1 /* 2 * NET3 Protocol independent device support routines. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Derived from the non IP parts of dev.c 1.0.19 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * 14 * Additional Authors: 15 * Florian la Roche <rzsfl@rz.uni-sb.de> 16 * Alan Cox <gw4pts@gw4pts.ampr.org> 17 * David Hinds <dahinds@users.sourceforge.net> 18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 19 * Adam Sulmicki <adam@cfar.umd.edu> 20 * Pekka Riikonen <priikone@poesidon.pspt.fi> 21 * 22 * Changes: 23 * D.J. Barrow : Fixed bug where dev->refcnt gets set 24 * to 2 if register_netdev gets called 25 * before net_dev_init & also removed a 26 * few lines of code in the process. 27 * Alan Cox : device private ioctl copies fields back. 28 * Alan Cox : Transmit queue code does relevant 29 * stunts to keep the queue safe. 30 * Alan Cox : Fixed double lock. 31 * Alan Cox : Fixed promisc NULL pointer trap 32 * ???????? : Support the full private ioctl range 33 * Alan Cox : Moved ioctl permission check into 34 * drivers 35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 36 * Alan Cox : 100 backlog just doesn't cut it when 37 * you start doing multicast video 8) 38 * Alan Cox : Rewrote net_bh and list manager. 39 * Alan Cox : Fix ETH_P_ALL echoback lengths. 40 * Alan Cox : Took out transmit every packet pass 41 * Saved a few bytes in the ioctl handler 42 * Alan Cox : Network driver sets packet type before 43 * calling netif_rx. Saves a function 44 * call a packet. 45 * Alan Cox : Hashed net_bh() 46 * Richard Kooijman: Timestamp fixes. 47 * Alan Cox : Wrong field in SIOCGIFDSTADDR 48 * Alan Cox : Device lock protection. 49 * Alan Cox : Fixed nasty side effect of device close 50 * changes. 51 * Rudi Cilibrasi : Pass the right thing to 52 * set_mac_address() 53 * Dave Miller : 32bit quantity for the device lock to 54 * make it work out on a Sparc. 55 * Bjorn Ekwall : Added KERNELD hack. 56 * Alan Cox : Cleaned up the backlog initialise. 57 * Craig Metz : SIOCGIFCONF fix if space for under 58 * 1 device. 59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 60 * is no device open function. 61 * Andi Kleen : Fix error reporting for SIOCGIFCONF 62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 63 * Cyrus Durgin : Cleaned for KMOD 64 * Adam Sulmicki : Bug Fix : Network Device Unload 65 * A network device unload needs to purge 66 * the backlog queue. 67 * Paul Rusty Russell : SIOCSIFNAME 68 * Pekka Riikonen : Netdev boot-time settings code 69 * Andrew Morton : Make unregister_netdevice wait 70 * indefinitely on dev->refcnt 71 * J Hadi Salim : - Backlog queue sampling 72 * - netif_rx() feedback 73 */ 74 75 #include <asm/uaccess.h> 76 #include <linux/bitops.h> 77 #include <linux/capability.h> 78 #include <linux/cpu.h> 79 #include <linux/types.h> 80 #include <linux/kernel.h> 81 #include <linux/hash.h> 82 #include <linux/slab.h> 83 #include <linux/sched.h> 84 #include <linux/mutex.h> 85 #include <linux/string.h> 86 #include <linux/mm.h> 87 #include <linux/socket.h> 88 #include <linux/sockios.h> 89 #include <linux/errno.h> 90 #include <linux/interrupt.h> 91 #include <linux/if_ether.h> 92 #include <linux/netdevice.h> 93 #include <linux/etherdevice.h> 94 #include <linux/ethtool.h> 95 #include <linux/notifier.h> 96 #include <linux/skbuff.h> 97 #include <net/net_namespace.h> 98 #include <net/sock.h> 99 #include <linux/rtnetlink.h> 100 #include <linux/proc_fs.h> 101 #include <linux/seq_file.h> 102 #include <linux/stat.h> 103 #include <net/dst.h> 104 #include <net/pkt_sched.h> 105 #include <net/checksum.h> 106 #include <net/xfrm.h> 107 #include <linux/highmem.h> 108 #include <linux/init.h> 109 #include <linux/kmod.h> 110 #include <linux/module.h> 111 #include <linux/netpoll.h> 112 #include <linux/rcupdate.h> 113 #include <linux/delay.h> 114 #include <net/wext.h> 115 #include <net/iw_handler.h> 116 #include <asm/current.h> 117 #include <linux/audit.h> 118 #include <linux/dmaengine.h> 119 #include <linux/err.h> 120 #include <linux/ctype.h> 121 #include <linux/if_arp.h> 122 #include <linux/if_vlan.h> 123 #include <linux/ip.h> 124 #include <net/ip.h> 125 #include <linux/ipv6.h> 126 #include <linux/in.h> 127 #include <linux/jhash.h> 128 #include <linux/random.h> 129 #include <trace/events/napi.h> 130 #include <trace/events/net.h> 131 #include <trace/events/skb.h> 132 #include <linux/pci.h> 133 #include <linux/inetdevice.h> 134 #include <linux/cpu_rmap.h> 135 #include <linux/net_tstamp.h> 136 #include <linux/static_key.h> 137 #include <net/flow_keys.h> 138 139 #include "net-sysfs.h" 140 141 /* Instead of increasing this, you should create a hash table. */ 142 #define MAX_GRO_SKBS 8 143 144 /* This should be increased if a protocol with a bigger head is added. */ 145 #define GRO_MAX_HEAD (MAX_HEADER + 128) 146 147 /* 148 * The list of packet types we will receive (as opposed to discard) 149 * and the routines to invoke. 150 * 151 * Why 16. Because with 16 the only overlap we get on a hash of the 152 * low nibble of the protocol value is RARP/SNAP/X.25. 153 * 154 * NOTE: That is no longer true with the addition of VLAN tags. Not 155 * sure which should go first, but I bet it won't make much 156 * difference if we are running VLANs. The good news is that 157 * this protocol won't be in the list unless compiled in, so 158 * the average user (w/out VLANs) will not be adversely affected. 159 * --BLG 160 * 161 * 0800 IP 162 * 8100 802.1Q VLAN 163 * 0001 802.3 164 * 0002 AX.25 165 * 0004 802.2 166 * 8035 RARP 167 * 0005 SNAP 168 * 0805 X.25 169 * 0806 ARP 170 * 8137 IPX 171 * 0009 Localtalk 172 * 86DD IPv6 173 */ 174 175 #define PTYPE_HASH_SIZE (16) 176 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1) 177 178 static DEFINE_SPINLOCK(ptype_lock); 179 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 180 static struct list_head ptype_all __read_mostly; /* Taps */ 181 182 /* 183 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 184 * semaphore. 185 * 186 * Pure readers hold dev_base_lock for reading, or rcu_read_lock() 187 * 188 * Writers must hold the rtnl semaphore while they loop through the 189 * dev_base_head list, and hold dev_base_lock for writing when they do the 190 * actual updates. This allows pure readers to access the list even 191 * while a writer is preparing to update it. 192 * 193 * To put it another way, dev_base_lock is held for writing only to 194 * protect against pure readers; the rtnl semaphore provides the 195 * protection against other writers. 196 * 197 * See, for example usages, register_netdevice() and 198 * unregister_netdevice(), which must be called with the rtnl 199 * semaphore held. 200 */ 201 DEFINE_RWLOCK(dev_base_lock); 202 EXPORT_SYMBOL(dev_base_lock); 203 204 static inline void dev_base_seq_inc(struct net *net) 205 { 206 while (++net->dev_base_seq == 0); 207 } 208 209 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 210 { 211 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ)); 212 213 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 214 } 215 216 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 217 { 218 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 219 } 220 221 static inline void rps_lock(struct softnet_data *sd) 222 { 223 #ifdef CONFIG_RPS 224 spin_lock(&sd->input_pkt_queue.lock); 225 #endif 226 } 227 228 static inline void rps_unlock(struct softnet_data *sd) 229 { 230 #ifdef CONFIG_RPS 231 spin_unlock(&sd->input_pkt_queue.lock); 232 #endif 233 } 234 235 /* Device list insertion */ 236 static int list_netdevice(struct net_device *dev) 237 { 238 struct net *net = dev_net(dev); 239 240 ASSERT_RTNL(); 241 242 write_lock_bh(&dev_base_lock); 243 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 244 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 245 hlist_add_head_rcu(&dev->index_hlist, 246 dev_index_hash(net, dev->ifindex)); 247 write_unlock_bh(&dev_base_lock); 248 249 dev_base_seq_inc(net); 250 251 return 0; 252 } 253 254 /* Device list removal 255 * caller must respect a RCU grace period before freeing/reusing dev 256 */ 257 static void unlist_netdevice(struct net_device *dev) 258 { 259 ASSERT_RTNL(); 260 261 /* Unlink dev from the device chain */ 262 write_lock_bh(&dev_base_lock); 263 list_del_rcu(&dev->dev_list); 264 hlist_del_rcu(&dev->name_hlist); 265 hlist_del_rcu(&dev->index_hlist); 266 write_unlock_bh(&dev_base_lock); 267 268 dev_base_seq_inc(dev_net(dev)); 269 } 270 271 /* 272 * Our notifier list 273 */ 274 275 static RAW_NOTIFIER_HEAD(netdev_chain); 276 277 /* 278 * Device drivers call our routines to queue packets here. We empty the 279 * queue in the local softnet handler. 280 */ 281 282 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 283 EXPORT_PER_CPU_SYMBOL(softnet_data); 284 285 #ifdef CONFIG_LOCKDEP 286 /* 287 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 288 * according to dev->type 289 */ 290 static const unsigned short netdev_lock_type[] = 291 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 292 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 293 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 294 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 295 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 296 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 297 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 298 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 299 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 300 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 301 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 302 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 303 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM, 304 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE, 305 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE}; 306 307 static const char *const netdev_lock_name[] = 308 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 309 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 310 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 311 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 312 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 313 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 314 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 315 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 316 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 317 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 318 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 319 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 320 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM", 321 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE", 322 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"}; 323 324 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 325 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 326 327 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 328 { 329 int i; 330 331 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 332 if (netdev_lock_type[i] == dev_type) 333 return i; 334 /* the last key is used by default */ 335 return ARRAY_SIZE(netdev_lock_type) - 1; 336 } 337 338 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 339 unsigned short dev_type) 340 { 341 int i; 342 343 i = netdev_lock_pos(dev_type); 344 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 345 netdev_lock_name[i]); 346 } 347 348 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 349 { 350 int i; 351 352 i = netdev_lock_pos(dev->type); 353 lockdep_set_class_and_name(&dev->addr_list_lock, 354 &netdev_addr_lock_key[i], 355 netdev_lock_name[i]); 356 } 357 #else 358 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 359 unsigned short dev_type) 360 { 361 } 362 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 363 { 364 } 365 #endif 366 367 /******************************************************************************* 368 369 Protocol management and registration routines 370 371 *******************************************************************************/ 372 373 /* 374 * Add a protocol ID to the list. Now that the input handler is 375 * smarter we can dispense with all the messy stuff that used to be 376 * here. 377 * 378 * BEWARE!!! Protocol handlers, mangling input packets, 379 * MUST BE last in hash buckets and checking protocol handlers 380 * MUST start from promiscuous ptype_all chain in net_bh. 381 * It is true now, do not change it. 382 * Explanation follows: if protocol handler, mangling packet, will 383 * be the first on list, it is not able to sense, that packet 384 * is cloned and should be copied-on-write, so that it will 385 * change it and subsequent readers will get broken packet. 386 * --ANK (980803) 387 */ 388 389 static inline struct list_head *ptype_head(const struct packet_type *pt) 390 { 391 if (pt->type == htons(ETH_P_ALL)) 392 return &ptype_all; 393 else 394 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 395 } 396 397 /** 398 * dev_add_pack - add packet handler 399 * @pt: packet type declaration 400 * 401 * Add a protocol handler to the networking stack. The passed &packet_type 402 * is linked into kernel lists and may not be freed until it has been 403 * removed from the kernel lists. 404 * 405 * This call does not sleep therefore it can not 406 * guarantee all CPU's that are in middle of receiving packets 407 * will see the new packet type (until the next received packet). 408 */ 409 410 void dev_add_pack(struct packet_type *pt) 411 { 412 struct list_head *head = ptype_head(pt); 413 414 spin_lock(&ptype_lock); 415 list_add_rcu(&pt->list, head); 416 spin_unlock(&ptype_lock); 417 } 418 EXPORT_SYMBOL(dev_add_pack); 419 420 /** 421 * __dev_remove_pack - remove packet handler 422 * @pt: packet type declaration 423 * 424 * Remove a protocol handler that was previously added to the kernel 425 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 426 * from the kernel lists and can be freed or reused once this function 427 * returns. 428 * 429 * The packet type might still be in use by receivers 430 * and must not be freed until after all the CPU's have gone 431 * through a quiescent state. 432 */ 433 void __dev_remove_pack(struct packet_type *pt) 434 { 435 struct list_head *head = ptype_head(pt); 436 struct packet_type *pt1; 437 438 spin_lock(&ptype_lock); 439 440 list_for_each_entry(pt1, head, list) { 441 if (pt == pt1) { 442 list_del_rcu(&pt->list); 443 goto out; 444 } 445 } 446 447 pr_warn("dev_remove_pack: %p not found\n", pt); 448 out: 449 spin_unlock(&ptype_lock); 450 } 451 EXPORT_SYMBOL(__dev_remove_pack); 452 453 /** 454 * dev_remove_pack - remove packet handler 455 * @pt: packet type declaration 456 * 457 * Remove a protocol handler that was previously added to the kernel 458 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 459 * from the kernel lists and can be freed or reused once this function 460 * returns. 461 * 462 * This call sleeps to guarantee that no CPU is looking at the packet 463 * type after return. 464 */ 465 void dev_remove_pack(struct packet_type *pt) 466 { 467 __dev_remove_pack(pt); 468 469 synchronize_net(); 470 } 471 EXPORT_SYMBOL(dev_remove_pack); 472 473 /****************************************************************************** 474 475 Device Boot-time Settings Routines 476 477 *******************************************************************************/ 478 479 /* Boot time configuration table */ 480 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 481 482 /** 483 * netdev_boot_setup_add - add new setup entry 484 * @name: name of the device 485 * @map: configured settings for the device 486 * 487 * Adds new setup entry to the dev_boot_setup list. The function 488 * returns 0 on error and 1 on success. This is a generic routine to 489 * all netdevices. 490 */ 491 static int netdev_boot_setup_add(char *name, struct ifmap *map) 492 { 493 struct netdev_boot_setup *s; 494 int i; 495 496 s = dev_boot_setup; 497 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 498 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 499 memset(s[i].name, 0, sizeof(s[i].name)); 500 strlcpy(s[i].name, name, IFNAMSIZ); 501 memcpy(&s[i].map, map, sizeof(s[i].map)); 502 break; 503 } 504 } 505 506 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 507 } 508 509 /** 510 * netdev_boot_setup_check - check boot time settings 511 * @dev: the netdevice 512 * 513 * Check boot time settings for the device. 514 * The found settings are set for the device to be used 515 * later in the device probing. 516 * Returns 0 if no settings found, 1 if they are. 517 */ 518 int netdev_boot_setup_check(struct net_device *dev) 519 { 520 struct netdev_boot_setup *s = dev_boot_setup; 521 int i; 522 523 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 524 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 525 !strcmp(dev->name, s[i].name)) { 526 dev->irq = s[i].map.irq; 527 dev->base_addr = s[i].map.base_addr; 528 dev->mem_start = s[i].map.mem_start; 529 dev->mem_end = s[i].map.mem_end; 530 return 1; 531 } 532 } 533 return 0; 534 } 535 EXPORT_SYMBOL(netdev_boot_setup_check); 536 537 538 /** 539 * netdev_boot_base - get address from boot time settings 540 * @prefix: prefix for network device 541 * @unit: id for network device 542 * 543 * Check boot time settings for the base address of device. 544 * The found settings are set for the device to be used 545 * later in the device probing. 546 * Returns 0 if no settings found. 547 */ 548 unsigned long netdev_boot_base(const char *prefix, int unit) 549 { 550 const struct netdev_boot_setup *s = dev_boot_setup; 551 char name[IFNAMSIZ]; 552 int i; 553 554 sprintf(name, "%s%d", prefix, unit); 555 556 /* 557 * If device already registered then return base of 1 558 * to indicate not to probe for this interface 559 */ 560 if (__dev_get_by_name(&init_net, name)) 561 return 1; 562 563 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 564 if (!strcmp(name, s[i].name)) 565 return s[i].map.base_addr; 566 return 0; 567 } 568 569 /* 570 * Saves at boot time configured settings for any netdevice. 571 */ 572 int __init netdev_boot_setup(char *str) 573 { 574 int ints[5]; 575 struct ifmap map; 576 577 str = get_options(str, ARRAY_SIZE(ints), ints); 578 if (!str || !*str) 579 return 0; 580 581 /* Save settings */ 582 memset(&map, 0, sizeof(map)); 583 if (ints[0] > 0) 584 map.irq = ints[1]; 585 if (ints[0] > 1) 586 map.base_addr = ints[2]; 587 if (ints[0] > 2) 588 map.mem_start = ints[3]; 589 if (ints[0] > 3) 590 map.mem_end = ints[4]; 591 592 /* Add new entry to the list */ 593 return netdev_boot_setup_add(str, &map); 594 } 595 596 __setup("netdev=", netdev_boot_setup); 597 598 /******************************************************************************* 599 600 Device Interface Subroutines 601 602 *******************************************************************************/ 603 604 /** 605 * __dev_get_by_name - find a device by its name 606 * @net: the applicable net namespace 607 * @name: name to find 608 * 609 * Find an interface by name. Must be called under RTNL semaphore 610 * or @dev_base_lock. If the name is found a pointer to the device 611 * is returned. If the name is not found then %NULL is returned. The 612 * reference counters are not incremented so the caller must be 613 * careful with locks. 614 */ 615 616 struct net_device *__dev_get_by_name(struct net *net, const char *name) 617 { 618 struct hlist_node *p; 619 struct net_device *dev; 620 struct hlist_head *head = dev_name_hash(net, name); 621 622 hlist_for_each_entry(dev, p, head, name_hlist) 623 if (!strncmp(dev->name, name, IFNAMSIZ)) 624 return dev; 625 626 return NULL; 627 } 628 EXPORT_SYMBOL(__dev_get_by_name); 629 630 /** 631 * dev_get_by_name_rcu - find a device by its name 632 * @net: the applicable net namespace 633 * @name: name to find 634 * 635 * Find an interface by name. 636 * If the name is found a pointer to the device is returned. 637 * If the name is not found then %NULL is returned. 638 * The reference counters are not incremented so the caller must be 639 * careful with locks. The caller must hold RCU lock. 640 */ 641 642 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 643 { 644 struct hlist_node *p; 645 struct net_device *dev; 646 struct hlist_head *head = dev_name_hash(net, name); 647 648 hlist_for_each_entry_rcu(dev, p, head, name_hlist) 649 if (!strncmp(dev->name, name, IFNAMSIZ)) 650 return dev; 651 652 return NULL; 653 } 654 EXPORT_SYMBOL(dev_get_by_name_rcu); 655 656 /** 657 * dev_get_by_name - find a device by its name 658 * @net: the applicable net namespace 659 * @name: name to find 660 * 661 * Find an interface by name. This can be called from any 662 * context and does its own locking. The returned handle has 663 * the usage count incremented and the caller must use dev_put() to 664 * release it when it is no longer needed. %NULL is returned if no 665 * matching device is found. 666 */ 667 668 struct net_device *dev_get_by_name(struct net *net, const char *name) 669 { 670 struct net_device *dev; 671 672 rcu_read_lock(); 673 dev = dev_get_by_name_rcu(net, name); 674 if (dev) 675 dev_hold(dev); 676 rcu_read_unlock(); 677 return dev; 678 } 679 EXPORT_SYMBOL(dev_get_by_name); 680 681 /** 682 * __dev_get_by_index - find a device by its ifindex 683 * @net: the applicable net namespace 684 * @ifindex: index of device 685 * 686 * Search for an interface by index. Returns %NULL if the device 687 * is not found or a pointer to the device. The device has not 688 * had its reference counter increased so the caller must be careful 689 * about locking. The caller must hold either the RTNL semaphore 690 * or @dev_base_lock. 691 */ 692 693 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 694 { 695 struct hlist_node *p; 696 struct net_device *dev; 697 struct hlist_head *head = dev_index_hash(net, ifindex); 698 699 hlist_for_each_entry(dev, p, head, index_hlist) 700 if (dev->ifindex == ifindex) 701 return dev; 702 703 return NULL; 704 } 705 EXPORT_SYMBOL(__dev_get_by_index); 706 707 /** 708 * dev_get_by_index_rcu - find a device by its ifindex 709 * @net: the applicable net namespace 710 * @ifindex: index of device 711 * 712 * Search for an interface by index. Returns %NULL if the device 713 * is not found or a pointer to the device. The device has not 714 * had its reference counter increased so the caller must be careful 715 * about locking. The caller must hold RCU lock. 716 */ 717 718 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 719 { 720 struct hlist_node *p; 721 struct net_device *dev; 722 struct hlist_head *head = dev_index_hash(net, ifindex); 723 724 hlist_for_each_entry_rcu(dev, p, head, index_hlist) 725 if (dev->ifindex == ifindex) 726 return dev; 727 728 return NULL; 729 } 730 EXPORT_SYMBOL(dev_get_by_index_rcu); 731 732 733 /** 734 * dev_get_by_index - find a device by its ifindex 735 * @net: the applicable net namespace 736 * @ifindex: index of device 737 * 738 * Search for an interface by index. Returns NULL if the device 739 * is not found or a pointer to the device. The device returned has 740 * had a reference added and the pointer is safe until the user calls 741 * dev_put to indicate they have finished with it. 742 */ 743 744 struct net_device *dev_get_by_index(struct net *net, int ifindex) 745 { 746 struct net_device *dev; 747 748 rcu_read_lock(); 749 dev = dev_get_by_index_rcu(net, ifindex); 750 if (dev) 751 dev_hold(dev); 752 rcu_read_unlock(); 753 return dev; 754 } 755 EXPORT_SYMBOL(dev_get_by_index); 756 757 /** 758 * dev_getbyhwaddr_rcu - find a device by its hardware address 759 * @net: the applicable net namespace 760 * @type: media type of device 761 * @ha: hardware address 762 * 763 * Search for an interface by MAC address. Returns NULL if the device 764 * is not found or a pointer to the device. 765 * The caller must hold RCU or RTNL. 766 * The returned device has not had its ref count increased 767 * and the caller must therefore be careful about locking 768 * 769 */ 770 771 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 772 const char *ha) 773 { 774 struct net_device *dev; 775 776 for_each_netdev_rcu(net, dev) 777 if (dev->type == type && 778 !memcmp(dev->dev_addr, ha, dev->addr_len)) 779 return dev; 780 781 return NULL; 782 } 783 EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 784 785 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 786 { 787 struct net_device *dev; 788 789 ASSERT_RTNL(); 790 for_each_netdev(net, dev) 791 if (dev->type == type) 792 return dev; 793 794 return NULL; 795 } 796 EXPORT_SYMBOL(__dev_getfirstbyhwtype); 797 798 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 799 { 800 struct net_device *dev, *ret = NULL; 801 802 rcu_read_lock(); 803 for_each_netdev_rcu(net, dev) 804 if (dev->type == type) { 805 dev_hold(dev); 806 ret = dev; 807 break; 808 } 809 rcu_read_unlock(); 810 return ret; 811 } 812 EXPORT_SYMBOL(dev_getfirstbyhwtype); 813 814 /** 815 * dev_get_by_flags_rcu - find any device with given flags 816 * @net: the applicable net namespace 817 * @if_flags: IFF_* values 818 * @mask: bitmask of bits in if_flags to check 819 * 820 * Search for any interface with the given flags. Returns NULL if a device 821 * is not found or a pointer to the device. Must be called inside 822 * rcu_read_lock(), and result refcount is unchanged. 823 */ 824 825 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags, 826 unsigned short mask) 827 { 828 struct net_device *dev, *ret; 829 830 ret = NULL; 831 for_each_netdev_rcu(net, dev) { 832 if (((dev->flags ^ if_flags) & mask) == 0) { 833 ret = dev; 834 break; 835 } 836 } 837 return ret; 838 } 839 EXPORT_SYMBOL(dev_get_by_flags_rcu); 840 841 /** 842 * dev_valid_name - check if name is okay for network device 843 * @name: name string 844 * 845 * Network device names need to be valid file names to 846 * to allow sysfs to work. We also disallow any kind of 847 * whitespace. 848 */ 849 bool dev_valid_name(const char *name) 850 { 851 if (*name == '\0') 852 return false; 853 if (strlen(name) >= IFNAMSIZ) 854 return false; 855 if (!strcmp(name, ".") || !strcmp(name, "..")) 856 return false; 857 858 while (*name) { 859 if (*name == '/' || isspace(*name)) 860 return false; 861 name++; 862 } 863 return true; 864 } 865 EXPORT_SYMBOL(dev_valid_name); 866 867 /** 868 * __dev_alloc_name - allocate a name for a device 869 * @net: network namespace to allocate the device name in 870 * @name: name format string 871 * @buf: scratch buffer and result name string 872 * 873 * Passed a format string - eg "lt%d" it will try and find a suitable 874 * id. It scans list of devices to build up a free map, then chooses 875 * the first empty slot. The caller must hold the dev_base or rtnl lock 876 * while allocating the name and adding the device in order to avoid 877 * duplicates. 878 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 879 * Returns the number of the unit assigned or a negative errno code. 880 */ 881 882 static int __dev_alloc_name(struct net *net, const char *name, char *buf) 883 { 884 int i = 0; 885 const char *p; 886 const int max_netdevices = 8*PAGE_SIZE; 887 unsigned long *inuse; 888 struct net_device *d; 889 890 p = strnchr(name, IFNAMSIZ-1, '%'); 891 if (p) { 892 /* 893 * Verify the string as this thing may have come from 894 * the user. There must be either one "%d" and no other "%" 895 * characters. 896 */ 897 if (p[1] != 'd' || strchr(p + 2, '%')) 898 return -EINVAL; 899 900 /* Use one page as a bit array of possible slots */ 901 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 902 if (!inuse) 903 return -ENOMEM; 904 905 for_each_netdev(net, d) { 906 if (!sscanf(d->name, name, &i)) 907 continue; 908 if (i < 0 || i >= max_netdevices) 909 continue; 910 911 /* avoid cases where sscanf is not exact inverse of printf */ 912 snprintf(buf, IFNAMSIZ, name, i); 913 if (!strncmp(buf, d->name, IFNAMSIZ)) 914 set_bit(i, inuse); 915 } 916 917 i = find_first_zero_bit(inuse, max_netdevices); 918 free_page((unsigned long) inuse); 919 } 920 921 if (buf != name) 922 snprintf(buf, IFNAMSIZ, name, i); 923 if (!__dev_get_by_name(net, buf)) 924 return i; 925 926 /* It is possible to run out of possible slots 927 * when the name is long and there isn't enough space left 928 * for the digits, or if all bits are used. 929 */ 930 return -ENFILE; 931 } 932 933 /** 934 * dev_alloc_name - allocate a name for a device 935 * @dev: device 936 * @name: name format string 937 * 938 * Passed a format string - eg "lt%d" it will try and find a suitable 939 * id. It scans list of devices to build up a free map, then chooses 940 * the first empty slot. The caller must hold the dev_base or rtnl lock 941 * while allocating the name and adding the device in order to avoid 942 * duplicates. 943 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 944 * Returns the number of the unit assigned or a negative errno code. 945 */ 946 947 int dev_alloc_name(struct net_device *dev, const char *name) 948 { 949 char buf[IFNAMSIZ]; 950 struct net *net; 951 int ret; 952 953 BUG_ON(!dev_net(dev)); 954 net = dev_net(dev); 955 ret = __dev_alloc_name(net, name, buf); 956 if (ret >= 0) 957 strlcpy(dev->name, buf, IFNAMSIZ); 958 return ret; 959 } 960 EXPORT_SYMBOL(dev_alloc_name); 961 962 static int dev_alloc_name_ns(struct net *net, 963 struct net_device *dev, 964 const char *name) 965 { 966 char buf[IFNAMSIZ]; 967 int ret; 968 969 ret = __dev_alloc_name(net, name, buf); 970 if (ret >= 0) 971 strlcpy(dev->name, buf, IFNAMSIZ); 972 return ret; 973 } 974 975 static int dev_get_valid_name(struct net *net, 976 struct net_device *dev, 977 const char *name) 978 { 979 BUG_ON(!net); 980 981 if (!dev_valid_name(name)) 982 return -EINVAL; 983 984 if (strchr(name, '%')) 985 return dev_alloc_name_ns(net, dev, name); 986 else if (__dev_get_by_name(net, name)) 987 return -EEXIST; 988 else if (dev->name != name) 989 strlcpy(dev->name, name, IFNAMSIZ); 990 991 return 0; 992 } 993 994 /** 995 * dev_change_name - change name of a device 996 * @dev: device 997 * @newname: name (or format string) must be at least IFNAMSIZ 998 * 999 * Change name of a device, can pass format strings "eth%d". 1000 * for wildcarding. 1001 */ 1002 int dev_change_name(struct net_device *dev, const char *newname) 1003 { 1004 char oldname[IFNAMSIZ]; 1005 int err = 0; 1006 int ret; 1007 struct net *net; 1008 1009 ASSERT_RTNL(); 1010 BUG_ON(!dev_net(dev)); 1011 1012 net = dev_net(dev); 1013 if (dev->flags & IFF_UP) 1014 return -EBUSY; 1015 1016 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) 1017 return 0; 1018 1019 memcpy(oldname, dev->name, IFNAMSIZ); 1020 1021 err = dev_get_valid_name(net, dev, newname); 1022 if (err < 0) 1023 return err; 1024 1025 rollback: 1026 ret = device_rename(&dev->dev, dev->name); 1027 if (ret) { 1028 memcpy(dev->name, oldname, IFNAMSIZ); 1029 return ret; 1030 } 1031 1032 write_lock_bh(&dev_base_lock); 1033 hlist_del_rcu(&dev->name_hlist); 1034 write_unlock_bh(&dev_base_lock); 1035 1036 synchronize_rcu(); 1037 1038 write_lock_bh(&dev_base_lock); 1039 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 1040 write_unlock_bh(&dev_base_lock); 1041 1042 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1043 ret = notifier_to_errno(ret); 1044 1045 if (ret) { 1046 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1047 if (err >= 0) { 1048 err = ret; 1049 memcpy(dev->name, oldname, IFNAMSIZ); 1050 goto rollback; 1051 } else { 1052 pr_err("%s: name change rollback failed: %d\n", 1053 dev->name, ret); 1054 } 1055 } 1056 1057 return err; 1058 } 1059 1060 /** 1061 * dev_set_alias - change ifalias of a device 1062 * @dev: device 1063 * @alias: name up to IFALIASZ 1064 * @len: limit of bytes to copy from info 1065 * 1066 * Set ifalias for a device, 1067 */ 1068 int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1069 { 1070 char *new_ifalias; 1071 1072 ASSERT_RTNL(); 1073 1074 if (len >= IFALIASZ) 1075 return -EINVAL; 1076 1077 if (!len) { 1078 if (dev->ifalias) { 1079 kfree(dev->ifalias); 1080 dev->ifalias = NULL; 1081 } 1082 return 0; 1083 } 1084 1085 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL); 1086 if (!new_ifalias) 1087 return -ENOMEM; 1088 dev->ifalias = new_ifalias; 1089 1090 strlcpy(dev->ifalias, alias, len+1); 1091 return len; 1092 } 1093 1094 1095 /** 1096 * netdev_features_change - device changes features 1097 * @dev: device to cause notification 1098 * 1099 * Called to indicate a device has changed features. 1100 */ 1101 void netdev_features_change(struct net_device *dev) 1102 { 1103 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1104 } 1105 EXPORT_SYMBOL(netdev_features_change); 1106 1107 /** 1108 * netdev_state_change - device changes state 1109 * @dev: device to cause notification 1110 * 1111 * Called to indicate a device has changed state. This function calls 1112 * the notifier chains for netdev_chain and sends a NEWLINK message 1113 * to the routing socket. 1114 */ 1115 void netdev_state_change(struct net_device *dev) 1116 { 1117 if (dev->flags & IFF_UP) { 1118 call_netdevice_notifiers(NETDEV_CHANGE, dev); 1119 rtmsg_ifinfo(RTM_NEWLINK, dev, 0); 1120 } 1121 } 1122 EXPORT_SYMBOL(netdev_state_change); 1123 1124 /** 1125 * netdev_notify_peers - notify network peers about existence of @dev 1126 * @dev: network device 1127 * 1128 * Generate traffic such that interested network peers are aware of 1129 * @dev, such as by generating a gratuitous ARP. This may be used when 1130 * a device wants to inform the rest of the network about some sort of 1131 * reconfiguration such as a failover event or virtual machine 1132 * migration. 1133 */ 1134 void netdev_notify_peers(struct net_device *dev) 1135 { 1136 rtnl_lock(); 1137 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev); 1138 rtnl_unlock(); 1139 } 1140 EXPORT_SYMBOL(netdev_notify_peers); 1141 1142 /** 1143 * dev_load - load a network module 1144 * @net: the applicable net namespace 1145 * @name: name of interface 1146 * 1147 * If a network interface is not present and the process has suitable 1148 * privileges this function loads the module. If module loading is not 1149 * available in this kernel then it becomes a nop. 1150 */ 1151 1152 void dev_load(struct net *net, const char *name) 1153 { 1154 struct net_device *dev; 1155 int no_module; 1156 1157 rcu_read_lock(); 1158 dev = dev_get_by_name_rcu(net, name); 1159 rcu_read_unlock(); 1160 1161 no_module = !dev; 1162 if (no_module && capable(CAP_NET_ADMIN)) 1163 no_module = request_module("netdev-%s", name); 1164 if (no_module && capable(CAP_SYS_MODULE)) { 1165 if (!request_module("%s", name)) 1166 pr_warn("Loading kernel module for a network device with CAP_SYS_MODULE (deprecated). Use CAP_NET_ADMIN and alias netdev-%s instead.\n", 1167 name); 1168 } 1169 } 1170 EXPORT_SYMBOL(dev_load); 1171 1172 static int __dev_open(struct net_device *dev) 1173 { 1174 const struct net_device_ops *ops = dev->netdev_ops; 1175 int ret; 1176 1177 ASSERT_RTNL(); 1178 1179 if (!netif_device_present(dev)) 1180 return -ENODEV; 1181 1182 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev); 1183 ret = notifier_to_errno(ret); 1184 if (ret) 1185 return ret; 1186 1187 set_bit(__LINK_STATE_START, &dev->state); 1188 1189 if (ops->ndo_validate_addr) 1190 ret = ops->ndo_validate_addr(dev); 1191 1192 if (!ret && ops->ndo_open) 1193 ret = ops->ndo_open(dev); 1194 1195 if (ret) 1196 clear_bit(__LINK_STATE_START, &dev->state); 1197 else { 1198 dev->flags |= IFF_UP; 1199 net_dmaengine_get(); 1200 dev_set_rx_mode(dev); 1201 dev_activate(dev); 1202 add_device_randomness(dev->dev_addr, dev->addr_len); 1203 } 1204 1205 return ret; 1206 } 1207 1208 /** 1209 * dev_open - prepare an interface for use. 1210 * @dev: device to open 1211 * 1212 * Takes a device from down to up state. The device's private open 1213 * function is invoked and then the multicast lists are loaded. Finally 1214 * the device is moved into the up state and a %NETDEV_UP message is 1215 * sent to the netdev notifier chain. 1216 * 1217 * Calling this function on an active interface is a nop. On a failure 1218 * a negative errno code is returned. 1219 */ 1220 int dev_open(struct net_device *dev) 1221 { 1222 int ret; 1223 1224 if (dev->flags & IFF_UP) 1225 return 0; 1226 1227 ret = __dev_open(dev); 1228 if (ret < 0) 1229 return ret; 1230 1231 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING); 1232 call_netdevice_notifiers(NETDEV_UP, dev); 1233 1234 return ret; 1235 } 1236 EXPORT_SYMBOL(dev_open); 1237 1238 static int __dev_close_many(struct list_head *head) 1239 { 1240 struct net_device *dev; 1241 1242 ASSERT_RTNL(); 1243 might_sleep(); 1244 1245 list_for_each_entry(dev, head, unreg_list) { 1246 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1247 1248 clear_bit(__LINK_STATE_START, &dev->state); 1249 1250 /* Synchronize to scheduled poll. We cannot touch poll list, it 1251 * can be even on different cpu. So just clear netif_running(). 1252 * 1253 * dev->stop() will invoke napi_disable() on all of it's 1254 * napi_struct instances on this device. 1255 */ 1256 smp_mb__after_clear_bit(); /* Commit netif_running(). */ 1257 } 1258 1259 dev_deactivate_many(head); 1260 1261 list_for_each_entry(dev, head, unreg_list) { 1262 const struct net_device_ops *ops = dev->netdev_ops; 1263 1264 /* 1265 * Call the device specific close. This cannot fail. 1266 * Only if device is UP 1267 * 1268 * We allow it to be called even after a DETACH hot-plug 1269 * event. 1270 */ 1271 if (ops->ndo_stop) 1272 ops->ndo_stop(dev); 1273 1274 dev->flags &= ~IFF_UP; 1275 net_dmaengine_put(); 1276 } 1277 1278 return 0; 1279 } 1280 1281 static int __dev_close(struct net_device *dev) 1282 { 1283 int retval; 1284 LIST_HEAD(single); 1285 1286 list_add(&dev->unreg_list, &single); 1287 retval = __dev_close_many(&single); 1288 list_del(&single); 1289 return retval; 1290 } 1291 1292 static int dev_close_many(struct list_head *head) 1293 { 1294 struct net_device *dev, *tmp; 1295 LIST_HEAD(tmp_list); 1296 1297 list_for_each_entry_safe(dev, tmp, head, unreg_list) 1298 if (!(dev->flags & IFF_UP)) 1299 list_move(&dev->unreg_list, &tmp_list); 1300 1301 __dev_close_many(head); 1302 1303 list_for_each_entry(dev, head, unreg_list) { 1304 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING); 1305 call_netdevice_notifiers(NETDEV_DOWN, dev); 1306 } 1307 1308 /* rollback_registered_many needs the complete original list */ 1309 list_splice(&tmp_list, head); 1310 return 0; 1311 } 1312 1313 /** 1314 * dev_close - shutdown an interface. 1315 * @dev: device to shutdown 1316 * 1317 * This function moves an active device into down state. A 1318 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1319 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1320 * chain. 1321 */ 1322 int dev_close(struct net_device *dev) 1323 { 1324 if (dev->flags & IFF_UP) { 1325 LIST_HEAD(single); 1326 1327 list_add(&dev->unreg_list, &single); 1328 dev_close_many(&single); 1329 list_del(&single); 1330 } 1331 return 0; 1332 } 1333 EXPORT_SYMBOL(dev_close); 1334 1335 1336 /** 1337 * dev_disable_lro - disable Large Receive Offload on a device 1338 * @dev: device 1339 * 1340 * Disable Large Receive Offload (LRO) on a net device. Must be 1341 * called under RTNL. This is needed if received packets may be 1342 * forwarded to another interface. 1343 */ 1344 void dev_disable_lro(struct net_device *dev) 1345 { 1346 /* 1347 * If we're trying to disable lro on a vlan device 1348 * use the underlying physical device instead 1349 */ 1350 if (is_vlan_dev(dev)) 1351 dev = vlan_dev_real_dev(dev); 1352 1353 dev->wanted_features &= ~NETIF_F_LRO; 1354 netdev_update_features(dev); 1355 1356 if (unlikely(dev->features & NETIF_F_LRO)) 1357 netdev_WARN(dev, "failed to disable LRO!\n"); 1358 } 1359 EXPORT_SYMBOL(dev_disable_lro); 1360 1361 1362 static int dev_boot_phase = 1; 1363 1364 /** 1365 * register_netdevice_notifier - register a network notifier block 1366 * @nb: notifier 1367 * 1368 * Register a notifier to be called when network device events occur. 1369 * The notifier passed is linked into the kernel structures and must 1370 * not be reused until it has been unregistered. A negative errno code 1371 * is returned on a failure. 1372 * 1373 * When registered all registration and up events are replayed 1374 * to the new notifier to allow device to have a race free 1375 * view of the network device list. 1376 */ 1377 1378 int register_netdevice_notifier(struct notifier_block *nb) 1379 { 1380 struct net_device *dev; 1381 struct net_device *last; 1382 struct net *net; 1383 int err; 1384 1385 rtnl_lock(); 1386 err = raw_notifier_chain_register(&netdev_chain, nb); 1387 if (err) 1388 goto unlock; 1389 if (dev_boot_phase) 1390 goto unlock; 1391 for_each_net(net) { 1392 for_each_netdev(net, dev) { 1393 err = nb->notifier_call(nb, NETDEV_REGISTER, dev); 1394 err = notifier_to_errno(err); 1395 if (err) 1396 goto rollback; 1397 1398 if (!(dev->flags & IFF_UP)) 1399 continue; 1400 1401 nb->notifier_call(nb, NETDEV_UP, dev); 1402 } 1403 } 1404 1405 unlock: 1406 rtnl_unlock(); 1407 return err; 1408 1409 rollback: 1410 last = dev; 1411 for_each_net(net) { 1412 for_each_netdev(net, dev) { 1413 if (dev == last) 1414 goto outroll; 1415 1416 if (dev->flags & IFF_UP) { 1417 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev); 1418 nb->notifier_call(nb, NETDEV_DOWN, dev); 1419 } 1420 nb->notifier_call(nb, NETDEV_UNREGISTER, dev); 1421 } 1422 } 1423 1424 outroll: 1425 raw_notifier_chain_unregister(&netdev_chain, nb); 1426 goto unlock; 1427 } 1428 EXPORT_SYMBOL(register_netdevice_notifier); 1429 1430 /** 1431 * unregister_netdevice_notifier - unregister a network notifier block 1432 * @nb: notifier 1433 * 1434 * Unregister a notifier previously registered by 1435 * register_netdevice_notifier(). The notifier is unlinked into the 1436 * kernel structures and may then be reused. A negative errno code 1437 * is returned on a failure. 1438 * 1439 * After unregistering unregister and down device events are synthesized 1440 * for all devices on the device list to the removed notifier to remove 1441 * the need for special case cleanup code. 1442 */ 1443 1444 int unregister_netdevice_notifier(struct notifier_block *nb) 1445 { 1446 struct net_device *dev; 1447 struct net *net; 1448 int err; 1449 1450 rtnl_lock(); 1451 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1452 if (err) 1453 goto unlock; 1454 1455 for_each_net(net) { 1456 for_each_netdev(net, dev) { 1457 if (dev->flags & IFF_UP) { 1458 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev); 1459 nb->notifier_call(nb, NETDEV_DOWN, dev); 1460 } 1461 nb->notifier_call(nb, NETDEV_UNREGISTER, dev); 1462 } 1463 } 1464 unlock: 1465 rtnl_unlock(); 1466 return err; 1467 } 1468 EXPORT_SYMBOL(unregister_netdevice_notifier); 1469 1470 /** 1471 * call_netdevice_notifiers - call all network notifier blocks 1472 * @val: value passed unmodified to notifier function 1473 * @dev: net_device pointer passed unmodified to notifier function 1474 * 1475 * Call all network notifier blocks. Parameters and return value 1476 * are as for raw_notifier_call_chain(). 1477 */ 1478 1479 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 1480 { 1481 ASSERT_RTNL(); 1482 return raw_notifier_call_chain(&netdev_chain, val, dev); 1483 } 1484 EXPORT_SYMBOL(call_netdevice_notifiers); 1485 1486 static struct static_key netstamp_needed __read_mostly; 1487 #ifdef HAVE_JUMP_LABEL 1488 /* We are not allowed to call static_key_slow_dec() from irq context 1489 * If net_disable_timestamp() is called from irq context, defer the 1490 * static_key_slow_dec() calls. 1491 */ 1492 static atomic_t netstamp_needed_deferred; 1493 #endif 1494 1495 void net_enable_timestamp(void) 1496 { 1497 #ifdef HAVE_JUMP_LABEL 1498 int deferred = atomic_xchg(&netstamp_needed_deferred, 0); 1499 1500 if (deferred) { 1501 while (--deferred) 1502 static_key_slow_dec(&netstamp_needed); 1503 return; 1504 } 1505 #endif 1506 WARN_ON(in_interrupt()); 1507 static_key_slow_inc(&netstamp_needed); 1508 } 1509 EXPORT_SYMBOL(net_enable_timestamp); 1510 1511 void net_disable_timestamp(void) 1512 { 1513 #ifdef HAVE_JUMP_LABEL 1514 if (in_interrupt()) { 1515 atomic_inc(&netstamp_needed_deferred); 1516 return; 1517 } 1518 #endif 1519 static_key_slow_dec(&netstamp_needed); 1520 } 1521 EXPORT_SYMBOL(net_disable_timestamp); 1522 1523 static inline void net_timestamp_set(struct sk_buff *skb) 1524 { 1525 skb->tstamp.tv64 = 0; 1526 if (static_key_false(&netstamp_needed)) 1527 __net_timestamp(skb); 1528 } 1529 1530 #define net_timestamp_check(COND, SKB) \ 1531 if (static_key_false(&netstamp_needed)) { \ 1532 if ((COND) && !(SKB)->tstamp.tv64) \ 1533 __net_timestamp(SKB); \ 1534 } \ 1535 1536 static int net_hwtstamp_validate(struct ifreq *ifr) 1537 { 1538 struct hwtstamp_config cfg; 1539 enum hwtstamp_tx_types tx_type; 1540 enum hwtstamp_rx_filters rx_filter; 1541 int tx_type_valid = 0; 1542 int rx_filter_valid = 0; 1543 1544 if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg))) 1545 return -EFAULT; 1546 1547 if (cfg.flags) /* reserved for future extensions */ 1548 return -EINVAL; 1549 1550 tx_type = cfg.tx_type; 1551 rx_filter = cfg.rx_filter; 1552 1553 switch (tx_type) { 1554 case HWTSTAMP_TX_OFF: 1555 case HWTSTAMP_TX_ON: 1556 case HWTSTAMP_TX_ONESTEP_SYNC: 1557 tx_type_valid = 1; 1558 break; 1559 } 1560 1561 switch (rx_filter) { 1562 case HWTSTAMP_FILTER_NONE: 1563 case HWTSTAMP_FILTER_ALL: 1564 case HWTSTAMP_FILTER_SOME: 1565 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: 1566 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: 1567 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: 1568 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 1569 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 1570 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 1571 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: 1572 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: 1573 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: 1574 case HWTSTAMP_FILTER_PTP_V2_EVENT: 1575 case HWTSTAMP_FILTER_PTP_V2_SYNC: 1576 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 1577 rx_filter_valid = 1; 1578 break; 1579 } 1580 1581 if (!tx_type_valid || !rx_filter_valid) 1582 return -ERANGE; 1583 1584 return 0; 1585 } 1586 1587 static inline bool is_skb_forwardable(struct net_device *dev, 1588 struct sk_buff *skb) 1589 { 1590 unsigned int len; 1591 1592 if (!(dev->flags & IFF_UP)) 1593 return false; 1594 1595 len = dev->mtu + dev->hard_header_len + VLAN_HLEN; 1596 if (skb->len <= len) 1597 return true; 1598 1599 /* if TSO is enabled, we don't care about the length as the packet 1600 * could be forwarded without being segmented before 1601 */ 1602 if (skb_is_gso(skb)) 1603 return true; 1604 1605 return false; 1606 } 1607 1608 /** 1609 * dev_forward_skb - loopback an skb to another netif 1610 * 1611 * @dev: destination network device 1612 * @skb: buffer to forward 1613 * 1614 * return values: 1615 * NET_RX_SUCCESS (no congestion) 1616 * NET_RX_DROP (packet was dropped, but freed) 1617 * 1618 * dev_forward_skb can be used for injecting an skb from the 1619 * start_xmit function of one device into the receive queue 1620 * of another device. 1621 * 1622 * The receiving device may be in another namespace, so 1623 * we have to clear all information in the skb that could 1624 * impact namespace isolation. 1625 */ 1626 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1627 { 1628 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) { 1629 if (skb_copy_ubufs(skb, GFP_ATOMIC)) { 1630 atomic_long_inc(&dev->rx_dropped); 1631 kfree_skb(skb); 1632 return NET_RX_DROP; 1633 } 1634 } 1635 1636 skb_orphan(skb); 1637 nf_reset(skb); 1638 1639 if (unlikely(!is_skb_forwardable(dev, skb))) { 1640 atomic_long_inc(&dev->rx_dropped); 1641 kfree_skb(skb); 1642 return NET_RX_DROP; 1643 } 1644 skb->skb_iif = 0; 1645 skb->dev = dev; 1646 skb_dst_drop(skb); 1647 skb->tstamp.tv64 = 0; 1648 skb->pkt_type = PACKET_HOST; 1649 skb->protocol = eth_type_trans(skb, dev); 1650 skb->mark = 0; 1651 secpath_reset(skb); 1652 nf_reset(skb); 1653 return netif_rx(skb); 1654 } 1655 EXPORT_SYMBOL_GPL(dev_forward_skb); 1656 1657 static inline int deliver_skb(struct sk_buff *skb, 1658 struct packet_type *pt_prev, 1659 struct net_device *orig_dev) 1660 { 1661 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC))) 1662 return -ENOMEM; 1663 atomic_inc(&skb->users); 1664 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 1665 } 1666 1667 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb) 1668 { 1669 if (!ptype->af_packet_priv || !skb->sk) 1670 return false; 1671 1672 if (ptype->id_match) 1673 return ptype->id_match(ptype, skb->sk); 1674 else if ((struct sock *)ptype->af_packet_priv == skb->sk) 1675 return true; 1676 1677 return false; 1678 } 1679 1680 /* 1681 * Support routine. Sends outgoing frames to any network 1682 * taps currently in use. 1683 */ 1684 1685 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 1686 { 1687 struct packet_type *ptype; 1688 struct sk_buff *skb2 = NULL; 1689 struct packet_type *pt_prev = NULL; 1690 1691 rcu_read_lock(); 1692 list_for_each_entry_rcu(ptype, &ptype_all, list) { 1693 /* Never send packets back to the socket 1694 * they originated from - MvS (miquels@drinkel.ow.org) 1695 */ 1696 if ((ptype->dev == dev || !ptype->dev) && 1697 (!skb_loop_sk(ptype, skb))) { 1698 if (pt_prev) { 1699 deliver_skb(skb2, pt_prev, skb->dev); 1700 pt_prev = ptype; 1701 continue; 1702 } 1703 1704 skb2 = skb_clone(skb, GFP_ATOMIC); 1705 if (!skb2) 1706 break; 1707 1708 net_timestamp_set(skb2); 1709 1710 /* skb->nh should be correctly 1711 set by sender, so that the second statement is 1712 just protection against buggy protocols. 1713 */ 1714 skb_reset_mac_header(skb2); 1715 1716 if (skb_network_header(skb2) < skb2->data || 1717 skb2->network_header > skb2->tail) { 1718 net_crit_ratelimited("protocol %04x is buggy, dev %s\n", 1719 ntohs(skb2->protocol), 1720 dev->name); 1721 skb_reset_network_header(skb2); 1722 } 1723 1724 skb2->transport_header = skb2->network_header; 1725 skb2->pkt_type = PACKET_OUTGOING; 1726 pt_prev = ptype; 1727 } 1728 } 1729 if (pt_prev) 1730 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 1731 rcu_read_unlock(); 1732 } 1733 1734 /** 1735 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change 1736 * @dev: Network device 1737 * @txq: number of queues available 1738 * 1739 * If real_num_tx_queues is changed the tc mappings may no longer be 1740 * valid. To resolve this verify the tc mapping remains valid and if 1741 * not NULL the mapping. With no priorities mapping to this 1742 * offset/count pair it will no longer be used. In the worst case TC0 1743 * is invalid nothing can be done so disable priority mappings. If is 1744 * expected that drivers will fix this mapping if they can before 1745 * calling netif_set_real_num_tx_queues. 1746 */ 1747 static void netif_setup_tc(struct net_device *dev, unsigned int txq) 1748 { 1749 int i; 1750 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 1751 1752 /* If TC0 is invalidated disable TC mapping */ 1753 if (tc->offset + tc->count > txq) { 1754 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n"); 1755 dev->num_tc = 0; 1756 return; 1757 } 1758 1759 /* Invalidated prio to tc mappings set to TC0 */ 1760 for (i = 1; i < TC_BITMASK + 1; i++) { 1761 int q = netdev_get_prio_tc_map(dev, i); 1762 1763 tc = &dev->tc_to_txq[q]; 1764 if (tc->offset + tc->count > txq) { 1765 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n", 1766 i, q); 1767 netdev_set_prio_tc_map(dev, i, 0); 1768 } 1769 } 1770 } 1771 1772 /* 1773 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 1774 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed. 1775 */ 1776 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 1777 { 1778 int rc; 1779 1780 if (txq < 1 || txq > dev->num_tx_queues) 1781 return -EINVAL; 1782 1783 if (dev->reg_state == NETREG_REGISTERED || 1784 dev->reg_state == NETREG_UNREGISTERING) { 1785 ASSERT_RTNL(); 1786 1787 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 1788 txq); 1789 if (rc) 1790 return rc; 1791 1792 if (dev->num_tc) 1793 netif_setup_tc(dev, txq); 1794 1795 if (txq < dev->real_num_tx_queues) 1796 qdisc_reset_all_tx_gt(dev, txq); 1797 } 1798 1799 dev->real_num_tx_queues = txq; 1800 return 0; 1801 } 1802 EXPORT_SYMBOL(netif_set_real_num_tx_queues); 1803 1804 #ifdef CONFIG_RPS 1805 /** 1806 * netif_set_real_num_rx_queues - set actual number of RX queues used 1807 * @dev: Network device 1808 * @rxq: Actual number of RX queues 1809 * 1810 * This must be called either with the rtnl_lock held or before 1811 * registration of the net device. Returns 0 on success, or a 1812 * negative error code. If called before registration, it always 1813 * succeeds. 1814 */ 1815 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 1816 { 1817 int rc; 1818 1819 if (rxq < 1 || rxq > dev->num_rx_queues) 1820 return -EINVAL; 1821 1822 if (dev->reg_state == NETREG_REGISTERED) { 1823 ASSERT_RTNL(); 1824 1825 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 1826 rxq); 1827 if (rc) 1828 return rc; 1829 } 1830 1831 dev->real_num_rx_queues = rxq; 1832 return 0; 1833 } 1834 EXPORT_SYMBOL(netif_set_real_num_rx_queues); 1835 #endif 1836 1837 /** 1838 * netif_get_num_default_rss_queues - default number of RSS queues 1839 * 1840 * This routine should set an upper limit on the number of RSS queues 1841 * used by default by multiqueue devices. 1842 */ 1843 int netif_get_num_default_rss_queues(void) 1844 { 1845 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus()); 1846 } 1847 EXPORT_SYMBOL(netif_get_num_default_rss_queues); 1848 1849 static inline void __netif_reschedule(struct Qdisc *q) 1850 { 1851 struct softnet_data *sd; 1852 unsigned long flags; 1853 1854 local_irq_save(flags); 1855 sd = &__get_cpu_var(softnet_data); 1856 q->next_sched = NULL; 1857 *sd->output_queue_tailp = q; 1858 sd->output_queue_tailp = &q->next_sched; 1859 raise_softirq_irqoff(NET_TX_SOFTIRQ); 1860 local_irq_restore(flags); 1861 } 1862 1863 void __netif_schedule(struct Qdisc *q) 1864 { 1865 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 1866 __netif_reschedule(q); 1867 } 1868 EXPORT_SYMBOL(__netif_schedule); 1869 1870 void dev_kfree_skb_irq(struct sk_buff *skb) 1871 { 1872 if (atomic_dec_and_test(&skb->users)) { 1873 struct softnet_data *sd; 1874 unsigned long flags; 1875 1876 local_irq_save(flags); 1877 sd = &__get_cpu_var(softnet_data); 1878 skb->next = sd->completion_queue; 1879 sd->completion_queue = skb; 1880 raise_softirq_irqoff(NET_TX_SOFTIRQ); 1881 local_irq_restore(flags); 1882 } 1883 } 1884 EXPORT_SYMBOL(dev_kfree_skb_irq); 1885 1886 void dev_kfree_skb_any(struct sk_buff *skb) 1887 { 1888 if (in_irq() || irqs_disabled()) 1889 dev_kfree_skb_irq(skb); 1890 else 1891 dev_kfree_skb(skb); 1892 } 1893 EXPORT_SYMBOL(dev_kfree_skb_any); 1894 1895 1896 /** 1897 * netif_device_detach - mark device as removed 1898 * @dev: network device 1899 * 1900 * Mark device as removed from system and therefore no longer available. 1901 */ 1902 void netif_device_detach(struct net_device *dev) 1903 { 1904 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 1905 netif_running(dev)) { 1906 netif_tx_stop_all_queues(dev); 1907 } 1908 } 1909 EXPORT_SYMBOL(netif_device_detach); 1910 1911 /** 1912 * netif_device_attach - mark device as attached 1913 * @dev: network device 1914 * 1915 * Mark device as attached from system and restart if needed. 1916 */ 1917 void netif_device_attach(struct net_device *dev) 1918 { 1919 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 1920 netif_running(dev)) { 1921 netif_tx_wake_all_queues(dev); 1922 __netdev_watchdog_up(dev); 1923 } 1924 } 1925 EXPORT_SYMBOL(netif_device_attach); 1926 1927 static void skb_warn_bad_offload(const struct sk_buff *skb) 1928 { 1929 static const netdev_features_t null_features = 0; 1930 struct net_device *dev = skb->dev; 1931 const char *driver = ""; 1932 1933 if (dev && dev->dev.parent) 1934 driver = dev_driver_string(dev->dev.parent); 1935 1936 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d " 1937 "gso_type=%d ip_summed=%d\n", 1938 driver, dev ? &dev->features : &null_features, 1939 skb->sk ? &skb->sk->sk_route_caps : &null_features, 1940 skb->len, skb->data_len, skb_shinfo(skb)->gso_size, 1941 skb_shinfo(skb)->gso_type, skb->ip_summed); 1942 } 1943 1944 /* 1945 * Invalidate hardware checksum when packet is to be mangled, and 1946 * complete checksum manually on outgoing path. 1947 */ 1948 int skb_checksum_help(struct sk_buff *skb) 1949 { 1950 __wsum csum; 1951 int ret = 0, offset; 1952 1953 if (skb->ip_summed == CHECKSUM_COMPLETE) 1954 goto out_set_summed; 1955 1956 if (unlikely(skb_shinfo(skb)->gso_size)) { 1957 skb_warn_bad_offload(skb); 1958 return -EINVAL; 1959 } 1960 1961 offset = skb_checksum_start_offset(skb); 1962 BUG_ON(offset >= skb_headlen(skb)); 1963 csum = skb_checksum(skb, offset, skb->len - offset, 0); 1964 1965 offset += skb->csum_offset; 1966 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 1967 1968 if (skb_cloned(skb) && 1969 !skb_clone_writable(skb, offset + sizeof(__sum16))) { 1970 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 1971 if (ret) 1972 goto out; 1973 } 1974 1975 *(__sum16 *)(skb->data + offset) = csum_fold(csum); 1976 out_set_summed: 1977 skb->ip_summed = CHECKSUM_NONE; 1978 out: 1979 return ret; 1980 } 1981 EXPORT_SYMBOL(skb_checksum_help); 1982 1983 /** 1984 * skb_gso_segment - Perform segmentation on skb. 1985 * @skb: buffer to segment 1986 * @features: features for the output path (see dev->features) 1987 * 1988 * This function segments the given skb and returns a list of segments. 1989 * 1990 * It may return NULL if the skb requires no segmentation. This is 1991 * only possible when GSO is used for verifying header integrity. 1992 */ 1993 struct sk_buff *skb_gso_segment(struct sk_buff *skb, 1994 netdev_features_t features) 1995 { 1996 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 1997 struct packet_type *ptype; 1998 __be16 type = skb->protocol; 1999 int vlan_depth = ETH_HLEN; 2000 int err; 2001 2002 while (type == htons(ETH_P_8021Q)) { 2003 struct vlan_hdr *vh; 2004 2005 if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN))) 2006 return ERR_PTR(-EINVAL); 2007 2008 vh = (struct vlan_hdr *)(skb->data + vlan_depth); 2009 type = vh->h_vlan_encapsulated_proto; 2010 vlan_depth += VLAN_HLEN; 2011 } 2012 2013 skb_reset_mac_header(skb); 2014 skb->mac_len = skb->network_header - skb->mac_header; 2015 __skb_pull(skb, skb->mac_len); 2016 2017 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) { 2018 skb_warn_bad_offload(skb); 2019 2020 if (skb_header_cloned(skb) && 2021 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))) 2022 return ERR_PTR(err); 2023 } 2024 2025 rcu_read_lock(); 2026 list_for_each_entry_rcu(ptype, 2027 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) { 2028 if (ptype->type == type && !ptype->dev && ptype->gso_segment) { 2029 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) { 2030 err = ptype->gso_send_check(skb); 2031 segs = ERR_PTR(err); 2032 if (err || skb_gso_ok(skb, features)) 2033 break; 2034 __skb_push(skb, (skb->data - 2035 skb_network_header(skb))); 2036 } 2037 segs = ptype->gso_segment(skb, features); 2038 break; 2039 } 2040 } 2041 rcu_read_unlock(); 2042 2043 __skb_push(skb, skb->data - skb_mac_header(skb)); 2044 2045 return segs; 2046 } 2047 EXPORT_SYMBOL(skb_gso_segment); 2048 2049 /* Take action when hardware reception checksum errors are detected. */ 2050 #ifdef CONFIG_BUG 2051 void netdev_rx_csum_fault(struct net_device *dev) 2052 { 2053 if (net_ratelimit()) { 2054 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>"); 2055 dump_stack(); 2056 } 2057 } 2058 EXPORT_SYMBOL(netdev_rx_csum_fault); 2059 #endif 2060 2061 /* Actually, we should eliminate this check as soon as we know, that: 2062 * 1. IOMMU is present and allows to map all the memory. 2063 * 2. No high memory really exists on this machine. 2064 */ 2065 2066 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 2067 { 2068 #ifdef CONFIG_HIGHMEM 2069 int i; 2070 if (!(dev->features & NETIF_F_HIGHDMA)) { 2071 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2072 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2073 if (PageHighMem(skb_frag_page(frag))) 2074 return 1; 2075 } 2076 } 2077 2078 if (PCI_DMA_BUS_IS_PHYS) { 2079 struct device *pdev = dev->dev.parent; 2080 2081 if (!pdev) 2082 return 0; 2083 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2084 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2085 dma_addr_t addr = page_to_phys(skb_frag_page(frag)); 2086 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask) 2087 return 1; 2088 } 2089 } 2090 #endif 2091 return 0; 2092 } 2093 2094 struct dev_gso_cb { 2095 void (*destructor)(struct sk_buff *skb); 2096 }; 2097 2098 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb) 2099 2100 static void dev_gso_skb_destructor(struct sk_buff *skb) 2101 { 2102 struct dev_gso_cb *cb; 2103 2104 do { 2105 struct sk_buff *nskb = skb->next; 2106 2107 skb->next = nskb->next; 2108 nskb->next = NULL; 2109 kfree_skb(nskb); 2110 } while (skb->next); 2111 2112 cb = DEV_GSO_CB(skb); 2113 if (cb->destructor) 2114 cb->destructor(skb); 2115 } 2116 2117 /** 2118 * dev_gso_segment - Perform emulated hardware segmentation on skb. 2119 * @skb: buffer to segment 2120 * @features: device features as applicable to this skb 2121 * 2122 * This function segments the given skb and stores the list of segments 2123 * in skb->next. 2124 */ 2125 static int dev_gso_segment(struct sk_buff *skb, netdev_features_t features) 2126 { 2127 struct sk_buff *segs; 2128 2129 segs = skb_gso_segment(skb, features); 2130 2131 /* Verifying header integrity only. */ 2132 if (!segs) 2133 return 0; 2134 2135 if (IS_ERR(segs)) 2136 return PTR_ERR(segs); 2137 2138 skb->next = segs; 2139 DEV_GSO_CB(skb)->destructor = skb->destructor; 2140 skb->destructor = dev_gso_skb_destructor; 2141 2142 return 0; 2143 } 2144 2145 static bool can_checksum_protocol(netdev_features_t features, __be16 protocol) 2146 { 2147 return ((features & NETIF_F_GEN_CSUM) || 2148 ((features & NETIF_F_V4_CSUM) && 2149 protocol == htons(ETH_P_IP)) || 2150 ((features & NETIF_F_V6_CSUM) && 2151 protocol == htons(ETH_P_IPV6)) || 2152 ((features & NETIF_F_FCOE_CRC) && 2153 protocol == htons(ETH_P_FCOE))); 2154 } 2155 2156 static netdev_features_t harmonize_features(struct sk_buff *skb, 2157 __be16 protocol, netdev_features_t features) 2158 { 2159 if (skb->ip_summed != CHECKSUM_NONE && 2160 !can_checksum_protocol(features, protocol)) { 2161 features &= ~NETIF_F_ALL_CSUM; 2162 features &= ~NETIF_F_SG; 2163 } else if (illegal_highdma(skb->dev, skb)) { 2164 features &= ~NETIF_F_SG; 2165 } 2166 2167 return features; 2168 } 2169 2170 netdev_features_t netif_skb_features(struct sk_buff *skb) 2171 { 2172 __be16 protocol = skb->protocol; 2173 netdev_features_t features = skb->dev->features; 2174 2175 if (skb_shinfo(skb)->gso_segs > skb->dev->gso_max_segs) 2176 features &= ~NETIF_F_GSO_MASK; 2177 2178 if (protocol == htons(ETH_P_8021Q)) { 2179 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data; 2180 protocol = veh->h_vlan_encapsulated_proto; 2181 } else if (!vlan_tx_tag_present(skb)) { 2182 return harmonize_features(skb, protocol, features); 2183 } 2184 2185 features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_TX); 2186 2187 if (protocol != htons(ETH_P_8021Q)) { 2188 return harmonize_features(skb, protocol, features); 2189 } else { 2190 features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST | 2191 NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_TX; 2192 return harmonize_features(skb, protocol, features); 2193 } 2194 } 2195 EXPORT_SYMBOL(netif_skb_features); 2196 2197 /* 2198 * Returns true if either: 2199 * 1. skb has frag_list and the device doesn't support FRAGLIST, or 2200 * 2. skb is fragmented and the device does not support SG. 2201 */ 2202 static inline int skb_needs_linearize(struct sk_buff *skb, 2203 int features) 2204 { 2205 return skb_is_nonlinear(skb) && 2206 ((skb_has_frag_list(skb) && 2207 !(features & NETIF_F_FRAGLIST)) || 2208 (skb_shinfo(skb)->nr_frags && 2209 !(features & NETIF_F_SG))); 2210 } 2211 2212 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 2213 struct netdev_queue *txq) 2214 { 2215 const struct net_device_ops *ops = dev->netdev_ops; 2216 int rc = NETDEV_TX_OK; 2217 unsigned int skb_len; 2218 2219 if (likely(!skb->next)) { 2220 netdev_features_t features; 2221 2222 /* 2223 * If device doesn't need skb->dst, release it right now while 2224 * its hot in this cpu cache 2225 */ 2226 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 2227 skb_dst_drop(skb); 2228 2229 features = netif_skb_features(skb); 2230 2231 if (vlan_tx_tag_present(skb) && 2232 !(features & NETIF_F_HW_VLAN_TX)) { 2233 skb = __vlan_put_tag(skb, vlan_tx_tag_get(skb)); 2234 if (unlikely(!skb)) 2235 goto out; 2236 2237 skb->vlan_tci = 0; 2238 } 2239 2240 if (netif_needs_gso(skb, features)) { 2241 if (unlikely(dev_gso_segment(skb, features))) 2242 goto out_kfree_skb; 2243 if (skb->next) 2244 goto gso; 2245 } else { 2246 if (skb_needs_linearize(skb, features) && 2247 __skb_linearize(skb)) 2248 goto out_kfree_skb; 2249 2250 /* If packet is not checksummed and device does not 2251 * support checksumming for this protocol, complete 2252 * checksumming here. 2253 */ 2254 if (skb->ip_summed == CHECKSUM_PARTIAL) { 2255 skb_set_transport_header(skb, 2256 skb_checksum_start_offset(skb)); 2257 if (!(features & NETIF_F_ALL_CSUM) && 2258 skb_checksum_help(skb)) 2259 goto out_kfree_skb; 2260 } 2261 } 2262 2263 if (!list_empty(&ptype_all)) 2264 dev_queue_xmit_nit(skb, dev); 2265 2266 skb_len = skb->len; 2267 rc = ops->ndo_start_xmit(skb, dev); 2268 trace_net_dev_xmit(skb, rc, dev, skb_len); 2269 if (rc == NETDEV_TX_OK) 2270 txq_trans_update(txq); 2271 return rc; 2272 } 2273 2274 gso: 2275 do { 2276 struct sk_buff *nskb = skb->next; 2277 2278 skb->next = nskb->next; 2279 nskb->next = NULL; 2280 2281 /* 2282 * If device doesn't need nskb->dst, release it right now while 2283 * its hot in this cpu cache 2284 */ 2285 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 2286 skb_dst_drop(nskb); 2287 2288 if (!list_empty(&ptype_all)) 2289 dev_queue_xmit_nit(nskb, dev); 2290 2291 skb_len = nskb->len; 2292 rc = ops->ndo_start_xmit(nskb, dev); 2293 trace_net_dev_xmit(nskb, rc, dev, skb_len); 2294 if (unlikely(rc != NETDEV_TX_OK)) { 2295 if (rc & ~NETDEV_TX_MASK) 2296 goto out_kfree_gso_skb; 2297 nskb->next = skb->next; 2298 skb->next = nskb; 2299 return rc; 2300 } 2301 txq_trans_update(txq); 2302 if (unlikely(netif_xmit_stopped(txq) && skb->next)) 2303 return NETDEV_TX_BUSY; 2304 } while (skb->next); 2305 2306 out_kfree_gso_skb: 2307 if (likely(skb->next == NULL)) 2308 skb->destructor = DEV_GSO_CB(skb)->destructor; 2309 out_kfree_skb: 2310 kfree_skb(skb); 2311 out: 2312 return rc; 2313 } 2314 2315 static u32 hashrnd __read_mostly; 2316 2317 /* 2318 * Returns a Tx hash based on the given packet descriptor a Tx queues' number 2319 * to be used as a distribution range. 2320 */ 2321 u16 __skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb, 2322 unsigned int num_tx_queues) 2323 { 2324 u32 hash; 2325 u16 qoffset = 0; 2326 u16 qcount = num_tx_queues; 2327 2328 if (skb_rx_queue_recorded(skb)) { 2329 hash = skb_get_rx_queue(skb); 2330 while (unlikely(hash >= num_tx_queues)) 2331 hash -= num_tx_queues; 2332 return hash; 2333 } 2334 2335 if (dev->num_tc) { 2336 u8 tc = netdev_get_prio_tc_map(dev, skb->priority); 2337 qoffset = dev->tc_to_txq[tc].offset; 2338 qcount = dev->tc_to_txq[tc].count; 2339 } 2340 2341 if (skb->sk && skb->sk->sk_hash) 2342 hash = skb->sk->sk_hash; 2343 else 2344 hash = (__force u16) skb->protocol; 2345 hash = jhash_1word(hash, hashrnd); 2346 2347 return (u16) (((u64) hash * qcount) >> 32) + qoffset; 2348 } 2349 EXPORT_SYMBOL(__skb_tx_hash); 2350 2351 static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index) 2352 { 2353 if (unlikely(queue_index >= dev->real_num_tx_queues)) { 2354 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n", 2355 dev->name, queue_index, 2356 dev->real_num_tx_queues); 2357 return 0; 2358 } 2359 return queue_index; 2360 } 2361 2362 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb) 2363 { 2364 #ifdef CONFIG_XPS 2365 struct xps_dev_maps *dev_maps; 2366 struct xps_map *map; 2367 int queue_index = -1; 2368 2369 rcu_read_lock(); 2370 dev_maps = rcu_dereference(dev->xps_maps); 2371 if (dev_maps) { 2372 map = rcu_dereference( 2373 dev_maps->cpu_map[raw_smp_processor_id()]); 2374 if (map) { 2375 if (map->len == 1) 2376 queue_index = map->queues[0]; 2377 else { 2378 u32 hash; 2379 if (skb->sk && skb->sk->sk_hash) 2380 hash = skb->sk->sk_hash; 2381 else 2382 hash = (__force u16) skb->protocol ^ 2383 skb->rxhash; 2384 hash = jhash_1word(hash, hashrnd); 2385 queue_index = map->queues[ 2386 ((u64)hash * map->len) >> 32]; 2387 } 2388 if (unlikely(queue_index >= dev->real_num_tx_queues)) 2389 queue_index = -1; 2390 } 2391 } 2392 rcu_read_unlock(); 2393 2394 return queue_index; 2395 #else 2396 return -1; 2397 #endif 2398 } 2399 2400 struct netdev_queue *netdev_pick_tx(struct net_device *dev, 2401 struct sk_buff *skb) 2402 { 2403 int queue_index; 2404 const struct net_device_ops *ops = dev->netdev_ops; 2405 2406 if (dev->real_num_tx_queues == 1) 2407 queue_index = 0; 2408 else if (ops->ndo_select_queue) { 2409 queue_index = ops->ndo_select_queue(dev, skb); 2410 queue_index = dev_cap_txqueue(dev, queue_index); 2411 } else { 2412 struct sock *sk = skb->sk; 2413 queue_index = sk_tx_queue_get(sk); 2414 2415 if (queue_index < 0 || skb->ooo_okay || 2416 queue_index >= dev->real_num_tx_queues) { 2417 int old_index = queue_index; 2418 2419 queue_index = get_xps_queue(dev, skb); 2420 if (queue_index < 0) 2421 queue_index = skb_tx_hash(dev, skb); 2422 2423 if (queue_index != old_index && sk) { 2424 struct dst_entry *dst = 2425 rcu_dereference_check(sk->sk_dst_cache, 1); 2426 2427 if (dst && skb_dst(skb) == dst) 2428 sk_tx_queue_set(sk, queue_index); 2429 } 2430 } 2431 } 2432 2433 skb_set_queue_mapping(skb, queue_index); 2434 return netdev_get_tx_queue(dev, queue_index); 2435 } 2436 2437 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 2438 struct net_device *dev, 2439 struct netdev_queue *txq) 2440 { 2441 spinlock_t *root_lock = qdisc_lock(q); 2442 bool contended; 2443 int rc; 2444 2445 qdisc_skb_cb(skb)->pkt_len = skb->len; 2446 qdisc_calculate_pkt_len(skb, q); 2447 /* 2448 * Heuristic to force contended enqueues to serialize on a 2449 * separate lock before trying to get qdisc main lock. 2450 * This permits __QDISC_STATE_RUNNING owner to get the lock more often 2451 * and dequeue packets faster. 2452 */ 2453 contended = qdisc_is_running(q); 2454 if (unlikely(contended)) 2455 spin_lock(&q->busylock); 2456 2457 spin_lock(root_lock); 2458 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 2459 kfree_skb(skb); 2460 rc = NET_XMIT_DROP; 2461 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 2462 qdisc_run_begin(q)) { 2463 /* 2464 * This is a work-conserving queue; there are no old skbs 2465 * waiting to be sent out; and the qdisc is not running - 2466 * xmit the skb directly. 2467 */ 2468 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE)) 2469 skb_dst_force(skb); 2470 2471 qdisc_bstats_update(q, skb); 2472 2473 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) { 2474 if (unlikely(contended)) { 2475 spin_unlock(&q->busylock); 2476 contended = false; 2477 } 2478 __qdisc_run(q); 2479 } else 2480 qdisc_run_end(q); 2481 2482 rc = NET_XMIT_SUCCESS; 2483 } else { 2484 skb_dst_force(skb); 2485 rc = q->enqueue(skb, q) & NET_XMIT_MASK; 2486 if (qdisc_run_begin(q)) { 2487 if (unlikely(contended)) { 2488 spin_unlock(&q->busylock); 2489 contended = false; 2490 } 2491 __qdisc_run(q); 2492 } 2493 } 2494 spin_unlock(root_lock); 2495 if (unlikely(contended)) 2496 spin_unlock(&q->busylock); 2497 return rc; 2498 } 2499 2500 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP) 2501 static void skb_update_prio(struct sk_buff *skb) 2502 { 2503 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap); 2504 2505 if (!skb->priority && skb->sk && map) { 2506 unsigned int prioidx = skb->sk->sk_cgrp_prioidx; 2507 2508 if (prioidx < map->priomap_len) 2509 skb->priority = map->priomap[prioidx]; 2510 } 2511 } 2512 #else 2513 #define skb_update_prio(skb) 2514 #endif 2515 2516 static DEFINE_PER_CPU(int, xmit_recursion); 2517 #define RECURSION_LIMIT 10 2518 2519 /** 2520 * dev_loopback_xmit - loop back @skb 2521 * @skb: buffer to transmit 2522 */ 2523 int dev_loopback_xmit(struct sk_buff *skb) 2524 { 2525 skb_reset_mac_header(skb); 2526 __skb_pull(skb, skb_network_offset(skb)); 2527 skb->pkt_type = PACKET_LOOPBACK; 2528 skb->ip_summed = CHECKSUM_UNNECESSARY; 2529 WARN_ON(!skb_dst(skb)); 2530 skb_dst_force(skb); 2531 netif_rx_ni(skb); 2532 return 0; 2533 } 2534 EXPORT_SYMBOL(dev_loopback_xmit); 2535 2536 /** 2537 * dev_queue_xmit - transmit a buffer 2538 * @skb: buffer to transmit 2539 * 2540 * Queue a buffer for transmission to a network device. The caller must 2541 * have set the device and priority and built the buffer before calling 2542 * this function. The function can be called from an interrupt. 2543 * 2544 * A negative errno code is returned on a failure. A success does not 2545 * guarantee the frame will be transmitted as it may be dropped due 2546 * to congestion or traffic shaping. 2547 * 2548 * ----------------------------------------------------------------------------------- 2549 * I notice this method can also return errors from the queue disciplines, 2550 * including NET_XMIT_DROP, which is a positive value. So, errors can also 2551 * be positive. 2552 * 2553 * Regardless of the return value, the skb is consumed, so it is currently 2554 * difficult to retry a send to this method. (You can bump the ref count 2555 * before sending to hold a reference for retry if you are careful.) 2556 * 2557 * When calling this method, interrupts MUST be enabled. This is because 2558 * the BH enable code must have IRQs enabled so that it will not deadlock. 2559 * --BLG 2560 */ 2561 int dev_queue_xmit(struct sk_buff *skb) 2562 { 2563 struct net_device *dev = skb->dev; 2564 struct netdev_queue *txq; 2565 struct Qdisc *q; 2566 int rc = -ENOMEM; 2567 2568 /* Disable soft irqs for various locks below. Also 2569 * stops preemption for RCU. 2570 */ 2571 rcu_read_lock_bh(); 2572 2573 skb_update_prio(skb); 2574 2575 txq = netdev_pick_tx(dev, skb); 2576 q = rcu_dereference_bh(txq->qdisc); 2577 2578 #ifdef CONFIG_NET_CLS_ACT 2579 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS); 2580 #endif 2581 trace_net_dev_queue(skb); 2582 if (q->enqueue) { 2583 rc = __dev_xmit_skb(skb, q, dev, txq); 2584 goto out; 2585 } 2586 2587 /* The device has no queue. Common case for software devices: 2588 loopback, all the sorts of tunnels... 2589 2590 Really, it is unlikely that netif_tx_lock protection is necessary 2591 here. (f.e. loopback and IP tunnels are clean ignoring statistics 2592 counters.) 2593 However, it is possible, that they rely on protection 2594 made by us here. 2595 2596 Check this and shot the lock. It is not prone from deadlocks. 2597 Either shot noqueue qdisc, it is even simpler 8) 2598 */ 2599 if (dev->flags & IFF_UP) { 2600 int cpu = smp_processor_id(); /* ok because BHs are off */ 2601 2602 if (txq->xmit_lock_owner != cpu) { 2603 2604 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT) 2605 goto recursion_alert; 2606 2607 HARD_TX_LOCK(dev, txq, cpu); 2608 2609 if (!netif_xmit_stopped(txq)) { 2610 __this_cpu_inc(xmit_recursion); 2611 rc = dev_hard_start_xmit(skb, dev, txq); 2612 __this_cpu_dec(xmit_recursion); 2613 if (dev_xmit_complete(rc)) { 2614 HARD_TX_UNLOCK(dev, txq); 2615 goto out; 2616 } 2617 } 2618 HARD_TX_UNLOCK(dev, txq); 2619 net_crit_ratelimited("Virtual device %s asks to queue packet!\n", 2620 dev->name); 2621 } else { 2622 /* Recursion is detected! It is possible, 2623 * unfortunately 2624 */ 2625 recursion_alert: 2626 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n", 2627 dev->name); 2628 } 2629 } 2630 2631 rc = -ENETDOWN; 2632 rcu_read_unlock_bh(); 2633 2634 kfree_skb(skb); 2635 return rc; 2636 out: 2637 rcu_read_unlock_bh(); 2638 return rc; 2639 } 2640 EXPORT_SYMBOL(dev_queue_xmit); 2641 2642 2643 /*======================================================================= 2644 Receiver routines 2645 =======================================================================*/ 2646 2647 int netdev_max_backlog __read_mostly = 1000; 2648 EXPORT_SYMBOL(netdev_max_backlog); 2649 2650 int netdev_tstamp_prequeue __read_mostly = 1; 2651 int netdev_budget __read_mostly = 300; 2652 int weight_p __read_mostly = 64; /* old backlog weight */ 2653 2654 /* Called with irq disabled */ 2655 static inline void ____napi_schedule(struct softnet_data *sd, 2656 struct napi_struct *napi) 2657 { 2658 list_add_tail(&napi->poll_list, &sd->poll_list); 2659 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 2660 } 2661 2662 /* 2663 * __skb_get_rxhash: calculate a flow hash based on src/dst addresses 2664 * and src/dst port numbers. Sets rxhash in skb to non-zero hash value 2665 * on success, zero indicates no valid hash. Also, sets l4_rxhash in skb 2666 * if hash is a canonical 4-tuple hash over transport ports. 2667 */ 2668 void __skb_get_rxhash(struct sk_buff *skb) 2669 { 2670 struct flow_keys keys; 2671 u32 hash; 2672 2673 if (!skb_flow_dissect(skb, &keys)) 2674 return; 2675 2676 if (keys.ports) 2677 skb->l4_rxhash = 1; 2678 2679 /* get a consistent hash (same value on both flow directions) */ 2680 if (((__force u32)keys.dst < (__force u32)keys.src) || 2681 (((__force u32)keys.dst == (__force u32)keys.src) && 2682 ((__force u16)keys.port16[1] < (__force u16)keys.port16[0]))) { 2683 swap(keys.dst, keys.src); 2684 swap(keys.port16[0], keys.port16[1]); 2685 } 2686 2687 hash = jhash_3words((__force u32)keys.dst, 2688 (__force u32)keys.src, 2689 (__force u32)keys.ports, hashrnd); 2690 if (!hash) 2691 hash = 1; 2692 2693 skb->rxhash = hash; 2694 } 2695 EXPORT_SYMBOL(__skb_get_rxhash); 2696 2697 #ifdef CONFIG_RPS 2698 2699 /* One global table that all flow-based protocols share. */ 2700 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly; 2701 EXPORT_SYMBOL(rps_sock_flow_table); 2702 2703 struct static_key rps_needed __read_mostly; 2704 2705 static struct rps_dev_flow * 2706 set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 2707 struct rps_dev_flow *rflow, u16 next_cpu) 2708 { 2709 if (next_cpu != RPS_NO_CPU) { 2710 #ifdef CONFIG_RFS_ACCEL 2711 struct netdev_rx_queue *rxqueue; 2712 struct rps_dev_flow_table *flow_table; 2713 struct rps_dev_flow *old_rflow; 2714 u32 flow_id; 2715 u16 rxq_index; 2716 int rc; 2717 2718 /* Should we steer this flow to a different hardware queue? */ 2719 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 2720 !(dev->features & NETIF_F_NTUPLE)) 2721 goto out; 2722 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 2723 if (rxq_index == skb_get_rx_queue(skb)) 2724 goto out; 2725 2726 rxqueue = dev->_rx + rxq_index; 2727 flow_table = rcu_dereference(rxqueue->rps_flow_table); 2728 if (!flow_table) 2729 goto out; 2730 flow_id = skb->rxhash & flow_table->mask; 2731 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 2732 rxq_index, flow_id); 2733 if (rc < 0) 2734 goto out; 2735 old_rflow = rflow; 2736 rflow = &flow_table->flows[flow_id]; 2737 rflow->filter = rc; 2738 if (old_rflow->filter == rflow->filter) 2739 old_rflow->filter = RPS_NO_FILTER; 2740 out: 2741 #endif 2742 rflow->last_qtail = 2743 per_cpu(softnet_data, next_cpu).input_queue_head; 2744 } 2745 2746 rflow->cpu = next_cpu; 2747 return rflow; 2748 } 2749 2750 /* 2751 * get_rps_cpu is called from netif_receive_skb and returns the target 2752 * CPU from the RPS map of the receiving queue for a given skb. 2753 * rcu_read_lock must be held on entry. 2754 */ 2755 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 2756 struct rps_dev_flow **rflowp) 2757 { 2758 struct netdev_rx_queue *rxqueue; 2759 struct rps_map *map; 2760 struct rps_dev_flow_table *flow_table; 2761 struct rps_sock_flow_table *sock_flow_table; 2762 int cpu = -1; 2763 u16 tcpu; 2764 2765 if (skb_rx_queue_recorded(skb)) { 2766 u16 index = skb_get_rx_queue(skb); 2767 if (unlikely(index >= dev->real_num_rx_queues)) { 2768 WARN_ONCE(dev->real_num_rx_queues > 1, 2769 "%s received packet on queue %u, but number " 2770 "of RX queues is %u\n", 2771 dev->name, index, dev->real_num_rx_queues); 2772 goto done; 2773 } 2774 rxqueue = dev->_rx + index; 2775 } else 2776 rxqueue = dev->_rx; 2777 2778 map = rcu_dereference(rxqueue->rps_map); 2779 if (map) { 2780 if (map->len == 1 && 2781 !rcu_access_pointer(rxqueue->rps_flow_table)) { 2782 tcpu = map->cpus[0]; 2783 if (cpu_online(tcpu)) 2784 cpu = tcpu; 2785 goto done; 2786 } 2787 } else if (!rcu_access_pointer(rxqueue->rps_flow_table)) { 2788 goto done; 2789 } 2790 2791 skb_reset_network_header(skb); 2792 if (!skb_get_rxhash(skb)) 2793 goto done; 2794 2795 flow_table = rcu_dereference(rxqueue->rps_flow_table); 2796 sock_flow_table = rcu_dereference(rps_sock_flow_table); 2797 if (flow_table && sock_flow_table) { 2798 u16 next_cpu; 2799 struct rps_dev_flow *rflow; 2800 2801 rflow = &flow_table->flows[skb->rxhash & flow_table->mask]; 2802 tcpu = rflow->cpu; 2803 2804 next_cpu = sock_flow_table->ents[skb->rxhash & 2805 sock_flow_table->mask]; 2806 2807 /* 2808 * If the desired CPU (where last recvmsg was done) is 2809 * different from current CPU (one in the rx-queue flow 2810 * table entry), switch if one of the following holds: 2811 * - Current CPU is unset (equal to RPS_NO_CPU). 2812 * - Current CPU is offline. 2813 * - The current CPU's queue tail has advanced beyond the 2814 * last packet that was enqueued using this table entry. 2815 * This guarantees that all previous packets for the flow 2816 * have been dequeued, thus preserving in order delivery. 2817 */ 2818 if (unlikely(tcpu != next_cpu) && 2819 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) || 2820 ((int)(per_cpu(softnet_data, tcpu).input_queue_head - 2821 rflow->last_qtail)) >= 0)) { 2822 tcpu = next_cpu; 2823 rflow = set_rps_cpu(dev, skb, rflow, next_cpu); 2824 } 2825 2826 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) { 2827 *rflowp = rflow; 2828 cpu = tcpu; 2829 goto done; 2830 } 2831 } 2832 2833 if (map) { 2834 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32]; 2835 2836 if (cpu_online(tcpu)) { 2837 cpu = tcpu; 2838 goto done; 2839 } 2840 } 2841 2842 done: 2843 return cpu; 2844 } 2845 2846 #ifdef CONFIG_RFS_ACCEL 2847 2848 /** 2849 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 2850 * @dev: Device on which the filter was set 2851 * @rxq_index: RX queue index 2852 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 2853 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 2854 * 2855 * Drivers that implement ndo_rx_flow_steer() should periodically call 2856 * this function for each installed filter and remove the filters for 2857 * which it returns %true. 2858 */ 2859 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 2860 u32 flow_id, u16 filter_id) 2861 { 2862 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 2863 struct rps_dev_flow_table *flow_table; 2864 struct rps_dev_flow *rflow; 2865 bool expire = true; 2866 int cpu; 2867 2868 rcu_read_lock(); 2869 flow_table = rcu_dereference(rxqueue->rps_flow_table); 2870 if (flow_table && flow_id <= flow_table->mask) { 2871 rflow = &flow_table->flows[flow_id]; 2872 cpu = ACCESS_ONCE(rflow->cpu); 2873 if (rflow->filter == filter_id && cpu != RPS_NO_CPU && 2874 ((int)(per_cpu(softnet_data, cpu).input_queue_head - 2875 rflow->last_qtail) < 2876 (int)(10 * flow_table->mask))) 2877 expire = false; 2878 } 2879 rcu_read_unlock(); 2880 return expire; 2881 } 2882 EXPORT_SYMBOL(rps_may_expire_flow); 2883 2884 #endif /* CONFIG_RFS_ACCEL */ 2885 2886 /* Called from hardirq (IPI) context */ 2887 static void rps_trigger_softirq(void *data) 2888 { 2889 struct softnet_data *sd = data; 2890 2891 ____napi_schedule(sd, &sd->backlog); 2892 sd->received_rps++; 2893 } 2894 2895 #endif /* CONFIG_RPS */ 2896 2897 /* 2898 * Check if this softnet_data structure is another cpu one 2899 * If yes, queue it to our IPI list and return 1 2900 * If no, return 0 2901 */ 2902 static int rps_ipi_queued(struct softnet_data *sd) 2903 { 2904 #ifdef CONFIG_RPS 2905 struct softnet_data *mysd = &__get_cpu_var(softnet_data); 2906 2907 if (sd != mysd) { 2908 sd->rps_ipi_next = mysd->rps_ipi_list; 2909 mysd->rps_ipi_list = sd; 2910 2911 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 2912 return 1; 2913 } 2914 #endif /* CONFIG_RPS */ 2915 return 0; 2916 } 2917 2918 /* 2919 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 2920 * queue (may be a remote CPU queue). 2921 */ 2922 static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 2923 unsigned int *qtail) 2924 { 2925 struct softnet_data *sd; 2926 unsigned long flags; 2927 2928 sd = &per_cpu(softnet_data, cpu); 2929 2930 local_irq_save(flags); 2931 2932 rps_lock(sd); 2933 if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) { 2934 if (skb_queue_len(&sd->input_pkt_queue)) { 2935 enqueue: 2936 __skb_queue_tail(&sd->input_pkt_queue, skb); 2937 input_queue_tail_incr_save(sd, qtail); 2938 rps_unlock(sd); 2939 local_irq_restore(flags); 2940 return NET_RX_SUCCESS; 2941 } 2942 2943 /* Schedule NAPI for backlog device 2944 * We can use non atomic operation since we own the queue lock 2945 */ 2946 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) { 2947 if (!rps_ipi_queued(sd)) 2948 ____napi_schedule(sd, &sd->backlog); 2949 } 2950 goto enqueue; 2951 } 2952 2953 sd->dropped++; 2954 rps_unlock(sd); 2955 2956 local_irq_restore(flags); 2957 2958 atomic_long_inc(&skb->dev->rx_dropped); 2959 kfree_skb(skb); 2960 return NET_RX_DROP; 2961 } 2962 2963 /** 2964 * netif_rx - post buffer to the network code 2965 * @skb: buffer to post 2966 * 2967 * This function receives a packet from a device driver and queues it for 2968 * the upper (protocol) levels to process. It always succeeds. The buffer 2969 * may be dropped during processing for congestion control or by the 2970 * protocol layers. 2971 * 2972 * return values: 2973 * NET_RX_SUCCESS (no congestion) 2974 * NET_RX_DROP (packet was dropped) 2975 * 2976 */ 2977 2978 int netif_rx(struct sk_buff *skb) 2979 { 2980 int ret; 2981 2982 /* if netpoll wants it, pretend we never saw it */ 2983 if (netpoll_rx(skb)) 2984 return NET_RX_DROP; 2985 2986 net_timestamp_check(netdev_tstamp_prequeue, skb); 2987 2988 trace_netif_rx(skb); 2989 #ifdef CONFIG_RPS 2990 if (static_key_false(&rps_needed)) { 2991 struct rps_dev_flow voidflow, *rflow = &voidflow; 2992 int cpu; 2993 2994 preempt_disable(); 2995 rcu_read_lock(); 2996 2997 cpu = get_rps_cpu(skb->dev, skb, &rflow); 2998 if (cpu < 0) 2999 cpu = smp_processor_id(); 3000 3001 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 3002 3003 rcu_read_unlock(); 3004 preempt_enable(); 3005 } else 3006 #endif 3007 { 3008 unsigned int qtail; 3009 ret = enqueue_to_backlog(skb, get_cpu(), &qtail); 3010 put_cpu(); 3011 } 3012 return ret; 3013 } 3014 EXPORT_SYMBOL(netif_rx); 3015 3016 int netif_rx_ni(struct sk_buff *skb) 3017 { 3018 int err; 3019 3020 preempt_disable(); 3021 err = netif_rx(skb); 3022 if (local_softirq_pending()) 3023 do_softirq(); 3024 preempt_enable(); 3025 3026 return err; 3027 } 3028 EXPORT_SYMBOL(netif_rx_ni); 3029 3030 static void net_tx_action(struct softirq_action *h) 3031 { 3032 struct softnet_data *sd = &__get_cpu_var(softnet_data); 3033 3034 if (sd->completion_queue) { 3035 struct sk_buff *clist; 3036 3037 local_irq_disable(); 3038 clist = sd->completion_queue; 3039 sd->completion_queue = NULL; 3040 local_irq_enable(); 3041 3042 while (clist) { 3043 struct sk_buff *skb = clist; 3044 clist = clist->next; 3045 3046 WARN_ON(atomic_read(&skb->users)); 3047 trace_kfree_skb(skb, net_tx_action); 3048 __kfree_skb(skb); 3049 } 3050 } 3051 3052 if (sd->output_queue) { 3053 struct Qdisc *head; 3054 3055 local_irq_disable(); 3056 head = sd->output_queue; 3057 sd->output_queue = NULL; 3058 sd->output_queue_tailp = &sd->output_queue; 3059 local_irq_enable(); 3060 3061 while (head) { 3062 struct Qdisc *q = head; 3063 spinlock_t *root_lock; 3064 3065 head = head->next_sched; 3066 3067 root_lock = qdisc_lock(q); 3068 if (spin_trylock(root_lock)) { 3069 smp_mb__before_clear_bit(); 3070 clear_bit(__QDISC_STATE_SCHED, 3071 &q->state); 3072 qdisc_run(q); 3073 spin_unlock(root_lock); 3074 } else { 3075 if (!test_bit(__QDISC_STATE_DEACTIVATED, 3076 &q->state)) { 3077 __netif_reschedule(q); 3078 } else { 3079 smp_mb__before_clear_bit(); 3080 clear_bit(__QDISC_STATE_SCHED, 3081 &q->state); 3082 } 3083 } 3084 } 3085 } 3086 } 3087 3088 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \ 3089 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE)) 3090 /* This hook is defined here for ATM LANE */ 3091 int (*br_fdb_test_addr_hook)(struct net_device *dev, 3092 unsigned char *addr) __read_mostly; 3093 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 3094 #endif 3095 3096 #ifdef CONFIG_NET_CLS_ACT 3097 /* TODO: Maybe we should just force sch_ingress to be compiled in 3098 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions 3099 * a compare and 2 stores extra right now if we dont have it on 3100 * but have CONFIG_NET_CLS_ACT 3101 * NOTE: This doesn't stop any functionality; if you dont have 3102 * the ingress scheduler, you just can't add policies on ingress. 3103 * 3104 */ 3105 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq) 3106 { 3107 struct net_device *dev = skb->dev; 3108 u32 ttl = G_TC_RTTL(skb->tc_verd); 3109 int result = TC_ACT_OK; 3110 struct Qdisc *q; 3111 3112 if (unlikely(MAX_RED_LOOP < ttl++)) { 3113 net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n", 3114 skb->skb_iif, dev->ifindex); 3115 return TC_ACT_SHOT; 3116 } 3117 3118 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl); 3119 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS); 3120 3121 q = rxq->qdisc; 3122 if (q != &noop_qdisc) { 3123 spin_lock(qdisc_lock(q)); 3124 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) 3125 result = qdisc_enqueue_root(skb, q); 3126 spin_unlock(qdisc_lock(q)); 3127 } 3128 3129 return result; 3130 } 3131 3132 static inline struct sk_buff *handle_ing(struct sk_buff *skb, 3133 struct packet_type **pt_prev, 3134 int *ret, struct net_device *orig_dev) 3135 { 3136 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue); 3137 3138 if (!rxq || rxq->qdisc == &noop_qdisc) 3139 goto out; 3140 3141 if (*pt_prev) { 3142 *ret = deliver_skb(skb, *pt_prev, orig_dev); 3143 *pt_prev = NULL; 3144 } 3145 3146 switch (ing_filter(skb, rxq)) { 3147 case TC_ACT_SHOT: 3148 case TC_ACT_STOLEN: 3149 kfree_skb(skb); 3150 return NULL; 3151 } 3152 3153 out: 3154 skb->tc_verd = 0; 3155 return skb; 3156 } 3157 #endif 3158 3159 /** 3160 * netdev_rx_handler_register - register receive handler 3161 * @dev: device to register a handler for 3162 * @rx_handler: receive handler to register 3163 * @rx_handler_data: data pointer that is used by rx handler 3164 * 3165 * Register a receive hander for a device. This handler will then be 3166 * called from __netif_receive_skb. A negative errno code is returned 3167 * on a failure. 3168 * 3169 * The caller must hold the rtnl_mutex. 3170 * 3171 * For a general description of rx_handler, see enum rx_handler_result. 3172 */ 3173 int netdev_rx_handler_register(struct net_device *dev, 3174 rx_handler_func_t *rx_handler, 3175 void *rx_handler_data) 3176 { 3177 ASSERT_RTNL(); 3178 3179 if (dev->rx_handler) 3180 return -EBUSY; 3181 3182 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 3183 rcu_assign_pointer(dev->rx_handler, rx_handler); 3184 3185 return 0; 3186 } 3187 EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 3188 3189 /** 3190 * netdev_rx_handler_unregister - unregister receive handler 3191 * @dev: device to unregister a handler from 3192 * 3193 * Unregister a receive hander from a device. 3194 * 3195 * The caller must hold the rtnl_mutex. 3196 */ 3197 void netdev_rx_handler_unregister(struct net_device *dev) 3198 { 3199 3200 ASSERT_RTNL(); 3201 RCU_INIT_POINTER(dev->rx_handler, NULL); 3202 RCU_INIT_POINTER(dev->rx_handler_data, NULL); 3203 } 3204 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 3205 3206 /* 3207 * Limit the use of PFMEMALLOC reserves to those protocols that implement 3208 * the special handling of PFMEMALLOC skbs. 3209 */ 3210 static bool skb_pfmemalloc_protocol(struct sk_buff *skb) 3211 { 3212 switch (skb->protocol) { 3213 case __constant_htons(ETH_P_ARP): 3214 case __constant_htons(ETH_P_IP): 3215 case __constant_htons(ETH_P_IPV6): 3216 case __constant_htons(ETH_P_8021Q): 3217 return true; 3218 default: 3219 return false; 3220 } 3221 } 3222 3223 static int __netif_receive_skb(struct sk_buff *skb) 3224 { 3225 struct packet_type *ptype, *pt_prev; 3226 rx_handler_func_t *rx_handler; 3227 struct net_device *orig_dev; 3228 struct net_device *null_or_dev; 3229 bool deliver_exact = false; 3230 int ret = NET_RX_DROP; 3231 __be16 type; 3232 unsigned long pflags = current->flags; 3233 3234 net_timestamp_check(!netdev_tstamp_prequeue, skb); 3235 3236 trace_netif_receive_skb(skb); 3237 3238 /* 3239 * PFMEMALLOC skbs are special, they should 3240 * - be delivered to SOCK_MEMALLOC sockets only 3241 * - stay away from userspace 3242 * - have bounded memory usage 3243 * 3244 * Use PF_MEMALLOC as this saves us from propagating the allocation 3245 * context down to all allocation sites. 3246 */ 3247 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) 3248 current->flags |= PF_MEMALLOC; 3249 3250 /* if we've gotten here through NAPI, check netpoll */ 3251 if (netpoll_receive_skb(skb)) 3252 goto out; 3253 3254 orig_dev = skb->dev; 3255 3256 skb_reset_network_header(skb); 3257 skb_reset_transport_header(skb); 3258 skb_reset_mac_len(skb); 3259 3260 pt_prev = NULL; 3261 3262 rcu_read_lock(); 3263 3264 another_round: 3265 skb->skb_iif = skb->dev->ifindex; 3266 3267 __this_cpu_inc(softnet_data.processed); 3268 3269 if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) { 3270 skb = vlan_untag(skb); 3271 if (unlikely(!skb)) 3272 goto unlock; 3273 } 3274 3275 #ifdef CONFIG_NET_CLS_ACT 3276 if (skb->tc_verd & TC_NCLS) { 3277 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd); 3278 goto ncls; 3279 } 3280 #endif 3281 3282 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) 3283 goto skip_taps; 3284 3285 list_for_each_entry_rcu(ptype, &ptype_all, list) { 3286 if (!ptype->dev || ptype->dev == skb->dev) { 3287 if (pt_prev) 3288 ret = deliver_skb(skb, pt_prev, orig_dev); 3289 pt_prev = ptype; 3290 } 3291 } 3292 3293 skip_taps: 3294 #ifdef CONFIG_NET_CLS_ACT 3295 skb = handle_ing(skb, &pt_prev, &ret, orig_dev); 3296 if (!skb) 3297 goto unlock; 3298 ncls: 3299 #endif 3300 3301 if (sk_memalloc_socks() && skb_pfmemalloc(skb) 3302 && !skb_pfmemalloc_protocol(skb)) 3303 goto drop; 3304 3305 if (vlan_tx_tag_present(skb)) { 3306 if (pt_prev) { 3307 ret = deliver_skb(skb, pt_prev, orig_dev); 3308 pt_prev = NULL; 3309 } 3310 if (vlan_do_receive(&skb)) 3311 goto another_round; 3312 else if (unlikely(!skb)) 3313 goto unlock; 3314 } 3315 3316 rx_handler = rcu_dereference(skb->dev->rx_handler); 3317 if (rx_handler) { 3318 if (pt_prev) { 3319 ret = deliver_skb(skb, pt_prev, orig_dev); 3320 pt_prev = NULL; 3321 } 3322 switch (rx_handler(&skb)) { 3323 case RX_HANDLER_CONSUMED: 3324 goto unlock; 3325 case RX_HANDLER_ANOTHER: 3326 goto another_round; 3327 case RX_HANDLER_EXACT: 3328 deliver_exact = true; 3329 case RX_HANDLER_PASS: 3330 break; 3331 default: 3332 BUG(); 3333 } 3334 } 3335 3336 if (vlan_tx_nonzero_tag_present(skb)) 3337 skb->pkt_type = PACKET_OTHERHOST; 3338 3339 /* deliver only exact match when indicated */ 3340 null_or_dev = deliver_exact ? skb->dev : NULL; 3341 3342 type = skb->protocol; 3343 list_for_each_entry_rcu(ptype, 3344 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) { 3345 if (ptype->type == type && 3346 (ptype->dev == null_or_dev || ptype->dev == skb->dev || 3347 ptype->dev == orig_dev)) { 3348 if (pt_prev) 3349 ret = deliver_skb(skb, pt_prev, orig_dev); 3350 pt_prev = ptype; 3351 } 3352 } 3353 3354 if (pt_prev) { 3355 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC))) 3356 goto drop; 3357 else 3358 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 3359 } else { 3360 drop: 3361 atomic_long_inc(&skb->dev->rx_dropped); 3362 kfree_skb(skb); 3363 /* Jamal, now you will not able to escape explaining 3364 * me how you were going to use this. :-) 3365 */ 3366 ret = NET_RX_DROP; 3367 } 3368 3369 unlock: 3370 rcu_read_unlock(); 3371 out: 3372 tsk_restore_flags(current, pflags, PF_MEMALLOC); 3373 return ret; 3374 } 3375 3376 /** 3377 * netif_receive_skb - process receive buffer from network 3378 * @skb: buffer to process 3379 * 3380 * netif_receive_skb() is the main receive data processing function. 3381 * It always succeeds. The buffer may be dropped during processing 3382 * for congestion control or by the protocol layers. 3383 * 3384 * This function may only be called from softirq context and interrupts 3385 * should be enabled. 3386 * 3387 * Return values (usually ignored): 3388 * NET_RX_SUCCESS: no congestion 3389 * NET_RX_DROP: packet was dropped 3390 */ 3391 int netif_receive_skb(struct sk_buff *skb) 3392 { 3393 net_timestamp_check(netdev_tstamp_prequeue, skb); 3394 3395 if (skb_defer_rx_timestamp(skb)) 3396 return NET_RX_SUCCESS; 3397 3398 #ifdef CONFIG_RPS 3399 if (static_key_false(&rps_needed)) { 3400 struct rps_dev_flow voidflow, *rflow = &voidflow; 3401 int cpu, ret; 3402 3403 rcu_read_lock(); 3404 3405 cpu = get_rps_cpu(skb->dev, skb, &rflow); 3406 3407 if (cpu >= 0) { 3408 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 3409 rcu_read_unlock(); 3410 return ret; 3411 } 3412 rcu_read_unlock(); 3413 } 3414 #endif 3415 return __netif_receive_skb(skb); 3416 } 3417 EXPORT_SYMBOL(netif_receive_skb); 3418 3419 /* Network device is going away, flush any packets still pending 3420 * Called with irqs disabled. 3421 */ 3422 static void flush_backlog(void *arg) 3423 { 3424 struct net_device *dev = arg; 3425 struct softnet_data *sd = &__get_cpu_var(softnet_data); 3426 struct sk_buff *skb, *tmp; 3427 3428 rps_lock(sd); 3429 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 3430 if (skb->dev == dev) { 3431 __skb_unlink(skb, &sd->input_pkt_queue); 3432 kfree_skb(skb); 3433 input_queue_head_incr(sd); 3434 } 3435 } 3436 rps_unlock(sd); 3437 3438 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 3439 if (skb->dev == dev) { 3440 __skb_unlink(skb, &sd->process_queue); 3441 kfree_skb(skb); 3442 input_queue_head_incr(sd); 3443 } 3444 } 3445 } 3446 3447 static int napi_gro_complete(struct sk_buff *skb) 3448 { 3449 struct packet_type *ptype; 3450 __be16 type = skb->protocol; 3451 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK]; 3452 int err = -ENOENT; 3453 3454 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb)); 3455 3456 if (NAPI_GRO_CB(skb)->count == 1) { 3457 skb_shinfo(skb)->gso_size = 0; 3458 goto out; 3459 } 3460 3461 rcu_read_lock(); 3462 list_for_each_entry_rcu(ptype, head, list) { 3463 if (ptype->type != type || ptype->dev || !ptype->gro_complete) 3464 continue; 3465 3466 err = ptype->gro_complete(skb); 3467 break; 3468 } 3469 rcu_read_unlock(); 3470 3471 if (err) { 3472 WARN_ON(&ptype->list == head); 3473 kfree_skb(skb); 3474 return NET_RX_SUCCESS; 3475 } 3476 3477 out: 3478 return netif_receive_skb(skb); 3479 } 3480 3481 /* napi->gro_list contains packets ordered by age. 3482 * youngest packets at the head of it. 3483 * Complete skbs in reverse order to reduce latencies. 3484 */ 3485 void napi_gro_flush(struct napi_struct *napi, bool flush_old) 3486 { 3487 struct sk_buff *skb, *prev = NULL; 3488 3489 /* scan list and build reverse chain */ 3490 for (skb = napi->gro_list; skb != NULL; skb = skb->next) { 3491 skb->prev = prev; 3492 prev = skb; 3493 } 3494 3495 for (skb = prev; skb; skb = prev) { 3496 skb->next = NULL; 3497 3498 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies) 3499 return; 3500 3501 prev = skb->prev; 3502 napi_gro_complete(skb); 3503 napi->gro_count--; 3504 } 3505 3506 napi->gro_list = NULL; 3507 } 3508 EXPORT_SYMBOL(napi_gro_flush); 3509 3510 enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 3511 { 3512 struct sk_buff **pp = NULL; 3513 struct packet_type *ptype; 3514 __be16 type = skb->protocol; 3515 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK]; 3516 int same_flow; 3517 int mac_len; 3518 enum gro_result ret; 3519 3520 if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb)) 3521 goto normal; 3522 3523 if (skb_is_gso(skb) || skb_has_frag_list(skb)) 3524 goto normal; 3525 3526 rcu_read_lock(); 3527 list_for_each_entry_rcu(ptype, head, list) { 3528 if (ptype->type != type || ptype->dev || !ptype->gro_receive) 3529 continue; 3530 3531 skb_set_network_header(skb, skb_gro_offset(skb)); 3532 mac_len = skb->network_header - skb->mac_header; 3533 skb->mac_len = mac_len; 3534 NAPI_GRO_CB(skb)->same_flow = 0; 3535 NAPI_GRO_CB(skb)->flush = 0; 3536 NAPI_GRO_CB(skb)->free = 0; 3537 3538 pp = ptype->gro_receive(&napi->gro_list, skb); 3539 break; 3540 } 3541 rcu_read_unlock(); 3542 3543 if (&ptype->list == head) 3544 goto normal; 3545 3546 same_flow = NAPI_GRO_CB(skb)->same_flow; 3547 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED; 3548 3549 if (pp) { 3550 struct sk_buff *nskb = *pp; 3551 3552 *pp = nskb->next; 3553 nskb->next = NULL; 3554 napi_gro_complete(nskb); 3555 napi->gro_count--; 3556 } 3557 3558 if (same_flow) 3559 goto ok; 3560 3561 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS) 3562 goto normal; 3563 3564 napi->gro_count++; 3565 NAPI_GRO_CB(skb)->count = 1; 3566 NAPI_GRO_CB(skb)->age = jiffies; 3567 skb_shinfo(skb)->gso_size = skb_gro_len(skb); 3568 skb->next = napi->gro_list; 3569 napi->gro_list = skb; 3570 ret = GRO_HELD; 3571 3572 pull: 3573 if (skb_headlen(skb) < skb_gro_offset(skb)) { 3574 int grow = skb_gro_offset(skb) - skb_headlen(skb); 3575 3576 BUG_ON(skb->end - skb->tail < grow); 3577 3578 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow); 3579 3580 skb->tail += grow; 3581 skb->data_len -= grow; 3582 3583 skb_shinfo(skb)->frags[0].page_offset += grow; 3584 skb_frag_size_sub(&skb_shinfo(skb)->frags[0], grow); 3585 3586 if (unlikely(!skb_frag_size(&skb_shinfo(skb)->frags[0]))) { 3587 skb_frag_unref(skb, 0); 3588 memmove(skb_shinfo(skb)->frags, 3589 skb_shinfo(skb)->frags + 1, 3590 --skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t)); 3591 } 3592 } 3593 3594 ok: 3595 return ret; 3596 3597 normal: 3598 ret = GRO_NORMAL; 3599 goto pull; 3600 } 3601 EXPORT_SYMBOL(dev_gro_receive); 3602 3603 static inline gro_result_t 3604 __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 3605 { 3606 struct sk_buff *p; 3607 unsigned int maclen = skb->dev->hard_header_len; 3608 3609 for (p = napi->gro_list; p; p = p->next) { 3610 unsigned long diffs; 3611 3612 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev; 3613 diffs |= p->vlan_tci ^ skb->vlan_tci; 3614 if (maclen == ETH_HLEN) 3615 diffs |= compare_ether_header(skb_mac_header(p), 3616 skb_gro_mac_header(skb)); 3617 else if (!diffs) 3618 diffs = memcmp(skb_mac_header(p), 3619 skb_gro_mac_header(skb), 3620 maclen); 3621 NAPI_GRO_CB(p)->same_flow = !diffs; 3622 NAPI_GRO_CB(p)->flush = 0; 3623 } 3624 3625 return dev_gro_receive(napi, skb); 3626 } 3627 3628 gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb) 3629 { 3630 switch (ret) { 3631 case GRO_NORMAL: 3632 if (netif_receive_skb(skb)) 3633 ret = GRO_DROP; 3634 break; 3635 3636 case GRO_DROP: 3637 kfree_skb(skb); 3638 break; 3639 3640 case GRO_MERGED_FREE: 3641 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) 3642 kmem_cache_free(skbuff_head_cache, skb); 3643 else 3644 __kfree_skb(skb); 3645 break; 3646 3647 case GRO_HELD: 3648 case GRO_MERGED: 3649 break; 3650 } 3651 3652 return ret; 3653 } 3654 EXPORT_SYMBOL(napi_skb_finish); 3655 3656 static void skb_gro_reset_offset(struct sk_buff *skb) 3657 { 3658 const struct skb_shared_info *pinfo = skb_shinfo(skb); 3659 const skb_frag_t *frag0 = &pinfo->frags[0]; 3660 3661 NAPI_GRO_CB(skb)->data_offset = 0; 3662 NAPI_GRO_CB(skb)->frag0 = NULL; 3663 NAPI_GRO_CB(skb)->frag0_len = 0; 3664 3665 if (skb->mac_header == skb->tail && 3666 pinfo->nr_frags && 3667 !PageHighMem(skb_frag_page(frag0))) { 3668 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0); 3669 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0); 3670 } 3671 } 3672 3673 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 3674 { 3675 skb_gro_reset_offset(skb); 3676 3677 return napi_skb_finish(__napi_gro_receive(napi, skb), skb); 3678 } 3679 EXPORT_SYMBOL(napi_gro_receive); 3680 3681 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb) 3682 { 3683 __skb_pull(skb, skb_headlen(skb)); 3684 /* restore the reserve we had after netdev_alloc_skb_ip_align() */ 3685 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb)); 3686 skb->vlan_tci = 0; 3687 skb->dev = napi->dev; 3688 skb->skb_iif = 0; 3689 3690 napi->skb = skb; 3691 } 3692 3693 struct sk_buff *napi_get_frags(struct napi_struct *napi) 3694 { 3695 struct sk_buff *skb = napi->skb; 3696 3697 if (!skb) { 3698 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD); 3699 if (skb) 3700 napi->skb = skb; 3701 } 3702 return skb; 3703 } 3704 EXPORT_SYMBOL(napi_get_frags); 3705 3706 gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb, 3707 gro_result_t ret) 3708 { 3709 switch (ret) { 3710 case GRO_NORMAL: 3711 case GRO_HELD: 3712 skb->protocol = eth_type_trans(skb, skb->dev); 3713 3714 if (ret == GRO_HELD) 3715 skb_gro_pull(skb, -ETH_HLEN); 3716 else if (netif_receive_skb(skb)) 3717 ret = GRO_DROP; 3718 break; 3719 3720 case GRO_DROP: 3721 case GRO_MERGED_FREE: 3722 napi_reuse_skb(napi, skb); 3723 break; 3724 3725 case GRO_MERGED: 3726 break; 3727 } 3728 3729 return ret; 3730 } 3731 EXPORT_SYMBOL(napi_frags_finish); 3732 3733 static struct sk_buff *napi_frags_skb(struct napi_struct *napi) 3734 { 3735 struct sk_buff *skb = napi->skb; 3736 struct ethhdr *eth; 3737 unsigned int hlen; 3738 unsigned int off; 3739 3740 napi->skb = NULL; 3741 3742 skb_reset_mac_header(skb); 3743 skb_gro_reset_offset(skb); 3744 3745 off = skb_gro_offset(skb); 3746 hlen = off + sizeof(*eth); 3747 eth = skb_gro_header_fast(skb, off); 3748 if (skb_gro_header_hard(skb, hlen)) { 3749 eth = skb_gro_header_slow(skb, hlen, off); 3750 if (unlikely(!eth)) { 3751 napi_reuse_skb(napi, skb); 3752 skb = NULL; 3753 goto out; 3754 } 3755 } 3756 3757 skb_gro_pull(skb, sizeof(*eth)); 3758 3759 /* 3760 * This works because the only protocols we care about don't require 3761 * special handling. We'll fix it up properly at the end. 3762 */ 3763 skb->protocol = eth->h_proto; 3764 3765 out: 3766 return skb; 3767 } 3768 3769 gro_result_t napi_gro_frags(struct napi_struct *napi) 3770 { 3771 struct sk_buff *skb = napi_frags_skb(napi); 3772 3773 if (!skb) 3774 return GRO_DROP; 3775 3776 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb)); 3777 } 3778 EXPORT_SYMBOL(napi_gro_frags); 3779 3780 /* 3781 * net_rps_action sends any pending IPI's for rps. 3782 * Note: called with local irq disabled, but exits with local irq enabled. 3783 */ 3784 static void net_rps_action_and_irq_enable(struct softnet_data *sd) 3785 { 3786 #ifdef CONFIG_RPS 3787 struct softnet_data *remsd = sd->rps_ipi_list; 3788 3789 if (remsd) { 3790 sd->rps_ipi_list = NULL; 3791 3792 local_irq_enable(); 3793 3794 /* Send pending IPI's to kick RPS processing on remote cpus. */ 3795 while (remsd) { 3796 struct softnet_data *next = remsd->rps_ipi_next; 3797 3798 if (cpu_online(remsd->cpu)) 3799 __smp_call_function_single(remsd->cpu, 3800 &remsd->csd, 0); 3801 remsd = next; 3802 } 3803 } else 3804 #endif 3805 local_irq_enable(); 3806 } 3807 3808 static int process_backlog(struct napi_struct *napi, int quota) 3809 { 3810 int work = 0; 3811 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 3812 3813 #ifdef CONFIG_RPS 3814 /* Check if we have pending ipi, its better to send them now, 3815 * not waiting net_rx_action() end. 3816 */ 3817 if (sd->rps_ipi_list) { 3818 local_irq_disable(); 3819 net_rps_action_and_irq_enable(sd); 3820 } 3821 #endif 3822 napi->weight = weight_p; 3823 local_irq_disable(); 3824 while (work < quota) { 3825 struct sk_buff *skb; 3826 unsigned int qlen; 3827 3828 while ((skb = __skb_dequeue(&sd->process_queue))) { 3829 local_irq_enable(); 3830 __netif_receive_skb(skb); 3831 local_irq_disable(); 3832 input_queue_head_incr(sd); 3833 if (++work >= quota) { 3834 local_irq_enable(); 3835 return work; 3836 } 3837 } 3838 3839 rps_lock(sd); 3840 qlen = skb_queue_len(&sd->input_pkt_queue); 3841 if (qlen) 3842 skb_queue_splice_tail_init(&sd->input_pkt_queue, 3843 &sd->process_queue); 3844 3845 if (qlen < quota - work) { 3846 /* 3847 * Inline a custom version of __napi_complete(). 3848 * only current cpu owns and manipulates this napi, 3849 * and NAPI_STATE_SCHED is the only possible flag set on backlog. 3850 * we can use a plain write instead of clear_bit(), 3851 * and we dont need an smp_mb() memory barrier. 3852 */ 3853 list_del(&napi->poll_list); 3854 napi->state = 0; 3855 3856 quota = work + qlen; 3857 } 3858 rps_unlock(sd); 3859 } 3860 local_irq_enable(); 3861 3862 return work; 3863 } 3864 3865 /** 3866 * __napi_schedule - schedule for receive 3867 * @n: entry to schedule 3868 * 3869 * The entry's receive function will be scheduled to run 3870 */ 3871 void __napi_schedule(struct napi_struct *n) 3872 { 3873 unsigned long flags; 3874 3875 local_irq_save(flags); 3876 ____napi_schedule(&__get_cpu_var(softnet_data), n); 3877 local_irq_restore(flags); 3878 } 3879 EXPORT_SYMBOL(__napi_schedule); 3880 3881 void __napi_complete(struct napi_struct *n) 3882 { 3883 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 3884 BUG_ON(n->gro_list); 3885 3886 list_del(&n->poll_list); 3887 smp_mb__before_clear_bit(); 3888 clear_bit(NAPI_STATE_SCHED, &n->state); 3889 } 3890 EXPORT_SYMBOL(__napi_complete); 3891 3892 void napi_complete(struct napi_struct *n) 3893 { 3894 unsigned long flags; 3895 3896 /* 3897 * don't let napi dequeue from the cpu poll list 3898 * just in case its running on a different cpu 3899 */ 3900 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state))) 3901 return; 3902 3903 napi_gro_flush(n, false); 3904 local_irq_save(flags); 3905 __napi_complete(n); 3906 local_irq_restore(flags); 3907 } 3908 EXPORT_SYMBOL(napi_complete); 3909 3910 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 3911 int (*poll)(struct napi_struct *, int), int weight) 3912 { 3913 INIT_LIST_HEAD(&napi->poll_list); 3914 napi->gro_count = 0; 3915 napi->gro_list = NULL; 3916 napi->skb = NULL; 3917 napi->poll = poll; 3918 napi->weight = weight; 3919 list_add(&napi->dev_list, &dev->napi_list); 3920 napi->dev = dev; 3921 #ifdef CONFIG_NETPOLL 3922 spin_lock_init(&napi->poll_lock); 3923 napi->poll_owner = -1; 3924 #endif 3925 set_bit(NAPI_STATE_SCHED, &napi->state); 3926 } 3927 EXPORT_SYMBOL(netif_napi_add); 3928 3929 void netif_napi_del(struct napi_struct *napi) 3930 { 3931 struct sk_buff *skb, *next; 3932 3933 list_del_init(&napi->dev_list); 3934 napi_free_frags(napi); 3935 3936 for (skb = napi->gro_list; skb; skb = next) { 3937 next = skb->next; 3938 skb->next = NULL; 3939 kfree_skb(skb); 3940 } 3941 3942 napi->gro_list = NULL; 3943 napi->gro_count = 0; 3944 } 3945 EXPORT_SYMBOL(netif_napi_del); 3946 3947 static void net_rx_action(struct softirq_action *h) 3948 { 3949 struct softnet_data *sd = &__get_cpu_var(softnet_data); 3950 unsigned long time_limit = jiffies + 2; 3951 int budget = netdev_budget; 3952 void *have; 3953 3954 local_irq_disable(); 3955 3956 while (!list_empty(&sd->poll_list)) { 3957 struct napi_struct *n; 3958 int work, weight; 3959 3960 /* If softirq window is exhuasted then punt. 3961 * Allow this to run for 2 jiffies since which will allow 3962 * an average latency of 1.5/HZ. 3963 */ 3964 if (unlikely(budget <= 0 || time_after(jiffies, time_limit))) 3965 goto softnet_break; 3966 3967 local_irq_enable(); 3968 3969 /* Even though interrupts have been re-enabled, this 3970 * access is safe because interrupts can only add new 3971 * entries to the tail of this list, and only ->poll() 3972 * calls can remove this head entry from the list. 3973 */ 3974 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list); 3975 3976 have = netpoll_poll_lock(n); 3977 3978 weight = n->weight; 3979 3980 /* This NAPI_STATE_SCHED test is for avoiding a race 3981 * with netpoll's poll_napi(). Only the entity which 3982 * obtains the lock and sees NAPI_STATE_SCHED set will 3983 * actually make the ->poll() call. Therefore we avoid 3984 * accidentally calling ->poll() when NAPI is not scheduled. 3985 */ 3986 work = 0; 3987 if (test_bit(NAPI_STATE_SCHED, &n->state)) { 3988 work = n->poll(n, weight); 3989 trace_napi_poll(n); 3990 } 3991 3992 WARN_ON_ONCE(work > weight); 3993 3994 budget -= work; 3995 3996 local_irq_disable(); 3997 3998 /* Drivers must not modify the NAPI state if they 3999 * consume the entire weight. In such cases this code 4000 * still "owns" the NAPI instance and therefore can 4001 * move the instance around on the list at-will. 4002 */ 4003 if (unlikely(work == weight)) { 4004 if (unlikely(napi_disable_pending(n))) { 4005 local_irq_enable(); 4006 napi_complete(n); 4007 local_irq_disable(); 4008 } else { 4009 if (n->gro_list) { 4010 /* flush too old packets 4011 * If HZ < 1000, flush all packets. 4012 */ 4013 local_irq_enable(); 4014 napi_gro_flush(n, HZ >= 1000); 4015 local_irq_disable(); 4016 } 4017 list_move_tail(&n->poll_list, &sd->poll_list); 4018 } 4019 } 4020 4021 netpoll_poll_unlock(have); 4022 } 4023 out: 4024 net_rps_action_and_irq_enable(sd); 4025 4026 #ifdef CONFIG_NET_DMA 4027 /* 4028 * There may not be any more sk_buffs coming right now, so push 4029 * any pending DMA copies to hardware 4030 */ 4031 dma_issue_pending_all(); 4032 #endif 4033 4034 return; 4035 4036 softnet_break: 4037 sd->time_squeeze++; 4038 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 4039 goto out; 4040 } 4041 4042 static gifconf_func_t *gifconf_list[NPROTO]; 4043 4044 /** 4045 * register_gifconf - register a SIOCGIF handler 4046 * @family: Address family 4047 * @gifconf: Function handler 4048 * 4049 * Register protocol dependent address dumping routines. The handler 4050 * that is passed must not be freed or reused until it has been replaced 4051 * by another handler. 4052 */ 4053 int register_gifconf(unsigned int family, gifconf_func_t *gifconf) 4054 { 4055 if (family >= NPROTO) 4056 return -EINVAL; 4057 gifconf_list[family] = gifconf; 4058 return 0; 4059 } 4060 EXPORT_SYMBOL(register_gifconf); 4061 4062 4063 /* 4064 * Map an interface index to its name (SIOCGIFNAME) 4065 */ 4066 4067 /* 4068 * We need this ioctl for efficient implementation of the 4069 * if_indextoname() function required by the IPv6 API. Without 4070 * it, we would have to search all the interfaces to find a 4071 * match. --pb 4072 */ 4073 4074 static int dev_ifname(struct net *net, struct ifreq __user *arg) 4075 { 4076 struct net_device *dev; 4077 struct ifreq ifr; 4078 4079 /* 4080 * Fetch the caller's info block. 4081 */ 4082 4083 if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) 4084 return -EFAULT; 4085 4086 rcu_read_lock(); 4087 dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex); 4088 if (!dev) { 4089 rcu_read_unlock(); 4090 return -ENODEV; 4091 } 4092 4093 strcpy(ifr.ifr_name, dev->name); 4094 rcu_read_unlock(); 4095 4096 if (copy_to_user(arg, &ifr, sizeof(struct ifreq))) 4097 return -EFAULT; 4098 return 0; 4099 } 4100 4101 /* 4102 * Perform a SIOCGIFCONF call. This structure will change 4103 * size eventually, and there is nothing I can do about it. 4104 * Thus we will need a 'compatibility mode'. 4105 */ 4106 4107 static int dev_ifconf(struct net *net, char __user *arg) 4108 { 4109 struct ifconf ifc; 4110 struct net_device *dev; 4111 char __user *pos; 4112 int len; 4113 int total; 4114 int i; 4115 4116 /* 4117 * Fetch the caller's info block. 4118 */ 4119 4120 if (copy_from_user(&ifc, arg, sizeof(struct ifconf))) 4121 return -EFAULT; 4122 4123 pos = ifc.ifc_buf; 4124 len = ifc.ifc_len; 4125 4126 /* 4127 * Loop over the interfaces, and write an info block for each. 4128 */ 4129 4130 total = 0; 4131 for_each_netdev(net, dev) { 4132 for (i = 0; i < NPROTO; i++) { 4133 if (gifconf_list[i]) { 4134 int done; 4135 if (!pos) 4136 done = gifconf_list[i](dev, NULL, 0); 4137 else 4138 done = gifconf_list[i](dev, pos + total, 4139 len - total); 4140 if (done < 0) 4141 return -EFAULT; 4142 total += done; 4143 } 4144 } 4145 } 4146 4147 /* 4148 * All done. Write the updated control block back to the caller. 4149 */ 4150 ifc.ifc_len = total; 4151 4152 /* 4153 * Both BSD and Solaris return 0 here, so we do too. 4154 */ 4155 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0; 4156 } 4157 4158 #ifdef CONFIG_PROC_FS 4159 4160 #define BUCKET_SPACE (32 - NETDEV_HASHBITS - 1) 4161 4162 #define get_bucket(x) ((x) >> BUCKET_SPACE) 4163 #define get_offset(x) ((x) & ((1 << BUCKET_SPACE) - 1)) 4164 #define set_bucket_offset(b, o) ((b) << BUCKET_SPACE | (o)) 4165 4166 static inline struct net_device *dev_from_same_bucket(struct seq_file *seq, loff_t *pos) 4167 { 4168 struct net *net = seq_file_net(seq); 4169 struct net_device *dev; 4170 struct hlist_node *p; 4171 struct hlist_head *h; 4172 unsigned int count = 0, offset = get_offset(*pos); 4173 4174 h = &net->dev_name_head[get_bucket(*pos)]; 4175 hlist_for_each_entry_rcu(dev, p, h, name_hlist) { 4176 if (++count == offset) 4177 return dev; 4178 } 4179 4180 return NULL; 4181 } 4182 4183 static inline struct net_device *dev_from_bucket(struct seq_file *seq, loff_t *pos) 4184 { 4185 struct net_device *dev; 4186 unsigned int bucket; 4187 4188 do { 4189 dev = dev_from_same_bucket(seq, pos); 4190 if (dev) 4191 return dev; 4192 4193 bucket = get_bucket(*pos) + 1; 4194 *pos = set_bucket_offset(bucket, 1); 4195 } while (bucket < NETDEV_HASHENTRIES); 4196 4197 return NULL; 4198 } 4199 4200 /* 4201 * This is invoked by the /proc filesystem handler to display a device 4202 * in detail. 4203 */ 4204 void *dev_seq_start(struct seq_file *seq, loff_t *pos) 4205 __acquires(RCU) 4206 { 4207 rcu_read_lock(); 4208 if (!*pos) 4209 return SEQ_START_TOKEN; 4210 4211 if (get_bucket(*pos) >= NETDEV_HASHENTRIES) 4212 return NULL; 4213 4214 return dev_from_bucket(seq, pos); 4215 } 4216 4217 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos) 4218 { 4219 ++*pos; 4220 return dev_from_bucket(seq, pos); 4221 } 4222 4223 void dev_seq_stop(struct seq_file *seq, void *v) 4224 __releases(RCU) 4225 { 4226 rcu_read_unlock(); 4227 } 4228 4229 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev) 4230 { 4231 struct rtnl_link_stats64 temp; 4232 const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp); 4233 4234 seq_printf(seq, "%6s: %7llu %7llu %4llu %4llu %4llu %5llu %10llu %9llu " 4235 "%8llu %7llu %4llu %4llu %4llu %5llu %7llu %10llu\n", 4236 dev->name, stats->rx_bytes, stats->rx_packets, 4237 stats->rx_errors, 4238 stats->rx_dropped + stats->rx_missed_errors, 4239 stats->rx_fifo_errors, 4240 stats->rx_length_errors + stats->rx_over_errors + 4241 stats->rx_crc_errors + stats->rx_frame_errors, 4242 stats->rx_compressed, stats->multicast, 4243 stats->tx_bytes, stats->tx_packets, 4244 stats->tx_errors, stats->tx_dropped, 4245 stats->tx_fifo_errors, stats->collisions, 4246 stats->tx_carrier_errors + 4247 stats->tx_aborted_errors + 4248 stats->tx_window_errors + 4249 stats->tx_heartbeat_errors, 4250 stats->tx_compressed); 4251 } 4252 4253 /* 4254 * Called from the PROCfs module. This now uses the new arbitrary sized 4255 * /proc/net interface to create /proc/net/dev 4256 */ 4257 static int dev_seq_show(struct seq_file *seq, void *v) 4258 { 4259 if (v == SEQ_START_TOKEN) 4260 seq_puts(seq, "Inter-| Receive " 4261 " | Transmit\n" 4262 " face |bytes packets errs drop fifo frame " 4263 "compressed multicast|bytes packets errs " 4264 "drop fifo colls carrier compressed\n"); 4265 else 4266 dev_seq_printf_stats(seq, v); 4267 return 0; 4268 } 4269 4270 static struct softnet_data *softnet_get_online(loff_t *pos) 4271 { 4272 struct softnet_data *sd = NULL; 4273 4274 while (*pos < nr_cpu_ids) 4275 if (cpu_online(*pos)) { 4276 sd = &per_cpu(softnet_data, *pos); 4277 break; 4278 } else 4279 ++*pos; 4280 return sd; 4281 } 4282 4283 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos) 4284 { 4285 return softnet_get_online(pos); 4286 } 4287 4288 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos) 4289 { 4290 ++*pos; 4291 return softnet_get_online(pos); 4292 } 4293 4294 static void softnet_seq_stop(struct seq_file *seq, void *v) 4295 { 4296 } 4297 4298 static int softnet_seq_show(struct seq_file *seq, void *v) 4299 { 4300 struct softnet_data *sd = v; 4301 4302 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n", 4303 sd->processed, sd->dropped, sd->time_squeeze, 0, 4304 0, 0, 0, 0, /* was fastroute */ 4305 sd->cpu_collision, sd->received_rps); 4306 return 0; 4307 } 4308 4309 static const struct seq_operations dev_seq_ops = { 4310 .start = dev_seq_start, 4311 .next = dev_seq_next, 4312 .stop = dev_seq_stop, 4313 .show = dev_seq_show, 4314 }; 4315 4316 static int dev_seq_open(struct inode *inode, struct file *file) 4317 { 4318 return seq_open_net(inode, file, &dev_seq_ops, 4319 sizeof(struct seq_net_private)); 4320 } 4321 4322 static const struct file_operations dev_seq_fops = { 4323 .owner = THIS_MODULE, 4324 .open = dev_seq_open, 4325 .read = seq_read, 4326 .llseek = seq_lseek, 4327 .release = seq_release_net, 4328 }; 4329 4330 static const struct seq_operations softnet_seq_ops = { 4331 .start = softnet_seq_start, 4332 .next = softnet_seq_next, 4333 .stop = softnet_seq_stop, 4334 .show = softnet_seq_show, 4335 }; 4336 4337 static int softnet_seq_open(struct inode *inode, struct file *file) 4338 { 4339 return seq_open(file, &softnet_seq_ops); 4340 } 4341 4342 static const struct file_operations softnet_seq_fops = { 4343 .owner = THIS_MODULE, 4344 .open = softnet_seq_open, 4345 .read = seq_read, 4346 .llseek = seq_lseek, 4347 .release = seq_release, 4348 }; 4349 4350 static void *ptype_get_idx(loff_t pos) 4351 { 4352 struct packet_type *pt = NULL; 4353 loff_t i = 0; 4354 int t; 4355 4356 list_for_each_entry_rcu(pt, &ptype_all, list) { 4357 if (i == pos) 4358 return pt; 4359 ++i; 4360 } 4361 4362 for (t = 0; t < PTYPE_HASH_SIZE; t++) { 4363 list_for_each_entry_rcu(pt, &ptype_base[t], list) { 4364 if (i == pos) 4365 return pt; 4366 ++i; 4367 } 4368 } 4369 return NULL; 4370 } 4371 4372 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos) 4373 __acquires(RCU) 4374 { 4375 rcu_read_lock(); 4376 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN; 4377 } 4378 4379 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos) 4380 { 4381 struct packet_type *pt; 4382 struct list_head *nxt; 4383 int hash; 4384 4385 ++*pos; 4386 if (v == SEQ_START_TOKEN) 4387 return ptype_get_idx(0); 4388 4389 pt = v; 4390 nxt = pt->list.next; 4391 if (pt->type == htons(ETH_P_ALL)) { 4392 if (nxt != &ptype_all) 4393 goto found; 4394 hash = 0; 4395 nxt = ptype_base[0].next; 4396 } else 4397 hash = ntohs(pt->type) & PTYPE_HASH_MASK; 4398 4399 while (nxt == &ptype_base[hash]) { 4400 if (++hash >= PTYPE_HASH_SIZE) 4401 return NULL; 4402 nxt = ptype_base[hash].next; 4403 } 4404 found: 4405 return list_entry(nxt, struct packet_type, list); 4406 } 4407 4408 static void ptype_seq_stop(struct seq_file *seq, void *v) 4409 __releases(RCU) 4410 { 4411 rcu_read_unlock(); 4412 } 4413 4414 static int ptype_seq_show(struct seq_file *seq, void *v) 4415 { 4416 struct packet_type *pt = v; 4417 4418 if (v == SEQ_START_TOKEN) 4419 seq_puts(seq, "Type Device Function\n"); 4420 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) { 4421 if (pt->type == htons(ETH_P_ALL)) 4422 seq_puts(seq, "ALL "); 4423 else 4424 seq_printf(seq, "%04x", ntohs(pt->type)); 4425 4426 seq_printf(seq, " %-8s %pF\n", 4427 pt->dev ? pt->dev->name : "", pt->func); 4428 } 4429 4430 return 0; 4431 } 4432 4433 static const struct seq_operations ptype_seq_ops = { 4434 .start = ptype_seq_start, 4435 .next = ptype_seq_next, 4436 .stop = ptype_seq_stop, 4437 .show = ptype_seq_show, 4438 }; 4439 4440 static int ptype_seq_open(struct inode *inode, struct file *file) 4441 { 4442 return seq_open_net(inode, file, &ptype_seq_ops, 4443 sizeof(struct seq_net_private)); 4444 } 4445 4446 static const struct file_operations ptype_seq_fops = { 4447 .owner = THIS_MODULE, 4448 .open = ptype_seq_open, 4449 .read = seq_read, 4450 .llseek = seq_lseek, 4451 .release = seq_release_net, 4452 }; 4453 4454 4455 static int __net_init dev_proc_net_init(struct net *net) 4456 { 4457 int rc = -ENOMEM; 4458 4459 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops)) 4460 goto out; 4461 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops)) 4462 goto out_dev; 4463 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops)) 4464 goto out_softnet; 4465 4466 if (wext_proc_init(net)) 4467 goto out_ptype; 4468 rc = 0; 4469 out: 4470 return rc; 4471 out_ptype: 4472 proc_net_remove(net, "ptype"); 4473 out_softnet: 4474 proc_net_remove(net, "softnet_stat"); 4475 out_dev: 4476 proc_net_remove(net, "dev"); 4477 goto out; 4478 } 4479 4480 static void __net_exit dev_proc_net_exit(struct net *net) 4481 { 4482 wext_proc_exit(net); 4483 4484 proc_net_remove(net, "ptype"); 4485 proc_net_remove(net, "softnet_stat"); 4486 proc_net_remove(net, "dev"); 4487 } 4488 4489 static struct pernet_operations __net_initdata dev_proc_ops = { 4490 .init = dev_proc_net_init, 4491 .exit = dev_proc_net_exit, 4492 }; 4493 4494 static int __init dev_proc_init(void) 4495 { 4496 return register_pernet_subsys(&dev_proc_ops); 4497 } 4498 #else 4499 #define dev_proc_init() 0 4500 #endif /* CONFIG_PROC_FS */ 4501 4502 4503 /** 4504 * netdev_set_master - set up master pointer 4505 * @slave: slave device 4506 * @master: new master device 4507 * 4508 * Changes the master device of the slave. Pass %NULL to break the 4509 * bonding. The caller must hold the RTNL semaphore. On a failure 4510 * a negative errno code is returned. On success the reference counts 4511 * are adjusted and the function returns zero. 4512 */ 4513 int netdev_set_master(struct net_device *slave, struct net_device *master) 4514 { 4515 struct net_device *old = slave->master; 4516 4517 ASSERT_RTNL(); 4518 4519 if (master) { 4520 if (old) 4521 return -EBUSY; 4522 dev_hold(master); 4523 } 4524 4525 slave->master = master; 4526 4527 if (old) 4528 dev_put(old); 4529 return 0; 4530 } 4531 EXPORT_SYMBOL(netdev_set_master); 4532 4533 /** 4534 * netdev_set_bond_master - set up bonding master/slave pair 4535 * @slave: slave device 4536 * @master: new master device 4537 * 4538 * Changes the master device of the slave. Pass %NULL to break the 4539 * bonding. The caller must hold the RTNL semaphore. On a failure 4540 * a negative errno code is returned. On success %RTM_NEWLINK is sent 4541 * to the routing socket and the function returns zero. 4542 */ 4543 int netdev_set_bond_master(struct net_device *slave, struct net_device *master) 4544 { 4545 int err; 4546 4547 ASSERT_RTNL(); 4548 4549 err = netdev_set_master(slave, master); 4550 if (err) 4551 return err; 4552 if (master) 4553 slave->flags |= IFF_SLAVE; 4554 else 4555 slave->flags &= ~IFF_SLAVE; 4556 4557 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE); 4558 return 0; 4559 } 4560 EXPORT_SYMBOL(netdev_set_bond_master); 4561 4562 static void dev_change_rx_flags(struct net_device *dev, int flags) 4563 { 4564 const struct net_device_ops *ops = dev->netdev_ops; 4565 4566 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags) 4567 ops->ndo_change_rx_flags(dev, flags); 4568 } 4569 4570 static int __dev_set_promiscuity(struct net_device *dev, int inc) 4571 { 4572 unsigned int old_flags = dev->flags; 4573 kuid_t uid; 4574 kgid_t gid; 4575 4576 ASSERT_RTNL(); 4577 4578 dev->flags |= IFF_PROMISC; 4579 dev->promiscuity += inc; 4580 if (dev->promiscuity == 0) { 4581 /* 4582 * Avoid overflow. 4583 * If inc causes overflow, untouch promisc and return error. 4584 */ 4585 if (inc < 0) 4586 dev->flags &= ~IFF_PROMISC; 4587 else { 4588 dev->promiscuity -= inc; 4589 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n", 4590 dev->name); 4591 return -EOVERFLOW; 4592 } 4593 } 4594 if (dev->flags != old_flags) { 4595 pr_info("device %s %s promiscuous mode\n", 4596 dev->name, 4597 dev->flags & IFF_PROMISC ? "entered" : "left"); 4598 if (audit_enabled) { 4599 current_uid_gid(&uid, &gid); 4600 audit_log(current->audit_context, GFP_ATOMIC, 4601 AUDIT_ANOM_PROMISCUOUS, 4602 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 4603 dev->name, (dev->flags & IFF_PROMISC), 4604 (old_flags & IFF_PROMISC), 4605 from_kuid(&init_user_ns, audit_get_loginuid(current)), 4606 from_kuid(&init_user_ns, uid), 4607 from_kgid(&init_user_ns, gid), 4608 audit_get_sessionid(current)); 4609 } 4610 4611 dev_change_rx_flags(dev, IFF_PROMISC); 4612 } 4613 return 0; 4614 } 4615 4616 /** 4617 * dev_set_promiscuity - update promiscuity count on a device 4618 * @dev: device 4619 * @inc: modifier 4620 * 4621 * Add or remove promiscuity from a device. While the count in the device 4622 * remains above zero the interface remains promiscuous. Once it hits zero 4623 * the device reverts back to normal filtering operation. A negative inc 4624 * value is used to drop promiscuity on the device. 4625 * Return 0 if successful or a negative errno code on error. 4626 */ 4627 int dev_set_promiscuity(struct net_device *dev, int inc) 4628 { 4629 unsigned int old_flags = dev->flags; 4630 int err; 4631 4632 err = __dev_set_promiscuity(dev, inc); 4633 if (err < 0) 4634 return err; 4635 if (dev->flags != old_flags) 4636 dev_set_rx_mode(dev); 4637 return err; 4638 } 4639 EXPORT_SYMBOL(dev_set_promiscuity); 4640 4641 /** 4642 * dev_set_allmulti - update allmulti count on a device 4643 * @dev: device 4644 * @inc: modifier 4645 * 4646 * Add or remove reception of all multicast frames to a device. While the 4647 * count in the device remains above zero the interface remains listening 4648 * to all interfaces. Once it hits zero the device reverts back to normal 4649 * filtering operation. A negative @inc value is used to drop the counter 4650 * when releasing a resource needing all multicasts. 4651 * Return 0 if successful or a negative errno code on error. 4652 */ 4653 4654 int dev_set_allmulti(struct net_device *dev, int inc) 4655 { 4656 unsigned int old_flags = dev->flags; 4657 4658 ASSERT_RTNL(); 4659 4660 dev->flags |= IFF_ALLMULTI; 4661 dev->allmulti += inc; 4662 if (dev->allmulti == 0) { 4663 /* 4664 * Avoid overflow. 4665 * If inc causes overflow, untouch allmulti and return error. 4666 */ 4667 if (inc < 0) 4668 dev->flags &= ~IFF_ALLMULTI; 4669 else { 4670 dev->allmulti -= inc; 4671 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n", 4672 dev->name); 4673 return -EOVERFLOW; 4674 } 4675 } 4676 if (dev->flags ^ old_flags) { 4677 dev_change_rx_flags(dev, IFF_ALLMULTI); 4678 dev_set_rx_mode(dev); 4679 } 4680 return 0; 4681 } 4682 EXPORT_SYMBOL(dev_set_allmulti); 4683 4684 /* 4685 * Upload unicast and multicast address lists to device and 4686 * configure RX filtering. When the device doesn't support unicast 4687 * filtering it is put in promiscuous mode while unicast addresses 4688 * are present. 4689 */ 4690 void __dev_set_rx_mode(struct net_device *dev) 4691 { 4692 const struct net_device_ops *ops = dev->netdev_ops; 4693 4694 /* dev_open will call this function so the list will stay sane. */ 4695 if (!(dev->flags&IFF_UP)) 4696 return; 4697 4698 if (!netif_device_present(dev)) 4699 return; 4700 4701 if (!(dev->priv_flags & IFF_UNICAST_FLT)) { 4702 /* Unicast addresses changes may only happen under the rtnl, 4703 * therefore calling __dev_set_promiscuity here is safe. 4704 */ 4705 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 4706 __dev_set_promiscuity(dev, 1); 4707 dev->uc_promisc = true; 4708 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 4709 __dev_set_promiscuity(dev, -1); 4710 dev->uc_promisc = false; 4711 } 4712 } 4713 4714 if (ops->ndo_set_rx_mode) 4715 ops->ndo_set_rx_mode(dev); 4716 } 4717 4718 void dev_set_rx_mode(struct net_device *dev) 4719 { 4720 netif_addr_lock_bh(dev); 4721 __dev_set_rx_mode(dev); 4722 netif_addr_unlock_bh(dev); 4723 } 4724 4725 /** 4726 * dev_get_flags - get flags reported to userspace 4727 * @dev: device 4728 * 4729 * Get the combination of flag bits exported through APIs to userspace. 4730 */ 4731 unsigned int dev_get_flags(const struct net_device *dev) 4732 { 4733 unsigned int flags; 4734 4735 flags = (dev->flags & ~(IFF_PROMISC | 4736 IFF_ALLMULTI | 4737 IFF_RUNNING | 4738 IFF_LOWER_UP | 4739 IFF_DORMANT)) | 4740 (dev->gflags & (IFF_PROMISC | 4741 IFF_ALLMULTI)); 4742 4743 if (netif_running(dev)) { 4744 if (netif_oper_up(dev)) 4745 flags |= IFF_RUNNING; 4746 if (netif_carrier_ok(dev)) 4747 flags |= IFF_LOWER_UP; 4748 if (netif_dormant(dev)) 4749 flags |= IFF_DORMANT; 4750 } 4751 4752 return flags; 4753 } 4754 EXPORT_SYMBOL(dev_get_flags); 4755 4756 int __dev_change_flags(struct net_device *dev, unsigned int flags) 4757 { 4758 unsigned int old_flags = dev->flags; 4759 int ret; 4760 4761 ASSERT_RTNL(); 4762 4763 /* 4764 * Set the flags on our device. 4765 */ 4766 4767 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 4768 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 4769 IFF_AUTOMEDIA)) | 4770 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 4771 IFF_ALLMULTI)); 4772 4773 /* 4774 * Load in the correct multicast list now the flags have changed. 4775 */ 4776 4777 if ((old_flags ^ flags) & IFF_MULTICAST) 4778 dev_change_rx_flags(dev, IFF_MULTICAST); 4779 4780 dev_set_rx_mode(dev); 4781 4782 /* 4783 * Have we downed the interface. We handle IFF_UP ourselves 4784 * according to user attempts to set it, rather than blindly 4785 * setting it. 4786 */ 4787 4788 ret = 0; 4789 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */ 4790 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev); 4791 4792 if (!ret) 4793 dev_set_rx_mode(dev); 4794 } 4795 4796 if ((flags ^ dev->gflags) & IFF_PROMISC) { 4797 int inc = (flags & IFF_PROMISC) ? 1 : -1; 4798 4799 dev->gflags ^= IFF_PROMISC; 4800 dev_set_promiscuity(dev, inc); 4801 } 4802 4803 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 4804 is important. Some (broken) drivers set IFF_PROMISC, when 4805 IFF_ALLMULTI is requested not asking us and not reporting. 4806 */ 4807 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 4808 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 4809 4810 dev->gflags ^= IFF_ALLMULTI; 4811 dev_set_allmulti(dev, inc); 4812 } 4813 4814 return ret; 4815 } 4816 4817 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags) 4818 { 4819 unsigned int changes = dev->flags ^ old_flags; 4820 4821 if (changes & IFF_UP) { 4822 if (dev->flags & IFF_UP) 4823 call_netdevice_notifiers(NETDEV_UP, dev); 4824 else 4825 call_netdevice_notifiers(NETDEV_DOWN, dev); 4826 } 4827 4828 if (dev->flags & IFF_UP && 4829 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) 4830 call_netdevice_notifiers(NETDEV_CHANGE, dev); 4831 } 4832 4833 /** 4834 * dev_change_flags - change device settings 4835 * @dev: device 4836 * @flags: device state flags 4837 * 4838 * Change settings on device based state flags. The flags are 4839 * in the userspace exported format. 4840 */ 4841 int dev_change_flags(struct net_device *dev, unsigned int flags) 4842 { 4843 int ret; 4844 unsigned int changes, old_flags = dev->flags; 4845 4846 ret = __dev_change_flags(dev, flags); 4847 if (ret < 0) 4848 return ret; 4849 4850 changes = old_flags ^ dev->flags; 4851 if (changes) 4852 rtmsg_ifinfo(RTM_NEWLINK, dev, changes); 4853 4854 __dev_notify_flags(dev, old_flags); 4855 return ret; 4856 } 4857 EXPORT_SYMBOL(dev_change_flags); 4858 4859 /** 4860 * dev_set_mtu - Change maximum transfer unit 4861 * @dev: device 4862 * @new_mtu: new transfer unit 4863 * 4864 * Change the maximum transfer size of the network device. 4865 */ 4866 int dev_set_mtu(struct net_device *dev, int new_mtu) 4867 { 4868 const struct net_device_ops *ops = dev->netdev_ops; 4869 int err; 4870 4871 if (new_mtu == dev->mtu) 4872 return 0; 4873 4874 /* MTU must be positive. */ 4875 if (new_mtu < 0) 4876 return -EINVAL; 4877 4878 if (!netif_device_present(dev)) 4879 return -ENODEV; 4880 4881 err = 0; 4882 if (ops->ndo_change_mtu) 4883 err = ops->ndo_change_mtu(dev, new_mtu); 4884 else 4885 dev->mtu = new_mtu; 4886 4887 if (!err && dev->flags & IFF_UP) 4888 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 4889 return err; 4890 } 4891 EXPORT_SYMBOL(dev_set_mtu); 4892 4893 /** 4894 * dev_set_group - Change group this device belongs to 4895 * @dev: device 4896 * @new_group: group this device should belong to 4897 */ 4898 void dev_set_group(struct net_device *dev, int new_group) 4899 { 4900 dev->group = new_group; 4901 } 4902 EXPORT_SYMBOL(dev_set_group); 4903 4904 /** 4905 * dev_set_mac_address - Change Media Access Control Address 4906 * @dev: device 4907 * @sa: new address 4908 * 4909 * Change the hardware (MAC) address of the device 4910 */ 4911 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa) 4912 { 4913 const struct net_device_ops *ops = dev->netdev_ops; 4914 int err; 4915 4916 if (!ops->ndo_set_mac_address) 4917 return -EOPNOTSUPP; 4918 if (sa->sa_family != dev->type) 4919 return -EINVAL; 4920 if (!netif_device_present(dev)) 4921 return -ENODEV; 4922 err = ops->ndo_set_mac_address(dev, sa); 4923 if (!err) 4924 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 4925 add_device_randomness(dev->dev_addr, dev->addr_len); 4926 return err; 4927 } 4928 EXPORT_SYMBOL(dev_set_mac_address); 4929 4930 /* 4931 * Perform the SIOCxIFxxx calls, inside rcu_read_lock() 4932 */ 4933 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd) 4934 { 4935 int err; 4936 struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name); 4937 4938 if (!dev) 4939 return -ENODEV; 4940 4941 switch (cmd) { 4942 case SIOCGIFFLAGS: /* Get interface flags */ 4943 ifr->ifr_flags = (short) dev_get_flags(dev); 4944 return 0; 4945 4946 case SIOCGIFMETRIC: /* Get the metric on the interface 4947 (currently unused) */ 4948 ifr->ifr_metric = 0; 4949 return 0; 4950 4951 case SIOCGIFMTU: /* Get the MTU of a device */ 4952 ifr->ifr_mtu = dev->mtu; 4953 return 0; 4954 4955 case SIOCGIFHWADDR: 4956 if (!dev->addr_len) 4957 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data); 4958 else 4959 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr, 4960 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len)); 4961 ifr->ifr_hwaddr.sa_family = dev->type; 4962 return 0; 4963 4964 case SIOCGIFSLAVE: 4965 err = -EINVAL; 4966 break; 4967 4968 case SIOCGIFMAP: 4969 ifr->ifr_map.mem_start = dev->mem_start; 4970 ifr->ifr_map.mem_end = dev->mem_end; 4971 ifr->ifr_map.base_addr = dev->base_addr; 4972 ifr->ifr_map.irq = dev->irq; 4973 ifr->ifr_map.dma = dev->dma; 4974 ifr->ifr_map.port = dev->if_port; 4975 return 0; 4976 4977 case SIOCGIFINDEX: 4978 ifr->ifr_ifindex = dev->ifindex; 4979 return 0; 4980 4981 case SIOCGIFTXQLEN: 4982 ifr->ifr_qlen = dev->tx_queue_len; 4983 return 0; 4984 4985 default: 4986 /* dev_ioctl() should ensure this case 4987 * is never reached 4988 */ 4989 WARN_ON(1); 4990 err = -ENOTTY; 4991 break; 4992 4993 } 4994 return err; 4995 } 4996 4997 /* 4998 * Perform the SIOCxIFxxx calls, inside rtnl_lock() 4999 */ 5000 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd) 5001 { 5002 int err; 5003 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name); 5004 const struct net_device_ops *ops; 5005 5006 if (!dev) 5007 return -ENODEV; 5008 5009 ops = dev->netdev_ops; 5010 5011 switch (cmd) { 5012 case SIOCSIFFLAGS: /* Set interface flags */ 5013 return dev_change_flags(dev, ifr->ifr_flags); 5014 5015 case SIOCSIFMETRIC: /* Set the metric on the interface 5016 (currently unused) */ 5017 return -EOPNOTSUPP; 5018 5019 case SIOCSIFMTU: /* Set the MTU of a device */ 5020 return dev_set_mtu(dev, ifr->ifr_mtu); 5021 5022 case SIOCSIFHWADDR: 5023 return dev_set_mac_address(dev, &ifr->ifr_hwaddr); 5024 5025 case SIOCSIFHWBROADCAST: 5026 if (ifr->ifr_hwaddr.sa_family != dev->type) 5027 return -EINVAL; 5028 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data, 5029 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len)); 5030 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 5031 return 0; 5032 5033 case SIOCSIFMAP: 5034 if (ops->ndo_set_config) { 5035 if (!netif_device_present(dev)) 5036 return -ENODEV; 5037 return ops->ndo_set_config(dev, &ifr->ifr_map); 5038 } 5039 return -EOPNOTSUPP; 5040 5041 case SIOCADDMULTI: 5042 if (!ops->ndo_set_rx_mode || 5043 ifr->ifr_hwaddr.sa_family != AF_UNSPEC) 5044 return -EINVAL; 5045 if (!netif_device_present(dev)) 5046 return -ENODEV; 5047 return dev_mc_add_global(dev, ifr->ifr_hwaddr.sa_data); 5048 5049 case SIOCDELMULTI: 5050 if (!ops->ndo_set_rx_mode || 5051 ifr->ifr_hwaddr.sa_family != AF_UNSPEC) 5052 return -EINVAL; 5053 if (!netif_device_present(dev)) 5054 return -ENODEV; 5055 return dev_mc_del_global(dev, ifr->ifr_hwaddr.sa_data); 5056 5057 case SIOCSIFTXQLEN: 5058 if (ifr->ifr_qlen < 0) 5059 return -EINVAL; 5060 dev->tx_queue_len = ifr->ifr_qlen; 5061 return 0; 5062 5063 case SIOCSIFNAME: 5064 ifr->ifr_newname[IFNAMSIZ-1] = '\0'; 5065 return dev_change_name(dev, ifr->ifr_newname); 5066 5067 case SIOCSHWTSTAMP: 5068 err = net_hwtstamp_validate(ifr); 5069 if (err) 5070 return err; 5071 /* fall through */ 5072 5073 /* 5074 * Unknown or private ioctl 5075 */ 5076 default: 5077 if ((cmd >= SIOCDEVPRIVATE && 5078 cmd <= SIOCDEVPRIVATE + 15) || 5079 cmd == SIOCBONDENSLAVE || 5080 cmd == SIOCBONDRELEASE || 5081 cmd == SIOCBONDSETHWADDR || 5082 cmd == SIOCBONDSLAVEINFOQUERY || 5083 cmd == SIOCBONDINFOQUERY || 5084 cmd == SIOCBONDCHANGEACTIVE || 5085 cmd == SIOCGMIIPHY || 5086 cmd == SIOCGMIIREG || 5087 cmd == SIOCSMIIREG || 5088 cmd == SIOCBRADDIF || 5089 cmd == SIOCBRDELIF || 5090 cmd == SIOCSHWTSTAMP || 5091 cmd == SIOCWANDEV) { 5092 err = -EOPNOTSUPP; 5093 if (ops->ndo_do_ioctl) { 5094 if (netif_device_present(dev)) 5095 err = ops->ndo_do_ioctl(dev, ifr, cmd); 5096 else 5097 err = -ENODEV; 5098 } 5099 } else 5100 err = -EINVAL; 5101 5102 } 5103 return err; 5104 } 5105 5106 /* 5107 * This function handles all "interface"-type I/O control requests. The actual 5108 * 'doing' part of this is dev_ifsioc above. 5109 */ 5110 5111 /** 5112 * dev_ioctl - network device ioctl 5113 * @net: the applicable net namespace 5114 * @cmd: command to issue 5115 * @arg: pointer to a struct ifreq in user space 5116 * 5117 * Issue ioctl functions to devices. This is normally called by the 5118 * user space syscall interfaces but can sometimes be useful for 5119 * other purposes. The return value is the return from the syscall if 5120 * positive or a negative errno code on error. 5121 */ 5122 5123 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg) 5124 { 5125 struct ifreq ifr; 5126 int ret; 5127 char *colon; 5128 5129 /* One special case: SIOCGIFCONF takes ifconf argument 5130 and requires shared lock, because it sleeps writing 5131 to user space. 5132 */ 5133 5134 if (cmd == SIOCGIFCONF) { 5135 rtnl_lock(); 5136 ret = dev_ifconf(net, (char __user *) arg); 5137 rtnl_unlock(); 5138 return ret; 5139 } 5140 if (cmd == SIOCGIFNAME) 5141 return dev_ifname(net, (struct ifreq __user *)arg); 5142 5143 if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) 5144 return -EFAULT; 5145 5146 ifr.ifr_name[IFNAMSIZ-1] = 0; 5147 5148 colon = strchr(ifr.ifr_name, ':'); 5149 if (colon) 5150 *colon = 0; 5151 5152 /* 5153 * See which interface the caller is talking about. 5154 */ 5155 5156 switch (cmd) { 5157 /* 5158 * These ioctl calls: 5159 * - can be done by all. 5160 * - atomic and do not require locking. 5161 * - return a value 5162 */ 5163 case SIOCGIFFLAGS: 5164 case SIOCGIFMETRIC: 5165 case SIOCGIFMTU: 5166 case SIOCGIFHWADDR: 5167 case SIOCGIFSLAVE: 5168 case SIOCGIFMAP: 5169 case SIOCGIFINDEX: 5170 case SIOCGIFTXQLEN: 5171 dev_load(net, ifr.ifr_name); 5172 rcu_read_lock(); 5173 ret = dev_ifsioc_locked(net, &ifr, cmd); 5174 rcu_read_unlock(); 5175 if (!ret) { 5176 if (colon) 5177 *colon = ':'; 5178 if (copy_to_user(arg, &ifr, 5179 sizeof(struct ifreq))) 5180 ret = -EFAULT; 5181 } 5182 return ret; 5183 5184 case SIOCETHTOOL: 5185 dev_load(net, ifr.ifr_name); 5186 rtnl_lock(); 5187 ret = dev_ethtool(net, &ifr); 5188 rtnl_unlock(); 5189 if (!ret) { 5190 if (colon) 5191 *colon = ':'; 5192 if (copy_to_user(arg, &ifr, 5193 sizeof(struct ifreq))) 5194 ret = -EFAULT; 5195 } 5196 return ret; 5197 5198 /* 5199 * These ioctl calls: 5200 * - require superuser power. 5201 * - require strict serialization. 5202 * - return a value 5203 */ 5204 case SIOCGMIIPHY: 5205 case SIOCGMIIREG: 5206 case SIOCSIFNAME: 5207 if (!capable(CAP_NET_ADMIN)) 5208 return -EPERM; 5209 dev_load(net, ifr.ifr_name); 5210 rtnl_lock(); 5211 ret = dev_ifsioc(net, &ifr, cmd); 5212 rtnl_unlock(); 5213 if (!ret) { 5214 if (colon) 5215 *colon = ':'; 5216 if (copy_to_user(arg, &ifr, 5217 sizeof(struct ifreq))) 5218 ret = -EFAULT; 5219 } 5220 return ret; 5221 5222 /* 5223 * These ioctl calls: 5224 * - require superuser power. 5225 * - require strict serialization. 5226 * - do not return a value 5227 */ 5228 case SIOCSIFFLAGS: 5229 case SIOCSIFMETRIC: 5230 case SIOCSIFMTU: 5231 case SIOCSIFMAP: 5232 case SIOCSIFHWADDR: 5233 case SIOCSIFSLAVE: 5234 case SIOCADDMULTI: 5235 case SIOCDELMULTI: 5236 case SIOCSIFHWBROADCAST: 5237 case SIOCSIFTXQLEN: 5238 case SIOCSMIIREG: 5239 case SIOCBONDENSLAVE: 5240 case SIOCBONDRELEASE: 5241 case SIOCBONDSETHWADDR: 5242 case SIOCBONDCHANGEACTIVE: 5243 case SIOCBRADDIF: 5244 case SIOCBRDELIF: 5245 case SIOCSHWTSTAMP: 5246 if (!capable(CAP_NET_ADMIN)) 5247 return -EPERM; 5248 /* fall through */ 5249 case SIOCBONDSLAVEINFOQUERY: 5250 case SIOCBONDINFOQUERY: 5251 dev_load(net, ifr.ifr_name); 5252 rtnl_lock(); 5253 ret = dev_ifsioc(net, &ifr, cmd); 5254 rtnl_unlock(); 5255 return ret; 5256 5257 case SIOCGIFMEM: 5258 /* Get the per device memory space. We can add this but 5259 * currently do not support it */ 5260 case SIOCSIFMEM: 5261 /* Set the per device memory buffer space. 5262 * Not applicable in our case */ 5263 case SIOCSIFLINK: 5264 return -ENOTTY; 5265 5266 /* 5267 * Unknown or private ioctl. 5268 */ 5269 default: 5270 if (cmd == SIOCWANDEV || 5271 (cmd >= SIOCDEVPRIVATE && 5272 cmd <= SIOCDEVPRIVATE + 15)) { 5273 dev_load(net, ifr.ifr_name); 5274 rtnl_lock(); 5275 ret = dev_ifsioc(net, &ifr, cmd); 5276 rtnl_unlock(); 5277 if (!ret && copy_to_user(arg, &ifr, 5278 sizeof(struct ifreq))) 5279 ret = -EFAULT; 5280 return ret; 5281 } 5282 /* Take care of Wireless Extensions */ 5283 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) 5284 return wext_handle_ioctl(net, &ifr, cmd, arg); 5285 return -ENOTTY; 5286 } 5287 } 5288 5289 5290 /** 5291 * dev_new_index - allocate an ifindex 5292 * @net: the applicable net namespace 5293 * 5294 * Returns a suitable unique value for a new device interface 5295 * number. The caller must hold the rtnl semaphore or the 5296 * dev_base_lock to be sure it remains unique. 5297 */ 5298 static int dev_new_index(struct net *net) 5299 { 5300 int ifindex = net->ifindex; 5301 for (;;) { 5302 if (++ifindex <= 0) 5303 ifindex = 1; 5304 if (!__dev_get_by_index(net, ifindex)) 5305 return net->ifindex = ifindex; 5306 } 5307 } 5308 5309 /* Delayed registration/unregisteration */ 5310 static LIST_HEAD(net_todo_list); 5311 5312 static void net_set_todo(struct net_device *dev) 5313 { 5314 list_add_tail(&dev->todo_list, &net_todo_list); 5315 } 5316 5317 static void rollback_registered_many(struct list_head *head) 5318 { 5319 struct net_device *dev, *tmp; 5320 5321 BUG_ON(dev_boot_phase); 5322 ASSERT_RTNL(); 5323 5324 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 5325 /* Some devices call without registering 5326 * for initialization unwind. Remove those 5327 * devices and proceed with the remaining. 5328 */ 5329 if (dev->reg_state == NETREG_UNINITIALIZED) { 5330 pr_debug("unregister_netdevice: device %s/%p never was registered\n", 5331 dev->name, dev); 5332 5333 WARN_ON(1); 5334 list_del(&dev->unreg_list); 5335 continue; 5336 } 5337 dev->dismantle = true; 5338 BUG_ON(dev->reg_state != NETREG_REGISTERED); 5339 } 5340 5341 /* If device is running, close it first. */ 5342 dev_close_many(head); 5343 5344 list_for_each_entry(dev, head, unreg_list) { 5345 /* And unlink it from device chain. */ 5346 unlist_netdevice(dev); 5347 5348 dev->reg_state = NETREG_UNREGISTERING; 5349 } 5350 5351 synchronize_net(); 5352 5353 list_for_each_entry(dev, head, unreg_list) { 5354 /* Shutdown queueing discipline. */ 5355 dev_shutdown(dev); 5356 5357 5358 /* Notify protocols, that we are about to destroy 5359 this device. They should clean all the things. 5360 */ 5361 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 5362 5363 if (!dev->rtnl_link_ops || 5364 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 5365 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U); 5366 5367 /* 5368 * Flush the unicast and multicast chains 5369 */ 5370 dev_uc_flush(dev); 5371 dev_mc_flush(dev); 5372 5373 if (dev->netdev_ops->ndo_uninit) 5374 dev->netdev_ops->ndo_uninit(dev); 5375 5376 /* Notifier chain MUST detach us from master device. */ 5377 WARN_ON(dev->master); 5378 5379 /* Remove entries from kobject tree */ 5380 netdev_unregister_kobject(dev); 5381 } 5382 5383 synchronize_net(); 5384 5385 list_for_each_entry(dev, head, unreg_list) 5386 dev_put(dev); 5387 } 5388 5389 static void rollback_registered(struct net_device *dev) 5390 { 5391 LIST_HEAD(single); 5392 5393 list_add(&dev->unreg_list, &single); 5394 rollback_registered_many(&single); 5395 list_del(&single); 5396 } 5397 5398 static netdev_features_t netdev_fix_features(struct net_device *dev, 5399 netdev_features_t features) 5400 { 5401 /* Fix illegal checksum combinations */ 5402 if ((features & NETIF_F_HW_CSUM) && 5403 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 5404 netdev_warn(dev, "mixed HW and IP checksum settings.\n"); 5405 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 5406 } 5407 5408 /* Fix illegal SG+CSUM combinations. */ 5409 if ((features & NETIF_F_SG) && 5410 !(features & NETIF_F_ALL_CSUM)) { 5411 netdev_dbg(dev, 5412 "Dropping NETIF_F_SG since no checksum feature.\n"); 5413 features &= ~NETIF_F_SG; 5414 } 5415 5416 /* TSO requires that SG is present as well. */ 5417 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { 5418 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); 5419 features &= ~NETIF_F_ALL_TSO; 5420 } 5421 5422 /* TSO ECN requires that TSO is present as well. */ 5423 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) 5424 features &= ~NETIF_F_TSO_ECN; 5425 5426 /* Software GSO depends on SG. */ 5427 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 5428 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 5429 features &= ~NETIF_F_GSO; 5430 } 5431 5432 /* UFO needs SG and checksumming */ 5433 if (features & NETIF_F_UFO) { 5434 /* maybe split UFO into V4 and V6? */ 5435 if (!((features & NETIF_F_GEN_CSUM) || 5436 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM)) 5437 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 5438 netdev_dbg(dev, 5439 "Dropping NETIF_F_UFO since no checksum offload features.\n"); 5440 features &= ~NETIF_F_UFO; 5441 } 5442 5443 if (!(features & NETIF_F_SG)) { 5444 netdev_dbg(dev, 5445 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n"); 5446 features &= ~NETIF_F_UFO; 5447 } 5448 } 5449 5450 return features; 5451 } 5452 5453 int __netdev_update_features(struct net_device *dev) 5454 { 5455 netdev_features_t features; 5456 int err = 0; 5457 5458 ASSERT_RTNL(); 5459 5460 features = netdev_get_wanted_features(dev); 5461 5462 if (dev->netdev_ops->ndo_fix_features) 5463 features = dev->netdev_ops->ndo_fix_features(dev, features); 5464 5465 /* driver might be less strict about feature dependencies */ 5466 features = netdev_fix_features(dev, features); 5467 5468 if (dev->features == features) 5469 return 0; 5470 5471 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n", 5472 &dev->features, &features); 5473 5474 if (dev->netdev_ops->ndo_set_features) 5475 err = dev->netdev_ops->ndo_set_features(dev, features); 5476 5477 if (unlikely(err < 0)) { 5478 netdev_err(dev, 5479 "set_features() failed (%d); wanted %pNF, left %pNF\n", 5480 err, &features, &dev->features); 5481 return -1; 5482 } 5483 5484 if (!err) 5485 dev->features = features; 5486 5487 return 1; 5488 } 5489 5490 /** 5491 * netdev_update_features - recalculate device features 5492 * @dev: the device to check 5493 * 5494 * Recalculate dev->features set and send notifications if it 5495 * has changed. Should be called after driver or hardware dependent 5496 * conditions might have changed that influence the features. 5497 */ 5498 void netdev_update_features(struct net_device *dev) 5499 { 5500 if (__netdev_update_features(dev)) 5501 netdev_features_change(dev); 5502 } 5503 EXPORT_SYMBOL(netdev_update_features); 5504 5505 /** 5506 * netdev_change_features - recalculate device features 5507 * @dev: the device to check 5508 * 5509 * Recalculate dev->features set and send notifications even 5510 * if they have not changed. Should be called instead of 5511 * netdev_update_features() if also dev->vlan_features might 5512 * have changed to allow the changes to be propagated to stacked 5513 * VLAN devices. 5514 */ 5515 void netdev_change_features(struct net_device *dev) 5516 { 5517 __netdev_update_features(dev); 5518 netdev_features_change(dev); 5519 } 5520 EXPORT_SYMBOL(netdev_change_features); 5521 5522 /** 5523 * netif_stacked_transfer_operstate - transfer operstate 5524 * @rootdev: the root or lower level device to transfer state from 5525 * @dev: the device to transfer operstate to 5526 * 5527 * Transfer operational state from root to device. This is normally 5528 * called when a stacking relationship exists between the root 5529 * device and the device(a leaf device). 5530 */ 5531 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 5532 struct net_device *dev) 5533 { 5534 if (rootdev->operstate == IF_OPER_DORMANT) 5535 netif_dormant_on(dev); 5536 else 5537 netif_dormant_off(dev); 5538 5539 if (netif_carrier_ok(rootdev)) { 5540 if (!netif_carrier_ok(dev)) 5541 netif_carrier_on(dev); 5542 } else { 5543 if (netif_carrier_ok(dev)) 5544 netif_carrier_off(dev); 5545 } 5546 } 5547 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 5548 5549 #ifdef CONFIG_RPS 5550 static int netif_alloc_rx_queues(struct net_device *dev) 5551 { 5552 unsigned int i, count = dev->num_rx_queues; 5553 struct netdev_rx_queue *rx; 5554 5555 BUG_ON(count < 1); 5556 5557 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL); 5558 if (!rx) { 5559 pr_err("netdev: Unable to allocate %u rx queues\n", count); 5560 return -ENOMEM; 5561 } 5562 dev->_rx = rx; 5563 5564 for (i = 0; i < count; i++) 5565 rx[i].dev = dev; 5566 return 0; 5567 } 5568 #endif 5569 5570 static void netdev_init_one_queue(struct net_device *dev, 5571 struct netdev_queue *queue, void *_unused) 5572 { 5573 /* Initialize queue lock */ 5574 spin_lock_init(&queue->_xmit_lock); 5575 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); 5576 queue->xmit_lock_owner = -1; 5577 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 5578 queue->dev = dev; 5579 #ifdef CONFIG_BQL 5580 dql_init(&queue->dql, HZ); 5581 #endif 5582 } 5583 5584 static int netif_alloc_netdev_queues(struct net_device *dev) 5585 { 5586 unsigned int count = dev->num_tx_queues; 5587 struct netdev_queue *tx; 5588 5589 BUG_ON(count < 1); 5590 5591 tx = kcalloc(count, sizeof(struct netdev_queue), GFP_KERNEL); 5592 if (!tx) { 5593 pr_err("netdev: Unable to allocate %u tx queues\n", count); 5594 return -ENOMEM; 5595 } 5596 dev->_tx = tx; 5597 5598 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 5599 spin_lock_init(&dev->tx_global_lock); 5600 5601 return 0; 5602 } 5603 5604 /** 5605 * register_netdevice - register a network device 5606 * @dev: device to register 5607 * 5608 * Take a completed network device structure and add it to the kernel 5609 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 5610 * chain. 0 is returned on success. A negative errno code is returned 5611 * on a failure to set up the device, or if the name is a duplicate. 5612 * 5613 * Callers must hold the rtnl semaphore. You may want 5614 * register_netdev() instead of this. 5615 * 5616 * BUGS: 5617 * The locking appears insufficient to guarantee two parallel registers 5618 * will not get the same name. 5619 */ 5620 5621 int register_netdevice(struct net_device *dev) 5622 { 5623 int ret; 5624 struct net *net = dev_net(dev); 5625 5626 BUG_ON(dev_boot_phase); 5627 ASSERT_RTNL(); 5628 5629 might_sleep(); 5630 5631 /* When net_device's are persistent, this will be fatal. */ 5632 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 5633 BUG_ON(!net); 5634 5635 spin_lock_init(&dev->addr_list_lock); 5636 netdev_set_addr_lockdep_class(dev); 5637 5638 dev->iflink = -1; 5639 5640 ret = dev_get_valid_name(net, dev, dev->name); 5641 if (ret < 0) 5642 goto out; 5643 5644 /* Init, if this function is available */ 5645 if (dev->netdev_ops->ndo_init) { 5646 ret = dev->netdev_ops->ndo_init(dev); 5647 if (ret) { 5648 if (ret > 0) 5649 ret = -EIO; 5650 goto out; 5651 } 5652 } 5653 5654 ret = -EBUSY; 5655 if (!dev->ifindex) 5656 dev->ifindex = dev_new_index(net); 5657 else if (__dev_get_by_index(net, dev->ifindex)) 5658 goto err_uninit; 5659 5660 if (dev->iflink == -1) 5661 dev->iflink = dev->ifindex; 5662 5663 /* Transfer changeable features to wanted_features and enable 5664 * software offloads (GSO and GRO). 5665 */ 5666 dev->hw_features |= NETIF_F_SOFT_FEATURES; 5667 dev->features |= NETIF_F_SOFT_FEATURES; 5668 dev->wanted_features = dev->features & dev->hw_features; 5669 5670 /* Turn on no cache copy if HW is doing checksum */ 5671 if (!(dev->flags & IFF_LOOPBACK)) { 5672 dev->hw_features |= NETIF_F_NOCACHE_COPY; 5673 if (dev->features & NETIF_F_ALL_CSUM) { 5674 dev->wanted_features |= NETIF_F_NOCACHE_COPY; 5675 dev->features |= NETIF_F_NOCACHE_COPY; 5676 } 5677 } 5678 5679 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. 5680 */ 5681 dev->vlan_features |= NETIF_F_HIGHDMA; 5682 5683 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 5684 ret = notifier_to_errno(ret); 5685 if (ret) 5686 goto err_uninit; 5687 5688 ret = netdev_register_kobject(dev); 5689 if (ret) 5690 goto err_uninit; 5691 dev->reg_state = NETREG_REGISTERED; 5692 5693 __netdev_update_features(dev); 5694 5695 /* 5696 * Default initial state at registry is that the 5697 * device is present. 5698 */ 5699 5700 set_bit(__LINK_STATE_PRESENT, &dev->state); 5701 5702 linkwatch_init_dev(dev); 5703 5704 dev_init_scheduler(dev); 5705 dev_hold(dev); 5706 list_netdevice(dev); 5707 add_device_randomness(dev->dev_addr, dev->addr_len); 5708 5709 /* Notify protocols, that a new device appeared. */ 5710 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 5711 ret = notifier_to_errno(ret); 5712 if (ret) { 5713 rollback_registered(dev); 5714 dev->reg_state = NETREG_UNREGISTERED; 5715 } 5716 /* 5717 * Prevent userspace races by waiting until the network 5718 * device is fully setup before sending notifications. 5719 */ 5720 if (!dev->rtnl_link_ops || 5721 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 5722 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U); 5723 5724 out: 5725 return ret; 5726 5727 err_uninit: 5728 if (dev->netdev_ops->ndo_uninit) 5729 dev->netdev_ops->ndo_uninit(dev); 5730 goto out; 5731 } 5732 EXPORT_SYMBOL(register_netdevice); 5733 5734 /** 5735 * init_dummy_netdev - init a dummy network device for NAPI 5736 * @dev: device to init 5737 * 5738 * This takes a network device structure and initialize the minimum 5739 * amount of fields so it can be used to schedule NAPI polls without 5740 * registering a full blown interface. This is to be used by drivers 5741 * that need to tie several hardware interfaces to a single NAPI 5742 * poll scheduler due to HW limitations. 5743 */ 5744 int init_dummy_netdev(struct net_device *dev) 5745 { 5746 /* Clear everything. Note we don't initialize spinlocks 5747 * are they aren't supposed to be taken by any of the 5748 * NAPI code and this dummy netdev is supposed to be 5749 * only ever used for NAPI polls 5750 */ 5751 memset(dev, 0, sizeof(struct net_device)); 5752 5753 /* make sure we BUG if trying to hit standard 5754 * register/unregister code path 5755 */ 5756 dev->reg_state = NETREG_DUMMY; 5757 5758 /* NAPI wants this */ 5759 INIT_LIST_HEAD(&dev->napi_list); 5760 5761 /* a dummy interface is started by default */ 5762 set_bit(__LINK_STATE_PRESENT, &dev->state); 5763 set_bit(__LINK_STATE_START, &dev->state); 5764 5765 /* Note : We dont allocate pcpu_refcnt for dummy devices, 5766 * because users of this 'device' dont need to change 5767 * its refcount. 5768 */ 5769 5770 return 0; 5771 } 5772 EXPORT_SYMBOL_GPL(init_dummy_netdev); 5773 5774 5775 /** 5776 * register_netdev - register a network device 5777 * @dev: device to register 5778 * 5779 * Take a completed network device structure and add it to the kernel 5780 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 5781 * chain. 0 is returned on success. A negative errno code is returned 5782 * on a failure to set up the device, or if the name is a duplicate. 5783 * 5784 * This is a wrapper around register_netdevice that takes the rtnl semaphore 5785 * and expands the device name if you passed a format string to 5786 * alloc_netdev. 5787 */ 5788 int register_netdev(struct net_device *dev) 5789 { 5790 int err; 5791 5792 rtnl_lock(); 5793 err = register_netdevice(dev); 5794 rtnl_unlock(); 5795 return err; 5796 } 5797 EXPORT_SYMBOL(register_netdev); 5798 5799 int netdev_refcnt_read(const struct net_device *dev) 5800 { 5801 int i, refcnt = 0; 5802 5803 for_each_possible_cpu(i) 5804 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 5805 return refcnt; 5806 } 5807 EXPORT_SYMBOL(netdev_refcnt_read); 5808 5809 /** 5810 * netdev_wait_allrefs - wait until all references are gone. 5811 * @dev: target net_device 5812 * 5813 * This is called when unregistering network devices. 5814 * 5815 * Any protocol or device that holds a reference should register 5816 * for netdevice notification, and cleanup and put back the 5817 * reference if they receive an UNREGISTER event. 5818 * We can get stuck here if buggy protocols don't correctly 5819 * call dev_put. 5820 */ 5821 static void netdev_wait_allrefs(struct net_device *dev) 5822 { 5823 unsigned long rebroadcast_time, warning_time; 5824 int refcnt; 5825 5826 linkwatch_forget_dev(dev); 5827 5828 rebroadcast_time = warning_time = jiffies; 5829 refcnt = netdev_refcnt_read(dev); 5830 5831 while (refcnt != 0) { 5832 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 5833 rtnl_lock(); 5834 5835 /* Rebroadcast unregister notification */ 5836 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 5837 5838 __rtnl_unlock(); 5839 rcu_barrier(); 5840 rtnl_lock(); 5841 5842 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 5843 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 5844 &dev->state)) { 5845 /* We must not have linkwatch events 5846 * pending on unregister. If this 5847 * happens, we simply run the queue 5848 * unscheduled, resulting in a noop 5849 * for this device. 5850 */ 5851 linkwatch_run_queue(); 5852 } 5853 5854 __rtnl_unlock(); 5855 5856 rebroadcast_time = jiffies; 5857 } 5858 5859 msleep(250); 5860 5861 refcnt = netdev_refcnt_read(dev); 5862 5863 if (time_after(jiffies, warning_time + 10 * HZ)) { 5864 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n", 5865 dev->name, refcnt); 5866 warning_time = jiffies; 5867 } 5868 } 5869 } 5870 5871 /* The sequence is: 5872 * 5873 * rtnl_lock(); 5874 * ... 5875 * register_netdevice(x1); 5876 * register_netdevice(x2); 5877 * ... 5878 * unregister_netdevice(y1); 5879 * unregister_netdevice(y2); 5880 * ... 5881 * rtnl_unlock(); 5882 * free_netdev(y1); 5883 * free_netdev(y2); 5884 * 5885 * We are invoked by rtnl_unlock(). 5886 * This allows us to deal with problems: 5887 * 1) We can delete sysfs objects which invoke hotplug 5888 * without deadlocking with linkwatch via keventd. 5889 * 2) Since we run with the RTNL semaphore not held, we can sleep 5890 * safely in order to wait for the netdev refcnt to drop to zero. 5891 * 5892 * We must not return until all unregister events added during 5893 * the interval the lock was held have been completed. 5894 */ 5895 void netdev_run_todo(void) 5896 { 5897 struct list_head list; 5898 5899 /* Snapshot list, allow later requests */ 5900 list_replace_init(&net_todo_list, &list); 5901 5902 __rtnl_unlock(); 5903 5904 5905 /* Wait for rcu callbacks to finish before next phase */ 5906 if (!list_empty(&list)) 5907 rcu_barrier(); 5908 5909 while (!list_empty(&list)) { 5910 struct net_device *dev 5911 = list_first_entry(&list, struct net_device, todo_list); 5912 list_del(&dev->todo_list); 5913 5914 rtnl_lock(); 5915 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 5916 __rtnl_unlock(); 5917 5918 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 5919 pr_err("network todo '%s' but state %d\n", 5920 dev->name, dev->reg_state); 5921 dump_stack(); 5922 continue; 5923 } 5924 5925 dev->reg_state = NETREG_UNREGISTERED; 5926 5927 on_each_cpu(flush_backlog, dev, 1); 5928 5929 netdev_wait_allrefs(dev); 5930 5931 /* paranoia */ 5932 BUG_ON(netdev_refcnt_read(dev)); 5933 WARN_ON(rcu_access_pointer(dev->ip_ptr)); 5934 WARN_ON(rcu_access_pointer(dev->ip6_ptr)); 5935 WARN_ON(dev->dn_ptr); 5936 5937 if (dev->destructor) 5938 dev->destructor(dev); 5939 5940 /* Free network device */ 5941 kobject_put(&dev->dev.kobj); 5942 } 5943 } 5944 5945 /* Convert net_device_stats to rtnl_link_stats64. They have the same 5946 * fields in the same order, with only the type differing. 5947 */ 5948 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 5949 const struct net_device_stats *netdev_stats) 5950 { 5951 #if BITS_PER_LONG == 64 5952 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats)); 5953 memcpy(stats64, netdev_stats, sizeof(*stats64)); 5954 #else 5955 size_t i, n = sizeof(*stats64) / sizeof(u64); 5956 const unsigned long *src = (const unsigned long *)netdev_stats; 5957 u64 *dst = (u64 *)stats64; 5958 5959 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) != 5960 sizeof(*stats64) / sizeof(u64)); 5961 for (i = 0; i < n; i++) 5962 dst[i] = src[i]; 5963 #endif 5964 } 5965 EXPORT_SYMBOL(netdev_stats_to_stats64); 5966 5967 /** 5968 * dev_get_stats - get network device statistics 5969 * @dev: device to get statistics from 5970 * @storage: place to store stats 5971 * 5972 * Get network statistics from device. Return @storage. 5973 * The device driver may provide its own method by setting 5974 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 5975 * otherwise the internal statistics structure is used. 5976 */ 5977 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 5978 struct rtnl_link_stats64 *storage) 5979 { 5980 const struct net_device_ops *ops = dev->netdev_ops; 5981 5982 if (ops->ndo_get_stats64) { 5983 memset(storage, 0, sizeof(*storage)); 5984 ops->ndo_get_stats64(dev, storage); 5985 } else if (ops->ndo_get_stats) { 5986 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 5987 } else { 5988 netdev_stats_to_stats64(storage, &dev->stats); 5989 } 5990 storage->rx_dropped += atomic_long_read(&dev->rx_dropped); 5991 return storage; 5992 } 5993 EXPORT_SYMBOL(dev_get_stats); 5994 5995 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 5996 { 5997 struct netdev_queue *queue = dev_ingress_queue(dev); 5998 5999 #ifdef CONFIG_NET_CLS_ACT 6000 if (queue) 6001 return queue; 6002 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 6003 if (!queue) 6004 return NULL; 6005 netdev_init_one_queue(dev, queue, NULL); 6006 queue->qdisc = &noop_qdisc; 6007 queue->qdisc_sleeping = &noop_qdisc; 6008 rcu_assign_pointer(dev->ingress_queue, queue); 6009 #endif 6010 return queue; 6011 } 6012 6013 static const struct ethtool_ops default_ethtool_ops; 6014 6015 /** 6016 * alloc_netdev_mqs - allocate network device 6017 * @sizeof_priv: size of private data to allocate space for 6018 * @name: device name format string 6019 * @setup: callback to initialize device 6020 * @txqs: the number of TX subqueues to allocate 6021 * @rxqs: the number of RX subqueues to allocate 6022 * 6023 * Allocates a struct net_device with private data area for driver use 6024 * and performs basic initialization. Also allocates subquue structs 6025 * for each queue on the device. 6026 */ 6027 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 6028 void (*setup)(struct net_device *), 6029 unsigned int txqs, unsigned int rxqs) 6030 { 6031 struct net_device *dev; 6032 size_t alloc_size; 6033 struct net_device *p; 6034 6035 BUG_ON(strlen(name) >= sizeof(dev->name)); 6036 6037 if (txqs < 1) { 6038 pr_err("alloc_netdev: Unable to allocate device with zero queues\n"); 6039 return NULL; 6040 } 6041 6042 #ifdef CONFIG_RPS 6043 if (rxqs < 1) { 6044 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n"); 6045 return NULL; 6046 } 6047 #endif 6048 6049 alloc_size = sizeof(struct net_device); 6050 if (sizeof_priv) { 6051 /* ensure 32-byte alignment of private area */ 6052 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); 6053 alloc_size += sizeof_priv; 6054 } 6055 /* ensure 32-byte alignment of whole construct */ 6056 alloc_size += NETDEV_ALIGN - 1; 6057 6058 p = kzalloc(alloc_size, GFP_KERNEL); 6059 if (!p) { 6060 pr_err("alloc_netdev: Unable to allocate device\n"); 6061 return NULL; 6062 } 6063 6064 dev = PTR_ALIGN(p, NETDEV_ALIGN); 6065 dev->padded = (char *)dev - (char *)p; 6066 6067 dev->pcpu_refcnt = alloc_percpu(int); 6068 if (!dev->pcpu_refcnt) 6069 goto free_p; 6070 6071 if (dev_addr_init(dev)) 6072 goto free_pcpu; 6073 6074 dev_mc_init(dev); 6075 dev_uc_init(dev); 6076 6077 dev_net_set(dev, &init_net); 6078 6079 dev->gso_max_size = GSO_MAX_SIZE; 6080 dev->gso_max_segs = GSO_MAX_SEGS; 6081 6082 INIT_LIST_HEAD(&dev->napi_list); 6083 INIT_LIST_HEAD(&dev->unreg_list); 6084 INIT_LIST_HEAD(&dev->link_watch_list); 6085 dev->priv_flags = IFF_XMIT_DST_RELEASE; 6086 setup(dev); 6087 6088 dev->num_tx_queues = txqs; 6089 dev->real_num_tx_queues = txqs; 6090 if (netif_alloc_netdev_queues(dev)) 6091 goto free_all; 6092 6093 #ifdef CONFIG_RPS 6094 dev->num_rx_queues = rxqs; 6095 dev->real_num_rx_queues = rxqs; 6096 if (netif_alloc_rx_queues(dev)) 6097 goto free_all; 6098 #endif 6099 6100 strcpy(dev->name, name); 6101 dev->group = INIT_NETDEV_GROUP; 6102 if (!dev->ethtool_ops) 6103 dev->ethtool_ops = &default_ethtool_ops; 6104 return dev; 6105 6106 free_all: 6107 free_netdev(dev); 6108 return NULL; 6109 6110 free_pcpu: 6111 free_percpu(dev->pcpu_refcnt); 6112 kfree(dev->_tx); 6113 #ifdef CONFIG_RPS 6114 kfree(dev->_rx); 6115 #endif 6116 6117 free_p: 6118 kfree(p); 6119 return NULL; 6120 } 6121 EXPORT_SYMBOL(alloc_netdev_mqs); 6122 6123 /** 6124 * free_netdev - free network device 6125 * @dev: device 6126 * 6127 * This function does the last stage of destroying an allocated device 6128 * interface. The reference to the device object is released. 6129 * If this is the last reference then it will be freed. 6130 */ 6131 void free_netdev(struct net_device *dev) 6132 { 6133 struct napi_struct *p, *n; 6134 6135 release_net(dev_net(dev)); 6136 6137 kfree(dev->_tx); 6138 #ifdef CONFIG_RPS 6139 kfree(dev->_rx); 6140 #endif 6141 6142 kfree(rcu_dereference_protected(dev->ingress_queue, 1)); 6143 6144 /* Flush device addresses */ 6145 dev_addr_flush(dev); 6146 6147 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 6148 netif_napi_del(p); 6149 6150 free_percpu(dev->pcpu_refcnt); 6151 dev->pcpu_refcnt = NULL; 6152 6153 /* Compatibility with error handling in drivers */ 6154 if (dev->reg_state == NETREG_UNINITIALIZED) { 6155 kfree((char *)dev - dev->padded); 6156 return; 6157 } 6158 6159 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 6160 dev->reg_state = NETREG_RELEASED; 6161 6162 /* will free via device release */ 6163 put_device(&dev->dev); 6164 } 6165 EXPORT_SYMBOL(free_netdev); 6166 6167 /** 6168 * synchronize_net - Synchronize with packet receive processing 6169 * 6170 * Wait for packets currently being received to be done. 6171 * Does not block later packets from starting. 6172 */ 6173 void synchronize_net(void) 6174 { 6175 might_sleep(); 6176 if (rtnl_is_locked()) 6177 synchronize_rcu_expedited(); 6178 else 6179 synchronize_rcu(); 6180 } 6181 EXPORT_SYMBOL(synchronize_net); 6182 6183 /** 6184 * unregister_netdevice_queue - remove device from the kernel 6185 * @dev: device 6186 * @head: list 6187 * 6188 * This function shuts down a device interface and removes it 6189 * from the kernel tables. 6190 * If head not NULL, device is queued to be unregistered later. 6191 * 6192 * Callers must hold the rtnl semaphore. You may want 6193 * unregister_netdev() instead of this. 6194 */ 6195 6196 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 6197 { 6198 ASSERT_RTNL(); 6199 6200 if (head) { 6201 list_move_tail(&dev->unreg_list, head); 6202 } else { 6203 rollback_registered(dev); 6204 /* Finish processing unregister after unlock */ 6205 net_set_todo(dev); 6206 } 6207 } 6208 EXPORT_SYMBOL(unregister_netdevice_queue); 6209 6210 /** 6211 * unregister_netdevice_many - unregister many devices 6212 * @head: list of devices 6213 */ 6214 void unregister_netdevice_many(struct list_head *head) 6215 { 6216 struct net_device *dev; 6217 6218 if (!list_empty(head)) { 6219 rollback_registered_many(head); 6220 list_for_each_entry(dev, head, unreg_list) 6221 net_set_todo(dev); 6222 } 6223 } 6224 EXPORT_SYMBOL(unregister_netdevice_many); 6225 6226 /** 6227 * unregister_netdev - remove device from the kernel 6228 * @dev: device 6229 * 6230 * This function shuts down a device interface and removes it 6231 * from the kernel tables. 6232 * 6233 * This is just a wrapper for unregister_netdevice that takes 6234 * the rtnl semaphore. In general you want to use this and not 6235 * unregister_netdevice. 6236 */ 6237 void unregister_netdev(struct net_device *dev) 6238 { 6239 rtnl_lock(); 6240 unregister_netdevice(dev); 6241 rtnl_unlock(); 6242 } 6243 EXPORT_SYMBOL(unregister_netdev); 6244 6245 /** 6246 * dev_change_net_namespace - move device to different nethost namespace 6247 * @dev: device 6248 * @net: network namespace 6249 * @pat: If not NULL name pattern to try if the current device name 6250 * is already taken in the destination network namespace. 6251 * 6252 * This function shuts down a device interface and moves it 6253 * to a new network namespace. On success 0 is returned, on 6254 * a failure a netagive errno code is returned. 6255 * 6256 * Callers must hold the rtnl semaphore. 6257 */ 6258 6259 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 6260 { 6261 int err; 6262 6263 ASSERT_RTNL(); 6264 6265 /* Don't allow namespace local devices to be moved. */ 6266 err = -EINVAL; 6267 if (dev->features & NETIF_F_NETNS_LOCAL) 6268 goto out; 6269 6270 /* Ensure the device has been registrered */ 6271 err = -EINVAL; 6272 if (dev->reg_state != NETREG_REGISTERED) 6273 goto out; 6274 6275 /* Get out if there is nothing todo */ 6276 err = 0; 6277 if (net_eq(dev_net(dev), net)) 6278 goto out; 6279 6280 /* Pick the destination device name, and ensure 6281 * we can use it in the destination network namespace. 6282 */ 6283 err = -EEXIST; 6284 if (__dev_get_by_name(net, dev->name)) { 6285 /* We get here if we can't use the current device name */ 6286 if (!pat) 6287 goto out; 6288 if (dev_get_valid_name(net, dev, pat) < 0) 6289 goto out; 6290 } 6291 6292 /* 6293 * And now a mini version of register_netdevice unregister_netdevice. 6294 */ 6295 6296 /* If device is running close it first. */ 6297 dev_close(dev); 6298 6299 /* And unlink it from device chain */ 6300 err = -ENODEV; 6301 unlist_netdevice(dev); 6302 6303 synchronize_net(); 6304 6305 /* Shutdown queueing discipline. */ 6306 dev_shutdown(dev); 6307 6308 /* Notify protocols, that we are about to destroy 6309 this device. They should clean all the things. 6310 6311 Note that dev->reg_state stays at NETREG_REGISTERED. 6312 This is wanted because this way 8021q and macvlan know 6313 the device is just moving and can keep their slaves up. 6314 */ 6315 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 6316 rcu_barrier(); 6317 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 6318 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U); 6319 6320 /* 6321 * Flush the unicast and multicast chains 6322 */ 6323 dev_uc_flush(dev); 6324 dev_mc_flush(dev); 6325 6326 /* Actually switch the network namespace */ 6327 dev_net_set(dev, net); 6328 6329 /* If there is an ifindex conflict assign a new one */ 6330 if (__dev_get_by_index(net, dev->ifindex)) { 6331 int iflink = (dev->iflink == dev->ifindex); 6332 dev->ifindex = dev_new_index(net); 6333 if (iflink) 6334 dev->iflink = dev->ifindex; 6335 } 6336 6337 /* Fixup kobjects */ 6338 err = device_rename(&dev->dev, dev->name); 6339 WARN_ON(err); 6340 6341 /* Add the device back in the hashes */ 6342 list_netdevice(dev); 6343 6344 /* Notify protocols, that a new device appeared. */ 6345 call_netdevice_notifiers(NETDEV_REGISTER, dev); 6346 6347 /* 6348 * Prevent userspace races by waiting until the network 6349 * device is fully setup before sending notifications. 6350 */ 6351 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U); 6352 6353 synchronize_net(); 6354 err = 0; 6355 out: 6356 return err; 6357 } 6358 EXPORT_SYMBOL_GPL(dev_change_net_namespace); 6359 6360 static int dev_cpu_callback(struct notifier_block *nfb, 6361 unsigned long action, 6362 void *ocpu) 6363 { 6364 struct sk_buff **list_skb; 6365 struct sk_buff *skb; 6366 unsigned int cpu, oldcpu = (unsigned long)ocpu; 6367 struct softnet_data *sd, *oldsd; 6368 6369 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN) 6370 return NOTIFY_OK; 6371 6372 local_irq_disable(); 6373 cpu = smp_processor_id(); 6374 sd = &per_cpu(softnet_data, cpu); 6375 oldsd = &per_cpu(softnet_data, oldcpu); 6376 6377 /* Find end of our completion_queue. */ 6378 list_skb = &sd->completion_queue; 6379 while (*list_skb) 6380 list_skb = &(*list_skb)->next; 6381 /* Append completion queue from offline CPU. */ 6382 *list_skb = oldsd->completion_queue; 6383 oldsd->completion_queue = NULL; 6384 6385 /* Append output queue from offline CPU. */ 6386 if (oldsd->output_queue) { 6387 *sd->output_queue_tailp = oldsd->output_queue; 6388 sd->output_queue_tailp = oldsd->output_queue_tailp; 6389 oldsd->output_queue = NULL; 6390 oldsd->output_queue_tailp = &oldsd->output_queue; 6391 } 6392 /* Append NAPI poll list from offline CPU. */ 6393 if (!list_empty(&oldsd->poll_list)) { 6394 list_splice_init(&oldsd->poll_list, &sd->poll_list); 6395 raise_softirq_irqoff(NET_RX_SOFTIRQ); 6396 } 6397 6398 raise_softirq_irqoff(NET_TX_SOFTIRQ); 6399 local_irq_enable(); 6400 6401 /* Process offline CPU's input_pkt_queue */ 6402 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 6403 netif_rx(skb); 6404 input_queue_head_incr(oldsd); 6405 } 6406 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) { 6407 netif_rx(skb); 6408 input_queue_head_incr(oldsd); 6409 } 6410 6411 return NOTIFY_OK; 6412 } 6413 6414 6415 /** 6416 * netdev_increment_features - increment feature set by one 6417 * @all: current feature set 6418 * @one: new feature set 6419 * @mask: mask feature set 6420 * 6421 * Computes a new feature set after adding a device with feature set 6422 * @one to the master device with current feature set @all. Will not 6423 * enable anything that is off in @mask. Returns the new feature set. 6424 */ 6425 netdev_features_t netdev_increment_features(netdev_features_t all, 6426 netdev_features_t one, netdev_features_t mask) 6427 { 6428 if (mask & NETIF_F_GEN_CSUM) 6429 mask |= NETIF_F_ALL_CSUM; 6430 mask |= NETIF_F_VLAN_CHALLENGED; 6431 6432 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask; 6433 all &= one | ~NETIF_F_ALL_FOR_ALL; 6434 6435 /* If one device supports hw checksumming, set for all. */ 6436 if (all & NETIF_F_GEN_CSUM) 6437 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM); 6438 6439 return all; 6440 } 6441 EXPORT_SYMBOL(netdev_increment_features); 6442 6443 static struct hlist_head *netdev_create_hash(void) 6444 { 6445 int i; 6446 struct hlist_head *hash; 6447 6448 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL); 6449 if (hash != NULL) 6450 for (i = 0; i < NETDEV_HASHENTRIES; i++) 6451 INIT_HLIST_HEAD(&hash[i]); 6452 6453 return hash; 6454 } 6455 6456 /* Initialize per network namespace state */ 6457 static int __net_init netdev_init(struct net *net) 6458 { 6459 if (net != &init_net) 6460 INIT_LIST_HEAD(&net->dev_base_head); 6461 6462 net->dev_name_head = netdev_create_hash(); 6463 if (net->dev_name_head == NULL) 6464 goto err_name; 6465 6466 net->dev_index_head = netdev_create_hash(); 6467 if (net->dev_index_head == NULL) 6468 goto err_idx; 6469 6470 return 0; 6471 6472 err_idx: 6473 kfree(net->dev_name_head); 6474 err_name: 6475 return -ENOMEM; 6476 } 6477 6478 /** 6479 * netdev_drivername - network driver for the device 6480 * @dev: network device 6481 * 6482 * Determine network driver for device. 6483 */ 6484 const char *netdev_drivername(const struct net_device *dev) 6485 { 6486 const struct device_driver *driver; 6487 const struct device *parent; 6488 const char *empty = ""; 6489 6490 parent = dev->dev.parent; 6491 if (!parent) 6492 return empty; 6493 6494 driver = parent->driver; 6495 if (driver && driver->name) 6496 return driver->name; 6497 return empty; 6498 } 6499 6500 static int __netdev_printk(const char *level, const struct net_device *dev, 6501 struct va_format *vaf) 6502 { 6503 int r; 6504 6505 if (dev && dev->dev.parent) { 6506 r = dev_printk_emit(level[1] - '0', 6507 dev->dev.parent, 6508 "%s %s %s: %pV", 6509 dev_driver_string(dev->dev.parent), 6510 dev_name(dev->dev.parent), 6511 netdev_name(dev), vaf); 6512 } else if (dev) { 6513 r = printk("%s%s: %pV", level, netdev_name(dev), vaf); 6514 } else { 6515 r = printk("%s(NULL net_device): %pV", level, vaf); 6516 } 6517 6518 return r; 6519 } 6520 6521 int netdev_printk(const char *level, const struct net_device *dev, 6522 const char *format, ...) 6523 { 6524 struct va_format vaf; 6525 va_list args; 6526 int r; 6527 6528 va_start(args, format); 6529 6530 vaf.fmt = format; 6531 vaf.va = &args; 6532 6533 r = __netdev_printk(level, dev, &vaf); 6534 6535 va_end(args); 6536 6537 return r; 6538 } 6539 EXPORT_SYMBOL(netdev_printk); 6540 6541 #define define_netdev_printk_level(func, level) \ 6542 int func(const struct net_device *dev, const char *fmt, ...) \ 6543 { \ 6544 int r; \ 6545 struct va_format vaf; \ 6546 va_list args; \ 6547 \ 6548 va_start(args, fmt); \ 6549 \ 6550 vaf.fmt = fmt; \ 6551 vaf.va = &args; \ 6552 \ 6553 r = __netdev_printk(level, dev, &vaf); \ 6554 \ 6555 va_end(args); \ 6556 \ 6557 return r; \ 6558 } \ 6559 EXPORT_SYMBOL(func); 6560 6561 define_netdev_printk_level(netdev_emerg, KERN_EMERG); 6562 define_netdev_printk_level(netdev_alert, KERN_ALERT); 6563 define_netdev_printk_level(netdev_crit, KERN_CRIT); 6564 define_netdev_printk_level(netdev_err, KERN_ERR); 6565 define_netdev_printk_level(netdev_warn, KERN_WARNING); 6566 define_netdev_printk_level(netdev_notice, KERN_NOTICE); 6567 define_netdev_printk_level(netdev_info, KERN_INFO); 6568 6569 static void __net_exit netdev_exit(struct net *net) 6570 { 6571 kfree(net->dev_name_head); 6572 kfree(net->dev_index_head); 6573 } 6574 6575 static struct pernet_operations __net_initdata netdev_net_ops = { 6576 .init = netdev_init, 6577 .exit = netdev_exit, 6578 }; 6579 6580 static void __net_exit default_device_exit(struct net *net) 6581 { 6582 struct net_device *dev, *aux; 6583 /* 6584 * Push all migratable network devices back to the 6585 * initial network namespace 6586 */ 6587 rtnl_lock(); 6588 for_each_netdev_safe(net, dev, aux) { 6589 int err; 6590 char fb_name[IFNAMSIZ]; 6591 6592 /* Ignore unmoveable devices (i.e. loopback) */ 6593 if (dev->features & NETIF_F_NETNS_LOCAL) 6594 continue; 6595 6596 /* Leave virtual devices for the generic cleanup */ 6597 if (dev->rtnl_link_ops) 6598 continue; 6599 6600 /* Push remaining network devices to init_net */ 6601 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 6602 err = dev_change_net_namespace(dev, &init_net, fb_name); 6603 if (err) { 6604 pr_emerg("%s: failed to move %s to init_net: %d\n", 6605 __func__, dev->name, err); 6606 BUG(); 6607 } 6608 } 6609 rtnl_unlock(); 6610 } 6611 6612 static void __net_exit default_device_exit_batch(struct list_head *net_list) 6613 { 6614 /* At exit all network devices most be removed from a network 6615 * namespace. Do this in the reverse order of registration. 6616 * Do this across as many network namespaces as possible to 6617 * improve batching efficiency. 6618 */ 6619 struct net_device *dev; 6620 struct net *net; 6621 LIST_HEAD(dev_kill_list); 6622 6623 rtnl_lock(); 6624 list_for_each_entry(net, net_list, exit_list) { 6625 for_each_netdev_reverse(net, dev) { 6626 if (dev->rtnl_link_ops) 6627 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 6628 else 6629 unregister_netdevice_queue(dev, &dev_kill_list); 6630 } 6631 } 6632 unregister_netdevice_many(&dev_kill_list); 6633 list_del(&dev_kill_list); 6634 rtnl_unlock(); 6635 } 6636 6637 static struct pernet_operations __net_initdata default_device_ops = { 6638 .exit = default_device_exit, 6639 .exit_batch = default_device_exit_batch, 6640 }; 6641 6642 /* 6643 * Initialize the DEV module. At boot time this walks the device list and 6644 * unhooks any devices that fail to initialise (normally hardware not 6645 * present) and leaves us with a valid list of present and active devices. 6646 * 6647 */ 6648 6649 /* 6650 * This is called single threaded during boot, so no need 6651 * to take the rtnl semaphore. 6652 */ 6653 static int __init net_dev_init(void) 6654 { 6655 int i, rc = -ENOMEM; 6656 6657 BUG_ON(!dev_boot_phase); 6658 6659 if (dev_proc_init()) 6660 goto out; 6661 6662 if (netdev_kobject_init()) 6663 goto out; 6664 6665 INIT_LIST_HEAD(&ptype_all); 6666 for (i = 0; i < PTYPE_HASH_SIZE; i++) 6667 INIT_LIST_HEAD(&ptype_base[i]); 6668 6669 if (register_pernet_subsys(&netdev_net_ops)) 6670 goto out; 6671 6672 /* 6673 * Initialise the packet receive queues. 6674 */ 6675 6676 for_each_possible_cpu(i) { 6677 struct softnet_data *sd = &per_cpu(softnet_data, i); 6678 6679 memset(sd, 0, sizeof(*sd)); 6680 skb_queue_head_init(&sd->input_pkt_queue); 6681 skb_queue_head_init(&sd->process_queue); 6682 sd->completion_queue = NULL; 6683 INIT_LIST_HEAD(&sd->poll_list); 6684 sd->output_queue = NULL; 6685 sd->output_queue_tailp = &sd->output_queue; 6686 #ifdef CONFIG_RPS 6687 sd->csd.func = rps_trigger_softirq; 6688 sd->csd.info = sd; 6689 sd->csd.flags = 0; 6690 sd->cpu = i; 6691 #endif 6692 6693 sd->backlog.poll = process_backlog; 6694 sd->backlog.weight = weight_p; 6695 sd->backlog.gro_list = NULL; 6696 sd->backlog.gro_count = 0; 6697 } 6698 6699 dev_boot_phase = 0; 6700 6701 /* The loopback device is special if any other network devices 6702 * is present in a network namespace the loopback device must 6703 * be present. Since we now dynamically allocate and free the 6704 * loopback device ensure this invariant is maintained by 6705 * keeping the loopback device as the first device on the 6706 * list of network devices. Ensuring the loopback devices 6707 * is the first device that appears and the last network device 6708 * that disappears. 6709 */ 6710 if (register_pernet_device(&loopback_net_ops)) 6711 goto out; 6712 6713 if (register_pernet_device(&default_device_ops)) 6714 goto out; 6715 6716 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 6717 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 6718 6719 hotcpu_notifier(dev_cpu_callback, 0); 6720 dst_init(); 6721 dev_mcast_init(); 6722 rc = 0; 6723 out: 6724 return rc; 6725 } 6726 6727 subsys_initcall(net_dev_init); 6728 6729 static int __init initialize_hashrnd(void) 6730 { 6731 get_random_bytes(&hashrnd, sizeof(hashrnd)); 6732 return 0; 6733 } 6734 6735 late_initcall_sync(initialize_hashrnd); 6736 6737