xref: /linux/net/core/dev.c (revision c3d6b628395fe6ec3442a83ddf02334c54867d43)
1 /*
2  * 	NET3	Protocol independent device support routines.
3  *
4  *		This program is free software; you can redistribute it and/or
5  *		modify it under the terms of the GNU General Public License
6  *		as published by the Free Software Foundation; either version
7  *		2 of the License, or (at your option) any later version.
8  *
9  *	Derived from the non IP parts of dev.c 1.0.19
10  * 		Authors:	Ross Biro
11  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *	Additional Authors:
15  *		Florian la Roche <rzsfl@rz.uni-sb.de>
16  *		Alan Cox <gw4pts@gw4pts.ampr.org>
17  *		David Hinds <dahinds@users.sourceforge.net>
18  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *		Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *	Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *              			to 2 if register_netdev gets called
25  *              			before net_dev_init & also removed a
26  *              			few lines of code in the process.
27  *		Alan Cox	:	device private ioctl copies fields back.
28  *		Alan Cox	:	Transmit queue code does relevant
29  *					stunts to keep the queue safe.
30  *		Alan Cox	:	Fixed double lock.
31  *		Alan Cox	:	Fixed promisc NULL pointer trap
32  *		????????	:	Support the full private ioctl range
33  *		Alan Cox	:	Moved ioctl permission check into
34  *					drivers
35  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
36  *		Alan Cox	:	100 backlog just doesn't cut it when
37  *					you start doing multicast video 8)
38  *		Alan Cox	:	Rewrote net_bh and list manager.
39  *		Alan Cox	: 	Fix ETH_P_ALL echoback lengths.
40  *		Alan Cox	:	Took out transmit every packet pass
41  *					Saved a few bytes in the ioctl handler
42  *		Alan Cox	:	Network driver sets packet type before
43  *					calling netif_rx. Saves a function
44  *					call a packet.
45  *		Alan Cox	:	Hashed net_bh()
46  *		Richard Kooijman:	Timestamp fixes.
47  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
48  *		Alan Cox	:	Device lock protection.
49  *		Alan Cox	: 	Fixed nasty side effect of device close
50  *					changes.
51  *		Rudi Cilibrasi	:	Pass the right thing to
52  *					set_mac_address()
53  *		Dave Miller	:	32bit quantity for the device lock to
54  *					make it work out on a Sparc.
55  *		Bjorn Ekwall	:	Added KERNELD hack.
56  *		Alan Cox	:	Cleaned up the backlog initialise.
57  *		Craig Metz	:	SIOCGIFCONF fix if space for under
58  *					1 device.
59  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
60  *					is no device open function.
61  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
62  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
63  *		Cyrus Durgin	:	Cleaned for KMOD
64  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
65  *					A network device unload needs to purge
66  *					the backlog queue.
67  *	Paul Rusty Russell	:	SIOCSIFNAME
68  *              Pekka Riikonen  :	Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *              			indefinitely on dev->refcnt
71  * 		J Hadi Salim	:	- Backlog queue sampling
72  *				        - netif_rx() feedback
73  */
74 
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/stat.h>
101 #include <net/dst.h>
102 #include <net/pkt_sched.h>
103 #include <net/checksum.h>
104 #include <net/xfrm.h>
105 #include <linux/highmem.h>
106 #include <linux/init.h>
107 #include <linux/module.h>
108 #include <linux/netpoll.h>
109 #include <linux/rcupdate.h>
110 #include <linux/delay.h>
111 #include <net/iw_handler.h>
112 #include <asm/current.h>
113 #include <linux/audit.h>
114 #include <linux/dmaengine.h>
115 #include <linux/err.h>
116 #include <linux/ctype.h>
117 #include <linux/if_arp.h>
118 #include <linux/if_vlan.h>
119 #include <linux/ip.h>
120 #include <net/ip.h>
121 #include <linux/ipv6.h>
122 #include <linux/in.h>
123 #include <linux/jhash.h>
124 #include <linux/random.h>
125 #include <trace/events/napi.h>
126 #include <trace/events/net.h>
127 #include <trace/events/skb.h>
128 #include <linux/pci.h>
129 #include <linux/inetdevice.h>
130 #include <linux/cpu_rmap.h>
131 #include <linux/static_key.h>
132 
133 #include "net-sysfs.h"
134 
135 /* Instead of increasing this, you should create a hash table. */
136 #define MAX_GRO_SKBS 8
137 
138 /* This should be increased if a protocol with a bigger head is added. */
139 #define GRO_MAX_HEAD (MAX_HEADER + 128)
140 
141 static DEFINE_SPINLOCK(ptype_lock);
142 static DEFINE_SPINLOCK(offload_lock);
143 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
144 struct list_head ptype_all __read_mostly;	/* Taps */
145 static struct list_head offload_base __read_mostly;
146 
147 /*
148  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
149  * semaphore.
150  *
151  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
152  *
153  * Writers must hold the rtnl semaphore while they loop through the
154  * dev_base_head list, and hold dev_base_lock for writing when they do the
155  * actual updates.  This allows pure readers to access the list even
156  * while a writer is preparing to update it.
157  *
158  * To put it another way, dev_base_lock is held for writing only to
159  * protect against pure readers; the rtnl semaphore provides the
160  * protection against other writers.
161  *
162  * See, for example usages, register_netdevice() and
163  * unregister_netdevice(), which must be called with the rtnl
164  * semaphore held.
165  */
166 DEFINE_RWLOCK(dev_base_lock);
167 EXPORT_SYMBOL(dev_base_lock);
168 
169 seqcount_t devnet_rename_seq;
170 
171 static inline void dev_base_seq_inc(struct net *net)
172 {
173 	while (++net->dev_base_seq == 0);
174 }
175 
176 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
177 {
178 	unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
179 
180 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
181 }
182 
183 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
184 {
185 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
186 }
187 
188 static inline void rps_lock(struct softnet_data *sd)
189 {
190 #ifdef CONFIG_RPS
191 	spin_lock(&sd->input_pkt_queue.lock);
192 #endif
193 }
194 
195 static inline void rps_unlock(struct softnet_data *sd)
196 {
197 #ifdef CONFIG_RPS
198 	spin_unlock(&sd->input_pkt_queue.lock);
199 #endif
200 }
201 
202 /* Device list insertion */
203 static int list_netdevice(struct net_device *dev)
204 {
205 	struct net *net = dev_net(dev);
206 
207 	ASSERT_RTNL();
208 
209 	write_lock_bh(&dev_base_lock);
210 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
211 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
212 	hlist_add_head_rcu(&dev->index_hlist,
213 			   dev_index_hash(net, dev->ifindex));
214 	write_unlock_bh(&dev_base_lock);
215 
216 	dev_base_seq_inc(net);
217 
218 	return 0;
219 }
220 
221 /* Device list removal
222  * caller must respect a RCU grace period before freeing/reusing dev
223  */
224 static void unlist_netdevice(struct net_device *dev)
225 {
226 	ASSERT_RTNL();
227 
228 	/* Unlink dev from the device chain */
229 	write_lock_bh(&dev_base_lock);
230 	list_del_rcu(&dev->dev_list);
231 	hlist_del_rcu(&dev->name_hlist);
232 	hlist_del_rcu(&dev->index_hlist);
233 	write_unlock_bh(&dev_base_lock);
234 
235 	dev_base_seq_inc(dev_net(dev));
236 }
237 
238 /*
239  *	Our notifier list
240  */
241 
242 static RAW_NOTIFIER_HEAD(netdev_chain);
243 
244 /*
245  *	Device drivers call our routines to queue packets here. We empty the
246  *	queue in the local softnet handler.
247  */
248 
249 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
250 EXPORT_PER_CPU_SYMBOL(softnet_data);
251 
252 #ifdef CONFIG_LOCKDEP
253 /*
254  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
255  * according to dev->type
256  */
257 static const unsigned short netdev_lock_type[] =
258 	{ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
259 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
260 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
261 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
262 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
263 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
264 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
265 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
266 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
267 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
268 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
269 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
270 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
271 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
272 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
273 
274 static const char *const netdev_lock_name[] =
275 	{"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
276 	 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
277 	 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
278 	 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
279 	 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
280 	 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
281 	 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
282 	 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
283 	 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
284 	 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
285 	 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
286 	 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
287 	 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
288 	 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
289 	 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
290 
291 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
292 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
293 
294 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
295 {
296 	int i;
297 
298 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
299 		if (netdev_lock_type[i] == dev_type)
300 			return i;
301 	/* the last key is used by default */
302 	return ARRAY_SIZE(netdev_lock_type) - 1;
303 }
304 
305 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
306 						 unsigned short dev_type)
307 {
308 	int i;
309 
310 	i = netdev_lock_pos(dev_type);
311 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
312 				   netdev_lock_name[i]);
313 }
314 
315 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
316 {
317 	int i;
318 
319 	i = netdev_lock_pos(dev->type);
320 	lockdep_set_class_and_name(&dev->addr_list_lock,
321 				   &netdev_addr_lock_key[i],
322 				   netdev_lock_name[i]);
323 }
324 #else
325 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
326 						 unsigned short dev_type)
327 {
328 }
329 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
330 {
331 }
332 #endif
333 
334 /*******************************************************************************
335 
336 		Protocol management and registration routines
337 
338 *******************************************************************************/
339 
340 /*
341  *	Add a protocol ID to the list. Now that the input handler is
342  *	smarter we can dispense with all the messy stuff that used to be
343  *	here.
344  *
345  *	BEWARE!!! Protocol handlers, mangling input packets,
346  *	MUST BE last in hash buckets and checking protocol handlers
347  *	MUST start from promiscuous ptype_all chain in net_bh.
348  *	It is true now, do not change it.
349  *	Explanation follows: if protocol handler, mangling packet, will
350  *	be the first on list, it is not able to sense, that packet
351  *	is cloned and should be copied-on-write, so that it will
352  *	change it and subsequent readers will get broken packet.
353  *							--ANK (980803)
354  */
355 
356 static inline struct list_head *ptype_head(const struct packet_type *pt)
357 {
358 	if (pt->type == htons(ETH_P_ALL))
359 		return &ptype_all;
360 	else
361 		return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
362 }
363 
364 /**
365  *	dev_add_pack - add packet handler
366  *	@pt: packet type declaration
367  *
368  *	Add a protocol handler to the networking stack. The passed &packet_type
369  *	is linked into kernel lists and may not be freed until it has been
370  *	removed from the kernel lists.
371  *
372  *	This call does not sleep therefore it can not
373  *	guarantee all CPU's that are in middle of receiving packets
374  *	will see the new packet type (until the next received packet).
375  */
376 
377 void dev_add_pack(struct packet_type *pt)
378 {
379 	struct list_head *head = ptype_head(pt);
380 
381 	spin_lock(&ptype_lock);
382 	list_add_rcu(&pt->list, head);
383 	spin_unlock(&ptype_lock);
384 }
385 EXPORT_SYMBOL(dev_add_pack);
386 
387 /**
388  *	__dev_remove_pack	 - remove packet handler
389  *	@pt: packet type declaration
390  *
391  *	Remove a protocol handler that was previously added to the kernel
392  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
393  *	from the kernel lists and can be freed or reused once this function
394  *	returns.
395  *
396  *      The packet type might still be in use by receivers
397  *	and must not be freed until after all the CPU's have gone
398  *	through a quiescent state.
399  */
400 void __dev_remove_pack(struct packet_type *pt)
401 {
402 	struct list_head *head = ptype_head(pt);
403 	struct packet_type *pt1;
404 
405 	spin_lock(&ptype_lock);
406 
407 	list_for_each_entry(pt1, head, list) {
408 		if (pt == pt1) {
409 			list_del_rcu(&pt->list);
410 			goto out;
411 		}
412 	}
413 
414 	pr_warn("dev_remove_pack: %p not found\n", pt);
415 out:
416 	spin_unlock(&ptype_lock);
417 }
418 EXPORT_SYMBOL(__dev_remove_pack);
419 
420 /**
421  *	dev_remove_pack	 - remove packet handler
422  *	@pt: packet type declaration
423  *
424  *	Remove a protocol handler that was previously added to the kernel
425  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
426  *	from the kernel lists and can be freed or reused once this function
427  *	returns.
428  *
429  *	This call sleeps to guarantee that no CPU is looking at the packet
430  *	type after return.
431  */
432 void dev_remove_pack(struct packet_type *pt)
433 {
434 	__dev_remove_pack(pt);
435 
436 	synchronize_net();
437 }
438 EXPORT_SYMBOL(dev_remove_pack);
439 
440 
441 /**
442  *	dev_add_offload - register offload handlers
443  *	@po: protocol offload declaration
444  *
445  *	Add protocol offload handlers to the networking stack. The passed
446  *	&proto_offload is linked into kernel lists and may not be freed until
447  *	it has been removed from the kernel lists.
448  *
449  *	This call does not sleep therefore it can not
450  *	guarantee all CPU's that are in middle of receiving packets
451  *	will see the new offload handlers (until the next received packet).
452  */
453 void dev_add_offload(struct packet_offload *po)
454 {
455 	struct list_head *head = &offload_base;
456 
457 	spin_lock(&offload_lock);
458 	list_add_rcu(&po->list, head);
459 	spin_unlock(&offload_lock);
460 }
461 EXPORT_SYMBOL(dev_add_offload);
462 
463 /**
464  *	__dev_remove_offload	 - remove offload handler
465  *	@po: packet offload declaration
466  *
467  *	Remove a protocol offload handler that was previously added to the
468  *	kernel offload handlers by dev_add_offload(). The passed &offload_type
469  *	is removed from the kernel lists and can be freed or reused once this
470  *	function returns.
471  *
472  *      The packet type might still be in use by receivers
473  *	and must not be freed until after all the CPU's have gone
474  *	through a quiescent state.
475  */
476 void __dev_remove_offload(struct packet_offload *po)
477 {
478 	struct list_head *head = &offload_base;
479 	struct packet_offload *po1;
480 
481 	spin_lock(&offload_lock);
482 
483 	list_for_each_entry(po1, head, list) {
484 		if (po == po1) {
485 			list_del_rcu(&po->list);
486 			goto out;
487 		}
488 	}
489 
490 	pr_warn("dev_remove_offload: %p not found\n", po);
491 out:
492 	spin_unlock(&offload_lock);
493 }
494 EXPORT_SYMBOL(__dev_remove_offload);
495 
496 /**
497  *	dev_remove_offload	 - remove packet offload handler
498  *	@po: packet offload declaration
499  *
500  *	Remove a packet offload handler that was previously added to the kernel
501  *	offload handlers by dev_add_offload(). The passed &offload_type is
502  *	removed from the kernel lists and can be freed or reused once this
503  *	function returns.
504  *
505  *	This call sleeps to guarantee that no CPU is looking at the packet
506  *	type after return.
507  */
508 void dev_remove_offload(struct packet_offload *po)
509 {
510 	__dev_remove_offload(po);
511 
512 	synchronize_net();
513 }
514 EXPORT_SYMBOL(dev_remove_offload);
515 
516 /******************************************************************************
517 
518 		      Device Boot-time Settings Routines
519 
520 *******************************************************************************/
521 
522 /* Boot time configuration table */
523 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
524 
525 /**
526  *	netdev_boot_setup_add	- add new setup entry
527  *	@name: name of the device
528  *	@map: configured settings for the device
529  *
530  *	Adds new setup entry to the dev_boot_setup list.  The function
531  *	returns 0 on error and 1 on success.  This is a generic routine to
532  *	all netdevices.
533  */
534 static int netdev_boot_setup_add(char *name, struct ifmap *map)
535 {
536 	struct netdev_boot_setup *s;
537 	int i;
538 
539 	s = dev_boot_setup;
540 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
541 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
542 			memset(s[i].name, 0, sizeof(s[i].name));
543 			strlcpy(s[i].name, name, IFNAMSIZ);
544 			memcpy(&s[i].map, map, sizeof(s[i].map));
545 			break;
546 		}
547 	}
548 
549 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
550 }
551 
552 /**
553  *	netdev_boot_setup_check	- check boot time settings
554  *	@dev: the netdevice
555  *
556  * 	Check boot time settings for the device.
557  *	The found settings are set for the device to be used
558  *	later in the device probing.
559  *	Returns 0 if no settings found, 1 if they are.
560  */
561 int netdev_boot_setup_check(struct net_device *dev)
562 {
563 	struct netdev_boot_setup *s = dev_boot_setup;
564 	int i;
565 
566 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
567 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
568 		    !strcmp(dev->name, s[i].name)) {
569 			dev->irq 	= s[i].map.irq;
570 			dev->base_addr 	= s[i].map.base_addr;
571 			dev->mem_start 	= s[i].map.mem_start;
572 			dev->mem_end 	= s[i].map.mem_end;
573 			return 1;
574 		}
575 	}
576 	return 0;
577 }
578 EXPORT_SYMBOL(netdev_boot_setup_check);
579 
580 
581 /**
582  *	netdev_boot_base	- get address from boot time settings
583  *	@prefix: prefix for network device
584  *	@unit: id for network device
585  *
586  * 	Check boot time settings for the base address of device.
587  *	The found settings are set for the device to be used
588  *	later in the device probing.
589  *	Returns 0 if no settings found.
590  */
591 unsigned long netdev_boot_base(const char *prefix, int unit)
592 {
593 	const struct netdev_boot_setup *s = dev_boot_setup;
594 	char name[IFNAMSIZ];
595 	int i;
596 
597 	sprintf(name, "%s%d", prefix, unit);
598 
599 	/*
600 	 * If device already registered then return base of 1
601 	 * to indicate not to probe for this interface
602 	 */
603 	if (__dev_get_by_name(&init_net, name))
604 		return 1;
605 
606 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
607 		if (!strcmp(name, s[i].name))
608 			return s[i].map.base_addr;
609 	return 0;
610 }
611 
612 /*
613  * Saves at boot time configured settings for any netdevice.
614  */
615 int __init netdev_boot_setup(char *str)
616 {
617 	int ints[5];
618 	struct ifmap map;
619 
620 	str = get_options(str, ARRAY_SIZE(ints), ints);
621 	if (!str || !*str)
622 		return 0;
623 
624 	/* Save settings */
625 	memset(&map, 0, sizeof(map));
626 	if (ints[0] > 0)
627 		map.irq = ints[1];
628 	if (ints[0] > 1)
629 		map.base_addr = ints[2];
630 	if (ints[0] > 2)
631 		map.mem_start = ints[3];
632 	if (ints[0] > 3)
633 		map.mem_end = ints[4];
634 
635 	/* Add new entry to the list */
636 	return netdev_boot_setup_add(str, &map);
637 }
638 
639 __setup("netdev=", netdev_boot_setup);
640 
641 /*******************************************************************************
642 
643 			    Device Interface Subroutines
644 
645 *******************************************************************************/
646 
647 /**
648  *	__dev_get_by_name	- find a device by its name
649  *	@net: the applicable net namespace
650  *	@name: name to find
651  *
652  *	Find an interface by name. Must be called under RTNL semaphore
653  *	or @dev_base_lock. If the name is found a pointer to the device
654  *	is returned. If the name is not found then %NULL is returned. The
655  *	reference counters are not incremented so the caller must be
656  *	careful with locks.
657  */
658 
659 struct net_device *__dev_get_by_name(struct net *net, const char *name)
660 {
661 	struct net_device *dev;
662 	struct hlist_head *head = dev_name_hash(net, name);
663 
664 	hlist_for_each_entry(dev, head, name_hlist)
665 		if (!strncmp(dev->name, name, IFNAMSIZ))
666 			return dev;
667 
668 	return NULL;
669 }
670 EXPORT_SYMBOL(__dev_get_by_name);
671 
672 /**
673  *	dev_get_by_name_rcu	- find a device by its name
674  *	@net: the applicable net namespace
675  *	@name: name to find
676  *
677  *	Find an interface by name.
678  *	If the name is found a pointer to the device is returned.
679  * 	If the name is not found then %NULL is returned.
680  *	The reference counters are not incremented so the caller must be
681  *	careful with locks. The caller must hold RCU lock.
682  */
683 
684 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
685 {
686 	struct net_device *dev;
687 	struct hlist_head *head = dev_name_hash(net, name);
688 
689 	hlist_for_each_entry_rcu(dev, head, name_hlist)
690 		if (!strncmp(dev->name, name, IFNAMSIZ))
691 			return dev;
692 
693 	return NULL;
694 }
695 EXPORT_SYMBOL(dev_get_by_name_rcu);
696 
697 /**
698  *	dev_get_by_name		- find a device by its name
699  *	@net: the applicable net namespace
700  *	@name: name to find
701  *
702  *	Find an interface by name. This can be called from any
703  *	context and does its own locking. The returned handle has
704  *	the usage count incremented and the caller must use dev_put() to
705  *	release it when it is no longer needed. %NULL is returned if no
706  *	matching device is found.
707  */
708 
709 struct net_device *dev_get_by_name(struct net *net, const char *name)
710 {
711 	struct net_device *dev;
712 
713 	rcu_read_lock();
714 	dev = dev_get_by_name_rcu(net, name);
715 	if (dev)
716 		dev_hold(dev);
717 	rcu_read_unlock();
718 	return dev;
719 }
720 EXPORT_SYMBOL(dev_get_by_name);
721 
722 /**
723  *	__dev_get_by_index - find a device by its ifindex
724  *	@net: the applicable net namespace
725  *	@ifindex: index of device
726  *
727  *	Search for an interface by index. Returns %NULL if the device
728  *	is not found or a pointer to the device. The device has not
729  *	had its reference counter increased so the caller must be careful
730  *	about locking. The caller must hold either the RTNL semaphore
731  *	or @dev_base_lock.
732  */
733 
734 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
735 {
736 	struct net_device *dev;
737 	struct hlist_head *head = dev_index_hash(net, ifindex);
738 
739 	hlist_for_each_entry(dev, head, index_hlist)
740 		if (dev->ifindex == ifindex)
741 			return dev;
742 
743 	return NULL;
744 }
745 EXPORT_SYMBOL(__dev_get_by_index);
746 
747 /**
748  *	dev_get_by_index_rcu - find a device by its ifindex
749  *	@net: the applicable net namespace
750  *	@ifindex: index of device
751  *
752  *	Search for an interface by index. Returns %NULL if the device
753  *	is not found or a pointer to the device. The device has not
754  *	had its reference counter increased so the caller must be careful
755  *	about locking. The caller must hold RCU lock.
756  */
757 
758 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
759 {
760 	struct net_device *dev;
761 	struct hlist_head *head = dev_index_hash(net, ifindex);
762 
763 	hlist_for_each_entry_rcu(dev, head, index_hlist)
764 		if (dev->ifindex == ifindex)
765 			return dev;
766 
767 	return NULL;
768 }
769 EXPORT_SYMBOL(dev_get_by_index_rcu);
770 
771 
772 /**
773  *	dev_get_by_index - find a device by its ifindex
774  *	@net: the applicable net namespace
775  *	@ifindex: index of device
776  *
777  *	Search for an interface by index. Returns NULL if the device
778  *	is not found or a pointer to the device. The device returned has
779  *	had a reference added and the pointer is safe until the user calls
780  *	dev_put to indicate they have finished with it.
781  */
782 
783 struct net_device *dev_get_by_index(struct net *net, int ifindex)
784 {
785 	struct net_device *dev;
786 
787 	rcu_read_lock();
788 	dev = dev_get_by_index_rcu(net, ifindex);
789 	if (dev)
790 		dev_hold(dev);
791 	rcu_read_unlock();
792 	return dev;
793 }
794 EXPORT_SYMBOL(dev_get_by_index);
795 
796 /**
797  *	dev_getbyhwaddr_rcu - find a device by its hardware address
798  *	@net: the applicable net namespace
799  *	@type: media type of device
800  *	@ha: hardware address
801  *
802  *	Search for an interface by MAC address. Returns NULL if the device
803  *	is not found or a pointer to the device.
804  *	The caller must hold RCU or RTNL.
805  *	The returned device has not had its ref count increased
806  *	and the caller must therefore be careful about locking
807  *
808  */
809 
810 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
811 				       const char *ha)
812 {
813 	struct net_device *dev;
814 
815 	for_each_netdev_rcu(net, dev)
816 		if (dev->type == type &&
817 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
818 			return dev;
819 
820 	return NULL;
821 }
822 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
823 
824 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
825 {
826 	struct net_device *dev;
827 
828 	ASSERT_RTNL();
829 	for_each_netdev(net, dev)
830 		if (dev->type == type)
831 			return dev;
832 
833 	return NULL;
834 }
835 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
836 
837 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
838 {
839 	struct net_device *dev, *ret = NULL;
840 
841 	rcu_read_lock();
842 	for_each_netdev_rcu(net, dev)
843 		if (dev->type == type) {
844 			dev_hold(dev);
845 			ret = dev;
846 			break;
847 		}
848 	rcu_read_unlock();
849 	return ret;
850 }
851 EXPORT_SYMBOL(dev_getfirstbyhwtype);
852 
853 /**
854  *	dev_get_by_flags_rcu - find any device with given flags
855  *	@net: the applicable net namespace
856  *	@if_flags: IFF_* values
857  *	@mask: bitmask of bits in if_flags to check
858  *
859  *	Search for any interface with the given flags. Returns NULL if a device
860  *	is not found or a pointer to the device. Must be called inside
861  *	rcu_read_lock(), and result refcount is unchanged.
862  */
863 
864 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
865 				    unsigned short mask)
866 {
867 	struct net_device *dev, *ret;
868 
869 	ret = NULL;
870 	for_each_netdev_rcu(net, dev) {
871 		if (((dev->flags ^ if_flags) & mask) == 0) {
872 			ret = dev;
873 			break;
874 		}
875 	}
876 	return ret;
877 }
878 EXPORT_SYMBOL(dev_get_by_flags_rcu);
879 
880 /**
881  *	dev_valid_name - check if name is okay for network device
882  *	@name: name string
883  *
884  *	Network device names need to be valid file names to
885  *	to allow sysfs to work.  We also disallow any kind of
886  *	whitespace.
887  */
888 bool dev_valid_name(const char *name)
889 {
890 	if (*name == '\0')
891 		return false;
892 	if (strlen(name) >= IFNAMSIZ)
893 		return false;
894 	if (!strcmp(name, ".") || !strcmp(name, ".."))
895 		return false;
896 
897 	while (*name) {
898 		if (*name == '/' || isspace(*name))
899 			return false;
900 		name++;
901 	}
902 	return true;
903 }
904 EXPORT_SYMBOL(dev_valid_name);
905 
906 /**
907  *	__dev_alloc_name - allocate a name for a device
908  *	@net: network namespace to allocate the device name in
909  *	@name: name format string
910  *	@buf:  scratch buffer and result name string
911  *
912  *	Passed a format string - eg "lt%d" it will try and find a suitable
913  *	id. It scans list of devices to build up a free map, then chooses
914  *	the first empty slot. The caller must hold the dev_base or rtnl lock
915  *	while allocating the name and adding the device in order to avoid
916  *	duplicates.
917  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
918  *	Returns the number of the unit assigned or a negative errno code.
919  */
920 
921 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
922 {
923 	int i = 0;
924 	const char *p;
925 	const int max_netdevices = 8*PAGE_SIZE;
926 	unsigned long *inuse;
927 	struct net_device *d;
928 
929 	p = strnchr(name, IFNAMSIZ-1, '%');
930 	if (p) {
931 		/*
932 		 * Verify the string as this thing may have come from
933 		 * the user.  There must be either one "%d" and no other "%"
934 		 * characters.
935 		 */
936 		if (p[1] != 'd' || strchr(p + 2, '%'))
937 			return -EINVAL;
938 
939 		/* Use one page as a bit array of possible slots */
940 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
941 		if (!inuse)
942 			return -ENOMEM;
943 
944 		for_each_netdev(net, d) {
945 			if (!sscanf(d->name, name, &i))
946 				continue;
947 			if (i < 0 || i >= max_netdevices)
948 				continue;
949 
950 			/*  avoid cases where sscanf is not exact inverse of printf */
951 			snprintf(buf, IFNAMSIZ, name, i);
952 			if (!strncmp(buf, d->name, IFNAMSIZ))
953 				set_bit(i, inuse);
954 		}
955 
956 		i = find_first_zero_bit(inuse, max_netdevices);
957 		free_page((unsigned long) inuse);
958 	}
959 
960 	if (buf != name)
961 		snprintf(buf, IFNAMSIZ, name, i);
962 	if (!__dev_get_by_name(net, buf))
963 		return i;
964 
965 	/* It is possible to run out of possible slots
966 	 * when the name is long and there isn't enough space left
967 	 * for the digits, or if all bits are used.
968 	 */
969 	return -ENFILE;
970 }
971 
972 /**
973  *	dev_alloc_name - allocate a name for a device
974  *	@dev: device
975  *	@name: name format string
976  *
977  *	Passed a format string - eg "lt%d" it will try and find a suitable
978  *	id. It scans list of devices to build up a free map, then chooses
979  *	the first empty slot. The caller must hold the dev_base or rtnl lock
980  *	while allocating the name and adding the device in order to avoid
981  *	duplicates.
982  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
983  *	Returns the number of the unit assigned or a negative errno code.
984  */
985 
986 int dev_alloc_name(struct net_device *dev, const char *name)
987 {
988 	char buf[IFNAMSIZ];
989 	struct net *net;
990 	int ret;
991 
992 	BUG_ON(!dev_net(dev));
993 	net = dev_net(dev);
994 	ret = __dev_alloc_name(net, name, buf);
995 	if (ret >= 0)
996 		strlcpy(dev->name, buf, IFNAMSIZ);
997 	return ret;
998 }
999 EXPORT_SYMBOL(dev_alloc_name);
1000 
1001 static int dev_alloc_name_ns(struct net *net,
1002 			     struct net_device *dev,
1003 			     const char *name)
1004 {
1005 	char buf[IFNAMSIZ];
1006 	int ret;
1007 
1008 	ret = __dev_alloc_name(net, name, buf);
1009 	if (ret >= 0)
1010 		strlcpy(dev->name, buf, IFNAMSIZ);
1011 	return ret;
1012 }
1013 
1014 static int dev_get_valid_name(struct net *net,
1015 			      struct net_device *dev,
1016 			      const char *name)
1017 {
1018 	BUG_ON(!net);
1019 
1020 	if (!dev_valid_name(name))
1021 		return -EINVAL;
1022 
1023 	if (strchr(name, '%'))
1024 		return dev_alloc_name_ns(net, dev, name);
1025 	else if (__dev_get_by_name(net, name))
1026 		return -EEXIST;
1027 	else if (dev->name != name)
1028 		strlcpy(dev->name, name, IFNAMSIZ);
1029 
1030 	return 0;
1031 }
1032 
1033 /**
1034  *	dev_change_name - change name of a device
1035  *	@dev: device
1036  *	@newname: name (or format string) must be at least IFNAMSIZ
1037  *
1038  *	Change name of a device, can pass format strings "eth%d".
1039  *	for wildcarding.
1040  */
1041 int dev_change_name(struct net_device *dev, const char *newname)
1042 {
1043 	char oldname[IFNAMSIZ];
1044 	int err = 0;
1045 	int ret;
1046 	struct net *net;
1047 
1048 	ASSERT_RTNL();
1049 	BUG_ON(!dev_net(dev));
1050 
1051 	net = dev_net(dev);
1052 	if (dev->flags & IFF_UP)
1053 		return -EBUSY;
1054 
1055 	write_seqcount_begin(&devnet_rename_seq);
1056 
1057 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1058 		write_seqcount_end(&devnet_rename_seq);
1059 		return 0;
1060 	}
1061 
1062 	memcpy(oldname, dev->name, IFNAMSIZ);
1063 
1064 	err = dev_get_valid_name(net, dev, newname);
1065 	if (err < 0) {
1066 		write_seqcount_end(&devnet_rename_seq);
1067 		return err;
1068 	}
1069 
1070 rollback:
1071 	ret = device_rename(&dev->dev, dev->name);
1072 	if (ret) {
1073 		memcpy(dev->name, oldname, IFNAMSIZ);
1074 		write_seqcount_end(&devnet_rename_seq);
1075 		return ret;
1076 	}
1077 
1078 	write_seqcount_end(&devnet_rename_seq);
1079 
1080 	write_lock_bh(&dev_base_lock);
1081 	hlist_del_rcu(&dev->name_hlist);
1082 	write_unlock_bh(&dev_base_lock);
1083 
1084 	synchronize_rcu();
1085 
1086 	write_lock_bh(&dev_base_lock);
1087 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1088 	write_unlock_bh(&dev_base_lock);
1089 
1090 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1091 	ret = notifier_to_errno(ret);
1092 
1093 	if (ret) {
1094 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1095 		if (err >= 0) {
1096 			err = ret;
1097 			write_seqcount_begin(&devnet_rename_seq);
1098 			memcpy(dev->name, oldname, IFNAMSIZ);
1099 			goto rollback;
1100 		} else {
1101 			pr_err("%s: name change rollback failed: %d\n",
1102 			       dev->name, ret);
1103 		}
1104 	}
1105 
1106 	return err;
1107 }
1108 
1109 /**
1110  *	dev_set_alias - change ifalias of a device
1111  *	@dev: device
1112  *	@alias: name up to IFALIASZ
1113  *	@len: limit of bytes to copy from info
1114  *
1115  *	Set ifalias for a device,
1116  */
1117 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1118 {
1119 	char *new_ifalias;
1120 
1121 	ASSERT_RTNL();
1122 
1123 	if (len >= IFALIASZ)
1124 		return -EINVAL;
1125 
1126 	if (!len) {
1127 		kfree(dev->ifalias);
1128 		dev->ifalias = NULL;
1129 		return 0;
1130 	}
1131 
1132 	new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1133 	if (!new_ifalias)
1134 		return -ENOMEM;
1135 	dev->ifalias = new_ifalias;
1136 
1137 	strlcpy(dev->ifalias, alias, len+1);
1138 	return len;
1139 }
1140 
1141 
1142 /**
1143  *	netdev_features_change - device changes features
1144  *	@dev: device to cause notification
1145  *
1146  *	Called to indicate a device has changed features.
1147  */
1148 void netdev_features_change(struct net_device *dev)
1149 {
1150 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1151 }
1152 EXPORT_SYMBOL(netdev_features_change);
1153 
1154 /**
1155  *	netdev_state_change - device changes state
1156  *	@dev: device to cause notification
1157  *
1158  *	Called to indicate a device has changed state. This function calls
1159  *	the notifier chains for netdev_chain and sends a NEWLINK message
1160  *	to the routing socket.
1161  */
1162 void netdev_state_change(struct net_device *dev)
1163 {
1164 	if (dev->flags & IFF_UP) {
1165 		call_netdevice_notifiers(NETDEV_CHANGE, dev);
1166 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1167 	}
1168 }
1169 EXPORT_SYMBOL(netdev_state_change);
1170 
1171 /**
1172  * 	netdev_notify_peers - notify network peers about existence of @dev
1173  * 	@dev: network device
1174  *
1175  * Generate traffic such that interested network peers are aware of
1176  * @dev, such as by generating a gratuitous ARP. This may be used when
1177  * a device wants to inform the rest of the network about some sort of
1178  * reconfiguration such as a failover event or virtual machine
1179  * migration.
1180  */
1181 void netdev_notify_peers(struct net_device *dev)
1182 {
1183 	rtnl_lock();
1184 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1185 	rtnl_unlock();
1186 }
1187 EXPORT_SYMBOL(netdev_notify_peers);
1188 
1189 static int __dev_open(struct net_device *dev)
1190 {
1191 	const struct net_device_ops *ops = dev->netdev_ops;
1192 	int ret;
1193 
1194 	ASSERT_RTNL();
1195 
1196 	if (!netif_device_present(dev))
1197 		return -ENODEV;
1198 
1199 	/* Block netpoll from trying to do any rx path servicing.
1200 	 * If we don't do this there is a chance ndo_poll_controller
1201 	 * or ndo_poll may be running while we open the device
1202 	 */
1203 	ret = netpoll_rx_disable(dev);
1204 	if (ret)
1205 		return ret;
1206 
1207 	ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1208 	ret = notifier_to_errno(ret);
1209 	if (ret)
1210 		return ret;
1211 
1212 	set_bit(__LINK_STATE_START, &dev->state);
1213 
1214 	if (ops->ndo_validate_addr)
1215 		ret = ops->ndo_validate_addr(dev);
1216 
1217 	if (!ret && ops->ndo_open)
1218 		ret = ops->ndo_open(dev);
1219 
1220 	netpoll_rx_enable(dev);
1221 
1222 	if (ret)
1223 		clear_bit(__LINK_STATE_START, &dev->state);
1224 	else {
1225 		dev->flags |= IFF_UP;
1226 		net_dmaengine_get();
1227 		dev_set_rx_mode(dev);
1228 		dev_activate(dev);
1229 		add_device_randomness(dev->dev_addr, dev->addr_len);
1230 	}
1231 
1232 	return ret;
1233 }
1234 
1235 /**
1236  *	dev_open	- prepare an interface for use.
1237  *	@dev:	device to open
1238  *
1239  *	Takes a device from down to up state. The device's private open
1240  *	function is invoked and then the multicast lists are loaded. Finally
1241  *	the device is moved into the up state and a %NETDEV_UP message is
1242  *	sent to the netdev notifier chain.
1243  *
1244  *	Calling this function on an active interface is a nop. On a failure
1245  *	a negative errno code is returned.
1246  */
1247 int dev_open(struct net_device *dev)
1248 {
1249 	int ret;
1250 
1251 	if (dev->flags & IFF_UP)
1252 		return 0;
1253 
1254 	ret = __dev_open(dev);
1255 	if (ret < 0)
1256 		return ret;
1257 
1258 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1259 	call_netdevice_notifiers(NETDEV_UP, dev);
1260 
1261 	return ret;
1262 }
1263 EXPORT_SYMBOL(dev_open);
1264 
1265 static int __dev_close_many(struct list_head *head)
1266 {
1267 	struct net_device *dev;
1268 
1269 	ASSERT_RTNL();
1270 	might_sleep();
1271 
1272 	list_for_each_entry(dev, head, unreg_list) {
1273 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1274 
1275 		clear_bit(__LINK_STATE_START, &dev->state);
1276 
1277 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1278 		 * can be even on different cpu. So just clear netif_running().
1279 		 *
1280 		 * dev->stop() will invoke napi_disable() on all of it's
1281 		 * napi_struct instances on this device.
1282 		 */
1283 		smp_mb__after_clear_bit(); /* Commit netif_running(). */
1284 	}
1285 
1286 	dev_deactivate_many(head);
1287 
1288 	list_for_each_entry(dev, head, unreg_list) {
1289 		const struct net_device_ops *ops = dev->netdev_ops;
1290 
1291 		/*
1292 		 *	Call the device specific close. This cannot fail.
1293 		 *	Only if device is UP
1294 		 *
1295 		 *	We allow it to be called even after a DETACH hot-plug
1296 		 *	event.
1297 		 */
1298 		if (ops->ndo_stop)
1299 			ops->ndo_stop(dev);
1300 
1301 		dev->flags &= ~IFF_UP;
1302 		net_dmaengine_put();
1303 	}
1304 
1305 	return 0;
1306 }
1307 
1308 static int __dev_close(struct net_device *dev)
1309 {
1310 	int retval;
1311 	LIST_HEAD(single);
1312 
1313 	/* Temporarily disable netpoll until the interface is down */
1314 	retval = netpoll_rx_disable(dev);
1315 	if (retval)
1316 		return retval;
1317 
1318 	list_add(&dev->unreg_list, &single);
1319 	retval = __dev_close_many(&single);
1320 	list_del(&single);
1321 
1322 	netpoll_rx_enable(dev);
1323 	return retval;
1324 }
1325 
1326 static int dev_close_many(struct list_head *head)
1327 {
1328 	struct net_device *dev, *tmp;
1329 	LIST_HEAD(tmp_list);
1330 
1331 	list_for_each_entry_safe(dev, tmp, head, unreg_list)
1332 		if (!(dev->flags & IFF_UP))
1333 			list_move(&dev->unreg_list, &tmp_list);
1334 
1335 	__dev_close_many(head);
1336 
1337 	list_for_each_entry(dev, head, unreg_list) {
1338 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1339 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1340 	}
1341 
1342 	/* rollback_registered_many needs the complete original list */
1343 	list_splice(&tmp_list, head);
1344 	return 0;
1345 }
1346 
1347 /**
1348  *	dev_close - shutdown an interface.
1349  *	@dev: device to shutdown
1350  *
1351  *	This function moves an active device into down state. A
1352  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1353  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1354  *	chain.
1355  */
1356 int dev_close(struct net_device *dev)
1357 {
1358 	int ret = 0;
1359 	if (dev->flags & IFF_UP) {
1360 		LIST_HEAD(single);
1361 
1362 		/* Block netpoll rx while the interface is going down */
1363 		ret = netpoll_rx_disable(dev);
1364 		if (ret)
1365 			return ret;
1366 
1367 		list_add(&dev->unreg_list, &single);
1368 		dev_close_many(&single);
1369 		list_del(&single);
1370 
1371 		netpoll_rx_enable(dev);
1372 	}
1373 	return ret;
1374 }
1375 EXPORT_SYMBOL(dev_close);
1376 
1377 
1378 /**
1379  *	dev_disable_lro - disable Large Receive Offload on a device
1380  *	@dev: device
1381  *
1382  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1383  *	called under RTNL.  This is needed if received packets may be
1384  *	forwarded to another interface.
1385  */
1386 void dev_disable_lro(struct net_device *dev)
1387 {
1388 	/*
1389 	 * If we're trying to disable lro on a vlan device
1390 	 * use the underlying physical device instead
1391 	 */
1392 	if (is_vlan_dev(dev))
1393 		dev = vlan_dev_real_dev(dev);
1394 
1395 	dev->wanted_features &= ~NETIF_F_LRO;
1396 	netdev_update_features(dev);
1397 
1398 	if (unlikely(dev->features & NETIF_F_LRO))
1399 		netdev_WARN(dev, "failed to disable LRO!\n");
1400 }
1401 EXPORT_SYMBOL(dev_disable_lro);
1402 
1403 
1404 static int dev_boot_phase = 1;
1405 
1406 /**
1407  *	register_netdevice_notifier - register a network notifier block
1408  *	@nb: notifier
1409  *
1410  *	Register a notifier to be called when network device events occur.
1411  *	The notifier passed is linked into the kernel structures and must
1412  *	not be reused until it has been unregistered. A negative errno code
1413  *	is returned on a failure.
1414  *
1415  * 	When registered all registration and up events are replayed
1416  *	to the new notifier to allow device to have a race free
1417  *	view of the network device list.
1418  */
1419 
1420 int register_netdevice_notifier(struct notifier_block *nb)
1421 {
1422 	struct net_device *dev;
1423 	struct net_device *last;
1424 	struct net *net;
1425 	int err;
1426 
1427 	rtnl_lock();
1428 	err = raw_notifier_chain_register(&netdev_chain, nb);
1429 	if (err)
1430 		goto unlock;
1431 	if (dev_boot_phase)
1432 		goto unlock;
1433 	for_each_net(net) {
1434 		for_each_netdev(net, dev) {
1435 			err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1436 			err = notifier_to_errno(err);
1437 			if (err)
1438 				goto rollback;
1439 
1440 			if (!(dev->flags & IFF_UP))
1441 				continue;
1442 
1443 			nb->notifier_call(nb, NETDEV_UP, dev);
1444 		}
1445 	}
1446 
1447 unlock:
1448 	rtnl_unlock();
1449 	return err;
1450 
1451 rollback:
1452 	last = dev;
1453 	for_each_net(net) {
1454 		for_each_netdev(net, dev) {
1455 			if (dev == last)
1456 				goto outroll;
1457 
1458 			if (dev->flags & IFF_UP) {
1459 				nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1460 				nb->notifier_call(nb, NETDEV_DOWN, dev);
1461 			}
1462 			nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1463 		}
1464 	}
1465 
1466 outroll:
1467 	raw_notifier_chain_unregister(&netdev_chain, nb);
1468 	goto unlock;
1469 }
1470 EXPORT_SYMBOL(register_netdevice_notifier);
1471 
1472 /**
1473  *	unregister_netdevice_notifier - unregister a network notifier block
1474  *	@nb: notifier
1475  *
1476  *	Unregister a notifier previously registered by
1477  *	register_netdevice_notifier(). The notifier is unlinked into the
1478  *	kernel structures and may then be reused. A negative errno code
1479  *	is returned on a failure.
1480  *
1481  * 	After unregistering unregister and down device events are synthesized
1482  *	for all devices on the device list to the removed notifier to remove
1483  *	the need for special case cleanup code.
1484  */
1485 
1486 int unregister_netdevice_notifier(struct notifier_block *nb)
1487 {
1488 	struct net_device *dev;
1489 	struct net *net;
1490 	int err;
1491 
1492 	rtnl_lock();
1493 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1494 	if (err)
1495 		goto unlock;
1496 
1497 	for_each_net(net) {
1498 		for_each_netdev(net, dev) {
1499 			if (dev->flags & IFF_UP) {
1500 				nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1501 				nb->notifier_call(nb, NETDEV_DOWN, dev);
1502 			}
1503 			nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1504 		}
1505 	}
1506 unlock:
1507 	rtnl_unlock();
1508 	return err;
1509 }
1510 EXPORT_SYMBOL(unregister_netdevice_notifier);
1511 
1512 /**
1513  *	call_netdevice_notifiers - call all network notifier blocks
1514  *      @val: value passed unmodified to notifier function
1515  *      @dev: net_device pointer passed unmodified to notifier function
1516  *
1517  *	Call all network notifier blocks.  Parameters and return value
1518  *	are as for raw_notifier_call_chain().
1519  */
1520 
1521 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1522 {
1523 	ASSERT_RTNL();
1524 	return raw_notifier_call_chain(&netdev_chain, val, dev);
1525 }
1526 EXPORT_SYMBOL(call_netdevice_notifiers);
1527 
1528 static struct static_key netstamp_needed __read_mostly;
1529 #ifdef HAVE_JUMP_LABEL
1530 /* We are not allowed to call static_key_slow_dec() from irq context
1531  * If net_disable_timestamp() is called from irq context, defer the
1532  * static_key_slow_dec() calls.
1533  */
1534 static atomic_t netstamp_needed_deferred;
1535 #endif
1536 
1537 void net_enable_timestamp(void)
1538 {
1539 #ifdef HAVE_JUMP_LABEL
1540 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1541 
1542 	if (deferred) {
1543 		while (--deferred)
1544 			static_key_slow_dec(&netstamp_needed);
1545 		return;
1546 	}
1547 #endif
1548 	WARN_ON(in_interrupt());
1549 	static_key_slow_inc(&netstamp_needed);
1550 }
1551 EXPORT_SYMBOL(net_enable_timestamp);
1552 
1553 void net_disable_timestamp(void)
1554 {
1555 #ifdef HAVE_JUMP_LABEL
1556 	if (in_interrupt()) {
1557 		atomic_inc(&netstamp_needed_deferred);
1558 		return;
1559 	}
1560 #endif
1561 	static_key_slow_dec(&netstamp_needed);
1562 }
1563 EXPORT_SYMBOL(net_disable_timestamp);
1564 
1565 static inline void net_timestamp_set(struct sk_buff *skb)
1566 {
1567 	skb->tstamp.tv64 = 0;
1568 	if (static_key_false(&netstamp_needed))
1569 		__net_timestamp(skb);
1570 }
1571 
1572 #define net_timestamp_check(COND, SKB)			\
1573 	if (static_key_false(&netstamp_needed)) {		\
1574 		if ((COND) && !(SKB)->tstamp.tv64)	\
1575 			__net_timestamp(SKB);		\
1576 	}						\
1577 
1578 static inline bool is_skb_forwardable(struct net_device *dev,
1579 				      struct sk_buff *skb)
1580 {
1581 	unsigned int len;
1582 
1583 	if (!(dev->flags & IFF_UP))
1584 		return false;
1585 
1586 	len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1587 	if (skb->len <= len)
1588 		return true;
1589 
1590 	/* if TSO is enabled, we don't care about the length as the packet
1591 	 * could be forwarded without being segmented before
1592 	 */
1593 	if (skb_is_gso(skb))
1594 		return true;
1595 
1596 	return false;
1597 }
1598 
1599 /**
1600  * dev_forward_skb - loopback an skb to another netif
1601  *
1602  * @dev: destination network device
1603  * @skb: buffer to forward
1604  *
1605  * return values:
1606  *	NET_RX_SUCCESS	(no congestion)
1607  *	NET_RX_DROP     (packet was dropped, but freed)
1608  *
1609  * dev_forward_skb can be used for injecting an skb from the
1610  * start_xmit function of one device into the receive queue
1611  * of another device.
1612  *
1613  * The receiving device may be in another namespace, so
1614  * we have to clear all information in the skb that could
1615  * impact namespace isolation.
1616  */
1617 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1618 {
1619 	if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1620 		if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1621 			atomic_long_inc(&dev->rx_dropped);
1622 			kfree_skb(skb);
1623 			return NET_RX_DROP;
1624 		}
1625 	}
1626 
1627 	skb_orphan(skb);
1628 	nf_reset(skb);
1629 
1630 	if (unlikely(!is_skb_forwardable(dev, skb))) {
1631 		atomic_long_inc(&dev->rx_dropped);
1632 		kfree_skb(skb);
1633 		return NET_RX_DROP;
1634 	}
1635 	skb->skb_iif = 0;
1636 	skb->dev = dev;
1637 	skb_dst_drop(skb);
1638 	skb->tstamp.tv64 = 0;
1639 	skb->pkt_type = PACKET_HOST;
1640 	skb->protocol = eth_type_trans(skb, dev);
1641 	skb->mark = 0;
1642 	secpath_reset(skb);
1643 	nf_reset(skb);
1644 	return netif_rx(skb);
1645 }
1646 EXPORT_SYMBOL_GPL(dev_forward_skb);
1647 
1648 static inline int deliver_skb(struct sk_buff *skb,
1649 			      struct packet_type *pt_prev,
1650 			      struct net_device *orig_dev)
1651 {
1652 	if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1653 		return -ENOMEM;
1654 	atomic_inc(&skb->users);
1655 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1656 }
1657 
1658 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1659 {
1660 	if (!ptype->af_packet_priv || !skb->sk)
1661 		return false;
1662 
1663 	if (ptype->id_match)
1664 		return ptype->id_match(ptype, skb->sk);
1665 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1666 		return true;
1667 
1668 	return false;
1669 }
1670 
1671 /*
1672  *	Support routine. Sends outgoing frames to any network
1673  *	taps currently in use.
1674  */
1675 
1676 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1677 {
1678 	struct packet_type *ptype;
1679 	struct sk_buff *skb2 = NULL;
1680 	struct packet_type *pt_prev = NULL;
1681 
1682 	rcu_read_lock();
1683 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
1684 		/* Never send packets back to the socket
1685 		 * they originated from - MvS (miquels@drinkel.ow.org)
1686 		 */
1687 		if ((ptype->dev == dev || !ptype->dev) &&
1688 		    (!skb_loop_sk(ptype, skb))) {
1689 			if (pt_prev) {
1690 				deliver_skb(skb2, pt_prev, skb->dev);
1691 				pt_prev = ptype;
1692 				continue;
1693 			}
1694 
1695 			skb2 = skb_clone(skb, GFP_ATOMIC);
1696 			if (!skb2)
1697 				break;
1698 
1699 			net_timestamp_set(skb2);
1700 
1701 			/* skb->nh should be correctly
1702 			   set by sender, so that the second statement is
1703 			   just protection against buggy protocols.
1704 			 */
1705 			skb_reset_mac_header(skb2);
1706 
1707 			if (skb_network_header(skb2) < skb2->data ||
1708 			    skb2->network_header > skb2->tail) {
1709 				net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1710 						     ntohs(skb2->protocol),
1711 						     dev->name);
1712 				skb_reset_network_header(skb2);
1713 			}
1714 
1715 			skb2->transport_header = skb2->network_header;
1716 			skb2->pkt_type = PACKET_OUTGOING;
1717 			pt_prev = ptype;
1718 		}
1719 	}
1720 	if (pt_prev)
1721 		pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1722 	rcu_read_unlock();
1723 }
1724 
1725 /**
1726  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1727  * @dev: Network device
1728  * @txq: number of queues available
1729  *
1730  * If real_num_tx_queues is changed the tc mappings may no longer be
1731  * valid. To resolve this verify the tc mapping remains valid and if
1732  * not NULL the mapping. With no priorities mapping to this
1733  * offset/count pair it will no longer be used. In the worst case TC0
1734  * is invalid nothing can be done so disable priority mappings. If is
1735  * expected that drivers will fix this mapping if they can before
1736  * calling netif_set_real_num_tx_queues.
1737  */
1738 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1739 {
1740 	int i;
1741 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1742 
1743 	/* If TC0 is invalidated disable TC mapping */
1744 	if (tc->offset + tc->count > txq) {
1745 		pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1746 		dev->num_tc = 0;
1747 		return;
1748 	}
1749 
1750 	/* Invalidated prio to tc mappings set to TC0 */
1751 	for (i = 1; i < TC_BITMASK + 1; i++) {
1752 		int q = netdev_get_prio_tc_map(dev, i);
1753 
1754 		tc = &dev->tc_to_txq[q];
1755 		if (tc->offset + tc->count > txq) {
1756 			pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1757 				i, q);
1758 			netdev_set_prio_tc_map(dev, i, 0);
1759 		}
1760 	}
1761 }
1762 
1763 #ifdef CONFIG_XPS
1764 static DEFINE_MUTEX(xps_map_mutex);
1765 #define xmap_dereference(P)		\
1766 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1767 
1768 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1769 					int cpu, u16 index)
1770 {
1771 	struct xps_map *map = NULL;
1772 	int pos;
1773 
1774 	if (dev_maps)
1775 		map = xmap_dereference(dev_maps->cpu_map[cpu]);
1776 
1777 	for (pos = 0; map && pos < map->len; pos++) {
1778 		if (map->queues[pos] == index) {
1779 			if (map->len > 1) {
1780 				map->queues[pos] = map->queues[--map->len];
1781 			} else {
1782 				RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1783 				kfree_rcu(map, rcu);
1784 				map = NULL;
1785 			}
1786 			break;
1787 		}
1788 	}
1789 
1790 	return map;
1791 }
1792 
1793 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1794 {
1795 	struct xps_dev_maps *dev_maps;
1796 	int cpu, i;
1797 	bool active = false;
1798 
1799 	mutex_lock(&xps_map_mutex);
1800 	dev_maps = xmap_dereference(dev->xps_maps);
1801 
1802 	if (!dev_maps)
1803 		goto out_no_maps;
1804 
1805 	for_each_possible_cpu(cpu) {
1806 		for (i = index; i < dev->num_tx_queues; i++) {
1807 			if (!remove_xps_queue(dev_maps, cpu, i))
1808 				break;
1809 		}
1810 		if (i == dev->num_tx_queues)
1811 			active = true;
1812 	}
1813 
1814 	if (!active) {
1815 		RCU_INIT_POINTER(dev->xps_maps, NULL);
1816 		kfree_rcu(dev_maps, rcu);
1817 	}
1818 
1819 	for (i = index; i < dev->num_tx_queues; i++)
1820 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
1821 					     NUMA_NO_NODE);
1822 
1823 out_no_maps:
1824 	mutex_unlock(&xps_map_mutex);
1825 }
1826 
1827 static struct xps_map *expand_xps_map(struct xps_map *map,
1828 				      int cpu, u16 index)
1829 {
1830 	struct xps_map *new_map;
1831 	int alloc_len = XPS_MIN_MAP_ALLOC;
1832 	int i, pos;
1833 
1834 	for (pos = 0; map && pos < map->len; pos++) {
1835 		if (map->queues[pos] != index)
1836 			continue;
1837 		return map;
1838 	}
1839 
1840 	/* Need to add queue to this CPU's existing map */
1841 	if (map) {
1842 		if (pos < map->alloc_len)
1843 			return map;
1844 
1845 		alloc_len = map->alloc_len * 2;
1846 	}
1847 
1848 	/* Need to allocate new map to store queue on this CPU's map */
1849 	new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
1850 			       cpu_to_node(cpu));
1851 	if (!new_map)
1852 		return NULL;
1853 
1854 	for (i = 0; i < pos; i++)
1855 		new_map->queues[i] = map->queues[i];
1856 	new_map->alloc_len = alloc_len;
1857 	new_map->len = pos;
1858 
1859 	return new_map;
1860 }
1861 
1862 int netif_set_xps_queue(struct net_device *dev, struct cpumask *mask, u16 index)
1863 {
1864 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
1865 	struct xps_map *map, *new_map;
1866 	int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
1867 	int cpu, numa_node_id = -2;
1868 	bool active = false;
1869 
1870 	mutex_lock(&xps_map_mutex);
1871 
1872 	dev_maps = xmap_dereference(dev->xps_maps);
1873 
1874 	/* allocate memory for queue storage */
1875 	for_each_online_cpu(cpu) {
1876 		if (!cpumask_test_cpu(cpu, mask))
1877 			continue;
1878 
1879 		if (!new_dev_maps)
1880 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
1881 		if (!new_dev_maps) {
1882 			mutex_unlock(&xps_map_mutex);
1883 			return -ENOMEM;
1884 		}
1885 
1886 		map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
1887 				 NULL;
1888 
1889 		map = expand_xps_map(map, cpu, index);
1890 		if (!map)
1891 			goto error;
1892 
1893 		RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
1894 	}
1895 
1896 	if (!new_dev_maps)
1897 		goto out_no_new_maps;
1898 
1899 	for_each_possible_cpu(cpu) {
1900 		if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
1901 			/* add queue to CPU maps */
1902 			int pos = 0;
1903 
1904 			map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
1905 			while ((pos < map->len) && (map->queues[pos] != index))
1906 				pos++;
1907 
1908 			if (pos == map->len)
1909 				map->queues[map->len++] = index;
1910 #ifdef CONFIG_NUMA
1911 			if (numa_node_id == -2)
1912 				numa_node_id = cpu_to_node(cpu);
1913 			else if (numa_node_id != cpu_to_node(cpu))
1914 				numa_node_id = -1;
1915 #endif
1916 		} else if (dev_maps) {
1917 			/* fill in the new device map from the old device map */
1918 			map = xmap_dereference(dev_maps->cpu_map[cpu]);
1919 			RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
1920 		}
1921 
1922 	}
1923 
1924 	rcu_assign_pointer(dev->xps_maps, new_dev_maps);
1925 
1926 	/* Cleanup old maps */
1927 	if (dev_maps) {
1928 		for_each_possible_cpu(cpu) {
1929 			new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
1930 			map = xmap_dereference(dev_maps->cpu_map[cpu]);
1931 			if (map && map != new_map)
1932 				kfree_rcu(map, rcu);
1933 		}
1934 
1935 		kfree_rcu(dev_maps, rcu);
1936 	}
1937 
1938 	dev_maps = new_dev_maps;
1939 	active = true;
1940 
1941 out_no_new_maps:
1942 	/* update Tx queue numa node */
1943 	netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
1944 				     (numa_node_id >= 0) ? numa_node_id :
1945 				     NUMA_NO_NODE);
1946 
1947 	if (!dev_maps)
1948 		goto out_no_maps;
1949 
1950 	/* removes queue from unused CPUs */
1951 	for_each_possible_cpu(cpu) {
1952 		if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
1953 			continue;
1954 
1955 		if (remove_xps_queue(dev_maps, cpu, index))
1956 			active = true;
1957 	}
1958 
1959 	/* free map if not active */
1960 	if (!active) {
1961 		RCU_INIT_POINTER(dev->xps_maps, NULL);
1962 		kfree_rcu(dev_maps, rcu);
1963 	}
1964 
1965 out_no_maps:
1966 	mutex_unlock(&xps_map_mutex);
1967 
1968 	return 0;
1969 error:
1970 	/* remove any maps that we added */
1971 	for_each_possible_cpu(cpu) {
1972 		new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
1973 		map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
1974 				 NULL;
1975 		if (new_map && new_map != map)
1976 			kfree(new_map);
1977 	}
1978 
1979 	mutex_unlock(&xps_map_mutex);
1980 
1981 	kfree(new_dev_maps);
1982 	return -ENOMEM;
1983 }
1984 EXPORT_SYMBOL(netif_set_xps_queue);
1985 
1986 #endif
1987 /*
1988  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
1989  * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
1990  */
1991 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
1992 {
1993 	int rc;
1994 
1995 	if (txq < 1 || txq > dev->num_tx_queues)
1996 		return -EINVAL;
1997 
1998 	if (dev->reg_state == NETREG_REGISTERED ||
1999 	    dev->reg_state == NETREG_UNREGISTERING) {
2000 		ASSERT_RTNL();
2001 
2002 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2003 						  txq);
2004 		if (rc)
2005 			return rc;
2006 
2007 		if (dev->num_tc)
2008 			netif_setup_tc(dev, txq);
2009 
2010 		if (txq < dev->real_num_tx_queues) {
2011 			qdisc_reset_all_tx_gt(dev, txq);
2012 #ifdef CONFIG_XPS
2013 			netif_reset_xps_queues_gt(dev, txq);
2014 #endif
2015 		}
2016 	}
2017 
2018 	dev->real_num_tx_queues = txq;
2019 	return 0;
2020 }
2021 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2022 
2023 #ifdef CONFIG_RPS
2024 /**
2025  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2026  *	@dev: Network device
2027  *	@rxq: Actual number of RX queues
2028  *
2029  *	This must be called either with the rtnl_lock held or before
2030  *	registration of the net device.  Returns 0 on success, or a
2031  *	negative error code.  If called before registration, it always
2032  *	succeeds.
2033  */
2034 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2035 {
2036 	int rc;
2037 
2038 	if (rxq < 1 || rxq > dev->num_rx_queues)
2039 		return -EINVAL;
2040 
2041 	if (dev->reg_state == NETREG_REGISTERED) {
2042 		ASSERT_RTNL();
2043 
2044 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2045 						  rxq);
2046 		if (rc)
2047 			return rc;
2048 	}
2049 
2050 	dev->real_num_rx_queues = rxq;
2051 	return 0;
2052 }
2053 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2054 #endif
2055 
2056 /**
2057  * netif_get_num_default_rss_queues - default number of RSS queues
2058  *
2059  * This routine should set an upper limit on the number of RSS queues
2060  * used by default by multiqueue devices.
2061  */
2062 int netif_get_num_default_rss_queues(void)
2063 {
2064 	return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2065 }
2066 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2067 
2068 static inline void __netif_reschedule(struct Qdisc *q)
2069 {
2070 	struct softnet_data *sd;
2071 	unsigned long flags;
2072 
2073 	local_irq_save(flags);
2074 	sd = &__get_cpu_var(softnet_data);
2075 	q->next_sched = NULL;
2076 	*sd->output_queue_tailp = q;
2077 	sd->output_queue_tailp = &q->next_sched;
2078 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2079 	local_irq_restore(flags);
2080 }
2081 
2082 void __netif_schedule(struct Qdisc *q)
2083 {
2084 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2085 		__netif_reschedule(q);
2086 }
2087 EXPORT_SYMBOL(__netif_schedule);
2088 
2089 void dev_kfree_skb_irq(struct sk_buff *skb)
2090 {
2091 	if (atomic_dec_and_test(&skb->users)) {
2092 		struct softnet_data *sd;
2093 		unsigned long flags;
2094 
2095 		local_irq_save(flags);
2096 		sd = &__get_cpu_var(softnet_data);
2097 		skb->next = sd->completion_queue;
2098 		sd->completion_queue = skb;
2099 		raise_softirq_irqoff(NET_TX_SOFTIRQ);
2100 		local_irq_restore(flags);
2101 	}
2102 }
2103 EXPORT_SYMBOL(dev_kfree_skb_irq);
2104 
2105 void dev_kfree_skb_any(struct sk_buff *skb)
2106 {
2107 	if (in_irq() || irqs_disabled())
2108 		dev_kfree_skb_irq(skb);
2109 	else
2110 		dev_kfree_skb(skb);
2111 }
2112 EXPORT_SYMBOL(dev_kfree_skb_any);
2113 
2114 
2115 /**
2116  * netif_device_detach - mark device as removed
2117  * @dev: network device
2118  *
2119  * Mark device as removed from system and therefore no longer available.
2120  */
2121 void netif_device_detach(struct net_device *dev)
2122 {
2123 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2124 	    netif_running(dev)) {
2125 		netif_tx_stop_all_queues(dev);
2126 	}
2127 }
2128 EXPORT_SYMBOL(netif_device_detach);
2129 
2130 /**
2131  * netif_device_attach - mark device as attached
2132  * @dev: network device
2133  *
2134  * Mark device as attached from system and restart if needed.
2135  */
2136 void netif_device_attach(struct net_device *dev)
2137 {
2138 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2139 	    netif_running(dev)) {
2140 		netif_tx_wake_all_queues(dev);
2141 		__netdev_watchdog_up(dev);
2142 	}
2143 }
2144 EXPORT_SYMBOL(netif_device_attach);
2145 
2146 static void skb_warn_bad_offload(const struct sk_buff *skb)
2147 {
2148 	static const netdev_features_t null_features = 0;
2149 	struct net_device *dev = skb->dev;
2150 	const char *driver = "";
2151 
2152 	if (dev && dev->dev.parent)
2153 		driver = dev_driver_string(dev->dev.parent);
2154 
2155 	WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2156 	     "gso_type=%d ip_summed=%d\n",
2157 	     driver, dev ? &dev->features : &null_features,
2158 	     skb->sk ? &skb->sk->sk_route_caps : &null_features,
2159 	     skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2160 	     skb_shinfo(skb)->gso_type, skb->ip_summed);
2161 }
2162 
2163 /*
2164  * Invalidate hardware checksum when packet is to be mangled, and
2165  * complete checksum manually on outgoing path.
2166  */
2167 int skb_checksum_help(struct sk_buff *skb)
2168 {
2169 	__wsum csum;
2170 	int ret = 0, offset;
2171 
2172 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2173 		goto out_set_summed;
2174 
2175 	if (unlikely(skb_shinfo(skb)->gso_size)) {
2176 		skb_warn_bad_offload(skb);
2177 		return -EINVAL;
2178 	}
2179 
2180 	/* Before computing a checksum, we should make sure no frag could
2181 	 * be modified by an external entity : checksum could be wrong.
2182 	 */
2183 	if (skb_has_shared_frag(skb)) {
2184 		ret = __skb_linearize(skb);
2185 		if (ret)
2186 			goto out;
2187 	}
2188 
2189 	offset = skb_checksum_start_offset(skb);
2190 	BUG_ON(offset >= skb_headlen(skb));
2191 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
2192 
2193 	offset += skb->csum_offset;
2194 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2195 
2196 	if (skb_cloned(skb) &&
2197 	    !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2198 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2199 		if (ret)
2200 			goto out;
2201 	}
2202 
2203 	*(__sum16 *)(skb->data + offset) = csum_fold(csum);
2204 out_set_summed:
2205 	skb->ip_summed = CHECKSUM_NONE;
2206 out:
2207 	return ret;
2208 }
2209 EXPORT_SYMBOL(skb_checksum_help);
2210 
2211 /**
2212  *	skb_mac_gso_segment - mac layer segmentation handler.
2213  *	@skb: buffer to segment
2214  *	@features: features for the output path (see dev->features)
2215  */
2216 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2217 				    netdev_features_t features)
2218 {
2219 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2220 	struct packet_offload *ptype;
2221 	__be16 type = skb->protocol;
2222 
2223 	while (type == htons(ETH_P_8021Q)) {
2224 		int vlan_depth = ETH_HLEN;
2225 		struct vlan_hdr *vh;
2226 
2227 		if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN)))
2228 			return ERR_PTR(-EINVAL);
2229 
2230 		vh = (struct vlan_hdr *)(skb->data + vlan_depth);
2231 		type = vh->h_vlan_encapsulated_proto;
2232 		vlan_depth += VLAN_HLEN;
2233 	}
2234 
2235 	__skb_pull(skb, skb->mac_len);
2236 
2237 	rcu_read_lock();
2238 	list_for_each_entry_rcu(ptype, &offload_base, list) {
2239 		if (ptype->type == type && ptype->callbacks.gso_segment) {
2240 			if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
2241 				int err;
2242 
2243 				err = ptype->callbacks.gso_send_check(skb);
2244 				segs = ERR_PTR(err);
2245 				if (err || skb_gso_ok(skb, features))
2246 					break;
2247 				__skb_push(skb, (skb->data -
2248 						 skb_network_header(skb)));
2249 			}
2250 			segs = ptype->callbacks.gso_segment(skb, features);
2251 			break;
2252 		}
2253 	}
2254 	rcu_read_unlock();
2255 
2256 	__skb_push(skb, skb->data - skb_mac_header(skb));
2257 
2258 	return segs;
2259 }
2260 EXPORT_SYMBOL(skb_mac_gso_segment);
2261 
2262 
2263 /* openvswitch calls this on rx path, so we need a different check.
2264  */
2265 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2266 {
2267 	if (tx_path)
2268 		return skb->ip_summed != CHECKSUM_PARTIAL;
2269 	else
2270 		return skb->ip_summed == CHECKSUM_NONE;
2271 }
2272 
2273 /**
2274  *	__skb_gso_segment - Perform segmentation on skb.
2275  *	@skb: buffer to segment
2276  *	@features: features for the output path (see dev->features)
2277  *	@tx_path: whether it is called in TX path
2278  *
2279  *	This function segments the given skb and returns a list of segments.
2280  *
2281  *	It may return NULL if the skb requires no segmentation.  This is
2282  *	only possible when GSO is used for verifying header integrity.
2283  */
2284 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2285 				  netdev_features_t features, bool tx_path)
2286 {
2287 	if (unlikely(skb_needs_check(skb, tx_path))) {
2288 		int err;
2289 
2290 		skb_warn_bad_offload(skb);
2291 
2292 		if (skb_header_cloned(skb) &&
2293 		    (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
2294 			return ERR_PTR(err);
2295 	}
2296 
2297 	SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2298 	skb_reset_mac_header(skb);
2299 	skb_reset_mac_len(skb);
2300 
2301 	return skb_mac_gso_segment(skb, features);
2302 }
2303 EXPORT_SYMBOL(__skb_gso_segment);
2304 
2305 /* Take action when hardware reception checksum errors are detected. */
2306 #ifdef CONFIG_BUG
2307 void netdev_rx_csum_fault(struct net_device *dev)
2308 {
2309 	if (net_ratelimit()) {
2310 		pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2311 		dump_stack();
2312 	}
2313 }
2314 EXPORT_SYMBOL(netdev_rx_csum_fault);
2315 #endif
2316 
2317 /* Actually, we should eliminate this check as soon as we know, that:
2318  * 1. IOMMU is present and allows to map all the memory.
2319  * 2. No high memory really exists on this machine.
2320  */
2321 
2322 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2323 {
2324 #ifdef CONFIG_HIGHMEM
2325 	int i;
2326 	if (!(dev->features & NETIF_F_HIGHDMA)) {
2327 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2328 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2329 			if (PageHighMem(skb_frag_page(frag)))
2330 				return 1;
2331 		}
2332 	}
2333 
2334 	if (PCI_DMA_BUS_IS_PHYS) {
2335 		struct device *pdev = dev->dev.parent;
2336 
2337 		if (!pdev)
2338 			return 0;
2339 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2340 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2341 			dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2342 			if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2343 				return 1;
2344 		}
2345 	}
2346 #endif
2347 	return 0;
2348 }
2349 
2350 struct dev_gso_cb {
2351 	void (*destructor)(struct sk_buff *skb);
2352 };
2353 
2354 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
2355 
2356 static void dev_gso_skb_destructor(struct sk_buff *skb)
2357 {
2358 	struct dev_gso_cb *cb;
2359 
2360 	do {
2361 		struct sk_buff *nskb = skb->next;
2362 
2363 		skb->next = nskb->next;
2364 		nskb->next = NULL;
2365 		kfree_skb(nskb);
2366 	} while (skb->next);
2367 
2368 	cb = DEV_GSO_CB(skb);
2369 	if (cb->destructor)
2370 		cb->destructor(skb);
2371 }
2372 
2373 /**
2374  *	dev_gso_segment - Perform emulated hardware segmentation on skb.
2375  *	@skb: buffer to segment
2376  *	@features: device features as applicable to this skb
2377  *
2378  *	This function segments the given skb and stores the list of segments
2379  *	in skb->next.
2380  */
2381 static int dev_gso_segment(struct sk_buff *skb, netdev_features_t features)
2382 {
2383 	struct sk_buff *segs;
2384 
2385 	segs = skb_gso_segment(skb, features);
2386 
2387 	/* Verifying header integrity only. */
2388 	if (!segs)
2389 		return 0;
2390 
2391 	if (IS_ERR(segs))
2392 		return PTR_ERR(segs);
2393 
2394 	skb->next = segs;
2395 	DEV_GSO_CB(skb)->destructor = skb->destructor;
2396 	skb->destructor = dev_gso_skb_destructor;
2397 
2398 	return 0;
2399 }
2400 
2401 static bool can_checksum_protocol(netdev_features_t features, __be16 protocol)
2402 {
2403 	return ((features & NETIF_F_GEN_CSUM) ||
2404 		((features & NETIF_F_V4_CSUM) &&
2405 		 protocol == htons(ETH_P_IP)) ||
2406 		((features & NETIF_F_V6_CSUM) &&
2407 		 protocol == htons(ETH_P_IPV6)) ||
2408 		((features & NETIF_F_FCOE_CRC) &&
2409 		 protocol == htons(ETH_P_FCOE)));
2410 }
2411 
2412 static netdev_features_t harmonize_features(struct sk_buff *skb,
2413 	__be16 protocol, netdev_features_t features)
2414 {
2415 	if (skb->ip_summed != CHECKSUM_NONE &&
2416 	    !can_checksum_protocol(features, protocol)) {
2417 		features &= ~NETIF_F_ALL_CSUM;
2418 		features &= ~NETIF_F_SG;
2419 	} else if (illegal_highdma(skb->dev, skb)) {
2420 		features &= ~NETIF_F_SG;
2421 	}
2422 
2423 	return features;
2424 }
2425 
2426 netdev_features_t netif_skb_features(struct sk_buff *skb)
2427 {
2428 	__be16 protocol = skb->protocol;
2429 	netdev_features_t features = skb->dev->features;
2430 
2431 	if (skb_shinfo(skb)->gso_segs > skb->dev->gso_max_segs)
2432 		features &= ~NETIF_F_GSO_MASK;
2433 
2434 	if (protocol == htons(ETH_P_8021Q)) {
2435 		struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2436 		protocol = veh->h_vlan_encapsulated_proto;
2437 	} else if (!vlan_tx_tag_present(skb)) {
2438 		return harmonize_features(skb, protocol, features);
2439 	}
2440 
2441 	features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_TX);
2442 
2443 	if (protocol != htons(ETH_P_8021Q)) {
2444 		return harmonize_features(skb, protocol, features);
2445 	} else {
2446 		features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST |
2447 				NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_TX;
2448 		return harmonize_features(skb, protocol, features);
2449 	}
2450 }
2451 EXPORT_SYMBOL(netif_skb_features);
2452 
2453 /*
2454  * Returns true if either:
2455  *	1. skb has frag_list and the device doesn't support FRAGLIST, or
2456  *	2. skb is fragmented and the device does not support SG.
2457  */
2458 static inline int skb_needs_linearize(struct sk_buff *skb,
2459 				      int features)
2460 {
2461 	return skb_is_nonlinear(skb) &&
2462 			((skb_has_frag_list(skb) &&
2463 				!(features & NETIF_F_FRAGLIST)) ||
2464 			(skb_shinfo(skb)->nr_frags &&
2465 				!(features & NETIF_F_SG)));
2466 }
2467 
2468 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2469 			struct netdev_queue *txq)
2470 {
2471 	const struct net_device_ops *ops = dev->netdev_ops;
2472 	int rc = NETDEV_TX_OK;
2473 	unsigned int skb_len;
2474 
2475 	if (likely(!skb->next)) {
2476 		netdev_features_t features;
2477 
2478 		/*
2479 		 * If device doesn't need skb->dst, release it right now while
2480 		 * its hot in this cpu cache
2481 		 */
2482 		if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2483 			skb_dst_drop(skb);
2484 
2485 		features = netif_skb_features(skb);
2486 
2487 		if (vlan_tx_tag_present(skb) &&
2488 		    !(features & NETIF_F_HW_VLAN_TX)) {
2489 			skb = __vlan_put_tag(skb, vlan_tx_tag_get(skb));
2490 			if (unlikely(!skb))
2491 				goto out;
2492 
2493 			skb->vlan_tci = 0;
2494 		}
2495 
2496 		/* If encapsulation offload request, verify we are testing
2497 		 * hardware encapsulation features instead of standard
2498 		 * features for the netdev
2499 		 */
2500 		if (skb->encapsulation)
2501 			features &= dev->hw_enc_features;
2502 
2503 		if (netif_needs_gso(skb, features)) {
2504 			if (unlikely(dev_gso_segment(skb, features)))
2505 				goto out_kfree_skb;
2506 			if (skb->next)
2507 				goto gso;
2508 		} else {
2509 			if (skb_needs_linearize(skb, features) &&
2510 			    __skb_linearize(skb))
2511 				goto out_kfree_skb;
2512 
2513 			/* If packet is not checksummed and device does not
2514 			 * support checksumming for this protocol, complete
2515 			 * checksumming here.
2516 			 */
2517 			if (skb->ip_summed == CHECKSUM_PARTIAL) {
2518 				if (skb->encapsulation)
2519 					skb_set_inner_transport_header(skb,
2520 						skb_checksum_start_offset(skb));
2521 				else
2522 					skb_set_transport_header(skb,
2523 						skb_checksum_start_offset(skb));
2524 				if (!(features & NETIF_F_ALL_CSUM) &&
2525 				     skb_checksum_help(skb))
2526 					goto out_kfree_skb;
2527 			}
2528 		}
2529 
2530 		if (!list_empty(&ptype_all))
2531 			dev_queue_xmit_nit(skb, dev);
2532 
2533 		skb_len = skb->len;
2534 		rc = ops->ndo_start_xmit(skb, dev);
2535 		trace_net_dev_xmit(skb, rc, dev, skb_len);
2536 		if (rc == NETDEV_TX_OK)
2537 			txq_trans_update(txq);
2538 		return rc;
2539 	}
2540 
2541 gso:
2542 	do {
2543 		struct sk_buff *nskb = skb->next;
2544 
2545 		skb->next = nskb->next;
2546 		nskb->next = NULL;
2547 
2548 		/*
2549 		 * If device doesn't need nskb->dst, release it right now while
2550 		 * its hot in this cpu cache
2551 		 */
2552 		if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2553 			skb_dst_drop(nskb);
2554 
2555 		if (!list_empty(&ptype_all))
2556 			dev_queue_xmit_nit(nskb, dev);
2557 
2558 		skb_len = nskb->len;
2559 		rc = ops->ndo_start_xmit(nskb, dev);
2560 		trace_net_dev_xmit(nskb, rc, dev, skb_len);
2561 		if (unlikely(rc != NETDEV_TX_OK)) {
2562 			if (rc & ~NETDEV_TX_MASK)
2563 				goto out_kfree_gso_skb;
2564 			nskb->next = skb->next;
2565 			skb->next = nskb;
2566 			return rc;
2567 		}
2568 		txq_trans_update(txq);
2569 		if (unlikely(netif_xmit_stopped(txq) && skb->next))
2570 			return NETDEV_TX_BUSY;
2571 	} while (skb->next);
2572 
2573 out_kfree_gso_skb:
2574 	if (likely(skb->next == NULL))
2575 		skb->destructor = DEV_GSO_CB(skb)->destructor;
2576 out_kfree_skb:
2577 	kfree_skb(skb);
2578 out:
2579 	return rc;
2580 }
2581 
2582 static void qdisc_pkt_len_init(struct sk_buff *skb)
2583 {
2584 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
2585 
2586 	qdisc_skb_cb(skb)->pkt_len = skb->len;
2587 
2588 	/* To get more precise estimation of bytes sent on wire,
2589 	 * we add to pkt_len the headers size of all segments
2590 	 */
2591 	if (shinfo->gso_size)  {
2592 		unsigned int hdr_len;
2593 
2594 		/* mac layer + network layer */
2595 		hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
2596 
2597 		/* + transport layer */
2598 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
2599 			hdr_len += tcp_hdrlen(skb);
2600 		else
2601 			hdr_len += sizeof(struct udphdr);
2602 		qdisc_skb_cb(skb)->pkt_len += (shinfo->gso_segs - 1) * hdr_len;
2603 	}
2604 }
2605 
2606 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2607 				 struct net_device *dev,
2608 				 struct netdev_queue *txq)
2609 {
2610 	spinlock_t *root_lock = qdisc_lock(q);
2611 	bool contended;
2612 	int rc;
2613 
2614 	qdisc_pkt_len_init(skb);
2615 	qdisc_calculate_pkt_len(skb, q);
2616 	/*
2617 	 * Heuristic to force contended enqueues to serialize on a
2618 	 * separate lock before trying to get qdisc main lock.
2619 	 * This permits __QDISC_STATE_RUNNING owner to get the lock more often
2620 	 * and dequeue packets faster.
2621 	 */
2622 	contended = qdisc_is_running(q);
2623 	if (unlikely(contended))
2624 		spin_lock(&q->busylock);
2625 
2626 	spin_lock(root_lock);
2627 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2628 		kfree_skb(skb);
2629 		rc = NET_XMIT_DROP;
2630 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2631 		   qdisc_run_begin(q)) {
2632 		/*
2633 		 * This is a work-conserving queue; there are no old skbs
2634 		 * waiting to be sent out; and the qdisc is not running -
2635 		 * xmit the skb directly.
2636 		 */
2637 		if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2638 			skb_dst_force(skb);
2639 
2640 		qdisc_bstats_update(q, skb);
2641 
2642 		if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2643 			if (unlikely(contended)) {
2644 				spin_unlock(&q->busylock);
2645 				contended = false;
2646 			}
2647 			__qdisc_run(q);
2648 		} else
2649 			qdisc_run_end(q);
2650 
2651 		rc = NET_XMIT_SUCCESS;
2652 	} else {
2653 		skb_dst_force(skb);
2654 		rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2655 		if (qdisc_run_begin(q)) {
2656 			if (unlikely(contended)) {
2657 				spin_unlock(&q->busylock);
2658 				contended = false;
2659 			}
2660 			__qdisc_run(q);
2661 		}
2662 	}
2663 	spin_unlock(root_lock);
2664 	if (unlikely(contended))
2665 		spin_unlock(&q->busylock);
2666 	return rc;
2667 }
2668 
2669 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP)
2670 static void skb_update_prio(struct sk_buff *skb)
2671 {
2672 	struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2673 
2674 	if (!skb->priority && skb->sk && map) {
2675 		unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2676 
2677 		if (prioidx < map->priomap_len)
2678 			skb->priority = map->priomap[prioidx];
2679 	}
2680 }
2681 #else
2682 #define skb_update_prio(skb)
2683 #endif
2684 
2685 static DEFINE_PER_CPU(int, xmit_recursion);
2686 #define RECURSION_LIMIT 10
2687 
2688 /**
2689  *	dev_loopback_xmit - loop back @skb
2690  *	@skb: buffer to transmit
2691  */
2692 int dev_loopback_xmit(struct sk_buff *skb)
2693 {
2694 	skb_reset_mac_header(skb);
2695 	__skb_pull(skb, skb_network_offset(skb));
2696 	skb->pkt_type = PACKET_LOOPBACK;
2697 	skb->ip_summed = CHECKSUM_UNNECESSARY;
2698 	WARN_ON(!skb_dst(skb));
2699 	skb_dst_force(skb);
2700 	netif_rx_ni(skb);
2701 	return 0;
2702 }
2703 EXPORT_SYMBOL(dev_loopback_xmit);
2704 
2705 /**
2706  *	dev_queue_xmit - transmit a buffer
2707  *	@skb: buffer to transmit
2708  *
2709  *	Queue a buffer for transmission to a network device. The caller must
2710  *	have set the device and priority and built the buffer before calling
2711  *	this function. The function can be called from an interrupt.
2712  *
2713  *	A negative errno code is returned on a failure. A success does not
2714  *	guarantee the frame will be transmitted as it may be dropped due
2715  *	to congestion or traffic shaping.
2716  *
2717  * -----------------------------------------------------------------------------------
2718  *      I notice this method can also return errors from the queue disciplines,
2719  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
2720  *      be positive.
2721  *
2722  *      Regardless of the return value, the skb is consumed, so it is currently
2723  *      difficult to retry a send to this method.  (You can bump the ref count
2724  *      before sending to hold a reference for retry if you are careful.)
2725  *
2726  *      When calling this method, interrupts MUST be enabled.  This is because
2727  *      the BH enable code must have IRQs enabled so that it will not deadlock.
2728  *          --BLG
2729  */
2730 int dev_queue_xmit(struct sk_buff *skb)
2731 {
2732 	struct net_device *dev = skb->dev;
2733 	struct netdev_queue *txq;
2734 	struct Qdisc *q;
2735 	int rc = -ENOMEM;
2736 
2737 	skb_reset_mac_header(skb);
2738 
2739 	/* Disable soft irqs for various locks below. Also
2740 	 * stops preemption for RCU.
2741 	 */
2742 	rcu_read_lock_bh();
2743 
2744 	skb_update_prio(skb);
2745 
2746 	txq = netdev_pick_tx(dev, skb);
2747 	q = rcu_dereference_bh(txq->qdisc);
2748 
2749 #ifdef CONFIG_NET_CLS_ACT
2750 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2751 #endif
2752 	trace_net_dev_queue(skb);
2753 	if (q->enqueue) {
2754 		rc = __dev_xmit_skb(skb, q, dev, txq);
2755 		goto out;
2756 	}
2757 
2758 	/* The device has no queue. Common case for software devices:
2759 	   loopback, all the sorts of tunnels...
2760 
2761 	   Really, it is unlikely that netif_tx_lock protection is necessary
2762 	   here.  (f.e. loopback and IP tunnels are clean ignoring statistics
2763 	   counters.)
2764 	   However, it is possible, that they rely on protection
2765 	   made by us here.
2766 
2767 	   Check this and shot the lock. It is not prone from deadlocks.
2768 	   Either shot noqueue qdisc, it is even simpler 8)
2769 	 */
2770 	if (dev->flags & IFF_UP) {
2771 		int cpu = smp_processor_id(); /* ok because BHs are off */
2772 
2773 		if (txq->xmit_lock_owner != cpu) {
2774 
2775 			if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2776 				goto recursion_alert;
2777 
2778 			HARD_TX_LOCK(dev, txq, cpu);
2779 
2780 			if (!netif_xmit_stopped(txq)) {
2781 				__this_cpu_inc(xmit_recursion);
2782 				rc = dev_hard_start_xmit(skb, dev, txq);
2783 				__this_cpu_dec(xmit_recursion);
2784 				if (dev_xmit_complete(rc)) {
2785 					HARD_TX_UNLOCK(dev, txq);
2786 					goto out;
2787 				}
2788 			}
2789 			HARD_TX_UNLOCK(dev, txq);
2790 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
2791 					     dev->name);
2792 		} else {
2793 			/* Recursion is detected! It is possible,
2794 			 * unfortunately
2795 			 */
2796 recursion_alert:
2797 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
2798 					     dev->name);
2799 		}
2800 	}
2801 
2802 	rc = -ENETDOWN;
2803 	rcu_read_unlock_bh();
2804 
2805 	kfree_skb(skb);
2806 	return rc;
2807 out:
2808 	rcu_read_unlock_bh();
2809 	return rc;
2810 }
2811 EXPORT_SYMBOL(dev_queue_xmit);
2812 
2813 
2814 /*=======================================================================
2815 			Receiver routines
2816   =======================================================================*/
2817 
2818 int netdev_max_backlog __read_mostly = 1000;
2819 EXPORT_SYMBOL(netdev_max_backlog);
2820 
2821 int netdev_tstamp_prequeue __read_mostly = 1;
2822 int netdev_budget __read_mostly = 300;
2823 int weight_p __read_mostly = 64;            /* old backlog weight */
2824 
2825 /* Called with irq disabled */
2826 static inline void ____napi_schedule(struct softnet_data *sd,
2827 				     struct napi_struct *napi)
2828 {
2829 	list_add_tail(&napi->poll_list, &sd->poll_list);
2830 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
2831 }
2832 
2833 #ifdef CONFIG_RPS
2834 
2835 /* One global table that all flow-based protocols share. */
2836 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
2837 EXPORT_SYMBOL(rps_sock_flow_table);
2838 
2839 struct static_key rps_needed __read_mostly;
2840 
2841 static struct rps_dev_flow *
2842 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2843 	    struct rps_dev_flow *rflow, u16 next_cpu)
2844 {
2845 	if (next_cpu != RPS_NO_CPU) {
2846 #ifdef CONFIG_RFS_ACCEL
2847 		struct netdev_rx_queue *rxqueue;
2848 		struct rps_dev_flow_table *flow_table;
2849 		struct rps_dev_flow *old_rflow;
2850 		u32 flow_id;
2851 		u16 rxq_index;
2852 		int rc;
2853 
2854 		/* Should we steer this flow to a different hardware queue? */
2855 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
2856 		    !(dev->features & NETIF_F_NTUPLE))
2857 			goto out;
2858 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
2859 		if (rxq_index == skb_get_rx_queue(skb))
2860 			goto out;
2861 
2862 		rxqueue = dev->_rx + rxq_index;
2863 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
2864 		if (!flow_table)
2865 			goto out;
2866 		flow_id = skb->rxhash & flow_table->mask;
2867 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
2868 							rxq_index, flow_id);
2869 		if (rc < 0)
2870 			goto out;
2871 		old_rflow = rflow;
2872 		rflow = &flow_table->flows[flow_id];
2873 		rflow->filter = rc;
2874 		if (old_rflow->filter == rflow->filter)
2875 			old_rflow->filter = RPS_NO_FILTER;
2876 	out:
2877 #endif
2878 		rflow->last_qtail =
2879 			per_cpu(softnet_data, next_cpu).input_queue_head;
2880 	}
2881 
2882 	rflow->cpu = next_cpu;
2883 	return rflow;
2884 }
2885 
2886 /*
2887  * get_rps_cpu is called from netif_receive_skb and returns the target
2888  * CPU from the RPS map of the receiving queue for a given skb.
2889  * rcu_read_lock must be held on entry.
2890  */
2891 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2892 		       struct rps_dev_flow **rflowp)
2893 {
2894 	struct netdev_rx_queue *rxqueue;
2895 	struct rps_map *map;
2896 	struct rps_dev_flow_table *flow_table;
2897 	struct rps_sock_flow_table *sock_flow_table;
2898 	int cpu = -1;
2899 	u16 tcpu;
2900 
2901 	if (skb_rx_queue_recorded(skb)) {
2902 		u16 index = skb_get_rx_queue(skb);
2903 		if (unlikely(index >= dev->real_num_rx_queues)) {
2904 			WARN_ONCE(dev->real_num_rx_queues > 1,
2905 				  "%s received packet on queue %u, but number "
2906 				  "of RX queues is %u\n",
2907 				  dev->name, index, dev->real_num_rx_queues);
2908 			goto done;
2909 		}
2910 		rxqueue = dev->_rx + index;
2911 	} else
2912 		rxqueue = dev->_rx;
2913 
2914 	map = rcu_dereference(rxqueue->rps_map);
2915 	if (map) {
2916 		if (map->len == 1 &&
2917 		    !rcu_access_pointer(rxqueue->rps_flow_table)) {
2918 			tcpu = map->cpus[0];
2919 			if (cpu_online(tcpu))
2920 				cpu = tcpu;
2921 			goto done;
2922 		}
2923 	} else if (!rcu_access_pointer(rxqueue->rps_flow_table)) {
2924 		goto done;
2925 	}
2926 
2927 	skb_reset_network_header(skb);
2928 	if (!skb_get_rxhash(skb))
2929 		goto done;
2930 
2931 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
2932 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
2933 	if (flow_table && sock_flow_table) {
2934 		u16 next_cpu;
2935 		struct rps_dev_flow *rflow;
2936 
2937 		rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
2938 		tcpu = rflow->cpu;
2939 
2940 		next_cpu = sock_flow_table->ents[skb->rxhash &
2941 		    sock_flow_table->mask];
2942 
2943 		/*
2944 		 * If the desired CPU (where last recvmsg was done) is
2945 		 * different from current CPU (one in the rx-queue flow
2946 		 * table entry), switch if one of the following holds:
2947 		 *   - Current CPU is unset (equal to RPS_NO_CPU).
2948 		 *   - Current CPU is offline.
2949 		 *   - The current CPU's queue tail has advanced beyond the
2950 		 *     last packet that was enqueued using this table entry.
2951 		 *     This guarantees that all previous packets for the flow
2952 		 *     have been dequeued, thus preserving in order delivery.
2953 		 */
2954 		if (unlikely(tcpu != next_cpu) &&
2955 		    (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
2956 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
2957 		      rflow->last_qtail)) >= 0)) {
2958 			tcpu = next_cpu;
2959 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
2960 		}
2961 
2962 		if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
2963 			*rflowp = rflow;
2964 			cpu = tcpu;
2965 			goto done;
2966 		}
2967 	}
2968 
2969 	if (map) {
2970 		tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
2971 
2972 		if (cpu_online(tcpu)) {
2973 			cpu = tcpu;
2974 			goto done;
2975 		}
2976 	}
2977 
2978 done:
2979 	return cpu;
2980 }
2981 
2982 #ifdef CONFIG_RFS_ACCEL
2983 
2984 /**
2985  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
2986  * @dev: Device on which the filter was set
2987  * @rxq_index: RX queue index
2988  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
2989  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
2990  *
2991  * Drivers that implement ndo_rx_flow_steer() should periodically call
2992  * this function for each installed filter and remove the filters for
2993  * which it returns %true.
2994  */
2995 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
2996 			 u32 flow_id, u16 filter_id)
2997 {
2998 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
2999 	struct rps_dev_flow_table *flow_table;
3000 	struct rps_dev_flow *rflow;
3001 	bool expire = true;
3002 	int cpu;
3003 
3004 	rcu_read_lock();
3005 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
3006 	if (flow_table && flow_id <= flow_table->mask) {
3007 		rflow = &flow_table->flows[flow_id];
3008 		cpu = ACCESS_ONCE(rflow->cpu);
3009 		if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
3010 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3011 			   rflow->last_qtail) <
3012 		     (int)(10 * flow_table->mask)))
3013 			expire = false;
3014 	}
3015 	rcu_read_unlock();
3016 	return expire;
3017 }
3018 EXPORT_SYMBOL(rps_may_expire_flow);
3019 
3020 #endif /* CONFIG_RFS_ACCEL */
3021 
3022 /* Called from hardirq (IPI) context */
3023 static void rps_trigger_softirq(void *data)
3024 {
3025 	struct softnet_data *sd = data;
3026 
3027 	____napi_schedule(sd, &sd->backlog);
3028 	sd->received_rps++;
3029 }
3030 
3031 #endif /* CONFIG_RPS */
3032 
3033 /*
3034  * Check if this softnet_data structure is another cpu one
3035  * If yes, queue it to our IPI list and return 1
3036  * If no, return 0
3037  */
3038 static int rps_ipi_queued(struct softnet_data *sd)
3039 {
3040 #ifdef CONFIG_RPS
3041 	struct softnet_data *mysd = &__get_cpu_var(softnet_data);
3042 
3043 	if (sd != mysd) {
3044 		sd->rps_ipi_next = mysd->rps_ipi_list;
3045 		mysd->rps_ipi_list = sd;
3046 
3047 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3048 		return 1;
3049 	}
3050 #endif /* CONFIG_RPS */
3051 	return 0;
3052 }
3053 
3054 /*
3055  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3056  * queue (may be a remote CPU queue).
3057  */
3058 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3059 			      unsigned int *qtail)
3060 {
3061 	struct softnet_data *sd;
3062 	unsigned long flags;
3063 
3064 	sd = &per_cpu(softnet_data, cpu);
3065 
3066 	local_irq_save(flags);
3067 
3068 	rps_lock(sd);
3069 	if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) {
3070 		if (skb_queue_len(&sd->input_pkt_queue)) {
3071 enqueue:
3072 			__skb_queue_tail(&sd->input_pkt_queue, skb);
3073 			input_queue_tail_incr_save(sd, qtail);
3074 			rps_unlock(sd);
3075 			local_irq_restore(flags);
3076 			return NET_RX_SUCCESS;
3077 		}
3078 
3079 		/* Schedule NAPI for backlog device
3080 		 * We can use non atomic operation since we own the queue lock
3081 		 */
3082 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3083 			if (!rps_ipi_queued(sd))
3084 				____napi_schedule(sd, &sd->backlog);
3085 		}
3086 		goto enqueue;
3087 	}
3088 
3089 	sd->dropped++;
3090 	rps_unlock(sd);
3091 
3092 	local_irq_restore(flags);
3093 
3094 	atomic_long_inc(&skb->dev->rx_dropped);
3095 	kfree_skb(skb);
3096 	return NET_RX_DROP;
3097 }
3098 
3099 /**
3100  *	netif_rx	-	post buffer to the network code
3101  *	@skb: buffer to post
3102  *
3103  *	This function receives a packet from a device driver and queues it for
3104  *	the upper (protocol) levels to process.  It always succeeds. The buffer
3105  *	may be dropped during processing for congestion control or by the
3106  *	protocol layers.
3107  *
3108  *	return values:
3109  *	NET_RX_SUCCESS	(no congestion)
3110  *	NET_RX_DROP     (packet was dropped)
3111  *
3112  */
3113 
3114 int netif_rx(struct sk_buff *skb)
3115 {
3116 	int ret;
3117 
3118 	/* if netpoll wants it, pretend we never saw it */
3119 	if (netpoll_rx(skb))
3120 		return NET_RX_DROP;
3121 
3122 	net_timestamp_check(netdev_tstamp_prequeue, skb);
3123 
3124 	trace_netif_rx(skb);
3125 #ifdef CONFIG_RPS
3126 	if (static_key_false(&rps_needed)) {
3127 		struct rps_dev_flow voidflow, *rflow = &voidflow;
3128 		int cpu;
3129 
3130 		preempt_disable();
3131 		rcu_read_lock();
3132 
3133 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
3134 		if (cpu < 0)
3135 			cpu = smp_processor_id();
3136 
3137 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3138 
3139 		rcu_read_unlock();
3140 		preempt_enable();
3141 	} else
3142 #endif
3143 	{
3144 		unsigned int qtail;
3145 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3146 		put_cpu();
3147 	}
3148 	return ret;
3149 }
3150 EXPORT_SYMBOL(netif_rx);
3151 
3152 int netif_rx_ni(struct sk_buff *skb)
3153 {
3154 	int err;
3155 
3156 	preempt_disable();
3157 	err = netif_rx(skb);
3158 	if (local_softirq_pending())
3159 		do_softirq();
3160 	preempt_enable();
3161 
3162 	return err;
3163 }
3164 EXPORT_SYMBOL(netif_rx_ni);
3165 
3166 static void net_tx_action(struct softirq_action *h)
3167 {
3168 	struct softnet_data *sd = &__get_cpu_var(softnet_data);
3169 
3170 	if (sd->completion_queue) {
3171 		struct sk_buff *clist;
3172 
3173 		local_irq_disable();
3174 		clist = sd->completion_queue;
3175 		sd->completion_queue = NULL;
3176 		local_irq_enable();
3177 
3178 		while (clist) {
3179 			struct sk_buff *skb = clist;
3180 			clist = clist->next;
3181 
3182 			WARN_ON(atomic_read(&skb->users));
3183 			trace_kfree_skb(skb, net_tx_action);
3184 			__kfree_skb(skb);
3185 		}
3186 	}
3187 
3188 	if (sd->output_queue) {
3189 		struct Qdisc *head;
3190 
3191 		local_irq_disable();
3192 		head = sd->output_queue;
3193 		sd->output_queue = NULL;
3194 		sd->output_queue_tailp = &sd->output_queue;
3195 		local_irq_enable();
3196 
3197 		while (head) {
3198 			struct Qdisc *q = head;
3199 			spinlock_t *root_lock;
3200 
3201 			head = head->next_sched;
3202 
3203 			root_lock = qdisc_lock(q);
3204 			if (spin_trylock(root_lock)) {
3205 				smp_mb__before_clear_bit();
3206 				clear_bit(__QDISC_STATE_SCHED,
3207 					  &q->state);
3208 				qdisc_run(q);
3209 				spin_unlock(root_lock);
3210 			} else {
3211 				if (!test_bit(__QDISC_STATE_DEACTIVATED,
3212 					      &q->state)) {
3213 					__netif_reschedule(q);
3214 				} else {
3215 					smp_mb__before_clear_bit();
3216 					clear_bit(__QDISC_STATE_SCHED,
3217 						  &q->state);
3218 				}
3219 			}
3220 		}
3221 	}
3222 }
3223 
3224 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3225     (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3226 /* This hook is defined here for ATM LANE */
3227 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3228 			     unsigned char *addr) __read_mostly;
3229 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3230 #endif
3231 
3232 #ifdef CONFIG_NET_CLS_ACT
3233 /* TODO: Maybe we should just force sch_ingress to be compiled in
3234  * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3235  * a compare and 2 stores extra right now if we dont have it on
3236  * but have CONFIG_NET_CLS_ACT
3237  * NOTE: This doesn't stop any functionality; if you dont have
3238  * the ingress scheduler, you just can't add policies on ingress.
3239  *
3240  */
3241 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
3242 {
3243 	struct net_device *dev = skb->dev;
3244 	u32 ttl = G_TC_RTTL(skb->tc_verd);
3245 	int result = TC_ACT_OK;
3246 	struct Qdisc *q;
3247 
3248 	if (unlikely(MAX_RED_LOOP < ttl++)) {
3249 		net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n",
3250 				     skb->skb_iif, dev->ifindex);
3251 		return TC_ACT_SHOT;
3252 	}
3253 
3254 	skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3255 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3256 
3257 	q = rxq->qdisc;
3258 	if (q != &noop_qdisc) {
3259 		spin_lock(qdisc_lock(q));
3260 		if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3261 			result = qdisc_enqueue_root(skb, q);
3262 		spin_unlock(qdisc_lock(q));
3263 	}
3264 
3265 	return result;
3266 }
3267 
3268 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3269 					 struct packet_type **pt_prev,
3270 					 int *ret, struct net_device *orig_dev)
3271 {
3272 	struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3273 
3274 	if (!rxq || rxq->qdisc == &noop_qdisc)
3275 		goto out;
3276 
3277 	if (*pt_prev) {
3278 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
3279 		*pt_prev = NULL;
3280 	}
3281 
3282 	switch (ing_filter(skb, rxq)) {
3283 	case TC_ACT_SHOT:
3284 	case TC_ACT_STOLEN:
3285 		kfree_skb(skb);
3286 		return NULL;
3287 	}
3288 
3289 out:
3290 	skb->tc_verd = 0;
3291 	return skb;
3292 }
3293 #endif
3294 
3295 /**
3296  *	netdev_rx_handler_register - register receive handler
3297  *	@dev: device to register a handler for
3298  *	@rx_handler: receive handler to register
3299  *	@rx_handler_data: data pointer that is used by rx handler
3300  *
3301  *	Register a receive hander for a device. This handler will then be
3302  *	called from __netif_receive_skb. A negative errno code is returned
3303  *	on a failure.
3304  *
3305  *	The caller must hold the rtnl_mutex.
3306  *
3307  *	For a general description of rx_handler, see enum rx_handler_result.
3308  */
3309 int netdev_rx_handler_register(struct net_device *dev,
3310 			       rx_handler_func_t *rx_handler,
3311 			       void *rx_handler_data)
3312 {
3313 	ASSERT_RTNL();
3314 
3315 	if (dev->rx_handler)
3316 		return -EBUSY;
3317 
3318 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3319 	rcu_assign_pointer(dev->rx_handler, rx_handler);
3320 
3321 	return 0;
3322 }
3323 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3324 
3325 /**
3326  *	netdev_rx_handler_unregister - unregister receive handler
3327  *	@dev: device to unregister a handler from
3328  *
3329  *	Unregister a receive hander from a device.
3330  *
3331  *	The caller must hold the rtnl_mutex.
3332  */
3333 void netdev_rx_handler_unregister(struct net_device *dev)
3334 {
3335 
3336 	ASSERT_RTNL();
3337 	RCU_INIT_POINTER(dev->rx_handler, NULL);
3338 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3339 }
3340 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3341 
3342 /*
3343  * Limit the use of PFMEMALLOC reserves to those protocols that implement
3344  * the special handling of PFMEMALLOC skbs.
3345  */
3346 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3347 {
3348 	switch (skb->protocol) {
3349 	case __constant_htons(ETH_P_ARP):
3350 	case __constant_htons(ETH_P_IP):
3351 	case __constant_htons(ETH_P_IPV6):
3352 	case __constant_htons(ETH_P_8021Q):
3353 		return true;
3354 	default:
3355 		return false;
3356 	}
3357 }
3358 
3359 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
3360 {
3361 	struct packet_type *ptype, *pt_prev;
3362 	rx_handler_func_t *rx_handler;
3363 	struct net_device *orig_dev;
3364 	struct net_device *null_or_dev;
3365 	bool deliver_exact = false;
3366 	int ret = NET_RX_DROP;
3367 	__be16 type;
3368 
3369 	net_timestamp_check(!netdev_tstamp_prequeue, skb);
3370 
3371 	trace_netif_receive_skb(skb);
3372 
3373 	/* if we've gotten here through NAPI, check netpoll */
3374 	if (netpoll_receive_skb(skb))
3375 		goto out;
3376 
3377 	orig_dev = skb->dev;
3378 
3379 	skb_reset_network_header(skb);
3380 	if (!skb_transport_header_was_set(skb))
3381 		skb_reset_transport_header(skb);
3382 	skb_reset_mac_len(skb);
3383 
3384 	pt_prev = NULL;
3385 
3386 	rcu_read_lock();
3387 
3388 another_round:
3389 	skb->skb_iif = skb->dev->ifindex;
3390 
3391 	__this_cpu_inc(softnet_data.processed);
3392 
3393 	if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) {
3394 		skb = vlan_untag(skb);
3395 		if (unlikely(!skb))
3396 			goto unlock;
3397 	}
3398 
3399 #ifdef CONFIG_NET_CLS_ACT
3400 	if (skb->tc_verd & TC_NCLS) {
3401 		skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3402 		goto ncls;
3403 	}
3404 #endif
3405 
3406 	if (pfmemalloc)
3407 		goto skip_taps;
3408 
3409 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
3410 		if (!ptype->dev || ptype->dev == skb->dev) {
3411 			if (pt_prev)
3412 				ret = deliver_skb(skb, pt_prev, orig_dev);
3413 			pt_prev = ptype;
3414 		}
3415 	}
3416 
3417 skip_taps:
3418 #ifdef CONFIG_NET_CLS_ACT
3419 	skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3420 	if (!skb)
3421 		goto unlock;
3422 ncls:
3423 #endif
3424 
3425 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
3426 		goto drop;
3427 
3428 	if (vlan_tx_tag_present(skb)) {
3429 		if (pt_prev) {
3430 			ret = deliver_skb(skb, pt_prev, orig_dev);
3431 			pt_prev = NULL;
3432 		}
3433 		if (vlan_do_receive(&skb))
3434 			goto another_round;
3435 		else if (unlikely(!skb))
3436 			goto unlock;
3437 	}
3438 
3439 	rx_handler = rcu_dereference(skb->dev->rx_handler);
3440 	if (rx_handler) {
3441 		if (pt_prev) {
3442 			ret = deliver_skb(skb, pt_prev, orig_dev);
3443 			pt_prev = NULL;
3444 		}
3445 		switch (rx_handler(&skb)) {
3446 		case RX_HANDLER_CONSUMED:
3447 			goto unlock;
3448 		case RX_HANDLER_ANOTHER:
3449 			goto another_round;
3450 		case RX_HANDLER_EXACT:
3451 			deliver_exact = true;
3452 		case RX_HANDLER_PASS:
3453 			break;
3454 		default:
3455 			BUG();
3456 		}
3457 	}
3458 
3459 	if (vlan_tx_nonzero_tag_present(skb))
3460 		skb->pkt_type = PACKET_OTHERHOST;
3461 
3462 	/* deliver only exact match when indicated */
3463 	null_or_dev = deliver_exact ? skb->dev : NULL;
3464 
3465 	type = skb->protocol;
3466 	list_for_each_entry_rcu(ptype,
3467 			&ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3468 		if (ptype->type == type &&
3469 		    (ptype->dev == null_or_dev || ptype->dev == skb->dev ||
3470 		     ptype->dev == orig_dev)) {
3471 			if (pt_prev)
3472 				ret = deliver_skb(skb, pt_prev, orig_dev);
3473 			pt_prev = ptype;
3474 		}
3475 	}
3476 
3477 	if (pt_prev) {
3478 		if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
3479 			goto drop;
3480 		else
3481 			ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3482 	} else {
3483 drop:
3484 		atomic_long_inc(&skb->dev->rx_dropped);
3485 		kfree_skb(skb);
3486 		/* Jamal, now you will not able to escape explaining
3487 		 * me how you were going to use this. :-)
3488 		 */
3489 		ret = NET_RX_DROP;
3490 	}
3491 
3492 unlock:
3493 	rcu_read_unlock();
3494 out:
3495 	return ret;
3496 }
3497 
3498 static int __netif_receive_skb(struct sk_buff *skb)
3499 {
3500 	int ret;
3501 
3502 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
3503 		unsigned long pflags = current->flags;
3504 
3505 		/*
3506 		 * PFMEMALLOC skbs are special, they should
3507 		 * - be delivered to SOCK_MEMALLOC sockets only
3508 		 * - stay away from userspace
3509 		 * - have bounded memory usage
3510 		 *
3511 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
3512 		 * context down to all allocation sites.
3513 		 */
3514 		current->flags |= PF_MEMALLOC;
3515 		ret = __netif_receive_skb_core(skb, true);
3516 		tsk_restore_flags(current, pflags, PF_MEMALLOC);
3517 	} else
3518 		ret = __netif_receive_skb_core(skb, false);
3519 
3520 	return ret;
3521 }
3522 
3523 /**
3524  *	netif_receive_skb - process receive buffer from network
3525  *	@skb: buffer to process
3526  *
3527  *	netif_receive_skb() is the main receive data processing function.
3528  *	It always succeeds. The buffer may be dropped during processing
3529  *	for congestion control or by the protocol layers.
3530  *
3531  *	This function may only be called from softirq context and interrupts
3532  *	should be enabled.
3533  *
3534  *	Return values (usually ignored):
3535  *	NET_RX_SUCCESS: no congestion
3536  *	NET_RX_DROP: packet was dropped
3537  */
3538 int netif_receive_skb(struct sk_buff *skb)
3539 {
3540 	net_timestamp_check(netdev_tstamp_prequeue, skb);
3541 
3542 	if (skb_defer_rx_timestamp(skb))
3543 		return NET_RX_SUCCESS;
3544 
3545 #ifdef CONFIG_RPS
3546 	if (static_key_false(&rps_needed)) {
3547 		struct rps_dev_flow voidflow, *rflow = &voidflow;
3548 		int cpu, ret;
3549 
3550 		rcu_read_lock();
3551 
3552 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
3553 
3554 		if (cpu >= 0) {
3555 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3556 			rcu_read_unlock();
3557 			return ret;
3558 		}
3559 		rcu_read_unlock();
3560 	}
3561 #endif
3562 	return __netif_receive_skb(skb);
3563 }
3564 EXPORT_SYMBOL(netif_receive_skb);
3565 
3566 /* Network device is going away, flush any packets still pending
3567  * Called with irqs disabled.
3568  */
3569 static void flush_backlog(void *arg)
3570 {
3571 	struct net_device *dev = arg;
3572 	struct softnet_data *sd = &__get_cpu_var(softnet_data);
3573 	struct sk_buff *skb, *tmp;
3574 
3575 	rps_lock(sd);
3576 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3577 		if (skb->dev == dev) {
3578 			__skb_unlink(skb, &sd->input_pkt_queue);
3579 			kfree_skb(skb);
3580 			input_queue_head_incr(sd);
3581 		}
3582 	}
3583 	rps_unlock(sd);
3584 
3585 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3586 		if (skb->dev == dev) {
3587 			__skb_unlink(skb, &sd->process_queue);
3588 			kfree_skb(skb);
3589 			input_queue_head_incr(sd);
3590 		}
3591 	}
3592 }
3593 
3594 static int napi_gro_complete(struct sk_buff *skb)
3595 {
3596 	struct packet_offload *ptype;
3597 	__be16 type = skb->protocol;
3598 	struct list_head *head = &offload_base;
3599 	int err = -ENOENT;
3600 
3601 	BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
3602 
3603 	if (NAPI_GRO_CB(skb)->count == 1) {
3604 		skb_shinfo(skb)->gso_size = 0;
3605 		goto out;
3606 	}
3607 
3608 	rcu_read_lock();
3609 	list_for_each_entry_rcu(ptype, head, list) {
3610 		if (ptype->type != type || !ptype->callbacks.gro_complete)
3611 			continue;
3612 
3613 		err = ptype->callbacks.gro_complete(skb);
3614 		break;
3615 	}
3616 	rcu_read_unlock();
3617 
3618 	if (err) {
3619 		WARN_ON(&ptype->list == head);
3620 		kfree_skb(skb);
3621 		return NET_RX_SUCCESS;
3622 	}
3623 
3624 out:
3625 	return netif_receive_skb(skb);
3626 }
3627 
3628 /* napi->gro_list contains packets ordered by age.
3629  * youngest packets at the head of it.
3630  * Complete skbs in reverse order to reduce latencies.
3631  */
3632 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
3633 {
3634 	struct sk_buff *skb, *prev = NULL;
3635 
3636 	/* scan list and build reverse chain */
3637 	for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
3638 		skb->prev = prev;
3639 		prev = skb;
3640 	}
3641 
3642 	for (skb = prev; skb; skb = prev) {
3643 		skb->next = NULL;
3644 
3645 		if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
3646 			return;
3647 
3648 		prev = skb->prev;
3649 		napi_gro_complete(skb);
3650 		napi->gro_count--;
3651 	}
3652 
3653 	napi->gro_list = NULL;
3654 }
3655 EXPORT_SYMBOL(napi_gro_flush);
3656 
3657 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
3658 {
3659 	struct sk_buff *p;
3660 	unsigned int maclen = skb->dev->hard_header_len;
3661 
3662 	for (p = napi->gro_list; p; p = p->next) {
3663 		unsigned long diffs;
3664 
3665 		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3666 		diffs |= p->vlan_tci ^ skb->vlan_tci;
3667 		if (maclen == ETH_HLEN)
3668 			diffs |= compare_ether_header(skb_mac_header(p),
3669 						      skb_gro_mac_header(skb));
3670 		else if (!diffs)
3671 			diffs = memcmp(skb_mac_header(p),
3672 				       skb_gro_mac_header(skb),
3673 				       maclen);
3674 		NAPI_GRO_CB(p)->same_flow = !diffs;
3675 		NAPI_GRO_CB(p)->flush = 0;
3676 	}
3677 }
3678 
3679 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3680 {
3681 	struct sk_buff **pp = NULL;
3682 	struct packet_offload *ptype;
3683 	__be16 type = skb->protocol;
3684 	struct list_head *head = &offload_base;
3685 	int same_flow;
3686 	enum gro_result ret;
3687 
3688 	if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb))
3689 		goto normal;
3690 
3691 	if (skb_is_gso(skb) || skb_has_frag_list(skb))
3692 		goto normal;
3693 
3694 	gro_list_prepare(napi, skb);
3695 
3696 	rcu_read_lock();
3697 	list_for_each_entry_rcu(ptype, head, list) {
3698 		if (ptype->type != type || !ptype->callbacks.gro_receive)
3699 			continue;
3700 
3701 		skb_set_network_header(skb, skb_gro_offset(skb));
3702 		skb_reset_mac_len(skb);
3703 		NAPI_GRO_CB(skb)->same_flow = 0;
3704 		NAPI_GRO_CB(skb)->flush = 0;
3705 		NAPI_GRO_CB(skb)->free = 0;
3706 
3707 		pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
3708 		break;
3709 	}
3710 	rcu_read_unlock();
3711 
3712 	if (&ptype->list == head)
3713 		goto normal;
3714 
3715 	same_flow = NAPI_GRO_CB(skb)->same_flow;
3716 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3717 
3718 	if (pp) {
3719 		struct sk_buff *nskb = *pp;
3720 
3721 		*pp = nskb->next;
3722 		nskb->next = NULL;
3723 		napi_gro_complete(nskb);
3724 		napi->gro_count--;
3725 	}
3726 
3727 	if (same_flow)
3728 		goto ok;
3729 
3730 	if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
3731 		goto normal;
3732 
3733 	napi->gro_count++;
3734 	NAPI_GRO_CB(skb)->count = 1;
3735 	NAPI_GRO_CB(skb)->age = jiffies;
3736 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3737 	skb->next = napi->gro_list;
3738 	napi->gro_list = skb;
3739 	ret = GRO_HELD;
3740 
3741 pull:
3742 	if (skb_headlen(skb) < skb_gro_offset(skb)) {
3743 		int grow = skb_gro_offset(skb) - skb_headlen(skb);
3744 
3745 		BUG_ON(skb->end - skb->tail < grow);
3746 
3747 		memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3748 
3749 		skb->tail += grow;
3750 		skb->data_len -= grow;
3751 
3752 		skb_shinfo(skb)->frags[0].page_offset += grow;
3753 		skb_frag_size_sub(&skb_shinfo(skb)->frags[0], grow);
3754 
3755 		if (unlikely(!skb_frag_size(&skb_shinfo(skb)->frags[0]))) {
3756 			skb_frag_unref(skb, 0);
3757 			memmove(skb_shinfo(skb)->frags,
3758 				skb_shinfo(skb)->frags + 1,
3759 				--skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t));
3760 		}
3761 	}
3762 
3763 ok:
3764 	return ret;
3765 
3766 normal:
3767 	ret = GRO_NORMAL;
3768 	goto pull;
3769 }
3770 
3771 
3772 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
3773 {
3774 	switch (ret) {
3775 	case GRO_NORMAL:
3776 		if (netif_receive_skb(skb))
3777 			ret = GRO_DROP;
3778 		break;
3779 
3780 	case GRO_DROP:
3781 		kfree_skb(skb);
3782 		break;
3783 
3784 	case GRO_MERGED_FREE:
3785 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
3786 			kmem_cache_free(skbuff_head_cache, skb);
3787 		else
3788 			__kfree_skb(skb);
3789 		break;
3790 
3791 	case GRO_HELD:
3792 	case GRO_MERGED:
3793 		break;
3794 	}
3795 
3796 	return ret;
3797 }
3798 
3799 static void skb_gro_reset_offset(struct sk_buff *skb)
3800 {
3801 	const struct skb_shared_info *pinfo = skb_shinfo(skb);
3802 	const skb_frag_t *frag0 = &pinfo->frags[0];
3803 
3804 	NAPI_GRO_CB(skb)->data_offset = 0;
3805 	NAPI_GRO_CB(skb)->frag0 = NULL;
3806 	NAPI_GRO_CB(skb)->frag0_len = 0;
3807 
3808 	if (skb->mac_header == skb->tail &&
3809 	    pinfo->nr_frags &&
3810 	    !PageHighMem(skb_frag_page(frag0))) {
3811 		NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
3812 		NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
3813 	}
3814 }
3815 
3816 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3817 {
3818 	skb_gro_reset_offset(skb);
3819 
3820 	return napi_skb_finish(dev_gro_receive(napi, skb), skb);
3821 }
3822 EXPORT_SYMBOL(napi_gro_receive);
3823 
3824 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
3825 {
3826 	__skb_pull(skb, skb_headlen(skb));
3827 	/* restore the reserve we had after netdev_alloc_skb_ip_align() */
3828 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
3829 	skb->vlan_tci = 0;
3830 	skb->dev = napi->dev;
3831 	skb->skb_iif = 0;
3832 
3833 	napi->skb = skb;
3834 }
3835 
3836 struct sk_buff *napi_get_frags(struct napi_struct *napi)
3837 {
3838 	struct sk_buff *skb = napi->skb;
3839 
3840 	if (!skb) {
3841 		skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3842 		if (skb)
3843 			napi->skb = skb;
3844 	}
3845 	return skb;
3846 }
3847 EXPORT_SYMBOL(napi_get_frags);
3848 
3849 static gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3850 			       gro_result_t ret)
3851 {
3852 	switch (ret) {
3853 	case GRO_NORMAL:
3854 	case GRO_HELD:
3855 		skb->protocol = eth_type_trans(skb, skb->dev);
3856 
3857 		if (ret == GRO_HELD)
3858 			skb_gro_pull(skb, -ETH_HLEN);
3859 		else if (netif_receive_skb(skb))
3860 			ret = GRO_DROP;
3861 		break;
3862 
3863 	case GRO_DROP:
3864 	case GRO_MERGED_FREE:
3865 		napi_reuse_skb(napi, skb);
3866 		break;
3867 
3868 	case GRO_MERGED:
3869 		break;
3870 	}
3871 
3872 	return ret;
3873 }
3874 
3875 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
3876 {
3877 	struct sk_buff *skb = napi->skb;
3878 	struct ethhdr *eth;
3879 	unsigned int hlen;
3880 	unsigned int off;
3881 
3882 	napi->skb = NULL;
3883 
3884 	skb_reset_mac_header(skb);
3885 	skb_gro_reset_offset(skb);
3886 
3887 	off = skb_gro_offset(skb);
3888 	hlen = off + sizeof(*eth);
3889 	eth = skb_gro_header_fast(skb, off);
3890 	if (skb_gro_header_hard(skb, hlen)) {
3891 		eth = skb_gro_header_slow(skb, hlen, off);
3892 		if (unlikely(!eth)) {
3893 			napi_reuse_skb(napi, skb);
3894 			skb = NULL;
3895 			goto out;
3896 		}
3897 	}
3898 
3899 	skb_gro_pull(skb, sizeof(*eth));
3900 
3901 	/*
3902 	 * This works because the only protocols we care about don't require
3903 	 * special handling.  We'll fix it up properly at the end.
3904 	 */
3905 	skb->protocol = eth->h_proto;
3906 
3907 out:
3908 	return skb;
3909 }
3910 
3911 gro_result_t napi_gro_frags(struct napi_struct *napi)
3912 {
3913 	struct sk_buff *skb = napi_frags_skb(napi);
3914 
3915 	if (!skb)
3916 		return GRO_DROP;
3917 
3918 	return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
3919 }
3920 EXPORT_SYMBOL(napi_gro_frags);
3921 
3922 /*
3923  * net_rps_action sends any pending IPI's for rps.
3924  * Note: called with local irq disabled, but exits with local irq enabled.
3925  */
3926 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
3927 {
3928 #ifdef CONFIG_RPS
3929 	struct softnet_data *remsd = sd->rps_ipi_list;
3930 
3931 	if (remsd) {
3932 		sd->rps_ipi_list = NULL;
3933 
3934 		local_irq_enable();
3935 
3936 		/* Send pending IPI's to kick RPS processing on remote cpus. */
3937 		while (remsd) {
3938 			struct softnet_data *next = remsd->rps_ipi_next;
3939 
3940 			if (cpu_online(remsd->cpu))
3941 				__smp_call_function_single(remsd->cpu,
3942 							   &remsd->csd, 0);
3943 			remsd = next;
3944 		}
3945 	} else
3946 #endif
3947 		local_irq_enable();
3948 }
3949 
3950 static int process_backlog(struct napi_struct *napi, int quota)
3951 {
3952 	int work = 0;
3953 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
3954 
3955 #ifdef CONFIG_RPS
3956 	/* Check if we have pending ipi, its better to send them now,
3957 	 * not waiting net_rx_action() end.
3958 	 */
3959 	if (sd->rps_ipi_list) {
3960 		local_irq_disable();
3961 		net_rps_action_and_irq_enable(sd);
3962 	}
3963 #endif
3964 	napi->weight = weight_p;
3965 	local_irq_disable();
3966 	while (work < quota) {
3967 		struct sk_buff *skb;
3968 		unsigned int qlen;
3969 
3970 		while ((skb = __skb_dequeue(&sd->process_queue))) {
3971 			local_irq_enable();
3972 			__netif_receive_skb(skb);
3973 			local_irq_disable();
3974 			input_queue_head_incr(sd);
3975 			if (++work >= quota) {
3976 				local_irq_enable();
3977 				return work;
3978 			}
3979 		}
3980 
3981 		rps_lock(sd);
3982 		qlen = skb_queue_len(&sd->input_pkt_queue);
3983 		if (qlen)
3984 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
3985 						   &sd->process_queue);
3986 
3987 		if (qlen < quota - work) {
3988 			/*
3989 			 * Inline a custom version of __napi_complete().
3990 			 * only current cpu owns and manipulates this napi,
3991 			 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
3992 			 * we can use a plain write instead of clear_bit(),
3993 			 * and we dont need an smp_mb() memory barrier.
3994 			 */
3995 			list_del(&napi->poll_list);
3996 			napi->state = 0;
3997 
3998 			quota = work + qlen;
3999 		}
4000 		rps_unlock(sd);
4001 	}
4002 	local_irq_enable();
4003 
4004 	return work;
4005 }
4006 
4007 /**
4008  * __napi_schedule - schedule for receive
4009  * @n: entry to schedule
4010  *
4011  * The entry's receive function will be scheduled to run
4012  */
4013 void __napi_schedule(struct napi_struct *n)
4014 {
4015 	unsigned long flags;
4016 
4017 	local_irq_save(flags);
4018 	____napi_schedule(&__get_cpu_var(softnet_data), n);
4019 	local_irq_restore(flags);
4020 }
4021 EXPORT_SYMBOL(__napi_schedule);
4022 
4023 void __napi_complete(struct napi_struct *n)
4024 {
4025 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4026 	BUG_ON(n->gro_list);
4027 
4028 	list_del(&n->poll_list);
4029 	smp_mb__before_clear_bit();
4030 	clear_bit(NAPI_STATE_SCHED, &n->state);
4031 }
4032 EXPORT_SYMBOL(__napi_complete);
4033 
4034 void napi_complete(struct napi_struct *n)
4035 {
4036 	unsigned long flags;
4037 
4038 	/*
4039 	 * don't let napi dequeue from the cpu poll list
4040 	 * just in case its running on a different cpu
4041 	 */
4042 	if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4043 		return;
4044 
4045 	napi_gro_flush(n, false);
4046 	local_irq_save(flags);
4047 	__napi_complete(n);
4048 	local_irq_restore(flags);
4049 }
4050 EXPORT_SYMBOL(napi_complete);
4051 
4052 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
4053 		    int (*poll)(struct napi_struct *, int), int weight)
4054 {
4055 	INIT_LIST_HEAD(&napi->poll_list);
4056 	napi->gro_count = 0;
4057 	napi->gro_list = NULL;
4058 	napi->skb = NULL;
4059 	napi->poll = poll;
4060 	napi->weight = weight;
4061 	list_add(&napi->dev_list, &dev->napi_list);
4062 	napi->dev = dev;
4063 #ifdef CONFIG_NETPOLL
4064 	spin_lock_init(&napi->poll_lock);
4065 	napi->poll_owner = -1;
4066 #endif
4067 	set_bit(NAPI_STATE_SCHED, &napi->state);
4068 }
4069 EXPORT_SYMBOL(netif_napi_add);
4070 
4071 void netif_napi_del(struct napi_struct *napi)
4072 {
4073 	struct sk_buff *skb, *next;
4074 
4075 	list_del_init(&napi->dev_list);
4076 	napi_free_frags(napi);
4077 
4078 	for (skb = napi->gro_list; skb; skb = next) {
4079 		next = skb->next;
4080 		skb->next = NULL;
4081 		kfree_skb(skb);
4082 	}
4083 
4084 	napi->gro_list = NULL;
4085 	napi->gro_count = 0;
4086 }
4087 EXPORT_SYMBOL(netif_napi_del);
4088 
4089 static void net_rx_action(struct softirq_action *h)
4090 {
4091 	struct softnet_data *sd = &__get_cpu_var(softnet_data);
4092 	unsigned long time_limit = jiffies + 2;
4093 	int budget = netdev_budget;
4094 	void *have;
4095 
4096 	local_irq_disable();
4097 
4098 	while (!list_empty(&sd->poll_list)) {
4099 		struct napi_struct *n;
4100 		int work, weight;
4101 
4102 		/* If softirq window is exhuasted then punt.
4103 		 * Allow this to run for 2 jiffies since which will allow
4104 		 * an average latency of 1.5/HZ.
4105 		 */
4106 		if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
4107 			goto softnet_break;
4108 
4109 		local_irq_enable();
4110 
4111 		/* Even though interrupts have been re-enabled, this
4112 		 * access is safe because interrupts can only add new
4113 		 * entries to the tail of this list, and only ->poll()
4114 		 * calls can remove this head entry from the list.
4115 		 */
4116 		n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
4117 
4118 		have = netpoll_poll_lock(n);
4119 
4120 		weight = n->weight;
4121 
4122 		/* This NAPI_STATE_SCHED test is for avoiding a race
4123 		 * with netpoll's poll_napi().  Only the entity which
4124 		 * obtains the lock and sees NAPI_STATE_SCHED set will
4125 		 * actually make the ->poll() call.  Therefore we avoid
4126 		 * accidentally calling ->poll() when NAPI is not scheduled.
4127 		 */
4128 		work = 0;
4129 		if (test_bit(NAPI_STATE_SCHED, &n->state)) {
4130 			work = n->poll(n, weight);
4131 			trace_napi_poll(n);
4132 		}
4133 
4134 		WARN_ON_ONCE(work > weight);
4135 
4136 		budget -= work;
4137 
4138 		local_irq_disable();
4139 
4140 		/* Drivers must not modify the NAPI state if they
4141 		 * consume the entire weight.  In such cases this code
4142 		 * still "owns" the NAPI instance and therefore can
4143 		 * move the instance around on the list at-will.
4144 		 */
4145 		if (unlikely(work == weight)) {
4146 			if (unlikely(napi_disable_pending(n))) {
4147 				local_irq_enable();
4148 				napi_complete(n);
4149 				local_irq_disable();
4150 			} else {
4151 				if (n->gro_list) {
4152 					/* flush too old packets
4153 					 * If HZ < 1000, flush all packets.
4154 					 */
4155 					local_irq_enable();
4156 					napi_gro_flush(n, HZ >= 1000);
4157 					local_irq_disable();
4158 				}
4159 				list_move_tail(&n->poll_list, &sd->poll_list);
4160 			}
4161 		}
4162 
4163 		netpoll_poll_unlock(have);
4164 	}
4165 out:
4166 	net_rps_action_and_irq_enable(sd);
4167 
4168 #ifdef CONFIG_NET_DMA
4169 	/*
4170 	 * There may not be any more sk_buffs coming right now, so push
4171 	 * any pending DMA copies to hardware
4172 	 */
4173 	dma_issue_pending_all();
4174 #endif
4175 
4176 	return;
4177 
4178 softnet_break:
4179 	sd->time_squeeze++;
4180 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4181 	goto out;
4182 }
4183 
4184 struct netdev_upper {
4185 	struct net_device *dev;
4186 	bool master;
4187 	struct list_head list;
4188 	struct rcu_head rcu;
4189 	struct list_head search_list;
4190 };
4191 
4192 static void __append_search_uppers(struct list_head *search_list,
4193 				   struct net_device *dev)
4194 {
4195 	struct netdev_upper *upper;
4196 
4197 	list_for_each_entry(upper, &dev->upper_dev_list, list) {
4198 		/* check if this upper is not already in search list */
4199 		if (list_empty(&upper->search_list))
4200 			list_add_tail(&upper->search_list, search_list);
4201 	}
4202 }
4203 
4204 static bool __netdev_search_upper_dev(struct net_device *dev,
4205 				      struct net_device *upper_dev)
4206 {
4207 	LIST_HEAD(search_list);
4208 	struct netdev_upper *upper;
4209 	struct netdev_upper *tmp;
4210 	bool ret = false;
4211 
4212 	__append_search_uppers(&search_list, dev);
4213 	list_for_each_entry(upper, &search_list, search_list) {
4214 		if (upper->dev == upper_dev) {
4215 			ret = true;
4216 			break;
4217 		}
4218 		__append_search_uppers(&search_list, upper->dev);
4219 	}
4220 	list_for_each_entry_safe(upper, tmp, &search_list, search_list)
4221 		INIT_LIST_HEAD(&upper->search_list);
4222 	return ret;
4223 }
4224 
4225 static struct netdev_upper *__netdev_find_upper(struct net_device *dev,
4226 						struct net_device *upper_dev)
4227 {
4228 	struct netdev_upper *upper;
4229 
4230 	list_for_each_entry(upper, &dev->upper_dev_list, list) {
4231 		if (upper->dev == upper_dev)
4232 			return upper;
4233 	}
4234 	return NULL;
4235 }
4236 
4237 /**
4238  * netdev_has_upper_dev - Check if device is linked to an upper device
4239  * @dev: device
4240  * @upper_dev: upper device to check
4241  *
4242  * Find out if a device is linked to specified upper device and return true
4243  * in case it is. Note that this checks only immediate upper device,
4244  * not through a complete stack of devices. The caller must hold the RTNL lock.
4245  */
4246 bool netdev_has_upper_dev(struct net_device *dev,
4247 			  struct net_device *upper_dev)
4248 {
4249 	ASSERT_RTNL();
4250 
4251 	return __netdev_find_upper(dev, upper_dev);
4252 }
4253 EXPORT_SYMBOL(netdev_has_upper_dev);
4254 
4255 /**
4256  * netdev_has_any_upper_dev - Check if device is linked to some device
4257  * @dev: device
4258  *
4259  * Find out if a device is linked to an upper device and return true in case
4260  * it is. The caller must hold the RTNL lock.
4261  */
4262 bool netdev_has_any_upper_dev(struct net_device *dev)
4263 {
4264 	ASSERT_RTNL();
4265 
4266 	return !list_empty(&dev->upper_dev_list);
4267 }
4268 EXPORT_SYMBOL(netdev_has_any_upper_dev);
4269 
4270 /**
4271  * netdev_master_upper_dev_get - Get master upper device
4272  * @dev: device
4273  *
4274  * Find a master upper device and return pointer to it or NULL in case
4275  * it's not there. The caller must hold the RTNL lock.
4276  */
4277 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
4278 {
4279 	struct netdev_upper *upper;
4280 
4281 	ASSERT_RTNL();
4282 
4283 	if (list_empty(&dev->upper_dev_list))
4284 		return NULL;
4285 
4286 	upper = list_first_entry(&dev->upper_dev_list,
4287 				 struct netdev_upper, list);
4288 	if (likely(upper->master))
4289 		return upper->dev;
4290 	return NULL;
4291 }
4292 EXPORT_SYMBOL(netdev_master_upper_dev_get);
4293 
4294 /**
4295  * netdev_master_upper_dev_get_rcu - Get master upper device
4296  * @dev: device
4297  *
4298  * Find a master upper device and return pointer to it or NULL in case
4299  * it's not there. The caller must hold the RCU read lock.
4300  */
4301 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
4302 {
4303 	struct netdev_upper *upper;
4304 
4305 	upper = list_first_or_null_rcu(&dev->upper_dev_list,
4306 				       struct netdev_upper, list);
4307 	if (upper && likely(upper->master))
4308 		return upper->dev;
4309 	return NULL;
4310 }
4311 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
4312 
4313 static int __netdev_upper_dev_link(struct net_device *dev,
4314 				   struct net_device *upper_dev, bool master)
4315 {
4316 	struct netdev_upper *upper;
4317 
4318 	ASSERT_RTNL();
4319 
4320 	if (dev == upper_dev)
4321 		return -EBUSY;
4322 
4323 	/* To prevent loops, check if dev is not upper device to upper_dev. */
4324 	if (__netdev_search_upper_dev(upper_dev, dev))
4325 		return -EBUSY;
4326 
4327 	if (__netdev_find_upper(dev, upper_dev))
4328 		return -EEXIST;
4329 
4330 	if (master && netdev_master_upper_dev_get(dev))
4331 		return -EBUSY;
4332 
4333 	upper = kmalloc(sizeof(*upper), GFP_KERNEL);
4334 	if (!upper)
4335 		return -ENOMEM;
4336 
4337 	upper->dev = upper_dev;
4338 	upper->master = master;
4339 	INIT_LIST_HEAD(&upper->search_list);
4340 
4341 	/* Ensure that master upper link is always the first item in list. */
4342 	if (master)
4343 		list_add_rcu(&upper->list, &dev->upper_dev_list);
4344 	else
4345 		list_add_tail_rcu(&upper->list, &dev->upper_dev_list);
4346 	dev_hold(upper_dev);
4347 
4348 	return 0;
4349 }
4350 
4351 /**
4352  * netdev_upper_dev_link - Add a link to the upper device
4353  * @dev: device
4354  * @upper_dev: new upper device
4355  *
4356  * Adds a link to device which is upper to this one. The caller must hold
4357  * the RTNL lock. On a failure a negative errno code is returned.
4358  * On success the reference counts are adjusted and the function
4359  * returns zero.
4360  */
4361 int netdev_upper_dev_link(struct net_device *dev,
4362 			  struct net_device *upper_dev)
4363 {
4364 	return __netdev_upper_dev_link(dev, upper_dev, false);
4365 }
4366 EXPORT_SYMBOL(netdev_upper_dev_link);
4367 
4368 /**
4369  * netdev_master_upper_dev_link - Add a master link to the upper device
4370  * @dev: device
4371  * @upper_dev: new upper device
4372  *
4373  * Adds a link to device which is upper to this one. In this case, only
4374  * one master upper device can be linked, although other non-master devices
4375  * might be linked as well. The caller must hold the RTNL lock.
4376  * On a failure a negative errno code is returned. On success the reference
4377  * counts are adjusted and the function returns zero.
4378  */
4379 int netdev_master_upper_dev_link(struct net_device *dev,
4380 				 struct net_device *upper_dev)
4381 {
4382 	return __netdev_upper_dev_link(dev, upper_dev, true);
4383 }
4384 EXPORT_SYMBOL(netdev_master_upper_dev_link);
4385 
4386 /**
4387  * netdev_upper_dev_unlink - Removes a link to upper device
4388  * @dev: device
4389  * @upper_dev: new upper device
4390  *
4391  * Removes a link to device which is upper to this one. The caller must hold
4392  * the RTNL lock.
4393  */
4394 void netdev_upper_dev_unlink(struct net_device *dev,
4395 			     struct net_device *upper_dev)
4396 {
4397 	struct netdev_upper *upper;
4398 
4399 	ASSERT_RTNL();
4400 
4401 	upper = __netdev_find_upper(dev, upper_dev);
4402 	if (!upper)
4403 		return;
4404 	list_del_rcu(&upper->list);
4405 	dev_put(upper_dev);
4406 	kfree_rcu(upper, rcu);
4407 }
4408 EXPORT_SYMBOL(netdev_upper_dev_unlink);
4409 
4410 static void dev_change_rx_flags(struct net_device *dev, int flags)
4411 {
4412 	const struct net_device_ops *ops = dev->netdev_ops;
4413 
4414 	if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
4415 		ops->ndo_change_rx_flags(dev, flags);
4416 }
4417 
4418 static int __dev_set_promiscuity(struct net_device *dev, int inc)
4419 {
4420 	unsigned int old_flags = dev->flags;
4421 	kuid_t uid;
4422 	kgid_t gid;
4423 
4424 	ASSERT_RTNL();
4425 
4426 	dev->flags |= IFF_PROMISC;
4427 	dev->promiscuity += inc;
4428 	if (dev->promiscuity == 0) {
4429 		/*
4430 		 * Avoid overflow.
4431 		 * If inc causes overflow, untouch promisc and return error.
4432 		 */
4433 		if (inc < 0)
4434 			dev->flags &= ~IFF_PROMISC;
4435 		else {
4436 			dev->promiscuity -= inc;
4437 			pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
4438 				dev->name);
4439 			return -EOVERFLOW;
4440 		}
4441 	}
4442 	if (dev->flags != old_flags) {
4443 		pr_info("device %s %s promiscuous mode\n",
4444 			dev->name,
4445 			dev->flags & IFF_PROMISC ? "entered" : "left");
4446 		if (audit_enabled) {
4447 			current_uid_gid(&uid, &gid);
4448 			audit_log(current->audit_context, GFP_ATOMIC,
4449 				AUDIT_ANOM_PROMISCUOUS,
4450 				"dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
4451 				dev->name, (dev->flags & IFF_PROMISC),
4452 				(old_flags & IFF_PROMISC),
4453 				from_kuid(&init_user_ns, audit_get_loginuid(current)),
4454 				from_kuid(&init_user_ns, uid),
4455 				from_kgid(&init_user_ns, gid),
4456 				audit_get_sessionid(current));
4457 		}
4458 
4459 		dev_change_rx_flags(dev, IFF_PROMISC);
4460 	}
4461 	return 0;
4462 }
4463 
4464 /**
4465  *	dev_set_promiscuity	- update promiscuity count on a device
4466  *	@dev: device
4467  *	@inc: modifier
4468  *
4469  *	Add or remove promiscuity from a device. While the count in the device
4470  *	remains above zero the interface remains promiscuous. Once it hits zero
4471  *	the device reverts back to normal filtering operation. A negative inc
4472  *	value is used to drop promiscuity on the device.
4473  *	Return 0 if successful or a negative errno code on error.
4474  */
4475 int dev_set_promiscuity(struct net_device *dev, int inc)
4476 {
4477 	unsigned int old_flags = dev->flags;
4478 	int err;
4479 
4480 	err = __dev_set_promiscuity(dev, inc);
4481 	if (err < 0)
4482 		return err;
4483 	if (dev->flags != old_flags)
4484 		dev_set_rx_mode(dev);
4485 	return err;
4486 }
4487 EXPORT_SYMBOL(dev_set_promiscuity);
4488 
4489 /**
4490  *	dev_set_allmulti	- update allmulti count on a device
4491  *	@dev: device
4492  *	@inc: modifier
4493  *
4494  *	Add or remove reception of all multicast frames to a device. While the
4495  *	count in the device remains above zero the interface remains listening
4496  *	to all interfaces. Once it hits zero the device reverts back to normal
4497  *	filtering operation. A negative @inc value is used to drop the counter
4498  *	when releasing a resource needing all multicasts.
4499  *	Return 0 if successful or a negative errno code on error.
4500  */
4501 
4502 int dev_set_allmulti(struct net_device *dev, int inc)
4503 {
4504 	unsigned int old_flags = dev->flags;
4505 
4506 	ASSERT_RTNL();
4507 
4508 	dev->flags |= IFF_ALLMULTI;
4509 	dev->allmulti += inc;
4510 	if (dev->allmulti == 0) {
4511 		/*
4512 		 * Avoid overflow.
4513 		 * If inc causes overflow, untouch allmulti and return error.
4514 		 */
4515 		if (inc < 0)
4516 			dev->flags &= ~IFF_ALLMULTI;
4517 		else {
4518 			dev->allmulti -= inc;
4519 			pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
4520 				dev->name);
4521 			return -EOVERFLOW;
4522 		}
4523 	}
4524 	if (dev->flags ^ old_flags) {
4525 		dev_change_rx_flags(dev, IFF_ALLMULTI);
4526 		dev_set_rx_mode(dev);
4527 	}
4528 	return 0;
4529 }
4530 EXPORT_SYMBOL(dev_set_allmulti);
4531 
4532 /*
4533  *	Upload unicast and multicast address lists to device and
4534  *	configure RX filtering. When the device doesn't support unicast
4535  *	filtering it is put in promiscuous mode while unicast addresses
4536  *	are present.
4537  */
4538 void __dev_set_rx_mode(struct net_device *dev)
4539 {
4540 	const struct net_device_ops *ops = dev->netdev_ops;
4541 
4542 	/* dev_open will call this function so the list will stay sane. */
4543 	if (!(dev->flags&IFF_UP))
4544 		return;
4545 
4546 	if (!netif_device_present(dev))
4547 		return;
4548 
4549 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
4550 		/* Unicast addresses changes may only happen under the rtnl,
4551 		 * therefore calling __dev_set_promiscuity here is safe.
4552 		 */
4553 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
4554 			__dev_set_promiscuity(dev, 1);
4555 			dev->uc_promisc = true;
4556 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
4557 			__dev_set_promiscuity(dev, -1);
4558 			dev->uc_promisc = false;
4559 		}
4560 	}
4561 
4562 	if (ops->ndo_set_rx_mode)
4563 		ops->ndo_set_rx_mode(dev);
4564 }
4565 
4566 void dev_set_rx_mode(struct net_device *dev)
4567 {
4568 	netif_addr_lock_bh(dev);
4569 	__dev_set_rx_mode(dev);
4570 	netif_addr_unlock_bh(dev);
4571 }
4572 
4573 /**
4574  *	dev_get_flags - get flags reported to userspace
4575  *	@dev: device
4576  *
4577  *	Get the combination of flag bits exported through APIs to userspace.
4578  */
4579 unsigned int dev_get_flags(const struct net_device *dev)
4580 {
4581 	unsigned int flags;
4582 
4583 	flags = (dev->flags & ~(IFF_PROMISC |
4584 				IFF_ALLMULTI |
4585 				IFF_RUNNING |
4586 				IFF_LOWER_UP |
4587 				IFF_DORMANT)) |
4588 		(dev->gflags & (IFF_PROMISC |
4589 				IFF_ALLMULTI));
4590 
4591 	if (netif_running(dev)) {
4592 		if (netif_oper_up(dev))
4593 			flags |= IFF_RUNNING;
4594 		if (netif_carrier_ok(dev))
4595 			flags |= IFF_LOWER_UP;
4596 		if (netif_dormant(dev))
4597 			flags |= IFF_DORMANT;
4598 	}
4599 
4600 	return flags;
4601 }
4602 EXPORT_SYMBOL(dev_get_flags);
4603 
4604 int __dev_change_flags(struct net_device *dev, unsigned int flags)
4605 {
4606 	unsigned int old_flags = dev->flags;
4607 	int ret;
4608 
4609 	ASSERT_RTNL();
4610 
4611 	/*
4612 	 *	Set the flags on our device.
4613 	 */
4614 
4615 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4616 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4617 			       IFF_AUTOMEDIA)) |
4618 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4619 				    IFF_ALLMULTI));
4620 
4621 	/*
4622 	 *	Load in the correct multicast list now the flags have changed.
4623 	 */
4624 
4625 	if ((old_flags ^ flags) & IFF_MULTICAST)
4626 		dev_change_rx_flags(dev, IFF_MULTICAST);
4627 
4628 	dev_set_rx_mode(dev);
4629 
4630 	/*
4631 	 *	Have we downed the interface. We handle IFF_UP ourselves
4632 	 *	according to user attempts to set it, rather than blindly
4633 	 *	setting it.
4634 	 */
4635 
4636 	ret = 0;
4637 	if ((old_flags ^ flags) & IFF_UP) {	/* Bit is different  ? */
4638 		ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
4639 
4640 		if (!ret)
4641 			dev_set_rx_mode(dev);
4642 	}
4643 
4644 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
4645 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
4646 
4647 		dev->gflags ^= IFF_PROMISC;
4648 		dev_set_promiscuity(dev, inc);
4649 	}
4650 
4651 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4652 	   is important. Some (broken) drivers set IFF_PROMISC, when
4653 	   IFF_ALLMULTI is requested not asking us and not reporting.
4654 	 */
4655 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4656 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4657 
4658 		dev->gflags ^= IFF_ALLMULTI;
4659 		dev_set_allmulti(dev, inc);
4660 	}
4661 
4662 	return ret;
4663 }
4664 
4665 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
4666 {
4667 	unsigned int changes = dev->flags ^ old_flags;
4668 
4669 	if (changes & IFF_UP) {
4670 		if (dev->flags & IFF_UP)
4671 			call_netdevice_notifiers(NETDEV_UP, dev);
4672 		else
4673 			call_netdevice_notifiers(NETDEV_DOWN, dev);
4674 	}
4675 
4676 	if (dev->flags & IFF_UP &&
4677 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE)))
4678 		call_netdevice_notifiers(NETDEV_CHANGE, dev);
4679 }
4680 
4681 /**
4682  *	dev_change_flags - change device settings
4683  *	@dev: device
4684  *	@flags: device state flags
4685  *
4686  *	Change settings on device based state flags. The flags are
4687  *	in the userspace exported format.
4688  */
4689 int dev_change_flags(struct net_device *dev, unsigned int flags)
4690 {
4691 	int ret;
4692 	unsigned int changes, old_flags = dev->flags;
4693 
4694 	ret = __dev_change_flags(dev, flags);
4695 	if (ret < 0)
4696 		return ret;
4697 
4698 	changes = old_flags ^ dev->flags;
4699 	if (changes)
4700 		rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4701 
4702 	__dev_notify_flags(dev, old_flags);
4703 	return ret;
4704 }
4705 EXPORT_SYMBOL(dev_change_flags);
4706 
4707 /**
4708  *	dev_set_mtu - Change maximum transfer unit
4709  *	@dev: device
4710  *	@new_mtu: new transfer unit
4711  *
4712  *	Change the maximum transfer size of the network device.
4713  */
4714 int dev_set_mtu(struct net_device *dev, int new_mtu)
4715 {
4716 	const struct net_device_ops *ops = dev->netdev_ops;
4717 	int err;
4718 
4719 	if (new_mtu == dev->mtu)
4720 		return 0;
4721 
4722 	/*	MTU must be positive.	 */
4723 	if (new_mtu < 0)
4724 		return -EINVAL;
4725 
4726 	if (!netif_device_present(dev))
4727 		return -ENODEV;
4728 
4729 	err = 0;
4730 	if (ops->ndo_change_mtu)
4731 		err = ops->ndo_change_mtu(dev, new_mtu);
4732 	else
4733 		dev->mtu = new_mtu;
4734 
4735 	if (!err)
4736 		call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4737 	return err;
4738 }
4739 EXPORT_SYMBOL(dev_set_mtu);
4740 
4741 /**
4742  *	dev_set_group - Change group this device belongs to
4743  *	@dev: device
4744  *	@new_group: group this device should belong to
4745  */
4746 void dev_set_group(struct net_device *dev, int new_group)
4747 {
4748 	dev->group = new_group;
4749 }
4750 EXPORT_SYMBOL(dev_set_group);
4751 
4752 /**
4753  *	dev_set_mac_address - Change Media Access Control Address
4754  *	@dev: device
4755  *	@sa: new address
4756  *
4757  *	Change the hardware (MAC) address of the device
4758  */
4759 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4760 {
4761 	const struct net_device_ops *ops = dev->netdev_ops;
4762 	int err;
4763 
4764 	if (!ops->ndo_set_mac_address)
4765 		return -EOPNOTSUPP;
4766 	if (sa->sa_family != dev->type)
4767 		return -EINVAL;
4768 	if (!netif_device_present(dev))
4769 		return -ENODEV;
4770 	err = ops->ndo_set_mac_address(dev, sa);
4771 	if (err)
4772 		return err;
4773 	dev->addr_assign_type = NET_ADDR_SET;
4774 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4775 	add_device_randomness(dev->dev_addr, dev->addr_len);
4776 	return 0;
4777 }
4778 EXPORT_SYMBOL(dev_set_mac_address);
4779 
4780 /**
4781  *	dev_change_carrier - Change device carrier
4782  *	@dev: device
4783  *	@new_carries: new value
4784  *
4785  *	Change device carrier
4786  */
4787 int dev_change_carrier(struct net_device *dev, bool new_carrier)
4788 {
4789 	const struct net_device_ops *ops = dev->netdev_ops;
4790 
4791 	if (!ops->ndo_change_carrier)
4792 		return -EOPNOTSUPP;
4793 	if (!netif_device_present(dev))
4794 		return -ENODEV;
4795 	return ops->ndo_change_carrier(dev, new_carrier);
4796 }
4797 EXPORT_SYMBOL(dev_change_carrier);
4798 
4799 /**
4800  *	dev_new_index	-	allocate an ifindex
4801  *	@net: the applicable net namespace
4802  *
4803  *	Returns a suitable unique value for a new device interface
4804  *	number.  The caller must hold the rtnl semaphore or the
4805  *	dev_base_lock to be sure it remains unique.
4806  */
4807 static int dev_new_index(struct net *net)
4808 {
4809 	int ifindex = net->ifindex;
4810 	for (;;) {
4811 		if (++ifindex <= 0)
4812 			ifindex = 1;
4813 		if (!__dev_get_by_index(net, ifindex))
4814 			return net->ifindex = ifindex;
4815 	}
4816 }
4817 
4818 /* Delayed registration/unregisteration */
4819 static LIST_HEAD(net_todo_list);
4820 
4821 static void net_set_todo(struct net_device *dev)
4822 {
4823 	list_add_tail(&dev->todo_list, &net_todo_list);
4824 }
4825 
4826 static void rollback_registered_many(struct list_head *head)
4827 {
4828 	struct net_device *dev, *tmp;
4829 
4830 	BUG_ON(dev_boot_phase);
4831 	ASSERT_RTNL();
4832 
4833 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
4834 		/* Some devices call without registering
4835 		 * for initialization unwind. Remove those
4836 		 * devices and proceed with the remaining.
4837 		 */
4838 		if (dev->reg_state == NETREG_UNINITIALIZED) {
4839 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
4840 				 dev->name, dev);
4841 
4842 			WARN_ON(1);
4843 			list_del(&dev->unreg_list);
4844 			continue;
4845 		}
4846 		dev->dismantle = true;
4847 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
4848 	}
4849 
4850 	/* If device is running, close it first. */
4851 	dev_close_many(head);
4852 
4853 	list_for_each_entry(dev, head, unreg_list) {
4854 		/* And unlink it from device chain. */
4855 		unlist_netdevice(dev);
4856 
4857 		dev->reg_state = NETREG_UNREGISTERING;
4858 	}
4859 
4860 	synchronize_net();
4861 
4862 	list_for_each_entry(dev, head, unreg_list) {
4863 		/* Shutdown queueing discipline. */
4864 		dev_shutdown(dev);
4865 
4866 
4867 		/* Notify protocols, that we are about to destroy
4868 		   this device. They should clean all the things.
4869 		*/
4870 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4871 
4872 		if (!dev->rtnl_link_ops ||
4873 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
4874 			rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
4875 
4876 		/*
4877 		 *	Flush the unicast and multicast chains
4878 		 */
4879 		dev_uc_flush(dev);
4880 		dev_mc_flush(dev);
4881 
4882 		if (dev->netdev_ops->ndo_uninit)
4883 			dev->netdev_ops->ndo_uninit(dev);
4884 
4885 		/* Notifier chain MUST detach us all upper devices. */
4886 		WARN_ON(netdev_has_any_upper_dev(dev));
4887 
4888 		/* Remove entries from kobject tree */
4889 		netdev_unregister_kobject(dev);
4890 #ifdef CONFIG_XPS
4891 		/* Remove XPS queueing entries */
4892 		netif_reset_xps_queues_gt(dev, 0);
4893 #endif
4894 	}
4895 
4896 	synchronize_net();
4897 
4898 	list_for_each_entry(dev, head, unreg_list)
4899 		dev_put(dev);
4900 }
4901 
4902 static void rollback_registered(struct net_device *dev)
4903 {
4904 	LIST_HEAD(single);
4905 
4906 	list_add(&dev->unreg_list, &single);
4907 	rollback_registered_many(&single);
4908 	list_del(&single);
4909 }
4910 
4911 static netdev_features_t netdev_fix_features(struct net_device *dev,
4912 	netdev_features_t features)
4913 {
4914 	/* Fix illegal checksum combinations */
4915 	if ((features & NETIF_F_HW_CSUM) &&
4916 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
4917 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
4918 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4919 	}
4920 
4921 	/* Fix illegal SG+CSUM combinations. */
4922 	if ((features & NETIF_F_SG) &&
4923 	    !(features & NETIF_F_ALL_CSUM)) {
4924 		netdev_dbg(dev,
4925 			"Dropping NETIF_F_SG since no checksum feature.\n");
4926 		features &= ~NETIF_F_SG;
4927 	}
4928 
4929 	/* TSO requires that SG is present as well. */
4930 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
4931 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
4932 		features &= ~NETIF_F_ALL_TSO;
4933 	}
4934 
4935 	/* TSO ECN requires that TSO is present as well. */
4936 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
4937 		features &= ~NETIF_F_TSO_ECN;
4938 
4939 	/* Software GSO depends on SG. */
4940 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
4941 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
4942 		features &= ~NETIF_F_GSO;
4943 	}
4944 
4945 	/* UFO needs SG and checksumming */
4946 	if (features & NETIF_F_UFO) {
4947 		/* maybe split UFO into V4 and V6? */
4948 		if (!((features & NETIF_F_GEN_CSUM) ||
4949 		    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
4950 			    == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
4951 			netdev_dbg(dev,
4952 				"Dropping NETIF_F_UFO since no checksum offload features.\n");
4953 			features &= ~NETIF_F_UFO;
4954 		}
4955 
4956 		if (!(features & NETIF_F_SG)) {
4957 			netdev_dbg(dev,
4958 				"Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
4959 			features &= ~NETIF_F_UFO;
4960 		}
4961 	}
4962 
4963 	return features;
4964 }
4965 
4966 int __netdev_update_features(struct net_device *dev)
4967 {
4968 	netdev_features_t features;
4969 	int err = 0;
4970 
4971 	ASSERT_RTNL();
4972 
4973 	features = netdev_get_wanted_features(dev);
4974 
4975 	if (dev->netdev_ops->ndo_fix_features)
4976 		features = dev->netdev_ops->ndo_fix_features(dev, features);
4977 
4978 	/* driver might be less strict about feature dependencies */
4979 	features = netdev_fix_features(dev, features);
4980 
4981 	if (dev->features == features)
4982 		return 0;
4983 
4984 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
4985 		&dev->features, &features);
4986 
4987 	if (dev->netdev_ops->ndo_set_features)
4988 		err = dev->netdev_ops->ndo_set_features(dev, features);
4989 
4990 	if (unlikely(err < 0)) {
4991 		netdev_err(dev,
4992 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
4993 			err, &features, &dev->features);
4994 		return -1;
4995 	}
4996 
4997 	if (!err)
4998 		dev->features = features;
4999 
5000 	return 1;
5001 }
5002 
5003 /**
5004  *	netdev_update_features - recalculate device features
5005  *	@dev: the device to check
5006  *
5007  *	Recalculate dev->features set and send notifications if it
5008  *	has changed. Should be called after driver or hardware dependent
5009  *	conditions might have changed that influence the features.
5010  */
5011 void netdev_update_features(struct net_device *dev)
5012 {
5013 	if (__netdev_update_features(dev))
5014 		netdev_features_change(dev);
5015 }
5016 EXPORT_SYMBOL(netdev_update_features);
5017 
5018 /**
5019  *	netdev_change_features - recalculate device features
5020  *	@dev: the device to check
5021  *
5022  *	Recalculate dev->features set and send notifications even
5023  *	if they have not changed. Should be called instead of
5024  *	netdev_update_features() if also dev->vlan_features might
5025  *	have changed to allow the changes to be propagated to stacked
5026  *	VLAN devices.
5027  */
5028 void netdev_change_features(struct net_device *dev)
5029 {
5030 	__netdev_update_features(dev);
5031 	netdev_features_change(dev);
5032 }
5033 EXPORT_SYMBOL(netdev_change_features);
5034 
5035 /**
5036  *	netif_stacked_transfer_operstate -	transfer operstate
5037  *	@rootdev: the root or lower level device to transfer state from
5038  *	@dev: the device to transfer operstate to
5039  *
5040  *	Transfer operational state from root to device. This is normally
5041  *	called when a stacking relationship exists between the root
5042  *	device and the device(a leaf device).
5043  */
5044 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5045 					struct net_device *dev)
5046 {
5047 	if (rootdev->operstate == IF_OPER_DORMANT)
5048 		netif_dormant_on(dev);
5049 	else
5050 		netif_dormant_off(dev);
5051 
5052 	if (netif_carrier_ok(rootdev)) {
5053 		if (!netif_carrier_ok(dev))
5054 			netif_carrier_on(dev);
5055 	} else {
5056 		if (netif_carrier_ok(dev))
5057 			netif_carrier_off(dev);
5058 	}
5059 }
5060 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5061 
5062 #ifdef CONFIG_RPS
5063 static int netif_alloc_rx_queues(struct net_device *dev)
5064 {
5065 	unsigned int i, count = dev->num_rx_queues;
5066 	struct netdev_rx_queue *rx;
5067 
5068 	BUG_ON(count < 1);
5069 
5070 	rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5071 	if (!rx)
5072 		return -ENOMEM;
5073 
5074 	dev->_rx = rx;
5075 
5076 	for (i = 0; i < count; i++)
5077 		rx[i].dev = dev;
5078 	return 0;
5079 }
5080 #endif
5081 
5082 static void netdev_init_one_queue(struct net_device *dev,
5083 				  struct netdev_queue *queue, void *_unused)
5084 {
5085 	/* Initialize queue lock */
5086 	spin_lock_init(&queue->_xmit_lock);
5087 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
5088 	queue->xmit_lock_owner = -1;
5089 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
5090 	queue->dev = dev;
5091 #ifdef CONFIG_BQL
5092 	dql_init(&queue->dql, HZ);
5093 #endif
5094 }
5095 
5096 static int netif_alloc_netdev_queues(struct net_device *dev)
5097 {
5098 	unsigned int count = dev->num_tx_queues;
5099 	struct netdev_queue *tx;
5100 
5101 	BUG_ON(count < 1);
5102 
5103 	tx = kcalloc(count, sizeof(struct netdev_queue), GFP_KERNEL);
5104 	if (!tx)
5105 		return -ENOMEM;
5106 
5107 	dev->_tx = tx;
5108 
5109 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5110 	spin_lock_init(&dev->tx_global_lock);
5111 
5112 	return 0;
5113 }
5114 
5115 /**
5116  *	register_netdevice	- register a network device
5117  *	@dev: device to register
5118  *
5119  *	Take a completed network device structure and add it to the kernel
5120  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5121  *	chain. 0 is returned on success. A negative errno code is returned
5122  *	on a failure to set up the device, or if the name is a duplicate.
5123  *
5124  *	Callers must hold the rtnl semaphore. You may want
5125  *	register_netdev() instead of this.
5126  *
5127  *	BUGS:
5128  *	The locking appears insufficient to guarantee two parallel registers
5129  *	will not get the same name.
5130  */
5131 
5132 int register_netdevice(struct net_device *dev)
5133 {
5134 	int ret;
5135 	struct net *net = dev_net(dev);
5136 
5137 	BUG_ON(dev_boot_phase);
5138 	ASSERT_RTNL();
5139 
5140 	might_sleep();
5141 
5142 	/* When net_device's are persistent, this will be fatal. */
5143 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
5144 	BUG_ON(!net);
5145 
5146 	spin_lock_init(&dev->addr_list_lock);
5147 	netdev_set_addr_lockdep_class(dev);
5148 
5149 	dev->iflink = -1;
5150 
5151 	ret = dev_get_valid_name(net, dev, dev->name);
5152 	if (ret < 0)
5153 		goto out;
5154 
5155 	/* Init, if this function is available */
5156 	if (dev->netdev_ops->ndo_init) {
5157 		ret = dev->netdev_ops->ndo_init(dev);
5158 		if (ret) {
5159 			if (ret > 0)
5160 				ret = -EIO;
5161 			goto out;
5162 		}
5163 	}
5164 
5165 	if (((dev->hw_features | dev->features) & NETIF_F_HW_VLAN_FILTER) &&
5166 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
5167 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
5168 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
5169 		ret = -EINVAL;
5170 		goto err_uninit;
5171 	}
5172 
5173 	ret = -EBUSY;
5174 	if (!dev->ifindex)
5175 		dev->ifindex = dev_new_index(net);
5176 	else if (__dev_get_by_index(net, dev->ifindex))
5177 		goto err_uninit;
5178 
5179 	if (dev->iflink == -1)
5180 		dev->iflink = dev->ifindex;
5181 
5182 	/* Transfer changeable features to wanted_features and enable
5183 	 * software offloads (GSO and GRO).
5184 	 */
5185 	dev->hw_features |= NETIF_F_SOFT_FEATURES;
5186 	dev->features |= NETIF_F_SOFT_FEATURES;
5187 	dev->wanted_features = dev->features & dev->hw_features;
5188 
5189 	/* Turn on no cache copy if HW is doing checksum */
5190 	if (!(dev->flags & IFF_LOOPBACK)) {
5191 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
5192 		if (dev->features & NETIF_F_ALL_CSUM) {
5193 			dev->wanted_features |= NETIF_F_NOCACHE_COPY;
5194 			dev->features |= NETIF_F_NOCACHE_COPY;
5195 		}
5196 	}
5197 
5198 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
5199 	 */
5200 	dev->vlan_features |= NETIF_F_HIGHDMA;
5201 
5202 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5203 	ret = notifier_to_errno(ret);
5204 	if (ret)
5205 		goto err_uninit;
5206 
5207 	ret = netdev_register_kobject(dev);
5208 	if (ret)
5209 		goto err_uninit;
5210 	dev->reg_state = NETREG_REGISTERED;
5211 
5212 	__netdev_update_features(dev);
5213 
5214 	/*
5215 	 *	Default initial state at registry is that the
5216 	 *	device is present.
5217 	 */
5218 
5219 	set_bit(__LINK_STATE_PRESENT, &dev->state);
5220 
5221 	linkwatch_init_dev(dev);
5222 
5223 	dev_init_scheduler(dev);
5224 	dev_hold(dev);
5225 	list_netdevice(dev);
5226 	add_device_randomness(dev->dev_addr, dev->addr_len);
5227 
5228 	/* If the device has permanent device address, driver should
5229 	 * set dev_addr and also addr_assign_type should be set to
5230 	 * NET_ADDR_PERM (default value).
5231 	 */
5232 	if (dev->addr_assign_type == NET_ADDR_PERM)
5233 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
5234 
5235 	/* Notify protocols, that a new device appeared. */
5236 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5237 	ret = notifier_to_errno(ret);
5238 	if (ret) {
5239 		rollback_registered(dev);
5240 		dev->reg_state = NETREG_UNREGISTERED;
5241 	}
5242 	/*
5243 	 *	Prevent userspace races by waiting until the network
5244 	 *	device is fully setup before sending notifications.
5245 	 */
5246 	if (!dev->rtnl_link_ops ||
5247 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5248 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5249 
5250 out:
5251 	return ret;
5252 
5253 err_uninit:
5254 	if (dev->netdev_ops->ndo_uninit)
5255 		dev->netdev_ops->ndo_uninit(dev);
5256 	goto out;
5257 }
5258 EXPORT_SYMBOL(register_netdevice);
5259 
5260 /**
5261  *	init_dummy_netdev	- init a dummy network device for NAPI
5262  *	@dev: device to init
5263  *
5264  *	This takes a network device structure and initialize the minimum
5265  *	amount of fields so it can be used to schedule NAPI polls without
5266  *	registering a full blown interface. This is to be used by drivers
5267  *	that need to tie several hardware interfaces to a single NAPI
5268  *	poll scheduler due to HW limitations.
5269  */
5270 int init_dummy_netdev(struct net_device *dev)
5271 {
5272 	/* Clear everything. Note we don't initialize spinlocks
5273 	 * are they aren't supposed to be taken by any of the
5274 	 * NAPI code and this dummy netdev is supposed to be
5275 	 * only ever used for NAPI polls
5276 	 */
5277 	memset(dev, 0, sizeof(struct net_device));
5278 
5279 	/* make sure we BUG if trying to hit standard
5280 	 * register/unregister code path
5281 	 */
5282 	dev->reg_state = NETREG_DUMMY;
5283 
5284 	/* NAPI wants this */
5285 	INIT_LIST_HEAD(&dev->napi_list);
5286 
5287 	/* a dummy interface is started by default */
5288 	set_bit(__LINK_STATE_PRESENT, &dev->state);
5289 	set_bit(__LINK_STATE_START, &dev->state);
5290 
5291 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
5292 	 * because users of this 'device' dont need to change
5293 	 * its refcount.
5294 	 */
5295 
5296 	return 0;
5297 }
5298 EXPORT_SYMBOL_GPL(init_dummy_netdev);
5299 
5300 
5301 /**
5302  *	register_netdev	- register a network device
5303  *	@dev: device to register
5304  *
5305  *	Take a completed network device structure and add it to the kernel
5306  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5307  *	chain. 0 is returned on success. A negative errno code is returned
5308  *	on a failure to set up the device, or if the name is a duplicate.
5309  *
5310  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
5311  *	and expands the device name if you passed a format string to
5312  *	alloc_netdev.
5313  */
5314 int register_netdev(struct net_device *dev)
5315 {
5316 	int err;
5317 
5318 	rtnl_lock();
5319 	err = register_netdevice(dev);
5320 	rtnl_unlock();
5321 	return err;
5322 }
5323 EXPORT_SYMBOL(register_netdev);
5324 
5325 int netdev_refcnt_read(const struct net_device *dev)
5326 {
5327 	int i, refcnt = 0;
5328 
5329 	for_each_possible_cpu(i)
5330 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
5331 	return refcnt;
5332 }
5333 EXPORT_SYMBOL(netdev_refcnt_read);
5334 
5335 /**
5336  * netdev_wait_allrefs - wait until all references are gone.
5337  * @dev: target net_device
5338  *
5339  * This is called when unregistering network devices.
5340  *
5341  * Any protocol or device that holds a reference should register
5342  * for netdevice notification, and cleanup and put back the
5343  * reference if they receive an UNREGISTER event.
5344  * We can get stuck here if buggy protocols don't correctly
5345  * call dev_put.
5346  */
5347 static void netdev_wait_allrefs(struct net_device *dev)
5348 {
5349 	unsigned long rebroadcast_time, warning_time;
5350 	int refcnt;
5351 
5352 	linkwatch_forget_dev(dev);
5353 
5354 	rebroadcast_time = warning_time = jiffies;
5355 	refcnt = netdev_refcnt_read(dev);
5356 
5357 	while (refcnt != 0) {
5358 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5359 			rtnl_lock();
5360 
5361 			/* Rebroadcast unregister notification */
5362 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5363 
5364 			__rtnl_unlock();
5365 			rcu_barrier();
5366 			rtnl_lock();
5367 
5368 			call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
5369 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5370 				     &dev->state)) {
5371 				/* We must not have linkwatch events
5372 				 * pending on unregister. If this
5373 				 * happens, we simply run the queue
5374 				 * unscheduled, resulting in a noop
5375 				 * for this device.
5376 				 */
5377 				linkwatch_run_queue();
5378 			}
5379 
5380 			__rtnl_unlock();
5381 
5382 			rebroadcast_time = jiffies;
5383 		}
5384 
5385 		msleep(250);
5386 
5387 		refcnt = netdev_refcnt_read(dev);
5388 
5389 		if (time_after(jiffies, warning_time + 10 * HZ)) {
5390 			pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
5391 				 dev->name, refcnt);
5392 			warning_time = jiffies;
5393 		}
5394 	}
5395 }
5396 
5397 /* The sequence is:
5398  *
5399  *	rtnl_lock();
5400  *	...
5401  *	register_netdevice(x1);
5402  *	register_netdevice(x2);
5403  *	...
5404  *	unregister_netdevice(y1);
5405  *	unregister_netdevice(y2);
5406  *      ...
5407  *	rtnl_unlock();
5408  *	free_netdev(y1);
5409  *	free_netdev(y2);
5410  *
5411  * We are invoked by rtnl_unlock().
5412  * This allows us to deal with problems:
5413  * 1) We can delete sysfs objects which invoke hotplug
5414  *    without deadlocking with linkwatch via keventd.
5415  * 2) Since we run with the RTNL semaphore not held, we can sleep
5416  *    safely in order to wait for the netdev refcnt to drop to zero.
5417  *
5418  * We must not return until all unregister events added during
5419  * the interval the lock was held have been completed.
5420  */
5421 void netdev_run_todo(void)
5422 {
5423 	struct list_head list;
5424 
5425 	/* Snapshot list, allow later requests */
5426 	list_replace_init(&net_todo_list, &list);
5427 
5428 	__rtnl_unlock();
5429 
5430 
5431 	/* Wait for rcu callbacks to finish before next phase */
5432 	if (!list_empty(&list))
5433 		rcu_barrier();
5434 
5435 	while (!list_empty(&list)) {
5436 		struct net_device *dev
5437 			= list_first_entry(&list, struct net_device, todo_list);
5438 		list_del(&dev->todo_list);
5439 
5440 		rtnl_lock();
5441 		call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
5442 		__rtnl_unlock();
5443 
5444 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5445 			pr_err("network todo '%s' but state %d\n",
5446 			       dev->name, dev->reg_state);
5447 			dump_stack();
5448 			continue;
5449 		}
5450 
5451 		dev->reg_state = NETREG_UNREGISTERED;
5452 
5453 		on_each_cpu(flush_backlog, dev, 1);
5454 
5455 		netdev_wait_allrefs(dev);
5456 
5457 		/* paranoia */
5458 		BUG_ON(netdev_refcnt_read(dev));
5459 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
5460 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
5461 		WARN_ON(dev->dn_ptr);
5462 
5463 		if (dev->destructor)
5464 			dev->destructor(dev);
5465 
5466 		/* Free network device */
5467 		kobject_put(&dev->dev.kobj);
5468 	}
5469 }
5470 
5471 /* Convert net_device_stats to rtnl_link_stats64.  They have the same
5472  * fields in the same order, with only the type differing.
5473  */
5474 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
5475 			     const struct net_device_stats *netdev_stats)
5476 {
5477 #if BITS_PER_LONG == 64
5478 	BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
5479 	memcpy(stats64, netdev_stats, sizeof(*stats64));
5480 #else
5481 	size_t i, n = sizeof(*stats64) / sizeof(u64);
5482 	const unsigned long *src = (const unsigned long *)netdev_stats;
5483 	u64 *dst = (u64 *)stats64;
5484 
5485 	BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
5486 		     sizeof(*stats64) / sizeof(u64));
5487 	for (i = 0; i < n; i++)
5488 		dst[i] = src[i];
5489 #endif
5490 }
5491 EXPORT_SYMBOL(netdev_stats_to_stats64);
5492 
5493 /**
5494  *	dev_get_stats	- get network device statistics
5495  *	@dev: device to get statistics from
5496  *	@storage: place to store stats
5497  *
5498  *	Get network statistics from device. Return @storage.
5499  *	The device driver may provide its own method by setting
5500  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
5501  *	otherwise the internal statistics structure is used.
5502  */
5503 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
5504 					struct rtnl_link_stats64 *storage)
5505 {
5506 	const struct net_device_ops *ops = dev->netdev_ops;
5507 
5508 	if (ops->ndo_get_stats64) {
5509 		memset(storage, 0, sizeof(*storage));
5510 		ops->ndo_get_stats64(dev, storage);
5511 	} else if (ops->ndo_get_stats) {
5512 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
5513 	} else {
5514 		netdev_stats_to_stats64(storage, &dev->stats);
5515 	}
5516 	storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
5517 	return storage;
5518 }
5519 EXPORT_SYMBOL(dev_get_stats);
5520 
5521 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
5522 {
5523 	struct netdev_queue *queue = dev_ingress_queue(dev);
5524 
5525 #ifdef CONFIG_NET_CLS_ACT
5526 	if (queue)
5527 		return queue;
5528 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
5529 	if (!queue)
5530 		return NULL;
5531 	netdev_init_one_queue(dev, queue, NULL);
5532 	queue->qdisc = &noop_qdisc;
5533 	queue->qdisc_sleeping = &noop_qdisc;
5534 	rcu_assign_pointer(dev->ingress_queue, queue);
5535 #endif
5536 	return queue;
5537 }
5538 
5539 static const struct ethtool_ops default_ethtool_ops;
5540 
5541 void netdev_set_default_ethtool_ops(struct net_device *dev,
5542 				    const struct ethtool_ops *ops)
5543 {
5544 	if (dev->ethtool_ops == &default_ethtool_ops)
5545 		dev->ethtool_ops = ops;
5546 }
5547 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
5548 
5549 /**
5550  *	alloc_netdev_mqs - allocate network device
5551  *	@sizeof_priv:	size of private data to allocate space for
5552  *	@name:		device name format string
5553  *	@setup:		callback to initialize device
5554  *	@txqs:		the number of TX subqueues to allocate
5555  *	@rxqs:		the number of RX subqueues to allocate
5556  *
5557  *	Allocates a struct net_device with private data area for driver use
5558  *	and performs basic initialization.  Also allocates subquue structs
5559  *	for each queue on the device.
5560  */
5561 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
5562 		void (*setup)(struct net_device *),
5563 		unsigned int txqs, unsigned int rxqs)
5564 {
5565 	struct net_device *dev;
5566 	size_t alloc_size;
5567 	struct net_device *p;
5568 
5569 	BUG_ON(strlen(name) >= sizeof(dev->name));
5570 
5571 	if (txqs < 1) {
5572 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
5573 		return NULL;
5574 	}
5575 
5576 #ifdef CONFIG_RPS
5577 	if (rxqs < 1) {
5578 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
5579 		return NULL;
5580 	}
5581 #endif
5582 
5583 	alloc_size = sizeof(struct net_device);
5584 	if (sizeof_priv) {
5585 		/* ensure 32-byte alignment of private area */
5586 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
5587 		alloc_size += sizeof_priv;
5588 	}
5589 	/* ensure 32-byte alignment of whole construct */
5590 	alloc_size += NETDEV_ALIGN - 1;
5591 
5592 	p = kzalloc(alloc_size, GFP_KERNEL);
5593 	if (!p)
5594 		return NULL;
5595 
5596 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
5597 	dev->padded = (char *)dev - (char *)p;
5598 
5599 	dev->pcpu_refcnt = alloc_percpu(int);
5600 	if (!dev->pcpu_refcnt)
5601 		goto free_p;
5602 
5603 	if (dev_addr_init(dev))
5604 		goto free_pcpu;
5605 
5606 	dev_mc_init(dev);
5607 	dev_uc_init(dev);
5608 
5609 	dev_net_set(dev, &init_net);
5610 
5611 	dev->gso_max_size = GSO_MAX_SIZE;
5612 	dev->gso_max_segs = GSO_MAX_SEGS;
5613 
5614 	INIT_LIST_HEAD(&dev->napi_list);
5615 	INIT_LIST_HEAD(&dev->unreg_list);
5616 	INIT_LIST_HEAD(&dev->link_watch_list);
5617 	INIT_LIST_HEAD(&dev->upper_dev_list);
5618 	dev->priv_flags = IFF_XMIT_DST_RELEASE;
5619 	setup(dev);
5620 
5621 	dev->num_tx_queues = txqs;
5622 	dev->real_num_tx_queues = txqs;
5623 	if (netif_alloc_netdev_queues(dev))
5624 		goto free_all;
5625 
5626 #ifdef CONFIG_RPS
5627 	dev->num_rx_queues = rxqs;
5628 	dev->real_num_rx_queues = rxqs;
5629 	if (netif_alloc_rx_queues(dev))
5630 		goto free_all;
5631 #endif
5632 
5633 	strcpy(dev->name, name);
5634 	dev->group = INIT_NETDEV_GROUP;
5635 	if (!dev->ethtool_ops)
5636 		dev->ethtool_ops = &default_ethtool_ops;
5637 	return dev;
5638 
5639 free_all:
5640 	free_netdev(dev);
5641 	return NULL;
5642 
5643 free_pcpu:
5644 	free_percpu(dev->pcpu_refcnt);
5645 	kfree(dev->_tx);
5646 #ifdef CONFIG_RPS
5647 	kfree(dev->_rx);
5648 #endif
5649 
5650 free_p:
5651 	kfree(p);
5652 	return NULL;
5653 }
5654 EXPORT_SYMBOL(alloc_netdev_mqs);
5655 
5656 /**
5657  *	free_netdev - free network device
5658  *	@dev: device
5659  *
5660  *	This function does the last stage of destroying an allocated device
5661  * 	interface. The reference to the device object is released.
5662  *	If this is the last reference then it will be freed.
5663  */
5664 void free_netdev(struct net_device *dev)
5665 {
5666 	struct napi_struct *p, *n;
5667 
5668 	release_net(dev_net(dev));
5669 
5670 	kfree(dev->_tx);
5671 #ifdef CONFIG_RPS
5672 	kfree(dev->_rx);
5673 #endif
5674 
5675 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
5676 
5677 	/* Flush device addresses */
5678 	dev_addr_flush(dev);
5679 
5680 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
5681 		netif_napi_del(p);
5682 
5683 	free_percpu(dev->pcpu_refcnt);
5684 	dev->pcpu_refcnt = NULL;
5685 
5686 	/*  Compatibility with error handling in drivers */
5687 	if (dev->reg_state == NETREG_UNINITIALIZED) {
5688 		kfree((char *)dev - dev->padded);
5689 		return;
5690 	}
5691 
5692 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
5693 	dev->reg_state = NETREG_RELEASED;
5694 
5695 	/* will free via device release */
5696 	put_device(&dev->dev);
5697 }
5698 EXPORT_SYMBOL(free_netdev);
5699 
5700 /**
5701  *	synchronize_net -  Synchronize with packet receive processing
5702  *
5703  *	Wait for packets currently being received to be done.
5704  *	Does not block later packets from starting.
5705  */
5706 void synchronize_net(void)
5707 {
5708 	might_sleep();
5709 	if (rtnl_is_locked())
5710 		synchronize_rcu_expedited();
5711 	else
5712 		synchronize_rcu();
5713 }
5714 EXPORT_SYMBOL(synchronize_net);
5715 
5716 /**
5717  *	unregister_netdevice_queue - remove device from the kernel
5718  *	@dev: device
5719  *	@head: list
5720  *
5721  *	This function shuts down a device interface and removes it
5722  *	from the kernel tables.
5723  *	If head not NULL, device is queued to be unregistered later.
5724  *
5725  *	Callers must hold the rtnl semaphore.  You may want
5726  *	unregister_netdev() instead of this.
5727  */
5728 
5729 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
5730 {
5731 	ASSERT_RTNL();
5732 
5733 	if (head) {
5734 		list_move_tail(&dev->unreg_list, head);
5735 	} else {
5736 		rollback_registered(dev);
5737 		/* Finish processing unregister after unlock */
5738 		net_set_todo(dev);
5739 	}
5740 }
5741 EXPORT_SYMBOL(unregister_netdevice_queue);
5742 
5743 /**
5744  *	unregister_netdevice_many - unregister many devices
5745  *	@head: list of devices
5746  */
5747 void unregister_netdevice_many(struct list_head *head)
5748 {
5749 	struct net_device *dev;
5750 
5751 	if (!list_empty(head)) {
5752 		rollback_registered_many(head);
5753 		list_for_each_entry(dev, head, unreg_list)
5754 			net_set_todo(dev);
5755 	}
5756 }
5757 EXPORT_SYMBOL(unregister_netdevice_many);
5758 
5759 /**
5760  *	unregister_netdev - remove device from the kernel
5761  *	@dev: device
5762  *
5763  *	This function shuts down a device interface and removes it
5764  *	from the kernel tables.
5765  *
5766  *	This is just a wrapper for unregister_netdevice that takes
5767  *	the rtnl semaphore.  In general you want to use this and not
5768  *	unregister_netdevice.
5769  */
5770 void unregister_netdev(struct net_device *dev)
5771 {
5772 	rtnl_lock();
5773 	unregister_netdevice(dev);
5774 	rtnl_unlock();
5775 }
5776 EXPORT_SYMBOL(unregister_netdev);
5777 
5778 /**
5779  *	dev_change_net_namespace - move device to different nethost namespace
5780  *	@dev: device
5781  *	@net: network namespace
5782  *	@pat: If not NULL name pattern to try if the current device name
5783  *	      is already taken in the destination network namespace.
5784  *
5785  *	This function shuts down a device interface and moves it
5786  *	to a new network namespace. On success 0 is returned, on
5787  *	a failure a netagive errno code is returned.
5788  *
5789  *	Callers must hold the rtnl semaphore.
5790  */
5791 
5792 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
5793 {
5794 	int err;
5795 
5796 	ASSERT_RTNL();
5797 
5798 	/* Don't allow namespace local devices to be moved. */
5799 	err = -EINVAL;
5800 	if (dev->features & NETIF_F_NETNS_LOCAL)
5801 		goto out;
5802 
5803 	/* Ensure the device has been registrered */
5804 	if (dev->reg_state != NETREG_REGISTERED)
5805 		goto out;
5806 
5807 	/* Get out if there is nothing todo */
5808 	err = 0;
5809 	if (net_eq(dev_net(dev), net))
5810 		goto out;
5811 
5812 	/* Pick the destination device name, and ensure
5813 	 * we can use it in the destination network namespace.
5814 	 */
5815 	err = -EEXIST;
5816 	if (__dev_get_by_name(net, dev->name)) {
5817 		/* We get here if we can't use the current device name */
5818 		if (!pat)
5819 			goto out;
5820 		if (dev_get_valid_name(net, dev, pat) < 0)
5821 			goto out;
5822 	}
5823 
5824 	/*
5825 	 * And now a mini version of register_netdevice unregister_netdevice.
5826 	 */
5827 
5828 	/* If device is running close it first. */
5829 	dev_close(dev);
5830 
5831 	/* And unlink it from device chain */
5832 	err = -ENODEV;
5833 	unlist_netdevice(dev);
5834 
5835 	synchronize_net();
5836 
5837 	/* Shutdown queueing discipline. */
5838 	dev_shutdown(dev);
5839 
5840 	/* Notify protocols, that we are about to destroy
5841 	   this device. They should clean all the things.
5842 
5843 	   Note that dev->reg_state stays at NETREG_REGISTERED.
5844 	   This is wanted because this way 8021q and macvlan know
5845 	   the device is just moving and can keep their slaves up.
5846 	*/
5847 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5848 	rcu_barrier();
5849 	call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
5850 	rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
5851 
5852 	/*
5853 	 *	Flush the unicast and multicast chains
5854 	 */
5855 	dev_uc_flush(dev);
5856 	dev_mc_flush(dev);
5857 
5858 	/* Send a netdev-removed uevent to the old namespace */
5859 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
5860 
5861 	/* Actually switch the network namespace */
5862 	dev_net_set(dev, net);
5863 
5864 	/* If there is an ifindex conflict assign a new one */
5865 	if (__dev_get_by_index(net, dev->ifindex)) {
5866 		int iflink = (dev->iflink == dev->ifindex);
5867 		dev->ifindex = dev_new_index(net);
5868 		if (iflink)
5869 			dev->iflink = dev->ifindex;
5870 	}
5871 
5872 	/* Send a netdev-add uevent to the new namespace */
5873 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
5874 
5875 	/* Fixup kobjects */
5876 	err = device_rename(&dev->dev, dev->name);
5877 	WARN_ON(err);
5878 
5879 	/* Add the device back in the hashes */
5880 	list_netdevice(dev);
5881 
5882 	/* Notify protocols, that a new device appeared. */
5883 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
5884 
5885 	/*
5886 	 *	Prevent userspace races by waiting until the network
5887 	 *	device is fully setup before sending notifications.
5888 	 */
5889 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5890 
5891 	synchronize_net();
5892 	err = 0;
5893 out:
5894 	return err;
5895 }
5896 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
5897 
5898 static int dev_cpu_callback(struct notifier_block *nfb,
5899 			    unsigned long action,
5900 			    void *ocpu)
5901 {
5902 	struct sk_buff **list_skb;
5903 	struct sk_buff *skb;
5904 	unsigned int cpu, oldcpu = (unsigned long)ocpu;
5905 	struct softnet_data *sd, *oldsd;
5906 
5907 	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
5908 		return NOTIFY_OK;
5909 
5910 	local_irq_disable();
5911 	cpu = smp_processor_id();
5912 	sd = &per_cpu(softnet_data, cpu);
5913 	oldsd = &per_cpu(softnet_data, oldcpu);
5914 
5915 	/* Find end of our completion_queue. */
5916 	list_skb = &sd->completion_queue;
5917 	while (*list_skb)
5918 		list_skb = &(*list_skb)->next;
5919 	/* Append completion queue from offline CPU. */
5920 	*list_skb = oldsd->completion_queue;
5921 	oldsd->completion_queue = NULL;
5922 
5923 	/* Append output queue from offline CPU. */
5924 	if (oldsd->output_queue) {
5925 		*sd->output_queue_tailp = oldsd->output_queue;
5926 		sd->output_queue_tailp = oldsd->output_queue_tailp;
5927 		oldsd->output_queue = NULL;
5928 		oldsd->output_queue_tailp = &oldsd->output_queue;
5929 	}
5930 	/* Append NAPI poll list from offline CPU. */
5931 	if (!list_empty(&oldsd->poll_list)) {
5932 		list_splice_init(&oldsd->poll_list, &sd->poll_list);
5933 		raise_softirq_irqoff(NET_RX_SOFTIRQ);
5934 	}
5935 
5936 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
5937 	local_irq_enable();
5938 
5939 	/* Process offline CPU's input_pkt_queue */
5940 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
5941 		netif_rx(skb);
5942 		input_queue_head_incr(oldsd);
5943 	}
5944 	while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
5945 		netif_rx(skb);
5946 		input_queue_head_incr(oldsd);
5947 	}
5948 
5949 	return NOTIFY_OK;
5950 }
5951 
5952 
5953 /**
5954  *	netdev_increment_features - increment feature set by one
5955  *	@all: current feature set
5956  *	@one: new feature set
5957  *	@mask: mask feature set
5958  *
5959  *	Computes a new feature set after adding a device with feature set
5960  *	@one to the master device with current feature set @all.  Will not
5961  *	enable anything that is off in @mask. Returns the new feature set.
5962  */
5963 netdev_features_t netdev_increment_features(netdev_features_t all,
5964 	netdev_features_t one, netdev_features_t mask)
5965 {
5966 	if (mask & NETIF_F_GEN_CSUM)
5967 		mask |= NETIF_F_ALL_CSUM;
5968 	mask |= NETIF_F_VLAN_CHALLENGED;
5969 
5970 	all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
5971 	all &= one | ~NETIF_F_ALL_FOR_ALL;
5972 
5973 	/* If one device supports hw checksumming, set for all. */
5974 	if (all & NETIF_F_GEN_CSUM)
5975 		all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
5976 
5977 	return all;
5978 }
5979 EXPORT_SYMBOL(netdev_increment_features);
5980 
5981 static struct hlist_head *netdev_create_hash(void)
5982 {
5983 	int i;
5984 	struct hlist_head *hash;
5985 
5986 	hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
5987 	if (hash != NULL)
5988 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
5989 			INIT_HLIST_HEAD(&hash[i]);
5990 
5991 	return hash;
5992 }
5993 
5994 /* Initialize per network namespace state */
5995 static int __net_init netdev_init(struct net *net)
5996 {
5997 	if (net != &init_net)
5998 		INIT_LIST_HEAD(&net->dev_base_head);
5999 
6000 	net->dev_name_head = netdev_create_hash();
6001 	if (net->dev_name_head == NULL)
6002 		goto err_name;
6003 
6004 	net->dev_index_head = netdev_create_hash();
6005 	if (net->dev_index_head == NULL)
6006 		goto err_idx;
6007 
6008 	return 0;
6009 
6010 err_idx:
6011 	kfree(net->dev_name_head);
6012 err_name:
6013 	return -ENOMEM;
6014 }
6015 
6016 /**
6017  *	netdev_drivername - network driver for the device
6018  *	@dev: network device
6019  *
6020  *	Determine network driver for device.
6021  */
6022 const char *netdev_drivername(const struct net_device *dev)
6023 {
6024 	const struct device_driver *driver;
6025 	const struct device *parent;
6026 	const char *empty = "";
6027 
6028 	parent = dev->dev.parent;
6029 	if (!parent)
6030 		return empty;
6031 
6032 	driver = parent->driver;
6033 	if (driver && driver->name)
6034 		return driver->name;
6035 	return empty;
6036 }
6037 
6038 static int __netdev_printk(const char *level, const struct net_device *dev,
6039 			   struct va_format *vaf)
6040 {
6041 	int r;
6042 
6043 	if (dev && dev->dev.parent) {
6044 		r = dev_printk_emit(level[1] - '0',
6045 				    dev->dev.parent,
6046 				    "%s %s %s: %pV",
6047 				    dev_driver_string(dev->dev.parent),
6048 				    dev_name(dev->dev.parent),
6049 				    netdev_name(dev), vaf);
6050 	} else if (dev) {
6051 		r = printk("%s%s: %pV", level, netdev_name(dev), vaf);
6052 	} else {
6053 		r = printk("%s(NULL net_device): %pV", level, vaf);
6054 	}
6055 
6056 	return r;
6057 }
6058 
6059 int netdev_printk(const char *level, const struct net_device *dev,
6060 		  const char *format, ...)
6061 {
6062 	struct va_format vaf;
6063 	va_list args;
6064 	int r;
6065 
6066 	va_start(args, format);
6067 
6068 	vaf.fmt = format;
6069 	vaf.va = &args;
6070 
6071 	r = __netdev_printk(level, dev, &vaf);
6072 
6073 	va_end(args);
6074 
6075 	return r;
6076 }
6077 EXPORT_SYMBOL(netdev_printk);
6078 
6079 #define define_netdev_printk_level(func, level)			\
6080 int func(const struct net_device *dev, const char *fmt, ...)	\
6081 {								\
6082 	int r;							\
6083 	struct va_format vaf;					\
6084 	va_list args;						\
6085 								\
6086 	va_start(args, fmt);					\
6087 								\
6088 	vaf.fmt = fmt;						\
6089 	vaf.va = &args;						\
6090 								\
6091 	r = __netdev_printk(level, dev, &vaf);			\
6092 								\
6093 	va_end(args);						\
6094 								\
6095 	return r;						\
6096 }								\
6097 EXPORT_SYMBOL(func);
6098 
6099 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
6100 define_netdev_printk_level(netdev_alert, KERN_ALERT);
6101 define_netdev_printk_level(netdev_crit, KERN_CRIT);
6102 define_netdev_printk_level(netdev_err, KERN_ERR);
6103 define_netdev_printk_level(netdev_warn, KERN_WARNING);
6104 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
6105 define_netdev_printk_level(netdev_info, KERN_INFO);
6106 
6107 static void __net_exit netdev_exit(struct net *net)
6108 {
6109 	kfree(net->dev_name_head);
6110 	kfree(net->dev_index_head);
6111 }
6112 
6113 static struct pernet_operations __net_initdata netdev_net_ops = {
6114 	.init = netdev_init,
6115 	.exit = netdev_exit,
6116 };
6117 
6118 static void __net_exit default_device_exit(struct net *net)
6119 {
6120 	struct net_device *dev, *aux;
6121 	/*
6122 	 * Push all migratable network devices back to the
6123 	 * initial network namespace
6124 	 */
6125 	rtnl_lock();
6126 	for_each_netdev_safe(net, dev, aux) {
6127 		int err;
6128 		char fb_name[IFNAMSIZ];
6129 
6130 		/* Ignore unmoveable devices (i.e. loopback) */
6131 		if (dev->features & NETIF_F_NETNS_LOCAL)
6132 			continue;
6133 
6134 		/* Leave virtual devices for the generic cleanup */
6135 		if (dev->rtnl_link_ops)
6136 			continue;
6137 
6138 		/* Push remaining network devices to init_net */
6139 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
6140 		err = dev_change_net_namespace(dev, &init_net, fb_name);
6141 		if (err) {
6142 			pr_emerg("%s: failed to move %s to init_net: %d\n",
6143 				 __func__, dev->name, err);
6144 			BUG();
6145 		}
6146 	}
6147 	rtnl_unlock();
6148 }
6149 
6150 static void __net_exit default_device_exit_batch(struct list_head *net_list)
6151 {
6152 	/* At exit all network devices most be removed from a network
6153 	 * namespace.  Do this in the reverse order of registration.
6154 	 * Do this across as many network namespaces as possible to
6155 	 * improve batching efficiency.
6156 	 */
6157 	struct net_device *dev;
6158 	struct net *net;
6159 	LIST_HEAD(dev_kill_list);
6160 
6161 	rtnl_lock();
6162 	list_for_each_entry(net, net_list, exit_list) {
6163 		for_each_netdev_reverse(net, dev) {
6164 			if (dev->rtnl_link_ops)
6165 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
6166 			else
6167 				unregister_netdevice_queue(dev, &dev_kill_list);
6168 		}
6169 	}
6170 	unregister_netdevice_many(&dev_kill_list);
6171 	list_del(&dev_kill_list);
6172 	rtnl_unlock();
6173 }
6174 
6175 static struct pernet_operations __net_initdata default_device_ops = {
6176 	.exit = default_device_exit,
6177 	.exit_batch = default_device_exit_batch,
6178 };
6179 
6180 /*
6181  *	Initialize the DEV module. At boot time this walks the device list and
6182  *	unhooks any devices that fail to initialise (normally hardware not
6183  *	present) and leaves us with a valid list of present and active devices.
6184  *
6185  */
6186 
6187 /*
6188  *       This is called single threaded during boot, so no need
6189  *       to take the rtnl semaphore.
6190  */
6191 static int __init net_dev_init(void)
6192 {
6193 	int i, rc = -ENOMEM;
6194 
6195 	BUG_ON(!dev_boot_phase);
6196 
6197 	if (dev_proc_init())
6198 		goto out;
6199 
6200 	if (netdev_kobject_init())
6201 		goto out;
6202 
6203 	INIT_LIST_HEAD(&ptype_all);
6204 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
6205 		INIT_LIST_HEAD(&ptype_base[i]);
6206 
6207 	INIT_LIST_HEAD(&offload_base);
6208 
6209 	if (register_pernet_subsys(&netdev_net_ops))
6210 		goto out;
6211 
6212 	/*
6213 	 *	Initialise the packet receive queues.
6214 	 */
6215 
6216 	for_each_possible_cpu(i) {
6217 		struct softnet_data *sd = &per_cpu(softnet_data, i);
6218 
6219 		memset(sd, 0, sizeof(*sd));
6220 		skb_queue_head_init(&sd->input_pkt_queue);
6221 		skb_queue_head_init(&sd->process_queue);
6222 		sd->completion_queue = NULL;
6223 		INIT_LIST_HEAD(&sd->poll_list);
6224 		sd->output_queue = NULL;
6225 		sd->output_queue_tailp = &sd->output_queue;
6226 #ifdef CONFIG_RPS
6227 		sd->csd.func = rps_trigger_softirq;
6228 		sd->csd.info = sd;
6229 		sd->csd.flags = 0;
6230 		sd->cpu = i;
6231 #endif
6232 
6233 		sd->backlog.poll = process_backlog;
6234 		sd->backlog.weight = weight_p;
6235 		sd->backlog.gro_list = NULL;
6236 		sd->backlog.gro_count = 0;
6237 	}
6238 
6239 	dev_boot_phase = 0;
6240 
6241 	/* The loopback device is special if any other network devices
6242 	 * is present in a network namespace the loopback device must
6243 	 * be present. Since we now dynamically allocate and free the
6244 	 * loopback device ensure this invariant is maintained by
6245 	 * keeping the loopback device as the first device on the
6246 	 * list of network devices.  Ensuring the loopback devices
6247 	 * is the first device that appears and the last network device
6248 	 * that disappears.
6249 	 */
6250 	if (register_pernet_device(&loopback_net_ops))
6251 		goto out;
6252 
6253 	if (register_pernet_device(&default_device_ops))
6254 		goto out;
6255 
6256 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
6257 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
6258 
6259 	hotcpu_notifier(dev_cpu_callback, 0);
6260 	dst_init();
6261 	rc = 0;
6262 out:
6263 	return rc;
6264 }
6265 
6266 subsys_initcall(net_dev_init);
6267