1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * NET3 Protocol independent device support routines. 4 * 5 * Derived from the non IP parts of dev.c 1.0.19 6 * Authors: Ross Biro 7 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 8 * Mark Evans, <evansmp@uhura.aston.ac.uk> 9 * 10 * Additional Authors: 11 * Florian la Roche <rzsfl@rz.uni-sb.de> 12 * Alan Cox <gw4pts@gw4pts.ampr.org> 13 * David Hinds <dahinds@users.sourceforge.net> 14 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 15 * Adam Sulmicki <adam@cfar.umd.edu> 16 * Pekka Riikonen <priikone@poesidon.pspt.fi> 17 * 18 * Changes: 19 * D.J. Barrow : Fixed bug where dev->refcnt gets set 20 * to 2 if register_netdev gets called 21 * before net_dev_init & also removed a 22 * few lines of code in the process. 23 * Alan Cox : device private ioctl copies fields back. 24 * Alan Cox : Transmit queue code does relevant 25 * stunts to keep the queue safe. 26 * Alan Cox : Fixed double lock. 27 * Alan Cox : Fixed promisc NULL pointer trap 28 * ???????? : Support the full private ioctl range 29 * Alan Cox : Moved ioctl permission check into 30 * drivers 31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 32 * Alan Cox : 100 backlog just doesn't cut it when 33 * you start doing multicast video 8) 34 * Alan Cox : Rewrote net_bh and list manager. 35 * Alan Cox : Fix ETH_P_ALL echoback lengths. 36 * Alan Cox : Took out transmit every packet pass 37 * Saved a few bytes in the ioctl handler 38 * Alan Cox : Network driver sets packet type before 39 * calling netif_rx. Saves a function 40 * call a packet. 41 * Alan Cox : Hashed net_bh() 42 * Richard Kooijman: Timestamp fixes. 43 * Alan Cox : Wrong field in SIOCGIFDSTADDR 44 * Alan Cox : Device lock protection. 45 * Alan Cox : Fixed nasty side effect of device close 46 * changes. 47 * Rudi Cilibrasi : Pass the right thing to 48 * set_mac_address() 49 * Dave Miller : 32bit quantity for the device lock to 50 * make it work out on a Sparc. 51 * Bjorn Ekwall : Added KERNELD hack. 52 * Alan Cox : Cleaned up the backlog initialise. 53 * Craig Metz : SIOCGIFCONF fix if space for under 54 * 1 device. 55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 56 * is no device open function. 57 * Andi Kleen : Fix error reporting for SIOCGIFCONF 58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 59 * Cyrus Durgin : Cleaned for KMOD 60 * Adam Sulmicki : Bug Fix : Network Device Unload 61 * A network device unload needs to purge 62 * the backlog queue. 63 * Paul Rusty Russell : SIOCSIFNAME 64 * Pekka Riikonen : Netdev boot-time settings code 65 * Andrew Morton : Make unregister_netdevice wait 66 * indefinitely on dev->refcnt 67 * J Hadi Salim : - Backlog queue sampling 68 * - netif_rx() feedback 69 */ 70 71 #include <linux/uaccess.h> 72 #include <linux/bitmap.h> 73 #include <linux/capability.h> 74 #include <linux/cpu.h> 75 #include <linux/types.h> 76 #include <linux/kernel.h> 77 #include <linux/hash.h> 78 #include <linux/slab.h> 79 #include <linux/sched.h> 80 #include <linux/sched/mm.h> 81 #include <linux/mutex.h> 82 #include <linux/rwsem.h> 83 #include <linux/string.h> 84 #include <linux/mm.h> 85 #include <linux/socket.h> 86 #include <linux/sockios.h> 87 #include <linux/errno.h> 88 #include <linux/interrupt.h> 89 #include <linux/if_ether.h> 90 #include <linux/netdevice.h> 91 #include <linux/etherdevice.h> 92 #include <linux/ethtool.h> 93 #include <linux/skbuff.h> 94 #include <linux/kthread.h> 95 #include <linux/bpf.h> 96 #include <linux/bpf_trace.h> 97 #include <net/net_namespace.h> 98 #include <net/sock.h> 99 #include <net/busy_poll.h> 100 #include <linux/rtnetlink.h> 101 #include <linux/stat.h> 102 #include <net/dsa.h> 103 #include <net/dst.h> 104 #include <net/dst_metadata.h> 105 #include <net/gro.h> 106 #include <net/pkt_sched.h> 107 #include <net/pkt_cls.h> 108 #include <net/checksum.h> 109 #include <net/xfrm.h> 110 #include <net/tcx.h> 111 #include <linux/highmem.h> 112 #include <linux/init.h> 113 #include <linux/module.h> 114 #include <linux/netpoll.h> 115 #include <linux/rcupdate.h> 116 #include <linux/delay.h> 117 #include <net/iw_handler.h> 118 #include <asm/current.h> 119 #include <linux/audit.h> 120 #include <linux/dmaengine.h> 121 #include <linux/err.h> 122 #include <linux/ctype.h> 123 #include <linux/if_arp.h> 124 #include <linux/if_vlan.h> 125 #include <linux/ip.h> 126 #include <net/ip.h> 127 #include <net/mpls.h> 128 #include <linux/ipv6.h> 129 #include <linux/in.h> 130 #include <linux/jhash.h> 131 #include <linux/random.h> 132 #include <trace/events/napi.h> 133 #include <trace/events/net.h> 134 #include <trace/events/skb.h> 135 #include <trace/events/qdisc.h> 136 #include <trace/events/xdp.h> 137 #include <linux/inetdevice.h> 138 #include <linux/cpu_rmap.h> 139 #include <linux/static_key.h> 140 #include <linux/hashtable.h> 141 #include <linux/vmalloc.h> 142 #include <linux/if_macvlan.h> 143 #include <linux/errqueue.h> 144 #include <linux/hrtimer.h> 145 #include <linux/netfilter_netdev.h> 146 #include <linux/crash_dump.h> 147 #include <linux/sctp.h> 148 #include <net/udp_tunnel.h> 149 #include <linux/net_namespace.h> 150 #include <linux/indirect_call_wrapper.h> 151 #include <net/devlink.h> 152 #include <linux/pm_runtime.h> 153 #include <linux/prandom.h> 154 #include <linux/once_lite.h> 155 #include <net/netdev_rx_queue.h> 156 #include <net/page_pool/types.h> 157 #include <net/page_pool/helpers.h> 158 159 #include "dev.h" 160 #include "net-sysfs.h" 161 162 static DEFINE_SPINLOCK(ptype_lock); 163 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 164 struct list_head ptype_all __read_mostly; /* Taps */ 165 166 static int netif_rx_internal(struct sk_buff *skb); 167 static int call_netdevice_notifiers_extack(unsigned long val, 168 struct net_device *dev, 169 struct netlink_ext_ack *extack); 170 171 static DEFINE_MUTEX(ifalias_mutex); 172 173 /* protects napi_hash addition/deletion and napi_gen_id */ 174 static DEFINE_SPINLOCK(napi_hash_lock); 175 176 static unsigned int napi_gen_id = NR_CPUS; 177 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8); 178 179 static DECLARE_RWSEM(devnet_rename_sem); 180 181 static inline void dev_base_seq_inc(struct net *net) 182 { 183 while (++net->dev_base_seq == 0) 184 ; 185 } 186 187 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 188 { 189 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ)); 190 191 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 192 } 193 194 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 195 { 196 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 197 } 198 199 static inline void rps_lock_irqsave(struct softnet_data *sd, 200 unsigned long *flags) 201 { 202 if (IS_ENABLED(CONFIG_RPS)) 203 spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags); 204 else if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 205 local_irq_save(*flags); 206 } 207 208 static inline void rps_lock_irq_disable(struct softnet_data *sd) 209 { 210 if (IS_ENABLED(CONFIG_RPS)) 211 spin_lock_irq(&sd->input_pkt_queue.lock); 212 else if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 213 local_irq_disable(); 214 } 215 216 static inline void rps_unlock_irq_restore(struct softnet_data *sd, 217 unsigned long *flags) 218 { 219 if (IS_ENABLED(CONFIG_RPS)) 220 spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags); 221 else if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 222 local_irq_restore(*flags); 223 } 224 225 static inline void rps_unlock_irq_enable(struct softnet_data *sd) 226 { 227 if (IS_ENABLED(CONFIG_RPS)) 228 spin_unlock_irq(&sd->input_pkt_queue.lock); 229 else if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 230 local_irq_enable(); 231 } 232 233 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev, 234 const char *name) 235 { 236 struct netdev_name_node *name_node; 237 238 name_node = kmalloc(sizeof(*name_node), GFP_KERNEL); 239 if (!name_node) 240 return NULL; 241 INIT_HLIST_NODE(&name_node->hlist); 242 name_node->dev = dev; 243 name_node->name = name; 244 return name_node; 245 } 246 247 static struct netdev_name_node * 248 netdev_name_node_head_alloc(struct net_device *dev) 249 { 250 struct netdev_name_node *name_node; 251 252 name_node = netdev_name_node_alloc(dev, dev->name); 253 if (!name_node) 254 return NULL; 255 INIT_LIST_HEAD(&name_node->list); 256 return name_node; 257 } 258 259 static void netdev_name_node_free(struct netdev_name_node *name_node) 260 { 261 kfree(name_node); 262 } 263 264 static void netdev_name_node_add(struct net *net, 265 struct netdev_name_node *name_node) 266 { 267 hlist_add_head_rcu(&name_node->hlist, 268 dev_name_hash(net, name_node->name)); 269 } 270 271 static void netdev_name_node_del(struct netdev_name_node *name_node) 272 { 273 hlist_del_rcu(&name_node->hlist); 274 } 275 276 static struct netdev_name_node *netdev_name_node_lookup(struct net *net, 277 const char *name) 278 { 279 struct hlist_head *head = dev_name_hash(net, name); 280 struct netdev_name_node *name_node; 281 282 hlist_for_each_entry(name_node, head, hlist) 283 if (!strcmp(name_node->name, name)) 284 return name_node; 285 return NULL; 286 } 287 288 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net, 289 const char *name) 290 { 291 struct hlist_head *head = dev_name_hash(net, name); 292 struct netdev_name_node *name_node; 293 294 hlist_for_each_entry_rcu(name_node, head, hlist) 295 if (!strcmp(name_node->name, name)) 296 return name_node; 297 return NULL; 298 } 299 300 bool netdev_name_in_use(struct net *net, const char *name) 301 { 302 return netdev_name_node_lookup(net, name); 303 } 304 EXPORT_SYMBOL(netdev_name_in_use); 305 306 int netdev_name_node_alt_create(struct net_device *dev, const char *name) 307 { 308 struct netdev_name_node *name_node; 309 struct net *net = dev_net(dev); 310 311 name_node = netdev_name_node_lookup(net, name); 312 if (name_node) 313 return -EEXIST; 314 name_node = netdev_name_node_alloc(dev, name); 315 if (!name_node) 316 return -ENOMEM; 317 netdev_name_node_add(net, name_node); 318 /* The node that holds dev->name acts as a head of per-device list. */ 319 list_add_tail_rcu(&name_node->list, &dev->name_node->list); 320 321 return 0; 322 } 323 324 static void netdev_name_node_alt_free(struct rcu_head *head) 325 { 326 struct netdev_name_node *name_node = 327 container_of(head, struct netdev_name_node, rcu); 328 329 kfree(name_node->name); 330 netdev_name_node_free(name_node); 331 } 332 333 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node) 334 { 335 netdev_name_node_del(name_node); 336 list_del(&name_node->list); 337 call_rcu(&name_node->rcu, netdev_name_node_alt_free); 338 } 339 340 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name) 341 { 342 struct netdev_name_node *name_node; 343 struct net *net = dev_net(dev); 344 345 name_node = netdev_name_node_lookup(net, name); 346 if (!name_node) 347 return -ENOENT; 348 /* lookup might have found our primary name or a name belonging 349 * to another device. 350 */ 351 if (name_node == dev->name_node || name_node->dev != dev) 352 return -EINVAL; 353 354 __netdev_name_node_alt_destroy(name_node); 355 return 0; 356 } 357 358 static void netdev_name_node_alt_flush(struct net_device *dev) 359 { 360 struct netdev_name_node *name_node, *tmp; 361 362 list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list) { 363 list_del(&name_node->list); 364 netdev_name_node_alt_free(&name_node->rcu); 365 } 366 } 367 368 /* Device list insertion */ 369 static void list_netdevice(struct net_device *dev) 370 { 371 struct netdev_name_node *name_node; 372 struct net *net = dev_net(dev); 373 374 ASSERT_RTNL(); 375 376 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 377 netdev_name_node_add(net, dev->name_node); 378 hlist_add_head_rcu(&dev->index_hlist, 379 dev_index_hash(net, dev->ifindex)); 380 381 netdev_for_each_altname(dev, name_node) 382 netdev_name_node_add(net, name_node); 383 384 /* We reserved the ifindex, this can't fail */ 385 WARN_ON(xa_store(&net->dev_by_index, dev->ifindex, dev, GFP_KERNEL)); 386 387 dev_base_seq_inc(net); 388 } 389 390 /* Device list removal 391 * caller must respect a RCU grace period before freeing/reusing dev 392 */ 393 static void unlist_netdevice(struct net_device *dev) 394 { 395 struct netdev_name_node *name_node; 396 struct net *net = dev_net(dev); 397 398 ASSERT_RTNL(); 399 400 xa_erase(&net->dev_by_index, dev->ifindex); 401 402 netdev_for_each_altname(dev, name_node) 403 netdev_name_node_del(name_node); 404 405 /* Unlink dev from the device chain */ 406 list_del_rcu(&dev->dev_list); 407 netdev_name_node_del(dev->name_node); 408 hlist_del_rcu(&dev->index_hlist); 409 410 dev_base_seq_inc(dev_net(dev)); 411 } 412 413 /* 414 * Our notifier list 415 */ 416 417 static RAW_NOTIFIER_HEAD(netdev_chain); 418 419 /* 420 * Device drivers call our routines to queue packets here. We empty the 421 * queue in the local softnet handler. 422 */ 423 424 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 425 EXPORT_PER_CPU_SYMBOL(softnet_data); 426 427 /* Page_pool has a lockless array/stack to alloc/recycle pages. 428 * PP consumers must pay attention to run APIs in the appropriate context 429 * (e.g. NAPI context). 430 */ 431 static DEFINE_PER_CPU_ALIGNED(struct page_pool *, system_page_pool); 432 433 #ifdef CONFIG_LOCKDEP 434 /* 435 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 436 * according to dev->type 437 */ 438 static const unsigned short netdev_lock_type[] = { 439 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 440 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 441 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 442 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 443 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 444 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 445 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 446 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 447 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 448 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 449 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 450 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 451 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM, 452 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE, 453 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE}; 454 455 static const char *const netdev_lock_name[] = { 456 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 457 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 458 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 459 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 460 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 461 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 462 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 463 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 464 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 465 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 466 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 467 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 468 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM", 469 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE", 470 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"}; 471 472 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 473 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 474 475 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 476 { 477 int i; 478 479 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 480 if (netdev_lock_type[i] == dev_type) 481 return i; 482 /* the last key is used by default */ 483 return ARRAY_SIZE(netdev_lock_type) - 1; 484 } 485 486 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 487 unsigned short dev_type) 488 { 489 int i; 490 491 i = netdev_lock_pos(dev_type); 492 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 493 netdev_lock_name[i]); 494 } 495 496 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 497 { 498 int i; 499 500 i = netdev_lock_pos(dev->type); 501 lockdep_set_class_and_name(&dev->addr_list_lock, 502 &netdev_addr_lock_key[i], 503 netdev_lock_name[i]); 504 } 505 #else 506 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 507 unsigned short dev_type) 508 { 509 } 510 511 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 512 { 513 } 514 #endif 515 516 /******************************************************************************* 517 * 518 * Protocol management and registration routines 519 * 520 *******************************************************************************/ 521 522 523 /* 524 * Add a protocol ID to the list. Now that the input handler is 525 * smarter we can dispense with all the messy stuff that used to be 526 * here. 527 * 528 * BEWARE!!! Protocol handlers, mangling input packets, 529 * MUST BE last in hash buckets and checking protocol handlers 530 * MUST start from promiscuous ptype_all chain in net_bh. 531 * It is true now, do not change it. 532 * Explanation follows: if protocol handler, mangling packet, will 533 * be the first on list, it is not able to sense, that packet 534 * is cloned and should be copied-on-write, so that it will 535 * change it and subsequent readers will get broken packet. 536 * --ANK (980803) 537 */ 538 539 static inline struct list_head *ptype_head(const struct packet_type *pt) 540 { 541 if (pt->type == htons(ETH_P_ALL)) 542 return pt->dev ? &pt->dev->ptype_all : &ptype_all; 543 else 544 return pt->dev ? &pt->dev->ptype_specific : 545 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 546 } 547 548 /** 549 * dev_add_pack - add packet handler 550 * @pt: packet type declaration 551 * 552 * Add a protocol handler to the networking stack. The passed &packet_type 553 * is linked into kernel lists and may not be freed until it has been 554 * removed from the kernel lists. 555 * 556 * This call does not sleep therefore it can not 557 * guarantee all CPU's that are in middle of receiving packets 558 * will see the new packet type (until the next received packet). 559 */ 560 561 void dev_add_pack(struct packet_type *pt) 562 { 563 struct list_head *head = ptype_head(pt); 564 565 spin_lock(&ptype_lock); 566 list_add_rcu(&pt->list, head); 567 spin_unlock(&ptype_lock); 568 } 569 EXPORT_SYMBOL(dev_add_pack); 570 571 /** 572 * __dev_remove_pack - remove packet handler 573 * @pt: packet type declaration 574 * 575 * Remove a protocol handler that was previously added to the kernel 576 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 577 * from the kernel lists and can be freed or reused once this function 578 * returns. 579 * 580 * The packet type might still be in use by receivers 581 * and must not be freed until after all the CPU's have gone 582 * through a quiescent state. 583 */ 584 void __dev_remove_pack(struct packet_type *pt) 585 { 586 struct list_head *head = ptype_head(pt); 587 struct packet_type *pt1; 588 589 spin_lock(&ptype_lock); 590 591 list_for_each_entry(pt1, head, list) { 592 if (pt == pt1) { 593 list_del_rcu(&pt->list); 594 goto out; 595 } 596 } 597 598 pr_warn("dev_remove_pack: %p not found\n", pt); 599 out: 600 spin_unlock(&ptype_lock); 601 } 602 EXPORT_SYMBOL(__dev_remove_pack); 603 604 /** 605 * dev_remove_pack - remove packet handler 606 * @pt: packet type declaration 607 * 608 * Remove a protocol handler that was previously added to the kernel 609 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 610 * from the kernel lists and can be freed or reused once this function 611 * returns. 612 * 613 * This call sleeps to guarantee that no CPU is looking at the packet 614 * type after return. 615 */ 616 void dev_remove_pack(struct packet_type *pt) 617 { 618 __dev_remove_pack(pt); 619 620 synchronize_net(); 621 } 622 EXPORT_SYMBOL(dev_remove_pack); 623 624 625 /******************************************************************************* 626 * 627 * Device Interface Subroutines 628 * 629 *******************************************************************************/ 630 631 /** 632 * dev_get_iflink - get 'iflink' value of a interface 633 * @dev: targeted interface 634 * 635 * Indicates the ifindex the interface is linked to. 636 * Physical interfaces have the same 'ifindex' and 'iflink' values. 637 */ 638 639 int dev_get_iflink(const struct net_device *dev) 640 { 641 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink) 642 return dev->netdev_ops->ndo_get_iflink(dev); 643 644 return dev->ifindex; 645 } 646 EXPORT_SYMBOL(dev_get_iflink); 647 648 /** 649 * dev_fill_metadata_dst - Retrieve tunnel egress information. 650 * @dev: targeted interface 651 * @skb: The packet. 652 * 653 * For better visibility of tunnel traffic OVS needs to retrieve 654 * egress tunnel information for a packet. Following API allows 655 * user to get this info. 656 */ 657 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb) 658 { 659 struct ip_tunnel_info *info; 660 661 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst) 662 return -EINVAL; 663 664 info = skb_tunnel_info_unclone(skb); 665 if (!info) 666 return -ENOMEM; 667 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX))) 668 return -EINVAL; 669 670 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb); 671 } 672 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst); 673 674 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack) 675 { 676 int k = stack->num_paths++; 677 678 if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX)) 679 return NULL; 680 681 return &stack->path[k]; 682 } 683 684 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr, 685 struct net_device_path_stack *stack) 686 { 687 const struct net_device *last_dev; 688 struct net_device_path_ctx ctx = { 689 .dev = dev, 690 }; 691 struct net_device_path *path; 692 int ret = 0; 693 694 memcpy(ctx.daddr, daddr, sizeof(ctx.daddr)); 695 stack->num_paths = 0; 696 while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) { 697 last_dev = ctx.dev; 698 path = dev_fwd_path(stack); 699 if (!path) 700 return -1; 701 702 memset(path, 0, sizeof(struct net_device_path)); 703 ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path); 704 if (ret < 0) 705 return -1; 706 707 if (WARN_ON_ONCE(last_dev == ctx.dev)) 708 return -1; 709 } 710 711 if (!ctx.dev) 712 return ret; 713 714 path = dev_fwd_path(stack); 715 if (!path) 716 return -1; 717 path->type = DEV_PATH_ETHERNET; 718 path->dev = ctx.dev; 719 720 return ret; 721 } 722 EXPORT_SYMBOL_GPL(dev_fill_forward_path); 723 724 /** 725 * __dev_get_by_name - find a device by its name 726 * @net: the applicable net namespace 727 * @name: name to find 728 * 729 * Find an interface by name. Must be called under RTNL semaphore. 730 * If the name is found a pointer to the device is returned. 731 * If the name is not found then %NULL is returned. The 732 * reference counters are not incremented so the caller must be 733 * careful with locks. 734 */ 735 736 struct net_device *__dev_get_by_name(struct net *net, const char *name) 737 { 738 struct netdev_name_node *node_name; 739 740 node_name = netdev_name_node_lookup(net, name); 741 return node_name ? node_name->dev : NULL; 742 } 743 EXPORT_SYMBOL(__dev_get_by_name); 744 745 /** 746 * dev_get_by_name_rcu - find a device by its name 747 * @net: the applicable net namespace 748 * @name: name to find 749 * 750 * Find an interface by name. 751 * If the name is found a pointer to the device is returned. 752 * If the name is not found then %NULL is returned. 753 * The reference counters are not incremented so the caller must be 754 * careful with locks. The caller must hold RCU lock. 755 */ 756 757 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 758 { 759 struct netdev_name_node *node_name; 760 761 node_name = netdev_name_node_lookup_rcu(net, name); 762 return node_name ? node_name->dev : NULL; 763 } 764 EXPORT_SYMBOL(dev_get_by_name_rcu); 765 766 /* Deprecated for new users, call netdev_get_by_name() instead */ 767 struct net_device *dev_get_by_name(struct net *net, const char *name) 768 { 769 struct net_device *dev; 770 771 rcu_read_lock(); 772 dev = dev_get_by_name_rcu(net, name); 773 dev_hold(dev); 774 rcu_read_unlock(); 775 return dev; 776 } 777 EXPORT_SYMBOL(dev_get_by_name); 778 779 /** 780 * netdev_get_by_name() - find a device by its name 781 * @net: the applicable net namespace 782 * @name: name to find 783 * @tracker: tracking object for the acquired reference 784 * @gfp: allocation flags for the tracker 785 * 786 * Find an interface by name. This can be called from any 787 * context and does its own locking. The returned handle has 788 * the usage count incremented and the caller must use netdev_put() to 789 * release it when it is no longer needed. %NULL is returned if no 790 * matching device is found. 791 */ 792 struct net_device *netdev_get_by_name(struct net *net, const char *name, 793 netdevice_tracker *tracker, gfp_t gfp) 794 { 795 struct net_device *dev; 796 797 dev = dev_get_by_name(net, name); 798 if (dev) 799 netdev_tracker_alloc(dev, tracker, gfp); 800 return dev; 801 } 802 EXPORT_SYMBOL(netdev_get_by_name); 803 804 /** 805 * __dev_get_by_index - find a device by its ifindex 806 * @net: the applicable net namespace 807 * @ifindex: index of device 808 * 809 * Search for an interface by index. Returns %NULL if the device 810 * is not found or a pointer to the device. The device has not 811 * had its reference counter increased so the caller must be careful 812 * about locking. The caller must hold the RTNL semaphore. 813 */ 814 815 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 816 { 817 struct net_device *dev; 818 struct hlist_head *head = dev_index_hash(net, ifindex); 819 820 hlist_for_each_entry(dev, head, index_hlist) 821 if (dev->ifindex == ifindex) 822 return dev; 823 824 return NULL; 825 } 826 EXPORT_SYMBOL(__dev_get_by_index); 827 828 /** 829 * dev_get_by_index_rcu - find a device by its ifindex 830 * @net: the applicable net namespace 831 * @ifindex: index of device 832 * 833 * Search for an interface by index. Returns %NULL if the device 834 * is not found or a pointer to the device. The device has not 835 * had its reference counter increased so the caller must be careful 836 * about locking. The caller must hold RCU lock. 837 */ 838 839 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 840 { 841 struct net_device *dev; 842 struct hlist_head *head = dev_index_hash(net, ifindex); 843 844 hlist_for_each_entry_rcu(dev, head, index_hlist) 845 if (dev->ifindex == ifindex) 846 return dev; 847 848 return NULL; 849 } 850 EXPORT_SYMBOL(dev_get_by_index_rcu); 851 852 /* Deprecated for new users, call netdev_get_by_index() instead */ 853 struct net_device *dev_get_by_index(struct net *net, int ifindex) 854 { 855 struct net_device *dev; 856 857 rcu_read_lock(); 858 dev = dev_get_by_index_rcu(net, ifindex); 859 dev_hold(dev); 860 rcu_read_unlock(); 861 return dev; 862 } 863 EXPORT_SYMBOL(dev_get_by_index); 864 865 /** 866 * netdev_get_by_index() - find a device by its ifindex 867 * @net: the applicable net namespace 868 * @ifindex: index of device 869 * @tracker: tracking object for the acquired reference 870 * @gfp: allocation flags for the tracker 871 * 872 * Search for an interface by index. Returns NULL if the device 873 * is not found or a pointer to the device. The device returned has 874 * had a reference added and the pointer is safe until the user calls 875 * netdev_put() to indicate they have finished with it. 876 */ 877 struct net_device *netdev_get_by_index(struct net *net, int ifindex, 878 netdevice_tracker *tracker, gfp_t gfp) 879 { 880 struct net_device *dev; 881 882 dev = dev_get_by_index(net, ifindex); 883 if (dev) 884 netdev_tracker_alloc(dev, tracker, gfp); 885 return dev; 886 } 887 EXPORT_SYMBOL(netdev_get_by_index); 888 889 /** 890 * dev_get_by_napi_id - find a device by napi_id 891 * @napi_id: ID of the NAPI struct 892 * 893 * Search for an interface by NAPI ID. Returns %NULL if the device 894 * is not found or a pointer to the device. The device has not had 895 * its reference counter increased so the caller must be careful 896 * about locking. The caller must hold RCU lock. 897 */ 898 899 struct net_device *dev_get_by_napi_id(unsigned int napi_id) 900 { 901 struct napi_struct *napi; 902 903 WARN_ON_ONCE(!rcu_read_lock_held()); 904 905 if (napi_id < MIN_NAPI_ID) 906 return NULL; 907 908 napi = napi_by_id(napi_id); 909 910 return napi ? napi->dev : NULL; 911 } 912 EXPORT_SYMBOL(dev_get_by_napi_id); 913 914 /** 915 * netdev_get_name - get a netdevice name, knowing its ifindex. 916 * @net: network namespace 917 * @name: a pointer to the buffer where the name will be stored. 918 * @ifindex: the ifindex of the interface to get the name from. 919 */ 920 int netdev_get_name(struct net *net, char *name, int ifindex) 921 { 922 struct net_device *dev; 923 int ret; 924 925 down_read(&devnet_rename_sem); 926 rcu_read_lock(); 927 928 dev = dev_get_by_index_rcu(net, ifindex); 929 if (!dev) { 930 ret = -ENODEV; 931 goto out; 932 } 933 934 strcpy(name, dev->name); 935 936 ret = 0; 937 out: 938 rcu_read_unlock(); 939 up_read(&devnet_rename_sem); 940 return ret; 941 } 942 943 /** 944 * dev_getbyhwaddr_rcu - find a device by its hardware address 945 * @net: the applicable net namespace 946 * @type: media type of device 947 * @ha: hardware address 948 * 949 * Search for an interface by MAC address. Returns NULL if the device 950 * is not found or a pointer to the device. 951 * The caller must hold RCU or RTNL. 952 * The returned device has not had its ref count increased 953 * and the caller must therefore be careful about locking 954 * 955 */ 956 957 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 958 const char *ha) 959 { 960 struct net_device *dev; 961 962 for_each_netdev_rcu(net, dev) 963 if (dev->type == type && 964 !memcmp(dev->dev_addr, ha, dev->addr_len)) 965 return dev; 966 967 return NULL; 968 } 969 EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 970 971 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 972 { 973 struct net_device *dev, *ret = NULL; 974 975 rcu_read_lock(); 976 for_each_netdev_rcu(net, dev) 977 if (dev->type == type) { 978 dev_hold(dev); 979 ret = dev; 980 break; 981 } 982 rcu_read_unlock(); 983 return ret; 984 } 985 EXPORT_SYMBOL(dev_getfirstbyhwtype); 986 987 /** 988 * __dev_get_by_flags - find any device with given flags 989 * @net: the applicable net namespace 990 * @if_flags: IFF_* values 991 * @mask: bitmask of bits in if_flags to check 992 * 993 * Search for any interface with the given flags. Returns NULL if a device 994 * is not found or a pointer to the device. Must be called inside 995 * rtnl_lock(), and result refcount is unchanged. 996 */ 997 998 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags, 999 unsigned short mask) 1000 { 1001 struct net_device *dev, *ret; 1002 1003 ASSERT_RTNL(); 1004 1005 ret = NULL; 1006 for_each_netdev(net, dev) { 1007 if (((dev->flags ^ if_flags) & mask) == 0) { 1008 ret = dev; 1009 break; 1010 } 1011 } 1012 return ret; 1013 } 1014 EXPORT_SYMBOL(__dev_get_by_flags); 1015 1016 /** 1017 * dev_valid_name - check if name is okay for network device 1018 * @name: name string 1019 * 1020 * Network device names need to be valid file names to 1021 * allow sysfs to work. We also disallow any kind of 1022 * whitespace. 1023 */ 1024 bool dev_valid_name(const char *name) 1025 { 1026 if (*name == '\0') 1027 return false; 1028 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ) 1029 return false; 1030 if (!strcmp(name, ".") || !strcmp(name, "..")) 1031 return false; 1032 1033 while (*name) { 1034 if (*name == '/' || *name == ':' || isspace(*name)) 1035 return false; 1036 name++; 1037 } 1038 return true; 1039 } 1040 EXPORT_SYMBOL(dev_valid_name); 1041 1042 /** 1043 * __dev_alloc_name - allocate a name for a device 1044 * @net: network namespace to allocate the device name in 1045 * @name: name format string 1046 * @res: result name string 1047 * 1048 * Passed a format string - eg "lt%d" it will try and find a suitable 1049 * id. It scans list of devices to build up a free map, then chooses 1050 * the first empty slot. The caller must hold the dev_base or rtnl lock 1051 * while allocating the name and adding the device in order to avoid 1052 * duplicates. 1053 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1054 * Returns the number of the unit assigned or a negative errno code. 1055 */ 1056 1057 static int __dev_alloc_name(struct net *net, const char *name, char *res) 1058 { 1059 int i = 0; 1060 const char *p; 1061 const int max_netdevices = 8*PAGE_SIZE; 1062 unsigned long *inuse; 1063 struct net_device *d; 1064 char buf[IFNAMSIZ]; 1065 1066 /* Verify the string as this thing may have come from the user. 1067 * There must be one "%d" and no other "%" characters. 1068 */ 1069 p = strchr(name, '%'); 1070 if (!p || p[1] != 'd' || strchr(p + 2, '%')) 1071 return -EINVAL; 1072 1073 /* Use one page as a bit array of possible slots */ 1074 inuse = bitmap_zalloc(max_netdevices, GFP_ATOMIC); 1075 if (!inuse) 1076 return -ENOMEM; 1077 1078 for_each_netdev(net, d) { 1079 struct netdev_name_node *name_node; 1080 1081 netdev_for_each_altname(d, name_node) { 1082 if (!sscanf(name_node->name, name, &i)) 1083 continue; 1084 if (i < 0 || i >= max_netdevices) 1085 continue; 1086 1087 /* avoid cases where sscanf is not exact inverse of printf */ 1088 snprintf(buf, IFNAMSIZ, name, i); 1089 if (!strncmp(buf, name_node->name, IFNAMSIZ)) 1090 __set_bit(i, inuse); 1091 } 1092 if (!sscanf(d->name, name, &i)) 1093 continue; 1094 if (i < 0 || i >= max_netdevices) 1095 continue; 1096 1097 /* avoid cases where sscanf is not exact inverse of printf */ 1098 snprintf(buf, IFNAMSIZ, name, i); 1099 if (!strncmp(buf, d->name, IFNAMSIZ)) 1100 __set_bit(i, inuse); 1101 } 1102 1103 i = find_first_zero_bit(inuse, max_netdevices); 1104 bitmap_free(inuse); 1105 if (i == max_netdevices) 1106 return -ENFILE; 1107 1108 /* 'res' and 'name' could overlap, use 'buf' as an intermediate buffer */ 1109 strscpy(buf, name, IFNAMSIZ); 1110 snprintf(res, IFNAMSIZ, buf, i); 1111 return i; 1112 } 1113 1114 /* Returns negative errno or allocated unit id (see __dev_alloc_name()) */ 1115 static int dev_prep_valid_name(struct net *net, struct net_device *dev, 1116 const char *want_name, char *out_name, 1117 int dup_errno) 1118 { 1119 if (!dev_valid_name(want_name)) 1120 return -EINVAL; 1121 1122 if (strchr(want_name, '%')) 1123 return __dev_alloc_name(net, want_name, out_name); 1124 1125 if (netdev_name_in_use(net, want_name)) 1126 return -dup_errno; 1127 if (out_name != want_name) 1128 strscpy(out_name, want_name, IFNAMSIZ); 1129 return 0; 1130 } 1131 1132 /** 1133 * dev_alloc_name - allocate a name for a device 1134 * @dev: device 1135 * @name: name format string 1136 * 1137 * Passed a format string - eg "lt%d" it will try and find a suitable 1138 * id. It scans list of devices to build up a free map, then chooses 1139 * the first empty slot. The caller must hold the dev_base or rtnl lock 1140 * while allocating the name and adding the device in order to avoid 1141 * duplicates. 1142 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1143 * Returns the number of the unit assigned or a negative errno code. 1144 */ 1145 1146 int dev_alloc_name(struct net_device *dev, const char *name) 1147 { 1148 return dev_prep_valid_name(dev_net(dev), dev, name, dev->name, ENFILE); 1149 } 1150 EXPORT_SYMBOL(dev_alloc_name); 1151 1152 static int dev_get_valid_name(struct net *net, struct net_device *dev, 1153 const char *name) 1154 { 1155 int ret; 1156 1157 ret = dev_prep_valid_name(net, dev, name, dev->name, EEXIST); 1158 return ret < 0 ? ret : 0; 1159 } 1160 1161 /** 1162 * dev_change_name - change name of a device 1163 * @dev: device 1164 * @newname: name (or format string) must be at least IFNAMSIZ 1165 * 1166 * Change name of a device, can pass format strings "eth%d". 1167 * for wildcarding. 1168 */ 1169 int dev_change_name(struct net_device *dev, const char *newname) 1170 { 1171 unsigned char old_assign_type; 1172 char oldname[IFNAMSIZ]; 1173 int err = 0; 1174 int ret; 1175 struct net *net; 1176 1177 ASSERT_RTNL(); 1178 BUG_ON(!dev_net(dev)); 1179 1180 net = dev_net(dev); 1181 1182 down_write(&devnet_rename_sem); 1183 1184 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) { 1185 up_write(&devnet_rename_sem); 1186 return 0; 1187 } 1188 1189 memcpy(oldname, dev->name, IFNAMSIZ); 1190 1191 err = dev_get_valid_name(net, dev, newname); 1192 if (err < 0) { 1193 up_write(&devnet_rename_sem); 1194 return err; 1195 } 1196 1197 if (oldname[0] && !strchr(oldname, '%')) 1198 netdev_info(dev, "renamed from %s%s\n", oldname, 1199 dev->flags & IFF_UP ? " (while UP)" : ""); 1200 1201 old_assign_type = dev->name_assign_type; 1202 WRITE_ONCE(dev->name_assign_type, NET_NAME_RENAMED); 1203 1204 rollback: 1205 ret = device_rename(&dev->dev, dev->name); 1206 if (ret) { 1207 memcpy(dev->name, oldname, IFNAMSIZ); 1208 WRITE_ONCE(dev->name_assign_type, old_assign_type); 1209 up_write(&devnet_rename_sem); 1210 return ret; 1211 } 1212 1213 up_write(&devnet_rename_sem); 1214 1215 netdev_adjacent_rename_links(dev, oldname); 1216 1217 netdev_name_node_del(dev->name_node); 1218 1219 synchronize_net(); 1220 1221 netdev_name_node_add(net, dev->name_node); 1222 1223 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1224 ret = notifier_to_errno(ret); 1225 1226 if (ret) { 1227 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1228 if (err >= 0) { 1229 err = ret; 1230 down_write(&devnet_rename_sem); 1231 memcpy(dev->name, oldname, IFNAMSIZ); 1232 memcpy(oldname, newname, IFNAMSIZ); 1233 WRITE_ONCE(dev->name_assign_type, old_assign_type); 1234 old_assign_type = NET_NAME_RENAMED; 1235 goto rollback; 1236 } else { 1237 netdev_err(dev, "name change rollback failed: %d\n", 1238 ret); 1239 } 1240 } 1241 1242 return err; 1243 } 1244 1245 /** 1246 * dev_set_alias - change ifalias of a device 1247 * @dev: device 1248 * @alias: name up to IFALIASZ 1249 * @len: limit of bytes to copy from info 1250 * 1251 * Set ifalias for a device, 1252 */ 1253 int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1254 { 1255 struct dev_ifalias *new_alias = NULL; 1256 1257 if (len >= IFALIASZ) 1258 return -EINVAL; 1259 1260 if (len) { 1261 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL); 1262 if (!new_alias) 1263 return -ENOMEM; 1264 1265 memcpy(new_alias->ifalias, alias, len); 1266 new_alias->ifalias[len] = 0; 1267 } 1268 1269 mutex_lock(&ifalias_mutex); 1270 new_alias = rcu_replace_pointer(dev->ifalias, new_alias, 1271 mutex_is_locked(&ifalias_mutex)); 1272 mutex_unlock(&ifalias_mutex); 1273 1274 if (new_alias) 1275 kfree_rcu(new_alias, rcuhead); 1276 1277 return len; 1278 } 1279 EXPORT_SYMBOL(dev_set_alias); 1280 1281 /** 1282 * dev_get_alias - get ifalias of a device 1283 * @dev: device 1284 * @name: buffer to store name of ifalias 1285 * @len: size of buffer 1286 * 1287 * get ifalias for a device. Caller must make sure dev cannot go 1288 * away, e.g. rcu read lock or own a reference count to device. 1289 */ 1290 int dev_get_alias(const struct net_device *dev, char *name, size_t len) 1291 { 1292 const struct dev_ifalias *alias; 1293 int ret = 0; 1294 1295 rcu_read_lock(); 1296 alias = rcu_dereference(dev->ifalias); 1297 if (alias) 1298 ret = snprintf(name, len, "%s", alias->ifalias); 1299 rcu_read_unlock(); 1300 1301 return ret; 1302 } 1303 1304 /** 1305 * netdev_features_change - device changes features 1306 * @dev: device to cause notification 1307 * 1308 * Called to indicate a device has changed features. 1309 */ 1310 void netdev_features_change(struct net_device *dev) 1311 { 1312 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1313 } 1314 EXPORT_SYMBOL(netdev_features_change); 1315 1316 /** 1317 * netdev_state_change - device changes state 1318 * @dev: device to cause notification 1319 * 1320 * Called to indicate a device has changed state. This function calls 1321 * the notifier chains for netdev_chain and sends a NEWLINK message 1322 * to the routing socket. 1323 */ 1324 void netdev_state_change(struct net_device *dev) 1325 { 1326 if (dev->flags & IFF_UP) { 1327 struct netdev_notifier_change_info change_info = { 1328 .info.dev = dev, 1329 }; 1330 1331 call_netdevice_notifiers_info(NETDEV_CHANGE, 1332 &change_info.info); 1333 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL, 0, NULL); 1334 } 1335 } 1336 EXPORT_SYMBOL(netdev_state_change); 1337 1338 /** 1339 * __netdev_notify_peers - notify network peers about existence of @dev, 1340 * to be called when rtnl lock is already held. 1341 * @dev: network device 1342 * 1343 * Generate traffic such that interested network peers are aware of 1344 * @dev, such as by generating a gratuitous ARP. This may be used when 1345 * a device wants to inform the rest of the network about some sort of 1346 * reconfiguration such as a failover event or virtual machine 1347 * migration. 1348 */ 1349 void __netdev_notify_peers(struct net_device *dev) 1350 { 1351 ASSERT_RTNL(); 1352 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev); 1353 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev); 1354 } 1355 EXPORT_SYMBOL(__netdev_notify_peers); 1356 1357 /** 1358 * netdev_notify_peers - notify network peers about existence of @dev 1359 * @dev: network device 1360 * 1361 * Generate traffic such that interested network peers are aware of 1362 * @dev, such as by generating a gratuitous ARP. This may be used when 1363 * a device wants to inform the rest of the network about some sort of 1364 * reconfiguration such as a failover event or virtual machine 1365 * migration. 1366 */ 1367 void netdev_notify_peers(struct net_device *dev) 1368 { 1369 rtnl_lock(); 1370 __netdev_notify_peers(dev); 1371 rtnl_unlock(); 1372 } 1373 EXPORT_SYMBOL(netdev_notify_peers); 1374 1375 static int napi_threaded_poll(void *data); 1376 1377 static int napi_kthread_create(struct napi_struct *n) 1378 { 1379 int err = 0; 1380 1381 /* Create and wake up the kthread once to put it in 1382 * TASK_INTERRUPTIBLE mode to avoid the blocked task 1383 * warning and work with loadavg. 1384 */ 1385 n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d", 1386 n->dev->name, n->napi_id); 1387 if (IS_ERR(n->thread)) { 1388 err = PTR_ERR(n->thread); 1389 pr_err("kthread_run failed with err %d\n", err); 1390 n->thread = NULL; 1391 } 1392 1393 return err; 1394 } 1395 1396 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack) 1397 { 1398 const struct net_device_ops *ops = dev->netdev_ops; 1399 int ret; 1400 1401 ASSERT_RTNL(); 1402 dev_addr_check(dev); 1403 1404 if (!netif_device_present(dev)) { 1405 /* may be detached because parent is runtime-suspended */ 1406 if (dev->dev.parent) 1407 pm_runtime_resume(dev->dev.parent); 1408 if (!netif_device_present(dev)) 1409 return -ENODEV; 1410 } 1411 1412 /* Block netpoll from trying to do any rx path servicing. 1413 * If we don't do this there is a chance ndo_poll_controller 1414 * or ndo_poll may be running while we open the device 1415 */ 1416 netpoll_poll_disable(dev); 1417 1418 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack); 1419 ret = notifier_to_errno(ret); 1420 if (ret) 1421 return ret; 1422 1423 set_bit(__LINK_STATE_START, &dev->state); 1424 1425 if (ops->ndo_validate_addr) 1426 ret = ops->ndo_validate_addr(dev); 1427 1428 if (!ret && ops->ndo_open) 1429 ret = ops->ndo_open(dev); 1430 1431 netpoll_poll_enable(dev); 1432 1433 if (ret) 1434 clear_bit(__LINK_STATE_START, &dev->state); 1435 else { 1436 dev->flags |= IFF_UP; 1437 dev_set_rx_mode(dev); 1438 dev_activate(dev); 1439 add_device_randomness(dev->dev_addr, dev->addr_len); 1440 } 1441 1442 return ret; 1443 } 1444 1445 /** 1446 * dev_open - prepare an interface for use. 1447 * @dev: device to open 1448 * @extack: netlink extended ack 1449 * 1450 * Takes a device from down to up state. The device's private open 1451 * function is invoked and then the multicast lists are loaded. Finally 1452 * the device is moved into the up state and a %NETDEV_UP message is 1453 * sent to the netdev notifier chain. 1454 * 1455 * Calling this function on an active interface is a nop. On a failure 1456 * a negative errno code is returned. 1457 */ 1458 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack) 1459 { 1460 int ret; 1461 1462 if (dev->flags & IFF_UP) 1463 return 0; 1464 1465 ret = __dev_open(dev, extack); 1466 if (ret < 0) 1467 return ret; 1468 1469 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL); 1470 call_netdevice_notifiers(NETDEV_UP, dev); 1471 1472 return ret; 1473 } 1474 EXPORT_SYMBOL(dev_open); 1475 1476 static void __dev_close_many(struct list_head *head) 1477 { 1478 struct net_device *dev; 1479 1480 ASSERT_RTNL(); 1481 might_sleep(); 1482 1483 list_for_each_entry(dev, head, close_list) { 1484 /* Temporarily disable netpoll until the interface is down */ 1485 netpoll_poll_disable(dev); 1486 1487 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1488 1489 clear_bit(__LINK_STATE_START, &dev->state); 1490 1491 /* Synchronize to scheduled poll. We cannot touch poll list, it 1492 * can be even on different cpu. So just clear netif_running(). 1493 * 1494 * dev->stop() will invoke napi_disable() on all of it's 1495 * napi_struct instances on this device. 1496 */ 1497 smp_mb__after_atomic(); /* Commit netif_running(). */ 1498 } 1499 1500 dev_deactivate_many(head); 1501 1502 list_for_each_entry(dev, head, close_list) { 1503 const struct net_device_ops *ops = dev->netdev_ops; 1504 1505 /* 1506 * Call the device specific close. This cannot fail. 1507 * Only if device is UP 1508 * 1509 * We allow it to be called even after a DETACH hot-plug 1510 * event. 1511 */ 1512 if (ops->ndo_stop) 1513 ops->ndo_stop(dev); 1514 1515 dev->flags &= ~IFF_UP; 1516 netpoll_poll_enable(dev); 1517 } 1518 } 1519 1520 static void __dev_close(struct net_device *dev) 1521 { 1522 LIST_HEAD(single); 1523 1524 list_add(&dev->close_list, &single); 1525 __dev_close_many(&single); 1526 list_del(&single); 1527 } 1528 1529 void dev_close_many(struct list_head *head, bool unlink) 1530 { 1531 struct net_device *dev, *tmp; 1532 1533 /* Remove the devices that don't need to be closed */ 1534 list_for_each_entry_safe(dev, tmp, head, close_list) 1535 if (!(dev->flags & IFF_UP)) 1536 list_del_init(&dev->close_list); 1537 1538 __dev_close_many(head); 1539 1540 list_for_each_entry_safe(dev, tmp, head, close_list) { 1541 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL); 1542 call_netdevice_notifiers(NETDEV_DOWN, dev); 1543 if (unlink) 1544 list_del_init(&dev->close_list); 1545 } 1546 } 1547 EXPORT_SYMBOL(dev_close_many); 1548 1549 /** 1550 * dev_close - shutdown an interface. 1551 * @dev: device to shutdown 1552 * 1553 * This function moves an active device into down state. A 1554 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1555 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1556 * chain. 1557 */ 1558 void dev_close(struct net_device *dev) 1559 { 1560 if (dev->flags & IFF_UP) { 1561 LIST_HEAD(single); 1562 1563 list_add(&dev->close_list, &single); 1564 dev_close_many(&single, true); 1565 list_del(&single); 1566 } 1567 } 1568 EXPORT_SYMBOL(dev_close); 1569 1570 1571 /** 1572 * dev_disable_lro - disable Large Receive Offload on a device 1573 * @dev: device 1574 * 1575 * Disable Large Receive Offload (LRO) on a net device. Must be 1576 * called under RTNL. This is needed if received packets may be 1577 * forwarded to another interface. 1578 */ 1579 void dev_disable_lro(struct net_device *dev) 1580 { 1581 struct net_device *lower_dev; 1582 struct list_head *iter; 1583 1584 dev->wanted_features &= ~NETIF_F_LRO; 1585 netdev_update_features(dev); 1586 1587 if (unlikely(dev->features & NETIF_F_LRO)) 1588 netdev_WARN(dev, "failed to disable LRO!\n"); 1589 1590 netdev_for_each_lower_dev(dev, lower_dev, iter) 1591 dev_disable_lro(lower_dev); 1592 } 1593 EXPORT_SYMBOL(dev_disable_lro); 1594 1595 /** 1596 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device 1597 * @dev: device 1598 * 1599 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be 1600 * called under RTNL. This is needed if Generic XDP is installed on 1601 * the device. 1602 */ 1603 static void dev_disable_gro_hw(struct net_device *dev) 1604 { 1605 dev->wanted_features &= ~NETIF_F_GRO_HW; 1606 netdev_update_features(dev); 1607 1608 if (unlikely(dev->features & NETIF_F_GRO_HW)) 1609 netdev_WARN(dev, "failed to disable GRO_HW!\n"); 1610 } 1611 1612 const char *netdev_cmd_to_name(enum netdev_cmd cmd) 1613 { 1614 #define N(val) \ 1615 case NETDEV_##val: \ 1616 return "NETDEV_" __stringify(val); 1617 switch (cmd) { 1618 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER) 1619 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE) 1620 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE) 1621 N(POST_INIT) N(PRE_UNINIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) 1622 N(CHANGEUPPER) N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) 1623 N(BONDING_INFO) N(PRECHANGEUPPER) N(CHANGELOWERSTATE) 1624 N(UDP_TUNNEL_PUSH_INFO) N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN) 1625 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO) 1626 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO) 1627 N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE) 1628 N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA) 1629 N(XDP_FEAT_CHANGE) 1630 } 1631 #undef N 1632 return "UNKNOWN_NETDEV_EVENT"; 1633 } 1634 EXPORT_SYMBOL_GPL(netdev_cmd_to_name); 1635 1636 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val, 1637 struct net_device *dev) 1638 { 1639 struct netdev_notifier_info info = { 1640 .dev = dev, 1641 }; 1642 1643 return nb->notifier_call(nb, val, &info); 1644 } 1645 1646 static int call_netdevice_register_notifiers(struct notifier_block *nb, 1647 struct net_device *dev) 1648 { 1649 int err; 1650 1651 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev); 1652 err = notifier_to_errno(err); 1653 if (err) 1654 return err; 1655 1656 if (!(dev->flags & IFF_UP)) 1657 return 0; 1658 1659 call_netdevice_notifier(nb, NETDEV_UP, dev); 1660 return 0; 1661 } 1662 1663 static void call_netdevice_unregister_notifiers(struct notifier_block *nb, 1664 struct net_device *dev) 1665 { 1666 if (dev->flags & IFF_UP) { 1667 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1668 dev); 1669 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1670 } 1671 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1672 } 1673 1674 static int call_netdevice_register_net_notifiers(struct notifier_block *nb, 1675 struct net *net) 1676 { 1677 struct net_device *dev; 1678 int err; 1679 1680 for_each_netdev(net, dev) { 1681 err = call_netdevice_register_notifiers(nb, dev); 1682 if (err) 1683 goto rollback; 1684 } 1685 return 0; 1686 1687 rollback: 1688 for_each_netdev_continue_reverse(net, dev) 1689 call_netdevice_unregister_notifiers(nb, dev); 1690 return err; 1691 } 1692 1693 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb, 1694 struct net *net) 1695 { 1696 struct net_device *dev; 1697 1698 for_each_netdev(net, dev) 1699 call_netdevice_unregister_notifiers(nb, dev); 1700 } 1701 1702 static int dev_boot_phase = 1; 1703 1704 /** 1705 * register_netdevice_notifier - register a network notifier block 1706 * @nb: notifier 1707 * 1708 * Register a notifier to be called when network device events occur. 1709 * The notifier passed is linked into the kernel structures and must 1710 * not be reused until it has been unregistered. A negative errno code 1711 * is returned on a failure. 1712 * 1713 * When registered all registration and up events are replayed 1714 * to the new notifier to allow device to have a race free 1715 * view of the network device list. 1716 */ 1717 1718 int register_netdevice_notifier(struct notifier_block *nb) 1719 { 1720 struct net *net; 1721 int err; 1722 1723 /* Close race with setup_net() and cleanup_net() */ 1724 down_write(&pernet_ops_rwsem); 1725 rtnl_lock(); 1726 err = raw_notifier_chain_register(&netdev_chain, nb); 1727 if (err) 1728 goto unlock; 1729 if (dev_boot_phase) 1730 goto unlock; 1731 for_each_net(net) { 1732 err = call_netdevice_register_net_notifiers(nb, net); 1733 if (err) 1734 goto rollback; 1735 } 1736 1737 unlock: 1738 rtnl_unlock(); 1739 up_write(&pernet_ops_rwsem); 1740 return err; 1741 1742 rollback: 1743 for_each_net_continue_reverse(net) 1744 call_netdevice_unregister_net_notifiers(nb, net); 1745 1746 raw_notifier_chain_unregister(&netdev_chain, nb); 1747 goto unlock; 1748 } 1749 EXPORT_SYMBOL(register_netdevice_notifier); 1750 1751 /** 1752 * unregister_netdevice_notifier - unregister a network notifier block 1753 * @nb: notifier 1754 * 1755 * Unregister a notifier previously registered by 1756 * register_netdevice_notifier(). The notifier is unlinked into the 1757 * kernel structures and may then be reused. A negative errno code 1758 * is returned on a failure. 1759 * 1760 * After unregistering unregister and down device events are synthesized 1761 * for all devices on the device list to the removed notifier to remove 1762 * the need for special case cleanup code. 1763 */ 1764 1765 int unregister_netdevice_notifier(struct notifier_block *nb) 1766 { 1767 struct net *net; 1768 int err; 1769 1770 /* Close race with setup_net() and cleanup_net() */ 1771 down_write(&pernet_ops_rwsem); 1772 rtnl_lock(); 1773 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1774 if (err) 1775 goto unlock; 1776 1777 for_each_net(net) 1778 call_netdevice_unregister_net_notifiers(nb, net); 1779 1780 unlock: 1781 rtnl_unlock(); 1782 up_write(&pernet_ops_rwsem); 1783 return err; 1784 } 1785 EXPORT_SYMBOL(unregister_netdevice_notifier); 1786 1787 static int __register_netdevice_notifier_net(struct net *net, 1788 struct notifier_block *nb, 1789 bool ignore_call_fail) 1790 { 1791 int err; 1792 1793 err = raw_notifier_chain_register(&net->netdev_chain, nb); 1794 if (err) 1795 return err; 1796 if (dev_boot_phase) 1797 return 0; 1798 1799 err = call_netdevice_register_net_notifiers(nb, net); 1800 if (err && !ignore_call_fail) 1801 goto chain_unregister; 1802 1803 return 0; 1804 1805 chain_unregister: 1806 raw_notifier_chain_unregister(&net->netdev_chain, nb); 1807 return err; 1808 } 1809 1810 static int __unregister_netdevice_notifier_net(struct net *net, 1811 struct notifier_block *nb) 1812 { 1813 int err; 1814 1815 err = raw_notifier_chain_unregister(&net->netdev_chain, nb); 1816 if (err) 1817 return err; 1818 1819 call_netdevice_unregister_net_notifiers(nb, net); 1820 return 0; 1821 } 1822 1823 /** 1824 * register_netdevice_notifier_net - register a per-netns network notifier block 1825 * @net: network namespace 1826 * @nb: notifier 1827 * 1828 * Register a notifier to be called when network device events occur. 1829 * The notifier passed is linked into the kernel structures and must 1830 * not be reused until it has been unregistered. A negative errno code 1831 * is returned on a failure. 1832 * 1833 * When registered all registration and up events are replayed 1834 * to the new notifier to allow device to have a race free 1835 * view of the network device list. 1836 */ 1837 1838 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb) 1839 { 1840 int err; 1841 1842 rtnl_lock(); 1843 err = __register_netdevice_notifier_net(net, nb, false); 1844 rtnl_unlock(); 1845 return err; 1846 } 1847 EXPORT_SYMBOL(register_netdevice_notifier_net); 1848 1849 /** 1850 * unregister_netdevice_notifier_net - unregister a per-netns 1851 * network notifier block 1852 * @net: network namespace 1853 * @nb: notifier 1854 * 1855 * Unregister a notifier previously registered by 1856 * register_netdevice_notifier_net(). The notifier is unlinked from the 1857 * kernel structures and may then be reused. A negative errno code 1858 * is returned on a failure. 1859 * 1860 * After unregistering unregister and down device events are synthesized 1861 * for all devices on the device list to the removed notifier to remove 1862 * the need for special case cleanup code. 1863 */ 1864 1865 int unregister_netdevice_notifier_net(struct net *net, 1866 struct notifier_block *nb) 1867 { 1868 int err; 1869 1870 rtnl_lock(); 1871 err = __unregister_netdevice_notifier_net(net, nb); 1872 rtnl_unlock(); 1873 return err; 1874 } 1875 EXPORT_SYMBOL(unregister_netdevice_notifier_net); 1876 1877 static void __move_netdevice_notifier_net(struct net *src_net, 1878 struct net *dst_net, 1879 struct notifier_block *nb) 1880 { 1881 __unregister_netdevice_notifier_net(src_net, nb); 1882 __register_netdevice_notifier_net(dst_net, nb, true); 1883 } 1884 1885 int register_netdevice_notifier_dev_net(struct net_device *dev, 1886 struct notifier_block *nb, 1887 struct netdev_net_notifier *nn) 1888 { 1889 int err; 1890 1891 rtnl_lock(); 1892 err = __register_netdevice_notifier_net(dev_net(dev), nb, false); 1893 if (!err) { 1894 nn->nb = nb; 1895 list_add(&nn->list, &dev->net_notifier_list); 1896 } 1897 rtnl_unlock(); 1898 return err; 1899 } 1900 EXPORT_SYMBOL(register_netdevice_notifier_dev_net); 1901 1902 int unregister_netdevice_notifier_dev_net(struct net_device *dev, 1903 struct notifier_block *nb, 1904 struct netdev_net_notifier *nn) 1905 { 1906 int err; 1907 1908 rtnl_lock(); 1909 list_del(&nn->list); 1910 err = __unregister_netdevice_notifier_net(dev_net(dev), nb); 1911 rtnl_unlock(); 1912 return err; 1913 } 1914 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net); 1915 1916 static void move_netdevice_notifiers_dev_net(struct net_device *dev, 1917 struct net *net) 1918 { 1919 struct netdev_net_notifier *nn; 1920 1921 list_for_each_entry(nn, &dev->net_notifier_list, list) 1922 __move_netdevice_notifier_net(dev_net(dev), net, nn->nb); 1923 } 1924 1925 /** 1926 * call_netdevice_notifiers_info - call all network notifier blocks 1927 * @val: value passed unmodified to notifier function 1928 * @info: notifier information data 1929 * 1930 * Call all network notifier blocks. Parameters and return value 1931 * are as for raw_notifier_call_chain(). 1932 */ 1933 1934 int call_netdevice_notifiers_info(unsigned long val, 1935 struct netdev_notifier_info *info) 1936 { 1937 struct net *net = dev_net(info->dev); 1938 int ret; 1939 1940 ASSERT_RTNL(); 1941 1942 /* Run per-netns notifier block chain first, then run the global one. 1943 * Hopefully, one day, the global one is going to be removed after 1944 * all notifier block registrators get converted to be per-netns. 1945 */ 1946 ret = raw_notifier_call_chain(&net->netdev_chain, val, info); 1947 if (ret & NOTIFY_STOP_MASK) 1948 return ret; 1949 return raw_notifier_call_chain(&netdev_chain, val, info); 1950 } 1951 1952 /** 1953 * call_netdevice_notifiers_info_robust - call per-netns notifier blocks 1954 * for and rollback on error 1955 * @val_up: value passed unmodified to notifier function 1956 * @val_down: value passed unmodified to the notifier function when 1957 * recovering from an error on @val_up 1958 * @info: notifier information data 1959 * 1960 * Call all per-netns network notifier blocks, but not notifier blocks on 1961 * the global notifier chain. Parameters and return value are as for 1962 * raw_notifier_call_chain_robust(). 1963 */ 1964 1965 static int 1966 call_netdevice_notifiers_info_robust(unsigned long val_up, 1967 unsigned long val_down, 1968 struct netdev_notifier_info *info) 1969 { 1970 struct net *net = dev_net(info->dev); 1971 1972 ASSERT_RTNL(); 1973 1974 return raw_notifier_call_chain_robust(&net->netdev_chain, 1975 val_up, val_down, info); 1976 } 1977 1978 static int call_netdevice_notifiers_extack(unsigned long val, 1979 struct net_device *dev, 1980 struct netlink_ext_ack *extack) 1981 { 1982 struct netdev_notifier_info info = { 1983 .dev = dev, 1984 .extack = extack, 1985 }; 1986 1987 return call_netdevice_notifiers_info(val, &info); 1988 } 1989 1990 /** 1991 * call_netdevice_notifiers - call all network notifier blocks 1992 * @val: value passed unmodified to notifier function 1993 * @dev: net_device pointer passed unmodified to notifier function 1994 * 1995 * Call all network notifier blocks. Parameters and return value 1996 * are as for raw_notifier_call_chain(). 1997 */ 1998 1999 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 2000 { 2001 return call_netdevice_notifiers_extack(val, dev, NULL); 2002 } 2003 EXPORT_SYMBOL(call_netdevice_notifiers); 2004 2005 /** 2006 * call_netdevice_notifiers_mtu - call all network notifier blocks 2007 * @val: value passed unmodified to notifier function 2008 * @dev: net_device pointer passed unmodified to notifier function 2009 * @arg: additional u32 argument passed to the notifier function 2010 * 2011 * Call all network notifier blocks. Parameters and return value 2012 * are as for raw_notifier_call_chain(). 2013 */ 2014 static int call_netdevice_notifiers_mtu(unsigned long val, 2015 struct net_device *dev, u32 arg) 2016 { 2017 struct netdev_notifier_info_ext info = { 2018 .info.dev = dev, 2019 .ext.mtu = arg, 2020 }; 2021 2022 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0); 2023 2024 return call_netdevice_notifiers_info(val, &info.info); 2025 } 2026 2027 #ifdef CONFIG_NET_INGRESS 2028 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key); 2029 2030 void net_inc_ingress_queue(void) 2031 { 2032 static_branch_inc(&ingress_needed_key); 2033 } 2034 EXPORT_SYMBOL_GPL(net_inc_ingress_queue); 2035 2036 void net_dec_ingress_queue(void) 2037 { 2038 static_branch_dec(&ingress_needed_key); 2039 } 2040 EXPORT_SYMBOL_GPL(net_dec_ingress_queue); 2041 #endif 2042 2043 #ifdef CONFIG_NET_EGRESS 2044 static DEFINE_STATIC_KEY_FALSE(egress_needed_key); 2045 2046 void net_inc_egress_queue(void) 2047 { 2048 static_branch_inc(&egress_needed_key); 2049 } 2050 EXPORT_SYMBOL_GPL(net_inc_egress_queue); 2051 2052 void net_dec_egress_queue(void) 2053 { 2054 static_branch_dec(&egress_needed_key); 2055 } 2056 EXPORT_SYMBOL_GPL(net_dec_egress_queue); 2057 #endif 2058 2059 DEFINE_STATIC_KEY_FALSE(netstamp_needed_key); 2060 EXPORT_SYMBOL(netstamp_needed_key); 2061 #ifdef CONFIG_JUMP_LABEL 2062 static atomic_t netstamp_needed_deferred; 2063 static atomic_t netstamp_wanted; 2064 static void netstamp_clear(struct work_struct *work) 2065 { 2066 int deferred = atomic_xchg(&netstamp_needed_deferred, 0); 2067 int wanted; 2068 2069 wanted = atomic_add_return(deferred, &netstamp_wanted); 2070 if (wanted > 0) 2071 static_branch_enable(&netstamp_needed_key); 2072 else 2073 static_branch_disable(&netstamp_needed_key); 2074 } 2075 static DECLARE_WORK(netstamp_work, netstamp_clear); 2076 #endif 2077 2078 void net_enable_timestamp(void) 2079 { 2080 #ifdef CONFIG_JUMP_LABEL 2081 int wanted = atomic_read(&netstamp_wanted); 2082 2083 while (wanted > 0) { 2084 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted + 1)) 2085 return; 2086 } 2087 atomic_inc(&netstamp_needed_deferred); 2088 schedule_work(&netstamp_work); 2089 #else 2090 static_branch_inc(&netstamp_needed_key); 2091 #endif 2092 } 2093 EXPORT_SYMBOL(net_enable_timestamp); 2094 2095 void net_disable_timestamp(void) 2096 { 2097 #ifdef CONFIG_JUMP_LABEL 2098 int wanted = atomic_read(&netstamp_wanted); 2099 2100 while (wanted > 1) { 2101 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted - 1)) 2102 return; 2103 } 2104 atomic_dec(&netstamp_needed_deferred); 2105 schedule_work(&netstamp_work); 2106 #else 2107 static_branch_dec(&netstamp_needed_key); 2108 #endif 2109 } 2110 EXPORT_SYMBOL(net_disable_timestamp); 2111 2112 static inline void net_timestamp_set(struct sk_buff *skb) 2113 { 2114 skb->tstamp = 0; 2115 skb->mono_delivery_time = 0; 2116 if (static_branch_unlikely(&netstamp_needed_key)) 2117 skb->tstamp = ktime_get_real(); 2118 } 2119 2120 #define net_timestamp_check(COND, SKB) \ 2121 if (static_branch_unlikely(&netstamp_needed_key)) { \ 2122 if ((COND) && !(SKB)->tstamp) \ 2123 (SKB)->tstamp = ktime_get_real(); \ 2124 } \ 2125 2126 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb) 2127 { 2128 return __is_skb_forwardable(dev, skb, true); 2129 } 2130 EXPORT_SYMBOL_GPL(is_skb_forwardable); 2131 2132 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb, 2133 bool check_mtu) 2134 { 2135 int ret = ____dev_forward_skb(dev, skb, check_mtu); 2136 2137 if (likely(!ret)) { 2138 skb->protocol = eth_type_trans(skb, dev); 2139 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN); 2140 } 2141 2142 return ret; 2143 } 2144 2145 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 2146 { 2147 return __dev_forward_skb2(dev, skb, true); 2148 } 2149 EXPORT_SYMBOL_GPL(__dev_forward_skb); 2150 2151 /** 2152 * dev_forward_skb - loopback an skb to another netif 2153 * 2154 * @dev: destination network device 2155 * @skb: buffer to forward 2156 * 2157 * return values: 2158 * NET_RX_SUCCESS (no congestion) 2159 * NET_RX_DROP (packet was dropped, but freed) 2160 * 2161 * dev_forward_skb can be used for injecting an skb from the 2162 * start_xmit function of one device into the receive queue 2163 * of another device. 2164 * 2165 * The receiving device may be in another namespace, so 2166 * we have to clear all information in the skb that could 2167 * impact namespace isolation. 2168 */ 2169 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 2170 { 2171 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb); 2172 } 2173 EXPORT_SYMBOL_GPL(dev_forward_skb); 2174 2175 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb) 2176 { 2177 return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb); 2178 } 2179 2180 static inline int deliver_skb(struct sk_buff *skb, 2181 struct packet_type *pt_prev, 2182 struct net_device *orig_dev) 2183 { 2184 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 2185 return -ENOMEM; 2186 refcount_inc(&skb->users); 2187 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 2188 } 2189 2190 static inline void deliver_ptype_list_skb(struct sk_buff *skb, 2191 struct packet_type **pt, 2192 struct net_device *orig_dev, 2193 __be16 type, 2194 struct list_head *ptype_list) 2195 { 2196 struct packet_type *ptype, *pt_prev = *pt; 2197 2198 list_for_each_entry_rcu(ptype, ptype_list, list) { 2199 if (ptype->type != type) 2200 continue; 2201 if (pt_prev) 2202 deliver_skb(skb, pt_prev, orig_dev); 2203 pt_prev = ptype; 2204 } 2205 *pt = pt_prev; 2206 } 2207 2208 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb) 2209 { 2210 if (!ptype->af_packet_priv || !skb->sk) 2211 return false; 2212 2213 if (ptype->id_match) 2214 return ptype->id_match(ptype, skb->sk); 2215 else if ((struct sock *)ptype->af_packet_priv == skb->sk) 2216 return true; 2217 2218 return false; 2219 } 2220 2221 /** 2222 * dev_nit_active - return true if any network interface taps are in use 2223 * 2224 * @dev: network device to check for the presence of taps 2225 */ 2226 bool dev_nit_active(struct net_device *dev) 2227 { 2228 return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all); 2229 } 2230 EXPORT_SYMBOL_GPL(dev_nit_active); 2231 2232 /* 2233 * Support routine. Sends outgoing frames to any network 2234 * taps currently in use. 2235 */ 2236 2237 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 2238 { 2239 struct packet_type *ptype; 2240 struct sk_buff *skb2 = NULL; 2241 struct packet_type *pt_prev = NULL; 2242 struct list_head *ptype_list = &ptype_all; 2243 2244 rcu_read_lock(); 2245 again: 2246 list_for_each_entry_rcu(ptype, ptype_list, list) { 2247 if (ptype->ignore_outgoing) 2248 continue; 2249 2250 /* Never send packets back to the socket 2251 * they originated from - MvS (miquels@drinkel.ow.org) 2252 */ 2253 if (skb_loop_sk(ptype, skb)) 2254 continue; 2255 2256 if (pt_prev) { 2257 deliver_skb(skb2, pt_prev, skb->dev); 2258 pt_prev = ptype; 2259 continue; 2260 } 2261 2262 /* need to clone skb, done only once */ 2263 skb2 = skb_clone(skb, GFP_ATOMIC); 2264 if (!skb2) 2265 goto out_unlock; 2266 2267 net_timestamp_set(skb2); 2268 2269 /* skb->nh should be correctly 2270 * set by sender, so that the second statement is 2271 * just protection against buggy protocols. 2272 */ 2273 skb_reset_mac_header(skb2); 2274 2275 if (skb_network_header(skb2) < skb2->data || 2276 skb_network_header(skb2) > skb_tail_pointer(skb2)) { 2277 net_crit_ratelimited("protocol %04x is buggy, dev %s\n", 2278 ntohs(skb2->protocol), 2279 dev->name); 2280 skb_reset_network_header(skb2); 2281 } 2282 2283 skb2->transport_header = skb2->network_header; 2284 skb2->pkt_type = PACKET_OUTGOING; 2285 pt_prev = ptype; 2286 } 2287 2288 if (ptype_list == &ptype_all) { 2289 ptype_list = &dev->ptype_all; 2290 goto again; 2291 } 2292 out_unlock: 2293 if (pt_prev) { 2294 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC)) 2295 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 2296 else 2297 kfree_skb(skb2); 2298 } 2299 rcu_read_unlock(); 2300 } 2301 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit); 2302 2303 /** 2304 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change 2305 * @dev: Network device 2306 * @txq: number of queues available 2307 * 2308 * If real_num_tx_queues is changed the tc mappings may no longer be 2309 * valid. To resolve this verify the tc mapping remains valid and if 2310 * not NULL the mapping. With no priorities mapping to this 2311 * offset/count pair it will no longer be used. In the worst case TC0 2312 * is invalid nothing can be done so disable priority mappings. If is 2313 * expected that drivers will fix this mapping if they can before 2314 * calling netif_set_real_num_tx_queues. 2315 */ 2316 static void netif_setup_tc(struct net_device *dev, unsigned int txq) 2317 { 2318 int i; 2319 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2320 2321 /* If TC0 is invalidated disable TC mapping */ 2322 if (tc->offset + tc->count > txq) { 2323 netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n"); 2324 dev->num_tc = 0; 2325 return; 2326 } 2327 2328 /* Invalidated prio to tc mappings set to TC0 */ 2329 for (i = 1; i < TC_BITMASK + 1; i++) { 2330 int q = netdev_get_prio_tc_map(dev, i); 2331 2332 tc = &dev->tc_to_txq[q]; 2333 if (tc->offset + tc->count > txq) { 2334 netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n", 2335 i, q); 2336 netdev_set_prio_tc_map(dev, i, 0); 2337 } 2338 } 2339 } 2340 2341 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq) 2342 { 2343 if (dev->num_tc) { 2344 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2345 int i; 2346 2347 /* walk through the TCs and see if it falls into any of them */ 2348 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) { 2349 if ((txq - tc->offset) < tc->count) 2350 return i; 2351 } 2352 2353 /* didn't find it, just return -1 to indicate no match */ 2354 return -1; 2355 } 2356 2357 return 0; 2358 } 2359 EXPORT_SYMBOL(netdev_txq_to_tc); 2360 2361 #ifdef CONFIG_XPS 2362 static struct static_key xps_needed __read_mostly; 2363 static struct static_key xps_rxqs_needed __read_mostly; 2364 static DEFINE_MUTEX(xps_map_mutex); 2365 #define xmap_dereference(P) \ 2366 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex)) 2367 2368 static bool remove_xps_queue(struct xps_dev_maps *dev_maps, 2369 struct xps_dev_maps *old_maps, int tci, u16 index) 2370 { 2371 struct xps_map *map = NULL; 2372 int pos; 2373 2374 map = xmap_dereference(dev_maps->attr_map[tci]); 2375 if (!map) 2376 return false; 2377 2378 for (pos = map->len; pos--;) { 2379 if (map->queues[pos] != index) 2380 continue; 2381 2382 if (map->len > 1) { 2383 map->queues[pos] = map->queues[--map->len]; 2384 break; 2385 } 2386 2387 if (old_maps) 2388 RCU_INIT_POINTER(old_maps->attr_map[tci], NULL); 2389 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL); 2390 kfree_rcu(map, rcu); 2391 return false; 2392 } 2393 2394 return true; 2395 } 2396 2397 static bool remove_xps_queue_cpu(struct net_device *dev, 2398 struct xps_dev_maps *dev_maps, 2399 int cpu, u16 offset, u16 count) 2400 { 2401 int num_tc = dev_maps->num_tc; 2402 bool active = false; 2403 int tci; 2404 2405 for (tci = cpu * num_tc; num_tc--; tci++) { 2406 int i, j; 2407 2408 for (i = count, j = offset; i--; j++) { 2409 if (!remove_xps_queue(dev_maps, NULL, tci, j)) 2410 break; 2411 } 2412 2413 active |= i < 0; 2414 } 2415 2416 return active; 2417 } 2418 2419 static void reset_xps_maps(struct net_device *dev, 2420 struct xps_dev_maps *dev_maps, 2421 enum xps_map_type type) 2422 { 2423 static_key_slow_dec_cpuslocked(&xps_needed); 2424 if (type == XPS_RXQS) 2425 static_key_slow_dec_cpuslocked(&xps_rxqs_needed); 2426 2427 RCU_INIT_POINTER(dev->xps_maps[type], NULL); 2428 2429 kfree_rcu(dev_maps, rcu); 2430 } 2431 2432 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type, 2433 u16 offset, u16 count) 2434 { 2435 struct xps_dev_maps *dev_maps; 2436 bool active = false; 2437 int i, j; 2438 2439 dev_maps = xmap_dereference(dev->xps_maps[type]); 2440 if (!dev_maps) 2441 return; 2442 2443 for (j = 0; j < dev_maps->nr_ids; j++) 2444 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count); 2445 if (!active) 2446 reset_xps_maps(dev, dev_maps, type); 2447 2448 if (type == XPS_CPUS) { 2449 for (i = offset + (count - 1); count--; i--) 2450 netdev_queue_numa_node_write( 2451 netdev_get_tx_queue(dev, i), NUMA_NO_NODE); 2452 } 2453 } 2454 2455 static void netif_reset_xps_queues(struct net_device *dev, u16 offset, 2456 u16 count) 2457 { 2458 if (!static_key_false(&xps_needed)) 2459 return; 2460 2461 cpus_read_lock(); 2462 mutex_lock(&xps_map_mutex); 2463 2464 if (static_key_false(&xps_rxqs_needed)) 2465 clean_xps_maps(dev, XPS_RXQS, offset, count); 2466 2467 clean_xps_maps(dev, XPS_CPUS, offset, count); 2468 2469 mutex_unlock(&xps_map_mutex); 2470 cpus_read_unlock(); 2471 } 2472 2473 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index) 2474 { 2475 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index); 2476 } 2477 2478 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index, 2479 u16 index, bool is_rxqs_map) 2480 { 2481 struct xps_map *new_map; 2482 int alloc_len = XPS_MIN_MAP_ALLOC; 2483 int i, pos; 2484 2485 for (pos = 0; map && pos < map->len; pos++) { 2486 if (map->queues[pos] != index) 2487 continue; 2488 return map; 2489 } 2490 2491 /* Need to add tx-queue to this CPU's/rx-queue's existing map */ 2492 if (map) { 2493 if (pos < map->alloc_len) 2494 return map; 2495 2496 alloc_len = map->alloc_len * 2; 2497 } 2498 2499 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's 2500 * map 2501 */ 2502 if (is_rxqs_map) 2503 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL); 2504 else 2505 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL, 2506 cpu_to_node(attr_index)); 2507 if (!new_map) 2508 return NULL; 2509 2510 for (i = 0; i < pos; i++) 2511 new_map->queues[i] = map->queues[i]; 2512 new_map->alloc_len = alloc_len; 2513 new_map->len = pos; 2514 2515 return new_map; 2516 } 2517 2518 /* Copy xps maps at a given index */ 2519 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps, 2520 struct xps_dev_maps *new_dev_maps, int index, 2521 int tc, bool skip_tc) 2522 { 2523 int i, tci = index * dev_maps->num_tc; 2524 struct xps_map *map; 2525 2526 /* copy maps belonging to foreign traffic classes */ 2527 for (i = 0; i < dev_maps->num_tc; i++, tci++) { 2528 if (i == tc && skip_tc) 2529 continue; 2530 2531 /* fill in the new device map from the old device map */ 2532 map = xmap_dereference(dev_maps->attr_map[tci]); 2533 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2534 } 2535 } 2536 2537 /* Must be called under cpus_read_lock */ 2538 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask, 2539 u16 index, enum xps_map_type type) 2540 { 2541 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL; 2542 const unsigned long *online_mask = NULL; 2543 bool active = false, copy = false; 2544 int i, j, tci, numa_node_id = -2; 2545 int maps_sz, num_tc = 1, tc = 0; 2546 struct xps_map *map, *new_map; 2547 unsigned int nr_ids; 2548 2549 WARN_ON_ONCE(index >= dev->num_tx_queues); 2550 2551 if (dev->num_tc) { 2552 /* Do not allow XPS on subordinate device directly */ 2553 num_tc = dev->num_tc; 2554 if (num_tc < 0) 2555 return -EINVAL; 2556 2557 /* If queue belongs to subordinate dev use its map */ 2558 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev; 2559 2560 tc = netdev_txq_to_tc(dev, index); 2561 if (tc < 0) 2562 return -EINVAL; 2563 } 2564 2565 mutex_lock(&xps_map_mutex); 2566 2567 dev_maps = xmap_dereference(dev->xps_maps[type]); 2568 if (type == XPS_RXQS) { 2569 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues); 2570 nr_ids = dev->num_rx_queues; 2571 } else { 2572 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc); 2573 if (num_possible_cpus() > 1) 2574 online_mask = cpumask_bits(cpu_online_mask); 2575 nr_ids = nr_cpu_ids; 2576 } 2577 2578 if (maps_sz < L1_CACHE_BYTES) 2579 maps_sz = L1_CACHE_BYTES; 2580 2581 /* The old dev_maps could be larger or smaller than the one we're 2582 * setting up now, as dev->num_tc or nr_ids could have been updated in 2583 * between. We could try to be smart, but let's be safe instead and only 2584 * copy foreign traffic classes if the two map sizes match. 2585 */ 2586 if (dev_maps && 2587 dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids) 2588 copy = true; 2589 2590 /* allocate memory for queue storage */ 2591 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids), 2592 j < nr_ids;) { 2593 if (!new_dev_maps) { 2594 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL); 2595 if (!new_dev_maps) { 2596 mutex_unlock(&xps_map_mutex); 2597 return -ENOMEM; 2598 } 2599 2600 new_dev_maps->nr_ids = nr_ids; 2601 new_dev_maps->num_tc = num_tc; 2602 } 2603 2604 tci = j * num_tc + tc; 2605 map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL; 2606 2607 map = expand_xps_map(map, j, index, type == XPS_RXQS); 2608 if (!map) 2609 goto error; 2610 2611 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2612 } 2613 2614 if (!new_dev_maps) 2615 goto out_no_new_maps; 2616 2617 if (!dev_maps) { 2618 /* Increment static keys at most once per type */ 2619 static_key_slow_inc_cpuslocked(&xps_needed); 2620 if (type == XPS_RXQS) 2621 static_key_slow_inc_cpuslocked(&xps_rxqs_needed); 2622 } 2623 2624 for (j = 0; j < nr_ids; j++) { 2625 bool skip_tc = false; 2626 2627 tci = j * num_tc + tc; 2628 if (netif_attr_test_mask(j, mask, nr_ids) && 2629 netif_attr_test_online(j, online_mask, nr_ids)) { 2630 /* add tx-queue to CPU/rx-queue maps */ 2631 int pos = 0; 2632 2633 skip_tc = true; 2634 2635 map = xmap_dereference(new_dev_maps->attr_map[tci]); 2636 while ((pos < map->len) && (map->queues[pos] != index)) 2637 pos++; 2638 2639 if (pos == map->len) 2640 map->queues[map->len++] = index; 2641 #ifdef CONFIG_NUMA 2642 if (type == XPS_CPUS) { 2643 if (numa_node_id == -2) 2644 numa_node_id = cpu_to_node(j); 2645 else if (numa_node_id != cpu_to_node(j)) 2646 numa_node_id = -1; 2647 } 2648 #endif 2649 } 2650 2651 if (copy) 2652 xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc, 2653 skip_tc); 2654 } 2655 2656 rcu_assign_pointer(dev->xps_maps[type], new_dev_maps); 2657 2658 /* Cleanup old maps */ 2659 if (!dev_maps) 2660 goto out_no_old_maps; 2661 2662 for (j = 0; j < dev_maps->nr_ids; j++) { 2663 for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) { 2664 map = xmap_dereference(dev_maps->attr_map[tci]); 2665 if (!map) 2666 continue; 2667 2668 if (copy) { 2669 new_map = xmap_dereference(new_dev_maps->attr_map[tci]); 2670 if (map == new_map) 2671 continue; 2672 } 2673 2674 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL); 2675 kfree_rcu(map, rcu); 2676 } 2677 } 2678 2679 old_dev_maps = dev_maps; 2680 2681 out_no_old_maps: 2682 dev_maps = new_dev_maps; 2683 active = true; 2684 2685 out_no_new_maps: 2686 if (type == XPS_CPUS) 2687 /* update Tx queue numa node */ 2688 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index), 2689 (numa_node_id >= 0) ? 2690 numa_node_id : NUMA_NO_NODE); 2691 2692 if (!dev_maps) 2693 goto out_no_maps; 2694 2695 /* removes tx-queue from unused CPUs/rx-queues */ 2696 for (j = 0; j < dev_maps->nr_ids; j++) { 2697 tci = j * dev_maps->num_tc; 2698 2699 for (i = 0; i < dev_maps->num_tc; i++, tci++) { 2700 if (i == tc && 2701 netif_attr_test_mask(j, mask, dev_maps->nr_ids) && 2702 netif_attr_test_online(j, online_mask, dev_maps->nr_ids)) 2703 continue; 2704 2705 active |= remove_xps_queue(dev_maps, 2706 copy ? old_dev_maps : NULL, 2707 tci, index); 2708 } 2709 } 2710 2711 if (old_dev_maps) 2712 kfree_rcu(old_dev_maps, rcu); 2713 2714 /* free map if not active */ 2715 if (!active) 2716 reset_xps_maps(dev, dev_maps, type); 2717 2718 out_no_maps: 2719 mutex_unlock(&xps_map_mutex); 2720 2721 return 0; 2722 error: 2723 /* remove any maps that we added */ 2724 for (j = 0; j < nr_ids; j++) { 2725 for (i = num_tc, tci = j * num_tc; i--; tci++) { 2726 new_map = xmap_dereference(new_dev_maps->attr_map[tci]); 2727 map = copy ? 2728 xmap_dereference(dev_maps->attr_map[tci]) : 2729 NULL; 2730 if (new_map && new_map != map) 2731 kfree(new_map); 2732 } 2733 } 2734 2735 mutex_unlock(&xps_map_mutex); 2736 2737 kfree(new_dev_maps); 2738 return -ENOMEM; 2739 } 2740 EXPORT_SYMBOL_GPL(__netif_set_xps_queue); 2741 2742 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 2743 u16 index) 2744 { 2745 int ret; 2746 2747 cpus_read_lock(); 2748 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS); 2749 cpus_read_unlock(); 2750 2751 return ret; 2752 } 2753 EXPORT_SYMBOL(netif_set_xps_queue); 2754 2755 #endif 2756 static void netdev_unbind_all_sb_channels(struct net_device *dev) 2757 { 2758 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues]; 2759 2760 /* Unbind any subordinate channels */ 2761 while (txq-- != &dev->_tx[0]) { 2762 if (txq->sb_dev) 2763 netdev_unbind_sb_channel(dev, txq->sb_dev); 2764 } 2765 } 2766 2767 void netdev_reset_tc(struct net_device *dev) 2768 { 2769 #ifdef CONFIG_XPS 2770 netif_reset_xps_queues_gt(dev, 0); 2771 #endif 2772 netdev_unbind_all_sb_channels(dev); 2773 2774 /* Reset TC configuration of device */ 2775 dev->num_tc = 0; 2776 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq)); 2777 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map)); 2778 } 2779 EXPORT_SYMBOL(netdev_reset_tc); 2780 2781 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset) 2782 { 2783 if (tc >= dev->num_tc) 2784 return -EINVAL; 2785 2786 #ifdef CONFIG_XPS 2787 netif_reset_xps_queues(dev, offset, count); 2788 #endif 2789 dev->tc_to_txq[tc].count = count; 2790 dev->tc_to_txq[tc].offset = offset; 2791 return 0; 2792 } 2793 EXPORT_SYMBOL(netdev_set_tc_queue); 2794 2795 int netdev_set_num_tc(struct net_device *dev, u8 num_tc) 2796 { 2797 if (num_tc > TC_MAX_QUEUE) 2798 return -EINVAL; 2799 2800 #ifdef CONFIG_XPS 2801 netif_reset_xps_queues_gt(dev, 0); 2802 #endif 2803 netdev_unbind_all_sb_channels(dev); 2804 2805 dev->num_tc = num_tc; 2806 return 0; 2807 } 2808 EXPORT_SYMBOL(netdev_set_num_tc); 2809 2810 void netdev_unbind_sb_channel(struct net_device *dev, 2811 struct net_device *sb_dev) 2812 { 2813 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues]; 2814 2815 #ifdef CONFIG_XPS 2816 netif_reset_xps_queues_gt(sb_dev, 0); 2817 #endif 2818 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq)); 2819 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map)); 2820 2821 while (txq-- != &dev->_tx[0]) { 2822 if (txq->sb_dev == sb_dev) 2823 txq->sb_dev = NULL; 2824 } 2825 } 2826 EXPORT_SYMBOL(netdev_unbind_sb_channel); 2827 2828 int netdev_bind_sb_channel_queue(struct net_device *dev, 2829 struct net_device *sb_dev, 2830 u8 tc, u16 count, u16 offset) 2831 { 2832 /* Make certain the sb_dev and dev are already configured */ 2833 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc) 2834 return -EINVAL; 2835 2836 /* We cannot hand out queues we don't have */ 2837 if ((offset + count) > dev->real_num_tx_queues) 2838 return -EINVAL; 2839 2840 /* Record the mapping */ 2841 sb_dev->tc_to_txq[tc].count = count; 2842 sb_dev->tc_to_txq[tc].offset = offset; 2843 2844 /* Provide a way for Tx queue to find the tc_to_txq map or 2845 * XPS map for itself. 2846 */ 2847 while (count--) 2848 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev; 2849 2850 return 0; 2851 } 2852 EXPORT_SYMBOL(netdev_bind_sb_channel_queue); 2853 2854 int netdev_set_sb_channel(struct net_device *dev, u16 channel) 2855 { 2856 /* Do not use a multiqueue device to represent a subordinate channel */ 2857 if (netif_is_multiqueue(dev)) 2858 return -ENODEV; 2859 2860 /* We allow channels 1 - 32767 to be used for subordinate channels. 2861 * Channel 0 is meant to be "native" mode and used only to represent 2862 * the main root device. We allow writing 0 to reset the device back 2863 * to normal mode after being used as a subordinate channel. 2864 */ 2865 if (channel > S16_MAX) 2866 return -EINVAL; 2867 2868 dev->num_tc = -channel; 2869 2870 return 0; 2871 } 2872 EXPORT_SYMBOL(netdev_set_sb_channel); 2873 2874 /* 2875 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 2876 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed. 2877 */ 2878 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 2879 { 2880 bool disabling; 2881 int rc; 2882 2883 disabling = txq < dev->real_num_tx_queues; 2884 2885 if (txq < 1 || txq > dev->num_tx_queues) 2886 return -EINVAL; 2887 2888 if (dev->reg_state == NETREG_REGISTERED || 2889 dev->reg_state == NETREG_UNREGISTERING) { 2890 ASSERT_RTNL(); 2891 2892 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 2893 txq); 2894 if (rc) 2895 return rc; 2896 2897 if (dev->num_tc) 2898 netif_setup_tc(dev, txq); 2899 2900 dev_qdisc_change_real_num_tx(dev, txq); 2901 2902 dev->real_num_tx_queues = txq; 2903 2904 if (disabling) { 2905 synchronize_net(); 2906 qdisc_reset_all_tx_gt(dev, txq); 2907 #ifdef CONFIG_XPS 2908 netif_reset_xps_queues_gt(dev, txq); 2909 #endif 2910 } 2911 } else { 2912 dev->real_num_tx_queues = txq; 2913 } 2914 2915 return 0; 2916 } 2917 EXPORT_SYMBOL(netif_set_real_num_tx_queues); 2918 2919 #ifdef CONFIG_SYSFS 2920 /** 2921 * netif_set_real_num_rx_queues - set actual number of RX queues used 2922 * @dev: Network device 2923 * @rxq: Actual number of RX queues 2924 * 2925 * This must be called either with the rtnl_lock held or before 2926 * registration of the net device. Returns 0 on success, or a 2927 * negative error code. If called before registration, it always 2928 * succeeds. 2929 */ 2930 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 2931 { 2932 int rc; 2933 2934 if (rxq < 1 || rxq > dev->num_rx_queues) 2935 return -EINVAL; 2936 2937 if (dev->reg_state == NETREG_REGISTERED) { 2938 ASSERT_RTNL(); 2939 2940 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 2941 rxq); 2942 if (rc) 2943 return rc; 2944 } 2945 2946 dev->real_num_rx_queues = rxq; 2947 return 0; 2948 } 2949 EXPORT_SYMBOL(netif_set_real_num_rx_queues); 2950 #endif 2951 2952 /** 2953 * netif_set_real_num_queues - set actual number of RX and TX queues used 2954 * @dev: Network device 2955 * @txq: Actual number of TX queues 2956 * @rxq: Actual number of RX queues 2957 * 2958 * Set the real number of both TX and RX queues. 2959 * Does nothing if the number of queues is already correct. 2960 */ 2961 int netif_set_real_num_queues(struct net_device *dev, 2962 unsigned int txq, unsigned int rxq) 2963 { 2964 unsigned int old_rxq = dev->real_num_rx_queues; 2965 int err; 2966 2967 if (txq < 1 || txq > dev->num_tx_queues || 2968 rxq < 1 || rxq > dev->num_rx_queues) 2969 return -EINVAL; 2970 2971 /* Start from increases, so the error path only does decreases - 2972 * decreases can't fail. 2973 */ 2974 if (rxq > dev->real_num_rx_queues) { 2975 err = netif_set_real_num_rx_queues(dev, rxq); 2976 if (err) 2977 return err; 2978 } 2979 if (txq > dev->real_num_tx_queues) { 2980 err = netif_set_real_num_tx_queues(dev, txq); 2981 if (err) 2982 goto undo_rx; 2983 } 2984 if (rxq < dev->real_num_rx_queues) 2985 WARN_ON(netif_set_real_num_rx_queues(dev, rxq)); 2986 if (txq < dev->real_num_tx_queues) 2987 WARN_ON(netif_set_real_num_tx_queues(dev, txq)); 2988 2989 return 0; 2990 undo_rx: 2991 WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq)); 2992 return err; 2993 } 2994 EXPORT_SYMBOL(netif_set_real_num_queues); 2995 2996 /** 2997 * netif_set_tso_max_size() - set the max size of TSO frames supported 2998 * @dev: netdev to update 2999 * @size: max skb->len of a TSO frame 3000 * 3001 * Set the limit on the size of TSO super-frames the device can handle. 3002 * Unless explicitly set the stack will assume the value of 3003 * %GSO_LEGACY_MAX_SIZE. 3004 */ 3005 void netif_set_tso_max_size(struct net_device *dev, unsigned int size) 3006 { 3007 dev->tso_max_size = min(GSO_MAX_SIZE, size); 3008 if (size < READ_ONCE(dev->gso_max_size)) 3009 netif_set_gso_max_size(dev, size); 3010 if (size < READ_ONCE(dev->gso_ipv4_max_size)) 3011 netif_set_gso_ipv4_max_size(dev, size); 3012 } 3013 EXPORT_SYMBOL(netif_set_tso_max_size); 3014 3015 /** 3016 * netif_set_tso_max_segs() - set the max number of segs supported for TSO 3017 * @dev: netdev to update 3018 * @segs: max number of TCP segments 3019 * 3020 * Set the limit on the number of TCP segments the device can generate from 3021 * a single TSO super-frame. 3022 * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS. 3023 */ 3024 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs) 3025 { 3026 dev->tso_max_segs = segs; 3027 if (segs < READ_ONCE(dev->gso_max_segs)) 3028 netif_set_gso_max_segs(dev, segs); 3029 } 3030 EXPORT_SYMBOL(netif_set_tso_max_segs); 3031 3032 /** 3033 * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper 3034 * @to: netdev to update 3035 * @from: netdev from which to copy the limits 3036 */ 3037 void netif_inherit_tso_max(struct net_device *to, const struct net_device *from) 3038 { 3039 netif_set_tso_max_size(to, from->tso_max_size); 3040 netif_set_tso_max_segs(to, from->tso_max_segs); 3041 } 3042 EXPORT_SYMBOL(netif_inherit_tso_max); 3043 3044 /** 3045 * netif_get_num_default_rss_queues - default number of RSS queues 3046 * 3047 * Default value is the number of physical cores if there are only 1 or 2, or 3048 * divided by 2 if there are more. 3049 */ 3050 int netif_get_num_default_rss_queues(void) 3051 { 3052 cpumask_var_t cpus; 3053 int cpu, count = 0; 3054 3055 if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL))) 3056 return 1; 3057 3058 cpumask_copy(cpus, cpu_online_mask); 3059 for_each_cpu(cpu, cpus) { 3060 ++count; 3061 cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu)); 3062 } 3063 free_cpumask_var(cpus); 3064 3065 return count > 2 ? DIV_ROUND_UP(count, 2) : count; 3066 } 3067 EXPORT_SYMBOL(netif_get_num_default_rss_queues); 3068 3069 static void __netif_reschedule(struct Qdisc *q) 3070 { 3071 struct softnet_data *sd; 3072 unsigned long flags; 3073 3074 local_irq_save(flags); 3075 sd = this_cpu_ptr(&softnet_data); 3076 q->next_sched = NULL; 3077 *sd->output_queue_tailp = q; 3078 sd->output_queue_tailp = &q->next_sched; 3079 raise_softirq_irqoff(NET_TX_SOFTIRQ); 3080 local_irq_restore(flags); 3081 } 3082 3083 void __netif_schedule(struct Qdisc *q) 3084 { 3085 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 3086 __netif_reschedule(q); 3087 } 3088 EXPORT_SYMBOL(__netif_schedule); 3089 3090 struct dev_kfree_skb_cb { 3091 enum skb_drop_reason reason; 3092 }; 3093 3094 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb) 3095 { 3096 return (struct dev_kfree_skb_cb *)skb->cb; 3097 } 3098 3099 void netif_schedule_queue(struct netdev_queue *txq) 3100 { 3101 rcu_read_lock(); 3102 if (!netif_xmit_stopped(txq)) { 3103 struct Qdisc *q = rcu_dereference(txq->qdisc); 3104 3105 __netif_schedule(q); 3106 } 3107 rcu_read_unlock(); 3108 } 3109 EXPORT_SYMBOL(netif_schedule_queue); 3110 3111 void netif_tx_wake_queue(struct netdev_queue *dev_queue) 3112 { 3113 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) { 3114 struct Qdisc *q; 3115 3116 rcu_read_lock(); 3117 q = rcu_dereference(dev_queue->qdisc); 3118 __netif_schedule(q); 3119 rcu_read_unlock(); 3120 } 3121 } 3122 EXPORT_SYMBOL(netif_tx_wake_queue); 3123 3124 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason) 3125 { 3126 unsigned long flags; 3127 3128 if (unlikely(!skb)) 3129 return; 3130 3131 if (likely(refcount_read(&skb->users) == 1)) { 3132 smp_rmb(); 3133 refcount_set(&skb->users, 0); 3134 } else if (likely(!refcount_dec_and_test(&skb->users))) { 3135 return; 3136 } 3137 get_kfree_skb_cb(skb)->reason = reason; 3138 local_irq_save(flags); 3139 skb->next = __this_cpu_read(softnet_data.completion_queue); 3140 __this_cpu_write(softnet_data.completion_queue, skb); 3141 raise_softirq_irqoff(NET_TX_SOFTIRQ); 3142 local_irq_restore(flags); 3143 } 3144 EXPORT_SYMBOL(dev_kfree_skb_irq_reason); 3145 3146 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason) 3147 { 3148 if (in_hardirq() || irqs_disabled()) 3149 dev_kfree_skb_irq_reason(skb, reason); 3150 else 3151 kfree_skb_reason(skb, reason); 3152 } 3153 EXPORT_SYMBOL(dev_kfree_skb_any_reason); 3154 3155 3156 /** 3157 * netif_device_detach - mark device as removed 3158 * @dev: network device 3159 * 3160 * Mark device as removed from system and therefore no longer available. 3161 */ 3162 void netif_device_detach(struct net_device *dev) 3163 { 3164 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 3165 netif_running(dev)) { 3166 netif_tx_stop_all_queues(dev); 3167 } 3168 } 3169 EXPORT_SYMBOL(netif_device_detach); 3170 3171 /** 3172 * netif_device_attach - mark device as attached 3173 * @dev: network device 3174 * 3175 * Mark device as attached from system and restart if needed. 3176 */ 3177 void netif_device_attach(struct net_device *dev) 3178 { 3179 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 3180 netif_running(dev)) { 3181 netif_tx_wake_all_queues(dev); 3182 __netdev_watchdog_up(dev); 3183 } 3184 } 3185 EXPORT_SYMBOL(netif_device_attach); 3186 3187 /* 3188 * Returns a Tx hash based on the given packet descriptor a Tx queues' number 3189 * to be used as a distribution range. 3190 */ 3191 static u16 skb_tx_hash(const struct net_device *dev, 3192 const struct net_device *sb_dev, 3193 struct sk_buff *skb) 3194 { 3195 u32 hash; 3196 u16 qoffset = 0; 3197 u16 qcount = dev->real_num_tx_queues; 3198 3199 if (dev->num_tc) { 3200 u8 tc = netdev_get_prio_tc_map(dev, skb->priority); 3201 3202 qoffset = sb_dev->tc_to_txq[tc].offset; 3203 qcount = sb_dev->tc_to_txq[tc].count; 3204 if (unlikely(!qcount)) { 3205 net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n", 3206 sb_dev->name, qoffset, tc); 3207 qoffset = 0; 3208 qcount = dev->real_num_tx_queues; 3209 } 3210 } 3211 3212 if (skb_rx_queue_recorded(skb)) { 3213 DEBUG_NET_WARN_ON_ONCE(qcount == 0); 3214 hash = skb_get_rx_queue(skb); 3215 if (hash >= qoffset) 3216 hash -= qoffset; 3217 while (unlikely(hash >= qcount)) 3218 hash -= qcount; 3219 return hash + qoffset; 3220 } 3221 3222 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset; 3223 } 3224 3225 void skb_warn_bad_offload(const struct sk_buff *skb) 3226 { 3227 static const netdev_features_t null_features; 3228 struct net_device *dev = skb->dev; 3229 const char *name = ""; 3230 3231 if (!net_ratelimit()) 3232 return; 3233 3234 if (dev) { 3235 if (dev->dev.parent) 3236 name = dev_driver_string(dev->dev.parent); 3237 else 3238 name = netdev_name(dev); 3239 } 3240 skb_dump(KERN_WARNING, skb, false); 3241 WARN(1, "%s: caps=(%pNF, %pNF)\n", 3242 name, dev ? &dev->features : &null_features, 3243 skb->sk ? &skb->sk->sk_route_caps : &null_features); 3244 } 3245 3246 /* 3247 * Invalidate hardware checksum when packet is to be mangled, and 3248 * complete checksum manually on outgoing path. 3249 */ 3250 int skb_checksum_help(struct sk_buff *skb) 3251 { 3252 __wsum csum; 3253 int ret = 0, offset; 3254 3255 if (skb->ip_summed == CHECKSUM_COMPLETE) 3256 goto out_set_summed; 3257 3258 if (unlikely(skb_is_gso(skb))) { 3259 skb_warn_bad_offload(skb); 3260 return -EINVAL; 3261 } 3262 3263 /* Before computing a checksum, we should make sure no frag could 3264 * be modified by an external entity : checksum could be wrong. 3265 */ 3266 if (skb_has_shared_frag(skb)) { 3267 ret = __skb_linearize(skb); 3268 if (ret) 3269 goto out; 3270 } 3271 3272 offset = skb_checksum_start_offset(skb); 3273 ret = -EINVAL; 3274 if (unlikely(offset >= skb_headlen(skb))) { 3275 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false); 3276 WARN_ONCE(true, "offset (%d) >= skb_headlen() (%u)\n", 3277 offset, skb_headlen(skb)); 3278 goto out; 3279 } 3280 csum = skb_checksum(skb, offset, skb->len - offset, 0); 3281 3282 offset += skb->csum_offset; 3283 if (unlikely(offset + sizeof(__sum16) > skb_headlen(skb))) { 3284 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false); 3285 WARN_ONCE(true, "offset+2 (%zu) > skb_headlen() (%u)\n", 3286 offset + sizeof(__sum16), skb_headlen(skb)); 3287 goto out; 3288 } 3289 ret = skb_ensure_writable(skb, offset + sizeof(__sum16)); 3290 if (ret) 3291 goto out; 3292 3293 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0; 3294 out_set_summed: 3295 skb->ip_summed = CHECKSUM_NONE; 3296 out: 3297 return ret; 3298 } 3299 EXPORT_SYMBOL(skb_checksum_help); 3300 3301 int skb_crc32c_csum_help(struct sk_buff *skb) 3302 { 3303 __le32 crc32c_csum; 3304 int ret = 0, offset, start; 3305 3306 if (skb->ip_summed != CHECKSUM_PARTIAL) 3307 goto out; 3308 3309 if (unlikely(skb_is_gso(skb))) 3310 goto out; 3311 3312 /* Before computing a checksum, we should make sure no frag could 3313 * be modified by an external entity : checksum could be wrong. 3314 */ 3315 if (unlikely(skb_has_shared_frag(skb))) { 3316 ret = __skb_linearize(skb); 3317 if (ret) 3318 goto out; 3319 } 3320 start = skb_checksum_start_offset(skb); 3321 offset = start + offsetof(struct sctphdr, checksum); 3322 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) { 3323 ret = -EINVAL; 3324 goto out; 3325 } 3326 3327 ret = skb_ensure_writable(skb, offset + sizeof(__le32)); 3328 if (ret) 3329 goto out; 3330 3331 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start, 3332 skb->len - start, ~(__u32)0, 3333 crc32c_csum_stub)); 3334 *(__le32 *)(skb->data + offset) = crc32c_csum; 3335 skb_reset_csum_not_inet(skb); 3336 out: 3337 return ret; 3338 } 3339 3340 __be16 skb_network_protocol(struct sk_buff *skb, int *depth) 3341 { 3342 __be16 type = skb->protocol; 3343 3344 /* Tunnel gso handlers can set protocol to ethernet. */ 3345 if (type == htons(ETH_P_TEB)) { 3346 struct ethhdr *eth; 3347 3348 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr)))) 3349 return 0; 3350 3351 eth = (struct ethhdr *)skb->data; 3352 type = eth->h_proto; 3353 } 3354 3355 return vlan_get_protocol_and_depth(skb, type, depth); 3356 } 3357 3358 3359 /* Take action when hardware reception checksum errors are detected. */ 3360 #ifdef CONFIG_BUG 3361 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb) 3362 { 3363 netdev_err(dev, "hw csum failure\n"); 3364 skb_dump(KERN_ERR, skb, true); 3365 dump_stack(); 3366 } 3367 3368 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb) 3369 { 3370 DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb); 3371 } 3372 EXPORT_SYMBOL(netdev_rx_csum_fault); 3373 #endif 3374 3375 /* XXX: check that highmem exists at all on the given machine. */ 3376 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 3377 { 3378 #ifdef CONFIG_HIGHMEM 3379 int i; 3380 3381 if (!(dev->features & NETIF_F_HIGHDMA)) { 3382 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3383 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3384 3385 if (PageHighMem(skb_frag_page(frag))) 3386 return 1; 3387 } 3388 } 3389 #endif 3390 return 0; 3391 } 3392 3393 /* If MPLS offload request, verify we are testing hardware MPLS features 3394 * instead of standard features for the netdev. 3395 */ 3396 #if IS_ENABLED(CONFIG_NET_MPLS_GSO) 3397 static netdev_features_t net_mpls_features(struct sk_buff *skb, 3398 netdev_features_t features, 3399 __be16 type) 3400 { 3401 if (eth_p_mpls(type)) 3402 features &= skb->dev->mpls_features; 3403 3404 return features; 3405 } 3406 #else 3407 static netdev_features_t net_mpls_features(struct sk_buff *skb, 3408 netdev_features_t features, 3409 __be16 type) 3410 { 3411 return features; 3412 } 3413 #endif 3414 3415 static netdev_features_t harmonize_features(struct sk_buff *skb, 3416 netdev_features_t features) 3417 { 3418 __be16 type; 3419 3420 type = skb_network_protocol(skb, NULL); 3421 features = net_mpls_features(skb, features, type); 3422 3423 if (skb->ip_summed != CHECKSUM_NONE && 3424 !can_checksum_protocol(features, type)) { 3425 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 3426 } 3427 if (illegal_highdma(skb->dev, skb)) 3428 features &= ~NETIF_F_SG; 3429 3430 return features; 3431 } 3432 3433 netdev_features_t passthru_features_check(struct sk_buff *skb, 3434 struct net_device *dev, 3435 netdev_features_t features) 3436 { 3437 return features; 3438 } 3439 EXPORT_SYMBOL(passthru_features_check); 3440 3441 static netdev_features_t dflt_features_check(struct sk_buff *skb, 3442 struct net_device *dev, 3443 netdev_features_t features) 3444 { 3445 return vlan_features_check(skb, features); 3446 } 3447 3448 static netdev_features_t gso_features_check(const struct sk_buff *skb, 3449 struct net_device *dev, 3450 netdev_features_t features) 3451 { 3452 u16 gso_segs = skb_shinfo(skb)->gso_segs; 3453 3454 if (gso_segs > READ_ONCE(dev->gso_max_segs)) 3455 return features & ~NETIF_F_GSO_MASK; 3456 3457 if (unlikely(skb->len >= READ_ONCE(dev->gso_max_size))) 3458 return features & ~NETIF_F_GSO_MASK; 3459 3460 if (!skb_shinfo(skb)->gso_type) { 3461 skb_warn_bad_offload(skb); 3462 return features & ~NETIF_F_GSO_MASK; 3463 } 3464 3465 /* Support for GSO partial features requires software 3466 * intervention before we can actually process the packets 3467 * so we need to strip support for any partial features now 3468 * and we can pull them back in after we have partially 3469 * segmented the frame. 3470 */ 3471 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL)) 3472 features &= ~dev->gso_partial_features; 3473 3474 /* Make sure to clear the IPv4 ID mangling feature if the 3475 * IPv4 header has the potential to be fragmented. 3476 */ 3477 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) { 3478 struct iphdr *iph = skb->encapsulation ? 3479 inner_ip_hdr(skb) : ip_hdr(skb); 3480 3481 if (!(iph->frag_off & htons(IP_DF))) 3482 features &= ~NETIF_F_TSO_MANGLEID; 3483 } 3484 3485 return features; 3486 } 3487 3488 netdev_features_t netif_skb_features(struct sk_buff *skb) 3489 { 3490 struct net_device *dev = skb->dev; 3491 netdev_features_t features = dev->features; 3492 3493 if (skb_is_gso(skb)) 3494 features = gso_features_check(skb, dev, features); 3495 3496 /* If encapsulation offload request, verify we are testing 3497 * hardware encapsulation features instead of standard 3498 * features for the netdev 3499 */ 3500 if (skb->encapsulation) 3501 features &= dev->hw_enc_features; 3502 3503 if (skb_vlan_tagged(skb)) 3504 features = netdev_intersect_features(features, 3505 dev->vlan_features | 3506 NETIF_F_HW_VLAN_CTAG_TX | 3507 NETIF_F_HW_VLAN_STAG_TX); 3508 3509 if (dev->netdev_ops->ndo_features_check) 3510 features &= dev->netdev_ops->ndo_features_check(skb, dev, 3511 features); 3512 else 3513 features &= dflt_features_check(skb, dev, features); 3514 3515 return harmonize_features(skb, features); 3516 } 3517 EXPORT_SYMBOL(netif_skb_features); 3518 3519 static int xmit_one(struct sk_buff *skb, struct net_device *dev, 3520 struct netdev_queue *txq, bool more) 3521 { 3522 unsigned int len; 3523 int rc; 3524 3525 if (dev_nit_active(dev)) 3526 dev_queue_xmit_nit(skb, dev); 3527 3528 len = skb->len; 3529 trace_net_dev_start_xmit(skb, dev); 3530 rc = netdev_start_xmit(skb, dev, txq, more); 3531 trace_net_dev_xmit(skb, rc, dev, len); 3532 3533 return rc; 3534 } 3535 3536 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev, 3537 struct netdev_queue *txq, int *ret) 3538 { 3539 struct sk_buff *skb = first; 3540 int rc = NETDEV_TX_OK; 3541 3542 while (skb) { 3543 struct sk_buff *next = skb->next; 3544 3545 skb_mark_not_on_list(skb); 3546 rc = xmit_one(skb, dev, txq, next != NULL); 3547 if (unlikely(!dev_xmit_complete(rc))) { 3548 skb->next = next; 3549 goto out; 3550 } 3551 3552 skb = next; 3553 if (netif_tx_queue_stopped(txq) && skb) { 3554 rc = NETDEV_TX_BUSY; 3555 break; 3556 } 3557 } 3558 3559 out: 3560 *ret = rc; 3561 return skb; 3562 } 3563 3564 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb, 3565 netdev_features_t features) 3566 { 3567 if (skb_vlan_tag_present(skb) && 3568 !vlan_hw_offload_capable(features, skb->vlan_proto)) 3569 skb = __vlan_hwaccel_push_inside(skb); 3570 return skb; 3571 } 3572 3573 int skb_csum_hwoffload_help(struct sk_buff *skb, 3574 const netdev_features_t features) 3575 { 3576 if (unlikely(skb_csum_is_sctp(skb))) 3577 return !!(features & NETIF_F_SCTP_CRC) ? 0 : 3578 skb_crc32c_csum_help(skb); 3579 3580 if (features & NETIF_F_HW_CSUM) 3581 return 0; 3582 3583 if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) { 3584 switch (skb->csum_offset) { 3585 case offsetof(struct tcphdr, check): 3586 case offsetof(struct udphdr, check): 3587 return 0; 3588 } 3589 } 3590 3591 return skb_checksum_help(skb); 3592 } 3593 EXPORT_SYMBOL(skb_csum_hwoffload_help); 3594 3595 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again) 3596 { 3597 netdev_features_t features; 3598 3599 features = netif_skb_features(skb); 3600 skb = validate_xmit_vlan(skb, features); 3601 if (unlikely(!skb)) 3602 goto out_null; 3603 3604 skb = sk_validate_xmit_skb(skb, dev); 3605 if (unlikely(!skb)) 3606 goto out_null; 3607 3608 if (netif_needs_gso(skb, features)) { 3609 struct sk_buff *segs; 3610 3611 segs = skb_gso_segment(skb, features); 3612 if (IS_ERR(segs)) { 3613 goto out_kfree_skb; 3614 } else if (segs) { 3615 consume_skb(skb); 3616 skb = segs; 3617 } 3618 } else { 3619 if (skb_needs_linearize(skb, features) && 3620 __skb_linearize(skb)) 3621 goto out_kfree_skb; 3622 3623 /* If packet is not checksummed and device does not 3624 * support checksumming for this protocol, complete 3625 * checksumming here. 3626 */ 3627 if (skb->ip_summed == CHECKSUM_PARTIAL) { 3628 if (skb->encapsulation) 3629 skb_set_inner_transport_header(skb, 3630 skb_checksum_start_offset(skb)); 3631 else 3632 skb_set_transport_header(skb, 3633 skb_checksum_start_offset(skb)); 3634 if (skb_csum_hwoffload_help(skb, features)) 3635 goto out_kfree_skb; 3636 } 3637 } 3638 3639 skb = validate_xmit_xfrm(skb, features, again); 3640 3641 return skb; 3642 3643 out_kfree_skb: 3644 kfree_skb(skb); 3645 out_null: 3646 dev_core_stats_tx_dropped_inc(dev); 3647 return NULL; 3648 } 3649 3650 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again) 3651 { 3652 struct sk_buff *next, *head = NULL, *tail; 3653 3654 for (; skb != NULL; skb = next) { 3655 next = skb->next; 3656 skb_mark_not_on_list(skb); 3657 3658 /* in case skb wont be segmented, point to itself */ 3659 skb->prev = skb; 3660 3661 skb = validate_xmit_skb(skb, dev, again); 3662 if (!skb) 3663 continue; 3664 3665 if (!head) 3666 head = skb; 3667 else 3668 tail->next = skb; 3669 /* If skb was segmented, skb->prev points to 3670 * the last segment. If not, it still contains skb. 3671 */ 3672 tail = skb->prev; 3673 } 3674 return head; 3675 } 3676 EXPORT_SYMBOL_GPL(validate_xmit_skb_list); 3677 3678 static void qdisc_pkt_len_init(struct sk_buff *skb) 3679 { 3680 const struct skb_shared_info *shinfo = skb_shinfo(skb); 3681 3682 qdisc_skb_cb(skb)->pkt_len = skb->len; 3683 3684 /* To get more precise estimation of bytes sent on wire, 3685 * we add to pkt_len the headers size of all segments 3686 */ 3687 if (shinfo->gso_size && skb_transport_header_was_set(skb)) { 3688 u16 gso_segs = shinfo->gso_segs; 3689 unsigned int hdr_len; 3690 3691 /* mac layer + network layer */ 3692 hdr_len = skb_transport_offset(skb); 3693 3694 /* + transport layer */ 3695 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) { 3696 const struct tcphdr *th; 3697 struct tcphdr _tcphdr; 3698 3699 th = skb_header_pointer(skb, hdr_len, 3700 sizeof(_tcphdr), &_tcphdr); 3701 if (likely(th)) 3702 hdr_len += __tcp_hdrlen(th); 3703 } else { 3704 struct udphdr _udphdr; 3705 3706 if (skb_header_pointer(skb, hdr_len, 3707 sizeof(_udphdr), &_udphdr)) 3708 hdr_len += sizeof(struct udphdr); 3709 } 3710 3711 if (shinfo->gso_type & SKB_GSO_DODGY) 3712 gso_segs = DIV_ROUND_UP(skb->len - hdr_len, 3713 shinfo->gso_size); 3714 3715 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len; 3716 } 3717 } 3718 3719 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q, 3720 struct sk_buff **to_free, 3721 struct netdev_queue *txq) 3722 { 3723 int rc; 3724 3725 rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK; 3726 if (rc == NET_XMIT_SUCCESS) 3727 trace_qdisc_enqueue(q, txq, skb); 3728 return rc; 3729 } 3730 3731 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 3732 struct net_device *dev, 3733 struct netdev_queue *txq) 3734 { 3735 spinlock_t *root_lock = qdisc_lock(q); 3736 struct sk_buff *to_free = NULL; 3737 bool contended; 3738 int rc; 3739 3740 qdisc_calculate_pkt_len(skb, q); 3741 3742 tcf_set_drop_reason(skb, SKB_DROP_REASON_QDISC_DROP); 3743 3744 if (q->flags & TCQ_F_NOLOCK) { 3745 if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) && 3746 qdisc_run_begin(q)) { 3747 /* Retest nolock_qdisc_is_empty() within the protection 3748 * of q->seqlock to protect from racing with requeuing. 3749 */ 3750 if (unlikely(!nolock_qdisc_is_empty(q))) { 3751 rc = dev_qdisc_enqueue(skb, q, &to_free, txq); 3752 __qdisc_run(q); 3753 qdisc_run_end(q); 3754 3755 goto no_lock_out; 3756 } 3757 3758 qdisc_bstats_cpu_update(q, skb); 3759 if (sch_direct_xmit(skb, q, dev, txq, NULL, true) && 3760 !nolock_qdisc_is_empty(q)) 3761 __qdisc_run(q); 3762 3763 qdisc_run_end(q); 3764 return NET_XMIT_SUCCESS; 3765 } 3766 3767 rc = dev_qdisc_enqueue(skb, q, &to_free, txq); 3768 qdisc_run(q); 3769 3770 no_lock_out: 3771 if (unlikely(to_free)) 3772 kfree_skb_list_reason(to_free, 3773 tcf_get_drop_reason(to_free)); 3774 return rc; 3775 } 3776 3777 /* 3778 * Heuristic to force contended enqueues to serialize on a 3779 * separate lock before trying to get qdisc main lock. 3780 * This permits qdisc->running owner to get the lock more 3781 * often and dequeue packets faster. 3782 * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit 3783 * and then other tasks will only enqueue packets. The packets will be 3784 * sent after the qdisc owner is scheduled again. To prevent this 3785 * scenario the task always serialize on the lock. 3786 */ 3787 contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT); 3788 if (unlikely(contended)) 3789 spin_lock(&q->busylock); 3790 3791 spin_lock(root_lock); 3792 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 3793 __qdisc_drop(skb, &to_free); 3794 rc = NET_XMIT_DROP; 3795 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 3796 qdisc_run_begin(q)) { 3797 /* 3798 * This is a work-conserving queue; there are no old skbs 3799 * waiting to be sent out; and the qdisc is not running - 3800 * xmit the skb directly. 3801 */ 3802 3803 qdisc_bstats_update(q, skb); 3804 3805 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) { 3806 if (unlikely(contended)) { 3807 spin_unlock(&q->busylock); 3808 contended = false; 3809 } 3810 __qdisc_run(q); 3811 } 3812 3813 qdisc_run_end(q); 3814 rc = NET_XMIT_SUCCESS; 3815 } else { 3816 rc = dev_qdisc_enqueue(skb, q, &to_free, txq); 3817 if (qdisc_run_begin(q)) { 3818 if (unlikely(contended)) { 3819 spin_unlock(&q->busylock); 3820 contended = false; 3821 } 3822 __qdisc_run(q); 3823 qdisc_run_end(q); 3824 } 3825 } 3826 spin_unlock(root_lock); 3827 if (unlikely(to_free)) 3828 kfree_skb_list_reason(to_free, 3829 tcf_get_drop_reason(to_free)); 3830 if (unlikely(contended)) 3831 spin_unlock(&q->busylock); 3832 return rc; 3833 } 3834 3835 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 3836 static void skb_update_prio(struct sk_buff *skb) 3837 { 3838 const struct netprio_map *map; 3839 const struct sock *sk; 3840 unsigned int prioidx; 3841 3842 if (skb->priority) 3843 return; 3844 map = rcu_dereference_bh(skb->dev->priomap); 3845 if (!map) 3846 return; 3847 sk = skb_to_full_sk(skb); 3848 if (!sk) 3849 return; 3850 3851 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data); 3852 3853 if (prioidx < map->priomap_len) 3854 skb->priority = map->priomap[prioidx]; 3855 } 3856 #else 3857 #define skb_update_prio(skb) 3858 #endif 3859 3860 /** 3861 * dev_loopback_xmit - loop back @skb 3862 * @net: network namespace this loopback is happening in 3863 * @sk: sk needed to be a netfilter okfn 3864 * @skb: buffer to transmit 3865 */ 3866 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb) 3867 { 3868 skb_reset_mac_header(skb); 3869 __skb_pull(skb, skb_network_offset(skb)); 3870 skb->pkt_type = PACKET_LOOPBACK; 3871 if (skb->ip_summed == CHECKSUM_NONE) 3872 skb->ip_summed = CHECKSUM_UNNECESSARY; 3873 DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb)); 3874 skb_dst_force(skb); 3875 netif_rx(skb); 3876 return 0; 3877 } 3878 EXPORT_SYMBOL(dev_loopback_xmit); 3879 3880 #ifdef CONFIG_NET_EGRESS 3881 static struct netdev_queue * 3882 netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb) 3883 { 3884 int qm = skb_get_queue_mapping(skb); 3885 3886 return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm)); 3887 } 3888 3889 static bool netdev_xmit_txqueue_skipped(void) 3890 { 3891 return __this_cpu_read(softnet_data.xmit.skip_txqueue); 3892 } 3893 3894 void netdev_xmit_skip_txqueue(bool skip) 3895 { 3896 __this_cpu_write(softnet_data.xmit.skip_txqueue, skip); 3897 } 3898 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue); 3899 #endif /* CONFIG_NET_EGRESS */ 3900 3901 #ifdef CONFIG_NET_XGRESS 3902 static int tc_run(struct tcx_entry *entry, struct sk_buff *skb, 3903 enum skb_drop_reason *drop_reason) 3904 { 3905 int ret = TC_ACT_UNSPEC; 3906 #ifdef CONFIG_NET_CLS_ACT 3907 struct mini_Qdisc *miniq = rcu_dereference_bh(entry->miniq); 3908 struct tcf_result res; 3909 3910 if (!miniq) 3911 return ret; 3912 3913 tc_skb_cb(skb)->mru = 0; 3914 tc_skb_cb(skb)->post_ct = false; 3915 tcf_set_drop_reason(skb, *drop_reason); 3916 3917 mini_qdisc_bstats_cpu_update(miniq, skb); 3918 ret = tcf_classify(skb, miniq->block, miniq->filter_list, &res, false); 3919 /* Only tcf related quirks below. */ 3920 switch (ret) { 3921 case TC_ACT_SHOT: 3922 *drop_reason = tcf_get_drop_reason(skb); 3923 mini_qdisc_qstats_cpu_drop(miniq); 3924 break; 3925 case TC_ACT_OK: 3926 case TC_ACT_RECLASSIFY: 3927 skb->tc_index = TC_H_MIN(res.classid); 3928 break; 3929 } 3930 #endif /* CONFIG_NET_CLS_ACT */ 3931 return ret; 3932 } 3933 3934 static DEFINE_STATIC_KEY_FALSE(tcx_needed_key); 3935 3936 void tcx_inc(void) 3937 { 3938 static_branch_inc(&tcx_needed_key); 3939 } 3940 3941 void tcx_dec(void) 3942 { 3943 static_branch_dec(&tcx_needed_key); 3944 } 3945 3946 static __always_inline enum tcx_action_base 3947 tcx_run(const struct bpf_mprog_entry *entry, struct sk_buff *skb, 3948 const bool needs_mac) 3949 { 3950 const struct bpf_mprog_fp *fp; 3951 const struct bpf_prog *prog; 3952 int ret = TCX_NEXT; 3953 3954 if (needs_mac) 3955 __skb_push(skb, skb->mac_len); 3956 bpf_mprog_foreach_prog(entry, fp, prog) { 3957 bpf_compute_data_pointers(skb); 3958 ret = bpf_prog_run(prog, skb); 3959 if (ret != TCX_NEXT) 3960 break; 3961 } 3962 if (needs_mac) 3963 __skb_pull(skb, skb->mac_len); 3964 return tcx_action_code(skb, ret); 3965 } 3966 3967 static __always_inline struct sk_buff * 3968 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret, 3969 struct net_device *orig_dev, bool *another) 3970 { 3971 struct bpf_mprog_entry *entry = rcu_dereference_bh(skb->dev->tcx_ingress); 3972 enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_INGRESS; 3973 int sch_ret; 3974 3975 if (!entry) 3976 return skb; 3977 if (*pt_prev) { 3978 *ret = deliver_skb(skb, *pt_prev, orig_dev); 3979 *pt_prev = NULL; 3980 } 3981 3982 qdisc_skb_cb(skb)->pkt_len = skb->len; 3983 tcx_set_ingress(skb, true); 3984 3985 if (static_branch_unlikely(&tcx_needed_key)) { 3986 sch_ret = tcx_run(entry, skb, true); 3987 if (sch_ret != TC_ACT_UNSPEC) 3988 goto ingress_verdict; 3989 } 3990 sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason); 3991 ingress_verdict: 3992 switch (sch_ret) { 3993 case TC_ACT_REDIRECT: 3994 /* skb_mac_header check was done by BPF, so we can safely 3995 * push the L2 header back before redirecting to another 3996 * netdev. 3997 */ 3998 __skb_push(skb, skb->mac_len); 3999 if (skb_do_redirect(skb) == -EAGAIN) { 4000 __skb_pull(skb, skb->mac_len); 4001 *another = true; 4002 break; 4003 } 4004 *ret = NET_RX_SUCCESS; 4005 return NULL; 4006 case TC_ACT_SHOT: 4007 kfree_skb_reason(skb, drop_reason); 4008 *ret = NET_RX_DROP; 4009 return NULL; 4010 /* used by tc_run */ 4011 case TC_ACT_STOLEN: 4012 case TC_ACT_QUEUED: 4013 case TC_ACT_TRAP: 4014 consume_skb(skb); 4015 fallthrough; 4016 case TC_ACT_CONSUMED: 4017 *ret = NET_RX_SUCCESS; 4018 return NULL; 4019 } 4020 4021 return skb; 4022 } 4023 4024 static __always_inline struct sk_buff * 4025 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev) 4026 { 4027 struct bpf_mprog_entry *entry = rcu_dereference_bh(dev->tcx_egress); 4028 enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_EGRESS; 4029 int sch_ret; 4030 4031 if (!entry) 4032 return skb; 4033 4034 /* qdisc_skb_cb(skb)->pkt_len & tcx_set_ingress() was 4035 * already set by the caller. 4036 */ 4037 if (static_branch_unlikely(&tcx_needed_key)) { 4038 sch_ret = tcx_run(entry, skb, false); 4039 if (sch_ret != TC_ACT_UNSPEC) 4040 goto egress_verdict; 4041 } 4042 sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason); 4043 egress_verdict: 4044 switch (sch_ret) { 4045 case TC_ACT_REDIRECT: 4046 /* No need to push/pop skb's mac_header here on egress! */ 4047 skb_do_redirect(skb); 4048 *ret = NET_XMIT_SUCCESS; 4049 return NULL; 4050 case TC_ACT_SHOT: 4051 kfree_skb_reason(skb, drop_reason); 4052 *ret = NET_XMIT_DROP; 4053 return NULL; 4054 /* used by tc_run */ 4055 case TC_ACT_STOLEN: 4056 case TC_ACT_QUEUED: 4057 case TC_ACT_TRAP: 4058 consume_skb(skb); 4059 fallthrough; 4060 case TC_ACT_CONSUMED: 4061 *ret = NET_XMIT_SUCCESS; 4062 return NULL; 4063 } 4064 4065 return skb; 4066 } 4067 #else 4068 static __always_inline struct sk_buff * 4069 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret, 4070 struct net_device *orig_dev, bool *another) 4071 { 4072 return skb; 4073 } 4074 4075 static __always_inline struct sk_buff * 4076 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev) 4077 { 4078 return skb; 4079 } 4080 #endif /* CONFIG_NET_XGRESS */ 4081 4082 #ifdef CONFIG_XPS 4083 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb, 4084 struct xps_dev_maps *dev_maps, unsigned int tci) 4085 { 4086 int tc = netdev_get_prio_tc_map(dev, skb->priority); 4087 struct xps_map *map; 4088 int queue_index = -1; 4089 4090 if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids) 4091 return queue_index; 4092 4093 tci *= dev_maps->num_tc; 4094 tci += tc; 4095 4096 map = rcu_dereference(dev_maps->attr_map[tci]); 4097 if (map) { 4098 if (map->len == 1) 4099 queue_index = map->queues[0]; 4100 else 4101 queue_index = map->queues[reciprocal_scale( 4102 skb_get_hash(skb), map->len)]; 4103 if (unlikely(queue_index >= dev->real_num_tx_queues)) 4104 queue_index = -1; 4105 } 4106 return queue_index; 4107 } 4108 #endif 4109 4110 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev, 4111 struct sk_buff *skb) 4112 { 4113 #ifdef CONFIG_XPS 4114 struct xps_dev_maps *dev_maps; 4115 struct sock *sk = skb->sk; 4116 int queue_index = -1; 4117 4118 if (!static_key_false(&xps_needed)) 4119 return -1; 4120 4121 rcu_read_lock(); 4122 if (!static_key_false(&xps_rxqs_needed)) 4123 goto get_cpus_map; 4124 4125 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]); 4126 if (dev_maps) { 4127 int tci = sk_rx_queue_get(sk); 4128 4129 if (tci >= 0) 4130 queue_index = __get_xps_queue_idx(dev, skb, dev_maps, 4131 tci); 4132 } 4133 4134 get_cpus_map: 4135 if (queue_index < 0) { 4136 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]); 4137 if (dev_maps) { 4138 unsigned int tci = skb->sender_cpu - 1; 4139 4140 queue_index = __get_xps_queue_idx(dev, skb, dev_maps, 4141 tci); 4142 } 4143 } 4144 rcu_read_unlock(); 4145 4146 return queue_index; 4147 #else 4148 return -1; 4149 #endif 4150 } 4151 4152 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb, 4153 struct net_device *sb_dev) 4154 { 4155 return 0; 4156 } 4157 EXPORT_SYMBOL(dev_pick_tx_zero); 4158 4159 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb, 4160 struct net_device *sb_dev) 4161 { 4162 return (u16)raw_smp_processor_id() % dev->real_num_tx_queues; 4163 } 4164 EXPORT_SYMBOL(dev_pick_tx_cpu_id); 4165 4166 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb, 4167 struct net_device *sb_dev) 4168 { 4169 struct sock *sk = skb->sk; 4170 int queue_index = sk_tx_queue_get(sk); 4171 4172 sb_dev = sb_dev ? : dev; 4173 4174 if (queue_index < 0 || skb->ooo_okay || 4175 queue_index >= dev->real_num_tx_queues) { 4176 int new_index = get_xps_queue(dev, sb_dev, skb); 4177 4178 if (new_index < 0) 4179 new_index = skb_tx_hash(dev, sb_dev, skb); 4180 4181 if (queue_index != new_index && sk && 4182 sk_fullsock(sk) && 4183 rcu_access_pointer(sk->sk_dst_cache)) 4184 sk_tx_queue_set(sk, new_index); 4185 4186 queue_index = new_index; 4187 } 4188 4189 return queue_index; 4190 } 4191 EXPORT_SYMBOL(netdev_pick_tx); 4192 4193 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev, 4194 struct sk_buff *skb, 4195 struct net_device *sb_dev) 4196 { 4197 int queue_index = 0; 4198 4199 #ifdef CONFIG_XPS 4200 u32 sender_cpu = skb->sender_cpu - 1; 4201 4202 if (sender_cpu >= (u32)NR_CPUS) 4203 skb->sender_cpu = raw_smp_processor_id() + 1; 4204 #endif 4205 4206 if (dev->real_num_tx_queues != 1) { 4207 const struct net_device_ops *ops = dev->netdev_ops; 4208 4209 if (ops->ndo_select_queue) 4210 queue_index = ops->ndo_select_queue(dev, skb, sb_dev); 4211 else 4212 queue_index = netdev_pick_tx(dev, skb, sb_dev); 4213 4214 queue_index = netdev_cap_txqueue(dev, queue_index); 4215 } 4216 4217 skb_set_queue_mapping(skb, queue_index); 4218 return netdev_get_tx_queue(dev, queue_index); 4219 } 4220 4221 /** 4222 * __dev_queue_xmit() - transmit a buffer 4223 * @skb: buffer to transmit 4224 * @sb_dev: suboordinate device used for L2 forwarding offload 4225 * 4226 * Queue a buffer for transmission to a network device. The caller must 4227 * have set the device and priority and built the buffer before calling 4228 * this function. The function can be called from an interrupt. 4229 * 4230 * When calling this method, interrupts MUST be enabled. This is because 4231 * the BH enable code must have IRQs enabled so that it will not deadlock. 4232 * 4233 * Regardless of the return value, the skb is consumed, so it is currently 4234 * difficult to retry a send to this method. (You can bump the ref count 4235 * before sending to hold a reference for retry if you are careful.) 4236 * 4237 * Return: 4238 * * 0 - buffer successfully transmitted 4239 * * positive qdisc return code - NET_XMIT_DROP etc. 4240 * * negative errno - other errors 4241 */ 4242 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev) 4243 { 4244 struct net_device *dev = skb->dev; 4245 struct netdev_queue *txq = NULL; 4246 struct Qdisc *q; 4247 int rc = -ENOMEM; 4248 bool again = false; 4249 4250 skb_reset_mac_header(skb); 4251 skb_assert_len(skb); 4252 4253 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP)) 4254 __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED); 4255 4256 /* Disable soft irqs for various locks below. Also 4257 * stops preemption for RCU. 4258 */ 4259 rcu_read_lock_bh(); 4260 4261 skb_update_prio(skb); 4262 4263 qdisc_pkt_len_init(skb); 4264 tcx_set_ingress(skb, false); 4265 #ifdef CONFIG_NET_EGRESS 4266 if (static_branch_unlikely(&egress_needed_key)) { 4267 if (nf_hook_egress_active()) { 4268 skb = nf_hook_egress(skb, &rc, dev); 4269 if (!skb) 4270 goto out; 4271 } 4272 4273 netdev_xmit_skip_txqueue(false); 4274 4275 nf_skip_egress(skb, true); 4276 skb = sch_handle_egress(skb, &rc, dev); 4277 if (!skb) 4278 goto out; 4279 nf_skip_egress(skb, false); 4280 4281 if (netdev_xmit_txqueue_skipped()) 4282 txq = netdev_tx_queue_mapping(dev, skb); 4283 } 4284 #endif 4285 /* If device/qdisc don't need skb->dst, release it right now while 4286 * its hot in this cpu cache. 4287 */ 4288 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 4289 skb_dst_drop(skb); 4290 else 4291 skb_dst_force(skb); 4292 4293 if (!txq) 4294 txq = netdev_core_pick_tx(dev, skb, sb_dev); 4295 4296 q = rcu_dereference_bh(txq->qdisc); 4297 4298 trace_net_dev_queue(skb); 4299 if (q->enqueue) { 4300 rc = __dev_xmit_skb(skb, q, dev, txq); 4301 goto out; 4302 } 4303 4304 /* The device has no queue. Common case for software devices: 4305 * loopback, all the sorts of tunnels... 4306 4307 * Really, it is unlikely that netif_tx_lock protection is necessary 4308 * here. (f.e. loopback and IP tunnels are clean ignoring statistics 4309 * counters.) 4310 * However, it is possible, that they rely on protection 4311 * made by us here. 4312 4313 * Check this and shot the lock. It is not prone from deadlocks. 4314 *Either shot noqueue qdisc, it is even simpler 8) 4315 */ 4316 if (dev->flags & IFF_UP) { 4317 int cpu = smp_processor_id(); /* ok because BHs are off */ 4318 4319 /* Other cpus might concurrently change txq->xmit_lock_owner 4320 * to -1 or to their cpu id, but not to our id. 4321 */ 4322 if (READ_ONCE(txq->xmit_lock_owner) != cpu) { 4323 if (dev_xmit_recursion()) 4324 goto recursion_alert; 4325 4326 skb = validate_xmit_skb(skb, dev, &again); 4327 if (!skb) 4328 goto out; 4329 4330 HARD_TX_LOCK(dev, txq, cpu); 4331 4332 if (!netif_xmit_stopped(txq)) { 4333 dev_xmit_recursion_inc(); 4334 skb = dev_hard_start_xmit(skb, dev, txq, &rc); 4335 dev_xmit_recursion_dec(); 4336 if (dev_xmit_complete(rc)) { 4337 HARD_TX_UNLOCK(dev, txq); 4338 goto out; 4339 } 4340 } 4341 HARD_TX_UNLOCK(dev, txq); 4342 net_crit_ratelimited("Virtual device %s asks to queue packet!\n", 4343 dev->name); 4344 } else { 4345 /* Recursion is detected! It is possible, 4346 * unfortunately 4347 */ 4348 recursion_alert: 4349 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n", 4350 dev->name); 4351 } 4352 } 4353 4354 rc = -ENETDOWN; 4355 rcu_read_unlock_bh(); 4356 4357 dev_core_stats_tx_dropped_inc(dev); 4358 kfree_skb_list(skb); 4359 return rc; 4360 out: 4361 rcu_read_unlock_bh(); 4362 return rc; 4363 } 4364 EXPORT_SYMBOL(__dev_queue_xmit); 4365 4366 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id) 4367 { 4368 struct net_device *dev = skb->dev; 4369 struct sk_buff *orig_skb = skb; 4370 struct netdev_queue *txq; 4371 int ret = NETDEV_TX_BUSY; 4372 bool again = false; 4373 4374 if (unlikely(!netif_running(dev) || 4375 !netif_carrier_ok(dev))) 4376 goto drop; 4377 4378 skb = validate_xmit_skb_list(skb, dev, &again); 4379 if (skb != orig_skb) 4380 goto drop; 4381 4382 skb_set_queue_mapping(skb, queue_id); 4383 txq = skb_get_tx_queue(dev, skb); 4384 4385 local_bh_disable(); 4386 4387 dev_xmit_recursion_inc(); 4388 HARD_TX_LOCK(dev, txq, smp_processor_id()); 4389 if (!netif_xmit_frozen_or_drv_stopped(txq)) 4390 ret = netdev_start_xmit(skb, dev, txq, false); 4391 HARD_TX_UNLOCK(dev, txq); 4392 dev_xmit_recursion_dec(); 4393 4394 local_bh_enable(); 4395 return ret; 4396 drop: 4397 dev_core_stats_tx_dropped_inc(dev); 4398 kfree_skb_list(skb); 4399 return NET_XMIT_DROP; 4400 } 4401 EXPORT_SYMBOL(__dev_direct_xmit); 4402 4403 /************************************************************************* 4404 * Receiver routines 4405 *************************************************************************/ 4406 4407 int netdev_max_backlog __read_mostly = 1000; 4408 EXPORT_SYMBOL(netdev_max_backlog); 4409 4410 int netdev_tstamp_prequeue __read_mostly = 1; 4411 unsigned int sysctl_skb_defer_max __read_mostly = 64; 4412 int netdev_budget __read_mostly = 300; 4413 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */ 4414 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ; 4415 int weight_p __read_mostly = 64; /* old backlog weight */ 4416 int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */ 4417 int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */ 4418 int dev_rx_weight __read_mostly = 64; 4419 int dev_tx_weight __read_mostly = 64; 4420 4421 /* Called with irq disabled */ 4422 static inline void ____napi_schedule(struct softnet_data *sd, 4423 struct napi_struct *napi) 4424 { 4425 struct task_struct *thread; 4426 4427 lockdep_assert_irqs_disabled(); 4428 4429 if (test_bit(NAPI_STATE_THREADED, &napi->state)) { 4430 /* Paired with smp_mb__before_atomic() in 4431 * napi_enable()/dev_set_threaded(). 4432 * Use READ_ONCE() to guarantee a complete 4433 * read on napi->thread. Only call 4434 * wake_up_process() when it's not NULL. 4435 */ 4436 thread = READ_ONCE(napi->thread); 4437 if (thread) { 4438 /* Avoid doing set_bit() if the thread is in 4439 * INTERRUPTIBLE state, cause napi_thread_wait() 4440 * makes sure to proceed with napi polling 4441 * if the thread is explicitly woken from here. 4442 */ 4443 if (READ_ONCE(thread->__state) != TASK_INTERRUPTIBLE) 4444 set_bit(NAPI_STATE_SCHED_THREADED, &napi->state); 4445 wake_up_process(thread); 4446 return; 4447 } 4448 } 4449 4450 list_add_tail(&napi->poll_list, &sd->poll_list); 4451 WRITE_ONCE(napi->list_owner, smp_processor_id()); 4452 /* If not called from net_rx_action() 4453 * we have to raise NET_RX_SOFTIRQ. 4454 */ 4455 if (!sd->in_net_rx_action) 4456 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 4457 } 4458 4459 #ifdef CONFIG_RPS 4460 4461 /* One global table that all flow-based protocols share. */ 4462 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly; 4463 EXPORT_SYMBOL(rps_sock_flow_table); 4464 u32 rps_cpu_mask __read_mostly; 4465 EXPORT_SYMBOL(rps_cpu_mask); 4466 4467 struct static_key_false rps_needed __read_mostly; 4468 EXPORT_SYMBOL(rps_needed); 4469 struct static_key_false rfs_needed __read_mostly; 4470 EXPORT_SYMBOL(rfs_needed); 4471 4472 static struct rps_dev_flow * 4473 set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 4474 struct rps_dev_flow *rflow, u16 next_cpu) 4475 { 4476 if (next_cpu < nr_cpu_ids) { 4477 #ifdef CONFIG_RFS_ACCEL 4478 struct netdev_rx_queue *rxqueue; 4479 struct rps_dev_flow_table *flow_table; 4480 struct rps_dev_flow *old_rflow; 4481 u32 flow_id; 4482 u16 rxq_index; 4483 int rc; 4484 4485 /* Should we steer this flow to a different hardware queue? */ 4486 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 4487 !(dev->features & NETIF_F_NTUPLE)) 4488 goto out; 4489 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 4490 if (rxq_index == skb_get_rx_queue(skb)) 4491 goto out; 4492 4493 rxqueue = dev->_rx + rxq_index; 4494 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4495 if (!flow_table) 4496 goto out; 4497 flow_id = skb_get_hash(skb) & flow_table->mask; 4498 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 4499 rxq_index, flow_id); 4500 if (rc < 0) 4501 goto out; 4502 old_rflow = rflow; 4503 rflow = &flow_table->flows[flow_id]; 4504 rflow->filter = rc; 4505 if (old_rflow->filter == rflow->filter) 4506 old_rflow->filter = RPS_NO_FILTER; 4507 out: 4508 #endif 4509 rflow->last_qtail = 4510 per_cpu(softnet_data, next_cpu).input_queue_head; 4511 } 4512 4513 rflow->cpu = next_cpu; 4514 return rflow; 4515 } 4516 4517 /* 4518 * get_rps_cpu is called from netif_receive_skb and returns the target 4519 * CPU from the RPS map of the receiving queue for a given skb. 4520 * rcu_read_lock must be held on entry. 4521 */ 4522 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 4523 struct rps_dev_flow **rflowp) 4524 { 4525 const struct rps_sock_flow_table *sock_flow_table; 4526 struct netdev_rx_queue *rxqueue = dev->_rx; 4527 struct rps_dev_flow_table *flow_table; 4528 struct rps_map *map; 4529 int cpu = -1; 4530 u32 tcpu; 4531 u32 hash; 4532 4533 if (skb_rx_queue_recorded(skb)) { 4534 u16 index = skb_get_rx_queue(skb); 4535 4536 if (unlikely(index >= dev->real_num_rx_queues)) { 4537 WARN_ONCE(dev->real_num_rx_queues > 1, 4538 "%s received packet on queue %u, but number " 4539 "of RX queues is %u\n", 4540 dev->name, index, dev->real_num_rx_queues); 4541 goto done; 4542 } 4543 rxqueue += index; 4544 } 4545 4546 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */ 4547 4548 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4549 map = rcu_dereference(rxqueue->rps_map); 4550 if (!flow_table && !map) 4551 goto done; 4552 4553 skb_reset_network_header(skb); 4554 hash = skb_get_hash(skb); 4555 if (!hash) 4556 goto done; 4557 4558 sock_flow_table = rcu_dereference(rps_sock_flow_table); 4559 if (flow_table && sock_flow_table) { 4560 struct rps_dev_flow *rflow; 4561 u32 next_cpu; 4562 u32 ident; 4563 4564 /* First check into global flow table if there is a match. 4565 * This READ_ONCE() pairs with WRITE_ONCE() from rps_record_sock_flow(). 4566 */ 4567 ident = READ_ONCE(sock_flow_table->ents[hash & sock_flow_table->mask]); 4568 if ((ident ^ hash) & ~rps_cpu_mask) 4569 goto try_rps; 4570 4571 next_cpu = ident & rps_cpu_mask; 4572 4573 /* OK, now we know there is a match, 4574 * we can look at the local (per receive queue) flow table 4575 */ 4576 rflow = &flow_table->flows[hash & flow_table->mask]; 4577 tcpu = rflow->cpu; 4578 4579 /* 4580 * If the desired CPU (where last recvmsg was done) is 4581 * different from current CPU (one in the rx-queue flow 4582 * table entry), switch if one of the following holds: 4583 * - Current CPU is unset (>= nr_cpu_ids). 4584 * - Current CPU is offline. 4585 * - The current CPU's queue tail has advanced beyond the 4586 * last packet that was enqueued using this table entry. 4587 * This guarantees that all previous packets for the flow 4588 * have been dequeued, thus preserving in order delivery. 4589 */ 4590 if (unlikely(tcpu != next_cpu) && 4591 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) || 4592 ((int)(per_cpu(softnet_data, tcpu).input_queue_head - 4593 rflow->last_qtail)) >= 0)) { 4594 tcpu = next_cpu; 4595 rflow = set_rps_cpu(dev, skb, rflow, next_cpu); 4596 } 4597 4598 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) { 4599 *rflowp = rflow; 4600 cpu = tcpu; 4601 goto done; 4602 } 4603 } 4604 4605 try_rps: 4606 4607 if (map) { 4608 tcpu = map->cpus[reciprocal_scale(hash, map->len)]; 4609 if (cpu_online(tcpu)) { 4610 cpu = tcpu; 4611 goto done; 4612 } 4613 } 4614 4615 done: 4616 return cpu; 4617 } 4618 4619 #ifdef CONFIG_RFS_ACCEL 4620 4621 /** 4622 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 4623 * @dev: Device on which the filter was set 4624 * @rxq_index: RX queue index 4625 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 4626 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 4627 * 4628 * Drivers that implement ndo_rx_flow_steer() should periodically call 4629 * this function for each installed filter and remove the filters for 4630 * which it returns %true. 4631 */ 4632 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 4633 u32 flow_id, u16 filter_id) 4634 { 4635 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 4636 struct rps_dev_flow_table *flow_table; 4637 struct rps_dev_flow *rflow; 4638 bool expire = true; 4639 unsigned int cpu; 4640 4641 rcu_read_lock(); 4642 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4643 if (flow_table && flow_id <= flow_table->mask) { 4644 rflow = &flow_table->flows[flow_id]; 4645 cpu = READ_ONCE(rflow->cpu); 4646 if (rflow->filter == filter_id && cpu < nr_cpu_ids && 4647 ((int)(per_cpu(softnet_data, cpu).input_queue_head - 4648 rflow->last_qtail) < 4649 (int)(10 * flow_table->mask))) 4650 expire = false; 4651 } 4652 rcu_read_unlock(); 4653 return expire; 4654 } 4655 EXPORT_SYMBOL(rps_may_expire_flow); 4656 4657 #endif /* CONFIG_RFS_ACCEL */ 4658 4659 /* Called from hardirq (IPI) context */ 4660 static void rps_trigger_softirq(void *data) 4661 { 4662 struct softnet_data *sd = data; 4663 4664 ____napi_schedule(sd, &sd->backlog); 4665 sd->received_rps++; 4666 } 4667 4668 #endif /* CONFIG_RPS */ 4669 4670 /* Called from hardirq (IPI) context */ 4671 static void trigger_rx_softirq(void *data) 4672 { 4673 struct softnet_data *sd = data; 4674 4675 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 4676 smp_store_release(&sd->defer_ipi_scheduled, 0); 4677 } 4678 4679 /* 4680 * After we queued a packet into sd->input_pkt_queue, 4681 * we need to make sure this queue is serviced soon. 4682 * 4683 * - If this is another cpu queue, link it to our rps_ipi_list, 4684 * and make sure we will process rps_ipi_list from net_rx_action(). 4685 * 4686 * - If this is our own queue, NAPI schedule our backlog. 4687 * Note that this also raises NET_RX_SOFTIRQ. 4688 */ 4689 static void napi_schedule_rps(struct softnet_data *sd) 4690 { 4691 struct softnet_data *mysd = this_cpu_ptr(&softnet_data); 4692 4693 #ifdef CONFIG_RPS 4694 if (sd != mysd) { 4695 sd->rps_ipi_next = mysd->rps_ipi_list; 4696 mysd->rps_ipi_list = sd; 4697 4698 /* If not called from net_rx_action() or napi_threaded_poll() 4699 * we have to raise NET_RX_SOFTIRQ. 4700 */ 4701 if (!mysd->in_net_rx_action && !mysd->in_napi_threaded_poll) 4702 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 4703 return; 4704 } 4705 #endif /* CONFIG_RPS */ 4706 __napi_schedule_irqoff(&mysd->backlog); 4707 } 4708 4709 #ifdef CONFIG_NET_FLOW_LIMIT 4710 int netdev_flow_limit_table_len __read_mostly = (1 << 12); 4711 #endif 4712 4713 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen) 4714 { 4715 #ifdef CONFIG_NET_FLOW_LIMIT 4716 struct sd_flow_limit *fl; 4717 struct softnet_data *sd; 4718 unsigned int old_flow, new_flow; 4719 4720 if (qlen < (READ_ONCE(netdev_max_backlog) >> 1)) 4721 return false; 4722 4723 sd = this_cpu_ptr(&softnet_data); 4724 4725 rcu_read_lock(); 4726 fl = rcu_dereference(sd->flow_limit); 4727 if (fl) { 4728 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1); 4729 old_flow = fl->history[fl->history_head]; 4730 fl->history[fl->history_head] = new_flow; 4731 4732 fl->history_head++; 4733 fl->history_head &= FLOW_LIMIT_HISTORY - 1; 4734 4735 if (likely(fl->buckets[old_flow])) 4736 fl->buckets[old_flow]--; 4737 4738 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) { 4739 fl->count++; 4740 rcu_read_unlock(); 4741 return true; 4742 } 4743 } 4744 rcu_read_unlock(); 4745 #endif 4746 return false; 4747 } 4748 4749 /* 4750 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 4751 * queue (may be a remote CPU queue). 4752 */ 4753 static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 4754 unsigned int *qtail) 4755 { 4756 enum skb_drop_reason reason; 4757 struct softnet_data *sd; 4758 unsigned long flags; 4759 unsigned int qlen; 4760 4761 reason = SKB_DROP_REASON_NOT_SPECIFIED; 4762 sd = &per_cpu(softnet_data, cpu); 4763 4764 rps_lock_irqsave(sd, &flags); 4765 if (!netif_running(skb->dev)) 4766 goto drop; 4767 qlen = skb_queue_len(&sd->input_pkt_queue); 4768 if (qlen <= READ_ONCE(netdev_max_backlog) && !skb_flow_limit(skb, qlen)) { 4769 if (qlen) { 4770 enqueue: 4771 __skb_queue_tail(&sd->input_pkt_queue, skb); 4772 input_queue_tail_incr_save(sd, qtail); 4773 rps_unlock_irq_restore(sd, &flags); 4774 return NET_RX_SUCCESS; 4775 } 4776 4777 /* Schedule NAPI for backlog device 4778 * We can use non atomic operation since we own the queue lock 4779 */ 4780 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) 4781 napi_schedule_rps(sd); 4782 goto enqueue; 4783 } 4784 reason = SKB_DROP_REASON_CPU_BACKLOG; 4785 4786 drop: 4787 sd->dropped++; 4788 rps_unlock_irq_restore(sd, &flags); 4789 4790 dev_core_stats_rx_dropped_inc(skb->dev); 4791 kfree_skb_reason(skb, reason); 4792 return NET_RX_DROP; 4793 } 4794 4795 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb) 4796 { 4797 struct net_device *dev = skb->dev; 4798 struct netdev_rx_queue *rxqueue; 4799 4800 rxqueue = dev->_rx; 4801 4802 if (skb_rx_queue_recorded(skb)) { 4803 u16 index = skb_get_rx_queue(skb); 4804 4805 if (unlikely(index >= dev->real_num_rx_queues)) { 4806 WARN_ONCE(dev->real_num_rx_queues > 1, 4807 "%s received packet on queue %u, but number " 4808 "of RX queues is %u\n", 4809 dev->name, index, dev->real_num_rx_queues); 4810 4811 return rxqueue; /* Return first rxqueue */ 4812 } 4813 rxqueue += index; 4814 } 4815 return rxqueue; 4816 } 4817 4818 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp, 4819 struct bpf_prog *xdp_prog) 4820 { 4821 void *orig_data, *orig_data_end, *hard_start; 4822 struct netdev_rx_queue *rxqueue; 4823 bool orig_bcast, orig_host; 4824 u32 mac_len, frame_sz; 4825 __be16 orig_eth_type; 4826 struct ethhdr *eth; 4827 u32 metalen, act; 4828 int off; 4829 4830 /* The XDP program wants to see the packet starting at the MAC 4831 * header. 4832 */ 4833 mac_len = skb->data - skb_mac_header(skb); 4834 hard_start = skb->data - skb_headroom(skb); 4835 4836 /* SKB "head" area always have tailroom for skb_shared_info */ 4837 frame_sz = (void *)skb_end_pointer(skb) - hard_start; 4838 frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 4839 4840 rxqueue = netif_get_rxqueue(skb); 4841 xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq); 4842 xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len, 4843 skb_headlen(skb) + mac_len, true); 4844 if (skb_is_nonlinear(skb)) { 4845 skb_shinfo(skb)->xdp_frags_size = skb->data_len; 4846 xdp_buff_set_frags_flag(xdp); 4847 } else { 4848 xdp_buff_clear_frags_flag(xdp); 4849 } 4850 4851 orig_data_end = xdp->data_end; 4852 orig_data = xdp->data; 4853 eth = (struct ethhdr *)xdp->data; 4854 orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr); 4855 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest); 4856 orig_eth_type = eth->h_proto; 4857 4858 act = bpf_prog_run_xdp(xdp_prog, xdp); 4859 4860 /* check if bpf_xdp_adjust_head was used */ 4861 off = xdp->data - orig_data; 4862 if (off) { 4863 if (off > 0) 4864 __skb_pull(skb, off); 4865 else if (off < 0) 4866 __skb_push(skb, -off); 4867 4868 skb->mac_header += off; 4869 skb_reset_network_header(skb); 4870 } 4871 4872 /* check if bpf_xdp_adjust_tail was used */ 4873 off = xdp->data_end - orig_data_end; 4874 if (off != 0) { 4875 skb_set_tail_pointer(skb, xdp->data_end - xdp->data); 4876 skb->len += off; /* positive on grow, negative on shrink */ 4877 } 4878 4879 /* XDP frag metadata (e.g. nr_frags) are updated in eBPF helpers 4880 * (e.g. bpf_xdp_adjust_tail), we need to update data_len here. 4881 */ 4882 if (xdp_buff_has_frags(xdp)) 4883 skb->data_len = skb_shinfo(skb)->xdp_frags_size; 4884 else 4885 skb->data_len = 0; 4886 4887 /* check if XDP changed eth hdr such SKB needs update */ 4888 eth = (struct ethhdr *)xdp->data; 4889 if ((orig_eth_type != eth->h_proto) || 4890 (orig_host != ether_addr_equal_64bits(eth->h_dest, 4891 skb->dev->dev_addr)) || 4892 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) { 4893 __skb_push(skb, ETH_HLEN); 4894 skb->pkt_type = PACKET_HOST; 4895 skb->protocol = eth_type_trans(skb, skb->dev); 4896 } 4897 4898 /* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull 4899 * before calling us again on redirect path. We do not call do_redirect 4900 * as we leave that up to the caller. 4901 * 4902 * Caller is responsible for managing lifetime of skb (i.e. calling 4903 * kfree_skb in response to actions it cannot handle/XDP_DROP). 4904 */ 4905 switch (act) { 4906 case XDP_REDIRECT: 4907 case XDP_TX: 4908 __skb_push(skb, mac_len); 4909 break; 4910 case XDP_PASS: 4911 metalen = xdp->data - xdp->data_meta; 4912 if (metalen) 4913 skb_metadata_set(skb, metalen); 4914 break; 4915 } 4916 4917 return act; 4918 } 4919 4920 static int 4921 netif_skb_check_for_xdp(struct sk_buff **pskb, struct bpf_prog *prog) 4922 { 4923 struct sk_buff *skb = *pskb; 4924 int err, hroom, troom; 4925 4926 if (!skb_cow_data_for_xdp(this_cpu_read(system_page_pool), pskb, prog)) 4927 return 0; 4928 4929 /* In case we have to go down the path and also linearize, 4930 * then lets do the pskb_expand_head() work just once here. 4931 */ 4932 hroom = XDP_PACKET_HEADROOM - skb_headroom(skb); 4933 troom = skb->tail + skb->data_len - skb->end; 4934 err = pskb_expand_head(skb, 4935 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0, 4936 troom > 0 ? troom + 128 : 0, GFP_ATOMIC); 4937 if (err) 4938 return err; 4939 4940 return skb_linearize(skb); 4941 } 4942 4943 static u32 netif_receive_generic_xdp(struct sk_buff **pskb, 4944 struct xdp_buff *xdp, 4945 struct bpf_prog *xdp_prog) 4946 { 4947 struct sk_buff *skb = *pskb; 4948 u32 mac_len, act = XDP_DROP; 4949 4950 /* Reinjected packets coming from act_mirred or similar should 4951 * not get XDP generic processing. 4952 */ 4953 if (skb_is_redirected(skb)) 4954 return XDP_PASS; 4955 4956 /* XDP packets must have sufficient headroom of XDP_PACKET_HEADROOM 4957 * bytes. This is the guarantee that also native XDP provides, 4958 * thus we need to do it here as well. 4959 */ 4960 mac_len = skb->data - skb_mac_header(skb); 4961 __skb_push(skb, mac_len); 4962 4963 if (skb_cloned(skb) || skb_is_nonlinear(skb) || 4964 skb_headroom(skb) < XDP_PACKET_HEADROOM) { 4965 if (netif_skb_check_for_xdp(pskb, xdp_prog)) 4966 goto do_drop; 4967 } 4968 4969 __skb_pull(*pskb, mac_len); 4970 4971 act = bpf_prog_run_generic_xdp(*pskb, xdp, xdp_prog); 4972 switch (act) { 4973 case XDP_REDIRECT: 4974 case XDP_TX: 4975 case XDP_PASS: 4976 break; 4977 default: 4978 bpf_warn_invalid_xdp_action((*pskb)->dev, xdp_prog, act); 4979 fallthrough; 4980 case XDP_ABORTED: 4981 trace_xdp_exception((*pskb)->dev, xdp_prog, act); 4982 fallthrough; 4983 case XDP_DROP: 4984 do_drop: 4985 kfree_skb(*pskb); 4986 break; 4987 } 4988 4989 return act; 4990 } 4991 4992 /* When doing generic XDP we have to bypass the qdisc layer and the 4993 * network taps in order to match in-driver-XDP behavior. This also means 4994 * that XDP packets are able to starve other packets going through a qdisc, 4995 * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX 4996 * queues, so they do not have this starvation issue. 4997 */ 4998 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog) 4999 { 5000 struct net_device *dev = skb->dev; 5001 struct netdev_queue *txq; 5002 bool free_skb = true; 5003 int cpu, rc; 5004 5005 txq = netdev_core_pick_tx(dev, skb, NULL); 5006 cpu = smp_processor_id(); 5007 HARD_TX_LOCK(dev, txq, cpu); 5008 if (!netif_xmit_frozen_or_drv_stopped(txq)) { 5009 rc = netdev_start_xmit(skb, dev, txq, 0); 5010 if (dev_xmit_complete(rc)) 5011 free_skb = false; 5012 } 5013 HARD_TX_UNLOCK(dev, txq); 5014 if (free_skb) { 5015 trace_xdp_exception(dev, xdp_prog, XDP_TX); 5016 dev_core_stats_tx_dropped_inc(dev); 5017 kfree_skb(skb); 5018 } 5019 } 5020 5021 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key); 5022 5023 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff **pskb) 5024 { 5025 if (xdp_prog) { 5026 struct xdp_buff xdp; 5027 u32 act; 5028 int err; 5029 5030 act = netif_receive_generic_xdp(pskb, &xdp, xdp_prog); 5031 if (act != XDP_PASS) { 5032 switch (act) { 5033 case XDP_REDIRECT: 5034 err = xdp_do_generic_redirect((*pskb)->dev, *pskb, 5035 &xdp, xdp_prog); 5036 if (err) 5037 goto out_redir; 5038 break; 5039 case XDP_TX: 5040 generic_xdp_tx(*pskb, xdp_prog); 5041 break; 5042 } 5043 return XDP_DROP; 5044 } 5045 } 5046 return XDP_PASS; 5047 out_redir: 5048 kfree_skb_reason(*pskb, SKB_DROP_REASON_XDP); 5049 return XDP_DROP; 5050 } 5051 EXPORT_SYMBOL_GPL(do_xdp_generic); 5052 5053 static int netif_rx_internal(struct sk_buff *skb) 5054 { 5055 int ret; 5056 5057 net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb); 5058 5059 trace_netif_rx(skb); 5060 5061 #ifdef CONFIG_RPS 5062 if (static_branch_unlikely(&rps_needed)) { 5063 struct rps_dev_flow voidflow, *rflow = &voidflow; 5064 int cpu; 5065 5066 rcu_read_lock(); 5067 5068 cpu = get_rps_cpu(skb->dev, skb, &rflow); 5069 if (cpu < 0) 5070 cpu = smp_processor_id(); 5071 5072 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 5073 5074 rcu_read_unlock(); 5075 } else 5076 #endif 5077 { 5078 unsigned int qtail; 5079 5080 ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail); 5081 } 5082 return ret; 5083 } 5084 5085 /** 5086 * __netif_rx - Slightly optimized version of netif_rx 5087 * @skb: buffer to post 5088 * 5089 * This behaves as netif_rx except that it does not disable bottom halves. 5090 * As a result this function may only be invoked from the interrupt context 5091 * (either hard or soft interrupt). 5092 */ 5093 int __netif_rx(struct sk_buff *skb) 5094 { 5095 int ret; 5096 5097 lockdep_assert_once(hardirq_count() | softirq_count()); 5098 5099 trace_netif_rx_entry(skb); 5100 ret = netif_rx_internal(skb); 5101 trace_netif_rx_exit(ret); 5102 return ret; 5103 } 5104 EXPORT_SYMBOL(__netif_rx); 5105 5106 /** 5107 * netif_rx - post buffer to the network code 5108 * @skb: buffer to post 5109 * 5110 * This function receives a packet from a device driver and queues it for 5111 * the upper (protocol) levels to process via the backlog NAPI device. It 5112 * always succeeds. The buffer may be dropped during processing for 5113 * congestion control or by the protocol layers. 5114 * The network buffer is passed via the backlog NAPI device. Modern NIC 5115 * driver should use NAPI and GRO. 5116 * This function can used from interrupt and from process context. The 5117 * caller from process context must not disable interrupts before invoking 5118 * this function. 5119 * 5120 * return values: 5121 * NET_RX_SUCCESS (no congestion) 5122 * NET_RX_DROP (packet was dropped) 5123 * 5124 */ 5125 int netif_rx(struct sk_buff *skb) 5126 { 5127 bool need_bh_off = !(hardirq_count() | softirq_count()); 5128 int ret; 5129 5130 if (need_bh_off) 5131 local_bh_disable(); 5132 trace_netif_rx_entry(skb); 5133 ret = netif_rx_internal(skb); 5134 trace_netif_rx_exit(ret); 5135 if (need_bh_off) 5136 local_bh_enable(); 5137 return ret; 5138 } 5139 EXPORT_SYMBOL(netif_rx); 5140 5141 static __latent_entropy void net_tx_action(struct softirq_action *h) 5142 { 5143 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 5144 5145 if (sd->completion_queue) { 5146 struct sk_buff *clist; 5147 5148 local_irq_disable(); 5149 clist = sd->completion_queue; 5150 sd->completion_queue = NULL; 5151 local_irq_enable(); 5152 5153 while (clist) { 5154 struct sk_buff *skb = clist; 5155 5156 clist = clist->next; 5157 5158 WARN_ON(refcount_read(&skb->users)); 5159 if (likely(get_kfree_skb_cb(skb)->reason == SKB_CONSUMED)) 5160 trace_consume_skb(skb, net_tx_action); 5161 else 5162 trace_kfree_skb(skb, net_tx_action, 5163 get_kfree_skb_cb(skb)->reason); 5164 5165 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) 5166 __kfree_skb(skb); 5167 else 5168 __napi_kfree_skb(skb, 5169 get_kfree_skb_cb(skb)->reason); 5170 } 5171 } 5172 5173 if (sd->output_queue) { 5174 struct Qdisc *head; 5175 5176 local_irq_disable(); 5177 head = sd->output_queue; 5178 sd->output_queue = NULL; 5179 sd->output_queue_tailp = &sd->output_queue; 5180 local_irq_enable(); 5181 5182 rcu_read_lock(); 5183 5184 while (head) { 5185 struct Qdisc *q = head; 5186 spinlock_t *root_lock = NULL; 5187 5188 head = head->next_sched; 5189 5190 /* We need to make sure head->next_sched is read 5191 * before clearing __QDISC_STATE_SCHED 5192 */ 5193 smp_mb__before_atomic(); 5194 5195 if (!(q->flags & TCQ_F_NOLOCK)) { 5196 root_lock = qdisc_lock(q); 5197 spin_lock(root_lock); 5198 } else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, 5199 &q->state))) { 5200 /* There is a synchronize_net() between 5201 * STATE_DEACTIVATED flag being set and 5202 * qdisc_reset()/some_qdisc_is_busy() in 5203 * dev_deactivate(), so we can safely bail out 5204 * early here to avoid data race between 5205 * qdisc_deactivate() and some_qdisc_is_busy() 5206 * for lockless qdisc. 5207 */ 5208 clear_bit(__QDISC_STATE_SCHED, &q->state); 5209 continue; 5210 } 5211 5212 clear_bit(__QDISC_STATE_SCHED, &q->state); 5213 qdisc_run(q); 5214 if (root_lock) 5215 spin_unlock(root_lock); 5216 } 5217 5218 rcu_read_unlock(); 5219 } 5220 5221 xfrm_dev_backlog(sd); 5222 } 5223 5224 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE) 5225 /* This hook is defined here for ATM LANE */ 5226 int (*br_fdb_test_addr_hook)(struct net_device *dev, 5227 unsigned char *addr) __read_mostly; 5228 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 5229 #endif 5230 5231 /** 5232 * netdev_is_rx_handler_busy - check if receive handler is registered 5233 * @dev: device to check 5234 * 5235 * Check if a receive handler is already registered for a given device. 5236 * Return true if there one. 5237 * 5238 * The caller must hold the rtnl_mutex. 5239 */ 5240 bool netdev_is_rx_handler_busy(struct net_device *dev) 5241 { 5242 ASSERT_RTNL(); 5243 return dev && rtnl_dereference(dev->rx_handler); 5244 } 5245 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy); 5246 5247 /** 5248 * netdev_rx_handler_register - register receive handler 5249 * @dev: device to register a handler for 5250 * @rx_handler: receive handler to register 5251 * @rx_handler_data: data pointer that is used by rx handler 5252 * 5253 * Register a receive handler for a device. This handler will then be 5254 * called from __netif_receive_skb. A negative errno code is returned 5255 * on a failure. 5256 * 5257 * The caller must hold the rtnl_mutex. 5258 * 5259 * For a general description of rx_handler, see enum rx_handler_result. 5260 */ 5261 int netdev_rx_handler_register(struct net_device *dev, 5262 rx_handler_func_t *rx_handler, 5263 void *rx_handler_data) 5264 { 5265 if (netdev_is_rx_handler_busy(dev)) 5266 return -EBUSY; 5267 5268 if (dev->priv_flags & IFF_NO_RX_HANDLER) 5269 return -EINVAL; 5270 5271 /* Note: rx_handler_data must be set before rx_handler */ 5272 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 5273 rcu_assign_pointer(dev->rx_handler, rx_handler); 5274 5275 return 0; 5276 } 5277 EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 5278 5279 /** 5280 * netdev_rx_handler_unregister - unregister receive handler 5281 * @dev: device to unregister a handler from 5282 * 5283 * Unregister a receive handler from a device. 5284 * 5285 * The caller must hold the rtnl_mutex. 5286 */ 5287 void netdev_rx_handler_unregister(struct net_device *dev) 5288 { 5289 5290 ASSERT_RTNL(); 5291 RCU_INIT_POINTER(dev->rx_handler, NULL); 5292 /* a reader seeing a non NULL rx_handler in a rcu_read_lock() 5293 * section has a guarantee to see a non NULL rx_handler_data 5294 * as well. 5295 */ 5296 synchronize_net(); 5297 RCU_INIT_POINTER(dev->rx_handler_data, NULL); 5298 } 5299 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 5300 5301 /* 5302 * Limit the use of PFMEMALLOC reserves to those protocols that implement 5303 * the special handling of PFMEMALLOC skbs. 5304 */ 5305 static bool skb_pfmemalloc_protocol(struct sk_buff *skb) 5306 { 5307 switch (skb->protocol) { 5308 case htons(ETH_P_ARP): 5309 case htons(ETH_P_IP): 5310 case htons(ETH_P_IPV6): 5311 case htons(ETH_P_8021Q): 5312 case htons(ETH_P_8021AD): 5313 return true; 5314 default: 5315 return false; 5316 } 5317 } 5318 5319 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev, 5320 int *ret, struct net_device *orig_dev) 5321 { 5322 if (nf_hook_ingress_active(skb)) { 5323 int ingress_retval; 5324 5325 if (*pt_prev) { 5326 *ret = deliver_skb(skb, *pt_prev, orig_dev); 5327 *pt_prev = NULL; 5328 } 5329 5330 rcu_read_lock(); 5331 ingress_retval = nf_hook_ingress(skb); 5332 rcu_read_unlock(); 5333 return ingress_retval; 5334 } 5335 return 0; 5336 } 5337 5338 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc, 5339 struct packet_type **ppt_prev) 5340 { 5341 struct packet_type *ptype, *pt_prev; 5342 rx_handler_func_t *rx_handler; 5343 struct sk_buff *skb = *pskb; 5344 struct net_device *orig_dev; 5345 bool deliver_exact = false; 5346 int ret = NET_RX_DROP; 5347 __be16 type; 5348 5349 net_timestamp_check(!READ_ONCE(netdev_tstamp_prequeue), skb); 5350 5351 trace_netif_receive_skb(skb); 5352 5353 orig_dev = skb->dev; 5354 5355 skb_reset_network_header(skb); 5356 if (!skb_transport_header_was_set(skb)) 5357 skb_reset_transport_header(skb); 5358 skb_reset_mac_len(skb); 5359 5360 pt_prev = NULL; 5361 5362 another_round: 5363 skb->skb_iif = skb->dev->ifindex; 5364 5365 __this_cpu_inc(softnet_data.processed); 5366 5367 if (static_branch_unlikely(&generic_xdp_needed_key)) { 5368 int ret2; 5369 5370 migrate_disable(); 5371 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), 5372 &skb); 5373 migrate_enable(); 5374 5375 if (ret2 != XDP_PASS) { 5376 ret = NET_RX_DROP; 5377 goto out; 5378 } 5379 } 5380 5381 if (eth_type_vlan(skb->protocol)) { 5382 skb = skb_vlan_untag(skb); 5383 if (unlikely(!skb)) 5384 goto out; 5385 } 5386 5387 if (skb_skip_tc_classify(skb)) 5388 goto skip_classify; 5389 5390 if (pfmemalloc) 5391 goto skip_taps; 5392 5393 list_for_each_entry_rcu(ptype, &ptype_all, list) { 5394 if (pt_prev) 5395 ret = deliver_skb(skb, pt_prev, orig_dev); 5396 pt_prev = ptype; 5397 } 5398 5399 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) { 5400 if (pt_prev) 5401 ret = deliver_skb(skb, pt_prev, orig_dev); 5402 pt_prev = ptype; 5403 } 5404 5405 skip_taps: 5406 #ifdef CONFIG_NET_INGRESS 5407 if (static_branch_unlikely(&ingress_needed_key)) { 5408 bool another = false; 5409 5410 nf_skip_egress(skb, true); 5411 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev, 5412 &another); 5413 if (another) 5414 goto another_round; 5415 if (!skb) 5416 goto out; 5417 5418 nf_skip_egress(skb, false); 5419 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0) 5420 goto out; 5421 } 5422 #endif 5423 skb_reset_redirect(skb); 5424 skip_classify: 5425 if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) 5426 goto drop; 5427 5428 if (skb_vlan_tag_present(skb)) { 5429 if (pt_prev) { 5430 ret = deliver_skb(skb, pt_prev, orig_dev); 5431 pt_prev = NULL; 5432 } 5433 if (vlan_do_receive(&skb)) 5434 goto another_round; 5435 else if (unlikely(!skb)) 5436 goto out; 5437 } 5438 5439 rx_handler = rcu_dereference(skb->dev->rx_handler); 5440 if (rx_handler) { 5441 if (pt_prev) { 5442 ret = deliver_skb(skb, pt_prev, orig_dev); 5443 pt_prev = NULL; 5444 } 5445 switch (rx_handler(&skb)) { 5446 case RX_HANDLER_CONSUMED: 5447 ret = NET_RX_SUCCESS; 5448 goto out; 5449 case RX_HANDLER_ANOTHER: 5450 goto another_round; 5451 case RX_HANDLER_EXACT: 5452 deliver_exact = true; 5453 break; 5454 case RX_HANDLER_PASS: 5455 break; 5456 default: 5457 BUG(); 5458 } 5459 } 5460 5461 if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) { 5462 check_vlan_id: 5463 if (skb_vlan_tag_get_id(skb)) { 5464 /* Vlan id is non 0 and vlan_do_receive() above couldn't 5465 * find vlan device. 5466 */ 5467 skb->pkt_type = PACKET_OTHERHOST; 5468 } else if (eth_type_vlan(skb->protocol)) { 5469 /* Outer header is 802.1P with vlan 0, inner header is 5470 * 802.1Q or 802.1AD and vlan_do_receive() above could 5471 * not find vlan dev for vlan id 0. 5472 */ 5473 __vlan_hwaccel_clear_tag(skb); 5474 skb = skb_vlan_untag(skb); 5475 if (unlikely(!skb)) 5476 goto out; 5477 if (vlan_do_receive(&skb)) 5478 /* After stripping off 802.1P header with vlan 0 5479 * vlan dev is found for inner header. 5480 */ 5481 goto another_round; 5482 else if (unlikely(!skb)) 5483 goto out; 5484 else 5485 /* We have stripped outer 802.1P vlan 0 header. 5486 * But could not find vlan dev. 5487 * check again for vlan id to set OTHERHOST. 5488 */ 5489 goto check_vlan_id; 5490 } 5491 /* Note: we might in the future use prio bits 5492 * and set skb->priority like in vlan_do_receive() 5493 * For the time being, just ignore Priority Code Point 5494 */ 5495 __vlan_hwaccel_clear_tag(skb); 5496 } 5497 5498 type = skb->protocol; 5499 5500 /* deliver only exact match when indicated */ 5501 if (likely(!deliver_exact)) { 5502 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 5503 &ptype_base[ntohs(type) & 5504 PTYPE_HASH_MASK]); 5505 } 5506 5507 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 5508 &orig_dev->ptype_specific); 5509 5510 if (unlikely(skb->dev != orig_dev)) { 5511 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 5512 &skb->dev->ptype_specific); 5513 } 5514 5515 if (pt_prev) { 5516 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 5517 goto drop; 5518 *ppt_prev = pt_prev; 5519 } else { 5520 drop: 5521 if (!deliver_exact) 5522 dev_core_stats_rx_dropped_inc(skb->dev); 5523 else 5524 dev_core_stats_rx_nohandler_inc(skb->dev); 5525 kfree_skb_reason(skb, SKB_DROP_REASON_UNHANDLED_PROTO); 5526 /* Jamal, now you will not able to escape explaining 5527 * me how you were going to use this. :-) 5528 */ 5529 ret = NET_RX_DROP; 5530 } 5531 5532 out: 5533 /* The invariant here is that if *ppt_prev is not NULL 5534 * then skb should also be non-NULL. 5535 * 5536 * Apparently *ppt_prev assignment above holds this invariant due to 5537 * skb dereferencing near it. 5538 */ 5539 *pskb = skb; 5540 return ret; 5541 } 5542 5543 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc) 5544 { 5545 struct net_device *orig_dev = skb->dev; 5546 struct packet_type *pt_prev = NULL; 5547 int ret; 5548 5549 ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev); 5550 if (pt_prev) 5551 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb, 5552 skb->dev, pt_prev, orig_dev); 5553 return ret; 5554 } 5555 5556 /** 5557 * netif_receive_skb_core - special purpose version of netif_receive_skb 5558 * @skb: buffer to process 5559 * 5560 * More direct receive version of netif_receive_skb(). It should 5561 * only be used by callers that have a need to skip RPS and Generic XDP. 5562 * Caller must also take care of handling if ``(page_is_)pfmemalloc``. 5563 * 5564 * This function may only be called from softirq context and interrupts 5565 * should be enabled. 5566 * 5567 * Return values (usually ignored): 5568 * NET_RX_SUCCESS: no congestion 5569 * NET_RX_DROP: packet was dropped 5570 */ 5571 int netif_receive_skb_core(struct sk_buff *skb) 5572 { 5573 int ret; 5574 5575 rcu_read_lock(); 5576 ret = __netif_receive_skb_one_core(skb, false); 5577 rcu_read_unlock(); 5578 5579 return ret; 5580 } 5581 EXPORT_SYMBOL(netif_receive_skb_core); 5582 5583 static inline void __netif_receive_skb_list_ptype(struct list_head *head, 5584 struct packet_type *pt_prev, 5585 struct net_device *orig_dev) 5586 { 5587 struct sk_buff *skb, *next; 5588 5589 if (!pt_prev) 5590 return; 5591 if (list_empty(head)) 5592 return; 5593 if (pt_prev->list_func != NULL) 5594 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv, 5595 ip_list_rcv, head, pt_prev, orig_dev); 5596 else 5597 list_for_each_entry_safe(skb, next, head, list) { 5598 skb_list_del_init(skb); 5599 pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 5600 } 5601 } 5602 5603 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc) 5604 { 5605 /* Fast-path assumptions: 5606 * - There is no RX handler. 5607 * - Only one packet_type matches. 5608 * If either of these fails, we will end up doing some per-packet 5609 * processing in-line, then handling the 'last ptype' for the whole 5610 * sublist. This can't cause out-of-order delivery to any single ptype, 5611 * because the 'last ptype' must be constant across the sublist, and all 5612 * other ptypes are handled per-packet. 5613 */ 5614 /* Current (common) ptype of sublist */ 5615 struct packet_type *pt_curr = NULL; 5616 /* Current (common) orig_dev of sublist */ 5617 struct net_device *od_curr = NULL; 5618 struct list_head sublist; 5619 struct sk_buff *skb, *next; 5620 5621 INIT_LIST_HEAD(&sublist); 5622 list_for_each_entry_safe(skb, next, head, list) { 5623 struct net_device *orig_dev = skb->dev; 5624 struct packet_type *pt_prev = NULL; 5625 5626 skb_list_del_init(skb); 5627 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev); 5628 if (!pt_prev) 5629 continue; 5630 if (pt_curr != pt_prev || od_curr != orig_dev) { 5631 /* dispatch old sublist */ 5632 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr); 5633 /* start new sublist */ 5634 INIT_LIST_HEAD(&sublist); 5635 pt_curr = pt_prev; 5636 od_curr = orig_dev; 5637 } 5638 list_add_tail(&skb->list, &sublist); 5639 } 5640 5641 /* dispatch final sublist */ 5642 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr); 5643 } 5644 5645 static int __netif_receive_skb(struct sk_buff *skb) 5646 { 5647 int ret; 5648 5649 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) { 5650 unsigned int noreclaim_flag; 5651 5652 /* 5653 * PFMEMALLOC skbs are special, they should 5654 * - be delivered to SOCK_MEMALLOC sockets only 5655 * - stay away from userspace 5656 * - have bounded memory usage 5657 * 5658 * Use PF_MEMALLOC as this saves us from propagating the allocation 5659 * context down to all allocation sites. 5660 */ 5661 noreclaim_flag = memalloc_noreclaim_save(); 5662 ret = __netif_receive_skb_one_core(skb, true); 5663 memalloc_noreclaim_restore(noreclaim_flag); 5664 } else 5665 ret = __netif_receive_skb_one_core(skb, false); 5666 5667 return ret; 5668 } 5669 5670 static void __netif_receive_skb_list(struct list_head *head) 5671 { 5672 unsigned long noreclaim_flag = 0; 5673 struct sk_buff *skb, *next; 5674 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */ 5675 5676 list_for_each_entry_safe(skb, next, head, list) { 5677 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) { 5678 struct list_head sublist; 5679 5680 /* Handle the previous sublist */ 5681 list_cut_before(&sublist, head, &skb->list); 5682 if (!list_empty(&sublist)) 5683 __netif_receive_skb_list_core(&sublist, pfmemalloc); 5684 pfmemalloc = !pfmemalloc; 5685 /* See comments in __netif_receive_skb */ 5686 if (pfmemalloc) 5687 noreclaim_flag = memalloc_noreclaim_save(); 5688 else 5689 memalloc_noreclaim_restore(noreclaim_flag); 5690 } 5691 } 5692 /* Handle the remaining sublist */ 5693 if (!list_empty(head)) 5694 __netif_receive_skb_list_core(head, pfmemalloc); 5695 /* Restore pflags */ 5696 if (pfmemalloc) 5697 memalloc_noreclaim_restore(noreclaim_flag); 5698 } 5699 5700 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp) 5701 { 5702 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog); 5703 struct bpf_prog *new = xdp->prog; 5704 int ret = 0; 5705 5706 switch (xdp->command) { 5707 case XDP_SETUP_PROG: 5708 rcu_assign_pointer(dev->xdp_prog, new); 5709 if (old) 5710 bpf_prog_put(old); 5711 5712 if (old && !new) { 5713 static_branch_dec(&generic_xdp_needed_key); 5714 } else if (new && !old) { 5715 static_branch_inc(&generic_xdp_needed_key); 5716 dev_disable_lro(dev); 5717 dev_disable_gro_hw(dev); 5718 } 5719 break; 5720 5721 default: 5722 ret = -EINVAL; 5723 break; 5724 } 5725 5726 return ret; 5727 } 5728 5729 static int netif_receive_skb_internal(struct sk_buff *skb) 5730 { 5731 int ret; 5732 5733 net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb); 5734 5735 if (skb_defer_rx_timestamp(skb)) 5736 return NET_RX_SUCCESS; 5737 5738 rcu_read_lock(); 5739 #ifdef CONFIG_RPS 5740 if (static_branch_unlikely(&rps_needed)) { 5741 struct rps_dev_flow voidflow, *rflow = &voidflow; 5742 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 5743 5744 if (cpu >= 0) { 5745 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 5746 rcu_read_unlock(); 5747 return ret; 5748 } 5749 } 5750 #endif 5751 ret = __netif_receive_skb(skb); 5752 rcu_read_unlock(); 5753 return ret; 5754 } 5755 5756 void netif_receive_skb_list_internal(struct list_head *head) 5757 { 5758 struct sk_buff *skb, *next; 5759 struct list_head sublist; 5760 5761 INIT_LIST_HEAD(&sublist); 5762 list_for_each_entry_safe(skb, next, head, list) { 5763 net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb); 5764 skb_list_del_init(skb); 5765 if (!skb_defer_rx_timestamp(skb)) 5766 list_add_tail(&skb->list, &sublist); 5767 } 5768 list_splice_init(&sublist, head); 5769 5770 rcu_read_lock(); 5771 #ifdef CONFIG_RPS 5772 if (static_branch_unlikely(&rps_needed)) { 5773 list_for_each_entry_safe(skb, next, head, list) { 5774 struct rps_dev_flow voidflow, *rflow = &voidflow; 5775 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 5776 5777 if (cpu >= 0) { 5778 /* Will be handled, remove from list */ 5779 skb_list_del_init(skb); 5780 enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 5781 } 5782 } 5783 } 5784 #endif 5785 __netif_receive_skb_list(head); 5786 rcu_read_unlock(); 5787 } 5788 5789 /** 5790 * netif_receive_skb - process receive buffer from network 5791 * @skb: buffer to process 5792 * 5793 * netif_receive_skb() is the main receive data processing function. 5794 * It always succeeds. The buffer may be dropped during processing 5795 * for congestion control or by the protocol layers. 5796 * 5797 * This function may only be called from softirq context and interrupts 5798 * should be enabled. 5799 * 5800 * Return values (usually ignored): 5801 * NET_RX_SUCCESS: no congestion 5802 * NET_RX_DROP: packet was dropped 5803 */ 5804 int netif_receive_skb(struct sk_buff *skb) 5805 { 5806 int ret; 5807 5808 trace_netif_receive_skb_entry(skb); 5809 5810 ret = netif_receive_skb_internal(skb); 5811 trace_netif_receive_skb_exit(ret); 5812 5813 return ret; 5814 } 5815 EXPORT_SYMBOL(netif_receive_skb); 5816 5817 /** 5818 * netif_receive_skb_list - process many receive buffers from network 5819 * @head: list of skbs to process. 5820 * 5821 * Since return value of netif_receive_skb() is normally ignored, and 5822 * wouldn't be meaningful for a list, this function returns void. 5823 * 5824 * This function may only be called from softirq context and interrupts 5825 * should be enabled. 5826 */ 5827 void netif_receive_skb_list(struct list_head *head) 5828 { 5829 struct sk_buff *skb; 5830 5831 if (list_empty(head)) 5832 return; 5833 if (trace_netif_receive_skb_list_entry_enabled()) { 5834 list_for_each_entry(skb, head, list) 5835 trace_netif_receive_skb_list_entry(skb); 5836 } 5837 netif_receive_skb_list_internal(head); 5838 trace_netif_receive_skb_list_exit(0); 5839 } 5840 EXPORT_SYMBOL(netif_receive_skb_list); 5841 5842 static DEFINE_PER_CPU(struct work_struct, flush_works); 5843 5844 /* Network device is going away, flush any packets still pending */ 5845 static void flush_backlog(struct work_struct *work) 5846 { 5847 struct sk_buff *skb, *tmp; 5848 struct softnet_data *sd; 5849 5850 local_bh_disable(); 5851 sd = this_cpu_ptr(&softnet_data); 5852 5853 rps_lock_irq_disable(sd); 5854 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 5855 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 5856 __skb_unlink(skb, &sd->input_pkt_queue); 5857 dev_kfree_skb_irq(skb); 5858 input_queue_head_incr(sd); 5859 } 5860 } 5861 rps_unlock_irq_enable(sd); 5862 5863 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 5864 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 5865 __skb_unlink(skb, &sd->process_queue); 5866 kfree_skb(skb); 5867 input_queue_head_incr(sd); 5868 } 5869 } 5870 local_bh_enable(); 5871 } 5872 5873 static bool flush_required(int cpu) 5874 { 5875 #if IS_ENABLED(CONFIG_RPS) 5876 struct softnet_data *sd = &per_cpu(softnet_data, cpu); 5877 bool do_flush; 5878 5879 rps_lock_irq_disable(sd); 5880 5881 /* as insertion into process_queue happens with the rps lock held, 5882 * process_queue access may race only with dequeue 5883 */ 5884 do_flush = !skb_queue_empty(&sd->input_pkt_queue) || 5885 !skb_queue_empty_lockless(&sd->process_queue); 5886 rps_unlock_irq_enable(sd); 5887 5888 return do_flush; 5889 #endif 5890 /* without RPS we can't safely check input_pkt_queue: during a 5891 * concurrent remote skb_queue_splice() we can detect as empty both 5892 * input_pkt_queue and process_queue even if the latter could end-up 5893 * containing a lot of packets. 5894 */ 5895 return true; 5896 } 5897 5898 static void flush_all_backlogs(void) 5899 { 5900 static cpumask_t flush_cpus; 5901 unsigned int cpu; 5902 5903 /* since we are under rtnl lock protection we can use static data 5904 * for the cpumask and avoid allocating on stack the possibly 5905 * large mask 5906 */ 5907 ASSERT_RTNL(); 5908 5909 cpus_read_lock(); 5910 5911 cpumask_clear(&flush_cpus); 5912 for_each_online_cpu(cpu) { 5913 if (flush_required(cpu)) { 5914 queue_work_on(cpu, system_highpri_wq, 5915 per_cpu_ptr(&flush_works, cpu)); 5916 cpumask_set_cpu(cpu, &flush_cpus); 5917 } 5918 } 5919 5920 /* we can have in flight packet[s] on the cpus we are not flushing, 5921 * synchronize_net() in unregister_netdevice_many() will take care of 5922 * them 5923 */ 5924 for_each_cpu(cpu, &flush_cpus) 5925 flush_work(per_cpu_ptr(&flush_works, cpu)); 5926 5927 cpus_read_unlock(); 5928 } 5929 5930 static void net_rps_send_ipi(struct softnet_data *remsd) 5931 { 5932 #ifdef CONFIG_RPS 5933 while (remsd) { 5934 struct softnet_data *next = remsd->rps_ipi_next; 5935 5936 if (cpu_online(remsd->cpu)) 5937 smp_call_function_single_async(remsd->cpu, &remsd->csd); 5938 remsd = next; 5939 } 5940 #endif 5941 } 5942 5943 /* 5944 * net_rps_action_and_irq_enable sends any pending IPI's for rps. 5945 * Note: called with local irq disabled, but exits with local irq enabled. 5946 */ 5947 static void net_rps_action_and_irq_enable(struct softnet_data *sd) 5948 { 5949 #ifdef CONFIG_RPS 5950 struct softnet_data *remsd = sd->rps_ipi_list; 5951 5952 if (remsd) { 5953 sd->rps_ipi_list = NULL; 5954 5955 local_irq_enable(); 5956 5957 /* Send pending IPI's to kick RPS processing on remote cpus. */ 5958 net_rps_send_ipi(remsd); 5959 } else 5960 #endif 5961 local_irq_enable(); 5962 } 5963 5964 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd) 5965 { 5966 #ifdef CONFIG_RPS 5967 return sd->rps_ipi_list != NULL; 5968 #else 5969 return false; 5970 #endif 5971 } 5972 5973 static int process_backlog(struct napi_struct *napi, int quota) 5974 { 5975 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 5976 bool again = true; 5977 int work = 0; 5978 5979 /* Check if we have pending ipi, its better to send them now, 5980 * not waiting net_rx_action() end. 5981 */ 5982 if (sd_has_rps_ipi_waiting(sd)) { 5983 local_irq_disable(); 5984 net_rps_action_and_irq_enable(sd); 5985 } 5986 5987 napi->weight = READ_ONCE(dev_rx_weight); 5988 while (again) { 5989 struct sk_buff *skb; 5990 5991 while ((skb = __skb_dequeue(&sd->process_queue))) { 5992 rcu_read_lock(); 5993 __netif_receive_skb(skb); 5994 rcu_read_unlock(); 5995 input_queue_head_incr(sd); 5996 if (++work >= quota) 5997 return work; 5998 5999 } 6000 6001 rps_lock_irq_disable(sd); 6002 if (skb_queue_empty(&sd->input_pkt_queue)) { 6003 /* 6004 * Inline a custom version of __napi_complete(). 6005 * only current cpu owns and manipulates this napi, 6006 * and NAPI_STATE_SCHED is the only possible flag set 6007 * on backlog. 6008 * We can use a plain write instead of clear_bit(), 6009 * and we dont need an smp_mb() memory barrier. 6010 */ 6011 napi->state = 0; 6012 again = false; 6013 } else { 6014 skb_queue_splice_tail_init(&sd->input_pkt_queue, 6015 &sd->process_queue); 6016 } 6017 rps_unlock_irq_enable(sd); 6018 } 6019 6020 return work; 6021 } 6022 6023 /** 6024 * __napi_schedule - schedule for receive 6025 * @n: entry to schedule 6026 * 6027 * The entry's receive function will be scheduled to run. 6028 * Consider using __napi_schedule_irqoff() if hard irqs are masked. 6029 */ 6030 void __napi_schedule(struct napi_struct *n) 6031 { 6032 unsigned long flags; 6033 6034 local_irq_save(flags); 6035 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 6036 local_irq_restore(flags); 6037 } 6038 EXPORT_SYMBOL(__napi_schedule); 6039 6040 /** 6041 * napi_schedule_prep - check if napi can be scheduled 6042 * @n: napi context 6043 * 6044 * Test if NAPI routine is already running, and if not mark 6045 * it as running. This is used as a condition variable to 6046 * insure only one NAPI poll instance runs. We also make 6047 * sure there is no pending NAPI disable. 6048 */ 6049 bool napi_schedule_prep(struct napi_struct *n) 6050 { 6051 unsigned long new, val = READ_ONCE(n->state); 6052 6053 do { 6054 if (unlikely(val & NAPIF_STATE_DISABLE)) 6055 return false; 6056 new = val | NAPIF_STATE_SCHED; 6057 6058 /* Sets STATE_MISSED bit if STATE_SCHED was already set 6059 * This was suggested by Alexander Duyck, as compiler 6060 * emits better code than : 6061 * if (val & NAPIF_STATE_SCHED) 6062 * new |= NAPIF_STATE_MISSED; 6063 */ 6064 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED * 6065 NAPIF_STATE_MISSED; 6066 } while (!try_cmpxchg(&n->state, &val, new)); 6067 6068 return !(val & NAPIF_STATE_SCHED); 6069 } 6070 EXPORT_SYMBOL(napi_schedule_prep); 6071 6072 /** 6073 * __napi_schedule_irqoff - schedule for receive 6074 * @n: entry to schedule 6075 * 6076 * Variant of __napi_schedule() assuming hard irqs are masked. 6077 * 6078 * On PREEMPT_RT enabled kernels this maps to __napi_schedule() 6079 * because the interrupt disabled assumption might not be true 6080 * due to force-threaded interrupts and spinlock substitution. 6081 */ 6082 void __napi_schedule_irqoff(struct napi_struct *n) 6083 { 6084 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 6085 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 6086 else 6087 __napi_schedule(n); 6088 } 6089 EXPORT_SYMBOL(__napi_schedule_irqoff); 6090 6091 bool napi_complete_done(struct napi_struct *n, int work_done) 6092 { 6093 unsigned long flags, val, new, timeout = 0; 6094 bool ret = true; 6095 6096 /* 6097 * 1) Don't let napi dequeue from the cpu poll list 6098 * just in case its running on a different cpu. 6099 * 2) If we are busy polling, do nothing here, we have 6100 * the guarantee we will be called later. 6101 */ 6102 if (unlikely(n->state & (NAPIF_STATE_NPSVC | 6103 NAPIF_STATE_IN_BUSY_POLL))) 6104 return false; 6105 6106 if (work_done) { 6107 if (n->gro_bitmask) 6108 timeout = READ_ONCE(n->dev->gro_flush_timeout); 6109 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs); 6110 } 6111 if (n->defer_hard_irqs_count > 0) { 6112 n->defer_hard_irqs_count--; 6113 timeout = READ_ONCE(n->dev->gro_flush_timeout); 6114 if (timeout) 6115 ret = false; 6116 } 6117 if (n->gro_bitmask) { 6118 /* When the NAPI instance uses a timeout and keeps postponing 6119 * it, we need to bound somehow the time packets are kept in 6120 * the GRO layer 6121 */ 6122 napi_gro_flush(n, !!timeout); 6123 } 6124 6125 gro_normal_list(n); 6126 6127 if (unlikely(!list_empty(&n->poll_list))) { 6128 /* If n->poll_list is not empty, we need to mask irqs */ 6129 local_irq_save(flags); 6130 list_del_init(&n->poll_list); 6131 local_irq_restore(flags); 6132 } 6133 WRITE_ONCE(n->list_owner, -1); 6134 6135 val = READ_ONCE(n->state); 6136 do { 6137 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED)); 6138 6139 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED | 6140 NAPIF_STATE_SCHED_THREADED | 6141 NAPIF_STATE_PREFER_BUSY_POLL); 6142 6143 /* If STATE_MISSED was set, leave STATE_SCHED set, 6144 * because we will call napi->poll() one more time. 6145 * This C code was suggested by Alexander Duyck to help gcc. 6146 */ 6147 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED * 6148 NAPIF_STATE_SCHED; 6149 } while (!try_cmpxchg(&n->state, &val, new)); 6150 6151 if (unlikely(val & NAPIF_STATE_MISSED)) { 6152 __napi_schedule(n); 6153 return false; 6154 } 6155 6156 if (timeout) 6157 hrtimer_start(&n->timer, ns_to_ktime(timeout), 6158 HRTIMER_MODE_REL_PINNED); 6159 return ret; 6160 } 6161 EXPORT_SYMBOL(napi_complete_done); 6162 6163 /* must be called under rcu_read_lock(), as we dont take a reference */ 6164 struct napi_struct *napi_by_id(unsigned int napi_id) 6165 { 6166 unsigned int hash = napi_id % HASH_SIZE(napi_hash); 6167 struct napi_struct *napi; 6168 6169 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node) 6170 if (napi->napi_id == napi_id) 6171 return napi; 6172 6173 return NULL; 6174 } 6175 6176 #if defined(CONFIG_NET_RX_BUSY_POLL) 6177 6178 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule) 6179 { 6180 if (!skip_schedule) { 6181 gro_normal_list(napi); 6182 __napi_schedule(napi); 6183 return; 6184 } 6185 6186 if (napi->gro_bitmask) { 6187 /* flush too old packets 6188 * If HZ < 1000, flush all packets. 6189 */ 6190 napi_gro_flush(napi, HZ >= 1000); 6191 } 6192 6193 gro_normal_list(napi); 6194 clear_bit(NAPI_STATE_SCHED, &napi->state); 6195 } 6196 6197 enum { 6198 NAPI_F_PREFER_BUSY_POLL = 1, 6199 NAPI_F_END_ON_RESCHED = 2, 6200 }; 6201 6202 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, 6203 unsigned flags, u16 budget) 6204 { 6205 bool skip_schedule = false; 6206 unsigned long timeout; 6207 int rc; 6208 6209 /* Busy polling means there is a high chance device driver hard irq 6210 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was 6211 * set in napi_schedule_prep(). 6212 * Since we are about to call napi->poll() once more, we can safely 6213 * clear NAPI_STATE_MISSED. 6214 * 6215 * Note: x86 could use a single "lock and ..." instruction 6216 * to perform these two clear_bit() 6217 */ 6218 clear_bit(NAPI_STATE_MISSED, &napi->state); 6219 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state); 6220 6221 local_bh_disable(); 6222 6223 if (flags & NAPI_F_PREFER_BUSY_POLL) { 6224 napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs); 6225 timeout = READ_ONCE(napi->dev->gro_flush_timeout); 6226 if (napi->defer_hard_irqs_count && timeout) { 6227 hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED); 6228 skip_schedule = true; 6229 } 6230 } 6231 6232 /* All we really want here is to re-enable device interrupts. 6233 * Ideally, a new ndo_busy_poll_stop() could avoid another round. 6234 */ 6235 rc = napi->poll(napi, budget); 6236 /* We can't gro_normal_list() here, because napi->poll() might have 6237 * rearmed the napi (napi_complete_done()) in which case it could 6238 * already be running on another CPU. 6239 */ 6240 trace_napi_poll(napi, rc, budget); 6241 netpoll_poll_unlock(have_poll_lock); 6242 if (rc == budget) 6243 __busy_poll_stop(napi, skip_schedule); 6244 local_bh_enable(); 6245 } 6246 6247 static void __napi_busy_loop(unsigned int napi_id, 6248 bool (*loop_end)(void *, unsigned long), 6249 void *loop_end_arg, unsigned flags, u16 budget) 6250 { 6251 unsigned long start_time = loop_end ? busy_loop_current_time() : 0; 6252 int (*napi_poll)(struct napi_struct *napi, int budget); 6253 void *have_poll_lock = NULL; 6254 struct napi_struct *napi; 6255 6256 WARN_ON_ONCE(!rcu_read_lock_held()); 6257 6258 restart: 6259 napi_poll = NULL; 6260 6261 napi = napi_by_id(napi_id); 6262 if (!napi) 6263 return; 6264 6265 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 6266 preempt_disable(); 6267 for (;;) { 6268 int work = 0; 6269 6270 local_bh_disable(); 6271 if (!napi_poll) { 6272 unsigned long val = READ_ONCE(napi->state); 6273 6274 /* If multiple threads are competing for this napi, 6275 * we avoid dirtying napi->state as much as we can. 6276 */ 6277 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED | 6278 NAPIF_STATE_IN_BUSY_POLL)) { 6279 if (flags & NAPI_F_PREFER_BUSY_POLL) 6280 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state); 6281 goto count; 6282 } 6283 if (cmpxchg(&napi->state, val, 6284 val | NAPIF_STATE_IN_BUSY_POLL | 6285 NAPIF_STATE_SCHED) != val) { 6286 if (flags & NAPI_F_PREFER_BUSY_POLL) 6287 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state); 6288 goto count; 6289 } 6290 have_poll_lock = netpoll_poll_lock(napi); 6291 napi_poll = napi->poll; 6292 } 6293 work = napi_poll(napi, budget); 6294 trace_napi_poll(napi, work, budget); 6295 gro_normal_list(napi); 6296 count: 6297 if (work > 0) 6298 __NET_ADD_STATS(dev_net(napi->dev), 6299 LINUX_MIB_BUSYPOLLRXPACKETS, work); 6300 local_bh_enable(); 6301 6302 if (!loop_end || loop_end(loop_end_arg, start_time)) 6303 break; 6304 6305 if (unlikely(need_resched())) { 6306 if (flags & NAPI_F_END_ON_RESCHED) 6307 break; 6308 if (napi_poll) 6309 busy_poll_stop(napi, have_poll_lock, flags, budget); 6310 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 6311 preempt_enable(); 6312 rcu_read_unlock(); 6313 cond_resched(); 6314 rcu_read_lock(); 6315 if (loop_end(loop_end_arg, start_time)) 6316 return; 6317 goto restart; 6318 } 6319 cpu_relax(); 6320 } 6321 if (napi_poll) 6322 busy_poll_stop(napi, have_poll_lock, flags, budget); 6323 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 6324 preempt_enable(); 6325 } 6326 6327 void napi_busy_loop_rcu(unsigned int napi_id, 6328 bool (*loop_end)(void *, unsigned long), 6329 void *loop_end_arg, bool prefer_busy_poll, u16 budget) 6330 { 6331 unsigned flags = NAPI_F_END_ON_RESCHED; 6332 6333 if (prefer_busy_poll) 6334 flags |= NAPI_F_PREFER_BUSY_POLL; 6335 6336 __napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget); 6337 } 6338 6339 void napi_busy_loop(unsigned int napi_id, 6340 bool (*loop_end)(void *, unsigned long), 6341 void *loop_end_arg, bool prefer_busy_poll, u16 budget) 6342 { 6343 unsigned flags = prefer_busy_poll ? NAPI_F_PREFER_BUSY_POLL : 0; 6344 6345 rcu_read_lock(); 6346 __napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget); 6347 rcu_read_unlock(); 6348 } 6349 EXPORT_SYMBOL(napi_busy_loop); 6350 6351 #endif /* CONFIG_NET_RX_BUSY_POLL */ 6352 6353 static void napi_hash_add(struct napi_struct *napi) 6354 { 6355 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state)) 6356 return; 6357 6358 spin_lock(&napi_hash_lock); 6359 6360 /* 0..NR_CPUS range is reserved for sender_cpu use */ 6361 do { 6362 if (unlikely(++napi_gen_id < MIN_NAPI_ID)) 6363 napi_gen_id = MIN_NAPI_ID; 6364 } while (napi_by_id(napi_gen_id)); 6365 napi->napi_id = napi_gen_id; 6366 6367 hlist_add_head_rcu(&napi->napi_hash_node, 6368 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]); 6369 6370 spin_unlock(&napi_hash_lock); 6371 } 6372 6373 /* Warning : caller is responsible to make sure rcu grace period 6374 * is respected before freeing memory containing @napi 6375 */ 6376 static void napi_hash_del(struct napi_struct *napi) 6377 { 6378 spin_lock(&napi_hash_lock); 6379 6380 hlist_del_init_rcu(&napi->napi_hash_node); 6381 6382 spin_unlock(&napi_hash_lock); 6383 } 6384 6385 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer) 6386 { 6387 struct napi_struct *napi; 6388 6389 napi = container_of(timer, struct napi_struct, timer); 6390 6391 /* Note : we use a relaxed variant of napi_schedule_prep() not setting 6392 * NAPI_STATE_MISSED, since we do not react to a device IRQ. 6393 */ 6394 if (!napi_disable_pending(napi) && 6395 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) { 6396 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state); 6397 __napi_schedule_irqoff(napi); 6398 } 6399 6400 return HRTIMER_NORESTART; 6401 } 6402 6403 static void init_gro_hash(struct napi_struct *napi) 6404 { 6405 int i; 6406 6407 for (i = 0; i < GRO_HASH_BUCKETS; i++) { 6408 INIT_LIST_HEAD(&napi->gro_hash[i].list); 6409 napi->gro_hash[i].count = 0; 6410 } 6411 napi->gro_bitmask = 0; 6412 } 6413 6414 int dev_set_threaded(struct net_device *dev, bool threaded) 6415 { 6416 struct napi_struct *napi; 6417 int err = 0; 6418 6419 if (dev->threaded == threaded) 6420 return 0; 6421 6422 if (threaded) { 6423 list_for_each_entry(napi, &dev->napi_list, dev_list) { 6424 if (!napi->thread) { 6425 err = napi_kthread_create(napi); 6426 if (err) { 6427 threaded = false; 6428 break; 6429 } 6430 } 6431 } 6432 } 6433 6434 dev->threaded = threaded; 6435 6436 /* Make sure kthread is created before THREADED bit 6437 * is set. 6438 */ 6439 smp_mb__before_atomic(); 6440 6441 /* Setting/unsetting threaded mode on a napi might not immediately 6442 * take effect, if the current napi instance is actively being 6443 * polled. In this case, the switch between threaded mode and 6444 * softirq mode will happen in the next round of napi_schedule(). 6445 * This should not cause hiccups/stalls to the live traffic. 6446 */ 6447 list_for_each_entry(napi, &dev->napi_list, dev_list) 6448 assign_bit(NAPI_STATE_THREADED, &napi->state, threaded); 6449 6450 return err; 6451 } 6452 EXPORT_SYMBOL(dev_set_threaded); 6453 6454 /** 6455 * netif_queue_set_napi - Associate queue with the napi 6456 * @dev: device to which NAPI and queue belong 6457 * @queue_index: Index of queue 6458 * @type: queue type as RX or TX 6459 * @napi: NAPI context, pass NULL to clear previously set NAPI 6460 * 6461 * Set queue with its corresponding napi context. This should be done after 6462 * registering the NAPI handler for the queue-vector and the queues have been 6463 * mapped to the corresponding interrupt vector. 6464 */ 6465 void netif_queue_set_napi(struct net_device *dev, unsigned int queue_index, 6466 enum netdev_queue_type type, struct napi_struct *napi) 6467 { 6468 struct netdev_rx_queue *rxq; 6469 struct netdev_queue *txq; 6470 6471 if (WARN_ON_ONCE(napi && !napi->dev)) 6472 return; 6473 if (dev->reg_state >= NETREG_REGISTERED) 6474 ASSERT_RTNL(); 6475 6476 switch (type) { 6477 case NETDEV_QUEUE_TYPE_RX: 6478 rxq = __netif_get_rx_queue(dev, queue_index); 6479 rxq->napi = napi; 6480 return; 6481 case NETDEV_QUEUE_TYPE_TX: 6482 txq = netdev_get_tx_queue(dev, queue_index); 6483 txq->napi = napi; 6484 return; 6485 default: 6486 return; 6487 } 6488 } 6489 EXPORT_SYMBOL(netif_queue_set_napi); 6490 6491 void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi, 6492 int (*poll)(struct napi_struct *, int), int weight) 6493 { 6494 if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state))) 6495 return; 6496 6497 INIT_LIST_HEAD(&napi->poll_list); 6498 INIT_HLIST_NODE(&napi->napi_hash_node); 6499 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED); 6500 napi->timer.function = napi_watchdog; 6501 init_gro_hash(napi); 6502 napi->skb = NULL; 6503 INIT_LIST_HEAD(&napi->rx_list); 6504 napi->rx_count = 0; 6505 napi->poll = poll; 6506 if (weight > NAPI_POLL_WEIGHT) 6507 netdev_err_once(dev, "%s() called with weight %d\n", __func__, 6508 weight); 6509 napi->weight = weight; 6510 napi->dev = dev; 6511 #ifdef CONFIG_NETPOLL 6512 napi->poll_owner = -1; 6513 #endif 6514 napi->list_owner = -1; 6515 set_bit(NAPI_STATE_SCHED, &napi->state); 6516 set_bit(NAPI_STATE_NPSVC, &napi->state); 6517 list_add_rcu(&napi->dev_list, &dev->napi_list); 6518 napi_hash_add(napi); 6519 napi_get_frags_check(napi); 6520 /* Create kthread for this napi if dev->threaded is set. 6521 * Clear dev->threaded if kthread creation failed so that 6522 * threaded mode will not be enabled in napi_enable(). 6523 */ 6524 if (dev->threaded && napi_kthread_create(napi)) 6525 dev->threaded = 0; 6526 netif_napi_set_irq(napi, -1); 6527 } 6528 EXPORT_SYMBOL(netif_napi_add_weight); 6529 6530 void napi_disable(struct napi_struct *n) 6531 { 6532 unsigned long val, new; 6533 6534 might_sleep(); 6535 set_bit(NAPI_STATE_DISABLE, &n->state); 6536 6537 val = READ_ONCE(n->state); 6538 do { 6539 while (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) { 6540 usleep_range(20, 200); 6541 val = READ_ONCE(n->state); 6542 } 6543 6544 new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC; 6545 new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL); 6546 } while (!try_cmpxchg(&n->state, &val, new)); 6547 6548 hrtimer_cancel(&n->timer); 6549 6550 clear_bit(NAPI_STATE_DISABLE, &n->state); 6551 } 6552 EXPORT_SYMBOL(napi_disable); 6553 6554 /** 6555 * napi_enable - enable NAPI scheduling 6556 * @n: NAPI context 6557 * 6558 * Resume NAPI from being scheduled on this context. 6559 * Must be paired with napi_disable. 6560 */ 6561 void napi_enable(struct napi_struct *n) 6562 { 6563 unsigned long new, val = READ_ONCE(n->state); 6564 6565 do { 6566 BUG_ON(!test_bit(NAPI_STATE_SCHED, &val)); 6567 6568 new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC); 6569 if (n->dev->threaded && n->thread) 6570 new |= NAPIF_STATE_THREADED; 6571 } while (!try_cmpxchg(&n->state, &val, new)); 6572 } 6573 EXPORT_SYMBOL(napi_enable); 6574 6575 static void flush_gro_hash(struct napi_struct *napi) 6576 { 6577 int i; 6578 6579 for (i = 0; i < GRO_HASH_BUCKETS; i++) { 6580 struct sk_buff *skb, *n; 6581 6582 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list) 6583 kfree_skb(skb); 6584 napi->gro_hash[i].count = 0; 6585 } 6586 } 6587 6588 /* Must be called in process context */ 6589 void __netif_napi_del(struct napi_struct *napi) 6590 { 6591 if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state)) 6592 return; 6593 6594 napi_hash_del(napi); 6595 list_del_rcu(&napi->dev_list); 6596 napi_free_frags(napi); 6597 6598 flush_gro_hash(napi); 6599 napi->gro_bitmask = 0; 6600 6601 if (napi->thread) { 6602 kthread_stop(napi->thread); 6603 napi->thread = NULL; 6604 } 6605 } 6606 EXPORT_SYMBOL(__netif_napi_del); 6607 6608 static int __napi_poll(struct napi_struct *n, bool *repoll) 6609 { 6610 int work, weight; 6611 6612 weight = n->weight; 6613 6614 /* This NAPI_STATE_SCHED test is for avoiding a race 6615 * with netpoll's poll_napi(). Only the entity which 6616 * obtains the lock and sees NAPI_STATE_SCHED set will 6617 * actually make the ->poll() call. Therefore we avoid 6618 * accidentally calling ->poll() when NAPI is not scheduled. 6619 */ 6620 work = 0; 6621 if (napi_is_scheduled(n)) { 6622 work = n->poll(n, weight); 6623 trace_napi_poll(n, work, weight); 6624 6625 xdp_do_check_flushed(n); 6626 } 6627 6628 if (unlikely(work > weight)) 6629 netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n", 6630 n->poll, work, weight); 6631 6632 if (likely(work < weight)) 6633 return work; 6634 6635 /* Drivers must not modify the NAPI state if they 6636 * consume the entire weight. In such cases this code 6637 * still "owns" the NAPI instance and therefore can 6638 * move the instance around on the list at-will. 6639 */ 6640 if (unlikely(napi_disable_pending(n))) { 6641 napi_complete(n); 6642 return work; 6643 } 6644 6645 /* The NAPI context has more processing work, but busy-polling 6646 * is preferred. Exit early. 6647 */ 6648 if (napi_prefer_busy_poll(n)) { 6649 if (napi_complete_done(n, work)) { 6650 /* If timeout is not set, we need to make sure 6651 * that the NAPI is re-scheduled. 6652 */ 6653 napi_schedule(n); 6654 } 6655 return work; 6656 } 6657 6658 if (n->gro_bitmask) { 6659 /* flush too old packets 6660 * If HZ < 1000, flush all packets. 6661 */ 6662 napi_gro_flush(n, HZ >= 1000); 6663 } 6664 6665 gro_normal_list(n); 6666 6667 /* Some drivers may have called napi_schedule 6668 * prior to exhausting their budget. 6669 */ 6670 if (unlikely(!list_empty(&n->poll_list))) { 6671 pr_warn_once("%s: Budget exhausted after napi rescheduled\n", 6672 n->dev ? n->dev->name : "backlog"); 6673 return work; 6674 } 6675 6676 *repoll = true; 6677 6678 return work; 6679 } 6680 6681 static int napi_poll(struct napi_struct *n, struct list_head *repoll) 6682 { 6683 bool do_repoll = false; 6684 void *have; 6685 int work; 6686 6687 list_del_init(&n->poll_list); 6688 6689 have = netpoll_poll_lock(n); 6690 6691 work = __napi_poll(n, &do_repoll); 6692 6693 if (do_repoll) 6694 list_add_tail(&n->poll_list, repoll); 6695 6696 netpoll_poll_unlock(have); 6697 6698 return work; 6699 } 6700 6701 static int napi_thread_wait(struct napi_struct *napi) 6702 { 6703 bool woken = false; 6704 6705 set_current_state(TASK_INTERRUPTIBLE); 6706 6707 while (!kthread_should_stop()) { 6708 /* Testing SCHED_THREADED bit here to make sure the current 6709 * kthread owns this napi and could poll on this napi. 6710 * Testing SCHED bit is not enough because SCHED bit might be 6711 * set by some other busy poll thread or by napi_disable(). 6712 */ 6713 if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) { 6714 WARN_ON(!list_empty(&napi->poll_list)); 6715 __set_current_state(TASK_RUNNING); 6716 return 0; 6717 } 6718 6719 schedule(); 6720 /* woken being true indicates this thread owns this napi. */ 6721 woken = true; 6722 set_current_state(TASK_INTERRUPTIBLE); 6723 } 6724 __set_current_state(TASK_RUNNING); 6725 6726 return -1; 6727 } 6728 6729 static void skb_defer_free_flush(struct softnet_data *sd) 6730 { 6731 struct sk_buff *skb, *next; 6732 6733 /* Paired with WRITE_ONCE() in skb_attempt_defer_free() */ 6734 if (!READ_ONCE(sd->defer_list)) 6735 return; 6736 6737 spin_lock(&sd->defer_lock); 6738 skb = sd->defer_list; 6739 sd->defer_list = NULL; 6740 sd->defer_count = 0; 6741 spin_unlock(&sd->defer_lock); 6742 6743 while (skb != NULL) { 6744 next = skb->next; 6745 napi_consume_skb(skb, 1); 6746 skb = next; 6747 } 6748 } 6749 6750 static int napi_threaded_poll(void *data) 6751 { 6752 struct napi_struct *napi = data; 6753 struct softnet_data *sd; 6754 void *have; 6755 6756 while (!napi_thread_wait(napi)) { 6757 for (;;) { 6758 bool repoll = false; 6759 6760 local_bh_disable(); 6761 sd = this_cpu_ptr(&softnet_data); 6762 sd->in_napi_threaded_poll = true; 6763 6764 have = netpoll_poll_lock(napi); 6765 __napi_poll(napi, &repoll); 6766 netpoll_poll_unlock(have); 6767 6768 sd->in_napi_threaded_poll = false; 6769 barrier(); 6770 6771 if (sd_has_rps_ipi_waiting(sd)) { 6772 local_irq_disable(); 6773 net_rps_action_and_irq_enable(sd); 6774 } 6775 skb_defer_free_flush(sd); 6776 local_bh_enable(); 6777 6778 if (!repoll) 6779 break; 6780 6781 cond_resched(); 6782 } 6783 } 6784 return 0; 6785 } 6786 6787 static __latent_entropy void net_rx_action(struct softirq_action *h) 6788 { 6789 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 6790 unsigned long time_limit = jiffies + 6791 usecs_to_jiffies(READ_ONCE(netdev_budget_usecs)); 6792 int budget = READ_ONCE(netdev_budget); 6793 LIST_HEAD(list); 6794 LIST_HEAD(repoll); 6795 6796 start: 6797 sd->in_net_rx_action = true; 6798 local_irq_disable(); 6799 list_splice_init(&sd->poll_list, &list); 6800 local_irq_enable(); 6801 6802 for (;;) { 6803 struct napi_struct *n; 6804 6805 skb_defer_free_flush(sd); 6806 6807 if (list_empty(&list)) { 6808 if (list_empty(&repoll)) { 6809 sd->in_net_rx_action = false; 6810 barrier(); 6811 /* We need to check if ____napi_schedule() 6812 * had refilled poll_list while 6813 * sd->in_net_rx_action was true. 6814 */ 6815 if (!list_empty(&sd->poll_list)) 6816 goto start; 6817 if (!sd_has_rps_ipi_waiting(sd)) 6818 goto end; 6819 } 6820 break; 6821 } 6822 6823 n = list_first_entry(&list, struct napi_struct, poll_list); 6824 budget -= napi_poll(n, &repoll); 6825 6826 /* If softirq window is exhausted then punt. 6827 * Allow this to run for 2 jiffies since which will allow 6828 * an average latency of 1.5/HZ. 6829 */ 6830 if (unlikely(budget <= 0 || 6831 time_after_eq(jiffies, time_limit))) { 6832 sd->time_squeeze++; 6833 break; 6834 } 6835 } 6836 6837 local_irq_disable(); 6838 6839 list_splice_tail_init(&sd->poll_list, &list); 6840 list_splice_tail(&repoll, &list); 6841 list_splice(&list, &sd->poll_list); 6842 if (!list_empty(&sd->poll_list)) 6843 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 6844 else 6845 sd->in_net_rx_action = false; 6846 6847 net_rps_action_and_irq_enable(sd); 6848 end:; 6849 } 6850 6851 struct netdev_adjacent { 6852 struct net_device *dev; 6853 netdevice_tracker dev_tracker; 6854 6855 /* upper master flag, there can only be one master device per list */ 6856 bool master; 6857 6858 /* lookup ignore flag */ 6859 bool ignore; 6860 6861 /* counter for the number of times this device was added to us */ 6862 u16 ref_nr; 6863 6864 /* private field for the users */ 6865 void *private; 6866 6867 struct list_head list; 6868 struct rcu_head rcu; 6869 }; 6870 6871 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev, 6872 struct list_head *adj_list) 6873 { 6874 struct netdev_adjacent *adj; 6875 6876 list_for_each_entry(adj, adj_list, list) { 6877 if (adj->dev == adj_dev) 6878 return adj; 6879 } 6880 return NULL; 6881 } 6882 6883 static int ____netdev_has_upper_dev(struct net_device *upper_dev, 6884 struct netdev_nested_priv *priv) 6885 { 6886 struct net_device *dev = (struct net_device *)priv->data; 6887 6888 return upper_dev == dev; 6889 } 6890 6891 /** 6892 * netdev_has_upper_dev - Check if device is linked to an upper device 6893 * @dev: device 6894 * @upper_dev: upper device to check 6895 * 6896 * Find out if a device is linked to specified upper device and return true 6897 * in case it is. Note that this checks only immediate upper device, 6898 * not through a complete stack of devices. The caller must hold the RTNL lock. 6899 */ 6900 bool netdev_has_upper_dev(struct net_device *dev, 6901 struct net_device *upper_dev) 6902 { 6903 struct netdev_nested_priv priv = { 6904 .data = (void *)upper_dev, 6905 }; 6906 6907 ASSERT_RTNL(); 6908 6909 return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev, 6910 &priv); 6911 } 6912 EXPORT_SYMBOL(netdev_has_upper_dev); 6913 6914 /** 6915 * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device 6916 * @dev: device 6917 * @upper_dev: upper device to check 6918 * 6919 * Find out if a device is linked to specified upper device and return true 6920 * in case it is. Note that this checks the entire upper device chain. 6921 * The caller must hold rcu lock. 6922 */ 6923 6924 bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 6925 struct net_device *upper_dev) 6926 { 6927 struct netdev_nested_priv priv = { 6928 .data = (void *)upper_dev, 6929 }; 6930 6931 return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev, 6932 &priv); 6933 } 6934 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu); 6935 6936 /** 6937 * netdev_has_any_upper_dev - Check if device is linked to some device 6938 * @dev: device 6939 * 6940 * Find out if a device is linked to an upper device and return true in case 6941 * it is. The caller must hold the RTNL lock. 6942 */ 6943 bool netdev_has_any_upper_dev(struct net_device *dev) 6944 { 6945 ASSERT_RTNL(); 6946 6947 return !list_empty(&dev->adj_list.upper); 6948 } 6949 EXPORT_SYMBOL(netdev_has_any_upper_dev); 6950 6951 /** 6952 * netdev_master_upper_dev_get - Get master upper device 6953 * @dev: device 6954 * 6955 * Find a master upper device and return pointer to it or NULL in case 6956 * it's not there. The caller must hold the RTNL lock. 6957 */ 6958 struct net_device *netdev_master_upper_dev_get(struct net_device *dev) 6959 { 6960 struct netdev_adjacent *upper; 6961 6962 ASSERT_RTNL(); 6963 6964 if (list_empty(&dev->adj_list.upper)) 6965 return NULL; 6966 6967 upper = list_first_entry(&dev->adj_list.upper, 6968 struct netdev_adjacent, list); 6969 if (likely(upper->master)) 6970 return upper->dev; 6971 return NULL; 6972 } 6973 EXPORT_SYMBOL(netdev_master_upper_dev_get); 6974 6975 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev) 6976 { 6977 struct netdev_adjacent *upper; 6978 6979 ASSERT_RTNL(); 6980 6981 if (list_empty(&dev->adj_list.upper)) 6982 return NULL; 6983 6984 upper = list_first_entry(&dev->adj_list.upper, 6985 struct netdev_adjacent, list); 6986 if (likely(upper->master) && !upper->ignore) 6987 return upper->dev; 6988 return NULL; 6989 } 6990 6991 /** 6992 * netdev_has_any_lower_dev - Check if device is linked to some device 6993 * @dev: device 6994 * 6995 * Find out if a device is linked to a lower device and return true in case 6996 * it is. The caller must hold the RTNL lock. 6997 */ 6998 static bool netdev_has_any_lower_dev(struct net_device *dev) 6999 { 7000 ASSERT_RTNL(); 7001 7002 return !list_empty(&dev->adj_list.lower); 7003 } 7004 7005 void *netdev_adjacent_get_private(struct list_head *adj_list) 7006 { 7007 struct netdev_adjacent *adj; 7008 7009 adj = list_entry(adj_list, struct netdev_adjacent, list); 7010 7011 return adj->private; 7012 } 7013 EXPORT_SYMBOL(netdev_adjacent_get_private); 7014 7015 /** 7016 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list 7017 * @dev: device 7018 * @iter: list_head ** of the current position 7019 * 7020 * Gets the next device from the dev's upper list, starting from iter 7021 * position. The caller must hold RCU read lock. 7022 */ 7023 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 7024 struct list_head **iter) 7025 { 7026 struct netdev_adjacent *upper; 7027 7028 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 7029 7030 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 7031 7032 if (&upper->list == &dev->adj_list.upper) 7033 return NULL; 7034 7035 *iter = &upper->list; 7036 7037 return upper->dev; 7038 } 7039 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu); 7040 7041 static struct net_device *__netdev_next_upper_dev(struct net_device *dev, 7042 struct list_head **iter, 7043 bool *ignore) 7044 { 7045 struct netdev_adjacent *upper; 7046 7047 upper = list_entry((*iter)->next, struct netdev_adjacent, list); 7048 7049 if (&upper->list == &dev->adj_list.upper) 7050 return NULL; 7051 7052 *iter = &upper->list; 7053 *ignore = upper->ignore; 7054 7055 return upper->dev; 7056 } 7057 7058 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev, 7059 struct list_head **iter) 7060 { 7061 struct netdev_adjacent *upper; 7062 7063 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 7064 7065 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 7066 7067 if (&upper->list == &dev->adj_list.upper) 7068 return NULL; 7069 7070 *iter = &upper->list; 7071 7072 return upper->dev; 7073 } 7074 7075 static int __netdev_walk_all_upper_dev(struct net_device *dev, 7076 int (*fn)(struct net_device *dev, 7077 struct netdev_nested_priv *priv), 7078 struct netdev_nested_priv *priv) 7079 { 7080 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7081 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7082 int ret, cur = 0; 7083 bool ignore; 7084 7085 now = dev; 7086 iter = &dev->adj_list.upper; 7087 7088 while (1) { 7089 if (now != dev) { 7090 ret = fn(now, priv); 7091 if (ret) 7092 return ret; 7093 } 7094 7095 next = NULL; 7096 while (1) { 7097 udev = __netdev_next_upper_dev(now, &iter, &ignore); 7098 if (!udev) 7099 break; 7100 if (ignore) 7101 continue; 7102 7103 next = udev; 7104 niter = &udev->adj_list.upper; 7105 dev_stack[cur] = now; 7106 iter_stack[cur++] = iter; 7107 break; 7108 } 7109 7110 if (!next) { 7111 if (!cur) 7112 return 0; 7113 next = dev_stack[--cur]; 7114 niter = iter_stack[cur]; 7115 } 7116 7117 now = next; 7118 iter = niter; 7119 } 7120 7121 return 0; 7122 } 7123 7124 int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 7125 int (*fn)(struct net_device *dev, 7126 struct netdev_nested_priv *priv), 7127 struct netdev_nested_priv *priv) 7128 { 7129 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7130 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7131 int ret, cur = 0; 7132 7133 now = dev; 7134 iter = &dev->adj_list.upper; 7135 7136 while (1) { 7137 if (now != dev) { 7138 ret = fn(now, priv); 7139 if (ret) 7140 return ret; 7141 } 7142 7143 next = NULL; 7144 while (1) { 7145 udev = netdev_next_upper_dev_rcu(now, &iter); 7146 if (!udev) 7147 break; 7148 7149 next = udev; 7150 niter = &udev->adj_list.upper; 7151 dev_stack[cur] = now; 7152 iter_stack[cur++] = iter; 7153 break; 7154 } 7155 7156 if (!next) { 7157 if (!cur) 7158 return 0; 7159 next = dev_stack[--cur]; 7160 niter = iter_stack[cur]; 7161 } 7162 7163 now = next; 7164 iter = niter; 7165 } 7166 7167 return 0; 7168 } 7169 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu); 7170 7171 static bool __netdev_has_upper_dev(struct net_device *dev, 7172 struct net_device *upper_dev) 7173 { 7174 struct netdev_nested_priv priv = { 7175 .flags = 0, 7176 .data = (void *)upper_dev, 7177 }; 7178 7179 ASSERT_RTNL(); 7180 7181 return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev, 7182 &priv); 7183 } 7184 7185 /** 7186 * netdev_lower_get_next_private - Get the next ->private from the 7187 * lower neighbour list 7188 * @dev: device 7189 * @iter: list_head ** of the current position 7190 * 7191 * Gets the next netdev_adjacent->private from the dev's lower neighbour 7192 * list, starting from iter position. The caller must hold either hold the 7193 * RTNL lock or its own locking that guarantees that the neighbour lower 7194 * list will remain unchanged. 7195 */ 7196 void *netdev_lower_get_next_private(struct net_device *dev, 7197 struct list_head **iter) 7198 { 7199 struct netdev_adjacent *lower; 7200 7201 lower = list_entry(*iter, struct netdev_adjacent, list); 7202 7203 if (&lower->list == &dev->adj_list.lower) 7204 return NULL; 7205 7206 *iter = lower->list.next; 7207 7208 return lower->private; 7209 } 7210 EXPORT_SYMBOL(netdev_lower_get_next_private); 7211 7212 /** 7213 * netdev_lower_get_next_private_rcu - Get the next ->private from the 7214 * lower neighbour list, RCU 7215 * variant 7216 * @dev: device 7217 * @iter: list_head ** of the current position 7218 * 7219 * Gets the next netdev_adjacent->private from the dev's lower neighbour 7220 * list, starting from iter position. The caller must hold RCU read lock. 7221 */ 7222 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 7223 struct list_head **iter) 7224 { 7225 struct netdev_adjacent *lower; 7226 7227 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); 7228 7229 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 7230 7231 if (&lower->list == &dev->adj_list.lower) 7232 return NULL; 7233 7234 *iter = &lower->list; 7235 7236 return lower->private; 7237 } 7238 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu); 7239 7240 /** 7241 * netdev_lower_get_next - Get the next device from the lower neighbour 7242 * list 7243 * @dev: device 7244 * @iter: list_head ** of the current position 7245 * 7246 * Gets the next netdev_adjacent from the dev's lower neighbour 7247 * list, starting from iter position. The caller must hold RTNL lock or 7248 * its own locking that guarantees that the neighbour lower 7249 * list will remain unchanged. 7250 */ 7251 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter) 7252 { 7253 struct netdev_adjacent *lower; 7254 7255 lower = list_entry(*iter, struct netdev_adjacent, list); 7256 7257 if (&lower->list == &dev->adj_list.lower) 7258 return NULL; 7259 7260 *iter = lower->list.next; 7261 7262 return lower->dev; 7263 } 7264 EXPORT_SYMBOL(netdev_lower_get_next); 7265 7266 static struct net_device *netdev_next_lower_dev(struct net_device *dev, 7267 struct list_head **iter) 7268 { 7269 struct netdev_adjacent *lower; 7270 7271 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 7272 7273 if (&lower->list == &dev->adj_list.lower) 7274 return NULL; 7275 7276 *iter = &lower->list; 7277 7278 return lower->dev; 7279 } 7280 7281 static struct net_device *__netdev_next_lower_dev(struct net_device *dev, 7282 struct list_head **iter, 7283 bool *ignore) 7284 { 7285 struct netdev_adjacent *lower; 7286 7287 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 7288 7289 if (&lower->list == &dev->adj_list.lower) 7290 return NULL; 7291 7292 *iter = &lower->list; 7293 *ignore = lower->ignore; 7294 7295 return lower->dev; 7296 } 7297 7298 int netdev_walk_all_lower_dev(struct net_device *dev, 7299 int (*fn)(struct net_device *dev, 7300 struct netdev_nested_priv *priv), 7301 struct netdev_nested_priv *priv) 7302 { 7303 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7304 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7305 int ret, cur = 0; 7306 7307 now = dev; 7308 iter = &dev->adj_list.lower; 7309 7310 while (1) { 7311 if (now != dev) { 7312 ret = fn(now, priv); 7313 if (ret) 7314 return ret; 7315 } 7316 7317 next = NULL; 7318 while (1) { 7319 ldev = netdev_next_lower_dev(now, &iter); 7320 if (!ldev) 7321 break; 7322 7323 next = ldev; 7324 niter = &ldev->adj_list.lower; 7325 dev_stack[cur] = now; 7326 iter_stack[cur++] = iter; 7327 break; 7328 } 7329 7330 if (!next) { 7331 if (!cur) 7332 return 0; 7333 next = dev_stack[--cur]; 7334 niter = iter_stack[cur]; 7335 } 7336 7337 now = next; 7338 iter = niter; 7339 } 7340 7341 return 0; 7342 } 7343 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev); 7344 7345 static int __netdev_walk_all_lower_dev(struct net_device *dev, 7346 int (*fn)(struct net_device *dev, 7347 struct netdev_nested_priv *priv), 7348 struct netdev_nested_priv *priv) 7349 { 7350 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7351 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7352 int ret, cur = 0; 7353 bool ignore; 7354 7355 now = dev; 7356 iter = &dev->adj_list.lower; 7357 7358 while (1) { 7359 if (now != dev) { 7360 ret = fn(now, priv); 7361 if (ret) 7362 return ret; 7363 } 7364 7365 next = NULL; 7366 while (1) { 7367 ldev = __netdev_next_lower_dev(now, &iter, &ignore); 7368 if (!ldev) 7369 break; 7370 if (ignore) 7371 continue; 7372 7373 next = ldev; 7374 niter = &ldev->adj_list.lower; 7375 dev_stack[cur] = now; 7376 iter_stack[cur++] = iter; 7377 break; 7378 } 7379 7380 if (!next) { 7381 if (!cur) 7382 return 0; 7383 next = dev_stack[--cur]; 7384 niter = iter_stack[cur]; 7385 } 7386 7387 now = next; 7388 iter = niter; 7389 } 7390 7391 return 0; 7392 } 7393 7394 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev, 7395 struct list_head **iter) 7396 { 7397 struct netdev_adjacent *lower; 7398 7399 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 7400 if (&lower->list == &dev->adj_list.lower) 7401 return NULL; 7402 7403 *iter = &lower->list; 7404 7405 return lower->dev; 7406 } 7407 EXPORT_SYMBOL(netdev_next_lower_dev_rcu); 7408 7409 static u8 __netdev_upper_depth(struct net_device *dev) 7410 { 7411 struct net_device *udev; 7412 struct list_head *iter; 7413 u8 max_depth = 0; 7414 bool ignore; 7415 7416 for (iter = &dev->adj_list.upper, 7417 udev = __netdev_next_upper_dev(dev, &iter, &ignore); 7418 udev; 7419 udev = __netdev_next_upper_dev(dev, &iter, &ignore)) { 7420 if (ignore) 7421 continue; 7422 if (max_depth < udev->upper_level) 7423 max_depth = udev->upper_level; 7424 } 7425 7426 return max_depth; 7427 } 7428 7429 static u8 __netdev_lower_depth(struct net_device *dev) 7430 { 7431 struct net_device *ldev; 7432 struct list_head *iter; 7433 u8 max_depth = 0; 7434 bool ignore; 7435 7436 for (iter = &dev->adj_list.lower, 7437 ldev = __netdev_next_lower_dev(dev, &iter, &ignore); 7438 ldev; 7439 ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) { 7440 if (ignore) 7441 continue; 7442 if (max_depth < ldev->lower_level) 7443 max_depth = ldev->lower_level; 7444 } 7445 7446 return max_depth; 7447 } 7448 7449 static int __netdev_update_upper_level(struct net_device *dev, 7450 struct netdev_nested_priv *__unused) 7451 { 7452 dev->upper_level = __netdev_upper_depth(dev) + 1; 7453 return 0; 7454 } 7455 7456 #ifdef CONFIG_LOCKDEP 7457 static LIST_HEAD(net_unlink_list); 7458 7459 static void net_unlink_todo(struct net_device *dev) 7460 { 7461 if (list_empty(&dev->unlink_list)) 7462 list_add_tail(&dev->unlink_list, &net_unlink_list); 7463 } 7464 #endif 7465 7466 static int __netdev_update_lower_level(struct net_device *dev, 7467 struct netdev_nested_priv *priv) 7468 { 7469 dev->lower_level = __netdev_lower_depth(dev) + 1; 7470 7471 #ifdef CONFIG_LOCKDEP 7472 if (!priv) 7473 return 0; 7474 7475 if (priv->flags & NESTED_SYNC_IMM) 7476 dev->nested_level = dev->lower_level - 1; 7477 if (priv->flags & NESTED_SYNC_TODO) 7478 net_unlink_todo(dev); 7479 #endif 7480 return 0; 7481 } 7482 7483 int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 7484 int (*fn)(struct net_device *dev, 7485 struct netdev_nested_priv *priv), 7486 struct netdev_nested_priv *priv) 7487 { 7488 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7489 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7490 int ret, cur = 0; 7491 7492 now = dev; 7493 iter = &dev->adj_list.lower; 7494 7495 while (1) { 7496 if (now != dev) { 7497 ret = fn(now, priv); 7498 if (ret) 7499 return ret; 7500 } 7501 7502 next = NULL; 7503 while (1) { 7504 ldev = netdev_next_lower_dev_rcu(now, &iter); 7505 if (!ldev) 7506 break; 7507 7508 next = ldev; 7509 niter = &ldev->adj_list.lower; 7510 dev_stack[cur] = now; 7511 iter_stack[cur++] = iter; 7512 break; 7513 } 7514 7515 if (!next) { 7516 if (!cur) 7517 return 0; 7518 next = dev_stack[--cur]; 7519 niter = iter_stack[cur]; 7520 } 7521 7522 now = next; 7523 iter = niter; 7524 } 7525 7526 return 0; 7527 } 7528 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu); 7529 7530 /** 7531 * netdev_lower_get_first_private_rcu - Get the first ->private from the 7532 * lower neighbour list, RCU 7533 * variant 7534 * @dev: device 7535 * 7536 * Gets the first netdev_adjacent->private from the dev's lower neighbour 7537 * list. The caller must hold RCU read lock. 7538 */ 7539 void *netdev_lower_get_first_private_rcu(struct net_device *dev) 7540 { 7541 struct netdev_adjacent *lower; 7542 7543 lower = list_first_or_null_rcu(&dev->adj_list.lower, 7544 struct netdev_adjacent, list); 7545 if (lower) 7546 return lower->private; 7547 return NULL; 7548 } 7549 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu); 7550 7551 /** 7552 * netdev_master_upper_dev_get_rcu - Get master upper device 7553 * @dev: device 7554 * 7555 * Find a master upper device and return pointer to it or NULL in case 7556 * it's not there. The caller must hold the RCU read lock. 7557 */ 7558 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev) 7559 { 7560 struct netdev_adjacent *upper; 7561 7562 upper = list_first_or_null_rcu(&dev->adj_list.upper, 7563 struct netdev_adjacent, list); 7564 if (upper && likely(upper->master)) 7565 return upper->dev; 7566 return NULL; 7567 } 7568 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu); 7569 7570 static int netdev_adjacent_sysfs_add(struct net_device *dev, 7571 struct net_device *adj_dev, 7572 struct list_head *dev_list) 7573 { 7574 char linkname[IFNAMSIZ+7]; 7575 7576 sprintf(linkname, dev_list == &dev->adj_list.upper ? 7577 "upper_%s" : "lower_%s", adj_dev->name); 7578 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj), 7579 linkname); 7580 } 7581 static void netdev_adjacent_sysfs_del(struct net_device *dev, 7582 char *name, 7583 struct list_head *dev_list) 7584 { 7585 char linkname[IFNAMSIZ+7]; 7586 7587 sprintf(linkname, dev_list == &dev->adj_list.upper ? 7588 "upper_%s" : "lower_%s", name); 7589 sysfs_remove_link(&(dev->dev.kobj), linkname); 7590 } 7591 7592 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev, 7593 struct net_device *adj_dev, 7594 struct list_head *dev_list) 7595 { 7596 return (dev_list == &dev->adj_list.upper || 7597 dev_list == &dev->adj_list.lower) && 7598 net_eq(dev_net(dev), dev_net(adj_dev)); 7599 } 7600 7601 static int __netdev_adjacent_dev_insert(struct net_device *dev, 7602 struct net_device *adj_dev, 7603 struct list_head *dev_list, 7604 void *private, bool master) 7605 { 7606 struct netdev_adjacent *adj; 7607 int ret; 7608 7609 adj = __netdev_find_adj(adj_dev, dev_list); 7610 7611 if (adj) { 7612 adj->ref_nr += 1; 7613 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n", 7614 dev->name, adj_dev->name, adj->ref_nr); 7615 7616 return 0; 7617 } 7618 7619 adj = kmalloc(sizeof(*adj), GFP_KERNEL); 7620 if (!adj) 7621 return -ENOMEM; 7622 7623 adj->dev = adj_dev; 7624 adj->master = master; 7625 adj->ref_nr = 1; 7626 adj->private = private; 7627 adj->ignore = false; 7628 netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL); 7629 7630 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n", 7631 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name); 7632 7633 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) { 7634 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list); 7635 if (ret) 7636 goto free_adj; 7637 } 7638 7639 /* Ensure that master link is always the first item in list. */ 7640 if (master) { 7641 ret = sysfs_create_link(&(dev->dev.kobj), 7642 &(adj_dev->dev.kobj), "master"); 7643 if (ret) 7644 goto remove_symlinks; 7645 7646 list_add_rcu(&adj->list, dev_list); 7647 } else { 7648 list_add_tail_rcu(&adj->list, dev_list); 7649 } 7650 7651 return 0; 7652 7653 remove_symlinks: 7654 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 7655 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 7656 free_adj: 7657 netdev_put(adj_dev, &adj->dev_tracker); 7658 kfree(adj); 7659 7660 return ret; 7661 } 7662 7663 static void __netdev_adjacent_dev_remove(struct net_device *dev, 7664 struct net_device *adj_dev, 7665 u16 ref_nr, 7666 struct list_head *dev_list) 7667 { 7668 struct netdev_adjacent *adj; 7669 7670 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n", 7671 dev->name, adj_dev->name, ref_nr); 7672 7673 adj = __netdev_find_adj(adj_dev, dev_list); 7674 7675 if (!adj) { 7676 pr_err("Adjacency does not exist for device %s from %s\n", 7677 dev->name, adj_dev->name); 7678 WARN_ON(1); 7679 return; 7680 } 7681 7682 if (adj->ref_nr > ref_nr) { 7683 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n", 7684 dev->name, adj_dev->name, ref_nr, 7685 adj->ref_nr - ref_nr); 7686 adj->ref_nr -= ref_nr; 7687 return; 7688 } 7689 7690 if (adj->master) 7691 sysfs_remove_link(&(dev->dev.kobj), "master"); 7692 7693 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 7694 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 7695 7696 list_del_rcu(&adj->list); 7697 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n", 7698 adj_dev->name, dev->name, adj_dev->name); 7699 netdev_put(adj_dev, &adj->dev_tracker); 7700 kfree_rcu(adj, rcu); 7701 } 7702 7703 static int __netdev_adjacent_dev_link_lists(struct net_device *dev, 7704 struct net_device *upper_dev, 7705 struct list_head *up_list, 7706 struct list_head *down_list, 7707 void *private, bool master) 7708 { 7709 int ret; 7710 7711 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, 7712 private, master); 7713 if (ret) 7714 return ret; 7715 7716 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, 7717 private, false); 7718 if (ret) { 7719 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list); 7720 return ret; 7721 } 7722 7723 return 0; 7724 } 7725 7726 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev, 7727 struct net_device *upper_dev, 7728 u16 ref_nr, 7729 struct list_head *up_list, 7730 struct list_head *down_list) 7731 { 7732 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list); 7733 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list); 7734 } 7735 7736 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev, 7737 struct net_device *upper_dev, 7738 void *private, bool master) 7739 { 7740 return __netdev_adjacent_dev_link_lists(dev, upper_dev, 7741 &dev->adj_list.upper, 7742 &upper_dev->adj_list.lower, 7743 private, master); 7744 } 7745 7746 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev, 7747 struct net_device *upper_dev) 7748 { 7749 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1, 7750 &dev->adj_list.upper, 7751 &upper_dev->adj_list.lower); 7752 } 7753 7754 static int __netdev_upper_dev_link(struct net_device *dev, 7755 struct net_device *upper_dev, bool master, 7756 void *upper_priv, void *upper_info, 7757 struct netdev_nested_priv *priv, 7758 struct netlink_ext_ack *extack) 7759 { 7760 struct netdev_notifier_changeupper_info changeupper_info = { 7761 .info = { 7762 .dev = dev, 7763 .extack = extack, 7764 }, 7765 .upper_dev = upper_dev, 7766 .master = master, 7767 .linking = true, 7768 .upper_info = upper_info, 7769 }; 7770 struct net_device *master_dev; 7771 int ret = 0; 7772 7773 ASSERT_RTNL(); 7774 7775 if (dev == upper_dev) 7776 return -EBUSY; 7777 7778 /* To prevent loops, check if dev is not upper device to upper_dev. */ 7779 if (__netdev_has_upper_dev(upper_dev, dev)) 7780 return -EBUSY; 7781 7782 if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV) 7783 return -EMLINK; 7784 7785 if (!master) { 7786 if (__netdev_has_upper_dev(dev, upper_dev)) 7787 return -EEXIST; 7788 } else { 7789 master_dev = __netdev_master_upper_dev_get(dev); 7790 if (master_dev) 7791 return master_dev == upper_dev ? -EEXIST : -EBUSY; 7792 } 7793 7794 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 7795 &changeupper_info.info); 7796 ret = notifier_to_errno(ret); 7797 if (ret) 7798 return ret; 7799 7800 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv, 7801 master); 7802 if (ret) 7803 return ret; 7804 7805 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 7806 &changeupper_info.info); 7807 ret = notifier_to_errno(ret); 7808 if (ret) 7809 goto rollback; 7810 7811 __netdev_update_upper_level(dev, NULL); 7812 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL); 7813 7814 __netdev_update_lower_level(upper_dev, priv); 7815 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level, 7816 priv); 7817 7818 return 0; 7819 7820 rollback: 7821 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 7822 7823 return ret; 7824 } 7825 7826 /** 7827 * netdev_upper_dev_link - Add a link to the upper device 7828 * @dev: device 7829 * @upper_dev: new upper device 7830 * @extack: netlink extended ack 7831 * 7832 * Adds a link to device which is upper to this one. The caller must hold 7833 * the RTNL lock. On a failure a negative errno code is returned. 7834 * On success the reference counts are adjusted and the function 7835 * returns zero. 7836 */ 7837 int netdev_upper_dev_link(struct net_device *dev, 7838 struct net_device *upper_dev, 7839 struct netlink_ext_ack *extack) 7840 { 7841 struct netdev_nested_priv priv = { 7842 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO, 7843 .data = NULL, 7844 }; 7845 7846 return __netdev_upper_dev_link(dev, upper_dev, false, 7847 NULL, NULL, &priv, extack); 7848 } 7849 EXPORT_SYMBOL(netdev_upper_dev_link); 7850 7851 /** 7852 * netdev_master_upper_dev_link - Add a master link to the upper device 7853 * @dev: device 7854 * @upper_dev: new upper device 7855 * @upper_priv: upper device private 7856 * @upper_info: upper info to be passed down via notifier 7857 * @extack: netlink extended ack 7858 * 7859 * Adds a link to device which is upper to this one. In this case, only 7860 * one master upper device can be linked, although other non-master devices 7861 * might be linked as well. The caller must hold the RTNL lock. 7862 * On a failure a negative errno code is returned. On success the reference 7863 * counts are adjusted and the function returns zero. 7864 */ 7865 int netdev_master_upper_dev_link(struct net_device *dev, 7866 struct net_device *upper_dev, 7867 void *upper_priv, void *upper_info, 7868 struct netlink_ext_ack *extack) 7869 { 7870 struct netdev_nested_priv priv = { 7871 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO, 7872 .data = NULL, 7873 }; 7874 7875 return __netdev_upper_dev_link(dev, upper_dev, true, 7876 upper_priv, upper_info, &priv, extack); 7877 } 7878 EXPORT_SYMBOL(netdev_master_upper_dev_link); 7879 7880 static void __netdev_upper_dev_unlink(struct net_device *dev, 7881 struct net_device *upper_dev, 7882 struct netdev_nested_priv *priv) 7883 { 7884 struct netdev_notifier_changeupper_info changeupper_info = { 7885 .info = { 7886 .dev = dev, 7887 }, 7888 .upper_dev = upper_dev, 7889 .linking = false, 7890 }; 7891 7892 ASSERT_RTNL(); 7893 7894 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev; 7895 7896 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 7897 &changeupper_info.info); 7898 7899 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 7900 7901 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 7902 &changeupper_info.info); 7903 7904 __netdev_update_upper_level(dev, NULL); 7905 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL); 7906 7907 __netdev_update_lower_level(upper_dev, priv); 7908 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level, 7909 priv); 7910 } 7911 7912 /** 7913 * netdev_upper_dev_unlink - Removes a link to upper device 7914 * @dev: device 7915 * @upper_dev: new upper device 7916 * 7917 * Removes a link to device which is upper to this one. The caller must hold 7918 * the RTNL lock. 7919 */ 7920 void netdev_upper_dev_unlink(struct net_device *dev, 7921 struct net_device *upper_dev) 7922 { 7923 struct netdev_nested_priv priv = { 7924 .flags = NESTED_SYNC_TODO, 7925 .data = NULL, 7926 }; 7927 7928 __netdev_upper_dev_unlink(dev, upper_dev, &priv); 7929 } 7930 EXPORT_SYMBOL(netdev_upper_dev_unlink); 7931 7932 static void __netdev_adjacent_dev_set(struct net_device *upper_dev, 7933 struct net_device *lower_dev, 7934 bool val) 7935 { 7936 struct netdev_adjacent *adj; 7937 7938 adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower); 7939 if (adj) 7940 adj->ignore = val; 7941 7942 adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper); 7943 if (adj) 7944 adj->ignore = val; 7945 } 7946 7947 static void netdev_adjacent_dev_disable(struct net_device *upper_dev, 7948 struct net_device *lower_dev) 7949 { 7950 __netdev_adjacent_dev_set(upper_dev, lower_dev, true); 7951 } 7952 7953 static void netdev_adjacent_dev_enable(struct net_device *upper_dev, 7954 struct net_device *lower_dev) 7955 { 7956 __netdev_adjacent_dev_set(upper_dev, lower_dev, false); 7957 } 7958 7959 int netdev_adjacent_change_prepare(struct net_device *old_dev, 7960 struct net_device *new_dev, 7961 struct net_device *dev, 7962 struct netlink_ext_ack *extack) 7963 { 7964 struct netdev_nested_priv priv = { 7965 .flags = 0, 7966 .data = NULL, 7967 }; 7968 int err; 7969 7970 if (!new_dev) 7971 return 0; 7972 7973 if (old_dev && new_dev != old_dev) 7974 netdev_adjacent_dev_disable(dev, old_dev); 7975 err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv, 7976 extack); 7977 if (err) { 7978 if (old_dev && new_dev != old_dev) 7979 netdev_adjacent_dev_enable(dev, old_dev); 7980 return err; 7981 } 7982 7983 return 0; 7984 } 7985 EXPORT_SYMBOL(netdev_adjacent_change_prepare); 7986 7987 void netdev_adjacent_change_commit(struct net_device *old_dev, 7988 struct net_device *new_dev, 7989 struct net_device *dev) 7990 { 7991 struct netdev_nested_priv priv = { 7992 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO, 7993 .data = NULL, 7994 }; 7995 7996 if (!new_dev || !old_dev) 7997 return; 7998 7999 if (new_dev == old_dev) 8000 return; 8001 8002 netdev_adjacent_dev_enable(dev, old_dev); 8003 __netdev_upper_dev_unlink(old_dev, dev, &priv); 8004 } 8005 EXPORT_SYMBOL(netdev_adjacent_change_commit); 8006 8007 void netdev_adjacent_change_abort(struct net_device *old_dev, 8008 struct net_device *new_dev, 8009 struct net_device *dev) 8010 { 8011 struct netdev_nested_priv priv = { 8012 .flags = 0, 8013 .data = NULL, 8014 }; 8015 8016 if (!new_dev) 8017 return; 8018 8019 if (old_dev && new_dev != old_dev) 8020 netdev_adjacent_dev_enable(dev, old_dev); 8021 8022 __netdev_upper_dev_unlink(new_dev, dev, &priv); 8023 } 8024 EXPORT_SYMBOL(netdev_adjacent_change_abort); 8025 8026 /** 8027 * netdev_bonding_info_change - Dispatch event about slave change 8028 * @dev: device 8029 * @bonding_info: info to dispatch 8030 * 8031 * Send NETDEV_BONDING_INFO to netdev notifiers with info. 8032 * The caller must hold the RTNL lock. 8033 */ 8034 void netdev_bonding_info_change(struct net_device *dev, 8035 struct netdev_bonding_info *bonding_info) 8036 { 8037 struct netdev_notifier_bonding_info info = { 8038 .info.dev = dev, 8039 }; 8040 8041 memcpy(&info.bonding_info, bonding_info, 8042 sizeof(struct netdev_bonding_info)); 8043 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, 8044 &info.info); 8045 } 8046 EXPORT_SYMBOL(netdev_bonding_info_change); 8047 8048 static int netdev_offload_xstats_enable_l3(struct net_device *dev, 8049 struct netlink_ext_ack *extack) 8050 { 8051 struct netdev_notifier_offload_xstats_info info = { 8052 .info.dev = dev, 8053 .info.extack = extack, 8054 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3, 8055 }; 8056 int err; 8057 int rc; 8058 8059 dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3), 8060 GFP_KERNEL); 8061 if (!dev->offload_xstats_l3) 8062 return -ENOMEM; 8063 8064 rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE, 8065 NETDEV_OFFLOAD_XSTATS_DISABLE, 8066 &info.info); 8067 err = notifier_to_errno(rc); 8068 if (err) 8069 goto free_stats; 8070 8071 return 0; 8072 8073 free_stats: 8074 kfree(dev->offload_xstats_l3); 8075 dev->offload_xstats_l3 = NULL; 8076 return err; 8077 } 8078 8079 int netdev_offload_xstats_enable(struct net_device *dev, 8080 enum netdev_offload_xstats_type type, 8081 struct netlink_ext_ack *extack) 8082 { 8083 ASSERT_RTNL(); 8084 8085 if (netdev_offload_xstats_enabled(dev, type)) 8086 return -EALREADY; 8087 8088 switch (type) { 8089 case NETDEV_OFFLOAD_XSTATS_TYPE_L3: 8090 return netdev_offload_xstats_enable_l3(dev, extack); 8091 } 8092 8093 WARN_ON(1); 8094 return -EINVAL; 8095 } 8096 EXPORT_SYMBOL(netdev_offload_xstats_enable); 8097 8098 static void netdev_offload_xstats_disable_l3(struct net_device *dev) 8099 { 8100 struct netdev_notifier_offload_xstats_info info = { 8101 .info.dev = dev, 8102 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3, 8103 }; 8104 8105 call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE, 8106 &info.info); 8107 kfree(dev->offload_xstats_l3); 8108 dev->offload_xstats_l3 = NULL; 8109 } 8110 8111 int netdev_offload_xstats_disable(struct net_device *dev, 8112 enum netdev_offload_xstats_type type) 8113 { 8114 ASSERT_RTNL(); 8115 8116 if (!netdev_offload_xstats_enabled(dev, type)) 8117 return -EALREADY; 8118 8119 switch (type) { 8120 case NETDEV_OFFLOAD_XSTATS_TYPE_L3: 8121 netdev_offload_xstats_disable_l3(dev); 8122 return 0; 8123 } 8124 8125 WARN_ON(1); 8126 return -EINVAL; 8127 } 8128 EXPORT_SYMBOL(netdev_offload_xstats_disable); 8129 8130 static void netdev_offload_xstats_disable_all(struct net_device *dev) 8131 { 8132 netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3); 8133 } 8134 8135 static struct rtnl_hw_stats64 * 8136 netdev_offload_xstats_get_ptr(const struct net_device *dev, 8137 enum netdev_offload_xstats_type type) 8138 { 8139 switch (type) { 8140 case NETDEV_OFFLOAD_XSTATS_TYPE_L3: 8141 return dev->offload_xstats_l3; 8142 } 8143 8144 WARN_ON(1); 8145 return NULL; 8146 } 8147 8148 bool netdev_offload_xstats_enabled(const struct net_device *dev, 8149 enum netdev_offload_xstats_type type) 8150 { 8151 ASSERT_RTNL(); 8152 8153 return netdev_offload_xstats_get_ptr(dev, type); 8154 } 8155 EXPORT_SYMBOL(netdev_offload_xstats_enabled); 8156 8157 struct netdev_notifier_offload_xstats_ru { 8158 bool used; 8159 }; 8160 8161 struct netdev_notifier_offload_xstats_rd { 8162 struct rtnl_hw_stats64 stats; 8163 bool used; 8164 }; 8165 8166 static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest, 8167 const struct rtnl_hw_stats64 *src) 8168 { 8169 dest->rx_packets += src->rx_packets; 8170 dest->tx_packets += src->tx_packets; 8171 dest->rx_bytes += src->rx_bytes; 8172 dest->tx_bytes += src->tx_bytes; 8173 dest->rx_errors += src->rx_errors; 8174 dest->tx_errors += src->tx_errors; 8175 dest->rx_dropped += src->rx_dropped; 8176 dest->tx_dropped += src->tx_dropped; 8177 dest->multicast += src->multicast; 8178 } 8179 8180 static int netdev_offload_xstats_get_used(struct net_device *dev, 8181 enum netdev_offload_xstats_type type, 8182 bool *p_used, 8183 struct netlink_ext_ack *extack) 8184 { 8185 struct netdev_notifier_offload_xstats_ru report_used = {}; 8186 struct netdev_notifier_offload_xstats_info info = { 8187 .info.dev = dev, 8188 .info.extack = extack, 8189 .type = type, 8190 .report_used = &report_used, 8191 }; 8192 int rc; 8193 8194 WARN_ON(!netdev_offload_xstats_enabled(dev, type)); 8195 rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED, 8196 &info.info); 8197 *p_used = report_used.used; 8198 return notifier_to_errno(rc); 8199 } 8200 8201 static int netdev_offload_xstats_get_stats(struct net_device *dev, 8202 enum netdev_offload_xstats_type type, 8203 struct rtnl_hw_stats64 *p_stats, 8204 bool *p_used, 8205 struct netlink_ext_ack *extack) 8206 { 8207 struct netdev_notifier_offload_xstats_rd report_delta = {}; 8208 struct netdev_notifier_offload_xstats_info info = { 8209 .info.dev = dev, 8210 .info.extack = extack, 8211 .type = type, 8212 .report_delta = &report_delta, 8213 }; 8214 struct rtnl_hw_stats64 *stats; 8215 int rc; 8216 8217 stats = netdev_offload_xstats_get_ptr(dev, type); 8218 if (WARN_ON(!stats)) 8219 return -EINVAL; 8220 8221 rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA, 8222 &info.info); 8223 8224 /* Cache whatever we got, even if there was an error, otherwise the 8225 * successful stats retrievals would get lost. 8226 */ 8227 netdev_hw_stats64_add(stats, &report_delta.stats); 8228 8229 if (p_stats) 8230 *p_stats = *stats; 8231 *p_used = report_delta.used; 8232 8233 return notifier_to_errno(rc); 8234 } 8235 8236 int netdev_offload_xstats_get(struct net_device *dev, 8237 enum netdev_offload_xstats_type type, 8238 struct rtnl_hw_stats64 *p_stats, bool *p_used, 8239 struct netlink_ext_ack *extack) 8240 { 8241 ASSERT_RTNL(); 8242 8243 if (p_stats) 8244 return netdev_offload_xstats_get_stats(dev, type, p_stats, 8245 p_used, extack); 8246 else 8247 return netdev_offload_xstats_get_used(dev, type, p_used, 8248 extack); 8249 } 8250 EXPORT_SYMBOL(netdev_offload_xstats_get); 8251 8252 void 8253 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta, 8254 const struct rtnl_hw_stats64 *stats) 8255 { 8256 report_delta->used = true; 8257 netdev_hw_stats64_add(&report_delta->stats, stats); 8258 } 8259 EXPORT_SYMBOL(netdev_offload_xstats_report_delta); 8260 8261 void 8262 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used) 8263 { 8264 report_used->used = true; 8265 } 8266 EXPORT_SYMBOL(netdev_offload_xstats_report_used); 8267 8268 void netdev_offload_xstats_push_delta(struct net_device *dev, 8269 enum netdev_offload_xstats_type type, 8270 const struct rtnl_hw_stats64 *p_stats) 8271 { 8272 struct rtnl_hw_stats64 *stats; 8273 8274 ASSERT_RTNL(); 8275 8276 stats = netdev_offload_xstats_get_ptr(dev, type); 8277 if (WARN_ON(!stats)) 8278 return; 8279 8280 netdev_hw_stats64_add(stats, p_stats); 8281 } 8282 EXPORT_SYMBOL(netdev_offload_xstats_push_delta); 8283 8284 /** 8285 * netdev_get_xmit_slave - Get the xmit slave of master device 8286 * @dev: device 8287 * @skb: The packet 8288 * @all_slaves: assume all the slaves are active 8289 * 8290 * The reference counters are not incremented so the caller must be 8291 * careful with locks. The caller must hold RCU lock. 8292 * %NULL is returned if no slave is found. 8293 */ 8294 8295 struct net_device *netdev_get_xmit_slave(struct net_device *dev, 8296 struct sk_buff *skb, 8297 bool all_slaves) 8298 { 8299 const struct net_device_ops *ops = dev->netdev_ops; 8300 8301 if (!ops->ndo_get_xmit_slave) 8302 return NULL; 8303 return ops->ndo_get_xmit_slave(dev, skb, all_slaves); 8304 } 8305 EXPORT_SYMBOL(netdev_get_xmit_slave); 8306 8307 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev, 8308 struct sock *sk) 8309 { 8310 const struct net_device_ops *ops = dev->netdev_ops; 8311 8312 if (!ops->ndo_sk_get_lower_dev) 8313 return NULL; 8314 return ops->ndo_sk_get_lower_dev(dev, sk); 8315 } 8316 8317 /** 8318 * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket 8319 * @dev: device 8320 * @sk: the socket 8321 * 8322 * %NULL is returned if no lower device is found. 8323 */ 8324 8325 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev, 8326 struct sock *sk) 8327 { 8328 struct net_device *lower; 8329 8330 lower = netdev_sk_get_lower_dev(dev, sk); 8331 while (lower) { 8332 dev = lower; 8333 lower = netdev_sk_get_lower_dev(dev, sk); 8334 } 8335 8336 return dev; 8337 } 8338 EXPORT_SYMBOL(netdev_sk_get_lowest_dev); 8339 8340 static void netdev_adjacent_add_links(struct net_device *dev) 8341 { 8342 struct netdev_adjacent *iter; 8343 8344 struct net *net = dev_net(dev); 8345 8346 list_for_each_entry(iter, &dev->adj_list.upper, list) { 8347 if (!net_eq(net, dev_net(iter->dev))) 8348 continue; 8349 netdev_adjacent_sysfs_add(iter->dev, dev, 8350 &iter->dev->adj_list.lower); 8351 netdev_adjacent_sysfs_add(dev, iter->dev, 8352 &dev->adj_list.upper); 8353 } 8354 8355 list_for_each_entry(iter, &dev->adj_list.lower, list) { 8356 if (!net_eq(net, dev_net(iter->dev))) 8357 continue; 8358 netdev_adjacent_sysfs_add(iter->dev, dev, 8359 &iter->dev->adj_list.upper); 8360 netdev_adjacent_sysfs_add(dev, iter->dev, 8361 &dev->adj_list.lower); 8362 } 8363 } 8364 8365 static void netdev_adjacent_del_links(struct net_device *dev) 8366 { 8367 struct netdev_adjacent *iter; 8368 8369 struct net *net = dev_net(dev); 8370 8371 list_for_each_entry(iter, &dev->adj_list.upper, list) { 8372 if (!net_eq(net, dev_net(iter->dev))) 8373 continue; 8374 netdev_adjacent_sysfs_del(iter->dev, dev->name, 8375 &iter->dev->adj_list.lower); 8376 netdev_adjacent_sysfs_del(dev, iter->dev->name, 8377 &dev->adj_list.upper); 8378 } 8379 8380 list_for_each_entry(iter, &dev->adj_list.lower, list) { 8381 if (!net_eq(net, dev_net(iter->dev))) 8382 continue; 8383 netdev_adjacent_sysfs_del(iter->dev, dev->name, 8384 &iter->dev->adj_list.upper); 8385 netdev_adjacent_sysfs_del(dev, iter->dev->name, 8386 &dev->adj_list.lower); 8387 } 8388 } 8389 8390 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname) 8391 { 8392 struct netdev_adjacent *iter; 8393 8394 struct net *net = dev_net(dev); 8395 8396 list_for_each_entry(iter, &dev->adj_list.upper, list) { 8397 if (!net_eq(net, dev_net(iter->dev))) 8398 continue; 8399 netdev_adjacent_sysfs_del(iter->dev, oldname, 8400 &iter->dev->adj_list.lower); 8401 netdev_adjacent_sysfs_add(iter->dev, dev, 8402 &iter->dev->adj_list.lower); 8403 } 8404 8405 list_for_each_entry(iter, &dev->adj_list.lower, list) { 8406 if (!net_eq(net, dev_net(iter->dev))) 8407 continue; 8408 netdev_adjacent_sysfs_del(iter->dev, oldname, 8409 &iter->dev->adj_list.upper); 8410 netdev_adjacent_sysfs_add(iter->dev, dev, 8411 &iter->dev->adj_list.upper); 8412 } 8413 } 8414 8415 void *netdev_lower_dev_get_private(struct net_device *dev, 8416 struct net_device *lower_dev) 8417 { 8418 struct netdev_adjacent *lower; 8419 8420 if (!lower_dev) 8421 return NULL; 8422 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower); 8423 if (!lower) 8424 return NULL; 8425 8426 return lower->private; 8427 } 8428 EXPORT_SYMBOL(netdev_lower_dev_get_private); 8429 8430 8431 /** 8432 * netdev_lower_state_changed - Dispatch event about lower device state change 8433 * @lower_dev: device 8434 * @lower_state_info: state to dispatch 8435 * 8436 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info. 8437 * The caller must hold the RTNL lock. 8438 */ 8439 void netdev_lower_state_changed(struct net_device *lower_dev, 8440 void *lower_state_info) 8441 { 8442 struct netdev_notifier_changelowerstate_info changelowerstate_info = { 8443 .info.dev = lower_dev, 8444 }; 8445 8446 ASSERT_RTNL(); 8447 changelowerstate_info.lower_state_info = lower_state_info; 8448 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, 8449 &changelowerstate_info.info); 8450 } 8451 EXPORT_SYMBOL(netdev_lower_state_changed); 8452 8453 static void dev_change_rx_flags(struct net_device *dev, int flags) 8454 { 8455 const struct net_device_ops *ops = dev->netdev_ops; 8456 8457 if (ops->ndo_change_rx_flags) 8458 ops->ndo_change_rx_flags(dev, flags); 8459 } 8460 8461 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify) 8462 { 8463 unsigned int old_flags = dev->flags; 8464 kuid_t uid; 8465 kgid_t gid; 8466 8467 ASSERT_RTNL(); 8468 8469 dev->flags |= IFF_PROMISC; 8470 dev->promiscuity += inc; 8471 if (dev->promiscuity == 0) { 8472 /* 8473 * Avoid overflow. 8474 * If inc causes overflow, untouch promisc and return error. 8475 */ 8476 if (inc < 0) 8477 dev->flags &= ~IFF_PROMISC; 8478 else { 8479 dev->promiscuity -= inc; 8480 netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n"); 8481 return -EOVERFLOW; 8482 } 8483 } 8484 if (dev->flags != old_flags) { 8485 netdev_info(dev, "%s promiscuous mode\n", 8486 dev->flags & IFF_PROMISC ? "entered" : "left"); 8487 if (audit_enabled) { 8488 current_uid_gid(&uid, &gid); 8489 audit_log(audit_context(), GFP_ATOMIC, 8490 AUDIT_ANOM_PROMISCUOUS, 8491 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 8492 dev->name, (dev->flags & IFF_PROMISC), 8493 (old_flags & IFF_PROMISC), 8494 from_kuid(&init_user_ns, audit_get_loginuid(current)), 8495 from_kuid(&init_user_ns, uid), 8496 from_kgid(&init_user_ns, gid), 8497 audit_get_sessionid(current)); 8498 } 8499 8500 dev_change_rx_flags(dev, IFF_PROMISC); 8501 } 8502 if (notify) 8503 __dev_notify_flags(dev, old_flags, IFF_PROMISC, 0, NULL); 8504 return 0; 8505 } 8506 8507 /** 8508 * dev_set_promiscuity - update promiscuity count on a device 8509 * @dev: device 8510 * @inc: modifier 8511 * 8512 * Add or remove promiscuity from a device. While the count in the device 8513 * remains above zero the interface remains promiscuous. Once it hits zero 8514 * the device reverts back to normal filtering operation. A negative inc 8515 * value is used to drop promiscuity on the device. 8516 * Return 0 if successful or a negative errno code on error. 8517 */ 8518 int dev_set_promiscuity(struct net_device *dev, int inc) 8519 { 8520 unsigned int old_flags = dev->flags; 8521 int err; 8522 8523 err = __dev_set_promiscuity(dev, inc, true); 8524 if (err < 0) 8525 return err; 8526 if (dev->flags != old_flags) 8527 dev_set_rx_mode(dev); 8528 return err; 8529 } 8530 EXPORT_SYMBOL(dev_set_promiscuity); 8531 8532 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify) 8533 { 8534 unsigned int old_flags = dev->flags, old_gflags = dev->gflags; 8535 8536 ASSERT_RTNL(); 8537 8538 dev->flags |= IFF_ALLMULTI; 8539 dev->allmulti += inc; 8540 if (dev->allmulti == 0) { 8541 /* 8542 * Avoid overflow. 8543 * If inc causes overflow, untouch allmulti and return error. 8544 */ 8545 if (inc < 0) 8546 dev->flags &= ~IFF_ALLMULTI; 8547 else { 8548 dev->allmulti -= inc; 8549 netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n"); 8550 return -EOVERFLOW; 8551 } 8552 } 8553 if (dev->flags ^ old_flags) { 8554 netdev_info(dev, "%s allmulticast mode\n", 8555 dev->flags & IFF_ALLMULTI ? "entered" : "left"); 8556 dev_change_rx_flags(dev, IFF_ALLMULTI); 8557 dev_set_rx_mode(dev); 8558 if (notify) 8559 __dev_notify_flags(dev, old_flags, 8560 dev->gflags ^ old_gflags, 0, NULL); 8561 } 8562 return 0; 8563 } 8564 8565 /** 8566 * dev_set_allmulti - update allmulti count on a device 8567 * @dev: device 8568 * @inc: modifier 8569 * 8570 * Add or remove reception of all multicast frames to a device. While the 8571 * count in the device remains above zero the interface remains listening 8572 * to all interfaces. Once it hits zero the device reverts back to normal 8573 * filtering operation. A negative @inc value is used to drop the counter 8574 * when releasing a resource needing all multicasts. 8575 * Return 0 if successful or a negative errno code on error. 8576 */ 8577 8578 int dev_set_allmulti(struct net_device *dev, int inc) 8579 { 8580 return __dev_set_allmulti(dev, inc, true); 8581 } 8582 EXPORT_SYMBOL(dev_set_allmulti); 8583 8584 /* 8585 * Upload unicast and multicast address lists to device and 8586 * configure RX filtering. When the device doesn't support unicast 8587 * filtering it is put in promiscuous mode while unicast addresses 8588 * are present. 8589 */ 8590 void __dev_set_rx_mode(struct net_device *dev) 8591 { 8592 const struct net_device_ops *ops = dev->netdev_ops; 8593 8594 /* dev_open will call this function so the list will stay sane. */ 8595 if (!(dev->flags&IFF_UP)) 8596 return; 8597 8598 if (!netif_device_present(dev)) 8599 return; 8600 8601 if (!(dev->priv_flags & IFF_UNICAST_FLT)) { 8602 /* Unicast addresses changes may only happen under the rtnl, 8603 * therefore calling __dev_set_promiscuity here is safe. 8604 */ 8605 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 8606 __dev_set_promiscuity(dev, 1, false); 8607 dev->uc_promisc = true; 8608 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 8609 __dev_set_promiscuity(dev, -1, false); 8610 dev->uc_promisc = false; 8611 } 8612 } 8613 8614 if (ops->ndo_set_rx_mode) 8615 ops->ndo_set_rx_mode(dev); 8616 } 8617 8618 void dev_set_rx_mode(struct net_device *dev) 8619 { 8620 netif_addr_lock_bh(dev); 8621 __dev_set_rx_mode(dev); 8622 netif_addr_unlock_bh(dev); 8623 } 8624 8625 /** 8626 * dev_get_flags - get flags reported to userspace 8627 * @dev: device 8628 * 8629 * Get the combination of flag bits exported through APIs to userspace. 8630 */ 8631 unsigned int dev_get_flags(const struct net_device *dev) 8632 { 8633 unsigned int flags; 8634 8635 flags = (dev->flags & ~(IFF_PROMISC | 8636 IFF_ALLMULTI | 8637 IFF_RUNNING | 8638 IFF_LOWER_UP | 8639 IFF_DORMANT)) | 8640 (dev->gflags & (IFF_PROMISC | 8641 IFF_ALLMULTI)); 8642 8643 if (netif_running(dev)) { 8644 if (netif_oper_up(dev)) 8645 flags |= IFF_RUNNING; 8646 if (netif_carrier_ok(dev)) 8647 flags |= IFF_LOWER_UP; 8648 if (netif_dormant(dev)) 8649 flags |= IFF_DORMANT; 8650 } 8651 8652 return flags; 8653 } 8654 EXPORT_SYMBOL(dev_get_flags); 8655 8656 int __dev_change_flags(struct net_device *dev, unsigned int flags, 8657 struct netlink_ext_ack *extack) 8658 { 8659 unsigned int old_flags = dev->flags; 8660 int ret; 8661 8662 ASSERT_RTNL(); 8663 8664 /* 8665 * Set the flags on our device. 8666 */ 8667 8668 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 8669 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 8670 IFF_AUTOMEDIA)) | 8671 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 8672 IFF_ALLMULTI)); 8673 8674 /* 8675 * Load in the correct multicast list now the flags have changed. 8676 */ 8677 8678 if ((old_flags ^ flags) & IFF_MULTICAST) 8679 dev_change_rx_flags(dev, IFF_MULTICAST); 8680 8681 dev_set_rx_mode(dev); 8682 8683 /* 8684 * Have we downed the interface. We handle IFF_UP ourselves 8685 * according to user attempts to set it, rather than blindly 8686 * setting it. 8687 */ 8688 8689 ret = 0; 8690 if ((old_flags ^ flags) & IFF_UP) { 8691 if (old_flags & IFF_UP) 8692 __dev_close(dev); 8693 else 8694 ret = __dev_open(dev, extack); 8695 } 8696 8697 if ((flags ^ dev->gflags) & IFF_PROMISC) { 8698 int inc = (flags & IFF_PROMISC) ? 1 : -1; 8699 unsigned int old_flags = dev->flags; 8700 8701 dev->gflags ^= IFF_PROMISC; 8702 8703 if (__dev_set_promiscuity(dev, inc, false) >= 0) 8704 if (dev->flags != old_flags) 8705 dev_set_rx_mode(dev); 8706 } 8707 8708 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 8709 * is important. Some (broken) drivers set IFF_PROMISC, when 8710 * IFF_ALLMULTI is requested not asking us and not reporting. 8711 */ 8712 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 8713 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 8714 8715 dev->gflags ^= IFF_ALLMULTI; 8716 __dev_set_allmulti(dev, inc, false); 8717 } 8718 8719 return ret; 8720 } 8721 8722 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags, 8723 unsigned int gchanges, u32 portid, 8724 const struct nlmsghdr *nlh) 8725 { 8726 unsigned int changes = dev->flags ^ old_flags; 8727 8728 if (gchanges) 8729 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC, portid, nlh); 8730 8731 if (changes & IFF_UP) { 8732 if (dev->flags & IFF_UP) 8733 call_netdevice_notifiers(NETDEV_UP, dev); 8734 else 8735 call_netdevice_notifiers(NETDEV_DOWN, dev); 8736 } 8737 8738 if (dev->flags & IFF_UP && 8739 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) { 8740 struct netdev_notifier_change_info change_info = { 8741 .info = { 8742 .dev = dev, 8743 }, 8744 .flags_changed = changes, 8745 }; 8746 8747 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info); 8748 } 8749 } 8750 8751 /** 8752 * dev_change_flags - change device settings 8753 * @dev: device 8754 * @flags: device state flags 8755 * @extack: netlink extended ack 8756 * 8757 * Change settings on device based state flags. The flags are 8758 * in the userspace exported format. 8759 */ 8760 int dev_change_flags(struct net_device *dev, unsigned int flags, 8761 struct netlink_ext_ack *extack) 8762 { 8763 int ret; 8764 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags; 8765 8766 ret = __dev_change_flags(dev, flags, extack); 8767 if (ret < 0) 8768 return ret; 8769 8770 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags); 8771 __dev_notify_flags(dev, old_flags, changes, 0, NULL); 8772 return ret; 8773 } 8774 EXPORT_SYMBOL(dev_change_flags); 8775 8776 int __dev_set_mtu(struct net_device *dev, int new_mtu) 8777 { 8778 const struct net_device_ops *ops = dev->netdev_ops; 8779 8780 if (ops->ndo_change_mtu) 8781 return ops->ndo_change_mtu(dev, new_mtu); 8782 8783 /* Pairs with all the lockless reads of dev->mtu in the stack */ 8784 WRITE_ONCE(dev->mtu, new_mtu); 8785 return 0; 8786 } 8787 EXPORT_SYMBOL(__dev_set_mtu); 8788 8789 int dev_validate_mtu(struct net_device *dev, int new_mtu, 8790 struct netlink_ext_ack *extack) 8791 { 8792 /* MTU must be positive, and in range */ 8793 if (new_mtu < 0 || new_mtu < dev->min_mtu) { 8794 NL_SET_ERR_MSG(extack, "mtu less than device minimum"); 8795 return -EINVAL; 8796 } 8797 8798 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) { 8799 NL_SET_ERR_MSG(extack, "mtu greater than device maximum"); 8800 return -EINVAL; 8801 } 8802 return 0; 8803 } 8804 8805 /** 8806 * dev_set_mtu_ext - Change maximum transfer unit 8807 * @dev: device 8808 * @new_mtu: new transfer unit 8809 * @extack: netlink extended ack 8810 * 8811 * Change the maximum transfer size of the network device. 8812 */ 8813 int dev_set_mtu_ext(struct net_device *dev, int new_mtu, 8814 struct netlink_ext_ack *extack) 8815 { 8816 int err, orig_mtu; 8817 8818 if (new_mtu == dev->mtu) 8819 return 0; 8820 8821 err = dev_validate_mtu(dev, new_mtu, extack); 8822 if (err) 8823 return err; 8824 8825 if (!netif_device_present(dev)) 8826 return -ENODEV; 8827 8828 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev); 8829 err = notifier_to_errno(err); 8830 if (err) 8831 return err; 8832 8833 orig_mtu = dev->mtu; 8834 err = __dev_set_mtu(dev, new_mtu); 8835 8836 if (!err) { 8837 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev, 8838 orig_mtu); 8839 err = notifier_to_errno(err); 8840 if (err) { 8841 /* setting mtu back and notifying everyone again, 8842 * so that they have a chance to revert changes. 8843 */ 8844 __dev_set_mtu(dev, orig_mtu); 8845 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev, 8846 new_mtu); 8847 } 8848 } 8849 return err; 8850 } 8851 8852 int dev_set_mtu(struct net_device *dev, int new_mtu) 8853 { 8854 struct netlink_ext_ack extack; 8855 int err; 8856 8857 memset(&extack, 0, sizeof(extack)); 8858 err = dev_set_mtu_ext(dev, new_mtu, &extack); 8859 if (err && extack._msg) 8860 net_err_ratelimited("%s: %s\n", dev->name, extack._msg); 8861 return err; 8862 } 8863 EXPORT_SYMBOL(dev_set_mtu); 8864 8865 /** 8866 * dev_change_tx_queue_len - Change TX queue length of a netdevice 8867 * @dev: device 8868 * @new_len: new tx queue length 8869 */ 8870 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len) 8871 { 8872 unsigned int orig_len = dev->tx_queue_len; 8873 int res; 8874 8875 if (new_len != (unsigned int)new_len) 8876 return -ERANGE; 8877 8878 if (new_len != orig_len) { 8879 dev->tx_queue_len = new_len; 8880 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev); 8881 res = notifier_to_errno(res); 8882 if (res) 8883 goto err_rollback; 8884 res = dev_qdisc_change_tx_queue_len(dev); 8885 if (res) 8886 goto err_rollback; 8887 } 8888 8889 return 0; 8890 8891 err_rollback: 8892 netdev_err(dev, "refused to change device tx_queue_len\n"); 8893 dev->tx_queue_len = orig_len; 8894 return res; 8895 } 8896 8897 /** 8898 * dev_set_group - Change group this device belongs to 8899 * @dev: device 8900 * @new_group: group this device should belong to 8901 */ 8902 void dev_set_group(struct net_device *dev, int new_group) 8903 { 8904 dev->group = new_group; 8905 } 8906 8907 /** 8908 * dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR. 8909 * @dev: device 8910 * @addr: new address 8911 * @extack: netlink extended ack 8912 */ 8913 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr, 8914 struct netlink_ext_ack *extack) 8915 { 8916 struct netdev_notifier_pre_changeaddr_info info = { 8917 .info.dev = dev, 8918 .info.extack = extack, 8919 .dev_addr = addr, 8920 }; 8921 int rc; 8922 8923 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info); 8924 return notifier_to_errno(rc); 8925 } 8926 EXPORT_SYMBOL(dev_pre_changeaddr_notify); 8927 8928 /** 8929 * dev_set_mac_address - Change Media Access Control Address 8930 * @dev: device 8931 * @sa: new address 8932 * @extack: netlink extended ack 8933 * 8934 * Change the hardware (MAC) address of the device 8935 */ 8936 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa, 8937 struct netlink_ext_ack *extack) 8938 { 8939 const struct net_device_ops *ops = dev->netdev_ops; 8940 int err; 8941 8942 if (!ops->ndo_set_mac_address) 8943 return -EOPNOTSUPP; 8944 if (sa->sa_family != dev->type) 8945 return -EINVAL; 8946 if (!netif_device_present(dev)) 8947 return -ENODEV; 8948 err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack); 8949 if (err) 8950 return err; 8951 if (memcmp(dev->dev_addr, sa->sa_data, dev->addr_len)) { 8952 err = ops->ndo_set_mac_address(dev, sa); 8953 if (err) 8954 return err; 8955 } 8956 dev->addr_assign_type = NET_ADDR_SET; 8957 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 8958 add_device_randomness(dev->dev_addr, dev->addr_len); 8959 return 0; 8960 } 8961 EXPORT_SYMBOL(dev_set_mac_address); 8962 8963 DECLARE_RWSEM(dev_addr_sem); 8964 8965 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa, 8966 struct netlink_ext_ack *extack) 8967 { 8968 int ret; 8969 8970 down_write(&dev_addr_sem); 8971 ret = dev_set_mac_address(dev, sa, extack); 8972 up_write(&dev_addr_sem); 8973 return ret; 8974 } 8975 EXPORT_SYMBOL(dev_set_mac_address_user); 8976 8977 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name) 8978 { 8979 size_t size = sizeof(sa->sa_data_min); 8980 struct net_device *dev; 8981 int ret = 0; 8982 8983 down_read(&dev_addr_sem); 8984 rcu_read_lock(); 8985 8986 dev = dev_get_by_name_rcu(net, dev_name); 8987 if (!dev) { 8988 ret = -ENODEV; 8989 goto unlock; 8990 } 8991 if (!dev->addr_len) 8992 memset(sa->sa_data, 0, size); 8993 else 8994 memcpy(sa->sa_data, dev->dev_addr, 8995 min_t(size_t, size, dev->addr_len)); 8996 sa->sa_family = dev->type; 8997 8998 unlock: 8999 rcu_read_unlock(); 9000 up_read(&dev_addr_sem); 9001 return ret; 9002 } 9003 EXPORT_SYMBOL(dev_get_mac_address); 9004 9005 /** 9006 * dev_change_carrier - Change device carrier 9007 * @dev: device 9008 * @new_carrier: new value 9009 * 9010 * Change device carrier 9011 */ 9012 int dev_change_carrier(struct net_device *dev, bool new_carrier) 9013 { 9014 const struct net_device_ops *ops = dev->netdev_ops; 9015 9016 if (!ops->ndo_change_carrier) 9017 return -EOPNOTSUPP; 9018 if (!netif_device_present(dev)) 9019 return -ENODEV; 9020 return ops->ndo_change_carrier(dev, new_carrier); 9021 } 9022 9023 /** 9024 * dev_get_phys_port_id - Get device physical port ID 9025 * @dev: device 9026 * @ppid: port ID 9027 * 9028 * Get device physical port ID 9029 */ 9030 int dev_get_phys_port_id(struct net_device *dev, 9031 struct netdev_phys_item_id *ppid) 9032 { 9033 const struct net_device_ops *ops = dev->netdev_ops; 9034 9035 if (!ops->ndo_get_phys_port_id) 9036 return -EOPNOTSUPP; 9037 return ops->ndo_get_phys_port_id(dev, ppid); 9038 } 9039 9040 /** 9041 * dev_get_phys_port_name - Get device physical port name 9042 * @dev: device 9043 * @name: port name 9044 * @len: limit of bytes to copy to name 9045 * 9046 * Get device physical port name 9047 */ 9048 int dev_get_phys_port_name(struct net_device *dev, 9049 char *name, size_t len) 9050 { 9051 const struct net_device_ops *ops = dev->netdev_ops; 9052 int err; 9053 9054 if (ops->ndo_get_phys_port_name) { 9055 err = ops->ndo_get_phys_port_name(dev, name, len); 9056 if (err != -EOPNOTSUPP) 9057 return err; 9058 } 9059 return devlink_compat_phys_port_name_get(dev, name, len); 9060 } 9061 9062 /** 9063 * dev_get_port_parent_id - Get the device's port parent identifier 9064 * @dev: network device 9065 * @ppid: pointer to a storage for the port's parent identifier 9066 * @recurse: allow/disallow recursion to lower devices 9067 * 9068 * Get the devices's port parent identifier 9069 */ 9070 int dev_get_port_parent_id(struct net_device *dev, 9071 struct netdev_phys_item_id *ppid, 9072 bool recurse) 9073 { 9074 const struct net_device_ops *ops = dev->netdev_ops; 9075 struct netdev_phys_item_id first = { }; 9076 struct net_device *lower_dev; 9077 struct list_head *iter; 9078 int err; 9079 9080 if (ops->ndo_get_port_parent_id) { 9081 err = ops->ndo_get_port_parent_id(dev, ppid); 9082 if (err != -EOPNOTSUPP) 9083 return err; 9084 } 9085 9086 err = devlink_compat_switch_id_get(dev, ppid); 9087 if (!recurse || err != -EOPNOTSUPP) 9088 return err; 9089 9090 netdev_for_each_lower_dev(dev, lower_dev, iter) { 9091 err = dev_get_port_parent_id(lower_dev, ppid, true); 9092 if (err) 9093 break; 9094 if (!first.id_len) 9095 first = *ppid; 9096 else if (memcmp(&first, ppid, sizeof(*ppid))) 9097 return -EOPNOTSUPP; 9098 } 9099 9100 return err; 9101 } 9102 EXPORT_SYMBOL(dev_get_port_parent_id); 9103 9104 /** 9105 * netdev_port_same_parent_id - Indicate if two network devices have 9106 * the same port parent identifier 9107 * @a: first network device 9108 * @b: second network device 9109 */ 9110 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b) 9111 { 9112 struct netdev_phys_item_id a_id = { }; 9113 struct netdev_phys_item_id b_id = { }; 9114 9115 if (dev_get_port_parent_id(a, &a_id, true) || 9116 dev_get_port_parent_id(b, &b_id, true)) 9117 return false; 9118 9119 return netdev_phys_item_id_same(&a_id, &b_id); 9120 } 9121 EXPORT_SYMBOL(netdev_port_same_parent_id); 9122 9123 static void netdev_dpll_pin_assign(struct net_device *dev, struct dpll_pin *dpll_pin) 9124 { 9125 #if IS_ENABLED(CONFIG_DPLL) 9126 rtnl_lock(); 9127 dev->dpll_pin = dpll_pin; 9128 rtnl_unlock(); 9129 #endif 9130 } 9131 9132 void netdev_dpll_pin_set(struct net_device *dev, struct dpll_pin *dpll_pin) 9133 { 9134 WARN_ON(!dpll_pin); 9135 netdev_dpll_pin_assign(dev, dpll_pin); 9136 } 9137 EXPORT_SYMBOL(netdev_dpll_pin_set); 9138 9139 void netdev_dpll_pin_clear(struct net_device *dev) 9140 { 9141 netdev_dpll_pin_assign(dev, NULL); 9142 } 9143 EXPORT_SYMBOL(netdev_dpll_pin_clear); 9144 9145 /** 9146 * dev_change_proto_down - set carrier according to proto_down. 9147 * 9148 * @dev: device 9149 * @proto_down: new value 9150 */ 9151 int dev_change_proto_down(struct net_device *dev, bool proto_down) 9152 { 9153 if (!(dev->priv_flags & IFF_CHANGE_PROTO_DOWN)) 9154 return -EOPNOTSUPP; 9155 if (!netif_device_present(dev)) 9156 return -ENODEV; 9157 if (proto_down) 9158 netif_carrier_off(dev); 9159 else 9160 netif_carrier_on(dev); 9161 dev->proto_down = proto_down; 9162 return 0; 9163 } 9164 9165 /** 9166 * dev_change_proto_down_reason - proto down reason 9167 * 9168 * @dev: device 9169 * @mask: proto down mask 9170 * @value: proto down value 9171 */ 9172 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask, 9173 u32 value) 9174 { 9175 int b; 9176 9177 if (!mask) { 9178 dev->proto_down_reason = value; 9179 } else { 9180 for_each_set_bit(b, &mask, 32) { 9181 if (value & (1 << b)) 9182 dev->proto_down_reason |= BIT(b); 9183 else 9184 dev->proto_down_reason &= ~BIT(b); 9185 } 9186 } 9187 } 9188 9189 struct bpf_xdp_link { 9190 struct bpf_link link; 9191 struct net_device *dev; /* protected by rtnl_lock, no refcnt held */ 9192 int flags; 9193 }; 9194 9195 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags) 9196 { 9197 if (flags & XDP_FLAGS_HW_MODE) 9198 return XDP_MODE_HW; 9199 if (flags & XDP_FLAGS_DRV_MODE) 9200 return XDP_MODE_DRV; 9201 if (flags & XDP_FLAGS_SKB_MODE) 9202 return XDP_MODE_SKB; 9203 return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB; 9204 } 9205 9206 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode) 9207 { 9208 switch (mode) { 9209 case XDP_MODE_SKB: 9210 return generic_xdp_install; 9211 case XDP_MODE_DRV: 9212 case XDP_MODE_HW: 9213 return dev->netdev_ops->ndo_bpf; 9214 default: 9215 return NULL; 9216 } 9217 } 9218 9219 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev, 9220 enum bpf_xdp_mode mode) 9221 { 9222 return dev->xdp_state[mode].link; 9223 } 9224 9225 static struct bpf_prog *dev_xdp_prog(struct net_device *dev, 9226 enum bpf_xdp_mode mode) 9227 { 9228 struct bpf_xdp_link *link = dev_xdp_link(dev, mode); 9229 9230 if (link) 9231 return link->link.prog; 9232 return dev->xdp_state[mode].prog; 9233 } 9234 9235 u8 dev_xdp_prog_count(struct net_device *dev) 9236 { 9237 u8 count = 0; 9238 int i; 9239 9240 for (i = 0; i < __MAX_XDP_MODE; i++) 9241 if (dev->xdp_state[i].prog || dev->xdp_state[i].link) 9242 count++; 9243 return count; 9244 } 9245 EXPORT_SYMBOL_GPL(dev_xdp_prog_count); 9246 9247 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode) 9248 { 9249 struct bpf_prog *prog = dev_xdp_prog(dev, mode); 9250 9251 return prog ? prog->aux->id : 0; 9252 } 9253 9254 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode, 9255 struct bpf_xdp_link *link) 9256 { 9257 dev->xdp_state[mode].link = link; 9258 dev->xdp_state[mode].prog = NULL; 9259 } 9260 9261 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode, 9262 struct bpf_prog *prog) 9263 { 9264 dev->xdp_state[mode].link = NULL; 9265 dev->xdp_state[mode].prog = prog; 9266 } 9267 9268 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode, 9269 bpf_op_t bpf_op, struct netlink_ext_ack *extack, 9270 u32 flags, struct bpf_prog *prog) 9271 { 9272 struct netdev_bpf xdp; 9273 int err; 9274 9275 memset(&xdp, 0, sizeof(xdp)); 9276 xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG; 9277 xdp.extack = extack; 9278 xdp.flags = flags; 9279 xdp.prog = prog; 9280 9281 /* Drivers assume refcnt is already incremented (i.e, prog pointer is 9282 * "moved" into driver), so they don't increment it on their own, but 9283 * they do decrement refcnt when program is detached or replaced. 9284 * Given net_device also owns link/prog, we need to bump refcnt here 9285 * to prevent drivers from underflowing it. 9286 */ 9287 if (prog) 9288 bpf_prog_inc(prog); 9289 err = bpf_op(dev, &xdp); 9290 if (err) { 9291 if (prog) 9292 bpf_prog_put(prog); 9293 return err; 9294 } 9295 9296 if (mode != XDP_MODE_HW) 9297 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog); 9298 9299 return 0; 9300 } 9301 9302 static void dev_xdp_uninstall(struct net_device *dev) 9303 { 9304 struct bpf_xdp_link *link; 9305 struct bpf_prog *prog; 9306 enum bpf_xdp_mode mode; 9307 bpf_op_t bpf_op; 9308 9309 ASSERT_RTNL(); 9310 9311 for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) { 9312 prog = dev_xdp_prog(dev, mode); 9313 if (!prog) 9314 continue; 9315 9316 bpf_op = dev_xdp_bpf_op(dev, mode); 9317 if (!bpf_op) 9318 continue; 9319 9320 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL)); 9321 9322 /* auto-detach link from net device */ 9323 link = dev_xdp_link(dev, mode); 9324 if (link) 9325 link->dev = NULL; 9326 else 9327 bpf_prog_put(prog); 9328 9329 dev_xdp_set_link(dev, mode, NULL); 9330 } 9331 } 9332 9333 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack, 9334 struct bpf_xdp_link *link, struct bpf_prog *new_prog, 9335 struct bpf_prog *old_prog, u32 flags) 9336 { 9337 unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES); 9338 struct bpf_prog *cur_prog; 9339 struct net_device *upper; 9340 struct list_head *iter; 9341 enum bpf_xdp_mode mode; 9342 bpf_op_t bpf_op; 9343 int err; 9344 9345 ASSERT_RTNL(); 9346 9347 /* either link or prog attachment, never both */ 9348 if (link && (new_prog || old_prog)) 9349 return -EINVAL; 9350 /* link supports only XDP mode flags */ 9351 if (link && (flags & ~XDP_FLAGS_MODES)) { 9352 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment"); 9353 return -EINVAL; 9354 } 9355 /* just one XDP mode bit should be set, zero defaults to drv/skb mode */ 9356 if (num_modes > 1) { 9357 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set"); 9358 return -EINVAL; 9359 } 9360 /* avoid ambiguity if offload + drv/skb mode progs are both loaded */ 9361 if (!num_modes && dev_xdp_prog_count(dev) > 1) { 9362 NL_SET_ERR_MSG(extack, 9363 "More than one program loaded, unset mode is ambiguous"); 9364 return -EINVAL; 9365 } 9366 /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */ 9367 if (old_prog && !(flags & XDP_FLAGS_REPLACE)) { 9368 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified"); 9369 return -EINVAL; 9370 } 9371 9372 mode = dev_xdp_mode(dev, flags); 9373 /* can't replace attached link */ 9374 if (dev_xdp_link(dev, mode)) { 9375 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link"); 9376 return -EBUSY; 9377 } 9378 9379 /* don't allow if an upper device already has a program */ 9380 netdev_for_each_upper_dev_rcu(dev, upper, iter) { 9381 if (dev_xdp_prog_count(upper) > 0) { 9382 NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program"); 9383 return -EEXIST; 9384 } 9385 } 9386 9387 cur_prog = dev_xdp_prog(dev, mode); 9388 /* can't replace attached prog with link */ 9389 if (link && cur_prog) { 9390 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link"); 9391 return -EBUSY; 9392 } 9393 if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) { 9394 NL_SET_ERR_MSG(extack, "Active program does not match expected"); 9395 return -EEXIST; 9396 } 9397 9398 /* put effective new program into new_prog */ 9399 if (link) 9400 new_prog = link->link.prog; 9401 9402 if (new_prog) { 9403 bool offload = mode == XDP_MODE_HW; 9404 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB 9405 ? XDP_MODE_DRV : XDP_MODE_SKB; 9406 9407 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) { 9408 NL_SET_ERR_MSG(extack, "XDP program already attached"); 9409 return -EBUSY; 9410 } 9411 if (!offload && dev_xdp_prog(dev, other_mode)) { 9412 NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time"); 9413 return -EEXIST; 9414 } 9415 if (!offload && bpf_prog_is_offloaded(new_prog->aux)) { 9416 NL_SET_ERR_MSG(extack, "Using offloaded program without HW_MODE flag is not supported"); 9417 return -EINVAL; 9418 } 9419 if (bpf_prog_is_dev_bound(new_prog->aux) && !bpf_offload_dev_match(new_prog, dev)) { 9420 NL_SET_ERR_MSG(extack, "Program bound to different device"); 9421 return -EINVAL; 9422 } 9423 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) { 9424 NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device"); 9425 return -EINVAL; 9426 } 9427 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) { 9428 NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device"); 9429 return -EINVAL; 9430 } 9431 } 9432 9433 /* don't call drivers if the effective program didn't change */ 9434 if (new_prog != cur_prog) { 9435 bpf_op = dev_xdp_bpf_op(dev, mode); 9436 if (!bpf_op) { 9437 NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode"); 9438 return -EOPNOTSUPP; 9439 } 9440 9441 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog); 9442 if (err) 9443 return err; 9444 } 9445 9446 if (link) 9447 dev_xdp_set_link(dev, mode, link); 9448 else 9449 dev_xdp_set_prog(dev, mode, new_prog); 9450 if (cur_prog) 9451 bpf_prog_put(cur_prog); 9452 9453 return 0; 9454 } 9455 9456 static int dev_xdp_attach_link(struct net_device *dev, 9457 struct netlink_ext_ack *extack, 9458 struct bpf_xdp_link *link) 9459 { 9460 return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags); 9461 } 9462 9463 static int dev_xdp_detach_link(struct net_device *dev, 9464 struct netlink_ext_ack *extack, 9465 struct bpf_xdp_link *link) 9466 { 9467 enum bpf_xdp_mode mode; 9468 bpf_op_t bpf_op; 9469 9470 ASSERT_RTNL(); 9471 9472 mode = dev_xdp_mode(dev, link->flags); 9473 if (dev_xdp_link(dev, mode) != link) 9474 return -EINVAL; 9475 9476 bpf_op = dev_xdp_bpf_op(dev, mode); 9477 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL)); 9478 dev_xdp_set_link(dev, mode, NULL); 9479 return 0; 9480 } 9481 9482 static void bpf_xdp_link_release(struct bpf_link *link) 9483 { 9484 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 9485 9486 rtnl_lock(); 9487 9488 /* if racing with net_device's tear down, xdp_link->dev might be 9489 * already NULL, in which case link was already auto-detached 9490 */ 9491 if (xdp_link->dev) { 9492 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link)); 9493 xdp_link->dev = NULL; 9494 } 9495 9496 rtnl_unlock(); 9497 } 9498 9499 static int bpf_xdp_link_detach(struct bpf_link *link) 9500 { 9501 bpf_xdp_link_release(link); 9502 return 0; 9503 } 9504 9505 static void bpf_xdp_link_dealloc(struct bpf_link *link) 9506 { 9507 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 9508 9509 kfree(xdp_link); 9510 } 9511 9512 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link, 9513 struct seq_file *seq) 9514 { 9515 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 9516 u32 ifindex = 0; 9517 9518 rtnl_lock(); 9519 if (xdp_link->dev) 9520 ifindex = xdp_link->dev->ifindex; 9521 rtnl_unlock(); 9522 9523 seq_printf(seq, "ifindex:\t%u\n", ifindex); 9524 } 9525 9526 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link, 9527 struct bpf_link_info *info) 9528 { 9529 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 9530 u32 ifindex = 0; 9531 9532 rtnl_lock(); 9533 if (xdp_link->dev) 9534 ifindex = xdp_link->dev->ifindex; 9535 rtnl_unlock(); 9536 9537 info->xdp.ifindex = ifindex; 9538 return 0; 9539 } 9540 9541 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog, 9542 struct bpf_prog *old_prog) 9543 { 9544 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 9545 enum bpf_xdp_mode mode; 9546 bpf_op_t bpf_op; 9547 int err = 0; 9548 9549 rtnl_lock(); 9550 9551 /* link might have been auto-released already, so fail */ 9552 if (!xdp_link->dev) { 9553 err = -ENOLINK; 9554 goto out_unlock; 9555 } 9556 9557 if (old_prog && link->prog != old_prog) { 9558 err = -EPERM; 9559 goto out_unlock; 9560 } 9561 old_prog = link->prog; 9562 if (old_prog->type != new_prog->type || 9563 old_prog->expected_attach_type != new_prog->expected_attach_type) { 9564 err = -EINVAL; 9565 goto out_unlock; 9566 } 9567 9568 if (old_prog == new_prog) { 9569 /* no-op, don't disturb drivers */ 9570 bpf_prog_put(new_prog); 9571 goto out_unlock; 9572 } 9573 9574 mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags); 9575 bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode); 9576 err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL, 9577 xdp_link->flags, new_prog); 9578 if (err) 9579 goto out_unlock; 9580 9581 old_prog = xchg(&link->prog, new_prog); 9582 bpf_prog_put(old_prog); 9583 9584 out_unlock: 9585 rtnl_unlock(); 9586 return err; 9587 } 9588 9589 static const struct bpf_link_ops bpf_xdp_link_lops = { 9590 .release = bpf_xdp_link_release, 9591 .dealloc = bpf_xdp_link_dealloc, 9592 .detach = bpf_xdp_link_detach, 9593 .show_fdinfo = bpf_xdp_link_show_fdinfo, 9594 .fill_link_info = bpf_xdp_link_fill_link_info, 9595 .update_prog = bpf_xdp_link_update, 9596 }; 9597 9598 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog) 9599 { 9600 struct net *net = current->nsproxy->net_ns; 9601 struct bpf_link_primer link_primer; 9602 struct netlink_ext_ack extack = {}; 9603 struct bpf_xdp_link *link; 9604 struct net_device *dev; 9605 int err, fd; 9606 9607 rtnl_lock(); 9608 dev = dev_get_by_index(net, attr->link_create.target_ifindex); 9609 if (!dev) { 9610 rtnl_unlock(); 9611 return -EINVAL; 9612 } 9613 9614 link = kzalloc(sizeof(*link), GFP_USER); 9615 if (!link) { 9616 err = -ENOMEM; 9617 goto unlock; 9618 } 9619 9620 bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog); 9621 link->dev = dev; 9622 link->flags = attr->link_create.flags; 9623 9624 err = bpf_link_prime(&link->link, &link_primer); 9625 if (err) { 9626 kfree(link); 9627 goto unlock; 9628 } 9629 9630 err = dev_xdp_attach_link(dev, &extack, link); 9631 rtnl_unlock(); 9632 9633 if (err) { 9634 link->dev = NULL; 9635 bpf_link_cleanup(&link_primer); 9636 trace_bpf_xdp_link_attach_failed(extack._msg); 9637 goto out_put_dev; 9638 } 9639 9640 fd = bpf_link_settle(&link_primer); 9641 /* link itself doesn't hold dev's refcnt to not complicate shutdown */ 9642 dev_put(dev); 9643 return fd; 9644 9645 unlock: 9646 rtnl_unlock(); 9647 9648 out_put_dev: 9649 dev_put(dev); 9650 return err; 9651 } 9652 9653 /** 9654 * dev_change_xdp_fd - set or clear a bpf program for a device rx path 9655 * @dev: device 9656 * @extack: netlink extended ack 9657 * @fd: new program fd or negative value to clear 9658 * @expected_fd: old program fd that userspace expects to replace or clear 9659 * @flags: xdp-related flags 9660 * 9661 * Set or clear a bpf program for a device 9662 */ 9663 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack, 9664 int fd, int expected_fd, u32 flags) 9665 { 9666 enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags); 9667 struct bpf_prog *new_prog = NULL, *old_prog = NULL; 9668 int err; 9669 9670 ASSERT_RTNL(); 9671 9672 if (fd >= 0) { 9673 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP, 9674 mode != XDP_MODE_SKB); 9675 if (IS_ERR(new_prog)) 9676 return PTR_ERR(new_prog); 9677 } 9678 9679 if (expected_fd >= 0) { 9680 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP, 9681 mode != XDP_MODE_SKB); 9682 if (IS_ERR(old_prog)) { 9683 err = PTR_ERR(old_prog); 9684 old_prog = NULL; 9685 goto err_out; 9686 } 9687 } 9688 9689 err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags); 9690 9691 err_out: 9692 if (err && new_prog) 9693 bpf_prog_put(new_prog); 9694 if (old_prog) 9695 bpf_prog_put(old_prog); 9696 return err; 9697 } 9698 9699 /** 9700 * dev_index_reserve() - allocate an ifindex in a namespace 9701 * @net: the applicable net namespace 9702 * @ifindex: requested ifindex, pass %0 to get one allocated 9703 * 9704 * Allocate a ifindex for a new device. Caller must either use the ifindex 9705 * to store the device (via list_netdevice()) or call dev_index_release() 9706 * to give the index up. 9707 * 9708 * Return: a suitable unique value for a new device interface number or -errno. 9709 */ 9710 static int dev_index_reserve(struct net *net, u32 ifindex) 9711 { 9712 int err; 9713 9714 if (ifindex > INT_MAX) { 9715 DEBUG_NET_WARN_ON_ONCE(1); 9716 return -EINVAL; 9717 } 9718 9719 if (!ifindex) 9720 err = xa_alloc_cyclic(&net->dev_by_index, &ifindex, NULL, 9721 xa_limit_31b, &net->ifindex, GFP_KERNEL); 9722 else 9723 err = xa_insert(&net->dev_by_index, ifindex, NULL, GFP_KERNEL); 9724 if (err < 0) 9725 return err; 9726 9727 return ifindex; 9728 } 9729 9730 static void dev_index_release(struct net *net, int ifindex) 9731 { 9732 /* Expect only unused indexes, unlist_netdevice() removes the used */ 9733 WARN_ON(xa_erase(&net->dev_by_index, ifindex)); 9734 } 9735 9736 /* Delayed registration/unregisteration */ 9737 LIST_HEAD(net_todo_list); 9738 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq); 9739 atomic_t dev_unreg_count = ATOMIC_INIT(0); 9740 9741 static void net_set_todo(struct net_device *dev) 9742 { 9743 list_add_tail(&dev->todo_list, &net_todo_list); 9744 } 9745 9746 static netdev_features_t netdev_sync_upper_features(struct net_device *lower, 9747 struct net_device *upper, netdev_features_t features) 9748 { 9749 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 9750 netdev_features_t feature; 9751 int feature_bit; 9752 9753 for_each_netdev_feature(upper_disables, feature_bit) { 9754 feature = __NETIF_F_BIT(feature_bit); 9755 if (!(upper->wanted_features & feature) 9756 && (features & feature)) { 9757 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n", 9758 &feature, upper->name); 9759 features &= ~feature; 9760 } 9761 } 9762 9763 return features; 9764 } 9765 9766 static void netdev_sync_lower_features(struct net_device *upper, 9767 struct net_device *lower, netdev_features_t features) 9768 { 9769 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 9770 netdev_features_t feature; 9771 int feature_bit; 9772 9773 for_each_netdev_feature(upper_disables, feature_bit) { 9774 feature = __NETIF_F_BIT(feature_bit); 9775 if (!(features & feature) && (lower->features & feature)) { 9776 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n", 9777 &feature, lower->name); 9778 lower->wanted_features &= ~feature; 9779 __netdev_update_features(lower); 9780 9781 if (unlikely(lower->features & feature)) 9782 netdev_WARN(upper, "failed to disable %pNF on %s!\n", 9783 &feature, lower->name); 9784 else 9785 netdev_features_change(lower); 9786 } 9787 } 9788 } 9789 9790 static netdev_features_t netdev_fix_features(struct net_device *dev, 9791 netdev_features_t features) 9792 { 9793 /* Fix illegal checksum combinations */ 9794 if ((features & NETIF_F_HW_CSUM) && 9795 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 9796 netdev_warn(dev, "mixed HW and IP checksum settings.\n"); 9797 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 9798 } 9799 9800 /* TSO requires that SG is present as well. */ 9801 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { 9802 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); 9803 features &= ~NETIF_F_ALL_TSO; 9804 } 9805 9806 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) && 9807 !(features & NETIF_F_IP_CSUM)) { 9808 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n"); 9809 features &= ~NETIF_F_TSO; 9810 features &= ~NETIF_F_TSO_ECN; 9811 } 9812 9813 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) && 9814 !(features & NETIF_F_IPV6_CSUM)) { 9815 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n"); 9816 features &= ~NETIF_F_TSO6; 9817 } 9818 9819 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */ 9820 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO)) 9821 features &= ~NETIF_F_TSO_MANGLEID; 9822 9823 /* TSO ECN requires that TSO is present as well. */ 9824 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) 9825 features &= ~NETIF_F_TSO_ECN; 9826 9827 /* Software GSO depends on SG. */ 9828 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 9829 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 9830 features &= ~NETIF_F_GSO; 9831 } 9832 9833 /* GSO partial features require GSO partial be set */ 9834 if ((features & dev->gso_partial_features) && 9835 !(features & NETIF_F_GSO_PARTIAL)) { 9836 netdev_dbg(dev, 9837 "Dropping partially supported GSO features since no GSO partial.\n"); 9838 features &= ~dev->gso_partial_features; 9839 } 9840 9841 if (!(features & NETIF_F_RXCSUM)) { 9842 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet 9843 * successfully merged by hardware must also have the 9844 * checksum verified by hardware. If the user does not 9845 * want to enable RXCSUM, logically, we should disable GRO_HW. 9846 */ 9847 if (features & NETIF_F_GRO_HW) { 9848 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n"); 9849 features &= ~NETIF_F_GRO_HW; 9850 } 9851 } 9852 9853 /* LRO/HW-GRO features cannot be combined with RX-FCS */ 9854 if (features & NETIF_F_RXFCS) { 9855 if (features & NETIF_F_LRO) { 9856 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n"); 9857 features &= ~NETIF_F_LRO; 9858 } 9859 9860 if (features & NETIF_F_GRO_HW) { 9861 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n"); 9862 features &= ~NETIF_F_GRO_HW; 9863 } 9864 } 9865 9866 if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) { 9867 netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n"); 9868 features &= ~NETIF_F_LRO; 9869 } 9870 9871 if (features & NETIF_F_HW_TLS_TX) { 9872 bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) == 9873 (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM); 9874 bool hw_csum = features & NETIF_F_HW_CSUM; 9875 9876 if (!ip_csum && !hw_csum) { 9877 netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n"); 9878 features &= ~NETIF_F_HW_TLS_TX; 9879 } 9880 } 9881 9882 if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) { 9883 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n"); 9884 features &= ~NETIF_F_HW_TLS_RX; 9885 } 9886 9887 return features; 9888 } 9889 9890 int __netdev_update_features(struct net_device *dev) 9891 { 9892 struct net_device *upper, *lower; 9893 netdev_features_t features; 9894 struct list_head *iter; 9895 int err = -1; 9896 9897 ASSERT_RTNL(); 9898 9899 features = netdev_get_wanted_features(dev); 9900 9901 if (dev->netdev_ops->ndo_fix_features) 9902 features = dev->netdev_ops->ndo_fix_features(dev, features); 9903 9904 /* driver might be less strict about feature dependencies */ 9905 features = netdev_fix_features(dev, features); 9906 9907 /* some features can't be enabled if they're off on an upper device */ 9908 netdev_for_each_upper_dev_rcu(dev, upper, iter) 9909 features = netdev_sync_upper_features(dev, upper, features); 9910 9911 if (dev->features == features) 9912 goto sync_lower; 9913 9914 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n", 9915 &dev->features, &features); 9916 9917 if (dev->netdev_ops->ndo_set_features) 9918 err = dev->netdev_ops->ndo_set_features(dev, features); 9919 else 9920 err = 0; 9921 9922 if (unlikely(err < 0)) { 9923 netdev_err(dev, 9924 "set_features() failed (%d); wanted %pNF, left %pNF\n", 9925 err, &features, &dev->features); 9926 /* return non-0 since some features might have changed and 9927 * it's better to fire a spurious notification than miss it 9928 */ 9929 return -1; 9930 } 9931 9932 sync_lower: 9933 /* some features must be disabled on lower devices when disabled 9934 * on an upper device (think: bonding master or bridge) 9935 */ 9936 netdev_for_each_lower_dev(dev, lower, iter) 9937 netdev_sync_lower_features(dev, lower, features); 9938 9939 if (!err) { 9940 netdev_features_t diff = features ^ dev->features; 9941 9942 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) { 9943 /* udp_tunnel_{get,drop}_rx_info both need 9944 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the 9945 * device, or they won't do anything. 9946 * Thus we need to update dev->features 9947 * *before* calling udp_tunnel_get_rx_info, 9948 * but *after* calling udp_tunnel_drop_rx_info. 9949 */ 9950 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) { 9951 dev->features = features; 9952 udp_tunnel_get_rx_info(dev); 9953 } else { 9954 udp_tunnel_drop_rx_info(dev); 9955 } 9956 } 9957 9958 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) { 9959 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) { 9960 dev->features = features; 9961 err |= vlan_get_rx_ctag_filter_info(dev); 9962 } else { 9963 vlan_drop_rx_ctag_filter_info(dev); 9964 } 9965 } 9966 9967 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) { 9968 if (features & NETIF_F_HW_VLAN_STAG_FILTER) { 9969 dev->features = features; 9970 err |= vlan_get_rx_stag_filter_info(dev); 9971 } else { 9972 vlan_drop_rx_stag_filter_info(dev); 9973 } 9974 } 9975 9976 dev->features = features; 9977 } 9978 9979 return err < 0 ? 0 : 1; 9980 } 9981 9982 /** 9983 * netdev_update_features - recalculate device features 9984 * @dev: the device to check 9985 * 9986 * Recalculate dev->features set and send notifications if it 9987 * has changed. Should be called after driver or hardware dependent 9988 * conditions might have changed that influence the features. 9989 */ 9990 void netdev_update_features(struct net_device *dev) 9991 { 9992 if (__netdev_update_features(dev)) 9993 netdev_features_change(dev); 9994 } 9995 EXPORT_SYMBOL(netdev_update_features); 9996 9997 /** 9998 * netdev_change_features - recalculate device features 9999 * @dev: the device to check 10000 * 10001 * Recalculate dev->features set and send notifications even 10002 * if they have not changed. Should be called instead of 10003 * netdev_update_features() if also dev->vlan_features might 10004 * have changed to allow the changes to be propagated to stacked 10005 * VLAN devices. 10006 */ 10007 void netdev_change_features(struct net_device *dev) 10008 { 10009 __netdev_update_features(dev); 10010 netdev_features_change(dev); 10011 } 10012 EXPORT_SYMBOL(netdev_change_features); 10013 10014 /** 10015 * netif_stacked_transfer_operstate - transfer operstate 10016 * @rootdev: the root or lower level device to transfer state from 10017 * @dev: the device to transfer operstate to 10018 * 10019 * Transfer operational state from root to device. This is normally 10020 * called when a stacking relationship exists between the root 10021 * device and the device(a leaf device). 10022 */ 10023 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 10024 struct net_device *dev) 10025 { 10026 if (rootdev->operstate == IF_OPER_DORMANT) 10027 netif_dormant_on(dev); 10028 else 10029 netif_dormant_off(dev); 10030 10031 if (rootdev->operstate == IF_OPER_TESTING) 10032 netif_testing_on(dev); 10033 else 10034 netif_testing_off(dev); 10035 10036 if (netif_carrier_ok(rootdev)) 10037 netif_carrier_on(dev); 10038 else 10039 netif_carrier_off(dev); 10040 } 10041 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 10042 10043 static int netif_alloc_rx_queues(struct net_device *dev) 10044 { 10045 unsigned int i, count = dev->num_rx_queues; 10046 struct netdev_rx_queue *rx; 10047 size_t sz = count * sizeof(*rx); 10048 int err = 0; 10049 10050 BUG_ON(count < 1); 10051 10052 rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL); 10053 if (!rx) 10054 return -ENOMEM; 10055 10056 dev->_rx = rx; 10057 10058 for (i = 0; i < count; i++) { 10059 rx[i].dev = dev; 10060 10061 /* XDP RX-queue setup */ 10062 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0); 10063 if (err < 0) 10064 goto err_rxq_info; 10065 } 10066 return 0; 10067 10068 err_rxq_info: 10069 /* Rollback successful reg's and free other resources */ 10070 while (i--) 10071 xdp_rxq_info_unreg(&rx[i].xdp_rxq); 10072 kvfree(dev->_rx); 10073 dev->_rx = NULL; 10074 return err; 10075 } 10076 10077 static void netif_free_rx_queues(struct net_device *dev) 10078 { 10079 unsigned int i, count = dev->num_rx_queues; 10080 10081 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */ 10082 if (!dev->_rx) 10083 return; 10084 10085 for (i = 0; i < count; i++) 10086 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq); 10087 10088 kvfree(dev->_rx); 10089 } 10090 10091 static void netdev_init_one_queue(struct net_device *dev, 10092 struct netdev_queue *queue, void *_unused) 10093 { 10094 /* Initialize queue lock */ 10095 spin_lock_init(&queue->_xmit_lock); 10096 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); 10097 queue->xmit_lock_owner = -1; 10098 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 10099 queue->dev = dev; 10100 #ifdef CONFIG_BQL 10101 dql_init(&queue->dql, HZ); 10102 #endif 10103 } 10104 10105 static void netif_free_tx_queues(struct net_device *dev) 10106 { 10107 kvfree(dev->_tx); 10108 } 10109 10110 static int netif_alloc_netdev_queues(struct net_device *dev) 10111 { 10112 unsigned int count = dev->num_tx_queues; 10113 struct netdev_queue *tx; 10114 size_t sz = count * sizeof(*tx); 10115 10116 if (count < 1 || count > 0xffff) 10117 return -EINVAL; 10118 10119 tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL); 10120 if (!tx) 10121 return -ENOMEM; 10122 10123 dev->_tx = tx; 10124 10125 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 10126 spin_lock_init(&dev->tx_global_lock); 10127 10128 return 0; 10129 } 10130 10131 void netif_tx_stop_all_queues(struct net_device *dev) 10132 { 10133 unsigned int i; 10134 10135 for (i = 0; i < dev->num_tx_queues; i++) { 10136 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 10137 10138 netif_tx_stop_queue(txq); 10139 } 10140 } 10141 EXPORT_SYMBOL(netif_tx_stop_all_queues); 10142 10143 static int netdev_do_alloc_pcpu_stats(struct net_device *dev) 10144 { 10145 void __percpu *v; 10146 10147 /* Drivers implementing ndo_get_peer_dev must support tstat 10148 * accounting, so that skb_do_redirect() can bump the dev's 10149 * RX stats upon network namespace switch. 10150 */ 10151 if (dev->netdev_ops->ndo_get_peer_dev && 10152 dev->pcpu_stat_type != NETDEV_PCPU_STAT_TSTATS) 10153 return -EOPNOTSUPP; 10154 10155 switch (dev->pcpu_stat_type) { 10156 case NETDEV_PCPU_STAT_NONE: 10157 return 0; 10158 case NETDEV_PCPU_STAT_LSTATS: 10159 v = dev->lstats = netdev_alloc_pcpu_stats(struct pcpu_lstats); 10160 break; 10161 case NETDEV_PCPU_STAT_TSTATS: 10162 v = dev->tstats = netdev_alloc_pcpu_stats(struct pcpu_sw_netstats); 10163 break; 10164 case NETDEV_PCPU_STAT_DSTATS: 10165 v = dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats); 10166 break; 10167 default: 10168 return -EINVAL; 10169 } 10170 10171 return v ? 0 : -ENOMEM; 10172 } 10173 10174 static void netdev_do_free_pcpu_stats(struct net_device *dev) 10175 { 10176 switch (dev->pcpu_stat_type) { 10177 case NETDEV_PCPU_STAT_NONE: 10178 return; 10179 case NETDEV_PCPU_STAT_LSTATS: 10180 free_percpu(dev->lstats); 10181 break; 10182 case NETDEV_PCPU_STAT_TSTATS: 10183 free_percpu(dev->tstats); 10184 break; 10185 case NETDEV_PCPU_STAT_DSTATS: 10186 free_percpu(dev->dstats); 10187 break; 10188 } 10189 } 10190 10191 /** 10192 * register_netdevice() - register a network device 10193 * @dev: device to register 10194 * 10195 * Take a prepared network device structure and make it externally accessible. 10196 * A %NETDEV_REGISTER message is sent to the netdev notifier chain. 10197 * Callers must hold the rtnl lock - you may want register_netdev() 10198 * instead of this. 10199 */ 10200 int register_netdevice(struct net_device *dev) 10201 { 10202 int ret; 10203 struct net *net = dev_net(dev); 10204 10205 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE < 10206 NETDEV_FEATURE_COUNT); 10207 BUG_ON(dev_boot_phase); 10208 ASSERT_RTNL(); 10209 10210 might_sleep(); 10211 10212 /* When net_device's are persistent, this will be fatal. */ 10213 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 10214 BUG_ON(!net); 10215 10216 ret = ethtool_check_ops(dev->ethtool_ops); 10217 if (ret) 10218 return ret; 10219 10220 spin_lock_init(&dev->addr_list_lock); 10221 netdev_set_addr_lockdep_class(dev); 10222 10223 ret = dev_get_valid_name(net, dev, dev->name); 10224 if (ret < 0) 10225 goto out; 10226 10227 ret = -ENOMEM; 10228 dev->name_node = netdev_name_node_head_alloc(dev); 10229 if (!dev->name_node) 10230 goto out; 10231 10232 /* Init, if this function is available */ 10233 if (dev->netdev_ops->ndo_init) { 10234 ret = dev->netdev_ops->ndo_init(dev); 10235 if (ret) { 10236 if (ret > 0) 10237 ret = -EIO; 10238 goto err_free_name; 10239 } 10240 } 10241 10242 if (((dev->hw_features | dev->features) & 10243 NETIF_F_HW_VLAN_CTAG_FILTER) && 10244 (!dev->netdev_ops->ndo_vlan_rx_add_vid || 10245 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) { 10246 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n"); 10247 ret = -EINVAL; 10248 goto err_uninit; 10249 } 10250 10251 ret = netdev_do_alloc_pcpu_stats(dev); 10252 if (ret) 10253 goto err_uninit; 10254 10255 ret = dev_index_reserve(net, dev->ifindex); 10256 if (ret < 0) 10257 goto err_free_pcpu; 10258 dev->ifindex = ret; 10259 10260 /* Transfer changeable features to wanted_features and enable 10261 * software offloads (GSO and GRO). 10262 */ 10263 dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF); 10264 dev->features |= NETIF_F_SOFT_FEATURES; 10265 10266 if (dev->udp_tunnel_nic_info) { 10267 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT; 10268 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT; 10269 } 10270 10271 dev->wanted_features = dev->features & dev->hw_features; 10272 10273 if (!(dev->flags & IFF_LOOPBACK)) 10274 dev->hw_features |= NETIF_F_NOCACHE_COPY; 10275 10276 /* If IPv4 TCP segmentation offload is supported we should also 10277 * allow the device to enable segmenting the frame with the option 10278 * of ignoring a static IP ID value. This doesn't enable the 10279 * feature itself but allows the user to enable it later. 10280 */ 10281 if (dev->hw_features & NETIF_F_TSO) 10282 dev->hw_features |= NETIF_F_TSO_MANGLEID; 10283 if (dev->vlan_features & NETIF_F_TSO) 10284 dev->vlan_features |= NETIF_F_TSO_MANGLEID; 10285 if (dev->mpls_features & NETIF_F_TSO) 10286 dev->mpls_features |= NETIF_F_TSO_MANGLEID; 10287 if (dev->hw_enc_features & NETIF_F_TSO) 10288 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 10289 10290 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. 10291 */ 10292 dev->vlan_features |= NETIF_F_HIGHDMA; 10293 10294 /* Make NETIF_F_SG inheritable to tunnel devices. 10295 */ 10296 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL; 10297 10298 /* Make NETIF_F_SG inheritable to MPLS. 10299 */ 10300 dev->mpls_features |= NETIF_F_SG; 10301 10302 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 10303 ret = notifier_to_errno(ret); 10304 if (ret) 10305 goto err_ifindex_release; 10306 10307 ret = netdev_register_kobject(dev); 10308 10309 WRITE_ONCE(dev->reg_state, ret ? NETREG_UNREGISTERED : NETREG_REGISTERED); 10310 10311 if (ret) 10312 goto err_uninit_notify; 10313 10314 __netdev_update_features(dev); 10315 10316 /* 10317 * Default initial state at registry is that the 10318 * device is present. 10319 */ 10320 10321 set_bit(__LINK_STATE_PRESENT, &dev->state); 10322 10323 linkwatch_init_dev(dev); 10324 10325 dev_init_scheduler(dev); 10326 10327 netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL); 10328 list_netdevice(dev); 10329 10330 add_device_randomness(dev->dev_addr, dev->addr_len); 10331 10332 /* If the device has permanent device address, driver should 10333 * set dev_addr and also addr_assign_type should be set to 10334 * NET_ADDR_PERM (default value). 10335 */ 10336 if (dev->addr_assign_type == NET_ADDR_PERM) 10337 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); 10338 10339 /* Notify protocols, that a new device appeared. */ 10340 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 10341 ret = notifier_to_errno(ret); 10342 if (ret) { 10343 /* Expect explicit free_netdev() on failure */ 10344 dev->needs_free_netdev = false; 10345 unregister_netdevice_queue(dev, NULL); 10346 goto out; 10347 } 10348 /* 10349 * Prevent userspace races by waiting until the network 10350 * device is fully setup before sending notifications. 10351 */ 10352 if (!dev->rtnl_link_ops || 10353 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 10354 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL); 10355 10356 out: 10357 return ret; 10358 10359 err_uninit_notify: 10360 call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev); 10361 err_ifindex_release: 10362 dev_index_release(net, dev->ifindex); 10363 err_free_pcpu: 10364 netdev_do_free_pcpu_stats(dev); 10365 err_uninit: 10366 if (dev->netdev_ops->ndo_uninit) 10367 dev->netdev_ops->ndo_uninit(dev); 10368 if (dev->priv_destructor) 10369 dev->priv_destructor(dev); 10370 err_free_name: 10371 netdev_name_node_free(dev->name_node); 10372 goto out; 10373 } 10374 EXPORT_SYMBOL(register_netdevice); 10375 10376 /** 10377 * init_dummy_netdev - init a dummy network device for NAPI 10378 * @dev: device to init 10379 * 10380 * This takes a network device structure and initialize the minimum 10381 * amount of fields so it can be used to schedule NAPI polls without 10382 * registering a full blown interface. This is to be used by drivers 10383 * that need to tie several hardware interfaces to a single NAPI 10384 * poll scheduler due to HW limitations. 10385 */ 10386 void init_dummy_netdev(struct net_device *dev) 10387 { 10388 /* Clear everything. Note we don't initialize spinlocks 10389 * are they aren't supposed to be taken by any of the 10390 * NAPI code and this dummy netdev is supposed to be 10391 * only ever used for NAPI polls 10392 */ 10393 memset(dev, 0, sizeof(struct net_device)); 10394 10395 /* make sure we BUG if trying to hit standard 10396 * register/unregister code path 10397 */ 10398 dev->reg_state = NETREG_DUMMY; 10399 10400 /* NAPI wants this */ 10401 INIT_LIST_HEAD(&dev->napi_list); 10402 10403 /* a dummy interface is started by default */ 10404 set_bit(__LINK_STATE_PRESENT, &dev->state); 10405 set_bit(__LINK_STATE_START, &dev->state); 10406 10407 /* napi_busy_loop stats accounting wants this */ 10408 dev_net_set(dev, &init_net); 10409 10410 /* Note : We dont allocate pcpu_refcnt for dummy devices, 10411 * because users of this 'device' dont need to change 10412 * its refcount. 10413 */ 10414 } 10415 EXPORT_SYMBOL_GPL(init_dummy_netdev); 10416 10417 10418 /** 10419 * register_netdev - register a network device 10420 * @dev: device to register 10421 * 10422 * Take a completed network device structure and add it to the kernel 10423 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 10424 * chain. 0 is returned on success. A negative errno code is returned 10425 * on a failure to set up the device, or if the name is a duplicate. 10426 * 10427 * This is a wrapper around register_netdevice that takes the rtnl semaphore 10428 * and expands the device name if you passed a format string to 10429 * alloc_netdev. 10430 */ 10431 int register_netdev(struct net_device *dev) 10432 { 10433 int err; 10434 10435 if (rtnl_lock_killable()) 10436 return -EINTR; 10437 err = register_netdevice(dev); 10438 rtnl_unlock(); 10439 return err; 10440 } 10441 EXPORT_SYMBOL(register_netdev); 10442 10443 int netdev_refcnt_read(const struct net_device *dev) 10444 { 10445 #ifdef CONFIG_PCPU_DEV_REFCNT 10446 int i, refcnt = 0; 10447 10448 for_each_possible_cpu(i) 10449 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 10450 return refcnt; 10451 #else 10452 return refcount_read(&dev->dev_refcnt); 10453 #endif 10454 } 10455 EXPORT_SYMBOL(netdev_refcnt_read); 10456 10457 int netdev_unregister_timeout_secs __read_mostly = 10; 10458 10459 #define WAIT_REFS_MIN_MSECS 1 10460 #define WAIT_REFS_MAX_MSECS 250 10461 /** 10462 * netdev_wait_allrefs_any - wait until all references are gone. 10463 * @list: list of net_devices to wait on 10464 * 10465 * This is called when unregistering network devices. 10466 * 10467 * Any protocol or device that holds a reference should register 10468 * for netdevice notification, and cleanup and put back the 10469 * reference if they receive an UNREGISTER event. 10470 * We can get stuck here if buggy protocols don't correctly 10471 * call dev_put. 10472 */ 10473 static struct net_device *netdev_wait_allrefs_any(struct list_head *list) 10474 { 10475 unsigned long rebroadcast_time, warning_time; 10476 struct net_device *dev; 10477 int wait = 0; 10478 10479 rebroadcast_time = warning_time = jiffies; 10480 10481 list_for_each_entry(dev, list, todo_list) 10482 if (netdev_refcnt_read(dev) == 1) 10483 return dev; 10484 10485 while (true) { 10486 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 10487 rtnl_lock(); 10488 10489 /* Rebroadcast unregister notification */ 10490 list_for_each_entry(dev, list, todo_list) 10491 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 10492 10493 __rtnl_unlock(); 10494 rcu_barrier(); 10495 rtnl_lock(); 10496 10497 list_for_each_entry(dev, list, todo_list) 10498 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 10499 &dev->state)) { 10500 /* We must not have linkwatch events 10501 * pending on unregister. If this 10502 * happens, we simply run the queue 10503 * unscheduled, resulting in a noop 10504 * for this device. 10505 */ 10506 linkwatch_run_queue(); 10507 break; 10508 } 10509 10510 __rtnl_unlock(); 10511 10512 rebroadcast_time = jiffies; 10513 } 10514 10515 if (!wait) { 10516 rcu_barrier(); 10517 wait = WAIT_REFS_MIN_MSECS; 10518 } else { 10519 msleep(wait); 10520 wait = min(wait << 1, WAIT_REFS_MAX_MSECS); 10521 } 10522 10523 list_for_each_entry(dev, list, todo_list) 10524 if (netdev_refcnt_read(dev) == 1) 10525 return dev; 10526 10527 if (time_after(jiffies, warning_time + 10528 READ_ONCE(netdev_unregister_timeout_secs) * HZ)) { 10529 list_for_each_entry(dev, list, todo_list) { 10530 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n", 10531 dev->name, netdev_refcnt_read(dev)); 10532 ref_tracker_dir_print(&dev->refcnt_tracker, 10); 10533 } 10534 10535 warning_time = jiffies; 10536 } 10537 } 10538 } 10539 10540 /* The sequence is: 10541 * 10542 * rtnl_lock(); 10543 * ... 10544 * register_netdevice(x1); 10545 * register_netdevice(x2); 10546 * ... 10547 * unregister_netdevice(y1); 10548 * unregister_netdevice(y2); 10549 * ... 10550 * rtnl_unlock(); 10551 * free_netdev(y1); 10552 * free_netdev(y2); 10553 * 10554 * We are invoked by rtnl_unlock(). 10555 * This allows us to deal with problems: 10556 * 1) We can delete sysfs objects which invoke hotplug 10557 * without deadlocking with linkwatch via keventd. 10558 * 2) Since we run with the RTNL semaphore not held, we can sleep 10559 * safely in order to wait for the netdev refcnt to drop to zero. 10560 * 10561 * We must not return until all unregister events added during 10562 * the interval the lock was held have been completed. 10563 */ 10564 void netdev_run_todo(void) 10565 { 10566 struct net_device *dev, *tmp; 10567 struct list_head list; 10568 int cnt; 10569 #ifdef CONFIG_LOCKDEP 10570 struct list_head unlink_list; 10571 10572 list_replace_init(&net_unlink_list, &unlink_list); 10573 10574 while (!list_empty(&unlink_list)) { 10575 struct net_device *dev = list_first_entry(&unlink_list, 10576 struct net_device, 10577 unlink_list); 10578 list_del_init(&dev->unlink_list); 10579 dev->nested_level = dev->lower_level - 1; 10580 } 10581 #endif 10582 10583 /* Snapshot list, allow later requests */ 10584 list_replace_init(&net_todo_list, &list); 10585 10586 __rtnl_unlock(); 10587 10588 /* Wait for rcu callbacks to finish before next phase */ 10589 if (!list_empty(&list)) 10590 rcu_barrier(); 10591 10592 list_for_each_entry_safe(dev, tmp, &list, todo_list) { 10593 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 10594 netdev_WARN(dev, "run_todo but not unregistering\n"); 10595 list_del(&dev->todo_list); 10596 continue; 10597 } 10598 10599 WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERED); 10600 linkwatch_sync_dev(dev); 10601 } 10602 10603 cnt = 0; 10604 while (!list_empty(&list)) { 10605 dev = netdev_wait_allrefs_any(&list); 10606 list_del(&dev->todo_list); 10607 10608 /* paranoia */ 10609 BUG_ON(netdev_refcnt_read(dev) != 1); 10610 BUG_ON(!list_empty(&dev->ptype_all)); 10611 BUG_ON(!list_empty(&dev->ptype_specific)); 10612 WARN_ON(rcu_access_pointer(dev->ip_ptr)); 10613 WARN_ON(rcu_access_pointer(dev->ip6_ptr)); 10614 10615 netdev_do_free_pcpu_stats(dev); 10616 if (dev->priv_destructor) 10617 dev->priv_destructor(dev); 10618 if (dev->needs_free_netdev) 10619 free_netdev(dev); 10620 10621 cnt++; 10622 10623 /* Free network device */ 10624 kobject_put(&dev->dev.kobj); 10625 } 10626 if (cnt && atomic_sub_and_test(cnt, &dev_unreg_count)) 10627 wake_up(&netdev_unregistering_wq); 10628 } 10629 10630 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has 10631 * all the same fields in the same order as net_device_stats, with only 10632 * the type differing, but rtnl_link_stats64 may have additional fields 10633 * at the end for newer counters. 10634 */ 10635 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 10636 const struct net_device_stats *netdev_stats) 10637 { 10638 size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t); 10639 const atomic_long_t *src = (atomic_long_t *)netdev_stats; 10640 u64 *dst = (u64 *)stats64; 10641 10642 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64)); 10643 for (i = 0; i < n; i++) 10644 dst[i] = (unsigned long)atomic_long_read(&src[i]); 10645 /* zero out counters that only exist in rtnl_link_stats64 */ 10646 memset((char *)stats64 + n * sizeof(u64), 0, 10647 sizeof(*stats64) - n * sizeof(u64)); 10648 } 10649 EXPORT_SYMBOL(netdev_stats_to_stats64); 10650 10651 static __cold struct net_device_core_stats __percpu *netdev_core_stats_alloc( 10652 struct net_device *dev) 10653 { 10654 struct net_device_core_stats __percpu *p; 10655 10656 p = alloc_percpu_gfp(struct net_device_core_stats, 10657 GFP_ATOMIC | __GFP_NOWARN); 10658 10659 if (p && cmpxchg(&dev->core_stats, NULL, p)) 10660 free_percpu(p); 10661 10662 /* This READ_ONCE() pairs with the cmpxchg() above */ 10663 return READ_ONCE(dev->core_stats); 10664 } 10665 10666 noinline void netdev_core_stats_inc(struct net_device *dev, u32 offset) 10667 { 10668 /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */ 10669 struct net_device_core_stats __percpu *p = READ_ONCE(dev->core_stats); 10670 unsigned long __percpu *field; 10671 10672 if (unlikely(!p)) { 10673 p = netdev_core_stats_alloc(dev); 10674 if (!p) 10675 return; 10676 } 10677 10678 field = (__force unsigned long __percpu *)((__force void *)p + offset); 10679 this_cpu_inc(*field); 10680 } 10681 EXPORT_SYMBOL_GPL(netdev_core_stats_inc); 10682 10683 /** 10684 * dev_get_stats - get network device statistics 10685 * @dev: device to get statistics from 10686 * @storage: place to store stats 10687 * 10688 * Get network statistics from device. Return @storage. 10689 * The device driver may provide its own method by setting 10690 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 10691 * otherwise the internal statistics structure is used. 10692 */ 10693 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 10694 struct rtnl_link_stats64 *storage) 10695 { 10696 const struct net_device_ops *ops = dev->netdev_ops; 10697 const struct net_device_core_stats __percpu *p; 10698 10699 if (ops->ndo_get_stats64) { 10700 memset(storage, 0, sizeof(*storage)); 10701 ops->ndo_get_stats64(dev, storage); 10702 } else if (ops->ndo_get_stats) { 10703 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 10704 } else { 10705 netdev_stats_to_stats64(storage, &dev->stats); 10706 } 10707 10708 /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */ 10709 p = READ_ONCE(dev->core_stats); 10710 if (p) { 10711 const struct net_device_core_stats *core_stats; 10712 int i; 10713 10714 for_each_possible_cpu(i) { 10715 core_stats = per_cpu_ptr(p, i); 10716 storage->rx_dropped += READ_ONCE(core_stats->rx_dropped); 10717 storage->tx_dropped += READ_ONCE(core_stats->tx_dropped); 10718 storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler); 10719 storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped); 10720 } 10721 } 10722 return storage; 10723 } 10724 EXPORT_SYMBOL(dev_get_stats); 10725 10726 /** 10727 * dev_fetch_sw_netstats - get per-cpu network device statistics 10728 * @s: place to store stats 10729 * @netstats: per-cpu network stats to read from 10730 * 10731 * Read per-cpu network statistics and populate the related fields in @s. 10732 */ 10733 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s, 10734 const struct pcpu_sw_netstats __percpu *netstats) 10735 { 10736 int cpu; 10737 10738 for_each_possible_cpu(cpu) { 10739 u64 rx_packets, rx_bytes, tx_packets, tx_bytes; 10740 const struct pcpu_sw_netstats *stats; 10741 unsigned int start; 10742 10743 stats = per_cpu_ptr(netstats, cpu); 10744 do { 10745 start = u64_stats_fetch_begin(&stats->syncp); 10746 rx_packets = u64_stats_read(&stats->rx_packets); 10747 rx_bytes = u64_stats_read(&stats->rx_bytes); 10748 tx_packets = u64_stats_read(&stats->tx_packets); 10749 tx_bytes = u64_stats_read(&stats->tx_bytes); 10750 } while (u64_stats_fetch_retry(&stats->syncp, start)); 10751 10752 s->rx_packets += rx_packets; 10753 s->rx_bytes += rx_bytes; 10754 s->tx_packets += tx_packets; 10755 s->tx_bytes += tx_bytes; 10756 } 10757 } 10758 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats); 10759 10760 /** 10761 * dev_get_tstats64 - ndo_get_stats64 implementation 10762 * @dev: device to get statistics from 10763 * @s: place to store stats 10764 * 10765 * Populate @s from dev->stats and dev->tstats. Can be used as 10766 * ndo_get_stats64() callback. 10767 */ 10768 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s) 10769 { 10770 netdev_stats_to_stats64(s, &dev->stats); 10771 dev_fetch_sw_netstats(s, dev->tstats); 10772 } 10773 EXPORT_SYMBOL_GPL(dev_get_tstats64); 10774 10775 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 10776 { 10777 struct netdev_queue *queue = dev_ingress_queue(dev); 10778 10779 #ifdef CONFIG_NET_CLS_ACT 10780 if (queue) 10781 return queue; 10782 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 10783 if (!queue) 10784 return NULL; 10785 netdev_init_one_queue(dev, queue, NULL); 10786 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc); 10787 RCU_INIT_POINTER(queue->qdisc_sleeping, &noop_qdisc); 10788 rcu_assign_pointer(dev->ingress_queue, queue); 10789 #endif 10790 return queue; 10791 } 10792 10793 static const struct ethtool_ops default_ethtool_ops; 10794 10795 void netdev_set_default_ethtool_ops(struct net_device *dev, 10796 const struct ethtool_ops *ops) 10797 { 10798 if (dev->ethtool_ops == &default_ethtool_ops) 10799 dev->ethtool_ops = ops; 10800 } 10801 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops); 10802 10803 /** 10804 * netdev_sw_irq_coalesce_default_on() - enable SW IRQ coalescing by default 10805 * @dev: netdev to enable the IRQ coalescing on 10806 * 10807 * Sets a conservative default for SW IRQ coalescing. Users can use 10808 * sysfs attributes to override the default values. 10809 */ 10810 void netdev_sw_irq_coalesce_default_on(struct net_device *dev) 10811 { 10812 WARN_ON(dev->reg_state == NETREG_REGISTERED); 10813 10814 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) { 10815 dev->gro_flush_timeout = 20000; 10816 dev->napi_defer_hard_irqs = 1; 10817 } 10818 } 10819 EXPORT_SYMBOL_GPL(netdev_sw_irq_coalesce_default_on); 10820 10821 void netdev_freemem(struct net_device *dev) 10822 { 10823 char *addr = (char *)dev - dev->padded; 10824 10825 kvfree(addr); 10826 } 10827 10828 /** 10829 * alloc_netdev_mqs - allocate network device 10830 * @sizeof_priv: size of private data to allocate space for 10831 * @name: device name format string 10832 * @name_assign_type: origin of device name 10833 * @setup: callback to initialize device 10834 * @txqs: the number of TX subqueues to allocate 10835 * @rxqs: the number of RX subqueues to allocate 10836 * 10837 * Allocates a struct net_device with private data area for driver use 10838 * and performs basic initialization. Also allocates subqueue structs 10839 * for each queue on the device. 10840 */ 10841 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 10842 unsigned char name_assign_type, 10843 void (*setup)(struct net_device *), 10844 unsigned int txqs, unsigned int rxqs) 10845 { 10846 struct net_device *dev; 10847 unsigned int alloc_size; 10848 struct net_device *p; 10849 10850 BUG_ON(strlen(name) >= sizeof(dev->name)); 10851 10852 if (txqs < 1) { 10853 pr_err("alloc_netdev: Unable to allocate device with zero queues\n"); 10854 return NULL; 10855 } 10856 10857 if (rxqs < 1) { 10858 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n"); 10859 return NULL; 10860 } 10861 10862 alloc_size = sizeof(struct net_device); 10863 if (sizeof_priv) { 10864 /* ensure 32-byte alignment of private area */ 10865 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); 10866 alloc_size += sizeof_priv; 10867 } 10868 /* ensure 32-byte alignment of whole construct */ 10869 alloc_size += NETDEV_ALIGN - 1; 10870 10871 p = kvzalloc(alloc_size, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL); 10872 if (!p) 10873 return NULL; 10874 10875 dev = PTR_ALIGN(p, NETDEV_ALIGN); 10876 dev->padded = (char *)dev - (char *)p; 10877 10878 ref_tracker_dir_init(&dev->refcnt_tracker, 128, name); 10879 #ifdef CONFIG_PCPU_DEV_REFCNT 10880 dev->pcpu_refcnt = alloc_percpu(int); 10881 if (!dev->pcpu_refcnt) 10882 goto free_dev; 10883 __dev_hold(dev); 10884 #else 10885 refcount_set(&dev->dev_refcnt, 1); 10886 #endif 10887 10888 if (dev_addr_init(dev)) 10889 goto free_pcpu; 10890 10891 dev_mc_init(dev); 10892 dev_uc_init(dev); 10893 10894 dev_net_set(dev, &init_net); 10895 10896 dev->gso_max_size = GSO_LEGACY_MAX_SIZE; 10897 dev->xdp_zc_max_segs = 1; 10898 dev->gso_max_segs = GSO_MAX_SEGS; 10899 dev->gro_max_size = GRO_LEGACY_MAX_SIZE; 10900 dev->gso_ipv4_max_size = GSO_LEGACY_MAX_SIZE; 10901 dev->gro_ipv4_max_size = GRO_LEGACY_MAX_SIZE; 10902 dev->tso_max_size = TSO_LEGACY_MAX_SIZE; 10903 dev->tso_max_segs = TSO_MAX_SEGS; 10904 dev->upper_level = 1; 10905 dev->lower_level = 1; 10906 #ifdef CONFIG_LOCKDEP 10907 dev->nested_level = 0; 10908 INIT_LIST_HEAD(&dev->unlink_list); 10909 #endif 10910 10911 INIT_LIST_HEAD(&dev->napi_list); 10912 INIT_LIST_HEAD(&dev->unreg_list); 10913 INIT_LIST_HEAD(&dev->close_list); 10914 INIT_LIST_HEAD(&dev->link_watch_list); 10915 INIT_LIST_HEAD(&dev->adj_list.upper); 10916 INIT_LIST_HEAD(&dev->adj_list.lower); 10917 INIT_LIST_HEAD(&dev->ptype_all); 10918 INIT_LIST_HEAD(&dev->ptype_specific); 10919 INIT_LIST_HEAD(&dev->net_notifier_list); 10920 #ifdef CONFIG_NET_SCHED 10921 hash_init(dev->qdisc_hash); 10922 #endif 10923 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM; 10924 setup(dev); 10925 10926 if (!dev->tx_queue_len) { 10927 dev->priv_flags |= IFF_NO_QUEUE; 10928 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN; 10929 } 10930 10931 dev->num_tx_queues = txqs; 10932 dev->real_num_tx_queues = txqs; 10933 if (netif_alloc_netdev_queues(dev)) 10934 goto free_all; 10935 10936 dev->num_rx_queues = rxqs; 10937 dev->real_num_rx_queues = rxqs; 10938 if (netif_alloc_rx_queues(dev)) 10939 goto free_all; 10940 10941 strcpy(dev->name, name); 10942 dev->name_assign_type = name_assign_type; 10943 dev->group = INIT_NETDEV_GROUP; 10944 if (!dev->ethtool_ops) 10945 dev->ethtool_ops = &default_ethtool_ops; 10946 10947 nf_hook_netdev_init(dev); 10948 10949 return dev; 10950 10951 free_all: 10952 free_netdev(dev); 10953 return NULL; 10954 10955 free_pcpu: 10956 #ifdef CONFIG_PCPU_DEV_REFCNT 10957 free_percpu(dev->pcpu_refcnt); 10958 free_dev: 10959 #endif 10960 netdev_freemem(dev); 10961 return NULL; 10962 } 10963 EXPORT_SYMBOL(alloc_netdev_mqs); 10964 10965 /** 10966 * free_netdev - free network device 10967 * @dev: device 10968 * 10969 * This function does the last stage of destroying an allocated device 10970 * interface. The reference to the device object is released. If this 10971 * is the last reference then it will be freed.Must be called in process 10972 * context. 10973 */ 10974 void free_netdev(struct net_device *dev) 10975 { 10976 struct napi_struct *p, *n; 10977 10978 might_sleep(); 10979 10980 /* When called immediately after register_netdevice() failed the unwind 10981 * handling may still be dismantling the device. Handle that case by 10982 * deferring the free. 10983 */ 10984 if (dev->reg_state == NETREG_UNREGISTERING) { 10985 ASSERT_RTNL(); 10986 dev->needs_free_netdev = true; 10987 return; 10988 } 10989 10990 netif_free_tx_queues(dev); 10991 netif_free_rx_queues(dev); 10992 10993 kfree(rcu_dereference_protected(dev->ingress_queue, 1)); 10994 10995 /* Flush device addresses */ 10996 dev_addr_flush(dev); 10997 10998 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 10999 netif_napi_del(p); 11000 11001 ref_tracker_dir_exit(&dev->refcnt_tracker); 11002 #ifdef CONFIG_PCPU_DEV_REFCNT 11003 free_percpu(dev->pcpu_refcnt); 11004 dev->pcpu_refcnt = NULL; 11005 #endif 11006 free_percpu(dev->core_stats); 11007 dev->core_stats = NULL; 11008 free_percpu(dev->xdp_bulkq); 11009 dev->xdp_bulkq = NULL; 11010 11011 /* Compatibility with error handling in drivers */ 11012 if (dev->reg_state == NETREG_UNINITIALIZED) { 11013 netdev_freemem(dev); 11014 return; 11015 } 11016 11017 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 11018 WRITE_ONCE(dev->reg_state, NETREG_RELEASED); 11019 11020 /* will free via device release */ 11021 put_device(&dev->dev); 11022 } 11023 EXPORT_SYMBOL(free_netdev); 11024 11025 /** 11026 * synchronize_net - Synchronize with packet receive processing 11027 * 11028 * Wait for packets currently being received to be done. 11029 * Does not block later packets from starting. 11030 */ 11031 void synchronize_net(void) 11032 { 11033 might_sleep(); 11034 if (rtnl_is_locked()) 11035 synchronize_rcu_expedited(); 11036 else 11037 synchronize_rcu(); 11038 } 11039 EXPORT_SYMBOL(synchronize_net); 11040 11041 /** 11042 * unregister_netdevice_queue - remove device from the kernel 11043 * @dev: device 11044 * @head: list 11045 * 11046 * This function shuts down a device interface and removes it 11047 * from the kernel tables. 11048 * If head not NULL, device is queued to be unregistered later. 11049 * 11050 * Callers must hold the rtnl semaphore. You may want 11051 * unregister_netdev() instead of this. 11052 */ 11053 11054 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 11055 { 11056 ASSERT_RTNL(); 11057 11058 if (head) { 11059 list_move_tail(&dev->unreg_list, head); 11060 } else { 11061 LIST_HEAD(single); 11062 11063 list_add(&dev->unreg_list, &single); 11064 unregister_netdevice_many(&single); 11065 } 11066 } 11067 EXPORT_SYMBOL(unregister_netdevice_queue); 11068 11069 void unregister_netdevice_many_notify(struct list_head *head, 11070 u32 portid, const struct nlmsghdr *nlh) 11071 { 11072 struct net_device *dev, *tmp; 11073 LIST_HEAD(close_head); 11074 int cnt = 0; 11075 11076 BUG_ON(dev_boot_phase); 11077 ASSERT_RTNL(); 11078 11079 if (list_empty(head)) 11080 return; 11081 11082 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 11083 /* Some devices call without registering 11084 * for initialization unwind. Remove those 11085 * devices and proceed with the remaining. 11086 */ 11087 if (dev->reg_state == NETREG_UNINITIALIZED) { 11088 pr_debug("unregister_netdevice: device %s/%p never was registered\n", 11089 dev->name, dev); 11090 11091 WARN_ON(1); 11092 list_del(&dev->unreg_list); 11093 continue; 11094 } 11095 dev->dismantle = true; 11096 BUG_ON(dev->reg_state != NETREG_REGISTERED); 11097 } 11098 11099 /* If device is running, close it first. */ 11100 list_for_each_entry(dev, head, unreg_list) 11101 list_add_tail(&dev->close_list, &close_head); 11102 dev_close_many(&close_head, true); 11103 11104 list_for_each_entry(dev, head, unreg_list) { 11105 /* And unlink it from device chain. */ 11106 unlist_netdevice(dev); 11107 WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERING); 11108 } 11109 flush_all_backlogs(); 11110 11111 synchronize_net(); 11112 11113 list_for_each_entry(dev, head, unreg_list) { 11114 struct sk_buff *skb = NULL; 11115 11116 /* Shutdown queueing discipline. */ 11117 dev_shutdown(dev); 11118 dev_tcx_uninstall(dev); 11119 dev_xdp_uninstall(dev); 11120 bpf_dev_bound_netdev_unregister(dev); 11121 11122 netdev_offload_xstats_disable_all(dev); 11123 11124 /* Notify protocols, that we are about to destroy 11125 * this device. They should clean all the things. 11126 */ 11127 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 11128 11129 if (!dev->rtnl_link_ops || 11130 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 11131 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0, 11132 GFP_KERNEL, NULL, 0, 11133 portid, nlh); 11134 11135 /* 11136 * Flush the unicast and multicast chains 11137 */ 11138 dev_uc_flush(dev); 11139 dev_mc_flush(dev); 11140 11141 netdev_name_node_alt_flush(dev); 11142 netdev_name_node_free(dev->name_node); 11143 11144 call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev); 11145 11146 if (dev->netdev_ops->ndo_uninit) 11147 dev->netdev_ops->ndo_uninit(dev); 11148 11149 if (skb) 11150 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL, portid, nlh); 11151 11152 /* Notifier chain MUST detach us all upper devices. */ 11153 WARN_ON(netdev_has_any_upper_dev(dev)); 11154 WARN_ON(netdev_has_any_lower_dev(dev)); 11155 11156 /* Remove entries from kobject tree */ 11157 netdev_unregister_kobject(dev); 11158 #ifdef CONFIG_XPS 11159 /* Remove XPS queueing entries */ 11160 netif_reset_xps_queues_gt(dev, 0); 11161 #endif 11162 } 11163 11164 synchronize_net(); 11165 11166 list_for_each_entry(dev, head, unreg_list) { 11167 netdev_put(dev, &dev->dev_registered_tracker); 11168 net_set_todo(dev); 11169 cnt++; 11170 } 11171 atomic_add(cnt, &dev_unreg_count); 11172 11173 list_del(head); 11174 } 11175 11176 /** 11177 * unregister_netdevice_many - unregister many devices 11178 * @head: list of devices 11179 * 11180 * Note: As most callers use a stack allocated list_head, 11181 * we force a list_del() to make sure stack wont be corrupted later. 11182 */ 11183 void unregister_netdevice_many(struct list_head *head) 11184 { 11185 unregister_netdevice_many_notify(head, 0, NULL); 11186 } 11187 EXPORT_SYMBOL(unregister_netdevice_many); 11188 11189 /** 11190 * unregister_netdev - remove device from the kernel 11191 * @dev: device 11192 * 11193 * This function shuts down a device interface and removes it 11194 * from the kernel tables. 11195 * 11196 * This is just a wrapper for unregister_netdevice that takes 11197 * the rtnl semaphore. In general you want to use this and not 11198 * unregister_netdevice. 11199 */ 11200 void unregister_netdev(struct net_device *dev) 11201 { 11202 rtnl_lock(); 11203 unregister_netdevice(dev); 11204 rtnl_unlock(); 11205 } 11206 EXPORT_SYMBOL(unregister_netdev); 11207 11208 /** 11209 * __dev_change_net_namespace - move device to different nethost namespace 11210 * @dev: device 11211 * @net: network namespace 11212 * @pat: If not NULL name pattern to try if the current device name 11213 * is already taken in the destination network namespace. 11214 * @new_ifindex: If not zero, specifies device index in the target 11215 * namespace. 11216 * 11217 * This function shuts down a device interface and moves it 11218 * to a new network namespace. On success 0 is returned, on 11219 * a failure a netagive errno code is returned. 11220 * 11221 * Callers must hold the rtnl semaphore. 11222 */ 11223 11224 int __dev_change_net_namespace(struct net_device *dev, struct net *net, 11225 const char *pat, int new_ifindex) 11226 { 11227 struct netdev_name_node *name_node; 11228 struct net *net_old = dev_net(dev); 11229 char new_name[IFNAMSIZ] = {}; 11230 int err, new_nsid; 11231 11232 ASSERT_RTNL(); 11233 11234 /* Don't allow namespace local devices to be moved. */ 11235 err = -EINVAL; 11236 if (dev->features & NETIF_F_NETNS_LOCAL) 11237 goto out; 11238 11239 /* Ensure the device has been registrered */ 11240 if (dev->reg_state != NETREG_REGISTERED) 11241 goto out; 11242 11243 /* Get out if there is nothing todo */ 11244 err = 0; 11245 if (net_eq(net_old, net)) 11246 goto out; 11247 11248 /* Pick the destination device name, and ensure 11249 * we can use it in the destination network namespace. 11250 */ 11251 err = -EEXIST; 11252 if (netdev_name_in_use(net, dev->name)) { 11253 /* We get here if we can't use the current device name */ 11254 if (!pat) 11255 goto out; 11256 err = dev_prep_valid_name(net, dev, pat, new_name, EEXIST); 11257 if (err < 0) 11258 goto out; 11259 } 11260 /* Check that none of the altnames conflicts. */ 11261 err = -EEXIST; 11262 netdev_for_each_altname(dev, name_node) 11263 if (netdev_name_in_use(net, name_node->name)) 11264 goto out; 11265 11266 /* Check that new_ifindex isn't used yet. */ 11267 if (new_ifindex) { 11268 err = dev_index_reserve(net, new_ifindex); 11269 if (err < 0) 11270 goto out; 11271 } else { 11272 /* If there is an ifindex conflict assign a new one */ 11273 err = dev_index_reserve(net, dev->ifindex); 11274 if (err == -EBUSY) 11275 err = dev_index_reserve(net, 0); 11276 if (err < 0) 11277 goto out; 11278 new_ifindex = err; 11279 } 11280 11281 /* 11282 * And now a mini version of register_netdevice unregister_netdevice. 11283 */ 11284 11285 /* If device is running close it first. */ 11286 dev_close(dev); 11287 11288 /* And unlink it from device chain */ 11289 unlist_netdevice(dev); 11290 11291 synchronize_net(); 11292 11293 /* Shutdown queueing discipline. */ 11294 dev_shutdown(dev); 11295 11296 /* Notify protocols, that we are about to destroy 11297 * this device. They should clean all the things. 11298 * 11299 * Note that dev->reg_state stays at NETREG_REGISTERED. 11300 * This is wanted because this way 8021q and macvlan know 11301 * the device is just moving and can keep their slaves up. 11302 */ 11303 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 11304 rcu_barrier(); 11305 11306 new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL); 11307 11308 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid, 11309 new_ifindex); 11310 11311 /* 11312 * Flush the unicast and multicast chains 11313 */ 11314 dev_uc_flush(dev); 11315 dev_mc_flush(dev); 11316 11317 /* Send a netdev-removed uevent to the old namespace */ 11318 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE); 11319 netdev_adjacent_del_links(dev); 11320 11321 /* Move per-net netdevice notifiers that are following the netdevice */ 11322 move_netdevice_notifiers_dev_net(dev, net); 11323 11324 /* Actually switch the network namespace */ 11325 dev_net_set(dev, net); 11326 dev->ifindex = new_ifindex; 11327 11328 if (new_name[0]) /* Rename the netdev to prepared name */ 11329 strscpy(dev->name, new_name, IFNAMSIZ); 11330 11331 /* Fixup kobjects */ 11332 dev_set_uevent_suppress(&dev->dev, 1); 11333 err = device_rename(&dev->dev, dev->name); 11334 dev_set_uevent_suppress(&dev->dev, 0); 11335 WARN_ON(err); 11336 11337 /* Send a netdev-add uevent to the new namespace */ 11338 kobject_uevent(&dev->dev.kobj, KOBJ_ADD); 11339 netdev_adjacent_add_links(dev); 11340 11341 /* Adapt owner in case owning user namespace of target network 11342 * namespace is different from the original one. 11343 */ 11344 err = netdev_change_owner(dev, net_old, net); 11345 WARN_ON(err); 11346 11347 /* Add the device back in the hashes */ 11348 list_netdevice(dev); 11349 11350 /* Notify protocols, that a new device appeared. */ 11351 call_netdevice_notifiers(NETDEV_REGISTER, dev); 11352 11353 /* 11354 * Prevent userspace races by waiting until the network 11355 * device is fully setup before sending notifications. 11356 */ 11357 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL); 11358 11359 synchronize_net(); 11360 err = 0; 11361 out: 11362 return err; 11363 } 11364 EXPORT_SYMBOL_GPL(__dev_change_net_namespace); 11365 11366 static int dev_cpu_dead(unsigned int oldcpu) 11367 { 11368 struct sk_buff **list_skb; 11369 struct sk_buff *skb; 11370 unsigned int cpu; 11371 struct softnet_data *sd, *oldsd, *remsd = NULL; 11372 11373 local_irq_disable(); 11374 cpu = smp_processor_id(); 11375 sd = &per_cpu(softnet_data, cpu); 11376 oldsd = &per_cpu(softnet_data, oldcpu); 11377 11378 /* Find end of our completion_queue. */ 11379 list_skb = &sd->completion_queue; 11380 while (*list_skb) 11381 list_skb = &(*list_skb)->next; 11382 /* Append completion queue from offline CPU. */ 11383 *list_skb = oldsd->completion_queue; 11384 oldsd->completion_queue = NULL; 11385 11386 /* Append output queue from offline CPU. */ 11387 if (oldsd->output_queue) { 11388 *sd->output_queue_tailp = oldsd->output_queue; 11389 sd->output_queue_tailp = oldsd->output_queue_tailp; 11390 oldsd->output_queue = NULL; 11391 oldsd->output_queue_tailp = &oldsd->output_queue; 11392 } 11393 /* Append NAPI poll list from offline CPU, with one exception : 11394 * process_backlog() must be called by cpu owning percpu backlog. 11395 * We properly handle process_queue & input_pkt_queue later. 11396 */ 11397 while (!list_empty(&oldsd->poll_list)) { 11398 struct napi_struct *napi = list_first_entry(&oldsd->poll_list, 11399 struct napi_struct, 11400 poll_list); 11401 11402 list_del_init(&napi->poll_list); 11403 if (napi->poll == process_backlog) 11404 napi->state = 0; 11405 else 11406 ____napi_schedule(sd, napi); 11407 } 11408 11409 raise_softirq_irqoff(NET_TX_SOFTIRQ); 11410 local_irq_enable(); 11411 11412 #ifdef CONFIG_RPS 11413 remsd = oldsd->rps_ipi_list; 11414 oldsd->rps_ipi_list = NULL; 11415 #endif 11416 /* send out pending IPI's on offline CPU */ 11417 net_rps_send_ipi(remsd); 11418 11419 /* Process offline CPU's input_pkt_queue */ 11420 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 11421 netif_rx(skb); 11422 input_queue_head_incr(oldsd); 11423 } 11424 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) { 11425 netif_rx(skb); 11426 input_queue_head_incr(oldsd); 11427 } 11428 11429 return 0; 11430 } 11431 11432 /** 11433 * netdev_increment_features - increment feature set by one 11434 * @all: current feature set 11435 * @one: new feature set 11436 * @mask: mask feature set 11437 * 11438 * Computes a new feature set after adding a device with feature set 11439 * @one to the master device with current feature set @all. Will not 11440 * enable anything that is off in @mask. Returns the new feature set. 11441 */ 11442 netdev_features_t netdev_increment_features(netdev_features_t all, 11443 netdev_features_t one, netdev_features_t mask) 11444 { 11445 if (mask & NETIF_F_HW_CSUM) 11446 mask |= NETIF_F_CSUM_MASK; 11447 mask |= NETIF_F_VLAN_CHALLENGED; 11448 11449 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask; 11450 all &= one | ~NETIF_F_ALL_FOR_ALL; 11451 11452 /* If one device supports hw checksumming, set for all. */ 11453 if (all & NETIF_F_HW_CSUM) 11454 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM); 11455 11456 return all; 11457 } 11458 EXPORT_SYMBOL(netdev_increment_features); 11459 11460 static struct hlist_head * __net_init netdev_create_hash(void) 11461 { 11462 int i; 11463 struct hlist_head *hash; 11464 11465 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL); 11466 if (hash != NULL) 11467 for (i = 0; i < NETDEV_HASHENTRIES; i++) 11468 INIT_HLIST_HEAD(&hash[i]); 11469 11470 return hash; 11471 } 11472 11473 /* Initialize per network namespace state */ 11474 static int __net_init netdev_init(struct net *net) 11475 { 11476 BUILD_BUG_ON(GRO_HASH_BUCKETS > 11477 8 * sizeof_field(struct napi_struct, gro_bitmask)); 11478 11479 INIT_LIST_HEAD(&net->dev_base_head); 11480 11481 net->dev_name_head = netdev_create_hash(); 11482 if (net->dev_name_head == NULL) 11483 goto err_name; 11484 11485 net->dev_index_head = netdev_create_hash(); 11486 if (net->dev_index_head == NULL) 11487 goto err_idx; 11488 11489 xa_init_flags(&net->dev_by_index, XA_FLAGS_ALLOC1); 11490 11491 RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain); 11492 11493 return 0; 11494 11495 err_idx: 11496 kfree(net->dev_name_head); 11497 err_name: 11498 return -ENOMEM; 11499 } 11500 11501 /** 11502 * netdev_drivername - network driver for the device 11503 * @dev: network device 11504 * 11505 * Determine network driver for device. 11506 */ 11507 const char *netdev_drivername(const struct net_device *dev) 11508 { 11509 const struct device_driver *driver; 11510 const struct device *parent; 11511 const char *empty = ""; 11512 11513 parent = dev->dev.parent; 11514 if (!parent) 11515 return empty; 11516 11517 driver = parent->driver; 11518 if (driver && driver->name) 11519 return driver->name; 11520 return empty; 11521 } 11522 11523 static void __netdev_printk(const char *level, const struct net_device *dev, 11524 struct va_format *vaf) 11525 { 11526 if (dev && dev->dev.parent) { 11527 dev_printk_emit(level[1] - '0', 11528 dev->dev.parent, 11529 "%s %s %s%s: %pV", 11530 dev_driver_string(dev->dev.parent), 11531 dev_name(dev->dev.parent), 11532 netdev_name(dev), netdev_reg_state(dev), 11533 vaf); 11534 } else if (dev) { 11535 printk("%s%s%s: %pV", 11536 level, netdev_name(dev), netdev_reg_state(dev), vaf); 11537 } else { 11538 printk("%s(NULL net_device): %pV", level, vaf); 11539 } 11540 } 11541 11542 void netdev_printk(const char *level, const struct net_device *dev, 11543 const char *format, ...) 11544 { 11545 struct va_format vaf; 11546 va_list args; 11547 11548 va_start(args, format); 11549 11550 vaf.fmt = format; 11551 vaf.va = &args; 11552 11553 __netdev_printk(level, dev, &vaf); 11554 11555 va_end(args); 11556 } 11557 EXPORT_SYMBOL(netdev_printk); 11558 11559 #define define_netdev_printk_level(func, level) \ 11560 void func(const struct net_device *dev, const char *fmt, ...) \ 11561 { \ 11562 struct va_format vaf; \ 11563 va_list args; \ 11564 \ 11565 va_start(args, fmt); \ 11566 \ 11567 vaf.fmt = fmt; \ 11568 vaf.va = &args; \ 11569 \ 11570 __netdev_printk(level, dev, &vaf); \ 11571 \ 11572 va_end(args); \ 11573 } \ 11574 EXPORT_SYMBOL(func); 11575 11576 define_netdev_printk_level(netdev_emerg, KERN_EMERG); 11577 define_netdev_printk_level(netdev_alert, KERN_ALERT); 11578 define_netdev_printk_level(netdev_crit, KERN_CRIT); 11579 define_netdev_printk_level(netdev_err, KERN_ERR); 11580 define_netdev_printk_level(netdev_warn, KERN_WARNING); 11581 define_netdev_printk_level(netdev_notice, KERN_NOTICE); 11582 define_netdev_printk_level(netdev_info, KERN_INFO); 11583 11584 static void __net_exit netdev_exit(struct net *net) 11585 { 11586 kfree(net->dev_name_head); 11587 kfree(net->dev_index_head); 11588 xa_destroy(&net->dev_by_index); 11589 if (net != &init_net) 11590 WARN_ON_ONCE(!list_empty(&net->dev_base_head)); 11591 } 11592 11593 static struct pernet_operations __net_initdata netdev_net_ops = { 11594 .init = netdev_init, 11595 .exit = netdev_exit, 11596 }; 11597 11598 static void __net_exit default_device_exit_net(struct net *net) 11599 { 11600 struct netdev_name_node *name_node, *tmp; 11601 struct net_device *dev, *aux; 11602 /* 11603 * Push all migratable network devices back to the 11604 * initial network namespace 11605 */ 11606 ASSERT_RTNL(); 11607 for_each_netdev_safe(net, dev, aux) { 11608 int err; 11609 char fb_name[IFNAMSIZ]; 11610 11611 /* Ignore unmoveable devices (i.e. loopback) */ 11612 if (dev->features & NETIF_F_NETNS_LOCAL) 11613 continue; 11614 11615 /* Leave virtual devices for the generic cleanup */ 11616 if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund) 11617 continue; 11618 11619 /* Push remaining network devices to init_net */ 11620 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 11621 if (netdev_name_in_use(&init_net, fb_name)) 11622 snprintf(fb_name, IFNAMSIZ, "dev%%d"); 11623 11624 netdev_for_each_altname_safe(dev, name_node, tmp) 11625 if (netdev_name_in_use(&init_net, name_node->name)) 11626 __netdev_name_node_alt_destroy(name_node); 11627 11628 err = dev_change_net_namespace(dev, &init_net, fb_name); 11629 if (err) { 11630 pr_emerg("%s: failed to move %s to init_net: %d\n", 11631 __func__, dev->name, err); 11632 BUG(); 11633 } 11634 } 11635 } 11636 11637 static void __net_exit default_device_exit_batch(struct list_head *net_list) 11638 { 11639 /* At exit all network devices most be removed from a network 11640 * namespace. Do this in the reverse order of registration. 11641 * Do this across as many network namespaces as possible to 11642 * improve batching efficiency. 11643 */ 11644 struct net_device *dev; 11645 struct net *net; 11646 LIST_HEAD(dev_kill_list); 11647 11648 rtnl_lock(); 11649 list_for_each_entry(net, net_list, exit_list) { 11650 default_device_exit_net(net); 11651 cond_resched(); 11652 } 11653 11654 list_for_each_entry(net, net_list, exit_list) { 11655 for_each_netdev_reverse(net, dev) { 11656 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) 11657 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 11658 else 11659 unregister_netdevice_queue(dev, &dev_kill_list); 11660 } 11661 } 11662 unregister_netdevice_many(&dev_kill_list); 11663 rtnl_unlock(); 11664 } 11665 11666 static struct pernet_operations __net_initdata default_device_ops = { 11667 .exit_batch = default_device_exit_batch, 11668 }; 11669 11670 static void __init net_dev_struct_check(void) 11671 { 11672 /* TX read-mostly hotpath */ 11673 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, priv_flags); 11674 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, netdev_ops); 11675 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, header_ops); 11676 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, _tx); 11677 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, real_num_tx_queues); 11678 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_size); 11679 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_ipv4_max_size); 11680 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_segs); 11681 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_partial_features); 11682 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, num_tc); 11683 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, mtu); 11684 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, needed_headroom); 11685 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tc_to_txq); 11686 #ifdef CONFIG_XPS 11687 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, xps_maps); 11688 #endif 11689 #ifdef CONFIG_NETFILTER_EGRESS 11690 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, nf_hooks_egress); 11691 #endif 11692 #ifdef CONFIG_NET_XGRESS 11693 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tcx_egress); 11694 #endif 11695 CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_tx, 160); 11696 11697 /* TXRX read-mostly hotpath */ 11698 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, lstats); 11699 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, flags); 11700 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, hard_header_len); 11701 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, features); 11702 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, ip6_ptr); 11703 CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_txrx, 38); 11704 11705 /* RX read-mostly hotpath */ 11706 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ptype_specific); 11707 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ifindex); 11708 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, real_num_rx_queues); 11709 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, _rx); 11710 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_flush_timeout); 11711 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, napi_defer_hard_irqs); 11712 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_max_size); 11713 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_ipv4_max_size); 11714 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler); 11715 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler_data); 11716 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, nd_net); 11717 #ifdef CONFIG_NETPOLL 11718 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, npinfo); 11719 #endif 11720 #ifdef CONFIG_NET_XGRESS 11721 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, tcx_ingress); 11722 #endif 11723 CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_rx, 104); 11724 } 11725 11726 /* 11727 * Initialize the DEV module. At boot time this walks the device list and 11728 * unhooks any devices that fail to initialise (normally hardware not 11729 * present) and leaves us with a valid list of present and active devices. 11730 * 11731 */ 11732 11733 /* We allocate 256 pages for each CPU if PAGE_SHIFT is 12 */ 11734 #define SYSTEM_PERCPU_PAGE_POOL_SIZE ((1 << 20) / PAGE_SIZE) 11735 11736 static int net_page_pool_create(int cpuid) 11737 { 11738 #if IS_ENABLED(CONFIG_PAGE_POOL) 11739 struct page_pool_params page_pool_params = { 11740 .pool_size = SYSTEM_PERCPU_PAGE_POOL_SIZE, 11741 .flags = PP_FLAG_SYSTEM_POOL, 11742 .nid = NUMA_NO_NODE, 11743 }; 11744 struct page_pool *pp_ptr; 11745 11746 pp_ptr = page_pool_create_percpu(&page_pool_params, cpuid); 11747 if (IS_ERR(pp_ptr)) 11748 return -ENOMEM; 11749 11750 per_cpu(system_page_pool, cpuid) = pp_ptr; 11751 #endif 11752 return 0; 11753 } 11754 11755 /* 11756 * This is called single threaded during boot, so no need 11757 * to take the rtnl semaphore. 11758 */ 11759 static int __init net_dev_init(void) 11760 { 11761 int i, rc = -ENOMEM; 11762 11763 BUG_ON(!dev_boot_phase); 11764 11765 net_dev_struct_check(); 11766 11767 if (dev_proc_init()) 11768 goto out; 11769 11770 if (netdev_kobject_init()) 11771 goto out; 11772 11773 INIT_LIST_HEAD(&ptype_all); 11774 for (i = 0; i < PTYPE_HASH_SIZE; i++) 11775 INIT_LIST_HEAD(&ptype_base[i]); 11776 11777 if (register_pernet_subsys(&netdev_net_ops)) 11778 goto out; 11779 11780 /* 11781 * Initialise the packet receive queues. 11782 */ 11783 11784 for_each_possible_cpu(i) { 11785 struct work_struct *flush = per_cpu_ptr(&flush_works, i); 11786 struct softnet_data *sd = &per_cpu(softnet_data, i); 11787 11788 INIT_WORK(flush, flush_backlog); 11789 11790 skb_queue_head_init(&sd->input_pkt_queue); 11791 skb_queue_head_init(&sd->process_queue); 11792 #ifdef CONFIG_XFRM_OFFLOAD 11793 skb_queue_head_init(&sd->xfrm_backlog); 11794 #endif 11795 INIT_LIST_HEAD(&sd->poll_list); 11796 sd->output_queue_tailp = &sd->output_queue; 11797 #ifdef CONFIG_RPS 11798 INIT_CSD(&sd->csd, rps_trigger_softirq, sd); 11799 sd->cpu = i; 11800 #endif 11801 INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd); 11802 spin_lock_init(&sd->defer_lock); 11803 11804 init_gro_hash(&sd->backlog); 11805 sd->backlog.poll = process_backlog; 11806 sd->backlog.weight = weight_p; 11807 11808 if (net_page_pool_create(i)) 11809 goto out; 11810 } 11811 11812 dev_boot_phase = 0; 11813 11814 /* The loopback device is special if any other network devices 11815 * is present in a network namespace the loopback device must 11816 * be present. Since we now dynamically allocate and free the 11817 * loopback device ensure this invariant is maintained by 11818 * keeping the loopback device as the first device on the 11819 * list of network devices. Ensuring the loopback devices 11820 * is the first device that appears and the last network device 11821 * that disappears. 11822 */ 11823 if (register_pernet_device(&loopback_net_ops)) 11824 goto out; 11825 11826 if (register_pernet_device(&default_device_ops)) 11827 goto out; 11828 11829 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 11830 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 11831 11832 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead", 11833 NULL, dev_cpu_dead); 11834 WARN_ON(rc < 0); 11835 rc = 0; 11836 out: 11837 if (rc < 0) { 11838 for_each_possible_cpu(i) { 11839 struct page_pool *pp_ptr; 11840 11841 pp_ptr = per_cpu(system_page_pool, i); 11842 if (!pp_ptr) 11843 continue; 11844 11845 page_pool_destroy(pp_ptr); 11846 per_cpu(system_page_pool, i) = NULL; 11847 } 11848 } 11849 11850 return rc; 11851 } 11852 11853 subsys_initcall(net_dev_init); 11854