xref: /linux/net/core/dev.c (revision c65c3f3a2cbf21ed429d9b9c725bdb5dc6abf4cf)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *	Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:	Ross Biro
7  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *	Additional Authors:
11  *		Florian la Roche <rzsfl@rz.uni-sb.de>
12  *		Alan Cox <gw4pts@gw4pts.ampr.org>
13  *		David Hinds <dahinds@users.sourceforge.net>
14  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *		Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *	Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *		Alan Cox	:	device private ioctl copies fields back.
24  *		Alan Cox	:	Transmit queue code does relevant
25  *					stunts to keep the queue safe.
26  *		Alan Cox	:	Fixed double lock.
27  *		Alan Cox	:	Fixed promisc NULL pointer trap
28  *		????????	:	Support the full private ioctl range
29  *		Alan Cox	:	Moved ioctl permission check into
30  *					drivers
31  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
32  *		Alan Cox	:	100 backlog just doesn't cut it when
33  *					you start doing multicast video 8)
34  *		Alan Cox	:	Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *		Alan Cox	:	Took out transmit every packet pass
37  *					Saved a few bytes in the ioctl handler
38  *		Alan Cox	:	Network driver sets packet type before
39  *					calling netif_rx. Saves a function
40  *					call a packet.
41  *		Alan Cox	:	Hashed net_bh()
42  *		Richard Kooijman:	Timestamp fixes.
43  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
44  *		Alan Cox	:	Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *					changes.
47  *		Rudi Cilibrasi	:	Pass the right thing to
48  *					set_mac_address()
49  *		Dave Miller	:	32bit quantity for the device lock to
50  *					make it work out on a Sparc.
51  *		Bjorn Ekwall	:	Added KERNELD hack.
52  *		Alan Cox	:	Cleaned up the backlog initialise.
53  *		Craig Metz	:	SIOCGIFCONF fix if space for under
54  *					1 device.
55  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
56  *					is no device open function.
57  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
58  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
59  *		Cyrus Durgin	:	Cleaned for KMOD
60  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
61  *					A network device unload needs to purge
62  *					the backlog queue.
63  *	Paul Rusty Russell	:	SIOCSIFNAME
64  *              Pekka Riikonen  :	Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *				        - netif_rx() feedback
69  */
70 
71 #include <linux/uaccess.h>
72 #include <linux/bitops.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/rwsem.h>
83 #include <linux/string.h>
84 #include <linux/mm.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/errno.h>
88 #include <linux/interrupt.h>
89 #include <linux/if_ether.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/ethtool.h>
93 #include <linux/skbuff.h>
94 #include <linux/kthread.h>
95 #include <linux/bpf.h>
96 #include <linux/bpf_trace.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <net/busy_poll.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/stat.h>
102 #include <net/dsa.h>
103 #include <net/dst.h>
104 #include <net/dst_metadata.h>
105 #include <net/gro.h>
106 #include <net/pkt_sched.h>
107 #include <net/pkt_cls.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <linux/highmem.h>
111 #include <linux/init.h>
112 #include <linux/module.h>
113 #include <linux/netpoll.h>
114 #include <linux/rcupdate.h>
115 #include <linux/delay.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <net/mpls.h>
127 #include <linux/ipv6.h>
128 #include <linux/in.h>
129 #include <linux/jhash.h>
130 #include <linux/random.h>
131 #include <trace/events/napi.h>
132 #include <trace/events/net.h>
133 #include <trace/events/skb.h>
134 #include <trace/events/qdisc.h>
135 #include <linux/inetdevice.h>
136 #include <linux/cpu_rmap.h>
137 #include <linux/static_key.h>
138 #include <linux/hashtable.h>
139 #include <linux/vmalloc.h>
140 #include <linux/if_macvlan.h>
141 #include <linux/errqueue.h>
142 #include <linux/hrtimer.h>
143 #include <linux/netfilter_netdev.h>
144 #include <linux/crash_dump.h>
145 #include <linux/sctp.h>
146 #include <net/udp_tunnel.h>
147 #include <linux/net_namespace.h>
148 #include <linux/indirect_call_wrapper.h>
149 #include <net/devlink.h>
150 #include <linux/pm_runtime.h>
151 #include <linux/prandom.h>
152 #include <linux/once_lite.h>
153 
154 #include "dev.h"
155 #include "net-sysfs.h"
156 
157 
158 static DEFINE_SPINLOCK(ptype_lock);
159 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
160 struct list_head ptype_all __read_mostly;	/* Taps */
161 
162 static int netif_rx_internal(struct sk_buff *skb);
163 static int call_netdevice_notifiers_info(unsigned long val,
164 					 struct netdev_notifier_info *info);
165 static int call_netdevice_notifiers_extack(unsigned long val,
166 					   struct net_device *dev,
167 					   struct netlink_ext_ack *extack);
168 static struct napi_struct *napi_by_id(unsigned int napi_id);
169 
170 /*
171  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
172  * semaphore.
173  *
174  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
175  *
176  * Writers must hold the rtnl semaphore while they loop through the
177  * dev_base_head list, and hold dev_base_lock for writing when they do the
178  * actual updates.  This allows pure readers to access the list even
179  * while a writer is preparing to update it.
180  *
181  * To put it another way, dev_base_lock is held for writing only to
182  * protect against pure readers; the rtnl semaphore provides the
183  * protection against other writers.
184  *
185  * See, for example usages, register_netdevice() and
186  * unregister_netdevice(), which must be called with the rtnl
187  * semaphore held.
188  */
189 DEFINE_RWLOCK(dev_base_lock);
190 EXPORT_SYMBOL(dev_base_lock);
191 
192 static DEFINE_MUTEX(ifalias_mutex);
193 
194 /* protects napi_hash addition/deletion and napi_gen_id */
195 static DEFINE_SPINLOCK(napi_hash_lock);
196 
197 static unsigned int napi_gen_id = NR_CPUS;
198 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
199 
200 static DECLARE_RWSEM(devnet_rename_sem);
201 
202 static inline void dev_base_seq_inc(struct net *net)
203 {
204 	while (++net->dev_base_seq == 0)
205 		;
206 }
207 
208 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
209 {
210 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
211 
212 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
213 }
214 
215 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
216 {
217 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
218 }
219 
220 static inline void rps_lock_irqsave(struct softnet_data *sd,
221 				    unsigned long *flags)
222 {
223 	if (IS_ENABLED(CONFIG_RPS))
224 		spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags);
225 	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
226 		local_irq_save(*flags);
227 }
228 
229 static inline void rps_lock_irq_disable(struct softnet_data *sd)
230 {
231 	if (IS_ENABLED(CONFIG_RPS))
232 		spin_lock_irq(&sd->input_pkt_queue.lock);
233 	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
234 		local_irq_disable();
235 }
236 
237 static inline void rps_unlock_irq_restore(struct softnet_data *sd,
238 					  unsigned long *flags)
239 {
240 	if (IS_ENABLED(CONFIG_RPS))
241 		spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags);
242 	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
243 		local_irq_restore(*flags);
244 }
245 
246 static inline void rps_unlock_irq_enable(struct softnet_data *sd)
247 {
248 	if (IS_ENABLED(CONFIG_RPS))
249 		spin_unlock_irq(&sd->input_pkt_queue.lock);
250 	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
251 		local_irq_enable();
252 }
253 
254 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
255 						       const char *name)
256 {
257 	struct netdev_name_node *name_node;
258 
259 	name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
260 	if (!name_node)
261 		return NULL;
262 	INIT_HLIST_NODE(&name_node->hlist);
263 	name_node->dev = dev;
264 	name_node->name = name;
265 	return name_node;
266 }
267 
268 static struct netdev_name_node *
269 netdev_name_node_head_alloc(struct net_device *dev)
270 {
271 	struct netdev_name_node *name_node;
272 
273 	name_node = netdev_name_node_alloc(dev, dev->name);
274 	if (!name_node)
275 		return NULL;
276 	INIT_LIST_HEAD(&name_node->list);
277 	return name_node;
278 }
279 
280 static void netdev_name_node_free(struct netdev_name_node *name_node)
281 {
282 	kfree(name_node);
283 }
284 
285 static void netdev_name_node_add(struct net *net,
286 				 struct netdev_name_node *name_node)
287 {
288 	hlist_add_head_rcu(&name_node->hlist,
289 			   dev_name_hash(net, name_node->name));
290 }
291 
292 static void netdev_name_node_del(struct netdev_name_node *name_node)
293 {
294 	hlist_del_rcu(&name_node->hlist);
295 }
296 
297 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
298 							const char *name)
299 {
300 	struct hlist_head *head = dev_name_hash(net, name);
301 	struct netdev_name_node *name_node;
302 
303 	hlist_for_each_entry(name_node, head, hlist)
304 		if (!strcmp(name_node->name, name))
305 			return name_node;
306 	return NULL;
307 }
308 
309 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
310 							    const char *name)
311 {
312 	struct hlist_head *head = dev_name_hash(net, name);
313 	struct netdev_name_node *name_node;
314 
315 	hlist_for_each_entry_rcu(name_node, head, hlist)
316 		if (!strcmp(name_node->name, name))
317 			return name_node;
318 	return NULL;
319 }
320 
321 bool netdev_name_in_use(struct net *net, const char *name)
322 {
323 	return netdev_name_node_lookup(net, name);
324 }
325 EXPORT_SYMBOL(netdev_name_in_use);
326 
327 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
328 {
329 	struct netdev_name_node *name_node;
330 	struct net *net = dev_net(dev);
331 
332 	name_node = netdev_name_node_lookup(net, name);
333 	if (name_node)
334 		return -EEXIST;
335 	name_node = netdev_name_node_alloc(dev, name);
336 	if (!name_node)
337 		return -ENOMEM;
338 	netdev_name_node_add(net, name_node);
339 	/* The node that holds dev->name acts as a head of per-device list. */
340 	list_add_tail(&name_node->list, &dev->name_node->list);
341 
342 	return 0;
343 }
344 
345 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
346 {
347 	list_del(&name_node->list);
348 	netdev_name_node_del(name_node);
349 	kfree(name_node->name);
350 	netdev_name_node_free(name_node);
351 }
352 
353 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
354 {
355 	struct netdev_name_node *name_node;
356 	struct net *net = dev_net(dev);
357 
358 	name_node = netdev_name_node_lookup(net, name);
359 	if (!name_node)
360 		return -ENOENT;
361 	/* lookup might have found our primary name or a name belonging
362 	 * to another device.
363 	 */
364 	if (name_node == dev->name_node || name_node->dev != dev)
365 		return -EINVAL;
366 
367 	__netdev_name_node_alt_destroy(name_node);
368 
369 	return 0;
370 }
371 
372 static void netdev_name_node_alt_flush(struct net_device *dev)
373 {
374 	struct netdev_name_node *name_node, *tmp;
375 
376 	list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
377 		__netdev_name_node_alt_destroy(name_node);
378 }
379 
380 /* Device list insertion */
381 static void list_netdevice(struct net_device *dev)
382 {
383 	struct net *net = dev_net(dev);
384 
385 	ASSERT_RTNL();
386 
387 	write_lock(&dev_base_lock);
388 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
389 	netdev_name_node_add(net, dev->name_node);
390 	hlist_add_head_rcu(&dev->index_hlist,
391 			   dev_index_hash(net, dev->ifindex));
392 	write_unlock(&dev_base_lock);
393 
394 	dev_base_seq_inc(net);
395 }
396 
397 /* Device list removal
398  * caller must respect a RCU grace period before freeing/reusing dev
399  */
400 static void unlist_netdevice(struct net_device *dev, bool lock)
401 {
402 	ASSERT_RTNL();
403 
404 	/* Unlink dev from the device chain */
405 	if (lock)
406 		write_lock(&dev_base_lock);
407 	list_del_rcu(&dev->dev_list);
408 	netdev_name_node_del(dev->name_node);
409 	hlist_del_rcu(&dev->index_hlist);
410 	if (lock)
411 		write_unlock(&dev_base_lock);
412 
413 	dev_base_seq_inc(dev_net(dev));
414 }
415 
416 /*
417  *	Our notifier list
418  */
419 
420 static RAW_NOTIFIER_HEAD(netdev_chain);
421 
422 /*
423  *	Device drivers call our routines to queue packets here. We empty the
424  *	queue in the local softnet handler.
425  */
426 
427 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
428 EXPORT_PER_CPU_SYMBOL(softnet_data);
429 
430 #ifdef CONFIG_LOCKDEP
431 /*
432  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
433  * according to dev->type
434  */
435 static const unsigned short netdev_lock_type[] = {
436 	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
437 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
438 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
439 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
440 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
441 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
442 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
443 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
444 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
445 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
446 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
447 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
448 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
449 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
450 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
451 
452 static const char *const netdev_lock_name[] = {
453 	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
454 	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
455 	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
456 	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
457 	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
458 	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
459 	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
460 	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
461 	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
462 	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
463 	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
464 	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
465 	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
466 	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
467 	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
468 
469 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
470 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
471 
472 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
473 {
474 	int i;
475 
476 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
477 		if (netdev_lock_type[i] == dev_type)
478 			return i;
479 	/* the last key is used by default */
480 	return ARRAY_SIZE(netdev_lock_type) - 1;
481 }
482 
483 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
484 						 unsigned short dev_type)
485 {
486 	int i;
487 
488 	i = netdev_lock_pos(dev_type);
489 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
490 				   netdev_lock_name[i]);
491 }
492 
493 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
494 {
495 	int i;
496 
497 	i = netdev_lock_pos(dev->type);
498 	lockdep_set_class_and_name(&dev->addr_list_lock,
499 				   &netdev_addr_lock_key[i],
500 				   netdev_lock_name[i]);
501 }
502 #else
503 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
504 						 unsigned short dev_type)
505 {
506 }
507 
508 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
509 {
510 }
511 #endif
512 
513 /*******************************************************************************
514  *
515  *		Protocol management and registration routines
516  *
517  *******************************************************************************/
518 
519 
520 /*
521  *	Add a protocol ID to the list. Now that the input handler is
522  *	smarter we can dispense with all the messy stuff that used to be
523  *	here.
524  *
525  *	BEWARE!!! Protocol handlers, mangling input packets,
526  *	MUST BE last in hash buckets and checking protocol handlers
527  *	MUST start from promiscuous ptype_all chain in net_bh.
528  *	It is true now, do not change it.
529  *	Explanation follows: if protocol handler, mangling packet, will
530  *	be the first on list, it is not able to sense, that packet
531  *	is cloned and should be copied-on-write, so that it will
532  *	change it and subsequent readers will get broken packet.
533  *							--ANK (980803)
534  */
535 
536 static inline struct list_head *ptype_head(const struct packet_type *pt)
537 {
538 	if (pt->type == htons(ETH_P_ALL))
539 		return pt->dev ? &pt->dev->ptype_all : &ptype_all;
540 	else
541 		return pt->dev ? &pt->dev->ptype_specific :
542 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
543 }
544 
545 /**
546  *	dev_add_pack - add packet handler
547  *	@pt: packet type declaration
548  *
549  *	Add a protocol handler to the networking stack. The passed &packet_type
550  *	is linked into kernel lists and may not be freed until it has been
551  *	removed from the kernel lists.
552  *
553  *	This call does not sleep therefore it can not
554  *	guarantee all CPU's that are in middle of receiving packets
555  *	will see the new packet type (until the next received packet).
556  */
557 
558 void dev_add_pack(struct packet_type *pt)
559 {
560 	struct list_head *head = ptype_head(pt);
561 
562 	spin_lock(&ptype_lock);
563 	list_add_rcu(&pt->list, head);
564 	spin_unlock(&ptype_lock);
565 }
566 EXPORT_SYMBOL(dev_add_pack);
567 
568 /**
569  *	__dev_remove_pack	 - remove packet handler
570  *	@pt: packet type declaration
571  *
572  *	Remove a protocol handler that was previously added to the kernel
573  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
574  *	from the kernel lists and can be freed or reused once this function
575  *	returns.
576  *
577  *      The packet type might still be in use by receivers
578  *	and must not be freed until after all the CPU's have gone
579  *	through a quiescent state.
580  */
581 void __dev_remove_pack(struct packet_type *pt)
582 {
583 	struct list_head *head = ptype_head(pt);
584 	struct packet_type *pt1;
585 
586 	spin_lock(&ptype_lock);
587 
588 	list_for_each_entry(pt1, head, list) {
589 		if (pt == pt1) {
590 			list_del_rcu(&pt->list);
591 			goto out;
592 		}
593 	}
594 
595 	pr_warn("dev_remove_pack: %p not found\n", pt);
596 out:
597 	spin_unlock(&ptype_lock);
598 }
599 EXPORT_SYMBOL(__dev_remove_pack);
600 
601 /**
602  *	dev_remove_pack	 - remove packet handler
603  *	@pt: packet type declaration
604  *
605  *	Remove a protocol handler that was previously added to the kernel
606  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
607  *	from the kernel lists and can be freed or reused once this function
608  *	returns.
609  *
610  *	This call sleeps to guarantee that no CPU is looking at the packet
611  *	type after return.
612  */
613 void dev_remove_pack(struct packet_type *pt)
614 {
615 	__dev_remove_pack(pt);
616 
617 	synchronize_net();
618 }
619 EXPORT_SYMBOL(dev_remove_pack);
620 
621 
622 /*******************************************************************************
623  *
624  *			    Device Interface Subroutines
625  *
626  *******************************************************************************/
627 
628 /**
629  *	dev_get_iflink	- get 'iflink' value of a interface
630  *	@dev: targeted interface
631  *
632  *	Indicates the ifindex the interface is linked to.
633  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
634  */
635 
636 int dev_get_iflink(const struct net_device *dev)
637 {
638 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
639 		return dev->netdev_ops->ndo_get_iflink(dev);
640 
641 	return dev->ifindex;
642 }
643 EXPORT_SYMBOL(dev_get_iflink);
644 
645 /**
646  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
647  *	@dev: targeted interface
648  *	@skb: The packet.
649  *
650  *	For better visibility of tunnel traffic OVS needs to retrieve
651  *	egress tunnel information for a packet. Following API allows
652  *	user to get this info.
653  */
654 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
655 {
656 	struct ip_tunnel_info *info;
657 
658 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
659 		return -EINVAL;
660 
661 	info = skb_tunnel_info_unclone(skb);
662 	if (!info)
663 		return -ENOMEM;
664 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
665 		return -EINVAL;
666 
667 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
668 }
669 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
670 
671 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
672 {
673 	int k = stack->num_paths++;
674 
675 	if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
676 		return NULL;
677 
678 	return &stack->path[k];
679 }
680 
681 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
682 			  struct net_device_path_stack *stack)
683 {
684 	const struct net_device *last_dev;
685 	struct net_device_path_ctx ctx = {
686 		.dev	= dev,
687 	};
688 	struct net_device_path *path;
689 	int ret = 0;
690 
691 	memcpy(ctx.daddr, daddr, sizeof(ctx.daddr));
692 	stack->num_paths = 0;
693 	while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
694 		last_dev = ctx.dev;
695 		path = dev_fwd_path(stack);
696 		if (!path)
697 			return -1;
698 
699 		memset(path, 0, sizeof(struct net_device_path));
700 		ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
701 		if (ret < 0)
702 			return -1;
703 
704 		if (WARN_ON_ONCE(last_dev == ctx.dev))
705 			return -1;
706 	}
707 
708 	if (!ctx.dev)
709 		return ret;
710 
711 	path = dev_fwd_path(stack);
712 	if (!path)
713 		return -1;
714 	path->type = DEV_PATH_ETHERNET;
715 	path->dev = ctx.dev;
716 
717 	return ret;
718 }
719 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
720 
721 /**
722  *	__dev_get_by_name	- find a device by its name
723  *	@net: the applicable net namespace
724  *	@name: name to find
725  *
726  *	Find an interface by name. Must be called under RTNL semaphore
727  *	or @dev_base_lock. If the name is found a pointer to the device
728  *	is returned. If the name is not found then %NULL is returned. The
729  *	reference counters are not incremented so the caller must be
730  *	careful with locks.
731  */
732 
733 struct net_device *__dev_get_by_name(struct net *net, const char *name)
734 {
735 	struct netdev_name_node *node_name;
736 
737 	node_name = netdev_name_node_lookup(net, name);
738 	return node_name ? node_name->dev : NULL;
739 }
740 EXPORT_SYMBOL(__dev_get_by_name);
741 
742 /**
743  * dev_get_by_name_rcu	- find a device by its name
744  * @net: the applicable net namespace
745  * @name: name to find
746  *
747  * Find an interface by name.
748  * If the name is found a pointer to the device is returned.
749  * If the name is not found then %NULL is returned.
750  * The reference counters are not incremented so the caller must be
751  * careful with locks. The caller must hold RCU lock.
752  */
753 
754 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
755 {
756 	struct netdev_name_node *node_name;
757 
758 	node_name = netdev_name_node_lookup_rcu(net, name);
759 	return node_name ? node_name->dev : NULL;
760 }
761 EXPORT_SYMBOL(dev_get_by_name_rcu);
762 
763 /**
764  *	dev_get_by_name		- find a device by its name
765  *	@net: the applicable net namespace
766  *	@name: name to find
767  *
768  *	Find an interface by name. This can be called from any
769  *	context and does its own locking. The returned handle has
770  *	the usage count incremented and the caller must use dev_put() to
771  *	release it when it is no longer needed. %NULL is returned if no
772  *	matching device is found.
773  */
774 
775 struct net_device *dev_get_by_name(struct net *net, const char *name)
776 {
777 	struct net_device *dev;
778 
779 	rcu_read_lock();
780 	dev = dev_get_by_name_rcu(net, name);
781 	dev_hold(dev);
782 	rcu_read_unlock();
783 	return dev;
784 }
785 EXPORT_SYMBOL(dev_get_by_name);
786 
787 /**
788  *	__dev_get_by_index - find a device by its ifindex
789  *	@net: the applicable net namespace
790  *	@ifindex: index of device
791  *
792  *	Search for an interface by index. Returns %NULL if the device
793  *	is not found or a pointer to the device. The device has not
794  *	had its reference counter increased so the caller must be careful
795  *	about locking. The caller must hold either the RTNL semaphore
796  *	or @dev_base_lock.
797  */
798 
799 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
800 {
801 	struct net_device *dev;
802 	struct hlist_head *head = dev_index_hash(net, ifindex);
803 
804 	hlist_for_each_entry(dev, head, index_hlist)
805 		if (dev->ifindex == ifindex)
806 			return dev;
807 
808 	return NULL;
809 }
810 EXPORT_SYMBOL(__dev_get_by_index);
811 
812 /**
813  *	dev_get_by_index_rcu - find a device by its ifindex
814  *	@net: the applicable net namespace
815  *	@ifindex: index of device
816  *
817  *	Search for an interface by index. Returns %NULL if the device
818  *	is not found or a pointer to the device. The device has not
819  *	had its reference counter increased so the caller must be careful
820  *	about locking. The caller must hold RCU lock.
821  */
822 
823 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
824 {
825 	struct net_device *dev;
826 	struct hlist_head *head = dev_index_hash(net, ifindex);
827 
828 	hlist_for_each_entry_rcu(dev, head, index_hlist)
829 		if (dev->ifindex == ifindex)
830 			return dev;
831 
832 	return NULL;
833 }
834 EXPORT_SYMBOL(dev_get_by_index_rcu);
835 
836 
837 /**
838  *	dev_get_by_index - find a device by its ifindex
839  *	@net: the applicable net namespace
840  *	@ifindex: index of device
841  *
842  *	Search for an interface by index. Returns NULL if the device
843  *	is not found or a pointer to the device. The device returned has
844  *	had a reference added and the pointer is safe until the user calls
845  *	dev_put to indicate they have finished with it.
846  */
847 
848 struct net_device *dev_get_by_index(struct net *net, int ifindex)
849 {
850 	struct net_device *dev;
851 
852 	rcu_read_lock();
853 	dev = dev_get_by_index_rcu(net, ifindex);
854 	dev_hold(dev);
855 	rcu_read_unlock();
856 	return dev;
857 }
858 EXPORT_SYMBOL(dev_get_by_index);
859 
860 /**
861  *	dev_get_by_napi_id - find a device by napi_id
862  *	@napi_id: ID of the NAPI struct
863  *
864  *	Search for an interface by NAPI ID. Returns %NULL if the device
865  *	is not found or a pointer to the device. The device has not had
866  *	its reference counter increased so the caller must be careful
867  *	about locking. The caller must hold RCU lock.
868  */
869 
870 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
871 {
872 	struct napi_struct *napi;
873 
874 	WARN_ON_ONCE(!rcu_read_lock_held());
875 
876 	if (napi_id < MIN_NAPI_ID)
877 		return NULL;
878 
879 	napi = napi_by_id(napi_id);
880 
881 	return napi ? napi->dev : NULL;
882 }
883 EXPORT_SYMBOL(dev_get_by_napi_id);
884 
885 /**
886  *	netdev_get_name - get a netdevice name, knowing its ifindex.
887  *	@net: network namespace
888  *	@name: a pointer to the buffer where the name will be stored.
889  *	@ifindex: the ifindex of the interface to get the name from.
890  */
891 int netdev_get_name(struct net *net, char *name, int ifindex)
892 {
893 	struct net_device *dev;
894 	int ret;
895 
896 	down_read(&devnet_rename_sem);
897 	rcu_read_lock();
898 
899 	dev = dev_get_by_index_rcu(net, ifindex);
900 	if (!dev) {
901 		ret = -ENODEV;
902 		goto out;
903 	}
904 
905 	strcpy(name, dev->name);
906 
907 	ret = 0;
908 out:
909 	rcu_read_unlock();
910 	up_read(&devnet_rename_sem);
911 	return ret;
912 }
913 
914 /**
915  *	dev_getbyhwaddr_rcu - find a device by its hardware address
916  *	@net: the applicable net namespace
917  *	@type: media type of device
918  *	@ha: hardware address
919  *
920  *	Search for an interface by MAC address. Returns NULL if the device
921  *	is not found or a pointer to the device.
922  *	The caller must hold RCU or RTNL.
923  *	The returned device has not had its ref count increased
924  *	and the caller must therefore be careful about locking
925  *
926  */
927 
928 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
929 				       const char *ha)
930 {
931 	struct net_device *dev;
932 
933 	for_each_netdev_rcu(net, dev)
934 		if (dev->type == type &&
935 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
936 			return dev;
937 
938 	return NULL;
939 }
940 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
941 
942 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
943 {
944 	struct net_device *dev, *ret = NULL;
945 
946 	rcu_read_lock();
947 	for_each_netdev_rcu(net, dev)
948 		if (dev->type == type) {
949 			dev_hold(dev);
950 			ret = dev;
951 			break;
952 		}
953 	rcu_read_unlock();
954 	return ret;
955 }
956 EXPORT_SYMBOL(dev_getfirstbyhwtype);
957 
958 /**
959  *	__dev_get_by_flags - find any device with given flags
960  *	@net: the applicable net namespace
961  *	@if_flags: IFF_* values
962  *	@mask: bitmask of bits in if_flags to check
963  *
964  *	Search for any interface with the given flags. Returns NULL if a device
965  *	is not found or a pointer to the device. Must be called inside
966  *	rtnl_lock(), and result refcount is unchanged.
967  */
968 
969 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
970 				      unsigned short mask)
971 {
972 	struct net_device *dev, *ret;
973 
974 	ASSERT_RTNL();
975 
976 	ret = NULL;
977 	for_each_netdev(net, dev) {
978 		if (((dev->flags ^ if_flags) & mask) == 0) {
979 			ret = dev;
980 			break;
981 		}
982 	}
983 	return ret;
984 }
985 EXPORT_SYMBOL(__dev_get_by_flags);
986 
987 /**
988  *	dev_valid_name - check if name is okay for network device
989  *	@name: name string
990  *
991  *	Network device names need to be valid file names to
992  *	allow sysfs to work.  We also disallow any kind of
993  *	whitespace.
994  */
995 bool dev_valid_name(const char *name)
996 {
997 	if (*name == '\0')
998 		return false;
999 	if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1000 		return false;
1001 	if (!strcmp(name, ".") || !strcmp(name, ".."))
1002 		return false;
1003 
1004 	while (*name) {
1005 		if (*name == '/' || *name == ':' || isspace(*name))
1006 			return false;
1007 		name++;
1008 	}
1009 	return true;
1010 }
1011 EXPORT_SYMBOL(dev_valid_name);
1012 
1013 /**
1014  *	__dev_alloc_name - allocate a name for a device
1015  *	@net: network namespace to allocate the device name in
1016  *	@name: name format string
1017  *	@buf:  scratch buffer and result name string
1018  *
1019  *	Passed a format string - eg "lt%d" it will try and find a suitable
1020  *	id. It scans list of devices to build up a free map, then chooses
1021  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1022  *	while allocating the name and adding the device in order to avoid
1023  *	duplicates.
1024  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1025  *	Returns the number of the unit assigned or a negative errno code.
1026  */
1027 
1028 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1029 {
1030 	int i = 0;
1031 	const char *p;
1032 	const int max_netdevices = 8*PAGE_SIZE;
1033 	unsigned long *inuse;
1034 	struct net_device *d;
1035 
1036 	if (!dev_valid_name(name))
1037 		return -EINVAL;
1038 
1039 	p = strchr(name, '%');
1040 	if (p) {
1041 		/*
1042 		 * Verify the string as this thing may have come from
1043 		 * the user.  There must be either one "%d" and no other "%"
1044 		 * characters.
1045 		 */
1046 		if (p[1] != 'd' || strchr(p + 2, '%'))
1047 			return -EINVAL;
1048 
1049 		/* Use one page as a bit array of possible slots */
1050 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1051 		if (!inuse)
1052 			return -ENOMEM;
1053 
1054 		for_each_netdev(net, d) {
1055 			struct netdev_name_node *name_node;
1056 			list_for_each_entry(name_node, &d->name_node->list, list) {
1057 				if (!sscanf(name_node->name, name, &i))
1058 					continue;
1059 				if (i < 0 || i >= max_netdevices)
1060 					continue;
1061 
1062 				/*  avoid cases where sscanf is not exact inverse of printf */
1063 				snprintf(buf, IFNAMSIZ, name, i);
1064 				if (!strncmp(buf, name_node->name, IFNAMSIZ))
1065 					__set_bit(i, inuse);
1066 			}
1067 			if (!sscanf(d->name, name, &i))
1068 				continue;
1069 			if (i < 0 || i >= max_netdevices)
1070 				continue;
1071 
1072 			/*  avoid cases where sscanf is not exact inverse of printf */
1073 			snprintf(buf, IFNAMSIZ, name, i);
1074 			if (!strncmp(buf, d->name, IFNAMSIZ))
1075 				__set_bit(i, inuse);
1076 		}
1077 
1078 		i = find_first_zero_bit(inuse, max_netdevices);
1079 		free_page((unsigned long) inuse);
1080 	}
1081 
1082 	snprintf(buf, IFNAMSIZ, name, i);
1083 	if (!netdev_name_in_use(net, buf))
1084 		return i;
1085 
1086 	/* It is possible to run out of possible slots
1087 	 * when the name is long and there isn't enough space left
1088 	 * for the digits, or if all bits are used.
1089 	 */
1090 	return -ENFILE;
1091 }
1092 
1093 static int dev_alloc_name_ns(struct net *net,
1094 			     struct net_device *dev,
1095 			     const char *name)
1096 {
1097 	char buf[IFNAMSIZ];
1098 	int ret;
1099 
1100 	BUG_ON(!net);
1101 	ret = __dev_alloc_name(net, name, buf);
1102 	if (ret >= 0)
1103 		strlcpy(dev->name, buf, IFNAMSIZ);
1104 	return ret;
1105 }
1106 
1107 /**
1108  *	dev_alloc_name - allocate a name for a device
1109  *	@dev: device
1110  *	@name: name format string
1111  *
1112  *	Passed a format string - eg "lt%d" it will try and find a suitable
1113  *	id. It scans list of devices to build up a free map, then chooses
1114  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1115  *	while allocating the name and adding the device in order to avoid
1116  *	duplicates.
1117  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1118  *	Returns the number of the unit assigned or a negative errno code.
1119  */
1120 
1121 int dev_alloc_name(struct net_device *dev, const char *name)
1122 {
1123 	return dev_alloc_name_ns(dev_net(dev), dev, name);
1124 }
1125 EXPORT_SYMBOL(dev_alloc_name);
1126 
1127 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1128 			      const char *name)
1129 {
1130 	BUG_ON(!net);
1131 
1132 	if (!dev_valid_name(name))
1133 		return -EINVAL;
1134 
1135 	if (strchr(name, '%'))
1136 		return dev_alloc_name_ns(net, dev, name);
1137 	else if (netdev_name_in_use(net, name))
1138 		return -EEXIST;
1139 	else if (dev->name != name)
1140 		strlcpy(dev->name, name, IFNAMSIZ);
1141 
1142 	return 0;
1143 }
1144 
1145 /**
1146  *	dev_change_name - change name of a device
1147  *	@dev: device
1148  *	@newname: name (or format string) must be at least IFNAMSIZ
1149  *
1150  *	Change name of a device, can pass format strings "eth%d".
1151  *	for wildcarding.
1152  */
1153 int dev_change_name(struct net_device *dev, const char *newname)
1154 {
1155 	unsigned char old_assign_type;
1156 	char oldname[IFNAMSIZ];
1157 	int err = 0;
1158 	int ret;
1159 	struct net *net;
1160 
1161 	ASSERT_RTNL();
1162 	BUG_ON(!dev_net(dev));
1163 
1164 	net = dev_net(dev);
1165 
1166 	/* Some auto-enslaved devices e.g. failover slaves are
1167 	 * special, as userspace might rename the device after
1168 	 * the interface had been brought up and running since
1169 	 * the point kernel initiated auto-enslavement. Allow
1170 	 * live name change even when these slave devices are
1171 	 * up and running.
1172 	 *
1173 	 * Typically, users of these auto-enslaving devices
1174 	 * don't actually care about slave name change, as
1175 	 * they are supposed to operate on master interface
1176 	 * directly.
1177 	 */
1178 	if (dev->flags & IFF_UP &&
1179 	    likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1180 		return -EBUSY;
1181 
1182 	down_write(&devnet_rename_sem);
1183 
1184 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1185 		up_write(&devnet_rename_sem);
1186 		return 0;
1187 	}
1188 
1189 	memcpy(oldname, dev->name, IFNAMSIZ);
1190 
1191 	err = dev_get_valid_name(net, dev, newname);
1192 	if (err < 0) {
1193 		up_write(&devnet_rename_sem);
1194 		return err;
1195 	}
1196 
1197 	if (oldname[0] && !strchr(oldname, '%'))
1198 		netdev_info(dev, "renamed from %s\n", oldname);
1199 
1200 	old_assign_type = dev->name_assign_type;
1201 	dev->name_assign_type = NET_NAME_RENAMED;
1202 
1203 rollback:
1204 	ret = device_rename(&dev->dev, dev->name);
1205 	if (ret) {
1206 		memcpy(dev->name, oldname, IFNAMSIZ);
1207 		dev->name_assign_type = old_assign_type;
1208 		up_write(&devnet_rename_sem);
1209 		return ret;
1210 	}
1211 
1212 	up_write(&devnet_rename_sem);
1213 
1214 	netdev_adjacent_rename_links(dev, oldname);
1215 
1216 	write_lock(&dev_base_lock);
1217 	netdev_name_node_del(dev->name_node);
1218 	write_unlock(&dev_base_lock);
1219 
1220 	synchronize_rcu();
1221 
1222 	write_lock(&dev_base_lock);
1223 	netdev_name_node_add(net, dev->name_node);
1224 	write_unlock(&dev_base_lock);
1225 
1226 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1227 	ret = notifier_to_errno(ret);
1228 
1229 	if (ret) {
1230 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1231 		if (err >= 0) {
1232 			err = ret;
1233 			down_write(&devnet_rename_sem);
1234 			memcpy(dev->name, oldname, IFNAMSIZ);
1235 			memcpy(oldname, newname, IFNAMSIZ);
1236 			dev->name_assign_type = old_assign_type;
1237 			old_assign_type = NET_NAME_RENAMED;
1238 			goto rollback;
1239 		} else {
1240 			netdev_err(dev, "name change rollback failed: %d\n",
1241 				   ret);
1242 		}
1243 	}
1244 
1245 	return err;
1246 }
1247 
1248 /**
1249  *	dev_set_alias - change ifalias of a device
1250  *	@dev: device
1251  *	@alias: name up to IFALIASZ
1252  *	@len: limit of bytes to copy from info
1253  *
1254  *	Set ifalias for a device,
1255  */
1256 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1257 {
1258 	struct dev_ifalias *new_alias = NULL;
1259 
1260 	if (len >= IFALIASZ)
1261 		return -EINVAL;
1262 
1263 	if (len) {
1264 		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1265 		if (!new_alias)
1266 			return -ENOMEM;
1267 
1268 		memcpy(new_alias->ifalias, alias, len);
1269 		new_alias->ifalias[len] = 0;
1270 	}
1271 
1272 	mutex_lock(&ifalias_mutex);
1273 	new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1274 					mutex_is_locked(&ifalias_mutex));
1275 	mutex_unlock(&ifalias_mutex);
1276 
1277 	if (new_alias)
1278 		kfree_rcu(new_alias, rcuhead);
1279 
1280 	return len;
1281 }
1282 EXPORT_SYMBOL(dev_set_alias);
1283 
1284 /**
1285  *	dev_get_alias - get ifalias of a device
1286  *	@dev: device
1287  *	@name: buffer to store name of ifalias
1288  *	@len: size of buffer
1289  *
1290  *	get ifalias for a device.  Caller must make sure dev cannot go
1291  *	away,  e.g. rcu read lock or own a reference count to device.
1292  */
1293 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1294 {
1295 	const struct dev_ifalias *alias;
1296 	int ret = 0;
1297 
1298 	rcu_read_lock();
1299 	alias = rcu_dereference(dev->ifalias);
1300 	if (alias)
1301 		ret = snprintf(name, len, "%s", alias->ifalias);
1302 	rcu_read_unlock();
1303 
1304 	return ret;
1305 }
1306 
1307 /**
1308  *	netdev_features_change - device changes features
1309  *	@dev: device to cause notification
1310  *
1311  *	Called to indicate a device has changed features.
1312  */
1313 void netdev_features_change(struct net_device *dev)
1314 {
1315 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1316 }
1317 EXPORT_SYMBOL(netdev_features_change);
1318 
1319 /**
1320  *	netdev_state_change - device changes state
1321  *	@dev: device to cause notification
1322  *
1323  *	Called to indicate a device has changed state. This function calls
1324  *	the notifier chains for netdev_chain and sends a NEWLINK message
1325  *	to the routing socket.
1326  */
1327 void netdev_state_change(struct net_device *dev)
1328 {
1329 	if (dev->flags & IFF_UP) {
1330 		struct netdev_notifier_change_info change_info = {
1331 			.info.dev = dev,
1332 		};
1333 
1334 		call_netdevice_notifiers_info(NETDEV_CHANGE,
1335 					      &change_info.info);
1336 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1337 	}
1338 }
1339 EXPORT_SYMBOL(netdev_state_change);
1340 
1341 /**
1342  * __netdev_notify_peers - notify network peers about existence of @dev,
1343  * to be called when rtnl lock is already held.
1344  * @dev: network device
1345  *
1346  * Generate traffic such that interested network peers are aware of
1347  * @dev, such as by generating a gratuitous ARP. This may be used when
1348  * a device wants to inform the rest of the network about some sort of
1349  * reconfiguration such as a failover event or virtual machine
1350  * migration.
1351  */
1352 void __netdev_notify_peers(struct net_device *dev)
1353 {
1354 	ASSERT_RTNL();
1355 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1356 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1357 }
1358 EXPORT_SYMBOL(__netdev_notify_peers);
1359 
1360 /**
1361  * netdev_notify_peers - notify network peers about existence of @dev
1362  * @dev: network device
1363  *
1364  * Generate traffic such that interested network peers are aware of
1365  * @dev, such as by generating a gratuitous ARP. This may be used when
1366  * a device wants to inform the rest of the network about some sort of
1367  * reconfiguration such as a failover event or virtual machine
1368  * migration.
1369  */
1370 void netdev_notify_peers(struct net_device *dev)
1371 {
1372 	rtnl_lock();
1373 	__netdev_notify_peers(dev);
1374 	rtnl_unlock();
1375 }
1376 EXPORT_SYMBOL(netdev_notify_peers);
1377 
1378 static int napi_threaded_poll(void *data);
1379 
1380 static int napi_kthread_create(struct napi_struct *n)
1381 {
1382 	int err = 0;
1383 
1384 	/* Create and wake up the kthread once to put it in
1385 	 * TASK_INTERRUPTIBLE mode to avoid the blocked task
1386 	 * warning and work with loadavg.
1387 	 */
1388 	n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1389 				n->dev->name, n->napi_id);
1390 	if (IS_ERR(n->thread)) {
1391 		err = PTR_ERR(n->thread);
1392 		pr_err("kthread_run failed with err %d\n", err);
1393 		n->thread = NULL;
1394 	}
1395 
1396 	return err;
1397 }
1398 
1399 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1400 {
1401 	const struct net_device_ops *ops = dev->netdev_ops;
1402 	int ret;
1403 
1404 	ASSERT_RTNL();
1405 	dev_addr_check(dev);
1406 
1407 	if (!netif_device_present(dev)) {
1408 		/* may be detached because parent is runtime-suspended */
1409 		if (dev->dev.parent)
1410 			pm_runtime_resume(dev->dev.parent);
1411 		if (!netif_device_present(dev))
1412 			return -ENODEV;
1413 	}
1414 
1415 	/* Block netpoll from trying to do any rx path servicing.
1416 	 * If we don't do this there is a chance ndo_poll_controller
1417 	 * or ndo_poll may be running while we open the device
1418 	 */
1419 	netpoll_poll_disable(dev);
1420 
1421 	ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1422 	ret = notifier_to_errno(ret);
1423 	if (ret)
1424 		return ret;
1425 
1426 	set_bit(__LINK_STATE_START, &dev->state);
1427 
1428 	if (ops->ndo_validate_addr)
1429 		ret = ops->ndo_validate_addr(dev);
1430 
1431 	if (!ret && ops->ndo_open)
1432 		ret = ops->ndo_open(dev);
1433 
1434 	netpoll_poll_enable(dev);
1435 
1436 	if (ret)
1437 		clear_bit(__LINK_STATE_START, &dev->state);
1438 	else {
1439 		dev->flags |= IFF_UP;
1440 		dev_set_rx_mode(dev);
1441 		dev_activate(dev);
1442 		add_device_randomness(dev->dev_addr, dev->addr_len);
1443 	}
1444 
1445 	return ret;
1446 }
1447 
1448 /**
1449  *	dev_open	- prepare an interface for use.
1450  *	@dev: device to open
1451  *	@extack: netlink extended ack
1452  *
1453  *	Takes a device from down to up state. The device's private open
1454  *	function is invoked and then the multicast lists are loaded. Finally
1455  *	the device is moved into the up state and a %NETDEV_UP message is
1456  *	sent to the netdev notifier chain.
1457  *
1458  *	Calling this function on an active interface is a nop. On a failure
1459  *	a negative errno code is returned.
1460  */
1461 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1462 {
1463 	int ret;
1464 
1465 	if (dev->flags & IFF_UP)
1466 		return 0;
1467 
1468 	ret = __dev_open(dev, extack);
1469 	if (ret < 0)
1470 		return ret;
1471 
1472 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1473 	call_netdevice_notifiers(NETDEV_UP, dev);
1474 
1475 	return ret;
1476 }
1477 EXPORT_SYMBOL(dev_open);
1478 
1479 static void __dev_close_many(struct list_head *head)
1480 {
1481 	struct net_device *dev;
1482 
1483 	ASSERT_RTNL();
1484 	might_sleep();
1485 
1486 	list_for_each_entry(dev, head, close_list) {
1487 		/* Temporarily disable netpoll until the interface is down */
1488 		netpoll_poll_disable(dev);
1489 
1490 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1491 
1492 		clear_bit(__LINK_STATE_START, &dev->state);
1493 
1494 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1495 		 * can be even on different cpu. So just clear netif_running().
1496 		 *
1497 		 * dev->stop() will invoke napi_disable() on all of it's
1498 		 * napi_struct instances on this device.
1499 		 */
1500 		smp_mb__after_atomic(); /* Commit netif_running(). */
1501 	}
1502 
1503 	dev_deactivate_many(head);
1504 
1505 	list_for_each_entry(dev, head, close_list) {
1506 		const struct net_device_ops *ops = dev->netdev_ops;
1507 
1508 		/*
1509 		 *	Call the device specific close. This cannot fail.
1510 		 *	Only if device is UP
1511 		 *
1512 		 *	We allow it to be called even after a DETACH hot-plug
1513 		 *	event.
1514 		 */
1515 		if (ops->ndo_stop)
1516 			ops->ndo_stop(dev);
1517 
1518 		dev->flags &= ~IFF_UP;
1519 		netpoll_poll_enable(dev);
1520 	}
1521 }
1522 
1523 static void __dev_close(struct net_device *dev)
1524 {
1525 	LIST_HEAD(single);
1526 
1527 	list_add(&dev->close_list, &single);
1528 	__dev_close_many(&single);
1529 	list_del(&single);
1530 }
1531 
1532 void dev_close_many(struct list_head *head, bool unlink)
1533 {
1534 	struct net_device *dev, *tmp;
1535 
1536 	/* Remove the devices that don't need to be closed */
1537 	list_for_each_entry_safe(dev, tmp, head, close_list)
1538 		if (!(dev->flags & IFF_UP))
1539 			list_del_init(&dev->close_list);
1540 
1541 	__dev_close_many(head);
1542 
1543 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1544 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1545 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1546 		if (unlink)
1547 			list_del_init(&dev->close_list);
1548 	}
1549 }
1550 EXPORT_SYMBOL(dev_close_many);
1551 
1552 /**
1553  *	dev_close - shutdown an interface.
1554  *	@dev: device to shutdown
1555  *
1556  *	This function moves an active device into down state. A
1557  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1558  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1559  *	chain.
1560  */
1561 void dev_close(struct net_device *dev)
1562 {
1563 	if (dev->flags & IFF_UP) {
1564 		LIST_HEAD(single);
1565 
1566 		list_add(&dev->close_list, &single);
1567 		dev_close_many(&single, true);
1568 		list_del(&single);
1569 	}
1570 }
1571 EXPORT_SYMBOL(dev_close);
1572 
1573 
1574 /**
1575  *	dev_disable_lro - disable Large Receive Offload on a device
1576  *	@dev: device
1577  *
1578  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1579  *	called under RTNL.  This is needed if received packets may be
1580  *	forwarded to another interface.
1581  */
1582 void dev_disable_lro(struct net_device *dev)
1583 {
1584 	struct net_device *lower_dev;
1585 	struct list_head *iter;
1586 
1587 	dev->wanted_features &= ~NETIF_F_LRO;
1588 	netdev_update_features(dev);
1589 
1590 	if (unlikely(dev->features & NETIF_F_LRO))
1591 		netdev_WARN(dev, "failed to disable LRO!\n");
1592 
1593 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1594 		dev_disable_lro(lower_dev);
1595 }
1596 EXPORT_SYMBOL(dev_disable_lro);
1597 
1598 /**
1599  *	dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1600  *	@dev: device
1601  *
1602  *	Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1603  *	called under RTNL.  This is needed if Generic XDP is installed on
1604  *	the device.
1605  */
1606 static void dev_disable_gro_hw(struct net_device *dev)
1607 {
1608 	dev->wanted_features &= ~NETIF_F_GRO_HW;
1609 	netdev_update_features(dev);
1610 
1611 	if (unlikely(dev->features & NETIF_F_GRO_HW))
1612 		netdev_WARN(dev, "failed to disable GRO_HW!\n");
1613 }
1614 
1615 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1616 {
1617 #define N(val) 						\
1618 	case NETDEV_##val:				\
1619 		return "NETDEV_" __stringify(val);
1620 	switch (cmd) {
1621 	N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1622 	N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1623 	N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1624 	N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1625 	N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1626 	N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1627 	N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1628 	N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1629 	N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1630 	N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE)
1631 	N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA)
1632 	}
1633 #undef N
1634 	return "UNKNOWN_NETDEV_EVENT";
1635 }
1636 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1637 
1638 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1639 				   struct net_device *dev)
1640 {
1641 	struct netdev_notifier_info info = {
1642 		.dev = dev,
1643 	};
1644 
1645 	return nb->notifier_call(nb, val, &info);
1646 }
1647 
1648 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1649 					     struct net_device *dev)
1650 {
1651 	int err;
1652 
1653 	err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1654 	err = notifier_to_errno(err);
1655 	if (err)
1656 		return err;
1657 
1658 	if (!(dev->flags & IFF_UP))
1659 		return 0;
1660 
1661 	call_netdevice_notifier(nb, NETDEV_UP, dev);
1662 	return 0;
1663 }
1664 
1665 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1666 						struct net_device *dev)
1667 {
1668 	if (dev->flags & IFF_UP) {
1669 		call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1670 					dev);
1671 		call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1672 	}
1673 	call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1674 }
1675 
1676 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1677 						 struct net *net)
1678 {
1679 	struct net_device *dev;
1680 	int err;
1681 
1682 	for_each_netdev(net, dev) {
1683 		err = call_netdevice_register_notifiers(nb, dev);
1684 		if (err)
1685 			goto rollback;
1686 	}
1687 	return 0;
1688 
1689 rollback:
1690 	for_each_netdev_continue_reverse(net, dev)
1691 		call_netdevice_unregister_notifiers(nb, dev);
1692 	return err;
1693 }
1694 
1695 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1696 						    struct net *net)
1697 {
1698 	struct net_device *dev;
1699 
1700 	for_each_netdev(net, dev)
1701 		call_netdevice_unregister_notifiers(nb, dev);
1702 }
1703 
1704 static int dev_boot_phase = 1;
1705 
1706 /**
1707  * register_netdevice_notifier - register a network notifier block
1708  * @nb: notifier
1709  *
1710  * Register a notifier to be called when network device events occur.
1711  * The notifier passed is linked into the kernel structures and must
1712  * not be reused until it has been unregistered. A negative errno code
1713  * is returned on a failure.
1714  *
1715  * When registered all registration and up events are replayed
1716  * to the new notifier to allow device to have a race free
1717  * view of the network device list.
1718  */
1719 
1720 int register_netdevice_notifier(struct notifier_block *nb)
1721 {
1722 	struct net *net;
1723 	int err;
1724 
1725 	/* Close race with setup_net() and cleanup_net() */
1726 	down_write(&pernet_ops_rwsem);
1727 	rtnl_lock();
1728 	err = raw_notifier_chain_register(&netdev_chain, nb);
1729 	if (err)
1730 		goto unlock;
1731 	if (dev_boot_phase)
1732 		goto unlock;
1733 	for_each_net(net) {
1734 		err = call_netdevice_register_net_notifiers(nb, net);
1735 		if (err)
1736 			goto rollback;
1737 	}
1738 
1739 unlock:
1740 	rtnl_unlock();
1741 	up_write(&pernet_ops_rwsem);
1742 	return err;
1743 
1744 rollback:
1745 	for_each_net_continue_reverse(net)
1746 		call_netdevice_unregister_net_notifiers(nb, net);
1747 
1748 	raw_notifier_chain_unregister(&netdev_chain, nb);
1749 	goto unlock;
1750 }
1751 EXPORT_SYMBOL(register_netdevice_notifier);
1752 
1753 /**
1754  * unregister_netdevice_notifier - unregister a network notifier block
1755  * @nb: notifier
1756  *
1757  * Unregister a notifier previously registered by
1758  * register_netdevice_notifier(). The notifier is unlinked into the
1759  * kernel structures and may then be reused. A negative errno code
1760  * is returned on a failure.
1761  *
1762  * After unregistering unregister and down device events are synthesized
1763  * for all devices on the device list to the removed notifier to remove
1764  * the need for special case cleanup code.
1765  */
1766 
1767 int unregister_netdevice_notifier(struct notifier_block *nb)
1768 {
1769 	struct net *net;
1770 	int err;
1771 
1772 	/* Close race with setup_net() and cleanup_net() */
1773 	down_write(&pernet_ops_rwsem);
1774 	rtnl_lock();
1775 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1776 	if (err)
1777 		goto unlock;
1778 
1779 	for_each_net(net)
1780 		call_netdevice_unregister_net_notifiers(nb, net);
1781 
1782 unlock:
1783 	rtnl_unlock();
1784 	up_write(&pernet_ops_rwsem);
1785 	return err;
1786 }
1787 EXPORT_SYMBOL(unregister_netdevice_notifier);
1788 
1789 static int __register_netdevice_notifier_net(struct net *net,
1790 					     struct notifier_block *nb,
1791 					     bool ignore_call_fail)
1792 {
1793 	int err;
1794 
1795 	err = raw_notifier_chain_register(&net->netdev_chain, nb);
1796 	if (err)
1797 		return err;
1798 	if (dev_boot_phase)
1799 		return 0;
1800 
1801 	err = call_netdevice_register_net_notifiers(nb, net);
1802 	if (err && !ignore_call_fail)
1803 		goto chain_unregister;
1804 
1805 	return 0;
1806 
1807 chain_unregister:
1808 	raw_notifier_chain_unregister(&net->netdev_chain, nb);
1809 	return err;
1810 }
1811 
1812 static int __unregister_netdevice_notifier_net(struct net *net,
1813 					       struct notifier_block *nb)
1814 {
1815 	int err;
1816 
1817 	err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1818 	if (err)
1819 		return err;
1820 
1821 	call_netdevice_unregister_net_notifiers(nb, net);
1822 	return 0;
1823 }
1824 
1825 /**
1826  * register_netdevice_notifier_net - register a per-netns network notifier block
1827  * @net: network namespace
1828  * @nb: notifier
1829  *
1830  * Register a notifier to be called when network device events occur.
1831  * The notifier passed is linked into the kernel structures and must
1832  * not be reused until it has been unregistered. A negative errno code
1833  * is returned on a failure.
1834  *
1835  * When registered all registration and up events are replayed
1836  * to the new notifier to allow device to have a race free
1837  * view of the network device list.
1838  */
1839 
1840 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1841 {
1842 	int err;
1843 
1844 	rtnl_lock();
1845 	err = __register_netdevice_notifier_net(net, nb, false);
1846 	rtnl_unlock();
1847 	return err;
1848 }
1849 EXPORT_SYMBOL(register_netdevice_notifier_net);
1850 
1851 /**
1852  * unregister_netdevice_notifier_net - unregister a per-netns
1853  *                                     network notifier block
1854  * @net: network namespace
1855  * @nb: notifier
1856  *
1857  * Unregister a notifier previously registered by
1858  * register_netdevice_notifier(). The notifier is unlinked into the
1859  * kernel structures and may then be reused. A negative errno code
1860  * is returned on a failure.
1861  *
1862  * After unregistering unregister and down device events are synthesized
1863  * for all devices on the device list to the removed notifier to remove
1864  * the need for special case cleanup code.
1865  */
1866 
1867 int unregister_netdevice_notifier_net(struct net *net,
1868 				      struct notifier_block *nb)
1869 {
1870 	int err;
1871 
1872 	rtnl_lock();
1873 	err = __unregister_netdevice_notifier_net(net, nb);
1874 	rtnl_unlock();
1875 	return err;
1876 }
1877 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1878 
1879 int register_netdevice_notifier_dev_net(struct net_device *dev,
1880 					struct notifier_block *nb,
1881 					struct netdev_net_notifier *nn)
1882 {
1883 	int err;
1884 
1885 	rtnl_lock();
1886 	err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1887 	if (!err) {
1888 		nn->nb = nb;
1889 		list_add(&nn->list, &dev->net_notifier_list);
1890 	}
1891 	rtnl_unlock();
1892 	return err;
1893 }
1894 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1895 
1896 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1897 					  struct notifier_block *nb,
1898 					  struct netdev_net_notifier *nn)
1899 {
1900 	int err;
1901 
1902 	rtnl_lock();
1903 	list_del(&nn->list);
1904 	err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1905 	rtnl_unlock();
1906 	return err;
1907 }
1908 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1909 
1910 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1911 					     struct net *net)
1912 {
1913 	struct netdev_net_notifier *nn;
1914 
1915 	list_for_each_entry(nn, &dev->net_notifier_list, list) {
1916 		__unregister_netdevice_notifier_net(dev_net(dev), nn->nb);
1917 		__register_netdevice_notifier_net(net, nn->nb, true);
1918 	}
1919 }
1920 
1921 /**
1922  *	call_netdevice_notifiers_info - call all network notifier blocks
1923  *	@val: value passed unmodified to notifier function
1924  *	@info: notifier information data
1925  *
1926  *	Call all network notifier blocks.  Parameters and return value
1927  *	are as for raw_notifier_call_chain().
1928  */
1929 
1930 static int call_netdevice_notifiers_info(unsigned long val,
1931 					 struct netdev_notifier_info *info)
1932 {
1933 	struct net *net = dev_net(info->dev);
1934 	int ret;
1935 
1936 	ASSERT_RTNL();
1937 
1938 	/* Run per-netns notifier block chain first, then run the global one.
1939 	 * Hopefully, one day, the global one is going to be removed after
1940 	 * all notifier block registrators get converted to be per-netns.
1941 	 */
1942 	ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
1943 	if (ret & NOTIFY_STOP_MASK)
1944 		return ret;
1945 	return raw_notifier_call_chain(&netdev_chain, val, info);
1946 }
1947 
1948 /**
1949  *	call_netdevice_notifiers_info_robust - call per-netns notifier blocks
1950  *	                                       for and rollback on error
1951  *	@val_up: value passed unmodified to notifier function
1952  *	@val_down: value passed unmodified to the notifier function when
1953  *	           recovering from an error on @val_up
1954  *	@info: notifier information data
1955  *
1956  *	Call all per-netns network notifier blocks, but not notifier blocks on
1957  *	the global notifier chain. Parameters and return value are as for
1958  *	raw_notifier_call_chain_robust().
1959  */
1960 
1961 static int
1962 call_netdevice_notifiers_info_robust(unsigned long val_up,
1963 				     unsigned long val_down,
1964 				     struct netdev_notifier_info *info)
1965 {
1966 	struct net *net = dev_net(info->dev);
1967 
1968 	ASSERT_RTNL();
1969 
1970 	return raw_notifier_call_chain_robust(&net->netdev_chain,
1971 					      val_up, val_down, info);
1972 }
1973 
1974 static int call_netdevice_notifiers_extack(unsigned long val,
1975 					   struct net_device *dev,
1976 					   struct netlink_ext_ack *extack)
1977 {
1978 	struct netdev_notifier_info info = {
1979 		.dev = dev,
1980 		.extack = extack,
1981 	};
1982 
1983 	return call_netdevice_notifiers_info(val, &info);
1984 }
1985 
1986 /**
1987  *	call_netdevice_notifiers - call all network notifier blocks
1988  *      @val: value passed unmodified to notifier function
1989  *      @dev: net_device pointer passed unmodified to notifier function
1990  *
1991  *	Call all network notifier blocks.  Parameters and return value
1992  *	are as for raw_notifier_call_chain().
1993  */
1994 
1995 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1996 {
1997 	return call_netdevice_notifiers_extack(val, dev, NULL);
1998 }
1999 EXPORT_SYMBOL(call_netdevice_notifiers);
2000 
2001 /**
2002  *	call_netdevice_notifiers_mtu - call all network notifier blocks
2003  *	@val: value passed unmodified to notifier function
2004  *	@dev: net_device pointer passed unmodified to notifier function
2005  *	@arg: additional u32 argument passed to the notifier function
2006  *
2007  *	Call all network notifier blocks.  Parameters and return value
2008  *	are as for raw_notifier_call_chain().
2009  */
2010 static int call_netdevice_notifiers_mtu(unsigned long val,
2011 					struct net_device *dev, u32 arg)
2012 {
2013 	struct netdev_notifier_info_ext info = {
2014 		.info.dev = dev,
2015 		.ext.mtu = arg,
2016 	};
2017 
2018 	BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2019 
2020 	return call_netdevice_notifiers_info(val, &info.info);
2021 }
2022 
2023 #ifdef CONFIG_NET_INGRESS
2024 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2025 
2026 void net_inc_ingress_queue(void)
2027 {
2028 	static_branch_inc(&ingress_needed_key);
2029 }
2030 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2031 
2032 void net_dec_ingress_queue(void)
2033 {
2034 	static_branch_dec(&ingress_needed_key);
2035 }
2036 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2037 #endif
2038 
2039 #ifdef CONFIG_NET_EGRESS
2040 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2041 
2042 void net_inc_egress_queue(void)
2043 {
2044 	static_branch_inc(&egress_needed_key);
2045 }
2046 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2047 
2048 void net_dec_egress_queue(void)
2049 {
2050 	static_branch_dec(&egress_needed_key);
2051 }
2052 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2053 #endif
2054 
2055 DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2056 EXPORT_SYMBOL(netstamp_needed_key);
2057 #ifdef CONFIG_JUMP_LABEL
2058 static atomic_t netstamp_needed_deferred;
2059 static atomic_t netstamp_wanted;
2060 static void netstamp_clear(struct work_struct *work)
2061 {
2062 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2063 	int wanted;
2064 
2065 	wanted = atomic_add_return(deferred, &netstamp_wanted);
2066 	if (wanted > 0)
2067 		static_branch_enable(&netstamp_needed_key);
2068 	else
2069 		static_branch_disable(&netstamp_needed_key);
2070 }
2071 static DECLARE_WORK(netstamp_work, netstamp_clear);
2072 #endif
2073 
2074 void net_enable_timestamp(void)
2075 {
2076 #ifdef CONFIG_JUMP_LABEL
2077 	int wanted;
2078 
2079 	while (1) {
2080 		wanted = atomic_read(&netstamp_wanted);
2081 		if (wanted <= 0)
2082 			break;
2083 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2084 			return;
2085 	}
2086 	atomic_inc(&netstamp_needed_deferred);
2087 	schedule_work(&netstamp_work);
2088 #else
2089 	static_branch_inc(&netstamp_needed_key);
2090 #endif
2091 }
2092 EXPORT_SYMBOL(net_enable_timestamp);
2093 
2094 void net_disable_timestamp(void)
2095 {
2096 #ifdef CONFIG_JUMP_LABEL
2097 	int wanted;
2098 
2099 	while (1) {
2100 		wanted = atomic_read(&netstamp_wanted);
2101 		if (wanted <= 1)
2102 			break;
2103 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2104 			return;
2105 	}
2106 	atomic_dec(&netstamp_needed_deferred);
2107 	schedule_work(&netstamp_work);
2108 #else
2109 	static_branch_dec(&netstamp_needed_key);
2110 #endif
2111 }
2112 EXPORT_SYMBOL(net_disable_timestamp);
2113 
2114 static inline void net_timestamp_set(struct sk_buff *skb)
2115 {
2116 	skb->tstamp = 0;
2117 	skb->mono_delivery_time = 0;
2118 	if (static_branch_unlikely(&netstamp_needed_key))
2119 		skb->tstamp = ktime_get_real();
2120 }
2121 
2122 #define net_timestamp_check(COND, SKB)				\
2123 	if (static_branch_unlikely(&netstamp_needed_key)) {	\
2124 		if ((COND) && !(SKB)->tstamp)			\
2125 			(SKB)->tstamp = ktime_get_real();	\
2126 	}							\
2127 
2128 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2129 {
2130 	return __is_skb_forwardable(dev, skb, true);
2131 }
2132 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2133 
2134 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2135 			      bool check_mtu)
2136 {
2137 	int ret = ____dev_forward_skb(dev, skb, check_mtu);
2138 
2139 	if (likely(!ret)) {
2140 		skb->protocol = eth_type_trans(skb, dev);
2141 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2142 	}
2143 
2144 	return ret;
2145 }
2146 
2147 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2148 {
2149 	return __dev_forward_skb2(dev, skb, true);
2150 }
2151 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2152 
2153 /**
2154  * dev_forward_skb - loopback an skb to another netif
2155  *
2156  * @dev: destination network device
2157  * @skb: buffer to forward
2158  *
2159  * return values:
2160  *	NET_RX_SUCCESS	(no congestion)
2161  *	NET_RX_DROP     (packet was dropped, but freed)
2162  *
2163  * dev_forward_skb can be used for injecting an skb from the
2164  * start_xmit function of one device into the receive queue
2165  * of another device.
2166  *
2167  * The receiving device may be in another namespace, so
2168  * we have to clear all information in the skb that could
2169  * impact namespace isolation.
2170  */
2171 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2172 {
2173 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2174 }
2175 EXPORT_SYMBOL_GPL(dev_forward_skb);
2176 
2177 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2178 {
2179 	return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2180 }
2181 
2182 static inline int deliver_skb(struct sk_buff *skb,
2183 			      struct packet_type *pt_prev,
2184 			      struct net_device *orig_dev)
2185 {
2186 	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2187 		return -ENOMEM;
2188 	refcount_inc(&skb->users);
2189 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2190 }
2191 
2192 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2193 					  struct packet_type **pt,
2194 					  struct net_device *orig_dev,
2195 					  __be16 type,
2196 					  struct list_head *ptype_list)
2197 {
2198 	struct packet_type *ptype, *pt_prev = *pt;
2199 
2200 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2201 		if (ptype->type != type)
2202 			continue;
2203 		if (pt_prev)
2204 			deliver_skb(skb, pt_prev, orig_dev);
2205 		pt_prev = ptype;
2206 	}
2207 	*pt = pt_prev;
2208 }
2209 
2210 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2211 {
2212 	if (!ptype->af_packet_priv || !skb->sk)
2213 		return false;
2214 
2215 	if (ptype->id_match)
2216 		return ptype->id_match(ptype, skb->sk);
2217 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2218 		return true;
2219 
2220 	return false;
2221 }
2222 
2223 /**
2224  * dev_nit_active - return true if any network interface taps are in use
2225  *
2226  * @dev: network device to check for the presence of taps
2227  */
2228 bool dev_nit_active(struct net_device *dev)
2229 {
2230 	return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2231 }
2232 EXPORT_SYMBOL_GPL(dev_nit_active);
2233 
2234 /*
2235  *	Support routine. Sends outgoing frames to any network
2236  *	taps currently in use.
2237  */
2238 
2239 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2240 {
2241 	struct packet_type *ptype;
2242 	struct sk_buff *skb2 = NULL;
2243 	struct packet_type *pt_prev = NULL;
2244 	struct list_head *ptype_list = &ptype_all;
2245 
2246 	rcu_read_lock();
2247 again:
2248 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2249 		if (ptype->ignore_outgoing)
2250 			continue;
2251 
2252 		/* Never send packets back to the socket
2253 		 * they originated from - MvS (miquels@drinkel.ow.org)
2254 		 */
2255 		if (skb_loop_sk(ptype, skb))
2256 			continue;
2257 
2258 		if (pt_prev) {
2259 			deliver_skb(skb2, pt_prev, skb->dev);
2260 			pt_prev = ptype;
2261 			continue;
2262 		}
2263 
2264 		/* need to clone skb, done only once */
2265 		skb2 = skb_clone(skb, GFP_ATOMIC);
2266 		if (!skb2)
2267 			goto out_unlock;
2268 
2269 		net_timestamp_set(skb2);
2270 
2271 		/* skb->nh should be correctly
2272 		 * set by sender, so that the second statement is
2273 		 * just protection against buggy protocols.
2274 		 */
2275 		skb_reset_mac_header(skb2);
2276 
2277 		if (skb_network_header(skb2) < skb2->data ||
2278 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2279 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2280 					     ntohs(skb2->protocol),
2281 					     dev->name);
2282 			skb_reset_network_header(skb2);
2283 		}
2284 
2285 		skb2->transport_header = skb2->network_header;
2286 		skb2->pkt_type = PACKET_OUTGOING;
2287 		pt_prev = ptype;
2288 	}
2289 
2290 	if (ptype_list == &ptype_all) {
2291 		ptype_list = &dev->ptype_all;
2292 		goto again;
2293 	}
2294 out_unlock:
2295 	if (pt_prev) {
2296 		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2297 			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2298 		else
2299 			kfree_skb(skb2);
2300 	}
2301 	rcu_read_unlock();
2302 }
2303 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2304 
2305 /**
2306  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2307  * @dev: Network device
2308  * @txq: number of queues available
2309  *
2310  * If real_num_tx_queues is changed the tc mappings may no longer be
2311  * valid. To resolve this verify the tc mapping remains valid and if
2312  * not NULL the mapping. With no priorities mapping to this
2313  * offset/count pair it will no longer be used. In the worst case TC0
2314  * is invalid nothing can be done so disable priority mappings. If is
2315  * expected that drivers will fix this mapping if they can before
2316  * calling netif_set_real_num_tx_queues.
2317  */
2318 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2319 {
2320 	int i;
2321 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2322 
2323 	/* If TC0 is invalidated disable TC mapping */
2324 	if (tc->offset + tc->count > txq) {
2325 		netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2326 		dev->num_tc = 0;
2327 		return;
2328 	}
2329 
2330 	/* Invalidated prio to tc mappings set to TC0 */
2331 	for (i = 1; i < TC_BITMASK + 1; i++) {
2332 		int q = netdev_get_prio_tc_map(dev, i);
2333 
2334 		tc = &dev->tc_to_txq[q];
2335 		if (tc->offset + tc->count > txq) {
2336 			netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2337 				    i, q);
2338 			netdev_set_prio_tc_map(dev, i, 0);
2339 		}
2340 	}
2341 }
2342 
2343 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2344 {
2345 	if (dev->num_tc) {
2346 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2347 		int i;
2348 
2349 		/* walk through the TCs and see if it falls into any of them */
2350 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2351 			if ((txq - tc->offset) < tc->count)
2352 				return i;
2353 		}
2354 
2355 		/* didn't find it, just return -1 to indicate no match */
2356 		return -1;
2357 	}
2358 
2359 	return 0;
2360 }
2361 EXPORT_SYMBOL(netdev_txq_to_tc);
2362 
2363 #ifdef CONFIG_XPS
2364 static struct static_key xps_needed __read_mostly;
2365 static struct static_key xps_rxqs_needed __read_mostly;
2366 static DEFINE_MUTEX(xps_map_mutex);
2367 #define xmap_dereference(P)		\
2368 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2369 
2370 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2371 			     struct xps_dev_maps *old_maps, int tci, u16 index)
2372 {
2373 	struct xps_map *map = NULL;
2374 	int pos;
2375 
2376 	if (dev_maps)
2377 		map = xmap_dereference(dev_maps->attr_map[tci]);
2378 	if (!map)
2379 		return false;
2380 
2381 	for (pos = map->len; pos--;) {
2382 		if (map->queues[pos] != index)
2383 			continue;
2384 
2385 		if (map->len > 1) {
2386 			map->queues[pos] = map->queues[--map->len];
2387 			break;
2388 		}
2389 
2390 		if (old_maps)
2391 			RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2392 		RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2393 		kfree_rcu(map, rcu);
2394 		return false;
2395 	}
2396 
2397 	return true;
2398 }
2399 
2400 static bool remove_xps_queue_cpu(struct net_device *dev,
2401 				 struct xps_dev_maps *dev_maps,
2402 				 int cpu, u16 offset, u16 count)
2403 {
2404 	int num_tc = dev_maps->num_tc;
2405 	bool active = false;
2406 	int tci;
2407 
2408 	for (tci = cpu * num_tc; num_tc--; tci++) {
2409 		int i, j;
2410 
2411 		for (i = count, j = offset; i--; j++) {
2412 			if (!remove_xps_queue(dev_maps, NULL, tci, j))
2413 				break;
2414 		}
2415 
2416 		active |= i < 0;
2417 	}
2418 
2419 	return active;
2420 }
2421 
2422 static void reset_xps_maps(struct net_device *dev,
2423 			   struct xps_dev_maps *dev_maps,
2424 			   enum xps_map_type type)
2425 {
2426 	static_key_slow_dec_cpuslocked(&xps_needed);
2427 	if (type == XPS_RXQS)
2428 		static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2429 
2430 	RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2431 
2432 	kfree_rcu(dev_maps, rcu);
2433 }
2434 
2435 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2436 			   u16 offset, u16 count)
2437 {
2438 	struct xps_dev_maps *dev_maps;
2439 	bool active = false;
2440 	int i, j;
2441 
2442 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2443 	if (!dev_maps)
2444 		return;
2445 
2446 	for (j = 0; j < dev_maps->nr_ids; j++)
2447 		active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2448 	if (!active)
2449 		reset_xps_maps(dev, dev_maps, type);
2450 
2451 	if (type == XPS_CPUS) {
2452 		for (i = offset + (count - 1); count--; i--)
2453 			netdev_queue_numa_node_write(
2454 				netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2455 	}
2456 }
2457 
2458 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2459 				   u16 count)
2460 {
2461 	if (!static_key_false(&xps_needed))
2462 		return;
2463 
2464 	cpus_read_lock();
2465 	mutex_lock(&xps_map_mutex);
2466 
2467 	if (static_key_false(&xps_rxqs_needed))
2468 		clean_xps_maps(dev, XPS_RXQS, offset, count);
2469 
2470 	clean_xps_maps(dev, XPS_CPUS, offset, count);
2471 
2472 	mutex_unlock(&xps_map_mutex);
2473 	cpus_read_unlock();
2474 }
2475 
2476 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2477 {
2478 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2479 }
2480 
2481 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2482 				      u16 index, bool is_rxqs_map)
2483 {
2484 	struct xps_map *new_map;
2485 	int alloc_len = XPS_MIN_MAP_ALLOC;
2486 	int i, pos;
2487 
2488 	for (pos = 0; map && pos < map->len; pos++) {
2489 		if (map->queues[pos] != index)
2490 			continue;
2491 		return map;
2492 	}
2493 
2494 	/* Need to add tx-queue to this CPU's/rx-queue's existing map */
2495 	if (map) {
2496 		if (pos < map->alloc_len)
2497 			return map;
2498 
2499 		alloc_len = map->alloc_len * 2;
2500 	}
2501 
2502 	/* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2503 	 *  map
2504 	 */
2505 	if (is_rxqs_map)
2506 		new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2507 	else
2508 		new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2509 				       cpu_to_node(attr_index));
2510 	if (!new_map)
2511 		return NULL;
2512 
2513 	for (i = 0; i < pos; i++)
2514 		new_map->queues[i] = map->queues[i];
2515 	new_map->alloc_len = alloc_len;
2516 	new_map->len = pos;
2517 
2518 	return new_map;
2519 }
2520 
2521 /* Copy xps maps at a given index */
2522 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2523 			      struct xps_dev_maps *new_dev_maps, int index,
2524 			      int tc, bool skip_tc)
2525 {
2526 	int i, tci = index * dev_maps->num_tc;
2527 	struct xps_map *map;
2528 
2529 	/* copy maps belonging to foreign traffic classes */
2530 	for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2531 		if (i == tc && skip_tc)
2532 			continue;
2533 
2534 		/* fill in the new device map from the old device map */
2535 		map = xmap_dereference(dev_maps->attr_map[tci]);
2536 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2537 	}
2538 }
2539 
2540 /* Must be called under cpus_read_lock */
2541 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2542 			  u16 index, enum xps_map_type type)
2543 {
2544 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2545 	const unsigned long *online_mask = NULL;
2546 	bool active = false, copy = false;
2547 	int i, j, tci, numa_node_id = -2;
2548 	int maps_sz, num_tc = 1, tc = 0;
2549 	struct xps_map *map, *new_map;
2550 	unsigned int nr_ids;
2551 
2552 	if (dev->num_tc) {
2553 		/* Do not allow XPS on subordinate device directly */
2554 		num_tc = dev->num_tc;
2555 		if (num_tc < 0)
2556 			return -EINVAL;
2557 
2558 		/* If queue belongs to subordinate dev use its map */
2559 		dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2560 
2561 		tc = netdev_txq_to_tc(dev, index);
2562 		if (tc < 0)
2563 			return -EINVAL;
2564 	}
2565 
2566 	mutex_lock(&xps_map_mutex);
2567 
2568 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2569 	if (type == XPS_RXQS) {
2570 		maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2571 		nr_ids = dev->num_rx_queues;
2572 	} else {
2573 		maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2574 		if (num_possible_cpus() > 1)
2575 			online_mask = cpumask_bits(cpu_online_mask);
2576 		nr_ids = nr_cpu_ids;
2577 	}
2578 
2579 	if (maps_sz < L1_CACHE_BYTES)
2580 		maps_sz = L1_CACHE_BYTES;
2581 
2582 	/* The old dev_maps could be larger or smaller than the one we're
2583 	 * setting up now, as dev->num_tc or nr_ids could have been updated in
2584 	 * between. We could try to be smart, but let's be safe instead and only
2585 	 * copy foreign traffic classes if the two map sizes match.
2586 	 */
2587 	if (dev_maps &&
2588 	    dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2589 		copy = true;
2590 
2591 	/* allocate memory for queue storage */
2592 	for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2593 	     j < nr_ids;) {
2594 		if (!new_dev_maps) {
2595 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2596 			if (!new_dev_maps) {
2597 				mutex_unlock(&xps_map_mutex);
2598 				return -ENOMEM;
2599 			}
2600 
2601 			new_dev_maps->nr_ids = nr_ids;
2602 			new_dev_maps->num_tc = num_tc;
2603 		}
2604 
2605 		tci = j * num_tc + tc;
2606 		map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2607 
2608 		map = expand_xps_map(map, j, index, type == XPS_RXQS);
2609 		if (!map)
2610 			goto error;
2611 
2612 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2613 	}
2614 
2615 	if (!new_dev_maps)
2616 		goto out_no_new_maps;
2617 
2618 	if (!dev_maps) {
2619 		/* Increment static keys at most once per type */
2620 		static_key_slow_inc_cpuslocked(&xps_needed);
2621 		if (type == XPS_RXQS)
2622 			static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2623 	}
2624 
2625 	for (j = 0; j < nr_ids; j++) {
2626 		bool skip_tc = false;
2627 
2628 		tci = j * num_tc + tc;
2629 		if (netif_attr_test_mask(j, mask, nr_ids) &&
2630 		    netif_attr_test_online(j, online_mask, nr_ids)) {
2631 			/* add tx-queue to CPU/rx-queue maps */
2632 			int pos = 0;
2633 
2634 			skip_tc = true;
2635 
2636 			map = xmap_dereference(new_dev_maps->attr_map[tci]);
2637 			while ((pos < map->len) && (map->queues[pos] != index))
2638 				pos++;
2639 
2640 			if (pos == map->len)
2641 				map->queues[map->len++] = index;
2642 #ifdef CONFIG_NUMA
2643 			if (type == XPS_CPUS) {
2644 				if (numa_node_id == -2)
2645 					numa_node_id = cpu_to_node(j);
2646 				else if (numa_node_id != cpu_to_node(j))
2647 					numa_node_id = -1;
2648 			}
2649 #endif
2650 		}
2651 
2652 		if (copy)
2653 			xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2654 					  skip_tc);
2655 	}
2656 
2657 	rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2658 
2659 	/* Cleanup old maps */
2660 	if (!dev_maps)
2661 		goto out_no_old_maps;
2662 
2663 	for (j = 0; j < dev_maps->nr_ids; j++) {
2664 		for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2665 			map = xmap_dereference(dev_maps->attr_map[tci]);
2666 			if (!map)
2667 				continue;
2668 
2669 			if (copy) {
2670 				new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2671 				if (map == new_map)
2672 					continue;
2673 			}
2674 
2675 			RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2676 			kfree_rcu(map, rcu);
2677 		}
2678 	}
2679 
2680 	old_dev_maps = dev_maps;
2681 
2682 out_no_old_maps:
2683 	dev_maps = new_dev_maps;
2684 	active = true;
2685 
2686 out_no_new_maps:
2687 	if (type == XPS_CPUS)
2688 		/* update Tx queue numa node */
2689 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2690 					     (numa_node_id >= 0) ?
2691 					     numa_node_id : NUMA_NO_NODE);
2692 
2693 	if (!dev_maps)
2694 		goto out_no_maps;
2695 
2696 	/* removes tx-queue from unused CPUs/rx-queues */
2697 	for (j = 0; j < dev_maps->nr_ids; j++) {
2698 		tci = j * dev_maps->num_tc;
2699 
2700 		for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2701 			if (i == tc &&
2702 			    netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2703 			    netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2704 				continue;
2705 
2706 			active |= remove_xps_queue(dev_maps,
2707 						   copy ? old_dev_maps : NULL,
2708 						   tci, index);
2709 		}
2710 	}
2711 
2712 	if (old_dev_maps)
2713 		kfree_rcu(old_dev_maps, rcu);
2714 
2715 	/* free map if not active */
2716 	if (!active)
2717 		reset_xps_maps(dev, dev_maps, type);
2718 
2719 out_no_maps:
2720 	mutex_unlock(&xps_map_mutex);
2721 
2722 	return 0;
2723 error:
2724 	/* remove any maps that we added */
2725 	for (j = 0; j < nr_ids; j++) {
2726 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2727 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2728 			map = copy ?
2729 			      xmap_dereference(dev_maps->attr_map[tci]) :
2730 			      NULL;
2731 			if (new_map && new_map != map)
2732 				kfree(new_map);
2733 		}
2734 	}
2735 
2736 	mutex_unlock(&xps_map_mutex);
2737 
2738 	kfree(new_dev_maps);
2739 	return -ENOMEM;
2740 }
2741 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2742 
2743 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2744 			u16 index)
2745 {
2746 	int ret;
2747 
2748 	cpus_read_lock();
2749 	ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2750 	cpus_read_unlock();
2751 
2752 	return ret;
2753 }
2754 EXPORT_SYMBOL(netif_set_xps_queue);
2755 
2756 #endif
2757 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2758 {
2759 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2760 
2761 	/* Unbind any subordinate channels */
2762 	while (txq-- != &dev->_tx[0]) {
2763 		if (txq->sb_dev)
2764 			netdev_unbind_sb_channel(dev, txq->sb_dev);
2765 	}
2766 }
2767 
2768 void netdev_reset_tc(struct net_device *dev)
2769 {
2770 #ifdef CONFIG_XPS
2771 	netif_reset_xps_queues_gt(dev, 0);
2772 #endif
2773 	netdev_unbind_all_sb_channels(dev);
2774 
2775 	/* Reset TC configuration of device */
2776 	dev->num_tc = 0;
2777 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2778 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2779 }
2780 EXPORT_SYMBOL(netdev_reset_tc);
2781 
2782 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2783 {
2784 	if (tc >= dev->num_tc)
2785 		return -EINVAL;
2786 
2787 #ifdef CONFIG_XPS
2788 	netif_reset_xps_queues(dev, offset, count);
2789 #endif
2790 	dev->tc_to_txq[tc].count = count;
2791 	dev->tc_to_txq[tc].offset = offset;
2792 	return 0;
2793 }
2794 EXPORT_SYMBOL(netdev_set_tc_queue);
2795 
2796 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2797 {
2798 	if (num_tc > TC_MAX_QUEUE)
2799 		return -EINVAL;
2800 
2801 #ifdef CONFIG_XPS
2802 	netif_reset_xps_queues_gt(dev, 0);
2803 #endif
2804 	netdev_unbind_all_sb_channels(dev);
2805 
2806 	dev->num_tc = num_tc;
2807 	return 0;
2808 }
2809 EXPORT_SYMBOL(netdev_set_num_tc);
2810 
2811 void netdev_unbind_sb_channel(struct net_device *dev,
2812 			      struct net_device *sb_dev)
2813 {
2814 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2815 
2816 #ifdef CONFIG_XPS
2817 	netif_reset_xps_queues_gt(sb_dev, 0);
2818 #endif
2819 	memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2820 	memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2821 
2822 	while (txq-- != &dev->_tx[0]) {
2823 		if (txq->sb_dev == sb_dev)
2824 			txq->sb_dev = NULL;
2825 	}
2826 }
2827 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2828 
2829 int netdev_bind_sb_channel_queue(struct net_device *dev,
2830 				 struct net_device *sb_dev,
2831 				 u8 tc, u16 count, u16 offset)
2832 {
2833 	/* Make certain the sb_dev and dev are already configured */
2834 	if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2835 		return -EINVAL;
2836 
2837 	/* We cannot hand out queues we don't have */
2838 	if ((offset + count) > dev->real_num_tx_queues)
2839 		return -EINVAL;
2840 
2841 	/* Record the mapping */
2842 	sb_dev->tc_to_txq[tc].count = count;
2843 	sb_dev->tc_to_txq[tc].offset = offset;
2844 
2845 	/* Provide a way for Tx queue to find the tc_to_txq map or
2846 	 * XPS map for itself.
2847 	 */
2848 	while (count--)
2849 		netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2850 
2851 	return 0;
2852 }
2853 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2854 
2855 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2856 {
2857 	/* Do not use a multiqueue device to represent a subordinate channel */
2858 	if (netif_is_multiqueue(dev))
2859 		return -ENODEV;
2860 
2861 	/* We allow channels 1 - 32767 to be used for subordinate channels.
2862 	 * Channel 0 is meant to be "native" mode and used only to represent
2863 	 * the main root device. We allow writing 0 to reset the device back
2864 	 * to normal mode after being used as a subordinate channel.
2865 	 */
2866 	if (channel > S16_MAX)
2867 		return -EINVAL;
2868 
2869 	dev->num_tc = -channel;
2870 
2871 	return 0;
2872 }
2873 EXPORT_SYMBOL(netdev_set_sb_channel);
2874 
2875 /*
2876  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2877  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2878  */
2879 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2880 {
2881 	bool disabling;
2882 	int rc;
2883 
2884 	disabling = txq < dev->real_num_tx_queues;
2885 
2886 	if (txq < 1 || txq > dev->num_tx_queues)
2887 		return -EINVAL;
2888 
2889 	if (dev->reg_state == NETREG_REGISTERED ||
2890 	    dev->reg_state == NETREG_UNREGISTERING) {
2891 		ASSERT_RTNL();
2892 
2893 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2894 						  txq);
2895 		if (rc)
2896 			return rc;
2897 
2898 		if (dev->num_tc)
2899 			netif_setup_tc(dev, txq);
2900 
2901 		dev_qdisc_change_real_num_tx(dev, txq);
2902 
2903 		dev->real_num_tx_queues = txq;
2904 
2905 		if (disabling) {
2906 			synchronize_net();
2907 			qdisc_reset_all_tx_gt(dev, txq);
2908 #ifdef CONFIG_XPS
2909 			netif_reset_xps_queues_gt(dev, txq);
2910 #endif
2911 		}
2912 	} else {
2913 		dev->real_num_tx_queues = txq;
2914 	}
2915 
2916 	return 0;
2917 }
2918 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2919 
2920 #ifdef CONFIG_SYSFS
2921 /**
2922  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2923  *	@dev: Network device
2924  *	@rxq: Actual number of RX queues
2925  *
2926  *	This must be called either with the rtnl_lock held or before
2927  *	registration of the net device.  Returns 0 on success, or a
2928  *	negative error code.  If called before registration, it always
2929  *	succeeds.
2930  */
2931 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2932 {
2933 	int rc;
2934 
2935 	if (rxq < 1 || rxq > dev->num_rx_queues)
2936 		return -EINVAL;
2937 
2938 	if (dev->reg_state == NETREG_REGISTERED) {
2939 		ASSERT_RTNL();
2940 
2941 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2942 						  rxq);
2943 		if (rc)
2944 			return rc;
2945 	}
2946 
2947 	dev->real_num_rx_queues = rxq;
2948 	return 0;
2949 }
2950 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2951 #endif
2952 
2953 /**
2954  *	netif_set_real_num_queues - set actual number of RX and TX queues used
2955  *	@dev: Network device
2956  *	@txq: Actual number of TX queues
2957  *	@rxq: Actual number of RX queues
2958  *
2959  *	Set the real number of both TX and RX queues.
2960  *	Does nothing if the number of queues is already correct.
2961  */
2962 int netif_set_real_num_queues(struct net_device *dev,
2963 			      unsigned int txq, unsigned int rxq)
2964 {
2965 	unsigned int old_rxq = dev->real_num_rx_queues;
2966 	int err;
2967 
2968 	if (txq < 1 || txq > dev->num_tx_queues ||
2969 	    rxq < 1 || rxq > dev->num_rx_queues)
2970 		return -EINVAL;
2971 
2972 	/* Start from increases, so the error path only does decreases -
2973 	 * decreases can't fail.
2974 	 */
2975 	if (rxq > dev->real_num_rx_queues) {
2976 		err = netif_set_real_num_rx_queues(dev, rxq);
2977 		if (err)
2978 			return err;
2979 	}
2980 	if (txq > dev->real_num_tx_queues) {
2981 		err = netif_set_real_num_tx_queues(dev, txq);
2982 		if (err)
2983 			goto undo_rx;
2984 	}
2985 	if (rxq < dev->real_num_rx_queues)
2986 		WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
2987 	if (txq < dev->real_num_tx_queues)
2988 		WARN_ON(netif_set_real_num_tx_queues(dev, txq));
2989 
2990 	return 0;
2991 undo_rx:
2992 	WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
2993 	return err;
2994 }
2995 EXPORT_SYMBOL(netif_set_real_num_queues);
2996 
2997 /**
2998  * netif_set_tso_max_size() - set the max size of TSO frames supported
2999  * @dev:	netdev to update
3000  * @size:	max skb->len of a TSO frame
3001  *
3002  * Set the limit on the size of TSO super-frames the device can handle.
3003  * Unless explicitly set the stack will assume the value of
3004  * %GSO_LEGACY_MAX_SIZE.
3005  */
3006 void netif_set_tso_max_size(struct net_device *dev, unsigned int size)
3007 {
3008 	dev->tso_max_size = min(GSO_MAX_SIZE, size);
3009 	if (size < READ_ONCE(dev->gso_max_size))
3010 		netif_set_gso_max_size(dev, size);
3011 }
3012 EXPORT_SYMBOL(netif_set_tso_max_size);
3013 
3014 /**
3015  * netif_set_tso_max_segs() - set the max number of segs supported for TSO
3016  * @dev:	netdev to update
3017  * @segs:	max number of TCP segments
3018  *
3019  * Set the limit on the number of TCP segments the device can generate from
3020  * a single TSO super-frame.
3021  * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS.
3022  */
3023 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs)
3024 {
3025 	dev->tso_max_segs = segs;
3026 	if (segs < READ_ONCE(dev->gso_max_segs))
3027 		netif_set_gso_max_segs(dev, segs);
3028 }
3029 EXPORT_SYMBOL(netif_set_tso_max_segs);
3030 
3031 /**
3032  * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper
3033  * @to:		netdev to update
3034  * @from:	netdev from which to copy the limits
3035  */
3036 void netif_inherit_tso_max(struct net_device *to, const struct net_device *from)
3037 {
3038 	netif_set_tso_max_size(to, from->tso_max_size);
3039 	netif_set_tso_max_segs(to, from->tso_max_segs);
3040 }
3041 EXPORT_SYMBOL(netif_inherit_tso_max);
3042 
3043 /**
3044  * netif_get_num_default_rss_queues - default number of RSS queues
3045  *
3046  * Default value is the number of physical cores if there are only 1 or 2, or
3047  * divided by 2 if there are more.
3048  */
3049 int netif_get_num_default_rss_queues(void)
3050 {
3051 	cpumask_var_t cpus;
3052 	int cpu, count = 0;
3053 
3054 	if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL)))
3055 		return 1;
3056 
3057 	cpumask_copy(cpus, cpu_online_mask);
3058 	for_each_cpu(cpu, cpus) {
3059 		++count;
3060 		cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu));
3061 	}
3062 	free_cpumask_var(cpus);
3063 
3064 	return count > 2 ? DIV_ROUND_UP(count, 2) : count;
3065 }
3066 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3067 
3068 static void __netif_reschedule(struct Qdisc *q)
3069 {
3070 	struct softnet_data *sd;
3071 	unsigned long flags;
3072 
3073 	local_irq_save(flags);
3074 	sd = this_cpu_ptr(&softnet_data);
3075 	q->next_sched = NULL;
3076 	*sd->output_queue_tailp = q;
3077 	sd->output_queue_tailp = &q->next_sched;
3078 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3079 	local_irq_restore(flags);
3080 }
3081 
3082 void __netif_schedule(struct Qdisc *q)
3083 {
3084 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3085 		__netif_reschedule(q);
3086 }
3087 EXPORT_SYMBOL(__netif_schedule);
3088 
3089 struct dev_kfree_skb_cb {
3090 	enum skb_free_reason reason;
3091 };
3092 
3093 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3094 {
3095 	return (struct dev_kfree_skb_cb *)skb->cb;
3096 }
3097 
3098 void netif_schedule_queue(struct netdev_queue *txq)
3099 {
3100 	rcu_read_lock();
3101 	if (!netif_xmit_stopped(txq)) {
3102 		struct Qdisc *q = rcu_dereference(txq->qdisc);
3103 
3104 		__netif_schedule(q);
3105 	}
3106 	rcu_read_unlock();
3107 }
3108 EXPORT_SYMBOL(netif_schedule_queue);
3109 
3110 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3111 {
3112 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3113 		struct Qdisc *q;
3114 
3115 		rcu_read_lock();
3116 		q = rcu_dereference(dev_queue->qdisc);
3117 		__netif_schedule(q);
3118 		rcu_read_unlock();
3119 	}
3120 }
3121 EXPORT_SYMBOL(netif_tx_wake_queue);
3122 
3123 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
3124 {
3125 	unsigned long flags;
3126 
3127 	if (unlikely(!skb))
3128 		return;
3129 
3130 	if (likely(refcount_read(&skb->users) == 1)) {
3131 		smp_rmb();
3132 		refcount_set(&skb->users, 0);
3133 	} else if (likely(!refcount_dec_and_test(&skb->users))) {
3134 		return;
3135 	}
3136 	get_kfree_skb_cb(skb)->reason = reason;
3137 	local_irq_save(flags);
3138 	skb->next = __this_cpu_read(softnet_data.completion_queue);
3139 	__this_cpu_write(softnet_data.completion_queue, skb);
3140 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3141 	local_irq_restore(flags);
3142 }
3143 EXPORT_SYMBOL(__dev_kfree_skb_irq);
3144 
3145 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
3146 {
3147 	if (in_hardirq() || irqs_disabled())
3148 		__dev_kfree_skb_irq(skb, reason);
3149 	else
3150 		dev_kfree_skb(skb);
3151 }
3152 EXPORT_SYMBOL(__dev_kfree_skb_any);
3153 
3154 
3155 /**
3156  * netif_device_detach - mark device as removed
3157  * @dev: network device
3158  *
3159  * Mark device as removed from system and therefore no longer available.
3160  */
3161 void netif_device_detach(struct net_device *dev)
3162 {
3163 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3164 	    netif_running(dev)) {
3165 		netif_tx_stop_all_queues(dev);
3166 	}
3167 }
3168 EXPORT_SYMBOL(netif_device_detach);
3169 
3170 /**
3171  * netif_device_attach - mark device as attached
3172  * @dev: network device
3173  *
3174  * Mark device as attached from system and restart if needed.
3175  */
3176 void netif_device_attach(struct net_device *dev)
3177 {
3178 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3179 	    netif_running(dev)) {
3180 		netif_tx_wake_all_queues(dev);
3181 		__netdev_watchdog_up(dev);
3182 	}
3183 }
3184 EXPORT_SYMBOL(netif_device_attach);
3185 
3186 /*
3187  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3188  * to be used as a distribution range.
3189  */
3190 static u16 skb_tx_hash(const struct net_device *dev,
3191 		       const struct net_device *sb_dev,
3192 		       struct sk_buff *skb)
3193 {
3194 	u32 hash;
3195 	u16 qoffset = 0;
3196 	u16 qcount = dev->real_num_tx_queues;
3197 
3198 	if (dev->num_tc) {
3199 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3200 
3201 		qoffset = sb_dev->tc_to_txq[tc].offset;
3202 		qcount = sb_dev->tc_to_txq[tc].count;
3203 		if (unlikely(!qcount)) {
3204 			net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3205 					     sb_dev->name, qoffset, tc);
3206 			qoffset = 0;
3207 			qcount = dev->real_num_tx_queues;
3208 		}
3209 	}
3210 
3211 	if (skb_rx_queue_recorded(skb)) {
3212 		hash = skb_get_rx_queue(skb);
3213 		if (hash >= qoffset)
3214 			hash -= qoffset;
3215 		while (unlikely(hash >= qcount))
3216 			hash -= qcount;
3217 		return hash + qoffset;
3218 	}
3219 
3220 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3221 }
3222 
3223 static void skb_warn_bad_offload(const struct sk_buff *skb)
3224 {
3225 	static const netdev_features_t null_features;
3226 	struct net_device *dev = skb->dev;
3227 	const char *name = "";
3228 
3229 	if (!net_ratelimit())
3230 		return;
3231 
3232 	if (dev) {
3233 		if (dev->dev.parent)
3234 			name = dev_driver_string(dev->dev.parent);
3235 		else
3236 			name = netdev_name(dev);
3237 	}
3238 	skb_dump(KERN_WARNING, skb, false);
3239 	WARN(1, "%s: caps=(%pNF, %pNF)\n",
3240 	     name, dev ? &dev->features : &null_features,
3241 	     skb->sk ? &skb->sk->sk_route_caps : &null_features);
3242 }
3243 
3244 /*
3245  * Invalidate hardware checksum when packet is to be mangled, and
3246  * complete checksum manually on outgoing path.
3247  */
3248 int skb_checksum_help(struct sk_buff *skb)
3249 {
3250 	__wsum csum;
3251 	int ret = 0, offset;
3252 
3253 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3254 		goto out_set_summed;
3255 
3256 	if (unlikely(skb_is_gso(skb))) {
3257 		skb_warn_bad_offload(skb);
3258 		return -EINVAL;
3259 	}
3260 
3261 	/* Before computing a checksum, we should make sure no frag could
3262 	 * be modified by an external entity : checksum could be wrong.
3263 	 */
3264 	if (skb_has_shared_frag(skb)) {
3265 		ret = __skb_linearize(skb);
3266 		if (ret)
3267 			goto out;
3268 	}
3269 
3270 	offset = skb_checksum_start_offset(skb);
3271 	ret = -EINVAL;
3272 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3273 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3274 		goto out;
3275 	}
3276 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
3277 
3278 	offset += skb->csum_offset;
3279 	if (WARN_ON_ONCE(offset + sizeof(__sum16) > skb_headlen(skb))) {
3280 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3281 		goto out;
3282 	}
3283 	ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3284 	if (ret)
3285 		goto out;
3286 
3287 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3288 out_set_summed:
3289 	skb->ip_summed = CHECKSUM_NONE;
3290 out:
3291 	return ret;
3292 }
3293 EXPORT_SYMBOL(skb_checksum_help);
3294 
3295 int skb_crc32c_csum_help(struct sk_buff *skb)
3296 {
3297 	__le32 crc32c_csum;
3298 	int ret = 0, offset, start;
3299 
3300 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3301 		goto out;
3302 
3303 	if (unlikely(skb_is_gso(skb)))
3304 		goto out;
3305 
3306 	/* Before computing a checksum, we should make sure no frag could
3307 	 * be modified by an external entity : checksum could be wrong.
3308 	 */
3309 	if (unlikely(skb_has_shared_frag(skb))) {
3310 		ret = __skb_linearize(skb);
3311 		if (ret)
3312 			goto out;
3313 	}
3314 	start = skb_checksum_start_offset(skb);
3315 	offset = start + offsetof(struct sctphdr, checksum);
3316 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3317 		ret = -EINVAL;
3318 		goto out;
3319 	}
3320 
3321 	ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3322 	if (ret)
3323 		goto out;
3324 
3325 	crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3326 						  skb->len - start, ~(__u32)0,
3327 						  crc32c_csum_stub));
3328 	*(__le32 *)(skb->data + offset) = crc32c_csum;
3329 	skb->ip_summed = CHECKSUM_NONE;
3330 	skb->csum_not_inet = 0;
3331 out:
3332 	return ret;
3333 }
3334 
3335 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3336 {
3337 	__be16 type = skb->protocol;
3338 
3339 	/* Tunnel gso handlers can set protocol to ethernet. */
3340 	if (type == htons(ETH_P_TEB)) {
3341 		struct ethhdr *eth;
3342 
3343 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3344 			return 0;
3345 
3346 		eth = (struct ethhdr *)skb->data;
3347 		type = eth->h_proto;
3348 	}
3349 
3350 	return __vlan_get_protocol(skb, type, depth);
3351 }
3352 
3353 /* openvswitch calls this on rx path, so we need a different check.
3354  */
3355 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3356 {
3357 	if (tx_path)
3358 		return skb->ip_summed != CHECKSUM_PARTIAL &&
3359 		       skb->ip_summed != CHECKSUM_UNNECESSARY;
3360 
3361 	return skb->ip_summed == CHECKSUM_NONE;
3362 }
3363 
3364 /**
3365  *	__skb_gso_segment - Perform segmentation on skb.
3366  *	@skb: buffer to segment
3367  *	@features: features for the output path (see dev->features)
3368  *	@tx_path: whether it is called in TX path
3369  *
3370  *	This function segments the given skb and returns a list of segments.
3371  *
3372  *	It may return NULL if the skb requires no segmentation.  This is
3373  *	only possible when GSO is used for verifying header integrity.
3374  *
3375  *	Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
3376  */
3377 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3378 				  netdev_features_t features, bool tx_path)
3379 {
3380 	struct sk_buff *segs;
3381 
3382 	if (unlikely(skb_needs_check(skb, tx_path))) {
3383 		int err;
3384 
3385 		/* We're going to init ->check field in TCP or UDP header */
3386 		err = skb_cow_head(skb, 0);
3387 		if (err < 0)
3388 			return ERR_PTR(err);
3389 	}
3390 
3391 	/* Only report GSO partial support if it will enable us to
3392 	 * support segmentation on this frame without needing additional
3393 	 * work.
3394 	 */
3395 	if (features & NETIF_F_GSO_PARTIAL) {
3396 		netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3397 		struct net_device *dev = skb->dev;
3398 
3399 		partial_features |= dev->features & dev->gso_partial_features;
3400 		if (!skb_gso_ok(skb, features | partial_features))
3401 			features &= ~NETIF_F_GSO_PARTIAL;
3402 	}
3403 
3404 	BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
3405 		     sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3406 
3407 	SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3408 	SKB_GSO_CB(skb)->encap_level = 0;
3409 
3410 	skb_reset_mac_header(skb);
3411 	skb_reset_mac_len(skb);
3412 
3413 	segs = skb_mac_gso_segment(skb, features);
3414 
3415 	if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3416 		skb_warn_bad_offload(skb);
3417 
3418 	return segs;
3419 }
3420 EXPORT_SYMBOL(__skb_gso_segment);
3421 
3422 /* Take action when hardware reception checksum errors are detected. */
3423 #ifdef CONFIG_BUG
3424 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3425 {
3426 	netdev_err(dev, "hw csum failure\n");
3427 	skb_dump(KERN_ERR, skb, true);
3428 	dump_stack();
3429 }
3430 
3431 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3432 {
3433 	DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3434 }
3435 EXPORT_SYMBOL(netdev_rx_csum_fault);
3436 #endif
3437 
3438 /* XXX: check that highmem exists at all on the given machine. */
3439 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3440 {
3441 #ifdef CONFIG_HIGHMEM
3442 	int i;
3443 
3444 	if (!(dev->features & NETIF_F_HIGHDMA)) {
3445 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3446 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3447 
3448 			if (PageHighMem(skb_frag_page(frag)))
3449 				return 1;
3450 		}
3451 	}
3452 #endif
3453 	return 0;
3454 }
3455 
3456 /* If MPLS offload request, verify we are testing hardware MPLS features
3457  * instead of standard features for the netdev.
3458  */
3459 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3460 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3461 					   netdev_features_t features,
3462 					   __be16 type)
3463 {
3464 	if (eth_p_mpls(type))
3465 		features &= skb->dev->mpls_features;
3466 
3467 	return features;
3468 }
3469 #else
3470 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3471 					   netdev_features_t features,
3472 					   __be16 type)
3473 {
3474 	return features;
3475 }
3476 #endif
3477 
3478 static netdev_features_t harmonize_features(struct sk_buff *skb,
3479 	netdev_features_t features)
3480 {
3481 	__be16 type;
3482 
3483 	type = skb_network_protocol(skb, NULL);
3484 	features = net_mpls_features(skb, features, type);
3485 
3486 	if (skb->ip_summed != CHECKSUM_NONE &&
3487 	    !can_checksum_protocol(features, type)) {
3488 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3489 	}
3490 	if (illegal_highdma(skb->dev, skb))
3491 		features &= ~NETIF_F_SG;
3492 
3493 	return features;
3494 }
3495 
3496 netdev_features_t passthru_features_check(struct sk_buff *skb,
3497 					  struct net_device *dev,
3498 					  netdev_features_t features)
3499 {
3500 	return features;
3501 }
3502 EXPORT_SYMBOL(passthru_features_check);
3503 
3504 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3505 					     struct net_device *dev,
3506 					     netdev_features_t features)
3507 {
3508 	return vlan_features_check(skb, features);
3509 }
3510 
3511 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3512 					    struct net_device *dev,
3513 					    netdev_features_t features)
3514 {
3515 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
3516 
3517 	if (gso_segs > READ_ONCE(dev->gso_max_segs))
3518 		return features & ~NETIF_F_GSO_MASK;
3519 
3520 	if (!skb_shinfo(skb)->gso_type) {
3521 		skb_warn_bad_offload(skb);
3522 		return features & ~NETIF_F_GSO_MASK;
3523 	}
3524 
3525 	/* Support for GSO partial features requires software
3526 	 * intervention before we can actually process the packets
3527 	 * so we need to strip support for any partial features now
3528 	 * and we can pull them back in after we have partially
3529 	 * segmented the frame.
3530 	 */
3531 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3532 		features &= ~dev->gso_partial_features;
3533 
3534 	/* Make sure to clear the IPv4 ID mangling feature if the
3535 	 * IPv4 header has the potential to be fragmented.
3536 	 */
3537 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3538 		struct iphdr *iph = skb->encapsulation ?
3539 				    inner_ip_hdr(skb) : ip_hdr(skb);
3540 
3541 		if (!(iph->frag_off & htons(IP_DF)))
3542 			features &= ~NETIF_F_TSO_MANGLEID;
3543 	}
3544 
3545 	return features;
3546 }
3547 
3548 netdev_features_t netif_skb_features(struct sk_buff *skb)
3549 {
3550 	struct net_device *dev = skb->dev;
3551 	netdev_features_t features = dev->features;
3552 
3553 	if (skb_is_gso(skb))
3554 		features = gso_features_check(skb, dev, features);
3555 
3556 	/* If encapsulation offload request, verify we are testing
3557 	 * hardware encapsulation features instead of standard
3558 	 * features for the netdev
3559 	 */
3560 	if (skb->encapsulation)
3561 		features &= dev->hw_enc_features;
3562 
3563 	if (skb_vlan_tagged(skb))
3564 		features = netdev_intersect_features(features,
3565 						     dev->vlan_features |
3566 						     NETIF_F_HW_VLAN_CTAG_TX |
3567 						     NETIF_F_HW_VLAN_STAG_TX);
3568 
3569 	if (dev->netdev_ops->ndo_features_check)
3570 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
3571 								features);
3572 	else
3573 		features &= dflt_features_check(skb, dev, features);
3574 
3575 	return harmonize_features(skb, features);
3576 }
3577 EXPORT_SYMBOL(netif_skb_features);
3578 
3579 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3580 		    struct netdev_queue *txq, bool more)
3581 {
3582 	unsigned int len;
3583 	int rc;
3584 
3585 	if (dev_nit_active(dev))
3586 		dev_queue_xmit_nit(skb, dev);
3587 
3588 	len = skb->len;
3589 	trace_net_dev_start_xmit(skb, dev);
3590 	rc = netdev_start_xmit(skb, dev, txq, more);
3591 	trace_net_dev_xmit(skb, rc, dev, len);
3592 
3593 	return rc;
3594 }
3595 
3596 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3597 				    struct netdev_queue *txq, int *ret)
3598 {
3599 	struct sk_buff *skb = first;
3600 	int rc = NETDEV_TX_OK;
3601 
3602 	while (skb) {
3603 		struct sk_buff *next = skb->next;
3604 
3605 		skb_mark_not_on_list(skb);
3606 		rc = xmit_one(skb, dev, txq, next != NULL);
3607 		if (unlikely(!dev_xmit_complete(rc))) {
3608 			skb->next = next;
3609 			goto out;
3610 		}
3611 
3612 		skb = next;
3613 		if (netif_tx_queue_stopped(txq) && skb) {
3614 			rc = NETDEV_TX_BUSY;
3615 			break;
3616 		}
3617 	}
3618 
3619 out:
3620 	*ret = rc;
3621 	return skb;
3622 }
3623 
3624 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3625 					  netdev_features_t features)
3626 {
3627 	if (skb_vlan_tag_present(skb) &&
3628 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3629 		skb = __vlan_hwaccel_push_inside(skb);
3630 	return skb;
3631 }
3632 
3633 int skb_csum_hwoffload_help(struct sk_buff *skb,
3634 			    const netdev_features_t features)
3635 {
3636 	if (unlikely(skb_csum_is_sctp(skb)))
3637 		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3638 			skb_crc32c_csum_help(skb);
3639 
3640 	if (features & NETIF_F_HW_CSUM)
3641 		return 0;
3642 
3643 	if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3644 		switch (skb->csum_offset) {
3645 		case offsetof(struct tcphdr, check):
3646 		case offsetof(struct udphdr, check):
3647 			return 0;
3648 		}
3649 	}
3650 
3651 	return skb_checksum_help(skb);
3652 }
3653 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3654 
3655 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3656 {
3657 	netdev_features_t features;
3658 
3659 	features = netif_skb_features(skb);
3660 	skb = validate_xmit_vlan(skb, features);
3661 	if (unlikely(!skb))
3662 		goto out_null;
3663 
3664 	skb = sk_validate_xmit_skb(skb, dev);
3665 	if (unlikely(!skb))
3666 		goto out_null;
3667 
3668 	if (netif_needs_gso(skb, features)) {
3669 		struct sk_buff *segs;
3670 
3671 		segs = skb_gso_segment(skb, features);
3672 		if (IS_ERR(segs)) {
3673 			goto out_kfree_skb;
3674 		} else if (segs) {
3675 			consume_skb(skb);
3676 			skb = segs;
3677 		}
3678 	} else {
3679 		if (skb_needs_linearize(skb, features) &&
3680 		    __skb_linearize(skb))
3681 			goto out_kfree_skb;
3682 
3683 		/* If packet is not checksummed and device does not
3684 		 * support checksumming for this protocol, complete
3685 		 * checksumming here.
3686 		 */
3687 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3688 			if (skb->encapsulation)
3689 				skb_set_inner_transport_header(skb,
3690 							       skb_checksum_start_offset(skb));
3691 			else
3692 				skb_set_transport_header(skb,
3693 							 skb_checksum_start_offset(skb));
3694 			if (skb_csum_hwoffload_help(skb, features))
3695 				goto out_kfree_skb;
3696 		}
3697 	}
3698 
3699 	skb = validate_xmit_xfrm(skb, features, again);
3700 
3701 	return skb;
3702 
3703 out_kfree_skb:
3704 	kfree_skb(skb);
3705 out_null:
3706 	dev_core_stats_tx_dropped_inc(dev);
3707 	return NULL;
3708 }
3709 
3710 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3711 {
3712 	struct sk_buff *next, *head = NULL, *tail;
3713 
3714 	for (; skb != NULL; skb = next) {
3715 		next = skb->next;
3716 		skb_mark_not_on_list(skb);
3717 
3718 		/* in case skb wont be segmented, point to itself */
3719 		skb->prev = skb;
3720 
3721 		skb = validate_xmit_skb(skb, dev, again);
3722 		if (!skb)
3723 			continue;
3724 
3725 		if (!head)
3726 			head = skb;
3727 		else
3728 			tail->next = skb;
3729 		/* If skb was segmented, skb->prev points to
3730 		 * the last segment. If not, it still contains skb.
3731 		 */
3732 		tail = skb->prev;
3733 	}
3734 	return head;
3735 }
3736 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3737 
3738 static void qdisc_pkt_len_init(struct sk_buff *skb)
3739 {
3740 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3741 
3742 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3743 
3744 	/* To get more precise estimation of bytes sent on wire,
3745 	 * we add to pkt_len the headers size of all segments
3746 	 */
3747 	if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3748 		unsigned int hdr_len;
3749 		u16 gso_segs = shinfo->gso_segs;
3750 
3751 		/* mac layer + network layer */
3752 		hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3753 
3754 		/* + transport layer */
3755 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3756 			const struct tcphdr *th;
3757 			struct tcphdr _tcphdr;
3758 
3759 			th = skb_header_pointer(skb, skb_transport_offset(skb),
3760 						sizeof(_tcphdr), &_tcphdr);
3761 			if (likely(th))
3762 				hdr_len += __tcp_hdrlen(th);
3763 		} else {
3764 			struct udphdr _udphdr;
3765 
3766 			if (skb_header_pointer(skb, skb_transport_offset(skb),
3767 					       sizeof(_udphdr), &_udphdr))
3768 				hdr_len += sizeof(struct udphdr);
3769 		}
3770 
3771 		if (shinfo->gso_type & SKB_GSO_DODGY)
3772 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3773 						shinfo->gso_size);
3774 
3775 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3776 	}
3777 }
3778 
3779 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
3780 			     struct sk_buff **to_free,
3781 			     struct netdev_queue *txq)
3782 {
3783 	int rc;
3784 
3785 	rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
3786 	if (rc == NET_XMIT_SUCCESS)
3787 		trace_qdisc_enqueue(q, txq, skb);
3788 	return rc;
3789 }
3790 
3791 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3792 				 struct net_device *dev,
3793 				 struct netdev_queue *txq)
3794 {
3795 	spinlock_t *root_lock = qdisc_lock(q);
3796 	struct sk_buff *to_free = NULL;
3797 	bool contended;
3798 	int rc;
3799 
3800 	qdisc_calculate_pkt_len(skb, q);
3801 
3802 	if (q->flags & TCQ_F_NOLOCK) {
3803 		if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
3804 		    qdisc_run_begin(q)) {
3805 			/* Retest nolock_qdisc_is_empty() within the protection
3806 			 * of q->seqlock to protect from racing with requeuing.
3807 			 */
3808 			if (unlikely(!nolock_qdisc_is_empty(q))) {
3809 				rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3810 				__qdisc_run(q);
3811 				qdisc_run_end(q);
3812 
3813 				goto no_lock_out;
3814 			}
3815 
3816 			qdisc_bstats_cpu_update(q, skb);
3817 			if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
3818 			    !nolock_qdisc_is_empty(q))
3819 				__qdisc_run(q);
3820 
3821 			qdisc_run_end(q);
3822 			return NET_XMIT_SUCCESS;
3823 		}
3824 
3825 		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3826 		qdisc_run(q);
3827 
3828 no_lock_out:
3829 		if (unlikely(to_free))
3830 			kfree_skb_list_reason(to_free,
3831 					      SKB_DROP_REASON_QDISC_DROP);
3832 		return rc;
3833 	}
3834 
3835 	/*
3836 	 * Heuristic to force contended enqueues to serialize on a
3837 	 * separate lock before trying to get qdisc main lock.
3838 	 * This permits qdisc->running owner to get the lock more
3839 	 * often and dequeue packets faster.
3840 	 * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit
3841 	 * and then other tasks will only enqueue packets. The packets will be
3842 	 * sent after the qdisc owner is scheduled again. To prevent this
3843 	 * scenario the task always serialize on the lock.
3844 	 */
3845 	contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT);
3846 	if (unlikely(contended))
3847 		spin_lock(&q->busylock);
3848 
3849 	spin_lock(root_lock);
3850 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3851 		__qdisc_drop(skb, &to_free);
3852 		rc = NET_XMIT_DROP;
3853 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3854 		   qdisc_run_begin(q)) {
3855 		/*
3856 		 * This is a work-conserving queue; there are no old skbs
3857 		 * waiting to be sent out; and the qdisc is not running -
3858 		 * xmit the skb directly.
3859 		 */
3860 
3861 		qdisc_bstats_update(q, skb);
3862 
3863 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3864 			if (unlikely(contended)) {
3865 				spin_unlock(&q->busylock);
3866 				contended = false;
3867 			}
3868 			__qdisc_run(q);
3869 		}
3870 
3871 		qdisc_run_end(q);
3872 		rc = NET_XMIT_SUCCESS;
3873 	} else {
3874 		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3875 		if (qdisc_run_begin(q)) {
3876 			if (unlikely(contended)) {
3877 				spin_unlock(&q->busylock);
3878 				contended = false;
3879 			}
3880 			__qdisc_run(q);
3881 			qdisc_run_end(q);
3882 		}
3883 	}
3884 	spin_unlock(root_lock);
3885 	if (unlikely(to_free))
3886 		kfree_skb_list_reason(to_free, SKB_DROP_REASON_QDISC_DROP);
3887 	if (unlikely(contended))
3888 		spin_unlock(&q->busylock);
3889 	return rc;
3890 }
3891 
3892 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3893 static void skb_update_prio(struct sk_buff *skb)
3894 {
3895 	const struct netprio_map *map;
3896 	const struct sock *sk;
3897 	unsigned int prioidx;
3898 
3899 	if (skb->priority)
3900 		return;
3901 	map = rcu_dereference_bh(skb->dev->priomap);
3902 	if (!map)
3903 		return;
3904 	sk = skb_to_full_sk(skb);
3905 	if (!sk)
3906 		return;
3907 
3908 	prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3909 
3910 	if (prioidx < map->priomap_len)
3911 		skb->priority = map->priomap[prioidx];
3912 }
3913 #else
3914 #define skb_update_prio(skb)
3915 #endif
3916 
3917 /**
3918  *	dev_loopback_xmit - loop back @skb
3919  *	@net: network namespace this loopback is happening in
3920  *	@sk:  sk needed to be a netfilter okfn
3921  *	@skb: buffer to transmit
3922  */
3923 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3924 {
3925 	skb_reset_mac_header(skb);
3926 	__skb_pull(skb, skb_network_offset(skb));
3927 	skb->pkt_type = PACKET_LOOPBACK;
3928 	if (skb->ip_summed == CHECKSUM_NONE)
3929 		skb->ip_summed = CHECKSUM_UNNECESSARY;
3930 	DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb));
3931 	skb_dst_force(skb);
3932 	netif_rx(skb);
3933 	return 0;
3934 }
3935 EXPORT_SYMBOL(dev_loopback_xmit);
3936 
3937 #ifdef CONFIG_NET_EGRESS
3938 static struct sk_buff *
3939 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3940 {
3941 #ifdef CONFIG_NET_CLS_ACT
3942 	struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3943 	struct tcf_result cl_res;
3944 
3945 	if (!miniq)
3946 		return skb;
3947 
3948 	/* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3949 	tc_skb_cb(skb)->mru = 0;
3950 	tc_skb_cb(skb)->post_ct = false;
3951 	mini_qdisc_bstats_cpu_update(miniq, skb);
3952 
3953 	switch (tcf_classify(skb, miniq->block, miniq->filter_list, &cl_res, false)) {
3954 	case TC_ACT_OK:
3955 	case TC_ACT_RECLASSIFY:
3956 		skb->tc_index = TC_H_MIN(cl_res.classid);
3957 		break;
3958 	case TC_ACT_SHOT:
3959 		mini_qdisc_qstats_cpu_drop(miniq);
3960 		*ret = NET_XMIT_DROP;
3961 		kfree_skb_reason(skb, SKB_DROP_REASON_TC_EGRESS);
3962 		return NULL;
3963 	case TC_ACT_STOLEN:
3964 	case TC_ACT_QUEUED:
3965 	case TC_ACT_TRAP:
3966 		*ret = NET_XMIT_SUCCESS;
3967 		consume_skb(skb);
3968 		return NULL;
3969 	case TC_ACT_REDIRECT:
3970 		/* No need to push/pop skb's mac_header here on egress! */
3971 		skb_do_redirect(skb);
3972 		*ret = NET_XMIT_SUCCESS;
3973 		return NULL;
3974 	default:
3975 		break;
3976 	}
3977 #endif /* CONFIG_NET_CLS_ACT */
3978 
3979 	return skb;
3980 }
3981 
3982 static struct netdev_queue *
3983 netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb)
3984 {
3985 	int qm = skb_get_queue_mapping(skb);
3986 
3987 	return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm));
3988 }
3989 
3990 static bool netdev_xmit_txqueue_skipped(void)
3991 {
3992 	return __this_cpu_read(softnet_data.xmit.skip_txqueue);
3993 }
3994 
3995 void netdev_xmit_skip_txqueue(bool skip)
3996 {
3997 	__this_cpu_write(softnet_data.xmit.skip_txqueue, skip);
3998 }
3999 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
4000 #endif /* CONFIG_NET_EGRESS */
4001 
4002 #ifdef CONFIG_XPS
4003 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
4004 			       struct xps_dev_maps *dev_maps, unsigned int tci)
4005 {
4006 	int tc = netdev_get_prio_tc_map(dev, skb->priority);
4007 	struct xps_map *map;
4008 	int queue_index = -1;
4009 
4010 	if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
4011 		return queue_index;
4012 
4013 	tci *= dev_maps->num_tc;
4014 	tci += tc;
4015 
4016 	map = rcu_dereference(dev_maps->attr_map[tci]);
4017 	if (map) {
4018 		if (map->len == 1)
4019 			queue_index = map->queues[0];
4020 		else
4021 			queue_index = map->queues[reciprocal_scale(
4022 						skb_get_hash(skb), map->len)];
4023 		if (unlikely(queue_index >= dev->real_num_tx_queues))
4024 			queue_index = -1;
4025 	}
4026 	return queue_index;
4027 }
4028 #endif
4029 
4030 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4031 			 struct sk_buff *skb)
4032 {
4033 #ifdef CONFIG_XPS
4034 	struct xps_dev_maps *dev_maps;
4035 	struct sock *sk = skb->sk;
4036 	int queue_index = -1;
4037 
4038 	if (!static_key_false(&xps_needed))
4039 		return -1;
4040 
4041 	rcu_read_lock();
4042 	if (!static_key_false(&xps_rxqs_needed))
4043 		goto get_cpus_map;
4044 
4045 	dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4046 	if (dev_maps) {
4047 		int tci = sk_rx_queue_get(sk);
4048 
4049 		if (tci >= 0)
4050 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4051 							  tci);
4052 	}
4053 
4054 get_cpus_map:
4055 	if (queue_index < 0) {
4056 		dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4057 		if (dev_maps) {
4058 			unsigned int tci = skb->sender_cpu - 1;
4059 
4060 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4061 							  tci);
4062 		}
4063 	}
4064 	rcu_read_unlock();
4065 
4066 	return queue_index;
4067 #else
4068 	return -1;
4069 #endif
4070 }
4071 
4072 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4073 		     struct net_device *sb_dev)
4074 {
4075 	return 0;
4076 }
4077 EXPORT_SYMBOL(dev_pick_tx_zero);
4078 
4079 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
4080 		       struct net_device *sb_dev)
4081 {
4082 	return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4083 }
4084 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4085 
4086 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4087 		     struct net_device *sb_dev)
4088 {
4089 	struct sock *sk = skb->sk;
4090 	int queue_index = sk_tx_queue_get(sk);
4091 
4092 	sb_dev = sb_dev ? : dev;
4093 
4094 	if (queue_index < 0 || skb->ooo_okay ||
4095 	    queue_index >= dev->real_num_tx_queues) {
4096 		int new_index = get_xps_queue(dev, sb_dev, skb);
4097 
4098 		if (new_index < 0)
4099 			new_index = skb_tx_hash(dev, sb_dev, skb);
4100 
4101 		if (queue_index != new_index && sk &&
4102 		    sk_fullsock(sk) &&
4103 		    rcu_access_pointer(sk->sk_dst_cache))
4104 			sk_tx_queue_set(sk, new_index);
4105 
4106 		queue_index = new_index;
4107 	}
4108 
4109 	return queue_index;
4110 }
4111 EXPORT_SYMBOL(netdev_pick_tx);
4112 
4113 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4114 					 struct sk_buff *skb,
4115 					 struct net_device *sb_dev)
4116 {
4117 	int queue_index = 0;
4118 
4119 #ifdef CONFIG_XPS
4120 	u32 sender_cpu = skb->sender_cpu - 1;
4121 
4122 	if (sender_cpu >= (u32)NR_CPUS)
4123 		skb->sender_cpu = raw_smp_processor_id() + 1;
4124 #endif
4125 
4126 	if (dev->real_num_tx_queues != 1) {
4127 		const struct net_device_ops *ops = dev->netdev_ops;
4128 
4129 		if (ops->ndo_select_queue)
4130 			queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4131 		else
4132 			queue_index = netdev_pick_tx(dev, skb, sb_dev);
4133 
4134 		queue_index = netdev_cap_txqueue(dev, queue_index);
4135 	}
4136 
4137 	skb_set_queue_mapping(skb, queue_index);
4138 	return netdev_get_tx_queue(dev, queue_index);
4139 }
4140 
4141 /**
4142  * __dev_queue_xmit() - transmit a buffer
4143  * @skb:	buffer to transmit
4144  * @sb_dev:	suboordinate device used for L2 forwarding offload
4145  *
4146  * Queue a buffer for transmission to a network device. The caller must
4147  * have set the device and priority and built the buffer before calling
4148  * this function. The function can be called from an interrupt.
4149  *
4150  * When calling this method, interrupts MUST be enabled. This is because
4151  * the BH enable code must have IRQs enabled so that it will not deadlock.
4152  *
4153  * Regardless of the return value, the skb is consumed, so it is currently
4154  * difficult to retry a send to this method. (You can bump the ref count
4155  * before sending to hold a reference for retry if you are careful.)
4156  *
4157  * Return:
4158  * * 0				- buffer successfully transmitted
4159  * * positive qdisc return code	- NET_XMIT_DROP etc.
4160  * * negative errno		- other errors
4161  */
4162 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4163 {
4164 	struct net_device *dev = skb->dev;
4165 	struct netdev_queue *txq = NULL;
4166 	struct Qdisc *q;
4167 	int rc = -ENOMEM;
4168 	bool again = false;
4169 
4170 	skb_reset_mac_header(skb);
4171 	skb_assert_len(skb);
4172 
4173 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4174 		__skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4175 
4176 	/* Disable soft irqs for various locks below. Also
4177 	 * stops preemption for RCU.
4178 	 */
4179 	rcu_read_lock_bh();
4180 
4181 	skb_update_prio(skb);
4182 
4183 	qdisc_pkt_len_init(skb);
4184 #ifdef CONFIG_NET_CLS_ACT
4185 	skb->tc_at_ingress = 0;
4186 #endif
4187 #ifdef CONFIG_NET_EGRESS
4188 	if (static_branch_unlikely(&egress_needed_key)) {
4189 		if (nf_hook_egress_active()) {
4190 			skb = nf_hook_egress(skb, &rc, dev);
4191 			if (!skb)
4192 				goto out;
4193 		}
4194 
4195 		netdev_xmit_skip_txqueue(false);
4196 
4197 		nf_skip_egress(skb, true);
4198 		skb = sch_handle_egress(skb, &rc, dev);
4199 		if (!skb)
4200 			goto out;
4201 		nf_skip_egress(skb, false);
4202 
4203 		if (netdev_xmit_txqueue_skipped())
4204 			txq = netdev_tx_queue_mapping(dev, skb);
4205 	}
4206 #endif
4207 	/* If device/qdisc don't need skb->dst, release it right now while
4208 	 * its hot in this cpu cache.
4209 	 */
4210 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4211 		skb_dst_drop(skb);
4212 	else
4213 		skb_dst_force(skb);
4214 
4215 	if (!txq)
4216 		txq = netdev_core_pick_tx(dev, skb, sb_dev);
4217 
4218 	q = rcu_dereference_bh(txq->qdisc);
4219 
4220 	trace_net_dev_queue(skb);
4221 	if (q->enqueue) {
4222 		rc = __dev_xmit_skb(skb, q, dev, txq);
4223 		goto out;
4224 	}
4225 
4226 	/* The device has no queue. Common case for software devices:
4227 	 * loopback, all the sorts of tunnels...
4228 
4229 	 * Really, it is unlikely that netif_tx_lock protection is necessary
4230 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4231 	 * counters.)
4232 	 * However, it is possible, that they rely on protection
4233 	 * made by us here.
4234 
4235 	 * Check this and shot the lock. It is not prone from deadlocks.
4236 	 *Either shot noqueue qdisc, it is even simpler 8)
4237 	 */
4238 	if (dev->flags & IFF_UP) {
4239 		int cpu = smp_processor_id(); /* ok because BHs are off */
4240 
4241 		/* Other cpus might concurrently change txq->xmit_lock_owner
4242 		 * to -1 or to their cpu id, but not to our id.
4243 		 */
4244 		if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4245 			if (dev_xmit_recursion())
4246 				goto recursion_alert;
4247 
4248 			skb = validate_xmit_skb(skb, dev, &again);
4249 			if (!skb)
4250 				goto out;
4251 
4252 			HARD_TX_LOCK(dev, txq, cpu);
4253 
4254 			if (!netif_xmit_stopped(txq)) {
4255 				dev_xmit_recursion_inc();
4256 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4257 				dev_xmit_recursion_dec();
4258 				if (dev_xmit_complete(rc)) {
4259 					HARD_TX_UNLOCK(dev, txq);
4260 					goto out;
4261 				}
4262 			}
4263 			HARD_TX_UNLOCK(dev, txq);
4264 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4265 					     dev->name);
4266 		} else {
4267 			/* Recursion is detected! It is possible,
4268 			 * unfortunately
4269 			 */
4270 recursion_alert:
4271 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4272 					     dev->name);
4273 		}
4274 	}
4275 
4276 	rc = -ENETDOWN;
4277 	rcu_read_unlock_bh();
4278 
4279 	dev_core_stats_tx_dropped_inc(dev);
4280 	kfree_skb_list(skb);
4281 	return rc;
4282 out:
4283 	rcu_read_unlock_bh();
4284 	return rc;
4285 }
4286 EXPORT_SYMBOL(__dev_queue_xmit);
4287 
4288 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4289 {
4290 	struct net_device *dev = skb->dev;
4291 	struct sk_buff *orig_skb = skb;
4292 	struct netdev_queue *txq;
4293 	int ret = NETDEV_TX_BUSY;
4294 	bool again = false;
4295 
4296 	if (unlikely(!netif_running(dev) ||
4297 		     !netif_carrier_ok(dev)))
4298 		goto drop;
4299 
4300 	skb = validate_xmit_skb_list(skb, dev, &again);
4301 	if (skb != orig_skb)
4302 		goto drop;
4303 
4304 	skb_set_queue_mapping(skb, queue_id);
4305 	txq = skb_get_tx_queue(dev, skb);
4306 
4307 	local_bh_disable();
4308 
4309 	dev_xmit_recursion_inc();
4310 	HARD_TX_LOCK(dev, txq, smp_processor_id());
4311 	if (!netif_xmit_frozen_or_drv_stopped(txq))
4312 		ret = netdev_start_xmit(skb, dev, txq, false);
4313 	HARD_TX_UNLOCK(dev, txq);
4314 	dev_xmit_recursion_dec();
4315 
4316 	local_bh_enable();
4317 	return ret;
4318 drop:
4319 	dev_core_stats_tx_dropped_inc(dev);
4320 	kfree_skb_list(skb);
4321 	return NET_XMIT_DROP;
4322 }
4323 EXPORT_SYMBOL(__dev_direct_xmit);
4324 
4325 /*************************************************************************
4326  *			Receiver routines
4327  *************************************************************************/
4328 
4329 int netdev_max_backlog __read_mostly = 1000;
4330 EXPORT_SYMBOL(netdev_max_backlog);
4331 
4332 int netdev_tstamp_prequeue __read_mostly = 1;
4333 unsigned int sysctl_skb_defer_max __read_mostly = 64;
4334 int netdev_budget __read_mostly = 300;
4335 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4336 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4337 int weight_p __read_mostly = 64;           /* old backlog weight */
4338 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4339 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4340 int dev_rx_weight __read_mostly = 64;
4341 int dev_tx_weight __read_mostly = 64;
4342 
4343 /* Called with irq disabled */
4344 static inline void ____napi_schedule(struct softnet_data *sd,
4345 				     struct napi_struct *napi)
4346 {
4347 	struct task_struct *thread;
4348 
4349 	lockdep_assert_irqs_disabled();
4350 
4351 	if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4352 		/* Paired with smp_mb__before_atomic() in
4353 		 * napi_enable()/dev_set_threaded().
4354 		 * Use READ_ONCE() to guarantee a complete
4355 		 * read on napi->thread. Only call
4356 		 * wake_up_process() when it's not NULL.
4357 		 */
4358 		thread = READ_ONCE(napi->thread);
4359 		if (thread) {
4360 			/* Avoid doing set_bit() if the thread is in
4361 			 * INTERRUPTIBLE state, cause napi_thread_wait()
4362 			 * makes sure to proceed with napi polling
4363 			 * if the thread is explicitly woken from here.
4364 			 */
4365 			if (READ_ONCE(thread->__state) != TASK_INTERRUPTIBLE)
4366 				set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4367 			wake_up_process(thread);
4368 			return;
4369 		}
4370 	}
4371 
4372 	list_add_tail(&napi->poll_list, &sd->poll_list);
4373 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4374 }
4375 
4376 #ifdef CONFIG_RPS
4377 
4378 /* One global table that all flow-based protocols share. */
4379 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4380 EXPORT_SYMBOL(rps_sock_flow_table);
4381 u32 rps_cpu_mask __read_mostly;
4382 EXPORT_SYMBOL(rps_cpu_mask);
4383 
4384 struct static_key_false rps_needed __read_mostly;
4385 EXPORT_SYMBOL(rps_needed);
4386 struct static_key_false rfs_needed __read_mostly;
4387 EXPORT_SYMBOL(rfs_needed);
4388 
4389 static struct rps_dev_flow *
4390 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4391 	    struct rps_dev_flow *rflow, u16 next_cpu)
4392 {
4393 	if (next_cpu < nr_cpu_ids) {
4394 #ifdef CONFIG_RFS_ACCEL
4395 		struct netdev_rx_queue *rxqueue;
4396 		struct rps_dev_flow_table *flow_table;
4397 		struct rps_dev_flow *old_rflow;
4398 		u32 flow_id;
4399 		u16 rxq_index;
4400 		int rc;
4401 
4402 		/* Should we steer this flow to a different hardware queue? */
4403 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4404 		    !(dev->features & NETIF_F_NTUPLE))
4405 			goto out;
4406 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4407 		if (rxq_index == skb_get_rx_queue(skb))
4408 			goto out;
4409 
4410 		rxqueue = dev->_rx + rxq_index;
4411 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
4412 		if (!flow_table)
4413 			goto out;
4414 		flow_id = skb_get_hash(skb) & flow_table->mask;
4415 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4416 							rxq_index, flow_id);
4417 		if (rc < 0)
4418 			goto out;
4419 		old_rflow = rflow;
4420 		rflow = &flow_table->flows[flow_id];
4421 		rflow->filter = rc;
4422 		if (old_rflow->filter == rflow->filter)
4423 			old_rflow->filter = RPS_NO_FILTER;
4424 	out:
4425 #endif
4426 		rflow->last_qtail =
4427 			per_cpu(softnet_data, next_cpu).input_queue_head;
4428 	}
4429 
4430 	rflow->cpu = next_cpu;
4431 	return rflow;
4432 }
4433 
4434 /*
4435  * get_rps_cpu is called from netif_receive_skb and returns the target
4436  * CPU from the RPS map of the receiving queue for a given skb.
4437  * rcu_read_lock must be held on entry.
4438  */
4439 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4440 		       struct rps_dev_flow **rflowp)
4441 {
4442 	const struct rps_sock_flow_table *sock_flow_table;
4443 	struct netdev_rx_queue *rxqueue = dev->_rx;
4444 	struct rps_dev_flow_table *flow_table;
4445 	struct rps_map *map;
4446 	int cpu = -1;
4447 	u32 tcpu;
4448 	u32 hash;
4449 
4450 	if (skb_rx_queue_recorded(skb)) {
4451 		u16 index = skb_get_rx_queue(skb);
4452 
4453 		if (unlikely(index >= dev->real_num_rx_queues)) {
4454 			WARN_ONCE(dev->real_num_rx_queues > 1,
4455 				  "%s received packet on queue %u, but number "
4456 				  "of RX queues is %u\n",
4457 				  dev->name, index, dev->real_num_rx_queues);
4458 			goto done;
4459 		}
4460 		rxqueue += index;
4461 	}
4462 
4463 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4464 
4465 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4466 	map = rcu_dereference(rxqueue->rps_map);
4467 	if (!flow_table && !map)
4468 		goto done;
4469 
4470 	skb_reset_network_header(skb);
4471 	hash = skb_get_hash(skb);
4472 	if (!hash)
4473 		goto done;
4474 
4475 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
4476 	if (flow_table && sock_flow_table) {
4477 		struct rps_dev_flow *rflow;
4478 		u32 next_cpu;
4479 		u32 ident;
4480 
4481 		/* First check into global flow table if there is a match */
4482 		ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4483 		if ((ident ^ hash) & ~rps_cpu_mask)
4484 			goto try_rps;
4485 
4486 		next_cpu = ident & rps_cpu_mask;
4487 
4488 		/* OK, now we know there is a match,
4489 		 * we can look at the local (per receive queue) flow table
4490 		 */
4491 		rflow = &flow_table->flows[hash & flow_table->mask];
4492 		tcpu = rflow->cpu;
4493 
4494 		/*
4495 		 * If the desired CPU (where last recvmsg was done) is
4496 		 * different from current CPU (one in the rx-queue flow
4497 		 * table entry), switch if one of the following holds:
4498 		 *   - Current CPU is unset (>= nr_cpu_ids).
4499 		 *   - Current CPU is offline.
4500 		 *   - The current CPU's queue tail has advanced beyond the
4501 		 *     last packet that was enqueued using this table entry.
4502 		 *     This guarantees that all previous packets for the flow
4503 		 *     have been dequeued, thus preserving in order delivery.
4504 		 */
4505 		if (unlikely(tcpu != next_cpu) &&
4506 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4507 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4508 		      rflow->last_qtail)) >= 0)) {
4509 			tcpu = next_cpu;
4510 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4511 		}
4512 
4513 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4514 			*rflowp = rflow;
4515 			cpu = tcpu;
4516 			goto done;
4517 		}
4518 	}
4519 
4520 try_rps:
4521 
4522 	if (map) {
4523 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4524 		if (cpu_online(tcpu)) {
4525 			cpu = tcpu;
4526 			goto done;
4527 		}
4528 	}
4529 
4530 done:
4531 	return cpu;
4532 }
4533 
4534 #ifdef CONFIG_RFS_ACCEL
4535 
4536 /**
4537  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4538  * @dev: Device on which the filter was set
4539  * @rxq_index: RX queue index
4540  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4541  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4542  *
4543  * Drivers that implement ndo_rx_flow_steer() should periodically call
4544  * this function for each installed filter and remove the filters for
4545  * which it returns %true.
4546  */
4547 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4548 			 u32 flow_id, u16 filter_id)
4549 {
4550 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4551 	struct rps_dev_flow_table *flow_table;
4552 	struct rps_dev_flow *rflow;
4553 	bool expire = true;
4554 	unsigned int cpu;
4555 
4556 	rcu_read_lock();
4557 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4558 	if (flow_table && flow_id <= flow_table->mask) {
4559 		rflow = &flow_table->flows[flow_id];
4560 		cpu = READ_ONCE(rflow->cpu);
4561 		if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4562 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4563 			   rflow->last_qtail) <
4564 		     (int)(10 * flow_table->mask)))
4565 			expire = false;
4566 	}
4567 	rcu_read_unlock();
4568 	return expire;
4569 }
4570 EXPORT_SYMBOL(rps_may_expire_flow);
4571 
4572 #endif /* CONFIG_RFS_ACCEL */
4573 
4574 /* Called from hardirq (IPI) context */
4575 static void rps_trigger_softirq(void *data)
4576 {
4577 	struct softnet_data *sd = data;
4578 
4579 	____napi_schedule(sd, &sd->backlog);
4580 	sd->received_rps++;
4581 }
4582 
4583 #endif /* CONFIG_RPS */
4584 
4585 /* Called from hardirq (IPI) context */
4586 static void trigger_rx_softirq(void *data)
4587 {
4588 	struct softnet_data *sd = data;
4589 
4590 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4591 	smp_store_release(&sd->defer_ipi_scheduled, 0);
4592 }
4593 
4594 /*
4595  * Check if this softnet_data structure is another cpu one
4596  * If yes, queue it to our IPI list and return 1
4597  * If no, return 0
4598  */
4599 static int napi_schedule_rps(struct softnet_data *sd)
4600 {
4601 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4602 
4603 #ifdef CONFIG_RPS
4604 	if (sd != mysd) {
4605 		sd->rps_ipi_next = mysd->rps_ipi_list;
4606 		mysd->rps_ipi_list = sd;
4607 
4608 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4609 		return 1;
4610 	}
4611 #endif /* CONFIG_RPS */
4612 	__napi_schedule_irqoff(&mysd->backlog);
4613 	return 0;
4614 }
4615 
4616 #ifdef CONFIG_NET_FLOW_LIMIT
4617 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4618 #endif
4619 
4620 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4621 {
4622 #ifdef CONFIG_NET_FLOW_LIMIT
4623 	struct sd_flow_limit *fl;
4624 	struct softnet_data *sd;
4625 	unsigned int old_flow, new_flow;
4626 
4627 	if (qlen < (netdev_max_backlog >> 1))
4628 		return false;
4629 
4630 	sd = this_cpu_ptr(&softnet_data);
4631 
4632 	rcu_read_lock();
4633 	fl = rcu_dereference(sd->flow_limit);
4634 	if (fl) {
4635 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4636 		old_flow = fl->history[fl->history_head];
4637 		fl->history[fl->history_head] = new_flow;
4638 
4639 		fl->history_head++;
4640 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4641 
4642 		if (likely(fl->buckets[old_flow]))
4643 			fl->buckets[old_flow]--;
4644 
4645 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4646 			fl->count++;
4647 			rcu_read_unlock();
4648 			return true;
4649 		}
4650 	}
4651 	rcu_read_unlock();
4652 #endif
4653 	return false;
4654 }
4655 
4656 /*
4657  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4658  * queue (may be a remote CPU queue).
4659  */
4660 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4661 			      unsigned int *qtail)
4662 {
4663 	enum skb_drop_reason reason;
4664 	struct softnet_data *sd;
4665 	unsigned long flags;
4666 	unsigned int qlen;
4667 
4668 	reason = SKB_DROP_REASON_NOT_SPECIFIED;
4669 	sd = &per_cpu(softnet_data, cpu);
4670 
4671 	rps_lock_irqsave(sd, &flags);
4672 	if (!netif_running(skb->dev))
4673 		goto drop;
4674 	qlen = skb_queue_len(&sd->input_pkt_queue);
4675 	if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4676 		if (qlen) {
4677 enqueue:
4678 			__skb_queue_tail(&sd->input_pkt_queue, skb);
4679 			input_queue_tail_incr_save(sd, qtail);
4680 			rps_unlock_irq_restore(sd, &flags);
4681 			return NET_RX_SUCCESS;
4682 		}
4683 
4684 		/* Schedule NAPI for backlog device
4685 		 * We can use non atomic operation since we own the queue lock
4686 		 */
4687 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state))
4688 			napi_schedule_rps(sd);
4689 		goto enqueue;
4690 	}
4691 	reason = SKB_DROP_REASON_CPU_BACKLOG;
4692 
4693 drop:
4694 	sd->dropped++;
4695 	rps_unlock_irq_restore(sd, &flags);
4696 
4697 	dev_core_stats_rx_dropped_inc(skb->dev);
4698 	kfree_skb_reason(skb, reason);
4699 	return NET_RX_DROP;
4700 }
4701 
4702 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4703 {
4704 	struct net_device *dev = skb->dev;
4705 	struct netdev_rx_queue *rxqueue;
4706 
4707 	rxqueue = dev->_rx;
4708 
4709 	if (skb_rx_queue_recorded(skb)) {
4710 		u16 index = skb_get_rx_queue(skb);
4711 
4712 		if (unlikely(index >= dev->real_num_rx_queues)) {
4713 			WARN_ONCE(dev->real_num_rx_queues > 1,
4714 				  "%s received packet on queue %u, but number "
4715 				  "of RX queues is %u\n",
4716 				  dev->name, index, dev->real_num_rx_queues);
4717 
4718 			return rxqueue; /* Return first rxqueue */
4719 		}
4720 		rxqueue += index;
4721 	}
4722 	return rxqueue;
4723 }
4724 
4725 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
4726 			     struct bpf_prog *xdp_prog)
4727 {
4728 	void *orig_data, *orig_data_end, *hard_start;
4729 	struct netdev_rx_queue *rxqueue;
4730 	bool orig_bcast, orig_host;
4731 	u32 mac_len, frame_sz;
4732 	__be16 orig_eth_type;
4733 	struct ethhdr *eth;
4734 	u32 metalen, act;
4735 	int off;
4736 
4737 	/* The XDP program wants to see the packet starting at the MAC
4738 	 * header.
4739 	 */
4740 	mac_len = skb->data - skb_mac_header(skb);
4741 	hard_start = skb->data - skb_headroom(skb);
4742 
4743 	/* SKB "head" area always have tailroom for skb_shared_info */
4744 	frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4745 	frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4746 
4747 	rxqueue = netif_get_rxqueue(skb);
4748 	xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4749 	xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4750 			 skb_headlen(skb) + mac_len, true);
4751 
4752 	orig_data_end = xdp->data_end;
4753 	orig_data = xdp->data;
4754 	eth = (struct ethhdr *)xdp->data;
4755 	orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
4756 	orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4757 	orig_eth_type = eth->h_proto;
4758 
4759 	act = bpf_prog_run_xdp(xdp_prog, xdp);
4760 
4761 	/* check if bpf_xdp_adjust_head was used */
4762 	off = xdp->data - orig_data;
4763 	if (off) {
4764 		if (off > 0)
4765 			__skb_pull(skb, off);
4766 		else if (off < 0)
4767 			__skb_push(skb, -off);
4768 
4769 		skb->mac_header += off;
4770 		skb_reset_network_header(skb);
4771 	}
4772 
4773 	/* check if bpf_xdp_adjust_tail was used */
4774 	off = xdp->data_end - orig_data_end;
4775 	if (off != 0) {
4776 		skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4777 		skb->len += off; /* positive on grow, negative on shrink */
4778 	}
4779 
4780 	/* check if XDP changed eth hdr such SKB needs update */
4781 	eth = (struct ethhdr *)xdp->data;
4782 	if ((orig_eth_type != eth->h_proto) ||
4783 	    (orig_host != ether_addr_equal_64bits(eth->h_dest,
4784 						  skb->dev->dev_addr)) ||
4785 	    (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4786 		__skb_push(skb, ETH_HLEN);
4787 		skb->pkt_type = PACKET_HOST;
4788 		skb->protocol = eth_type_trans(skb, skb->dev);
4789 	}
4790 
4791 	/* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
4792 	 * before calling us again on redirect path. We do not call do_redirect
4793 	 * as we leave that up to the caller.
4794 	 *
4795 	 * Caller is responsible for managing lifetime of skb (i.e. calling
4796 	 * kfree_skb in response to actions it cannot handle/XDP_DROP).
4797 	 */
4798 	switch (act) {
4799 	case XDP_REDIRECT:
4800 	case XDP_TX:
4801 		__skb_push(skb, mac_len);
4802 		break;
4803 	case XDP_PASS:
4804 		metalen = xdp->data - xdp->data_meta;
4805 		if (metalen)
4806 			skb_metadata_set(skb, metalen);
4807 		break;
4808 	}
4809 
4810 	return act;
4811 }
4812 
4813 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4814 				     struct xdp_buff *xdp,
4815 				     struct bpf_prog *xdp_prog)
4816 {
4817 	u32 act = XDP_DROP;
4818 
4819 	/* Reinjected packets coming from act_mirred or similar should
4820 	 * not get XDP generic processing.
4821 	 */
4822 	if (skb_is_redirected(skb))
4823 		return XDP_PASS;
4824 
4825 	/* XDP packets must be linear and must have sufficient headroom
4826 	 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4827 	 * native XDP provides, thus we need to do it here as well.
4828 	 */
4829 	if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4830 	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4831 		int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4832 		int troom = skb->tail + skb->data_len - skb->end;
4833 
4834 		/* In case we have to go down the path and also linearize,
4835 		 * then lets do the pskb_expand_head() work just once here.
4836 		 */
4837 		if (pskb_expand_head(skb,
4838 				     hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4839 				     troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4840 			goto do_drop;
4841 		if (skb_linearize(skb))
4842 			goto do_drop;
4843 	}
4844 
4845 	act = bpf_prog_run_generic_xdp(skb, xdp, xdp_prog);
4846 	switch (act) {
4847 	case XDP_REDIRECT:
4848 	case XDP_TX:
4849 	case XDP_PASS:
4850 		break;
4851 	default:
4852 		bpf_warn_invalid_xdp_action(skb->dev, xdp_prog, act);
4853 		fallthrough;
4854 	case XDP_ABORTED:
4855 		trace_xdp_exception(skb->dev, xdp_prog, act);
4856 		fallthrough;
4857 	case XDP_DROP:
4858 	do_drop:
4859 		kfree_skb(skb);
4860 		break;
4861 	}
4862 
4863 	return act;
4864 }
4865 
4866 /* When doing generic XDP we have to bypass the qdisc layer and the
4867  * network taps in order to match in-driver-XDP behavior. This also means
4868  * that XDP packets are able to starve other packets going through a qdisc,
4869  * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX
4870  * queues, so they do not have this starvation issue.
4871  */
4872 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4873 {
4874 	struct net_device *dev = skb->dev;
4875 	struct netdev_queue *txq;
4876 	bool free_skb = true;
4877 	int cpu, rc;
4878 
4879 	txq = netdev_core_pick_tx(dev, skb, NULL);
4880 	cpu = smp_processor_id();
4881 	HARD_TX_LOCK(dev, txq, cpu);
4882 	if (!netif_xmit_frozen_or_drv_stopped(txq)) {
4883 		rc = netdev_start_xmit(skb, dev, txq, 0);
4884 		if (dev_xmit_complete(rc))
4885 			free_skb = false;
4886 	}
4887 	HARD_TX_UNLOCK(dev, txq);
4888 	if (free_skb) {
4889 		trace_xdp_exception(dev, xdp_prog, XDP_TX);
4890 		dev_core_stats_tx_dropped_inc(dev);
4891 		kfree_skb(skb);
4892 	}
4893 }
4894 
4895 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4896 
4897 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4898 {
4899 	if (xdp_prog) {
4900 		struct xdp_buff xdp;
4901 		u32 act;
4902 		int err;
4903 
4904 		act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4905 		if (act != XDP_PASS) {
4906 			switch (act) {
4907 			case XDP_REDIRECT:
4908 				err = xdp_do_generic_redirect(skb->dev, skb,
4909 							      &xdp, xdp_prog);
4910 				if (err)
4911 					goto out_redir;
4912 				break;
4913 			case XDP_TX:
4914 				generic_xdp_tx(skb, xdp_prog);
4915 				break;
4916 			}
4917 			return XDP_DROP;
4918 		}
4919 	}
4920 	return XDP_PASS;
4921 out_redir:
4922 	kfree_skb_reason(skb, SKB_DROP_REASON_XDP);
4923 	return XDP_DROP;
4924 }
4925 EXPORT_SYMBOL_GPL(do_xdp_generic);
4926 
4927 static int netif_rx_internal(struct sk_buff *skb)
4928 {
4929 	int ret;
4930 
4931 	net_timestamp_check(netdev_tstamp_prequeue, skb);
4932 
4933 	trace_netif_rx(skb);
4934 
4935 #ifdef CONFIG_RPS
4936 	if (static_branch_unlikely(&rps_needed)) {
4937 		struct rps_dev_flow voidflow, *rflow = &voidflow;
4938 		int cpu;
4939 
4940 		rcu_read_lock();
4941 
4942 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
4943 		if (cpu < 0)
4944 			cpu = smp_processor_id();
4945 
4946 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4947 
4948 		rcu_read_unlock();
4949 	} else
4950 #endif
4951 	{
4952 		unsigned int qtail;
4953 
4954 		ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail);
4955 	}
4956 	return ret;
4957 }
4958 
4959 /**
4960  *	__netif_rx	-	Slightly optimized version of netif_rx
4961  *	@skb: buffer to post
4962  *
4963  *	This behaves as netif_rx except that it does not disable bottom halves.
4964  *	As a result this function may only be invoked from the interrupt context
4965  *	(either hard or soft interrupt).
4966  */
4967 int __netif_rx(struct sk_buff *skb)
4968 {
4969 	int ret;
4970 
4971 	lockdep_assert_once(hardirq_count() | softirq_count());
4972 
4973 	trace_netif_rx_entry(skb);
4974 	ret = netif_rx_internal(skb);
4975 	trace_netif_rx_exit(ret);
4976 	return ret;
4977 }
4978 EXPORT_SYMBOL(__netif_rx);
4979 
4980 /**
4981  *	netif_rx	-	post buffer to the network code
4982  *	@skb: buffer to post
4983  *
4984  *	This function receives a packet from a device driver and queues it for
4985  *	the upper (protocol) levels to process via the backlog NAPI device. It
4986  *	always succeeds. The buffer may be dropped during processing for
4987  *	congestion control or by the protocol layers.
4988  *	The network buffer is passed via the backlog NAPI device. Modern NIC
4989  *	driver should use NAPI and GRO.
4990  *	This function can used from interrupt and from process context. The
4991  *	caller from process context must not disable interrupts before invoking
4992  *	this function.
4993  *
4994  *	return values:
4995  *	NET_RX_SUCCESS	(no congestion)
4996  *	NET_RX_DROP     (packet was dropped)
4997  *
4998  */
4999 int netif_rx(struct sk_buff *skb)
5000 {
5001 	bool need_bh_off = !(hardirq_count() | softirq_count());
5002 	int ret;
5003 
5004 	if (need_bh_off)
5005 		local_bh_disable();
5006 	trace_netif_rx_entry(skb);
5007 	ret = netif_rx_internal(skb);
5008 	trace_netif_rx_exit(ret);
5009 	if (need_bh_off)
5010 		local_bh_enable();
5011 	return ret;
5012 }
5013 EXPORT_SYMBOL(netif_rx);
5014 
5015 static __latent_entropy void net_tx_action(struct softirq_action *h)
5016 {
5017 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5018 
5019 	if (sd->completion_queue) {
5020 		struct sk_buff *clist;
5021 
5022 		local_irq_disable();
5023 		clist = sd->completion_queue;
5024 		sd->completion_queue = NULL;
5025 		local_irq_enable();
5026 
5027 		while (clist) {
5028 			struct sk_buff *skb = clist;
5029 
5030 			clist = clist->next;
5031 
5032 			WARN_ON(refcount_read(&skb->users));
5033 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
5034 				trace_consume_skb(skb);
5035 			else
5036 				trace_kfree_skb(skb, net_tx_action,
5037 						SKB_DROP_REASON_NOT_SPECIFIED);
5038 
5039 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5040 				__kfree_skb(skb);
5041 			else
5042 				__kfree_skb_defer(skb);
5043 		}
5044 	}
5045 
5046 	if (sd->output_queue) {
5047 		struct Qdisc *head;
5048 
5049 		local_irq_disable();
5050 		head = sd->output_queue;
5051 		sd->output_queue = NULL;
5052 		sd->output_queue_tailp = &sd->output_queue;
5053 		local_irq_enable();
5054 
5055 		rcu_read_lock();
5056 
5057 		while (head) {
5058 			struct Qdisc *q = head;
5059 			spinlock_t *root_lock = NULL;
5060 
5061 			head = head->next_sched;
5062 
5063 			/* We need to make sure head->next_sched is read
5064 			 * before clearing __QDISC_STATE_SCHED
5065 			 */
5066 			smp_mb__before_atomic();
5067 
5068 			if (!(q->flags & TCQ_F_NOLOCK)) {
5069 				root_lock = qdisc_lock(q);
5070 				spin_lock(root_lock);
5071 			} else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5072 						     &q->state))) {
5073 				/* There is a synchronize_net() between
5074 				 * STATE_DEACTIVATED flag being set and
5075 				 * qdisc_reset()/some_qdisc_is_busy() in
5076 				 * dev_deactivate(), so we can safely bail out
5077 				 * early here to avoid data race between
5078 				 * qdisc_deactivate() and some_qdisc_is_busy()
5079 				 * for lockless qdisc.
5080 				 */
5081 				clear_bit(__QDISC_STATE_SCHED, &q->state);
5082 				continue;
5083 			}
5084 
5085 			clear_bit(__QDISC_STATE_SCHED, &q->state);
5086 			qdisc_run(q);
5087 			if (root_lock)
5088 				spin_unlock(root_lock);
5089 		}
5090 
5091 		rcu_read_unlock();
5092 	}
5093 
5094 	xfrm_dev_backlog(sd);
5095 }
5096 
5097 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5098 /* This hook is defined here for ATM LANE */
5099 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5100 			     unsigned char *addr) __read_mostly;
5101 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5102 #endif
5103 
5104 static inline struct sk_buff *
5105 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
5106 		   struct net_device *orig_dev, bool *another)
5107 {
5108 #ifdef CONFIG_NET_CLS_ACT
5109 	struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
5110 	struct tcf_result cl_res;
5111 
5112 	/* If there's at least one ingress present somewhere (so
5113 	 * we get here via enabled static key), remaining devices
5114 	 * that are not configured with an ingress qdisc will bail
5115 	 * out here.
5116 	 */
5117 	if (!miniq)
5118 		return skb;
5119 
5120 	if (*pt_prev) {
5121 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
5122 		*pt_prev = NULL;
5123 	}
5124 
5125 	qdisc_skb_cb(skb)->pkt_len = skb->len;
5126 	tc_skb_cb(skb)->mru = 0;
5127 	tc_skb_cb(skb)->post_ct = false;
5128 	skb->tc_at_ingress = 1;
5129 	mini_qdisc_bstats_cpu_update(miniq, skb);
5130 
5131 	switch (tcf_classify(skb, miniq->block, miniq->filter_list, &cl_res, false)) {
5132 	case TC_ACT_OK:
5133 	case TC_ACT_RECLASSIFY:
5134 		skb->tc_index = TC_H_MIN(cl_res.classid);
5135 		break;
5136 	case TC_ACT_SHOT:
5137 		mini_qdisc_qstats_cpu_drop(miniq);
5138 		kfree_skb_reason(skb, SKB_DROP_REASON_TC_INGRESS);
5139 		return NULL;
5140 	case TC_ACT_STOLEN:
5141 	case TC_ACT_QUEUED:
5142 	case TC_ACT_TRAP:
5143 		consume_skb(skb);
5144 		return NULL;
5145 	case TC_ACT_REDIRECT:
5146 		/* skb_mac_header check was done by cls/act_bpf, so
5147 		 * we can safely push the L2 header back before
5148 		 * redirecting to another netdev
5149 		 */
5150 		__skb_push(skb, skb->mac_len);
5151 		if (skb_do_redirect(skb) == -EAGAIN) {
5152 			__skb_pull(skb, skb->mac_len);
5153 			*another = true;
5154 			break;
5155 		}
5156 		return NULL;
5157 	case TC_ACT_CONSUMED:
5158 		return NULL;
5159 	default:
5160 		break;
5161 	}
5162 #endif /* CONFIG_NET_CLS_ACT */
5163 	return skb;
5164 }
5165 
5166 /**
5167  *	netdev_is_rx_handler_busy - check if receive handler is registered
5168  *	@dev: device to check
5169  *
5170  *	Check if a receive handler is already registered for a given device.
5171  *	Return true if there one.
5172  *
5173  *	The caller must hold the rtnl_mutex.
5174  */
5175 bool netdev_is_rx_handler_busy(struct net_device *dev)
5176 {
5177 	ASSERT_RTNL();
5178 	return dev && rtnl_dereference(dev->rx_handler);
5179 }
5180 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5181 
5182 /**
5183  *	netdev_rx_handler_register - register receive handler
5184  *	@dev: device to register a handler for
5185  *	@rx_handler: receive handler to register
5186  *	@rx_handler_data: data pointer that is used by rx handler
5187  *
5188  *	Register a receive handler for a device. This handler will then be
5189  *	called from __netif_receive_skb. A negative errno code is returned
5190  *	on a failure.
5191  *
5192  *	The caller must hold the rtnl_mutex.
5193  *
5194  *	For a general description of rx_handler, see enum rx_handler_result.
5195  */
5196 int netdev_rx_handler_register(struct net_device *dev,
5197 			       rx_handler_func_t *rx_handler,
5198 			       void *rx_handler_data)
5199 {
5200 	if (netdev_is_rx_handler_busy(dev))
5201 		return -EBUSY;
5202 
5203 	if (dev->priv_flags & IFF_NO_RX_HANDLER)
5204 		return -EINVAL;
5205 
5206 	/* Note: rx_handler_data must be set before rx_handler */
5207 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5208 	rcu_assign_pointer(dev->rx_handler, rx_handler);
5209 
5210 	return 0;
5211 }
5212 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5213 
5214 /**
5215  *	netdev_rx_handler_unregister - unregister receive handler
5216  *	@dev: device to unregister a handler from
5217  *
5218  *	Unregister a receive handler from a device.
5219  *
5220  *	The caller must hold the rtnl_mutex.
5221  */
5222 void netdev_rx_handler_unregister(struct net_device *dev)
5223 {
5224 
5225 	ASSERT_RTNL();
5226 	RCU_INIT_POINTER(dev->rx_handler, NULL);
5227 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5228 	 * section has a guarantee to see a non NULL rx_handler_data
5229 	 * as well.
5230 	 */
5231 	synchronize_net();
5232 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5233 }
5234 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5235 
5236 /*
5237  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5238  * the special handling of PFMEMALLOC skbs.
5239  */
5240 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5241 {
5242 	switch (skb->protocol) {
5243 	case htons(ETH_P_ARP):
5244 	case htons(ETH_P_IP):
5245 	case htons(ETH_P_IPV6):
5246 	case htons(ETH_P_8021Q):
5247 	case htons(ETH_P_8021AD):
5248 		return true;
5249 	default:
5250 		return false;
5251 	}
5252 }
5253 
5254 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5255 			     int *ret, struct net_device *orig_dev)
5256 {
5257 	if (nf_hook_ingress_active(skb)) {
5258 		int ingress_retval;
5259 
5260 		if (*pt_prev) {
5261 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
5262 			*pt_prev = NULL;
5263 		}
5264 
5265 		rcu_read_lock();
5266 		ingress_retval = nf_hook_ingress(skb);
5267 		rcu_read_unlock();
5268 		return ingress_retval;
5269 	}
5270 	return 0;
5271 }
5272 
5273 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5274 				    struct packet_type **ppt_prev)
5275 {
5276 	struct packet_type *ptype, *pt_prev;
5277 	rx_handler_func_t *rx_handler;
5278 	struct sk_buff *skb = *pskb;
5279 	struct net_device *orig_dev;
5280 	bool deliver_exact = false;
5281 	int ret = NET_RX_DROP;
5282 	__be16 type;
5283 
5284 	net_timestamp_check(!netdev_tstamp_prequeue, skb);
5285 
5286 	trace_netif_receive_skb(skb);
5287 
5288 	orig_dev = skb->dev;
5289 
5290 	skb_reset_network_header(skb);
5291 	if (!skb_transport_header_was_set(skb))
5292 		skb_reset_transport_header(skb);
5293 	skb_reset_mac_len(skb);
5294 
5295 	pt_prev = NULL;
5296 
5297 another_round:
5298 	skb->skb_iif = skb->dev->ifindex;
5299 
5300 	__this_cpu_inc(softnet_data.processed);
5301 
5302 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
5303 		int ret2;
5304 
5305 		migrate_disable();
5306 		ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5307 		migrate_enable();
5308 
5309 		if (ret2 != XDP_PASS) {
5310 			ret = NET_RX_DROP;
5311 			goto out;
5312 		}
5313 	}
5314 
5315 	if (eth_type_vlan(skb->protocol)) {
5316 		skb = skb_vlan_untag(skb);
5317 		if (unlikely(!skb))
5318 			goto out;
5319 	}
5320 
5321 	if (skb_skip_tc_classify(skb))
5322 		goto skip_classify;
5323 
5324 	if (pfmemalloc)
5325 		goto skip_taps;
5326 
5327 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
5328 		if (pt_prev)
5329 			ret = deliver_skb(skb, pt_prev, orig_dev);
5330 		pt_prev = ptype;
5331 	}
5332 
5333 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5334 		if (pt_prev)
5335 			ret = deliver_skb(skb, pt_prev, orig_dev);
5336 		pt_prev = ptype;
5337 	}
5338 
5339 skip_taps:
5340 #ifdef CONFIG_NET_INGRESS
5341 	if (static_branch_unlikely(&ingress_needed_key)) {
5342 		bool another = false;
5343 
5344 		nf_skip_egress(skb, true);
5345 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5346 					 &another);
5347 		if (another)
5348 			goto another_round;
5349 		if (!skb)
5350 			goto out;
5351 
5352 		nf_skip_egress(skb, false);
5353 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5354 			goto out;
5355 	}
5356 #endif
5357 	skb_reset_redirect(skb);
5358 skip_classify:
5359 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5360 		goto drop;
5361 
5362 	if (skb_vlan_tag_present(skb)) {
5363 		if (pt_prev) {
5364 			ret = deliver_skb(skb, pt_prev, orig_dev);
5365 			pt_prev = NULL;
5366 		}
5367 		if (vlan_do_receive(&skb))
5368 			goto another_round;
5369 		else if (unlikely(!skb))
5370 			goto out;
5371 	}
5372 
5373 	rx_handler = rcu_dereference(skb->dev->rx_handler);
5374 	if (rx_handler) {
5375 		if (pt_prev) {
5376 			ret = deliver_skb(skb, pt_prev, orig_dev);
5377 			pt_prev = NULL;
5378 		}
5379 		switch (rx_handler(&skb)) {
5380 		case RX_HANDLER_CONSUMED:
5381 			ret = NET_RX_SUCCESS;
5382 			goto out;
5383 		case RX_HANDLER_ANOTHER:
5384 			goto another_round;
5385 		case RX_HANDLER_EXACT:
5386 			deliver_exact = true;
5387 			break;
5388 		case RX_HANDLER_PASS:
5389 			break;
5390 		default:
5391 			BUG();
5392 		}
5393 	}
5394 
5395 	if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5396 check_vlan_id:
5397 		if (skb_vlan_tag_get_id(skb)) {
5398 			/* Vlan id is non 0 and vlan_do_receive() above couldn't
5399 			 * find vlan device.
5400 			 */
5401 			skb->pkt_type = PACKET_OTHERHOST;
5402 		} else if (eth_type_vlan(skb->protocol)) {
5403 			/* Outer header is 802.1P with vlan 0, inner header is
5404 			 * 802.1Q or 802.1AD and vlan_do_receive() above could
5405 			 * not find vlan dev for vlan id 0.
5406 			 */
5407 			__vlan_hwaccel_clear_tag(skb);
5408 			skb = skb_vlan_untag(skb);
5409 			if (unlikely(!skb))
5410 				goto out;
5411 			if (vlan_do_receive(&skb))
5412 				/* After stripping off 802.1P header with vlan 0
5413 				 * vlan dev is found for inner header.
5414 				 */
5415 				goto another_round;
5416 			else if (unlikely(!skb))
5417 				goto out;
5418 			else
5419 				/* We have stripped outer 802.1P vlan 0 header.
5420 				 * But could not find vlan dev.
5421 				 * check again for vlan id to set OTHERHOST.
5422 				 */
5423 				goto check_vlan_id;
5424 		}
5425 		/* Note: we might in the future use prio bits
5426 		 * and set skb->priority like in vlan_do_receive()
5427 		 * For the time being, just ignore Priority Code Point
5428 		 */
5429 		__vlan_hwaccel_clear_tag(skb);
5430 	}
5431 
5432 	type = skb->protocol;
5433 
5434 	/* deliver only exact match when indicated */
5435 	if (likely(!deliver_exact)) {
5436 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5437 				       &ptype_base[ntohs(type) &
5438 						   PTYPE_HASH_MASK]);
5439 	}
5440 
5441 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5442 			       &orig_dev->ptype_specific);
5443 
5444 	if (unlikely(skb->dev != orig_dev)) {
5445 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5446 				       &skb->dev->ptype_specific);
5447 	}
5448 
5449 	if (pt_prev) {
5450 		if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5451 			goto drop;
5452 		*ppt_prev = pt_prev;
5453 	} else {
5454 drop:
5455 		if (!deliver_exact)
5456 			dev_core_stats_rx_dropped_inc(skb->dev);
5457 		else
5458 			dev_core_stats_rx_nohandler_inc(skb->dev);
5459 		kfree_skb_reason(skb, SKB_DROP_REASON_UNHANDLED_PROTO);
5460 		/* Jamal, now you will not able to escape explaining
5461 		 * me how you were going to use this. :-)
5462 		 */
5463 		ret = NET_RX_DROP;
5464 	}
5465 
5466 out:
5467 	/* The invariant here is that if *ppt_prev is not NULL
5468 	 * then skb should also be non-NULL.
5469 	 *
5470 	 * Apparently *ppt_prev assignment above holds this invariant due to
5471 	 * skb dereferencing near it.
5472 	 */
5473 	*pskb = skb;
5474 	return ret;
5475 }
5476 
5477 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5478 {
5479 	struct net_device *orig_dev = skb->dev;
5480 	struct packet_type *pt_prev = NULL;
5481 	int ret;
5482 
5483 	ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5484 	if (pt_prev)
5485 		ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5486 					 skb->dev, pt_prev, orig_dev);
5487 	return ret;
5488 }
5489 
5490 /**
5491  *	netif_receive_skb_core - special purpose version of netif_receive_skb
5492  *	@skb: buffer to process
5493  *
5494  *	More direct receive version of netif_receive_skb().  It should
5495  *	only be used by callers that have a need to skip RPS and Generic XDP.
5496  *	Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5497  *
5498  *	This function may only be called from softirq context and interrupts
5499  *	should be enabled.
5500  *
5501  *	Return values (usually ignored):
5502  *	NET_RX_SUCCESS: no congestion
5503  *	NET_RX_DROP: packet was dropped
5504  */
5505 int netif_receive_skb_core(struct sk_buff *skb)
5506 {
5507 	int ret;
5508 
5509 	rcu_read_lock();
5510 	ret = __netif_receive_skb_one_core(skb, false);
5511 	rcu_read_unlock();
5512 
5513 	return ret;
5514 }
5515 EXPORT_SYMBOL(netif_receive_skb_core);
5516 
5517 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5518 						  struct packet_type *pt_prev,
5519 						  struct net_device *orig_dev)
5520 {
5521 	struct sk_buff *skb, *next;
5522 
5523 	if (!pt_prev)
5524 		return;
5525 	if (list_empty(head))
5526 		return;
5527 	if (pt_prev->list_func != NULL)
5528 		INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5529 				   ip_list_rcv, head, pt_prev, orig_dev);
5530 	else
5531 		list_for_each_entry_safe(skb, next, head, list) {
5532 			skb_list_del_init(skb);
5533 			pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5534 		}
5535 }
5536 
5537 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5538 {
5539 	/* Fast-path assumptions:
5540 	 * - There is no RX handler.
5541 	 * - Only one packet_type matches.
5542 	 * If either of these fails, we will end up doing some per-packet
5543 	 * processing in-line, then handling the 'last ptype' for the whole
5544 	 * sublist.  This can't cause out-of-order delivery to any single ptype,
5545 	 * because the 'last ptype' must be constant across the sublist, and all
5546 	 * other ptypes are handled per-packet.
5547 	 */
5548 	/* Current (common) ptype of sublist */
5549 	struct packet_type *pt_curr = NULL;
5550 	/* Current (common) orig_dev of sublist */
5551 	struct net_device *od_curr = NULL;
5552 	struct list_head sublist;
5553 	struct sk_buff *skb, *next;
5554 
5555 	INIT_LIST_HEAD(&sublist);
5556 	list_for_each_entry_safe(skb, next, head, list) {
5557 		struct net_device *orig_dev = skb->dev;
5558 		struct packet_type *pt_prev = NULL;
5559 
5560 		skb_list_del_init(skb);
5561 		__netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5562 		if (!pt_prev)
5563 			continue;
5564 		if (pt_curr != pt_prev || od_curr != orig_dev) {
5565 			/* dispatch old sublist */
5566 			__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5567 			/* start new sublist */
5568 			INIT_LIST_HEAD(&sublist);
5569 			pt_curr = pt_prev;
5570 			od_curr = orig_dev;
5571 		}
5572 		list_add_tail(&skb->list, &sublist);
5573 	}
5574 
5575 	/* dispatch final sublist */
5576 	__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5577 }
5578 
5579 static int __netif_receive_skb(struct sk_buff *skb)
5580 {
5581 	int ret;
5582 
5583 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5584 		unsigned int noreclaim_flag;
5585 
5586 		/*
5587 		 * PFMEMALLOC skbs are special, they should
5588 		 * - be delivered to SOCK_MEMALLOC sockets only
5589 		 * - stay away from userspace
5590 		 * - have bounded memory usage
5591 		 *
5592 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
5593 		 * context down to all allocation sites.
5594 		 */
5595 		noreclaim_flag = memalloc_noreclaim_save();
5596 		ret = __netif_receive_skb_one_core(skb, true);
5597 		memalloc_noreclaim_restore(noreclaim_flag);
5598 	} else
5599 		ret = __netif_receive_skb_one_core(skb, false);
5600 
5601 	return ret;
5602 }
5603 
5604 static void __netif_receive_skb_list(struct list_head *head)
5605 {
5606 	unsigned long noreclaim_flag = 0;
5607 	struct sk_buff *skb, *next;
5608 	bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5609 
5610 	list_for_each_entry_safe(skb, next, head, list) {
5611 		if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5612 			struct list_head sublist;
5613 
5614 			/* Handle the previous sublist */
5615 			list_cut_before(&sublist, head, &skb->list);
5616 			if (!list_empty(&sublist))
5617 				__netif_receive_skb_list_core(&sublist, pfmemalloc);
5618 			pfmemalloc = !pfmemalloc;
5619 			/* See comments in __netif_receive_skb */
5620 			if (pfmemalloc)
5621 				noreclaim_flag = memalloc_noreclaim_save();
5622 			else
5623 				memalloc_noreclaim_restore(noreclaim_flag);
5624 		}
5625 	}
5626 	/* Handle the remaining sublist */
5627 	if (!list_empty(head))
5628 		__netif_receive_skb_list_core(head, pfmemalloc);
5629 	/* Restore pflags */
5630 	if (pfmemalloc)
5631 		memalloc_noreclaim_restore(noreclaim_flag);
5632 }
5633 
5634 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5635 {
5636 	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5637 	struct bpf_prog *new = xdp->prog;
5638 	int ret = 0;
5639 
5640 	switch (xdp->command) {
5641 	case XDP_SETUP_PROG:
5642 		rcu_assign_pointer(dev->xdp_prog, new);
5643 		if (old)
5644 			bpf_prog_put(old);
5645 
5646 		if (old && !new) {
5647 			static_branch_dec(&generic_xdp_needed_key);
5648 		} else if (new && !old) {
5649 			static_branch_inc(&generic_xdp_needed_key);
5650 			dev_disable_lro(dev);
5651 			dev_disable_gro_hw(dev);
5652 		}
5653 		break;
5654 
5655 	default:
5656 		ret = -EINVAL;
5657 		break;
5658 	}
5659 
5660 	return ret;
5661 }
5662 
5663 static int netif_receive_skb_internal(struct sk_buff *skb)
5664 {
5665 	int ret;
5666 
5667 	net_timestamp_check(netdev_tstamp_prequeue, skb);
5668 
5669 	if (skb_defer_rx_timestamp(skb))
5670 		return NET_RX_SUCCESS;
5671 
5672 	rcu_read_lock();
5673 #ifdef CONFIG_RPS
5674 	if (static_branch_unlikely(&rps_needed)) {
5675 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5676 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5677 
5678 		if (cpu >= 0) {
5679 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5680 			rcu_read_unlock();
5681 			return ret;
5682 		}
5683 	}
5684 #endif
5685 	ret = __netif_receive_skb(skb);
5686 	rcu_read_unlock();
5687 	return ret;
5688 }
5689 
5690 void netif_receive_skb_list_internal(struct list_head *head)
5691 {
5692 	struct sk_buff *skb, *next;
5693 	struct list_head sublist;
5694 
5695 	INIT_LIST_HEAD(&sublist);
5696 	list_for_each_entry_safe(skb, next, head, list) {
5697 		net_timestamp_check(netdev_tstamp_prequeue, skb);
5698 		skb_list_del_init(skb);
5699 		if (!skb_defer_rx_timestamp(skb))
5700 			list_add_tail(&skb->list, &sublist);
5701 	}
5702 	list_splice_init(&sublist, head);
5703 
5704 	rcu_read_lock();
5705 #ifdef CONFIG_RPS
5706 	if (static_branch_unlikely(&rps_needed)) {
5707 		list_for_each_entry_safe(skb, next, head, list) {
5708 			struct rps_dev_flow voidflow, *rflow = &voidflow;
5709 			int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5710 
5711 			if (cpu >= 0) {
5712 				/* Will be handled, remove from list */
5713 				skb_list_del_init(skb);
5714 				enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5715 			}
5716 		}
5717 	}
5718 #endif
5719 	__netif_receive_skb_list(head);
5720 	rcu_read_unlock();
5721 }
5722 
5723 /**
5724  *	netif_receive_skb - process receive buffer from network
5725  *	@skb: buffer to process
5726  *
5727  *	netif_receive_skb() is the main receive data processing function.
5728  *	It always succeeds. The buffer may be dropped during processing
5729  *	for congestion control or by the protocol layers.
5730  *
5731  *	This function may only be called from softirq context and interrupts
5732  *	should be enabled.
5733  *
5734  *	Return values (usually ignored):
5735  *	NET_RX_SUCCESS: no congestion
5736  *	NET_RX_DROP: packet was dropped
5737  */
5738 int netif_receive_skb(struct sk_buff *skb)
5739 {
5740 	int ret;
5741 
5742 	trace_netif_receive_skb_entry(skb);
5743 
5744 	ret = netif_receive_skb_internal(skb);
5745 	trace_netif_receive_skb_exit(ret);
5746 
5747 	return ret;
5748 }
5749 EXPORT_SYMBOL(netif_receive_skb);
5750 
5751 /**
5752  *	netif_receive_skb_list - process many receive buffers from network
5753  *	@head: list of skbs to process.
5754  *
5755  *	Since return value of netif_receive_skb() is normally ignored, and
5756  *	wouldn't be meaningful for a list, this function returns void.
5757  *
5758  *	This function may only be called from softirq context and interrupts
5759  *	should be enabled.
5760  */
5761 void netif_receive_skb_list(struct list_head *head)
5762 {
5763 	struct sk_buff *skb;
5764 
5765 	if (list_empty(head))
5766 		return;
5767 	if (trace_netif_receive_skb_list_entry_enabled()) {
5768 		list_for_each_entry(skb, head, list)
5769 			trace_netif_receive_skb_list_entry(skb);
5770 	}
5771 	netif_receive_skb_list_internal(head);
5772 	trace_netif_receive_skb_list_exit(0);
5773 }
5774 EXPORT_SYMBOL(netif_receive_skb_list);
5775 
5776 static DEFINE_PER_CPU(struct work_struct, flush_works);
5777 
5778 /* Network device is going away, flush any packets still pending */
5779 static void flush_backlog(struct work_struct *work)
5780 {
5781 	struct sk_buff *skb, *tmp;
5782 	struct softnet_data *sd;
5783 
5784 	local_bh_disable();
5785 	sd = this_cpu_ptr(&softnet_data);
5786 
5787 	rps_lock_irq_disable(sd);
5788 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5789 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5790 			__skb_unlink(skb, &sd->input_pkt_queue);
5791 			dev_kfree_skb_irq(skb);
5792 			input_queue_head_incr(sd);
5793 		}
5794 	}
5795 	rps_unlock_irq_enable(sd);
5796 
5797 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5798 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5799 			__skb_unlink(skb, &sd->process_queue);
5800 			kfree_skb(skb);
5801 			input_queue_head_incr(sd);
5802 		}
5803 	}
5804 	local_bh_enable();
5805 }
5806 
5807 static bool flush_required(int cpu)
5808 {
5809 #if IS_ENABLED(CONFIG_RPS)
5810 	struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5811 	bool do_flush;
5812 
5813 	rps_lock_irq_disable(sd);
5814 
5815 	/* as insertion into process_queue happens with the rps lock held,
5816 	 * process_queue access may race only with dequeue
5817 	 */
5818 	do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5819 		   !skb_queue_empty_lockless(&sd->process_queue);
5820 	rps_unlock_irq_enable(sd);
5821 
5822 	return do_flush;
5823 #endif
5824 	/* without RPS we can't safely check input_pkt_queue: during a
5825 	 * concurrent remote skb_queue_splice() we can detect as empty both
5826 	 * input_pkt_queue and process_queue even if the latter could end-up
5827 	 * containing a lot of packets.
5828 	 */
5829 	return true;
5830 }
5831 
5832 static void flush_all_backlogs(void)
5833 {
5834 	static cpumask_t flush_cpus;
5835 	unsigned int cpu;
5836 
5837 	/* since we are under rtnl lock protection we can use static data
5838 	 * for the cpumask and avoid allocating on stack the possibly
5839 	 * large mask
5840 	 */
5841 	ASSERT_RTNL();
5842 
5843 	cpus_read_lock();
5844 
5845 	cpumask_clear(&flush_cpus);
5846 	for_each_online_cpu(cpu) {
5847 		if (flush_required(cpu)) {
5848 			queue_work_on(cpu, system_highpri_wq,
5849 				      per_cpu_ptr(&flush_works, cpu));
5850 			cpumask_set_cpu(cpu, &flush_cpus);
5851 		}
5852 	}
5853 
5854 	/* we can have in flight packet[s] on the cpus we are not flushing,
5855 	 * synchronize_net() in unregister_netdevice_many() will take care of
5856 	 * them
5857 	 */
5858 	for_each_cpu(cpu, &flush_cpus)
5859 		flush_work(per_cpu_ptr(&flush_works, cpu));
5860 
5861 	cpus_read_unlock();
5862 }
5863 
5864 static void net_rps_send_ipi(struct softnet_data *remsd)
5865 {
5866 #ifdef CONFIG_RPS
5867 	while (remsd) {
5868 		struct softnet_data *next = remsd->rps_ipi_next;
5869 
5870 		if (cpu_online(remsd->cpu))
5871 			smp_call_function_single_async(remsd->cpu, &remsd->csd);
5872 		remsd = next;
5873 	}
5874 #endif
5875 }
5876 
5877 /*
5878  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5879  * Note: called with local irq disabled, but exits with local irq enabled.
5880  */
5881 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5882 {
5883 #ifdef CONFIG_RPS
5884 	struct softnet_data *remsd = sd->rps_ipi_list;
5885 
5886 	if (remsd) {
5887 		sd->rps_ipi_list = NULL;
5888 
5889 		local_irq_enable();
5890 
5891 		/* Send pending IPI's to kick RPS processing on remote cpus. */
5892 		net_rps_send_ipi(remsd);
5893 	} else
5894 #endif
5895 		local_irq_enable();
5896 }
5897 
5898 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5899 {
5900 #ifdef CONFIG_RPS
5901 	return sd->rps_ipi_list != NULL;
5902 #else
5903 	return false;
5904 #endif
5905 }
5906 
5907 static int process_backlog(struct napi_struct *napi, int quota)
5908 {
5909 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5910 	bool again = true;
5911 	int work = 0;
5912 
5913 	/* Check if we have pending ipi, its better to send them now,
5914 	 * not waiting net_rx_action() end.
5915 	 */
5916 	if (sd_has_rps_ipi_waiting(sd)) {
5917 		local_irq_disable();
5918 		net_rps_action_and_irq_enable(sd);
5919 	}
5920 
5921 	napi->weight = dev_rx_weight;
5922 	while (again) {
5923 		struct sk_buff *skb;
5924 
5925 		while ((skb = __skb_dequeue(&sd->process_queue))) {
5926 			rcu_read_lock();
5927 			__netif_receive_skb(skb);
5928 			rcu_read_unlock();
5929 			input_queue_head_incr(sd);
5930 			if (++work >= quota)
5931 				return work;
5932 
5933 		}
5934 
5935 		rps_lock_irq_disable(sd);
5936 		if (skb_queue_empty(&sd->input_pkt_queue)) {
5937 			/*
5938 			 * Inline a custom version of __napi_complete().
5939 			 * only current cpu owns and manipulates this napi,
5940 			 * and NAPI_STATE_SCHED is the only possible flag set
5941 			 * on backlog.
5942 			 * We can use a plain write instead of clear_bit(),
5943 			 * and we dont need an smp_mb() memory barrier.
5944 			 */
5945 			napi->state = 0;
5946 			again = false;
5947 		} else {
5948 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
5949 						   &sd->process_queue);
5950 		}
5951 		rps_unlock_irq_enable(sd);
5952 	}
5953 
5954 	return work;
5955 }
5956 
5957 /**
5958  * __napi_schedule - schedule for receive
5959  * @n: entry to schedule
5960  *
5961  * The entry's receive function will be scheduled to run.
5962  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5963  */
5964 void __napi_schedule(struct napi_struct *n)
5965 {
5966 	unsigned long flags;
5967 
5968 	local_irq_save(flags);
5969 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
5970 	local_irq_restore(flags);
5971 }
5972 EXPORT_SYMBOL(__napi_schedule);
5973 
5974 /**
5975  *	napi_schedule_prep - check if napi can be scheduled
5976  *	@n: napi context
5977  *
5978  * Test if NAPI routine is already running, and if not mark
5979  * it as running.  This is used as a condition variable to
5980  * insure only one NAPI poll instance runs.  We also make
5981  * sure there is no pending NAPI disable.
5982  */
5983 bool napi_schedule_prep(struct napi_struct *n)
5984 {
5985 	unsigned long val, new;
5986 
5987 	do {
5988 		val = READ_ONCE(n->state);
5989 		if (unlikely(val & NAPIF_STATE_DISABLE))
5990 			return false;
5991 		new = val | NAPIF_STATE_SCHED;
5992 
5993 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
5994 		 * This was suggested by Alexander Duyck, as compiler
5995 		 * emits better code than :
5996 		 * if (val & NAPIF_STATE_SCHED)
5997 		 *     new |= NAPIF_STATE_MISSED;
5998 		 */
5999 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6000 						   NAPIF_STATE_MISSED;
6001 	} while (cmpxchg(&n->state, val, new) != val);
6002 
6003 	return !(val & NAPIF_STATE_SCHED);
6004 }
6005 EXPORT_SYMBOL(napi_schedule_prep);
6006 
6007 /**
6008  * __napi_schedule_irqoff - schedule for receive
6009  * @n: entry to schedule
6010  *
6011  * Variant of __napi_schedule() assuming hard irqs are masked.
6012  *
6013  * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6014  * because the interrupt disabled assumption might not be true
6015  * due to force-threaded interrupts and spinlock substitution.
6016  */
6017 void __napi_schedule_irqoff(struct napi_struct *n)
6018 {
6019 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6020 		____napi_schedule(this_cpu_ptr(&softnet_data), n);
6021 	else
6022 		__napi_schedule(n);
6023 }
6024 EXPORT_SYMBOL(__napi_schedule_irqoff);
6025 
6026 bool napi_complete_done(struct napi_struct *n, int work_done)
6027 {
6028 	unsigned long flags, val, new, timeout = 0;
6029 	bool ret = true;
6030 
6031 	/*
6032 	 * 1) Don't let napi dequeue from the cpu poll list
6033 	 *    just in case its running on a different cpu.
6034 	 * 2) If we are busy polling, do nothing here, we have
6035 	 *    the guarantee we will be called later.
6036 	 */
6037 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6038 				 NAPIF_STATE_IN_BUSY_POLL)))
6039 		return false;
6040 
6041 	if (work_done) {
6042 		if (n->gro_bitmask)
6043 			timeout = READ_ONCE(n->dev->gro_flush_timeout);
6044 		n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6045 	}
6046 	if (n->defer_hard_irqs_count > 0) {
6047 		n->defer_hard_irqs_count--;
6048 		timeout = READ_ONCE(n->dev->gro_flush_timeout);
6049 		if (timeout)
6050 			ret = false;
6051 	}
6052 	if (n->gro_bitmask) {
6053 		/* When the NAPI instance uses a timeout and keeps postponing
6054 		 * it, we need to bound somehow the time packets are kept in
6055 		 * the GRO layer
6056 		 */
6057 		napi_gro_flush(n, !!timeout);
6058 	}
6059 
6060 	gro_normal_list(n);
6061 
6062 	if (unlikely(!list_empty(&n->poll_list))) {
6063 		/* If n->poll_list is not empty, we need to mask irqs */
6064 		local_irq_save(flags);
6065 		list_del_init(&n->poll_list);
6066 		local_irq_restore(flags);
6067 	}
6068 
6069 	do {
6070 		val = READ_ONCE(n->state);
6071 
6072 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6073 
6074 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6075 			      NAPIF_STATE_SCHED_THREADED |
6076 			      NAPIF_STATE_PREFER_BUSY_POLL);
6077 
6078 		/* If STATE_MISSED was set, leave STATE_SCHED set,
6079 		 * because we will call napi->poll() one more time.
6080 		 * This C code was suggested by Alexander Duyck to help gcc.
6081 		 */
6082 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6083 						    NAPIF_STATE_SCHED;
6084 	} while (cmpxchg(&n->state, val, new) != val);
6085 
6086 	if (unlikely(val & NAPIF_STATE_MISSED)) {
6087 		__napi_schedule(n);
6088 		return false;
6089 	}
6090 
6091 	if (timeout)
6092 		hrtimer_start(&n->timer, ns_to_ktime(timeout),
6093 			      HRTIMER_MODE_REL_PINNED);
6094 	return ret;
6095 }
6096 EXPORT_SYMBOL(napi_complete_done);
6097 
6098 /* must be called under rcu_read_lock(), as we dont take a reference */
6099 static struct napi_struct *napi_by_id(unsigned int napi_id)
6100 {
6101 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6102 	struct napi_struct *napi;
6103 
6104 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6105 		if (napi->napi_id == napi_id)
6106 			return napi;
6107 
6108 	return NULL;
6109 }
6110 
6111 #if defined(CONFIG_NET_RX_BUSY_POLL)
6112 
6113 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6114 {
6115 	if (!skip_schedule) {
6116 		gro_normal_list(napi);
6117 		__napi_schedule(napi);
6118 		return;
6119 	}
6120 
6121 	if (napi->gro_bitmask) {
6122 		/* flush too old packets
6123 		 * If HZ < 1000, flush all packets.
6124 		 */
6125 		napi_gro_flush(napi, HZ >= 1000);
6126 	}
6127 
6128 	gro_normal_list(napi);
6129 	clear_bit(NAPI_STATE_SCHED, &napi->state);
6130 }
6131 
6132 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll,
6133 			   u16 budget)
6134 {
6135 	bool skip_schedule = false;
6136 	unsigned long timeout;
6137 	int rc;
6138 
6139 	/* Busy polling means there is a high chance device driver hard irq
6140 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6141 	 * set in napi_schedule_prep().
6142 	 * Since we are about to call napi->poll() once more, we can safely
6143 	 * clear NAPI_STATE_MISSED.
6144 	 *
6145 	 * Note: x86 could use a single "lock and ..." instruction
6146 	 * to perform these two clear_bit()
6147 	 */
6148 	clear_bit(NAPI_STATE_MISSED, &napi->state);
6149 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6150 
6151 	local_bh_disable();
6152 
6153 	if (prefer_busy_poll) {
6154 		napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6155 		timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6156 		if (napi->defer_hard_irqs_count && timeout) {
6157 			hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6158 			skip_schedule = true;
6159 		}
6160 	}
6161 
6162 	/* All we really want here is to re-enable device interrupts.
6163 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6164 	 */
6165 	rc = napi->poll(napi, budget);
6166 	/* We can't gro_normal_list() here, because napi->poll() might have
6167 	 * rearmed the napi (napi_complete_done()) in which case it could
6168 	 * already be running on another CPU.
6169 	 */
6170 	trace_napi_poll(napi, rc, budget);
6171 	netpoll_poll_unlock(have_poll_lock);
6172 	if (rc == budget)
6173 		__busy_poll_stop(napi, skip_schedule);
6174 	local_bh_enable();
6175 }
6176 
6177 void napi_busy_loop(unsigned int napi_id,
6178 		    bool (*loop_end)(void *, unsigned long),
6179 		    void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6180 {
6181 	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6182 	int (*napi_poll)(struct napi_struct *napi, int budget);
6183 	void *have_poll_lock = NULL;
6184 	struct napi_struct *napi;
6185 
6186 restart:
6187 	napi_poll = NULL;
6188 
6189 	rcu_read_lock();
6190 
6191 	napi = napi_by_id(napi_id);
6192 	if (!napi)
6193 		goto out;
6194 
6195 	preempt_disable();
6196 	for (;;) {
6197 		int work = 0;
6198 
6199 		local_bh_disable();
6200 		if (!napi_poll) {
6201 			unsigned long val = READ_ONCE(napi->state);
6202 
6203 			/* If multiple threads are competing for this napi,
6204 			 * we avoid dirtying napi->state as much as we can.
6205 			 */
6206 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6207 				   NAPIF_STATE_IN_BUSY_POLL)) {
6208 				if (prefer_busy_poll)
6209 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6210 				goto count;
6211 			}
6212 			if (cmpxchg(&napi->state, val,
6213 				    val | NAPIF_STATE_IN_BUSY_POLL |
6214 					  NAPIF_STATE_SCHED) != val) {
6215 				if (prefer_busy_poll)
6216 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6217 				goto count;
6218 			}
6219 			have_poll_lock = netpoll_poll_lock(napi);
6220 			napi_poll = napi->poll;
6221 		}
6222 		work = napi_poll(napi, budget);
6223 		trace_napi_poll(napi, work, budget);
6224 		gro_normal_list(napi);
6225 count:
6226 		if (work > 0)
6227 			__NET_ADD_STATS(dev_net(napi->dev),
6228 					LINUX_MIB_BUSYPOLLRXPACKETS, work);
6229 		local_bh_enable();
6230 
6231 		if (!loop_end || loop_end(loop_end_arg, start_time))
6232 			break;
6233 
6234 		if (unlikely(need_resched())) {
6235 			if (napi_poll)
6236 				busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6237 			preempt_enable();
6238 			rcu_read_unlock();
6239 			cond_resched();
6240 			if (loop_end(loop_end_arg, start_time))
6241 				return;
6242 			goto restart;
6243 		}
6244 		cpu_relax();
6245 	}
6246 	if (napi_poll)
6247 		busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6248 	preempt_enable();
6249 out:
6250 	rcu_read_unlock();
6251 }
6252 EXPORT_SYMBOL(napi_busy_loop);
6253 
6254 #endif /* CONFIG_NET_RX_BUSY_POLL */
6255 
6256 static void napi_hash_add(struct napi_struct *napi)
6257 {
6258 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6259 		return;
6260 
6261 	spin_lock(&napi_hash_lock);
6262 
6263 	/* 0..NR_CPUS range is reserved for sender_cpu use */
6264 	do {
6265 		if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6266 			napi_gen_id = MIN_NAPI_ID;
6267 	} while (napi_by_id(napi_gen_id));
6268 	napi->napi_id = napi_gen_id;
6269 
6270 	hlist_add_head_rcu(&napi->napi_hash_node,
6271 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6272 
6273 	spin_unlock(&napi_hash_lock);
6274 }
6275 
6276 /* Warning : caller is responsible to make sure rcu grace period
6277  * is respected before freeing memory containing @napi
6278  */
6279 static void napi_hash_del(struct napi_struct *napi)
6280 {
6281 	spin_lock(&napi_hash_lock);
6282 
6283 	hlist_del_init_rcu(&napi->napi_hash_node);
6284 
6285 	spin_unlock(&napi_hash_lock);
6286 }
6287 
6288 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6289 {
6290 	struct napi_struct *napi;
6291 
6292 	napi = container_of(timer, struct napi_struct, timer);
6293 
6294 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
6295 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6296 	 */
6297 	if (!napi_disable_pending(napi) &&
6298 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6299 		clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6300 		__napi_schedule_irqoff(napi);
6301 	}
6302 
6303 	return HRTIMER_NORESTART;
6304 }
6305 
6306 static void init_gro_hash(struct napi_struct *napi)
6307 {
6308 	int i;
6309 
6310 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6311 		INIT_LIST_HEAD(&napi->gro_hash[i].list);
6312 		napi->gro_hash[i].count = 0;
6313 	}
6314 	napi->gro_bitmask = 0;
6315 }
6316 
6317 int dev_set_threaded(struct net_device *dev, bool threaded)
6318 {
6319 	struct napi_struct *napi;
6320 	int err = 0;
6321 
6322 	if (dev->threaded == threaded)
6323 		return 0;
6324 
6325 	if (threaded) {
6326 		list_for_each_entry(napi, &dev->napi_list, dev_list) {
6327 			if (!napi->thread) {
6328 				err = napi_kthread_create(napi);
6329 				if (err) {
6330 					threaded = false;
6331 					break;
6332 				}
6333 			}
6334 		}
6335 	}
6336 
6337 	dev->threaded = threaded;
6338 
6339 	/* Make sure kthread is created before THREADED bit
6340 	 * is set.
6341 	 */
6342 	smp_mb__before_atomic();
6343 
6344 	/* Setting/unsetting threaded mode on a napi might not immediately
6345 	 * take effect, if the current napi instance is actively being
6346 	 * polled. In this case, the switch between threaded mode and
6347 	 * softirq mode will happen in the next round of napi_schedule().
6348 	 * This should not cause hiccups/stalls to the live traffic.
6349 	 */
6350 	list_for_each_entry(napi, &dev->napi_list, dev_list) {
6351 		if (threaded)
6352 			set_bit(NAPI_STATE_THREADED, &napi->state);
6353 		else
6354 			clear_bit(NAPI_STATE_THREADED, &napi->state);
6355 	}
6356 
6357 	return err;
6358 }
6359 EXPORT_SYMBOL(dev_set_threaded);
6360 
6361 /* Double check that napi_get_frags() allocates skbs with
6362  * skb->head being backed by slab, not a page fragment.
6363  * This is to make sure bug fixed in 3226b158e67c
6364  * ("net: avoid 32 x truesize under-estimation for tiny skbs")
6365  * does not accidentally come back.
6366  */
6367 static void napi_get_frags_check(struct napi_struct *napi)
6368 {
6369 	struct sk_buff *skb;
6370 
6371 	local_bh_disable();
6372 	skb = napi_get_frags(napi);
6373 	WARN_ON_ONCE(skb && skb->head_frag);
6374 	napi_free_frags(napi);
6375 	local_bh_enable();
6376 }
6377 
6378 void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi,
6379 			   int (*poll)(struct napi_struct *, int), int weight)
6380 {
6381 	if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6382 		return;
6383 
6384 	INIT_LIST_HEAD(&napi->poll_list);
6385 	INIT_HLIST_NODE(&napi->napi_hash_node);
6386 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6387 	napi->timer.function = napi_watchdog;
6388 	init_gro_hash(napi);
6389 	napi->skb = NULL;
6390 	INIT_LIST_HEAD(&napi->rx_list);
6391 	napi->rx_count = 0;
6392 	napi->poll = poll;
6393 	if (weight > NAPI_POLL_WEIGHT)
6394 		netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6395 				weight);
6396 	napi->weight = weight;
6397 	napi->dev = dev;
6398 #ifdef CONFIG_NETPOLL
6399 	napi->poll_owner = -1;
6400 #endif
6401 	set_bit(NAPI_STATE_SCHED, &napi->state);
6402 	set_bit(NAPI_STATE_NPSVC, &napi->state);
6403 	list_add_rcu(&napi->dev_list, &dev->napi_list);
6404 	napi_hash_add(napi);
6405 	napi_get_frags_check(napi);
6406 	/* Create kthread for this napi if dev->threaded is set.
6407 	 * Clear dev->threaded if kthread creation failed so that
6408 	 * threaded mode will not be enabled in napi_enable().
6409 	 */
6410 	if (dev->threaded && napi_kthread_create(napi))
6411 		dev->threaded = 0;
6412 }
6413 EXPORT_SYMBOL(netif_napi_add_weight);
6414 
6415 void napi_disable(struct napi_struct *n)
6416 {
6417 	unsigned long val, new;
6418 
6419 	might_sleep();
6420 	set_bit(NAPI_STATE_DISABLE, &n->state);
6421 
6422 	for ( ; ; ) {
6423 		val = READ_ONCE(n->state);
6424 		if (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
6425 			usleep_range(20, 200);
6426 			continue;
6427 		}
6428 
6429 		new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
6430 		new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL);
6431 
6432 		if (cmpxchg(&n->state, val, new) == val)
6433 			break;
6434 	}
6435 
6436 	hrtimer_cancel(&n->timer);
6437 
6438 	clear_bit(NAPI_STATE_DISABLE, &n->state);
6439 }
6440 EXPORT_SYMBOL(napi_disable);
6441 
6442 /**
6443  *	napi_enable - enable NAPI scheduling
6444  *	@n: NAPI context
6445  *
6446  * Resume NAPI from being scheduled on this context.
6447  * Must be paired with napi_disable.
6448  */
6449 void napi_enable(struct napi_struct *n)
6450 {
6451 	unsigned long val, new;
6452 
6453 	do {
6454 		val = READ_ONCE(n->state);
6455 		BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
6456 
6457 		new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
6458 		if (n->dev->threaded && n->thread)
6459 			new |= NAPIF_STATE_THREADED;
6460 	} while (cmpxchg(&n->state, val, new) != val);
6461 }
6462 EXPORT_SYMBOL(napi_enable);
6463 
6464 static void flush_gro_hash(struct napi_struct *napi)
6465 {
6466 	int i;
6467 
6468 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6469 		struct sk_buff *skb, *n;
6470 
6471 		list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6472 			kfree_skb(skb);
6473 		napi->gro_hash[i].count = 0;
6474 	}
6475 }
6476 
6477 /* Must be called in process context */
6478 void __netif_napi_del(struct napi_struct *napi)
6479 {
6480 	if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6481 		return;
6482 
6483 	napi_hash_del(napi);
6484 	list_del_rcu(&napi->dev_list);
6485 	napi_free_frags(napi);
6486 
6487 	flush_gro_hash(napi);
6488 	napi->gro_bitmask = 0;
6489 
6490 	if (napi->thread) {
6491 		kthread_stop(napi->thread);
6492 		napi->thread = NULL;
6493 	}
6494 }
6495 EXPORT_SYMBOL(__netif_napi_del);
6496 
6497 static int __napi_poll(struct napi_struct *n, bool *repoll)
6498 {
6499 	int work, weight;
6500 
6501 	weight = n->weight;
6502 
6503 	/* This NAPI_STATE_SCHED test is for avoiding a race
6504 	 * with netpoll's poll_napi().  Only the entity which
6505 	 * obtains the lock and sees NAPI_STATE_SCHED set will
6506 	 * actually make the ->poll() call.  Therefore we avoid
6507 	 * accidentally calling ->poll() when NAPI is not scheduled.
6508 	 */
6509 	work = 0;
6510 	if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6511 		work = n->poll(n, weight);
6512 		trace_napi_poll(n, work, weight);
6513 	}
6514 
6515 	if (unlikely(work > weight))
6516 		netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6517 				n->poll, work, weight);
6518 
6519 	if (likely(work < weight))
6520 		return work;
6521 
6522 	/* Drivers must not modify the NAPI state if they
6523 	 * consume the entire weight.  In such cases this code
6524 	 * still "owns" the NAPI instance and therefore can
6525 	 * move the instance around on the list at-will.
6526 	 */
6527 	if (unlikely(napi_disable_pending(n))) {
6528 		napi_complete(n);
6529 		return work;
6530 	}
6531 
6532 	/* The NAPI context has more processing work, but busy-polling
6533 	 * is preferred. Exit early.
6534 	 */
6535 	if (napi_prefer_busy_poll(n)) {
6536 		if (napi_complete_done(n, work)) {
6537 			/* If timeout is not set, we need to make sure
6538 			 * that the NAPI is re-scheduled.
6539 			 */
6540 			napi_schedule(n);
6541 		}
6542 		return work;
6543 	}
6544 
6545 	if (n->gro_bitmask) {
6546 		/* flush too old packets
6547 		 * If HZ < 1000, flush all packets.
6548 		 */
6549 		napi_gro_flush(n, HZ >= 1000);
6550 	}
6551 
6552 	gro_normal_list(n);
6553 
6554 	/* Some drivers may have called napi_schedule
6555 	 * prior to exhausting their budget.
6556 	 */
6557 	if (unlikely(!list_empty(&n->poll_list))) {
6558 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6559 			     n->dev ? n->dev->name : "backlog");
6560 		return work;
6561 	}
6562 
6563 	*repoll = true;
6564 
6565 	return work;
6566 }
6567 
6568 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6569 {
6570 	bool do_repoll = false;
6571 	void *have;
6572 	int work;
6573 
6574 	list_del_init(&n->poll_list);
6575 
6576 	have = netpoll_poll_lock(n);
6577 
6578 	work = __napi_poll(n, &do_repoll);
6579 
6580 	if (do_repoll)
6581 		list_add_tail(&n->poll_list, repoll);
6582 
6583 	netpoll_poll_unlock(have);
6584 
6585 	return work;
6586 }
6587 
6588 static int napi_thread_wait(struct napi_struct *napi)
6589 {
6590 	bool woken = false;
6591 
6592 	set_current_state(TASK_INTERRUPTIBLE);
6593 
6594 	while (!kthread_should_stop()) {
6595 		/* Testing SCHED_THREADED bit here to make sure the current
6596 		 * kthread owns this napi and could poll on this napi.
6597 		 * Testing SCHED bit is not enough because SCHED bit might be
6598 		 * set by some other busy poll thread or by napi_disable().
6599 		 */
6600 		if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) {
6601 			WARN_ON(!list_empty(&napi->poll_list));
6602 			__set_current_state(TASK_RUNNING);
6603 			return 0;
6604 		}
6605 
6606 		schedule();
6607 		/* woken being true indicates this thread owns this napi. */
6608 		woken = true;
6609 		set_current_state(TASK_INTERRUPTIBLE);
6610 	}
6611 	__set_current_state(TASK_RUNNING);
6612 
6613 	return -1;
6614 }
6615 
6616 static int napi_threaded_poll(void *data)
6617 {
6618 	struct napi_struct *napi = data;
6619 	void *have;
6620 
6621 	while (!napi_thread_wait(napi)) {
6622 		for (;;) {
6623 			bool repoll = false;
6624 
6625 			local_bh_disable();
6626 
6627 			have = netpoll_poll_lock(napi);
6628 			__napi_poll(napi, &repoll);
6629 			netpoll_poll_unlock(have);
6630 
6631 			local_bh_enable();
6632 
6633 			if (!repoll)
6634 				break;
6635 
6636 			cond_resched();
6637 		}
6638 	}
6639 	return 0;
6640 }
6641 
6642 static void skb_defer_free_flush(struct softnet_data *sd)
6643 {
6644 	struct sk_buff *skb, *next;
6645 	unsigned long flags;
6646 
6647 	/* Paired with WRITE_ONCE() in skb_attempt_defer_free() */
6648 	if (!READ_ONCE(sd->defer_list))
6649 		return;
6650 
6651 	spin_lock_irqsave(&sd->defer_lock, flags);
6652 	skb = sd->defer_list;
6653 	sd->defer_list = NULL;
6654 	sd->defer_count = 0;
6655 	spin_unlock_irqrestore(&sd->defer_lock, flags);
6656 
6657 	while (skb != NULL) {
6658 		next = skb->next;
6659 		napi_consume_skb(skb, 1);
6660 		skb = next;
6661 	}
6662 }
6663 
6664 static __latent_entropy void net_rx_action(struct softirq_action *h)
6665 {
6666 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6667 	unsigned long time_limit = jiffies +
6668 		usecs_to_jiffies(netdev_budget_usecs);
6669 	int budget = netdev_budget;
6670 	LIST_HEAD(list);
6671 	LIST_HEAD(repoll);
6672 
6673 	local_irq_disable();
6674 	list_splice_init(&sd->poll_list, &list);
6675 	local_irq_enable();
6676 
6677 	for (;;) {
6678 		struct napi_struct *n;
6679 
6680 		skb_defer_free_flush(sd);
6681 
6682 		if (list_empty(&list)) {
6683 			if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6684 				goto end;
6685 			break;
6686 		}
6687 
6688 		n = list_first_entry(&list, struct napi_struct, poll_list);
6689 		budget -= napi_poll(n, &repoll);
6690 
6691 		/* If softirq window is exhausted then punt.
6692 		 * Allow this to run for 2 jiffies since which will allow
6693 		 * an average latency of 1.5/HZ.
6694 		 */
6695 		if (unlikely(budget <= 0 ||
6696 			     time_after_eq(jiffies, time_limit))) {
6697 			sd->time_squeeze++;
6698 			break;
6699 		}
6700 	}
6701 
6702 	local_irq_disable();
6703 
6704 	list_splice_tail_init(&sd->poll_list, &list);
6705 	list_splice_tail(&repoll, &list);
6706 	list_splice(&list, &sd->poll_list);
6707 	if (!list_empty(&sd->poll_list))
6708 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
6709 
6710 	net_rps_action_and_irq_enable(sd);
6711 end:;
6712 }
6713 
6714 struct netdev_adjacent {
6715 	struct net_device *dev;
6716 	netdevice_tracker dev_tracker;
6717 
6718 	/* upper master flag, there can only be one master device per list */
6719 	bool master;
6720 
6721 	/* lookup ignore flag */
6722 	bool ignore;
6723 
6724 	/* counter for the number of times this device was added to us */
6725 	u16 ref_nr;
6726 
6727 	/* private field for the users */
6728 	void *private;
6729 
6730 	struct list_head list;
6731 	struct rcu_head rcu;
6732 };
6733 
6734 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6735 						 struct list_head *adj_list)
6736 {
6737 	struct netdev_adjacent *adj;
6738 
6739 	list_for_each_entry(adj, adj_list, list) {
6740 		if (adj->dev == adj_dev)
6741 			return adj;
6742 	}
6743 	return NULL;
6744 }
6745 
6746 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
6747 				    struct netdev_nested_priv *priv)
6748 {
6749 	struct net_device *dev = (struct net_device *)priv->data;
6750 
6751 	return upper_dev == dev;
6752 }
6753 
6754 /**
6755  * netdev_has_upper_dev - Check if device is linked to an upper device
6756  * @dev: device
6757  * @upper_dev: upper device to check
6758  *
6759  * Find out if a device is linked to specified upper device and return true
6760  * in case it is. Note that this checks only immediate upper device,
6761  * not through a complete stack of devices. The caller must hold the RTNL lock.
6762  */
6763 bool netdev_has_upper_dev(struct net_device *dev,
6764 			  struct net_device *upper_dev)
6765 {
6766 	struct netdev_nested_priv priv = {
6767 		.data = (void *)upper_dev,
6768 	};
6769 
6770 	ASSERT_RTNL();
6771 
6772 	return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6773 					     &priv);
6774 }
6775 EXPORT_SYMBOL(netdev_has_upper_dev);
6776 
6777 /**
6778  * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
6779  * @dev: device
6780  * @upper_dev: upper device to check
6781  *
6782  * Find out if a device is linked to specified upper device and return true
6783  * in case it is. Note that this checks the entire upper device chain.
6784  * The caller must hold rcu lock.
6785  */
6786 
6787 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6788 				  struct net_device *upper_dev)
6789 {
6790 	struct netdev_nested_priv priv = {
6791 		.data = (void *)upper_dev,
6792 	};
6793 
6794 	return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6795 					       &priv);
6796 }
6797 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6798 
6799 /**
6800  * netdev_has_any_upper_dev - Check if device is linked to some device
6801  * @dev: device
6802  *
6803  * Find out if a device is linked to an upper device and return true in case
6804  * it is. The caller must hold the RTNL lock.
6805  */
6806 bool netdev_has_any_upper_dev(struct net_device *dev)
6807 {
6808 	ASSERT_RTNL();
6809 
6810 	return !list_empty(&dev->adj_list.upper);
6811 }
6812 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6813 
6814 /**
6815  * netdev_master_upper_dev_get - Get master upper device
6816  * @dev: device
6817  *
6818  * Find a master upper device and return pointer to it or NULL in case
6819  * it's not there. The caller must hold the RTNL lock.
6820  */
6821 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6822 {
6823 	struct netdev_adjacent *upper;
6824 
6825 	ASSERT_RTNL();
6826 
6827 	if (list_empty(&dev->adj_list.upper))
6828 		return NULL;
6829 
6830 	upper = list_first_entry(&dev->adj_list.upper,
6831 				 struct netdev_adjacent, list);
6832 	if (likely(upper->master))
6833 		return upper->dev;
6834 	return NULL;
6835 }
6836 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6837 
6838 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
6839 {
6840 	struct netdev_adjacent *upper;
6841 
6842 	ASSERT_RTNL();
6843 
6844 	if (list_empty(&dev->adj_list.upper))
6845 		return NULL;
6846 
6847 	upper = list_first_entry(&dev->adj_list.upper,
6848 				 struct netdev_adjacent, list);
6849 	if (likely(upper->master) && !upper->ignore)
6850 		return upper->dev;
6851 	return NULL;
6852 }
6853 
6854 /**
6855  * netdev_has_any_lower_dev - Check if device is linked to some device
6856  * @dev: device
6857  *
6858  * Find out if a device is linked to a lower device and return true in case
6859  * it is. The caller must hold the RTNL lock.
6860  */
6861 static bool netdev_has_any_lower_dev(struct net_device *dev)
6862 {
6863 	ASSERT_RTNL();
6864 
6865 	return !list_empty(&dev->adj_list.lower);
6866 }
6867 
6868 void *netdev_adjacent_get_private(struct list_head *adj_list)
6869 {
6870 	struct netdev_adjacent *adj;
6871 
6872 	adj = list_entry(adj_list, struct netdev_adjacent, list);
6873 
6874 	return adj->private;
6875 }
6876 EXPORT_SYMBOL(netdev_adjacent_get_private);
6877 
6878 /**
6879  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6880  * @dev: device
6881  * @iter: list_head ** of the current position
6882  *
6883  * Gets the next device from the dev's upper list, starting from iter
6884  * position. The caller must hold RCU read lock.
6885  */
6886 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6887 						 struct list_head **iter)
6888 {
6889 	struct netdev_adjacent *upper;
6890 
6891 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6892 
6893 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6894 
6895 	if (&upper->list == &dev->adj_list.upper)
6896 		return NULL;
6897 
6898 	*iter = &upper->list;
6899 
6900 	return upper->dev;
6901 }
6902 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6903 
6904 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
6905 						  struct list_head **iter,
6906 						  bool *ignore)
6907 {
6908 	struct netdev_adjacent *upper;
6909 
6910 	upper = list_entry((*iter)->next, struct netdev_adjacent, list);
6911 
6912 	if (&upper->list == &dev->adj_list.upper)
6913 		return NULL;
6914 
6915 	*iter = &upper->list;
6916 	*ignore = upper->ignore;
6917 
6918 	return upper->dev;
6919 }
6920 
6921 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6922 						    struct list_head **iter)
6923 {
6924 	struct netdev_adjacent *upper;
6925 
6926 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6927 
6928 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6929 
6930 	if (&upper->list == &dev->adj_list.upper)
6931 		return NULL;
6932 
6933 	*iter = &upper->list;
6934 
6935 	return upper->dev;
6936 }
6937 
6938 static int __netdev_walk_all_upper_dev(struct net_device *dev,
6939 				       int (*fn)(struct net_device *dev,
6940 					 struct netdev_nested_priv *priv),
6941 				       struct netdev_nested_priv *priv)
6942 {
6943 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6944 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6945 	int ret, cur = 0;
6946 	bool ignore;
6947 
6948 	now = dev;
6949 	iter = &dev->adj_list.upper;
6950 
6951 	while (1) {
6952 		if (now != dev) {
6953 			ret = fn(now, priv);
6954 			if (ret)
6955 				return ret;
6956 		}
6957 
6958 		next = NULL;
6959 		while (1) {
6960 			udev = __netdev_next_upper_dev(now, &iter, &ignore);
6961 			if (!udev)
6962 				break;
6963 			if (ignore)
6964 				continue;
6965 
6966 			next = udev;
6967 			niter = &udev->adj_list.upper;
6968 			dev_stack[cur] = now;
6969 			iter_stack[cur++] = iter;
6970 			break;
6971 		}
6972 
6973 		if (!next) {
6974 			if (!cur)
6975 				return 0;
6976 			next = dev_stack[--cur];
6977 			niter = iter_stack[cur];
6978 		}
6979 
6980 		now = next;
6981 		iter = niter;
6982 	}
6983 
6984 	return 0;
6985 }
6986 
6987 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
6988 				  int (*fn)(struct net_device *dev,
6989 					    struct netdev_nested_priv *priv),
6990 				  struct netdev_nested_priv *priv)
6991 {
6992 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6993 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6994 	int ret, cur = 0;
6995 
6996 	now = dev;
6997 	iter = &dev->adj_list.upper;
6998 
6999 	while (1) {
7000 		if (now != dev) {
7001 			ret = fn(now, priv);
7002 			if (ret)
7003 				return ret;
7004 		}
7005 
7006 		next = NULL;
7007 		while (1) {
7008 			udev = netdev_next_upper_dev_rcu(now, &iter);
7009 			if (!udev)
7010 				break;
7011 
7012 			next = udev;
7013 			niter = &udev->adj_list.upper;
7014 			dev_stack[cur] = now;
7015 			iter_stack[cur++] = iter;
7016 			break;
7017 		}
7018 
7019 		if (!next) {
7020 			if (!cur)
7021 				return 0;
7022 			next = dev_stack[--cur];
7023 			niter = iter_stack[cur];
7024 		}
7025 
7026 		now = next;
7027 		iter = niter;
7028 	}
7029 
7030 	return 0;
7031 }
7032 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7033 
7034 static bool __netdev_has_upper_dev(struct net_device *dev,
7035 				   struct net_device *upper_dev)
7036 {
7037 	struct netdev_nested_priv priv = {
7038 		.flags = 0,
7039 		.data = (void *)upper_dev,
7040 	};
7041 
7042 	ASSERT_RTNL();
7043 
7044 	return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7045 					   &priv);
7046 }
7047 
7048 /**
7049  * netdev_lower_get_next_private - Get the next ->private from the
7050  *				   lower neighbour list
7051  * @dev: device
7052  * @iter: list_head ** of the current position
7053  *
7054  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7055  * list, starting from iter position. The caller must hold either hold the
7056  * RTNL lock or its own locking that guarantees that the neighbour lower
7057  * list will remain unchanged.
7058  */
7059 void *netdev_lower_get_next_private(struct net_device *dev,
7060 				    struct list_head **iter)
7061 {
7062 	struct netdev_adjacent *lower;
7063 
7064 	lower = list_entry(*iter, struct netdev_adjacent, list);
7065 
7066 	if (&lower->list == &dev->adj_list.lower)
7067 		return NULL;
7068 
7069 	*iter = lower->list.next;
7070 
7071 	return lower->private;
7072 }
7073 EXPORT_SYMBOL(netdev_lower_get_next_private);
7074 
7075 /**
7076  * netdev_lower_get_next_private_rcu - Get the next ->private from the
7077  *				       lower neighbour list, RCU
7078  *				       variant
7079  * @dev: device
7080  * @iter: list_head ** of the current position
7081  *
7082  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7083  * list, starting from iter position. The caller must hold RCU read lock.
7084  */
7085 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7086 					struct list_head **iter)
7087 {
7088 	struct netdev_adjacent *lower;
7089 
7090 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
7091 
7092 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7093 
7094 	if (&lower->list == &dev->adj_list.lower)
7095 		return NULL;
7096 
7097 	*iter = &lower->list;
7098 
7099 	return lower->private;
7100 }
7101 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7102 
7103 /**
7104  * netdev_lower_get_next - Get the next device from the lower neighbour
7105  *                         list
7106  * @dev: device
7107  * @iter: list_head ** of the current position
7108  *
7109  * Gets the next netdev_adjacent from the dev's lower neighbour
7110  * list, starting from iter position. The caller must hold RTNL lock or
7111  * its own locking that guarantees that the neighbour lower
7112  * list will remain unchanged.
7113  */
7114 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7115 {
7116 	struct netdev_adjacent *lower;
7117 
7118 	lower = list_entry(*iter, struct netdev_adjacent, list);
7119 
7120 	if (&lower->list == &dev->adj_list.lower)
7121 		return NULL;
7122 
7123 	*iter = lower->list.next;
7124 
7125 	return lower->dev;
7126 }
7127 EXPORT_SYMBOL(netdev_lower_get_next);
7128 
7129 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7130 						struct list_head **iter)
7131 {
7132 	struct netdev_adjacent *lower;
7133 
7134 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7135 
7136 	if (&lower->list == &dev->adj_list.lower)
7137 		return NULL;
7138 
7139 	*iter = &lower->list;
7140 
7141 	return lower->dev;
7142 }
7143 
7144 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7145 						  struct list_head **iter,
7146 						  bool *ignore)
7147 {
7148 	struct netdev_adjacent *lower;
7149 
7150 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7151 
7152 	if (&lower->list == &dev->adj_list.lower)
7153 		return NULL;
7154 
7155 	*iter = &lower->list;
7156 	*ignore = lower->ignore;
7157 
7158 	return lower->dev;
7159 }
7160 
7161 int netdev_walk_all_lower_dev(struct net_device *dev,
7162 			      int (*fn)(struct net_device *dev,
7163 					struct netdev_nested_priv *priv),
7164 			      struct netdev_nested_priv *priv)
7165 {
7166 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7167 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7168 	int ret, cur = 0;
7169 
7170 	now = dev;
7171 	iter = &dev->adj_list.lower;
7172 
7173 	while (1) {
7174 		if (now != dev) {
7175 			ret = fn(now, priv);
7176 			if (ret)
7177 				return ret;
7178 		}
7179 
7180 		next = NULL;
7181 		while (1) {
7182 			ldev = netdev_next_lower_dev(now, &iter);
7183 			if (!ldev)
7184 				break;
7185 
7186 			next = ldev;
7187 			niter = &ldev->adj_list.lower;
7188 			dev_stack[cur] = now;
7189 			iter_stack[cur++] = iter;
7190 			break;
7191 		}
7192 
7193 		if (!next) {
7194 			if (!cur)
7195 				return 0;
7196 			next = dev_stack[--cur];
7197 			niter = iter_stack[cur];
7198 		}
7199 
7200 		now = next;
7201 		iter = niter;
7202 	}
7203 
7204 	return 0;
7205 }
7206 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7207 
7208 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7209 				       int (*fn)(struct net_device *dev,
7210 					 struct netdev_nested_priv *priv),
7211 				       struct netdev_nested_priv *priv)
7212 {
7213 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7214 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7215 	int ret, cur = 0;
7216 	bool ignore;
7217 
7218 	now = dev;
7219 	iter = &dev->adj_list.lower;
7220 
7221 	while (1) {
7222 		if (now != dev) {
7223 			ret = fn(now, priv);
7224 			if (ret)
7225 				return ret;
7226 		}
7227 
7228 		next = NULL;
7229 		while (1) {
7230 			ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7231 			if (!ldev)
7232 				break;
7233 			if (ignore)
7234 				continue;
7235 
7236 			next = ldev;
7237 			niter = &ldev->adj_list.lower;
7238 			dev_stack[cur] = now;
7239 			iter_stack[cur++] = iter;
7240 			break;
7241 		}
7242 
7243 		if (!next) {
7244 			if (!cur)
7245 				return 0;
7246 			next = dev_stack[--cur];
7247 			niter = iter_stack[cur];
7248 		}
7249 
7250 		now = next;
7251 		iter = niter;
7252 	}
7253 
7254 	return 0;
7255 }
7256 
7257 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7258 					     struct list_head **iter)
7259 {
7260 	struct netdev_adjacent *lower;
7261 
7262 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7263 	if (&lower->list == &dev->adj_list.lower)
7264 		return NULL;
7265 
7266 	*iter = &lower->list;
7267 
7268 	return lower->dev;
7269 }
7270 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7271 
7272 static u8 __netdev_upper_depth(struct net_device *dev)
7273 {
7274 	struct net_device *udev;
7275 	struct list_head *iter;
7276 	u8 max_depth = 0;
7277 	bool ignore;
7278 
7279 	for (iter = &dev->adj_list.upper,
7280 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7281 	     udev;
7282 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7283 		if (ignore)
7284 			continue;
7285 		if (max_depth < udev->upper_level)
7286 			max_depth = udev->upper_level;
7287 	}
7288 
7289 	return max_depth;
7290 }
7291 
7292 static u8 __netdev_lower_depth(struct net_device *dev)
7293 {
7294 	struct net_device *ldev;
7295 	struct list_head *iter;
7296 	u8 max_depth = 0;
7297 	bool ignore;
7298 
7299 	for (iter = &dev->adj_list.lower,
7300 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7301 	     ldev;
7302 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7303 		if (ignore)
7304 			continue;
7305 		if (max_depth < ldev->lower_level)
7306 			max_depth = ldev->lower_level;
7307 	}
7308 
7309 	return max_depth;
7310 }
7311 
7312 static int __netdev_update_upper_level(struct net_device *dev,
7313 				       struct netdev_nested_priv *__unused)
7314 {
7315 	dev->upper_level = __netdev_upper_depth(dev) + 1;
7316 	return 0;
7317 }
7318 
7319 #ifdef CONFIG_LOCKDEP
7320 static LIST_HEAD(net_unlink_list);
7321 
7322 static void net_unlink_todo(struct net_device *dev)
7323 {
7324 	if (list_empty(&dev->unlink_list))
7325 		list_add_tail(&dev->unlink_list, &net_unlink_list);
7326 }
7327 #endif
7328 
7329 static int __netdev_update_lower_level(struct net_device *dev,
7330 				       struct netdev_nested_priv *priv)
7331 {
7332 	dev->lower_level = __netdev_lower_depth(dev) + 1;
7333 
7334 #ifdef CONFIG_LOCKDEP
7335 	if (!priv)
7336 		return 0;
7337 
7338 	if (priv->flags & NESTED_SYNC_IMM)
7339 		dev->nested_level = dev->lower_level - 1;
7340 	if (priv->flags & NESTED_SYNC_TODO)
7341 		net_unlink_todo(dev);
7342 #endif
7343 	return 0;
7344 }
7345 
7346 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7347 				  int (*fn)(struct net_device *dev,
7348 					    struct netdev_nested_priv *priv),
7349 				  struct netdev_nested_priv *priv)
7350 {
7351 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7352 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7353 	int ret, cur = 0;
7354 
7355 	now = dev;
7356 	iter = &dev->adj_list.lower;
7357 
7358 	while (1) {
7359 		if (now != dev) {
7360 			ret = fn(now, priv);
7361 			if (ret)
7362 				return ret;
7363 		}
7364 
7365 		next = NULL;
7366 		while (1) {
7367 			ldev = netdev_next_lower_dev_rcu(now, &iter);
7368 			if (!ldev)
7369 				break;
7370 
7371 			next = ldev;
7372 			niter = &ldev->adj_list.lower;
7373 			dev_stack[cur] = now;
7374 			iter_stack[cur++] = iter;
7375 			break;
7376 		}
7377 
7378 		if (!next) {
7379 			if (!cur)
7380 				return 0;
7381 			next = dev_stack[--cur];
7382 			niter = iter_stack[cur];
7383 		}
7384 
7385 		now = next;
7386 		iter = niter;
7387 	}
7388 
7389 	return 0;
7390 }
7391 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7392 
7393 /**
7394  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7395  *				       lower neighbour list, RCU
7396  *				       variant
7397  * @dev: device
7398  *
7399  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7400  * list. The caller must hold RCU read lock.
7401  */
7402 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7403 {
7404 	struct netdev_adjacent *lower;
7405 
7406 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
7407 			struct netdev_adjacent, list);
7408 	if (lower)
7409 		return lower->private;
7410 	return NULL;
7411 }
7412 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7413 
7414 /**
7415  * netdev_master_upper_dev_get_rcu - Get master upper device
7416  * @dev: device
7417  *
7418  * Find a master upper device and return pointer to it or NULL in case
7419  * it's not there. The caller must hold the RCU read lock.
7420  */
7421 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7422 {
7423 	struct netdev_adjacent *upper;
7424 
7425 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
7426 				       struct netdev_adjacent, list);
7427 	if (upper && likely(upper->master))
7428 		return upper->dev;
7429 	return NULL;
7430 }
7431 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7432 
7433 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7434 			      struct net_device *adj_dev,
7435 			      struct list_head *dev_list)
7436 {
7437 	char linkname[IFNAMSIZ+7];
7438 
7439 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7440 		"upper_%s" : "lower_%s", adj_dev->name);
7441 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7442 				 linkname);
7443 }
7444 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7445 			       char *name,
7446 			       struct list_head *dev_list)
7447 {
7448 	char linkname[IFNAMSIZ+7];
7449 
7450 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7451 		"upper_%s" : "lower_%s", name);
7452 	sysfs_remove_link(&(dev->dev.kobj), linkname);
7453 }
7454 
7455 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7456 						 struct net_device *adj_dev,
7457 						 struct list_head *dev_list)
7458 {
7459 	return (dev_list == &dev->adj_list.upper ||
7460 		dev_list == &dev->adj_list.lower) &&
7461 		net_eq(dev_net(dev), dev_net(adj_dev));
7462 }
7463 
7464 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7465 					struct net_device *adj_dev,
7466 					struct list_head *dev_list,
7467 					void *private, bool master)
7468 {
7469 	struct netdev_adjacent *adj;
7470 	int ret;
7471 
7472 	adj = __netdev_find_adj(adj_dev, dev_list);
7473 
7474 	if (adj) {
7475 		adj->ref_nr += 1;
7476 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7477 			 dev->name, adj_dev->name, adj->ref_nr);
7478 
7479 		return 0;
7480 	}
7481 
7482 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7483 	if (!adj)
7484 		return -ENOMEM;
7485 
7486 	adj->dev = adj_dev;
7487 	adj->master = master;
7488 	adj->ref_nr = 1;
7489 	adj->private = private;
7490 	adj->ignore = false;
7491 	netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL);
7492 
7493 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7494 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7495 
7496 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7497 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7498 		if (ret)
7499 			goto free_adj;
7500 	}
7501 
7502 	/* Ensure that master link is always the first item in list. */
7503 	if (master) {
7504 		ret = sysfs_create_link(&(dev->dev.kobj),
7505 					&(adj_dev->dev.kobj), "master");
7506 		if (ret)
7507 			goto remove_symlinks;
7508 
7509 		list_add_rcu(&adj->list, dev_list);
7510 	} else {
7511 		list_add_tail_rcu(&adj->list, dev_list);
7512 	}
7513 
7514 	return 0;
7515 
7516 remove_symlinks:
7517 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7518 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7519 free_adj:
7520 	netdev_put(adj_dev, &adj->dev_tracker);
7521 	kfree(adj);
7522 
7523 	return ret;
7524 }
7525 
7526 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7527 					 struct net_device *adj_dev,
7528 					 u16 ref_nr,
7529 					 struct list_head *dev_list)
7530 {
7531 	struct netdev_adjacent *adj;
7532 
7533 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7534 		 dev->name, adj_dev->name, ref_nr);
7535 
7536 	adj = __netdev_find_adj(adj_dev, dev_list);
7537 
7538 	if (!adj) {
7539 		pr_err("Adjacency does not exist for device %s from %s\n",
7540 		       dev->name, adj_dev->name);
7541 		WARN_ON(1);
7542 		return;
7543 	}
7544 
7545 	if (adj->ref_nr > ref_nr) {
7546 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7547 			 dev->name, adj_dev->name, ref_nr,
7548 			 adj->ref_nr - ref_nr);
7549 		adj->ref_nr -= ref_nr;
7550 		return;
7551 	}
7552 
7553 	if (adj->master)
7554 		sysfs_remove_link(&(dev->dev.kobj), "master");
7555 
7556 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7557 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7558 
7559 	list_del_rcu(&adj->list);
7560 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7561 		 adj_dev->name, dev->name, adj_dev->name);
7562 	netdev_put(adj_dev, &adj->dev_tracker);
7563 	kfree_rcu(adj, rcu);
7564 }
7565 
7566 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7567 					    struct net_device *upper_dev,
7568 					    struct list_head *up_list,
7569 					    struct list_head *down_list,
7570 					    void *private, bool master)
7571 {
7572 	int ret;
7573 
7574 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7575 					   private, master);
7576 	if (ret)
7577 		return ret;
7578 
7579 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7580 					   private, false);
7581 	if (ret) {
7582 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7583 		return ret;
7584 	}
7585 
7586 	return 0;
7587 }
7588 
7589 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7590 					       struct net_device *upper_dev,
7591 					       u16 ref_nr,
7592 					       struct list_head *up_list,
7593 					       struct list_head *down_list)
7594 {
7595 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7596 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7597 }
7598 
7599 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7600 						struct net_device *upper_dev,
7601 						void *private, bool master)
7602 {
7603 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7604 						&dev->adj_list.upper,
7605 						&upper_dev->adj_list.lower,
7606 						private, master);
7607 }
7608 
7609 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7610 						   struct net_device *upper_dev)
7611 {
7612 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7613 					   &dev->adj_list.upper,
7614 					   &upper_dev->adj_list.lower);
7615 }
7616 
7617 static int __netdev_upper_dev_link(struct net_device *dev,
7618 				   struct net_device *upper_dev, bool master,
7619 				   void *upper_priv, void *upper_info,
7620 				   struct netdev_nested_priv *priv,
7621 				   struct netlink_ext_ack *extack)
7622 {
7623 	struct netdev_notifier_changeupper_info changeupper_info = {
7624 		.info = {
7625 			.dev = dev,
7626 			.extack = extack,
7627 		},
7628 		.upper_dev = upper_dev,
7629 		.master = master,
7630 		.linking = true,
7631 		.upper_info = upper_info,
7632 	};
7633 	struct net_device *master_dev;
7634 	int ret = 0;
7635 
7636 	ASSERT_RTNL();
7637 
7638 	if (dev == upper_dev)
7639 		return -EBUSY;
7640 
7641 	/* To prevent loops, check if dev is not upper device to upper_dev. */
7642 	if (__netdev_has_upper_dev(upper_dev, dev))
7643 		return -EBUSY;
7644 
7645 	if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7646 		return -EMLINK;
7647 
7648 	if (!master) {
7649 		if (__netdev_has_upper_dev(dev, upper_dev))
7650 			return -EEXIST;
7651 	} else {
7652 		master_dev = __netdev_master_upper_dev_get(dev);
7653 		if (master_dev)
7654 			return master_dev == upper_dev ? -EEXIST : -EBUSY;
7655 	}
7656 
7657 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7658 					    &changeupper_info.info);
7659 	ret = notifier_to_errno(ret);
7660 	if (ret)
7661 		return ret;
7662 
7663 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7664 						   master);
7665 	if (ret)
7666 		return ret;
7667 
7668 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7669 					    &changeupper_info.info);
7670 	ret = notifier_to_errno(ret);
7671 	if (ret)
7672 		goto rollback;
7673 
7674 	__netdev_update_upper_level(dev, NULL);
7675 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7676 
7677 	__netdev_update_lower_level(upper_dev, priv);
7678 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7679 				    priv);
7680 
7681 	return 0;
7682 
7683 rollback:
7684 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7685 
7686 	return ret;
7687 }
7688 
7689 /**
7690  * netdev_upper_dev_link - Add a link to the upper device
7691  * @dev: device
7692  * @upper_dev: new upper device
7693  * @extack: netlink extended ack
7694  *
7695  * Adds a link to device which is upper to this one. The caller must hold
7696  * the RTNL lock. On a failure a negative errno code is returned.
7697  * On success the reference counts are adjusted and the function
7698  * returns zero.
7699  */
7700 int netdev_upper_dev_link(struct net_device *dev,
7701 			  struct net_device *upper_dev,
7702 			  struct netlink_ext_ack *extack)
7703 {
7704 	struct netdev_nested_priv priv = {
7705 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7706 		.data = NULL,
7707 	};
7708 
7709 	return __netdev_upper_dev_link(dev, upper_dev, false,
7710 				       NULL, NULL, &priv, extack);
7711 }
7712 EXPORT_SYMBOL(netdev_upper_dev_link);
7713 
7714 /**
7715  * netdev_master_upper_dev_link - Add a master link to the upper device
7716  * @dev: device
7717  * @upper_dev: new upper device
7718  * @upper_priv: upper device private
7719  * @upper_info: upper info to be passed down via notifier
7720  * @extack: netlink extended ack
7721  *
7722  * Adds a link to device which is upper to this one. In this case, only
7723  * one master upper device can be linked, although other non-master devices
7724  * might be linked as well. The caller must hold the RTNL lock.
7725  * On a failure a negative errno code is returned. On success the reference
7726  * counts are adjusted and the function returns zero.
7727  */
7728 int netdev_master_upper_dev_link(struct net_device *dev,
7729 				 struct net_device *upper_dev,
7730 				 void *upper_priv, void *upper_info,
7731 				 struct netlink_ext_ack *extack)
7732 {
7733 	struct netdev_nested_priv priv = {
7734 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7735 		.data = NULL,
7736 	};
7737 
7738 	return __netdev_upper_dev_link(dev, upper_dev, true,
7739 				       upper_priv, upper_info, &priv, extack);
7740 }
7741 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7742 
7743 static void __netdev_upper_dev_unlink(struct net_device *dev,
7744 				      struct net_device *upper_dev,
7745 				      struct netdev_nested_priv *priv)
7746 {
7747 	struct netdev_notifier_changeupper_info changeupper_info = {
7748 		.info = {
7749 			.dev = dev,
7750 		},
7751 		.upper_dev = upper_dev,
7752 		.linking = false,
7753 	};
7754 
7755 	ASSERT_RTNL();
7756 
7757 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7758 
7759 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7760 				      &changeupper_info.info);
7761 
7762 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7763 
7764 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7765 				      &changeupper_info.info);
7766 
7767 	__netdev_update_upper_level(dev, NULL);
7768 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7769 
7770 	__netdev_update_lower_level(upper_dev, priv);
7771 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7772 				    priv);
7773 }
7774 
7775 /**
7776  * netdev_upper_dev_unlink - Removes a link to upper device
7777  * @dev: device
7778  * @upper_dev: new upper device
7779  *
7780  * Removes a link to device which is upper to this one. The caller must hold
7781  * the RTNL lock.
7782  */
7783 void netdev_upper_dev_unlink(struct net_device *dev,
7784 			     struct net_device *upper_dev)
7785 {
7786 	struct netdev_nested_priv priv = {
7787 		.flags = NESTED_SYNC_TODO,
7788 		.data = NULL,
7789 	};
7790 
7791 	__netdev_upper_dev_unlink(dev, upper_dev, &priv);
7792 }
7793 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7794 
7795 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7796 				      struct net_device *lower_dev,
7797 				      bool val)
7798 {
7799 	struct netdev_adjacent *adj;
7800 
7801 	adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7802 	if (adj)
7803 		adj->ignore = val;
7804 
7805 	adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7806 	if (adj)
7807 		adj->ignore = val;
7808 }
7809 
7810 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
7811 					struct net_device *lower_dev)
7812 {
7813 	__netdev_adjacent_dev_set(upper_dev, lower_dev, true);
7814 }
7815 
7816 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
7817 				       struct net_device *lower_dev)
7818 {
7819 	__netdev_adjacent_dev_set(upper_dev, lower_dev, false);
7820 }
7821 
7822 int netdev_adjacent_change_prepare(struct net_device *old_dev,
7823 				   struct net_device *new_dev,
7824 				   struct net_device *dev,
7825 				   struct netlink_ext_ack *extack)
7826 {
7827 	struct netdev_nested_priv priv = {
7828 		.flags = 0,
7829 		.data = NULL,
7830 	};
7831 	int err;
7832 
7833 	if (!new_dev)
7834 		return 0;
7835 
7836 	if (old_dev && new_dev != old_dev)
7837 		netdev_adjacent_dev_disable(dev, old_dev);
7838 	err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
7839 				      extack);
7840 	if (err) {
7841 		if (old_dev && new_dev != old_dev)
7842 			netdev_adjacent_dev_enable(dev, old_dev);
7843 		return err;
7844 	}
7845 
7846 	return 0;
7847 }
7848 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
7849 
7850 void netdev_adjacent_change_commit(struct net_device *old_dev,
7851 				   struct net_device *new_dev,
7852 				   struct net_device *dev)
7853 {
7854 	struct netdev_nested_priv priv = {
7855 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7856 		.data = NULL,
7857 	};
7858 
7859 	if (!new_dev || !old_dev)
7860 		return;
7861 
7862 	if (new_dev == old_dev)
7863 		return;
7864 
7865 	netdev_adjacent_dev_enable(dev, old_dev);
7866 	__netdev_upper_dev_unlink(old_dev, dev, &priv);
7867 }
7868 EXPORT_SYMBOL(netdev_adjacent_change_commit);
7869 
7870 void netdev_adjacent_change_abort(struct net_device *old_dev,
7871 				  struct net_device *new_dev,
7872 				  struct net_device *dev)
7873 {
7874 	struct netdev_nested_priv priv = {
7875 		.flags = 0,
7876 		.data = NULL,
7877 	};
7878 
7879 	if (!new_dev)
7880 		return;
7881 
7882 	if (old_dev && new_dev != old_dev)
7883 		netdev_adjacent_dev_enable(dev, old_dev);
7884 
7885 	__netdev_upper_dev_unlink(new_dev, dev, &priv);
7886 }
7887 EXPORT_SYMBOL(netdev_adjacent_change_abort);
7888 
7889 /**
7890  * netdev_bonding_info_change - Dispatch event about slave change
7891  * @dev: device
7892  * @bonding_info: info to dispatch
7893  *
7894  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7895  * The caller must hold the RTNL lock.
7896  */
7897 void netdev_bonding_info_change(struct net_device *dev,
7898 				struct netdev_bonding_info *bonding_info)
7899 {
7900 	struct netdev_notifier_bonding_info info = {
7901 		.info.dev = dev,
7902 	};
7903 
7904 	memcpy(&info.bonding_info, bonding_info,
7905 	       sizeof(struct netdev_bonding_info));
7906 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7907 				      &info.info);
7908 }
7909 EXPORT_SYMBOL(netdev_bonding_info_change);
7910 
7911 static int netdev_offload_xstats_enable_l3(struct net_device *dev,
7912 					   struct netlink_ext_ack *extack)
7913 {
7914 	struct netdev_notifier_offload_xstats_info info = {
7915 		.info.dev = dev,
7916 		.info.extack = extack,
7917 		.type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
7918 	};
7919 	int err;
7920 	int rc;
7921 
7922 	dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3),
7923 					 GFP_KERNEL);
7924 	if (!dev->offload_xstats_l3)
7925 		return -ENOMEM;
7926 
7927 	rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE,
7928 						  NETDEV_OFFLOAD_XSTATS_DISABLE,
7929 						  &info.info);
7930 	err = notifier_to_errno(rc);
7931 	if (err)
7932 		goto free_stats;
7933 
7934 	return 0;
7935 
7936 free_stats:
7937 	kfree(dev->offload_xstats_l3);
7938 	dev->offload_xstats_l3 = NULL;
7939 	return err;
7940 }
7941 
7942 int netdev_offload_xstats_enable(struct net_device *dev,
7943 				 enum netdev_offload_xstats_type type,
7944 				 struct netlink_ext_ack *extack)
7945 {
7946 	ASSERT_RTNL();
7947 
7948 	if (netdev_offload_xstats_enabled(dev, type))
7949 		return -EALREADY;
7950 
7951 	switch (type) {
7952 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
7953 		return netdev_offload_xstats_enable_l3(dev, extack);
7954 	}
7955 
7956 	WARN_ON(1);
7957 	return -EINVAL;
7958 }
7959 EXPORT_SYMBOL(netdev_offload_xstats_enable);
7960 
7961 static void netdev_offload_xstats_disable_l3(struct net_device *dev)
7962 {
7963 	struct netdev_notifier_offload_xstats_info info = {
7964 		.info.dev = dev,
7965 		.type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
7966 	};
7967 
7968 	call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE,
7969 				      &info.info);
7970 	kfree(dev->offload_xstats_l3);
7971 	dev->offload_xstats_l3 = NULL;
7972 }
7973 
7974 int netdev_offload_xstats_disable(struct net_device *dev,
7975 				  enum netdev_offload_xstats_type type)
7976 {
7977 	ASSERT_RTNL();
7978 
7979 	if (!netdev_offload_xstats_enabled(dev, type))
7980 		return -EALREADY;
7981 
7982 	switch (type) {
7983 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
7984 		netdev_offload_xstats_disable_l3(dev);
7985 		return 0;
7986 	}
7987 
7988 	WARN_ON(1);
7989 	return -EINVAL;
7990 }
7991 EXPORT_SYMBOL(netdev_offload_xstats_disable);
7992 
7993 static void netdev_offload_xstats_disable_all(struct net_device *dev)
7994 {
7995 	netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3);
7996 }
7997 
7998 static struct rtnl_hw_stats64 *
7999 netdev_offload_xstats_get_ptr(const struct net_device *dev,
8000 			      enum netdev_offload_xstats_type type)
8001 {
8002 	switch (type) {
8003 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8004 		return dev->offload_xstats_l3;
8005 	}
8006 
8007 	WARN_ON(1);
8008 	return NULL;
8009 }
8010 
8011 bool netdev_offload_xstats_enabled(const struct net_device *dev,
8012 				   enum netdev_offload_xstats_type type)
8013 {
8014 	ASSERT_RTNL();
8015 
8016 	return netdev_offload_xstats_get_ptr(dev, type);
8017 }
8018 EXPORT_SYMBOL(netdev_offload_xstats_enabled);
8019 
8020 struct netdev_notifier_offload_xstats_ru {
8021 	bool used;
8022 };
8023 
8024 struct netdev_notifier_offload_xstats_rd {
8025 	struct rtnl_hw_stats64 stats;
8026 	bool used;
8027 };
8028 
8029 static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest,
8030 				  const struct rtnl_hw_stats64 *src)
8031 {
8032 	dest->rx_packets	  += src->rx_packets;
8033 	dest->tx_packets	  += src->tx_packets;
8034 	dest->rx_bytes		  += src->rx_bytes;
8035 	dest->tx_bytes		  += src->tx_bytes;
8036 	dest->rx_errors		  += src->rx_errors;
8037 	dest->tx_errors		  += src->tx_errors;
8038 	dest->rx_dropped	  += src->rx_dropped;
8039 	dest->tx_dropped	  += src->tx_dropped;
8040 	dest->multicast		  += src->multicast;
8041 }
8042 
8043 static int netdev_offload_xstats_get_used(struct net_device *dev,
8044 					  enum netdev_offload_xstats_type type,
8045 					  bool *p_used,
8046 					  struct netlink_ext_ack *extack)
8047 {
8048 	struct netdev_notifier_offload_xstats_ru report_used = {};
8049 	struct netdev_notifier_offload_xstats_info info = {
8050 		.info.dev = dev,
8051 		.info.extack = extack,
8052 		.type = type,
8053 		.report_used = &report_used,
8054 	};
8055 	int rc;
8056 
8057 	WARN_ON(!netdev_offload_xstats_enabled(dev, type));
8058 	rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED,
8059 					   &info.info);
8060 	*p_used = report_used.used;
8061 	return notifier_to_errno(rc);
8062 }
8063 
8064 static int netdev_offload_xstats_get_stats(struct net_device *dev,
8065 					   enum netdev_offload_xstats_type type,
8066 					   struct rtnl_hw_stats64 *p_stats,
8067 					   bool *p_used,
8068 					   struct netlink_ext_ack *extack)
8069 {
8070 	struct netdev_notifier_offload_xstats_rd report_delta = {};
8071 	struct netdev_notifier_offload_xstats_info info = {
8072 		.info.dev = dev,
8073 		.info.extack = extack,
8074 		.type = type,
8075 		.report_delta = &report_delta,
8076 	};
8077 	struct rtnl_hw_stats64 *stats;
8078 	int rc;
8079 
8080 	stats = netdev_offload_xstats_get_ptr(dev, type);
8081 	if (WARN_ON(!stats))
8082 		return -EINVAL;
8083 
8084 	rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
8085 					   &info.info);
8086 
8087 	/* Cache whatever we got, even if there was an error, otherwise the
8088 	 * successful stats retrievals would get lost.
8089 	 */
8090 	netdev_hw_stats64_add(stats, &report_delta.stats);
8091 
8092 	if (p_stats)
8093 		*p_stats = *stats;
8094 	*p_used = report_delta.used;
8095 
8096 	return notifier_to_errno(rc);
8097 }
8098 
8099 int netdev_offload_xstats_get(struct net_device *dev,
8100 			      enum netdev_offload_xstats_type type,
8101 			      struct rtnl_hw_stats64 *p_stats, bool *p_used,
8102 			      struct netlink_ext_ack *extack)
8103 {
8104 	ASSERT_RTNL();
8105 
8106 	if (p_stats)
8107 		return netdev_offload_xstats_get_stats(dev, type, p_stats,
8108 						       p_used, extack);
8109 	else
8110 		return netdev_offload_xstats_get_used(dev, type, p_used,
8111 						      extack);
8112 }
8113 EXPORT_SYMBOL(netdev_offload_xstats_get);
8114 
8115 void
8116 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta,
8117 				   const struct rtnl_hw_stats64 *stats)
8118 {
8119 	report_delta->used = true;
8120 	netdev_hw_stats64_add(&report_delta->stats, stats);
8121 }
8122 EXPORT_SYMBOL(netdev_offload_xstats_report_delta);
8123 
8124 void
8125 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used)
8126 {
8127 	report_used->used = true;
8128 }
8129 EXPORT_SYMBOL(netdev_offload_xstats_report_used);
8130 
8131 void netdev_offload_xstats_push_delta(struct net_device *dev,
8132 				      enum netdev_offload_xstats_type type,
8133 				      const struct rtnl_hw_stats64 *p_stats)
8134 {
8135 	struct rtnl_hw_stats64 *stats;
8136 
8137 	ASSERT_RTNL();
8138 
8139 	stats = netdev_offload_xstats_get_ptr(dev, type);
8140 	if (WARN_ON(!stats))
8141 		return;
8142 
8143 	netdev_hw_stats64_add(stats, p_stats);
8144 }
8145 EXPORT_SYMBOL(netdev_offload_xstats_push_delta);
8146 
8147 /**
8148  * netdev_get_xmit_slave - Get the xmit slave of master device
8149  * @dev: device
8150  * @skb: The packet
8151  * @all_slaves: assume all the slaves are active
8152  *
8153  * The reference counters are not incremented so the caller must be
8154  * careful with locks. The caller must hold RCU lock.
8155  * %NULL is returned if no slave is found.
8156  */
8157 
8158 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8159 					 struct sk_buff *skb,
8160 					 bool all_slaves)
8161 {
8162 	const struct net_device_ops *ops = dev->netdev_ops;
8163 
8164 	if (!ops->ndo_get_xmit_slave)
8165 		return NULL;
8166 	return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8167 }
8168 EXPORT_SYMBOL(netdev_get_xmit_slave);
8169 
8170 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8171 						  struct sock *sk)
8172 {
8173 	const struct net_device_ops *ops = dev->netdev_ops;
8174 
8175 	if (!ops->ndo_sk_get_lower_dev)
8176 		return NULL;
8177 	return ops->ndo_sk_get_lower_dev(dev, sk);
8178 }
8179 
8180 /**
8181  * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8182  * @dev: device
8183  * @sk: the socket
8184  *
8185  * %NULL is returned if no lower device is found.
8186  */
8187 
8188 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8189 					    struct sock *sk)
8190 {
8191 	struct net_device *lower;
8192 
8193 	lower = netdev_sk_get_lower_dev(dev, sk);
8194 	while (lower) {
8195 		dev = lower;
8196 		lower = netdev_sk_get_lower_dev(dev, sk);
8197 	}
8198 
8199 	return dev;
8200 }
8201 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8202 
8203 static void netdev_adjacent_add_links(struct net_device *dev)
8204 {
8205 	struct netdev_adjacent *iter;
8206 
8207 	struct net *net = dev_net(dev);
8208 
8209 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8210 		if (!net_eq(net, dev_net(iter->dev)))
8211 			continue;
8212 		netdev_adjacent_sysfs_add(iter->dev, dev,
8213 					  &iter->dev->adj_list.lower);
8214 		netdev_adjacent_sysfs_add(dev, iter->dev,
8215 					  &dev->adj_list.upper);
8216 	}
8217 
8218 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8219 		if (!net_eq(net, dev_net(iter->dev)))
8220 			continue;
8221 		netdev_adjacent_sysfs_add(iter->dev, dev,
8222 					  &iter->dev->adj_list.upper);
8223 		netdev_adjacent_sysfs_add(dev, iter->dev,
8224 					  &dev->adj_list.lower);
8225 	}
8226 }
8227 
8228 static void netdev_adjacent_del_links(struct net_device *dev)
8229 {
8230 	struct netdev_adjacent *iter;
8231 
8232 	struct net *net = dev_net(dev);
8233 
8234 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8235 		if (!net_eq(net, dev_net(iter->dev)))
8236 			continue;
8237 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
8238 					  &iter->dev->adj_list.lower);
8239 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
8240 					  &dev->adj_list.upper);
8241 	}
8242 
8243 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8244 		if (!net_eq(net, dev_net(iter->dev)))
8245 			continue;
8246 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
8247 					  &iter->dev->adj_list.upper);
8248 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
8249 					  &dev->adj_list.lower);
8250 	}
8251 }
8252 
8253 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8254 {
8255 	struct netdev_adjacent *iter;
8256 
8257 	struct net *net = dev_net(dev);
8258 
8259 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8260 		if (!net_eq(net, dev_net(iter->dev)))
8261 			continue;
8262 		netdev_adjacent_sysfs_del(iter->dev, oldname,
8263 					  &iter->dev->adj_list.lower);
8264 		netdev_adjacent_sysfs_add(iter->dev, dev,
8265 					  &iter->dev->adj_list.lower);
8266 	}
8267 
8268 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8269 		if (!net_eq(net, dev_net(iter->dev)))
8270 			continue;
8271 		netdev_adjacent_sysfs_del(iter->dev, oldname,
8272 					  &iter->dev->adj_list.upper);
8273 		netdev_adjacent_sysfs_add(iter->dev, dev,
8274 					  &iter->dev->adj_list.upper);
8275 	}
8276 }
8277 
8278 void *netdev_lower_dev_get_private(struct net_device *dev,
8279 				   struct net_device *lower_dev)
8280 {
8281 	struct netdev_adjacent *lower;
8282 
8283 	if (!lower_dev)
8284 		return NULL;
8285 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8286 	if (!lower)
8287 		return NULL;
8288 
8289 	return lower->private;
8290 }
8291 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8292 
8293 
8294 /**
8295  * netdev_lower_state_changed - Dispatch event about lower device state change
8296  * @lower_dev: device
8297  * @lower_state_info: state to dispatch
8298  *
8299  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8300  * The caller must hold the RTNL lock.
8301  */
8302 void netdev_lower_state_changed(struct net_device *lower_dev,
8303 				void *lower_state_info)
8304 {
8305 	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8306 		.info.dev = lower_dev,
8307 	};
8308 
8309 	ASSERT_RTNL();
8310 	changelowerstate_info.lower_state_info = lower_state_info;
8311 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8312 				      &changelowerstate_info.info);
8313 }
8314 EXPORT_SYMBOL(netdev_lower_state_changed);
8315 
8316 static void dev_change_rx_flags(struct net_device *dev, int flags)
8317 {
8318 	const struct net_device_ops *ops = dev->netdev_ops;
8319 
8320 	if (ops->ndo_change_rx_flags)
8321 		ops->ndo_change_rx_flags(dev, flags);
8322 }
8323 
8324 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8325 {
8326 	unsigned int old_flags = dev->flags;
8327 	kuid_t uid;
8328 	kgid_t gid;
8329 
8330 	ASSERT_RTNL();
8331 
8332 	dev->flags |= IFF_PROMISC;
8333 	dev->promiscuity += inc;
8334 	if (dev->promiscuity == 0) {
8335 		/*
8336 		 * Avoid overflow.
8337 		 * If inc causes overflow, untouch promisc and return error.
8338 		 */
8339 		if (inc < 0)
8340 			dev->flags &= ~IFF_PROMISC;
8341 		else {
8342 			dev->promiscuity -= inc;
8343 			netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
8344 			return -EOVERFLOW;
8345 		}
8346 	}
8347 	if (dev->flags != old_flags) {
8348 		pr_info("device %s %s promiscuous mode\n",
8349 			dev->name,
8350 			dev->flags & IFF_PROMISC ? "entered" : "left");
8351 		if (audit_enabled) {
8352 			current_uid_gid(&uid, &gid);
8353 			audit_log(audit_context(), GFP_ATOMIC,
8354 				  AUDIT_ANOM_PROMISCUOUS,
8355 				  "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8356 				  dev->name, (dev->flags & IFF_PROMISC),
8357 				  (old_flags & IFF_PROMISC),
8358 				  from_kuid(&init_user_ns, audit_get_loginuid(current)),
8359 				  from_kuid(&init_user_ns, uid),
8360 				  from_kgid(&init_user_ns, gid),
8361 				  audit_get_sessionid(current));
8362 		}
8363 
8364 		dev_change_rx_flags(dev, IFF_PROMISC);
8365 	}
8366 	if (notify)
8367 		__dev_notify_flags(dev, old_flags, IFF_PROMISC);
8368 	return 0;
8369 }
8370 
8371 /**
8372  *	dev_set_promiscuity	- update promiscuity count on a device
8373  *	@dev: device
8374  *	@inc: modifier
8375  *
8376  *	Add or remove promiscuity from a device. While the count in the device
8377  *	remains above zero the interface remains promiscuous. Once it hits zero
8378  *	the device reverts back to normal filtering operation. A negative inc
8379  *	value is used to drop promiscuity on the device.
8380  *	Return 0 if successful or a negative errno code on error.
8381  */
8382 int dev_set_promiscuity(struct net_device *dev, int inc)
8383 {
8384 	unsigned int old_flags = dev->flags;
8385 	int err;
8386 
8387 	err = __dev_set_promiscuity(dev, inc, true);
8388 	if (err < 0)
8389 		return err;
8390 	if (dev->flags != old_flags)
8391 		dev_set_rx_mode(dev);
8392 	return err;
8393 }
8394 EXPORT_SYMBOL(dev_set_promiscuity);
8395 
8396 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8397 {
8398 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8399 
8400 	ASSERT_RTNL();
8401 
8402 	dev->flags |= IFF_ALLMULTI;
8403 	dev->allmulti += inc;
8404 	if (dev->allmulti == 0) {
8405 		/*
8406 		 * Avoid overflow.
8407 		 * If inc causes overflow, untouch allmulti and return error.
8408 		 */
8409 		if (inc < 0)
8410 			dev->flags &= ~IFF_ALLMULTI;
8411 		else {
8412 			dev->allmulti -= inc;
8413 			netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
8414 			return -EOVERFLOW;
8415 		}
8416 	}
8417 	if (dev->flags ^ old_flags) {
8418 		dev_change_rx_flags(dev, IFF_ALLMULTI);
8419 		dev_set_rx_mode(dev);
8420 		if (notify)
8421 			__dev_notify_flags(dev, old_flags,
8422 					   dev->gflags ^ old_gflags);
8423 	}
8424 	return 0;
8425 }
8426 
8427 /**
8428  *	dev_set_allmulti	- update allmulti count on a device
8429  *	@dev: device
8430  *	@inc: modifier
8431  *
8432  *	Add or remove reception of all multicast frames to a device. While the
8433  *	count in the device remains above zero the interface remains listening
8434  *	to all interfaces. Once it hits zero the device reverts back to normal
8435  *	filtering operation. A negative @inc value is used to drop the counter
8436  *	when releasing a resource needing all multicasts.
8437  *	Return 0 if successful or a negative errno code on error.
8438  */
8439 
8440 int dev_set_allmulti(struct net_device *dev, int inc)
8441 {
8442 	return __dev_set_allmulti(dev, inc, true);
8443 }
8444 EXPORT_SYMBOL(dev_set_allmulti);
8445 
8446 /*
8447  *	Upload unicast and multicast address lists to device and
8448  *	configure RX filtering. When the device doesn't support unicast
8449  *	filtering it is put in promiscuous mode while unicast addresses
8450  *	are present.
8451  */
8452 void __dev_set_rx_mode(struct net_device *dev)
8453 {
8454 	const struct net_device_ops *ops = dev->netdev_ops;
8455 
8456 	/* dev_open will call this function so the list will stay sane. */
8457 	if (!(dev->flags&IFF_UP))
8458 		return;
8459 
8460 	if (!netif_device_present(dev))
8461 		return;
8462 
8463 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8464 		/* Unicast addresses changes may only happen under the rtnl,
8465 		 * therefore calling __dev_set_promiscuity here is safe.
8466 		 */
8467 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8468 			__dev_set_promiscuity(dev, 1, false);
8469 			dev->uc_promisc = true;
8470 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8471 			__dev_set_promiscuity(dev, -1, false);
8472 			dev->uc_promisc = false;
8473 		}
8474 	}
8475 
8476 	if (ops->ndo_set_rx_mode)
8477 		ops->ndo_set_rx_mode(dev);
8478 }
8479 
8480 void dev_set_rx_mode(struct net_device *dev)
8481 {
8482 	netif_addr_lock_bh(dev);
8483 	__dev_set_rx_mode(dev);
8484 	netif_addr_unlock_bh(dev);
8485 }
8486 
8487 /**
8488  *	dev_get_flags - get flags reported to userspace
8489  *	@dev: device
8490  *
8491  *	Get the combination of flag bits exported through APIs to userspace.
8492  */
8493 unsigned int dev_get_flags(const struct net_device *dev)
8494 {
8495 	unsigned int flags;
8496 
8497 	flags = (dev->flags & ~(IFF_PROMISC |
8498 				IFF_ALLMULTI |
8499 				IFF_RUNNING |
8500 				IFF_LOWER_UP |
8501 				IFF_DORMANT)) |
8502 		(dev->gflags & (IFF_PROMISC |
8503 				IFF_ALLMULTI));
8504 
8505 	if (netif_running(dev)) {
8506 		if (netif_oper_up(dev))
8507 			flags |= IFF_RUNNING;
8508 		if (netif_carrier_ok(dev))
8509 			flags |= IFF_LOWER_UP;
8510 		if (netif_dormant(dev))
8511 			flags |= IFF_DORMANT;
8512 	}
8513 
8514 	return flags;
8515 }
8516 EXPORT_SYMBOL(dev_get_flags);
8517 
8518 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8519 		       struct netlink_ext_ack *extack)
8520 {
8521 	unsigned int old_flags = dev->flags;
8522 	int ret;
8523 
8524 	ASSERT_RTNL();
8525 
8526 	/*
8527 	 *	Set the flags on our device.
8528 	 */
8529 
8530 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8531 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8532 			       IFF_AUTOMEDIA)) |
8533 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8534 				    IFF_ALLMULTI));
8535 
8536 	/*
8537 	 *	Load in the correct multicast list now the flags have changed.
8538 	 */
8539 
8540 	if ((old_flags ^ flags) & IFF_MULTICAST)
8541 		dev_change_rx_flags(dev, IFF_MULTICAST);
8542 
8543 	dev_set_rx_mode(dev);
8544 
8545 	/*
8546 	 *	Have we downed the interface. We handle IFF_UP ourselves
8547 	 *	according to user attempts to set it, rather than blindly
8548 	 *	setting it.
8549 	 */
8550 
8551 	ret = 0;
8552 	if ((old_flags ^ flags) & IFF_UP) {
8553 		if (old_flags & IFF_UP)
8554 			__dev_close(dev);
8555 		else
8556 			ret = __dev_open(dev, extack);
8557 	}
8558 
8559 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
8560 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
8561 		unsigned int old_flags = dev->flags;
8562 
8563 		dev->gflags ^= IFF_PROMISC;
8564 
8565 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
8566 			if (dev->flags != old_flags)
8567 				dev_set_rx_mode(dev);
8568 	}
8569 
8570 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8571 	 * is important. Some (broken) drivers set IFF_PROMISC, when
8572 	 * IFF_ALLMULTI is requested not asking us and not reporting.
8573 	 */
8574 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8575 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8576 
8577 		dev->gflags ^= IFF_ALLMULTI;
8578 		__dev_set_allmulti(dev, inc, false);
8579 	}
8580 
8581 	return ret;
8582 }
8583 
8584 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8585 			unsigned int gchanges)
8586 {
8587 	unsigned int changes = dev->flags ^ old_flags;
8588 
8589 	if (gchanges)
8590 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
8591 
8592 	if (changes & IFF_UP) {
8593 		if (dev->flags & IFF_UP)
8594 			call_netdevice_notifiers(NETDEV_UP, dev);
8595 		else
8596 			call_netdevice_notifiers(NETDEV_DOWN, dev);
8597 	}
8598 
8599 	if (dev->flags & IFF_UP &&
8600 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8601 		struct netdev_notifier_change_info change_info = {
8602 			.info = {
8603 				.dev = dev,
8604 			},
8605 			.flags_changed = changes,
8606 		};
8607 
8608 		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8609 	}
8610 }
8611 
8612 /**
8613  *	dev_change_flags - change device settings
8614  *	@dev: device
8615  *	@flags: device state flags
8616  *	@extack: netlink extended ack
8617  *
8618  *	Change settings on device based state flags. The flags are
8619  *	in the userspace exported format.
8620  */
8621 int dev_change_flags(struct net_device *dev, unsigned int flags,
8622 		     struct netlink_ext_ack *extack)
8623 {
8624 	int ret;
8625 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8626 
8627 	ret = __dev_change_flags(dev, flags, extack);
8628 	if (ret < 0)
8629 		return ret;
8630 
8631 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8632 	__dev_notify_flags(dev, old_flags, changes);
8633 	return ret;
8634 }
8635 EXPORT_SYMBOL(dev_change_flags);
8636 
8637 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8638 {
8639 	const struct net_device_ops *ops = dev->netdev_ops;
8640 
8641 	if (ops->ndo_change_mtu)
8642 		return ops->ndo_change_mtu(dev, new_mtu);
8643 
8644 	/* Pairs with all the lockless reads of dev->mtu in the stack */
8645 	WRITE_ONCE(dev->mtu, new_mtu);
8646 	return 0;
8647 }
8648 EXPORT_SYMBOL(__dev_set_mtu);
8649 
8650 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8651 		     struct netlink_ext_ack *extack)
8652 {
8653 	/* MTU must be positive, and in range */
8654 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8655 		NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8656 		return -EINVAL;
8657 	}
8658 
8659 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8660 		NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8661 		return -EINVAL;
8662 	}
8663 	return 0;
8664 }
8665 
8666 /**
8667  *	dev_set_mtu_ext - Change maximum transfer unit
8668  *	@dev: device
8669  *	@new_mtu: new transfer unit
8670  *	@extack: netlink extended ack
8671  *
8672  *	Change the maximum transfer size of the network device.
8673  */
8674 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8675 		    struct netlink_ext_ack *extack)
8676 {
8677 	int err, orig_mtu;
8678 
8679 	if (new_mtu == dev->mtu)
8680 		return 0;
8681 
8682 	err = dev_validate_mtu(dev, new_mtu, extack);
8683 	if (err)
8684 		return err;
8685 
8686 	if (!netif_device_present(dev))
8687 		return -ENODEV;
8688 
8689 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8690 	err = notifier_to_errno(err);
8691 	if (err)
8692 		return err;
8693 
8694 	orig_mtu = dev->mtu;
8695 	err = __dev_set_mtu(dev, new_mtu);
8696 
8697 	if (!err) {
8698 		err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8699 						   orig_mtu);
8700 		err = notifier_to_errno(err);
8701 		if (err) {
8702 			/* setting mtu back and notifying everyone again,
8703 			 * so that they have a chance to revert changes.
8704 			 */
8705 			__dev_set_mtu(dev, orig_mtu);
8706 			call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8707 						     new_mtu);
8708 		}
8709 	}
8710 	return err;
8711 }
8712 
8713 int dev_set_mtu(struct net_device *dev, int new_mtu)
8714 {
8715 	struct netlink_ext_ack extack;
8716 	int err;
8717 
8718 	memset(&extack, 0, sizeof(extack));
8719 	err = dev_set_mtu_ext(dev, new_mtu, &extack);
8720 	if (err && extack._msg)
8721 		net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8722 	return err;
8723 }
8724 EXPORT_SYMBOL(dev_set_mtu);
8725 
8726 /**
8727  *	dev_change_tx_queue_len - Change TX queue length of a netdevice
8728  *	@dev: device
8729  *	@new_len: new tx queue length
8730  */
8731 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8732 {
8733 	unsigned int orig_len = dev->tx_queue_len;
8734 	int res;
8735 
8736 	if (new_len != (unsigned int)new_len)
8737 		return -ERANGE;
8738 
8739 	if (new_len != orig_len) {
8740 		dev->tx_queue_len = new_len;
8741 		res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8742 		res = notifier_to_errno(res);
8743 		if (res)
8744 			goto err_rollback;
8745 		res = dev_qdisc_change_tx_queue_len(dev);
8746 		if (res)
8747 			goto err_rollback;
8748 	}
8749 
8750 	return 0;
8751 
8752 err_rollback:
8753 	netdev_err(dev, "refused to change device tx_queue_len\n");
8754 	dev->tx_queue_len = orig_len;
8755 	return res;
8756 }
8757 
8758 /**
8759  *	dev_set_group - Change group this device belongs to
8760  *	@dev: device
8761  *	@new_group: group this device should belong to
8762  */
8763 void dev_set_group(struct net_device *dev, int new_group)
8764 {
8765 	dev->group = new_group;
8766 }
8767 
8768 /**
8769  *	dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8770  *	@dev: device
8771  *	@addr: new address
8772  *	@extack: netlink extended ack
8773  */
8774 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8775 			      struct netlink_ext_ack *extack)
8776 {
8777 	struct netdev_notifier_pre_changeaddr_info info = {
8778 		.info.dev = dev,
8779 		.info.extack = extack,
8780 		.dev_addr = addr,
8781 	};
8782 	int rc;
8783 
8784 	rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8785 	return notifier_to_errno(rc);
8786 }
8787 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8788 
8789 /**
8790  *	dev_set_mac_address - Change Media Access Control Address
8791  *	@dev: device
8792  *	@sa: new address
8793  *	@extack: netlink extended ack
8794  *
8795  *	Change the hardware (MAC) address of the device
8796  */
8797 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8798 			struct netlink_ext_ack *extack)
8799 {
8800 	const struct net_device_ops *ops = dev->netdev_ops;
8801 	int err;
8802 
8803 	if (!ops->ndo_set_mac_address)
8804 		return -EOPNOTSUPP;
8805 	if (sa->sa_family != dev->type)
8806 		return -EINVAL;
8807 	if (!netif_device_present(dev))
8808 		return -ENODEV;
8809 	err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8810 	if (err)
8811 		return err;
8812 	err = ops->ndo_set_mac_address(dev, sa);
8813 	if (err)
8814 		return err;
8815 	dev->addr_assign_type = NET_ADDR_SET;
8816 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8817 	add_device_randomness(dev->dev_addr, dev->addr_len);
8818 	return 0;
8819 }
8820 EXPORT_SYMBOL(dev_set_mac_address);
8821 
8822 static DECLARE_RWSEM(dev_addr_sem);
8823 
8824 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
8825 			     struct netlink_ext_ack *extack)
8826 {
8827 	int ret;
8828 
8829 	down_write(&dev_addr_sem);
8830 	ret = dev_set_mac_address(dev, sa, extack);
8831 	up_write(&dev_addr_sem);
8832 	return ret;
8833 }
8834 EXPORT_SYMBOL(dev_set_mac_address_user);
8835 
8836 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
8837 {
8838 	size_t size = sizeof(sa->sa_data);
8839 	struct net_device *dev;
8840 	int ret = 0;
8841 
8842 	down_read(&dev_addr_sem);
8843 	rcu_read_lock();
8844 
8845 	dev = dev_get_by_name_rcu(net, dev_name);
8846 	if (!dev) {
8847 		ret = -ENODEV;
8848 		goto unlock;
8849 	}
8850 	if (!dev->addr_len)
8851 		memset(sa->sa_data, 0, size);
8852 	else
8853 		memcpy(sa->sa_data, dev->dev_addr,
8854 		       min_t(size_t, size, dev->addr_len));
8855 	sa->sa_family = dev->type;
8856 
8857 unlock:
8858 	rcu_read_unlock();
8859 	up_read(&dev_addr_sem);
8860 	return ret;
8861 }
8862 EXPORT_SYMBOL(dev_get_mac_address);
8863 
8864 /**
8865  *	dev_change_carrier - Change device carrier
8866  *	@dev: device
8867  *	@new_carrier: new value
8868  *
8869  *	Change device carrier
8870  */
8871 int dev_change_carrier(struct net_device *dev, bool new_carrier)
8872 {
8873 	const struct net_device_ops *ops = dev->netdev_ops;
8874 
8875 	if (!ops->ndo_change_carrier)
8876 		return -EOPNOTSUPP;
8877 	if (!netif_device_present(dev))
8878 		return -ENODEV;
8879 	return ops->ndo_change_carrier(dev, new_carrier);
8880 }
8881 
8882 /**
8883  *	dev_get_phys_port_id - Get device physical port ID
8884  *	@dev: device
8885  *	@ppid: port ID
8886  *
8887  *	Get device physical port ID
8888  */
8889 int dev_get_phys_port_id(struct net_device *dev,
8890 			 struct netdev_phys_item_id *ppid)
8891 {
8892 	const struct net_device_ops *ops = dev->netdev_ops;
8893 
8894 	if (!ops->ndo_get_phys_port_id)
8895 		return -EOPNOTSUPP;
8896 	return ops->ndo_get_phys_port_id(dev, ppid);
8897 }
8898 
8899 /**
8900  *	dev_get_phys_port_name - Get device physical port name
8901  *	@dev: device
8902  *	@name: port name
8903  *	@len: limit of bytes to copy to name
8904  *
8905  *	Get device physical port name
8906  */
8907 int dev_get_phys_port_name(struct net_device *dev,
8908 			   char *name, size_t len)
8909 {
8910 	const struct net_device_ops *ops = dev->netdev_ops;
8911 	int err;
8912 
8913 	if (ops->ndo_get_phys_port_name) {
8914 		err = ops->ndo_get_phys_port_name(dev, name, len);
8915 		if (err != -EOPNOTSUPP)
8916 			return err;
8917 	}
8918 	return devlink_compat_phys_port_name_get(dev, name, len);
8919 }
8920 
8921 /**
8922  *	dev_get_port_parent_id - Get the device's port parent identifier
8923  *	@dev: network device
8924  *	@ppid: pointer to a storage for the port's parent identifier
8925  *	@recurse: allow/disallow recursion to lower devices
8926  *
8927  *	Get the devices's port parent identifier
8928  */
8929 int dev_get_port_parent_id(struct net_device *dev,
8930 			   struct netdev_phys_item_id *ppid,
8931 			   bool recurse)
8932 {
8933 	const struct net_device_ops *ops = dev->netdev_ops;
8934 	struct netdev_phys_item_id first = { };
8935 	struct net_device *lower_dev;
8936 	struct list_head *iter;
8937 	int err;
8938 
8939 	if (ops->ndo_get_port_parent_id) {
8940 		err = ops->ndo_get_port_parent_id(dev, ppid);
8941 		if (err != -EOPNOTSUPP)
8942 			return err;
8943 	}
8944 
8945 	err = devlink_compat_switch_id_get(dev, ppid);
8946 	if (!recurse || err != -EOPNOTSUPP)
8947 		return err;
8948 
8949 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
8950 		err = dev_get_port_parent_id(lower_dev, ppid, true);
8951 		if (err)
8952 			break;
8953 		if (!first.id_len)
8954 			first = *ppid;
8955 		else if (memcmp(&first, ppid, sizeof(*ppid)))
8956 			return -EOPNOTSUPP;
8957 	}
8958 
8959 	return err;
8960 }
8961 EXPORT_SYMBOL(dev_get_port_parent_id);
8962 
8963 /**
8964  *	netdev_port_same_parent_id - Indicate if two network devices have
8965  *	the same port parent identifier
8966  *	@a: first network device
8967  *	@b: second network device
8968  */
8969 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
8970 {
8971 	struct netdev_phys_item_id a_id = { };
8972 	struct netdev_phys_item_id b_id = { };
8973 
8974 	if (dev_get_port_parent_id(a, &a_id, true) ||
8975 	    dev_get_port_parent_id(b, &b_id, true))
8976 		return false;
8977 
8978 	return netdev_phys_item_id_same(&a_id, &b_id);
8979 }
8980 EXPORT_SYMBOL(netdev_port_same_parent_id);
8981 
8982 /**
8983  *	dev_change_proto_down - set carrier according to proto_down.
8984  *
8985  *	@dev: device
8986  *	@proto_down: new value
8987  */
8988 int dev_change_proto_down(struct net_device *dev, bool proto_down)
8989 {
8990 	if (!(dev->priv_flags & IFF_CHANGE_PROTO_DOWN))
8991 		return -EOPNOTSUPP;
8992 	if (!netif_device_present(dev))
8993 		return -ENODEV;
8994 	if (proto_down)
8995 		netif_carrier_off(dev);
8996 	else
8997 		netif_carrier_on(dev);
8998 	dev->proto_down = proto_down;
8999 	return 0;
9000 }
9001 
9002 /**
9003  *	dev_change_proto_down_reason - proto down reason
9004  *
9005  *	@dev: device
9006  *	@mask: proto down mask
9007  *	@value: proto down value
9008  */
9009 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
9010 				  u32 value)
9011 {
9012 	int b;
9013 
9014 	if (!mask) {
9015 		dev->proto_down_reason = value;
9016 	} else {
9017 		for_each_set_bit(b, &mask, 32) {
9018 			if (value & (1 << b))
9019 				dev->proto_down_reason |= BIT(b);
9020 			else
9021 				dev->proto_down_reason &= ~BIT(b);
9022 		}
9023 	}
9024 }
9025 
9026 struct bpf_xdp_link {
9027 	struct bpf_link link;
9028 	struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9029 	int flags;
9030 };
9031 
9032 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9033 {
9034 	if (flags & XDP_FLAGS_HW_MODE)
9035 		return XDP_MODE_HW;
9036 	if (flags & XDP_FLAGS_DRV_MODE)
9037 		return XDP_MODE_DRV;
9038 	if (flags & XDP_FLAGS_SKB_MODE)
9039 		return XDP_MODE_SKB;
9040 	return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9041 }
9042 
9043 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9044 {
9045 	switch (mode) {
9046 	case XDP_MODE_SKB:
9047 		return generic_xdp_install;
9048 	case XDP_MODE_DRV:
9049 	case XDP_MODE_HW:
9050 		return dev->netdev_ops->ndo_bpf;
9051 	default:
9052 		return NULL;
9053 	}
9054 }
9055 
9056 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9057 					 enum bpf_xdp_mode mode)
9058 {
9059 	return dev->xdp_state[mode].link;
9060 }
9061 
9062 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9063 				     enum bpf_xdp_mode mode)
9064 {
9065 	struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9066 
9067 	if (link)
9068 		return link->link.prog;
9069 	return dev->xdp_state[mode].prog;
9070 }
9071 
9072 u8 dev_xdp_prog_count(struct net_device *dev)
9073 {
9074 	u8 count = 0;
9075 	int i;
9076 
9077 	for (i = 0; i < __MAX_XDP_MODE; i++)
9078 		if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9079 			count++;
9080 	return count;
9081 }
9082 EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
9083 
9084 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9085 {
9086 	struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9087 
9088 	return prog ? prog->aux->id : 0;
9089 }
9090 
9091 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9092 			     struct bpf_xdp_link *link)
9093 {
9094 	dev->xdp_state[mode].link = link;
9095 	dev->xdp_state[mode].prog = NULL;
9096 }
9097 
9098 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9099 			     struct bpf_prog *prog)
9100 {
9101 	dev->xdp_state[mode].link = NULL;
9102 	dev->xdp_state[mode].prog = prog;
9103 }
9104 
9105 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9106 			   bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9107 			   u32 flags, struct bpf_prog *prog)
9108 {
9109 	struct netdev_bpf xdp;
9110 	int err;
9111 
9112 	memset(&xdp, 0, sizeof(xdp));
9113 	xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9114 	xdp.extack = extack;
9115 	xdp.flags = flags;
9116 	xdp.prog = prog;
9117 
9118 	/* Drivers assume refcnt is already incremented (i.e, prog pointer is
9119 	 * "moved" into driver), so they don't increment it on their own, but
9120 	 * they do decrement refcnt when program is detached or replaced.
9121 	 * Given net_device also owns link/prog, we need to bump refcnt here
9122 	 * to prevent drivers from underflowing it.
9123 	 */
9124 	if (prog)
9125 		bpf_prog_inc(prog);
9126 	err = bpf_op(dev, &xdp);
9127 	if (err) {
9128 		if (prog)
9129 			bpf_prog_put(prog);
9130 		return err;
9131 	}
9132 
9133 	if (mode != XDP_MODE_HW)
9134 		bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9135 
9136 	return 0;
9137 }
9138 
9139 static void dev_xdp_uninstall(struct net_device *dev)
9140 {
9141 	struct bpf_xdp_link *link;
9142 	struct bpf_prog *prog;
9143 	enum bpf_xdp_mode mode;
9144 	bpf_op_t bpf_op;
9145 
9146 	ASSERT_RTNL();
9147 
9148 	for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9149 		prog = dev_xdp_prog(dev, mode);
9150 		if (!prog)
9151 			continue;
9152 
9153 		bpf_op = dev_xdp_bpf_op(dev, mode);
9154 		if (!bpf_op)
9155 			continue;
9156 
9157 		WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9158 
9159 		/* auto-detach link from net device */
9160 		link = dev_xdp_link(dev, mode);
9161 		if (link)
9162 			link->dev = NULL;
9163 		else
9164 			bpf_prog_put(prog);
9165 
9166 		dev_xdp_set_link(dev, mode, NULL);
9167 	}
9168 }
9169 
9170 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9171 			  struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9172 			  struct bpf_prog *old_prog, u32 flags)
9173 {
9174 	unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9175 	struct bpf_prog *cur_prog;
9176 	struct net_device *upper;
9177 	struct list_head *iter;
9178 	enum bpf_xdp_mode mode;
9179 	bpf_op_t bpf_op;
9180 	int err;
9181 
9182 	ASSERT_RTNL();
9183 
9184 	/* either link or prog attachment, never both */
9185 	if (link && (new_prog || old_prog))
9186 		return -EINVAL;
9187 	/* link supports only XDP mode flags */
9188 	if (link && (flags & ~XDP_FLAGS_MODES)) {
9189 		NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9190 		return -EINVAL;
9191 	}
9192 	/* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9193 	if (num_modes > 1) {
9194 		NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9195 		return -EINVAL;
9196 	}
9197 	/* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9198 	if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9199 		NL_SET_ERR_MSG(extack,
9200 			       "More than one program loaded, unset mode is ambiguous");
9201 		return -EINVAL;
9202 	}
9203 	/* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9204 	if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9205 		NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9206 		return -EINVAL;
9207 	}
9208 
9209 	mode = dev_xdp_mode(dev, flags);
9210 	/* can't replace attached link */
9211 	if (dev_xdp_link(dev, mode)) {
9212 		NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9213 		return -EBUSY;
9214 	}
9215 
9216 	/* don't allow if an upper device already has a program */
9217 	netdev_for_each_upper_dev_rcu(dev, upper, iter) {
9218 		if (dev_xdp_prog_count(upper) > 0) {
9219 			NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
9220 			return -EEXIST;
9221 		}
9222 	}
9223 
9224 	cur_prog = dev_xdp_prog(dev, mode);
9225 	/* can't replace attached prog with link */
9226 	if (link && cur_prog) {
9227 		NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9228 		return -EBUSY;
9229 	}
9230 	if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9231 		NL_SET_ERR_MSG(extack, "Active program does not match expected");
9232 		return -EEXIST;
9233 	}
9234 
9235 	/* put effective new program into new_prog */
9236 	if (link)
9237 		new_prog = link->link.prog;
9238 
9239 	if (new_prog) {
9240 		bool offload = mode == XDP_MODE_HW;
9241 		enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9242 					       ? XDP_MODE_DRV : XDP_MODE_SKB;
9243 
9244 		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9245 			NL_SET_ERR_MSG(extack, "XDP program already attached");
9246 			return -EBUSY;
9247 		}
9248 		if (!offload && dev_xdp_prog(dev, other_mode)) {
9249 			NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9250 			return -EEXIST;
9251 		}
9252 		if (!offload && bpf_prog_is_dev_bound(new_prog->aux)) {
9253 			NL_SET_ERR_MSG(extack, "Using device-bound program without HW_MODE flag is not supported");
9254 			return -EINVAL;
9255 		}
9256 		if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9257 			NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9258 			return -EINVAL;
9259 		}
9260 		if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9261 			NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9262 			return -EINVAL;
9263 		}
9264 	}
9265 
9266 	/* don't call drivers if the effective program didn't change */
9267 	if (new_prog != cur_prog) {
9268 		bpf_op = dev_xdp_bpf_op(dev, mode);
9269 		if (!bpf_op) {
9270 			NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9271 			return -EOPNOTSUPP;
9272 		}
9273 
9274 		err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9275 		if (err)
9276 			return err;
9277 	}
9278 
9279 	if (link)
9280 		dev_xdp_set_link(dev, mode, link);
9281 	else
9282 		dev_xdp_set_prog(dev, mode, new_prog);
9283 	if (cur_prog)
9284 		bpf_prog_put(cur_prog);
9285 
9286 	return 0;
9287 }
9288 
9289 static int dev_xdp_attach_link(struct net_device *dev,
9290 			       struct netlink_ext_ack *extack,
9291 			       struct bpf_xdp_link *link)
9292 {
9293 	return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9294 }
9295 
9296 static int dev_xdp_detach_link(struct net_device *dev,
9297 			       struct netlink_ext_ack *extack,
9298 			       struct bpf_xdp_link *link)
9299 {
9300 	enum bpf_xdp_mode mode;
9301 	bpf_op_t bpf_op;
9302 
9303 	ASSERT_RTNL();
9304 
9305 	mode = dev_xdp_mode(dev, link->flags);
9306 	if (dev_xdp_link(dev, mode) != link)
9307 		return -EINVAL;
9308 
9309 	bpf_op = dev_xdp_bpf_op(dev, mode);
9310 	WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9311 	dev_xdp_set_link(dev, mode, NULL);
9312 	return 0;
9313 }
9314 
9315 static void bpf_xdp_link_release(struct bpf_link *link)
9316 {
9317 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9318 
9319 	rtnl_lock();
9320 
9321 	/* if racing with net_device's tear down, xdp_link->dev might be
9322 	 * already NULL, in which case link was already auto-detached
9323 	 */
9324 	if (xdp_link->dev) {
9325 		WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9326 		xdp_link->dev = NULL;
9327 	}
9328 
9329 	rtnl_unlock();
9330 }
9331 
9332 static int bpf_xdp_link_detach(struct bpf_link *link)
9333 {
9334 	bpf_xdp_link_release(link);
9335 	return 0;
9336 }
9337 
9338 static void bpf_xdp_link_dealloc(struct bpf_link *link)
9339 {
9340 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9341 
9342 	kfree(xdp_link);
9343 }
9344 
9345 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9346 				     struct seq_file *seq)
9347 {
9348 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9349 	u32 ifindex = 0;
9350 
9351 	rtnl_lock();
9352 	if (xdp_link->dev)
9353 		ifindex = xdp_link->dev->ifindex;
9354 	rtnl_unlock();
9355 
9356 	seq_printf(seq, "ifindex:\t%u\n", ifindex);
9357 }
9358 
9359 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9360 				       struct bpf_link_info *info)
9361 {
9362 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9363 	u32 ifindex = 0;
9364 
9365 	rtnl_lock();
9366 	if (xdp_link->dev)
9367 		ifindex = xdp_link->dev->ifindex;
9368 	rtnl_unlock();
9369 
9370 	info->xdp.ifindex = ifindex;
9371 	return 0;
9372 }
9373 
9374 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9375 			       struct bpf_prog *old_prog)
9376 {
9377 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9378 	enum bpf_xdp_mode mode;
9379 	bpf_op_t bpf_op;
9380 	int err = 0;
9381 
9382 	rtnl_lock();
9383 
9384 	/* link might have been auto-released already, so fail */
9385 	if (!xdp_link->dev) {
9386 		err = -ENOLINK;
9387 		goto out_unlock;
9388 	}
9389 
9390 	if (old_prog && link->prog != old_prog) {
9391 		err = -EPERM;
9392 		goto out_unlock;
9393 	}
9394 	old_prog = link->prog;
9395 	if (old_prog->type != new_prog->type ||
9396 	    old_prog->expected_attach_type != new_prog->expected_attach_type) {
9397 		err = -EINVAL;
9398 		goto out_unlock;
9399 	}
9400 
9401 	if (old_prog == new_prog) {
9402 		/* no-op, don't disturb drivers */
9403 		bpf_prog_put(new_prog);
9404 		goto out_unlock;
9405 	}
9406 
9407 	mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9408 	bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9409 	err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9410 			      xdp_link->flags, new_prog);
9411 	if (err)
9412 		goto out_unlock;
9413 
9414 	old_prog = xchg(&link->prog, new_prog);
9415 	bpf_prog_put(old_prog);
9416 
9417 out_unlock:
9418 	rtnl_unlock();
9419 	return err;
9420 }
9421 
9422 static const struct bpf_link_ops bpf_xdp_link_lops = {
9423 	.release = bpf_xdp_link_release,
9424 	.dealloc = bpf_xdp_link_dealloc,
9425 	.detach = bpf_xdp_link_detach,
9426 	.show_fdinfo = bpf_xdp_link_show_fdinfo,
9427 	.fill_link_info = bpf_xdp_link_fill_link_info,
9428 	.update_prog = bpf_xdp_link_update,
9429 };
9430 
9431 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9432 {
9433 	struct net *net = current->nsproxy->net_ns;
9434 	struct bpf_link_primer link_primer;
9435 	struct bpf_xdp_link *link;
9436 	struct net_device *dev;
9437 	int err, fd;
9438 
9439 	rtnl_lock();
9440 	dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9441 	if (!dev) {
9442 		rtnl_unlock();
9443 		return -EINVAL;
9444 	}
9445 
9446 	link = kzalloc(sizeof(*link), GFP_USER);
9447 	if (!link) {
9448 		err = -ENOMEM;
9449 		goto unlock;
9450 	}
9451 
9452 	bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9453 	link->dev = dev;
9454 	link->flags = attr->link_create.flags;
9455 
9456 	err = bpf_link_prime(&link->link, &link_primer);
9457 	if (err) {
9458 		kfree(link);
9459 		goto unlock;
9460 	}
9461 
9462 	err = dev_xdp_attach_link(dev, NULL, link);
9463 	rtnl_unlock();
9464 
9465 	if (err) {
9466 		link->dev = NULL;
9467 		bpf_link_cleanup(&link_primer);
9468 		goto out_put_dev;
9469 	}
9470 
9471 	fd = bpf_link_settle(&link_primer);
9472 	/* link itself doesn't hold dev's refcnt to not complicate shutdown */
9473 	dev_put(dev);
9474 	return fd;
9475 
9476 unlock:
9477 	rtnl_unlock();
9478 
9479 out_put_dev:
9480 	dev_put(dev);
9481 	return err;
9482 }
9483 
9484 /**
9485  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
9486  *	@dev: device
9487  *	@extack: netlink extended ack
9488  *	@fd: new program fd or negative value to clear
9489  *	@expected_fd: old program fd that userspace expects to replace or clear
9490  *	@flags: xdp-related flags
9491  *
9492  *	Set or clear a bpf program for a device
9493  */
9494 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9495 		      int fd, int expected_fd, u32 flags)
9496 {
9497 	enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9498 	struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9499 	int err;
9500 
9501 	ASSERT_RTNL();
9502 
9503 	if (fd >= 0) {
9504 		new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9505 						 mode != XDP_MODE_SKB);
9506 		if (IS_ERR(new_prog))
9507 			return PTR_ERR(new_prog);
9508 	}
9509 
9510 	if (expected_fd >= 0) {
9511 		old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9512 						 mode != XDP_MODE_SKB);
9513 		if (IS_ERR(old_prog)) {
9514 			err = PTR_ERR(old_prog);
9515 			old_prog = NULL;
9516 			goto err_out;
9517 		}
9518 	}
9519 
9520 	err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9521 
9522 err_out:
9523 	if (err && new_prog)
9524 		bpf_prog_put(new_prog);
9525 	if (old_prog)
9526 		bpf_prog_put(old_prog);
9527 	return err;
9528 }
9529 
9530 /**
9531  *	dev_new_index	-	allocate an ifindex
9532  *	@net: the applicable net namespace
9533  *
9534  *	Returns a suitable unique value for a new device interface
9535  *	number.  The caller must hold the rtnl semaphore or the
9536  *	dev_base_lock to be sure it remains unique.
9537  */
9538 static int dev_new_index(struct net *net)
9539 {
9540 	int ifindex = net->ifindex;
9541 
9542 	for (;;) {
9543 		if (++ifindex <= 0)
9544 			ifindex = 1;
9545 		if (!__dev_get_by_index(net, ifindex))
9546 			return net->ifindex = ifindex;
9547 	}
9548 }
9549 
9550 /* Delayed registration/unregisteration */
9551 LIST_HEAD(net_todo_list);
9552 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9553 
9554 static void net_set_todo(struct net_device *dev)
9555 {
9556 	list_add_tail(&dev->todo_list, &net_todo_list);
9557 	atomic_inc(&dev_net(dev)->dev_unreg_count);
9558 }
9559 
9560 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9561 	struct net_device *upper, netdev_features_t features)
9562 {
9563 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9564 	netdev_features_t feature;
9565 	int feature_bit;
9566 
9567 	for_each_netdev_feature(upper_disables, feature_bit) {
9568 		feature = __NETIF_F_BIT(feature_bit);
9569 		if (!(upper->wanted_features & feature)
9570 		    && (features & feature)) {
9571 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9572 				   &feature, upper->name);
9573 			features &= ~feature;
9574 		}
9575 	}
9576 
9577 	return features;
9578 }
9579 
9580 static void netdev_sync_lower_features(struct net_device *upper,
9581 	struct net_device *lower, netdev_features_t features)
9582 {
9583 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9584 	netdev_features_t feature;
9585 	int feature_bit;
9586 
9587 	for_each_netdev_feature(upper_disables, feature_bit) {
9588 		feature = __NETIF_F_BIT(feature_bit);
9589 		if (!(features & feature) && (lower->features & feature)) {
9590 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9591 				   &feature, lower->name);
9592 			lower->wanted_features &= ~feature;
9593 			__netdev_update_features(lower);
9594 
9595 			if (unlikely(lower->features & feature))
9596 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9597 					    &feature, lower->name);
9598 			else
9599 				netdev_features_change(lower);
9600 		}
9601 	}
9602 }
9603 
9604 static netdev_features_t netdev_fix_features(struct net_device *dev,
9605 	netdev_features_t features)
9606 {
9607 	/* Fix illegal checksum combinations */
9608 	if ((features & NETIF_F_HW_CSUM) &&
9609 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9610 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9611 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9612 	}
9613 
9614 	/* TSO requires that SG is present as well. */
9615 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9616 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9617 		features &= ~NETIF_F_ALL_TSO;
9618 	}
9619 
9620 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9621 					!(features & NETIF_F_IP_CSUM)) {
9622 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9623 		features &= ~NETIF_F_TSO;
9624 		features &= ~NETIF_F_TSO_ECN;
9625 	}
9626 
9627 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9628 					 !(features & NETIF_F_IPV6_CSUM)) {
9629 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9630 		features &= ~NETIF_F_TSO6;
9631 	}
9632 
9633 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9634 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9635 		features &= ~NETIF_F_TSO_MANGLEID;
9636 
9637 	/* TSO ECN requires that TSO is present as well. */
9638 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9639 		features &= ~NETIF_F_TSO_ECN;
9640 
9641 	/* Software GSO depends on SG. */
9642 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9643 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9644 		features &= ~NETIF_F_GSO;
9645 	}
9646 
9647 	/* GSO partial features require GSO partial be set */
9648 	if ((features & dev->gso_partial_features) &&
9649 	    !(features & NETIF_F_GSO_PARTIAL)) {
9650 		netdev_dbg(dev,
9651 			   "Dropping partially supported GSO features since no GSO partial.\n");
9652 		features &= ~dev->gso_partial_features;
9653 	}
9654 
9655 	if (!(features & NETIF_F_RXCSUM)) {
9656 		/* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9657 		 * successfully merged by hardware must also have the
9658 		 * checksum verified by hardware.  If the user does not
9659 		 * want to enable RXCSUM, logically, we should disable GRO_HW.
9660 		 */
9661 		if (features & NETIF_F_GRO_HW) {
9662 			netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9663 			features &= ~NETIF_F_GRO_HW;
9664 		}
9665 	}
9666 
9667 	/* LRO/HW-GRO features cannot be combined with RX-FCS */
9668 	if (features & NETIF_F_RXFCS) {
9669 		if (features & NETIF_F_LRO) {
9670 			netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9671 			features &= ~NETIF_F_LRO;
9672 		}
9673 
9674 		if (features & NETIF_F_GRO_HW) {
9675 			netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9676 			features &= ~NETIF_F_GRO_HW;
9677 		}
9678 	}
9679 
9680 	if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
9681 		netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
9682 		features &= ~NETIF_F_LRO;
9683 	}
9684 
9685 	if (features & NETIF_F_HW_TLS_TX) {
9686 		bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9687 			(NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9688 		bool hw_csum = features & NETIF_F_HW_CSUM;
9689 
9690 		if (!ip_csum && !hw_csum) {
9691 			netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9692 			features &= ~NETIF_F_HW_TLS_TX;
9693 		}
9694 	}
9695 
9696 	if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9697 		netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9698 		features &= ~NETIF_F_HW_TLS_RX;
9699 	}
9700 
9701 	return features;
9702 }
9703 
9704 int __netdev_update_features(struct net_device *dev)
9705 {
9706 	struct net_device *upper, *lower;
9707 	netdev_features_t features;
9708 	struct list_head *iter;
9709 	int err = -1;
9710 
9711 	ASSERT_RTNL();
9712 
9713 	features = netdev_get_wanted_features(dev);
9714 
9715 	if (dev->netdev_ops->ndo_fix_features)
9716 		features = dev->netdev_ops->ndo_fix_features(dev, features);
9717 
9718 	/* driver might be less strict about feature dependencies */
9719 	features = netdev_fix_features(dev, features);
9720 
9721 	/* some features can't be enabled if they're off on an upper device */
9722 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
9723 		features = netdev_sync_upper_features(dev, upper, features);
9724 
9725 	if (dev->features == features)
9726 		goto sync_lower;
9727 
9728 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9729 		&dev->features, &features);
9730 
9731 	if (dev->netdev_ops->ndo_set_features)
9732 		err = dev->netdev_ops->ndo_set_features(dev, features);
9733 	else
9734 		err = 0;
9735 
9736 	if (unlikely(err < 0)) {
9737 		netdev_err(dev,
9738 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
9739 			err, &features, &dev->features);
9740 		/* return non-0 since some features might have changed and
9741 		 * it's better to fire a spurious notification than miss it
9742 		 */
9743 		return -1;
9744 	}
9745 
9746 sync_lower:
9747 	/* some features must be disabled on lower devices when disabled
9748 	 * on an upper device (think: bonding master or bridge)
9749 	 */
9750 	netdev_for_each_lower_dev(dev, lower, iter)
9751 		netdev_sync_lower_features(dev, lower, features);
9752 
9753 	if (!err) {
9754 		netdev_features_t diff = features ^ dev->features;
9755 
9756 		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9757 			/* udp_tunnel_{get,drop}_rx_info both need
9758 			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9759 			 * device, or they won't do anything.
9760 			 * Thus we need to update dev->features
9761 			 * *before* calling udp_tunnel_get_rx_info,
9762 			 * but *after* calling udp_tunnel_drop_rx_info.
9763 			 */
9764 			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9765 				dev->features = features;
9766 				udp_tunnel_get_rx_info(dev);
9767 			} else {
9768 				udp_tunnel_drop_rx_info(dev);
9769 			}
9770 		}
9771 
9772 		if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9773 			if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9774 				dev->features = features;
9775 				err |= vlan_get_rx_ctag_filter_info(dev);
9776 			} else {
9777 				vlan_drop_rx_ctag_filter_info(dev);
9778 			}
9779 		}
9780 
9781 		if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9782 			if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9783 				dev->features = features;
9784 				err |= vlan_get_rx_stag_filter_info(dev);
9785 			} else {
9786 				vlan_drop_rx_stag_filter_info(dev);
9787 			}
9788 		}
9789 
9790 		dev->features = features;
9791 	}
9792 
9793 	return err < 0 ? 0 : 1;
9794 }
9795 
9796 /**
9797  *	netdev_update_features - recalculate device features
9798  *	@dev: the device to check
9799  *
9800  *	Recalculate dev->features set and send notifications if it
9801  *	has changed. Should be called after driver or hardware dependent
9802  *	conditions might have changed that influence the features.
9803  */
9804 void netdev_update_features(struct net_device *dev)
9805 {
9806 	if (__netdev_update_features(dev))
9807 		netdev_features_change(dev);
9808 }
9809 EXPORT_SYMBOL(netdev_update_features);
9810 
9811 /**
9812  *	netdev_change_features - recalculate device features
9813  *	@dev: the device to check
9814  *
9815  *	Recalculate dev->features set and send notifications even
9816  *	if they have not changed. Should be called instead of
9817  *	netdev_update_features() if also dev->vlan_features might
9818  *	have changed to allow the changes to be propagated to stacked
9819  *	VLAN devices.
9820  */
9821 void netdev_change_features(struct net_device *dev)
9822 {
9823 	__netdev_update_features(dev);
9824 	netdev_features_change(dev);
9825 }
9826 EXPORT_SYMBOL(netdev_change_features);
9827 
9828 /**
9829  *	netif_stacked_transfer_operstate -	transfer operstate
9830  *	@rootdev: the root or lower level device to transfer state from
9831  *	@dev: the device to transfer operstate to
9832  *
9833  *	Transfer operational state from root to device. This is normally
9834  *	called when a stacking relationship exists between the root
9835  *	device and the device(a leaf device).
9836  */
9837 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9838 					struct net_device *dev)
9839 {
9840 	if (rootdev->operstate == IF_OPER_DORMANT)
9841 		netif_dormant_on(dev);
9842 	else
9843 		netif_dormant_off(dev);
9844 
9845 	if (rootdev->operstate == IF_OPER_TESTING)
9846 		netif_testing_on(dev);
9847 	else
9848 		netif_testing_off(dev);
9849 
9850 	if (netif_carrier_ok(rootdev))
9851 		netif_carrier_on(dev);
9852 	else
9853 		netif_carrier_off(dev);
9854 }
9855 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9856 
9857 static int netif_alloc_rx_queues(struct net_device *dev)
9858 {
9859 	unsigned int i, count = dev->num_rx_queues;
9860 	struct netdev_rx_queue *rx;
9861 	size_t sz = count * sizeof(*rx);
9862 	int err = 0;
9863 
9864 	BUG_ON(count < 1);
9865 
9866 	rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
9867 	if (!rx)
9868 		return -ENOMEM;
9869 
9870 	dev->_rx = rx;
9871 
9872 	for (i = 0; i < count; i++) {
9873 		rx[i].dev = dev;
9874 
9875 		/* XDP RX-queue setup */
9876 		err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
9877 		if (err < 0)
9878 			goto err_rxq_info;
9879 	}
9880 	return 0;
9881 
9882 err_rxq_info:
9883 	/* Rollback successful reg's and free other resources */
9884 	while (i--)
9885 		xdp_rxq_info_unreg(&rx[i].xdp_rxq);
9886 	kvfree(dev->_rx);
9887 	dev->_rx = NULL;
9888 	return err;
9889 }
9890 
9891 static void netif_free_rx_queues(struct net_device *dev)
9892 {
9893 	unsigned int i, count = dev->num_rx_queues;
9894 
9895 	/* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
9896 	if (!dev->_rx)
9897 		return;
9898 
9899 	for (i = 0; i < count; i++)
9900 		xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
9901 
9902 	kvfree(dev->_rx);
9903 }
9904 
9905 static void netdev_init_one_queue(struct net_device *dev,
9906 				  struct netdev_queue *queue, void *_unused)
9907 {
9908 	/* Initialize queue lock */
9909 	spin_lock_init(&queue->_xmit_lock);
9910 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
9911 	queue->xmit_lock_owner = -1;
9912 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
9913 	queue->dev = dev;
9914 #ifdef CONFIG_BQL
9915 	dql_init(&queue->dql, HZ);
9916 #endif
9917 }
9918 
9919 static void netif_free_tx_queues(struct net_device *dev)
9920 {
9921 	kvfree(dev->_tx);
9922 }
9923 
9924 static int netif_alloc_netdev_queues(struct net_device *dev)
9925 {
9926 	unsigned int count = dev->num_tx_queues;
9927 	struct netdev_queue *tx;
9928 	size_t sz = count * sizeof(*tx);
9929 
9930 	if (count < 1 || count > 0xffff)
9931 		return -EINVAL;
9932 
9933 	tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
9934 	if (!tx)
9935 		return -ENOMEM;
9936 
9937 	dev->_tx = tx;
9938 
9939 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
9940 	spin_lock_init(&dev->tx_global_lock);
9941 
9942 	return 0;
9943 }
9944 
9945 void netif_tx_stop_all_queues(struct net_device *dev)
9946 {
9947 	unsigned int i;
9948 
9949 	for (i = 0; i < dev->num_tx_queues; i++) {
9950 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
9951 
9952 		netif_tx_stop_queue(txq);
9953 	}
9954 }
9955 EXPORT_SYMBOL(netif_tx_stop_all_queues);
9956 
9957 /**
9958  * register_netdevice() - register a network device
9959  * @dev: device to register
9960  *
9961  * Take a prepared network device structure and make it externally accessible.
9962  * A %NETDEV_REGISTER message is sent to the netdev notifier chain.
9963  * Callers must hold the rtnl lock - you may want register_netdev()
9964  * instead of this.
9965  */
9966 int register_netdevice(struct net_device *dev)
9967 {
9968 	int ret;
9969 	struct net *net = dev_net(dev);
9970 
9971 	BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
9972 		     NETDEV_FEATURE_COUNT);
9973 	BUG_ON(dev_boot_phase);
9974 	ASSERT_RTNL();
9975 
9976 	might_sleep();
9977 
9978 	/* When net_device's are persistent, this will be fatal. */
9979 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
9980 	BUG_ON(!net);
9981 
9982 	ret = ethtool_check_ops(dev->ethtool_ops);
9983 	if (ret)
9984 		return ret;
9985 
9986 	spin_lock_init(&dev->addr_list_lock);
9987 	netdev_set_addr_lockdep_class(dev);
9988 
9989 	ret = dev_get_valid_name(net, dev, dev->name);
9990 	if (ret < 0)
9991 		goto out;
9992 
9993 	ret = -ENOMEM;
9994 	dev->name_node = netdev_name_node_head_alloc(dev);
9995 	if (!dev->name_node)
9996 		goto out;
9997 
9998 	/* Init, if this function is available */
9999 	if (dev->netdev_ops->ndo_init) {
10000 		ret = dev->netdev_ops->ndo_init(dev);
10001 		if (ret) {
10002 			if (ret > 0)
10003 				ret = -EIO;
10004 			goto err_free_name;
10005 		}
10006 	}
10007 
10008 	if (((dev->hw_features | dev->features) &
10009 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
10010 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10011 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10012 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10013 		ret = -EINVAL;
10014 		goto err_uninit;
10015 	}
10016 
10017 	ret = -EBUSY;
10018 	if (!dev->ifindex)
10019 		dev->ifindex = dev_new_index(net);
10020 	else if (__dev_get_by_index(net, dev->ifindex))
10021 		goto err_uninit;
10022 
10023 	/* Transfer changeable features to wanted_features and enable
10024 	 * software offloads (GSO and GRO).
10025 	 */
10026 	dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10027 	dev->features |= NETIF_F_SOFT_FEATURES;
10028 
10029 	if (dev->udp_tunnel_nic_info) {
10030 		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10031 		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10032 	}
10033 
10034 	dev->wanted_features = dev->features & dev->hw_features;
10035 
10036 	if (!(dev->flags & IFF_LOOPBACK))
10037 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
10038 
10039 	/* If IPv4 TCP segmentation offload is supported we should also
10040 	 * allow the device to enable segmenting the frame with the option
10041 	 * of ignoring a static IP ID value.  This doesn't enable the
10042 	 * feature itself but allows the user to enable it later.
10043 	 */
10044 	if (dev->hw_features & NETIF_F_TSO)
10045 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
10046 	if (dev->vlan_features & NETIF_F_TSO)
10047 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10048 	if (dev->mpls_features & NETIF_F_TSO)
10049 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10050 	if (dev->hw_enc_features & NETIF_F_TSO)
10051 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10052 
10053 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10054 	 */
10055 	dev->vlan_features |= NETIF_F_HIGHDMA;
10056 
10057 	/* Make NETIF_F_SG inheritable to tunnel devices.
10058 	 */
10059 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10060 
10061 	/* Make NETIF_F_SG inheritable to MPLS.
10062 	 */
10063 	dev->mpls_features |= NETIF_F_SG;
10064 
10065 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10066 	ret = notifier_to_errno(ret);
10067 	if (ret)
10068 		goto err_uninit;
10069 
10070 	ret = netdev_register_kobject(dev);
10071 	write_lock(&dev_base_lock);
10072 	dev->reg_state = ret ? NETREG_UNREGISTERED : NETREG_REGISTERED;
10073 	write_unlock(&dev_base_lock);
10074 	if (ret)
10075 		goto err_uninit;
10076 
10077 	__netdev_update_features(dev);
10078 
10079 	/*
10080 	 *	Default initial state at registry is that the
10081 	 *	device is present.
10082 	 */
10083 
10084 	set_bit(__LINK_STATE_PRESENT, &dev->state);
10085 
10086 	linkwatch_init_dev(dev);
10087 
10088 	dev_init_scheduler(dev);
10089 
10090 	netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL);
10091 	list_netdevice(dev);
10092 
10093 	add_device_randomness(dev->dev_addr, dev->addr_len);
10094 
10095 	/* If the device has permanent device address, driver should
10096 	 * set dev_addr and also addr_assign_type should be set to
10097 	 * NET_ADDR_PERM (default value).
10098 	 */
10099 	if (dev->addr_assign_type == NET_ADDR_PERM)
10100 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10101 
10102 	/* Notify protocols, that a new device appeared. */
10103 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10104 	ret = notifier_to_errno(ret);
10105 	if (ret) {
10106 		/* Expect explicit free_netdev() on failure */
10107 		dev->needs_free_netdev = false;
10108 		unregister_netdevice_queue(dev, NULL);
10109 		goto out;
10110 	}
10111 	/*
10112 	 *	Prevent userspace races by waiting until the network
10113 	 *	device is fully setup before sending notifications.
10114 	 */
10115 	if (!dev->rtnl_link_ops ||
10116 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10117 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10118 
10119 out:
10120 	return ret;
10121 
10122 err_uninit:
10123 	if (dev->netdev_ops->ndo_uninit)
10124 		dev->netdev_ops->ndo_uninit(dev);
10125 	if (dev->priv_destructor)
10126 		dev->priv_destructor(dev);
10127 err_free_name:
10128 	netdev_name_node_free(dev->name_node);
10129 	goto out;
10130 }
10131 EXPORT_SYMBOL(register_netdevice);
10132 
10133 /**
10134  *	init_dummy_netdev	- init a dummy network device for NAPI
10135  *	@dev: device to init
10136  *
10137  *	This takes a network device structure and initialize the minimum
10138  *	amount of fields so it can be used to schedule NAPI polls without
10139  *	registering a full blown interface. This is to be used by drivers
10140  *	that need to tie several hardware interfaces to a single NAPI
10141  *	poll scheduler due to HW limitations.
10142  */
10143 int init_dummy_netdev(struct net_device *dev)
10144 {
10145 	/* Clear everything. Note we don't initialize spinlocks
10146 	 * are they aren't supposed to be taken by any of the
10147 	 * NAPI code and this dummy netdev is supposed to be
10148 	 * only ever used for NAPI polls
10149 	 */
10150 	memset(dev, 0, sizeof(struct net_device));
10151 
10152 	/* make sure we BUG if trying to hit standard
10153 	 * register/unregister code path
10154 	 */
10155 	dev->reg_state = NETREG_DUMMY;
10156 
10157 	/* NAPI wants this */
10158 	INIT_LIST_HEAD(&dev->napi_list);
10159 
10160 	/* a dummy interface is started by default */
10161 	set_bit(__LINK_STATE_PRESENT, &dev->state);
10162 	set_bit(__LINK_STATE_START, &dev->state);
10163 
10164 	/* napi_busy_loop stats accounting wants this */
10165 	dev_net_set(dev, &init_net);
10166 
10167 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
10168 	 * because users of this 'device' dont need to change
10169 	 * its refcount.
10170 	 */
10171 
10172 	return 0;
10173 }
10174 EXPORT_SYMBOL_GPL(init_dummy_netdev);
10175 
10176 
10177 /**
10178  *	register_netdev	- register a network device
10179  *	@dev: device to register
10180  *
10181  *	Take a completed network device structure and add it to the kernel
10182  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10183  *	chain. 0 is returned on success. A negative errno code is returned
10184  *	on a failure to set up the device, or if the name is a duplicate.
10185  *
10186  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
10187  *	and expands the device name if you passed a format string to
10188  *	alloc_netdev.
10189  */
10190 int register_netdev(struct net_device *dev)
10191 {
10192 	int err;
10193 
10194 	if (rtnl_lock_killable())
10195 		return -EINTR;
10196 	err = register_netdevice(dev);
10197 	rtnl_unlock();
10198 	return err;
10199 }
10200 EXPORT_SYMBOL(register_netdev);
10201 
10202 int netdev_refcnt_read(const struct net_device *dev)
10203 {
10204 #ifdef CONFIG_PCPU_DEV_REFCNT
10205 	int i, refcnt = 0;
10206 
10207 	for_each_possible_cpu(i)
10208 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10209 	return refcnt;
10210 #else
10211 	return refcount_read(&dev->dev_refcnt);
10212 #endif
10213 }
10214 EXPORT_SYMBOL(netdev_refcnt_read);
10215 
10216 int netdev_unregister_timeout_secs __read_mostly = 10;
10217 
10218 #define WAIT_REFS_MIN_MSECS 1
10219 #define WAIT_REFS_MAX_MSECS 250
10220 /**
10221  * netdev_wait_allrefs_any - wait until all references are gone.
10222  * @list: list of net_devices to wait on
10223  *
10224  * This is called when unregistering network devices.
10225  *
10226  * Any protocol or device that holds a reference should register
10227  * for netdevice notification, and cleanup and put back the
10228  * reference if they receive an UNREGISTER event.
10229  * We can get stuck here if buggy protocols don't correctly
10230  * call dev_put.
10231  */
10232 static struct net_device *netdev_wait_allrefs_any(struct list_head *list)
10233 {
10234 	unsigned long rebroadcast_time, warning_time;
10235 	struct net_device *dev;
10236 	int wait = 0;
10237 
10238 	rebroadcast_time = warning_time = jiffies;
10239 
10240 	list_for_each_entry(dev, list, todo_list)
10241 		if (netdev_refcnt_read(dev) == 1)
10242 			return dev;
10243 
10244 	while (true) {
10245 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10246 			rtnl_lock();
10247 
10248 			/* Rebroadcast unregister notification */
10249 			list_for_each_entry(dev, list, todo_list)
10250 				call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10251 
10252 			__rtnl_unlock();
10253 			rcu_barrier();
10254 			rtnl_lock();
10255 
10256 			list_for_each_entry(dev, list, todo_list)
10257 				if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10258 					     &dev->state)) {
10259 					/* We must not have linkwatch events
10260 					 * pending on unregister. If this
10261 					 * happens, we simply run the queue
10262 					 * unscheduled, resulting in a noop
10263 					 * for this device.
10264 					 */
10265 					linkwatch_run_queue();
10266 					break;
10267 				}
10268 
10269 			__rtnl_unlock();
10270 
10271 			rebroadcast_time = jiffies;
10272 		}
10273 
10274 		if (!wait) {
10275 			rcu_barrier();
10276 			wait = WAIT_REFS_MIN_MSECS;
10277 		} else {
10278 			msleep(wait);
10279 			wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10280 		}
10281 
10282 		list_for_each_entry(dev, list, todo_list)
10283 			if (netdev_refcnt_read(dev) == 1)
10284 				return dev;
10285 
10286 		if (time_after(jiffies, warning_time +
10287 			       netdev_unregister_timeout_secs * HZ)) {
10288 			list_for_each_entry(dev, list, todo_list) {
10289 				pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10290 					 dev->name, netdev_refcnt_read(dev));
10291 				ref_tracker_dir_print(&dev->refcnt_tracker, 10);
10292 			}
10293 
10294 			warning_time = jiffies;
10295 		}
10296 	}
10297 }
10298 
10299 /* The sequence is:
10300  *
10301  *	rtnl_lock();
10302  *	...
10303  *	register_netdevice(x1);
10304  *	register_netdevice(x2);
10305  *	...
10306  *	unregister_netdevice(y1);
10307  *	unregister_netdevice(y2);
10308  *      ...
10309  *	rtnl_unlock();
10310  *	free_netdev(y1);
10311  *	free_netdev(y2);
10312  *
10313  * We are invoked by rtnl_unlock().
10314  * This allows us to deal with problems:
10315  * 1) We can delete sysfs objects which invoke hotplug
10316  *    without deadlocking with linkwatch via keventd.
10317  * 2) Since we run with the RTNL semaphore not held, we can sleep
10318  *    safely in order to wait for the netdev refcnt to drop to zero.
10319  *
10320  * We must not return until all unregister events added during
10321  * the interval the lock was held have been completed.
10322  */
10323 void netdev_run_todo(void)
10324 {
10325 	struct net_device *dev, *tmp;
10326 	struct list_head list;
10327 #ifdef CONFIG_LOCKDEP
10328 	struct list_head unlink_list;
10329 
10330 	list_replace_init(&net_unlink_list, &unlink_list);
10331 
10332 	while (!list_empty(&unlink_list)) {
10333 		struct net_device *dev = list_first_entry(&unlink_list,
10334 							  struct net_device,
10335 							  unlink_list);
10336 		list_del_init(&dev->unlink_list);
10337 		dev->nested_level = dev->lower_level - 1;
10338 	}
10339 #endif
10340 
10341 	/* Snapshot list, allow later requests */
10342 	list_replace_init(&net_todo_list, &list);
10343 
10344 	__rtnl_unlock();
10345 
10346 	/* Wait for rcu callbacks to finish before next phase */
10347 	if (!list_empty(&list))
10348 		rcu_barrier();
10349 
10350 	list_for_each_entry_safe(dev, tmp, &list, todo_list) {
10351 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10352 			netdev_WARN(dev, "run_todo but not unregistering\n");
10353 			list_del(&dev->todo_list);
10354 			continue;
10355 		}
10356 
10357 		write_lock(&dev_base_lock);
10358 		dev->reg_state = NETREG_UNREGISTERED;
10359 		write_unlock(&dev_base_lock);
10360 		linkwatch_forget_dev(dev);
10361 	}
10362 
10363 	while (!list_empty(&list)) {
10364 		dev = netdev_wait_allrefs_any(&list);
10365 		list_del(&dev->todo_list);
10366 
10367 		/* paranoia */
10368 		BUG_ON(netdev_refcnt_read(dev) != 1);
10369 		BUG_ON(!list_empty(&dev->ptype_all));
10370 		BUG_ON(!list_empty(&dev->ptype_specific));
10371 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
10372 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10373 #if IS_ENABLED(CONFIG_DECNET)
10374 		WARN_ON(dev->dn_ptr);
10375 #endif
10376 		if (dev->priv_destructor)
10377 			dev->priv_destructor(dev);
10378 		if (dev->needs_free_netdev)
10379 			free_netdev(dev);
10380 
10381 		if (atomic_dec_and_test(&dev_net(dev)->dev_unreg_count))
10382 			wake_up(&netdev_unregistering_wq);
10383 
10384 		/* Free network device */
10385 		kobject_put(&dev->dev.kobj);
10386 	}
10387 }
10388 
10389 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10390  * all the same fields in the same order as net_device_stats, with only
10391  * the type differing, but rtnl_link_stats64 may have additional fields
10392  * at the end for newer counters.
10393  */
10394 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10395 			     const struct net_device_stats *netdev_stats)
10396 {
10397 #if BITS_PER_LONG == 64
10398 	BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
10399 	memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
10400 	/* zero out counters that only exist in rtnl_link_stats64 */
10401 	memset((char *)stats64 + sizeof(*netdev_stats), 0,
10402 	       sizeof(*stats64) - sizeof(*netdev_stats));
10403 #else
10404 	size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
10405 	const unsigned long *src = (const unsigned long *)netdev_stats;
10406 	u64 *dst = (u64 *)stats64;
10407 
10408 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10409 	for (i = 0; i < n; i++)
10410 		dst[i] = src[i];
10411 	/* zero out counters that only exist in rtnl_link_stats64 */
10412 	memset((char *)stats64 + n * sizeof(u64), 0,
10413 	       sizeof(*stats64) - n * sizeof(u64));
10414 #endif
10415 }
10416 EXPORT_SYMBOL(netdev_stats_to_stats64);
10417 
10418 struct net_device_core_stats __percpu *netdev_core_stats_alloc(struct net_device *dev)
10419 {
10420 	struct net_device_core_stats __percpu *p;
10421 
10422 	p = alloc_percpu_gfp(struct net_device_core_stats,
10423 			     GFP_ATOMIC | __GFP_NOWARN);
10424 
10425 	if (p && cmpxchg(&dev->core_stats, NULL, p))
10426 		free_percpu(p);
10427 
10428 	/* This READ_ONCE() pairs with the cmpxchg() above */
10429 	return READ_ONCE(dev->core_stats);
10430 }
10431 EXPORT_SYMBOL(netdev_core_stats_alloc);
10432 
10433 /**
10434  *	dev_get_stats	- get network device statistics
10435  *	@dev: device to get statistics from
10436  *	@storage: place to store stats
10437  *
10438  *	Get network statistics from device. Return @storage.
10439  *	The device driver may provide its own method by setting
10440  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10441  *	otherwise the internal statistics structure is used.
10442  */
10443 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10444 					struct rtnl_link_stats64 *storage)
10445 {
10446 	const struct net_device_ops *ops = dev->netdev_ops;
10447 	const struct net_device_core_stats __percpu *p;
10448 
10449 	if (ops->ndo_get_stats64) {
10450 		memset(storage, 0, sizeof(*storage));
10451 		ops->ndo_get_stats64(dev, storage);
10452 	} else if (ops->ndo_get_stats) {
10453 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10454 	} else {
10455 		netdev_stats_to_stats64(storage, &dev->stats);
10456 	}
10457 
10458 	/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
10459 	p = READ_ONCE(dev->core_stats);
10460 	if (p) {
10461 		const struct net_device_core_stats *core_stats;
10462 		int i;
10463 
10464 		for_each_possible_cpu(i) {
10465 			core_stats = per_cpu_ptr(p, i);
10466 			storage->rx_dropped += READ_ONCE(core_stats->rx_dropped);
10467 			storage->tx_dropped += READ_ONCE(core_stats->tx_dropped);
10468 			storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler);
10469 			storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped);
10470 		}
10471 	}
10472 	return storage;
10473 }
10474 EXPORT_SYMBOL(dev_get_stats);
10475 
10476 /**
10477  *	dev_fetch_sw_netstats - get per-cpu network device statistics
10478  *	@s: place to store stats
10479  *	@netstats: per-cpu network stats to read from
10480  *
10481  *	Read per-cpu network statistics and populate the related fields in @s.
10482  */
10483 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10484 			   const struct pcpu_sw_netstats __percpu *netstats)
10485 {
10486 	int cpu;
10487 
10488 	for_each_possible_cpu(cpu) {
10489 		u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
10490 		const struct pcpu_sw_netstats *stats;
10491 		unsigned int start;
10492 
10493 		stats = per_cpu_ptr(netstats, cpu);
10494 		do {
10495 			start = u64_stats_fetch_begin_irq(&stats->syncp);
10496 			rx_packets = u64_stats_read(&stats->rx_packets);
10497 			rx_bytes   = u64_stats_read(&stats->rx_bytes);
10498 			tx_packets = u64_stats_read(&stats->tx_packets);
10499 			tx_bytes   = u64_stats_read(&stats->tx_bytes);
10500 		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
10501 
10502 		s->rx_packets += rx_packets;
10503 		s->rx_bytes   += rx_bytes;
10504 		s->tx_packets += tx_packets;
10505 		s->tx_bytes   += tx_bytes;
10506 	}
10507 }
10508 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10509 
10510 /**
10511  *	dev_get_tstats64 - ndo_get_stats64 implementation
10512  *	@dev: device to get statistics from
10513  *	@s: place to store stats
10514  *
10515  *	Populate @s from dev->stats and dev->tstats. Can be used as
10516  *	ndo_get_stats64() callback.
10517  */
10518 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10519 {
10520 	netdev_stats_to_stats64(s, &dev->stats);
10521 	dev_fetch_sw_netstats(s, dev->tstats);
10522 }
10523 EXPORT_SYMBOL_GPL(dev_get_tstats64);
10524 
10525 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10526 {
10527 	struct netdev_queue *queue = dev_ingress_queue(dev);
10528 
10529 #ifdef CONFIG_NET_CLS_ACT
10530 	if (queue)
10531 		return queue;
10532 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10533 	if (!queue)
10534 		return NULL;
10535 	netdev_init_one_queue(dev, queue, NULL);
10536 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10537 	queue->qdisc_sleeping = &noop_qdisc;
10538 	rcu_assign_pointer(dev->ingress_queue, queue);
10539 #endif
10540 	return queue;
10541 }
10542 
10543 static const struct ethtool_ops default_ethtool_ops;
10544 
10545 void netdev_set_default_ethtool_ops(struct net_device *dev,
10546 				    const struct ethtool_ops *ops)
10547 {
10548 	if (dev->ethtool_ops == &default_ethtool_ops)
10549 		dev->ethtool_ops = ops;
10550 }
10551 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10552 
10553 void netdev_freemem(struct net_device *dev)
10554 {
10555 	char *addr = (char *)dev - dev->padded;
10556 
10557 	kvfree(addr);
10558 }
10559 
10560 /**
10561  * alloc_netdev_mqs - allocate network device
10562  * @sizeof_priv: size of private data to allocate space for
10563  * @name: device name format string
10564  * @name_assign_type: origin of device name
10565  * @setup: callback to initialize device
10566  * @txqs: the number of TX subqueues to allocate
10567  * @rxqs: the number of RX subqueues to allocate
10568  *
10569  * Allocates a struct net_device with private data area for driver use
10570  * and performs basic initialization.  Also allocates subqueue structs
10571  * for each queue on the device.
10572  */
10573 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10574 		unsigned char name_assign_type,
10575 		void (*setup)(struct net_device *),
10576 		unsigned int txqs, unsigned int rxqs)
10577 {
10578 	struct net_device *dev;
10579 	unsigned int alloc_size;
10580 	struct net_device *p;
10581 
10582 	BUG_ON(strlen(name) >= sizeof(dev->name));
10583 
10584 	if (txqs < 1) {
10585 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10586 		return NULL;
10587 	}
10588 
10589 	if (rxqs < 1) {
10590 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10591 		return NULL;
10592 	}
10593 
10594 	alloc_size = sizeof(struct net_device);
10595 	if (sizeof_priv) {
10596 		/* ensure 32-byte alignment of private area */
10597 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10598 		alloc_size += sizeof_priv;
10599 	}
10600 	/* ensure 32-byte alignment of whole construct */
10601 	alloc_size += NETDEV_ALIGN - 1;
10602 
10603 	p = kvzalloc(alloc_size, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10604 	if (!p)
10605 		return NULL;
10606 
10607 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
10608 	dev->padded = (char *)dev - (char *)p;
10609 
10610 	ref_tracker_dir_init(&dev->refcnt_tracker, 128);
10611 #ifdef CONFIG_PCPU_DEV_REFCNT
10612 	dev->pcpu_refcnt = alloc_percpu(int);
10613 	if (!dev->pcpu_refcnt)
10614 		goto free_dev;
10615 	__dev_hold(dev);
10616 #else
10617 	refcount_set(&dev->dev_refcnt, 1);
10618 #endif
10619 
10620 	if (dev_addr_init(dev))
10621 		goto free_pcpu;
10622 
10623 	dev_mc_init(dev);
10624 	dev_uc_init(dev);
10625 
10626 	dev_net_set(dev, &init_net);
10627 
10628 	dev->gso_max_size = GSO_LEGACY_MAX_SIZE;
10629 	dev->gso_max_segs = GSO_MAX_SEGS;
10630 	dev->gro_max_size = GRO_LEGACY_MAX_SIZE;
10631 	dev->tso_max_size = TSO_LEGACY_MAX_SIZE;
10632 	dev->tso_max_segs = TSO_MAX_SEGS;
10633 	dev->upper_level = 1;
10634 	dev->lower_level = 1;
10635 #ifdef CONFIG_LOCKDEP
10636 	dev->nested_level = 0;
10637 	INIT_LIST_HEAD(&dev->unlink_list);
10638 #endif
10639 
10640 	INIT_LIST_HEAD(&dev->napi_list);
10641 	INIT_LIST_HEAD(&dev->unreg_list);
10642 	INIT_LIST_HEAD(&dev->close_list);
10643 	INIT_LIST_HEAD(&dev->link_watch_list);
10644 	INIT_LIST_HEAD(&dev->adj_list.upper);
10645 	INIT_LIST_HEAD(&dev->adj_list.lower);
10646 	INIT_LIST_HEAD(&dev->ptype_all);
10647 	INIT_LIST_HEAD(&dev->ptype_specific);
10648 	INIT_LIST_HEAD(&dev->net_notifier_list);
10649 #ifdef CONFIG_NET_SCHED
10650 	hash_init(dev->qdisc_hash);
10651 #endif
10652 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10653 	setup(dev);
10654 
10655 	if (!dev->tx_queue_len) {
10656 		dev->priv_flags |= IFF_NO_QUEUE;
10657 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10658 	}
10659 
10660 	dev->num_tx_queues = txqs;
10661 	dev->real_num_tx_queues = txqs;
10662 	if (netif_alloc_netdev_queues(dev))
10663 		goto free_all;
10664 
10665 	dev->num_rx_queues = rxqs;
10666 	dev->real_num_rx_queues = rxqs;
10667 	if (netif_alloc_rx_queues(dev))
10668 		goto free_all;
10669 
10670 	strcpy(dev->name, name);
10671 	dev->name_assign_type = name_assign_type;
10672 	dev->group = INIT_NETDEV_GROUP;
10673 	if (!dev->ethtool_ops)
10674 		dev->ethtool_ops = &default_ethtool_ops;
10675 
10676 	nf_hook_netdev_init(dev);
10677 
10678 	return dev;
10679 
10680 free_all:
10681 	free_netdev(dev);
10682 	return NULL;
10683 
10684 free_pcpu:
10685 #ifdef CONFIG_PCPU_DEV_REFCNT
10686 	free_percpu(dev->pcpu_refcnt);
10687 free_dev:
10688 #endif
10689 	netdev_freemem(dev);
10690 	return NULL;
10691 }
10692 EXPORT_SYMBOL(alloc_netdev_mqs);
10693 
10694 /**
10695  * free_netdev - free network device
10696  * @dev: device
10697  *
10698  * This function does the last stage of destroying an allocated device
10699  * interface. The reference to the device object is released. If this
10700  * is the last reference then it will be freed.Must be called in process
10701  * context.
10702  */
10703 void free_netdev(struct net_device *dev)
10704 {
10705 	struct napi_struct *p, *n;
10706 
10707 	might_sleep();
10708 
10709 	/* When called immediately after register_netdevice() failed the unwind
10710 	 * handling may still be dismantling the device. Handle that case by
10711 	 * deferring the free.
10712 	 */
10713 	if (dev->reg_state == NETREG_UNREGISTERING) {
10714 		ASSERT_RTNL();
10715 		dev->needs_free_netdev = true;
10716 		return;
10717 	}
10718 
10719 	netif_free_tx_queues(dev);
10720 	netif_free_rx_queues(dev);
10721 
10722 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10723 
10724 	/* Flush device addresses */
10725 	dev_addr_flush(dev);
10726 
10727 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10728 		netif_napi_del(p);
10729 
10730 	ref_tracker_dir_exit(&dev->refcnt_tracker);
10731 #ifdef CONFIG_PCPU_DEV_REFCNT
10732 	free_percpu(dev->pcpu_refcnt);
10733 	dev->pcpu_refcnt = NULL;
10734 #endif
10735 	free_percpu(dev->core_stats);
10736 	dev->core_stats = NULL;
10737 	free_percpu(dev->xdp_bulkq);
10738 	dev->xdp_bulkq = NULL;
10739 
10740 	/*  Compatibility with error handling in drivers */
10741 	if (dev->reg_state == NETREG_UNINITIALIZED) {
10742 		netdev_freemem(dev);
10743 		return;
10744 	}
10745 
10746 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10747 	dev->reg_state = NETREG_RELEASED;
10748 
10749 	/* will free via device release */
10750 	put_device(&dev->dev);
10751 }
10752 EXPORT_SYMBOL(free_netdev);
10753 
10754 /**
10755  *	synchronize_net -  Synchronize with packet receive processing
10756  *
10757  *	Wait for packets currently being received to be done.
10758  *	Does not block later packets from starting.
10759  */
10760 void synchronize_net(void)
10761 {
10762 	might_sleep();
10763 	if (rtnl_is_locked())
10764 		synchronize_rcu_expedited();
10765 	else
10766 		synchronize_rcu();
10767 }
10768 EXPORT_SYMBOL(synchronize_net);
10769 
10770 /**
10771  *	unregister_netdevice_queue - remove device from the kernel
10772  *	@dev: device
10773  *	@head: list
10774  *
10775  *	This function shuts down a device interface and removes it
10776  *	from the kernel tables.
10777  *	If head not NULL, device is queued to be unregistered later.
10778  *
10779  *	Callers must hold the rtnl semaphore.  You may want
10780  *	unregister_netdev() instead of this.
10781  */
10782 
10783 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10784 {
10785 	ASSERT_RTNL();
10786 
10787 	if (head) {
10788 		list_move_tail(&dev->unreg_list, head);
10789 	} else {
10790 		LIST_HEAD(single);
10791 
10792 		list_add(&dev->unreg_list, &single);
10793 		unregister_netdevice_many(&single);
10794 	}
10795 }
10796 EXPORT_SYMBOL(unregister_netdevice_queue);
10797 
10798 /**
10799  *	unregister_netdevice_many - unregister many devices
10800  *	@head: list of devices
10801  *
10802  *  Note: As most callers use a stack allocated list_head,
10803  *  we force a list_del() to make sure stack wont be corrupted later.
10804  */
10805 void unregister_netdevice_many(struct list_head *head)
10806 {
10807 	struct net_device *dev, *tmp;
10808 	LIST_HEAD(close_head);
10809 
10810 	BUG_ON(dev_boot_phase);
10811 	ASSERT_RTNL();
10812 
10813 	if (list_empty(head))
10814 		return;
10815 
10816 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
10817 		/* Some devices call without registering
10818 		 * for initialization unwind. Remove those
10819 		 * devices and proceed with the remaining.
10820 		 */
10821 		if (dev->reg_state == NETREG_UNINITIALIZED) {
10822 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
10823 				 dev->name, dev);
10824 
10825 			WARN_ON(1);
10826 			list_del(&dev->unreg_list);
10827 			continue;
10828 		}
10829 		dev->dismantle = true;
10830 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
10831 	}
10832 
10833 	/* If device is running, close it first. */
10834 	list_for_each_entry(dev, head, unreg_list)
10835 		list_add_tail(&dev->close_list, &close_head);
10836 	dev_close_many(&close_head, true);
10837 
10838 	list_for_each_entry(dev, head, unreg_list) {
10839 		/* And unlink it from device chain. */
10840 		write_lock(&dev_base_lock);
10841 		unlist_netdevice(dev, false);
10842 		dev->reg_state = NETREG_UNREGISTERING;
10843 		write_unlock(&dev_base_lock);
10844 	}
10845 	flush_all_backlogs();
10846 
10847 	synchronize_net();
10848 
10849 	list_for_each_entry(dev, head, unreg_list) {
10850 		struct sk_buff *skb = NULL;
10851 
10852 		/* Shutdown queueing discipline. */
10853 		dev_shutdown(dev);
10854 
10855 		dev_xdp_uninstall(dev);
10856 
10857 		netdev_offload_xstats_disable_all(dev);
10858 
10859 		/* Notify protocols, that we are about to destroy
10860 		 * this device. They should clean all the things.
10861 		 */
10862 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10863 
10864 		if (!dev->rtnl_link_ops ||
10865 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10866 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
10867 						     GFP_KERNEL, NULL, 0);
10868 
10869 		/*
10870 		 *	Flush the unicast and multicast chains
10871 		 */
10872 		dev_uc_flush(dev);
10873 		dev_mc_flush(dev);
10874 
10875 		netdev_name_node_alt_flush(dev);
10876 		netdev_name_node_free(dev->name_node);
10877 
10878 		if (dev->netdev_ops->ndo_uninit)
10879 			dev->netdev_ops->ndo_uninit(dev);
10880 
10881 		if (skb)
10882 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
10883 
10884 		/* Notifier chain MUST detach us all upper devices. */
10885 		WARN_ON(netdev_has_any_upper_dev(dev));
10886 		WARN_ON(netdev_has_any_lower_dev(dev));
10887 
10888 		/* Remove entries from kobject tree */
10889 		netdev_unregister_kobject(dev);
10890 #ifdef CONFIG_XPS
10891 		/* Remove XPS queueing entries */
10892 		netif_reset_xps_queues_gt(dev, 0);
10893 #endif
10894 	}
10895 
10896 	synchronize_net();
10897 
10898 	list_for_each_entry(dev, head, unreg_list) {
10899 		netdev_put(dev, &dev->dev_registered_tracker);
10900 		net_set_todo(dev);
10901 	}
10902 
10903 	list_del(head);
10904 }
10905 EXPORT_SYMBOL(unregister_netdevice_many);
10906 
10907 /**
10908  *	unregister_netdev - remove device from the kernel
10909  *	@dev: device
10910  *
10911  *	This function shuts down a device interface and removes it
10912  *	from the kernel tables.
10913  *
10914  *	This is just a wrapper for unregister_netdevice that takes
10915  *	the rtnl semaphore.  In general you want to use this and not
10916  *	unregister_netdevice.
10917  */
10918 void unregister_netdev(struct net_device *dev)
10919 {
10920 	rtnl_lock();
10921 	unregister_netdevice(dev);
10922 	rtnl_unlock();
10923 }
10924 EXPORT_SYMBOL(unregister_netdev);
10925 
10926 /**
10927  *	__dev_change_net_namespace - move device to different nethost namespace
10928  *	@dev: device
10929  *	@net: network namespace
10930  *	@pat: If not NULL name pattern to try if the current device name
10931  *	      is already taken in the destination network namespace.
10932  *	@new_ifindex: If not zero, specifies device index in the target
10933  *	              namespace.
10934  *
10935  *	This function shuts down a device interface and moves it
10936  *	to a new network namespace. On success 0 is returned, on
10937  *	a failure a netagive errno code is returned.
10938  *
10939  *	Callers must hold the rtnl semaphore.
10940  */
10941 
10942 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
10943 			       const char *pat, int new_ifindex)
10944 {
10945 	struct net *net_old = dev_net(dev);
10946 	int err, new_nsid;
10947 
10948 	ASSERT_RTNL();
10949 
10950 	/* Don't allow namespace local devices to be moved. */
10951 	err = -EINVAL;
10952 	if (dev->features & NETIF_F_NETNS_LOCAL)
10953 		goto out;
10954 
10955 	/* Ensure the device has been registrered */
10956 	if (dev->reg_state != NETREG_REGISTERED)
10957 		goto out;
10958 
10959 	/* Get out if there is nothing todo */
10960 	err = 0;
10961 	if (net_eq(net_old, net))
10962 		goto out;
10963 
10964 	/* Pick the destination device name, and ensure
10965 	 * we can use it in the destination network namespace.
10966 	 */
10967 	err = -EEXIST;
10968 	if (netdev_name_in_use(net, dev->name)) {
10969 		/* We get here if we can't use the current device name */
10970 		if (!pat)
10971 			goto out;
10972 		err = dev_get_valid_name(net, dev, pat);
10973 		if (err < 0)
10974 			goto out;
10975 	}
10976 
10977 	/* Check that new_ifindex isn't used yet. */
10978 	err = -EBUSY;
10979 	if (new_ifindex && __dev_get_by_index(net, new_ifindex))
10980 		goto out;
10981 
10982 	/*
10983 	 * And now a mini version of register_netdevice unregister_netdevice.
10984 	 */
10985 
10986 	/* If device is running close it first. */
10987 	dev_close(dev);
10988 
10989 	/* And unlink it from device chain */
10990 	unlist_netdevice(dev, true);
10991 
10992 	synchronize_net();
10993 
10994 	/* Shutdown queueing discipline. */
10995 	dev_shutdown(dev);
10996 
10997 	/* Notify protocols, that we are about to destroy
10998 	 * this device. They should clean all the things.
10999 	 *
11000 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
11001 	 * This is wanted because this way 8021q and macvlan know
11002 	 * the device is just moving and can keep their slaves up.
11003 	 */
11004 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11005 	rcu_barrier();
11006 
11007 	new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
11008 	/* If there is an ifindex conflict assign a new one */
11009 	if (!new_ifindex) {
11010 		if (__dev_get_by_index(net, dev->ifindex))
11011 			new_ifindex = dev_new_index(net);
11012 		else
11013 			new_ifindex = dev->ifindex;
11014 	}
11015 
11016 	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
11017 			    new_ifindex);
11018 
11019 	/*
11020 	 *	Flush the unicast and multicast chains
11021 	 */
11022 	dev_uc_flush(dev);
11023 	dev_mc_flush(dev);
11024 
11025 	/* Send a netdev-removed uevent to the old namespace */
11026 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
11027 	netdev_adjacent_del_links(dev);
11028 
11029 	/* Move per-net netdevice notifiers that are following the netdevice */
11030 	move_netdevice_notifiers_dev_net(dev, net);
11031 
11032 	/* Actually switch the network namespace */
11033 	dev_net_set(dev, net);
11034 	dev->ifindex = new_ifindex;
11035 
11036 	/* Send a netdev-add uevent to the new namespace */
11037 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
11038 	netdev_adjacent_add_links(dev);
11039 
11040 	/* Fixup kobjects */
11041 	err = device_rename(&dev->dev, dev->name);
11042 	WARN_ON(err);
11043 
11044 	/* Adapt owner in case owning user namespace of target network
11045 	 * namespace is different from the original one.
11046 	 */
11047 	err = netdev_change_owner(dev, net_old, net);
11048 	WARN_ON(err);
11049 
11050 	/* Add the device back in the hashes */
11051 	list_netdevice(dev);
11052 
11053 	/* Notify protocols, that a new device appeared. */
11054 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
11055 
11056 	/*
11057 	 *	Prevent userspace races by waiting until the network
11058 	 *	device is fully setup before sending notifications.
11059 	 */
11060 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
11061 
11062 	synchronize_net();
11063 	err = 0;
11064 out:
11065 	return err;
11066 }
11067 EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
11068 
11069 static int dev_cpu_dead(unsigned int oldcpu)
11070 {
11071 	struct sk_buff **list_skb;
11072 	struct sk_buff *skb;
11073 	unsigned int cpu;
11074 	struct softnet_data *sd, *oldsd, *remsd = NULL;
11075 
11076 	local_irq_disable();
11077 	cpu = smp_processor_id();
11078 	sd = &per_cpu(softnet_data, cpu);
11079 	oldsd = &per_cpu(softnet_data, oldcpu);
11080 
11081 	/* Find end of our completion_queue. */
11082 	list_skb = &sd->completion_queue;
11083 	while (*list_skb)
11084 		list_skb = &(*list_skb)->next;
11085 	/* Append completion queue from offline CPU. */
11086 	*list_skb = oldsd->completion_queue;
11087 	oldsd->completion_queue = NULL;
11088 
11089 	/* Append output queue from offline CPU. */
11090 	if (oldsd->output_queue) {
11091 		*sd->output_queue_tailp = oldsd->output_queue;
11092 		sd->output_queue_tailp = oldsd->output_queue_tailp;
11093 		oldsd->output_queue = NULL;
11094 		oldsd->output_queue_tailp = &oldsd->output_queue;
11095 	}
11096 	/* Append NAPI poll list from offline CPU, with one exception :
11097 	 * process_backlog() must be called by cpu owning percpu backlog.
11098 	 * We properly handle process_queue & input_pkt_queue later.
11099 	 */
11100 	while (!list_empty(&oldsd->poll_list)) {
11101 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11102 							    struct napi_struct,
11103 							    poll_list);
11104 
11105 		list_del_init(&napi->poll_list);
11106 		if (napi->poll == process_backlog)
11107 			napi->state = 0;
11108 		else
11109 			____napi_schedule(sd, napi);
11110 	}
11111 
11112 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
11113 	local_irq_enable();
11114 
11115 #ifdef CONFIG_RPS
11116 	remsd = oldsd->rps_ipi_list;
11117 	oldsd->rps_ipi_list = NULL;
11118 #endif
11119 	/* send out pending IPI's on offline CPU */
11120 	net_rps_send_ipi(remsd);
11121 
11122 	/* Process offline CPU's input_pkt_queue */
11123 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11124 		netif_rx(skb);
11125 		input_queue_head_incr(oldsd);
11126 	}
11127 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11128 		netif_rx(skb);
11129 		input_queue_head_incr(oldsd);
11130 	}
11131 
11132 	return 0;
11133 }
11134 
11135 /**
11136  *	netdev_increment_features - increment feature set by one
11137  *	@all: current feature set
11138  *	@one: new feature set
11139  *	@mask: mask feature set
11140  *
11141  *	Computes a new feature set after adding a device with feature set
11142  *	@one to the master device with current feature set @all.  Will not
11143  *	enable anything that is off in @mask. Returns the new feature set.
11144  */
11145 netdev_features_t netdev_increment_features(netdev_features_t all,
11146 	netdev_features_t one, netdev_features_t mask)
11147 {
11148 	if (mask & NETIF_F_HW_CSUM)
11149 		mask |= NETIF_F_CSUM_MASK;
11150 	mask |= NETIF_F_VLAN_CHALLENGED;
11151 
11152 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11153 	all &= one | ~NETIF_F_ALL_FOR_ALL;
11154 
11155 	/* If one device supports hw checksumming, set for all. */
11156 	if (all & NETIF_F_HW_CSUM)
11157 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11158 
11159 	return all;
11160 }
11161 EXPORT_SYMBOL(netdev_increment_features);
11162 
11163 static struct hlist_head * __net_init netdev_create_hash(void)
11164 {
11165 	int i;
11166 	struct hlist_head *hash;
11167 
11168 	hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11169 	if (hash != NULL)
11170 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
11171 			INIT_HLIST_HEAD(&hash[i]);
11172 
11173 	return hash;
11174 }
11175 
11176 /* Initialize per network namespace state */
11177 static int __net_init netdev_init(struct net *net)
11178 {
11179 	BUILD_BUG_ON(GRO_HASH_BUCKETS >
11180 		     8 * sizeof_field(struct napi_struct, gro_bitmask));
11181 
11182 	INIT_LIST_HEAD(&net->dev_base_head);
11183 
11184 	net->dev_name_head = netdev_create_hash();
11185 	if (net->dev_name_head == NULL)
11186 		goto err_name;
11187 
11188 	net->dev_index_head = netdev_create_hash();
11189 	if (net->dev_index_head == NULL)
11190 		goto err_idx;
11191 
11192 	RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11193 
11194 	return 0;
11195 
11196 err_idx:
11197 	kfree(net->dev_name_head);
11198 err_name:
11199 	return -ENOMEM;
11200 }
11201 
11202 /**
11203  *	netdev_drivername - network driver for the device
11204  *	@dev: network device
11205  *
11206  *	Determine network driver for device.
11207  */
11208 const char *netdev_drivername(const struct net_device *dev)
11209 {
11210 	const struct device_driver *driver;
11211 	const struct device *parent;
11212 	const char *empty = "";
11213 
11214 	parent = dev->dev.parent;
11215 	if (!parent)
11216 		return empty;
11217 
11218 	driver = parent->driver;
11219 	if (driver && driver->name)
11220 		return driver->name;
11221 	return empty;
11222 }
11223 
11224 static void __netdev_printk(const char *level, const struct net_device *dev,
11225 			    struct va_format *vaf)
11226 {
11227 	if (dev && dev->dev.parent) {
11228 		dev_printk_emit(level[1] - '0',
11229 				dev->dev.parent,
11230 				"%s %s %s%s: %pV",
11231 				dev_driver_string(dev->dev.parent),
11232 				dev_name(dev->dev.parent),
11233 				netdev_name(dev), netdev_reg_state(dev),
11234 				vaf);
11235 	} else if (dev) {
11236 		printk("%s%s%s: %pV",
11237 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
11238 	} else {
11239 		printk("%s(NULL net_device): %pV", level, vaf);
11240 	}
11241 }
11242 
11243 void netdev_printk(const char *level, const struct net_device *dev,
11244 		   const char *format, ...)
11245 {
11246 	struct va_format vaf;
11247 	va_list args;
11248 
11249 	va_start(args, format);
11250 
11251 	vaf.fmt = format;
11252 	vaf.va = &args;
11253 
11254 	__netdev_printk(level, dev, &vaf);
11255 
11256 	va_end(args);
11257 }
11258 EXPORT_SYMBOL(netdev_printk);
11259 
11260 #define define_netdev_printk_level(func, level)			\
11261 void func(const struct net_device *dev, const char *fmt, ...)	\
11262 {								\
11263 	struct va_format vaf;					\
11264 	va_list args;						\
11265 								\
11266 	va_start(args, fmt);					\
11267 								\
11268 	vaf.fmt = fmt;						\
11269 	vaf.va = &args;						\
11270 								\
11271 	__netdev_printk(level, dev, &vaf);			\
11272 								\
11273 	va_end(args);						\
11274 }								\
11275 EXPORT_SYMBOL(func);
11276 
11277 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11278 define_netdev_printk_level(netdev_alert, KERN_ALERT);
11279 define_netdev_printk_level(netdev_crit, KERN_CRIT);
11280 define_netdev_printk_level(netdev_err, KERN_ERR);
11281 define_netdev_printk_level(netdev_warn, KERN_WARNING);
11282 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11283 define_netdev_printk_level(netdev_info, KERN_INFO);
11284 
11285 static void __net_exit netdev_exit(struct net *net)
11286 {
11287 	kfree(net->dev_name_head);
11288 	kfree(net->dev_index_head);
11289 	if (net != &init_net)
11290 		WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11291 }
11292 
11293 static struct pernet_operations __net_initdata netdev_net_ops = {
11294 	.init = netdev_init,
11295 	.exit = netdev_exit,
11296 };
11297 
11298 static void __net_exit default_device_exit_net(struct net *net)
11299 {
11300 	struct net_device *dev, *aux;
11301 	/*
11302 	 * Push all migratable network devices back to the
11303 	 * initial network namespace
11304 	 */
11305 	ASSERT_RTNL();
11306 	for_each_netdev_safe(net, dev, aux) {
11307 		int err;
11308 		char fb_name[IFNAMSIZ];
11309 
11310 		/* Ignore unmoveable devices (i.e. loopback) */
11311 		if (dev->features & NETIF_F_NETNS_LOCAL)
11312 			continue;
11313 
11314 		/* Leave virtual devices for the generic cleanup */
11315 		if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11316 			continue;
11317 
11318 		/* Push remaining network devices to init_net */
11319 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11320 		if (netdev_name_in_use(&init_net, fb_name))
11321 			snprintf(fb_name, IFNAMSIZ, "dev%%d");
11322 		err = dev_change_net_namespace(dev, &init_net, fb_name);
11323 		if (err) {
11324 			pr_emerg("%s: failed to move %s to init_net: %d\n",
11325 				 __func__, dev->name, err);
11326 			BUG();
11327 		}
11328 	}
11329 }
11330 
11331 static void __net_exit default_device_exit_batch(struct list_head *net_list)
11332 {
11333 	/* At exit all network devices most be removed from a network
11334 	 * namespace.  Do this in the reverse order of registration.
11335 	 * Do this across as many network namespaces as possible to
11336 	 * improve batching efficiency.
11337 	 */
11338 	struct net_device *dev;
11339 	struct net *net;
11340 	LIST_HEAD(dev_kill_list);
11341 
11342 	rtnl_lock();
11343 	list_for_each_entry(net, net_list, exit_list) {
11344 		default_device_exit_net(net);
11345 		cond_resched();
11346 	}
11347 
11348 	list_for_each_entry(net, net_list, exit_list) {
11349 		for_each_netdev_reverse(net, dev) {
11350 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11351 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11352 			else
11353 				unregister_netdevice_queue(dev, &dev_kill_list);
11354 		}
11355 	}
11356 	unregister_netdevice_many(&dev_kill_list);
11357 	rtnl_unlock();
11358 }
11359 
11360 static struct pernet_operations __net_initdata default_device_ops = {
11361 	.exit_batch = default_device_exit_batch,
11362 };
11363 
11364 /*
11365  *	Initialize the DEV module. At boot time this walks the device list and
11366  *	unhooks any devices that fail to initialise (normally hardware not
11367  *	present) and leaves us with a valid list of present and active devices.
11368  *
11369  */
11370 
11371 /*
11372  *       This is called single threaded during boot, so no need
11373  *       to take the rtnl semaphore.
11374  */
11375 static int __init net_dev_init(void)
11376 {
11377 	int i, rc = -ENOMEM;
11378 
11379 	BUG_ON(!dev_boot_phase);
11380 
11381 	if (dev_proc_init())
11382 		goto out;
11383 
11384 	if (netdev_kobject_init())
11385 		goto out;
11386 
11387 	INIT_LIST_HEAD(&ptype_all);
11388 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
11389 		INIT_LIST_HEAD(&ptype_base[i]);
11390 
11391 	if (register_pernet_subsys(&netdev_net_ops))
11392 		goto out;
11393 
11394 	/*
11395 	 *	Initialise the packet receive queues.
11396 	 */
11397 
11398 	for_each_possible_cpu(i) {
11399 		struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11400 		struct softnet_data *sd = &per_cpu(softnet_data, i);
11401 
11402 		INIT_WORK(flush, flush_backlog);
11403 
11404 		skb_queue_head_init(&sd->input_pkt_queue);
11405 		skb_queue_head_init(&sd->process_queue);
11406 #ifdef CONFIG_XFRM_OFFLOAD
11407 		skb_queue_head_init(&sd->xfrm_backlog);
11408 #endif
11409 		INIT_LIST_HEAD(&sd->poll_list);
11410 		sd->output_queue_tailp = &sd->output_queue;
11411 #ifdef CONFIG_RPS
11412 		INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
11413 		sd->cpu = i;
11414 #endif
11415 		INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd);
11416 		spin_lock_init(&sd->defer_lock);
11417 
11418 		init_gro_hash(&sd->backlog);
11419 		sd->backlog.poll = process_backlog;
11420 		sd->backlog.weight = weight_p;
11421 	}
11422 
11423 	dev_boot_phase = 0;
11424 
11425 	/* The loopback device is special if any other network devices
11426 	 * is present in a network namespace the loopback device must
11427 	 * be present. Since we now dynamically allocate and free the
11428 	 * loopback device ensure this invariant is maintained by
11429 	 * keeping the loopback device as the first device on the
11430 	 * list of network devices.  Ensuring the loopback devices
11431 	 * is the first device that appears and the last network device
11432 	 * that disappears.
11433 	 */
11434 	if (register_pernet_device(&loopback_net_ops))
11435 		goto out;
11436 
11437 	if (register_pernet_device(&default_device_ops))
11438 		goto out;
11439 
11440 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11441 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11442 
11443 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11444 				       NULL, dev_cpu_dead);
11445 	WARN_ON(rc < 0);
11446 	rc = 0;
11447 out:
11448 	return rc;
11449 }
11450 
11451 subsys_initcall(net_dev_init);
11452