xref: /linux/net/core/dev.c (revision c5aec4c76af1a2d89ee2f2d4d5463b2ad2d85de5)
1 /*
2  * 	NET3	Protocol independent device support routines.
3  *
4  *		This program is free software; you can redistribute it and/or
5  *		modify it under the terms of the GNU General Public License
6  *		as published by the Free Software Foundation; either version
7  *		2 of the License, or (at your option) any later version.
8  *
9  *	Derived from the non IP parts of dev.c 1.0.19
10  * 		Authors:	Ross Biro
11  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *	Additional Authors:
15  *		Florian la Roche <rzsfl@rz.uni-sb.de>
16  *		Alan Cox <gw4pts@gw4pts.ampr.org>
17  *		David Hinds <dahinds@users.sourceforge.net>
18  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *		Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *	Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *              			to 2 if register_netdev gets called
25  *              			before net_dev_init & also removed a
26  *              			few lines of code in the process.
27  *		Alan Cox	:	device private ioctl copies fields back.
28  *		Alan Cox	:	Transmit queue code does relevant
29  *					stunts to keep the queue safe.
30  *		Alan Cox	:	Fixed double lock.
31  *		Alan Cox	:	Fixed promisc NULL pointer trap
32  *		????????	:	Support the full private ioctl range
33  *		Alan Cox	:	Moved ioctl permission check into
34  *					drivers
35  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
36  *		Alan Cox	:	100 backlog just doesn't cut it when
37  *					you start doing multicast video 8)
38  *		Alan Cox	:	Rewrote net_bh and list manager.
39  *		Alan Cox	: 	Fix ETH_P_ALL echoback lengths.
40  *		Alan Cox	:	Took out transmit every packet pass
41  *					Saved a few bytes in the ioctl handler
42  *		Alan Cox	:	Network driver sets packet type before
43  *					calling netif_rx. Saves a function
44  *					call a packet.
45  *		Alan Cox	:	Hashed net_bh()
46  *		Richard Kooijman:	Timestamp fixes.
47  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
48  *		Alan Cox	:	Device lock protection.
49  *		Alan Cox	: 	Fixed nasty side effect of device close
50  *					changes.
51  *		Rudi Cilibrasi	:	Pass the right thing to
52  *					set_mac_address()
53  *		Dave Miller	:	32bit quantity for the device lock to
54  *					make it work out on a Sparc.
55  *		Bjorn Ekwall	:	Added KERNELD hack.
56  *		Alan Cox	:	Cleaned up the backlog initialise.
57  *		Craig Metz	:	SIOCGIFCONF fix if space for under
58  *					1 device.
59  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
60  *					is no device open function.
61  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
62  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
63  *		Cyrus Durgin	:	Cleaned for KMOD
64  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
65  *					A network device unload needs to purge
66  *					the backlog queue.
67  *	Paul Rusty Russell	:	SIOCSIFNAME
68  *              Pekka Riikonen  :	Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *              			indefinitely on dev->refcnt
71  * 		J Hadi Salim	:	- Backlog queue sampling
72  *				        - netif_rx() feedback
73  */
74 
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/stat.h>
101 #include <net/dst.h>
102 #include <net/pkt_sched.h>
103 #include <net/checksum.h>
104 #include <net/xfrm.h>
105 #include <linux/highmem.h>
106 #include <linux/init.h>
107 #include <linux/module.h>
108 #include <linux/netpoll.h>
109 #include <linux/rcupdate.h>
110 #include <linux/delay.h>
111 #include <net/iw_handler.h>
112 #include <asm/current.h>
113 #include <linux/audit.h>
114 #include <linux/dmaengine.h>
115 #include <linux/err.h>
116 #include <linux/ctype.h>
117 #include <linux/if_arp.h>
118 #include <linux/if_vlan.h>
119 #include <linux/ip.h>
120 #include <net/ip.h>
121 #include <linux/ipv6.h>
122 #include <linux/in.h>
123 #include <linux/jhash.h>
124 #include <linux/random.h>
125 #include <trace/events/napi.h>
126 #include <trace/events/net.h>
127 #include <trace/events/skb.h>
128 #include <linux/pci.h>
129 #include <linux/inetdevice.h>
130 #include <linux/cpu_rmap.h>
131 #include <linux/static_key.h>
132 #include <linux/hashtable.h>
133 #include <linux/vmalloc.h>
134 #include <linux/if_macvlan.h>
135 
136 #include "net-sysfs.h"
137 
138 /* Instead of increasing this, you should create a hash table. */
139 #define MAX_GRO_SKBS 8
140 
141 /* This should be increased if a protocol with a bigger head is added. */
142 #define GRO_MAX_HEAD (MAX_HEADER + 128)
143 
144 static DEFINE_SPINLOCK(ptype_lock);
145 static DEFINE_SPINLOCK(offload_lock);
146 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
147 struct list_head ptype_all __read_mostly;	/* Taps */
148 static struct list_head offload_base __read_mostly;
149 
150 static int netif_rx_internal(struct sk_buff *skb);
151 
152 /*
153  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
154  * semaphore.
155  *
156  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
157  *
158  * Writers must hold the rtnl semaphore while they loop through the
159  * dev_base_head list, and hold dev_base_lock for writing when they do the
160  * actual updates.  This allows pure readers to access the list even
161  * while a writer is preparing to update it.
162  *
163  * To put it another way, dev_base_lock is held for writing only to
164  * protect against pure readers; the rtnl semaphore provides the
165  * protection against other writers.
166  *
167  * See, for example usages, register_netdevice() and
168  * unregister_netdevice(), which must be called with the rtnl
169  * semaphore held.
170  */
171 DEFINE_RWLOCK(dev_base_lock);
172 EXPORT_SYMBOL(dev_base_lock);
173 
174 /* protects napi_hash addition/deletion and napi_gen_id */
175 static DEFINE_SPINLOCK(napi_hash_lock);
176 
177 static unsigned int napi_gen_id;
178 static DEFINE_HASHTABLE(napi_hash, 8);
179 
180 static seqcount_t devnet_rename_seq;
181 
182 static inline void dev_base_seq_inc(struct net *net)
183 {
184 	while (++net->dev_base_seq == 0);
185 }
186 
187 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
188 {
189 	unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
190 
191 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
192 }
193 
194 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
195 {
196 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
197 }
198 
199 static inline void rps_lock(struct softnet_data *sd)
200 {
201 #ifdef CONFIG_RPS
202 	spin_lock(&sd->input_pkt_queue.lock);
203 #endif
204 }
205 
206 static inline void rps_unlock(struct softnet_data *sd)
207 {
208 #ifdef CONFIG_RPS
209 	spin_unlock(&sd->input_pkt_queue.lock);
210 #endif
211 }
212 
213 /* Device list insertion */
214 static void list_netdevice(struct net_device *dev)
215 {
216 	struct net *net = dev_net(dev);
217 
218 	ASSERT_RTNL();
219 
220 	write_lock_bh(&dev_base_lock);
221 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
222 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
223 	hlist_add_head_rcu(&dev->index_hlist,
224 			   dev_index_hash(net, dev->ifindex));
225 	write_unlock_bh(&dev_base_lock);
226 
227 	dev_base_seq_inc(net);
228 }
229 
230 /* Device list removal
231  * caller must respect a RCU grace period before freeing/reusing dev
232  */
233 static void unlist_netdevice(struct net_device *dev)
234 {
235 	ASSERT_RTNL();
236 
237 	/* Unlink dev from the device chain */
238 	write_lock_bh(&dev_base_lock);
239 	list_del_rcu(&dev->dev_list);
240 	hlist_del_rcu(&dev->name_hlist);
241 	hlist_del_rcu(&dev->index_hlist);
242 	write_unlock_bh(&dev_base_lock);
243 
244 	dev_base_seq_inc(dev_net(dev));
245 }
246 
247 /*
248  *	Our notifier list
249  */
250 
251 static RAW_NOTIFIER_HEAD(netdev_chain);
252 
253 /*
254  *	Device drivers call our routines to queue packets here. We empty the
255  *	queue in the local softnet handler.
256  */
257 
258 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
259 EXPORT_PER_CPU_SYMBOL(softnet_data);
260 
261 #ifdef CONFIG_LOCKDEP
262 /*
263  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
264  * according to dev->type
265  */
266 static const unsigned short netdev_lock_type[] =
267 	{ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
268 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
269 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
270 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
271 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
272 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
273 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
274 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
275 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
276 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
277 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
278 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
279 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
280 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
281 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
282 
283 static const char *const netdev_lock_name[] =
284 	{"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
285 	 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
286 	 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
287 	 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
288 	 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
289 	 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
290 	 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
291 	 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
292 	 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
293 	 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
294 	 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
295 	 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
296 	 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
297 	 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
298 	 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
299 
300 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
301 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
302 
303 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
304 {
305 	int i;
306 
307 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
308 		if (netdev_lock_type[i] == dev_type)
309 			return i;
310 	/* the last key is used by default */
311 	return ARRAY_SIZE(netdev_lock_type) - 1;
312 }
313 
314 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
315 						 unsigned short dev_type)
316 {
317 	int i;
318 
319 	i = netdev_lock_pos(dev_type);
320 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
321 				   netdev_lock_name[i]);
322 }
323 
324 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
325 {
326 	int i;
327 
328 	i = netdev_lock_pos(dev->type);
329 	lockdep_set_class_and_name(&dev->addr_list_lock,
330 				   &netdev_addr_lock_key[i],
331 				   netdev_lock_name[i]);
332 }
333 #else
334 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
335 						 unsigned short dev_type)
336 {
337 }
338 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
339 {
340 }
341 #endif
342 
343 /*******************************************************************************
344 
345 		Protocol management and registration routines
346 
347 *******************************************************************************/
348 
349 /*
350  *	Add a protocol ID to the list. Now that the input handler is
351  *	smarter we can dispense with all the messy stuff that used to be
352  *	here.
353  *
354  *	BEWARE!!! Protocol handlers, mangling input packets,
355  *	MUST BE last in hash buckets and checking protocol handlers
356  *	MUST start from promiscuous ptype_all chain in net_bh.
357  *	It is true now, do not change it.
358  *	Explanation follows: if protocol handler, mangling packet, will
359  *	be the first on list, it is not able to sense, that packet
360  *	is cloned and should be copied-on-write, so that it will
361  *	change it and subsequent readers will get broken packet.
362  *							--ANK (980803)
363  */
364 
365 static inline struct list_head *ptype_head(const struct packet_type *pt)
366 {
367 	if (pt->type == htons(ETH_P_ALL))
368 		return &ptype_all;
369 	else
370 		return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
371 }
372 
373 /**
374  *	dev_add_pack - add packet handler
375  *	@pt: packet type declaration
376  *
377  *	Add a protocol handler to the networking stack. The passed &packet_type
378  *	is linked into kernel lists and may not be freed until it has been
379  *	removed from the kernel lists.
380  *
381  *	This call does not sleep therefore it can not
382  *	guarantee all CPU's that are in middle of receiving packets
383  *	will see the new packet type (until the next received packet).
384  */
385 
386 void dev_add_pack(struct packet_type *pt)
387 {
388 	struct list_head *head = ptype_head(pt);
389 
390 	spin_lock(&ptype_lock);
391 	list_add_rcu(&pt->list, head);
392 	spin_unlock(&ptype_lock);
393 }
394 EXPORT_SYMBOL(dev_add_pack);
395 
396 /**
397  *	__dev_remove_pack	 - remove packet handler
398  *	@pt: packet type declaration
399  *
400  *	Remove a protocol handler that was previously added to the kernel
401  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
402  *	from the kernel lists and can be freed or reused once this function
403  *	returns.
404  *
405  *      The packet type might still be in use by receivers
406  *	and must not be freed until after all the CPU's have gone
407  *	through a quiescent state.
408  */
409 void __dev_remove_pack(struct packet_type *pt)
410 {
411 	struct list_head *head = ptype_head(pt);
412 	struct packet_type *pt1;
413 
414 	spin_lock(&ptype_lock);
415 
416 	list_for_each_entry(pt1, head, list) {
417 		if (pt == pt1) {
418 			list_del_rcu(&pt->list);
419 			goto out;
420 		}
421 	}
422 
423 	pr_warn("dev_remove_pack: %p not found\n", pt);
424 out:
425 	spin_unlock(&ptype_lock);
426 }
427 EXPORT_SYMBOL(__dev_remove_pack);
428 
429 /**
430  *	dev_remove_pack	 - remove packet handler
431  *	@pt: packet type declaration
432  *
433  *	Remove a protocol handler that was previously added to the kernel
434  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
435  *	from the kernel lists and can be freed or reused once this function
436  *	returns.
437  *
438  *	This call sleeps to guarantee that no CPU is looking at the packet
439  *	type after return.
440  */
441 void dev_remove_pack(struct packet_type *pt)
442 {
443 	__dev_remove_pack(pt);
444 
445 	synchronize_net();
446 }
447 EXPORT_SYMBOL(dev_remove_pack);
448 
449 
450 /**
451  *	dev_add_offload - register offload handlers
452  *	@po: protocol offload declaration
453  *
454  *	Add protocol offload handlers to the networking stack. The passed
455  *	&proto_offload is linked into kernel lists and may not be freed until
456  *	it has been removed from the kernel lists.
457  *
458  *	This call does not sleep therefore it can not
459  *	guarantee all CPU's that are in middle of receiving packets
460  *	will see the new offload handlers (until the next received packet).
461  */
462 void dev_add_offload(struct packet_offload *po)
463 {
464 	struct list_head *head = &offload_base;
465 
466 	spin_lock(&offload_lock);
467 	list_add_rcu(&po->list, head);
468 	spin_unlock(&offload_lock);
469 }
470 EXPORT_SYMBOL(dev_add_offload);
471 
472 /**
473  *	__dev_remove_offload	 - remove offload handler
474  *	@po: packet offload declaration
475  *
476  *	Remove a protocol offload handler that was previously added to the
477  *	kernel offload handlers by dev_add_offload(). The passed &offload_type
478  *	is removed from the kernel lists and can be freed or reused once this
479  *	function returns.
480  *
481  *      The packet type might still be in use by receivers
482  *	and must not be freed until after all the CPU's have gone
483  *	through a quiescent state.
484  */
485 static void __dev_remove_offload(struct packet_offload *po)
486 {
487 	struct list_head *head = &offload_base;
488 	struct packet_offload *po1;
489 
490 	spin_lock(&offload_lock);
491 
492 	list_for_each_entry(po1, head, list) {
493 		if (po == po1) {
494 			list_del_rcu(&po->list);
495 			goto out;
496 		}
497 	}
498 
499 	pr_warn("dev_remove_offload: %p not found\n", po);
500 out:
501 	spin_unlock(&offload_lock);
502 }
503 
504 /**
505  *	dev_remove_offload	 - remove packet offload handler
506  *	@po: packet offload declaration
507  *
508  *	Remove a packet offload handler that was previously added to the kernel
509  *	offload handlers by dev_add_offload(). The passed &offload_type is
510  *	removed from the kernel lists and can be freed or reused once this
511  *	function returns.
512  *
513  *	This call sleeps to guarantee that no CPU is looking at the packet
514  *	type after return.
515  */
516 void dev_remove_offload(struct packet_offload *po)
517 {
518 	__dev_remove_offload(po);
519 
520 	synchronize_net();
521 }
522 EXPORT_SYMBOL(dev_remove_offload);
523 
524 /******************************************************************************
525 
526 		      Device Boot-time Settings Routines
527 
528 *******************************************************************************/
529 
530 /* Boot time configuration table */
531 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
532 
533 /**
534  *	netdev_boot_setup_add	- add new setup entry
535  *	@name: name of the device
536  *	@map: configured settings for the device
537  *
538  *	Adds new setup entry to the dev_boot_setup list.  The function
539  *	returns 0 on error and 1 on success.  This is a generic routine to
540  *	all netdevices.
541  */
542 static int netdev_boot_setup_add(char *name, struct ifmap *map)
543 {
544 	struct netdev_boot_setup *s;
545 	int i;
546 
547 	s = dev_boot_setup;
548 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
549 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
550 			memset(s[i].name, 0, sizeof(s[i].name));
551 			strlcpy(s[i].name, name, IFNAMSIZ);
552 			memcpy(&s[i].map, map, sizeof(s[i].map));
553 			break;
554 		}
555 	}
556 
557 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
558 }
559 
560 /**
561  *	netdev_boot_setup_check	- check boot time settings
562  *	@dev: the netdevice
563  *
564  * 	Check boot time settings for the device.
565  *	The found settings are set for the device to be used
566  *	later in the device probing.
567  *	Returns 0 if no settings found, 1 if they are.
568  */
569 int netdev_boot_setup_check(struct net_device *dev)
570 {
571 	struct netdev_boot_setup *s = dev_boot_setup;
572 	int i;
573 
574 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
575 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
576 		    !strcmp(dev->name, s[i].name)) {
577 			dev->irq 	= s[i].map.irq;
578 			dev->base_addr 	= s[i].map.base_addr;
579 			dev->mem_start 	= s[i].map.mem_start;
580 			dev->mem_end 	= s[i].map.mem_end;
581 			return 1;
582 		}
583 	}
584 	return 0;
585 }
586 EXPORT_SYMBOL(netdev_boot_setup_check);
587 
588 
589 /**
590  *	netdev_boot_base	- get address from boot time settings
591  *	@prefix: prefix for network device
592  *	@unit: id for network device
593  *
594  * 	Check boot time settings for the base address of device.
595  *	The found settings are set for the device to be used
596  *	later in the device probing.
597  *	Returns 0 if no settings found.
598  */
599 unsigned long netdev_boot_base(const char *prefix, int unit)
600 {
601 	const struct netdev_boot_setup *s = dev_boot_setup;
602 	char name[IFNAMSIZ];
603 	int i;
604 
605 	sprintf(name, "%s%d", prefix, unit);
606 
607 	/*
608 	 * If device already registered then return base of 1
609 	 * to indicate not to probe for this interface
610 	 */
611 	if (__dev_get_by_name(&init_net, name))
612 		return 1;
613 
614 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
615 		if (!strcmp(name, s[i].name))
616 			return s[i].map.base_addr;
617 	return 0;
618 }
619 
620 /*
621  * Saves at boot time configured settings for any netdevice.
622  */
623 int __init netdev_boot_setup(char *str)
624 {
625 	int ints[5];
626 	struct ifmap map;
627 
628 	str = get_options(str, ARRAY_SIZE(ints), ints);
629 	if (!str || !*str)
630 		return 0;
631 
632 	/* Save settings */
633 	memset(&map, 0, sizeof(map));
634 	if (ints[0] > 0)
635 		map.irq = ints[1];
636 	if (ints[0] > 1)
637 		map.base_addr = ints[2];
638 	if (ints[0] > 2)
639 		map.mem_start = ints[3];
640 	if (ints[0] > 3)
641 		map.mem_end = ints[4];
642 
643 	/* Add new entry to the list */
644 	return netdev_boot_setup_add(str, &map);
645 }
646 
647 __setup("netdev=", netdev_boot_setup);
648 
649 /*******************************************************************************
650 
651 			    Device Interface Subroutines
652 
653 *******************************************************************************/
654 
655 /**
656  *	__dev_get_by_name	- find a device by its name
657  *	@net: the applicable net namespace
658  *	@name: name to find
659  *
660  *	Find an interface by name. Must be called under RTNL semaphore
661  *	or @dev_base_lock. If the name is found a pointer to the device
662  *	is returned. If the name is not found then %NULL is returned. The
663  *	reference counters are not incremented so the caller must be
664  *	careful with locks.
665  */
666 
667 struct net_device *__dev_get_by_name(struct net *net, const char *name)
668 {
669 	struct net_device *dev;
670 	struct hlist_head *head = dev_name_hash(net, name);
671 
672 	hlist_for_each_entry(dev, head, name_hlist)
673 		if (!strncmp(dev->name, name, IFNAMSIZ))
674 			return dev;
675 
676 	return NULL;
677 }
678 EXPORT_SYMBOL(__dev_get_by_name);
679 
680 /**
681  *	dev_get_by_name_rcu	- find a device by its name
682  *	@net: the applicable net namespace
683  *	@name: name to find
684  *
685  *	Find an interface by name.
686  *	If the name is found a pointer to the device is returned.
687  * 	If the name is not found then %NULL is returned.
688  *	The reference counters are not incremented so the caller must be
689  *	careful with locks. The caller must hold RCU lock.
690  */
691 
692 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
693 {
694 	struct net_device *dev;
695 	struct hlist_head *head = dev_name_hash(net, name);
696 
697 	hlist_for_each_entry_rcu(dev, head, name_hlist)
698 		if (!strncmp(dev->name, name, IFNAMSIZ))
699 			return dev;
700 
701 	return NULL;
702 }
703 EXPORT_SYMBOL(dev_get_by_name_rcu);
704 
705 /**
706  *	dev_get_by_name		- find a device by its name
707  *	@net: the applicable net namespace
708  *	@name: name to find
709  *
710  *	Find an interface by name. This can be called from any
711  *	context and does its own locking. The returned handle has
712  *	the usage count incremented and the caller must use dev_put() to
713  *	release it when it is no longer needed. %NULL is returned if no
714  *	matching device is found.
715  */
716 
717 struct net_device *dev_get_by_name(struct net *net, const char *name)
718 {
719 	struct net_device *dev;
720 
721 	rcu_read_lock();
722 	dev = dev_get_by_name_rcu(net, name);
723 	if (dev)
724 		dev_hold(dev);
725 	rcu_read_unlock();
726 	return dev;
727 }
728 EXPORT_SYMBOL(dev_get_by_name);
729 
730 /**
731  *	__dev_get_by_index - find a device by its ifindex
732  *	@net: the applicable net namespace
733  *	@ifindex: index of device
734  *
735  *	Search for an interface by index. Returns %NULL if the device
736  *	is not found or a pointer to the device. The device has not
737  *	had its reference counter increased so the caller must be careful
738  *	about locking. The caller must hold either the RTNL semaphore
739  *	or @dev_base_lock.
740  */
741 
742 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
743 {
744 	struct net_device *dev;
745 	struct hlist_head *head = dev_index_hash(net, ifindex);
746 
747 	hlist_for_each_entry(dev, head, index_hlist)
748 		if (dev->ifindex == ifindex)
749 			return dev;
750 
751 	return NULL;
752 }
753 EXPORT_SYMBOL(__dev_get_by_index);
754 
755 /**
756  *	dev_get_by_index_rcu - find a device by its ifindex
757  *	@net: the applicable net namespace
758  *	@ifindex: index of device
759  *
760  *	Search for an interface by index. Returns %NULL if the device
761  *	is not found or a pointer to the device. The device has not
762  *	had its reference counter increased so the caller must be careful
763  *	about locking. The caller must hold RCU lock.
764  */
765 
766 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
767 {
768 	struct net_device *dev;
769 	struct hlist_head *head = dev_index_hash(net, ifindex);
770 
771 	hlist_for_each_entry_rcu(dev, head, index_hlist)
772 		if (dev->ifindex == ifindex)
773 			return dev;
774 
775 	return NULL;
776 }
777 EXPORT_SYMBOL(dev_get_by_index_rcu);
778 
779 
780 /**
781  *	dev_get_by_index - find a device by its ifindex
782  *	@net: the applicable net namespace
783  *	@ifindex: index of device
784  *
785  *	Search for an interface by index. Returns NULL if the device
786  *	is not found or a pointer to the device. The device returned has
787  *	had a reference added and the pointer is safe until the user calls
788  *	dev_put to indicate they have finished with it.
789  */
790 
791 struct net_device *dev_get_by_index(struct net *net, int ifindex)
792 {
793 	struct net_device *dev;
794 
795 	rcu_read_lock();
796 	dev = dev_get_by_index_rcu(net, ifindex);
797 	if (dev)
798 		dev_hold(dev);
799 	rcu_read_unlock();
800 	return dev;
801 }
802 EXPORT_SYMBOL(dev_get_by_index);
803 
804 /**
805  *	netdev_get_name - get a netdevice name, knowing its ifindex.
806  *	@net: network namespace
807  *	@name: a pointer to the buffer where the name will be stored.
808  *	@ifindex: the ifindex of the interface to get the name from.
809  *
810  *	The use of raw_seqcount_begin() and cond_resched() before
811  *	retrying is required as we want to give the writers a chance
812  *	to complete when CONFIG_PREEMPT is not set.
813  */
814 int netdev_get_name(struct net *net, char *name, int ifindex)
815 {
816 	struct net_device *dev;
817 	unsigned int seq;
818 
819 retry:
820 	seq = raw_seqcount_begin(&devnet_rename_seq);
821 	rcu_read_lock();
822 	dev = dev_get_by_index_rcu(net, ifindex);
823 	if (!dev) {
824 		rcu_read_unlock();
825 		return -ENODEV;
826 	}
827 
828 	strcpy(name, dev->name);
829 	rcu_read_unlock();
830 	if (read_seqcount_retry(&devnet_rename_seq, seq)) {
831 		cond_resched();
832 		goto retry;
833 	}
834 
835 	return 0;
836 }
837 
838 /**
839  *	dev_getbyhwaddr_rcu - find a device by its hardware address
840  *	@net: the applicable net namespace
841  *	@type: media type of device
842  *	@ha: hardware address
843  *
844  *	Search for an interface by MAC address. Returns NULL if the device
845  *	is not found or a pointer to the device.
846  *	The caller must hold RCU or RTNL.
847  *	The returned device has not had its ref count increased
848  *	and the caller must therefore be careful about locking
849  *
850  */
851 
852 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
853 				       const char *ha)
854 {
855 	struct net_device *dev;
856 
857 	for_each_netdev_rcu(net, dev)
858 		if (dev->type == type &&
859 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
860 			return dev;
861 
862 	return NULL;
863 }
864 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
865 
866 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
867 {
868 	struct net_device *dev;
869 
870 	ASSERT_RTNL();
871 	for_each_netdev(net, dev)
872 		if (dev->type == type)
873 			return dev;
874 
875 	return NULL;
876 }
877 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
878 
879 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
880 {
881 	struct net_device *dev, *ret = NULL;
882 
883 	rcu_read_lock();
884 	for_each_netdev_rcu(net, dev)
885 		if (dev->type == type) {
886 			dev_hold(dev);
887 			ret = dev;
888 			break;
889 		}
890 	rcu_read_unlock();
891 	return ret;
892 }
893 EXPORT_SYMBOL(dev_getfirstbyhwtype);
894 
895 /**
896  *	dev_get_by_flags_rcu - find any device with given flags
897  *	@net: the applicable net namespace
898  *	@if_flags: IFF_* values
899  *	@mask: bitmask of bits in if_flags to check
900  *
901  *	Search for any interface with the given flags. Returns NULL if a device
902  *	is not found or a pointer to the device. Must be called inside
903  *	rcu_read_lock(), and result refcount is unchanged.
904  */
905 
906 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
907 				    unsigned short mask)
908 {
909 	struct net_device *dev, *ret;
910 
911 	ret = NULL;
912 	for_each_netdev_rcu(net, dev) {
913 		if (((dev->flags ^ if_flags) & mask) == 0) {
914 			ret = dev;
915 			break;
916 		}
917 	}
918 	return ret;
919 }
920 EXPORT_SYMBOL(dev_get_by_flags_rcu);
921 
922 /**
923  *	dev_valid_name - check if name is okay for network device
924  *	@name: name string
925  *
926  *	Network device names need to be valid file names to
927  *	to allow sysfs to work.  We also disallow any kind of
928  *	whitespace.
929  */
930 bool dev_valid_name(const char *name)
931 {
932 	if (*name == '\0')
933 		return false;
934 	if (strlen(name) >= IFNAMSIZ)
935 		return false;
936 	if (!strcmp(name, ".") || !strcmp(name, ".."))
937 		return false;
938 
939 	while (*name) {
940 		if (*name == '/' || isspace(*name))
941 			return false;
942 		name++;
943 	}
944 	return true;
945 }
946 EXPORT_SYMBOL(dev_valid_name);
947 
948 /**
949  *	__dev_alloc_name - allocate a name for a device
950  *	@net: network namespace to allocate the device name in
951  *	@name: name format string
952  *	@buf:  scratch buffer and result name string
953  *
954  *	Passed a format string - eg "lt%d" it will try and find a suitable
955  *	id. It scans list of devices to build up a free map, then chooses
956  *	the first empty slot. The caller must hold the dev_base or rtnl lock
957  *	while allocating the name and adding the device in order to avoid
958  *	duplicates.
959  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
960  *	Returns the number of the unit assigned or a negative errno code.
961  */
962 
963 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
964 {
965 	int i = 0;
966 	const char *p;
967 	const int max_netdevices = 8*PAGE_SIZE;
968 	unsigned long *inuse;
969 	struct net_device *d;
970 
971 	p = strnchr(name, IFNAMSIZ-1, '%');
972 	if (p) {
973 		/*
974 		 * Verify the string as this thing may have come from
975 		 * the user.  There must be either one "%d" and no other "%"
976 		 * characters.
977 		 */
978 		if (p[1] != 'd' || strchr(p + 2, '%'))
979 			return -EINVAL;
980 
981 		/* Use one page as a bit array of possible slots */
982 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
983 		if (!inuse)
984 			return -ENOMEM;
985 
986 		for_each_netdev(net, d) {
987 			if (!sscanf(d->name, name, &i))
988 				continue;
989 			if (i < 0 || i >= max_netdevices)
990 				continue;
991 
992 			/*  avoid cases where sscanf is not exact inverse of printf */
993 			snprintf(buf, IFNAMSIZ, name, i);
994 			if (!strncmp(buf, d->name, IFNAMSIZ))
995 				set_bit(i, inuse);
996 		}
997 
998 		i = find_first_zero_bit(inuse, max_netdevices);
999 		free_page((unsigned long) inuse);
1000 	}
1001 
1002 	if (buf != name)
1003 		snprintf(buf, IFNAMSIZ, name, i);
1004 	if (!__dev_get_by_name(net, buf))
1005 		return i;
1006 
1007 	/* It is possible to run out of possible slots
1008 	 * when the name is long and there isn't enough space left
1009 	 * for the digits, or if all bits are used.
1010 	 */
1011 	return -ENFILE;
1012 }
1013 
1014 /**
1015  *	dev_alloc_name - allocate a name for a device
1016  *	@dev: device
1017  *	@name: name format string
1018  *
1019  *	Passed a format string - eg "lt%d" it will try and find a suitable
1020  *	id. It scans list of devices to build up a free map, then chooses
1021  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1022  *	while allocating the name and adding the device in order to avoid
1023  *	duplicates.
1024  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1025  *	Returns the number of the unit assigned or a negative errno code.
1026  */
1027 
1028 int dev_alloc_name(struct net_device *dev, const char *name)
1029 {
1030 	char buf[IFNAMSIZ];
1031 	struct net *net;
1032 	int ret;
1033 
1034 	BUG_ON(!dev_net(dev));
1035 	net = dev_net(dev);
1036 	ret = __dev_alloc_name(net, name, buf);
1037 	if (ret >= 0)
1038 		strlcpy(dev->name, buf, IFNAMSIZ);
1039 	return ret;
1040 }
1041 EXPORT_SYMBOL(dev_alloc_name);
1042 
1043 static int dev_alloc_name_ns(struct net *net,
1044 			     struct net_device *dev,
1045 			     const char *name)
1046 {
1047 	char buf[IFNAMSIZ];
1048 	int ret;
1049 
1050 	ret = __dev_alloc_name(net, name, buf);
1051 	if (ret >= 0)
1052 		strlcpy(dev->name, buf, IFNAMSIZ);
1053 	return ret;
1054 }
1055 
1056 static int dev_get_valid_name(struct net *net,
1057 			      struct net_device *dev,
1058 			      const char *name)
1059 {
1060 	BUG_ON(!net);
1061 
1062 	if (!dev_valid_name(name))
1063 		return -EINVAL;
1064 
1065 	if (strchr(name, '%'))
1066 		return dev_alloc_name_ns(net, dev, name);
1067 	else if (__dev_get_by_name(net, name))
1068 		return -EEXIST;
1069 	else if (dev->name != name)
1070 		strlcpy(dev->name, name, IFNAMSIZ);
1071 
1072 	return 0;
1073 }
1074 
1075 /**
1076  *	dev_change_name - change name of a device
1077  *	@dev: device
1078  *	@newname: name (or format string) must be at least IFNAMSIZ
1079  *
1080  *	Change name of a device, can pass format strings "eth%d".
1081  *	for wildcarding.
1082  */
1083 int dev_change_name(struct net_device *dev, const char *newname)
1084 {
1085 	char oldname[IFNAMSIZ];
1086 	int err = 0;
1087 	int ret;
1088 	struct net *net;
1089 
1090 	ASSERT_RTNL();
1091 	BUG_ON(!dev_net(dev));
1092 
1093 	net = dev_net(dev);
1094 	if (dev->flags & IFF_UP)
1095 		return -EBUSY;
1096 
1097 	write_seqcount_begin(&devnet_rename_seq);
1098 
1099 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1100 		write_seqcount_end(&devnet_rename_seq);
1101 		return 0;
1102 	}
1103 
1104 	memcpy(oldname, dev->name, IFNAMSIZ);
1105 
1106 	err = dev_get_valid_name(net, dev, newname);
1107 	if (err < 0) {
1108 		write_seqcount_end(&devnet_rename_seq);
1109 		return err;
1110 	}
1111 
1112 rollback:
1113 	ret = device_rename(&dev->dev, dev->name);
1114 	if (ret) {
1115 		memcpy(dev->name, oldname, IFNAMSIZ);
1116 		write_seqcount_end(&devnet_rename_seq);
1117 		return ret;
1118 	}
1119 
1120 	write_seqcount_end(&devnet_rename_seq);
1121 
1122 	netdev_adjacent_rename_links(dev, oldname);
1123 
1124 	write_lock_bh(&dev_base_lock);
1125 	hlist_del_rcu(&dev->name_hlist);
1126 	write_unlock_bh(&dev_base_lock);
1127 
1128 	synchronize_rcu();
1129 
1130 	write_lock_bh(&dev_base_lock);
1131 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1132 	write_unlock_bh(&dev_base_lock);
1133 
1134 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1135 	ret = notifier_to_errno(ret);
1136 
1137 	if (ret) {
1138 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1139 		if (err >= 0) {
1140 			err = ret;
1141 			write_seqcount_begin(&devnet_rename_seq);
1142 			memcpy(dev->name, oldname, IFNAMSIZ);
1143 			memcpy(oldname, newname, IFNAMSIZ);
1144 			goto rollback;
1145 		} else {
1146 			pr_err("%s: name change rollback failed: %d\n",
1147 			       dev->name, ret);
1148 		}
1149 	}
1150 
1151 	return err;
1152 }
1153 
1154 /**
1155  *	dev_set_alias - change ifalias of a device
1156  *	@dev: device
1157  *	@alias: name up to IFALIASZ
1158  *	@len: limit of bytes to copy from info
1159  *
1160  *	Set ifalias for a device,
1161  */
1162 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1163 {
1164 	char *new_ifalias;
1165 
1166 	ASSERT_RTNL();
1167 
1168 	if (len >= IFALIASZ)
1169 		return -EINVAL;
1170 
1171 	if (!len) {
1172 		kfree(dev->ifalias);
1173 		dev->ifalias = NULL;
1174 		return 0;
1175 	}
1176 
1177 	new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1178 	if (!new_ifalias)
1179 		return -ENOMEM;
1180 	dev->ifalias = new_ifalias;
1181 
1182 	strlcpy(dev->ifalias, alias, len+1);
1183 	return len;
1184 }
1185 
1186 
1187 /**
1188  *	netdev_features_change - device changes features
1189  *	@dev: device to cause notification
1190  *
1191  *	Called to indicate a device has changed features.
1192  */
1193 void netdev_features_change(struct net_device *dev)
1194 {
1195 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1196 }
1197 EXPORT_SYMBOL(netdev_features_change);
1198 
1199 /**
1200  *	netdev_state_change - device changes state
1201  *	@dev: device to cause notification
1202  *
1203  *	Called to indicate a device has changed state. This function calls
1204  *	the notifier chains for netdev_chain and sends a NEWLINK message
1205  *	to the routing socket.
1206  */
1207 void netdev_state_change(struct net_device *dev)
1208 {
1209 	if (dev->flags & IFF_UP) {
1210 		call_netdevice_notifiers(NETDEV_CHANGE, dev);
1211 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1212 	}
1213 }
1214 EXPORT_SYMBOL(netdev_state_change);
1215 
1216 /**
1217  * 	netdev_notify_peers - notify network peers about existence of @dev
1218  * 	@dev: network device
1219  *
1220  * Generate traffic such that interested network peers are aware of
1221  * @dev, such as by generating a gratuitous ARP. This may be used when
1222  * a device wants to inform the rest of the network about some sort of
1223  * reconfiguration such as a failover event or virtual machine
1224  * migration.
1225  */
1226 void netdev_notify_peers(struct net_device *dev)
1227 {
1228 	rtnl_lock();
1229 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1230 	rtnl_unlock();
1231 }
1232 EXPORT_SYMBOL(netdev_notify_peers);
1233 
1234 static int __dev_open(struct net_device *dev)
1235 {
1236 	const struct net_device_ops *ops = dev->netdev_ops;
1237 	int ret;
1238 
1239 	ASSERT_RTNL();
1240 
1241 	if (!netif_device_present(dev))
1242 		return -ENODEV;
1243 
1244 	/* Block netpoll from trying to do any rx path servicing.
1245 	 * If we don't do this there is a chance ndo_poll_controller
1246 	 * or ndo_poll may be running while we open the device
1247 	 */
1248 	netpoll_poll_disable(dev);
1249 
1250 	ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1251 	ret = notifier_to_errno(ret);
1252 	if (ret)
1253 		return ret;
1254 
1255 	set_bit(__LINK_STATE_START, &dev->state);
1256 
1257 	if (ops->ndo_validate_addr)
1258 		ret = ops->ndo_validate_addr(dev);
1259 
1260 	if (!ret && ops->ndo_open)
1261 		ret = ops->ndo_open(dev);
1262 
1263 	netpoll_poll_enable(dev);
1264 
1265 	if (ret)
1266 		clear_bit(__LINK_STATE_START, &dev->state);
1267 	else {
1268 		dev->flags |= IFF_UP;
1269 		net_dmaengine_get();
1270 		dev_set_rx_mode(dev);
1271 		dev_activate(dev);
1272 		add_device_randomness(dev->dev_addr, dev->addr_len);
1273 	}
1274 
1275 	return ret;
1276 }
1277 
1278 /**
1279  *	dev_open	- prepare an interface for use.
1280  *	@dev:	device to open
1281  *
1282  *	Takes a device from down to up state. The device's private open
1283  *	function is invoked and then the multicast lists are loaded. Finally
1284  *	the device is moved into the up state and a %NETDEV_UP message is
1285  *	sent to the netdev notifier chain.
1286  *
1287  *	Calling this function on an active interface is a nop. On a failure
1288  *	a negative errno code is returned.
1289  */
1290 int dev_open(struct net_device *dev)
1291 {
1292 	int ret;
1293 
1294 	if (dev->flags & IFF_UP)
1295 		return 0;
1296 
1297 	ret = __dev_open(dev);
1298 	if (ret < 0)
1299 		return ret;
1300 
1301 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1302 	call_netdevice_notifiers(NETDEV_UP, dev);
1303 
1304 	return ret;
1305 }
1306 EXPORT_SYMBOL(dev_open);
1307 
1308 static int __dev_close_many(struct list_head *head)
1309 {
1310 	struct net_device *dev;
1311 
1312 	ASSERT_RTNL();
1313 	might_sleep();
1314 
1315 	list_for_each_entry(dev, head, close_list) {
1316 		/* Temporarily disable netpoll until the interface is down */
1317 		netpoll_poll_disable(dev);
1318 
1319 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1320 
1321 		clear_bit(__LINK_STATE_START, &dev->state);
1322 
1323 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1324 		 * can be even on different cpu. So just clear netif_running().
1325 		 *
1326 		 * dev->stop() will invoke napi_disable() on all of it's
1327 		 * napi_struct instances on this device.
1328 		 */
1329 		smp_mb__after_atomic(); /* Commit netif_running(). */
1330 	}
1331 
1332 	dev_deactivate_many(head);
1333 
1334 	list_for_each_entry(dev, head, close_list) {
1335 		const struct net_device_ops *ops = dev->netdev_ops;
1336 
1337 		/*
1338 		 *	Call the device specific close. This cannot fail.
1339 		 *	Only if device is UP
1340 		 *
1341 		 *	We allow it to be called even after a DETACH hot-plug
1342 		 *	event.
1343 		 */
1344 		if (ops->ndo_stop)
1345 			ops->ndo_stop(dev);
1346 
1347 		dev->flags &= ~IFF_UP;
1348 		net_dmaengine_put();
1349 		netpoll_poll_enable(dev);
1350 	}
1351 
1352 	return 0;
1353 }
1354 
1355 static int __dev_close(struct net_device *dev)
1356 {
1357 	int retval;
1358 	LIST_HEAD(single);
1359 
1360 	list_add(&dev->close_list, &single);
1361 	retval = __dev_close_many(&single);
1362 	list_del(&single);
1363 
1364 	return retval;
1365 }
1366 
1367 static int dev_close_many(struct list_head *head)
1368 {
1369 	struct net_device *dev, *tmp;
1370 
1371 	/* Remove the devices that don't need to be closed */
1372 	list_for_each_entry_safe(dev, tmp, head, close_list)
1373 		if (!(dev->flags & IFF_UP))
1374 			list_del_init(&dev->close_list);
1375 
1376 	__dev_close_many(head);
1377 
1378 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1379 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1380 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1381 		list_del_init(&dev->close_list);
1382 	}
1383 
1384 	return 0;
1385 }
1386 
1387 /**
1388  *	dev_close - shutdown an interface.
1389  *	@dev: device to shutdown
1390  *
1391  *	This function moves an active device into down state. A
1392  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1393  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1394  *	chain.
1395  */
1396 int dev_close(struct net_device *dev)
1397 {
1398 	if (dev->flags & IFF_UP) {
1399 		LIST_HEAD(single);
1400 
1401 		list_add(&dev->close_list, &single);
1402 		dev_close_many(&single);
1403 		list_del(&single);
1404 	}
1405 	return 0;
1406 }
1407 EXPORT_SYMBOL(dev_close);
1408 
1409 
1410 /**
1411  *	dev_disable_lro - disable Large Receive Offload on a device
1412  *	@dev: device
1413  *
1414  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1415  *	called under RTNL.  This is needed if received packets may be
1416  *	forwarded to another interface.
1417  */
1418 void dev_disable_lro(struct net_device *dev)
1419 {
1420 	/*
1421 	 * If we're trying to disable lro on a vlan device
1422 	 * use the underlying physical device instead
1423 	 */
1424 	if (is_vlan_dev(dev))
1425 		dev = vlan_dev_real_dev(dev);
1426 
1427 	/* the same for macvlan devices */
1428 	if (netif_is_macvlan(dev))
1429 		dev = macvlan_dev_real_dev(dev);
1430 
1431 	dev->wanted_features &= ~NETIF_F_LRO;
1432 	netdev_update_features(dev);
1433 
1434 	if (unlikely(dev->features & NETIF_F_LRO))
1435 		netdev_WARN(dev, "failed to disable LRO!\n");
1436 }
1437 EXPORT_SYMBOL(dev_disable_lro);
1438 
1439 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1440 				   struct net_device *dev)
1441 {
1442 	struct netdev_notifier_info info;
1443 
1444 	netdev_notifier_info_init(&info, dev);
1445 	return nb->notifier_call(nb, val, &info);
1446 }
1447 
1448 static int dev_boot_phase = 1;
1449 
1450 /**
1451  *	register_netdevice_notifier - register a network notifier block
1452  *	@nb: notifier
1453  *
1454  *	Register a notifier to be called when network device events occur.
1455  *	The notifier passed is linked into the kernel structures and must
1456  *	not be reused until it has been unregistered. A negative errno code
1457  *	is returned on a failure.
1458  *
1459  * 	When registered all registration and up events are replayed
1460  *	to the new notifier to allow device to have a race free
1461  *	view of the network device list.
1462  */
1463 
1464 int register_netdevice_notifier(struct notifier_block *nb)
1465 {
1466 	struct net_device *dev;
1467 	struct net_device *last;
1468 	struct net *net;
1469 	int err;
1470 
1471 	rtnl_lock();
1472 	err = raw_notifier_chain_register(&netdev_chain, nb);
1473 	if (err)
1474 		goto unlock;
1475 	if (dev_boot_phase)
1476 		goto unlock;
1477 	for_each_net(net) {
1478 		for_each_netdev(net, dev) {
1479 			err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1480 			err = notifier_to_errno(err);
1481 			if (err)
1482 				goto rollback;
1483 
1484 			if (!(dev->flags & IFF_UP))
1485 				continue;
1486 
1487 			call_netdevice_notifier(nb, NETDEV_UP, dev);
1488 		}
1489 	}
1490 
1491 unlock:
1492 	rtnl_unlock();
1493 	return err;
1494 
1495 rollback:
1496 	last = dev;
1497 	for_each_net(net) {
1498 		for_each_netdev(net, dev) {
1499 			if (dev == last)
1500 				goto outroll;
1501 
1502 			if (dev->flags & IFF_UP) {
1503 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1504 							dev);
1505 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1506 			}
1507 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1508 		}
1509 	}
1510 
1511 outroll:
1512 	raw_notifier_chain_unregister(&netdev_chain, nb);
1513 	goto unlock;
1514 }
1515 EXPORT_SYMBOL(register_netdevice_notifier);
1516 
1517 /**
1518  *	unregister_netdevice_notifier - unregister a network notifier block
1519  *	@nb: notifier
1520  *
1521  *	Unregister a notifier previously registered by
1522  *	register_netdevice_notifier(). The notifier is unlinked into the
1523  *	kernel structures and may then be reused. A negative errno code
1524  *	is returned on a failure.
1525  *
1526  * 	After unregistering unregister and down device events are synthesized
1527  *	for all devices on the device list to the removed notifier to remove
1528  *	the need for special case cleanup code.
1529  */
1530 
1531 int unregister_netdevice_notifier(struct notifier_block *nb)
1532 {
1533 	struct net_device *dev;
1534 	struct net *net;
1535 	int err;
1536 
1537 	rtnl_lock();
1538 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1539 	if (err)
1540 		goto unlock;
1541 
1542 	for_each_net(net) {
1543 		for_each_netdev(net, dev) {
1544 			if (dev->flags & IFF_UP) {
1545 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1546 							dev);
1547 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1548 			}
1549 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1550 		}
1551 	}
1552 unlock:
1553 	rtnl_unlock();
1554 	return err;
1555 }
1556 EXPORT_SYMBOL(unregister_netdevice_notifier);
1557 
1558 /**
1559  *	call_netdevice_notifiers_info - call all network notifier blocks
1560  *	@val: value passed unmodified to notifier function
1561  *	@dev: net_device pointer passed unmodified to notifier function
1562  *	@info: notifier information data
1563  *
1564  *	Call all network notifier blocks.  Parameters and return value
1565  *	are as for raw_notifier_call_chain().
1566  */
1567 
1568 static int call_netdevice_notifiers_info(unsigned long val,
1569 					 struct net_device *dev,
1570 					 struct netdev_notifier_info *info)
1571 {
1572 	ASSERT_RTNL();
1573 	netdev_notifier_info_init(info, dev);
1574 	return raw_notifier_call_chain(&netdev_chain, val, info);
1575 }
1576 
1577 /**
1578  *	call_netdevice_notifiers - call all network notifier blocks
1579  *      @val: value passed unmodified to notifier function
1580  *      @dev: net_device pointer passed unmodified to notifier function
1581  *
1582  *	Call all network notifier blocks.  Parameters and return value
1583  *	are as for raw_notifier_call_chain().
1584  */
1585 
1586 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1587 {
1588 	struct netdev_notifier_info info;
1589 
1590 	return call_netdevice_notifiers_info(val, dev, &info);
1591 }
1592 EXPORT_SYMBOL(call_netdevice_notifiers);
1593 
1594 static struct static_key netstamp_needed __read_mostly;
1595 #ifdef HAVE_JUMP_LABEL
1596 /* We are not allowed to call static_key_slow_dec() from irq context
1597  * If net_disable_timestamp() is called from irq context, defer the
1598  * static_key_slow_dec() calls.
1599  */
1600 static atomic_t netstamp_needed_deferred;
1601 #endif
1602 
1603 void net_enable_timestamp(void)
1604 {
1605 #ifdef HAVE_JUMP_LABEL
1606 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1607 
1608 	if (deferred) {
1609 		while (--deferred)
1610 			static_key_slow_dec(&netstamp_needed);
1611 		return;
1612 	}
1613 #endif
1614 	static_key_slow_inc(&netstamp_needed);
1615 }
1616 EXPORT_SYMBOL(net_enable_timestamp);
1617 
1618 void net_disable_timestamp(void)
1619 {
1620 #ifdef HAVE_JUMP_LABEL
1621 	if (in_interrupt()) {
1622 		atomic_inc(&netstamp_needed_deferred);
1623 		return;
1624 	}
1625 #endif
1626 	static_key_slow_dec(&netstamp_needed);
1627 }
1628 EXPORT_SYMBOL(net_disable_timestamp);
1629 
1630 static inline void net_timestamp_set(struct sk_buff *skb)
1631 {
1632 	skb->tstamp.tv64 = 0;
1633 	if (static_key_false(&netstamp_needed))
1634 		__net_timestamp(skb);
1635 }
1636 
1637 #define net_timestamp_check(COND, SKB)			\
1638 	if (static_key_false(&netstamp_needed)) {		\
1639 		if ((COND) && !(SKB)->tstamp.tv64)	\
1640 			__net_timestamp(SKB);		\
1641 	}						\
1642 
1643 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb)
1644 {
1645 	unsigned int len;
1646 
1647 	if (!(dev->flags & IFF_UP))
1648 		return false;
1649 
1650 	len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1651 	if (skb->len <= len)
1652 		return true;
1653 
1654 	/* if TSO is enabled, we don't care about the length as the packet
1655 	 * could be forwarded without being segmented before
1656 	 */
1657 	if (skb_is_gso(skb))
1658 		return true;
1659 
1660 	return false;
1661 }
1662 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1663 
1664 /**
1665  * dev_forward_skb - loopback an skb to another netif
1666  *
1667  * @dev: destination network device
1668  * @skb: buffer to forward
1669  *
1670  * return values:
1671  *	NET_RX_SUCCESS	(no congestion)
1672  *	NET_RX_DROP     (packet was dropped, but freed)
1673  *
1674  * dev_forward_skb can be used for injecting an skb from the
1675  * start_xmit function of one device into the receive queue
1676  * of another device.
1677  *
1678  * The receiving device may be in another namespace, so
1679  * we have to clear all information in the skb that could
1680  * impact namespace isolation.
1681  */
1682 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1683 {
1684 	if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1685 		if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1686 			atomic_long_inc(&dev->rx_dropped);
1687 			kfree_skb(skb);
1688 			return NET_RX_DROP;
1689 		}
1690 	}
1691 
1692 	if (unlikely(!is_skb_forwardable(dev, skb))) {
1693 		atomic_long_inc(&dev->rx_dropped);
1694 		kfree_skb(skb);
1695 		return NET_RX_DROP;
1696 	}
1697 
1698 	skb_scrub_packet(skb, true);
1699 	skb->protocol = eth_type_trans(skb, dev);
1700 
1701 	return netif_rx_internal(skb);
1702 }
1703 EXPORT_SYMBOL_GPL(dev_forward_skb);
1704 
1705 static inline int deliver_skb(struct sk_buff *skb,
1706 			      struct packet_type *pt_prev,
1707 			      struct net_device *orig_dev)
1708 {
1709 	if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1710 		return -ENOMEM;
1711 	atomic_inc(&skb->users);
1712 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1713 }
1714 
1715 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1716 {
1717 	if (!ptype->af_packet_priv || !skb->sk)
1718 		return false;
1719 
1720 	if (ptype->id_match)
1721 		return ptype->id_match(ptype, skb->sk);
1722 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1723 		return true;
1724 
1725 	return false;
1726 }
1727 
1728 /*
1729  *	Support routine. Sends outgoing frames to any network
1730  *	taps currently in use.
1731  */
1732 
1733 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1734 {
1735 	struct packet_type *ptype;
1736 	struct sk_buff *skb2 = NULL;
1737 	struct packet_type *pt_prev = NULL;
1738 
1739 	rcu_read_lock();
1740 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
1741 		/* Never send packets back to the socket
1742 		 * they originated from - MvS (miquels@drinkel.ow.org)
1743 		 */
1744 		if ((ptype->dev == dev || !ptype->dev) &&
1745 		    (!skb_loop_sk(ptype, skb))) {
1746 			if (pt_prev) {
1747 				deliver_skb(skb2, pt_prev, skb->dev);
1748 				pt_prev = ptype;
1749 				continue;
1750 			}
1751 
1752 			skb2 = skb_clone(skb, GFP_ATOMIC);
1753 			if (!skb2)
1754 				break;
1755 
1756 			net_timestamp_set(skb2);
1757 
1758 			/* skb->nh should be correctly
1759 			   set by sender, so that the second statement is
1760 			   just protection against buggy protocols.
1761 			 */
1762 			skb_reset_mac_header(skb2);
1763 
1764 			if (skb_network_header(skb2) < skb2->data ||
1765 			    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1766 				net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1767 						     ntohs(skb2->protocol),
1768 						     dev->name);
1769 				skb_reset_network_header(skb2);
1770 			}
1771 
1772 			skb2->transport_header = skb2->network_header;
1773 			skb2->pkt_type = PACKET_OUTGOING;
1774 			pt_prev = ptype;
1775 		}
1776 	}
1777 	if (pt_prev)
1778 		pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1779 	rcu_read_unlock();
1780 }
1781 
1782 /**
1783  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1784  * @dev: Network device
1785  * @txq: number of queues available
1786  *
1787  * If real_num_tx_queues is changed the tc mappings may no longer be
1788  * valid. To resolve this verify the tc mapping remains valid and if
1789  * not NULL the mapping. With no priorities mapping to this
1790  * offset/count pair it will no longer be used. In the worst case TC0
1791  * is invalid nothing can be done so disable priority mappings. If is
1792  * expected that drivers will fix this mapping if they can before
1793  * calling netif_set_real_num_tx_queues.
1794  */
1795 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1796 {
1797 	int i;
1798 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1799 
1800 	/* If TC0 is invalidated disable TC mapping */
1801 	if (tc->offset + tc->count > txq) {
1802 		pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1803 		dev->num_tc = 0;
1804 		return;
1805 	}
1806 
1807 	/* Invalidated prio to tc mappings set to TC0 */
1808 	for (i = 1; i < TC_BITMASK + 1; i++) {
1809 		int q = netdev_get_prio_tc_map(dev, i);
1810 
1811 		tc = &dev->tc_to_txq[q];
1812 		if (tc->offset + tc->count > txq) {
1813 			pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1814 				i, q);
1815 			netdev_set_prio_tc_map(dev, i, 0);
1816 		}
1817 	}
1818 }
1819 
1820 #ifdef CONFIG_XPS
1821 static DEFINE_MUTEX(xps_map_mutex);
1822 #define xmap_dereference(P)		\
1823 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1824 
1825 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1826 					int cpu, u16 index)
1827 {
1828 	struct xps_map *map = NULL;
1829 	int pos;
1830 
1831 	if (dev_maps)
1832 		map = xmap_dereference(dev_maps->cpu_map[cpu]);
1833 
1834 	for (pos = 0; map && pos < map->len; pos++) {
1835 		if (map->queues[pos] == index) {
1836 			if (map->len > 1) {
1837 				map->queues[pos] = map->queues[--map->len];
1838 			} else {
1839 				RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1840 				kfree_rcu(map, rcu);
1841 				map = NULL;
1842 			}
1843 			break;
1844 		}
1845 	}
1846 
1847 	return map;
1848 }
1849 
1850 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1851 {
1852 	struct xps_dev_maps *dev_maps;
1853 	int cpu, i;
1854 	bool active = false;
1855 
1856 	mutex_lock(&xps_map_mutex);
1857 	dev_maps = xmap_dereference(dev->xps_maps);
1858 
1859 	if (!dev_maps)
1860 		goto out_no_maps;
1861 
1862 	for_each_possible_cpu(cpu) {
1863 		for (i = index; i < dev->num_tx_queues; i++) {
1864 			if (!remove_xps_queue(dev_maps, cpu, i))
1865 				break;
1866 		}
1867 		if (i == dev->num_tx_queues)
1868 			active = true;
1869 	}
1870 
1871 	if (!active) {
1872 		RCU_INIT_POINTER(dev->xps_maps, NULL);
1873 		kfree_rcu(dev_maps, rcu);
1874 	}
1875 
1876 	for (i = index; i < dev->num_tx_queues; i++)
1877 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
1878 					     NUMA_NO_NODE);
1879 
1880 out_no_maps:
1881 	mutex_unlock(&xps_map_mutex);
1882 }
1883 
1884 static struct xps_map *expand_xps_map(struct xps_map *map,
1885 				      int cpu, u16 index)
1886 {
1887 	struct xps_map *new_map;
1888 	int alloc_len = XPS_MIN_MAP_ALLOC;
1889 	int i, pos;
1890 
1891 	for (pos = 0; map && pos < map->len; pos++) {
1892 		if (map->queues[pos] != index)
1893 			continue;
1894 		return map;
1895 	}
1896 
1897 	/* Need to add queue to this CPU's existing map */
1898 	if (map) {
1899 		if (pos < map->alloc_len)
1900 			return map;
1901 
1902 		alloc_len = map->alloc_len * 2;
1903 	}
1904 
1905 	/* Need to allocate new map to store queue on this CPU's map */
1906 	new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
1907 			       cpu_to_node(cpu));
1908 	if (!new_map)
1909 		return NULL;
1910 
1911 	for (i = 0; i < pos; i++)
1912 		new_map->queues[i] = map->queues[i];
1913 	new_map->alloc_len = alloc_len;
1914 	new_map->len = pos;
1915 
1916 	return new_map;
1917 }
1918 
1919 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
1920 			u16 index)
1921 {
1922 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
1923 	struct xps_map *map, *new_map;
1924 	int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
1925 	int cpu, numa_node_id = -2;
1926 	bool active = false;
1927 
1928 	mutex_lock(&xps_map_mutex);
1929 
1930 	dev_maps = xmap_dereference(dev->xps_maps);
1931 
1932 	/* allocate memory for queue storage */
1933 	for_each_online_cpu(cpu) {
1934 		if (!cpumask_test_cpu(cpu, mask))
1935 			continue;
1936 
1937 		if (!new_dev_maps)
1938 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
1939 		if (!new_dev_maps) {
1940 			mutex_unlock(&xps_map_mutex);
1941 			return -ENOMEM;
1942 		}
1943 
1944 		map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
1945 				 NULL;
1946 
1947 		map = expand_xps_map(map, cpu, index);
1948 		if (!map)
1949 			goto error;
1950 
1951 		RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
1952 	}
1953 
1954 	if (!new_dev_maps)
1955 		goto out_no_new_maps;
1956 
1957 	for_each_possible_cpu(cpu) {
1958 		if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
1959 			/* add queue to CPU maps */
1960 			int pos = 0;
1961 
1962 			map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
1963 			while ((pos < map->len) && (map->queues[pos] != index))
1964 				pos++;
1965 
1966 			if (pos == map->len)
1967 				map->queues[map->len++] = index;
1968 #ifdef CONFIG_NUMA
1969 			if (numa_node_id == -2)
1970 				numa_node_id = cpu_to_node(cpu);
1971 			else if (numa_node_id != cpu_to_node(cpu))
1972 				numa_node_id = -1;
1973 #endif
1974 		} else if (dev_maps) {
1975 			/* fill in the new device map from the old device map */
1976 			map = xmap_dereference(dev_maps->cpu_map[cpu]);
1977 			RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
1978 		}
1979 
1980 	}
1981 
1982 	rcu_assign_pointer(dev->xps_maps, new_dev_maps);
1983 
1984 	/* Cleanup old maps */
1985 	if (dev_maps) {
1986 		for_each_possible_cpu(cpu) {
1987 			new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
1988 			map = xmap_dereference(dev_maps->cpu_map[cpu]);
1989 			if (map && map != new_map)
1990 				kfree_rcu(map, rcu);
1991 		}
1992 
1993 		kfree_rcu(dev_maps, rcu);
1994 	}
1995 
1996 	dev_maps = new_dev_maps;
1997 	active = true;
1998 
1999 out_no_new_maps:
2000 	/* update Tx queue numa node */
2001 	netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2002 				     (numa_node_id >= 0) ? numa_node_id :
2003 				     NUMA_NO_NODE);
2004 
2005 	if (!dev_maps)
2006 		goto out_no_maps;
2007 
2008 	/* removes queue from unused CPUs */
2009 	for_each_possible_cpu(cpu) {
2010 		if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2011 			continue;
2012 
2013 		if (remove_xps_queue(dev_maps, cpu, index))
2014 			active = true;
2015 	}
2016 
2017 	/* free map if not active */
2018 	if (!active) {
2019 		RCU_INIT_POINTER(dev->xps_maps, NULL);
2020 		kfree_rcu(dev_maps, rcu);
2021 	}
2022 
2023 out_no_maps:
2024 	mutex_unlock(&xps_map_mutex);
2025 
2026 	return 0;
2027 error:
2028 	/* remove any maps that we added */
2029 	for_each_possible_cpu(cpu) {
2030 		new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2031 		map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2032 				 NULL;
2033 		if (new_map && new_map != map)
2034 			kfree(new_map);
2035 	}
2036 
2037 	mutex_unlock(&xps_map_mutex);
2038 
2039 	kfree(new_dev_maps);
2040 	return -ENOMEM;
2041 }
2042 EXPORT_SYMBOL(netif_set_xps_queue);
2043 
2044 #endif
2045 /*
2046  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2047  * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2048  */
2049 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2050 {
2051 	int rc;
2052 
2053 	if (txq < 1 || txq > dev->num_tx_queues)
2054 		return -EINVAL;
2055 
2056 	if (dev->reg_state == NETREG_REGISTERED ||
2057 	    dev->reg_state == NETREG_UNREGISTERING) {
2058 		ASSERT_RTNL();
2059 
2060 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2061 						  txq);
2062 		if (rc)
2063 			return rc;
2064 
2065 		if (dev->num_tc)
2066 			netif_setup_tc(dev, txq);
2067 
2068 		if (txq < dev->real_num_tx_queues) {
2069 			qdisc_reset_all_tx_gt(dev, txq);
2070 #ifdef CONFIG_XPS
2071 			netif_reset_xps_queues_gt(dev, txq);
2072 #endif
2073 		}
2074 	}
2075 
2076 	dev->real_num_tx_queues = txq;
2077 	return 0;
2078 }
2079 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2080 
2081 #ifdef CONFIG_SYSFS
2082 /**
2083  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2084  *	@dev: Network device
2085  *	@rxq: Actual number of RX queues
2086  *
2087  *	This must be called either with the rtnl_lock held or before
2088  *	registration of the net device.  Returns 0 on success, or a
2089  *	negative error code.  If called before registration, it always
2090  *	succeeds.
2091  */
2092 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2093 {
2094 	int rc;
2095 
2096 	if (rxq < 1 || rxq > dev->num_rx_queues)
2097 		return -EINVAL;
2098 
2099 	if (dev->reg_state == NETREG_REGISTERED) {
2100 		ASSERT_RTNL();
2101 
2102 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2103 						  rxq);
2104 		if (rc)
2105 			return rc;
2106 	}
2107 
2108 	dev->real_num_rx_queues = rxq;
2109 	return 0;
2110 }
2111 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2112 #endif
2113 
2114 /**
2115  * netif_get_num_default_rss_queues - default number of RSS queues
2116  *
2117  * This routine should set an upper limit on the number of RSS queues
2118  * used by default by multiqueue devices.
2119  */
2120 int netif_get_num_default_rss_queues(void)
2121 {
2122 	return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2123 }
2124 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2125 
2126 static inline void __netif_reschedule(struct Qdisc *q)
2127 {
2128 	struct softnet_data *sd;
2129 	unsigned long flags;
2130 
2131 	local_irq_save(flags);
2132 	sd = &__get_cpu_var(softnet_data);
2133 	q->next_sched = NULL;
2134 	*sd->output_queue_tailp = q;
2135 	sd->output_queue_tailp = &q->next_sched;
2136 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2137 	local_irq_restore(flags);
2138 }
2139 
2140 void __netif_schedule(struct Qdisc *q)
2141 {
2142 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2143 		__netif_reschedule(q);
2144 }
2145 EXPORT_SYMBOL(__netif_schedule);
2146 
2147 struct dev_kfree_skb_cb {
2148 	enum skb_free_reason reason;
2149 };
2150 
2151 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2152 {
2153 	return (struct dev_kfree_skb_cb *)skb->cb;
2154 }
2155 
2156 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2157 {
2158 	unsigned long flags;
2159 
2160 	if (likely(atomic_read(&skb->users) == 1)) {
2161 		smp_rmb();
2162 		atomic_set(&skb->users, 0);
2163 	} else if (likely(!atomic_dec_and_test(&skb->users))) {
2164 		return;
2165 	}
2166 	get_kfree_skb_cb(skb)->reason = reason;
2167 	local_irq_save(flags);
2168 	skb->next = __this_cpu_read(softnet_data.completion_queue);
2169 	__this_cpu_write(softnet_data.completion_queue, skb);
2170 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2171 	local_irq_restore(flags);
2172 }
2173 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2174 
2175 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2176 {
2177 	if (in_irq() || irqs_disabled())
2178 		__dev_kfree_skb_irq(skb, reason);
2179 	else
2180 		dev_kfree_skb(skb);
2181 }
2182 EXPORT_SYMBOL(__dev_kfree_skb_any);
2183 
2184 
2185 /**
2186  * netif_device_detach - mark device as removed
2187  * @dev: network device
2188  *
2189  * Mark device as removed from system and therefore no longer available.
2190  */
2191 void netif_device_detach(struct net_device *dev)
2192 {
2193 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2194 	    netif_running(dev)) {
2195 		netif_tx_stop_all_queues(dev);
2196 	}
2197 }
2198 EXPORT_SYMBOL(netif_device_detach);
2199 
2200 /**
2201  * netif_device_attach - mark device as attached
2202  * @dev: network device
2203  *
2204  * Mark device as attached from system and restart if needed.
2205  */
2206 void netif_device_attach(struct net_device *dev)
2207 {
2208 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2209 	    netif_running(dev)) {
2210 		netif_tx_wake_all_queues(dev);
2211 		__netdev_watchdog_up(dev);
2212 	}
2213 }
2214 EXPORT_SYMBOL(netif_device_attach);
2215 
2216 static void skb_warn_bad_offload(const struct sk_buff *skb)
2217 {
2218 	static const netdev_features_t null_features = 0;
2219 	struct net_device *dev = skb->dev;
2220 	const char *driver = "";
2221 
2222 	if (!net_ratelimit())
2223 		return;
2224 
2225 	if (dev && dev->dev.parent)
2226 		driver = dev_driver_string(dev->dev.parent);
2227 
2228 	WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2229 	     "gso_type=%d ip_summed=%d\n",
2230 	     driver, dev ? &dev->features : &null_features,
2231 	     skb->sk ? &skb->sk->sk_route_caps : &null_features,
2232 	     skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2233 	     skb_shinfo(skb)->gso_type, skb->ip_summed);
2234 }
2235 
2236 /*
2237  * Invalidate hardware checksum when packet is to be mangled, and
2238  * complete checksum manually on outgoing path.
2239  */
2240 int skb_checksum_help(struct sk_buff *skb)
2241 {
2242 	__wsum csum;
2243 	int ret = 0, offset;
2244 
2245 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2246 		goto out_set_summed;
2247 
2248 	if (unlikely(skb_shinfo(skb)->gso_size)) {
2249 		skb_warn_bad_offload(skb);
2250 		return -EINVAL;
2251 	}
2252 
2253 	/* Before computing a checksum, we should make sure no frag could
2254 	 * be modified by an external entity : checksum could be wrong.
2255 	 */
2256 	if (skb_has_shared_frag(skb)) {
2257 		ret = __skb_linearize(skb);
2258 		if (ret)
2259 			goto out;
2260 	}
2261 
2262 	offset = skb_checksum_start_offset(skb);
2263 	BUG_ON(offset >= skb_headlen(skb));
2264 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
2265 
2266 	offset += skb->csum_offset;
2267 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2268 
2269 	if (skb_cloned(skb) &&
2270 	    !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2271 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2272 		if (ret)
2273 			goto out;
2274 	}
2275 
2276 	*(__sum16 *)(skb->data + offset) = csum_fold(csum);
2277 out_set_summed:
2278 	skb->ip_summed = CHECKSUM_NONE;
2279 out:
2280 	return ret;
2281 }
2282 EXPORT_SYMBOL(skb_checksum_help);
2283 
2284 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2285 {
2286 	unsigned int vlan_depth = skb->mac_len;
2287 	__be16 type = skb->protocol;
2288 
2289 	/* Tunnel gso handlers can set protocol to ethernet. */
2290 	if (type == htons(ETH_P_TEB)) {
2291 		struct ethhdr *eth;
2292 
2293 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2294 			return 0;
2295 
2296 		eth = (struct ethhdr *)skb_mac_header(skb);
2297 		type = eth->h_proto;
2298 	}
2299 
2300 	/* if skb->protocol is 802.1Q/AD then the header should already be
2301 	 * present at mac_len - VLAN_HLEN (if mac_len > 0), or at
2302 	 * ETH_HLEN otherwise
2303 	 */
2304 	if (type == htons(ETH_P_8021Q) || type == htons(ETH_P_8021AD)) {
2305 		if (vlan_depth) {
2306 			if (unlikely(WARN_ON(vlan_depth < VLAN_HLEN)))
2307 				return 0;
2308 			vlan_depth -= VLAN_HLEN;
2309 		} else {
2310 			vlan_depth = ETH_HLEN;
2311 		}
2312 		do {
2313 			struct vlan_hdr *vh;
2314 
2315 			if (unlikely(!pskb_may_pull(skb,
2316 						    vlan_depth + VLAN_HLEN)))
2317 				return 0;
2318 
2319 			vh = (struct vlan_hdr *)(skb->data + vlan_depth);
2320 			type = vh->h_vlan_encapsulated_proto;
2321 			vlan_depth += VLAN_HLEN;
2322 		} while (type == htons(ETH_P_8021Q) ||
2323 			 type == htons(ETH_P_8021AD));
2324 	}
2325 
2326 	*depth = vlan_depth;
2327 
2328 	return type;
2329 }
2330 
2331 /**
2332  *	skb_mac_gso_segment - mac layer segmentation handler.
2333  *	@skb: buffer to segment
2334  *	@features: features for the output path (see dev->features)
2335  */
2336 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2337 				    netdev_features_t features)
2338 {
2339 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2340 	struct packet_offload *ptype;
2341 	int vlan_depth = skb->mac_len;
2342 	__be16 type = skb_network_protocol(skb, &vlan_depth);
2343 
2344 	if (unlikely(!type))
2345 		return ERR_PTR(-EINVAL);
2346 
2347 	__skb_pull(skb, vlan_depth);
2348 
2349 	rcu_read_lock();
2350 	list_for_each_entry_rcu(ptype, &offload_base, list) {
2351 		if (ptype->type == type && ptype->callbacks.gso_segment) {
2352 			if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
2353 				int err;
2354 
2355 				err = ptype->callbacks.gso_send_check(skb);
2356 				segs = ERR_PTR(err);
2357 				if (err || skb_gso_ok(skb, features))
2358 					break;
2359 				__skb_push(skb, (skb->data -
2360 						 skb_network_header(skb)));
2361 			}
2362 			segs = ptype->callbacks.gso_segment(skb, features);
2363 			break;
2364 		}
2365 	}
2366 	rcu_read_unlock();
2367 
2368 	__skb_push(skb, skb->data - skb_mac_header(skb));
2369 
2370 	return segs;
2371 }
2372 EXPORT_SYMBOL(skb_mac_gso_segment);
2373 
2374 
2375 /* openvswitch calls this on rx path, so we need a different check.
2376  */
2377 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2378 {
2379 	if (tx_path)
2380 		return skb->ip_summed != CHECKSUM_PARTIAL;
2381 	else
2382 		return skb->ip_summed == CHECKSUM_NONE;
2383 }
2384 
2385 /**
2386  *	__skb_gso_segment - Perform segmentation on skb.
2387  *	@skb: buffer to segment
2388  *	@features: features for the output path (see dev->features)
2389  *	@tx_path: whether it is called in TX path
2390  *
2391  *	This function segments the given skb and returns a list of segments.
2392  *
2393  *	It may return NULL if the skb requires no segmentation.  This is
2394  *	only possible when GSO is used for verifying header integrity.
2395  */
2396 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2397 				  netdev_features_t features, bool tx_path)
2398 {
2399 	if (unlikely(skb_needs_check(skb, tx_path))) {
2400 		int err;
2401 
2402 		skb_warn_bad_offload(skb);
2403 
2404 		if (skb_header_cloned(skb) &&
2405 		    (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
2406 			return ERR_PTR(err);
2407 	}
2408 
2409 	SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2410 	SKB_GSO_CB(skb)->encap_level = 0;
2411 
2412 	skb_reset_mac_header(skb);
2413 	skb_reset_mac_len(skb);
2414 
2415 	return skb_mac_gso_segment(skb, features);
2416 }
2417 EXPORT_SYMBOL(__skb_gso_segment);
2418 
2419 /* Take action when hardware reception checksum errors are detected. */
2420 #ifdef CONFIG_BUG
2421 void netdev_rx_csum_fault(struct net_device *dev)
2422 {
2423 	if (net_ratelimit()) {
2424 		pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2425 		dump_stack();
2426 	}
2427 }
2428 EXPORT_SYMBOL(netdev_rx_csum_fault);
2429 #endif
2430 
2431 /* Actually, we should eliminate this check as soon as we know, that:
2432  * 1. IOMMU is present and allows to map all the memory.
2433  * 2. No high memory really exists on this machine.
2434  */
2435 
2436 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2437 {
2438 #ifdef CONFIG_HIGHMEM
2439 	int i;
2440 	if (!(dev->features & NETIF_F_HIGHDMA)) {
2441 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2442 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2443 			if (PageHighMem(skb_frag_page(frag)))
2444 				return 1;
2445 		}
2446 	}
2447 
2448 	if (PCI_DMA_BUS_IS_PHYS) {
2449 		struct device *pdev = dev->dev.parent;
2450 
2451 		if (!pdev)
2452 			return 0;
2453 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2454 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2455 			dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2456 			if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2457 				return 1;
2458 		}
2459 	}
2460 #endif
2461 	return 0;
2462 }
2463 
2464 struct dev_gso_cb {
2465 	void (*destructor)(struct sk_buff *skb);
2466 };
2467 
2468 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
2469 
2470 static void dev_gso_skb_destructor(struct sk_buff *skb)
2471 {
2472 	struct dev_gso_cb *cb;
2473 
2474 	kfree_skb_list(skb->next);
2475 	skb->next = NULL;
2476 
2477 	cb = DEV_GSO_CB(skb);
2478 	if (cb->destructor)
2479 		cb->destructor(skb);
2480 }
2481 
2482 /**
2483  *	dev_gso_segment - Perform emulated hardware segmentation on skb.
2484  *	@skb: buffer to segment
2485  *	@features: device features as applicable to this skb
2486  *
2487  *	This function segments the given skb and stores the list of segments
2488  *	in skb->next.
2489  */
2490 static int dev_gso_segment(struct sk_buff *skb, netdev_features_t features)
2491 {
2492 	struct sk_buff *segs;
2493 
2494 	segs = skb_gso_segment(skb, features);
2495 
2496 	/* Verifying header integrity only. */
2497 	if (!segs)
2498 		return 0;
2499 
2500 	if (IS_ERR(segs))
2501 		return PTR_ERR(segs);
2502 
2503 	skb->next = segs;
2504 	DEV_GSO_CB(skb)->destructor = skb->destructor;
2505 	skb->destructor = dev_gso_skb_destructor;
2506 
2507 	return 0;
2508 }
2509 
2510 static netdev_features_t harmonize_features(struct sk_buff *skb,
2511 	netdev_features_t features)
2512 {
2513 	int tmp;
2514 
2515 	if (skb->ip_summed != CHECKSUM_NONE &&
2516 	    !can_checksum_protocol(features, skb_network_protocol(skb, &tmp))) {
2517 		features &= ~NETIF_F_ALL_CSUM;
2518 	} else if (illegal_highdma(skb->dev, skb)) {
2519 		features &= ~NETIF_F_SG;
2520 	}
2521 
2522 	return features;
2523 }
2524 
2525 netdev_features_t netif_skb_features(struct sk_buff *skb)
2526 {
2527 	__be16 protocol = skb->protocol;
2528 	netdev_features_t features = skb->dev->features;
2529 
2530 	if (skb_shinfo(skb)->gso_segs > skb->dev->gso_max_segs)
2531 		features &= ~NETIF_F_GSO_MASK;
2532 
2533 	if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD)) {
2534 		struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2535 		protocol = veh->h_vlan_encapsulated_proto;
2536 	} else if (!vlan_tx_tag_present(skb)) {
2537 		return harmonize_features(skb, features);
2538 	}
2539 
2540 	features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_CTAG_TX |
2541 					       NETIF_F_HW_VLAN_STAG_TX);
2542 
2543 	if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD))
2544 		features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST |
2545 				NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_CTAG_TX |
2546 				NETIF_F_HW_VLAN_STAG_TX;
2547 
2548 	return harmonize_features(skb, features);
2549 }
2550 EXPORT_SYMBOL(netif_skb_features);
2551 
2552 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2553 			struct netdev_queue *txq)
2554 {
2555 	const struct net_device_ops *ops = dev->netdev_ops;
2556 	int rc = NETDEV_TX_OK;
2557 	unsigned int skb_len;
2558 
2559 	if (likely(!skb->next)) {
2560 		netdev_features_t features;
2561 
2562 		/*
2563 		 * If device doesn't need skb->dst, release it right now while
2564 		 * its hot in this cpu cache
2565 		 */
2566 		if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2567 			skb_dst_drop(skb);
2568 
2569 		features = netif_skb_features(skb);
2570 
2571 		if (vlan_tx_tag_present(skb) &&
2572 		    !vlan_hw_offload_capable(features, skb->vlan_proto)) {
2573 			skb = __vlan_put_tag(skb, skb->vlan_proto,
2574 					     vlan_tx_tag_get(skb));
2575 			if (unlikely(!skb))
2576 				goto out;
2577 
2578 			skb->vlan_tci = 0;
2579 		}
2580 
2581 		/* If encapsulation offload request, verify we are testing
2582 		 * hardware encapsulation features instead of standard
2583 		 * features for the netdev
2584 		 */
2585 		if (skb->encapsulation)
2586 			features &= dev->hw_enc_features;
2587 
2588 		if (netif_needs_gso(skb, features)) {
2589 			if (unlikely(dev_gso_segment(skb, features)))
2590 				goto out_kfree_skb;
2591 			if (skb->next)
2592 				goto gso;
2593 		} else {
2594 			if (skb_needs_linearize(skb, features) &&
2595 			    __skb_linearize(skb))
2596 				goto out_kfree_skb;
2597 
2598 			/* If packet is not checksummed and device does not
2599 			 * support checksumming for this protocol, complete
2600 			 * checksumming here.
2601 			 */
2602 			if (skb->ip_summed == CHECKSUM_PARTIAL) {
2603 				if (skb->encapsulation)
2604 					skb_set_inner_transport_header(skb,
2605 						skb_checksum_start_offset(skb));
2606 				else
2607 					skb_set_transport_header(skb,
2608 						skb_checksum_start_offset(skb));
2609 				if (!(features & NETIF_F_ALL_CSUM) &&
2610 				     skb_checksum_help(skb))
2611 					goto out_kfree_skb;
2612 			}
2613 		}
2614 
2615 		if (!list_empty(&ptype_all))
2616 			dev_queue_xmit_nit(skb, dev);
2617 
2618 		skb_len = skb->len;
2619 		trace_net_dev_start_xmit(skb, dev);
2620 		rc = ops->ndo_start_xmit(skb, dev);
2621 		trace_net_dev_xmit(skb, rc, dev, skb_len);
2622 		if (rc == NETDEV_TX_OK)
2623 			txq_trans_update(txq);
2624 		return rc;
2625 	}
2626 
2627 gso:
2628 	do {
2629 		struct sk_buff *nskb = skb->next;
2630 
2631 		skb->next = nskb->next;
2632 		nskb->next = NULL;
2633 
2634 		if (!list_empty(&ptype_all))
2635 			dev_queue_xmit_nit(nskb, dev);
2636 
2637 		skb_len = nskb->len;
2638 		trace_net_dev_start_xmit(nskb, dev);
2639 		rc = ops->ndo_start_xmit(nskb, dev);
2640 		trace_net_dev_xmit(nskb, rc, dev, skb_len);
2641 		if (unlikely(rc != NETDEV_TX_OK)) {
2642 			if (rc & ~NETDEV_TX_MASK)
2643 				goto out_kfree_gso_skb;
2644 			nskb->next = skb->next;
2645 			skb->next = nskb;
2646 			return rc;
2647 		}
2648 		txq_trans_update(txq);
2649 		if (unlikely(netif_xmit_stopped(txq) && skb->next))
2650 			return NETDEV_TX_BUSY;
2651 	} while (skb->next);
2652 
2653 out_kfree_gso_skb:
2654 	if (likely(skb->next == NULL)) {
2655 		skb->destructor = DEV_GSO_CB(skb)->destructor;
2656 		consume_skb(skb);
2657 		return rc;
2658 	}
2659 out_kfree_skb:
2660 	kfree_skb(skb);
2661 out:
2662 	return rc;
2663 }
2664 EXPORT_SYMBOL_GPL(dev_hard_start_xmit);
2665 
2666 static void qdisc_pkt_len_init(struct sk_buff *skb)
2667 {
2668 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
2669 
2670 	qdisc_skb_cb(skb)->pkt_len = skb->len;
2671 
2672 	/* To get more precise estimation of bytes sent on wire,
2673 	 * we add to pkt_len the headers size of all segments
2674 	 */
2675 	if (shinfo->gso_size)  {
2676 		unsigned int hdr_len;
2677 		u16 gso_segs = shinfo->gso_segs;
2678 
2679 		/* mac layer + network layer */
2680 		hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
2681 
2682 		/* + transport layer */
2683 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
2684 			hdr_len += tcp_hdrlen(skb);
2685 		else
2686 			hdr_len += sizeof(struct udphdr);
2687 
2688 		if (shinfo->gso_type & SKB_GSO_DODGY)
2689 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
2690 						shinfo->gso_size);
2691 
2692 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
2693 	}
2694 }
2695 
2696 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2697 				 struct net_device *dev,
2698 				 struct netdev_queue *txq)
2699 {
2700 	spinlock_t *root_lock = qdisc_lock(q);
2701 	bool contended;
2702 	int rc;
2703 
2704 	qdisc_pkt_len_init(skb);
2705 	qdisc_calculate_pkt_len(skb, q);
2706 	/*
2707 	 * Heuristic to force contended enqueues to serialize on a
2708 	 * separate lock before trying to get qdisc main lock.
2709 	 * This permits __QDISC_STATE_RUNNING owner to get the lock more often
2710 	 * and dequeue packets faster.
2711 	 */
2712 	contended = qdisc_is_running(q);
2713 	if (unlikely(contended))
2714 		spin_lock(&q->busylock);
2715 
2716 	spin_lock(root_lock);
2717 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2718 		kfree_skb(skb);
2719 		rc = NET_XMIT_DROP;
2720 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2721 		   qdisc_run_begin(q)) {
2722 		/*
2723 		 * This is a work-conserving queue; there are no old skbs
2724 		 * waiting to be sent out; and the qdisc is not running -
2725 		 * xmit the skb directly.
2726 		 */
2727 		if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2728 			skb_dst_force(skb);
2729 
2730 		qdisc_bstats_update(q, skb);
2731 
2732 		if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2733 			if (unlikely(contended)) {
2734 				spin_unlock(&q->busylock);
2735 				contended = false;
2736 			}
2737 			__qdisc_run(q);
2738 		} else
2739 			qdisc_run_end(q);
2740 
2741 		rc = NET_XMIT_SUCCESS;
2742 	} else {
2743 		skb_dst_force(skb);
2744 		rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2745 		if (qdisc_run_begin(q)) {
2746 			if (unlikely(contended)) {
2747 				spin_unlock(&q->busylock);
2748 				contended = false;
2749 			}
2750 			__qdisc_run(q);
2751 		}
2752 	}
2753 	spin_unlock(root_lock);
2754 	if (unlikely(contended))
2755 		spin_unlock(&q->busylock);
2756 	return rc;
2757 }
2758 
2759 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2760 static void skb_update_prio(struct sk_buff *skb)
2761 {
2762 	struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2763 
2764 	if (!skb->priority && skb->sk && map) {
2765 		unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2766 
2767 		if (prioidx < map->priomap_len)
2768 			skb->priority = map->priomap[prioidx];
2769 	}
2770 }
2771 #else
2772 #define skb_update_prio(skb)
2773 #endif
2774 
2775 static DEFINE_PER_CPU(int, xmit_recursion);
2776 #define RECURSION_LIMIT 10
2777 
2778 /**
2779  *	dev_loopback_xmit - loop back @skb
2780  *	@skb: buffer to transmit
2781  */
2782 int dev_loopback_xmit(struct sk_buff *skb)
2783 {
2784 	skb_reset_mac_header(skb);
2785 	__skb_pull(skb, skb_network_offset(skb));
2786 	skb->pkt_type = PACKET_LOOPBACK;
2787 	skb->ip_summed = CHECKSUM_UNNECESSARY;
2788 	WARN_ON(!skb_dst(skb));
2789 	skb_dst_force(skb);
2790 	netif_rx_ni(skb);
2791 	return 0;
2792 }
2793 EXPORT_SYMBOL(dev_loopback_xmit);
2794 
2795 /**
2796  *	__dev_queue_xmit - transmit a buffer
2797  *	@skb: buffer to transmit
2798  *	@accel_priv: private data used for L2 forwarding offload
2799  *
2800  *	Queue a buffer for transmission to a network device. The caller must
2801  *	have set the device and priority and built the buffer before calling
2802  *	this function. The function can be called from an interrupt.
2803  *
2804  *	A negative errno code is returned on a failure. A success does not
2805  *	guarantee the frame will be transmitted as it may be dropped due
2806  *	to congestion or traffic shaping.
2807  *
2808  * -----------------------------------------------------------------------------------
2809  *      I notice this method can also return errors from the queue disciplines,
2810  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
2811  *      be positive.
2812  *
2813  *      Regardless of the return value, the skb is consumed, so it is currently
2814  *      difficult to retry a send to this method.  (You can bump the ref count
2815  *      before sending to hold a reference for retry if you are careful.)
2816  *
2817  *      When calling this method, interrupts MUST be enabled.  This is because
2818  *      the BH enable code must have IRQs enabled so that it will not deadlock.
2819  *          --BLG
2820  */
2821 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
2822 {
2823 	struct net_device *dev = skb->dev;
2824 	struct netdev_queue *txq;
2825 	struct Qdisc *q;
2826 	int rc = -ENOMEM;
2827 
2828 	skb_reset_mac_header(skb);
2829 
2830 	/* Disable soft irqs for various locks below. Also
2831 	 * stops preemption for RCU.
2832 	 */
2833 	rcu_read_lock_bh();
2834 
2835 	skb_update_prio(skb);
2836 
2837 	txq = netdev_pick_tx(dev, skb, accel_priv);
2838 	q = rcu_dereference_bh(txq->qdisc);
2839 
2840 #ifdef CONFIG_NET_CLS_ACT
2841 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2842 #endif
2843 	trace_net_dev_queue(skb);
2844 	if (q->enqueue) {
2845 		rc = __dev_xmit_skb(skb, q, dev, txq);
2846 		goto out;
2847 	}
2848 
2849 	/* The device has no queue. Common case for software devices:
2850 	   loopback, all the sorts of tunnels...
2851 
2852 	   Really, it is unlikely that netif_tx_lock protection is necessary
2853 	   here.  (f.e. loopback and IP tunnels are clean ignoring statistics
2854 	   counters.)
2855 	   However, it is possible, that they rely on protection
2856 	   made by us here.
2857 
2858 	   Check this and shot the lock. It is not prone from deadlocks.
2859 	   Either shot noqueue qdisc, it is even simpler 8)
2860 	 */
2861 	if (dev->flags & IFF_UP) {
2862 		int cpu = smp_processor_id(); /* ok because BHs are off */
2863 
2864 		if (txq->xmit_lock_owner != cpu) {
2865 
2866 			if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2867 				goto recursion_alert;
2868 
2869 			HARD_TX_LOCK(dev, txq, cpu);
2870 
2871 			if (!netif_xmit_stopped(txq)) {
2872 				__this_cpu_inc(xmit_recursion);
2873 				rc = dev_hard_start_xmit(skb, dev, txq);
2874 				__this_cpu_dec(xmit_recursion);
2875 				if (dev_xmit_complete(rc)) {
2876 					HARD_TX_UNLOCK(dev, txq);
2877 					goto out;
2878 				}
2879 			}
2880 			HARD_TX_UNLOCK(dev, txq);
2881 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
2882 					     dev->name);
2883 		} else {
2884 			/* Recursion is detected! It is possible,
2885 			 * unfortunately
2886 			 */
2887 recursion_alert:
2888 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
2889 					     dev->name);
2890 		}
2891 	}
2892 
2893 	rc = -ENETDOWN;
2894 	rcu_read_unlock_bh();
2895 
2896 	atomic_long_inc(&dev->tx_dropped);
2897 	kfree_skb(skb);
2898 	return rc;
2899 out:
2900 	rcu_read_unlock_bh();
2901 	return rc;
2902 }
2903 
2904 int dev_queue_xmit(struct sk_buff *skb)
2905 {
2906 	return __dev_queue_xmit(skb, NULL);
2907 }
2908 EXPORT_SYMBOL(dev_queue_xmit);
2909 
2910 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
2911 {
2912 	return __dev_queue_xmit(skb, accel_priv);
2913 }
2914 EXPORT_SYMBOL(dev_queue_xmit_accel);
2915 
2916 
2917 /*=======================================================================
2918 			Receiver routines
2919   =======================================================================*/
2920 
2921 int netdev_max_backlog __read_mostly = 1000;
2922 EXPORT_SYMBOL(netdev_max_backlog);
2923 
2924 int netdev_tstamp_prequeue __read_mostly = 1;
2925 int netdev_budget __read_mostly = 300;
2926 int weight_p __read_mostly = 64;            /* old backlog weight */
2927 
2928 /* Called with irq disabled */
2929 static inline void ____napi_schedule(struct softnet_data *sd,
2930 				     struct napi_struct *napi)
2931 {
2932 	list_add_tail(&napi->poll_list, &sd->poll_list);
2933 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
2934 }
2935 
2936 #ifdef CONFIG_RPS
2937 
2938 /* One global table that all flow-based protocols share. */
2939 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
2940 EXPORT_SYMBOL(rps_sock_flow_table);
2941 
2942 struct static_key rps_needed __read_mostly;
2943 
2944 static struct rps_dev_flow *
2945 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2946 	    struct rps_dev_flow *rflow, u16 next_cpu)
2947 {
2948 	if (next_cpu != RPS_NO_CPU) {
2949 #ifdef CONFIG_RFS_ACCEL
2950 		struct netdev_rx_queue *rxqueue;
2951 		struct rps_dev_flow_table *flow_table;
2952 		struct rps_dev_flow *old_rflow;
2953 		u32 flow_id;
2954 		u16 rxq_index;
2955 		int rc;
2956 
2957 		/* Should we steer this flow to a different hardware queue? */
2958 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
2959 		    !(dev->features & NETIF_F_NTUPLE))
2960 			goto out;
2961 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
2962 		if (rxq_index == skb_get_rx_queue(skb))
2963 			goto out;
2964 
2965 		rxqueue = dev->_rx + rxq_index;
2966 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
2967 		if (!flow_table)
2968 			goto out;
2969 		flow_id = skb_get_hash(skb) & flow_table->mask;
2970 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
2971 							rxq_index, flow_id);
2972 		if (rc < 0)
2973 			goto out;
2974 		old_rflow = rflow;
2975 		rflow = &flow_table->flows[flow_id];
2976 		rflow->filter = rc;
2977 		if (old_rflow->filter == rflow->filter)
2978 			old_rflow->filter = RPS_NO_FILTER;
2979 	out:
2980 #endif
2981 		rflow->last_qtail =
2982 			per_cpu(softnet_data, next_cpu).input_queue_head;
2983 	}
2984 
2985 	rflow->cpu = next_cpu;
2986 	return rflow;
2987 }
2988 
2989 /*
2990  * get_rps_cpu is called from netif_receive_skb and returns the target
2991  * CPU from the RPS map of the receiving queue for a given skb.
2992  * rcu_read_lock must be held on entry.
2993  */
2994 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2995 		       struct rps_dev_flow **rflowp)
2996 {
2997 	struct netdev_rx_queue *rxqueue;
2998 	struct rps_map *map;
2999 	struct rps_dev_flow_table *flow_table;
3000 	struct rps_sock_flow_table *sock_flow_table;
3001 	int cpu = -1;
3002 	u16 tcpu;
3003 	u32 hash;
3004 
3005 	if (skb_rx_queue_recorded(skb)) {
3006 		u16 index = skb_get_rx_queue(skb);
3007 		if (unlikely(index >= dev->real_num_rx_queues)) {
3008 			WARN_ONCE(dev->real_num_rx_queues > 1,
3009 				  "%s received packet on queue %u, but number "
3010 				  "of RX queues is %u\n",
3011 				  dev->name, index, dev->real_num_rx_queues);
3012 			goto done;
3013 		}
3014 		rxqueue = dev->_rx + index;
3015 	} else
3016 		rxqueue = dev->_rx;
3017 
3018 	map = rcu_dereference(rxqueue->rps_map);
3019 	if (map) {
3020 		if (map->len == 1 &&
3021 		    !rcu_access_pointer(rxqueue->rps_flow_table)) {
3022 			tcpu = map->cpus[0];
3023 			if (cpu_online(tcpu))
3024 				cpu = tcpu;
3025 			goto done;
3026 		}
3027 	} else if (!rcu_access_pointer(rxqueue->rps_flow_table)) {
3028 		goto done;
3029 	}
3030 
3031 	skb_reset_network_header(skb);
3032 	hash = skb_get_hash(skb);
3033 	if (!hash)
3034 		goto done;
3035 
3036 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
3037 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
3038 	if (flow_table && sock_flow_table) {
3039 		u16 next_cpu;
3040 		struct rps_dev_flow *rflow;
3041 
3042 		rflow = &flow_table->flows[hash & flow_table->mask];
3043 		tcpu = rflow->cpu;
3044 
3045 		next_cpu = sock_flow_table->ents[hash & sock_flow_table->mask];
3046 
3047 		/*
3048 		 * If the desired CPU (where last recvmsg was done) is
3049 		 * different from current CPU (one in the rx-queue flow
3050 		 * table entry), switch if one of the following holds:
3051 		 *   - Current CPU is unset (equal to RPS_NO_CPU).
3052 		 *   - Current CPU is offline.
3053 		 *   - The current CPU's queue tail has advanced beyond the
3054 		 *     last packet that was enqueued using this table entry.
3055 		 *     This guarantees that all previous packets for the flow
3056 		 *     have been dequeued, thus preserving in order delivery.
3057 		 */
3058 		if (unlikely(tcpu != next_cpu) &&
3059 		    (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
3060 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3061 		      rflow->last_qtail)) >= 0)) {
3062 			tcpu = next_cpu;
3063 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3064 		}
3065 
3066 		if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
3067 			*rflowp = rflow;
3068 			cpu = tcpu;
3069 			goto done;
3070 		}
3071 	}
3072 
3073 	if (map) {
3074 		tcpu = map->cpus[((u64) hash * map->len) >> 32];
3075 
3076 		if (cpu_online(tcpu)) {
3077 			cpu = tcpu;
3078 			goto done;
3079 		}
3080 	}
3081 
3082 done:
3083 	return cpu;
3084 }
3085 
3086 #ifdef CONFIG_RFS_ACCEL
3087 
3088 /**
3089  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3090  * @dev: Device on which the filter was set
3091  * @rxq_index: RX queue index
3092  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3093  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3094  *
3095  * Drivers that implement ndo_rx_flow_steer() should periodically call
3096  * this function for each installed filter and remove the filters for
3097  * which it returns %true.
3098  */
3099 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3100 			 u32 flow_id, u16 filter_id)
3101 {
3102 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3103 	struct rps_dev_flow_table *flow_table;
3104 	struct rps_dev_flow *rflow;
3105 	bool expire = true;
3106 	int cpu;
3107 
3108 	rcu_read_lock();
3109 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
3110 	if (flow_table && flow_id <= flow_table->mask) {
3111 		rflow = &flow_table->flows[flow_id];
3112 		cpu = ACCESS_ONCE(rflow->cpu);
3113 		if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
3114 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3115 			   rflow->last_qtail) <
3116 		     (int)(10 * flow_table->mask)))
3117 			expire = false;
3118 	}
3119 	rcu_read_unlock();
3120 	return expire;
3121 }
3122 EXPORT_SYMBOL(rps_may_expire_flow);
3123 
3124 #endif /* CONFIG_RFS_ACCEL */
3125 
3126 /* Called from hardirq (IPI) context */
3127 static void rps_trigger_softirq(void *data)
3128 {
3129 	struct softnet_data *sd = data;
3130 
3131 	____napi_schedule(sd, &sd->backlog);
3132 	sd->received_rps++;
3133 }
3134 
3135 #endif /* CONFIG_RPS */
3136 
3137 /*
3138  * Check if this softnet_data structure is another cpu one
3139  * If yes, queue it to our IPI list and return 1
3140  * If no, return 0
3141  */
3142 static int rps_ipi_queued(struct softnet_data *sd)
3143 {
3144 #ifdef CONFIG_RPS
3145 	struct softnet_data *mysd = &__get_cpu_var(softnet_data);
3146 
3147 	if (sd != mysd) {
3148 		sd->rps_ipi_next = mysd->rps_ipi_list;
3149 		mysd->rps_ipi_list = sd;
3150 
3151 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3152 		return 1;
3153 	}
3154 #endif /* CONFIG_RPS */
3155 	return 0;
3156 }
3157 
3158 #ifdef CONFIG_NET_FLOW_LIMIT
3159 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3160 #endif
3161 
3162 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3163 {
3164 #ifdef CONFIG_NET_FLOW_LIMIT
3165 	struct sd_flow_limit *fl;
3166 	struct softnet_data *sd;
3167 	unsigned int old_flow, new_flow;
3168 
3169 	if (qlen < (netdev_max_backlog >> 1))
3170 		return false;
3171 
3172 	sd = &__get_cpu_var(softnet_data);
3173 
3174 	rcu_read_lock();
3175 	fl = rcu_dereference(sd->flow_limit);
3176 	if (fl) {
3177 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3178 		old_flow = fl->history[fl->history_head];
3179 		fl->history[fl->history_head] = new_flow;
3180 
3181 		fl->history_head++;
3182 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3183 
3184 		if (likely(fl->buckets[old_flow]))
3185 			fl->buckets[old_flow]--;
3186 
3187 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3188 			fl->count++;
3189 			rcu_read_unlock();
3190 			return true;
3191 		}
3192 	}
3193 	rcu_read_unlock();
3194 #endif
3195 	return false;
3196 }
3197 
3198 /*
3199  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3200  * queue (may be a remote CPU queue).
3201  */
3202 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3203 			      unsigned int *qtail)
3204 {
3205 	struct softnet_data *sd;
3206 	unsigned long flags;
3207 	unsigned int qlen;
3208 
3209 	sd = &per_cpu(softnet_data, cpu);
3210 
3211 	local_irq_save(flags);
3212 
3213 	rps_lock(sd);
3214 	qlen = skb_queue_len(&sd->input_pkt_queue);
3215 	if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3216 		if (skb_queue_len(&sd->input_pkt_queue)) {
3217 enqueue:
3218 			__skb_queue_tail(&sd->input_pkt_queue, skb);
3219 			input_queue_tail_incr_save(sd, qtail);
3220 			rps_unlock(sd);
3221 			local_irq_restore(flags);
3222 			return NET_RX_SUCCESS;
3223 		}
3224 
3225 		/* Schedule NAPI for backlog device
3226 		 * We can use non atomic operation since we own the queue lock
3227 		 */
3228 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3229 			if (!rps_ipi_queued(sd))
3230 				____napi_schedule(sd, &sd->backlog);
3231 		}
3232 		goto enqueue;
3233 	}
3234 
3235 	sd->dropped++;
3236 	rps_unlock(sd);
3237 
3238 	local_irq_restore(flags);
3239 
3240 	atomic_long_inc(&skb->dev->rx_dropped);
3241 	kfree_skb(skb);
3242 	return NET_RX_DROP;
3243 }
3244 
3245 static int netif_rx_internal(struct sk_buff *skb)
3246 {
3247 	int ret;
3248 
3249 	net_timestamp_check(netdev_tstamp_prequeue, skb);
3250 
3251 	trace_netif_rx(skb);
3252 #ifdef CONFIG_RPS
3253 	if (static_key_false(&rps_needed)) {
3254 		struct rps_dev_flow voidflow, *rflow = &voidflow;
3255 		int cpu;
3256 
3257 		preempt_disable();
3258 		rcu_read_lock();
3259 
3260 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
3261 		if (cpu < 0)
3262 			cpu = smp_processor_id();
3263 
3264 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3265 
3266 		rcu_read_unlock();
3267 		preempt_enable();
3268 	} else
3269 #endif
3270 	{
3271 		unsigned int qtail;
3272 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3273 		put_cpu();
3274 	}
3275 	return ret;
3276 }
3277 
3278 /**
3279  *	netif_rx	-	post buffer to the network code
3280  *	@skb: buffer to post
3281  *
3282  *	This function receives a packet from a device driver and queues it for
3283  *	the upper (protocol) levels to process.  It always succeeds. The buffer
3284  *	may be dropped during processing for congestion control or by the
3285  *	protocol layers.
3286  *
3287  *	return values:
3288  *	NET_RX_SUCCESS	(no congestion)
3289  *	NET_RX_DROP     (packet was dropped)
3290  *
3291  */
3292 
3293 int netif_rx(struct sk_buff *skb)
3294 {
3295 	trace_netif_rx_entry(skb);
3296 
3297 	return netif_rx_internal(skb);
3298 }
3299 EXPORT_SYMBOL(netif_rx);
3300 
3301 int netif_rx_ni(struct sk_buff *skb)
3302 {
3303 	int err;
3304 
3305 	trace_netif_rx_ni_entry(skb);
3306 
3307 	preempt_disable();
3308 	err = netif_rx_internal(skb);
3309 	if (local_softirq_pending())
3310 		do_softirq();
3311 	preempt_enable();
3312 
3313 	return err;
3314 }
3315 EXPORT_SYMBOL(netif_rx_ni);
3316 
3317 static void net_tx_action(struct softirq_action *h)
3318 {
3319 	struct softnet_data *sd = &__get_cpu_var(softnet_data);
3320 
3321 	if (sd->completion_queue) {
3322 		struct sk_buff *clist;
3323 
3324 		local_irq_disable();
3325 		clist = sd->completion_queue;
3326 		sd->completion_queue = NULL;
3327 		local_irq_enable();
3328 
3329 		while (clist) {
3330 			struct sk_buff *skb = clist;
3331 			clist = clist->next;
3332 
3333 			WARN_ON(atomic_read(&skb->users));
3334 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3335 				trace_consume_skb(skb);
3336 			else
3337 				trace_kfree_skb(skb, net_tx_action);
3338 			__kfree_skb(skb);
3339 		}
3340 	}
3341 
3342 	if (sd->output_queue) {
3343 		struct Qdisc *head;
3344 
3345 		local_irq_disable();
3346 		head = sd->output_queue;
3347 		sd->output_queue = NULL;
3348 		sd->output_queue_tailp = &sd->output_queue;
3349 		local_irq_enable();
3350 
3351 		while (head) {
3352 			struct Qdisc *q = head;
3353 			spinlock_t *root_lock;
3354 
3355 			head = head->next_sched;
3356 
3357 			root_lock = qdisc_lock(q);
3358 			if (spin_trylock(root_lock)) {
3359 				smp_mb__before_atomic();
3360 				clear_bit(__QDISC_STATE_SCHED,
3361 					  &q->state);
3362 				qdisc_run(q);
3363 				spin_unlock(root_lock);
3364 			} else {
3365 				if (!test_bit(__QDISC_STATE_DEACTIVATED,
3366 					      &q->state)) {
3367 					__netif_reschedule(q);
3368 				} else {
3369 					smp_mb__before_atomic();
3370 					clear_bit(__QDISC_STATE_SCHED,
3371 						  &q->state);
3372 				}
3373 			}
3374 		}
3375 	}
3376 }
3377 
3378 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3379     (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3380 /* This hook is defined here for ATM LANE */
3381 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3382 			     unsigned char *addr) __read_mostly;
3383 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3384 #endif
3385 
3386 #ifdef CONFIG_NET_CLS_ACT
3387 /* TODO: Maybe we should just force sch_ingress to be compiled in
3388  * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3389  * a compare and 2 stores extra right now if we dont have it on
3390  * but have CONFIG_NET_CLS_ACT
3391  * NOTE: This doesn't stop any functionality; if you dont have
3392  * the ingress scheduler, you just can't add policies on ingress.
3393  *
3394  */
3395 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
3396 {
3397 	struct net_device *dev = skb->dev;
3398 	u32 ttl = G_TC_RTTL(skb->tc_verd);
3399 	int result = TC_ACT_OK;
3400 	struct Qdisc *q;
3401 
3402 	if (unlikely(MAX_RED_LOOP < ttl++)) {
3403 		net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n",
3404 				     skb->skb_iif, dev->ifindex);
3405 		return TC_ACT_SHOT;
3406 	}
3407 
3408 	skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3409 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3410 
3411 	q = rxq->qdisc;
3412 	if (q != &noop_qdisc) {
3413 		spin_lock(qdisc_lock(q));
3414 		if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3415 			result = qdisc_enqueue_root(skb, q);
3416 		spin_unlock(qdisc_lock(q));
3417 	}
3418 
3419 	return result;
3420 }
3421 
3422 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3423 					 struct packet_type **pt_prev,
3424 					 int *ret, struct net_device *orig_dev)
3425 {
3426 	struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3427 
3428 	if (!rxq || rxq->qdisc == &noop_qdisc)
3429 		goto out;
3430 
3431 	if (*pt_prev) {
3432 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
3433 		*pt_prev = NULL;
3434 	}
3435 
3436 	switch (ing_filter(skb, rxq)) {
3437 	case TC_ACT_SHOT:
3438 	case TC_ACT_STOLEN:
3439 		kfree_skb(skb);
3440 		return NULL;
3441 	}
3442 
3443 out:
3444 	skb->tc_verd = 0;
3445 	return skb;
3446 }
3447 #endif
3448 
3449 /**
3450  *	netdev_rx_handler_register - register receive handler
3451  *	@dev: device to register a handler for
3452  *	@rx_handler: receive handler to register
3453  *	@rx_handler_data: data pointer that is used by rx handler
3454  *
3455  *	Register a receive handler for a device. This handler will then be
3456  *	called from __netif_receive_skb. A negative errno code is returned
3457  *	on a failure.
3458  *
3459  *	The caller must hold the rtnl_mutex.
3460  *
3461  *	For a general description of rx_handler, see enum rx_handler_result.
3462  */
3463 int netdev_rx_handler_register(struct net_device *dev,
3464 			       rx_handler_func_t *rx_handler,
3465 			       void *rx_handler_data)
3466 {
3467 	ASSERT_RTNL();
3468 
3469 	if (dev->rx_handler)
3470 		return -EBUSY;
3471 
3472 	/* Note: rx_handler_data must be set before rx_handler */
3473 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3474 	rcu_assign_pointer(dev->rx_handler, rx_handler);
3475 
3476 	return 0;
3477 }
3478 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3479 
3480 /**
3481  *	netdev_rx_handler_unregister - unregister receive handler
3482  *	@dev: device to unregister a handler from
3483  *
3484  *	Unregister a receive handler from a device.
3485  *
3486  *	The caller must hold the rtnl_mutex.
3487  */
3488 void netdev_rx_handler_unregister(struct net_device *dev)
3489 {
3490 
3491 	ASSERT_RTNL();
3492 	RCU_INIT_POINTER(dev->rx_handler, NULL);
3493 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3494 	 * section has a guarantee to see a non NULL rx_handler_data
3495 	 * as well.
3496 	 */
3497 	synchronize_net();
3498 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3499 }
3500 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3501 
3502 /*
3503  * Limit the use of PFMEMALLOC reserves to those protocols that implement
3504  * the special handling of PFMEMALLOC skbs.
3505  */
3506 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3507 {
3508 	switch (skb->protocol) {
3509 	case htons(ETH_P_ARP):
3510 	case htons(ETH_P_IP):
3511 	case htons(ETH_P_IPV6):
3512 	case htons(ETH_P_8021Q):
3513 	case htons(ETH_P_8021AD):
3514 		return true;
3515 	default:
3516 		return false;
3517 	}
3518 }
3519 
3520 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
3521 {
3522 	struct packet_type *ptype, *pt_prev;
3523 	rx_handler_func_t *rx_handler;
3524 	struct net_device *orig_dev;
3525 	struct net_device *null_or_dev;
3526 	bool deliver_exact = false;
3527 	int ret = NET_RX_DROP;
3528 	__be16 type;
3529 
3530 	net_timestamp_check(!netdev_tstamp_prequeue, skb);
3531 
3532 	trace_netif_receive_skb(skb);
3533 
3534 	orig_dev = skb->dev;
3535 
3536 	skb_reset_network_header(skb);
3537 	if (!skb_transport_header_was_set(skb))
3538 		skb_reset_transport_header(skb);
3539 	skb_reset_mac_len(skb);
3540 
3541 	pt_prev = NULL;
3542 
3543 	rcu_read_lock();
3544 
3545 another_round:
3546 	skb->skb_iif = skb->dev->ifindex;
3547 
3548 	__this_cpu_inc(softnet_data.processed);
3549 
3550 	if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
3551 	    skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
3552 		skb = vlan_untag(skb);
3553 		if (unlikely(!skb))
3554 			goto unlock;
3555 	}
3556 
3557 #ifdef CONFIG_NET_CLS_ACT
3558 	if (skb->tc_verd & TC_NCLS) {
3559 		skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3560 		goto ncls;
3561 	}
3562 #endif
3563 
3564 	if (pfmemalloc)
3565 		goto skip_taps;
3566 
3567 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
3568 		if (!ptype->dev || ptype->dev == skb->dev) {
3569 			if (pt_prev)
3570 				ret = deliver_skb(skb, pt_prev, orig_dev);
3571 			pt_prev = ptype;
3572 		}
3573 	}
3574 
3575 skip_taps:
3576 #ifdef CONFIG_NET_CLS_ACT
3577 	skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3578 	if (!skb)
3579 		goto unlock;
3580 ncls:
3581 #endif
3582 
3583 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
3584 		goto drop;
3585 
3586 	if (vlan_tx_tag_present(skb)) {
3587 		if (pt_prev) {
3588 			ret = deliver_skb(skb, pt_prev, orig_dev);
3589 			pt_prev = NULL;
3590 		}
3591 		if (vlan_do_receive(&skb))
3592 			goto another_round;
3593 		else if (unlikely(!skb))
3594 			goto unlock;
3595 	}
3596 
3597 	rx_handler = rcu_dereference(skb->dev->rx_handler);
3598 	if (rx_handler) {
3599 		if (pt_prev) {
3600 			ret = deliver_skb(skb, pt_prev, orig_dev);
3601 			pt_prev = NULL;
3602 		}
3603 		switch (rx_handler(&skb)) {
3604 		case RX_HANDLER_CONSUMED:
3605 			ret = NET_RX_SUCCESS;
3606 			goto unlock;
3607 		case RX_HANDLER_ANOTHER:
3608 			goto another_round;
3609 		case RX_HANDLER_EXACT:
3610 			deliver_exact = true;
3611 		case RX_HANDLER_PASS:
3612 			break;
3613 		default:
3614 			BUG();
3615 		}
3616 	}
3617 
3618 	if (unlikely(vlan_tx_tag_present(skb))) {
3619 		if (vlan_tx_tag_get_id(skb))
3620 			skb->pkt_type = PACKET_OTHERHOST;
3621 		/* Note: we might in the future use prio bits
3622 		 * and set skb->priority like in vlan_do_receive()
3623 		 * For the time being, just ignore Priority Code Point
3624 		 */
3625 		skb->vlan_tci = 0;
3626 	}
3627 
3628 	/* deliver only exact match when indicated */
3629 	null_or_dev = deliver_exact ? skb->dev : NULL;
3630 
3631 	type = skb->protocol;
3632 	list_for_each_entry_rcu(ptype,
3633 			&ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3634 		if (ptype->type == type &&
3635 		    (ptype->dev == null_or_dev || ptype->dev == skb->dev ||
3636 		     ptype->dev == orig_dev)) {
3637 			if (pt_prev)
3638 				ret = deliver_skb(skb, pt_prev, orig_dev);
3639 			pt_prev = ptype;
3640 		}
3641 	}
3642 
3643 	if (pt_prev) {
3644 		if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
3645 			goto drop;
3646 		else
3647 			ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3648 	} else {
3649 drop:
3650 		atomic_long_inc(&skb->dev->rx_dropped);
3651 		kfree_skb(skb);
3652 		/* Jamal, now you will not able to escape explaining
3653 		 * me how you were going to use this. :-)
3654 		 */
3655 		ret = NET_RX_DROP;
3656 	}
3657 
3658 unlock:
3659 	rcu_read_unlock();
3660 	return ret;
3661 }
3662 
3663 static int __netif_receive_skb(struct sk_buff *skb)
3664 {
3665 	int ret;
3666 
3667 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
3668 		unsigned long pflags = current->flags;
3669 
3670 		/*
3671 		 * PFMEMALLOC skbs are special, they should
3672 		 * - be delivered to SOCK_MEMALLOC sockets only
3673 		 * - stay away from userspace
3674 		 * - have bounded memory usage
3675 		 *
3676 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
3677 		 * context down to all allocation sites.
3678 		 */
3679 		current->flags |= PF_MEMALLOC;
3680 		ret = __netif_receive_skb_core(skb, true);
3681 		tsk_restore_flags(current, pflags, PF_MEMALLOC);
3682 	} else
3683 		ret = __netif_receive_skb_core(skb, false);
3684 
3685 	return ret;
3686 }
3687 
3688 static int netif_receive_skb_internal(struct sk_buff *skb)
3689 {
3690 	net_timestamp_check(netdev_tstamp_prequeue, skb);
3691 
3692 	if (skb_defer_rx_timestamp(skb))
3693 		return NET_RX_SUCCESS;
3694 
3695 #ifdef CONFIG_RPS
3696 	if (static_key_false(&rps_needed)) {
3697 		struct rps_dev_flow voidflow, *rflow = &voidflow;
3698 		int cpu, ret;
3699 
3700 		rcu_read_lock();
3701 
3702 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
3703 
3704 		if (cpu >= 0) {
3705 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3706 			rcu_read_unlock();
3707 			return ret;
3708 		}
3709 		rcu_read_unlock();
3710 	}
3711 #endif
3712 	return __netif_receive_skb(skb);
3713 }
3714 
3715 /**
3716  *	netif_receive_skb - process receive buffer from network
3717  *	@skb: buffer to process
3718  *
3719  *	netif_receive_skb() is the main receive data processing function.
3720  *	It always succeeds. The buffer may be dropped during processing
3721  *	for congestion control or by the protocol layers.
3722  *
3723  *	This function may only be called from softirq context and interrupts
3724  *	should be enabled.
3725  *
3726  *	Return values (usually ignored):
3727  *	NET_RX_SUCCESS: no congestion
3728  *	NET_RX_DROP: packet was dropped
3729  */
3730 int netif_receive_skb(struct sk_buff *skb)
3731 {
3732 	trace_netif_receive_skb_entry(skb);
3733 
3734 	return netif_receive_skb_internal(skb);
3735 }
3736 EXPORT_SYMBOL(netif_receive_skb);
3737 
3738 /* Network device is going away, flush any packets still pending
3739  * Called with irqs disabled.
3740  */
3741 static void flush_backlog(void *arg)
3742 {
3743 	struct net_device *dev = arg;
3744 	struct softnet_data *sd = &__get_cpu_var(softnet_data);
3745 	struct sk_buff *skb, *tmp;
3746 
3747 	rps_lock(sd);
3748 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3749 		if (skb->dev == dev) {
3750 			__skb_unlink(skb, &sd->input_pkt_queue);
3751 			kfree_skb(skb);
3752 			input_queue_head_incr(sd);
3753 		}
3754 	}
3755 	rps_unlock(sd);
3756 
3757 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3758 		if (skb->dev == dev) {
3759 			__skb_unlink(skb, &sd->process_queue);
3760 			kfree_skb(skb);
3761 			input_queue_head_incr(sd);
3762 		}
3763 	}
3764 }
3765 
3766 static int napi_gro_complete(struct sk_buff *skb)
3767 {
3768 	struct packet_offload *ptype;
3769 	__be16 type = skb->protocol;
3770 	struct list_head *head = &offload_base;
3771 	int err = -ENOENT;
3772 
3773 	BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
3774 
3775 	if (NAPI_GRO_CB(skb)->count == 1) {
3776 		skb_shinfo(skb)->gso_size = 0;
3777 		goto out;
3778 	}
3779 
3780 	rcu_read_lock();
3781 	list_for_each_entry_rcu(ptype, head, list) {
3782 		if (ptype->type != type || !ptype->callbacks.gro_complete)
3783 			continue;
3784 
3785 		err = ptype->callbacks.gro_complete(skb, 0);
3786 		break;
3787 	}
3788 	rcu_read_unlock();
3789 
3790 	if (err) {
3791 		WARN_ON(&ptype->list == head);
3792 		kfree_skb(skb);
3793 		return NET_RX_SUCCESS;
3794 	}
3795 
3796 out:
3797 	return netif_receive_skb_internal(skb);
3798 }
3799 
3800 /* napi->gro_list contains packets ordered by age.
3801  * youngest packets at the head of it.
3802  * Complete skbs in reverse order to reduce latencies.
3803  */
3804 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
3805 {
3806 	struct sk_buff *skb, *prev = NULL;
3807 
3808 	/* scan list and build reverse chain */
3809 	for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
3810 		skb->prev = prev;
3811 		prev = skb;
3812 	}
3813 
3814 	for (skb = prev; skb; skb = prev) {
3815 		skb->next = NULL;
3816 
3817 		if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
3818 			return;
3819 
3820 		prev = skb->prev;
3821 		napi_gro_complete(skb);
3822 		napi->gro_count--;
3823 	}
3824 
3825 	napi->gro_list = NULL;
3826 }
3827 EXPORT_SYMBOL(napi_gro_flush);
3828 
3829 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
3830 {
3831 	struct sk_buff *p;
3832 	unsigned int maclen = skb->dev->hard_header_len;
3833 	u32 hash = skb_get_hash_raw(skb);
3834 
3835 	for (p = napi->gro_list; p; p = p->next) {
3836 		unsigned long diffs;
3837 
3838 		NAPI_GRO_CB(p)->flush = 0;
3839 
3840 		if (hash != skb_get_hash_raw(p)) {
3841 			NAPI_GRO_CB(p)->same_flow = 0;
3842 			continue;
3843 		}
3844 
3845 		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3846 		diffs |= p->vlan_tci ^ skb->vlan_tci;
3847 		if (maclen == ETH_HLEN)
3848 			diffs |= compare_ether_header(skb_mac_header(p),
3849 						      skb_mac_header(skb));
3850 		else if (!diffs)
3851 			diffs = memcmp(skb_mac_header(p),
3852 				       skb_mac_header(skb),
3853 				       maclen);
3854 		NAPI_GRO_CB(p)->same_flow = !diffs;
3855 	}
3856 }
3857 
3858 static void skb_gro_reset_offset(struct sk_buff *skb)
3859 {
3860 	const struct skb_shared_info *pinfo = skb_shinfo(skb);
3861 	const skb_frag_t *frag0 = &pinfo->frags[0];
3862 
3863 	NAPI_GRO_CB(skb)->data_offset = 0;
3864 	NAPI_GRO_CB(skb)->frag0 = NULL;
3865 	NAPI_GRO_CB(skb)->frag0_len = 0;
3866 
3867 	if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
3868 	    pinfo->nr_frags &&
3869 	    !PageHighMem(skb_frag_page(frag0))) {
3870 		NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
3871 		NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
3872 	}
3873 }
3874 
3875 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
3876 {
3877 	struct skb_shared_info *pinfo = skb_shinfo(skb);
3878 
3879 	BUG_ON(skb->end - skb->tail < grow);
3880 
3881 	memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3882 
3883 	skb->data_len -= grow;
3884 	skb->tail += grow;
3885 
3886 	pinfo->frags[0].page_offset += grow;
3887 	skb_frag_size_sub(&pinfo->frags[0], grow);
3888 
3889 	if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
3890 		skb_frag_unref(skb, 0);
3891 		memmove(pinfo->frags, pinfo->frags + 1,
3892 			--pinfo->nr_frags * sizeof(pinfo->frags[0]));
3893 	}
3894 }
3895 
3896 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3897 {
3898 	struct sk_buff **pp = NULL;
3899 	struct packet_offload *ptype;
3900 	__be16 type = skb->protocol;
3901 	struct list_head *head = &offload_base;
3902 	int same_flow;
3903 	enum gro_result ret;
3904 	int grow;
3905 
3906 	if (!(skb->dev->features & NETIF_F_GRO))
3907 		goto normal;
3908 
3909 	if (skb_is_gso(skb) || skb_has_frag_list(skb))
3910 		goto normal;
3911 
3912 	gro_list_prepare(napi, skb);
3913 	NAPI_GRO_CB(skb)->csum = skb->csum; /* Needed for CHECKSUM_COMPLETE */
3914 
3915 	rcu_read_lock();
3916 	list_for_each_entry_rcu(ptype, head, list) {
3917 		if (ptype->type != type || !ptype->callbacks.gro_receive)
3918 			continue;
3919 
3920 		skb_set_network_header(skb, skb_gro_offset(skb));
3921 		skb_reset_mac_len(skb);
3922 		NAPI_GRO_CB(skb)->same_flow = 0;
3923 		NAPI_GRO_CB(skb)->flush = 0;
3924 		NAPI_GRO_CB(skb)->free = 0;
3925 		NAPI_GRO_CB(skb)->udp_mark = 0;
3926 
3927 		pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
3928 		break;
3929 	}
3930 	rcu_read_unlock();
3931 
3932 	if (&ptype->list == head)
3933 		goto normal;
3934 
3935 	same_flow = NAPI_GRO_CB(skb)->same_flow;
3936 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3937 
3938 	if (pp) {
3939 		struct sk_buff *nskb = *pp;
3940 
3941 		*pp = nskb->next;
3942 		nskb->next = NULL;
3943 		napi_gro_complete(nskb);
3944 		napi->gro_count--;
3945 	}
3946 
3947 	if (same_flow)
3948 		goto ok;
3949 
3950 	if (NAPI_GRO_CB(skb)->flush)
3951 		goto normal;
3952 
3953 	if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
3954 		struct sk_buff *nskb = napi->gro_list;
3955 
3956 		/* locate the end of the list to select the 'oldest' flow */
3957 		while (nskb->next) {
3958 			pp = &nskb->next;
3959 			nskb = *pp;
3960 		}
3961 		*pp = NULL;
3962 		nskb->next = NULL;
3963 		napi_gro_complete(nskb);
3964 	} else {
3965 		napi->gro_count++;
3966 	}
3967 	NAPI_GRO_CB(skb)->count = 1;
3968 	NAPI_GRO_CB(skb)->age = jiffies;
3969 	NAPI_GRO_CB(skb)->last = skb;
3970 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3971 	skb->next = napi->gro_list;
3972 	napi->gro_list = skb;
3973 	ret = GRO_HELD;
3974 
3975 pull:
3976 	grow = skb_gro_offset(skb) - skb_headlen(skb);
3977 	if (grow > 0)
3978 		gro_pull_from_frag0(skb, grow);
3979 ok:
3980 	return ret;
3981 
3982 normal:
3983 	ret = GRO_NORMAL;
3984 	goto pull;
3985 }
3986 
3987 struct packet_offload *gro_find_receive_by_type(__be16 type)
3988 {
3989 	struct list_head *offload_head = &offload_base;
3990 	struct packet_offload *ptype;
3991 
3992 	list_for_each_entry_rcu(ptype, offload_head, list) {
3993 		if (ptype->type != type || !ptype->callbacks.gro_receive)
3994 			continue;
3995 		return ptype;
3996 	}
3997 	return NULL;
3998 }
3999 EXPORT_SYMBOL(gro_find_receive_by_type);
4000 
4001 struct packet_offload *gro_find_complete_by_type(__be16 type)
4002 {
4003 	struct list_head *offload_head = &offload_base;
4004 	struct packet_offload *ptype;
4005 
4006 	list_for_each_entry_rcu(ptype, offload_head, list) {
4007 		if (ptype->type != type || !ptype->callbacks.gro_complete)
4008 			continue;
4009 		return ptype;
4010 	}
4011 	return NULL;
4012 }
4013 EXPORT_SYMBOL(gro_find_complete_by_type);
4014 
4015 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4016 {
4017 	switch (ret) {
4018 	case GRO_NORMAL:
4019 		if (netif_receive_skb_internal(skb))
4020 			ret = GRO_DROP;
4021 		break;
4022 
4023 	case GRO_DROP:
4024 		kfree_skb(skb);
4025 		break;
4026 
4027 	case GRO_MERGED_FREE:
4028 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4029 			kmem_cache_free(skbuff_head_cache, skb);
4030 		else
4031 			__kfree_skb(skb);
4032 		break;
4033 
4034 	case GRO_HELD:
4035 	case GRO_MERGED:
4036 		break;
4037 	}
4038 
4039 	return ret;
4040 }
4041 
4042 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4043 {
4044 	trace_napi_gro_receive_entry(skb);
4045 
4046 	skb_gro_reset_offset(skb);
4047 
4048 	return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4049 }
4050 EXPORT_SYMBOL(napi_gro_receive);
4051 
4052 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4053 {
4054 	__skb_pull(skb, skb_headlen(skb));
4055 	/* restore the reserve we had after netdev_alloc_skb_ip_align() */
4056 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4057 	skb->vlan_tci = 0;
4058 	skb->dev = napi->dev;
4059 	skb->skb_iif = 0;
4060 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4061 
4062 	napi->skb = skb;
4063 }
4064 
4065 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4066 {
4067 	struct sk_buff *skb = napi->skb;
4068 
4069 	if (!skb) {
4070 		skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
4071 		napi->skb = skb;
4072 	}
4073 	return skb;
4074 }
4075 EXPORT_SYMBOL(napi_get_frags);
4076 
4077 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4078 				      struct sk_buff *skb,
4079 				      gro_result_t ret)
4080 {
4081 	switch (ret) {
4082 	case GRO_NORMAL:
4083 	case GRO_HELD:
4084 		__skb_push(skb, ETH_HLEN);
4085 		skb->protocol = eth_type_trans(skb, skb->dev);
4086 		if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4087 			ret = GRO_DROP;
4088 		break;
4089 
4090 	case GRO_DROP:
4091 	case GRO_MERGED_FREE:
4092 		napi_reuse_skb(napi, skb);
4093 		break;
4094 
4095 	case GRO_MERGED:
4096 		break;
4097 	}
4098 
4099 	return ret;
4100 }
4101 
4102 /* Upper GRO stack assumes network header starts at gro_offset=0
4103  * Drivers could call both napi_gro_frags() and napi_gro_receive()
4104  * We copy ethernet header into skb->data to have a common layout.
4105  */
4106 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4107 {
4108 	struct sk_buff *skb = napi->skb;
4109 	const struct ethhdr *eth;
4110 	unsigned int hlen = sizeof(*eth);
4111 
4112 	napi->skb = NULL;
4113 
4114 	skb_reset_mac_header(skb);
4115 	skb_gro_reset_offset(skb);
4116 
4117 	eth = skb_gro_header_fast(skb, 0);
4118 	if (unlikely(skb_gro_header_hard(skb, hlen))) {
4119 		eth = skb_gro_header_slow(skb, hlen, 0);
4120 		if (unlikely(!eth)) {
4121 			napi_reuse_skb(napi, skb);
4122 			return NULL;
4123 		}
4124 	} else {
4125 		gro_pull_from_frag0(skb, hlen);
4126 		NAPI_GRO_CB(skb)->frag0 += hlen;
4127 		NAPI_GRO_CB(skb)->frag0_len -= hlen;
4128 	}
4129 	__skb_pull(skb, hlen);
4130 
4131 	/*
4132 	 * This works because the only protocols we care about don't require
4133 	 * special handling.
4134 	 * We'll fix it up properly in napi_frags_finish()
4135 	 */
4136 	skb->protocol = eth->h_proto;
4137 
4138 	return skb;
4139 }
4140 
4141 gro_result_t napi_gro_frags(struct napi_struct *napi)
4142 {
4143 	struct sk_buff *skb = napi_frags_skb(napi);
4144 
4145 	if (!skb)
4146 		return GRO_DROP;
4147 
4148 	trace_napi_gro_frags_entry(skb);
4149 
4150 	return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4151 }
4152 EXPORT_SYMBOL(napi_gro_frags);
4153 
4154 /*
4155  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4156  * Note: called with local irq disabled, but exits with local irq enabled.
4157  */
4158 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4159 {
4160 #ifdef CONFIG_RPS
4161 	struct softnet_data *remsd = sd->rps_ipi_list;
4162 
4163 	if (remsd) {
4164 		sd->rps_ipi_list = NULL;
4165 
4166 		local_irq_enable();
4167 
4168 		/* Send pending IPI's to kick RPS processing on remote cpus. */
4169 		while (remsd) {
4170 			struct softnet_data *next = remsd->rps_ipi_next;
4171 
4172 			if (cpu_online(remsd->cpu))
4173 				smp_call_function_single_async(remsd->cpu,
4174 							   &remsd->csd);
4175 			remsd = next;
4176 		}
4177 	} else
4178 #endif
4179 		local_irq_enable();
4180 }
4181 
4182 static int process_backlog(struct napi_struct *napi, int quota)
4183 {
4184 	int work = 0;
4185 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4186 
4187 #ifdef CONFIG_RPS
4188 	/* Check if we have pending ipi, its better to send them now,
4189 	 * not waiting net_rx_action() end.
4190 	 */
4191 	if (sd->rps_ipi_list) {
4192 		local_irq_disable();
4193 		net_rps_action_and_irq_enable(sd);
4194 	}
4195 #endif
4196 	napi->weight = weight_p;
4197 	local_irq_disable();
4198 	while (work < quota) {
4199 		struct sk_buff *skb;
4200 		unsigned int qlen;
4201 
4202 		while ((skb = __skb_dequeue(&sd->process_queue))) {
4203 			local_irq_enable();
4204 			__netif_receive_skb(skb);
4205 			local_irq_disable();
4206 			input_queue_head_incr(sd);
4207 			if (++work >= quota) {
4208 				local_irq_enable();
4209 				return work;
4210 			}
4211 		}
4212 
4213 		rps_lock(sd);
4214 		qlen = skb_queue_len(&sd->input_pkt_queue);
4215 		if (qlen)
4216 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
4217 						   &sd->process_queue);
4218 
4219 		if (qlen < quota - work) {
4220 			/*
4221 			 * Inline a custom version of __napi_complete().
4222 			 * only current cpu owns and manipulates this napi,
4223 			 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
4224 			 * we can use a plain write instead of clear_bit(),
4225 			 * and we dont need an smp_mb() memory barrier.
4226 			 */
4227 			list_del(&napi->poll_list);
4228 			napi->state = 0;
4229 
4230 			quota = work + qlen;
4231 		}
4232 		rps_unlock(sd);
4233 	}
4234 	local_irq_enable();
4235 
4236 	return work;
4237 }
4238 
4239 /**
4240  * __napi_schedule - schedule for receive
4241  * @n: entry to schedule
4242  *
4243  * The entry's receive function will be scheduled to run
4244  */
4245 void __napi_schedule(struct napi_struct *n)
4246 {
4247 	unsigned long flags;
4248 
4249 	local_irq_save(flags);
4250 	____napi_schedule(&__get_cpu_var(softnet_data), n);
4251 	local_irq_restore(flags);
4252 }
4253 EXPORT_SYMBOL(__napi_schedule);
4254 
4255 void __napi_complete(struct napi_struct *n)
4256 {
4257 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4258 	BUG_ON(n->gro_list);
4259 
4260 	list_del(&n->poll_list);
4261 	smp_mb__before_atomic();
4262 	clear_bit(NAPI_STATE_SCHED, &n->state);
4263 }
4264 EXPORT_SYMBOL(__napi_complete);
4265 
4266 void napi_complete(struct napi_struct *n)
4267 {
4268 	unsigned long flags;
4269 
4270 	/*
4271 	 * don't let napi dequeue from the cpu poll list
4272 	 * just in case its running on a different cpu
4273 	 */
4274 	if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4275 		return;
4276 
4277 	napi_gro_flush(n, false);
4278 	local_irq_save(flags);
4279 	__napi_complete(n);
4280 	local_irq_restore(flags);
4281 }
4282 EXPORT_SYMBOL(napi_complete);
4283 
4284 /* must be called under rcu_read_lock(), as we dont take a reference */
4285 struct napi_struct *napi_by_id(unsigned int napi_id)
4286 {
4287 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4288 	struct napi_struct *napi;
4289 
4290 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4291 		if (napi->napi_id == napi_id)
4292 			return napi;
4293 
4294 	return NULL;
4295 }
4296 EXPORT_SYMBOL_GPL(napi_by_id);
4297 
4298 void napi_hash_add(struct napi_struct *napi)
4299 {
4300 	if (!test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) {
4301 
4302 		spin_lock(&napi_hash_lock);
4303 
4304 		/* 0 is not a valid id, we also skip an id that is taken
4305 		 * we expect both events to be extremely rare
4306 		 */
4307 		napi->napi_id = 0;
4308 		while (!napi->napi_id) {
4309 			napi->napi_id = ++napi_gen_id;
4310 			if (napi_by_id(napi->napi_id))
4311 				napi->napi_id = 0;
4312 		}
4313 
4314 		hlist_add_head_rcu(&napi->napi_hash_node,
4315 			&napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
4316 
4317 		spin_unlock(&napi_hash_lock);
4318 	}
4319 }
4320 EXPORT_SYMBOL_GPL(napi_hash_add);
4321 
4322 /* Warning : caller is responsible to make sure rcu grace period
4323  * is respected before freeing memory containing @napi
4324  */
4325 void napi_hash_del(struct napi_struct *napi)
4326 {
4327 	spin_lock(&napi_hash_lock);
4328 
4329 	if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state))
4330 		hlist_del_rcu(&napi->napi_hash_node);
4331 
4332 	spin_unlock(&napi_hash_lock);
4333 }
4334 EXPORT_SYMBOL_GPL(napi_hash_del);
4335 
4336 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
4337 		    int (*poll)(struct napi_struct *, int), int weight)
4338 {
4339 	INIT_LIST_HEAD(&napi->poll_list);
4340 	napi->gro_count = 0;
4341 	napi->gro_list = NULL;
4342 	napi->skb = NULL;
4343 	napi->poll = poll;
4344 	if (weight > NAPI_POLL_WEIGHT)
4345 		pr_err_once("netif_napi_add() called with weight %d on device %s\n",
4346 			    weight, dev->name);
4347 	napi->weight = weight;
4348 	list_add(&napi->dev_list, &dev->napi_list);
4349 	napi->dev = dev;
4350 #ifdef CONFIG_NETPOLL
4351 	spin_lock_init(&napi->poll_lock);
4352 	napi->poll_owner = -1;
4353 #endif
4354 	set_bit(NAPI_STATE_SCHED, &napi->state);
4355 }
4356 EXPORT_SYMBOL(netif_napi_add);
4357 
4358 void netif_napi_del(struct napi_struct *napi)
4359 {
4360 	list_del_init(&napi->dev_list);
4361 	napi_free_frags(napi);
4362 
4363 	kfree_skb_list(napi->gro_list);
4364 	napi->gro_list = NULL;
4365 	napi->gro_count = 0;
4366 }
4367 EXPORT_SYMBOL(netif_napi_del);
4368 
4369 static void net_rx_action(struct softirq_action *h)
4370 {
4371 	struct softnet_data *sd = &__get_cpu_var(softnet_data);
4372 	unsigned long time_limit = jiffies + 2;
4373 	int budget = netdev_budget;
4374 	void *have;
4375 
4376 	local_irq_disable();
4377 
4378 	while (!list_empty(&sd->poll_list)) {
4379 		struct napi_struct *n;
4380 		int work, weight;
4381 
4382 		/* If softirq window is exhuasted then punt.
4383 		 * Allow this to run for 2 jiffies since which will allow
4384 		 * an average latency of 1.5/HZ.
4385 		 */
4386 		if (unlikely(budget <= 0 || time_after_eq(jiffies, time_limit)))
4387 			goto softnet_break;
4388 
4389 		local_irq_enable();
4390 
4391 		/* Even though interrupts have been re-enabled, this
4392 		 * access is safe because interrupts can only add new
4393 		 * entries to the tail of this list, and only ->poll()
4394 		 * calls can remove this head entry from the list.
4395 		 */
4396 		n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
4397 
4398 		have = netpoll_poll_lock(n);
4399 
4400 		weight = n->weight;
4401 
4402 		/* This NAPI_STATE_SCHED test is for avoiding a race
4403 		 * with netpoll's poll_napi().  Only the entity which
4404 		 * obtains the lock and sees NAPI_STATE_SCHED set will
4405 		 * actually make the ->poll() call.  Therefore we avoid
4406 		 * accidentally calling ->poll() when NAPI is not scheduled.
4407 		 */
4408 		work = 0;
4409 		if (test_bit(NAPI_STATE_SCHED, &n->state)) {
4410 			work = n->poll(n, weight);
4411 			trace_napi_poll(n);
4412 		}
4413 
4414 		WARN_ON_ONCE(work > weight);
4415 
4416 		budget -= work;
4417 
4418 		local_irq_disable();
4419 
4420 		/* Drivers must not modify the NAPI state if they
4421 		 * consume the entire weight.  In such cases this code
4422 		 * still "owns" the NAPI instance and therefore can
4423 		 * move the instance around on the list at-will.
4424 		 */
4425 		if (unlikely(work == weight)) {
4426 			if (unlikely(napi_disable_pending(n))) {
4427 				local_irq_enable();
4428 				napi_complete(n);
4429 				local_irq_disable();
4430 			} else {
4431 				if (n->gro_list) {
4432 					/* flush too old packets
4433 					 * If HZ < 1000, flush all packets.
4434 					 */
4435 					local_irq_enable();
4436 					napi_gro_flush(n, HZ >= 1000);
4437 					local_irq_disable();
4438 				}
4439 				list_move_tail(&n->poll_list, &sd->poll_list);
4440 			}
4441 		}
4442 
4443 		netpoll_poll_unlock(have);
4444 	}
4445 out:
4446 	net_rps_action_and_irq_enable(sd);
4447 
4448 #ifdef CONFIG_NET_DMA
4449 	/*
4450 	 * There may not be any more sk_buffs coming right now, so push
4451 	 * any pending DMA copies to hardware
4452 	 */
4453 	dma_issue_pending_all();
4454 #endif
4455 
4456 	return;
4457 
4458 softnet_break:
4459 	sd->time_squeeze++;
4460 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4461 	goto out;
4462 }
4463 
4464 struct netdev_adjacent {
4465 	struct net_device *dev;
4466 
4467 	/* upper master flag, there can only be one master device per list */
4468 	bool master;
4469 
4470 	/* counter for the number of times this device was added to us */
4471 	u16 ref_nr;
4472 
4473 	/* private field for the users */
4474 	void *private;
4475 
4476 	struct list_head list;
4477 	struct rcu_head rcu;
4478 };
4479 
4480 static struct netdev_adjacent *__netdev_find_adj(struct net_device *dev,
4481 						 struct net_device *adj_dev,
4482 						 struct list_head *adj_list)
4483 {
4484 	struct netdev_adjacent *adj;
4485 
4486 	list_for_each_entry(adj, adj_list, list) {
4487 		if (adj->dev == adj_dev)
4488 			return adj;
4489 	}
4490 	return NULL;
4491 }
4492 
4493 /**
4494  * netdev_has_upper_dev - Check if device is linked to an upper device
4495  * @dev: device
4496  * @upper_dev: upper device to check
4497  *
4498  * Find out if a device is linked to specified upper device and return true
4499  * in case it is. Note that this checks only immediate upper device,
4500  * not through a complete stack of devices. The caller must hold the RTNL lock.
4501  */
4502 bool netdev_has_upper_dev(struct net_device *dev,
4503 			  struct net_device *upper_dev)
4504 {
4505 	ASSERT_RTNL();
4506 
4507 	return __netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper);
4508 }
4509 EXPORT_SYMBOL(netdev_has_upper_dev);
4510 
4511 /**
4512  * netdev_has_any_upper_dev - Check if device is linked to some device
4513  * @dev: device
4514  *
4515  * Find out if a device is linked to an upper device and return true in case
4516  * it is. The caller must hold the RTNL lock.
4517  */
4518 static bool netdev_has_any_upper_dev(struct net_device *dev)
4519 {
4520 	ASSERT_RTNL();
4521 
4522 	return !list_empty(&dev->all_adj_list.upper);
4523 }
4524 
4525 /**
4526  * netdev_master_upper_dev_get - Get master upper device
4527  * @dev: device
4528  *
4529  * Find a master upper device and return pointer to it or NULL in case
4530  * it's not there. The caller must hold the RTNL lock.
4531  */
4532 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
4533 {
4534 	struct netdev_adjacent *upper;
4535 
4536 	ASSERT_RTNL();
4537 
4538 	if (list_empty(&dev->adj_list.upper))
4539 		return NULL;
4540 
4541 	upper = list_first_entry(&dev->adj_list.upper,
4542 				 struct netdev_adjacent, list);
4543 	if (likely(upper->master))
4544 		return upper->dev;
4545 	return NULL;
4546 }
4547 EXPORT_SYMBOL(netdev_master_upper_dev_get);
4548 
4549 void *netdev_adjacent_get_private(struct list_head *adj_list)
4550 {
4551 	struct netdev_adjacent *adj;
4552 
4553 	adj = list_entry(adj_list, struct netdev_adjacent, list);
4554 
4555 	return adj->private;
4556 }
4557 EXPORT_SYMBOL(netdev_adjacent_get_private);
4558 
4559 /**
4560  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
4561  * @dev: device
4562  * @iter: list_head ** of the current position
4563  *
4564  * Gets the next device from the dev's upper list, starting from iter
4565  * position. The caller must hold RCU read lock.
4566  */
4567 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4568 						 struct list_head **iter)
4569 {
4570 	struct netdev_adjacent *upper;
4571 
4572 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4573 
4574 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4575 
4576 	if (&upper->list == &dev->adj_list.upper)
4577 		return NULL;
4578 
4579 	*iter = &upper->list;
4580 
4581 	return upper->dev;
4582 }
4583 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
4584 
4585 /**
4586  * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
4587  * @dev: device
4588  * @iter: list_head ** of the current position
4589  *
4590  * Gets the next device from the dev's upper list, starting from iter
4591  * position. The caller must hold RCU read lock.
4592  */
4593 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4594 						     struct list_head **iter)
4595 {
4596 	struct netdev_adjacent *upper;
4597 
4598 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4599 
4600 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4601 
4602 	if (&upper->list == &dev->all_adj_list.upper)
4603 		return NULL;
4604 
4605 	*iter = &upper->list;
4606 
4607 	return upper->dev;
4608 }
4609 EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
4610 
4611 /**
4612  * netdev_lower_get_next_private - Get the next ->private from the
4613  *				   lower neighbour list
4614  * @dev: device
4615  * @iter: list_head ** of the current position
4616  *
4617  * Gets the next netdev_adjacent->private from the dev's lower neighbour
4618  * list, starting from iter position. The caller must hold either hold the
4619  * RTNL lock or its own locking that guarantees that the neighbour lower
4620  * list will remain unchainged.
4621  */
4622 void *netdev_lower_get_next_private(struct net_device *dev,
4623 				    struct list_head **iter)
4624 {
4625 	struct netdev_adjacent *lower;
4626 
4627 	lower = list_entry(*iter, struct netdev_adjacent, list);
4628 
4629 	if (&lower->list == &dev->adj_list.lower)
4630 		return NULL;
4631 
4632 	*iter = lower->list.next;
4633 
4634 	return lower->private;
4635 }
4636 EXPORT_SYMBOL(netdev_lower_get_next_private);
4637 
4638 /**
4639  * netdev_lower_get_next_private_rcu - Get the next ->private from the
4640  *				       lower neighbour list, RCU
4641  *				       variant
4642  * @dev: device
4643  * @iter: list_head ** of the current position
4644  *
4645  * Gets the next netdev_adjacent->private from the dev's lower neighbour
4646  * list, starting from iter position. The caller must hold RCU read lock.
4647  */
4648 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4649 					struct list_head **iter)
4650 {
4651 	struct netdev_adjacent *lower;
4652 
4653 	WARN_ON_ONCE(!rcu_read_lock_held());
4654 
4655 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4656 
4657 	if (&lower->list == &dev->adj_list.lower)
4658 		return NULL;
4659 
4660 	*iter = &lower->list;
4661 
4662 	return lower->private;
4663 }
4664 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
4665 
4666 /**
4667  * netdev_lower_get_next - Get the next device from the lower neighbour
4668  *                         list
4669  * @dev: device
4670  * @iter: list_head ** of the current position
4671  *
4672  * Gets the next netdev_adjacent from the dev's lower neighbour
4673  * list, starting from iter position. The caller must hold RTNL lock or
4674  * its own locking that guarantees that the neighbour lower
4675  * list will remain unchainged.
4676  */
4677 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
4678 {
4679 	struct netdev_adjacent *lower;
4680 
4681 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
4682 
4683 	if (&lower->list == &dev->adj_list.lower)
4684 		return NULL;
4685 
4686 	*iter = &lower->list;
4687 
4688 	return lower->dev;
4689 }
4690 EXPORT_SYMBOL(netdev_lower_get_next);
4691 
4692 /**
4693  * netdev_lower_get_first_private_rcu - Get the first ->private from the
4694  *				       lower neighbour list, RCU
4695  *				       variant
4696  * @dev: device
4697  *
4698  * Gets the first netdev_adjacent->private from the dev's lower neighbour
4699  * list. The caller must hold RCU read lock.
4700  */
4701 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
4702 {
4703 	struct netdev_adjacent *lower;
4704 
4705 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
4706 			struct netdev_adjacent, list);
4707 	if (lower)
4708 		return lower->private;
4709 	return NULL;
4710 }
4711 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
4712 
4713 /**
4714  * netdev_master_upper_dev_get_rcu - Get master upper device
4715  * @dev: device
4716  *
4717  * Find a master upper device and return pointer to it or NULL in case
4718  * it's not there. The caller must hold the RCU read lock.
4719  */
4720 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
4721 {
4722 	struct netdev_adjacent *upper;
4723 
4724 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
4725 				       struct netdev_adjacent, list);
4726 	if (upper && likely(upper->master))
4727 		return upper->dev;
4728 	return NULL;
4729 }
4730 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
4731 
4732 static int netdev_adjacent_sysfs_add(struct net_device *dev,
4733 			      struct net_device *adj_dev,
4734 			      struct list_head *dev_list)
4735 {
4736 	char linkname[IFNAMSIZ+7];
4737 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
4738 		"upper_%s" : "lower_%s", adj_dev->name);
4739 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
4740 				 linkname);
4741 }
4742 static void netdev_adjacent_sysfs_del(struct net_device *dev,
4743 			       char *name,
4744 			       struct list_head *dev_list)
4745 {
4746 	char linkname[IFNAMSIZ+7];
4747 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
4748 		"upper_%s" : "lower_%s", name);
4749 	sysfs_remove_link(&(dev->dev.kobj), linkname);
4750 }
4751 
4752 #define netdev_adjacent_is_neigh_list(dev, dev_list) \
4753 		(dev_list == &dev->adj_list.upper || \
4754 		 dev_list == &dev->adj_list.lower)
4755 
4756 static int __netdev_adjacent_dev_insert(struct net_device *dev,
4757 					struct net_device *adj_dev,
4758 					struct list_head *dev_list,
4759 					void *private, bool master)
4760 {
4761 	struct netdev_adjacent *adj;
4762 	int ret;
4763 
4764 	adj = __netdev_find_adj(dev, adj_dev, dev_list);
4765 
4766 	if (adj) {
4767 		adj->ref_nr++;
4768 		return 0;
4769 	}
4770 
4771 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
4772 	if (!adj)
4773 		return -ENOMEM;
4774 
4775 	adj->dev = adj_dev;
4776 	adj->master = master;
4777 	adj->ref_nr = 1;
4778 	adj->private = private;
4779 	dev_hold(adj_dev);
4780 
4781 	pr_debug("dev_hold for %s, because of link added from %s to %s\n",
4782 		 adj_dev->name, dev->name, adj_dev->name);
4783 
4784 	if (netdev_adjacent_is_neigh_list(dev, dev_list)) {
4785 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
4786 		if (ret)
4787 			goto free_adj;
4788 	}
4789 
4790 	/* Ensure that master link is always the first item in list. */
4791 	if (master) {
4792 		ret = sysfs_create_link(&(dev->dev.kobj),
4793 					&(adj_dev->dev.kobj), "master");
4794 		if (ret)
4795 			goto remove_symlinks;
4796 
4797 		list_add_rcu(&adj->list, dev_list);
4798 	} else {
4799 		list_add_tail_rcu(&adj->list, dev_list);
4800 	}
4801 
4802 	return 0;
4803 
4804 remove_symlinks:
4805 	if (netdev_adjacent_is_neigh_list(dev, dev_list))
4806 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
4807 free_adj:
4808 	kfree(adj);
4809 	dev_put(adj_dev);
4810 
4811 	return ret;
4812 }
4813 
4814 static void __netdev_adjacent_dev_remove(struct net_device *dev,
4815 					 struct net_device *adj_dev,
4816 					 struct list_head *dev_list)
4817 {
4818 	struct netdev_adjacent *adj;
4819 
4820 	adj = __netdev_find_adj(dev, adj_dev, dev_list);
4821 
4822 	if (!adj) {
4823 		pr_err("tried to remove device %s from %s\n",
4824 		       dev->name, adj_dev->name);
4825 		BUG();
4826 	}
4827 
4828 	if (adj->ref_nr > 1) {
4829 		pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name,
4830 			 adj->ref_nr-1);
4831 		adj->ref_nr--;
4832 		return;
4833 	}
4834 
4835 	if (adj->master)
4836 		sysfs_remove_link(&(dev->dev.kobj), "master");
4837 
4838 	if (netdev_adjacent_is_neigh_list(dev, dev_list))
4839 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
4840 
4841 	list_del_rcu(&adj->list);
4842 	pr_debug("dev_put for %s, because link removed from %s to %s\n",
4843 		 adj_dev->name, dev->name, adj_dev->name);
4844 	dev_put(adj_dev);
4845 	kfree_rcu(adj, rcu);
4846 }
4847 
4848 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
4849 					    struct net_device *upper_dev,
4850 					    struct list_head *up_list,
4851 					    struct list_head *down_list,
4852 					    void *private, bool master)
4853 {
4854 	int ret;
4855 
4856 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private,
4857 					   master);
4858 	if (ret)
4859 		return ret;
4860 
4861 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private,
4862 					   false);
4863 	if (ret) {
4864 		__netdev_adjacent_dev_remove(dev, upper_dev, up_list);
4865 		return ret;
4866 	}
4867 
4868 	return 0;
4869 }
4870 
4871 static int __netdev_adjacent_dev_link(struct net_device *dev,
4872 				      struct net_device *upper_dev)
4873 {
4874 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
4875 						&dev->all_adj_list.upper,
4876 						&upper_dev->all_adj_list.lower,
4877 						NULL, false);
4878 }
4879 
4880 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
4881 					       struct net_device *upper_dev,
4882 					       struct list_head *up_list,
4883 					       struct list_head *down_list)
4884 {
4885 	__netdev_adjacent_dev_remove(dev, upper_dev, up_list);
4886 	__netdev_adjacent_dev_remove(upper_dev, dev, down_list);
4887 }
4888 
4889 static void __netdev_adjacent_dev_unlink(struct net_device *dev,
4890 					 struct net_device *upper_dev)
4891 {
4892 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev,
4893 					   &dev->all_adj_list.upper,
4894 					   &upper_dev->all_adj_list.lower);
4895 }
4896 
4897 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
4898 						struct net_device *upper_dev,
4899 						void *private, bool master)
4900 {
4901 	int ret = __netdev_adjacent_dev_link(dev, upper_dev);
4902 
4903 	if (ret)
4904 		return ret;
4905 
4906 	ret = __netdev_adjacent_dev_link_lists(dev, upper_dev,
4907 					       &dev->adj_list.upper,
4908 					       &upper_dev->adj_list.lower,
4909 					       private, master);
4910 	if (ret) {
4911 		__netdev_adjacent_dev_unlink(dev, upper_dev);
4912 		return ret;
4913 	}
4914 
4915 	return 0;
4916 }
4917 
4918 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
4919 						   struct net_device *upper_dev)
4920 {
4921 	__netdev_adjacent_dev_unlink(dev, upper_dev);
4922 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev,
4923 					   &dev->adj_list.upper,
4924 					   &upper_dev->adj_list.lower);
4925 }
4926 
4927 static int __netdev_upper_dev_link(struct net_device *dev,
4928 				   struct net_device *upper_dev, bool master,
4929 				   void *private)
4930 {
4931 	struct netdev_adjacent *i, *j, *to_i, *to_j;
4932 	int ret = 0;
4933 
4934 	ASSERT_RTNL();
4935 
4936 	if (dev == upper_dev)
4937 		return -EBUSY;
4938 
4939 	/* To prevent loops, check if dev is not upper device to upper_dev. */
4940 	if (__netdev_find_adj(upper_dev, dev, &upper_dev->all_adj_list.upper))
4941 		return -EBUSY;
4942 
4943 	if (__netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper))
4944 		return -EEXIST;
4945 
4946 	if (master && netdev_master_upper_dev_get(dev))
4947 		return -EBUSY;
4948 
4949 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, private,
4950 						   master);
4951 	if (ret)
4952 		return ret;
4953 
4954 	/* Now that we linked these devs, make all the upper_dev's
4955 	 * all_adj_list.upper visible to every dev's all_adj_list.lower an
4956 	 * versa, and don't forget the devices itself. All of these
4957 	 * links are non-neighbours.
4958 	 */
4959 	list_for_each_entry(i, &dev->all_adj_list.lower, list) {
4960 		list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
4961 			pr_debug("Interlinking %s with %s, non-neighbour\n",
4962 				 i->dev->name, j->dev->name);
4963 			ret = __netdev_adjacent_dev_link(i->dev, j->dev);
4964 			if (ret)
4965 				goto rollback_mesh;
4966 		}
4967 	}
4968 
4969 	/* add dev to every upper_dev's upper device */
4970 	list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
4971 		pr_debug("linking %s's upper device %s with %s\n",
4972 			 upper_dev->name, i->dev->name, dev->name);
4973 		ret = __netdev_adjacent_dev_link(dev, i->dev);
4974 		if (ret)
4975 			goto rollback_upper_mesh;
4976 	}
4977 
4978 	/* add upper_dev to every dev's lower device */
4979 	list_for_each_entry(i, &dev->all_adj_list.lower, list) {
4980 		pr_debug("linking %s's lower device %s with %s\n", dev->name,
4981 			 i->dev->name, upper_dev->name);
4982 		ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
4983 		if (ret)
4984 			goto rollback_lower_mesh;
4985 	}
4986 
4987 	call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
4988 	return 0;
4989 
4990 rollback_lower_mesh:
4991 	to_i = i;
4992 	list_for_each_entry(i, &dev->all_adj_list.lower, list) {
4993 		if (i == to_i)
4994 			break;
4995 		__netdev_adjacent_dev_unlink(i->dev, upper_dev);
4996 	}
4997 
4998 	i = NULL;
4999 
5000 rollback_upper_mesh:
5001 	to_i = i;
5002 	list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5003 		if (i == to_i)
5004 			break;
5005 		__netdev_adjacent_dev_unlink(dev, i->dev);
5006 	}
5007 
5008 	i = j = NULL;
5009 
5010 rollback_mesh:
5011 	to_i = i;
5012 	to_j = j;
5013 	list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5014 		list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5015 			if (i == to_i && j == to_j)
5016 				break;
5017 			__netdev_adjacent_dev_unlink(i->dev, j->dev);
5018 		}
5019 		if (i == to_i)
5020 			break;
5021 	}
5022 
5023 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5024 
5025 	return ret;
5026 }
5027 
5028 /**
5029  * netdev_upper_dev_link - Add a link to the upper device
5030  * @dev: device
5031  * @upper_dev: new upper device
5032  *
5033  * Adds a link to device which is upper to this one. The caller must hold
5034  * the RTNL lock. On a failure a negative errno code is returned.
5035  * On success the reference counts are adjusted and the function
5036  * returns zero.
5037  */
5038 int netdev_upper_dev_link(struct net_device *dev,
5039 			  struct net_device *upper_dev)
5040 {
5041 	return __netdev_upper_dev_link(dev, upper_dev, false, NULL);
5042 }
5043 EXPORT_SYMBOL(netdev_upper_dev_link);
5044 
5045 /**
5046  * netdev_master_upper_dev_link - Add a master link to the upper device
5047  * @dev: device
5048  * @upper_dev: new upper device
5049  *
5050  * Adds a link to device which is upper to this one. In this case, only
5051  * one master upper device can be linked, although other non-master devices
5052  * might be linked as well. The caller must hold the RTNL lock.
5053  * On a failure a negative errno code is returned. On success the reference
5054  * counts are adjusted and the function returns zero.
5055  */
5056 int netdev_master_upper_dev_link(struct net_device *dev,
5057 				 struct net_device *upper_dev)
5058 {
5059 	return __netdev_upper_dev_link(dev, upper_dev, true, NULL);
5060 }
5061 EXPORT_SYMBOL(netdev_master_upper_dev_link);
5062 
5063 int netdev_master_upper_dev_link_private(struct net_device *dev,
5064 					 struct net_device *upper_dev,
5065 					 void *private)
5066 {
5067 	return __netdev_upper_dev_link(dev, upper_dev, true, private);
5068 }
5069 EXPORT_SYMBOL(netdev_master_upper_dev_link_private);
5070 
5071 /**
5072  * netdev_upper_dev_unlink - Removes a link to upper device
5073  * @dev: device
5074  * @upper_dev: new upper device
5075  *
5076  * Removes a link to device which is upper to this one. The caller must hold
5077  * the RTNL lock.
5078  */
5079 void netdev_upper_dev_unlink(struct net_device *dev,
5080 			     struct net_device *upper_dev)
5081 {
5082 	struct netdev_adjacent *i, *j;
5083 	ASSERT_RTNL();
5084 
5085 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5086 
5087 	/* Here is the tricky part. We must remove all dev's lower
5088 	 * devices from all upper_dev's upper devices and vice
5089 	 * versa, to maintain the graph relationship.
5090 	 */
5091 	list_for_each_entry(i, &dev->all_adj_list.lower, list)
5092 		list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5093 			__netdev_adjacent_dev_unlink(i->dev, j->dev);
5094 
5095 	/* remove also the devices itself from lower/upper device
5096 	 * list
5097 	 */
5098 	list_for_each_entry(i, &dev->all_adj_list.lower, list)
5099 		__netdev_adjacent_dev_unlink(i->dev, upper_dev);
5100 
5101 	list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5102 		__netdev_adjacent_dev_unlink(dev, i->dev);
5103 
5104 	call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
5105 }
5106 EXPORT_SYMBOL(netdev_upper_dev_unlink);
5107 
5108 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
5109 {
5110 	struct netdev_adjacent *iter;
5111 
5112 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
5113 		netdev_adjacent_sysfs_del(iter->dev, oldname,
5114 					  &iter->dev->adj_list.lower);
5115 		netdev_adjacent_sysfs_add(iter->dev, dev,
5116 					  &iter->dev->adj_list.lower);
5117 	}
5118 
5119 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
5120 		netdev_adjacent_sysfs_del(iter->dev, oldname,
5121 					  &iter->dev->adj_list.upper);
5122 		netdev_adjacent_sysfs_add(iter->dev, dev,
5123 					  &iter->dev->adj_list.upper);
5124 	}
5125 }
5126 
5127 void *netdev_lower_dev_get_private(struct net_device *dev,
5128 				   struct net_device *lower_dev)
5129 {
5130 	struct netdev_adjacent *lower;
5131 
5132 	if (!lower_dev)
5133 		return NULL;
5134 	lower = __netdev_find_adj(dev, lower_dev, &dev->adj_list.lower);
5135 	if (!lower)
5136 		return NULL;
5137 
5138 	return lower->private;
5139 }
5140 EXPORT_SYMBOL(netdev_lower_dev_get_private);
5141 
5142 
5143 int dev_get_nest_level(struct net_device *dev,
5144 		       bool (*type_check)(struct net_device *dev))
5145 {
5146 	struct net_device *lower = NULL;
5147 	struct list_head *iter;
5148 	int max_nest = -1;
5149 	int nest;
5150 
5151 	ASSERT_RTNL();
5152 
5153 	netdev_for_each_lower_dev(dev, lower, iter) {
5154 		nest = dev_get_nest_level(lower, type_check);
5155 		if (max_nest < nest)
5156 			max_nest = nest;
5157 	}
5158 
5159 	if (type_check(dev))
5160 		max_nest++;
5161 
5162 	return max_nest;
5163 }
5164 EXPORT_SYMBOL(dev_get_nest_level);
5165 
5166 static void dev_change_rx_flags(struct net_device *dev, int flags)
5167 {
5168 	const struct net_device_ops *ops = dev->netdev_ops;
5169 
5170 	if (ops->ndo_change_rx_flags)
5171 		ops->ndo_change_rx_flags(dev, flags);
5172 }
5173 
5174 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
5175 {
5176 	unsigned int old_flags = dev->flags;
5177 	kuid_t uid;
5178 	kgid_t gid;
5179 
5180 	ASSERT_RTNL();
5181 
5182 	dev->flags |= IFF_PROMISC;
5183 	dev->promiscuity += inc;
5184 	if (dev->promiscuity == 0) {
5185 		/*
5186 		 * Avoid overflow.
5187 		 * If inc causes overflow, untouch promisc and return error.
5188 		 */
5189 		if (inc < 0)
5190 			dev->flags &= ~IFF_PROMISC;
5191 		else {
5192 			dev->promiscuity -= inc;
5193 			pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
5194 				dev->name);
5195 			return -EOVERFLOW;
5196 		}
5197 	}
5198 	if (dev->flags != old_flags) {
5199 		pr_info("device %s %s promiscuous mode\n",
5200 			dev->name,
5201 			dev->flags & IFF_PROMISC ? "entered" : "left");
5202 		if (audit_enabled) {
5203 			current_uid_gid(&uid, &gid);
5204 			audit_log(current->audit_context, GFP_ATOMIC,
5205 				AUDIT_ANOM_PROMISCUOUS,
5206 				"dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
5207 				dev->name, (dev->flags & IFF_PROMISC),
5208 				(old_flags & IFF_PROMISC),
5209 				from_kuid(&init_user_ns, audit_get_loginuid(current)),
5210 				from_kuid(&init_user_ns, uid),
5211 				from_kgid(&init_user_ns, gid),
5212 				audit_get_sessionid(current));
5213 		}
5214 
5215 		dev_change_rx_flags(dev, IFF_PROMISC);
5216 	}
5217 	if (notify)
5218 		__dev_notify_flags(dev, old_flags, IFF_PROMISC);
5219 	return 0;
5220 }
5221 
5222 /**
5223  *	dev_set_promiscuity	- update promiscuity count on a device
5224  *	@dev: device
5225  *	@inc: modifier
5226  *
5227  *	Add or remove promiscuity from a device. While the count in the device
5228  *	remains above zero the interface remains promiscuous. Once it hits zero
5229  *	the device reverts back to normal filtering operation. A negative inc
5230  *	value is used to drop promiscuity on the device.
5231  *	Return 0 if successful or a negative errno code on error.
5232  */
5233 int dev_set_promiscuity(struct net_device *dev, int inc)
5234 {
5235 	unsigned int old_flags = dev->flags;
5236 	int err;
5237 
5238 	err = __dev_set_promiscuity(dev, inc, true);
5239 	if (err < 0)
5240 		return err;
5241 	if (dev->flags != old_flags)
5242 		dev_set_rx_mode(dev);
5243 	return err;
5244 }
5245 EXPORT_SYMBOL(dev_set_promiscuity);
5246 
5247 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
5248 {
5249 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
5250 
5251 	ASSERT_RTNL();
5252 
5253 	dev->flags |= IFF_ALLMULTI;
5254 	dev->allmulti += inc;
5255 	if (dev->allmulti == 0) {
5256 		/*
5257 		 * Avoid overflow.
5258 		 * If inc causes overflow, untouch allmulti and return error.
5259 		 */
5260 		if (inc < 0)
5261 			dev->flags &= ~IFF_ALLMULTI;
5262 		else {
5263 			dev->allmulti -= inc;
5264 			pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
5265 				dev->name);
5266 			return -EOVERFLOW;
5267 		}
5268 	}
5269 	if (dev->flags ^ old_flags) {
5270 		dev_change_rx_flags(dev, IFF_ALLMULTI);
5271 		dev_set_rx_mode(dev);
5272 		if (notify)
5273 			__dev_notify_flags(dev, old_flags,
5274 					   dev->gflags ^ old_gflags);
5275 	}
5276 	return 0;
5277 }
5278 
5279 /**
5280  *	dev_set_allmulti	- update allmulti count on a device
5281  *	@dev: device
5282  *	@inc: modifier
5283  *
5284  *	Add or remove reception of all multicast frames to a device. While the
5285  *	count in the device remains above zero the interface remains listening
5286  *	to all interfaces. Once it hits zero the device reverts back to normal
5287  *	filtering operation. A negative @inc value is used to drop the counter
5288  *	when releasing a resource needing all multicasts.
5289  *	Return 0 if successful or a negative errno code on error.
5290  */
5291 
5292 int dev_set_allmulti(struct net_device *dev, int inc)
5293 {
5294 	return __dev_set_allmulti(dev, inc, true);
5295 }
5296 EXPORT_SYMBOL(dev_set_allmulti);
5297 
5298 /*
5299  *	Upload unicast and multicast address lists to device and
5300  *	configure RX filtering. When the device doesn't support unicast
5301  *	filtering it is put in promiscuous mode while unicast addresses
5302  *	are present.
5303  */
5304 void __dev_set_rx_mode(struct net_device *dev)
5305 {
5306 	const struct net_device_ops *ops = dev->netdev_ops;
5307 
5308 	/* dev_open will call this function so the list will stay sane. */
5309 	if (!(dev->flags&IFF_UP))
5310 		return;
5311 
5312 	if (!netif_device_present(dev))
5313 		return;
5314 
5315 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
5316 		/* Unicast addresses changes may only happen under the rtnl,
5317 		 * therefore calling __dev_set_promiscuity here is safe.
5318 		 */
5319 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
5320 			__dev_set_promiscuity(dev, 1, false);
5321 			dev->uc_promisc = true;
5322 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
5323 			__dev_set_promiscuity(dev, -1, false);
5324 			dev->uc_promisc = false;
5325 		}
5326 	}
5327 
5328 	if (ops->ndo_set_rx_mode)
5329 		ops->ndo_set_rx_mode(dev);
5330 }
5331 
5332 void dev_set_rx_mode(struct net_device *dev)
5333 {
5334 	netif_addr_lock_bh(dev);
5335 	__dev_set_rx_mode(dev);
5336 	netif_addr_unlock_bh(dev);
5337 }
5338 
5339 /**
5340  *	dev_get_flags - get flags reported to userspace
5341  *	@dev: device
5342  *
5343  *	Get the combination of flag bits exported through APIs to userspace.
5344  */
5345 unsigned int dev_get_flags(const struct net_device *dev)
5346 {
5347 	unsigned int flags;
5348 
5349 	flags = (dev->flags & ~(IFF_PROMISC |
5350 				IFF_ALLMULTI |
5351 				IFF_RUNNING |
5352 				IFF_LOWER_UP |
5353 				IFF_DORMANT)) |
5354 		(dev->gflags & (IFF_PROMISC |
5355 				IFF_ALLMULTI));
5356 
5357 	if (netif_running(dev)) {
5358 		if (netif_oper_up(dev))
5359 			flags |= IFF_RUNNING;
5360 		if (netif_carrier_ok(dev))
5361 			flags |= IFF_LOWER_UP;
5362 		if (netif_dormant(dev))
5363 			flags |= IFF_DORMANT;
5364 	}
5365 
5366 	return flags;
5367 }
5368 EXPORT_SYMBOL(dev_get_flags);
5369 
5370 int __dev_change_flags(struct net_device *dev, unsigned int flags)
5371 {
5372 	unsigned int old_flags = dev->flags;
5373 	int ret;
5374 
5375 	ASSERT_RTNL();
5376 
5377 	/*
5378 	 *	Set the flags on our device.
5379 	 */
5380 
5381 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
5382 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
5383 			       IFF_AUTOMEDIA)) |
5384 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
5385 				    IFF_ALLMULTI));
5386 
5387 	/*
5388 	 *	Load in the correct multicast list now the flags have changed.
5389 	 */
5390 
5391 	if ((old_flags ^ flags) & IFF_MULTICAST)
5392 		dev_change_rx_flags(dev, IFF_MULTICAST);
5393 
5394 	dev_set_rx_mode(dev);
5395 
5396 	/*
5397 	 *	Have we downed the interface. We handle IFF_UP ourselves
5398 	 *	according to user attempts to set it, rather than blindly
5399 	 *	setting it.
5400 	 */
5401 
5402 	ret = 0;
5403 	if ((old_flags ^ flags) & IFF_UP) {	/* Bit is different  ? */
5404 		ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
5405 
5406 		if (!ret)
5407 			dev_set_rx_mode(dev);
5408 	}
5409 
5410 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
5411 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
5412 		unsigned int old_flags = dev->flags;
5413 
5414 		dev->gflags ^= IFF_PROMISC;
5415 
5416 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
5417 			if (dev->flags != old_flags)
5418 				dev_set_rx_mode(dev);
5419 	}
5420 
5421 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
5422 	   is important. Some (broken) drivers set IFF_PROMISC, when
5423 	   IFF_ALLMULTI is requested not asking us and not reporting.
5424 	 */
5425 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
5426 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
5427 
5428 		dev->gflags ^= IFF_ALLMULTI;
5429 		__dev_set_allmulti(dev, inc, false);
5430 	}
5431 
5432 	return ret;
5433 }
5434 
5435 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
5436 			unsigned int gchanges)
5437 {
5438 	unsigned int changes = dev->flags ^ old_flags;
5439 
5440 	if (gchanges)
5441 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
5442 
5443 	if (changes & IFF_UP) {
5444 		if (dev->flags & IFF_UP)
5445 			call_netdevice_notifiers(NETDEV_UP, dev);
5446 		else
5447 			call_netdevice_notifiers(NETDEV_DOWN, dev);
5448 	}
5449 
5450 	if (dev->flags & IFF_UP &&
5451 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
5452 		struct netdev_notifier_change_info change_info;
5453 
5454 		change_info.flags_changed = changes;
5455 		call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
5456 					      &change_info.info);
5457 	}
5458 }
5459 
5460 /**
5461  *	dev_change_flags - change device settings
5462  *	@dev: device
5463  *	@flags: device state flags
5464  *
5465  *	Change settings on device based state flags. The flags are
5466  *	in the userspace exported format.
5467  */
5468 int dev_change_flags(struct net_device *dev, unsigned int flags)
5469 {
5470 	int ret;
5471 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
5472 
5473 	ret = __dev_change_flags(dev, flags);
5474 	if (ret < 0)
5475 		return ret;
5476 
5477 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
5478 	__dev_notify_flags(dev, old_flags, changes);
5479 	return ret;
5480 }
5481 EXPORT_SYMBOL(dev_change_flags);
5482 
5483 static int __dev_set_mtu(struct net_device *dev, int new_mtu)
5484 {
5485 	const struct net_device_ops *ops = dev->netdev_ops;
5486 
5487 	if (ops->ndo_change_mtu)
5488 		return ops->ndo_change_mtu(dev, new_mtu);
5489 
5490 	dev->mtu = new_mtu;
5491 	return 0;
5492 }
5493 
5494 /**
5495  *	dev_set_mtu - Change maximum transfer unit
5496  *	@dev: device
5497  *	@new_mtu: new transfer unit
5498  *
5499  *	Change the maximum transfer size of the network device.
5500  */
5501 int dev_set_mtu(struct net_device *dev, int new_mtu)
5502 {
5503 	int err, orig_mtu;
5504 
5505 	if (new_mtu == dev->mtu)
5506 		return 0;
5507 
5508 	/*	MTU must be positive.	 */
5509 	if (new_mtu < 0)
5510 		return -EINVAL;
5511 
5512 	if (!netif_device_present(dev))
5513 		return -ENODEV;
5514 
5515 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
5516 	err = notifier_to_errno(err);
5517 	if (err)
5518 		return err;
5519 
5520 	orig_mtu = dev->mtu;
5521 	err = __dev_set_mtu(dev, new_mtu);
5522 
5523 	if (!err) {
5524 		err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5525 		err = notifier_to_errno(err);
5526 		if (err) {
5527 			/* setting mtu back and notifying everyone again,
5528 			 * so that they have a chance to revert changes.
5529 			 */
5530 			__dev_set_mtu(dev, orig_mtu);
5531 			call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5532 		}
5533 	}
5534 	return err;
5535 }
5536 EXPORT_SYMBOL(dev_set_mtu);
5537 
5538 /**
5539  *	dev_set_group - Change group this device belongs to
5540  *	@dev: device
5541  *	@new_group: group this device should belong to
5542  */
5543 void dev_set_group(struct net_device *dev, int new_group)
5544 {
5545 	dev->group = new_group;
5546 }
5547 EXPORT_SYMBOL(dev_set_group);
5548 
5549 /**
5550  *	dev_set_mac_address - Change Media Access Control Address
5551  *	@dev: device
5552  *	@sa: new address
5553  *
5554  *	Change the hardware (MAC) address of the device
5555  */
5556 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
5557 {
5558 	const struct net_device_ops *ops = dev->netdev_ops;
5559 	int err;
5560 
5561 	if (!ops->ndo_set_mac_address)
5562 		return -EOPNOTSUPP;
5563 	if (sa->sa_family != dev->type)
5564 		return -EINVAL;
5565 	if (!netif_device_present(dev))
5566 		return -ENODEV;
5567 	err = ops->ndo_set_mac_address(dev, sa);
5568 	if (err)
5569 		return err;
5570 	dev->addr_assign_type = NET_ADDR_SET;
5571 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
5572 	add_device_randomness(dev->dev_addr, dev->addr_len);
5573 	return 0;
5574 }
5575 EXPORT_SYMBOL(dev_set_mac_address);
5576 
5577 /**
5578  *	dev_change_carrier - Change device carrier
5579  *	@dev: device
5580  *	@new_carrier: new value
5581  *
5582  *	Change device carrier
5583  */
5584 int dev_change_carrier(struct net_device *dev, bool new_carrier)
5585 {
5586 	const struct net_device_ops *ops = dev->netdev_ops;
5587 
5588 	if (!ops->ndo_change_carrier)
5589 		return -EOPNOTSUPP;
5590 	if (!netif_device_present(dev))
5591 		return -ENODEV;
5592 	return ops->ndo_change_carrier(dev, new_carrier);
5593 }
5594 EXPORT_SYMBOL(dev_change_carrier);
5595 
5596 /**
5597  *	dev_get_phys_port_id - Get device physical port ID
5598  *	@dev: device
5599  *	@ppid: port ID
5600  *
5601  *	Get device physical port ID
5602  */
5603 int dev_get_phys_port_id(struct net_device *dev,
5604 			 struct netdev_phys_port_id *ppid)
5605 {
5606 	const struct net_device_ops *ops = dev->netdev_ops;
5607 
5608 	if (!ops->ndo_get_phys_port_id)
5609 		return -EOPNOTSUPP;
5610 	return ops->ndo_get_phys_port_id(dev, ppid);
5611 }
5612 EXPORT_SYMBOL(dev_get_phys_port_id);
5613 
5614 /**
5615  *	dev_new_index	-	allocate an ifindex
5616  *	@net: the applicable net namespace
5617  *
5618  *	Returns a suitable unique value for a new device interface
5619  *	number.  The caller must hold the rtnl semaphore or the
5620  *	dev_base_lock to be sure it remains unique.
5621  */
5622 static int dev_new_index(struct net *net)
5623 {
5624 	int ifindex = net->ifindex;
5625 	for (;;) {
5626 		if (++ifindex <= 0)
5627 			ifindex = 1;
5628 		if (!__dev_get_by_index(net, ifindex))
5629 			return net->ifindex = ifindex;
5630 	}
5631 }
5632 
5633 /* Delayed registration/unregisteration */
5634 static LIST_HEAD(net_todo_list);
5635 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
5636 
5637 static void net_set_todo(struct net_device *dev)
5638 {
5639 	list_add_tail(&dev->todo_list, &net_todo_list);
5640 	dev_net(dev)->dev_unreg_count++;
5641 }
5642 
5643 static void rollback_registered_many(struct list_head *head)
5644 {
5645 	struct net_device *dev, *tmp;
5646 	LIST_HEAD(close_head);
5647 
5648 	BUG_ON(dev_boot_phase);
5649 	ASSERT_RTNL();
5650 
5651 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
5652 		/* Some devices call without registering
5653 		 * for initialization unwind. Remove those
5654 		 * devices and proceed with the remaining.
5655 		 */
5656 		if (dev->reg_state == NETREG_UNINITIALIZED) {
5657 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
5658 				 dev->name, dev);
5659 
5660 			WARN_ON(1);
5661 			list_del(&dev->unreg_list);
5662 			continue;
5663 		}
5664 		dev->dismantle = true;
5665 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
5666 	}
5667 
5668 	/* If device is running, close it first. */
5669 	list_for_each_entry(dev, head, unreg_list)
5670 		list_add_tail(&dev->close_list, &close_head);
5671 	dev_close_many(&close_head);
5672 
5673 	list_for_each_entry(dev, head, unreg_list) {
5674 		/* And unlink it from device chain. */
5675 		unlist_netdevice(dev);
5676 
5677 		dev->reg_state = NETREG_UNREGISTERING;
5678 	}
5679 
5680 	synchronize_net();
5681 
5682 	list_for_each_entry(dev, head, unreg_list) {
5683 		/* Shutdown queueing discipline. */
5684 		dev_shutdown(dev);
5685 
5686 
5687 		/* Notify protocols, that we are about to destroy
5688 		   this device. They should clean all the things.
5689 		*/
5690 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5691 
5692 		if (!dev->rtnl_link_ops ||
5693 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5694 			rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
5695 
5696 		/*
5697 		 *	Flush the unicast and multicast chains
5698 		 */
5699 		dev_uc_flush(dev);
5700 		dev_mc_flush(dev);
5701 
5702 		if (dev->netdev_ops->ndo_uninit)
5703 			dev->netdev_ops->ndo_uninit(dev);
5704 
5705 		/* Notifier chain MUST detach us all upper devices. */
5706 		WARN_ON(netdev_has_any_upper_dev(dev));
5707 
5708 		/* Remove entries from kobject tree */
5709 		netdev_unregister_kobject(dev);
5710 #ifdef CONFIG_XPS
5711 		/* Remove XPS queueing entries */
5712 		netif_reset_xps_queues_gt(dev, 0);
5713 #endif
5714 	}
5715 
5716 	synchronize_net();
5717 
5718 	list_for_each_entry(dev, head, unreg_list)
5719 		dev_put(dev);
5720 }
5721 
5722 static void rollback_registered(struct net_device *dev)
5723 {
5724 	LIST_HEAD(single);
5725 
5726 	list_add(&dev->unreg_list, &single);
5727 	rollback_registered_many(&single);
5728 	list_del(&single);
5729 }
5730 
5731 static netdev_features_t netdev_fix_features(struct net_device *dev,
5732 	netdev_features_t features)
5733 {
5734 	/* Fix illegal checksum combinations */
5735 	if ((features & NETIF_F_HW_CSUM) &&
5736 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5737 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
5738 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5739 	}
5740 
5741 	/* TSO requires that SG is present as well. */
5742 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
5743 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
5744 		features &= ~NETIF_F_ALL_TSO;
5745 	}
5746 
5747 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
5748 					!(features & NETIF_F_IP_CSUM)) {
5749 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
5750 		features &= ~NETIF_F_TSO;
5751 		features &= ~NETIF_F_TSO_ECN;
5752 	}
5753 
5754 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
5755 					 !(features & NETIF_F_IPV6_CSUM)) {
5756 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
5757 		features &= ~NETIF_F_TSO6;
5758 	}
5759 
5760 	/* TSO ECN requires that TSO is present as well. */
5761 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
5762 		features &= ~NETIF_F_TSO_ECN;
5763 
5764 	/* Software GSO depends on SG. */
5765 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
5766 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
5767 		features &= ~NETIF_F_GSO;
5768 	}
5769 
5770 	/* UFO needs SG and checksumming */
5771 	if (features & NETIF_F_UFO) {
5772 		/* maybe split UFO into V4 and V6? */
5773 		if (!((features & NETIF_F_GEN_CSUM) ||
5774 		    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
5775 			    == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5776 			netdev_dbg(dev,
5777 				"Dropping NETIF_F_UFO since no checksum offload features.\n");
5778 			features &= ~NETIF_F_UFO;
5779 		}
5780 
5781 		if (!(features & NETIF_F_SG)) {
5782 			netdev_dbg(dev,
5783 				"Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
5784 			features &= ~NETIF_F_UFO;
5785 		}
5786 	}
5787 
5788 #ifdef CONFIG_NET_RX_BUSY_POLL
5789 	if (dev->netdev_ops->ndo_busy_poll)
5790 		features |= NETIF_F_BUSY_POLL;
5791 	else
5792 #endif
5793 		features &= ~NETIF_F_BUSY_POLL;
5794 
5795 	return features;
5796 }
5797 
5798 int __netdev_update_features(struct net_device *dev)
5799 {
5800 	netdev_features_t features;
5801 	int err = 0;
5802 
5803 	ASSERT_RTNL();
5804 
5805 	features = netdev_get_wanted_features(dev);
5806 
5807 	if (dev->netdev_ops->ndo_fix_features)
5808 		features = dev->netdev_ops->ndo_fix_features(dev, features);
5809 
5810 	/* driver might be less strict about feature dependencies */
5811 	features = netdev_fix_features(dev, features);
5812 
5813 	if (dev->features == features)
5814 		return 0;
5815 
5816 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
5817 		&dev->features, &features);
5818 
5819 	if (dev->netdev_ops->ndo_set_features)
5820 		err = dev->netdev_ops->ndo_set_features(dev, features);
5821 
5822 	if (unlikely(err < 0)) {
5823 		netdev_err(dev,
5824 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
5825 			err, &features, &dev->features);
5826 		return -1;
5827 	}
5828 
5829 	if (!err)
5830 		dev->features = features;
5831 
5832 	return 1;
5833 }
5834 
5835 /**
5836  *	netdev_update_features - recalculate device features
5837  *	@dev: the device to check
5838  *
5839  *	Recalculate dev->features set and send notifications if it
5840  *	has changed. Should be called after driver or hardware dependent
5841  *	conditions might have changed that influence the features.
5842  */
5843 void netdev_update_features(struct net_device *dev)
5844 {
5845 	if (__netdev_update_features(dev))
5846 		netdev_features_change(dev);
5847 }
5848 EXPORT_SYMBOL(netdev_update_features);
5849 
5850 /**
5851  *	netdev_change_features - recalculate device features
5852  *	@dev: the device to check
5853  *
5854  *	Recalculate dev->features set and send notifications even
5855  *	if they have not changed. Should be called instead of
5856  *	netdev_update_features() if also dev->vlan_features might
5857  *	have changed to allow the changes to be propagated to stacked
5858  *	VLAN devices.
5859  */
5860 void netdev_change_features(struct net_device *dev)
5861 {
5862 	__netdev_update_features(dev);
5863 	netdev_features_change(dev);
5864 }
5865 EXPORT_SYMBOL(netdev_change_features);
5866 
5867 /**
5868  *	netif_stacked_transfer_operstate -	transfer operstate
5869  *	@rootdev: the root or lower level device to transfer state from
5870  *	@dev: the device to transfer operstate to
5871  *
5872  *	Transfer operational state from root to device. This is normally
5873  *	called when a stacking relationship exists between the root
5874  *	device and the device(a leaf device).
5875  */
5876 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5877 					struct net_device *dev)
5878 {
5879 	if (rootdev->operstate == IF_OPER_DORMANT)
5880 		netif_dormant_on(dev);
5881 	else
5882 		netif_dormant_off(dev);
5883 
5884 	if (netif_carrier_ok(rootdev)) {
5885 		if (!netif_carrier_ok(dev))
5886 			netif_carrier_on(dev);
5887 	} else {
5888 		if (netif_carrier_ok(dev))
5889 			netif_carrier_off(dev);
5890 	}
5891 }
5892 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5893 
5894 #ifdef CONFIG_SYSFS
5895 static int netif_alloc_rx_queues(struct net_device *dev)
5896 {
5897 	unsigned int i, count = dev->num_rx_queues;
5898 	struct netdev_rx_queue *rx;
5899 
5900 	BUG_ON(count < 1);
5901 
5902 	rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5903 	if (!rx)
5904 		return -ENOMEM;
5905 
5906 	dev->_rx = rx;
5907 
5908 	for (i = 0; i < count; i++)
5909 		rx[i].dev = dev;
5910 	return 0;
5911 }
5912 #endif
5913 
5914 static void netdev_init_one_queue(struct net_device *dev,
5915 				  struct netdev_queue *queue, void *_unused)
5916 {
5917 	/* Initialize queue lock */
5918 	spin_lock_init(&queue->_xmit_lock);
5919 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
5920 	queue->xmit_lock_owner = -1;
5921 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
5922 	queue->dev = dev;
5923 #ifdef CONFIG_BQL
5924 	dql_init(&queue->dql, HZ);
5925 #endif
5926 }
5927 
5928 static void netif_free_tx_queues(struct net_device *dev)
5929 {
5930 	if (is_vmalloc_addr(dev->_tx))
5931 		vfree(dev->_tx);
5932 	else
5933 		kfree(dev->_tx);
5934 }
5935 
5936 static int netif_alloc_netdev_queues(struct net_device *dev)
5937 {
5938 	unsigned int count = dev->num_tx_queues;
5939 	struct netdev_queue *tx;
5940 	size_t sz = count * sizeof(*tx);
5941 
5942 	BUG_ON(count < 1 || count > 0xffff);
5943 
5944 	tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
5945 	if (!tx) {
5946 		tx = vzalloc(sz);
5947 		if (!tx)
5948 			return -ENOMEM;
5949 	}
5950 	dev->_tx = tx;
5951 
5952 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5953 	spin_lock_init(&dev->tx_global_lock);
5954 
5955 	return 0;
5956 }
5957 
5958 /**
5959  *	register_netdevice	- register a network device
5960  *	@dev: device to register
5961  *
5962  *	Take a completed network device structure and add it to the kernel
5963  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5964  *	chain. 0 is returned on success. A negative errno code is returned
5965  *	on a failure to set up the device, or if the name is a duplicate.
5966  *
5967  *	Callers must hold the rtnl semaphore. You may want
5968  *	register_netdev() instead of this.
5969  *
5970  *	BUGS:
5971  *	The locking appears insufficient to guarantee two parallel registers
5972  *	will not get the same name.
5973  */
5974 
5975 int register_netdevice(struct net_device *dev)
5976 {
5977 	int ret;
5978 	struct net *net = dev_net(dev);
5979 
5980 	BUG_ON(dev_boot_phase);
5981 	ASSERT_RTNL();
5982 
5983 	might_sleep();
5984 
5985 	/* When net_device's are persistent, this will be fatal. */
5986 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
5987 	BUG_ON(!net);
5988 
5989 	spin_lock_init(&dev->addr_list_lock);
5990 	netdev_set_addr_lockdep_class(dev);
5991 
5992 	dev->iflink = -1;
5993 
5994 	ret = dev_get_valid_name(net, dev, dev->name);
5995 	if (ret < 0)
5996 		goto out;
5997 
5998 	/* Init, if this function is available */
5999 	if (dev->netdev_ops->ndo_init) {
6000 		ret = dev->netdev_ops->ndo_init(dev);
6001 		if (ret) {
6002 			if (ret > 0)
6003 				ret = -EIO;
6004 			goto out;
6005 		}
6006 	}
6007 
6008 	if (((dev->hw_features | dev->features) &
6009 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
6010 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
6011 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
6012 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
6013 		ret = -EINVAL;
6014 		goto err_uninit;
6015 	}
6016 
6017 	ret = -EBUSY;
6018 	if (!dev->ifindex)
6019 		dev->ifindex = dev_new_index(net);
6020 	else if (__dev_get_by_index(net, dev->ifindex))
6021 		goto err_uninit;
6022 
6023 	if (dev->iflink == -1)
6024 		dev->iflink = dev->ifindex;
6025 
6026 	/* Transfer changeable features to wanted_features and enable
6027 	 * software offloads (GSO and GRO).
6028 	 */
6029 	dev->hw_features |= NETIF_F_SOFT_FEATURES;
6030 	dev->features |= NETIF_F_SOFT_FEATURES;
6031 	dev->wanted_features = dev->features & dev->hw_features;
6032 
6033 	if (!(dev->flags & IFF_LOOPBACK)) {
6034 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
6035 	}
6036 
6037 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
6038 	 */
6039 	dev->vlan_features |= NETIF_F_HIGHDMA;
6040 
6041 	/* Make NETIF_F_SG inheritable to tunnel devices.
6042 	 */
6043 	dev->hw_enc_features |= NETIF_F_SG;
6044 
6045 	/* Make NETIF_F_SG inheritable to MPLS.
6046 	 */
6047 	dev->mpls_features |= NETIF_F_SG;
6048 
6049 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
6050 	ret = notifier_to_errno(ret);
6051 	if (ret)
6052 		goto err_uninit;
6053 
6054 	ret = netdev_register_kobject(dev);
6055 	if (ret)
6056 		goto err_uninit;
6057 	dev->reg_state = NETREG_REGISTERED;
6058 
6059 	__netdev_update_features(dev);
6060 
6061 	/*
6062 	 *	Default initial state at registry is that the
6063 	 *	device is present.
6064 	 */
6065 
6066 	set_bit(__LINK_STATE_PRESENT, &dev->state);
6067 
6068 	linkwatch_init_dev(dev);
6069 
6070 	dev_init_scheduler(dev);
6071 	dev_hold(dev);
6072 	list_netdevice(dev);
6073 	add_device_randomness(dev->dev_addr, dev->addr_len);
6074 
6075 	/* If the device has permanent device address, driver should
6076 	 * set dev_addr and also addr_assign_type should be set to
6077 	 * NET_ADDR_PERM (default value).
6078 	 */
6079 	if (dev->addr_assign_type == NET_ADDR_PERM)
6080 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
6081 
6082 	/* Notify protocols, that a new device appeared. */
6083 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
6084 	ret = notifier_to_errno(ret);
6085 	if (ret) {
6086 		rollback_registered(dev);
6087 		dev->reg_state = NETREG_UNREGISTERED;
6088 	}
6089 	/*
6090 	 *	Prevent userspace races by waiting until the network
6091 	 *	device is fully setup before sending notifications.
6092 	 */
6093 	if (!dev->rtnl_link_ops ||
6094 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6095 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
6096 
6097 out:
6098 	return ret;
6099 
6100 err_uninit:
6101 	if (dev->netdev_ops->ndo_uninit)
6102 		dev->netdev_ops->ndo_uninit(dev);
6103 	goto out;
6104 }
6105 EXPORT_SYMBOL(register_netdevice);
6106 
6107 /**
6108  *	init_dummy_netdev	- init a dummy network device for NAPI
6109  *	@dev: device to init
6110  *
6111  *	This takes a network device structure and initialize the minimum
6112  *	amount of fields so it can be used to schedule NAPI polls without
6113  *	registering a full blown interface. This is to be used by drivers
6114  *	that need to tie several hardware interfaces to a single NAPI
6115  *	poll scheduler due to HW limitations.
6116  */
6117 int init_dummy_netdev(struct net_device *dev)
6118 {
6119 	/* Clear everything. Note we don't initialize spinlocks
6120 	 * are they aren't supposed to be taken by any of the
6121 	 * NAPI code and this dummy netdev is supposed to be
6122 	 * only ever used for NAPI polls
6123 	 */
6124 	memset(dev, 0, sizeof(struct net_device));
6125 
6126 	/* make sure we BUG if trying to hit standard
6127 	 * register/unregister code path
6128 	 */
6129 	dev->reg_state = NETREG_DUMMY;
6130 
6131 	/* NAPI wants this */
6132 	INIT_LIST_HEAD(&dev->napi_list);
6133 
6134 	/* a dummy interface is started by default */
6135 	set_bit(__LINK_STATE_PRESENT, &dev->state);
6136 	set_bit(__LINK_STATE_START, &dev->state);
6137 
6138 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
6139 	 * because users of this 'device' dont need to change
6140 	 * its refcount.
6141 	 */
6142 
6143 	return 0;
6144 }
6145 EXPORT_SYMBOL_GPL(init_dummy_netdev);
6146 
6147 
6148 /**
6149  *	register_netdev	- register a network device
6150  *	@dev: device to register
6151  *
6152  *	Take a completed network device structure and add it to the kernel
6153  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6154  *	chain. 0 is returned on success. A negative errno code is returned
6155  *	on a failure to set up the device, or if the name is a duplicate.
6156  *
6157  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
6158  *	and expands the device name if you passed a format string to
6159  *	alloc_netdev.
6160  */
6161 int register_netdev(struct net_device *dev)
6162 {
6163 	int err;
6164 
6165 	rtnl_lock();
6166 	err = register_netdevice(dev);
6167 	rtnl_unlock();
6168 	return err;
6169 }
6170 EXPORT_SYMBOL(register_netdev);
6171 
6172 int netdev_refcnt_read(const struct net_device *dev)
6173 {
6174 	int i, refcnt = 0;
6175 
6176 	for_each_possible_cpu(i)
6177 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
6178 	return refcnt;
6179 }
6180 EXPORT_SYMBOL(netdev_refcnt_read);
6181 
6182 /**
6183  * netdev_wait_allrefs - wait until all references are gone.
6184  * @dev: target net_device
6185  *
6186  * This is called when unregistering network devices.
6187  *
6188  * Any protocol or device that holds a reference should register
6189  * for netdevice notification, and cleanup and put back the
6190  * reference if they receive an UNREGISTER event.
6191  * We can get stuck here if buggy protocols don't correctly
6192  * call dev_put.
6193  */
6194 static void netdev_wait_allrefs(struct net_device *dev)
6195 {
6196 	unsigned long rebroadcast_time, warning_time;
6197 	int refcnt;
6198 
6199 	linkwatch_forget_dev(dev);
6200 
6201 	rebroadcast_time = warning_time = jiffies;
6202 	refcnt = netdev_refcnt_read(dev);
6203 
6204 	while (refcnt != 0) {
6205 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6206 			rtnl_lock();
6207 
6208 			/* Rebroadcast unregister notification */
6209 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6210 
6211 			__rtnl_unlock();
6212 			rcu_barrier();
6213 			rtnl_lock();
6214 
6215 			call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6216 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
6217 				     &dev->state)) {
6218 				/* We must not have linkwatch events
6219 				 * pending on unregister. If this
6220 				 * happens, we simply run the queue
6221 				 * unscheduled, resulting in a noop
6222 				 * for this device.
6223 				 */
6224 				linkwatch_run_queue();
6225 			}
6226 
6227 			__rtnl_unlock();
6228 
6229 			rebroadcast_time = jiffies;
6230 		}
6231 
6232 		msleep(250);
6233 
6234 		refcnt = netdev_refcnt_read(dev);
6235 
6236 		if (time_after(jiffies, warning_time + 10 * HZ)) {
6237 			pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
6238 				 dev->name, refcnt);
6239 			warning_time = jiffies;
6240 		}
6241 	}
6242 }
6243 
6244 /* The sequence is:
6245  *
6246  *	rtnl_lock();
6247  *	...
6248  *	register_netdevice(x1);
6249  *	register_netdevice(x2);
6250  *	...
6251  *	unregister_netdevice(y1);
6252  *	unregister_netdevice(y2);
6253  *      ...
6254  *	rtnl_unlock();
6255  *	free_netdev(y1);
6256  *	free_netdev(y2);
6257  *
6258  * We are invoked by rtnl_unlock().
6259  * This allows us to deal with problems:
6260  * 1) We can delete sysfs objects which invoke hotplug
6261  *    without deadlocking with linkwatch via keventd.
6262  * 2) Since we run with the RTNL semaphore not held, we can sleep
6263  *    safely in order to wait for the netdev refcnt to drop to zero.
6264  *
6265  * We must not return until all unregister events added during
6266  * the interval the lock was held have been completed.
6267  */
6268 void netdev_run_todo(void)
6269 {
6270 	struct list_head list;
6271 
6272 	/* Snapshot list, allow later requests */
6273 	list_replace_init(&net_todo_list, &list);
6274 
6275 	__rtnl_unlock();
6276 
6277 
6278 	/* Wait for rcu callbacks to finish before next phase */
6279 	if (!list_empty(&list))
6280 		rcu_barrier();
6281 
6282 	while (!list_empty(&list)) {
6283 		struct net_device *dev
6284 			= list_first_entry(&list, struct net_device, todo_list);
6285 		list_del(&dev->todo_list);
6286 
6287 		rtnl_lock();
6288 		call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6289 		__rtnl_unlock();
6290 
6291 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
6292 			pr_err("network todo '%s' but state %d\n",
6293 			       dev->name, dev->reg_state);
6294 			dump_stack();
6295 			continue;
6296 		}
6297 
6298 		dev->reg_state = NETREG_UNREGISTERED;
6299 
6300 		on_each_cpu(flush_backlog, dev, 1);
6301 
6302 		netdev_wait_allrefs(dev);
6303 
6304 		/* paranoia */
6305 		BUG_ON(netdev_refcnt_read(dev));
6306 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
6307 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
6308 		WARN_ON(dev->dn_ptr);
6309 
6310 		if (dev->destructor)
6311 			dev->destructor(dev);
6312 
6313 		/* Report a network device has been unregistered */
6314 		rtnl_lock();
6315 		dev_net(dev)->dev_unreg_count--;
6316 		__rtnl_unlock();
6317 		wake_up(&netdev_unregistering_wq);
6318 
6319 		/* Free network device */
6320 		kobject_put(&dev->dev.kobj);
6321 	}
6322 }
6323 
6324 /* Convert net_device_stats to rtnl_link_stats64.  They have the same
6325  * fields in the same order, with only the type differing.
6326  */
6327 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
6328 			     const struct net_device_stats *netdev_stats)
6329 {
6330 #if BITS_PER_LONG == 64
6331 	BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
6332 	memcpy(stats64, netdev_stats, sizeof(*stats64));
6333 #else
6334 	size_t i, n = sizeof(*stats64) / sizeof(u64);
6335 	const unsigned long *src = (const unsigned long *)netdev_stats;
6336 	u64 *dst = (u64 *)stats64;
6337 
6338 	BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
6339 		     sizeof(*stats64) / sizeof(u64));
6340 	for (i = 0; i < n; i++)
6341 		dst[i] = src[i];
6342 #endif
6343 }
6344 EXPORT_SYMBOL(netdev_stats_to_stats64);
6345 
6346 /**
6347  *	dev_get_stats	- get network device statistics
6348  *	@dev: device to get statistics from
6349  *	@storage: place to store stats
6350  *
6351  *	Get network statistics from device. Return @storage.
6352  *	The device driver may provide its own method by setting
6353  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
6354  *	otherwise the internal statistics structure is used.
6355  */
6356 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
6357 					struct rtnl_link_stats64 *storage)
6358 {
6359 	const struct net_device_ops *ops = dev->netdev_ops;
6360 
6361 	if (ops->ndo_get_stats64) {
6362 		memset(storage, 0, sizeof(*storage));
6363 		ops->ndo_get_stats64(dev, storage);
6364 	} else if (ops->ndo_get_stats) {
6365 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
6366 	} else {
6367 		netdev_stats_to_stats64(storage, &dev->stats);
6368 	}
6369 	storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
6370 	storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
6371 	return storage;
6372 }
6373 EXPORT_SYMBOL(dev_get_stats);
6374 
6375 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
6376 {
6377 	struct netdev_queue *queue = dev_ingress_queue(dev);
6378 
6379 #ifdef CONFIG_NET_CLS_ACT
6380 	if (queue)
6381 		return queue;
6382 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
6383 	if (!queue)
6384 		return NULL;
6385 	netdev_init_one_queue(dev, queue, NULL);
6386 	queue->qdisc = &noop_qdisc;
6387 	queue->qdisc_sleeping = &noop_qdisc;
6388 	rcu_assign_pointer(dev->ingress_queue, queue);
6389 #endif
6390 	return queue;
6391 }
6392 
6393 static const struct ethtool_ops default_ethtool_ops;
6394 
6395 void netdev_set_default_ethtool_ops(struct net_device *dev,
6396 				    const struct ethtool_ops *ops)
6397 {
6398 	if (dev->ethtool_ops == &default_ethtool_ops)
6399 		dev->ethtool_ops = ops;
6400 }
6401 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
6402 
6403 void netdev_freemem(struct net_device *dev)
6404 {
6405 	char *addr = (char *)dev - dev->padded;
6406 
6407 	if (is_vmalloc_addr(addr))
6408 		vfree(addr);
6409 	else
6410 		kfree(addr);
6411 }
6412 
6413 /**
6414  *	alloc_netdev_mqs - allocate network device
6415  *	@sizeof_priv:	size of private data to allocate space for
6416  *	@name:		device name format string
6417  *	@setup:		callback to initialize device
6418  *	@txqs:		the number of TX subqueues to allocate
6419  *	@rxqs:		the number of RX subqueues to allocate
6420  *
6421  *	Allocates a struct net_device with private data area for driver use
6422  *	and performs basic initialization.  Also allocates subqueue structs
6423  *	for each queue on the device.
6424  */
6425 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
6426 		void (*setup)(struct net_device *),
6427 		unsigned int txqs, unsigned int rxqs)
6428 {
6429 	struct net_device *dev;
6430 	size_t alloc_size;
6431 	struct net_device *p;
6432 
6433 	BUG_ON(strlen(name) >= sizeof(dev->name));
6434 
6435 	if (txqs < 1) {
6436 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
6437 		return NULL;
6438 	}
6439 
6440 #ifdef CONFIG_SYSFS
6441 	if (rxqs < 1) {
6442 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
6443 		return NULL;
6444 	}
6445 #endif
6446 
6447 	alloc_size = sizeof(struct net_device);
6448 	if (sizeof_priv) {
6449 		/* ensure 32-byte alignment of private area */
6450 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
6451 		alloc_size += sizeof_priv;
6452 	}
6453 	/* ensure 32-byte alignment of whole construct */
6454 	alloc_size += NETDEV_ALIGN - 1;
6455 
6456 	p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6457 	if (!p)
6458 		p = vzalloc(alloc_size);
6459 	if (!p)
6460 		return NULL;
6461 
6462 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
6463 	dev->padded = (char *)dev - (char *)p;
6464 
6465 	dev->pcpu_refcnt = alloc_percpu(int);
6466 	if (!dev->pcpu_refcnt)
6467 		goto free_dev;
6468 
6469 	if (dev_addr_init(dev))
6470 		goto free_pcpu;
6471 
6472 	dev_mc_init(dev);
6473 	dev_uc_init(dev);
6474 
6475 	dev_net_set(dev, &init_net);
6476 
6477 	dev->gso_max_size = GSO_MAX_SIZE;
6478 	dev->gso_max_segs = GSO_MAX_SEGS;
6479 
6480 	INIT_LIST_HEAD(&dev->napi_list);
6481 	INIT_LIST_HEAD(&dev->unreg_list);
6482 	INIT_LIST_HEAD(&dev->close_list);
6483 	INIT_LIST_HEAD(&dev->link_watch_list);
6484 	INIT_LIST_HEAD(&dev->adj_list.upper);
6485 	INIT_LIST_HEAD(&dev->adj_list.lower);
6486 	INIT_LIST_HEAD(&dev->all_adj_list.upper);
6487 	INIT_LIST_HEAD(&dev->all_adj_list.lower);
6488 	dev->priv_flags = IFF_XMIT_DST_RELEASE;
6489 	setup(dev);
6490 
6491 	dev->num_tx_queues = txqs;
6492 	dev->real_num_tx_queues = txqs;
6493 	if (netif_alloc_netdev_queues(dev))
6494 		goto free_all;
6495 
6496 #ifdef CONFIG_SYSFS
6497 	dev->num_rx_queues = rxqs;
6498 	dev->real_num_rx_queues = rxqs;
6499 	if (netif_alloc_rx_queues(dev))
6500 		goto free_all;
6501 #endif
6502 
6503 	strcpy(dev->name, name);
6504 	dev->group = INIT_NETDEV_GROUP;
6505 	if (!dev->ethtool_ops)
6506 		dev->ethtool_ops = &default_ethtool_ops;
6507 	return dev;
6508 
6509 free_all:
6510 	free_netdev(dev);
6511 	return NULL;
6512 
6513 free_pcpu:
6514 	free_percpu(dev->pcpu_refcnt);
6515 	netif_free_tx_queues(dev);
6516 #ifdef CONFIG_SYSFS
6517 	kfree(dev->_rx);
6518 #endif
6519 
6520 free_dev:
6521 	netdev_freemem(dev);
6522 	return NULL;
6523 }
6524 EXPORT_SYMBOL(alloc_netdev_mqs);
6525 
6526 /**
6527  *	free_netdev - free network device
6528  *	@dev: device
6529  *
6530  *	This function does the last stage of destroying an allocated device
6531  * 	interface. The reference to the device object is released.
6532  *	If this is the last reference then it will be freed.
6533  */
6534 void free_netdev(struct net_device *dev)
6535 {
6536 	struct napi_struct *p, *n;
6537 
6538 	release_net(dev_net(dev));
6539 
6540 	netif_free_tx_queues(dev);
6541 #ifdef CONFIG_SYSFS
6542 	kfree(dev->_rx);
6543 #endif
6544 
6545 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
6546 
6547 	/* Flush device addresses */
6548 	dev_addr_flush(dev);
6549 
6550 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
6551 		netif_napi_del(p);
6552 
6553 	free_percpu(dev->pcpu_refcnt);
6554 	dev->pcpu_refcnt = NULL;
6555 
6556 	/*  Compatibility with error handling in drivers */
6557 	if (dev->reg_state == NETREG_UNINITIALIZED) {
6558 		netdev_freemem(dev);
6559 		return;
6560 	}
6561 
6562 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
6563 	dev->reg_state = NETREG_RELEASED;
6564 
6565 	/* will free via device release */
6566 	put_device(&dev->dev);
6567 }
6568 EXPORT_SYMBOL(free_netdev);
6569 
6570 /**
6571  *	synchronize_net -  Synchronize with packet receive processing
6572  *
6573  *	Wait for packets currently being received to be done.
6574  *	Does not block later packets from starting.
6575  */
6576 void synchronize_net(void)
6577 {
6578 	might_sleep();
6579 	if (rtnl_is_locked())
6580 		synchronize_rcu_expedited();
6581 	else
6582 		synchronize_rcu();
6583 }
6584 EXPORT_SYMBOL(synchronize_net);
6585 
6586 /**
6587  *	unregister_netdevice_queue - remove device from the kernel
6588  *	@dev: device
6589  *	@head: list
6590  *
6591  *	This function shuts down a device interface and removes it
6592  *	from the kernel tables.
6593  *	If head not NULL, device is queued to be unregistered later.
6594  *
6595  *	Callers must hold the rtnl semaphore.  You may want
6596  *	unregister_netdev() instead of this.
6597  */
6598 
6599 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
6600 {
6601 	ASSERT_RTNL();
6602 
6603 	if (head) {
6604 		list_move_tail(&dev->unreg_list, head);
6605 	} else {
6606 		rollback_registered(dev);
6607 		/* Finish processing unregister after unlock */
6608 		net_set_todo(dev);
6609 	}
6610 }
6611 EXPORT_SYMBOL(unregister_netdevice_queue);
6612 
6613 /**
6614  *	unregister_netdevice_many - unregister many devices
6615  *	@head: list of devices
6616  */
6617 void unregister_netdevice_many(struct list_head *head)
6618 {
6619 	struct net_device *dev;
6620 
6621 	if (!list_empty(head)) {
6622 		rollback_registered_many(head);
6623 		list_for_each_entry(dev, head, unreg_list)
6624 			net_set_todo(dev);
6625 	}
6626 }
6627 EXPORT_SYMBOL(unregister_netdevice_many);
6628 
6629 /**
6630  *	unregister_netdev - remove device from the kernel
6631  *	@dev: device
6632  *
6633  *	This function shuts down a device interface and removes it
6634  *	from the kernel tables.
6635  *
6636  *	This is just a wrapper for unregister_netdevice that takes
6637  *	the rtnl semaphore.  In general you want to use this and not
6638  *	unregister_netdevice.
6639  */
6640 void unregister_netdev(struct net_device *dev)
6641 {
6642 	rtnl_lock();
6643 	unregister_netdevice(dev);
6644 	rtnl_unlock();
6645 }
6646 EXPORT_SYMBOL(unregister_netdev);
6647 
6648 /**
6649  *	dev_change_net_namespace - move device to different nethost namespace
6650  *	@dev: device
6651  *	@net: network namespace
6652  *	@pat: If not NULL name pattern to try if the current device name
6653  *	      is already taken in the destination network namespace.
6654  *
6655  *	This function shuts down a device interface and moves it
6656  *	to a new network namespace. On success 0 is returned, on
6657  *	a failure a netagive errno code is returned.
6658  *
6659  *	Callers must hold the rtnl semaphore.
6660  */
6661 
6662 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
6663 {
6664 	int err;
6665 
6666 	ASSERT_RTNL();
6667 
6668 	/* Don't allow namespace local devices to be moved. */
6669 	err = -EINVAL;
6670 	if (dev->features & NETIF_F_NETNS_LOCAL)
6671 		goto out;
6672 
6673 	/* Ensure the device has been registrered */
6674 	if (dev->reg_state != NETREG_REGISTERED)
6675 		goto out;
6676 
6677 	/* Get out if there is nothing todo */
6678 	err = 0;
6679 	if (net_eq(dev_net(dev), net))
6680 		goto out;
6681 
6682 	/* Pick the destination device name, and ensure
6683 	 * we can use it in the destination network namespace.
6684 	 */
6685 	err = -EEXIST;
6686 	if (__dev_get_by_name(net, dev->name)) {
6687 		/* We get here if we can't use the current device name */
6688 		if (!pat)
6689 			goto out;
6690 		if (dev_get_valid_name(net, dev, pat) < 0)
6691 			goto out;
6692 	}
6693 
6694 	/*
6695 	 * And now a mini version of register_netdevice unregister_netdevice.
6696 	 */
6697 
6698 	/* If device is running close it first. */
6699 	dev_close(dev);
6700 
6701 	/* And unlink it from device chain */
6702 	err = -ENODEV;
6703 	unlist_netdevice(dev);
6704 
6705 	synchronize_net();
6706 
6707 	/* Shutdown queueing discipline. */
6708 	dev_shutdown(dev);
6709 
6710 	/* Notify protocols, that we are about to destroy
6711 	   this device. They should clean all the things.
6712 
6713 	   Note that dev->reg_state stays at NETREG_REGISTERED.
6714 	   This is wanted because this way 8021q and macvlan know
6715 	   the device is just moving and can keep their slaves up.
6716 	*/
6717 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6718 	rcu_barrier();
6719 	call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6720 	rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
6721 
6722 	/*
6723 	 *	Flush the unicast and multicast chains
6724 	 */
6725 	dev_uc_flush(dev);
6726 	dev_mc_flush(dev);
6727 
6728 	/* Send a netdev-removed uevent to the old namespace */
6729 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
6730 
6731 	/* Actually switch the network namespace */
6732 	dev_net_set(dev, net);
6733 
6734 	/* If there is an ifindex conflict assign a new one */
6735 	if (__dev_get_by_index(net, dev->ifindex)) {
6736 		int iflink = (dev->iflink == dev->ifindex);
6737 		dev->ifindex = dev_new_index(net);
6738 		if (iflink)
6739 			dev->iflink = dev->ifindex;
6740 	}
6741 
6742 	/* Send a netdev-add uevent to the new namespace */
6743 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
6744 
6745 	/* Fixup kobjects */
6746 	err = device_rename(&dev->dev, dev->name);
6747 	WARN_ON(err);
6748 
6749 	/* Add the device back in the hashes */
6750 	list_netdevice(dev);
6751 
6752 	/* Notify protocols, that a new device appeared. */
6753 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
6754 
6755 	/*
6756 	 *	Prevent userspace races by waiting until the network
6757 	 *	device is fully setup before sending notifications.
6758 	 */
6759 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
6760 
6761 	synchronize_net();
6762 	err = 0;
6763 out:
6764 	return err;
6765 }
6766 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
6767 
6768 static int dev_cpu_callback(struct notifier_block *nfb,
6769 			    unsigned long action,
6770 			    void *ocpu)
6771 {
6772 	struct sk_buff **list_skb;
6773 	struct sk_buff *skb;
6774 	unsigned int cpu, oldcpu = (unsigned long)ocpu;
6775 	struct softnet_data *sd, *oldsd;
6776 
6777 	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
6778 		return NOTIFY_OK;
6779 
6780 	local_irq_disable();
6781 	cpu = smp_processor_id();
6782 	sd = &per_cpu(softnet_data, cpu);
6783 	oldsd = &per_cpu(softnet_data, oldcpu);
6784 
6785 	/* Find end of our completion_queue. */
6786 	list_skb = &sd->completion_queue;
6787 	while (*list_skb)
6788 		list_skb = &(*list_skb)->next;
6789 	/* Append completion queue from offline CPU. */
6790 	*list_skb = oldsd->completion_queue;
6791 	oldsd->completion_queue = NULL;
6792 
6793 	/* Append output queue from offline CPU. */
6794 	if (oldsd->output_queue) {
6795 		*sd->output_queue_tailp = oldsd->output_queue;
6796 		sd->output_queue_tailp = oldsd->output_queue_tailp;
6797 		oldsd->output_queue = NULL;
6798 		oldsd->output_queue_tailp = &oldsd->output_queue;
6799 	}
6800 	/* Append NAPI poll list from offline CPU. */
6801 	if (!list_empty(&oldsd->poll_list)) {
6802 		list_splice_init(&oldsd->poll_list, &sd->poll_list);
6803 		raise_softirq_irqoff(NET_RX_SOFTIRQ);
6804 	}
6805 
6806 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
6807 	local_irq_enable();
6808 
6809 	/* Process offline CPU's input_pkt_queue */
6810 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
6811 		netif_rx_internal(skb);
6812 		input_queue_head_incr(oldsd);
6813 	}
6814 	while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
6815 		netif_rx_internal(skb);
6816 		input_queue_head_incr(oldsd);
6817 	}
6818 
6819 	return NOTIFY_OK;
6820 }
6821 
6822 
6823 /**
6824  *	netdev_increment_features - increment feature set by one
6825  *	@all: current feature set
6826  *	@one: new feature set
6827  *	@mask: mask feature set
6828  *
6829  *	Computes a new feature set after adding a device with feature set
6830  *	@one to the master device with current feature set @all.  Will not
6831  *	enable anything that is off in @mask. Returns the new feature set.
6832  */
6833 netdev_features_t netdev_increment_features(netdev_features_t all,
6834 	netdev_features_t one, netdev_features_t mask)
6835 {
6836 	if (mask & NETIF_F_GEN_CSUM)
6837 		mask |= NETIF_F_ALL_CSUM;
6838 	mask |= NETIF_F_VLAN_CHALLENGED;
6839 
6840 	all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
6841 	all &= one | ~NETIF_F_ALL_FOR_ALL;
6842 
6843 	/* If one device supports hw checksumming, set for all. */
6844 	if (all & NETIF_F_GEN_CSUM)
6845 		all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
6846 
6847 	return all;
6848 }
6849 EXPORT_SYMBOL(netdev_increment_features);
6850 
6851 static struct hlist_head * __net_init netdev_create_hash(void)
6852 {
6853 	int i;
6854 	struct hlist_head *hash;
6855 
6856 	hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
6857 	if (hash != NULL)
6858 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
6859 			INIT_HLIST_HEAD(&hash[i]);
6860 
6861 	return hash;
6862 }
6863 
6864 /* Initialize per network namespace state */
6865 static int __net_init netdev_init(struct net *net)
6866 {
6867 	if (net != &init_net)
6868 		INIT_LIST_HEAD(&net->dev_base_head);
6869 
6870 	net->dev_name_head = netdev_create_hash();
6871 	if (net->dev_name_head == NULL)
6872 		goto err_name;
6873 
6874 	net->dev_index_head = netdev_create_hash();
6875 	if (net->dev_index_head == NULL)
6876 		goto err_idx;
6877 
6878 	return 0;
6879 
6880 err_idx:
6881 	kfree(net->dev_name_head);
6882 err_name:
6883 	return -ENOMEM;
6884 }
6885 
6886 /**
6887  *	netdev_drivername - network driver for the device
6888  *	@dev: network device
6889  *
6890  *	Determine network driver for device.
6891  */
6892 const char *netdev_drivername(const struct net_device *dev)
6893 {
6894 	const struct device_driver *driver;
6895 	const struct device *parent;
6896 	const char *empty = "";
6897 
6898 	parent = dev->dev.parent;
6899 	if (!parent)
6900 		return empty;
6901 
6902 	driver = parent->driver;
6903 	if (driver && driver->name)
6904 		return driver->name;
6905 	return empty;
6906 }
6907 
6908 static int __netdev_printk(const char *level, const struct net_device *dev,
6909 			   struct va_format *vaf)
6910 {
6911 	int r;
6912 
6913 	if (dev && dev->dev.parent) {
6914 		r = dev_printk_emit(level[1] - '0',
6915 				    dev->dev.parent,
6916 				    "%s %s %s: %pV",
6917 				    dev_driver_string(dev->dev.parent),
6918 				    dev_name(dev->dev.parent),
6919 				    netdev_name(dev), vaf);
6920 	} else if (dev) {
6921 		r = printk("%s%s: %pV", level, netdev_name(dev), vaf);
6922 	} else {
6923 		r = printk("%s(NULL net_device): %pV", level, vaf);
6924 	}
6925 
6926 	return r;
6927 }
6928 
6929 int netdev_printk(const char *level, const struct net_device *dev,
6930 		  const char *format, ...)
6931 {
6932 	struct va_format vaf;
6933 	va_list args;
6934 	int r;
6935 
6936 	va_start(args, format);
6937 
6938 	vaf.fmt = format;
6939 	vaf.va = &args;
6940 
6941 	r = __netdev_printk(level, dev, &vaf);
6942 
6943 	va_end(args);
6944 
6945 	return r;
6946 }
6947 EXPORT_SYMBOL(netdev_printk);
6948 
6949 #define define_netdev_printk_level(func, level)			\
6950 int func(const struct net_device *dev, const char *fmt, ...)	\
6951 {								\
6952 	int r;							\
6953 	struct va_format vaf;					\
6954 	va_list args;						\
6955 								\
6956 	va_start(args, fmt);					\
6957 								\
6958 	vaf.fmt = fmt;						\
6959 	vaf.va = &args;						\
6960 								\
6961 	r = __netdev_printk(level, dev, &vaf);			\
6962 								\
6963 	va_end(args);						\
6964 								\
6965 	return r;						\
6966 }								\
6967 EXPORT_SYMBOL(func);
6968 
6969 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
6970 define_netdev_printk_level(netdev_alert, KERN_ALERT);
6971 define_netdev_printk_level(netdev_crit, KERN_CRIT);
6972 define_netdev_printk_level(netdev_err, KERN_ERR);
6973 define_netdev_printk_level(netdev_warn, KERN_WARNING);
6974 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
6975 define_netdev_printk_level(netdev_info, KERN_INFO);
6976 
6977 static void __net_exit netdev_exit(struct net *net)
6978 {
6979 	kfree(net->dev_name_head);
6980 	kfree(net->dev_index_head);
6981 }
6982 
6983 static struct pernet_operations __net_initdata netdev_net_ops = {
6984 	.init = netdev_init,
6985 	.exit = netdev_exit,
6986 };
6987 
6988 static void __net_exit default_device_exit(struct net *net)
6989 {
6990 	struct net_device *dev, *aux;
6991 	/*
6992 	 * Push all migratable network devices back to the
6993 	 * initial network namespace
6994 	 */
6995 	rtnl_lock();
6996 	for_each_netdev_safe(net, dev, aux) {
6997 		int err;
6998 		char fb_name[IFNAMSIZ];
6999 
7000 		/* Ignore unmoveable devices (i.e. loopback) */
7001 		if (dev->features & NETIF_F_NETNS_LOCAL)
7002 			continue;
7003 
7004 		/* Leave virtual devices for the generic cleanup */
7005 		if (dev->rtnl_link_ops)
7006 			continue;
7007 
7008 		/* Push remaining network devices to init_net */
7009 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
7010 		err = dev_change_net_namespace(dev, &init_net, fb_name);
7011 		if (err) {
7012 			pr_emerg("%s: failed to move %s to init_net: %d\n",
7013 				 __func__, dev->name, err);
7014 			BUG();
7015 		}
7016 	}
7017 	rtnl_unlock();
7018 }
7019 
7020 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
7021 {
7022 	/* Return with the rtnl_lock held when there are no network
7023 	 * devices unregistering in any network namespace in net_list.
7024 	 */
7025 	struct net *net;
7026 	bool unregistering;
7027 	DEFINE_WAIT(wait);
7028 
7029 	for (;;) {
7030 		prepare_to_wait(&netdev_unregistering_wq, &wait,
7031 				TASK_UNINTERRUPTIBLE);
7032 		unregistering = false;
7033 		rtnl_lock();
7034 		list_for_each_entry(net, net_list, exit_list) {
7035 			if (net->dev_unreg_count > 0) {
7036 				unregistering = true;
7037 				break;
7038 			}
7039 		}
7040 		if (!unregistering)
7041 			break;
7042 		__rtnl_unlock();
7043 		schedule();
7044 	}
7045 	finish_wait(&netdev_unregistering_wq, &wait);
7046 }
7047 
7048 static void __net_exit default_device_exit_batch(struct list_head *net_list)
7049 {
7050 	/* At exit all network devices most be removed from a network
7051 	 * namespace.  Do this in the reverse order of registration.
7052 	 * Do this across as many network namespaces as possible to
7053 	 * improve batching efficiency.
7054 	 */
7055 	struct net_device *dev;
7056 	struct net *net;
7057 	LIST_HEAD(dev_kill_list);
7058 
7059 	/* To prevent network device cleanup code from dereferencing
7060 	 * loopback devices or network devices that have been freed
7061 	 * wait here for all pending unregistrations to complete,
7062 	 * before unregistring the loopback device and allowing the
7063 	 * network namespace be freed.
7064 	 *
7065 	 * The netdev todo list containing all network devices
7066 	 * unregistrations that happen in default_device_exit_batch
7067 	 * will run in the rtnl_unlock() at the end of
7068 	 * default_device_exit_batch.
7069 	 */
7070 	rtnl_lock_unregistering(net_list);
7071 	list_for_each_entry(net, net_list, exit_list) {
7072 		for_each_netdev_reverse(net, dev) {
7073 			if (dev->rtnl_link_ops)
7074 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
7075 			else
7076 				unregister_netdevice_queue(dev, &dev_kill_list);
7077 		}
7078 	}
7079 	unregister_netdevice_many(&dev_kill_list);
7080 	list_del(&dev_kill_list);
7081 	rtnl_unlock();
7082 }
7083 
7084 static struct pernet_operations __net_initdata default_device_ops = {
7085 	.exit = default_device_exit,
7086 	.exit_batch = default_device_exit_batch,
7087 };
7088 
7089 /*
7090  *	Initialize the DEV module. At boot time this walks the device list and
7091  *	unhooks any devices that fail to initialise (normally hardware not
7092  *	present) and leaves us with a valid list of present and active devices.
7093  *
7094  */
7095 
7096 /*
7097  *       This is called single threaded during boot, so no need
7098  *       to take the rtnl semaphore.
7099  */
7100 static int __init net_dev_init(void)
7101 {
7102 	int i, rc = -ENOMEM;
7103 
7104 	BUG_ON(!dev_boot_phase);
7105 
7106 	if (dev_proc_init())
7107 		goto out;
7108 
7109 	if (netdev_kobject_init())
7110 		goto out;
7111 
7112 	INIT_LIST_HEAD(&ptype_all);
7113 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
7114 		INIT_LIST_HEAD(&ptype_base[i]);
7115 
7116 	INIT_LIST_HEAD(&offload_base);
7117 
7118 	if (register_pernet_subsys(&netdev_net_ops))
7119 		goto out;
7120 
7121 	/*
7122 	 *	Initialise the packet receive queues.
7123 	 */
7124 
7125 	for_each_possible_cpu(i) {
7126 		struct softnet_data *sd = &per_cpu(softnet_data, i);
7127 
7128 		skb_queue_head_init(&sd->input_pkt_queue);
7129 		skb_queue_head_init(&sd->process_queue);
7130 		INIT_LIST_HEAD(&sd->poll_list);
7131 		sd->output_queue_tailp = &sd->output_queue;
7132 #ifdef CONFIG_RPS
7133 		sd->csd.func = rps_trigger_softirq;
7134 		sd->csd.info = sd;
7135 		sd->cpu = i;
7136 #endif
7137 
7138 		sd->backlog.poll = process_backlog;
7139 		sd->backlog.weight = weight_p;
7140 	}
7141 
7142 	dev_boot_phase = 0;
7143 
7144 	/* The loopback device is special if any other network devices
7145 	 * is present in a network namespace the loopback device must
7146 	 * be present. Since we now dynamically allocate and free the
7147 	 * loopback device ensure this invariant is maintained by
7148 	 * keeping the loopback device as the first device on the
7149 	 * list of network devices.  Ensuring the loopback devices
7150 	 * is the first device that appears and the last network device
7151 	 * that disappears.
7152 	 */
7153 	if (register_pernet_device(&loopback_net_ops))
7154 		goto out;
7155 
7156 	if (register_pernet_device(&default_device_ops))
7157 		goto out;
7158 
7159 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
7160 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
7161 
7162 	hotcpu_notifier(dev_cpu_callback, 0);
7163 	dst_init();
7164 	rc = 0;
7165 out:
7166 	return rc;
7167 }
7168 
7169 subsys_initcall(net_dev_init);
7170