1 /* 2 * NET3 Protocol independent device support routines. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Derived from the non IP parts of dev.c 1.0.19 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * 14 * Additional Authors: 15 * Florian la Roche <rzsfl@rz.uni-sb.de> 16 * Alan Cox <gw4pts@gw4pts.ampr.org> 17 * David Hinds <dahinds@users.sourceforge.net> 18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 19 * Adam Sulmicki <adam@cfar.umd.edu> 20 * Pekka Riikonen <priikone@poesidon.pspt.fi> 21 * 22 * Changes: 23 * D.J. Barrow : Fixed bug where dev->refcnt gets set 24 * to 2 if register_netdev gets called 25 * before net_dev_init & also removed a 26 * few lines of code in the process. 27 * Alan Cox : device private ioctl copies fields back. 28 * Alan Cox : Transmit queue code does relevant 29 * stunts to keep the queue safe. 30 * Alan Cox : Fixed double lock. 31 * Alan Cox : Fixed promisc NULL pointer trap 32 * ???????? : Support the full private ioctl range 33 * Alan Cox : Moved ioctl permission check into 34 * drivers 35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 36 * Alan Cox : 100 backlog just doesn't cut it when 37 * you start doing multicast video 8) 38 * Alan Cox : Rewrote net_bh and list manager. 39 * Alan Cox : Fix ETH_P_ALL echoback lengths. 40 * Alan Cox : Took out transmit every packet pass 41 * Saved a few bytes in the ioctl handler 42 * Alan Cox : Network driver sets packet type before 43 * calling netif_rx. Saves a function 44 * call a packet. 45 * Alan Cox : Hashed net_bh() 46 * Richard Kooijman: Timestamp fixes. 47 * Alan Cox : Wrong field in SIOCGIFDSTADDR 48 * Alan Cox : Device lock protection. 49 * Alan Cox : Fixed nasty side effect of device close 50 * changes. 51 * Rudi Cilibrasi : Pass the right thing to 52 * set_mac_address() 53 * Dave Miller : 32bit quantity for the device lock to 54 * make it work out on a Sparc. 55 * Bjorn Ekwall : Added KERNELD hack. 56 * Alan Cox : Cleaned up the backlog initialise. 57 * Craig Metz : SIOCGIFCONF fix if space for under 58 * 1 device. 59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 60 * is no device open function. 61 * Andi Kleen : Fix error reporting for SIOCGIFCONF 62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 63 * Cyrus Durgin : Cleaned for KMOD 64 * Adam Sulmicki : Bug Fix : Network Device Unload 65 * A network device unload needs to purge 66 * the backlog queue. 67 * Paul Rusty Russell : SIOCSIFNAME 68 * Pekka Riikonen : Netdev boot-time settings code 69 * Andrew Morton : Make unregister_netdevice wait 70 * indefinitely on dev->refcnt 71 * J Hadi Salim : - Backlog queue sampling 72 * - netif_rx() feedback 73 */ 74 75 #include <asm/uaccess.h> 76 #include <linux/bitops.h> 77 #include <linux/capability.h> 78 #include <linux/cpu.h> 79 #include <linux/types.h> 80 #include <linux/kernel.h> 81 #include <linux/hash.h> 82 #include <linux/slab.h> 83 #include <linux/sched.h> 84 #include <linux/mutex.h> 85 #include <linux/string.h> 86 #include <linux/mm.h> 87 #include <linux/socket.h> 88 #include <linux/sockios.h> 89 #include <linux/errno.h> 90 #include <linux/interrupt.h> 91 #include <linux/if_ether.h> 92 #include <linux/netdevice.h> 93 #include <linux/etherdevice.h> 94 #include <linux/ethtool.h> 95 #include <linux/notifier.h> 96 #include <linux/skbuff.h> 97 #include <net/net_namespace.h> 98 #include <net/sock.h> 99 #include <linux/rtnetlink.h> 100 #include <linux/stat.h> 101 #include <net/dst.h> 102 #include <net/pkt_sched.h> 103 #include <net/checksum.h> 104 #include <net/xfrm.h> 105 #include <linux/highmem.h> 106 #include <linux/init.h> 107 #include <linux/module.h> 108 #include <linux/netpoll.h> 109 #include <linux/rcupdate.h> 110 #include <linux/delay.h> 111 #include <net/iw_handler.h> 112 #include <asm/current.h> 113 #include <linux/audit.h> 114 #include <linux/dmaengine.h> 115 #include <linux/err.h> 116 #include <linux/ctype.h> 117 #include <linux/if_arp.h> 118 #include <linux/if_vlan.h> 119 #include <linux/ip.h> 120 #include <net/ip.h> 121 #include <linux/ipv6.h> 122 #include <linux/in.h> 123 #include <linux/jhash.h> 124 #include <linux/random.h> 125 #include <trace/events/napi.h> 126 #include <trace/events/net.h> 127 #include <trace/events/skb.h> 128 #include <linux/pci.h> 129 #include <linux/inetdevice.h> 130 #include <linux/cpu_rmap.h> 131 #include <linux/static_key.h> 132 133 #include "net-sysfs.h" 134 135 /* Instead of increasing this, you should create a hash table. */ 136 #define MAX_GRO_SKBS 8 137 138 /* This should be increased if a protocol with a bigger head is added. */ 139 #define GRO_MAX_HEAD (MAX_HEADER + 128) 140 141 static DEFINE_SPINLOCK(ptype_lock); 142 static DEFINE_SPINLOCK(offload_lock); 143 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 144 struct list_head ptype_all __read_mostly; /* Taps */ 145 static struct list_head offload_base __read_mostly; 146 147 /* 148 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 149 * semaphore. 150 * 151 * Pure readers hold dev_base_lock for reading, or rcu_read_lock() 152 * 153 * Writers must hold the rtnl semaphore while they loop through the 154 * dev_base_head list, and hold dev_base_lock for writing when they do the 155 * actual updates. This allows pure readers to access the list even 156 * while a writer is preparing to update it. 157 * 158 * To put it another way, dev_base_lock is held for writing only to 159 * protect against pure readers; the rtnl semaphore provides the 160 * protection against other writers. 161 * 162 * See, for example usages, register_netdevice() and 163 * unregister_netdevice(), which must be called with the rtnl 164 * semaphore held. 165 */ 166 DEFINE_RWLOCK(dev_base_lock); 167 EXPORT_SYMBOL(dev_base_lock); 168 169 seqcount_t devnet_rename_seq; 170 171 static inline void dev_base_seq_inc(struct net *net) 172 { 173 while (++net->dev_base_seq == 0); 174 } 175 176 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 177 { 178 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ)); 179 180 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 181 } 182 183 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 184 { 185 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 186 } 187 188 static inline void rps_lock(struct softnet_data *sd) 189 { 190 #ifdef CONFIG_RPS 191 spin_lock(&sd->input_pkt_queue.lock); 192 #endif 193 } 194 195 static inline void rps_unlock(struct softnet_data *sd) 196 { 197 #ifdef CONFIG_RPS 198 spin_unlock(&sd->input_pkt_queue.lock); 199 #endif 200 } 201 202 /* Device list insertion */ 203 static int list_netdevice(struct net_device *dev) 204 { 205 struct net *net = dev_net(dev); 206 207 ASSERT_RTNL(); 208 209 write_lock_bh(&dev_base_lock); 210 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 211 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 212 hlist_add_head_rcu(&dev->index_hlist, 213 dev_index_hash(net, dev->ifindex)); 214 write_unlock_bh(&dev_base_lock); 215 216 dev_base_seq_inc(net); 217 218 return 0; 219 } 220 221 /* Device list removal 222 * caller must respect a RCU grace period before freeing/reusing dev 223 */ 224 static void unlist_netdevice(struct net_device *dev) 225 { 226 ASSERT_RTNL(); 227 228 /* Unlink dev from the device chain */ 229 write_lock_bh(&dev_base_lock); 230 list_del_rcu(&dev->dev_list); 231 hlist_del_rcu(&dev->name_hlist); 232 hlist_del_rcu(&dev->index_hlist); 233 write_unlock_bh(&dev_base_lock); 234 235 dev_base_seq_inc(dev_net(dev)); 236 } 237 238 /* 239 * Our notifier list 240 */ 241 242 static RAW_NOTIFIER_HEAD(netdev_chain); 243 244 /* 245 * Device drivers call our routines to queue packets here. We empty the 246 * queue in the local softnet handler. 247 */ 248 249 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 250 EXPORT_PER_CPU_SYMBOL(softnet_data); 251 252 #ifdef CONFIG_LOCKDEP 253 /* 254 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 255 * according to dev->type 256 */ 257 static const unsigned short netdev_lock_type[] = 258 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 259 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 260 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 261 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 262 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 263 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 264 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 265 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 266 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 267 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 268 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 269 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 270 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM, 271 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE, 272 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE}; 273 274 static const char *const netdev_lock_name[] = 275 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 276 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 277 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 278 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 279 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 280 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 281 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 282 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 283 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 284 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 285 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 286 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 287 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM", 288 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE", 289 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"}; 290 291 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 292 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 293 294 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 295 { 296 int i; 297 298 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 299 if (netdev_lock_type[i] == dev_type) 300 return i; 301 /* the last key is used by default */ 302 return ARRAY_SIZE(netdev_lock_type) - 1; 303 } 304 305 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 306 unsigned short dev_type) 307 { 308 int i; 309 310 i = netdev_lock_pos(dev_type); 311 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 312 netdev_lock_name[i]); 313 } 314 315 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 316 { 317 int i; 318 319 i = netdev_lock_pos(dev->type); 320 lockdep_set_class_and_name(&dev->addr_list_lock, 321 &netdev_addr_lock_key[i], 322 netdev_lock_name[i]); 323 } 324 #else 325 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 326 unsigned short dev_type) 327 { 328 } 329 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 330 { 331 } 332 #endif 333 334 /******************************************************************************* 335 336 Protocol management and registration routines 337 338 *******************************************************************************/ 339 340 /* 341 * Add a protocol ID to the list. Now that the input handler is 342 * smarter we can dispense with all the messy stuff that used to be 343 * here. 344 * 345 * BEWARE!!! Protocol handlers, mangling input packets, 346 * MUST BE last in hash buckets and checking protocol handlers 347 * MUST start from promiscuous ptype_all chain in net_bh. 348 * It is true now, do not change it. 349 * Explanation follows: if protocol handler, mangling packet, will 350 * be the first on list, it is not able to sense, that packet 351 * is cloned and should be copied-on-write, so that it will 352 * change it and subsequent readers will get broken packet. 353 * --ANK (980803) 354 */ 355 356 static inline struct list_head *ptype_head(const struct packet_type *pt) 357 { 358 if (pt->type == htons(ETH_P_ALL)) 359 return &ptype_all; 360 else 361 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 362 } 363 364 /** 365 * dev_add_pack - add packet handler 366 * @pt: packet type declaration 367 * 368 * Add a protocol handler to the networking stack. The passed &packet_type 369 * is linked into kernel lists and may not be freed until it has been 370 * removed from the kernel lists. 371 * 372 * This call does not sleep therefore it can not 373 * guarantee all CPU's that are in middle of receiving packets 374 * will see the new packet type (until the next received packet). 375 */ 376 377 void dev_add_pack(struct packet_type *pt) 378 { 379 struct list_head *head = ptype_head(pt); 380 381 spin_lock(&ptype_lock); 382 list_add_rcu(&pt->list, head); 383 spin_unlock(&ptype_lock); 384 } 385 EXPORT_SYMBOL(dev_add_pack); 386 387 /** 388 * __dev_remove_pack - remove packet handler 389 * @pt: packet type declaration 390 * 391 * Remove a protocol handler that was previously added to the kernel 392 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 393 * from the kernel lists and can be freed or reused once this function 394 * returns. 395 * 396 * The packet type might still be in use by receivers 397 * and must not be freed until after all the CPU's have gone 398 * through a quiescent state. 399 */ 400 void __dev_remove_pack(struct packet_type *pt) 401 { 402 struct list_head *head = ptype_head(pt); 403 struct packet_type *pt1; 404 405 spin_lock(&ptype_lock); 406 407 list_for_each_entry(pt1, head, list) { 408 if (pt == pt1) { 409 list_del_rcu(&pt->list); 410 goto out; 411 } 412 } 413 414 pr_warn("dev_remove_pack: %p not found\n", pt); 415 out: 416 spin_unlock(&ptype_lock); 417 } 418 EXPORT_SYMBOL(__dev_remove_pack); 419 420 /** 421 * dev_remove_pack - remove packet handler 422 * @pt: packet type declaration 423 * 424 * Remove a protocol handler that was previously added to the kernel 425 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 426 * from the kernel lists and can be freed or reused once this function 427 * returns. 428 * 429 * This call sleeps to guarantee that no CPU is looking at the packet 430 * type after return. 431 */ 432 void dev_remove_pack(struct packet_type *pt) 433 { 434 __dev_remove_pack(pt); 435 436 synchronize_net(); 437 } 438 EXPORT_SYMBOL(dev_remove_pack); 439 440 441 /** 442 * dev_add_offload - register offload handlers 443 * @po: protocol offload declaration 444 * 445 * Add protocol offload handlers to the networking stack. The passed 446 * &proto_offload is linked into kernel lists and may not be freed until 447 * it has been removed from the kernel lists. 448 * 449 * This call does not sleep therefore it can not 450 * guarantee all CPU's that are in middle of receiving packets 451 * will see the new offload handlers (until the next received packet). 452 */ 453 void dev_add_offload(struct packet_offload *po) 454 { 455 struct list_head *head = &offload_base; 456 457 spin_lock(&offload_lock); 458 list_add_rcu(&po->list, head); 459 spin_unlock(&offload_lock); 460 } 461 EXPORT_SYMBOL(dev_add_offload); 462 463 /** 464 * __dev_remove_offload - remove offload handler 465 * @po: packet offload declaration 466 * 467 * Remove a protocol offload handler that was previously added to the 468 * kernel offload handlers by dev_add_offload(). The passed &offload_type 469 * is removed from the kernel lists and can be freed or reused once this 470 * function returns. 471 * 472 * The packet type might still be in use by receivers 473 * and must not be freed until after all the CPU's have gone 474 * through a quiescent state. 475 */ 476 void __dev_remove_offload(struct packet_offload *po) 477 { 478 struct list_head *head = &offload_base; 479 struct packet_offload *po1; 480 481 spin_lock(&offload_lock); 482 483 list_for_each_entry(po1, head, list) { 484 if (po == po1) { 485 list_del_rcu(&po->list); 486 goto out; 487 } 488 } 489 490 pr_warn("dev_remove_offload: %p not found\n", po); 491 out: 492 spin_unlock(&offload_lock); 493 } 494 EXPORT_SYMBOL(__dev_remove_offload); 495 496 /** 497 * dev_remove_offload - remove packet offload handler 498 * @po: packet offload declaration 499 * 500 * Remove a packet offload handler that was previously added to the kernel 501 * offload handlers by dev_add_offload(). The passed &offload_type is 502 * removed from the kernel lists and can be freed or reused once this 503 * function returns. 504 * 505 * This call sleeps to guarantee that no CPU is looking at the packet 506 * type after return. 507 */ 508 void dev_remove_offload(struct packet_offload *po) 509 { 510 __dev_remove_offload(po); 511 512 synchronize_net(); 513 } 514 EXPORT_SYMBOL(dev_remove_offload); 515 516 /****************************************************************************** 517 518 Device Boot-time Settings Routines 519 520 *******************************************************************************/ 521 522 /* Boot time configuration table */ 523 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 524 525 /** 526 * netdev_boot_setup_add - add new setup entry 527 * @name: name of the device 528 * @map: configured settings for the device 529 * 530 * Adds new setup entry to the dev_boot_setup list. The function 531 * returns 0 on error and 1 on success. This is a generic routine to 532 * all netdevices. 533 */ 534 static int netdev_boot_setup_add(char *name, struct ifmap *map) 535 { 536 struct netdev_boot_setup *s; 537 int i; 538 539 s = dev_boot_setup; 540 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 541 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 542 memset(s[i].name, 0, sizeof(s[i].name)); 543 strlcpy(s[i].name, name, IFNAMSIZ); 544 memcpy(&s[i].map, map, sizeof(s[i].map)); 545 break; 546 } 547 } 548 549 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 550 } 551 552 /** 553 * netdev_boot_setup_check - check boot time settings 554 * @dev: the netdevice 555 * 556 * Check boot time settings for the device. 557 * The found settings are set for the device to be used 558 * later in the device probing. 559 * Returns 0 if no settings found, 1 if they are. 560 */ 561 int netdev_boot_setup_check(struct net_device *dev) 562 { 563 struct netdev_boot_setup *s = dev_boot_setup; 564 int i; 565 566 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 567 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 568 !strcmp(dev->name, s[i].name)) { 569 dev->irq = s[i].map.irq; 570 dev->base_addr = s[i].map.base_addr; 571 dev->mem_start = s[i].map.mem_start; 572 dev->mem_end = s[i].map.mem_end; 573 return 1; 574 } 575 } 576 return 0; 577 } 578 EXPORT_SYMBOL(netdev_boot_setup_check); 579 580 581 /** 582 * netdev_boot_base - get address from boot time settings 583 * @prefix: prefix for network device 584 * @unit: id for network device 585 * 586 * Check boot time settings for the base address of device. 587 * The found settings are set for the device to be used 588 * later in the device probing. 589 * Returns 0 if no settings found. 590 */ 591 unsigned long netdev_boot_base(const char *prefix, int unit) 592 { 593 const struct netdev_boot_setup *s = dev_boot_setup; 594 char name[IFNAMSIZ]; 595 int i; 596 597 sprintf(name, "%s%d", prefix, unit); 598 599 /* 600 * If device already registered then return base of 1 601 * to indicate not to probe for this interface 602 */ 603 if (__dev_get_by_name(&init_net, name)) 604 return 1; 605 606 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 607 if (!strcmp(name, s[i].name)) 608 return s[i].map.base_addr; 609 return 0; 610 } 611 612 /* 613 * Saves at boot time configured settings for any netdevice. 614 */ 615 int __init netdev_boot_setup(char *str) 616 { 617 int ints[5]; 618 struct ifmap map; 619 620 str = get_options(str, ARRAY_SIZE(ints), ints); 621 if (!str || !*str) 622 return 0; 623 624 /* Save settings */ 625 memset(&map, 0, sizeof(map)); 626 if (ints[0] > 0) 627 map.irq = ints[1]; 628 if (ints[0] > 1) 629 map.base_addr = ints[2]; 630 if (ints[0] > 2) 631 map.mem_start = ints[3]; 632 if (ints[0] > 3) 633 map.mem_end = ints[4]; 634 635 /* Add new entry to the list */ 636 return netdev_boot_setup_add(str, &map); 637 } 638 639 __setup("netdev=", netdev_boot_setup); 640 641 /******************************************************************************* 642 643 Device Interface Subroutines 644 645 *******************************************************************************/ 646 647 /** 648 * __dev_get_by_name - find a device by its name 649 * @net: the applicable net namespace 650 * @name: name to find 651 * 652 * Find an interface by name. Must be called under RTNL semaphore 653 * or @dev_base_lock. If the name is found a pointer to the device 654 * is returned. If the name is not found then %NULL is returned. The 655 * reference counters are not incremented so the caller must be 656 * careful with locks. 657 */ 658 659 struct net_device *__dev_get_by_name(struct net *net, const char *name) 660 { 661 struct net_device *dev; 662 struct hlist_head *head = dev_name_hash(net, name); 663 664 hlist_for_each_entry(dev, head, name_hlist) 665 if (!strncmp(dev->name, name, IFNAMSIZ)) 666 return dev; 667 668 return NULL; 669 } 670 EXPORT_SYMBOL(__dev_get_by_name); 671 672 /** 673 * dev_get_by_name_rcu - find a device by its name 674 * @net: the applicable net namespace 675 * @name: name to find 676 * 677 * Find an interface by name. 678 * If the name is found a pointer to the device is returned. 679 * If the name is not found then %NULL is returned. 680 * The reference counters are not incremented so the caller must be 681 * careful with locks. The caller must hold RCU lock. 682 */ 683 684 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 685 { 686 struct net_device *dev; 687 struct hlist_head *head = dev_name_hash(net, name); 688 689 hlist_for_each_entry_rcu(dev, head, name_hlist) 690 if (!strncmp(dev->name, name, IFNAMSIZ)) 691 return dev; 692 693 return NULL; 694 } 695 EXPORT_SYMBOL(dev_get_by_name_rcu); 696 697 /** 698 * dev_get_by_name - find a device by its name 699 * @net: the applicable net namespace 700 * @name: name to find 701 * 702 * Find an interface by name. This can be called from any 703 * context and does its own locking. The returned handle has 704 * the usage count incremented and the caller must use dev_put() to 705 * release it when it is no longer needed. %NULL is returned if no 706 * matching device is found. 707 */ 708 709 struct net_device *dev_get_by_name(struct net *net, const char *name) 710 { 711 struct net_device *dev; 712 713 rcu_read_lock(); 714 dev = dev_get_by_name_rcu(net, name); 715 if (dev) 716 dev_hold(dev); 717 rcu_read_unlock(); 718 return dev; 719 } 720 EXPORT_SYMBOL(dev_get_by_name); 721 722 /** 723 * __dev_get_by_index - find a device by its ifindex 724 * @net: the applicable net namespace 725 * @ifindex: index of device 726 * 727 * Search for an interface by index. Returns %NULL if the device 728 * is not found or a pointer to the device. The device has not 729 * had its reference counter increased so the caller must be careful 730 * about locking. The caller must hold either the RTNL semaphore 731 * or @dev_base_lock. 732 */ 733 734 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 735 { 736 struct net_device *dev; 737 struct hlist_head *head = dev_index_hash(net, ifindex); 738 739 hlist_for_each_entry(dev, head, index_hlist) 740 if (dev->ifindex == ifindex) 741 return dev; 742 743 return NULL; 744 } 745 EXPORT_SYMBOL(__dev_get_by_index); 746 747 /** 748 * dev_get_by_index_rcu - find a device by its ifindex 749 * @net: the applicable net namespace 750 * @ifindex: index of device 751 * 752 * Search for an interface by index. Returns %NULL if the device 753 * is not found or a pointer to the device. The device has not 754 * had its reference counter increased so the caller must be careful 755 * about locking. The caller must hold RCU lock. 756 */ 757 758 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 759 { 760 struct net_device *dev; 761 struct hlist_head *head = dev_index_hash(net, ifindex); 762 763 hlist_for_each_entry_rcu(dev, head, index_hlist) 764 if (dev->ifindex == ifindex) 765 return dev; 766 767 return NULL; 768 } 769 EXPORT_SYMBOL(dev_get_by_index_rcu); 770 771 772 /** 773 * dev_get_by_index - find a device by its ifindex 774 * @net: the applicable net namespace 775 * @ifindex: index of device 776 * 777 * Search for an interface by index. Returns NULL if the device 778 * is not found or a pointer to the device. The device returned has 779 * had a reference added and the pointer is safe until the user calls 780 * dev_put to indicate they have finished with it. 781 */ 782 783 struct net_device *dev_get_by_index(struct net *net, int ifindex) 784 { 785 struct net_device *dev; 786 787 rcu_read_lock(); 788 dev = dev_get_by_index_rcu(net, ifindex); 789 if (dev) 790 dev_hold(dev); 791 rcu_read_unlock(); 792 return dev; 793 } 794 EXPORT_SYMBOL(dev_get_by_index); 795 796 /** 797 * dev_getbyhwaddr_rcu - find a device by its hardware address 798 * @net: the applicable net namespace 799 * @type: media type of device 800 * @ha: hardware address 801 * 802 * Search for an interface by MAC address. Returns NULL if the device 803 * is not found or a pointer to the device. 804 * The caller must hold RCU or RTNL. 805 * The returned device has not had its ref count increased 806 * and the caller must therefore be careful about locking 807 * 808 */ 809 810 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 811 const char *ha) 812 { 813 struct net_device *dev; 814 815 for_each_netdev_rcu(net, dev) 816 if (dev->type == type && 817 !memcmp(dev->dev_addr, ha, dev->addr_len)) 818 return dev; 819 820 return NULL; 821 } 822 EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 823 824 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 825 { 826 struct net_device *dev; 827 828 ASSERT_RTNL(); 829 for_each_netdev(net, dev) 830 if (dev->type == type) 831 return dev; 832 833 return NULL; 834 } 835 EXPORT_SYMBOL(__dev_getfirstbyhwtype); 836 837 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 838 { 839 struct net_device *dev, *ret = NULL; 840 841 rcu_read_lock(); 842 for_each_netdev_rcu(net, dev) 843 if (dev->type == type) { 844 dev_hold(dev); 845 ret = dev; 846 break; 847 } 848 rcu_read_unlock(); 849 return ret; 850 } 851 EXPORT_SYMBOL(dev_getfirstbyhwtype); 852 853 /** 854 * dev_get_by_flags_rcu - find any device with given flags 855 * @net: the applicable net namespace 856 * @if_flags: IFF_* values 857 * @mask: bitmask of bits in if_flags to check 858 * 859 * Search for any interface with the given flags. Returns NULL if a device 860 * is not found or a pointer to the device. Must be called inside 861 * rcu_read_lock(), and result refcount is unchanged. 862 */ 863 864 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags, 865 unsigned short mask) 866 { 867 struct net_device *dev, *ret; 868 869 ret = NULL; 870 for_each_netdev_rcu(net, dev) { 871 if (((dev->flags ^ if_flags) & mask) == 0) { 872 ret = dev; 873 break; 874 } 875 } 876 return ret; 877 } 878 EXPORT_SYMBOL(dev_get_by_flags_rcu); 879 880 /** 881 * dev_valid_name - check if name is okay for network device 882 * @name: name string 883 * 884 * Network device names need to be valid file names to 885 * to allow sysfs to work. We also disallow any kind of 886 * whitespace. 887 */ 888 bool dev_valid_name(const char *name) 889 { 890 if (*name == '\0') 891 return false; 892 if (strlen(name) >= IFNAMSIZ) 893 return false; 894 if (!strcmp(name, ".") || !strcmp(name, "..")) 895 return false; 896 897 while (*name) { 898 if (*name == '/' || isspace(*name)) 899 return false; 900 name++; 901 } 902 return true; 903 } 904 EXPORT_SYMBOL(dev_valid_name); 905 906 /** 907 * __dev_alloc_name - allocate a name for a device 908 * @net: network namespace to allocate the device name in 909 * @name: name format string 910 * @buf: scratch buffer and result name string 911 * 912 * Passed a format string - eg "lt%d" it will try and find a suitable 913 * id. It scans list of devices to build up a free map, then chooses 914 * the first empty slot. The caller must hold the dev_base or rtnl lock 915 * while allocating the name and adding the device in order to avoid 916 * duplicates. 917 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 918 * Returns the number of the unit assigned or a negative errno code. 919 */ 920 921 static int __dev_alloc_name(struct net *net, const char *name, char *buf) 922 { 923 int i = 0; 924 const char *p; 925 const int max_netdevices = 8*PAGE_SIZE; 926 unsigned long *inuse; 927 struct net_device *d; 928 929 p = strnchr(name, IFNAMSIZ-1, '%'); 930 if (p) { 931 /* 932 * Verify the string as this thing may have come from 933 * the user. There must be either one "%d" and no other "%" 934 * characters. 935 */ 936 if (p[1] != 'd' || strchr(p + 2, '%')) 937 return -EINVAL; 938 939 /* Use one page as a bit array of possible slots */ 940 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 941 if (!inuse) 942 return -ENOMEM; 943 944 for_each_netdev(net, d) { 945 if (!sscanf(d->name, name, &i)) 946 continue; 947 if (i < 0 || i >= max_netdevices) 948 continue; 949 950 /* avoid cases where sscanf is not exact inverse of printf */ 951 snprintf(buf, IFNAMSIZ, name, i); 952 if (!strncmp(buf, d->name, IFNAMSIZ)) 953 set_bit(i, inuse); 954 } 955 956 i = find_first_zero_bit(inuse, max_netdevices); 957 free_page((unsigned long) inuse); 958 } 959 960 if (buf != name) 961 snprintf(buf, IFNAMSIZ, name, i); 962 if (!__dev_get_by_name(net, buf)) 963 return i; 964 965 /* It is possible to run out of possible slots 966 * when the name is long and there isn't enough space left 967 * for the digits, or if all bits are used. 968 */ 969 return -ENFILE; 970 } 971 972 /** 973 * dev_alloc_name - allocate a name for a device 974 * @dev: device 975 * @name: name format string 976 * 977 * Passed a format string - eg "lt%d" it will try and find a suitable 978 * id. It scans list of devices to build up a free map, then chooses 979 * the first empty slot. The caller must hold the dev_base or rtnl lock 980 * while allocating the name and adding the device in order to avoid 981 * duplicates. 982 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 983 * Returns the number of the unit assigned or a negative errno code. 984 */ 985 986 int dev_alloc_name(struct net_device *dev, const char *name) 987 { 988 char buf[IFNAMSIZ]; 989 struct net *net; 990 int ret; 991 992 BUG_ON(!dev_net(dev)); 993 net = dev_net(dev); 994 ret = __dev_alloc_name(net, name, buf); 995 if (ret >= 0) 996 strlcpy(dev->name, buf, IFNAMSIZ); 997 return ret; 998 } 999 EXPORT_SYMBOL(dev_alloc_name); 1000 1001 static int dev_alloc_name_ns(struct net *net, 1002 struct net_device *dev, 1003 const char *name) 1004 { 1005 char buf[IFNAMSIZ]; 1006 int ret; 1007 1008 ret = __dev_alloc_name(net, name, buf); 1009 if (ret >= 0) 1010 strlcpy(dev->name, buf, IFNAMSIZ); 1011 return ret; 1012 } 1013 1014 static int dev_get_valid_name(struct net *net, 1015 struct net_device *dev, 1016 const char *name) 1017 { 1018 BUG_ON(!net); 1019 1020 if (!dev_valid_name(name)) 1021 return -EINVAL; 1022 1023 if (strchr(name, '%')) 1024 return dev_alloc_name_ns(net, dev, name); 1025 else if (__dev_get_by_name(net, name)) 1026 return -EEXIST; 1027 else if (dev->name != name) 1028 strlcpy(dev->name, name, IFNAMSIZ); 1029 1030 return 0; 1031 } 1032 1033 /** 1034 * dev_change_name - change name of a device 1035 * @dev: device 1036 * @newname: name (or format string) must be at least IFNAMSIZ 1037 * 1038 * Change name of a device, can pass format strings "eth%d". 1039 * for wildcarding. 1040 */ 1041 int dev_change_name(struct net_device *dev, const char *newname) 1042 { 1043 char oldname[IFNAMSIZ]; 1044 int err = 0; 1045 int ret; 1046 struct net *net; 1047 1048 ASSERT_RTNL(); 1049 BUG_ON(!dev_net(dev)); 1050 1051 net = dev_net(dev); 1052 if (dev->flags & IFF_UP) 1053 return -EBUSY; 1054 1055 write_seqcount_begin(&devnet_rename_seq); 1056 1057 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) { 1058 write_seqcount_end(&devnet_rename_seq); 1059 return 0; 1060 } 1061 1062 memcpy(oldname, dev->name, IFNAMSIZ); 1063 1064 err = dev_get_valid_name(net, dev, newname); 1065 if (err < 0) { 1066 write_seqcount_end(&devnet_rename_seq); 1067 return err; 1068 } 1069 1070 rollback: 1071 ret = device_rename(&dev->dev, dev->name); 1072 if (ret) { 1073 memcpy(dev->name, oldname, IFNAMSIZ); 1074 write_seqcount_end(&devnet_rename_seq); 1075 return ret; 1076 } 1077 1078 write_seqcount_end(&devnet_rename_seq); 1079 1080 write_lock_bh(&dev_base_lock); 1081 hlist_del_rcu(&dev->name_hlist); 1082 write_unlock_bh(&dev_base_lock); 1083 1084 synchronize_rcu(); 1085 1086 write_lock_bh(&dev_base_lock); 1087 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 1088 write_unlock_bh(&dev_base_lock); 1089 1090 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1091 ret = notifier_to_errno(ret); 1092 1093 if (ret) { 1094 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1095 if (err >= 0) { 1096 err = ret; 1097 write_seqcount_begin(&devnet_rename_seq); 1098 memcpy(dev->name, oldname, IFNAMSIZ); 1099 goto rollback; 1100 } else { 1101 pr_err("%s: name change rollback failed: %d\n", 1102 dev->name, ret); 1103 } 1104 } 1105 1106 return err; 1107 } 1108 1109 /** 1110 * dev_set_alias - change ifalias of a device 1111 * @dev: device 1112 * @alias: name up to IFALIASZ 1113 * @len: limit of bytes to copy from info 1114 * 1115 * Set ifalias for a device, 1116 */ 1117 int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1118 { 1119 char *new_ifalias; 1120 1121 ASSERT_RTNL(); 1122 1123 if (len >= IFALIASZ) 1124 return -EINVAL; 1125 1126 if (!len) { 1127 kfree(dev->ifalias); 1128 dev->ifalias = NULL; 1129 return 0; 1130 } 1131 1132 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL); 1133 if (!new_ifalias) 1134 return -ENOMEM; 1135 dev->ifalias = new_ifalias; 1136 1137 strlcpy(dev->ifalias, alias, len+1); 1138 return len; 1139 } 1140 1141 1142 /** 1143 * netdev_features_change - device changes features 1144 * @dev: device to cause notification 1145 * 1146 * Called to indicate a device has changed features. 1147 */ 1148 void netdev_features_change(struct net_device *dev) 1149 { 1150 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1151 } 1152 EXPORT_SYMBOL(netdev_features_change); 1153 1154 /** 1155 * netdev_state_change - device changes state 1156 * @dev: device to cause notification 1157 * 1158 * Called to indicate a device has changed state. This function calls 1159 * the notifier chains for netdev_chain and sends a NEWLINK message 1160 * to the routing socket. 1161 */ 1162 void netdev_state_change(struct net_device *dev) 1163 { 1164 if (dev->flags & IFF_UP) { 1165 call_netdevice_notifiers(NETDEV_CHANGE, dev); 1166 rtmsg_ifinfo(RTM_NEWLINK, dev, 0); 1167 } 1168 } 1169 EXPORT_SYMBOL(netdev_state_change); 1170 1171 /** 1172 * netdev_notify_peers - notify network peers about existence of @dev 1173 * @dev: network device 1174 * 1175 * Generate traffic such that interested network peers are aware of 1176 * @dev, such as by generating a gratuitous ARP. This may be used when 1177 * a device wants to inform the rest of the network about some sort of 1178 * reconfiguration such as a failover event or virtual machine 1179 * migration. 1180 */ 1181 void netdev_notify_peers(struct net_device *dev) 1182 { 1183 rtnl_lock(); 1184 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev); 1185 rtnl_unlock(); 1186 } 1187 EXPORT_SYMBOL(netdev_notify_peers); 1188 1189 static int __dev_open(struct net_device *dev) 1190 { 1191 const struct net_device_ops *ops = dev->netdev_ops; 1192 int ret; 1193 1194 ASSERT_RTNL(); 1195 1196 if (!netif_device_present(dev)) 1197 return -ENODEV; 1198 1199 /* Block netpoll from trying to do any rx path servicing. 1200 * If we don't do this there is a chance ndo_poll_controller 1201 * or ndo_poll may be running while we open the device 1202 */ 1203 ret = netpoll_rx_disable(dev); 1204 if (ret) 1205 return ret; 1206 1207 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev); 1208 ret = notifier_to_errno(ret); 1209 if (ret) 1210 return ret; 1211 1212 set_bit(__LINK_STATE_START, &dev->state); 1213 1214 if (ops->ndo_validate_addr) 1215 ret = ops->ndo_validate_addr(dev); 1216 1217 if (!ret && ops->ndo_open) 1218 ret = ops->ndo_open(dev); 1219 1220 netpoll_rx_enable(dev); 1221 1222 if (ret) 1223 clear_bit(__LINK_STATE_START, &dev->state); 1224 else { 1225 dev->flags |= IFF_UP; 1226 net_dmaengine_get(); 1227 dev_set_rx_mode(dev); 1228 dev_activate(dev); 1229 add_device_randomness(dev->dev_addr, dev->addr_len); 1230 } 1231 1232 return ret; 1233 } 1234 1235 /** 1236 * dev_open - prepare an interface for use. 1237 * @dev: device to open 1238 * 1239 * Takes a device from down to up state. The device's private open 1240 * function is invoked and then the multicast lists are loaded. Finally 1241 * the device is moved into the up state and a %NETDEV_UP message is 1242 * sent to the netdev notifier chain. 1243 * 1244 * Calling this function on an active interface is a nop. On a failure 1245 * a negative errno code is returned. 1246 */ 1247 int dev_open(struct net_device *dev) 1248 { 1249 int ret; 1250 1251 if (dev->flags & IFF_UP) 1252 return 0; 1253 1254 ret = __dev_open(dev); 1255 if (ret < 0) 1256 return ret; 1257 1258 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING); 1259 call_netdevice_notifiers(NETDEV_UP, dev); 1260 1261 return ret; 1262 } 1263 EXPORT_SYMBOL(dev_open); 1264 1265 static int __dev_close_many(struct list_head *head) 1266 { 1267 struct net_device *dev; 1268 1269 ASSERT_RTNL(); 1270 might_sleep(); 1271 1272 list_for_each_entry(dev, head, unreg_list) { 1273 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1274 1275 clear_bit(__LINK_STATE_START, &dev->state); 1276 1277 /* Synchronize to scheduled poll. We cannot touch poll list, it 1278 * can be even on different cpu. So just clear netif_running(). 1279 * 1280 * dev->stop() will invoke napi_disable() on all of it's 1281 * napi_struct instances on this device. 1282 */ 1283 smp_mb__after_clear_bit(); /* Commit netif_running(). */ 1284 } 1285 1286 dev_deactivate_many(head); 1287 1288 list_for_each_entry(dev, head, unreg_list) { 1289 const struct net_device_ops *ops = dev->netdev_ops; 1290 1291 /* 1292 * Call the device specific close. This cannot fail. 1293 * Only if device is UP 1294 * 1295 * We allow it to be called even after a DETACH hot-plug 1296 * event. 1297 */ 1298 if (ops->ndo_stop) 1299 ops->ndo_stop(dev); 1300 1301 dev->flags &= ~IFF_UP; 1302 net_dmaengine_put(); 1303 } 1304 1305 return 0; 1306 } 1307 1308 static int __dev_close(struct net_device *dev) 1309 { 1310 int retval; 1311 LIST_HEAD(single); 1312 1313 /* Temporarily disable netpoll until the interface is down */ 1314 retval = netpoll_rx_disable(dev); 1315 if (retval) 1316 return retval; 1317 1318 list_add(&dev->unreg_list, &single); 1319 retval = __dev_close_many(&single); 1320 list_del(&single); 1321 1322 netpoll_rx_enable(dev); 1323 return retval; 1324 } 1325 1326 static int dev_close_many(struct list_head *head) 1327 { 1328 struct net_device *dev, *tmp; 1329 LIST_HEAD(tmp_list); 1330 1331 list_for_each_entry_safe(dev, tmp, head, unreg_list) 1332 if (!(dev->flags & IFF_UP)) 1333 list_move(&dev->unreg_list, &tmp_list); 1334 1335 __dev_close_many(head); 1336 1337 list_for_each_entry(dev, head, unreg_list) { 1338 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING); 1339 call_netdevice_notifiers(NETDEV_DOWN, dev); 1340 } 1341 1342 /* rollback_registered_many needs the complete original list */ 1343 list_splice(&tmp_list, head); 1344 return 0; 1345 } 1346 1347 /** 1348 * dev_close - shutdown an interface. 1349 * @dev: device to shutdown 1350 * 1351 * This function moves an active device into down state. A 1352 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1353 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1354 * chain. 1355 */ 1356 int dev_close(struct net_device *dev) 1357 { 1358 int ret = 0; 1359 if (dev->flags & IFF_UP) { 1360 LIST_HEAD(single); 1361 1362 /* Block netpoll rx while the interface is going down */ 1363 ret = netpoll_rx_disable(dev); 1364 if (ret) 1365 return ret; 1366 1367 list_add(&dev->unreg_list, &single); 1368 dev_close_many(&single); 1369 list_del(&single); 1370 1371 netpoll_rx_enable(dev); 1372 } 1373 return ret; 1374 } 1375 EXPORT_SYMBOL(dev_close); 1376 1377 1378 /** 1379 * dev_disable_lro - disable Large Receive Offload on a device 1380 * @dev: device 1381 * 1382 * Disable Large Receive Offload (LRO) on a net device. Must be 1383 * called under RTNL. This is needed if received packets may be 1384 * forwarded to another interface. 1385 */ 1386 void dev_disable_lro(struct net_device *dev) 1387 { 1388 /* 1389 * If we're trying to disable lro on a vlan device 1390 * use the underlying physical device instead 1391 */ 1392 if (is_vlan_dev(dev)) 1393 dev = vlan_dev_real_dev(dev); 1394 1395 dev->wanted_features &= ~NETIF_F_LRO; 1396 netdev_update_features(dev); 1397 1398 if (unlikely(dev->features & NETIF_F_LRO)) 1399 netdev_WARN(dev, "failed to disable LRO!\n"); 1400 } 1401 EXPORT_SYMBOL(dev_disable_lro); 1402 1403 1404 static int dev_boot_phase = 1; 1405 1406 /** 1407 * register_netdevice_notifier - register a network notifier block 1408 * @nb: notifier 1409 * 1410 * Register a notifier to be called when network device events occur. 1411 * The notifier passed is linked into the kernel structures and must 1412 * not be reused until it has been unregistered. A negative errno code 1413 * is returned on a failure. 1414 * 1415 * When registered all registration and up events are replayed 1416 * to the new notifier to allow device to have a race free 1417 * view of the network device list. 1418 */ 1419 1420 int register_netdevice_notifier(struct notifier_block *nb) 1421 { 1422 struct net_device *dev; 1423 struct net_device *last; 1424 struct net *net; 1425 int err; 1426 1427 rtnl_lock(); 1428 err = raw_notifier_chain_register(&netdev_chain, nb); 1429 if (err) 1430 goto unlock; 1431 if (dev_boot_phase) 1432 goto unlock; 1433 for_each_net(net) { 1434 for_each_netdev(net, dev) { 1435 err = nb->notifier_call(nb, NETDEV_REGISTER, dev); 1436 err = notifier_to_errno(err); 1437 if (err) 1438 goto rollback; 1439 1440 if (!(dev->flags & IFF_UP)) 1441 continue; 1442 1443 nb->notifier_call(nb, NETDEV_UP, dev); 1444 } 1445 } 1446 1447 unlock: 1448 rtnl_unlock(); 1449 return err; 1450 1451 rollback: 1452 last = dev; 1453 for_each_net(net) { 1454 for_each_netdev(net, dev) { 1455 if (dev == last) 1456 goto outroll; 1457 1458 if (dev->flags & IFF_UP) { 1459 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev); 1460 nb->notifier_call(nb, NETDEV_DOWN, dev); 1461 } 1462 nb->notifier_call(nb, NETDEV_UNREGISTER, dev); 1463 } 1464 } 1465 1466 outroll: 1467 raw_notifier_chain_unregister(&netdev_chain, nb); 1468 goto unlock; 1469 } 1470 EXPORT_SYMBOL(register_netdevice_notifier); 1471 1472 /** 1473 * unregister_netdevice_notifier - unregister a network notifier block 1474 * @nb: notifier 1475 * 1476 * Unregister a notifier previously registered by 1477 * register_netdevice_notifier(). The notifier is unlinked into the 1478 * kernel structures and may then be reused. A negative errno code 1479 * is returned on a failure. 1480 * 1481 * After unregistering unregister and down device events are synthesized 1482 * for all devices on the device list to the removed notifier to remove 1483 * the need for special case cleanup code. 1484 */ 1485 1486 int unregister_netdevice_notifier(struct notifier_block *nb) 1487 { 1488 struct net_device *dev; 1489 struct net *net; 1490 int err; 1491 1492 rtnl_lock(); 1493 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1494 if (err) 1495 goto unlock; 1496 1497 for_each_net(net) { 1498 for_each_netdev(net, dev) { 1499 if (dev->flags & IFF_UP) { 1500 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev); 1501 nb->notifier_call(nb, NETDEV_DOWN, dev); 1502 } 1503 nb->notifier_call(nb, NETDEV_UNREGISTER, dev); 1504 } 1505 } 1506 unlock: 1507 rtnl_unlock(); 1508 return err; 1509 } 1510 EXPORT_SYMBOL(unregister_netdevice_notifier); 1511 1512 /** 1513 * call_netdevice_notifiers - call all network notifier blocks 1514 * @val: value passed unmodified to notifier function 1515 * @dev: net_device pointer passed unmodified to notifier function 1516 * 1517 * Call all network notifier blocks. Parameters and return value 1518 * are as for raw_notifier_call_chain(). 1519 */ 1520 1521 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 1522 { 1523 ASSERT_RTNL(); 1524 return raw_notifier_call_chain(&netdev_chain, val, dev); 1525 } 1526 EXPORT_SYMBOL(call_netdevice_notifiers); 1527 1528 static struct static_key netstamp_needed __read_mostly; 1529 #ifdef HAVE_JUMP_LABEL 1530 /* We are not allowed to call static_key_slow_dec() from irq context 1531 * If net_disable_timestamp() is called from irq context, defer the 1532 * static_key_slow_dec() calls. 1533 */ 1534 static atomic_t netstamp_needed_deferred; 1535 #endif 1536 1537 void net_enable_timestamp(void) 1538 { 1539 #ifdef HAVE_JUMP_LABEL 1540 int deferred = atomic_xchg(&netstamp_needed_deferred, 0); 1541 1542 if (deferred) { 1543 while (--deferred) 1544 static_key_slow_dec(&netstamp_needed); 1545 return; 1546 } 1547 #endif 1548 WARN_ON(in_interrupt()); 1549 static_key_slow_inc(&netstamp_needed); 1550 } 1551 EXPORT_SYMBOL(net_enable_timestamp); 1552 1553 void net_disable_timestamp(void) 1554 { 1555 #ifdef HAVE_JUMP_LABEL 1556 if (in_interrupt()) { 1557 atomic_inc(&netstamp_needed_deferred); 1558 return; 1559 } 1560 #endif 1561 static_key_slow_dec(&netstamp_needed); 1562 } 1563 EXPORT_SYMBOL(net_disable_timestamp); 1564 1565 static inline void net_timestamp_set(struct sk_buff *skb) 1566 { 1567 skb->tstamp.tv64 = 0; 1568 if (static_key_false(&netstamp_needed)) 1569 __net_timestamp(skb); 1570 } 1571 1572 #define net_timestamp_check(COND, SKB) \ 1573 if (static_key_false(&netstamp_needed)) { \ 1574 if ((COND) && !(SKB)->tstamp.tv64) \ 1575 __net_timestamp(SKB); \ 1576 } \ 1577 1578 static inline bool is_skb_forwardable(struct net_device *dev, 1579 struct sk_buff *skb) 1580 { 1581 unsigned int len; 1582 1583 if (!(dev->flags & IFF_UP)) 1584 return false; 1585 1586 len = dev->mtu + dev->hard_header_len + VLAN_HLEN; 1587 if (skb->len <= len) 1588 return true; 1589 1590 /* if TSO is enabled, we don't care about the length as the packet 1591 * could be forwarded without being segmented before 1592 */ 1593 if (skb_is_gso(skb)) 1594 return true; 1595 1596 return false; 1597 } 1598 1599 /** 1600 * dev_forward_skb - loopback an skb to another netif 1601 * 1602 * @dev: destination network device 1603 * @skb: buffer to forward 1604 * 1605 * return values: 1606 * NET_RX_SUCCESS (no congestion) 1607 * NET_RX_DROP (packet was dropped, but freed) 1608 * 1609 * dev_forward_skb can be used for injecting an skb from the 1610 * start_xmit function of one device into the receive queue 1611 * of another device. 1612 * 1613 * The receiving device may be in another namespace, so 1614 * we have to clear all information in the skb that could 1615 * impact namespace isolation. 1616 */ 1617 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1618 { 1619 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) { 1620 if (skb_copy_ubufs(skb, GFP_ATOMIC)) { 1621 atomic_long_inc(&dev->rx_dropped); 1622 kfree_skb(skb); 1623 return NET_RX_DROP; 1624 } 1625 } 1626 1627 skb_orphan(skb); 1628 nf_reset(skb); 1629 1630 if (unlikely(!is_skb_forwardable(dev, skb))) { 1631 atomic_long_inc(&dev->rx_dropped); 1632 kfree_skb(skb); 1633 return NET_RX_DROP; 1634 } 1635 skb->skb_iif = 0; 1636 skb->dev = dev; 1637 skb_dst_drop(skb); 1638 skb->tstamp.tv64 = 0; 1639 skb->pkt_type = PACKET_HOST; 1640 skb->protocol = eth_type_trans(skb, dev); 1641 skb->mark = 0; 1642 secpath_reset(skb); 1643 nf_reset(skb); 1644 return netif_rx(skb); 1645 } 1646 EXPORT_SYMBOL_GPL(dev_forward_skb); 1647 1648 static inline int deliver_skb(struct sk_buff *skb, 1649 struct packet_type *pt_prev, 1650 struct net_device *orig_dev) 1651 { 1652 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC))) 1653 return -ENOMEM; 1654 atomic_inc(&skb->users); 1655 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 1656 } 1657 1658 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb) 1659 { 1660 if (!ptype->af_packet_priv || !skb->sk) 1661 return false; 1662 1663 if (ptype->id_match) 1664 return ptype->id_match(ptype, skb->sk); 1665 else if ((struct sock *)ptype->af_packet_priv == skb->sk) 1666 return true; 1667 1668 return false; 1669 } 1670 1671 /* 1672 * Support routine. Sends outgoing frames to any network 1673 * taps currently in use. 1674 */ 1675 1676 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 1677 { 1678 struct packet_type *ptype; 1679 struct sk_buff *skb2 = NULL; 1680 struct packet_type *pt_prev = NULL; 1681 1682 rcu_read_lock(); 1683 list_for_each_entry_rcu(ptype, &ptype_all, list) { 1684 /* Never send packets back to the socket 1685 * they originated from - MvS (miquels@drinkel.ow.org) 1686 */ 1687 if ((ptype->dev == dev || !ptype->dev) && 1688 (!skb_loop_sk(ptype, skb))) { 1689 if (pt_prev) { 1690 deliver_skb(skb2, pt_prev, skb->dev); 1691 pt_prev = ptype; 1692 continue; 1693 } 1694 1695 skb2 = skb_clone(skb, GFP_ATOMIC); 1696 if (!skb2) 1697 break; 1698 1699 net_timestamp_set(skb2); 1700 1701 /* skb->nh should be correctly 1702 set by sender, so that the second statement is 1703 just protection against buggy protocols. 1704 */ 1705 skb_reset_mac_header(skb2); 1706 1707 if (skb_network_header(skb2) < skb2->data || 1708 skb2->network_header > skb2->tail) { 1709 net_crit_ratelimited("protocol %04x is buggy, dev %s\n", 1710 ntohs(skb2->protocol), 1711 dev->name); 1712 skb_reset_network_header(skb2); 1713 } 1714 1715 skb2->transport_header = skb2->network_header; 1716 skb2->pkt_type = PACKET_OUTGOING; 1717 pt_prev = ptype; 1718 } 1719 } 1720 if (pt_prev) 1721 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 1722 rcu_read_unlock(); 1723 } 1724 1725 /** 1726 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change 1727 * @dev: Network device 1728 * @txq: number of queues available 1729 * 1730 * If real_num_tx_queues is changed the tc mappings may no longer be 1731 * valid. To resolve this verify the tc mapping remains valid and if 1732 * not NULL the mapping. With no priorities mapping to this 1733 * offset/count pair it will no longer be used. In the worst case TC0 1734 * is invalid nothing can be done so disable priority mappings. If is 1735 * expected that drivers will fix this mapping if they can before 1736 * calling netif_set_real_num_tx_queues. 1737 */ 1738 static void netif_setup_tc(struct net_device *dev, unsigned int txq) 1739 { 1740 int i; 1741 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 1742 1743 /* If TC0 is invalidated disable TC mapping */ 1744 if (tc->offset + tc->count > txq) { 1745 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n"); 1746 dev->num_tc = 0; 1747 return; 1748 } 1749 1750 /* Invalidated prio to tc mappings set to TC0 */ 1751 for (i = 1; i < TC_BITMASK + 1; i++) { 1752 int q = netdev_get_prio_tc_map(dev, i); 1753 1754 tc = &dev->tc_to_txq[q]; 1755 if (tc->offset + tc->count > txq) { 1756 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n", 1757 i, q); 1758 netdev_set_prio_tc_map(dev, i, 0); 1759 } 1760 } 1761 } 1762 1763 #ifdef CONFIG_XPS 1764 static DEFINE_MUTEX(xps_map_mutex); 1765 #define xmap_dereference(P) \ 1766 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex)) 1767 1768 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps, 1769 int cpu, u16 index) 1770 { 1771 struct xps_map *map = NULL; 1772 int pos; 1773 1774 if (dev_maps) 1775 map = xmap_dereference(dev_maps->cpu_map[cpu]); 1776 1777 for (pos = 0; map && pos < map->len; pos++) { 1778 if (map->queues[pos] == index) { 1779 if (map->len > 1) { 1780 map->queues[pos] = map->queues[--map->len]; 1781 } else { 1782 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL); 1783 kfree_rcu(map, rcu); 1784 map = NULL; 1785 } 1786 break; 1787 } 1788 } 1789 1790 return map; 1791 } 1792 1793 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index) 1794 { 1795 struct xps_dev_maps *dev_maps; 1796 int cpu, i; 1797 bool active = false; 1798 1799 mutex_lock(&xps_map_mutex); 1800 dev_maps = xmap_dereference(dev->xps_maps); 1801 1802 if (!dev_maps) 1803 goto out_no_maps; 1804 1805 for_each_possible_cpu(cpu) { 1806 for (i = index; i < dev->num_tx_queues; i++) { 1807 if (!remove_xps_queue(dev_maps, cpu, i)) 1808 break; 1809 } 1810 if (i == dev->num_tx_queues) 1811 active = true; 1812 } 1813 1814 if (!active) { 1815 RCU_INIT_POINTER(dev->xps_maps, NULL); 1816 kfree_rcu(dev_maps, rcu); 1817 } 1818 1819 for (i = index; i < dev->num_tx_queues; i++) 1820 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i), 1821 NUMA_NO_NODE); 1822 1823 out_no_maps: 1824 mutex_unlock(&xps_map_mutex); 1825 } 1826 1827 static struct xps_map *expand_xps_map(struct xps_map *map, 1828 int cpu, u16 index) 1829 { 1830 struct xps_map *new_map; 1831 int alloc_len = XPS_MIN_MAP_ALLOC; 1832 int i, pos; 1833 1834 for (pos = 0; map && pos < map->len; pos++) { 1835 if (map->queues[pos] != index) 1836 continue; 1837 return map; 1838 } 1839 1840 /* Need to add queue to this CPU's existing map */ 1841 if (map) { 1842 if (pos < map->alloc_len) 1843 return map; 1844 1845 alloc_len = map->alloc_len * 2; 1846 } 1847 1848 /* Need to allocate new map to store queue on this CPU's map */ 1849 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL, 1850 cpu_to_node(cpu)); 1851 if (!new_map) 1852 return NULL; 1853 1854 for (i = 0; i < pos; i++) 1855 new_map->queues[i] = map->queues[i]; 1856 new_map->alloc_len = alloc_len; 1857 new_map->len = pos; 1858 1859 return new_map; 1860 } 1861 1862 int netif_set_xps_queue(struct net_device *dev, struct cpumask *mask, u16 index) 1863 { 1864 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL; 1865 struct xps_map *map, *new_map; 1866 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES); 1867 int cpu, numa_node_id = -2; 1868 bool active = false; 1869 1870 mutex_lock(&xps_map_mutex); 1871 1872 dev_maps = xmap_dereference(dev->xps_maps); 1873 1874 /* allocate memory for queue storage */ 1875 for_each_online_cpu(cpu) { 1876 if (!cpumask_test_cpu(cpu, mask)) 1877 continue; 1878 1879 if (!new_dev_maps) 1880 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL); 1881 if (!new_dev_maps) { 1882 mutex_unlock(&xps_map_mutex); 1883 return -ENOMEM; 1884 } 1885 1886 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) : 1887 NULL; 1888 1889 map = expand_xps_map(map, cpu, index); 1890 if (!map) 1891 goto error; 1892 1893 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map); 1894 } 1895 1896 if (!new_dev_maps) 1897 goto out_no_new_maps; 1898 1899 for_each_possible_cpu(cpu) { 1900 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) { 1901 /* add queue to CPU maps */ 1902 int pos = 0; 1903 1904 map = xmap_dereference(new_dev_maps->cpu_map[cpu]); 1905 while ((pos < map->len) && (map->queues[pos] != index)) 1906 pos++; 1907 1908 if (pos == map->len) 1909 map->queues[map->len++] = index; 1910 #ifdef CONFIG_NUMA 1911 if (numa_node_id == -2) 1912 numa_node_id = cpu_to_node(cpu); 1913 else if (numa_node_id != cpu_to_node(cpu)) 1914 numa_node_id = -1; 1915 #endif 1916 } else if (dev_maps) { 1917 /* fill in the new device map from the old device map */ 1918 map = xmap_dereference(dev_maps->cpu_map[cpu]); 1919 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map); 1920 } 1921 1922 } 1923 1924 rcu_assign_pointer(dev->xps_maps, new_dev_maps); 1925 1926 /* Cleanup old maps */ 1927 if (dev_maps) { 1928 for_each_possible_cpu(cpu) { 1929 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]); 1930 map = xmap_dereference(dev_maps->cpu_map[cpu]); 1931 if (map && map != new_map) 1932 kfree_rcu(map, rcu); 1933 } 1934 1935 kfree_rcu(dev_maps, rcu); 1936 } 1937 1938 dev_maps = new_dev_maps; 1939 active = true; 1940 1941 out_no_new_maps: 1942 /* update Tx queue numa node */ 1943 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index), 1944 (numa_node_id >= 0) ? numa_node_id : 1945 NUMA_NO_NODE); 1946 1947 if (!dev_maps) 1948 goto out_no_maps; 1949 1950 /* removes queue from unused CPUs */ 1951 for_each_possible_cpu(cpu) { 1952 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) 1953 continue; 1954 1955 if (remove_xps_queue(dev_maps, cpu, index)) 1956 active = true; 1957 } 1958 1959 /* free map if not active */ 1960 if (!active) { 1961 RCU_INIT_POINTER(dev->xps_maps, NULL); 1962 kfree_rcu(dev_maps, rcu); 1963 } 1964 1965 out_no_maps: 1966 mutex_unlock(&xps_map_mutex); 1967 1968 return 0; 1969 error: 1970 /* remove any maps that we added */ 1971 for_each_possible_cpu(cpu) { 1972 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]); 1973 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) : 1974 NULL; 1975 if (new_map && new_map != map) 1976 kfree(new_map); 1977 } 1978 1979 mutex_unlock(&xps_map_mutex); 1980 1981 kfree(new_dev_maps); 1982 return -ENOMEM; 1983 } 1984 EXPORT_SYMBOL(netif_set_xps_queue); 1985 1986 #endif 1987 /* 1988 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 1989 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed. 1990 */ 1991 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 1992 { 1993 int rc; 1994 1995 if (txq < 1 || txq > dev->num_tx_queues) 1996 return -EINVAL; 1997 1998 if (dev->reg_state == NETREG_REGISTERED || 1999 dev->reg_state == NETREG_UNREGISTERING) { 2000 ASSERT_RTNL(); 2001 2002 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 2003 txq); 2004 if (rc) 2005 return rc; 2006 2007 if (dev->num_tc) 2008 netif_setup_tc(dev, txq); 2009 2010 if (txq < dev->real_num_tx_queues) { 2011 qdisc_reset_all_tx_gt(dev, txq); 2012 #ifdef CONFIG_XPS 2013 netif_reset_xps_queues_gt(dev, txq); 2014 #endif 2015 } 2016 } 2017 2018 dev->real_num_tx_queues = txq; 2019 return 0; 2020 } 2021 EXPORT_SYMBOL(netif_set_real_num_tx_queues); 2022 2023 #ifdef CONFIG_RPS 2024 /** 2025 * netif_set_real_num_rx_queues - set actual number of RX queues used 2026 * @dev: Network device 2027 * @rxq: Actual number of RX queues 2028 * 2029 * This must be called either with the rtnl_lock held or before 2030 * registration of the net device. Returns 0 on success, or a 2031 * negative error code. If called before registration, it always 2032 * succeeds. 2033 */ 2034 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 2035 { 2036 int rc; 2037 2038 if (rxq < 1 || rxq > dev->num_rx_queues) 2039 return -EINVAL; 2040 2041 if (dev->reg_state == NETREG_REGISTERED) { 2042 ASSERT_RTNL(); 2043 2044 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 2045 rxq); 2046 if (rc) 2047 return rc; 2048 } 2049 2050 dev->real_num_rx_queues = rxq; 2051 return 0; 2052 } 2053 EXPORT_SYMBOL(netif_set_real_num_rx_queues); 2054 #endif 2055 2056 /** 2057 * netif_get_num_default_rss_queues - default number of RSS queues 2058 * 2059 * This routine should set an upper limit on the number of RSS queues 2060 * used by default by multiqueue devices. 2061 */ 2062 int netif_get_num_default_rss_queues(void) 2063 { 2064 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus()); 2065 } 2066 EXPORT_SYMBOL(netif_get_num_default_rss_queues); 2067 2068 static inline void __netif_reschedule(struct Qdisc *q) 2069 { 2070 struct softnet_data *sd; 2071 unsigned long flags; 2072 2073 local_irq_save(flags); 2074 sd = &__get_cpu_var(softnet_data); 2075 q->next_sched = NULL; 2076 *sd->output_queue_tailp = q; 2077 sd->output_queue_tailp = &q->next_sched; 2078 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2079 local_irq_restore(flags); 2080 } 2081 2082 void __netif_schedule(struct Qdisc *q) 2083 { 2084 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 2085 __netif_reschedule(q); 2086 } 2087 EXPORT_SYMBOL(__netif_schedule); 2088 2089 void dev_kfree_skb_irq(struct sk_buff *skb) 2090 { 2091 if (atomic_dec_and_test(&skb->users)) { 2092 struct softnet_data *sd; 2093 unsigned long flags; 2094 2095 local_irq_save(flags); 2096 sd = &__get_cpu_var(softnet_data); 2097 skb->next = sd->completion_queue; 2098 sd->completion_queue = skb; 2099 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2100 local_irq_restore(flags); 2101 } 2102 } 2103 EXPORT_SYMBOL(dev_kfree_skb_irq); 2104 2105 void dev_kfree_skb_any(struct sk_buff *skb) 2106 { 2107 if (in_irq() || irqs_disabled()) 2108 dev_kfree_skb_irq(skb); 2109 else 2110 dev_kfree_skb(skb); 2111 } 2112 EXPORT_SYMBOL(dev_kfree_skb_any); 2113 2114 2115 /** 2116 * netif_device_detach - mark device as removed 2117 * @dev: network device 2118 * 2119 * Mark device as removed from system and therefore no longer available. 2120 */ 2121 void netif_device_detach(struct net_device *dev) 2122 { 2123 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 2124 netif_running(dev)) { 2125 netif_tx_stop_all_queues(dev); 2126 } 2127 } 2128 EXPORT_SYMBOL(netif_device_detach); 2129 2130 /** 2131 * netif_device_attach - mark device as attached 2132 * @dev: network device 2133 * 2134 * Mark device as attached from system and restart if needed. 2135 */ 2136 void netif_device_attach(struct net_device *dev) 2137 { 2138 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 2139 netif_running(dev)) { 2140 netif_tx_wake_all_queues(dev); 2141 __netdev_watchdog_up(dev); 2142 } 2143 } 2144 EXPORT_SYMBOL(netif_device_attach); 2145 2146 static void skb_warn_bad_offload(const struct sk_buff *skb) 2147 { 2148 static const netdev_features_t null_features = 0; 2149 struct net_device *dev = skb->dev; 2150 const char *driver = ""; 2151 2152 if (dev && dev->dev.parent) 2153 driver = dev_driver_string(dev->dev.parent); 2154 2155 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d " 2156 "gso_type=%d ip_summed=%d\n", 2157 driver, dev ? &dev->features : &null_features, 2158 skb->sk ? &skb->sk->sk_route_caps : &null_features, 2159 skb->len, skb->data_len, skb_shinfo(skb)->gso_size, 2160 skb_shinfo(skb)->gso_type, skb->ip_summed); 2161 } 2162 2163 /* 2164 * Invalidate hardware checksum when packet is to be mangled, and 2165 * complete checksum manually on outgoing path. 2166 */ 2167 int skb_checksum_help(struct sk_buff *skb) 2168 { 2169 __wsum csum; 2170 int ret = 0, offset; 2171 2172 if (skb->ip_summed == CHECKSUM_COMPLETE) 2173 goto out_set_summed; 2174 2175 if (unlikely(skb_shinfo(skb)->gso_size)) { 2176 skb_warn_bad_offload(skb); 2177 return -EINVAL; 2178 } 2179 2180 /* Before computing a checksum, we should make sure no frag could 2181 * be modified by an external entity : checksum could be wrong. 2182 */ 2183 if (skb_has_shared_frag(skb)) { 2184 ret = __skb_linearize(skb); 2185 if (ret) 2186 goto out; 2187 } 2188 2189 offset = skb_checksum_start_offset(skb); 2190 BUG_ON(offset >= skb_headlen(skb)); 2191 csum = skb_checksum(skb, offset, skb->len - offset, 0); 2192 2193 offset += skb->csum_offset; 2194 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 2195 2196 if (skb_cloned(skb) && 2197 !skb_clone_writable(skb, offset + sizeof(__sum16))) { 2198 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2199 if (ret) 2200 goto out; 2201 } 2202 2203 *(__sum16 *)(skb->data + offset) = csum_fold(csum); 2204 out_set_summed: 2205 skb->ip_summed = CHECKSUM_NONE; 2206 out: 2207 return ret; 2208 } 2209 EXPORT_SYMBOL(skb_checksum_help); 2210 2211 /** 2212 * skb_mac_gso_segment - mac layer segmentation handler. 2213 * @skb: buffer to segment 2214 * @features: features for the output path (see dev->features) 2215 */ 2216 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 2217 netdev_features_t features) 2218 { 2219 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 2220 struct packet_offload *ptype; 2221 __be16 type = skb->protocol; 2222 2223 while (type == htons(ETH_P_8021Q)) { 2224 int vlan_depth = ETH_HLEN; 2225 struct vlan_hdr *vh; 2226 2227 if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN))) 2228 return ERR_PTR(-EINVAL); 2229 2230 vh = (struct vlan_hdr *)(skb->data + vlan_depth); 2231 type = vh->h_vlan_encapsulated_proto; 2232 vlan_depth += VLAN_HLEN; 2233 } 2234 2235 __skb_pull(skb, skb->mac_len); 2236 2237 rcu_read_lock(); 2238 list_for_each_entry_rcu(ptype, &offload_base, list) { 2239 if (ptype->type == type && ptype->callbacks.gso_segment) { 2240 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) { 2241 int err; 2242 2243 err = ptype->callbacks.gso_send_check(skb); 2244 segs = ERR_PTR(err); 2245 if (err || skb_gso_ok(skb, features)) 2246 break; 2247 __skb_push(skb, (skb->data - 2248 skb_network_header(skb))); 2249 } 2250 segs = ptype->callbacks.gso_segment(skb, features); 2251 break; 2252 } 2253 } 2254 rcu_read_unlock(); 2255 2256 __skb_push(skb, skb->data - skb_mac_header(skb)); 2257 2258 return segs; 2259 } 2260 EXPORT_SYMBOL(skb_mac_gso_segment); 2261 2262 2263 /* openvswitch calls this on rx path, so we need a different check. 2264 */ 2265 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path) 2266 { 2267 if (tx_path) 2268 return skb->ip_summed != CHECKSUM_PARTIAL; 2269 else 2270 return skb->ip_summed == CHECKSUM_NONE; 2271 } 2272 2273 /** 2274 * __skb_gso_segment - Perform segmentation on skb. 2275 * @skb: buffer to segment 2276 * @features: features for the output path (see dev->features) 2277 * @tx_path: whether it is called in TX path 2278 * 2279 * This function segments the given skb and returns a list of segments. 2280 * 2281 * It may return NULL if the skb requires no segmentation. This is 2282 * only possible when GSO is used for verifying header integrity. 2283 */ 2284 struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 2285 netdev_features_t features, bool tx_path) 2286 { 2287 if (unlikely(skb_needs_check(skb, tx_path))) { 2288 int err; 2289 2290 skb_warn_bad_offload(skb); 2291 2292 if (skb_header_cloned(skb) && 2293 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))) 2294 return ERR_PTR(err); 2295 } 2296 2297 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb); 2298 skb_reset_mac_header(skb); 2299 skb_reset_mac_len(skb); 2300 2301 return skb_mac_gso_segment(skb, features); 2302 } 2303 EXPORT_SYMBOL(__skb_gso_segment); 2304 2305 /* Take action when hardware reception checksum errors are detected. */ 2306 #ifdef CONFIG_BUG 2307 void netdev_rx_csum_fault(struct net_device *dev) 2308 { 2309 if (net_ratelimit()) { 2310 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>"); 2311 dump_stack(); 2312 } 2313 } 2314 EXPORT_SYMBOL(netdev_rx_csum_fault); 2315 #endif 2316 2317 /* Actually, we should eliminate this check as soon as we know, that: 2318 * 1. IOMMU is present and allows to map all the memory. 2319 * 2. No high memory really exists on this machine. 2320 */ 2321 2322 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 2323 { 2324 #ifdef CONFIG_HIGHMEM 2325 int i; 2326 if (!(dev->features & NETIF_F_HIGHDMA)) { 2327 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2328 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2329 if (PageHighMem(skb_frag_page(frag))) 2330 return 1; 2331 } 2332 } 2333 2334 if (PCI_DMA_BUS_IS_PHYS) { 2335 struct device *pdev = dev->dev.parent; 2336 2337 if (!pdev) 2338 return 0; 2339 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2340 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2341 dma_addr_t addr = page_to_phys(skb_frag_page(frag)); 2342 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask) 2343 return 1; 2344 } 2345 } 2346 #endif 2347 return 0; 2348 } 2349 2350 struct dev_gso_cb { 2351 void (*destructor)(struct sk_buff *skb); 2352 }; 2353 2354 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb) 2355 2356 static void dev_gso_skb_destructor(struct sk_buff *skb) 2357 { 2358 struct dev_gso_cb *cb; 2359 2360 do { 2361 struct sk_buff *nskb = skb->next; 2362 2363 skb->next = nskb->next; 2364 nskb->next = NULL; 2365 kfree_skb(nskb); 2366 } while (skb->next); 2367 2368 cb = DEV_GSO_CB(skb); 2369 if (cb->destructor) 2370 cb->destructor(skb); 2371 } 2372 2373 /** 2374 * dev_gso_segment - Perform emulated hardware segmentation on skb. 2375 * @skb: buffer to segment 2376 * @features: device features as applicable to this skb 2377 * 2378 * This function segments the given skb and stores the list of segments 2379 * in skb->next. 2380 */ 2381 static int dev_gso_segment(struct sk_buff *skb, netdev_features_t features) 2382 { 2383 struct sk_buff *segs; 2384 2385 segs = skb_gso_segment(skb, features); 2386 2387 /* Verifying header integrity only. */ 2388 if (!segs) 2389 return 0; 2390 2391 if (IS_ERR(segs)) 2392 return PTR_ERR(segs); 2393 2394 skb->next = segs; 2395 DEV_GSO_CB(skb)->destructor = skb->destructor; 2396 skb->destructor = dev_gso_skb_destructor; 2397 2398 return 0; 2399 } 2400 2401 static bool can_checksum_protocol(netdev_features_t features, __be16 protocol) 2402 { 2403 return ((features & NETIF_F_GEN_CSUM) || 2404 ((features & NETIF_F_V4_CSUM) && 2405 protocol == htons(ETH_P_IP)) || 2406 ((features & NETIF_F_V6_CSUM) && 2407 protocol == htons(ETH_P_IPV6)) || 2408 ((features & NETIF_F_FCOE_CRC) && 2409 protocol == htons(ETH_P_FCOE))); 2410 } 2411 2412 static netdev_features_t harmonize_features(struct sk_buff *skb, 2413 __be16 protocol, netdev_features_t features) 2414 { 2415 if (skb->ip_summed != CHECKSUM_NONE && 2416 !can_checksum_protocol(features, protocol)) { 2417 features &= ~NETIF_F_ALL_CSUM; 2418 features &= ~NETIF_F_SG; 2419 } else if (illegal_highdma(skb->dev, skb)) { 2420 features &= ~NETIF_F_SG; 2421 } 2422 2423 return features; 2424 } 2425 2426 netdev_features_t netif_skb_features(struct sk_buff *skb) 2427 { 2428 __be16 protocol = skb->protocol; 2429 netdev_features_t features = skb->dev->features; 2430 2431 if (skb_shinfo(skb)->gso_segs > skb->dev->gso_max_segs) 2432 features &= ~NETIF_F_GSO_MASK; 2433 2434 if (protocol == htons(ETH_P_8021Q)) { 2435 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data; 2436 protocol = veh->h_vlan_encapsulated_proto; 2437 } else if (!vlan_tx_tag_present(skb)) { 2438 return harmonize_features(skb, protocol, features); 2439 } 2440 2441 features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_TX); 2442 2443 if (protocol != htons(ETH_P_8021Q)) { 2444 return harmonize_features(skb, protocol, features); 2445 } else { 2446 features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST | 2447 NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_TX; 2448 return harmonize_features(skb, protocol, features); 2449 } 2450 } 2451 EXPORT_SYMBOL(netif_skb_features); 2452 2453 /* 2454 * Returns true if either: 2455 * 1. skb has frag_list and the device doesn't support FRAGLIST, or 2456 * 2. skb is fragmented and the device does not support SG. 2457 */ 2458 static inline int skb_needs_linearize(struct sk_buff *skb, 2459 int features) 2460 { 2461 return skb_is_nonlinear(skb) && 2462 ((skb_has_frag_list(skb) && 2463 !(features & NETIF_F_FRAGLIST)) || 2464 (skb_shinfo(skb)->nr_frags && 2465 !(features & NETIF_F_SG))); 2466 } 2467 2468 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 2469 struct netdev_queue *txq) 2470 { 2471 const struct net_device_ops *ops = dev->netdev_ops; 2472 int rc = NETDEV_TX_OK; 2473 unsigned int skb_len; 2474 2475 if (likely(!skb->next)) { 2476 netdev_features_t features; 2477 2478 /* 2479 * If device doesn't need skb->dst, release it right now while 2480 * its hot in this cpu cache 2481 */ 2482 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 2483 skb_dst_drop(skb); 2484 2485 features = netif_skb_features(skb); 2486 2487 if (vlan_tx_tag_present(skb) && 2488 !(features & NETIF_F_HW_VLAN_TX)) { 2489 skb = __vlan_put_tag(skb, vlan_tx_tag_get(skb)); 2490 if (unlikely(!skb)) 2491 goto out; 2492 2493 skb->vlan_tci = 0; 2494 } 2495 2496 /* If encapsulation offload request, verify we are testing 2497 * hardware encapsulation features instead of standard 2498 * features for the netdev 2499 */ 2500 if (skb->encapsulation) 2501 features &= dev->hw_enc_features; 2502 2503 if (netif_needs_gso(skb, features)) { 2504 if (unlikely(dev_gso_segment(skb, features))) 2505 goto out_kfree_skb; 2506 if (skb->next) 2507 goto gso; 2508 } else { 2509 if (skb_needs_linearize(skb, features) && 2510 __skb_linearize(skb)) 2511 goto out_kfree_skb; 2512 2513 /* If packet is not checksummed and device does not 2514 * support checksumming for this protocol, complete 2515 * checksumming here. 2516 */ 2517 if (skb->ip_summed == CHECKSUM_PARTIAL) { 2518 if (skb->encapsulation) 2519 skb_set_inner_transport_header(skb, 2520 skb_checksum_start_offset(skb)); 2521 else 2522 skb_set_transport_header(skb, 2523 skb_checksum_start_offset(skb)); 2524 if (!(features & NETIF_F_ALL_CSUM) && 2525 skb_checksum_help(skb)) 2526 goto out_kfree_skb; 2527 } 2528 } 2529 2530 if (!list_empty(&ptype_all)) 2531 dev_queue_xmit_nit(skb, dev); 2532 2533 skb_len = skb->len; 2534 rc = ops->ndo_start_xmit(skb, dev); 2535 trace_net_dev_xmit(skb, rc, dev, skb_len); 2536 if (rc == NETDEV_TX_OK) 2537 txq_trans_update(txq); 2538 return rc; 2539 } 2540 2541 gso: 2542 do { 2543 struct sk_buff *nskb = skb->next; 2544 2545 skb->next = nskb->next; 2546 nskb->next = NULL; 2547 2548 /* 2549 * If device doesn't need nskb->dst, release it right now while 2550 * its hot in this cpu cache 2551 */ 2552 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 2553 skb_dst_drop(nskb); 2554 2555 if (!list_empty(&ptype_all)) 2556 dev_queue_xmit_nit(nskb, dev); 2557 2558 skb_len = nskb->len; 2559 rc = ops->ndo_start_xmit(nskb, dev); 2560 trace_net_dev_xmit(nskb, rc, dev, skb_len); 2561 if (unlikely(rc != NETDEV_TX_OK)) { 2562 if (rc & ~NETDEV_TX_MASK) 2563 goto out_kfree_gso_skb; 2564 nskb->next = skb->next; 2565 skb->next = nskb; 2566 return rc; 2567 } 2568 txq_trans_update(txq); 2569 if (unlikely(netif_xmit_stopped(txq) && skb->next)) 2570 return NETDEV_TX_BUSY; 2571 } while (skb->next); 2572 2573 out_kfree_gso_skb: 2574 if (likely(skb->next == NULL)) 2575 skb->destructor = DEV_GSO_CB(skb)->destructor; 2576 out_kfree_skb: 2577 kfree_skb(skb); 2578 out: 2579 return rc; 2580 } 2581 2582 static void qdisc_pkt_len_init(struct sk_buff *skb) 2583 { 2584 const struct skb_shared_info *shinfo = skb_shinfo(skb); 2585 2586 qdisc_skb_cb(skb)->pkt_len = skb->len; 2587 2588 /* To get more precise estimation of bytes sent on wire, 2589 * we add to pkt_len the headers size of all segments 2590 */ 2591 if (shinfo->gso_size) { 2592 unsigned int hdr_len; 2593 2594 /* mac layer + network layer */ 2595 hdr_len = skb_transport_header(skb) - skb_mac_header(skb); 2596 2597 /* + transport layer */ 2598 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) 2599 hdr_len += tcp_hdrlen(skb); 2600 else 2601 hdr_len += sizeof(struct udphdr); 2602 qdisc_skb_cb(skb)->pkt_len += (shinfo->gso_segs - 1) * hdr_len; 2603 } 2604 } 2605 2606 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 2607 struct net_device *dev, 2608 struct netdev_queue *txq) 2609 { 2610 spinlock_t *root_lock = qdisc_lock(q); 2611 bool contended; 2612 int rc; 2613 2614 qdisc_pkt_len_init(skb); 2615 qdisc_calculate_pkt_len(skb, q); 2616 /* 2617 * Heuristic to force contended enqueues to serialize on a 2618 * separate lock before trying to get qdisc main lock. 2619 * This permits __QDISC_STATE_RUNNING owner to get the lock more often 2620 * and dequeue packets faster. 2621 */ 2622 contended = qdisc_is_running(q); 2623 if (unlikely(contended)) 2624 spin_lock(&q->busylock); 2625 2626 spin_lock(root_lock); 2627 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 2628 kfree_skb(skb); 2629 rc = NET_XMIT_DROP; 2630 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 2631 qdisc_run_begin(q)) { 2632 /* 2633 * This is a work-conserving queue; there are no old skbs 2634 * waiting to be sent out; and the qdisc is not running - 2635 * xmit the skb directly. 2636 */ 2637 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE)) 2638 skb_dst_force(skb); 2639 2640 qdisc_bstats_update(q, skb); 2641 2642 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) { 2643 if (unlikely(contended)) { 2644 spin_unlock(&q->busylock); 2645 contended = false; 2646 } 2647 __qdisc_run(q); 2648 } else 2649 qdisc_run_end(q); 2650 2651 rc = NET_XMIT_SUCCESS; 2652 } else { 2653 skb_dst_force(skb); 2654 rc = q->enqueue(skb, q) & NET_XMIT_MASK; 2655 if (qdisc_run_begin(q)) { 2656 if (unlikely(contended)) { 2657 spin_unlock(&q->busylock); 2658 contended = false; 2659 } 2660 __qdisc_run(q); 2661 } 2662 } 2663 spin_unlock(root_lock); 2664 if (unlikely(contended)) 2665 spin_unlock(&q->busylock); 2666 return rc; 2667 } 2668 2669 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP) 2670 static void skb_update_prio(struct sk_buff *skb) 2671 { 2672 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap); 2673 2674 if (!skb->priority && skb->sk && map) { 2675 unsigned int prioidx = skb->sk->sk_cgrp_prioidx; 2676 2677 if (prioidx < map->priomap_len) 2678 skb->priority = map->priomap[prioidx]; 2679 } 2680 } 2681 #else 2682 #define skb_update_prio(skb) 2683 #endif 2684 2685 static DEFINE_PER_CPU(int, xmit_recursion); 2686 #define RECURSION_LIMIT 10 2687 2688 /** 2689 * dev_loopback_xmit - loop back @skb 2690 * @skb: buffer to transmit 2691 */ 2692 int dev_loopback_xmit(struct sk_buff *skb) 2693 { 2694 skb_reset_mac_header(skb); 2695 __skb_pull(skb, skb_network_offset(skb)); 2696 skb->pkt_type = PACKET_LOOPBACK; 2697 skb->ip_summed = CHECKSUM_UNNECESSARY; 2698 WARN_ON(!skb_dst(skb)); 2699 skb_dst_force(skb); 2700 netif_rx_ni(skb); 2701 return 0; 2702 } 2703 EXPORT_SYMBOL(dev_loopback_xmit); 2704 2705 /** 2706 * dev_queue_xmit - transmit a buffer 2707 * @skb: buffer to transmit 2708 * 2709 * Queue a buffer for transmission to a network device. The caller must 2710 * have set the device and priority and built the buffer before calling 2711 * this function. The function can be called from an interrupt. 2712 * 2713 * A negative errno code is returned on a failure. A success does not 2714 * guarantee the frame will be transmitted as it may be dropped due 2715 * to congestion or traffic shaping. 2716 * 2717 * ----------------------------------------------------------------------------------- 2718 * I notice this method can also return errors from the queue disciplines, 2719 * including NET_XMIT_DROP, which is a positive value. So, errors can also 2720 * be positive. 2721 * 2722 * Regardless of the return value, the skb is consumed, so it is currently 2723 * difficult to retry a send to this method. (You can bump the ref count 2724 * before sending to hold a reference for retry if you are careful.) 2725 * 2726 * When calling this method, interrupts MUST be enabled. This is because 2727 * the BH enable code must have IRQs enabled so that it will not deadlock. 2728 * --BLG 2729 */ 2730 int dev_queue_xmit(struct sk_buff *skb) 2731 { 2732 struct net_device *dev = skb->dev; 2733 struct netdev_queue *txq; 2734 struct Qdisc *q; 2735 int rc = -ENOMEM; 2736 2737 skb_reset_mac_header(skb); 2738 2739 /* Disable soft irqs for various locks below. Also 2740 * stops preemption for RCU. 2741 */ 2742 rcu_read_lock_bh(); 2743 2744 skb_update_prio(skb); 2745 2746 txq = netdev_pick_tx(dev, skb); 2747 q = rcu_dereference_bh(txq->qdisc); 2748 2749 #ifdef CONFIG_NET_CLS_ACT 2750 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS); 2751 #endif 2752 trace_net_dev_queue(skb); 2753 if (q->enqueue) { 2754 rc = __dev_xmit_skb(skb, q, dev, txq); 2755 goto out; 2756 } 2757 2758 /* The device has no queue. Common case for software devices: 2759 loopback, all the sorts of tunnels... 2760 2761 Really, it is unlikely that netif_tx_lock protection is necessary 2762 here. (f.e. loopback and IP tunnels are clean ignoring statistics 2763 counters.) 2764 However, it is possible, that they rely on protection 2765 made by us here. 2766 2767 Check this and shot the lock. It is not prone from deadlocks. 2768 Either shot noqueue qdisc, it is even simpler 8) 2769 */ 2770 if (dev->flags & IFF_UP) { 2771 int cpu = smp_processor_id(); /* ok because BHs are off */ 2772 2773 if (txq->xmit_lock_owner != cpu) { 2774 2775 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT) 2776 goto recursion_alert; 2777 2778 HARD_TX_LOCK(dev, txq, cpu); 2779 2780 if (!netif_xmit_stopped(txq)) { 2781 __this_cpu_inc(xmit_recursion); 2782 rc = dev_hard_start_xmit(skb, dev, txq); 2783 __this_cpu_dec(xmit_recursion); 2784 if (dev_xmit_complete(rc)) { 2785 HARD_TX_UNLOCK(dev, txq); 2786 goto out; 2787 } 2788 } 2789 HARD_TX_UNLOCK(dev, txq); 2790 net_crit_ratelimited("Virtual device %s asks to queue packet!\n", 2791 dev->name); 2792 } else { 2793 /* Recursion is detected! It is possible, 2794 * unfortunately 2795 */ 2796 recursion_alert: 2797 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n", 2798 dev->name); 2799 } 2800 } 2801 2802 rc = -ENETDOWN; 2803 rcu_read_unlock_bh(); 2804 2805 kfree_skb(skb); 2806 return rc; 2807 out: 2808 rcu_read_unlock_bh(); 2809 return rc; 2810 } 2811 EXPORT_SYMBOL(dev_queue_xmit); 2812 2813 2814 /*======================================================================= 2815 Receiver routines 2816 =======================================================================*/ 2817 2818 int netdev_max_backlog __read_mostly = 1000; 2819 EXPORT_SYMBOL(netdev_max_backlog); 2820 2821 int netdev_tstamp_prequeue __read_mostly = 1; 2822 int netdev_budget __read_mostly = 300; 2823 int weight_p __read_mostly = 64; /* old backlog weight */ 2824 2825 /* Called with irq disabled */ 2826 static inline void ____napi_schedule(struct softnet_data *sd, 2827 struct napi_struct *napi) 2828 { 2829 list_add_tail(&napi->poll_list, &sd->poll_list); 2830 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 2831 } 2832 2833 #ifdef CONFIG_RPS 2834 2835 /* One global table that all flow-based protocols share. */ 2836 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly; 2837 EXPORT_SYMBOL(rps_sock_flow_table); 2838 2839 struct static_key rps_needed __read_mostly; 2840 2841 static struct rps_dev_flow * 2842 set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 2843 struct rps_dev_flow *rflow, u16 next_cpu) 2844 { 2845 if (next_cpu != RPS_NO_CPU) { 2846 #ifdef CONFIG_RFS_ACCEL 2847 struct netdev_rx_queue *rxqueue; 2848 struct rps_dev_flow_table *flow_table; 2849 struct rps_dev_flow *old_rflow; 2850 u32 flow_id; 2851 u16 rxq_index; 2852 int rc; 2853 2854 /* Should we steer this flow to a different hardware queue? */ 2855 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 2856 !(dev->features & NETIF_F_NTUPLE)) 2857 goto out; 2858 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 2859 if (rxq_index == skb_get_rx_queue(skb)) 2860 goto out; 2861 2862 rxqueue = dev->_rx + rxq_index; 2863 flow_table = rcu_dereference(rxqueue->rps_flow_table); 2864 if (!flow_table) 2865 goto out; 2866 flow_id = skb->rxhash & flow_table->mask; 2867 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 2868 rxq_index, flow_id); 2869 if (rc < 0) 2870 goto out; 2871 old_rflow = rflow; 2872 rflow = &flow_table->flows[flow_id]; 2873 rflow->filter = rc; 2874 if (old_rflow->filter == rflow->filter) 2875 old_rflow->filter = RPS_NO_FILTER; 2876 out: 2877 #endif 2878 rflow->last_qtail = 2879 per_cpu(softnet_data, next_cpu).input_queue_head; 2880 } 2881 2882 rflow->cpu = next_cpu; 2883 return rflow; 2884 } 2885 2886 /* 2887 * get_rps_cpu is called from netif_receive_skb and returns the target 2888 * CPU from the RPS map of the receiving queue for a given skb. 2889 * rcu_read_lock must be held on entry. 2890 */ 2891 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 2892 struct rps_dev_flow **rflowp) 2893 { 2894 struct netdev_rx_queue *rxqueue; 2895 struct rps_map *map; 2896 struct rps_dev_flow_table *flow_table; 2897 struct rps_sock_flow_table *sock_flow_table; 2898 int cpu = -1; 2899 u16 tcpu; 2900 2901 if (skb_rx_queue_recorded(skb)) { 2902 u16 index = skb_get_rx_queue(skb); 2903 if (unlikely(index >= dev->real_num_rx_queues)) { 2904 WARN_ONCE(dev->real_num_rx_queues > 1, 2905 "%s received packet on queue %u, but number " 2906 "of RX queues is %u\n", 2907 dev->name, index, dev->real_num_rx_queues); 2908 goto done; 2909 } 2910 rxqueue = dev->_rx + index; 2911 } else 2912 rxqueue = dev->_rx; 2913 2914 map = rcu_dereference(rxqueue->rps_map); 2915 if (map) { 2916 if (map->len == 1 && 2917 !rcu_access_pointer(rxqueue->rps_flow_table)) { 2918 tcpu = map->cpus[0]; 2919 if (cpu_online(tcpu)) 2920 cpu = tcpu; 2921 goto done; 2922 } 2923 } else if (!rcu_access_pointer(rxqueue->rps_flow_table)) { 2924 goto done; 2925 } 2926 2927 skb_reset_network_header(skb); 2928 if (!skb_get_rxhash(skb)) 2929 goto done; 2930 2931 flow_table = rcu_dereference(rxqueue->rps_flow_table); 2932 sock_flow_table = rcu_dereference(rps_sock_flow_table); 2933 if (flow_table && sock_flow_table) { 2934 u16 next_cpu; 2935 struct rps_dev_flow *rflow; 2936 2937 rflow = &flow_table->flows[skb->rxhash & flow_table->mask]; 2938 tcpu = rflow->cpu; 2939 2940 next_cpu = sock_flow_table->ents[skb->rxhash & 2941 sock_flow_table->mask]; 2942 2943 /* 2944 * If the desired CPU (where last recvmsg was done) is 2945 * different from current CPU (one in the rx-queue flow 2946 * table entry), switch if one of the following holds: 2947 * - Current CPU is unset (equal to RPS_NO_CPU). 2948 * - Current CPU is offline. 2949 * - The current CPU's queue tail has advanced beyond the 2950 * last packet that was enqueued using this table entry. 2951 * This guarantees that all previous packets for the flow 2952 * have been dequeued, thus preserving in order delivery. 2953 */ 2954 if (unlikely(tcpu != next_cpu) && 2955 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) || 2956 ((int)(per_cpu(softnet_data, tcpu).input_queue_head - 2957 rflow->last_qtail)) >= 0)) { 2958 tcpu = next_cpu; 2959 rflow = set_rps_cpu(dev, skb, rflow, next_cpu); 2960 } 2961 2962 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) { 2963 *rflowp = rflow; 2964 cpu = tcpu; 2965 goto done; 2966 } 2967 } 2968 2969 if (map) { 2970 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32]; 2971 2972 if (cpu_online(tcpu)) { 2973 cpu = tcpu; 2974 goto done; 2975 } 2976 } 2977 2978 done: 2979 return cpu; 2980 } 2981 2982 #ifdef CONFIG_RFS_ACCEL 2983 2984 /** 2985 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 2986 * @dev: Device on which the filter was set 2987 * @rxq_index: RX queue index 2988 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 2989 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 2990 * 2991 * Drivers that implement ndo_rx_flow_steer() should periodically call 2992 * this function for each installed filter and remove the filters for 2993 * which it returns %true. 2994 */ 2995 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 2996 u32 flow_id, u16 filter_id) 2997 { 2998 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 2999 struct rps_dev_flow_table *flow_table; 3000 struct rps_dev_flow *rflow; 3001 bool expire = true; 3002 int cpu; 3003 3004 rcu_read_lock(); 3005 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3006 if (flow_table && flow_id <= flow_table->mask) { 3007 rflow = &flow_table->flows[flow_id]; 3008 cpu = ACCESS_ONCE(rflow->cpu); 3009 if (rflow->filter == filter_id && cpu != RPS_NO_CPU && 3010 ((int)(per_cpu(softnet_data, cpu).input_queue_head - 3011 rflow->last_qtail) < 3012 (int)(10 * flow_table->mask))) 3013 expire = false; 3014 } 3015 rcu_read_unlock(); 3016 return expire; 3017 } 3018 EXPORT_SYMBOL(rps_may_expire_flow); 3019 3020 #endif /* CONFIG_RFS_ACCEL */ 3021 3022 /* Called from hardirq (IPI) context */ 3023 static void rps_trigger_softirq(void *data) 3024 { 3025 struct softnet_data *sd = data; 3026 3027 ____napi_schedule(sd, &sd->backlog); 3028 sd->received_rps++; 3029 } 3030 3031 #endif /* CONFIG_RPS */ 3032 3033 /* 3034 * Check if this softnet_data structure is another cpu one 3035 * If yes, queue it to our IPI list and return 1 3036 * If no, return 0 3037 */ 3038 static int rps_ipi_queued(struct softnet_data *sd) 3039 { 3040 #ifdef CONFIG_RPS 3041 struct softnet_data *mysd = &__get_cpu_var(softnet_data); 3042 3043 if (sd != mysd) { 3044 sd->rps_ipi_next = mysd->rps_ipi_list; 3045 mysd->rps_ipi_list = sd; 3046 3047 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3048 return 1; 3049 } 3050 #endif /* CONFIG_RPS */ 3051 return 0; 3052 } 3053 3054 /* 3055 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 3056 * queue (may be a remote CPU queue). 3057 */ 3058 static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 3059 unsigned int *qtail) 3060 { 3061 struct softnet_data *sd; 3062 unsigned long flags; 3063 3064 sd = &per_cpu(softnet_data, cpu); 3065 3066 local_irq_save(flags); 3067 3068 rps_lock(sd); 3069 if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) { 3070 if (skb_queue_len(&sd->input_pkt_queue)) { 3071 enqueue: 3072 __skb_queue_tail(&sd->input_pkt_queue, skb); 3073 input_queue_tail_incr_save(sd, qtail); 3074 rps_unlock(sd); 3075 local_irq_restore(flags); 3076 return NET_RX_SUCCESS; 3077 } 3078 3079 /* Schedule NAPI for backlog device 3080 * We can use non atomic operation since we own the queue lock 3081 */ 3082 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) { 3083 if (!rps_ipi_queued(sd)) 3084 ____napi_schedule(sd, &sd->backlog); 3085 } 3086 goto enqueue; 3087 } 3088 3089 sd->dropped++; 3090 rps_unlock(sd); 3091 3092 local_irq_restore(flags); 3093 3094 atomic_long_inc(&skb->dev->rx_dropped); 3095 kfree_skb(skb); 3096 return NET_RX_DROP; 3097 } 3098 3099 /** 3100 * netif_rx - post buffer to the network code 3101 * @skb: buffer to post 3102 * 3103 * This function receives a packet from a device driver and queues it for 3104 * the upper (protocol) levels to process. It always succeeds. The buffer 3105 * may be dropped during processing for congestion control or by the 3106 * protocol layers. 3107 * 3108 * return values: 3109 * NET_RX_SUCCESS (no congestion) 3110 * NET_RX_DROP (packet was dropped) 3111 * 3112 */ 3113 3114 int netif_rx(struct sk_buff *skb) 3115 { 3116 int ret; 3117 3118 /* if netpoll wants it, pretend we never saw it */ 3119 if (netpoll_rx(skb)) 3120 return NET_RX_DROP; 3121 3122 net_timestamp_check(netdev_tstamp_prequeue, skb); 3123 3124 trace_netif_rx(skb); 3125 #ifdef CONFIG_RPS 3126 if (static_key_false(&rps_needed)) { 3127 struct rps_dev_flow voidflow, *rflow = &voidflow; 3128 int cpu; 3129 3130 preempt_disable(); 3131 rcu_read_lock(); 3132 3133 cpu = get_rps_cpu(skb->dev, skb, &rflow); 3134 if (cpu < 0) 3135 cpu = smp_processor_id(); 3136 3137 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 3138 3139 rcu_read_unlock(); 3140 preempt_enable(); 3141 } else 3142 #endif 3143 { 3144 unsigned int qtail; 3145 ret = enqueue_to_backlog(skb, get_cpu(), &qtail); 3146 put_cpu(); 3147 } 3148 return ret; 3149 } 3150 EXPORT_SYMBOL(netif_rx); 3151 3152 int netif_rx_ni(struct sk_buff *skb) 3153 { 3154 int err; 3155 3156 preempt_disable(); 3157 err = netif_rx(skb); 3158 if (local_softirq_pending()) 3159 do_softirq(); 3160 preempt_enable(); 3161 3162 return err; 3163 } 3164 EXPORT_SYMBOL(netif_rx_ni); 3165 3166 static void net_tx_action(struct softirq_action *h) 3167 { 3168 struct softnet_data *sd = &__get_cpu_var(softnet_data); 3169 3170 if (sd->completion_queue) { 3171 struct sk_buff *clist; 3172 3173 local_irq_disable(); 3174 clist = sd->completion_queue; 3175 sd->completion_queue = NULL; 3176 local_irq_enable(); 3177 3178 while (clist) { 3179 struct sk_buff *skb = clist; 3180 clist = clist->next; 3181 3182 WARN_ON(atomic_read(&skb->users)); 3183 trace_kfree_skb(skb, net_tx_action); 3184 __kfree_skb(skb); 3185 } 3186 } 3187 3188 if (sd->output_queue) { 3189 struct Qdisc *head; 3190 3191 local_irq_disable(); 3192 head = sd->output_queue; 3193 sd->output_queue = NULL; 3194 sd->output_queue_tailp = &sd->output_queue; 3195 local_irq_enable(); 3196 3197 while (head) { 3198 struct Qdisc *q = head; 3199 spinlock_t *root_lock; 3200 3201 head = head->next_sched; 3202 3203 root_lock = qdisc_lock(q); 3204 if (spin_trylock(root_lock)) { 3205 smp_mb__before_clear_bit(); 3206 clear_bit(__QDISC_STATE_SCHED, 3207 &q->state); 3208 qdisc_run(q); 3209 spin_unlock(root_lock); 3210 } else { 3211 if (!test_bit(__QDISC_STATE_DEACTIVATED, 3212 &q->state)) { 3213 __netif_reschedule(q); 3214 } else { 3215 smp_mb__before_clear_bit(); 3216 clear_bit(__QDISC_STATE_SCHED, 3217 &q->state); 3218 } 3219 } 3220 } 3221 } 3222 } 3223 3224 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \ 3225 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE)) 3226 /* This hook is defined here for ATM LANE */ 3227 int (*br_fdb_test_addr_hook)(struct net_device *dev, 3228 unsigned char *addr) __read_mostly; 3229 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 3230 #endif 3231 3232 #ifdef CONFIG_NET_CLS_ACT 3233 /* TODO: Maybe we should just force sch_ingress to be compiled in 3234 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions 3235 * a compare and 2 stores extra right now if we dont have it on 3236 * but have CONFIG_NET_CLS_ACT 3237 * NOTE: This doesn't stop any functionality; if you dont have 3238 * the ingress scheduler, you just can't add policies on ingress. 3239 * 3240 */ 3241 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq) 3242 { 3243 struct net_device *dev = skb->dev; 3244 u32 ttl = G_TC_RTTL(skb->tc_verd); 3245 int result = TC_ACT_OK; 3246 struct Qdisc *q; 3247 3248 if (unlikely(MAX_RED_LOOP < ttl++)) { 3249 net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n", 3250 skb->skb_iif, dev->ifindex); 3251 return TC_ACT_SHOT; 3252 } 3253 3254 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl); 3255 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS); 3256 3257 q = rxq->qdisc; 3258 if (q != &noop_qdisc) { 3259 spin_lock(qdisc_lock(q)); 3260 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) 3261 result = qdisc_enqueue_root(skb, q); 3262 spin_unlock(qdisc_lock(q)); 3263 } 3264 3265 return result; 3266 } 3267 3268 static inline struct sk_buff *handle_ing(struct sk_buff *skb, 3269 struct packet_type **pt_prev, 3270 int *ret, struct net_device *orig_dev) 3271 { 3272 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue); 3273 3274 if (!rxq || rxq->qdisc == &noop_qdisc) 3275 goto out; 3276 3277 if (*pt_prev) { 3278 *ret = deliver_skb(skb, *pt_prev, orig_dev); 3279 *pt_prev = NULL; 3280 } 3281 3282 switch (ing_filter(skb, rxq)) { 3283 case TC_ACT_SHOT: 3284 case TC_ACT_STOLEN: 3285 kfree_skb(skb); 3286 return NULL; 3287 } 3288 3289 out: 3290 skb->tc_verd = 0; 3291 return skb; 3292 } 3293 #endif 3294 3295 /** 3296 * netdev_rx_handler_register - register receive handler 3297 * @dev: device to register a handler for 3298 * @rx_handler: receive handler to register 3299 * @rx_handler_data: data pointer that is used by rx handler 3300 * 3301 * Register a receive hander for a device. This handler will then be 3302 * called from __netif_receive_skb. A negative errno code is returned 3303 * on a failure. 3304 * 3305 * The caller must hold the rtnl_mutex. 3306 * 3307 * For a general description of rx_handler, see enum rx_handler_result. 3308 */ 3309 int netdev_rx_handler_register(struct net_device *dev, 3310 rx_handler_func_t *rx_handler, 3311 void *rx_handler_data) 3312 { 3313 ASSERT_RTNL(); 3314 3315 if (dev->rx_handler) 3316 return -EBUSY; 3317 3318 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 3319 rcu_assign_pointer(dev->rx_handler, rx_handler); 3320 3321 return 0; 3322 } 3323 EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 3324 3325 /** 3326 * netdev_rx_handler_unregister - unregister receive handler 3327 * @dev: device to unregister a handler from 3328 * 3329 * Unregister a receive hander from a device. 3330 * 3331 * The caller must hold the rtnl_mutex. 3332 */ 3333 void netdev_rx_handler_unregister(struct net_device *dev) 3334 { 3335 3336 ASSERT_RTNL(); 3337 RCU_INIT_POINTER(dev->rx_handler, NULL); 3338 RCU_INIT_POINTER(dev->rx_handler_data, NULL); 3339 } 3340 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 3341 3342 /* 3343 * Limit the use of PFMEMALLOC reserves to those protocols that implement 3344 * the special handling of PFMEMALLOC skbs. 3345 */ 3346 static bool skb_pfmemalloc_protocol(struct sk_buff *skb) 3347 { 3348 switch (skb->protocol) { 3349 case __constant_htons(ETH_P_ARP): 3350 case __constant_htons(ETH_P_IP): 3351 case __constant_htons(ETH_P_IPV6): 3352 case __constant_htons(ETH_P_8021Q): 3353 return true; 3354 default: 3355 return false; 3356 } 3357 } 3358 3359 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc) 3360 { 3361 struct packet_type *ptype, *pt_prev; 3362 rx_handler_func_t *rx_handler; 3363 struct net_device *orig_dev; 3364 struct net_device *null_or_dev; 3365 bool deliver_exact = false; 3366 int ret = NET_RX_DROP; 3367 __be16 type; 3368 3369 net_timestamp_check(!netdev_tstamp_prequeue, skb); 3370 3371 trace_netif_receive_skb(skb); 3372 3373 /* if we've gotten here through NAPI, check netpoll */ 3374 if (netpoll_receive_skb(skb)) 3375 goto out; 3376 3377 orig_dev = skb->dev; 3378 3379 skb_reset_network_header(skb); 3380 if (!skb_transport_header_was_set(skb)) 3381 skb_reset_transport_header(skb); 3382 skb_reset_mac_len(skb); 3383 3384 pt_prev = NULL; 3385 3386 rcu_read_lock(); 3387 3388 another_round: 3389 skb->skb_iif = skb->dev->ifindex; 3390 3391 __this_cpu_inc(softnet_data.processed); 3392 3393 if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) { 3394 skb = vlan_untag(skb); 3395 if (unlikely(!skb)) 3396 goto unlock; 3397 } 3398 3399 #ifdef CONFIG_NET_CLS_ACT 3400 if (skb->tc_verd & TC_NCLS) { 3401 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd); 3402 goto ncls; 3403 } 3404 #endif 3405 3406 if (pfmemalloc) 3407 goto skip_taps; 3408 3409 list_for_each_entry_rcu(ptype, &ptype_all, list) { 3410 if (!ptype->dev || ptype->dev == skb->dev) { 3411 if (pt_prev) 3412 ret = deliver_skb(skb, pt_prev, orig_dev); 3413 pt_prev = ptype; 3414 } 3415 } 3416 3417 skip_taps: 3418 #ifdef CONFIG_NET_CLS_ACT 3419 skb = handle_ing(skb, &pt_prev, &ret, orig_dev); 3420 if (!skb) 3421 goto unlock; 3422 ncls: 3423 #endif 3424 3425 if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) 3426 goto drop; 3427 3428 if (vlan_tx_tag_present(skb)) { 3429 if (pt_prev) { 3430 ret = deliver_skb(skb, pt_prev, orig_dev); 3431 pt_prev = NULL; 3432 } 3433 if (vlan_do_receive(&skb)) 3434 goto another_round; 3435 else if (unlikely(!skb)) 3436 goto unlock; 3437 } 3438 3439 rx_handler = rcu_dereference(skb->dev->rx_handler); 3440 if (rx_handler) { 3441 if (pt_prev) { 3442 ret = deliver_skb(skb, pt_prev, orig_dev); 3443 pt_prev = NULL; 3444 } 3445 switch (rx_handler(&skb)) { 3446 case RX_HANDLER_CONSUMED: 3447 goto unlock; 3448 case RX_HANDLER_ANOTHER: 3449 goto another_round; 3450 case RX_HANDLER_EXACT: 3451 deliver_exact = true; 3452 case RX_HANDLER_PASS: 3453 break; 3454 default: 3455 BUG(); 3456 } 3457 } 3458 3459 if (vlan_tx_nonzero_tag_present(skb)) 3460 skb->pkt_type = PACKET_OTHERHOST; 3461 3462 /* deliver only exact match when indicated */ 3463 null_or_dev = deliver_exact ? skb->dev : NULL; 3464 3465 type = skb->protocol; 3466 list_for_each_entry_rcu(ptype, 3467 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) { 3468 if (ptype->type == type && 3469 (ptype->dev == null_or_dev || ptype->dev == skb->dev || 3470 ptype->dev == orig_dev)) { 3471 if (pt_prev) 3472 ret = deliver_skb(skb, pt_prev, orig_dev); 3473 pt_prev = ptype; 3474 } 3475 } 3476 3477 if (pt_prev) { 3478 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC))) 3479 goto drop; 3480 else 3481 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 3482 } else { 3483 drop: 3484 atomic_long_inc(&skb->dev->rx_dropped); 3485 kfree_skb(skb); 3486 /* Jamal, now you will not able to escape explaining 3487 * me how you were going to use this. :-) 3488 */ 3489 ret = NET_RX_DROP; 3490 } 3491 3492 unlock: 3493 rcu_read_unlock(); 3494 out: 3495 return ret; 3496 } 3497 3498 static int __netif_receive_skb(struct sk_buff *skb) 3499 { 3500 int ret; 3501 3502 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) { 3503 unsigned long pflags = current->flags; 3504 3505 /* 3506 * PFMEMALLOC skbs are special, they should 3507 * - be delivered to SOCK_MEMALLOC sockets only 3508 * - stay away from userspace 3509 * - have bounded memory usage 3510 * 3511 * Use PF_MEMALLOC as this saves us from propagating the allocation 3512 * context down to all allocation sites. 3513 */ 3514 current->flags |= PF_MEMALLOC; 3515 ret = __netif_receive_skb_core(skb, true); 3516 tsk_restore_flags(current, pflags, PF_MEMALLOC); 3517 } else 3518 ret = __netif_receive_skb_core(skb, false); 3519 3520 return ret; 3521 } 3522 3523 /** 3524 * netif_receive_skb - process receive buffer from network 3525 * @skb: buffer to process 3526 * 3527 * netif_receive_skb() is the main receive data processing function. 3528 * It always succeeds. The buffer may be dropped during processing 3529 * for congestion control or by the protocol layers. 3530 * 3531 * This function may only be called from softirq context and interrupts 3532 * should be enabled. 3533 * 3534 * Return values (usually ignored): 3535 * NET_RX_SUCCESS: no congestion 3536 * NET_RX_DROP: packet was dropped 3537 */ 3538 int netif_receive_skb(struct sk_buff *skb) 3539 { 3540 net_timestamp_check(netdev_tstamp_prequeue, skb); 3541 3542 if (skb_defer_rx_timestamp(skb)) 3543 return NET_RX_SUCCESS; 3544 3545 #ifdef CONFIG_RPS 3546 if (static_key_false(&rps_needed)) { 3547 struct rps_dev_flow voidflow, *rflow = &voidflow; 3548 int cpu, ret; 3549 3550 rcu_read_lock(); 3551 3552 cpu = get_rps_cpu(skb->dev, skb, &rflow); 3553 3554 if (cpu >= 0) { 3555 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 3556 rcu_read_unlock(); 3557 return ret; 3558 } 3559 rcu_read_unlock(); 3560 } 3561 #endif 3562 return __netif_receive_skb(skb); 3563 } 3564 EXPORT_SYMBOL(netif_receive_skb); 3565 3566 /* Network device is going away, flush any packets still pending 3567 * Called with irqs disabled. 3568 */ 3569 static void flush_backlog(void *arg) 3570 { 3571 struct net_device *dev = arg; 3572 struct softnet_data *sd = &__get_cpu_var(softnet_data); 3573 struct sk_buff *skb, *tmp; 3574 3575 rps_lock(sd); 3576 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 3577 if (skb->dev == dev) { 3578 __skb_unlink(skb, &sd->input_pkt_queue); 3579 kfree_skb(skb); 3580 input_queue_head_incr(sd); 3581 } 3582 } 3583 rps_unlock(sd); 3584 3585 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 3586 if (skb->dev == dev) { 3587 __skb_unlink(skb, &sd->process_queue); 3588 kfree_skb(skb); 3589 input_queue_head_incr(sd); 3590 } 3591 } 3592 } 3593 3594 static int napi_gro_complete(struct sk_buff *skb) 3595 { 3596 struct packet_offload *ptype; 3597 __be16 type = skb->protocol; 3598 struct list_head *head = &offload_base; 3599 int err = -ENOENT; 3600 3601 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb)); 3602 3603 if (NAPI_GRO_CB(skb)->count == 1) { 3604 skb_shinfo(skb)->gso_size = 0; 3605 goto out; 3606 } 3607 3608 rcu_read_lock(); 3609 list_for_each_entry_rcu(ptype, head, list) { 3610 if (ptype->type != type || !ptype->callbacks.gro_complete) 3611 continue; 3612 3613 err = ptype->callbacks.gro_complete(skb); 3614 break; 3615 } 3616 rcu_read_unlock(); 3617 3618 if (err) { 3619 WARN_ON(&ptype->list == head); 3620 kfree_skb(skb); 3621 return NET_RX_SUCCESS; 3622 } 3623 3624 out: 3625 return netif_receive_skb(skb); 3626 } 3627 3628 /* napi->gro_list contains packets ordered by age. 3629 * youngest packets at the head of it. 3630 * Complete skbs in reverse order to reduce latencies. 3631 */ 3632 void napi_gro_flush(struct napi_struct *napi, bool flush_old) 3633 { 3634 struct sk_buff *skb, *prev = NULL; 3635 3636 /* scan list and build reverse chain */ 3637 for (skb = napi->gro_list; skb != NULL; skb = skb->next) { 3638 skb->prev = prev; 3639 prev = skb; 3640 } 3641 3642 for (skb = prev; skb; skb = prev) { 3643 skb->next = NULL; 3644 3645 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies) 3646 return; 3647 3648 prev = skb->prev; 3649 napi_gro_complete(skb); 3650 napi->gro_count--; 3651 } 3652 3653 napi->gro_list = NULL; 3654 } 3655 EXPORT_SYMBOL(napi_gro_flush); 3656 3657 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb) 3658 { 3659 struct sk_buff *p; 3660 unsigned int maclen = skb->dev->hard_header_len; 3661 3662 for (p = napi->gro_list; p; p = p->next) { 3663 unsigned long diffs; 3664 3665 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev; 3666 diffs |= p->vlan_tci ^ skb->vlan_tci; 3667 if (maclen == ETH_HLEN) 3668 diffs |= compare_ether_header(skb_mac_header(p), 3669 skb_gro_mac_header(skb)); 3670 else if (!diffs) 3671 diffs = memcmp(skb_mac_header(p), 3672 skb_gro_mac_header(skb), 3673 maclen); 3674 NAPI_GRO_CB(p)->same_flow = !diffs; 3675 NAPI_GRO_CB(p)->flush = 0; 3676 } 3677 } 3678 3679 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 3680 { 3681 struct sk_buff **pp = NULL; 3682 struct packet_offload *ptype; 3683 __be16 type = skb->protocol; 3684 struct list_head *head = &offload_base; 3685 int same_flow; 3686 enum gro_result ret; 3687 3688 if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb)) 3689 goto normal; 3690 3691 if (skb_is_gso(skb) || skb_has_frag_list(skb)) 3692 goto normal; 3693 3694 gro_list_prepare(napi, skb); 3695 3696 rcu_read_lock(); 3697 list_for_each_entry_rcu(ptype, head, list) { 3698 if (ptype->type != type || !ptype->callbacks.gro_receive) 3699 continue; 3700 3701 skb_set_network_header(skb, skb_gro_offset(skb)); 3702 skb_reset_mac_len(skb); 3703 NAPI_GRO_CB(skb)->same_flow = 0; 3704 NAPI_GRO_CB(skb)->flush = 0; 3705 NAPI_GRO_CB(skb)->free = 0; 3706 3707 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb); 3708 break; 3709 } 3710 rcu_read_unlock(); 3711 3712 if (&ptype->list == head) 3713 goto normal; 3714 3715 same_flow = NAPI_GRO_CB(skb)->same_flow; 3716 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED; 3717 3718 if (pp) { 3719 struct sk_buff *nskb = *pp; 3720 3721 *pp = nskb->next; 3722 nskb->next = NULL; 3723 napi_gro_complete(nskb); 3724 napi->gro_count--; 3725 } 3726 3727 if (same_flow) 3728 goto ok; 3729 3730 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS) 3731 goto normal; 3732 3733 napi->gro_count++; 3734 NAPI_GRO_CB(skb)->count = 1; 3735 NAPI_GRO_CB(skb)->age = jiffies; 3736 skb_shinfo(skb)->gso_size = skb_gro_len(skb); 3737 skb->next = napi->gro_list; 3738 napi->gro_list = skb; 3739 ret = GRO_HELD; 3740 3741 pull: 3742 if (skb_headlen(skb) < skb_gro_offset(skb)) { 3743 int grow = skb_gro_offset(skb) - skb_headlen(skb); 3744 3745 BUG_ON(skb->end - skb->tail < grow); 3746 3747 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow); 3748 3749 skb->tail += grow; 3750 skb->data_len -= grow; 3751 3752 skb_shinfo(skb)->frags[0].page_offset += grow; 3753 skb_frag_size_sub(&skb_shinfo(skb)->frags[0], grow); 3754 3755 if (unlikely(!skb_frag_size(&skb_shinfo(skb)->frags[0]))) { 3756 skb_frag_unref(skb, 0); 3757 memmove(skb_shinfo(skb)->frags, 3758 skb_shinfo(skb)->frags + 1, 3759 --skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t)); 3760 } 3761 } 3762 3763 ok: 3764 return ret; 3765 3766 normal: 3767 ret = GRO_NORMAL; 3768 goto pull; 3769 } 3770 3771 3772 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb) 3773 { 3774 switch (ret) { 3775 case GRO_NORMAL: 3776 if (netif_receive_skb(skb)) 3777 ret = GRO_DROP; 3778 break; 3779 3780 case GRO_DROP: 3781 kfree_skb(skb); 3782 break; 3783 3784 case GRO_MERGED_FREE: 3785 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) 3786 kmem_cache_free(skbuff_head_cache, skb); 3787 else 3788 __kfree_skb(skb); 3789 break; 3790 3791 case GRO_HELD: 3792 case GRO_MERGED: 3793 break; 3794 } 3795 3796 return ret; 3797 } 3798 3799 static void skb_gro_reset_offset(struct sk_buff *skb) 3800 { 3801 const struct skb_shared_info *pinfo = skb_shinfo(skb); 3802 const skb_frag_t *frag0 = &pinfo->frags[0]; 3803 3804 NAPI_GRO_CB(skb)->data_offset = 0; 3805 NAPI_GRO_CB(skb)->frag0 = NULL; 3806 NAPI_GRO_CB(skb)->frag0_len = 0; 3807 3808 if (skb->mac_header == skb->tail && 3809 pinfo->nr_frags && 3810 !PageHighMem(skb_frag_page(frag0))) { 3811 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0); 3812 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0); 3813 } 3814 } 3815 3816 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 3817 { 3818 skb_gro_reset_offset(skb); 3819 3820 return napi_skb_finish(dev_gro_receive(napi, skb), skb); 3821 } 3822 EXPORT_SYMBOL(napi_gro_receive); 3823 3824 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb) 3825 { 3826 __skb_pull(skb, skb_headlen(skb)); 3827 /* restore the reserve we had after netdev_alloc_skb_ip_align() */ 3828 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb)); 3829 skb->vlan_tci = 0; 3830 skb->dev = napi->dev; 3831 skb->skb_iif = 0; 3832 3833 napi->skb = skb; 3834 } 3835 3836 struct sk_buff *napi_get_frags(struct napi_struct *napi) 3837 { 3838 struct sk_buff *skb = napi->skb; 3839 3840 if (!skb) { 3841 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD); 3842 if (skb) 3843 napi->skb = skb; 3844 } 3845 return skb; 3846 } 3847 EXPORT_SYMBOL(napi_get_frags); 3848 3849 static gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb, 3850 gro_result_t ret) 3851 { 3852 switch (ret) { 3853 case GRO_NORMAL: 3854 case GRO_HELD: 3855 skb->protocol = eth_type_trans(skb, skb->dev); 3856 3857 if (ret == GRO_HELD) 3858 skb_gro_pull(skb, -ETH_HLEN); 3859 else if (netif_receive_skb(skb)) 3860 ret = GRO_DROP; 3861 break; 3862 3863 case GRO_DROP: 3864 case GRO_MERGED_FREE: 3865 napi_reuse_skb(napi, skb); 3866 break; 3867 3868 case GRO_MERGED: 3869 break; 3870 } 3871 3872 return ret; 3873 } 3874 3875 static struct sk_buff *napi_frags_skb(struct napi_struct *napi) 3876 { 3877 struct sk_buff *skb = napi->skb; 3878 struct ethhdr *eth; 3879 unsigned int hlen; 3880 unsigned int off; 3881 3882 napi->skb = NULL; 3883 3884 skb_reset_mac_header(skb); 3885 skb_gro_reset_offset(skb); 3886 3887 off = skb_gro_offset(skb); 3888 hlen = off + sizeof(*eth); 3889 eth = skb_gro_header_fast(skb, off); 3890 if (skb_gro_header_hard(skb, hlen)) { 3891 eth = skb_gro_header_slow(skb, hlen, off); 3892 if (unlikely(!eth)) { 3893 napi_reuse_skb(napi, skb); 3894 skb = NULL; 3895 goto out; 3896 } 3897 } 3898 3899 skb_gro_pull(skb, sizeof(*eth)); 3900 3901 /* 3902 * This works because the only protocols we care about don't require 3903 * special handling. We'll fix it up properly at the end. 3904 */ 3905 skb->protocol = eth->h_proto; 3906 3907 out: 3908 return skb; 3909 } 3910 3911 gro_result_t napi_gro_frags(struct napi_struct *napi) 3912 { 3913 struct sk_buff *skb = napi_frags_skb(napi); 3914 3915 if (!skb) 3916 return GRO_DROP; 3917 3918 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb)); 3919 } 3920 EXPORT_SYMBOL(napi_gro_frags); 3921 3922 /* 3923 * net_rps_action sends any pending IPI's for rps. 3924 * Note: called with local irq disabled, but exits with local irq enabled. 3925 */ 3926 static void net_rps_action_and_irq_enable(struct softnet_data *sd) 3927 { 3928 #ifdef CONFIG_RPS 3929 struct softnet_data *remsd = sd->rps_ipi_list; 3930 3931 if (remsd) { 3932 sd->rps_ipi_list = NULL; 3933 3934 local_irq_enable(); 3935 3936 /* Send pending IPI's to kick RPS processing on remote cpus. */ 3937 while (remsd) { 3938 struct softnet_data *next = remsd->rps_ipi_next; 3939 3940 if (cpu_online(remsd->cpu)) 3941 __smp_call_function_single(remsd->cpu, 3942 &remsd->csd, 0); 3943 remsd = next; 3944 } 3945 } else 3946 #endif 3947 local_irq_enable(); 3948 } 3949 3950 static int process_backlog(struct napi_struct *napi, int quota) 3951 { 3952 int work = 0; 3953 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 3954 3955 #ifdef CONFIG_RPS 3956 /* Check if we have pending ipi, its better to send them now, 3957 * not waiting net_rx_action() end. 3958 */ 3959 if (sd->rps_ipi_list) { 3960 local_irq_disable(); 3961 net_rps_action_and_irq_enable(sd); 3962 } 3963 #endif 3964 napi->weight = weight_p; 3965 local_irq_disable(); 3966 while (work < quota) { 3967 struct sk_buff *skb; 3968 unsigned int qlen; 3969 3970 while ((skb = __skb_dequeue(&sd->process_queue))) { 3971 local_irq_enable(); 3972 __netif_receive_skb(skb); 3973 local_irq_disable(); 3974 input_queue_head_incr(sd); 3975 if (++work >= quota) { 3976 local_irq_enable(); 3977 return work; 3978 } 3979 } 3980 3981 rps_lock(sd); 3982 qlen = skb_queue_len(&sd->input_pkt_queue); 3983 if (qlen) 3984 skb_queue_splice_tail_init(&sd->input_pkt_queue, 3985 &sd->process_queue); 3986 3987 if (qlen < quota - work) { 3988 /* 3989 * Inline a custom version of __napi_complete(). 3990 * only current cpu owns and manipulates this napi, 3991 * and NAPI_STATE_SCHED is the only possible flag set on backlog. 3992 * we can use a plain write instead of clear_bit(), 3993 * and we dont need an smp_mb() memory barrier. 3994 */ 3995 list_del(&napi->poll_list); 3996 napi->state = 0; 3997 3998 quota = work + qlen; 3999 } 4000 rps_unlock(sd); 4001 } 4002 local_irq_enable(); 4003 4004 return work; 4005 } 4006 4007 /** 4008 * __napi_schedule - schedule for receive 4009 * @n: entry to schedule 4010 * 4011 * The entry's receive function will be scheduled to run 4012 */ 4013 void __napi_schedule(struct napi_struct *n) 4014 { 4015 unsigned long flags; 4016 4017 local_irq_save(flags); 4018 ____napi_schedule(&__get_cpu_var(softnet_data), n); 4019 local_irq_restore(flags); 4020 } 4021 EXPORT_SYMBOL(__napi_schedule); 4022 4023 void __napi_complete(struct napi_struct *n) 4024 { 4025 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 4026 BUG_ON(n->gro_list); 4027 4028 list_del(&n->poll_list); 4029 smp_mb__before_clear_bit(); 4030 clear_bit(NAPI_STATE_SCHED, &n->state); 4031 } 4032 EXPORT_SYMBOL(__napi_complete); 4033 4034 void napi_complete(struct napi_struct *n) 4035 { 4036 unsigned long flags; 4037 4038 /* 4039 * don't let napi dequeue from the cpu poll list 4040 * just in case its running on a different cpu 4041 */ 4042 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state))) 4043 return; 4044 4045 napi_gro_flush(n, false); 4046 local_irq_save(flags); 4047 __napi_complete(n); 4048 local_irq_restore(flags); 4049 } 4050 EXPORT_SYMBOL(napi_complete); 4051 4052 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 4053 int (*poll)(struct napi_struct *, int), int weight) 4054 { 4055 INIT_LIST_HEAD(&napi->poll_list); 4056 napi->gro_count = 0; 4057 napi->gro_list = NULL; 4058 napi->skb = NULL; 4059 napi->poll = poll; 4060 napi->weight = weight; 4061 list_add(&napi->dev_list, &dev->napi_list); 4062 napi->dev = dev; 4063 #ifdef CONFIG_NETPOLL 4064 spin_lock_init(&napi->poll_lock); 4065 napi->poll_owner = -1; 4066 #endif 4067 set_bit(NAPI_STATE_SCHED, &napi->state); 4068 } 4069 EXPORT_SYMBOL(netif_napi_add); 4070 4071 void netif_napi_del(struct napi_struct *napi) 4072 { 4073 struct sk_buff *skb, *next; 4074 4075 list_del_init(&napi->dev_list); 4076 napi_free_frags(napi); 4077 4078 for (skb = napi->gro_list; skb; skb = next) { 4079 next = skb->next; 4080 skb->next = NULL; 4081 kfree_skb(skb); 4082 } 4083 4084 napi->gro_list = NULL; 4085 napi->gro_count = 0; 4086 } 4087 EXPORT_SYMBOL(netif_napi_del); 4088 4089 static void net_rx_action(struct softirq_action *h) 4090 { 4091 struct softnet_data *sd = &__get_cpu_var(softnet_data); 4092 unsigned long time_limit = jiffies + 2; 4093 int budget = netdev_budget; 4094 void *have; 4095 4096 local_irq_disable(); 4097 4098 while (!list_empty(&sd->poll_list)) { 4099 struct napi_struct *n; 4100 int work, weight; 4101 4102 /* If softirq window is exhuasted then punt. 4103 * Allow this to run for 2 jiffies since which will allow 4104 * an average latency of 1.5/HZ. 4105 */ 4106 if (unlikely(budget <= 0 || time_after(jiffies, time_limit))) 4107 goto softnet_break; 4108 4109 local_irq_enable(); 4110 4111 /* Even though interrupts have been re-enabled, this 4112 * access is safe because interrupts can only add new 4113 * entries to the tail of this list, and only ->poll() 4114 * calls can remove this head entry from the list. 4115 */ 4116 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list); 4117 4118 have = netpoll_poll_lock(n); 4119 4120 weight = n->weight; 4121 4122 /* This NAPI_STATE_SCHED test is for avoiding a race 4123 * with netpoll's poll_napi(). Only the entity which 4124 * obtains the lock and sees NAPI_STATE_SCHED set will 4125 * actually make the ->poll() call. Therefore we avoid 4126 * accidentally calling ->poll() when NAPI is not scheduled. 4127 */ 4128 work = 0; 4129 if (test_bit(NAPI_STATE_SCHED, &n->state)) { 4130 work = n->poll(n, weight); 4131 trace_napi_poll(n); 4132 } 4133 4134 WARN_ON_ONCE(work > weight); 4135 4136 budget -= work; 4137 4138 local_irq_disable(); 4139 4140 /* Drivers must not modify the NAPI state if they 4141 * consume the entire weight. In such cases this code 4142 * still "owns" the NAPI instance and therefore can 4143 * move the instance around on the list at-will. 4144 */ 4145 if (unlikely(work == weight)) { 4146 if (unlikely(napi_disable_pending(n))) { 4147 local_irq_enable(); 4148 napi_complete(n); 4149 local_irq_disable(); 4150 } else { 4151 if (n->gro_list) { 4152 /* flush too old packets 4153 * If HZ < 1000, flush all packets. 4154 */ 4155 local_irq_enable(); 4156 napi_gro_flush(n, HZ >= 1000); 4157 local_irq_disable(); 4158 } 4159 list_move_tail(&n->poll_list, &sd->poll_list); 4160 } 4161 } 4162 4163 netpoll_poll_unlock(have); 4164 } 4165 out: 4166 net_rps_action_and_irq_enable(sd); 4167 4168 #ifdef CONFIG_NET_DMA 4169 /* 4170 * There may not be any more sk_buffs coming right now, so push 4171 * any pending DMA copies to hardware 4172 */ 4173 dma_issue_pending_all(); 4174 #endif 4175 4176 return; 4177 4178 softnet_break: 4179 sd->time_squeeze++; 4180 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 4181 goto out; 4182 } 4183 4184 struct netdev_upper { 4185 struct net_device *dev; 4186 bool master; 4187 struct list_head list; 4188 struct rcu_head rcu; 4189 struct list_head search_list; 4190 }; 4191 4192 static void __append_search_uppers(struct list_head *search_list, 4193 struct net_device *dev) 4194 { 4195 struct netdev_upper *upper; 4196 4197 list_for_each_entry(upper, &dev->upper_dev_list, list) { 4198 /* check if this upper is not already in search list */ 4199 if (list_empty(&upper->search_list)) 4200 list_add_tail(&upper->search_list, search_list); 4201 } 4202 } 4203 4204 static bool __netdev_search_upper_dev(struct net_device *dev, 4205 struct net_device *upper_dev) 4206 { 4207 LIST_HEAD(search_list); 4208 struct netdev_upper *upper; 4209 struct netdev_upper *tmp; 4210 bool ret = false; 4211 4212 __append_search_uppers(&search_list, dev); 4213 list_for_each_entry(upper, &search_list, search_list) { 4214 if (upper->dev == upper_dev) { 4215 ret = true; 4216 break; 4217 } 4218 __append_search_uppers(&search_list, upper->dev); 4219 } 4220 list_for_each_entry_safe(upper, tmp, &search_list, search_list) 4221 INIT_LIST_HEAD(&upper->search_list); 4222 return ret; 4223 } 4224 4225 static struct netdev_upper *__netdev_find_upper(struct net_device *dev, 4226 struct net_device *upper_dev) 4227 { 4228 struct netdev_upper *upper; 4229 4230 list_for_each_entry(upper, &dev->upper_dev_list, list) { 4231 if (upper->dev == upper_dev) 4232 return upper; 4233 } 4234 return NULL; 4235 } 4236 4237 /** 4238 * netdev_has_upper_dev - Check if device is linked to an upper device 4239 * @dev: device 4240 * @upper_dev: upper device to check 4241 * 4242 * Find out if a device is linked to specified upper device and return true 4243 * in case it is. Note that this checks only immediate upper device, 4244 * not through a complete stack of devices. The caller must hold the RTNL lock. 4245 */ 4246 bool netdev_has_upper_dev(struct net_device *dev, 4247 struct net_device *upper_dev) 4248 { 4249 ASSERT_RTNL(); 4250 4251 return __netdev_find_upper(dev, upper_dev); 4252 } 4253 EXPORT_SYMBOL(netdev_has_upper_dev); 4254 4255 /** 4256 * netdev_has_any_upper_dev - Check if device is linked to some device 4257 * @dev: device 4258 * 4259 * Find out if a device is linked to an upper device and return true in case 4260 * it is. The caller must hold the RTNL lock. 4261 */ 4262 bool netdev_has_any_upper_dev(struct net_device *dev) 4263 { 4264 ASSERT_RTNL(); 4265 4266 return !list_empty(&dev->upper_dev_list); 4267 } 4268 EXPORT_SYMBOL(netdev_has_any_upper_dev); 4269 4270 /** 4271 * netdev_master_upper_dev_get - Get master upper device 4272 * @dev: device 4273 * 4274 * Find a master upper device and return pointer to it or NULL in case 4275 * it's not there. The caller must hold the RTNL lock. 4276 */ 4277 struct net_device *netdev_master_upper_dev_get(struct net_device *dev) 4278 { 4279 struct netdev_upper *upper; 4280 4281 ASSERT_RTNL(); 4282 4283 if (list_empty(&dev->upper_dev_list)) 4284 return NULL; 4285 4286 upper = list_first_entry(&dev->upper_dev_list, 4287 struct netdev_upper, list); 4288 if (likely(upper->master)) 4289 return upper->dev; 4290 return NULL; 4291 } 4292 EXPORT_SYMBOL(netdev_master_upper_dev_get); 4293 4294 /** 4295 * netdev_master_upper_dev_get_rcu - Get master upper device 4296 * @dev: device 4297 * 4298 * Find a master upper device and return pointer to it or NULL in case 4299 * it's not there. The caller must hold the RCU read lock. 4300 */ 4301 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev) 4302 { 4303 struct netdev_upper *upper; 4304 4305 upper = list_first_or_null_rcu(&dev->upper_dev_list, 4306 struct netdev_upper, list); 4307 if (upper && likely(upper->master)) 4308 return upper->dev; 4309 return NULL; 4310 } 4311 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu); 4312 4313 static int __netdev_upper_dev_link(struct net_device *dev, 4314 struct net_device *upper_dev, bool master) 4315 { 4316 struct netdev_upper *upper; 4317 4318 ASSERT_RTNL(); 4319 4320 if (dev == upper_dev) 4321 return -EBUSY; 4322 4323 /* To prevent loops, check if dev is not upper device to upper_dev. */ 4324 if (__netdev_search_upper_dev(upper_dev, dev)) 4325 return -EBUSY; 4326 4327 if (__netdev_find_upper(dev, upper_dev)) 4328 return -EEXIST; 4329 4330 if (master && netdev_master_upper_dev_get(dev)) 4331 return -EBUSY; 4332 4333 upper = kmalloc(sizeof(*upper), GFP_KERNEL); 4334 if (!upper) 4335 return -ENOMEM; 4336 4337 upper->dev = upper_dev; 4338 upper->master = master; 4339 INIT_LIST_HEAD(&upper->search_list); 4340 4341 /* Ensure that master upper link is always the first item in list. */ 4342 if (master) 4343 list_add_rcu(&upper->list, &dev->upper_dev_list); 4344 else 4345 list_add_tail_rcu(&upper->list, &dev->upper_dev_list); 4346 dev_hold(upper_dev); 4347 4348 return 0; 4349 } 4350 4351 /** 4352 * netdev_upper_dev_link - Add a link to the upper device 4353 * @dev: device 4354 * @upper_dev: new upper device 4355 * 4356 * Adds a link to device which is upper to this one. The caller must hold 4357 * the RTNL lock. On a failure a negative errno code is returned. 4358 * On success the reference counts are adjusted and the function 4359 * returns zero. 4360 */ 4361 int netdev_upper_dev_link(struct net_device *dev, 4362 struct net_device *upper_dev) 4363 { 4364 return __netdev_upper_dev_link(dev, upper_dev, false); 4365 } 4366 EXPORT_SYMBOL(netdev_upper_dev_link); 4367 4368 /** 4369 * netdev_master_upper_dev_link - Add a master link to the upper device 4370 * @dev: device 4371 * @upper_dev: new upper device 4372 * 4373 * Adds a link to device which is upper to this one. In this case, only 4374 * one master upper device can be linked, although other non-master devices 4375 * might be linked as well. The caller must hold the RTNL lock. 4376 * On a failure a negative errno code is returned. On success the reference 4377 * counts are adjusted and the function returns zero. 4378 */ 4379 int netdev_master_upper_dev_link(struct net_device *dev, 4380 struct net_device *upper_dev) 4381 { 4382 return __netdev_upper_dev_link(dev, upper_dev, true); 4383 } 4384 EXPORT_SYMBOL(netdev_master_upper_dev_link); 4385 4386 /** 4387 * netdev_upper_dev_unlink - Removes a link to upper device 4388 * @dev: device 4389 * @upper_dev: new upper device 4390 * 4391 * Removes a link to device which is upper to this one. The caller must hold 4392 * the RTNL lock. 4393 */ 4394 void netdev_upper_dev_unlink(struct net_device *dev, 4395 struct net_device *upper_dev) 4396 { 4397 struct netdev_upper *upper; 4398 4399 ASSERT_RTNL(); 4400 4401 upper = __netdev_find_upper(dev, upper_dev); 4402 if (!upper) 4403 return; 4404 list_del_rcu(&upper->list); 4405 dev_put(upper_dev); 4406 kfree_rcu(upper, rcu); 4407 } 4408 EXPORT_SYMBOL(netdev_upper_dev_unlink); 4409 4410 static void dev_change_rx_flags(struct net_device *dev, int flags) 4411 { 4412 const struct net_device_ops *ops = dev->netdev_ops; 4413 4414 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags) 4415 ops->ndo_change_rx_flags(dev, flags); 4416 } 4417 4418 static int __dev_set_promiscuity(struct net_device *dev, int inc) 4419 { 4420 unsigned int old_flags = dev->flags; 4421 kuid_t uid; 4422 kgid_t gid; 4423 4424 ASSERT_RTNL(); 4425 4426 dev->flags |= IFF_PROMISC; 4427 dev->promiscuity += inc; 4428 if (dev->promiscuity == 0) { 4429 /* 4430 * Avoid overflow. 4431 * If inc causes overflow, untouch promisc and return error. 4432 */ 4433 if (inc < 0) 4434 dev->flags &= ~IFF_PROMISC; 4435 else { 4436 dev->promiscuity -= inc; 4437 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n", 4438 dev->name); 4439 return -EOVERFLOW; 4440 } 4441 } 4442 if (dev->flags != old_flags) { 4443 pr_info("device %s %s promiscuous mode\n", 4444 dev->name, 4445 dev->flags & IFF_PROMISC ? "entered" : "left"); 4446 if (audit_enabled) { 4447 current_uid_gid(&uid, &gid); 4448 audit_log(current->audit_context, GFP_ATOMIC, 4449 AUDIT_ANOM_PROMISCUOUS, 4450 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 4451 dev->name, (dev->flags & IFF_PROMISC), 4452 (old_flags & IFF_PROMISC), 4453 from_kuid(&init_user_ns, audit_get_loginuid(current)), 4454 from_kuid(&init_user_ns, uid), 4455 from_kgid(&init_user_ns, gid), 4456 audit_get_sessionid(current)); 4457 } 4458 4459 dev_change_rx_flags(dev, IFF_PROMISC); 4460 } 4461 return 0; 4462 } 4463 4464 /** 4465 * dev_set_promiscuity - update promiscuity count on a device 4466 * @dev: device 4467 * @inc: modifier 4468 * 4469 * Add or remove promiscuity from a device. While the count in the device 4470 * remains above zero the interface remains promiscuous. Once it hits zero 4471 * the device reverts back to normal filtering operation. A negative inc 4472 * value is used to drop promiscuity on the device. 4473 * Return 0 if successful or a negative errno code on error. 4474 */ 4475 int dev_set_promiscuity(struct net_device *dev, int inc) 4476 { 4477 unsigned int old_flags = dev->flags; 4478 int err; 4479 4480 err = __dev_set_promiscuity(dev, inc); 4481 if (err < 0) 4482 return err; 4483 if (dev->flags != old_flags) 4484 dev_set_rx_mode(dev); 4485 return err; 4486 } 4487 EXPORT_SYMBOL(dev_set_promiscuity); 4488 4489 /** 4490 * dev_set_allmulti - update allmulti count on a device 4491 * @dev: device 4492 * @inc: modifier 4493 * 4494 * Add or remove reception of all multicast frames to a device. While the 4495 * count in the device remains above zero the interface remains listening 4496 * to all interfaces. Once it hits zero the device reverts back to normal 4497 * filtering operation. A negative @inc value is used to drop the counter 4498 * when releasing a resource needing all multicasts. 4499 * Return 0 if successful or a negative errno code on error. 4500 */ 4501 4502 int dev_set_allmulti(struct net_device *dev, int inc) 4503 { 4504 unsigned int old_flags = dev->flags; 4505 4506 ASSERT_RTNL(); 4507 4508 dev->flags |= IFF_ALLMULTI; 4509 dev->allmulti += inc; 4510 if (dev->allmulti == 0) { 4511 /* 4512 * Avoid overflow. 4513 * If inc causes overflow, untouch allmulti and return error. 4514 */ 4515 if (inc < 0) 4516 dev->flags &= ~IFF_ALLMULTI; 4517 else { 4518 dev->allmulti -= inc; 4519 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n", 4520 dev->name); 4521 return -EOVERFLOW; 4522 } 4523 } 4524 if (dev->flags ^ old_flags) { 4525 dev_change_rx_flags(dev, IFF_ALLMULTI); 4526 dev_set_rx_mode(dev); 4527 } 4528 return 0; 4529 } 4530 EXPORT_SYMBOL(dev_set_allmulti); 4531 4532 /* 4533 * Upload unicast and multicast address lists to device and 4534 * configure RX filtering. When the device doesn't support unicast 4535 * filtering it is put in promiscuous mode while unicast addresses 4536 * are present. 4537 */ 4538 void __dev_set_rx_mode(struct net_device *dev) 4539 { 4540 const struct net_device_ops *ops = dev->netdev_ops; 4541 4542 /* dev_open will call this function so the list will stay sane. */ 4543 if (!(dev->flags&IFF_UP)) 4544 return; 4545 4546 if (!netif_device_present(dev)) 4547 return; 4548 4549 if (!(dev->priv_flags & IFF_UNICAST_FLT)) { 4550 /* Unicast addresses changes may only happen under the rtnl, 4551 * therefore calling __dev_set_promiscuity here is safe. 4552 */ 4553 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 4554 __dev_set_promiscuity(dev, 1); 4555 dev->uc_promisc = true; 4556 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 4557 __dev_set_promiscuity(dev, -1); 4558 dev->uc_promisc = false; 4559 } 4560 } 4561 4562 if (ops->ndo_set_rx_mode) 4563 ops->ndo_set_rx_mode(dev); 4564 } 4565 4566 void dev_set_rx_mode(struct net_device *dev) 4567 { 4568 netif_addr_lock_bh(dev); 4569 __dev_set_rx_mode(dev); 4570 netif_addr_unlock_bh(dev); 4571 } 4572 4573 /** 4574 * dev_get_flags - get flags reported to userspace 4575 * @dev: device 4576 * 4577 * Get the combination of flag bits exported through APIs to userspace. 4578 */ 4579 unsigned int dev_get_flags(const struct net_device *dev) 4580 { 4581 unsigned int flags; 4582 4583 flags = (dev->flags & ~(IFF_PROMISC | 4584 IFF_ALLMULTI | 4585 IFF_RUNNING | 4586 IFF_LOWER_UP | 4587 IFF_DORMANT)) | 4588 (dev->gflags & (IFF_PROMISC | 4589 IFF_ALLMULTI)); 4590 4591 if (netif_running(dev)) { 4592 if (netif_oper_up(dev)) 4593 flags |= IFF_RUNNING; 4594 if (netif_carrier_ok(dev)) 4595 flags |= IFF_LOWER_UP; 4596 if (netif_dormant(dev)) 4597 flags |= IFF_DORMANT; 4598 } 4599 4600 return flags; 4601 } 4602 EXPORT_SYMBOL(dev_get_flags); 4603 4604 int __dev_change_flags(struct net_device *dev, unsigned int flags) 4605 { 4606 unsigned int old_flags = dev->flags; 4607 int ret; 4608 4609 ASSERT_RTNL(); 4610 4611 /* 4612 * Set the flags on our device. 4613 */ 4614 4615 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 4616 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 4617 IFF_AUTOMEDIA)) | 4618 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 4619 IFF_ALLMULTI)); 4620 4621 /* 4622 * Load in the correct multicast list now the flags have changed. 4623 */ 4624 4625 if ((old_flags ^ flags) & IFF_MULTICAST) 4626 dev_change_rx_flags(dev, IFF_MULTICAST); 4627 4628 dev_set_rx_mode(dev); 4629 4630 /* 4631 * Have we downed the interface. We handle IFF_UP ourselves 4632 * according to user attempts to set it, rather than blindly 4633 * setting it. 4634 */ 4635 4636 ret = 0; 4637 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */ 4638 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev); 4639 4640 if (!ret) 4641 dev_set_rx_mode(dev); 4642 } 4643 4644 if ((flags ^ dev->gflags) & IFF_PROMISC) { 4645 int inc = (flags & IFF_PROMISC) ? 1 : -1; 4646 4647 dev->gflags ^= IFF_PROMISC; 4648 dev_set_promiscuity(dev, inc); 4649 } 4650 4651 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 4652 is important. Some (broken) drivers set IFF_PROMISC, when 4653 IFF_ALLMULTI is requested not asking us and not reporting. 4654 */ 4655 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 4656 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 4657 4658 dev->gflags ^= IFF_ALLMULTI; 4659 dev_set_allmulti(dev, inc); 4660 } 4661 4662 return ret; 4663 } 4664 4665 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags) 4666 { 4667 unsigned int changes = dev->flags ^ old_flags; 4668 4669 if (changes & IFF_UP) { 4670 if (dev->flags & IFF_UP) 4671 call_netdevice_notifiers(NETDEV_UP, dev); 4672 else 4673 call_netdevice_notifiers(NETDEV_DOWN, dev); 4674 } 4675 4676 if (dev->flags & IFF_UP && 4677 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) 4678 call_netdevice_notifiers(NETDEV_CHANGE, dev); 4679 } 4680 4681 /** 4682 * dev_change_flags - change device settings 4683 * @dev: device 4684 * @flags: device state flags 4685 * 4686 * Change settings on device based state flags. The flags are 4687 * in the userspace exported format. 4688 */ 4689 int dev_change_flags(struct net_device *dev, unsigned int flags) 4690 { 4691 int ret; 4692 unsigned int changes, old_flags = dev->flags; 4693 4694 ret = __dev_change_flags(dev, flags); 4695 if (ret < 0) 4696 return ret; 4697 4698 changes = old_flags ^ dev->flags; 4699 if (changes) 4700 rtmsg_ifinfo(RTM_NEWLINK, dev, changes); 4701 4702 __dev_notify_flags(dev, old_flags); 4703 return ret; 4704 } 4705 EXPORT_SYMBOL(dev_change_flags); 4706 4707 /** 4708 * dev_set_mtu - Change maximum transfer unit 4709 * @dev: device 4710 * @new_mtu: new transfer unit 4711 * 4712 * Change the maximum transfer size of the network device. 4713 */ 4714 int dev_set_mtu(struct net_device *dev, int new_mtu) 4715 { 4716 const struct net_device_ops *ops = dev->netdev_ops; 4717 int err; 4718 4719 if (new_mtu == dev->mtu) 4720 return 0; 4721 4722 /* MTU must be positive. */ 4723 if (new_mtu < 0) 4724 return -EINVAL; 4725 4726 if (!netif_device_present(dev)) 4727 return -ENODEV; 4728 4729 err = 0; 4730 if (ops->ndo_change_mtu) 4731 err = ops->ndo_change_mtu(dev, new_mtu); 4732 else 4733 dev->mtu = new_mtu; 4734 4735 if (!err) 4736 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 4737 return err; 4738 } 4739 EXPORT_SYMBOL(dev_set_mtu); 4740 4741 /** 4742 * dev_set_group - Change group this device belongs to 4743 * @dev: device 4744 * @new_group: group this device should belong to 4745 */ 4746 void dev_set_group(struct net_device *dev, int new_group) 4747 { 4748 dev->group = new_group; 4749 } 4750 EXPORT_SYMBOL(dev_set_group); 4751 4752 /** 4753 * dev_set_mac_address - Change Media Access Control Address 4754 * @dev: device 4755 * @sa: new address 4756 * 4757 * Change the hardware (MAC) address of the device 4758 */ 4759 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa) 4760 { 4761 const struct net_device_ops *ops = dev->netdev_ops; 4762 int err; 4763 4764 if (!ops->ndo_set_mac_address) 4765 return -EOPNOTSUPP; 4766 if (sa->sa_family != dev->type) 4767 return -EINVAL; 4768 if (!netif_device_present(dev)) 4769 return -ENODEV; 4770 err = ops->ndo_set_mac_address(dev, sa); 4771 if (err) 4772 return err; 4773 dev->addr_assign_type = NET_ADDR_SET; 4774 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 4775 add_device_randomness(dev->dev_addr, dev->addr_len); 4776 return 0; 4777 } 4778 EXPORT_SYMBOL(dev_set_mac_address); 4779 4780 /** 4781 * dev_change_carrier - Change device carrier 4782 * @dev: device 4783 * @new_carries: new value 4784 * 4785 * Change device carrier 4786 */ 4787 int dev_change_carrier(struct net_device *dev, bool new_carrier) 4788 { 4789 const struct net_device_ops *ops = dev->netdev_ops; 4790 4791 if (!ops->ndo_change_carrier) 4792 return -EOPNOTSUPP; 4793 if (!netif_device_present(dev)) 4794 return -ENODEV; 4795 return ops->ndo_change_carrier(dev, new_carrier); 4796 } 4797 EXPORT_SYMBOL(dev_change_carrier); 4798 4799 /** 4800 * dev_new_index - allocate an ifindex 4801 * @net: the applicable net namespace 4802 * 4803 * Returns a suitable unique value for a new device interface 4804 * number. The caller must hold the rtnl semaphore or the 4805 * dev_base_lock to be sure it remains unique. 4806 */ 4807 static int dev_new_index(struct net *net) 4808 { 4809 int ifindex = net->ifindex; 4810 for (;;) { 4811 if (++ifindex <= 0) 4812 ifindex = 1; 4813 if (!__dev_get_by_index(net, ifindex)) 4814 return net->ifindex = ifindex; 4815 } 4816 } 4817 4818 /* Delayed registration/unregisteration */ 4819 static LIST_HEAD(net_todo_list); 4820 4821 static void net_set_todo(struct net_device *dev) 4822 { 4823 list_add_tail(&dev->todo_list, &net_todo_list); 4824 } 4825 4826 static void rollback_registered_many(struct list_head *head) 4827 { 4828 struct net_device *dev, *tmp; 4829 4830 BUG_ON(dev_boot_phase); 4831 ASSERT_RTNL(); 4832 4833 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 4834 /* Some devices call without registering 4835 * for initialization unwind. Remove those 4836 * devices and proceed with the remaining. 4837 */ 4838 if (dev->reg_state == NETREG_UNINITIALIZED) { 4839 pr_debug("unregister_netdevice: device %s/%p never was registered\n", 4840 dev->name, dev); 4841 4842 WARN_ON(1); 4843 list_del(&dev->unreg_list); 4844 continue; 4845 } 4846 dev->dismantle = true; 4847 BUG_ON(dev->reg_state != NETREG_REGISTERED); 4848 } 4849 4850 /* If device is running, close it first. */ 4851 dev_close_many(head); 4852 4853 list_for_each_entry(dev, head, unreg_list) { 4854 /* And unlink it from device chain. */ 4855 unlist_netdevice(dev); 4856 4857 dev->reg_state = NETREG_UNREGISTERING; 4858 } 4859 4860 synchronize_net(); 4861 4862 list_for_each_entry(dev, head, unreg_list) { 4863 /* Shutdown queueing discipline. */ 4864 dev_shutdown(dev); 4865 4866 4867 /* Notify protocols, that we are about to destroy 4868 this device. They should clean all the things. 4869 */ 4870 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 4871 4872 if (!dev->rtnl_link_ops || 4873 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 4874 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U); 4875 4876 /* 4877 * Flush the unicast and multicast chains 4878 */ 4879 dev_uc_flush(dev); 4880 dev_mc_flush(dev); 4881 4882 if (dev->netdev_ops->ndo_uninit) 4883 dev->netdev_ops->ndo_uninit(dev); 4884 4885 /* Notifier chain MUST detach us all upper devices. */ 4886 WARN_ON(netdev_has_any_upper_dev(dev)); 4887 4888 /* Remove entries from kobject tree */ 4889 netdev_unregister_kobject(dev); 4890 #ifdef CONFIG_XPS 4891 /* Remove XPS queueing entries */ 4892 netif_reset_xps_queues_gt(dev, 0); 4893 #endif 4894 } 4895 4896 synchronize_net(); 4897 4898 list_for_each_entry(dev, head, unreg_list) 4899 dev_put(dev); 4900 } 4901 4902 static void rollback_registered(struct net_device *dev) 4903 { 4904 LIST_HEAD(single); 4905 4906 list_add(&dev->unreg_list, &single); 4907 rollback_registered_many(&single); 4908 list_del(&single); 4909 } 4910 4911 static netdev_features_t netdev_fix_features(struct net_device *dev, 4912 netdev_features_t features) 4913 { 4914 /* Fix illegal checksum combinations */ 4915 if ((features & NETIF_F_HW_CSUM) && 4916 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 4917 netdev_warn(dev, "mixed HW and IP checksum settings.\n"); 4918 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 4919 } 4920 4921 /* Fix illegal SG+CSUM combinations. */ 4922 if ((features & NETIF_F_SG) && 4923 !(features & NETIF_F_ALL_CSUM)) { 4924 netdev_dbg(dev, 4925 "Dropping NETIF_F_SG since no checksum feature.\n"); 4926 features &= ~NETIF_F_SG; 4927 } 4928 4929 /* TSO requires that SG is present as well. */ 4930 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { 4931 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); 4932 features &= ~NETIF_F_ALL_TSO; 4933 } 4934 4935 /* TSO ECN requires that TSO is present as well. */ 4936 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) 4937 features &= ~NETIF_F_TSO_ECN; 4938 4939 /* Software GSO depends on SG. */ 4940 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 4941 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 4942 features &= ~NETIF_F_GSO; 4943 } 4944 4945 /* UFO needs SG and checksumming */ 4946 if (features & NETIF_F_UFO) { 4947 /* maybe split UFO into V4 and V6? */ 4948 if (!((features & NETIF_F_GEN_CSUM) || 4949 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM)) 4950 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 4951 netdev_dbg(dev, 4952 "Dropping NETIF_F_UFO since no checksum offload features.\n"); 4953 features &= ~NETIF_F_UFO; 4954 } 4955 4956 if (!(features & NETIF_F_SG)) { 4957 netdev_dbg(dev, 4958 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n"); 4959 features &= ~NETIF_F_UFO; 4960 } 4961 } 4962 4963 return features; 4964 } 4965 4966 int __netdev_update_features(struct net_device *dev) 4967 { 4968 netdev_features_t features; 4969 int err = 0; 4970 4971 ASSERT_RTNL(); 4972 4973 features = netdev_get_wanted_features(dev); 4974 4975 if (dev->netdev_ops->ndo_fix_features) 4976 features = dev->netdev_ops->ndo_fix_features(dev, features); 4977 4978 /* driver might be less strict about feature dependencies */ 4979 features = netdev_fix_features(dev, features); 4980 4981 if (dev->features == features) 4982 return 0; 4983 4984 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n", 4985 &dev->features, &features); 4986 4987 if (dev->netdev_ops->ndo_set_features) 4988 err = dev->netdev_ops->ndo_set_features(dev, features); 4989 4990 if (unlikely(err < 0)) { 4991 netdev_err(dev, 4992 "set_features() failed (%d); wanted %pNF, left %pNF\n", 4993 err, &features, &dev->features); 4994 return -1; 4995 } 4996 4997 if (!err) 4998 dev->features = features; 4999 5000 return 1; 5001 } 5002 5003 /** 5004 * netdev_update_features - recalculate device features 5005 * @dev: the device to check 5006 * 5007 * Recalculate dev->features set and send notifications if it 5008 * has changed. Should be called after driver or hardware dependent 5009 * conditions might have changed that influence the features. 5010 */ 5011 void netdev_update_features(struct net_device *dev) 5012 { 5013 if (__netdev_update_features(dev)) 5014 netdev_features_change(dev); 5015 } 5016 EXPORT_SYMBOL(netdev_update_features); 5017 5018 /** 5019 * netdev_change_features - recalculate device features 5020 * @dev: the device to check 5021 * 5022 * Recalculate dev->features set and send notifications even 5023 * if they have not changed. Should be called instead of 5024 * netdev_update_features() if also dev->vlan_features might 5025 * have changed to allow the changes to be propagated to stacked 5026 * VLAN devices. 5027 */ 5028 void netdev_change_features(struct net_device *dev) 5029 { 5030 __netdev_update_features(dev); 5031 netdev_features_change(dev); 5032 } 5033 EXPORT_SYMBOL(netdev_change_features); 5034 5035 /** 5036 * netif_stacked_transfer_operstate - transfer operstate 5037 * @rootdev: the root or lower level device to transfer state from 5038 * @dev: the device to transfer operstate to 5039 * 5040 * Transfer operational state from root to device. This is normally 5041 * called when a stacking relationship exists between the root 5042 * device and the device(a leaf device). 5043 */ 5044 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 5045 struct net_device *dev) 5046 { 5047 if (rootdev->operstate == IF_OPER_DORMANT) 5048 netif_dormant_on(dev); 5049 else 5050 netif_dormant_off(dev); 5051 5052 if (netif_carrier_ok(rootdev)) { 5053 if (!netif_carrier_ok(dev)) 5054 netif_carrier_on(dev); 5055 } else { 5056 if (netif_carrier_ok(dev)) 5057 netif_carrier_off(dev); 5058 } 5059 } 5060 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 5061 5062 #ifdef CONFIG_RPS 5063 static int netif_alloc_rx_queues(struct net_device *dev) 5064 { 5065 unsigned int i, count = dev->num_rx_queues; 5066 struct netdev_rx_queue *rx; 5067 5068 BUG_ON(count < 1); 5069 5070 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL); 5071 if (!rx) 5072 return -ENOMEM; 5073 5074 dev->_rx = rx; 5075 5076 for (i = 0; i < count; i++) 5077 rx[i].dev = dev; 5078 return 0; 5079 } 5080 #endif 5081 5082 static void netdev_init_one_queue(struct net_device *dev, 5083 struct netdev_queue *queue, void *_unused) 5084 { 5085 /* Initialize queue lock */ 5086 spin_lock_init(&queue->_xmit_lock); 5087 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); 5088 queue->xmit_lock_owner = -1; 5089 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 5090 queue->dev = dev; 5091 #ifdef CONFIG_BQL 5092 dql_init(&queue->dql, HZ); 5093 #endif 5094 } 5095 5096 static int netif_alloc_netdev_queues(struct net_device *dev) 5097 { 5098 unsigned int count = dev->num_tx_queues; 5099 struct netdev_queue *tx; 5100 5101 BUG_ON(count < 1); 5102 5103 tx = kcalloc(count, sizeof(struct netdev_queue), GFP_KERNEL); 5104 if (!tx) 5105 return -ENOMEM; 5106 5107 dev->_tx = tx; 5108 5109 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 5110 spin_lock_init(&dev->tx_global_lock); 5111 5112 return 0; 5113 } 5114 5115 /** 5116 * register_netdevice - register a network device 5117 * @dev: device to register 5118 * 5119 * Take a completed network device structure and add it to the kernel 5120 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 5121 * chain. 0 is returned on success. A negative errno code is returned 5122 * on a failure to set up the device, or if the name is a duplicate. 5123 * 5124 * Callers must hold the rtnl semaphore. You may want 5125 * register_netdev() instead of this. 5126 * 5127 * BUGS: 5128 * The locking appears insufficient to guarantee two parallel registers 5129 * will not get the same name. 5130 */ 5131 5132 int register_netdevice(struct net_device *dev) 5133 { 5134 int ret; 5135 struct net *net = dev_net(dev); 5136 5137 BUG_ON(dev_boot_phase); 5138 ASSERT_RTNL(); 5139 5140 might_sleep(); 5141 5142 /* When net_device's are persistent, this will be fatal. */ 5143 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 5144 BUG_ON(!net); 5145 5146 spin_lock_init(&dev->addr_list_lock); 5147 netdev_set_addr_lockdep_class(dev); 5148 5149 dev->iflink = -1; 5150 5151 ret = dev_get_valid_name(net, dev, dev->name); 5152 if (ret < 0) 5153 goto out; 5154 5155 /* Init, if this function is available */ 5156 if (dev->netdev_ops->ndo_init) { 5157 ret = dev->netdev_ops->ndo_init(dev); 5158 if (ret) { 5159 if (ret > 0) 5160 ret = -EIO; 5161 goto out; 5162 } 5163 } 5164 5165 if (((dev->hw_features | dev->features) & NETIF_F_HW_VLAN_FILTER) && 5166 (!dev->netdev_ops->ndo_vlan_rx_add_vid || 5167 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) { 5168 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n"); 5169 ret = -EINVAL; 5170 goto err_uninit; 5171 } 5172 5173 ret = -EBUSY; 5174 if (!dev->ifindex) 5175 dev->ifindex = dev_new_index(net); 5176 else if (__dev_get_by_index(net, dev->ifindex)) 5177 goto err_uninit; 5178 5179 if (dev->iflink == -1) 5180 dev->iflink = dev->ifindex; 5181 5182 /* Transfer changeable features to wanted_features and enable 5183 * software offloads (GSO and GRO). 5184 */ 5185 dev->hw_features |= NETIF_F_SOFT_FEATURES; 5186 dev->features |= NETIF_F_SOFT_FEATURES; 5187 dev->wanted_features = dev->features & dev->hw_features; 5188 5189 /* Turn on no cache copy if HW is doing checksum */ 5190 if (!(dev->flags & IFF_LOOPBACK)) { 5191 dev->hw_features |= NETIF_F_NOCACHE_COPY; 5192 if (dev->features & NETIF_F_ALL_CSUM) { 5193 dev->wanted_features |= NETIF_F_NOCACHE_COPY; 5194 dev->features |= NETIF_F_NOCACHE_COPY; 5195 } 5196 } 5197 5198 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. 5199 */ 5200 dev->vlan_features |= NETIF_F_HIGHDMA; 5201 5202 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 5203 ret = notifier_to_errno(ret); 5204 if (ret) 5205 goto err_uninit; 5206 5207 ret = netdev_register_kobject(dev); 5208 if (ret) 5209 goto err_uninit; 5210 dev->reg_state = NETREG_REGISTERED; 5211 5212 __netdev_update_features(dev); 5213 5214 /* 5215 * Default initial state at registry is that the 5216 * device is present. 5217 */ 5218 5219 set_bit(__LINK_STATE_PRESENT, &dev->state); 5220 5221 linkwatch_init_dev(dev); 5222 5223 dev_init_scheduler(dev); 5224 dev_hold(dev); 5225 list_netdevice(dev); 5226 add_device_randomness(dev->dev_addr, dev->addr_len); 5227 5228 /* If the device has permanent device address, driver should 5229 * set dev_addr and also addr_assign_type should be set to 5230 * NET_ADDR_PERM (default value). 5231 */ 5232 if (dev->addr_assign_type == NET_ADDR_PERM) 5233 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); 5234 5235 /* Notify protocols, that a new device appeared. */ 5236 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 5237 ret = notifier_to_errno(ret); 5238 if (ret) { 5239 rollback_registered(dev); 5240 dev->reg_state = NETREG_UNREGISTERED; 5241 } 5242 /* 5243 * Prevent userspace races by waiting until the network 5244 * device is fully setup before sending notifications. 5245 */ 5246 if (!dev->rtnl_link_ops || 5247 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 5248 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U); 5249 5250 out: 5251 return ret; 5252 5253 err_uninit: 5254 if (dev->netdev_ops->ndo_uninit) 5255 dev->netdev_ops->ndo_uninit(dev); 5256 goto out; 5257 } 5258 EXPORT_SYMBOL(register_netdevice); 5259 5260 /** 5261 * init_dummy_netdev - init a dummy network device for NAPI 5262 * @dev: device to init 5263 * 5264 * This takes a network device structure and initialize the minimum 5265 * amount of fields so it can be used to schedule NAPI polls without 5266 * registering a full blown interface. This is to be used by drivers 5267 * that need to tie several hardware interfaces to a single NAPI 5268 * poll scheduler due to HW limitations. 5269 */ 5270 int init_dummy_netdev(struct net_device *dev) 5271 { 5272 /* Clear everything. Note we don't initialize spinlocks 5273 * are they aren't supposed to be taken by any of the 5274 * NAPI code and this dummy netdev is supposed to be 5275 * only ever used for NAPI polls 5276 */ 5277 memset(dev, 0, sizeof(struct net_device)); 5278 5279 /* make sure we BUG if trying to hit standard 5280 * register/unregister code path 5281 */ 5282 dev->reg_state = NETREG_DUMMY; 5283 5284 /* NAPI wants this */ 5285 INIT_LIST_HEAD(&dev->napi_list); 5286 5287 /* a dummy interface is started by default */ 5288 set_bit(__LINK_STATE_PRESENT, &dev->state); 5289 set_bit(__LINK_STATE_START, &dev->state); 5290 5291 /* Note : We dont allocate pcpu_refcnt for dummy devices, 5292 * because users of this 'device' dont need to change 5293 * its refcount. 5294 */ 5295 5296 return 0; 5297 } 5298 EXPORT_SYMBOL_GPL(init_dummy_netdev); 5299 5300 5301 /** 5302 * register_netdev - register a network device 5303 * @dev: device to register 5304 * 5305 * Take a completed network device structure and add it to the kernel 5306 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 5307 * chain. 0 is returned on success. A negative errno code is returned 5308 * on a failure to set up the device, or if the name is a duplicate. 5309 * 5310 * This is a wrapper around register_netdevice that takes the rtnl semaphore 5311 * and expands the device name if you passed a format string to 5312 * alloc_netdev. 5313 */ 5314 int register_netdev(struct net_device *dev) 5315 { 5316 int err; 5317 5318 rtnl_lock(); 5319 err = register_netdevice(dev); 5320 rtnl_unlock(); 5321 return err; 5322 } 5323 EXPORT_SYMBOL(register_netdev); 5324 5325 int netdev_refcnt_read(const struct net_device *dev) 5326 { 5327 int i, refcnt = 0; 5328 5329 for_each_possible_cpu(i) 5330 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 5331 return refcnt; 5332 } 5333 EXPORT_SYMBOL(netdev_refcnt_read); 5334 5335 /** 5336 * netdev_wait_allrefs - wait until all references are gone. 5337 * @dev: target net_device 5338 * 5339 * This is called when unregistering network devices. 5340 * 5341 * Any protocol or device that holds a reference should register 5342 * for netdevice notification, and cleanup and put back the 5343 * reference if they receive an UNREGISTER event. 5344 * We can get stuck here if buggy protocols don't correctly 5345 * call dev_put. 5346 */ 5347 static void netdev_wait_allrefs(struct net_device *dev) 5348 { 5349 unsigned long rebroadcast_time, warning_time; 5350 int refcnt; 5351 5352 linkwatch_forget_dev(dev); 5353 5354 rebroadcast_time = warning_time = jiffies; 5355 refcnt = netdev_refcnt_read(dev); 5356 5357 while (refcnt != 0) { 5358 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 5359 rtnl_lock(); 5360 5361 /* Rebroadcast unregister notification */ 5362 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 5363 5364 __rtnl_unlock(); 5365 rcu_barrier(); 5366 rtnl_lock(); 5367 5368 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 5369 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 5370 &dev->state)) { 5371 /* We must not have linkwatch events 5372 * pending on unregister. If this 5373 * happens, we simply run the queue 5374 * unscheduled, resulting in a noop 5375 * for this device. 5376 */ 5377 linkwatch_run_queue(); 5378 } 5379 5380 __rtnl_unlock(); 5381 5382 rebroadcast_time = jiffies; 5383 } 5384 5385 msleep(250); 5386 5387 refcnt = netdev_refcnt_read(dev); 5388 5389 if (time_after(jiffies, warning_time + 10 * HZ)) { 5390 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n", 5391 dev->name, refcnt); 5392 warning_time = jiffies; 5393 } 5394 } 5395 } 5396 5397 /* The sequence is: 5398 * 5399 * rtnl_lock(); 5400 * ... 5401 * register_netdevice(x1); 5402 * register_netdevice(x2); 5403 * ... 5404 * unregister_netdevice(y1); 5405 * unregister_netdevice(y2); 5406 * ... 5407 * rtnl_unlock(); 5408 * free_netdev(y1); 5409 * free_netdev(y2); 5410 * 5411 * We are invoked by rtnl_unlock(). 5412 * This allows us to deal with problems: 5413 * 1) We can delete sysfs objects which invoke hotplug 5414 * without deadlocking with linkwatch via keventd. 5415 * 2) Since we run with the RTNL semaphore not held, we can sleep 5416 * safely in order to wait for the netdev refcnt to drop to zero. 5417 * 5418 * We must not return until all unregister events added during 5419 * the interval the lock was held have been completed. 5420 */ 5421 void netdev_run_todo(void) 5422 { 5423 struct list_head list; 5424 5425 /* Snapshot list, allow later requests */ 5426 list_replace_init(&net_todo_list, &list); 5427 5428 __rtnl_unlock(); 5429 5430 5431 /* Wait for rcu callbacks to finish before next phase */ 5432 if (!list_empty(&list)) 5433 rcu_barrier(); 5434 5435 while (!list_empty(&list)) { 5436 struct net_device *dev 5437 = list_first_entry(&list, struct net_device, todo_list); 5438 list_del(&dev->todo_list); 5439 5440 rtnl_lock(); 5441 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 5442 __rtnl_unlock(); 5443 5444 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 5445 pr_err("network todo '%s' but state %d\n", 5446 dev->name, dev->reg_state); 5447 dump_stack(); 5448 continue; 5449 } 5450 5451 dev->reg_state = NETREG_UNREGISTERED; 5452 5453 on_each_cpu(flush_backlog, dev, 1); 5454 5455 netdev_wait_allrefs(dev); 5456 5457 /* paranoia */ 5458 BUG_ON(netdev_refcnt_read(dev)); 5459 WARN_ON(rcu_access_pointer(dev->ip_ptr)); 5460 WARN_ON(rcu_access_pointer(dev->ip6_ptr)); 5461 WARN_ON(dev->dn_ptr); 5462 5463 if (dev->destructor) 5464 dev->destructor(dev); 5465 5466 /* Free network device */ 5467 kobject_put(&dev->dev.kobj); 5468 } 5469 } 5470 5471 /* Convert net_device_stats to rtnl_link_stats64. They have the same 5472 * fields in the same order, with only the type differing. 5473 */ 5474 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 5475 const struct net_device_stats *netdev_stats) 5476 { 5477 #if BITS_PER_LONG == 64 5478 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats)); 5479 memcpy(stats64, netdev_stats, sizeof(*stats64)); 5480 #else 5481 size_t i, n = sizeof(*stats64) / sizeof(u64); 5482 const unsigned long *src = (const unsigned long *)netdev_stats; 5483 u64 *dst = (u64 *)stats64; 5484 5485 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) != 5486 sizeof(*stats64) / sizeof(u64)); 5487 for (i = 0; i < n; i++) 5488 dst[i] = src[i]; 5489 #endif 5490 } 5491 EXPORT_SYMBOL(netdev_stats_to_stats64); 5492 5493 /** 5494 * dev_get_stats - get network device statistics 5495 * @dev: device to get statistics from 5496 * @storage: place to store stats 5497 * 5498 * Get network statistics from device. Return @storage. 5499 * The device driver may provide its own method by setting 5500 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 5501 * otherwise the internal statistics structure is used. 5502 */ 5503 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 5504 struct rtnl_link_stats64 *storage) 5505 { 5506 const struct net_device_ops *ops = dev->netdev_ops; 5507 5508 if (ops->ndo_get_stats64) { 5509 memset(storage, 0, sizeof(*storage)); 5510 ops->ndo_get_stats64(dev, storage); 5511 } else if (ops->ndo_get_stats) { 5512 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 5513 } else { 5514 netdev_stats_to_stats64(storage, &dev->stats); 5515 } 5516 storage->rx_dropped += atomic_long_read(&dev->rx_dropped); 5517 return storage; 5518 } 5519 EXPORT_SYMBOL(dev_get_stats); 5520 5521 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 5522 { 5523 struct netdev_queue *queue = dev_ingress_queue(dev); 5524 5525 #ifdef CONFIG_NET_CLS_ACT 5526 if (queue) 5527 return queue; 5528 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 5529 if (!queue) 5530 return NULL; 5531 netdev_init_one_queue(dev, queue, NULL); 5532 queue->qdisc = &noop_qdisc; 5533 queue->qdisc_sleeping = &noop_qdisc; 5534 rcu_assign_pointer(dev->ingress_queue, queue); 5535 #endif 5536 return queue; 5537 } 5538 5539 static const struct ethtool_ops default_ethtool_ops; 5540 5541 void netdev_set_default_ethtool_ops(struct net_device *dev, 5542 const struct ethtool_ops *ops) 5543 { 5544 if (dev->ethtool_ops == &default_ethtool_ops) 5545 dev->ethtool_ops = ops; 5546 } 5547 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops); 5548 5549 /** 5550 * alloc_netdev_mqs - allocate network device 5551 * @sizeof_priv: size of private data to allocate space for 5552 * @name: device name format string 5553 * @setup: callback to initialize device 5554 * @txqs: the number of TX subqueues to allocate 5555 * @rxqs: the number of RX subqueues to allocate 5556 * 5557 * Allocates a struct net_device with private data area for driver use 5558 * and performs basic initialization. Also allocates subquue structs 5559 * for each queue on the device. 5560 */ 5561 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 5562 void (*setup)(struct net_device *), 5563 unsigned int txqs, unsigned int rxqs) 5564 { 5565 struct net_device *dev; 5566 size_t alloc_size; 5567 struct net_device *p; 5568 5569 BUG_ON(strlen(name) >= sizeof(dev->name)); 5570 5571 if (txqs < 1) { 5572 pr_err("alloc_netdev: Unable to allocate device with zero queues\n"); 5573 return NULL; 5574 } 5575 5576 #ifdef CONFIG_RPS 5577 if (rxqs < 1) { 5578 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n"); 5579 return NULL; 5580 } 5581 #endif 5582 5583 alloc_size = sizeof(struct net_device); 5584 if (sizeof_priv) { 5585 /* ensure 32-byte alignment of private area */ 5586 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); 5587 alloc_size += sizeof_priv; 5588 } 5589 /* ensure 32-byte alignment of whole construct */ 5590 alloc_size += NETDEV_ALIGN - 1; 5591 5592 p = kzalloc(alloc_size, GFP_KERNEL); 5593 if (!p) 5594 return NULL; 5595 5596 dev = PTR_ALIGN(p, NETDEV_ALIGN); 5597 dev->padded = (char *)dev - (char *)p; 5598 5599 dev->pcpu_refcnt = alloc_percpu(int); 5600 if (!dev->pcpu_refcnt) 5601 goto free_p; 5602 5603 if (dev_addr_init(dev)) 5604 goto free_pcpu; 5605 5606 dev_mc_init(dev); 5607 dev_uc_init(dev); 5608 5609 dev_net_set(dev, &init_net); 5610 5611 dev->gso_max_size = GSO_MAX_SIZE; 5612 dev->gso_max_segs = GSO_MAX_SEGS; 5613 5614 INIT_LIST_HEAD(&dev->napi_list); 5615 INIT_LIST_HEAD(&dev->unreg_list); 5616 INIT_LIST_HEAD(&dev->link_watch_list); 5617 INIT_LIST_HEAD(&dev->upper_dev_list); 5618 dev->priv_flags = IFF_XMIT_DST_RELEASE; 5619 setup(dev); 5620 5621 dev->num_tx_queues = txqs; 5622 dev->real_num_tx_queues = txqs; 5623 if (netif_alloc_netdev_queues(dev)) 5624 goto free_all; 5625 5626 #ifdef CONFIG_RPS 5627 dev->num_rx_queues = rxqs; 5628 dev->real_num_rx_queues = rxqs; 5629 if (netif_alloc_rx_queues(dev)) 5630 goto free_all; 5631 #endif 5632 5633 strcpy(dev->name, name); 5634 dev->group = INIT_NETDEV_GROUP; 5635 if (!dev->ethtool_ops) 5636 dev->ethtool_ops = &default_ethtool_ops; 5637 return dev; 5638 5639 free_all: 5640 free_netdev(dev); 5641 return NULL; 5642 5643 free_pcpu: 5644 free_percpu(dev->pcpu_refcnt); 5645 kfree(dev->_tx); 5646 #ifdef CONFIG_RPS 5647 kfree(dev->_rx); 5648 #endif 5649 5650 free_p: 5651 kfree(p); 5652 return NULL; 5653 } 5654 EXPORT_SYMBOL(alloc_netdev_mqs); 5655 5656 /** 5657 * free_netdev - free network device 5658 * @dev: device 5659 * 5660 * This function does the last stage of destroying an allocated device 5661 * interface. The reference to the device object is released. 5662 * If this is the last reference then it will be freed. 5663 */ 5664 void free_netdev(struct net_device *dev) 5665 { 5666 struct napi_struct *p, *n; 5667 5668 release_net(dev_net(dev)); 5669 5670 kfree(dev->_tx); 5671 #ifdef CONFIG_RPS 5672 kfree(dev->_rx); 5673 #endif 5674 5675 kfree(rcu_dereference_protected(dev->ingress_queue, 1)); 5676 5677 /* Flush device addresses */ 5678 dev_addr_flush(dev); 5679 5680 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 5681 netif_napi_del(p); 5682 5683 free_percpu(dev->pcpu_refcnt); 5684 dev->pcpu_refcnt = NULL; 5685 5686 /* Compatibility with error handling in drivers */ 5687 if (dev->reg_state == NETREG_UNINITIALIZED) { 5688 kfree((char *)dev - dev->padded); 5689 return; 5690 } 5691 5692 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 5693 dev->reg_state = NETREG_RELEASED; 5694 5695 /* will free via device release */ 5696 put_device(&dev->dev); 5697 } 5698 EXPORT_SYMBOL(free_netdev); 5699 5700 /** 5701 * synchronize_net - Synchronize with packet receive processing 5702 * 5703 * Wait for packets currently being received to be done. 5704 * Does not block later packets from starting. 5705 */ 5706 void synchronize_net(void) 5707 { 5708 might_sleep(); 5709 if (rtnl_is_locked()) 5710 synchronize_rcu_expedited(); 5711 else 5712 synchronize_rcu(); 5713 } 5714 EXPORT_SYMBOL(synchronize_net); 5715 5716 /** 5717 * unregister_netdevice_queue - remove device from the kernel 5718 * @dev: device 5719 * @head: list 5720 * 5721 * This function shuts down a device interface and removes it 5722 * from the kernel tables. 5723 * If head not NULL, device is queued to be unregistered later. 5724 * 5725 * Callers must hold the rtnl semaphore. You may want 5726 * unregister_netdev() instead of this. 5727 */ 5728 5729 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 5730 { 5731 ASSERT_RTNL(); 5732 5733 if (head) { 5734 list_move_tail(&dev->unreg_list, head); 5735 } else { 5736 rollback_registered(dev); 5737 /* Finish processing unregister after unlock */ 5738 net_set_todo(dev); 5739 } 5740 } 5741 EXPORT_SYMBOL(unregister_netdevice_queue); 5742 5743 /** 5744 * unregister_netdevice_many - unregister many devices 5745 * @head: list of devices 5746 */ 5747 void unregister_netdevice_many(struct list_head *head) 5748 { 5749 struct net_device *dev; 5750 5751 if (!list_empty(head)) { 5752 rollback_registered_many(head); 5753 list_for_each_entry(dev, head, unreg_list) 5754 net_set_todo(dev); 5755 } 5756 } 5757 EXPORT_SYMBOL(unregister_netdevice_many); 5758 5759 /** 5760 * unregister_netdev - remove device from the kernel 5761 * @dev: device 5762 * 5763 * This function shuts down a device interface and removes it 5764 * from the kernel tables. 5765 * 5766 * This is just a wrapper for unregister_netdevice that takes 5767 * the rtnl semaphore. In general you want to use this and not 5768 * unregister_netdevice. 5769 */ 5770 void unregister_netdev(struct net_device *dev) 5771 { 5772 rtnl_lock(); 5773 unregister_netdevice(dev); 5774 rtnl_unlock(); 5775 } 5776 EXPORT_SYMBOL(unregister_netdev); 5777 5778 /** 5779 * dev_change_net_namespace - move device to different nethost namespace 5780 * @dev: device 5781 * @net: network namespace 5782 * @pat: If not NULL name pattern to try if the current device name 5783 * is already taken in the destination network namespace. 5784 * 5785 * This function shuts down a device interface and moves it 5786 * to a new network namespace. On success 0 is returned, on 5787 * a failure a netagive errno code is returned. 5788 * 5789 * Callers must hold the rtnl semaphore. 5790 */ 5791 5792 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 5793 { 5794 int err; 5795 5796 ASSERT_RTNL(); 5797 5798 /* Don't allow namespace local devices to be moved. */ 5799 err = -EINVAL; 5800 if (dev->features & NETIF_F_NETNS_LOCAL) 5801 goto out; 5802 5803 /* Ensure the device has been registrered */ 5804 if (dev->reg_state != NETREG_REGISTERED) 5805 goto out; 5806 5807 /* Get out if there is nothing todo */ 5808 err = 0; 5809 if (net_eq(dev_net(dev), net)) 5810 goto out; 5811 5812 /* Pick the destination device name, and ensure 5813 * we can use it in the destination network namespace. 5814 */ 5815 err = -EEXIST; 5816 if (__dev_get_by_name(net, dev->name)) { 5817 /* We get here if we can't use the current device name */ 5818 if (!pat) 5819 goto out; 5820 if (dev_get_valid_name(net, dev, pat) < 0) 5821 goto out; 5822 } 5823 5824 /* 5825 * And now a mini version of register_netdevice unregister_netdevice. 5826 */ 5827 5828 /* If device is running close it first. */ 5829 dev_close(dev); 5830 5831 /* And unlink it from device chain */ 5832 err = -ENODEV; 5833 unlist_netdevice(dev); 5834 5835 synchronize_net(); 5836 5837 /* Shutdown queueing discipline. */ 5838 dev_shutdown(dev); 5839 5840 /* Notify protocols, that we are about to destroy 5841 this device. They should clean all the things. 5842 5843 Note that dev->reg_state stays at NETREG_REGISTERED. 5844 This is wanted because this way 8021q and macvlan know 5845 the device is just moving and can keep their slaves up. 5846 */ 5847 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 5848 rcu_barrier(); 5849 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 5850 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U); 5851 5852 /* 5853 * Flush the unicast and multicast chains 5854 */ 5855 dev_uc_flush(dev); 5856 dev_mc_flush(dev); 5857 5858 /* Send a netdev-removed uevent to the old namespace */ 5859 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE); 5860 5861 /* Actually switch the network namespace */ 5862 dev_net_set(dev, net); 5863 5864 /* If there is an ifindex conflict assign a new one */ 5865 if (__dev_get_by_index(net, dev->ifindex)) { 5866 int iflink = (dev->iflink == dev->ifindex); 5867 dev->ifindex = dev_new_index(net); 5868 if (iflink) 5869 dev->iflink = dev->ifindex; 5870 } 5871 5872 /* Send a netdev-add uevent to the new namespace */ 5873 kobject_uevent(&dev->dev.kobj, KOBJ_ADD); 5874 5875 /* Fixup kobjects */ 5876 err = device_rename(&dev->dev, dev->name); 5877 WARN_ON(err); 5878 5879 /* Add the device back in the hashes */ 5880 list_netdevice(dev); 5881 5882 /* Notify protocols, that a new device appeared. */ 5883 call_netdevice_notifiers(NETDEV_REGISTER, dev); 5884 5885 /* 5886 * Prevent userspace races by waiting until the network 5887 * device is fully setup before sending notifications. 5888 */ 5889 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U); 5890 5891 synchronize_net(); 5892 err = 0; 5893 out: 5894 return err; 5895 } 5896 EXPORT_SYMBOL_GPL(dev_change_net_namespace); 5897 5898 static int dev_cpu_callback(struct notifier_block *nfb, 5899 unsigned long action, 5900 void *ocpu) 5901 { 5902 struct sk_buff **list_skb; 5903 struct sk_buff *skb; 5904 unsigned int cpu, oldcpu = (unsigned long)ocpu; 5905 struct softnet_data *sd, *oldsd; 5906 5907 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN) 5908 return NOTIFY_OK; 5909 5910 local_irq_disable(); 5911 cpu = smp_processor_id(); 5912 sd = &per_cpu(softnet_data, cpu); 5913 oldsd = &per_cpu(softnet_data, oldcpu); 5914 5915 /* Find end of our completion_queue. */ 5916 list_skb = &sd->completion_queue; 5917 while (*list_skb) 5918 list_skb = &(*list_skb)->next; 5919 /* Append completion queue from offline CPU. */ 5920 *list_skb = oldsd->completion_queue; 5921 oldsd->completion_queue = NULL; 5922 5923 /* Append output queue from offline CPU. */ 5924 if (oldsd->output_queue) { 5925 *sd->output_queue_tailp = oldsd->output_queue; 5926 sd->output_queue_tailp = oldsd->output_queue_tailp; 5927 oldsd->output_queue = NULL; 5928 oldsd->output_queue_tailp = &oldsd->output_queue; 5929 } 5930 /* Append NAPI poll list from offline CPU. */ 5931 if (!list_empty(&oldsd->poll_list)) { 5932 list_splice_init(&oldsd->poll_list, &sd->poll_list); 5933 raise_softirq_irqoff(NET_RX_SOFTIRQ); 5934 } 5935 5936 raise_softirq_irqoff(NET_TX_SOFTIRQ); 5937 local_irq_enable(); 5938 5939 /* Process offline CPU's input_pkt_queue */ 5940 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 5941 netif_rx(skb); 5942 input_queue_head_incr(oldsd); 5943 } 5944 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) { 5945 netif_rx(skb); 5946 input_queue_head_incr(oldsd); 5947 } 5948 5949 return NOTIFY_OK; 5950 } 5951 5952 5953 /** 5954 * netdev_increment_features - increment feature set by one 5955 * @all: current feature set 5956 * @one: new feature set 5957 * @mask: mask feature set 5958 * 5959 * Computes a new feature set after adding a device with feature set 5960 * @one to the master device with current feature set @all. Will not 5961 * enable anything that is off in @mask. Returns the new feature set. 5962 */ 5963 netdev_features_t netdev_increment_features(netdev_features_t all, 5964 netdev_features_t one, netdev_features_t mask) 5965 { 5966 if (mask & NETIF_F_GEN_CSUM) 5967 mask |= NETIF_F_ALL_CSUM; 5968 mask |= NETIF_F_VLAN_CHALLENGED; 5969 5970 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask; 5971 all &= one | ~NETIF_F_ALL_FOR_ALL; 5972 5973 /* If one device supports hw checksumming, set for all. */ 5974 if (all & NETIF_F_GEN_CSUM) 5975 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM); 5976 5977 return all; 5978 } 5979 EXPORT_SYMBOL(netdev_increment_features); 5980 5981 static struct hlist_head *netdev_create_hash(void) 5982 { 5983 int i; 5984 struct hlist_head *hash; 5985 5986 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL); 5987 if (hash != NULL) 5988 for (i = 0; i < NETDEV_HASHENTRIES; i++) 5989 INIT_HLIST_HEAD(&hash[i]); 5990 5991 return hash; 5992 } 5993 5994 /* Initialize per network namespace state */ 5995 static int __net_init netdev_init(struct net *net) 5996 { 5997 if (net != &init_net) 5998 INIT_LIST_HEAD(&net->dev_base_head); 5999 6000 net->dev_name_head = netdev_create_hash(); 6001 if (net->dev_name_head == NULL) 6002 goto err_name; 6003 6004 net->dev_index_head = netdev_create_hash(); 6005 if (net->dev_index_head == NULL) 6006 goto err_idx; 6007 6008 return 0; 6009 6010 err_idx: 6011 kfree(net->dev_name_head); 6012 err_name: 6013 return -ENOMEM; 6014 } 6015 6016 /** 6017 * netdev_drivername - network driver for the device 6018 * @dev: network device 6019 * 6020 * Determine network driver for device. 6021 */ 6022 const char *netdev_drivername(const struct net_device *dev) 6023 { 6024 const struct device_driver *driver; 6025 const struct device *parent; 6026 const char *empty = ""; 6027 6028 parent = dev->dev.parent; 6029 if (!parent) 6030 return empty; 6031 6032 driver = parent->driver; 6033 if (driver && driver->name) 6034 return driver->name; 6035 return empty; 6036 } 6037 6038 static int __netdev_printk(const char *level, const struct net_device *dev, 6039 struct va_format *vaf) 6040 { 6041 int r; 6042 6043 if (dev && dev->dev.parent) { 6044 r = dev_printk_emit(level[1] - '0', 6045 dev->dev.parent, 6046 "%s %s %s: %pV", 6047 dev_driver_string(dev->dev.parent), 6048 dev_name(dev->dev.parent), 6049 netdev_name(dev), vaf); 6050 } else if (dev) { 6051 r = printk("%s%s: %pV", level, netdev_name(dev), vaf); 6052 } else { 6053 r = printk("%s(NULL net_device): %pV", level, vaf); 6054 } 6055 6056 return r; 6057 } 6058 6059 int netdev_printk(const char *level, const struct net_device *dev, 6060 const char *format, ...) 6061 { 6062 struct va_format vaf; 6063 va_list args; 6064 int r; 6065 6066 va_start(args, format); 6067 6068 vaf.fmt = format; 6069 vaf.va = &args; 6070 6071 r = __netdev_printk(level, dev, &vaf); 6072 6073 va_end(args); 6074 6075 return r; 6076 } 6077 EXPORT_SYMBOL(netdev_printk); 6078 6079 #define define_netdev_printk_level(func, level) \ 6080 int func(const struct net_device *dev, const char *fmt, ...) \ 6081 { \ 6082 int r; \ 6083 struct va_format vaf; \ 6084 va_list args; \ 6085 \ 6086 va_start(args, fmt); \ 6087 \ 6088 vaf.fmt = fmt; \ 6089 vaf.va = &args; \ 6090 \ 6091 r = __netdev_printk(level, dev, &vaf); \ 6092 \ 6093 va_end(args); \ 6094 \ 6095 return r; \ 6096 } \ 6097 EXPORT_SYMBOL(func); 6098 6099 define_netdev_printk_level(netdev_emerg, KERN_EMERG); 6100 define_netdev_printk_level(netdev_alert, KERN_ALERT); 6101 define_netdev_printk_level(netdev_crit, KERN_CRIT); 6102 define_netdev_printk_level(netdev_err, KERN_ERR); 6103 define_netdev_printk_level(netdev_warn, KERN_WARNING); 6104 define_netdev_printk_level(netdev_notice, KERN_NOTICE); 6105 define_netdev_printk_level(netdev_info, KERN_INFO); 6106 6107 static void __net_exit netdev_exit(struct net *net) 6108 { 6109 kfree(net->dev_name_head); 6110 kfree(net->dev_index_head); 6111 } 6112 6113 static struct pernet_operations __net_initdata netdev_net_ops = { 6114 .init = netdev_init, 6115 .exit = netdev_exit, 6116 }; 6117 6118 static void __net_exit default_device_exit(struct net *net) 6119 { 6120 struct net_device *dev, *aux; 6121 /* 6122 * Push all migratable network devices back to the 6123 * initial network namespace 6124 */ 6125 rtnl_lock(); 6126 for_each_netdev_safe(net, dev, aux) { 6127 int err; 6128 char fb_name[IFNAMSIZ]; 6129 6130 /* Ignore unmoveable devices (i.e. loopback) */ 6131 if (dev->features & NETIF_F_NETNS_LOCAL) 6132 continue; 6133 6134 /* Leave virtual devices for the generic cleanup */ 6135 if (dev->rtnl_link_ops) 6136 continue; 6137 6138 /* Push remaining network devices to init_net */ 6139 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 6140 err = dev_change_net_namespace(dev, &init_net, fb_name); 6141 if (err) { 6142 pr_emerg("%s: failed to move %s to init_net: %d\n", 6143 __func__, dev->name, err); 6144 BUG(); 6145 } 6146 } 6147 rtnl_unlock(); 6148 } 6149 6150 static void __net_exit default_device_exit_batch(struct list_head *net_list) 6151 { 6152 /* At exit all network devices most be removed from a network 6153 * namespace. Do this in the reverse order of registration. 6154 * Do this across as many network namespaces as possible to 6155 * improve batching efficiency. 6156 */ 6157 struct net_device *dev; 6158 struct net *net; 6159 LIST_HEAD(dev_kill_list); 6160 6161 rtnl_lock(); 6162 list_for_each_entry(net, net_list, exit_list) { 6163 for_each_netdev_reverse(net, dev) { 6164 if (dev->rtnl_link_ops) 6165 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 6166 else 6167 unregister_netdevice_queue(dev, &dev_kill_list); 6168 } 6169 } 6170 unregister_netdevice_many(&dev_kill_list); 6171 list_del(&dev_kill_list); 6172 rtnl_unlock(); 6173 } 6174 6175 static struct pernet_operations __net_initdata default_device_ops = { 6176 .exit = default_device_exit, 6177 .exit_batch = default_device_exit_batch, 6178 }; 6179 6180 /* 6181 * Initialize the DEV module. At boot time this walks the device list and 6182 * unhooks any devices that fail to initialise (normally hardware not 6183 * present) and leaves us with a valid list of present and active devices. 6184 * 6185 */ 6186 6187 /* 6188 * This is called single threaded during boot, so no need 6189 * to take the rtnl semaphore. 6190 */ 6191 static int __init net_dev_init(void) 6192 { 6193 int i, rc = -ENOMEM; 6194 6195 BUG_ON(!dev_boot_phase); 6196 6197 if (dev_proc_init()) 6198 goto out; 6199 6200 if (netdev_kobject_init()) 6201 goto out; 6202 6203 INIT_LIST_HEAD(&ptype_all); 6204 for (i = 0; i < PTYPE_HASH_SIZE; i++) 6205 INIT_LIST_HEAD(&ptype_base[i]); 6206 6207 INIT_LIST_HEAD(&offload_base); 6208 6209 if (register_pernet_subsys(&netdev_net_ops)) 6210 goto out; 6211 6212 /* 6213 * Initialise the packet receive queues. 6214 */ 6215 6216 for_each_possible_cpu(i) { 6217 struct softnet_data *sd = &per_cpu(softnet_data, i); 6218 6219 memset(sd, 0, sizeof(*sd)); 6220 skb_queue_head_init(&sd->input_pkt_queue); 6221 skb_queue_head_init(&sd->process_queue); 6222 sd->completion_queue = NULL; 6223 INIT_LIST_HEAD(&sd->poll_list); 6224 sd->output_queue = NULL; 6225 sd->output_queue_tailp = &sd->output_queue; 6226 #ifdef CONFIG_RPS 6227 sd->csd.func = rps_trigger_softirq; 6228 sd->csd.info = sd; 6229 sd->csd.flags = 0; 6230 sd->cpu = i; 6231 #endif 6232 6233 sd->backlog.poll = process_backlog; 6234 sd->backlog.weight = weight_p; 6235 sd->backlog.gro_list = NULL; 6236 sd->backlog.gro_count = 0; 6237 } 6238 6239 dev_boot_phase = 0; 6240 6241 /* The loopback device is special if any other network devices 6242 * is present in a network namespace the loopback device must 6243 * be present. Since we now dynamically allocate and free the 6244 * loopback device ensure this invariant is maintained by 6245 * keeping the loopback device as the first device on the 6246 * list of network devices. Ensuring the loopback devices 6247 * is the first device that appears and the last network device 6248 * that disappears. 6249 */ 6250 if (register_pernet_device(&loopback_net_ops)) 6251 goto out; 6252 6253 if (register_pernet_device(&default_device_ops)) 6254 goto out; 6255 6256 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 6257 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 6258 6259 hotcpu_notifier(dev_cpu_callback, 0); 6260 dst_init(); 6261 rc = 0; 6262 out: 6263 return rc; 6264 } 6265 6266 subsys_initcall(net_dev_init); 6267