xref: /linux/net/core/dev.c (revision c4bbe83d27c2446a033cc0381c3fb6be5e8c41c7)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *	Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:	Ross Biro
7  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *	Additional Authors:
11  *		Florian la Roche <rzsfl@rz.uni-sb.de>
12  *		Alan Cox <gw4pts@gw4pts.ampr.org>
13  *		David Hinds <dahinds@users.sourceforge.net>
14  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *		Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *	Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *		Alan Cox	:	device private ioctl copies fields back.
24  *		Alan Cox	:	Transmit queue code does relevant
25  *					stunts to keep the queue safe.
26  *		Alan Cox	:	Fixed double lock.
27  *		Alan Cox	:	Fixed promisc NULL pointer trap
28  *		????????	:	Support the full private ioctl range
29  *		Alan Cox	:	Moved ioctl permission check into
30  *					drivers
31  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
32  *		Alan Cox	:	100 backlog just doesn't cut it when
33  *					you start doing multicast video 8)
34  *		Alan Cox	:	Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *		Alan Cox	:	Took out transmit every packet pass
37  *					Saved a few bytes in the ioctl handler
38  *		Alan Cox	:	Network driver sets packet type before
39  *					calling netif_rx. Saves a function
40  *					call a packet.
41  *		Alan Cox	:	Hashed net_bh()
42  *		Richard Kooijman:	Timestamp fixes.
43  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
44  *		Alan Cox	:	Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *					changes.
47  *		Rudi Cilibrasi	:	Pass the right thing to
48  *					set_mac_address()
49  *		Dave Miller	:	32bit quantity for the device lock to
50  *					make it work out on a Sparc.
51  *		Bjorn Ekwall	:	Added KERNELD hack.
52  *		Alan Cox	:	Cleaned up the backlog initialise.
53  *		Craig Metz	:	SIOCGIFCONF fix if space for under
54  *					1 device.
55  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
56  *					is no device open function.
57  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
58  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
59  *		Cyrus Durgin	:	Cleaned for KMOD
60  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
61  *					A network device unload needs to purge
62  *					the backlog queue.
63  *	Paul Rusty Russell	:	SIOCSIFNAME
64  *              Pekka Riikonen  :	Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *				        - netif_rx() feedback
69  */
70 
71 #include <linux/uaccess.h>
72 #include <linux/bitmap.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/rwsem.h>
83 #include <linux/string.h>
84 #include <linux/mm.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/errno.h>
88 #include <linux/interrupt.h>
89 #include <linux/if_ether.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/ethtool.h>
93 #include <linux/skbuff.h>
94 #include <linux/kthread.h>
95 #include <linux/bpf.h>
96 #include <linux/bpf_trace.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <net/busy_poll.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/stat.h>
102 #include <net/dsa.h>
103 #include <net/dst.h>
104 #include <net/dst_metadata.h>
105 #include <net/gro.h>
106 #include <net/pkt_sched.h>
107 #include <net/pkt_cls.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <net/tcx.h>
111 #include <linux/highmem.h>
112 #include <linux/init.h>
113 #include <linux/module.h>
114 #include <linux/netpoll.h>
115 #include <linux/rcupdate.h>
116 #include <linux/delay.h>
117 #include <net/iw_handler.h>
118 #include <asm/current.h>
119 #include <linux/audit.h>
120 #include <linux/dmaengine.h>
121 #include <linux/err.h>
122 #include <linux/ctype.h>
123 #include <linux/if_arp.h>
124 #include <linux/if_vlan.h>
125 #include <linux/ip.h>
126 #include <net/ip.h>
127 #include <net/mpls.h>
128 #include <linux/ipv6.h>
129 #include <linux/in.h>
130 #include <linux/jhash.h>
131 #include <linux/random.h>
132 #include <trace/events/napi.h>
133 #include <trace/events/net.h>
134 #include <trace/events/skb.h>
135 #include <trace/events/qdisc.h>
136 #include <trace/events/xdp.h>
137 #include <linux/inetdevice.h>
138 #include <linux/cpu_rmap.h>
139 #include <linux/static_key.h>
140 #include <linux/hashtable.h>
141 #include <linux/vmalloc.h>
142 #include <linux/if_macvlan.h>
143 #include <linux/errqueue.h>
144 #include <linux/hrtimer.h>
145 #include <linux/netfilter_netdev.h>
146 #include <linux/crash_dump.h>
147 #include <linux/sctp.h>
148 #include <net/udp_tunnel.h>
149 #include <linux/net_namespace.h>
150 #include <linux/indirect_call_wrapper.h>
151 #include <net/devlink.h>
152 #include <linux/pm_runtime.h>
153 #include <linux/prandom.h>
154 #include <linux/once_lite.h>
155 #include <net/netdev_rx_queue.h>
156 
157 #include "dev.h"
158 #include "net-sysfs.h"
159 
160 static DEFINE_SPINLOCK(ptype_lock);
161 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
162 struct list_head ptype_all __read_mostly;	/* Taps */
163 
164 static int netif_rx_internal(struct sk_buff *skb);
165 static int call_netdevice_notifiers_extack(unsigned long val,
166 					   struct net_device *dev,
167 					   struct netlink_ext_ack *extack);
168 
169 /*
170  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
171  * semaphore.
172  *
173  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
174  *
175  * Writers must hold the rtnl semaphore while they loop through the
176  * dev_base_head list, and hold dev_base_lock for writing when they do the
177  * actual updates.  This allows pure readers to access the list even
178  * while a writer is preparing to update it.
179  *
180  * To put it another way, dev_base_lock is held for writing only to
181  * protect against pure readers; the rtnl semaphore provides the
182  * protection against other writers.
183  *
184  * See, for example usages, register_netdevice() and
185  * unregister_netdevice(), which must be called with the rtnl
186  * semaphore held.
187  */
188 DEFINE_RWLOCK(dev_base_lock);
189 EXPORT_SYMBOL(dev_base_lock);
190 
191 static DEFINE_MUTEX(ifalias_mutex);
192 
193 /* protects napi_hash addition/deletion and napi_gen_id */
194 static DEFINE_SPINLOCK(napi_hash_lock);
195 
196 static unsigned int napi_gen_id = NR_CPUS;
197 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
198 
199 static DECLARE_RWSEM(devnet_rename_sem);
200 
201 static inline void dev_base_seq_inc(struct net *net)
202 {
203 	while (++net->dev_base_seq == 0)
204 		;
205 }
206 
207 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
208 {
209 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
210 
211 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
212 }
213 
214 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
215 {
216 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
217 }
218 
219 static inline void rps_lock_irqsave(struct softnet_data *sd,
220 				    unsigned long *flags)
221 {
222 	if (IS_ENABLED(CONFIG_RPS))
223 		spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags);
224 	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
225 		local_irq_save(*flags);
226 }
227 
228 static inline void rps_lock_irq_disable(struct softnet_data *sd)
229 {
230 	if (IS_ENABLED(CONFIG_RPS))
231 		spin_lock_irq(&sd->input_pkt_queue.lock);
232 	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
233 		local_irq_disable();
234 }
235 
236 static inline void rps_unlock_irq_restore(struct softnet_data *sd,
237 					  unsigned long *flags)
238 {
239 	if (IS_ENABLED(CONFIG_RPS))
240 		spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags);
241 	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
242 		local_irq_restore(*flags);
243 }
244 
245 static inline void rps_unlock_irq_enable(struct softnet_data *sd)
246 {
247 	if (IS_ENABLED(CONFIG_RPS))
248 		spin_unlock_irq(&sd->input_pkt_queue.lock);
249 	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
250 		local_irq_enable();
251 }
252 
253 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
254 						       const char *name)
255 {
256 	struct netdev_name_node *name_node;
257 
258 	name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
259 	if (!name_node)
260 		return NULL;
261 	INIT_HLIST_NODE(&name_node->hlist);
262 	name_node->dev = dev;
263 	name_node->name = name;
264 	return name_node;
265 }
266 
267 static struct netdev_name_node *
268 netdev_name_node_head_alloc(struct net_device *dev)
269 {
270 	struct netdev_name_node *name_node;
271 
272 	name_node = netdev_name_node_alloc(dev, dev->name);
273 	if (!name_node)
274 		return NULL;
275 	INIT_LIST_HEAD(&name_node->list);
276 	return name_node;
277 }
278 
279 static void netdev_name_node_free(struct netdev_name_node *name_node)
280 {
281 	kfree(name_node);
282 }
283 
284 static void netdev_name_node_add(struct net *net,
285 				 struct netdev_name_node *name_node)
286 {
287 	hlist_add_head_rcu(&name_node->hlist,
288 			   dev_name_hash(net, name_node->name));
289 }
290 
291 static void netdev_name_node_del(struct netdev_name_node *name_node)
292 {
293 	hlist_del_rcu(&name_node->hlist);
294 }
295 
296 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
297 							const char *name)
298 {
299 	struct hlist_head *head = dev_name_hash(net, name);
300 	struct netdev_name_node *name_node;
301 
302 	hlist_for_each_entry(name_node, head, hlist)
303 		if (!strcmp(name_node->name, name))
304 			return name_node;
305 	return NULL;
306 }
307 
308 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
309 							    const char *name)
310 {
311 	struct hlist_head *head = dev_name_hash(net, name);
312 	struct netdev_name_node *name_node;
313 
314 	hlist_for_each_entry_rcu(name_node, head, hlist)
315 		if (!strcmp(name_node->name, name))
316 			return name_node;
317 	return NULL;
318 }
319 
320 bool netdev_name_in_use(struct net *net, const char *name)
321 {
322 	return netdev_name_node_lookup(net, name);
323 }
324 EXPORT_SYMBOL(netdev_name_in_use);
325 
326 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
327 {
328 	struct netdev_name_node *name_node;
329 	struct net *net = dev_net(dev);
330 
331 	name_node = netdev_name_node_lookup(net, name);
332 	if (name_node)
333 		return -EEXIST;
334 	name_node = netdev_name_node_alloc(dev, name);
335 	if (!name_node)
336 		return -ENOMEM;
337 	netdev_name_node_add(net, name_node);
338 	/* The node that holds dev->name acts as a head of per-device list. */
339 	list_add_tail(&name_node->list, &dev->name_node->list);
340 
341 	return 0;
342 }
343 
344 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
345 {
346 	list_del(&name_node->list);
347 	kfree(name_node->name);
348 	netdev_name_node_free(name_node);
349 }
350 
351 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
352 {
353 	struct netdev_name_node *name_node;
354 	struct net *net = dev_net(dev);
355 
356 	name_node = netdev_name_node_lookup(net, name);
357 	if (!name_node)
358 		return -ENOENT;
359 	/* lookup might have found our primary name or a name belonging
360 	 * to another device.
361 	 */
362 	if (name_node == dev->name_node || name_node->dev != dev)
363 		return -EINVAL;
364 
365 	netdev_name_node_del(name_node);
366 	synchronize_rcu();
367 	__netdev_name_node_alt_destroy(name_node);
368 
369 	return 0;
370 }
371 
372 static void netdev_name_node_alt_flush(struct net_device *dev)
373 {
374 	struct netdev_name_node *name_node, *tmp;
375 
376 	list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
377 		__netdev_name_node_alt_destroy(name_node);
378 }
379 
380 /* Device list insertion */
381 static void list_netdevice(struct net_device *dev)
382 {
383 	struct netdev_name_node *name_node;
384 	struct net *net = dev_net(dev);
385 
386 	ASSERT_RTNL();
387 
388 	write_lock(&dev_base_lock);
389 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
390 	netdev_name_node_add(net, dev->name_node);
391 	hlist_add_head_rcu(&dev->index_hlist,
392 			   dev_index_hash(net, dev->ifindex));
393 	write_unlock(&dev_base_lock);
394 
395 	netdev_for_each_altname(dev, name_node)
396 		netdev_name_node_add(net, name_node);
397 
398 	/* We reserved the ifindex, this can't fail */
399 	WARN_ON(xa_store(&net->dev_by_index, dev->ifindex, dev, GFP_KERNEL));
400 
401 	dev_base_seq_inc(net);
402 }
403 
404 /* Device list removal
405  * caller must respect a RCU grace period before freeing/reusing dev
406  */
407 static void unlist_netdevice(struct net_device *dev, bool lock)
408 {
409 	struct netdev_name_node *name_node;
410 	struct net *net = dev_net(dev);
411 
412 	ASSERT_RTNL();
413 
414 	xa_erase(&net->dev_by_index, dev->ifindex);
415 
416 	netdev_for_each_altname(dev, name_node)
417 		netdev_name_node_del(name_node);
418 
419 	/* Unlink dev from the device chain */
420 	if (lock)
421 		write_lock(&dev_base_lock);
422 	list_del_rcu(&dev->dev_list);
423 	netdev_name_node_del(dev->name_node);
424 	hlist_del_rcu(&dev->index_hlist);
425 	if (lock)
426 		write_unlock(&dev_base_lock);
427 
428 	dev_base_seq_inc(dev_net(dev));
429 }
430 
431 /*
432  *	Our notifier list
433  */
434 
435 static RAW_NOTIFIER_HEAD(netdev_chain);
436 
437 /*
438  *	Device drivers call our routines to queue packets here. We empty the
439  *	queue in the local softnet handler.
440  */
441 
442 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
443 EXPORT_PER_CPU_SYMBOL(softnet_data);
444 
445 #ifdef CONFIG_LOCKDEP
446 /*
447  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
448  * according to dev->type
449  */
450 static const unsigned short netdev_lock_type[] = {
451 	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
452 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
453 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
454 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
455 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
456 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
457 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
458 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
459 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
460 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
461 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
462 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
463 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
464 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
465 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
466 
467 static const char *const netdev_lock_name[] = {
468 	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
469 	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
470 	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
471 	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
472 	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
473 	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
474 	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
475 	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
476 	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
477 	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
478 	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
479 	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
480 	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
481 	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
482 	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
483 
484 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
485 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
486 
487 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
488 {
489 	int i;
490 
491 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
492 		if (netdev_lock_type[i] == dev_type)
493 			return i;
494 	/* the last key is used by default */
495 	return ARRAY_SIZE(netdev_lock_type) - 1;
496 }
497 
498 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
499 						 unsigned short dev_type)
500 {
501 	int i;
502 
503 	i = netdev_lock_pos(dev_type);
504 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
505 				   netdev_lock_name[i]);
506 }
507 
508 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
509 {
510 	int i;
511 
512 	i = netdev_lock_pos(dev->type);
513 	lockdep_set_class_and_name(&dev->addr_list_lock,
514 				   &netdev_addr_lock_key[i],
515 				   netdev_lock_name[i]);
516 }
517 #else
518 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
519 						 unsigned short dev_type)
520 {
521 }
522 
523 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
524 {
525 }
526 #endif
527 
528 /*******************************************************************************
529  *
530  *		Protocol management and registration routines
531  *
532  *******************************************************************************/
533 
534 
535 /*
536  *	Add a protocol ID to the list. Now that the input handler is
537  *	smarter we can dispense with all the messy stuff that used to be
538  *	here.
539  *
540  *	BEWARE!!! Protocol handlers, mangling input packets,
541  *	MUST BE last in hash buckets and checking protocol handlers
542  *	MUST start from promiscuous ptype_all chain in net_bh.
543  *	It is true now, do not change it.
544  *	Explanation follows: if protocol handler, mangling packet, will
545  *	be the first on list, it is not able to sense, that packet
546  *	is cloned and should be copied-on-write, so that it will
547  *	change it and subsequent readers will get broken packet.
548  *							--ANK (980803)
549  */
550 
551 static inline struct list_head *ptype_head(const struct packet_type *pt)
552 {
553 	if (pt->type == htons(ETH_P_ALL))
554 		return pt->dev ? &pt->dev->ptype_all : &ptype_all;
555 	else
556 		return pt->dev ? &pt->dev->ptype_specific :
557 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
558 }
559 
560 /**
561  *	dev_add_pack - add packet handler
562  *	@pt: packet type declaration
563  *
564  *	Add a protocol handler to the networking stack. The passed &packet_type
565  *	is linked into kernel lists and may not be freed until it has been
566  *	removed from the kernel lists.
567  *
568  *	This call does not sleep therefore it can not
569  *	guarantee all CPU's that are in middle of receiving packets
570  *	will see the new packet type (until the next received packet).
571  */
572 
573 void dev_add_pack(struct packet_type *pt)
574 {
575 	struct list_head *head = ptype_head(pt);
576 
577 	spin_lock(&ptype_lock);
578 	list_add_rcu(&pt->list, head);
579 	spin_unlock(&ptype_lock);
580 }
581 EXPORT_SYMBOL(dev_add_pack);
582 
583 /**
584  *	__dev_remove_pack	 - remove packet handler
585  *	@pt: packet type declaration
586  *
587  *	Remove a protocol handler that was previously added to the kernel
588  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
589  *	from the kernel lists and can be freed or reused once this function
590  *	returns.
591  *
592  *      The packet type might still be in use by receivers
593  *	and must not be freed until after all the CPU's have gone
594  *	through a quiescent state.
595  */
596 void __dev_remove_pack(struct packet_type *pt)
597 {
598 	struct list_head *head = ptype_head(pt);
599 	struct packet_type *pt1;
600 
601 	spin_lock(&ptype_lock);
602 
603 	list_for_each_entry(pt1, head, list) {
604 		if (pt == pt1) {
605 			list_del_rcu(&pt->list);
606 			goto out;
607 		}
608 	}
609 
610 	pr_warn("dev_remove_pack: %p not found\n", pt);
611 out:
612 	spin_unlock(&ptype_lock);
613 }
614 EXPORT_SYMBOL(__dev_remove_pack);
615 
616 /**
617  *	dev_remove_pack	 - remove packet handler
618  *	@pt: packet type declaration
619  *
620  *	Remove a protocol handler that was previously added to the kernel
621  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
622  *	from the kernel lists and can be freed or reused once this function
623  *	returns.
624  *
625  *	This call sleeps to guarantee that no CPU is looking at the packet
626  *	type after return.
627  */
628 void dev_remove_pack(struct packet_type *pt)
629 {
630 	__dev_remove_pack(pt);
631 
632 	synchronize_net();
633 }
634 EXPORT_SYMBOL(dev_remove_pack);
635 
636 
637 /*******************************************************************************
638  *
639  *			    Device Interface Subroutines
640  *
641  *******************************************************************************/
642 
643 /**
644  *	dev_get_iflink	- get 'iflink' value of a interface
645  *	@dev: targeted interface
646  *
647  *	Indicates the ifindex the interface is linked to.
648  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
649  */
650 
651 int dev_get_iflink(const struct net_device *dev)
652 {
653 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
654 		return dev->netdev_ops->ndo_get_iflink(dev);
655 
656 	return dev->ifindex;
657 }
658 EXPORT_SYMBOL(dev_get_iflink);
659 
660 /**
661  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
662  *	@dev: targeted interface
663  *	@skb: The packet.
664  *
665  *	For better visibility of tunnel traffic OVS needs to retrieve
666  *	egress tunnel information for a packet. Following API allows
667  *	user to get this info.
668  */
669 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
670 {
671 	struct ip_tunnel_info *info;
672 
673 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
674 		return -EINVAL;
675 
676 	info = skb_tunnel_info_unclone(skb);
677 	if (!info)
678 		return -ENOMEM;
679 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
680 		return -EINVAL;
681 
682 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
683 }
684 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
685 
686 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
687 {
688 	int k = stack->num_paths++;
689 
690 	if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
691 		return NULL;
692 
693 	return &stack->path[k];
694 }
695 
696 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
697 			  struct net_device_path_stack *stack)
698 {
699 	const struct net_device *last_dev;
700 	struct net_device_path_ctx ctx = {
701 		.dev	= dev,
702 	};
703 	struct net_device_path *path;
704 	int ret = 0;
705 
706 	memcpy(ctx.daddr, daddr, sizeof(ctx.daddr));
707 	stack->num_paths = 0;
708 	while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
709 		last_dev = ctx.dev;
710 		path = dev_fwd_path(stack);
711 		if (!path)
712 			return -1;
713 
714 		memset(path, 0, sizeof(struct net_device_path));
715 		ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
716 		if (ret < 0)
717 			return -1;
718 
719 		if (WARN_ON_ONCE(last_dev == ctx.dev))
720 			return -1;
721 	}
722 
723 	if (!ctx.dev)
724 		return ret;
725 
726 	path = dev_fwd_path(stack);
727 	if (!path)
728 		return -1;
729 	path->type = DEV_PATH_ETHERNET;
730 	path->dev = ctx.dev;
731 
732 	return ret;
733 }
734 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
735 
736 /**
737  *	__dev_get_by_name	- find a device by its name
738  *	@net: the applicable net namespace
739  *	@name: name to find
740  *
741  *	Find an interface by name. Must be called under RTNL semaphore
742  *	or @dev_base_lock. If the name is found a pointer to the device
743  *	is returned. If the name is not found then %NULL is returned. The
744  *	reference counters are not incremented so the caller must be
745  *	careful with locks.
746  */
747 
748 struct net_device *__dev_get_by_name(struct net *net, const char *name)
749 {
750 	struct netdev_name_node *node_name;
751 
752 	node_name = netdev_name_node_lookup(net, name);
753 	return node_name ? node_name->dev : NULL;
754 }
755 EXPORT_SYMBOL(__dev_get_by_name);
756 
757 /**
758  * dev_get_by_name_rcu	- find a device by its name
759  * @net: the applicable net namespace
760  * @name: name to find
761  *
762  * Find an interface by name.
763  * If the name is found a pointer to the device is returned.
764  * If the name is not found then %NULL is returned.
765  * The reference counters are not incremented so the caller must be
766  * careful with locks. The caller must hold RCU lock.
767  */
768 
769 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
770 {
771 	struct netdev_name_node *node_name;
772 
773 	node_name = netdev_name_node_lookup_rcu(net, name);
774 	return node_name ? node_name->dev : NULL;
775 }
776 EXPORT_SYMBOL(dev_get_by_name_rcu);
777 
778 /* Deprecated for new users, call netdev_get_by_name() instead */
779 struct net_device *dev_get_by_name(struct net *net, const char *name)
780 {
781 	struct net_device *dev;
782 
783 	rcu_read_lock();
784 	dev = dev_get_by_name_rcu(net, name);
785 	dev_hold(dev);
786 	rcu_read_unlock();
787 	return dev;
788 }
789 EXPORT_SYMBOL(dev_get_by_name);
790 
791 /**
792  *	netdev_get_by_name() - find a device by its name
793  *	@net: the applicable net namespace
794  *	@name: name to find
795  *	@tracker: tracking object for the acquired reference
796  *	@gfp: allocation flags for the tracker
797  *
798  *	Find an interface by name. This can be called from any
799  *	context and does its own locking. The returned handle has
800  *	the usage count incremented and the caller must use netdev_put() to
801  *	release it when it is no longer needed. %NULL is returned if no
802  *	matching device is found.
803  */
804 struct net_device *netdev_get_by_name(struct net *net, const char *name,
805 				      netdevice_tracker *tracker, gfp_t gfp)
806 {
807 	struct net_device *dev;
808 
809 	dev = dev_get_by_name(net, name);
810 	if (dev)
811 		netdev_tracker_alloc(dev, tracker, gfp);
812 	return dev;
813 }
814 EXPORT_SYMBOL(netdev_get_by_name);
815 
816 /**
817  *	__dev_get_by_index - find a device by its ifindex
818  *	@net: the applicable net namespace
819  *	@ifindex: index of device
820  *
821  *	Search for an interface by index. Returns %NULL if the device
822  *	is not found or a pointer to the device. The device has not
823  *	had its reference counter increased so the caller must be careful
824  *	about locking. The caller must hold either the RTNL semaphore
825  *	or @dev_base_lock.
826  */
827 
828 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
829 {
830 	struct net_device *dev;
831 	struct hlist_head *head = dev_index_hash(net, ifindex);
832 
833 	hlist_for_each_entry(dev, head, index_hlist)
834 		if (dev->ifindex == ifindex)
835 			return dev;
836 
837 	return NULL;
838 }
839 EXPORT_SYMBOL(__dev_get_by_index);
840 
841 /**
842  *	dev_get_by_index_rcu - find a device by its ifindex
843  *	@net: the applicable net namespace
844  *	@ifindex: index of device
845  *
846  *	Search for an interface by index. Returns %NULL if the device
847  *	is not found or a pointer to the device. The device has not
848  *	had its reference counter increased so the caller must be careful
849  *	about locking. The caller must hold RCU lock.
850  */
851 
852 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
853 {
854 	struct net_device *dev;
855 	struct hlist_head *head = dev_index_hash(net, ifindex);
856 
857 	hlist_for_each_entry_rcu(dev, head, index_hlist)
858 		if (dev->ifindex == ifindex)
859 			return dev;
860 
861 	return NULL;
862 }
863 EXPORT_SYMBOL(dev_get_by_index_rcu);
864 
865 /* Deprecated for new users, call netdev_get_by_index() instead */
866 struct net_device *dev_get_by_index(struct net *net, int ifindex)
867 {
868 	struct net_device *dev;
869 
870 	rcu_read_lock();
871 	dev = dev_get_by_index_rcu(net, ifindex);
872 	dev_hold(dev);
873 	rcu_read_unlock();
874 	return dev;
875 }
876 EXPORT_SYMBOL(dev_get_by_index);
877 
878 /**
879  *	netdev_get_by_index() - find a device by its ifindex
880  *	@net: the applicable net namespace
881  *	@ifindex: index of device
882  *	@tracker: tracking object for the acquired reference
883  *	@gfp: allocation flags for the tracker
884  *
885  *	Search for an interface by index. Returns NULL if the device
886  *	is not found or a pointer to the device. The device returned has
887  *	had a reference added and the pointer is safe until the user calls
888  *	netdev_put() to indicate they have finished with it.
889  */
890 struct net_device *netdev_get_by_index(struct net *net, int ifindex,
891 				       netdevice_tracker *tracker, gfp_t gfp)
892 {
893 	struct net_device *dev;
894 
895 	dev = dev_get_by_index(net, ifindex);
896 	if (dev)
897 		netdev_tracker_alloc(dev, tracker, gfp);
898 	return dev;
899 }
900 EXPORT_SYMBOL(netdev_get_by_index);
901 
902 /**
903  *	dev_get_by_napi_id - find a device by napi_id
904  *	@napi_id: ID of the NAPI struct
905  *
906  *	Search for an interface by NAPI ID. Returns %NULL if the device
907  *	is not found or a pointer to the device. The device has not had
908  *	its reference counter increased so the caller must be careful
909  *	about locking. The caller must hold RCU lock.
910  */
911 
912 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
913 {
914 	struct napi_struct *napi;
915 
916 	WARN_ON_ONCE(!rcu_read_lock_held());
917 
918 	if (napi_id < MIN_NAPI_ID)
919 		return NULL;
920 
921 	napi = napi_by_id(napi_id);
922 
923 	return napi ? napi->dev : NULL;
924 }
925 EXPORT_SYMBOL(dev_get_by_napi_id);
926 
927 /**
928  *	netdev_get_name - get a netdevice name, knowing its ifindex.
929  *	@net: network namespace
930  *	@name: a pointer to the buffer where the name will be stored.
931  *	@ifindex: the ifindex of the interface to get the name from.
932  */
933 int netdev_get_name(struct net *net, char *name, int ifindex)
934 {
935 	struct net_device *dev;
936 	int ret;
937 
938 	down_read(&devnet_rename_sem);
939 	rcu_read_lock();
940 
941 	dev = dev_get_by_index_rcu(net, ifindex);
942 	if (!dev) {
943 		ret = -ENODEV;
944 		goto out;
945 	}
946 
947 	strcpy(name, dev->name);
948 
949 	ret = 0;
950 out:
951 	rcu_read_unlock();
952 	up_read(&devnet_rename_sem);
953 	return ret;
954 }
955 
956 /**
957  *	dev_getbyhwaddr_rcu - find a device by its hardware address
958  *	@net: the applicable net namespace
959  *	@type: media type of device
960  *	@ha: hardware address
961  *
962  *	Search for an interface by MAC address. Returns NULL if the device
963  *	is not found or a pointer to the device.
964  *	The caller must hold RCU or RTNL.
965  *	The returned device has not had its ref count increased
966  *	and the caller must therefore be careful about locking
967  *
968  */
969 
970 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
971 				       const char *ha)
972 {
973 	struct net_device *dev;
974 
975 	for_each_netdev_rcu(net, dev)
976 		if (dev->type == type &&
977 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
978 			return dev;
979 
980 	return NULL;
981 }
982 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
983 
984 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
985 {
986 	struct net_device *dev, *ret = NULL;
987 
988 	rcu_read_lock();
989 	for_each_netdev_rcu(net, dev)
990 		if (dev->type == type) {
991 			dev_hold(dev);
992 			ret = dev;
993 			break;
994 		}
995 	rcu_read_unlock();
996 	return ret;
997 }
998 EXPORT_SYMBOL(dev_getfirstbyhwtype);
999 
1000 /**
1001  *	__dev_get_by_flags - find any device with given flags
1002  *	@net: the applicable net namespace
1003  *	@if_flags: IFF_* values
1004  *	@mask: bitmask of bits in if_flags to check
1005  *
1006  *	Search for any interface with the given flags. Returns NULL if a device
1007  *	is not found or a pointer to the device. Must be called inside
1008  *	rtnl_lock(), and result refcount is unchanged.
1009  */
1010 
1011 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1012 				      unsigned short mask)
1013 {
1014 	struct net_device *dev, *ret;
1015 
1016 	ASSERT_RTNL();
1017 
1018 	ret = NULL;
1019 	for_each_netdev(net, dev) {
1020 		if (((dev->flags ^ if_flags) & mask) == 0) {
1021 			ret = dev;
1022 			break;
1023 		}
1024 	}
1025 	return ret;
1026 }
1027 EXPORT_SYMBOL(__dev_get_by_flags);
1028 
1029 /**
1030  *	dev_valid_name - check if name is okay for network device
1031  *	@name: name string
1032  *
1033  *	Network device names need to be valid file names to
1034  *	allow sysfs to work.  We also disallow any kind of
1035  *	whitespace.
1036  */
1037 bool dev_valid_name(const char *name)
1038 {
1039 	if (*name == '\0')
1040 		return false;
1041 	if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1042 		return false;
1043 	if (!strcmp(name, ".") || !strcmp(name, ".."))
1044 		return false;
1045 
1046 	while (*name) {
1047 		if (*name == '/' || *name == ':' || isspace(*name))
1048 			return false;
1049 		name++;
1050 	}
1051 	return true;
1052 }
1053 EXPORT_SYMBOL(dev_valid_name);
1054 
1055 /**
1056  *	__dev_alloc_name - allocate a name for a device
1057  *	@net: network namespace to allocate the device name in
1058  *	@name: name format string
1059  *	@res: result name string
1060  *
1061  *	Passed a format string - eg "lt%d" it will try and find a suitable
1062  *	id. It scans list of devices to build up a free map, then chooses
1063  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1064  *	while allocating the name and adding the device in order to avoid
1065  *	duplicates.
1066  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1067  *	Returns the number of the unit assigned or a negative errno code.
1068  */
1069 
1070 static int __dev_alloc_name(struct net *net, const char *name, char *res)
1071 {
1072 	int i = 0;
1073 	const char *p;
1074 	const int max_netdevices = 8*PAGE_SIZE;
1075 	unsigned long *inuse;
1076 	struct net_device *d;
1077 	char buf[IFNAMSIZ];
1078 
1079 	/* Verify the string as this thing may have come from the user.
1080 	 * There must be one "%d" and no other "%" characters.
1081 	 */
1082 	p = strchr(name, '%');
1083 	if (!p || p[1] != 'd' || strchr(p + 2, '%'))
1084 		return -EINVAL;
1085 
1086 	/* Use one page as a bit array of possible slots */
1087 	inuse = bitmap_zalloc(max_netdevices, GFP_ATOMIC);
1088 	if (!inuse)
1089 		return -ENOMEM;
1090 
1091 	for_each_netdev(net, d) {
1092 		struct netdev_name_node *name_node;
1093 
1094 		netdev_for_each_altname(d, name_node) {
1095 			if (!sscanf(name_node->name, name, &i))
1096 				continue;
1097 			if (i < 0 || i >= max_netdevices)
1098 				continue;
1099 
1100 			/* avoid cases where sscanf is not exact inverse of printf */
1101 			snprintf(buf, IFNAMSIZ, name, i);
1102 			if (!strncmp(buf, name_node->name, IFNAMSIZ))
1103 				__set_bit(i, inuse);
1104 		}
1105 		if (!sscanf(d->name, name, &i))
1106 			continue;
1107 		if (i < 0 || i >= max_netdevices)
1108 			continue;
1109 
1110 		/* avoid cases where sscanf is not exact inverse of printf */
1111 		snprintf(buf, IFNAMSIZ, name, i);
1112 		if (!strncmp(buf, d->name, IFNAMSIZ))
1113 			__set_bit(i, inuse);
1114 	}
1115 
1116 	i = find_first_zero_bit(inuse, max_netdevices);
1117 	bitmap_free(inuse);
1118 	if (i == max_netdevices)
1119 		return -ENFILE;
1120 
1121 	/* 'res' and 'name' could overlap, use 'buf' as an intermediate buffer */
1122 	strscpy(buf, name, IFNAMSIZ);
1123 	snprintf(res, IFNAMSIZ, buf, i);
1124 	return i;
1125 }
1126 
1127 /* Returns negative errno or allocated unit id (see __dev_alloc_name()) */
1128 static int dev_prep_valid_name(struct net *net, struct net_device *dev,
1129 			       const char *want_name, char *out_name,
1130 			       int dup_errno)
1131 {
1132 	if (!dev_valid_name(want_name))
1133 		return -EINVAL;
1134 
1135 	if (strchr(want_name, '%'))
1136 		return __dev_alloc_name(net, want_name, out_name);
1137 
1138 	if (netdev_name_in_use(net, want_name))
1139 		return -dup_errno;
1140 	if (out_name != want_name)
1141 		strscpy(out_name, want_name, IFNAMSIZ);
1142 	return 0;
1143 }
1144 
1145 /**
1146  *	dev_alloc_name - allocate a name for a device
1147  *	@dev: device
1148  *	@name: name format string
1149  *
1150  *	Passed a format string - eg "lt%d" it will try and find a suitable
1151  *	id. It scans list of devices to build up a free map, then chooses
1152  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1153  *	while allocating the name and adding the device in order to avoid
1154  *	duplicates.
1155  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1156  *	Returns the number of the unit assigned or a negative errno code.
1157  */
1158 
1159 int dev_alloc_name(struct net_device *dev, const char *name)
1160 {
1161 	return dev_prep_valid_name(dev_net(dev), dev, name, dev->name, ENFILE);
1162 }
1163 EXPORT_SYMBOL(dev_alloc_name);
1164 
1165 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1166 			      const char *name)
1167 {
1168 	int ret;
1169 
1170 	ret = dev_prep_valid_name(net, dev, name, dev->name, EEXIST);
1171 	return ret < 0 ? ret : 0;
1172 }
1173 
1174 /**
1175  *	dev_change_name - change name of a device
1176  *	@dev: device
1177  *	@newname: name (or format string) must be at least IFNAMSIZ
1178  *
1179  *	Change name of a device, can pass format strings "eth%d".
1180  *	for wildcarding.
1181  */
1182 int dev_change_name(struct net_device *dev, const char *newname)
1183 {
1184 	unsigned char old_assign_type;
1185 	char oldname[IFNAMSIZ];
1186 	int err = 0;
1187 	int ret;
1188 	struct net *net;
1189 
1190 	ASSERT_RTNL();
1191 	BUG_ON(!dev_net(dev));
1192 
1193 	net = dev_net(dev);
1194 
1195 	down_write(&devnet_rename_sem);
1196 
1197 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1198 		up_write(&devnet_rename_sem);
1199 		return 0;
1200 	}
1201 
1202 	memcpy(oldname, dev->name, IFNAMSIZ);
1203 
1204 	err = dev_get_valid_name(net, dev, newname);
1205 	if (err < 0) {
1206 		up_write(&devnet_rename_sem);
1207 		return err;
1208 	}
1209 
1210 	if (oldname[0] && !strchr(oldname, '%'))
1211 		netdev_info(dev, "renamed from %s%s\n", oldname,
1212 			    dev->flags & IFF_UP ? " (while UP)" : "");
1213 
1214 	old_assign_type = dev->name_assign_type;
1215 	dev->name_assign_type = NET_NAME_RENAMED;
1216 
1217 rollback:
1218 	ret = device_rename(&dev->dev, dev->name);
1219 	if (ret) {
1220 		memcpy(dev->name, oldname, IFNAMSIZ);
1221 		dev->name_assign_type = old_assign_type;
1222 		up_write(&devnet_rename_sem);
1223 		return ret;
1224 	}
1225 
1226 	up_write(&devnet_rename_sem);
1227 
1228 	netdev_adjacent_rename_links(dev, oldname);
1229 
1230 	write_lock(&dev_base_lock);
1231 	netdev_name_node_del(dev->name_node);
1232 	write_unlock(&dev_base_lock);
1233 
1234 	synchronize_rcu();
1235 
1236 	write_lock(&dev_base_lock);
1237 	netdev_name_node_add(net, dev->name_node);
1238 	write_unlock(&dev_base_lock);
1239 
1240 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1241 	ret = notifier_to_errno(ret);
1242 
1243 	if (ret) {
1244 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1245 		if (err >= 0) {
1246 			err = ret;
1247 			down_write(&devnet_rename_sem);
1248 			memcpy(dev->name, oldname, IFNAMSIZ);
1249 			memcpy(oldname, newname, IFNAMSIZ);
1250 			dev->name_assign_type = old_assign_type;
1251 			old_assign_type = NET_NAME_RENAMED;
1252 			goto rollback;
1253 		} else {
1254 			netdev_err(dev, "name change rollback failed: %d\n",
1255 				   ret);
1256 		}
1257 	}
1258 
1259 	return err;
1260 }
1261 
1262 /**
1263  *	dev_set_alias - change ifalias of a device
1264  *	@dev: device
1265  *	@alias: name up to IFALIASZ
1266  *	@len: limit of bytes to copy from info
1267  *
1268  *	Set ifalias for a device,
1269  */
1270 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1271 {
1272 	struct dev_ifalias *new_alias = NULL;
1273 
1274 	if (len >= IFALIASZ)
1275 		return -EINVAL;
1276 
1277 	if (len) {
1278 		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1279 		if (!new_alias)
1280 			return -ENOMEM;
1281 
1282 		memcpy(new_alias->ifalias, alias, len);
1283 		new_alias->ifalias[len] = 0;
1284 	}
1285 
1286 	mutex_lock(&ifalias_mutex);
1287 	new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1288 					mutex_is_locked(&ifalias_mutex));
1289 	mutex_unlock(&ifalias_mutex);
1290 
1291 	if (new_alias)
1292 		kfree_rcu(new_alias, rcuhead);
1293 
1294 	return len;
1295 }
1296 EXPORT_SYMBOL(dev_set_alias);
1297 
1298 /**
1299  *	dev_get_alias - get ifalias of a device
1300  *	@dev: device
1301  *	@name: buffer to store name of ifalias
1302  *	@len: size of buffer
1303  *
1304  *	get ifalias for a device.  Caller must make sure dev cannot go
1305  *	away,  e.g. rcu read lock or own a reference count to device.
1306  */
1307 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1308 {
1309 	const struct dev_ifalias *alias;
1310 	int ret = 0;
1311 
1312 	rcu_read_lock();
1313 	alias = rcu_dereference(dev->ifalias);
1314 	if (alias)
1315 		ret = snprintf(name, len, "%s", alias->ifalias);
1316 	rcu_read_unlock();
1317 
1318 	return ret;
1319 }
1320 
1321 /**
1322  *	netdev_features_change - device changes features
1323  *	@dev: device to cause notification
1324  *
1325  *	Called to indicate a device has changed features.
1326  */
1327 void netdev_features_change(struct net_device *dev)
1328 {
1329 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1330 }
1331 EXPORT_SYMBOL(netdev_features_change);
1332 
1333 /**
1334  *	netdev_state_change - device changes state
1335  *	@dev: device to cause notification
1336  *
1337  *	Called to indicate a device has changed state. This function calls
1338  *	the notifier chains for netdev_chain and sends a NEWLINK message
1339  *	to the routing socket.
1340  */
1341 void netdev_state_change(struct net_device *dev)
1342 {
1343 	if (dev->flags & IFF_UP) {
1344 		struct netdev_notifier_change_info change_info = {
1345 			.info.dev = dev,
1346 		};
1347 
1348 		call_netdevice_notifiers_info(NETDEV_CHANGE,
1349 					      &change_info.info);
1350 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL, 0, NULL);
1351 	}
1352 }
1353 EXPORT_SYMBOL(netdev_state_change);
1354 
1355 /**
1356  * __netdev_notify_peers - notify network peers about existence of @dev,
1357  * to be called when rtnl lock is already held.
1358  * @dev: network device
1359  *
1360  * Generate traffic such that interested network peers are aware of
1361  * @dev, such as by generating a gratuitous ARP. This may be used when
1362  * a device wants to inform the rest of the network about some sort of
1363  * reconfiguration such as a failover event or virtual machine
1364  * migration.
1365  */
1366 void __netdev_notify_peers(struct net_device *dev)
1367 {
1368 	ASSERT_RTNL();
1369 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1370 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1371 }
1372 EXPORT_SYMBOL(__netdev_notify_peers);
1373 
1374 /**
1375  * netdev_notify_peers - notify network peers about existence of @dev
1376  * @dev: network device
1377  *
1378  * Generate traffic such that interested network peers are aware of
1379  * @dev, such as by generating a gratuitous ARP. This may be used when
1380  * a device wants to inform the rest of the network about some sort of
1381  * reconfiguration such as a failover event or virtual machine
1382  * migration.
1383  */
1384 void netdev_notify_peers(struct net_device *dev)
1385 {
1386 	rtnl_lock();
1387 	__netdev_notify_peers(dev);
1388 	rtnl_unlock();
1389 }
1390 EXPORT_SYMBOL(netdev_notify_peers);
1391 
1392 static int napi_threaded_poll(void *data);
1393 
1394 static int napi_kthread_create(struct napi_struct *n)
1395 {
1396 	int err = 0;
1397 
1398 	/* Create and wake up the kthread once to put it in
1399 	 * TASK_INTERRUPTIBLE mode to avoid the blocked task
1400 	 * warning and work with loadavg.
1401 	 */
1402 	n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1403 				n->dev->name, n->napi_id);
1404 	if (IS_ERR(n->thread)) {
1405 		err = PTR_ERR(n->thread);
1406 		pr_err("kthread_run failed with err %d\n", err);
1407 		n->thread = NULL;
1408 	}
1409 
1410 	return err;
1411 }
1412 
1413 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1414 {
1415 	const struct net_device_ops *ops = dev->netdev_ops;
1416 	int ret;
1417 
1418 	ASSERT_RTNL();
1419 	dev_addr_check(dev);
1420 
1421 	if (!netif_device_present(dev)) {
1422 		/* may be detached because parent is runtime-suspended */
1423 		if (dev->dev.parent)
1424 			pm_runtime_resume(dev->dev.parent);
1425 		if (!netif_device_present(dev))
1426 			return -ENODEV;
1427 	}
1428 
1429 	/* Block netpoll from trying to do any rx path servicing.
1430 	 * If we don't do this there is a chance ndo_poll_controller
1431 	 * or ndo_poll may be running while we open the device
1432 	 */
1433 	netpoll_poll_disable(dev);
1434 
1435 	ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1436 	ret = notifier_to_errno(ret);
1437 	if (ret)
1438 		return ret;
1439 
1440 	set_bit(__LINK_STATE_START, &dev->state);
1441 
1442 	if (ops->ndo_validate_addr)
1443 		ret = ops->ndo_validate_addr(dev);
1444 
1445 	if (!ret && ops->ndo_open)
1446 		ret = ops->ndo_open(dev);
1447 
1448 	netpoll_poll_enable(dev);
1449 
1450 	if (ret)
1451 		clear_bit(__LINK_STATE_START, &dev->state);
1452 	else {
1453 		dev->flags |= IFF_UP;
1454 		dev_set_rx_mode(dev);
1455 		dev_activate(dev);
1456 		add_device_randomness(dev->dev_addr, dev->addr_len);
1457 	}
1458 
1459 	return ret;
1460 }
1461 
1462 /**
1463  *	dev_open	- prepare an interface for use.
1464  *	@dev: device to open
1465  *	@extack: netlink extended ack
1466  *
1467  *	Takes a device from down to up state. The device's private open
1468  *	function is invoked and then the multicast lists are loaded. Finally
1469  *	the device is moved into the up state and a %NETDEV_UP message is
1470  *	sent to the netdev notifier chain.
1471  *
1472  *	Calling this function on an active interface is a nop. On a failure
1473  *	a negative errno code is returned.
1474  */
1475 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1476 {
1477 	int ret;
1478 
1479 	if (dev->flags & IFF_UP)
1480 		return 0;
1481 
1482 	ret = __dev_open(dev, extack);
1483 	if (ret < 0)
1484 		return ret;
1485 
1486 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1487 	call_netdevice_notifiers(NETDEV_UP, dev);
1488 
1489 	return ret;
1490 }
1491 EXPORT_SYMBOL(dev_open);
1492 
1493 static void __dev_close_many(struct list_head *head)
1494 {
1495 	struct net_device *dev;
1496 
1497 	ASSERT_RTNL();
1498 	might_sleep();
1499 
1500 	list_for_each_entry(dev, head, close_list) {
1501 		/* Temporarily disable netpoll until the interface is down */
1502 		netpoll_poll_disable(dev);
1503 
1504 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1505 
1506 		clear_bit(__LINK_STATE_START, &dev->state);
1507 
1508 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1509 		 * can be even on different cpu. So just clear netif_running().
1510 		 *
1511 		 * dev->stop() will invoke napi_disable() on all of it's
1512 		 * napi_struct instances on this device.
1513 		 */
1514 		smp_mb__after_atomic(); /* Commit netif_running(). */
1515 	}
1516 
1517 	dev_deactivate_many(head);
1518 
1519 	list_for_each_entry(dev, head, close_list) {
1520 		const struct net_device_ops *ops = dev->netdev_ops;
1521 
1522 		/*
1523 		 *	Call the device specific close. This cannot fail.
1524 		 *	Only if device is UP
1525 		 *
1526 		 *	We allow it to be called even after a DETACH hot-plug
1527 		 *	event.
1528 		 */
1529 		if (ops->ndo_stop)
1530 			ops->ndo_stop(dev);
1531 
1532 		dev->flags &= ~IFF_UP;
1533 		netpoll_poll_enable(dev);
1534 	}
1535 }
1536 
1537 static void __dev_close(struct net_device *dev)
1538 {
1539 	LIST_HEAD(single);
1540 
1541 	list_add(&dev->close_list, &single);
1542 	__dev_close_many(&single);
1543 	list_del(&single);
1544 }
1545 
1546 void dev_close_many(struct list_head *head, bool unlink)
1547 {
1548 	struct net_device *dev, *tmp;
1549 
1550 	/* Remove the devices that don't need to be closed */
1551 	list_for_each_entry_safe(dev, tmp, head, close_list)
1552 		if (!(dev->flags & IFF_UP))
1553 			list_del_init(&dev->close_list);
1554 
1555 	__dev_close_many(head);
1556 
1557 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1558 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1559 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1560 		if (unlink)
1561 			list_del_init(&dev->close_list);
1562 	}
1563 }
1564 EXPORT_SYMBOL(dev_close_many);
1565 
1566 /**
1567  *	dev_close - shutdown an interface.
1568  *	@dev: device to shutdown
1569  *
1570  *	This function moves an active device into down state. A
1571  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1572  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1573  *	chain.
1574  */
1575 void dev_close(struct net_device *dev)
1576 {
1577 	if (dev->flags & IFF_UP) {
1578 		LIST_HEAD(single);
1579 
1580 		list_add(&dev->close_list, &single);
1581 		dev_close_many(&single, true);
1582 		list_del(&single);
1583 	}
1584 }
1585 EXPORT_SYMBOL(dev_close);
1586 
1587 
1588 /**
1589  *	dev_disable_lro - disable Large Receive Offload on a device
1590  *	@dev: device
1591  *
1592  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1593  *	called under RTNL.  This is needed if received packets may be
1594  *	forwarded to another interface.
1595  */
1596 void dev_disable_lro(struct net_device *dev)
1597 {
1598 	struct net_device *lower_dev;
1599 	struct list_head *iter;
1600 
1601 	dev->wanted_features &= ~NETIF_F_LRO;
1602 	netdev_update_features(dev);
1603 
1604 	if (unlikely(dev->features & NETIF_F_LRO))
1605 		netdev_WARN(dev, "failed to disable LRO!\n");
1606 
1607 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1608 		dev_disable_lro(lower_dev);
1609 }
1610 EXPORT_SYMBOL(dev_disable_lro);
1611 
1612 /**
1613  *	dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1614  *	@dev: device
1615  *
1616  *	Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1617  *	called under RTNL.  This is needed if Generic XDP is installed on
1618  *	the device.
1619  */
1620 static void dev_disable_gro_hw(struct net_device *dev)
1621 {
1622 	dev->wanted_features &= ~NETIF_F_GRO_HW;
1623 	netdev_update_features(dev);
1624 
1625 	if (unlikely(dev->features & NETIF_F_GRO_HW))
1626 		netdev_WARN(dev, "failed to disable GRO_HW!\n");
1627 }
1628 
1629 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1630 {
1631 #define N(val) 						\
1632 	case NETDEV_##val:				\
1633 		return "NETDEV_" __stringify(val);
1634 	switch (cmd) {
1635 	N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1636 	N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1637 	N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1638 	N(POST_INIT) N(PRE_UNINIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN)
1639 	N(CHANGEUPPER) N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA)
1640 	N(BONDING_INFO) N(PRECHANGEUPPER) N(CHANGELOWERSTATE)
1641 	N(UDP_TUNNEL_PUSH_INFO) N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1642 	N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1643 	N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1644 	N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE)
1645 	N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA)
1646 	N(XDP_FEAT_CHANGE)
1647 	}
1648 #undef N
1649 	return "UNKNOWN_NETDEV_EVENT";
1650 }
1651 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1652 
1653 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1654 				   struct net_device *dev)
1655 {
1656 	struct netdev_notifier_info info = {
1657 		.dev = dev,
1658 	};
1659 
1660 	return nb->notifier_call(nb, val, &info);
1661 }
1662 
1663 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1664 					     struct net_device *dev)
1665 {
1666 	int err;
1667 
1668 	err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1669 	err = notifier_to_errno(err);
1670 	if (err)
1671 		return err;
1672 
1673 	if (!(dev->flags & IFF_UP))
1674 		return 0;
1675 
1676 	call_netdevice_notifier(nb, NETDEV_UP, dev);
1677 	return 0;
1678 }
1679 
1680 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1681 						struct net_device *dev)
1682 {
1683 	if (dev->flags & IFF_UP) {
1684 		call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1685 					dev);
1686 		call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1687 	}
1688 	call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1689 }
1690 
1691 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1692 						 struct net *net)
1693 {
1694 	struct net_device *dev;
1695 	int err;
1696 
1697 	for_each_netdev(net, dev) {
1698 		err = call_netdevice_register_notifiers(nb, dev);
1699 		if (err)
1700 			goto rollback;
1701 	}
1702 	return 0;
1703 
1704 rollback:
1705 	for_each_netdev_continue_reverse(net, dev)
1706 		call_netdevice_unregister_notifiers(nb, dev);
1707 	return err;
1708 }
1709 
1710 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1711 						    struct net *net)
1712 {
1713 	struct net_device *dev;
1714 
1715 	for_each_netdev(net, dev)
1716 		call_netdevice_unregister_notifiers(nb, dev);
1717 }
1718 
1719 static int dev_boot_phase = 1;
1720 
1721 /**
1722  * register_netdevice_notifier - register a network notifier block
1723  * @nb: notifier
1724  *
1725  * Register a notifier to be called when network device events occur.
1726  * The notifier passed is linked into the kernel structures and must
1727  * not be reused until it has been unregistered. A negative errno code
1728  * is returned on a failure.
1729  *
1730  * When registered all registration and up events are replayed
1731  * to the new notifier to allow device to have a race free
1732  * view of the network device list.
1733  */
1734 
1735 int register_netdevice_notifier(struct notifier_block *nb)
1736 {
1737 	struct net *net;
1738 	int err;
1739 
1740 	/* Close race with setup_net() and cleanup_net() */
1741 	down_write(&pernet_ops_rwsem);
1742 	rtnl_lock();
1743 	err = raw_notifier_chain_register(&netdev_chain, nb);
1744 	if (err)
1745 		goto unlock;
1746 	if (dev_boot_phase)
1747 		goto unlock;
1748 	for_each_net(net) {
1749 		err = call_netdevice_register_net_notifiers(nb, net);
1750 		if (err)
1751 			goto rollback;
1752 	}
1753 
1754 unlock:
1755 	rtnl_unlock();
1756 	up_write(&pernet_ops_rwsem);
1757 	return err;
1758 
1759 rollback:
1760 	for_each_net_continue_reverse(net)
1761 		call_netdevice_unregister_net_notifiers(nb, net);
1762 
1763 	raw_notifier_chain_unregister(&netdev_chain, nb);
1764 	goto unlock;
1765 }
1766 EXPORT_SYMBOL(register_netdevice_notifier);
1767 
1768 /**
1769  * unregister_netdevice_notifier - unregister a network notifier block
1770  * @nb: notifier
1771  *
1772  * Unregister a notifier previously registered by
1773  * register_netdevice_notifier(). The notifier is unlinked into the
1774  * kernel structures and may then be reused. A negative errno code
1775  * is returned on a failure.
1776  *
1777  * After unregistering unregister and down device events are synthesized
1778  * for all devices on the device list to the removed notifier to remove
1779  * the need for special case cleanup code.
1780  */
1781 
1782 int unregister_netdevice_notifier(struct notifier_block *nb)
1783 {
1784 	struct net *net;
1785 	int err;
1786 
1787 	/* Close race with setup_net() and cleanup_net() */
1788 	down_write(&pernet_ops_rwsem);
1789 	rtnl_lock();
1790 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1791 	if (err)
1792 		goto unlock;
1793 
1794 	for_each_net(net)
1795 		call_netdevice_unregister_net_notifiers(nb, net);
1796 
1797 unlock:
1798 	rtnl_unlock();
1799 	up_write(&pernet_ops_rwsem);
1800 	return err;
1801 }
1802 EXPORT_SYMBOL(unregister_netdevice_notifier);
1803 
1804 static int __register_netdevice_notifier_net(struct net *net,
1805 					     struct notifier_block *nb,
1806 					     bool ignore_call_fail)
1807 {
1808 	int err;
1809 
1810 	err = raw_notifier_chain_register(&net->netdev_chain, nb);
1811 	if (err)
1812 		return err;
1813 	if (dev_boot_phase)
1814 		return 0;
1815 
1816 	err = call_netdevice_register_net_notifiers(nb, net);
1817 	if (err && !ignore_call_fail)
1818 		goto chain_unregister;
1819 
1820 	return 0;
1821 
1822 chain_unregister:
1823 	raw_notifier_chain_unregister(&net->netdev_chain, nb);
1824 	return err;
1825 }
1826 
1827 static int __unregister_netdevice_notifier_net(struct net *net,
1828 					       struct notifier_block *nb)
1829 {
1830 	int err;
1831 
1832 	err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1833 	if (err)
1834 		return err;
1835 
1836 	call_netdevice_unregister_net_notifiers(nb, net);
1837 	return 0;
1838 }
1839 
1840 /**
1841  * register_netdevice_notifier_net - register a per-netns network notifier block
1842  * @net: network namespace
1843  * @nb: notifier
1844  *
1845  * Register a notifier to be called when network device events occur.
1846  * The notifier passed is linked into the kernel structures and must
1847  * not be reused until it has been unregistered. A negative errno code
1848  * is returned on a failure.
1849  *
1850  * When registered all registration and up events are replayed
1851  * to the new notifier to allow device to have a race free
1852  * view of the network device list.
1853  */
1854 
1855 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1856 {
1857 	int err;
1858 
1859 	rtnl_lock();
1860 	err = __register_netdevice_notifier_net(net, nb, false);
1861 	rtnl_unlock();
1862 	return err;
1863 }
1864 EXPORT_SYMBOL(register_netdevice_notifier_net);
1865 
1866 /**
1867  * unregister_netdevice_notifier_net - unregister a per-netns
1868  *                                     network notifier block
1869  * @net: network namespace
1870  * @nb: notifier
1871  *
1872  * Unregister a notifier previously registered by
1873  * register_netdevice_notifier_net(). The notifier is unlinked from the
1874  * kernel structures and may then be reused. A negative errno code
1875  * is returned on a failure.
1876  *
1877  * After unregistering unregister and down device events are synthesized
1878  * for all devices on the device list to the removed notifier to remove
1879  * the need for special case cleanup code.
1880  */
1881 
1882 int unregister_netdevice_notifier_net(struct net *net,
1883 				      struct notifier_block *nb)
1884 {
1885 	int err;
1886 
1887 	rtnl_lock();
1888 	err = __unregister_netdevice_notifier_net(net, nb);
1889 	rtnl_unlock();
1890 	return err;
1891 }
1892 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1893 
1894 static void __move_netdevice_notifier_net(struct net *src_net,
1895 					  struct net *dst_net,
1896 					  struct notifier_block *nb)
1897 {
1898 	__unregister_netdevice_notifier_net(src_net, nb);
1899 	__register_netdevice_notifier_net(dst_net, nb, true);
1900 }
1901 
1902 int register_netdevice_notifier_dev_net(struct net_device *dev,
1903 					struct notifier_block *nb,
1904 					struct netdev_net_notifier *nn)
1905 {
1906 	int err;
1907 
1908 	rtnl_lock();
1909 	err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1910 	if (!err) {
1911 		nn->nb = nb;
1912 		list_add(&nn->list, &dev->net_notifier_list);
1913 	}
1914 	rtnl_unlock();
1915 	return err;
1916 }
1917 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1918 
1919 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1920 					  struct notifier_block *nb,
1921 					  struct netdev_net_notifier *nn)
1922 {
1923 	int err;
1924 
1925 	rtnl_lock();
1926 	list_del(&nn->list);
1927 	err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1928 	rtnl_unlock();
1929 	return err;
1930 }
1931 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1932 
1933 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1934 					     struct net *net)
1935 {
1936 	struct netdev_net_notifier *nn;
1937 
1938 	list_for_each_entry(nn, &dev->net_notifier_list, list)
1939 		__move_netdevice_notifier_net(dev_net(dev), net, nn->nb);
1940 }
1941 
1942 /**
1943  *	call_netdevice_notifiers_info - call all network notifier blocks
1944  *	@val: value passed unmodified to notifier function
1945  *	@info: notifier information data
1946  *
1947  *	Call all network notifier blocks.  Parameters and return value
1948  *	are as for raw_notifier_call_chain().
1949  */
1950 
1951 int call_netdevice_notifiers_info(unsigned long val,
1952 				  struct netdev_notifier_info *info)
1953 {
1954 	struct net *net = dev_net(info->dev);
1955 	int ret;
1956 
1957 	ASSERT_RTNL();
1958 
1959 	/* Run per-netns notifier block chain first, then run the global one.
1960 	 * Hopefully, one day, the global one is going to be removed after
1961 	 * all notifier block registrators get converted to be per-netns.
1962 	 */
1963 	ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
1964 	if (ret & NOTIFY_STOP_MASK)
1965 		return ret;
1966 	return raw_notifier_call_chain(&netdev_chain, val, info);
1967 }
1968 
1969 /**
1970  *	call_netdevice_notifiers_info_robust - call per-netns notifier blocks
1971  *	                                       for and rollback on error
1972  *	@val_up: value passed unmodified to notifier function
1973  *	@val_down: value passed unmodified to the notifier function when
1974  *	           recovering from an error on @val_up
1975  *	@info: notifier information data
1976  *
1977  *	Call all per-netns network notifier blocks, but not notifier blocks on
1978  *	the global notifier chain. Parameters and return value are as for
1979  *	raw_notifier_call_chain_robust().
1980  */
1981 
1982 static int
1983 call_netdevice_notifiers_info_robust(unsigned long val_up,
1984 				     unsigned long val_down,
1985 				     struct netdev_notifier_info *info)
1986 {
1987 	struct net *net = dev_net(info->dev);
1988 
1989 	ASSERT_RTNL();
1990 
1991 	return raw_notifier_call_chain_robust(&net->netdev_chain,
1992 					      val_up, val_down, info);
1993 }
1994 
1995 static int call_netdevice_notifiers_extack(unsigned long val,
1996 					   struct net_device *dev,
1997 					   struct netlink_ext_ack *extack)
1998 {
1999 	struct netdev_notifier_info info = {
2000 		.dev = dev,
2001 		.extack = extack,
2002 	};
2003 
2004 	return call_netdevice_notifiers_info(val, &info);
2005 }
2006 
2007 /**
2008  *	call_netdevice_notifiers - call all network notifier blocks
2009  *      @val: value passed unmodified to notifier function
2010  *      @dev: net_device pointer passed unmodified to notifier function
2011  *
2012  *	Call all network notifier blocks.  Parameters and return value
2013  *	are as for raw_notifier_call_chain().
2014  */
2015 
2016 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2017 {
2018 	return call_netdevice_notifiers_extack(val, dev, NULL);
2019 }
2020 EXPORT_SYMBOL(call_netdevice_notifiers);
2021 
2022 /**
2023  *	call_netdevice_notifiers_mtu - call all network notifier blocks
2024  *	@val: value passed unmodified to notifier function
2025  *	@dev: net_device pointer passed unmodified to notifier function
2026  *	@arg: additional u32 argument passed to the notifier function
2027  *
2028  *	Call all network notifier blocks.  Parameters and return value
2029  *	are as for raw_notifier_call_chain().
2030  */
2031 static int call_netdevice_notifiers_mtu(unsigned long val,
2032 					struct net_device *dev, u32 arg)
2033 {
2034 	struct netdev_notifier_info_ext info = {
2035 		.info.dev = dev,
2036 		.ext.mtu = arg,
2037 	};
2038 
2039 	BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2040 
2041 	return call_netdevice_notifiers_info(val, &info.info);
2042 }
2043 
2044 #ifdef CONFIG_NET_INGRESS
2045 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2046 
2047 void net_inc_ingress_queue(void)
2048 {
2049 	static_branch_inc(&ingress_needed_key);
2050 }
2051 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2052 
2053 void net_dec_ingress_queue(void)
2054 {
2055 	static_branch_dec(&ingress_needed_key);
2056 }
2057 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2058 #endif
2059 
2060 #ifdef CONFIG_NET_EGRESS
2061 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2062 
2063 void net_inc_egress_queue(void)
2064 {
2065 	static_branch_inc(&egress_needed_key);
2066 }
2067 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2068 
2069 void net_dec_egress_queue(void)
2070 {
2071 	static_branch_dec(&egress_needed_key);
2072 }
2073 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2074 #endif
2075 
2076 DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2077 EXPORT_SYMBOL(netstamp_needed_key);
2078 #ifdef CONFIG_JUMP_LABEL
2079 static atomic_t netstamp_needed_deferred;
2080 static atomic_t netstamp_wanted;
2081 static void netstamp_clear(struct work_struct *work)
2082 {
2083 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2084 	int wanted;
2085 
2086 	wanted = atomic_add_return(deferred, &netstamp_wanted);
2087 	if (wanted > 0)
2088 		static_branch_enable(&netstamp_needed_key);
2089 	else
2090 		static_branch_disable(&netstamp_needed_key);
2091 }
2092 static DECLARE_WORK(netstamp_work, netstamp_clear);
2093 #endif
2094 
2095 void net_enable_timestamp(void)
2096 {
2097 #ifdef CONFIG_JUMP_LABEL
2098 	int wanted = atomic_read(&netstamp_wanted);
2099 
2100 	while (wanted > 0) {
2101 		if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted + 1))
2102 			return;
2103 	}
2104 	atomic_inc(&netstamp_needed_deferred);
2105 	schedule_work(&netstamp_work);
2106 #else
2107 	static_branch_inc(&netstamp_needed_key);
2108 #endif
2109 }
2110 EXPORT_SYMBOL(net_enable_timestamp);
2111 
2112 void net_disable_timestamp(void)
2113 {
2114 #ifdef CONFIG_JUMP_LABEL
2115 	int wanted = atomic_read(&netstamp_wanted);
2116 
2117 	while (wanted > 1) {
2118 		if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted - 1))
2119 			return;
2120 	}
2121 	atomic_dec(&netstamp_needed_deferred);
2122 	schedule_work(&netstamp_work);
2123 #else
2124 	static_branch_dec(&netstamp_needed_key);
2125 #endif
2126 }
2127 EXPORT_SYMBOL(net_disable_timestamp);
2128 
2129 static inline void net_timestamp_set(struct sk_buff *skb)
2130 {
2131 	skb->tstamp = 0;
2132 	skb->mono_delivery_time = 0;
2133 	if (static_branch_unlikely(&netstamp_needed_key))
2134 		skb->tstamp = ktime_get_real();
2135 }
2136 
2137 #define net_timestamp_check(COND, SKB)				\
2138 	if (static_branch_unlikely(&netstamp_needed_key)) {	\
2139 		if ((COND) && !(SKB)->tstamp)			\
2140 			(SKB)->tstamp = ktime_get_real();	\
2141 	}							\
2142 
2143 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2144 {
2145 	return __is_skb_forwardable(dev, skb, true);
2146 }
2147 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2148 
2149 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2150 			      bool check_mtu)
2151 {
2152 	int ret = ____dev_forward_skb(dev, skb, check_mtu);
2153 
2154 	if (likely(!ret)) {
2155 		skb->protocol = eth_type_trans(skb, dev);
2156 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2157 	}
2158 
2159 	return ret;
2160 }
2161 
2162 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2163 {
2164 	return __dev_forward_skb2(dev, skb, true);
2165 }
2166 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2167 
2168 /**
2169  * dev_forward_skb - loopback an skb to another netif
2170  *
2171  * @dev: destination network device
2172  * @skb: buffer to forward
2173  *
2174  * return values:
2175  *	NET_RX_SUCCESS	(no congestion)
2176  *	NET_RX_DROP     (packet was dropped, but freed)
2177  *
2178  * dev_forward_skb can be used for injecting an skb from the
2179  * start_xmit function of one device into the receive queue
2180  * of another device.
2181  *
2182  * The receiving device may be in another namespace, so
2183  * we have to clear all information in the skb that could
2184  * impact namespace isolation.
2185  */
2186 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2187 {
2188 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2189 }
2190 EXPORT_SYMBOL_GPL(dev_forward_skb);
2191 
2192 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2193 {
2194 	return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2195 }
2196 
2197 static inline int deliver_skb(struct sk_buff *skb,
2198 			      struct packet_type *pt_prev,
2199 			      struct net_device *orig_dev)
2200 {
2201 	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2202 		return -ENOMEM;
2203 	refcount_inc(&skb->users);
2204 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2205 }
2206 
2207 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2208 					  struct packet_type **pt,
2209 					  struct net_device *orig_dev,
2210 					  __be16 type,
2211 					  struct list_head *ptype_list)
2212 {
2213 	struct packet_type *ptype, *pt_prev = *pt;
2214 
2215 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2216 		if (ptype->type != type)
2217 			continue;
2218 		if (pt_prev)
2219 			deliver_skb(skb, pt_prev, orig_dev);
2220 		pt_prev = ptype;
2221 	}
2222 	*pt = pt_prev;
2223 }
2224 
2225 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2226 {
2227 	if (!ptype->af_packet_priv || !skb->sk)
2228 		return false;
2229 
2230 	if (ptype->id_match)
2231 		return ptype->id_match(ptype, skb->sk);
2232 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2233 		return true;
2234 
2235 	return false;
2236 }
2237 
2238 /**
2239  * dev_nit_active - return true if any network interface taps are in use
2240  *
2241  * @dev: network device to check for the presence of taps
2242  */
2243 bool dev_nit_active(struct net_device *dev)
2244 {
2245 	return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2246 }
2247 EXPORT_SYMBOL_GPL(dev_nit_active);
2248 
2249 /*
2250  *	Support routine. Sends outgoing frames to any network
2251  *	taps currently in use.
2252  */
2253 
2254 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2255 {
2256 	struct packet_type *ptype;
2257 	struct sk_buff *skb2 = NULL;
2258 	struct packet_type *pt_prev = NULL;
2259 	struct list_head *ptype_list = &ptype_all;
2260 
2261 	rcu_read_lock();
2262 again:
2263 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2264 		if (ptype->ignore_outgoing)
2265 			continue;
2266 
2267 		/* Never send packets back to the socket
2268 		 * they originated from - MvS (miquels@drinkel.ow.org)
2269 		 */
2270 		if (skb_loop_sk(ptype, skb))
2271 			continue;
2272 
2273 		if (pt_prev) {
2274 			deliver_skb(skb2, pt_prev, skb->dev);
2275 			pt_prev = ptype;
2276 			continue;
2277 		}
2278 
2279 		/* need to clone skb, done only once */
2280 		skb2 = skb_clone(skb, GFP_ATOMIC);
2281 		if (!skb2)
2282 			goto out_unlock;
2283 
2284 		net_timestamp_set(skb2);
2285 
2286 		/* skb->nh should be correctly
2287 		 * set by sender, so that the second statement is
2288 		 * just protection against buggy protocols.
2289 		 */
2290 		skb_reset_mac_header(skb2);
2291 
2292 		if (skb_network_header(skb2) < skb2->data ||
2293 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2294 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2295 					     ntohs(skb2->protocol),
2296 					     dev->name);
2297 			skb_reset_network_header(skb2);
2298 		}
2299 
2300 		skb2->transport_header = skb2->network_header;
2301 		skb2->pkt_type = PACKET_OUTGOING;
2302 		pt_prev = ptype;
2303 	}
2304 
2305 	if (ptype_list == &ptype_all) {
2306 		ptype_list = &dev->ptype_all;
2307 		goto again;
2308 	}
2309 out_unlock:
2310 	if (pt_prev) {
2311 		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2312 			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2313 		else
2314 			kfree_skb(skb2);
2315 	}
2316 	rcu_read_unlock();
2317 }
2318 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2319 
2320 /**
2321  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2322  * @dev: Network device
2323  * @txq: number of queues available
2324  *
2325  * If real_num_tx_queues is changed the tc mappings may no longer be
2326  * valid. To resolve this verify the tc mapping remains valid and if
2327  * not NULL the mapping. With no priorities mapping to this
2328  * offset/count pair it will no longer be used. In the worst case TC0
2329  * is invalid nothing can be done so disable priority mappings. If is
2330  * expected that drivers will fix this mapping if they can before
2331  * calling netif_set_real_num_tx_queues.
2332  */
2333 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2334 {
2335 	int i;
2336 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2337 
2338 	/* If TC0 is invalidated disable TC mapping */
2339 	if (tc->offset + tc->count > txq) {
2340 		netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2341 		dev->num_tc = 0;
2342 		return;
2343 	}
2344 
2345 	/* Invalidated prio to tc mappings set to TC0 */
2346 	for (i = 1; i < TC_BITMASK + 1; i++) {
2347 		int q = netdev_get_prio_tc_map(dev, i);
2348 
2349 		tc = &dev->tc_to_txq[q];
2350 		if (tc->offset + tc->count > txq) {
2351 			netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2352 				    i, q);
2353 			netdev_set_prio_tc_map(dev, i, 0);
2354 		}
2355 	}
2356 }
2357 
2358 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2359 {
2360 	if (dev->num_tc) {
2361 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2362 		int i;
2363 
2364 		/* walk through the TCs and see if it falls into any of them */
2365 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2366 			if ((txq - tc->offset) < tc->count)
2367 				return i;
2368 		}
2369 
2370 		/* didn't find it, just return -1 to indicate no match */
2371 		return -1;
2372 	}
2373 
2374 	return 0;
2375 }
2376 EXPORT_SYMBOL(netdev_txq_to_tc);
2377 
2378 #ifdef CONFIG_XPS
2379 static struct static_key xps_needed __read_mostly;
2380 static struct static_key xps_rxqs_needed __read_mostly;
2381 static DEFINE_MUTEX(xps_map_mutex);
2382 #define xmap_dereference(P)		\
2383 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2384 
2385 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2386 			     struct xps_dev_maps *old_maps, int tci, u16 index)
2387 {
2388 	struct xps_map *map = NULL;
2389 	int pos;
2390 
2391 	map = xmap_dereference(dev_maps->attr_map[tci]);
2392 	if (!map)
2393 		return false;
2394 
2395 	for (pos = map->len; pos--;) {
2396 		if (map->queues[pos] != index)
2397 			continue;
2398 
2399 		if (map->len > 1) {
2400 			map->queues[pos] = map->queues[--map->len];
2401 			break;
2402 		}
2403 
2404 		if (old_maps)
2405 			RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2406 		RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2407 		kfree_rcu(map, rcu);
2408 		return false;
2409 	}
2410 
2411 	return true;
2412 }
2413 
2414 static bool remove_xps_queue_cpu(struct net_device *dev,
2415 				 struct xps_dev_maps *dev_maps,
2416 				 int cpu, u16 offset, u16 count)
2417 {
2418 	int num_tc = dev_maps->num_tc;
2419 	bool active = false;
2420 	int tci;
2421 
2422 	for (tci = cpu * num_tc; num_tc--; tci++) {
2423 		int i, j;
2424 
2425 		for (i = count, j = offset; i--; j++) {
2426 			if (!remove_xps_queue(dev_maps, NULL, tci, j))
2427 				break;
2428 		}
2429 
2430 		active |= i < 0;
2431 	}
2432 
2433 	return active;
2434 }
2435 
2436 static void reset_xps_maps(struct net_device *dev,
2437 			   struct xps_dev_maps *dev_maps,
2438 			   enum xps_map_type type)
2439 {
2440 	static_key_slow_dec_cpuslocked(&xps_needed);
2441 	if (type == XPS_RXQS)
2442 		static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2443 
2444 	RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2445 
2446 	kfree_rcu(dev_maps, rcu);
2447 }
2448 
2449 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2450 			   u16 offset, u16 count)
2451 {
2452 	struct xps_dev_maps *dev_maps;
2453 	bool active = false;
2454 	int i, j;
2455 
2456 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2457 	if (!dev_maps)
2458 		return;
2459 
2460 	for (j = 0; j < dev_maps->nr_ids; j++)
2461 		active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2462 	if (!active)
2463 		reset_xps_maps(dev, dev_maps, type);
2464 
2465 	if (type == XPS_CPUS) {
2466 		for (i = offset + (count - 1); count--; i--)
2467 			netdev_queue_numa_node_write(
2468 				netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2469 	}
2470 }
2471 
2472 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2473 				   u16 count)
2474 {
2475 	if (!static_key_false(&xps_needed))
2476 		return;
2477 
2478 	cpus_read_lock();
2479 	mutex_lock(&xps_map_mutex);
2480 
2481 	if (static_key_false(&xps_rxqs_needed))
2482 		clean_xps_maps(dev, XPS_RXQS, offset, count);
2483 
2484 	clean_xps_maps(dev, XPS_CPUS, offset, count);
2485 
2486 	mutex_unlock(&xps_map_mutex);
2487 	cpus_read_unlock();
2488 }
2489 
2490 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2491 {
2492 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2493 }
2494 
2495 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2496 				      u16 index, bool is_rxqs_map)
2497 {
2498 	struct xps_map *new_map;
2499 	int alloc_len = XPS_MIN_MAP_ALLOC;
2500 	int i, pos;
2501 
2502 	for (pos = 0; map && pos < map->len; pos++) {
2503 		if (map->queues[pos] != index)
2504 			continue;
2505 		return map;
2506 	}
2507 
2508 	/* Need to add tx-queue to this CPU's/rx-queue's existing map */
2509 	if (map) {
2510 		if (pos < map->alloc_len)
2511 			return map;
2512 
2513 		alloc_len = map->alloc_len * 2;
2514 	}
2515 
2516 	/* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2517 	 *  map
2518 	 */
2519 	if (is_rxqs_map)
2520 		new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2521 	else
2522 		new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2523 				       cpu_to_node(attr_index));
2524 	if (!new_map)
2525 		return NULL;
2526 
2527 	for (i = 0; i < pos; i++)
2528 		new_map->queues[i] = map->queues[i];
2529 	new_map->alloc_len = alloc_len;
2530 	new_map->len = pos;
2531 
2532 	return new_map;
2533 }
2534 
2535 /* Copy xps maps at a given index */
2536 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2537 			      struct xps_dev_maps *new_dev_maps, int index,
2538 			      int tc, bool skip_tc)
2539 {
2540 	int i, tci = index * dev_maps->num_tc;
2541 	struct xps_map *map;
2542 
2543 	/* copy maps belonging to foreign traffic classes */
2544 	for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2545 		if (i == tc && skip_tc)
2546 			continue;
2547 
2548 		/* fill in the new device map from the old device map */
2549 		map = xmap_dereference(dev_maps->attr_map[tci]);
2550 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2551 	}
2552 }
2553 
2554 /* Must be called under cpus_read_lock */
2555 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2556 			  u16 index, enum xps_map_type type)
2557 {
2558 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2559 	const unsigned long *online_mask = NULL;
2560 	bool active = false, copy = false;
2561 	int i, j, tci, numa_node_id = -2;
2562 	int maps_sz, num_tc = 1, tc = 0;
2563 	struct xps_map *map, *new_map;
2564 	unsigned int nr_ids;
2565 
2566 	WARN_ON_ONCE(index >= dev->num_tx_queues);
2567 
2568 	if (dev->num_tc) {
2569 		/* Do not allow XPS on subordinate device directly */
2570 		num_tc = dev->num_tc;
2571 		if (num_tc < 0)
2572 			return -EINVAL;
2573 
2574 		/* If queue belongs to subordinate dev use its map */
2575 		dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2576 
2577 		tc = netdev_txq_to_tc(dev, index);
2578 		if (tc < 0)
2579 			return -EINVAL;
2580 	}
2581 
2582 	mutex_lock(&xps_map_mutex);
2583 
2584 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2585 	if (type == XPS_RXQS) {
2586 		maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2587 		nr_ids = dev->num_rx_queues;
2588 	} else {
2589 		maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2590 		if (num_possible_cpus() > 1)
2591 			online_mask = cpumask_bits(cpu_online_mask);
2592 		nr_ids = nr_cpu_ids;
2593 	}
2594 
2595 	if (maps_sz < L1_CACHE_BYTES)
2596 		maps_sz = L1_CACHE_BYTES;
2597 
2598 	/* The old dev_maps could be larger or smaller than the one we're
2599 	 * setting up now, as dev->num_tc or nr_ids could have been updated in
2600 	 * between. We could try to be smart, but let's be safe instead and only
2601 	 * copy foreign traffic classes if the two map sizes match.
2602 	 */
2603 	if (dev_maps &&
2604 	    dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2605 		copy = true;
2606 
2607 	/* allocate memory for queue storage */
2608 	for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2609 	     j < nr_ids;) {
2610 		if (!new_dev_maps) {
2611 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2612 			if (!new_dev_maps) {
2613 				mutex_unlock(&xps_map_mutex);
2614 				return -ENOMEM;
2615 			}
2616 
2617 			new_dev_maps->nr_ids = nr_ids;
2618 			new_dev_maps->num_tc = num_tc;
2619 		}
2620 
2621 		tci = j * num_tc + tc;
2622 		map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2623 
2624 		map = expand_xps_map(map, j, index, type == XPS_RXQS);
2625 		if (!map)
2626 			goto error;
2627 
2628 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2629 	}
2630 
2631 	if (!new_dev_maps)
2632 		goto out_no_new_maps;
2633 
2634 	if (!dev_maps) {
2635 		/* Increment static keys at most once per type */
2636 		static_key_slow_inc_cpuslocked(&xps_needed);
2637 		if (type == XPS_RXQS)
2638 			static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2639 	}
2640 
2641 	for (j = 0; j < nr_ids; j++) {
2642 		bool skip_tc = false;
2643 
2644 		tci = j * num_tc + tc;
2645 		if (netif_attr_test_mask(j, mask, nr_ids) &&
2646 		    netif_attr_test_online(j, online_mask, nr_ids)) {
2647 			/* add tx-queue to CPU/rx-queue maps */
2648 			int pos = 0;
2649 
2650 			skip_tc = true;
2651 
2652 			map = xmap_dereference(new_dev_maps->attr_map[tci]);
2653 			while ((pos < map->len) && (map->queues[pos] != index))
2654 				pos++;
2655 
2656 			if (pos == map->len)
2657 				map->queues[map->len++] = index;
2658 #ifdef CONFIG_NUMA
2659 			if (type == XPS_CPUS) {
2660 				if (numa_node_id == -2)
2661 					numa_node_id = cpu_to_node(j);
2662 				else if (numa_node_id != cpu_to_node(j))
2663 					numa_node_id = -1;
2664 			}
2665 #endif
2666 		}
2667 
2668 		if (copy)
2669 			xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2670 					  skip_tc);
2671 	}
2672 
2673 	rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2674 
2675 	/* Cleanup old maps */
2676 	if (!dev_maps)
2677 		goto out_no_old_maps;
2678 
2679 	for (j = 0; j < dev_maps->nr_ids; j++) {
2680 		for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2681 			map = xmap_dereference(dev_maps->attr_map[tci]);
2682 			if (!map)
2683 				continue;
2684 
2685 			if (copy) {
2686 				new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2687 				if (map == new_map)
2688 					continue;
2689 			}
2690 
2691 			RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2692 			kfree_rcu(map, rcu);
2693 		}
2694 	}
2695 
2696 	old_dev_maps = dev_maps;
2697 
2698 out_no_old_maps:
2699 	dev_maps = new_dev_maps;
2700 	active = true;
2701 
2702 out_no_new_maps:
2703 	if (type == XPS_CPUS)
2704 		/* update Tx queue numa node */
2705 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2706 					     (numa_node_id >= 0) ?
2707 					     numa_node_id : NUMA_NO_NODE);
2708 
2709 	if (!dev_maps)
2710 		goto out_no_maps;
2711 
2712 	/* removes tx-queue from unused CPUs/rx-queues */
2713 	for (j = 0; j < dev_maps->nr_ids; j++) {
2714 		tci = j * dev_maps->num_tc;
2715 
2716 		for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2717 			if (i == tc &&
2718 			    netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2719 			    netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2720 				continue;
2721 
2722 			active |= remove_xps_queue(dev_maps,
2723 						   copy ? old_dev_maps : NULL,
2724 						   tci, index);
2725 		}
2726 	}
2727 
2728 	if (old_dev_maps)
2729 		kfree_rcu(old_dev_maps, rcu);
2730 
2731 	/* free map if not active */
2732 	if (!active)
2733 		reset_xps_maps(dev, dev_maps, type);
2734 
2735 out_no_maps:
2736 	mutex_unlock(&xps_map_mutex);
2737 
2738 	return 0;
2739 error:
2740 	/* remove any maps that we added */
2741 	for (j = 0; j < nr_ids; j++) {
2742 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2743 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2744 			map = copy ?
2745 			      xmap_dereference(dev_maps->attr_map[tci]) :
2746 			      NULL;
2747 			if (new_map && new_map != map)
2748 				kfree(new_map);
2749 		}
2750 	}
2751 
2752 	mutex_unlock(&xps_map_mutex);
2753 
2754 	kfree(new_dev_maps);
2755 	return -ENOMEM;
2756 }
2757 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2758 
2759 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2760 			u16 index)
2761 {
2762 	int ret;
2763 
2764 	cpus_read_lock();
2765 	ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2766 	cpus_read_unlock();
2767 
2768 	return ret;
2769 }
2770 EXPORT_SYMBOL(netif_set_xps_queue);
2771 
2772 #endif
2773 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2774 {
2775 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2776 
2777 	/* Unbind any subordinate channels */
2778 	while (txq-- != &dev->_tx[0]) {
2779 		if (txq->sb_dev)
2780 			netdev_unbind_sb_channel(dev, txq->sb_dev);
2781 	}
2782 }
2783 
2784 void netdev_reset_tc(struct net_device *dev)
2785 {
2786 #ifdef CONFIG_XPS
2787 	netif_reset_xps_queues_gt(dev, 0);
2788 #endif
2789 	netdev_unbind_all_sb_channels(dev);
2790 
2791 	/* Reset TC configuration of device */
2792 	dev->num_tc = 0;
2793 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2794 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2795 }
2796 EXPORT_SYMBOL(netdev_reset_tc);
2797 
2798 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2799 {
2800 	if (tc >= dev->num_tc)
2801 		return -EINVAL;
2802 
2803 #ifdef CONFIG_XPS
2804 	netif_reset_xps_queues(dev, offset, count);
2805 #endif
2806 	dev->tc_to_txq[tc].count = count;
2807 	dev->tc_to_txq[tc].offset = offset;
2808 	return 0;
2809 }
2810 EXPORT_SYMBOL(netdev_set_tc_queue);
2811 
2812 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2813 {
2814 	if (num_tc > TC_MAX_QUEUE)
2815 		return -EINVAL;
2816 
2817 #ifdef CONFIG_XPS
2818 	netif_reset_xps_queues_gt(dev, 0);
2819 #endif
2820 	netdev_unbind_all_sb_channels(dev);
2821 
2822 	dev->num_tc = num_tc;
2823 	return 0;
2824 }
2825 EXPORT_SYMBOL(netdev_set_num_tc);
2826 
2827 void netdev_unbind_sb_channel(struct net_device *dev,
2828 			      struct net_device *sb_dev)
2829 {
2830 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2831 
2832 #ifdef CONFIG_XPS
2833 	netif_reset_xps_queues_gt(sb_dev, 0);
2834 #endif
2835 	memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2836 	memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2837 
2838 	while (txq-- != &dev->_tx[0]) {
2839 		if (txq->sb_dev == sb_dev)
2840 			txq->sb_dev = NULL;
2841 	}
2842 }
2843 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2844 
2845 int netdev_bind_sb_channel_queue(struct net_device *dev,
2846 				 struct net_device *sb_dev,
2847 				 u8 tc, u16 count, u16 offset)
2848 {
2849 	/* Make certain the sb_dev and dev are already configured */
2850 	if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2851 		return -EINVAL;
2852 
2853 	/* We cannot hand out queues we don't have */
2854 	if ((offset + count) > dev->real_num_tx_queues)
2855 		return -EINVAL;
2856 
2857 	/* Record the mapping */
2858 	sb_dev->tc_to_txq[tc].count = count;
2859 	sb_dev->tc_to_txq[tc].offset = offset;
2860 
2861 	/* Provide a way for Tx queue to find the tc_to_txq map or
2862 	 * XPS map for itself.
2863 	 */
2864 	while (count--)
2865 		netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2866 
2867 	return 0;
2868 }
2869 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2870 
2871 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2872 {
2873 	/* Do not use a multiqueue device to represent a subordinate channel */
2874 	if (netif_is_multiqueue(dev))
2875 		return -ENODEV;
2876 
2877 	/* We allow channels 1 - 32767 to be used for subordinate channels.
2878 	 * Channel 0 is meant to be "native" mode and used only to represent
2879 	 * the main root device. We allow writing 0 to reset the device back
2880 	 * to normal mode after being used as a subordinate channel.
2881 	 */
2882 	if (channel > S16_MAX)
2883 		return -EINVAL;
2884 
2885 	dev->num_tc = -channel;
2886 
2887 	return 0;
2888 }
2889 EXPORT_SYMBOL(netdev_set_sb_channel);
2890 
2891 /*
2892  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2893  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2894  */
2895 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2896 {
2897 	bool disabling;
2898 	int rc;
2899 
2900 	disabling = txq < dev->real_num_tx_queues;
2901 
2902 	if (txq < 1 || txq > dev->num_tx_queues)
2903 		return -EINVAL;
2904 
2905 	if (dev->reg_state == NETREG_REGISTERED ||
2906 	    dev->reg_state == NETREG_UNREGISTERING) {
2907 		ASSERT_RTNL();
2908 
2909 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2910 						  txq);
2911 		if (rc)
2912 			return rc;
2913 
2914 		if (dev->num_tc)
2915 			netif_setup_tc(dev, txq);
2916 
2917 		dev_qdisc_change_real_num_tx(dev, txq);
2918 
2919 		dev->real_num_tx_queues = txq;
2920 
2921 		if (disabling) {
2922 			synchronize_net();
2923 			qdisc_reset_all_tx_gt(dev, txq);
2924 #ifdef CONFIG_XPS
2925 			netif_reset_xps_queues_gt(dev, txq);
2926 #endif
2927 		}
2928 	} else {
2929 		dev->real_num_tx_queues = txq;
2930 	}
2931 
2932 	return 0;
2933 }
2934 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2935 
2936 #ifdef CONFIG_SYSFS
2937 /**
2938  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2939  *	@dev: Network device
2940  *	@rxq: Actual number of RX queues
2941  *
2942  *	This must be called either with the rtnl_lock held or before
2943  *	registration of the net device.  Returns 0 on success, or a
2944  *	negative error code.  If called before registration, it always
2945  *	succeeds.
2946  */
2947 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2948 {
2949 	int rc;
2950 
2951 	if (rxq < 1 || rxq > dev->num_rx_queues)
2952 		return -EINVAL;
2953 
2954 	if (dev->reg_state == NETREG_REGISTERED) {
2955 		ASSERT_RTNL();
2956 
2957 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2958 						  rxq);
2959 		if (rc)
2960 			return rc;
2961 	}
2962 
2963 	dev->real_num_rx_queues = rxq;
2964 	return 0;
2965 }
2966 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2967 #endif
2968 
2969 /**
2970  *	netif_set_real_num_queues - set actual number of RX and TX queues used
2971  *	@dev: Network device
2972  *	@txq: Actual number of TX queues
2973  *	@rxq: Actual number of RX queues
2974  *
2975  *	Set the real number of both TX and RX queues.
2976  *	Does nothing if the number of queues is already correct.
2977  */
2978 int netif_set_real_num_queues(struct net_device *dev,
2979 			      unsigned int txq, unsigned int rxq)
2980 {
2981 	unsigned int old_rxq = dev->real_num_rx_queues;
2982 	int err;
2983 
2984 	if (txq < 1 || txq > dev->num_tx_queues ||
2985 	    rxq < 1 || rxq > dev->num_rx_queues)
2986 		return -EINVAL;
2987 
2988 	/* Start from increases, so the error path only does decreases -
2989 	 * decreases can't fail.
2990 	 */
2991 	if (rxq > dev->real_num_rx_queues) {
2992 		err = netif_set_real_num_rx_queues(dev, rxq);
2993 		if (err)
2994 			return err;
2995 	}
2996 	if (txq > dev->real_num_tx_queues) {
2997 		err = netif_set_real_num_tx_queues(dev, txq);
2998 		if (err)
2999 			goto undo_rx;
3000 	}
3001 	if (rxq < dev->real_num_rx_queues)
3002 		WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
3003 	if (txq < dev->real_num_tx_queues)
3004 		WARN_ON(netif_set_real_num_tx_queues(dev, txq));
3005 
3006 	return 0;
3007 undo_rx:
3008 	WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
3009 	return err;
3010 }
3011 EXPORT_SYMBOL(netif_set_real_num_queues);
3012 
3013 /**
3014  * netif_set_tso_max_size() - set the max size of TSO frames supported
3015  * @dev:	netdev to update
3016  * @size:	max skb->len of a TSO frame
3017  *
3018  * Set the limit on the size of TSO super-frames the device can handle.
3019  * Unless explicitly set the stack will assume the value of
3020  * %GSO_LEGACY_MAX_SIZE.
3021  */
3022 void netif_set_tso_max_size(struct net_device *dev, unsigned int size)
3023 {
3024 	dev->tso_max_size = min(GSO_MAX_SIZE, size);
3025 	if (size < READ_ONCE(dev->gso_max_size))
3026 		netif_set_gso_max_size(dev, size);
3027 	if (size < READ_ONCE(dev->gso_ipv4_max_size))
3028 		netif_set_gso_ipv4_max_size(dev, size);
3029 }
3030 EXPORT_SYMBOL(netif_set_tso_max_size);
3031 
3032 /**
3033  * netif_set_tso_max_segs() - set the max number of segs supported for TSO
3034  * @dev:	netdev to update
3035  * @segs:	max number of TCP segments
3036  *
3037  * Set the limit on the number of TCP segments the device can generate from
3038  * a single TSO super-frame.
3039  * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS.
3040  */
3041 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs)
3042 {
3043 	dev->tso_max_segs = segs;
3044 	if (segs < READ_ONCE(dev->gso_max_segs))
3045 		netif_set_gso_max_segs(dev, segs);
3046 }
3047 EXPORT_SYMBOL(netif_set_tso_max_segs);
3048 
3049 /**
3050  * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper
3051  * @to:		netdev to update
3052  * @from:	netdev from which to copy the limits
3053  */
3054 void netif_inherit_tso_max(struct net_device *to, const struct net_device *from)
3055 {
3056 	netif_set_tso_max_size(to, from->tso_max_size);
3057 	netif_set_tso_max_segs(to, from->tso_max_segs);
3058 }
3059 EXPORT_SYMBOL(netif_inherit_tso_max);
3060 
3061 /**
3062  * netif_get_num_default_rss_queues - default number of RSS queues
3063  *
3064  * Default value is the number of physical cores if there are only 1 or 2, or
3065  * divided by 2 if there are more.
3066  */
3067 int netif_get_num_default_rss_queues(void)
3068 {
3069 	cpumask_var_t cpus;
3070 	int cpu, count = 0;
3071 
3072 	if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL)))
3073 		return 1;
3074 
3075 	cpumask_copy(cpus, cpu_online_mask);
3076 	for_each_cpu(cpu, cpus) {
3077 		++count;
3078 		cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu));
3079 	}
3080 	free_cpumask_var(cpus);
3081 
3082 	return count > 2 ? DIV_ROUND_UP(count, 2) : count;
3083 }
3084 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3085 
3086 static void __netif_reschedule(struct Qdisc *q)
3087 {
3088 	struct softnet_data *sd;
3089 	unsigned long flags;
3090 
3091 	local_irq_save(flags);
3092 	sd = this_cpu_ptr(&softnet_data);
3093 	q->next_sched = NULL;
3094 	*sd->output_queue_tailp = q;
3095 	sd->output_queue_tailp = &q->next_sched;
3096 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3097 	local_irq_restore(flags);
3098 }
3099 
3100 void __netif_schedule(struct Qdisc *q)
3101 {
3102 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3103 		__netif_reschedule(q);
3104 }
3105 EXPORT_SYMBOL(__netif_schedule);
3106 
3107 struct dev_kfree_skb_cb {
3108 	enum skb_drop_reason reason;
3109 };
3110 
3111 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3112 {
3113 	return (struct dev_kfree_skb_cb *)skb->cb;
3114 }
3115 
3116 void netif_schedule_queue(struct netdev_queue *txq)
3117 {
3118 	rcu_read_lock();
3119 	if (!netif_xmit_stopped(txq)) {
3120 		struct Qdisc *q = rcu_dereference(txq->qdisc);
3121 
3122 		__netif_schedule(q);
3123 	}
3124 	rcu_read_unlock();
3125 }
3126 EXPORT_SYMBOL(netif_schedule_queue);
3127 
3128 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3129 {
3130 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3131 		struct Qdisc *q;
3132 
3133 		rcu_read_lock();
3134 		q = rcu_dereference(dev_queue->qdisc);
3135 		__netif_schedule(q);
3136 		rcu_read_unlock();
3137 	}
3138 }
3139 EXPORT_SYMBOL(netif_tx_wake_queue);
3140 
3141 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3142 {
3143 	unsigned long flags;
3144 
3145 	if (unlikely(!skb))
3146 		return;
3147 
3148 	if (likely(refcount_read(&skb->users) == 1)) {
3149 		smp_rmb();
3150 		refcount_set(&skb->users, 0);
3151 	} else if (likely(!refcount_dec_and_test(&skb->users))) {
3152 		return;
3153 	}
3154 	get_kfree_skb_cb(skb)->reason = reason;
3155 	local_irq_save(flags);
3156 	skb->next = __this_cpu_read(softnet_data.completion_queue);
3157 	__this_cpu_write(softnet_data.completion_queue, skb);
3158 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3159 	local_irq_restore(flags);
3160 }
3161 EXPORT_SYMBOL(dev_kfree_skb_irq_reason);
3162 
3163 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3164 {
3165 	if (in_hardirq() || irqs_disabled())
3166 		dev_kfree_skb_irq_reason(skb, reason);
3167 	else
3168 		kfree_skb_reason(skb, reason);
3169 }
3170 EXPORT_SYMBOL(dev_kfree_skb_any_reason);
3171 
3172 
3173 /**
3174  * netif_device_detach - mark device as removed
3175  * @dev: network device
3176  *
3177  * Mark device as removed from system and therefore no longer available.
3178  */
3179 void netif_device_detach(struct net_device *dev)
3180 {
3181 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3182 	    netif_running(dev)) {
3183 		netif_tx_stop_all_queues(dev);
3184 	}
3185 }
3186 EXPORT_SYMBOL(netif_device_detach);
3187 
3188 /**
3189  * netif_device_attach - mark device as attached
3190  * @dev: network device
3191  *
3192  * Mark device as attached from system and restart if needed.
3193  */
3194 void netif_device_attach(struct net_device *dev)
3195 {
3196 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3197 	    netif_running(dev)) {
3198 		netif_tx_wake_all_queues(dev);
3199 		__netdev_watchdog_up(dev);
3200 	}
3201 }
3202 EXPORT_SYMBOL(netif_device_attach);
3203 
3204 /*
3205  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3206  * to be used as a distribution range.
3207  */
3208 static u16 skb_tx_hash(const struct net_device *dev,
3209 		       const struct net_device *sb_dev,
3210 		       struct sk_buff *skb)
3211 {
3212 	u32 hash;
3213 	u16 qoffset = 0;
3214 	u16 qcount = dev->real_num_tx_queues;
3215 
3216 	if (dev->num_tc) {
3217 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3218 
3219 		qoffset = sb_dev->tc_to_txq[tc].offset;
3220 		qcount = sb_dev->tc_to_txq[tc].count;
3221 		if (unlikely(!qcount)) {
3222 			net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3223 					     sb_dev->name, qoffset, tc);
3224 			qoffset = 0;
3225 			qcount = dev->real_num_tx_queues;
3226 		}
3227 	}
3228 
3229 	if (skb_rx_queue_recorded(skb)) {
3230 		DEBUG_NET_WARN_ON_ONCE(qcount == 0);
3231 		hash = skb_get_rx_queue(skb);
3232 		if (hash >= qoffset)
3233 			hash -= qoffset;
3234 		while (unlikely(hash >= qcount))
3235 			hash -= qcount;
3236 		return hash + qoffset;
3237 	}
3238 
3239 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3240 }
3241 
3242 void skb_warn_bad_offload(const struct sk_buff *skb)
3243 {
3244 	static const netdev_features_t null_features;
3245 	struct net_device *dev = skb->dev;
3246 	const char *name = "";
3247 
3248 	if (!net_ratelimit())
3249 		return;
3250 
3251 	if (dev) {
3252 		if (dev->dev.parent)
3253 			name = dev_driver_string(dev->dev.parent);
3254 		else
3255 			name = netdev_name(dev);
3256 	}
3257 	skb_dump(KERN_WARNING, skb, false);
3258 	WARN(1, "%s: caps=(%pNF, %pNF)\n",
3259 	     name, dev ? &dev->features : &null_features,
3260 	     skb->sk ? &skb->sk->sk_route_caps : &null_features);
3261 }
3262 
3263 /*
3264  * Invalidate hardware checksum when packet is to be mangled, and
3265  * complete checksum manually on outgoing path.
3266  */
3267 int skb_checksum_help(struct sk_buff *skb)
3268 {
3269 	__wsum csum;
3270 	int ret = 0, offset;
3271 
3272 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3273 		goto out_set_summed;
3274 
3275 	if (unlikely(skb_is_gso(skb))) {
3276 		skb_warn_bad_offload(skb);
3277 		return -EINVAL;
3278 	}
3279 
3280 	/* Before computing a checksum, we should make sure no frag could
3281 	 * be modified by an external entity : checksum could be wrong.
3282 	 */
3283 	if (skb_has_shared_frag(skb)) {
3284 		ret = __skb_linearize(skb);
3285 		if (ret)
3286 			goto out;
3287 	}
3288 
3289 	offset = skb_checksum_start_offset(skb);
3290 	ret = -EINVAL;
3291 	if (unlikely(offset >= skb_headlen(skb))) {
3292 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3293 		WARN_ONCE(true, "offset (%d) >= skb_headlen() (%u)\n",
3294 			  offset, skb_headlen(skb));
3295 		goto out;
3296 	}
3297 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
3298 
3299 	offset += skb->csum_offset;
3300 	if (unlikely(offset + sizeof(__sum16) > skb_headlen(skb))) {
3301 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3302 		WARN_ONCE(true, "offset+2 (%zu) > skb_headlen() (%u)\n",
3303 			  offset + sizeof(__sum16), skb_headlen(skb));
3304 		goto out;
3305 	}
3306 	ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3307 	if (ret)
3308 		goto out;
3309 
3310 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3311 out_set_summed:
3312 	skb->ip_summed = CHECKSUM_NONE;
3313 out:
3314 	return ret;
3315 }
3316 EXPORT_SYMBOL(skb_checksum_help);
3317 
3318 int skb_crc32c_csum_help(struct sk_buff *skb)
3319 {
3320 	__le32 crc32c_csum;
3321 	int ret = 0, offset, start;
3322 
3323 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3324 		goto out;
3325 
3326 	if (unlikely(skb_is_gso(skb)))
3327 		goto out;
3328 
3329 	/* Before computing a checksum, we should make sure no frag could
3330 	 * be modified by an external entity : checksum could be wrong.
3331 	 */
3332 	if (unlikely(skb_has_shared_frag(skb))) {
3333 		ret = __skb_linearize(skb);
3334 		if (ret)
3335 			goto out;
3336 	}
3337 	start = skb_checksum_start_offset(skb);
3338 	offset = start + offsetof(struct sctphdr, checksum);
3339 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3340 		ret = -EINVAL;
3341 		goto out;
3342 	}
3343 
3344 	ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3345 	if (ret)
3346 		goto out;
3347 
3348 	crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3349 						  skb->len - start, ~(__u32)0,
3350 						  crc32c_csum_stub));
3351 	*(__le32 *)(skb->data + offset) = crc32c_csum;
3352 	skb_reset_csum_not_inet(skb);
3353 out:
3354 	return ret;
3355 }
3356 
3357 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3358 {
3359 	__be16 type = skb->protocol;
3360 
3361 	/* Tunnel gso handlers can set protocol to ethernet. */
3362 	if (type == htons(ETH_P_TEB)) {
3363 		struct ethhdr *eth;
3364 
3365 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3366 			return 0;
3367 
3368 		eth = (struct ethhdr *)skb->data;
3369 		type = eth->h_proto;
3370 	}
3371 
3372 	return vlan_get_protocol_and_depth(skb, type, depth);
3373 }
3374 
3375 
3376 /* Take action when hardware reception checksum errors are detected. */
3377 #ifdef CONFIG_BUG
3378 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3379 {
3380 	netdev_err(dev, "hw csum failure\n");
3381 	skb_dump(KERN_ERR, skb, true);
3382 	dump_stack();
3383 }
3384 
3385 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3386 {
3387 	DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3388 }
3389 EXPORT_SYMBOL(netdev_rx_csum_fault);
3390 #endif
3391 
3392 /* XXX: check that highmem exists at all on the given machine. */
3393 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3394 {
3395 #ifdef CONFIG_HIGHMEM
3396 	int i;
3397 
3398 	if (!(dev->features & NETIF_F_HIGHDMA)) {
3399 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3400 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3401 
3402 			if (PageHighMem(skb_frag_page(frag)))
3403 				return 1;
3404 		}
3405 	}
3406 #endif
3407 	return 0;
3408 }
3409 
3410 /* If MPLS offload request, verify we are testing hardware MPLS features
3411  * instead of standard features for the netdev.
3412  */
3413 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3414 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3415 					   netdev_features_t features,
3416 					   __be16 type)
3417 {
3418 	if (eth_p_mpls(type))
3419 		features &= skb->dev->mpls_features;
3420 
3421 	return features;
3422 }
3423 #else
3424 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3425 					   netdev_features_t features,
3426 					   __be16 type)
3427 {
3428 	return features;
3429 }
3430 #endif
3431 
3432 static netdev_features_t harmonize_features(struct sk_buff *skb,
3433 	netdev_features_t features)
3434 {
3435 	__be16 type;
3436 
3437 	type = skb_network_protocol(skb, NULL);
3438 	features = net_mpls_features(skb, features, type);
3439 
3440 	if (skb->ip_summed != CHECKSUM_NONE &&
3441 	    !can_checksum_protocol(features, type)) {
3442 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3443 	}
3444 	if (illegal_highdma(skb->dev, skb))
3445 		features &= ~NETIF_F_SG;
3446 
3447 	return features;
3448 }
3449 
3450 netdev_features_t passthru_features_check(struct sk_buff *skb,
3451 					  struct net_device *dev,
3452 					  netdev_features_t features)
3453 {
3454 	return features;
3455 }
3456 EXPORT_SYMBOL(passthru_features_check);
3457 
3458 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3459 					     struct net_device *dev,
3460 					     netdev_features_t features)
3461 {
3462 	return vlan_features_check(skb, features);
3463 }
3464 
3465 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3466 					    struct net_device *dev,
3467 					    netdev_features_t features)
3468 {
3469 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
3470 
3471 	if (gso_segs > READ_ONCE(dev->gso_max_segs))
3472 		return features & ~NETIF_F_GSO_MASK;
3473 
3474 	if (unlikely(skb->len >= READ_ONCE(dev->gso_max_size)))
3475 		return features & ~NETIF_F_GSO_MASK;
3476 
3477 	if (!skb_shinfo(skb)->gso_type) {
3478 		skb_warn_bad_offload(skb);
3479 		return features & ~NETIF_F_GSO_MASK;
3480 	}
3481 
3482 	/* Support for GSO partial features requires software
3483 	 * intervention before we can actually process the packets
3484 	 * so we need to strip support for any partial features now
3485 	 * and we can pull them back in after we have partially
3486 	 * segmented the frame.
3487 	 */
3488 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3489 		features &= ~dev->gso_partial_features;
3490 
3491 	/* Make sure to clear the IPv4 ID mangling feature if the
3492 	 * IPv4 header has the potential to be fragmented.
3493 	 */
3494 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3495 		struct iphdr *iph = skb->encapsulation ?
3496 				    inner_ip_hdr(skb) : ip_hdr(skb);
3497 
3498 		if (!(iph->frag_off & htons(IP_DF)))
3499 			features &= ~NETIF_F_TSO_MANGLEID;
3500 	}
3501 
3502 	return features;
3503 }
3504 
3505 netdev_features_t netif_skb_features(struct sk_buff *skb)
3506 {
3507 	struct net_device *dev = skb->dev;
3508 	netdev_features_t features = dev->features;
3509 
3510 	if (skb_is_gso(skb))
3511 		features = gso_features_check(skb, dev, features);
3512 
3513 	/* If encapsulation offload request, verify we are testing
3514 	 * hardware encapsulation features instead of standard
3515 	 * features for the netdev
3516 	 */
3517 	if (skb->encapsulation)
3518 		features &= dev->hw_enc_features;
3519 
3520 	if (skb_vlan_tagged(skb))
3521 		features = netdev_intersect_features(features,
3522 						     dev->vlan_features |
3523 						     NETIF_F_HW_VLAN_CTAG_TX |
3524 						     NETIF_F_HW_VLAN_STAG_TX);
3525 
3526 	if (dev->netdev_ops->ndo_features_check)
3527 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
3528 								features);
3529 	else
3530 		features &= dflt_features_check(skb, dev, features);
3531 
3532 	return harmonize_features(skb, features);
3533 }
3534 EXPORT_SYMBOL(netif_skb_features);
3535 
3536 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3537 		    struct netdev_queue *txq, bool more)
3538 {
3539 	unsigned int len;
3540 	int rc;
3541 
3542 	if (dev_nit_active(dev))
3543 		dev_queue_xmit_nit(skb, dev);
3544 
3545 	len = skb->len;
3546 	trace_net_dev_start_xmit(skb, dev);
3547 	rc = netdev_start_xmit(skb, dev, txq, more);
3548 	trace_net_dev_xmit(skb, rc, dev, len);
3549 
3550 	return rc;
3551 }
3552 
3553 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3554 				    struct netdev_queue *txq, int *ret)
3555 {
3556 	struct sk_buff *skb = first;
3557 	int rc = NETDEV_TX_OK;
3558 
3559 	while (skb) {
3560 		struct sk_buff *next = skb->next;
3561 
3562 		skb_mark_not_on_list(skb);
3563 		rc = xmit_one(skb, dev, txq, next != NULL);
3564 		if (unlikely(!dev_xmit_complete(rc))) {
3565 			skb->next = next;
3566 			goto out;
3567 		}
3568 
3569 		skb = next;
3570 		if (netif_tx_queue_stopped(txq) && skb) {
3571 			rc = NETDEV_TX_BUSY;
3572 			break;
3573 		}
3574 	}
3575 
3576 out:
3577 	*ret = rc;
3578 	return skb;
3579 }
3580 
3581 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3582 					  netdev_features_t features)
3583 {
3584 	if (skb_vlan_tag_present(skb) &&
3585 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3586 		skb = __vlan_hwaccel_push_inside(skb);
3587 	return skb;
3588 }
3589 
3590 int skb_csum_hwoffload_help(struct sk_buff *skb,
3591 			    const netdev_features_t features)
3592 {
3593 	if (unlikely(skb_csum_is_sctp(skb)))
3594 		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3595 			skb_crc32c_csum_help(skb);
3596 
3597 	if (features & NETIF_F_HW_CSUM)
3598 		return 0;
3599 
3600 	if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3601 		switch (skb->csum_offset) {
3602 		case offsetof(struct tcphdr, check):
3603 		case offsetof(struct udphdr, check):
3604 			return 0;
3605 		}
3606 	}
3607 
3608 	return skb_checksum_help(skb);
3609 }
3610 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3611 
3612 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3613 {
3614 	netdev_features_t features;
3615 
3616 	features = netif_skb_features(skb);
3617 	skb = validate_xmit_vlan(skb, features);
3618 	if (unlikely(!skb))
3619 		goto out_null;
3620 
3621 	skb = sk_validate_xmit_skb(skb, dev);
3622 	if (unlikely(!skb))
3623 		goto out_null;
3624 
3625 	if (netif_needs_gso(skb, features)) {
3626 		struct sk_buff *segs;
3627 
3628 		segs = skb_gso_segment(skb, features);
3629 		if (IS_ERR(segs)) {
3630 			goto out_kfree_skb;
3631 		} else if (segs) {
3632 			consume_skb(skb);
3633 			skb = segs;
3634 		}
3635 	} else {
3636 		if (skb_needs_linearize(skb, features) &&
3637 		    __skb_linearize(skb))
3638 			goto out_kfree_skb;
3639 
3640 		/* If packet is not checksummed and device does not
3641 		 * support checksumming for this protocol, complete
3642 		 * checksumming here.
3643 		 */
3644 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3645 			if (skb->encapsulation)
3646 				skb_set_inner_transport_header(skb,
3647 							       skb_checksum_start_offset(skb));
3648 			else
3649 				skb_set_transport_header(skb,
3650 							 skb_checksum_start_offset(skb));
3651 			if (skb_csum_hwoffload_help(skb, features))
3652 				goto out_kfree_skb;
3653 		}
3654 	}
3655 
3656 	skb = validate_xmit_xfrm(skb, features, again);
3657 
3658 	return skb;
3659 
3660 out_kfree_skb:
3661 	kfree_skb(skb);
3662 out_null:
3663 	dev_core_stats_tx_dropped_inc(dev);
3664 	return NULL;
3665 }
3666 
3667 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3668 {
3669 	struct sk_buff *next, *head = NULL, *tail;
3670 
3671 	for (; skb != NULL; skb = next) {
3672 		next = skb->next;
3673 		skb_mark_not_on_list(skb);
3674 
3675 		/* in case skb wont be segmented, point to itself */
3676 		skb->prev = skb;
3677 
3678 		skb = validate_xmit_skb(skb, dev, again);
3679 		if (!skb)
3680 			continue;
3681 
3682 		if (!head)
3683 			head = skb;
3684 		else
3685 			tail->next = skb;
3686 		/* If skb was segmented, skb->prev points to
3687 		 * the last segment. If not, it still contains skb.
3688 		 */
3689 		tail = skb->prev;
3690 	}
3691 	return head;
3692 }
3693 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3694 
3695 static void qdisc_pkt_len_init(struct sk_buff *skb)
3696 {
3697 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3698 
3699 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3700 
3701 	/* To get more precise estimation of bytes sent on wire,
3702 	 * we add to pkt_len the headers size of all segments
3703 	 */
3704 	if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3705 		u16 gso_segs = shinfo->gso_segs;
3706 		unsigned int hdr_len;
3707 
3708 		/* mac layer + network layer */
3709 		hdr_len = skb_transport_offset(skb);
3710 
3711 		/* + transport layer */
3712 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3713 			const struct tcphdr *th;
3714 			struct tcphdr _tcphdr;
3715 
3716 			th = skb_header_pointer(skb, hdr_len,
3717 						sizeof(_tcphdr), &_tcphdr);
3718 			if (likely(th))
3719 				hdr_len += __tcp_hdrlen(th);
3720 		} else {
3721 			struct udphdr _udphdr;
3722 
3723 			if (skb_header_pointer(skb, hdr_len,
3724 					       sizeof(_udphdr), &_udphdr))
3725 				hdr_len += sizeof(struct udphdr);
3726 		}
3727 
3728 		if (shinfo->gso_type & SKB_GSO_DODGY)
3729 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3730 						shinfo->gso_size);
3731 
3732 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3733 	}
3734 }
3735 
3736 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
3737 			     struct sk_buff **to_free,
3738 			     struct netdev_queue *txq)
3739 {
3740 	int rc;
3741 
3742 	rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
3743 	if (rc == NET_XMIT_SUCCESS)
3744 		trace_qdisc_enqueue(q, txq, skb);
3745 	return rc;
3746 }
3747 
3748 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3749 				 struct net_device *dev,
3750 				 struct netdev_queue *txq)
3751 {
3752 	spinlock_t *root_lock = qdisc_lock(q);
3753 	struct sk_buff *to_free = NULL;
3754 	bool contended;
3755 	int rc;
3756 
3757 	qdisc_calculate_pkt_len(skb, q);
3758 
3759 	tcf_set_drop_reason(skb, SKB_DROP_REASON_QDISC_DROP);
3760 
3761 	if (q->flags & TCQ_F_NOLOCK) {
3762 		if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
3763 		    qdisc_run_begin(q)) {
3764 			/* Retest nolock_qdisc_is_empty() within the protection
3765 			 * of q->seqlock to protect from racing with requeuing.
3766 			 */
3767 			if (unlikely(!nolock_qdisc_is_empty(q))) {
3768 				rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3769 				__qdisc_run(q);
3770 				qdisc_run_end(q);
3771 
3772 				goto no_lock_out;
3773 			}
3774 
3775 			qdisc_bstats_cpu_update(q, skb);
3776 			if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
3777 			    !nolock_qdisc_is_empty(q))
3778 				__qdisc_run(q);
3779 
3780 			qdisc_run_end(q);
3781 			return NET_XMIT_SUCCESS;
3782 		}
3783 
3784 		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3785 		qdisc_run(q);
3786 
3787 no_lock_out:
3788 		if (unlikely(to_free))
3789 			kfree_skb_list_reason(to_free,
3790 					      tcf_get_drop_reason(to_free));
3791 		return rc;
3792 	}
3793 
3794 	/*
3795 	 * Heuristic to force contended enqueues to serialize on a
3796 	 * separate lock before trying to get qdisc main lock.
3797 	 * This permits qdisc->running owner to get the lock more
3798 	 * often and dequeue packets faster.
3799 	 * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit
3800 	 * and then other tasks will only enqueue packets. The packets will be
3801 	 * sent after the qdisc owner is scheduled again. To prevent this
3802 	 * scenario the task always serialize on the lock.
3803 	 */
3804 	contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT);
3805 	if (unlikely(contended))
3806 		spin_lock(&q->busylock);
3807 
3808 	spin_lock(root_lock);
3809 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3810 		__qdisc_drop(skb, &to_free);
3811 		rc = NET_XMIT_DROP;
3812 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3813 		   qdisc_run_begin(q)) {
3814 		/*
3815 		 * This is a work-conserving queue; there are no old skbs
3816 		 * waiting to be sent out; and the qdisc is not running -
3817 		 * xmit the skb directly.
3818 		 */
3819 
3820 		qdisc_bstats_update(q, skb);
3821 
3822 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3823 			if (unlikely(contended)) {
3824 				spin_unlock(&q->busylock);
3825 				contended = false;
3826 			}
3827 			__qdisc_run(q);
3828 		}
3829 
3830 		qdisc_run_end(q);
3831 		rc = NET_XMIT_SUCCESS;
3832 	} else {
3833 		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3834 		if (qdisc_run_begin(q)) {
3835 			if (unlikely(contended)) {
3836 				spin_unlock(&q->busylock);
3837 				contended = false;
3838 			}
3839 			__qdisc_run(q);
3840 			qdisc_run_end(q);
3841 		}
3842 	}
3843 	spin_unlock(root_lock);
3844 	if (unlikely(to_free))
3845 		kfree_skb_list_reason(to_free,
3846 				      tcf_get_drop_reason(to_free));
3847 	if (unlikely(contended))
3848 		spin_unlock(&q->busylock);
3849 	return rc;
3850 }
3851 
3852 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3853 static void skb_update_prio(struct sk_buff *skb)
3854 {
3855 	const struct netprio_map *map;
3856 	const struct sock *sk;
3857 	unsigned int prioidx;
3858 
3859 	if (skb->priority)
3860 		return;
3861 	map = rcu_dereference_bh(skb->dev->priomap);
3862 	if (!map)
3863 		return;
3864 	sk = skb_to_full_sk(skb);
3865 	if (!sk)
3866 		return;
3867 
3868 	prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3869 
3870 	if (prioidx < map->priomap_len)
3871 		skb->priority = map->priomap[prioidx];
3872 }
3873 #else
3874 #define skb_update_prio(skb)
3875 #endif
3876 
3877 /**
3878  *	dev_loopback_xmit - loop back @skb
3879  *	@net: network namespace this loopback is happening in
3880  *	@sk:  sk needed to be a netfilter okfn
3881  *	@skb: buffer to transmit
3882  */
3883 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3884 {
3885 	skb_reset_mac_header(skb);
3886 	__skb_pull(skb, skb_network_offset(skb));
3887 	skb->pkt_type = PACKET_LOOPBACK;
3888 	if (skb->ip_summed == CHECKSUM_NONE)
3889 		skb->ip_summed = CHECKSUM_UNNECESSARY;
3890 	DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb));
3891 	skb_dst_force(skb);
3892 	netif_rx(skb);
3893 	return 0;
3894 }
3895 EXPORT_SYMBOL(dev_loopback_xmit);
3896 
3897 #ifdef CONFIG_NET_EGRESS
3898 static struct netdev_queue *
3899 netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb)
3900 {
3901 	int qm = skb_get_queue_mapping(skb);
3902 
3903 	return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm));
3904 }
3905 
3906 static bool netdev_xmit_txqueue_skipped(void)
3907 {
3908 	return __this_cpu_read(softnet_data.xmit.skip_txqueue);
3909 }
3910 
3911 void netdev_xmit_skip_txqueue(bool skip)
3912 {
3913 	__this_cpu_write(softnet_data.xmit.skip_txqueue, skip);
3914 }
3915 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
3916 #endif /* CONFIG_NET_EGRESS */
3917 
3918 #ifdef CONFIG_NET_XGRESS
3919 static int tc_run(struct tcx_entry *entry, struct sk_buff *skb,
3920 		  enum skb_drop_reason *drop_reason)
3921 {
3922 	int ret = TC_ACT_UNSPEC;
3923 #ifdef CONFIG_NET_CLS_ACT
3924 	struct mini_Qdisc *miniq = rcu_dereference_bh(entry->miniq);
3925 	struct tcf_result res;
3926 
3927 	if (!miniq)
3928 		return ret;
3929 
3930 	tc_skb_cb(skb)->mru = 0;
3931 	tc_skb_cb(skb)->post_ct = false;
3932 	tcf_set_drop_reason(skb, *drop_reason);
3933 
3934 	mini_qdisc_bstats_cpu_update(miniq, skb);
3935 	ret = tcf_classify(skb, miniq->block, miniq->filter_list, &res, false);
3936 	/* Only tcf related quirks below. */
3937 	switch (ret) {
3938 	case TC_ACT_SHOT:
3939 		*drop_reason = tcf_get_drop_reason(skb);
3940 		mini_qdisc_qstats_cpu_drop(miniq);
3941 		break;
3942 	case TC_ACT_OK:
3943 	case TC_ACT_RECLASSIFY:
3944 		skb->tc_index = TC_H_MIN(res.classid);
3945 		break;
3946 	}
3947 #endif /* CONFIG_NET_CLS_ACT */
3948 	return ret;
3949 }
3950 
3951 static DEFINE_STATIC_KEY_FALSE(tcx_needed_key);
3952 
3953 void tcx_inc(void)
3954 {
3955 	static_branch_inc(&tcx_needed_key);
3956 }
3957 
3958 void tcx_dec(void)
3959 {
3960 	static_branch_dec(&tcx_needed_key);
3961 }
3962 
3963 static __always_inline enum tcx_action_base
3964 tcx_run(const struct bpf_mprog_entry *entry, struct sk_buff *skb,
3965 	const bool needs_mac)
3966 {
3967 	const struct bpf_mprog_fp *fp;
3968 	const struct bpf_prog *prog;
3969 	int ret = TCX_NEXT;
3970 
3971 	if (needs_mac)
3972 		__skb_push(skb, skb->mac_len);
3973 	bpf_mprog_foreach_prog(entry, fp, prog) {
3974 		bpf_compute_data_pointers(skb);
3975 		ret = bpf_prog_run(prog, skb);
3976 		if (ret != TCX_NEXT)
3977 			break;
3978 	}
3979 	if (needs_mac)
3980 		__skb_pull(skb, skb->mac_len);
3981 	return tcx_action_code(skb, ret);
3982 }
3983 
3984 static __always_inline struct sk_buff *
3985 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
3986 		   struct net_device *orig_dev, bool *another)
3987 {
3988 	struct bpf_mprog_entry *entry = rcu_dereference_bh(skb->dev->tcx_ingress);
3989 	enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_INGRESS;
3990 	int sch_ret;
3991 
3992 	if (!entry)
3993 		return skb;
3994 	if (*pt_prev) {
3995 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
3996 		*pt_prev = NULL;
3997 	}
3998 
3999 	qdisc_skb_cb(skb)->pkt_len = skb->len;
4000 	tcx_set_ingress(skb, true);
4001 
4002 	if (static_branch_unlikely(&tcx_needed_key)) {
4003 		sch_ret = tcx_run(entry, skb, true);
4004 		if (sch_ret != TC_ACT_UNSPEC)
4005 			goto ingress_verdict;
4006 	}
4007 	sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4008 ingress_verdict:
4009 	switch (sch_ret) {
4010 	case TC_ACT_REDIRECT:
4011 		/* skb_mac_header check was done by BPF, so we can safely
4012 		 * push the L2 header back before redirecting to another
4013 		 * netdev.
4014 		 */
4015 		__skb_push(skb, skb->mac_len);
4016 		if (skb_do_redirect(skb) == -EAGAIN) {
4017 			__skb_pull(skb, skb->mac_len);
4018 			*another = true;
4019 			break;
4020 		}
4021 		*ret = NET_RX_SUCCESS;
4022 		return NULL;
4023 	case TC_ACT_SHOT:
4024 		kfree_skb_reason(skb, drop_reason);
4025 		*ret = NET_RX_DROP;
4026 		return NULL;
4027 	/* used by tc_run */
4028 	case TC_ACT_STOLEN:
4029 	case TC_ACT_QUEUED:
4030 	case TC_ACT_TRAP:
4031 		consume_skb(skb);
4032 		fallthrough;
4033 	case TC_ACT_CONSUMED:
4034 		*ret = NET_RX_SUCCESS;
4035 		return NULL;
4036 	}
4037 
4038 	return skb;
4039 }
4040 
4041 static __always_inline struct sk_buff *
4042 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4043 {
4044 	struct bpf_mprog_entry *entry = rcu_dereference_bh(dev->tcx_egress);
4045 	enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_EGRESS;
4046 	int sch_ret;
4047 
4048 	if (!entry)
4049 		return skb;
4050 
4051 	/* qdisc_skb_cb(skb)->pkt_len & tcx_set_ingress() was
4052 	 * already set by the caller.
4053 	 */
4054 	if (static_branch_unlikely(&tcx_needed_key)) {
4055 		sch_ret = tcx_run(entry, skb, false);
4056 		if (sch_ret != TC_ACT_UNSPEC)
4057 			goto egress_verdict;
4058 	}
4059 	sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4060 egress_verdict:
4061 	switch (sch_ret) {
4062 	case TC_ACT_REDIRECT:
4063 		/* No need to push/pop skb's mac_header here on egress! */
4064 		skb_do_redirect(skb);
4065 		*ret = NET_XMIT_SUCCESS;
4066 		return NULL;
4067 	case TC_ACT_SHOT:
4068 		kfree_skb_reason(skb, drop_reason);
4069 		*ret = NET_XMIT_DROP;
4070 		return NULL;
4071 	/* used by tc_run */
4072 	case TC_ACT_STOLEN:
4073 	case TC_ACT_QUEUED:
4074 	case TC_ACT_TRAP:
4075 		consume_skb(skb);
4076 		fallthrough;
4077 	case TC_ACT_CONSUMED:
4078 		*ret = NET_XMIT_SUCCESS;
4079 		return NULL;
4080 	}
4081 
4082 	return skb;
4083 }
4084 #else
4085 static __always_inline struct sk_buff *
4086 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4087 		   struct net_device *orig_dev, bool *another)
4088 {
4089 	return skb;
4090 }
4091 
4092 static __always_inline struct sk_buff *
4093 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4094 {
4095 	return skb;
4096 }
4097 #endif /* CONFIG_NET_XGRESS */
4098 
4099 #ifdef CONFIG_XPS
4100 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
4101 			       struct xps_dev_maps *dev_maps, unsigned int tci)
4102 {
4103 	int tc = netdev_get_prio_tc_map(dev, skb->priority);
4104 	struct xps_map *map;
4105 	int queue_index = -1;
4106 
4107 	if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
4108 		return queue_index;
4109 
4110 	tci *= dev_maps->num_tc;
4111 	tci += tc;
4112 
4113 	map = rcu_dereference(dev_maps->attr_map[tci]);
4114 	if (map) {
4115 		if (map->len == 1)
4116 			queue_index = map->queues[0];
4117 		else
4118 			queue_index = map->queues[reciprocal_scale(
4119 						skb_get_hash(skb), map->len)];
4120 		if (unlikely(queue_index >= dev->real_num_tx_queues))
4121 			queue_index = -1;
4122 	}
4123 	return queue_index;
4124 }
4125 #endif
4126 
4127 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4128 			 struct sk_buff *skb)
4129 {
4130 #ifdef CONFIG_XPS
4131 	struct xps_dev_maps *dev_maps;
4132 	struct sock *sk = skb->sk;
4133 	int queue_index = -1;
4134 
4135 	if (!static_key_false(&xps_needed))
4136 		return -1;
4137 
4138 	rcu_read_lock();
4139 	if (!static_key_false(&xps_rxqs_needed))
4140 		goto get_cpus_map;
4141 
4142 	dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4143 	if (dev_maps) {
4144 		int tci = sk_rx_queue_get(sk);
4145 
4146 		if (tci >= 0)
4147 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4148 							  tci);
4149 	}
4150 
4151 get_cpus_map:
4152 	if (queue_index < 0) {
4153 		dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4154 		if (dev_maps) {
4155 			unsigned int tci = skb->sender_cpu - 1;
4156 
4157 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4158 							  tci);
4159 		}
4160 	}
4161 	rcu_read_unlock();
4162 
4163 	return queue_index;
4164 #else
4165 	return -1;
4166 #endif
4167 }
4168 
4169 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4170 		     struct net_device *sb_dev)
4171 {
4172 	return 0;
4173 }
4174 EXPORT_SYMBOL(dev_pick_tx_zero);
4175 
4176 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
4177 		       struct net_device *sb_dev)
4178 {
4179 	return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4180 }
4181 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4182 
4183 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4184 		     struct net_device *sb_dev)
4185 {
4186 	struct sock *sk = skb->sk;
4187 	int queue_index = sk_tx_queue_get(sk);
4188 
4189 	sb_dev = sb_dev ? : dev;
4190 
4191 	if (queue_index < 0 || skb->ooo_okay ||
4192 	    queue_index >= dev->real_num_tx_queues) {
4193 		int new_index = get_xps_queue(dev, sb_dev, skb);
4194 
4195 		if (new_index < 0)
4196 			new_index = skb_tx_hash(dev, sb_dev, skb);
4197 
4198 		if (queue_index != new_index && sk &&
4199 		    sk_fullsock(sk) &&
4200 		    rcu_access_pointer(sk->sk_dst_cache))
4201 			sk_tx_queue_set(sk, new_index);
4202 
4203 		queue_index = new_index;
4204 	}
4205 
4206 	return queue_index;
4207 }
4208 EXPORT_SYMBOL(netdev_pick_tx);
4209 
4210 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4211 					 struct sk_buff *skb,
4212 					 struct net_device *sb_dev)
4213 {
4214 	int queue_index = 0;
4215 
4216 #ifdef CONFIG_XPS
4217 	u32 sender_cpu = skb->sender_cpu - 1;
4218 
4219 	if (sender_cpu >= (u32)NR_CPUS)
4220 		skb->sender_cpu = raw_smp_processor_id() + 1;
4221 #endif
4222 
4223 	if (dev->real_num_tx_queues != 1) {
4224 		const struct net_device_ops *ops = dev->netdev_ops;
4225 
4226 		if (ops->ndo_select_queue)
4227 			queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4228 		else
4229 			queue_index = netdev_pick_tx(dev, skb, sb_dev);
4230 
4231 		queue_index = netdev_cap_txqueue(dev, queue_index);
4232 	}
4233 
4234 	skb_set_queue_mapping(skb, queue_index);
4235 	return netdev_get_tx_queue(dev, queue_index);
4236 }
4237 
4238 /**
4239  * __dev_queue_xmit() - transmit a buffer
4240  * @skb:	buffer to transmit
4241  * @sb_dev:	suboordinate device used for L2 forwarding offload
4242  *
4243  * Queue a buffer for transmission to a network device. The caller must
4244  * have set the device and priority and built the buffer before calling
4245  * this function. The function can be called from an interrupt.
4246  *
4247  * When calling this method, interrupts MUST be enabled. This is because
4248  * the BH enable code must have IRQs enabled so that it will not deadlock.
4249  *
4250  * Regardless of the return value, the skb is consumed, so it is currently
4251  * difficult to retry a send to this method. (You can bump the ref count
4252  * before sending to hold a reference for retry if you are careful.)
4253  *
4254  * Return:
4255  * * 0				- buffer successfully transmitted
4256  * * positive qdisc return code	- NET_XMIT_DROP etc.
4257  * * negative errno		- other errors
4258  */
4259 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4260 {
4261 	struct net_device *dev = skb->dev;
4262 	struct netdev_queue *txq = NULL;
4263 	struct Qdisc *q;
4264 	int rc = -ENOMEM;
4265 	bool again = false;
4266 
4267 	skb_reset_mac_header(skb);
4268 	skb_assert_len(skb);
4269 
4270 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4271 		__skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4272 
4273 	/* Disable soft irqs for various locks below. Also
4274 	 * stops preemption for RCU.
4275 	 */
4276 	rcu_read_lock_bh();
4277 
4278 	skb_update_prio(skb);
4279 
4280 	qdisc_pkt_len_init(skb);
4281 	tcx_set_ingress(skb, false);
4282 #ifdef CONFIG_NET_EGRESS
4283 	if (static_branch_unlikely(&egress_needed_key)) {
4284 		if (nf_hook_egress_active()) {
4285 			skb = nf_hook_egress(skb, &rc, dev);
4286 			if (!skb)
4287 				goto out;
4288 		}
4289 
4290 		netdev_xmit_skip_txqueue(false);
4291 
4292 		nf_skip_egress(skb, true);
4293 		skb = sch_handle_egress(skb, &rc, dev);
4294 		if (!skb)
4295 			goto out;
4296 		nf_skip_egress(skb, false);
4297 
4298 		if (netdev_xmit_txqueue_skipped())
4299 			txq = netdev_tx_queue_mapping(dev, skb);
4300 	}
4301 #endif
4302 	/* If device/qdisc don't need skb->dst, release it right now while
4303 	 * its hot in this cpu cache.
4304 	 */
4305 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4306 		skb_dst_drop(skb);
4307 	else
4308 		skb_dst_force(skb);
4309 
4310 	if (!txq)
4311 		txq = netdev_core_pick_tx(dev, skb, sb_dev);
4312 
4313 	q = rcu_dereference_bh(txq->qdisc);
4314 
4315 	trace_net_dev_queue(skb);
4316 	if (q->enqueue) {
4317 		rc = __dev_xmit_skb(skb, q, dev, txq);
4318 		goto out;
4319 	}
4320 
4321 	/* The device has no queue. Common case for software devices:
4322 	 * loopback, all the sorts of tunnels...
4323 
4324 	 * Really, it is unlikely that netif_tx_lock protection is necessary
4325 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4326 	 * counters.)
4327 	 * However, it is possible, that they rely on protection
4328 	 * made by us here.
4329 
4330 	 * Check this and shot the lock. It is not prone from deadlocks.
4331 	 *Either shot noqueue qdisc, it is even simpler 8)
4332 	 */
4333 	if (dev->flags & IFF_UP) {
4334 		int cpu = smp_processor_id(); /* ok because BHs are off */
4335 
4336 		/* Other cpus might concurrently change txq->xmit_lock_owner
4337 		 * to -1 or to their cpu id, but not to our id.
4338 		 */
4339 		if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4340 			if (dev_xmit_recursion())
4341 				goto recursion_alert;
4342 
4343 			skb = validate_xmit_skb(skb, dev, &again);
4344 			if (!skb)
4345 				goto out;
4346 
4347 			HARD_TX_LOCK(dev, txq, cpu);
4348 
4349 			if (!netif_xmit_stopped(txq)) {
4350 				dev_xmit_recursion_inc();
4351 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4352 				dev_xmit_recursion_dec();
4353 				if (dev_xmit_complete(rc)) {
4354 					HARD_TX_UNLOCK(dev, txq);
4355 					goto out;
4356 				}
4357 			}
4358 			HARD_TX_UNLOCK(dev, txq);
4359 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4360 					     dev->name);
4361 		} else {
4362 			/* Recursion is detected! It is possible,
4363 			 * unfortunately
4364 			 */
4365 recursion_alert:
4366 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4367 					     dev->name);
4368 		}
4369 	}
4370 
4371 	rc = -ENETDOWN;
4372 	rcu_read_unlock_bh();
4373 
4374 	dev_core_stats_tx_dropped_inc(dev);
4375 	kfree_skb_list(skb);
4376 	return rc;
4377 out:
4378 	rcu_read_unlock_bh();
4379 	return rc;
4380 }
4381 EXPORT_SYMBOL(__dev_queue_xmit);
4382 
4383 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4384 {
4385 	struct net_device *dev = skb->dev;
4386 	struct sk_buff *orig_skb = skb;
4387 	struct netdev_queue *txq;
4388 	int ret = NETDEV_TX_BUSY;
4389 	bool again = false;
4390 
4391 	if (unlikely(!netif_running(dev) ||
4392 		     !netif_carrier_ok(dev)))
4393 		goto drop;
4394 
4395 	skb = validate_xmit_skb_list(skb, dev, &again);
4396 	if (skb != orig_skb)
4397 		goto drop;
4398 
4399 	skb_set_queue_mapping(skb, queue_id);
4400 	txq = skb_get_tx_queue(dev, skb);
4401 
4402 	local_bh_disable();
4403 
4404 	dev_xmit_recursion_inc();
4405 	HARD_TX_LOCK(dev, txq, smp_processor_id());
4406 	if (!netif_xmit_frozen_or_drv_stopped(txq))
4407 		ret = netdev_start_xmit(skb, dev, txq, false);
4408 	HARD_TX_UNLOCK(dev, txq);
4409 	dev_xmit_recursion_dec();
4410 
4411 	local_bh_enable();
4412 	return ret;
4413 drop:
4414 	dev_core_stats_tx_dropped_inc(dev);
4415 	kfree_skb_list(skb);
4416 	return NET_XMIT_DROP;
4417 }
4418 EXPORT_SYMBOL(__dev_direct_xmit);
4419 
4420 /*************************************************************************
4421  *			Receiver routines
4422  *************************************************************************/
4423 
4424 int netdev_max_backlog __read_mostly = 1000;
4425 EXPORT_SYMBOL(netdev_max_backlog);
4426 
4427 int netdev_tstamp_prequeue __read_mostly = 1;
4428 unsigned int sysctl_skb_defer_max __read_mostly = 64;
4429 int netdev_budget __read_mostly = 300;
4430 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4431 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4432 int weight_p __read_mostly = 64;           /* old backlog weight */
4433 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4434 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4435 int dev_rx_weight __read_mostly = 64;
4436 int dev_tx_weight __read_mostly = 64;
4437 
4438 /* Called with irq disabled */
4439 static inline void ____napi_schedule(struct softnet_data *sd,
4440 				     struct napi_struct *napi)
4441 {
4442 	struct task_struct *thread;
4443 
4444 	lockdep_assert_irqs_disabled();
4445 
4446 	if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4447 		/* Paired with smp_mb__before_atomic() in
4448 		 * napi_enable()/dev_set_threaded().
4449 		 * Use READ_ONCE() to guarantee a complete
4450 		 * read on napi->thread. Only call
4451 		 * wake_up_process() when it's not NULL.
4452 		 */
4453 		thread = READ_ONCE(napi->thread);
4454 		if (thread) {
4455 			/* Avoid doing set_bit() if the thread is in
4456 			 * INTERRUPTIBLE state, cause napi_thread_wait()
4457 			 * makes sure to proceed with napi polling
4458 			 * if the thread is explicitly woken from here.
4459 			 */
4460 			if (READ_ONCE(thread->__state) != TASK_INTERRUPTIBLE)
4461 				set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4462 			wake_up_process(thread);
4463 			return;
4464 		}
4465 	}
4466 
4467 	list_add_tail(&napi->poll_list, &sd->poll_list);
4468 	WRITE_ONCE(napi->list_owner, smp_processor_id());
4469 	/* If not called from net_rx_action()
4470 	 * we have to raise NET_RX_SOFTIRQ.
4471 	 */
4472 	if (!sd->in_net_rx_action)
4473 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4474 }
4475 
4476 #ifdef CONFIG_RPS
4477 
4478 /* One global table that all flow-based protocols share. */
4479 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4480 EXPORT_SYMBOL(rps_sock_flow_table);
4481 u32 rps_cpu_mask __read_mostly;
4482 EXPORT_SYMBOL(rps_cpu_mask);
4483 
4484 struct static_key_false rps_needed __read_mostly;
4485 EXPORT_SYMBOL(rps_needed);
4486 struct static_key_false rfs_needed __read_mostly;
4487 EXPORT_SYMBOL(rfs_needed);
4488 
4489 static struct rps_dev_flow *
4490 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4491 	    struct rps_dev_flow *rflow, u16 next_cpu)
4492 {
4493 	if (next_cpu < nr_cpu_ids) {
4494 #ifdef CONFIG_RFS_ACCEL
4495 		struct netdev_rx_queue *rxqueue;
4496 		struct rps_dev_flow_table *flow_table;
4497 		struct rps_dev_flow *old_rflow;
4498 		u32 flow_id;
4499 		u16 rxq_index;
4500 		int rc;
4501 
4502 		/* Should we steer this flow to a different hardware queue? */
4503 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4504 		    !(dev->features & NETIF_F_NTUPLE))
4505 			goto out;
4506 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4507 		if (rxq_index == skb_get_rx_queue(skb))
4508 			goto out;
4509 
4510 		rxqueue = dev->_rx + rxq_index;
4511 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
4512 		if (!flow_table)
4513 			goto out;
4514 		flow_id = skb_get_hash(skb) & flow_table->mask;
4515 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4516 							rxq_index, flow_id);
4517 		if (rc < 0)
4518 			goto out;
4519 		old_rflow = rflow;
4520 		rflow = &flow_table->flows[flow_id];
4521 		rflow->filter = rc;
4522 		if (old_rflow->filter == rflow->filter)
4523 			old_rflow->filter = RPS_NO_FILTER;
4524 	out:
4525 #endif
4526 		rflow->last_qtail =
4527 			per_cpu(softnet_data, next_cpu).input_queue_head;
4528 	}
4529 
4530 	rflow->cpu = next_cpu;
4531 	return rflow;
4532 }
4533 
4534 /*
4535  * get_rps_cpu is called from netif_receive_skb and returns the target
4536  * CPU from the RPS map of the receiving queue for a given skb.
4537  * rcu_read_lock must be held on entry.
4538  */
4539 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4540 		       struct rps_dev_flow **rflowp)
4541 {
4542 	const struct rps_sock_flow_table *sock_flow_table;
4543 	struct netdev_rx_queue *rxqueue = dev->_rx;
4544 	struct rps_dev_flow_table *flow_table;
4545 	struct rps_map *map;
4546 	int cpu = -1;
4547 	u32 tcpu;
4548 	u32 hash;
4549 
4550 	if (skb_rx_queue_recorded(skb)) {
4551 		u16 index = skb_get_rx_queue(skb);
4552 
4553 		if (unlikely(index >= dev->real_num_rx_queues)) {
4554 			WARN_ONCE(dev->real_num_rx_queues > 1,
4555 				  "%s received packet on queue %u, but number "
4556 				  "of RX queues is %u\n",
4557 				  dev->name, index, dev->real_num_rx_queues);
4558 			goto done;
4559 		}
4560 		rxqueue += index;
4561 	}
4562 
4563 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4564 
4565 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4566 	map = rcu_dereference(rxqueue->rps_map);
4567 	if (!flow_table && !map)
4568 		goto done;
4569 
4570 	skb_reset_network_header(skb);
4571 	hash = skb_get_hash(skb);
4572 	if (!hash)
4573 		goto done;
4574 
4575 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
4576 	if (flow_table && sock_flow_table) {
4577 		struct rps_dev_flow *rflow;
4578 		u32 next_cpu;
4579 		u32 ident;
4580 
4581 		/* First check into global flow table if there is a match.
4582 		 * This READ_ONCE() pairs with WRITE_ONCE() from rps_record_sock_flow().
4583 		 */
4584 		ident = READ_ONCE(sock_flow_table->ents[hash & sock_flow_table->mask]);
4585 		if ((ident ^ hash) & ~rps_cpu_mask)
4586 			goto try_rps;
4587 
4588 		next_cpu = ident & rps_cpu_mask;
4589 
4590 		/* OK, now we know there is a match,
4591 		 * we can look at the local (per receive queue) flow table
4592 		 */
4593 		rflow = &flow_table->flows[hash & flow_table->mask];
4594 		tcpu = rflow->cpu;
4595 
4596 		/*
4597 		 * If the desired CPU (where last recvmsg was done) is
4598 		 * different from current CPU (one in the rx-queue flow
4599 		 * table entry), switch if one of the following holds:
4600 		 *   - Current CPU is unset (>= nr_cpu_ids).
4601 		 *   - Current CPU is offline.
4602 		 *   - The current CPU's queue tail has advanced beyond the
4603 		 *     last packet that was enqueued using this table entry.
4604 		 *     This guarantees that all previous packets for the flow
4605 		 *     have been dequeued, thus preserving in order delivery.
4606 		 */
4607 		if (unlikely(tcpu != next_cpu) &&
4608 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4609 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4610 		      rflow->last_qtail)) >= 0)) {
4611 			tcpu = next_cpu;
4612 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4613 		}
4614 
4615 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4616 			*rflowp = rflow;
4617 			cpu = tcpu;
4618 			goto done;
4619 		}
4620 	}
4621 
4622 try_rps:
4623 
4624 	if (map) {
4625 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4626 		if (cpu_online(tcpu)) {
4627 			cpu = tcpu;
4628 			goto done;
4629 		}
4630 	}
4631 
4632 done:
4633 	return cpu;
4634 }
4635 
4636 #ifdef CONFIG_RFS_ACCEL
4637 
4638 /**
4639  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4640  * @dev: Device on which the filter was set
4641  * @rxq_index: RX queue index
4642  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4643  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4644  *
4645  * Drivers that implement ndo_rx_flow_steer() should periodically call
4646  * this function for each installed filter and remove the filters for
4647  * which it returns %true.
4648  */
4649 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4650 			 u32 flow_id, u16 filter_id)
4651 {
4652 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4653 	struct rps_dev_flow_table *flow_table;
4654 	struct rps_dev_flow *rflow;
4655 	bool expire = true;
4656 	unsigned int cpu;
4657 
4658 	rcu_read_lock();
4659 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4660 	if (flow_table && flow_id <= flow_table->mask) {
4661 		rflow = &flow_table->flows[flow_id];
4662 		cpu = READ_ONCE(rflow->cpu);
4663 		if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4664 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4665 			   rflow->last_qtail) <
4666 		     (int)(10 * flow_table->mask)))
4667 			expire = false;
4668 	}
4669 	rcu_read_unlock();
4670 	return expire;
4671 }
4672 EXPORT_SYMBOL(rps_may_expire_flow);
4673 
4674 #endif /* CONFIG_RFS_ACCEL */
4675 
4676 /* Called from hardirq (IPI) context */
4677 static void rps_trigger_softirq(void *data)
4678 {
4679 	struct softnet_data *sd = data;
4680 
4681 	____napi_schedule(sd, &sd->backlog);
4682 	sd->received_rps++;
4683 }
4684 
4685 #endif /* CONFIG_RPS */
4686 
4687 /* Called from hardirq (IPI) context */
4688 static void trigger_rx_softirq(void *data)
4689 {
4690 	struct softnet_data *sd = data;
4691 
4692 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4693 	smp_store_release(&sd->defer_ipi_scheduled, 0);
4694 }
4695 
4696 /*
4697  * After we queued a packet into sd->input_pkt_queue,
4698  * we need to make sure this queue is serviced soon.
4699  *
4700  * - If this is another cpu queue, link it to our rps_ipi_list,
4701  *   and make sure we will process rps_ipi_list from net_rx_action().
4702  *
4703  * - If this is our own queue, NAPI schedule our backlog.
4704  *   Note that this also raises NET_RX_SOFTIRQ.
4705  */
4706 static void napi_schedule_rps(struct softnet_data *sd)
4707 {
4708 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4709 
4710 #ifdef CONFIG_RPS
4711 	if (sd != mysd) {
4712 		sd->rps_ipi_next = mysd->rps_ipi_list;
4713 		mysd->rps_ipi_list = sd;
4714 
4715 		/* If not called from net_rx_action() or napi_threaded_poll()
4716 		 * we have to raise NET_RX_SOFTIRQ.
4717 		 */
4718 		if (!mysd->in_net_rx_action && !mysd->in_napi_threaded_poll)
4719 			__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4720 		return;
4721 	}
4722 #endif /* CONFIG_RPS */
4723 	__napi_schedule_irqoff(&mysd->backlog);
4724 }
4725 
4726 #ifdef CONFIG_NET_FLOW_LIMIT
4727 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4728 #endif
4729 
4730 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4731 {
4732 #ifdef CONFIG_NET_FLOW_LIMIT
4733 	struct sd_flow_limit *fl;
4734 	struct softnet_data *sd;
4735 	unsigned int old_flow, new_flow;
4736 
4737 	if (qlen < (READ_ONCE(netdev_max_backlog) >> 1))
4738 		return false;
4739 
4740 	sd = this_cpu_ptr(&softnet_data);
4741 
4742 	rcu_read_lock();
4743 	fl = rcu_dereference(sd->flow_limit);
4744 	if (fl) {
4745 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4746 		old_flow = fl->history[fl->history_head];
4747 		fl->history[fl->history_head] = new_flow;
4748 
4749 		fl->history_head++;
4750 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4751 
4752 		if (likely(fl->buckets[old_flow]))
4753 			fl->buckets[old_flow]--;
4754 
4755 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4756 			fl->count++;
4757 			rcu_read_unlock();
4758 			return true;
4759 		}
4760 	}
4761 	rcu_read_unlock();
4762 #endif
4763 	return false;
4764 }
4765 
4766 /*
4767  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4768  * queue (may be a remote CPU queue).
4769  */
4770 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4771 			      unsigned int *qtail)
4772 {
4773 	enum skb_drop_reason reason;
4774 	struct softnet_data *sd;
4775 	unsigned long flags;
4776 	unsigned int qlen;
4777 
4778 	reason = SKB_DROP_REASON_NOT_SPECIFIED;
4779 	sd = &per_cpu(softnet_data, cpu);
4780 
4781 	rps_lock_irqsave(sd, &flags);
4782 	if (!netif_running(skb->dev))
4783 		goto drop;
4784 	qlen = skb_queue_len(&sd->input_pkt_queue);
4785 	if (qlen <= READ_ONCE(netdev_max_backlog) && !skb_flow_limit(skb, qlen)) {
4786 		if (qlen) {
4787 enqueue:
4788 			__skb_queue_tail(&sd->input_pkt_queue, skb);
4789 			input_queue_tail_incr_save(sd, qtail);
4790 			rps_unlock_irq_restore(sd, &flags);
4791 			return NET_RX_SUCCESS;
4792 		}
4793 
4794 		/* Schedule NAPI for backlog device
4795 		 * We can use non atomic operation since we own the queue lock
4796 		 */
4797 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state))
4798 			napi_schedule_rps(sd);
4799 		goto enqueue;
4800 	}
4801 	reason = SKB_DROP_REASON_CPU_BACKLOG;
4802 
4803 drop:
4804 	sd->dropped++;
4805 	rps_unlock_irq_restore(sd, &flags);
4806 
4807 	dev_core_stats_rx_dropped_inc(skb->dev);
4808 	kfree_skb_reason(skb, reason);
4809 	return NET_RX_DROP;
4810 }
4811 
4812 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4813 {
4814 	struct net_device *dev = skb->dev;
4815 	struct netdev_rx_queue *rxqueue;
4816 
4817 	rxqueue = dev->_rx;
4818 
4819 	if (skb_rx_queue_recorded(skb)) {
4820 		u16 index = skb_get_rx_queue(skb);
4821 
4822 		if (unlikely(index >= dev->real_num_rx_queues)) {
4823 			WARN_ONCE(dev->real_num_rx_queues > 1,
4824 				  "%s received packet on queue %u, but number "
4825 				  "of RX queues is %u\n",
4826 				  dev->name, index, dev->real_num_rx_queues);
4827 
4828 			return rxqueue; /* Return first rxqueue */
4829 		}
4830 		rxqueue += index;
4831 	}
4832 	return rxqueue;
4833 }
4834 
4835 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
4836 			     struct bpf_prog *xdp_prog)
4837 {
4838 	void *orig_data, *orig_data_end, *hard_start;
4839 	struct netdev_rx_queue *rxqueue;
4840 	bool orig_bcast, orig_host;
4841 	u32 mac_len, frame_sz;
4842 	__be16 orig_eth_type;
4843 	struct ethhdr *eth;
4844 	u32 metalen, act;
4845 	int off;
4846 
4847 	/* The XDP program wants to see the packet starting at the MAC
4848 	 * header.
4849 	 */
4850 	mac_len = skb->data - skb_mac_header(skb);
4851 	hard_start = skb->data - skb_headroom(skb);
4852 
4853 	/* SKB "head" area always have tailroom for skb_shared_info */
4854 	frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4855 	frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4856 
4857 	rxqueue = netif_get_rxqueue(skb);
4858 	xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4859 	xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4860 			 skb_headlen(skb) + mac_len, true);
4861 
4862 	orig_data_end = xdp->data_end;
4863 	orig_data = xdp->data;
4864 	eth = (struct ethhdr *)xdp->data;
4865 	orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
4866 	orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4867 	orig_eth_type = eth->h_proto;
4868 
4869 	act = bpf_prog_run_xdp(xdp_prog, xdp);
4870 
4871 	/* check if bpf_xdp_adjust_head was used */
4872 	off = xdp->data - orig_data;
4873 	if (off) {
4874 		if (off > 0)
4875 			__skb_pull(skb, off);
4876 		else if (off < 0)
4877 			__skb_push(skb, -off);
4878 
4879 		skb->mac_header += off;
4880 		skb_reset_network_header(skb);
4881 	}
4882 
4883 	/* check if bpf_xdp_adjust_tail was used */
4884 	off = xdp->data_end - orig_data_end;
4885 	if (off != 0) {
4886 		skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4887 		skb->len += off; /* positive on grow, negative on shrink */
4888 	}
4889 
4890 	/* check if XDP changed eth hdr such SKB needs update */
4891 	eth = (struct ethhdr *)xdp->data;
4892 	if ((orig_eth_type != eth->h_proto) ||
4893 	    (orig_host != ether_addr_equal_64bits(eth->h_dest,
4894 						  skb->dev->dev_addr)) ||
4895 	    (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4896 		__skb_push(skb, ETH_HLEN);
4897 		skb->pkt_type = PACKET_HOST;
4898 		skb->protocol = eth_type_trans(skb, skb->dev);
4899 	}
4900 
4901 	/* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
4902 	 * before calling us again on redirect path. We do not call do_redirect
4903 	 * as we leave that up to the caller.
4904 	 *
4905 	 * Caller is responsible for managing lifetime of skb (i.e. calling
4906 	 * kfree_skb in response to actions it cannot handle/XDP_DROP).
4907 	 */
4908 	switch (act) {
4909 	case XDP_REDIRECT:
4910 	case XDP_TX:
4911 		__skb_push(skb, mac_len);
4912 		break;
4913 	case XDP_PASS:
4914 		metalen = xdp->data - xdp->data_meta;
4915 		if (metalen)
4916 			skb_metadata_set(skb, metalen);
4917 		break;
4918 	}
4919 
4920 	return act;
4921 }
4922 
4923 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4924 				     struct xdp_buff *xdp,
4925 				     struct bpf_prog *xdp_prog)
4926 {
4927 	u32 act = XDP_DROP;
4928 
4929 	/* Reinjected packets coming from act_mirred or similar should
4930 	 * not get XDP generic processing.
4931 	 */
4932 	if (skb_is_redirected(skb))
4933 		return XDP_PASS;
4934 
4935 	/* XDP packets must be linear and must have sufficient headroom
4936 	 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4937 	 * native XDP provides, thus we need to do it here as well.
4938 	 */
4939 	if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4940 	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4941 		int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4942 		int troom = skb->tail + skb->data_len - skb->end;
4943 
4944 		/* In case we have to go down the path and also linearize,
4945 		 * then lets do the pskb_expand_head() work just once here.
4946 		 */
4947 		if (pskb_expand_head(skb,
4948 				     hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4949 				     troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4950 			goto do_drop;
4951 		if (skb_linearize(skb))
4952 			goto do_drop;
4953 	}
4954 
4955 	act = bpf_prog_run_generic_xdp(skb, xdp, xdp_prog);
4956 	switch (act) {
4957 	case XDP_REDIRECT:
4958 	case XDP_TX:
4959 	case XDP_PASS:
4960 		break;
4961 	default:
4962 		bpf_warn_invalid_xdp_action(skb->dev, xdp_prog, act);
4963 		fallthrough;
4964 	case XDP_ABORTED:
4965 		trace_xdp_exception(skb->dev, xdp_prog, act);
4966 		fallthrough;
4967 	case XDP_DROP:
4968 	do_drop:
4969 		kfree_skb(skb);
4970 		break;
4971 	}
4972 
4973 	return act;
4974 }
4975 
4976 /* When doing generic XDP we have to bypass the qdisc layer and the
4977  * network taps in order to match in-driver-XDP behavior. This also means
4978  * that XDP packets are able to starve other packets going through a qdisc,
4979  * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX
4980  * queues, so they do not have this starvation issue.
4981  */
4982 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4983 {
4984 	struct net_device *dev = skb->dev;
4985 	struct netdev_queue *txq;
4986 	bool free_skb = true;
4987 	int cpu, rc;
4988 
4989 	txq = netdev_core_pick_tx(dev, skb, NULL);
4990 	cpu = smp_processor_id();
4991 	HARD_TX_LOCK(dev, txq, cpu);
4992 	if (!netif_xmit_frozen_or_drv_stopped(txq)) {
4993 		rc = netdev_start_xmit(skb, dev, txq, 0);
4994 		if (dev_xmit_complete(rc))
4995 			free_skb = false;
4996 	}
4997 	HARD_TX_UNLOCK(dev, txq);
4998 	if (free_skb) {
4999 		trace_xdp_exception(dev, xdp_prog, XDP_TX);
5000 		dev_core_stats_tx_dropped_inc(dev);
5001 		kfree_skb(skb);
5002 	}
5003 }
5004 
5005 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
5006 
5007 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
5008 {
5009 	if (xdp_prog) {
5010 		struct xdp_buff xdp;
5011 		u32 act;
5012 		int err;
5013 
5014 		act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
5015 		if (act != XDP_PASS) {
5016 			switch (act) {
5017 			case XDP_REDIRECT:
5018 				err = xdp_do_generic_redirect(skb->dev, skb,
5019 							      &xdp, xdp_prog);
5020 				if (err)
5021 					goto out_redir;
5022 				break;
5023 			case XDP_TX:
5024 				generic_xdp_tx(skb, xdp_prog);
5025 				break;
5026 			}
5027 			return XDP_DROP;
5028 		}
5029 	}
5030 	return XDP_PASS;
5031 out_redir:
5032 	kfree_skb_reason(skb, SKB_DROP_REASON_XDP);
5033 	return XDP_DROP;
5034 }
5035 EXPORT_SYMBOL_GPL(do_xdp_generic);
5036 
5037 static int netif_rx_internal(struct sk_buff *skb)
5038 {
5039 	int ret;
5040 
5041 	net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5042 
5043 	trace_netif_rx(skb);
5044 
5045 #ifdef CONFIG_RPS
5046 	if (static_branch_unlikely(&rps_needed)) {
5047 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5048 		int cpu;
5049 
5050 		rcu_read_lock();
5051 
5052 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
5053 		if (cpu < 0)
5054 			cpu = smp_processor_id();
5055 
5056 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5057 
5058 		rcu_read_unlock();
5059 	} else
5060 #endif
5061 	{
5062 		unsigned int qtail;
5063 
5064 		ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail);
5065 	}
5066 	return ret;
5067 }
5068 
5069 /**
5070  *	__netif_rx	-	Slightly optimized version of netif_rx
5071  *	@skb: buffer to post
5072  *
5073  *	This behaves as netif_rx except that it does not disable bottom halves.
5074  *	As a result this function may only be invoked from the interrupt context
5075  *	(either hard or soft interrupt).
5076  */
5077 int __netif_rx(struct sk_buff *skb)
5078 {
5079 	int ret;
5080 
5081 	lockdep_assert_once(hardirq_count() | softirq_count());
5082 
5083 	trace_netif_rx_entry(skb);
5084 	ret = netif_rx_internal(skb);
5085 	trace_netif_rx_exit(ret);
5086 	return ret;
5087 }
5088 EXPORT_SYMBOL(__netif_rx);
5089 
5090 /**
5091  *	netif_rx	-	post buffer to the network code
5092  *	@skb: buffer to post
5093  *
5094  *	This function receives a packet from a device driver and queues it for
5095  *	the upper (protocol) levels to process via the backlog NAPI device. It
5096  *	always succeeds. The buffer may be dropped during processing for
5097  *	congestion control or by the protocol layers.
5098  *	The network buffer is passed via the backlog NAPI device. Modern NIC
5099  *	driver should use NAPI and GRO.
5100  *	This function can used from interrupt and from process context. The
5101  *	caller from process context must not disable interrupts before invoking
5102  *	this function.
5103  *
5104  *	return values:
5105  *	NET_RX_SUCCESS	(no congestion)
5106  *	NET_RX_DROP     (packet was dropped)
5107  *
5108  */
5109 int netif_rx(struct sk_buff *skb)
5110 {
5111 	bool need_bh_off = !(hardirq_count() | softirq_count());
5112 	int ret;
5113 
5114 	if (need_bh_off)
5115 		local_bh_disable();
5116 	trace_netif_rx_entry(skb);
5117 	ret = netif_rx_internal(skb);
5118 	trace_netif_rx_exit(ret);
5119 	if (need_bh_off)
5120 		local_bh_enable();
5121 	return ret;
5122 }
5123 EXPORT_SYMBOL(netif_rx);
5124 
5125 static __latent_entropy void net_tx_action(struct softirq_action *h)
5126 {
5127 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5128 
5129 	if (sd->completion_queue) {
5130 		struct sk_buff *clist;
5131 
5132 		local_irq_disable();
5133 		clist = sd->completion_queue;
5134 		sd->completion_queue = NULL;
5135 		local_irq_enable();
5136 
5137 		while (clist) {
5138 			struct sk_buff *skb = clist;
5139 
5140 			clist = clist->next;
5141 
5142 			WARN_ON(refcount_read(&skb->users));
5143 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_CONSUMED))
5144 				trace_consume_skb(skb, net_tx_action);
5145 			else
5146 				trace_kfree_skb(skb, net_tx_action,
5147 						get_kfree_skb_cb(skb)->reason);
5148 
5149 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5150 				__kfree_skb(skb);
5151 			else
5152 				__napi_kfree_skb(skb,
5153 						 get_kfree_skb_cb(skb)->reason);
5154 		}
5155 	}
5156 
5157 	if (sd->output_queue) {
5158 		struct Qdisc *head;
5159 
5160 		local_irq_disable();
5161 		head = sd->output_queue;
5162 		sd->output_queue = NULL;
5163 		sd->output_queue_tailp = &sd->output_queue;
5164 		local_irq_enable();
5165 
5166 		rcu_read_lock();
5167 
5168 		while (head) {
5169 			struct Qdisc *q = head;
5170 			spinlock_t *root_lock = NULL;
5171 
5172 			head = head->next_sched;
5173 
5174 			/* We need to make sure head->next_sched is read
5175 			 * before clearing __QDISC_STATE_SCHED
5176 			 */
5177 			smp_mb__before_atomic();
5178 
5179 			if (!(q->flags & TCQ_F_NOLOCK)) {
5180 				root_lock = qdisc_lock(q);
5181 				spin_lock(root_lock);
5182 			} else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5183 						     &q->state))) {
5184 				/* There is a synchronize_net() between
5185 				 * STATE_DEACTIVATED flag being set and
5186 				 * qdisc_reset()/some_qdisc_is_busy() in
5187 				 * dev_deactivate(), so we can safely bail out
5188 				 * early here to avoid data race between
5189 				 * qdisc_deactivate() and some_qdisc_is_busy()
5190 				 * for lockless qdisc.
5191 				 */
5192 				clear_bit(__QDISC_STATE_SCHED, &q->state);
5193 				continue;
5194 			}
5195 
5196 			clear_bit(__QDISC_STATE_SCHED, &q->state);
5197 			qdisc_run(q);
5198 			if (root_lock)
5199 				spin_unlock(root_lock);
5200 		}
5201 
5202 		rcu_read_unlock();
5203 	}
5204 
5205 	xfrm_dev_backlog(sd);
5206 }
5207 
5208 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5209 /* This hook is defined here for ATM LANE */
5210 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5211 			     unsigned char *addr) __read_mostly;
5212 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5213 #endif
5214 
5215 /**
5216  *	netdev_is_rx_handler_busy - check if receive handler is registered
5217  *	@dev: device to check
5218  *
5219  *	Check if a receive handler is already registered for a given device.
5220  *	Return true if there one.
5221  *
5222  *	The caller must hold the rtnl_mutex.
5223  */
5224 bool netdev_is_rx_handler_busy(struct net_device *dev)
5225 {
5226 	ASSERT_RTNL();
5227 	return dev && rtnl_dereference(dev->rx_handler);
5228 }
5229 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5230 
5231 /**
5232  *	netdev_rx_handler_register - register receive handler
5233  *	@dev: device to register a handler for
5234  *	@rx_handler: receive handler to register
5235  *	@rx_handler_data: data pointer that is used by rx handler
5236  *
5237  *	Register a receive handler for a device. This handler will then be
5238  *	called from __netif_receive_skb. A negative errno code is returned
5239  *	on a failure.
5240  *
5241  *	The caller must hold the rtnl_mutex.
5242  *
5243  *	For a general description of rx_handler, see enum rx_handler_result.
5244  */
5245 int netdev_rx_handler_register(struct net_device *dev,
5246 			       rx_handler_func_t *rx_handler,
5247 			       void *rx_handler_data)
5248 {
5249 	if (netdev_is_rx_handler_busy(dev))
5250 		return -EBUSY;
5251 
5252 	if (dev->priv_flags & IFF_NO_RX_HANDLER)
5253 		return -EINVAL;
5254 
5255 	/* Note: rx_handler_data must be set before rx_handler */
5256 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5257 	rcu_assign_pointer(dev->rx_handler, rx_handler);
5258 
5259 	return 0;
5260 }
5261 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5262 
5263 /**
5264  *	netdev_rx_handler_unregister - unregister receive handler
5265  *	@dev: device to unregister a handler from
5266  *
5267  *	Unregister a receive handler from a device.
5268  *
5269  *	The caller must hold the rtnl_mutex.
5270  */
5271 void netdev_rx_handler_unregister(struct net_device *dev)
5272 {
5273 
5274 	ASSERT_RTNL();
5275 	RCU_INIT_POINTER(dev->rx_handler, NULL);
5276 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5277 	 * section has a guarantee to see a non NULL rx_handler_data
5278 	 * as well.
5279 	 */
5280 	synchronize_net();
5281 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5282 }
5283 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5284 
5285 /*
5286  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5287  * the special handling of PFMEMALLOC skbs.
5288  */
5289 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5290 {
5291 	switch (skb->protocol) {
5292 	case htons(ETH_P_ARP):
5293 	case htons(ETH_P_IP):
5294 	case htons(ETH_P_IPV6):
5295 	case htons(ETH_P_8021Q):
5296 	case htons(ETH_P_8021AD):
5297 		return true;
5298 	default:
5299 		return false;
5300 	}
5301 }
5302 
5303 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5304 			     int *ret, struct net_device *orig_dev)
5305 {
5306 	if (nf_hook_ingress_active(skb)) {
5307 		int ingress_retval;
5308 
5309 		if (*pt_prev) {
5310 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
5311 			*pt_prev = NULL;
5312 		}
5313 
5314 		rcu_read_lock();
5315 		ingress_retval = nf_hook_ingress(skb);
5316 		rcu_read_unlock();
5317 		return ingress_retval;
5318 	}
5319 	return 0;
5320 }
5321 
5322 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5323 				    struct packet_type **ppt_prev)
5324 {
5325 	struct packet_type *ptype, *pt_prev;
5326 	rx_handler_func_t *rx_handler;
5327 	struct sk_buff *skb = *pskb;
5328 	struct net_device *orig_dev;
5329 	bool deliver_exact = false;
5330 	int ret = NET_RX_DROP;
5331 	__be16 type;
5332 
5333 	net_timestamp_check(!READ_ONCE(netdev_tstamp_prequeue), skb);
5334 
5335 	trace_netif_receive_skb(skb);
5336 
5337 	orig_dev = skb->dev;
5338 
5339 	skb_reset_network_header(skb);
5340 	if (!skb_transport_header_was_set(skb))
5341 		skb_reset_transport_header(skb);
5342 	skb_reset_mac_len(skb);
5343 
5344 	pt_prev = NULL;
5345 
5346 another_round:
5347 	skb->skb_iif = skb->dev->ifindex;
5348 
5349 	__this_cpu_inc(softnet_data.processed);
5350 
5351 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
5352 		int ret2;
5353 
5354 		migrate_disable();
5355 		ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5356 		migrate_enable();
5357 
5358 		if (ret2 != XDP_PASS) {
5359 			ret = NET_RX_DROP;
5360 			goto out;
5361 		}
5362 	}
5363 
5364 	if (eth_type_vlan(skb->protocol)) {
5365 		skb = skb_vlan_untag(skb);
5366 		if (unlikely(!skb))
5367 			goto out;
5368 	}
5369 
5370 	if (skb_skip_tc_classify(skb))
5371 		goto skip_classify;
5372 
5373 	if (pfmemalloc)
5374 		goto skip_taps;
5375 
5376 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
5377 		if (pt_prev)
5378 			ret = deliver_skb(skb, pt_prev, orig_dev);
5379 		pt_prev = ptype;
5380 	}
5381 
5382 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5383 		if (pt_prev)
5384 			ret = deliver_skb(skb, pt_prev, orig_dev);
5385 		pt_prev = ptype;
5386 	}
5387 
5388 skip_taps:
5389 #ifdef CONFIG_NET_INGRESS
5390 	if (static_branch_unlikely(&ingress_needed_key)) {
5391 		bool another = false;
5392 
5393 		nf_skip_egress(skb, true);
5394 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5395 					 &another);
5396 		if (another)
5397 			goto another_round;
5398 		if (!skb)
5399 			goto out;
5400 
5401 		nf_skip_egress(skb, false);
5402 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5403 			goto out;
5404 	}
5405 #endif
5406 	skb_reset_redirect(skb);
5407 skip_classify:
5408 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5409 		goto drop;
5410 
5411 	if (skb_vlan_tag_present(skb)) {
5412 		if (pt_prev) {
5413 			ret = deliver_skb(skb, pt_prev, orig_dev);
5414 			pt_prev = NULL;
5415 		}
5416 		if (vlan_do_receive(&skb))
5417 			goto another_round;
5418 		else if (unlikely(!skb))
5419 			goto out;
5420 	}
5421 
5422 	rx_handler = rcu_dereference(skb->dev->rx_handler);
5423 	if (rx_handler) {
5424 		if (pt_prev) {
5425 			ret = deliver_skb(skb, pt_prev, orig_dev);
5426 			pt_prev = NULL;
5427 		}
5428 		switch (rx_handler(&skb)) {
5429 		case RX_HANDLER_CONSUMED:
5430 			ret = NET_RX_SUCCESS;
5431 			goto out;
5432 		case RX_HANDLER_ANOTHER:
5433 			goto another_round;
5434 		case RX_HANDLER_EXACT:
5435 			deliver_exact = true;
5436 			break;
5437 		case RX_HANDLER_PASS:
5438 			break;
5439 		default:
5440 			BUG();
5441 		}
5442 	}
5443 
5444 	if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5445 check_vlan_id:
5446 		if (skb_vlan_tag_get_id(skb)) {
5447 			/* Vlan id is non 0 and vlan_do_receive() above couldn't
5448 			 * find vlan device.
5449 			 */
5450 			skb->pkt_type = PACKET_OTHERHOST;
5451 		} else if (eth_type_vlan(skb->protocol)) {
5452 			/* Outer header is 802.1P with vlan 0, inner header is
5453 			 * 802.1Q or 802.1AD and vlan_do_receive() above could
5454 			 * not find vlan dev for vlan id 0.
5455 			 */
5456 			__vlan_hwaccel_clear_tag(skb);
5457 			skb = skb_vlan_untag(skb);
5458 			if (unlikely(!skb))
5459 				goto out;
5460 			if (vlan_do_receive(&skb))
5461 				/* After stripping off 802.1P header with vlan 0
5462 				 * vlan dev is found for inner header.
5463 				 */
5464 				goto another_round;
5465 			else if (unlikely(!skb))
5466 				goto out;
5467 			else
5468 				/* We have stripped outer 802.1P vlan 0 header.
5469 				 * But could not find vlan dev.
5470 				 * check again for vlan id to set OTHERHOST.
5471 				 */
5472 				goto check_vlan_id;
5473 		}
5474 		/* Note: we might in the future use prio bits
5475 		 * and set skb->priority like in vlan_do_receive()
5476 		 * For the time being, just ignore Priority Code Point
5477 		 */
5478 		__vlan_hwaccel_clear_tag(skb);
5479 	}
5480 
5481 	type = skb->protocol;
5482 
5483 	/* deliver only exact match when indicated */
5484 	if (likely(!deliver_exact)) {
5485 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5486 				       &ptype_base[ntohs(type) &
5487 						   PTYPE_HASH_MASK]);
5488 	}
5489 
5490 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5491 			       &orig_dev->ptype_specific);
5492 
5493 	if (unlikely(skb->dev != orig_dev)) {
5494 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5495 				       &skb->dev->ptype_specific);
5496 	}
5497 
5498 	if (pt_prev) {
5499 		if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5500 			goto drop;
5501 		*ppt_prev = pt_prev;
5502 	} else {
5503 drop:
5504 		if (!deliver_exact)
5505 			dev_core_stats_rx_dropped_inc(skb->dev);
5506 		else
5507 			dev_core_stats_rx_nohandler_inc(skb->dev);
5508 		kfree_skb_reason(skb, SKB_DROP_REASON_UNHANDLED_PROTO);
5509 		/* Jamal, now you will not able to escape explaining
5510 		 * me how you were going to use this. :-)
5511 		 */
5512 		ret = NET_RX_DROP;
5513 	}
5514 
5515 out:
5516 	/* The invariant here is that if *ppt_prev is not NULL
5517 	 * then skb should also be non-NULL.
5518 	 *
5519 	 * Apparently *ppt_prev assignment above holds this invariant due to
5520 	 * skb dereferencing near it.
5521 	 */
5522 	*pskb = skb;
5523 	return ret;
5524 }
5525 
5526 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5527 {
5528 	struct net_device *orig_dev = skb->dev;
5529 	struct packet_type *pt_prev = NULL;
5530 	int ret;
5531 
5532 	ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5533 	if (pt_prev)
5534 		ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5535 					 skb->dev, pt_prev, orig_dev);
5536 	return ret;
5537 }
5538 
5539 /**
5540  *	netif_receive_skb_core - special purpose version of netif_receive_skb
5541  *	@skb: buffer to process
5542  *
5543  *	More direct receive version of netif_receive_skb().  It should
5544  *	only be used by callers that have a need to skip RPS and Generic XDP.
5545  *	Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5546  *
5547  *	This function may only be called from softirq context and interrupts
5548  *	should be enabled.
5549  *
5550  *	Return values (usually ignored):
5551  *	NET_RX_SUCCESS: no congestion
5552  *	NET_RX_DROP: packet was dropped
5553  */
5554 int netif_receive_skb_core(struct sk_buff *skb)
5555 {
5556 	int ret;
5557 
5558 	rcu_read_lock();
5559 	ret = __netif_receive_skb_one_core(skb, false);
5560 	rcu_read_unlock();
5561 
5562 	return ret;
5563 }
5564 EXPORT_SYMBOL(netif_receive_skb_core);
5565 
5566 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5567 						  struct packet_type *pt_prev,
5568 						  struct net_device *orig_dev)
5569 {
5570 	struct sk_buff *skb, *next;
5571 
5572 	if (!pt_prev)
5573 		return;
5574 	if (list_empty(head))
5575 		return;
5576 	if (pt_prev->list_func != NULL)
5577 		INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5578 				   ip_list_rcv, head, pt_prev, orig_dev);
5579 	else
5580 		list_for_each_entry_safe(skb, next, head, list) {
5581 			skb_list_del_init(skb);
5582 			pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5583 		}
5584 }
5585 
5586 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5587 {
5588 	/* Fast-path assumptions:
5589 	 * - There is no RX handler.
5590 	 * - Only one packet_type matches.
5591 	 * If either of these fails, we will end up doing some per-packet
5592 	 * processing in-line, then handling the 'last ptype' for the whole
5593 	 * sublist.  This can't cause out-of-order delivery to any single ptype,
5594 	 * because the 'last ptype' must be constant across the sublist, and all
5595 	 * other ptypes are handled per-packet.
5596 	 */
5597 	/* Current (common) ptype of sublist */
5598 	struct packet_type *pt_curr = NULL;
5599 	/* Current (common) orig_dev of sublist */
5600 	struct net_device *od_curr = NULL;
5601 	struct list_head sublist;
5602 	struct sk_buff *skb, *next;
5603 
5604 	INIT_LIST_HEAD(&sublist);
5605 	list_for_each_entry_safe(skb, next, head, list) {
5606 		struct net_device *orig_dev = skb->dev;
5607 		struct packet_type *pt_prev = NULL;
5608 
5609 		skb_list_del_init(skb);
5610 		__netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5611 		if (!pt_prev)
5612 			continue;
5613 		if (pt_curr != pt_prev || od_curr != orig_dev) {
5614 			/* dispatch old sublist */
5615 			__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5616 			/* start new sublist */
5617 			INIT_LIST_HEAD(&sublist);
5618 			pt_curr = pt_prev;
5619 			od_curr = orig_dev;
5620 		}
5621 		list_add_tail(&skb->list, &sublist);
5622 	}
5623 
5624 	/* dispatch final sublist */
5625 	__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5626 }
5627 
5628 static int __netif_receive_skb(struct sk_buff *skb)
5629 {
5630 	int ret;
5631 
5632 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5633 		unsigned int noreclaim_flag;
5634 
5635 		/*
5636 		 * PFMEMALLOC skbs are special, they should
5637 		 * - be delivered to SOCK_MEMALLOC sockets only
5638 		 * - stay away from userspace
5639 		 * - have bounded memory usage
5640 		 *
5641 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
5642 		 * context down to all allocation sites.
5643 		 */
5644 		noreclaim_flag = memalloc_noreclaim_save();
5645 		ret = __netif_receive_skb_one_core(skb, true);
5646 		memalloc_noreclaim_restore(noreclaim_flag);
5647 	} else
5648 		ret = __netif_receive_skb_one_core(skb, false);
5649 
5650 	return ret;
5651 }
5652 
5653 static void __netif_receive_skb_list(struct list_head *head)
5654 {
5655 	unsigned long noreclaim_flag = 0;
5656 	struct sk_buff *skb, *next;
5657 	bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5658 
5659 	list_for_each_entry_safe(skb, next, head, list) {
5660 		if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5661 			struct list_head sublist;
5662 
5663 			/* Handle the previous sublist */
5664 			list_cut_before(&sublist, head, &skb->list);
5665 			if (!list_empty(&sublist))
5666 				__netif_receive_skb_list_core(&sublist, pfmemalloc);
5667 			pfmemalloc = !pfmemalloc;
5668 			/* See comments in __netif_receive_skb */
5669 			if (pfmemalloc)
5670 				noreclaim_flag = memalloc_noreclaim_save();
5671 			else
5672 				memalloc_noreclaim_restore(noreclaim_flag);
5673 		}
5674 	}
5675 	/* Handle the remaining sublist */
5676 	if (!list_empty(head))
5677 		__netif_receive_skb_list_core(head, pfmemalloc);
5678 	/* Restore pflags */
5679 	if (pfmemalloc)
5680 		memalloc_noreclaim_restore(noreclaim_flag);
5681 }
5682 
5683 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5684 {
5685 	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5686 	struct bpf_prog *new = xdp->prog;
5687 	int ret = 0;
5688 
5689 	switch (xdp->command) {
5690 	case XDP_SETUP_PROG:
5691 		rcu_assign_pointer(dev->xdp_prog, new);
5692 		if (old)
5693 			bpf_prog_put(old);
5694 
5695 		if (old && !new) {
5696 			static_branch_dec(&generic_xdp_needed_key);
5697 		} else if (new && !old) {
5698 			static_branch_inc(&generic_xdp_needed_key);
5699 			dev_disable_lro(dev);
5700 			dev_disable_gro_hw(dev);
5701 		}
5702 		break;
5703 
5704 	default:
5705 		ret = -EINVAL;
5706 		break;
5707 	}
5708 
5709 	return ret;
5710 }
5711 
5712 static int netif_receive_skb_internal(struct sk_buff *skb)
5713 {
5714 	int ret;
5715 
5716 	net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5717 
5718 	if (skb_defer_rx_timestamp(skb))
5719 		return NET_RX_SUCCESS;
5720 
5721 	rcu_read_lock();
5722 #ifdef CONFIG_RPS
5723 	if (static_branch_unlikely(&rps_needed)) {
5724 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5725 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5726 
5727 		if (cpu >= 0) {
5728 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5729 			rcu_read_unlock();
5730 			return ret;
5731 		}
5732 	}
5733 #endif
5734 	ret = __netif_receive_skb(skb);
5735 	rcu_read_unlock();
5736 	return ret;
5737 }
5738 
5739 void netif_receive_skb_list_internal(struct list_head *head)
5740 {
5741 	struct sk_buff *skb, *next;
5742 	struct list_head sublist;
5743 
5744 	INIT_LIST_HEAD(&sublist);
5745 	list_for_each_entry_safe(skb, next, head, list) {
5746 		net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5747 		skb_list_del_init(skb);
5748 		if (!skb_defer_rx_timestamp(skb))
5749 			list_add_tail(&skb->list, &sublist);
5750 	}
5751 	list_splice_init(&sublist, head);
5752 
5753 	rcu_read_lock();
5754 #ifdef CONFIG_RPS
5755 	if (static_branch_unlikely(&rps_needed)) {
5756 		list_for_each_entry_safe(skb, next, head, list) {
5757 			struct rps_dev_flow voidflow, *rflow = &voidflow;
5758 			int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5759 
5760 			if (cpu >= 0) {
5761 				/* Will be handled, remove from list */
5762 				skb_list_del_init(skb);
5763 				enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5764 			}
5765 		}
5766 	}
5767 #endif
5768 	__netif_receive_skb_list(head);
5769 	rcu_read_unlock();
5770 }
5771 
5772 /**
5773  *	netif_receive_skb - process receive buffer from network
5774  *	@skb: buffer to process
5775  *
5776  *	netif_receive_skb() is the main receive data processing function.
5777  *	It always succeeds. The buffer may be dropped during processing
5778  *	for congestion control or by the protocol layers.
5779  *
5780  *	This function may only be called from softirq context and interrupts
5781  *	should be enabled.
5782  *
5783  *	Return values (usually ignored):
5784  *	NET_RX_SUCCESS: no congestion
5785  *	NET_RX_DROP: packet was dropped
5786  */
5787 int netif_receive_skb(struct sk_buff *skb)
5788 {
5789 	int ret;
5790 
5791 	trace_netif_receive_skb_entry(skb);
5792 
5793 	ret = netif_receive_skb_internal(skb);
5794 	trace_netif_receive_skb_exit(ret);
5795 
5796 	return ret;
5797 }
5798 EXPORT_SYMBOL(netif_receive_skb);
5799 
5800 /**
5801  *	netif_receive_skb_list - process many receive buffers from network
5802  *	@head: list of skbs to process.
5803  *
5804  *	Since return value of netif_receive_skb() is normally ignored, and
5805  *	wouldn't be meaningful for a list, this function returns void.
5806  *
5807  *	This function may only be called from softirq context and interrupts
5808  *	should be enabled.
5809  */
5810 void netif_receive_skb_list(struct list_head *head)
5811 {
5812 	struct sk_buff *skb;
5813 
5814 	if (list_empty(head))
5815 		return;
5816 	if (trace_netif_receive_skb_list_entry_enabled()) {
5817 		list_for_each_entry(skb, head, list)
5818 			trace_netif_receive_skb_list_entry(skb);
5819 	}
5820 	netif_receive_skb_list_internal(head);
5821 	trace_netif_receive_skb_list_exit(0);
5822 }
5823 EXPORT_SYMBOL(netif_receive_skb_list);
5824 
5825 static DEFINE_PER_CPU(struct work_struct, flush_works);
5826 
5827 /* Network device is going away, flush any packets still pending */
5828 static void flush_backlog(struct work_struct *work)
5829 {
5830 	struct sk_buff *skb, *tmp;
5831 	struct softnet_data *sd;
5832 
5833 	local_bh_disable();
5834 	sd = this_cpu_ptr(&softnet_data);
5835 
5836 	rps_lock_irq_disable(sd);
5837 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5838 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5839 			__skb_unlink(skb, &sd->input_pkt_queue);
5840 			dev_kfree_skb_irq(skb);
5841 			input_queue_head_incr(sd);
5842 		}
5843 	}
5844 	rps_unlock_irq_enable(sd);
5845 
5846 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5847 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5848 			__skb_unlink(skb, &sd->process_queue);
5849 			kfree_skb(skb);
5850 			input_queue_head_incr(sd);
5851 		}
5852 	}
5853 	local_bh_enable();
5854 }
5855 
5856 static bool flush_required(int cpu)
5857 {
5858 #if IS_ENABLED(CONFIG_RPS)
5859 	struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5860 	bool do_flush;
5861 
5862 	rps_lock_irq_disable(sd);
5863 
5864 	/* as insertion into process_queue happens with the rps lock held,
5865 	 * process_queue access may race only with dequeue
5866 	 */
5867 	do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5868 		   !skb_queue_empty_lockless(&sd->process_queue);
5869 	rps_unlock_irq_enable(sd);
5870 
5871 	return do_flush;
5872 #endif
5873 	/* without RPS we can't safely check input_pkt_queue: during a
5874 	 * concurrent remote skb_queue_splice() we can detect as empty both
5875 	 * input_pkt_queue and process_queue even if the latter could end-up
5876 	 * containing a lot of packets.
5877 	 */
5878 	return true;
5879 }
5880 
5881 static void flush_all_backlogs(void)
5882 {
5883 	static cpumask_t flush_cpus;
5884 	unsigned int cpu;
5885 
5886 	/* since we are under rtnl lock protection we can use static data
5887 	 * for the cpumask and avoid allocating on stack the possibly
5888 	 * large mask
5889 	 */
5890 	ASSERT_RTNL();
5891 
5892 	cpus_read_lock();
5893 
5894 	cpumask_clear(&flush_cpus);
5895 	for_each_online_cpu(cpu) {
5896 		if (flush_required(cpu)) {
5897 			queue_work_on(cpu, system_highpri_wq,
5898 				      per_cpu_ptr(&flush_works, cpu));
5899 			cpumask_set_cpu(cpu, &flush_cpus);
5900 		}
5901 	}
5902 
5903 	/* we can have in flight packet[s] on the cpus we are not flushing,
5904 	 * synchronize_net() in unregister_netdevice_many() will take care of
5905 	 * them
5906 	 */
5907 	for_each_cpu(cpu, &flush_cpus)
5908 		flush_work(per_cpu_ptr(&flush_works, cpu));
5909 
5910 	cpus_read_unlock();
5911 }
5912 
5913 static void net_rps_send_ipi(struct softnet_data *remsd)
5914 {
5915 #ifdef CONFIG_RPS
5916 	while (remsd) {
5917 		struct softnet_data *next = remsd->rps_ipi_next;
5918 
5919 		if (cpu_online(remsd->cpu))
5920 			smp_call_function_single_async(remsd->cpu, &remsd->csd);
5921 		remsd = next;
5922 	}
5923 #endif
5924 }
5925 
5926 /*
5927  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5928  * Note: called with local irq disabled, but exits with local irq enabled.
5929  */
5930 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5931 {
5932 #ifdef CONFIG_RPS
5933 	struct softnet_data *remsd = sd->rps_ipi_list;
5934 
5935 	if (remsd) {
5936 		sd->rps_ipi_list = NULL;
5937 
5938 		local_irq_enable();
5939 
5940 		/* Send pending IPI's to kick RPS processing on remote cpus. */
5941 		net_rps_send_ipi(remsd);
5942 	} else
5943 #endif
5944 		local_irq_enable();
5945 }
5946 
5947 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5948 {
5949 #ifdef CONFIG_RPS
5950 	return sd->rps_ipi_list != NULL;
5951 #else
5952 	return false;
5953 #endif
5954 }
5955 
5956 static int process_backlog(struct napi_struct *napi, int quota)
5957 {
5958 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5959 	bool again = true;
5960 	int work = 0;
5961 
5962 	/* Check if we have pending ipi, its better to send them now,
5963 	 * not waiting net_rx_action() end.
5964 	 */
5965 	if (sd_has_rps_ipi_waiting(sd)) {
5966 		local_irq_disable();
5967 		net_rps_action_and_irq_enable(sd);
5968 	}
5969 
5970 	napi->weight = READ_ONCE(dev_rx_weight);
5971 	while (again) {
5972 		struct sk_buff *skb;
5973 
5974 		while ((skb = __skb_dequeue(&sd->process_queue))) {
5975 			rcu_read_lock();
5976 			__netif_receive_skb(skb);
5977 			rcu_read_unlock();
5978 			input_queue_head_incr(sd);
5979 			if (++work >= quota)
5980 				return work;
5981 
5982 		}
5983 
5984 		rps_lock_irq_disable(sd);
5985 		if (skb_queue_empty(&sd->input_pkt_queue)) {
5986 			/*
5987 			 * Inline a custom version of __napi_complete().
5988 			 * only current cpu owns and manipulates this napi,
5989 			 * and NAPI_STATE_SCHED is the only possible flag set
5990 			 * on backlog.
5991 			 * We can use a plain write instead of clear_bit(),
5992 			 * and we dont need an smp_mb() memory barrier.
5993 			 */
5994 			napi->state = 0;
5995 			again = false;
5996 		} else {
5997 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
5998 						   &sd->process_queue);
5999 		}
6000 		rps_unlock_irq_enable(sd);
6001 	}
6002 
6003 	return work;
6004 }
6005 
6006 /**
6007  * __napi_schedule - schedule for receive
6008  * @n: entry to schedule
6009  *
6010  * The entry's receive function will be scheduled to run.
6011  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6012  */
6013 void __napi_schedule(struct napi_struct *n)
6014 {
6015 	unsigned long flags;
6016 
6017 	local_irq_save(flags);
6018 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
6019 	local_irq_restore(flags);
6020 }
6021 EXPORT_SYMBOL(__napi_schedule);
6022 
6023 /**
6024  *	napi_schedule_prep - check if napi can be scheduled
6025  *	@n: napi context
6026  *
6027  * Test if NAPI routine is already running, and if not mark
6028  * it as running.  This is used as a condition variable to
6029  * insure only one NAPI poll instance runs.  We also make
6030  * sure there is no pending NAPI disable.
6031  */
6032 bool napi_schedule_prep(struct napi_struct *n)
6033 {
6034 	unsigned long new, val = READ_ONCE(n->state);
6035 
6036 	do {
6037 		if (unlikely(val & NAPIF_STATE_DISABLE))
6038 			return false;
6039 		new = val | NAPIF_STATE_SCHED;
6040 
6041 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
6042 		 * This was suggested by Alexander Duyck, as compiler
6043 		 * emits better code than :
6044 		 * if (val & NAPIF_STATE_SCHED)
6045 		 *     new |= NAPIF_STATE_MISSED;
6046 		 */
6047 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6048 						   NAPIF_STATE_MISSED;
6049 	} while (!try_cmpxchg(&n->state, &val, new));
6050 
6051 	return !(val & NAPIF_STATE_SCHED);
6052 }
6053 EXPORT_SYMBOL(napi_schedule_prep);
6054 
6055 /**
6056  * __napi_schedule_irqoff - schedule for receive
6057  * @n: entry to schedule
6058  *
6059  * Variant of __napi_schedule() assuming hard irqs are masked.
6060  *
6061  * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6062  * because the interrupt disabled assumption might not be true
6063  * due to force-threaded interrupts and spinlock substitution.
6064  */
6065 void __napi_schedule_irqoff(struct napi_struct *n)
6066 {
6067 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6068 		____napi_schedule(this_cpu_ptr(&softnet_data), n);
6069 	else
6070 		__napi_schedule(n);
6071 }
6072 EXPORT_SYMBOL(__napi_schedule_irqoff);
6073 
6074 bool napi_complete_done(struct napi_struct *n, int work_done)
6075 {
6076 	unsigned long flags, val, new, timeout = 0;
6077 	bool ret = true;
6078 
6079 	/*
6080 	 * 1) Don't let napi dequeue from the cpu poll list
6081 	 *    just in case its running on a different cpu.
6082 	 * 2) If we are busy polling, do nothing here, we have
6083 	 *    the guarantee we will be called later.
6084 	 */
6085 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6086 				 NAPIF_STATE_IN_BUSY_POLL)))
6087 		return false;
6088 
6089 	if (work_done) {
6090 		if (n->gro_bitmask)
6091 			timeout = READ_ONCE(n->dev->gro_flush_timeout);
6092 		n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6093 	}
6094 	if (n->defer_hard_irqs_count > 0) {
6095 		n->defer_hard_irqs_count--;
6096 		timeout = READ_ONCE(n->dev->gro_flush_timeout);
6097 		if (timeout)
6098 			ret = false;
6099 	}
6100 	if (n->gro_bitmask) {
6101 		/* When the NAPI instance uses a timeout and keeps postponing
6102 		 * it, we need to bound somehow the time packets are kept in
6103 		 * the GRO layer
6104 		 */
6105 		napi_gro_flush(n, !!timeout);
6106 	}
6107 
6108 	gro_normal_list(n);
6109 
6110 	if (unlikely(!list_empty(&n->poll_list))) {
6111 		/* If n->poll_list is not empty, we need to mask irqs */
6112 		local_irq_save(flags);
6113 		list_del_init(&n->poll_list);
6114 		local_irq_restore(flags);
6115 	}
6116 	WRITE_ONCE(n->list_owner, -1);
6117 
6118 	val = READ_ONCE(n->state);
6119 	do {
6120 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6121 
6122 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6123 			      NAPIF_STATE_SCHED_THREADED |
6124 			      NAPIF_STATE_PREFER_BUSY_POLL);
6125 
6126 		/* If STATE_MISSED was set, leave STATE_SCHED set,
6127 		 * because we will call napi->poll() one more time.
6128 		 * This C code was suggested by Alexander Duyck to help gcc.
6129 		 */
6130 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6131 						    NAPIF_STATE_SCHED;
6132 	} while (!try_cmpxchg(&n->state, &val, new));
6133 
6134 	if (unlikely(val & NAPIF_STATE_MISSED)) {
6135 		__napi_schedule(n);
6136 		return false;
6137 	}
6138 
6139 	if (timeout)
6140 		hrtimer_start(&n->timer, ns_to_ktime(timeout),
6141 			      HRTIMER_MODE_REL_PINNED);
6142 	return ret;
6143 }
6144 EXPORT_SYMBOL(napi_complete_done);
6145 
6146 /* must be called under rcu_read_lock(), as we dont take a reference */
6147 struct napi_struct *napi_by_id(unsigned int napi_id)
6148 {
6149 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6150 	struct napi_struct *napi;
6151 
6152 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6153 		if (napi->napi_id == napi_id)
6154 			return napi;
6155 
6156 	return NULL;
6157 }
6158 
6159 #if defined(CONFIG_NET_RX_BUSY_POLL)
6160 
6161 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6162 {
6163 	if (!skip_schedule) {
6164 		gro_normal_list(napi);
6165 		__napi_schedule(napi);
6166 		return;
6167 	}
6168 
6169 	if (napi->gro_bitmask) {
6170 		/* flush too old packets
6171 		 * If HZ < 1000, flush all packets.
6172 		 */
6173 		napi_gro_flush(napi, HZ >= 1000);
6174 	}
6175 
6176 	gro_normal_list(napi);
6177 	clear_bit(NAPI_STATE_SCHED, &napi->state);
6178 }
6179 
6180 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll,
6181 			   u16 budget)
6182 {
6183 	bool skip_schedule = false;
6184 	unsigned long timeout;
6185 	int rc;
6186 
6187 	/* Busy polling means there is a high chance device driver hard irq
6188 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6189 	 * set in napi_schedule_prep().
6190 	 * Since we are about to call napi->poll() once more, we can safely
6191 	 * clear NAPI_STATE_MISSED.
6192 	 *
6193 	 * Note: x86 could use a single "lock and ..." instruction
6194 	 * to perform these two clear_bit()
6195 	 */
6196 	clear_bit(NAPI_STATE_MISSED, &napi->state);
6197 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6198 
6199 	local_bh_disable();
6200 
6201 	if (prefer_busy_poll) {
6202 		napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6203 		timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6204 		if (napi->defer_hard_irqs_count && timeout) {
6205 			hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6206 			skip_schedule = true;
6207 		}
6208 	}
6209 
6210 	/* All we really want here is to re-enable device interrupts.
6211 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6212 	 */
6213 	rc = napi->poll(napi, budget);
6214 	/* We can't gro_normal_list() here, because napi->poll() might have
6215 	 * rearmed the napi (napi_complete_done()) in which case it could
6216 	 * already be running on another CPU.
6217 	 */
6218 	trace_napi_poll(napi, rc, budget);
6219 	netpoll_poll_unlock(have_poll_lock);
6220 	if (rc == budget)
6221 		__busy_poll_stop(napi, skip_schedule);
6222 	local_bh_enable();
6223 }
6224 
6225 void napi_busy_loop(unsigned int napi_id,
6226 		    bool (*loop_end)(void *, unsigned long),
6227 		    void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6228 {
6229 	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6230 	int (*napi_poll)(struct napi_struct *napi, int budget);
6231 	void *have_poll_lock = NULL;
6232 	struct napi_struct *napi;
6233 
6234 restart:
6235 	napi_poll = NULL;
6236 
6237 	rcu_read_lock();
6238 
6239 	napi = napi_by_id(napi_id);
6240 	if (!napi)
6241 		goto out;
6242 
6243 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6244 		preempt_disable();
6245 	for (;;) {
6246 		int work = 0;
6247 
6248 		local_bh_disable();
6249 		if (!napi_poll) {
6250 			unsigned long val = READ_ONCE(napi->state);
6251 
6252 			/* If multiple threads are competing for this napi,
6253 			 * we avoid dirtying napi->state as much as we can.
6254 			 */
6255 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6256 				   NAPIF_STATE_IN_BUSY_POLL)) {
6257 				if (prefer_busy_poll)
6258 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6259 				goto count;
6260 			}
6261 			if (cmpxchg(&napi->state, val,
6262 				    val | NAPIF_STATE_IN_BUSY_POLL |
6263 					  NAPIF_STATE_SCHED) != val) {
6264 				if (prefer_busy_poll)
6265 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6266 				goto count;
6267 			}
6268 			have_poll_lock = netpoll_poll_lock(napi);
6269 			napi_poll = napi->poll;
6270 		}
6271 		work = napi_poll(napi, budget);
6272 		trace_napi_poll(napi, work, budget);
6273 		gro_normal_list(napi);
6274 count:
6275 		if (work > 0)
6276 			__NET_ADD_STATS(dev_net(napi->dev),
6277 					LINUX_MIB_BUSYPOLLRXPACKETS, work);
6278 		local_bh_enable();
6279 
6280 		if (!loop_end || loop_end(loop_end_arg, start_time))
6281 			break;
6282 
6283 		if (unlikely(need_resched())) {
6284 			if (napi_poll)
6285 				busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6286 			if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6287 				preempt_enable();
6288 			rcu_read_unlock();
6289 			cond_resched();
6290 			if (loop_end(loop_end_arg, start_time))
6291 				return;
6292 			goto restart;
6293 		}
6294 		cpu_relax();
6295 	}
6296 	if (napi_poll)
6297 		busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6298 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6299 		preempt_enable();
6300 out:
6301 	rcu_read_unlock();
6302 }
6303 EXPORT_SYMBOL(napi_busy_loop);
6304 
6305 #endif /* CONFIG_NET_RX_BUSY_POLL */
6306 
6307 static void napi_hash_add(struct napi_struct *napi)
6308 {
6309 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6310 		return;
6311 
6312 	spin_lock(&napi_hash_lock);
6313 
6314 	/* 0..NR_CPUS range is reserved for sender_cpu use */
6315 	do {
6316 		if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6317 			napi_gen_id = MIN_NAPI_ID;
6318 	} while (napi_by_id(napi_gen_id));
6319 	napi->napi_id = napi_gen_id;
6320 
6321 	hlist_add_head_rcu(&napi->napi_hash_node,
6322 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6323 
6324 	spin_unlock(&napi_hash_lock);
6325 }
6326 
6327 /* Warning : caller is responsible to make sure rcu grace period
6328  * is respected before freeing memory containing @napi
6329  */
6330 static void napi_hash_del(struct napi_struct *napi)
6331 {
6332 	spin_lock(&napi_hash_lock);
6333 
6334 	hlist_del_init_rcu(&napi->napi_hash_node);
6335 
6336 	spin_unlock(&napi_hash_lock);
6337 }
6338 
6339 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6340 {
6341 	struct napi_struct *napi;
6342 
6343 	napi = container_of(timer, struct napi_struct, timer);
6344 
6345 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
6346 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6347 	 */
6348 	if (!napi_disable_pending(napi) &&
6349 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6350 		clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6351 		__napi_schedule_irqoff(napi);
6352 	}
6353 
6354 	return HRTIMER_NORESTART;
6355 }
6356 
6357 static void init_gro_hash(struct napi_struct *napi)
6358 {
6359 	int i;
6360 
6361 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6362 		INIT_LIST_HEAD(&napi->gro_hash[i].list);
6363 		napi->gro_hash[i].count = 0;
6364 	}
6365 	napi->gro_bitmask = 0;
6366 }
6367 
6368 int dev_set_threaded(struct net_device *dev, bool threaded)
6369 {
6370 	struct napi_struct *napi;
6371 	int err = 0;
6372 
6373 	if (dev->threaded == threaded)
6374 		return 0;
6375 
6376 	if (threaded) {
6377 		list_for_each_entry(napi, &dev->napi_list, dev_list) {
6378 			if (!napi->thread) {
6379 				err = napi_kthread_create(napi);
6380 				if (err) {
6381 					threaded = false;
6382 					break;
6383 				}
6384 			}
6385 		}
6386 	}
6387 
6388 	dev->threaded = threaded;
6389 
6390 	/* Make sure kthread is created before THREADED bit
6391 	 * is set.
6392 	 */
6393 	smp_mb__before_atomic();
6394 
6395 	/* Setting/unsetting threaded mode on a napi might not immediately
6396 	 * take effect, if the current napi instance is actively being
6397 	 * polled. In this case, the switch between threaded mode and
6398 	 * softirq mode will happen in the next round of napi_schedule().
6399 	 * This should not cause hiccups/stalls to the live traffic.
6400 	 */
6401 	list_for_each_entry(napi, &dev->napi_list, dev_list)
6402 		assign_bit(NAPI_STATE_THREADED, &napi->state, threaded);
6403 
6404 	return err;
6405 }
6406 EXPORT_SYMBOL(dev_set_threaded);
6407 
6408 /**
6409  * netif_queue_set_napi - Associate queue with the napi
6410  * @dev: device to which NAPI and queue belong
6411  * @queue_index: Index of queue
6412  * @type: queue type as RX or TX
6413  * @napi: NAPI context, pass NULL to clear previously set NAPI
6414  *
6415  * Set queue with its corresponding napi context. This should be done after
6416  * registering the NAPI handler for the queue-vector and the queues have been
6417  * mapped to the corresponding interrupt vector.
6418  */
6419 void netif_queue_set_napi(struct net_device *dev, unsigned int queue_index,
6420 			  enum netdev_queue_type type, struct napi_struct *napi)
6421 {
6422 	struct netdev_rx_queue *rxq;
6423 	struct netdev_queue *txq;
6424 
6425 	if (WARN_ON_ONCE(napi && !napi->dev))
6426 		return;
6427 	if (dev->reg_state >= NETREG_REGISTERED)
6428 		ASSERT_RTNL();
6429 
6430 	switch (type) {
6431 	case NETDEV_QUEUE_TYPE_RX:
6432 		rxq = __netif_get_rx_queue(dev, queue_index);
6433 		rxq->napi = napi;
6434 		return;
6435 	case NETDEV_QUEUE_TYPE_TX:
6436 		txq = netdev_get_tx_queue(dev, queue_index);
6437 		txq->napi = napi;
6438 		return;
6439 	default:
6440 		return;
6441 	}
6442 }
6443 EXPORT_SYMBOL(netif_queue_set_napi);
6444 
6445 void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi,
6446 			   int (*poll)(struct napi_struct *, int), int weight)
6447 {
6448 	if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6449 		return;
6450 
6451 	INIT_LIST_HEAD(&napi->poll_list);
6452 	INIT_HLIST_NODE(&napi->napi_hash_node);
6453 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6454 	napi->timer.function = napi_watchdog;
6455 	init_gro_hash(napi);
6456 	napi->skb = NULL;
6457 	INIT_LIST_HEAD(&napi->rx_list);
6458 	napi->rx_count = 0;
6459 	napi->poll = poll;
6460 	if (weight > NAPI_POLL_WEIGHT)
6461 		netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6462 				weight);
6463 	napi->weight = weight;
6464 	napi->dev = dev;
6465 #ifdef CONFIG_NETPOLL
6466 	napi->poll_owner = -1;
6467 #endif
6468 	napi->list_owner = -1;
6469 	set_bit(NAPI_STATE_SCHED, &napi->state);
6470 	set_bit(NAPI_STATE_NPSVC, &napi->state);
6471 	list_add_rcu(&napi->dev_list, &dev->napi_list);
6472 	napi_hash_add(napi);
6473 	napi_get_frags_check(napi);
6474 	/* Create kthread for this napi if dev->threaded is set.
6475 	 * Clear dev->threaded if kthread creation failed so that
6476 	 * threaded mode will not be enabled in napi_enable().
6477 	 */
6478 	if (dev->threaded && napi_kthread_create(napi))
6479 		dev->threaded = 0;
6480 	netif_napi_set_irq(napi, -1);
6481 }
6482 EXPORT_SYMBOL(netif_napi_add_weight);
6483 
6484 void napi_disable(struct napi_struct *n)
6485 {
6486 	unsigned long val, new;
6487 
6488 	might_sleep();
6489 	set_bit(NAPI_STATE_DISABLE, &n->state);
6490 
6491 	val = READ_ONCE(n->state);
6492 	do {
6493 		while (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
6494 			usleep_range(20, 200);
6495 			val = READ_ONCE(n->state);
6496 		}
6497 
6498 		new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
6499 		new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL);
6500 	} while (!try_cmpxchg(&n->state, &val, new));
6501 
6502 	hrtimer_cancel(&n->timer);
6503 
6504 	clear_bit(NAPI_STATE_DISABLE, &n->state);
6505 }
6506 EXPORT_SYMBOL(napi_disable);
6507 
6508 /**
6509  *	napi_enable - enable NAPI scheduling
6510  *	@n: NAPI context
6511  *
6512  * Resume NAPI from being scheduled on this context.
6513  * Must be paired with napi_disable.
6514  */
6515 void napi_enable(struct napi_struct *n)
6516 {
6517 	unsigned long new, val = READ_ONCE(n->state);
6518 
6519 	do {
6520 		BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
6521 
6522 		new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
6523 		if (n->dev->threaded && n->thread)
6524 			new |= NAPIF_STATE_THREADED;
6525 	} while (!try_cmpxchg(&n->state, &val, new));
6526 }
6527 EXPORT_SYMBOL(napi_enable);
6528 
6529 static void flush_gro_hash(struct napi_struct *napi)
6530 {
6531 	int i;
6532 
6533 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6534 		struct sk_buff *skb, *n;
6535 
6536 		list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6537 			kfree_skb(skb);
6538 		napi->gro_hash[i].count = 0;
6539 	}
6540 }
6541 
6542 /* Must be called in process context */
6543 void __netif_napi_del(struct napi_struct *napi)
6544 {
6545 	if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6546 		return;
6547 
6548 	napi_hash_del(napi);
6549 	list_del_rcu(&napi->dev_list);
6550 	napi_free_frags(napi);
6551 
6552 	flush_gro_hash(napi);
6553 	napi->gro_bitmask = 0;
6554 
6555 	if (napi->thread) {
6556 		kthread_stop(napi->thread);
6557 		napi->thread = NULL;
6558 	}
6559 }
6560 EXPORT_SYMBOL(__netif_napi_del);
6561 
6562 static int __napi_poll(struct napi_struct *n, bool *repoll)
6563 {
6564 	int work, weight;
6565 
6566 	weight = n->weight;
6567 
6568 	/* This NAPI_STATE_SCHED test is for avoiding a race
6569 	 * with netpoll's poll_napi().  Only the entity which
6570 	 * obtains the lock and sees NAPI_STATE_SCHED set will
6571 	 * actually make the ->poll() call.  Therefore we avoid
6572 	 * accidentally calling ->poll() when NAPI is not scheduled.
6573 	 */
6574 	work = 0;
6575 	if (napi_is_scheduled(n)) {
6576 		work = n->poll(n, weight);
6577 		trace_napi_poll(n, work, weight);
6578 
6579 		xdp_do_check_flushed(n);
6580 	}
6581 
6582 	if (unlikely(work > weight))
6583 		netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6584 				n->poll, work, weight);
6585 
6586 	if (likely(work < weight))
6587 		return work;
6588 
6589 	/* Drivers must not modify the NAPI state if they
6590 	 * consume the entire weight.  In such cases this code
6591 	 * still "owns" the NAPI instance and therefore can
6592 	 * move the instance around on the list at-will.
6593 	 */
6594 	if (unlikely(napi_disable_pending(n))) {
6595 		napi_complete(n);
6596 		return work;
6597 	}
6598 
6599 	/* The NAPI context has more processing work, but busy-polling
6600 	 * is preferred. Exit early.
6601 	 */
6602 	if (napi_prefer_busy_poll(n)) {
6603 		if (napi_complete_done(n, work)) {
6604 			/* If timeout is not set, we need to make sure
6605 			 * that the NAPI is re-scheduled.
6606 			 */
6607 			napi_schedule(n);
6608 		}
6609 		return work;
6610 	}
6611 
6612 	if (n->gro_bitmask) {
6613 		/* flush too old packets
6614 		 * If HZ < 1000, flush all packets.
6615 		 */
6616 		napi_gro_flush(n, HZ >= 1000);
6617 	}
6618 
6619 	gro_normal_list(n);
6620 
6621 	/* Some drivers may have called napi_schedule
6622 	 * prior to exhausting their budget.
6623 	 */
6624 	if (unlikely(!list_empty(&n->poll_list))) {
6625 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6626 			     n->dev ? n->dev->name : "backlog");
6627 		return work;
6628 	}
6629 
6630 	*repoll = true;
6631 
6632 	return work;
6633 }
6634 
6635 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6636 {
6637 	bool do_repoll = false;
6638 	void *have;
6639 	int work;
6640 
6641 	list_del_init(&n->poll_list);
6642 
6643 	have = netpoll_poll_lock(n);
6644 
6645 	work = __napi_poll(n, &do_repoll);
6646 
6647 	if (do_repoll)
6648 		list_add_tail(&n->poll_list, repoll);
6649 
6650 	netpoll_poll_unlock(have);
6651 
6652 	return work;
6653 }
6654 
6655 static int napi_thread_wait(struct napi_struct *napi)
6656 {
6657 	bool woken = false;
6658 
6659 	set_current_state(TASK_INTERRUPTIBLE);
6660 
6661 	while (!kthread_should_stop()) {
6662 		/* Testing SCHED_THREADED bit here to make sure the current
6663 		 * kthread owns this napi and could poll on this napi.
6664 		 * Testing SCHED bit is not enough because SCHED bit might be
6665 		 * set by some other busy poll thread or by napi_disable().
6666 		 */
6667 		if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) {
6668 			WARN_ON(!list_empty(&napi->poll_list));
6669 			__set_current_state(TASK_RUNNING);
6670 			return 0;
6671 		}
6672 
6673 		schedule();
6674 		/* woken being true indicates this thread owns this napi. */
6675 		woken = true;
6676 		set_current_state(TASK_INTERRUPTIBLE);
6677 	}
6678 	__set_current_state(TASK_RUNNING);
6679 
6680 	return -1;
6681 }
6682 
6683 static void skb_defer_free_flush(struct softnet_data *sd)
6684 {
6685 	struct sk_buff *skb, *next;
6686 
6687 	/* Paired with WRITE_ONCE() in skb_attempt_defer_free() */
6688 	if (!READ_ONCE(sd->defer_list))
6689 		return;
6690 
6691 	spin_lock(&sd->defer_lock);
6692 	skb = sd->defer_list;
6693 	sd->defer_list = NULL;
6694 	sd->defer_count = 0;
6695 	spin_unlock(&sd->defer_lock);
6696 
6697 	while (skb != NULL) {
6698 		next = skb->next;
6699 		napi_consume_skb(skb, 1);
6700 		skb = next;
6701 	}
6702 }
6703 
6704 static int napi_threaded_poll(void *data)
6705 {
6706 	struct napi_struct *napi = data;
6707 	struct softnet_data *sd;
6708 	void *have;
6709 
6710 	while (!napi_thread_wait(napi)) {
6711 		for (;;) {
6712 			bool repoll = false;
6713 
6714 			local_bh_disable();
6715 			sd = this_cpu_ptr(&softnet_data);
6716 			sd->in_napi_threaded_poll = true;
6717 
6718 			have = netpoll_poll_lock(napi);
6719 			__napi_poll(napi, &repoll);
6720 			netpoll_poll_unlock(have);
6721 
6722 			sd->in_napi_threaded_poll = false;
6723 			barrier();
6724 
6725 			if (sd_has_rps_ipi_waiting(sd)) {
6726 				local_irq_disable();
6727 				net_rps_action_and_irq_enable(sd);
6728 			}
6729 			skb_defer_free_flush(sd);
6730 			local_bh_enable();
6731 
6732 			if (!repoll)
6733 				break;
6734 
6735 			cond_resched();
6736 		}
6737 	}
6738 	return 0;
6739 }
6740 
6741 static __latent_entropy void net_rx_action(struct softirq_action *h)
6742 {
6743 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6744 	unsigned long time_limit = jiffies +
6745 		usecs_to_jiffies(READ_ONCE(netdev_budget_usecs));
6746 	int budget = READ_ONCE(netdev_budget);
6747 	LIST_HEAD(list);
6748 	LIST_HEAD(repoll);
6749 
6750 start:
6751 	sd->in_net_rx_action = true;
6752 	local_irq_disable();
6753 	list_splice_init(&sd->poll_list, &list);
6754 	local_irq_enable();
6755 
6756 	for (;;) {
6757 		struct napi_struct *n;
6758 
6759 		skb_defer_free_flush(sd);
6760 
6761 		if (list_empty(&list)) {
6762 			if (list_empty(&repoll)) {
6763 				sd->in_net_rx_action = false;
6764 				barrier();
6765 				/* We need to check if ____napi_schedule()
6766 				 * had refilled poll_list while
6767 				 * sd->in_net_rx_action was true.
6768 				 */
6769 				if (!list_empty(&sd->poll_list))
6770 					goto start;
6771 				if (!sd_has_rps_ipi_waiting(sd))
6772 					goto end;
6773 			}
6774 			break;
6775 		}
6776 
6777 		n = list_first_entry(&list, struct napi_struct, poll_list);
6778 		budget -= napi_poll(n, &repoll);
6779 
6780 		/* If softirq window is exhausted then punt.
6781 		 * Allow this to run for 2 jiffies since which will allow
6782 		 * an average latency of 1.5/HZ.
6783 		 */
6784 		if (unlikely(budget <= 0 ||
6785 			     time_after_eq(jiffies, time_limit))) {
6786 			sd->time_squeeze++;
6787 			break;
6788 		}
6789 	}
6790 
6791 	local_irq_disable();
6792 
6793 	list_splice_tail_init(&sd->poll_list, &list);
6794 	list_splice_tail(&repoll, &list);
6795 	list_splice(&list, &sd->poll_list);
6796 	if (!list_empty(&sd->poll_list))
6797 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
6798 	else
6799 		sd->in_net_rx_action = false;
6800 
6801 	net_rps_action_and_irq_enable(sd);
6802 end:;
6803 }
6804 
6805 struct netdev_adjacent {
6806 	struct net_device *dev;
6807 	netdevice_tracker dev_tracker;
6808 
6809 	/* upper master flag, there can only be one master device per list */
6810 	bool master;
6811 
6812 	/* lookup ignore flag */
6813 	bool ignore;
6814 
6815 	/* counter for the number of times this device was added to us */
6816 	u16 ref_nr;
6817 
6818 	/* private field for the users */
6819 	void *private;
6820 
6821 	struct list_head list;
6822 	struct rcu_head rcu;
6823 };
6824 
6825 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6826 						 struct list_head *adj_list)
6827 {
6828 	struct netdev_adjacent *adj;
6829 
6830 	list_for_each_entry(adj, adj_list, list) {
6831 		if (adj->dev == adj_dev)
6832 			return adj;
6833 	}
6834 	return NULL;
6835 }
6836 
6837 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
6838 				    struct netdev_nested_priv *priv)
6839 {
6840 	struct net_device *dev = (struct net_device *)priv->data;
6841 
6842 	return upper_dev == dev;
6843 }
6844 
6845 /**
6846  * netdev_has_upper_dev - Check if device is linked to an upper device
6847  * @dev: device
6848  * @upper_dev: upper device to check
6849  *
6850  * Find out if a device is linked to specified upper device and return true
6851  * in case it is. Note that this checks only immediate upper device,
6852  * not through a complete stack of devices. The caller must hold the RTNL lock.
6853  */
6854 bool netdev_has_upper_dev(struct net_device *dev,
6855 			  struct net_device *upper_dev)
6856 {
6857 	struct netdev_nested_priv priv = {
6858 		.data = (void *)upper_dev,
6859 	};
6860 
6861 	ASSERT_RTNL();
6862 
6863 	return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6864 					     &priv);
6865 }
6866 EXPORT_SYMBOL(netdev_has_upper_dev);
6867 
6868 /**
6869  * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
6870  * @dev: device
6871  * @upper_dev: upper device to check
6872  *
6873  * Find out if a device is linked to specified upper device and return true
6874  * in case it is. Note that this checks the entire upper device chain.
6875  * The caller must hold rcu lock.
6876  */
6877 
6878 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6879 				  struct net_device *upper_dev)
6880 {
6881 	struct netdev_nested_priv priv = {
6882 		.data = (void *)upper_dev,
6883 	};
6884 
6885 	return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6886 					       &priv);
6887 }
6888 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6889 
6890 /**
6891  * netdev_has_any_upper_dev - Check if device is linked to some device
6892  * @dev: device
6893  *
6894  * Find out if a device is linked to an upper device and return true in case
6895  * it is. The caller must hold the RTNL lock.
6896  */
6897 bool netdev_has_any_upper_dev(struct net_device *dev)
6898 {
6899 	ASSERT_RTNL();
6900 
6901 	return !list_empty(&dev->adj_list.upper);
6902 }
6903 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6904 
6905 /**
6906  * netdev_master_upper_dev_get - Get master upper device
6907  * @dev: device
6908  *
6909  * Find a master upper device and return pointer to it or NULL in case
6910  * it's not there. The caller must hold the RTNL lock.
6911  */
6912 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6913 {
6914 	struct netdev_adjacent *upper;
6915 
6916 	ASSERT_RTNL();
6917 
6918 	if (list_empty(&dev->adj_list.upper))
6919 		return NULL;
6920 
6921 	upper = list_first_entry(&dev->adj_list.upper,
6922 				 struct netdev_adjacent, list);
6923 	if (likely(upper->master))
6924 		return upper->dev;
6925 	return NULL;
6926 }
6927 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6928 
6929 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
6930 {
6931 	struct netdev_adjacent *upper;
6932 
6933 	ASSERT_RTNL();
6934 
6935 	if (list_empty(&dev->adj_list.upper))
6936 		return NULL;
6937 
6938 	upper = list_first_entry(&dev->adj_list.upper,
6939 				 struct netdev_adjacent, list);
6940 	if (likely(upper->master) && !upper->ignore)
6941 		return upper->dev;
6942 	return NULL;
6943 }
6944 
6945 /**
6946  * netdev_has_any_lower_dev - Check if device is linked to some device
6947  * @dev: device
6948  *
6949  * Find out if a device is linked to a lower device and return true in case
6950  * it is. The caller must hold the RTNL lock.
6951  */
6952 static bool netdev_has_any_lower_dev(struct net_device *dev)
6953 {
6954 	ASSERT_RTNL();
6955 
6956 	return !list_empty(&dev->adj_list.lower);
6957 }
6958 
6959 void *netdev_adjacent_get_private(struct list_head *adj_list)
6960 {
6961 	struct netdev_adjacent *adj;
6962 
6963 	adj = list_entry(adj_list, struct netdev_adjacent, list);
6964 
6965 	return adj->private;
6966 }
6967 EXPORT_SYMBOL(netdev_adjacent_get_private);
6968 
6969 /**
6970  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6971  * @dev: device
6972  * @iter: list_head ** of the current position
6973  *
6974  * Gets the next device from the dev's upper list, starting from iter
6975  * position. The caller must hold RCU read lock.
6976  */
6977 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6978 						 struct list_head **iter)
6979 {
6980 	struct netdev_adjacent *upper;
6981 
6982 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6983 
6984 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6985 
6986 	if (&upper->list == &dev->adj_list.upper)
6987 		return NULL;
6988 
6989 	*iter = &upper->list;
6990 
6991 	return upper->dev;
6992 }
6993 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6994 
6995 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
6996 						  struct list_head **iter,
6997 						  bool *ignore)
6998 {
6999 	struct netdev_adjacent *upper;
7000 
7001 	upper = list_entry((*iter)->next, struct netdev_adjacent, list);
7002 
7003 	if (&upper->list == &dev->adj_list.upper)
7004 		return NULL;
7005 
7006 	*iter = &upper->list;
7007 	*ignore = upper->ignore;
7008 
7009 	return upper->dev;
7010 }
7011 
7012 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
7013 						    struct list_head **iter)
7014 {
7015 	struct netdev_adjacent *upper;
7016 
7017 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7018 
7019 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7020 
7021 	if (&upper->list == &dev->adj_list.upper)
7022 		return NULL;
7023 
7024 	*iter = &upper->list;
7025 
7026 	return upper->dev;
7027 }
7028 
7029 static int __netdev_walk_all_upper_dev(struct net_device *dev,
7030 				       int (*fn)(struct net_device *dev,
7031 					 struct netdev_nested_priv *priv),
7032 				       struct netdev_nested_priv *priv)
7033 {
7034 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7035 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7036 	int ret, cur = 0;
7037 	bool ignore;
7038 
7039 	now = dev;
7040 	iter = &dev->adj_list.upper;
7041 
7042 	while (1) {
7043 		if (now != dev) {
7044 			ret = fn(now, priv);
7045 			if (ret)
7046 				return ret;
7047 		}
7048 
7049 		next = NULL;
7050 		while (1) {
7051 			udev = __netdev_next_upper_dev(now, &iter, &ignore);
7052 			if (!udev)
7053 				break;
7054 			if (ignore)
7055 				continue;
7056 
7057 			next = udev;
7058 			niter = &udev->adj_list.upper;
7059 			dev_stack[cur] = now;
7060 			iter_stack[cur++] = iter;
7061 			break;
7062 		}
7063 
7064 		if (!next) {
7065 			if (!cur)
7066 				return 0;
7067 			next = dev_stack[--cur];
7068 			niter = iter_stack[cur];
7069 		}
7070 
7071 		now = next;
7072 		iter = niter;
7073 	}
7074 
7075 	return 0;
7076 }
7077 
7078 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7079 				  int (*fn)(struct net_device *dev,
7080 					    struct netdev_nested_priv *priv),
7081 				  struct netdev_nested_priv *priv)
7082 {
7083 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7084 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7085 	int ret, cur = 0;
7086 
7087 	now = dev;
7088 	iter = &dev->adj_list.upper;
7089 
7090 	while (1) {
7091 		if (now != dev) {
7092 			ret = fn(now, priv);
7093 			if (ret)
7094 				return ret;
7095 		}
7096 
7097 		next = NULL;
7098 		while (1) {
7099 			udev = netdev_next_upper_dev_rcu(now, &iter);
7100 			if (!udev)
7101 				break;
7102 
7103 			next = udev;
7104 			niter = &udev->adj_list.upper;
7105 			dev_stack[cur] = now;
7106 			iter_stack[cur++] = iter;
7107 			break;
7108 		}
7109 
7110 		if (!next) {
7111 			if (!cur)
7112 				return 0;
7113 			next = dev_stack[--cur];
7114 			niter = iter_stack[cur];
7115 		}
7116 
7117 		now = next;
7118 		iter = niter;
7119 	}
7120 
7121 	return 0;
7122 }
7123 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7124 
7125 static bool __netdev_has_upper_dev(struct net_device *dev,
7126 				   struct net_device *upper_dev)
7127 {
7128 	struct netdev_nested_priv priv = {
7129 		.flags = 0,
7130 		.data = (void *)upper_dev,
7131 	};
7132 
7133 	ASSERT_RTNL();
7134 
7135 	return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7136 					   &priv);
7137 }
7138 
7139 /**
7140  * netdev_lower_get_next_private - Get the next ->private from the
7141  *				   lower neighbour list
7142  * @dev: device
7143  * @iter: list_head ** of the current position
7144  *
7145  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7146  * list, starting from iter position. The caller must hold either hold the
7147  * RTNL lock or its own locking that guarantees that the neighbour lower
7148  * list will remain unchanged.
7149  */
7150 void *netdev_lower_get_next_private(struct net_device *dev,
7151 				    struct list_head **iter)
7152 {
7153 	struct netdev_adjacent *lower;
7154 
7155 	lower = list_entry(*iter, struct netdev_adjacent, list);
7156 
7157 	if (&lower->list == &dev->adj_list.lower)
7158 		return NULL;
7159 
7160 	*iter = lower->list.next;
7161 
7162 	return lower->private;
7163 }
7164 EXPORT_SYMBOL(netdev_lower_get_next_private);
7165 
7166 /**
7167  * netdev_lower_get_next_private_rcu - Get the next ->private from the
7168  *				       lower neighbour list, RCU
7169  *				       variant
7170  * @dev: device
7171  * @iter: list_head ** of the current position
7172  *
7173  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7174  * list, starting from iter position. The caller must hold RCU read lock.
7175  */
7176 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7177 					struct list_head **iter)
7178 {
7179 	struct netdev_adjacent *lower;
7180 
7181 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
7182 
7183 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7184 
7185 	if (&lower->list == &dev->adj_list.lower)
7186 		return NULL;
7187 
7188 	*iter = &lower->list;
7189 
7190 	return lower->private;
7191 }
7192 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7193 
7194 /**
7195  * netdev_lower_get_next - Get the next device from the lower neighbour
7196  *                         list
7197  * @dev: device
7198  * @iter: list_head ** of the current position
7199  *
7200  * Gets the next netdev_adjacent from the dev's lower neighbour
7201  * list, starting from iter position. The caller must hold RTNL lock or
7202  * its own locking that guarantees that the neighbour lower
7203  * list will remain unchanged.
7204  */
7205 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7206 {
7207 	struct netdev_adjacent *lower;
7208 
7209 	lower = list_entry(*iter, struct netdev_adjacent, list);
7210 
7211 	if (&lower->list == &dev->adj_list.lower)
7212 		return NULL;
7213 
7214 	*iter = lower->list.next;
7215 
7216 	return lower->dev;
7217 }
7218 EXPORT_SYMBOL(netdev_lower_get_next);
7219 
7220 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7221 						struct list_head **iter)
7222 {
7223 	struct netdev_adjacent *lower;
7224 
7225 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7226 
7227 	if (&lower->list == &dev->adj_list.lower)
7228 		return NULL;
7229 
7230 	*iter = &lower->list;
7231 
7232 	return lower->dev;
7233 }
7234 
7235 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7236 						  struct list_head **iter,
7237 						  bool *ignore)
7238 {
7239 	struct netdev_adjacent *lower;
7240 
7241 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7242 
7243 	if (&lower->list == &dev->adj_list.lower)
7244 		return NULL;
7245 
7246 	*iter = &lower->list;
7247 	*ignore = lower->ignore;
7248 
7249 	return lower->dev;
7250 }
7251 
7252 int netdev_walk_all_lower_dev(struct net_device *dev,
7253 			      int (*fn)(struct net_device *dev,
7254 					struct netdev_nested_priv *priv),
7255 			      struct netdev_nested_priv *priv)
7256 {
7257 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7258 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7259 	int ret, cur = 0;
7260 
7261 	now = dev;
7262 	iter = &dev->adj_list.lower;
7263 
7264 	while (1) {
7265 		if (now != dev) {
7266 			ret = fn(now, priv);
7267 			if (ret)
7268 				return ret;
7269 		}
7270 
7271 		next = NULL;
7272 		while (1) {
7273 			ldev = netdev_next_lower_dev(now, &iter);
7274 			if (!ldev)
7275 				break;
7276 
7277 			next = ldev;
7278 			niter = &ldev->adj_list.lower;
7279 			dev_stack[cur] = now;
7280 			iter_stack[cur++] = iter;
7281 			break;
7282 		}
7283 
7284 		if (!next) {
7285 			if (!cur)
7286 				return 0;
7287 			next = dev_stack[--cur];
7288 			niter = iter_stack[cur];
7289 		}
7290 
7291 		now = next;
7292 		iter = niter;
7293 	}
7294 
7295 	return 0;
7296 }
7297 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7298 
7299 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7300 				       int (*fn)(struct net_device *dev,
7301 					 struct netdev_nested_priv *priv),
7302 				       struct netdev_nested_priv *priv)
7303 {
7304 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7305 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7306 	int ret, cur = 0;
7307 	bool ignore;
7308 
7309 	now = dev;
7310 	iter = &dev->adj_list.lower;
7311 
7312 	while (1) {
7313 		if (now != dev) {
7314 			ret = fn(now, priv);
7315 			if (ret)
7316 				return ret;
7317 		}
7318 
7319 		next = NULL;
7320 		while (1) {
7321 			ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7322 			if (!ldev)
7323 				break;
7324 			if (ignore)
7325 				continue;
7326 
7327 			next = ldev;
7328 			niter = &ldev->adj_list.lower;
7329 			dev_stack[cur] = now;
7330 			iter_stack[cur++] = iter;
7331 			break;
7332 		}
7333 
7334 		if (!next) {
7335 			if (!cur)
7336 				return 0;
7337 			next = dev_stack[--cur];
7338 			niter = iter_stack[cur];
7339 		}
7340 
7341 		now = next;
7342 		iter = niter;
7343 	}
7344 
7345 	return 0;
7346 }
7347 
7348 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7349 					     struct list_head **iter)
7350 {
7351 	struct netdev_adjacent *lower;
7352 
7353 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7354 	if (&lower->list == &dev->adj_list.lower)
7355 		return NULL;
7356 
7357 	*iter = &lower->list;
7358 
7359 	return lower->dev;
7360 }
7361 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7362 
7363 static u8 __netdev_upper_depth(struct net_device *dev)
7364 {
7365 	struct net_device *udev;
7366 	struct list_head *iter;
7367 	u8 max_depth = 0;
7368 	bool ignore;
7369 
7370 	for (iter = &dev->adj_list.upper,
7371 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7372 	     udev;
7373 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7374 		if (ignore)
7375 			continue;
7376 		if (max_depth < udev->upper_level)
7377 			max_depth = udev->upper_level;
7378 	}
7379 
7380 	return max_depth;
7381 }
7382 
7383 static u8 __netdev_lower_depth(struct net_device *dev)
7384 {
7385 	struct net_device *ldev;
7386 	struct list_head *iter;
7387 	u8 max_depth = 0;
7388 	bool ignore;
7389 
7390 	for (iter = &dev->adj_list.lower,
7391 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7392 	     ldev;
7393 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7394 		if (ignore)
7395 			continue;
7396 		if (max_depth < ldev->lower_level)
7397 			max_depth = ldev->lower_level;
7398 	}
7399 
7400 	return max_depth;
7401 }
7402 
7403 static int __netdev_update_upper_level(struct net_device *dev,
7404 				       struct netdev_nested_priv *__unused)
7405 {
7406 	dev->upper_level = __netdev_upper_depth(dev) + 1;
7407 	return 0;
7408 }
7409 
7410 #ifdef CONFIG_LOCKDEP
7411 static LIST_HEAD(net_unlink_list);
7412 
7413 static void net_unlink_todo(struct net_device *dev)
7414 {
7415 	if (list_empty(&dev->unlink_list))
7416 		list_add_tail(&dev->unlink_list, &net_unlink_list);
7417 }
7418 #endif
7419 
7420 static int __netdev_update_lower_level(struct net_device *dev,
7421 				       struct netdev_nested_priv *priv)
7422 {
7423 	dev->lower_level = __netdev_lower_depth(dev) + 1;
7424 
7425 #ifdef CONFIG_LOCKDEP
7426 	if (!priv)
7427 		return 0;
7428 
7429 	if (priv->flags & NESTED_SYNC_IMM)
7430 		dev->nested_level = dev->lower_level - 1;
7431 	if (priv->flags & NESTED_SYNC_TODO)
7432 		net_unlink_todo(dev);
7433 #endif
7434 	return 0;
7435 }
7436 
7437 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7438 				  int (*fn)(struct net_device *dev,
7439 					    struct netdev_nested_priv *priv),
7440 				  struct netdev_nested_priv *priv)
7441 {
7442 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7443 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7444 	int ret, cur = 0;
7445 
7446 	now = dev;
7447 	iter = &dev->adj_list.lower;
7448 
7449 	while (1) {
7450 		if (now != dev) {
7451 			ret = fn(now, priv);
7452 			if (ret)
7453 				return ret;
7454 		}
7455 
7456 		next = NULL;
7457 		while (1) {
7458 			ldev = netdev_next_lower_dev_rcu(now, &iter);
7459 			if (!ldev)
7460 				break;
7461 
7462 			next = ldev;
7463 			niter = &ldev->adj_list.lower;
7464 			dev_stack[cur] = now;
7465 			iter_stack[cur++] = iter;
7466 			break;
7467 		}
7468 
7469 		if (!next) {
7470 			if (!cur)
7471 				return 0;
7472 			next = dev_stack[--cur];
7473 			niter = iter_stack[cur];
7474 		}
7475 
7476 		now = next;
7477 		iter = niter;
7478 	}
7479 
7480 	return 0;
7481 }
7482 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7483 
7484 /**
7485  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7486  *				       lower neighbour list, RCU
7487  *				       variant
7488  * @dev: device
7489  *
7490  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7491  * list. The caller must hold RCU read lock.
7492  */
7493 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7494 {
7495 	struct netdev_adjacent *lower;
7496 
7497 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
7498 			struct netdev_adjacent, list);
7499 	if (lower)
7500 		return lower->private;
7501 	return NULL;
7502 }
7503 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7504 
7505 /**
7506  * netdev_master_upper_dev_get_rcu - Get master upper device
7507  * @dev: device
7508  *
7509  * Find a master upper device and return pointer to it or NULL in case
7510  * it's not there. The caller must hold the RCU read lock.
7511  */
7512 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7513 {
7514 	struct netdev_adjacent *upper;
7515 
7516 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
7517 				       struct netdev_adjacent, list);
7518 	if (upper && likely(upper->master))
7519 		return upper->dev;
7520 	return NULL;
7521 }
7522 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7523 
7524 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7525 			      struct net_device *adj_dev,
7526 			      struct list_head *dev_list)
7527 {
7528 	char linkname[IFNAMSIZ+7];
7529 
7530 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7531 		"upper_%s" : "lower_%s", adj_dev->name);
7532 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7533 				 linkname);
7534 }
7535 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7536 			       char *name,
7537 			       struct list_head *dev_list)
7538 {
7539 	char linkname[IFNAMSIZ+7];
7540 
7541 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7542 		"upper_%s" : "lower_%s", name);
7543 	sysfs_remove_link(&(dev->dev.kobj), linkname);
7544 }
7545 
7546 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7547 						 struct net_device *adj_dev,
7548 						 struct list_head *dev_list)
7549 {
7550 	return (dev_list == &dev->adj_list.upper ||
7551 		dev_list == &dev->adj_list.lower) &&
7552 		net_eq(dev_net(dev), dev_net(adj_dev));
7553 }
7554 
7555 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7556 					struct net_device *adj_dev,
7557 					struct list_head *dev_list,
7558 					void *private, bool master)
7559 {
7560 	struct netdev_adjacent *adj;
7561 	int ret;
7562 
7563 	adj = __netdev_find_adj(adj_dev, dev_list);
7564 
7565 	if (adj) {
7566 		adj->ref_nr += 1;
7567 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7568 			 dev->name, adj_dev->name, adj->ref_nr);
7569 
7570 		return 0;
7571 	}
7572 
7573 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7574 	if (!adj)
7575 		return -ENOMEM;
7576 
7577 	adj->dev = adj_dev;
7578 	adj->master = master;
7579 	adj->ref_nr = 1;
7580 	adj->private = private;
7581 	adj->ignore = false;
7582 	netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL);
7583 
7584 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7585 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7586 
7587 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7588 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7589 		if (ret)
7590 			goto free_adj;
7591 	}
7592 
7593 	/* Ensure that master link is always the first item in list. */
7594 	if (master) {
7595 		ret = sysfs_create_link(&(dev->dev.kobj),
7596 					&(adj_dev->dev.kobj), "master");
7597 		if (ret)
7598 			goto remove_symlinks;
7599 
7600 		list_add_rcu(&adj->list, dev_list);
7601 	} else {
7602 		list_add_tail_rcu(&adj->list, dev_list);
7603 	}
7604 
7605 	return 0;
7606 
7607 remove_symlinks:
7608 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7609 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7610 free_adj:
7611 	netdev_put(adj_dev, &adj->dev_tracker);
7612 	kfree(adj);
7613 
7614 	return ret;
7615 }
7616 
7617 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7618 					 struct net_device *adj_dev,
7619 					 u16 ref_nr,
7620 					 struct list_head *dev_list)
7621 {
7622 	struct netdev_adjacent *adj;
7623 
7624 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7625 		 dev->name, adj_dev->name, ref_nr);
7626 
7627 	adj = __netdev_find_adj(adj_dev, dev_list);
7628 
7629 	if (!adj) {
7630 		pr_err("Adjacency does not exist for device %s from %s\n",
7631 		       dev->name, adj_dev->name);
7632 		WARN_ON(1);
7633 		return;
7634 	}
7635 
7636 	if (adj->ref_nr > ref_nr) {
7637 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7638 			 dev->name, adj_dev->name, ref_nr,
7639 			 adj->ref_nr - ref_nr);
7640 		adj->ref_nr -= ref_nr;
7641 		return;
7642 	}
7643 
7644 	if (adj->master)
7645 		sysfs_remove_link(&(dev->dev.kobj), "master");
7646 
7647 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7648 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7649 
7650 	list_del_rcu(&adj->list);
7651 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7652 		 adj_dev->name, dev->name, adj_dev->name);
7653 	netdev_put(adj_dev, &adj->dev_tracker);
7654 	kfree_rcu(adj, rcu);
7655 }
7656 
7657 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7658 					    struct net_device *upper_dev,
7659 					    struct list_head *up_list,
7660 					    struct list_head *down_list,
7661 					    void *private, bool master)
7662 {
7663 	int ret;
7664 
7665 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7666 					   private, master);
7667 	if (ret)
7668 		return ret;
7669 
7670 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7671 					   private, false);
7672 	if (ret) {
7673 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7674 		return ret;
7675 	}
7676 
7677 	return 0;
7678 }
7679 
7680 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7681 					       struct net_device *upper_dev,
7682 					       u16 ref_nr,
7683 					       struct list_head *up_list,
7684 					       struct list_head *down_list)
7685 {
7686 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7687 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7688 }
7689 
7690 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7691 						struct net_device *upper_dev,
7692 						void *private, bool master)
7693 {
7694 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7695 						&dev->adj_list.upper,
7696 						&upper_dev->adj_list.lower,
7697 						private, master);
7698 }
7699 
7700 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7701 						   struct net_device *upper_dev)
7702 {
7703 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7704 					   &dev->adj_list.upper,
7705 					   &upper_dev->adj_list.lower);
7706 }
7707 
7708 static int __netdev_upper_dev_link(struct net_device *dev,
7709 				   struct net_device *upper_dev, bool master,
7710 				   void *upper_priv, void *upper_info,
7711 				   struct netdev_nested_priv *priv,
7712 				   struct netlink_ext_ack *extack)
7713 {
7714 	struct netdev_notifier_changeupper_info changeupper_info = {
7715 		.info = {
7716 			.dev = dev,
7717 			.extack = extack,
7718 		},
7719 		.upper_dev = upper_dev,
7720 		.master = master,
7721 		.linking = true,
7722 		.upper_info = upper_info,
7723 	};
7724 	struct net_device *master_dev;
7725 	int ret = 0;
7726 
7727 	ASSERT_RTNL();
7728 
7729 	if (dev == upper_dev)
7730 		return -EBUSY;
7731 
7732 	/* To prevent loops, check if dev is not upper device to upper_dev. */
7733 	if (__netdev_has_upper_dev(upper_dev, dev))
7734 		return -EBUSY;
7735 
7736 	if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7737 		return -EMLINK;
7738 
7739 	if (!master) {
7740 		if (__netdev_has_upper_dev(dev, upper_dev))
7741 			return -EEXIST;
7742 	} else {
7743 		master_dev = __netdev_master_upper_dev_get(dev);
7744 		if (master_dev)
7745 			return master_dev == upper_dev ? -EEXIST : -EBUSY;
7746 	}
7747 
7748 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7749 					    &changeupper_info.info);
7750 	ret = notifier_to_errno(ret);
7751 	if (ret)
7752 		return ret;
7753 
7754 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7755 						   master);
7756 	if (ret)
7757 		return ret;
7758 
7759 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7760 					    &changeupper_info.info);
7761 	ret = notifier_to_errno(ret);
7762 	if (ret)
7763 		goto rollback;
7764 
7765 	__netdev_update_upper_level(dev, NULL);
7766 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7767 
7768 	__netdev_update_lower_level(upper_dev, priv);
7769 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7770 				    priv);
7771 
7772 	return 0;
7773 
7774 rollback:
7775 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7776 
7777 	return ret;
7778 }
7779 
7780 /**
7781  * netdev_upper_dev_link - Add a link to the upper device
7782  * @dev: device
7783  * @upper_dev: new upper device
7784  * @extack: netlink extended ack
7785  *
7786  * Adds a link to device which is upper to this one. The caller must hold
7787  * the RTNL lock. On a failure a negative errno code is returned.
7788  * On success the reference counts are adjusted and the function
7789  * returns zero.
7790  */
7791 int netdev_upper_dev_link(struct net_device *dev,
7792 			  struct net_device *upper_dev,
7793 			  struct netlink_ext_ack *extack)
7794 {
7795 	struct netdev_nested_priv priv = {
7796 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7797 		.data = NULL,
7798 	};
7799 
7800 	return __netdev_upper_dev_link(dev, upper_dev, false,
7801 				       NULL, NULL, &priv, extack);
7802 }
7803 EXPORT_SYMBOL(netdev_upper_dev_link);
7804 
7805 /**
7806  * netdev_master_upper_dev_link - Add a master link to the upper device
7807  * @dev: device
7808  * @upper_dev: new upper device
7809  * @upper_priv: upper device private
7810  * @upper_info: upper info to be passed down via notifier
7811  * @extack: netlink extended ack
7812  *
7813  * Adds a link to device which is upper to this one. In this case, only
7814  * one master upper device can be linked, although other non-master devices
7815  * might be linked as well. The caller must hold the RTNL lock.
7816  * On a failure a negative errno code is returned. On success the reference
7817  * counts are adjusted and the function returns zero.
7818  */
7819 int netdev_master_upper_dev_link(struct net_device *dev,
7820 				 struct net_device *upper_dev,
7821 				 void *upper_priv, void *upper_info,
7822 				 struct netlink_ext_ack *extack)
7823 {
7824 	struct netdev_nested_priv priv = {
7825 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7826 		.data = NULL,
7827 	};
7828 
7829 	return __netdev_upper_dev_link(dev, upper_dev, true,
7830 				       upper_priv, upper_info, &priv, extack);
7831 }
7832 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7833 
7834 static void __netdev_upper_dev_unlink(struct net_device *dev,
7835 				      struct net_device *upper_dev,
7836 				      struct netdev_nested_priv *priv)
7837 {
7838 	struct netdev_notifier_changeupper_info changeupper_info = {
7839 		.info = {
7840 			.dev = dev,
7841 		},
7842 		.upper_dev = upper_dev,
7843 		.linking = false,
7844 	};
7845 
7846 	ASSERT_RTNL();
7847 
7848 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7849 
7850 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7851 				      &changeupper_info.info);
7852 
7853 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7854 
7855 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7856 				      &changeupper_info.info);
7857 
7858 	__netdev_update_upper_level(dev, NULL);
7859 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7860 
7861 	__netdev_update_lower_level(upper_dev, priv);
7862 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7863 				    priv);
7864 }
7865 
7866 /**
7867  * netdev_upper_dev_unlink - Removes a link to upper device
7868  * @dev: device
7869  * @upper_dev: new upper device
7870  *
7871  * Removes a link to device which is upper to this one. The caller must hold
7872  * the RTNL lock.
7873  */
7874 void netdev_upper_dev_unlink(struct net_device *dev,
7875 			     struct net_device *upper_dev)
7876 {
7877 	struct netdev_nested_priv priv = {
7878 		.flags = NESTED_SYNC_TODO,
7879 		.data = NULL,
7880 	};
7881 
7882 	__netdev_upper_dev_unlink(dev, upper_dev, &priv);
7883 }
7884 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7885 
7886 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7887 				      struct net_device *lower_dev,
7888 				      bool val)
7889 {
7890 	struct netdev_adjacent *adj;
7891 
7892 	adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7893 	if (adj)
7894 		adj->ignore = val;
7895 
7896 	adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7897 	if (adj)
7898 		adj->ignore = val;
7899 }
7900 
7901 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
7902 					struct net_device *lower_dev)
7903 {
7904 	__netdev_adjacent_dev_set(upper_dev, lower_dev, true);
7905 }
7906 
7907 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
7908 				       struct net_device *lower_dev)
7909 {
7910 	__netdev_adjacent_dev_set(upper_dev, lower_dev, false);
7911 }
7912 
7913 int netdev_adjacent_change_prepare(struct net_device *old_dev,
7914 				   struct net_device *new_dev,
7915 				   struct net_device *dev,
7916 				   struct netlink_ext_ack *extack)
7917 {
7918 	struct netdev_nested_priv priv = {
7919 		.flags = 0,
7920 		.data = NULL,
7921 	};
7922 	int err;
7923 
7924 	if (!new_dev)
7925 		return 0;
7926 
7927 	if (old_dev && new_dev != old_dev)
7928 		netdev_adjacent_dev_disable(dev, old_dev);
7929 	err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
7930 				      extack);
7931 	if (err) {
7932 		if (old_dev && new_dev != old_dev)
7933 			netdev_adjacent_dev_enable(dev, old_dev);
7934 		return err;
7935 	}
7936 
7937 	return 0;
7938 }
7939 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
7940 
7941 void netdev_adjacent_change_commit(struct net_device *old_dev,
7942 				   struct net_device *new_dev,
7943 				   struct net_device *dev)
7944 {
7945 	struct netdev_nested_priv priv = {
7946 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7947 		.data = NULL,
7948 	};
7949 
7950 	if (!new_dev || !old_dev)
7951 		return;
7952 
7953 	if (new_dev == old_dev)
7954 		return;
7955 
7956 	netdev_adjacent_dev_enable(dev, old_dev);
7957 	__netdev_upper_dev_unlink(old_dev, dev, &priv);
7958 }
7959 EXPORT_SYMBOL(netdev_adjacent_change_commit);
7960 
7961 void netdev_adjacent_change_abort(struct net_device *old_dev,
7962 				  struct net_device *new_dev,
7963 				  struct net_device *dev)
7964 {
7965 	struct netdev_nested_priv priv = {
7966 		.flags = 0,
7967 		.data = NULL,
7968 	};
7969 
7970 	if (!new_dev)
7971 		return;
7972 
7973 	if (old_dev && new_dev != old_dev)
7974 		netdev_adjacent_dev_enable(dev, old_dev);
7975 
7976 	__netdev_upper_dev_unlink(new_dev, dev, &priv);
7977 }
7978 EXPORT_SYMBOL(netdev_adjacent_change_abort);
7979 
7980 /**
7981  * netdev_bonding_info_change - Dispatch event about slave change
7982  * @dev: device
7983  * @bonding_info: info to dispatch
7984  *
7985  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7986  * The caller must hold the RTNL lock.
7987  */
7988 void netdev_bonding_info_change(struct net_device *dev,
7989 				struct netdev_bonding_info *bonding_info)
7990 {
7991 	struct netdev_notifier_bonding_info info = {
7992 		.info.dev = dev,
7993 	};
7994 
7995 	memcpy(&info.bonding_info, bonding_info,
7996 	       sizeof(struct netdev_bonding_info));
7997 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7998 				      &info.info);
7999 }
8000 EXPORT_SYMBOL(netdev_bonding_info_change);
8001 
8002 static int netdev_offload_xstats_enable_l3(struct net_device *dev,
8003 					   struct netlink_ext_ack *extack)
8004 {
8005 	struct netdev_notifier_offload_xstats_info info = {
8006 		.info.dev = dev,
8007 		.info.extack = extack,
8008 		.type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
8009 	};
8010 	int err;
8011 	int rc;
8012 
8013 	dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3),
8014 					 GFP_KERNEL);
8015 	if (!dev->offload_xstats_l3)
8016 		return -ENOMEM;
8017 
8018 	rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE,
8019 						  NETDEV_OFFLOAD_XSTATS_DISABLE,
8020 						  &info.info);
8021 	err = notifier_to_errno(rc);
8022 	if (err)
8023 		goto free_stats;
8024 
8025 	return 0;
8026 
8027 free_stats:
8028 	kfree(dev->offload_xstats_l3);
8029 	dev->offload_xstats_l3 = NULL;
8030 	return err;
8031 }
8032 
8033 int netdev_offload_xstats_enable(struct net_device *dev,
8034 				 enum netdev_offload_xstats_type type,
8035 				 struct netlink_ext_ack *extack)
8036 {
8037 	ASSERT_RTNL();
8038 
8039 	if (netdev_offload_xstats_enabled(dev, type))
8040 		return -EALREADY;
8041 
8042 	switch (type) {
8043 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8044 		return netdev_offload_xstats_enable_l3(dev, extack);
8045 	}
8046 
8047 	WARN_ON(1);
8048 	return -EINVAL;
8049 }
8050 EXPORT_SYMBOL(netdev_offload_xstats_enable);
8051 
8052 static void netdev_offload_xstats_disable_l3(struct net_device *dev)
8053 {
8054 	struct netdev_notifier_offload_xstats_info info = {
8055 		.info.dev = dev,
8056 		.type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
8057 	};
8058 
8059 	call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE,
8060 				      &info.info);
8061 	kfree(dev->offload_xstats_l3);
8062 	dev->offload_xstats_l3 = NULL;
8063 }
8064 
8065 int netdev_offload_xstats_disable(struct net_device *dev,
8066 				  enum netdev_offload_xstats_type type)
8067 {
8068 	ASSERT_RTNL();
8069 
8070 	if (!netdev_offload_xstats_enabled(dev, type))
8071 		return -EALREADY;
8072 
8073 	switch (type) {
8074 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8075 		netdev_offload_xstats_disable_l3(dev);
8076 		return 0;
8077 	}
8078 
8079 	WARN_ON(1);
8080 	return -EINVAL;
8081 }
8082 EXPORT_SYMBOL(netdev_offload_xstats_disable);
8083 
8084 static void netdev_offload_xstats_disable_all(struct net_device *dev)
8085 {
8086 	netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3);
8087 }
8088 
8089 static struct rtnl_hw_stats64 *
8090 netdev_offload_xstats_get_ptr(const struct net_device *dev,
8091 			      enum netdev_offload_xstats_type type)
8092 {
8093 	switch (type) {
8094 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8095 		return dev->offload_xstats_l3;
8096 	}
8097 
8098 	WARN_ON(1);
8099 	return NULL;
8100 }
8101 
8102 bool netdev_offload_xstats_enabled(const struct net_device *dev,
8103 				   enum netdev_offload_xstats_type type)
8104 {
8105 	ASSERT_RTNL();
8106 
8107 	return netdev_offload_xstats_get_ptr(dev, type);
8108 }
8109 EXPORT_SYMBOL(netdev_offload_xstats_enabled);
8110 
8111 struct netdev_notifier_offload_xstats_ru {
8112 	bool used;
8113 };
8114 
8115 struct netdev_notifier_offload_xstats_rd {
8116 	struct rtnl_hw_stats64 stats;
8117 	bool used;
8118 };
8119 
8120 static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest,
8121 				  const struct rtnl_hw_stats64 *src)
8122 {
8123 	dest->rx_packets	  += src->rx_packets;
8124 	dest->tx_packets	  += src->tx_packets;
8125 	dest->rx_bytes		  += src->rx_bytes;
8126 	dest->tx_bytes		  += src->tx_bytes;
8127 	dest->rx_errors		  += src->rx_errors;
8128 	dest->tx_errors		  += src->tx_errors;
8129 	dest->rx_dropped	  += src->rx_dropped;
8130 	dest->tx_dropped	  += src->tx_dropped;
8131 	dest->multicast		  += src->multicast;
8132 }
8133 
8134 static int netdev_offload_xstats_get_used(struct net_device *dev,
8135 					  enum netdev_offload_xstats_type type,
8136 					  bool *p_used,
8137 					  struct netlink_ext_ack *extack)
8138 {
8139 	struct netdev_notifier_offload_xstats_ru report_used = {};
8140 	struct netdev_notifier_offload_xstats_info info = {
8141 		.info.dev = dev,
8142 		.info.extack = extack,
8143 		.type = type,
8144 		.report_used = &report_used,
8145 	};
8146 	int rc;
8147 
8148 	WARN_ON(!netdev_offload_xstats_enabled(dev, type));
8149 	rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED,
8150 					   &info.info);
8151 	*p_used = report_used.used;
8152 	return notifier_to_errno(rc);
8153 }
8154 
8155 static int netdev_offload_xstats_get_stats(struct net_device *dev,
8156 					   enum netdev_offload_xstats_type type,
8157 					   struct rtnl_hw_stats64 *p_stats,
8158 					   bool *p_used,
8159 					   struct netlink_ext_ack *extack)
8160 {
8161 	struct netdev_notifier_offload_xstats_rd report_delta = {};
8162 	struct netdev_notifier_offload_xstats_info info = {
8163 		.info.dev = dev,
8164 		.info.extack = extack,
8165 		.type = type,
8166 		.report_delta = &report_delta,
8167 	};
8168 	struct rtnl_hw_stats64 *stats;
8169 	int rc;
8170 
8171 	stats = netdev_offload_xstats_get_ptr(dev, type);
8172 	if (WARN_ON(!stats))
8173 		return -EINVAL;
8174 
8175 	rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
8176 					   &info.info);
8177 
8178 	/* Cache whatever we got, even if there was an error, otherwise the
8179 	 * successful stats retrievals would get lost.
8180 	 */
8181 	netdev_hw_stats64_add(stats, &report_delta.stats);
8182 
8183 	if (p_stats)
8184 		*p_stats = *stats;
8185 	*p_used = report_delta.used;
8186 
8187 	return notifier_to_errno(rc);
8188 }
8189 
8190 int netdev_offload_xstats_get(struct net_device *dev,
8191 			      enum netdev_offload_xstats_type type,
8192 			      struct rtnl_hw_stats64 *p_stats, bool *p_used,
8193 			      struct netlink_ext_ack *extack)
8194 {
8195 	ASSERT_RTNL();
8196 
8197 	if (p_stats)
8198 		return netdev_offload_xstats_get_stats(dev, type, p_stats,
8199 						       p_used, extack);
8200 	else
8201 		return netdev_offload_xstats_get_used(dev, type, p_used,
8202 						      extack);
8203 }
8204 EXPORT_SYMBOL(netdev_offload_xstats_get);
8205 
8206 void
8207 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta,
8208 				   const struct rtnl_hw_stats64 *stats)
8209 {
8210 	report_delta->used = true;
8211 	netdev_hw_stats64_add(&report_delta->stats, stats);
8212 }
8213 EXPORT_SYMBOL(netdev_offload_xstats_report_delta);
8214 
8215 void
8216 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used)
8217 {
8218 	report_used->used = true;
8219 }
8220 EXPORT_SYMBOL(netdev_offload_xstats_report_used);
8221 
8222 void netdev_offload_xstats_push_delta(struct net_device *dev,
8223 				      enum netdev_offload_xstats_type type,
8224 				      const struct rtnl_hw_stats64 *p_stats)
8225 {
8226 	struct rtnl_hw_stats64 *stats;
8227 
8228 	ASSERT_RTNL();
8229 
8230 	stats = netdev_offload_xstats_get_ptr(dev, type);
8231 	if (WARN_ON(!stats))
8232 		return;
8233 
8234 	netdev_hw_stats64_add(stats, p_stats);
8235 }
8236 EXPORT_SYMBOL(netdev_offload_xstats_push_delta);
8237 
8238 /**
8239  * netdev_get_xmit_slave - Get the xmit slave of master device
8240  * @dev: device
8241  * @skb: The packet
8242  * @all_slaves: assume all the slaves are active
8243  *
8244  * The reference counters are not incremented so the caller must be
8245  * careful with locks. The caller must hold RCU lock.
8246  * %NULL is returned if no slave is found.
8247  */
8248 
8249 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8250 					 struct sk_buff *skb,
8251 					 bool all_slaves)
8252 {
8253 	const struct net_device_ops *ops = dev->netdev_ops;
8254 
8255 	if (!ops->ndo_get_xmit_slave)
8256 		return NULL;
8257 	return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8258 }
8259 EXPORT_SYMBOL(netdev_get_xmit_slave);
8260 
8261 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8262 						  struct sock *sk)
8263 {
8264 	const struct net_device_ops *ops = dev->netdev_ops;
8265 
8266 	if (!ops->ndo_sk_get_lower_dev)
8267 		return NULL;
8268 	return ops->ndo_sk_get_lower_dev(dev, sk);
8269 }
8270 
8271 /**
8272  * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8273  * @dev: device
8274  * @sk: the socket
8275  *
8276  * %NULL is returned if no lower device is found.
8277  */
8278 
8279 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8280 					    struct sock *sk)
8281 {
8282 	struct net_device *lower;
8283 
8284 	lower = netdev_sk_get_lower_dev(dev, sk);
8285 	while (lower) {
8286 		dev = lower;
8287 		lower = netdev_sk_get_lower_dev(dev, sk);
8288 	}
8289 
8290 	return dev;
8291 }
8292 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8293 
8294 static void netdev_adjacent_add_links(struct net_device *dev)
8295 {
8296 	struct netdev_adjacent *iter;
8297 
8298 	struct net *net = dev_net(dev);
8299 
8300 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8301 		if (!net_eq(net, dev_net(iter->dev)))
8302 			continue;
8303 		netdev_adjacent_sysfs_add(iter->dev, dev,
8304 					  &iter->dev->adj_list.lower);
8305 		netdev_adjacent_sysfs_add(dev, iter->dev,
8306 					  &dev->adj_list.upper);
8307 	}
8308 
8309 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8310 		if (!net_eq(net, dev_net(iter->dev)))
8311 			continue;
8312 		netdev_adjacent_sysfs_add(iter->dev, dev,
8313 					  &iter->dev->adj_list.upper);
8314 		netdev_adjacent_sysfs_add(dev, iter->dev,
8315 					  &dev->adj_list.lower);
8316 	}
8317 }
8318 
8319 static void netdev_adjacent_del_links(struct net_device *dev)
8320 {
8321 	struct netdev_adjacent *iter;
8322 
8323 	struct net *net = dev_net(dev);
8324 
8325 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8326 		if (!net_eq(net, dev_net(iter->dev)))
8327 			continue;
8328 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
8329 					  &iter->dev->adj_list.lower);
8330 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
8331 					  &dev->adj_list.upper);
8332 	}
8333 
8334 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8335 		if (!net_eq(net, dev_net(iter->dev)))
8336 			continue;
8337 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
8338 					  &iter->dev->adj_list.upper);
8339 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
8340 					  &dev->adj_list.lower);
8341 	}
8342 }
8343 
8344 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8345 {
8346 	struct netdev_adjacent *iter;
8347 
8348 	struct net *net = dev_net(dev);
8349 
8350 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8351 		if (!net_eq(net, dev_net(iter->dev)))
8352 			continue;
8353 		netdev_adjacent_sysfs_del(iter->dev, oldname,
8354 					  &iter->dev->adj_list.lower);
8355 		netdev_adjacent_sysfs_add(iter->dev, dev,
8356 					  &iter->dev->adj_list.lower);
8357 	}
8358 
8359 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8360 		if (!net_eq(net, dev_net(iter->dev)))
8361 			continue;
8362 		netdev_adjacent_sysfs_del(iter->dev, oldname,
8363 					  &iter->dev->adj_list.upper);
8364 		netdev_adjacent_sysfs_add(iter->dev, dev,
8365 					  &iter->dev->adj_list.upper);
8366 	}
8367 }
8368 
8369 void *netdev_lower_dev_get_private(struct net_device *dev,
8370 				   struct net_device *lower_dev)
8371 {
8372 	struct netdev_adjacent *lower;
8373 
8374 	if (!lower_dev)
8375 		return NULL;
8376 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8377 	if (!lower)
8378 		return NULL;
8379 
8380 	return lower->private;
8381 }
8382 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8383 
8384 
8385 /**
8386  * netdev_lower_state_changed - Dispatch event about lower device state change
8387  * @lower_dev: device
8388  * @lower_state_info: state to dispatch
8389  *
8390  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8391  * The caller must hold the RTNL lock.
8392  */
8393 void netdev_lower_state_changed(struct net_device *lower_dev,
8394 				void *lower_state_info)
8395 {
8396 	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8397 		.info.dev = lower_dev,
8398 	};
8399 
8400 	ASSERT_RTNL();
8401 	changelowerstate_info.lower_state_info = lower_state_info;
8402 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8403 				      &changelowerstate_info.info);
8404 }
8405 EXPORT_SYMBOL(netdev_lower_state_changed);
8406 
8407 static void dev_change_rx_flags(struct net_device *dev, int flags)
8408 {
8409 	const struct net_device_ops *ops = dev->netdev_ops;
8410 
8411 	if (ops->ndo_change_rx_flags)
8412 		ops->ndo_change_rx_flags(dev, flags);
8413 }
8414 
8415 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8416 {
8417 	unsigned int old_flags = dev->flags;
8418 	kuid_t uid;
8419 	kgid_t gid;
8420 
8421 	ASSERT_RTNL();
8422 
8423 	dev->flags |= IFF_PROMISC;
8424 	dev->promiscuity += inc;
8425 	if (dev->promiscuity == 0) {
8426 		/*
8427 		 * Avoid overflow.
8428 		 * If inc causes overflow, untouch promisc and return error.
8429 		 */
8430 		if (inc < 0)
8431 			dev->flags &= ~IFF_PROMISC;
8432 		else {
8433 			dev->promiscuity -= inc;
8434 			netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
8435 			return -EOVERFLOW;
8436 		}
8437 	}
8438 	if (dev->flags != old_flags) {
8439 		netdev_info(dev, "%s promiscuous mode\n",
8440 			    dev->flags & IFF_PROMISC ? "entered" : "left");
8441 		if (audit_enabled) {
8442 			current_uid_gid(&uid, &gid);
8443 			audit_log(audit_context(), GFP_ATOMIC,
8444 				  AUDIT_ANOM_PROMISCUOUS,
8445 				  "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8446 				  dev->name, (dev->flags & IFF_PROMISC),
8447 				  (old_flags & IFF_PROMISC),
8448 				  from_kuid(&init_user_ns, audit_get_loginuid(current)),
8449 				  from_kuid(&init_user_ns, uid),
8450 				  from_kgid(&init_user_ns, gid),
8451 				  audit_get_sessionid(current));
8452 		}
8453 
8454 		dev_change_rx_flags(dev, IFF_PROMISC);
8455 	}
8456 	if (notify)
8457 		__dev_notify_flags(dev, old_flags, IFF_PROMISC, 0, NULL);
8458 	return 0;
8459 }
8460 
8461 /**
8462  *	dev_set_promiscuity	- update promiscuity count on a device
8463  *	@dev: device
8464  *	@inc: modifier
8465  *
8466  *	Add or remove promiscuity from a device. While the count in the device
8467  *	remains above zero the interface remains promiscuous. Once it hits zero
8468  *	the device reverts back to normal filtering operation. A negative inc
8469  *	value is used to drop promiscuity on the device.
8470  *	Return 0 if successful or a negative errno code on error.
8471  */
8472 int dev_set_promiscuity(struct net_device *dev, int inc)
8473 {
8474 	unsigned int old_flags = dev->flags;
8475 	int err;
8476 
8477 	err = __dev_set_promiscuity(dev, inc, true);
8478 	if (err < 0)
8479 		return err;
8480 	if (dev->flags != old_flags)
8481 		dev_set_rx_mode(dev);
8482 	return err;
8483 }
8484 EXPORT_SYMBOL(dev_set_promiscuity);
8485 
8486 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8487 {
8488 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8489 
8490 	ASSERT_RTNL();
8491 
8492 	dev->flags |= IFF_ALLMULTI;
8493 	dev->allmulti += inc;
8494 	if (dev->allmulti == 0) {
8495 		/*
8496 		 * Avoid overflow.
8497 		 * If inc causes overflow, untouch allmulti and return error.
8498 		 */
8499 		if (inc < 0)
8500 			dev->flags &= ~IFF_ALLMULTI;
8501 		else {
8502 			dev->allmulti -= inc;
8503 			netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
8504 			return -EOVERFLOW;
8505 		}
8506 	}
8507 	if (dev->flags ^ old_flags) {
8508 		netdev_info(dev, "%s allmulticast mode\n",
8509 			    dev->flags & IFF_ALLMULTI ? "entered" : "left");
8510 		dev_change_rx_flags(dev, IFF_ALLMULTI);
8511 		dev_set_rx_mode(dev);
8512 		if (notify)
8513 			__dev_notify_flags(dev, old_flags,
8514 					   dev->gflags ^ old_gflags, 0, NULL);
8515 	}
8516 	return 0;
8517 }
8518 
8519 /**
8520  *	dev_set_allmulti	- update allmulti count on a device
8521  *	@dev: device
8522  *	@inc: modifier
8523  *
8524  *	Add or remove reception of all multicast frames to a device. While the
8525  *	count in the device remains above zero the interface remains listening
8526  *	to all interfaces. Once it hits zero the device reverts back to normal
8527  *	filtering operation. A negative @inc value is used to drop the counter
8528  *	when releasing a resource needing all multicasts.
8529  *	Return 0 if successful or a negative errno code on error.
8530  */
8531 
8532 int dev_set_allmulti(struct net_device *dev, int inc)
8533 {
8534 	return __dev_set_allmulti(dev, inc, true);
8535 }
8536 EXPORT_SYMBOL(dev_set_allmulti);
8537 
8538 /*
8539  *	Upload unicast and multicast address lists to device and
8540  *	configure RX filtering. When the device doesn't support unicast
8541  *	filtering it is put in promiscuous mode while unicast addresses
8542  *	are present.
8543  */
8544 void __dev_set_rx_mode(struct net_device *dev)
8545 {
8546 	const struct net_device_ops *ops = dev->netdev_ops;
8547 
8548 	/* dev_open will call this function so the list will stay sane. */
8549 	if (!(dev->flags&IFF_UP))
8550 		return;
8551 
8552 	if (!netif_device_present(dev))
8553 		return;
8554 
8555 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8556 		/* Unicast addresses changes may only happen under the rtnl,
8557 		 * therefore calling __dev_set_promiscuity here is safe.
8558 		 */
8559 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8560 			__dev_set_promiscuity(dev, 1, false);
8561 			dev->uc_promisc = true;
8562 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8563 			__dev_set_promiscuity(dev, -1, false);
8564 			dev->uc_promisc = false;
8565 		}
8566 	}
8567 
8568 	if (ops->ndo_set_rx_mode)
8569 		ops->ndo_set_rx_mode(dev);
8570 }
8571 
8572 void dev_set_rx_mode(struct net_device *dev)
8573 {
8574 	netif_addr_lock_bh(dev);
8575 	__dev_set_rx_mode(dev);
8576 	netif_addr_unlock_bh(dev);
8577 }
8578 
8579 /**
8580  *	dev_get_flags - get flags reported to userspace
8581  *	@dev: device
8582  *
8583  *	Get the combination of flag bits exported through APIs to userspace.
8584  */
8585 unsigned int dev_get_flags(const struct net_device *dev)
8586 {
8587 	unsigned int flags;
8588 
8589 	flags = (dev->flags & ~(IFF_PROMISC |
8590 				IFF_ALLMULTI |
8591 				IFF_RUNNING |
8592 				IFF_LOWER_UP |
8593 				IFF_DORMANT)) |
8594 		(dev->gflags & (IFF_PROMISC |
8595 				IFF_ALLMULTI));
8596 
8597 	if (netif_running(dev)) {
8598 		if (netif_oper_up(dev))
8599 			flags |= IFF_RUNNING;
8600 		if (netif_carrier_ok(dev))
8601 			flags |= IFF_LOWER_UP;
8602 		if (netif_dormant(dev))
8603 			flags |= IFF_DORMANT;
8604 	}
8605 
8606 	return flags;
8607 }
8608 EXPORT_SYMBOL(dev_get_flags);
8609 
8610 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8611 		       struct netlink_ext_ack *extack)
8612 {
8613 	unsigned int old_flags = dev->flags;
8614 	int ret;
8615 
8616 	ASSERT_RTNL();
8617 
8618 	/*
8619 	 *	Set the flags on our device.
8620 	 */
8621 
8622 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8623 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8624 			       IFF_AUTOMEDIA)) |
8625 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8626 				    IFF_ALLMULTI));
8627 
8628 	/*
8629 	 *	Load in the correct multicast list now the flags have changed.
8630 	 */
8631 
8632 	if ((old_flags ^ flags) & IFF_MULTICAST)
8633 		dev_change_rx_flags(dev, IFF_MULTICAST);
8634 
8635 	dev_set_rx_mode(dev);
8636 
8637 	/*
8638 	 *	Have we downed the interface. We handle IFF_UP ourselves
8639 	 *	according to user attempts to set it, rather than blindly
8640 	 *	setting it.
8641 	 */
8642 
8643 	ret = 0;
8644 	if ((old_flags ^ flags) & IFF_UP) {
8645 		if (old_flags & IFF_UP)
8646 			__dev_close(dev);
8647 		else
8648 			ret = __dev_open(dev, extack);
8649 	}
8650 
8651 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
8652 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
8653 		unsigned int old_flags = dev->flags;
8654 
8655 		dev->gflags ^= IFF_PROMISC;
8656 
8657 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
8658 			if (dev->flags != old_flags)
8659 				dev_set_rx_mode(dev);
8660 	}
8661 
8662 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8663 	 * is important. Some (broken) drivers set IFF_PROMISC, when
8664 	 * IFF_ALLMULTI is requested not asking us and not reporting.
8665 	 */
8666 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8667 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8668 
8669 		dev->gflags ^= IFF_ALLMULTI;
8670 		__dev_set_allmulti(dev, inc, false);
8671 	}
8672 
8673 	return ret;
8674 }
8675 
8676 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8677 			unsigned int gchanges, u32 portid,
8678 			const struct nlmsghdr *nlh)
8679 {
8680 	unsigned int changes = dev->flags ^ old_flags;
8681 
8682 	if (gchanges)
8683 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC, portid, nlh);
8684 
8685 	if (changes & IFF_UP) {
8686 		if (dev->flags & IFF_UP)
8687 			call_netdevice_notifiers(NETDEV_UP, dev);
8688 		else
8689 			call_netdevice_notifiers(NETDEV_DOWN, dev);
8690 	}
8691 
8692 	if (dev->flags & IFF_UP &&
8693 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8694 		struct netdev_notifier_change_info change_info = {
8695 			.info = {
8696 				.dev = dev,
8697 			},
8698 			.flags_changed = changes,
8699 		};
8700 
8701 		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8702 	}
8703 }
8704 
8705 /**
8706  *	dev_change_flags - change device settings
8707  *	@dev: device
8708  *	@flags: device state flags
8709  *	@extack: netlink extended ack
8710  *
8711  *	Change settings on device based state flags. The flags are
8712  *	in the userspace exported format.
8713  */
8714 int dev_change_flags(struct net_device *dev, unsigned int flags,
8715 		     struct netlink_ext_ack *extack)
8716 {
8717 	int ret;
8718 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8719 
8720 	ret = __dev_change_flags(dev, flags, extack);
8721 	if (ret < 0)
8722 		return ret;
8723 
8724 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8725 	__dev_notify_flags(dev, old_flags, changes, 0, NULL);
8726 	return ret;
8727 }
8728 EXPORT_SYMBOL(dev_change_flags);
8729 
8730 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8731 {
8732 	const struct net_device_ops *ops = dev->netdev_ops;
8733 
8734 	if (ops->ndo_change_mtu)
8735 		return ops->ndo_change_mtu(dev, new_mtu);
8736 
8737 	/* Pairs with all the lockless reads of dev->mtu in the stack */
8738 	WRITE_ONCE(dev->mtu, new_mtu);
8739 	return 0;
8740 }
8741 EXPORT_SYMBOL(__dev_set_mtu);
8742 
8743 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8744 		     struct netlink_ext_ack *extack)
8745 {
8746 	/* MTU must be positive, and in range */
8747 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8748 		NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8749 		return -EINVAL;
8750 	}
8751 
8752 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8753 		NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8754 		return -EINVAL;
8755 	}
8756 	return 0;
8757 }
8758 
8759 /**
8760  *	dev_set_mtu_ext - Change maximum transfer unit
8761  *	@dev: device
8762  *	@new_mtu: new transfer unit
8763  *	@extack: netlink extended ack
8764  *
8765  *	Change the maximum transfer size of the network device.
8766  */
8767 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8768 		    struct netlink_ext_ack *extack)
8769 {
8770 	int err, orig_mtu;
8771 
8772 	if (new_mtu == dev->mtu)
8773 		return 0;
8774 
8775 	err = dev_validate_mtu(dev, new_mtu, extack);
8776 	if (err)
8777 		return err;
8778 
8779 	if (!netif_device_present(dev))
8780 		return -ENODEV;
8781 
8782 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8783 	err = notifier_to_errno(err);
8784 	if (err)
8785 		return err;
8786 
8787 	orig_mtu = dev->mtu;
8788 	err = __dev_set_mtu(dev, new_mtu);
8789 
8790 	if (!err) {
8791 		err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8792 						   orig_mtu);
8793 		err = notifier_to_errno(err);
8794 		if (err) {
8795 			/* setting mtu back and notifying everyone again,
8796 			 * so that they have a chance to revert changes.
8797 			 */
8798 			__dev_set_mtu(dev, orig_mtu);
8799 			call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8800 						     new_mtu);
8801 		}
8802 	}
8803 	return err;
8804 }
8805 
8806 int dev_set_mtu(struct net_device *dev, int new_mtu)
8807 {
8808 	struct netlink_ext_ack extack;
8809 	int err;
8810 
8811 	memset(&extack, 0, sizeof(extack));
8812 	err = dev_set_mtu_ext(dev, new_mtu, &extack);
8813 	if (err && extack._msg)
8814 		net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8815 	return err;
8816 }
8817 EXPORT_SYMBOL(dev_set_mtu);
8818 
8819 /**
8820  *	dev_change_tx_queue_len - Change TX queue length of a netdevice
8821  *	@dev: device
8822  *	@new_len: new tx queue length
8823  */
8824 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8825 {
8826 	unsigned int orig_len = dev->tx_queue_len;
8827 	int res;
8828 
8829 	if (new_len != (unsigned int)new_len)
8830 		return -ERANGE;
8831 
8832 	if (new_len != orig_len) {
8833 		dev->tx_queue_len = new_len;
8834 		res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8835 		res = notifier_to_errno(res);
8836 		if (res)
8837 			goto err_rollback;
8838 		res = dev_qdisc_change_tx_queue_len(dev);
8839 		if (res)
8840 			goto err_rollback;
8841 	}
8842 
8843 	return 0;
8844 
8845 err_rollback:
8846 	netdev_err(dev, "refused to change device tx_queue_len\n");
8847 	dev->tx_queue_len = orig_len;
8848 	return res;
8849 }
8850 
8851 /**
8852  *	dev_set_group - Change group this device belongs to
8853  *	@dev: device
8854  *	@new_group: group this device should belong to
8855  */
8856 void dev_set_group(struct net_device *dev, int new_group)
8857 {
8858 	dev->group = new_group;
8859 }
8860 
8861 /**
8862  *	dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8863  *	@dev: device
8864  *	@addr: new address
8865  *	@extack: netlink extended ack
8866  */
8867 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8868 			      struct netlink_ext_ack *extack)
8869 {
8870 	struct netdev_notifier_pre_changeaddr_info info = {
8871 		.info.dev = dev,
8872 		.info.extack = extack,
8873 		.dev_addr = addr,
8874 	};
8875 	int rc;
8876 
8877 	rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8878 	return notifier_to_errno(rc);
8879 }
8880 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8881 
8882 /**
8883  *	dev_set_mac_address - Change Media Access Control Address
8884  *	@dev: device
8885  *	@sa: new address
8886  *	@extack: netlink extended ack
8887  *
8888  *	Change the hardware (MAC) address of the device
8889  */
8890 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8891 			struct netlink_ext_ack *extack)
8892 {
8893 	const struct net_device_ops *ops = dev->netdev_ops;
8894 	int err;
8895 
8896 	if (!ops->ndo_set_mac_address)
8897 		return -EOPNOTSUPP;
8898 	if (sa->sa_family != dev->type)
8899 		return -EINVAL;
8900 	if (!netif_device_present(dev))
8901 		return -ENODEV;
8902 	err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8903 	if (err)
8904 		return err;
8905 	if (memcmp(dev->dev_addr, sa->sa_data, dev->addr_len)) {
8906 		err = ops->ndo_set_mac_address(dev, sa);
8907 		if (err)
8908 			return err;
8909 	}
8910 	dev->addr_assign_type = NET_ADDR_SET;
8911 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8912 	add_device_randomness(dev->dev_addr, dev->addr_len);
8913 	return 0;
8914 }
8915 EXPORT_SYMBOL(dev_set_mac_address);
8916 
8917 static DECLARE_RWSEM(dev_addr_sem);
8918 
8919 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
8920 			     struct netlink_ext_ack *extack)
8921 {
8922 	int ret;
8923 
8924 	down_write(&dev_addr_sem);
8925 	ret = dev_set_mac_address(dev, sa, extack);
8926 	up_write(&dev_addr_sem);
8927 	return ret;
8928 }
8929 EXPORT_SYMBOL(dev_set_mac_address_user);
8930 
8931 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
8932 {
8933 	size_t size = sizeof(sa->sa_data_min);
8934 	struct net_device *dev;
8935 	int ret = 0;
8936 
8937 	down_read(&dev_addr_sem);
8938 	rcu_read_lock();
8939 
8940 	dev = dev_get_by_name_rcu(net, dev_name);
8941 	if (!dev) {
8942 		ret = -ENODEV;
8943 		goto unlock;
8944 	}
8945 	if (!dev->addr_len)
8946 		memset(sa->sa_data, 0, size);
8947 	else
8948 		memcpy(sa->sa_data, dev->dev_addr,
8949 		       min_t(size_t, size, dev->addr_len));
8950 	sa->sa_family = dev->type;
8951 
8952 unlock:
8953 	rcu_read_unlock();
8954 	up_read(&dev_addr_sem);
8955 	return ret;
8956 }
8957 EXPORT_SYMBOL(dev_get_mac_address);
8958 
8959 /**
8960  *	dev_change_carrier - Change device carrier
8961  *	@dev: device
8962  *	@new_carrier: new value
8963  *
8964  *	Change device carrier
8965  */
8966 int dev_change_carrier(struct net_device *dev, bool new_carrier)
8967 {
8968 	const struct net_device_ops *ops = dev->netdev_ops;
8969 
8970 	if (!ops->ndo_change_carrier)
8971 		return -EOPNOTSUPP;
8972 	if (!netif_device_present(dev))
8973 		return -ENODEV;
8974 	return ops->ndo_change_carrier(dev, new_carrier);
8975 }
8976 
8977 /**
8978  *	dev_get_phys_port_id - Get device physical port ID
8979  *	@dev: device
8980  *	@ppid: port ID
8981  *
8982  *	Get device physical port ID
8983  */
8984 int dev_get_phys_port_id(struct net_device *dev,
8985 			 struct netdev_phys_item_id *ppid)
8986 {
8987 	const struct net_device_ops *ops = dev->netdev_ops;
8988 
8989 	if (!ops->ndo_get_phys_port_id)
8990 		return -EOPNOTSUPP;
8991 	return ops->ndo_get_phys_port_id(dev, ppid);
8992 }
8993 
8994 /**
8995  *	dev_get_phys_port_name - Get device physical port name
8996  *	@dev: device
8997  *	@name: port name
8998  *	@len: limit of bytes to copy to name
8999  *
9000  *	Get device physical port name
9001  */
9002 int dev_get_phys_port_name(struct net_device *dev,
9003 			   char *name, size_t len)
9004 {
9005 	const struct net_device_ops *ops = dev->netdev_ops;
9006 	int err;
9007 
9008 	if (ops->ndo_get_phys_port_name) {
9009 		err = ops->ndo_get_phys_port_name(dev, name, len);
9010 		if (err != -EOPNOTSUPP)
9011 			return err;
9012 	}
9013 	return devlink_compat_phys_port_name_get(dev, name, len);
9014 }
9015 
9016 /**
9017  *	dev_get_port_parent_id - Get the device's port parent identifier
9018  *	@dev: network device
9019  *	@ppid: pointer to a storage for the port's parent identifier
9020  *	@recurse: allow/disallow recursion to lower devices
9021  *
9022  *	Get the devices's port parent identifier
9023  */
9024 int dev_get_port_parent_id(struct net_device *dev,
9025 			   struct netdev_phys_item_id *ppid,
9026 			   bool recurse)
9027 {
9028 	const struct net_device_ops *ops = dev->netdev_ops;
9029 	struct netdev_phys_item_id first = { };
9030 	struct net_device *lower_dev;
9031 	struct list_head *iter;
9032 	int err;
9033 
9034 	if (ops->ndo_get_port_parent_id) {
9035 		err = ops->ndo_get_port_parent_id(dev, ppid);
9036 		if (err != -EOPNOTSUPP)
9037 			return err;
9038 	}
9039 
9040 	err = devlink_compat_switch_id_get(dev, ppid);
9041 	if (!recurse || err != -EOPNOTSUPP)
9042 		return err;
9043 
9044 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
9045 		err = dev_get_port_parent_id(lower_dev, ppid, true);
9046 		if (err)
9047 			break;
9048 		if (!first.id_len)
9049 			first = *ppid;
9050 		else if (memcmp(&first, ppid, sizeof(*ppid)))
9051 			return -EOPNOTSUPP;
9052 	}
9053 
9054 	return err;
9055 }
9056 EXPORT_SYMBOL(dev_get_port_parent_id);
9057 
9058 /**
9059  *	netdev_port_same_parent_id - Indicate if two network devices have
9060  *	the same port parent identifier
9061  *	@a: first network device
9062  *	@b: second network device
9063  */
9064 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
9065 {
9066 	struct netdev_phys_item_id a_id = { };
9067 	struct netdev_phys_item_id b_id = { };
9068 
9069 	if (dev_get_port_parent_id(a, &a_id, true) ||
9070 	    dev_get_port_parent_id(b, &b_id, true))
9071 		return false;
9072 
9073 	return netdev_phys_item_id_same(&a_id, &b_id);
9074 }
9075 EXPORT_SYMBOL(netdev_port_same_parent_id);
9076 
9077 static void netdev_dpll_pin_assign(struct net_device *dev, struct dpll_pin *dpll_pin)
9078 {
9079 #if IS_ENABLED(CONFIG_DPLL)
9080 	rtnl_lock();
9081 	dev->dpll_pin = dpll_pin;
9082 	rtnl_unlock();
9083 #endif
9084 }
9085 
9086 void netdev_dpll_pin_set(struct net_device *dev, struct dpll_pin *dpll_pin)
9087 {
9088 	WARN_ON(!dpll_pin);
9089 	netdev_dpll_pin_assign(dev, dpll_pin);
9090 }
9091 EXPORT_SYMBOL(netdev_dpll_pin_set);
9092 
9093 void netdev_dpll_pin_clear(struct net_device *dev)
9094 {
9095 	netdev_dpll_pin_assign(dev, NULL);
9096 }
9097 EXPORT_SYMBOL(netdev_dpll_pin_clear);
9098 
9099 /**
9100  *	dev_change_proto_down - set carrier according to proto_down.
9101  *
9102  *	@dev: device
9103  *	@proto_down: new value
9104  */
9105 int dev_change_proto_down(struct net_device *dev, bool proto_down)
9106 {
9107 	if (!(dev->priv_flags & IFF_CHANGE_PROTO_DOWN))
9108 		return -EOPNOTSUPP;
9109 	if (!netif_device_present(dev))
9110 		return -ENODEV;
9111 	if (proto_down)
9112 		netif_carrier_off(dev);
9113 	else
9114 		netif_carrier_on(dev);
9115 	dev->proto_down = proto_down;
9116 	return 0;
9117 }
9118 
9119 /**
9120  *	dev_change_proto_down_reason - proto down reason
9121  *
9122  *	@dev: device
9123  *	@mask: proto down mask
9124  *	@value: proto down value
9125  */
9126 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
9127 				  u32 value)
9128 {
9129 	int b;
9130 
9131 	if (!mask) {
9132 		dev->proto_down_reason = value;
9133 	} else {
9134 		for_each_set_bit(b, &mask, 32) {
9135 			if (value & (1 << b))
9136 				dev->proto_down_reason |= BIT(b);
9137 			else
9138 				dev->proto_down_reason &= ~BIT(b);
9139 		}
9140 	}
9141 }
9142 
9143 struct bpf_xdp_link {
9144 	struct bpf_link link;
9145 	struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9146 	int flags;
9147 };
9148 
9149 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9150 {
9151 	if (flags & XDP_FLAGS_HW_MODE)
9152 		return XDP_MODE_HW;
9153 	if (flags & XDP_FLAGS_DRV_MODE)
9154 		return XDP_MODE_DRV;
9155 	if (flags & XDP_FLAGS_SKB_MODE)
9156 		return XDP_MODE_SKB;
9157 	return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9158 }
9159 
9160 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9161 {
9162 	switch (mode) {
9163 	case XDP_MODE_SKB:
9164 		return generic_xdp_install;
9165 	case XDP_MODE_DRV:
9166 	case XDP_MODE_HW:
9167 		return dev->netdev_ops->ndo_bpf;
9168 	default:
9169 		return NULL;
9170 	}
9171 }
9172 
9173 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9174 					 enum bpf_xdp_mode mode)
9175 {
9176 	return dev->xdp_state[mode].link;
9177 }
9178 
9179 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9180 				     enum bpf_xdp_mode mode)
9181 {
9182 	struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9183 
9184 	if (link)
9185 		return link->link.prog;
9186 	return dev->xdp_state[mode].prog;
9187 }
9188 
9189 u8 dev_xdp_prog_count(struct net_device *dev)
9190 {
9191 	u8 count = 0;
9192 	int i;
9193 
9194 	for (i = 0; i < __MAX_XDP_MODE; i++)
9195 		if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9196 			count++;
9197 	return count;
9198 }
9199 EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
9200 
9201 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9202 {
9203 	struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9204 
9205 	return prog ? prog->aux->id : 0;
9206 }
9207 
9208 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9209 			     struct bpf_xdp_link *link)
9210 {
9211 	dev->xdp_state[mode].link = link;
9212 	dev->xdp_state[mode].prog = NULL;
9213 }
9214 
9215 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9216 			     struct bpf_prog *prog)
9217 {
9218 	dev->xdp_state[mode].link = NULL;
9219 	dev->xdp_state[mode].prog = prog;
9220 }
9221 
9222 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9223 			   bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9224 			   u32 flags, struct bpf_prog *prog)
9225 {
9226 	struct netdev_bpf xdp;
9227 	int err;
9228 
9229 	memset(&xdp, 0, sizeof(xdp));
9230 	xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9231 	xdp.extack = extack;
9232 	xdp.flags = flags;
9233 	xdp.prog = prog;
9234 
9235 	/* Drivers assume refcnt is already incremented (i.e, prog pointer is
9236 	 * "moved" into driver), so they don't increment it on their own, but
9237 	 * they do decrement refcnt when program is detached or replaced.
9238 	 * Given net_device also owns link/prog, we need to bump refcnt here
9239 	 * to prevent drivers from underflowing it.
9240 	 */
9241 	if (prog)
9242 		bpf_prog_inc(prog);
9243 	err = bpf_op(dev, &xdp);
9244 	if (err) {
9245 		if (prog)
9246 			bpf_prog_put(prog);
9247 		return err;
9248 	}
9249 
9250 	if (mode != XDP_MODE_HW)
9251 		bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9252 
9253 	return 0;
9254 }
9255 
9256 static void dev_xdp_uninstall(struct net_device *dev)
9257 {
9258 	struct bpf_xdp_link *link;
9259 	struct bpf_prog *prog;
9260 	enum bpf_xdp_mode mode;
9261 	bpf_op_t bpf_op;
9262 
9263 	ASSERT_RTNL();
9264 
9265 	for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9266 		prog = dev_xdp_prog(dev, mode);
9267 		if (!prog)
9268 			continue;
9269 
9270 		bpf_op = dev_xdp_bpf_op(dev, mode);
9271 		if (!bpf_op)
9272 			continue;
9273 
9274 		WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9275 
9276 		/* auto-detach link from net device */
9277 		link = dev_xdp_link(dev, mode);
9278 		if (link)
9279 			link->dev = NULL;
9280 		else
9281 			bpf_prog_put(prog);
9282 
9283 		dev_xdp_set_link(dev, mode, NULL);
9284 	}
9285 }
9286 
9287 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9288 			  struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9289 			  struct bpf_prog *old_prog, u32 flags)
9290 {
9291 	unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9292 	struct bpf_prog *cur_prog;
9293 	struct net_device *upper;
9294 	struct list_head *iter;
9295 	enum bpf_xdp_mode mode;
9296 	bpf_op_t bpf_op;
9297 	int err;
9298 
9299 	ASSERT_RTNL();
9300 
9301 	/* either link or prog attachment, never both */
9302 	if (link && (new_prog || old_prog))
9303 		return -EINVAL;
9304 	/* link supports only XDP mode flags */
9305 	if (link && (flags & ~XDP_FLAGS_MODES)) {
9306 		NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9307 		return -EINVAL;
9308 	}
9309 	/* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9310 	if (num_modes > 1) {
9311 		NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9312 		return -EINVAL;
9313 	}
9314 	/* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9315 	if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9316 		NL_SET_ERR_MSG(extack,
9317 			       "More than one program loaded, unset mode is ambiguous");
9318 		return -EINVAL;
9319 	}
9320 	/* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9321 	if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9322 		NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9323 		return -EINVAL;
9324 	}
9325 
9326 	mode = dev_xdp_mode(dev, flags);
9327 	/* can't replace attached link */
9328 	if (dev_xdp_link(dev, mode)) {
9329 		NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9330 		return -EBUSY;
9331 	}
9332 
9333 	/* don't allow if an upper device already has a program */
9334 	netdev_for_each_upper_dev_rcu(dev, upper, iter) {
9335 		if (dev_xdp_prog_count(upper) > 0) {
9336 			NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
9337 			return -EEXIST;
9338 		}
9339 	}
9340 
9341 	cur_prog = dev_xdp_prog(dev, mode);
9342 	/* can't replace attached prog with link */
9343 	if (link && cur_prog) {
9344 		NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9345 		return -EBUSY;
9346 	}
9347 	if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9348 		NL_SET_ERR_MSG(extack, "Active program does not match expected");
9349 		return -EEXIST;
9350 	}
9351 
9352 	/* put effective new program into new_prog */
9353 	if (link)
9354 		new_prog = link->link.prog;
9355 
9356 	if (new_prog) {
9357 		bool offload = mode == XDP_MODE_HW;
9358 		enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9359 					       ? XDP_MODE_DRV : XDP_MODE_SKB;
9360 
9361 		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9362 			NL_SET_ERR_MSG(extack, "XDP program already attached");
9363 			return -EBUSY;
9364 		}
9365 		if (!offload && dev_xdp_prog(dev, other_mode)) {
9366 			NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9367 			return -EEXIST;
9368 		}
9369 		if (!offload && bpf_prog_is_offloaded(new_prog->aux)) {
9370 			NL_SET_ERR_MSG(extack, "Using offloaded program without HW_MODE flag is not supported");
9371 			return -EINVAL;
9372 		}
9373 		if (bpf_prog_is_dev_bound(new_prog->aux) && !bpf_offload_dev_match(new_prog, dev)) {
9374 			NL_SET_ERR_MSG(extack, "Program bound to different device");
9375 			return -EINVAL;
9376 		}
9377 		if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9378 			NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9379 			return -EINVAL;
9380 		}
9381 		if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9382 			NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9383 			return -EINVAL;
9384 		}
9385 	}
9386 
9387 	/* don't call drivers if the effective program didn't change */
9388 	if (new_prog != cur_prog) {
9389 		bpf_op = dev_xdp_bpf_op(dev, mode);
9390 		if (!bpf_op) {
9391 			NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9392 			return -EOPNOTSUPP;
9393 		}
9394 
9395 		err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9396 		if (err)
9397 			return err;
9398 	}
9399 
9400 	if (link)
9401 		dev_xdp_set_link(dev, mode, link);
9402 	else
9403 		dev_xdp_set_prog(dev, mode, new_prog);
9404 	if (cur_prog)
9405 		bpf_prog_put(cur_prog);
9406 
9407 	return 0;
9408 }
9409 
9410 static int dev_xdp_attach_link(struct net_device *dev,
9411 			       struct netlink_ext_ack *extack,
9412 			       struct bpf_xdp_link *link)
9413 {
9414 	return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9415 }
9416 
9417 static int dev_xdp_detach_link(struct net_device *dev,
9418 			       struct netlink_ext_ack *extack,
9419 			       struct bpf_xdp_link *link)
9420 {
9421 	enum bpf_xdp_mode mode;
9422 	bpf_op_t bpf_op;
9423 
9424 	ASSERT_RTNL();
9425 
9426 	mode = dev_xdp_mode(dev, link->flags);
9427 	if (dev_xdp_link(dev, mode) != link)
9428 		return -EINVAL;
9429 
9430 	bpf_op = dev_xdp_bpf_op(dev, mode);
9431 	WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9432 	dev_xdp_set_link(dev, mode, NULL);
9433 	return 0;
9434 }
9435 
9436 static void bpf_xdp_link_release(struct bpf_link *link)
9437 {
9438 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9439 
9440 	rtnl_lock();
9441 
9442 	/* if racing with net_device's tear down, xdp_link->dev might be
9443 	 * already NULL, in which case link was already auto-detached
9444 	 */
9445 	if (xdp_link->dev) {
9446 		WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9447 		xdp_link->dev = NULL;
9448 	}
9449 
9450 	rtnl_unlock();
9451 }
9452 
9453 static int bpf_xdp_link_detach(struct bpf_link *link)
9454 {
9455 	bpf_xdp_link_release(link);
9456 	return 0;
9457 }
9458 
9459 static void bpf_xdp_link_dealloc(struct bpf_link *link)
9460 {
9461 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9462 
9463 	kfree(xdp_link);
9464 }
9465 
9466 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9467 				     struct seq_file *seq)
9468 {
9469 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9470 	u32 ifindex = 0;
9471 
9472 	rtnl_lock();
9473 	if (xdp_link->dev)
9474 		ifindex = xdp_link->dev->ifindex;
9475 	rtnl_unlock();
9476 
9477 	seq_printf(seq, "ifindex:\t%u\n", ifindex);
9478 }
9479 
9480 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9481 				       struct bpf_link_info *info)
9482 {
9483 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9484 	u32 ifindex = 0;
9485 
9486 	rtnl_lock();
9487 	if (xdp_link->dev)
9488 		ifindex = xdp_link->dev->ifindex;
9489 	rtnl_unlock();
9490 
9491 	info->xdp.ifindex = ifindex;
9492 	return 0;
9493 }
9494 
9495 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9496 			       struct bpf_prog *old_prog)
9497 {
9498 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9499 	enum bpf_xdp_mode mode;
9500 	bpf_op_t bpf_op;
9501 	int err = 0;
9502 
9503 	rtnl_lock();
9504 
9505 	/* link might have been auto-released already, so fail */
9506 	if (!xdp_link->dev) {
9507 		err = -ENOLINK;
9508 		goto out_unlock;
9509 	}
9510 
9511 	if (old_prog && link->prog != old_prog) {
9512 		err = -EPERM;
9513 		goto out_unlock;
9514 	}
9515 	old_prog = link->prog;
9516 	if (old_prog->type != new_prog->type ||
9517 	    old_prog->expected_attach_type != new_prog->expected_attach_type) {
9518 		err = -EINVAL;
9519 		goto out_unlock;
9520 	}
9521 
9522 	if (old_prog == new_prog) {
9523 		/* no-op, don't disturb drivers */
9524 		bpf_prog_put(new_prog);
9525 		goto out_unlock;
9526 	}
9527 
9528 	mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9529 	bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9530 	err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9531 			      xdp_link->flags, new_prog);
9532 	if (err)
9533 		goto out_unlock;
9534 
9535 	old_prog = xchg(&link->prog, new_prog);
9536 	bpf_prog_put(old_prog);
9537 
9538 out_unlock:
9539 	rtnl_unlock();
9540 	return err;
9541 }
9542 
9543 static const struct bpf_link_ops bpf_xdp_link_lops = {
9544 	.release = bpf_xdp_link_release,
9545 	.dealloc = bpf_xdp_link_dealloc,
9546 	.detach = bpf_xdp_link_detach,
9547 	.show_fdinfo = bpf_xdp_link_show_fdinfo,
9548 	.fill_link_info = bpf_xdp_link_fill_link_info,
9549 	.update_prog = bpf_xdp_link_update,
9550 };
9551 
9552 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9553 {
9554 	struct net *net = current->nsproxy->net_ns;
9555 	struct bpf_link_primer link_primer;
9556 	struct netlink_ext_ack extack = {};
9557 	struct bpf_xdp_link *link;
9558 	struct net_device *dev;
9559 	int err, fd;
9560 
9561 	rtnl_lock();
9562 	dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9563 	if (!dev) {
9564 		rtnl_unlock();
9565 		return -EINVAL;
9566 	}
9567 
9568 	link = kzalloc(sizeof(*link), GFP_USER);
9569 	if (!link) {
9570 		err = -ENOMEM;
9571 		goto unlock;
9572 	}
9573 
9574 	bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9575 	link->dev = dev;
9576 	link->flags = attr->link_create.flags;
9577 
9578 	err = bpf_link_prime(&link->link, &link_primer);
9579 	if (err) {
9580 		kfree(link);
9581 		goto unlock;
9582 	}
9583 
9584 	err = dev_xdp_attach_link(dev, &extack, link);
9585 	rtnl_unlock();
9586 
9587 	if (err) {
9588 		link->dev = NULL;
9589 		bpf_link_cleanup(&link_primer);
9590 		trace_bpf_xdp_link_attach_failed(extack._msg);
9591 		goto out_put_dev;
9592 	}
9593 
9594 	fd = bpf_link_settle(&link_primer);
9595 	/* link itself doesn't hold dev's refcnt to not complicate shutdown */
9596 	dev_put(dev);
9597 	return fd;
9598 
9599 unlock:
9600 	rtnl_unlock();
9601 
9602 out_put_dev:
9603 	dev_put(dev);
9604 	return err;
9605 }
9606 
9607 /**
9608  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
9609  *	@dev: device
9610  *	@extack: netlink extended ack
9611  *	@fd: new program fd or negative value to clear
9612  *	@expected_fd: old program fd that userspace expects to replace or clear
9613  *	@flags: xdp-related flags
9614  *
9615  *	Set or clear a bpf program for a device
9616  */
9617 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9618 		      int fd, int expected_fd, u32 flags)
9619 {
9620 	enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9621 	struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9622 	int err;
9623 
9624 	ASSERT_RTNL();
9625 
9626 	if (fd >= 0) {
9627 		new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9628 						 mode != XDP_MODE_SKB);
9629 		if (IS_ERR(new_prog))
9630 			return PTR_ERR(new_prog);
9631 	}
9632 
9633 	if (expected_fd >= 0) {
9634 		old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9635 						 mode != XDP_MODE_SKB);
9636 		if (IS_ERR(old_prog)) {
9637 			err = PTR_ERR(old_prog);
9638 			old_prog = NULL;
9639 			goto err_out;
9640 		}
9641 	}
9642 
9643 	err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9644 
9645 err_out:
9646 	if (err && new_prog)
9647 		bpf_prog_put(new_prog);
9648 	if (old_prog)
9649 		bpf_prog_put(old_prog);
9650 	return err;
9651 }
9652 
9653 /**
9654  * dev_index_reserve() - allocate an ifindex in a namespace
9655  * @net: the applicable net namespace
9656  * @ifindex: requested ifindex, pass %0 to get one allocated
9657  *
9658  * Allocate a ifindex for a new device. Caller must either use the ifindex
9659  * to store the device (via list_netdevice()) or call dev_index_release()
9660  * to give the index up.
9661  *
9662  * Return: a suitable unique value for a new device interface number or -errno.
9663  */
9664 static int dev_index_reserve(struct net *net, u32 ifindex)
9665 {
9666 	int err;
9667 
9668 	if (ifindex > INT_MAX) {
9669 		DEBUG_NET_WARN_ON_ONCE(1);
9670 		return -EINVAL;
9671 	}
9672 
9673 	if (!ifindex)
9674 		err = xa_alloc_cyclic(&net->dev_by_index, &ifindex, NULL,
9675 				      xa_limit_31b, &net->ifindex, GFP_KERNEL);
9676 	else
9677 		err = xa_insert(&net->dev_by_index, ifindex, NULL, GFP_KERNEL);
9678 	if (err < 0)
9679 		return err;
9680 
9681 	return ifindex;
9682 }
9683 
9684 static void dev_index_release(struct net *net, int ifindex)
9685 {
9686 	/* Expect only unused indexes, unlist_netdevice() removes the used */
9687 	WARN_ON(xa_erase(&net->dev_by_index, ifindex));
9688 }
9689 
9690 /* Delayed registration/unregisteration */
9691 LIST_HEAD(net_todo_list);
9692 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9693 
9694 static void net_set_todo(struct net_device *dev)
9695 {
9696 	list_add_tail(&dev->todo_list, &net_todo_list);
9697 	atomic_inc(&dev_net(dev)->dev_unreg_count);
9698 }
9699 
9700 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9701 	struct net_device *upper, netdev_features_t features)
9702 {
9703 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9704 	netdev_features_t feature;
9705 	int feature_bit;
9706 
9707 	for_each_netdev_feature(upper_disables, feature_bit) {
9708 		feature = __NETIF_F_BIT(feature_bit);
9709 		if (!(upper->wanted_features & feature)
9710 		    && (features & feature)) {
9711 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9712 				   &feature, upper->name);
9713 			features &= ~feature;
9714 		}
9715 	}
9716 
9717 	return features;
9718 }
9719 
9720 static void netdev_sync_lower_features(struct net_device *upper,
9721 	struct net_device *lower, netdev_features_t features)
9722 {
9723 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9724 	netdev_features_t feature;
9725 	int feature_bit;
9726 
9727 	for_each_netdev_feature(upper_disables, feature_bit) {
9728 		feature = __NETIF_F_BIT(feature_bit);
9729 		if (!(features & feature) && (lower->features & feature)) {
9730 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9731 				   &feature, lower->name);
9732 			lower->wanted_features &= ~feature;
9733 			__netdev_update_features(lower);
9734 
9735 			if (unlikely(lower->features & feature))
9736 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9737 					    &feature, lower->name);
9738 			else
9739 				netdev_features_change(lower);
9740 		}
9741 	}
9742 }
9743 
9744 static netdev_features_t netdev_fix_features(struct net_device *dev,
9745 	netdev_features_t features)
9746 {
9747 	/* Fix illegal checksum combinations */
9748 	if ((features & NETIF_F_HW_CSUM) &&
9749 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9750 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9751 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9752 	}
9753 
9754 	/* TSO requires that SG is present as well. */
9755 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9756 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9757 		features &= ~NETIF_F_ALL_TSO;
9758 	}
9759 
9760 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9761 					!(features & NETIF_F_IP_CSUM)) {
9762 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9763 		features &= ~NETIF_F_TSO;
9764 		features &= ~NETIF_F_TSO_ECN;
9765 	}
9766 
9767 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9768 					 !(features & NETIF_F_IPV6_CSUM)) {
9769 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9770 		features &= ~NETIF_F_TSO6;
9771 	}
9772 
9773 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9774 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9775 		features &= ~NETIF_F_TSO_MANGLEID;
9776 
9777 	/* TSO ECN requires that TSO is present as well. */
9778 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9779 		features &= ~NETIF_F_TSO_ECN;
9780 
9781 	/* Software GSO depends on SG. */
9782 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9783 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9784 		features &= ~NETIF_F_GSO;
9785 	}
9786 
9787 	/* GSO partial features require GSO partial be set */
9788 	if ((features & dev->gso_partial_features) &&
9789 	    !(features & NETIF_F_GSO_PARTIAL)) {
9790 		netdev_dbg(dev,
9791 			   "Dropping partially supported GSO features since no GSO partial.\n");
9792 		features &= ~dev->gso_partial_features;
9793 	}
9794 
9795 	if (!(features & NETIF_F_RXCSUM)) {
9796 		/* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9797 		 * successfully merged by hardware must also have the
9798 		 * checksum verified by hardware.  If the user does not
9799 		 * want to enable RXCSUM, logically, we should disable GRO_HW.
9800 		 */
9801 		if (features & NETIF_F_GRO_HW) {
9802 			netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9803 			features &= ~NETIF_F_GRO_HW;
9804 		}
9805 	}
9806 
9807 	/* LRO/HW-GRO features cannot be combined with RX-FCS */
9808 	if (features & NETIF_F_RXFCS) {
9809 		if (features & NETIF_F_LRO) {
9810 			netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9811 			features &= ~NETIF_F_LRO;
9812 		}
9813 
9814 		if (features & NETIF_F_GRO_HW) {
9815 			netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9816 			features &= ~NETIF_F_GRO_HW;
9817 		}
9818 	}
9819 
9820 	if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
9821 		netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
9822 		features &= ~NETIF_F_LRO;
9823 	}
9824 
9825 	if (features & NETIF_F_HW_TLS_TX) {
9826 		bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9827 			(NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9828 		bool hw_csum = features & NETIF_F_HW_CSUM;
9829 
9830 		if (!ip_csum && !hw_csum) {
9831 			netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9832 			features &= ~NETIF_F_HW_TLS_TX;
9833 		}
9834 	}
9835 
9836 	if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9837 		netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9838 		features &= ~NETIF_F_HW_TLS_RX;
9839 	}
9840 
9841 	return features;
9842 }
9843 
9844 int __netdev_update_features(struct net_device *dev)
9845 {
9846 	struct net_device *upper, *lower;
9847 	netdev_features_t features;
9848 	struct list_head *iter;
9849 	int err = -1;
9850 
9851 	ASSERT_RTNL();
9852 
9853 	features = netdev_get_wanted_features(dev);
9854 
9855 	if (dev->netdev_ops->ndo_fix_features)
9856 		features = dev->netdev_ops->ndo_fix_features(dev, features);
9857 
9858 	/* driver might be less strict about feature dependencies */
9859 	features = netdev_fix_features(dev, features);
9860 
9861 	/* some features can't be enabled if they're off on an upper device */
9862 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
9863 		features = netdev_sync_upper_features(dev, upper, features);
9864 
9865 	if (dev->features == features)
9866 		goto sync_lower;
9867 
9868 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9869 		&dev->features, &features);
9870 
9871 	if (dev->netdev_ops->ndo_set_features)
9872 		err = dev->netdev_ops->ndo_set_features(dev, features);
9873 	else
9874 		err = 0;
9875 
9876 	if (unlikely(err < 0)) {
9877 		netdev_err(dev,
9878 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
9879 			err, &features, &dev->features);
9880 		/* return non-0 since some features might have changed and
9881 		 * it's better to fire a spurious notification than miss it
9882 		 */
9883 		return -1;
9884 	}
9885 
9886 sync_lower:
9887 	/* some features must be disabled on lower devices when disabled
9888 	 * on an upper device (think: bonding master or bridge)
9889 	 */
9890 	netdev_for_each_lower_dev(dev, lower, iter)
9891 		netdev_sync_lower_features(dev, lower, features);
9892 
9893 	if (!err) {
9894 		netdev_features_t diff = features ^ dev->features;
9895 
9896 		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9897 			/* udp_tunnel_{get,drop}_rx_info both need
9898 			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9899 			 * device, or they won't do anything.
9900 			 * Thus we need to update dev->features
9901 			 * *before* calling udp_tunnel_get_rx_info,
9902 			 * but *after* calling udp_tunnel_drop_rx_info.
9903 			 */
9904 			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9905 				dev->features = features;
9906 				udp_tunnel_get_rx_info(dev);
9907 			} else {
9908 				udp_tunnel_drop_rx_info(dev);
9909 			}
9910 		}
9911 
9912 		if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9913 			if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9914 				dev->features = features;
9915 				err |= vlan_get_rx_ctag_filter_info(dev);
9916 			} else {
9917 				vlan_drop_rx_ctag_filter_info(dev);
9918 			}
9919 		}
9920 
9921 		if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9922 			if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9923 				dev->features = features;
9924 				err |= vlan_get_rx_stag_filter_info(dev);
9925 			} else {
9926 				vlan_drop_rx_stag_filter_info(dev);
9927 			}
9928 		}
9929 
9930 		dev->features = features;
9931 	}
9932 
9933 	return err < 0 ? 0 : 1;
9934 }
9935 
9936 /**
9937  *	netdev_update_features - recalculate device features
9938  *	@dev: the device to check
9939  *
9940  *	Recalculate dev->features set and send notifications if it
9941  *	has changed. Should be called after driver or hardware dependent
9942  *	conditions might have changed that influence the features.
9943  */
9944 void netdev_update_features(struct net_device *dev)
9945 {
9946 	if (__netdev_update_features(dev))
9947 		netdev_features_change(dev);
9948 }
9949 EXPORT_SYMBOL(netdev_update_features);
9950 
9951 /**
9952  *	netdev_change_features - recalculate device features
9953  *	@dev: the device to check
9954  *
9955  *	Recalculate dev->features set and send notifications even
9956  *	if they have not changed. Should be called instead of
9957  *	netdev_update_features() if also dev->vlan_features might
9958  *	have changed to allow the changes to be propagated to stacked
9959  *	VLAN devices.
9960  */
9961 void netdev_change_features(struct net_device *dev)
9962 {
9963 	__netdev_update_features(dev);
9964 	netdev_features_change(dev);
9965 }
9966 EXPORT_SYMBOL(netdev_change_features);
9967 
9968 /**
9969  *	netif_stacked_transfer_operstate -	transfer operstate
9970  *	@rootdev: the root or lower level device to transfer state from
9971  *	@dev: the device to transfer operstate to
9972  *
9973  *	Transfer operational state from root to device. This is normally
9974  *	called when a stacking relationship exists between the root
9975  *	device and the device(a leaf device).
9976  */
9977 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9978 					struct net_device *dev)
9979 {
9980 	if (rootdev->operstate == IF_OPER_DORMANT)
9981 		netif_dormant_on(dev);
9982 	else
9983 		netif_dormant_off(dev);
9984 
9985 	if (rootdev->operstate == IF_OPER_TESTING)
9986 		netif_testing_on(dev);
9987 	else
9988 		netif_testing_off(dev);
9989 
9990 	if (netif_carrier_ok(rootdev))
9991 		netif_carrier_on(dev);
9992 	else
9993 		netif_carrier_off(dev);
9994 }
9995 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9996 
9997 static int netif_alloc_rx_queues(struct net_device *dev)
9998 {
9999 	unsigned int i, count = dev->num_rx_queues;
10000 	struct netdev_rx_queue *rx;
10001 	size_t sz = count * sizeof(*rx);
10002 	int err = 0;
10003 
10004 	BUG_ON(count < 1);
10005 
10006 	rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10007 	if (!rx)
10008 		return -ENOMEM;
10009 
10010 	dev->_rx = rx;
10011 
10012 	for (i = 0; i < count; i++) {
10013 		rx[i].dev = dev;
10014 
10015 		/* XDP RX-queue setup */
10016 		err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
10017 		if (err < 0)
10018 			goto err_rxq_info;
10019 	}
10020 	return 0;
10021 
10022 err_rxq_info:
10023 	/* Rollback successful reg's and free other resources */
10024 	while (i--)
10025 		xdp_rxq_info_unreg(&rx[i].xdp_rxq);
10026 	kvfree(dev->_rx);
10027 	dev->_rx = NULL;
10028 	return err;
10029 }
10030 
10031 static void netif_free_rx_queues(struct net_device *dev)
10032 {
10033 	unsigned int i, count = dev->num_rx_queues;
10034 
10035 	/* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
10036 	if (!dev->_rx)
10037 		return;
10038 
10039 	for (i = 0; i < count; i++)
10040 		xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
10041 
10042 	kvfree(dev->_rx);
10043 }
10044 
10045 static void netdev_init_one_queue(struct net_device *dev,
10046 				  struct netdev_queue *queue, void *_unused)
10047 {
10048 	/* Initialize queue lock */
10049 	spin_lock_init(&queue->_xmit_lock);
10050 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
10051 	queue->xmit_lock_owner = -1;
10052 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
10053 	queue->dev = dev;
10054 #ifdef CONFIG_BQL
10055 	dql_init(&queue->dql, HZ);
10056 #endif
10057 }
10058 
10059 static void netif_free_tx_queues(struct net_device *dev)
10060 {
10061 	kvfree(dev->_tx);
10062 }
10063 
10064 static int netif_alloc_netdev_queues(struct net_device *dev)
10065 {
10066 	unsigned int count = dev->num_tx_queues;
10067 	struct netdev_queue *tx;
10068 	size_t sz = count * sizeof(*tx);
10069 
10070 	if (count < 1 || count > 0xffff)
10071 		return -EINVAL;
10072 
10073 	tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10074 	if (!tx)
10075 		return -ENOMEM;
10076 
10077 	dev->_tx = tx;
10078 
10079 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
10080 	spin_lock_init(&dev->tx_global_lock);
10081 
10082 	return 0;
10083 }
10084 
10085 void netif_tx_stop_all_queues(struct net_device *dev)
10086 {
10087 	unsigned int i;
10088 
10089 	for (i = 0; i < dev->num_tx_queues; i++) {
10090 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
10091 
10092 		netif_tx_stop_queue(txq);
10093 	}
10094 }
10095 EXPORT_SYMBOL(netif_tx_stop_all_queues);
10096 
10097 static int netdev_do_alloc_pcpu_stats(struct net_device *dev)
10098 {
10099 	void __percpu *v;
10100 
10101 	/* Drivers implementing ndo_get_peer_dev must support tstat
10102 	 * accounting, so that skb_do_redirect() can bump the dev's
10103 	 * RX stats upon network namespace switch.
10104 	 */
10105 	if (dev->netdev_ops->ndo_get_peer_dev &&
10106 	    dev->pcpu_stat_type != NETDEV_PCPU_STAT_TSTATS)
10107 		return -EOPNOTSUPP;
10108 
10109 	switch (dev->pcpu_stat_type) {
10110 	case NETDEV_PCPU_STAT_NONE:
10111 		return 0;
10112 	case NETDEV_PCPU_STAT_LSTATS:
10113 		v = dev->lstats = netdev_alloc_pcpu_stats(struct pcpu_lstats);
10114 		break;
10115 	case NETDEV_PCPU_STAT_TSTATS:
10116 		v = dev->tstats = netdev_alloc_pcpu_stats(struct pcpu_sw_netstats);
10117 		break;
10118 	case NETDEV_PCPU_STAT_DSTATS:
10119 		v = dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
10120 		break;
10121 	default:
10122 		return -EINVAL;
10123 	}
10124 
10125 	return v ? 0 : -ENOMEM;
10126 }
10127 
10128 static void netdev_do_free_pcpu_stats(struct net_device *dev)
10129 {
10130 	switch (dev->pcpu_stat_type) {
10131 	case NETDEV_PCPU_STAT_NONE:
10132 		return;
10133 	case NETDEV_PCPU_STAT_LSTATS:
10134 		free_percpu(dev->lstats);
10135 		break;
10136 	case NETDEV_PCPU_STAT_TSTATS:
10137 		free_percpu(dev->tstats);
10138 		break;
10139 	case NETDEV_PCPU_STAT_DSTATS:
10140 		free_percpu(dev->dstats);
10141 		break;
10142 	}
10143 }
10144 
10145 /**
10146  * register_netdevice() - register a network device
10147  * @dev: device to register
10148  *
10149  * Take a prepared network device structure and make it externally accessible.
10150  * A %NETDEV_REGISTER message is sent to the netdev notifier chain.
10151  * Callers must hold the rtnl lock - you may want register_netdev()
10152  * instead of this.
10153  */
10154 int register_netdevice(struct net_device *dev)
10155 {
10156 	int ret;
10157 	struct net *net = dev_net(dev);
10158 
10159 	BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
10160 		     NETDEV_FEATURE_COUNT);
10161 	BUG_ON(dev_boot_phase);
10162 	ASSERT_RTNL();
10163 
10164 	might_sleep();
10165 
10166 	/* When net_device's are persistent, this will be fatal. */
10167 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
10168 	BUG_ON(!net);
10169 
10170 	ret = ethtool_check_ops(dev->ethtool_ops);
10171 	if (ret)
10172 		return ret;
10173 
10174 	spin_lock_init(&dev->addr_list_lock);
10175 	netdev_set_addr_lockdep_class(dev);
10176 
10177 	ret = dev_get_valid_name(net, dev, dev->name);
10178 	if (ret < 0)
10179 		goto out;
10180 
10181 	ret = -ENOMEM;
10182 	dev->name_node = netdev_name_node_head_alloc(dev);
10183 	if (!dev->name_node)
10184 		goto out;
10185 
10186 	/* Init, if this function is available */
10187 	if (dev->netdev_ops->ndo_init) {
10188 		ret = dev->netdev_ops->ndo_init(dev);
10189 		if (ret) {
10190 			if (ret > 0)
10191 				ret = -EIO;
10192 			goto err_free_name;
10193 		}
10194 	}
10195 
10196 	if (((dev->hw_features | dev->features) &
10197 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
10198 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10199 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10200 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10201 		ret = -EINVAL;
10202 		goto err_uninit;
10203 	}
10204 
10205 	ret = netdev_do_alloc_pcpu_stats(dev);
10206 	if (ret)
10207 		goto err_uninit;
10208 
10209 	ret = dev_index_reserve(net, dev->ifindex);
10210 	if (ret < 0)
10211 		goto err_free_pcpu;
10212 	dev->ifindex = ret;
10213 
10214 	/* Transfer changeable features to wanted_features and enable
10215 	 * software offloads (GSO and GRO).
10216 	 */
10217 	dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10218 	dev->features |= NETIF_F_SOFT_FEATURES;
10219 
10220 	if (dev->udp_tunnel_nic_info) {
10221 		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10222 		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10223 	}
10224 
10225 	dev->wanted_features = dev->features & dev->hw_features;
10226 
10227 	if (!(dev->flags & IFF_LOOPBACK))
10228 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
10229 
10230 	/* If IPv4 TCP segmentation offload is supported we should also
10231 	 * allow the device to enable segmenting the frame with the option
10232 	 * of ignoring a static IP ID value.  This doesn't enable the
10233 	 * feature itself but allows the user to enable it later.
10234 	 */
10235 	if (dev->hw_features & NETIF_F_TSO)
10236 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
10237 	if (dev->vlan_features & NETIF_F_TSO)
10238 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10239 	if (dev->mpls_features & NETIF_F_TSO)
10240 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10241 	if (dev->hw_enc_features & NETIF_F_TSO)
10242 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10243 
10244 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10245 	 */
10246 	dev->vlan_features |= NETIF_F_HIGHDMA;
10247 
10248 	/* Make NETIF_F_SG inheritable to tunnel devices.
10249 	 */
10250 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10251 
10252 	/* Make NETIF_F_SG inheritable to MPLS.
10253 	 */
10254 	dev->mpls_features |= NETIF_F_SG;
10255 
10256 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10257 	ret = notifier_to_errno(ret);
10258 	if (ret)
10259 		goto err_ifindex_release;
10260 
10261 	ret = netdev_register_kobject(dev);
10262 	write_lock(&dev_base_lock);
10263 	dev->reg_state = ret ? NETREG_UNREGISTERED : NETREG_REGISTERED;
10264 	write_unlock(&dev_base_lock);
10265 	if (ret)
10266 		goto err_uninit_notify;
10267 
10268 	__netdev_update_features(dev);
10269 
10270 	/*
10271 	 *	Default initial state at registry is that the
10272 	 *	device is present.
10273 	 */
10274 
10275 	set_bit(__LINK_STATE_PRESENT, &dev->state);
10276 
10277 	linkwatch_init_dev(dev);
10278 
10279 	dev_init_scheduler(dev);
10280 
10281 	netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL);
10282 	list_netdevice(dev);
10283 
10284 	add_device_randomness(dev->dev_addr, dev->addr_len);
10285 
10286 	/* If the device has permanent device address, driver should
10287 	 * set dev_addr and also addr_assign_type should be set to
10288 	 * NET_ADDR_PERM (default value).
10289 	 */
10290 	if (dev->addr_assign_type == NET_ADDR_PERM)
10291 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10292 
10293 	/* Notify protocols, that a new device appeared. */
10294 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10295 	ret = notifier_to_errno(ret);
10296 	if (ret) {
10297 		/* Expect explicit free_netdev() on failure */
10298 		dev->needs_free_netdev = false;
10299 		unregister_netdevice_queue(dev, NULL);
10300 		goto out;
10301 	}
10302 	/*
10303 	 *	Prevent userspace races by waiting until the network
10304 	 *	device is fully setup before sending notifications.
10305 	 */
10306 	if (!dev->rtnl_link_ops ||
10307 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10308 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
10309 
10310 out:
10311 	return ret;
10312 
10313 err_uninit_notify:
10314 	call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
10315 err_ifindex_release:
10316 	dev_index_release(net, dev->ifindex);
10317 err_free_pcpu:
10318 	netdev_do_free_pcpu_stats(dev);
10319 err_uninit:
10320 	if (dev->netdev_ops->ndo_uninit)
10321 		dev->netdev_ops->ndo_uninit(dev);
10322 	if (dev->priv_destructor)
10323 		dev->priv_destructor(dev);
10324 err_free_name:
10325 	netdev_name_node_free(dev->name_node);
10326 	goto out;
10327 }
10328 EXPORT_SYMBOL(register_netdevice);
10329 
10330 /**
10331  *	init_dummy_netdev	- init a dummy network device for NAPI
10332  *	@dev: device to init
10333  *
10334  *	This takes a network device structure and initialize the minimum
10335  *	amount of fields so it can be used to schedule NAPI polls without
10336  *	registering a full blown interface. This is to be used by drivers
10337  *	that need to tie several hardware interfaces to a single NAPI
10338  *	poll scheduler due to HW limitations.
10339  */
10340 int init_dummy_netdev(struct net_device *dev)
10341 {
10342 	/* Clear everything. Note we don't initialize spinlocks
10343 	 * are they aren't supposed to be taken by any of the
10344 	 * NAPI code and this dummy netdev is supposed to be
10345 	 * only ever used for NAPI polls
10346 	 */
10347 	memset(dev, 0, sizeof(struct net_device));
10348 
10349 	/* make sure we BUG if trying to hit standard
10350 	 * register/unregister code path
10351 	 */
10352 	dev->reg_state = NETREG_DUMMY;
10353 
10354 	/* NAPI wants this */
10355 	INIT_LIST_HEAD(&dev->napi_list);
10356 
10357 	/* a dummy interface is started by default */
10358 	set_bit(__LINK_STATE_PRESENT, &dev->state);
10359 	set_bit(__LINK_STATE_START, &dev->state);
10360 
10361 	/* napi_busy_loop stats accounting wants this */
10362 	dev_net_set(dev, &init_net);
10363 
10364 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
10365 	 * because users of this 'device' dont need to change
10366 	 * its refcount.
10367 	 */
10368 
10369 	return 0;
10370 }
10371 EXPORT_SYMBOL_GPL(init_dummy_netdev);
10372 
10373 
10374 /**
10375  *	register_netdev	- register a network device
10376  *	@dev: device to register
10377  *
10378  *	Take a completed network device structure and add it to the kernel
10379  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10380  *	chain. 0 is returned on success. A negative errno code is returned
10381  *	on a failure to set up the device, or if the name is a duplicate.
10382  *
10383  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
10384  *	and expands the device name if you passed a format string to
10385  *	alloc_netdev.
10386  */
10387 int register_netdev(struct net_device *dev)
10388 {
10389 	int err;
10390 
10391 	if (rtnl_lock_killable())
10392 		return -EINTR;
10393 	err = register_netdevice(dev);
10394 	rtnl_unlock();
10395 	return err;
10396 }
10397 EXPORT_SYMBOL(register_netdev);
10398 
10399 int netdev_refcnt_read(const struct net_device *dev)
10400 {
10401 #ifdef CONFIG_PCPU_DEV_REFCNT
10402 	int i, refcnt = 0;
10403 
10404 	for_each_possible_cpu(i)
10405 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10406 	return refcnt;
10407 #else
10408 	return refcount_read(&dev->dev_refcnt);
10409 #endif
10410 }
10411 EXPORT_SYMBOL(netdev_refcnt_read);
10412 
10413 int netdev_unregister_timeout_secs __read_mostly = 10;
10414 
10415 #define WAIT_REFS_MIN_MSECS 1
10416 #define WAIT_REFS_MAX_MSECS 250
10417 /**
10418  * netdev_wait_allrefs_any - wait until all references are gone.
10419  * @list: list of net_devices to wait on
10420  *
10421  * This is called when unregistering network devices.
10422  *
10423  * Any protocol or device that holds a reference should register
10424  * for netdevice notification, and cleanup and put back the
10425  * reference if they receive an UNREGISTER event.
10426  * We can get stuck here if buggy protocols don't correctly
10427  * call dev_put.
10428  */
10429 static struct net_device *netdev_wait_allrefs_any(struct list_head *list)
10430 {
10431 	unsigned long rebroadcast_time, warning_time;
10432 	struct net_device *dev;
10433 	int wait = 0;
10434 
10435 	rebroadcast_time = warning_time = jiffies;
10436 
10437 	list_for_each_entry(dev, list, todo_list)
10438 		if (netdev_refcnt_read(dev) == 1)
10439 			return dev;
10440 
10441 	while (true) {
10442 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10443 			rtnl_lock();
10444 
10445 			/* Rebroadcast unregister notification */
10446 			list_for_each_entry(dev, list, todo_list)
10447 				call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10448 
10449 			__rtnl_unlock();
10450 			rcu_barrier();
10451 			rtnl_lock();
10452 
10453 			list_for_each_entry(dev, list, todo_list)
10454 				if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10455 					     &dev->state)) {
10456 					/* We must not have linkwatch events
10457 					 * pending on unregister. If this
10458 					 * happens, we simply run the queue
10459 					 * unscheduled, resulting in a noop
10460 					 * for this device.
10461 					 */
10462 					linkwatch_run_queue();
10463 					break;
10464 				}
10465 
10466 			__rtnl_unlock();
10467 
10468 			rebroadcast_time = jiffies;
10469 		}
10470 
10471 		if (!wait) {
10472 			rcu_barrier();
10473 			wait = WAIT_REFS_MIN_MSECS;
10474 		} else {
10475 			msleep(wait);
10476 			wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10477 		}
10478 
10479 		list_for_each_entry(dev, list, todo_list)
10480 			if (netdev_refcnt_read(dev) == 1)
10481 				return dev;
10482 
10483 		if (time_after(jiffies, warning_time +
10484 			       READ_ONCE(netdev_unregister_timeout_secs) * HZ)) {
10485 			list_for_each_entry(dev, list, todo_list) {
10486 				pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10487 					 dev->name, netdev_refcnt_read(dev));
10488 				ref_tracker_dir_print(&dev->refcnt_tracker, 10);
10489 			}
10490 
10491 			warning_time = jiffies;
10492 		}
10493 	}
10494 }
10495 
10496 /* The sequence is:
10497  *
10498  *	rtnl_lock();
10499  *	...
10500  *	register_netdevice(x1);
10501  *	register_netdevice(x2);
10502  *	...
10503  *	unregister_netdevice(y1);
10504  *	unregister_netdevice(y2);
10505  *      ...
10506  *	rtnl_unlock();
10507  *	free_netdev(y1);
10508  *	free_netdev(y2);
10509  *
10510  * We are invoked by rtnl_unlock().
10511  * This allows us to deal with problems:
10512  * 1) We can delete sysfs objects which invoke hotplug
10513  *    without deadlocking with linkwatch via keventd.
10514  * 2) Since we run with the RTNL semaphore not held, we can sleep
10515  *    safely in order to wait for the netdev refcnt to drop to zero.
10516  *
10517  * We must not return until all unregister events added during
10518  * the interval the lock was held have been completed.
10519  */
10520 void netdev_run_todo(void)
10521 {
10522 	struct net_device *dev, *tmp;
10523 	struct list_head list;
10524 #ifdef CONFIG_LOCKDEP
10525 	struct list_head unlink_list;
10526 
10527 	list_replace_init(&net_unlink_list, &unlink_list);
10528 
10529 	while (!list_empty(&unlink_list)) {
10530 		struct net_device *dev = list_first_entry(&unlink_list,
10531 							  struct net_device,
10532 							  unlink_list);
10533 		list_del_init(&dev->unlink_list);
10534 		dev->nested_level = dev->lower_level - 1;
10535 	}
10536 #endif
10537 
10538 	/* Snapshot list, allow later requests */
10539 	list_replace_init(&net_todo_list, &list);
10540 
10541 	__rtnl_unlock();
10542 
10543 	/* Wait for rcu callbacks to finish before next phase */
10544 	if (!list_empty(&list))
10545 		rcu_barrier();
10546 
10547 	list_for_each_entry_safe(dev, tmp, &list, todo_list) {
10548 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10549 			netdev_WARN(dev, "run_todo but not unregistering\n");
10550 			list_del(&dev->todo_list);
10551 			continue;
10552 		}
10553 
10554 		write_lock(&dev_base_lock);
10555 		dev->reg_state = NETREG_UNREGISTERED;
10556 		write_unlock(&dev_base_lock);
10557 		linkwatch_sync_dev(dev);
10558 	}
10559 
10560 	while (!list_empty(&list)) {
10561 		dev = netdev_wait_allrefs_any(&list);
10562 		list_del(&dev->todo_list);
10563 
10564 		/* paranoia */
10565 		BUG_ON(netdev_refcnt_read(dev) != 1);
10566 		BUG_ON(!list_empty(&dev->ptype_all));
10567 		BUG_ON(!list_empty(&dev->ptype_specific));
10568 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
10569 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10570 
10571 		netdev_do_free_pcpu_stats(dev);
10572 		if (dev->priv_destructor)
10573 			dev->priv_destructor(dev);
10574 		if (dev->needs_free_netdev)
10575 			free_netdev(dev);
10576 
10577 		if (atomic_dec_and_test(&dev_net(dev)->dev_unreg_count))
10578 			wake_up(&netdev_unregistering_wq);
10579 
10580 		/* Free network device */
10581 		kobject_put(&dev->dev.kobj);
10582 	}
10583 }
10584 
10585 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10586  * all the same fields in the same order as net_device_stats, with only
10587  * the type differing, but rtnl_link_stats64 may have additional fields
10588  * at the end for newer counters.
10589  */
10590 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10591 			     const struct net_device_stats *netdev_stats)
10592 {
10593 	size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t);
10594 	const atomic_long_t *src = (atomic_long_t *)netdev_stats;
10595 	u64 *dst = (u64 *)stats64;
10596 
10597 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10598 	for (i = 0; i < n; i++)
10599 		dst[i] = (unsigned long)atomic_long_read(&src[i]);
10600 	/* zero out counters that only exist in rtnl_link_stats64 */
10601 	memset((char *)stats64 + n * sizeof(u64), 0,
10602 	       sizeof(*stats64) - n * sizeof(u64));
10603 }
10604 EXPORT_SYMBOL(netdev_stats_to_stats64);
10605 
10606 static __cold struct net_device_core_stats __percpu *netdev_core_stats_alloc(
10607 		struct net_device *dev)
10608 {
10609 	struct net_device_core_stats __percpu *p;
10610 
10611 	p = alloc_percpu_gfp(struct net_device_core_stats,
10612 			     GFP_ATOMIC | __GFP_NOWARN);
10613 
10614 	if (p && cmpxchg(&dev->core_stats, NULL, p))
10615 		free_percpu(p);
10616 
10617 	/* This READ_ONCE() pairs with the cmpxchg() above */
10618 	return READ_ONCE(dev->core_stats);
10619 }
10620 
10621 noinline void netdev_core_stats_inc(struct net_device *dev, u32 offset)
10622 {
10623 	/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
10624 	struct net_device_core_stats __percpu *p = READ_ONCE(dev->core_stats);
10625 	unsigned long __percpu *field;
10626 
10627 	if (unlikely(!p)) {
10628 		p = netdev_core_stats_alloc(dev);
10629 		if (!p)
10630 			return;
10631 	}
10632 
10633 	field = (__force unsigned long __percpu *)((__force void *)p + offset);
10634 	this_cpu_inc(*field);
10635 }
10636 EXPORT_SYMBOL_GPL(netdev_core_stats_inc);
10637 
10638 /**
10639  *	dev_get_stats	- get network device statistics
10640  *	@dev: device to get statistics from
10641  *	@storage: place to store stats
10642  *
10643  *	Get network statistics from device. Return @storage.
10644  *	The device driver may provide its own method by setting
10645  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10646  *	otherwise the internal statistics structure is used.
10647  */
10648 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10649 					struct rtnl_link_stats64 *storage)
10650 {
10651 	const struct net_device_ops *ops = dev->netdev_ops;
10652 	const struct net_device_core_stats __percpu *p;
10653 
10654 	if (ops->ndo_get_stats64) {
10655 		memset(storage, 0, sizeof(*storage));
10656 		ops->ndo_get_stats64(dev, storage);
10657 	} else if (ops->ndo_get_stats) {
10658 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10659 	} else {
10660 		netdev_stats_to_stats64(storage, &dev->stats);
10661 	}
10662 
10663 	/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
10664 	p = READ_ONCE(dev->core_stats);
10665 	if (p) {
10666 		const struct net_device_core_stats *core_stats;
10667 		int i;
10668 
10669 		for_each_possible_cpu(i) {
10670 			core_stats = per_cpu_ptr(p, i);
10671 			storage->rx_dropped += READ_ONCE(core_stats->rx_dropped);
10672 			storage->tx_dropped += READ_ONCE(core_stats->tx_dropped);
10673 			storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler);
10674 			storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped);
10675 		}
10676 	}
10677 	return storage;
10678 }
10679 EXPORT_SYMBOL(dev_get_stats);
10680 
10681 /**
10682  *	dev_fetch_sw_netstats - get per-cpu network device statistics
10683  *	@s: place to store stats
10684  *	@netstats: per-cpu network stats to read from
10685  *
10686  *	Read per-cpu network statistics and populate the related fields in @s.
10687  */
10688 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10689 			   const struct pcpu_sw_netstats __percpu *netstats)
10690 {
10691 	int cpu;
10692 
10693 	for_each_possible_cpu(cpu) {
10694 		u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
10695 		const struct pcpu_sw_netstats *stats;
10696 		unsigned int start;
10697 
10698 		stats = per_cpu_ptr(netstats, cpu);
10699 		do {
10700 			start = u64_stats_fetch_begin(&stats->syncp);
10701 			rx_packets = u64_stats_read(&stats->rx_packets);
10702 			rx_bytes   = u64_stats_read(&stats->rx_bytes);
10703 			tx_packets = u64_stats_read(&stats->tx_packets);
10704 			tx_bytes   = u64_stats_read(&stats->tx_bytes);
10705 		} while (u64_stats_fetch_retry(&stats->syncp, start));
10706 
10707 		s->rx_packets += rx_packets;
10708 		s->rx_bytes   += rx_bytes;
10709 		s->tx_packets += tx_packets;
10710 		s->tx_bytes   += tx_bytes;
10711 	}
10712 }
10713 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10714 
10715 /**
10716  *	dev_get_tstats64 - ndo_get_stats64 implementation
10717  *	@dev: device to get statistics from
10718  *	@s: place to store stats
10719  *
10720  *	Populate @s from dev->stats and dev->tstats. Can be used as
10721  *	ndo_get_stats64() callback.
10722  */
10723 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10724 {
10725 	netdev_stats_to_stats64(s, &dev->stats);
10726 	dev_fetch_sw_netstats(s, dev->tstats);
10727 }
10728 EXPORT_SYMBOL_GPL(dev_get_tstats64);
10729 
10730 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10731 {
10732 	struct netdev_queue *queue = dev_ingress_queue(dev);
10733 
10734 #ifdef CONFIG_NET_CLS_ACT
10735 	if (queue)
10736 		return queue;
10737 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10738 	if (!queue)
10739 		return NULL;
10740 	netdev_init_one_queue(dev, queue, NULL);
10741 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10742 	RCU_INIT_POINTER(queue->qdisc_sleeping, &noop_qdisc);
10743 	rcu_assign_pointer(dev->ingress_queue, queue);
10744 #endif
10745 	return queue;
10746 }
10747 
10748 static const struct ethtool_ops default_ethtool_ops;
10749 
10750 void netdev_set_default_ethtool_ops(struct net_device *dev,
10751 				    const struct ethtool_ops *ops)
10752 {
10753 	if (dev->ethtool_ops == &default_ethtool_ops)
10754 		dev->ethtool_ops = ops;
10755 }
10756 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10757 
10758 /**
10759  * netdev_sw_irq_coalesce_default_on() - enable SW IRQ coalescing by default
10760  * @dev: netdev to enable the IRQ coalescing on
10761  *
10762  * Sets a conservative default for SW IRQ coalescing. Users can use
10763  * sysfs attributes to override the default values.
10764  */
10765 void netdev_sw_irq_coalesce_default_on(struct net_device *dev)
10766 {
10767 	WARN_ON(dev->reg_state == NETREG_REGISTERED);
10768 
10769 	if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
10770 		dev->gro_flush_timeout = 20000;
10771 		dev->napi_defer_hard_irqs = 1;
10772 	}
10773 }
10774 EXPORT_SYMBOL_GPL(netdev_sw_irq_coalesce_default_on);
10775 
10776 void netdev_freemem(struct net_device *dev)
10777 {
10778 	char *addr = (char *)dev - dev->padded;
10779 
10780 	kvfree(addr);
10781 }
10782 
10783 /**
10784  * alloc_netdev_mqs - allocate network device
10785  * @sizeof_priv: size of private data to allocate space for
10786  * @name: device name format string
10787  * @name_assign_type: origin of device name
10788  * @setup: callback to initialize device
10789  * @txqs: the number of TX subqueues to allocate
10790  * @rxqs: the number of RX subqueues to allocate
10791  *
10792  * Allocates a struct net_device with private data area for driver use
10793  * and performs basic initialization.  Also allocates subqueue structs
10794  * for each queue on the device.
10795  */
10796 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10797 		unsigned char name_assign_type,
10798 		void (*setup)(struct net_device *),
10799 		unsigned int txqs, unsigned int rxqs)
10800 {
10801 	struct net_device *dev;
10802 	unsigned int alloc_size;
10803 	struct net_device *p;
10804 
10805 	BUG_ON(strlen(name) >= sizeof(dev->name));
10806 
10807 	if (txqs < 1) {
10808 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10809 		return NULL;
10810 	}
10811 
10812 	if (rxqs < 1) {
10813 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10814 		return NULL;
10815 	}
10816 
10817 	alloc_size = sizeof(struct net_device);
10818 	if (sizeof_priv) {
10819 		/* ensure 32-byte alignment of private area */
10820 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10821 		alloc_size += sizeof_priv;
10822 	}
10823 	/* ensure 32-byte alignment of whole construct */
10824 	alloc_size += NETDEV_ALIGN - 1;
10825 
10826 	p = kvzalloc(alloc_size, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10827 	if (!p)
10828 		return NULL;
10829 
10830 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
10831 	dev->padded = (char *)dev - (char *)p;
10832 
10833 	ref_tracker_dir_init(&dev->refcnt_tracker, 128, name);
10834 #ifdef CONFIG_PCPU_DEV_REFCNT
10835 	dev->pcpu_refcnt = alloc_percpu(int);
10836 	if (!dev->pcpu_refcnt)
10837 		goto free_dev;
10838 	__dev_hold(dev);
10839 #else
10840 	refcount_set(&dev->dev_refcnt, 1);
10841 #endif
10842 
10843 	if (dev_addr_init(dev))
10844 		goto free_pcpu;
10845 
10846 	dev_mc_init(dev);
10847 	dev_uc_init(dev);
10848 
10849 	dev_net_set(dev, &init_net);
10850 
10851 	dev->gso_max_size = GSO_LEGACY_MAX_SIZE;
10852 	dev->xdp_zc_max_segs = 1;
10853 	dev->gso_max_segs = GSO_MAX_SEGS;
10854 	dev->gro_max_size = GRO_LEGACY_MAX_SIZE;
10855 	dev->gso_ipv4_max_size = GSO_LEGACY_MAX_SIZE;
10856 	dev->gro_ipv4_max_size = GRO_LEGACY_MAX_SIZE;
10857 	dev->tso_max_size = TSO_LEGACY_MAX_SIZE;
10858 	dev->tso_max_segs = TSO_MAX_SEGS;
10859 	dev->upper_level = 1;
10860 	dev->lower_level = 1;
10861 #ifdef CONFIG_LOCKDEP
10862 	dev->nested_level = 0;
10863 	INIT_LIST_HEAD(&dev->unlink_list);
10864 #endif
10865 
10866 	INIT_LIST_HEAD(&dev->napi_list);
10867 	INIT_LIST_HEAD(&dev->unreg_list);
10868 	INIT_LIST_HEAD(&dev->close_list);
10869 	INIT_LIST_HEAD(&dev->link_watch_list);
10870 	INIT_LIST_HEAD(&dev->adj_list.upper);
10871 	INIT_LIST_HEAD(&dev->adj_list.lower);
10872 	INIT_LIST_HEAD(&dev->ptype_all);
10873 	INIT_LIST_HEAD(&dev->ptype_specific);
10874 	INIT_LIST_HEAD(&dev->net_notifier_list);
10875 #ifdef CONFIG_NET_SCHED
10876 	hash_init(dev->qdisc_hash);
10877 #endif
10878 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10879 	setup(dev);
10880 
10881 	if (!dev->tx_queue_len) {
10882 		dev->priv_flags |= IFF_NO_QUEUE;
10883 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10884 	}
10885 
10886 	dev->num_tx_queues = txqs;
10887 	dev->real_num_tx_queues = txqs;
10888 	if (netif_alloc_netdev_queues(dev))
10889 		goto free_all;
10890 
10891 	dev->num_rx_queues = rxqs;
10892 	dev->real_num_rx_queues = rxqs;
10893 	if (netif_alloc_rx_queues(dev))
10894 		goto free_all;
10895 
10896 	strcpy(dev->name, name);
10897 	dev->name_assign_type = name_assign_type;
10898 	dev->group = INIT_NETDEV_GROUP;
10899 	if (!dev->ethtool_ops)
10900 		dev->ethtool_ops = &default_ethtool_ops;
10901 
10902 	nf_hook_netdev_init(dev);
10903 
10904 	return dev;
10905 
10906 free_all:
10907 	free_netdev(dev);
10908 	return NULL;
10909 
10910 free_pcpu:
10911 #ifdef CONFIG_PCPU_DEV_REFCNT
10912 	free_percpu(dev->pcpu_refcnt);
10913 free_dev:
10914 #endif
10915 	netdev_freemem(dev);
10916 	return NULL;
10917 }
10918 EXPORT_SYMBOL(alloc_netdev_mqs);
10919 
10920 /**
10921  * free_netdev - free network device
10922  * @dev: device
10923  *
10924  * This function does the last stage of destroying an allocated device
10925  * interface. The reference to the device object is released. If this
10926  * is the last reference then it will be freed.Must be called in process
10927  * context.
10928  */
10929 void free_netdev(struct net_device *dev)
10930 {
10931 	struct napi_struct *p, *n;
10932 
10933 	might_sleep();
10934 
10935 	/* When called immediately after register_netdevice() failed the unwind
10936 	 * handling may still be dismantling the device. Handle that case by
10937 	 * deferring the free.
10938 	 */
10939 	if (dev->reg_state == NETREG_UNREGISTERING) {
10940 		ASSERT_RTNL();
10941 		dev->needs_free_netdev = true;
10942 		return;
10943 	}
10944 
10945 	netif_free_tx_queues(dev);
10946 	netif_free_rx_queues(dev);
10947 
10948 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10949 
10950 	/* Flush device addresses */
10951 	dev_addr_flush(dev);
10952 
10953 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10954 		netif_napi_del(p);
10955 
10956 	ref_tracker_dir_exit(&dev->refcnt_tracker);
10957 #ifdef CONFIG_PCPU_DEV_REFCNT
10958 	free_percpu(dev->pcpu_refcnt);
10959 	dev->pcpu_refcnt = NULL;
10960 #endif
10961 	free_percpu(dev->core_stats);
10962 	dev->core_stats = NULL;
10963 	free_percpu(dev->xdp_bulkq);
10964 	dev->xdp_bulkq = NULL;
10965 
10966 	/*  Compatibility with error handling in drivers */
10967 	if (dev->reg_state == NETREG_UNINITIALIZED) {
10968 		netdev_freemem(dev);
10969 		return;
10970 	}
10971 
10972 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10973 	dev->reg_state = NETREG_RELEASED;
10974 
10975 	/* will free via device release */
10976 	put_device(&dev->dev);
10977 }
10978 EXPORT_SYMBOL(free_netdev);
10979 
10980 /**
10981  *	synchronize_net -  Synchronize with packet receive processing
10982  *
10983  *	Wait for packets currently being received to be done.
10984  *	Does not block later packets from starting.
10985  */
10986 void synchronize_net(void)
10987 {
10988 	might_sleep();
10989 	if (rtnl_is_locked())
10990 		synchronize_rcu_expedited();
10991 	else
10992 		synchronize_rcu();
10993 }
10994 EXPORT_SYMBOL(synchronize_net);
10995 
10996 /**
10997  *	unregister_netdevice_queue - remove device from the kernel
10998  *	@dev: device
10999  *	@head: list
11000  *
11001  *	This function shuts down a device interface and removes it
11002  *	from the kernel tables.
11003  *	If head not NULL, device is queued to be unregistered later.
11004  *
11005  *	Callers must hold the rtnl semaphore.  You may want
11006  *	unregister_netdev() instead of this.
11007  */
11008 
11009 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
11010 {
11011 	ASSERT_RTNL();
11012 
11013 	if (head) {
11014 		list_move_tail(&dev->unreg_list, head);
11015 	} else {
11016 		LIST_HEAD(single);
11017 
11018 		list_add(&dev->unreg_list, &single);
11019 		unregister_netdevice_many(&single);
11020 	}
11021 }
11022 EXPORT_SYMBOL(unregister_netdevice_queue);
11023 
11024 void unregister_netdevice_many_notify(struct list_head *head,
11025 				      u32 portid, const struct nlmsghdr *nlh)
11026 {
11027 	struct net_device *dev, *tmp;
11028 	LIST_HEAD(close_head);
11029 
11030 	BUG_ON(dev_boot_phase);
11031 	ASSERT_RTNL();
11032 
11033 	if (list_empty(head))
11034 		return;
11035 
11036 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
11037 		/* Some devices call without registering
11038 		 * for initialization unwind. Remove those
11039 		 * devices and proceed with the remaining.
11040 		 */
11041 		if (dev->reg_state == NETREG_UNINITIALIZED) {
11042 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
11043 				 dev->name, dev);
11044 
11045 			WARN_ON(1);
11046 			list_del(&dev->unreg_list);
11047 			continue;
11048 		}
11049 		dev->dismantle = true;
11050 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
11051 	}
11052 
11053 	/* If device is running, close it first. */
11054 	list_for_each_entry(dev, head, unreg_list)
11055 		list_add_tail(&dev->close_list, &close_head);
11056 	dev_close_many(&close_head, true);
11057 
11058 	list_for_each_entry(dev, head, unreg_list) {
11059 		/* And unlink it from device chain. */
11060 		write_lock(&dev_base_lock);
11061 		unlist_netdevice(dev, false);
11062 		dev->reg_state = NETREG_UNREGISTERING;
11063 		write_unlock(&dev_base_lock);
11064 	}
11065 	flush_all_backlogs();
11066 
11067 	synchronize_net();
11068 
11069 	list_for_each_entry(dev, head, unreg_list) {
11070 		struct sk_buff *skb = NULL;
11071 
11072 		/* Shutdown queueing discipline. */
11073 		dev_shutdown(dev);
11074 		dev_tcx_uninstall(dev);
11075 		dev_xdp_uninstall(dev);
11076 		bpf_dev_bound_netdev_unregister(dev);
11077 
11078 		netdev_offload_xstats_disable_all(dev);
11079 
11080 		/* Notify protocols, that we are about to destroy
11081 		 * this device. They should clean all the things.
11082 		 */
11083 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11084 
11085 		if (!dev->rtnl_link_ops ||
11086 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
11087 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
11088 						     GFP_KERNEL, NULL, 0,
11089 						     portid, nlh);
11090 
11091 		/*
11092 		 *	Flush the unicast and multicast chains
11093 		 */
11094 		dev_uc_flush(dev);
11095 		dev_mc_flush(dev);
11096 
11097 		netdev_name_node_alt_flush(dev);
11098 		netdev_name_node_free(dev->name_node);
11099 
11100 		call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
11101 
11102 		if (dev->netdev_ops->ndo_uninit)
11103 			dev->netdev_ops->ndo_uninit(dev);
11104 
11105 		if (skb)
11106 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL, portid, nlh);
11107 
11108 		/* Notifier chain MUST detach us all upper devices. */
11109 		WARN_ON(netdev_has_any_upper_dev(dev));
11110 		WARN_ON(netdev_has_any_lower_dev(dev));
11111 
11112 		/* Remove entries from kobject tree */
11113 		netdev_unregister_kobject(dev);
11114 #ifdef CONFIG_XPS
11115 		/* Remove XPS queueing entries */
11116 		netif_reset_xps_queues_gt(dev, 0);
11117 #endif
11118 	}
11119 
11120 	synchronize_net();
11121 
11122 	list_for_each_entry(dev, head, unreg_list) {
11123 		netdev_put(dev, &dev->dev_registered_tracker);
11124 		net_set_todo(dev);
11125 	}
11126 
11127 	list_del(head);
11128 }
11129 
11130 /**
11131  *	unregister_netdevice_many - unregister many devices
11132  *	@head: list of devices
11133  *
11134  *  Note: As most callers use a stack allocated list_head,
11135  *  we force a list_del() to make sure stack wont be corrupted later.
11136  */
11137 void unregister_netdevice_many(struct list_head *head)
11138 {
11139 	unregister_netdevice_many_notify(head, 0, NULL);
11140 }
11141 EXPORT_SYMBOL(unregister_netdevice_many);
11142 
11143 /**
11144  *	unregister_netdev - remove device from the kernel
11145  *	@dev: device
11146  *
11147  *	This function shuts down a device interface and removes it
11148  *	from the kernel tables.
11149  *
11150  *	This is just a wrapper for unregister_netdevice that takes
11151  *	the rtnl semaphore.  In general you want to use this and not
11152  *	unregister_netdevice.
11153  */
11154 void unregister_netdev(struct net_device *dev)
11155 {
11156 	rtnl_lock();
11157 	unregister_netdevice(dev);
11158 	rtnl_unlock();
11159 }
11160 EXPORT_SYMBOL(unregister_netdev);
11161 
11162 /**
11163  *	__dev_change_net_namespace - move device to different nethost namespace
11164  *	@dev: device
11165  *	@net: network namespace
11166  *	@pat: If not NULL name pattern to try if the current device name
11167  *	      is already taken in the destination network namespace.
11168  *	@new_ifindex: If not zero, specifies device index in the target
11169  *	              namespace.
11170  *
11171  *	This function shuts down a device interface and moves it
11172  *	to a new network namespace. On success 0 is returned, on
11173  *	a failure a netagive errno code is returned.
11174  *
11175  *	Callers must hold the rtnl semaphore.
11176  */
11177 
11178 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
11179 			       const char *pat, int new_ifindex)
11180 {
11181 	struct netdev_name_node *name_node;
11182 	struct net *net_old = dev_net(dev);
11183 	char new_name[IFNAMSIZ] = {};
11184 	int err, new_nsid;
11185 
11186 	ASSERT_RTNL();
11187 
11188 	/* Don't allow namespace local devices to be moved. */
11189 	err = -EINVAL;
11190 	if (dev->features & NETIF_F_NETNS_LOCAL)
11191 		goto out;
11192 
11193 	/* Ensure the device has been registrered */
11194 	if (dev->reg_state != NETREG_REGISTERED)
11195 		goto out;
11196 
11197 	/* Get out if there is nothing todo */
11198 	err = 0;
11199 	if (net_eq(net_old, net))
11200 		goto out;
11201 
11202 	/* Pick the destination device name, and ensure
11203 	 * we can use it in the destination network namespace.
11204 	 */
11205 	err = -EEXIST;
11206 	if (netdev_name_in_use(net, dev->name)) {
11207 		/* We get here if we can't use the current device name */
11208 		if (!pat)
11209 			goto out;
11210 		err = dev_prep_valid_name(net, dev, pat, new_name, EEXIST);
11211 		if (err < 0)
11212 			goto out;
11213 	}
11214 	/* Check that none of the altnames conflicts. */
11215 	err = -EEXIST;
11216 	netdev_for_each_altname(dev, name_node)
11217 		if (netdev_name_in_use(net, name_node->name))
11218 			goto out;
11219 
11220 	/* Check that new_ifindex isn't used yet. */
11221 	if (new_ifindex) {
11222 		err = dev_index_reserve(net, new_ifindex);
11223 		if (err < 0)
11224 			goto out;
11225 	} else {
11226 		/* If there is an ifindex conflict assign a new one */
11227 		err = dev_index_reserve(net, dev->ifindex);
11228 		if (err == -EBUSY)
11229 			err = dev_index_reserve(net, 0);
11230 		if (err < 0)
11231 			goto out;
11232 		new_ifindex = err;
11233 	}
11234 
11235 	/*
11236 	 * And now a mini version of register_netdevice unregister_netdevice.
11237 	 */
11238 
11239 	/* If device is running close it first. */
11240 	dev_close(dev);
11241 
11242 	/* And unlink it from device chain */
11243 	unlist_netdevice(dev, true);
11244 
11245 	synchronize_net();
11246 
11247 	/* Shutdown queueing discipline. */
11248 	dev_shutdown(dev);
11249 
11250 	/* Notify protocols, that we are about to destroy
11251 	 * this device. They should clean all the things.
11252 	 *
11253 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
11254 	 * This is wanted because this way 8021q and macvlan know
11255 	 * the device is just moving and can keep their slaves up.
11256 	 */
11257 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11258 	rcu_barrier();
11259 
11260 	new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
11261 
11262 	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
11263 			    new_ifindex);
11264 
11265 	/*
11266 	 *	Flush the unicast and multicast chains
11267 	 */
11268 	dev_uc_flush(dev);
11269 	dev_mc_flush(dev);
11270 
11271 	/* Send a netdev-removed uevent to the old namespace */
11272 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
11273 	netdev_adjacent_del_links(dev);
11274 
11275 	/* Move per-net netdevice notifiers that are following the netdevice */
11276 	move_netdevice_notifiers_dev_net(dev, net);
11277 
11278 	/* Actually switch the network namespace */
11279 	dev_net_set(dev, net);
11280 	dev->ifindex = new_ifindex;
11281 
11282 	if (new_name[0]) /* Rename the netdev to prepared name */
11283 		strscpy(dev->name, new_name, IFNAMSIZ);
11284 
11285 	/* Fixup kobjects */
11286 	dev_set_uevent_suppress(&dev->dev, 1);
11287 	err = device_rename(&dev->dev, dev->name);
11288 	dev_set_uevent_suppress(&dev->dev, 0);
11289 	WARN_ON(err);
11290 
11291 	/* Send a netdev-add uevent to the new namespace */
11292 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
11293 	netdev_adjacent_add_links(dev);
11294 
11295 	/* Adapt owner in case owning user namespace of target network
11296 	 * namespace is different from the original one.
11297 	 */
11298 	err = netdev_change_owner(dev, net_old, net);
11299 	WARN_ON(err);
11300 
11301 	/* Add the device back in the hashes */
11302 	list_netdevice(dev);
11303 
11304 	/* Notify protocols, that a new device appeared. */
11305 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
11306 
11307 	/*
11308 	 *	Prevent userspace races by waiting until the network
11309 	 *	device is fully setup before sending notifications.
11310 	 */
11311 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
11312 
11313 	synchronize_net();
11314 	err = 0;
11315 out:
11316 	return err;
11317 }
11318 EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
11319 
11320 static int dev_cpu_dead(unsigned int oldcpu)
11321 {
11322 	struct sk_buff **list_skb;
11323 	struct sk_buff *skb;
11324 	unsigned int cpu;
11325 	struct softnet_data *sd, *oldsd, *remsd = NULL;
11326 
11327 	local_irq_disable();
11328 	cpu = smp_processor_id();
11329 	sd = &per_cpu(softnet_data, cpu);
11330 	oldsd = &per_cpu(softnet_data, oldcpu);
11331 
11332 	/* Find end of our completion_queue. */
11333 	list_skb = &sd->completion_queue;
11334 	while (*list_skb)
11335 		list_skb = &(*list_skb)->next;
11336 	/* Append completion queue from offline CPU. */
11337 	*list_skb = oldsd->completion_queue;
11338 	oldsd->completion_queue = NULL;
11339 
11340 	/* Append output queue from offline CPU. */
11341 	if (oldsd->output_queue) {
11342 		*sd->output_queue_tailp = oldsd->output_queue;
11343 		sd->output_queue_tailp = oldsd->output_queue_tailp;
11344 		oldsd->output_queue = NULL;
11345 		oldsd->output_queue_tailp = &oldsd->output_queue;
11346 	}
11347 	/* Append NAPI poll list from offline CPU, with one exception :
11348 	 * process_backlog() must be called by cpu owning percpu backlog.
11349 	 * We properly handle process_queue & input_pkt_queue later.
11350 	 */
11351 	while (!list_empty(&oldsd->poll_list)) {
11352 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11353 							    struct napi_struct,
11354 							    poll_list);
11355 
11356 		list_del_init(&napi->poll_list);
11357 		if (napi->poll == process_backlog)
11358 			napi->state = 0;
11359 		else
11360 			____napi_schedule(sd, napi);
11361 	}
11362 
11363 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
11364 	local_irq_enable();
11365 
11366 #ifdef CONFIG_RPS
11367 	remsd = oldsd->rps_ipi_list;
11368 	oldsd->rps_ipi_list = NULL;
11369 #endif
11370 	/* send out pending IPI's on offline CPU */
11371 	net_rps_send_ipi(remsd);
11372 
11373 	/* Process offline CPU's input_pkt_queue */
11374 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11375 		netif_rx(skb);
11376 		input_queue_head_incr(oldsd);
11377 	}
11378 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11379 		netif_rx(skb);
11380 		input_queue_head_incr(oldsd);
11381 	}
11382 
11383 	return 0;
11384 }
11385 
11386 /**
11387  *	netdev_increment_features - increment feature set by one
11388  *	@all: current feature set
11389  *	@one: new feature set
11390  *	@mask: mask feature set
11391  *
11392  *	Computes a new feature set after adding a device with feature set
11393  *	@one to the master device with current feature set @all.  Will not
11394  *	enable anything that is off in @mask. Returns the new feature set.
11395  */
11396 netdev_features_t netdev_increment_features(netdev_features_t all,
11397 	netdev_features_t one, netdev_features_t mask)
11398 {
11399 	if (mask & NETIF_F_HW_CSUM)
11400 		mask |= NETIF_F_CSUM_MASK;
11401 	mask |= NETIF_F_VLAN_CHALLENGED;
11402 
11403 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11404 	all &= one | ~NETIF_F_ALL_FOR_ALL;
11405 
11406 	/* If one device supports hw checksumming, set for all. */
11407 	if (all & NETIF_F_HW_CSUM)
11408 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11409 
11410 	return all;
11411 }
11412 EXPORT_SYMBOL(netdev_increment_features);
11413 
11414 static struct hlist_head * __net_init netdev_create_hash(void)
11415 {
11416 	int i;
11417 	struct hlist_head *hash;
11418 
11419 	hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11420 	if (hash != NULL)
11421 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
11422 			INIT_HLIST_HEAD(&hash[i]);
11423 
11424 	return hash;
11425 }
11426 
11427 /* Initialize per network namespace state */
11428 static int __net_init netdev_init(struct net *net)
11429 {
11430 	BUILD_BUG_ON(GRO_HASH_BUCKETS >
11431 		     8 * sizeof_field(struct napi_struct, gro_bitmask));
11432 
11433 	INIT_LIST_HEAD(&net->dev_base_head);
11434 
11435 	net->dev_name_head = netdev_create_hash();
11436 	if (net->dev_name_head == NULL)
11437 		goto err_name;
11438 
11439 	net->dev_index_head = netdev_create_hash();
11440 	if (net->dev_index_head == NULL)
11441 		goto err_idx;
11442 
11443 	xa_init_flags(&net->dev_by_index, XA_FLAGS_ALLOC1);
11444 
11445 	RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11446 
11447 	return 0;
11448 
11449 err_idx:
11450 	kfree(net->dev_name_head);
11451 err_name:
11452 	return -ENOMEM;
11453 }
11454 
11455 /**
11456  *	netdev_drivername - network driver for the device
11457  *	@dev: network device
11458  *
11459  *	Determine network driver for device.
11460  */
11461 const char *netdev_drivername(const struct net_device *dev)
11462 {
11463 	const struct device_driver *driver;
11464 	const struct device *parent;
11465 	const char *empty = "";
11466 
11467 	parent = dev->dev.parent;
11468 	if (!parent)
11469 		return empty;
11470 
11471 	driver = parent->driver;
11472 	if (driver && driver->name)
11473 		return driver->name;
11474 	return empty;
11475 }
11476 
11477 static void __netdev_printk(const char *level, const struct net_device *dev,
11478 			    struct va_format *vaf)
11479 {
11480 	if (dev && dev->dev.parent) {
11481 		dev_printk_emit(level[1] - '0',
11482 				dev->dev.parent,
11483 				"%s %s %s%s: %pV",
11484 				dev_driver_string(dev->dev.parent),
11485 				dev_name(dev->dev.parent),
11486 				netdev_name(dev), netdev_reg_state(dev),
11487 				vaf);
11488 	} else if (dev) {
11489 		printk("%s%s%s: %pV",
11490 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
11491 	} else {
11492 		printk("%s(NULL net_device): %pV", level, vaf);
11493 	}
11494 }
11495 
11496 void netdev_printk(const char *level, const struct net_device *dev,
11497 		   const char *format, ...)
11498 {
11499 	struct va_format vaf;
11500 	va_list args;
11501 
11502 	va_start(args, format);
11503 
11504 	vaf.fmt = format;
11505 	vaf.va = &args;
11506 
11507 	__netdev_printk(level, dev, &vaf);
11508 
11509 	va_end(args);
11510 }
11511 EXPORT_SYMBOL(netdev_printk);
11512 
11513 #define define_netdev_printk_level(func, level)			\
11514 void func(const struct net_device *dev, const char *fmt, ...)	\
11515 {								\
11516 	struct va_format vaf;					\
11517 	va_list args;						\
11518 								\
11519 	va_start(args, fmt);					\
11520 								\
11521 	vaf.fmt = fmt;						\
11522 	vaf.va = &args;						\
11523 								\
11524 	__netdev_printk(level, dev, &vaf);			\
11525 								\
11526 	va_end(args);						\
11527 }								\
11528 EXPORT_SYMBOL(func);
11529 
11530 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11531 define_netdev_printk_level(netdev_alert, KERN_ALERT);
11532 define_netdev_printk_level(netdev_crit, KERN_CRIT);
11533 define_netdev_printk_level(netdev_err, KERN_ERR);
11534 define_netdev_printk_level(netdev_warn, KERN_WARNING);
11535 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11536 define_netdev_printk_level(netdev_info, KERN_INFO);
11537 
11538 static void __net_exit netdev_exit(struct net *net)
11539 {
11540 	kfree(net->dev_name_head);
11541 	kfree(net->dev_index_head);
11542 	xa_destroy(&net->dev_by_index);
11543 	if (net != &init_net)
11544 		WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11545 }
11546 
11547 static struct pernet_operations __net_initdata netdev_net_ops = {
11548 	.init = netdev_init,
11549 	.exit = netdev_exit,
11550 };
11551 
11552 static void __net_exit default_device_exit_net(struct net *net)
11553 {
11554 	struct net_device *dev, *aux;
11555 	/*
11556 	 * Push all migratable network devices back to the
11557 	 * initial network namespace
11558 	 */
11559 	ASSERT_RTNL();
11560 	for_each_netdev_safe(net, dev, aux) {
11561 		int err;
11562 		char fb_name[IFNAMSIZ];
11563 
11564 		/* Ignore unmoveable devices (i.e. loopback) */
11565 		if (dev->features & NETIF_F_NETNS_LOCAL)
11566 			continue;
11567 
11568 		/* Leave virtual devices for the generic cleanup */
11569 		if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11570 			continue;
11571 
11572 		/* Push remaining network devices to init_net */
11573 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11574 		if (netdev_name_in_use(&init_net, fb_name))
11575 			snprintf(fb_name, IFNAMSIZ, "dev%%d");
11576 		err = dev_change_net_namespace(dev, &init_net, fb_name);
11577 		if (err) {
11578 			pr_emerg("%s: failed to move %s to init_net: %d\n",
11579 				 __func__, dev->name, err);
11580 			BUG();
11581 		}
11582 	}
11583 }
11584 
11585 static void __net_exit default_device_exit_batch(struct list_head *net_list)
11586 {
11587 	/* At exit all network devices most be removed from a network
11588 	 * namespace.  Do this in the reverse order of registration.
11589 	 * Do this across as many network namespaces as possible to
11590 	 * improve batching efficiency.
11591 	 */
11592 	struct net_device *dev;
11593 	struct net *net;
11594 	LIST_HEAD(dev_kill_list);
11595 
11596 	rtnl_lock();
11597 	list_for_each_entry(net, net_list, exit_list) {
11598 		default_device_exit_net(net);
11599 		cond_resched();
11600 	}
11601 
11602 	list_for_each_entry(net, net_list, exit_list) {
11603 		for_each_netdev_reverse(net, dev) {
11604 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11605 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11606 			else
11607 				unregister_netdevice_queue(dev, &dev_kill_list);
11608 		}
11609 	}
11610 	unregister_netdevice_many(&dev_kill_list);
11611 	rtnl_unlock();
11612 }
11613 
11614 static struct pernet_operations __net_initdata default_device_ops = {
11615 	.exit_batch = default_device_exit_batch,
11616 };
11617 
11618 static void __init net_dev_struct_check(void)
11619 {
11620 	/* TX read-mostly hotpath */
11621 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, priv_flags);
11622 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, netdev_ops);
11623 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, header_ops);
11624 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, _tx);
11625 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, real_num_tx_queues);
11626 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_size);
11627 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_ipv4_max_size);
11628 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_segs);
11629 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_partial_features);
11630 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, num_tc);
11631 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, mtu);
11632 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, needed_headroom);
11633 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tc_to_txq);
11634 #ifdef CONFIG_XPS
11635 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, xps_maps);
11636 #endif
11637 #ifdef CONFIG_NETFILTER_EGRESS
11638 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, nf_hooks_egress);
11639 #endif
11640 #ifdef CONFIG_NET_XGRESS
11641 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tcx_egress);
11642 #endif
11643 	CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_tx, 160);
11644 
11645 	/* TXRX read-mostly hotpath */
11646 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, flags);
11647 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, hard_header_len);
11648 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, features);
11649 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, ip6_ptr);
11650 	CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_txrx, 30);
11651 
11652 	/* RX read-mostly hotpath */
11653 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ptype_specific);
11654 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ifindex);
11655 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, real_num_rx_queues);
11656 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, _rx);
11657 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_flush_timeout);
11658 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, napi_defer_hard_irqs);
11659 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_max_size);
11660 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_ipv4_max_size);
11661 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler);
11662 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler_data);
11663 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, nd_net);
11664 #ifdef CONFIG_NETPOLL
11665 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, npinfo);
11666 #endif
11667 #ifdef CONFIG_NET_XGRESS
11668 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, tcx_ingress);
11669 #endif
11670 	CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_rx, 104);
11671 }
11672 
11673 /*
11674  *	Initialize the DEV module. At boot time this walks the device list and
11675  *	unhooks any devices that fail to initialise (normally hardware not
11676  *	present) and leaves us with a valid list of present and active devices.
11677  *
11678  */
11679 
11680 /*
11681  *       This is called single threaded during boot, so no need
11682  *       to take the rtnl semaphore.
11683  */
11684 static int __init net_dev_init(void)
11685 {
11686 	int i, rc = -ENOMEM;
11687 
11688 	BUG_ON(!dev_boot_phase);
11689 
11690 	net_dev_struct_check();
11691 
11692 	if (dev_proc_init())
11693 		goto out;
11694 
11695 	if (netdev_kobject_init())
11696 		goto out;
11697 
11698 	INIT_LIST_HEAD(&ptype_all);
11699 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
11700 		INIT_LIST_HEAD(&ptype_base[i]);
11701 
11702 	if (register_pernet_subsys(&netdev_net_ops))
11703 		goto out;
11704 
11705 	/*
11706 	 *	Initialise the packet receive queues.
11707 	 */
11708 
11709 	for_each_possible_cpu(i) {
11710 		struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11711 		struct softnet_data *sd = &per_cpu(softnet_data, i);
11712 
11713 		INIT_WORK(flush, flush_backlog);
11714 
11715 		skb_queue_head_init(&sd->input_pkt_queue);
11716 		skb_queue_head_init(&sd->process_queue);
11717 #ifdef CONFIG_XFRM_OFFLOAD
11718 		skb_queue_head_init(&sd->xfrm_backlog);
11719 #endif
11720 		INIT_LIST_HEAD(&sd->poll_list);
11721 		sd->output_queue_tailp = &sd->output_queue;
11722 #ifdef CONFIG_RPS
11723 		INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
11724 		sd->cpu = i;
11725 #endif
11726 		INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd);
11727 		spin_lock_init(&sd->defer_lock);
11728 
11729 		init_gro_hash(&sd->backlog);
11730 		sd->backlog.poll = process_backlog;
11731 		sd->backlog.weight = weight_p;
11732 	}
11733 
11734 	dev_boot_phase = 0;
11735 
11736 	/* The loopback device is special if any other network devices
11737 	 * is present in a network namespace the loopback device must
11738 	 * be present. Since we now dynamically allocate and free the
11739 	 * loopback device ensure this invariant is maintained by
11740 	 * keeping the loopback device as the first device on the
11741 	 * list of network devices.  Ensuring the loopback devices
11742 	 * is the first device that appears and the last network device
11743 	 * that disappears.
11744 	 */
11745 	if (register_pernet_device(&loopback_net_ops))
11746 		goto out;
11747 
11748 	if (register_pernet_device(&default_device_ops))
11749 		goto out;
11750 
11751 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11752 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11753 
11754 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11755 				       NULL, dev_cpu_dead);
11756 	WARN_ON(rc < 0);
11757 	rc = 0;
11758 out:
11759 	return rc;
11760 }
11761 
11762 subsys_initcall(net_dev_init);
11763