1 /* 2 * NET3 Protocol independent device support routines. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Derived from the non IP parts of dev.c 1.0.19 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * 14 * Additional Authors: 15 * Florian la Roche <rzsfl@rz.uni-sb.de> 16 * Alan Cox <gw4pts@gw4pts.ampr.org> 17 * David Hinds <dahinds@users.sourceforge.net> 18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 19 * Adam Sulmicki <adam@cfar.umd.edu> 20 * Pekka Riikonen <priikone@poesidon.pspt.fi> 21 * 22 * Changes: 23 * D.J. Barrow : Fixed bug where dev->refcnt gets set 24 * to 2 if register_netdev gets called 25 * before net_dev_init & also removed a 26 * few lines of code in the process. 27 * Alan Cox : device private ioctl copies fields back. 28 * Alan Cox : Transmit queue code does relevant 29 * stunts to keep the queue safe. 30 * Alan Cox : Fixed double lock. 31 * Alan Cox : Fixed promisc NULL pointer trap 32 * ???????? : Support the full private ioctl range 33 * Alan Cox : Moved ioctl permission check into 34 * drivers 35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 36 * Alan Cox : 100 backlog just doesn't cut it when 37 * you start doing multicast video 8) 38 * Alan Cox : Rewrote net_bh and list manager. 39 * Alan Cox : Fix ETH_P_ALL echoback lengths. 40 * Alan Cox : Took out transmit every packet pass 41 * Saved a few bytes in the ioctl handler 42 * Alan Cox : Network driver sets packet type before 43 * calling netif_rx. Saves a function 44 * call a packet. 45 * Alan Cox : Hashed net_bh() 46 * Richard Kooijman: Timestamp fixes. 47 * Alan Cox : Wrong field in SIOCGIFDSTADDR 48 * Alan Cox : Device lock protection. 49 * Alan Cox : Fixed nasty side effect of device close 50 * changes. 51 * Rudi Cilibrasi : Pass the right thing to 52 * set_mac_address() 53 * Dave Miller : 32bit quantity for the device lock to 54 * make it work out on a Sparc. 55 * Bjorn Ekwall : Added KERNELD hack. 56 * Alan Cox : Cleaned up the backlog initialise. 57 * Craig Metz : SIOCGIFCONF fix if space for under 58 * 1 device. 59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 60 * is no device open function. 61 * Andi Kleen : Fix error reporting for SIOCGIFCONF 62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 63 * Cyrus Durgin : Cleaned for KMOD 64 * Adam Sulmicki : Bug Fix : Network Device Unload 65 * A network device unload needs to purge 66 * the backlog queue. 67 * Paul Rusty Russell : SIOCSIFNAME 68 * Pekka Riikonen : Netdev boot-time settings code 69 * Andrew Morton : Make unregister_netdevice wait 70 * indefinitely on dev->refcnt 71 * J Hadi Salim : - Backlog queue sampling 72 * - netif_rx() feedback 73 */ 74 75 #include <asm/uaccess.h> 76 #include <linux/bitops.h> 77 #include <linux/capability.h> 78 #include <linux/cpu.h> 79 #include <linux/types.h> 80 #include <linux/kernel.h> 81 #include <linux/hash.h> 82 #include <linux/slab.h> 83 #include <linux/sched.h> 84 #include <linux/mutex.h> 85 #include <linux/string.h> 86 #include <linux/mm.h> 87 #include <linux/socket.h> 88 #include <linux/sockios.h> 89 #include <linux/errno.h> 90 #include <linux/interrupt.h> 91 #include <linux/if_ether.h> 92 #include <linux/netdevice.h> 93 #include <linux/etherdevice.h> 94 #include <linux/ethtool.h> 95 #include <linux/notifier.h> 96 #include <linux/skbuff.h> 97 #include <net/net_namespace.h> 98 #include <net/sock.h> 99 #include <linux/rtnetlink.h> 100 #include <linux/stat.h> 101 #include <net/dst.h> 102 #include <net/pkt_sched.h> 103 #include <net/checksum.h> 104 #include <net/xfrm.h> 105 #include <linux/highmem.h> 106 #include <linux/init.h> 107 #include <linux/module.h> 108 #include <linux/netpoll.h> 109 #include <linux/rcupdate.h> 110 #include <linux/delay.h> 111 #include <net/iw_handler.h> 112 #include <asm/current.h> 113 #include <linux/audit.h> 114 #include <linux/dmaengine.h> 115 #include <linux/err.h> 116 #include <linux/ctype.h> 117 #include <linux/if_arp.h> 118 #include <linux/if_vlan.h> 119 #include <linux/ip.h> 120 #include <net/ip.h> 121 #include <linux/ipv6.h> 122 #include <linux/in.h> 123 #include <linux/jhash.h> 124 #include <linux/random.h> 125 #include <trace/events/napi.h> 126 #include <trace/events/net.h> 127 #include <trace/events/skb.h> 128 #include <linux/pci.h> 129 #include <linux/inetdevice.h> 130 #include <linux/cpu_rmap.h> 131 #include <linux/static_key.h> 132 #include <linux/hashtable.h> 133 #include <linux/vmalloc.h> 134 #include <linux/if_macvlan.h> 135 136 #include "net-sysfs.h" 137 138 /* Instead of increasing this, you should create a hash table. */ 139 #define MAX_GRO_SKBS 8 140 141 /* This should be increased if a protocol with a bigger head is added. */ 142 #define GRO_MAX_HEAD (MAX_HEADER + 128) 143 144 static DEFINE_SPINLOCK(ptype_lock); 145 static DEFINE_SPINLOCK(offload_lock); 146 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 147 struct list_head ptype_all __read_mostly; /* Taps */ 148 static struct list_head offload_base __read_mostly; 149 150 static int netif_rx_internal(struct sk_buff *skb); 151 152 /* 153 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 154 * semaphore. 155 * 156 * Pure readers hold dev_base_lock for reading, or rcu_read_lock() 157 * 158 * Writers must hold the rtnl semaphore while they loop through the 159 * dev_base_head list, and hold dev_base_lock for writing when they do the 160 * actual updates. This allows pure readers to access the list even 161 * while a writer is preparing to update it. 162 * 163 * To put it another way, dev_base_lock is held for writing only to 164 * protect against pure readers; the rtnl semaphore provides the 165 * protection against other writers. 166 * 167 * See, for example usages, register_netdevice() and 168 * unregister_netdevice(), which must be called with the rtnl 169 * semaphore held. 170 */ 171 DEFINE_RWLOCK(dev_base_lock); 172 EXPORT_SYMBOL(dev_base_lock); 173 174 /* protects napi_hash addition/deletion and napi_gen_id */ 175 static DEFINE_SPINLOCK(napi_hash_lock); 176 177 static unsigned int napi_gen_id; 178 static DEFINE_HASHTABLE(napi_hash, 8); 179 180 static seqcount_t devnet_rename_seq; 181 182 static inline void dev_base_seq_inc(struct net *net) 183 { 184 while (++net->dev_base_seq == 0); 185 } 186 187 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 188 { 189 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ)); 190 191 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 192 } 193 194 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 195 { 196 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 197 } 198 199 static inline void rps_lock(struct softnet_data *sd) 200 { 201 #ifdef CONFIG_RPS 202 spin_lock(&sd->input_pkt_queue.lock); 203 #endif 204 } 205 206 static inline void rps_unlock(struct softnet_data *sd) 207 { 208 #ifdef CONFIG_RPS 209 spin_unlock(&sd->input_pkt_queue.lock); 210 #endif 211 } 212 213 /* Device list insertion */ 214 static void list_netdevice(struct net_device *dev) 215 { 216 struct net *net = dev_net(dev); 217 218 ASSERT_RTNL(); 219 220 write_lock_bh(&dev_base_lock); 221 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 222 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 223 hlist_add_head_rcu(&dev->index_hlist, 224 dev_index_hash(net, dev->ifindex)); 225 write_unlock_bh(&dev_base_lock); 226 227 dev_base_seq_inc(net); 228 } 229 230 /* Device list removal 231 * caller must respect a RCU grace period before freeing/reusing dev 232 */ 233 static void unlist_netdevice(struct net_device *dev) 234 { 235 ASSERT_RTNL(); 236 237 /* Unlink dev from the device chain */ 238 write_lock_bh(&dev_base_lock); 239 list_del_rcu(&dev->dev_list); 240 hlist_del_rcu(&dev->name_hlist); 241 hlist_del_rcu(&dev->index_hlist); 242 write_unlock_bh(&dev_base_lock); 243 244 dev_base_seq_inc(dev_net(dev)); 245 } 246 247 /* 248 * Our notifier list 249 */ 250 251 static RAW_NOTIFIER_HEAD(netdev_chain); 252 253 /* 254 * Device drivers call our routines to queue packets here. We empty the 255 * queue in the local softnet handler. 256 */ 257 258 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 259 EXPORT_PER_CPU_SYMBOL(softnet_data); 260 261 #ifdef CONFIG_LOCKDEP 262 /* 263 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 264 * according to dev->type 265 */ 266 static const unsigned short netdev_lock_type[] = 267 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 268 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 269 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 270 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 271 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 272 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 273 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 274 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 275 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 276 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 277 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 278 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 279 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM, 280 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE, 281 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE}; 282 283 static const char *const netdev_lock_name[] = 284 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 285 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 286 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 287 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 288 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 289 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 290 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 291 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 292 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 293 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 294 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 295 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 296 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM", 297 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE", 298 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"}; 299 300 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 301 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 302 303 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 304 { 305 int i; 306 307 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 308 if (netdev_lock_type[i] == dev_type) 309 return i; 310 /* the last key is used by default */ 311 return ARRAY_SIZE(netdev_lock_type) - 1; 312 } 313 314 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 315 unsigned short dev_type) 316 { 317 int i; 318 319 i = netdev_lock_pos(dev_type); 320 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 321 netdev_lock_name[i]); 322 } 323 324 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 325 { 326 int i; 327 328 i = netdev_lock_pos(dev->type); 329 lockdep_set_class_and_name(&dev->addr_list_lock, 330 &netdev_addr_lock_key[i], 331 netdev_lock_name[i]); 332 } 333 #else 334 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 335 unsigned short dev_type) 336 { 337 } 338 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 339 { 340 } 341 #endif 342 343 /******************************************************************************* 344 345 Protocol management and registration routines 346 347 *******************************************************************************/ 348 349 /* 350 * Add a protocol ID to the list. Now that the input handler is 351 * smarter we can dispense with all the messy stuff that used to be 352 * here. 353 * 354 * BEWARE!!! Protocol handlers, mangling input packets, 355 * MUST BE last in hash buckets and checking protocol handlers 356 * MUST start from promiscuous ptype_all chain in net_bh. 357 * It is true now, do not change it. 358 * Explanation follows: if protocol handler, mangling packet, will 359 * be the first on list, it is not able to sense, that packet 360 * is cloned and should be copied-on-write, so that it will 361 * change it and subsequent readers will get broken packet. 362 * --ANK (980803) 363 */ 364 365 static inline struct list_head *ptype_head(const struct packet_type *pt) 366 { 367 if (pt->type == htons(ETH_P_ALL)) 368 return &ptype_all; 369 else 370 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 371 } 372 373 /** 374 * dev_add_pack - add packet handler 375 * @pt: packet type declaration 376 * 377 * Add a protocol handler to the networking stack. The passed &packet_type 378 * is linked into kernel lists and may not be freed until it has been 379 * removed from the kernel lists. 380 * 381 * This call does not sleep therefore it can not 382 * guarantee all CPU's that are in middle of receiving packets 383 * will see the new packet type (until the next received packet). 384 */ 385 386 void dev_add_pack(struct packet_type *pt) 387 { 388 struct list_head *head = ptype_head(pt); 389 390 spin_lock(&ptype_lock); 391 list_add_rcu(&pt->list, head); 392 spin_unlock(&ptype_lock); 393 } 394 EXPORT_SYMBOL(dev_add_pack); 395 396 /** 397 * __dev_remove_pack - remove packet handler 398 * @pt: packet type declaration 399 * 400 * Remove a protocol handler that was previously added to the kernel 401 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 402 * from the kernel lists and can be freed or reused once this function 403 * returns. 404 * 405 * The packet type might still be in use by receivers 406 * and must not be freed until after all the CPU's have gone 407 * through a quiescent state. 408 */ 409 void __dev_remove_pack(struct packet_type *pt) 410 { 411 struct list_head *head = ptype_head(pt); 412 struct packet_type *pt1; 413 414 spin_lock(&ptype_lock); 415 416 list_for_each_entry(pt1, head, list) { 417 if (pt == pt1) { 418 list_del_rcu(&pt->list); 419 goto out; 420 } 421 } 422 423 pr_warn("dev_remove_pack: %p not found\n", pt); 424 out: 425 spin_unlock(&ptype_lock); 426 } 427 EXPORT_SYMBOL(__dev_remove_pack); 428 429 /** 430 * dev_remove_pack - remove packet handler 431 * @pt: packet type declaration 432 * 433 * Remove a protocol handler that was previously added to the kernel 434 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 435 * from the kernel lists and can be freed or reused once this function 436 * returns. 437 * 438 * This call sleeps to guarantee that no CPU is looking at the packet 439 * type after return. 440 */ 441 void dev_remove_pack(struct packet_type *pt) 442 { 443 __dev_remove_pack(pt); 444 445 synchronize_net(); 446 } 447 EXPORT_SYMBOL(dev_remove_pack); 448 449 450 /** 451 * dev_add_offload - register offload handlers 452 * @po: protocol offload declaration 453 * 454 * Add protocol offload handlers to the networking stack. The passed 455 * &proto_offload is linked into kernel lists and may not be freed until 456 * it has been removed from the kernel lists. 457 * 458 * This call does not sleep therefore it can not 459 * guarantee all CPU's that are in middle of receiving packets 460 * will see the new offload handlers (until the next received packet). 461 */ 462 void dev_add_offload(struct packet_offload *po) 463 { 464 struct list_head *head = &offload_base; 465 466 spin_lock(&offload_lock); 467 list_add_rcu(&po->list, head); 468 spin_unlock(&offload_lock); 469 } 470 EXPORT_SYMBOL(dev_add_offload); 471 472 /** 473 * __dev_remove_offload - remove offload handler 474 * @po: packet offload declaration 475 * 476 * Remove a protocol offload handler that was previously added to the 477 * kernel offload handlers by dev_add_offload(). The passed &offload_type 478 * is removed from the kernel lists and can be freed or reused once this 479 * function returns. 480 * 481 * The packet type might still be in use by receivers 482 * and must not be freed until after all the CPU's have gone 483 * through a quiescent state. 484 */ 485 static void __dev_remove_offload(struct packet_offload *po) 486 { 487 struct list_head *head = &offload_base; 488 struct packet_offload *po1; 489 490 spin_lock(&offload_lock); 491 492 list_for_each_entry(po1, head, list) { 493 if (po == po1) { 494 list_del_rcu(&po->list); 495 goto out; 496 } 497 } 498 499 pr_warn("dev_remove_offload: %p not found\n", po); 500 out: 501 spin_unlock(&offload_lock); 502 } 503 504 /** 505 * dev_remove_offload - remove packet offload handler 506 * @po: packet offload declaration 507 * 508 * Remove a packet offload handler that was previously added to the kernel 509 * offload handlers by dev_add_offload(). The passed &offload_type is 510 * removed from the kernel lists and can be freed or reused once this 511 * function returns. 512 * 513 * This call sleeps to guarantee that no CPU is looking at the packet 514 * type after return. 515 */ 516 void dev_remove_offload(struct packet_offload *po) 517 { 518 __dev_remove_offload(po); 519 520 synchronize_net(); 521 } 522 EXPORT_SYMBOL(dev_remove_offload); 523 524 /****************************************************************************** 525 526 Device Boot-time Settings Routines 527 528 *******************************************************************************/ 529 530 /* Boot time configuration table */ 531 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 532 533 /** 534 * netdev_boot_setup_add - add new setup entry 535 * @name: name of the device 536 * @map: configured settings for the device 537 * 538 * Adds new setup entry to the dev_boot_setup list. The function 539 * returns 0 on error and 1 on success. This is a generic routine to 540 * all netdevices. 541 */ 542 static int netdev_boot_setup_add(char *name, struct ifmap *map) 543 { 544 struct netdev_boot_setup *s; 545 int i; 546 547 s = dev_boot_setup; 548 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 549 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 550 memset(s[i].name, 0, sizeof(s[i].name)); 551 strlcpy(s[i].name, name, IFNAMSIZ); 552 memcpy(&s[i].map, map, sizeof(s[i].map)); 553 break; 554 } 555 } 556 557 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 558 } 559 560 /** 561 * netdev_boot_setup_check - check boot time settings 562 * @dev: the netdevice 563 * 564 * Check boot time settings for the device. 565 * The found settings are set for the device to be used 566 * later in the device probing. 567 * Returns 0 if no settings found, 1 if they are. 568 */ 569 int netdev_boot_setup_check(struct net_device *dev) 570 { 571 struct netdev_boot_setup *s = dev_boot_setup; 572 int i; 573 574 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 575 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 576 !strcmp(dev->name, s[i].name)) { 577 dev->irq = s[i].map.irq; 578 dev->base_addr = s[i].map.base_addr; 579 dev->mem_start = s[i].map.mem_start; 580 dev->mem_end = s[i].map.mem_end; 581 return 1; 582 } 583 } 584 return 0; 585 } 586 EXPORT_SYMBOL(netdev_boot_setup_check); 587 588 589 /** 590 * netdev_boot_base - get address from boot time settings 591 * @prefix: prefix for network device 592 * @unit: id for network device 593 * 594 * Check boot time settings for the base address of device. 595 * The found settings are set for the device to be used 596 * later in the device probing. 597 * Returns 0 if no settings found. 598 */ 599 unsigned long netdev_boot_base(const char *prefix, int unit) 600 { 601 const struct netdev_boot_setup *s = dev_boot_setup; 602 char name[IFNAMSIZ]; 603 int i; 604 605 sprintf(name, "%s%d", prefix, unit); 606 607 /* 608 * If device already registered then return base of 1 609 * to indicate not to probe for this interface 610 */ 611 if (__dev_get_by_name(&init_net, name)) 612 return 1; 613 614 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 615 if (!strcmp(name, s[i].name)) 616 return s[i].map.base_addr; 617 return 0; 618 } 619 620 /* 621 * Saves at boot time configured settings for any netdevice. 622 */ 623 int __init netdev_boot_setup(char *str) 624 { 625 int ints[5]; 626 struct ifmap map; 627 628 str = get_options(str, ARRAY_SIZE(ints), ints); 629 if (!str || !*str) 630 return 0; 631 632 /* Save settings */ 633 memset(&map, 0, sizeof(map)); 634 if (ints[0] > 0) 635 map.irq = ints[1]; 636 if (ints[0] > 1) 637 map.base_addr = ints[2]; 638 if (ints[0] > 2) 639 map.mem_start = ints[3]; 640 if (ints[0] > 3) 641 map.mem_end = ints[4]; 642 643 /* Add new entry to the list */ 644 return netdev_boot_setup_add(str, &map); 645 } 646 647 __setup("netdev=", netdev_boot_setup); 648 649 /******************************************************************************* 650 651 Device Interface Subroutines 652 653 *******************************************************************************/ 654 655 /** 656 * __dev_get_by_name - find a device by its name 657 * @net: the applicable net namespace 658 * @name: name to find 659 * 660 * Find an interface by name. Must be called under RTNL semaphore 661 * or @dev_base_lock. If the name is found a pointer to the device 662 * is returned. If the name is not found then %NULL is returned. The 663 * reference counters are not incremented so the caller must be 664 * careful with locks. 665 */ 666 667 struct net_device *__dev_get_by_name(struct net *net, const char *name) 668 { 669 struct net_device *dev; 670 struct hlist_head *head = dev_name_hash(net, name); 671 672 hlist_for_each_entry(dev, head, name_hlist) 673 if (!strncmp(dev->name, name, IFNAMSIZ)) 674 return dev; 675 676 return NULL; 677 } 678 EXPORT_SYMBOL(__dev_get_by_name); 679 680 /** 681 * dev_get_by_name_rcu - find a device by its name 682 * @net: the applicable net namespace 683 * @name: name to find 684 * 685 * Find an interface by name. 686 * If the name is found a pointer to the device is returned. 687 * If the name is not found then %NULL is returned. 688 * The reference counters are not incremented so the caller must be 689 * careful with locks. The caller must hold RCU lock. 690 */ 691 692 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 693 { 694 struct net_device *dev; 695 struct hlist_head *head = dev_name_hash(net, name); 696 697 hlist_for_each_entry_rcu(dev, head, name_hlist) 698 if (!strncmp(dev->name, name, IFNAMSIZ)) 699 return dev; 700 701 return NULL; 702 } 703 EXPORT_SYMBOL(dev_get_by_name_rcu); 704 705 /** 706 * dev_get_by_name - find a device by its name 707 * @net: the applicable net namespace 708 * @name: name to find 709 * 710 * Find an interface by name. This can be called from any 711 * context and does its own locking. The returned handle has 712 * the usage count incremented and the caller must use dev_put() to 713 * release it when it is no longer needed. %NULL is returned if no 714 * matching device is found. 715 */ 716 717 struct net_device *dev_get_by_name(struct net *net, const char *name) 718 { 719 struct net_device *dev; 720 721 rcu_read_lock(); 722 dev = dev_get_by_name_rcu(net, name); 723 if (dev) 724 dev_hold(dev); 725 rcu_read_unlock(); 726 return dev; 727 } 728 EXPORT_SYMBOL(dev_get_by_name); 729 730 /** 731 * __dev_get_by_index - find a device by its ifindex 732 * @net: the applicable net namespace 733 * @ifindex: index of device 734 * 735 * Search for an interface by index. Returns %NULL if the device 736 * is not found or a pointer to the device. The device has not 737 * had its reference counter increased so the caller must be careful 738 * about locking. The caller must hold either the RTNL semaphore 739 * or @dev_base_lock. 740 */ 741 742 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 743 { 744 struct net_device *dev; 745 struct hlist_head *head = dev_index_hash(net, ifindex); 746 747 hlist_for_each_entry(dev, head, index_hlist) 748 if (dev->ifindex == ifindex) 749 return dev; 750 751 return NULL; 752 } 753 EXPORT_SYMBOL(__dev_get_by_index); 754 755 /** 756 * dev_get_by_index_rcu - find a device by its ifindex 757 * @net: the applicable net namespace 758 * @ifindex: index of device 759 * 760 * Search for an interface by index. Returns %NULL if the device 761 * is not found or a pointer to the device. The device has not 762 * had its reference counter increased so the caller must be careful 763 * about locking. The caller must hold RCU lock. 764 */ 765 766 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 767 { 768 struct net_device *dev; 769 struct hlist_head *head = dev_index_hash(net, ifindex); 770 771 hlist_for_each_entry_rcu(dev, head, index_hlist) 772 if (dev->ifindex == ifindex) 773 return dev; 774 775 return NULL; 776 } 777 EXPORT_SYMBOL(dev_get_by_index_rcu); 778 779 780 /** 781 * dev_get_by_index - find a device by its ifindex 782 * @net: the applicable net namespace 783 * @ifindex: index of device 784 * 785 * Search for an interface by index. Returns NULL if the device 786 * is not found or a pointer to the device. The device returned has 787 * had a reference added and the pointer is safe until the user calls 788 * dev_put to indicate they have finished with it. 789 */ 790 791 struct net_device *dev_get_by_index(struct net *net, int ifindex) 792 { 793 struct net_device *dev; 794 795 rcu_read_lock(); 796 dev = dev_get_by_index_rcu(net, ifindex); 797 if (dev) 798 dev_hold(dev); 799 rcu_read_unlock(); 800 return dev; 801 } 802 EXPORT_SYMBOL(dev_get_by_index); 803 804 /** 805 * netdev_get_name - get a netdevice name, knowing its ifindex. 806 * @net: network namespace 807 * @name: a pointer to the buffer where the name will be stored. 808 * @ifindex: the ifindex of the interface to get the name from. 809 * 810 * The use of raw_seqcount_begin() and cond_resched() before 811 * retrying is required as we want to give the writers a chance 812 * to complete when CONFIG_PREEMPT is not set. 813 */ 814 int netdev_get_name(struct net *net, char *name, int ifindex) 815 { 816 struct net_device *dev; 817 unsigned int seq; 818 819 retry: 820 seq = raw_seqcount_begin(&devnet_rename_seq); 821 rcu_read_lock(); 822 dev = dev_get_by_index_rcu(net, ifindex); 823 if (!dev) { 824 rcu_read_unlock(); 825 return -ENODEV; 826 } 827 828 strcpy(name, dev->name); 829 rcu_read_unlock(); 830 if (read_seqcount_retry(&devnet_rename_seq, seq)) { 831 cond_resched(); 832 goto retry; 833 } 834 835 return 0; 836 } 837 838 /** 839 * dev_getbyhwaddr_rcu - find a device by its hardware address 840 * @net: the applicable net namespace 841 * @type: media type of device 842 * @ha: hardware address 843 * 844 * Search for an interface by MAC address. Returns NULL if the device 845 * is not found or a pointer to the device. 846 * The caller must hold RCU or RTNL. 847 * The returned device has not had its ref count increased 848 * and the caller must therefore be careful about locking 849 * 850 */ 851 852 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 853 const char *ha) 854 { 855 struct net_device *dev; 856 857 for_each_netdev_rcu(net, dev) 858 if (dev->type == type && 859 !memcmp(dev->dev_addr, ha, dev->addr_len)) 860 return dev; 861 862 return NULL; 863 } 864 EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 865 866 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 867 { 868 struct net_device *dev; 869 870 ASSERT_RTNL(); 871 for_each_netdev(net, dev) 872 if (dev->type == type) 873 return dev; 874 875 return NULL; 876 } 877 EXPORT_SYMBOL(__dev_getfirstbyhwtype); 878 879 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 880 { 881 struct net_device *dev, *ret = NULL; 882 883 rcu_read_lock(); 884 for_each_netdev_rcu(net, dev) 885 if (dev->type == type) { 886 dev_hold(dev); 887 ret = dev; 888 break; 889 } 890 rcu_read_unlock(); 891 return ret; 892 } 893 EXPORT_SYMBOL(dev_getfirstbyhwtype); 894 895 /** 896 * dev_get_by_flags_rcu - find any device with given flags 897 * @net: the applicable net namespace 898 * @if_flags: IFF_* values 899 * @mask: bitmask of bits in if_flags to check 900 * 901 * Search for any interface with the given flags. Returns NULL if a device 902 * is not found or a pointer to the device. Must be called inside 903 * rcu_read_lock(), and result refcount is unchanged. 904 */ 905 906 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags, 907 unsigned short mask) 908 { 909 struct net_device *dev, *ret; 910 911 ret = NULL; 912 for_each_netdev_rcu(net, dev) { 913 if (((dev->flags ^ if_flags) & mask) == 0) { 914 ret = dev; 915 break; 916 } 917 } 918 return ret; 919 } 920 EXPORT_SYMBOL(dev_get_by_flags_rcu); 921 922 /** 923 * dev_valid_name - check if name is okay for network device 924 * @name: name string 925 * 926 * Network device names need to be valid file names to 927 * to allow sysfs to work. We also disallow any kind of 928 * whitespace. 929 */ 930 bool dev_valid_name(const char *name) 931 { 932 if (*name == '\0') 933 return false; 934 if (strlen(name) >= IFNAMSIZ) 935 return false; 936 if (!strcmp(name, ".") || !strcmp(name, "..")) 937 return false; 938 939 while (*name) { 940 if (*name == '/' || isspace(*name)) 941 return false; 942 name++; 943 } 944 return true; 945 } 946 EXPORT_SYMBOL(dev_valid_name); 947 948 /** 949 * __dev_alloc_name - allocate a name for a device 950 * @net: network namespace to allocate the device name in 951 * @name: name format string 952 * @buf: scratch buffer and result name string 953 * 954 * Passed a format string - eg "lt%d" it will try and find a suitable 955 * id. It scans list of devices to build up a free map, then chooses 956 * the first empty slot. The caller must hold the dev_base or rtnl lock 957 * while allocating the name and adding the device in order to avoid 958 * duplicates. 959 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 960 * Returns the number of the unit assigned or a negative errno code. 961 */ 962 963 static int __dev_alloc_name(struct net *net, const char *name, char *buf) 964 { 965 int i = 0; 966 const char *p; 967 const int max_netdevices = 8*PAGE_SIZE; 968 unsigned long *inuse; 969 struct net_device *d; 970 971 p = strnchr(name, IFNAMSIZ-1, '%'); 972 if (p) { 973 /* 974 * Verify the string as this thing may have come from 975 * the user. There must be either one "%d" and no other "%" 976 * characters. 977 */ 978 if (p[1] != 'd' || strchr(p + 2, '%')) 979 return -EINVAL; 980 981 /* Use one page as a bit array of possible slots */ 982 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 983 if (!inuse) 984 return -ENOMEM; 985 986 for_each_netdev(net, d) { 987 if (!sscanf(d->name, name, &i)) 988 continue; 989 if (i < 0 || i >= max_netdevices) 990 continue; 991 992 /* avoid cases where sscanf is not exact inverse of printf */ 993 snprintf(buf, IFNAMSIZ, name, i); 994 if (!strncmp(buf, d->name, IFNAMSIZ)) 995 set_bit(i, inuse); 996 } 997 998 i = find_first_zero_bit(inuse, max_netdevices); 999 free_page((unsigned long) inuse); 1000 } 1001 1002 if (buf != name) 1003 snprintf(buf, IFNAMSIZ, name, i); 1004 if (!__dev_get_by_name(net, buf)) 1005 return i; 1006 1007 /* It is possible to run out of possible slots 1008 * when the name is long and there isn't enough space left 1009 * for the digits, or if all bits are used. 1010 */ 1011 return -ENFILE; 1012 } 1013 1014 /** 1015 * dev_alloc_name - allocate a name for a device 1016 * @dev: device 1017 * @name: name format string 1018 * 1019 * Passed a format string - eg "lt%d" it will try and find a suitable 1020 * id. It scans list of devices to build up a free map, then chooses 1021 * the first empty slot. The caller must hold the dev_base or rtnl lock 1022 * while allocating the name and adding the device in order to avoid 1023 * duplicates. 1024 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1025 * Returns the number of the unit assigned or a negative errno code. 1026 */ 1027 1028 int dev_alloc_name(struct net_device *dev, const char *name) 1029 { 1030 char buf[IFNAMSIZ]; 1031 struct net *net; 1032 int ret; 1033 1034 BUG_ON(!dev_net(dev)); 1035 net = dev_net(dev); 1036 ret = __dev_alloc_name(net, name, buf); 1037 if (ret >= 0) 1038 strlcpy(dev->name, buf, IFNAMSIZ); 1039 return ret; 1040 } 1041 EXPORT_SYMBOL(dev_alloc_name); 1042 1043 static int dev_alloc_name_ns(struct net *net, 1044 struct net_device *dev, 1045 const char *name) 1046 { 1047 char buf[IFNAMSIZ]; 1048 int ret; 1049 1050 ret = __dev_alloc_name(net, name, buf); 1051 if (ret >= 0) 1052 strlcpy(dev->name, buf, IFNAMSIZ); 1053 return ret; 1054 } 1055 1056 static int dev_get_valid_name(struct net *net, 1057 struct net_device *dev, 1058 const char *name) 1059 { 1060 BUG_ON(!net); 1061 1062 if (!dev_valid_name(name)) 1063 return -EINVAL; 1064 1065 if (strchr(name, '%')) 1066 return dev_alloc_name_ns(net, dev, name); 1067 else if (__dev_get_by_name(net, name)) 1068 return -EEXIST; 1069 else if (dev->name != name) 1070 strlcpy(dev->name, name, IFNAMSIZ); 1071 1072 return 0; 1073 } 1074 1075 /** 1076 * dev_change_name - change name of a device 1077 * @dev: device 1078 * @newname: name (or format string) must be at least IFNAMSIZ 1079 * 1080 * Change name of a device, can pass format strings "eth%d". 1081 * for wildcarding. 1082 */ 1083 int dev_change_name(struct net_device *dev, const char *newname) 1084 { 1085 char oldname[IFNAMSIZ]; 1086 int err = 0; 1087 int ret; 1088 struct net *net; 1089 1090 ASSERT_RTNL(); 1091 BUG_ON(!dev_net(dev)); 1092 1093 net = dev_net(dev); 1094 if (dev->flags & IFF_UP) 1095 return -EBUSY; 1096 1097 write_seqcount_begin(&devnet_rename_seq); 1098 1099 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) { 1100 write_seqcount_end(&devnet_rename_seq); 1101 return 0; 1102 } 1103 1104 memcpy(oldname, dev->name, IFNAMSIZ); 1105 1106 err = dev_get_valid_name(net, dev, newname); 1107 if (err < 0) { 1108 write_seqcount_end(&devnet_rename_seq); 1109 return err; 1110 } 1111 1112 rollback: 1113 ret = device_rename(&dev->dev, dev->name); 1114 if (ret) { 1115 memcpy(dev->name, oldname, IFNAMSIZ); 1116 write_seqcount_end(&devnet_rename_seq); 1117 return ret; 1118 } 1119 1120 write_seqcount_end(&devnet_rename_seq); 1121 1122 netdev_adjacent_rename_links(dev, oldname); 1123 1124 write_lock_bh(&dev_base_lock); 1125 hlist_del_rcu(&dev->name_hlist); 1126 write_unlock_bh(&dev_base_lock); 1127 1128 synchronize_rcu(); 1129 1130 write_lock_bh(&dev_base_lock); 1131 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 1132 write_unlock_bh(&dev_base_lock); 1133 1134 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1135 ret = notifier_to_errno(ret); 1136 1137 if (ret) { 1138 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1139 if (err >= 0) { 1140 err = ret; 1141 write_seqcount_begin(&devnet_rename_seq); 1142 memcpy(dev->name, oldname, IFNAMSIZ); 1143 memcpy(oldname, newname, IFNAMSIZ); 1144 goto rollback; 1145 } else { 1146 pr_err("%s: name change rollback failed: %d\n", 1147 dev->name, ret); 1148 } 1149 } 1150 1151 return err; 1152 } 1153 1154 /** 1155 * dev_set_alias - change ifalias of a device 1156 * @dev: device 1157 * @alias: name up to IFALIASZ 1158 * @len: limit of bytes to copy from info 1159 * 1160 * Set ifalias for a device, 1161 */ 1162 int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1163 { 1164 char *new_ifalias; 1165 1166 ASSERT_RTNL(); 1167 1168 if (len >= IFALIASZ) 1169 return -EINVAL; 1170 1171 if (!len) { 1172 kfree(dev->ifalias); 1173 dev->ifalias = NULL; 1174 return 0; 1175 } 1176 1177 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL); 1178 if (!new_ifalias) 1179 return -ENOMEM; 1180 dev->ifalias = new_ifalias; 1181 1182 strlcpy(dev->ifalias, alias, len+1); 1183 return len; 1184 } 1185 1186 1187 /** 1188 * netdev_features_change - device changes features 1189 * @dev: device to cause notification 1190 * 1191 * Called to indicate a device has changed features. 1192 */ 1193 void netdev_features_change(struct net_device *dev) 1194 { 1195 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1196 } 1197 EXPORT_SYMBOL(netdev_features_change); 1198 1199 /** 1200 * netdev_state_change - device changes state 1201 * @dev: device to cause notification 1202 * 1203 * Called to indicate a device has changed state. This function calls 1204 * the notifier chains for netdev_chain and sends a NEWLINK message 1205 * to the routing socket. 1206 */ 1207 void netdev_state_change(struct net_device *dev) 1208 { 1209 if (dev->flags & IFF_UP) { 1210 call_netdevice_notifiers(NETDEV_CHANGE, dev); 1211 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL); 1212 } 1213 } 1214 EXPORT_SYMBOL(netdev_state_change); 1215 1216 /** 1217 * netdev_notify_peers - notify network peers about existence of @dev 1218 * @dev: network device 1219 * 1220 * Generate traffic such that interested network peers are aware of 1221 * @dev, such as by generating a gratuitous ARP. This may be used when 1222 * a device wants to inform the rest of the network about some sort of 1223 * reconfiguration such as a failover event or virtual machine 1224 * migration. 1225 */ 1226 void netdev_notify_peers(struct net_device *dev) 1227 { 1228 rtnl_lock(); 1229 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev); 1230 rtnl_unlock(); 1231 } 1232 EXPORT_SYMBOL(netdev_notify_peers); 1233 1234 static int __dev_open(struct net_device *dev) 1235 { 1236 const struct net_device_ops *ops = dev->netdev_ops; 1237 int ret; 1238 1239 ASSERT_RTNL(); 1240 1241 if (!netif_device_present(dev)) 1242 return -ENODEV; 1243 1244 /* Block netpoll from trying to do any rx path servicing. 1245 * If we don't do this there is a chance ndo_poll_controller 1246 * or ndo_poll may be running while we open the device 1247 */ 1248 netpoll_poll_disable(dev); 1249 1250 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev); 1251 ret = notifier_to_errno(ret); 1252 if (ret) 1253 return ret; 1254 1255 set_bit(__LINK_STATE_START, &dev->state); 1256 1257 if (ops->ndo_validate_addr) 1258 ret = ops->ndo_validate_addr(dev); 1259 1260 if (!ret && ops->ndo_open) 1261 ret = ops->ndo_open(dev); 1262 1263 netpoll_poll_enable(dev); 1264 1265 if (ret) 1266 clear_bit(__LINK_STATE_START, &dev->state); 1267 else { 1268 dev->flags |= IFF_UP; 1269 net_dmaengine_get(); 1270 dev_set_rx_mode(dev); 1271 dev_activate(dev); 1272 add_device_randomness(dev->dev_addr, dev->addr_len); 1273 } 1274 1275 return ret; 1276 } 1277 1278 /** 1279 * dev_open - prepare an interface for use. 1280 * @dev: device to open 1281 * 1282 * Takes a device from down to up state. The device's private open 1283 * function is invoked and then the multicast lists are loaded. Finally 1284 * the device is moved into the up state and a %NETDEV_UP message is 1285 * sent to the netdev notifier chain. 1286 * 1287 * Calling this function on an active interface is a nop. On a failure 1288 * a negative errno code is returned. 1289 */ 1290 int dev_open(struct net_device *dev) 1291 { 1292 int ret; 1293 1294 if (dev->flags & IFF_UP) 1295 return 0; 1296 1297 ret = __dev_open(dev); 1298 if (ret < 0) 1299 return ret; 1300 1301 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1302 call_netdevice_notifiers(NETDEV_UP, dev); 1303 1304 return ret; 1305 } 1306 EXPORT_SYMBOL(dev_open); 1307 1308 static int __dev_close_many(struct list_head *head) 1309 { 1310 struct net_device *dev; 1311 1312 ASSERT_RTNL(); 1313 might_sleep(); 1314 1315 list_for_each_entry(dev, head, close_list) { 1316 /* Temporarily disable netpoll until the interface is down */ 1317 netpoll_poll_disable(dev); 1318 1319 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1320 1321 clear_bit(__LINK_STATE_START, &dev->state); 1322 1323 /* Synchronize to scheduled poll. We cannot touch poll list, it 1324 * can be even on different cpu. So just clear netif_running(). 1325 * 1326 * dev->stop() will invoke napi_disable() on all of it's 1327 * napi_struct instances on this device. 1328 */ 1329 smp_mb__after_atomic(); /* Commit netif_running(). */ 1330 } 1331 1332 dev_deactivate_many(head); 1333 1334 list_for_each_entry(dev, head, close_list) { 1335 const struct net_device_ops *ops = dev->netdev_ops; 1336 1337 /* 1338 * Call the device specific close. This cannot fail. 1339 * Only if device is UP 1340 * 1341 * We allow it to be called even after a DETACH hot-plug 1342 * event. 1343 */ 1344 if (ops->ndo_stop) 1345 ops->ndo_stop(dev); 1346 1347 dev->flags &= ~IFF_UP; 1348 net_dmaengine_put(); 1349 netpoll_poll_enable(dev); 1350 } 1351 1352 return 0; 1353 } 1354 1355 static int __dev_close(struct net_device *dev) 1356 { 1357 int retval; 1358 LIST_HEAD(single); 1359 1360 list_add(&dev->close_list, &single); 1361 retval = __dev_close_many(&single); 1362 list_del(&single); 1363 1364 return retval; 1365 } 1366 1367 static int dev_close_many(struct list_head *head) 1368 { 1369 struct net_device *dev, *tmp; 1370 1371 /* Remove the devices that don't need to be closed */ 1372 list_for_each_entry_safe(dev, tmp, head, close_list) 1373 if (!(dev->flags & IFF_UP)) 1374 list_del_init(&dev->close_list); 1375 1376 __dev_close_many(head); 1377 1378 list_for_each_entry_safe(dev, tmp, head, close_list) { 1379 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1380 call_netdevice_notifiers(NETDEV_DOWN, dev); 1381 list_del_init(&dev->close_list); 1382 } 1383 1384 return 0; 1385 } 1386 1387 /** 1388 * dev_close - shutdown an interface. 1389 * @dev: device to shutdown 1390 * 1391 * This function moves an active device into down state. A 1392 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1393 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1394 * chain. 1395 */ 1396 int dev_close(struct net_device *dev) 1397 { 1398 if (dev->flags & IFF_UP) { 1399 LIST_HEAD(single); 1400 1401 list_add(&dev->close_list, &single); 1402 dev_close_many(&single); 1403 list_del(&single); 1404 } 1405 return 0; 1406 } 1407 EXPORT_SYMBOL(dev_close); 1408 1409 1410 /** 1411 * dev_disable_lro - disable Large Receive Offload on a device 1412 * @dev: device 1413 * 1414 * Disable Large Receive Offload (LRO) on a net device. Must be 1415 * called under RTNL. This is needed if received packets may be 1416 * forwarded to another interface. 1417 */ 1418 void dev_disable_lro(struct net_device *dev) 1419 { 1420 /* 1421 * If we're trying to disable lro on a vlan device 1422 * use the underlying physical device instead 1423 */ 1424 if (is_vlan_dev(dev)) 1425 dev = vlan_dev_real_dev(dev); 1426 1427 /* the same for macvlan devices */ 1428 if (netif_is_macvlan(dev)) 1429 dev = macvlan_dev_real_dev(dev); 1430 1431 dev->wanted_features &= ~NETIF_F_LRO; 1432 netdev_update_features(dev); 1433 1434 if (unlikely(dev->features & NETIF_F_LRO)) 1435 netdev_WARN(dev, "failed to disable LRO!\n"); 1436 } 1437 EXPORT_SYMBOL(dev_disable_lro); 1438 1439 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val, 1440 struct net_device *dev) 1441 { 1442 struct netdev_notifier_info info; 1443 1444 netdev_notifier_info_init(&info, dev); 1445 return nb->notifier_call(nb, val, &info); 1446 } 1447 1448 static int dev_boot_phase = 1; 1449 1450 /** 1451 * register_netdevice_notifier - register a network notifier block 1452 * @nb: notifier 1453 * 1454 * Register a notifier to be called when network device events occur. 1455 * The notifier passed is linked into the kernel structures and must 1456 * not be reused until it has been unregistered. A negative errno code 1457 * is returned on a failure. 1458 * 1459 * When registered all registration and up events are replayed 1460 * to the new notifier to allow device to have a race free 1461 * view of the network device list. 1462 */ 1463 1464 int register_netdevice_notifier(struct notifier_block *nb) 1465 { 1466 struct net_device *dev; 1467 struct net_device *last; 1468 struct net *net; 1469 int err; 1470 1471 rtnl_lock(); 1472 err = raw_notifier_chain_register(&netdev_chain, nb); 1473 if (err) 1474 goto unlock; 1475 if (dev_boot_phase) 1476 goto unlock; 1477 for_each_net(net) { 1478 for_each_netdev(net, dev) { 1479 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev); 1480 err = notifier_to_errno(err); 1481 if (err) 1482 goto rollback; 1483 1484 if (!(dev->flags & IFF_UP)) 1485 continue; 1486 1487 call_netdevice_notifier(nb, NETDEV_UP, dev); 1488 } 1489 } 1490 1491 unlock: 1492 rtnl_unlock(); 1493 return err; 1494 1495 rollback: 1496 last = dev; 1497 for_each_net(net) { 1498 for_each_netdev(net, dev) { 1499 if (dev == last) 1500 goto outroll; 1501 1502 if (dev->flags & IFF_UP) { 1503 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1504 dev); 1505 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1506 } 1507 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1508 } 1509 } 1510 1511 outroll: 1512 raw_notifier_chain_unregister(&netdev_chain, nb); 1513 goto unlock; 1514 } 1515 EXPORT_SYMBOL(register_netdevice_notifier); 1516 1517 /** 1518 * unregister_netdevice_notifier - unregister a network notifier block 1519 * @nb: notifier 1520 * 1521 * Unregister a notifier previously registered by 1522 * register_netdevice_notifier(). The notifier is unlinked into the 1523 * kernel structures and may then be reused. A negative errno code 1524 * is returned on a failure. 1525 * 1526 * After unregistering unregister and down device events are synthesized 1527 * for all devices on the device list to the removed notifier to remove 1528 * the need for special case cleanup code. 1529 */ 1530 1531 int unregister_netdevice_notifier(struct notifier_block *nb) 1532 { 1533 struct net_device *dev; 1534 struct net *net; 1535 int err; 1536 1537 rtnl_lock(); 1538 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1539 if (err) 1540 goto unlock; 1541 1542 for_each_net(net) { 1543 for_each_netdev(net, dev) { 1544 if (dev->flags & IFF_UP) { 1545 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1546 dev); 1547 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1548 } 1549 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1550 } 1551 } 1552 unlock: 1553 rtnl_unlock(); 1554 return err; 1555 } 1556 EXPORT_SYMBOL(unregister_netdevice_notifier); 1557 1558 /** 1559 * call_netdevice_notifiers_info - call all network notifier blocks 1560 * @val: value passed unmodified to notifier function 1561 * @dev: net_device pointer passed unmodified to notifier function 1562 * @info: notifier information data 1563 * 1564 * Call all network notifier blocks. Parameters and return value 1565 * are as for raw_notifier_call_chain(). 1566 */ 1567 1568 static int call_netdevice_notifiers_info(unsigned long val, 1569 struct net_device *dev, 1570 struct netdev_notifier_info *info) 1571 { 1572 ASSERT_RTNL(); 1573 netdev_notifier_info_init(info, dev); 1574 return raw_notifier_call_chain(&netdev_chain, val, info); 1575 } 1576 1577 /** 1578 * call_netdevice_notifiers - call all network notifier blocks 1579 * @val: value passed unmodified to notifier function 1580 * @dev: net_device pointer passed unmodified to notifier function 1581 * 1582 * Call all network notifier blocks. Parameters and return value 1583 * are as for raw_notifier_call_chain(). 1584 */ 1585 1586 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 1587 { 1588 struct netdev_notifier_info info; 1589 1590 return call_netdevice_notifiers_info(val, dev, &info); 1591 } 1592 EXPORT_SYMBOL(call_netdevice_notifiers); 1593 1594 static struct static_key netstamp_needed __read_mostly; 1595 #ifdef HAVE_JUMP_LABEL 1596 /* We are not allowed to call static_key_slow_dec() from irq context 1597 * If net_disable_timestamp() is called from irq context, defer the 1598 * static_key_slow_dec() calls. 1599 */ 1600 static atomic_t netstamp_needed_deferred; 1601 #endif 1602 1603 void net_enable_timestamp(void) 1604 { 1605 #ifdef HAVE_JUMP_LABEL 1606 int deferred = atomic_xchg(&netstamp_needed_deferred, 0); 1607 1608 if (deferred) { 1609 while (--deferred) 1610 static_key_slow_dec(&netstamp_needed); 1611 return; 1612 } 1613 #endif 1614 static_key_slow_inc(&netstamp_needed); 1615 } 1616 EXPORT_SYMBOL(net_enable_timestamp); 1617 1618 void net_disable_timestamp(void) 1619 { 1620 #ifdef HAVE_JUMP_LABEL 1621 if (in_interrupt()) { 1622 atomic_inc(&netstamp_needed_deferred); 1623 return; 1624 } 1625 #endif 1626 static_key_slow_dec(&netstamp_needed); 1627 } 1628 EXPORT_SYMBOL(net_disable_timestamp); 1629 1630 static inline void net_timestamp_set(struct sk_buff *skb) 1631 { 1632 skb->tstamp.tv64 = 0; 1633 if (static_key_false(&netstamp_needed)) 1634 __net_timestamp(skb); 1635 } 1636 1637 #define net_timestamp_check(COND, SKB) \ 1638 if (static_key_false(&netstamp_needed)) { \ 1639 if ((COND) && !(SKB)->tstamp.tv64) \ 1640 __net_timestamp(SKB); \ 1641 } \ 1642 1643 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb) 1644 { 1645 unsigned int len; 1646 1647 if (!(dev->flags & IFF_UP)) 1648 return false; 1649 1650 len = dev->mtu + dev->hard_header_len + VLAN_HLEN; 1651 if (skb->len <= len) 1652 return true; 1653 1654 /* if TSO is enabled, we don't care about the length as the packet 1655 * could be forwarded without being segmented before 1656 */ 1657 if (skb_is_gso(skb)) 1658 return true; 1659 1660 return false; 1661 } 1662 EXPORT_SYMBOL_GPL(is_skb_forwardable); 1663 1664 /** 1665 * dev_forward_skb - loopback an skb to another netif 1666 * 1667 * @dev: destination network device 1668 * @skb: buffer to forward 1669 * 1670 * return values: 1671 * NET_RX_SUCCESS (no congestion) 1672 * NET_RX_DROP (packet was dropped, but freed) 1673 * 1674 * dev_forward_skb can be used for injecting an skb from the 1675 * start_xmit function of one device into the receive queue 1676 * of another device. 1677 * 1678 * The receiving device may be in another namespace, so 1679 * we have to clear all information in the skb that could 1680 * impact namespace isolation. 1681 */ 1682 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1683 { 1684 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) { 1685 if (skb_copy_ubufs(skb, GFP_ATOMIC)) { 1686 atomic_long_inc(&dev->rx_dropped); 1687 kfree_skb(skb); 1688 return NET_RX_DROP; 1689 } 1690 } 1691 1692 if (unlikely(!is_skb_forwardable(dev, skb))) { 1693 atomic_long_inc(&dev->rx_dropped); 1694 kfree_skb(skb); 1695 return NET_RX_DROP; 1696 } 1697 1698 skb_scrub_packet(skb, true); 1699 skb->protocol = eth_type_trans(skb, dev); 1700 1701 return netif_rx_internal(skb); 1702 } 1703 EXPORT_SYMBOL_GPL(dev_forward_skb); 1704 1705 static inline int deliver_skb(struct sk_buff *skb, 1706 struct packet_type *pt_prev, 1707 struct net_device *orig_dev) 1708 { 1709 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC))) 1710 return -ENOMEM; 1711 atomic_inc(&skb->users); 1712 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 1713 } 1714 1715 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb) 1716 { 1717 if (!ptype->af_packet_priv || !skb->sk) 1718 return false; 1719 1720 if (ptype->id_match) 1721 return ptype->id_match(ptype, skb->sk); 1722 else if ((struct sock *)ptype->af_packet_priv == skb->sk) 1723 return true; 1724 1725 return false; 1726 } 1727 1728 /* 1729 * Support routine. Sends outgoing frames to any network 1730 * taps currently in use. 1731 */ 1732 1733 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 1734 { 1735 struct packet_type *ptype; 1736 struct sk_buff *skb2 = NULL; 1737 struct packet_type *pt_prev = NULL; 1738 1739 rcu_read_lock(); 1740 list_for_each_entry_rcu(ptype, &ptype_all, list) { 1741 /* Never send packets back to the socket 1742 * they originated from - MvS (miquels@drinkel.ow.org) 1743 */ 1744 if ((ptype->dev == dev || !ptype->dev) && 1745 (!skb_loop_sk(ptype, skb))) { 1746 if (pt_prev) { 1747 deliver_skb(skb2, pt_prev, skb->dev); 1748 pt_prev = ptype; 1749 continue; 1750 } 1751 1752 skb2 = skb_clone(skb, GFP_ATOMIC); 1753 if (!skb2) 1754 break; 1755 1756 net_timestamp_set(skb2); 1757 1758 /* skb->nh should be correctly 1759 set by sender, so that the second statement is 1760 just protection against buggy protocols. 1761 */ 1762 skb_reset_mac_header(skb2); 1763 1764 if (skb_network_header(skb2) < skb2->data || 1765 skb_network_header(skb2) > skb_tail_pointer(skb2)) { 1766 net_crit_ratelimited("protocol %04x is buggy, dev %s\n", 1767 ntohs(skb2->protocol), 1768 dev->name); 1769 skb_reset_network_header(skb2); 1770 } 1771 1772 skb2->transport_header = skb2->network_header; 1773 skb2->pkt_type = PACKET_OUTGOING; 1774 pt_prev = ptype; 1775 } 1776 } 1777 if (pt_prev) 1778 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 1779 rcu_read_unlock(); 1780 } 1781 1782 /** 1783 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change 1784 * @dev: Network device 1785 * @txq: number of queues available 1786 * 1787 * If real_num_tx_queues is changed the tc mappings may no longer be 1788 * valid. To resolve this verify the tc mapping remains valid and if 1789 * not NULL the mapping. With no priorities mapping to this 1790 * offset/count pair it will no longer be used. In the worst case TC0 1791 * is invalid nothing can be done so disable priority mappings. If is 1792 * expected that drivers will fix this mapping if they can before 1793 * calling netif_set_real_num_tx_queues. 1794 */ 1795 static void netif_setup_tc(struct net_device *dev, unsigned int txq) 1796 { 1797 int i; 1798 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 1799 1800 /* If TC0 is invalidated disable TC mapping */ 1801 if (tc->offset + tc->count > txq) { 1802 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n"); 1803 dev->num_tc = 0; 1804 return; 1805 } 1806 1807 /* Invalidated prio to tc mappings set to TC0 */ 1808 for (i = 1; i < TC_BITMASK + 1; i++) { 1809 int q = netdev_get_prio_tc_map(dev, i); 1810 1811 tc = &dev->tc_to_txq[q]; 1812 if (tc->offset + tc->count > txq) { 1813 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n", 1814 i, q); 1815 netdev_set_prio_tc_map(dev, i, 0); 1816 } 1817 } 1818 } 1819 1820 #ifdef CONFIG_XPS 1821 static DEFINE_MUTEX(xps_map_mutex); 1822 #define xmap_dereference(P) \ 1823 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex)) 1824 1825 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps, 1826 int cpu, u16 index) 1827 { 1828 struct xps_map *map = NULL; 1829 int pos; 1830 1831 if (dev_maps) 1832 map = xmap_dereference(dev_maps->cpu_map[cpu]); 1833 1834 for (pos = 0; map && pos < map->len; pos++) { 1835 if (map->queues[pos] == index) { 1836 if (map->len > 1) { 1837 map->queues[pos] = map->queues[--map->len]; 1838 } else { 1839 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL); 1840 kfree_rcu(map, rcu); 1841 map = NULL; 1842 } 1843 break; 1844 } 1845 } 1846 1847 return map; 1848 } 1849 1850 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index) 1851 { 1852 struct xps_dev_maps *dev_maps; 1853 int cpu, i; 1854 bool active = false; 1855 1856 mutex_lock(&xps_map_mutex); 1857 dev_maps = xmap_dereference(dev->xps_maps); 1858 1859 if (!dev_maps) 1860 goto out_no_maps; 1861 1862 for_each_possible_cpu(cpu) { 1863 for (i = index; i < dev->num_tx_queues; i++) { 1864 if (!remove_xps_queue(dev_maps, cpu, i)) 1865 break; 1866 } 1867 if (i == dev->num_tx_queues) 1868 active = true; 1869 } 1870 1871 if (!active) { 1872 RCU_INIT_POINTER(dev->xps_maps, NULL); 1873 kfree_rcu(dev_maps, rcu); 1874 } 1875 1876 for (i = index; i < dev->num_tx_queues; i++) 1877 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i), 1878 NUMA_NO_NODE); 1879 1880 out_no_maps: 1881 mutex_unlock(&xps_map_mutex); 1882 } 1883 1884 static struct xps_map *expand_xps_map(struct xps_map *map, 1885 int cpu, u16 index) 1886 { 1887 struct xps_map *new_map; 1888 int alloc_len = XPS_MIN_MAP_ALLOC; 1889 int i, pos; 1890 1891 for (pos = 0; map && pos < map->len; pos++) { 1892 if (map->queues[pos] != index) 1893 continue; 1894 return map; 1895 } 1896 1897 /* Need to add queue to this CPU's existing map */ 1898 if (map) { 1899 if (pos < map->alloc_len) 1900 return map; 1901 1902 alloc_len = map->alloc_len * 2; 1903 } 1904 1905 /* Need to allocate new map to store queue on this CPU's map */ 1906 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL, 1907 cpu_to_node(cpu)); 1908 if (!new_map) 1909 return NULL; 1910 1911 for (i = 0; i < pos; i++) 1912 new_map->queues[i] = map->queues[i]; 1913 new_map->alloc_len = alloc_len; 1914 new_map->len = pos; 1915 1916 return new_map; 1917 } 1918 1919 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 1920 u16 index) 1921 { 1922 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL; 1923 struct xps_map *map, *new_map; 1924 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES); 1925 int cpu, numa_node_id = -2; 1926 bool active = false; 1927 1928 mutex_lock(&xps_map_mutex); 1929 1930 dev_maps = xmap_dereference(dev->xps_maps); 1931 1932 /* allocate memory for queue storage */ 1933 for_each_online_cpu(cpu) { 1934 if (!cpumask_test_cpu(cpu, mask)) 1935 continue; 1936 1937 if (!new_dev_maps) 1938 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL); 1939 if (!new_dev_maps) { 1940 mutex_unlock(&xps_map_mutex); 1941 return -ENOMEM; 1942 } 1943 1944 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) : 1945 NULL; 1946 1947 map = expand_xps_map(map, cpu, index); 1948 if (!map) 1949 goto error; 1950 1951 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map); 1952 } 1953 1954 if (!new_dev_maps) 1955 goto out_no_new_maps; 1956 1957 for_each_possible_cpu(cpu) { 1958 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) { 1959 /* add queue to CPU maps */ 1960 int pos = 0; 1961 1962 map = xmap_dereference(new_dev_maps->cpu_map[cpu]); 1963 while ((pos < map->len) && (map->queues[pos] != index)) 1964 pos++; 1965 1966 if (pos == map->len) 1967 map->queues[map->len++] = index; 1968 #ifdef CONFIG_NUMA 1969 if (numa_node_id == -2) 1970 numa_node_id = cpu_to_node(cpu); 1971 else if (numa_node_id != cpu_to_node(cpu)) 1972 numa_node_id = -1; 1973 #endif 1974 } else if (dev_maps) { 1975 /* fill in the new device map from the old device map */ 1976 map = xmap_dereference(dev_maps->cpu_map[cpu]); 1977 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map); 1978 } 1979 1980 } 1981 1982 rcu_assign_pointer(dev->xps_maps, new_dev_maps); 1983 1984 /* Cleanup old maps */ 1985 if (dev_maps) { 1986 for_each_possible_cpu(cpu) { 1987 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]); 1988 map = xmap_dereference(dev_maps->cpu_map[cpu]); 1989 if (map && map != new_map) 1990 kfree_rcu(map, rcu); 1991 } 1992 1993 kfree_rcu(dev_maps, rcu); 1994 } 1995 1996 dev_maps = new_dev_maps; 1997 active = true; 1998 1999 out_no_new_maps: 2000 /* update Tx queue numa node */ 2001 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index), 2002 (numa_node_id >= 0) ? numa_node_id : 2003 NUMA_NO_NODE); 2004 2005 if (!dev_maps) 2006 goto out_no_maps; 2007 2008 /* removes queue from unused CPUs */ 2009 for_each_possible_cpu(cpu) { 2010 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) 2011 continue; 2012 2013 if (remove_xps_queue(dev_maps, cpu, index)) 2014 active = true; 2015 } 2016 2017 /* free map if not active */ 2018 if (!active) { 2019 RCU_INIT_POINTER(dev->xps_maps, NULL); 2020 kfree_rcu(dev_maps, rcu); 2021 } 2022 2023 out_no_maps: 2024 mutex_unlock(&xps_map_mutex); 2025 2026 return 0; 2027 error: 2028 /* remove any maps that we added */ 2029 for_each_possible_cpu(cpu) { 2030 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]); 2031 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) : 2032 NULL; 2033 if (new_map && new_map != map) 2034 kfree(new_map); 2035 } 2036 2037 mutex_unlock(&xps_map_mutex); 2038 2039 kfree(new_dev_maps); 2040 return -ENOMEM; 2041 } 2042 EXPORT_SYMBOL(netif_set_xps_queue); 2043 2044 #endif 2045 /* 2046 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 2047 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed. 2048 */ 2049 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 2050 { 2051 int rc; 2052 2053 if (txq < 1 || txq > dev->num_tx_queues) 2054 return -EINVAL; 2055 2056 if (dev->reg_state == NETREG_REGISTERED || 2057 dev->reg_state == NETREG_UNREGISTERING) { 2058 ASSERT_RTNL(); 2059 2060 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 2061 txq); 2062 if (rc) 2063 return rc; 2064 2065 if (dev->num_tc) 2066 netif_setup_tc(dev, txq); 2067 2068 if (txq < dev->real_num_tx_queues) { 2069 qdisc_reset_all_tx_gt(dev, txq); 2070 #ifdef CONFIG_XPS 2071 netif_reset_xps_queues_gt(dev, txq); 2072 #endif 2073 } 2074 } 2075 2076 dev->real_num_tx_queues = txq; 2077 return 0; 2078 } 2079 EXPORT_SYMBOL(netif_set_real_num_tx_queues); 2080 2081 #ifdef CONFIG_SYSFS 2082 /** 2083 * netif_set_real_num_rx_queues - set actual number of RX queues used 2084 * @dev: Network device 2085 * @rxq: Actual number of RX queues 2086 * 2087 * This must be called either with the rtnl_lock held or before 2088 * registration of the net device. Returns 0 on success, or a 2089 * negative error code. If called before registration, it always 2090 * succeeds. 2091 */ 2092 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 2093 { 2094 int rc; 2095 2096 if (rxq < 1 || rxq > dev->num_rx_queues) 2097 return -EINVAL; 2098 2099 if (dev->reg_state == NETREG_REGISTERED) { 2100 ASSERT_RTNL(); 2101 2102 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 2103 rxq); 2104 if (rc) 2105 return rc; 2106 } 2107 2108 dev->real_num_rx_queues = rxq; 2109 return 0; 2110 } 2111 EXPORT_SYMBOL(netif_set_real_num_rx_queues); 2112 #endif 2113 2114 /** 2115 * netif_get_num_default_rss_queues - default number of RSS queues 2116 * 2117 * This routine should set an upper limit on the number of RSS queues 2118 * used by default by multiqueue devices. 2119 */ 2120 int netif_get_num_default_rss_queues(void) 2121 { 2122 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus()); 2123 } 2124 EXPORT_SYMBOL(netif_get_num_default_rss_queues); 2125 2126 static inline void __netif_reschedule(struct Qdisc *q) 2127 { 2128 struct softnet_data *sd; 2129 unsigned long flags; 2130 2131 local_irq_save(flags); 2132 sd = &__get_cpu_var(softnet_data); 2133 q->next_sched = NULL; 2134 *sd->output_queue_tailp = q; 2135 sd->output_queue_tailp = &q->next_sched; 2136 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2137 local_irq_restore(flags); 2138 } 2139 2140 void __netif_schedule(struct Qdisc *q) 2141 { 2142 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 2143 __netif_reschedule(q); 2144 } 2145 EXPORT_SYMBOL(__netif_schedule); 2146 2147 struct dev_kfree_skb_cb { 2148 enum skb_free_reason reason; 2149 }; 2150 2151 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb) 2152 { 2153 return (struct dev_kfree_skb_cb *)skb->cb; 2154 } 2155 2156 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason) 2157 { 2158 unsigned long flags; 2159 2160 if (likely(atomic_read(&skb->users) == 1)) { 2161 smp_rmb(); 2162 atomic_set(&skb->users, 0); 2163 } else if (likely(!atomic_dec_and_test(&skb->users))) { 2164 return; 2165 } 2166 get_kfree_skb_cb(skb)->reason = reason; 2167 local_irq_save(flags); 2168 skb->next = __this_cpu_read(softnet_data.completion_queue); 2169 __this_cpu_write(softnet_data.completion_queue, skb); 2170 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2171 local_irq_restore(flags); 2172 } 2173 EXPORT_SYMBOL(__dev_kfree_skb_irq); 2174 2175 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason) 2176 { 2177 if (in_irq() || irqs_disabled()) 2178 __dev_kfree_skb_irq(skb, reason); 2179 else 2180 dev_kfree_skb(skb); 2181 } 2182 EXPORT_SYMBOL(__dev_kfree_skb_any); 2183 2184 2185 /** 2186 * netif_device_detach - mark device as removed 2187 * @dev: network device 2188 * 2189 * Mark device as removed from system and therefore no longer available. 2190 */ 2191 void netif_device_detach(struct net_device *dev) 2192 { 2193 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 2194 netif_running(dev)) { 2195 netif_tx_stop_all_queues(dev); 2196 } 2197 } 2198 EXPORT_SYMBOL(netif_device_detach); 2199 2200 /** 2201 * netif_device_attach - mark device as attached 2202 * @dev: network device 2203 * 2204 * Mark device as attached from system and restart if needed. 2205 */ 2206 void netif_device_attach(struct net_device *dev) 2207 { 2208 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 2209 netif_running(dev)) { 2210 netif_tx_wake_all_queues(dev); 2211 __netdev_watchdog_up(dev); 2212 } 2213 } 2214 EXPORT_SYMBOL(netif_device_attach); 2215 2216 static void skb_warn_bad_offload(const struct sk_buff *skb) 2217 { 2218 static const netdev_features_t null_features = 0; 2219 struct net_device *dev = skb->dev; 2220 const char *driver = ""; 2221 2222 if (!net_ratelimit()) 2223 return; 2224 2225 if (dev && dev->dev.parent) 2226 driver = dev_driver_string(dev->dev.parent); 2227 2228 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d " 2229 "gso_type=%d ip_summed=%d\n", 2230 driver, dev ? &dev->features : &null_features, 2231 skb->sk ? &skb->sk->sk_route_caps : &null_features, 2232 skb->len, skb->data_len, skb_shinfo(skb)->gso_size, 2233 skb_shinfo(skb)->gso_type, skb->ip_summed); 2234 } 2235 2236 /* 2237 * Invalidate hardware checksum when packet is to be mangled, and 2238 * complete checksum manually on outgoing path. 2239 */ 2240 int skb_checksum_help(struct sk_buff *skb) 2241 { 2242 __wsum csum; 2243 int ret = 0, offset; 2244 2245 if (skb->ip_summed == CHECKSUM_COMPLETE) 2246 goto out_set_summed; 2247 2248 if (unlikely(skb_shinfo(skb)->gso_size)) { 2249 skb_warn_bad_offload(skb); 2250 return -EINVAL; 2251 } 2252 2253 /* Before computing a checksum, we should make sure no frag could 2254 * be modified by an external entity : checksum could be wrong. 2255 */ 2256 if (skb_has_shared_frag(skb)) { 2257 ret = __skb_linearize(skb); 2258 if (ret) 2259 goto out; 2260 } 2261 2262 offset = skb_checksum_start_offset(skb); 2263 BUG_ON(offset >= skb_headlen(skb)); 2264 csum = skb_checksum(skb, offset, skb->len - offset, 0); 2265 2266 offset += skb->csum_offset; 2267 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 2268 2269 if (skb_cloned(skb) && 2270 !skb_clone_writable(skb, offset + sizeof(__sum16))) { 2271 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2272 if (ret) 2273 goto out; 2274 } 2275 2276 *(__sum16 *)(skb->data + offset) = csum_fold(csum); 2277 out_set_summed: 2278 skb->ip_summed = CHECKSUM_NONE; 2279 out: 2280 return ret; 2281 } 2282 EXPORT_SYMBOL(skb_checksum_help); 2283 2284 __be16 skb_network_protocol(struct sk_buff *skb, int *depth) 2285 { 2286 unsigned int vlan_depth = skb->mac_len; 2287 __be16 type = skb->protocol; 2288 2289 /* Tunnel gso handlers can set protocol to ethernet. */ 2290 if (type == htons(ETH_P_TEB)) { 2291 struct ethhdr *eth; 2292 2293 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr)))) 2294 return 0; 2295 2296 eth = (struct ethhdr *)skb_mac_header(skb); 2297 type = eth->h_proto; 2298 } 2299 2300 /* if skb->protocol is 802.1Q/AD then the header should already be 2301 * present at mac_len - VLAN_HLEN (if mac_len > 0), or at 2302 * ETH_HLEN otherwise 2303 */ 2304 if (type == htons(ETH_P_8021Q) || type == htons(ETH_P_8021AD)) { 2305 if (vlan_depth) { 2306 if (unlikely(WARN_ON(vlan_depth < VLAN_HLEN))) 2307 return 0; 2308 vlan_depth -= VLAN_HLEN; 2309 } else { 2310 vlan_depth = ETH_HLEN; 2311 } 2312 do { 2313 struct vlan_hdr *vh; 2314 2315 if (unlikely(!pskb_may_pull(skb, 2316 vlan_depth + VLAN_HLEN))) 2317 return 0; 2318 2319 vh = (struct vlan_hdr *)(skb->data + vlan_depth); 2320 type = vh->h_vlan_encapsulated_proto; 2321 vlan_depth += VLAN_HLEN; 2322 } while (type == htons(ETH_P_8021Q) || 2323 type == htons(ETH_P_8021AD)); 2324 } 2325 2326 *depth = vlan_depth; 2327 2328 return type; 2329 } 2330 2331 /** 2332 * skb_mac_gso_segment - mac layer segmentation handler. 2333 * @skb: buffer to segment 2334 * @features: features for the output path (see dev->features) 2335 */ 2336 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 2337 netdev_features_t features) 2338 { 2339 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 2340 struct packet_offload *ptype; 2341 int vlan_depth = skb->mac_len; 2342 __be16 type = skb_network_protocol(skb, &vlan_depth); 2343 2344 if (unlikely(!type)) 2345 return ERR_PTR(-EINVAL); 2346 2347 __skb_pull(skb, vlan_depth); 2348 2349 rcu_read_lock(); 2350 list_for_each_entry_rcu(ptype, &offload_base, list) { 2351 if (ptype->type == type && ptype->callbacks.gso_segment) { 2352 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) { 2353 int err; 2354 2355 err = ptype->callbacks.gso_send_check(skb); 2356 segs = ERR_PTR(err); 2357 if (err || skb_gso_ok(skb, features)) 2358 break; 2359 __skb_push(skb, (skb->data - 2360 skb_network_header(skb))); 2361 } 2362 segs = ptype->callbacks.gso_segment(skb, features); 2363 break; 2364 } 2365 } 2366 rcu_read_unlock(); 2367 2368 __skb_push(skb, skb->data - skb_mac_header(skb)); 2369 2370 return segs; 2371 } 2372 EXPORT_SYMBOL(skb_mac_gso_segment); 2373 2374 2375 /* openvswitch calls this on rx path, so we need a different check. 2376 */ 2377 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path) 2378 { 2379 if (tx_path) 2380 return skb->ip_summed != CHECKSUM_PARTIAL; 2381 else 2382 return skb->ip_summed == CHECKSUM_NONE; 2383 } 2384 2385 /** 2386 * __skb_gso_segment - Perform segmentation on skb. 2387 * @skb: buffer to segment 2388 * @features: features for the output path (see dev->features) 2389 * @tx_path: whether it is called in TX path 2390 * 2391 * This function segments the given skb and returns a list of segments. 2392 * 2393 * It may return NULL if the skb requires no segmentation. This is 2394 * only possible when GSO is used for verifying header integrity. 2395 */ 2396 struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 2397 netdev_features_t features, bool tx_path) 2398 { 2399 if (unlikely(skb_needs_check(skb, tx_path))) { 2400 int err; 2401 2402 skb_warn_bad_offload(skb); 2403 2404 if (skb_header_cloned(skb) && 2405 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))) 2406 return ERR_PTR(err); 2407 } 2408 2409 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb); 2410 SKB_GSO_CB(skb)->encap_level = 0; 2411 2412 skb_reset_mac_header(skb); 2413 skb_reset_mac_len(skb); 2414 2415 return skb_mac_gso_segment(skb, features); 2416 } 2417 EXPORT_SYMBOL(__skb_gso_segment); 2418 2419 /* Take action when hardware reception checksum errors are detected. */ 2420 #ifdef CONFIG_BUG 2421 void netdev_rx_csum_fault(struct net_device *dev) 2422 { 2423 if (net_ratelimit()) { 2424 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>"); 2425 dump_stack(); 2426 } 2427 } 2428 EXPORT_SYMBOL(netdev_rx_csum_fault); 2429 #endif 2430 2431 /* Actually, we should eliminate this check as soon as we know, that: 2432 * 1. IOMMU is present and allows to map all the memory. 2433 * 2. No high memory really exists on this machine. 2434 */ 2435 2436 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 2437 { 2438 #ifdef CONFIG_HIGHMEM 2439 int i; 2440 if (!(dev->features & NETIF_F_HIGHDMA)) { 2441 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2442 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2443 if (PageHighMem(skb_frag_page(frag))) 2444 return 1; 2445 } 2446 } 2447 2448 if (PCI_DMA_BUS_IS_PHYS) { 2449 struct device *pdev = dev->dev.parent; 2450 2451 if (!pdev) 2452 return 0; 2453 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2454 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2455 dma_addr_t addr = page_to_phys(skb_frag_page(frag)); 2456 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask) 2457 return 1; 2458 } 2459 } 2460 #endif 2461 return 0; 2462 } 2463 2464 struct dev_gso_cb { 2465 void (*destructor)(struct sk_buff *skb); 2466 }; 2467 2468 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb) 2469 2470 static void dev_gso_skb_destructor(struct sk_buff *skb) 2471 { 2472 struct dev_gso_cb *cb; 2473 2474 kfree_skb_list(skb->next); 2475 skb->next = NULL; 2476 2477 cb = DEV_GSO_CB(skb); 2478 if (cb->destructor) 2479 cb->destructor(skb); 2480 } 2481 2482 /** 2483 * dev_gso_segment - Perform emulated hardware segmentation on skb. 2484 * @skb: buffer to segment 2485 * @features: device features as applicable to this skb 2486 * 2487 * This function segments the given skb and stores the list of segments 2488 * in skb->next. 2489 */ 2490 static int dev_gso_segment(struct sk_buff *skb, netdev_features_t features) 2491 { 2492 struct sk_buff *segs; 2493 2494 segs = skb_gso_segment(skb, features); 2495 2496 /* Verifying header integrity only. */ 2497 if (!segs) 2498 return 0; 2499 2500 if (IS_ERR(segs)) 2501 return PTR_ERR(segs); 2502 2503 skb->next = segs; 2504 DEV_GSO_CB(skb)->destructor = skb->destructor; 2505 skb->destructor = dev_gso_skb_destructor; 2506 2507 return 0; 2508 } 2509 2510 static netdev_features_t harmonize_features(struct sk_buff *skb, 2511 netdev_features_t features) 2512 { 2513 int tmp; 2514 2515 if (skb->ip_summed != CHECKSUM_NONE && 2516 !can_checksum_protocol(features, skb_network_protocol(skb, &tmp))) { 2517 features &= ~NETIF_F_ALL_CSUM; 2518 } else if (illegal_highdma(skb->dev, skb)) { 2519 features &= ~NETIF_F_SG; 2520 } 2521 2522 return features; 2523 } 2524 2525 netdev_features_t netif_skb_features(struct sk_buff *skb) 2526 { 2527 __be16 protocol = skb->protocol; 2528 netdev_features_t features = skb->dev->features; 2529 2530 if (skb_shinfo(skb)->gso_segs > skb->dev->gso_max_segs) 2531 features &= ~NETIF_F_GSO_MASK; 2532 2533 if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD)) { 2534 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data; 2535 protocol = veh->h_vlan_encapsulated_proto; 2536 } else if (!vlan_tx_tag_present(skb)) { 2537 return harmonize_features(skb, features); 2538 } 2539 2540 features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_CTAG_TX | 2541 NETIF_F_HW_VLAN_STAG_TX); 2542 2543 if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD)) 2544 features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST | 2545 NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_CTAG_TX | 2546 NETIF_F_HW_VLAN_STAG_TX; 2547 2548 return harmonize_features(skb, features); 2549 } 2550 EXPORT_SYMBOL(netif_skb_features); 2551 2552 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 2553 struct netdev_queue *txq) 2554 { 2555 const struct net_device_ops *ops = dev->netdev_ops; 2556 int rc = NETDEV_TX_OK; 2557 unsigned int skb_len; 2558 2559 if (likely(!skb->next)) { 2560 netdev_features_t features; 2561 2562 /* 2563 * If device doesn't need skb->dst, release it right now while 2564 * its hot in this cpu cache 2565 */ 2566 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 2567 skb_dst_drop(skb); 2568 2569 features = netif_skb_features(skb); 2570 2571 if (vlan_tx_tag_present(skb) && 2572 !vlan_hw_offload_capable(features, skb->vlan_proto)) { 2573 skb = __vlan_put_tag(skb, skb->vlan_proto, 2574 vlan_tx_tag_get(skb)); 2575 if (unlikely(!skb)) 2576 goto out; 2577 2578 skb->vlan_tci = 0; 2579 } 2580 2581 /* If encapsulation offload request, verify we are testing 2582 * hardware encapsulation features instead of standard 2583 * features for the netdev 2584 */ 2585 if (skb->encapsulation) 2586 features &= dev->hw_enc_features; 2587 2588 if (netif_needs_gso(skb, features)) { 2589 if (unlikely(dev_gso_segment(skb, features))) 2590 goto out_kfree_skb; 2591 if (skb->next) 2592 goto gso; 2593 } else { 2594 if (skb_needs_linearize(skb, features) && 2595 __skb_linearize(skb)) 2596 goto out_kfree_skb; 2597 2598 /* If packet is not checksummed and device does not 2599 * support checksumming for this protocol, complete 2600 * checksumming here. 2601 */ 2602 if (skb->ip_summed == CHECKSUM_PARTIAL) { 2603 if (skb->encapsulation) 2604 skb_set_inner_transport_header(skb, 2605 skb_checksum_start_offset(skb)); 2606 else 2607 skb_set_transport_header(skb, 2608 skb_checksum_start_offset(skb)); 2609 if (!(features & NETIF_F_ALL_CSUM) && 2610 skb_checksum_help(skb)) 2611 goto out_kfree_skb; 2612 } 2613 } 2614 2615 if (!list_empty(&ptype_all)) 2616 dev_queue_xmit_nit(skb, dev); 2617 2618 skb_len = skb->len; 2619 trace_net_dev_start_xmit(skb, dev); 2620 rc = ops->ndo_start_xmit(skb, dev); 2621 trace_net_dev_xmit(skb, rc, dev, skb_len); 2622 if (rc == NETDEV_TX_OK) 2623 txq_trans_update(txq); 2624 return rc; 2625 } 2626 2627 gso: 2628 do { 2629 struct sk_buff *nskb = skb->next; 2630 2631 skb->next = nskb->next; 2632 nskb->next = NULL; 2633 2634 if (!list_empty(&ptype_all)) 2635 dev_queue_xmit_nit(nskb, dev); 2636 2637 skb_len = nskb->len; 2638 trace_net_dev_start_xmit(nskb, dev); 2639 rc = ops->ndo_start_xmit(nskb, dev); 2640 trace_net_dev_xmit(nskb, rc, dev, skb_len); 2641 if (unlikely(rc != NETDEV_TX_OK)) { 2642 if (rc & ~NETDEV_TX_MASK) 2643 goto out_kfree_gso_skb; 2644 nskb->next = skb->next; 2645 skb->next = nskb; 2646 return rc; 2647 } 2648 txq_trans_update(txq); 2649 if (unlikely(netif_xmit_stopped(txq) && skb->next)) 2650 return NETDEV_TX_BUSY; 2651 } while (skb->next); 2652 2653 out_kfree_gso_skb: 2654 if (likely(skb->next == NULL)) { 2655 skb->destructor = DEV_GSO_CB(skb)->destructor; 2656 consume_skb(skb); 2657 return rc; 2658 } 2659 out_kfree_skb: 2660 kfree_skb(skb); 2661 out: 2662 return rc; 2663 } 2664 EXPORT_SYMBOL_GPL(dev_hard_start_xmit); 2665 2666 static void qdisc_pkt_len_init(struct sk_buff *skb) 2667 { 2668 const struct skb_shared_info *shinfo = skb_shinfo(skb); 2669 2670 qdisc_skb_cb(skb)->pkt_len = skb->len; 2671 2672 /* To get more precise estimation of bytes sent on wire, 2673 * we add to pkt_len the headers size of all segments 2674 */ 2675 if (shinfo->gso_size) { 2676 unsigned int hdr_len; 2677 u16 gso_segs = shinfo->gso_segs; 2678 2679 /* mac layer + network layer */ 2680 hdr_len = skb_transport_header(skb) - skb_mac_header(skb); 2681 2682 /* + transport layer */ 2683 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) 2684 hdr_len += tcp_hdrlen(skb); 2685 else 2686 hdr_len += sizeof(struct udphdr); 2687 2688 if (shinfo->gso_type & SKB_GSO_DODGY) 2689 gso_segs = DIV_ROUND_UP(skb->len - hdr_len, 2690 shinfo->gso_size); 2691 2692 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len; 2693 } 2694 } 2695 2696 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 2697 struct net_device *dev, 2698 struct netdev_queue *txq) 2699 { 2700 spinlock_t *root_lock = qdisc_lock(q); 2701 bool contended; 2702 int rc; 2703 2704 qdisc_pkt_len_init(skb); 2705 qdisc_calculate_pkt_len(skb, q); 2706 /* 2707 * Heuristic to force contended enqueues to serialize on a 2708 * separate lock before trying to get qdisc main lock. 2709 * This permits __QDISC_STATE_RUNNING owner to get the lock more often 2710 * and dequeue packets faster. 2711 */ 2712 contended = qdisc_is_running(q); 2713 if (unlikely(contended)) 2714 spin_lock(&q->busylock); 2715 2716 spin_lock(root_lock); 2717 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 2718 kfree_skb(skb); 2719 rc = NET_XMIT_DROP; 2720 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 2721 qdisc_run_begin(q)) { 2722 /* 2723 * This is a work-conserving queue; there are no old skbs 2724 * waiting to be sent out; and the qdisc is not running - 2725 * xmit the skb directly. 2726 */ 2727 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE)) 2728 skb_dst_force(skb); 2729 2730 qdisc_bstats_update(q, skb); 2731 2732 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) { 2733 if (unlikely(contended)) { 2734 spin_unlock(&q->busylock); 2735 contended = false; 2736 } 2737 __qdisc_run(q); 2738 } else 2739 qdisc_run_end(q); 2740 2741 rc = NET_XMIT_SUCCESS; 2742 } else { 2743 skb_dst_force(skb); 2744 rc = q->enqueue(skb, q) & NET_XMIT_MASK; 2745 if (qdisc_run_begin(q)) { 2746 if (unlikely(contended)) { 2747 spin_unlock(&q->busylock); 2748 contended = false; 2749 } 2750 __qdisc_run(q); 2751 } 2752 } 2753 spin_unlock(root_lock); 2754 if (unlikely(contended)) 2755 spin_unlock(&q->busylock); 2756 return rc; 2757 } 2758 2759 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 2760 static void skb_update_prio(struct sk_buff *skb) 2761 { 2762 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap); 2763 2764 if (!skb->priority && skb->sk && map) { 2765 unsigned int prioidx = skb->sk->sk_cgrp_prioidx; 2766 2767 if (prioidx < map->priomap_len) 2768 skb->priority = map->priomap[prioidx]; 2769 } 2770 } 2771 #else 2772 #define skb_update_prio(skb) 2773 #endif 2774 2775 static DEFINE_PER_CPU(int, xmit_recursion); 2776 #define RECURSION_LIMIT 10 2777 2778 /** 2779 * dev_loopback_xmit - loop back @skb 2780 * @skb: buffer to transmit 2781 */ 2782 int dev_loopback_xmit(struct sk_buff *skb) 2783 { 2784 skb_reset_mac_header(skb); 2785 __skb_pull(skb, skb_network_offset(skb)); 2786 skb->pkt_type = PACKET_LOOPBACK; 2787 skb->ip_summed = CHECKSUM_UNNECESSARY; 2788 WARN_ON(!skb_dst(skb)); 2789 skb_dst_force(skb); 2790 netif_rx_ni(skb); 2791 return 0; 2792 } 2793 EXPORT_SYMBOL(dev_loopback_xmit); 2794 2795 /** 2796 * __dev_queue_xmit - transmit a buffer 2797 * @skb: buffer to transmit 2798 * @accel_priv: private data used for L2 forwarding offload 2799 * 2800 * Queue a buffer for transmission to a network device. The caller must 2801 * have set the device and priority and built the buffer before calling 2802 * this function. The function can be called from an interrupt. 2803 * 2804 * A negative errno code is returned on a failure. A success does not 2805 * guarantee the frame will be transmitted as it may be dropped due 2806 * to congestion or traffic shaping. 2807 * 2808 * ----------------------------------------------------------------------------------- 2809 * I notice this method can also return errors from the queue disciplines, 2810 * including NET_XMIT_DROP, which is a positive value. So, errors can also 2811 * be positive. 2812 * 2813 * Regardless of the return value, the skb is consumed, so it is currently 2814 * difficult to retry a send to this method. (You can bump the ref count 2815 * before sending to hold a reference for retry if you are careful.) 2816 * 2817 * When calling this method, interrupts MUST be enabled. This is because 2818 * the BH enable code must have IRQs enabled so that it will not deadlock. 2819 * --BLG 2820 */ 2821 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv) 2822 { 2823 struct net_device *dev = skb->dev; 2824 struct netdev_queue *txq; 2825 struct Qdisc *q; 2826 int rc = -ENOMEM; 2827 2828 skb_reset_mac_header(skb); 2829 2830 /* Disable soft irqs for various locks below. Also 2831 * stops preemption for RCU. 2832 */ 2833 rcu_read_lock_bh(); 2834 2835 skb_update_prio(skb); 2836 2837 txq = netdev_pick_tx(dev, skb, accel_priv); 2838 q = rcu_dereference_bh(txq->qdisc); 2839 2840 #ifdef CONFIG_NET_CLS_ACT 2841 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS); 2842 #endif 2843 trace_net_dev_queue(skb); 2844 if (q->enqueue) { 2845 rc = __dev_xmit_skb(skb, q, dev, txq); 2846 goto out; 2847 } 2848 2849 /* The device has no queue. Common case for software devices: 2850 loopback, all the sorts of tunnels... 2851 2852 Really, it is unlikely that netif_tx_lock protection is necessary 2853 here. (f.e. loopback and IP tunnels are clean ignoring statistics 2854 counters.) 2855 However, it is possible, that they rely on protection 2856 made by us here. 2857 2858 Check this and shot the lock. It is not prone from deadlocks. 2859 Either shot noqueue qdisc, it is even simpler 8) 2860 */ 2861 if (dev->flags & IFF_UP) { 2862 int cpu = smp_processor_id(); /* ok because BHs are off */ 2863 2864 if (txq->xmit_lock_owner != cpu) { 2865 2866 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT) 2867 goto recursion_alert; 2868 2869 HARD_TX_LOCK(dev, txq, cpu); 2870 2871 if (!netif_xmit_stopped(txq)) { 2872 __this_cpu_inc(xmit_recursion); 2873 rc = dev_hard_start_xmit(skb, dev, txq); 2874 __this_cpu_dec(xmit_recursion); 2875 if (dev_xmit_complete(rc)) { 2876 HARD_TX_UNLOCK(dev, txq); 2877 goto out; 2878 } 2879 } 2880 HARD_TX_UNLOCK(dev, txq); 2881 net_crit_ratelimited("Virtual device %s asks to queue packet!\n", 2882 dev->name); 2883 } else { 2884 /* Recursion is detected! It is possible, 2885 * unfortunately 2886 */ 2887 recursion_alert: 2888 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n", 2889 dev->name); 2890 } 2891 } 2892 2893 rc = -ENETDOWN; 2894 rcu_read_unlock_bh(); 2895 2896 atomic_long_inc(&dev->tx_dropped); 2897 kfree_skb(skb); 2898 return rc; 2899 out: 2900 rcu_read_unlock_bh(); 2901 return rc; 2902 } 2903 2904 int dev_queue_xmit(struct sk_buff *skb) 2905 { 2906 return __dev_queue_xmit(skb, NULL); 2907 } 2908 EXPORT_SYMBOL(dev_queue_xmit); 2909 2910 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv) 2911 { 2912 return __dev_queue_xmit(skb, accel_priv); 2913 } 2914 EXPORT_SYMBOL(dev_queue_xmit_accel); 2915 2916 2917 /*======================================================================= 2918 Receiver routines 2919 =======================================================================*/ 2920 2921 int netdev_max_backlog __read_mostly = 1000; 2922 EXPORT_SYMBOL(netdev_max_backlog); 2923 2924 int netdev_tstamp_prequeue __read_mostly = 1; 2925 int netdev_budget __read_mostly = 300; 2926 int weight_p __read_mostly = 64; /* old backlog weight */ 2927 2928 /* Called with irq disabled */ 2929 static inline void ____napi_schedule(struct softnet_data *sd, 2930 struct napi_struct *napi) 2931 { 2932 list_add_tail(&napi->poll_list, &sd->poll_list); 2933 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 2934 } 2935 2936 #ifdef CONFIG_RPS 2937 2938 /* One global table that all flow-based protocols share. */ 2939 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly; 2940 EXPORT_SYMBOL(rps_sock_flow_table); 2941 2942 struct static_key rps_needed __read_mostly; 2943 2944 static struct rps_dev_flow * 2945 set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 2946 struct rps_dev_flow *rflow, u16 next_cpu) 2947 { 2948 if (next_cpu != RPS_NO_CPU) { 2949 #ifdef CONFIG_RFS_ACCEL 2950 struct netdev_rx_queue *rxqueue; 2951 struct rps_dev_flow_table *flow_table; 2952 struct rps_dev_flow *old_rflow; 2953 u32 flow_id; 2954 u16 rxq_index; 2955 int rc; 2956 2957 /* Should we steer this flow to a different hardware queue? */ 2958 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 2959 !(dev->features & NETIF_F_NTUPLE)) 2960 goto out; 2961 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 2962 if (rxq_index == skb_get_rx_queue(skb)) 2963 goto out; 2964 2965 rxqueue = dev->_rx + rxq_index; 2966 flow_table = rcu_dereference(rxqueue->rps_flow_table); 2967 if (!flow_table) 2968 goto out; 2969 flow_id = skb_get_hash(skb) & flow_table->mask; 2970 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 2971 rxq_index, flow_id); 2972 if (rc < 0) 2973 goto out; 2974 old_rflow = rflow; 2975 rflow = &flow_table->flows[flow_id]; 2976 rflow->filter = rc; 2977 if (old_rflow->filter == rflow->filter) 2978 old_rflow->filter = RPS_NO_FILTER; 2979 out: 2980 #endif 2981 rflow->last_qtail = 2982 per_cpu(softnet_data, next_cpu).input_queue_head; 2983 } 2984 2985 rflow->cpu = next_cpu; 2986 return rflow; 2987 } 2988 2989 /* 2990 * get_rps_cpu is called from netif_receive_skb and returns the target 2991 * CPU from the RPS map of the receiving queue for a given skb. 2992 * rcu_read_lock must be held on entry. 2993 */ 2994 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 2995 struct rps_dev_flow **rflowp) 2996 { 2997 struct netdev_rx_queue *rxqueue; 2998 struct rps_map *map; 2999 struct rps_dev_flow_table *flow_table; 3000 struct rps_sock_flow_table *sock_flow_table; 3001 int cpu = -1; 3002 u16 tcpu; 3003 u32 hash; 3004 3005 if (skb_rx_queue_recorded(skb)) { 3006 u16 index = skb_get_rx_queue(skb); 3007 if (unlikely(index >= dev->real_num_rx_queues)) { 3008 WARN_ONCE(dev->real_num_rx_queues > 1, 3009 "%s received packet on queue %u, but number " 3010 "of RX queues is %u\n", 3011 dev->name, index, dev->real_num_rx_queues); 3012 goto done; 3013 } 3014 rxqueue = dev->_rx + index; 3015 } else 3016 rxqueue = dev->_rx; 3017 3018 map = rcu_dereference(rxqueue->rps_map); 3019 if (map) { 3020 if (map->len == 1 && 3021 !rcu_access_pointer(rxqueue->rps_flow_table)) { 3022 tcpu = map->cpus[0]; 3023 if (cpu_online(tcpu)) 3024 cpu = tcpu; 3025 goto done; 3026 } 3027 } else if (!rcu_access_pointer(rxqueue->rps_flow_table)) { 3028 goto done; 3029 } 3030 3031 skb_reset_network_header(skb); 3032 hash = skb_get_hash(skb); 3033 if (!hash) 3034 goto done; 3035 3036 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3037 sock_flow_table = rcu_dereference(rps_sock_flow_table); 3038 if (flow_table && sock_flow_table) { 3039 u16 next_cpu; 3040 struct rps_dev_flow *rflow; 3041 3042 rflow = &flow_table->flows[hash & flow_table->mask]; 3043 tcpu = rflow->cpu; 3044 3045 next_cpu = sock_flow_table->ents[hash & sock_flow_table->mask]; 3046 3047 /* 3048 * If the desired CPU (where last recvmsg was done) is 3049 * different from current CPU (one in the rx-queue flow 3050 * table entry), switch if one of the following holds: 3051 * - Current CPU is unset (equal to RPS_NO_CPU). 3052 * - Current CPU is offline. 3053 * - The current CPU's queue tail has advanced beyond the 3054 * last packet that was enqueued using this table entry. 3055 * This guarantees that all previous packets for the flow 3056 * have been dequeued, thus preserving in order delivery. 3057 */ 3058 if (unlikely(tcpu != next_cpu) && 3059 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) || 3060 ((int)(per_cpu(softnet_data, tcpu).input_queue_head - 3061 rflow->last_qtail)) >= 0)) { 3062 tcpu = next_cpu; 3063 rflow = set_rps_cpu(dev, skb, rflow, next_cpu); 3064 } 3065 3066 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) { 3067 *rflowp = rflow; 3068 cpu = tcpu; 3069 goto done; 3070 } 3071 } 3072 3073 if (map) { 3074 tcpu = map->cpus[((u64) hash * map->len) >> 32]; 3075 3076 if (cpu_online(tcpu)) { 3077 cpu = tcpu; 3078 goto done; 3079 } 3080 } 3081 3082 done: 3083 return cpu; 3084 } 3085 3086 #ifdef CONFIG_RFS_ACCEL 3087 3088 /** 3089 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 3090 * @dev: Device on which the filter was set 3091 * @rxq_index: RX queue index 3092 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 3093 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 3094 * 3095 * Drivers that implement ndo_rx_flow_steer() should periodically call 3096 * this function for each installed filter and remove the filters for 3097 * which it returns %true. 3098 */ 3099 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 3100 u32 flow_id, u16 filter_id) 3101 { 3102 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 3103 struct rps_dev_flow_table *flow_table; 3104 struct rps_dev_flow *rflow; 3105 bool expire = true; 3106 int cpu; 3107 3108 rcu_read_lock(); 3109 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3110 if (flow_table && flow_id <= flow_table->mask) { 3111 rflow = &flow_table->flows[flow_id]; 3112 cpu = ACCESS_ONCE(rflow->cpu); 3113 if (rflow->filter == filter_id && cpu != RPS_NO_CPU && 3114 ((int)(per_cpu(softnet_data, cpu).input_queue_head - 3115 rflow->last_qtail) < 3116 (int)(10 * flow_table->mask))) 3117 expire = false; 3118 } 3119 rcu_read_unlock(); 3120 return expire; 3121 } 3122 EXPORT_SYMBOL(rps_may_expire_flow); 3123 3124 #endif /* CONFIG_RFS_ACCEL */ 3125 3126 /* Called from hardirq (IPI) context */ 3127 static void rps_trigger_softirq(void *data) 3128 { 3129 struct softnet_data *sd = data; 3130 3131 ____napi_schedule(sd, &sd->backlog); 3132 sd->received_rps++; 3133 } 3134 3135 #endif /* CONFIG_RPS */ 3136 3137 /* 3138 * Check if this softnet_data structure is another cpu one 3139 * If yes, queue it to our IPI list and return 1 3140 * If no, return 0 3141 */ 3142 static int rps_ipi_queued(struct softnet_data *sd) 3143 { 3144 #ifdef CONFIG_RPS 3145 struct softnet_data *mysd = &__get_cpu_var(softnet_data); 3146 3147 if (sd != mysd) { 3148 sd->rps_ipi_next = mysd->rps_ipi_list; 3149 mysd->rps_ipi_list = sd; 3150 3151 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3152 return 1; 3153 } 3154 #endif /* CONFIG_RPS */ 3155 return 0; 3156 } 3157 3158 #ifdef CONFIG_NET_FLOW_LIMIT 3159 int netdev_flow_limit_table_len __read_mostly = (1 << 12); 3160 #endif 3161 3162 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen) 3163 { 3164 #ifdef CONFIG_NET_FLOW_LIMIT 3165 struct sd_flow_limit *fl; 3166 struct softnet_data *sd; 3167 unsigned int old_flow, new_flow; 3168 3169 if (qlen < (netdev_max_backlog >> 1)) 3170 return false; 3171 3172 sd = &__get_cpu_var(softnet_data); 3173 3174 rcu_read_lock(); 3175 fl = rcu_dereference(sd->flow_limit); 3176 if (fl) { 3177 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1); 3178 old_flow = fl->history[fl->history_head]; 3179 fl->history[fl->history_head] = new_flow; 3180 3181 fl->history_head++; 3182 fl->history_head &= FLOW_LIMIT_HISTORY - 1; 3183 3184 if (likely(fl->buckets[old_flow])) 3185 fl->buckets[old_flow]--; 3186 3187 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) { 3188 fl->count++; 3189 rcu_read_unlock(); 3190 return true; 3191 } 3192 } 3193 rcu_read_unlock(); 3194 #endif 3195 return false; 3196 } 3197 3198 /* 3199 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 3200 * queue (may be a remote CPU queue). 3201 */ 3202 static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 3203 unsigned int *qtail) 3204 { 3205 struct softnet_data *sd; 3206 unsigned long flags; 3207 unsigned int qlen; 3208 3209 sd = &per_cpu(softnet_data, cpu); 3210 3211 local_irq_save(flags); 3212 3213 rps_lock(sd); 3214 qlen = skb_queue_len(&sd->input_pkt_queue); 3215 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) { 3216 if (skb_queue_len(&sd->input_pkt_queue)) { 3217 enqueue: 3218 __skb_queue_tail(&sd->input_pkt_queue, skb); 3219 input_queue_tail_incr_save(sd, qtail); 3220 rps_unlock(sd); 3221 local_irq_restore(flags); 3222 return NET_RX_SUCCESS; 3223 } 3224 3225 /* Schedule NAPI for backlog device 3226 * We can use non atomic operation since we own the queue lock 3227 */ 3228 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) { 3229 if (!rps_ipi_queued(sd)) 3230 ____napi_schedule(sd, &sd->backlog); 3231 } 3232 goto enqueue; 3233 } 3234 3235 sd->dropped++; 3236 rps_unlock(sd); 3237 3238 local_irq_restore(flags); 3239 3240 atomic_long_inc(&skb->dev->rx_dropped); 3241 kfree_skb(skb); 3242 return NET_RX_DROP; 3243 } 3244 3245 static int netif_rx_internal(struct sk_buff *skb) 3246 { 3247 int ret; 3248 3249 net_timestamp_check(netdev_tstamp_prequeue, skb); 3250 3251 trace_netif_rx(skb); 3252 #ifdef CONFIG_RPS 3253 if (static_key_false(&rps_needed)) { 3254 struct rps_dev_flow voidflow, *rflow = &voidflow; 3255 int cpu; 3256 3257 preempt_disable(); 3258 rcu_read_lock(); 3259 3260 cpu = get_rps_cpu(skb->dev, skb, &rflow); 3261 if (cpu < 0) 3262 cpu = smp_processor_id(); 3263 3264 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 3265 3266 rcu_read_unlock(); 3267 preempt_enable(); 3268 } else 3269 #endif 3270 { 3271 unsigned int qtail; 3272 ret = enqueue_to_backlog(skb, get_cpu(), &qtail); 3273 put_cpu(); 3274 } 3275 return ret; 3276 } 3277 3278 /** 3279 * netif_rx - post buffer to the network code 3280 * @skb: buffer to post 3281 * 3282 * This function receives a packet from a device driver and queues it for 3283 * the upper (protocol) levels to process. It always succeeds. The buffer 3284 * may be dropped during processing for congestion control or by the 3285 * protocol layers. 3286 * 3287 * return values: 3288 * NET_RX_SUCCESS (no congestion) 3289 * NET_RX_DROP (packet was dropped) 3290 * 3291 */ 3292 3293 int netif_rx(struct sk_buff *skb) 3294 { 3295 trace_netif_rx_entry(skb); 3296 3297 return netif_rx_internal(skb); 3298 } 3299 EXPORT_SYMBOL(netif_rx); 3300 3301 int netif_rx_ni(struct sk_buff *skb) 3302 { 3303 int err; 3304 3305 trace_netif_rx_ni_entry(skb); 3306 3307 preempt_disable(); 3308 err = netif_rx_internal(skb); 3309 if (local_softirq_pending()) 3310 do_softirq(); 3311 preempt_enable(); 3312 3313 return err; 3314 } 3315 EXPORT_SYMBOL(netif_rx_ni); 3316 3317 static void net_tx_action(struct softirq_action *h) 3318 { 3319 struct softnet_data *sd = &__get_cpu_var(softnet_data); 3320 3321 if (sd->completion_queue) { 3322 struct sk_buff *clist; 3323 3324 local_irq_disable(); 3325 clist = sd->completion_queue; 3326 sd->completion_queue = NULL; 3327 local_irq_enable(); 3328 3329 while (clist) { 3330 struct sk_buff *skb = clist; 3331 clist = clist->next; 3332 3333 WARN_ON(atomic_read(&skb->users)); 3334 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED)) 3335 trace_consume_skb(skb); 3336 else 3337 trace_kfree_skb(skb, net_tx_action); 3338 __kfree_skb(skb); 3339 } 3340 } 3341 3342 if (sd->output_queue) { 3343 struct Qdisc *head; 3344 3345 local_irq_disable(); 3346 head = sd->output_queue; 3347 sd->output_queue = NULL; 3348 sd->output_queue_tailp = &sd->output_queue; 3349 local_irq_enable(); 3350 3351 while (head) { 3352 struct Qdisc *q = head; 3353 spinlock_t *root_lock; 3354 3355 head = head->next_sched; 3356 3357 root_lock = qdisc_lock(q); 3358 if (spin_trylock(root_lock)) { 3359 smp_mb__before_atomic(); 3360 clear_bit(__QDISC_STATE_SCHED, 3361 &q->state); 3362 qdisc_run(q); 3363 spin_unlock(root_lock); 3364 } else { 3365 if (!test_bit(__QDISC_STATE_DEACTIVATED, 3366 &q->state)) { 3367 __netif_reschedule(q); 3368 } else { 3369 smp_mb__before_atomic(); 3370 clear_bit(__QDISC_STATE_SCHED, 3371 &q->state); 3372 } 3373 } 3374 } 3375 } 3376 } 3377 3378 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \ 3379 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE)) 3380 /* This hook is defined here for ATM LANE */ 3381 int (*br_fdb_test_addr_hook)(struct net_device *dev, 3382 unsigned char *addr) __read_mostly; 3383 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 3384 #endif 3385 3386 #ifdef CONFIG_NET_CLS_ACT 3387 /* TODO: Maybe we should just force sch_ingress to be compiled in 3388 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions 3389 * a compare and 2 stores extra right now if we dont have it on 3390 * but have CONFIG_NET_CLS_ACT 3391 * NOTE: This doesn't stop any functionality; if you dont have 3392 * the ingress scheduler, you just can't add policies on ingress. 3393 * 3394 */ 3395 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq) 3396 { 3397 struct net_device *dev = skb->dev; 3398 u32 ttl = G_TC_RTTL(skb->tc_verd); 3399 int result = TC_ACT_OK; 3400 struct Qdisc *q; 3401 3402 if (unlikely(MAX_RED_LOOP < ttl++)) { 3403 net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n", 3404 skb->skb_iif, dev->ifindex); 3405 return TC_ACT_SHOT; 3406 } 3407 3408 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl); 3409 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS); 3410 3411 q = rxq->qdisc; 3412 if (q != &noop_qdisc) { 3413 spin_lock(qdisc_lock(q)); 3414 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) 3415 result = qdisc_enqueue_root(skb, q); 3416 spin_unlock(qdisc_lock(q)); 3417 } 3418 3419 return result; 3420 } 3421 3422 static inline struct sk_buff *handle_ing(struct sk_buff *skb, 3423 struct packet_type **pt_prev, 3424 int *ret, struct net_device *orig_dev) 3425 { 3426 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue); 3427 3428 if (!rxq || rxq->qdisc == &noop_qdisc) 3429 goto out; 3430 3431 if (*pt_prev) { 3432 *ret = deliver_skb(skb, *pt_prev, orig_dev); 3433 *pt_prev = NULL; 3434 } 3435 3436 switch (ing_filter(skb, rxq)) { 3437 case TC_ACT_SHOT: 3438 case TC_ACT_STOLEN: 3439 kfree_skb(skb); 3440 return NULL; 3441 } 3442 3443 out: 3444 skb->tc_verd = 0; 3445 return skb; 3446 } 3447 #endif 3448 3449 /** 3450 * netdev_rx_handler_register - register receive handler 3451 * @dev: device to register a handler for 3452 * @rx_handler: receive handler to register 3453 * @rx_handler_data: data pointer that is used by rx handler 3454 * 3455 * Register a receive handler for a device. This handler will then be 3456 * called from __netif_receive_skb. A negative errno code is returned 3457 * on a failure. 3458 * 3459 * The caller must hold the rtnl_mutex. 3460 * 3461 * For a general description of rx_handler, see enum rx_handler_result. 3462 */ 3463 int netdev_rx_handler_register(struct net_device *dev, 3464 rx_handler_func_t *rx_handler, 3465 void *rx_handler_data) 3466 { 3467 ASSERT_RTNL(); 3468 3469 if (dev->rx_handler) 3470 return -EBUSY; 3471 3472 /* Note: rx_handler_data must be set before rx_handler */ 3473 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 3474 rcu_assign_pointer(dev->rx_handler, rx_handler); 3475 3476 return 0; 3477 } 3478 EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 3479 3480 /** 3481 * netdev_rx_handler_unregister - unregister receive handler 3482 * @dev: device to unregister a handler from 3483 * 3484 * Unregister a receive handler from a device. 3485 * 3486 * The caller must hold the rtnl_mutex. 3487 */ 3488 void netdev_rx_handler_unregister(struct net_device *dev) 3489 { 3490 3491 ASSERT_RTNL(); 3492 RCU_INIT_POINTER(dev->rx_handler, NULL); 3493 /* a reader seeing a non NULL rx_handler in a rcu_read_lock() 3494 * section has a guarantee to see a non NULL rx_handler_data 3495 * as well. 3496 */ 3497 synchronize_net(); 3498 RCU_INIT_POINTER(dev->rx_handler_data, NULL); 3499 } 3500 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 3501 3502 /* 3503 * Limit the use of PFMEMALLOC reserves to those protocols that implement 3504 * the special handling of PFMEMALLOC skbs. 3505 */ 3506 static bool skb_pfmemalloc_protocol(struct sk_buff *skb) 3507 { 3508 switch (skb->protocol) { 3509 case htons(ETH_P_ARP): 3510 case htons(ETH_P_IP): 3511 case htons(ETH_P_IPV6): 3512 case htons(ETH_P_8021Q): 3513 case htons(ETH_P_8021AD): 3514 return true; 3515 default: 3516 return false; 3517 } 3518 } 3519 3520 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc) 3521 { 3522 struct packet_type *ptype, *pt_prev; 3523 rx_handler_func_t *rx_handler; 3524 struct net_device *orig_dev; 3525 struct net_device *null_or_dev; 3526 bool deliver_exact = false; 3527 int ret = NET_RX_DROP; 3528 __be16 type; 3529 3530 net_timestamp_check(!netdev_tstamp_prequeue, skb); 3531 3532 trace_netif_receive_skb(skb); 3533 3534 orig_dev = skb->dev; 3535 3536 skb_reset_network_header(skb); 3537 if (!skb_transport_header_was_set(skb)) 3538 skb_reset_transport_header(skb); 3539 skb_reset_mac_len(skb); 3540 3541 pt_prev = NULL; 3542 3543 rcu_read_lock(); 3544 3545 another_round: 3546 skb->skb_iif = skb->dev->ifindex; 3547 3548 __this_cpu_inc(softnet_data.processed); 3549 3550 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) || 3551 skb->protocol == cpu_to_be16(ETH_P_8021AD)) { 3552 skb = vlan_untag(skb); 3553 if (unlikely(!skb)) 3554 goto unlock; 3555 } 3556 3557 #ifdef CONFIG_NET_CLS_ACT 3558 if (skb->tc_verd & TC_NCLS) { 3559 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd); 3560 goto ncls; 3561 } 3562 #endif 3563 3564 if (pfmemalloc) 3565 goto skip_taps; 3566 3567 list_for_each_entry_rcu(ptype, &ptype_all, list) { 3568 if (!ptype->dev || ptype->dev == skb->dev) { 3569 if (pt_prev) 3570 ret = deliver_skb(skb, pt_prev, orig_dev); 3571 pt_prev = ptype; 3572 } 3573 } 3574 3575 skip_taps: 3576 #ifdef CONFIG_NET_CLS_ACT 3577 skb = handle_ing(skb, &pt_prev, &ret, orig_dev); 3578 if (!skb) 3579 goto unlock; 3580 ncls: 3581 #endif 3582 3583 if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) 3584 goto drop; 3585 3586 if (vlan_tx_tag_present(skb)) { 3587 if (pt_prev) { 3588 ret = deliver_skb(skb, pt_prev, orig_dev); 3589 pt_prev = NULL; 3590 } 3591 if (vlan_do_receive(&skb)) 3592 goto another_round; 3593 else if (unlikely(!skb)) 3594 goto unlock; 3595 } 3596 3597 rx_handler = rcu_dereference(skb->dev->rx_handler); 3598 if (rx_handler) { 3599 if (pt_prev) { 3600 ret = deliver_skb(skb, pt_prev, orig_dev); 3601 pt_prev = NULL; 3602 } 3603 switch (rx_handler(&skb)) { 3604 case RX_HANDLER_CONSUMED: 3605 ret = NET_RX_SUCCESS; 3606 goto unlock; 3607 case RX_HANDLER_ANOTHER: 3608 goto another_round; 3609 case RX_HANDLER_EXACT: 3610 deliver_exact = true; 3611 case RX_HANDLER_PASS: 3612 break; 3613 default: 3614 BUG(); 3615 } 3616 } 3617 3618 if (unlikely(vlan_tx_tag_present(skb))) { 3619 if (vlan_tx_tag_get_id(skb)) 3620 skb->pkt_type = PACKET_OTHERHOST; 3621 /* Note: we might in the future use prio bits 3622 * and set skb->priority like in vlan_do_receive() 3623 * For the time being, just ignore Priority Code Point 3624 */ 3625 skb->vlan_tci = 0; 3626 } 3627 3628 /* deliver only exact match when indicated */ 3629 null_or_dev = deliver_exact ? skb->dev : NULL; 3630 3631 type = skb->protocol; 3632 list_for_each_entry_rcu(ptype, 3633 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) { 3634 if (ptype->type == type && 3635 (ptype->dev == null_or_dev || ptype->dev == skb->dev || 3636 ptype->dev == orig_dev)) { 3637 if (pt_prev) 3638 ret = deliver_skb(skb, pt_prev, orig_dev); 3639 pt_prev = ptype; 3640 } 3641 } 3642 3643 if (pt_prev) { 3644 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC))) 3645 goto drop; 3646 else 3647 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 3648 } else { 3649 drop: 3650 atomic_long_inc(&skb->dev->rx_dropped); 3651 kfree_skb(skb); 3652 /* Jamal, now you will not able to escape explaining 3653 * me how you were going to use this. :-) 3654 */ 3655 ret = NET_RX_DROP; 3656 } 3657 3658 unlock: 3659 rcu_read_unlock(); 3660 return ret; 3661 } 3662 3663 static int __netif_receive_skb(struct sk_buff *skb) 3664 { 3665 int ret; 3666 3667 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) { 3668 unsigned long pflags = current->flags; 3669 3670 /* 3671 * PFMEMALLOC skbs are special, they should 3672 * - be delivered to SOCK_MEMALLOC sockets only 3673 * - stay away from userspace 3674 * - have bounded memory usage 3675 * 3676 * Use PF_MEMALLOC as this saves us from propagating the allocation 3677 * context down to all allocation sites. 3678 */ 3679 current->flags |= PF_MEMALLOC; 3680 ret = __netif_receive_skb_core(skb, true); 3681 tsk_restore_flags(current, pflags, PF_MEMALLOC); 3682 } else 3683 ret = __netif_receive_skb_core(skb, false); 3684 3685 return ret; 3686 } 3687 3688 static int netif_receive_skb_internal(struct sk_buff *skb) 3689 { 3690 net_timestamp_check(netdev_tstamp_prequeue, skb); 3691 3692 if (skb_defer_rx_timestamp(skb)) 3693 return NET_RX_SUCCESS; 3694 3695 #ifdef CONFIG_RPS 3696 if (static_key_false(&rps_needed)) { 3697 struct rps_dev_flow voidflow, *rflow = &voidflow; 3698 int cpu, ret; 3699 3700 rcu_read_lock(); 3701 3702 cpu = get_rps_cpu(skb->dev, skb, &rflow); 3703 3704 if (cpu >= 0) { 3705 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 3706 rcu_read_unlock(); 3707 return ret; 3708 } 3709 rcu_read_unlock(); 3710 } 3711 #endif 3712 return __netif_receive_skb(skb); 3713 } 3714 3715 /** 3716 * netif_receive_skb - process receive buffer from network 3717 * @skb: buffer to process 3718 * 3719 * netif_receive_skb() is the main receive data processing function. 3720 * It always succeeds. The buffer may be dropped during processing 3721 * for congestion control or by the protocol layers. 3722 * 3723 * This function may only be called from softirq context and interrupts 3724 * should be enabled. 3725 * 3726 * Return values (usually ignored): 3727 * NET_RX_SUCCESS: no congestion 3728 * NET_RX_DROP: packet was dropped 3729 */ 3730 int netif_receive_skb(struct sk_buff *skb) 3731 { 3732 trace_netif_receive_skb_entry(skb); 3733 3734 return netif_receive_skb_internal(skb); 3735 } 3736 EXPORT_SYMBOL(netif_receive_skb); 3737 3738 /* Network device is going away, flush any packets still pending 3739 * Called with irqs disabled. 3740 */ 3741 static void flush_backlog(void *arg) 3742 { 3743 struct net_device *dev = arg; 3744 struct softnet_data *sd = &__get_cpu_var(softnet_data); 3745 struct sk_buff *skb, *tmp; 3746 3747 rps_lock(sd); 3748 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 3749 if (skb->dev == dev) { 3750 __skb_unlink(skb, &sd->input_pkt_queue); 3751 kfree_skb(skb); 3752 input_queue_head_incr(sd); 3753 } 3754 } 3755 rps_unlock(sd); 3756 3757 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 3758 if (skb->dev == dev) { 3759 __skb_unlink(skb, &sd->process_queue); 3760 kfree_skb(skb); 3761 input_queue_head_incr(sd); 3762 } 3763 } 3764 } 3765 3766 static int napi_gro_complete(struct sk_buff *skb) 3767 { 3768 struct packet_offload *ptype; 3769 __be16 type = skb->protocol; 3770 struct list_head *head = &offload_base; 3771 int err = -ENOENT; 3772 3773 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb)); 3774 3775 if (NAPI_GRO_CB(skb)->count == 1) { 3776 skb_shinfo(skb)->gso_size = 0; 3777 goto out; 3778 } 3779 3780 rcu_read_lock(); 3781 list_for_each_entry_rcu(ptype, head, list) { 3782 if (ptype->type != type || !ptype->callbacks.gro_complete) 3783 continue; 3784 3785 err = ptype->callbacks.gro_complete(skb, 0); 3786 break; 3787 } 3788 rcu_read_unlock(); 3789 3790 if (err) { 3791 WARN_ON(&ptype->list == head); 3792 kfree_skb(skb); 3793 return NET_RX_SUCCESS; 3794 } 3795 3796 out: 3797 return netif_receive_skb_internal(skb); 3798 } 3799 3800 /* napi->gro_list contains packets ordered by age. 3801 * youngest packets at the head of it. 3802 * Complete skbs in reverse order to reduce latencies. 3803 */ 3804 void napi_gro_flush(struct napi_struct *napi, bool flush_old) 3805 { 3806 struct sk_buff *skb, *prev = NULL; 3807 3808 /* scan list and build reverse chain */ 3809 for (skb = napi->gro_list; skb != NULL; skb = skb->next) { 3810 skb->prev = prev; 3811 prev = skb; 3812 } 3813 3814 for (skb = prev; skb; skb = prev) { 3815 skb->next = NULL; 3816 3817 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies) 3818 return; 3819 3820 prev = skb->prev; 3821 napi_gro_complete(skb); 3822 napi->gro_count--; 3823 } 3824 3825 napi->gro_list = NULL; 3826 } 3827 EXPORT_SYMBOL(napi_gro_flush); 3828 3829 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb) 3830 { 3831 struct sk_buff *p; 3832 unsigned int maclen = skb->dev->hard_header_len; 3833 u32 hash = skb_get_hash_raw(skb); 3834 3835 for (p = napi->gro_list; p; p = p->next) { 3836 unsigned long diffs; 3837 3838 NAPI_GRO_CB(p)->flush = 0; 3839 3840 if (hash != skb_get_hash_raw(p)) { 3841 NAPI_GRO_CB(p)->same_flow = 0; 3842 continue; 3843 } 3844 3845 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev; 3846 diffs |= p->vlan_tci ^ skb->vlan_tci; 3847 if (maclen == ETH_HLEN) 3848 diffs |= compare_ether_header(skb_mac_header(p), 3849 skb_mac_header(skb)); 3850 else if (!diffs) 3851 diffs = memcmp(skb_mac_header(p), 3852 skb_mac_header(skb), 3853 maclen); 3854 NAPI_GRO_CB(p)->same_flow = !diffs; 3855 } 3856 } 3857 3858 static void skb_gro_reset_offset(struct sk_buff *skb) 3859 { 3860 const struct skb_shared_info *pinfo = skb_shinfo(skb); 3861 const skb_frag_t *frag0 = &pinfo->frags[0]; 3862 3863 NAPI_GRO_CB(skb)->data_offset = 0; 3864 NAPI_GRO_CB(skb)->frag0 = NULL; 3865 NAPI_GRO_CB(skb)->frag0_len = 0; 3866 3867 if (skb_mac_header(skb) == skb_tail_pointer(skb) && 3868 pinfo->nr_frags && 3869 !PageHighMem(skb_frag_page(frag0))) { 3870 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0); 3871 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0); 3872 } 3873 } 3874 3875 static void gro_pull_from_frag0(struct sk_buff *skb, int grow) 3876 { 3877 struct skb_shared_info *pinfo = skb_shinfo(skb); 3878 3879 BUG_ON(skb->end - skb->tail < grow); 3880 3881 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow); 3882 3883 skb->data_len -= grow; 3884 skb->tail += grow; 3885 3886 pinfo->frags[0].page_offset += grow; 3887 skb_frag_size_sub(&pinfo->frags[0], grow); 3888 3889 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) { 3890 skb_frag_unref(skb, 0); 3891 memmove(pinfo->frags, pinfo->frags + 1, 3892 --pinfo->nr_frags * sizeof(pinfo->frags[0])); 3893 } 3894 } 3895 3896 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 3897 { 3898 struct sk_buff **pp = NULL; 3899 struct packet_offload *ptype; 3900 __be16 type = skb->protocol; 3901 struct list_head *head = &offload_base; 3902 int same_flow; 3903 enum gro_result ret; 3904 int grow; 3905 3906 if (!(skb->dev->features & NETIF_F_GRO)) 3907 goto normal; 3908 3909 if (skb_is_gso(skb) || skb_has_frag_list(skb)) 3910 goto normal; 3911 3912 gro_list_prepare(napi, skb); 3913 NAPI_GRO_CB(skb)->csum = skb->csum; /* Needed for CHECKSUM_COMPLETE */ 3914 3915 rcu_read_lock(); 3916 list_for_each_entry_rcu(ptype, head, list) { 3917 if (ptype->type != type || !ptype->callbacks.gro_receive) 3918 continue; 3919 3920 skb_set_network_header(skb, skb_gro_offset(skb)); 3921 skb_reset_mac_len(skb); 3922 NAPI_GRO_CB(skb)->same_flow = 0; 3923 NAPI_GRO_CB(skb)->flush = 0; 3924 NAPI_GRO_CB(skb)->free = 0; 3925 NAPI_GRO_CB(skb)->udp_mark = 0; 3926 3927 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb); 3928 break; 3929 } 3930 rcu_read_unlock(); 3931 3932 if (&ptype->list == head) 3933 goto normal; 3934 3935 same_flow = NAPI_GRO_CB(skb)->same_flow; 3936 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED; 3937 3938 if (pp) { 3939 struct sk_buff *nskb = *pp; 3940 3941 *pp = nskb->next; 3942 nskb->next = NULL; 3943 napi_gro_complete(nskb); 3944 napi->gro_count--; 3945 } 3946 3947 if (same_flow) 3948 goto ok; 3949 3950 if (NAPI_GRO_CB(skb)->flush) 3951 goto normal; 3952 3953 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) { 3954 struct sk_buff *nskb = napi->gro_list; 3955 3956 /* locate the end of the list to select the 'oldest' flow */ 3957 while (nskb->next) { 3958 pp = &nskb->next; 3959 nskb = *pp; 3960 } 3961 *pp = NULL; 3962 nskb->next = NULL; 3963 napi_gro_complete(nskb); 3964 } else { 3965 napi->gro_count++; 3966 } 3967 NAPI_GRO_CB(skb)->count = 1; 3968 NAPI_GRO_CB(skb)->age = jiffies; 3969 NAPI_GRO_CB(skb)->last = skb; 3970 skb_shinfo(skb)->gso_size = skb_gro_len(skb); 3971 skb->next = napi->gro_list; 3972 napi->gro_list = skb; 3973 ret = GRO_HELD; 3974 3975 pull: 3976 grow = skb_gro_offset(skb) - skb_headlen(skb); 3977 if (grow > 0) 3978 gro_pull_from_frag0(skb, grow); 3979 ok: 3980 return ret; 3981 3982 normal: 3983 ret = GRO_NORMAL; 3984 goto pull; 3985 } 3986 3987 struct packet_offload *gro_find_receive_by_type(__be16 type) 3988 { 3989 struct list_head *offload_head = &offload_base; 3990 struct packet_offload *ptype; 3991 3992 list_for_each_entry_rcu(ptype, offload_head, list) { 3993 if (ptype->type != type || !ptype->callbacks.gro_receive) 3994 continue; 3995 return ptype; 3996 } 3997 return NULL; 3998 } 3999 EXPORT_SYMBOL(gro_find_receive_by_type); 4000 4001 struct packet_offload *gro_find_complete_by_type(__be16 type) 4002 { 4003 struct list_head *offload_head = &offload_base; 4004 struct packet_offload *ptype; 4005 4006 list_for_each_entry_rcu(ptype, offload_head, list) { 4007 if (ptype->type != type || !ptype->callbacks.gro_complete) 4008 continue; 4009 return ptype; 4010 } 4011 return NULL; 4012 } 4013 EXPORT_SYMBOL(gro_find_complete_by_type); 4014 4015 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb) 4016 { 4017 switch (ret) { 4018 case GRO_NORMAL: 4019 if (netif_receive_skb_internal(skb)) 4020 ret = GRO_DROP; 4021 break; 4022 4023 case GRO_DROP: 4024 kfree_skb(skb); 4025 break; 4026 4027 case GRO_MERGED_FREE: 4028 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) 4029 kmem_cache_free(skbuff_head_cache, skb); 4030 else 4031 __kfree_skb(skb); 4032 break; 4033 4034 case GRO_HELD: 4035 case GRO_MERGED: 4036 break; 4037 } 4038 4039 return ret; 4040 } 4041 4042 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 4043 { 4044 trace_napi_gro_receive_entry(skb); 4045 4046 skb_gro_reset_offset(skb); 4047 4048 return napi_skb_finish(dev_gro_receive(napi, skb), skb); 4049 } 4050 EXPORT_SYMBOL(napi_gro_receive); 4051 4052 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb) 4053 { 4054 __skb_pull(skb, skb_headlen(skb)); 4055 /* restore the reserve we had after netdev_alloc_skb_ip_align() */ 4056 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb)); 4057 skb->vlan_tci = 0; 4058 skb->dev = napi->dev; 4059 skb->skb_iif = 0; 4060 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 4061 4062 napi->skb = skb; 4063 } 4064 4065 struct sk_buff *napi_get_frags(struct napi_struct *napi) 4066 { 4067 struct sk_buff *skb = napi->skb; 4068 4069 if (!skb) { 4070 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD); 4071 napi->skb = skb; 4072 } 4073 return skb; 4074 } 4075 EXPORT_SYMBOL(napi_get_frags); 4076 4077 static gro_result_t napi_frags_finish(struct napi_struct *napi, 4078 struct sk_buff *skb, 4079 gro_result_t ret) 4080 { 4081 switch (ret) { 4082 case GRO_NORMAL: 4083 case GRO_HELD: 4084 __skb_push(skb, ETH_HLEN); 4085 skb->protocol = eth_type_trans(skb, skb->dev); 4086 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb)) 4087 ret = GRO_DROP; 4088 break; 4089 4090 case GRO_DROP: 4091 case GRO_MERGED_FREE: 4092 napi_reuse_skb(napi, skb); 4093 break; 4094 4095 case GRO_MERGED: 4096 break; 4097 } 4098 4099 return ret; 4100 } 4101 4102 /* Upper GRO stack assumes network header starts at gro_offset=0 4103 * Drivers could call both napi_gro_frags() and napi_gro_receive() 4104 * We copy ethernet header into skb->data to have a common layout. 4105 */ 4106 static struct sk_buff *napi_frags_skb(struct napi_struct *napi) 4107 { 4108 struct sk_buff *skb = napi->skb; 4109 const struct ethhdr *eth; 4110 unsigned int hlen = sizeof(*eth); 4111 4112 napi->skb = NULL; 4113 4114 skb_reset_mac_header(skb); 4115 skb_gro_reset_offset(skb); 4116 4117 eth = skb_gro_header_fast(skb, 0); 4118 if (unlikely(skb_gro_header_hard(skb, hlen))) { 4119 eth = skb_gro_header_slow(skb, hlen, 0); 4120 if (unlikely(!eth)) { 4121 napi_reuse_skb(napi, skb); 4122 return NULL; 4123 } 4124 } else { 4125 gro_pull_from_frag0(skb, hlen); 4126 NAPI_GRO_CB(skb)->frag0 += hlen; 4127 NAPI_GRO_CB(skb)->frag0_len -= hlen; 4128 } 4129 __skb_pull(skb, hlen); 4130 4131 /* 4132 * This works because the only protocols we care about don't require 4133 * special handling. 4134 * We'll fix it up properly in napi_frags_finish() 4135 */ 4136 skb->protocol = eth->h_proto; 4137 4138 return skb; 4139 } 4140 4141 gro_result_t napi_gro_frags(struct napi_struct *napi) 4142 { 4143 struct sk_buff *skb = napi_frags_skb(napi); 4144 4145 if (!skb) 4146 return GRO_DROP; 4147 4148 trace_napi_gro_frags_entry(skb); 4149 4150 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb)); 4151 } 4152 EXPORT_SYMBOL(napi_gro_frags); 4153 4154 /* 4155 * net_rps_action_and_irq_enable sends any pending IPI's for rps. 4156 * Note: called with local irq disabled, but exits with local irq enabled. 4157 */ 4158 static void net_rps_action_and_irq_enable(struct softnet_data *sd) 4159 { 4160 #ifdef CONFIG_RPS 4161 struct softnet_data *remsd = sd->rps_ipi_list; 4162 4163 if (remsd) { 4164 sd->rps_ipi_list = NULL; 4165 4166 local_irq_enable(); 4167 4168 /* Send pending IPI's to kick RPS processing on remote cpus. */ 4169 while (remsd) { 4170 struct softnet_data *next = remsd->rps_ipi_next; 4171 4172 if (cpu_online(remsd->cpu)) 4173 smp_call_function_single_async(remsd->cpu, 4174 &remsd->csd); 4175 remsd = next; 4176 } 4177 } else 4178 #endif 4179 local_irq_enable(); 4180 } 4181 4182 static int process_backlog(struct napi_struct *napi, int quota) 4183 { 4184 int work = 0; 4185 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 4186 4187 #ifdef CONFIG_RPS 4188 /* Check if we have pending ipi, its better to send them now, 4189 * not waiting net_rx_action() end. 4190 */ 4191 if (sd->rps_ipi_list) { 4192 local_irq_disable(); 4193 net_rps_action_and_irq_enable(sd); 4194 } 4195 #endif 4196 napi->weight = weight_p; 4197 local_irq_disable(); 4198 while (work < quota) { 4199 struct sk_buff *skb; 4200 unsigned int qlen; 4201 4202 while ((skb = __skb_dequeue(&sd->process_queue))) { 4203 local_irq_enable(); 4204 __netif_receive_skb(skb); 4205 local_irq_disable(); 4206 input_queue_head_incr(sd); 4207 if (++work >= quota) { 4208 local_irq_enable(); 4209 return work; 4210 } 4211 } 4212 4213 rps_lock(sd); 4214 qlen = skb_queue_len(&sd->input_pkt_queue); 4215 if (qlen) 4216 skb_queue_splice_tail_init(&sd->input_pkt_queue, 4217 &sd->process_queue); 4218 4219 if (qlen < quota - work) { 4220 /* 4221 * Inline a custom version of __napi_complete(). 4222 * only current cpu owns and manipulates this napi, 4223 * and NAPI_STATE_SCHED is the only possible flag set on backlog. 4224 * we can use a plain write instead of clear_bit(), 4225 * and we dont need an smp_mb() memory barrier. 4226 */ 4227 list_del(&napi->poll_list); 4228 napi->state = 0; 4229 4230 quota = work + qlen; 4231 } 4232 rps_unlock(sd); 4233 } 4234 local_irq_enable(); 4235 4236 return work; 4237 } 4238 4239 /** 4240 * __napi_schedule - schedule for receive 4241 * @n: entry to schedule 4242 * 4243 * The entry's receive function will be scheduled to run 4244 */ 4245 void __napi_schedule(struct napi_struct *n) 4246 { 4247 unsigned long flags; 4248 4249 local_irq_save(flags); 4250 ____napi_schedule(&__get_cpu_var(softnet_data), n); 4251 local_irq_restore(flags); 4252 } 4253 EXPORT_SYMBOL(__napi_schedule); 4254 4255 void __napi_complete(struct napi_struct *n) 4256 { 4257 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 4258 BUG_ON(n->gro_list); 4259 4260 list_del(&n->poll_list); 4261 smp_mb__before_atomic(); 4262 clear_bit(NAPI_STATE_SCHED, &n->state); 4263 } 4264 EXPORT_SYMBOL(__napi_complete); 4265 4266 void napi_complete(struct napi_struct *n) 4267 { 4268 unsigned long flags; 4269 4270 /* 4271 * don't let napi dequeue from the cpu poll list 4272 * just in case its running on a different cpu 4273 */ 4274 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state))) 4275 return; 4276 4277 napi_gro_flush(n, false); 4278 local_irq_save(flags); 4279 __napi_complete(n); 4280 local_irq_restore(flags); 4281 } 4282 EXPORT_SYMBOL(napi_complete); 4283 4284 /* must be called under rcu_read_lock(), as we dont take a reference */ 4285 struct napi_struct *napi_by_id(unsigned int napi_id) 4286 { 4287 unsigned int hash = napi_id % HASH_SIZE(napi_hash); 4288 struct napi_struct *napi; 4289 4290 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node) 4291 if (napi->napi_id == napi_id) 4292 return napi; 4293 4294 return NULL; 4295 } 4296 EXPORT_SYMBOL_GPL(napi_by_id); 4297 4298 void napi_hash_add(struct napi_struct *napi) 4299 { 4300 if (!test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) { 4301 4302 spin_lock(&napi_hash_lock); 4303 4304 /* 0 is not a valid id, we also skip an id that is taken 4305 * we expect both events to be extremely rare 4306 */ 4307 napi->napi_id = 0; 4308 while (!napi->napi_id) { 4309 napi->napi_id = ++napi_gen_id; 4310 if (napi_by_id(napi->napi_id)) 4311 napi->napi_id = 0; 4312 } 4313 4314 hlist_add_head_rcu(&napi->napi_hash_node, 4315 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]); 4316 4317 spin_unlock(&napi_hash_lock); 4318 } 4319 } 4320 EXPORT_SYMBOL_GPL(napi_hash_add); 4321 4322 /* Warning : caller is responsible to make sure rcu grace period 4323 * is respected before freeing memory containing @napi 4324 */ 4325 void napi_hash_del(struct napi_struct *napi) 4326 { 4327 spin_lock(&napi_hash_lock); 4328 4329 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) 4330 hlist_del_rcu(&napi->napi_hash_node); 4331 4332 spin_unlock(&napi_hash_lock); 4333 } 4334 EXPORT_SYMBOL_GPL(napi_hash_del); 4335 4336 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 4337 int (*poll)(struct napi_struct *, int), int weight) 4338 { 4339 INIT_LIST_HEAD(&napi->poll_list); 4340 napi->gro_count = 0; 4341 napi->gro_list = NULL; 4342 napi->skb = NULL; 4343 napi->poll = poll; 4344 if (weight > NAPI_POLL_WEIGHT) 4345 pr_err_once("netif_napi_add() called with weight %d on device %s\n", 4346 weight, dev->name); 4347 napi->weight = weight; 4348 list_add(&napi->dev_list, &dev->napi_list); 4349 napi->dev = dev; 4350 #ifdef CONFIG_NETPOLL 4351 spin_lock_init(&napi->poll_lock); 4352 napi->poll_owner = -1; 4353 #endif 4354 set_bit(NAPI_STATE_SCHED, &napi->state); 4355 } 4356 EXPORT_SYMBOL(netif_napi_add); 4357 4358 void netif_napi_del(struct napi_struct *napi) 4359 { 4360 list_del_init(&napi->dev_list); 4361 napi_free_frags(napi); 4362 4363 kfree_skb_list(napi->gro_list); 4364 napi->gro_list = NULL; 4365 napi->gro_count = 0; 4366 } 4367 EXPORT_SYMBOL(netif_napi_del); 4368 4369 static void net_rx_action(struct softirq_action *h) 4370 { 4371 struct softnet_data *sd = &__get_cpu_var(softnet_data); 4372 unsigned long time_limit = jiffies + 2; 4373 int budget = netdev_budget; 4374 void *have; 4375 4376 local_irq_disable(); 4377 4378 while (!list_empty(&sd->poll_list)) { 4379 struct napi_struct *n; 4380 int work, weight; 4381 4382 /* If softirq window is exhuasted then punt. 4383 * Allow this to run for 2 jiffies since which will allow 4384 * an average latency of 1.5/HZ. 4385 */ 4386 if (unlikely(budget <= 0 || time_after_eq(jiffies, time_limit))) 4387 goto softnet_break; 4388 4389 local_irq_enable(); 4390 4391 /* Even though interrupts have been re-enabled, this 4392 * access is safe because interrupts can only add new 4393 * entries to the tail of this list, and only ->poll() 4394 * calls can remove this head entry from the list. 4395 */ 4396 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list); 4397 4398 have = netpoll_poll_lock(n); 4399 4400 weight = n->weight; 4401 4402 /* This NAPI_STATE_SCHED test is for avoiding a race 4403 * with netpoll's poll_napi(). Only the entity which 4404 * obtains the lock and sees NAPI_STATE_SCHED set will 4405 * actually make the ->poll() call. Therefore we avoid 4406 * accidentally calling ->poll() when NAPI is not scheduled. 4407 */ 4408 work = 0; 4409 if (test_bit(NAPI_STATE_SCHED, &n->state)) { 4410 work = n->poll(n, weight); 4411 trace_napi_poll(n); 4412 } 4413 4414 WARN_ON_ONCE(work > weight); 4415 4416 budget -= work; 4417 4418 local_irq_disable(); 4419 4420 /* Drivers must not modify the NAPI state if they 4421 * consume the entire weight. In such cases this code 4422 * still "owns" the NAPI instance and therefore can 4423 * move the instance around on the list at-will. 4424 */ 4425 if (unlikely(work == weight)) { 4426 if (unlikely(napi_disable_pending(n))) { 4427 local_irq_enable(); 4428 napi_complete(n); 4429 local_irq_disable(); 4430 } else { 4431 if (n->gro_list) { 4432 /* flush too old packets 4433 * If HZ < 1000, flush all packets. 4434 */ 4435 local_irq_enable(); 4436 napi_gro_flush(n, HZ >= 1000); 4437 local_irq_disable(); 4438 } 4439 list_move_tail(&n->poll_list, &sd->poll_list); 4440 } 4441 } 4442 4443 netpoll_poll_unlock(have); 4444 } 4445 out: 4446 net_rps_action_and_irq_enable(sd); 4447 4448 #ifdef CONFIG_NET_DMA 4449 /* 4450 * There may not be any more sk_buffs coming right now, so push 4451 * any pending DMA copies to hardware 4452 */ 4453 dma_issue_pending_all(); 4454 #endif 4455 4456 return; 4457 4458 softnet_break: 4459 sd->time_squeeze++; 4460 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 4461 goto out; 4462 } 4463 4464 struct netdev_adjacent { 4465 struct net_device *dev; 4466 4467 /* upper master flag, there can only be one master device per list */ 4468 bool master; 4469 4470 /* counter for the number of times this device was added to us */ 4471 u16 ref_nr; 4472 4473 /* private field for the users */ 4474 void *private; 4475 4476 struct list_head list; 4477 struct rcu_head rcu; 4478 }; 4479 4480 static struct netdev_adjacent *__netdev_find_adj(struct net_device *dev, 4481 struct net_device *adj_dev, 4482 struct list_head *adj_list) 4483 { 4484 struct netdev_adjacent *adj; 4485 4486 list_for_each_entry(adj, adj_list, list) { 4487 if (adj->dev == adj_dev) 4488 return adj; 4489 } 4490 return NULL; 4491 } 4492 4493 /** 4494 * netdev_has_upper_dev - Check if device is linked to an upper device 4495 * @dev: device 4496 * @upper_dev: upper device to check 4497 * 4498 * Find out if a device is linked to specified upper device and return true 4499 * in case it is. Note that this checks only immediate upper device, 4500 * not through a complete stack of devices. The caller must hold the RTNL lock. 4501 */ 4502 bool netdev_has_upper_dev(struct net_device *dev, 4503 struct net_device *upper_dev) 4504 { 4505 ASSERT_RTNL(); 4506 4507 return __netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper); 4508 } 4509 EXPORT_SYMBOL(netdev_has_upper_dev); 4510 4511 /** 4512 * netdev_has_any_upper_dev - Check if device is linked to some device 4513 * @dev: device 4514 * 4515 * Find out if a device is linked to an upper device and return true in case 4516 * it is. The caller must hold the RTNL lock. 4517 */ 4518 static bool netdev_has_any_upper_dev(struct net_device *dev) 4519 { 4520 ASSERT_RTNL(); 4521 4522 return !list_empty(&dev->all_adj_list.upper); 4523 } 4524 4525 /** 4526 * netdev_master_upper_dev_get - Get master upper device 4527 * @dev: device 4528 * 4529 * Find a master upper device and return pointer to it or NULL in case 4530 * it's not there. The caller must hold the RTNL lock. 4531 */ 4532 struct net_device *netdev_master_upper_dev_get(struct net_device *dev) 4533 { 4534 struct netdev_adjacent *upper; 4535 4536 ASSERT_RTNL(); 4537 4538 if (list_empty(&dev->adj_list.upper)) 4539 return NULL; 4540 4541 upper = list_first_entry(&dev->adj_list.upper, 4542 struct netdev_adjacent, list); 4543 if (likely(upper->master)) 4544 return upper->dev; 4545 return NULL; 4546 } 4547 EXPORT_SYMBOL(netdev_master_upper_dev_get); 4548 4549 void *netdev_adjacent_get_private(struct list_head *adj_list) 4550 { 4551 struct netdev_adjacent *adj; 4552 4553 adj = list_entry(adj_list, struct netdev_adjacent, list); 4554 4555 return adj->private; 4556 } 4557 EXPORT_SYMBOL(netdev_adjacent_get_private); 4558 4559 /** 4560 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list 4561 * @dev: device 4562 * @iter: list_head ** of the current position 4563 * 4564 * Gets the next device from the dev's upper list, starting from iter 4565 * position. The caller must hold RCU read lock. 4566 */ 4567 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 4568 struct list_head **iter) 4569 { 4570 struct netdev_adjacent *upper; 4571 4572 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 4573 4574 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 4575 4576 if (&upper->list == &dev->adj_list.upper) 4577 return NULL; 4578 4579 *iter = &upper->list; 4580 4581 return upper->dev; 4582 } 4583 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu); 4584 4585 /** 4586 * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list 4587 * @dev: device 4588 * @iter: list_head ** of the current position 4589 * 4590 * Gets the next device from the dev's upper list, starting from iter 4591 * position. The caller must hold RCU read lock. 4592 */ 4593 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev, 4594 struct list_head **iter) 4595 { 4596 struct netdev_adjacent *upper; 4597 4598 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 4599 4600 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 4601 4602 if (&upper->list == &dev->all_adj_list.upper) 4603 return NULL; 4604 4605 *iter = &upper->list; 4606 4607 return upper->dev; 4608 } 4609 EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu); 4610 4611 /** 4612 * netdev_lower_get_next_private - Get the next ->private from the 4613 * lower neighbour list 4614 * @dev: device 4615 * @iter: list_head ** of the current position 4616 * 4617 * Gets the next netdev_adjacent->private from the dev's lower neighbour 4618 * list, starting from iter position. The caller must hold either hold the 4619 * RTNL lock or its own locking that guarantees that the neighbour lower 4620 * list will remain unchainged. 4621 */ 4622 void *netdev_lower_get_next_private(struct net_device *dev, 4623 struct list_head **iter) 4624 { 4625 struct netdev_adjacent *lower; 4626 4627 lower = list_entry(*iter, struct netdev_adjacent, list); 4628 4629 if (&lower->list == &dev->adj_list.lower) 4630 return NULL; 4631 4632 *iter = lower->list.next; 4633 4634 return lower->private; 4635 } 4636 EXPORT_SYMBOL(netdev_lower_get_next_private); 4637 4638 /** 4639 * netdev_lower_get_next_private_rcu - Get the next ->private from the 4640 * lower neighbour list, RCU 4641 * variant 4642 * @dev: device 4643 * @iter: list_head ** of the current position 4644 * 4645 * Gets the next netdev_adjacent->private from the dev's lower neighbour 4646 * list, starting from iter position. The caller must hold RCU read lock. 4647 */ 4648 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 4649 struct list_head **iter) 4650 { 4651 struct netdev_adjacent *lower; 4652 4653 WARN_ON_ONCE(!rcu_read_lock_held()); 4654 4655 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 4656 4657 if (&lower->list == &dev->adj_list.lower) 4658 return NULL; 4659 4660 *iter = &lower->list; 4661 4662 return lower->private; 4663 } 4664 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu); 4665 4666 /** 4667 * netdev_lower_get_next - Get the next device from the lower neighbour 4668 * list 4669 * @dev: device 4670 * @iter: list_head ** of the current position 4671 * 4672 * Gets the next netdev_adjacent from the dev's lower neighbour 4673 * list, starting from iter position. The caller must hold RTNL lock or 4674 * its own locking that guarantees that the neighbour lower 4675 * list will remain unchainged. 4676 */ 4677 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter) 4678 { 4679 struct netdev_adjacent *lower; 4680 4681 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 4682 4683 if (&lower->list == &dev->adj_list.lower) 4684 return NULL; 4685 4686 *iter = &lower->list; 4687 4688 return lower->dev; 4689 } 4690 EXPORT_SYMBOL(netdev_lower_get_next); 4691 4692 /** 4693 * netdev_lower_get_first_private_rcu - Get the first ->private from the 4694 * lower neighbour list, RCU 4695 * variant 4696 * @dev: device 4697 * 4698 * Gets the first netdev_adjacent->private from the dev's lower neighbour 4699 * list. The caller must hold RCU read lock. 4700 */ 4701 void *netdev_lower_get_first_private_rcu(struct net_device *dev) 4702 { 4703 struct netdev_adjacent *lower; 4704 4705 lower = list_first_or_null_rcu(&dev->adj_list.lower, 4706 struct netdev_adjacent, list); 4707 if (lower) 4708 return lower->private; 4709 return NULL; 4710 } 4711 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu); 4712 4713 /** 4714 * netdev_master_upper_dev_get_rcu - Get master upper device 4715 * @dev: device 4716 * 4717 * Find a master upper device and return pointer to it or NULL in case 4718 * it's not there. The caller must hold the RCU read lock. 4719 */ 4720 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev) 4721 { 4722 struct netdev_adjacent *upper; 4723 4724 upper = list_first_or_null_rcu(&dev->adj_list.upper, 4725 struct netdev_adjacent, list); 4726 if (upper && likely(upper->master)) 4727 return upper->dev; 4728 return NULL; 4729 } 4730 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu); 4731 4732 static int netdev_adjacent_sysfs_add(struct net_device *dev, 4733 struct net_device *adj_dev, 4734 struct list_head *dev_list) 4735 { 4736 char linkname[IFNAMSIZ+7]; 4737 sprintf(linkname, dev_list == &dev->adj_list.upper ? 4738 "upper_%s" : "lower_%s", adj_dev->name); 4739 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj), 4740 linkname); 4741 } 4742 static void netdev_adjacent_sysfs_del(struct net_device *dev, 4743 char *name, 4744 struct list_head *dev_list) 4745 { 4746 char linkname[IFNAMSIZ+7]; 4747 sprintf(linkname, dev_list == &dev->adj_list.upper ? 4748 "upper_%s" : "lower_%s", name); 4749 sysfs_remove_link(&(dev->dev.kobj), linkname); 4750 } 4751 4752 #define netdev_adjacent_is_neigh_list(dev, dev_list) \ 4753 (dev_list == &dev->adj_list.upper || \ 4754 dev_list == &dev->adj_list.lower) 4755 4756 static int __netdev_adjacent_dev_insert(struct net_device *dev, 4757 struct net_device *adj_dev, 4758 struct list_head *dev_list, 4759 void *private, bool master) 4760 { 4761 struct netdev_adjacent *adj; 4762 int ret; 4763 4764 adj = __netdev_find_adj(dev, adj_dev, dev_list); 4765 4766 if (adj) { 4767 adj->ref_nr++; 4768 return 0; 4769 } 4770 4771 adj = kmalloc(sizeof(*adj), GFP_KERNEL); 4772 if (!adj) 4773 return -ENOMEM; 4774 4775 adj->dev = adj_dev; 4776 adj->master = master; 4777 adj->ref_nr = 1; 4778 adj->private = private; 4779 dev_hold(adj_dev); 4780 4781 pr_debug("dev_hold for %s, because of link added from %s to %s\n", 4782 adj_dev->name, dev->name, adj_dev->name); 4783 4784 if (netdev_adjacent_is_neigh_list(dev, dev_list)) { 4785 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list); 4786 if (ret) 4787 goto free_adj; 4788 } 4789 4790 /* Ensure that master link is always the first item in list. */ 4791 if (master) { 4792 ret = sysfs_create_link(&(dev->dev.kobj), 4793 &(adj_dev->dev.kobj), "master"); 4794 if (ret) 4795 goto remove_symlinks; 4796 4797 list_add_rcu(&adj->list, dev_list); 4798 } else { 4799 list_add_tail_rcu(&adj->list, dev_list); 4800 } 4801 4802 return 0; 4803 4804 remove_symlinks: 4805 if (netdev_adjacent_is_neigh_list(dev, dev_list)) 4806 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 4807 free_adj: 4808 kfree(adj); 4809 dev_put(adj_dev); 4810 4811 return ret; 4812 } 4813 4814 static void __netdev_adjacent_dev_remove(struct net_device *dev, 4815 struct net_device *adj_dev, 4816 struct list_head *dev_list) 4817 { 4818 struct netdev_adjacent *adj; 4819 4820 adj = __netdev_find_adj(dev, adj_dev, dev_list); 4821 4822 if (!adj) { 4823 pr_err("tried to remove device %s from %s\n", 4824 dev->name, adj_dev->name); 4825 BUG(); 4826 } 4827 4828 if (adj->ref_nr > 1) { 4829 pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name, 4830 adj->ref_nr-1); 4831 adj->ref_nr--; 4832 return; 4833 } 4834 4835 if (adj->master) 4836 sysfs_remove_link(&(dev->dev.kobj), "master"); 4837 4838 if (netdev_adjacent_is_neigh_list(dev, dev_list)) 4839 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 4840 4841 list_del_rcu(&adj->list); 4842 pr_debug("dev_put for %s, because link removed from %s to %s\n", 4843 adj_dev->name, dev->name, adj_dev->name); 4844 dev_put(adj_dev); 4845 kfree_rcu(adj, rcu); 4846 } 4847 4848 static int __netdev_adjacent_dev_link_lists(struct net_device *dev, 4849 struct net_device *upper_dev, 4850 struct list_head *up_list, 4851 struct list_head *down_list, 4852 void *private, bool master) 4853 { 4854 int ret; 4855 4856 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private, 4857 master); 4858 if (ret) 4859 return ret; 4860 4861 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private, 4862 false); 4863 if (ret) { 4864 __netdev_adjacent_dev_remove(dev, upper_dev, up_list); 4865 return ret; 4866 } 4867 4868 return 0; 4869 } 4870 4871 static int __netdev_adjacent_dev_link(struct net_device *dev, 4872 struct net_device *upper_dev) 4873 { 4874 return __netdev_adjacent_dev_link_lists(dev, upper_dev, 4875 &dev->all_adj_list.upper, 4876 &upper_dev->all_adj_list.lower, 4877 NULL, false); 4878 } 4879 4880 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev, 4881 struct net_device *upper_dev, 4882 struct list_head *up_list, 4883 struct list_head *down_list) 4884 { 4885 __netdev_adjacent_dev_remove(dev, upper_dev, up_list); 4886 __netdev_adjacent_dev_remove(upper_dev, dev, down_list); 4887 } 4888 4889 static void __netdev_adjacent_dev_unlink(struct net_device *dev, 4890 struct net_device *upper_dev) 4891 { 4892 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 4893 &dev->all_adj_list.upper, 4894 &upper_dev->all_adj_list.lower); 4895 } 4896 4897 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev, 4898 struct net_device *upper_dev, 4899 void *private, bool master) 4900 { 4901 int ret = __netdev_adjacent_dev_link(dev, upper_dev); 4902 4903 if (ret) 4904 return ret; 4905 4906 ret = __netdev_adjacent_dev_link_lists(dev, upper_dev, 4907 &dev->adj_list.upper, 4908 &upper_dev->adj_list.lower, 4909 private, master); 4910 if (ret) { 4911 __netdev_adjacent_dev_unlink(dev, upper_dev); 4912 return ret; 4913 } 4914 4915 return 0; 4916 } 4917 4918 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev, 4919 struct net_device *upper_dev) 4920 { 4921 __netdev_adjacent_dev_unlink(dev, upper_dev); 4922 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 4923 &dev->adj_list.upper, 4924 &upper_dev->adj_list.lower); 4925 } 4926 4927 static int __netdev_upper_dev_link(struct net_device *dev, 4928 struct net_device *upper_dev, bool master, 4929 void *private) 4930 { 4931 struct netdev_adjacent *i, *j, *to_i, *to_j; 4932 int ret = 0; 4933 4934 ASSERT_RTNL(); 4935 4936 if (dev == upper_dev) 4937 return -EBUSY; 4938 4939 /* To prevent loops, check if dev is not upper device to upper_dev. */ 4940 if (__netdev_find_adj(upper_dev, dev, &upper_dev->all_adj_list.upper)) 4941 return -EBUSY; 4942 4943 if (__netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper)) 4944 return -EEXIST; 4945 4946 if (master && netdev_master_upper_dev_get(dev)) 4947 return -EBUSY; 4948 4949 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, private, 4950 master); 4951 if (ret) 4952 return ret; 4953 4954 /* Now that we linked these devs, make all the upper_dev's 4955 * all_adj_list.upper visible to every dev's all_adj_list.lower an 4956 * versa, and don't forget the devices itself. All of these 4957 * links are non-neighbours. 4958 */ 4959 list_for_each_entry(i, &dev->all_adj_list.lower, list) { 4960 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) { 4961 pr_debug("Interlinking %s with %s, non-neighbour\n", 4962 i->dev->name, j->dev->name); 4963 ret = __netdev_adjacent_dev_link(i->dev, j->dev); 4964 if (ret) 4965 goto rollback_mesh; 4966 } 4967 } 4968 4969 /* add dev to every upper_dev's upper device */ 4970 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) { 4971 pr_debug("linking %s's upper device %s with %s\n", 4972 upper_dev->name, i->dev->name, dev->name); 4973 ret = __netdev_adjacent_dev_link(dev, i->dev); 4974 if (ret) 4975 goto rollback_upper_mesh; 4976 } 4977 4978 /* add upper_dev to every dev's lower device */ 4979 list_for_each_entry(i, &dev->all_adj_list.lower, list) { 4980 pr_debug("linking %s's lower device %s with %s\n", dev->name, 4981 i->dev->name, upper_dev->name); 4982 ret = __netdev_adjacent_dev_link(i->dev, upper_dev); 4983 if (ret) 4984 goto rollback_lower_mesh; 4985 } 4986 4987 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev); 4988 return 0; 4989 4990 rollback_lower_mesh: 4991 to_i = i; 4992 list_for_each_entry(i, &dev->all_adj_list.lower, list) { 4993 if (i == to_i) 4994 break; 4995 __netdev_adjacent_dev_unlink(i->dev, upper_dev); 4996 } 4997 4998 i = NULL; 4999 5000 rollback_upper_mesh: 5001 to_i = i; 5002 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) { 5003 if (i == to_i) 5004 break; 5005 __netdev_adjacent_dev_unlink(dev, i->dev); 5006 } 5007 5008 i = j = NULL; 5009 5010 rollback_mesh: 5011 to_i = i; 5012 to_j = j; 5013 list_for_each_entry(i, &dev->all_adj_list.lower, list) { 5014 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) { 5015 if (i == to_i && j == to_j) 5016 break; 5017 __netdev_adjacent_dev_unlink(i->dev, j->dev); 5018 } 5019 if (i == to_i) 5020 break; 5021 } 5022 5023 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 5024 5025 return ret; 5026 } 5027 5028 /** 5029 * netdev_upper_dev_link - Add a link to the upper device 5030 * @dev: device 5031 * @upper_dev: new upper device 5032 * 5033 * Adds a link to device which is upper to this one. The caller must hold 5034 * the RTNL lock. On a failure a negative errno code is returned. 5035 * On success the reference counts are adjusted and the function 5036 * returns zero. 5037 */ 5038 int netdev_upper_dev_link(struct net_device *dev, 5039 struct net_device *upper_dev) 5040 { 5041 return __netdev_upper_dev_link(dev, upper_dev, false, NULL); 5042 } 5043 EXPORT_SYMBOL(netdev_upper_dev_link); 5044 5045 /** 5046 * netdev_master_upper_dev_link - Add a master link to the upper device 5047 * @dev: device 5048 * @upper_dev: new upper device 5049 * 5050 * Adds a link to device which is upper to this one. In this case, only 5051 * one master upper device can be linked, although other non-master devices 5052 * might be linked as well. The caller must hold the RTNL lock. 5053 * On a failure a negative errno code is returned. On success the reference 5054 * counts are adjusted and the function returns zero. 5055 */ 5056 int netdev_master_upper_dev_link(struct net_device *dev, 5057 struct net_device *upper_dev) 5058 { 5059 return __netdev_upper_dev_link(dev, upper_dev, true, NULL); 5060 } 5061 EXPORT_SYMBOL(netdev_master_upper_dev_link); 5062 5063 int netdev_master_upper_dev_link_private(struct net_device *dev, 5064 struct net_device *upper_dev, 5065 void *private) 5066 { 5067 return __netdev_upper_dev_link(dev, upper_dev, true, private); 5068 } 5069 EXPORT_SYMBOL(netdev_master_upper_dev_link_private); 5070 5071 /** 5072 * netdev_upper_dev_unlink - Removes a link to upper device 5073 * @dev: device 5074 * @upper_dev: new upper device 5075 * 5076 * Removes a link to device which is upper to this one. The caller must hold 5077 * the RTNL lock. 5078 */ 5079 void netdev_upper_dev_unlink(struct net_device *dev, 5080 struct net_device *upper_dev) 5081 { 5082 struct netdev_adjacent *i, *j; 5083 ASSERT_RTNL(); 5084 5085 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 5086 5087 /* Here is the tricky part. We must remove all dev's lower 5088 * devices from all upper_dev's upper devices and vice 5089 * versa, to maintain the graph relationship. 5090 */ 5091 list_for_each_entry(i, &dev->all_adj_list.lower, list) 5092 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) 5093 __netdev_adjacent_dev_unlink(i->dev, j->dev); 5094 5095 /* remove also the devices itself from lower/upper device 5096 * list 5097 */ 5098 list_for_each_entry(i, &dev->all_adj_list.lower, list) 5099 __netdev_adjacent_dev_unlink(i->dev, upper_dev); 5100 5101 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) 5102 __netdev_adjacent_dev_unlink(dev, i->dev); 5103 5104 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev); 5105 } 5106 EXPORT_SYMBOL(netdev_upper_dev_unlink); 5107 5108 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname) 5109 { 5110 struct netdev_adjacent *iter; 5111 5112 list_for_each_entry(iter, &dev->adj_list.upper, list) { 5113 netdev_adjacent_sysfs_del(iter->dev, oldname, 5114 &iter->dev->adj_list.lower); 5115 netdev_adjacent_sysfs_add(iter->dev, dev, 5116 &iter->dev->adj_list.lower); 5117 } 5118 5119 list_for_each_entry(iter, &dev->adj_list.lower, list) { 5120 netdev_adjacent_sysfs_del(iter->dev, oldname, 5121 &iter->dev->adj_list.upper); 5122 netdev_adjacent_sysfs_add(iter->dev, dev, 5123 &iter->dev->adj_list.upper); 5124 } 5125 } 5126 5127 void *netdev_lower_dev_get_private(struct net_device *dev, 5128 struct net_device *lower_dev) 5129 { 5130 struct netdev_adjacent *lower; 5131 5132 if (!lower_dev) 5133 return NULL; 5134 lower = __netdev_find_adj(dev, lower_dev, &dev->adj_list.lower); 5135 if (!lower) 5136 return NULL; 5137 5138 return lower->private; 5139 } 5140 EXPORT_SYMBOL(netdev_lower_dev_get_private); 5141 5142 5143 int dev_get_nest_level(struct net_device *dev, 5144 bool (*type_check)(struct net_device *dev)) 5145 { 5146 struct net_device *lower = NULL; 5147 struct list_head *iter; 5148 int max_nest = -1; 5149 int nest; 5150 5151 ASSERT_RTNL(); 5152 5153 netdev_for_each_lower_dev(dev, lower, iter) { 5154 nest = dev_get_nest_level(lower, type_check); 5155 if (max_nest < nest) 5156 max_nest = nest; 5157 } 5158 5159 if (type_check(dev)) 5160 max_nest++; 5161 5162 return max_nest; 5163 } 5164 EXPORT_SYMBOL(dev_get_nest_level); 5165 5166 static void dev_change_rx_flags(struct net_device *dev, int flags) 5167 { 5168 const struct net_device_ops *ops = dev->netdev_ops; 5169 5170 if (ops->ndo_change_rx_flags) 5171 ops->ndo_change_rx_flags(dev, flags); 5172 } 5173 5174 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify) 5175 { 5176 unsigned int old_flags = dev->flags; 5177 kuid_t uid; 5178 kgid_t gid; 5179 5180 ASSERT_RTNL(); 5181 5182 dev->flags |= IFF_PROMISC; 5183 dev->promiscuity += inc; 5184 if (dev->promiscuity == 0) { 5185 /* 5186 * Avoid overflow. 5187 * If inc causes overflow, untouch promisc and return error. 5188 */ 5189 if (inc < 0) 5190 dev->flags &= ~IFF_PROMISC; 5191 else { 5192 dev->promiscuity -= inc; 5193 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n", 5194 dev->name); 5195 return -EOVERFLOW; 5196 } 5197 } 5198 if (dev->flags != old_flags) { 5199 pr_info("device %s %s promiscuous mode\n", 5200 dev->name, 5201 dev->flags & IFF_PROMISC ? "entered" : "left"); 5202 if (audit_enabled) { 5203 current_uid_gid(&uid, &gid); 5204 audit_log(current->audit_context, GFP_ATOMIC, 5205 AUDIT_ANOM_PROMISCUOUS, 5206 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 5207 dev->name, (dev->flags & IFF_PROMISC), 5208 (old_flags & IFF_PROMISC), 5209 from_kuid(&init_user_ns, audit_get_loginuid(current)), 5210 from_kuid(&init_user_ns, uid), 5211 from_kgid(&init_user_ns, gid), 5212 audit_get_sessionid(current)); 5213 } 5214 5215 dev_change_rx_flags(dev, IFF_PROMISC); 5216 } 5217 if (notify) 5218 __dev_notify_flags(dev, old_flags, IFF_PROMISC); 5219 return 0; 5220 } 5221 5222 /** 5223 * dev_set_promiscuity - update promiscuity count on a device 5224 * @dev: device 5225 * @inc: modifier 5226 * 5227 * Add or remove promiscuity from a device. While the count in the device 5228 * remains above zero the interface remains promiscuous. Once it hits zero 5229 * the device reverts back to normal filtering operation. A negative inc 5230 * value is used to drop promiscuity on the device. 5231 * Return 0 if successful or a negative errno code on error. 5232 */ 5233 int dev_set_promiscuity(struct net_device *dev, int inc) 5234 { 5235 unsigned int old_flags = dev->flags; 5236 int err; 5237 5238 err = __dev_set_promiscuity(dev, inc, true); 5239 if (err < 0) 5240 return err; 5241 if (dev->flags != old_flags) 5242 dev_set_rx_mode(dev); 5243 return err; 5244 } 5245 EXPORT_SYMBOL(dev_set_promiscuity); 5246 5247 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify) 5248 { 5249 unsigned int old_flags = dev->flags, old_gflags = dev->gflags; 5250 5251 ASSERT_RTNL(); 5252 5253 dev->flags |= IFF_ALLMULTI; 5254 dev->allmulti += inc; 5255 if (dev->allmulti == 0) { 5256 /* 5257 * Avoid overflow. 5258 * If inc causes overflow, untouch allmulti and return error. 5259 */ 5260 if (inc < 0) 5261 dev->flags &= ~IFF_ALLMULTI; 5262 else { 5263 dev->allmulti -= inc; 5264 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n", 5265 dev->name); 5266 return -EOVERFLOW; 5267 } 5268 } 5269 if (dev->flags ^ old_flags) { 5270 dev_change_rx_flags(dev, IFF_ALLMULTI); 5271 dev_set_rx_mode(dev); 5272 if (notify) 5273 __dev_notify_flags(dev, old_flags, 5274 dev->gflags ^ old_gflags); 5275 } 5276 return 0; 5277 } 5278 5279 /** 5280 * dev_set_allmulti - update allmulti count on a device 5281 * @dev: device 5282 * @inc: modifier 5283 * 5284 * Add or remove reception of all multicast frames to a device. While the 5285 * count in the device remains above zero the interface remains listening 5286 * to all interfaces. Once it hits zero the device reverts back to normal 5287 * filtering operation. A negative @inc value is used to drop the counter 5288 * when releasing a resource needing all multicasts. 5289 * Return 0 if successful or a negative errno code on error. 5290 */ 5291 5292 int dev_set_allmulti(struct net_device *dev, int inc) 5293 { 5294 return __dev_set_allmulti(dev, inc, true); 5295 } 5296 EXPORT_SYMBOL(dev_set_allmulti); 5297 5298 /* 5299 * Upload unicast and multicast address lists to device and 5300 * configure RX filtering. When the device doesn't support unicast 5301 * filtering it is put in promiscuous mode while unicast addresses 5302 * are present. 5303 */ 5304 void __dev_set_rx_mode(struct net_device *dev) 5305 { 5306 const struct net_device_ops *ops = dev->netdev_ops; 5307 5308 /* dev_open will call this function so the list will stay sane. */ 5309 if (!(dev->flags&IFF_UP)) 5310 return; 5311 5312 if (!netif_device_present(dev)) 5313 return; 5314 5315 if (!(dev->priv_flags & IFF_UNICAST_FLT)) { 5316 /* Unicast addresses changes may only happen under the rtnl, 5317 * therefore calling __dev_set_promiscuity here is safe. 5318 */ 5319 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 5320 __dev_set_promiscuity(dev, 1, false); 5321 dev->uc_promisc = true; 5322 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 5323 __dev_set_promiscuity(dev, -1, false); 5324 dev->uc_promisc = false; 5325 } 5326 } 5327 5328 if (ops->ndo_set_rx_mode) 5329 ops->ndo_set_rx_mode(dev); 5330 } 5331 5332 void dev_set_rx_mode(struct net_device *dev) 5333 { 5334 netif_addr_lock_bh(dev); 5335 __dev_set_rx_mode(dev); 5336 netif_addr_unlock_bh(dev); 5337 } 5338 5339 /** 5340 * dev_get_flags - get flags reported to userspace 5341 * @dev: device 5342 * 5343 * Get the combination of flag bits exported through APIs to userspace. 5344 */ 5345 unsigned int dev_get_flags(const struct net_device *dev) 5346 { 5347 unsigned int flags; 5348 5349 flags = (dev->flags & ~(IFF_PROMISC | 5350 IFF_ALLMULTI | 5351 IFF_RUNNING | 5352 IFF_LOWER_UP | 5353 IFF_DORMANT)) | 5354 (dev->gflags & (IFF_PROMISC | 5355 IFF_ALLMULTI)); 5356 5357 if (netif_running(dev)) { 5358 if (netif_oper_up(dev)) 5359 flags |= IFF_RUNNING; 5360 if (netif_carrier_ok(dev)) 5361 flags |= IFF_LOWER_UP; 5362 if (netif_dormant(dev)) 5363 flags |= IFF_DORMANT; 5364 } 5365 5366 return flags; 5367 } 5368 EXPORT_SYMBOL(dev_get_flags); 5369 5370 int __dev_change_flags(struct net_device *dev, unsigned int flags) 5371 { 5372 unsigned int old_flags = dev->flags; 5373 int ret; 5374 5375 ASSERT_RTNL(); 5376 5377 /* 5378 * Set the flags on our device. 5379 */ 5380 5381 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 5382 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 5383 IFF_AUTOMEDIA)) | 5384 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 5385 IFF_ALLMULTI)); 5386 5387 /* 5388 * Load in the correct multicast list now the flags have changed. 5389 */ 5390 5391 if ((old_flags ^ flags) & IFF_MULTICAST) 5392 dev_change_rx_flags(dev, IFF_MULTICAST); 5393 5394 dev_set_rx_mode(dev); 5395 5396 /* 5397 * Have we downed the interface. We handle IFF_UP ourselves 5398 * according to user attempts to set it, rather than blindly 5399 * setting it. 5400 */ 5401 5402 ret = 0; 5403 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */ 5404 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev); 5405 5406 if (!ret) 5407 dev_set_rx_mode(dev); 5408 } 5409 5410 if ((flags ^ dev->gflags) & IFF_PROMISC) { 5411 int inc = (flags & IFF_PROMISC) ? 1 : -1; 5412 unsigned int old_flags = dev->flags; 5413 5414 dev->gflags ^= IFF_PROMISC; 5415 5416 if (__dev_set_promiscuity(dev, inc, false) >= 0) 5417 if (dev->flags != old_flags) 5418 dev_set_rx_mode(dev); 5419 } 5420 5421 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 5422 is important. Some (broken) drivers set IFF_PROMISC, when 5423 IFF_ALLMULTI is requested not asking us and not reporting. 5424 */ 5425 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 5426 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 5427 5428 dev->gflags ^= IFF_ALLMULTI; 5429 __dev_set_allmulti(dev, inc, false); 5430 } 5431 5432 return ret; 5433 } 5434 5435 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags, 5436 unsigned int gchanges) 5437 { 5438 unsigned int changes = dev->flags ^ old_flags; 5439 5440 if (gchanges) 5441 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC); 5442 5443 if (changes & IFF_UP) { 5444 if (dev->flags & IFF_UP) 5445 call_netdevice_notifiers(NETDEV_UP, dev); 5446 else 5447 call_netdevice_notifiers(NETDEV_DOWN, dev); 5448 } 5449 5450 if (dev->flags & IFF_UP && 5451 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) { 5452 struct netdev_notifier_change_info change_info; 5453 5454 change_info.flags_changed = changes; 5455 call_netdevice_notifiers_info(NETDEV_CHANGE, dev, 5456 &change_info.info); 5457 } 5458 } 5459 5460 /** 5461 * dev_change_flags - change device settings 5462 * @dev: device 5463 * @flags: device state flags 5464 * 5465 * Change settings on device based state flags. The flags are 5466 * in the userspace exported format. 5467 */ 5468 int dev_change_flags(struct net_device *dev, unsigned int flags) 5469 { 5470 int ret; 5471 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags; 5472 5473 ret = __dev_change_flags(dev, flags); 5474 if (ret < 0) 5475 return ret; 5476 5477 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags); 5478 __dev_notify_flags(dev, old_flags, changes); 5479 return ret; 5480 } 5481 EXPORT_SYMBOL(dev_change_flags); 5482 5483 static int __dev_set_mtu(struct net_device *dev, int new_mtu) 5484 { 5485 const struct net_device_ops *ops = dev->netdev_ops; 5486 5487 if (ops->ndo_change_mtu) 5488 return ops->ndo_change_mtu(dev, new_mtu); 5489 5490 dev->mtu = new_mtu; 5491 return 0; 5492 } 5493 5494 /** 5495 * dev_set_mtu - Change maximum transfer unit 5496 * @dev: device 5497 * @new_mtu: new transfer unit 5498 * 5499 * Change the maximum transfer size of the network device. 5500 */ 5501 int dev_set_mtu(struct net_device *dev, int new_mtu) 5502 { 5503 int err, orig_mtu; 5504 5505 if (new_mtu == dev->mtu) 5506 return 0; 5507 5508 /* MTU must be positive. */ 5509 if (new_mtu < 0) 5510 return -EINVAL; 5511 5512 if (!netif_device_present(dev)) 5513 return -ENODEV; 5514 5515 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev); 5516 err = notifier_to_errno(err); 5517 if (err) 5518 return err; 5519 5520 orig_mtu = dev->mtu; 5521 err = __dev_set_mtu(dev, new_mtu); 5522 5523 if (!err) { 5524 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 5525 err = notifier_to_errno(err); 5526 if (err) { 5527 /* setting mtu back and notifying everyone again, 5528 * so that they have a chance to revert changes. 5529 */ 5530 __dev_set_mtu(dev, orig_mtu); 5531 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 5532 } 5533 } 5534 return err; 5535 } 5536 EXPORT_SYMBOL(dev_set_mtu); 5537 5538 /** 5539 * dev_set_group - Change group this device belongs to 5540 * @dev: device 5541 * @new_group: group this device should belong to 5542 */ 5543 void dev_set_group(struct net_device *dev, int new_group) 5544 { 5545 dev->group = new_group; 5546 } 5547 EXPORT_SYMBOL(dev_set_group); 5548 5549 /** 5550 * dev_set_mac_address - Change Media Access Control Address 5551 * @dev: device 5552 * @sa: new address 5553 * 5554 * Change the hardware (MAC) address of the device 5555 */ 5556 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa) 5557 { 5558 const struct net_device_ops *ops = dev->netdev_ops; 5559 int err; 5560 5561 if (!ops->ndo_set_mac_address) 5562 return -EOPNOTSUPP; 5563 if (sa->sa_family != dev->type) 5564 return -EINVAL; 5565 if (!netif_device_present(dev)) 5566 return -ENODEV; 5567 err = ops->ndo_set_mac_address(dev, sa); 5568 if (err) 5569 return err; 5570 dev->addr_assign_type = NET_ADDR_SET; 5571 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 5572 add_device_randomness(dev->dev_addr, dev->addr_len); 5573 return 0; 5574 } 5575 EXPORT_SYMBOL(dev_set_mac_address); 5576 5577 /** 5578 * dev_change_carrier - Change device carrier 5579 * @dev: device 5580 * @new_carrier: new value 5581 * 5582 * Change device carrier 5583 */ 5584 int dev_change_carrier(struct net_device *dev, bool new_carrier) 5585 { 5586 const struct net_device_ops *ops = dev->netdev_ops; 5587 5588 if (!ops->ndo_change_carrier) 5589 return -EOPNOTSUPP; 5590 if (!netif_device_present(dev)) 5591 return -ENODEV; 5592 return ops->ndo_change_carrier(dev, new_carrier); 5593 } 5594 EXPORT_SYMBOL(dev_change_carrier); 5595 5596 /** 5597 * dev_get_phys_port_id - Get device physical port ID 5598 * @dev: device 5599 * @ppid: port ID 5600 * 5601 * Get device physical port ID 5602 */ 5603 int dev_get_phys_port_id(struct net_device *dev, 5604 struct netdev_phys_port_id *ppid) 5605 { 5606 const struct net_device_ops *ops = dev->netdev_ops; 5607 5608 if (!ops->ndo_get_phys_port_id) 5609 return -EOPNOTSUPP; 5610 return ops->ndo_get_phys_port_id(dev, ppid); 5611 } 5612 EXPORT_SYMBOL(dev_get_phys_port_id); 5613 5614 /** 5615 * dev_new_index - allocate an ifindex 5616 * @net: the applicable net namespace 5617 * 5618 * Returns a suitable unique value for a new device interface 5619 * number. The caller must hold the rtnl semaphore or the 5620 * dev_base_lock to be sure it remains unique. 5621 */ 5622 static int dev_new_index(struct net *net) 5623 { 5624 int ifindex = net->ifindex; 5625 for (;;) { 5626 if (++ifindex <= 0) 5627 ifindex = 1; 5628 if (!__dev_get_by_index(net, ifindex)) 5629 return net->ifindex = ifindex; 5630 } 5631 } 5632 5633 /* Delayed registration/unregisteration */ 5634 static LIST_HEAD(net_todo_list); 5635 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq); 5636 5637 static void net_set_todo(struct net_device *dev) 5638 { 5639 list_add_tail(&dev->todo_list, &net_todo_list); 5640 dev_net(dev)->dev_unreg_count++; 5641 } 5642 5643 static void rollback_registered_many(struct list_head *head) 5644 { 5645 struct net_device *dev, *tmp; 5646 LIST_HEAD(close_head); 5647 5648 BUG_ON(dev_boot_phase); 5649 ASSERT_RTNL(); 5650 5651 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 5652 /* Some devices call without registering 5653 * for initialization unwind. Remove those 5654 * devices and proceed with the remaining. 5655 */ 5656 if (dev->reg_state == NETREG_UNINITIALIZED) { 5657 pr_debug("unregister_netdevice: device %s/%p never was registered\n", 5658 dev->name, dev); 5659 5660 WARN_ON(1); 5661 list_del(&dev->unreg_list); 5662 continue; 5663 } 5664 dev->dismantle = true; 5665 BUG_ON(dev->reg_state != NETREG_REGISTERED); 5666 } 5667 5668 /* If device is running, close it first. */ 5669 list_for_each_entry(dev, head, unreg_list) 5670 list_add_tail(&dev->close_list, &close_head); 5671 dev_close_many(&close_head); 5672 5673 list_for_each_entry(dev, head, unreg_list) { 5674 /* And unlink it from device chain. */ 5675 unlist_netdevice(dev); 5676 5677 dev->reg_state = NETREG_UNREGISTERING; 5678 } 5679 5680 synchronize_net(); 5681 5682 list_for_each_entry(dev, head, unreg_list) { 5683 /* Shutdown queueing discipline. */ 5684 dev_shutdown(dev); 5685 5686 5687 /* Notify protocols, that we are about to destroy 5688 this device. They should clean all the things. 5689 */ 5690 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 5691 5692 if (!dev->rtnl_link_ops || 5693 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 5694 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL); 5695 5696 /* 5697 * Flush the unicast and multicast chains 5698 */ 5699 dev_uc_flush(dev); 5700 dev_mc_flush(dev); 5701 5702 if (dev->netdev_ops->ndo_uninit) 5703 dev->netdev_ops->ndo_uninit(dev); 5704 5705 /* Notifier chain MUST detach us all upper devices. */ 5706 WARN_ON(netdev_has_any_upper_dev(dev)); 5707 5708 /* Remove entries from kobject tree */ 5709 netdev_unregister_kobject(dev); 5710 #ifdef CONFIG_XPS 5711 /* Remove XPS queueing entries */ 5712 netif_reset_xps_queues_gt(dev, 0); 5713 #endif 5714 } 5715 5716 synchronize_net(); 5717 5718 list_for_each_entry(dev, head, unreg_list) 5719 dev_put(dev); 5720 } 5721 5722 static void rollback_registered(struct net_device *dev) 5723 { 5724 LIST_HEAD(single); 5725 5726 list_add(&dev->unreg_list, &single); 5727 rollback_registered_many(&single); 5728 list_del(&single); 5729 } 5730 5731 static netdev_features_t netdev_fix_features(struct net_device *dev, 5732 netdev_features_t features) 5733 { 5734 /* Fix illegal checksum combinations */ 5735 if ((features & NETIF_F_HW_CSUM) && 5736 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 5737 netdev_warn(dev, "mixed HW and IP checksum settings.\n"); 5738 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 5739 } 5740 5741 /* TSO requires that SG is present as well. */ 5742 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { 5743 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); 5744 features &= ~NETIF_F_ALL_TSO; 5745 } 5746 5747 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) && 5748 !(features & NETIF_F_IP_CSUM)) { 5749 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n"); 5750 features &= ~NETIF_F_TSO; 5751 features &= ~NETIF_F_TSO_ECN; 5752 } 5753 5754 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) && 5755 !(features & NETIF_F_IPV6_CSUM)) { 5756 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n"); 5757 features &= ~NETIF_F_TSO6; 5758 } 5759 5760 /* TSO ECN requires that TSO is present as well. */ 5761 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) 5762 features &= ~NETIF_F_TSO_ECN; 5763 5764 /* Software GSO depends on SG. */ 5765 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 5766 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 5767 features &= ~NETIF_F_GSO; 5768 } 5769 5770 /* UFO needs SG and checksumming */ 5771 if (features & NETIF_F_UFO) { 5772 /* maybe split UFO into V4 and V6? */ 5773 if (!((features & NETIF_F_GEN_CSUM) || 5774 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM)) 5775 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 5776 netdev_dbg(dev, 5777 "Dropping NETIF_F_UFO since no checksum offload features.\n"); 5778 features &= ~NETIF_F_UFO; 5779 } 5780 5781 if (!(features & NETIF_F_SG)) { 5782 netdev_dbg(dev, 5783 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n"); 5784 features &= ~NETIF_F_UFO; 5785 } 5786 } 5787 5788 #ifdef CONFIG_NET_RX_BUSY_POLL 5789 if (dev->netdev_ops->ndo_busy_poll) 5790 features |= NETIF_F_BUSY_POLL; 5791 else 5792 #endif 5793 features &= ~NETIF_F_BUSY_POLL; 5794 5795 return features; 5796 } 5797 5798 int __netdev_update_features(struct net_device *dev) 5799 { 5800 netdev_features_t features; 5801 int err = 0; 5802 5803 ASSERT_RTNL(); 5804 5805 features = netdev_get_wanted_features(dev); 5806 5807 if (dev->netdev_ops->ndo_fix_features) 5808 features = dev->netdev_ops->ndo_fix_features(dev, features); 5809 5810 /* driver might be less strict about feature dependencies */ 5811 features = netdev_fix_features(dev, features); 5812 5813 if (dev->features == features) 5814 return 0; 5815 5816 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n", 5817 &dev->features, &features); 5818 5819 if (dev->netdev_ops->ndo_set_features) 5820 err = dev->netdev_ops->ndo_set_features(dev, features); 5821 5822 if (unlikely(err < 0)) { 5823 netdev_err(dev, 5824 "set_features() failed (%d); wanted %pNF, left %pNF\n", 5825 err, &features, &dev->features); 5826 return -1; 5827 } 5828 5829 if (!err) 5830 dev->features = features; 5831 5832 return 1; 5833 } 5834 5835 /** 5836 * netdev_update_features - recalculate device features 5837 * @dev: the device to check 5838 * 5839 * Recalculate dev->features set and send notifications if it 5840 * has changed. Should be called after driver or hardware dependent 5841 * conditions might have changed that influence the features. 5842 */ 5843 void netdev_update_features(struct net_device *dev) 5844 { 5845 if (__netdev_update_features(dev)) 5846 netdev_features_change(dev); 5847 } 5848 EXPORT_SYMBOL(netdev_update_features); 5849 5850 /** 5851 * netdev_change_features - recalculate device features 5852 * @dev: the device to check 5853 * 5854 * Recalculate dev->features set and send notifications even 5855 * if they have not changed. Should be called instead of 5856 * netdev_update_features() if also dev->vlan_features might 5857 * have changed to allow the changes to be propagated to stacked 5858 * VLAN devices. 5859 */ 5860 void netdev_change_features(struct net_device *dev) 5861 { 5862 __netdev_update_features(dev); 5863 netdev_features_change(dev); 5864 } 5865 EXPORT_SYMBOL(netdev_change_features); 5866 5867 /** 5868 * netif_stacked_transfer_operstate - transfer operstate 5869 * @rootdev: the root or lower level device to transfer state from 5870 * @dev: the device to transfer operstate to 5871 * 5872 * Transfer operational state from root to device. This is normally 5873 * called when a stacking relationship exists between the root 5874 * device and the device(a leaf device). 5875 */ 5876 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 5877 struct net_device *dev) 5878 { 5879 if (rootdev->operstate == IF_OPER_DORMANT) 5880 netif_dormant_on(dev); 5881 else 5882 netif_dormant_off(dev); 5883 5884 if (netif_carrier_ok(rootdev)) { 5885 if (!netif_carrier_ok(dev)) 5886 netif_carrier_on(dev); 5887 } else { 5888 if (netif_carrier_ok(dev)) 5889 netif_carrier_off(dev); 5890 } 5891 } 5892 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 5893 5894 #ifdef CONFIG_SYSFS 5895 static int netif_alloc_rx_queues(struct net_device *dev) 5896 { 5897 unsigned int i, count = dev->num_rx_queues; 5898 struct netdev_rx_queue *rx; 5899 5900 BUG_ON(count < 1); 5901 5902 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL); 5903 if (!rx) 5904 return -ENOMEM; 5905 5906 dev->_rx = rx; 5907 5908 for (i = 0; i < count; i++) 5909 rx[i].dev = dev; 5910 return 0; 5911 } 5912 #endif 5913 5914 static void netdev_init_one_queue(struct net_device *dev, 5915 struct netdev_queue *queue, void *_unused) 5916 { 5917 /* Initialize queue lock */ 5918 spin_lock_init(&queue->_xmit_lock); 5919 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); 5920 queue->xmit_lock_owner = -1; 5921 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 5922 queue->dev = dev; 5923 #ifdef CONFIG_BQL 5924 dql_init(&queue->dql, HZ); 5925 #endif 5926 } 5927 5928 static void netif_free_tx_queues(struct net_device *dev) 5929 { 5930 if (is_vmalloc_addr(dev->_tx)) 5931 vfree(dev->_tx); 5932 else 5933 kfree(dev->_tx); 5934 } 5935 5936 static int netif_alloc_netdev_queues(struct net_device *dev) 5937 { 5938 unsigned int count = dev->num_tx_queues; 5939 struct netdev_queue *tx; 5940 size_t sz = count * sizeof(*tx); 5941 5942 BUG_ON(count < 1 || count > 0xffff); 5943 5944 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT); 5945 if (!tx) { 5946 tx = vzalloc(sz); 5947 if (!tx) 5948 return -ENOMEM; 5949 } 5950 dev->_tx = tx; 5951 5952 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 5953 spin_lock_init(&dev->tx_global_lock); 5954 5955 return 0; 5956 } 5957 5958 /** 5959 * register_netdevice - register a network device 5960 * @dev: device to register 5961 * 5962 * Take a completed network device structure and add it to the kernel 5963 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 5964 * chain. 0 is returned on success. A negative errno code is returned 5965 * on a failure to set up the device, or if the name is a duplicate. 5966 * 5967 * Callers must hold the rtnl semaphore. You may want 5968 * register_netdev() instead of this. 5969 * 5970 * BUGS: 5971 * The locking appears insufficient to guarantee two parallel registers 5972 * will not get the same name. 5973 */ 5974 5975 int register_netdevice(struct net_device *dev) 5976 { 5977 int ret; 5978 struct net *net = dev_net(dev); 5979 5980 BUG_ON(dev_boot_phase); 5981 ASSERT_RTNL(); 5982 5983 might_sleep(); 5984 5985 /* When net_device's are persistent, this will be fatal. */ 5986 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 5987 BUG_ON(!net); 5988 5989 spin_lock_init(&dev->addr_list_lock); 5990 netdev_set_addr_lockdep_class(dev); 5991 5992 dev->iflink = -1; 5993 5994 ret = dev_get_valid_name(net, dev, dev->name); 5995 if (ret < 0) 5996 goto out; 5997 5998 /* Init, if this function is available */ 5999 if (dev->netdev_ops->ndo_init) { 6000 ret = dev->netdev_ops->ndo_init(dev); 6001 if (ret) { 6002 if (ret > 0) 6003 ret = -EIO; 6004 goto out; 6005 } 6006 } 6007 6008 if (((dev->hw_features | dev->features) & 6009 NETIF_F_HW_VLAN_CTAG_FILTER) && 6010 (!dev->netdev_ops->ndo_vlan_rx_add_vid || 6011 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) { 6012 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n"); 6013 ret = -EINVAL; 6014 goto err_uninit; 6015 } 6016 6017 ret = -EBUSY; 6018 if (!dev->ifindex) 6019 dev->ifindex = dev_new_index(net); 6020 else if (__dev_get_by_index(net, dev->ifindex)) 6021 goto err_uninit; 6022 6023 if (dev->iflink == -1) 6024 dev->iflink = dev->ifindex; 6025 6026 /* Transfer changeable features to wanted_features and enable 6027 * software offloads (GSO and GRO). 6028 */ 6029 dev->hw_features |= NETIF_F_SOFT_FEATURES; 6030 dev->features |= NETIF_F_SOFT_FEATURES; 6031 dev->wanted_features = dev->features & dev->hw_features; 6032 6033 if (!(dev->flags & IFF_LOOPBACK)) { 6034 dev->hw_features |= NETIF_F_NOCACHE_COPY; 6035 } 6036 6037 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. 6038 */ 6039 dev->vlan_features |= NETIF_F_HIGHDMA; 6040 6041 /* Make NETIF_F_SG inheritable to tunnel devices. 6042 */ 6043 dev->hw_enc_features |= NETIF_F_SG; 6044 6045 /* Make NETIF_F_SG inheritable to MPLS. 6046 */ 6047 dev->mpls_features |= NETIF_F_SG; 6048 6049 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 6050 ret = notifier_to_errno(ret); 6051 if (ret) 6052 goto err_uninit; 6053 6054 ret = netdev_register_kobject(dev); 6055 if (ret) 6056 goto err_uninit; 6057 dev->reg_state = NETREG_REGISTERED; 6058 6059 __netdev_update_features(dev); 6060 6061 /* 6062 * Default initial state at registry is that the 6063 * device is present. 6064 */ 6065 6066 set_bit(__LINK_STATE_PRESENT, &dev->state); 6067 6068 linkwatch_init_dev(dev); 6069 6070 dev_init_scheduler(dev); 6071 dev_hold(dev); 6072 list_netdevice(dev); 6073 add_device_randomness(dev->dev_addr, dev->addr_len); 6074 6075 /* If the device has permanent device address, driver should 6076 * set dev_addr and also addr_assign_type should be set to 6077 * NET_ADDR_PERM (default value). 6078 */ 6079 if (dev->addr_assign_type == NET_ADDR_PERM) 6080 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); 6081 6082 /* Notify protocols, that a new device appeared. */ 6083 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 6084 ret = notifier_to_errno(ret); 6085 if (ret) { 6086 rollback_registered(dev); 6087 dev->reg_state = NETREG_UNREGISTERED; 6088 } 6089 /* 6090 * Prevent userspace races by waiting until the network 6091 * device is fully setup before sending notifications. 6092 */ 6093 if (!dev->rtnl_link_ops || 6094 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 6095 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 6096 6097 out: 6098 return ret; 6099 6100 err_uninit: 6101 if (dev->netdev_ops->ndo_uninit) 6102 dev->netdev_ops->ndo_uninit(dev); 6103 goto out; 6104 } 6105 EXPORT_SYMBOL(register_netdevice); 6106 6107 /** 6108 * init_dummy_netdev - init a dummy network device for NAPI 6109 * @dev: device to init 6110 * 6111 * This takes a network device structure and initialize the minimum 6112 * amount of fields so it can be used to schedule NAPI polls without 6113 * registering a full blown interface. This is to be used by drivers 6114 * that need to tie several hardware interfaces to a single NAPI 6115 * poll scheduler due to HW limitations. 6116 */ 6117 int init_dummy_netdev(struct net_device *dev) 6118 { 6119 /* Clear everything. Note we don't initialize spinlocks 6120 * are they aren't supposed to be taken by any of the 6121 * NAPI code and this dummy netdev is supposed to be 6122 * only ever used for NAPI polls 6123 */ 6124 memset(dev, 0, sizeof(struct net_device)); 6125 6126 /* make sure we BUG if trying to hit standard 6127 * register/unregister code path 6128 */ 6129 dev->reg_state = NETREG_DUMMY; 6130 6131 /* NAPI wants this */ 6132 INIT_LIST_HEAD(&dev->napi_list); 6133 6134 /* a dummy interface is started by default */ 6135 set_bit(__LINK_STATE_PRESENT, &dev->state); 6136 set_bit(__LINK_STATE_START, &dev->state); 6137 6138 /* Note : We dont allocate pcpu_refcnt for dummy devices, 6139 * because users of this 'device' dont need to change 6140 * its refcount. 6141 */ 6142 6143 return 0; 6144 } 6145 EXPORT_SYMBOL_GPL(init_dummy_netdev); 6146 6147 6148 /** 6149 * register_netdev - register a network device 6150 * @dev: device to register 6151 * 6152 * Take a completed network device structure and add it to the kernel 6153 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 6154 * chain. 0 is returned on success. A negative errno code is returned 6155 * on a failure to set up the device, or if the name is a duplicate. 6156 * 6157 * This is a wrapper around register_netdevice that takes the rtnl semaphore 6158 * and expands the device name if you passed a format string to 6159 * alloc_netdev. 6160 */ 6161 int register_netdev(struct net_device *dev) 6162 { 6163 int err; 6164 6165 rtnl_lock(); 6166 err = register_netdevice(dev); 6167 rtnl_unlock(); 6168 return err; 6169 } 6170 EXPORT_SYMBOL(register_netdev); 6171 6172 int netdev_refcnt_read(const struct net_device *dev) 6173 { 6174 int i, refcnt = 0; 6175 6176 for_each_possible_cpu(i) 6177 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 6178 return refcnt; 6179 } 6180 EXPORT_SYMBOL(netdev_refcnt_read); 6181 6182 /** 6183 * netdev_wait_allrefs - wait until all references are gone. 6184 * @dev: target net_device 6185 * 6186 * This is called when unregistering network devices. 6187 * 6188 * Any protocol or device that holds a reference should register 6189 * for netdevice notification, and cleanup and put back the 6190 * reference if they receive an UNREGISTER event. 6191 * We can get stuck here if buggy protocols don't correctly 6192 * call dev_put. 6193 */ 6194 static void netdev_wait_allrefs(struct net_device *dev) 6195 { 6196 unsigned long rebroadcast_time, warning_time; 6197 int refcnt; 6198 6199 linkwatch_forget_dev(dev); 6200 6201 rebroadcast_time = warning_time = jiffies; 6202 refcnt = netdev_refcnt_read(dev); 6203 6204 while (refcnt != 0) { 6205 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 6206 rtnl_lock(); 6207 6208 /* Rebroadcast unregister notification */ 6209 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 6210 6211 __rtnl_unlock(); 6212 rcu_barrier(); 6213 rtnl_lock(); 6214 6215 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 6216 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 6217 &dev->state)) { 6218 /* We must not have linkwatch events 6219 * pending on unregister. If this 6220 * happens, we simply run the queue 6221 * unscheduled, resulting in a noop 6222 * for this device. 6223 */ 6224 linkwatch_run_queue(); 6225 } 6226 6227 __rtnl_unlock(); 6228 6229 rebroadcast_time = jiffies; 6230 } 6231 6232 msleep(250); 6233 6234 refcnt = netdev_refcnt_read(dev); 6235 6236 if (time_after(jiffies, warning_time + 10 * HZ)) { 6237 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n", 6238 dev->name, refcnt); 6239 warning_time = jiffies; 6240 } 6241 } 6242 } 6243 6244 /* The sequence is: 6245 * 6246 * rtnl_lock(); 6247 * ... 6248 * register_netdevice(x1); 6249 * register_netdevice(x2); 6250 * ... 6251 * unregister_netdevice(y1); 6252 * unregister_netdevice(y2); 6253 * ... 6254 * rtnl_unlock(); 6255 * free_netdev(y1); 6256 * free_netdev(y2); 6257 * 6258 * We are invoked by rtnl_unlock(). 6259 * This allows us to deal with problems: 6260 * 1) We can delete sysfs objects which invoke hotplug 6261 * without deadlocking with linkwatch via keventd. 6262 * 2) Since we run with the RTNL semaphore not held, we can sleep 6263 * safely in order to wait for the netdev refcnt to drop to zero. 6264 * 6265 * We must not return until all unregister events added during 6266 * the interval the lock was held have been completed. 6267 */ 6268 void netdev_run_todo(void) 6269 { 6270 struct list_head list; 6271 6272 /* Snapshot list, allow later requests */ 6273 list_replace_init(&net_todo_list, &list); 6274 6275 __rtnl_unlock(); 6276 6277 6278 /* Wait for rcu callbacks to finish before next phase */ 6279 if (!list_empty(&list)) 6280 rcu_barrier(); 6281 6282 while (!list_empty(&list)) { 6283 struct net_device *dev 6284 = list_first_entry(&list, struct net_device, todo_list); 6285 list_del(&dev->todo_list); 6286 6287 rtnl_lock(); 6288 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 6289 __rtnl_unlock(); 6290 6291 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 6292 pr_err("network todo '%s' but state %d\n", 6293 dev->name, dev->reg_state); 6294 dump_stack(); 6295 continue; 6296 } 6297 6298 dev->reg_state = NETREG_UNREGISTERED; 6299 6300 on_each_cpu(flush_backlog, dev, 1); 6301 6302 netdev_wait_allrefs(dev); 6303 6304 /* paranoia */ 6305 BUG_ON(netdev_refcnt_read(dev)); 6306 WARN_ON(rcu_access_pointer(dev->ip_ptr)); 6307 WARN_ON(rcu_access_pointer(dev->ip6_ptr)); 6308 WARN_ON(dev->dn_ptr); 6309 6310 if (dev->destructor) 6311 dev->destructor(dev); 6312 6313 /* Report a network device has been unregistered */ 6314 rtnl_lock(); 6315 dev_net(dev)->dev_unreg_count--; 6316 __rtnl_unlock(); 6317 wake_up(&netdev_unregistering_wq); 6318 6319 /* Free network device */ 6320 kobject_put(&dev->dev.kobj); 6321 } 6322 } 6323 6324 /* Convert net_device_stats to rtnl_link_stats64. They have the same 6325 * fields in the same order, with only the type differing. 6326 */ 6327 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 6328 const struct net_device_stats *netdev_stats) 6329 { 6330 #if BITS_PER_LONG == 64 6331 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats)); 6332 memcpy(stats64, netdev_stats, sizeof(*stats64)); 6333 #else 6334 size_t i, n = sizeof(*stats64) / sizeof(u64); 6335 const unsigned long *src = (const unsigned long *)netdev_stats; 6336 u64 *dst = (u64 *)stats64; 6337 6338 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) != 6339 sizeof(*stats64) / sizeof(u64)); 6340 for (i = 0; i < n; i++) 6341 dst[i] = src[i]; 6342 #endif 6343 } 6344 EXPORT_SYMBOL(netdev_stats_to_stats64); 6345 6346 /** 6347 * dev_get_stats - get network device statistics 6348 * @dev: device to get statistics from 6349 * @storage: place to store stats 6350 * 6351 * Get network statistics from device. Return @storage. 6352 * The device driver may provide its own method by setting 6353 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 6354 * otherwise the internal statistics structure is used. 6355 */ 6356 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 6357 struct rtnl_link_stats64 *storage) 6358 { 6359 const struct net_device_ops *ops = dev->netdev_ops; 6360 6361 if (ops->ndo_get_stats64) { 6362 memset(storage, 0, sizeof(*storage)); 6363 ops->ndo_get_stats64(dev, storage); 6364 } else if (ops->ndo_get_stats) { 6365 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 6366 } else { 6367 netdev_stats_to_stats64(storage, &dev->stats); 6368 } 6369 storage->rx_dropped += atomic_long_read(&dev->rx_dropped); 6370 storage->tx_dropped += atomic_long_read(&dev->tx_dropped); 6371 return storage; 6372 } 6373 EXPORT_SYMBOL(dev_get_stats); 6374 6375 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 6376 { 6377 struct netdev_queue *queue = dev_ingress_queue(dev); 6378 6379 #ifdef CONFIG_NET_CLS_ACT 6380 if (queue) 6381 return queue; 6382 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 6383 if (!queue) 6384 return NULL; 6385 netdev_init_one_queue(dev, queue, NULL); 6386 queue->qdisc = &noop_qdisc; 6387 queue->qdisc_sleeping = &noop_qdisc; 6388 rcu_assign_pointer(dev->ingress_queue, queue); 6389 #endif 6390 return queue; 6391 } 6392 6393 static const struct ethtool_ops default_ethtool_ops; 6394 6395 void netdev_set_default_ethtool_ops(struct net_device *dev, 6396 const struct ethtool_ops *ops) 6397 { 6398 if (dev->ethtool_ops == &default_ethtool_ops) 6399 dev->ethtool_ops = ops; 6400 } 6401 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops); 6402 6403 void netdev_freemem(struct net_device *dev) 6404 { 6405 char *addr = (char *)dev - dev->padded; 6406 6407 if (is_vmalloc_addr(addr)) 6408 vfree(addr); 6409 else 6410 kfree(addr); 6411 } 6412 6413 /** 6414 * alloc_netdev_mqs - allocate network device 6415 * @sizeof_priv: size of private data to allocate space for 6416 * @name: device name format string 6417 * @setup: callback to initialize device 6418 * @txqs: the number of TX subqueues to allocate 6419 * @rxqs: the number of RX subqueues to allocate 6420 * 6421 * Allocates a struct net_device with private data area for driver use 6422 * and performs basic initialization. Also allocates subqueue structs 6423 * for each queue on the device. 6424 */ 6425 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 6426 void (*setup)(struct net_device *), 6427 unsigned int txqs, unsigned int rxqs) 6428 { 6429 struct net_device *dev; 6430 size_t alloc_size; 6431 struct net_device *p; 6432 6433 BUG_ON(strlen(name) >= sizeof(dev->name)); 6434 6435 if (txqs < 1) { 6436 pr_err("alloc_netdev: Unable to allocate device with zero queues\n"); 6437 return NULL; 6438 } 6439 6440 #ifdef CONFIG_SYSFS 6441 if (rxqs < 1) { 6442 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n"); 6443 return NULL; 6444 } 6445 #endif 6446 6447 alloc_size = sizeof(struct net_device); 6448 if (sizeof_priv) { 6449 /* ensure 32-byte alignment of private area */ 6450 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); 6451 alloc_size += sizeof_priv; 6452 } 6453 /* ensure 32-byte alignment of whole construct */ 6454 alloc_size += NETDEV_ALIGN - 1; 6455 6456 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT); 6457 if (!p) 6458 p = vzalloc(alloc_size); 6459 if (!p) 6460 return NULL; 6461 6462 dev = PTR_ALIGN(p, NETDEV_ALIGN); 6463 dev->padded = (char *)dev - (char *)p; 6464 6465 dev->pcpu_refcnt = alloc_percpu(int); 6466 if (!dev->pcpu_refcnt) 6467 goto free_dev; 6468 6469 if (dev_addr_init(dev)) 6470 goto free_pcpu; 6471 6472 dev_mc_init(dev); 6473 dev_uc_init(dev); 6474 6475 dev_net_set(dev, &init_net); 6476 6477 dev->gso_max_size = GSO_MAX_SIZE; 6478 dev->gso_max_segs = GSO_MAX_SEGS; 6479 6480 INIT_LIST_HEAD(&dev->napi_list); 6481 INIT_LIST_HEAD(&dev->unreg_list); 6482 INIT_LIST_HEAD(&dev->close_list); 6483 INIT_LIST_HEAD(&dev->link_watch_list); 6484 INIT_LIST_HEAD(&dev->adj_list.upper); 6485 INIT_LIST_HEAD(&dev->adj_list.lower); 6486 INIT_LIST_HEAD(&dev->all_adj_list.upper); 6487 INIT_LIST_HEAD(&dev->all_adj_list.lower); 6488 dev->priv_flags = IFF_XMIT_DST_RELEASE; 6489 setup(dev); 6490 6491 dev->num_tx_queues = txqs; 6492 dev->real_num_tx_queues = txqs; 6493 if (netif_alloc_netdev_queues(dev)) 6494 goto free_all; 6495 6496 #ifdef CONFIG_SYSFS 6497 dev->num_rx_queues = rxqs; 6498 dev->real_num_rx_queues = rxqs; 6499 if (netif_alloc_rx_queues(dev)) 6500 goto free_all; 6501 #endif 6502 6503 strcpy(dev->name, name); 6504 dev->group = INIT_NETDEV_GROUP; 6505 if (!dev->ethtool_ops) 6506 dev->ethtool_ops = &default_ethtool_ops; 6507 return dev; 6508 6509 free_all: 6510 free_netdev(dev); 6511 return NULL; 6512 6513 free_pcpu: 6514 free_percpu(dev->pcpu_refcnt); 6515 netif_free_tx_queues(dev); 6516 #ifdef CONFIG_SYSFS 6517 kfree(dev->_rx); 6518 #endif 6519 6520 free_dev: 6521 netdev_freemem(dev); 6522 return NULL; 6523 } 6524 EXPORT_SYMBOL(alloc_netdev_mqs); 6525 6526 /** 6527 * free_netdev - free network device 6528 * @dev: device 6529 * 6530 * This function does the last stage of destroying an allocated device 6531 * interface. The reference to the device object is released. 6532 * If this is the last reference then it will be freed. 6533 */ 6534 void free_netdev(struct net_device *dev) 6535 { 6536 struct napi_struct *p, *n; 6537 6538 release_net(dev_net(dev)); 6539 6540 netif_free_tx_queues(dev); 6541 #ifdef CONFIG_SYSFS 6542 kfree(dev->_rx); 6543 #endif 6544 6545 kfree(rcu_dereference_protected(dev->ingress_queue, 1)); 6546 6547 /* Flush device addresses */ 6548 dev_addr_flush(dev); 6549 6550 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 6551 netif_napi_del(p); 6552 6553 free_percpu(dev->pcpu_refcnt); 6554 dev->pcpu_refcnt = NULL; 6555 6556 /* Compatibility with error handling in drivers */ 6557 if (dev->reg_state == NETREG_UNINITIALIZED) { 6558 netdev_freemem(dev); 6559 return; 6560 } 6561 6562 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 6563 dev->reg_state = NETREG_RELEASED; 6564 6565 /* will free via device release */ 6566 put_device(&dev->dev); 6567 } 6568 EXPORT_SYMBOL(free_netdev); 6569 6570 /** 6571 * synchronize_net - Synchronize with packet receive processing 6572 * 6573 * Wait for packets currently being received to be done. 6574 * Does not block later packets from starting. 6575 */ 6576 void synchronize_net(void) 6577 { 6578 might_sleep(); 6579 if (rtnl_is_locked()) 6580 synchronize_rcu_expedited(); 6581 else 6582 synchronize_rcu(); 6583 } 6584 EXPORT_SYMBOL(synchronize_net); 6585 6586 /** 6587 * unregister_netdevice_queue - remove device from the kernel 6588 * @dev: device 6589 * @head: list 6590 * 6591 * This function shuts down a device interface and removes it 6592 * from the kernel tables. 6593 * If head not NULL, device is queued to be unregistered later. 6594 * 6595 * Callers must hold the rtnl semaphore. You may want 6596 * unregister_netdev() instead of this. 6597 */ 6598 6599 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 6600 { 6601 ASSERT_RTNL(); 6602 6603 if (head) { 6604 list_move_tail(&dev->unreg_list, head); 6605 } else { 6606 rollback_registered(dev); 6607 /* Finish processing unregister after unlock */ 6608 net_set_todo(dev); 6609 } 6610 } 6611 EXPORT_SYMBOL(unregister_netdevice_queue); 6612 6613 /** 6614 * unregister_netdevice_many - unregister many devices 6615 * @head: list of devices 6616 */ 6617 void unregister_netdevice_many(struct list_head *head) 6618 { 6619 struct net_device *dev; 6620 6621 if (!list_empty(head)) { 6622 rollback_registered_many(head); 6623 list_for_each_entry(dev, head, unreg_list) 6624 net_set_todo(dev); 6625 } 6626 } 6627 EXPORT_SYMBOL(unregister_netdevice_many); 6628 6629 /** 6630 * unregister_netdev - remove device from the kernel 6631 * @dev: device 6632 * 6633 * This function shuts down a device interface and removes it 6634 * from the kernel tables. 6635 * 6636 * This is just a wrapper for unregister_netdevice that takes 6637 * the rtnl semaphore. In general you want to use this and not 6638 * unregister_netdevice. 6639 */ 6640 void unregister_netdev(struct net_device *dev) 6641 { 6642 rtnl_lock(); 6643 unregister_netdevice(dev); 6644 rtnl_unlock(); 6645 } 6646 EXPORT_SYMBOL(unregister_netdev); 6647 6648 /** 6649 * dev_change_net_namespace - move device to different nethost namespace 6650 * @dev: device 6651 * @net: network namespace 6652 * @pat: If not NULL name pattern to try if the current device name 6653 * is already taken in the destination network namespace. 6654 * 6655 * This function shuts down a device interface and moves it 6656 * to a new network namespace. On success 0 is returned, on 6657 * a failure a netagive errno code is returned. 6658 * 6659 * Callers must hold the rtnl semaphore. 6660 */ 6661 6662 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 6663 { 6664 int err; 6665 6666 ASSERT_RTNL(); 6667 6668 /* Don't allow namespace local devices to be moved. */ 6669 err = -EINVAL; 6670 if (dev->features & NETIF_F_NETNS_LOCAL) 6671 goto out; 6672 6673 /* Ensure the device has been registrered */ 6674 if (dev->reg_state != NETREG_REGISTERED) 6675 goto out; 6676 6677 /* Get out if there is nothing todo */ 6678 err = 0; 6679 if (net_eq(dev_net(dev), net)) 6680 goto out; 6681 6682 /* Pick the destination device name, and ensure 6683 * we can use it in the destination network namespace. 6684 */ 6685 err = -EEXIST; 6686 if (__dev_get_by_name(net, dev->name)) { 6687 /* We get here if we can't use the current device name */ 6688 if (!pat) 6689 goto out; 6690 if (dev_get_valid_name(net, dev, pat) < 0) 6691 goto out; 6692 } 6693 6694 /* 6695 * And now a mini version of register_netdevice unregister_netdevice. 6696 */ 6697 6698 /* If device is running close it first. */ 6699 dev_close(dev); 6700 6701 /* And unlink it from device chain */ 6702 err = -ENODEV; 6703 unlist_netdevice(dev); 6704 6705 synchronize_net(); 6706 6707 /* Shutdown queueing discipline. */ 6708 dev_shutdown(dev); 6709 6710 /* Notify protocols, that we are about to destroy 6711 this device. They should clean all the things. 6712 6713 Note that dev->reg_state stays at NETREG_REGISTERED. 6714 This is wanted because this way 8021q and macvlan know 6715 the device is just moving and can keep their slaves up. 6716 */ 6717 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 6718 rcu_barrier(); 6719 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 6720 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL); 6721 6722 /* 6723 * Flush the unicast and multicast chains 6724 */ 6725 dev_uc_flush(dev); 6726 dev_mc_flush(dev); 6727 6728 /* Send a netdev-removed uevent to the old namespace */ 6729 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE); 6730 6731 /* Actually switch the network namespace */ 6732 dev_net_set(dev, net); 6733 6734 /* If there is an ifindex conflict assign a new one */ 6735 if (__dev_get_by_index(net, dev->ifindex)) { 6736 int iflink = (dev->iflink == dev->ifindex); 6737 dev->ifindex = dev_new_index(net); 6738 if (iflink) 6739 dev->iflink = dev->ifindex; 6740 } 6741 6742 /* Send a netdev-add uevent to the new namespace */ 6743 kobject_uevent(&dev->dev.kobj, KOBJ_ADD); 6744 6745 /* Fixup kobjects */ 6746 err = device_rename(&dev->dev, dev->name); 6747 WARN_ON(err); 6748 6749 /* Add the device back in the hashes */ 6750 list_netdevice(dev); 6751 6752 /* Notify protocols, that a new device appeared. */ 6753 call_netdevice_notifiers(NETDEV_REGISTER, dev); 6754 6755 /* 6756 * Prevent userspace races by waiting until the network 6757 * device is fully setup before sending notifications. 6758 */ 6759 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 6760 6761 synchronize_net(); 6762 err = 0; 6763 out: 6764 return err; 6765 } 6766 EXPORT_SYMBOL_GPL(dev_change_net_namespace); 6767 6768 static int dev_cpu_callback(struct notifier_block *nfb, 6769 unsigned long action, 6770 void *ocpu) 6771 { 6772 struct sk_buff **list_skb; 6773 struct sk_buff *skb; 6774 unsigned int cpu, oldcpu = (unsigned long)ocpu; 6775 struct softnet_data *sd, *oldsd; 6776 6777 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN) 6778 return NOTIFY_OK; 6779 6780 local_irq_disable(); 6781 cpu = smp_processor_id(); 6782 sd = &per_cpu(softnet_data, cpu); 6783 oldsd = &per_cpu(softnet_data, oldcpu); 6784 6785 /* Find end of our completion_queue. */ 6786 list_skb = &sd->completion_queue; 6787 while (*list_skb) 6788 list_skb = &(*list_skb)->next; 6789 /* Append completion queue from offline CPU. */ 6790 *list_skb = oldsd->completion_queue; 6791 oldsd->completion_queue = NULL; 6792 6793 /* Append output queue from offline CPU. */ 6794 if (oldsd->output_queue) { 6795 *sd->output_queue_tailp = oldsd->output_queue; 6796 sd->output_queue_tailp = oldsd->output_queue_tailp; 6797 oldsd->output_queue = NULL; 6798 oldsd->output_queue_tailp = &oldsd->output_queue; 6799 } 6800 /* Append NAPI poll list from offline CPU. */ 6801 if (!list_empty(&oldsd->poll_list)) { 6802 list_splice_init(&oldsd->poll_list, &sd->poll_list); 6803 raise_softirq_irqoff(NET_RX_SOFTIRQ); 6804 } 6805 6806 raise_softirq_irqoff(NET_TX_SOFTIRQ); 6807 local_irq_enable(); 6808 6809 /* Process offline CPU's input_pkt_queue */ 6810 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 6811 netif_rx_internal(skb); 6812 input_queue_head_incr(oldsd); 6813 } 6814 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) { 6815 netif_rx_internal(skb); 6816 input_queue_head_incr(oldsd); 6817 } 6818 6819 return NOTIFY_OK; 6820 } 6821 6822 6823 /** 6824 * netdev_increment_features - increment feature set by one 6825 * @all: current feature set 6826 * @one: new feature set 6827 * @mask: mask feature set 6828 * 6829 * Computes a new feature set after adding a device with feature set 6830 * @one to the master device with current feature set @all. Will not 6831 * enable anything that is off in @mask. Returns the new feature set. 6832 */ 6833 netdev_features_t netdev_increment_features(netdev_features_t all, 6834 netdev_features_t one, netdev_features_t mask) 6835 { 6836 if (mask & NETIF_F_GEN_CSUM) 6837 mask |= NETIF_F_ALL_CSUM; 6838 mask |= NETIF_F_VLAN_CHALLENGED; 6839 6840 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask; 6841 all &= one | ~NETIF_F_ALL_FOR_ALL; 6842 6843 /* If one device supports hw checksumming, set for all. */ 6844 if (all & NETIF_F_GEN_CSUM) 6845 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM); 6846 6847 return all; 6848 } 6849 EXPORT_SYMBOL(netdev_increment_features); 6850 6851 static struct hlist_head * __net_init netdev_create_hash(void) 6852 { 6853 int i; 6854 struct hlist_head *hash; 6855 6856 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL); 6857 if (hash != NULL) 6858 for (i = 0; i < NETDEV_HASHENTRIES; i++) 6859 INIT_HLIST_HEAD(&hash[i]); 6860 6861 return hash; 6862 } 6863 6864 /* Initialize per network namespace state */ 6865 static int __net_init netdev_init(struct net *net) 6866 { 6867 if (net != &init_net) 6868 INIT_LIST_HEAD(&net->dev_base_head); 6869 6870 net->dev_name_head = netdev_create_hash(); 6871 if (net->dev_name_head == NULL) 6872 goto err_name; 6873 6874 net->dev_index_head = netdev_create_hash(); 6875 if (net->dev_index_head == NULL) 6876 goto err_idx; 6877 6878 return 0; 6879 6880 err_idx: 6881 kfree(net->dev_name_head); 6882 err_name: 6883 return -ENOMEM; 6884 } 6885 6886 /** 6887 * netdev_drivername - network driver for the device 6888 * @dev: network device 6889 * 6890 * Determine network driver for device. 6891 */ 6892 const char *netdev_drivername(const struct net_device *dev) 6893 { 6894 const struct device_driver *driver; 6895 const struct device *parent; 6896 const char *empty = ""; 6897 6898 parent = dev->dev.parent; 6899 if (!parent) 6900 return empty; 6901 6902 driver = parent->driver; 6903 if (driver && driver->name) 6904 return driver->name; 6905 return empty; 6906 } 6907 6908 static int __netdev_printk(const char *level, const struct net_device *dev, 6909 struct va_format *vaf) 6910 { 6911 int r; 6912 6913 if (dev && dev->dev.parent) { 6914 r = dev_printk_emit(level[1] - '0', 6915 dev->dev.parent, 6916 "%s %s %s: %pV", 6917 dev_driver_string(dev->dev.parent), 6918 dev_name(dev->dev.parent), 6919 netdev_name(dev), vaf); 6920 } else if (dev) { 6921 r = printk("%s%s: %pV", level, netdev_name(dev), vaf); 6922 } else { 6923 r = printk("%s(NULL net_device): %pV", level, vaf); 6924 } 6925 6926 return r; 6927 } 6928 6929 int netdev_printk(const char *level, const struct net_device *dev, 6930 const char *format, ...) 6931 { 6932 struct va_format vaf; 6933 va_list args; 6934 int r; 6935 6936 va_start(args, format); 6937 6938 vaf.fmt = format; 6939 vaf.va = &args; 6940 6941 r = __netdev_printk(level, dev, &vaf); 6942 6943 va_end(args); 6944 6945 return r; 6946 } 6947 EXPORT_SYMBOL(netdev_printk); 6948 6949 #define define_netdev_printk_level(func, level) \ 6950 int func(const struct net_device *dev, const char *fmt, ...) \ 6951 { \ 6952 int r; \ 6953 struct va_format vaf; \ 6954 va_list args; \ 6955 \ 6956 va_start(args, fmt); \ 6957 \ 6958 vaf.fmt = fmt; \ 6959 vaf.va = &args; \ 6960 \ 6961 r = __netdev_printk(level, dev, &vaf); \ 6962 \ 6963 va_end(args); \ 6964 \ 6965 return r; \ 6966 } \ 6967 EXPORT_SYMBOL(func); 6968 6969 define_netdev_printk_level(netdev_emerg, KERN_EMERG); 6970 define_netdev_printk_level(netdev_alert, KERN_ALERT); 6971 define_netdev_printk_level(netdev_crit, KERN_CRIT); 6972 define_netdev_printk_level(netdev_err, KERN_ERR); 6973 define_netdev_printk_level(netdev_warn, KERN_WARNING); 6974 define_netdev_printk_level(netdev_notice, KERN_NOTICE); 6975 define_netdev_printk_level(netdev_info, KERN_INFO); 6976 6977 static void __net_exit netdev_exit(struct net *net) 6978 { 6979 kfree(net->dev_name_head); 6980 kfree(net->dev_index_head); 6981 } 6982 6983 static struct pernet_operations __net_initdata netdev_net_ops = { 6984 .init = netdev_init, 6985 .exit = netdev_exit, 6986 }; 6987 6988 static void __net_exit default_device_exit(struct net *net) 6989 { 6990 struct net_device *dev, *aux; 6991 /* 6992 * Push all migratable network devices back to the 6993 * initial network namespace 6994 */ 6995 rtnl_lock(); 6996 for_each_netdev_safe(net, dev, aux) { 6997 int err; 6998 char fb_name[IFNAMSIZ]; 6999 7000 /* Ignore unmoveable devices (i.e. loopback) */ 7001 if (dev->features & NETIF_F_NETNS_LOCAL) 7002 continue; 7003 7004 /* Leave virtual devices for the generic cleanup */ 7005 if (dev->rtnl_link_ops) 7006 continue; 7007 7008 /* Push remaining network devices to init_net */ 7009 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 7010 err = dev_change_net_namespace(dev, &init_net, fb_name); 7011 if (err) { 7012 pr_emerg("%s: failed to move %s to init_net: %d\n", 7013 __func__, dev->name, err); 7014 BUG(); 7015 } 7016 } 7017 rtnl_unlock(); 7018 } 7019 7020 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list) 7021 { 7022 /* Return with the rtnl_lock held when there are no network 7023 * devices unregistering in any network namespace in net_list. 7024 */ 7025 struct net *net; 7026 bool unregistering; 7027 DEFINE_WAIT(wait); 7028 7029 for (;;) { 7030 prepare_to_wait(&netdev_unregistering_wq, &wait, 7031 TASK_UNINTERRUPTIBLE); 7032 unregistering = false; 7033 rtnl_lock(); 7034 list_for_each_entry(net, net_list, exit_list) { 7035 if (net->dev_unreg_count > 0) { 7036 unregistering = true; 7037 break; 7038 } 7039 } 7040 if (!unregistering) 7041 break; 7042 __rtnl_unlock(); 7043 schedule(); 7044 } 7045 finish_wait(&netdev_unregistering_wq, &wait); 7046 } 7047 7048 static void __net_exit default_device_exit_batch(struct list_head *net_list) 7049 { 7050 /* At exit all network devices most be removed from a network 7051 * namespace. Do this in the reverse order of registration. 7052 * Do this across as many network namespaces as possible to 7053 * improve batching efficiency. 7054 */ 7055 struct net_device *dev; 7056 struct net *net; 7057 LIST_HEAD(dev_kill_list); 7058 7059 /* To prevent network device cleanup code from dereferencing 7060 * loopback devices or network devices that have been freed 7061 * wait here for all pending unregistrations to complete, 7062 * before unregistring the loopback device and allowing the 7063 * network namespace be freed. 7064 * 7065 * The netdev todo list containing all network devices 7066 * unregistrations that happen in default_device_exit_batch 7067 * will run in the rtnl_unlock() at the end of 7068 * default_device_exit_batch. 7069 */ 7070 rtnl_lock_unregistering(net_list); 7071 list_for_each_entry(net, net_list, exit_list) { 7072 for_each_netdev_reverse(net, dev) { 7073 if (dev->rtnl_link_ops) 7074 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 7075 else 7076 unregister_netdevice_queue(dev, &dev_kill_list); 7077 } 7078 } 7079 unregister_netdevice_many(&dev_kill_list); 7080 list_del(&dev_kill_list); 7081 rtnl_unlock(); 7082 } 7083 7084 static struct pernet_operations __net_initdata default_device_ops = { 7085 .exit = default_device_exit, 7086 .exit_batch = default_device_exit_batch, 7087 }; 7088 7089 /* 7090 * Initialize the DEV module. At boot time this walks the device list and 7091 * unhooks any devices that fail to initialise (normally hardware not 7092 * present) and leaves us with a valid list of present and active devices. 7093 * 7094 */ 7095 7096 /* 7097 * This is called single threaded during boot, so no need 7098 * to take the rtnl semaphore. 7099 */ 7100 static int __init net_dev_init(void) 7101 { 7102 int i, rc = -ENOMEM; 7103 7104 BUG_ON(!dev_boot_phase); 7105 7106 if (dev_proc_init()) 7107 goto out; 7108 7109 if (netdev_kobject_init()) 7110 goto out; 7111 7112 INIT_LIST_HEAD(&ptype_all); 7113 for (i = 0; i < PTYPE_HASH_SIZE; i++) 7114 INIT_LIST_HEAD(&ptype_base[i]); 7115 7116 INIT_LIST_HEAD(&offload_base); 7117 7118 if (register_pernet_subsys(&netdev_net_ops)) 7119 goto out; 7120 7121 /* 7122 * Initialise the packet receive queues. 7123 */ 7124 7125 for_each_possible_cpu(i) { 7126 struct softnet_data *sd = &per_cpu(softnet_data, i); 7127 7128 skb_queue_head_init(&sd->input_pkt_queue); 7129 skb_queue_head_init(&sd->process_queue); 7130 INIT_LIST_HEAD(&sd->poll_list); 7131 sd->output_queue_tailp = &sd->output_queue; 7132 #ifdef CONFIG_RPS 7133 sd->csd.func = rps_trigger_softirq; 7134 sd->csd.info = sd; 7135 sd->cpu = i; 7136 #endif 7137 7138 sd->backlog.poll = process_backlog; 7139 sd->backlog.weight = weight_p; 7140 } 7141 7142 dev_boot_phase = 0; 7143 7144 /* The loopback device is special if any other network devices 7145 * is present in a network namespace the loopback device must 7146 * be present. Since we now dynamically allocate and free the 7147 * loopback device ensure this invariant is maintained by 7148 * keeping the loopback device as the first device on the 7149 * list of network devices. Ensuring the loopback devices 7150 * is the first device that appears and the last network device 7151 * that disappears. 7152 */ 7153 if (register_pernet_device(&loopback_net_ops)) 7154 goto out; 7155 7156 if (register_pernet_device(&default_device_ops)) 7157 goto out; 7158 7159 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 7160 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 7161 7162 hotcpu_notifier(dev_cpu_callback, 0); 7163 dst_init(); 7164 rc = 0; 7165 out: 7166 return rc; 7167 } 7168 7169 subsys_initcall(net_dev_init); 7170