1 /* 2 * NET3 Protocol independent device support routines. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Derived from the non IP parts of dev.c 1.0.19 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * 14 * Additional Authors: 15 * Florian la Roche <rzsfl@rz.uni-sb.de> 16 * Alan Cox <gw4pts@gw4pts.ampr.org> 17 * David Hinds <dahinds@users.sourceforge.net> 18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 19 * Adam Sulmicki <adam@cfar.umd.edu> 20 * Pekka Riikonen <priikone@poesidon.pspt.fi> 21 * 22 * Changes: 23 * D.J. Barrow : Fixed bug where dev->refcnt gets set 24 * to 2 if register_netdev gets called 25 * before net_dev_init & also removed a 26 * few lines of code in the process. 27 * Alan Cox : device private ioctl copies fields back. 28 * Alan Cox : Transmit queue code does relevant 29 * stunts to keep the queue safe. 30 * Alan Cox : Fixed double lock. 31 * Alan Cox : Fixed promisc NULL pointer trap 32 * ???????? : Support the full private ioctl range 33 * Alan Cox : Moved ioctl permission check into 34 * drivers 35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 36 * Alan Cox : 100 backlog just doesn't cut it when 37 * you start doing multicast video 8) 38 * Alan Cox : Rewrote net_bh and list manager. 39 * Alan Cox : Fix ETH_P_ALL echoback lengths. 40 * Alan Cox : Took out transmit every packet pass 41 * Saved a few bytes in the ioctl handler 42 * Alan Cox : Network driver sets packet type before 43 * calling netif_rx. Saves a function 44 * call a packet. 45 * Alan Cox : Hashed net_bh() 46 * Richard Kooijman: Timestamp fixes. 47 * Alan Cox : Wrong field in SIOCGIFDSTADDR 48 * Alan Cox : Device lock protection. 49 * Alan Cox : Fixed nasty side effect of device close 50 * changes. 51 * Rudi Cilibrasi : Pass the right thing to 52 * set_mac_address() 53 * Dave Miller : 32bit quantity for the device lock to 54 * make it work out on a Sparc. 55 * Bjorn Ekwall : Added KERNELD hack. 56 * Alan Cox : Cleaned up the backlog initialise. 57 * Craig Metz : SIOCGIFCONF fix if space for under 58 * 1 device. 59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 60 * is no device open function. 61 * Andi Kleen : Fix error reporting for SIOCGIFCONF 62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 63 * Cyrus Durgin : Cleaned for KMOD 64 * Adam Sulmicki : Bug Fix : Network Device Unload 65 * A network device unload needs to purge 66 * the backlog queue. 67 * Paul Rusty Russell : SIOCSIFNAME 68 * Pekka Riikonen : Netdev boot-time settings code 69 * Andrew Morton : Make unregister_netdevice wait 70 * indefinitely on dev->refcnt 71 * J Hadi Salim : - Backlog queue sampling 72 * - netif_rx() feedback 73 */ 74 75 #include <asm/uaccess.h> 76 #include <linux/bitops.h> 77 #include <linux/capability.h> 78 #include <linux/cpu.h> 79 #include <linux/types.h> 80 #include <linux/kernel.h> 81 #include <linux/hash.h> 82 #include <linux/slab.h> 83 #include <linux/sched.h> 84 #include <linux/mutex.h> 85 #include <linux/string.h> 86 #include <linux/mm.h> 87 #include <linux/socket.h> 88 #include <linux/sockios.h> 89 #include <linux/errno.h> 90 #include <linux/interrupt.h> 91 #include <linux/if_ether.h> 92 #include <linux/netdevice.h> 93 #include <linux/etherdevice.h> 94 #include <linux/ethtool.h> 95 #include <linux/notifier.h> 96 #include <linux/skbuff.h> 97 #include <net/net_namespace.h> 98 #include <net/sock.h> 99 #include <linux/rtnetlink.h> 100 #include <linux/stat.h> 101 #include <net/dst.h> 102 #include <net/pkt_sched.h> 103 #include <net/checksum.h> 104 #include <net/xfrm.h> 105 #include <linux/highmem.h> 106 #include <linux/init.h> 107 #include <linux/module.h> 108 #include <linux/netpoll.h> 109 #include <linux/rcupdate.h> 110 #include <linux/delay.h> 111 #include <net/iw_handler.h> 112 #include <asm/current.h> 113 #include <linux/audit.h> 114 #include <linux/dmaengine.h> 115 #include <linux/err.h> 116 #include <linux/ctype.h> 117 #include <linux/if_arp.h> 118 #include <linux/if_vlan.h> 119 #include <linux/ip.h> 120 #include <net/ip.h> 121 #include <linux/ipv6.h> 122 #include <linux/in.h> 123 #include <linux/jhash.h> 124 #include <linux/random.h> 125 #include <trace/events/napi.h> 126 #include <trace/events/net.h> 127 #include <trace/events/skb.h> 128 #include <linux/pci.h> 129 #include <linux/inetdevice.h> 130 #include <linux/cpu_rmap.h> 131 #include <linux/static_key.h> 132 133 #include "net-sysfs.h" 134 135 /* Instead of increasing this, you should create a hash table. */ 136 #define MAX_GRO_SKBS 8 137 138 /* This should be increased if a protocol with a bigger head is added. */ 139 #define GRO_MAX_HEAD (MAX_HEADER + 128) 140 141 static DEFINE_SPINLOCK(ptype_lock); 142 static DEFINE_SPINLOCK(offload_lock); 143 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 144 struct list_head ptype_all __read_mostly; /* Taps */ 145 static struct list_head offload_base __read_mostly; 146 147 /* 148 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 149 * semaphore. 150 * 151 * Pure readers hold dev_base_lock for reading, or rcu_read_lock() 152 * 153 * Writers must hold the rtnl semaphore while they loop through the 154 * dev_base_head list, and hold dev_base_lock for writing when they do the 155 * actual updates. This allows pure readers to access the list even 156 * while a writer is preparing to update it. 157 * 158 * To put it another way, dev_base_lock is held for writing only to 159 * protect against pure readers; the rtnl semaphore provides the 160 * protection against other writers. 161 * 162 * See, for example usages, register_netdevice() and 163 * unregister_netdevice(), which must be called with the rtnl 164 * semaphore held. 165 */ 166 DEFINE_RWLOCK(dev_base_lock); 167 EXPORT_SYMBOL(dev_base_lock); 168 169 seqcount_t devnet_rename_seq; 170 171 static inline void dev_base_seq_inc(struct net *net) 172 { 173 while (++net->dev_base_seq == 0); 174 } 175 176 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 177 { 178 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ)); 179 180 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 181 } 182 183 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 184 { 185 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 186 } 187 188 static inline void rps_lock(struct softnet_data *sd) 189 { 190 #ifdef CONFIG_RPS 191 spin_lock(&sd->input_pkt_queue.lock); 192 #endif 193 } 194 195 static inline void rps_unlock(struct softnet_data *sd) 196 { 197 #ifdef CONFIG_RPS 198 spin_unlock(&sd->input_pkt_queue.lock); 199 #endif 200 } 201 202 /* Device list insertion */ 203 static void list_netdevice(struct net_device *dev) 204 { 205 struct net *net = dev_net(dev); 206 207 ASSERT_RTNL(); 208 209 write_lock_bh(&dev_base_lock); 210 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 211 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 212 hlist_add_head_rcu(&dev->index_hlist, 213 dev_index_hash(net, dev->ifindex)); 214 write_unlock_bh(&dev_base_lock); 215 216 dev_base_seq_inc(net); 217 } 218 219 /* Device list removal 220 * caller must respect a RCU grace period before freeing/reusing dev 221 */ 222 static void unlist_netdevice(struct net_device *dev) 223 { 224 ASSERT_RTNL(); 225 226 /* Unlink dev from the device chain */ 227 write_lock_bh(&dev_base_lock); 228 list_del_rcu(&dev->dev_list); 229 hlist_del_rcu(&dev->name_hlist); 230 hlist_del_rcu(&dev->index_hlist); 231 write_unlock_bh(&dev_base_lock); 232 233 dev_base_seq_inc(dev_net(dev)); 234 } 235 236 /* 237 * Our notifier list 238 */ 239 240 static RAW_NOTIFIER_HEAD(netdev_chain); 241 242 /* 243 * Device drivers call our routines to queue packets here. We empty the 244 * queue in the local softnet handler. 245 */ 246 247 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 248 EXPORT_PER_CPU_SYMBOL(softnet_data); 249 250 #ifdef CONFIG_LOCKDEP 251 /* 252 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 253 * according to dev->type 254 */ 255 static const unsigned short netdev_lock_type[] = 256 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 257 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 258 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 259 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 260 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 261 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 262 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 263 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 264 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 265 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 266 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 267 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 268 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM, 269 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE, 270 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE}; 271 272 static const char *const netdev_lock_name[] = 273 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 274 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 275 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 276 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 277 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 278 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 279 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 280 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 281 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 282 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 283 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 284 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 285 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM", 286 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE", 287 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"}; 288 289 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 290 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 291 292 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 293 { 294 int i; 295 296 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 297 if (netdev_lock_type[i] == dev_type) 298 return i; 299 /* the last key is used by default */ 300 return ARRAY_SIZE(netdev_lock_type) - 1; 301 } 302 303 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 304 unsigned short dev_type) 305 { 306 int i; 307 308 i = netdev_lock_pos(dev_type); 309 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 310 netdev_lock_name[i]); 311 } 312 313 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 314 { 315 int i; 316 317 i = netdev_lock_pos(dev->type); 318 lockdep_set_class_and_name(&dev->addr_list_lock, 319 &netdev_addr_lock_key[i], 320 netdev_lock_name[i]); 321 } 322 #else 323 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 324 unsigned short dev_type) 325 { 326 } 327 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 328 { 329 } 330 #endif 331 332 /******************************************************************************* 333 334 Protocol management and registration routines 335 336 *******************************************************************************/ 337 338 /* 339 * Add a protocol ID to the list. Now that the input handler is 340 * smarter we can dispense with all the messy stuff that used to be 341 * here. 342 * 343 * BEWARE!!! Protocol handlers, mangling input packets, 344 * MUST BE last in hash buckets and checking protocol handlers 345 * MUST start from promiscuous ptype_all chain in net_bh. 346 * It is true now, do not change it. 347 * Explanation follows: if protocol handler, mangling packet, will 348 * be the first on list, it is not able to sense, that packet 349 * is cloned and should be copied-on-write, so that it will 350 * change it and subsequent readers will get broken packet. 351 * --ANK (980803) 352 */ 353 354 static inline struct list_head *ptype_head(const struct packet_type *pt) 355 { 356 if (pt->type == htons(ETH_P_ALL)) 357 return &ptype_all; 358 else 359 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 360 } 361 362 /** 363 * dev_add_pack - add packet handler 364 * @pt: packet type declaration 365 * 366 * Add a protocol handler to the networking stack. The passed &packet_type 367 * is linked into kernel lists and may not be freed until it has been 368 * removed from the kernel lists. 369 * 370 * This call does not sleep therefore it can not 371 * guarantee all CPU's that are in middle of receiving packets 372 * will see the new packet type (until the next received packet). 373 */ 374 375 void dev_add_pack(struct packet_type *pt) 376 { 377 struct list_head *head = ptype_head(pt); 378 379 spin_lock(&ptype_lock); 380 list_add_rcu(&pt->list, head); 381 spin_unlock(&ptype_lock); 382 } 383 EXPORT_SYMBOL(dev_add_pack); 384 385 /** 386 * __dev_remove_pack - remove packet handler 387 * @pt: packet type declaration 388 * 389 * Remove a protocol handler that was previously added to the kernel 390 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 391 * from the kernel lists and can be freed or reused once this function 392 * returns. 393 * 394 * The packet type might still be in use by receivers 395 * and must not be freed until after all the CPU's have gone 396 * through a quiescent state. 397 */ 398 void __dev_remove_pack(struct packet_type *pt) 399 { 400 struct list_head *head = ptype_head(pt); 401 struct packet_type *pt1; 402 403 spin_lock(&ptype_lock); 404 405 list_for_each_entry(pt1, head, list) { 406 if (pt == pt1) { 407 list_del_rcu(&pt->list); 408 goto out; 409 } 410 } 411 412 pr_warn("dev_remove_pack: %p not found\n", pt); 413 out: 414 spin_unlock(&ptype_lock); 415 } 416 EXPORT_SYMBOL(__dev_remove_pack); 417 418 /** 419 * dev_remove_pack - remove packet handler 420 * @pt: packet type declaration 421 * 422 * Remove a protocol handler that was previously added to the kernel 423 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 424 * from the kernel lists and can be freed or reused once this function 425 * returns. 426 * 427 * This call sleeps to guarantee that no CPU is looking at the packet 428 * type after return. 429 */ 430 void dev_remove_pack(struct packet_type *pt) 431 { 432 __dev_remove_pack(pt); 433 434 synchronize_net(); 435 } 436 EXPORT_SYMBOL(dev_remove_pack); 437 438 439 /** 440 * dev_add_offload - register offload handlers 441 * @po: protocol offload declaration 442 * 443 * Add protocol offload handlers to the networking stack. The passed 444 * &proto_offload is linked into kernel lists and may not be freed until 445 * it has been removed from the kernel lists. 446 * 447 * This call does not sleep therefore it can not 448 * guarantee all CPU's that are in middle of receiving packets 449 * will see the new offload handlers (until the next received packet). 450 */ 451 void dev_add_offload(struct packet_offload *po) 452 { 453 struct list_head *head = &offload_base; 454 455 spin_lock(&offload_lock); 456 list_add_rcu(&po->list, head); 457 spin_unlock(&offload_lock); 458 } 459 EXPORT_SYMBOL(dev_add_offload); 460 461 /** 462 * __dev_remove_offload - remove offload handler 463 * @po: packet offload declaration 464 * 465 * Remove a protocol offload handler that was previously added to the 466 * kernel offload handlers by dev_add_offload(). The passed &offload_type 467 * is removed from the kernel lists and can be freed or reused once this 468 * function returns. 469 * 470 * The packet type might still be in use by receivers 471 * and must not be freed until after all the CPU's have gone 472 * through a quiescent state. 473 */ 474 void __dev_remove_offload(struct packet_offload *po) 475 { 476 struct list_head *head = &offload_base; 477 struct packet_offload *po1; 478 479 spin_lock(&offload_lock); 480 481 list_for_each_entry(po1, head, list) { 482 if (po == po1) { 483 list_del_rcu(&po->list); 484 goto out; 485 } 486 } 487 488 pr_warn("dev_remove_offload: %p not found\n", po); 489 out: 490 spin_unlock(&offload_lock); 491 } 492 EXPORT_SYMBOL(__dev_remove_offload); 493 494 /** 495 * dev_remove_offload - remove packet offload handler 496 * @po: packet offload declaration 497 * 498 * Remove a packet offload handler that was previously added to the kernel 499 * offload handlers by dev_add_offload(). The passed &offload_type is 500 * removed from the kernel lists and can be freed or reused once this 501 * function returns. 502 * 503 * This call sleeps to guarantee that no CPU is looking at the packet 504 * type after return. 505 */ 506 void dev_remove_offload(struct packet_offload *po) 507 { 508 __dev_remove_offload(po); 509 510 synchronize_net(); 511 } 512 EXPORT_SYMBOL(dev_remove_offload); 513 514 /****************************************************************************** 515 516 Device Boot-time Settings Routines 517 518 *******************************************************************************/ 519 520 /* Boot time configuration table */ 521 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 522 523 /** 524 * netdev_boot_setup_add - add new setup entry 525 * @name: name of the device 526 * @map: configured settings for the device 527 * 528 * Adds new setup entry to the dev_boot_setup list. The function 529 * returns 0 on error and 1 on success. This is a generic routine to 530 * all netdevices. 531 */ 532 static int netdev_boot_setup_add(char *name, struct ifmap *map) 533 { 534 struct netdev_boot_setup *s; 535 int i; 536 537 s = dev_boot_setup; 538 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 539 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 540 memset(s[i].name, 0, sizeof(s[i].name)); 541 strlcpy(s[i].name, name, IFNAMSIZ); 542 memcpy(&s[i].map, map, sizeof(s[i].map)); 543 break; 544 } 545 } 546 547 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 548 } 549 550 /** 551 * netdev_boot_setup_check - check boot time settings 552 * @dev: the netdevice 553 * 554 * Check boot time settings for the device. 555 * The found settings are set for the device to be used 556 * later in the device probing. 557 * Returns 0 if no settings found, 1 if they are. 558 */ 559 int netdev_boot_setup_check(struct net_device *dev) 560 { 561 struct netdev_boot_setup *s = dev_boot_setup; 562 int i; 563 564 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 565 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 566 !strcmp(dev->name, s[i].name)) { 567 dev->irq = s[i].map.irq; 568 dev->base_addr = s[i].map.base_addr; 569 dev->mem_start = s[i].map.mem_start; 570 dev->mem_end = s[i].map.mem_end; 571 return 1; 572 } 573 } 574 return 0; 575 } 576 EXPORT_SYMBOL(netdev_boot_setup_check); 577 578 579 /** 580 * netdev_boot_base - get address from boot time settings 581 * @prefix: prefix for network device 582 * @unit: id for network device 583 * 584 * Check boot time settings for the base address of device. 585 * The found settings are set for the device to be used 586 * later in the device probing. 587 * Returns 0 if no settings found. 588 */ 589 unsigned long netdev_boot_base(const char *prefix, int unit) 590 { 591 const struct netdev_boot_setup *s = dev_boot_setup; 592 char name[IFNAMSIZ]; 593 int i; 594 595 sprintf(name, "%s%d", prefix, unit); 596 597 /* 598 * If device already registered then return base of 1 599 * to indicate not to probe for this interface 600 */ 601 if (__dev_get_by_name(&init_net, name)) 602 return 1; 603 604 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 605 if (!strcmp(name, s[i].name)) 606 return s[i].map.base_addr; 607 return 0; 608 } 609 610 /* 611 * Saves at boot time configured settings for any netdevice. 612 */ 613 int __init netdev_boot_setup(char *str) 614 { 615 int ints[5]; 616 struct ifmap map; 617 618 str = get_options(str, ARRAY_SIZE(ints), ints); 619 if (!str || !*str) 620 return 0; 621 622 /* Save settings */ 623 memset(&map, 0, sizeof(map)); 624 if (ints[0] > 0) 625 map.irq = ints[1]; 626 if (ints[0] > 1) 627 map.base_addr = ints[2]; 628 if (ints[0] > 2) 629 map.mem_start = ints[3]; 630 if (ints[0] > 3) 631 map.mem_end = ints[4]; 632 633 /* Add new entry to the list */ 634 return netdev_boot_setup_add(str, &map); 635 } 636 637 __setup("netdev=", netdev_boot_setup); 638 639 /******************************************************************************* 640 641 Device Interface Subroutines 642 643 *******************************************************************************/ 644 645 /** 646 * __dev_get_by_name - find a device by its name 647 * @net: the applicable net namespace 648 * @name: name to find 649 * 650 * Find an interface by name. Must be called under RTNL semaphore 651 * or @dev_base_lock. If the name is found a pointer to the device 652 * is returned. If the name is not found then %NULL is returned. The 653 * reference counters are not incremented so the caller must be 654 * careful with locks. 655 */ 656 657 struct net_device *__dev_get_by_name(struct net *net, const char *name) 658 { 659 struct net_device *dev; 660 struct hlist_head *head = dev_name_hash(net, name); 661 662 hlist_for_each_entry(dev, head, name_hlist) 663 if (!strncmp(dev->name, name, IFNAMSIZ)) 664 return dev; 665 666 return NULL; 667 } 668 EXPORT_SYMBOL(__dev_get_by_name); 669 670 /** 671 * dev_get_by_name_rcu - find a device by its name 672 * @net: the applicable net namespace 673 * @name: name to find 674 * 675 * Find an interface by name. 676 * If the name is found a pointer to the device is returned. 677 * If the name is not found then %NULL is returned. 678 * The reference counters are not incremented so the caller must be 679 * careful with locks. The caller must hold RCU lock. 680 */ 681 682 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 683 { 684 struct net_device *dev; 685 struct hlist_head *head = dev_name_hash(net, name); 686 687 hlist_for_each_entry_rcu(dev, head, name_hlist) 688 if (!strncmp(dev->name, name, IFNAMSIZ)) 689 return dev; 690 691 return NULL; 692 } 693 EXPORT_SYMBOL(dev_get_by_name_rcu); 694 695 /** 696 * dev_get_by_name - find a device by its name 697 * @net: the applicable net namespace 698 * @name: name to find 699 * 700 * Find an interface by name. This can be called from any 701 * context and does its own locking. The returned handle has 702 * the usage count incremented and the caller must use dev_put() to 703 * release it when it is no longer needed. %NULL is returned if no 704 * matching device is found. 705 */ 706 707 struct net_device *dev_get_by_name(struct net *net, const char *name) 708 { 709 struct net_device *dev; 710 711 rcu_read_lock(); 712 dev = dev_get_by_name_rcu(net, name); 713 if (dev) 714 dev_hold(dev); 715 rcu_read_unlock(); 716 return dev; 717 } 718 EXPORT_SYMBOL(dev_get_by_name); 719 720 /** 721 * __dev_get_by_index - find a device by its ifindex 722 * @net: the applicable net namespace 723 * @ifindex: index of device 724 * 725 * Search for an interface by index. Returns %NULL if the device 726 * is not found or a pointer to the device. The device has not 727 * had its reference counter increased so the caller must be careful 728 * about locking. The caller must hold either the RTNL semaphore 729 * or @dev_base_lock. 730 */ 731 732 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 733 { 734 struct net_device *dev; 735 struct hlist_head *head = dev_index_hash(net, ifindex); 736 737 hlist_for_each_entry(dev, head, index_hlist) 738 if (dev->ifindex == ifindex) 739 return dev; 740 741 return NULL; 742 } 743 EXPORT_SYMBOL(__dev_get_by_index); 744 745 /** 746 * dev_get_by_index_rcu - find a device by its ifindex 747 * @net: the applicable net namespace 748 * @ifindex: index of device 749 * 750 * Search for an interface by index. Returns %NULL if the device 751 * is not found or a pointer to the device. The device has not 752 * had its reference counter increased so the caller must be careful 753 * about locking. The caller must hold RCU lock. 754 */ 755 756 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 757 { 758 struct net_device *dev; 759 struct hlist_head *head = dev_index_hash(net, ifindex); 760 761 hlist_for_each_entry_rcu(dev, head, index_hlist) 762 if (dev->ifindex == ifindex) 763 return dev; 764 765 return NULL; 766 } 767 EXPORT_SYMBOL(dev_get_by_index_rcu); 768 769 770 /** 771 * dev_get_by_index - find a device by its ifindex 772 * @net: the applicable net namespace 773 * @ifindex: index of device 774 * 775 * Search for an interface by index. Returns NULL if the device 776 * is not found or a pointer to the device. The device returned has 777 * had a reference added and the pointer is safe until the user calls 778 * dev_put to indicate they have finished with it. 779 */ 780 781 struct net_device *dev_get_by_index(struct net *net, int ifindex) 782 { 783 struct net_device *dev; 784 785 rcu_read_lock(); 786 dev = dev_get_by_index_rcu(net, ifindex); 787 if (dev) 788 dev_hold(dev); 789 rcu_read_unlock(); 790 return dev; 791 } 792 EXPORT_SYMBOL(dev_get_by_index); 793 794 /** 795 * dev_getbyhwaddr_rcu - find a device by its hardware address 796 * @net: the applicable net namespace 797 * @type: media type of device 798 * @ha: hardware address 799 * 800 * Search for an interface by MAC address. Returns NULL if the device 801 * is not found or a pointer to the device. 802 * The caller must hold RCU or RTNL. 803 * The returned device has not had its ref count increased 804 * and the caller must therefore be careful about locking 805 * 806 */ 807 808 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 809 const char *ha) 810 { 811 struct net_device *dev; 812 813 for_each_netdev_rcu(net, dev) 814 if (dev->type == type && 815 !memcmp(dev->dev_addr, ha, dev->addr_len)) 816 return dev; 817 818 return NULL; 819 } 820 EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 821 822 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 823 { 824 struct net_device *dev; 825 826 ASSERT_RTNL(); 827 for_each_netdev(net, dev) 828 if (dev->type == type) 829 return dev; 830 831 return NULL; 832 } 833 EXPORT_SYMBOL(__dev_getfirstbyhwtype); 834 835 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 836 { 837 struct net_device *dev, *ret = NULL; 838 839 rcu_read_lock(); 840 for_each_netdev_rcu(net, dev) 841 if (dev->type == type) { 842 dev_hold(dev); 843 ret = dev; 844 break; 845 } 846 rcu_read_unlock(); 847 return ret; 848 } 849 EXPORT_SYMBOL(dev_getfirstbyhwtype); 850 851 /** 852 * dev_get_by_flags_rcu - find any device with given flags 853 * @net: the applicable net namespace 854 * @if_flags: IFF_* values 855 * @mask: bitmask of bits in if_flags to check 856 * 857 * Search for any interface with the given flags. Returns NULL if a device 858 * is not found or a pointer to the device. Must be called inside 859 * rcu_read_lock(), and result refcount is unchanged. 860 */ 861 862 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags, 863 unsigned short mask) 864 { 865 struct net_device *dev, *ret; 866 867 ret = NULL; 868 for_each_netdev_rcu(net, dev) { 869 if (((dev->flags ^ if_flags) & mask) == 0) { 870 ret = dev; 871 break; 872 } 873 } 874 return ret; 875 } 876 EXPORT_SYMBOL(dev_get_by_flags_rcu); 877 878 /** 879 * dev_valid_name - check if name is okay for network device 880 * @name: name string 881 * 882 * Network device names need to be valid file names to 883 * to allow sysfs to work. We also disallow any kind of 884 * whitespace. 885 */ 886 bool dev_valid_name(const char *name) 887 { 888 if (*name == '\0') 889 return false; 890 if (strlen(name) >= IFNAMSIZ) 891 return false; 892 if (!strcmp(name, ".") || !strcmp(name, "..")) 893 return false; 894 895 while (*name) { 896 if (*name == '/' || isspace(*name)) 897 return false; 898 name++; 899 } 900 return true; 901 } 902 EXPORT_SYMBOL(dev_valid_name); 903 904 /** 905 * __dev_alloc_name - allocate a name for a device 906 * @net: network namespace to allocate the device name in 907 * @name: name format string 908 * @buf: scratch buffer and result name string 909 * 910 * Passed a format string - eg "lt%d" it will try and find a suitable 911 * id. It scans list of devices to build up a free map, then chooses 912 * the first empty slot. The caller must hold the dev_base or rtnl lock 913 * while allocating the name and adding the device in order to avoid 914 * duplicates. 915 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 916 * Returns the number of the unit assigned or a negative errno code. 917 */ 918 919 static int __dev_alloc_name(struct net *net, const char *name, char *buf) 920 { 921 int i = 0; 922 const char *p; 923 const int max_netdevices = 8*PAGE_SIZE; 924 unsigned long *inuse; 925 struct net_device *d; 926 927 p = strnchr(name, IFNAMSIZ-1, '%'); 928 if (p) { 929 /* 930 * Verify the string as this thing may have come from 931 * the user. There must be either one "%d" and no other "%" 932 * characters. 933 */ 934 if (p[1] != 'd' || strchr(p + 2, '%')) 935 return -EINVAL; 936 937 /* Use one page as a bit array of possible slots */ 938 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 939 if (!inuse) 940 return -ENOMEM; 941 942 for_each_netdev(net, d) { 943 if (!sscanf(d->name, name, &i)) 944 continue; 945 if (i < 0 || i >= max_netdevices) 946 continue; 947 948 /* avoid cases where sscanf is not exact inverse of printf */ 949 snprintf(buf, IFNAMSIZ, name, i); 950 if (!strncmp(buf, d->name, IFNAMSIZ)) 951 set_bit(i, inuse); 952 } 953 954 i = find_first_zero_bit(inuse, max_netdevices); 955 free_page((unsigned long) inuse); 956 } 957 958 if (buf != name) 959 snprintf(buf, IFNAMSIZ, name, i); 960 if (!__dev_get_by_name(net, buf)) 961 return i; 962 963 /* It is possible to run out of possible slots 964 * when the name is long and there isn't enough space left 965 * for the digits, or if all bits are used. 966 */ 967 return -ENFILE; 968 } 969 970 /** 971 * dev_alloc_name - allocate a name for a device 972 * @dev: device 973 * @name: name format string 974 * 975 * Passed a format string - eg "lt%d" it will try and find a suitable 976 * id. It scans list of devices to build up a free map, then chooses 977 * the first empty slot. The caller must hold the dev_base or rtnl lock 978 * while allocating the name and adding the device in order to avoid 979 * duplicates. 980 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 981 * Returns the number of the unit assigned or a negative errno code. 982 */ 983 984 int dev_alloc_name(struct net_device *dev, const char *name) 985 { 986 char buf[IFNAMSIZ]; 987 struct net *net; 988 int ret; 989 990 BUG_ON(!dev_net(dev)); 991 net = dev_net(dev); 992 ret = __dev_alloc_name(net, name, buf); 993 if (ret >= 0) 994 strlcpy(dev->name, buf, IFNAMSIZ); 995 return ret; 996 } 997 EXPORT_SYMBOL(dev_alloc_name); 998 999 static int dev_alloc_name_ns(struct net *net, 1000 struct net_device *dev, 1001 const char *name) 1002 { 1003 char buf[IFNAMSIZ]; 1004 int ret; 1005 1006 ret = __dev_alloc_name(net, name, buf); 1007 if (ret >= 0) 1008 strlcpy(dev->name, buf, IFNAMSIZ); 1009 return ret; 1010 } 1011 1012 static int dev_get_valid_name(struct net *net, 1013 struct net_device *dev, 1014 const char *name) 1015 { 1016 BUG_ON(!net); 1017 1018 if (!dev_valid_name(name)) 1019 return -EINVAL; 1020 1021 if (strchr(name, '%')) 1022 return dev_alloc_name_ns(net, dev, name); 1023 else if (__dev_get_by_name(net, name)) 1024 return -EEXIST; 1025 else if (dev->name != name) 1026 strlcpy(dev->name, name, IFNAMSIZ); 1027 1028 return 0; 1029 } 1030 1031 /** 1032 * dev_change_name - change name of a device 1033 * @dev: device 1034 * @newname: name (or format string) must be at least IFNAMSIZ 1035 * 1036 * Change name of a device, can pass format strings "eth%d". 1037 * for wildcarding. 1038 */ 1039 int dev_change_name(struct net_device *dev, const char *newname) 1040 { 1041 char oldname[IFNAMSIZ]; 1042 int err = 0; 1043 int ret; 1044 struct net *net; 1045 1046 ASSERT_RTNL(); 1047 BUG_ON(!dev_net(dev)); 1048 1049 net = dev_net(dev); 1050 if (dev->flags & IFF_UP) 1051 return -EBUSY; 1052 1053 write_seqcount_begin(&devnet_rename_seq); 1054 1055 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) { 1056 write_seqcount_end(&devnet_rename_seq); 1057 return 0; 1058 } 1059 1060 memcpy(oldname, dev->name, IFNAMSIZ); 1061 1062 err = dev_get_valid_name(net, dev, newname); 1063 if (err < 0) { 1064 write_seqcount_end(&devnet_rename_seq); 1065 return err; 1066 } 1067 1068 rollback: 1069 ret = device_rename(&dev->dev, dev->name); 1070 if (ret) { 1071 memcpy(dev->name, oldname, IFNAMSIZ); 1072 write_seqcount_end(&devnet_rename_seq); 1073 return ret; 1074 } 1075 1076 write_seqcount_end(&devnet_rename_seq); 1077 1078 write_lock_bh(&dev_base_lock); 1079 hlist_del_rcu(&dev->name_hlist); 1080 write_unlock_bh(&dev_base_lock); 1081 1082 synchronize_rcu(); 1083 1084 write_lock_bh(&dev_base_lock); 1085 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 1086 write_unlock_bh(&dev_base_lock); 1087 1088 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1089 ret = notifier_to_errno(ret); 1090 1091 if (ret) { 1092 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1093 if (err >= 0) { 1094 err = ret; 1095 write_seqcount_begin(&devnet_rename_seq); 1096 memcpy(dev->name, oldname, IFNAMSIZ); 1097 goto rollback; 1098 } else { 1099 pr_err("%s: name change rollback failed: %d\n", 1100 dev->name, ret); 1101 } 1102 } 1103 1104 return err; 1105 } 1106 1107 /** 1108 * dev_set_alias - change ifalias of a device 1109 * @dev: device 1110 * @alias: name up to IFALIASZ 1111 * @len: limit of bytes to copy from info 1112 * 1113 * Set ifalias for a device, 1114 */ 1115 int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1116 { 1117 char *new_ifalias; 1118 1119 ASSERT_RTNL(); 1120 1121 if (len >= IFALIASZ) 1122 return -EINVAL; 1123 1124 if (!len) { 1125 kfree(dev->ifalias); 1126 dev->ifalias = NULL; 1127 return 0; 1128 } 1129 1130 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL); 1131 if (!new_ifalias) 1132 return -ENOMEM; 1133 dev->ifalias = new_ifalias; 1134 1135 strlcpy(dev->ifalias, alias, len+1); 1136 return len; 1137 } 1138 1139 1140 /** 1141 * netdev_features_change - device changes features 1142 * @dev: device to cause notification 1143 * 1144 * Called to indicate a device has changed features. 1145 */ 1146 void netdev_features_change(struct net_device *dev) 1147 { 1148 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1149 } 1150 EXPORT_SYMBOL(netdev_features_change); 1151 1152 /** 1153 * netdev_state_change - device changes state 1154 * @dev: device to cause notification 1155 * 1156 * Called to indicate a device has changed state. This function calls 1157 * the notifier chains for netdev_chain and sends a NEWLINK message 1158 * to the routing socket. 1159 */ 1160 void netdev_state_change(struct net_device *dev) 1161 { 1162 if (dev->flags & IFF_UP) { 1163 call_netdevice_notifiers(NETDEV_CHANGE, dev); 1164 rtmsg_ifinfo(RTM_NEWLINK, dev, 0); 1165 } 1166 } 1167 EXPORT_SYMBOL(netdev_state_change); 1168 1169 /** 1170 * netdev_notify_peers - notify network peers about existence of @dev 1171 * @dev: network device 1172 * 1173 * Generate traffic such that interested network peers are aware of 1174 * @dev, such as by generating a gratuitous ARP. This may be used when 1175 * a device wants to inform the rest of the network about some sort of 1176 * reconfiguration such as a failover event or virtual machine 1177 * migration. 1178 */ 1179 void netdev_notify_peers(struct net_device *dev) 1180 { 1181 rtnl_lock(); 1182 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev); 1183 rtnl_unlock(); 1184 } 1185 EXPORT_SYMBOL(netdev_notify_peers); 1186 1187 static int __dev_open(struct net_device *dev) 1188 { 1189 const struct net_device_ops *ops = dev->netdev_ops; 1190 int ret; 1191 1192 ASSERT_RTNL(); 1193 1194 if (!netif_device_present(dev)) 1195 return -ENODEV; 1196 1197 /* Block netpoll from trying to do any rx path servicing. 1198 * If we don't do this there is a chance ndo_poll_controller 1199 * or ndo_poll may be running while we open the device 1200 */ 1201 ret = netpoll_rx_disable(dev); 1202 if (ret) 1203 return ret; 1204 1205 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev); 1206 ret = notifier_to_errno(ret); 1207 if (ret) 1208 return ret; 1209 1210 set_bit(__LINK_STATE_START, &dev->state); 1211 1212 if (ops->ndo_validate_addr) 1213 ret = ops->ndo_validate_addr(dev); 1214 1215 if (!ret && ops->ndo_open) 1216 ret = ops->ndo_open(dev); 1217 1218 netpoll_rx_enable(dev); 1219 1220 if (ret) 1221 clear_bit(__LINK_STATE_START, &dev->state); 1222 else { 1223 dev->flags |= IFF_UP; 1224 net_dmaengine_get(); 1225 dev_set_rx_mode(dev); 1226 dev_activate(dev); 1227 add_device_randomness(dev->dev_addr, dev->addr_len); 1228 } 1229 1230 return ret; 1231 } 1232 1233 /** 1234 * dev_open - prepare an interface for use. 1235 * @dev: device to open 1236 * 1237 * Takes a device from down to up state. The device's private open 1238 * function is invoked and then the multicast lists are loaded. Finally 1239 * the device is moved into the up state and a %NETDEV_UP message is 1240 * sent to the netdev notifier chain. 1241 * 1242 * Calling this function on an active interface is a nop. On a failure 1243 * a negative errno code is returned. 1244 */ 1245 int dev_open(struct net_device *dev) 1246 { 1247 int ret; 1248 1249 if (dev->flags & IFF_UP) 1250 return 0; 1251 1252 ret = __dev_open(dev); 1253 if (ret < 0) 1254 return ret; 1255 1256 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING); 1257 call_netdevice_notifiers(NETDEV_UP, dev); 1258 1259 return ret; 1260 } 1261 EXPORT_SYMBOL(dev_open); 1262 1263 static int __dev_close_many(struct list_head *head) 1264 { 1265 struct net_device *dev; 1266 1267 ASSERT_RTNL(); 1268 might_sleep(); 1269 1270 list_for_each_entry(dev, head, unreg_list) { 1271 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1272 1273 clear_bit(__LINK_STATE_START, &dev->state); 1274 1275 /* Synchronize to scheduled poll. We cannot touch poll list, it 1276 * can be even on different cpu. So just clear netif_running(). 1277 * 1278 * dev->stop() will invoke napi_disable() on all of it's 1279 * napi_struct instances on this device. 1280 */ 1281 smp_mb__after_clear_bit(); /* Commit netif_running(). */ 1282 } 1283 1284 dev_deactivate_many(head); 1285 1286 list_for_each_entry(dev, head, unreg_list) { 1287 const struct net_device_ops *ops = dev->netdev_ops; 1288 1289 /* 1290 * Call the device specific close. This cannot fail. 1291 * Only if device is UP 1292 * 1293 * We allow it to be called even after a DETACH hot-plug 1294 * event. 1295 */ 1296 if (ops->ndo_stop) 1297 ops->ndo_stop(dev); 1298 1299 dev->flags &= ~IFF_UP; 1300 net_dmaengine_put(); 1301 } 1302 1303 return 0; 1304 } 1305 1306 static int __dev_close(struct net_device *dev) 1307 { 1308 int retval; 1309 LIST_HEAD(single); 1310 1311 /* Temporarily disable netpoll until the interface is down */ 1312 retval = netpoll_rx_disable(dev); 1313 if (retval) 1314 return retval; 1315 1316 list_add(&dev->unreg_list, &single); 1317 retval = __dev_close_many(&single); 1318 list_del(&single); 1319 1320 netpoll_rx_enable(dev); 1321 return retval; 1322 } 1323 1324 static int dev_close_many(struct list_head *head) 1325 { 1326 struct net_device *dev, *tmp; 1327 LIST_HEAD(tmp_list); 1328 1329 list_for_each_entry_safe(dev, tmp, head, unreg_list) 1330 if (!(dev->flags & IFF_UP)) 1331 list_move(&dev->unreg_list, &tmp_list); 1332 1333 __dev_close_many(head); 1334 1335 list_for_each_entry(dev, head, unreg_list) { 1336 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING); 1337 call_netdevice_notifiers(NETDEV_DOWN, dev); 1338 } 1339 1340 /* rollback_registered_many needs the complete original list */ 1341 list_splice(&tmp_list, head); 1342 return 0; 1343 } 1344 1345 /** 1346 * dev_close - shutdown an interface. 1347 * @dev: device to shutdown 1348 * 1349 * This function moves an active device into down state. A 1350 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1351 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1352 * chain. 1353 */ 1354 int dev_close(struct net_device *dev) 1355 { 1356 int ret = 0; 1357 if (dev->flags & IFF_UP) { 1358 LIST_HEAD(single); 1359 1360 /* Block netpoll rx while the interface is going down */ 1361 ret = netpoll_rx_disable(dev); 1362 if (ret) 1363 return ret; 1364 1365 list_add(&dev->unreg_list, &single); 1366 dev_close_many(&single); 1367 list_del(&single); 1368 1369 netpoll_rx_enable(dev); 1370 } 1371 return ret; 1372 } 1373 EXPORT_SYMBOL(dev_close); 1374 1375 1376 /** 1377 * dev_disable_lro - disable Large Receive Offload on a device 1378 * @dev: device 1379 * 1380 * Disable Large Receive Offload (LRO) on a net device. Must be 1381 * called under RTNL. This is needed if received packets may be 1382 * forwarded to another interface. 1383 */ 1384 void dev_disable_lro(struct net_device *dev) 1385 { 1386 /* 1387 * If we're trying to disable lro on a vlan device 1388 * use the underlying physical device instead 1389 */ 1390 if (is_vlan_dev(dev)) 1391 dev = vlan_dev_real_dev(dev); 1392 1393 dev->wanted_features &= ~NETIF_F_LRO; 1394 netdev_update_features(dev); 1395 1396 if (unlikely(dev->features & NETIF_F_LRO)) 1397 netdev_WARN(dev, "failed to disable LRO!\n"); 1398 } 1399 EXPORT_SYMBOL(dev_disable_lro); 1400 1401 1402 static int dev_boot_phase = 1; 1403 1404 /** 1405 * register_netdevice_notifier - register a network notifier block 1406 * @nb: notifier 1407 * 1408 * Register a notifier to be called when network device events occur. 1409 * The notifier passed is linked into the kernel structures and must 1410 * not be reused until it has been unregistered. A negative errno code 1411 * is returned on a failure. 1412 * 1413 * When registered all registration and up events are replayed 1414 * to the new notifier to allow device to have a race free 1415 * view of the network device list. 1416 */ 1417 1418 int register_netdevice_notifier(struct notifier_block *nb) 1419 { 1420 struct net_device *dev; 1421 struct net_device *last; 1422 struct net *net; 1423 int err; 1424 1425 rtnl_lock(); 1426 err = raw_notifier_chain_register(&netdev_chain, nb); 1427 if (err) 1428 goto unlock; 1429 if (dev_boot_phase) 1430 goto unlock; 1431 for_each_net(net) { 1432 for_each_netdev(net, dev) { 1433 err = nb->notifier_call(nb, NETDEV_REGISTER, dev); 1434 err = notifier_to_errno(err); 1435 if (err) 1436 goto rollback; 1437 1438 if (!(dev->flags & IFF_UP)) 1439 continue; 1440 1441 nb->notifier_call(nb, NETDEV_UP, dev); 1442 } 1443 } 1444 1445 unlock: 1446 rtnl_unlock(); 1447 return err; 1448 1449 rollback: 1450 last = dev; 1451 for_each_net(net) { 1452 for_each_netdev(net, dev) { 1453 if (dev == last) 1454 goto outroll; 1455 1456 if (dev->flags & IFF_UP) { 1457 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev); 1458 nb->notifier_call(nb, NETDEV_DOWN, dev); 1459 } 1460 nb->notifier_call(nb, NETDEV_UNREGISTER, dev); 1461 } 1462 } 1463 1464 outroll: 1465 raw_notifier_chain_unregister(&netdev_chain, nb); 1466 goto unlock; 1467 } 1468 EXPORT_SYMBOL(register_netdevice_notifier); 1469 1470 /** 1471 * unregister_netdevice_notifier - unregister a network notifier block 1472 * @nb: notifier 1473 * 1474 * Unregister a notifier previously registered by 1475 * register_netdevice_notifier(). The notifier is unlinked into the 1476 * kernel structures and may then be reused. A negative errno code 1477 * is returned on a failure. 1478 * 1479 * After unregistering unregister and down device events are synthesized 1480 * for all devices on the device list to the removed notifier to remove 1481 * the need for special case cleanup code. 1482 */ 1483 1484 int unregister_netdevice_notifier(struct notifier_block *nb) 1485 { 1486 struct net_device *dev; 1487 struct net *net; 1488 int err; 1489 1490 rtnl_lock(); 1491 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1492 if (err) 1493 goto unlock; 1494 1495 for_each_net(net) { 1496 for_each_netdev(net, dev) { 1497 if (dev->flags & IFF_UP) { 1498 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev); 1499 nb->notifier_call(nb, NETDEV_DOWN, dev); 1500 } 1501 nb->notifier_call(nb, NETDEV_UNREGISTER, dev); 1502 } 1503 } 1504 unlock: 1505 rtnl_unlock(); 1506 return err; 1507 } 1508 EXPORT_SYMBOL(unregister_netdevice_notifier); 1509 1510 /** 1511 * call_netdevice_notifiers - call all network notifier blocks 1512 * @val: value passed unmodified to notifier function 1513 * @dev: net_device pointer passed unmodified to notifier function 1514 * 1515 * Call all network notifier blocks. Parameters and return value 1516 * are as for raw_notifier_call_chain(). 1517 */ 1518 1519 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 1520 { 1521 ASSERT_RTNL(); 1522 return raw_notifier_call_chain(&netdev_chain, val, dev); 1523 } 1524 EXPORT_SYMBOL(call_netdevice_notifiers); 1525 1526 static struct static_key netstamp_needed __read_mostly; 1527 #ifdef HAVE_JUMP_LABEL 1528 /* We are not allowed to call static_key_slow_dec() from irq context 1529 * If net_disable_timestamp() is called from irq context, defer the 1530 * static_key_slow_dec() calls. 1531 */ 1532 static atomic_t netstamp_needed_deferred; 1533 #endif 1534 1535 void net_enable_timestamp(void) 1536 { 1537 #ifdef HAVE_JUMP_LABEL 1538 int deferred = atomic_xchg(&netstamp_needed_deferred, 0); 1539 1540 if (deferred) { 1541 while (--deferred) 1542 static_key_slow_dec(&netstamp_needed); 1543 return; 1544 } 1545 #endif 1546 static_key_slow_inc(&netstamp_needed); 1547 } 1548 EXPORT_SYMBOL(net_enable_timestamp); 1549 1550 void net_disable_timestamp(void) 1551 { 1552 #ifdef HAVE_JUMP_LABEL 1553 if (in_interrupt()) { 1554 atomic_inc(&netstamp_needed_deferred); 1555 return; 1556 } 1557 #endif 1558 static_key_slow_dec(&netstamp_needed); 1559 } 1560 EXPORT_SYMBOL(net_disable_timestamp); 1561 1562 static inline void net_timestamp_set(struct sk_buff *skb) 1563 { 1564 skb->tstamp.tv64 = 0; 1565 if (static_key_false(&netstamp_needed)) 1566 __net_timestamp(skb); 1567 } 1568 1569 #define net_timestamp_check(COND, SKB) \ 1570 if (static_key_false(&netstamp_needed)) { \ 1571 if ((COND) && !(SKB)->tstamp.tv64) \ 1572 __net_timestamp(SKB); \ 1573 } \ 1574 1575 static inline bool is_skb_forwardable(struct net_device *dev, 1576 struct sk_buff *skb) 1577 { 1578 unsigned int len; 1579 1580 if (!(dev->flags & IFF_UP)) 1581 return false; 1582 1583 len = dev->mtu + dev->hard_header_len + VLAN_HLEN; 1584 if (skb->len <= len) 1585 return true; 1586 1587 /* if TSO is enabled, we don't care about the length as the packet 1588 * could be forwarded without being segmented before 1589 */ 1590 if (skb_is_gso(skb)) 1591 return true; 1592 1593 return false; 1594 } 1595 1596 /** 1597 * dev_forward_skb - loopback an skb to another netif 1598 * 1599 * @dev: destination network device 1600 * @skb: buffer to forward 1601 * 1602 * return values: 1603 * NET_RX_SUCCESS (no congestion) 1604 * NET_RX_DROP (packet was dropped, but freed) 1605 * 1606 * dev_forward_skb can be used for injecting an skb from the 1607 * start_xmit function of one device into the receive queue 1608 * of another device. 1609 * 1610 * The receiving device may be in another namespace, so 1611 * we have to clear all information in the skb that could 1612 * impact namespace isolation. 1613 */ 1614 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1615 { 1616 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) { 1617 if (skb_copy_ubufs(skb, GFP_ATOMIC)) { 1618 atomic_long_inc(&dev->rx_dropped); 1619 kfree_skb(skb); 1620 return NET_RX_DROP; 1621 } 1622 } 1623 1624 skb_orphan(skb); 1625 1626 if (unlikely(!is_skb_forwardable(dev, skb))) { 1627 atomic_long_inc(&dev->rx_dropped); 1628 kfree_skb(skb); 1629 return NET_RX_DROP; 1630 } 1631 skb->skb_iif = 0; 1632 skb->dev = dev; 1633 skb_dst_drop(skb); 1634 skb->tstamp.tv64 = 0; 1635 skb->pkt_type = PACKET_HOST; 1636 skb->protocol = eth_type_trans(skb, dev); 1637 skb->mark = 0; 1638 secpath_reset(skb); 1639 nf_reset(skb); 1640 nf_reset_trace(skb); 1641 return netif_rx(skb); 1642 } 1643 EXPORT_SYMBOL_GPL(dev_forward_skb); 1644 1645 static inline int deliver_skb(struct sk_buff *skb, 1646 struct packet_type *pt_prev, 1647 struct net_device *orig_dev) 1648 { 1649 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC))) 1650 return -ENOMEM; 1651 atomic_inc(&skb->users); 1652 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 1653 } 1654 1655 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb) 1656 { 1657 if (!ptype->af_packet_priv || !skb->sk) 1658 return false; 1659 1660 if (ptype->id_match) 1661 return ptype->id_match(ptype, skb->sk); 1662 else if ((struct sock *)ptype->af_packet_priv == skb->sk) 1663 return true; 1664 1665 return false; 1666 } 1667 1668 /* 1669 * Support routine. Sends outgoing frames to any network 1670 * taps currently in use. 1671 */ 1672 1673 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 1674 { 1675 struct packet_type *ptype; 1676 struct sk_buff *skb2 = NULL; 1677 struct packet_type *pt_prev = NULL; 1678 1679 rcu_read_lock(); 1680 list_for_each_entry_rcu(ptype, &ptype_all, list) { 1681 /* Never send packets back to the socket 1682 * they originated from - MvS (miquels@drinkel.ow.org) 1683 */ 1684 if ((ptype->dev == dev || !ptype->dev) && 1685 (!skb_loop_sk(ptype, skb))) { 1686 if (pt_prev) { 1687 deliver_skb(skb2, pt_prev, skb->dev); 1688 pt_prev = ptype; 1689 continue; 1690 } 1691 1692 skb2 = skb_clone(skb, GFP_ATOMIC); 1693 if (!skb2) 1694 break; 1695 1696 net_timestamp_set(skb2); 1697 1698 /* skb->nh should be correctly 1699 set by sender, so that the second statement is 1700 just protection against buggy protocols. 1701 */ 1702 skb_reset_mac_header(skb2); 1703 1704 if (skb_network_header(skb2) < skb2->data || 1705 skb2->network_header > skb2->tail) { 1706 net_crit_ratelimited("protocol %04x is buggy, dev %s\n", 1707 ntohs(skb2->protocol), 1708 dev->name); 1709 skb_reset_network_header(skb2); 1710 } 1711 1712 skb2->transport_header = skb2->network_header; 1713 skb2->pkt_type = PACKET_OUTGOING; 1714 pt_prev = ptype; 1715 } 1716 } 1717 if (pt_prev) 1718 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 1719 rcu_read_unlock(); 1720 } 1721 1722 /** 1723 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change 1724 * @dev: Network device 1725 * @txq: number of queues available 1726 * 1727 * If real_num_tx_queues is changed the tc mappings may no longer be 1728 * valid. To resolve this verify the tc mapping remains valid and if 1729 * not NULL the mapping. With no priorities mapping to this 1730 * offset/count pair it will no longer be used. In the worst case TC0 1731 * is invalid nothing can be done so disable priority mappings. If is 1732 * expected that drivers will fix this mapping if they can before 1733 * calling netif_set_real_num_tx_queues. 1734 */ 1735 static void netif_setup_tc(struct net_device *dev, unsigned int txq) 1736 { 1737 int i; 1738 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 1739 1740 /* If TC0 is invalidated disable TC mapping */ 1741 if (tc->offset + tc->count > txq) { 1742 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n"); 1743 dev->num_tc = 0; 1744 return; 1745 } 1746 1747 /* Invalidated prio to tc mappings set to TC0 */ 1748 for (i = 1; i < TC_BITMASK + 1; i++) { 1749 int q = netdev_get_prio_tc_map(dev, i); 1750 1751 tc = &dev->tc_to_txq[q]; 1752 if (tc->offset + tc->count > txq) { 1753 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n", 1754 i, q); 1755 netdev_set_prio_tc_map(dev, i, 0); 1756 } 1757 } 1758 } 1759 1760 #ifdef CONFIG_XPS 1761 static DEFINE_MUTEX(xps_map_mutex); 1762 #define xmap_dereference(P) \ 1763 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex)) 1764 1765 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps, 1766 int cpu, u16 index) 1767 { 1768 struct xps_map *map = NULL; 1769 int pos; 1770 1771 if (dev_maps) 1772 map = xmap_dereference(dev_maps->cpu_map[cpu]); 1773 1774 for (pos = 0; map && pos < map->len; pos++) { 1775 if (map->queues[pos] == index) { 1776 if (map->len > 1) { 1777 map->queues[pos] = map->queues[--map->len]; 1778 } else { 1779 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL); 1780 kfree_rcu(map, rcu); 1781 map = NULL; 1782 } 1783 break; 1784 } 1785 } 1786 1787 return map; 1788 } 1789 1790 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index) 1791 { 1792 struct xps_dev_maps *dev_maps; 1793 int cpu, i; 1794 bool active = false; 1795 1796 mutex_lock(&xps_map_mutex); 1797 dev_maps = xmap_dereference(dev->xps_maps); 1798 1799 if (!dev_maps) 1800 goto out_no_maps; 1801 1802 for_each_possible_cpu(cpu) { 1803 for (i = index; i < dev->num_tx_queues; i++) { 1804 if (!remove_xps_queue(dev_maps, cpu, i)) 1805 break; 1806 } 1807 if (i == dev->num_tx_queues) 1808 active = true; 1809 } 1810 1811 if (!active) { 1812 RCU_INIT_POINTER(dev->xps_maps, NULL); 1813 kfree_rcu(dev_maps, rcu); 1814 } 1815 1816 for (i = index; i < dev->num_tx_queues; i++) 1817 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i), 1818 NUMA_NO_NODE); 1819 1820 out_no_maps: 1821 mutex_unlock(&xps_map_mutex); 1822 } 1823 1824 static struct xps_map *expand_xps_map(struct xps_map *map, 1825 int cpu, u16 index) 1826 { 1827 struct xps_map *new_map; 1828 int alloc_len = XPS_MIN_MAP_ALLOC; 1829 int i, pos; 1830 1831 for (pos = 0; map && pos < map->len; pos++) { 1832 if (map->queues[pos] != index) 1833 continue; 1834 return map; 1835 } 1836 1837 /* Need to add queue to this CPU's existing map */ 1838 if (map) { 1839 if (pos < map->alloc_len) 1840 return map; 1841 1842 alloc_len = map->alloc_len * 2; 1843 } 1844 1845 /* Need to allocate new map to store queue on this CPU's map */ 1846 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL, 1847 cpu_to_node(cpu)); 1848 if (!new_map) 1849 return NULL; 1850 1851 for (i = 0; i < pos; i++) 1852 new_map->queues[i] = map->queues[i]; 1853 new_map->alloc_len = alloc_len; 1854 new_map->len = pos; 1855 1856 return new_map; 1857 } 1858 1859 int netif_set_xps_queue(struct net_device *dev, struct cpumask *mask, u16 index) 1860 { 1861 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL; 1862 struct xps_map *map, *new_map; 1863 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES); 1864 int cpu, numa_node_id = -2; 1865 bool active = false; 1866 1867 mutex_lock(&xps_map_mutex); 1868 1869 dev_maps = xmap_dereference(dev->xps_maps); 1870 1871 /* allocate memory for queue storage */ 1872 for_each_online_cpu(cpu) { 1873 if (!cpumask_test_cpu(cpu, mask)) 1874 continue; 1875 1876 if (!new_dev_maps) 1877 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL); 1878 if (!new_dev_maps) { 1879 mutex_unlock(&xps_map_mutex); 1880 return -ENOMEM; 1881 } 1882 1883 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) : 1884 NULL; 1885 1886 map = expand_xps_map(map, cpu, index); 1887 if (!map) 1888 goto error; 1889 1890 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map); 1891 } 1892 1893 if (!new_dev_maps) 1894 goto out_no_new_maps; 1895 1896 for_each_possible_cpu(cpu) { 1897 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) { 1898 /* add queue to CPU maps */ 1899 int pos = 0; 1900 1901 map = xmap_dereference(new_dev_maps->cpu_map[cpu]); 1902 while ((pos < map->len) && (map->queues[pos] != index)) 1903 pos++; 1904 1905 if (pos == map->len) 1906 map->queues[map->len++] = index; 1907 #ifdef CONFIG_NUMA 1908 if (numa_node_id == -2) 1909 numa_node_id = cpu_to_node(cpu); 1910 else if (numa_node_id != cpu_to_node(cpu)) 1911 numa_node_id = -1; 1912 #endif 1913 } else if (dev_maps) { 1914 /* fill in the new device map from the old device map */ 1915 map = xmap_dereference(dev_maps->cpu_map[cpu]); 1916 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map); 1917 } 1918 1919 } 1920 1921 rcu_assign_pointer(dev->xps_maps, new_dev_maps); 1922 1923 /* Cleanup old maps */ 1924 if (dev_maps) { 1925 for_each_possible_cpu(cpu) { 1926 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]); 1927 map = xmap_dereference(dev_maps->cpu_map[cpu]); 1928 if (map && map != new_map) 1929 kfree_rcu(map, rcu); 1930 } 1931 1932 kfree_rcu(dev_maps, rcu); 1933 } 1934 1935 dev_maps = new_dev_maps; 1936 active = true; 1937 1938 out_no_new_maps: 1939 /* update Tx queue numa node */ 1940 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index), 1941 (numa_node_id >= 0) ? numa_node_id : 1942 NUMA_NO_NODE); 1943 1944 if (!dev_maps) 1945 goto out_no_maps; 1946 1947 /* removes queue from unused CPUs */ 1948 for_each_possible_cpu(cpu) { 1949 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) 1950 continue; 1951 1952 if (remove_xps_queue(dev_maps, cpu, index)) 1953 active = true; 1954 } 1955 1956 /* free map if not active */ 1957 if (!active) { 1958 RCU_INIT_POINTER(dev->xps_maps, NULL); 1959 kfree_rcu(dev_maps, rcu); 1960 } 1961 1962 out_no_maps: 1963 mutex_unlock(&xps_map_mutex); 1964 1965 return 0; 1966 error: 1967 /* remove any maps that we added */ 1968 for_each_possible_cpu(cpu) { 1969 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]); 1970 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) : 1971 NULL; 1972 if (new_map && new_map != map) 1973 kfree(new_map); 1974 } 1975 1976 mutex_unlock(&xps_map_mutex); 1977 1978 kfree(new_dev_maps); 1979 return -ENOMEM; 1980 } 1981 EXPORT_SYMBOL(netif_set_xps_queue); 1982 1983 #endif 1984 /* 1985 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 1986 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed. 1987 */ 1988 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 1989 { 1990 int rc; 1991 1992 if (txq < 1 || txq > dev->num_tx_queues) 1993 return -EINVAL; 1994 1995 if (dev->reg_state == NETREG_REGISTERED || 1996 dev->reg_state == NETREG_UNREGISTERING) { 1997 ASSERT_RTNL(); 1998 1999 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 2000 txq); 2001 if (rc) 2002 return rc; 2003 2004 if (dev->num_tc) 2005 netif_setup_tc(dev, txq); 2006 2007 if (txq < dev->real_num_tx_queues) { 2008 qdisc_reset_all_tx_gt(dev, txq); 2009 #ifdef CONFIG_XPS 2010 netif_reset_xps_queues_gt(dev, txq); 2011 #endif 2012 } 2013 } 2014 2015 dev->real_num_tx_queues = txq; 2016 return 0; 2017 } 2018 EXPORT_SYMBOL(netif_set_real_num_tx_queues); 2019 2020 #ifdef CONFIG_RPS 2021 /** 2022 * netif_set_real_num_rx_queues - set actual number of RX queues used 2023 * @dev: Network device 2024 * @rxq: Actual number of RX queues 2025 * 2026 * This must be called either with the rtnl_lock held or before 2027 * registration of the net device. Returns 0 on success, or a 2028 * negative error code. If called before registration, it always 2029 * succeeds. 2030 */ 2031 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 2032 { 2033 int rc; 2034 2035 if (rxq < 1 || rxq > dev->num_rx_queues) 2036 return -EINVAL; 2037 2038 if (dev->reg_state == NETREG_REGISTERED) { 2039 ASSERT_RTNL(); 2040 2041 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 2042 rxq); 2043 if (rc) 2044 return rc; 2045 } 2046 2047 dev->real_num_rx_queues = rxq; 2048 return 0; 2049 } 2050 EXPORT_SYMBOL(netif_set_real_num_rx_queues); 2051 #endif 2052 2053 /** 2054 * netif_get_num_default_rss_queues - default number of RSS queues 2055 * 2056 * This routine should set an upper limit on the number of RSS queues 2057 * used by default by multiqueue devices. 2058 */ 2059 int netif_get_num_default_rss_queues(void) 2060 { 2061 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus()); 2062 } 2063 EXPORT_SYMBOL(netif_get_num_default_rss_queues); 2064 2065 static inline void __netif_reschedule(struct Qdisc *q) 2066 { 2067 struct softnet_data *sd; 2068 unsigned long flags; 2069 2070 local_irq_save(flags); 2071 sd = &__get_cpu_var(softnet_data); 2072 q->next_sched = NULL; 2073 *sd->output_queue_tailp = q; 2074 sd->output_queue_tailp = &q->next_sched; 2075 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2076 local_irq_restore(flags); 2077 } 2078 2079 void __netif_schedule(struct Qdisc *q) 2080 { 2081 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 2082 __netif_reschedule(q); 2083 } 2084 EXPORT_SYMBOL(__netif_schedule); 2085 2086 void dev_kfree_skb_irq(struct sk_buff *skb) 2087 { 2088 if (atomic_dec_and_test(&skb->users)) { 2089 struct softnet_data *sd; 2090 unsigned long flags; 2091 2092 local_irq_save(flags); 2093 sd = &__get_cpu_var(softnet_data); 2094 skb->next = sd->completion_queue; 2095 sd->completion_queue = skb; 2096 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2097 local_irq_restore(flags); 2098 } 2099 } 2100 EXPORT_SYMBOL(dev_kfree_skb_irq); 2101 2102 void dev_kfree_skb_any(struct sk_buff *skb) 2103 { 2104 if (in_irq() || irqs_disabled()) 2105 dev_kfree_skb_irq(skb); 2106 else 2107 dev_kfree_skb(skb); 2108 } 2109 EXPORT_SYMBOL(dev_kfree_skb_any); 2110 2111 2112 /** 2113 * netif_device_detach - mark device as removed 2114 * @dev: network device 2115 * 2116 * Mark device as removed from system and therefore no longer available. 2117 */ 2118 void netif_device_detach(struct net_device *dev) 2119 { 2120 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 2121 netif_running(dev)) { 2122 netif_tx_stop_all_queues(dev); 2123 } 2124 } 2125 EXPORT_SYMBOL(netif_device_detach); 2126 2127 /** 2128 * netif_device_attach - mark device as attached 2129 * @dev: network device 2130 * 2131 * Mark device as attached from system and restart if needed. 2132 */ 2133 void netif_device_attach(struct net_device *dev) 2134 { 2135 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 2136 netif_running(dev)) { 2137 netif_tx_wake_all_queues(dev); 2138 __netdev_watchdog_up(dev); 2139 } 2140 } 2141 EXPORT_SYMBOL(netif_device_attach); 2142 2143 static void skb_warn_bad_offload(const struct sk_buff *skb) 2144 { 2145 static const netdev_features_t null_features = 0; 2146 struct net_device *dev = skb->dev; 2147 const char *driver = ""; 2148 2149 if (!net_ratelimit()) 2150 return; 2151 2152 if (dev && dev->dev.parent) 2153 driver = dev_driver_string(dev->dev.parent); 2154 2155 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d " 2156 "gso_type=%d ip_summed=%d\n", 2157 driver, dev ? &dev->features : &null_features, 2158 skb->sk ? &skb->sk->sk_route_caps : &null_features, 2159 skb->len, skb->data_len, skb_shinfo(skb)->gso_size, 2160 skb_shinfo(skb)->gso_type, skb->ip_summed); 2161 } 2162 2163 /* 2164 * Invalidate hardware checksum when packet is to be mangled, and 2165 * complete checksum manually on outgoing path. 2166 */ 2167 int skb_checksum_help(struct sk_buff *skb) 2168 { 2169 __wsum csum; 2170 int ret = 0, offset; 2171 2172 if (skb->ip_summed == CHECKSUM_COMPLETE) 2173 goto out_set_summed; 2174 2175 if (unlikely(skb_shinfo(skb)->gso_size)) { 2176 skb_warn_bad_offload(skb); 2177 return -EINVAL; 2178 } 2179 2180 /* Before computing a checksum, we should make sure no frag could 2181 * be modified by an external entity : checksum could be wrong. 2182 */ 2183 if (skb_has_shared_frag(skb)) { 2184 ret = __skb_linearize(skb); 2185 if (ret) 2186 goto out; 2187 } 2188 2189 offset = skb_checksum_start_offset(skb); 2190 BUG_ON(offset >= skb_headlen(skb)); 2191 csum = skb_checksum(skb, offset, skb->len - offset, 0); 2192 2193 offset += skb->csum_offset; 2194 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 2195 2196 if (skb_cloned(skb) && 2197 !skb_clone_writable(skb, offset + sizeof(__sum16))) { 2198 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2199 if (ret) 2200 goto out; 2201 } 2202 2203 *(__sum16 *)(skb->data + offset) = csum_fold(csum); 2204 out_set_summed: 2205 skb->ip_summed = CHECKSUM_NONE; 2206 out: 2207 return ret; 2208 } 2209 EXPORT_SYMBOL(skb_checksum_help); 2210 2211 __be16 skb_network_protocol(struct sk_buff *skb) 2212 { 2213 __be16 type = skb->protocol; 2214 int vlan_depth = ETH_HLEN; 2215 2216 while (type == htons(ETH_P_8021Q) || type == htons(ETH_P_8021AD)) { 2217 struct vlan_hdr *vh; 2218 2219 if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN))) 2220 return 0; 2221 2222 vh = (struct vlan_hdr *)(skb->data + vlan_depth); 2223 type = vh->h_vlan_encapsulated_proto; 2224 vlan_depth += VLAN_HLEN; 2225 } 2226 2227 return type; 2228 } 2229 2230 /** 2231 * skb_mac_gso_segment - mac layer segmentation handler. 2232 * @skb: buffer to segment 2233 * @features: features for the output path (see dev->features) 2234 */ 2235 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 2236 netdev_features_t features) 2237 { 2238 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 2239 struct packet_offload *ptype; 2240 __be16 type = skb_network_protocol(skb); 2241 2242 if (unlikely(!type)) 2243 return ERR_PTR(-EINVAL); 2244 2245 __skb_pull(skb, skb->mac_len); 2246 2247 rcu_read_lock(); 2248 list_for_each_entry_rcu(ptype, &offload_base, list) { 2249 if (ptype->type == type && ptype->callbacks.gso_segment) { 2250 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) { 2251 int err; 2252 2253 err = ptype->callbacks.gso_send_check(skb); 2254 segs = ERR_PTR(err); 2255 if (err || skb_gso_ok(skb, features)) 2256 break; 2257 __skb_push(skb, (skb->data - 2258 skb_network_header(skb))); 2259 } 2260 segs = ptype->callbacks.gso_segment(skb, features); 2261 break; 2262 } 2263 } 2264 rcu_read_unlock(); 2265 2266 __skb_push(skb, skb->data - skb_mac_header(skb)); 2267 2268 return segs; 2269 } 2270 EXPORT_SYMBOL(skb_mac_gso_segment); 2271 2272 2273 /* openvswitch calls this on rx path, so we need a different check. 2274 */ 2275 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path) 2276 { 2277 if (tx_path) 2278 return skb->ip_summed != CHECKSUM_PARTIAL; 2279 else 2280 return skb->ip_summed == CHECKSUM_NONE; 2281 } 2282 2283 /** 2284 * __skb_gso_segment - Perform segmentation on skb. 2285 * @skb: buffer to segment 2286 * @features: features for the output path (see dev->features) 2287 * @tx_path: whether it is called in TX path 2288 * 2289 * This function segments the given skb and returns a list of segments. 2290 * 2291 * It may return NULL if the skb requires no segmentation. This is 2292 * only possible when GSO is used for verifying header integrity. 2293 */ 2294 struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 2295 netdev_features_t features, bool tx_path) 2296 { 2297 if (unlikely(skb_needs_check(skb, tx_path))) { 2298 int err; 2299 2300 skb_warn_bad_offload(skb); 2301 2302 if (skb_header_cloned(skb) && 2303 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))) 2304 return ERR_PTR(err); 2305 } 2306 2307 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb); 2308 skb_reset_mac_header(skb); 2309 skb_reset_mac_len(skb); 2310 2311 return skb_mac_gso_segment(skb, features); 2312 } 2313 EXPORT_SYMBOL(__skb_gso_segment); 2314 2315 /* Take action when hardware reception checksum errors are detected. */ 2316 #ifdef CONFIG_BUG 2317 void netdev_rx_csum_fault(struct net_device *dev) 2318 { 2319 if (net_ratelimit()) { 2320 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>"); 2321 dump_stack(); 2322 } 2323 } 2324 EXPORT_SYMBOL(netdev_rx_csum_fault); 2325 #endif 2326 2327 /* Actually, we should eliminate this check as soon as we know, that: 2328 * 1. IOMMU is present and allows to map all the memory. 2329 * 2. No high memory really exists on this machine. 2330 */ 2331 2332 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 2333 { 2334 #ifdef CONFIG_HIGHMEM 2335 int i; 2336 if (!(dev->features & NETIF_F_HIGHDMA)) { 2337 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2338 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2339 if (PageHighMem(skb_frag_page(frag))) 2340 return 1; 2341 } 2342 } 2343 2344 if (PCI_DMA_BUS_IS_PHYS) { 2345 struct device *pdev = dev->dev.parent; 2346 2347 if (!pdev) 2348 return 0; 2349 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2350 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2351 dma_addr_t addr = page_to_phys(skb_frag_page(frag)); 2352 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask) 2353 return 1; 2354 } 2355 } 2356 #endif 2357 return 0; 2358 } 2359 2360 struct dev_gso_cb { 2361 void (*destructor)(struct sk_buff *skb); 2362 }; 2363 2364 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb) 2365 2366 static void dev_gso_skb_destructor(struct sk_buff *skb) 2367 { 2368 struct dev_gso_cb *cb; 2369 2370 do { 2371 struct sk_buff *nskb = skb->next; 2372 2373 skb->next = nskb->next; 2374 nskb->next = NULL; 2375 kfree_skb(nskb); 2376 } while (skb->next); 2377 2378 cb = DEV_GSO_CB(skb); 2379 if (cb->destructor) 2380 cb->destructor(skb); 2381 } 2382 2383 /** 2384 * dev_gso_segment - Perform emulated hardware segmentation on skb. 2385 * @skb: buffer to segment 2386 * @features: device features as applicable to this skb 2387 * 2388 * This function segments the given skb and stores the list of segments 2389 * in skb->next. 2390 */ 2391 static int dev_gso_segment(struct sk_buff *skb, netdev_features_t features) 2392 { 2393 struct sk_buff *segs; 2394 2395 segs = skb_gso_segment(skb, features); 2396 2397 /* Verifying header integrity only. */ 2398 if (!segs) 2399 return 0; 2400 2401 if (IS_ERR(segs)) 2402 return PTR_ERR(segs); 2403 2404 skb->next = segs; 2405 DEV_GSO_CB(skb)->destructor = skb->destructor; 2406 skb->destructor = dev_gso_skb_destructor; 2407 2408 return 0; 2409 } 2410 2411 static netdev_features_t harmonize_features(struct sk_buff *skb, 2412 __be16 protocol, netdev_features_t features) 2413 { 2414 if (skb->ip_summed != CHECKSUM_NONE && 2415 !can_checksum_protocol(features, protocol)) { 2416 features &= ~NETIF_F_ALL_CSUM; 2417 } else if (illegal_highdma(skb->dev, skb)) { 2418 features &= ~NETIF_F_SG; 2419 } 2420 2421 return features; 2422 } 2423 2424 netdev_features_t netif_skb_features(struct sk_buff *skb) 2425 { 2426 __be16 protocol = skb->protocol; 2427 netdev_features_t features = skb->dev->features; 2428 2429 if (skb_shinfo(skb)->gso_segs > skb->dev->gso_max_segs) 2430 features &= ~NETIF_F_GSO_MASK; 2431 2432 if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD)) { 2433 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data; 2434 protocol = veh->h_vlan_encapsulated_proto; 2435 } else if (!vlan_tx_tag_present(skb)) { 2436 return harmonize_features(skb, protocol, features); 2437 } 2438 2439 features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_CTAG_TX | 2440 NETIF_F_HW_VLAN_STAG_TX); 2441 2442 if (protocol != htons(ETH_P_8021Q) && protocol != htons(ETH_P_8021AD)) { 2443 return harmonize_features(skb, protocol, features); 2444 } else { 2445 features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST | 2446 NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_CTAG_TX | 2447 NETIF_F_HW_VLAN_STAG_TX; 2448 return harmonize_features(skb, protocol, features); 2449 } 2450 } 2451 EXPORT_SYMBOL(netif_skb_features); 2452 2453 /* 2454 * Returns true if either: 2455 * 1. skb has frag_list and the device doesn't support FRAGLIST, or 2456 * 2. skb is fragmented and the device does not support SG. 2457 */ 2458 static inline int skb_needs_linearize(struct sk_buff *skb, 2459 int features) 2460 { 2461 return skb_is_nonlinear(skb) && 2462 ((skb_has_frag_list(skb) && 2463 !(features & NETIF_F_FRAGLIST)) || 2464 (skb_shinfo(skb)->nr_frags && 2465 !(features & NETIF_F_SG))); 2466 } 2467 2468 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 2469 struct netdev_queue *txq) 2470 { 2471 const struct net_device_ops *ops = dev->netdev_ops; 2472 int rc = NETDEV_TX_OK; 2473 unsigned int skb_len; 2474 2475 if (likely(!skb->next)) { 2476 netdev_features_t features; 2477 2478 /* 2479 * If device doesn't need skb->dst, release it right now while 2480 * its hot in this cpu cache 2481 */ 2482 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 2483 skb_dst_drop(skb); 2484 2485 features = netif_skb_features(skb); 2486 2487 if (vlan_tx_tag_present(skb) && 2488 !vlan_hw_offload_capable(features, skb->vlan_proto)) { 2489 skb = __vlan_put_tag(skb, skb->vlan_proto, 2490 vlan_tx_tag_get(skb)); 2491 if (unlikely(!skb)) 2492 goto out; 2493 2494 skb->vlan_tci = 0; 2495 } 2496 2497 /* If encapsulation offload request, verify we are testing 2498 * hardware encapsulation features instead of standard 2499 * features for the netdev 2500 */ 2501 if (skb->encapsulation) 2502 features &= dev->hw_enc_features; 2503 2504 if (netif_needs_gso(skb, features)) { 2505 if (unlikely(dev_gso_segment(skb, features))) 2506 goto out_kfree_skb; 2507 if (skb->next) 2508 goto gso; 2509 } else { 2510 if (skb_needs_linearize(skb, features) && 2511 __skb_linearize(skb)) 2512 goto out_kfree_skb; 2513 2514 /* If packet is not checksummed and device does not 2515 * support checksumming for this protocol, complete 2516 * checksumming here. 2517 */ 2518 if (skb->ip_summed == CHECKSUM_PARTIAL) { 2519 if (skb->encapsulation) 2520 skb_set_inner_transport_header(skb, 2521 skb_checksum_start_offset(skb)); 2522 else 2523 skb_set_transport_header(skb, 2524 skb_checksum_start_offset(skb)); 2525 if (!(features & NETIF_F_ALL_CSUM) && 2526 skb_checksum_help(skb)) 2527 goto out_kfree_skb; 2528 } 2529 } 2530 2531 if (!list_empty(&ptype_all)) 2532 dev_queue_xmit_nit(skb, dev); 2533 2534 skb_len = skb->len; 2535 rc = ops->ndo_start_xmit(skb, dev); 2536 trace_net_dev_xmit(skb, rc, dev, skb_len); 2537 if (rc == NETDEV_TX_OK) 2538 txq_trans_update(txq); 2539 return rc; 2540 } 2541 2542 gso: 2543 do { 2544 struct sk_buff *nskb = skb->next; 2545 2546 skb->next = nskb->next; 2547 nskb->next = NULL; 2548 2549 if (!list_empty(&ptype_all)) 2550 dev_queue_xmit_nit(nskb, dev); 2551 2552 skb_len = nskb->len; 2553 rc = ops->ndo_start_xmit(nskb, dev); 2554 trace_net_dev_xmit(nskb, rc, dev, skb_len); 2555 if (unlikely(rc != NETDEV_TX_OK)) { 2556 if (rc & ~NETDEV_TX_MASK) 2557 goto out_kfree_gso_skb; 2558 nskb->next = skb->next; 2559 skb->next = nskb; 2560 return rc; 2561 } 2562 txq_trans_update(txq); 2563 if (unlikely(netif_xmit_stopped(txq) && skb->next)) 2564 return NETDEV_TX_BUSY; 2565 } while (skb->next); 2566 2567 out_kfree_gso_skb: 2568 if (likely(skb->next == NULL)) { 2569 skb->destructor = DEV_GSO_CB(skb)->destructor; 2570 consume_skb(skb); 2571 return rc; 2572 } 2573 out_kfree_skb: 2574 kfree_skb(skb); 2575 out: 2576 return rc; 2577 } 2578 2579 static void qdisc_pkt_len_init(struct sk_buff *skb) 2580 { 2581 const struct skb_shared_info *shinfo = skb_shinfo(skb); 2582 2583 qdisc_skb_cb(skb)->pkt_len = skb->len; 2584 2585 /* To get more precise estimation of bytes sent on wire, 2586 * we add to pkt_len the headers size of all segments 2587 */ 2588 if (shinfo->gso_size) { 2589 unsigned int hdr_len; 2590 u16 gso_segs = shinfo->gso_segs; 2591 2592 /* mac layer + network layer */ 2593 hdr_len = skb_transport_header(skb) - skb_mac_header(skb); 2594 2595 /* + transport layer */ 2596 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) 2597 hdr_len += tcp_hdrlen(skb); 2598 else 2599 hdr_len += sizeof(struct udphdr); 2600 2601 if (shinfo->gso_type & SKB_GSO_DODGY) 2602 gso_segs = DIV_ROUND_UP(skb->len - hdr_len, 2603 shinfo->gso_size); 2604 2605 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len; 2606 } 2607 } 2608 2609 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 2610 struct net_device *dev, 2611 struct netdev_queue *txq) 2612 { 2613 spinlock_t *root_lock = qdisc_lock(q); 2614 bool contended; 2615 int rc; 2616 2617 qdisc_pkt_len_init(skb); 2618 qdisc_calculate_pkt_len(skb, q); 2619 /* 2620 * Heuristic to force contended enqueues to serialize on a 2621 * separate lock before trying to get qdisc main lock. 2622 * This permits __QDISC_STATE_RUNNING owner to get the lock more often 2623 * and dequeue packets faster. 2624 */ 2625 contended = qdisc_is_running(q); 2626 if (unlikely(contended)) 2627 spin_lock(&q->busylock); 2628 2629 spin_lock(root_lock); 2630 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 2631 kfree_skb(skb); 2632 rc = NET_XMIT_DROP; 2633 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 2634 qdisc_run_begin(q)) { 2635 /* 2636 * This is a work-conserving queue; there are no old skbs 2637 * waiting to be sent out; and the qdisc is not running - 2638 * xmit the skb directly. 2639 */ 2640 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE)) 2641 skb_dst_force(skb); 2642 2643 qdisc_bstats_update(q, skb); 2644 2645 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) { 2646 if (unlikely(contended)) { 2647 spin_unlock(&q->busylock); 2648 contended = false; 2649 } 2650 __qdisc_run(q); 2651 } else 2652 qdisc_run_end(q); 2653 2654 rc = NET_XMIT_SUCCESS; 2655 } else { 2656 skb_dst_force(skb); 2657 rc = q->enqueue(skb, q) & NET_XMIT_MASK; 2658 if (qdisc_run_begin(q)) { 2659 if (unlikely(contended)) { 2660 spin_unlock(&q->busylock); 2661 contended = false; 2662 } 2663 __qdisc_run(q); 2664 } 2665 } 2666 spin_unlock(root_lock); 2667 if (unlikely(contended)) 2668 spin_unlock(&q->busylock); 2669 return rc; 2670 } 2671 2672 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP) 2673 static void skb_update_prio(struct sk_buff *skb) 2674 { 2675 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap); 2676 2677 if (!skb->priority && skb->sk && map) { 2678 unsigned int prioidx = skb->sk->sk_cgrp_prioidx; 2679 2680 if (prioidx < map->priomap_len) 2681 skb->priority = map->priomap[prioidx]; 2682 } 2683 } 2684 #else 2685 #define skb_update_prio(skb) 2686 #endif 2687 2688 static DEFINE_PER_CPU(int, xmit_recursion); 2689 #define RECURSION_LIMIT 10 2690 2691 /** 2692 * dev_loopback_xmit - loop back @skb 2693 * @skb: buffer to transmit 2694 */ 2695 int dev_loopback_xmit(struct sk_buff *skb) 2696 { 2697 skb_reset_mac_header(skb); 2698 __skb_pull(skb, skb_network_offset(skb)); 2699 skb->pkt_type = PACKET_LOOPBACK; 2700 skb->ip_summed = CHECKSUM_UNNECESSARY; 2701 WARN_ON(!skb_dst(skb)); 2702 skb_dst_force(skb); 2703 netif_rx_ni(skb); 2704 return 0; 2705 } 2706 EXPORT_SYMBOL(dev_loopback_xmit); 2707 2708 /** 2709 * dev_queue_xmit - transmit a buffer 2710 * @skb: buffer to transmit 2711 * 2712 * Queue a buffer for transmission to a network device. The caller must 2713 * have set the device and priority and built the buffer before calling 2714 * this function. The function can be called from an interrupt. 2715 * 2716 * A negative errno code is returned on a failure. A success does not 2717 * guarantee the frame will be transmitted as it may be dropped due 2718 * to congestion or traffic shaping. 2719 * 2720 * ----------------------------------------------------------------------------------- 2721 * I notice this method can also return errors from the queue disciplines, 2722 * including NET_XMIT_DROP, which is a positive value. So, errors can also 2723 * be positive. 2724 * 2725 * Regardless of the return value, the skb is consumed, so it is currently 2726 * difficult to retry a send to this method. (You can bump the ref count 2727 * before sending to hold a reference for retry if you are careful.) 2728 * 2729 * When calling this method, interrupts MUST be enabled. This is because 2730 * the BH enable code must have IRQs enabled so that it will not deadlock. 2731 * --BLG 2732 */ 2733 int dev_queue_xmit(struct sk_buff *skb) 2734 { 2735 struct net_device *dev = skb->dev; 2736 struct netdev_queue *txq; 2737 struct Qdisc *q; 2738 int rc = -ENOMEM; 2739 2740 skb_reset_mac_header(skb); 2741 2742 /* Disable soft irqs for various locks below. Also 2743 * stops preemption for RCU. 2744 */ 2745 rcu_read_lock_bh(); 2746 2747 skb_update_prio(skb); 2748 2749 txq = netdev_pick_tx(dev, skb); 2750 q = rcu_dereference_bh(txq->qdisc); 2751 2752 #ifdef CONFIG_NET_CLS_ACT 2753 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS); 2754 #endif 2755 trace_net_dev_queue(skb); 2756 if (q->enqueue) { 2757 rc = __dev_xmit_skb(skb, q, dev, txq); 2758 goto out; 2759 } 2760 2761 /* The device has no queue. Common case for software devices: 2762 loopback, all the sorts of tunnels... 2763 2764 Really, it is unlikely that netif_tx_lock protection is necessary 2765 here. (f.e. loopback and IP tunnels are clean ignoring statistics 2766 counters.) 2767 However, it is possible, that they rely on protection 2768 made by us here. 2769 2770 Check this and shot the lock. It is not prone from deadlocks. 2771 Either shot noqueue qdisc, it is even simpler 8) 2772 */ 2773 if (dev->flags & IFF_UP) { 2774 int cpu = smp_processor_id(); /* ok because BHs are off */ 2775 2776 if (txq->xmit_lock_owner != cpu) { 2777 2778 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT) 2779 goto recursion_alert; 2780 2781 HARD_TX_LOCK(dev, txq, cpu); 2782 2783 if (!netif_xmit_stopped(txq)) { 2784 __this_cpu_inc(xmit_recursion); 2785 rc = dev_hard_start_xmit(skb, dev, txq); 2786 __this_cpu_dec(xmit_recursion); 2787 if (dev_xmit_complete(rc)) { 2788 HARD_TX_UNLOCK(dev, txq); 2789 goto out; 2790 } 2791 } 2792 HARD_TX_UNLOCK(dev, txq); 2793 net_crit_ratelimited("Virtual device %s asks to queue packet!\n", 2794 dev->name); 2795 } else { 2796 /* Recursion is detected! It is possible, 2797 * unfortunately 2798 */ 2799 recursion_alert: 2800 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n", 2801 dev->name); 2802 } 2803 } 2804 2805 rc = -ENETDOWN; 2806 rcu_read_unlock_bh(); 2807 2808 kfree_skb(skb); 2809 return rc; 2810 out: 2811 rcu_read_unlock_bh(); 2812 return rc; 2813 } 2814 EXPORT_SYMBOL(dev_queue_xmit); 2815 2816 2817 /*======================================================================= 2818 Receiver routines 2819 =======================================================================*/ 2820 2821 int netdev_max_backlog __read_mostly = 1000; 2822 EXPORT_SYMBOL(netdev_max_backlog); 2823 2824 int netdev_tstamp_prequeue __read_mostly = 1; 2825 int netdev_budget __read_mostly = 300; 2826 int weight_p __read_mostly = 64; /* old backlog weight */ 2827 2828 /* Called with irq disabled */ 2829 static inline void ____napi_schedule(struct softnet_data *sd, 2830 struct napi_struct *napi) 2831 { 2832 list_add_tail(&napi->poll_list, &sd->poll_list); 2833 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 2834 } 2835 2836 #ifdef CONFIG_RPS 2837 2838 /* One global table that all flow-based protocols share. */ 2839 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly; 2840 EXPORT_SYMBOL(rps_sock_flow_table); 2841 2842 struct static_key rps_needed __read_mostly; 2843 2844 static struct rps_dev_flow * 2845 set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 2846 struct rps_dev_flow *rflow, u16 next_cpu) 2847 { 2848 if (next_cpu != RPS_NO_CPU) { 2849 #ifdef CONFIG_RFS_ACCEL 2850 struct netdev_rx_queue *rxqueue; 2851 struct rps_dev_flow_table *flow_table; 2852 struct rps_dev_flow *old_rflow; 2853 u32 flow_id; 2854 u16 rxq_index; 2855 int rc; 2856 2857 /* Should we steer this flow to a different hardware queue? */ 2858 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 2859 !(dev->features & NETIF_F_NTUPLE)) 2860 goto out; 2861 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 2862 if (rxq_index == skb_get_rx_queue(skb)) 2863 goto out; 2864 2865 rxqueue = dev->_rx + rxq_index; 2866 flow_table = rcu_dereference(rxqueue->rps_flow_table); 2867 if (!flow_table) 2868 goto out; 2869 flow_id = skb->rxhash & flow_table->mask; 2870 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 2871 rxq_index, flow_id); 2872 if (rc < 0) 2873 goto out; 2874 old_rflow = rflow; 2875 rflow = &flow_table->flows[flow_id]; 2876 rflow->filter = rc; 2877 if (old_rflow->filter == rflow->filter) 2878 old_rflow->filter = RPS_NO_FILTER; 2879 out: 2880 #endif 2881 rflow->last_qtail = 2882 per_cpu(softnet_data, next_cpu).input_queue_head; 2883 } 2884 2885 rflow->cpu = next_cpu; 2886 return rflow; 2887 } 2888 2889 /* 2890 * get_rps_cpu is called from netif_receive_skb and returns the target 2891 * CPU from the RPS map of the receiving queue for a given skb. 2892 * rcu_read_lock must be held on entry. 2893 */ 2894 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 2895 struct rps_dev_flow **rflowp) 2896 { 2897 struct netdev_rx_queue *rxqueue; 2898 struct rps_map *map; 2899 struct rps_dev_flow_table *flow_table; 2900 struct rps_sock_flow_table *sock_flow_table; 2901 int cpu = -1; 2902 u16 tcpu; 2903 2904 if (skb_rx_queue_recorded(skb)) { 2905 u16 index = skb_get_rx_queue(skb); 2906 if (unlikely(index >= dev->real_num_rx_queues)) { 2907 WARN_ONCE(dev->real_num_rx_queues > 1, 2908 "%s received packet on queue %u, but number " 2909 "of RX queues is %u\n", 2910 dev->name, index, dev->real_num_rx_queues); 2911 goto done; 2912 } 2913 rxqueue = dev->_rx + index; 2914 } else 2915 rxqueue = dev->_rx; 2916 2917 map = rcu_dereference(rxqueue->rps_map); 2918 if (map) { 2919 if (map->len == 1 && 2920 !rcu_access_pointer(rxqueue->rps_flow_table)) { 2921 tcpu = map->cpus[0]; 2922 if (cpu_online(tcpu)) 2923 cpu = tcpu; 2924 goto done; 2925 } 2926 } else if (!rcu_access_pointer(rxqueue->rps_flow_table)) { 2927 goto done; 2928 } 2929 2930 skb_reset_network_header(skb); 2931 if (!skb_get_rxhash(skb)) 2932 goto done; 2933 2934 flow_table = rcu_dereference(rxqueue->rps_flow_table); 2935 sock_flow_table = rcu_dereference(rps_sock_flow_table); 2936 if (flow_table && sock_flow_table) { 2937 u16 next_cpu; 2938 struct rps_dev_flow *rflow; 2939 2940 rflow = &flow_table->flows[skb->rxhash & flow_table->mask]; 2941 tcpu = rflow->cpu; 2942 2943 next_cpu = sock_flow_table->ents[skb->rxhash & 2944 sock_flow_table->mask]; 2945 2946 /* 2947 * If the desired CPU (where last recvmsg was done) is 2948 * different from current CPU (one in the rx-queue flow 2949 * table entry), switch if one of the following holds: 2950 * - Current CPU is unset (equal to RPS_NO_CPU). 2951 * - Current CPU is offline. 2952 * - The current CPU's queue tail has advanced beyond the 2953 * last packet that was enqueued using this table entry. 2954 * This guarantees that all previous packets for the flow 2955 * have been dequeued, thus preserving in order delivery. 2956 */ 2957 if (unlikely(tcpu != next_cpu) && 2958 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) || 2959 ((int)(per_cpu(softnet_data, tcpu).input_queue_head - 2960 rflow->last_qtail)) >= 0)) { 2961 tcpu = next_cpu; 2962 rflow = set_rps_cpu(dev, skb, rflow, next_cpu); 2963 } 2964 2965 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) { 2966 *rflowp = rflow; 2967 cpu = tcpu; 2968 goto done; 2969 } 2970 } 2971 2972 if (map) { 2973 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32]; 2974 2975 if (cpu_online(tcpu)) { 2976 cpu = tcpu; 2977 goto done; 2978 } 2979 } 2980 2981 done: 2982 return cpu; 2983 } 2984 2985 #ifdef CONFIG_RFS_ACCEL 2986 2987 /** 2988 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 2989 * @dev: Device on which the filter was set 2990 * @rxq_index: RX queue index 2991 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 2992 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 2993 * 2994 * Drivers that implement ndo_rx_flow_steer() should periodically call 2995 * this function for each installed filter and remove the filters for 2996 * which it returns %true. 2997 */ 2998 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 2999 u32 flow_id, u16 filter_id) 3000 { 3001 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 3002 struct rps_dev_flow_table *flow_table; 3003 struct rps_dev_flow *rflow; 3004 bool expire = true; 3005 int cpu; 3006 3007 rcu_read_lock(); 3008 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3009 if (flow_table && flow_id <= flow_table->mask) { 3010 rflow = &flow_table->flows[flow_id]; 3011 cpu = ACCESS_ONCE(rflow->cpu); 3012 if (rflow->filter == filter_id && cpu != RPS_NO_CPU && 3013 ((int)(per_cpu(softnet_data, cpu).input_queue_head - 3014 rflow->last_qtail) < 3015 (int)(10 * flow_table->mask))) 3016 expire = false; 3017 } 3018 rcu_read_unlock(); 3019 return expire; 3020 } 3021 EXPORT_SYMBOL(rps_may_expire_flow); 3022 3023 #endif /* CONFIG_RFS_ACCEL */ 3024 3025 /* Called from hardirq (IPI) context */ 3026 static void rps_trigger_softirq(void *data) 3027 { 3028 struct softnet_data *sd = data; 3029 3030 ____napi_schedule(sd, &sd->backlog); 3031 sd->received_rps++; 3032 } 3033 3034 #endif /* CONFIG_RPS */ 3035 3036 /* 3037 * Check if this softnet_data structure is another cpu one 3038 * If yes, queue it to our IPI list and return 1 3039 * If no, return 0 3040 */ 3041 static int rps_ipi_queued(struct softnet_data *sd) 3042 { 3043 #ifdef CONFIG_RPS 3044 struct softnet_data *mysd = &__get_cpu_var(softnet_data); 3045 3046 if (sd != mysd) { 3047 sd->rps_ipi_next = mysd->rps_ipi_list; 3048 mysd->rps_ipi_list = sd; 3049 3050 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3051 return 1; 3052 } 3053 #endif /* CONFIG_RPS */ 3054 return 0; 3055 } 3056 3057 /* 3058 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 3059 * queue (may be a remote CPU queue). 3060 */ 3061 static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 3062 unsigned int *qtail) 3063 { 3064 struct softnet_data *sd; 3065 unsigned long flags; 3066 3067 sd = &per_cpu(softnet_data, cpu); 3068 3069 local_irq_save(flags); 3070 3071 rps_lock(sd); 3072 if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) { 3073 if (skb_queue_len(&sd->input_pkt_queue)) { 3074 enqueue: 3075 __skb_queue_tail(&sd->input_pkt_queue, skb); 3076 input_queue_tail_incr_save(sd, qtail); 3077 rps_unlock(sd); 3078 local_irq_restore(flags); 3079 return NET_RX_SUCCESS; 3080 } 3081 3082 /* Schedule NAPI for backlog device 3083 * We can use non atomic operation since we own the queue lock 3084 */ 3085 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) { 3086 if (!rps_ipi_queued(sd)) 3087 ____napi_schedule(sd, &sd->backlog); 3088 } 3089 goto enqueue; 3090 } 3091 3092 sd->dropped++; 3093 rps_unlock(sd); 3094 3095 local_irq_restore(flags); 3096 3097 atomic_long_inc(&skb->dev->rx_dropped); 3098 kfree_skb(skb); 3099 return NET_RX_DROP; 3100 } 3101 3102 /** 3103 * netif_rx - post buffer to the network code 3104 * @skb: buffer to post 3105 * 3106 * This function receives a packet from a device driver and queues it for 3107 * the upper (protocol) levels to process. It always succeeds. The buffer 3108 * may be dropped during processing for congestion control or by the 3109 * protocol layers. 3110 * 3111 * return values: 3112 * NET_RX_SUCCESS (no congestion) 3113 * NET_RX_DROP (packet was dropped) 3114 * 3115 */ 3116 3117 int netif_rx(struct sk_buff *skb) 3118 { 3119 int ret; 3120 3121 /* if netpoll wants it, pretend we never saw it */ 3122 if (netpoll_rx(skb)) 3123 return NET_RX_DROP; 3124 3125 net_timestamp_check(netdev_tstamp_prequeue, skb); 3126 3127 trace_netif_rx(skb); 3128 #ifdef CONFIG_RPS 3129 if (static_key_false(&rps_needed)) { 3130 struct rps_dev_flow voidflow, *rflow = &voidflow; 3131 int cpu; 3132 3133 preempt_disable(); 3134 rcu_read_lock(); 3135 3136 cpu = get_rps_cpu(skb->dev, skb, &rflow); 3137 if (cpu < 0) 3138 cpu = smp_processor_id(); 3139 3140 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 3141 3142 rcu_read_unlock(); 3143 preempt_enable(); 3144 } else 3145 #endif 3146 { 3147 unsigned int qtail; 3148 ret = enqueue_to_backlog(skb, get_cpu(), &qtail); 3149 put_cpu(); 3150 } 3151 return ret; 3152 } 3153 EXPORT_SYMBOL(netif_rx); 3154 3155 int netif_rx_ni(struct sk_buff *skb) 3156 { 3157 int err; 3158 3159 preempt_disable(); 3160 err = netif_rx(skb); 3161 if (local_softirq_pending()) 3162 do_softirq(); 3163 preempt_enable(); 3164 3165 return err; 3166 } 3167 EXPORT_SYMBOL(netif_rx_ni); 3168 3169 static void net_tx_action(struct softirq_action *h) 3170 { 3171 struct softnet_data *sd = &__get_cpu_var(softnet_data); 3172 3173 if (sd->completion_queue) { 3174 struct sk_buff *clist; 3175 3176 local_irq_disable(); 3177 clist = sd->completion_queue; 3178 sd->completion_queue = NULL; 3179 local_irq_enable(); 3180 3181 while (clist) { 3182 struct sk_buff *skb = clist; 3183 clist = clist->next; 3184 3185 WARN_ON(atomic_read(&skb->users)); 3186 trace_kfree_skb(skb, net_tx_action); 3187 __kfree_skb(skb); 3188 } 3189 } 3190 3191 if (sd->output_queue) { 3192 struct Qdisc *head; 3193 3194 local_irq_disable(); 3195 head = sd->output_queue; 3196 sd->output_queue = NULL; 3197 sd->output_queue_tailp = &sd->output_queue; 3198 local_irq_enable(); 3199 3200 while (head) { 3201 struct Qdisc *q = head; 3202 spinlock_t *root_lock; 3203 3204 head = head->next_sched; 3205 3206 root_lock = qdisc_lock(q); 3207 if (spin_trylock(root_lock)) { 3208 smp_mb__before_clear_bit(); 3209 clear_bit(__QDISC_STATE_SCHED, 3210 &q->state); 3211 qdisc_run(q); 3212 spin_unlock(root_lock); 3213 } else { 3214 if (!test_bit(__QDISC_STATE_DEACTIVATED, 3215 &q->state)) { 3216 __netif_reschedule(q); 3217 } else { 3218 smp_mb__before_clear_bit(); 3219 clear_bit(__QDISC_STATE_SCHED, 3220 &q->state); 3221 } 3222 } 3223 } 3224 } 3225 } 3226 3227 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \ 3228 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE)) 3229 /* This hook is defined here for ATM LANE */ 3230 int (*br_fdb_test_addr_hook)(struct net_device *dev, 3231 unsigned char *addr) __read_mostly; 3232 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 3233 #endif 3234 3235 #ifdef CONFIG_NET_CLS_ACT 3236 /* TODO: Maybe we should just force sch_ingress to be compiled in 3237 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions 3238 * a compare and 2 stores extra right now if we dont have it on 3239 * but have CONFIG_NET_CLS_ACT 3240 * NOTE: This doesn't stop any functionality; if you dont have 3241 * the ingress scheduler, you just can't add policies on ingress. 3242 * 3243 */ 3244 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq) 3245 { 3246 struct net_device *dev = skb->dev; 3247 u32 ttl = G_TC_RTTL(skb->tc_verd); 3248 int result = TC_ACT_OK; 3249 struct Qdisc *q; 3250 3251 if (unlikely(MAX_RED_LOOP < ttl++)) { 3252 net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n", 3253 skb->skb_iif, dev->ifindex); 3254 return TC_ACT_SHOT; 3255 } 3256 3257 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl); 3258 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS); 3259 3260 q = rxq->qdisc; 3261 if (q != &noop_qdisc) { 3262 spin_lock(qdisc_lock(q)); 3263 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) 3264 result = qdisc_enqueue_root(skb, q); 3265 spin_unlock(qdisc_lock(q)); 3266 } 3267 3268 return result; 3269 } 3270 3271 static inline struct sk_buff *handle_ing(struct sk_buff *skb, 3272 struct packet_type **pt_prev, 3273 int *ret, struct net_device *orig_dev) 3274 { 3275 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue); 3276 3277 if (!rxq || rxq->qdisc == &noop_qdisc) 3278 goto out; 3279 3280 if (*pt_prev) { 3281 *ret = deliver_skb(skb, *pt_prev, orig_dev); 3282 *pt_prev = NULL; 3283 } 3284 3285 switch (ing_filter(skb, rxq)) { 3286 case TC_ACT_SHOT: 3287 case TC_ACT_STOLEN: 3288 kfree_skb(skb); 3289 return NULL; 3290 } 3291 3292 out: 3293 skb->tc_verd = 0; 3294 return skb; 3295 } 3296 #endif 3297 3298 /** 3299 * netdev_rx_handler_register - register receive handler 3300 * @dev: device to register a handler for 3301 * @rx_handler: receive handler to register 3302 * @rx_handler_data: data pointer that is used by rx handler 3303 * 3304 * Register a receive hander for a device. This handler will then be 3305 * called from __netif_receive_skb. A negative errno code is returned 3306 * on a failure. 3307 * 3308 * The caller must hold the rtnl_mutex. 3309 * 3310 * For a general description of rx_handler, see enum rx_handler_result. 3311 */ 3312 int netdev_rx_handler_register(struct net_device *dev, 3313 rx_handler_func_t *rx_handler, 3314 void *rx_handler_data) 3315 { 3316 ASSERT_RTNL(); 3317 3318 if (dev->rx_handler) 3319 return -EBUSY; 3320 3321 /* Note: rx_handler_data must be set before rx_handler */ 3322 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 3323 rcu_assign_pointer(dev->rx_handler, rx_handler); 3324 3325 return 0; 3326 } 3327 EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 3328 3329 /** 3330 * netdev_rx_handler_unregister - unregister receive handler 3331 * @dev: device to unregister a handler from 3332 * 3333 * Unregister a receive handler from a device. 3334 * 3335 * The caller must hold the rtnl_mutex. 3336 */ 3337 void netdev_rx_handler_unregister(struct net_device *dev) 3338 { 3339 3340 ASSERT_RTNL(); 3341 RCU_INIT_POINTER(dev->rx_handler, NULL); 3342 /* a reader seeing a non NULL rx_handler in a rcu_read_lock() 3343 * section has a guarantee to see a non NULL rx_handler_data 3344 * as well. 3345 */ 3346 synchronize_net(); 3347 RCU_INIT_POINTER(dev->rx_handler_data, NULL); 3348 } 3349 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 3350 3351 /* 3352 * Limit the use of PFMEMALLOC reserves to those protocols that implement 3353 * the special handling of PFMEMALLOC skbs. 3354 */ 3355 static bool skb_pfmemalloc_protocol(struct sk_buff *skb) 3356 { 3357 switch (skb->protocol) { 3358 case __constant_htons(ETH_P_ARP): 3359 case __constant_htons(ETH_P_IP): 3360 case __constant_htons(ETH_P_IPV6): 3361 case __constant_htons(ETH_P_8021Q): 3362 case __constant_htons(ETH_P_8021AD): 3363 return true; 3364 default: 3365 return false; 3366 } 3367 } 3368 3369 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc) 3370 { 3371 struct packet_type *ptype, *pt_prev; 3372 rx_handler_func_t *rx_handler; 3373 struct net_device *orig_dev; 3374 struct net_device *null_or_dev; 3375 bool deliver_exact = false; 3376 int ret = NET_RX_DROP; 3377 __be16 type; 3378 3379 net_timestamp_check(!netdev_tstamp_prequeue, skb); 3380 3381 trace_netif_receive_skb(skb); 3382 3383 /* if we've gotten here through NAPI, check netpoll */ 3384 if (netpoll_receive_skb(skb)) 3385 goto out; 3386 3387 orig_dev = skb->dev; 3388 3389 skb_reset_network_header(skb); 3390 if (!skb_transport_header_was_set(skb)) 3391 skb_reset_transport_header(skb); 3392 skb_reset_mac_len(skb); 3393 3394 pt_prev = NULL; 3395 3396 rcu_read_lock(); 3397 3398 another_round: 3399 skb->skb_iif = skb->dev->ifindex; 3400 3401 __this_cpu_inc(softnet_data.processed); 3402 3403 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) || 3404 skb->protocol == cpu_to_be16(ETH_P_8021AD)) { 3405 skb = vlan_untag(skb); 3406 if (unlikely(!skb)) 3407 goto unlock; 3408 } 3409 3410 #ifdef CONFIG_NET_CLS_ACT 3411 if (skb->tc_verd & TC_NCLS) { 3412 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd); 3413 goto ncls; 3414 } 3415 #endif 3416 3417 if (pfmemalloc) 3418 goto skip_taps; 3419 3420 list_for_each_entry_rcu(ptype, &ptype_all, list) { 3421 if (!ptype->dev || ptype->dev == skb->dev) { 3422 if (pt_prev) 3423 ret = deliver_skb(skb, pt_prev, orig_dev); 3424 pt_prev = ptype; 3425 } 3426 } 3427 3428 skip_taps: 3429 #ifdef CONFIG_NET_CLS_ACT 3430 skb = handle_ing(skb, &pt_prev, &ret, orig_dev); 3431 if (!skb) 3432 goto unlock; 3433 ncls: 3434 #endif 3435 3436 if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) 3437 goto drop; 3438 3439 if (vlan_tx_tag_present(skb)) { 3440 if (pt_prev) { 3441 ret = deliver_skb(skb, pt_prev, orig_dev); 3442 pt_prev = NULL; 3443 } 3444 if (vlan_do_receive(&skb)) 3445 goto another_round; 3446 else if (unlikely(!skb)) 3447 goto unlock; 3448 } 3449 3450 rx_handler = rcu_dereference(skb->dev->rx_handler); 3451 if (rx_handler) { 3452 if (pt_prev) { 3453 ret = deliver_skb(skb, pt_prev, orig_dev); 3454 pt_prev = NULL; 3455 } 3456 switch (rx_handler(&skb)) { 3457 case RX_HANDLER_CONSUMED: 3458 ret = NET_RX_SUCCESS; 3459 goto unlock; 3460 case RX_HANDLER_ANOTHER: 3461 goto another_round; 3462 case RX_HANDLER_EXACT: 3463 deliver_exact = true; 3464 case RX_HANDLER_PASS: 3465 break; 3466 default: 3467 BUG(); 3468 } 3469 } 3470 3471 if (vlan_tx_nonzero_tag_present(skb)) 3472 skb->pkt_type = PACKET_OTHERHOST; 3473 3474 /* deliver only exact match when indicated */ 3475 null_or_dev = deliver_exact ? skb->dev : NULL; 3476 3477 type = skb->protocol; 3478 list_for_each_entry_rcu(ptype, 3479 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) { 3480 if (ptype->type == type && 3481 (ptype->dev == null_or_dev || ptype->dev == skb->dev || 3482 ptype->dev == orig_dev)) { 3483 if (pt_prev) 3484 ret = deliver_skb(skb, pt_prev, orig_dev); 3485 pt_prev = ptype; 3486 } 3487 } 3488 3489 if (pt_prev) { 3490 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC))) 3491 goto drop; 3492 else 3493 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 3494 } else { 3495 drop: 3496 atomic_long_inc(&skb->dev->rx_dropped); 3497 kfree_skb(skb); 3498 /* Jamal, now you will not able to escape explaining 3499 * me how you were going to use this. :-) 3500 */ 3501 ret = NET_RX_DROP; 3502 } 3503 3504 unlock: 3505 rcu_read_unlock(); 3506 out: 3507 return ret; 3508 } 3509 3510 static int __netif_receive_skb(struct sk_buff *skb) 3511 { 3512 int ret; 3513 3514 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) { 3515 unsigned long pflags = current->flags; 3516 3517 /* 3518 * PFMEMALLOC skbs are special, they should 3519 * - be delivered to SOCK_MEMALLOC sockets only 3520 * - stay away from userspace 3521 * - have bounded memory usage 3522 * 3523 * Use PF_MEMALLOC as this saves us from propagating the allocation 3524 * context down to all allocation sites. 3525 */ 3526 current->flags |= PF_MEMALLOC; 3527 ret = __netif_receive_skb_core(skb, true); 3528 tsk_restore_flags(current, pflags, PF_MEMALLOC); 3529 } else 3530 ret = __netif_receive_skb_core(skb, false); 3531 3532 return ret; 3533 } 3534 3535 /** 3536 * netif_receive_skb - process receive buffer from network 3537 * @skb: buffer to process 3538 * 3539 * netif_receive_skb() is the main receive data processing function. 3540 * It always succeeds. The buffer may be dropped during processing 3541 * for congestion control or by the protocol layers. 3542 * 3543 * This function may only be called from softirq context and interrupts 3544 * should be enabled. 3545 * 3546 * Return values (usually ignored): 3547 * NET_RX_SUCCESS: no congestion 3548 * NET_RX_DROP: packet was dropped 3549 */ 3550 int netif_receive_skb(struct sk_buff *skb) 3551 { 3552 net_timestamp_check(netdev_tstamp_prequeue, skb); 3553 3554 if (skb_defer_rx_timestamp(skb)) 3555 return NET_RX_SUCCESS; 3556 3557 #ifdef CONFIG_RPS 3558 if (static_key_false(&rps_needed)) { 3559 struct rps_dev_flow voidflow, *rflow = &voidflow; 3560 int cpu, ret; 3561 3562 rcu_read_lock(); 3563 3564 cpu = get_rps_cpu(skb->dev, skb, &rflow); 3565 3566 if (cpu >= 0) { 3567 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 3568 rcu_read_unlock(); 3569 return ret; 3570 } 3571 rcu_read_unlock(); 3572 } 3573 #endif 3574 return __netif_receive_skb(skb); 3575 } 3576 EXPORT_SYMBOL(netif_receive_skb); 3577 3578 /* Network device is going away, flush any packets still pending 3579 * Called with irqs disabled. 3580 */ 3581 static void flush_backlog(void *arg) 3582 { 3583 struct net_device *dev = arg; 3584 struct softnet_data *sd = &__get_cpu_var(softnet_data); 3585 struct sk_buff *skb, *tmp; 3586 3587 rps_lock(sd); 3588 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 3589 if (skb->dev == dev) { 3590 __skb_unlink(skb, &sd->input_pkt_queue); 3591 kfree_skb(skb); 3592 input_queue_head_incr(sd); 3593 } 3594 } 3595 rps_unlock(sd); 3596 3597 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 3598 if (skb->dev == dev) { 3599 __skb_unlink(skb, &sd->process_queue); 3600 kfree_skb(skb); 3601 input_queue_head_incr(sd); 3602 } 3603 } 3604 } 3605 3606 static int napi_gro_complete(struct sk_buff *skb) 3607 { 3608 struct packet_offload *ptype; 3609 __be16 type = skb->protocol; 3610 struct list_head *head = &offload_base; 3611 int err = -ENOENT; 3612 3613 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb)); 3614 3615 if (NAPI_GRO_CB(skb)->count == 1) { 3616 skb_shinfo(skb)->gso_size = 0; 3617 goto out; 3618 } 3619 3620 rcu_read_lock(); 3621 list_for_each_entry_rcu(ptype, head, list) { 3622 if (ptype->type != type || !ptype->callbacks.gro_complete) 3623 continue; 3624 3625 err = ptype->callbacks.gro_complete(skb); 3626 break; 3627 } 3628 rcu_read_unlock(); 3629 3630 if (err) { 3631 WARN_ON(&ptype->list == head); 3632 kfree_skb(skb); 3633 return NET_RX_SUCCESS; 3634 } 3635 3636 out: 3637 return netif_receive_skb(skb); 3638 } 3639 3640 /* napi->gro_list contains packets ordered by age. 3641 * youngest packets at the head of it. 3642 * Complete skbs in reverse order to reduce latencies. 3643 */ 3644 void napi_gro_flush(struct napi_struct *napi, bool flush_old) 3645 { 3646 struct sk_buff *skb, *prev = NULL; 3647 3648 /* scan list and build reverse chain */ 3649 for (skb = napi->gro_list; skb != NULL; skb = skb->next) { 3650 skb->prev = prev; 3651 prev = skb; 3652 } 3653 3654 for (skb = prev; skb; skb = prev) { 3655 skb->next = NULL; 3656 3657 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies) 3658 return; 3659 3660 prev = skb->prev; 3661 napi_gro_complete(skb); 3662 napi->gro_count--; 3663 } 3664 3665 napi->gro_list = NULL; 3666 } 3667 EXPORT_SYMBOL(napi_gro_flush); 3668 3669 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb) 3670 { 3671 struct sk_buff *p; 3672 unsigned int maclen = skb->dev->hard_header_len; 3673 3674 for (p = napi->gro_list; p; p = p->next) { 3675 unsigned long diffs; 3676 3677 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev; 3678 diffs |= p->vlan_tci ^ skb->vlan_tci; 3679 if (maclen == ETH_HLEN) 3680 diffs |= compare_ether_header(skb_mac_header(p), 3681 skb_gro_mac_header(skb)); 3682 else if (!diffs) 3683 diffs = memcmp(skb_mac_header(p), 3684 skb_gro_mac_header(skb), 3685 maclen); 3686 NAPI_GRO_CB(p)->same_flow = !diffs; 3687 NAPI_GRO_CB(p)->flush = 0; 3688 } 3689 } 3690 3691 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 3692 { 3693 struct sk_buff **pp = NULL; 3694 struct packet_offload *ptype; 3695 __be16 type = skb->protocol; 3696 struct list_head *head = &offload_base; 3697 int same_flow; 3698 enum gro_result ret; 3699 3700 if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb)) 3701 goto normal; 3702 3703 if (skb_is_gso(skb) || skb_has_frag_list(skb)) 3704 goto normal; 3705 3706 gro_list_prepare(napi, skb); 3707 3708 rcu_read_lock(); 3709 list_for_each_entry_rcu(ptype, head, list) { 3710 if (ptype->type != type || !ptype->callbacks.gro_receive) 3711 continue; 3712 3713 skb_set_network_header(skb, skb_gro_offset(skb)); 3714 skb_reset_mac_len(skb); 3715 NAPI_GRO_CB(skb)->same_flow = 0; 3716 NAPI_GRO_CB(skb)->flush = 0; 3717 NAPI_GRO_CB(skb)->free = 0; 3718 3719 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb); 3720 break; 3721 } 3722 rcu_read_unlock(); 3723 3724 if (&ptype->list == head) 3725 goto normal; 3726 3727 same_flow = NAPI_GRO_CB(skb)->same_flow; 3728 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED; 3729 3730 if (pp) { 3731 struct sk_buff *nskb = *pp; 3732 3733 *pp = nskb->next; 3734 nskb->next = NULL; 3735 napi_gro_complete(nskb); 3736 napi->gro_count--; 3737 } 3738 3739 if (same_flow) 3740 goto ok; 3741 3742 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS) 3743 goto normal; 3744 3745 napi->gro_count++; 3746 NAPI_GRO_CB(skb)->count = 1; 3747 NAPI_GRO_CB(skb)->age = jiffies; 3748 skb_shinfo(skb)->gso_size = skb_gro_len(skb); 3749 skb->next = napi->gro_list; 3750 napi->gro_list = skb; 3751 ret = GRO_HELD; 3752 3753 pull: 3754 if (skb_headlen(skb) < skb_gro_offset(skb)) { 3755 int grow = skb_gro_offset(skb) - skb_headlen(skb); 3756 3757 BUG_ON(skb->end - skb->tail < grow); 3758 3759 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow); 3760 3761 skb->tail += grow; 3762 skb->data_len -= grow; 3763 3764 skb_shinfo(skb)->frags[0].page_offset += grow; 3765 skb_frag_size_sub(&skb_shinfo(skb)->frags[0], grow); 3766 3767 if (unlikely(!skb_frag_size(&skb_shinfo(skb)->frags[0]))) { 3768 skb_frag_unref(skb, 0); 3769 memmove(skb_shinfo(skb)->frags, 3770 skb_shinfo(skb)->frags + 1, 3771 --skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t)); 3772 } 3773 } 3774 3775 ok: 3776 return ret; 3777 3778 normal: 3779 ret = GRO_NORMAL; 3780 goto pull; 3781 } 3782 3783 3784 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb) 3785 { 3786 switch (ret) { 3787 case GRO_NORMAL: 3788 if (netif_receive_skb(skb)) 3789 ret = GRO_DROP; 3790 break; 3791 3792 case GRO_DROP: 3793 kfree_skb(skb); 3794 break; 3795 3796 case GRO_MERGED_FREE: 3797 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) 3798 kmem_cache_free(skbuff_head_cache, skb); 3799 else 3800 __kfree_skb(skb); 3801 break; 3802 3803 case GRO_HELD: 3804 case GRO_MERGED: 3805 break; 3806 } 3807 3808 return ret; 3809 } 3810 3811 static void skb_gro_reset_offset(struct sk_buff *skb) 3812 { 3813 const struct skb_shared_info *pinfo = skb_shinfo(skb); 3814 const skb_frag_t *frag0 = &pinfo->frags[0]; 3815 3816 NAPI_GRO_CB(skb)->data_offset = 0; 3817 NAPI_GRO_CB(skb)->frag0 = NULL; 3818 NAPI_GRO_CB(skb)->frag0_len = 0; 3819 3820 if (skb->mac_header == skb->tail && 3821 pinfo->nr_frags && 3822 !PageHighMem(skb_frag_page(frag0))) { 3823 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0); 3824 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0); 3825 } 3826 } 3827 3828 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 3829 { 3830 skb_gro_reset_offset(skb); 3831 3832 return napi_skb_finish(dev_gro_receive(napi, skb), skb); 3833 } 3834 EXPORT_SYMBOL(napi_gro_receive); 3835 3836 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb) 3837 { 3838 __skb_pull(skb, skb_headlen(skb)); 3839 /* restore the reserve we had after netdev_alloc_skb_ip_align() */ 3840 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb)); 3841 skb->vlan_tci = 0; 3842 skb->dev = napi->dev; 3843 skb->skb_iif = 0; 3844 3845 napi->skb = skb; 3846 } 3847 3848 struct sk_buff *napi_get_frags(struct napi_struct *napi) 3849 { 3850 struct sk_buff *skb = napi->skb; 3851 3852 if (!skb) { 3853 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD); 3854 if (skb) 3855 napi->skb = skb; 3856 } 3857 return skb; 3858 } 3859 EXPORT_SYMBOL(napi_get_frags); 3860 3861 static gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb, 3862 gro_result_t ret) 3863 { 3864 switch (ret) { 3865 case GRO_NORMAL: 3866 case GRO_HELD: 3867 skb->protocol = eth_type_trans(skb, skb->dev); 3868 3869 if (ret == GRO_HELD) 3870 skb_gro_pull(skb, -ETH_HLEN); 3871 else if (netif_receive_skb(skb)) 3872 ret = GRO_DROP; 3873 break; 3874 3875 case GRO_DROP: 3876 case GRO_MERGED_FREE: 3877 napi_reuse_skb(napi, skb); 3878 break; 3879 3880 case GRO_MERGED: 3881 break; 3882 } 3883 3884 return ret; 3885 } 3886 3887 static struct sk_buff *napi_frags_skb(struct napi_struct *napi) 3888 { 3889 struct sk_buff *skb = napi->skb; 3890 struct ethhdr *eth; 3891 unsigned int hlen; 3892 unsigned int off; 3893 3894 napi->skb = NULL; 3895 3896 skb_reset_mac_header(skb); 3897 skb_gro_reset_offset(skb); 3898 3899 off = skb_gro_offset(skb); 3900 hlen = off + sizeof(*eth); 3901 eth = skb_gro_header_fast(skb, off); 3902 if (skb_gro_header_hard(skb, hlen)) { 3903 eth = skb_gro_header_slow(skb, hlen, off); 3904 if (unlikely(!eth)) { 3905 napi_reuse_skb(napi, skb); 3906 skb = NULL; 3907 goto out; 3908 } 3909 } 3910 3911 skb_gro_pull(skb, sizeof(*eth)); 3912 3913 /* 3914 * This works because the only protocols we care about don't require 3915 * special handling. We'll fix it up properly at the end. 3916 */ 3917 skb->protocol = eth->h_proto; 3918 3919 out: 3920 return skb; 3921 } 3922 3923 gro_result_t napi_gro_frags(struct napi_struct *napi) 3924 { 3925 struct sk_buff *skb = napi_frags_skb(napi); 3926 3927 if (!skb) 3928 return GRO_DROP; 3929 3930 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb)); 3931 } 3932 EXPORT_SYMBOL(napi_gro_frags); 3933 3934 /* 3935 * net_rps_action sends any pending IPI's for rps. 3936 * Note: called with local irq disabled, but exits with local irq enabled. 3937 */ 3938 static void net_rps_action_and_irq_enable(struct softnet_data *sd) 3939 { 3940 #ifdef CONFIG_RPS 3941 struct softnet_data *remsd = sd->rps_ipi_list; 3942 3943 if (remsd) { 3944 sd->rps_ipi_list = NULL; 3945 3946 local_irq_enable(); 3947 3948 /* Send pending IPI's to kick RPS processing on remote cpus. */ 3949 while (remsd) { 3950 struct softnet_data *next = remsd->rps_ipi_next; 3951 3952 if (cpu_online(remsd->cpu)) 3953 __smp_call_function_single(remsd->cpu, 3954 &remsd->csd, 0); 3955 remsd = next; 3956 } 3957 } else 3958 #endif 3959 local_irq_enable(); 3960 } 3961 3962 static int process_backlog(struct napi_struct *napi, int quota) 3963 { 3964 int work = 0; 3965 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 3966 3967 #ifdef CONFIG_RPS 3968 /* Check if we have pending ipi, its better to send them now, 3969 * not waiting net_rx_action() end. 3970 */ 3971 if (sd->rps_ipi_list) { 3972 local_irq_disable(); 3973 net_rps_action_and_irq_enable(sd); 3974 } 3975 #endif 3976 napi->weight = weight_p; 3977 local_irq_disable(); 3978 while (work < quota) { 3979 struct sk_buff *skb; 3980 unsigned int qlen; 3981 3982 while ((skb = __skb_dequeue(&sd->process_queue))) { 3983 local_irq_enable(); 3984 __netif_receive_skb(skb); 3985 local_irq_disable(); 3986 input_queue_head_incr(sd); 3987 if (++work >= quota) { 3988 local_irq_enable(); 3989 return work; 3990 } 3991 } 3992 3993 rps_lock(sd); 3994 qlen = skb_queue_len(&sd->input_pkt_queue); 3995 if (qlen) 3996 skb_queue_splice_tail_init(&sd->input_pkt_queue, 3997 &sd->process_queue); 3998 3999 if (qlen < quota - work) { 4000 /* 4001 * Inline a custom version of __napi_complete(). 4002 * only current cpu owns and manipulates this napi, 4003 * and NAPI_STATE_SCHED is the only possible flag set on backlog. 4004 * we can use a plain write instead of clear_bit(), 4005 * and we dont need an smp_mb() memory barrier. 4006 */ 4007 list_del(&napi->poll_list); 4008 napi->state = 0; 4009 4010 quota = work + qlen; 4011 } 4012 rps_unlock(sd); 4013 } 4014 local_irq_enable(); 4015 4016 return work; 4017 } 4018 4019 /** 4020 * __napi_schedule - schedule for receive 4021 * @n: entry to schedule 4022 * 4023 * The entry's receive function will be scheduled to run 4024 */ 4025 void __napi_schedule(struct napi_struct *n) 4026 { 4027 unsigned long flags; 4028 4029 local_irq_save(flags); 4030 ____napi_schedule(&__get_cpu_var(softnet_data), n); 4031 local_irq_restore(flags); 4032 } 4033 EXPORT_SYMBOL(__napi_schedule); 4034 4035 void __napi_complete(struct napi_struct *n) 4036 { 4037 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 4038 BUG_ON(n->gro_list); 4039 4040 list_del(&n->poll_list); 4041 smp_mb__before_clear_bit(); 4042 clear_bit(NAPI_STATE_SCHED, &n->state); 4043 } 4044 EXPORT_SYMBOL(__napi_complete); 4045 4046 void napi_complete(struct napi_struct *n) 4047 { 4048 unsigned long flags; 4049 4050 /* 4051 * don't let napi dequeue from the cpu poll list 4052 * just in case its running on a different cpu 4053 */ 4054 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state))) 4055 return; 4056 4057 napi_gro_flush(n, false); 4058 local_irq_save(flags); 4059 __napi_complete(n); 4060 local_irq_restore(flags); 4061 } 4062 EXPORT_SYMBOL(napi_complete); 4063 4064 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 4065 int (*poll)(struct napi_struct *, int), int weight) 4066 { 4067 INIT_LIST_HEAD(&napi->poll_list); 4068 napi->gro_count = 0; 4069 napi->gro_list = NULL; 4070 napi->skb = NULL; 4071 napi->poll = poll; 4072 if (weight > NAPI_POLL_WEIGHT) 4073 pr_err_once("netif_napi_add() called with weight %d on device %s\n", 4074 weight, dev->name); 4075 napi->weight = weight; 4076 list_add(&napi->dev_list, &dev->napi_list); 4077 napi->dev = dev; 4078 #ifdef CONFIG_NETPOLL 4079 spin_lock_init(&napi->poll_lock); 4080 napi->poll_owner = -1; 4081 #endif 4082 set_bit(NAPI_STATE_SCHED, &napi->state); 4083 } 4084 EXPORT_SYMBOL(netif_napi_add); 4085 4086 void netif_napi_del(struct napi_struct *napi) 4087 { 4088 struct sk_buff *skb, *next; 4089 4090 list_del_init(&napi->dev_list); 4091 napi_free_frags(napi); 4092 4093 for (skb = napi->gro_list; skb; skb = next) { 4094 next = skb->next; 4095 skb->next = NULL; 4096 kfree_skb(skb); 4097 } 4098 4099 napi->gro_list = NULL; 4100 napi->gro_count = 0; 4101 } 4102 EXPORT_SYMBOL(netif_napi_del); 4103 4104 static void net_rx_action(struct softirq_action *h) 4105 { 4106 struct softnet_data *sd = &__get_cpu_var(softnet_data); 4107 unsigned long time_limit = jiffies + 2; 4108 int budget = netdev_budget; 4109 void *have; 4110 4111 local_irq_disable(); 4112 4113 while (!list_empty(&sd->poll_list)) { 4114 struct napi_struct *n; 4115 int work, weight; 4116 4117 /* If softirq window is exhuasted then punt. 4118 * Allow this to run for 2 jiffies since which will allow 4119 * an average latency of 1.5/HZ. 4120 */ 4121 if (unlikely(budget <= 0 || time_after_eq(jiffies, time_limit))) 4122 goto softnet_break; 4123 4124 local_irq_enable(); 4125 4126 /* Even though interrupts have been re-enabled, this 4127 * access is safe because interrupts can only add new 4128 * entries to the tail of this list, and only ->poll() 4129 * calls can remove this head entry from the list. 4130 */ 4131 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list); 4132 4133 have = netpoll_poll_lock(n); 4134 4135 weight = n->weight; 4136 4137 /* This NAPI_STATE_SCHED test is for avoiding a race 4138 * with netpoll's poll_napi(). Only the entity which 4139 * obtains the lock and sees NAPI_STATE_SCHED set will 4140 * actually make the ->poll() call. Therefore we avoid 4141 * accidentally calling ->poll() when NAPI is not scheduled. 4142 */ 4143 work = 0; 4144 if (test_bit(NAPI_STATE_SCHED, &n->state)) { 4145 work = n->poll(n, weight); 4146 trace_napi_poll(n); 4147 } 4148 4149 WARN_ON_ONCE(work > weight); 4150 4151 budget -= work; 4152 4153 local_irq_disable(); 4154 4155 /* Drivers must not modify the NAPI state if they 4156 * consume the entire weight. In such cases this code 4157 * still "owns" the NAPI instance and therefore can 4158 * move the instance around on the list at-will. 4159 */ 4160 if (unlikely(work == weight)) { 4161 if (unlikely(napi_disable_pending(n))) { 4162 local_irq_enable(); 4163 napi_complete(n); 4164 local_irq_disable(); 4165 } else { 4166 if (n->gro_list) { 4167 /* flush too old packets 4168 * If HZ < 1000, flush all packets. 4169 */ 4170 local_irq_enable(); 4171 napi_gro_flush(n, HZ >= 1000); 4172 local_irq_disable(); 4173 } 4174 list_move_tail(&n->poll_list, &sd->poll_list); 4175 } 4176 } 4177 4178 netpoll_poll_unlock(have); 4179 } 4180 out: 4181 net_rps_action_and_irq_enable(sd); 4182 4183 #ifdef CONFIG_NET_DMA 4184 /* 4185 * There may not be any more sk_buffs coming right now, so push 4186 * any pending DMA copies to hardware 4187 */ 4188 dma_issue_pending_all(); 4189 #endif 4190 4191 return; 4192 4193 softnet_break: 4194 sd->time_squeeze++; 4195 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 4196 goto out; 4197 } 4198 4199 struct netdev_upper { 4200 struct net_device *dev; 4201 bool master; 4202 struct list_head list; 4203 struct rcu_head rcu; 4204 struct list_head search_list; 4205 }; 4206 4207 static void __append_search_uppers(struct list_head *search_list, 4208 struct net_device *dev) 4209 { 4210 struct netdev_upper *upper; 4211 4212 list_for_each_entry(upper, &dev->upper_dev_list, list) { 4213 /* check if this upper is not already in search list */ 4214 if (list_empty(&upper->search_list)) 4215 list_add_tail(&upper->search_list, search_list); 4216 } 4217 } 4218 4219 static bool __netdev_search_upper_dev(struct net_device *dev, 4220 struct net_device *upper_dev) 4221 { 4222 LIST_HEAD(search_list); 4223 struct netdev_upper *upper; 4224 struct netdev_upper *tmp; 4225 bool ret = false; 4226 4227 __append_search_uppers(&search_list, dev); 4228 list_for_each_entry(upper, &search_list, search_list) { 4229 if (upper->dev == upper_dev) { 4230 ret = true; 4231 break; 4232 } 4233 __append_search_uppers(&search_list, upper->dev); 4234 } 4235 list_for_each_entry_safe(upper, tmp, &search_list, search_list) 4236 INIT_LIST_HEAD(&upper->search_list); 4237 return ret; 4238 } 4239 4240 static struct netdev_upper *__netdev_find_upper(struct net_device *dev, 4241 struct net_device *upper_dev) 4242 { 4243 struct netdev_upper *upper; 4244 4245 list_for_each_entry(upper, &dev->upper_dev_list, list) { 4246 if (upper->dev == upper_dev) 4247 return upper; 4248 } 4249 return NULL; 4250 } 4251 4252 /** 4253 * netdev_has_upper_dev - Check if device is linked to an upper device 4254 * @dev: device 4255 * @upper_dev: upper device to check 4256 * 4257 * Find out if a device is linked to specified upper device and return true 4258 * in case it is. Note that this checks only immediate upper device, 4259 * not through a complete stack of devices. The caller must hold the RTNL lock. 4260 */ 4261 bool netdev_has_upper_dev(struct net_device *dev, 4262 struct net_device *upper_dev) 4263 { 4264 ASSERT_RTNL(); 4265 4266 return __netdev_find_upper(dev, upper_dev); 4267 } 4268 EXPORT_SYMBOL(netdev_has_upper_dev); 4269 4270 /** 4271 * netdev_has_any_upper_dev - Check if device is linked to some device 4272 * @dev: device 4273 * 4274 * Find out if a device is linked to an upper device and return true in case 4275 * it is. The caller must hold the RTNL lock. 4276 */ 4277 bool netdev_has_any_upper_dev(struct net_device *dev) 4278 { 4279 ASSERT_RTNL(); 4280 4281 return !list_empty(&dev->upper_dev_list); 4282 } 4283 EXPORT_SYMBOL(netdev_has_any_upper_dev); 4284 4285 /** 4286 * netdev_master_upper_dev_get - Get master upper device 4287 * @dev: device 4288 * 4289 * Find a master upper device and return pointer to it or NULL in case 4290 * it's not there. The caller must hold the RTNL lock. 4291 */ 4292 struct net_device *netdev_master_upper_dev_get(struct net_device *dev) 4293 { 4294 struct netdev_upper *upper; 4295 4296 ASSERT_RTNL(); 4297 4298 if (list_empty(&dev->upper_dev_list)) 4299 return NULL; 4300 4301 upper = list_first_entry(&dev->upper_dev_list, 4302 struct netdev_upper, list); 4303 if (likely(upper->master)) 4304 return upper->dev; 4305 return NULL; 4306 } 4307 EXPORT_SYMBOL(netdev_master_upper_dev_get); 4308 4309 /** 4310 * netdev_master_upper_dev_get_rcu - Get master upper device 4311 * @dev: device 4312 * 4313 * Find a master upper device and return pointer to it or NULL in case 4314 * it's not there. The caller must hold the RCU read lock. 4315 */ 4316 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev) 4317 { 4318 struct netdev_upper *upper; 4319 4320 upper = list_first_or_null_rcu(&dev->upper_dev_list, 4321 struct netdev_upper, list); 4322 if (upper && likely(upper->master)) 4323 return upper->dev; 4324 return NULL; 4325 } 4326 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu); 4327 4328 static int __netdev_upper_dev_link(struct net_device *dev, 4329 struct net_device *upper_dev, bool master) 4330 { 4331 struct netdev_upper *upper; 4332 4333 ASSERT_RTNL(); 4334 4335 if (dev == upper_dev) 4336 return -EBUSY; 4337 4338 /* To prevent loops, check if dev is not upper device to upper_dev. */ 4339 if (__netdev_search_upper_dev(upper_dev, dev)) 4340 return -EBUSY; 4341 4342 if (__netdev_find_upper(dev, upper_dev)) 4343 return -EEXIST; 4344 4345 if (master && netdev_master_upper_dev_get(dev)) 4346 return -EBUSY; 4347 4348 upper = kmalloc(sizeof(*upper), GFP_KERNEL); 4349 if (!upper) 4350 return -ENOMEM; 4351 4352 upper->dev = upper_dev; 4353 upper->master = master; 4354 INIT_LIST_HEAD(&upper->search_list); 4355 4356 /* Ensure that master upper link is always the first item in list. */ 4357 if (master) 4358 list_add_rcu(&upper->list, &dev->upper_dev_list); 4359 else 4360 list_add_tail_rcu(&upper->list, &dev->upper_dev_list); 4361 dev_hold(upper_dev); 4362 4363 return 0; 4364 } 4365 4366 /** 4367 * netdev_upper_dev_link - Add a link to the upper device 4368 * @dev: device 4369 * @upper_dev: new upper device 4370 * 4371 * Adds a link to device which is upper to this one. The caller must hold 4372 * the RTNL lock. On a failure a negative errno code is returned. 4373 * On success the reference counts are adjusted and the function 4374 * returns zero. 4375 */ 4376 int netdev_upper_dev_link(struct net_device *dev, 4377 struct net_device *upper_dev) 4378 { 4379 return __netdev_upper_dev_link(dev, upper_dev, false); 4380 } 4381 EXPORT_SYMBOL(netdev_upper_dev_link); 4382 4383 /** 4384 * netdev_master_upper_dev_link - Add a master link to the upper device 4385 * @dev: device 4386 * @upper_dev: new upper device 4387 * 4388 * Adds a link to device which is upper to this one. In this case, only 4389 * one master upper device can be linked, although other non-master devices 4390 * might be linked as well. The caller must hold the RTNL lock. 4391 * On a failure a negative errno code is returned. On success the reference 4392 * counts are adjusted and the function returns zero. 4393 */ 4394 int netdev_master_upper_dev_link(struct net_device *dev, 4395 struct net_device *upper_dev) 4396 { 4397 return __netdev_upper_dev_link(dev, upper_dev, true); 4398 } 4399 EXPORT_SYMBOL(netdev_master_upper_dev_link); 4400 4401 /** 4402 * netdev_upper_dev_unlink - Removes a link to upper device 4403 * @dev: device 4404 * @upper_dev: new upper device 4405 * 4406 * Removes a link to device which is upper to this one. The caller must hold 4407 * the RTNL lock. 4408 */ 4409 void netdev_upper_dev_unlink(struct net_device *dev, 4410 struct net_device *upper_dev) 4411 { 4412 struct netdev_upper *upper; 4413 4414 ASSERT_RTNL(); 4415 4416 upper = __netdev_find_upper(dev, upper_dev); 4417 if (!upper) 4418 return; 4419 list_del_rcu(&upper->list); 4420 dev_put(upper_dev); 4421 kfree_rcu(upper, rcu); 4422 } 4423 EXPORT_SYMBOL(netdev_upper_dev_unlink); 4424 4425 static void dev_change_rx_flags(struct net_device *dev, int flags) 4426 { 4427 const struct net_device_ops *ops = dev->netdev_ops; 4428 4429 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags) 4430 ops->ndo_change_rx_flags(dev, flags); 4431 } 4432 4433 static int __dev_set_promiscuity(struct net_device *dev, int inc) 4434 { 4435 unsigned int old_flags = dev->flags; 4436 kuid_t uid; 4437 kgid_t gid; 4438 4439 ASSERT_RTNL(); 4440 4441 dev->flags |= IFF_PROMISC; 4442 dev->promiscuity += inc; 4443 if (dev->promiscuity == 0) { 4444 /* 4445 * Avoid overflow. 4446 * If inc causes overflow, untouch promisc and return error. 4447 */ 4448 if (inc < 0) 4449 dev->flags &= ~IFF_PROMISC; 4450 else { 4451 dev->promiscuity -= inc; 4452 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n", 4453 dev->name); 4454 return -EOVERFLOW; 4455 } 4456 } 4457 if (dev->flags != old_flags) { 4458 pr_info("device %s %s promiscuous mode\n", 4459 dev->name, 4460 dev->flags & IFF_PROMISC ? "entered" : "left"); 4461 if (audit_enabled) { 4462 current_uid_gid(&uid, &gid); 4463 audit_log(current->audit_context, GFP_ATOMIC, 4464 AUDIT_ANOM_PROMISCUOUS, 4465 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 4466 dev->name, (dev->flags & IFF_PROMISC), 4467 (old_flags & IFF_PROMISC), 4468 from_kuid(&init_user_ns, audit_get_loginuid(current)), 4469 from_kuid(&init_user_ns, uid), 4470 from_kgid(&init_user_ns, gid), 4471 audit_get_sessionid(current)); 4472 } 4473 4474 dev_change_rx_flags(dev, IFF_PROMISC); 4475 } 4476 return 0; 4477 } 4478 4479 /** 4480 * dev_set_promiscuity - update promiscuity count on a device 4481 * @dev: device 4482 * @inc: modifier 4483 * 4484 * Add or remove promiscuity from a device. While the count in the device 4485 * remains above zero the interface remains promiscuous. Once it hits zero 4486 * the device reverts back to normal filtering operation. A negative inc 4487 * value is used to drop promiscuity on the device. 4488 * Return 0 if successful or a negative errno code on error. 4489 */ 4490 int dev_set_promiscuity(struct net_device *dev, int inc) 4491 { 4492 unsigned int old_flags = dev->flags; 4493 int err; 4494 4495 err = __dev_set_promiscuity(dev, inc); 4496 if (err < 0) 4497 return err; 4498 if (dev->flags != old_flags) 4499 dev_set_rx_mode(dev); 4500 return err; 4501 } 4502 EXPORT_SYMBOL(dev_set_promiscuity); 4503 4504 /** 4505 * dev_set_allmulti - update allmulti count on a device 4506 * @dev: device 4507 * @inc: modifier 4508 * 4509 * Add or remove reception of all multicast frames to a device. While the 4510 * count in the device remains above zero the interface remains listening 4511 * to all interfaces. Once it hits zero the device reverts back to normal 4512 * filtering operation. A negative @inc value is used to drop the counter 4513 * when releasing a resource needing all multicasts. 4514 * Return 0 if successful or a negative errno code on error. 4515 */ 4516 4517 int dev_set_allmulti(struct net_device *dev, int inc) 4518 { 4519 unsigned int old_flags = dev->flags; 4520 4521 ASSERT_RTNL(); 4522 4523 dev->flags |= IFF_ALLMULTI; 4524 dev->allmulti += inc; 4525 if (dev->allmulti == 0) { 4526 /* 4527 * Avoid overflow. 4528 * If inc causes overflow, untouch allmulti and return error. 4529 */ 4530 if (inc < 0) 4531 dev->flags &= ~IFF_ALLMULTI; 4532 else { 4533 dev->allmulti -= inc; 4534 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n", 4535 dev->name); 4536 return -EOVERFLOW; 4537 } 4538 } 4539 if (dev->flags ^ old_flags) { 4540 dev_change_rx_flags(dev, IFF_ALLMULTI); 4541 dev_set_rx_mode(dev); 4542 } 4543 return 0; 4544 } 4545 EXPORT_SYMBOL(dev_set_allmulti); 4546 4547 /* 4548 * Upload unicast and multicast address lists to device and 4549 * configure RX filtering. When the device doesn't support unicast 4550 * filtering it is put in promiscuous mode while unicast addresses 4551 * are present. 4552 */ 4553 void __dev_set_rx_mode(struct net_device *dev) 4554 { 4555 const struct net_device_ops *ops = dev->netdev_ops; 4556 4557 /* dev_open will call this function so the list will stay sane. */ 4558 if (!(dev->flags&IFF_UP)) 4559 return; 4560 4561 if (!netif_device_present(dev)) 4562 return; 4563 4564 if (!(dev->priv_flags & IFF_UNICAST_FLT)) { 4565 /* Unicast addresses changes may only happen under the rtnl, 4566 * therefore calling __dev_set_promiscuity here is safe. 4567 */ 4568 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 4569 __dev_set_promiscuity(dev, 1); 4570 dev->uc_promisc = true; 4571 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 4572 __dev_set_promiscuity(dev, -1); 4573 dev->uc_promisc = false; 4574 } 4575 } 4576 4577 if (ops->ndo_set_rx_mode) 4578 ops->ndo_set_rx_mode(dev); 4579 } 4580 4581 void dev_set_rx_mode(struct net_device *dev) 4582 { 4583 netif_addr_lock_bh(dev); 4584 __dev_set_rx_mode(dev); 4585 netif_addr_unlock_bh(dev); 4586 } 4587 4588 /** 4589 * dev_get_flags - get flags reported to userspace 4590 * @dev: device 4591 * 4592 * Get the combination of flag bits exported through APIs to userspace. 4593 */ 4594 unsigned int dev_get_flags(const struct net_device *dev) 4595 { 4596 unsigned int flags; 4597 4598 flags = (dev->flags & ~(IFF_PROMISC | 4599 IFF_ALLMULTI | 4600 IFF_RUNNING | 4601 IFF_LOWER_UP | 4602 IFF_DORMANT)) | 4603 (dev->gflags & (IFF_PROMISC | 4604 IFF_ALLMULTI)); 4605 4606 if (netif_running(dev)) { 4607 if (netif_oper_up(dev)) 4608 flags |= IFF_RUNNING; 4609 if (netif_carrier_ok(dev)) 4610 flags |= IFF_LOWER_UP; 4611 if (netif_dormant(dev)) 4612 flags |= IFF_DORMANT; 4613 } 4614 4615 return flags; 4616 } 4617 EXPORT_SYMBOL(dev_get_flags); 4618 4619 int __dev_change_flags(struct net_device *dev, unsigned int flags) 4620 { 4621 unsigned int old_flags = dev->flags; 4622 int ret; 4623 4624 ASSERT_RTNL(); 4625 4626 /* 4627 * Set the flags on our device. 4628 */ 4629 4630 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 4631 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 4632 IFF_AUTOMEDIA)) | 4633 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 4634 IFF_ALLMULTI)); 4635 4636 /* 4637 * Load in the correct multicast list now the flags have changed. 4638 */ 4639 4640 if ((old_flags ^ flags) & IFF_MULTICAST) 4641 dev_change_rx_flags(dev, IFF_MULTICAST); 4642 4643 dev_set_rx_mode(dev); 4644 4645 /* 4646 * Have we downed the interface. We handle IFF_UP ourselves 4647 * according to user attempts to set it, rather than blindly 4648 * setting it. 4649 */ 4650 4651 ret = 0; 4652 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */ 4653 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev); 4654 4655 if (!ret) 4656 dev_set_rx_mode(dev); 4657 } 4658 4659 if ((flags ^ dev->gflags) & IFF_PROMISC) { 4660 int inc = (flags & IFF_PROMISC) ? 1 : -1; 4661 4662 dev->gflags ^= IFF_PROMISC; 4663 dev_set_promiscuity(dev, inc); 4664 } 4665 4666 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 4667 is important. Some (broken) drivers set IFF_PROMISC, when 4668 IFF_ALLMULTI is requested not asking us and not reporting. 4669 */ 4670 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 4671 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 4672 4673 dev->gflags ^= IFF_ALLMULTI; 4674 dev_set_allmulti(dev, inc); 4675 } 4676 4677 return ret; 4678 } 4679 4680 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags) 4681 { 4682 unsigned int changes = dev->flags ^ old_flags; 4683 4684 if (changes & IFF_UP) { 4685 if (dev->flags & IFF_UP) 4686 call_netdevice_notifiers(NETDEV_UP, dev); 4687 else 4688 call_netdevice_notifiers(NETDEV_DOWN, dev); 4689 } 4690 4691 if (dev->flags & IFF_UP && 4692 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) 4693 call_netdevice_notifiers(NETDEV_CHANGE, dev); 4694 } 4695 4696 /** 4697 * dev_change_flags - change device settings 4698 * @dev: device 4699 * @flags: device state flags 4700 * 4701 * Change settings on device based state flags. The flags are 4702 * in the userspace exported format. 4703 */ 4704 int dev_change_flags(struct net_device *dev, unsigned int flags) 4705 { 4706 int ret; 4707 unsigned int changes, old_flags = dev->flags; 4708 4709 ret = __dev_change_flags(dev, flags); 4710 if (ret < 0) 4711 return ret; 4712 4713 changes = old_flags ^ dev->flags; 4714 if (changes) 4715 rtmsg_ifinfo(RTM_NEWLINK, dev, changes); 4716 4717 __dev_notify_flags(dev, old_flags); 4718 return ret; 4719 } 4720 EXPORT_SYMBOL(dev_change_flags); 4721 4722 /** 4723 * dev_set_mtu - Change maximum transfer unit 4724 * @dev: device 4725 * @new_mtu: new transfer unit 4726 * 4727 * Change the maximum transfer size of the network device. 4728 */ 4729 int dev_set_mtu(struct net_device *dev, int new_mtu) 4730 { 4731 const struct net_device_ops *ops = dev->netdev_ops; 4732 int err; 4733 4734 if (new_mtu == dev->mtu) 4735 return 0; 4736 4737 /* MTU must be positive. */ 4738 if (new_mtu < 0) 4739 return -EINVAL; 4740 4741 if (!netif_device_present(dev)) 4742 return -ENODEV; 4743 4744 err = 0; 4745 if (ops->ndo_change_mtu) 4746 err = ops->ndo_change_mtu(dev, new_mtu); 4747 else 4748 dev->mtu = new_mtu; 4749 4750 if (!err) 4751 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 4752 return err; 4753 } 4754 EXPORT_SYMBOL(dev_set_mtu); 4755 4756 /** 4757 * dev_set_group - Change group this device belongs to 4758 * @dev: device 4759 * @new_group: group this device should belong to 4760 */ 4761 void dev_set_group(struct net_device *dev, int new_group) 4762 { 4763 dev->group = new_group; 4764 } 4765 EXPORT_SYMBOL(dev_set_group); 4766 4767 /** 4768 * dev_set_mac_address - Change Media Access Control Address 4769 * @dev: device 4770 * @sa: new address 4771 * 4772 * Change the hardware (MAC) address of the device 4773 */ 4774 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa) 4775 { 4776 const struct net_device_ops *ops = dev->netdev_ops; 4777 int err; 4778 4779 if (!ops->ndo_set_mac_address) 4780 return -EOPNOTSUPP; 4781 if (sa->sa_family != dev->type) 4782 return -EINVAL; 4783 if (!netif_device_present(dev)) 4784 return -ENODEV; 4785 err = ops->ndo_set_mac_address(dev, sa); 4786 if (err) 4787 return err; 4788 dev->addr_assign_type = NET_ADDR_SET; 4789 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 4790 add_device_randomness(dev->dev_addr, dev->addr_len); 4791 return 0; 4792 } 4793 EXPORT_SYMBOL(dev_set_mac_address); 4794 4795 /** 4796 * dev_change_carrier - Change device carrier 4797 * @dev: device 4798 * @new_carrier: new value 4799 * 4800 * Change device carrier 4801 */ 4802 int dev_change_carrier(struct net_device *dev, bool new_carrier) 4803 { 4804 const struct net_device_ops *ops = dev->netdev_ops; 4805 4806 if (!ops->ndo_change_carrier) 4807 return -EOPNOTSUPP; 4808 if (!netif_device_present(dev)) 4809 return -ENODEV; 4810 return ops->ndo_change_carrier(dev, new_carrier); 4811 } 4812 EXPORT_SYMBOL(dev_change_carrier); 4813 4814 /** 4815 * dev_new_index - allocate an ifindex 4816 * @net: the applicable net namespace 4817 * 4818 * Returns a suitable unique value for a new device interface 4819 * number. The caller must hold the rtnl semaphore or the 4820 * dev_base_lock to be sure it remains unique. 4821 */ 4822 static int dev_new_index(struct net *net) 4823 { 4824 int ifindex = net->ifindex; 4825 for (;;) { 4826 if (++ifindex <= 0) 4827 ifindex = 1; 4828 if (!__dev_get_by_index(net, ifindex)) 4829 return net->ifindex = ifindex; 4830 } 4831 } 4832 4833 /* Delayed registration/unregisteration */ 4834 static LIST_HEAD(net_todo_list); 4835 4836 static void net_set_todo(struct net_device *dev) 4837 { 4838 list_add_tail(&dev->todo_list, &net_todo_list); 4839 } 4840 4841 static void rollback_registered_many(struct list_head *head) 4842 { 4843 struct net_device *dev, *tmp; 4844 4845 BUG_ON(dev_boot_phase); 4846 ASSERT_RTNL(); 4847 4848 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 4849 /* Some devices call without registering 4850 * for initialization unwind. Remove those 4851 * devices and proceed with the remaining. 4852 */ 4853 if (dev->reg_state == NETREG_UNINITIALIZED) { 4854 pr_debug("unregister_netdevice: device %s/%p never was registered\n", 4855 dev->name, dev); 4856 4857 WARN_ON(1); 4858 list_del(&dev->unreg_list); 4859 continue; 4860 } 4861 dev->dismantle = true; 4862 BUG_ON(dev->reg_state != NETREG_REGISTERED); 4863 } 4864 4865 /* If device is running, close it first. */ 4866 dev_close_many(head); 4867 4868 list_for_each_entry(dev, head, unreg_list) { 4869 /* And unlink it from device chain. */ 4870 unlist_netdevice(dev); 4871 4872 dev->reg_state = NETREG_UNREGISTERING; 4873 } 4874 4875 synchronize_net(); 4876 4877 list_for_each_entry(dev, head, unreg_list) { 4878 /* Shutdown queueing discipline. */ 4879 dev_shutdown(dev); 4880 4881 4882 /* Notify protocols, that we are about to destroy 4883 this device. They should clean all the things. 4884 */ 4885 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 4886 4887 if (!dev->rtnl_link_ops || 4888 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 4889 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U); 4890 4891 /* 4892 * Flush the unicast and multicast chains 4893 */ 4894 dev_uc_flush(dev); 4895 dev_mc_flush(dev); 4896 4897 if (dev->netdev_ops->ndo_uninit) 4898 dev->netdev_ops->ndo_uninit(dev); 4899 4900 /* Notifier chain MUST detach us all upper devices. */ 4901 WARN_ON(netdev_has_any_upper_dev(dev)); 4902 4903 /* Remove entries from kobject tree */ 4904 netdev_unregister_kobject(dev); 4905 #ifdef CONFIG_XPS 4906 /* Remove XPS queueing entries */ 4907 netif_reset_xps_queues_gt(dev, 0); 4908 #endif 4909 } 4910 4911 synchronize_net(); 4912 4913 list_for_each_entry(dev, head, unreg_list) 4914 dev_put(dev); 4915 } 4916 4917 static void rollback_registered(struct net_device *dev) 4918 { 4919 LIST_HEAD(single); 4920 4921 list_add(&dev->unreg_list, &single); 4922 rollback_registered_many(&single); 4923 list_del(&single); 4924 } 4925 4926 static netdev_features_t netdev_fix_features(struct net_device *dev, 4927 netdev_features_t features) 4928 { 4929 /* Fix illegal checksum combinations */ 4930 if ((features & NETIF_F_HW_CSUM) && 4931 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 4932 netdev_warn(dev, "mixed HW and IP checksum settings.\n"); 4933 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 4934 } 4935 4936 /* TSO requires that SG is present as well. */ 4937 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { 4938 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); 4939 features &= ~NETIF_F_ALL_TSO; 4940 } 4941 4942 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) && 4943 !(features & NETIF_F_IP_CSUM)) { 4944 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n"); 4945 features &= ~NETIF_F_TSO; 4946 features &= ~NETIF_F_TSO_ECN; 4947 } 4948 4949 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) && 4950 !(features & NETIF_F_IPV6_CSUM)) { 4951 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n"); 4952 features &= ~NETIF_F_TSO6; 4953 } 4954 4955 /* TSO ECN requires that TSO is present as well. */ 4956 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) 4957 features &= ~NETIF_F_TSO_ECN; 4958 4959 /* Software GSO depends on SG. */ 4960 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 4961 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 4962 features &= ~NETIF_F_GSO; 4963 } 4964 4965 /* UFO needs SG and checksumming */ 4966 if (features & NETIF_F_UFO) { 4967 /* maybe split UFO into V4 and V6? */ 4968 if (!((features & NETIF_F_GEN_CSUM) || 4969 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM)) 4970 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 4971 netdev_dbg(dev, 4972 "Dropping NETIF_F_UFO since no checksum offload features.\n"); 4973 features &= ~NETIF_F_UFO; 4974 } 4975 4976 if (!(features & NETIF_F_SG)) { 4977 netdev_dbg(dev, 4978 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n"); 4979 features &= ~NETIF_F_UFO; 4980 } 4981 } 4982 4983 return features; 4984 } 4985 4986 int __netdev_update_features(struct net_device *dev) 4987 { 4988 netdev_features_t features; 4989 int err = 0; 4990 4991 ASSERT_RTNL(); 4992 4993 features = netdev_get_wanted_features(dev); 4994 4995 if (dev->netdev_ops->ndo_fix_features) 4996 features = dev->netdev_ops->ndo_fix_features(dev, features); 4997 4998 /* driver might be less strict about feature dependencies */ 4999 features = netdev_fix_features(dev, features); 5000 5001 if (dev->features == features) 5002 return 0; 5003 5004 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n", 5005 &dev->features, &features); 5006 5007 if (dev->netdev_ops->ndo_set_features) 5008 err = dev->netdev_ops->ndo_set_features(dev, features); 5009 5010 if (unlikely(err < 0)) { 5011 netdev_err(dev, 5012 "set_features() failed (%d); wanted %pNF, left %pNF\n", 5013 err, &features, &dev->features); 5014 return -1; 5015 } 5016 5017 if (!err) 5018 dev->features = features; 5019 5020 return 1; 5021 } 5022 5023 /** 5024 * netdev_update_features - recalculate device features 5025 * @dev: the device to check 5026 * 5027 * Recalculate dev->features set and send notifications if it 5028 * has changed. Should be called after driver or hardware dependent 5029 * conditions might have changed that influence the features. 5030 */ 5031 void netdev_update_features(struct net_device *dev) 5032 { 5033 if (__netdev_update_features(dev)) 5034 netdev_features_change(dev); 5035 } 5036 EXPORT_SYMBOL(netdev_update_features); 5037 5038 /** 5039 * netdev_change_features - recalculate device features 5040 * @dev: the device to check 5041 * 5042 * Recalculate dev->features set and send notifications even 5043 * if they have not changed. Should be called instead of 5044 * netdev_update_features() if also dev->vlan_features might 5045 * have changed to allow the changes to be propagated to stacked 5046 * VLAN devices. 5047 */ 5048 void netdev_change_features(struct net_device *dev) 5049 { 5050 __netdev_update_features(dev); 5051 netdev_features_change(dev); 5052 } 5053 EXPORT_SYMBOL(netdev_change_features); 5054 5055 /** 5056 * netif_stacked_transfer_operstate - transfer operstate 5057 * @rootdev: the root or lower level device to transfer state from 5058 * @dev: the device to transfer operstate to 5059 * 5060 * Transfer operational state from root to device. This is normally 5061 * called when a stacking relationship exists between the root 5062 * device and the device(a leaf device). 5063 */ 5064 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 5065 struct net_device *dev) 5066 { 5067 if (rootdev->operstate == IF_OPER_DORMANT) 5068 netif_dormant_on(dev); 5069 else 5070 netif_dormant_off(dev); 5071 5072 if (netif_carrier_ok(rootdev)) { 5073 if (!netif_carrier_ok(dev)) 5074 netif_carrier_on(dev); 5075 } else { 5076 if (netif_carrier_ok(dev)) 5077 netif_carrier_off(dev); 5078 } 5079 } 5080 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 5081 5082 #ifdef CONFIG_RPS 5083 static int netif_alloc_rx_queues(struct net_device *dev) 5084 { 5085 unsigned int i, count = dev->num_rx_queues; 5086 struct netdev_rx_queue *rx; 5087 5088 BUG_ON(count < 1); 5089 5090 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL); 5091 if (!rx) 5092 return -ENOMEM; 5093 5094 dev->_rx = rx; 5095 5096 for (i = 0; i < count; i++) 5097 rx[i].dev = dev; 5098 return 0; 5099 } 5100 #endif 5101 5102 static void netdev_init_one_queue(struct net_device *dev, 5103 struct netdev_queue *queue, void *_unused) 5104 { 5105 /* Initialize queue lock */ 5106 spin_lock_init(&queue->_xmit_lock); 5107 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); 5108 queue->xmit_lock_owner = -1; 5109 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 5110 queue->dev = dev; 5111 #ifdef CONFIG_BQL 5112 dql_init(&queue->dql, HZ); 5113 #endif 5114 } 5115 5116 static int netif_alloc_netdev_queues(struct net_device *dev) 5117 { 5118 unsigned int count = dev->num_tx_queues; 5119 struct netdev_queue *tx; 5120 5121 BUG_ON(count < 1); 5122 5123 tx = kcalloc(count, sizeof(struct netdev_queue), GFP_KERNEL); 5124 if (!tx) 5125 return -ENOMEM; 5126 5127 dev->_tx = tx; 5128 5129 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 5130 spin_lock_init(&dev->tx_global_lock); 5131 5132 return 0; 5133 } 5134 5135 /** 5136 * register_netdevice - register a network device 5137 * @dev: device to register 5138 * 5139 * Take a completed network device structure and add it to the kernel 5140 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 5141 * chain. 0 is returned on success. A negative errno code is returned 5142 * on a failure to set up the device, or if the name is a duplicate. 5143 * 5144 * Callers must hold the rtnl semaphore. You may want 5145 * register_netdev() instead of this. 5146 * 5147 * BUGS: 5148 * The locking appears insufficient to guarantee two parallel registers 5149 * will not get the same name. 5150 */ 5151 5152 int register_netdevice(struct net_device *dev) 5153 { 5154 int ret; 5155 struct net *net = dev_net(dev); 5156 5157 BUG_ON(dev_boot_phase); 5158 ASSERT_RTNL(); 5159 5160 might_sleep(); 5161 5162 /* When net_device's are persistent, this will be fatal. */ 5163 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 5164 BUG_ON(!net); 5165 5166 spin_lock_init(&dev->addr_list_lock); 5167 netdev_set_addr_lockdep_class(dev); 5168 5169 dev->iflink = -1; 5170 5171 ret = dev_get_valid_name(net, dev, dev->name); 5172 if (ret < 0) 5173 goto out; 5174 5175 /* Init, if this function is available */ 5176 if (dev->netdev_ops->ndo_init) { 5177 ret = dev->netdev_ops->ndo_init(dev); 5178 if (ret) { 5179 if (ret > 0) 5180 ret = -EIO; 5181 goto out; 5182 } 5183 } 5184 5185 if (((dev->hw_features | dev->features) & 5186 NETIF_F_HW_VLAN_CTAG_FILTER) && 5187 (!dev->netdev_ops->ndo_vlan_rx_add_vid || 5188 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) { 5189 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n"); 5190 ret = -EINVAL; 5191 goto err_uninit; 5192 } 5193 5194 ret = -EBUSY; 5195 if (!dev->ifindex) 5196 dev->ifindex = dev_new_index(net); 5197 else if (__dev_get_by_index(net, dev->ifindex)) 5198 goto err_uninit; 5199 5200 if (dev->iflink == -1) 5201 dev->iflink = dev->ifindex; 5202 5203 /* Transfer changeable features to wanted_features and enable 5204 * software offloads (GSO and GRO). 5205 */ 5206 dev->hw_features |= NETIF_F_SOFT_FEATURES; 5207 dev->features |= NETIF_F_SOFT_FEATURES; 5208 dev->wanted_features = dev->features & dev->hw_features; 5209 5210 /* Turn on no cache copy if HW is doing checksum */ 5211 if (!(dev->flags & IFF_LOOPBACK)) { 5212 dev->hw_features |= NETIF_F_NOCACHE_COPY; 5213 if (dev->features & NETIF_F_ALL_CSUM) { 5214 dev->wanted_features |= NETIF_F_NOCACHE_COPY; 5215 dev->features |= NETIF_F_NOCACHE_COPY; 5216 } 5217 } 5218 5219 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. 5220 */ 5221 dev->vlan_features |= NETIF_F_HIGHDMA; 5222 5223 /* Make NETIF_F_SG inheritable to tunnel devices. 5224 */ 5225 dev->hw_enc_features |= NETIF_F_SG; 5226 5227 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 5228 ret = notifier_to_errno(ret); 5229 if (ret) 5230 goto err_uninit; 5231 5232 ret = netdev_register_kobject(dev); 5233 if (ret) 5234 goto err_uninit; 5235 dev->reg_state = NETREG_REGISTERED; 5236 5237 __netdev_update_features(dev); 5238 5239 /* 5240 * Default initial state at registry is that the 5241 * device is present. 5242 */ 5243 5244 set_bit(__LINK_STATE_PRESENT, &dev->state); 5245 5246 linkwatch_init_dev(dev); 5247 5248 dev_init_scheduler(dev); 5249 dev_hold(dev); 5250 list_netdevice(dev); 5251 add_device_randomness(dev->dev_addr, dev->addr_len); 5252 5253 /* If the device has permanent device address, driver should 5254 * set dev_addr and also addr_assign_type should be set to 5255 * NET_ADDR_PERM (default value). 5256 */ 5257 if (dev->addr_assign_type == NET_ADDR_PERM) 5258 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); 5259 5260 /* Notify protocols, that a new device appeared. */ 5261 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 5262 ret = notifier_to_errno(ret); 5263 if (ret) { 5264 rollback_registered(dev); 5265 dev->reg_state = NETREG_UNREGISTERED; 5266 } 5267 /* 5268 * Prevent userspace races by waiting until the network 5269 * device is fully setup before sending notifications. 5270 */ 5271 if (!dev->rtnl_link_ops || 5272 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 5273 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U); 5274 5275 out: 5276 return ret; 5277 5278 err_uninit: 5279 if (dev->netdev_ops->ndo_uninit) 5280 dev->netdev_ops->ndo_uninit(dev); 5281 goto out; 5282 } 5283 EXPORT_SYMBOL(register_netdevice); 5284 5285 /** 5286 * init_dummy_netdev - init a dummy network device for NAPI 5287 * @dev: device to init 5288 * 5289 * This takes a network device structure and initialize the minimum 5290 * amount of fields so it can be used to schedule NAPI polls without 5291 * registering a full blown interface. This is to be used by drivers 5292 * that need to tie several hardware interfaces to a single NAPI 5293 * poll scheduler due to HW limitations. 5294 */ 5295 int init_dummy_netdev(struct net_device *dev) 5296 { 5297 /* Clear everything. Note we don't initialize spinlocks 5298 * are they aren't supposed to be taken by any of the 5299 * NAPI code and this dummy netdev is supposed to be 5300 * only ever used for NAPI polls 5301 */ 5302 memset(dev, 0, sizeof(struct net_device)); 5303 5304 /* make sure we BUG if trying to hit standard 5305 * register/unregister code path 5306 */ 5307 dev->reg_state = NETREG_DUMMY; 5308 5309 /* NAPI wants this */ 5310 INIT_LIST_HEAD(&dev->napi_list); 5311 5312 /* a dummy interface is started by default */ 5313 set_bit(__LINK_STATE_PRESENT, &dev->state); 5314 set_bit(__LINK_STATE_START, &dev->state); 5315 5316 /* Note : We dont allocate pcpu_refcnt for dummy devices, 5317 * because users of this 'device' dont need to change 5318 * its refcount. 5319 */ 5320 5321 return 0; 5322 } 5323 EXPORT_SYMBOL_GPL(init_dummy_netdev); 5324 5325 5326 /** 5327 * register_netdev - register a network device 5328 * @dev: device to register 5329 * 5330 * Take a completed network device structure and add it to the kernel 5331 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 5332 * chain. 0 is returned on success. A negative errno code is returned 5333 * on a failure to set up the device, or if the name is a duplicate. 5334 * 5335 * This is a wrapper around register_netdevice that takes the rtnl semaphore 5336 * and expands the device name if you passed a format string to 5337 * alloc_netdev. 5338 */ 5339 int register_netdev(struct net_device *dev) 5340 { 5341 int err; 5342 5343 rtnl_lock(); 5344 err = register_netdevice(dev); 5345 rtnl_unlock(); 5346 return err; 5347 } 5348 EXPORT_SYMBOL(register_netdev); 5349 5350 int netdev_refcnt_read(const struct net_device *dev) 5351 { 5352 int i, refcnt = 0; 5353 5354 for_each_possible_cpu(i) 5355 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 5356 return refcnt; 5357 } 5358 EXPORT_SYMBOL(netdev_refcnt_read); 5359 5360 /** 5361 * netdev_wait_allrefs - wait until all references are gone. 5362 * @dev: target net_device 5363 * 5364 * This is called when unregistering network devices. 5365 * 5366 * Any protocol or device that holds a reference should register 5367 * for netdevice notification, and cleanup and put back the 5368 * reference if they receive an UNREGISTER event. 5369 * We can get stuck here if buggy protocols don't correctly 5370 * call dev_put. 5371 */ 5372 static void netdev_wait_allrefs(struct net_device *dev) 5373 { 5374 unsigned long rebroadcast_time, warning_time; 5375 int refcnt; 5376 5377 linkwatch_forget_dev(dev); 5378 5379 rebroadcast_time = warning_time = jiffies; 5380 refcnt = netdev_refcnt_read(dev); 5381 5382 while (refcnt != 0) { 5383 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 5384 rtnl_lock(); 5385 5386 /* Rebroadcast unregister notification */ 5387 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 5388 5389 __rtnl_unlock(); 5390 rcu_barrier(); 5391 rtnl_lock(); 5392 5393 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 5394 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 5395 &dev->state)) { 5396 /* We must not have linkwatch events 5397 * pending on unregister. If this 5398 * happens, we simply run the queue 5399 * unscheduled, resulting in a noop 5400 * for this device. 5401 */ 5402 linkwatch_run_queue(); 5403 } 5404 5405 __rtnl_unlock(); 5406 5407 rebroadcast_time = jiffies; 5408 } 5409 5410 msleep(250); 5411 5412 refcnt = netdev_refcnt_read(dev); 5413 5414 if (time_after(jiffies, warning_time + 10 * HZ)) { 5415 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n", 5416 dev->name, refcnt); 5417 warning_time = jiffies; 5418 } 5419 } 5420 } 5421 5422 /* The sequence is: 5423 * 5424 * rtnl_lock(); 5425 * ... 5426 * register_netdevice(x1); 5427 * register_netdevice(x2); 5428 * ... 5429 * unregister_netdevice(y1); 5430 * unregister_netdevice(y2); 5431 * ... 5432 * rtnl_unlock(); 5433 * free_netdev(y1); 5434 * free_netdev(y2); 5435 * 5436 * We are invoked by rtnl_unlock(). 5437 * This allows us to deal with problems: 5438 * 1) We can delete sysfs objects which invoke hotplug 5439 * without deadlocking with linkwatch via keventd. 5440 * 2) Since we run with the RTNL semaphore not held, we can sleep 5441 * safely in order to wait for the netdev refcnt to drop to zero. 5442 * 5443 * We must not return until all unregister events added during 5444 * the interval the lock was held have been completed. 5445 */ 5446 void netdev_run_todo(void) 5447 { 5448 struct list_head list; 5449 5450 /* Snapshot list, allow later requests */ 5451 list_replace_init(&net_todo_list, &list); 5452 5453 __rtnl_unlock(); 5454 5455 5456 /* Wait for rcu callbacks to finish before next phase */ 5457 if (!list_empty(&list)) 5458 rcu_barrier(); 5459 5460 while (!list_empty(&list)) { 5461 struct net_device *dev 5462 = list_first_entry(&list, struct net_device, todo_list); 5463 list_del(&dev->todo_list); 5464 5465 rtnl_lock(); 5466 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 5467 __rtnl_unlock(); 5468 5469 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 5470 pr_err("network todo '%s' but state %d\n", 5471 dev->name, dev->reg_state); 5472 dump_stack(); 5473 continue; 5474 } 5475 5476 dev->reg_state = NETREG_UNREGISTERED; 5477 5478 on_each_cpu(flush_backlog, dev, 1); 5479 5480 netdev_wait_allrefs(dev); 5481 5482 /* paranoia */ 5483 BUG_ON(netdev_refcnt_read(dev)); 5484 WARN_ON(rcu_access_pointer(dev->ip_ptr)); 5485 WARN_ON(rcu_access_pointer(dev->ip6_ptr)); 5486 WARN_ON(dev->dn_ptr); 5487 5488 if (dev->destructor) 5489 dev->destructor(dev); 5490 5491 /* Free network device */ 5492 kobject_put(&dev->dev.kobj); 5493 } 5494 } 5495 5496 /* Convert net_device_stats to rtnl_link_stats64. They have the same 5497 * fields in the same order, with only the type differing. 5498 */ 5499 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 5500 const struct net_device_stats *netdev_stats) 5501 { 5502 #if BITS_PER_LONG == 64 5503 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats)); 5504 memcpy(stats64, netdev_stats, sizeof(*stats64)); 5505 #else 5506 size_t i, n = sizeof(*stats64) / sizeof(u64); 5507 const unsigned long *src = (const unsigned long *)netdev_stats; 5508 u64 *dst = (u64 *)stats64; 5509 5510 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) != 5511 sizeof(*stats64) / sizeof(u64)); 5512 for (i = 0; i < n; i++) 5513 dst[i] = src[i]; 5514 #endif 5515 } 5516 EXPORT_SYMBOL(netdev_stats_to_stats64); 5517 5518 /** 5519 * dev_get_stats - get network device statistics 5520 * @dev: device to get statistics from 5521 * @storage: place to store stats 5522 * 5523 * Get network statistics from device. Return @storage. 5524 * The device driver may provide its own method by setting 5525 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 5526 * otherwise the internal statistics structure is used. 5527 */ 5528 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 5529 struct rtnl_link_stats64 *storage) 5530 { 5531 const struct net_device_ops *ops = dev->netdev_ops; 5532 5533 if (ops->ndo_get_stats64) { 5534 memset(storage, 0, sizeof(*storage)); 5535 ops->ndo_get_stats64(dev, storage); 5536 } else if (ops->ndo_get_stats) { 5537 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 5538 } else { 5539 netdev_stats_to_stats64(storage, &dev->stats); 5540 } 5541 storage->rx_dropped += atomic_long_read(&dev->rx_dropped); 5542 return storage; 5543 } 5544 EXPORT_SYMBOL(dev_get_stats); 5545 5546 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 5547 { 5548 struct netdev_queue *queue = dev_ingress_queue(dev); 5549 5550 #ifdef CONFIG_NET_CLS_ACT 5551 if (queue) 5552 return queue; 5553 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 5554 if (!queue) 5555 return NULL; 5556 netdev_init_one_queue(dev, queue, NULL); 5557 queue->qdisc = &noop_qdisc; 5558 queue->qdisc_sleeping = &noop_qdisc; 5559 rcu_assign_pointer(dev->ingress_queue, queue); 5560 #endif 5561 return queue; 5562 } 5563 5564 static const struct ethtool_ops default_ethtool_ops; 5565 5566 void netdev_set_default_ethtool_ops(struct net_device *dev, 5567 const struct ethtool_ops *ops) 5568 { 5569 if (dev->ethtool_ops == &default_ethtool_ops) 5570 dev->ethtool_ops = ops; 5571 } 5572 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops); 5573 5574 /** 5575 * alloc_netdev_mqs - allocate network device 5576 * @sizeof_priv: size of private data to allocate space for 5577 * @name: device name format string 5578 * @setup: callback to initialize device 5579 * @txqs: the number of TX subqueues to allocate 5580 * @rxqs: the number of RX subqueues to allocate 5581 * 5582 * Allocates a struct net_device with private data area for driver use 5583 * and performs basic initialization. Also allocates subquue structs 5584 * for each queue on the device. 5585 */ 5586 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 5587 void (*setup)(struct net_device *), 5588 unsigned int txqs, unsigned int rxqs) 5589 { 5590 struct net_device *dev; 5591 size_t alloc_size; 5592 struct net_device *p; 5593 5594 BUG_ON(strlen(name) >= sizeof(dev->name)); 5595 5596 if (txqs < 1) { 5597 pr_err("alloc_netdev: Unable to allocate device with zero queues\n"); 5598 return NULL; 5599 } 5600 5601 #ifdef CONFIG_RPS 5602 if (rxqs < 1) { 5603 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n"); 5604 return NULL; 5605 } 5606 #endif 5607 5608 alloc_size = sizeof(struct net_device); 5609 if (sizeof_priv) { 5610 /* ensure 32-byte alignment of private area */ 5611 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); 5612 alloc_size += sizeof_priv; 5613 } 5614 /* ensure 32-byte alignment of whole construct */ 5615 alloc_size += NETDEV_ALIGN - 1; 5616 5617 p = kzalloc(alloc_size, GFP_KERNEL); 5618 if (!p) 5619 return NULL; 5620 5621 dev = PTR_ALIGN(p, NETDEV_ALIGN); 5622 dev->padded = (char *)dev - (char *)p; 5623 5624 dev->pcpu_refcnt = alloc_percpu(int); 5625 if (!dev->pcpu_refcnt) 5626 goto free_p; 5627 5628 if (dev_addr_init(dev)) 5629 goto free_pcpu; 5630 5631 dev_mc_init(dev); 5632 dev_uc_init(dev); 5633 5634 dev_net_set(dev, &init_net); 5635 5636 dev->gso_max_size = GSO_MAX_SIZE; 5637 dev->gso_max_segs = GSO_MAX_SEGS; 5638 5639 INIT_LIST_HEAD(&dev->napi_list); 5640 INIT_LIST_HEAD(&dev->unreg_list); 5641 INIT_LIST_HEAD(&dev->link_watch_list); 5642 INIT_LIST_HEAD(&dev->upper_dev_list); 5643 dev->priv_flags = IFF_XMIT_DST_RELEASE; 5644 setup(dev); 5645 5646 dev->num_tx_queues = txqs; 5647 dev->real_num_tx_queues = txqs; 5648 if (netif_alloc_netdev_queues(dev)) 5649 goto free_all; 5650 5651 #ifdef CONFIG_RPS 5652 dev->num_rx_queues = rxqs; 5653 dev->real_num_rx_queues = rxqs; 5654 if (netif_alloc_rx_queues(dev)) 5655 goto free_all; 5656 #endif 5657 5658 strcpy(dev->name, name); 5659 dev->group = INIT_NETDEV_GROUP; 5660 if (!dev->ethtool_ops) 5661 dev->ethtool_ops = &default_ethtool_ops; 5662 return dev; 5663 5664 free_all: 5665 free_netdev(dev); 5666 return NULL; 5667 5668 free_pcpu: 5669 free_percpu(dev->pcpu_refcnt); 5670 kfree(dev->_tx); 5671 #ifdef CONFIG_RPS 5672 kfree(dev->_rx); 5673 #endif 5674 5675 free_p: 5676 kfree(p); 5677 return NULL; 5678 } 5679 EXPORT_SYMBOL(alloc_netdev_mqs); 5680 5681 /** 5682 * free_netdev - free network device 5683 * @dev: device 5684 * 5685 * This function does the last stage of destroying an allocated device 5686 * interface. The reference to the device object is released. 5687 * If this is the last reference then it will be freed. 5688 */ 5689 void free_netdev(struct net_device *dev) 5690 { 5691 struct napi_struct *p, *n; 5692 5693 release_net(dev_net(dev)); 5694 5695 kfree(dev->_tx); 5696 #ifdef CONFIG_RPS 5697 kfree(dev->_rx); 5698 #endif 5699 5700 kfree(rcu_dereference_protected(dev->ingress_queue, 1)); 5701 5702 /* Flush device addresses */ 5703 dev_addr_flush(dev); 5704 5705 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 5706 netif_napi_del(p); 5707 5708 free_percpu(dev->pcpu_refcnt); 5709 dev->pcpu_refcnt = NULL; 5710 5711 /* Compatibility with error handling in drivers */ 5712 if (dev->reg_state == NETREG_UNINITIALIZED) { 5713 kfree((char *)dev - dev->padded); 5714 return; 5715 } 5716 5717 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 5718 dev->reg_state = NETREG_RELEASED; 5719 5720 /* will free via device release */ 5721 put_device(&dev->dev); 5722 } 5723 EXPORT_SYMBOL(free_netdev); 5724 5725 /** 5726 * synchronize_net - Synchronize with packet receive processing 5727 * 5728 * Wait for packets currently being received to be done. 5729 * Does not block later packets from starting. 5730 */ 5731 void synchronize_net(void) 5732 { 5733 might_sleep(); 5734 if (rtnl_is_locked()) 5735 synchronize_rcu_expedited(); 5736 else 5737 synchronize_rcu(); 5738 } 5739 EXPORT_SYMBOL(synchronize_net); 5740 5741 /** 5742 * unregister_netdevice_queue - remove device from the kernel 5743 * @dev: device 5744 * @head: list 5745 * 5746 * This function shuts down a device interface and removes it 5747 * from the kernel tables. 5748 * If head not NULL, device is queued to be unregistered later. 5749 * 5750 * Callers must hold the rtnl semaphore. You may want 5751 * unregister_netdev() instead of this. 5752 */ 5753 5754 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 5755 { 5756 ASSERT_RTNL(); 5757 5758 if (head) { 5759 list_move_tail(&dev->unreg_list, head); 5760 } else { 5761 rollback_registered(dev); 5762 /* Finish processing unregister after unlock */ 5763 net_set_todo(dev); 5764 } 5765 } 5766 EXPORT_SYMBOL(unregister_netdevice_queue); 5767 5768 /** 5769 * unregister_netdevice_many - unregister many devices 5770 * @head: list of devices 5771 */ 5772 void unregister_netdevice_many(struct list_head *head) 5773 { 5774 struct net_device *dev; 5775 5776 if (!list_empty(head)) { 5777 rollback_registered_many(head); 5778 list_for_each_entry(dev, head, unreg_list) 5779 net_set_todo(dev); 5780 } 5781 } 5782 EXPORT_SYMBOL(unregister_netdevice_many); 5783 5784 /** 5785 * unregister_netdev - remove device from the kernel 5786 * @dev: device 5787 * 5788 * This function shuts down a device interface and removes it 5789 * from the kernel tables. 5790 * 5791 * This is just a wrapper for unregister_netdevice that takes 5792 * the rtnl semaphore. In general you want to use this and not 5793 * unregister_netdevice. 5794 */ 5795 void unregister_netdev(struct net_device *dev) 5796 { 5797 rtnl_lock(); 5798 unregister_netdevice(dev); 5799 rtnl_unlock(); 5800 } 5801 EXPORT_SYMBOL(unregister_netdev); 5802 5803 /** 5804 * dev_change_net_namespace - move device to different nethost namespace 5805 * @dev: device 5806 * @net: network namespace 5807 * @pat: If not NULL name pattern to try if the current device name 5808 * is already taken in the destination network namespace. 5809 * 5810 * This function shuts down a device interface and moves it 5811 * to a new network namespace. On success 0 is returned, on 5812 * a failure a netagive errno code is returned. 5813 * 5814 * Callers must hold the rtnl semaphore. 5815 */ 5816 5817 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 5818 { 5819 int err; 5820 5821 ASSERT_RTNL(); 5822 5823 /* Don't allow namespace local devices to be moved. */ 5824 err = -EINVAL; 5825 if (dev->features & NETIF_F_NETNS_LOCAL) 5826 goto out; 5827 5828 /* Ensure the device has been registrered */ 5829 if (dev->reg_state != NETREG_REGISTERED) 5830 goto out; 5831 5832 /* Get out if there is nothing todo */ 5833 err = 0; 5834 if (net_eq(dev_net(dev), net)) 5835 goto out; 5836 5837 /* Pick the destination device name, and ensure 5838 * we can use it in the destination network namespace. 5839 */ 5840 err = -EEXIST; 5841 if (__dev_get_by_name(net, dev->name)) { 5842 /* We get here if we can't use the current device name */ 5843 if (!pat) 5844 goto out; 5845 if (dev_get_valid_name(net, dev, pat) < 0) 5846 goto out; 5847 } 5848 5849 /* 5850 * And now a mini version of register_netdevice unregister_netdevice. 5851 */ 5852 5853 /* If device is running close it first. */ 5854 dev_close(dev); 5855 5856 /* And unlink it from device chain */ 5857 err = -ENODEV; 5858 unlist_netdevice(dev); 5859 5860 synchronize_net(); 5861 5862 /* Shutdown queueing discipline. */ 5863 dev_shutdown(dev); 5864 5865 /* Notify protocols, that we are about to destroy 5866 this device. They should clean all the things. 5867 5868 Note that dev->reg_state stays at NETREG_REGISTERED. 5869 This is wanted because this way 8021q and macvlan know 5870 the device is just moving and can keep their slaves up. 5871 */ 5872 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 5873 rcu_barrier(); 5874 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 5875 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U); 5876 5877 /* 5878 * Flush the unicast and multicast chains 5879 */ 5880 dev_uc_flush(dev); 5881 dev_mc_flush(dev); 5882 5883 /* Send a netdev-removed uevent to the old namespace */ 5884 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE); 5885 5886 /* Actually switch the network namespace */ 5887 dev_net_set(dev, net); 5888 5889 /* If there is an ifindex conflict assign a new one */ 5890 if (__dev_get_by_index(net, dev->ifindex)) { 5891 int iflink = (dev->iflink == dev->ifindex); 5892 dev->ifindex = dev_new_index(net); 5893 if (iflink) 5894 dev->iflink = dev->ifindex; 5895 } 5896 5897 /* Send a netdev-add uevent to the new namespace */ 5898 kobject_uevent(&dev->dev.kobj, KOBJ_ADD); 5899 5900 /* Fixup kobjects */ 5901 err = device_rename(&dev->dev, dev->name); 5902 WARN_ON(err); 5903 5904 /* Add the device back in the hashes */ 5905 list_netdevice(dev); 5906 5907 /* Notify protocols, that a new device appeared. */ 5908 call_netdevice_notifiers(NETDEV_REGISTER, dev); 5909 5910 /* 5911 * Prevent userspace races by waiting until the network 5912 * device is fully setup before sending notifications. 5913 */ 5914 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U); 5915 5916 synchronize_net(); 5917 err = 0; 5918 out: 5919 return err; 5920 } 5921 EXPORT_SYMBOL_GPL(dev_change_net_namespace); 5922 5923 static int dev_cpu_callback(struct notifier_block *nfb, 5924 unsigned long action, 5925 void *ocpu) 5926 { 5927 struct sk_buff **list_skb; 5928 struct sk_buff *skb; 5929 unsigned int cpu, oldcpu = (unsigned long)ocpu; 5930 struct softnet_data *sd, *oldsd; 5931 5932 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN) 5933 return NOTIFY_OK; 5934 5935 local_irq_disable(); 5936 cpu = smp_processor_id(); 5937 sd = &per_cpu(softnet_data, cpu); 5938 oldsd = &per_cpu(softnet_data, oldcpu); 5939 5940 /* Find end of our completion_queue. */ 5941 list_skb = &sd->completion_queue; 5942 while (*list_skb) 5943 list_skb = &(*list_skb)->next; 5944 /* Append completion queue from offline CPU. */ 5945 *list_skb = oldsd->completion_queue; 5946 oldsd->completion_queue = NULL; 5947 5948 /* Append output queue from offline CPU. */ 5949 if (oldsd->output_queue) { 5950 *sd->output_queue_tailp = oldsd->output_queue; 5951 sd->output_queue_tailp = oldsd->output_queue_tailp; 5952 oldsd->output_queue = NULL; 5953 oldsd->output_queue_tailp = &oldsd->output_queue; 5954 } 5955 /* Append NAPI poll list from offline CPU. */ 5956 if (!list_empty(&oldsd->poll_list)) { 5957 list_splice_init(&oldsd->poll_list, &sd->poll_list); 5958 raise_softirq_irqoff(NET_RX_SOFTIRQ); 5959 } 5960 5961 raise_softirq_irqoff(NET_TX_SOFTIRQ); 5962 local_irq_enable(); 5963 5964 /* Process offline CPU's input_pkt_queue */ 5965 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 5966 netif_rx(skb); 5967 input_queue_head_incr(oldsd); 5968 } 5969 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) { 5970 netif_rx(skb); 5971 input_queue_head_incr(oldsd); 5972 } 5973 5974 return NOTIFY_OK; 5975 } 5976 5977 5978 /** 5979 * netdev_increment_features - increment feature set by one 5980 * @all: current feature set 5981 * @one: new feature set 5982 * @mask: mask feature set 5983 * 5984 * Computes a new feature set after adding a device with feature set 5985 * @one to the master device with current feature set @all. Will not 5986 * enable anything that is off in @mask. Returns the new feature set. 5987 */ 5988 netdev_features_t netdev_increment_features(netdev_features_t all, 5989 netdev_features_t one, netdev_features_t mask) 5990 { 5991 if (mask & NETIF_F_GEN_CSUM) 5992 mask |= NETIF_F_ALL_CSUM; 5993 mask |= NETIF_F_VLAN_CHALLENGED; 5994 5995 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask; 5996 all &= one | ~NETIF_F_ALL_FOR_ALL; 5997 5998 /* If one device supports hw checksumming, set for all. */ 5999 if (all & NETIF_F_GEN_CSUM) 6000 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM); 6001 6002 return all; 6003 } 6004 EXPORT_SYMBOL(netdev_increment_features); 6005 6006 static struct hlist_head *netdev_create_hash(void) 6007 { 6008 int i; 6009 struct hlist_head *hash; 6010 6011 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL); 6012 if (hash != NULL) 6013 for (i = 0; i < NETDEV_HASHENTRIES; i++) 6014 INIT_HLIST_HEAD(&hash[i]); 6015 6016 return hash; 6017 } 6018 6019 /* Initialize per network namespace state */ 6020 static int __net_init netdev_init(struct net *net) 6021 { 6022 if (net != &init_net) 6023 INIT_LIST_HEAD(&net->dev_base_head); 6024 6025 net->dev_name_head = netdev_create_hash(); 6026 if (net->dev_name_head == NULL) 6027 goto err_name; 6028 6029 net->dev_index_head = netdev_create_hash(); 6030 if (net->dev_index_head == NULL) 6031 goto err_idx; 6032 6033 return 0; 6034 6035 err_idx: 6036 kfree(net->dev_name_head); 6037 err_name: 6038 return -ENOMEM; 6039 } 6040 6041 /** 6042 * netdev_drivername - network driver for the device 6043 * @dev: network device 6044 * 6045 * Determine network driver for device. 6046 */ 6047 const char *netdev_drivername(const struct net_device *dev) 6048 { 6049 const struct device_driver *driver; 6050 const struct device *parent; 6051 const char *empty = ""; 6052 6053 parent = dev->dev.parent; 6054 if (!parent) 6055 return empty; 6056 6057 driver = parent->driver; 6058 if (driver && driver->name) 6059 return driver->name; 6060 return empty; 6061 } 6062 6063 static int __netdev_printk(const char *level, const struct net_device *dev, 6064 struct va_format *vaf) 6065 { 6066 int r; 6067 6068 if (dev && dev->dev.parent) { 6069 r = dev_printk_emit(level[1] - '0', 6070 dev->dev.parent, 6071 "%s %s %s: %pV", 6072 dev_driver_string(dev->dev.parent), 6073 dev_name(dev->dev.parent), 6074 netdev_name(dev), vaf); 6075 } else if (dev) { 6076 r = printk("%s%s: %pV", level, netdev_name(dev), vaf); 6077 } else { 6078 r = printk("%s(NULL net_device): %pV", level, vaf); 6079 } 6080 6081 return r; 6082 } 6083 6084 int netdev_printk(const char *level, const struct net_device *dev, 6085 const char *format, ...) 6086 { 6087 struct va_format vaf; 6088 va_list args; 6089 int r; 6090 6091 va_start(args, format); 6092 6093 vaf.fmt = format; 6094 vaf.va = &args; 6095 6096 r = __netdev_printk(level, dev, &vaf); 6097 6098 va_end(args); 6099 6100 return r; 6101 } 6102 EXPORT_SYMBOL(netdev_printk); 6103 6104 #define define_netdev_printk_level(func, level) \ 6105 int func(const struct net_device *dev, const char *fmt, ...) \ 6106 { \ 6107 int r; \ 6108 struct va_format vaf; \ 6109 va_list args; \ 6110 \ 6111 va_start(args, fmt); \ 6112 \ 6113 vaf.fmt = fmt; \ 6114 vaf.va = &args; \ 6115 \ 6116 r = __netdev_printk(level, dev, &vaf); \ 6117 \ 6118 va_end(args); \ 6119 \ 6120 return r; \ 6121 } \ 6122 EXPORT_SYMBOL(func); 6123 6124 define_netdev_printk_level(netdev_emerg, KERN_EMERG); 6125 define_netdev_printk_level(netdev_alert, KERN_ALERT); 6126 define_netdev_printk_level(netdev_crit, KERN_CRIT); 6127 define_netdev_printk_level(netdev_err, KERN_ERR); 6128 define_netdev_printk_level(netdev_warn, KERN_WARNING); 6129 define_netdev_printk_level(netdev_notice, KERN_NOTICE); 6130 define_netdev_printk_level(netdev_info, KERN_INFO); 6131 6132 static void __net_exit netdev_exit(struct net *net) 6133 { 6134 kfree(net->dev_name_head); 6135 kfree(net->dev_index_head); 6136 } 6137 6138 static struct pernet_operations __net_initdata netdev_net_ops = { 6139 .init = netdev_init, 6140 .exit = netdev_exit, 6141 }; 6142 6143 static void __net_exit default_device_exit(struct net *net) 6144 { 6145 struct net_device *dev, *aux; 6146 /* 6147 * Push all migratable network devices back to the 6148 * initial network namespace 6149 */ 6150 rtnl_lock(); 6151 for_each_netdev_safe(net, dev, aux) { 6152 int err; 6153 char fb_name[IFNAMSIZ]; 6154 6155 /* Ignore unmoveable devices (i.e. loopback) */ 6156 if (dev->features & NETIF_F_NETNS_LOCAL) 6157 continue; 6158 6159 /* Leave virtual devices for the generic cleanup */ 6160 if (dev->rtnl_link_ops) 6161 continue; 6162 6163 /* Push remaining network devices to init_net */ 6164 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 6165 err = dev_change_net_namespace(dev, &init_net, fb_name); 6166 if (err) { 6167 pr_emerg("%s: failed to move %s to init_net: %d\n", 6168 __func__, dev->name, err); 6169 BUG(); 6170 } 6171 } 6172 rtnl_unlock(); 6173 } 6174 6175 static void __net_exit default_device_exit_batch(struct list_head *net_list) 6176 { 6177 /* At exit all network devices most be removed from a network 6178 * namespace. Do this in the reverse order of registration. 6179 * Do this across as many network namespaces as possible to 6180 * improve batching efficiency. 6181 */ 6182 struct net_device *dev; 6183 struct net *net; 6184 LIST_HEAD(dev_kill_list); 6185 6186 rtnl_lock(); 6187 list_for_each_entry(net, net_list, exit_list) { 6188 for_each_netdev_reverse(net, dev) { 6189 if (dev->rtnl_link_ops) 6190 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 6191 else 6192 unregister_netdevice_queue(dev, &dev_kill_list); 6193 } 6194 } 6195 unregister_netdevice_many(&dev_kill_list); 6196 list_del(&dev_kill_list); 6197 rtnl_unlock(); 6198 } 6199 6200 static struct pernet_operations __net_initdata default_device_ops = { 6201 .exit = default_device_exit, 6202 .exit_batch = default_device_exit_batch, 6203 }; 6204 6205 /* 6206 * Initialize the DEV module. At boot time this walks the device list and 6207 * unhooks any devices that fail to initialise (normally hardware not 6208 * present) and leaves us with a valid list of present and active devices. 6209 * 6210 */ 6211 6212 /* 6213 * This is called single threaded during boot, so no need 6214 * to take the rtnl semaphore. 6215 */ 6216 static int __init net_dev_init(void) 6217 { 6218 int i, rc = -ENOMEM; 6219 6220 BUG_ON(!dev_boot_phase); 6221 6222 if (dev_proc_init()) 6223 goto out; 6224 6225 if (netdev_kobject_init()) 6226 goto out; 6227 6228 INIT_LIST_HEAD(&ptype_all); 6229 for (i = 0; i < PTYPE_HASH_SIZE; i++) 6230 INIT_LIST_HEAD(&ptype_base[i]); 6231 6232 INIT_LIST_HEAD(&offload_base); 6233 6234 if (register_pernet_subsys(&netdev_net_ops)) 6235 goto out; 6236 6237 /* 6238 * Initialise the packet receive queues. 6239 */ 6240 6241 for_each_possible_cpu(i) { 6242 struct softnet_data *sd = &per_cpu(softnet_data, i); 6243 6244 memset(sd, 0, sizeof(*sd)); 6245 skb_queue_head_init(&sd->input_pkt_queue); 6246 skb_queue_head_init(&sd->process_queue); 6247 sd->completion_queue = NULL; 6248 INIT_LIST_HEAD(&sd->poll_list); 6249 sd->output_queue = NULL; 6250 sd->output_queue_tailp = &sd->output_queue; 6251 #ifdef CONFIG_RPS 6252 sd->csd.func = rps_trigger_softirq; 6253 sd->csd.info = sd; 6254 sd->csd.flags = 0; 6255 sd->cpu = i; 6256 #endif 6257 6258 sd->backlog.poll = process_backlog; 6259 sd->backlog.weight = weight_p; 6260 sd->backlog.gro_list = NULL; 6261 sd->backlog.gro_count = 0; 6262 } 6263 6264 dev_boot_phase = 0; 6265 6266 /* The loopback device is special if any other network devices 6267 * is present in a network namespace the loopback device must 6268 * be present. Since we now dynamically allocate and free the 6269 * loopback device ensure this invariant is maintained by 6270 * keeping the loopback device as the first device on the 6271 * list of network devices. Ensuring the loopback devices 6272 * is the first device that appears and the last network device 6273 * that disappears. 6274 */ 6275 if (register_pernet_device(&loopback_net_ops)) 6276 goto out; 6277 6278 if (register_pernet_device(&default_device_ops)) 6279 goto out; 6280 6281 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 6282 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 6283 6284 hotcpu_notifier(dev_cpu_callback, 0); 6285 dst_init(); 6286 rc = 0; 6287 out: 6288 return rc; 6289 } 6290 6291 subsys_initcall(net_dev_init); 6292