xref: /linux/net/core/dev.c (revision c6bd5bcc4983f1a2d2f87a3769bf309482ee8c04)
1 /*
2  * 	NET3	Protocol independent device support routines.
3  *
4  *		This program is free software; you can redistribute it and/or
5  *		modify it under the terms of the GNU General Public License
6  *		as published by the Free Software Foundation; either version
7  *		2 of the License, or (at your option) any later version.
8  *
9  *	Derived from the non IP parts of dev.c 1.0.19
10  * 		Authors:	Ross Biro
11  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *	Additional Authors:
15  *		Florian la Roche <rzsfl@rz.uni-sb.de>
16  *		Alan Cox <gw4pts@gw4pts.ampr.org>
17  *		David Hinds <dahinds@users.sourceforge.net>
18  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *		Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *	Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *              			to 2 if register_netdev gets called
25  *              			before net_dev_init & also removed a
26  *              			few lines of code in the process.
27  *		Alan Cox	:	device private ioctl copies fields back.
28  *		Alan Cox	:	Transmit queue code does relevant
29  *					stunts to keep the queue safe.
30  *		Alan Cox	:	Fixed double lock.
31  *		Alan Cox	:	Fixed promisc NULL pointer trap
32  *		????????	:	Support the full private ioctl range
33  *		Alan Cox	:	Moved ioctl permission check into
34  *					drivers
35  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
36  *		Alan Cox	:	100 backlog just doesn't cut it when
37  *					you start doing multicast video 8)
38  *		Alan Cox	:	Rewrote net_bh and list manager.
39  *		Alan Cox	: 	Fix ETH_P_ALL echoback lengths.
40  *		Alan Cox	:	Took out transmit every packet pass
41  *					Saved a few bytes in the ioctl handler
42  *		Alan Cox	:	Network driver sets packet type before
43  *					calling netif_rx. Saves a function
44  *					call a packet.
45  *		Alan Cox	:	Hashed net_bh()
46  *		Richard Kooijman:	Timestamp fixes.
47  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
48  *		Alan Cox	:	Device lock protection.
49  *		Alan Cox	: 	Fixed nasty side effect of device close
50  *					changes.
51  *		Rudi Cilibrasi	:	Pass the right thing to
52  *					set_mac_address()
53  *		Dave Miller	:	32bit quantity for the device lock to
54  *					make it work out on a Sparc.
55  *		Bjorn Ekwall	:	Added KERNELD hack.
56  *		Alan Cox	:	Cleaned up the backlog initialise.
57  *		Craig Metz	:	SIOCGIFCONF fix if space for under
58  *					1 device.
59  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
60  *					is no device open function.
61  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
62  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
63  *		Cyrus Durgin	:	Cleaned for KMOD
64  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
65  *					A network device unload needs to purge
66  *					the backlog queue.
67  *	Paul Rusty Russell	:	SIOCSIFNAME
68  *              Pekka Riikonen  :	Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *              			indefinitely on dev->refcnt
71  * 		J Hadi Salim	:	- Backlog queue sampling
72  *				        - netif_rx() feedback
73  */
74 
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/proc_fs.h>
101 #include <linux/seq_file.h>
102 #include <linux/stat.h>
103 #include <net/dst.h>
104 #include <net/pkt_sched.h>
105 #include <net/checksum.h>
106 #include <net/xfrm.h>
107 #include <linux/highmem.h>
108 #include <linux/init.h>
109 #include <linux/kmod.h>
110 #include <linux/module.h>
111 #include <linux/netpoll.h>
112 #include <linux/rcupdate.h>
113 #include <linux/delay.h>
114 #include <net/wext.h>
115 #include <net/iw_handler.h>
116 #include <asm/current.h>
117 #include <linux/audit.h>
118 #include <linux/dmaengine.h>
119 #include <linux/err.h>
120 #include <linux/ctype.h>
121 #include <linux/if_arp.h>
122 #include <linux/if_vlan.h>
123 #include <linux/ip.h>
124 #include <net/ip.h>
125 #include <linux/ipv6.h>
126 #include <linux/in.h>
127 #include <linux/jhash.h>
128 #include <linux/random.h>
129 #include <trace/events/napi.h>
130 #include <trace/events/net.h>
131 #include <trace/events/skb.h>
132 #include <linux/pci.h>
133 #include <linux/inetdevice.h>
134 #include <linux/cpu_rmap.h>
135 #include <linux/net_tstamp.h>
136 #include <linux/static_key.h>
137 #include <net/flow_keys.h>
138 
139 #include "net-sysfs.h"
140 
141 /* Instead of increasing this, you should create a hash table. */
142 #define MAX_GRO_SKBS 8
143 
144 /* This should be increased if a protocol with a bigger head is added. */
145 #define GRO_MAX_HEAD (MAX_HEADER + 128)
146 
147 /*
148  *	The list of packet types we will receive (as opposed to discard)
149  *	and the routines to invoke.
150  *
151  *	Why 16. Because with 16 the only overlap we get on a hash of the
152  *	low nibble of the protocol value is RARP/SNAP/X.25.
153  *
154  *      NOTE:  That is no longer true with the addition of VLAN tags.  Not
155  *             sure which should go first, but I bet it won't make much
156  *             difference if we are running VLANs.  The good news is that
157  *             this protocol won't be in the list unless compiled in, so
158  *             the average user (w/out VLANs) will not be adversely affected.
159  *             --BLG
160  *
161  *		0800	IP
162  *		8100    802.1Q VLAN
163  *		0001	802.3
164  *		0002	AX.25
165  *		0004	802.2
166  *		8035	RARP
167  *		0005	SNAP
168  *		0805	X.25
169  *		0806	ARP
170  *		8137	IPX
171  *		0009	Localtalk
172  *		86DD	IPv6
173  */
174 
175 #define PTYPE_HASH_SIZE	(16)
176 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
177 
178 static DEFINE_SPINLOCK(ptype_lock);
179 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
180 static struct list_head ptype_all __read_mostly;	/* Taps */
181 
182 /*
183  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
184  * semaphore.
185  *
186  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
187  *
188  * Writers must hold the rtnl semaphore while they loop through the
189  * dev_base_head list, and hold dev_base_lock for writing when they do the
190  * actual updates.  This allows pure readers to access the list even
191  * while a writer is preparing to update it.
192  *
193  * To put it another way, dev_base_lock is held for writing only to
194  * protect against pure readers; the rtnl semaphore provides the
195  * protection against other writers.
196  *
197  * See, for example usages, register_netdevice() and
198  * unregister_netdevice(), which must be called with the rtnl
199  * semaphore held.
200  */
201 DEFINE_RWLOCK(dev_base_lock);
202 EXPORT_SYMBOL(dev_base_lock);
203 
204 static inline void dev_base_seq_inc(struct net *net)
205 {
206 	while (++net->dev_base_seq == 0);
207 }
208 
209 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
210 {
211 	unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
212 
213 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
214 }
215 
216 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
217 {
218 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
219 }
220 
221 static inline void rps_lock(struct softnet_data *sd)
222 {
223 #ifdef CONFIG_RPS
224 	spin_lock(&sd->input_pkt_queue.lock);
225 #endif
226 }
227 
228 static inline void rps_unlock(struct softnet_data *sd)
229 {
230 #ifdef CONFIG_RPS
231 	spin_unlock(&sd->input_pkt_queue.lock);
232 #endif
233 }
234 
235 /* Device list insertion */
236 static int list_netdevice(struct net_device *dev)
237 {
238 	struct net *net = dev_net(dev);
239 
240 	ASSERT_RTNL();
241 
242 	write_lock_bh(&dev_base_lock);
243 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
244 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
245 	hlist_add_head_rcu(&dev->index_hlist,
246 			   dev_index_hash(net, dev->ifindex));
247 	write_unlock_bh(&dev_base_lock);
248 
249 	dev_base_seq_inc(net);
250 
251 	return 0;
252 }
253 
254 /* Device list removal
255  * caller must respect a RCU grace period before freeing/reusing dev
256  */
257 static void unlist_netdevice(struct net_device *dev)
258 {
259 	ASSERT_RTNL();
260 
261 	/* Unlink dev from the device chain */
262 	write_lock_bh(&dev_base_lock);
263 	list_del_rcu(&dev->dev_list);
264 	hlist_del_rcu(&dev->name_hlist);
265 	hlist_del_rcu(&dev->index_hlist);
266 	write_unlock_bh(&dev_base_lock);
267 
268 	dev_base_seq_inc(dev_net(dev));
269 }
270 
271 /*
272  *	Our notifier list
273  */
274 
275 static RAW_NOTIFIER_HEAD(netdev_chain);
276 
277 /*
278  *	Device drivers call our routines to queue packets here. We empty the
279  *	queue in the local softnet handler.
280  */
281 
282 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
283 EXPORT_PER_CPU_SYMBOL(softnet_data);
284 
285 #ifdef CONFIG_LOCKDEP
286 /*
287  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
288  * according to dev->type
289  */
290 static const unsigned short netdev_lock_type[] =
291 	{ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
292 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
293 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
294 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
295 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
296 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
297 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
298 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
299 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
300 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
301 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
302 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
303 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
304 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
305 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
306 
307 static const char *const netdev_lock_name[] =
308 	{"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
309 	 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
310 	 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
311 	 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
312 	 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
313 	 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
314 	 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
315 	 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
316 	 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
317 	 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
318 	 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
319 	 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
320 	 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
321 	 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
322 	 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
323 
324 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
325 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
326 
327 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
328 {
329 	int i;
330 
331 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
332 		if (netdev_lock_type[i] == dev_type)
333 			return i;
334 	/* the last key is used by default */
335 	return ARRAY_SIZE(netdev_lock_type) - 1;
336 }
337 
338 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
339 						 unsigned short dev_type)
340 {
341 	int i;
342 
343 	i = netdev_lock_pos(dev_type);
344 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
345 				   netdev_lock_name[i]);
346 }
347 
348 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
349 {
350 	int i;
351 
352 	i = netdev_lock_pos(dev->type);
353 	lockdep_set_class_and_name(&dev->addr_list_lock,
354 				   &netdev_addr_lock_key[i],
355 				   netdev_lock_name[i]);
356 }
357 #else
358 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
359 						 unsigned short dev_type)
360 {
361 }
362 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
363 {
364 }
365 #endif
366 
367 /*******************************************************************************
368 
369 		Protocol management and registration routines
370 
371 *******************************************************************************/
372 
373 /*
374  *	Add a protocol ID to the list. Now that the input handler is
375  *	smarter we can dispense with all the messy stuff that used to be
376  *	here.
377  *
378  *	BEWARE!!! Protocol handlers, mangling input packets,
379  *	MUST BE last in hash buckets and checking protocol handlers
380  *	MUST start from promiscuous ptype_all chain in net_bh.
381  *	It is true now, do not change it.
382  *	Explanation follows: if protocol handler, mangling packet, will
383  *	be the first on list, it is not able to sense, that packet
384  *	is cloned and should be copied-on-write, so that it will
385  *	change it and subsequent readers will get broken packet.
386  *							--ANK (980803)
387  */
388 
389 static inline struct list_head *ptype_head(const struct packet_type *pt)
390 {
391 	if (pt->type == htons(ETH_P_ALL))
392 		return &ptype_all;
393 	else
394 		return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
395 }
396 
397 /**
398  *	dev_add_pack - add packet handler
399  *	@pt: packet type declaration
400  *
401  *	Add a protocol handler to the networking stack. The passed &packet_type
402  *	is linked into kernel lists and may not be freed until it has been
403  *	removed from the kernel lists.
404  *
405  *	This call does not sleep therefore it can not
406  *	guarantee all CPU's that are in middle of receiving packets
407  *	will see the new packet type (until the next received packet).
408  */
409 
410 void dev_add_pack(struct packet_type *pt)
411 {
412 	struct list_head *head = ptype_head(pt);
413 
414 	spin_lock(&ptype_lock);
415 	list_add_rcu(&pt->list, head);
416 	spin_unlock(&ptype_lock);
417 }
418 EXPORT_SYMBOL(dev_add_pack);
419 
420 /**
421  *	__dev_remove_pack	 - remove packet handler
422  *	@pt: packet type declaration
423  *
424  *	Remove a protocol handler that was previously added to the kernel
425  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
426  *	from the kernel lists and can be freed or reused once this function
427  *	returns.
428  *
429  *      The packet type might still be in use by receivers
430  *	and must not be freed until after all the CPU's have gone
431  *	through a quiescent state.
432  */
433 void __dev_remove_pack(struct packet_type *pt)
434 {
435 	struct list_head *head = ptype_head(pt);
436 	struct packet_type *pt1;
437 
438 	spin_lock(&ptype_lock);
439 
440 	list_for_each_entry(pt1, head, list) {
441 		if (pt == pt1) {
442 			list_del_rcu(&pt->list);
443 			goto out;
444 		}
445 	}
446 
447 	pr_warn("dev_remove_pack: %p not found\n", pt);
448 out:
449 	spin_unlock(&ptype_lock);
450 }
451 EXPORT_SYMBOL(__dev_remove_pack);
452 
453 /**
454  *	dev_remove_pack	 - remove packet handler
455  *	@pt: packet type declaration
456  *
457  *	Remove a protocol handler that was previously added to the kernel
458  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
459  *	from the kernel lists and can be freed or reused once this function
460  *	returns.
461  *
462  *	This call sleeps to guarantee that no CPU is looking at the packet
463  *	type after return.
464  */
465 void dev_remove_pack(struct packet_type *pt)
466 {
467 	__dev_remove_pack(pt);
468 
469 	synchronize_net();
470 }
471 EXPORT_SYMBOL(dev_remove_pack);
472 
473 /******************************************************************************
474 
475 		      Device Boot-time Settings Routines
476 
477 *******************************************************************************/
478 
479 /* Boot time configuration table */
480 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
481 
482 /**
483  *	netdev_boot_setup_add	- add new setup entry
484  *	@name: name of the device
485  *	@map: configured settings for the device
486  *
487  *	Adds new setup entry to the dev_boot_setup list.  The function
488  *	returns 0 on error and 1 on success.  This is a generic routine to
489  *	all netdevices.
490  */
491 static int netdev_boot_setup_add(char *name, struct ifmap *map)
492 {
493 	struct netdev_boot_setup *s;
494 	int i;
495 
496 	s = dev_boot_setup;
497 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
498 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
499 			memset(s[i].name, 0, sizeof(s[i].name));
500 			strlcpy(s[i].name, name, IFNAMSIZ);
501 			memcpy(&s[i].map, map, sizeof(s[i].map));
502 			break;
503 		}
504 	}
505 
506 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
507 }
508 
509 /**
510  *	netdev_boot_setup_check	- check boot time settings
511  *	@dev: the netdevice
512  *
513  * 	Check boot time settings for the device.
514  *	The found settings are set for the device to be used
515  *	later in the device probing.
516  *	Returns 0 if no settings found, 1 if they are.
517  */
518 int netdev_boot_setup_check(struct net_device *dev)
519 {
520 	struct netdev_boot_setup *s = dev_boot_setup;
521 	int i;
522 
523 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
524 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
525 		    !strcmp(dev->name, s[i].name)) {
526 			dev->irq 	= s[i].map.irq;
527 			dev->base_addr 	= s[i].map.base_addr;
528 			dev->mem_start 	= s[i].map.mem_start;
529 			dev->mem_end 	= s[i].map.mem_end;
530 			return 1;
531 		}
532 	}
533 	return 0;
534 }
535 EXPORT_SYMBOL(netdev_boot_setup_check);
536 
537 
538 /**
539  *	netdev_boot_base	- get address from boot time settings
540  *	@prefix: prefix for network device
541  *	@unit: id for network device
542  *
543  * 	Check boot time settings for the base address of device.
544  *	The found settings are set for the device to be used
545  *	later in the device probing.
546  *	Returns 0 if no settings found.
547  */
548 unsigned long netdev_boot_base(const char *prefix, int unit)
549 {
550 	const struct netdev_boot_setup *s = dev_boot_setup;
551 	char name[IFNAMSIZ];
552 	int i;
553 
554 	sprintf(name, "%s%d", prefix, unit);
555 
556 	/*
557 	 * If device already registered then return base of 1
558 	 * to indicate not to probe for this interface
559 	 */
560 	if (__dev_get_by_name(&init_net, name))
561 		return 1;
562 
563 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
564 		if (!strcmp(name, s[i].name))
565 			return s[i].map.base_addr;
566 	return 0;
567 }
568 
569 /*
570  * Saves at boot time configured settings for any netdevice.
571  */
572 int __init netdev_boot_setup(char *str)
573 {
574 	int ints[5];
575 	struct ifmap map;
576 
577 	str = get_options(str, ARRAY_SIZE(ints), ints);
578 	if (!str || !*str)
579 		return 0;
580 
581 	/* Save settings */
582 	memset(&map, 0, sizeof(map));
583 	if (ints[0] > 0)
584 		map.irq = ints[1];
585 	if (ints[0] > 1)
586 		map.base_addr = ints[2];
587 	if (ints[0] > 2)
588 		map.mem_start = ints[3];
589 	if (ints[0] > 3)
590 		map.mem_end = ints[4];
591 
592 	/* Add new entry to the list */
593 	return netdev_boot_setup_add(str, &map);
594 }
595 
596 __setup("netdev=", netdev_boot_setup);
597 
598 /*******************************************************************************
599 
600 			    Device Interface Subroutines
601 
602 *******************************************************************************/
603 
604 /**
605  *	__dev_get_by_name	- find a device by its name
606  *	@net: the applicable net namespace
607  *	@name: name to find
608  *
609  *	Find an interface by name. Must be called under RTNL semaphore
610  *	or @dev_base_lock. If the name is found a pointer to the device
611  *	is returned. If the name is not found then %NULL is returned. The
612  *	reference counters are not incremented so the caller must be
613  *	careful with locks.
614  */
615 
616 struct net_device *__dev_get_by_name(struct net *net, const char *name)
617 {
618 	struct hlist_node *p;
619 	struct net_device *dev;
620 	struct hlist_head *head = dev_name_hash(net, name);
621 
622 	hlist_for_each_entry(dev, p, head, name_hlist)
623 		if (!strncmp(dev->name, name, IFNAMSIZ))
624 			return dev;
625 
626 	return NULL;
627 }
628 EXPORT_SYMBOL(__dev_get_by_name);
629 
630 /**
631  *	dev_get_by_name_rcu	- find a device by its name
632  *	@net: the applicable net namespace
633  *	@name: name to find
634  *
635  *	Find an interface by name.
636  *	If the name is found a pointer to the device is returned.
637  * 	If the name is not found then %NULL is returned.
638  *	The reference counters are not incremented so the caller must be
639  *	careful with locks. The caller must hold RCU lock.
640  */
641 
642 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
643 {
644 	struct hlist_node *p;
645 	struct net_device *dev;
646 	struct hlist_head *head = dev_name_hash(net, name);
647 
648 	hlist_for_each_entry_rcu(dev, p, head, name_hlist)
649 		if (!strncmp(dev->name, name, IFNAMSIZ))
650 			return dev;
651 
652 	return NULL;
653 }
654 EXPORT_SYMBOL(dev_get_by_name_rcu);
655 
656 /**
657  *	dev_get_by_name		- find a device by its name
658  *	@net: the applicable net namespace
659  *	@name: name to find
660  *
661  *	Find an interface by name. This can be called from any
662  *	context and does its own locking. The returned handle has
663  *	the usage count incremented and the caller must use dev_put() to
664  *	release it when it is no longer needed. %NULL is returned if no
665  *	matching device is found.
666  */
667 
668 struct net_device *dev_get_by_name(struct net *net, const char *name)
669 {
670 	struct net_device *dev;
671 
672 	rcu_read_lock();
673 	dev = dev_get_by_name_rcu(net, name);
674 	if (dev)
675 		dev_hold(dev);
676 	rcu_read_unlock();
677 	return dev;
678 }
679 EXPORT_SYMBOL(dev_get_by_name);
680 
681 /**
682  *	__dev_get_by_index - find a device by its ifindex
683  *	@net: the applicable net namespace
684  *	@ifindex: index of device
685  *
686  *	Search for an interface by index. Returns %NULL if the device
687  *	is not found or a pointer to the device. The device has not
688  *	had its reference counter increased so the caller must be careful
689  *	about locking. The caller must hold either the RTNL semaphore
690  *	or @dev_base_lock.
691  */
692 
693 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
694 {
695 	struct hlist_node *p;
696 	struct net_device *dev;
697 	struct hlist_head *head = dev_index_hash(net, ifindex);
698 
699 	hlist_for_each_entry(dev, p, head, index_hlist)
700 		if (dev->ifindex == ifindex)
701 			return dev;
702 
703 	return NULL;
704 }
705 EXPORT_SYMBOL(__dev_get_by_index);
706 
707 /**
708  *	dev_get_by_index_rcu - find a device by its ifindex
709  *	@net: the applicable net namespace
710  *	@ifindex: index of device
711  *
712  *	Search for an interface by index. Returns %NULL if the device
713  *	is not found or a pointer to the device. The device has not
714  *	had its reference counter increased so the caller must be careful
715  *	about locking. The caller must hold RCU lock.
716  */
717 
718 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
719 {
720 	struct hlist_node *p;
721 	struct net_device *dev;
722 	struct hlist_head *head = dev_index_hash(net, ifindex);
723 
724 	hlist_for_each_entry_rcu(dev, p, head, index_hlist)
725 		if (dev->ifindex == ifindex)
726 			return dev;
727 
728 	return NULL;
729 }
730 EXPORT_SYMBOL(dev_get_by_index_rcu);
731 
732 
733 /**
734  *	dev_get_by_index - find a device by its ifindex
735  *	@net: the applicable net namespace
736  *	@ifindex: index of device
737  *
738  *	Search for an interface by index. Returns NULL if the device
739  *	is not found or a pointer to the device. The device returned has
740  *	had a reference added and the pointer is safe until the user calls
741  *	dev_put to indicate they have finished with it.
742  */
743 
744 struct net_device *dev_get_by_index(struct net *net, int ifindex)
745 {
746 	struct net_device *dev;
747 
748 	rcu_read_lock();
749 	dev = dev_get_by_index_rcu(net, ifindex);
750 	if (dev)
751 		dev_hold(dev);
752 	rcu_read_unlock();
753 	return dev;
754 }
755 EXPORT_SYMBOL(dev_get_by_index);
756 
757 /**
758  *	dev_getbyhwaddr_rcu - find a device by its hardware address
759  *	@net: the applicable net namespace
760  *	@type: media type of device
761  *	@ha: hardware address
762  *
763  *	Search for an interface by MAC address. Returns NULL if the device
764  *	is not found or a pointer to the device.
765  *	The caller must hold RCU or RTNL.
766  *	The returned device has not had its ref count increased
767  *	and the caller must therefore be careful about locking
768  *
769  */
770 
771 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
772 				       const char *ha)
773 {
774 	struct net_device *dev;
775 
776 	for_each_netdev_rcu(net, dev)
777 		if (dev->type == type &&
778 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
779 			return dev;
780 
781 	return NULL;
782 }
783 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
784 
785 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
786 {
787 	struct net_device *dev;
788 
789 	ASSERT_RTNL();
790 	for_each_netdev(net, dev)
791 		if (dev->type == type)
792 			return dev;
793 
794 	return NULL;
795 }
796 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
797 
798 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
799 {
800 	struct net_device *dev, *ret = NULL;
801 
802 	rcu_read_lock();
803 	for_each_netdev_rcu(net, dev)
804 		if (dev->type == type) {
805 			dev_hold(dev);
806 			ret = dev;
807 			break;
808 		}
809 	rcu_read_unlock();
810 	return ret;
811 }
812 EXPORT_SYMBOL(dev_getfirstbyhwtype);
813 
814 /**
815  *	dev_get_by_flags_rcu - find any device with given flags
816  *	@net: the applicable net namespace
817  *	@if_flags: IFF_* values
818  *	@mask: bitmask of bits in if_flags to check
819  *
820  *	Search for any interface with the given flags. Returns NULL if a device
821  *	is not found or a pointer to the device. Must be called inside
822  *	rcu_read_lock(), and result refcount is unchanged.
823  */
824 
825 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
826 				    unsigned short mask)
827 {
828 	struct net_device *dev, *ret;
829 
830 	ret = NULL;
831 	for_each_netdev_rcu(net, dev) {
832 		if (((dev->flags ^ if_flags) & mask) == 0) {
833 			ret = dev;
834 			break;
835 		}
836 	}
837 	return ret;
838 }
839 EXPORT_SYMBOL(dev_get_by_flags_rcu);
840 
841 /**
842  *	dev_valid_name - check if name is okay for network device
843  *	@name: name string
844  *
845  *	Network device names need to be valid file names to
846  *	to allow sysfs to work.  We also disallow any kind of
847  *	whitespace.
848  */
849 bool dev_valid_name(const char *name)
850 {
851 	if (*name == '\0')
852 		return false;
853 	if (strlen(name) >= IFNAMSIZ)
854 		return false;
855 	if (!strcmp(name, ".") || !strcmp(name, ".."))
856 		return false;
857 
858 	while (*name) {
859 		if (*name == '/' || isspace(*name))
860 			return false;
861 		name++;
862 	}
863 	return true;
864 }
865 EXPORT_SYMBOL(dev_valid_name);
866 
867 /**
868  *	__dev_alloc_name - allocate a name for a device
869  *	@net: network namespace to allocate the device name in
870  *	@name: name format string
871  *	@buf:  scratch buffer and result name string
872  *
873  *	Passed a format string - eg "lt%d" it will try and find a suitable
874  *	id. It scans list of devices to build up a free map, then chooses
875  *	the first empty slot. The caller must hold the dev_base or rtnl lock
876  *	while allocating the name and adding the device in order to avoid
877  *	duplicates.
878  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
879  *	Returns the number of the unit assigned or a negative errno code.
880  */
881 
882 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
883 {
884 	int i = 0;
885 	const char *p;
886 	const int max_netdevices = 8*PAGE_SIZE;
887 	unsigned long *inuse;
888 	struct net_device *d;
889 
890 	p = strnchr(name, IFNAMSIZ-1, '%');
891 	if (p) {
892 		/*
893 		 * Verify the string as this thing may have come from
894 		 * the user.  There must be either one "%d" and no other "%"
895 		 * characters.
896 		 */
897 		if (p[1] != 'd' || strchr(p + 2, '%'))
898 			return -EINVAL;
899 
900 		/* Use one page as a bit array of possible slots */
901 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
902 		if (!inuse)
903 			return -ENOMEM;
904 
905 		for_each_netdev(net, d) {
906 			if (!sscanf(d->name, name, &i))
907 				continue;
908 			if (i < 0 || i >= max_netdevices)
909 				continue;
910 
911 			/*  avoid cases where sscanf is not exact inverse of printf */
912 			snprintf(buf, IFNAMSIZ, name, i);
913 			if (!strncmp(buf, d->name, IFNAMSIZ))
914 				set_bit(i, inuse);
915 		}
916 
917 		i = find_first_zero_bit(inuse, max_netdevices);
918 		free_page((unsigned long) inuse);
919 	}
920 
921 	if (buf != name)
922 		snprintf(buf, IFNAMSIZ, name, i);
923 	if (!__dev_get_by_name(net, buf))
924 		return i;
925 
926 	/* It is possible to run out of possible slots
927 	 * when the name is long and there isn't enough space left
928 	 * for the digits, or if all bits are used.
929 	 */
930 	return -ENFILE;
931 }
932 
933 /**
934  *	dev_alloc_name - allocate a name for a device
935  *	@dev: device
936  *	@name: name format string
937  *
938  *	Passed a format string - eg "lt%d" it will try and find a suitable
939  *	id. It scans list of devices to build up a free map, then chooses
940  *	the first empty slot. The caller must hold the dev_base or rtnl lock
941  *	while allocating the name and adding the device in order to avoid
942  *	duplicates.
943  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
944  *	Returns the number of the unit assigned or a negative errno code.
945  */
946 
947 int dev_alloc_name(struct net_device *dev, const char *name)
948 {
949 	char buf[IFNAMSIZ];
950 	struct net *net;
951 	int ret;
952 
953 	BUG_ON(!dev_net(dev));
954 	net = dev_net(dev);
955 	ret = __dev_alloc_name(net, name, buf);
956 	if (ret >= 0)
957 		strlcpy(dev->name, buf, IFNAMSIZ);
958 	return ret;
959 }
960 EXPORT_SYMBOL(dev_alloc_name);
961 
962 static int dev_alloc_name_ns(struct net *net,
963 			     struct net_device *dev,
964 			     const char *name)
965 {
966 	char buf[IFNAMSIZ];
967 	int ret;
968 
969 	ret = __dev_alloc_name(net, name, buf);
970 	if (ret >= 0)
971 		strlcpy(dev->name, buf, IFNAMSIZ);
972 	return ret;
973 }
974 
975 static int dev_get_valid_name(struct net *net,
976 			      struct net_device *dev,
977 			      const char *name)
978 {
979 	BUG_ON(!net);
980 
981 	if (!dev_valid_name(name))
982 		return -EINVAL;
983 
984 	if (strchr(name, '%'))
985 		return dev_alloc_name_ns(net, dev, name);
986 	else if (__dev_get_by_name(net, name))
987 		return -EEXIST;
988 	else if (dev->name != name)
989 		strlcpy(dev->name, name, IFNAMSIZ);
990 
991 	return 0;
992 }
993 
994 /**
995  *	dev_change_name - change name of a device
996  *	@dev: device
997  *	@newname: name (or format string) must be at least IFNAMSIZ
998  *
999  *	Change name of a device, can pass format strings "eth%d".
1000  *	for wildcarding.
1001  */
1002 int dev_change_name(struct net_device *dev, const char *newname)
1003 {
1004 	char oldname[IFNAMSIZ];
1005 	int err = 0;
1006 	int ret;
1007 	struct net *net;
1008 
1009 	ASSERT_RTNL();
1010 	BUG_ON(!dev_net(dev));
1011 
1012 	net = dev_net(dev);
1013 	if (dev->flags & IFF_UP)
1014 		return -EBUSY;
1015 
1016 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
1017 		return 0;
1018 
1019 	memcpy(oldname, dev->name, IFNAMSIZ);
1020 
1021 	err = dev_get_valid_name(net, dev, newname);
1022 	if (err < 0)
1023 		return err;
1024 
1025 rollback:
1026 	ret = device_rename(&dev->dev, dev->name);
1027 	if (ret) {
1028 		memcpy(dev->name, oldname, IFNAMSIZ);
1029 		return ret;
1030 	}
1031 
1032 	write_lock_bh(&dev_base_lock);
1033 	hlist_del_rcu(&dev->name_hlist);
1034 	write_unlock_bh(&dev_base_lock);
1035 
1036 	synchronize_rcu();
1037 
1038 	write_lock_bh(&dev_base_lock);
1039 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1040 	write_unlock_bh(&dev_base_lock);
1041 
1042 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1043 	ret = notifier_to_errno(ret);
1044 
1045 	if (ret) {
1046 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1047 		if (err >= 0) {
1048 			err = ret;
1049 			memcpy(dev->name, oldname, IFNAMSIZ);
1050 			goto rollback;
1051 		} else {
1052 			pr_err("%s: name change rollback failed: %d\n",
1053 			       dev->name, ret);
1054 		}
1055 	}
1056 
1057 	return err;
1058 }
1059 
1060 /**
1061  *	dev_set_alias - change ifalias of a device
1062  *	@dev: device
1063  *	@alias: name up to IFALIASZ
1064  *	@len: limit of bytes to copy from info
1065  *
1066  *	Set ifalias for a device,
1067  */
1068 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1069 {
1070 	char *new_ifalias;
1071 
1072 	ASSERT_RTNL();
1073 
1074 	if (len >= IFALIASZ)
1075 		return -EINVAL;
1076 
1077 	if (!len) {
1078 		if (dev->ifalias) {
1079 			kfree(dev->ifalias);
1080 			dev->ifalias = NULL;
1081 		}
1082 		return 0;
1083 	}
1084 
1085 	new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1086 	if (!new_ifalias)
1087 		return -ENOMEM;
1088 	dev->ifalias = new_ifalias;
1089 
1090 	strlcpy(dev->ifalias, alias, len+1);
1091 	return len;
1092 }
1093 
1094 
1095 /**
1096  *	netdev_features_change - device changes features
1097  *	@dev: device to cause notification
1098  *
1099  *	Called to indicate a device has changed features.
1100  */
1101 void netdev_features_change(struct net_device *dev)
1102 {
1103 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1104 }
1105 EXPORT_SYMBOL(netdev_features_change);
1106 
1107 /**
1108  *	netdev_state_change - device changes state
1109  *	@dev: device to cause notification
1110  *
1111  *	Called to indicate a device has changed state. This function calls
1112  *	the notifier chains for netdev_chain and sends a NEWLINK message
1113  *	to the routing socket.
1114  */
1115 void netdev_state_change(struct net_device *dev)
1116 {
1117 	if (dev->flags & IFF_UP) {
1118 		call_netdevice_notifiers(NETDEV_CHANGE, dev);
1119 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1120 	}
1121 }
1122 EXPORT_SYMBOL(netdev_state_change);
1123 
1124 /**
1125  * 	netdev_notify_peers - notify network peers about existence of @dev
1126  * 	@dev: network device
1127  *
1128  * Generate traffic such that interested network peers are aware of
1129  * @dev, such as by generating a gratuitous ARP. This may be used when
1130  * a device wants to inform the rest of the network about some sort of
1131  * reconfiguration such as a failover event or virtual machine
1132  * migration.
1133  */
1134 void netdev_notify_peers(struct net_device *dev)
1135 {
1136 	rtnl_lock();
1137 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1138 	rtnl_unlock();
1139 }
1140 EXPORT_SYMBOL(netdev_notify_peers);
1141 
1142 /**
1143  *	dev_load 	- load a network module
1144  *	@net: the applicable net namespace
1145  *	@name: name of interface
1146  *
1147  *	If a network interface is not present and the process has suitable
1148  *	privileges this function loads the module. If module loading is not
1149  *	available in this kernel then it becomes a nop.
1150  */
1151 
1152 void dev_load(struct net *net, const char *name)
1153 {
1154 	struct net_device *dev;
1155 	int no_module;
1156 
1157 	rcu_read_lock();
1158 	dev = dev_get_by_name_rcu(net, name);
1159 	rcu_read_unlock();
1160 
1161 	no_module = !dev;
1162 	if (no_module && capable(CAP_NET_ADMIN))
1163 		no_module = request_module("netdev-%s", name);
1164 	if (no_module && capable(CAP_SYS_MODULE)) {
1165 		if (!request_module("%s", name))
1166 			pr_warn("Loading kernel module for a network device with CAP_SYS_MODULE (deprecated).  Use CAP_NET_ADMIN and alias netdev-%s instead.\n",
1167 				name);
1168 	}
1169 }
1170 EXPORT_SYMBOL(dev_load);
1171 
1172 static int __dev_open(struct net_device *dev)
1173 {
1174 	const struct net_device_ops *ops = dev->netdev_ops;
1175 	int ret;
1176 
1177 	ASSERT_RTNL();
1178 
1179 	if (!netif_device_present(dev))
1180 		return -ENODEV;
1181 
1182 	ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1183 	ret = notifier_to_errno(ret);
1184 	if (ret)
1185 		return ret;
1186 
1187 	set_bit(__LINK_STATE_START, &dev->state);
1188 
1189 	if (ops->ndo_validate_addr)
1190 		ret = ops->ndo_validate_addr(dev);
1191 
1192 	if (!ret && ops->ndo_open)
1193 		ret = ops->ndo_open(dev);
1194 
1195 	if (ret)
1196 		clear_bit(__LINK_STATE_START, &dev->state);
1197 	else {
1198 		dev->flags |= IFF_UP;
1199 		net_dmaengine_get();
1200 		dev_set_rx_mode(dev);
1201 		dev_activate(dev);
1202 		add_device_randomness(dev->dev_addr, dev->addr_len);
1203 	}
1204 
1205 	return ret;
1206 }
1207 
1208 /**
1209  *	dev_open	- prepare an interface for use.
1210  *	@dev:	device to open
1211  *
1212  *	Takes a device from down to up state. The device's private open
1213  *	function is invoked and then the multicast lists are loaded. Finally
1214  *	the device is moved into the up state and a %NETDEV_UP message is
1215  *	sent to the netdev notifier chain.
1216  *
1217  *	Calling this function on an active interface is a nop. On a failure
1218  *	a negative errno code is returned.
1219  */
1220 int dev_open(struct net_device *dev)
1221 {
1222 	int ret;
1223 
1224 	if (dev->flags & IFF_UP)
1225 		return 0;
1226 
1227 	ret = __dev_open(dev);
1228 	if (ret < 0)
1229 		return ret;
1230 
1231 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1232 	call_netdevice_notifiers(NETDEV_UP, dev);
1233 
1234 	return ret;
1235 }
1236 EXPORT_SYMBOL(dev_open);
1237 
1238 static int __dev_close_many(struct list_head *head)
1239 {
1240 	struct net_device *dev;
1241 
1242 	ASSERT_RTNL();
1243 	might_sleep();
1244 
1245 	list_for_each_entry(dev, head, unreg_list) {
1246 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1247 
1248 		clear_bit(__LINK_STATE_START, &dev->state);
1249 
1250 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1251 		 * can be even on different cpu. So just clear netif_running().
1252 		 *
1253 		 * dev->stop() will invoke napi_disable() on all of it's
1254 		 * napi_struct instances on this device.
1255 		 */
1256 		smp_mb__after_clear_bit(); /* Commit netif_running(). */
1257 	}
1258 
1259 	dev_deactivate_many(head);
1260 
1261 	list_for_each_entry(dev, head, unreg_list) {
1262 		const struct net_device_ops *ops = dev->netdev_ops;
1263 
1264 		/*
1265 		 *	Call the device specific close. This cannot fail.
1266 		 *	Only if device is UP
1267 		 *
1268 		 *	We allow it to be called even after a DETACH hot-plug
1269 		 *	event.
1270 		 */
1271 		if (ops->ndo_stop)
1272 			ops->ndo_stop(dev);
1273 
1274 		dev->flags &= ~IFF_UP;
1275 		net_dmaengine_put();
1276 	}
1277 
1278 	return 0;
1279 }
1280 
1281 static int __dev_close(struct net_device *dev)
1282 {
1283 	int retval;
1284 	LIST_HEAD(single);
1285 
1286 	list_add(&dev->unreg_list, &single);
1287 	retval = __dev_close_many(&single);
1288 	list_del(&single);
1289 	return retval;
1290 }
1291 
1292 static int dev_close_many(struct list_head *head)
1293 {
1294 	struct net_device *dev, *tmp;
1295 	LIST_HEAD(tmp_list);
1296 
1297 	list_for_each_entry_safe(dev, tmp, head, unreg_list)
1298 		if (!(dev->flags & IFF_UP))
1299 			list_move(&dev->unreg_list, &tmp_list);
1300 
1301 	__dev_close_many(head);
1302 
1303 	list_for_each_entry(dev, head, unreg_list) {
1304 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1305 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1306 	}
1307 
1308 	/* rollback_registered_many needs the complete original list */
1309 	list_splice(&tmp_list, head);
1310 	return 0;
1311 }
1312 
1313 /**
1314  *	dev_close - shutdown an interface.
1315  *	@dev: device to shutdown
1316  *
1317  *	This function moves an active device into down state. A
1318  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1319  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1320  *	chain.
1321  */
1322 int dev_close(struct net_device *dev)
1323 {
1324 	if (dev->flags & IFF_UP) {
1325 		LIST_HEAD(single);
1326 
1327 		list_add(&dev->unreg_list, &single);
1328 		dev_close_many(&single);
1329 		list_del(&single);
1330 	}
1331 	return 0;
1332 }
1333 EXPORT_SYMBOL(dev_close);
1334 
1335 
1336 /**
1337  *	dev_disable_lro - disable Large Receive Offload on a device
1338  *	@dev: device
1339  *
1340  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1341  *	called under RTNL.  This is needed if received packets may be
1342  *	forwarded to another interface.
1343  */
1344 void dev_disable_lro(struct net_device *dev)
1345 {
1346 	/*
1347 	 * If we're trying to disable lro on a vlan device
1348 	 * use the underlying physical device instead
1349 	 */
1350 	if (is_vlan_dev(dev))
1351 		dev = vlan_dev_real_dev(dev);
1352 
1353 	dev->wanted_features &= ~NETIF_F_LRO;
1354 	netdev_update_features(dev);
1355 
1356 	if (unlikely(dev->features & NETIF_F_LRO))
1357 		netdev_WARN(dev, "failed to disable LRO!\n");
1358 }
1359 EXPORT_SYMBOL(dev_disable_lro);
1360 
1361 
1362 static int dev_boot_phase = 1;
1363 
1364 /**
1365  *	register_netdevice_notifier - register a network notifier block
1366  *	@nb: notifier
1367  *
1368  *	Register a notifier to be called when network device events occur.
1369  *	The notifier passed is linked into the kernel structures and must
1370  *	not be reused until it has been unregistered. A negative errno code
1371  *	is returned on a failure.
1372  *
1373  * 	When registered all registration and up events are replayed
1374  *	to the new notifier to allow device to have a race free
1375  *	view of the network device list.
1376  */
1377 
1378 int register_netdevice_notifier(struct notifier_block *nb)
1379 {
1380 	struct net_device *dev;
1381 	struct net_device *last;
1382 	struct net *net;
1383 	int err;
1384 
1385 	rtnl_lock();
1386 	err = raw_notifier_chain_register(&netdev_chain, nb);
1387 	if (err)
1388 		goto unlock;
1389 	if (dev_boot_phase)
1390 		goto unlock;
1391 	for_each_net(net) {
1392 		for_each_netdev(net, dev) {
1393 			err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1394 			err = notifier_to_errno(err);
1395 			if (err)
1396 				goto rollback;
1397 
1398 			if (!(dev->flags & IFF_UP))
1399 				continue;
1400 
1401 			nb->notifier_call(nb, NETDEV_UP, dev);
1402 		}
1403 	}
1404 
1405 unlock:
1406 	rtnl_unlock();
1407 	return err;
1408 
1409 rollback:
1410 	last = dev;
1411 	for_each_net(net) {
1412 		for_each_netdev(net, dev) {
1413 			if (dev == last)
1414 				goto outroll;
1415 
1416 			if (dev->flags & IFF_UP) {
1417 				nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1418 				nb->notifier_call(nb, NETDEV_DOWN, dev);
1419 			}
1420 			nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1421 		}
1422 	}
1423 
1424 outroll:
1425 	raw_notifier_chain_unregister(&netdev_chain, nb);
1426 	goto unlock;
1427 }
1428 EXPORT_SYMBOL(register_netdevice_notifier);
1429 
1430 /**
1431  *	unregister_netdevice_notifier - unregister a network notifier block
1432  *	@nb: notifier
1433  *
1434  *	Unregister a notifier previously registered by
1435  *	register_netdevice_notifier(). The notifier is unlinked into the
1436  *	kernel structures and may then be reused. A negative errno code
1437  *	is returned on a failure.
1438  *
1439  * 	After unregistering unregister and down device events are synthesized
1440  *	for all devices on the device list to the removed notifier to remove
1441  *	the need for special case cleanup code.
1442  */
1443 
1444 int unregister_netdevice_notifier(struct notifier_block *nb)
1445 {
1446 	struct net_device *dev;
1447 	struct net *net;
1448 	int err;
1449 
1450 	rtnl_lock();
1451 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1452 	if (err)
1453 		goto unlock;
1454 
1455 	for_each_net(net) {
1456 		for_each_netdev(net, dev) {
1457 			if (dev->flags & IFF_UP) {
1458 				nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1459 				nb->notifier_call(nb, NETDEV_DOWN, dev);
1460 			}
1461 			nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1462 		}
1463 	}
1464 unlock:
1465 	rtnl_unlock();
1466 	return err;
1467 }
1468 EXPORT_SYMBOL(unregister_netdevice_notifier);
1469 
1470 /**
1471  *	call_netdevice_notifiers - call all network notifier blocks
1472  *      @val: value passed unmodified to notifier function
1473  *      @dev: net_device pointer passed unmodified to notifier function
1474  *
1475  *	Call all network notifier blocks.  Parameters and return value
1476  *	are as for raw_notifier_call_chain().
1477  */
1478 
1479 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1480 {
1481 	ASSERT_RTNL();
1482 	return raw_notifier_call_chain(&netdev_chain, val, dev);
1483 }
1484 EXPORT_SYMBOL(call_netdevice_notifiers);
1485 
1486 static struct static_key netstamp_needed __read_mostly;
1487 #ifdef HAVE_JUMP_LABEL
1488 /* We are not allowed to call static_key_slow_dec() from irq context
1489  * If net_disable_timestamp() is called from irq context, defer the
1490  * static_key_slow_dec() calls.
1491  */
1492 static atomic_t netstamp_needed_deferred;
1493 #endif
1494 
1495 void net_enable_timestamp(void)
1496 {
1497 #ifdef HAVE_JUMP_LABEL
1498 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1499 
1500 	if (deferred) {
1501 		while (--deferred)
1502 			static_key_slow_dec(&netstamp_needed);
1503 		return;
1504 	}
1505 #endif
1506 	WARN_ON(in_interrupt());
1507 	static_key_slow_inc(&netstamp_needed);
1508 }
1509 EXPORT_SYMBOL(net_enable_timestamp);
1510 
1511 void net_disable_timestamp(void)
1512 {
1513 #ifdef HAVE_JUMP_LABEL
1514 	if (in_interrupt()) {
1515 		atomic_inc(&netstamp_needed_deferred);
1516 		return;
1517 	}
1518 #endif
1519 	static_key_slow_dec(&netstamp_needed);
1520 }
1521 EXPORT_SYMBOL(net_disable_timestamp);
1522 
1523 static inline void net_timestamp_set(struct sk_buff *skb)
1524 {
1525 	skb->tstamp.tv64 = 0;
1526 	if (static_key_false(&netstamp_needed))
1527 		__net_timestamp(skb);
1528 }
1529 
1530 #define net_timestamp_check(COND, SKB)			\
1531 	if (static_key_false(&netstamp_needed)) {		\
1532 		if ((COND) && !(SKB)->tstamp.tv64)	\
1533 			__net_timestamp(SKB);		\
1534 	}						\
1535 
1536 static int net_hwtstamp_validate(struct ifreq *ifr)
1537 {
1538 	struct hwtstamp_config cfg;
1539 	enum hwtstamp_tx_types tx_type;
1540 	enum hwtstamp_rx_filters rx_filter;
1541 	int tx_type_valid = 0;
1542 	int rx_filter_valid = 0;
1543 
1544 	if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg)))
1545 		return -EFAULT;
1546 
1547 	if (cfg.flags) /* reserved for future extensions */
1548 		return -EINVAL;
1549 
1550 	tx_type = cfg.tx_type;
1551 	rx_filter = cfg.rx_filter;
1552 
1553 	switch (tx_type) {
1554 	case HWTSTAMP_TX_OFF:
1555 	case HWTSTAMP_TX_ON:
1556 	case HWTSTAMP_TX_ONESTEP_SYNC:
1557 		tx_type_valid = 1;
1558 		break;
1559 	}
1560 
1561 	switch (rx_filter) {
1562 	case HWTSTAMP_FILTER_NONE:
1563 	case HWTSTAMP_FILTER_ALL:
1564 	case HWTSTAMP_FILTER_SOME:
1565 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1566 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1567 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1568 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1569 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1570 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1571 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1572 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1573 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1574 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
1575 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
1576 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1577 		rx_filter_valid = 1;
1578 		break;
1579 	}
1580 
1581 	if (!tx_type_valid || !rx_filter_valid)
1582 		return -ERANGE;
1583 
1584 	return 0;
1585 }
1586 
1587 static inline bool is_skb_forwardable(struct net_device *dev,
1588 				      struct sk_buff *skb)
1589 {
1590 	unsigned int len;
1591 
1592 	if (!(dev->flags & IFF_UP))
1593 		return false;
1594 
1595 	len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1596 	if (skb->len <= len)
1597 		return true;
1598 
1599 	/* if TSO is enabled, we don't care about the length as the packet
1600 	 * could be forwarded without being segmented before
1601 	 */
1602 	if (skb_is_gso(skb))
1603 		return true;
1604 
1605 	return false;
1606 }
1607 
1608 /**
1609  * dev_forward_skb - loopback an skb to another netif
1610  *
1611  * @dev: destination network device
1612  * @skb: buffer to forward
1613  *
1614  * return values:
1615  *	NET_RX_SUCCESS	(no congestion)
1616  *	NET_RX_DROP     (packet was dropped, but freed)
1617  *
1618  * dev_forward_skb can be used for injecting an skb from the
1619  * start_xmit function of one device into the receive queue
1620  * of another device.
1621  *
1622  * The receiving device may be in another namespace, so
1623  * we have to clear all information in the skb that could
1624  * impact namespace isolation.
1625  */
1626 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1627 {
1628 	if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1629 		if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1630 			atomic_long_inc(&dev->rx_dropped);
1631 			kfree_skb(skb);
1632 			return NET_RX_DROP;
1633 		}
1634 	}
1635 
1636 	skb_orphan(skb);
1637 	nf_reset(skb);
1638 
1639 	if (unlikely(!is_skb_forwardable(dev, skb))) {
1640 		atomic_long_inc(&dev->rx_dropped);
1641 		kfree_skb(skb);
1642 		return NET_RX_DROP;
1643 	}
1644 	skb->skb_iif = 0;
1645 	skb->dev = dev;
1646 	skb_dst_drop(skb);
1647 	skb->tstamp.tv64 = 0;
1648 	skb->pkt_type = PACKET_HOST;
1649 	skb->protocol = eth_type_trans(skb, dev);
1650 	skb->mark = 0;
1651 	secpath_reset(skb);
1652 	nf_reset(skb);
1653 	return netif_rx(skb);
1654 }
1655 EXPORT_SYMBOL_GPL(dev_forward_skb);
1656 
1657 static inline int deliver_skb(struct sk_buff *skb,
1658 			      struct packet_type *pt_prev,
1659 			      struct net_device *orig_dev)
1660 {
1661 	if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1662 		return -ENOMEM;
1663 	atomic_inc(&skb->users);
1664 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1665 }
1666 
1667 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1668 {
1669 	if (!ptype->af_packet_priv || !skb->sk)
1670 		return false;
1671 
1672 	if (ptype->id_match)
1673 		return ptype->id_match(ptype, skb->sk);
1674 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1675 		return true;
1676 
1677 	return false;
1678 }
1679 
1680 /*
1681  *	Support routine. Sends outgoing frames to any network
1682  *	taps currently in use.
1683  */
1684 
1685 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1686 {
1687 	struct packet_type *ptype;
1688 	struct sk_buff *skb2 = NULL;
1689 	struct packet_type *pt_prev = NULL;
1690 
1691 	rcu_read_lock();
1692 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
1693 		/* Never send packets back to the socket
1694 		 * they originated from - MvS (miquels@drinkel.ow.org)
1695 		 */
1696 		if ((ptype->dev == dev || !ptype->dev) &&
1697 		    (!skb_loop_sk(ptype, skb))) {
1698 			if (pt_prev) {
1699 				deliver_skb(skb2, pt_prev, skb->dev);
1700 				pt_prev = ptype;
1701 				continue;
1702 			}
1703 
1704 			skb2 = skb_clone(skb, GFP_ATOMIC);
1705 			if (!skb2)
1706 				break;
1707 
1708 			net_timestamp_set(skb2);
1709 
1710 			/* skb->nh should be correctly
1711 			   set by sender, so that the second statement is
1712 			   just protection against buggy protocols.
1713 			 */
1714 			skb_reset_mac_header(skb2);
1715 
1716 			if (skb_network_header(skb2) < skb2->data ||
1717 			    skb2->network_header > skb2->tail) {
1718 				net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1719 						     ntohs(skb2->protocol),
1720 						     dev->name);
1721 				skb_reset_network_header(skb2);
1722 			}
1723 
1724 			skb2->transport_header = skb2->network_header;
1725 			skb2->pkt_type = PACKET_OUTGOING;
1726 			pt_prev = ptype;
1727 		}
1728 	}
1729 	if (pt_prev)
1730 		pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1731 	rcu_read_unlock();
1732 }
1733 
1734 /**
1735  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1736  * @dev: Network device
1737  * @txq: number of queues available
1738  *
1739  * If real_num_tx_queues is changed the tc mappings may no longer be
1740  * valid. To resolve this verify the tc mapping remains valid and if
1741  * not NULL the mapping. With no priorities mapping to this
1742  * offset/count pair it will no longer be used. In the worst case TC0
1743  * is invalid nothing can be done so disable priority mappings. If is
1744  * expected that drivers will fix this mapping if they can before
1745  * calling netif_set_real_num_tx_queues.
1746  */
1747 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1748 {
1749 	int i;
1750 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1751 
1752 	/* If TC0 is invalidated disable TC mapping */
1753 	if (tc->offset + tc->count > txq) {
1754 		pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1755 		dev->num_tc = 0;
1756 		return;
1757 	}
1758 
1759 	/* Invalidated prio to tc mappings set to TC0 */
1760 	for (i = 1; i < TC_BITMASK + 1; i++) {
1761 		int q = netdev_get_prio_tc_map(dev, i);
1762 
1763 		tc = &dev->tc_to_txq[q];
1764 		if (tc->offset + tc->count > txq) {
1765 			pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1766 				i, q);
1767 			netdev_set_prio_tc_map(dev, i, 0);
1768 		}
1769 	}
1770 }
1771 
1772 /*
1773  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
1774  * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
1775  */
1776 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
1777 {
1778 	int rc;
1779 
1780 	if (txq < 1 || txq > dev->num_tx_queues)
1781 		return -EINVAL;
1782 
1783 	if (dev->reg_state == NETREG_REGISTERED ||
1784 	    dev->reg_state == NETREG_UNREGISTERING) {
1785 		ASSERT_RTNL();
1786 
1787 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
1788 						  txq);
1789 		if (rc)
1790 			return rc;
1791 
1792 		if (dev->num_tc)
1793 			netif_setup_tc(dev, txq);
1794 
1795 		if (txq < dev->real_num_tx_queues)
1796 			qdisc_reset_all_tx_gt(dev, txq);
1797 	}
1798 
1799 	dev->real_num_tx_queues = txq;
1800 	return 0;
1801 }
1802 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
1803 
1804 #ifdef CONFIG_RPS
1805 /**
1806  *	netif_set_real_num_rx_queues - set actual number of RX queues used
1807  *	@dev: Network device
1808  *	@rxq: Actual number of RX queues
1809  *
1810  *	This must be called either with the rtnl_lock held or before
1811  *	registration of the net device.  Returns 0 on success, or a
1812  *	negative error code.  If called before registration, it always
1813  *	succeeds.
1814  */
1815 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
1816 {
1817 	int rc;
1818 
1819 	if (rxq < 1 || rxq > dev->num_rx_queues)
1820 		return -EINVAL;
1821 
1822 	if (dev->reg_state == NETREG_REGISTERED) {
1823 		ASSERT_RTNL();
1824 
1825 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
1826 						  rxq);
1827 		if (rc)
1828 			return rc;
1829 	}
1830 
1831 	dev->real_num_rx_queues = rxq;
1832 	return 0;
1833 }
1834 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
1835 #endif
1836 
1837 /**
1838  * netif_get_num_default_rss_queues - default number of RSS queues
1839  *
1840  * This routine should set an upper limit on the number of RSS queues
1841  * used by default by multiqueue devices.
1842  */
1843 int netif_get_num_default_rss_queues(void)
1844 {
1845 	return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
1846 }
1847 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
1848 
1849 static inline void __netif_reschedule(struct Qdisc *q)
1850 {
1851 	struct softnet_data *sd;
1852 	unsigned long flags;
1853 
1854 	local_irq_save(flags);
1855 	sd = &__get_cpu_var(softnet_data);
1856 	q->next_sched = NULL;
1857 	*sd->output_queue_tailp = q;
1858 	sd->output_queue_tailp = &q->next_sched;
1859 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
1860 	local_irq_restore(flags);
1861 }
1862 
1863 void __netif_schedule(struct Qdisc *q)
1864 {
1865 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1866 		__netif_reschedule(q);
1867 }
1868 EXPORT_SYMBOL(__netif_schedule);
1869 
1870 void dev_kfree_skb_irq(struct sk_buff *skb)
1871 {
1872 	if (atomic_dec_and_test(&skb->users)) {
1873 		struct softnet_data *sd;
1874 		unsigned long flags;
1875 
1876 		local_irq_save(flags);
1877 		sd = &__get_cpu_var(softnet_data);
1878 		skb->next = sd->completion_queue;
1879 		sd->completion_queue = skb;
1880 		raise_softirq_irqoff(NET_TX_SOFTIRQ);
1881 		local_irq_restore(flags);
1882 	}
1883 }
1884 EXPORT_SYMBOL(dev_kfree_skb_irq);
1885 
1886 void dev_kfree_skb_any(struct sk_buff *skb)
1887 {
1888 	if (in_irq() || irqs_disabled())
1889 		dev_kfree_skb_irq(skb);
1890 	else
1891 		dev_kfree_skb(skb);
1892 }
1893 EXPORT_SYMBOL(dev_kfree_skb_any);
1894 
1895 
1896 /**
1897  * netif_device_detach - mark device as removed
1898  * @dev: network device
1899  *
1900  * Mark device as removed from system and therefore no longer available.
1901  */
1902 void netif_device_detach(struct net_device *dev)
1903 {
1904 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1905 	    netif_running(dev)) {
1906 		netif_tx_stop_all_queues(dev);
1907 	}
1908 }
1909 EXPORT_SYMBOL(netif_device_detach);
1910 
1911 /**
1912  * netif_device_attach - mark device as attached
1913  * @dev: network device
1914  *
1915  * Mark device as attached from system and restart if needed.
1916  */
1917 void netif_device_attach(struct net_device *dev)
1918 {
1919 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1920 	    netif_running(dev)) {
1921 		netif_tx_wake_all_queues(dev);
1922 		__netdev_watchdog_up(dev);
1923 	}
1924 }
1925 EXPORT_SYMBOL(netif_device_attach);
1926 
1927 static void skb_warn_bad_offload(const struct sk_buff *skb)
1928 {
1929 	static const netdev_features_t null_features = 0;
1930 	struct net_device *dev = skb->dev;
1931 	const char *driver = "";
1932 
1933 	if (dev && dev->dev.parent)
1934 		driver = dev_driver_string(dev->dev.parent);
1935 
1936 	WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
1937 	     "gso_type=%d ip_summed=%d\n",
1938 	     driver, dev ? &dev->features : &null_features,
1939 	     skb->sk ? &skb->sk->sk_route_caps : &null_features,
1940 	     skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
1941 	     skb_shinfo(skb)->gso_type, skb->ip_summed);
1942 }
1943 
1944 /*
1945  * Invalidate hardware checksum when packet is to be mangled, and
1946  * complete checksum manually on outgoing path.
1947  */
1948 int skb_checksum_help(struct sk_buff *skb)
1949 {
1950 	__wsum csum;
1951 	int ret = 0, offset;
1952 
1953 	if (skb->ip_summed == CHECKSUM_COMPLETE)
1954 		goto out_set_summed;
1955 
1956 	if (unlikely(skb_shinfo(skb)->gso_size)) {
1957 		skb_warn_bad_offload(skb);
1958 		return -EINVAL;
1959 	}
1960 
1961 	offset = skb_checksum_start_offset(skb);
1962 	BUG_ON(offset >= skb_headlen(skb));
1963 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
1964 
1965 	offset += skb->csum_offset;
1966 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1967 
1968 	if (skb_cloned(skb) &&
1969 	    !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1970 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1971 		if (ret)
1972 			goto out;
1973 	}
1974 
1975 	*(__sum16 *)(skb->data + offset) = csum_fold(csum);
1976 out_set_summed:
1977 	skb->ip_summed = CHECKSUM_NONE;
1978 out:
1979 	return ret;
1980 }
1981 EXPORT_SYMBOL(skb_checksum_help);
1982 
1983 /**
1984  *	skb_gso_segment - Perform segmentation on skb.
1985  *	@skb: buffer to segment
1986  *	@features: features for the output path (see dev->features)
1987  *
1988  *	This function segments the given skb and returns a list of segments.
1989  *
1990  *	It may return NULL if the skb requires no segmentation.  This is
1991  *	only possible when GSO is used for verifying header integrity.
1992  */
1993 struct sk_buff *skb_gso_segment(struct sk_buff *skb,
1994 	netdev_features_t features)
1995 {
1996 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1997 	struct packet_type *ptype;
1998 	__be16 type = skb->protocol;
1999 	int vlan_depth = ETH_HLEN;
2000 	int err;
2001 
2002 	while (type == htons(ETH_P_8021Q)) {
2003 		struct vlan_hdr *vh;
2004 
2005 		if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN)))
2006 			return ERR_PTR(-EINVAL);
2007 
2008 		vh = (struct vlan_hdr *)(skb->data + vlan_depth);
2009 		type = vh->h_vlan_encapsulated_proto;
2010 		vlan_depth += VLAN_HLEN;
2011 	}
2012 
2013 	skb_reset_mac_header(skb);
2014 	skb->mac_len = skb->network_header - skb->mac_header;
2015 	__skb_pull(skb, skb->mac_len);
2016 
2017 	if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
2018 		skb_warn_bad_offload(skb);
2019 
2020 		if (skb_header_cloned(skb) &&
2021 		    (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
2022 			return ERR_PTR(err);
2023 	}
2024 
2025 	rcu_read_lock();
2026 	list_for_each_entry_rcu(ptype,
2027 			&ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
2028 		if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
2029 			if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
2030 				err = ptype->gso_send_check(skb);
2031 				segs = ERR_PTR(err);
2032 				if (err || skb_gso_ok(skb, features))
2033 					break;
2034 				__skb_push(skb, (skb->data -
2035 						 skb_network_header(skb)));
2036 			}
2037 			segs = ptype->gso_segment(skb, features);
2038 			break;
2039 		}
2040 	}
2041 	rcu_read_unlock();
2042 
2043 	__skb_push(skb, skb->data - skb_mac_header(skb));
2044 
2045 	return segs;
2046 }
2047 EXPORT_SYMBOL(skb_gso_segment);
2048 
2049 /* Take action when hardware reception checksum errors are detected. */
2050 #ifdef CONFIG_BUG
2051 void netdev_rx_csum_fault(struct net_device *dev)
2052 {
2053 	if (net_ratelimit()) {
2054 		pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2055 		dump_stack();
2056 	}
2057 }
2058 EXPORT_SYMBOL(netdev_rx_csum_fault);
2059 #endif
2060 
2061 /* Actually, we should eliminate this check as soon as we know, that:
2062  * 1. IOMMU is present and allows to map all the memory.
2063  * 2. No high memory really exists on this machine.
2064  */
2065 
2066 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2067 {
2068 #ifdef CONFIG_HIGHMEM
2069 	int i;
2070 	if (!(dev->features & NETIF_F_HIGHDMA)) {
2071 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2072 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2073 			if (PageHighMem(skb_frag_page(frag)))
2074 				return 1;
2075 		}
2076 	}
2077 
2078 	if (PCI_DMA_BUS_IS_PHYS) {
2079 		struct device *pdev = dev->dev.parent;
2080 
2081 		if (!pdev)
2082 			return 0;
2083 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2084 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2085 			dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2086 			if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2087 				return 1;
2088 		}
2089 	}
2090 #endif
2091 	return 0;
2092 }
2093 
2094 struct dev_gso_cb {
2095 	void (*destructor)(struct sk_buff *skb);
2096 };
2097 
2098 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
2099 
2100 static void dev_gso_skb_destructor(struct sk_buff *skb)
2101 {
2102 	struct dev_gso_cb *cb;
2103 
2104 	do {
2105 		struct sk_buff *nskb = skb->next;
2106 
2107 		skb->next = nskb->next;
2108 		nskb->next = NULL;
2109 		kfree_skb(nskb);
2110 	} while (skb->next);
2111 
2112 	cb = DEV_GSO_CB(skb);
2113 	if (cb->destructor)
2114 		cb->destructor(skb);
2115 }
2116 
2117 /**
2118  *	dev_gso_segment - Perform emulated hardware segmentation on skb.
2119  *	@skb: buffer to segment
2120  *	@features: device features as applicable to this skb
2121  *
2122  *	This function segments the given skb and stores the list of segments
2123  *	in skb->next.
2124  */
2125 static int dev_gso_segment(struct sk_buff *skb, netdev_features_t features)
2126 {
2127 	struct sk_buff *segs;
2128 
2129 	segs = skb_gso_segment(skb, features);
2130 
2131 	/* Verifying header integrity only. */
2132 	if (!segs)
2133 		return 0;
2134 
2135 	if (IS_ERR(segs))
2136 		return PTR_ERR(segs);
2137 
2138 	skb->next = segs;
2139 	DEV_GSO_CB(skb)->destructor = skb->destructor;
2140 	skb->destructor = dev_gso_skb_destructor;
2141 
2142 	return 0;
2143 }
2144 
2145 static bool can_checksum_protocol(netdev_features_t features, __be16 protocol)
2146 {
2147 	return ((features & NETIF_F_GEN_CSUM) ||
2148 		((features & NETIF_F_V4_CSUM) &&
2149 		 protocol == htons(ETH_P_IP)) ||
2150 		((features & NETIF_F_V6_CSUM) &&
2151 		 protocol == htons(ETH_P_IPV6)) ||
2152 		((features & NETIF_F_FCOE_CRC) &&
2153 		 protocol == htons(ETH_P_FCOE)));
2154 }
2155 
2156 static netdev_features_t harmonize_features(struct sk_buff *skb,
2157 	__be16 protocol, netdev_features_t features)
2158 {
2159 	if (skb->ip_summed != CHECKSUM_NONE &&
2160 	    !can_checksum_protocol(features, protocol)) {
2161 		features &= ~NETIF_F_ALL_CSUM;
2162 		features &= ~NETIF_F_SG;
2163 	} else if (illegal_highdma(skb->dev, skb)) {
2164 		features &= ~NETIF_F_SG;
2165 	}
2166 
2167 	return features;
2168 }
2169 
2170 netdev_features_t netif_skb_features(struct sk_buff *skb)
2171 {
2172 	__be16 protocol = skb->protocol;
2173 	netdev_features_t features = skb->dev->features;
2174 
2175 	if (skb_shinfo(skb)->gso_segs > skb->dev->gso_max_segs)
2176 		features &= ~NETIF_F_GSO_MASK;
2177 
2178 	if (protocol == htons(ETH_P_8021Q)) {
2179 		struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2180 		protocol = veh->h_vlan_encapsulated_proto;
2181 	} else if (!vlan_tx_tag_present(skb)) {
2182 		return harmonize_features(skb, protocol, features);
2183 	}
2184 
2185 	features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_TX);
2186 
2187 	if (protocol != htons(ETH_P_8021Q)) {
2188 		return harmonize_features(skb, protocol, features);
2189 	} else {
2190 		features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST |
2191 				NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_TX;
2192 		return harmonize_features(skb, protocol, features);
2193 	}
2194 }
2195 EXPORT_SYMBOL(netif_skb_features);
2196 
2197 /*
2198  * Returns true if either:
2199  *	1. skb has frag_list and the device doesn't support FRAGLIST, or
2200  *	2. skb is fragmented and the device does not support SG.
2201  */
2202 static inline int skb_needs_linearize(struct sk_buff *skb,
2203 				      int features)
2204 {
2205 	return skb_is_nonlinear(skb) &&
2206 			((skb_has_frag_list(skb) &&
2207 				!(features & NETIF_F_FRAGLIST)) ||
2208 			(skb_shinfo(skb)->nr_frags &&
2209 				!(features & NETIF_F_SG)));
2210 }
2211 
2212 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2213 			struct netdev_queue *txq)
2214 {
2215 	const struct net_device_ops *ops = dev->netdev_ops;
2216 	int rc = NETDEV_TX_OK;
2217 	unsigned int skb_len;
2218 
2219 	if (likely(!skb->next)) {
2220 		netdev_features_t features;
2221 
2222 		/*
2223 		 * If device doesn't need skb->dst, release it right now while
2224 		 * its hot in this cpu cache
2225 		 */
2226 		if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2227 			skb_dst_drop(skb);
2228 
2229 		features = netif_skb_features(skb);
2230 
2231 		if (vlan_tx_tag_present(skb) &&
2232 		    !(features & NETIF_F_HW_VLAN_TX)) {
2233 			skb = __vlan_put_tag(skb, vlan_tx_tag_get(skb));
2234 			if (unlikely(!skb))
2235 				goto out;
2236 
2237 			skb->vlan_tci = 0;
2238 		}
2239 
2240 		if (netif_needs_gso(skb, features)) {
2241 			if (unlikely(dev_gso_segment(skb, features)))
2242 				goto out_kfree_skb;
2243 			if (skb->next)
2244 				goto gso;
2245 		} else {
2246 			if (skb_needs_linearize(skb, features) &&
2247 			    __skb_linearize(skb))
2248 				goto out_kfree_skb;
2249 
2250 			/* If packet is not checksummed and device does not
2251 			 * support checksumming for this protocol, complete
2252 			 * checksumming here.
2253 			 */
2254 			if (skb->ip_summed == CHECKSUM_PARTIAL) {
2255 				skb_set_transport_header(skb,
2256 					skb_checksum_start_offset(skb));
2257 				if (!(features & NETIF_F_ALL_CSUM) &&
2258 				     skb_checksum_help(skb))
2259 					goto out_kfree_skb;
2260 			}
2261 		}
2262 
2263 		if (!list_empty(&ptype_all))
2264 			dev_queue_xmit_nit(skb, dev);
2265 
2266 		skb_len = skb->len;
2267 		rc = ops->ndo_start_xmit(skb, dev);
2268 		trace_net_dev_xmit(skb, rc, dev, skb_len);
2269 		if (rc == NETDEV_TX_OK)
2270 			txq_trans_update(txq);
2271 		return rc;
2272 	}
2273 
2274 gso:
2275 	do {
2276 		struct sk_buff *nskb = skb->next;
2277 
2278 		skb->next = nskb->next;
2279 		nskb->next = NULL;
2280 
2281 		/*
2282 		 * If device doesn't need nskb->dst, release it right now while
2283 		 * its hot in this cpu cache
2284 		 */
2285 		if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2286 			skb_dst_drop(nskb);
2287 
2288 		if (!list_empty(&ptype_all))
2289 			dev_queue_xmit_nit(nskb, dev);
2290 
2291 		skb_len = nskb->len;
2292 		rc = ops->ndo_start_xmit(nskb, dev);
2293 		trace_net_dev_xmit(nskb, rc, dev, skb_len);
2294 		if (unlikely(rc != NETDEV_TX_OK)) {
2295 			if (rc & ~NETDEV_TX_MASK)
2296 				goto out_kfree_gso_skb;
2297 			nskb->next = skb->next;
2298 			skb->next = nskb;
2299 			return rc;
2300 		}
2301 		txq_trans_update(txq);
2302 		if (unlikely(netif_xmit_stopped(txq) && skb->next))
2303 			return NETDEV_TX_BUSY;
2304 	} while (skb->next);
2305 
2306 out_kfree_gso_skb:
2307 	if (likely(skb->next == NULL))
2308 		skb->destructor = DEV_GSO_CB(skb)->destructor;
2309 out_kfree_skb:
2310 	kfree_skb(skb);
2311 out:
2312 	return rc;
2313 }
2314 
2315 static u32 hashrnd __read_mostly;
2316 
2317 /*
2318  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2319  * to be used as a distribution range.
2320  */
2321 u16 __skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb,
2322 		  unsigned int num_tx_queues)
2323 {
2324 	u32 hash;
2325 	u16 qoffset = 0;
2326 	u16 qcount = num_tx_queues;
2327 
2328 	if (skb_rx_queue_recorded(skb)) {
2329 		hash = skb_get_rx_queue(skb);
2330 		while (unlikely(hash >= num_tx_queues))
2331 			hash -= num_tx_queues;
2332 		return hash;
2333 	}
2334 
2335 	if (dev->num_tc) {
2336 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2337 		qoffset = dev->tc_to_txq[tc].offset;
2338 		qcount = dev->tc_to_txq[tc].count;
2339 	}
2340 
2341 	if (skb->sk && skb->sk->sk_hash)
2342 		hash = skb->sk->sk_hash;
2343 	else
2344 		hash = (__force u16) skb->protocol;
2345 	hash = jhash_1word(hash, hashrnd);
2346 
2347 	return (u16) (((u64) hash * qcount) >> 32) + qoffset;
2348 }
2349 EXPORT_SYMBOL(__skb_tx_hash);
2350 
2351 static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index)
2352 {
2353 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2354 		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
2355 				     dev->name, queue_index,
2356 				     dev->real_num_tx_queues);
2357 		return 0;
2358 	}
2359 	return queue_index;
2360 }
2361 
2362 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
2363 {
2364 #ifdef CONFIG_XPS
2365 	struct xps_dev_maps *dev_maps;
2366 	struct xps_map *map;
2367 	int queue_index = -1;
2368 
2369 	rcu_read_lock();
2370 	dev_maps = rcu_dereference(dev->xps_maps);
2371 	if (dev_maps) {
2372 		map = rcu_dereference(
2373 		    dev_maps->cpu_map[raw_smp_processor_id()]);
2374 		if (map) {
2375 			if (map->len == 1)
2376 				queue_index = map->queues[0];
2377 			else {
2378 				u32 hash;
2379 				if (skb->sk && skb->sk->sk_hash)
2380 					hash = skb->sk->sk_hash;
2381 				else
2382 					hash = (__force u16) skb->protocol ^
2383 					    skb->rxhash;
2384 				hash = jhash_1word(hash, hashrnd);
2385 				queue_index = map->queues[
2386 				    ((u64)hash * map->len) >> 32];
2387 			}
2388 			if (unlikely(queue_index >= dev->real_num_tx_queues))
2389 				queue_index = -1;
2390 		}
2391 	}
2392 	rcu_read_unlock();
2393 
2394 	return queue_index;
2395 #else
2396 	return -1;
2397 #endif
2398 }
2399 
2400 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
2401 				    struct sk_buff *skb)
2402 {
2403 	int queue_index;
2404 	const struct net_device_ops *ops = dev->netdev_ops;
2405 
2406 	if (dev->real_num_tx_queues == 1)
2407 		queue_index = 0;
2408 	else if (ops->ndo_select_queue) {
2409 		queue_index = ops->ndo_select_queue(dev, skb);
2410 		queue_index = dev_cap_txqueue(dev, queue_index);
2411 	} else {
2412 		struct sock *sk = skb->sk;
2413 		queue_index = sk_tx_queue_get(sk);
2414 
2415 		if (queue_index < 0 || skb->ooo_okay ||
2416 		    queue_index >= dev->real_num_tx_queues) {
2417 			int old_index = queue_index;
2418 
2419 			queue_index = get_xps_queue(dev, skb);
2420 			if (queue_index < 0)
2421 				queue_index = skb_tx_hash(dev, skb);
2422 
2423 			if (queue_index != old_index && sk) {
2424 				struct dst_entry *dst =
2425 				    rcu_dereference_check(sk->sk_dst_cache, 1);
2426 
2427 				if (dst && skb_dst(skb) == dst)
2428 					sk_tx_queue_set(sk, queue_index);
2429 			}
2430 		}
2431 	}
2432 
2433 	skb_set_queue_mapping(skb, queue_index);
2434 	return netdev_get_tx_queue(dev, queue_index);
2435 }
2436 
2437 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2438 				 struct net_device *dev,
2439 				 struct netdev_queue *txq)
2440 {
2441 	spinlock_t *root_lock = qdisc_lock(q);
2442 	bool contended;
2443 	int rc;
2444 
2445 	qdisc_skb_cb(skb)->pkt_len = skb->len;
2446 	qdisc_calculate_pkt_len(skb, q);
2447 	/*
2448 	 * Heuristic to force contended enqueues to serialize on a
2449 	 * separate lock before trying to get qdisc main lock.
2450 	 * This permits __QDISC_STATE_RUNNING owner to get the lock more often
2451 	 * and dequeue packets faster.
2452 	 */
2453 	contended = qdisc_is_running(q);
2454 	if (unlikely(contended))
2455 		spin_lock(&q->busylock);
2456 
2457 	spin_lock(root_lock);
2458 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2459 		kfree_skb(skb);
2460 		rc = NET_XMIT_DROP;
2461 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2462 		   qdisc_run_begin(q)) {
2463 		/*
2464 		 * This is a work-conserving queue; there are no old skbs
2465 		 * waiting to be sent out; and the qdisc is not running -
2466 		 * xmit the skb directly.
2467 		 */
2468 		if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2469 			skb_dst_force(skb);
2470 
2471 		qdisc_bstats_update(q, skb);
2472 
2473 		if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2474 			if (unlikely(contended)) {
2475 				spin_unlock(&q->busylock);
2476 				contended = false;
2477 			}
2478 			__qdisc_run(q);
2479 		} else
2480 			qdisc_run_end(q);
2481 
2482 		rc = NET_XMIT_SUCCESS;
2483 	} else {
2484 		skb_dst_force(skb);
2485 		rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2486 		if (qdisc_run_begin(q)) {
2487 			if (unlikely(contended)) {
2488 				spin_unlock(&q->busylock);
2489 				contended = false;
2490 			}
2491 			__qdisc_run(q);
2492 		}
2493 	}
2494 	spin_unlock(root_lock);
2495 	if (unlikely(contended))
2496 		spin_unlock(&q->busylock);
2497 	return rc;
2498 }
2499 
2500 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP)
2501 static void skb_update_prio(struct sk_buff *skb)
2502 {
2503 	struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2504 
2505 	if (!skb->priority && skb->sk && map) {
2506 		unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2507 
2508 		if (prioidx < map->priomap_len)
2509 			skb->priority = map->priomap[prioidx];
2510 	}
2511 }
2512 #else
2513 #define skb_update_prio(skb)
2514 #endif
2515 
2516 static DEFINE_PER_CPU(int, xmit_recursion);
2517 #define RECURSION_LIMIT 10
2518 
2519 /**
2520  *	dev_loopback_xmit - loop back @skb
2521  *	@skb: buffer to transmit
2522  */
2523 int dev_loopback_xmit(struct sk_buff *skb)
2524 {
2525 	skb_reset_mac_header(skb);
2526 	__skb_pull(skb, skb_network_offset(skb));
2527 	skb->pkt_type = PACKET_LOOPBACK;
2528 	skb->ip_summed = CHECKSUM_UNNECESSARY;
2529 	WARN_ON(!skb_dst(skb));
2530 	skb_dst_force(skb);
2531 	netif_rx_ni(skb);
2532 	return 0;
2533 }
2534 EXPORT_SYMBOL(dev_loopback_xmit);
2535 
2536 /**
2537  *	dev_queue_xmit - transmit a buffer
2538  *	@skb: buffer to transmit
2539  *
2540  *	Queue a buffer for transmission to a network device. The caller must
2541  *	have set the device and priority and built the buffer before calling
2542  *	this function. The function can be called from an interrupt.
2543  *
2544  *	A negative errno code is returned on a failure. A success does not
2545  *	guarantee the frame will be transmitted as it may be dropped due
2546  *	to congestion or traffic shaping.
2547  *
2548  * -----------------------------------------------------------------------------------
2549  *      I notice this method can also return errors from the queue disciplines,
2550  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
2551  *      be positive.
2552  *
2553  *      Regardless of the return value, the skb is consumed, so it is currently
2554  *      difficult to retry a send to this method.  (You can bump the ref count
2555  *      before sending to hold a reference for retry if you are careful.)
2556  *
2557  *      When calling this method, interrupts MUST be enabled.  This is because
2558  *      the BH enable code must have IRQs enabled so that it will not deadlock.
2559  *          --BLG
2560  */
2561 int dev_queue_xmit(struct sk_buff *skb)
2562 {
2563 	struct net_device *dev = skb->dev;
2564 	struct netdev_queue *txq;
2565 	struct Qdisc *q;
2566 	int rc = -ENOMEM;
2567 
2568 	/* Disable soft irqs for various locks below. Also
2569 	 * stops preemption for RCU.
2570 	 */
2571 	rcu_read_lock_bh();
2572 
2573 	skb_update_prio(skb);
2574 
2575 	txq = netdev_pick_tx(dev, skb);
2576 	q = rcu_dereference_bh(txq->qdisc);
2577 
2578 #ifdef CONFIG_NET_CLS_ACT
2579 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2580 #endif
2581 	trace_net_dev_queue(skb);
2582 	if (q->enqueue) {
2583 		rc = __dev_xmit_skb(skb, q, dev, txq);
2584 		goto out;
2585 	}
2586 
2587 	/* The device has no queue. Common case for software devices:
2588 	   loopback, all the sorts of tunnels...
2589 
2590 	   Really, it is unlikely that netif_tx_lock protection is necessary
2591 	   here.  (f.e. loopback and IP tunnels are clean ignoring statistics
2592 	   counters.)
2593 	   However, it is possible, that they rely on protection
2594 	   made by us here.
2595 
2596 	   Check this and shot the lock. It is not prone from deadlocks.
2597 	   Either shot noqueue qdisc, it is even simpler 8)
2598 	 */
2599 	if (dev->flags & IFF_UP) {
2600 		int cpu = smp_processor_id(); /* ok because BHs are off */
2601 
2602 		if (txq->xmit_lock_owner != cpu) {
2603 
2604 			if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2605 				goto recursion_alert;
2606 
2607 			HARD_TX_LOCK(dev, txq, cpu);
2608 
2609 			if (!netif_xmit_stopped(txq)) {
2610 				__this_cpu_inc(xmit_recursion);
2611 				rc = dev_hard_start_xmit(skb, dev, txq);
2612 				__this_cpu_dec(xmit_recursion);
2613 				if (dev_xmit_complete(rc)) {
2614 					HARD_TX_UNLOCK(dev, txq);
2615 					goto out;
2616 				}
2617 			}
2618 			HARD_TX_UNLOCK(dev, txq);
2619 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
2620 					     dev->name);
2621 		} else {
2622 			/* Recursion is detected! It is possible,
2623 			 * unfortunately
2624 			 */
2625 recursion_alert:
2626 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
2627 					     dev->name);
2628 		}
2629 	}
2630 
2631 	rc = -ENETDOWN;
2632 	rcu_read_unlock_bh();
2633 
2634 	kfree_skb(skb);
2635 	return rc;
2636 out:
2637 	rcu_read_unlock_bh();
2638 	return rc;
2639 }
2640 EXPORT_SYMBOL(dev_queue_xmit);
2641 
2642 
2643 /*=======================================================================
2644 			Receiver routines
2645   =======================================================================*/
2646 
2647 int netdev_max_backlog __read_mostly = 1000;
2648 EXPORT_SYMBOL(netdev_max_backlog);
2649 
2650 int netdev_tstamp_prequeue __read_mostly = 1;
2651 int netdev_budget __read_mostly = 300;
2652 int weight_p __read_mostly = 64;            /* old backlog weight */
2653 
2654 /* Called with irq disabled */
2655 static inline void ____napi_schedule(struct softnet_data *sd,
2656 				     struct napi_struct *napi)
2657 {
2658 	list_add_tail(&napi->poll_list, &sd->poll_list);
2659 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
2660 }
2661 
2662 /*
2663  * __skb_get_rxhash: calculate a flow hash based on src/dst addresses
2664  * and src/dst port numbers.  Sets rxhash in skb to non-zero hash value
2665  * on success, zero indicates no valid hash.  Also, sets l4_rxhash in skb
2666  * if hash is a canonical 4-tuple hash over transport ports.
2667  */
2668 void __skb_get_rxhash(struct sk_buff *skb)
2669 {
2670 	struct flow_keys keys;
2671 	u32 hash;
2672 
2673 	if (!skb_flow_dissect(skb, &keys))
2674 		return;
2675 
2676 	if (keys.ports)
2677 		skb->l4_rxhash = 1;
2678 
2679 	/* get a consistent hash (same value on both flow directions) */
2680 	if (((__force u32)keys.dst < (__force u32)keys.src) ||
2681 	    (((__force u32)keys.dst == (__force u32)keys.src) &&
2682 	     ((__force u16)keys.port16[1] < (__force u16)keys.port16[0]))) {
2683 		swap(keys.dst, keys.src);
2684 		swap(keys.port16[0], keys.port16[1]);
2685 	}
2686 
2687 	hash = jhash_3words((__force u32)keys.dst,
2688 			    (__force u32)keys.src,
2689 			    (__force u32)keys.ports, hashrnd);
2690 	if (!hash)
2691 		hash = 1;
2692 
2693 	skb->rxhash = hash;
2694 }
2695 EXPORT_SYMBOL(__skb_get_rxhash);
2696 
2697 #ifdef CONFIG_RPS
2698 
2699 /* One global table that all flow-based protocols share. */
2700 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
2701 EXPORT_SYMBOL(rps_sock_flow_table);
2702 
2703 struct static_key rps_needed __read_mostly;
2704 
2705 static struct rps_dev_flow *
2706 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2707 	    struct rps_dev_flow *rflow, u16 next_cpu)
2708 {
2709 	if (next_cpu != RPS_NO_CPU) {
2710 #ifdef CONFIG_RFS_ACCEL
2711 		struct netdev_rx_queue *rxqueue;
2712 		struct rps_dev_flow_table *flow_table;
2713 		struct rps_dev_flow *old_rflow;
2714 		u32 flow_id;
2715 		u16 rxq_index;
2716 		int rc;
2717 
2718 		/* Should we steer this flow to a different hardware queue? */
2719 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
2720 		    !(dev->features & NETIF_F_NTUPLE))
2721 			goto out;
2722 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
2723 		if (rxq_index == skb_get_rx_queue(skb))
2724 			goto out;
2725 
2726 		rxqueue = dev->_rx + rxq_index;
2727 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
2728 		if (!flow_table)
2729 			goto out;
2730 		flow_id = skb->rxhash & flow_table->mask;
2731 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
2732 							rxq_index, flow_id);
2733 		if (rc < 0)
2734 			goto out;
2735 		old_rflow = rflow;
2736 		rflow = &flow_table->flows[flow_id];
2737 		rflow->filter = rc;
2738 		if (old_rflow->filter == rflow->filter)
2739 			old_rflow->filter = RPS_NO_FILTER;
2740 	out:
2741 #endif
2742 		rflow->last_qtail =
2743 			per_cpu(softnet_data, next_cpu).input_queue_head;
2744 	}
2745 
2746 	rflow->cpu = next_cpu;
2747 	return rflow;
2748 }
2749 
2750 /*
2751  * get_rps_cpu is called from netif_receive_skb and returns the target
2752  * CPU from the RPS map of the receiving queue for a given skb.
2753  * rcu_read_lock must be held on entry.
2754  */
2755 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2756 		       struct rps_dev_flow **rflowp)
2757 {
2758 	struct netdev_rx_queue *rxqueue;
2759 	struct rps_map *map;
2760 	struct rps_dev_flow_table *flow_table;
2761 	struct rps_sock_flow_table *sock_flow_table;
2762 	int cpu = -1;
2763 	u16 tcpu;
2764 
2765 	if (skb_rx_queue_recorded(skb)) {
2766 		u16 index = skb_get_rx_queue(skb);
2767 		if (unlikely(index >= dev->real_num_rx_queues)) {
2768 			WARN_ONCE(dev->real_num_rx_queues > 1,
2769 				  "%s received packet on queue %u, but number "
2770 				  "of RX queues is %u\n",
2771 				  dev->name, index, dev->real_num_rx_queues);
2772 			goto done;
2773 		}
2774 		rxqueue = dev->_rx + index;
2775 	} else
2776 		rxqueue = dev->_rx;
2777 
2778 	map = rcu_dereference(rxqueue->rps_map);
2779 	if (map) {
2780 		if (map->len == 1 &&
2781 		    !rcu_access_pointer(rxqueue->rps_flow_table)) {
2782 			tcpu = map->cpus[0];
2783 			if (cpu_online(tcpu))
2784 				cpu = tcpu;
2785 			goto done;
2786 		}
2787 	} else if (!rcu_access_pointer(rxqueue->rps_flow_table)) {
2788 		goto done;
2789 	}
2790 
2791 	skb_reset_network_header(skb);
2792 	if (!skb_get_rxhash(skb))
2793 		goto done;
2794 
2795 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
2796 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
2797 	if (flow_table && sock_flow_table) {
2798 		u16 next_cpu;
2799 		struct rps_dev_flow *rflow;
2800 
2801 		rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
2802 		tcpu = rflow->cpu;
2803 
2804 		next_cpu = sock_flow_table->ents[skb->rxhash &
2805 		    sock_flow_table->mask];
2806 
2807 		/*
2808 		 * If the desired CPU (where last recvmsg was done) is
2809 		 * different from current CPU (one in the rx-queue flow
2810 		 * table entry), switch if one of the following holds:
2811 		 *   - Current CPU is unset (equal to RPS_NO_CPU).
2812 		 *   - Current CPU is offline.
2813 		 *   - The current CPU's queue tail has advanced beyond the
2814 		 *     last packet that was enqueued using this table entry.
2815 		 *     This guarantees that all previous packets for the flow
2816 		 *     have been dequeued, thus preserving in order delivery.
2817 		 */
2818 		if (unlikely(tcpu != next_cpu) &&
2819 		    (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
2820 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
2821 		      rflow->last_qtail)) >= 0)) {
2822 			tcpu = next_cpu;
2823 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
2824 		}
2825 
2826 		if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
2827 			*rflowp = rflow;
2828 			cpu = tcpu;
2829 			goto done;
2830 		}
2831 	}
2832 
2833 	if (map) {
2834 		tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
2835 
2836 		if (cpu_online(tcpu)) {
2837 			cpu = tcpu;
2838 			goto done;
2839 		}
2840 	}
2841 
2842 done:
2843 	return cpu;
2844 }
2845 
2846 #ifdef CONFIG_RFS_ACCEL
2847 
2848 /**
2849  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
2850  * @dev: Device on which the filter was set
2851  * @rxq_index: RX queue index
2852  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
2853  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
2854  *
2855  * Drivers that implement ndo_rx_flow_steer() should periodically call
2856  * this function for each installed filter and remove the filters for
2857  * which it returns %true.
2858  */
2859 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
2860 			 u32 flow_id, u16 filter_id)
2861 {
2862 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
2863 	struct rps_dev_flow_table *flow_table;
2864 	struct rps_dev_flow *rflow;
2865 	bool expire = true;
2866 	int cpu;
2867 
2868 	rcu_read_lock();
2869 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
2870 	if (flow_table && flow_id <= flow_table->mask) {
2871 		rflow = &flow_table->flows[flow_id];
2872 		cpu = ACCESS_ONCE(rflow->cpu);
2873 		if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
2874 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
2875 			   rflow->last_qtail) <
2876 		     (int)(10 * flow_table->mask)))
2877 			expire = false;
2878 	}
2879 	rcu_read_unlock();
2880 	return expire;
2881 }
2882 EXPORT_SYMBOL(rps_may_expire_flow);
2883 
2884 #endif /* CONFIG_RFS_ACCEL */
2885 
2886 /* Called from hardirq (IPI) context */
2887 static void rps_trigger_softirq(void *data)
2888 {
2889 	struct softnet_data *sd = data;
2890 
2891 	____napi_schedule(sd, &sd->backlog);
2892 	sd->received_rps++;
2893 }
2894 
2895 #endif /* CONFIG_RPS */
2896 
2897 /*
2898  * Check if this softnet_data structure is another cpu one
2899  * If yes, queue it to our IPI list and return 1
2900  * If no, return 0
2901  */
2902 static int rps_ipi_queued(struct softnet_data *sd)
2903 {
2904 #ifdef CONFIG_RPS
2905 	struct softnet_data *mysd = &__get_cpu_var(softnet_data);
2906 
2907 	if (sd != mysd) {
2908 		sd->rps_ipi_next = mysd->rps_ipi_list;
2909 		mysd->rps_ipi_list = sd;
2910 
2911 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
2912 		return 1;
2913 	}
2914 #endif /* CONFIG_RPS */
2915 	return 0;
2916 }
2917 
2918 /*
2919  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
2920  * queue (may be a remote CPU queue).
2921  */
2922 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
2923 			      unsigned int *qtail)
2924 {
2925 	struct softnet_data *sd;
2926 	unsigned long flags;
2927 
2928 	sd = &per_cpu(softnet_data, cpu);
2929 
2930 	local_irq_save(flags);
2931 
2932 	rps_lock(sd);
2933 	if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) {
2934 		if (skb_queue_len(&sd->input_pkt_queue)) {
2935 enqueue:
2936 			__skb_queue_tail(&sd->input_pkt_queue, skb);
2937 			input_queue_tail_incr_save(sd, qtail);
2938 			rps_unlock(sd);
2939 			local_irq_restore(flags);
2940 			return NET_RX_SUCCESS;
2941 		}
2942 
2943 		/* Schedule NAPI for backlog device
2944 		 * We can use non atomic operation since we own the queue lock
2945 		 */
2946 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
2947 			if (!rps_ipi_queued(sd))
2948 				____napi_schedule(sd, &sd->backlog);
2949 		}
2950 		goto enqueue;
2951 	}
2952 
2953 	sd->dropped++;
2954 	rps_unlock(sd);
2955 
2956 	local_irq_restore(flags);
2957 
2958 	atomic_long_inc(&skb->dev->rx_dropped);
2959 	kfree_skb(skb);
2960 	return NET_RX_DROP;
2961 }
2962 
2963 /**
2964  *	netif_rx	-	post buffer to the network code
2965  *	@skb: buffer to post
2966  *
2967  *	This function receives a packet from a device driver and queues it for
2968  *	the upper (protocol) levels to process.  It always succeeds. The buffer
2969  *	may be dropped during processing for congestion control or by the
2970  *	protocol layers.
2971  *
2972  *	return values:
2973  *	NET_RX_SUCCESS	(no congestion)
2974  *	NET_RX_DROP     (packet was dropped)
2975  *
2976  */
2977 
2978 int netif_rx(struct sk_buff *skb)
2979 {
2980 	int ret;
2981 
2982 	/* if netpoll wants it, pretend we never saw it */
2983 	if (netpoll_rx(skb))
2984 		return NET_RX_DROP;
2985 
2986 	net_timestamp_check(netdev_tstamp_prequeue, skb);
2987 
2988 	trace_netif_rx(skb);
2989 #ifdef CONFIG_RPS
2990 	if (static_key_false(&rps_needed)) {
2991 		struct rps_dev_flow voidflow, *rflow = &voidflow;
2992 		int cpu;
2993 
2994 		preempt_disable();
2995 		rcu_read_lock();
2996 
2997 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
2998 		if (cpu < 0)
2999 			cpu = smp_processor_id();
3000 
3001 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3002 
3003 		rcu_read_unlock();
3004 		preempt_enable();
3005 	} else
3006 #endif
3007 	{
3008 		unsigned int qtail;
3009 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3010 		put_cpu();
3011 	}
3012 	return ret;
3013 }
3014 EXPORT_SYMBOL(netif_rx);
3015 
3016 int netif_rx_ni(struct sk_buff *skb)
3017 {
3018 	int err;
3019 
3020 	preempt_disable();
3021 	err = netif_rx(skb);
3022 	if (local_softirq_pending())
3023 		do_softirq();
3024 	preempt_enable();
3025 
3026 	return err;
3027 }
3028 EXPORT_SYMBOL(netif_rx_ni);
3029 
3030 static void net_tx_action(struct softirq_action *h)
3031 {
3032 	struct softnet_data *sd = &__get_cpu_var(softnet_data);
3033 
3034 	if (sd->completion_queue) {
3035 		struct sk_buff *clist;
3036 
3037 		local_irq_disable();
3038 		clist = sd->completion_queue;
3039 		sd->completion_queue = NULL;
3040 		local_irq_enable();
3041 
3042 		while (clist) {
3043 			struct sk_buff *skb = clist;
3044 			clist = clist->next;
3045 
3046 			WARN_ON(atomic_read(&skb->users));
3047 			trace_kfree_skb(skb, net_tx_action);
3048 			__kfree_skb(skb);
3049 		}
3050 	}
3051 
3052 	if (sd->output_queue) {
3053 		struct Qdisc *head;
3054 
3055 		local_irq_disable();
3056 		head = sd->output_queue;
3057 		sd->output_queue = NULL;
3058 		sd->output_queue_tailp = &sd->output_queue;
3059 		local_irq_enable();
3060 
3061 		while (head) {
3062 			struct Qdisc *q = head;
3063 			spinlock_t *root_lock;
3064 
3065 			head = head->next_sched;
3066 
3067 			root_lock = qdisc_lock(q);
3068 			if (spin_trylock(root_lock)) {
3069 				smp_mb__before_clear_bit();
3070 				clear_bit(__QDISC_STATE_SCHED,
3071 					  &q->state);
3072 				qdisc_run(q);
3073 				spin_unlock(root_lock);
3074 			} else {
3075 				if (!test_bit(__QDISC_STATE_DEACTIVATED,
3076 					      &q->state)) {
3077 					__netif_reschedule(q);
3078 				} else {
3079 					smp_mb__before_clear_bit();
3080 					clear_bit(__QDISC_STATE_SCHED,
3081 						  &q->state);
3082 				}
3083 			}
3084 		}
3085 	}
3086 }
3087 
3088 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3089     (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3090 /* This hook is defined here for ATM LANE */
3091 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3092 			     unsigned char *addr) __read_mostly;
3093 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3094 #endif
3095 
3096 #ifdef CONFIG_NET_CLS_ACT
3097 /* TODO: Maybe we should just force sch_ingress to be compiled in
3098  * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3099  * a compare and 2 stores extra right now if we dont have it on
3100  * but have CONFIG_NET_CLS_ACT
3101  * NOTE: This doesn't stop any functionality; if you dont have
3102  * the ingress scheduler, you just can't add policies on ingress.
3103  *
3104  */
3105 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
3106 {
3107 	struct net_device *dev = skb->dev;
3108 	u32 ttl = G_TC_RTTL(skb->tc_verd);
3109 	int result = TC_ACT_OK;
3110 	struct Qdisc *q;
3111 
3112 	if (unlikely(MAX_RED_LOOP < ttl++)) {
3113 		net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n",
3114 				     skb->skb_iif, dev->ifindex);
3115 		return TC_ACT_SHOT;
3116 	}
3117 
3118 	skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3119 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3120 
3121 	q = rxq->qdisc;
3122 	if (q != &noop_qdisc) {
3123 		spin_lock(qdisc_lock(q));
3124 		if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3125 			result = qdisc_enqueue_root(skb, q);
3126 		spin_unlock(qdisc_lock(q));
3127 	}
3128 
3129 	return result;
3130 }
3131 
3132 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3133 					 struct packet_type **pt_prev,
3134 					 int *ret, struct net_device *orig_dev)
3135 {
3136 	struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3137 
3138 	if (!rxq || rxq->qdisc == &noop_qdisc)
3139 		goto out;
3140 
3141 	if (*pt_prev) {
3142 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
3143 		*pt_prev = NULL;
3144 	}
3145 
3146 	switch (ing_filter(skb, rxq)) {
3147 	case TC_ACT_SHOT:
3148 	case TC_ACT_STOLEN:
3149 		kfree_skb(skb);
3150 		return NULL;
3151 	}
3152 
3153 out:
3154 	skb->tc_verd = 0;
3155 	return skb;
3156 }
3157 #endif
3158 
3159 /**
3160  *	netdev_rx_handler_register - register receive handler
3161  *	@dev: device to register a handler for
3162  *	@rx_handler: receive handler to register
3163  *	@rx_handler_data: data pointer that is used by rx handler
3164  *
3165  *	Register a receive hander for a device. This handler will then be
3166  *	called from __netif_receive_skb. A negative errno code is returned
3167  *	on a failure.
3168  *
3169  *	The caller must hold the rtnl_mutex.
3170  *
3171  *	For a general description of rx_handler, see enum rx_handler_result.
3172  */
3173 int netdev_rx_handler_register(struct net_device *dev,
3174 			       rx_handler_func_t *rx_handler,
3175 			       void *rx_handler_data)
3176 {
3177 	ASSERT_RTNL();
3178 
3179 	if (dev->rx_handler)
3180 		return -EBUSY;
3181 
3182 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3183 	rcu_assign_pointer(dev->rx_handler, rx_handler);
3184 
3185 	return 0;
3186 }
3187 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3188 
3189 /**
3190  *	netdev_rx_handler_unregister - unregister receive handler
3191  *	@dev: device to unregister a handler from
3192  *
3193  *	Unregister a receive hander from a device.
3194  *
3195  *	The caller must hold the rtnl_mutex.
3196  */
3197 void netdev_rx_handler_unregister(struct net_device *dev)
3198 {
3199 
3200 	ASSERT_RTNL();
3201 	RCU_INIT_POINTER(dev->rx_handler, NULL);
3202 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3203 }
3204 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3205 
3206 /*
3207  * Limit the use of PFMEMALLOC reserves to those protocols that implement
3208  * the special handling of PFMEMALLOC skbs.
3209  */
3210 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3211 {
3212 	switch (skb->protocol) {
3213 	case __constant_htons(ETH_P_ARP):
3214 	case __constant_htons(ETH_P_IP):
3215 	case __constant_htons(ETH_P_IPV6):
3216 	case __constant_htons(ETH_P_8021Q):
3217 		return true;
3218 	default:
3219 		return false;
3220 	}
3221 }
3222 
3223 static int __netif_receive_skb(struct sk_buff *skb)
3224 {
3225 	struct packet_type *ptype, *pt_prev;
3226 	rx_handler_func_t *rx_handler;
3227 	struct net_device *orig_dev;
3228 	struct net_device *null_or_dev;
3229 	bool deliver_exact = false;
3230 	int ret = NET_RX_DROP;
3231 	__be16 type;
3232 	unsigned long pflags = current->flags;
3233 
3234 	net_timestamp_check(!netdev_tstamp_prequeue, skb);
3235 
3236 	trace_netif_receive_skb(skb);
3237 
3238 	/*
3239 	 * PFMEMALLOC skbs are special, they should
3240 	 * - be delivered to SOCK_MEMALLOC sockets only
3241 	 * - stay away from userspace
3242 	 * - have bounded memory usage
3243 	 *
3244 	 * Use PF_MEMALLOC as this saves us from propagating the allocation
3245 	 * context down to all allocation sites.
3246 	 */
3247 	if (sk_memalloc_socks() && skb_pfmemalloc(skb))
3248 		current->flags |= PF_MEMALLOC;
3249 
3250 	/* if we've gotten here through NAPI, check netpoll */
3251 	if (netpoll_receive_skb(skb))
3252 		goto out;
3253 
3254 	orig_dev = skb->dev;
3255 
3256 	skb_reset_network_header(skb);
3257 	skb_reset_transport_header(skb);
3258 	skb_reset_mac_len(skb);
3259 
3260 	pt_prev = NULL;
3261 
3262 	rcu_read_lock();
3263 
3264 another_round:
3265 	skb->skb_iif = skb->dev->ifindex;
3266 
3267 	__this_cpu_inc(softnet_data.processed);
3268 
3269 	if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) {
3270 		skb = vlan_untag(skb);
3271 		if (unlikely(!skb))
3272 			goto unlock;
3273 	}
3274 
3275 #ifdef CONFIG_NET_CLS_ACT
3276 	if (skb->tc_verd & TC_NCLS) {
3277 		skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3278 		goto ncls;
3279 	}
3280 #endif
3281 
3282 	if (sk_memalloc_socks() && skb_pfmemalloc(skb))
3283 		goto skip_taps;
3284 
3285 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
3286 		if (!ptype->dev || ptype->dev == skb->dev) {
3287 			if (pt_prev)
3288 				ret = deliver_skb(skb, pt_prev, orig_dev);
3289 			pt_prev = ptype;
3290 		}
3291 	}
3292 
3293 skip_taps:
3294 #ifdef CONFIG_NET_CLS_ACT
3295 	skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3296 	if (!skb)
3297 		goto unlock;
3298 ncls:
3299 #endif
3300 
3301 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)
3302 				&& !skb_pfmemalloc_protocol(skb))
3303 		goto drop;
3304 
3305 	if (vlan_tx_tag_present(skb)) {
3306 		if (pt_prev) {
3307 			ret = deliver_skb(skb, pt_prev, orig_dev);
3308 			pt_prev = NULL;
3309 		}
3310 		if (vlan_do_receive(&skb))
3311 			goto another_round;
3312 		else if (unlikely(!skb))
3313 			goto unlock;
3314 	}
3315 
3316 	rx_handler = rcu_dereference(skb->dev->rx_handler);
3317 	if (rx_handler) {
3318 		if (pt_prev) {
3319 			ret = deliver_skb(skb, pt_prev, orig_dev);
3320 			pt_prev = NULL;
3321 		}
3322 		switch (rx_handler(&skb)) {
3323 		case RX_HANDLER_CONSUMED:
3324 			goto unlock;
3325 		case RX_HANDLER_ANOTHER:
3326 			goto another_round;
3327 		case RX_HANDLER_EXACT:
3328 			deliver_exact = true;
3329 		case RX_HANDLER_PASS:
3330 			break;
3331 		default:
3332 			BUG();
3333 		}
3334 	}
3335 
3336 	if (vlan_tx_nonzero_tag_present(skb))
3337 		skb->pkt_type = PACKET_OTHERHOST;
3338 
3339 	/* deliver only exact match when indicated */
3340 	null_or_dev = deliver_exact ? skb->dev : NULL;
3341 
3342 	type = skb->protocol;
3343 	list_for_each_entry_rcu(ptype,
3344 			&ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3345 		if (ptype->type == type &&
3346 		    (ptype->dev == null_or_dev || ptype->dev == skb->dev ||
3347 		     ptype->dev == orig_dev)) {
3348 			if (pt_prev)
3349 				ret = deliver_skb(skb, pt_prev, orig_dev);
3350 			pt_prev = ptype;
3351 		}
3352 	}
3353 
3354 	if (pt_prev) {
3355 		if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
3356 			goto drop;
3357 		else
3358 			ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3359 	} else {
3360 drop:
3361 		atomic_long_inc(&skb->dev->rx_dropped);
3362 		kfree_skb(skb);
3363 		/* Jamal, now you will not able to escape explaining
3364 		 * me how you were going to use this. :-)
3365 		 */
3366 		ret = NET_RX_DROP;
3367 	}
3368 
3369 unlock:
3370 	rcu_read_unlock();
3371 out:
3372 	tsk_restore_flags(current, pflags, PF_MEMALLOC);
3373 	return ret;
3374 }
3375 
3376 /**
3377  *	netif_receive_skb - process receive buffer from network
3378  *	@skb: buffer to process
3379  *
3380  *	netif_receive_skb() is the main receive data processing function.
3381  *	It always succeeds. The buffer may be dropped during processing
3382  *	for congestion control or by the protocol layers.
3383  *
3384  *	This function may only be called from softirq context and interrupts
3385  *	should be enabled.
3386  *
3387  *	Return values (usually ignored):
3388  *	NET_RX_SUCCESS: no congestion
3389  *	NET_RX_DROP: packet was dropped
3390  */
3391 int netif_receive_skb(struct sk_buff *skb)
3392 {
3393 	net_timestamp_check(netdev_tstamp_prequeue, skb);
3394 
3395 	if (skb_defer_rx_timestamp(skb))
3396 		return NET_RX_SUCCESS;
3397 
3398 #ifdef CONFIG_RPS
3399 	if (static_key_false(&rps_needed)) {
3400 		struct rps_dev_flow voidflow, *rflow = &voidflow;
3401 		int cpu, ret;
3402 
3403 		rcu_read_lock();
3404 
3405 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
3406 
3407 		if (cpu >= 0) {
3408 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3409 			rcu_read_unlock();
3410 			return ret;
3411 		}
3412 		rcu_read_unlock();
3413 	}
3414 #endif
3415 	return __netif_receive_skb(skb);
3416 }
3417 EXPORT_SYMBOL(netif_receive_skb);
3418 
3419 /* Network device is going away, flush any packets still pending
3420  * Called with irqs disabled.
3421  */
3422 static void flush_backlog(void *arg)
3423 {
3424 	struct net_device *dev = arg;
3425 	struct softnet_data *sd = &__get_cpu_var(softnet_data);
3426 	struct sk_buff *skb, *tmp;
3427 
3428 	rps_lock(sd);
3429 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3430 		if (skb->dev == dev) {
3431 			__skb_unlink(skb, &sd->input_pkt_queue);
3432 			kfree_skb(skb);
3433 			input_queue_head_incr(sd);
3434 		}
3435 	}
3436 	rps_unlock(sd);
3437 
3438 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3439 		if (skb->dev == dev) {
3440 			__skb_unlink(skb, &sd->process_queue);
3441 			kfree_skb(skb);
3442 			input_queue_head_incr(sd);
3443 		}
3444 	}
3445 }
3446 
3447 static int napi_gro_complete(struct sk_buff *skb)
3448 {
3449 	struct packet_type *ptype;
3450 	__be16 type = skb->protocol;
3451 	struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3452 	int err = -ENOENT;
3453 
3454 	BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
3455 
3456 	if (NAPI_GRO_CB(skb)->count == 1) {
3457 		skb_shinfo(skb)->gso_size = 0;
3458 		goto out;
3459 	}
3460 
3461 	rcu_read_lock();
3462 	list_for_each_entry_rcu(ptype, head, list) {
3463 		if (ptype->type != type || ptype->dev || !ptype->gro_complete)
3464 			continue;
3465 
3466 		err = ptype->gro_complete(skb);
3467 		break;
3468 	}
3469 	rcu_read_unlock();
3470 
3471 	if (err) {
3472 		WARN_ON(&ptype->list == head);
3473 		kfree_skb(skb);
3474 		return NET_RX_SUCCESS;
3475 	}
3476 
3477 out:
3478 	return netif_receive_skb(skb);
3479 }
3480 
3481 /* napi->gro_list contains packets ordered by age.
3482  * youngest packets at the head of it.
3483  * Complete skbs in reverse order to reduce latencies.
3484  */
3485 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
3486 {
3487 	struct sk_buff *skb, *prev = NULL;
3488 
3489 	/* scan list and build reverse chain */
3490 	for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
3491 		skb->prev = prev;
3492 		prev = skb;
3493 	}
3494 
3495 	for (skb = prev; skb; skb = prev) {
3496 		skb->next = NULL;
3497 
3498 		if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
3499 			return;
3500 
3501 		prev = skb->prev;
3502 		napi_gro_complete(skb);
3503 		napi->gro_count--;
3504 	}
3505 
3506 	napi->gro_list = NULL;
3507 }
3508 EXPORT_SYMBOL(napi_gro_flush);
3509 
3510 enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3511 {
3512 	struct sk_buff **pp = NULL;
3513 	struct packet_type *ptype;
3514 	__be16 type = skb->protocol;
3515 	struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3516 	int same_flow;
3517 	int mac_len;
3518 	enum gro_result ret;
3519 
3520 	if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb))
3521 		goto normal;
3522 
3523 	if (skb_is_gso(skb) || skb_has_frag_list(skb))
3524 		goto normal;
3525 
3526 	rcu_read_lock();
3527 	list_for_each_entry_rcu(ptype, head, list) {
3528 		if (ptype->type != type || ptype->dev || !ptype->gro_receive)
3529 			continue;
3530 
3531 		skb_set_network_header(skb, skb_gro_offset(skb));
3532 		mac_len = skb->network_header - skb->mac_header;
3533 		skb->mac_len = mac_len;
3534 		NAPI_GRO_CB(skb)->same_flow = 0;
3535 		NAPI_GRO_CB(skb)->flush = 0;
3536 		NAPI_GRO_CB(skb)->free = 0;
3537 
3538 		pp = ptype->gro_receive(&napi->gro_list, skb);
3539 		break;
3540 	}
3541 	rcu_read_unlock();
3542 
3543 	if (&ptype->list == head)
3544 		goto normal;
3545 
3546 	same_flow = NAPI_GRO_CB(skb)->same_flow;
3547 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3548 
3549 	if (pp) {
3550 		struct sk_buff *nskb = *pp;
3551 
3552 		*pp = nskb->next;
3553 		nskb->next = NULL;
3554 		napi_gro_complete(nskb);
3555 		napi->gro_count--;
3556 	}
3557 
3558 	if (same_flow)
3559 		goto ok;
3560 
3561 	if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
3562 		goto normal;
3563 
3564 	napi->gro_count++;
3565 	NAPI_GRO_CB(skb)->count = 1;
3566 	NAPI_GRO_CB(skb)->age = jiffies;
3567 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3568 	skb->next = napi->gro_list;
3569 	napi->gro_list = skb;
3570 	ret = GRO_HELD;
3571 
3572 pull:
3573 	if (skb_headlen(skb) < skb_gro_offset(skb)) {
3574 		int grow = skb_gro_offset(skb) - skb_headlen(skb);
3575 
3576 		BUG_ON(skb->end - skb->tail < grow);
3577 
3578 		memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3579 
3580 		skb->tail += grow;
3581 		skb->data_len -= grow;
3582 
3583 		skb_shinfo(skb)->frags[0].page_offset += grow;
3584 		skb_frag_size_sub(&skb_shinfo(skb)->frags[0], grow);
3585 
3586 		if (unlikely(!skb_frag_size(&skb_shinfo(skb)->frags[0]))) {
3587 			skb_frag_unref(skb, 0);
3588 			memmove(skb_shinfo(skb)->frags,
3589 				skb_shinfo(skb)->frags + 1,
3590 				--skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t));
3591 		}
3592 	}
3593 
3594 ok:
3595 	return ret;
3596 
3597 normal:
3598 	ret = GRO_NORMAL;
3599 	goto pull;
3600 }
3601 EXPORT_SYMBOL(dev_gro_receive);
3602 
3603 static inline gro_result_t
3604 __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3605 {
3606 	struct sk_buff *p;
3607 	unsigned int maclen = skb->dev->hard_header_len;
3608 
3609 	for (p = napi->gro_list; p; p = p->next) {
3610 		unsigned long diffs;
3611 
3612 		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3613 		diffs |= p->vlan_tci ^ skb->vlan_tci;
3614 		if (maclen == ETH_HLEN)
3615 			diffs |= compare_ether_header(skb_mac_header(p),
3616 						      skb_gro_mac_header(skb));
3617 		else if (!diffs)
3618 			diffs = memcmp(skb_mac_header(p),
3619 				       skb_gro_mac_header(skb),
3620 				       maclen);
3621 		NAPI_GRO_CB(p)->same_flow = !diffs;
3622 		NAPI_GRO_CB(p)->flush = 0;
3623 	}
3624 
3625 	return dev_gro_receive(napi, skb);
3626 }
3627 
3628 gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
3629 {
3630 	switch (ret) {
3631 	case GRO_NORMAL:
3632 		if (netif_receive_skb(skb))
3633 			ret = GRO_DROP;
3634 		break;
3635 
3636 	case GRO_DROP:
3637 		kfree_skb(skb);
3638 		break;
3639 
3640 	case GRO_MERGED_FREE:
3641 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
3642 			kmem_cache_free(skbuff_head_cache, skb);
3643 		else
3644 			__kfree_skb(skb);
3645 		break;
3646 
3647 	case GRO_HELD:
3648 	case GRO_MERGED:
3649 		break;
3650 	}
3651 
3652 	return ret;
3653 }
3654 EXPORT_SYMBOL(napi_skb_finish);
3655 
3656 static void skb_gro_reset_offset(struct sk_buff *skb)
3657 {
3658 	const struct skb_shared_info *pinfo = skb_shinfo(skb);
3659 	const skb_frag_t *frag0 = &pinfo->frags[0];
3660 
3661 	NAPI_GRO_CB(skb)->data_offset = 0;
3662 	NAPI_GRO_CB(skb)->frag0 = NULL;
3663 	NAPI_GRO_CB(skb)->frag0_len = 0;
3664 
3665 	if (skb->mac_header == skb->tail &&
3666 	    pinfo->nr_frags &&
3667 	    !PageHighMem(skb_frag_page(frag0))) {
3668 		NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
3669 		NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
3670 	}
3671 }
3672 
3673 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3674 {
3675 	skb_gro_reset_offset(skb);
3676 
3677 	return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
3678 }
3679 EXPORT_SYMBOL(napi_gro_receive);
3680 
3681 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
3682 {
3683 	__skb_pull(skb, skb_headlen(skb));
3684 	/* restore the reserve we had after netdev_alloc_skb_ip_align() */
3685 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
3686 	skb->vlan_tci = 0;
3687 	skb->dev = napi->dev;
3688 	skb->skb_iif = 0;
3689 
3690 	napi->skb = skb;
3691 }
3692 
3693 struct sk_buff *napi_get_frags(struct napi_struct *napi)
3694 {
3695 	struct sk_buff *skb = napi->skb;
3696 
3697 	if (!skb) {
3698 		skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3699 		if (skb)
3700 			napi->skb = skb;
3701 	}
3702 	return skb;
3703 }
3704 EXPORT_SYMBOL(napi_get_frags);
3705 
3706 gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3707 			       gro_result_t ret)
3708 {
3709 	switch (ret) {
3710 	case GRO_NORMAL:
3711 	case GRO_HELD:
3712 		skb->protocol = eth_type_trans(skb, skb->dev);
3713 
3714 		if (ret == GRO_HELD)
3715 			skb_gro_pull(skb, -ETH_HLEN);
3716 		else if (netif_receive_skb(skb))
3717 			ret = GRO_DROP;
3718 		break;
3719 
3720 	case GRO_DROP:
3721 	case GRO_MERGED_FREE:
3722 		napi_reuse_skb(napi, skb);
3723 		break;
3724 
3725 	case GRO_MERGED:
3726 		break;
3727 	}
3728 
3729 	return ret;
3730 }
3731 EXPORT_SYMBOL(napi_frags_finish);
3732 
3733 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
3734 {
3735 	struct sk_buff *skb = napi->skb;
3736 	struct ethhdr *eth;
3737 	unsigned int hlen;
3738 	unsigned int off;
3739 
3740 	napi->skb = NULL;
3741 
3742 	skb_reset_mac_header(skb);
3743 	skb_gro_reset_offset(skb);
3744 
3745 	off = skb_gro_offset(skb);
3746 	hlen = off + sizeof(*eth);
3747 	eth = skb_gro_header_fast(skb, off);
3748 	if (skb_gro_header_hard(skb, hlen)) {
3749 		eth = skb_gro_header_slow(skb, hlen, off);
3750 		if (unlikely(!eth)) {
3751 			napi_reuse_skb(napi, skb);
3752 			skb = NULL;
3753 			goto out;
3754 		}
3755 	}
3756 
3757 	skb_gro_pull(skb, sizeof(*eth));
3758 
3759 	/*
3760 	 * This works because the only protocols we care about don't require
3761 	 * special handling.  We'll fix it up properly at the end.
3762 	 */
3763 	skb->protocol = eth->h_proto;
3764 
3765 out:
3766 	return skb;
3767 }
3768 
3769 gro_result_t napi_gro_frags(struct napi_struct *napi)
3770 {
3771 	struct sk_buff *skb = napi_frags_skb(napi);
3772 
3773 	if (!skb)
3774 		return GRO_DROP;
3775 
3776 	return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
3777 }
3778 EXPORT_SYMBOL(napi_gro_frags);
3779 
3780 /*
3781  * net_rps_action sends any pending IPI's for rps.
3782  * Note: called with local irq disabled, but exits with local irq enabled.
3783  */
3784 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
3785 {
3786 #ifdef CONFIG_RPS
3787 	struct softnet_data *remsd = sd->rps_ipi_list;
3788 
3789 	if (remsd) {
3790 		sd->rps_ipi_list = NULL;
3791 
3792 		local_irq_enable();
3793 
3794 		/* Send pending IPI's to kick RPS processing on remote cpus. */
3795 		while (remsd) {
3796 			struct softnet_data *next = remsd->rps_ipi_next;
3797 
3798 			if (cpu_online(remsd->cpu))
3799 				__smp_call_function_single(remsd->cpu,
3800 							   &remsd->csd, 0);
3801 			remsd = next;
3802 		}
3803 	} else
3804 #endif
3805 		local_irq_enable();
3806 }
3807 
3808 static int process_backlog(struct napi_struct *napi, int quota)
3809 {
3810 	int work = 0;
3811 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
3812 
3813 #ifdef CONFIG_RPS
3814 	/* Check if we have pending ipi, its better to send them now,
3815 	 * not waiting net_rx_action() end.
3816 	 */
3817 	if (sd->rps_ipi_list) {
3818 		local_irq_disable();
3819 		net_rps_action_and_irq_enable(sd);
3820 	}
3821 #endif
3822 	napi->weight = weight_p;
3823 	local_irq_disable();
3824 	while (work < quota) {
3825 		struct sk_buff *skb;
3826 		unsigned int qlen;
3827 
3828 		while ((skb = __skb_dequeue(&sd->process_queue))) {
3829 			local_irq_enable();
3830 			__netif_receive_skb(skb);
3831 			local_irq_disable();
3832 			input_queue_head_incr(sd);
3833 			if (++work >= quota) {
3834 				local_irq_enable();
3835 				return work;
3836 			}
3837 		}
3838 
3839 		rps_lock(sd);
3840 		qlen = skb_queue_len(&sd->input_pkt_queue);
3841 		if (qlen)
3842 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
3843 						   &sd->process_queue);
3844 
3845 		if (qlen < quota - work) {
3846 			/*
3847 			 * Inline a custom version of __napi_complete().
3848 			 * only current cpu owns and manipulates this napi,
3849 			 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
3850 			 * we can use a plain write instead of clear_bit(),
3851 			 * and we dont need an smp_mb() memory barrier.
3852 			 */
3853 			list_del(&napi->poll_list);
3854 			napi->state = 0;
3855 
3856 			quota = work + qlen;
3857 		}
3858 		rps_unlock(sd);
3859 	}
3860 	local_irq_enable();
3861 
3862 	return work;
3863 }
3864 
3865 /**
3866  * __napi_schedule - schedule for receive
3867  * @n: entry to schedule
3868  *
3869  * The entry's receive function will be scheduled to run
3870  */
3871 void __napi_schedule(struct napi_struct *n)
3872 {
3873 	unsigned long flags;
3874 
3875 	local_irq_save(flags);
3876 	____napi_schedule(&__get_cpu_var(softnet_data), n);
3877 	local_irq_restore(flags);
3878 }
3879 EXPORT_SYMBOL(__napi_schedule);
3880 
3881 void __napi_complete(struct napi_struct *n)
3882 {
3883 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
3884 	BUG_ON(n->gro_list);
3885 
3886 	list_del(&n->poll_list);
3887 	smp_mb__before_clear_bit();
3888 	clear_bit(NAPI_STATE_SCHED, &n->state);
3889 }
3890 EXPORT_SYMBOL(__napi_complete);
3891 
3892 void napi_complete(struct napi_struct *n)
3893 {
3894 	unsigned long flags;
3895 
3896 	/*
3897 	 * don't let napi dequeue from the cpu poll list
3898 	 * just in case its running on a different cpu
3899 	 */
3900 	if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
3901 		return;
3902 
3903 	napi_gro_flush(n, false);
3904 	local_irq_save(flags);
3905 	__napi_complete(n);
3906 	local_irq_restore(flags);
3907 }
3908 EXPORT_SYMBOL(napi_complete);
3909 
3910 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
3911 		    int (*poll)(struct napi_struct *, int), int weight)
3912 {
3913 	INIT_LIST_HEAD(&napi->poll_list);
3914 	napi->gro_count = 0;
3915 	napi->gro_list = NULL;
3916 	napi->skb = NULL;
3917 	napi->poll = poll;
3918 	napi->weight = weight;
3919 	list_add(&napi->dev_list, &dev->napi_list);
3920 	napi->dev = dev;
3921 #ifdef CONFIG_NETPOLL
3922 	spin_lock_init(&napi->poll_lock);
3923 	napi->poll_owner = -1;
3924 #endif
3925 	set_bit(NAPI_STATE_SCHED, &napi->state);
3926 }
3927 EXPORT_SYMBOL(netif_napi_add);
3928 
3929 void netif_napi_del(struct napi_struct *napi)
3930 {
3931 	struct sk_buff *skb, *next;
3932 
3933 	list_del_init(&napi->dev_list);
3934 	napi_free_frags(napi);
3935 
3936 	for (skb = napi->gro_list; skb; skb = next) {
3937 		next = skb->next;
3938 		skb->next = NULL;
3939 		kfree_skb(skb);
3940 	}
3941 
3942 	napi->gro_list = NULL;
3943 	napi->gro_count = 0;
3944 }
3945 EXPORT_SYMBOL(netif_napi_del);
3946 
3947 static void net_rx_action(struct softirq_action *h)
3948 {
3949 	struct softnet_data *sd = &__get_cpu_var(softnet_data);
3950 	unsigned long time_limit = jiffies + 2;
3951 	int budget = netdev_budget;
3952 	void *have;
3953 
3954 	local_irq_disable();
3955 
3956 	while (!list_empty(&sd->poll_list)) {
3957 		struct napi_struct *n;
3958 		int work, weight;
3959 
3960 		/* If softirq window is exhuasted then punt.
3961 		 * Allow this to run for 2 jiffies since which will allow
3962 		 * an average latency of 1.5/HZ.
3963 		 */
3964 		if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
3965 			goto softnet_break;
3966 
3967 		local_irq_enable();
3968 
3969 		/* Even though interrupts have been re-enabled, this
3970 		 * access is safe because interrupts can only add new
3971 		 * entries to the tail of this list, and only ->poll()
3972 		 * calls can remove this head entry from the list.
3973 		 */
3974 		n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
3975 
3976 		have = netpoll_poll_lock(n);
3977 
3978 		weight = n->weight;
3979 
3980 		/* This NAPI_STATE_SCHED test is for avoiding a race
3981 		 * with netpoll's poll_napi().  Only the entity which
3982 		 * obtains the lock and sees NAPI_STATE_SCHED set will
3983 		 * actually make the ->poll() call.  Therefore we avoid
3984 		 * accidentally calling ->poll() when NAPI is not scheduled.
3985 		 */
3986 		work = 0;
3987 		if (test_bit(NAPI_STATE_SCHED, &n->state)) {
3988 			work = n->poll(n, weight);
3989 			trace_napi_poll(n);
3990 		}
3991 
3992 		WARN_ON_ONCE(work > weight);
3993 
3994 		budget -= work;
3995 
3996 		local_irq_disable();
3997 
3998 		/* Drivers must not modify the NAPI state if they
3999 		 * consume the entire weight.  In such cases this code
4000 		 * still "owns" the NAPI instance and therefore can
4001 		 * move the instance around on the list at-will.
4002 		 */
4003 		if (unlikely(work == weight)) {
4004 			if (unlikely(napi_disable_pending(n))) {
4005 				local_irq_enable();
4006 				napi_complete(n);
4007 				local_irq_disable();
4008 			} else {
4009 				if (n->gro_list) {
4010 					/* flush too old packets
4011 					 * If HZ < 1000, flush all packets.
4012 					 */
4013 					local_irq_enable();
4014 					napi_gro_flush(n, HZ >= 1000);
4015 					local_irq_disable();
4016 				}
4017 				list_move_tail(&n->poll_list, &sd->poll_list);
4018 			}
4019 		}
4020 
4021 		netpoll_poll_unlock(have);
4022 	}
4023 out:
4024 	net_rps_action_and_irq_enable(sd);
4025 
4026 #ifdef CONFIG_NET_DMA
4027 	/*
4028 	 * There may not be any more sk_buffs coming right now, so push
4029 	 * any pending DMA copies to hardware
4030 	 */
4031 	dma_issue_pending_all();
4032 #endif
4033 
4034 	return;
4035 
4036 softnet_break:
4037 	sd->time_squeeze++;
4038 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4039 	goto out;
4040 }
4041 
4042 static gifconf_func_t *gifconf_list[NPROTO];
4043 
4044 /**
4045  *	register_gifconf	-	register a SIOCGIF handler
4046  *	@family: Address family
4047  *	@gifconf: Function handler
4048  *
4049  *	Register protocol dependent address dumping routines. The handler
4050  *	that is passed must not be freed or reused until it has been replaced
4051  *	by another handler.
4052  */
4053 int register_gifconf(unsigned int family, gifconf_func_t *gifconf)
4054 {
4055 	if (family >= NPROTO)
4056 		return -EINVAL;
4057 	gifconf_list[family] = gifconf;
4058 	return 0;
4059 }
4060 EXPORT_SYMBOL(register_gifconf);
4061 
4062 
4063 /*
4064  *	Map an interface index to its name (SIOCGIFNAME)
4065  */
4066 
4067 /*
4068  *	We need this ioctl for efficient implementation of the
4069  *	if_indextoname() function required by the IPv6 API.  Without
4070  *	it, we would have to search all the interfaces to find a
4071  *	match.  --pb
4072  */
4073 
4074 static int dev_ifname(struct net *net, struct ifreq __user *arg)
4075 {
4076 	struct net_device *dev;
4077 	struct ifreq ifr;
4078 
4079 	/*
4080 	 *	Fetch the caller's info block.
4081 	 */
4082 
4083 	if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
4084 		return -EFAULT;
4085 
4086 	rcu_read_lock();
4087 	dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex);
4088 	if (!dev) {
4089 		rcu_read_unlock();
4090 		return -ENODEV;
4091 	}
4092 
4093 	strcpy(ifr.ifr_name, dev->name);
4094 	rcu_read_unlock();
4095 
4096 	if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
4097 		return -EFAULT;
4098 	return 0;
4099 }
4100 
4101 /*
4102  *	Perform a SIOCGIFCONF call. This structure will change
4103  *	size eventually, and there is nothing I can do about it.
4104  *	Thus we will need a 'compatibility mode'.
4105  */
4106 
4107 static int dev_ifconf(struct net *net, char __user *arg)
4108 {
4109 	struct ifconf ifc;
4110 	struct net_device *dev;
4111 	char __user *pos;
4112 	int len;
4113 	int total;
4114 	int i;
4115 
4116 	/*
4117 	 *	Fetch the caller's info block.
4118 	 */
4119 
4120 	if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
4121 		return -EFAULT;
4122 
4123 	pos = ifc.ifc_buf;
4124 	len = ifc.ifc_len;
4125 
4126 	/*
4127 	 *	Loop over the interfaces, and write an info block for each.
4128 	 */
4129 
4130 	total = 0;
4131 	for_each_netdev(net, dev) {
4132 		for (i = 0; i < NPROTO; i++) {
4133 			if (gifconf_list[i]) {
4134 				int done;
4135 				if (!pos)
4136 					done = gifconf_list[i](dev, NULL, 0);
4137 				else
4138 					done = gifconf_list[i](dev, pos + total,
4139 							       len - total);
4140 				if (done < 0)
4141 					return -EFAULT;
4142 				total += done;
4143 			}
4144 		}
4145 	}
4146 
4147 	/*
4148 	 *	All done.  Write the updated control block back to the caller.
4149 	 */
4150 	ifc.ifc_len = total;
4151 
4152 	/*
4153 	 * 	Both BSD and Solaris return 0 here, so we do too.
4154 	 */
4155 	return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
4156 }
4157 
4158 #ifdef CONFIG_PROC_FS
4159 
4160 #define BUCKET_SPACE (32 - NETDEV_HASHBITS - 1)
4161 
4162 #define get_bucket(x) ((x) >> BUCKET_SPACE)
4163 #define get_offset(x) ((x) & ((1 << BUCKET_SPACE) - 1))
4164 #define set_bucket_offset(b, o) ((b) << BUCKET_SPACE | (o))
4165 
4166 static inline struct net_device *dev_from_same_bucket(struct seq_file *seq, loff_t *pos)
4167 {
4168 	struct net *net = seq_file_net(seq);
4169 	struct net_device *dev;
4170 	struct hlist_node *p;
4171 	struct hlist_head *h;
4172 	unsigned int count = 0, offset = get_offset(*pos);
4173 
4174 	h = &net->dev_name_head[get_bucket(*pos)];
4175 	hlist_for_each_entry_rcu(dev, p, h, name_hlist) {
4176 		if (++count == offset)
4177 			return dev;
4178 	}
4179 
4180 	return NULL;
4181 }
4182 
4183 static inline struct net_device *dev_from_bucket(struct seq_file *seq, loff_t *pos)
4184 {
4185 	struct net_device *dev;
4186 	unsigned int bucket;
4187 
4188 	do {
4189 		dev = dev_from_same_bucket(seq, pos);
4190 		if (dev)
4191 			return dev;
4192 
4193 		bucket = get_bucket(*pos) + 1;
4194 		*pos = set_bucket_offset(bucket, 1);
4195 	} while (bucket < NETDEV_HASHENTRIES);
4196 
4197 	return NULL;
4198 }
4199 
4200 /*
4201  *	This is invoked by the /proc filesystem handler to display a device
4202  *	in detail.
4203  */
4204 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
4205 	__acquires(RCU)
4206 {
4207 	rcu_read_lock();
4208 	if (!*pos)
4209 		return SEQ_START_TOKEN;
4210 
4211 	if (get_bucket(*pos) >= NETDEV_HASHENTRIES)
4212 		return NULL;
4213 
4214 	return dev_from_bucket(seq, pos);
4215 }
4216 
4217 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4218 {
4219 	++*pos;
4220 	return dev_from_bucket(seq, pos);
4221 }
4222 
4223 void dev_seq_stop(struct seq_file *seq, void *v)
4224 	__releases(RCU)
4225 {
4226 	rcu_read_unlock();
4227 }
4228 
4229 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
4230 {
4231 	struct rtnl_link_stats64 temp;
4232 	const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp);
4233 
4234 	seq_printf(seq, "%6s: %7llu %7llu %4llu %4llu %4llu %5llu %10llu %9llu "
4235 		   "%8llu %7llu %4llu %4llu %4llu %5llu %7llu %10llu\n",
4236 		   dev->name, stats->rx_bytes, stats->rx_packets,
4237 		   stats->rx_errors,
4238 		   stats->rx_dropped + stats->rx_missed_errors,
4239 		   stats->rx_fifo_errors,
4240 		   stats->rx_length_errors + stats->rx_over_errors +
4241 		    stats->rx_crc_errors + stats->rx_frame_errors,
4242 		   stats->rx_compressed, stats->multicast,
4243 		   stats->tx_bytes, stats->tx_packets,
4244 		   stats->tx_errors, stats->tx_dropped,
4245 		   stats->tx_fifo_errors, stats->collisions,
4246 		   stats->tx_carrier_errors +
4247 		    stats->tx_aborted_errors +
4248 		    stats->tx_window_errors +
4249 		    stats->tx_heartbeat_errors,
4250 		   stats->tx_compressed);
4251 }
4252 
4253 /*
4254  *	Called from the PROCfs module. This now uses the new arbitrary sized
4255  *	/proc/net interface to create /proc/net/dev
4256  */
4257 static int dev_seq_show(struct seq_file *seq, void *v)
4258 {
4259 	if (v == SEQ_START_TOKEN)
4260 		seq_puts(seq, "Inter-|   Receive                            "
4261 			      "                    |  Transmit\n"
4262 			      " face |bytes    packets errs drop fifo frame "
4263 			      "compressed multicast|bytes    packets errs "
4264 			      "drop fifo colls carrier compressed\n");
4265 	else
4266 		dev_seq_printf_stats(seq, v);
4267 	return 0;
4268 }
4269 
4270 static struct softnet_data *softnet_get_online(loff_t *pos)
4271 {
4272 	struct softnet_data *sd = NULL;
4273 
4274 	while (*pos < nr_cpu_ids)
4275 		if (cpu_online(*pos)) {
4276 			sd = &per_cpu(softnet_data, *pos);
4277 			break;
4278 		} else
4279 			++*pos;
4280 	return sd;
4281 }
4282 
4283 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
4284 {
4285 	return softnet_get_online(pos);
4286 }
4287 
4288 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4289 {
4290 	++*pos;
4291 	return softnet_get_online(pos);
4292 }
4293 
4294 static void softnet_seq_stop(struct seq_file *seq, void *v)
4295 {
4296 }
4297 
4298 static int softnet_seq_show(struct seq_file *seq, void *v)
4299 {
4300 	struct softnet_data *sd = v;
4301 
4302 	seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
4303 		   sd->processed, sd->dropped, sd->time_squeeze, 0,
4304 		   0, 0, 0, 0, /* was fastroute */
4305 		   sd->cpu_collision, sd->received_rps);
4306 	return 0;
4307 }
4308 
4309 static const struct seq_operations dev_seq_ops = {
4310 	.start = dev_seq_start,
4311 	.next  = dev_seq_next,
4312 	.stop  = dev_seq_stop,
4313 	.show  = dev_seq_show,
4314 };
4315 
4316 static int dev_seq_open(struct inode *inode, struct file *file)
4317 {
4318 	return seq_open_net(inode, file, &dev_seq_ops,
4319 			    sizeof(struct seq_net_private));
4320 }
4321 
4322 static const struct file_operations dev_seq_fops = {
4323 	.owner	 = THIS_MODULE,
4324 	.open    = dev_seq_open,
4325 	.read    = seq_read,
4326 	.llseek  = seq_lseek,
4327 	.release = seq_release_net,
4328 };
4329 
4330 static const struct seq_operations softnet_seq_ops = {
4331 	.start = softnet_seq_start,
4332 	.next  = softnet_seq_next,
4333 	.stop  = softnet_seq_stop,
4334 	.show  = softnet_seq_show,
4335 };
4336 
4337 static int softnet_seq_open(struct inode *inode, struct file *file)
4338 {
4339 	return seq_open(file, &softnet_seq_ops);
4340 }
4341 
4342 static const struct file_operations softnet_seq_fops = {
4343 	.owner	 = THIS_MODULE,
4344 	.open    = softnet_seq_open,
4345 	.read    = seq_read,
4346 	.llseek  = seq_lseek,
4347 	.release = seq_release,
4348 };
4349 
4350 static void *ptype_get_idx(loff_t pos)
4351 {
4352 	struct packet_type *pt = NULL;
4353 	loff_t i = 0;
4354 	int t;
4355 
4356 	list_for_each_entry_rcu(pt, &ptype_all, list) {
4357 		if (i == pos)
4358 			return pt;
4359 		++i;
4360 	}
4361 
4362 	for (t = 0; t < PTYPE_HASH_SIZE; t++) {
4363 		list_for_each_entry_rcu(pt, &ptype_base[t], list) {
4364 			if (i == pos)
4365 				return pt;
4366 			++i;
4367 		}
4368 	}
4369 	return NULL;
4370 }
4371 
4372 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
4373 	__acquires(RCU)
4374 {
4375 	rcu_read_lock();
4376 	return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
4377 }
4378 
4379 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4380 {
4381 	struct packet_type *pt;
4382 	struct list_head *nxt;
4383 	int hash;
4384 
4385 	++*pos;
4386 	if (v == SEQ_START_TOKEN)
4387 		return ptype_get_idx(0);
4388 
4389 	pt = v;
4390 	nxt = pt->list.next;
4391 	if (pt->type == htons(ETH_P_ALL)) {
4392 		if (nxt != &ptype_all)
4393 			goto found;
4394 		hash = 0;
4395 		nxt = ptype_base[0].next;
4396 	} else
4397 		hash = ntohs(pt->type) & PTYPE_HASH_MASK;
4398 
4399 	while (nxt == &ptype_base[hash]) {
4400 		if (++hash >= PTYPE_HASH_SIZE)
4401 			return NULL;
4402 		nxt = ptype_base[hash].next;
4403 	}
4404 found:
4405 	return list_entry(nxt, struct packet_type, list);
4406 }
4407 
4408 static void ptype_seq_stop(struct seq_file *seq, void *v)
4409 	__releases(RCU)
4410 {
4411 	rcu_read_unlock();
4412 }
4413 
4414 static int ptype_seq_show(struct seq_file *seq, void *v)
4415 {
4416 	struct packet_type *pt = v;
4417 
4418 	if (v == SEQ_START_TOKEN)
4419 		seq_puts(seq, "Type Device      Function\n");
4420 	else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
4421 		if (pt->type == htons(ETH_P_ALL))
4422 			seq_puts(seq, "ALL ");
4423 		else
4424 			seq_printf(seq, "%04x", ntohs(pt->type));
4425 
4426 		seq_printf(seq, " %-8s %pF\n",
4427 			   pt->dev ? pt->dev->name : "", pt->func);
4428 	}
4429 
4430 	return 0;
4431 }
4432 
4433 static const struct seq_operations ptype_seq_ops = {
4434 	.start = ptype_seq_start,
4435 	.next  = ptype_seq_next,
4436 	.stop  = ptype_seq_stop,
4437 	.show  = ptype_seq_show,
4438 };
4439 
4440 static int ptype_seq_open(struct inode *inode, struct file *file)
4441 {
4442 	return seq_open_net(inode, file, &ptype_seq_ops,
4443 			sizeof(struct seq_net_private));
4444 }
4445 
4446 static const struct file_operations ptype_seq_fops = {
4447 	.owner	 = THIS_MODULE,
4448 	.open    = ptype_seq_open,
4449 	.read    = seq_read,
4450 	.llseek  = seq_lseek,
4451 	.release = seq_release_net,
4452 };
4453 
4454 
4455 static int __net_init dev_proc_net_init(struct net *net)
4456 {
4457 	int rc = -ENOMEM;
4458 
4459 	if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
4460 		goto out;
4461 	if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
4462 		goto out_dev;
4463 	if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
4464 		goto out_softnet;
4465 
4466 	if (wext_proc_init(net))
4467 		goto out_ptype;
4468 	rc = 0;
4469 out:
4470 	return rc;
4471 out_ptype:
4472 	proc_net_remove(net, "ptype");
4473 out_softnet:
4474 	proc_net_remove(net, "softnet_stat");
4475 out_dev:
4476 	proc_net_remove(net, "dev");
4477 	goto out;
4478 }
4479 
4480 static void __net_exit dev_proc_net_exit(struct net *net)
4481 {
4482 	wext_proc_exit(net);
4483 
4484 	proc_net_remove(net, "ptype");
4485 	proc_net_remove(net, "softnet_stat");
4486 	proc_net_remove(net, "dev");
4487 }
4488 
4489 static struct pernet_operations __net_initdata dev_proc_ops = {
4490 	.init = dev_proc_net_init,
4491 	.exit = dev_proc_net_exit,
4492 };
4493 
4494 static int __init dev_proc_init(void)
4495 {
4496 	return register_pernet_subsys(&dev_proc_ops);
4497 }
4498 #else
4499 #define dev_proc_init() 0
4500 #endif	/* CONFIG_PROC_FS */
4501 
4502 
4503 /**
4504  *	netdev_set_master	-	set up master pointer
4505  *	@slave: slave device
4506  *	@master: new master device
4507  *
4508  *	Changes the master device of the slave. Pass %NULL to break the
4509  *	bonding. The caller must hold the RTNL semaphore. On a failure
4510  *	a negative errno code is returned. On success the reference counts
4511  *	are adjusted and the function returns zero.
4512  */
4513 int netdev_set_master(struct net_device *slave, struct net_device *master)
4514 {
4515 	struct net_device *old = slave->master;
4516 
4517 	ASSERT_RTNL();
4518 
4519 	if (master) {
4520 		if (old)
4521 			return -EBUSY;
4522 		dev_hold(master);
4523 	}
4524 
4525 	slave->master = master;
4526 
4527 	if (old)
4528 		dev_put(old);
4529 	return 0;
4530 }
4531 EXPORT_SYMBOL(netdev_set_master);
4532 
4533 /**
4534  *	netdev_set_bond_master	-	set up bonding master/slave pair
4535  *	@slave: slave device
4536  *	@master: new master device
4537  *
4538  *	Changes the master device of the slave. Pass %NULL to break the
4539  *	bonding. The caller must hold the RTNL semaphore. On a failure
4540  *	a negative errno code is returned. On success %RTM_NEWLINK is sent
4541  *	to the routing socket and the function returns zero.
4542  */
4543 int netdev_set_bond_master(struct net_device *slave, struct net_device *master)
4544 {
4545 	int err;
4546 
4547 	ASSERT_RTNL();
4548 
4549 	err = netdev_set_master(slave, master);
4550 	if (err)
4551 		return err;
4552 	if (master)
4553 		slave->flags |= IFF_SLAVE;
4554 	else
4555 		slave->flags &= ~IFF_SLAVE;
4556 
4557 	rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
4558 	return 0;
4559 }
4560 EXPORT_SYMBOL(netdev_set_bond_master);
4561 
4562 static void dev_change_rx_flags(struct net_device *dev, int flags)
4563 {
4564 	const struct net_device_ops *ops = dev->netdev_ops;
4565 
4566 	if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
4567 		ops->ndo_change_rx_flags(dev, flags);
4568 }
4569 
4570 static int __dev_set_promiscuity(struct net_device *dev, int inc)
4571 {
4572 	unsigned int old_flags = dev->flags;
4573 	kuid_t uid;
4574 	kgid_t gid;
4575 
4576 	ASSERT_RTNL();
4577 
4578 	dev->flags |= IFF_PROMISC;
4579 	dev->promiscuity += inc;
4580 	if (dev->promiscuity == 0) {
4581 		/*
4582 		 * Avoid overflow.
4583 		 * If inc causes overflow, untouch promisc and return error.
4584 		 */
4585 		if (inc < 0)
4586 			dev->flags &= ~IFF_PROMISC;
4587 		else {
4588 			dev->promiscuity -= inc;
4589 			pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
4590 				dev->name);
4591 			return -EOVERFLOW;
4592 		}
4593 	}
4594 	if (dev->flags != old_flags) {
4595 		pr_info("device %s %s promiscuous mode\n",
4596 			dev->name,
4597 			dev->flags & IFF_PROMISC ? "entered" : "left");
4598 		if (audit_enabled) {
4599 			current_uid_gid(&uid, &gid);
4600 			audit_log(current->audit_context, GFP_ATOMIC,
4601 				AUDIT_ANOM_PROMISCUOUS,
4602 				"dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
4603 				dev->name, (dev->flags & IFF_PROMISC),
4604 				(old_flags & IFF_PROMISC),
4605 				from_kuid(&init_user_ns, audit_get_loginuid(current)),
4606 				from_kuid(&init_user_ns, uid),
4607 				from_kgid(&init_user_ns, gid),
4608 				audit_get_sessionid(current));
4609 		}
4610 
4611 		dev_change_rx_flags(dev, IFF_PROMISC);
4612 	}
4613 	return 0;
4614 }
4615 
4616 /**
4617  *	dev_set_promiscuity	- update promiscuity count on a device
4618  *	@dev: device
4619  *	@inc: modifier
4620  *
4621  *	Add or remove promiscuity from a device. While the count in the device
4622  *	remains above zero the interface remains promiscuous. Once it hits zero
4623  *	the device reverts back to normal filtering operation. A negative inc
4624  *	value is used to drop promiscuity on the device.
4625  *	Return 0 if successful or a negative errno code on error.
4626  */
4627 int dev_set_promiscuity(struct net_device *dev, int inc)
4628 {
4629 	unsigned int old_flags = dev->flags;
4630 	int err;
4631 
4632 	err = __dev_set_promiscuity(dev, inc);
4633 	if (err < 0)
4634 		return err;
4635 	if (dev->flags != old_flags)
4636 		dev_set_rx_mode(dev);
4637 	return err;
4638 }
4639 EXPORT_SYMBOL(dev_set_promiscuity);
4640 
4641 /**
4642  *	dev_set_allmulti	- update allmulti count on a device
4643  *	@dev: device
4644  *	@inc: modifier
4645  *
4646  *	Add or remove reception of all multicast frames to a device. While the
4647  *	count in the device remains above zero the interface remains listening
4648  *	to all interfaces. Once it hits zero the device reverts back to normal
4649  *	filtering operation. A negative @inc value is used to drop the counter
4650  *	when releasing a resource needing all multicasts.
4651  *	Return 0 if successful or a negative errno code on error.
4652  */
4653 
4654 int dev_set_allmulti(struct net_device *dev, int inc)
4655 {
4656 	unsigned int old_flags = dev->flags;
4657 
4658 	ASSERT_RTNL();
4659 
4660 	dev->flags |= IFF_ALLMULTI;
4661 	dev->allmulti += inc;
4662 	if (dev->allmulti == 0) {
4663 		/*
4664 		 * Avoid overflow.
4665 		 * If inc causes overflow, untouch allmulti and return error.
4666 		 */
4667 		if (inc < 0)
4668 			dev->flags &= ~IFF_ALLMULTI;
4669 		else {
4670 			dev->allmulti -= inc;
4671 			pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
4672 				dev->name);
4673 			return -EOVERFLOW;
4674 		}
4675 	}
4676 	if (dev->flags ^ old_flags) {
4677 		dev_change_rx_flags(dev, IFF_ALLMULTI);
4678 		dev_set_rx_mode(dev);
4679 	}
4680 	return 0;
4681 }
4682 EXPORT_SYMBOL(dev_set_allmulti);
4683 
4684 /*
4685  *	Upload unicast and multicast address lists to device and
4686  *	configure RX filtering. When the device doesn't support unicast
4687  *	filtering it is put in promiscuous mode while unicast addresses
4688  *	are present.
4689  */
4690 void __dev_set_rx_mode(struct net_device *dev)
4691 {
4692 	const struct net_device_ops *ops = dev->netdev_ops;
4693 
4694 	/* dev_open will call this function so the list will stay sane. */
4695 	if (!(dev->flags&IFF_UP))
4696 		return;
4697 
4698 	if (!netif_device_present(dev))
4699 		return;
4700 
4701 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
4702 		/* Unicast addresses changes may only happen under the rtnl,
4703 		 * therefore calling __dev_set_promiscuity here is safe.
4704 		 */
4705 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
4706 			__dev_set_promiscuity(dev, 1);
4707 			dev->uc_promisc = true;
4708 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
4709 			__dev_set_promiscuity(dev, -1);
4710 			dev->uc_promisc = false;
4711 		}
4712 	}
4713 
4714 	if (ops->ndo_set_rx_mode)
4715 		ops->ndo_set_rx_mode(dev);
4716 }
4717 
4718 void dev_set_rx_mode(struct net_device *dev)
4719 {
4720 	netif_addr_lock_bh(dev);
4721 	__dev_set_rx_mode(dev);
4722 	netif_addr_unlock_bh(dev);
4723 }
4724 
4725 /**
4726  *	dev_get_flags - get flags reported to userspace
4727  *	@dev: device
4728  *
4729  *	Get the combination of flag bits exported through APIs to userspace.
4730  */
4731 unsigned int dev_get_flags(const struct net_device *dev)
4732 {
4733 	unsigned int flags;
4734 
4735 	flags = (dev->flags & ~(IFF_PROMISC |
4736 				IFF_ALLMULTI |
4737 				IFF_RUNNING |
4738 				IFF_LOWER_UP |
4739 				IFF_DORMANT)) |
4740 		(dev->gflags & (IFF_PROMISC |
4741 				IFF_ALLMULTI));
4742 
4743 	if (netif_running(dev)) {
4744 		if (netif_oper_up(dev))
4745 			flags |= IFF_RUNNING;
4746 		if (netif_carrier_ok(dev))
4747 			flags |= IFF_LOWER_UP;
4748 		if (netif_dormant(dev))
4749 			flags |= IFF_DORMANT;
4750 	}
4751 
4752 	return flags;
4753 }
4754 EXPORT_SYMBOL(dev_get_flags);
4755 
4756 int __dev_change_flags(struct net_device *dev, unsigned int flags)
4757 {
4758 	unsigned int old_flags = dev->flags;
4759 	int ret;
4760 
4761 	ASSERT_RTNL();
4762 
4763 	/*
4764 	 *	Set the flags on our device.
4765 	 */
4766 
4767 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4768 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4769 			       IFF_AUTOMEDIA)) |
4770 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4771 				    IFF_ALLMULTI));
4772 
4773 	/*
4774 	 *	Load in the correct multicast list now the flags have changed.
4775 	 */
4776 
4777 	if ((old_flags ^ flags) & IFF_MULTICAST)
4778 		dev_change_rx_flags(dev, IFF_MULTICAST);
4779 
4780 	dev_set_rx_mode(dev);
4781 
4782 	/*
4783 	 *	Have we downed the interface. We handle IFF_UP ourselves
4784 	 *	according to user attempts to set it, rather than blindly
4785 	 *	setting it.
4786 	 */
4787 
4788 	ret = 0;
4789 	if ((old_flags ^ flags) & IFF_UP) {	/* Bit is different  ? */
4790 		ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
4791 
4792 		if (!ret)
4793 			dev_set_rx_mode(dev);
4794 	}
4795 
4796 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
4797 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
4798 
4799 		dev->gflags ^= IFF_PROMISC;
4800 		dev_set_promiscuity(dev, inc);
4801 	}
4802 
4803 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4804 	   is important. Some (broken) drivers set IFF_PROMISC, when
4805 	   IFF_ALLMULTI is requested not asking us and not reporting.
4806 	 */
4807 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4808 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4809 
4810 		dev->gflags ^= IFF_ALLMULTI;
4811 		dev_set_allmulti(dev, inc);
4812 	}
4813 
4814 	return ret;
4815 }
4816 
4817 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
4818 {
4819 	unsigned int changes = dev->flags ^ old_flags;
4820 
4821 	if (changes & IFF_UP) {
4822 		if (dev->flags & IFF_UP)
4823 			call_netdevice_notifiers(NETDEV_UP, dev);
4824 		else
4825 			call_netdevice_notifiers(NETDEV_DOWN, dev);
4826 	}
4827 
4828 	if (dev->flags & IFF_UP &&
4829 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE)))
4830 		call_netdevice_notifiers(NETDEV_CHANGE, dev);
4831 }
4832 
4833 /**
4834  *	dev_change_flags - change device settings
4835  *	@dev: device
4836  *	@flags: device state flags
4837  *
4838  *	Change settings on device based state flags. The flags are
4839  *	in the userspace exported format.
4840  */
4841 int dev_change_flags(struct net_device *dev, unsigned int flags)
4842 {
4843 	int ret;
4844 	unsigned int changes, old_flags = dev->flags;
4845 
4846 	ret = __dev_change_flags(dev, flags);
4847 	if (ret < 0)
4848 		return ret;
4849 
4850 	changes = old_flags ^ dev->flags;
4851 	if (changes)
4852 		rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4853 
4854 	__dev_notify_flags(dev, old_flags);
4855 	return ret;
4856 }
4857 EXPORT_SYMBOL(dev_change_flags);
4858 
4859 /**
4860  *	dev_set_mtu - Change maximum transfer unit
4861  *	@dev: device
4862  *	@new_mtu: new transfer unit
4863  *
4864  *	Change the maximum transfer size of the network device.
4865  */
4866 int dev_set_mtu(struct net_device *dev, int new_mtu)
4867 {
4868 	const struct net_device_ops *ops = dev->netdev_ops;
4869 	int err;
4870 
4871 	if (new_mtu == dev->mtu)
4872 		return 0;
4873 
4874 	/*	MTU must be positive.	 */
4875 	if (new_mtu < 0)
4876 		return -EINVAL;
4877 
4878 	if (!netif_device_present(dev))
4879 		return -ENODEV;
4880 
4881 	err = 0;
4882 	if (ops->ndo_change_mtu)
4883 		err = ops->ndo_change_mtu(dev, new_mtu);
4884 	else
4885 		dev->mtu = new_mtu;
4886 
4887 	if (!err && dev->flags & IFF_UP)
4888 		call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4889 	return err;
4890 }
4891 EXPORT_SYMBOL(dev_set_mtu);
4892 
4893 /**
4894  *	dev_set_group - Change group this device belongs to
4895  *	@dev: device
4896  *	@new_group: group this device should belong to
4897  */
4898 void dev_set_group(struct net_device *dev, int new_group)
4899 {
4900 	dev->group = new_group;
4901 }
4902 EXPORT_SYMBOL(dev_set_group);
4903 
4904 /**
4905  *	dev_set_mac_address - Change Media Access Control Address
4906  *	@dev: device
4907  *	@sa: new address
4908  *
4909  *	Change the hardware (MAC) address of the device
4910  */
4911 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4912 {
4913 	const struct net_device_ops *ops = dev->netdev_ops;
4914 	int err;
4915 
4916 	if (!ops->ndo_set_mac_address)
4917 		return -EOPNOTSUPP;
4918 	if (sa->sa_family != dev->type)
4919 		return -EINVAL;
4920 	if (!netif_device_present(dev))
4921 		return -ENODEV;
4922 	err = ops->ndo_set_mac_address(dev, sa);
4923 	if (!err)
4924 		call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4925 	add_device_randomness(dev->dev_addr, dev->addr_len);
4926 	return err;
4927 }
4928 EXPORT_SYMBOL(dev_set_mac_address);
4929 
4930 /*
4931  *	Perform the SIOCxIFxxx calls, inside rcu_read_lock()
4932  */
4933 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
4934 {
4935 	int err;
4936 	struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name);
4937 
4938 	if (!dev)
4939 		return -ENODEV;
4940 
4941 	switch (cmd) {
4942 	case SIOCGIFFLAGS:	/* Get interface flags */
4943 		ifr->ifr_flags = (short) dev_get_flags(dev);
4944 		return 0;
4945 
4946 	case SIOCGIFMETRIC:	/* Get the metric on the interface
4947 				   (currently unused) */
4948 		ifr->ifr_metric = 0;
4949 		return 0;
4950 
4951 	case SIOCGIFMTU:	/* Get the MTU of a device */
4952 		ifr->ifr_mtu = dev->mtu;
4953 		return 0;
4954 
4955 	case SIOCGIFHWADDR:
4956 		if (!dev->addr_len)
4957 			memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
4958 		else
4959 			memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
4960 			       min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4961 		ifr->ifr_hwaddr.sa_family = dev->type;
4962 		return 0;
4963 
4964 	case SIOCGIFSLAVE:
4965 		err = -EINVAL;
4966 		break;
4967 
4968 	case SIOCGIFMAP:
4969 		ifr->ifr_map.mem_start = dev->mem_start;
4970 		ifr->ifr_map.mem_end   = dev->mem_end;
4971 		ifr->ifr_map.base_addr = dev->base_addr;
4972 		ifr->ifr_map.irq       = dev->irq;
4973 		ifr->ifr_map.dma       = dev->dma;
4974 		ifr->ifr_map.port      = dev->if_port;
4975 		return 0;
4976 
4977 	case SIOCGIFINDEX:
4978 		ifr->ifr_ifindex = dev->ifindex;
4979 		return 0;
4980 
4981 	case SIOCGIFTXQLEN:
4982 		ifr->ifr_qlen = dev->tx_queue_len;
4983 		return 0;
4984 
4985 	default:
4986 		/* dev_ioctl() should ensure this case
4987 		 * is never reached
4988 		 */
4989 		WARN_ON(1);
4990 		err = -ENOTTY;
4991 		break;
4992 
4993 	}
4994 	return err;
4995 }
4996 
4997 /*
4998  *	Perform the SIOCxIFxxx calls, inside rtnl_lock()
4999  */
5000 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
5001 {
5002 	int err;
5003 	struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
5004 	const struct net_device_ops *ops;
5005 
5006 	if (!dev)
5007 		return -ENODEV;
5008 
5009 	ops = dev->netdev_ops;
5010 
5011 	switch (cmd) {
5012 	case SIOCSIFFLAGS:	/* Set interface flags */
5013 		return dev_change_flags(dev, ifr->ifr_flags);
5014 
5015 	case SIOCSIFMETRIC:	/* Set the metric on the interface
5016 				   (currently unused) */
5017 		return -EOPNOTSUPP;
5018 
5019 	case SIOCSIFMTU:	/* Set the MTU of a device */
5020 		return dev_set_mtu(dev, ifr->ifr_mtu);
5021 
5022 	case SIOCSIFHWADDR:
5023 		return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
5024 
5025 	case SIOCSIFHWBROADCAST:
5026 		if (ifr->ifr_hwaddr.sa_family != dev->type)
5027 			return -EINVAL;
5028 		memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
5029 		       min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
5030 		call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
5031 		return 0;
5032 
5033 	case SIOCSIFMAP:
5034 		if (ops->ndo_set_config) {
5035 			if (!netif_device_present(dev))
5036 				return -ENODEV;
5037 			return ops->ndo_set_config(dev, &ifr->ifr_map);
5038 		}
5039 		return -EOPNOTSUPP;
5040 
5041 	case SIOCADDMULTI:
5042 		if (!ops->ndo_set_rx_mode ||
5043 		    ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
5044 			return -EINVAL;
5045 		if (!netif_device_present(dev))
5046 			return -ENODEV;
5047 		return dev_mc_add_global(dev, ifr->ifr_hwaddr.sa_data);
5048 
5049 	case SIOCDELMULTI:
5050 		if (!ops->ndo_set_rx_mode ||
5051 		    ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
5052 			return -EINVAL;
5053 		if (!netif_device_present(dev))
5054 			return -ENODEV;
5055 		return dev_mc_del_global(dev, ifr->ifr_hwaddr.sa_data);
5056 
5057 	case SIOCSIFTXQLEN:
5058 		if (ifr->ifr_qlen < 0)
5059 			return -EINVAL;
5060 		dev->tx_queue_len = ifr->ifr_qlen;
5061 		return 0;
5062 
5063 	case SIOCSIFNAME:
5064 		ifr->ifr_newname[IFNAMSIZ-1] = '\0';
5065 		return dev_change_name(dev, ifr->ifr_newname);
5066 
5067 	case SIOCSHWTSTAMP:
5068 		err = net_hwtstamp_validate(ifr);
5069 		if (err)
5070 			return err;
5071 		/* fall through */
5072 
5073 	/*
5074 	 *	Unknown or private ioctl
5075 	 */
5076 	default:
5077 		if ((cmd >= SIOCDEVPRIVATE &&
5078 		    cmd <= SIOCDEVPRIVATE + 15) ||
5079 		    cmd == SIOCBONDENSLAVE ||
5080 		    cmd == SIOCBONDRELEASE ||
5081 		    cmd == SIOCBONDSETHWADDR ||
5082 		    cmd == SIOCBONDSLAVEINFOQUERY ||
5083 		    cmd == SIOCBONDINFOQUERY ||
5084 		    cmd == SIOCBONDCHANGEACTIVE ||
5085 		    cmd == SIOCGMIIPHY ||
5086 		    cmd == SIOCGMIIREG ||
5087 		    cmd == SIOCSMIIREG ||
5088 		    cmd == SIOCBRADDIF ||
5089 		    cmd == SIOCBRDELIF ||
5090 		    cmd == SIOCSHWTSTAMP ||
5091 		    cmd == SIOCWANDEV) {
5092 			err = -EOPNOTSUPP;
5093 			if (ops->ndo_do_ioctl) {
5094 				if (netif_device_present(dev))
5095 					err = ops->ndo_do_ioctl(dev, ifr, cmd);
5096 				else
5097 					err = -ENODEV;
5098 			}
5099 		} else
5100 			err = -EINVAL;
5101 
5102 	}
5103 	return err;
5104 }
5105 
5106 /*
5107  *	This function handles all "interface"-type I/O control requests. The actual
5108  *	'doing' part of this is dev_ifsioc above.
5109  */
5110 
5111 /**
5112  *	dev_ioctl	-	network device ioctl
5113  *	@net: the applicable net namespace
5114  *	@cmd: command to issue
5115  *	@arg: pointer to a struct ifreq in user space
5116  *
5117  *	Issue ioctl functions to devices. This is normally called by the
5118  *	user space syscall interfaces but can sometimes be useful for
5119  *	other purposes. The return value is the return from the syscall if
5120  *	positive or a negative errno code on error.
5121  */
5122 
5123 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
5124 {
5125 	struct ifreq ifr;
5126 	int ret;
5127 	char *colon;
5128 
5129 	/* One special case: SIOCGIFCONF takes ifconf argument
5130 	   and requires shared lock, because it sleeps writing
5131 	   to user space.
5132 	 */
5133 
5134 	if (cmd == SIOCGIFCONF) {
5135 		rtnl_lock();
5136 		ret = dev_ifconf(net, (char __user *) arg);
5137 		rtnl_unlock();
5138 		return ret;
5139 	}
5140 	if (cmd == SIOCGIFNAME)
5141 		return dev_ifname(net, (struct ifreq __user *)arg);
5142 
5143 	if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
5144 		return -EFAULT;
5145 
5146 	ifr.ifr_name[IFNAMSIZ-1] = 0;
5147 
5148 	colon = strchr(ifr.ifr_name, ':');
5149 	if (colon)
5150 		*colon = 0;
5151 
5152 	/*
5153 	 *	See which interface the caller is talking about.
5154 	 */
5155 
5156 	switch (cmd) {
5157 	/*
5158 	 *	These ioctl calls:
5159 	 *	- can be done by all.
5160 	 *	- atomic and do not require locking.
5161 	 *	- return a value
5162 	 */
5163 	case SIOCGIFFLAGS:
5164 	case SIOCGIFMETRIC:
5165 	case SIOCGIFMTU:
5166 	case SIOCGIFHWADDR:
5167 	case SIOCGIFSLAVE:
5168 	case SIOCGIFMAP:
5169 	case SIOCGIFINDEX:
5170 	case SIOCGIFTXQLEN:
5171 		dev_load(net, ifr.ifr_name);
5172 		rcu_read_lock();
5173 		ret = dev_ifsioc_locked(net, &ifr, cmd);
5174 		rcu_read_unlock();
5175 		if (!ret) {
5176 			if (colon)
5177 				*colon = ':';
5178 			if (copy_to_user(arg, &ifr,
5179 					 sizeof(struct ifreq)))
5180 				ret = -EFAULT;
5181 		}
5182 		return ret;
5183 
5184 	case SIOCETHTOOL:
5185 		dev_load(net, ifr.ifr_name);
5186 		rtnl_lock();
5187 		ret = dev_ethtool(net, &ifr);
5188 		rtnl_unlock();
5189 		if (!ret) {
5190 			if (colon)
5191 				*colon = ':';
5192 			if (copy_to_user(arg, &ifr,
5193 					 sizeof(struct ifreq)))
5194 				ret = -EFAULT;
5195 		}
5196 		return ret;
5197 
5198 	/*
5199 	 *	These ioctl calls:
5200 	 *	- require superuser power.
5201 	 *	- require strict serialization.
5202 	 *	- return a value
5203 	 */
5204 	case SIOCGMIIPHY:
5205 	case SIOCGMIIREG:
5206 	case SIOCSIFNAME:
5207 		if (!capable(CAP_NET_ADMIN))
5208 			return -EPERM;
5209 		dev_load(net, ifr.ifr_name);
5210 		rtnl_lock();
5211 		ret = dev_ifsioc(net, &ifr, cmd);
5212 		rtnl_unlock();
5213 		if (!ret) {
5214 			if (colon)
5215 				*colon = ':';
5216 			if (copy_to_user(arg, &ifr,
5217 					 sizeof(struct ifreq)))
5218 				ret = -EFAULT;
5219 		}
5220 		return ret;
5221 
5222 	/*
5223 	 *	These ioctl calls:
5224 	 *	- require superuser power.
5225 	 *	- require strict serialization.
5226 	 *	- do not return a value
5227 	 */
5228 	case SIOCSIFFLAGS:
5229 	case SIOCSIFMETRIC:
5230 	case SIOCSIFMTU:
5231 	case SIOCSIFMAP:
5232 	case SIOCSIFHWADDR:
5233 	case SIOCSIFSLAVE:
5234 	case SIOCADDMULTI:
5235 	case SIOCDELMULTI:
5236 	case SIOCSIFHWBROADCAST:
5237 	case SIOCSIFTXQLEN:
5238 	case SIOCSMIIREG:
5239 	case SIOCBONDENSLAVE:
5240 	case SIOCBONDRELEASE:
5241 	case SIOCBONDSETHWADDR:
5242 	case SIOCBONDCHANGEACTIVE:
5243 	case SIOCBRADDIF:
5244 	case SIOCBRDELIF:
5245 	case SIOCSHWTSTAMP:
5246 		if (!capable(CAP_NET_ADMIN))
5247 			return -EPERM;
5248 		/* fall through */
5249 	case SIOCBONDSLAVEINFOQUERY:
5250 	case SIOCBONDINFOQUERY:
5251 		dev_load(net, ifr.ifr_name);
5252 		rtnl_lock();
5253 		ret = dev_ifsioc(net, &ifr, cmd);
5254 		rtnl_unlock();
5255 		return ret;
5256 
5257 	case SIOCGIFMEM:
5258 		/* Get the per device memory space. We can add this but
5259 		 * currently do not support it */
5260 	case SIOCSIFMEM:
5261 		/* Set the per device memory buffer space.
5262 		 * Not applicable in our case */
5263 	case SIOCSIFLINK:
5264 		return -ENOTTY;
5265 
5266 	/*
5267 	 *	Unknown or private ioctl.
5268 	 */
5269 	default:
5270 		if (cmd == SIOCWANDEV ||
5271 		    (cmd >= SIOCDEVPRIVATE &&
5272 		     cmd <= SIOCDEVPRIVATE + 15)) {
5273 			dev_load(net, ifr.ifr_name);
5274 			rtnl_lock();
5275 			ret = dev_ifsioc(net, &ifr, cmd);
5276 			rtnl_unlock();
5277 			if (!ret && copy_to_user(arg, &ifr,
5278 						 sizeof(struct ifreq)))
5279 				ret = -EFAULT;
5280 			return ret;
5281 		}
5282 		/* Take care of Wireless Extensions */
5283 		if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
5284 			return wext_handle_ioctl(net, &ifr, cmd, arg);
5285 		return -ENOTTY;
5286 	}
5287 }
5288 
5289 
5290 /**
5291  *	dev_new_index	-	allocate an ifindex
5292  *	@net: the applicable net namespace
5293  *
5294  *	Returns a suitable unique value for a new device interface
5295  *	number.  The caller must hold the rtnl semaphore or the
5296  *	dev_base_lock to be sure it remains unique.
5297  */
5298 static int dev_new_index(struct net *net)
5299 {
5300 	int ifindex = net->ifindex;
5301 	for (;;) {
5302 		if (++ifindex <= 0)
5303 			ifindex = 1;
5304 		if (!__dev_get_by_index(net, ifindex))
5305 			return net->ifindex = ifindex;
5306 	}
5307 }
5308 
5309 /* Delayed registration/unregisteration */
5310 static LIST_HEAD(net_todo_list);
5311 
5312 static void net_set_todo(struct net_device *dev)
5313 {
5314 	list_add_tail(&dev->todo_list, &net_todo_list);
5315 }
5316 
5317 static void rollback_registered_many(struct list_head *head)
5318 {
5319 	struct net_device *dev, *tmp;
5320 
5321 	BUG_ON(dev_boot_phase);
5322 	ASSERT_RTNL();
5323 
5324 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
5325 		/* Some devices call without registering
5326 		 * for initialization unwind. Remove those
5327 		 * devices and proceed with the remaining.
5328 		 */
5329 		if (dev->reg_state == NETREG_UNINITIALIZED) {
5330 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
5331 				 dev->name, dev);
5332 
5333 			WARN_ON(1);
5334 			list_del(&dev->unreg_list);
5335 			continue;
5336 		}
5337 		dev->dismantle = true;
5338 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
5339 	}
5340 
5341 	/* If device is running, close it first. */
5342 	dev_close_many(head);
5343 
5344 	list_for_each_entry(dev, head, unreg_list) {
5345 		/* And unlink it from device chain. */
5346 		unlist_netdevice(dev);
5347 
5348 		dev->reg_state = NETREG_UNREGISTERING;
5349 	}
5350 
5351 	synchronize_net();
5352 
5353 	list_for_each_entry(dev, head, unreg_list) {
5354 		/* Shutdown queueing discipline. */
5355 		dev_shutdown(dev);
5356 
5357 
5358 		/* Notify protocols, that we are about to destroy
5359 		   this device. They should clean all the things.
5360 		*/
5361 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5362 
5363 		if (!dev->rtnl_link_ops ||
5364 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5365 			rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
5366 
5367 		/*
5368 		 *	Flush the unicast and multicast chains
5369 		 */
5370 		dev_uc_flush(dev);
5371 		dev_mc_flush(dev);
5372 
5373 		if (dev->netdev_ops->ndo_uninit)
5374 			dev->netdev_ops->ndo_uninit(dev);
5375 
5376 		/* Notifier chain MUST detach us from master device. */
5377 		WARN_ON(dev->master);
5378 
5379 		/* Remove entries from kobject tree */
5380 		netdev_unregister_kobject(dev);
5381 	}
5382 
5383 	synchronize_net();
5384 
5385 	list_for_each_entry(dev, head, unreg_list)
5386 		dev_put(dev);
5387 }
5388 
5389 static void rollback_registered(struct net_device *dev)
5390 {
5391 	LIST_HEAD(single);
5392 
5393 	list_add(&dev->unreg_list, &single);
5394 	rollback_registered_many(&single);
5395 	list_del(&single);
5396 }
5397 
5398 static netdev_features_t netdev_fix_features(struct net_device *dev,
5399 	netdev_features_t features)
5400 {
5401 	/* Fix illegal checksum combinations */
5402 	if ((features & NETIF_F_HW_CSUM) &&
5403 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5404 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
5405 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5406 	}
5407 
5408 	/* Fix illegal SG+CSUM combinations. */
5409 	if ((features & NETIF_F_SG) &&
5410 	    !(features & NETIF_F_ALL_CSUM)) {
5411 		netdev_dbg(dev,
5412 			"Dropping NETIF_F_SG since no checksum feature.\n");
5413 		features &= ~NETIF_F_SG;
5414 	}
5415 
5416 	/* TSO requires that SG is present as well. */
5417 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
5418 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
5419 		features &= ~NETIF_F_ALL_TSO;
5420 	}
5421 
5422 	/* TSO ECN requires that TSO is present as well. */
5423 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
5424 		features &= ~NETIF_F_TSO_ECN;
5425 
5426 	/* Software GSO depends on SG. */
5427 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
5428 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
5429 		features &= ~NETIF_F_GSO;
5430 	}
5431 
5432 	/* UFO needs SG and checksumming */
5433 	if (features & NETIF_F_UFO) {
5434 		/* maybe split UFO into V4 and V6? */
5435 		if (!((features & NETIF_F_GEN_CSUM) ||
5436 		    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
5437 			    == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5438 			netdev_dbg(dev,
5439 				"Dropping NETIF_F_UFO since no checksum offload features.\n");
5440 			features &= ~NETIF_F_UFO;
5441 		}
5442 
5443 		if (!(features & NETIF_F_SG)) {
5444 			netdev_dbg(dev,
5445 				"Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
5446 			features &= ~NETIF_F_UFO;
5447 		}
5448 	}
5449 
5450 	return features;
5451 }
5452 
5453 int __netdev_update_features(struct net_device *dev)
5454 {
5455 	netdev_features_t features;
5456 	int err = 0;
5457 
5458 	ASSERT_RTNL();
5459 
5460 	features = netdev_get_wanted_features(dev);
5461 
5462 	if (dev->netdev_ops->ndo_fix_features)
5463 		features = dev->netdev_ops->ndo_fix_features(dev, features);
5464 
5465 	/* driver might be less strict about feature dependencies */
5466 	features = netdev_fix_features(dev, features);
5467 
5468 	if (dev->features == features)
5469 		return 0;
5470 
5471 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
5472 		&dev->features, &features);
5473 
5474 	if (dev->netdev_ops->ndo_set_features)
5475 		err = dev->netdev_ops->ndo_set_features(dev, features);
5476 
5477 	if (unlikely(err < 0)) {
5478 		netdev_err(dev,
5479 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
5480 			err, &features, &dev->features);
5481 		return -1;
5482 	}
5483 
5484 	if (!err)
5485 		dev->features = features;
5486 
5487 	return 1;
5488 }
5489 
5490 /**
5491  *	netdev_update_features - recalculate device features
5492  *	@dev: the device to check
5493  *
5494  *	Recalculate dev->features set and send notifications if it
5495  *	has changed. Should be called after driver or hardware dependent
5496  *	conditions might have changed that influence the features.
5497  */
5498 void netdev_update_features(struct net_device *dev)
5499 {
5500 	if (__netdev_update_features(dev))
5501 		netdev_features_change(dev);
5502 }
5503 EXPORT_SYMBOL(netdev_update_features);
5504 
5505 /**
5506  *	netdev_change_features - recalculate device features
5507  *	@dev: the device to check
5508  *
5509  *	Recalculate dev->features set and send notifications even
5510  *	if they have not changed. Should be called instead of
5511  *	netdev_update_features() if also dev->vlan_features might
5512  *	have changed to allow the changes to be propagated to stacked
5513  *	VLAN devices.
5514  */
5515 void netdev_change_features(struct net_device *dev)
5516 {
5517 	__netdev_update_features(dev);
5518 	netdev_features_change(dev);
5519 }
5520 EXPORT_SYMBOL(netdev_change_features);
5521 
5522 /**
5523  *	netif_stacked_transfer_operstate -	transfer operstate
5524  *	@rootdev: the root or lower level device to transfer state from
5525  *	@dev: the device to transfer operstate to
5526  *
5527  *	Transfer operational state from root to device. This is normally
5528  *	called when a stacking relationship exists between the root
5529  *	device and the device(a leaf device).
5530  */
5531 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5532 					struct net_device *dev)
5533 {
5534 	if (rootdev->operstate == IF_OPER_DORMANT)
5535 		netif_dormant_on(dev);
5536 	else
5537 		netif_dormant_off(dev);
5538 
5539 	if (netif_carrier_ok(rootdev)) {
5540 		if (!netif_carrier_ok(dev))
5541 			netif_carrier_on(dev);
5542 	} else {
5543 		if (netif_carrier_ok(dev))
5544 			netif_carrier_off(dev);
5545 	}
5546 }
5547 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5548 
5549 #ifdef CONFIG_RPS
5550 static int netif_alloc_rx_queues(struct net_device *dev)
5551 {
5552 	unsigned int i, count = dev->num_rx_queues;
5553 	struct netdev_rx_queue *rx;
5554 
5555 	BUG_ON(count < 1);
5556 
5557 	rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5558 	if (!rx) {
5559 		pr_err("netdev: Unable to allocate %u rx queues\n", count);
5560 		return -ENOMEM;
5561 	}
5562 	dev->_rx = rx;
5563 
5564 	for (i = 0; i < count; i++)
5565 		rx[i].dev = dev;
5566 	return 0;
5567 }
5568 #endif
5569 
5570 static void netdev_init_one_queue(struct net_device *dev,
5571 				  struct netdev_queue *queue, void *_unused)
5572 {
5573 	/* Initialize queue lock */
5574 	spin_lock_init(&queue->_xmit_lock);
5575 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
5576 	queue->xmit_lock_owner = -1;
5577 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
5578 	queue->dev = dev;
5579 #ifdef CONFIG_BQL
5580 	dql_init(&queue->dql, HZ);
5581 #endif
5582 }
5583 
5584 static int netif_alloc_netdev_queues(struct net_device *dev)
5585 {
5586 	unsigned int count = dev->num_tx_queues;
5587 	struct netdev_queue *tx;
5588 
5589 	BUG_ON(count < 1);
5590 
5591 	tx = kcalloc(count, sizeof(struct netdev_queue), GFP_KERNEL);
5592 	if (!tx) {
5593 		pr_err("netdev: Unable to allocate %u tx queues\n", count);
5594 		return -ENOMEM;
5595 	}
5596 	dev->_tx = tx;
5597 
5598 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5599 	spin_lock_init(&dev->tx_global_lock);
5600 
5601 	return 0;
5602 }
5603 
5604 /**
5605  *	register_netdevice	- register a network device
5606  *	@dev: device to register
5607  *
5608  *	Take a completed network device structure and add it to the kernel
5609  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5610  *	chain. 0 is returned on success. A negative errno code is returned
5611  *	on a failure to set up the device, or if the name is a duplicate.
5612  *
5613  *	Callers must hold the rtnl semaphore. You may want
5614  *	register_netdev() instead of this.
5615  *
5616  *	BUGS:
5617  *	The locking appears insufficient to guarantee two parallel registers
5618  *	will not get the same name.
5619  */
5620 
5621 int register_netdevice(struct net_device *dev)
5622 {
5623 	int ret;
5624 	struct net *net = dev_net(dev);
5625 
5626 	BUG_ON(dev_boot_phase);
5627 	ASSERT_RTNL();
5628 
5629 	might_sleep();
5630 
5631 	/* When net_device's are persistent, this will be fatal. */
5632 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
5633 	BUG_ON(!net);
5634 
5635 	spin_lock_init(&dev->addr_list_lock);
5636 	netdev_set_addr_lockdep_class(dev);
5637 
5638 	dev->iflink = -1;
5639 
5640 	ret = dev_get_valid_name(net, dev, dev->name);
5641 	if (ret < 0)
5642 		goto out;
5643 
5644 	/* Init, if this function is available */
5645 	if (dev->netdev_ops->ndo_init) {
5646 		ret = dev->netdev_ops->ndo_init(dev);
5647 		if (ret) {
5648 			if (ret > 0)
5649 				ret = -EIO;
5650 			goto out;
5651 		}
5652 	}
5653 
5654 	ret = -EBUSY;
5655 	if (!dev->ifindex)
5656 		dev->ifindex = dev_new_index(net);
5657 	else if (__dev_get_by_index(net, dev->ifindex))
5658 		goto err_uninit;
5659 
5660 	if (dev->iflink == -1)
5661 		dev->iflink = dev->ifindex;
5662 
5663 	/* Transfer changeable features to wanted_features and enable
5664 	 * software offloads (GSO and GRO).
5665 	 */
5666 	dev->hw_features |= NETIF_F_SOFT_FEATURES;
5667 	dev->features |= NETIF_F_SOFT_FEATURES;
5668 	dev->wanted_features = dev->features & dev->hw_features;
5669 
5670 	/* Turn on no cache copy if HW is doing checksum */
5671 	if (!(dev->flags & IFF_LOOPBACK)) {
5672 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
5673 		if (dev->features & NETIF_F_ALL_CSUM) {
5674 			dev->wanted_features |= NETIF_F_NOCACHE_COPY;
5675 			dev->features |= NETIF_F_NOCACHE_COPY;
5676 		}
5677 	}
5678 
5679 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
5680 	 */
5681 	dev->vlan_features |= NETIF_F_HIGHDMA;
5682 
5683 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5684 	ret = notifier_to_errno(ret);
5685 	if (ret)
5686 		goto err_uninit;
5687 
5688 	ret = netdev_register_kobject(dev);
5689 	if (ret)
5690 		goto err_uninit;
5691 	dev->reg_state = NETREG_REGISTERED;
5692 
5693 	__netdev_update_features(dev);
5694 
5695 	/*
5696 	 *	Default initial state at registry is that the
5697 	 *	device is present.
5698 	 */
5699 
5700 	set_bit(__LINK_STATE_PRESENT, &dev->state);
5701 
5702 	linkwatch_init_dev(dev);
5703 
5704 	dev_init_scheduler(dev);
5705 	dev_hold(dev);
5706 	list_netdevice(dev);
5707 	add_device_randomness(dev->dev_addr, dev->addr_len);
5708 
5709 	/* Notify protocols, that a new device appeared. */
5710 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5711 	ret = notifier_to_errno(ret);
5712 	if (ret) {
5713 		rollback_registered(dev);
5714 		dev->reg_state = NETREG_UNREGISTERED;
5715 	}
5716 	/*
5717 	 *	Prevent userspace races by waiting until the network
5718 	 *	device is fully setup before sending notifications.
5719 	 */
5720 	if (!dev->rtnl_link_ops ||
5721 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5722 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5723 
5724 out:
5725 	return ret;
5726 
5727 err_uninit:
5728 	if (dev->netdev_ops->ndo_uninit)
5729 		dev->netdev_ops->ndo_uninit(dev);
5730 	goto out;
5731 }
5732 EXPORT_SYMBOL(register_netdevice);
5733 
5734 /**
5735  *	init_dummy_netdev	- init a dummy network device for NAPI
5736  *	@dev: device to init
5737  *
5738  *	This takes a network device structure and initialize the minimum
5739  *	amount of fields so it can be used to schedule NAPI polls without
5740  *	registering a full blown interface. This is to be used by drivers
5741  *	that need to tie several hardware interfaces to a single NAPI
5742  *	poll scheduler due to HW limitations.
5743  */
5744 int init_dummy_netdev(struct net_device *dev)
5745 {
5746 	/* Clear everything. Note we don't initialize spinlocks
5747 	 * are they aren't supposed to be taken by any of the
5748 	 * NAPI code and this dummy netdev is supposed to be
5749 	 * only ever used for NAPI polls
5750 	 */
5751 	memset(dev, 0, sizeof(struct net_device));
5752 
5753 	/* make sure we BUG if trying to hit standard
5754 	 * register/unregister code path
5755 	 */
5756 	dev->reg_state = NETREG_DUMMY;
5757 
5758 	/* NAPI wants this */
5759 	INIT_LIST_HEAD(&dev->napi_list);
5760 
5761 	/* a dummy interface is started by default */
5762 	set_bit(__LINK_STATE_PRESENT, &dev->state);
5763 	set_bit(__LINK_STATE_START, &dev->state);
5764 
5765 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
5766 	 * because users of this 'device' dont need to change
5767 	 * its refcount.
5768 	 */
5769 
5770 	return 0;
5771 }
5772 EXPORT_SYMBOL_GPL(init_dummy_netdev);
5773 
5774 
5775 /**
5776  *	register_netdev	- register a network device
5777  *	@dev: device to register
5778  *
5779  *	Take a completed network device structure and add it to the kernel
5780  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5781  *	chain. 0 is returned on success. A negative errno code is returned
5782  *	on a failure to set up the device, or if the name is a duplicate.
5783  *
5784  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
5785  *	and expands the device name if you passed a format string to
5786  *	alloc_netdev.
5787  */
5788 int register_netdev(struct net_device *dev)
5789 {
5790 	int err;
5791 
5792 	rtnl_lock();
5793 	err = register_netdevice(dev);
5794 	rtnl_unlock();
5795 	return err;
5796 }
5797 EXPORT_SYMBOL(register_netdev);
5798 
5799 int netdev_refcnt_read(const struct net_device *dev)
5800 {
5801 	int i, refcnt = 0;
5802 
5803 	for_each_possible_cpu(i)
5804 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
5805 	return refcnt;
5806 }
5807 EXPORT_SYMBOL(netdev_refcnt_read);
5808 
5809 /**
5810  * netdev_wait_allrefs - wait until all references are gone.
5811  * @dev: target net_device
5812  *
5813  * This is called when unregistering network devices.
5814  *
5815  * Any protocol or device that holds a reference should register
5816  * for netdevice notification, and cleanup and put back the
5817  * reference if they receive an UNREGISTER event.
5818  * We can get stuck here if buggy protocols don't correctly
5819  * call dev_put.
5820  */
5821 static void netdev_wait_allrefs(struct net_device *dev)
5822 {
5823 	unsigned long rebroadcast_time, warning_time;
5824 	int refcnt;
5825 
5826 	linkwatch_forget_dev(dev);
5827 
5828 	rebroadcast_time = warning_time = jiffies;
5829 	refcnt = netdev_refcnt_read(dev);
5830 
5831 	while (refcnt != 0) {
5832 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5833 			rtnl_lock();
5834 
5835 			/* Rebroadcast unregister notification */
5836 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5837 
5838 			__rtnl_unlock();
5839 			rcu_barrier();
5840 			rtnl_lock();
5841 
5842 			call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
5843 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5844 				     &dev->state)) {
5845 				/* We must not have linkwatch events
5846 				 * pending on unregister. If this
5847 				 * happens, we simply run the queue
5848 				 * unscheduled, resulting in a noop
5849 				 * for this device.
5850 				 */
5851 				linkwatch_run_queue();
5852 			}
5853 
5854 			__rtnl_unlock();
5855 
5856 			rebroadcast_time = jiffies;
5857 		}
5858 
5859 		msleep(250);
5860 
5861 		refcnt = netdev_refcnt_read(dev);
5862 
5863 		if (time_after(jiffies, warning_time + 10 * HZ)) {
5864 			pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
5865 				 dev->name, refcnt);
5866 			warning_time = jiffies;
5867 		}
5868 	}
5869 }
5870 
5871 /* The sequence is:
5872  *
5873  *	rtnl_lock();
5874  *	...
5875  *	register_netdevice(x1);
5876  *	register_netdevice(x2);
5877  *	...
5878  *	unregister_netdevice(y1);
5879  *	unregister_netdevice(y2);
5880  *      ...
5881  *	rtnl_unlock();
5882  *	free_netdev(y1);
5883  *	free_netdev(y2);
5884  *
5885  * We are invoked by rtnl_unlock().
5886  * This allows us to deal with problems:
5887  * 1) We can delete sysfs objects which invoke hotplug
5888  *    without deadlocking with linkwatch via keventd.
5889  * 2) Since we run with the RTNL semaphore not held, we can sleep
5890  *    safely in order to wait for the netdev refcnt to drop to zero.
5891  *
5892  * We must not return until all unregister events added during
5893  * the interval the lock was held have been completed.
5894  */
5895 void netdev_run_todo(void)
5896 {
5897 	struct list_head list;
5898 
5899 	/* Snapshot list, allow later requests */
5900 	list_replace_init(&net_todo_list, &list);
5901 
5902 	__rtnl_unlock();
5903 
5904 
5905 	/* Wait for rcu callbacks to finish before next phase */
5906 	if (!list_empty(&list))
5907 		rcu_barrier();
5908 
5909 	while (!list_empty(&list)) {
5910 		struct net_device *dev
5911 			= list_first_entry(&list, struct net_device, todo_list);
5912 		list_del(&dev->todo_list);
5913 
5914 		rtnl_lock();
5915 		call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
5916 		__rtnl_unlock();
5917 
5918 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5919 			pr_err("network todo '%s' but state %d\n",
5920 			       dev->name, dev->reg_state);
5921 			dump_stack();
5922 			continue;
5923 		}
5924 
5925 		dev->reg_state = NETREG_UNREGISTERED;
5926 
5927 		on_each_cpu(flush_backlog, dev, 1);
5928 
5929 		netdev_wait_allrefs(dev);
5930 
5931 		/* paranoia */
5932 		BUG_ON(netdev_refcnt_read(dev));
5933 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
5934 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
5935 		WARN_ON(dev->dn_ptr);
5936 
5937 		if (dev->destructor)
5938 			dev->destructor(dev);
5939 
5940 		/* Free network device */
5941 		kobject_put(&dev->dev.kobj);
5942 	}
5943 }
5944 
5945 /* Convert net_device_stats to rtnl_link_stats64.  They have the same
5946  * fields in the same order, with only the type differing.
5947  */
5948 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
5949 			     const struct net_device_stats *netdev_stats)
5950 {
5951 #if BITS_PER_LONG == 64
5952 	BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
5953 	memcpy(stats64, netdev_stats, sizeof(*stats64));
5954 #else
5955 	size_t i, n = sizeof(*stats64) / sizeof(u64);
5956 	const unsigned long *src = (const unsigned long *)netdev_stats;
5957 	u64 *dst = (u64 *)stats64;
5958 
5959 	BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
5960 		     sizeof(*stats64) / sizeof(u64));
5961 	for (i = 0; i < n; i++)
5962 		dst[i] = src[i];
5963 #endif
5964 }
5965 EXPORT_SYMBOL(netdev_stats_to_stats64);
5966 
5967 /**
5968  *	dev_get_stats	- get network device statistics
5969  *	@dev: device to get statistics from
5970  *	@storage: place to store stats
5971  *
5972  *	Get network statistics from device. Return @storage.
5973  *	The device driver may provide its own method by setting
5974  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
5975  *	otherwise the internal statistics structure is used.
5976  */
5977 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
5978 					struct rtnl_link_stats64 *storage)
5979 {
5980 	const struct net_device_ops *ops = dev->netdev_ops;
5981 
5982 	if (ops->ndo_get_stats64) {
5983 		memset(storage, 0, sizeof(*storage));
5984 		ops->ndo_get_stats64(dev, storage);
5985 	} else if (ops->ndo_get_stats) {
5986 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
5987 	} else {
5988 		netdev_stats_to_stats64(storage, &dev->stats);
5989 	}
5990 	storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
5991 	return storage;
5992 }
5993 EXPORT_SYMBOL(dev_get_stats);
5994 
5995 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
5996 {
5997 	struct netdev_queue *queue = dev_ingress_queue(dev);
5998 
5999 #ifdef CONFIG_NET_CLS_ACT
6000 	if (queue)
6001 		return queue;
6002 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
6003 	if (!queue)
6004 		return NULL;
6005 	netdev_init_one_queue(dev, queue, NULL);
6006 	queue->qdisc = &noop_qdisc;
6007 	queue->qdisc_sleeping = &noop_qdisc;
6008 	rcu_assign_pointer(dev->ingress_queue, queue);
6009 #endif
6010 	return queue;
6011 }
6012 
6013 static const struct ethtool_ops default_ethtool_ops;
6014 
6015 /**
6016  *	alloc_netdev_mqs - allocate network device
6017  *	@sizeof_priv:	size of private data to allocate space for
6018  *	@name:		device name format string
6019  *	@setup:		callback to initialize device
6020  *	@txqs:		the number of TX subqueues to allocate
6021  *	@rxqs:		the number of RX subqueues to allocate
6022  *
6023  *	Allocates a struct net_device with private data area for driver use
6024  *	and performs basic initialization.  Also allocates subquue structs
6025  *	for each queue on the device.
6026  */
6027 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
6028 		void (*setup)(struct net_device *),
6029 		unsigned int txqs, unsigned int rxqs)
6030 {
6031 	struct net_device *dev;
6032 	size_t alloc_size;
6033 	struct net_device *p;
6034 
6035 	BUG_ON(strlen(name) >= sizeof(dev->name));
6036 
6037 	if (txqs < 1) {
6038 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
6039 		return NULL;
6040 	}
6041 
6042 #ifdef CONFIG_RPS
6043 	if (rxqs < 1) {
6044 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
6045 		return NULL;
6046 	}
6047 #endif
6048 
6049 	alloc_size = sizeof(struct net_device);
6050 	if (sizeof_priv) {
6051 		/* ensure 32-byte alignment of private area */
6052 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
6053 		alloc_size += sizeof_priv;
6054 	}
6055 	/* ensure 32-byte alignment of whole construct */
6056 	alloc_size += NETDEV_ALIGN - 1;
6057 
6058 	p = kzalloc(alloc_size, GFP_KERNEL);
6059 	if (!p) {
6060 		pr_err("alloc_netdev: Unable to allocate device\n");
6061 		return NULL;
6062 	}
6063 
6064 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
6065 	dev->padded = (char *)dev - (char *)p;
6066 
6067 	dev->pcpu_refcnt = alloc_percpu(int);
6068 	if (!dev->pcpu_refcnt)
6069 		goto free_p;
6070 
6071 	if (dev_addr_init(dev))
6072 		goto free_pcpu;
6073 
6074 	dev_mc_init(dev);
6075 	dev_uc_init(dev);
6076 
6077 	dev_net_set(dev, &init_net);
6078 
6079 	dev->gso_max_size = GSO_MAX_SIZE;
6080 	dev->gso_max_segs = GSO_MAX_SEGS;
6081 
6082 	INIT_LIST_HEAD(&dev->napi_list);
6083 	INIT_LIST_HEAD(&dev->unreg_list);
6084 	INIT_LIST_HEAD(&dev->link_watch_list);
6085 	dev->priv_flags = IFF_XMIT_DST_RELEASE;
6086 	setup(dev);
6087 
6088 	dev->num_tx_queues = txqs;
6089 	dev->real_num_tx_queues = txqs;
6090 	if (netif_alloc_netdev_queues(dev))
6091 		goto free_all;
6092 
6093 #ifdef CONFIG_RPS
6094 	dev->num_rx_queues = rxqs;
6095 	dev->real_num_rx_queues = rxqs;
6096 	if (netif_alloc_rx_queues(dev))
6097 		goto free_all;
6098 #endif
6099 
6100 	strcpy(dev->name, name);
6101 	dev->group = INIT_NETDEV_GROUP;
6102 	if (!dev->ethtool_ops)
6103 		dev->ethtool_ops = &default_ethtool_ops;
6104 	return dev;
6105 
6106 free_all:
6107 	free_netdev(dev);
6108 	return NULL;
6109 
6110 free_pcpu:
6111 	free_percpu(dev->pcpu_refcnt);
6112 	kfree(dev->_tx);
6113 #ifdef CONFIG_RPS
6114 	kfree(dev->_rx);
6115 #endif
6116 
6117 free_p:
6118 	kfree(p);
6119 	return NULL;
6120 }
6121 EXPORT_SYMBOL(alloc_netdev_mqs);
6122 
6123 /**
6124  *	free_netdev - free network device
6125  *	@dev: device
6126  *
6127  *	This function does the last stage of destroying an allocated device
6128  * 	interface. The reference to the device object is released.
6129  *	If this is the last reference then it will be freed.
6130  */
6131 void free_netdev(struct net_device *dev)
6132 {
6133 	struct napi_struct *p, *n;
6134 
6135 	release_net(dev_net(dev));
6136 
6137 	kfree(dev->_tx);
6138 #ifdef CONFIG_RPS
6139 	kfree(dev->_rx);
6140 #endif
6141 
6142 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
6143 
6144 	/* Flush device addresses */
6145 	dev_addr_flush(dev);
6146 
6147 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
6148 		netif_napi_del(p);
6149 
6150 	free_percpu(dev->pcpu_refcnt);
6151 	dev->pcpu_refcnt = NULL;
6152 
6153 	/*  Compatibility with error handling in drivers */
6154 	if (dev->reg_state == NETREG_UNINITIALIZED) {
6155 		kfree((char *)dev - dev->padded);
6156 		return;
6157 	}
6158 
6159 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
6160 	dev->reg_state = NETREG_RELEASED;
6161 
6162 	/* will free via device release */
6163 	put_device(&dev->dev);
6164 }
6165 EXPORT_SYMBOL(free_netdev);
6166 
6167 /**
6168  *	synchronize_net -  Synchronize with packet receive processing
6169  *
6170  *	Wait for packets currently being received to be done.
6171  *	Does not block later packets from starting.
6172  */
6173 void synchronize_net(void)
6174 {
6175 	might_sleep();
6176 	if (rtnl_is_locked())
6177 		synchronize_rcu_expedited();
6178 	else
6179 		synchronize_rcu();
6180 }
6181 EXPORT_SYMBOL(synchronize_net);
6182 
6183 /**
6184  *	unregister_netdevice_queue - remove device from the kernel
6185  *	@dev: device
6186  *	@head: list
6187  *
6188  *	This function shuts down a device interface and removes it
6189  *	from the kernel tables.
6190  *	If head not NULL, device is queued to be unregistered later.
6191  *
6192  *	Callers must hold the rtnl semaphore.  You may want
6193  *	unregister_netdev() instead of this.
6194  */
6195 
6196 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
6197 {
6198 	ASSERT_RTNL();
6199 
6200 	if (head) {
6201 		list_move_tail(&dev->unreg_list, head);
6202 	} else {
6203 		rollback_registered(dev);
6204 		/* Finish processing unregister after unlock */
6205 		net_set_todo(dev);
6206 	}
6207 }
6208 EXPORT_SYMBOL(unregister_netdevice_queue);
6209 
6210 /**
6211  *	unregister_netdevice_many - unregister many devices
6212  *	@head: list of devices
6213  */
6214 void unregister_netdevice_many(struct list_head *head)
6215 {
6216 	struct net_device *dev;
6217 
6218 	if (!list_empty(head)) {
6219 		rollback_registered_many(head);
6220 		list_for_each_entry(dev, head, unreg_list)
6221 			net_set_todo(dev);
6222 	}
6223 }
6224 EXPORT_SYMBOL(unregister_netdevice_many);
6225 
6226 /**
6227  *	unregister_netdev - remove device from the kernel
6228  *	@dev: device
6229  *
6230  *	This function shuts down a device interface and removes it
6231  *	from the kernel tables.
6232  *
6233  *	This is just a wrapper for unregister_netdevice that takes
6234  *	the rtnl semaphore.  In general you want to use this and not
6235  *	unregister_netdevice.
6236  */
6237 void unregister_netdev(struct net_device *dev)
6238 {
6239 	rtnl_lock();
6240 	unregister_netdevice(dev);
6241 	rtnl_unlock();
6242 }
6243 EXPORT_SYMBOL(unregister_netdev);
6244 
6245 /**
6246  *	dev_change_net_namespace - move device to different nethost namespace
6247  *	@dev: device
6248  *	@net: network namespace
6249  *	@pat: If not NULL name pattern to try if the current device name
6250  *	      is already taken in the destination network namespace.
6251  *
6252  *	This function shuts down a device interface and moves it
6253  *	to a new network namespace. On success 0 is returned, on
6254  *	a failure a netagive errno code is returned.
6255  *
6256  *	Callers must hold the rtnl semaphore.
6257  */
6258 
6259 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
6260 {
6261 	int err;
6262 
6263 	ASSERT_RTNL();
6264 
6265 	/* Don't allow namespace local devices to be moved. */
6266 	err = -EINVAL;
6267 	if (dev->features & NETIF_F_NETNS_LOCAL)
6268 		goto out;
6269 
6270 	/* Ensure the device has been registrered */
6271 	err = -EINVAL;
6272 	if (dev->reg_state != NETREG_REGISTERED)
6273 		goto out;
6274 
6275 	/* Get out if there is nothing todo */
6276 	err = 0;
6277 	if (net_eq(dev_net(dev), net))
6278 		goto out;
6279 
6280 	/* Pick the destination device name, and ensure
6281 	 * we can use it in the destination network namespace.
6282 	 */
6283 	err = -EEXIST;
6284 	if (__dev_get_by_name(net, dev->name)) {
6285 		/* We get here if we can't use the current device name */
6286 		if (!pat)
6287 			goto out;
6288 		if (dev_get_valid_name(net, dev, pat) < 0)
6289 			goto out;
6290 	}
6291 
6292 	/*
6293 	 * And now a mini version of register_netdevice unregister_netdevice.
6294 	 */
6295 
6296 	/* If device is running close it first. */
6297 	dev_close(dev);
6298 
6299 	/* And unlink it from device chain */
6300 	err = -ENODEV;
6301 	unlist_netdevice(dev);
6302 
6303 	synchronize_net();
6304 
6305 	/* Shutdown queueing discipline. */
6306 	dev_shutdown(dev);
6307 
6308 	/* Notify protocols, that we are about to destroy
6309 	   this device. They should clean all the things.
6310 
6311 	   Note that dev->reg_state stays at NETREG_REGISTERED.
6312 	   This is wanted because this way 8021q and macvlan know
6313 	   the device is just moving and can keep their slaves up.
6314 	*/
6315 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6316 	rcu_barrier();
6317 	call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6318 	rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
6319 
6320 	/*
6321 	 *	Flush the unicast and multicast chains
6322 	 */
6323 	dev_uc_flush(dev);
6324 	dev_mc_flush(dev);
6325 
6326 	/* Actually switch the network namespace */
6327 	dev_net_set(dev, net);
6328 
6329 	/* If there is an ifindex conflict assign a new one */
6330 	if (__dev_get_by_index(net, dev->ifindex)) {
6331 		int iflink = (dev->iflink == dev->ifindex);
6332 		dev->ifindex = dev_new_index(net);
6333 		if (iflink)
6334 			dev->iflink = dev->ifindex;
6335 	}
6336 
6337 	/* Fixup kobjects */
6338 	err = device_rename(&dev->dev, dev->name);
6339 	WARN_ON(err);
6340 
6341 	/* Add the device back in the hashes */
6342 	list_netdevice(dev);
6343 
6344 	/* Notify protocols, that a new device appeared. */
6345 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
6346 
6347 	/*
6348 	 *	Prevent userspace races by waiting until the network
6349 	 *	device is fully setup before sending notifications.
6350 	 */
6351 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
6352 
6353 	synchronize_net();
6354 	err = 0;
6355 out:
6356 	return err;
6357 }
6358 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
6359 
6360 static int dev_cpu_callback(struct notifier_block *nfb,
6361 			    unsigned long action,
6362 			    void *ocpu)
6363 {
6364 	struct sk_buff **list_skb;
6365 	struct sk_buff *skb;
6366 	unsigned int cpu, oldcpu = (unsigned long)ocpu;
6367 	struct softnet_data *sd, *oldsd;
6368 
6369 	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
6370 		return NOTIFY_OK;
6371 
6372 	local_irq_disable();
6373 	cpu = smp_processor_id();
6374 	sd = &per_cpu(softnet_data, cpu);
6375 	oldsd = &per_cpu(softnet_data, oldcpu);
6376 
6377 	/* Find end of our completion_queue. */
6378 	list_skb = &sd->completion_queue;
6379 	while (*list_skb)
6380 		list_skb = &(*list_skb)->next;
6381 	/* Append completion queue from offline CPU. */
6382 	*list_skb = oldsd->completion_queue;
6383 	oldsd->completion_queue = NULL;
6384 
6385 	/* Append output queue from offline CPU. */
6386 	if (oldsd->output_queue) {
6387 		*sd->output_queue_tailp = oldsd->output_queue;
6388 		sd->output_queue_tailp = oldsd->output_queue_tailp;
6389 		oldsd->output_queue = NULL;
6390 		oldsd->output_queue_tailp = &oldsd->output_queue;
6391 	}
6392 	/* Append NAPI poll list from offline CPU. */
6393 	if (!list_empty(&oldsd->poll_list)) {
6394 		list_splice_init(&oldsd->poll_list, &sd->poll_list);
6395 		raise_softirq_irqoff(NET_RX_SOFTIRQ);
6396 	}
6397 
6398 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
6399 	local_irq_enable();
6400 
6401 	/* Process offline CPU's input_pkt_queue */
6402 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
6403 		netif_rx(skb);
6404 		input_queue_head_incr(oldsd);
6405 	}
6406 	while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
6407 		netif_rx(skb);
6408 		input_queue_head_incr(oldsd);
6409 	}
6410 
6411 	return NOTIFY_OK;
6412 }
6413 
6414 
6415 /**
6416  *	netdev_increment_features - increment feature set by one
6417  *	@all: current feature set
6418  *	@one: new feature set
6419  *	@mask: mask feature set
6420  *
6421  *	Computes a new feature set after adding a device with feature set
6422  *	@one to the master device with current feature set @all.  Will not
6423  *	enable anything that is off in @mask. Returns the new feature set.
6424  */
6425 netdev_features_t netdev_increment_features(netdev_features_t all,
6426 	netdev_features_t one, netdev_features_t mask)
6427 {
6428 	if (mask & NETIF_F_GEN_CSUM)
6429 		mask |= NETIF_F_ALL_CSUM;
6430 	mask |= NETIF_F_VLAN_CHALLENGED;
6431 
6432 	all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
6433 	all &= one | ~NETIF_F_ALL_FOR_ALL;
6434 
6435 	/* If one device supports hw checksumming, set for all. */
6436 	if (all & NETIF_F_GEN_CSUM)
6437 		all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
6438 
6439 	return all;
6440 }
6441 EXPORT_SYMBOL(netdev_increment_features);
6442 
6443 static struct hlist_head *netdev_create_hash(void)
6444 {
6445 	int i;
6446 	struct hlist_head *hash;
6447 
6448 	hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
6449 	if (hash != NULL)
6450 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
6451 			INIT_HLIST_HEAD(&hash[i]);
6452 
6453 	return hash;
6454 }
6455 
6456 /* Initialize per network namespace state */
6457 static int __net_init netdev_init(struct net *net)
6458 {
6459 	if (net != &init_net)
6460 		INIT_LIST_HEAD(&net->dev_base_head);
6461 
6462 	net->dev_name_head = netdev_create_hash();
6463 	if (net->dev_name_head == NULL)
6464 		goto err_name;
6465 
6466 	net->dev_index_head = netdev_create_hash();
6467 	if (net->dev_index_head == NULL)
6468 		goto err_idx;
6469 
6470 	return 0;
6471 
6472 err_idx:
6473 	kfree(net->dev_name_head);
6474 err_name:
6475 	return -ENOMEM;
6476 }
6477 
6478 /**
6479  *	netdev_drivername - network driver for the device
6480  *	@dev: network device
6481  *
6482  *	Determine network driver for device.
6483  */
6484 const char *netdev_drivername(const struct net_device *dev)
6485 {
6486 	const struct device_driver *driver;
6487 	const struct device *parent;
6488 	const char *empty = "";
6489 
6490 	parent = dev->dev.parent;
6491 	if (!parent)
6492 		return empty;
6493 
6494 	driver = parent->driver;
6495 	if (driver && driver->name)
6496 		return driver->name;
6497 	return empty;
6498 }
6499 
6500 static int __netdev_printk(const char *level, const struct net_device *dev,
6501 			   struct va_format *vaf)
6502 {
6503 	int r;
6504 
6505 	if (dev && dev->dev.parent) {
6506 		r = dev_printk_emit(level[1] - '0',
6507 				    dev->dev.parent,
6508 				    "%s %s %s: %pV",
6509 				    dev_driver_string(dev->dev.parent),
6510 				    dev_name(dev->dev.parent),
6511 				    netdev_name(dev), vaf);
6512 	} else if (dev) {
6513 		r = printk("%s%s: %pV", level, netdev_name(dev), vaf);
6514 	} else {
6515 		r = printk("%s(NULL net_device): %pV", level, vaf);
6516 	}
6517 
6518 	return r;
6519 }
6520 
6521 int netdev_printk(const char *level, const struct net_device *dev,
6522 		  const char *format, ...)
6523 {
6524 	struct va_format vaf;
6525 	va_list args;
6526 	int r;
6527 
6528 	va_start(args, format);
6529 
6530 	vaf.fmt = format;
6531 	vaf.va = &args;
6532 
6533 	r = __netdev_printk(level, dev, &vaf);
6534 
6535 	va_end(args);
6536 
6537 	return r;
6538 }
6539 EXPORT_SYMBOL(netdev_printk);
6540 
6541 #define define_netdev_printk_level(func, level)			\
6542 int func(const struct net_device *dev, const char *fmt, ...)	\
6543 {								\
6544 	int r;							\
6545 	struct va_format vaf;					\
6546 	va_list args;						\
6547 								\
6548 	va_start(args, fmt);					\
6549 								\
6550 	vaf.fmt = fmt;						\
6551 	vaf.va = &args;						\
6552 								\
6553 	r = __netdev_printk(level, dev, &vaf);			\
6554 								\
6555 	va_end(args);						\
6556 								\
6557 	return r;						\
6558 }								\
6559 EXPORT_SYMBOL(func);
6560 
6561 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
6562 define_netdev_printk_level(netdev_alert, KERN_ALERT);
6563 define_netdev_printk_level(netdev_crit, KERN_CRIT);
6564 define_netdev_printk_level(netdev_err, KERN_ERR);
6565 define_netdev_printk_level(netdev_warn, KERN_WARNING);
6566 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
6567 define_netdev_printk_level(netdev_info, KERN_INFO);
6568 
6569 static void __net_exit netdev_exit(struct net *net)
6570 {
6571 	kfree(net->dev_name_head);
6572 	kfree(net->dev_index_head);
6573 }
6574 
6575 static struct pernet_operations __net_initdata netdev_net_ops = {
6576 	.init = netdev_init,
6577 	.exit = netdev_exit,
6578 };
6579 
6580 static void __net_exit default_device_exit(struct net *net)
6581 {
6582 	struct net_device *dev, *aux;
6583 	/*
6584 	 * Push all migratable network devices back to the
6585 	 * initial network namespace
6586 	 */
6587 	rtnl_lock();
6588 	for_each_netdev_safe(net, dev, aux) {
6589 		int err;
6590 		char fb_name[IFNAMSIZ];
6591 
6592 		/* Ignore unmoveable devices (i.e. loopback) */
6593 		if (dev->features & NETIF_F_NETNS_LOCAL)
6594 			continue;
6595 
6596 		/* Leave virtual devices for the generic cleanup */
6597 		if (dev->rtnl_link_ops)
6598 			continue;
6599 
6600 		/* Push remaining network devices to init_net */
6601 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
6602 		err = dev_change_net_namespace(dev, &init_net, fb_name);
6603 		if (err) {
6604 			pr_emerg("%s: failed to move %s to init_net: %d\n",
6605 				 __func__, dev->name, err);
6606 			BUG();
6607 		}
6608 	}
6609 	rtnl_unlock();
6610 }
6611 
6612 static void __net_exit default_device_exit_batch(struct list_head *net_list)
6613 {
6614 	/* At exit all network devices most be removed from a network
6615 	 * namespace.  Do this in the reverse order of registration.
6616 	 * Do this across as many network namespaces as possible to
6617 	 * improve batching efficiency.
6618 	 */
6619 	struct net_device *dev;
6620 	struct net *net;
6621 	LIST_HEAD(dev_kill_list);
6622 
6623 	rtnl_lock();
6624 	list_for_each_entry(net, net_list, exit_list) {
6625 		for_each_netdev_reverse(net, dev) {
6626 			if (dev->rtnl_link_ops)
6627 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
6628 			else
6629 				unregister_netdevice_queue(dev, &dev_kill_list);
6630 		}
6631 	}
6632 	unregister_netdevice_many(&dev_kill_list);
6633 	list_del(&dev_kill_list);
6634 	rtnl_unlock();
6635 }
6636 
6637 static struct pernet_operations __net_initdata default_device_ops = {
6638 	.exit = default_device_exit,
6639 	.exit_batch = default_device_exit_batch,
6640 };
6641 
6642 /*
6643  *	Initialize the DEV module. At boot time this walks the device list and
6644  *	unhooks any devices that fail to initialise (normally hardware not
6645  *	present) and leaves us with a valid list of present and active devices.
6646  *
6647  */
6648 
6649 /*
6650  *       This is called single threaded during boot, so no need
6651  *       to take the rtnl semaphore.
6652  */
6653 static int __init net_dev_init(void)
6654 {
6655 	int i, rc = -ENOMEM;
6656 
6657 	BUG_ON(!dev_boot_phase);
6658 
6659 	if (dev_proc_init())
6660 		goto out;
6661 
6662 	if (netdev_kobject_init())
6663 		goto out;
6664 
6665 	INIT_LIST_HEAD(&ptype_all);
6666 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
6667 		INIT_LIST_HEAD(&ptype_base[i]);
6668 
6669 	if (register_pernet_subsys(&netdev_net_ops))
6670 		goto out;
6671 
6672 	/*
6673 	 *	Initialise the packet receive queues.
6674 	 */
6675 
6676 	for_each_possible_cpu(i) {
6677 		struct softnet_data *sd = &per_cpu(softnet_data, i);
6678 
6679 		memset(sd, 0, sizeof(*sd));
6680 		skb_queue_head_init(&sd->input_pkt_queue);
6681 		skb_queue_head_init(&sd->process_queue);
6682 		sd->completion_queue = NULL;
6683 		INIT_LIST_HEAD(&sd->poll_list);
6684 		sd->output_queue = NULL;
6685 		sd->output_queue_tailp = &sd->output_queue;
6686 #ifdef CONFIG_RPS
6687 		sd->csd.func = rps_trigger_softirq;
6688 		sd->csd.info = sd;
6689 		sd->csd.flags = 0;
6690 		sd->cpu = i;
6691 #endif
6692 
6693 		sd->backlog.poll = process_backlog;
6694 		sd->backlog.weight = weight_p;
6695 		sd->backlog.gro_list = NULL;
6696 		sd->backlog.gro_count = 0;
6697 	}
6698 
6699 	dev_boot_phase = 0;
6700 
6701 	/* The loopback device is special if any other network devices
6702 	 * is present in a network namespace the loopback device must
6703 	 * be present. Since we now dynamically allocate and free the
6704 	 * loopback device ensure this invariant is maintained by
6705 	 * keeping the loopback device as the first device on the
6706 	 * list of network devices.  Ensuring the loopback devices
6707 	 * is the first device that appears and the last network device
6708 	 * that disappears.
6709 	 */
6710 	if (register_pernet_device(&loopback_net_ops))
6711 		goto out;
6712 
6713 	if (register_pernet_device(&default_device_ops))
6714 		goto out;
6715 
6716 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
6717 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
6718 
6719 	hotcpu_notifier(dev_cpu_callback, 0);
6720 	dst_init();
6721 	dev_mcast_init();
6722 	rc = 0;
6723 out:
6724 	return rc;
6725 }
6726 
6727 subsys_initcall(net_dev_init);
6728 
6729 static int __init initialize_hashrnd(void)
6730 {
6731 	get_random_bytes(&hashrnd, sizeof(hashrnd));
6732 	return 0;
6733 }
6734 
6735 late_initcall_sync(initialize_hashrnd);
6736 
6737