napi_struct *napi;
934 
935 	WARN_ON_ONCE(!rcu_read_lock_held());
936 
937 	if (napi_id < MIN_NAPI_ID)
938 		return NULL;
939 
940 	napi = napi_by_id(napi_id);
941 
942 	return napi ? napi->dev : NULL;
943 }
944 EXPORT_SYMBOL(dev_get_by_napi_id);
945 
946 static DEFINE_SEQLOCK(netdev_rename_lock);
947 
948 void netdev_copy_name(struct net_device *dev, char *name)
949 {
950 	unsigned int seq;
951 
952 	do {
953 		seq = read_seqbegin(&netdev_rename_lock);
954 		strscpy(name, dev->name, IFNAMSIZ);
955 	} while (read_seqretry(&netdev_rename_lock, seq));
956 }
957 
958 /**
959  *	netdev_get_name - get a netdevice name, knowing its ifindex.
960  *	@net: network namespace
961  *	@name: a pointer to the buffer where the name will be stored.
962  *	@ifindex: the ifindex of the interface to get the name from.
963  */
964 int netdev_get_name(struct net *net, char *name, int ifindex)
965 {
966 	struct net_device *dev;
967 	int ret;
968 
969 	rcu_read_lock();
970 
971 	dev = dev_get_by_index_rcu(net, ifindex);
972 	if (!dev) {
973 		ret = -ENODEV;
974 		goto out;
975 	}
976 
977 	netdev_copy_name(dev, name);
978 
979 	ret = 0;
980 out:
981 	rcu_read_unlock();
982 	return ret;
983 }
984 
985 /**
986  *	dev_getbyhwaddr_rcu - find a device by its hardware address
987  *	@net: the applicable net namespace
988  *	@type: media type of device
989  *	@ha: hardware address
990  *
991  *	Search for an interface by MAC address. Returns NULL if the device
992  *	is not found or a pointer to the device.
993  *	The caller must hold RCU or RTNL.
994  *	The returned device has not had its ref count increased
995  *	and the caller must therefore be careful about locking
996  *
997  */
998 
999 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1000 				       const char *ha)
1001 {
1002 	struct net_device *dev;
1003 
1004 	for_each_netdev_rcu(net, dev)
1005 		if (dev->type == type &&
1006 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
1007 			return dev;
1008 
1009 	return NULL;
1010 }
1011 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
1012 
1013 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1014 {
1015 	struct net_device *dev, *ret = NULL;
1016 
1017 	rcu_read_lock();
1018 	for_each_netdev_rcu(net, dev)
1019 		if (dev->type == type) {
1020 			dev_hold(dev);
1021 			ret = dev;
1022 			break;
1023 		}
1024 	rcu_read_unlock();
1025 	return ret;
1026 }
1027 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1028 
1029 /**
1030  *	__dev_get_by_flags - find any device with given flags
1031  *	@net: the applicable net namespace
1032  *	@if_flags: IFF_* values
1033  *	@mask: bitmask of bits in if_flags to check
1034  *
1035  *	Search for any interface with the given flags. Returns NULL if a device
1036  *	is not found or a pointer to the device. Must be called inside
1037  *	rtnl_lock(), and result refcount is unchanged.
1038  */
1039 
1040 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1041 				      unsigned short mask)
1042 {
1043 	struct net_device *dev, *ret;
1044 
1045 	ASSERT_RTNL();
1046 
1047 	ret = NULL;
1048 	for_each_netdev(net, dev) {
1049 		if (((dev->flags ^ if_flags) & mask) == 0) {
1050 			ret = dev;
1051 			break;
1052 		}
1053 	}
1054 	return ret;
1055 }
1056 EXPORT_SYMBOL(__dev_get_by_flags);
1057 
1058 /**
1059  *	dev_valid_name - check if name is okay for network device
1060  *	@name: name string
1061  *
1062  *	Network device names need to be valid file names to
1063  *	allow sysfs to work.  We also disallow any kind of
1064  *	whitespace.
1065  */
1066 bool dev_valid_name(const char *name)
1067 {
1068 	if (*name == '\0')
1069 		return false;
1070 	if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1071 		return false;
1072 	if (!strcmp(name, ".") || !strcmp(name, ".."))
1073 		return false;
1074 
1075 	while (*name) {
1076 		if (*name == '/' || *name == ':' || isspace(*name))
1077 			return false;
1078 		name++;
1079 	}
1080 	return true;
1081 }
1082 EXPORT_SYMBOL(dev_valid_name);
1083 
1084 /**
1085  *	__dev_alloc_name - allocate a name for a device
1086  *	@net: network namespace to allocate the device name in
1087  *	@name: name format string
1088  *	@res: result name string
1089  *
1090  *	Passed a format string - eg "lt%d" it will try and find a suitable
1091  *	id. It scans list of devices to build up a free map, then chooses
1092  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1093  *	while allocating the name and adding the device in order to avoid
1094  *	duplicates.
1095  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1096  *	Returns the number of the unit assigned or a negative errno code.
1097  */
1098 
1099 static int __dev_alloc_name(struct net *net, const char *name, char *res)
1100 {
1101 	int i = 0;
1102 	const char *p;
1103 	const int max_netdevices = 8*PAGE_SIZE;
1104 	unsigned long *inuse;
1105 	struct net_device *d;
1106 	char buf[IFNAMSIZ];
1107 
1108 	/* Verify the string as this thing may have come from the user.
1109 	 * There must be one "%d" and no other "%" characters.
1110 	 */
1111 	p = strchr(name, '%');
1112 	if (!p || p[1] != 'd' || strchr(p + 2, '%'))
1113 		return -EINVAL;
1114 
1115 	/* Use one page as a bit array of possible slots */
1116 	inuse = bitmap_zalloc(max_netdevices, GFP_ATOMIC);
1117 	if (!inuse)
1118 		return -ENOMEM;
1119 
1120 	for_each_netdev(net, d) {
1121 		struct netdev_name_node *name_node;
1122 
1123 		netdev_for_each_altname(d, name_node) {
1124 			if (!sscanf(name_node->name, name, &i))
1125 				continue;
1126 			if (i < 0 || i >= max_netdevices)
1127 				continue;
1128 
1129 			/* avoid cases where sscanf is not exact inverse of printf */
1130 			snprintf(buf, IFNAMSIZ, name, i);
1131 			if (!strncmp(buf, name_node->name, IFNAMSIZ))
1132 				__set_bit(i, inuse);
1133 		}
1134 		if (!sscanf(d->name, name, &i))
1135 			continue;
1136 		if (i < 0 || i >= max_netdevices)
1137 			continue;
1138 
1139 		/* avoid cases where sscanf is not exact inverse of printf */
1140 		snprintf(buf, IFNAMSIZ, name, i);
1141 		if (!strncmp(buf, d->name, IFNAMSIZ))
1142 			__set_bit(i, inuse);
1143 	}
1144 
1145 	i = find_first_zero_bit(inuse, max_netdevices);
1146 	bitmap_free(inuse);
1147 	if (i == max_netdevices)
1148 		return -ENFILE;
1149 
1150 	/* 'res' and 'name' could overlap, use 'buf' as an intermediate buffer */
1151 	strscpy(buf, name, IFNAMSIZ);
1152 	snprintf(res, IFNAMSIZ, buf, i);
1153 	return i;
1154 }
1155 
1156 /* Returns negative errno or allocated unit id (see __dev_alloc_name()) */
1157 static int dev_prep_valid_name(struct net *net, struct net_device *dev,
1158 			       const char *want_name, char *out_name,
1159 			       int dup_errno)
1160 {
1161 	if (!dev_valid_name(want_name))
1162 		return -EINVAL;
1163 
1164 	if (strchr(want_name, '%'))
1165 		return __dev_alloc_name(net, want_name, out_name);
1166 
1167 	if (netdev_name_in_use(net, want_name))
1168 		return -dup_errno;
1169 	if (out_name != want_name)
1170 		strscpy(out_name, want_name, IFNAMSIZ);
1171 	return 0;
1172 }
1173 
1174 /**
1175  *	dev_alloc_name - allocate a name for a device
1176  *	@dev: device
1177  *	@name: name format string
1178  *
1179  *	Passed a format string - eg "lt%d" it will try and find a suitable
1180  *	id. It scans list of devices to build up a free map, then chooses
1181  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1182  *	while allocating the name and adding the device in order to avoid
1183  *	duplicates.
1184  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1185  *	Returns the number of the unit assigned or a negative errno code.
1186  */
1187 
1188 int dev_alloc_name(struct net_device *dev, const char *name)
1189 {
1190 	return dev_prep_valid_name(dev_net(dev), dev, name, dev->name, ENFILE);
1191 }
1192 EXPORT_SYMBOL(dev_alloc_name);
1193 
1194 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1195 			      const char *name)
1196 {
1197 	int ret;
1198 
1199 	ret = dev_prep_valid_name(net, dev, name, dev->name, EEXIST);
1200 	return ret < 0 ? ret : 0;
1201 }
1202 
1203 /**
1204  *	dev_change_name - change name of a device
1205  *	@dev: device
1206  *	@newname: name (or format string) must be at least IFNAMSIZ
1207  *
1208  *	Change name of a device, can pass format strings "eth%d".
1209  *	for wildcarding.
1210  */
1211 int dev_change_name(struct net_device *dev, const char *newname)
1212 {
1213 	unsigned char old_assign_type;
1214 	char oldname[IFNAMSIZ];
1215 	int err = 0;
1216 	int ret;
1217 	struct net *net;
1218 
1219 	ASSERT_RTNL();
1220 	BUG_ON(!dev_net(dev));
1221 
1222 	net = dev_net(dev);
1223 
1224 	down_write(&devnet_rename_sem);
1225 
1226 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1227 		up_write(&devnet_rename_sem);
1228 		return 0;
1229 	}
1230 
1231 	memcpy(oldname, dev->name, IFNAMSIZ);
1232 
1233 	write_seqlock_bh(&netdev_rename_lock);
1234 	err = dev_get_valid_name(net, dev, newname);
1235 	write_sequnlock_bh(&netdev_rename_lock);
1236 
1237 	if (err < 0) {
1238 		up_write(&devnet_rename_sem);
1239 		return err;
1240 	}
1241 
1242 	if (oldname[0] && !strchr(oldname, '%'))
1243 		netdev_info(dev, "renamed from %s%s\n", oldname,
1244 			    dev->flags & IFF_UP ? " (while UP)" : "");
1245 
1246 	old_assign_type = dev->name_assign_type;
1247 	WRITE_ONCE(dev->name_assign_type, NET_NAME_RENAMED);
1248 
1249 rollback:
1250 	ret = device_rename(&dev->dev, dev->name);
1251 	if (ret) {
1252 		memcpy(dev->name, oldname, IFNAMSIZ);
1253 		WRITE_ONCE(dev->name_assign_type, old_assign_type);
1254 		up_write(&devnet_rename_sem);
1255 		return ret;
1256 	}
1257 
1258 	up_write(&devnet_rename_sem);
1259 
1260 	netdev_adjacent_rename_links(dev, oldname);
1261 
1262 	netdev_name_node_del(dev->name_node);
1263 
1264 	synchronize_net();
1265 
1266 	netdev_name_node_add(net, dev->name_node);
1267 
1268 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1269 	ret = notifier_to_errno(ret);
1270 
1271 	if (ret) {
1272 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1273 		if (err >= 0) {
1274 			err = ret;
1275 			down_write(&devnet_rename_sem);
1276 			write_seqlock_bh(&netdev_rename_lock);
1277 			memcpy(dev->name, oldname, IFNAMSIZ);
1278 			write_sequnlock_bh(&netdev_rename_lock);
1279 			memcpy(oldname, newname, IFNAMSIZ);
1280 			WRITE_ONCE(dev->name_assign_type, old_assign_type);
1281 			old_assign_type = NET_NAME_RENAMED;
1282 			goto rollback;
1283 		} else {
1284 			netdev_err(dev, "name change rollback failed: %d\n",
1285 				   ret);
1286 		}
1287 	}
1288 
1289 	return err;
1290 }
1291 
1292 /**
1293  *	dev_set_alias - change ifalias of a device
1294  *	@dev: device
1295  *	@alias: name up to IFALIASZ
1296  *	@len: limit of bytes to copy from info
1297  *
1298  *	Set ifalias for a device,
1299  */
1300 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1301 {
1302 	struct dev_ifalias *new_alias = NULL;
1303 
1304 	if (len >= IFALIASZ)
1305 		return -EINVAL;
1306 
1307 	if (len) {
1308 		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1309 		if (!new_alias)
1310 			return -ENOMEM;
1311 
1312 		memcpy(new_alias->ifalias, alias, len);
1313 		new_alias->ifalias[len] = 0;
1314 	}
1315 
1316 	mutex_lock(&ifalias_mutex);
1317 	new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1318 					mutex_is_locked(&ifalias_mutex));
1319 	mutex_unlock(&ifalias_mutex);
1320 
1321 	if (new_alias)
1322 		kfree_rcu(new_alias, rcuhead);
1323 
1324 	return len;
1325 }
1326 EXPORT_SYMBOL(dev_set_alias);
1327 
1328 /**
1329  *	dev_get_alias - get ifalias of a device
1330  *	@dev: device
1331  *	@name: buffer to store name of ifalias
1332  *	@len: size of buffer
1333  *
1334  *	get ifalias for a device.  Caller must make sure dev cannot go
1335  *	away,  e.g. rcu read lock or own a reference count to device.
1336  */
1337 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1338 {
1339 	const struct dev_ifalias *alias;
1340 	int ret = 0;
1341 
1342 	rcu_read_lock();
1343 	alias = rcu_dereference(dev->ifalias);
1344 	if (alias)
1345 		ret = snprintf(name, len, "%s", alias->ifalias);
1346 	rcu_read_unlock();
1347 
1348 	return ret;
1349 }
1350 
1351 /**
1352  *	netdev_features_change - device changes features
1353  *	@dev: device to cause notification
1354  *
1355  *	Called to indicate a device has changed features.
1356  */
1357 void netdev_features_change(struct net_device *dev)
1358 {
1359 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1360 }
1361 EXPORT_SYMBOL(netdev_features_change);
1362 
1363 /**
1364  *	netdev_state_change - device changes state
1365  *	@dev: device to cause notification
1366  *
1367  *	Called to indicate a device has changed state. This function calls
1368  *	the notifier chains for netdev_chain and sends a NEWLINK message
1369  *	to the routing socket.
1370  */
1371 void netdev_state_change(struct net_device *dev)
1372 {
1373 	if (dev->flags & IFF_UP) {
1374 		struct netdev_notifier_change_info change_info = {
1375 			.info.dev = dev,
1376 		};
1377 
1378 		call_netdevice_notifiers_info(NETDEV_CHANGE,
1379 					      &change_info.info);
1380 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL, 0, NULL);
1381 	}
1382 }
1383 EXPORT_SYMBOL(netdev_state_change);
1384 
1385 /**
1386  * __netdev_notify_peers - notify network peers about existence of @dev,
1387  * to be called when rtnl lock is already held.
1388  * @dev: network device
1389  *
1390  * Generate traffic such that interested network peers are aware of
1391  * @dev, such as by generating a gratuitous ARP. This may be used when
1392  * a device wants to inform the rest of the network about some sort of
1393  * reconfiguration such as a failover event or virtual machine
1394  * migration.
1395  */
1396 void __netdev_notify_peers(struct net_device *dev)
1397 {
1398 	ASSERT_RTNL();
1399 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1400 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1401 }
1402 EXPORT_SYMBOL(__netdev_notify_peers);
1403 
1404 /**
1405  * netdev_notify_peers - notify network peers about existence of @dev
1406  * @dev: network device
1407  *
1408  * Generate traffic such that interested network peers are aware of
1409  * @dev, such as by generating a gratuitous ARP. This may be used when
1410  * a device wants to inform the rest of the network about some sort of
1411  * reconfiguration such as a failover event or virtual machine
1412  * migration.
1413  */
1414 void netdev_notify_peers(struct net_device *dev)
1415 {
1416 	rtnl_lock();
1417 	__netdev_notify_peers(dev);
1418 	rtnl_unlock();
1419 }
1420 EXPORT_SYMBOL(netdev_notify_peers);
1421 
1422 static int napi_threaded_poll(void *data);
1423 
1424 static int napi_kthread_create(struct napi_struct *n)
1425 {
1426 	int err = 0;
1427 
1428 	/* Create and wake up the kthread once to put it in
1429 	 * TASK_INTERRUPTIBLE mode to avoid the blocked task
1430 	 * warning and work with loadavg.
1431 	 */
1432 	n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1433 				n->dev->name, n->napi_id);
1434 	if (IS_ERR(n->thread)) {
1435 		err = PTR_ERR(n->thread);
1436 		pr_err("kthread_run failed with err %d\n", err);
1437 		n->thread = NULL;
1438 	}
1439 
1440 	return err;
1441 }
1442 
1443 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1444 {
1445 	const struct net_device_ops *ops = dev->netdev_ops;
1446 	int ret;
1447 
1448 	ASSERT_RTNL();
1449 	dev_addr_check(dev);
1450 
1451 	if (!netif_device_present(dev)) {
1452 		/* may be detached because parent is runtime-suspended */
1453 		if (dev->dev.parent)
1454 			pm_runtime_resume(dev->dev.parent);
1455 		if (!netif_device_present(dev))
1456 			return -ENODEV;
1457 	}
1458 
1459 	/* Block netpoll from trying to do any rx path servicing.
1460 	 * If we don't do this there is a chance ndo_poll_controller
1461 	 * or ndo_poll may be running while we open the device
1462 	 */
1463 	netpoll_poll_disable(dev);
1464 
1465 	ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1466 	ret = notifier_to_errno(ret);
1467 	if (ret)
1468 		return ret;
1469 
1470 	set_bit(__LINK_STATE_START, &dev->state);
1471 
1472 	if (ops->ndo_validate_addr)
1473 		ret = ops->ndo_validate_addr(dev);
1474 
1475 	if (!ret && ops->ndo_open)
1476 		ret = ops->ndo_open(dev);
1477 
1478 	netpoll_poll_enable(dev);
1479 
1480 	if (ret)
1481 		clear_bit(__LINK_STATE_START, &dev->state);
1482 	else {
1483 		dev->flags |= IFF_UP;
1484 		dev_set_rx_mode(dev);
1485 		dev_activate(dev);
1486 		add_device_randomness(dev->dev_addr, dev->addr_len);
1487 	}
1488 
1489 	return ret;
1490 }
1491 
1492 /**
1493  *	dev_open	- prepare an interface for use.
1494  *	@dev: device to open
1495  *	@extack: netlink extended ack
1496  *
1497  *	Takes a device from down to up state. The device's private open
1498  *	function is invoked and then the multicast lists are loaded. Finally
1499  *	the device is moved into the up state and a %NETDEV_UP message is
1500  *	sent to the netdev notifier chain.
1501  *
1502  *	Calling this function on an active interface is a nop. On a failure
1503  *	a negative errno code is returned.
1504  */
1505 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1506 {
1507 	int ret;
1508 
1509 	if (dev->flags & IFF_UP)
1510 		return 0;
1511 
1512 	ret = __dev_open(dev, extack);
1513 	if (ret < 0)
1514 		return ret;
1515 
1516 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1517 	call_netdevice_notifiers(NETDEV_UP, dev);
1518 
1519 	return ret;
1520 }
1521 EXPORT_SYMBOL(dev_open);
1522 
1523 static void __dev_close_many(struct list_head *head)
1524 {
1525 	struct net_device *dev;
1526 
1527 	ASSERT_RTNL();
1528 	might_sleep();
1529 
1530 	list_for_each_entry(dev, head, close_list) {
1531 		/* Temporarily disable netpoll until the interface is down */
1532 		netpoll_poll_disable(dev);
1533 
1534 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1535 
1536 		clear_bit(__LINK_STATE_START, &dev->state);
1537 
1538 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1539 		 * can be even on different cpu. So just clear netif_running().
1540 		 *
1541 		 * dev->stop() will invoke napi_disable() on all of it's
1542 		 * napi_struct instances on this device.
1543 		 */
1544 		smp_mb__after_atomic(); /* Commit netif_running(). */
1545 	}
1546 
1547 	dev_deactivate_many(head);
1548 
1549 	list_for_each_entry(dev, head, close_list) {
1550 		const struct net_device_ops *ops = dev->netdev_ops;
1551 
1552 		/*
1553 		 *	Call the device specific close. This cannot fail.
1554 		 *	Only if device is UP
1555 		 *
1556 		 *	We allow it to be called even after a DETACH hot-plug
1557 		 *	event.
1558 		 */
1559 		if (ops->ndo_stop)
1560 			ops->ndo_stop(dev);
1561 
1562 		dev->flags &= ~IFF_UP;
1563 		netpoll_poll_enable(dev);
1564 	}
1565 }
1566 
1567 static void __dev_close(struct net_device *dev)
1568 {
1569 	LIST_HEAD(single);
1570 
1571 	list_add(&dev->close_list, &single);
1572 	__dev_close_many(&single);
1573 	list_del(&single);
1574 }
1575 
1576 void dev_close_many(struct list_head *head, bool unlink)
1577 {
1578 	struct net_device *dev, *tmp;
1579 
1580 	/* Remove the devices that don't need to be closed */
1581 	list_for_each_entry_safe(dev, tmp, head, close_list)
1582 		if (!(dev->flags & IFF_UP))
1583 			list_del_init(&dev->close_list);
1584 
1585 	__dev_close_many(head);
1586 
1587 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1588 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1589 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1590 		if (unlink)
1591 			list_del_init(&dev->close_list);
1592 	}
1593 }
1594 EXPORT_SYMBOL(dev_close_many);
1595 
1596 /**
1597  *	dev_close - shutdown an interface.
1598  *	@dev: device to shutdown
1599  *
1600  *	This function moves an active device into down state. A
1601  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1602  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1603  *	chain.
1604  */
1605 void dev_close(struct net_device *dev)
1606 {
1607 	if (dev->flags & IFF_UP) {
1608 		LIST_HEAD(single);
1609 
1610 		list_add(&dev->close_list, &single);
1611 		dev_close_many(&single, true);
1612 		list_del(&single);
1613 	}
1614 }
1615 EXPORT_SYMBOL(dev_close);
1616 
1617 
1618 /**
1619  *	dev_disable_lro - disable Large Receive Offload on a device
1620  *	@dev: device
1621  *
1622  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1623  *	called under RTNL.  This is needed if received packets may be
1624  *	forwarded to another interface.
1625  */
1626 void dev_disable_lro(struct net_device *dev)
1627 {
1628 	struct net_device *lower_dev;
1629 	struct list_head *iter;
1630 
1631 	dev->wanted_features &= ~NETIF_F_LRO;
1632 	netdev_update_features(dev);
1633 
1634 	if (unlikely(dev->features & NETIF_F_LRO))
1635 		netdev_WARN(dev, "failed to disable LRO!\n");
1636 
1637 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1638 		dev_disable_lro(lower_dev);
1639 }
1640 EXPORT_SYMBOL(dev_disable_lro);
1641 
1642 /**
1643  *	dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1644  *	@dev: device
1645  *
1646  *	Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1647  *	called under RTNL.  This is needed if Generic XDP is installed on
1648  *	the device.
1649  */
1650 static void dev_disable_gro_hw(struct net_device *dev)
1651 {
1652 	dev->wanted_features &= ~NETIF_F_GRO_HW;
1653 	netdev_update_features(dev);
1654 
1655 	if (unlikely(dev->features & NETIF_F_GRO_HW))
1656 		netdev_WARN(dev, "failed to disable GRO_HW!\n");
1657 }
1658 
1659 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1660 {
1661 #define N(val) 						\
1662 	case NETDEV_##val:				\
1663 		return "NETDEV_" __stringify(val);
1664 	switch (cmd) {
1665 	N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1666 	N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1667 	N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1668 	N(POST_INIT) N(PRE_UNINIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN)
1669 	N(CHANGEUPPER) N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA)
1670 	N(BONDING_INFO) N(PRECHANGEUPPER) N(CHANGELOWERSTATE)
1671 	N(UDP_TUNNEL_PUSH_INFO) N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1672 	N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1673 	N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1674 	N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE)
1675 	N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA)
1676 	N(XDP_FEAT_CHANGE)
1677 	}
1678 #undef N
1679 	return "UNKNOWN_NETDEV_EVENT";
1680 }
1681 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1682 
1683 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1684 				   struct net_device *dev)
1685 {
1686 	struct netdev_notifier_info info = {
1687 		.dev = dev,
1688 	};
1689 
1690 	return nb->notifier_call(nb, val, &info);
1691 }
1692 
1693 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1694 					     struct net_device *dev)
1695 {
1696 	int err;
1697 
1698 	err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1699 	err = notifier_to_errno(err);
1700 	if (err)
1701 		return err;
1702 
1703 	if (!(dev->flags & IFF_UP))
1704 		return 0;
1705 
1706 	call_netdevice_notifier(nb, NETDEV_UP, dev);
1707 	return 0;
1708 }
1709 
1710 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1711 						struct net_device *dev)
1712 {
1713 	if (dev->flags & IFF_UP) {
1714 		call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1715 					dev);
1716 		call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1717 	}
1718 	call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1719 }
1720 
1721 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1722 						 struct net *net)
1723 {
1724 	struct net_device *dev;
1725 	int err;
1726 
1727 	for_each_netdev(net, dev) {
1728 		err = call_netdevice_register_notifiers(nb, dev);
1729 		if (err)
1730 			goto rollback;
1731 	}
1732 	return 0;
1733 
1734 rollback:
1735 	for_each_netdev_continue_reverse(net, dev)
1736 		call_netdevice_unregister_notifiers(nb, dev);
1737 	return err;
1738 }
1739 
1740 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1741 						    struct net *net)
1742 {
1743 	struct net_device *dev;
1744 
1745 	for_each_netdev(net, dev)
1746 		call_netdevice_unregister_notifiers(nb, dev);
1747 }
1748 
1749 static int dev_boot_phase = 1;
1750 
1751 /**
1752  * register_netdevice_notifier - register a network notifier block
1753  * @nb: notifier
1754  *
1755  * Register a notifier to be called when network device events occur.
1756  * The notifier passed is linked into the kernel structures and must
1757  * not be reused until it has been unregistered. A negative errno code
1758  * is returned on a failure.
1759  *
1760  * When registered all registration and up events are replayed
1761  * to the new notifier to allow device to have a race free
1762  * view of the network device list.
1763  */
1764 
1765 int register_netdevice_notifier(struct notifier_block *nb)
1766 {
1767 	struct net *net;
1768 	int err;
1769 
1770 	/* Close race with setup_net() and cleanup_net() */
1771 	down_write(&pernet_ops_rwsem);
1772 	rtnl_lock();
1773 	err = raw_notifier_chain_register(&netdev_chain, nb);
1774 	if (err)
1775 		goto unlock;
1776 	if (dev_boot_phase)
1777 		goto unlock;
1778 	for_each_net(net) {
1779 		err = call_netdevice_register_net_notifiers(nb, net);
1780 		if (err)
1781 			goto rollback;
1782 	}
1783 
1784 unlock:
1785 	rtnl_unlock();
1786 	up_write(&pernet_ops_rwsem);
1787 	return err;
1788 
1789 rollback:
1790 	for_each_net_continue_reverse(net)
1791 		call_netdevice_unregister_net_notifiers(nb, net);
1792 
1793 	raw_notifier_chain_unregister(&netdev_chain, nb);
1794 	goto unlock;
1795 }
1796 EXPORT_SYMBOL(register_netdevice_notifier);
1797 
1798 /**
1799  * unregister_netdevice_notifier - unregister a network notifier block
1800  * @nb: notifier
1801  *
1802  * Unregister a notifier previously registered by
1803  * register_netdevice_notifier(). The notifier is unlinked into the
1804  * kernel structures and may then be reused. A negative errno code
1805  * is returned on a failure.
1806  *
1807  * After unregistering unregister and down device events are synthesized
1808  * for all devices on the device list to the removed notifier to remove
1809  * the need for special case cleanup code.
1810  */
1811 
1812 int unregister_netdevice_notifier(struct notifier_block *nb)
1813 {
1814 	struct net *net;
1815 	int err;
1816 
1817 	/* Close race with setup_net() and cleanup_net() */
1818 	down_write(&pernet_ops_rwsem);
1819 	rtnl_lock();
1820 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1821 	if (err)
1822 		goto unlock;
1823 
1824 	for_each_net(net)
1825 		call_netdevice_unregister_net_notifiers(nb, net);
1826 
1827 unlock:
1828 	rtnl_unlock();
1829 	up_write(&pernet_ops_rwsem);
1830 	return err;
1831 }
1832 EXPORT_SYMBOL(unregister_netdevice_notifier);
1833 
1834 static int __register_netdevice_notifier_net(struct net *net,
1835 					     struct notifier_block *nb,
1836 					     bool ignore_call_fail)
1837 {
1838 	int err;
1839 
1840 	err = raw_notifier_chain_register(&net->netdev_chain, nb);
1841 	if (err)
1842 		return err;
1843 	if (dev_boot_phase)
1844 		return 0;
1845 
1846 	err = call_netdevice_register_net_notifiers(nb, net);
1847 	if (err && !ignore_call_fail)
1848 		goto chain_unregister;
1849 
1850 	return 0;
1851 
1852 chain_unregister:
1853 	raw_notifier_chain_unregister(&net->netdev_chain, nb);
1854 	return err;
1855 }
1856 
1857 static int __unregister_netdevice_notifier_net(struct net *net,
1858 					       struct notifier_block *nb)
1859 {
1860 	int err;
1861 
1862 	err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1863 	if (err)
1864 		return err;
1865 
1866 	call_netdevice_unregister_net_notifiers(nb, net);
1867 	return 0;
1868 }
1869 
1870 /**
1871  * register_netdevice_notifier_net - register a per-netns network notifier block
1872  * @net: network namespace
1873  * @nb: notifier
1874  *
1875  * Register a notifier to be called when network device events occur.
1876  * The notifier passed is linked into the kernel structures and must
1877  * not be reused until it has been unregistered. A negative errno code
1878  * is returned on a failure.
1879  *
1880  * When registered all registration and up events are replayed
1881  * to the new notifier to allow device to have a race free
1882  * view of the network device list.
1883  */
1884 
1885 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1886 {
1887 	int err;
1888 
1889 	rtnl_lock();
1890 	err = __register_netdevice_notifier_net(net, nb, false);
1891 	rtnl_unlock();
1892 	return err;
1893 }
1894 EXPORT_SYMBOL(register_netdevice_notifier_net);
1895 
1896 /**
1897  * unregister_netdevice_notifier_net - unregister a per-netns
1898  *                                     network notifier block
1899  * @net: network namespace
1900  * @nb: notifier
1901  *
1902  * Unregister a notifier previously registered by
1903  * register_netdevice_notifier_net(). The notifier is unlinked from the
1904  * kernel structures and may then be reused. A negative errno code
1905  * is returned on a failure.
1906  *
1907  * After unregistering unregister and down device events are synthesized
1908  * for all devices on the device list to the removed notifier to remove
1909  * the need for special case cleanup code.
1910  */
1911 
1912 int unregister_netdevice_notifier_net(struct net *net,
1913 				      struct notifier_block *nb)
1914 {
1915 	int err;
1916 
1917 	rtnl_lock();
1918 	err = __unregister_netdevice_notifier_net(net, nb);
1919 	rtnl_unlock();
1920 	return err;
1921 }
1922 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1923 
1924 static void __move_netdevice_notifier_net(struct net *src_net,
1925 					  struct net *dst_net,
1926 					  struct notifier_block *nb)
1927 {
1928 	__unregister_netdevice_notifier_net(src_net, nb);
1929 	__register_netdevice_notifier_net(dst_net, nb, true);
1930 }
1931 
1932 int register_netdevice_notifier_dev_net(struct net_device *dev,
1933 					struct notifier_block *nb,
1934 					struct netdev_net_notifier *nn)
1935 {
1936 	int err;
1937 
1938 	rtnl_lock();
1939 	err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1940 	if (!err) {
1941 		nn->nb = nb;
1942 		list_add(&nn->list, &dev->net_notifier_list);
1943 	}
1944 	rtnl_unlock();
1945 	return err;
1946 }
1947 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1948 
1949 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1950 					  struct notifier_block *nb,
1951 					  struct netdev_net_notifier *nn)
1952 {
1953 	int err;
1954 
1955 	rtnl_lock();
1956 	list_del(&nn->list);
1957 	err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1958 	rtnl_unlock();
1959 	return err;
1960 }
1961 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1962 
1963 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1964 					     struct net *net)
1965 {
1966 	struct netdev_net_notifier *nn;
1967 
1968 	list_for_each_entry(nn, &dev->net_notifier_list, list)
1969 		__move_netdevice_notifier_net(dev_net(dev), net, nn->nb);
1970 }
1971 
1972 /**
1973  *	call_netdevice_notifiers_info - call all network notifier blocks
1974  *	@val: value passed unmodified to notifier function
1975  *	@info: notifier information data
1976  *
1977  *	Call all network notifier blocks.  Parameters and return value
1978  *	are as for raw_notifier_call_chain().
1979  */
1980 
1981 int call_netdevice_notifiers_info(unsigned long val,
1982 				  struct netdev_notifier_info *info)
1983 {
1984 	struct net *net = dev_net(info->dev);
1985 	int ret;
1986 
1987 	ASSERT_RTNL();
1988 
1989 	/* Run per-netns notifier block chain first, then run the global one.
1990 	 * Hopefully, one day, the global one is going to be removed after
1991 	 * all notifier block registrators get converted to be per-netns.
1992 	 */
1993 	ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
1994 	if (ret & NOTIFY_STOP_MASK)
1995 		return ret;
1996 	return raw_notifier_call_chain(&netdev_chain, val, info);
1997 }
1998 
1999 /**
2000  *	call_netdevice_notifiers_info_robust - call per-netns notifier blocks
2001  *	                                       for and rollback on error
2002  *	@val_up: value passed unmodified to notifier function
2003  *	@val_down: value passed unmodified to the notifier function when
2004  *	           recovering from an error on @val_up
2005  *	@info: notifier information data
2006  *
2007  *	Call all per-netns network notifier blocks, but not notifier blocks on
2008  *	the global notifier chain. Parameters and return value are as for
2009  *	raw_notifier_call_chain_robust().
2010  */
2011 
2012 static int
2013 call_netdevice_notifiers_info_robust(unsigned long val_up,
2014 				     unsigned long val_down,
2015 				     struct netdev_notifier_info *info)
2016 {
2017 	struct net *net = dev_net(info->dev);
2018 
2019 	ASSERT_RTNL();
2020 
2021 	return raw_notifier_call_chain_robust(&net->netdev_chain,
2022 					      val_up, val_down, info);
2023 }
2024 
2025 static int call_netdevice_notifiers_extack(unsigned long val,
2026 					   struct net_device *dev,
2027 					   struct netlink_ext_ack *extack)
2028 {
2029 	struct netdev_notifier_info info = {
2030 		.dev = dev,
2031 		.extack = extack,
2032 	};
2033 
2034 	return call_netdevice_notifiers_info(val, &info);
2035 }
2036 
2037 /**
2038  *	call_netdevice_notifiers - call all network notifier blocks
2039  *      @val: value passed unmodified to notifier function
2040  *      @dev: net_device pointer passed unmodified to notifier function
2041  *
2042  *	Call all network notifier blocks.  Parameters and return value
2043  *	are as for raw_notifier_call_chain().
2044  */
2045 
2046 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2047 {
2048 	return call_netdevice_notifiers_extack(val, dev, NULL);
2049 }
2050 EXPORT_SYMBOL(call_netdevice_notifiers);
2051 
2052 /**
2053  *	call_netdevice_notifiers_mtu - call all network notifier blocks
2054  *	@val: value passed unmodified to notifier function
2055  *	@dev: net_device pointer passed unmodified to notifier function
2056  *	@arg: additional u32 argument passed to the notifier function
2057  *
2058  *	Call all network notifier blocks.  Parameters and return value
2059  *	are as for raw_notifier_call_chain().
2060  */
2061 static int call_netdevice_notifiers_mtu(unsigned long val,
2062 					struct net_device *dev, u32 arg)
2063 {
2064 	struct netdev_notifier_info_ext info = {
2065 		.info.dev = dev,
2066 		.ext.mtu = arg,
2067 	};
2068 
2069 	BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2070 
2071 	return call_netdevice_notifiers_info(val, &info.info);
2072 }
2073 
2074 #ifdef CONFIG_NET_INGRESS
2075 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2076 
2077 void net_inc_ingress_queue(void)
2078 {
2079 	static_branch_inc(&ingress_needed_key);
2080 }
2081 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2082 
2083 void net_dec_ingress_queue(void)
2084 {
2085 	static_branch_dec(&ingress_needed_key);
2086 }
2087 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2088 #endif
2089 
2090 #ifdef CONFIG_NET_EGRESS
2091 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2092 
2093 void net_inc_egress_queue(void)
2094 {
2095 	static_branch_inc(&egress_needed_key);
2096 }
2097 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2098 
2099 void net_dec_egress_queue(void)
2100 {
2101 	static_branch_dec(&egress_needed_key);
2102 }
2103 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2104 #endif
2105 
2106 #ifdef CONFIG_NET_CLS_ACT
2107 DEFINE_STATIC_KEY_FALSE(tcf_bypass_check_needed_key);
2108 EXPORT_SYMBOL(tcf_bypass_check_needed_key);
2109 #endif
2110 
2111 DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2112 EXPORT_SYMBOL(netstamp_needed_key);
2113 #ifdef CONFIG_JUMP_LABEL
2114 static atomic_t netstamp_needed_deferred;
2115 static atomic_t netstamp_wanted;
2116 static void netstamp_clear(struct work_struct *work)
2117 {
2118 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2119 	int wanted;
2120 
2121 	wanted = atomic_add_return(deferred, &netstamp_wanted);
2122 	if (wanted > 0)
2123 		static_branch_enable(&netstamp_needed_key);
2124 	else
2125 		static_branch_disable(&netstamp_needed_key);
2126 }
2127 static DECLARE_WORK(netstamp_work, netstamp_clear);
2128 #endif
2129 
2130 void net_enable_timestamp(void)
2131 {
2132 #ifdef CONFIG_JUMP_LABEL
2133 	int wanted = atomic_read(&netstamp_wanted);
2134 
2135 	while (wanted > 0) {
2136 		if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted + 1))
2137 			return;
2138 	}
2139 	atomic_inc(&netstamp_needed_deferred);
2140 	schedule_work(&netstamp_work);
2141 #else
2142 	static_branch_inc(&netstamp_needed_key);
2143 #endif
2144 }
2145 EXPORT_SYMBOL(net_enable_timestamp);
2146 
2147 void net_disable_timestamp(void)
2148 {
2149 #ifdef CONFIG_JUMP_LABEL
2150 	int wanted = atomic_read(&netstamp_wanted);
2151 
2152 	while (wanted > 1) {
2153 		if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted - 1))
2154 			return;
2155 	}
2156 	atomic_dec(&netstamp_needed_deferred);
2157 	schedule_work(&netstamp_work);
2158 #else
2159 	static_branch_dec(&netstamp_needed_key);
2160 #endif
2161 }
2162 EXPORT_SYMBOL(net_disable_timestamp);
2163 
2164 static inline void net_timestamp_set(struct sk_buff *skb)
2165 {
2166 	skb->tstamp = 0;
2167 	skb->tstamp_type = SKB_CLOCK_REALTIME;
2168 	if (static_branch_unlikely(&netstamp_needed_key))
2169 		skb->tstamp = ktime_get_real();
2170 }
2171 
2172 #define net_timestamp_check(COND, SKB)				\
2173 	if (static_branch_unlikely(&netstamp_needed_key)) {	\
2174 		if ((COND) && !(SKB)->tstamp)			\
2175 			(SKB)->tstamp = ktime_get_real();	\
2176 	}							\
2177 
2178 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2179 {
2180 	return __is_skb_forwardable(dev, skb, true);
2181 }
2182 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2183 
2184 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2185 			      bool check_mtu)
2186 {
2187 	int ret = ____dev_forward_skb(dev, skb, check_mtu);
2188 
2189 	if (likely(!ret)) {
2190 		skb->protocol = eth_type_trans(skb, dev);
2191 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2192 	}
2193 
2194 	return ret;
2195 }
2196 
2197 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2198 {
2199 	return __dev_forward_skb2(dev, skb, true);
2200 }
2201 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2202 
2203 /**
2204  * dev_forward_skb - loopback an skb to another netif
2205  *
2206  * @dev: destination network device
2207  * @skb: buffer to forward
2208  *
2209  * return values:
2210  *	NET_RX_SUCCESS	(no congestion)
2211  *	NET_RX_DROP     (packet was dropped, but freed)
2212  *
2213  * dev_forward_skb can be used for injecting an skb from the
2214  * start_xmit function of one device into the receive queue
2215  * of another device.
2216  *
2217  * The receiving device may be in another namespace, so
2218  * we have to clear all information in the skb that could
2219  * impact namespace isolation.
2220  */
2221 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2222 {
2223 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2224 }
2225 EXPORT_SYMBOL_GPL(dev_forward_skb);
2226 
2227 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2228 {
2229 	return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2230 }
2231 
2232 static inline int deliver_skb(struct sk_buff *skb,
2233 			      struct packet_type *pt_prev,
2234 			      struct net_device *orig_dev)
2235 {
2236 	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2237 		return -ENOMEM;
2238 	refcount_inc(&skb->users);
2239 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2240 }
2241 
2242 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2243 					  struct packet_type **pt,
2244 					  struct net_device *orig_dev,
2245 					  __be16 type,
2246 					  struct list_head *ptype_list)
2247 {
2248 	struct packet_type *ptype, *pt_prev = *pt;
2249 
2250 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2251 		if (ptype->type != type)
2252 			continue;
2253 		if (pt_prev)
2254 			deliver_skb(skb, pt_prev, orig_dev);
2255 		pt_prev = ptype;
2256 	}
2257 	*pt = pt_prev;
2258 }
2259 
2260 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2261 {
2262 	if (!ptype->af_packet_priv || !skb->sk)
2263 		return false;
2264 
2265 	if (ptype->id_match)
2266 		return ptype->id_match(ptype, skb->sk);
2267 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2268 		return true;
2269 
2270 	return false;
2271 }
2272 
2273 /**
2274  * dev_nit_active - return true if any network interface taps are in use
2275  *
2276  * @dev: network device to check for the presence of taps
2277  */
2278 bool dev_nit_active(struct net_device *dev)
2279 {
2280 	return !list_empty(&net_hotdata.ptype_all) ||
2281 	       !list_empty(&dev->ptype_all);
2282 }
2283 EXPORT_SYMBOL_GPL(dev_nit_active);
2284 
2285 /*
2286  *	Support routine. Sends outgoing frames to any network
2287  *	taps currently in use.
2288  */
2289 
2290 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2291 {
2292 	struct list_head *ptype_list = &net_hotdata.ptype_all;
2293 	struct packet_type *ptype, *pt_prev = NULL;
2294 	struct sk_buff *skb2 = NULL;
2295 
2296 	rcu_read_lock();
2297 again:
2298 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2299 		if (READ_ONCE(ptype->ignore_outgoing))
2300 			continue;
2301 
2302 		/* Never send packets back to the socket
2303 		 * they originated from - MvS (miquels@drinkel.ow.org)
2304 		 */
2305 		if (skb_loop_sk(ptype, skb))
2306 			continue;
2307 
2308 		if (pt_prev) {
2309 			deliver_skb(skb2, pt_prev, skb->dev);
2310 			pt_prev = ptype;
2311 			continue;
2312 		}
2313 
2314 		/* need to clone skb, done only once */
2315 		skb2 = skb_clone(skb, GFP_ATOMIC);
2316 		if (!skb2)
2317 			goto out_unlock;
2318 
2319 		net_timestamp_set(skb2);
2320 
2321 		/* skb->nh should be correctly
2322 		 * set by sender, so that the second statement is
2323 		 * just protection against buggy protocols.
2324 		 */
2325 		skb_reset_mac_header(skb2);
2326 
2327 		if (skb_network_header(skb2) < skb2->data ||
2328 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2329 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2330 					     ntohs(skb2->protocol),
2331 					     dev->name);
2332 			skb_reset_network_header(skb2);
2333 		}
2334 
2335 		skb2->transport_header = skb2->network_header;
2336 		skb2->pkt_type = PACKET_OUTGOING;
2337 		pt_prev = ptype;
2338 	}
2339 
2340 	if (ptype_list == &net_hotdata.ptype_all) {
2341 		ptype_list = &dev->ptype_all;
2342 		goto again;
2343 	}
2344 out_unlock:
2345 	if (pt_prev) {
2346 		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2347 			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2348 		else
2349 			kfree_skb(skb2);
2350 	}
2351 	rcu_read_unlock();
2352 }
2353 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2354 
2355 /**
2356  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2357  * @dev: Network device
2358  * @txq: number of queues available
2359  *
2360  * If real_num_tx_queues is changed the tc mappings may no longer be
2361  * valid. To resolve this verify the tc mapping remains valid and if
2362  * not NULL the mapping. With no priorities mapping to this
2363  * offset/count pair it will no longer be used. In the worst case TC0
2364  * is invalid nothing can be done so disable priority mappings. If is
2365  * expected that drivers will fix this mapping if they can before
2366  * calling netif_set_real_num_tx_queues.
2367  */
2368 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2369 {
2370 	int i;
2371 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2372 
2373 	/* If TC0 is invalidated disable TC mapping */
2374 	if (tc->offset + tc->count > txq) {
2375 		netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2376 		dev->num_tc = 0;
2377 		return;
2378 	}
2379 
2380 	/* Invalidated prio to tc mappings set to TC0 */
2381 	for (i = 1; i < TC_BITMASK + 1; i++) {
2382 		int q = netdev_get_prio_tc_map(dev, i);
2383 
2384 		tc = &dev->tc_to_txq[q];
2385 		if (tc->offset + tc->count > txq) {
2386 			netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2387 				    i, q);
2388 			netdev_set_prio_tc_map(dev, i, 0);
2389 		}
2390 	}
2391 }
2392 
2393 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2394 {
2395 	if (dev->num_tc) {
2396 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2397 		int i;
2398 
2399 		/* walk through the TCs and see if it falls into any of them */
2400 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2401 			if ((txq - tc->offset) < tc->count)
2402 				return i;
2403 		}
2404 
2405 		/* didn't find it, just return -1 to indicate no match */
2406 		return -1;
2407 	}
2408 
2409 	return 0;
2410 }
2411 EXPORT_SYMBOL(netdev_txq_to_tc);
2412 
2413 #ifdef CONFIG_XPS
2414 static struct static_key xps_needed __read_mostly;
2415 static struct static_key xps_rxqs_needed __read_mostly;
2416 static DEFINE_MUTEX(xps_map_mutex);
2417 #define xmap_dereference(P)		\
2418 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2419 
2420 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2421 			     struct xps_dev_maps *old_maps, int tci, u16 index)
2422 {
2423 	struct xps_map *map = NULL;
2424 	int pos;
2425 
2426 	map = xmap_dereference(dev_maps->attr_map[tci]);
2427 	if (!map)
2428 		return false;
2429 
2430 	for (pos = map->len; pos--;) {
2431 		if (map->queues[pos] != index)
2432 			continue;
2433 
2434 		if (map->len > 1) {
2435 			map->queues[pos] = map->queues[--map->len];
2436 			break;
2437 		}
2438 
2439 		if (old_maps)
2440 			RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2441 		RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2442 		kfree_rcu(map, rcu);
2443 		return false;
2444 	}
2445 
2446 	return true;
2447 }
2448 
2449 static bool remove_xps_queue_cpu(struct net_device *dev,
2450 				 struct xps_dev_maps *dev_maps,
2451 				 int cpu, u16 offset, u16 count)
2452 {
2453 	int num_tc = dev_maps->num_tc;
2454 	bool active = false;
2455 	int tci;
2456 
2457 	for (tci = cpu * num_tc; num_tc--; tci++) {
2458 		int i, j;
2459 
2460 		for (i = count, j = offset; i--; j++) {
2461 			if (!remove_xps_queue(dev_maps, NULL, tci, j))
2462 				break;
2463 		}
2464 
2465 		active |= i < 0;
2466 	}
2467 
2468 	return active;
2469 }
2470 
2471 static void reset_xps_maps(struct net_device *dev,
2472 			   struct xps_dev_maps *dev_maps,
2473 			   enum xps_map_type type)
2474 {
2475 	static_key_slow_dec_cpuslocked(&xps_needed);
2476 	if (type == XPS_RXQS)
2477 		static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2478 
2479 	RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2480 
2481 	kfree_rcu(dev_maps, rcu);
2482 }
2483 
2484 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2485 			   u16 offset, u16 count)
2486 {
2487 	struct xps_dev_maps *dev_maps;
2488 	bool active = false;
2489 	int i, j;
2490 
2491 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2492 	if (!dev_maps)
2493 		return;
2494 
2495 	for (j = 0; j < dev_maps->nr_ids; j++)
2496 		active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2497 	if (!active)
2498 		reset_xps_maps(dev, dev_maps, type);
2499 
2500 	if (type == XPS_CPUS) {
2501 		for (i = offset + (count - 1); count--; i--)
2502 			netdev_queue_numa_node_write(
2503 				netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2504 	}
2505 }
2506 
2507 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2508 				   u16 count)
2509 {
2510 	if (!static_key_false(&xps_needed))
2511 		return;
2512 
2513 	cpus_read_lock();
2514 	mutex_lock(&xps_map_mutex);
2515 
2516 	if (static_key_false(&xps_rxqs_needed))
2517 		clean_xps_maps(dev, XPS_RXQS, offset, count);
2518 
2519 	clean_xps_maps(dev, XPS_CPUS, offset, count);
2520 
2521 	mutex_unlock(&xps_map_mutex);
2522 	cpus_read_unlock();
2523 }
2524 
2525 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2526 {
2527 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2528 }
2529 
2530 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2531 				      u16 index, bool is_rxqs_map)
2532 {
2533 	struct xps_map *new_map;
2534 	int alloc_len = XPS_MIN_MAP_ALLOC;
2535 	int i, pos;
2536 
2537 	for (pos = 0; map && pos < map->len; pos++) {
2538 		if (map->queues[pos] != index)
2539 			continue;
2540 		return map;
2541 	}
2542 
2543 	/* Need to add tx-queue to this CPU's/rx-queue's existing map */
2544 	if (map) {
2545 		if (pos < map->alloc_len)
2546 			return map;
2547 
2548 		alloc_len = map->alloc_len * 2;
2549 	}
2550 
2551 	/* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2552 	 *  map
2553 	 */
2554 	if (is_rxqs_map)
2555 		new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2556 	else
2557 		new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2558 				       cpu_to_node(attr_index));
2559 	if (!new_map)
2560 		return NULL;
2561 
2562 	for (i = 0; i < pos; i++)
2563 		new_map->queues[i] = map->queues[i];
2564 	new_map->alloc_len = alloc_len;
2565 	new_map->len = pos;
2566 
2567 	return new_map;
2568 }
2569 
2570 /* Copy xps maps at a given index */
2571 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2572 			      struct xps_dev_maps *new_dev_maps, int index,
2573 			      int tc, bool skip_tc)
2574 {
2575 	int i, tci = index * dev_maps->num_tc;
2576 	struct xps_map *map;
2577 
2578 	/* copy maps belonging to foreign traffic classes */
2579 	for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2580 		if (i == tc && skip_tc)
2581 			continue;
2582 
2583 		/* fill in the new device map from the old device map */
2584 		map = xmap_dereference(dev_maps->attr_map[tci]);
2585 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2586 	}
2587 }
2588 
2589 /* Must be called under cpus_read_lock */
2590 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2591 			  u16 index, enum xps_map_type type)
2592 {
2593 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2594 	const unsigned long *online_mask = NULL;
2595 	bool active = false, copy = false;
2596 	int i, j, tci, numa_node_id = -2;
2597 	int maps_sz, num_tc = 1, tc = 0;
2598 	struct xps_map *map, *new_map;
2599 	unsigned int nr_ids;
2600 
2601 	WARN_ON_ONCE(index >= dev->num_tx_queues);
2602 
2603 	if (dev->num_tc) {
2604 		/* Do not allow XPS on subordinate device directly */
2605 		num_tc = dev->num_tc;
2606 		if (num_tc < 0)
2607 			return -EINVAL;
2608 
2609 		/* If queue belongs to subordinate dev use its map */
2610 		dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2611 
2612 		tc = netdev_txq_to_tc(dev, index);
2613 		if (tc < 0)
2614 			return -EINVAL;
2615 	}
2616 
2617 	mutex_lock(&xps_map_mutex);
2618 
2619 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2620 	if (type == XPS_RXQS) {
2621 		maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2622 		nr_ids = dev->num_rx_queues;
2623 	} else {
2624 		maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2625 		if (num_possible_cpus() > 1)
2626 			online_mask = cpumask_bits(cpu_online_mask);
2627 		nr_ids = nr_cpu_ids;
2628 	}
2629 
2630 	if (maps_sz < L1_CACHE_BYTES)
2631 		maps_sz = L1_CACHE_BYTES;
2632 
2633 	/* The old dev_maps could be larger or smaller than the one we're
2634 	 * setting up now, as dev->num_tc or nr_ids could have been updated in
2635 	 * between. We could try to be smart, but let's be safe instead and only
2636 	 * copy foreign traffic classes if the two map sizes match.
2637 	 */
2638 	if (dev_maps &&
2639 	    dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2640 		copy = true;
2641 
2642 	/* allocate memory for queue storage */
2643 	for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2644 	     j < nr_ids;) {
2645 		if (!new_dev_maps) {
2646 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2647 			if (!new_dev_maps) {
2648 				mutex_unlock(&xps_map_mutex);
2649 				return -ENOMEM;
2650 			}
2651 
2652 			new_dev_maps->nr_ids = nr_ids;
2653 			new_dev_maps->num_tc = num_tc;
2654 		}
2655 
2656 		tci = j * num_tc + tc;
2657 		map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2658 
2659 		map = expand_xps_map(map, j, index, type == XPS_RXQS);
2660 		if (!map)
2661 			goto error;
2662 
2663 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2664 	}
2665 
2666 	if (!new_dev_maps)
2667 		goto out_no_new_maps;
2668 
2669 	if (!dev_maps) {
2670 		/* Increment static keys at most once per type */
2671 		static_key_slow_inc_cpuslocked(&xps_needed);
2672 		if (type == XPS_RXQS)
2673 			static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2674 	}
2675 
2676 	for (j = 0; j < nr_ids; j++) {
2677 		bool skip_tc = false;
2678 
2679 		tci = j * num_tc + tc;
2680 		if (netif_attr_test_mask(j, mask, nr_ids) &&
2681 		    netif_attr_test_online(j, online_mask, nr_ids)) {
2682 			/* add tx-queue to CPU/rx-queue maps */
2683 			int pos = 0;
2684 
2685 			skip_tc = true;
2686 
2687 			map = xmap_dereference(new_dev_maps->attr_map[tci]);
2688 			while ((pos < map->len) && (map->queues[pos] != index))
2689 				pos++;
2690 
2691 			if (pos == map->len)
2692 				map->queues[map->len++] = index;
2693 #ifdef CONFIG_NUMA
2694 			if (type == XPS_CPUS) {
2695 				if (numa_node_id == -2)
2696 					numa_node_id = cpu_to_node(j);
2697 				else if (numa_node_id != cpu_to_node(j))
2698 					numa_node_id = -1;
2699 			}
2700 #endif
2701 		}
2702 
2703 		if (copy)
2704 			xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2705 					  skip_tc);
2706 	}
2707 
2708 	rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2709 
2710 	/* Cleanup old maps */
2711 	if (!dev_maps)
2712 		goto out_no_old_maps;
2713 
2714 	for (j = 0; j < dev_maps->nr_ids; j++) {
2715 		for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2716 			map = xmap_dereference(dev_maps->attr_map[tci]);
2717 			if (!map)
2718 				continue;
2719 
2720 			if (copy) {
2721 				new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2722 				if (map == new_map)
2723 					continue;
2724 			}
2725 
2726 			RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2727 			kfree_rcu(map, rcu);
2728 		}
2729 	}
2730 
2731 	old_dev_maps = dev_maps;
2732 
2733 out_no_old_maps:
2734 	dev_maps = new_dev_maps;
2735 	active = true;
2736 
2737 out_no_new_maps:
2738 	if (type == XPS_CPUS)
2739 		/* update Tx queue numa node */
2740 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2741 					     (numa_node_id >= 0) ?
2742 					     numa_node_id : NUMA_NO_NODE);
2743 
2744 	if (!dev_maps)
2745 		goto out_no_maps;
2746 
2747 	/* removes tx-queue from unused CPUs/rx-queues */
2748 	for (j = 0; j < dev_maps->nr_ids; j++) {
2749 		tci = j * dev_maps->num_tc;
2750 
2751 		for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2752 			if (i == tc &&
2753 			    netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2754 			    netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2755 				continue;
2756 
2757 			active |= remove_xps_queue(dev_maps,
2758 						   copy ? old_dev_maps : NULL,
2759 						   tci, index);
2760 		}
2761 	}
2762 
2763 	if (old_dev_maps)
2764 		kfree_rcu(old_dev_maps, rcu);
2765 
2766 	/* free map if not active */
2767 	if (!active)
2768 		reset_xps_maps(dev, dev_maps, type);
2769 
2770 out_no_maps:
2771 	mutex_unlock(&xps_map_mutex);
2772 
2773 	return 0;
2774 error:
2775 	/* remove any maps that we added */
2776 	for (j = 0; j < nr_ids; j++) {
2777 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2778 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2779 			map = copy ?
2780 			      xmap_dereference(dev_maps->attr_map[tci]) :
2781 			      NULL;
2782 			if (new_map && new_map != map)
2783 				kfree(new_map);
2784 		}
2785 	}
2786 
2787 	mutex_unlock(&xps_map_mutex);
2788 
2789 	kfree(new_dev_maps);
2790 	return -ENOMEM;
2791 }
2792 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2793 
2794 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2795 			u16 index)
2796 {
2797 	int ret;
2798 
2799 	cpus_read_lock();
2800 	ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2801 	cpus_read_unlock();
2802 
2803 	return ret;
2804 }
2805 EXPORT_SYMBOL(netif_set_xps_queue);
2806 
2807 #endif
2808 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2809 {
2810 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2811 
2812 	/* Unbind any subordinate channels */
2813 	while (txq-- != &dev->_tx[0]) {
2814 		if (txq->sb_dev)
2815 			netdev_unbind_sb_channel(dev, txq->sb_dev);
2816 	}
2817 }
2818 
2819 void netdev_reset_tc(struct net_device *dev)
2820 {
2821 #ifdef CONFIG_XPS
2822 	netif_reset_xps_queues_gt(dev, 0);
2823 #endif
2824 	netdev_unbind_all_sb_channels(dev);
2825 
2826 	/* Reset TC configuration of device */
2827 	dev->num_tc = 0;
2828 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2829 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2830 }
2831 EXPORT_SYMBOL(netdev_reset_tc);
2832 
2833 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2834 {
2835 	if (tc >= dev->num_tc)
2836 		return -EINVAL;
2837 
2838 #ifdef CONFIG_XPS
2839 	netif_reset_xps_queues(dev, offset, count);
2840 #endif
2841 	dev->tc_to_txq[tc].count = count;
2842 	dev->tc_to_txq[tc].offset = offset;
2843 	return 0;
2844 }
2845 EXPORT_SYMBOL(netdev_set_tc_queue);
2846 
2847 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2848 {
2849 	if (num_tc > TC_MAX_QUEUE)
2850 		return -EINVAL;
2851 
2852 #ifdef CONFIG_XPS
2853 	netif_reset_xps_queues_gt(dev, 0);
2854 #endif
2855 	netdev_unbind_all_sb_channels(dev);
2856 
2857 	dev->num_tc = num_tc;
2858 	return 0;
2859 }
2860 EXPORT_SYMBOL(netdev_set_num_tc);
2861 
2862 void netdev_unbind_sb_channel(struct net_device *dev,
2863 			      struct net_device *sb_dev)
2864 {
2865 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2866 
2867 #ifdef CONFIG_XPS
2868 	netif_reset_xps_queues_gt(sb_dev, 0);
2869 #endif
2870 	memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2871 	memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2872 
2873 	while (txq-- != &dev->_tx[0]) {
2874 		if (txq->sb_dev == sb_dev)
2875 			txq->sb_dev = NULL;
2876 	}
2877 }
2878 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2879 
2880 int netdev_bind_sb_channel_queue(struct net_device *dev,
2881 				 struct net_device *sb_dev,
2882 				 u8 tc, u16 count, u16 offset)
2883 {
2884 	/* Make certain the sb_dev and dev are already configured */
2885 	if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2886 		return -EINVAL;
2887 
2888 	/* We cannot hand out queues we don't have */
2889 	if ((offset + count) > dev->real_num_tx_queues)
2890 		return -EINVAL;
2891 
2892 	/* Record the mapping */
2893 	sb_dev->tc_to_txq[tc].count = count;
2894 	sb_dev->tc_to_txq[tc].offset = offset;
2895 
2896 	/* Provide a way for Tx queue to find the tc_to_txq map or
2897 	 * XPS map for itself.
2898 	 */
2899 	while (count--)
2900 		netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2901 
2902 	return 0;
2903 }
2904 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2905 
2906 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2907 {
2908 	/* Do not use a multiqueue device to represent a subordinate channel */
2909 	if (netif_is_multiqueue(dev))
2910 		return -ENODEV;
2911 
2912 	/* We allow channels 1 - 32767 to be used for subordinate channels.
2913 	 * Channel 0 is meant to be "native" mode and used only to represent
2914 	 * the main root device. We allow writing 0 to reset the device back
2915 	 * to normal mode after being used as a subordinate channel.
2916 	 */
2917 	if (channel > S16_MAX)
2918 		return -EINVAL;
2919 
2920 	dev->num_tc = -channel;
2921 
2922 	return 0;
2923 }
2924 EXPORT_SYMBOL(netdev_set_sb_channel);
2925 
2926 /*
2927  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2928  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2929  */
2930 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2931 {
2932 	bool disabling;
2933 	int rc;
2934 
2935 	disabling = txq < dev->real_num_tx_queues;
2936 
2937 	if (txq < 1 || txq > dev->num_tx_queues)
2938 		return -EINVAL;
2939 
2940 	if (dev->reg_state == NETREG_REGISTERED ||
2941 	    dev->reg_state == NETREG_UNREGISTERING) {
2942 		ASSERT_RTNL();
2943 
2944 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2945 						  txq);
2946 		if (rc)
2947 			return rc;
2948 
2949 		if (dev->num_tc)
2950 			netif_setup_tc(dev, txq);
2951 
2952 		dev_qdisc_change_real_num_tx(dev, txq);
2953 
2954 		dev->real_num_tx_queues = txq;
2955 
2956 		if (disabling) {
2957 			synchronize_net();
2958 			qdisc_reset_all_tx_gt(dev, txq);
2959 #ifdef CONFIG_XPS
2960 			netif_reset_xps_queues_gt(dev, txq);
2961 #endif
2962 		}
2963 	} else {
2964 		dev->real_num_tx_queues = txq;
2965 	}
2966 
2967 	return 0;
2968 }
2969 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2970 
2971 #ifdef CONFIG_SYSFS
2972 /**
2973  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2974  *	@dev: Network device
2975  *	@rxq: Actual number of RX queues
2976  *
2977  *	This must be called either with the rtnl_lock held or before
2978  *	registration of the net device.  Returns 0 on success, or a
2979  *	negative error code.  If called before registration, it always
2980  *	succeeds.
2981  */
2982 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2983 {
2984 	int rc;
2985 
2986 	if (rxq < 1 || rxq > dev->num_rx_queues)
2987 		return -EINVAL;
2988 
2989 	if (dev->reg_state == NETREG_REGISTERED) {
2990 		ASSERT_RTNL();
2991 
2992 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2993 						  rxq);
2994 		if (rc)
2995 			return rc;
2996 	}
2997 
2998 	dev->real_num_rx_queues = rxq;
2999 	return 0;
3000 }
3001 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
3002 #endif
3003 
3004 /**
3005  *	netif_set_real_num_queues - set actual number of RX and TX queues used
3006  *	@dev: Network device
3007  *	@txq: Actual number of TX queues
3008  *	@rxq: Actual number of RX queues
3009  *
3010  *	Set the real number of both TX and RX queues.
3011  *	Does nothing if the number of queues is already correct.
3012  */
3013 int netif_set_real_num_queues(struct net_device *dev,
3014 			      unsigned int txq, unsigned int rxq)
3015 {
3016 	unsigned int old_rxq = dev->real_num_rx_queues;
3017 	int err;
3018 
3019 	if (txq < 1 || txq > dev->num_tx_queues ||
3020 	    rxq < 1 || rxq > dev->num_rx_queues)
3021 		return -EINVAL;
3022 
3023 	/* Start from increases, so the error path only does decreases -
3024 	 * decreases can't fail.
3025 	 */
3026 	if (rxq > dev->real_num_rx_queues) {
3027 		err = netif_set_real_num_rx_queues(dev, rxq);
3028 		if (err)
3029 			return err;
3030 	}
3031 	if (txq > dev->real_num_tx_queues) {
3032 		err = netif_set_real_num_tx_queues(dev, txq);
3033 		if (err)
3034 			goto undo_rx;
3035 	}
3036 	if (rxq < dev->real_num_rx_queues)
3037 		WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
3038 	if (txq < dev->real_num_tx_queues)
3039 		WARN_ON(netif_set_real_num_tx_queues(dev, txq));
3040 
3041 	return 0;
3042 undo_rx:
3043 	WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
3044 	return err;
3045 }
3046 EXPORT_SYMBOL(netif_set_real_num_queues);
3047 
3048 /**
3049  * netif_set_tso_max_size() - set the max size of TSO frames supported
3050  * @dev:	netdev to update
3051  * @size:	max skb->len of a TSO frame
3052  *
3053  * Set the limit on the size of TSO super-frames the device can handle.
3054  * Unless explicitly set the stack will assume the value of
3055  * %GSO_LEGACY_MAX_SIZE.
3056  */
3057 void netif_set_tso_max_size(struct net_device *dev, unsigned int size)
3058 {
3059 	dev->tso_max_size = min(GSO_MAX_SIZE, size);
3060 	if (size < READ_ONCE(dev->gso_max_size))
3061 		netif_set_gso_max_size(dev, size);
3062 	if (size < READ_ONCE(dev->gso_ipv4_max_size))
3063 		netif_set_gso_ipv4_max_size(dev, size);
3064 }
3065 EXPORT_SYMBOL(netif_set_tso_max_size);
3066 
3067 /**
3068  * netif_set_tso_max_segs() - set the max number of segs supported for TSO
3069  * @dev:	netdev to update
3070  * @segs:	max number of TCP segments
3071  *
3072  * Set the limit on the number of TCP segments the device can generate from
3073  * a single TSO super-frame.
3074  * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS.
3075  */
3076 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs)
3077 {
3078 	dev->tso_max_segs = segs;
3079 	if (segs < READ_ONCE(dev->gso_max_segs))
3080 		netif_set_gso_max_segs(dev, segs);
3081 }
3082 EXPORT_SYMBOL(netif_set_tso_max_segs);
3083 
3084 /**
3085  * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper
3086  * @to:		netdev to update
3087  * @from:	netdev from which to copy the limits
3088  */
3089 void netif_inherit_tso_max(struct net_device *to, const struct net_device *from)
3090 {
3091 	netif_set_tso_max_size(to, from->tso_max_size);
3092 	netif_set_tso_max_segs(to, from->tso_max_segs);
3093 }
3094 EXPORT_SYMBOL(netif_inherit_tso_max);
3095 
3096 /**
3097  * netif_get_num_default_rss_queues - default number of RSS queues
3098  *
3099  * Default value is the number of physical cores if there are only 1 or 2, or
3100  * divided by 2 if there are more.
3101  */
3102 int netif_get_num_default_rss_queues(void)
3103 {
3104 	cpumask_var_t cpus;
3105 	int cpu, count = 0;
3106 
3107 	if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL)))
3108 		return 1;
3109 
3110 	cpumask_copy(cpus, cpu_online_mask);
3111 	for_each_cpu(cpu, cpus) {
3112 		++count;
3113 		cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu));
3114 	}
3115 	free_cpumask_var(cpus);
3116 
3117 	return count > 2 ? DIV_ROUND_UP(count, 2) : count;
3118 }
3119 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3120 
3121 static void __netif_reschedule(struct Qdisc *q)
3122 {
3123 	struct softnet_data *sd;
3124 	unsigned long flags;
3125 
3126 	local_irq_save(flags);
3127 	sd = this_cpu_ptr(&softnet_data);
3128 	q->next_sched = NULL;
3129 	*sd->output_queue_tailp = q;
3130 	sd->output_queue_tailp = &q->next_sched;
3131 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3132 	local_irq_restore(flags);
3133 }
3134 
3135 void __netif_schedule(struct Qdisc *q)
3136 {
3137 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3138 		__netif_reschedule(q);
3139 }
3140 EXPORT_SYMBOL(__netif_schedule);
3141 
3142 struct dev_kfree_skb_cb {
3143 	enum skb_drop_reason reason;
3144 };
3145 
3146 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3147 {
3148 	return (struct dev_kfree_skb_cb *)skb->cb;
3149 }
3150 
3151 void netif_schedule_queue(struct netdev_queue *txq)
3152 {
3153 	rcu_read_lock();
3154 	if (!netif_xmit_stopped(txq)) {
3155 		struct Qdisc *q = rcu_dereference(txq->qdisc);
3156 
3157 		__netif_schedule(q);
3158 	}
3159 	rcu_read_unlock();
3160 }
3161 EXPORT_SYMBOL(netif_schedule_queue);
3162 
3163 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3164 {
3165 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3166 		struct Qdisc *q;
3167 
3168 		rcu_read_lock();
3169 		q = rcu_dereference(dev_queue->qdisc);
3170 		__netif_schedule(q);
3171 		rcu_read_unlock();
3172 	}
3173 }
3174 EXPORT_SYMBOL(netif_tx_wake_queue);
3175 
3176 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3177 {
3178 	unsigned long flags;
3179 
3180 	if (unlikely(!skb))
3181 		return;
3182 
3183 	if (likely(refcount_read(&skb->users) == 1)) {
3184 		smp_rmb();
3185 		refcount_set(&skb->users, 0);
3186 	} else if (likely(!refcount_dec_and_test(&skb->users))) {
3187 		return;
3188 	}
3189 	get_kfree_skb_cb(skb)->reason = reason;
3190 	local_irq_save(flags);
3191 	skb->next = __this_cpu_read(softnet_data.completion_queue);
3192 	__this_cpu_write(softnet_data.completion_queue, skb);
3193 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3194 	local_irq_restore(flags);
3195 }
3196 EXPORT_SYMBOL(dev_kfree_skb_irq_reason);
3197 
3198 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3199 {
3200 	if (in_hardirq() || irqs_disabled())
3201 		dev_kfree_skb_irq_reason(skb, reason);
3202 	else
3203 		kfree_skb_reason(skb, reason);
3204 }
3205 EXPORT_SYMBOL(dev_kfree_skb_any_reason);
3206 
3207 
3208 /**
3209  * netif_device_detach - mark device as removed
3210  * @dev: network device
3211  *
3212  * Mark device as removed from system and therefore no longer available.
3213  */
3214 void netif_device_detach(struct net_device *dev)
3215 {
3216 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3217 	    netif_running(dev)) {
3218 		netif_tx_stop_all_queues(dev);
3219 	}
3220 }
3221 EXPORT_SYMBOL(netif_device_detach);
3222 
3223 /**
3224  * netif_device_attach - mark device as attached
3225  * @dev: network device
3226  *
3227  * Mark device as attached from system and restart if needed.
3228  */
3229 void netif_device_attach(struct net_device *dev)
3230 {
3231 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3232 	    netif_running(dev)) {
3233 		netif_tx_wake_all_queues(dev);
3234 		__netdev_watchdog_up(dev);
3235 	}
3236 }
3237 EXPORT_SYMBOL(netif_device_attach);
3238 
3239 /*
3240  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3241  * to be used as a distribution range.
3242  */
3243 static u16 skb_tx_hash(const struct net_device *dev,
3244 		       const struct net_device *sb_dev,
3245 		       struct sk_buff *skb)
3246 {
3247 	u32 hash;
3248 	u16 qoffset = 0;
3249 	u16 qcount = dev->real_num_tx_queues;
3250 
3251 	if (dev->num_tc) {
3252 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3253 
3254 		qoffset = sb_dev->tc_to_txq[tc].offset;
3255 		qcount = sb_dev->tc_to_txq[tc].count;
3256 		if (unlikely(!qcount)) {
3257 			net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3258 					     sb_dev->name, qoffset, tc);
3259 			qoffset = 0;
3260 			qcount = dev->real_num_tx_queues;
3261 		}
3262 	}
3263 
3264 	if (skb_rx_queue_recorded(skb)) {
3265 		DEBUG_NET_WARN_ON_ONCE(qcount == 0);
3266 		hash = skb_get_rx_queue(skb);
3267 		if (hash >= qoffset)
3268 			hash -= qoffset;
3269 		while (unlikely(hash >= qcount))
3270 			hash -= qcount;
3271 		return hash + qoffset;
3272 	}
3273 
3274 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3275 }
3276 
3277 void skb_warn_bad_offload(const struct sk_buff *skb)
3278 {
3279 	static const netdev_features_t null_features;
3280 	struct net_device *dev = skb->dev;
3281 	const char *name = "";
3282 
3283 	if (!net_ratelimit())
3284 		return;
3285 
3286 	if (dev) {
3287 		if (dev->dev.parent)
3288 			name = dev_driver_string(dev->dev.parent);
3289 		else
3290 			name = netdev_name(dev);
3291 	}
3292 	skb_dump(KERN_WARNING, skb, false);
3293 	WARN(1, "%s: caps=(%pNF, %pNF)\n",
3294 	     name, dev ? &dev->features : &null_features,
3295 	     skb->sk ? &skb->sk->sk_route_caps : &null_features);
3296 }
3297 
3298 /*
3299  * Invalidate hardware checksum when packet is to be mangled, and
3300  * complete checksum manually on outgoing path.
3301  */
3302 int skb_checksum_help(struct sk_buff *skb)
3303 {
3304 	__wsum csum;
3305 	int ret = 0, offset;
3306 
3307 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3308 		goto out_set_summed;
3309 
3310 	if (unlikely(skb_is_gso(skb))) {
3311 		skb_warn_bad_offload(skb);
3312 		return -EINVAL;
3313 	}
3314 
3315 	if (!skb_frags_readable(skb)) {
3316 		return -EFAULT;
3317 	}
3318 
3319 	/* Before computing a checksum, we should make sure no frag could
3320 	 * be modified by an external entity : checksum could be wrong.
3321 	 */
3322 	if (skb_has_shared_frag(skb)) {
3323 		ret = __skb_linearize(skb);
3324 		if (ret)
3325 			goto out;
3326 	}
3327 
3328 	offset = skb_checksum_start_offset(skb);
3329 	ret = -EINVAL;
3330 	if (unlikely(offset >= skb_headlen(skb))) {
3331 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3332 		WARN_ONCE(true, "offset (%d) >= skb_headlen() (%u)\n",
3333 			  offset, skb_headlen(skb));
3334 		goto out;
3335 	}
3336 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
3337 
3338 	offset += skb->csum_offset;
3339 	if (unlikely(offset + sizeof(__sum16) > skb_headlen(skb))) {
3340 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3341 		WARN_ONCE(true, "offset+2 (%zu) > skb_headlen() (%u)\n",
3342 			  offset + sizeof(__sum16), skb_headlen(skb));
3343 		goto out;
3344 	}
3345 	ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3346 	if (ret)
3347 		goto out;
3348 
3349 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3350 out_set_summed:
3351 	skb->ip_summed = CHECKSUM_NONE;
3352 out:
3353 	return ret;
3354 }
3355 EXPORT_SYMBOL(skb_checksum_help);
3356 
3357 int skb_crc32c_csum_help(struct sk_buff *skb)
3358 {
3359 	__le32 crc32c_csum;
3360 	int ret = 0, offset, start;
3361 
3362 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3363 		goto out;
3364 
3365 	if (unlikely(skb_is_gso(skb)))
3366 		goto out;
3367 
3368 	/* Before computing a checksum, we should make sure no frag could
3369 	 * be modified by an external entity : checksum could be wrong.
3370 	 */
3371 	if (unlikely(skb_has_shared_frag(skb))) {
3372 		ret = __skb_linearize(skb);
3373 		if (ret)
3374 			goto out;
3375 	}
3376 	start = skb_checksum_start_offset(skb);
3377 	offset = start + offsetof(struct sctphdr, checksum);
3378 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3379 		ret = -EINVAL;
3380 		goto out;
3381 	}
3382 
3383 	ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3384 	if (ret)
3385 		goto out;
3386 
3387 	crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3388 						  skb->len - start, ~(__u32)0,
3389 						  crc32c_csum_stub));
3390 	*(__le32 *)(skb->data + offset) = crc32c_csum;
3391 	skb_reset_csum_not_inet(skb);
3392 out:
3393 	return ret;
3394 }
3395 EXPORT_SYMBOL(skb_crc32c_csum_help);
3396 
3397 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3398 {
3399 	__be16 type = skb->protocol;
3400 
3401 	/* Tunnel gso handlers can set protocol to ethernet. */
3402 	if (type == htons(ETH_P_TEB)) {
3403 		struct ethhdr *eth;
3404 
3405 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3406 			return 0;
3407 
3408 		eth = (struct ethhdr *)skb->data;
3409 		type = eth->h_proto;
3410 	}
3411 
3412 	return vlan_get_protocol_and_depth(skb, type, depth);
3413 }
3414 
3415 
3416 /* Take action when hardware reception checksum errors are detected. */
3417 #ifdef CONFIG_BUG
3418 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3419 {
3420 	netdev_err(dev, "hw csum failure\n");
3421 	skb_dump(KERN_ERR, skb, true);
3422 	dump_stack();
3423 }
3424 
3425 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3426 {
3427 	DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3428 }
3429 EXPORT_SYMBOL(netdev_rx_csum_fault);
3430 #endif
3431 
3432 /* XXX: check that highmem exists at all on the given machine. */
3433 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3434 {
3435 #ifdef CONFIG_HIGHMEM
3436 	int i;
3437 
3438 	if (!(dev->features & NETIF_F_HIGHDMA)) {
3439 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3440 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3441 			struct page *page = skb_frag_page(frag);
3442 
3443 			if (page && PageHighMem(page))
3444 				return 1;
3445 		}
3446 	}
3447 #endif
3448 	return 0;
3449 }
3450 
3451 /* If MPLS offload request, verify we are testing hardware MPLS features
3452  * instead of standard features for the netdev.
3453  */
3454 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3455 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3456 					   netdev_features_t features,
3457 					   __be16 type)
3458 {
3459 	if (eth_p_mpls(type))
3460 		features &= skb->dev->mpls_features;
3461 
3462 	return features;
3463 }
3464 #else
3465 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3466 					   netdev_features_t features,
3467 					   __be16 type)
3468 {
3469 	return features;
3470 }
3471 #endif
3472 
3473 static netdev_features_t harmonize_features(struct sk_buff *skb,
3474 	netdev_features_t features)
3475 {
3476 	__be16 type;
3477 
3478 	type = skb_network_protocol(skb, NULL);
3479 	features = net_mpls_features(skb, features, type);
3480 
3481 	if (skb->ip_summed != CHECKSUM_NONE &&
3482 	    !can_checksum_protocol(features, type)) {
3483 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3484 	}
3485 	if (illegal_highdma(skb->dev, skb))
3486 		features &= ~NETIF_F_SG;
3487 
3488 	return features;
3489 }
3490 
3491 netdev_features_t passthru_features_check(struct sk_buff *skb,
3492 					  struct net_device *dev,
3493 					  netdev_features_t features)
3494 {
3495 	return features;
3496 }
3497 EXPORT_SYMBOL(passthru_features_check);
3498 
3499 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3500 					     struct net_device *dev,
3501 					     netdev_features_t features)
3502 {
3503 	return vlan_features_check(skb, features);
3504 }
3505 
3506 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3507 					    struct net_device *dev,
3508 					    netdev_features_t features)
3509 {
3510 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
3511 
3512 	if (gso_segs > READ_ONCE(dev->gso_max_segs))
3513 		return features & ~NETIF_F_GSO_MASK;
3514 
3515 	if (unlikely(skb->len >= READ_ONCE(dev->gso_max_size)))
3516 		return features & ~NETIF_F_GSO_MASK;
3517 
3518 	if (!skb_shinfo(skb)->gso_type) {
3519 		skb_warn_bad_offload(skb);
3520 		return features & ~NETIF_F_GSO_MASK;
3521 	}
3522 
3523 	/* Support for GSO partial features requires software
3524 	 * intervention before we can actually process the packets
3525 	 * so we need to strip support for any partial features now
3526 	 * and we can pull them back in after we have partially
3527 	 * segmented the frame.
3528 	 */
3529 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3530 		features &= ~dev->gso_partial_features;
3531 
3532 	/* Make sure to clear the IPv4 ID mangling feature if the
3533 	 * IPv4 header has the potential to be fragmented.
3534 	 */
3535 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3536 		struct iphdr *iph = skb->encapsulation ?
3537 				    inner_ip_hdr(skb) : ip_hdr(skb);
3538 
3539 		if (!(iph->frag_off & htons(IP_DF)))
3540 			features &= ~NETIF_F_TSO_MANGLEID;
3541 	}
3542 
3543 	return features;
3544 }
3545 
3546 netdev_features_t netif_skb_features(struct sk_buff *skb)
3547 {
3548 	struct net_device *dev = skb->dev;
3549 	netdev_features_t features = dev->features;
3550 
3551 	if (skb_is_gso(skb))
3552 		features = gso_features_check(skb, dev, features);
3553 
3554 	/* If encapsulation offload request, verify we are testing
3555 	 * hardware encapsulation features instead of standard
3556 	 * features for the netdev
3557 	 */
3558 	if (skb->encapsulation)
3559 		features &= dev->hw_enc_features;
3560 
3561 	if (skb_vlan_tagged(skb))
3562 		features = netdev_intersect_features(features,
3563 						     dev->vlan_features |
3564 						     NETIF_F_HW_VLAN_CTAG_TX |
3565 						     NETIF_F_HW_VLAN_STAG_TX);
3566 
3567 	if (dev->netdev_ops->ndo_features_check)
3568 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
3569 								features);
3570 	else
3571 		features &= dflt_features_check(skb, dev, features);
3572 
3573 	return harmonize_features(skb, features);
3574 }
3575 EXPORT_SYMBOL(netif_skb_features);
3576 
3577 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3578 		    struct netdev_queue *txq, bool more)
3579 {
3580 	unsigned int len;
3581 	int rc;
3582 
3583 	if (dev_nit_active(dev))
3584 		dev_queue_xmit_nit(skb, dev);
3585 
3586 	len = skb->len;
3587 	trace_net_dev_start_xmit(skb, dev);
3588 	rc = netdev_start_xmit(skb, dev, txq, more);
3589 	trace_net_dev_xmit(skb, rc, dev, len);
3590 
3591 	return rc;
3592 }
3593 
3594 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3595 				    struct netdev_queue *txq, int *ret)
3596 {
3597 	struct sk_buff *skb = first;
3598 	int rc = NETDEV_TX_OK;
3599 
3600 	while (skb) {
3601 		struct sk_buff *next = skb->next;
3602 
3603 		skb_mark_not_on_list(skb);
3604 		rc = xmit_one(skb, dev, txq, next != NULL);
3605 		if (unlikely(!dev_xmit_complete(rc))) {
3606 			skb->next = next;
3607 			goto out;
3608 		}
3609 
3610 		skb = next;
3611 		if (netif_tx_queue_stopped(txq) && skb) {
3612 			rc = NETDEV_TX_BUSY;
3613 			break;
3614 		}
3615 	}
3616 
3617 out:
3618 	*ret = rc;
3619 	return skb;
3620 }
3621 
3622 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3623 					  netdev_features_t features)
3624 {
3625 	if (skb_vlan_tag_present(skb) &&
3626 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3627 		skb = __vlan_hwaccel_push_inside(skb);
3628 	return skb;
3629 }
3630 
3631 int skb_csum_hwoffload_help(struct sk_buff *skb,
3632 			    const netdev_features_t features)
3633 {
3634 	if (unlikely(skb_csum_is_sctp(skb)))
3635 		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3636 			skb_crc32c_csum_help(skb);
3637 
3638 	if (features & NETIF_F_HW_CSUM)
3639 		return 0;
3640 
3641 	if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3642 		switch (skb->csum_offset) {
3643 		case offsetof(struct tcphdr, check):
3644 		case offsetof(struct udphdr, check):
3645 			return 0;
3646 		}
3647 	}
3648 
3649 	return skb_checksum_help(skb);
3650 }
3651 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3652 
3653 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3654 {
3655 	netdev_features_t features;
3656 
3657 	features = netif_skb_features(skb);
3658 	skb = validate_xmit_vlan(skb, features);
3659 	if (unlikely(!skb))
3660 		goto out_null;
3661 
3662 	skb = sk_validate_xmit_skb(skb, dev);
3663 	if (unlikely(!skb))
3664 		goto out_null;
3665 
3666 	if (netif_needs_gso(skb, features)) {
3667 		struct sk_buff *segs;
3668 
3669 		segs = skb_gso_segment(skb, features);
3670 		if (IS_ERR(segs)) {
3671 			goto out_kfree_skb;
3672 		} else if (segs) {
3673 			consume_skb(skb);
3674 			skb = segs;
3675 		}
3676 	} else {
3677 		if (skb_needs_linearize(skb, features) &&
3678 		    __skb_linearize(skb))
3679 			goto out_kfree_skb;
3680 
3681 		/* If packet is not checksummed and device does not
3682 		 * support checksumming for this protocol, complete
3683 		 * checksumming here.
3684 		 */
3685 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3686 			if (skb->encapsulation)
3687 				skb_set_inner_transport_header(skb,
3688 							       skb_checksum_start_offset(skb));
3689 			else
3690 				skb_set_transport_header(skb,
3691 							 skb_checksum_start_offset(skb));
3692 			if (skb_csum_hwoffload_help(skb, features))
3693 				goto out_kfree_skb;
3694 		}
3695 	}
3696 
3697 	skb = validate_xmit_xfrm(skb, features, again);
3698 
3699 	return skb;
3700 
3701 out_kfree_skb:
3702 	kfree_skb(skb);
3703 out_null:
3704 	dev_core_stats_tx_dropped_inc(dev);
3705 	return NULL;
3706 }
3707 
3708 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3709 {
3710 	struct sk_buff *next, *head = NULL, *tail;
3711 
3712 	for (; skb != NULL; skb = next) {
3713 		next = skb->next;
3714 		skb_mark_not_on_list(skb);
3715 
3716 		/* in case skb won't be segmented, point to itself */
3717 		skb->prev = skb;
3718 
3719 		skb = validate_xmit_skb(skb, dev, again);
3720 		if (!skb)
3721 			continue;
3722 
3723 		if (!head)
3724 			head = skb;
3725 		else
3726 			tail->next = skb;
3727 		/* If skb was segmented, skb->prev points to
3728 		 * the last segment. If not, it still contains skb.
3729 		 */
3730 		tail = skb->prev;
3731 	}
3732 	return head;
3733 }
3734 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3735 
3736 static void qdisc_pkt_len_init(struct sk_buff *skb)
3737 {
3738 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3739 
3740 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3741 
3742 	/* To get more precise estimation of bytes sent on wire,
3743 	 * we add to pkt_len the headers size of all segments
3744 	 */
3745 	if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3746 		u16 gso_segs = shinfo->gso_segs;
3747 		unsigned int hdr_len;
3748 
3749 		/* mac layer + network layer */
3750 		hdr_len = skb_transport_offset(skb);
3751 
3752 		/* + transport layer */
3753 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3754 			const struct tcphdr *th;
3755 			struct tcphdr _tcphdr;
3756 
3757 			th = skb_header_pointer(skb, hdr_len,
3758 						sizeof(_tcphdr), &_tcphdr);
3759 			if (likely(th))
3760 				hdr_len += __tcp_hdrlen(th);
3761 		} else {
3762 			struct udphdr _udphdr;
3763 
3764 			if (skb_header_pointer(skb, hdr_len,
3765 					       sizeof(_udphdr), &_udphdr))
3766 				hdr_len += sizeof(struct udphdr);
3767 		}
3768 
3769 		if (shinfo->gso_type & SKB_GSO_DODGY)
3770 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3771 						shinfo->gso_size);
3772 
3773 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3774 	}
3775 }
3776 
3777 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
3778 			     struct sk_buff **to_free,
3779 			     struct netdev_queue *txq)
3780 {
3781 	int rc;
3782 
3783 	rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
3784 	if (rc == NET_XMIT_SUCCESS)
3785 		trace_qdisc_enqueue(q, txq, skb);
3786 	return rc;
3787 }
3788 
3789 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3790 				 struct net_device *dev,
3791 				 struct netdev_queue *txq)
3792 {
3793 	spinlock_t *root_lock = qdisc_lock(q);
3794 	struct sk_buff *to_free = NULL;
3795 	bool contended;
3796 	int rc;
3797 
3798 	qdisc_calculate_pkt_len(skb, q);
3799 
3800 	tcf_set_drop_reason(skb, SKB_DROP_REASON_QDISC_DROP);
3801 
3802 	if (q->flags & TCQ_F_NOLOCK) {
3803 		if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
3804 		    qdisc_run_begin(q)) {
3805 			/* Retest nolock_qdisc_is_empty() within the protection
3806 			 * of q->seqlock to protect from racing with requeuing.
3807 			 */
3808 			if (unlikely(!nolock_qdisc_is_empty(q))) {
3809 				rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3810 				__qdisc_run(q);
3811 				qdisc_run_end(q);
3812 
3813 				goto no_lock_out;
3814 			}
3815 
3816 			qdisc_bstats_cpu_update(q, skb);
3817 			if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
3818 			    !nolock_qdisc_is_empty(q))
3819 				__qdisc_run(q);
3820 
3821 			qdisc_run_end(q);
3822 			return NET_XMIT_SUCCESS;
3823 		}
3824 
3825 		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3826 		qdisc_run(q);
3827 
3828 no_lock_out:
3829 		if (unlikely(to_free))
3830 			kfree_skb_list_reason(to_free,
3831 					      tcf_get_drop_reason(to_free));
3832 		return rc;
3833 	}
3834 
3835 	if (unlikely(READ_ONCE(q->owner) == smp_processor_id())) {
3836 		kfree_skb_reason(skb, SKB_DROP_REASON_TC_RECLASSIFY_LOOP);
3837 		return NET_XMIT_DROP;
3838 	}
3839 	/*
3840 	 * Heuristic to force contended enqueues to serialize on a
3841 	 * separate lock before trying to get qdisc main lock.
3842 	 * This permits qdisc->running owner to get the lock more
3843 	 * often and dequeue packets faster.
3844 	 * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit
3845 	 * and then other tasks will only enqueue packets. The packets will be
3846 	 * sent after the qdisc owner is scheduled again. To prevent this
3847 	 * scenario the task always serialize on the lock.
3848 	 */
3849 	contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT);
3850 	if (unlikely(contended))
3851 		spin_lock(&q->busylock);
3852 
3853 	spin_lock(root_lock);
3854 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3855 		__qdisc_drop(skb, &to_free);
3856 		rc = NET_XMIT_DROP;
3857 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3858 		   qdisc_run_begin(q)) {
3859 		/*
3860 		 * This is a work-conserving queue; there are no old skbs
3861 		 * waiting to be sent out; and the qdisc is not running -
3862 		 * xmit the skb directly.
3863 		 */
3864 
3865 		qdisc_bstats_update(q, skb);
3866 
3867 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3868 			if (unlikely(contended)) {
3869 				spin_unlock(&q->busylock);
3870 				contended = false;
3871 			}
3872 			__qdisc_run(q);
3873 		}
3874 
3875 		qdisc_run_end(q);
3876 		rc = NET_XMIT_SUCCESS;
3877 	} else {
3878 		WRITE_ONCE(q->owner, smp_processor_id());
3879 		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3880 		WRITE_ONCE(q->owner, -1);
3881 		if (qdisc_run_begin(q)) {
3882 			if (unlikely(contended)) {
3883 				spin_unlock(&q->busylock);
3884 				contended = false;
3885 			}
3886 			__qdisc_run(q);
3887 			qdisc_run_end(q);
3888 		}
3889 	}
3890 	spin_unlock(root_lock);
3891 	if (unlikely(to_free))
3892 		kfree_skb_list_reason(to_free,
3893 				      tcf_get_drop_reason(to_free));
3894 	if (unlikely(contended))
3895 		spin_unlock(&q->busylock);
3896 	return rc;
3897 }
3898 
3899 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3900 static void skb_update_prio(struct sk_buff *skb)
3901 {
3902 	const struct netprio_map *map;
3903 	const struct sock *sk;
3904 	unsigned int prioidx;
3905 
3906 	if (skb->priority)
3907 		return;
3908 	map = rcu_dereference_bh(skb->dev->priomap);
3909 	if (!map)
3910 		return;
3911 	sk = skb_to_full_sk(skb);
3912 	if (!sk)
3913 		return;
3914 
3915 	prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3916 
3917 	if (prioidx < map->priomap_len)
3918 		skb->priority = map->priomap[prioidx];
3919 }
3920 #else
3921 #define skb_update_prio(skb)
3922 #endif
3923 
3924 /**
3925  *	dev_loopback_xmit - loop back @skb
3926  *	@net: network namespace this loopback is happening in
3927  *	@sk:  sk needed to be a netfilter okfn
3928  *	@skb: buffer to transmit
3929  */
3930 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3931 {
3932 	skb_reset_mac_header(skb);
3933 	__skb_pull(skb, skb_network_offset(skb));
3934 	skb->pkt_type = PACKET_LOOPBACK;
3935 	if (skb->ip_summed == CHECKSUM_NONE)
3936 		skb->ip_summed = CHECKSUM_UNNECESSARY;
3937 	DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb));
3938 	skb_dst_force(skb);
3939 	netif_rx(skb);
3940 	return 0;
3941 }
3942 EXPORT_SYMBOL(dev_loopback_xmit);
3943 
3944 #ifdef CONFIG_NET_EGRESS
3945 static struct netdev_queue *
3946 netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb)
3947 {
3948 	int qm = skb_get_queue_mapping(skb);
3949 
3950 	return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm));
3951 }
3952 
3953 #ifndef CONFIG_PREEMPT_RT
3954 static bool netdev_xmit_txqueue_skipped(void)
3955 {
3956 	return __this_cpu_read(softnet_data.xmit.skip_txqueue);
3957 }
3958 
3959 void netdev_xmit_skip_txqueue(bool skip)
3960 {
3961 	__this_cpu_write(softnet_data.xmit.skip_txqueue, skip);
3962 }
3963 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
3964 
3965 #else
3966 static bool netdev_xmit_txqueue_skipped(void)
3967 {
3968 	return current->net_xmit.skip_txqueue;
3969 }
3970 
3971 void netdev_xmit_skip_txqueue(bool skip)
3972 {
3973 	current->net_xmit.skip_txqueue = skip;
3974 }
3975 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
3976 #endif
3977 #endif /* CONFIG_NET_EGRESS */
3978 
3979 #ifdef CONFIG_NET_XGRESS
3980 static int tc_run(struct tcx_entry *entry, struct sk_buff *skb,
3981 		  enum skb_drop_reason *drop_reason)
3982 {
3983 	int ret = TC_ACT_UNSPEC;
3984 #ifdef CONFIG_NET_CLS_ACT
3985 	struct mini_Qdisc *miniq = rcu_dereference_bh(entry->miniq);
3986 	struct tcf_result res;
3987 
3988 	if (!miniq)
3989 		return ret;
3990 
3991 	if (static_branch_unlikely(&tcf_bypass_check_needed_key)) {
3992 		if (tcf_block_bypass_sw(miniq->block))
3993 			return ret;
3994 	}
3995 
3996 	tc_skb_cb(skb)->mru = 0;
3997 	tc_skb_cb(skb)->post_ct = false;
3998 	tcf_set_drop_reason(skb, *drop_reason);
3999 
4000 	mini_qdisc_bstats_cpu_update(miniq, skb);
4001 	ret = tcf_classify(skb, miniq->block, miniq->filter_list, &res, false);
4002 	/* Only tcf related quirks below. */
4003 	switch (ret) {
4004 	case TC_ACT_SHOT:
4005 		*drop_reason = tcf_get_drop_reason(skb);
4006 		mini_qdisc_qstats_cpu_drop(miniq);
4007 		break;
4008 	case TC_ACT_OK:
4009 	case TC_ACT_RECLASSIFY:
4010 		skb->tc_index = TC_H_MIN(res.classid);
4011 		break;
4012 	}
4013 #endif /* CONFIG_NET_CLS_ACT */
4014 	return ret;
4015 }
4016 
4017 static DEFINE_STATIC_KEY_FALSE(tcx_needed_key);
4018 
4019 void tcx_inc(void)
4020 {
4021 	static_branch_inc(&tcx_needed_key);
4022 }
4023 
4024 void tcx_dec(void)
4025 {
4026 	static_branch_dec(&tcx_needed_key);
4027 }
4028 
4029 static __always_inline enum tcx_action_base
4030 tcx_run(const struct bpf_mprog_entry *entry, struct sk_buff *skb,
4031 	const bool needs_mac)
4032 {
4033 	const struct bpf_mprog_fp *fp;
4034 	const struct bpf_prog *prog;
4035 	int ret = TCX_NEXT;
4036 
4037 	if (needs_mac)
4038 		__skb_push(skb, skb->mac_len);
4039 	bpf_mprog_foreach_prog(entry, fp, prog) {
4040 		bpf_compute_data_pointers(skb);
4041 		ret = bpf_prog_run(prog, skb);
4042 		if (ret != TCX_NEXT)
4043 			break;
4044 	}
4045 	if (needs_mac)
4046 		__skb_pull(skb, skb->mac_len);
4047 	return tcx_action_code(skb, ret);
4048 }
4049 
4050 static __always_inline struct sk_buff *
4051 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4052 		   struct net_device *orig_dev, bool *another)
4053 {
4054 	struct bpf_mprog_entry *entry = rcu_dereference_bh(skb->dev->tcx_ingress);
4055 	enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_INGRESS;
4056 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
4057 	int sch_ret;
4058 
4059 	if (!entry)
4060 		return skb;
4061 
4062 	bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
4063 	if (*pt_prev) {
4064 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
4065 		*pt_prev = NULL;
4066 	}
4067 
4068 	qdisc_skb_cb(skb)->pkt_len = skb->len;
4069 	tcx_set_ingress(skb, true);
4070 
4071 	if (static_branch_unlikely(&tcx_needed_key)) {
4072 		sch_ret = tcx_run(entry, skb, true);
4073 		if (sch_ret != TC_ACT_UNSPEC)
4074 			goto ingress_verdict;
4075 	}
4076 	sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4077 ingress_verdict:
4078 	switch (sch_ret) {
4079 	case TC_ACT_REDIRECT:
4080 		/* skb_mac_header check was done by BPF, so we can safely
4081 		 * push the L2 header back before redirecting to another
4082 		 * netdev.
4083 		 */
4084 		__skb_push(skb, skb->mac_len);
4085 		if (skb_do_redirect(skb) == -EAGAIN) {
4086 			__skb_pull(skb, skb->mac_len);
4087 			*another = true;
4088 			break;
4089 		}
4090 		*ret = NET_RX_SUCCESS;
4091 		bpf_net_ctx_clear(bpf_net_ctx);
4092 		return NULL;
4093 	case TC_ACT_SHOT:
4094 		kfree_skb_reason(skb, drop_reason);
4095 		*ret = NET_RX_DROP;
4096 		bpf_net_ctx_clear(bpf_net_ctx);
4097 		return NULL;
4098 	/* used by tc_run */
4099 	case TC_ACT_STOLEN:
4100 	case TC_ACT_QUEUED:
4101 	case TC_ACT_TRAP:
4102 		consume_skb(skb);
4103 		fallthrough;
4104 	case TC_ACT_CONSUMED:
4105 		*ret = NET_RX_SUCCESS;
4106 		bpf_net_ctx_clear(bpf_net_ctx);
4107 		return NULL;
4108 	}
4109 	bpf_net_ctx_clear(bpf_net_ctx);
4110 
4111 	return skb;
4112 }
4113 
4114 static __always_inline struct sk_buff *
4115 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4116 {
4117 	struct bpf_mprog_entry *entry = rcu_dereference_bh(dev->tcx_egress);
4118 	enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_EGRESS;
4119 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
4120 	int sch_ret;
4121 
4122 	if (!entry)
4123 		return skb;
4124 
4125 	bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
4126 
4127 	/* qdisc_skb_cb(skb)->pkt_len & tcx_set_ingress() was
4128 	 * already set by the caller.
4129 	 */
4130 	if (static_branch_unlikely(&tcx_needed_key)) {
4131 		sch_ret = tcx_run(entry, skb, false);
4132 		if (sch_ret != TC_ACT_UNSPEC)
4133 			goto egress_verdict;
4134 	}
4135 	sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4136 egress_verdict:
4137 	switch (sch_ret) {
4138 	case TC_ACT_REDIRECT:
4139 		/* No need to push/pop skb's mac_header here on egress! */
4140 		skb_do_redirect(skb);
4141 		*ret = NET_XMIT_SUCCESS;
4142 		bpf_net_ctx_clear(bpf_net_ctx);
4143 		return NULL;
4144 	case TC_ACT_SHOT:
4145 		kfree_skb_reason(skb, drop_reason);
4146 		*ret = NET_XMIT_DROP;
4147 		bpf_net_ctx_clear(bpf_net_ctx);
4148 		return NULL;
4149 	/* used by tc_run */
4150 	case TC_ACT_STOLEN:
4151 	case TC_ACT_QUEUED:
4152 	case TC_ACT_TRAP:
4153 		consume_skb(skb);
4154 		fallthrough;
4155 	case TC_ACT_CONSUMED:
4156 		*ret = NET_XMIT_SUCCESS;
4157 		bpf_net_ctx_clear(bpf_net_ctx);
4158 		return NULL;
4159 	}
4160 	bpf_net_ctx_clear(bpf_net_ctx);
4161 
4162 	return skb;
4163 }
4164 #else
4165 static __always_inline struct sk_buff *
4166 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4167 		   struct net_device *orig_dev, bool *another)
4168 {
4169 	return skb;
4170 }
4171 
4172 static __always_inline struct sk_buff *
4173 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4174 {
4175 	return skb;
4176 }
4177 #endif /* CONFIG_NET_XGRESS */
4178 
4179 #ifdef CONFIG_XPS
4180 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
4181 			       struct xps_dev_maps *dev_maps, unsigned int tci)
4182 {
4183 	int tc = netdev_get_prio_tc_map(dev, skb->priority);
4184 	struct xps_map *map;
4185 	int queue_index = -1;
4186 
4187 	if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
4188 		return queue_index;
4189 
4190 	tci *= dev_maps->num_tc;
4191 	tci += tc;
4192 
4193 	map = rcu_dereference(dev_maps->attr_map[tci]);
4194 	if (map) {
4195 		if (map->len == 1)
4196 			queue_index = map->queues[0];
4197 		else
4198 			queue_index = map->queues[reciprocal_scale(
4199 						skb_get_hash(skb), map->len)];
4200 		if (unlikely(queue_index >= dev->real_num_tx_queues))
4201 			queue_index = -1;
4202 	}
4203 	return queue_index;
4204 }
4205 #endif
4206 
4207 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4208 			 struct sk_buff *skb)
4209 {
4210 #ifdef CONFIG_XPS
4211 	struct xps_dev_maps *dev_maps;
4212 	struct sock *sk = skb->sk;
4213 	int queue_index = -1;
4214 
4215 	if (!static_key_false(&xps_needed))
4216 		return -1;
4217 
4218 	rcu_read_lock();
4219 	if (!static_key_false(&xps_rxqs_needed))
4220 		goto get_cpus_map;
4221 
4222 	dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4223 	if (dev_maps) {
4224 		int tci = sk_rx_queue_get(sk);
4225 
4226 		if (tci >= 0)
4227 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4228 							  tci);
4229 	}
4230 
4231 get_cpus_map:
4232 	if (queue_index < 0) {
4233 		dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4234 		if (dev_maps) {
4235 			unsigned int tci = skb->sender_cpu - 1;
4236 
4237 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4238 							  tci);
4239 		}
4240 	}
4241 	rcu_read_unlock();
4242 
4243 	return queue_index;
4244 #else
4245 	return -1;
4246 #endif
4247 }
4248 
4249 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4250 		     struct net_device *sb_dev)
4251 {
4252 	return 0;
4253 }
4254 EXPORT_SYMBOL(dev_pick_tx_zero);
4255 
4256 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4257 		     struct net_device *sb_dev)
4258 {
4259 	struct sock *sk = skb->sk;
4260 	int queue_index = sk_tx_queue_get(sk);
4261 
4262 	sb_dev = sb_dev ? : dev;
4263 
4264 	if (queue_index < 0 || skb->ooo_okay ||
4265 	    queue_index >= dev->real_num_tx_queues) {
4266 		int new_index = get_xps_queue(dev, sb_dev, skb);
4267 
4268 		if (new_index < 0)
4269 			new_index = skb_tx_hash(dev, sb_dev, skb);
4270 
4271 		if (queue_index != new_index && sk &&
4272 		    sk_fullsock(sk) &&
4273 		    rcu_access_pointer(sk->sk_dst_cache))
4274 			sk_tx_queue_set(sk, new_index);
4275 
4276 		queue_index = new_index;
4277 	}
4278 
4279 	return queue_index;
4280 }
4281 EXPORT_SYMBOL(netdev_pick_tx);
4282 
4283 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4284 					 struct sk_buff *skb,
4285 					 struct net_device *sb_dev)
4286 {
4287 	int queue_index = 0;
4288 
4289 #ifdef CONFIG_XPS
4290 	u32 sender_cpu = skb->sender_cpu - 1;
4291 
4292 	if (sender_cpu >= (u32)NR_CPUS)
4293 		skb->sender_cpu = raw_smp_processor_id() + 1;
4294 #endif
4295 
4296 	if (dev->real_num_tx_queues != 1) {
4297 		const struct net_device_ops *ops = dev->netdev_ops;
4298 
4299 		if (ops->ndo_select_queue)
4300 			queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4301 		else
4302 			queue_index = netdev_pick_tx(dev, skb, sb_dev);
4303 
4304 		queue_index = netdev_cap_txqueue(dev, queue_index);
4305 	}
4306 
4307 	skb_set_queue_mapping(skb, queue_index);
4308 	return netdev_get_tx_queue(dev, queue_index);
4309 }
4310 
4311 /**
4312  * __dev_queue_xmit() - transmit a buffer
4313  * @skb:	buffer to transmit
4314  * @sb_dev:	suboordinate device used for L2 forwarding offload
4315  *
4316  * Queue a buffer for transmission to a network device. The caller must
4317  * have set the device and priority and built the buffer before calling
4318  * this function. The function can be called from an interrupt.
4319  *
4320  * When calling this method, interrupts MUST be enabled. This is because
4321  * the BH enable code must have IRQs enabled so that it will not deadlock.
4322  *
4323  * Regardless of the return value, the skb is consumed, so it is currently
4324  * difficult to retry a send to this method. (You can bump the ref count
4325  * before sending to hold a reference for retry if you are careful.)
4326  *
4327  * Return:
4328  * * 0				- buffer successfully transmitted
4329  * * positive qdisc return code	- NET_XMIT_DROP etc.
4330  * * negative errno		- other errors
4331  */
4332 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4333 {
4334 	struct net_device *dev = skb->dev;
4335 	struct netdev_queue *txq = NULL;
4336 	struct Qdisc *q;
4337 	int rc = -ENOMEM;
4338 	bool again = false;
4339 
4340 	skb_reset_mac_header(skb);
4341 	skb_assert_len(skb);
4342 
4343 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4344 		__skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4345 
4346 	/* Disable soft irqs for various locks below. Also
4347 	 * stops preemption for RCU.
4348 	 */
4349 	rcu_read_lock_bh();
4350 
4351 	skb_update_prio(skb);
4352 
4353 	qdisc_pkt_len_init(skb);
4354 	tcx_set_ingress(skb, false);
4355 #ifdef CONFIG_NET_EGRESS
4356 	if (static_branch_unlikely(&egress_needed_key)) {
4357 		if (nf_hook_egress_active()) {
4358 			skb = nf_hook_egress(skb, &rc, dev);
4359 			if (!skb)
4360 				goto out;
4361 		}
4362 
4363 		netdev_xmit_skip_txqueue(false);
4364 
4365 		nf_skip_egress(skb, true);
4366 		skb = sch_handle_egress(skb, &rc, dev);
4367 		if (!skb)
4368 			goto out;
4369 		nf_skip_egress(skb, false);
4370 
4371 		if (netdev_xmit_txqueue_skipped())
4372 			txq = netdev_tx_queue_mapping(dev, skb);
4373 	}
4374 #endif
4375 	/* If device/qdisc don't need skb->dst, release it right now while
4376 	 * its hot in this cpu cache.
4377 	 */
4378 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4379 		skb_dst_drop(skb);
4380 	else
4381 		skb_dst_force(skb);
4382 
4383 	if (!txq)
4384 		txq = netdev_core_pick_tx(dev, skb, sb_dev);
4385 
4386 	q = rcu_dereference_bh(txq->qdisc);
4387 
4388 	trace_net_dev_queue(skb);
4389 	if (q->enqueue) {
4390 		rc = __dev_xmit_skb(skb, q, dev, txq);
4391 		goto out;
4392 	}
4393 
4394 	/* The device has no queue. Common case for software devices:
4395 	 * loopback, all the sorts of tunnels...
4396 
4397 	 * Really, it is unlikely that netif_tx_lock protection is necessary
4398 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4399 	 * counters.)
4400 	 * However, it is possible, that they rely on protection
4401 	 * made by us here.
4402 
4403 	 * Check this and shot the lock. It is not prone from deadlocks.
4404 	 *Either shot noqueue qdisc, it is even simpler 8)
4405 	 */
4406 	if (dev->flags & IFF_UP) {
4407 		int cpu = smp_processor_id(); /* ok because BHs are off */
4408 
4409 		/* Other cpus might concurrently change txq->xmit_lock_owner
4410 		 * to -1 or to their cpu id, but not to our id.
4411 		 */
4412 		if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4413 			if (dev_xmit_recursion())
4414 				goto recursion_alert;
4415 
4416 			skb = validate_xmit_skb(skb, dev, &again);
4417 			if (!skb)
4418 				goto out;
4419 
4420 			HARD_TX_LOCK(dev, txq, cpu);
4421 
4422 			if (!netif_xmit_stopped(txq)) {
4423 				dev_xmit_recursion_inc();
4424 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4425 				dev_xmit_recursion_dec();
4426 				if (dev_xmit_complete(rc)) {
4427 					HARD_TX_UNLOCK(dev, txq);
4428 					goto out;
4429 				}
4430 			}
4431 			HARD_TX_UNLOCK(dev, txq);
4432 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4433 					     dev->name);
4434 		} else {
4435 			/* Recursion is detected! It is possible,
4436 			 * unfortunately
4437 			 */
4438 recursion_alert:
4439 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4440 					     dev->name);
4441 		}
4442 	}
4443 
4444 	rc = -ENETDOWN;
4445 	rcu_read_unlock_bh();
4446 
4447 	dev_core_stats_tx_dropped_inc(dev);
4448 	kfree_skb_list(skb);
4449 	return rc;
4450 out:
4451 	rcu_read_unlock_bh();
4452 	return rc;
4453 }
4454 EXPORT_SYMBOL(__dev_queue_xmit);
4455 
4456 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4457 {
4458 	struct net_device *dev = skb->dev;
4459 	struct sk_buff *orig_skb = skb;
4460 	struct netdev_queue *txq;
4461 	int ret = NETDEV_TX_BUSY;
4462 	bool again = false;
4463 
4464 	if (unlikely(!netif_running(dev) ||
4465 		     !netif_carrier_ok(dev)))
4466 		goto drop;
4467 
4468 	skb = validate_xmit_skb_list(skb, dev, &again);
4469 	if (skb != orig_skb)
4470 		goto drop;
4471 
4472 	skb_set_queue_mapping(skb, queue_id);
4473 	txq = skb_get_tx_queue(dev, skb);
4474 
4475 	local_bh_disable();
4476 
4477 	dev_xmit_recursion_inc();
4478 	HARD_TX_LOCK(dev, txq, smp_processor_id());
4479 	if (!netif_xmit_frozen_or_drv_stopped(txq))
4480 		ret = netdev_start_xmit(skb, dev, txq, false);
4481 	HARD_TX_UNLOCK(dev, txq);
4482 	dev_xmit_recursion_dec();
4483 
4484 	local_bh_enable();
4485 	return ret;
4486 drop:
4487 	dev_core_stats_tx_dropped_inc(dev);
4488 	kfree_skb_list(skb);
4489 	return NET_XMIT_DROP;
4490 }
4491 EXPORT_SYMBOL(__dev_direct_xmit);
4492 
4493 /*************************************************************************
4494  *			Receiver routines
4495  *************************************************************************/
4496 static DEFINE_PER_CPU(struct task_struct *, backlog_napi);
4497 
4498 int weight_p __read_mostly = 64;           /* old backlog weight */
4499 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4500 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4501 
4502 /* Called with irq disabled */
4503 static inline void ____napi_schedule(struct softnet_data *sd,
4504 				     struct napi_struct *napi)
4505 {
4506 	struct task_struct *thread;
4507 
4508 	lockdep_assert_irqs_disabled();
4509 
4510 	if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4511 		/* Paired with smp_mb__before_atomic() in
4512 		 * napi_enable()/dev_set_threaded().
4513 		 * Use READ_ONCE() to guarantee a complete
4514 		 * read on napi->thread. Only call
4515 		 * wake_up_process() when it's not NULL.
4516 		 */
4517 		thread = READ_ONCE(napi->thread);
4518 		if (thread) {
4519 			if (use_backlog_threads() && thread == raw_cpu_read(backlog_napi))
4520 				goto use_local_napi;
4521 
4522 			set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4523 			wake_up_process(thread);
4524 			return;
4525 		}
4526 	}
4527 
4528 use_local_napi:
4529 	list_add_tail(&napi->poll_list, &sd->poll_list);
4530 	WRITE_ONCE(napi->list_owner, smp_processor_id());
4531 	/* If not called from net_rx_action()
4532 	 * we have to raise NET_RX_SOFTIRQ.
4533 	 */
4534 	if (!sd->in_net_rx_action)
4535 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4536 }
4537 
4538 #ifdef CONFIG_RPS
4539 
4540 struct static_key_false rps_needed __read_mostly;
4541 EXPORT_SYMBOL(rps_needed);
4542 struct static_key_false rfs_needed __read_mostly;
4543 EXPORT_SYMBOL(rfs_needed);
4544 
4545 static struct rps_dev_flow *
4546 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4547 	    struct rps_dev_flow *rflow, u16 next_cpu)
4548 {
4549 	if (next_cpu < nr_cpu_ids) {
4550 		u32 head;
4551 #ifdef CONFIG_RFS_ACCEL
4552 		struct netdev_rx_queue *rxqueue;
4553 		struct rps_dev_flow_table *flow_table;
4554 		struct rps_dev_flow *old_rflow;
4555 		u16 rxq_index;
4556 		u32 flow_id;
4557 		int rc;
4558 
4559 		/* Should we steer this flow to a different hardware queue? */
4560 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4561 		    !(dev->features & NETIF_F_NTUPLE))
4562 			goto out;
4563 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4564 		if (rxq_index == skb_get_rx_queue(skb))
4565 			goto out;
4566 
4567 		rxqueue = dev->_rx + rxq_index;
4568 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
4569 		if (!flow_table)
4570 			goto out;
4571 		flow_id = skb_get_hash(skb) & flow_table->mask;
4572 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4573 							rxq_index, flow_id);
4574 		if (rc < 0)
4575 			goto out;
4576 		old_rflow = rflow;
4577 		rflow = &flow_table->flows[flow_id];
4578 		WRITE_ONCE(rflow->filter, rc);
4579 		if (old_rflow->filter == rc)
4580 			WRITE_ONCE(old_rflow->filter, RPS_NO_FILTER);
4581 	out:
4582 #endif
4583 		head = READ_ONCE(per_cpu(softnet_data, next_cpu).input_queue_head);
4584 		rps_input_queue_tail_save(&rflow->last_qtail, head);
4585 	}
4586 
4587 	WRITE_ONCE(rflow->cpu, next_cpu);
4588 	return rflow;
4589 }
4590 
4591 /*
4592  * get_rps_cpu is called from netif_receive_skb and returns the target
4593  * CPU from the RPS map of the receiving queue for a given skb.
4594  * rcu_read_lock must be held on entry.
4595  */
4596 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4597 		       struct rps_dev_flow **rflowp)
4598 {
4599 	const struct rps_sock_flow_table *sock_flow_table;
4600 	struct netdev_rx_queue *rxqueue = dev->_rx;
4601 	struct rps_dev_flow_table *flow_table;
4602 	struct rps_map *map;
4603 	int cpu = -1;
4604 	u32 tcpu;
4605 	u32 hash;
4606 
4607 	if (skb_rx_queue_recorded(skb)) {
4608 		u16 index = skb_get_rx_queue(skb);
4609 
4610 		if (unlikely(index >= dev->real_num_rx_queues)) {
4611 			WARN_ONCE(dev->real_num_rx_queues > 1,
4612 				  "%s received packet on queue %u, but number "
4613 				  "of RX queues is %u\n",
4614 				  dev->name, index, dev->real_num_rx_queues);
4615 			goto done;
4616 		}
4617 		rxqueue += index;
4618 	}
4619 
4620 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4621 
4622 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4623 	map = rcu_dereference(rxqueue->rps_map);
4624 	if (!flow_table && !map)
4625 		goto done;
4626 
4627 	skb_reset_network_header(skb);
4628 	hash = skb_get_hash(skb);
4629 	if (!hash)
4630 		goto done;
4631 
4632 	sock_flow_table = rcu_dereference(net_hotdata.rps_sock_flow_table);
4633 	if (flow_table && sock_flow_table) {
4634 		struct rps_dev_flow *rflow;
4635 		u32 next_cpu;
4636 		u32 ident;
4637 
4638 		/* First check into global flow table if there is a match.
4639 		 * This READ_ONCE() pairs with WRITE_ONCE() from rps_record_sock_flow().
4640 		 */
4641 		ident = READ_ONCE(sock_flow_table->ents[hash & sock_flow_table->mask]);
4642 		if ((ident ^ hash) & ~net_hotdata.rps_cpu_mask)
4643 			goto try_rps;
4644 
4645 		next_cpu = ident & net_hotdata.rps_cpu_mask;
4646 
4647 		/* OK, now we know there is a match,
4648 		 * we can look at the local (per receive queue) flow table
4649 		 */
4650 		rflow = &flow_table->flows[hash & flow_table->mask];
4651 		tcpu = rflow->cpu;
4652 
4653 		/*
4654 		 * If the desired CPU (where last recvmsg was done) is
4655 		 * different from current CPU (one in the rx-queue flow
4656 		 * table entry), switch if one of the following holds:
4657 		 *   - Current CPU is unset (>= nr_cpu_ids).
4658 		 *   - Current CPU is offline.
4659 		 *   - The current CPU's queue tail has advanced beyond the
4660 		 *     last packet that was enqueued using this table entry.
4661 		 *     This guarantees that all previous packets for the flow
4662 		 *     have been dequeued, thus preserving in order delivery.
4663 		 */
4664 		if (unlikely(tcpu != next_cpu) &&
4665 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4666 		     ((int)(READ_ONCE(per_cpu(softnet_data, tcpu).input_queue_head) -
4667 		      rflow->last_qtail)) >= 0)) {
4668 			tcpu = next_cpu;
4669 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4670 		}
4671 
4672 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4673 			*rflowp = rflow;
4674 			cpu = tcpu;
4675 			goto done;
4676 		}
4677 	}
4678 
4679 try_rps:
4680 
4681 	if (map) {
4682 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4683 		if (cpu_online(tcpu)) {
4684 			cpu = tcpu;
4685 			goto done;
4686 		}
4687 	}
4688 
4689 done:
4690 	return cpu;
4691 }
4692 
4693 #ifdef CONFIG_RFS_ACCEL
4694 
4695 /**
4696  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4697  * @dev: Device on which the filter was set
4698  * @rxq_index: RX queue index
4699  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4700  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4701  *
4702  * Drivers that implement ndo_rx_flow_steer() should periodically call
4703  * this function for each installed filter and remove the filters for
4704  * which it returns %true.
4705  */
4706 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4707 			 u32 flow_id, u16 filter_id)
4708 {
4709 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4710 	struct rps_dev_flow_table *flow_table;
4711 	struct rps_dev_flow *rflow;
4712 	bool expire = true;
4713 	unsigned int cpu;
4714 
4715 	rcu_read_lock();
4716 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4717 	if (flow_table && flow_id <= flow_table->mask) {
4718 		rflow = &flow_table->flows[flow_id];
4719 		cpu = READ_ONCE(rflow->cpu);
4720 		if (READ_ONCE(rflow->filter) == filter_id && cpu < nr_cpu_ids &&
4721 		    ((int)(READ_ONCE(per_cpu(softnet_data, cpu).input_queue_head) -
4722 			   READ_ONCE(rflow->last_qtail)) <
4723 		     (int)(10 * flow_table->mask)))
4724 			expire = false;
4725 	}
4726 	rcu_read_unlock();
4727 	return expire;
4728 }
4729 EXPORT_SYMBOL(rps_may_expire_flow);
4730 
4731 #endif /* CONFIG_RFS_ACCEL */
4732 
4733 /* Called from hardirq (IPI) context */
4734 static void rps_trigger_softirq(void *data)
4735 {
4736 	struct softnet_data *sd = data;
4737 
4738 	____napi_schedule(sd, &sd->backlog);
4739 	sd->received_rps++;
4740 }
4741 
4742 #endif /* CONFIG_RPS */
4743 
4744 /* Called from hardirq (IPI) context */
4745 static void trigger_rx_softirq(void *data)
4746 {
4747 	struct softnet_data *sd = data;
4748 
4749 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4750 	smp_store_release(&sd->defer_ipi_scheduled, 0);
4751 }
4752 
4753 /*
4754  * After we queued a packet into sd->input_pkt_queue,
4755  * we need to make sure this queue is serviced soon.
4756  *
4757  * - If this is another cpu queue, link it to our rps_ipi_list,
4758  *   and make sure we will process rps_ipi_list from net_rx_action().
4759  *
4760  * - If this is our own queue, NAPI schedule our backlog.
4761  *   Note that this also raises NET_RX_SOFTIRQ.
4762  */
4763 static void napi_schedule_rps(struct softnet_data *sd)
4764 {
4765 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4766 
4767 #ifdef CONFIG_RPS
4768 	if (sd != mysd) {
4769 		if (use_backlog_threads()) {
4770 			__napi_schedule_irqoff(&sd->backlog);
4771 			return;
4772 		}
4773 
4774 		sd->rps_ipi_next = mysd->rps_ipi_list;
4775 		mysd->rps_ipi_list = sd;
4776 
4777 		/* If not called from net_rx_action() or napi_threaded_poll()
4778 		 * we have to raise NET_RX_SOFTIRQ.
4779 		 */
4780 		if (!mysd->in_net_rx_action && !mysd->in_napi_threaded_poll)
4781 			__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4782 		return;
4783 	}
4784 #endif /* CONFIG_RPS */
4785 	__napi_schedule_irqoff(&mysd->backlog);
4786 }
4787 
4788 void kick_defer_list_purge(struct softnet_data *sd, unsigned int cpu)
4789 {
4790 	unsigned long flags;
4791 
4792 	if (use_backlog_threads()) {
4793 		backlog_lock_irq_save(sd, &flags);
4794 
4795 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state))
4796 			__napi_schedule_irqoff(&sd->backlog);
4797 
4798 		backlog_unlock_irq_restore(sd, &flags);
4799 
4800 	} else if (!cmpxchg(&sd->defer_ipi_scheduled, 0, 1)) {
4801 		smp_call_function_single_async(cpu, &sd->defer_csd);
4802 	}
4803 }
4804 
4805 #ifdef CONFIG_NET_FLOW_LIMIT
4806 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4807 #endif
4808 
4809 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4810 {
4811 #ifdef CONFIG_NET_FLOW_LIMIT
4812 	struct sd_flow_limit *fl;
4813 	struct softnet_data *sd;
4814 	unsigned int old_flow, new_flow;
4815 
4816 	if (qlen < (READ_ONCE(net_hotdata.max_backlog) >> 1))
4817 		return false;
4818 
4819 	sd = this_cpu_ptr(&softnet_data);
4820 
4821 	rcu_read_lock();
4822 	fl = rcu_dereference(sd->flow_limit);
4823 	if (fl) {
4824 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4825 		old_flow = fl->history[fl->history_head];
4826 		fl->history[fl->history_head] = new_flow;
4827 
4828 		fl->history_head++;
4829 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4830 
4831 		if (likely(fl->buckets[old_flow]))
4832 			fl->buckets[old_flow]--;
4833 
4834 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4835 			fl->count++;
4836 			rcu_read_unlock();
4837 			return true;
4838 		}
4839 	}
4840 	rcu_read_unlock();
4841 #endif
4842 	return false;
4843 }
4844 
4845 /*
4846  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4847  * queue (may be a remote CPU queue).
4848  */
4849 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4850 			      unsigned int *qtail)
4851 {
4852 	enum skb_drop_reason reason;
4853 	struct softnet_data *sd;
4854 	unsigned long flags;
4855 	unsigned int qlen;
4856 	int max_backlog;
4857 	u32 tail;
4858 
4859 	reason = SKB_DROP_REASON_DEV_READY;
4860 	if (!netif_running(skb->dev))
4861 		goto bad_dev;
4862 
4863 	reason = SKB_DROP_REASON_CPU_BACKLOG;
4864 	sd = &per_cpu(softnet_data, cpu);
4865 
4866 	qlen = skb_queue_len_lockless(&sd->input_pkt_queue);
4867 	max_backlog = READ_ONCE(net_hotdata.max_backlog);
4868 	if (unlikely(qlen > max_backlog))
4869 		goto cpu_backlog_drop;
4870 	backlog_lock_irq_save(sd, &flags);
4871 	qlen = skb_queue_len(&sd->input_pkt_queue);
4872 	if (qlen <= max_backlog && !skb_flow_limit(skb, qlen)) {
4873 		if (!qlen) {
4874 			/* Schedule NAPI for backlog device. We can use
4875 			 * non atomic operation as we own the queue lock.
4876 			 */
4877 			if (!__test_and_set_bit(NAPI_STATE_SCHED,
4878 						&sd->backlog.state))
4879 				napi_schedule_rps(sd);
4880 		}
4881 		__skb_queue_tail(&sd->input_pkt_queue, skb);
4882 		tail = rps_input_queue_tail_incr(sd);
4883 		backlog_unlock_irq_restore(sd, &flags);
4884 
4885 		/* save the tail outside of the critical section */
4886 		rps_input_queue_tail_save(qtail, tail);
4887 		return NET_RX_SUCCESS;
4888 	}
4889 
4890 	backlog_unlock_irq_restore(sd, &flags);
4891 
4892 cpu_backlog_drop:
4893 	atomic_inc(&sd->dropped);
4894 bad_dev:
4895 	dev_core_stats_rx_dropped_inc(skb->dev);
4896 	kfree_skb_reason(skb, reason);
4897 	return NET_RX_DROP;
4898 }
4899 
4900 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4901 {
4902 	struct net_device *dev = skb->dev;
4903 	struct netdev_rx_queue *rxqueue;
4904 
4905 	rxqueue = dev->_rx;
4906 
4907 	if (skb_rx_queue_recorded(skb)) {
4908 		u16 index = skb_get_rx_queue(skb);
4909 
4910 		if (unlikely(index >= dev->real_num_rx_queues)) {
4911 			WARN_ONCE(dev->real_num_rx_queues > 1,
4912 				  "%s received packet on queue %u, but number "
4913 				  "of RX queues is %u\n",
4914 				  dev->name, index, dev->real_num_rx_queues);
4915 
4916 			return rxqueue; /* Return first rxqueue */
4917 		}
4918 		rxqueue += index;
4919 	}
4920 	return rxqueue;
4921 }
4922 
4923 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
4924 			     struct bpf_prog *xdp_prog)
4925 {
4926 	void *orig_data, *orig_data_end, *hard_start;
4927 	struct netdev_rx_queue *rxqueue;
4928 	bool orig_bcast, orig_host;
4929 	u32 mac_len, frame_sz;
4930 	__be16 orig_eth_type;
4931 	struct ethhdr *eth;
4932 	u32 metalen, act;
4933 	int off;
4934 
4935 	/* The XDP program wants to see the packet starting at the MAC
4936 	 * header.
4937 	 */
4938 	mac_len = skb->data - skb_mac_header(skb);
4939 	hard_start = skb->data - skb_headroom(skb);
4940 
4941 	/* SKB "head" area always have tailroom for skb_shared_info */
4942 	frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4943 	frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4944 
4945 	rxqueue = netif_get_rxqueue(skb);
4946 	xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4947 	xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4948 			 skb_headlen(skb) + mac_len, true);
4949 	if (skb_is_nonlinear(skb)) {
4950 		skb_shinfo(skb)->xdp_frags_size = skb->data_len;
4951 		xdp_buff_set_frags_flag(xdp);
4952 	} else {
4953 		xdp_buff_clear_frags_flag(xdp);
4954 	}
4955 
4956 	orig_data_end = xdp->data_end;
4957 	orig_data = xdp->data;
4958 	eth = (struct ethhdr *)xdp->data;
4959 	orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
4960 	orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4961 	orig_eth_type = eth->h_proto;
4962 
4963 	act = bpf_prog_run_xdp(xdp_prog, xdp);
4964 
4965 	/* check if bpf_xdp_adjust_head was used */
4966 	off = xdp->data - orig_data;
4967 	if (off) {
4968 		if (off > 0)
4969 			__skb_pull(skb, off);
4970 		else if (off < 0)
4971 			__skb_push(skb, -off);
4972 
4973 		skb->mac_header += off;
4974 		skb_reset_network_header(skb);
4975 	}
4976 
4977 	/* check if bpf_xdp_adjust_tail was used */
4978 	off = xdp->data_end - orig_data_end;
4979 	if (off != 0) {
4980 		skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4981 		skb->len += off; /* positive on grow, negative on shrink */
4982 	}
4983 
4984 	/* XDP frag metadata (e.g. nr_frags) are updated in eBPF helpers
4985 	 * (e.g. bpf_xdp_adjust_tail), we need to update data_len here.
4986 	 */
4987 	if (xdp_buff_has_frags(xdp))
4988 		skb->data_len = skb_shinfo(skb)->xdp_frags_size;
4989 	else
4990 		skb->data_len = 0;
4991 
4992 	/* check if XDP changed eth hdr such SKB needs update */
4993 	eth = (struct ethhdr *)xdp->data;
4994 	if ((orig_eth_type != eth->h_proto) ||
4995 	    (orig_host != ether_addr_equal_64bits(eth->h_dest,
4996 						  skb->dev->dev_addr)) ||
4997 	    (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4998 		__skb_push(skb, ETH_HLEN);
4999 		skb->pkt_type = PACKET_HOST;
5000 		skb->protocol = eth_type_trans(skb, skb->dev);
5001 	}
5002 
5003 	/* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
5004 	 * before calling us again on redirect path. We do not call do_redirect
5005 	 * as we leave that up to the caller.
5006 	 *
5007 	 * Caller is responsible for managing lifetime of skb (i.e. calling
5008 	 * kfree_skb in response to actions it cannot handle/XDP_DROP).
5009 	 */
5010 	switch (act) {
5011 	case XDP_REDIRECT:
5012 	case XDP_TX:
5013 		__skb_push(skb, mac_len);
5014 		break;
5015 	case XDP_PASS:
5016 		metalen = xdp->data - xdp->data_meta;
5017 		if (metalen)
5018 			skb_metadata_set(skb, metalen);
5019 		break;
5020 	}
5021 
5022 	return act;
5023 }
5024 
5025 static int
5026 netif_skb_check_for_xdp(struct sk_buff **pskb, struct bpf_prog *prog)
5027 {
5028 	struct sk_buff *skb = *pskb;
5029 	int err, hroom, troom;
5030 
5031 	if (!skb_cow_data_for_xdp(this_cpu_read(system_page_pool), pskb, prog))
5032 		return 0;
5033 
5034 	/* In case we have to go down the path and also linearize,
5035 	 * then lets do the pskb_expand_head() work just once here.
5036 	 */
5037 	hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
5038 	troom = skb->tail + skb->data_len - skb->end;
5039 	err = pskb_expand_head(skb,
5040 			       hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
5041 			       troom > 0 ? troom + 128 : 0, GFP_ATOMIC);
5042 	if (err)
5043 		return err;
5044 
5045 	return skb_linearize(skb);
5046 }
5047 
5048 static u32 netif_receive_generic_xdp(struct sk_buff **pskb,
5049 				     struct xdp_buff *xdp,
5050 				     struct bpf_prog *xdp_prog)
5051 {
5052 	struct sk_buff *skb = *pskb;
5053 	u32 mac_len, act = XDP_DROP;
5054 
5055 	/* Reinjected packets coming from act_mirred or similar should
5056 	 * not get XDP generic processing.
5057 	 */
5058 	if (skb_is_redirected(skb))
5059 		return XDP_PASS;
5060 
5061 	/* XDP packets must have sufficient headroom of XDP_PACKET_HEADROOM
5062 	 * bytes. This is the guarantee that also native XDP provides,
5063 	 * thus we need to do it here as well.
5064 	 */
5065 	mac_len = skb->data - skb_mac_header(skb);
5066 	__skb_push(skb, mac_len);
5067 
5068 	if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
5069 	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
5070 		if (netif_skb_check_for_xdp(pskb, xdp_prog))
5071 			goto do_drop;
5072 	}
5073 
5074 	__skb_pull(*pskb, mac_len);
5075 
5076 	act = bpf_prog_run_generic_xdp(*pskb, xdp, xdp_prog);
5077 	switch (act) {
5078 	case XDP_REDIRECT:
5079 	case XDP_TX:
5080 	case XDP_PASS:
5081 		break;
5082 	default:
5083 		bpf_warn_invalid_xdp_action((*pskb)->dev, xdp_prog, act);
5084 		fallthrough;
5085 	case XDP_ABORTED:
5086 		trace_xdp_exception((*pskb)->dev, xdp_prog, act);
5087 		fallthrough;
5088 	case XDP_DROP:
5089 	do_drop:
5090 		kfree_skb(*pskb);
5091 		break;
5092 	}
5093 
5094 	return act;
5095 }
5096 
5097 /* When doing generic XDP we have to bypass the qdisc layer and the
5098  * network taps in order to match in-driver-XDP behavior. This also means
5099  * that XDP packets are able to starve other packets going through a qdisc,
5100  * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX
5101  * queues, so they do not have this starvation issue.
5102  */
5103 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
5104 {
5105 	struct net_device *dev = skb->dev;
5106 	struct netdev_queue *txq;
5107 	bool free_skb = true;
5108 	int cpu, rc;
5109 
5110 	txq = netdev_core_pick_tx(dev, skb, NULL);
5111 	cpu = smp_processor_id();
5112 	HARD_TX_LOCK(dev, txq, cpu);
5113 	if (!netif_xmit_frozen_or_drv_stopped(txq)) {
5114 		rc = netdev_start_xmit(skb, dev, txq, 0);
5115 		if (dev_xmit_complete(rc))
5116 			free_skb = false;
5117 	}
5118 	HARD_TX_UNLOCK(dev, txq);
5119 	if (free_skb) {
5120 		trace_xdp_exception(dev, xdp_prog, XDP_TX);
5121 		dev_core_stats_tx_dropped_inc(dev);
5122 		kfree_skb(skb);
5123 	}
5124 }
5125 
5126 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
5127 
5128 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff **pskb)
5129 {
5130 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
5131 
5132 	if (xdp_prog) {
5133 		struct xdp_buff xdp;
5134 		u32 act;
5135 		int err;
5136 
5137 		bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
5138 		act = netif_receive_generic_xdp(pskb, &xdp, xdp_prog);
5139 		if (act != XDP_PASS) {
5140 			switch (act) {
5141 			case XDP_REDIRECT:
5142 				err = xdp_do_generic_redirect((*pskb)->dev, *pskb,
5143 							      &xdp, xdp_prog);
5144 				if (err)
5145 					goto out_redir;
5146 				break;
5147 			case XDP_TX:
5148 				generic_xdp_tx(*pskb, xdp_prog);
5149 				break;
5150 			}
5151 			bpf_net_ctx_clear(bpf_net_ctx);
5152 			return XDP_DROP;
5153 		}
5154 		bpf_net_ctx_clear(bpf_net_ctx);
5155 	}
5156 	return XDP_PASS;
5157 out_redir:
5158 	bpf_net_ctx_clear(bpf_net_ctx);
5159 	kfree_skb_reason(*pskb, SKB_DROP_REASON_XDP);
5160 	return XDP_DROP;
5161 }
5162 EXPORT_SYMBOL_GPL(do_xdp_generic);
5163 
5164 static int netif_rx_internal(struct sk_buff *skb)
5165 {
5166 	int ret;
5167 
5168 	net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb);
5169 
5170 	trace_netif_rx(skb);
5171 
5172 #ifdef CONFIG_RPS
5173 	if (static_branch_unlikely(&rps_needed)) {
5174 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5175 		int cpu;
5176 
5177 		rcu_read_lock();
5178 
5179 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
5180 		if (cpu < 0)
5181 			cpu = smp_processor_id();
5182 
5183 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5184 
5185 		rcu_read_unlock();
5186 	} else
5187 #endif
5188 	{
5189 		unsigned int qtail;
5190 
5191 		ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail);
5192 	}
5193 	return ret;
5194 }
5195 
5196 /**
5197  *	__netif_rx	-	Slightly optimized version of netif_rx
5198  *	@skb: buffer to post
5199  *
5200  *	This behaves as netif_rx except that it does not disable bottom halves.
5201  *	As a result this function may only be invoked from the interrupt context
5202  *	(either hard or soft interrupt).
5203  */
5204 int __netif_rx(struct sk_buff *skb)
5205 {
5206 	int ret;
5207 
5208 	lockdep_assert_once(hardirq_count() | softirq_count());
5209 
5210 	trace_netif_rx_entry(skb);
5211 	ret = netif_rx_internal(skb);
5212 	trace_netif_rx_exit(ret);
5213 	return ret;
5214 }
5215 EXPORT_SYMBOL(__netif_rx);
5216 
5217 /**
5218  *	netif_rx	-	post buffer to the network code
5219  *	@skb: buffer to post
5220  *
5221  *	This function receives a packet from a device driver and queues it for
5222  *	the upper (protocol) levels to process via the backlog NAPI device. It
5223  *	always succeeds. The buffer may be dropped during processing for
5224  *	congestion control or by the protocol layers.
5225  *	The network buffer is passed via the backlog NAPI device. Modern NIC
5226  *	driver should use NAPI and GRO.
5227  *	This function can used from interrupt and from process context. The
5228  *	caller from process context must not disable interrupts before invoking
5229  *	this function.
5230  *
5231  *	return values:
5232  *	NET_RX_SUCCESS	(no congestion)
5233  *	NET_RX_DROP     (packet was dropped)
5234  *
5235  */
5236 int netif_rx(struct sk_buff *skb)
5237 {
5238 	bool need_bh_off = !(hardirq_count() | softirq_count());
5239 	int ret;
5240 
5241 	if (need_bh_off)
5242 		local_bh_disable();
5243 	trace_netif_rx_entry(skb);
5244 	ret = netif_rx_internal(skb);
5245 	trace_netif_rx_exit(ret);
5246 	if (need_bh_off)
5247 		local_bh_enable();
5248 	return ret;
5249 }
5250 EXPORT_SYMBOL(netif_rx);
5251 
5252 static __latent_entropy void net_tx_action(void)
5253 {
5254 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5255 
5256 	if (sd->completion_queue) {
5257 		struct sk_buff *clist;
5258 
5259 		local_irq_disable();
5260 		clist = sd->completion_queue;
5261 		sd->completion_queue = NULL;
5262 		local_irq_enable();
5263 
5264 		while (clist) {
5265 			struct sk_buff *skb = clist;
5266 
5267 			clist = clist->next;
5268 
5269 			WARN_ON(refcount_read(&skb->users));
5270 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_CONSUMED))
5271 				trace_consume_skb(skb, net_tx_action);
5272 			else
5273 				trace_kfree_skb(skb, net_tx_action,
5274 						get_kfree_skb_cb(skb)->reason, NULL);
5275 
5276 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5277 				__kfree_skb(skb);
5278 			else
5279 				__napi_kfree_skb(skb,
5280 						 get_kfree_skb_cb(skb)->reason);
5281 		}
5282 	}
5283 
5284 	if (sd->output_queue) {
5285 		struct Qdisc *head;
5286 
5287 		local_irq_disable();
5288 		head = sd->output_queue;
5289 		sd->output_queue = NULL;
5290 		sd->output_queue_tailp = &sd->output_queue;
5291 		local_irq_enable();
5292 
5293 		rcu_read_lock();
5294 
5295 		while (head) {
5296 			struct Qdisc *q = head;
5297 			spinlock_t *root_lock = NULL;
5298 
5299 			head = head->next_sched;
5300 
5301 			/* We need to make sure head->next_sched is read
5302 			 * before clearing __QDISC_STATE_SCHED
5303 			 */
5304 			smp_mb__before_atomic();
5305 
5306 			if (!(q->flags & TCQ_F_NOLOCK)) {
5307 				root_lock = qdisc_lock(q);
5308 				spin_lock(root_lock);
5309 			} else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5310 						     &q->state))) {
5311 				/* There is a synchronize_net() between
5312 				 * STATE_DEACTIVATED flag being set and
5313 				 * qdisc_reset()/some_qdisc_is_busy() in
5314 				 * dev_deactivate(), so we can safely bail out
5315 				 * early here to avoid data race between
5316 				 * qdisc_deactivate() and some_qdisc_is_busy()
5317 				 * for lockless qdisc.
5318 				 */
5319 				clear_bit(__QDISC_STATE_SCHED, &q->state);
5320 				continue;
5321 			}
5322 
5323 			clear_bit(__QDISC_STATE_SCHED, &q->state);
5324 			qdisc_run(q);
5325 			if (root_lock)
5326 				spin_unlock(root_lock);
5327 		}
5328 
5329 		rcu_read_unlock();
5330 	}
5331 
5332 	xfrm_dev_backlog(sd);
5333 }
5334 
5335 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5336 /* This hook is defined here for ATM LANE */
5337 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5338 			     unsigned char *addr) __read_mostly;
5339 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5340 #endif
5341 
5342 /**
5343  *	netdev_is_rx_handler_busy - check if receive handler is registered
5344  *	@dev: device to check
5345  *
5346  *	Check if a receive handler is already registered for a given device.
5347  *	Return true if there one.
5348  *
5349  *	The caller must hold the rtnl_mutex.
5350  */
5351 bool netdev_is_rx_handler_busy(struct net_device *dev)
5352 {
5353 	ASSERT_RTNL();
5354 	return dev && rtnl_dereference(dev->rx_handler);
5355 }
5356 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5357 
5358 /**
5359  *	netdev_rx_handler_register - register receive handler
5360  *	@dev: device to register a handler for
5361  *	@rx_handler: receive handler to register
5362  *	@rx_handler_data: data pointer that is used by rx handler
5363  *
5364  *	Register a receive handler for a device. This handler will then be
5365  *	called from __netif_receive_skb. A negative errno code is returned
5366  *	on a failure.
5367  *
5368  *	The caller must hold the rtnl_mutex.
5369  *
5370  *	For a general description of rx_handler, see enum rx_handler_result.
5371  */
5372 int netdev_rx_handler_register(struct net_device *dev,
5373 			       rx_handler_func_t *rx_handler,
5374 			       void *rx_handler_data)
5375 {
5376 	if (netdev_is_rx_handler_busy(dev))
5377 		return -EBUSY;
5378 
5379 	if (dev->priv_flags & IFF_NO_RX_HANDLER)
5380 		return -EINVAL;
5381 
5382 	/* Note: rx_handler_data must be set before rx_handler */
5383 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5384 	rcu_assign_pointer(dev->rx_handler, rx_handler);
5385 
5386 	return 0;
5387 }
5388 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5389 
5390 /**
5391  *	netdev_rx_handler_unregister - unregister receive handler
5392  *	@dev: device to unregister a handler from
5393  *
5394  *	Unregister a receive handler from a device.
5395  *
5396  *	The caller must hold the rtnl_mutex.
5397  */
5398 void netdev_rx_handler_unregister(struct net_device *dev)
5399 {
5400 
5401 	ASSERT_RTNL();
5402 	RCU_INIT_POINTER(dev->rx_handler, NULL);
5403 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5404 	 * section has a guarantee to see a non NULL rx_handler_data
5405 	 * as well.
5406 	 */
5407 	synchronize_net();
5408 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5409 }
5410 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5411 
5412 /*
5413  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5414  * the special handling of PFMEMALLOC skbs.
5415  */
5416 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5417 {
5418 	switch (skb->protocol) {
5419 	case htons(ETH_P_ARP):
5420 	case htons(ETH_P_IP):
5421 	case htons(ETH_P_IPV6):
5422 	case htons(ETH_P_8021Q):
5423 	case htons(ETH_P_8021AD):
5424 		return true;
5425 	default:
5426 		return false;
5427 	}
5428 }
5429 
5430 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5431 			     int *ret, struct net_device *orig_dev)
5432 {
5433 	if (nf_hook_ingress_active(skb)) {
5434 		int ingress_retval;
5435 
5436 		if (*pt_prev) {
5437 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
5438 			*pt_prev = NULL;
5439 		}
5440 
5441 		rcu_read_lock();
5442 		ingress_retval = nf_hook_ingress(skb);
5443 		rcu_read_unlock();
5444 		return ingress_retval;
5445 	}
5446 	return 0;
5447 }
5448 
5449 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5450 				    struct packet_type **ppt_prev)
5451 {
5452 	struct packet_type *ptype, *pt_prev;
5453 	rx_handler_func_t *rx_handler;
5454 	struct sk_buff *skb = *pskb;
5455 	struct net_device *orig_dev;
5456 	bool deliver_exact = false;
5457 	int ret = NET_RX_DROP;
5458 	__be16 type;
5459 
5460 	net_timestamp_check(!READ_ONCE(net_hotdata.tstamp_prequeue), skb);
5461 
5462 	trace_netif_receive_skb(skb);
5463 
5464 	orig_dev = skb->dev;
5465 
5466 	skb_reset_network_header(skb);
5467 	if (!skb_transport_header_was_set(skb))
5468 		skb_reset_transport_header(skb);
5469 	skb_reset_mac_len(skb);
5470 
5471 	pt_prev = NULL;
5472 
5473 another_round:
5474 	skb->skb_iif = skb->dev->ifindex;
5475 
5476 	__this_cpu_inc(softnet_data.processed);
5477 
5478 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
5479 		int ret2;
5480 
5481 		migrate_disable();
5482 		ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog),
5483 				      &skb);
5484 		migrate_enable();
5485 
5486 		if (ret2 != XDP_PASS) {
5487 			ret = NET_RX_DROP;
5488 			goto out;
5489 		}
5490 	}
5491 
5492 	if (eth_type_vlan(skb->protocol)) {
5493 		skb = skb_vlan_untag(skb);
5494 		if (unlikely(!skb))
5495 			goto out;
5496 	}
5497 
5498 	if (skb_skip_tc_classify(skb))
5499 		goto skip_classify;
5500 
5501 	if (pfmemalloc)
5502 		goto skip_taps;
5503 
5504 	list_for_each_entry_rcu(ptype, &net_hotdata.ptype_all, list) {
5505 		if (pt_prev)
5506 			ret = deliver_skb(skb, pt_prev, orig_dev);
5507 		pt_prev = ptype;
5508 	}
5509 
5510 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5511 		if (pt_prev)
5512 			ret = deliver_skb(skb, pt_prev, orig_dev);
5513 		pt_prev = ptype;
5514 	}
5515 
5516 skip_taps:
5517 #ifdef CONFIG_NET_INGRESS
5518 	if (static_branch_unlikely(&ingress_needed_key)) {
5519 		bool another = false;
5520 
5521 		nf_skip_egress(skb, true);
5522 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5523 					 &another);
5524 		if (another)
5525 			goto another_round;
5526 		if (!skb)
5527 			goto out;
5528 
5529 		nf_skip_egress(skb, false);
5530 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5531 			goto out;
5532 	}
5533 #endif
5534 	skb_reset_redirect(skb);
5535 skip_classify:
5536 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5537 		goto drop;
5538 
5539 	if (skb_vlan_tag_present(skb)) {
5540 		if (pt_prev) {
5541 			ret = deliver_skb(skb, pt_prev, orig_dev);
5542 			pt_prev = NULL;
5543 		}
5544 		if (vlan_do_receive(&skb))
5545 			goto another_round;
5546 		else if (unlikely(!skb))
5547 			goto out;
5548 	}
5549 
5550 	rx_handler = rcu_dereference(skb->dev->rx_handler);
5551 	if (rx_handler) {
5552 		if (pt_prev) {
5553 			ret = deliver_skb(skb, pt_prev, orig_dev);
5554 			pt_prev = NULL;
5555 		}
5556 		switch (rx_handler(&skb)) {
5557 		case RX_HANDLER_CONSUMED:
5558 			ret = NET_RX_SUCCESS;
5559 			goto out;
5560 		case RX_HANDLER_ANOTHER:
5561 			goto another_round;
5562 		case RX_HANDLER_EXACT:
5563 			deliver_exact = true;
5564 			break;
5565 		case RX_HANDLER_PASS:
5566 			break;
5567 		default:
5568 			BUG();
5569 		}
5570 	}
5571 
5572 	if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5573 check_vlan_id:
5574 		if (skb_vlan_tag_get_id(skb)) {
5575 			/* Vlan id is non 0 and vlan_do_receive() above couldn't
5576 			 * find vlan device.
5577 			 */
5578 			skb->pkt_type = PACKET_OTHERHOST;
5579 		} else if (eth_type_vlan(skb->protocol)) {
5580 			/* Outer header is 802.1P with vlan 0, inner header is
5581 			 * 802.1Q or 802.1AD and vlan_do_receive() above could
5582 			 * not find vlan dev for vlan id 0.
5583 			 */
5584 			__vlan_hwaccel_clear_tag(skb);
5585 			skb = skb_vlan_untag(skb);
5586 			if (unlikely(!skb))
5587 				goto out;
5588 			if (vlan_do_receive(&skb))
5589 				/* After stripping off 802.1P header with vlan 0
5590 				 * vlan dev is found for inner header.
5591 				 */
5592 				goto another_round;
5593 			else if (unlikely(!skb))
5594 				goto out;
5595 			else
5596 				/* We have stripped outer 802.1P vlan 0 header.
5597 				 * But could not find vlan dev.
5598 				 * check again for vlan id to set OTHERHOST.
5599 				 */
5600 				goto check_vlan_id;
5601 		}
5602 		/* Note: we might in the future use prio bits
5603 		 * and set skb->priority like in vlan_do_receive()
5604 		 * For the time being, just ignore Priority Code Point
5605 		 */
5606 		__vlan_hwaccel_clear_tag(skb);
5607 	}
5608 
5609 	type = skb->protocol;
5610 
5611 	/* deliver only exact match when indicated */
5612 	if (likely(!deliver_exact)) {
5613 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5614 				       &ptype_base[ntohs(type) &
5615 						   PTYPE_HASH_MASK]);
5616 	}
5617 
5618 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5619 			       &orig_dev->ptype_specific);
5620 
5621 	if (unlikely(skb->dev != orig_dev)) {
5622 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5623 				       &skb->dev->ptype_specific);
5624 	}
5625 
5626 	if (pt_prev) {
5627 		if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5628 			goto drop;
5629 		*ppt_prev = pt_prev;
5630 	} else {
5631 drop:
5632 		if (!deliver_exact)
5633 			dev_core_stats_rx_dropped_inc(skb->dev);
5634 		else
5635 			dev_core_stats_rx_nohandler_inc(skb->dev);
5636 		kfree_skb_reason(skb, SKB_DROP_REASON_UNHANDLED_PROTO);
5637 		/* Jamal, now you will not able to escape explaining
5638 		 * me how you were going to use this. :-)
5639 		 */
5640 		ret = NET_RX_DROP;
5641 	}
5642 
5643 out:
5644 	/* The invariant here is that if *ppt_prev is not NULL
5645 	 * then skb should also be non-NULL.
5646 	 *
5647 	 * Apparently *ppt_prev assignment above holds this invariant due to
5648 	 * skb dereferencing near it.
5649 	 */
5650 	*pskb = skb;
5651 	return ret;
5652 }
5653 
5654 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5655 {
5656 	struct net_device *orig_dev = skb->dev;
5657 	struct packet_type *pt_prev = NULL;
5658 	int ret;
5659 
5660 	ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5661 	if (pt_prev)
5662 		ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5663 					 skb->dev, pt_prev, orig_dev);
5664 	return ret;
5665 }
5666 
5667 /**
5668  *	netif_receive_skb_core - special purpose version of netif_receive_skb
5669  *	@skb: buffer to process
5670  *
5671  *	More direct receive version of netif_receive_skb().  It should
5672  *	only be used by callers that have a need to skip RPS and Generic XDP.
5673  *	Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5674  *
5675  *	This function may only be called from softirq context and interrupts
5676  *	should be enabled.
5677  *
5678  *	Return values (usually ignored):
5679  *	NET_RX_SUCCESS: no congestion
5680  *	NET_RX_DROP: packet was dropped
5681  */
5682 int netif_receive_skb_core(struct sk_buff *skb)
5683 {
5684 	int ret;
5685 
5686 	rcu_read_lock();
5687 	ret = __netif_receive_skb_one_core(skb, false);
5688 	rcu_read_unlock();
5689 
5690 	return ret;
5691 }
5692 EXPORT_SYMBOL(netif_receive_skb_core);
5693 
5694 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5695 						  struct packet_type *pt_prev,
5696 						  struct net_device *orig_dev)
5697 {
5698 	struct sk_buff *skb, *next;
5699 
5700 	if (!pt_prev)
5701 		return;
5702 	if (list_empty(head))
5703 		return;
5704 	if (pt_prev->list_func != NULL)
5705 		INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5706 				   ip_list_rcv, head, pt_prev, orig_dev);
5707 	else
5708 		list_for_each_entry_safe(skb, next, head, list) {
5709 			skb_list_del_init(skb);
5710 			pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5711 		}
5712 }
5713 
5714 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5715 {
5716 	/* Fast-path assumptions:
5717 	 * - There is no RX handler.
5718 	 * - Only one packet_type matches.
5719 	 * If either of these fails, we will end up doing some per-packet
5720 	 * processing in-line, then handling the 'last ptype' for the whole
5721 	 * sublist.  This can't cause out-of-order delivery to any single ptype,
5722 	 * because the 'last ptype' must be constant across the sublist, and all
5723 	 * other ptypes are handled per-packet.
5724 	 */
5725 	/* Current (common) ptype of sublist */
5726 	struct packet_type *pt_curr = NULL;
5727 	/* Current (common) orig_dev of sublist */
5728 	struct net_device *od_curr = NULL;
5729 	struct sk_buff *skb, *next;
5730 	LIST_HEAD(sublist);
5731 
5732 	list_for_each_entry_safe(skb, next, head, list) {
5733 		struct net_device *orig_dev = skb->dev;
5734 		struct packet_type *pt_prev = NULL;
5735 
5736 		skb_list_del_init(skb);
5737 		__netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5738 		if (!pt_prev)
5739 			continue;
5740 		if (pt_curr != pt_prev || od_curr != orig_dev) {
5741 			/* dispatch old sublist */
5742 			__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5743 			/* start new sublist */
5744 			INIT_LIST_HEAD(&sublist);
5745 			pt_curr = pt_prev;
5746 			od_curr = orig_dev;
5747 		}
5748 		list_add_tail(&skb->list, &sublist);
5749 	}
5750 
5751 	/* dispatch final sublist */
5752 	__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5753 }
5754 
5755 static int __netif_receive_skb(struct sk_buff *skb)
5756 {
5757 	int ret;
5758 
5759 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5760 		unsigned int noreclaim_flag;
5761 
5762 		/*
5763 		 * PFMEMALLOC skbs are special, they should
5764 		 * - be delivered to SOCK_MEMALLOC sockets only
5765 		 * - stay away from userspace
5766 		 * - have bounded memory usage
5767 		 *
5768 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
5769 		 * context down to all allocation sites.
5770 		 */
5771 		noreclaim_flag = memalloc_noreclaim_save();
5772 		ret = __netif_receive_skb_one_core(skb, true);
5773 		memalloc_noreclaim_restore(noreclaim_flag);
5774 	} else
5775 		ret = __netif_receive_skb_one_core(skb, false);
5776 
5777 	return ret;
5778 }
5779 
5780 static void __netif_receive_skb_list(struct list_head *head)
5781 {
5782 	unsigned long noreclaim_flag = 0;
5783 	struct sk_buff *skb, *next;
5784 	bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5785 
5786 	list_for_each_entry_safe(skb, next, head, list) {
5787 		if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5788 			struct list_head sublist;
5789 
5790 			/* Handle the previous sublist */
5791 			list_cut_before(&sublist, head, &skb->list);
5792 			if (!list_empty(&sublist))
5793 				__netif_receive_skb_list_core(&sublist, pfmemalloc);
5794 			pfmemalloc = !pfmemalloc;
5795 			/* See comments in __netif_receive_skb */
5796 			if (pfmemalloc)
5797 				noreclaim_flag = memalloc_noreclaim_save();
5798 			else
5799 				memalloc_noreclaim_restore(noreclaim_flag);
5800 		}
5801 	}
5802 	/* Handle the remaining sublist */
5803 	if (!list_empty(head))
5804 		__netif_receive_skb_list_core(head, pfmemalloc);
5805 	/* Restore pflags */
5806 	if (pfmemalloc)
5807 		memalloc_noreclaim_restore(noreclaim_flag);
5808 }
5809 
5810 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5811 {
5812 	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5813 	struct bpf_prog *new = xdp->prog;
5814 	int ret = 0;
5815 
5816 	switch (xdp->command) {
5817 	case XDP_SETUP_PROG:
5818 		rcu_assign_pointer(dev->xdp_prog, new);
5819 		if (old)
5820 			bpf_prog_put(old);
5821 
5822 		if (old && !new) {
5823 			static_branch_dec(&generic_xdp_needed_key);
5824 		} else if (new && !old) {
5825 			static_branch_inc(&generic_xdp_needed_key);
5826 			dev_disable_lro(dev);
5827 			dev_disable_gro_hw(dev);
5828 		}
5829 		break;
5830 
5831 	default:
5832 		ret = -EINVAL;
5833 		break;
5834 	}
5835 
5836 	return ret;
5837 }
5838 
5839 static int netif_receive_skb_internal(struct sk_buff *skb)
5840 {
5841 	int ret;
5842 
5843 	net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb);
5844 
5845 	if (skb_defer_rx_timestamp(skb))
5846 		return NET_RX_SUCCESS;
5847 
5848 	rcu_read_lock();
5849 #ifdef CONFIG_RPS
5850 	if (static_branch_unlikely(&rps_needed)) {
5851 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5852 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5853 
5854 		if (cpu >= 0) {
5855 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5856 			rcu_read_unlock();
5857 			return ret;
5858 		}
5859 	}
5860 #endif
5861 	ret = __netif_receive_skb(skb);
5862 	rcu_read_unlock();
5863 	return ret;
5864 }
5865 
5866 void netif_receive_skb_list_internal(struct list_head *head)
5867 {
5868 	struct sk_buff *skb, *next;
5869 	LIST_HEAD(sublist);
5870 
5871 	list_for_each_entry_safe(skb, next, head, list) {
5872 		net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue),
5873 				    skb);
5874 		skb_list_del_init(skb);
5875 		if (!skb_defer_rx_timestamp(skb))
5876 			list_add_tail(&skb->list, &sublist);
5877 	}
5878 	list_splice_init(&sublist, head);
5879 
5880 	rcu_read_lock();
5881 #ifdef CONFIG_RPS
5882 	if (static_branch_unlikely(&rps_needed)) {
5883 		list_for_each_entry_safe(skb, next, head, list) {
5884 			struct rps_dev_flow voidflow, *rflow = &voidflow;
5885 			int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5886 
5887 			if (cpu >= 0) {
5888 				/* Will be handled, remove from list */
5889 				skb_list_del_init(skb);
5890 				enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5891 			}
5892 		}
5893 	}
5894 #endif
5895 	__netif_receive_skb_list(head);
5896 	rcu_read_unlock();
5897 }
5898 
5899 /**
5900  *	netif_receive_skb - process receive buffer from network
5901  *	@skb: buffer to process
5902  *
5903  *	netif_receive_skb() is the main receive data processing function.
5904  *	It always succeeds. The buffer may be dropped during processing
5905  *	for congestion control or by the protocol layers.
5906  *
5907  *	This function may only be called from softirq context and interrupts
5908  *	should be enabled.
5909  *
5910  *	Return values (usually ignored):
5911  *	NET_RX_SUCCESS: no congestion
5912  *	NET_RX_DROP: packet was dropped
5913  */
5914 int netif_receive_skb(struct sk_buff *skb)
5915 {
5916 	int ret;
5917 
5918 	trace_netif_receive_skb_entry(skb);
5919 
5920 	ret = netif_receive_skb_internal(skb);
5921 	trace_netif_receive_skb_exit(ret);
5922 
5923 	return ret;
5924 }
5925 EXPORT_SYMBOL(netif_receive_skb);
5926 
5927 /**
5928  *	netif_receive_skb_list - process many receive buffers from network
5929  *	@head: list of skbs to process.
5930  *
5931  *	Since return value of netif_receive_skb() is normally ignored, and
5932  *	wouldn't be meaningful for a list, this function returns void.
5933  *
5934  *	This function may only be called from softirq context and interrupts
5935  *	should be enabled.
5936  */
5937 void netif_receive_skb_list(struct list_head *head)
5938 {
5939 	struct sk_buff *skb;
5940 
5941 	if (list_empty(head))
5942 		return;
5943 	if (trace_netif_receive_skb_list_entry_enabled()) {
5944 		list_for_each_entry(skb, head, list)
5945 			trace_netif_receive_skb_list_entry(skb);
5946 	}
5947 	netif_receive_skb_list_internal(head);
5948 	trace_netif_receive_skb_list_exit(0);
5949 }
5950 EXPORT_SYMBOL(netif_receive_skb_list);
5951 
5952 static DEFINE_PER_CPU(struct work_struct, flush_works);
5953 
5954 /* Network device is going away, flush any packets still pending */
5955 static void flush_backlog(struct work_struct *work)
5956 {
5957 	struct sk_buff *skb, *tmp;
5958 	struct softnet_data *sd;
5959 
5960 	local_bh_disable();
5961 	sd = this_cpu_ptr(&softnet_data);
5962 
5963 	backlog_lock_irq_disable(sd);
5964 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5965 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5966 			__skb_unlink(skb, &sd->input_pkt_queue);
5967 			dev_kfree_skb_irq(skb);
5968 			rps_input_queue_head_incr(sd);
5969 		}
5970 	}
5971 	backlog_unlock_irq_enable(sd);
5972 
5973 	local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
5974 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5975 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5976 			__skb_unlink(skb, &sd->process_queue);
5977 			kfree_skb(skb);
5978 			rps_input_queue_head_incr(sd);
5979 		}
5980 	}
5981 	local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
5982 	local_bh_enable();
5983 }
5984 
5985 static bool flush_required(int cpu)
5986 {
5987 #if IS_ENABLED(CONFIG_RPS)
5988 	struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5989 	bool do_flush;
5990 
5991 	backlog_lock_irq_disable(sd);
5992 
5993 	/* as insertion into process_queue happens with the rps lock held,
5994 	 * process_queue access may race only with dequeue
5995 	 */
5996 	do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5997 		   !skb_queue_empty_lockless(&sd->process_queue);
5998 	backlog_unlock_irq_enable(sd);
5999 
6000 	return do_flush;
6001 #endif
6002 	/* without RPS we can't safely check input_pkt_queue: during a
6003 	 * concurrent remote skb_queue_splice() we can detect as empty both
6004 	 * input_pkt_queue and process_queue even if the latter could end-up
6005 	 * containing a lot of packets.
6006 	 */
6007 	return true;
6008 }
6009 
6010 static void flush_all_backlogs(void)
6011 {
6012 	static cpumask_t flush_cpus;
6013 	unsigned int cpu;
6014 
6015 	/* since we are under rtnl lock protection we can use static data
6016 	 * for the cpumask and avoid allocating on stack the possibly
6017 	 * large mask
6018 	 */
6019 	ASSERT_RTNL();
6020 
6021 	cpus_read_lock();
6022 
6023 	cpumask_clear(&flush_cpus);
6024 	for_each_online_cpu(cpu) {
6025 		if (flush_required(cpu)) {
6026 			queue_work_on(cpu, system_highpri_wq,
6027 				      per_cpu_ptr(&flush_works, cpu));
6028 			cpumask_set_cpu(cpu, &flush_cpus);
6029 		}
6030 	}
6031 
6032 	/* we can have in flight packet[s] on the cpus we are not flushing,
6033 	 * synchronize_net() in unregister_netdevice_many() will take care of
6034 	 * them
6035 	 */
6036 	for_each_cpu(cpu, &flush_cpus)
6037 		flush_work(per_cpu_ptr(&flush_works, cpu));
6038 
6039 	cpus_read_unlock();
6040 }
6041 
6042 static void net_rps_send_ipi(struct softnet_data *remsd)
6043 {
6044 #ifdef CONFIG_RPS
6045 	while (remsd) {
6046 		struct softnet_data *next = remsd->rps_ipi_next;
6047 
6048 		if (cpu_online(remsd->cpu))
6049 			smp_call_function_single_async(remsd->cpu, &remsd->csd);
6050 		remsd = next;
6051 	}
6052 #endif
6053 }
6054 
6055 /*
6056  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6057  * Note: called with local irq disabled, but exits with local irq enabled.
6058  */
6059 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6060 {
6061 #ifdef CONFIG_RPS
6062 	struct softnet_data *remsd = sd->rps_ipi_list;
6063 
6064 	if (!use_backlog_threads() && remsd) {
6065 		sd->rps_ipi_list = NULL;
6066 
6067 		local_irq_enable();
6068 
6069 		/* Send pending IPI's to kick RPS processing on remote cpus. */
6070 		net_rps_send_ipi(remsd);
6071 	} else
6072 #endif
6073 		local_irq_enable();
6074 }
6075 
6076 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6077 {
6078 #ifdef CONFIG_RPS
6079 	return !use_backlog_threads() && sd->rps_ipi_list;
6080 #else
6081 	return false;
6082 #endif
6083 }
6084 
6085 static int process_backlog(struct napi_struct *napi, int quota)
6086 {
6087 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6088 	bool again = true;
6089 	int work = 0;
6090 
6091 	/* Check if we have pending ipi, its better to send them now,
6092 	 * not waiting net_rx_action() end.
6093 	 */
6094 	if (sd_has_rps_ipi_waiting(sd)) {
6095 		local_irq_disable();
6096 		net_rps_action_and_irq_enable(sd);
6097 	}
6098 
6099 	napi->weight = READ_ONCE(net_hotdata.dev_rx_weight);
6100 	while (again) {
6101 		struct sk_buff *skb;
6102 
6103 		local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6104 		while ((skb = __skb_dequeue(&sd->process_queue))) {
6105 			local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6106 			rcu_read_lock();
6107 			__netif_receive_skb(skb);
6108 			rcu_read_unlock();
6109 			if (++work >= quota) {
6110 				rps_input_queue_head_add(sd, work);
6111 				return work;
6112 			}
6113 
6114 			local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6115 		}
6116 		local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6117 
6118 		backlog_lock_irq_disable(sd);
6119 		if (skb_queue_empty(&sd->input_pkt_queue)) {
6120 			/*
6121 			 * Inline a custom version of __napi_complete().
6122 			 * only current cpu owns and manipulates this napi,
6123 			 * and NAPI_STATE_SCHED is the only possible flag set
6124 			 * on backlog.
6125 			 * We can use a plain write instead of clear_bit(),
6126 			 * and we dont need an smp_mb() memory barrier.
6127 			 */
6128 			napi->state &= NAPIF_STATE_THREADED;
6129 			again = false;
6130 		} else {
6131 			local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6132 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
6133 						   &sd->process_queue);
6134 			local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6135 		}
6136 		backlog_unlock_irq_enable(sd);
6137 	}
6138 
6139 	if (work)
6140 		rps_input_queue_head_add(sd, work);
6141 	return work;
6142 }
6143 
6144 /**
6145  * __napi_schedule - schedule for receive
6146  * @n: entry to schedule
6147  *
6148  * The entry's receive function will be scheduled to run.
6149  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6150  */
6151 void __napi_schedule(struct napi_struct *n)
6152 {
6153 	unsigned long flags;
6154 
6155 	local_irq_save(flags);
6156 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
6157 	local_irq_restore(flags);
6158 }
6159 EXPORT_SYMBOL(__napi_schedule);
6160 
6161 /**
6162  *	napi_schedule_prep - check if napi can be scheduled
6163  *	@n: napi context
6164  *
6165  * Test if NAPI routine is already running, and if not mark
6166  * it as running.  This is used as a condition variable to
6167  * insure only one NAPI poll instance runs.  We also make
6168  * sure there is no pending NAPI disable.
6169  */
6170 bool napi_schedule_prep(struct napi_struct *n)
6171 {
6172 	unsigned long new, val = READ_ONCE(n->state);
6173 
6174 	do {
6175 		if (unlikely(val & NAPIF_STATE_DISABLE))
6176 			return false;
6177 		new = val | NAPIF_STATE_SCHED;
6178 
6179 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
6180 		 * This was suggested by Alexander Duyck, as compiler
6181 		 * emits better code than :
6182 		 * if (val & NAPIF_STATE_SCHED)
6183 		 *     new |= NAPIF_STATE_MISSED;
6184 		 */
6185 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6186 						   NAPIF_STATE_MISSED;
6187 	} while (!try_cmpxchg(&n->state, &val, new));
6188 
6189 	return !(val & NAPIF_STATE_SCHED);
6190 }
6191 EXPORT_SYMBOL(napi_schedule_prep);
6192 
6193 /**
6194  * __napi_schedule_irqoff - schedule for receive
6195  * @n: entry to schedule
6196  *
6197  * Variant of __napi_schedule() assuming hard irqs are masked.
6198  *
6199  * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6200  * because the interrupt disabled assumption might not be true
6201  * due to force-threaded interrupts and spinlock substitution.
6202  */
6203 void __napi_schedule_irqoff(struct napi_struct *n)
6204 {
6205 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6206 		____napi_schedule(this_cpu_ptr(&softnet_data), n);
6207 	else
6208 		__napi_schedule(n);
6209 }
6210 EXPORT_SYMBOL(__napi_schedule_irqoff);
6211 
6212 bool napi_complete_done(struct napi_struct *n, int work_done)
6213 {
6214 	unsigned long flags, val, new, timeout = 0;
6215 	bool ret = true;
6216 
6217 	/*
6218 	 * 1) Don't let napi dequeue from the cpu poll list
6219 	 *    just in case its running on a different cpu.
6220 	 * 2) If we are busy polling, do nothing here, we have
6221 	 *    the guarantee we will be called later.
6222 	 */
6223 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6224 				 NAPIF_STATE_IN_BUSY_POLL)))
6225 		return false;
6226 
6227 	if (work_done) {
6228 		if (n->gro_bitmask)
6229 			timeout = READ_ONCE(n->dev->gro_flush_timeout);
6230 		n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6231 	}
6232 	if (n->defer_hard_irqs_count > 0) {
6233 		n->defer_hard_irqs_count--;
6234 		timeout = READ_ONCE(n->dev->gro_flush_timeout);
6235 		if (timeout)
6236 			ret = false;
6237 	}
6238 	if (n->gro_bitmask) {
6239 		/* When the NAPI instance uses a timeout and keeps postponing
6240 		 * it, we need to bound somehow the time packets are kept in
6241 		 * the GRO layer
6242 		 */
6243 		napi_gro_flush(n, !!timeout);
6244 	}
6245 
6246 	gro_normal_list(n);
6247 
6248 	if (unlikely(!list_empty(&n->poll_list))) {
6249 		/* If n->poll_list is not empty, we need to mask irqs */
6250 		local_irq_save(flags);
6251 		list_del_init(&n->poll_list);
6252 		local_irq_restore(flags);
6253 	}
6254 	WRITE_ONCE(n->list_owner, -1);
6255 
6256 	val = READ_ONCE(n->state);
6257 	do {
6258 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6259 
6260 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6261 			      NAPIF_STATE_SCHED_THREADED |
6262 			      NAPIF_STATE_PREFER_BUSY_POLL);
6263 
6264 		/* If STATE_MISSED was set, leave STATE_SCHED set,
6265 		 * because we will call napi->poll() one more time.
6266 		 * This C code was suggested by Alexander Duyck to help gcc.
6267 		 */
6268 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6269 						    NAPIF_STATE_SCHED;
6270 	} while (!try_cmpxchg(&n->state, &val, new));
6271 
6272 	if (unlikely(val & NAPIF_STATE_MISSED)) {
6273 		__napi_schedule(n);
6274 		return false;
6275 	}
6276 
6277 	if (timeout)
6278 		hrtimer_start(&n->timer, ns_to_ktime(timeout),
6279 			      HRTIMER_MODE_REL_PINNED);
6280 	return ret;
6281 }
6282 EXPORT_SYMBOL(napi_complete_done);
6283 
6284 /* must be called under rcu_read_lock(), as we dont take a reference */
6285 struct napi_struct *napi_by_id(unsigned int napi_id)
6286 {
6287 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6288 	struct napi_struct *napi;
6289 
6290 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6291 		if (napi->napi_id == napi_id)
6292 			return napi;
6293 
6294 	return NULL;
6295 }
6296 
6297 static void skb_defer_free_flush(struct softnet_data *sd)
6298 {
6299 	struct sk_buff *skb, *next;
6300 
6301 	/* Paired with WRITE_ONCE() in skb_attempt_defer_free() */
6302 	if (!READ_ONCE(sd->defer_list))
6303 		return;
6304 
6305 	spin_lock(&sd->defer_lock);
6306 	skb = sd->defer_list;
6307 	sd->defer_list = NULL;
6308 	sd->defer_count = 0;
6309 	spin_unlock(&sd->defer_lock);
6310 
6311 	while (skb != NULL) {
6312 		next = skb->next;
6313 		napi_consume_skb(skb, 1);
6314 		skb = next;
6315 	}
6316 }
6317 
6318 #if defined(CONFIG_NET_RX_BUSY_POLL)
6319 
6320 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6321 {
6322 	if (!skip_schedule) {
6323 		gro_normal_list(napi);
6324 		__napi_schedule(napi);
6325 		return;
6326 	}
6327 
6328 	if (napi->gro_bitmask) {
6329 		/* flush too old packets
6330 		 * If HZ < 1000, flush all packets.
6331 		 */
6332 		napi_gro_flush(napi, HZ >= 1000);
6333 	}
6334 
6335 	gro_normal_list(napi);
6336 	clear_bit(NAPI_STATE_SCHED, &napi->state);
6337 }
6338 
6339 enum {
6340 	NAPI_F_PREFER_BUSY_POLL	= 1,
6341 	NAPI_F_END_ON_RESCHED	= 2,
6342 };
6343 
6344 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock,
6345 			   unsigned flags, u16 budget)
6346 {
6347 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
6348 	bool skip_schedule = false;
6349 	unsigned long timeout;
6350 	int rc;
6351 
6352 	/* Busy polling means there is a high chance device driver hard irq
6353 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6354 	 * set in napi_schedule_prep().
6355 	 * Since we are about to call napi->poll() once more, we can safely
6356 	 * clear NAPI_STATE_MISSED.
6357 	 *
6358 	 * Note: x86 could use a single "lock and ..." instruction
6359 	 * to perform these two clear_bit()
6360 	 */
6361 	clear_bit(NAPI_STATE_MISSED, &napi->state);
6362 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6363 
6364 	local_bh_disable();
6365 	bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
6366 
6367 	if (flags & NAPI_F_PREFER_BUSY_POLL) {
6368 		napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6369 		timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6370 		if (napi->defer_hard_irqs_count && timeout) {
6371 			hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6372 			skip_schedule = true;
6373 		}
6374 	}
6375 
6376 	/* All we really want here is to re-enable device interrupts.
6377 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6378 	 */
6379 	rc = napi->poll(napi, budget);
6380 	/* We can't gro_normal_list() here, because napi->poll() might have
6381 	 * rearmed the napi (napi_complete_done()) in which case it could
6382 	 * already be running on another CPU.
6383 	 */
6384 	trace_napi_poll(napi, rc, budget);
6385 	netpoll_poll_unlock(have_poll_lock);
6386 	if (rc == budget)
6387 		__busy_poll_stop(napi, skip_schedule);
6388 	bpf_net_ctx_clear(bpf_net_ctx);
6389 	local_bh_enable();
6390 }
6391 
6392 static void __napi_busy_loop(unsigned int napi_id,
6393 		      bool (*loop_end)(void *, unsigned long),
6394 		      void *loop_end_arg, unsigned flags, u16 budget)
6395 {
6396 	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6397 	int (*napi_poll)(struct napi_struct *napi, int budget);
6398 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
6399 	void *have_poll_lock = NULL;
6400 	struct napi_struct *napi;
6401 
6402 	WARN_ON_ONCE(!rcu_read_lock_held());
6403 
6404 restart:
6405 	napi_poll = NULL;
6406 
6407 	napi = napi_by_id(napi_id);
6408 	if (!napi)
6409 		return;
6410 
6411 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6412 		preempt_disable();
6413 	for (;;) {
6414 		int work = 0;
6415 
6416 		local_bh_disable();
6417 		bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
6418 		if (!napi_poll) {
6419 			unsigned long val = READ_ONCE(napi->state);
6420 
6421 			/* If multiple threads are competing for this napi,
6422 			 * we avoid dirtying napi->state as much as we can.
6423 			 */
6424 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6425 				   NAPIF_STATE_IN_BUSY_POLL)) {
6426 				if (flags & NAPI_F_PREFER_BUSY_POLL)
6427 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6428 				goto count;
6429 			}
6430 			if (cmpxchg(&napi->state, val,
6431 				    val | NAPIF_STATE_IN_BUSY_POLL |
6432 					  NAPIF_STATE_SCHED) != val) {
6433 				if (flags & NAPI_F_PREFER_BUSY_POLL)
6434 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6435 				goto count;
6436 			}
6437 			have_poll_lock = netpoll_poll_lock(napi);
6438 			napi_poll = napi->poll;
6439 		}
6440 		work = napi_poll(napi, budget);
6441 		trace_napi_poll(napi, work, budget);
6442 		gro_normal_list(napi);
6443 count:
6444 		if (work > 0)
6445 			__NET_ADD_STATS(dev_net(napi->dev),
6446 					LINUX_MIB_BUSYPOLLRXPACKETS, work);
6447 		skb_defer_free_flush(this_cpu_ptr(&softnet_data));
6448 		bpf_net_ctx_clear(bpf_net_ctx);
6449 		local_bh_enable();
6450 
6451 		if (!loop_end || loop_end(loop_end_arg, start_time))
6452 			break;
6453 
6454 		if (unlikely(need_resched())) {
6455 			if (flags & NAPI_F_END_ON_RESCHED)
6456 				break;
6457 			if (napi_poll)
6458 				busy_poll_stop(napi, have_poll_lock, flags, budget);
6459 			if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6460 				preempt_enable();
6461 			rcu_read_unlock();
6462 			cond_resched();
6463 			rcu_read_lock();
6464 			if (loop_end(loop_end_arg, start_time))
6465 				return;
6466 			goto restart;
6467 		}
6468 		cpu_relax();
6469 	}
6470 	if (napi_poll)
6471 		busy_poll_stop(napi, have_poll_lock, flags, budget);
6472 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6473 		preempt_enable();
6474 }
6475 
6476 void napi_busy_loop_rcu(unsigned int napi_id,
6477 			bool (*loop_end)(void *, unsigned long),
6478 			void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6479 {
6480 	unsigned flags = NAPI_F_END_ON_RESCHED;
6481 
6482 	if (prefer_busy_poll)
6483 		flags |= NAPI_F_PREFER_BUSY_POLL;
6484 
6485 	__napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget);
6486 }
6487 
6488 void napi_busy_loop(unsigned int napi_id,
6489 		    bool (*loop_end)(void *, unsigned long),
6490 		    void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6491 {
6492 	unsigned flags = prefer_busy_poll ? NAPI_F_PREFER_BUSY_POLL : 0;
6493 
6494 	rcu_read_lock();
6495 	__napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget);
6496 	rcu_read_unlock();
6497 }
6498 EXPORT_SYMBOL(napi_busy_loop);
6499 
6500 #endif /* CONFIG_NET_RX_BUSY_POLL */
6501 
6502 static void napi_hash_add(struct napi_struct *napi)
6503 {
6504 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6505 		return;
6506 
6507 	spin_lock(&napi_hash_lock);
6508 
6509 	/* 0..NR_CPUS range is reserved for sender_cpu use */
6510 	do {
6511 		if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6512 			napi_gen_id = MIN_NAPI_ID;
6513 	} while (napi_by_id(napi_gen_id));
6514 	napi->napi_id = napi_gen_id;
6515 
6516 	hlist_add_head_rcu(&napi->napi_hash_node,
6517 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6518 
6519 	spin_unlock(&napi_hash_lock);
6520 }
6521 
6522 /* Warning : caller is responsible to make sure rcu grace period
6523  * is respected before freeing memory containing @napi
6524  */
6525 static void napi_hash_del(struct napi_struct *napi)
6526 {
6527 	spin_lock(&napi_hash_lock);
6528 
6529 	hlist_del_init_rcu(&napi->napi_hash_node);
6530 
6531 	spin_unlock(&napi_hash_lock);
6532 }
6533 
6534 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6535 {
6536 	struct napi_struct *napi;
6537 
6538 	napi = container_of(timer, struct napi_struct, timer);
6539 
6540 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
6541 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6542 	 */
6543 	if (!napi_disable_pending(napi) &&
6544 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6545 		clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6546 		__napi_schedule_irqoff(napi);
6547 	}
6548 
6549 	return HRTIMER_NORESTART;
6550 }
6551 
6552 static void init_gro_hash(struct napi_struct *napi)
6553 {
6554 	int i;
6555 
6556 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6557 		INIT_LIST_HEAD(&napi->gro_hash[i].list);
6558 		napi->gro_hash[i].count = 0;
6559 	}
6560 	napi->gro_bitmask = 0;
6561 }
6562 
6563 int dev_set_threaded(struct net_device *dev, bool threaded)
6564 {
6565 	struct napi_struct *napi;
6566 	int err = 0;
6567 
6568 	if (dev->threaded == threaded)
6569 		return 0;
6570 
6571 	if (threaded) {
6572 		list_for_each_entry(napi, &dev->napi_list, dev_list) {
6573 			if (!napi->thread) {
6574 				err = napi_kthread_create(napi);
6575 				if (err) {
6576 					threaded = false;
6577 					break;
6578 				}
6579 			}
6580 		}
6581 	}
6582 
6583 	WRITE_ONCE(dev->threaded, threaded);
6584 
6585 	/* Make sure kthread is created before THREADED bit
6586 	 * is set.
6587 	 */
6588 	smp_mb__before_atomic();
6589 
6590 	/* Setting/unsetting threaded mode on a napi might not immediately
6591 	 * take effect, if the current napi instance is actively being
6592 	 * polled. In this case, the switch between threaded mode and
6593 	 * softirq mode will happen in the next round of napi_schedule().
6594 	 * This should not cause hiccups/stalls to the live traffic.
6595 	 */
6596 	list_for_each_entry(napi, &dev->napi_list, dev_list)
6597 		assign_bit(NAPI_STATE_THREADED, &napi->state, threaded);
6598 
6599 	return err;
6600 }
6601 EXPORT_SYMBOL(dev_set_threaded);
6602 
6603 /**
6604  * netif_queue_set_napi - Associate queue with the napi
6605  * @dev: device to which NAPI and queue belong
6606  * @queue_index: Index of queue
6607  * @type: queue type as RX or TX
6608  * @napi: NAPI context, pass NULL to clear previously set NAPI
6609  *
6610  * Set queue with its corresponding napi context. This should be done after
6611  * registering the NAPI handler for the queue-vector and the queues have been
6612  * mapped to the corresponding interrupt vector.
6613  */
6614 void netif_queue_set_napi(struct net_device *dev, unsigned int queue_index,
6615 			  enum netdev_queue_type type, struct napi_struct *napi)
6616 {
6617 	struct netdev_rx_queue *rxq;
6618 	struct netdev_queue *txq;
6619 
6620 	if (WARN_ON_ONCE(napi && !napi->dev))
6621 		return;
6622 	if (dev->reg_state >= NETREG_REGISTERED)
6623 		ASSERT_RTNL();
6624 
6625 	switch (type) {
6626 	case NETDEV_QUEUE_TYPE_RX:
6627 		rxq = __netif_get_rx_queue(dev, queue_index);
6628 		rxq->napi = napi;
6629 		return;
6630 	case NETDEV_QUEUE_TYPE_TX:
6631 		txq = netdev_get_tx_queue(dev, queue_index);
6632 		txq->napi = napi;
6633 		return;
6634 	default:
6635 		return;
6636 	}
6637 }
6638 EXPORT_SYMBOL(netif_queue_set_napi);
6639 
6640 void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi,
6641 			   int (*poll)(struct napi_struct *, int), int weight)
6642 {
6643 	if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6644 		return;
6645 
6646 	INIT_LIST_HEAD(&napi->poll_list);
6647 	INIT_HLIST_NODE(&napi->napi_hash_node);
6648 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6649 	napi->timer.function = napi_watchdog;
6650 	init_gro_hash(napi);
6651 	napi->skb = NULL;
6652 	INIT_LIST_HEAD(&napi->rx_list);
6653 	napi->rx_count = 0;
6654 	napi->poll = poll;
6655 	if (weight > NAPI_POLL_WEIGHT)
6656 		netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6657 				weight);
6658 	napi->weight = weight;
6659 	napi->dev = dev;
6660 #ifdef CONFIG_NETPOLL
6661 	napi->poll_owner = -1;
6662 #endif
6663 	napi->list_owner = -1;
6664 	set_bit(NAPI_STATE_SCHED, &napi->state);
6665 	set_bit(NAPI_STATE_NPSVC, &napi->state);
6666 	list_add_rcu(&napi->dev_list, &dev->napi_list);
6667 	napi_hash_add(napi);
6668 	napi_get_frags_check(napi);
6669 	/* Create kthread for this napi if dev->threaded is set.
6670 	 * Clear dev->threaded if kthread creation failed so that
6671 	 * threaded mode will not be enabled in napi_enable().
6672 	 */
6673 	if (dev->threaded && napi_kthread_create(napi))
6674 		dev->threaded = false;
6675 	netif_napi_set_irq(napi, -1);
6676 }
6677 EXPORT_SYMBOL(netif_napi_add_weight);
6678 
6679 void napi_disable(struct napi_struct *n)
6680 {
6681 	unsigned long val, new;
6682 
6683 	might_sleep();
6684 	set_bit(NAPI_STATE_DISABLE, &n->state);
6685 
6686 	val = READ_ONCE(n->state);
6687 	do {
6688 		while (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
6689 			usleep_range(20, 200);
6690 			val = READ_ONCE(n->state);
6691 		}
6692 
6693 		new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
6694 		new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL);
6695 	} while (!try_cmpxchg(&n->state, &val, new));
6696 
6697 	hrtimer_cancel(&n->timer);
6698 
6699 	clear_bit(NAPI_STATE_DISABLE, &n->state);
6700 }
6701 EXPORT_SYMBOL(napi_disable);
6702 
6703 /**
6704  *	napi_enable - enable NAPI scheduling
6705  *	@n: NAPI context
6706  *
6707  * Resume NAPI from being scheduled on this context.
6708  * Must be paired with napi_disable.
6709  */
6710 void napi_enable(struct napi_struct *n)
6711 {
6712 	unsigned long new, val = READ_ONCE(n->state);
6713 
6714 	do {
6715 		BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
6716 
6717 		new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
6718 		if (n->dev->threaded && n->thread)
6719 			new |= NAPIF_STATE_THREADED;
6720 	} while (!try_cmpxchg(&n->state, &val, new));
6721 }
6722 EXPORT_SYMBOL(napi_enable);
6723 
6724 static void flush_gro_hash(struct napi_struct *napi)
6725 {
6726 	int i;
6727 
6728 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6729 		struct sk_buff *skb, *n;
6730 
6731 		list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6732 			kfree_skb(skb);
6733 		napi->gro_hash[i].count = 0;
6734 	}
6735 }
6736 
6737 /* Must be called in process context */
6738 void __netif_napi_del(struct napi_struct *napi)
6739 {
6740 	if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6741 		return;
6742 
6743 	napi_hash_del(napi);
6744 	list_del_rcu(&napi->dev_list);
6745 	napi_free_frags(napi);
6746 
6747 	flush_gro_hash(napi);
6748 	napi->gro_bitmask = 0;
6749 
6750 	if (napi->thread) {
6751 		kthread_stop(napi->thread);
6752 		napi->thread = NULL;
6753 	}
6754 }
6755 EXPORT_SYMBOL(__netif_napi_del);
6756 
6757 static int __napi_poll(struct napi_struct *n, bool *repoll)
6758 {
6759 	int work, weight;
6760 
6761 	weight = n->weight;
6762 
6763 	/* This NAPI_STATE_SCHED test is for avoiding a race
6764 	 * with netpoll's poll_napi().  Only the entity which
6765 	 * obtains the lock and sees NAPI_STATE_SCHED set will
6766 	 * actually make the ->poll() call.  Therefore we avoid
6767 	 * accidentally calling ->poll() when NAPI is not scheduled.
6768 	 */
6769 	work = 0;
6770 	if (napi_is_scheduled(n)) {
6771 		work = n->poll(n, weight);
6772 		trace_napi_poll(n, work, weight);
6773 
6774 		xdp_do_check_flushed(n);
6775 	}
6776 
6777 	if (unlikely(work > weight))
6778 		netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6779 				n->poll, work, weight);
6780 
6781 	if (likely(work < weight))
6782 		return work;
6783 
6784 	/* Drivers must not modify the NAPI state if they
6785 	 * consume the entire weight.  In such cases this code
6786 	 * still "owns" the NAPI instance and therefore can
6787 	 * move the instance around on the list at-will.
6788 	 */
6789 	if (unlikely(napi_disable_pending(n))) {
6790 		napi_complete(n);
6791 		return work;
6792 	}
6793 
6794 	/* The NAPI context has more processing work, but busy-polling
6795 	 * is preferred. Exit early.
6796 	 */
6797 	if (napi_prefer_busy_poll(n)) {
6798 		if (napi_complete_done(n, work)) {
6799 			/* If timeout is not set, we need to make sure
6800 			 * that the NAPI is re-scheduled.
6801 			 */
6802 			napi_schedule(n);
6803 		}
6804 		return work;
6805 	}
6806 
6807 	if (n->gro_bitmask) {
6808 		/* flush too old packets
6809 		 * If HZ < 1000, flush all packets.
6810 		 */
6811 		napi_gro_flush(n, HZ >= 1000);
6812 	}
6813 
6814 	gro_normal_list(n);
6815 
6816 	/* Some drivers may have called napi_schedule
6817 	 * prior to exhausting their budget.
6818 	 */
6819 	if (unlikely(!list_empty(&n->poll_list))) {
6820 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6821 			     n->dev ? n->dev->name : "backlog");
6822 		return work;
6823 	}
6824 
6825 	*repoll = true;
6826 
6827 	return work;
6828 }
6829 
6830 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6831 {
6832 	bool do_repoll = false;
6833 	void *have;
6834 	int work;
6835 
6836 	list_del_init(&n->poll_list);
6837 
6838 	have = netpoll_poll_lock(n);
6839 
6840 	work = __napi_poll(n, &do_repoll);
6841 
6842 	if (do_repoll)
6843 		list_add_tail(&n->poll_list, repoll);
6844 
6845 	netpoll_poll_unlock(have);
6846 
6847 	return work;
6848 }
6849 
6850 static int napi_thread_wait(struct napi_struct *napi)
6851 {
6852 	set_current_state(TASK_INTERRUPTIBLE);
6853 
6854 	while (!kthread_should_stop()) {
6855 		/* Testing SCHED_THREADED bit here to make sure the current
6856 		 * kthread owns this napi and could poll on this napi.
6857 		 * Testing SCHED bit is not enough because SCHED bit might be
6858 		 * set by some other busy poll thread or by napi_disable().
6859 		 */
6860 		if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state)) {
6861 			WARN_ON(!list_empty(&napi->poll_list));
6862 			__set_current_state(TASK_RUNNING);
6863 			return 0;
6864 		}
6865 
6866 		schedule();
6867 		set_current_state(TASK_INTERRUPTIBLE);
6868 	}
6869 	__set_current_state(TASK_RUNNING);
6870 
6871 	return -1;
6872 }
6873 
6874 static void napi_threaded_poll_loop(struct napi_struct *napi)
6875 {
6876 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
6877 	struct softnet_data *sd;
6878 	unsigned long last_qs = jiffies;
6879 
6880 	for (;;) {
6881 		bool repoll = false;
6882 		void *have;
6883 
6884 		local_bh_disable();
6885 		bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
6886 
6887 		sd = this_cpu_ptr(&softnet_data);
6888 		sd->in_napi_threaded_poll = true;
6889 
6890 		have = netpoll_poll_lock(napi);
6891 		__napi_poll(napi, &repoll);
6892 		netpoll_poll_unlock(have);
6893 
6894 		sd->in_napi_threaded_poll = false;
6895 		barrier();
6896 
6897 		if (sd_has_rps_ipi_waiting(sd)) {
6898 			local_irq_disable();
6899 			net_rps_action_and_irq_enable(sd);
6900 		}
6901 		skb_defer_free_flush(sd);
6902 		bpf_net_ctx_clear(bpf_net_ctx);
6903 		local_bh_enable();
6904 
6905 		if (!repoll)
6906 			break;
6907 
6908 		rcu_softirq_qs_periodic(last_qs);
6909 		cond_resched();
6910 	}
6911 }
6912 
6913 static int napi_threaded_poll(void *data)
6914 {
6915 	struct napi_struct *napi = data;
6916 
6917 	while (!napi_thread_wait(napi))
6918 		napi_threaded_poll_loop(napi);
6919 
6920 	return 0;
6921 }
6922 
6923 static __latent_entropy void net_rx_action(void)
6924 {
6925 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6926 	unsigned long time_limit = jiffies +
6927 		usecs_to_jiffies(READ_ONCE(net_hotdata.netdev_budget_usecs));
6928 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
6929 	int budget = READ_ONCE(net_hotdata.netdev_budget);
6930 	LIST_HEAD(list);
6931 	LIST_HEAD(repoll);
6932 
6933 	bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
6934 start:
6935 	sd->in_net_rx_action = true;
6936 	local_irq_disable();
6937 	list_splice_init(&sd->poll_list, &list);
6938 	local_irq_enable();
6939 
6940 	for (;;) {
6941 		struct napi_struct *n;
6942 
6943 		skb_defer_free_flush(sd);
6944 
6945 		if (list_empty(&list)) {
6946 			if (list_empty(&repoll)) {
6947 				sd->in_net_rx_action = false;
6948 				barrier();
6949 				/* We need to check if ____napi_schedule()
6950 				 * had refilled poll_list while
6951 				 * sd->in_net_rx_action was true.
6952 				 */
6953 				if (!list_empty(&sd->poll_list))
6954 					goto start;
6955 				if (!sd_has_rps_ipi_waiting(sd))
6956 					goto end;
6957 			}
6958 			break;
6959 		}
6960 
6961 		n = list_first_entry(&list, struct napi_struct, poll_list);
6962 		budget -= napi_poll(n, &repoll);
6963 
6964 		/* If softirq window is exhausted then punt.
6965 		 * Allow this to run for 2 jiffies since which will allow
6966 		 * an average latency of 1.5/HZ.
6967 		 */
6968 		if (unlikely(budget <= 0 ||
6969 			     time_after_eq(jiffies, time_limit))) {
6970 			sd->time_squeeze++;
6971 			break;
6972 		}
6973 	}
6974 
6975 	local_irq_disable();
6976 
6977 	list_splice_tail_init(&sd->poll_list, &list);
6978 	list_splice_tail(&repoll, &list);
6979 	list_splice(&list, &sd->poll_list);
6980 	if (!list_empty(&sd->poll_list))
6981 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
6982 	else
6983 		sd->in_net_rx_action = false;
6984 
6985 	net_rps_action_and_irq_enable(sd);
6986 end:
6987 	bpf_net_ctx_clear(bpf_net_ctx);
6988 }
6989 
6990 struct netdev_adjacent {
6991 	struct net_device *dev;
6992 	netdevice_tracker dev_tracker;
6993 
6994 	/* upper master flag, there can only be one master device per list */
6995 	bool master;
6996 
6997 	/* lookup ignore flag */
6998 	bool ignore;
6999 
7000 	/* counter for the number of times this device was added to us */
7001 	u16 ref_nr;
7002 
7003 	/* private field for the users */
7004 	void *private;
7005 
7006 	struct list_head list;
7007 	struct rcu_head rcu;
7008 };
7009 
7010 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
7011 						 struct list_head *adj_list)
7012 {
7013 	struct netdev_adjacent *adj;
7014 
7015 	list_for_each_entry(adj, adj_list, list) {
7016 		if (adj->dev == adj_dev)
7017 			return adj;
7018 	}
7019 	return NULL;
7020 }
7021 
7022 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
7023 				    struct netdev_nested_priv *priv)
7024 {
7025 	struct net_device *dev = (struct net_device *)priv->data;
7026 
7027 	return upper_dev == dev;
7028 }
7029 
7030 /**
7031  * netdev_has_upper_dev - Check if device is linked to an upper device
7032  * @dev: device
7033  * @upper_dev: upper device to check
7034  *
7035  * Find out if a device is linked to specified upper device and return true
7036  * in case it is. Note that this checks only immediate upper device,
7037  * not through a complete stack of devices. The caller must hold the RTNL lock.
7038  */
7039 bool netdev_has_upper_dev(struct net_device *dev,
7040 			  struct net_device *upper_dev)
7041 {
7042 	struct netdev_nested_priv priv = {
7043 		.data = (void *)upper_dev,
7044 	};
7045 
7046 	ASSERT_RTNL();
7047 
7048 	return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7049 					     &priv);
7050 }
7051 EXPORT_SYMBOL(netdev_has_upper_dev);
7052 
7053 /**
7054  * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
7055  * @dev: device
7056  * @upper_dev: upper device to check
7057  *
7058  * Find out if a device is linked to specified upper device and return true
7059  * in case it is. Note that this checks the entire upper device chain.
7060  * The caller must hold rcu lock.
7061  */
7062 
7063 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
7064 				  struct net_device *upper_dev)
7065 {
7066 	struct netdev_nested_priv priv = {
7067 		.data = (void *)upper_dev,
7068 	};
7069 
7070 	return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7071 					       &priv);
7072 }
7073 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
7074 
7075 /**
7076  * netdev_has_any_upper_dev - Check if device is linked to some device
7077  * @dev: device
7078  *
7079  * Find out if a device is linked to an upper device and return true in case
7080  * it is. The caller must hold the RTNL lock.
7081  */
7082 bool netdev_has_any_upper_dev(struct net_device *dev)
7083 {
7084 	ASSERT_RTNL();
7085 
7086 	return !list_empty(&dev->adj_list.upper);
7087 }
7088 EXPORT_SYMBOL(netdev_has_any_upper_dev);
7089 
7090 /**
7091  * netdev_master_upper_dev_get - Get master upper device
7092  * @dev: device
7093  *
7094  * Find a master upper device and return pointer to it or NULL in case
7095  * it's not there. The caller must hold the RTNL lock.
7096  */
7097 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
7098 {
7099 	struct netdev_adjacent *upper;
7100 
7101 	ASSERT_RTNL();
7102 
7103 	if (list_empty(&dev->adj_list.upper))
7104 		return NULL;
7105 
7106 	upper = list_first_entry(&dev->adj_list.upper,
7107 				 struct netdev_adjacent, list);
7108 	if (likely(upper->master))
7109 		return upper->dev;
7110 	return NULL;
7111 }
7112 EXPORT_SYMBOL(netdev_master_upper_dev_get);
7113 
7114 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
7115 {
7116 	struct netdev_adjacent *upper;
7117 
7118 	ASSERT_RTNL();
7119 
7120 	if (list_empty(&dev->adj_list.upper))
7121 		return NULL;
7122 
7123 	upper = list_first_entry(&dev->adj_list.upper,
7124 				 struct netdev_adjacent, list);
7125 	if (likely(upper->master) && !upper->ignore)
7126 		return upper->dev;
7127 	return NULL;
7128 }
7129 
7130 /**
7131  * netdev_has_any_lower_dev - Check if device is linked to some device
7132  * @dev: device
7133  *
7134  * Find out if a device is linked to a lower device and return true in case
7135  * it is. The caller must hold the RTNL lock.
7136  */
7137 static bool netdev_has_any_lower_dev(struct net_device *dev)
7138 {
7139 	ASSERT_RTNL();
7140 
7141 	return !list_empty(&dev->adj_list.lower);
7142 }
7143 
7144 void *netdev_adjacent_get_private(struct list_head *adj_list)
7145 {
7146 	struct netdev_adjacent *adj;
7147 
7148 	adj = list_entry(adj_list, struct netdev_adjacent, list);
7149 
7150 	return adj->private;
7151 }
7152 EXPORT_SYMBOL(netdev_adjacent_get_private);
7153 
7154 /**
7155  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
7156  * @dev: device
7157  * @iter: list_head ** of the current position
7158  *
7159  * Gets the next device from the dev's upper list, starting from iter
7160  * position. The caller must hold RCU read lock.
7161  */
7162 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
7163 						 struct list_head **iter)
7164 {
7165 	struct netdev_adjacent *upper;
7166 
7167 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7168 
7169 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7170 
7171 	if (&upper->list == &dev->adj_list.upper)
7172 		return NULL;
7173 
7174 	*iter = &upper->list;
7175 
7176 	return upper->dev;
7177 }
7178 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
7179 
7180 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
7181 						  struct list_head **iter,
7182 						  bool *ignore)
7183 {
7184 	struct netdev_adjacent *upper;
7185 
7186 	upper = list_entry((*iter)->next, struct netdev_adjacent, list);
7187 
7188 	if (&upper->list == &dev->adj_list.upper)
7189 		return NULL;
7190 
7191 	*iter = &upper->list;
7192 	*ignore = upper->ignore;
7193 
7194 	return upper->dev;
7195 }
7196 
7197 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
7198 						    struct list_head **iter)
7199 {
7200 	struct netdev_adjacent *upper;
7201 
7202 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7203 
7204 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7205 
7206 	if (&upper->list == &dev->adj_list.upper)
7207 		return NULL;
7208 
7209 	*iter = &upper->list;
7210 
7211 	return upper->dev;
7212 }
7213 
7214 static int __netdev_walk_all_upper_dev(struct net_device *dev,
7215 				       int (*fn)(struct net_device *dev,
7216 					 struct netdev_nested_priv *priv),
7217 				       struct netdev_nested_priv *priv)
7218 {
7219 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7220 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7221 	int ret, cur = 0;
7222 	bool ignore;
7223 
7224 	now = dev;
7225 	iter = &dev->adj_list.upper;
7226 
7227 	while (1) {
7228 		if (now != dev) {
7229 			ret = fn(now, priv);
7230 			if (ret)
7231 				return ret;
7232 		}
7233 
7234 		next = NULL;
7235 		while (1) {
7236 			udev = __netdev_next_upper_dev(now, &iter, &ignore);
7237 			if (!udev)
7238 				break;
7239 			if (ignore)
7240 				continue;
7241 
7242 			next = udev;
7243 			niter = &udev->adj_list.upper;
7244 			dev_stack[cur] = now;
7245 			iter_stack[cur++] = iter;
7246 			break;
7247 		}
7248 
7249 		if (!next) {
7250 			if (!cur)
7251 				return 0;
7252 			next = dev_stack[--cur];
7253 			niter = iter_stack[cur];
7254 		}
7255 
7256 		now = next;
7257 		iter = niter;
7258 	}
7259 
7260 	return 0;
7261 }
7262 
7263 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7264 				  int (*fn)(struct net_device *dev,
7265 					    struct netdev_nested_priv *priv),
7266 				  struct netdev_nested_priv *priv)
7267 {
7268 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7269 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7270 	int ret, cur = 0;
7271 
7272 	now = dev;
7273 	iter = &dev->adj_list.upper;
7274 
7275 	while (1) {
7276 		if (now != dev) {
7277 			ret = fn(now, priv);
7278 			if (ret)
7279 				return ret;
7280 		}
7281 
7282 		next = NULL;
7283 		while (1) {
7284 			udev = netdev_next_upper_dev_rcu(now, &iter);
7285 			if (!udev)
7286 				break;
7287 
7288 			next = udev;
7289 			niter = &udev->adj_list.upper;
7290 			dev_stack[cur] = now;
7291 			iter_stack[cur++] = iter;
7292 			break;
7293 		}
7294 
7295 		if (!next) {
7296 			if (!cur)
7297 				return 0;
7298 			next = dev_stack[--cur];
7299 			niter = iter_stack[cur];
7300 		}
7301 
7302 		now = next;
7303 		iter = niter;
7304 	}
7305 
7306 	return 0;
7307 }
7308 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7309 
7310 static bool __netdev_has_upper_dev(struct net_device *dev,
7311 				   struct net_device *upper_dev)
7312 {
7313 	struct netdev_nested_priv priv = {
7314 		.flags = 0,
7315 		.data = (void *)upper_dev,
7316 	};
7317 
7318 	ASSERT_RTNL();
7319 
7320 	return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7321 					   &priv);
7322 }
7323 
7324 /**
7325  * netdev_lower_get_next_private - Get the next ->private from the
7326  *				   lower neighbour list
7327  * @dev: device
7328  * @iter: list_head ** of the current position
7329  *
7330  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7331  * list, starting from iter position. The caller must hold either hold the
7332  * RTNL lock or its own locking that guarantees that the neighbour lower
7333  * list will remain unchanged.
7334  */
7335 void *netdev_lower_get_next_private(struct net_device *dev,
7336 				    struct list_head **iter)
7337 {
7338 	struct netdev_adjacent *lower;
7339 
7340 	lower = list_entry(*iter, struct netdev_adjacent, list);
7341 
7342 	if (&lower->list == &dev->adj_list.lower)
7343 		return NULL;
7344 
7345 	*iter = lower->list.next;
7346 
7347 	return lower->private;
7348 }
7349 EXPORT_SYMBOL(netdev_lower_get_next_private);
7350 
7351 /**
7352  * netdev_lower_get_next_private_rcu - Get the next ->private from the
7353  *				       lower neighbour list, RCU
7354  *				       variant
7355  * @dev: device
7356  * @iter: list_head ** of the current position
7357  *
7358  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7359  * list, starting from iter position. The caller must hold RCU read lock.
7360  */
7361 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7362 					struct list_head **iter)
7363 {
7364 	struct netdev_adjacent *lower;
7365 
7366 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
7367 
7368 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7369 
7370 	if (&lower->list == &dev->adj_list.lower)
7371 		return NULL;
7372 
7373 	*iter = &lower->list;
7374 
7375 	return lower->private;
7376 }
7377 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7378 
7379 /**
7380  * netdev_lower_get_next - Get the next device from the lower neighbour
7381  *                         list
7382  * @dev: device
7383  * @iter: list_head ** of the current position
7384  *
7385  * Gets the next netdev_adjacent from the dev's lower neighbour
7386  * list, starting from iter position. The caller must hold RTNL lock or
7387  * its own locking that guarantees that the neighbour lower
7388  * list will remain unchanged.
7389  */
7390 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7391 {
7392 	struct netdev_adjacent *lower;
7393 
7394 	lower = list_entry(*iter, struct netdev_adjacent, list);
7395 
7396 	if (&lower->list == &dev->adj_list.lower)
7397 		return NULL;
7398 
7399 	*iter = lower->list.next;
7400 
7401 	return lower->dev;
7402 }
7403 EXPORT_SYMBOL(netdev_lower_get_next);
7404 
7405 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7406 						struct list_head **iter)
7407 {
7408 	struct netdev_adjacent *lower;
7409 
7410 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7411 
7412 	if (&lower->list == &dev->adj_list.lower)
7413 		return NULL;
7414 
7415 	*iter = &lower->list;
7416 
7417 	return lower->dev;
7418 }
7419 
7420 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7421 						  struct list_head **iter,
7422 						  bool *ignore)
7423 {
7424 	struct netdev_adjacent *lower;
7425 
7426 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7427 
7428 	if (&lower->list == &dev->adj_list.lower)
7429 		return NULL;
7430 
7431 	*iter = &lower->list;
7432 	*ignore = lower->ignore;
7433 
7434 	return lower->dev;
7435 }
7436 
7437 int netdev_walk_all_lower_dev(struct net_device *dev,
7438 			      int (*fn)(struct net_device *dev,
7439 					struct netdev_nested_priv *priv),
7440 			      struct netdev_nested_priv *priv)
7441 {
7442 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7443 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7444 	int ret, cur = 0;
7445 
7446 	now = dev;
7447 	iter = &dev->adj_list.lower;
7448 
7449 	while (1) {
7450 		if (now != dev) {
7451 			ret = fn(now, priv);
7452 			if (ret)
7453 				return ret;
7454 		}
7455 
7456 		next = NULL;
7457 		while (1) {
7458 			ldev = netdev_next_lower_dev(now, &iter);
7459 			if (!ldev)
7460 				break;
7461 
7462 			next = ldev;
7463 			niter = &ldev->adj_list.lower;
7464 			dev_stack[cur] = now;
7465 			iter_stack[cur++] = iter;
7466 			break;
7467 		}
7468 
7469 		if (!next) {
7470 			if (!cur)
7471 				return 0;
7472 			next = dev_stack[--cur];
7473 			niter = iter_stack[cur];
7474 		}
7475 
7476 		now = next;
7477 		iter = niter;
7478 	}
7479 
7480 	return 0;
7481 }
7482 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7483 
7484 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7485 				       int (*fn)(struct net_device *dev,
7486 					 struct netdev_nested_priv *priv),
7487 				       struct netdev_nested_priv *priv)
7488 {
7489 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7490 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7491 	int ret, cur = 0;
7492 	bool ignore;
7493 
7494 	now = dev;
7495 	iter = &dev->adj_list.lower;
7496 
7497 	while (1) {
7498 		if (now != dev) {
7499 			ret = fn(now, priv);
7500 			if (ret)
7501 				return ret;
7502 		}
7503 
7504 		next = NULL;
7505 		while (1) {
7506 			ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7507 			if (!ldev)
7508 				break;
7509 			if (ignore)
7510 				continue;
7511 
7512 			next = ldev;
7513 			niter = &ldev->adj_list.lower;
7514 			dev_stack[cur] = now;
7515 			iter_stack[cur++] = iter;
7516 			break;
7517 		}
7518 
7519 		if (!next) {
7520 			if (!cur)
7521 				return 0;
7522 			next = dev_stack[--cur];
7523 			niter = iter_stack[cur];
7524 		}
7525 
7526 		now = next;
7527 		iter = niter;
7528 	}
7529 
7530 	return 0;
7531 }
7532 
7533 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7534 					     struct list_head **iter)
7535 {
7536 	struct netdev_adjacent *lower;
7537 
7538 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7539 	if (&lower->list == &dev->adj_list.lower)
7540 		return NULL;
7541 
7542 	*iter = &lower->list;
7543 
7544 	return lower->dev;
7545 }
7546 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7547 
7548 static u8 __netdev_upper_depth(struct net_device *dev)
7549 {
7550 	struct net_device *udev;
7551 	struct list_head *iter;
7552 	u8 max_depth = 0;
7553 	bool ignore;
7554 
7555 	for (iter = &dev->adj_list.upper,
7556 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7557 	     udev;
7558 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7559 		if (ignore)
7560 			continue;
7561 		if (max_depth < udev->upper_level)
7562 			max_depth = udev->upper_level;
7563 	}
7564 
7565 	return max_depth;
7566 }
7567 
7568 static u8 __netdev_lower_depth(struct net_device *dev)
7569 {
7570 	struct net_device *ldev;
7571 	struct list_head *iter;
7572 	u8 max_depth = 0;
7573 	bool ignore;
7574 
7575 	for (iter = &dev->adj_list.lower,
7576 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7577 	     ldev;
7578 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7579 		if (ignore)
7580 			continue;
7581 		if (max_depth < ldev->lower_level)
7582 			max_depth = ldev->lower_level;
7583 	}
7584 
7585 	return max_depth;
7586 }
7587 
7588 static int __netdev_update_upper_level(struct net_device *dev,
7589 				       struct netdev_nested_priv *__unused)
7590 {
7591 	dev->upper_level = __netdev_upper_depth(dev) + 1;
7592 	return 0;
7593 }
7594 
7595 #ifdef CONFIG_LOCKDEP
7596 static LIST_HEAD(net_unlink_list);
7597 
7598 static void net_unlink_todo(struct net_device *dev)
7599 {
7600 	if (list_empty(&dev->unlink_list))
7601 		list_add_tail(&dev->unlink_list, &net_unlink_list);
7602 }
7603 #endif
7604 
7605 static int __netdev_update_lower_level(struct net_device *dev,
7606 				       struct netdev_nested_priv *priv)
7607 {
7608 	dev->lower_level = __netdev_lower_depth(dev) + 1;
7609 
7610 #ifdef CONFIG_LOCKDEP
7611 	if (!priv)
7612 		return 0;
7613 
7614 	if (priv->flags & NESTED_SYNC_IMM)
7615 		dev->nested_level = dev->lower_level - 1;
7616 	if (priv->flags & NESTED_SYNC_TODO)
7617 		net_unlink_todo(dev);
7618 #endif
7619 	return 0;
7620 }
7621 
7622 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7623 				  int (*fn)(struct net_device *dev,
7624 					    struct netdev_nested_priv *priv),
7625 				  struct netdev_nested_priv *priv)
7626 {
7627 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7628 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7629 	int ret, cur = 0;
7630 
7631 	now = dev;
7632 	iter = &dev->adj_list.lower;
7633 
7634 	while (1) {
7635 		if (now != dev) {
7636 			ret = fn(now, priv);
7637 			if (ret)
7638 				return ret;
7639 		}
7640 
7641 		next = NULL;
7642 		while (1) {
7643 			ldev = netdev_next_lower_dev_rcu(now, &iter);
7644 			if (!ldev)
7645 				break;
7646 
7647 			next = ldev;
7648 			niter = &ldev->adj_list.lower;
7649 			dev_stack[cur] = now;
7650 			iter_stack[cur++] = iter;
7651 			break;
7652 		}
7653 
7654 		if (!next) {
7655 			if (!cur)
7656 				return 0;
7657 			next = dev_stack[--cur];
7658 			niter = iter_stack[cur];
7659 		}
7660 
7661 		now = next;
7662 		iter = niter;
7663 	}
7664 
7665 	return 0;
7666 }
7667 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7668 
7669 /**
7670  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7671  *				       lower neighbour list, RCU
7672  *				       variant
7673  * @dev: device
7674  *
7675  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7676  * list. The caller must hold RCU read lock.
7677  */
7678 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7679 {
7680 	struct netdev_adjacent *lower;
7681 
7682 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
7683 			struct netdev_adjacent, list);
7684 	if (lower)
7685 		return lower->private;
7686 	return NULL;
7687 }
7688 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7689 
7690 /**
7691  * netdev_master_upper_dev_get_rcu - Get master upper device
7692  * @dev: device
7693  *
7694  * Find a master upper device and return pointer to it or NULL in case
7695  * it's not there. The caller must hold the RCU read lock.
7696  */
7697 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7698 {
7699 	struct netdev_adjacent *upper;
7700 
7701 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
7702 				       struct netdev_adjacent, list);
7703 	if (upper && likely(upper->master))
7704 		return upper->dev;
7705 	return NULL;
7706 }
7707 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7708 
7709 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7710 			      struct net_device *adj_dev,
7711 			      struct list_head *dev_list)
7712 {
7713 	char linkname[IFNAMSIZ+7];
7714 
7715 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7716 		"upper_%s" : "lower_%s", adj_dev->name);
7717 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7718 				 linkname);
7719 }
7720 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7721 			       char *name,
7722 			       struct list_head *dev_list)
7723 {
7724 	char linkname[IFNAMSIZ+7];
7725 
7726 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7727 		"upper_%s" : "lower_%s", name);
7728 	sysfs_remove_link(&(dev->dev.kobj), linkname);
7729 }
7730 
7731 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7732 						 struct net_device *adj_dev,
7733 						 struct list_head *dev_list)
7734 {
7735 	return (dev_list == &dev->adj_list.upper ||
7736 		dev_list == &dev->adj_list.lower) &&
7737 		net_eq(dev_net(dev), dev_net(adj_dev));
7738 }
7739 
7740 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7741 					struct net_device *adj_dev,
7742 					struct list_head *dev_list,
7743 					void *private, bool master)
7744 {
7745 	struct netdev_adjacent *adj;
7746 	int ret;
7747 
7748 	adj = __netdev_find_adj(adj_dev, dev_list);
7749 
7750 	if (adj) {
7751 		adj->ref_nr += 1;
7752 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7753 			 dev->name, adj_dev->name, adj->ref_nr);
7754 
7755 		return 0;
7756 	}
7757 
7758 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7759 	if (!adj)
7760 		return -ENOMEM;
7761 
7762 	adj->dev = adj_dev;
7763 	adj->master = master;
7764 	adj->ref_nr = 1;
7765 	adj->private = private;
7766 	adj->ignore = false;
7767 	netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL);
7768 
7769 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7770 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7771 
7772 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7773 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7774 		if (ret)
7775 			goto free_adj;
7776 	}
7777 
7778 	/* Ensure that master link is always the first item in list. */
7779 	if (master) {
7780 		ret = sysfs_create_link(&(dev->dev.kobj),
7781 					&(adj_dev->dev.kobj), "master");
7782 		if (ret)
7783 			goto remove_symlinks;
7784 
7785 		list_add_rcu(&adj->list, dev_list);
7786 	} else {
7787 		list_add_tail_rcu(&adj->list, dev_list);
7788 	}
7789 
7790 	return 0;
7791 
7792 remove_symlinks:
7793 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7794 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7795 free_adj:
7796 	netdev_put(adj_dev, &adj->dev_tracker);
7797 	kfree(adj);
7798 
7799 	return ret;
7800 }
7801 
7802 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7803 					 struct net_device *adj_dev,
7804 					 u16 ref_nr,
7805 					 struct list_head *dev_list)
7806 {
7807 	struct netdev_adjacent *adj;
7808 
7809 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7810 		 dev->name, adj_dev->name, ref_nr);
7811 
7812 	adj = __netdev_find_adj(adj_dev, dev_list);
7813 
7814 	if (!adj) {
7815 		pr_err("Adjacency does not exist for device %s from %s\n",
7816 		       dev->name, adj_dev->name);
7817 		WARN_ON(1);
7818 		return;
7819 	}
7820 
7821 	if (adj->ref_nr > ref_nr) {
7822 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7823 			 dev->name, adj_dev->name, ref_nr,
7824 			 adj->ref_nr - ref_nr);
7825 		adj->ref_nr -= ref_nr;
7826 		return;
7827 	}
7828 
7829 	if (adj->master)
7830 		sysfs_remove_link(&(dev->dev.kobj), "master");
7831 
7832 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7833 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7834 
7835 	list_del_rcu(&adj->list);
7836 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7837 		 adj_dev->name, dev->name, adj_dev->name);
7838 	netdev_put(adj_dev, &adj->dev_tracker);
7839 	kfree_rcu(adj, rcu);
7840 }
7841 
7842 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7843 					    struct net_device *upper_dev,
7844 					    struct list_head *up_list,
7845 					    struct list_head *down_list,
7846 					    void *private, bool master)
7847 {
7848 	int ret;
7849 
7850 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7851 					   private, master);
7852 	if (ret)
7853 		return ret;
7854 
7855 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7856 					   private, false);
7857 	if (ret) {
7858 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7859 		return ret;
7860 	}
7861 
7862 	return 0;
7863 }
7864 
7865 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7866 					       struct net_device *upper_dev,
7867 					       u16 ref_nr,
7868 					       struct list_head *up_list,
7869 					       struct list_head *down_list)
7870 {
7871 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7872 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7873 }
7874 
7875 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7876 						struct net_device *upper_dev,
7877 						void *private, bool master)
7878 {
7879 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7880 						&dev->adj_list.upper,
7881 						&upper_dev->adj_list.lower,
7882 						private, master);
7883 }
7884 
7885 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7886 						   struct net_device *upper_dev)
7887 {
7888 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7889 					   &dev->adj_list.upper,
7890 					   &upper_dev->adj_list.lower);
7891 }
7892 
7893 static int __netdev_upper_dev_link(struct net_device *dev,
7894 				   struct net_device *upper_dev, bool master,
7895 				   void *upper_priv, void *upper_info,
7896 				   struct netdev_nested_priv *priv,
7897 				   struct netlink_ext_ack *extack)
7898 {
7899 	struct netdev_notifier_changeupper_info changeupper_info = {
7900 		.info = {
7901 			.dev = dev,
7902 			.extack = extack,
7903 		},
7904 		.upper_dev = upper_dev,
7905 		.master = master,
7906 		.linking = true,
7907 		.upper_info = upper_info,
7908 	};
7909 	struct net_device *master_dev;
7910 	int ret = 0;
7911 
7912 	ASSERT_RTNL();
7913 
7914 	if (dev == upper_dev)
7915 		return -EBUSY;
7916 
7917 	/* To prevent loops, check if dev is not upper device to upper_dev. */
7918 	if (__netdev_has_upper_dev(upper_dev, dev))
7919 		return -EBUSY;
7920 
7921 	if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7922 		return -EMLINK;
7923 
7924 	if (!master) {
7925 		if (__netdev_has_upper_dev(dev, upper_dev))
7926 			return -EEXIST;
7927 	} else {
7928 		master_dev = __netdev_master_upper_dev_get(dev);
7929 		if (master_dev)
7930 			return master_dev == upper_dev ? -EEXIST : -EBUSY;
7931 	}
7932 
7933 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7934 					    &changeupper_info.info);
7935 	ret = notifier_to_errno(ret);
7936 	if (ret)
7937 		return ret;
7938 
7939 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7940 						   master);
7941 	if (ret)
7942 		return ret;
7943 
7944 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7945 					    &changeupper_info.info);
7946 	ret = notifier_to_errno(ret);
7947 	if (ret)
7948 		goto rollback;
7949 
7950 	__netdev_update_upper_level(dev, NULL);
7951 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7952 
7953 	__netdev_update_lower_level(upper_dev, priv);
7954 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7955 				    priv);
7956 
7957 	return 0;
7958 
7959 rollback:
7960 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7961 
7962 	return ret;
7963 }
7964 
7965 /**
7966  * netdev_upper_dev_link - Add a link to the upper device
7967  * @dev: device
7968  * @upper_dev: new upper device
7969  * @extack: netlink extended ack
7970  *
7971  * Adds a link to device which is upper to this one. The caller must hold
7972  * the RTNL lock. On a failure a negative errno code is returned.
7973  * On success the reference counts are adjusted and the function
7974  * returns zero.
7975  */
7976 int netdev_upper_dev_link(struct net_device *dev,
7977 			  struct net_device *upper_dev,
7978 			  struct netlink_ext_ack *extack)
7979 {
7980 	struct netdev_nested_priv priv = {
7981 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7982 		.data = NULL,
7983 	};
7984 
7985 	return __netdev_upper_dev_link(dev, upper_dev, false,
7986 				       NULL, NULL, &priv, extack);
7987 }
7988 EXPORT_SYMBOL(netdev_upper_dev_link);
7989 
7990 /**
7991  * netdev_master_upper_dev_link - Add a master link to the upper device
7992  * @dev: device
7993  * @upper_dev: new upper device
7994  * @upper_priv: upper device private
7995  * @upper_info: upper info to be passed down via notifier
7996  * @extack: netlink extended ack
7997  *
7998  * Adds a link to device which is upper to this one. In this case, only
7999  * one master upper device can be linked, although other non-master devices
8000  * might be linked as well. The caller must hold the RTNL lock.
8001  * On a failure a negative errno code is returned. On success the reference
8002  * counts are adjusted and the function returns zero.
8003  */
8004 int netdev_master_upper_dev_link(struct net_device *dev,
8005 				 struct net_device *upper_dev,
8006 				 void *upper_priv, void *upper_info,
8007 				 struct netlink_ext_ack *extack)
8008 {
8009 	struct netdev_nested_priv priv = {
8010 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8011 		.data = NULL,
8012 	};
8013 
8014 	return __netdev_upper_dev_link(dev, upper_dev, true,
8015 				       upper_priv, upper_info, &priv, extack);
8016 }
8017 EXPORT_SYMBOL(netdev_master_upper_dev_link);
8018 
8019 static void __netdev_upper_dev_unlink(struct net_device *dev,
8020 				      struct net_device *upper_dev,
8021 				      struct netdev_nested_priv *priv)
8022 {
8023 	struct netdev_notifier_changeupper_info changeupper_info = {
8024 		.info = {
8025 			.dev = dev,
8026 		},
8027 		.upper_dev = upper_dev,
8028 		.linking = false,
8029 	};
8030 
8031 	ASSERT_RTNL();
8032 
8033 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
8034 
8035 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8036 				      &changeupper_info.info);
8037 
8038 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8039 
8040 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8041 				      &changeupper_info.info);
8042 
8043 	__netdev_update_upper_level(dev, NULL);
8044 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8045 
8046 	__netdev_update_lower_level(upper_dev, priv);
8047 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8048 				    priv);
8049 }
8050 
8051 /**
8052  * netdev_upper_dev_unlink - Removes a link to upper device
8053  * @dev: device
8054  * @upper_dev: new upper device
8055  *
8056  * Removes a link to device which is upper to this one. The caller must hold
8057  * the RTNL lock.
8058  */
8059 void netdev_upper_dev_unlink(struct net_device *dev,
8060 			     struct net_device *upper_dev)
8061 {
8062 	struct netdev_nested_priv priv = {
8063 		.flags = NESTED_SYNC_TODO,
8064 		.data = NULL,
8065 	};
8066 
8067 	__netdev_upper_dev_unlink(dev, upper_dev, &priv);
8068 }
8069 EXPORT_SYMBOL(netdev_upper_dev_unlink);
8070 
8071 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
8072 				      struct net_device *lower_dev,
8073 				      bool val)
8074 {
8075 	struct netdev_adjacent *adj;
8076 
8077 	adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
8078 	if (adj)
8079 		adj->ignore = val;
8080 
8081 	adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
8082 	if (adj)
8083 		adj->ignore = val;
8084 }
8085 
8086 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
8087 					struct net_device *lower_dev)
8088 {
8089 	__netdev_adjacent_dev_set(upper_dev, lower_dev, true);
8090 }
8091 
8092 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
8093 				       struct net_device *lower_dev)
8094 {
8095 	__netdev_adjacent_dev_set(upper_dev, lower_dev, false);
8096 }
8097 
8098 int netdev_adjacent_change_prepare(struct net_device *old_dev,
8099 				   struct net_device *new_dev,
8100 				   struct net_device *dev,
8101 				   struct netlink_ext_ack *extack)
8102 {
8103 	struct netdev_nested_priv priv = {
8104 		.flags = 0,
8105 		.data = NULL,
8106 	};
8107 	int err;
8108 
8109 	if (!new_dev)
8110 		return 0;
8111 
8112 	if (old_dev && new_dev != old_dev)
8113 		netdev_adjacent_dev_disable(dev, old_dev);
8114 	err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
8115 				      extack);
8116 	if (err) {
8117 		if (old_dev && new_dev != old_dev)
8118 			netdev_adjacent_dev_enable(dev, old_dev);
8119 		return err;
8120 	}
8121 
8122 	return 0;
8123 }
8124 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
8125 
8126 void netdev_adjacent_change_commit(struct net_device *old_dev,
8127 				   struct net_device *new_dev,
8128 				   struct net_device *dev)
8129 {
8130 	struct netdev_nested_priv priv = {
8131 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8132 		.data = NULL,
8133 	};
8134 
8135 	if (!new_dev || !old_dev)
8136 		return;
8137 
8138 	if (new_dev == old_dev)
8139 		return;
8140 
8141 	netdev_adjacent_dev_enable(dev, old_dev);
8142 	__netdev_upper_dev_unlink(old_dev, dev, &priv);
8143 }
8144 EXPORT_SYMBOL(netdev_adjacent_change_commit);
8145 
8146 void netdev_adjacent_change_abort(struct net_device *old_dev,
8147 				  struct net_device *new_dev,
8148 				  struct net_device *dev)
8149 {
8150 	struct netdev_nested_priv priv = {
8151 		.flags = 0,
8152 		.data = NULL,
8153 	};
8154 
8155 	if (!new_dev)
8156 		return;
8157 
8158 	if (old_dev && new_dev != old_dev)
8159 		netdev_adjacent_dev_enable(dev, old_dev);
8160 
8161 	__netdev_upper_dev_unlink(new_dev, dev, &priv);
8162 }
8163 EXPORT_SYMBOL(netdev_adjacent_change_abort);
8164 
8165 /**
8166  * netdev_bonding_info_change - Dispatch event about slave change
8167  * @dev: device
8168  * @bonding_info: info to dispatch
8169  *
8170  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
8171  * The caller must hold the RTNL lock.
8172  */
8173 void netdev_bonding_info_change(struct net_device *dev,
8174 				struct netdev_bonding_info *bonding_info)
8175 {
8176 	struct netdev_notifier_bonding_info info = {
8177 		.info.dev = dev,
8178 	};
8179 
8180 	memcpy(&info.bonding_info, bonding_info,
8181 	       sizeof(struct netdev_bonding_info));
8182 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
8183 				      &info.info);
8184 }
8185 EXPORT_SYMBOL(netdev_bonding_info_change);
8186 
8187 static int netdev_offload_xstats_enable_l3(struct net_device *dev,
8188 					   struct netlink_ext_ack *extack)
8189 {
8190 	struct netdev_notifier_offload_xstats_info info = {
8191 		.info.dev = dev,
8192 		.info.extack = extack,
8193 		.type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
8194 	};
8195 	int err;
8196 	int rc;
8197 
8198 	dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3),
8199 					 GFP_KERNEL);
8200 	if (!dev->offload_xstats_l3)
8201 		return -ENOMEM;
8202 
8203 	rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE,
8204 						  NETDEV_OFFLOAD_XSTATS_DISABLE,
8205 						  &info.info);
8206 	err = notifier_to_errno(rc);
8207 	if (err)
8208 		goto free_stats;
8209 
8210 	return 0;
8211 
8212 free_stats:
8213 	kfree(dev->offload_xstats_l3);
8214 	dev->offload_xstats_l3 = NULL;
8215 	return err;
8216 }
8217 
8218 int netdev_offload_xstats_enable(struct net_device *dev,
8219 				 enum netdev_offload_xstats_type type,
8220 				 struct netlink_ext_ack *extack)
8221 {
8222 	ASSERT_RTNL();
8223 
8224 	if (netdev_offload_xstats_enabled(dev, type))
8225 		return -EALREADY;
8226 
8227 	switch (type) {
8228 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8229 		return netdev_offload_xstats_enable_l3(dev, extack);
8230 	}
8231 
8232 	WARN_ON(1);
8233 	return -EINVAL;
8234 }
8235 EXPORT_SYMBOL(netdev_offload_xstats_enable);
8236 
8237 static void netdev_offload_xstats_disable_l3(struct net_device *dev)
8238 {
8239 	struct netdev_notifier_offload_xstats_info info = {
8240 		.info.dev = dev,
8241 		.type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
8242 	};
8243 
8244 	call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE,
8245 				      &info.info);
8246 	kfree(dev->offload_xstats_l3);
8247 	dev->offload_xstats_l3 = NULL;
8248 }
8249 
8250 int netdev_offload_xstats_disable(struct net_device *dev,
8251 				  enum netdev_offload_xstats_type type)
8252 {
8253 	ASSERT_RTNL();
8254 
8255 	if (!netdev_offload_xstats_enabled(dev, type))
8256 		return -EALREADY;
8257 
8258 	switch (type) {
8259 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8260 		netdev_offload_xstats_disable_l3(dev);
8261 		return 0;
8262 	}
8263 
8264 	WARN_ON(1);
8265 	return -EINVAL;
8266 }
8267 EXPORT_SYMBOL(netdev_offload_xstats_disable);
8268 
8269 static void netdev_offload_xstats_disable_all(struct net_device *dev)
8270 {
8271 	netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3);
8272 }
8273 
8274 static struct rtnl_hw_stats64 *
8275 netdev_offload_xstats_get_ptr(const struct net_device *dev,
8276 			      enum netdev_offload_xstats_type type)
8277 {
8278 	switch (type) {
8279 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8280 		return dev->offload_xstats_l3;
8281 	}
8282 
8283 	WARN_ON(1);
8284 	return NULL;
8285 }
8286 
8287 bool netdev_offload_xstats_enabled(const struct net_device *dev,
8288 				   enum netdev_offload_xstats_type type)
8289 {
8290 	ASSERT_RTNL();
8291 
8292 	return netdev_offload_xstats_get_ptr(dev, type);
8293 }
8294 EXPORT_SYMBOL(netdev_offload_xstats_enabled);
8295 
8296 struct netdev_notifier_offload_xstats_ru {
8297 	bool used;
8298 };
8299 
8300 struct netdev_notifier_offload_xstats_rd {
8301 	struct rtnl_hw_stats64 stats;
8302 	bool used;
8303 };
8304 
8305 static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest,
8306 				  const struct rtnl_hw_stats64 *src)
8307 {
8308 	dest->rx_packets	  += src->rx_packets;
8309 	dest->tx_packets	  += src->tx_packets;
8310 	dest->rx_bytes		  += src->rx_bytes;
8311 	dest->tx_bytes		  += src->tx_bytes;
8312 	dest->rx_errors		  += src->rx_errors;
8313 	dest->tx_errors		  += src->tx_errors;
8314 	dest->rx_dropped	  += src->rx_dropped;
8315 	dest->tx_dropped	  += src->tx_dropped;
8316 	dest->multicast		  += src->multicast;
8317 }
8318 
8319 static int netdev_offload_xstats_get_used(struct net_device *dev,
8320 					  enum netdev_offload_xstats_type type,
8321 					  bool *p_used,
8322 					  struct netlink_ext_ack *extack)
8323 {
8324 	struct netdev_notifier_offload_xstats_ru report_used = {};
8325 	struct netdev_notifier_offload_xstats_info info = {
8326 		.info.dev = dev,
8327 		.info.extack = extack,
8328 		.type = type,
8329 		.report_used = &report_used,
8330 	};
8331 	int rc;
8332 
8333 	WARN_ON(!netdev_offload_xstats_enabled(dev, type));
8334 	rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED,
8335 					   &info.info);
8336 	*p_used = report_used.used;
8337 	return notifier_to_errno(rc);
8338 }
8339 
8340 static int netdev_offload_xstats_get_stats(struct net_device *dev,
8341 					   enum netdev_offload_xstats_type type,
8342 					   struct rtnl_hw_stats64 *p_stats,
8343 					   bool *p_used,
8344 					   struct netlink_ext_ack *extack)
8345 {
8346 	struct netdev_notifier_offload_xstats_rd report_delta = {};
8347 	struct netdev_notifier_offload_xstats_info info = {
8348 		.info.dev = dev,
8349 		.info.extack = extack,
8350 		.type = type,
8351 		.report_delta = &report_delta,
8352 	};
8353 	struct rtnl_hw_stats64 *stats;
8354 	int rc;
8355 
8356 	stats = netdev_offload_xstats_get_ptr(dev, type);
8357 	if (WARN_ON(!stats))
8358 		return -EINVAL;
8359 
8360 	rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
8361 					   &info.info);
8362 
8363 	/* Cache whatever we got, even if there was an error, otherwise the
8364 	 * successful stats retrievals would get lost.
8365 	 */
8366 	netdev_hw_stats64_add(stats, &report_delta.stats);
8367 
8368 	if (p_stats)
8369 		*p_stats = *stats;
8370 	*p_used = report_delta.used;
8371 
8372 	return notifier_to_errno(rc);
8373 }
8374 
8375 int netdev_offload_xstats_get(struct net_device *dev,
8376 			      enum netdev_offload_xstats_type type,
8377 			      struct rtnl_hw_stats64 *p_stats, bool *p_used,
8378 			      struct netlink_ext_ack *extack)
8379 {
8380 	ASSERT_RTNL();
8381 
8382 	if (p_stats)
8383 		return netdev_offload_xstats_get_stats(dev, type, p_stats,
8384 						       p_used, extack);
8385 	else
8386 		return netdev_offload_xstats_get_used(dev, type, p_used,
8387 						      extack);
8388 }
8389 EXPORT_SYMBOL(netdev_offload_xstats_get);
8390 
8391 void
8392 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta,
8393 				   const struct rtnl_hw_stats64 *stats)
8394 {
8395 	report_delta->used = true;
8396 	netdev_hw_stats64_add(&report_delta->stats, stats);
8397 }
8398 EXPORT_SYMBOL(netdev_offload_xstats_report_delta);
8399 
8400 void
8401 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used)
8402 {
8403 	report_used->used = true;
8404 }
8405 EXPORT_SYMBOL(netdev_offload_xstats_report_used);
8406 
8407 void netdev_offload_xstats_push_delta(struct net_device *dev,
8408 				      enum netdev_offload_xstats_type type,
8409 				      const struct rtnl_hw_stats64 *p_stats)
8410 {
8411 	struct rtnl_hw_stats64 *stats;
8412 
8413 	ASSERT_RTNL();
8414 
8415 	stats = netdev_offload_xstats_get_ptr(dev, type);
8416 	if (WARN_ON(!stats))
8417 		return;
8418 
8419 	netdev_hw_stats64_add(stats, p_stats);
8420 }
8421 EXPORT_SYMBOL(netdev_offload_xstats_push_delta);
8422 
8423 /**
8424  * netdev_get_xmit_slave - Get the xmit slave of master device
8425  * @dev: device
8426  * @skb: The packet
8427  * @all_slaves: assume all the slaves are active
8428  *
8429  * The reference counters are not incremented so the caller must be
8430  * careful with locks. The caller must hold RCU lock.
8431  * %NULL is returned if no slave is found.
8432  */
8433 
8434 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8435 					 struct sk_buff *skb,
8436 					 bool all_slaves)
8437 {
8438 	const struct net_device_ops *ops = dev->netdev_ops;
8439 
8440 	if (!ops->ndo_get_xmit_slave)
8441 		return NULL;
8442 	return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8443 }
8444 EXPORT_SYMBOL(netdev_get_xmit_slave);
8445 
8446 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8447 						  struct sock *sk)
8448 {
8449 	const struct net_device_ops *ops = dev->netdev_ops;
8450 
8451 	if (!ops->ndo_sk_get_lower_dev)
8452 		return NULL;
8453 	return ops->ndo_sk_get_lower_dev(dev, sk);
8454 }
8455 
8456 /**
8457  * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8458  * @dev: device
8459  * @sk: the socket
8460  *
8461  * %NULL is returned if no lower device is found.
8462  */
8463 
8464 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8465 					    struct sock *sk)
8466 {
8467 	struct net_device *lower;
8468 
8469 	lower = netdev_sk_get_lower_dev(dev, sk);
8470 	while (lower) {
8471 		dev = lower;
8472 		lower = netdev_sk_get_lower_dev(dev, sk);
8473 	}
8474 
8475 	return dev;
8476 }
8477 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8478 
8479 static void netdev_adjacent_add_links(struct net_device *dev)
8480 {
8481 	struct netdev_adjacent *iter;
8482 
8483 	struct net *net = dev_net(dev);
8484 
8485 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8486 		if (!net_eq(net, dev_net(iter->dev)))
8487 			continue;
8488 		netdev_adjacent_sysfs_add(iter->dev, dev,
8489 					  &iter->dev->adj_list.lower);
8490 		netdev_adjacent_sysfs_add(dev, iter->dev,
8491 					  &dev->adj_list.upper);
8492 	}
8493 
8494 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8495 		if (!net_eq(net, dev_net(iter->dev)))
8496 			continue;
8497 		netdev_adjacent_sysfs_add(iter->dev, dev,
8498 					  &iter->dev->adj_list.upper);
8499 		netdev_adjacent_sysfs_add(dev, iter->dev,
8500 					  &dev->adj_list.lower);
8501 	}
8502 }
8503 
8504 static void netdev_adjacent_del_links(struct net_device *dev)
8505 {
8506 	struct netdev_adjacent *iter;
8507 
8508 	struct net *net = dev_net(dev);
8509 
8510 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8511 		if (!net_eq(net, dev_net(iter->dev)))
8512 			continue;
8513 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
8514 					  &iter->dev->adj_list.lower);
8515 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
8516 					  &dev->adj_list.upper);
8517 	}
8518 
8519 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8520 		if (!net_eq(net, dev_net(iter->dev)))
8521 			continue;
8522 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
8523 					  &iter->dev->adj_list.upper);
8524 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
8525 					  &dev->adj_list.lower);
8526 	}
8527 }
8528 
8529 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8530 {
8531 	struct netdev_adjacent *iter;
8532 
8533 	struct net *net = dev_net(dev);
8534 
8535 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8536 		if (!net_eq(net, dev_net(iter->dev)))
8537 			continue;
8538 		netdev_adjacent_sysfs_del(iter->dev, oldname,
8539 					  &iter->dev->adj_list.lower);
8540 		netdev_adjacent_sysfs_add(iter->dev, dev,
8541 					  &iter->dev->adj_list.lower);
8542 	}
8543 
8544 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8545 		if (!net_eq(net, dev_net(iter->dev)))
8546 			continue;
8547 		netdev_adjacent_sysfs_del(iter->dev, oldname,
8548 					  &iter->dev->adj_list.upper);
8549 		netdev_adjacent_sysfs_add(iter->dev, dev,
8550 					  &iter->dev->adj_list.upper);
8551 	}
8552 }
8553 
8554 void *netdev_lower_dev_get_private(struct net_device *dev,
8555 				   struct net_device *lower_dev)
8556 {
8557 	struct netdev_adjacent *lower;
8558 
8559 	if (!lower_dev)
8560 		return NULL;
8561 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8562 	if (!lower)
8563 		return NULL;
8564 
8565 	return lower->private;
8566 }
8567 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8568 
8569 
8570 /**
8571  * netdev_lower_state_changed - Dispatch event about lower device state change
8572  * @lower_dev: device
8573  * @lower_state_info: state to dispatch
8574  *
8575  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8576  * The caller must hold the RTNL lock.
8577  */
8578 void netdev_lower_state_changed(struct net_device *lower_dev,
8579 				void *lower_state_info)
8580 {
8581 	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8582 		.info.dev = lower_dev,
8583 	};
8584 
8585 	ASSERT_RTNL();
8586 	changelowerstate_info.lower_state_info = lower_state_info;
8587 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8588 				      &changelowerstate_info.info);
8589 }
8590 EXPORT_SYMBOL(netdev_lower_state_changed);
8591 
8592 static void dev_change_rx_flags(struct net_device *dev, int flags)
8593 {
8594 	const struct net_device_ops *ops = dev->netdev_ops;
8595 
8596 	if (ops->ndo_change_rx_flags)
8597 		ops->ndo_change_rx_flags(dev, flags);
8598 }
8599 
8600 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8601 {
8602 	unsigned int old_flags = dev->flags;
8603 	unsigned int promiscuity, flags;
8604 	kuid_t uid;
8605 	kgid_t gid;
8606 
8607 	ASSERT_RTNL();
8608 
8609 	promiscuity = dev->promiscuity + inc;
8610 	if (promiscuity == 0) {
8611 		/*
8612 		 * Avoid overflow.
8613 		 * If inc causes overflow, untouch promisc and return error.
8614 		 */
8615 		if (unlikely(inc > 0)) {
8616 			netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
8617 			return -EOVERFLOW;
8618 		}
8619 		flags = old_flags & ~IFF_PROMISC;
8620 	} else {
8621 		flags = old_flags | IFF_PROMISC;
8622 	}
8623 	WRITE_ONCE(dev->promiscuity, promiscuity);
8624 	if (flags != old_flags) {
8625 		WRITE_ONCE(dev->flags, flags);
8626 		netdev_info(dev, "%s promiscuous mode\n",
8627 			    dev->flags & IFF_PROMISC ? "entered" : "left");
8628 		if (audit_enabled) {
8629 			current_uid_gid(&uid, &gid);
8630 			audit_log(audit_context(), GFP_ATOMIC,
8631 				  AUDIT_ANOM_PROMISCUOUS,
8632 				  "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8633 				  dev->name, (dev->flags & IFF_PROMISC),
8634 				  (old_flags & IFF_PROMISC),
8635 				  from_kuid(&init_user_ns, audit_get_loginuid(current)),
8636 				  from_kuid(&init_user_ns, uid),
8637 				  from_kgid(&init_user_ns, gid),
8638 				  audit_get_sessionid(current));
8639 		}
8640 
8641 		dev_change_rx_flags(dev, IFF_PROMISC);
8642 	}
8643 	if (notify)
8644 		__dev_notify_flags(dev, old_flags, IFF_PROMISC, 0, NULL);
8645 	return 0;
8646 }
8647 
8648 /**
8649  *	dev_set_promiscuity	- update promiscuity count on a device
8650  *	@dev: device
8651  *	@inc: modifier
8652  *
8653  *	Add or remove promiscuity from a device. While the count in the device
8654  *	remains above zero the interface remains promiscuous. Once it hits zero
8655  *	the device reverts back to normal filtering operation. A negative inc
8656  *	value is used to drop promiscuity on the device.
8657  *	Return 0 if successful or a negative errno code on error.
8658  */
8659 int dev_set_promiscuity(struct net_device *dev, int inc)
8660 {
8661 	unsigned int old_flags = dev->flags;
8662 	int err;
8663 
8664 	err = __dev_set_promiscuity(dev, inc, true);
8665 	if (err < 0)
8666 		return err;
8667 	if (dev->flags != old_flags)
8668 		dev_set_rx_mode(dev);
8669 	return err;
8670 }
8671 EXPORT_SYMBOL(dev_set_promiscuity);
8672 
8673 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8674 {
8675 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8676 	unsigned int allmulti, flags;
8677 
8678 	ASSERT_RTNL();
8679 
8680 	allmulti = dev->allmulti + inc;
8681 	if (allmulti == 0) {
8682 		/*
8683 		 * Avoid overflow.
8684 		 * If inc causes overflow, untouch allmulti and return error.
8685 		 */
8686 		if (unlikely(inc > 0)) {
8687 			netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
8688 			return -EOVERFLOW;
8689 		}
8690 		flags = old_flags & ~IFF_ALLMULTI;
8691 	} else {
8692 		flags = old_flags | IFF_ALLMULTI;
8693 	}
8694 	WRITE_ONCE(dev->allmulti, allmulti);
8695 	if (flags != old_flags) {
8696 		WRITE_ONCE(dev->flags, flags);
8697 		netdev_info(dev, "%s allmulticast mode\n",
8698 			    dev->flags & IFF_ALLMULTI ? "entered" : "left");
8699 		dev_change_rx_flags(dev, IFF_ALLMULTI);
8700 		dev_set_rx_mode(dev);
8701 		if (notify)
8702 			__dev_notify_flags(dev, old_flags,
8703 					   dev->gflags ^ old_gflags, 0, NULL);
8704 	}
8705 	return 0;
8706 }
8707 
8708 /**
8709  *	dev_set_allmulti	- update allmulti count on a device
8710  *	@dev: device
8711  *	@inc: modifier
8712  *
8713  *	Add or remove reception of all multicast frames to a device. While the
8714  *	count in the device remains above zero the interface remains listening
8715  *	to all interfaces. Once it hits zero the device reverts back to normal
8716  *	filtering operation. A negative @inc value is used to drop the counter
8717  *	when releasing a resource needing all multicasts.
8718  *	Return 0 if successful or a negative errno code on error.
8719  */
8720 
8721 int dev_set_allmulti(struct net_device *dev, int inc)
8722 {
8723 	return __dev_set_allmulti(dev, inc, true);
8724 }
8725 EXPORT_SYMBOL(dev_set_allmulti);
8726 
8727 /*
8728  *	Upload unicast and multicast address lists to device and
8729  *	configure RX filtering. When the device doesn't support unicast
8730  *	filtering it is put in promiscuous mode while unicast addresses
8731  *	are present.
8732  */
8733 void __dev_set_rx_mode(struct net_device *dev)
8734 {
8735 	const struct net_device_ops *ops = dev->netdev_ops;
8736 
8737 	/* dev_open will call this function so the list will stay sane. */
8738 	if (!(dev->flags&IFF_UP))
8739 		return;
8740 
8741 	if (!netif_device_present(dev))
8742 		return;
8743 
8744 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8745 		/* Unicast addresses changes may only happen under the rtnl,
8746 		 * therefore calling __dev_set_promiscuity here is safe.
8747 		 */
8748 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8749 			__dev_set_promiscuity(dev, 1, false);
8750 			dev->uc_promisc = true;
8751 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8752 			__dev_set_promiscuity(dev, -1, false);
8753 			dev->uc_promisc = false;
8754 		}
8755 	}
8756 
8757 	if (ops->ndo_set_rx_mode)
8758 		ops->ndo_set_rx_mode(dev);
8759 }
8760 
8761 void dev_set_rx_mode(struct net_device *dev)
8762 {
8763 	netif_addr_lock_bh(dev);
8764 	__dev_set_rx_mode(dev);
8765 	netif_addr_unlock_bh(dev);
8766 }
8767 
8768 /**
8769  *	dev_get_flags - get flags reported to userspace
8770  *	@dev: device
8771  *
8772  *	Get the combination of flag bits exported through APIs to userspace.
8773  */
8774 unsigned int dev_get_flags(const struct net_device *dev)
8775 {
8776 	unsigned int flags;
8777 
8778 	flags = (READ_ONCE(dev->flags) & ~(IFF_PROMISC |
8779 				IFF_ALLMULTI |
8780 				IFF_RUNNING |
8781 				IFF_LOWER_UP |
8782 				IFF_DORMANT)) |
8783 		(READ_ONCE(dev->gflags) & (IFF_PROMISC |
8784 				IFF_ALLMULTI));
8785 
8786 	if (netif_running(dev)) {
8787 		if (netif_oper_up(dev))
8788 			flags |= IFF_RUNNING;
8789 		if (netif_carrier_ok(dev))
8790 			flags |= IFF_LOWER_UP;
8791 		if (netif_dormant(dev))
8792 			flags |= IFF_DORMANT;
8793 	}
8794 
8795 	return flags;
8796 }
8797 EXPORT_SYMBOL(dev_get_flags);
8798 
8799 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8800 		       struct netlink_ext_ack *extack)
8801 {
8802 	unsigned int old_flags = dev->flags;
8803 	int ret;
8804 
8805 	ASSERT_RTNL();
8806 
8807 	/*
8808 	 *	Set the flags on our device.
8809 	 */
8810 
8811 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8812 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8813 			       IFF_AUTOMEDIA)) |
8814 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8815 				    IFF_ALLMULTI));
8816 
8817 	/*
8818 	 *	Load in the correct multicast list now the flags have changed.
8819 	 */
8820 
8821 	if ((old_flags ^ flags) & IFF_MULTICAST)
8822 		dev_change_rx_flags(dev, IFF_MULTICAST);
8823 
8824 	dev_set_rx_mode(dev);
8825 
8826 	/*
8827 	 *	Have we downed the interface. We handle IFF_UP ourselves
8828 	 *	according to user attempts to set it, rather than blindly
8829 	 *	setting it.
8830 	 */
8831 
8832 	ret = 0;
8833 	if ((old_flags ^ flags) & IFF_UP) {
8834 		if (old_flags & IFF_UP)
8835 			__dev_close(dev);
8836 		else
8837 			ret = __dev_open(dev, extack);
8838 	}
8839 
8840 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
8841 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
8842 		unsigned int old_flags = dev->flags;
8843 
8844 		dev->gflags ^= IFF_PROMISC;
8845 
8846 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
8847 			if (dev->flags != old_flags)
8848 				dev_set_rx_mode(dev);
8849 	}
8850 
8851 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8852 	 * is important. Some (broken) drivers set IFF_PROMISC, when
8853 	 * IFF_ALLMULTI is requested not asking us and not reporting.
8854 	 */
8855 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8856 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8857 
8858 		dev->gflags ^= IFF_ALLMULTI;
8859 		__dev_set_allmulti(dev, inc, false);
8860 	}
8861 
8862 	return ret;
8863 }
8864 
8865 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8866 			unsigned int gchanges, u32 portid,
8867 			const struct nlmsghdr *nlh)
8868 {
8869 	unsigned int changes = dev->flags ^ old_flags;
8870 
8871 	if (gchanges)
8872 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC, portid, nlh);
8873 
8874 	if (changes & IFF_UP) {
8875 		if (dev->flags & IFF_UP)
8876 			call_netdevice_notifiers(NETDEV_UP, dev);
8877 		else
8878 			call_netdevice_notifiers(NETDEV_DOWN, dev);
8879 	}
8880 
8881 	if (dev->flags & IFF_UP &&
8882 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8883 		struct netdev_notifier_change_info change_info = {
8884 			.info = {
8885 				.dev = dev,
8886 			},
8887 			.flags_changed = changes,
8888 		};
8889 
8890 		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8891 	}
8892 }
8893 
8894 /**
8895  *	dev_change_flags - change device settings
8896  *	@dev: device
8897  *	@flags: device state flags
8898  *	@extack: netlink extended ack
8899  *
8900  *	Change settings on device based state flags. The flags are
8901  *	in the userspace exported format.
8902  */
8903 int dev_change_flags(struct net_device *dev, unsigned int flags,
8904 		     struct netlink_ext_ack *extack)
8905 {
8906 	int ret;
8907 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8908 
8909 	ret = __dev_change_flags(dev, flags, extack);
8910 	if (ret < 0)
8911 		return ret;
8912 
8913 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8914 	__dev_notify_flags(dev, old_flags, changes, 0, NULL);
8915 	return ret;
8916 }
8917 EXPORT_SYMBOL(dev_change_flags);
8918 
8919 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8920 {
8921 	const struct net_device_ops *ops = dev->netdev_ops;
8922 
8923 	if (ops->ndo_change_mtu)
8924 		return ops->ndo_change_mtu(dev, new_mtu);
8925 
8926 	/* Pairs with all the lockless reads of dev->mtu in the stack */
8927 	WRITE_ONCE(dev->mtu, new_mtu);
8928 	return 0;
8929 }
8930 EXPORT_SYMBOL(__dev_set_mtu);
8931 
8932 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8933 		     struct netlink_ext_ack *extack)
8934 {
8935 	/* MTU must be positive, and in range */
8936 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8937 		NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8938 		return -EINVAL;
8939 	}
8940 
8941 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8942 		NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8943 		return -EINVAL;
8944 	}
8945 	return 0;
8946 }
8947 
8948 /**
8949  *	dev_set_mtu_ext - Change maximum transfer unit
8950  *	@dev: device
8951  *	@new_mtu: new transfer unit
8952  *	@extack: netlink extended ack
8953  *
8954  *	Change the maximum transfer size of the network device.
8955  */
8956 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8957 		    struct netlink_ext_ack *extack)
8958 {
8959 	int err, orig_mtu;
8960 
8961 	if (new_mtu == dev->mtu)
8962 		return 0;
8963 
8964 	err = dev_validate_mtu(dev, new_mtu, extack);
8965 	if (err)
8966 		return err;
8967 
8968 	if (!netif_device_present(dev))
8969 		return -ENODEV;
8970 
8971 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8972 	err = notifier_to_errno(err);
8973 	if (err)
8974 		return err;
8975 
8976 	orig_mtu = dev->mtu;
8977 	err = __dev_set_mtu(dev, new_mtu);
8978 
8979 	if (!err) {
8980 		err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8981 						   orig_mtu);
8982 		err = notifier_to_errno(err);
8983 		if (err) {
8984 			/* setting mtu back and notifying everyone again,
8985 			 * so that they have a chance to revert changes.
8986 			 */
8987 			__dev_set_mtu(dev, orig_mtu);
8988 			call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8989 						     new_mtu);
8990 		}
8991 	}
8992 	return err;
8993 }
8994 
8995 int dev_set_mtu(struct net_device *dev, int new_mtu)
8996 {
8997 	struct netlink_ext_ack extack;
8998 	int err;
8999 
9000 	memset(&extack, 0, sizeof(extack));
9001 	err = dev_set_mtu_ext(dev, new_mtu, &extack);
9002 	if (err && extack._msg)
9003 		net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
9004 	return err;
9005 }
9006 EXPORT_SYMBOL(dev_set_mtu);
9007 
9008 /**
9009  *	dev_change_tx_queue_len - Change TX queue length of a netdevice
9010  *	@dev: device
9011  *	@new_len: new tx queue length
9012  */
9013 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
9014 {
9015 	unsigned int orig_len = dev->tx_queue_len;
9016 	int res;
9017 
9018 	if (new_len != (unsigned int)new_len)
9019 		return -ERANGE;
9020 
9021 	if (new_len != orig_len) {
9022 		WRITE_ONCE(dev->tx_queue_len, new_len);
9023 		res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
9024 		res = notifier_to_errno(res);
9025 		if (res)
9026 			goto err_rollback;
9027 		res = dev_qdisc_change_tx_queue_len(dev);
9028 		if (res)
9029 			goto err_rollback;
9030 	}
9031 
9032 	return 0;
9033 
9034 err_rollback:
9035 	netdev_err(dev, "refused to change device tx_queue_len\n");
9036 	WRITE_ONCE(dev->tx_queue_len, orig_len);
9037 	return res;
9038 }
9039 
9040 /**
9041  *	dev_set_group - Change group this device belongs to
9042  *	@dev: device
9043  *	@new_group: group this device should belong to
9044  */
9045 void dev_set_group(struct net_device *dev, int new_group)
9046 {
9047 	dev->group = new_group;
9048 }
9049 
9050 /**
9051  *	dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
9052  *	@dev: device
9053  *	@addr: new address
9054  *	@extack: netlink extended ack
9055  */
9056 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
9057 			      struct netlink_ext_ack *extack)
9058 {
9059 	struct netdev_notifier_pre_changeaddr_info info = {
9060 		.info.dev = dev,
9061 		.info.extack = extack,
9062 		.dev_addr = addr,
9063 	};
9064 	int rc;
9065 
9066 	rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
9067 	return notifier_to_errno(rc);
9068 }
9069 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
9070 
9071 /**
9072  *	dev_set_mac_address - Change Media Access Control Address
9073  *	@dev: device
9074  *	@sa: new address
9075  *	@extack: netlink extended ack
9076  *
9077  *	Change the hardware (MAC) address of the device
9078  */
9079 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
9080 			struct netlink_ext_ack *extack)
9081 {
9082 	const struct net_device_ops *ops = dev->netdev_ops;
9083 	int err;
9084 
9085 	if (!ops->ndo_set_mac_address)
9086 		return -EOPNOTSUPP;
9087 	if (sa->sa_family != dev->type)
9088 		return -EINVAL;
9089 	if (!netif_device_present(dev))
9090 		return -ENODEV;
9091 	err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
9092 	if (err)
9093 		return err;
9094 	if (memcmp(dev->dev_addr, sa->sa_data, dev->addr_len)) {
9095 		err = ops->ndo_set_mac_address(dev, sa);
9096 		if (err)
9097 			return err;
9098 	}
9099 	dev->addr_assign_type = NET_ADDR_SET;
9100 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
9101 	add_device_randomness(dev->dev_addr, dev->addr_len);
9102 	return 0;
9103 }
9104 EXPORT_SYMBOL(dev_set_mac_address);
9105 
9106 DECLARE_RWSEM(dev_addr_sem);
9107 
9108 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
9109 			     struct netlink_ext_ack *extack)
9110 {
9111 	int ret;
9112 
9113 	down_write(&dev_addr_sem);
9114 	ret = dev_set_mac_address(dev, sa, extack);
9115 	up_write(&dev_addr_sem);
9116 	return ret;
9117 }
9118 EXPORT_SYMBOL(dev_set_mac_address_user);
9119 
9120 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
9121 {
9122 	size_t size = sizeof(sa->sa_data_min);
9123 	struct net_device *dev;
9124 	int ret = 0;
9125 
9126 	down_read(&dev_addr_sem);
9127 	rcu_read_lock();
9128 
9129 	dev = dev_get_by_name_rcu(net, dev_name);
9130 	if (!dev) {
9131 		ret = -ENODEV;
9132 		goto unlock;
9133 	}
9134 	if (!dev->addr_len)
9135 		memset(sa->sa_data, 0, size);
9136 	else
9137 		memcpy(sa->sa_data, dev->dev_addr,
9138 		       min_t(size_t, size, dev->addr_len));
9139 	sa->sa_family = dev->type;
9140 
9141 unlock:
9142 	rcu_read_unlock();
9143 	up_read(&dev_addr_sem);
9144 	return ret;
9145 }
9146 EXPORT_SYMBOL(dev_get_mac_address);
9147 
9148 /**
9149  *	dev_change_carrier - Change device carrier
9150  *	@dev: device
9151  *	@new_carrier: new value
9152  *
9153  *	Change device carrier
9154  */
9155 int dev_change_carrier(struct net_device *dev, bool new_carrier)
9156 {
9157 	const struct net_device_ops *ops = dev->netdev_ops;
9158 
9159 	if (!ops->ndo_change_carrier)
9160 		return -EOPNOTSUPP;
9161 	if (!netif_device_present(dev))
9162 		return -ENODEV;
9163 	return ops->ndo_change_carrier(dev, new_carrier);
9164 }
9165 
9166 /**
9167  *	dev_get_phys_port_id - Get device physical port ID
9168  *	@dev: device
9169  *	@ppid: port ID
9170  *
9171  *	Get device physical port ID
9172  */
9173 int dev_get_phys_port_id(struct net_device *dev,
9174 			 struct netdev_phys_item_id *ppid)
9175 {
9176 	const struct net_device_ops *ops = dev->netdev_ops;
9177 
9178 	if (!ops->ndo_get_phys_port_id)
9179 		return -EOPNOTSUPP;
9180 	return ops->ndo_get_phys_port_id(dev, ppid);
9181 }
9182 
9183 /**
9184  *	dev_get_phys_port_name - Get device physical port name
9185  *	@dev: device
9186  *	@name: port name
9187  *	@len: limit of bytes to copy to name
9188  *
9189  *	Get device physical port name
9190  */
9191 int dev_get_phys_port_name(struct net_device *dev,
9192 			   char *name, size_t len)
9193 {
9194 	const struct net_device_ops *ops = dev->netdev_ops;
9195 	int err;
9196 
9197 	if (ops->ndo_get_phys_port_name) {
9198 		err = ops->ndo_get_phys_port_name(dev, name, len);
9199 		if (err != -EOPNOTSUPP)
9200 			return err;
9201 	}
9202 	return devlink_compat_phys_port_name_get(dev, name, len);
9203 }
9204 
9205 /**
9206  *	dev_get_port_parent_id - Get the device's port parent identifier
9207  *	@dev: network device
9208  *	@ppid: pointer to a storage for the port's parent identifier
9209  *	@recurse: allow/disallow recursion to lower devices
9210  *
9211  *	Get the devices's port parent identifier
9212  */
9213 int dev_get_port_parent_id(struct net_device *dev,
9214 			   struct netdev_phys_item_id *ppid,
9215 			   bool recurse)
9216 {
9217 	const struct net_device_ops *ops = dev->netdev_ops;
9218 	struct netdev_phys_item_id first = { };
9219 	struct net_device *lower_dev;
9220 	struct list_head *iter;
9221 	int err;
9222 
9223 	if (ops->ndo_get_port_parent_id) {
9224 		err = ops->ndo_get_port_parent_id(dev, ppid);
9225 		if (err != -EOPNOTSUPP)
9226 			return err;
9227 	}
9228 
9229 	err = devlink_compat_switch_id_get(dev, ppid);
9230 	if (!recurse || err != -EOPNOTSUPP)
9231 		return err;
9232 
9233 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
9234 		err = dev_get_port_parent_id(lower_dev, ppid, true);
9235 		if (err)
9236 			break;
9237 		if (!first.id_len)
9238 			first = *ppid;
9239 		else if (memcmp(&first, ppid, sizeof(*ppid)))
9240 			return -EOPNOTSUPP;
9241 	}
9242 
9243 	return err;
9244 }
9245 EXPORT_SYMBOL(dev_get_port_parent_id);
9246 
9247 /**
9248  *	netdev_port_same_parent_id - Indicate if two network devices have
9249  *	the same port parent identifier
9250  *	@a: first network device
9251  *	@b: second network device
9252  */
9253 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
9254 {
9255 	struct netdev_phys_item_id a_id = { };
9256 	struct netdev_phys_item_id b_id = { };
9257 
9258 	if (dev_get_port_parent_id(a, &a_id, true) ||
9259 	    dev_get_port_parent_id(b, &b_id, true))
9260 		return false;
9261 
9262 	return netdev_phys_item_id_same(&a_id, &b_id);
9263 }
9264 EXPORT_SYMBOL(netdev_port_same_parent_id);
9265 
9266 /**
9267  *	dev_change_proto_down - set carrier according to proto_down.
9268  *
9269  *	@dev: device
9270  *	@proto_down: new value
9271  */
9272 int dev_change_proto_down(struct net_device *dev, bool proto_down)
9273 {
9274 	if (!dev->change_proto_down)
9275 		return -EOPNOTSUPP;
9276 	if (!netif_device_present(dev))
9277 		return -ENODEV;
9278 	if (proto_down)
9279 		netif_carrier_off(dev);
9280 	else
9281 		netif_carrier_on(dev);
9282 	WRITE_ONCE(dev->proto_down, proto_down);
9283 	return 0;
9284 }
9285 
9286 /**
9287  *	dev_change_proto_down_reason - proto down reason
9288  *
9289  *	@dev: device
9290  *	@mask: proto down mask
9291  *	@value: proto down value
9292  */
9293 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
9294 				  u32 value)
9295 {
9296 	u32 proto_down_reason;
9297 	int b;
9298 
9299 	if (!mask) {
9300 		proto_down_reason = value;
9301 	} else {
9302 		proto_down_reason = dev->proto_down_reason;
9303 		for_each_set_bit(b, &mask, 32) {
9304 			if (value & (1 << b))
9305 				proto_down_reason |= BIT(b);
9306 			else
9307 				proto_down_reason &= ~BIT(b);
9308 		}
9309 	}
9310 	WRITE_ONCE(dev->proto_down_reason, proto_down_reason);
9311 }
9312 
9313 struct bpf_xdp_link {
9314 	struct bpf_link link;
9315 	struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9316 	int flags;
9317 };
9318 
9319 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9320 {
9321 	if (flags & XDP_FLAGS_HW_MODE)
9322 		return XDP_MODE_HW;
9323 	if (flags & XDP_FLAGS_DRV_MODE)
9324 		return XDP_MODE_DRV;
9325 	if (flags & XDP_FLAGS_SKB_MODE)
9326 		return XDP_MODE_SKB;
9327 	return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9328 }
9329 
9330 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9331 {
9332 	switch (mode) {
9333 	case XDP_MODE_SKB:
9334 		return generic_xdp_install;
9335 	case XDP_MODE_DRV:
9336 	case XDP_MODE_HW:
9337 		return dev->netdev_ops->ndo_bpf;
9338 	default:
9339 		return NULL;
9340 	}
9341 }
9342 
9343 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9344 					 enum bpf_xdp_mode mode)
9345 {
9346 	return dev->xdp_state[mode].link;
9347 }
9348 
9349 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9350 				     enum bpf_xdp_mode mode)
9351 {
9352 	struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9353 
9354 	if (link)
9355 		return link->link.prog;
9356 	return dev->xdp_state[mode].prog;
9357 }
9358 
9359 u8 dev_xdp_prog_count(struct net_device *dev)
9360 {
9361 	u8 count = 0;
9362 	int i;
9363 
9364 	for (i = 0; i < __MAX_XDP_MODE; i++)
9365 		if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9366 			count++;
9367 	return count;
9368 }
9369 EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
9370 
9371 int dev_xdp_propagate(struct net_device *dev, struct netdev_bpf *bpf)
9372 {
9373 	if (!dev->netdev_ops->ndo_bpf)
9374 		return -EOPNOTSUPP;
9375 
9376 	if (dev_get_min_mp_channel_count(dev)) {
9377 		NL_SET_ERR_MSG(bpf->extack, "unable to propagate XDP to device using memory provider");
9378 		return -EBUSY;
9379 	}
9380 
9381 	return dev->netdev_ops->ndo_bpf(dev, bpf);
9382 }
9383 EXPORT_SYMBOL_GPL(dev_xdp_propagate);
9384 
9385 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9386 {
9387 	struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9388 
9389 	return prog ? prog->aux->id : 0;
9390 }
9391 
9392 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9393 			     struct bpf_xdp_link *link)
9394 {
9395 	dev->xdp_state[mode].link = link;
9396 	dev->xdp_state[mode].prog = NULL;
9397 }
9398 
9399 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9400 			     struct bpf_prog *prog)
9401 {
9402 	dev->xdp_state[mode].link = NULL;
9403 	dev->xdp_state[mode].prog = prog;
9404 }
9405 
9406 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9407 			   bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9408 			   u32 flags, struct bpf_prog *prog)
9409 {
9410 	struct netdev_bpf xdp;
9411 	int err;
9412 
9413 	if (dev_get_min_mp_channel_count(dev)) {
9414 		NL_SET_ERR_MSG(extack, "unable to install XDP to device using memory provider");
9415 		return -EBUSY;
9416 	}
9417 
9418 	memset(&xdp, 0, sizeof(xdp));
9419 	xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9420 	xdp.extack = extack;
9421 	xdp.flags = flags;
9422 	xdp.prog = prog;
9423 
9424 	/* Drivers assume refcnt is already incremented (i.e, prog pointer is
9425 	 * "moved" into driver), so they don't increment it on their own, but
9426 	 * they do decrement refcnt when program is detached or replaced.
9427 	 * Given net_device also owns link/prog, we need to bump refcnt here
9428 	 * to prevent drivers from underflowing it.
9429 	 */
9430 	if (prog)
9431 		bpf_prog_inc(prog);
9432 	err = bpf_op(dev, &xdp);
9433 	if (err) {
9434 		if (prog)
9435 			bpf_prog_put(prog);
9436 		return err;
9437 	}
9438 
9439 	if (mode != XDP_MODE_HW)
9440 		bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9441 
9442 	return 0;
9443 }
9444 
9445 static void dev_xdp_uninstall(struct net_device *dev)
9446 {
9447 	struct bpf_xdp_link *link;
9448 	struct bpf_prog *prog;
9449 	enum bpf_xdp_mode mode;
9450 	bpf_op_t bpf_op;
9451 
9452 	ASSERT_RTNL();
9453 
9454 	for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9455 		prog = dev_xdp_prog(dev, mode);
9456 		if (!prog)
9457 			continue;
9458 
9459 		bpf_op = dev_xdp_bpf_op(dev, mode);
9460 		if (!bpf_op)
9461 			continue;
9462 
9463 		WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9464 
9465 		/* auto-detach link from net device */
9466 		link = dev_xdp_link(dev, mode);
9467 		if (link)
9468 			link->dev = NULL;
9469 		else
9470 			bpf_prog_put(prog);
9471 
9472 		dev_xdp_set_link(dev, mode, NULL);
9473 	}
9474 }
9475 
9476 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9477 			  struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9478 			  struct bpf_prog *old_prog, u32 flags)
9479 {
9480 	unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9481 	struct bpf_prog *cur_prog;
9482 	struct net_device *upper;
9483 	struct list_head *iter;
9484 	enum bpf_xdp_mode mode;
9485 	bpf_op_t bpf_op;
9486 	int err;
9487 
9488 	ASSERT_RTNL();
9489 
9490 	/* either link or prog attachment, never both */
9491 	if (link && (new_prog || old_prog))
9492 		return -EINVAL;
9493 	/* link supports only XDP mode flags */
9494 	if (link && (flags & ~XDP_FLAGS_MODES)) {
9495 		NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9496 		return -EINVAL;
9497 	}
9498 	/* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9499 	if (num_modes > 1) {
9500 		NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9501 		return -EINVAL;
9502 	}
9503 	/* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9504 	if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9505 		NL_SET_ERR_MSG(extack,
9506 			       "More than one program loaded, unset mode is ambiguous");
9507 		return -EINVAL;
9508 	}
9509 	/* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9510 	if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9511 		NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9512 		return -EINVAL;
9513 	}
9514 
9515 	mode = dev_xdp_mode(dev, flags);
9516 	/* can't replace attached link */
9517 	if (dev_xdp_link(dev, mode)) {
9518 		NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9519 		return -EBUSY;
9520 	}
9521 
9522 	/* don't allow if an upper device already has a program */
9523 	netdev_for_each_upper_dev_rcu(dev, upper, iter) {
9524 		if (dev_xdp_prog_count(upper) > 0) {
9525 			NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
9526 			return -EEXIST;
9527 		}
9528 	}
9529 
9530 	cur_prog = dev_xdp_prog(dev, mode);
9531 	/* can't replace attached prog with link */
9532 	if (link && cur_prog) {
9533 		NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9534 		return -EBUSY;
9535 	}
9536 	if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9537 		NL_SET_ERR_MSG(extack, "Active program does not match expected");
9538 		return -EEXIST;
9539 	}
9540 
9541 	/* put effective new program into new_prog */
9542 	if (link)
9543 		new_prog = link->link.prog;
9544 
9545 	if (new_prog) {
9546 		bool offload = mode == XDP_MODE_HW;
9547 		enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9548 					       ? XDP_MODE_DRV : XDP_MODE_SKB;
9549 
9550 		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9551 			NL_SET_ERR_MSG(extack, "XDP program already attached");
9552 			return -EBUSY;
9553 		}
9554 		if (!offload && dev_xdp_prog(dev, other_mode)) {
9555 			NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9556 			return -EEXIST;
9557 		}
9558 		if (!offload && bpf_prog_is_offloaded(new_prog->aux)) {
9559 			NL_SET_ERR_MSG(extack, "Using offloaded program without HW_MODE flag is not supported");
9560 			return -EINVAL;
9561 		}
9562 		if (bpf_prog_is_dev_bound(new_prog->aux) && !bpf_offload_dev_match(new_prog, dev)) {
9563 			NL_SET_ERR_MSG(extack, "Program bound to different device");
9564 			return -EINVAL;
9565 		}
9566 		if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9567 			NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9568 			return -EINVAL;
9569 		}
9570 		if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9571 			NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9572 			return -EINVAL;
9573 		}
9574 	}
9575 
9576 	/* don't call drivers if the effective program didn't change */
9577 	if (new_prog != cur_prog) {
9578 		bpf_op = dev_xdp_bpf_op(dev, mode);
9579 		if (!bpf_op) {
9580 			NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9581 			return -EOPNOTSUPP;
9582 		}
9583 
9584 		err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9585 		if (err)
9586 			return err;
9587 	}
9588 
9589 	if (link)
9590 		dev_xdp_set_link(dev, mode, link);
9591 	else
9592 		dev_xdp_set_prog(dev, mode, new_prog);
9593 	if (cur_prog)
9594 		bpf_prog_put(cur_prog);
9595 
9596 	return 0;
9597 }
9598 
9599 static int dev_xdp_attach_link(struct net_device *dev,
9600 			       struct netlink_ext_ack *extack,
9601 			       struct bpf_xdp_link *link)
9602 {
9603 	return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9604 }
9605 
9606 static int dev_xdp_detach_link(struct net_device *dev,
9607 			       struct netlink_ext_ack *extack,
9608 			       struct bpf_xdp_link *link)
9609 {
9610 	enum bpf_xdp_mode mode;
9611 	bpf_op_t bpf_op;
9612 
9613 	ASSERT_RTNL();
9614 
9615 	mode = dev_xdp_mode(dev, link->flags);
9616 	if (dev_xdp_link(dev, mode) != link)
9617 		return -EINVAL;
9618 
9619 	bpf_op = dev_xdp_bpf_op(dev, mode);
9620 	WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9621 	dev_xdp_set_link(dev, mode, NULL);
9622 	return 0;
9623 }
9624 
9625 static void bpf_xdp_link_release(struct bpf_link *link)
9626 {
9627 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9628 
9629 	rtnl_lock();
9630 
9631 	/* if racing with net_device's tear down, xdp_link->dev might be
9632 	 * already NULL, in which case link was already auto-detached
9633 	 */
9634 	if (xdp_link->dev) {
9635 		WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9636 		xdp_link->dev = NULL;
9637 	}
9638 
9639 	rtnl_unlock();
9640 }
9641 
9642 static int bpf_xdp_link_detach(struct bpf_link *link)
9643 {
9644 	bpf_xdp_link_release(link);
9645 	return 0;
9646 }
9647 
9648 static void bpf_xdp_link_dealloc(struct bpf_link *link)
9649 {
9650 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9651 
9652 	kfree(xdp_link);
9653 }
9654 
9655 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9656 				     struct seq_file *seq)
9657 {
9658 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9659 	u32 ifindex = 0;
9660 
9661 	rtnl_lock();
9662 	if (xdp_link->dev)
9663 		ifindex = xdp_link->dev->ifindex;
9664 	rtnl_unlock();
9665 
9666 	seq_printf(seq, "ifindex:\t%u\n", ifindex);
9667 }
9668 
9669 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9670 				       struct bpf_link_info *info)
9671 {
9672 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9673 	u32 ifindex = 0;
9674 
9675 	rtnl_lock();
9676 	if (xdp_link->dev)
9677 		ifindex = xdp_link->dev->ifindex;
9678 	rtnl_unlock();
9679 
9680 	info->xdp.ifindex = ifindex;
9681 	return 0;
9682 }
9683 
9684 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9685 			       struct bpf_prog *old_prog)
9686 {
9687 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9688 	enum bpf_xdp_mode mode;
9689 	bpf_op_t bpf_op;
9690 	int err = 0;
9691 
9692 	rtnl_lock();
9693 
9694 	/* link might have been auto-released already, so fail */
9695 	if (!xdp_link->dev) {
9696 		err = -ENOLINK;
9697 		goto out_unlock;
9698 	}
9699 
9700 	if (old_prog && link->prog != old_prog) {
9701 		err = -EPERM;
9702 		goto out_unlock;
9703 	}
9704 	old_prog = link->prog;
9705 	if (old_prog->type != new_prog->type ||
9706 	    old_prog->expected_attach_type != new_prog->expected_attach_type) {
9707 		err = -EINVAL;
9708 		goto out_unlock;
9709 	}
9710 
9711 	if (old_prog == new_prog) {
9712 		/* no-op, don't disturb drivers */
9713 		bpf_prog_put(new_prog);
9714 		goto out_unlock;
9715 	}
9716 
9717 	mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9718 	bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9719 	err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9720 			      xdp_link->flags, new_prog);
9721 	if (err)
9722 		goto out_unlock;
9723 
9724 	old_prog = xchg(&link->prog, new_prog);
9725 	bpf_prog_put(old_prog);
9726 
9727 out_unlock:
9728 	rtnl_unlock();
9729 	return err;
9730 }
9731 
9732 static const struct bpf_link_ops bpf_xdp_link_lops = {
9733 	.release = bpf_xdp_link_release,
9734 	.dealloc = bpf_xdp_link_dealloc,
9735 	.detach = bpf_xdp_link_detach,
9736 	.show_fdinfo = bpf_xdp_link_show_fdinfo,
9737 	.fill_link_info = bpf_xdp_link_fill_link_info,
9738 	.update_prog = bpf_xdp_link_update,
9739 };
9740 
9741 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9742 {
9743 	struct net *net = current->nsproxy->net_ns;
9744 	struct bpf_link_primer link_primer;
9745 	struct netlink_ext_ack extack = {};
9746 	struct bpf_xdp_link *link;
9747 	struct net_device *dev;
9748 	int err, fd;
9749 
9750 	rtnl_lock();
9751 	dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9752 	if (!dev) {
9753 		rtnl_unlock();
9754 		return -EINVAL;
9755 	}
9756 
9757 	link = kzalloc(sizeof(*link), GFP_USER);
9758 	if (!link) {
9759 		err = -ENOMEM;
9760 		goto unlock;
9761 	}
9762 
9763 	bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9764 	link->dev = dev;
9765 	link->flags = attr->link_create.flags;
9766 
9767 	err = bpf_link_prime(&link->link, &link_primer);
9768 	if (err) {
9769 		kfree(link);
9770 		goto unlock;
9771 	}
9772 
9773 	err = dev_xdp_attach_link(dev, &extack, link);
9774 	rtnl_unlock();
9775 
9776 	if (err) {
9777 		link->dev = NULL;
9778 		bpf_link_cleanup(&link_primer);
9779 		trace_bpf_xdp_link_attach_failed(extack._msg);
9780 		goto out_put_dev;
9781 	}
9782 
9783 	fd = bpf_link_settle(&link_primer);
9784 	/* link itself doesn't hold dev's refcnt to not complicate shutdown */
9785 	dev_put(dev);
9786 	return fd;
9787 
9788 unlock:
9789 	rtnl_unlock();
9790 
9791 out_put_dev:
9792 	dev_put(dev);
9793 	return err;
9794 }
9795 
9796 /**
9797  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
9798  *	@dev: device
9799  *	@extack: netlink extended ack
9800  *	@fd: new program fd or negative value to clear
9801  *	@expected_fd: old program fd that userspace expects to replace or clear
9802  *	@flags: xdp-related flags
9803  *
9804  *	Set or clear a bpf program for a device
9805  */
9806 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9807 		      int fd, int expected_fd, u32 flags)
9808 {
9809 	enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9810 	struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9811 	int err;
9812 
9813 	ASSERT_RTNL();
9814 
9815 	if (fd >= 0) {
9816 		new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9817 						 mode != XDP_MODE_SKB);
9818 		if (IS_ERR(new_prog))
9819 			return PTR_ERR(new_prog);
9820 	}
9821 
9822 	if (expected_fd >= 0) {
9823 		old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9824 						 mode != XDP_MODE_SKB);
9825 		if (IS_ERR(old_prog)) {
9826 			err = PTR_ERR(old_prog);
9827 			old_prog = NULL;
9828 			goto err_out;
9829 		}
9830 	}
9831 
9832 	err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9833 
9834 err_out:
9835 	if (err && new_prog)
9836 		bpf_prog_put(new_prog);
9837 	if (old_prog)
9838 		bpf_prog_put(old_prog);
9839 	return err;
9840 }
9841 
9842 u32 dev_get_min_mp_channel_count(const struct net_device *dev)
9843 {
9844 	int i;
9845 
9846 	ASSERT_RTNL();
9847 
9848 	for (i = dev->real_num_rx_queues - 1; i >= 0; i--)
9849 		if (dev->_rx[i].mp_params.mp_priv)
9850 			/* The channel count is the idx plus 1. */
9851 			return i + 1;
9852 
9853 	return 0;
9854 }
9855 
9856 /**
9857  * dev_index_reserve() - allocate an ifindex in a namespace
9858  * @net: the applicable net namespace
9859  * @ifindex: requested ifindex, pass %0 to get one allocated
9860  *
9861  * Allocate a ifindex for a new device. Caller must either use the ifindex
9862  * to store the device (via list_netdevice()) or call dev_index_release()
9863  * to give the index up.
9864  *
9865  * Return: a suitable unique value for a new device interface number or -errno.
9866  */
9867 static int dev_index_reserve(struct net *net, u32 ifindex)
9868 {
9869 	int err;
9870 
9871 	if (ifindex > INT_MAX) {
9872 		DEBUG_NET_WARN_ON_ONCE(1);
9873 		return -EINVAL;
9874 	}
9875 
9876 	if (!ifindex)
9877 		err = xa_alloc_cyclic(&net->dev_by_index, &ifindex, NULL,
9878 				      xa_limit_31b, &net->ifindex, GFP_KERNEL);
9879 	else
9880 		err = xa_insert(&net->dev_by_index, ifindex, NULL, GFP_KERNEL);
9881 	if (err < 0)
9882 		return err;
9883 
9884 	return ifindex;
9885 }
9886 
9887 static void dev_index_release(struct net *net, int ifindex)
9888 {
9889 	/* Expect only unused indexes, unlist_netdevice() removes the used */
9890 	WARN_ON(xa_erase(&net->dev_by_index, ifindex));
9891 }
9892 
9893 /* Delayed registration/unregisteration */
9894 LIST_HEAD(net_todo_list);
9895 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9896 atomic_t dev_unreg_count = ATOMIC_INIT(0);
9897 
9898 static void net_set_todo(struct net_device *dev)
9899 {
9900 	list_add_tail(&dev->todo_list, &net_todo_list);
9901 }
9902 
9903 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9904 	struct net_device *upper, netdev_features_t features)
9905 {
9906 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9907 	netdev_features_t feature;
9908 	int feature_bit;
9909 
9910 	for_each_netdev_feature(upper_disables, feature_bit) {
9911 		feature = __NETIF_F_BIT(feature_bit);
9912 		if (!(upper->wanted_features & feature)
9913 		    && (features & feature)) {
9914 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9915 				   &feature, upper->name);
9916 			features &= ~feature;
9917 		}
9918 	}
9919 
9920 	return features;
9921 }
9922 
9923 static void netdev_sync_lower_features(struct net_device *upper,
9924 	struct net_device *lower, netdev_features_t features)
9925 {
9926 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9927 	netdev_features_t feature;
9928 	int feature_bit;
9929 
9930 	for_each_netdev_feature(upper_disables, feature_bit) {
9931 		feature = __NETIF_F_BIT(feature_bit);
9932 		if (!(features & feature) && (lower->features & feature)) {
9933 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9934 				   &feature, lower->name);
9935 			lower->wanted_features &= ~feature;
9936 			__netdev_update_features(lower);
9937 
9938 			if (unlikely(lower->features & feature))
9939 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9940 					    &feature, lower->name);
9941 			else
9942 				netdev_features_change(lower);
9943 		}
9944 	}
9945 }
9946 
9947 static bool netdev_has_ip_or_hw_csum(netdev_features_t features)
9948 {
9949 	netdev_features_t ip_csum_mask = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
9950 	bool ip_csum = (features & ip_csum_mask) == ip_csum_mask;
9951 	bool hw_csum = features & NETIF_F_HW_CSUM;
9952 
9953 	return ip_csum || hw_csum;
9954 }
9955 
9956 static netdev_features_t netdev_fix_features(struct net_device *dev,
9957 	netdev_features_t features)
9958 {
9959 	/* Fix illegal checksum combinations */
9960 	if ((features & NETIF_F_HW_CSUM) &&
9961 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9962 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9963 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9964 	}
9965 
9966 	/* TSO requires that SG is present as well. */
9967 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9968 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9969 		features &= ~NETIF_F_ALL_TSO;
9970 	}
9971 
9972 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9973 					!(features & NETIF_F_IP_CSUM)) {
9974 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9975 		features &= ~NETIF_F_TSO;
9976 		features &= ~NETIF_F_TSO_ECN;
9977 	}
9978 
9979 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9980 					 !(features & NETIF_F_IPV6_CSUM)) {
9981 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9982 		features &= ~NETIF_F_TSO6;
9983 	}
9984 
9985 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9986 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9987 		features &= ~NETIF_F_TSO_MANGLEID;
9988 
9989 	/* TSO ECN requires that TSO is present as well. */
9990 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9991 		features &= ~NETIF_F_TSO_ECN;
9992 
9993 	/* Software GSO depends on SG. */
9994 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9995 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9996 		features &= ~NETIF_F_GSO;
9997 	}
9998 
9999 	/* GSO partial features require GSO partial be set */
10000 	if ((features & dev->gso_partial_features) &&
10001 	    !(features & NETIF_F_GSO_PARTIAL)) {
10002 		netdev_dbg(dev,
10003 			   "Dropping partially supported GSO features since no GSO partial.\n");
10004 		features &= ~dev->gso_partial_features;
10005 	}
10006 
10007 	if (!(features & NETIF_F_RXCSUM)) {
10008 		/* NETIF_F_GRO_HW implies doing RXCSUM since every packet
10009 		 * successfully merged by hardware must also have the
10010 		 * checksum verified by hardware.  If the user does not
10011 		 * want to enable RXCSUM, logically, we should disable GRO_HW.
10012 		 */
10013 		if (features & NETIF_F_GRO_HW) {
10014 			netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
10015 			features &= ~NETIF_F_GRO_HW;
10016 		}
10017 	}
10018 
10019 	/* LRO/HW-GRO features cannot be combined with RX-FCS */
10020 	if (features & NETIF_F_RXFCS) {
10021 		if (features & NETIF_F_LRO) {
10022 			netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
10023 			features &= ~NETIF_F_LRO;
10024 		}
10025 
10026 		if (features & NETIF_F_GRO_HW) {
10027 			netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
10028 			features &= ~NETIF_F_GRO_HW;
10029 		}
10030 	}
10031 
10032 	if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
10033 		netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
10034 		features &= ~NETIF_F_LRO;
10035 	}
10036 
10037 	if ((features & NETIF_F_HW_TLS_TX) && !netdev_has_ip_or_hw_csum(features)) {
10038 		netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
10039 		features &= ~NETIF_F_HW_TLS_TX;
10040 	}
10041 
10042 	if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
10043 		netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
10044 		features &= ~NETIF_F_HW_TLS_RX;
10045 	}
10046 
10047 	if ((features & NETIF_F_GSO_UDP_L4) && !netdev_has_ip_or_hw_csum(features)) {
10048 		netdev_dbg(dev, "Dropping USO feature since no CSUM feature.\n");
10049 		features &= ~NETIF_F_GSO_UDP_L4;
10050 	}
10051 
10052 	return features;
10053 }
10054 
10055 int __netdev_update_features(struct net_device *dev)
10056 {
10057 	struct net_device *upper, *lower;
10058 	netdev_features_t features;
10059 	struct list_head *iter;
10060 	int err = -1;
10061 
10062 	ASSERT_RTNL();
10063 
10064 	features = netdev_get_wanted_features(dev);
10065 
10066 	if (dev->netdev_ops->ndo_fix_features)
10067 		features = dev->netdev_ops->ndo_fix_features(dev, features);
10068 
10069 	/* driver might be less strict about feature dependencies */
10070 	features = netdev_fix_features(dev, features);
10071 
10072 	/* some features can't be enabled if they're off on an upper device */
10073 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
10074 		features = netdev_sync_upper_features(dev, upper, features);
10075 
10076 	if (dev->features == features)
10077 		goto sync_lower;
10078 
10079 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
10080 		&dev->features, &features);
10081 
10082 	if (dev->netdev_ops->ndo_set_features)
10083 		err = dev->netdev_ops->ndo_set_features(dev, features);
10084 	else
10085 		err = 0;
10086 
10087 	if (unlikely(err < 0)) {
10088 		netdev_err(dev,
10089 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
10090 			err, &features, &dev->features);
10091 		/* return non-0 since some features might have changed and
10092 		 * it's better to fire a spurious notification than miss it
10093 		 */
10094 		return -1;
10095 	}
10096 
10097 sync_lower:
10098 	/* some features must be disabled on lower devices when disabled
10099 	 * on an upper device (think: bonding master or bridge)
10100 	 */
10101 	netdev_for_each_lower_dev(dev, lower, iter)
10102 		netdev_sync_lower_features(dev, lower, features);
10103 
10104 	if (!err) {
10105 		netdev_features_t diff = features ^ dev->features;
10106 
10107 		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
10108 			/* udp_tunnel_{get,drop}_rx_info both need
10109 			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
10110 			 * device, or they won't do anything.
10111 			 * Thus we need to update dev->features
10112 			 * *before* calling udp_tunnel_get_rx_info,
10113 			 * but *after* calling udp_tunnel_drop_rx_info.
10114 			 */
10115 			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
10116 				dev->features = features;
10117 				udp_tunnel_get_rx_info(dev);
10118 			} else {
10119 				udp_tunnel_drop_rx_info(dev);
10120 			}
10121 		}
10122 
10123 		if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
10124 			if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
10125 				dev->features = features;
10126 				err |= vlan_get_rx_ctag_filter_info(dev);
10127 			} else {
10128 				vlan_drop_rx_ctag_filter_info(dev);
10129 			}
10130 		}
10131 
10132 		if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
10133 			if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
10134 				dev->features = features;
10135 				err |= vlan_get_rx_stag_filter_info(dev);
10136 			} else {
10137 				vlan_drop_rx_stag_filter_info(dev);
10138 			}
10139 		}
10140 
10141 		dev->features = features;
10142 	}
10143 
10144 	return err < 0 ? 0 : 1;
10145 }
10146 
10147 /**
10148  *	netdev_update_features - recalculate device features
10149  *	@dev: the device to check
10150  *
10151  *	Recalculate dev->features set and send notifications if it
10152  *	has changed. Should be called after driver or hardware dependent
10153  *	conditions might have changed that influence the features.
10154  */
10155 void netdev_update_features(struct net_device *dev)
10156 {
10157 	if (__netdev_update_features(dev))
10158 		netdev_features_change(dev);
10159 }
10160 EXPORT_SYMBOL(netdev_update_features);
10161 
10162 /**
10163  *	netdev_change_features - recalculate device features
10164  *	@dev: the device to check
10165  *
10166  *	Recalculate dev->features set and send notifications even
10167  *	if they have not changed. Should be called instead of
10168  *	netdev_update_features() if also dev->vlan_features might
10169  *	have changed to allow the changes to be propagated to stacked
10170  *	VLAN devices.
10171  */
10172 void netdev_change_features(struct net_device *dev)
10173 {
10174 	__netdev_update_features(dev);
10175 	netdev_features_change(dev);
10176 }
10177 EXPORT_SYMBOL(netdev_change_features);
10178 
10179 /**
10180  *	netif_stacked_transfer_operstate -	transfer operstate
10181  *	@rootdev: the root or lower level device to transfer state from
10182  *	@dev: the device to transfer operstate to
10183  *
10184  *	Transfer operational state from root to device. This is normally
10185  *	called when a stacking relationship exists between the root
10186  *	device and the device(a leaf device).
10187  */
10188 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
10189 					struct net_device *dev)
10190 {
10191 	if (rootdev->operstate == IF_OPER_DORMANT)
10192 		netif_dormant_on(dev);
10193 	else
10194 		netif_dormant_off(dev);
10195 
10196 	if (rootdev->operstate == IF_OPER_TESTING)
10197 		netif_testing_on(dev);
10198 	else
10199 		netif_testing_off(dev);
10200 
10201 	if (netif_carrier_ok(rootdev))
10202 		netif_carrier_on(dev);
10203 	else
10204 		netif_carrier_off(dev);
10205 }
10206 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
10207 
10208 static int netif_alloc_rx_queues(struct net_device *dev)
10209 {
10210 	unsigned int i, count = dev->num_rx_queues;
10211 	struct netdev_rx_queue *rx;
10212 	size_t sz = count * sizeof(*rx);
10213 	int err = 0;
10214 
10215 	BUG_ON(count < 1);
10216 
10217 	rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10218 	if (!rx)
10219 		return -ENOMEM;
10220 
10221 	dev->_rx = rx;
10222 
10223 	for (i = 0; i < count; i++) {
10224 		rx[i].dev = dev;
10225 
10226 		/* XDP RX-queue setup */
10227 		err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
10228 		if (err < 0)
10229 			goto err_rxq_info;
10230 	}
10231 	return 0;
10232 
10233 err_rxq_info:
10234 	/* Rollback successful reg's and free other resources */
10235 	while (i--)
10236 		xdp_rxq_info_unreg(&rx[i].xdp_rxq);
10237 	kvfree(dev->_rx);
10238 	dev->_rx = NULL;
10239 	return err;
10240 }
10241 
10242 static void netif_free_rx_queues(struct net_device *dev)
10243 {
10244 	unsigned int i, count = dev->num_rx_queues;
10245 
10246 	/* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
10247 	if (!dev->_rx)
10248 		return;
10249 
10250 	for (i = 0; i < count; i++)
10251 		xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
10252 
10253 	kvfree(dev->_rx);
10254 }
10255 
10256 static void netdev_init_one_queue(struct net_device *dev,
10257 				  struct netdev_queue *queue, void *_unused)
10258 {
10259 	/* Initialize queue lock */
10260 	spin_lock_init(&queue->_xmit_lock);
10261 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
10262 	queue->xmit_lock_owner = -1;
10263 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
10264 	queue->dev = dev;
10265 #ifdef CONFIG_BQL
10266 	dql_init(&queue->dql, HZ);
10267 #endif
10268 }
10269 
10270 static void netif_free_tx_queues(struct net_device *dev)
10271 {
10272 	kvfree(dev->_tx);
10273 }
10274 
10275 static int netif_alloc_netdev_queues(struct net_device *dev)
10276 {
10277 	unsigned int count = dev->num_tx_queues;
10278 	struct netdev_queue *tx;
10279 	size_t sz = count * sizeof(*tx);
10280 
10281 	if (count < 1 || count > 0xffff)
10282 		return -EINVAL;
10283 
10284 	tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10285 	if (!tx)
10286 		return -ENOMEM;
10287 
10288 	dev->_tx = tx;
10289 
10290 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
10291 	spin_lock_init(&dev->tx_global_lock);
10292 
10293 	return 0;
10294 }
10295 
10296 void netif_tx_stop_all_queues(struct net_device *dev)
10297 {
10298 	unsigned int i;
10299 
10300 	for (i = 0; i < dev->num_tx_queues; i++) {
10301 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
10302 
10303 		netif_tx_stop_queue(txq);
10304 	}
10305 }
10306 EXPORT_SYMBOL(netif_tx_stop_all_queues);
10307 
10308 static int netdev_do_alloc_pcpu_stats(struct net_device *dev)
10309 {
10310 	void __percpu *v;
10311 
10312 	/* Drivers implementing ndo_get_peer_dev must support tstat
10313 	 * accounting, so that skb_do_redirect() can bump the dev's
10314 	 * RX stats upon network namespace switch.
10315 	 */
10316 	if (dev->netdev_ops->ndo_get_peer_dev &&
10317 	    dev->pcpu_stat_type != NETDEV_PCPU_STAT_TSTATS)
10318 		return -EOPNOTSUPP;
10319 
10320 	switch (dev->pcpu_stat_type) {
10321 	case NETDEV_PCPU_STAT_NONE:
10322 		return 0;
10323 	case NETDEV_PCPU_STAT_LSTATS:
10324 		v = dev->lstats = netdev_alloc_pcpu_stats(struct pcpu_lstats);
10325 		break;
10326 	case NETDEV_PCPU_STAT_TSTATS:
10327 		v = dev->tstats = netdev_alloc_pcpu_stats(struct pcpu_sw_netstats);
10328 		break;
10329 	case NETDEV_PCPU_STAT_DSTATS:
10330 		v = dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
10331 		break;
10332 	default:
10333 		return -EINVAL;
10334 	}
10335 
10336 	return v ? 0 : -ENOMEM;
10337 }
10338 
10339 static void netdev_do_free_pcpu_stats(struct net_device *dev)
10340 {
10341 	switch (dev->pcpu_stat_type) {
10342 	case NETDEV_PCPU_STAT_NONE:
10343 		return;
10344 	case NETDEV_PCPU_STAT_LSTATS:
10345 		free_percpu(dev->lstats);
10346 		break;
10347 	case NETDEV_PCPU_STAT_TSTATS:
10348 		free_percpu(dev->tstats);
10349 		break;
10350 	case NETDEV_PCPU_STAT_DSTATS:
10351 		free_percpu(dev->dstats);
10352 		break;
10353 	}
10354 }
10355 
10356 static void netdev_free_phy_link_topology(struct net_device *dev)
10357 {
10358 	struct phy_link_topology *topo = dev->link_topo;
10359 
10360 	if (IS_ENABLED(CONFIG_PHYLIB) && topo) {
10361 		xa_destroy(&topo->phys);
10362 		kfree(topo);
10363 		dev->link_topo = NULL;
10364 	}
10365 }
10366 
10367 /**
10368  * register_netdevice() - register a network device
10369  * @dev: device to register
10370  *
10371  * Take a prepared network device structure and make it externally accessible.
10372  * A %NETDEV_REGISTER message is sent to the netdev notifier chain.
10373  * Callers must hold the rtnl lock - you may want register_netdev()
10374  * instead of this.
10375  */
10376 int register_netdevice(struct net_device *dev)
10377 {
10378 	int ret;
10379 	struct net *net = dev_net(dev);
10380 
10381 	BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
10382 		     NETDEV_FEATURE_COUNT);
10383 	BUG_ON(dev_boot_phase);
10384 	ASSERT_RTNL();
10385 
10386 	might_sleep();
10387 
10388 	/* When net_device's are persistent, this will be fatal. */
10389 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
10390 	BUG_ON(!net);
10391 
10392 	ret = ethtool_check_ops(dev->ethtool_ops);
10393 	if (ret)
10394 		return ret;
10395 
10396 	/* rss ctx ID 0 is reserved for the default context, start from 1 */
10397 	xa_init_flags(&dev->ethtool->rss_ctx, XA_FLAGS_ALLOC1);
10398 	mutex_init(&dev->ethtool->rss_lock);
10399 
10400 	spin_lock_init(&dev->addr_list_lock);
10401 	netdev_set_addr_lockdep_class(dev);
10402 
10403 	ret = dev_get_valid_name(net, dev, dev->name);
10404 	if (ret < 0)
10405 		goto out;
10406 
10407 	ret = -ENOMEM;
10408 	dev->name_node = netdev_name_node_head_alloc(dev);
10409 	if (!dev->name_node)
10410 		goto out;
10411 
10412 	/* Init, if this function is available */
10413 	if (dev->netdev_ops->ndo_init) {
10414 		ret = dev->netdev_ops->ndo_init(dev);
10415 		if (ret) {
10416 			if (ret > 0)
10417 				ret = -EIO;
10418 			goto err_free_name;
10419 		}
10420 	}
10421 
10422 	if (((dev->hw_features | dev->features) &
10423 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
10424 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10425 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10426 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10427 		ret = -EINVAL;
10428 		goto err_uninit;
10429 	}
10430 
10431 	ret = netdev_do_alloc_pcpu_stats(dev);
10432 	if (ret)
10433 		goto err_uninit;
10434 
10435 	ret = dev_index_reserve(net, dev->ifindex);
10436 	if (ret < 0)
10437 		goto err_free_pcpu;
10438 	dev->ifindex = ret;
10439 
10440 	/* Transfer changeable features to wanted_features and enable
10441 	 * software offloads (GSO and GRO).
10442 	 */
10443 	dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10444 	dev->features |= NETIF_F_SOFT_FEATURES;
10445 
10446 	if (dev->udp_tunnel_nic_info) {
10447 		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10448 		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10449 	}
10450 
10451 	dev->wanted_features = dev->features & dev->hw_features;
10452 
10453 	if (!(dev->flags & IFF_LOOPBACK))
10454 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
10455 
10456 	/* If IPv4 TCP segmentation offload is supported we should also
10457 	 * allow the device to enable segmenting the frame with the option
10458 	 * of ignoring a static IP ID value.  This doesn't enable the
10459 	 * feature itself but allows the user to enable it later.
10460 	 */
10461 	if (dev->hw_features & NETIF_F_TSO)
10462 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
10463 	if (dev->vlan_features & NETIF_F_TSO)
10464 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10465 	if (dev->mpls_features & NETIF_F_TSO)
10466 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10467 	if (dev->hw_enc_features & NETIF_F_TSO)
10468 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10469 
10470 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10471 	 */
10472 	dev->vlan_features |= NETIF_F_HIGHDMA;
10473 
10474 	/* Make NETIF_F_SG inheritable to tunnel devices.
10475 	 */
10476 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10477 
10478 	/* Make NETIF_F_SG inheritable to MPLS.
10479 	 */
10480 	dev->mpls_features |= NETIF_F_SG;
10481 
10482 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10483 	ret = notifier_to_errno(ret);
10484 	if (ret)
10485 		goto err_ifindex_release;
10486 
10487 	ret = netdev_register_kobject(dev);
10488 
10489 	WRITE_ONCE(dev->reg_state, ret ? NETREG_UNREGISTERED : NETREG_REGISTERED);
10490 
10491 	if (ret)
10492 		goto err_uninit_notify;
10493 
10494 	__netdev_update_features(dev);
10495 
10496 	/*
10497 	 *	Default initial state at registry is that the
10498 	 *	device is present.
10499 	 */
10500 
10501 	set_bit(__LINK_STATE_PRESENT, &dev->state);
10502 
10503 	linkwatch_init_dev(dev);
10504 
10505 	dev_init_scheduler(dev);
10506 
10507 	netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL);
10508 	list_netdevice(dev);
10509 
10510 	add_device_randomness(dev->dev_addr, dev->addr_len);
10511 
10512 	/* If the device has permanent device address, driver should
10513 	 * set dev_addr and also addr_assign_type should be set to
10514 	 * NET_ADDR_PERM (default value).
10515 	 */
10516 	if (dev->addr_assign_type == NET_ADDR_PERM)
10517 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10518 
10519 	/* Notify protocols, that a new device appeared. */
10520 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10521 	ret = notifier_to_errno(ret);
10522 	if (ret) {
10523 		/* Expect explicit free_netdev() on failure */
10524 		dev->needs_free_netdev = false;
10525 		unregister_netdevice_queue(dev, NULL);
10526 		goto out;
10527 	}
10528 	/*
10529 	 *	Prevent userspace races by waiting until the network
10530 	 *	device is fully setup before sending notifications.
10531 	 */
10532 	if (!dev->rtnl_link_ops ||
10533 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10534 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
10535 
10536 out:
10537 	return ret;
10538 
10539 err_uninit_notify:
10540 	call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
10541 err_ifindex_release:
10542 	dev_index_release(net, dev->ifindex);
10543 err_free_pcpu:
10544 	netdev_do_free_pcpu_stats(dev);
10545 err_uninit:
10546 	if (dev->netdev_ops->ndo_uninit)
10547 		dev->netdev_ops->ndo_uninit(dev);
10548 	if (dev->priv_destructor)
10549 		dev->priv_destructor(dev);
10550 err_free_name:
10551 	netdev_name_node_free(dev->name_node);
10552 	goto out;
10553 }
10554 EXPORT_SYMBOL(register_netdevice);
10555 
10556 /* Initialize the core of a dummy net device.
10557  * This is useful if you are calling this function after alloc_netdev(),
10558  * since it does not memset the net_device fields.
10559  */
10560 static void init_dummy_netdev_core(struct net_device *dev)
10561 {
10562 	/* make sure we BUG if trying to hit standard
10563 	 * register/unregister code path
10564 	 */
10565 	dev->reg_state = NETREG_DUMMY;
10566 
10567 	/* NAPI wants this */
10568 	INIT_LIST_HEAD(&dev->napi_list);
10569 
10570 	/* a dummy interface is started by default */
10571 	set_bit(__LINK_STATE_PRESENT, &dev->state);
10572 	set_bit(__LINK_STATE_START, &dev->state);
10573 
10574 	/* napi_busy_loop stats accounting wants this */
10575 	dev_net_set(dev, &init_net);
10576 
10577 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
10578 	 * because users of this 'device' dont need to change
10579 	 * its refcount.
10580 	 */
10581 }
10582 
10583 /**
10584  *	init_dummy_netdev	- init a dummy network device for NAPI
10585  *	@dev: device to init
10586  *
10587  *	This takes a network device structure and initializes the minimum
10588  *	amount of fields so it can be used to schedule NAPI polls without
10589  *	registering a full blown interface. This is to be used by drivers
10590  *	that need to tie several hardware interfaces to a single NAPI
10591  *	poll scheduler due to HW limitations.
10592  */
10593 void init_dummy_netdev(struct net_device *dev)
10594 {
10595 	/* Clear everything. Note we don't initialize spinlocks
10596 	 * as they aren't supposed to be taken by any of the
10597 	 * NAPI code and this dummy netdev is supposed to be
10598 	 * only ever used for NAPI polls
10599 	 */
10600 	memset(dev, 0, sizeof(struct net_device));
10601 	init_dummy_netdev_core(dev);
10602 }
10603 EXPORT_SYMBOL_GPL(init_dummy_netdev);
10604 
10605 /**
10606  *	register_netdev	- register a network device
10607  *	@dev: device to register
10608  *
10609  *	Take a completed network device structure and add it to the kernel
10610  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10611  *	chain. 0 is returned on success. A negative errno code is returned
10612  *	on a failure to set up the device, or if the name is a duplicate.
10613  *
10614  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
10615  *	and expands the device name if you passed a format string to
10616  *	alloc_netdev.
10617  */
10618 int register_netdev(struct net_device *dev)
10619 {
10620 	int err;
10621 
10622 	if (rtnl_lock_killable())
10623 		return -EINTR;
10624 	err = register_netdevice(dev);
10625 	rtnl_unlock();
10626 	return err;
10627 }
10628 EXPORT_SYMBOL(register_netdev);
10629 
10630 int netdev_refcnt_read(const struct net_device *dev)
10631 {
10632 #ifdef CONFIG_PCPU_DEV_REFCNT
10633 	int i, refcnt = 0;
10634 
10635 	for_each_possible_cpu(i)
10636 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10637 	return refcnt;
10638 #else
10639 	return refcount_read(&dev->dev_refcnt);
10640 #endif
10641 }
10642 EXPORT_SYMBOL(netdev_refcnt_read);
10643 
10644 int netdev_unregister_timeout_secs __read_mostly = 10;
10645 
10646 #define WAIT_REFS_MIN_MSECS 1
10647 #define WAIT_REFS_MAX_MSECS 250
10648 /**
10649  * netdev_wait_allrefs_any - wait until all references are gone.
10650  * @list: list of net_devices to wait on
10651  *
10652  * This is called when unregistering network devices.
10653  *
10654  * Any protocol or device that holds a reference should register
10655  * for netdevice notification, and cleanup and put back the
10656  * reference if they receive an UNREGISTER event.
10657  * We can get stuck here if buggy protocols don't correctly
10658  * call dev_put.
10659  */
10660 static struct net_device *netdev_wait_allrefs_any(struct list_head *list)
10661 {
10662 	unsigned long rebroadcast_time, warning_time;
10663 	struct net_device *dev;
10664 	int wait = 0;
10665 
10666 	rebroadcast_time = warning_time = jiffies;
10667 
10668 	list_for_each_entry(dev, list, todo_list)
10669 		if (netdev_refcnt_read(dev) == 1)
10670 			return dev;
10671 
10672 	while (true) {
10673 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10674 			rtnl_lock();
10675 
10676 			/* Rebroadcast unregister notification */
10677 			list_for_each_entry(dev, list, todo_list)
10678 				call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10679 
10680 			__rtnl_unlock();
10681 			rcu_barrier();
10682 			rtnl_lock();
10683 
10684 			list_for_each_entry(dev, list, todo_list)
10685 				if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10686 					     &dev->state)) {
10687 					/* We must not have linkwatch events
10688 					 * pending on unregister. If this
10689 					 * happens, we simply run the queue
10690 					 * unscheduled, resulting in a noop
10691 					 * for this device.
10692 					 */
10693 					linkwatch_run_queue();
10694 					break;
10695 				}
10696 
10697 			__rtnl_unlock();
10698 
10699 			rebroadcast_time = jiffies;
10700 		}
10701 
10702 		rcu_barrier();
10703 
10704 		if (!wait) {
10705 			wait = WAIT_REFS_MIN_MSECS;
10706 		} else {
10707 			msleep(wait);
10708 			wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10709 		}
10710 
10711 		list_for_each_entry(dev, list, todo_list)
10712 			if (netdev_refcnt_read(dev) == 1)
10713 				return dev;
10714 
10715 		if (time_after(jiffies, warning_time +
10716 			       READ_ONCE(netdev_unregister_timeout_secs) * HZ)) {
10717 			list_for_each_entry(dev, list, todo_list) {
10718 				pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10719 					 dev->name, netdev_refcnt_read(dev));
10720 				ref_tracker_dir_print(&dev->refcnt_tracker, 10);
10721 			}
10722 
10723 			warning_time = jiffies;
10724 		}
10725 	}
10726 }
10727 
10728 /* The sequence is:
10729  *
10730  *	rtnl_lock();
10731  *	...
10732  *	register_netdevice(x1);
10733  *	register_netdevice(x2);
10734  *	...
10735  *	unregister_netdevice(y1);
10736  *	unregister_netdevice(y2);
10737  *      ...
10738  *	rtnl_unlock();
10739  *	free_netdev(y1);
10740  *	free_netdev(y2);
10741  *
10742  * We are invoked by rtnl_unlock().
10743  * This allows us to deal with problems:
10744  * 1) We can delete sysfs objects which invoke hotplug
10745  *    without deadlocking with linkwatch via keventd.
10746  * 2) Since we run with the RTNL semaphore not held, we can sleep
10747  *    safely in order to wait for the netdev refcnt to drop to zero.
10748  *
10749  * We must not return until all unregister events added during
10750  * the interval the lock was held have been completed.
10751  */
10752 void netdev_run_todo(void)
10753 {
10754 	struct net_device *dev, *tmp;
10755 	struct list_head list;
10756 	int cnt;
10757 #ifdef CONFIG_LOCKDEP
10758 	struct list_head unlink_list;
10759 
10760 	list_replace_init(&net_unlink_list, &unlink_list);
10761 
10762 	while (!list_empty(&unlink_list)) {
10763 		struct net_device *dev = list_first_entry(&unlink_list,
10764 							  struct net_device,
10765 							  unlink_list);
10766 		list_del_init(&dev->unlink_list);
10767 		dev->nested_level = dev->lower_level - 1;
10768 	}
10769 #endif
10770 
10771 	/* Snapshot list, allow later requests */
10772 	list_replace_init(&net_todo_list, &list);
10773 
10774 	__rtnl_unlock();
10775 
10776 	/* Wait for rcu callbacks to finish before next phase */
10777 	if (!list_empty(&list))
10778 		rcu_barrier();
10779 
10780 	list_for_each_entry_safe(dev, tmp, &list, todo_list) {
10781 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10782 			netdev_WARN(dev, "run_todo but not unregistering\n");
10783 			list_del(&dev->todo_list);
10784 			continue;
10785 		}
10786 
10787 		WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERED);
10788 		linkwatch_sync_dev(dev);
10789 	}
10790 
10791 	cnt = 0;
10792 	while (!list_empty(&list)) {
10793 		dev = netdev_wait_allrefs_any(&list);
10794 		list_del(&dev->todo_list);
10795 
10796 		/* paranoia */
10797 		BUG_ON(netdev_refcnt_read(dev) != 1);
10798 		BUG_ON(!list_empty(&dev->ptype_all));
10799 		BUG_ON(!list_empty(&dev->ptype_specific));
10800 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
10801 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10802 
10803 		netdev_do_free_pcpu_stats(dev);
10804 		if (dev->priv_destructor)
10805 			dev->priv_destructor(dev);
10806 		if (dev->needs_free_netdev)
10807 			free_netdev(dev);
10808 
10809 		cnt++;
10810 
10811 		/* Free network device */
10812 		kobject_put(&dev->dev.kobj);
10813 	}
10814 	if (cnt && atomic_sub_and_test(cnt, &dev_unreg_count))
10815 		wake_up(&netdev_unregistering_wq);
10816 }
10817 
10818 /* Collate per-cpu network dstats statistics
10819  *
10820  * Read per-cpu network statistics from dev->dstats and populate the related
10821  * fields in @s.
10822  */
10823 static void dev_fetch_dstats(struct rtnl_link_stats64 *s,
10824 			     const struct pcpu_dstats __percpu *dstats)
10825 {
10826 	int cpu;
10827 
10828 	for_each_possible_cpu(cpu) {
10829 		u64 rx_packets, rx_bytes, rx_drops;
10830 		u64 tx_packets, tx_bytes, tx_drops;
10831 		const struct pcpu_dstats *stats;
10832 		unsigned int start;
10833 
10834 		stats = per_cpu_ptr(dstats, cpu);
10835 		do {
10836 			start = u64_stats_fetch_begin(&stats->syncp);
10837 			rx_packets = u64_stats_read(&stats->rx_packets);
10838 			rx_bytes   = u64_stats_read(&stats->rx_bytes);
10839 			rx_drops   = u64_stats_read(&stats->rx_drops);
10840 			tx_packets = u64_stats_read(&stats->tx_packets);
10841 			tx_bytes   = u64_stats_read(&stats->tx_bytes);
10842 			tx_drops   = u64_stats_read(&stats->tx_drops);
10843 		} while (u64_stats_fetch_retry(&stats->syncp, start));
10844 
10845 		s->rx_packets += rx_packets;
10846 		s->rx_bytes   += rx_bytes;
10847 		s->rx_dropped += rx_drops;
10848 		s->tx_packets += tx_packets;
10849 		s->tx_bytes   += tx_bytes;
10850 		s->tx_dropped += tx_drops;
10851 	}
10852 }
10853 
10854 /* ndo_get_stats64 implementation for dtstats-based accounting.
10855  *
10856  * Populate @s from dev->stats and dev->dstats. This is used internally by the
10857  * core for NETDEV_PCPU_STAT_DSTAT-type stats collection.
10858  */
10859 static void dev_get_dstats64(const struct net_device *dev,
10860 			     struct rtnl_link_stats64 *s)
10861 {
10862 	netdev_stats_to_stats64(s, &dev->stats);
10863 	dev_fetch_dstats(s, dev->dstats);
10864 }
10865 
10866 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10867  * all the same fields in the same order as net_device_stats, with only
10868  * the type differing, but rtnl_link_stats64 may have additional fields
10869  * at the end for newer counters.
10870  */
10871 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10872 			     const struct net_device_stats *netdev_stats)
10873 {
10874 	size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t);
10875 	const atomic_long_t *src = (atomic_long_t *)netdev_stats;
10876 	u64 *dst = (u64 *)stats64;
10877 
10878 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10879 	for (i = 0; i < n; i++)
10880 		dst[i] = (unsigned long)atomic_long_read(&src[i]);
10881 	/* zero out counters that only exist in rtnl_link_stats64 */
10882 	memset((char *)stats64 + n * sizeof(u64), 0,
10883 	       sizeof(*stats64) - n * sizeof(u64));
10884 }
10885 EXPORT_SYMBOL(netdev_stats_to_stats64);
10886 
10887 static __cold struct net_device_core_stats __percpu *netdev_core_stats_alloc(
10888 		struct net_device *dev)
10889 {
10890 	struct net_device_core_stats __percpu *p;
10891 
10892 	p = alloc_percpu_gfp(struct net_device_core_stats,
10893 			     GFP_ATOMIC | __GFP_NOWARN);
10894 
10895 	if (p && cmpxchg(&dev->core_stats, NULL, p))
10896 		free_percpu(p);
10897 
10898 	/* This READ_ONCE() pairs with the cmpxchg() above */
10899 	return READ_ONCE(dev->core_stats);
10900 }
10901 
10902 noinline void netdev_core_stats_inc(struct net_device *dev, u32 offset)
10903 {
10904 	/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
10905 	struct net_device_core_stats __percpu *p = READ_ONCE(dev->core_stats);
10906 	unsigned long __percpu *field;
10907 
10908 	if (unlikely(!p)) {
10909 		p = netdev_core_stats_alloc(dev);
10910 		if (!p)
10911 			return;
10912 	}
10913 
10914 	field = (unsigned long __percpu *)((void __percpu *)p + offset);
10915 	this_cpu_inc(*field);
10916 }
10917 EXPORT_SYMBOL_GPL(netdev_core_stats_inc);
10918 
10919 /**
10920  *	dev_get_stats	- get network device statistics
10921  *	@dev: device to get statistics from
10922  *	@storage: place to store stats
10923  *
10924  *	Get network statistics from device. Return @storage.
10925  *	The device driver may provide its own method by setting
10926  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10927  *	otherwise the internal statistics structure is used.
10928  */
10929 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10930 					struct rtnl_link_stats64 *storage)
10931 {
10932 	const struct net_device_ops *ops = dev->netdev_ops;
10933 	const struct net_device_core_stats __percpu *p;
10934 
10935 	if (ops->ndo_get_stats64) {
10936 		memset(storage, 0, sizeof(*storage));
10937 		ops->ndo_get_stats64(dev, storage);
10938 	} else if (ops->ndo_get_stats) {
10939 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10940 	} else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_TSTATS) {
10941 		dev_get_tstats64(dev, storage);
10942 	} else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_DSTATS) {
10943 		dev_get_dstats64(dev, storage);
10944 	} else {
10945 		netdev_stats_to_stats64(storage, &dev->stats);
10946 	}
10947 
10948 	/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
10949 	p = READ_ONCE(dev->core_stats);
10950 	if (p) {
10951 		const struct net_device_core_stats *core_stats;
10952 		int i;
10953 
10954 		for_each_possible_cpu(i) {
10955 			core_stats = per_cpu_ptr(p, i);
10956 			storage->rx_dropped += READ_ONCE(core_stats->rx_dropped);
10957 			storage->tx_dropped += READ_ONCE(core_stats->tx_dropped);
10958 			storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler);
10959 			storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped);
10960 		}
10961 	}
10962 	return storage;
10963 }
10964 EXPORT_SYMBOL(dev_get_stats);
10965 
10966 /**
10967  *	dev_fetch_sw_netstats - get per-cpu network device statistics
10968  *	@s: place to store stats
10969  *	@netstats: per-cpu network stats to read from
10970  *
10971  *	Read per-cpu network statistics and populate the related fields in @s.
10972  */
10973 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10974 			   const struct pcpu_sw_netstats __percpu *netstats)
10975 {
10976 	int cpu;
10977 
10978 	for_each_possible_cpu(cpu) {
10979 		u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
10980 		const struct pcpu_sw_netstats *stats;
10981 		unsigned int start;
10982 
10983 		stats = per_cpu_ptr(netstats, cpu);
10984 		do {
10985 			start = u64_stats_fetch_begin(&stats->syncp);
10986 			rx_packets = u64_stats_read(&stats->rx_packets);
10987 			rx_bytes   = u64_stats_read(&stats->rx_bytes);
10988 			tx_packets = u64_stats_read(&stats->tx_packets);
10989 			tx_bytes   = u64_stats_read(&stats->tx_bytes);
10990 		} while (u64_stats_fetch_retry(&stats->syncp, start));
10991 
10992 		s->rx_packets += rx_packets;
10993 		s->rx_bytes   += rx_bytes;
10994 		s->tx_packets += tx_packets;
10995 		s->tx_bytes   += tx_bytes;
10996 	}
10997 }
10998 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10999 
11000 /**
11001  *	dev_get_tstats64 - ndo_get_stats64 implementation
11002  *	@dev: device to get statistics from
11003  *	@s: place to store stats
11004  *
11005  *	Populate @s from dev->stats and dev->tstats. Can be used as
11006  *	ndo_get_stats64() callback.
11007  */
11008 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
11009 {
11010 	netdev_stats_to_stats64(s, &dev->stats);
11011 	dev_fetch_sw_netstats(s, dev->tstats);
11012 }
11013 EXPORT_SYMBOL_GPL(dev_get_tstats64);
11014 
11015 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
11016 {
11017 	struct netdev_queue *queue = dev_ingress_queue(dev);
11018 
11019 #ifdef CONFIG_NET_CLS_ACT
11020 	if (queue)
11021 		return queue;
11022 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
11023 	if (!queue)
11024 		return NULL;
11025 	netdev_init_one_queue(dev, queue, NULL);
11026 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
11027 	RCU_INIT_POINTER(queue->qdisc_sleeping, &noop_qdisc);
11028 	rcu_assign_pointer(dev->ingress_queue, queue);
11029 #endif
11030 	return queue;
11031 }
11032 
11033 static const struct ethtool_ops default_ethtool_ops;
11034 
11035 void netdev_set_default_ethtool_ops(struct net_device *dev,
11036 				    const struct ethtool_ops *ops)
11037 {
11038 	if (dev->ethtool_ops == &default_ethtool_ops)
11039 		dev->ethtool_ops = ops;
11040 }
11041 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
11042 
11043 /**
11044  * netdev_sw_irq_coalesce_default_on() - enable SW IRQ coalescing by default
11045  * @dev: netdev to enable the IRQ coalescing on
11046  *
11047  * Sets a conservative default for SW IRQ coalescing. Users can use
11048  * sysfs attributes to override the default values.
11049  */
11050 void netdev_sw_irq_coalesce_default_on(struct net_device *dev)
11051 {
11052 	WARN_ON(dev->reg_state == NETREG_REGISTERED);
11053 
11054 	if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
11055 		dev->gro_flush_timeout = 20000;
11056 		dev->napi_defer_hard_irqs = 1;
11057 	}
11058 }
11059 EXPORT_SYMBOL_GPL(netdev_sw_irq_coalesce_default_on);
11060 
11061 /**
11062  * alloc_netdev_mqs - allocate network device
11063  * @sizeof_priv: size of private data to allocate space for
11064  * @name: device name format string
11065  * @name_assign_type: origin of device name
11066  * @setup: callback to initialize device
11067  * @txqs: the number of TX subqueues to allocate
11068  * @rxqs: the number of RX subqueues to allocate
11069  *
11070  * Allocates a struct net_device with private data area for driver use
11071  * and performs basic initialization.  Also allocates subqueue structs
11072  * for each queue on the device.
11073  */
11074 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
11075 		unsigned char name_assign_type,
11076 		void (*setup)(struct net_device *),
11077 		unsigned int txqs, unsigned int rxqs)
11078 {
11079 	struct net_device *dev;
11080 
11081 	BUG_ON(strlen(name) >= sizeof(dev->name));
11082 
11083 	if (txqs < 1) {
11084 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
11085 		return NULL;
11086 	}
11087 
11088 	if (rxqs < 1) {
11089 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
11090 		return NULL;
11091 	}
11092 
11093 	dev = kvzalloc(struct_size(dev, priv, sizeof_priv),
11094 		       GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
11095 	if (!dev)
11096 		return NULL;
11097 
11098 	dev->priv_len = sizeof_priv;
11099 
11100 	ref_tracker_dir_init(&dev->refcnt_tracker, 128, name);
11101 #ifdef CONFIG_PCPU_DEV_REFCNT
11102 	dev->pcpu_refcnt = alloc_percpu(int);
11103 	if (!dev->pcpu_refcnt)
11104 		goto free_dev;
11105 	__dev_hold(dev);
11106 #else
11107 	refcount_set(&dev->dev_refcnt, 1);
11108 #endif
11109 
11110 	if (dev_addr_init(dev))
11111 		goto free_pcpu;
11112 
11113 	dev_mc_init(dev);
11114 	dev_uc_init(dev);
11115 
11116 	dev_net_set(dev, &init_net);
11117 
11118 	dev->gso_max_size = GSO_LEGACY_MAX_SIZE;
11119 	dev->xdp_zc_max_segs = 1;
11120 	dev->gso_max_segs = GSO_MAX_SEGS;
11121 	dev->gro_max_size = GRO_LEGACY_MAX_SIZE;
11122 	dev->gso_ipv4_max_size = GSO_LEGACY_MAX_SIZE;
11123 	dev->gro_ipv4_max_size = GRO_LEGACY_MAX_SIZE;
11124 	dev->tso_max_size = TSO_LEGACY_MAX_SIZE;
11125 	dev->tso_max_segs = TSO_MAX_SEGS;
11126 	dev->upper_level = 1;
11127 	dev->lower_level = 1;
11128 #ifdef CONFIG_LOCKDEP
11129 	dev->nested_level = 0;
11130 	INIT_LIST_HEAD(&dev->unlink_list);
11131 #endif
11132 
11133 	INIT_LIST_HEAD(&dev->napi_list);
11134 	INIT_LIST_HEAD(&dev->unreg_list);
11135 	INIT_LIST_HEAD(&dev->close_list);
11136 	INIT_LIST_HEAD(&dev->link_watch_list);
11137 	INIT_LIST_HEAD(&dev->adj_list.upper);
11138 	INIT_LIST_HEAD(&dev->adj_list.lower);
11139 	INIT_LIST_HEAD(&dev->ptype_all);
11140 	INIT_LIST_HEAD(&dev->ptype_specific);
11141 	INIT_LIST_HEAD(&dev->net_notifier_list);
11142 #ifdef CONFIG_NET_SCHED
11143 	hash_init(dev->qdisc_hash);
11144 #endif
11145 
11146 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
11147 	setup(dev);
11148 
11149 	if (!dev->tx_queue_len) {
11150 		dev->priv_flags |= IFF_NO_QUEUE;
11151 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
11152 	}
11153 
11154 	dev->num_tx_queues = txqs;
11155 	dev->real_num_tx_queues = txqs;
11156 	if (netif_alloc_netdev_queues(dev))
11157 		goto free_all;
11158 
11159 	dev->num_rx_queues = rxqs;
11160 	dev->real_num_rx_queues = rxqs;
11161 	if (netif_alloc_rx_queues(dev))
11162 		goto free_all;
11163 	dev->ethtool = kzalloc(sizeof(*dev->ethtool), GFP_KERNEL_ACCOUNT);
11164 	if (!dev->ethtool)
11165 		goto free_all;
11166 
11167 	strscpy(dev->name, name);
11168 	dev->name_assign_type = name_assign_type;
11169 	dev->group = INIT_NETDEV_GROUP;
11170 	if (!dev->ethtool_ops)
11171 		dev->ethtool_ops = &default_ethtool_ops;
11172 
11173 	nf_hook_netdev_init(dev);
11174 
11175 	return dev;
11176 
11177 free_all:
11178 	free_netdev(dev);
11179 	return NULL;
11180 
11181 free_pcpu:
11182 #ifdef CONFIG_PCPU_DEV_REFCNT
11183 	free_percpu(dev->pcpu_refcnt);
11184 free_dev:
11185 #endif
11186 	kvfree(dev);
11187 	return NULL;
11188 }
11189 EXPORT_SYMBOL(alloc_netdev_mqs);
11190 
11191 /**
11192  * free_netdev - free network device
11193  * @dev: device
11194  *
11195  * This function does the last stage of destroying an allocated device
11196  * interface. The reference to the device object is released. If this
11197  * is the last reference then it will be freed.Must be called in process
11198  * context.
11199  */
11200 void free_netdev(struct net_device *dev)
11201 {
11202 	struct napi_struct *p, *n;
11203 
11204 	might_sleep();
11205 
11206 	/* When called immediately after register_netdevice() failed the unwind
11207 	 * handling may still be dismantling the device. Handle that case by
11208 	 * deferring the free.
11209 	 */
11210 	if (dev->reg_state == NETREG_UNREGISTERING) {
11211 		ASSERT_RTNL();
11212 		dev->needs_free_netdev = true;
11213 		return;
11214 	}
11215 
11216 	kfree(dev->ethtool);
11217 	netif_free_tx_queues(dev);
11218 	netif_free_rx_queues(dev);
11219 
11220 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
11221 
11222 	/* Flush device addresses */
11223 	dev_addr_flush(dev);
11224 
11225 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
11226 		netif_napi_del(p);
11227 
11228 	ref_tracker_dir_exit(&dev->refcnt_tracker);
11229 #ifdef CONFIG_PCPU_DEV_REFCNT
11230 	free_percpu(dev->pcpu_refcnt);
11231 	dev->pcpu_refcnt = NULL;
11232 #endif
11233 	free_percpu(dev->core_stats);
11234 	dev->core_stats = NULL;
11235 	free_percpu(dev->xdp_bulkq);
11236 	dev->xdp_bulkq = NULL;
11237 
11238 	netdev_free_phy_link_topology(dev);
11239 
11240 	/*  Compatibility with error handling in drivers */
11241 	if (dev->reg_state == NETREG_UNINITIALIZED ||
11242 	    dev->reg_state == NETREG_DUMMY) {
11243 		kvfree(dev);
11244 		return;
11245 	}
11246 
11247 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
11248 	WRITE_ONCE(dev->reg_state, NETREG_RELEASED);
11249 
11250 	/* will free via device release */
11251 	put_device(&dev->dev);
11252 }
11253 EXPORT_SYMBOL(free_netdev);
11254 
11255 /**
11256  * alloc_netdev_dummy - Allocate and initialize a dummy net device.
11257  * @sizeof_priv: size of private data to allocate space for
11258  *
11259  * Return: the allocated net_device on success, NULL otherwise
11260  */
11261 struct net_device *alloc_netdev_dummy(int sizeof_priv)
11262 {
11263 	return alloc_netdev(sizeof_priv, "dummy#", NET_NAME_UNKNOWN,
11264 			    init_dummy_netdev_core);
11265 }
11266 EXPORT_SYMBOL_GPL(alloc_netdev_dummy);
11267 
11268 /**
11269  *	synchronize_net -  Synchronize with packet receive processing
11270  *
11271  *	Wait for packets currently being received to be done.
11272  *	Does not block later packets from starting.
11273  */
11274 void synchronize_net(void)
11275 {
11276 	might_sleep();
11277 	if (rtnl_is_locked())
11278 		synchronize_rcu_expedited();
11279 	else
11280 		synchronize_rcu();
11281 }
11282 EXPORT_SYMBOL(synchronize_net);
11283 
11284 static void netdev_rss_contexts_free(struct net_device *dev)
11285 {
11286 	struct ethtool_rxfh_context *ctx;
11287 	unsigned long context;
11288 
11289 	mutex_lock(&dev->ethtool->rss_lock);
11290 	xa_for_each(&dev->ethtool->rss_ctx, context, ctx) {
11291 		struct ethtool_rxfh_param rxfh;
11292 
11293 		rxfh.indir = ethtool_rxfh_context_indir(ctx);
11294 		rxfh.key = ethtool_rxfh_context_key(ctx);
11295 		rxfh.hfunc = ctx->hfunc;
11296 		rxfh.input_xfrm = ctx->input_xfrm;
11297 		rxfh.rss_context = context;
11298 		rxfh.rss_delete = true;
11299 
11300 		xa_erase(&dev->ethtool->rss_ctx, context);
11301 		if (dev->ethtool_ops->create_rxfh_context)
11302 			dev->ethtool_ops->remove_rxfh_context(dev, ctx,
11303 							      context, NULL);
11304 		else
11305 			dev->ethtool_ops->set_rxfh(dev, &rxfh, NULL);
11306 		kfree(ctx);
11307 	}
11308 	xa_destroy(&dev->ethtool->rss_ctx);
11309 	mutex_unlock(&dev->ethtool->rss_lock);
11310 }
11311 
11312 /**
11313  *	unregister_netdevice_queue - remove device from the kernel
11314  *	@dev: device
11315  *	@head: list
11316  *
11317  *	This function shuts down a device interface and removes it
11318  *	from the kernel tables.
11319  *	If head not NULL, device is queued to be unregistered later.
11320  *
11321  *	Callers must hold the rtnl semaphore.  You may want
11322  *	unregister_netdev() instead of this.
11323  */
11324 
11325 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
11326 {
11327 	ASSERT_RTNL();
11328 
11329 	if (head) {
11330 		list_move_tail(&dev->unreg_list, head);
11331 	} else {
11332 		LIST_HEAD(single);
11333 
11334 		list_add(&dev->unreg_list, &single);
11335 		unregister_netdevice_many(&single);
11336 	}
11337 }
11338 EXPORT_SYMBOL(unregister_netdevice_queue);
11339 
11340 void unregister_netdevice_many_notify(struct list_head *head,
11341 				      u32 portid, const struct nlmsghdr *nlh)
11342 {
11343 	struct net_device *dev, *tmp;
11344 	LIST_HEAD(close_head);
11345 	int cnt = 0;
11346 
11347 	BUG_ON(dev_boot_phase);
11348 	ASSERT_RTNL();
11349 
11350 	if (list_empty(head))
11351 		return;
11352 
11353 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
11354 		/* Some devices call without registering
11355 		 * for initialization unwind. Remove those
11356 		 * devices and proceed with the remaining.
11357 		 */
11358 		if (dev->reg_state == NETREG_UNINITIALIZED) {
11359 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
11360 				 dev->name, dev);
11361 
11362 			WARN_ON(1);
11363 			list_del(&dev->unreg_list);
11364 			continue;
11365 		}
11366 		dev->dismantle = true;
11367 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
11368 	}
11369 
11370 	/* If device is running, close it first. */
11371 	list_for_each_entry(dev, head, unreg_list)
11372 		list_add_tail(&dev->close_list, &close_head);
11373 	dev_close_many(&close_head, true);
11374 
11375 	list_for_each_entry(dev, head, unreg_list) {
11376 		/* And unlink it from device chain. */
11377 		unlist_netdevice(dev);
11378 		WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERING);
11379 	}
11380 	flush_all_backlogs();
11381 
11382 	synchronize_net();
11383 
11384 	list_for_each_entry(dev, head, unreg_list) {
11385 		struct sk_buff *skb = NULL;
11386 
11387 		/* Shutdown queueing discipline. */
11388 		dev_shutdown(dev);
11389 		dev_tcx_uninstall(dev);
11390 		dev_xdp_uninstall(dev);
11391 		bpf_dev_bound_netdev_unregister(dev);
11392 		dev_dmabuf_uninstall(dev);
11393 
11394 		netdev_offload_xstats_disable_all(dev);
11395 
11396 		/* Notify protocols, that we are about to destroy
11397 		 * this device. They should clean all the things.
11398 		 */
11399 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11400 
11401 		if (!dev->rtnl_link_ops ||
11402 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
11403 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
11404 						     GFP_KERNEL, NULL, 0,
11405 						     portid, nlh);
11406 
11407 		/*
11408 		 *	Flush the unicast and multicast chains
11409 		 */
11410 		dev_uc_flush(dev);
11411 		dev_mc_flush(dev);
11412 
11413 		netdev_name_node_alt_flush(dev);
11414 		netdev_name_node_free(dev->name_node);
11415 
11416 		netdev_rss_contexts_free(dev);
11417 
11418 		call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
11419 
11420 		if (dev->netdev_ops->ndo_uninit)
11421 			dev->netdev_ops->ndo_uninit(dev);
11422 
11423 		mutex_destroy(&dev->ethtool->rss_lock);
11424 
11425 		if (skb)
11426 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL, portid, nlh);
11427 
11428 		/* Notifier chain MUST detach us all upper devices. */
11429 		WARN_ON(netdev_has_any_upper_dev(dev));
11430 		WARN_ON(netdev_has_any_lower_dev(dev));
11431 
11432 		/* Remove entries from kobject tree */
11433 		netdev_unregister_kobject(dev);
11434 #ifdef CONFIG_XPS
11435 		/* Remove XPS queueing entries */
11436 		netif_reset_xps_queues_gt(dev, 0);
11437 #endif
11438 	}
11439 
11440 	synchronize_net();
11441 
11442 	list_for_each_entry(dev, head, unreg_list) {
11443 		netdev_put(dev, &dev->dev_registered_tracker);
11444 		net_set_todo(dev);
11445 		cnt++;
11446 	}
11447 	atomic_add(cnt, &dev_unreg_count);
11448 
11449 	list_del(head);
11450 }
11451 
11452 /**
11453  *	unregister_netdevice_many - unregister many devices
11454  *	@head: list of devices
11455  *
11456  *  Note: As most callers use a stack allocated list_head,
11457  *  we force a list_del() to make sure stack won't be corrupted later.
11458  */
11459 void unregister_netdevice_many(struct list_head *head)
11460 {
11461 	unregister_netdevice_many_notify(head, 0, NULL);
11462 }
11463 EXPORT_SYMBOL(unregister_netdevice_many);
11464 
11465 /**
11466  *	unregister_netdev - remove device from the kernel
11467  *	@dev: device
11468  *
11469  *	This function shuts down a device interface and removes it
11470  *	from the kernel tables.
11471  *
11472  *	This is just a wrapper for unregister_netdevice that takes
11473  *	the rtnl semaphore.  In general you want to use this and not
11474  *	unregister_netdevice.
11475  */
11476 void unregister_netdev(struct net_device *dev)
11477 {
11478 	rtnl_lock();
11479 	unregister_netdevice(dev);
11480 	rtnl_unlock();
11481 }
11482 EXPORT_SYMBOL(unregister_netdev);
11483 
11484 /**
11485  *	__dev_change_net_namespace - move device to different nethost namespace
11486  *	@dev: device
11487  *	@net: network namespace
11488  *	@pat: If not NULL name pattern to try if the current device name
11489  *	      is already taken in the destination network namespace.
11490  *	@new_ifindex: If not zero, specifies device index in the target
11491  *	              namespace.
11492  *
11493  *	This function shuts down a device interface and moves it
11494  *	to a new network namespace. On success 0 is returned, on
11495  *	a failure a netagive errno code is returned.
11496  *
11497  *	Callers must hold the rtnl semaphore.
11498  */
11499 
11500 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
11501 			       const char *pat, int new_ifindex)
11502 {
11503 	struct netdev_name_node *name_node;
11504 	struct net *net_old = dev_net(dev);
11505 	char new_name[IFNAMSIZ] = {};
11506 	int err, new_nsid;
11507 
11508 	ASSERT_RTNL();
11509 
11510 	/* Don't allow namespace local devices to be moved. */
11511 	err = -EINVAL;
11512 	if (dev->netns_local)
11513 		goto out;
11514 
11515 	/* Ensure the device has been registered */
11516 	if (dev->reg_state != NETREG_REGISTERED)
11517 		goto out;
11518 
11519 	/* Get out if there is nothing todo */
11520 	err = 0;
11521 	if (net_eq(net_old, net))
11522 		goto out;
11523 
11524 	/* Pick the destination device name, and ensure
11525 	 * we can use it in the destination network namespace.
11526 	 */
11527 	err = -EEXIST;
11528 	if (netdev_name_in_use(net, dev->name)) {
11529 		/* We get here if we can't use the current device name */
11530 		if (!pat)
11531 			goto out;
11532 		err = dev_prep_valid_name(net, dev, pat, new_name, EEXIST);
11533 		if (err < 0)
11534 			goto out;
11535 	}
11536 	/* Check that none of the altnames conflicts. */
11537 	err = -EEXIST;
11538 	netdev_for_each_altname(dev, name_node)
11539 		if (netdev_name_in_use(net, name_node->name))
11540 			goto out;
11541 
11542 	/* Check that new_ifindex isn't used yet. */
11543 	if (new_ifindex) {
11544 		err = dev_index_reserve(net, new_ifindex);
11545 		if (err < 0)
11546 			goto out;
11547 	} else {
11548 		/* If there is an ifindex conflict assign a new one */
11549 		err = dev_index_reserve(net, dev->ifindex);
11550 		if (err == -EBUSY)
11551 			err = dev_index_reserve(net, 0);
11552 		if (err < 0)
11553 			goto out;
11554 		new_ifindex = err;
11555 	}
11556 
11557 	/*
11558 	 * And now a mini version of register_netdevice unregister_netdevice.
11559 	 */
11560 
11561 	/* If device is running close it first. */
11562 	dev_close(dev);
11563 
11564 	/* And unlink it from device chain */
11565 	unlist_netdevice(dev);
11566 
11567 	synchronize_net();
11568 
11569 	/* Shutdown queueing discipline. */
11570 	dev_shutdown(dev);
11571 
11572 	/* Notify protocols, that we are about to destroy
11573 	 * this device. They should clean all the things.
11574 	 *
11575 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
11576 	 * This is wanted because this way 8021q and macvlan know
11577 	 * the device is just moving and can keep their slaves up.
11578 	 */
11579 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11580 	rcu_barrier();
11581 
11582 	new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
11583 
11584 	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
11585 			    new_ifindex);
11586 
11587 	/*
11588 	 *	Flush the unicast and multicast chains
11589 	 */
11590 	dev_uc_flush(dev);
11591 	dev_mc_flush(dev);
11592 
11593 	/* Send a netdev-removed uevent to the old namespace */
11594 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
11595 	netdev_adjacent_del_links(dev);
11596 
11597 	/* Move per-net netdevice notifiers that are following the netdevice */
11598 	move_netdevice_notifiers_dev_net(dev, net);
11599 
11600 	/* Actually switch the network namespace */
11601 	dev_net_set(dev, net);
11602 	dev->ifindex = new_ifindex;
11603 
11604 	if (new_name[0]) {
11605 		/* Rename the netdev to prepared name */
11606 		write_seqlock_bh(&netdev_rename_lock);
11607 		strscpy(dev->name, new_name, IFNAMSIZ);
11608 		write_sequnlock_bh(&netdev_rename_lock);
11609 	}
11610 
11611 	/* Fixup kobjects */
11612 	dev_set_uevent_suppress(&dev->dev, 1);
11613 	err = device_rename(&dev->dev, dev->name);
11614 	dev_set_uevent_suppress(&dev->dev, 0);
11615 	WARN_ON(err);
11616 
11617 	/* Send a netdev-add uevent to the new namespace */
11618 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
11619 	netdev_adjacent_add_links(dev);
11620 
11621 	/* Adapt owner in case owning user namespace of target network
11622 	 * namespace is different from the original one.
11623 	 */
11624 	err = netdev_change_owner(dev, net_old, net);
11625 	WARN_ON(err);
11626 
11627 	/* Add the device back in the hashes */
11628 	list_netdevice(dev);
11629 
11630 	/* Notify protocols, that a new device appeared. */
11631 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
11632 
11633 	/*
11634 	 *	Prevent userspace races by waiting until the network
11635 	 *	device is fully setup before sending notifications.
11636 	 */
11637 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
11638 
11639 	synchronize_net();
11640 	err = 0;
11641 out:
11642 	return err;
11643 }
11644 EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
11645 
11646 static int dev_cpu_dead(unsigned int oldcpu)
11647 {
11648 	struct sk_buff **list_skb;
11649 	struct sk_buff *skb;
11650 	unsigned int cpu;
11651 	struct softnet_data *sd, *oldsd, *remsd = NULL;
11652 
11653 	local_irq_disable();
11654 	cpu = smp_processor_id();
11655 	sd = &per_cpu(softnet_data, cpu);
11656 	oldsd = &per_cpu(softnet_data, oldcpu);
11657 
11658 	/* Find end of our completion_queue. */
11659 	list_skb = &sd->completion_queue;
11660 	while (*list_skb)
11661 		list_skb = &(*list_skb)->next;
11662 	/* Append completion queue from offline CPU. */
11663 	*list_skb = oldsd->completion_queue;
11664 	oldsd->completion_queue = NULL;
11665 
11666 	/* Append output queue from offline CPU. */
11667 	if (oldsd->output_queue) {
11668 		*sd->output_queue_tailp = oldsd->output_queue;
11669 		sd->output_queue_tailp = oldsd->output_queue_tailp;
11670 		oldsd->output_queue = NULL;
11671 		oldsd->output_queue_tailp = &oldsd->output_queue;
11672 	}
11673 	/* Append NAPI poll list from offline CPU, with one exception :
11674 	 * process_backlog() must be called by cpu owning percpu backlog.
11675 	 * We properly handle process_queue & input_pkt_queue later.
11676 	 */
11677 	while (!list_empty(&oldsd->poll_list)) {
11678 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11679 							    struct napi_struct,
11680 							    poll_list);
11681 
11682 		list_del_init(&napi->poll_list);
11683 		if (napi->poll == process_backlog)
11684 			napi->state &= NAPIF_STATE_THREADED;
11685 		else
11686 			____napi_schedule(sd, napi);
11687 	}
11688 
11689 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
11690 	local_irq_enable();
11691 
11692 	if (!use_backlog_threads()) {
11693 #ifdef CONFIG_RPS
11694 		remsd = oldsd->rps_ipi_list;
11695 		oldsd->rps_ipi_list = NULL;
11696 #endif
11697 		/* send out pending IPI's on offline CPU */
11698 		net_rps_send_ipi(remsd);
11699 	}
11700 
11701 	/* Process offline CPU's input_pkt_queue */
11702 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11703 		netif_rx(skb);
11704 		rps_input_queue_head_incr(oldsd);
11705 	}
11706 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11707 		netif_rx(skb);
11708 		rps_input_queue_head_incr(oldsd);
11709 	}
11710 
11711 	return 0;
11712 }
11713 
11714 /**
11715  *	netdev_increment_features - increment feature set by one
11716  *	@all: current feature set
11717  *	@one: new feature set
11718  *	@mask: mask feature set
11719  *
11720  *	Computes a new feature set after adding a device with feature set
11721  *	@one to the master device with current feature set @all.  Will not
11722  *	enable anything that is off in @mask. Returns the new feature set.
11723  */
11724 netdev_features_t netdev_increment_features(netdev_features_t all,
11725 	netdev_features_t one, netdev_features_t mask)
11726 {
11727 	if (mask & NETIF_F_HW_CSUM)
11728 		mask |= NETIF_F_CSUM_MASK;
11729 	mask |= NETIF_F_VLAN_CHALLENGED;
11730 
11731 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11732 	all &= one | ~NETIF_F_ALL_FOR_ALL;
11733 
11734 	/* If one device supports hw checksumming, set for all. */
11735 	if (all & NETIF_F_HW_CSUM)
11736 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11737 
11738 	return all;
11739 }
11740 EXPORT_SYMBOL(netdev_increment_features);
11741 
11742 static struct hlist_head * __net_init netdev_create_hash(void)
11743 {
11744 	int i;
11745 	struct hlist_head *hash;
11746 
11747 	hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11748 	if (hash != NULL)
11749 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
11750 			INIT_HLIST_HEAD(&hash[i]);
11751 
11752 	return hash;
11753 }
11754 
11755 /* Initialize per network namespace state */
11756 static int __net_init netdev_init(struct net *net)
11757 {
11758 	BUILD_BUG_ON(GRO_HASH_BUCKETS >
11759 		     8 * sizeof_field(struct napi_struct, gro_bitmask));
11760 
11761 	INIT_LIST_HEAD(&net->dev_base_head);
11762 
11763 	net->dev_name_head = netdev_create_hash();
11764 	if (net->dev_name_head == NULL)
11765 		goto err_name;
11766 
11767 	net->dev_index_head = netdev_create_hash();
11768 	if (net->dev_index_head == NULL)
11769 		goto err_idx;
11770 
11771 	xa_init_flags(&net->dev_by_index, XA_FLAGS_ALLOC1);
11772 
11773 	RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11774 
11775 	return 0;
11776 
11777 err_idx:
11778 	kfree(net->dev_name_head);
11779 err_name:
11780 	return -ENOMEM;
11781 }
11782 
11783 /**
11784  *	netdev_drivername - network driver for the device
11785  *	@dev: network device
11786  *
11787  *	Determine network driver for device.
11788  */
11789 const char *netdev_drivername(const struct net_device *dev)
11790 {
11791 	const struct device_driver *driver;
11792 	const struct device *parent;
11793 	const char *empty = "";
11794 
11795 	parent = dev->dev.parent;
11796 	if (!parent)
11797 		return empty;
11798 
11799 	driver = parent->driver;
11800 	if (driver && driver->name)
11801 		return driver->name;
11802 	return empty;
11803 }
11804 
11805 static void __netdev_printk(const char *level, const struct net_device *dev,
11806 			    struct va_format *vaf)
11807 {
11808 	if (dev && dev->dev.parent) {
11809 		dev_printk_emit(level[1] - '0',
11810 				dev->dev.parent,
11811 				"%s %s %s%s: %pV",
11812 				dev_driver_string(dev->dev.parent),
11813 				dev_name(dev->dev.parent),
11814 				netdev_name(dev), netdev_reg_state(dev),
11815 				vaf);
11816 	} else if (dev) {
11817 		printk("%s%s%s: %pV",
11818 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
11819 	} else {
11820 		printk("%s(NULL net_device): %pV", level, vaf);
11821 	}
11822 }
11823 
11824 void netdev_printk(const char *level, const struct net_device *dev,
11825 		   const char *format, ...)
11826 {
11827 	struct va_format vaf;
11828 	va_list args;
11829 
11830 	va_start(args, format);
11831 
11832 	vaf.fmt = format;
11833 	vaf.va = &args;
11834 
11835 	__netdev_printk(level, dev, &vaf);
11836 
11837 	va_end(args);
11838 }
11839 EXPORT_SYMBOL(netdev_printk);
11840 
11841 #define define_netdev_printk_level(func, level)			\
11842 void func(const struct net_device *dev, const char *fmt, ...)	\
11843 {								\
11844 	struct va_format vaf;					\
11845 	va_list args;						\
11846 								\
11847 	va_start(args, fmt);					\
11848 								\
11849 	vaf.fmt = fmt;						\
11850 	vaf.va = &args;						\
11851 								\
11852 	__netdev_printk(level, dev, &vaf);			\
11853 								\
11854 	va_end(args);						\
11855 }								\
11856 EXPORT_SYMBOL(func);
11857 
11858 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11859 define_netdev_printk_level(netdev_alert, KERN_ALERT);
11860 define_netdev_printk_level(netdev_crit, KERN_CRIT);
11861 define_netdev_printk_level(netdev_err, KERN_ERR);
11862 define_netdev_printk_level(netdev_warn, KERN_WARNING);
11863 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11864 define_netdev_printk_level(netdev_info, KERN_INFO);
11865 
11866 static void __net_exit netdev_exit(struct net *net)
11867 {
11868 	kfree(net->dev_name_head);
11869 	kfree(net->dev_index_head);
11870 	xa_destroy(&net->dev_by_index);
11871 	if (net != &init_net)
11872 		WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11873 }
11874 
11875 static struct pernet_operations __net_initdata netdev_net_ops = {
11876 	.init = netdev_init,
11877 	.exit = netdev_exit,
11878 };
11879 
11880 static void __net_exit default_device_exit_net(struct net *net)
11881 {
11882 	struct netdev_name_node *name_node, *tmp;
11883 	struct net_device *dev, *aux;
11884 	/*
11885 	 * Push all migratable network devices back to the
11886 	 * initial network namespace
11887 	 */
11888 	ASSERT_RTNL();
11889 	for_each_netdev_safe(net, dev, aux) {
11890 		int err;
11891 		char fb_name[IFNAMSIZ];
11892 
11893 		/* Ignore unmoveable devices (i.e. loopback) */
11894 		if (dev->netns_local)
11895 			continue;
11896 
11897 		/* Leave virtual devices for the generic cleanup */
11898 		if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11899 			continue;
11900 
11901 		/* Push remaining network devices to init_net */
11902 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11903 		if (netdev_name_in_use(&init_net, fb_name))
11904 			snprintf(fb_name, IFNAMSIZ, "dev%%d");
11905 
11906 		netdev_for_each_altname_safe(dev, name_node, tmp)
11907 			if (netdev_name_in_use(&init_net, name_node->name))
11908 				__netdev_name_node_alt_destroy(name_node);
11909 
11910 		err = dev_change_net_namespace(dev, &init_net, fb_name);
11911 		if (err) {
11912 			pr_emerg("%s: failed to move %s to init_net: %d\n",
11913 				 __func__, dev->name, err);
11914 			BUG();
11915 		}
11916 	}
11917 }
11918 
11919 static void __net_exit default_device_exit_batch(struct list_head *net_list)
11920 {
11921 	/* At exit all network devices most be removed from a network
11922 	 * namespace.  Do this in the reverse order of registration.
11923 	 * Do this across as many network namespaces as possible to
11924 	 * improve batching efficiency.
11925 	 */
11926 	struct net_device *dev;
11927 	struct net *net;
11928 	LIST_HEAD(dev_kill_list);
11929 
11930 	rtnl_lock();
11931 	list_for_each_entry(net, net_list, exit_list) {
11932 		default_device_exit_net(net);
11933 		cond_resched();
11934 	}
11935 
11936 	list_for_each_entry(net, net_list, exit_list) {
11937 		for_each_netdev_reverse(net, dev) {
11938 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11939 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11940 			else
11941 				unregister_netdevice_queue(dev, &dev_kill_list);
11942 		}
11943 	}
11944 	unregister_netdevice_many(&dev_kill_list);
11945 	rtnl_unlock();
11946 }
11947 
11948 static struct pernet_operations __net_initdata default_device_ops = {
11949 	.exit_batch = default_device_exit_batch,
11950 };
11951 
11952 static void __init net_dev_struct_check(void)
11953 {
11954 	/* TX read-mostly hotpath */
11955 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, priv_flags_fast);
11956 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, netdev_ops);
11957 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, header_ops);
11958 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, _tx);
11959 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, real_num_tx_queues);
11960 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_size);
11961 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_ipv4_max_size);
11962 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_segs);
11963 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_partial_features);
11964 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, num_tc);
11965 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, mtu);
11966 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, needed_headroom);
11967 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tc_to_txq);
11968 #ifdef CONFIG_XPS
11969 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, xps_maps);
11970 #endif
11971 #ifdef CONFIG_NETFILTER_EGRESS
11972 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, nf_hooks_egress);
11973 #endif
11974 #ifdef CONFIG_NET_XGRESS
11975 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tcx_egress);
11976 #endif
11977 	CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_tx, 160);
11978 
11979 	/* TXRX read-mostly hotpath */
11980 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, lstats);
11981 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, state);
11982 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, flags);
11983 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, hard_header_len);
11984 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, features);
11985 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, ip6_ptr);
11986 	CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_txrx, 46);
11987 
11988 	/* RX read-mostly hotpath */
11989 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ptype_specific);
11990 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ifindex);
11991 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, real_num_rx_queues);
11992 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, _rx);
11993 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_flush_timeout);
11994 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, napi_defer_hard_irqs);
11995 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_max_size);
11996 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_ipv4_max_size);
11997 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler);
11998 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler_data);
11999 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, nd_net);
12000 #ifdef CONFIG_NETPOLL
12001 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, npinfo);
12002 #endif
12003 #ifdef CONFIG_NET_XGRESS
12004 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, tcx_ingress);
12005 #endif
12006 	CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_rx, 104);
12007 }
12008 
12009 /*
12010  *	Initialize the DEV module. At boot time this walks the device list and
12011  *	unhooks any devices that fail to initialise (normally hardware not
12012  *	present) and leaves us with a valid list of present and active devices.
12013  *
12014  */
12015 
12016 /* We allocate 256 pages for each CPU if PAGE_SHIFT is 12 */
12017 #define SYSTEM_PERCPU_PAGE_POOL_SIZE	((1 << 20) / PAGE_SIZE)
12018 
12019 static int net_page_pool_create(int cpuid)
12020 {
12021 #if IS_ENABLED(CONFIG_PAGE_POOL)
12022 	struct page_pool_params page_pool_params = {
12023 		.pool_size = SYSTEM_PERCPU_PAGE_POOL_SIZE,
12024 		.flags = PP_FLAG_SYSTEM_POOL,
12025 		.nid = cpu_to_mem(cpuid),
12026 	};
12027 	struct page_pool *pp_ptr;
12028 
12029 	pp_ptr = page_pool_create_percpu(&page_pool_params, cpuid);
12030 	if (IS_ERR(pp_ptr))
12031 		return -ENOMEM;
12032 
12033 	per_cpu(system_page_pool, cpuid) = pp_ptr;
12034 #endif
12035 	return 0;
12036 }
12037 
12038 static int backlog_napi_should_run(unsigned int cpu)
12039 {
12040 	struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
12041 	struct napi_struct *napi = &sd->backlog;
12042 
12043 	return test_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
12044 }
12045 
12046 static void run_backlog_napi(unsigned int cpu)
12047 {
12048 	struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
12049 
12050 	napi_threaded_poll_loop(&sd->backlog);
12051 }
12052 
12053 static void backlog_napi_setup(unsigned int cpu)
12054 {
12055 	struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
12056 	struct napi_struct *napi = &sd->backlog;
12057 
12058 	napi->thread = this_cpu_read(backlog_napi);
12059 	set_bit(NAPI_STATE_THREADED, &napi->state);
12060 }
12061 
12062 static struct smp_hotplug_thread backlog_threads = {
12063 	.store			= &backlog_napi,
12064 	.thread_should_run	= backlog_napi_should_run,
12065 	.thread_fn		= run_backlog_napi,
12066 	.thread_comm		= "backlog_napi/%u",
12067 	.setup			= backlog_napi_setup,
12068 };
12069 
12070 /*
12071  *       This is called single threaded during boot, so no need
12072  *       to take the rtnl semaphore.
12073  */
12074 static int __init net_dev_init(void)
12075 {
12076 	int i, rc = -ENOMEM;
12077 
12078 	BUG_ON(!dev_boot_phase);
12079 
12080 	net_dev_struct_check();
12081 
12082 	if (dev_proc_init())
12083 		goto out;
12084 
12085 	if (netdev_kobject_init())
12086 		goto out;
12087 
12088 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
12089 		INIT_LIST_HEAD(&ptype_base[i]);
12090 
12091 	if (register_pernet_subsys(&netdev_net_ops))
12092 		goto out;
12093 
12094 	/*
12095 	 *	Initialise the packet receive queues.
12096 	 */
12097 
12098 	for_each_possible_cpu(i) {
12099 		struct work_struct *flush = per_cpu_ptr(&flush_works, i);
12100 		struct softnet_data *sd = &per_cpu(softnet_data, i);
12101 
12102 		INIT_WORK(flush, flush_backlog);
12103 
12104 		skb_queue_head_init(&sd->input_pkt_queue);
12105 		skb_queue_head_init(&sd->process_queue);
12106 #ifdef CONFIG_XFRM_OFFLOAD
12107 		skb_queue_head_init(&sd->xfrm_backlog);
12108 #endif
12109 		INIT_LIST_HEAD(&sd->poll_list);
12110 		sd->output_queue_tailp = &sd->output_queue;
12111 #ifdef CONFIG_RPS
12112 		INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
12113 		sd->cpu = i;
12114 #endif
12115 		INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd);
12116 		spin_lock_init(&sd->defer_lock);
12117 
12118 		init_gro_hash(&sd->backlog);
12119 		sd->backlog.poll = process_backlog;
12120 		sd->backlog.weight = weight_p;
12121 		INIT_LIST_HEAD(&sd->backlog.poll_list);
12122 
12123 		if (net_page_pool_create(i))
12124 			goto out;
12125 	}
12126 	if (use_backlog_threads())
12127 		smpboot_register_percpu_thread(&backlog_threads);
12128 
12129 	dev_boot_phase = 0;
12130 
12131 	/* The loopback device is special if any other network devices
12132 	 * is present in a network namespace the loopback device must
12133 	 * be present. Since we now dynamically allocate and free the
12134 	 * loopback device ensure this invariant is maintained by
12135 	 * keeping the loopback device as the first device on the
12136 	 * list of network devices.  Ensuring the loopback devices
12137 	 * is the first device that appears and the last network device
12138 	 * that disappears.
12139 	 */
12140 	if (register_pernet_device(&loopback_net_ops))
12141 		goto out;
12142 
12143 	if (register_pernet_device(&default_device_ops))
12144 		goto out;
12145 
12146 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
12147 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
12148 
12149 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
12150 				       NULL, dev_cpu_dead);
12151 	WARN_ON(rc < 0);
12152 	rc = 0;
12153 
12154 	/* avoid static key IPIs to isolated CPUs */
12155 	if (housekeeping_enabled(HK_TYPE_MISC))
12156 		net_enable_timestamp();
12157 out:
12158 	if (rc < 0) {
12159 		for_each_possible_cpu(i) {
12160 			struct page_pool *pp_ptr;
12161 
12162 			pp_ptr = per_cpu(system_page_pool, i);
12163 			if (!pp_ptr)
12164 				continue;
12165 
12166 			page_pool_destroy(pp_ptr);
12167 			per_cpu(system_page_pool, i) = NULL;
12168 		}
12169 	}
12170 
12171 	return rc;
12172 }
12173 
12174 subsys_initcall(net_dev_init);
12175