1 /* 2 * NET3 Protocol independent device support routines. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Derived from the non IP parts of dev.c 1.0.19 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * 14 * Additional Authors: 15 * Florian la Roche <rzsfl@rz.uni-sb.de> 16 * Alan Cox <gw4pts@gw4pts.ampr.org> 17 * David Hinds <dahinds@users.sourceforge.net> 18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 19 * Adam Sulmicki <adam@cfar.umd.edu> 20 * Pekka Riikonen <priikone@poesidon.pspt.fi> 21 * 22 * Changes: 23 * D.J. Barrow : Fixed bug where dev->refcnt gets set 24 * to 2 if register_netdev gets called 25 * before net_dev_init & also removed a 26 * few lines of code in the process. 27 * Alan Cox : device private ioctl copies fields back. 28 * Alan Cox : Transmit queue code does relevant 29 * stunts to keep the queue safe. 30 * Alan Cox : Fixed double lock. 31 * Alan Cox : Fixed promisc NULL pointer trap 32 * ???????? : Support the full private ioctl range 33 * Alan Cox : Moved ioctl permission check into 34 * drivers 35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 36 * Alan Cox : 100 backlog just doesn't cut it when 37 * you start doing multicast video 8) 38 * Alan Cox : Rewrote net_bh and list manager. 39 * Alan Cox : Fix ETH_P_ALL echoback lengths. 40 * Alan Cox : Took out transmit every packet pass 41 * Saved a few bytes in the ioctl handler 42 * Alan Cox : Network driver sets packet type before 43 * calling netif_rx. Saves a function 44 * call a packet. 45 * Alan Cox : Hashed net_bh() 46 * Richard Kooijman: Timestamp fixes. 47 * Alan Cox : Wrong field in SIOCGIFDSTADDR 48 * Alan Cox : Device lock protection. 49 * Alan Cox : Fixed nasty side effect of device close 50 * changes. 51 * Rudi Cilibrasi : Pass the right thing to 52 * set_mac_address() 53 * Dave Miller : 32bit quantity for the device lock to 54 * make it work out on a Sparc. 55 * Bjorn Ekwall : Added KERNELD hack. 56 * Alan Cox : Cleaned up the backlog initialise. 57 * Craig Metz : SIOCGIFCONF fix if space for under 58 * 1 device. 59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 60 * is no device open function. 61 * Andi Kleen : Fix error reporting for SIOCGIFCONF 62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 63 * Cyrus Durgin : Cleaned for KMOD 64 * Adam Sulmicki : Bug Fix : Network Device Unload 65 * A network device unload needs to purge 66 * the backlog queue. 67 * Paul Rusty Russell : SIOCSIFNAME 68 * Pekka Riikonen : Netdev boot-time settings code 69 * Andrew Morton : Make unregister_netdevice wait 70 * indefinitely on dev->refcnt 71 * J Hadi Salim : - Backlog queue sampling 72 * - netif_rx() feedback 73 */ 74 75 #include <linux/uaccess.h> 76 #include <linux/bitops.h> 77 #include <linux/capability.h> 78 #include <linux/cpu.h> 79 #include <linux/types.h> 80 #include <linux/kernel.h> 81 #include <linux/hash.h> 82 #include <linux/slab.h> 83 #include <linux/sched.h> 84 #include <linux/sched/mm.h> 85 #include <linux/mutex.h> 86 #include <linux/string.h> 87 #include <linux/mm.h> 88 #include <linux/socket.h> 89 #include <linux/sockios.h> 90 #include <linux/errno.h> 91 #include <linux/interrupt.h> 92 #include <linux/if_ether.h> 93 #include <linux/netdevice.h> 94 #include <linux/etherdevice.h> 95 #include <linux/ethtool.h> 96 #include <linux/skbuff.h> 97 #include <linux/bpf.h> 98 #include <linux/bpf_trace.h> 99 #include <net/net_namespace.h> 100 #include <net/sock.h> 101 #include <net/busy_poll.h> 102 #include <linux/rtnetlink.h> 103 #include <linux/stat.h> 104 #include <net/dst.h> 105 #include <net/dst_metadata.h> 106 #include <net/pkt_sched.h> 107 #include <net/pkt_cls.h> 108 #include <net/checksum.h> 109 #include <net/xfrm.h> 110 #include <linux/highmem.h> 111 #include <linux/init.h> 112 #include <linux/module.h> 113 #include <linux/netpoll.h> 114 #include <linux/rcupdate.h> 115 #include <linux/delay.h> 116 #include <net/iw_handler.h> 117 #include <asm/current.h> 118 #include <linux/audit.h> 119 #include <linux/dmaengine.h> 120 #include <linux/err.h> 121 #include <linux/ctype.h> 122 #include <linux/if_arp.h> 123 #include <linux/if_vlan.h> 124 #include <linux/ip.h> 125 #include <net/ip.h> 126 #include <net/mpls.h> 127 #include <linux/ipv6.h> 128 #include <linux/in.h> 129 #include <linux/jhash.h> 130 #include <linux/random.h> 131 #include <trace/events/napi.h> 132 #include <trace/events/net.h> 133 #include <trace/events/skb.h> 134 #include <linux/pci.h> 135 #include <linux/inetdevice.h> 136 #include <linux/cpu_rmap.h> 137 #include <linux/static_key.h> 138 #include <linux/hashtable.h> 139 #include <linux/vmalloc.h> 140 #include <linux/if_macvlan.h> 141 #include <linux/errqueue.h> 142 #include <linux/hrtimer.h> 143 #include <linux/netfilter_ingress.h> 144 #include <linux/crash_dump.h> 145 #include <linux/sctp.h> 146 #include <net/udp_tunnel.h> 147 #include <linux/net_namespace.h> 148 149 #include "net-sysfs.h" 150 151 #define MAX_GRO_SKBS 8 152 153 /* This should be increased if a protocol with a bigger head is added. */ 154 #define GRO_MAX_HEAD (MAX_HEADER + 128) 155 156 static DEFINE_SPINLOCK(ptype_lock); 157 static DEFINE_SPINLOCK(offload_lock); 158 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 159 struct list_head ptype_all __read_mostly; /* Taps */ 160 static struct list_head offload_base __read_mostly; 161 162 static int netif_rx_internal(struct sk_buff *skb); 163 static int call_netdevice_notifiers_info(unsigned long val, 164 struct netdev_notifier_info *info); 165 static struct napi_struct *napi_by_id(unsigned int napi_id); 166 167 /* 168 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 169 * semaphore. 170 * 171 * Pure readers hold dev_base_lock for reading, or rcu_read_lock() 172 * 173 * Writers must hold the rtnl semaphore while they loop through the 174 * dev_base_head list, and hold dev_base_lock for writing when they do the 175 * actual updates. This allows pure readers to access the list even 176 * while a writer is preparing to update it. 177 * 178 * To put it another way, dev_base_lock is held for writing only to 179 * protect against pure readers; the rtnl semaphore provides the 180 * protection against other writers. 181 * 182 * See, for example usages, register_netdevice() and 183 * unregister_netdevice(), which must be called with the rtnl 184 * semaphore held. 185 */ 186 DEFINE_RWLOCK(dev_base_lock); 187 EXPORT_SYMBOL(dev_base_lock); 188 189 static DEFINE_MUTEX(ifalias_mutex); 190 191 /* protects napi_hash addition/deletion and napi_gen_id */ 192 static DEFINE_SPINLOCK(napi_hash_lock); 193 194 static unsigned int napi_gen_id = NR_CPUS; 195 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8); 196 197 static seqcount_t devnet_rename_seq; 198 199 static inline void dev_base_seq_inc(struct net *net) 200 { 201 while (++net->dev_base_seq == 0) 202 ; 203 } 204 205 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 206 { 207 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ)); 208 209 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 210 } 211 212 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 213 { 214 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 215 } 216 217 static inline void rps_lock(struct softnet_data *sd) 218 { 219 #ifdef CONFIG_RPS 220 spin_lock(&sd->input_pkt_queue.lock); 221 #endif 222 } 223 224 static inline void rps_unlock(struct softnet_data *sd) 225 { 226 #ifdef CONFIG_RPS 227 spin_unlock(&sd->input_pkt_queue.lock); 228 #endif 229 } 230 231 /* Device list insertion */ 232 static void list_netdevice(struct net_device *dev) 233 { 234 struct net *net = dev_net(dev); 235 236 ASSERT_RTNL(); 237 238 write_lock_bh(&dev_base_lock); 239 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 240 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 241 hlist_add_head_rcu(&dev->index_hlist, 242 dev_index_hash(net, dev->ifindex)); 243 write_unlock_bh(&dev_base_lock); 244 245 dev_base_seq_inc(net); 246 } 247 248 /* Device list removal 249 * caller must respect a RCU grace period before freeing/reusing dev 250 */ 251 static void unlist_netdevice(struct net_device *dev) 252 { 253 ASSERT_RTNL(); 254 255 /* Unlink dev from the device chain */ 256 write_lock_bh(&dev_base_lock); 257 list_del_rcu(&dev->dev_list); 258 hlist_del_rcu(&dev->name_hlist); 259 hlist_del_rcu(&dev->index_hlist); 260 write_unlock_bh(&dev_base_lock); 261 262 dev_base_seq_inc(dev_net(dev)); 263 } 264 265 /* 266 * Our notifier list 267 */ 268 269 static RAW_NOTIFIER_HEAD(netdev_chain); 270 271 /* 272 * Device drivers call our routines to queue packets here. We empty the 273 * queue in the local softnet handler. 274 */ 275 276 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 277 EXPORT_PER_CPU_SYMBOL(softnet_data); 278 279 #ifdef CONFIG_LOCKDEP 280 /* 281 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 282 * according to dev->type 283 */ 284 static const unsigned short netdev_lock_type[] = { 285 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 286 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 287 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 288 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 289 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 290 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 291 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 292 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 293 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 294 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 295 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 296 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 297 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM, 298 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE, 299 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE}; 300 301 static const char *const netdev_lock_name[] = { 302 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 303 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 304 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 305 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 306 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 307 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 308 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 309 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 310 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 311 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 312 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 313 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 314 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM", 315 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE", 316 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"}; 317 318 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 319 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 320 321 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 322 { 323 int i; 324 325 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 326 if (netdev_lock_type[i] == dev_type) 327 return i; 328 /* the last key is used by default */ 329 return ARRAY_SIZE(netdev_lock_type) - 1; 330 } 331 332 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 333 unsigned short dev_type) 334 { 335 int i; 336 337 i = netdev_lock_pos(dev_type); 338 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 339 netdev_lock_name[i]); 340 } 341 342 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 343 { 344 int i; 345 346 i = netdev_lock_pos(dev->type); 347 lockdep_set_class_and_name(&dev->addr_list_lock, 348 &netdev_addr_lock_key[i], 349 netdev_lock_name[i]); 350 } 351 #else 352 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 353 unsigned short dev_type) 354 { 355 } 356 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 357 { 358 } 359 #endif 360 361 /******************************************************************************* 362 * 363 * Protocol management and registration routines 364 * 365 *******************************************************************************/ 366 367 368 /* 369 * Add a protocol ID to the list. Now that the input handler is 370 * smarter we can dispense with all the messy stuff that used to be 371 * here. 372 * 373 * BEWARE!!! Protocol handlers, mangling input packets, 374 * MUST BE last in hash buckets and checking protocol handlers 375 * MUST start from promiscuous ptype_all chain in net_bh. 376 * It is true now, do not change it. 377 * Explanation follows: if protocol handler, mangling packet, will 378 * be the first on list, it is not able to sense, that packet 379 * is cloned and should be copied-on-write, so that it will 380 * change it and subsequent readers will get broken packet. 381 * --ANK (980803) 382 */ 383 384 static inline struct list_head *ptype_head(const struct packet_type *pt) 385 { 386 if (pt->type == htons(ETH_P_ALL)) 387 return pt->dev ? &pt->dev->ptype_all : &ptype_all; 388 else 389 return pt->dev ? &pt->dev->ptype_specific : 390 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 391 } 392 393 /** 394 * dev_add_pack - add packet handler 395 * @pt: packet type declaration 396 * 397 * Add a protocol handler to the networking stack. The passed &packet_type 398 * is linked into kernel lists and may not be freed until it has been 399 * removed from the kernel lists. 400 * 401 * This call does not sleep therefore it can not 402 * guarantee all CPU's that are in middle of receiving packets 403 * will see the new packet type (until the next received packet). 404 */ 405 406 void dev_add_pack(struct packet_type *pt) 407 { 408 struct list_head *head = ptype_head(pt); 409 410 spin_lock(&ptype_lock); 411 list_add_rcu(&pt->list, head); 412 spin_unlock(&ptype_lock); 413 } 414 EXPORT_SYMBOL(dev_add_pack); 415 416 /** 417 * __dev_remove_pack - remove packet handler 418 * @pt: packet type declaration 419 * 420 * Remove a protocol handler that was previously added to the kernel 421 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 422 * from the kernel lists and can be freed or reused once this function 423 * returns. 424 * 425 * The packet type might still be in use by receivers 426 * and must not be freed until after all the CPU's have gone 427 * through a quiescent state. 428 */ 429 void __dev_remove_pack(struct packet_type *pt) 430 { 431 struct list_head *head = ptype_head(pt); 432 struct packet_type *pt1; 433 434 spin_lock(&ptype_lock); 435 436 list_for_each_entry(pt1, head, list) { 437 if (pt == pt1) { 438 list_del_rcu(&pt->list); 439 goto out; 440 } 441 } 442 443 pr_warn("dev_remove_pack: %p not found\n", pt); 444 out: 445 spin_unlock(&ptype_lock); 446 } 447 EXPORT_SYMBOL(__dev_remove_pack); 448 449 /** 450 * dev_remove_pack - remove packet handler 451 * @pt: packet type declaration 452 * 453 * Remove a protocol handler that was previously added to the kernel 454 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 455 * from the kernel lists and can be freed or reused once this function 456 * returns. 457 * 458 * This call sleeps to guarantee that no CPU is looking at the packet 459 * type after return. 460 */ 461 void dev_remove_pack(struct packet_type *pt) 462 { 463 __dev_remove_pack(pt); 464 465 synchronize_net(); 466 } 467 EXPORT_SYMBOL(dev_remove_pack); 468 469 470 /** 471 * dev_add_offload - register offload handlers 472 * @po: protocol offload declaration 473 * 474 * Add protocol offload handlers to the networking stack. The passed 475 * &proto_offload is linked into kernel lists and may not be freed until 476 * it has been removed from the kernel lists. 477 * 478 * This call does not sleep therefore it can not 479 * guarantee all CPU's that are in middle of receiving packets 480 * will see the new offload handlers (until the next received packet). 481 */ 482 void dev_add_offload(struct packet_offload *po) 483 { 484 struct packet_offload *elem; 485 486 spin_lock(&offload_lock); 487 list_for_each_entry(elem, &offload_base, list) { 488 if (po->priority < elem->priority) 489 break; 490 } 491 list_add_rcu(&po->list, elem->list.prev); 492 spin_unlock(&offload_lock); 493 } 494 EXPORT_SYMBOL(dev_add_offload); 495 496 /** 497 * __dev_remove_offload - remove offload handler 498 * @po: packet offload declaration 499 * 500 * Remove a protocol offload handler that was previously added to the 501 * kernel offload handlers by dev_add_offload(). The passed &offload_type 502 * is removed from the kernel lists and can be freed or reused once this 503 * function returns. 504 * 505 * The packet type might still be in use by receivers 506 * and must not be freed until after all the CPU's have gone 507 * through a quiescent state. 508 */ 509 static void __dev_remove_offload(struct packet_offload *po) 510 { 511 struct list_head *head = &offload_base; 512 struct packet_offload *po1; 513 514 spin_lock(&offload_lock); 515 516 list_for_each_entry(po1, head, list) { 517 if (po == po1) { 518 list_del_rcu(&po->list); 519 goto out; 520 } 521 } 522 523 pr_warn("dev_remove_offload: %p not found\n", po); 524 out: 525 spin_unlock(&offload_lock); 526 } 527 528 /** 529 * dev_remove_offload - remove packet offload handler 530 * @po: packet offload declaration 531 * 532 * Remove a packet offload handler that was previously added to the kernel 533 * offload handlers by dev_add_offload(). The passed &offload_type is 534 * removed from the kernel lists and can be freed or reused once this 535 * function returns. 536 * 537 * This call sleeps to guarantee that no CPU is looking at the packet 538 * type after return. 539 */ 540 void dev_remove_offload(struct packet_offload *po) 541 { 542 __dev_remove_offload(po); 543 544 synchronize_net(); 545 } 546 EXPORT_SYMBOL(dev_remove_offload); 547 548 /****************************************************************************** 549 * 550 * Device Boot-time Settings Routines 551 * 552 ******************************************************************************/ 553 554 /* Boot time configuration table */ 555 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 556 557 /** 558 * netdev_boot_setup_add - add new setup entry 559 * @name: name of the device 560 * @map: configured settings for the device 561 * 562 * Adds new setup entry to the dev_boot_setup list. The function 563 * returns 0 on error and 1 on success. This is a generic routine to 564 * all netdevices. 565 */ 566 static int netdev_boot_setup_add(char *name, struct ifmap *map) 567 { 568 struct netdev_boot_setup *s; 569 int i; 570 571 s = dev_boot_setup; 572 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 573 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 574 memset(s[i].name, 0, sizeof(s[i].name)); 575 strlcpy(s[i].name, name, IFNAMSIZ); 576 memcpy(&s[i].map, map, sizeof(s[i].map)); 577 break; 578 } 579 } 580 581 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 582 } 583 584 /** 585 * netdev_boot_setup_check - check boot time settings 586 * @dev: the netdevice 587 * 588 * Check boot time settings for the device. 589 * The found settings are set for the device to be used 590 * later in the device probing. 591 * Returns 0 if no settings found, 1 if they are. 592 */ 593 int netdev_boot_setup_check(struct net_device *dev) 594 { 595 struct netdev_boot_setup *s = dev_boot_setup; 596 int i; 597 598 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 599 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 600 !strcmp(dev->name, s[i].name)) { 601 dev->irq = s[i].map.irq; 602 dev->base_addr = s[i].map.base_addr; 603 dev->mem_start = s[i].map.mem_start; 604 dev->mem_end = s[i].map.mem_end; 605 return 1; 606 } 607 } 608 return 0; 609 } 610 EXPORT_SYMBOL(netdev_boot_setup_check); 611 612 613 /** 614 * netdev_boot_base - get address from boot time settings 615 * @prefix: prefix for network device 616 * @unit: id for network device 617 * 618 * Check boot time settings for the base address of device. 619 * The found settings are set for the device to be used 620 * later in the device probing. 621 * Returns 0 if no settings found. 622 */ 623 unsigned long netdev_boot_base(const char *prefix, int unit) 624 { 625 const struct netdev_boot_setup *s = dev_boot_setup; 626 char name[IFNAMSIZ]; 627 int i; 628 629 sprintf(name, "%s%d", prefix, unit); 630 631 /* 632 * If device already registered then return base of 1 633 * to indicate not to probe for this interface 634 */ 635 if (__dev_get_by_name(&init_net, name)) 636 return 1; 637 638 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 639 if (!strcmp(name, s[i].name)) 640 return s[i].map.base_addr; 641 return 0; 642 } 643 644 /* 645 * Saves at boot time configured settings for any netdevice. 646 */ 647 int __init netdev_boot_setup(char *str) 648 { 649 int ints[5]; 650 struct ifmap map; 651 652 str = get_options(str, ARRAY_SIZE(ints), ints); 653 if (!str || !*str) 654 return 0; 655 656 /* Save settings */ 657 memset(&map, 0, sizeof(map)); 658 if (ints[0] > 0) 659 map.irq = ints[1]; 660 if (ints[0] > 1) 661 map.base_addr = ints[2]; 662 if (ints[0] > 2) 663 map.mem_start = ints[3]; 664 if (ints[0] > 3) 665 map.mem_end = ints[4]; 666 667 /* Add new entry to the list */ 668 return netdev_boot_setup_add(str, &map); 669 } 670 671 __setup("netdev=", netdev_boot_setup); 672 673 /******************************************************************************* 674 * 675 * Device Interface Subroutines 676 * 677 *******************************************************************************/ 678 679 /** 680 * dev_get_iflink - get 'iflink' value of a interface 681 * @dev: targeted interface 682 * 683 * Indicates the ifindex the interface is linked to. 684 * Physical interfaces have the same 'ifindex' and 'iflink' values. 685 */ 686 687 int dev_get_iflink(const struct net_device *dev) 688 { 689 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink) 690 return dev->netdev_ops->ndo_get_iflink(dev); 691 692 return dev->ifindex; 693 } 694 EXPORT_SYMBOL(dev_get_iflink); 695 696 /** 697 * dev_fill_metadata_dst - Retrieve tunnel egress information. 698 * @dev: targeted interface 699 * @skb: The packet. 700 * 701 * For better visibility of tunnel traffic OVS needs to retrieve 702 * egress tunnel information for a packet. Following API allows 703 * user to get this info. 704 */ 705 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb) 706 { 707 struct ip_tunnel_info *info; 708 709 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst) 710 return -EINVAL; 711 712 info = skb_tunnel_info_unclone(skb); 713 if (!info) 714 return -ENOMEM; 715 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX))) 716 return -EINVAL; 717 718 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb); 719 } 720 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst); 721 722 /** 723 * __dev_get_by_name - find a device by its name 724 * @net: the applicable net namespace 725 * @name: name to find 726 * 727 * Find an interface by name. Must be called under RTNL semaphore 728 * or @dev_base_lock. If the name is found a pointer to the device 729 * is returned. If the name is not found then %NULL is returned. The 730 * reference counters are not incremented so the caller must be 731 * careful with locks. 732 */ 733 734 struct net_device *__dev_get_by_name(struct net *net, const char *name) 735 { 736 struct net_device *dev; 737 struct hlist_head *head = dev_name_hash(net, name); 738 739 hlist_for_each_entry(dev, head, name_hlist) 740 if (!strncmp(dev->name, name, IFNAMSIZ)) 741 return dev; 742 743 return NULL; 744 } 745 EXPORT_SYMBOL(__dev_get_by_name); 746 747 /** 748 * dev_get_by_name_rcu - find a device by its name 749 * @net: the applicable net namespace 750 * @name: name to find 751 * 752 * Find an interface by name. 753 * If the name is found a pointer to the device is returned. 754 * If the name is not found then %NULL is returned. 755 * The reference counters are not incremented so the caller must be 756 * careful with locks. The caller must hold RCU lock. 757 */ 758 759 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 760 { 761 struct net_device *dev; 762 struct hlist_head *head = dev_name_hash(net, name); 763 764 hlist_for_each_entry_rcu(dev, head, name_hlist) 765 if (!strncmp(dev->name, name, IFNAMSIZ)) 766 return dev; 767 768 return NULL; 769 } 770 EXPORT_SYMBOL(dev_get_by_name_rcu); 771 772 /** 773 * dev_get_by_name - find a device by its name 774 * @net: the applicable net namespace 775 * @name: name to find 776 * 777 * Find an interface by name. This can be called from any 778 * context and does its own locking. The returned handle has 779 * the usage count incremented and the caller must use dev_put() to 780 * release it when it is no longer needed. %NULL is returned if no 781 * matching device is found. 782 */ 783 784 struct net_device *dev_get_by_name(struct net *net, const char *name) 785 { 786 struct net_device *dev; 787 788 rcu_read_lock(); 789 dev = dev_get_by_name_rcu(net, name); 790 if (dev) 791 dev_hold(dev); 792 rcu_read_unlock(); 793 return dev; 794 } 795 EXPORT_SYMBOL(dev_get_by_name); 796 797 /** 798 * __dev_get_by_index - find a device by its ifindex 799 * @net: the applicable net namespace 800 * @ifindex: index of device 801 * 802 * Search for an interface by index. Returns %NULL if the device 803 * is not found or a pointer to the device. The device has not 804 * had its reference counter increased so the caller must be careful 805 * about locking. The caller must hold either the RTNL semaphore 806 * or @dev_base_lock. 807 */ 808 809 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 810 { 811 struct net_device *dev; 812 struct hlist_head *head = dev_index_hash(net, ifindex); 813 814 hlist_for_each_entry(dev, head, index_hlist) 815 if (dev->ifindex == ifindex) 816 return dev; 817 818 return NULL; 819 } 820 EXPORT_SYMBOL(__dev_get_by_index); 821 822 /** 823 * dev_get_by_index_rcu - find a device by its ifindex 824 * @net: the applicable net namespace 825 * @ifindex: index of device 826 * 827 * Search for an interface by index. Returns %NULL if the device 828 * is not found or a pointer to the device. The device has not 829 * had its reference counter increased so the caller must be careful 830 * about locking. The caller must hold RCU lock. 831 */ 832 833 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 834 { 835 struct net_device *dev; 836 struct hlist_head *head = dev_index_hash(net, ifindex); 837 838 hlist_for_each_entry_rcu(dev, head, index_hlist) 839 if (dev->ifindex == ifindex) 840 return dev; 841 842 return NULL; 843 } 844 EXPORT_SYMBOL(dev_get_by_index_rcu); 845 846 847 /** 848 * dev_get_by_index - find a device by its ifindex 849 * @net: the applicable net namespace 850 * @ifindex: index of device 851 * 852 * Search for an interface by index. Returns NULL if the device 853 * is not found or a pointer to the device. The device returned has 854 * had a reference added and the pointer is safe until the user calls 855 * dev_put to indicate they have finished with it. 856 */ 857 858 struct net_device *dev_get_by_index(struct net *net, int ifindex) 859 { 860 struct net_device *dev; 861 862 rcu_read_lock(); 863 dev = dev_get_by_index_rcu(net, ifindex); 864 if (dev) 865 dev_hold(dev); 866 rcu_read_unlock(); 867 return dev; 868 } 869 EXPORT_SYMBOL(dev_get_by_index); 870 871 /** 872 * dev_get_by_napi_id - find a device by napi_id 873 * @napi_id: ID of the NAPI struct 874 * 875 * Search for an interface by NAPI ID. Returns %NULL if the device 876 * is not found or a pointer to the device. The device has not had 877 * its reference counter increased so the caller must be careful 878 * about locking. The caller must hold RCU lock. 879 */ 880 881 struct net_device *dev_get_by_napi_id(unsigned int napi_id) 882 { 883 struct napi_struct *napi; 884 885 WARN_ON_ONCE(!rcu_read_lock_held()); 886 887 if (napi_id < MIN_NAPI_ID) 888 return NULL; 889 890 napi = napi_by_id(napi_id); 891 892 return napi ? napi->dev : NULL; 893 } 894 EXPORT_SYMBOL(dev_get_by_napi_id); 895 896 /** 897 * netdev_get_name - get a netdevice name, knowing its ifindex. 898 * @net: network namespace 899 * @name: a pointer to the buffer where the name will be stored. 900 * @ifindex: the ifindex of the interface to get the name from. 901 * 902 * The use of raw_seqcount_begin() and cond_resched() before 903 * retrying is required as we want to give the writers a chance 904 * to complete when CONFIG_PREEMPT is not set. 905 */ 906 int netdev_get_name(struct net *net, char *name, int ifindex) 907 { 908 struct net_device *dev; 909 unsigned int seq; 910 911 retry: 912 seq = raw_seqcount_begin(&devnet_rename_seq); 913 rcu_read_lock(); 914 dev = dev_get_by_index_rcu(net, ifindex); 915 if (!dev) { 916 rcu_read_unlock(); 917 return -ENODEV; 918 } 919 920 strcpy(name, dev->name); 921 rcu_read_unlock(); 922 if (read_seqcount_retry(&devnet_rename_seq, seq)) { 923 cond_resched(); 924 goto retry; 925 } 926 927 return 0; 928 } 929 930 /** 931 * dev_getbyhwaddr_rcu - find a device by its hardware address 932 * @net: the applicable net namespace 933 * @type: media type of device 934 * @ha: hardware address 935 * 936 * Search for an interface by MAC address. Returns NULL if the device 937 * is not found or a pointer to the device. 938 * The caller must hold RCU or RTNL. 939 * The returned device has not had its ref count increased 940 * and the caller must therefore be careful about locking 941 * 942 */ 943 944 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 945 const char *ha) 946 { 947 struct net_device *dev; 948 949 for_each_netdev_rcu(net, dev) 950 if (dev->type == type && 951 !memcmp(dev->dev_addr, ha, dev->addr_len)) 952 return dev; 953 954 return NULL; 955 } 956 EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 957 958 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 959 { 960 struct net_device *dev; 961 962 ASSERT_RTNL(); 963 for_each_netdev(net, dev) 964 if (dev->type == type) 965 return dev; 966 967 return NULL; 968 } 969 EXPORT_SYMBOL(__dev_getfirstbyhwtype); 970 971 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 972 { 973 struct net_device *dev, *ret = NULL; 974 975 rcu_read_lock(); 976 for_each_netdev_rcu(net, dev) 977 if (dev->type == type) { 978 dev_hold(dev); 979 ret = dev; 980 break; 981 } 982 rcu_read_unlock(); 983 return ret; 984 } 985 EXPORT_SYMBOL(dev_getfirstbyhwtype); 986 987 /** 988 * __dev_get_by_flags - find any device with given flags 989 * @net: the applicable net namespace 990 * @if_flags: IFF_* values 991 * @mask: bitmask of bits in if_flags to check 992 * 993 * Search for any interface with the given flags. Returns NULL if a device 994 * is not found or a pointer to the device. Must be called inside 995 * rtnl_lock(), and result refcount is unchanged. 996 */ 997 998 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags, 999 unsigned short mask) 1000 { 1001 struct net_device *dev, *ret; 1002 1003 ASSERT_RTNL(); 1004 1005 ret = NULL; 1006 for_each_netdev(net, dev) { 1007 if (((dev->flags ^ if_flags) & mask) == 0) { 1008 ret = dev; 1009 break; 1010 } 1011 } 1012 return ret; 1013 } 1014 EXPORT_SYMBOL(__dev_get_by_flags); 1015 1016 /** 1017 * dev_valid_name - check if name is okay for network device 1018 * @name: name string 1019 * 1020 * Network device names need to be valid file names to 1021 * to allow sysfs to work. We also disallow any kind of 1022 * whitespace. 1023 */ 1024 bool dev_valid_name(const char *name) 1025 { 1026 if (*name == '\0') 1027 return false; 1028 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ) 1029 return false; 1030 if (!strcmp(name, ".") || !strcmp(name, "..")) 1031 return false; 1032 1033 while (*name) { 1034 if (*name == '/' || *name == ':' || isspace(*name)) 1035 return false; 1036 name++; 1037 } 1038 return true; 1039 } 1040 EXPORT_SYMBOL(dev_valid_name); 1041 1042 /** 1043 * __dev_alloc_name - allocate a name for a device 1044 * @net: network namespace to allocate the device name in 1045 * @name: name format string 1046 * @buf: scratch buffer and result name string 1047 * 1048 * Passed a format string - eg "lt%d" it will try and find a suitable 1049 * id. It scans list of devices to build up a free map, then chooses 1050 * the first empty slot. The caller must hold the dev_base or rtnl lock 1051 * while allocating the name and adding the device in order to avoid 1052 * duplicates. 1053 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1054 * Returns the number of the unit assigned or a negative errno code. 1055 */ 1056 1057 static int __dev_alloc_name(struct net *net, const char *name, char *buf) 1058 { 1059 int i = 0; 1060 const char *p; 1061 const int max_netdevices = 8*PAGE_SIZE; 1062 unsigned long *inuse; 1063 struct net_device *d; 1064 1065 if (!dev_valid_name(name)) 1066 return -EINVAL; 1067 1068 p = strchr(name, '%'); 1069 if (p) { 1070 /* 1071 * Verify the string as this thing may have come from 1072 * the user. There must be either one "%d" and no other "%" 1073 * characters. 1074 */ 1075 if (p[1] != 'd' || strchr(p + 2, '%')) 1076 return -EINVAL; 1077 1078 /* Use one page as a bit array of possible slots */ 1079 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 1080 if (!inuse) 1081 return -ENOMEM; 1082 1083 for_each_netdev(net, d) { 1084 if (!sscanf(d->name, name, &i)) 1085 continue; 1086 if (i < 0 || i >= max_netdevices) 1087 continue; 1088 1089 /* avoid cases where sscanf is not exact inverse of printf */ 1090 snprintf(buf, IFNAMSIZ, name, i); 1091 if (!strncmp(buf, d->name, IFNAMSIZ)) 1092 set_bit(i, inuse); 1093 } 1094 1095 i = find_first_zero_bit(inuse, max_netdevices); 1096 free_page((unsigned long) inuse); 1097 } 1098 1099 snprintf(buf, IFNAMSIZ, name, i); 1100 if (!__dev_get_by_name(net, buf)) 1101 return i; 1102 1103 /* It is possible to run out of possible slots 1104 * when the name is long and there isn't enough space left 1105 * for the digits, or if all bits are used. 1106 */ 1107 return -ENFILE; 1108 } 1109 1110 static int dev_alloc_name_ns(struct net *net, 1111 struct net_device *dev, 1112 const char *name) 1113 { 1114 char buf[IFNAMSIZ]; 1115 int ret; 1116 1117 BUG_ON(!net); 1118 ret = __dev_alloc_name(net, name, buf); 1119 if (ret >= 0) 1120 strlcpy(dev->name, buf, IFNAMSIZ); 1121 return ret; 1122 } 1123 1124 /** 1125 * dev_alloc_name - allocate a name for a device 1126 * @dev: device 1127 * @name: name format string 1128 * 1129 * Passed a format string - eg "lt%d" it will try and find a suitable 1130 * id. It scans list of devices to build up a free map, then chooses 1131 * the first empty slot. The caller must hold the dev_base or rtnl lock 1132 * while allocating the name and adding the device in order to avoid 1133 * duplicates. 1134 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1135 * Returns the number of the unit assigned or a negative errno code. 1136 */ 1137 1138 int dev_alloc_name(struct net_device *dev, const char *name) 1139 { 1140 return dev_alloc_name_ns(dev_net(dev), dev, name); 1141 } 1142 EXPORT_SYMBOL(dev_alloc_name); 1143 1144 int dev_get_valid_name(struct net *net, struct net_device *dev, 1145 const char *name) 1146 { 1147 BUG_ON(!net); 1148 1149 if (!dev_valid_name(name)) 1150 return -EINVAL; 1151 1152 if (strchr(name, '%')) 1153 return dev_alloc_name_ns(net, dev, name); 1154 else if (__dev_get_by_name(net, name)) 1155 return -EEXIST; 1156 else if (dev->name != name) 1157 strlcpy(dev->name, name, IFNAMSIZ); 1158 1159 return 0; 1160 } 1161 EXPORT_SYMBOL(dev_get_valid_name); 1162 1163 /** 1164 * dev_change_name - change name of a device 1165 * @dev: device 1166 * @newname: name (or format string) must be at least IFNAMSIZ 1167 * 1168 * Change name of a device, can pass format strings "eth%d". 1169 * for wildcarding. 1170 */ 1171 int dev_change_name(struct net_device *dev, const char *newname) 1172 { 1173 unsigned char old_assign_type; 1174 char oldname[IFNAMSIZ]; 1175 int err = 0; 1176 int ret; 1177 struct net *net; 1178 1179 ASSERT_RTNL(); 1180 BUG_ON(!dev_net(dev)); 1181 1182 net = dev_net(dev); 1183 if (dev->flags & IFF_UP) 1184 return -EBUSY; 1185 1186 write_seqcount_begin(&devnet_rename_seq); 1187 1188 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) { 1189 write_seqcount_end(&devnet_rename_seq); 1190 return 0; 1191 } 1192 1193 memcpy(oldname, dev->name, IFNAMSIZ); 1194 1195 err = dev_get_valid_name(net, dev, newname); 1196 if (err < 0) { 1197 write_seqcount_end(&devnet_rename_seq); 1198 return err; 1199 } 1200 1201 if (oldname[0] && !strchr(oldname, '%')) 1202 netdev_info(dev, "renamed from %s\n", oldname); 1203 1204 old_assign_type = dev->name_assign_type; 1205 dev->name_assign_type = NET_NAME_RENAMED; 1206 1207 rollback: 1208 ret = device_rename(&dev->dev, dev->name); 1209 if (ret) { 1210 memcpy(dev->name, oldname, IFNAMSIZ); 1211 dev->name_assign_type = old_assign_type; 1212 write_seqcount_end(&devnet_rename_seq); 1213 return ret; 1214 } 1215 1216 write_seqcount_end(&devnet_rename_seq); 1217 1218 netdev_adjacent_rename_links(dev, oldname); 1219 1220 write_lock_bh(&dev_base_lock); 1221 hlist_del_rcu(&dev->name_hlist); 1222 write_unlock_bh(&dev_base_lock); 1223 1224 synchronize_rcu(); 1225 1226 write_lock_bh(&dev_base_lock); 1227 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 1228 write_unlock_bh(&dev_base_lock); 1229 1230 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1231 ret = notifier_to_errno(ret); 1232 1233 if (ret) { 1234 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1235 if (err >= 0) { 1236 err = ret; 1237 write_seqcount_begin(&devnet_rename_seq); 1238 memcpy(dev->name, oldname, IFNAMSIZ); 1239 memcpy(oldname, newname, IFNAMSIZ); 1240 dev->name_assign_type = old_assign_type; 1241 old_assign_type = NET_NAME_RENAMED; 1242 goto rollback; 1243 } else { 1244 pr_err("%s: name change rollback failed: %d\n", 1245 dev->name, ret); 1246 } 1247 } 1248 1249 return err; 1250 } 1251 1252 /** 1253 * dev_set_alias - change ifalias of a device 1254 * @dev: device 1255 * @alias: name up to IFALIASZ 1256 * @len: limit of bytes to copy from info 1257 * 1258 * Set ifalias for a device, 1259 */ 1260 int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1261 { 1262 struct dev_ifalias *new_alias = NULL; 1263 1264 if (len >= IFALIASZ) 1265 return -EINVAL; 1266 1267 if (len) { 1268 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL); 1269 if (!new_alias) 1270 return -ENOMEM; 1271 1272 memcpy(new_alias->ifalias, alias, len); 1273 new_alias->ifalias[len] = 0; 1274 } 1275 1276 mutex_lock(&ifalias_mutex); 1277 rcu_swap_protected(dev->ifalias, new_alias, 1278 mutex_is_locked(&ifalias_mutex)); 1279 mutex_unlock(&ifalias_mutex); 1280 1281 if (new_alias) 1282 kfree_rcu(new_alias, rcuhead); 1283 1284 return len; 1285 } 1286 EXPORT_SYMBOL(dev_set_alias); 1287 1288 /** 1289 * dev_get_alias - get ifalias of a device 1290 * @dev: device 1291 * @name: buffer to store name of ifalias 1292 * @len: size of buffer 1293 * 1294 * get ifalias for a device. Caller must make sure dev cannot go 1295 * away, e.g. rcu read lock or own a reference count to device. 1296 */ 1297 int dev_get_alias(const struct net_device *dev, char *name, size_t len) 1298 { 1299 const struct dev_ifalias *alias; 1300 int ret = 0; 1301 1302 rcu_read_lock(); 1303 alias = rcu_dereference(dev->ifalias); 1304 if (alias) 1305 ret = snprintf(name, len, "%s", alias->ifalias); 1306 rcu_read_unlock(); 1307 1308 return ret; 1309 } 1310 1311 /** 1312 * netdev_features_change - device changes features 1313 * @dev: device to cause notification 1314 * 1315 * Called to indicate a device has changed features. 1316 */ 1317 void netdev_features_change(struct net_device *dev) 1318 { 1319 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1320 } 1321 EXPORT_SYMBOL(netdev_features_change); 1322 1323 /** 1324 * netdev_state_change - device changes state 1325 * @dev: device to cause notification 1326 * 1327 * Called to indicate a device has changed state. This function calls 1328 * the notifier chains for netdev_chain and sends a NEWLINK message 1329 * to the routing socket. 1330 */ 1331 void netdev_state_change(struct net_device *dev) 1332 { 1333 if (dev->flags & IFF_UP) { 1334 struct netdev_notifier_change_info change_info = { 1335 .info.dev = dev, 1336 }; 1337 1338 call_netdevice_notifiers_info(NETDEV_CHANGE, 1339 &change_info.info); 1340 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL); 1341 } 1342 } 1343 EXPORT_SYMBOL(netdev_state_change); 1344 1345 /** 1346 * netdev_notify_peers - notify network peers about existence of @dev 1347 * @dev: network device 1348 * 1349 * Generate traffic such that interested network peers are aware of 1350 * @dev, such as by generating a gratuitous ARP. This may be used when 1351 * a device wants to inform the rest of the network about some sort of 1352 * reconfiguration such as a failover event or virtual machine 1353 * migration. 1354 */ 1355 void netdev_notify_peers(struct net_device *dev) 1356 { 1357 rtnl_lock(); 1358 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev); 1359 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev); 1360 rtnl_unlock(); 1361 } 1362 EXPORT_SYMBOL(netdev_notify_peers); 1363 1364 static int __dev_open(struct net_device *dev) 1365 { 1366 const struct net_device_ops *ops = dev->netdev_ops; 1367 int ret; 1368 1369 ASSERT_RTNL(); 1370 1371 if (!netif_device_present(dev)) 1372 return -ENODEV; 1373 1374 /* Block netpoll from trying to do any rx path servicing. 1375 * If we don't do this there is a chance ndo_poll_controller 1376 * or ndo_poll may be running while we open the device 1377 */ 1378 netpoll_poll_disable(dev); 1379 1380 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev); 1381 ret = notifier_to_errno(ret); 1382 if (ret) 1383 return ret; 1384 1385 set_bit(__LINK_STATE_START, &dev->state); 1386 1387 if (ops->ndo_validate_addr) 1388 ret = ops->ndo_validate_addr(dev); 1389 1390 if (!ret && ops->ndo_open) 1391 ret = ops->ndo_open(dev); 1392 1393 netpoll_poll_enable(dev); 1394 1395 if (ret) 1396 clear_bit(__LINK_STATE_START, &dev->state); 1397 else { 1398 dev->flags |= IFF_UP; 1399 dev_set_rx_mode(dev); 1400 dev_activate(dev); 1401 add_device_randomness(dev->dev_addr, dev->addr_len); 1402 } 1403 1404 return ret; 1405 } 1406 1407 /** 1408 * dev_open - prepare an interface for use. 1409 * @dev: device to open 1410 * 1411 * Takes a device from down to up state. The device's private open 1412 * function is invoked and then the multicast lists are loaded. Finally 1413 * the device is moved into the up state and a %NETDEV_UP message is 1414 * sent to the netdev notifier chain. 1415 * 1416 * Calling this function on an active interface is a nop. On a failure 1417 * a negative errno code is returned. 1418 */ 1419 int dev_open(struct net_device *dev) 1420 { 1421 int ret; 1422 1423 if (dev->flags & IFF_UP) 1424 return 0; 1425 1426 ret = __dev_open(dev); 1427 if (ret < 0) 1428 return ret; 1429 1430 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1431 call_netdevice_notifiers(NETDEV_UP, dev); 1432 1433 return ret; 1434 } 1435 EXPORT_SYMBOL(dev_open); 1436 1437 static void __dev_close_many(struct list_head *head) 1438 { 1439 struct net_device *dev; 1440 1441 ASSERT_RTNL(); 1442 might_sleep(); 1443 1444 list_for_each_entry(dev, head, close_list) { 1445 /* Temporarily disable netpoll until the interface is down */ 1446 netpoll_poll_disable(dev); 1447 1448 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1449 1450 clear_bit(__LINK_STATE_START, &dev->state); 1451 1452 /* Synchronize to scheduled poll. We cannot touch poll list, it 1453 * can be even on different cpu. So just clear netif_running(). 1454 * 1455 * dev->stop() will invoke napi_disable() on all of it's 1456 * napi_struct instances on this device. 1457 */ 1458 smp_mb__after_atomic(); /* Commit netif_running(). */ 1459 } 1460 1461 dev_deactivate_many(head); 1462 1463 list_for_each_entry(dev, head, close_list) { 1464 const struct net_device_ops *ops = dev->netdev_ops; 1465 1466 /* 1467 * Call the device specific close. This cannot fail. 1468 * Only if device is UP 1469 * 1470 * We allow it to be called even after a DETACH hot-plug 1471 * event. 1472 */ 1473 if (ops->ndo_stop) 1474 ops->ndo_stop(dev); 1475 1476 dev->flags &= ~IFF_UP; 1477 netpoll_poll_enable(dev); 1478 } 1479 } 1480 1481 static void __dev_close(struct net_device *dev) 1482 { 1483 LIST_HEAD(single); 1484 1485 list_add(&dev->close_list, &single); 1486 __dev_close_many(&single); 1487 list_del(&single); 1488 } 1489 1490 void dev_close_many(struct list_head *head, bool unlink) 1491 { 1492 struct net_device *dev, *tmp; 1493 1494 /* Remove the devices that don't need to be closed */ 1495 list_for_each_entry_safe(dev, tmp, head, close_list) 1496 if (!(dev->flags & IFF_UP)) 1497 list_del_init(&dev->close_list); 1498 1499 __dev_close_many(head); 1500 1501 list_for_each_entry_safe(dev, tmp, head, close_list) { 1502 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1503 call_netdevice_notifiers(NETDEV_DOWN, dev); 1504 if (unlink) 1505 list_del_init(&dev->close_list); 1506 } 1507 } 1508 EXPORT_SYMBOL(dev_close_many); 1509 1510 /** 1511 * dev_close - shutdown an interface. 1512 * @dev: device to shutdown 1513 * 1514 * This function moves an active device into down state. A 1515 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1516 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1517 * chain. 1518 */ 1519 void dev_close(struct net_device *dev) 1520 { 1521 if (dev->flags & IFF_UP) { 1522 LIST_HEAD(single); 1523 1524 list_add(&dev->close_list, &single); 1525 dev_close_many(&single, true); 1526 list_del(&single); 1527 } 1528 } 1529 EXPORT_SYMBOL(dev_close); 1530 1531 1532 /** 1533 * dev_disable_lro - disable Large Receive Offload on a device 1534 * @dev: device 1535 * 1536 * Disable Large Receive Offload (LRO) on a net device. Must be 1537 * called under RTNL. This is needed if received packets may be 1538 * forwarded to another interface. 1539 */ 1540 void dev_disable_lro(struct net_device *dev) 1541 { 1542 struct net_device *lower_dev; 1543 struct list_head *iter; 1544 1545 dev->wanted_features &= ~NETIF_F_LRO; 1546 netdev_update_features(dev); 1547 1548 if (unlikely(dev->features & NETIF_F_LRO)) 1549 netdev_WARN(dev, "failed to disable LRO!\n"); 1550 1551 netdev_for_each_lower_dev(dev, lower_dev, iter) 1552 dev_disable_lro(lower_dev); 1553 } 1554 EXPORT_SYMBOL(dev_disable_lro); 1555 1556 /** 1557 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device 1558 * @dev: device 1559 * 1560 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be 1561 * called under RTNL. This is needed if Generic XDP is installed on 1562 * the device. 1563 */ 1564 static void dev_disable_gro_hw(struct net_device *dev) 1565 { 1566 dev->wanted_features &= ~NETIF_F_GRO_HW; 1567 netdev_update_features(dev); 1568 1569 if (unlikely(dev->features & NETIF_F_GRO_HW)) 1570 netdev_WARN(dev, "failed to disable GRO_HW!\n"); 1571 } 1572 1573 const char *netdev_cmd_to_name(enum netdev_cmd cmd) 1574 { 1575 #define N(val) \ 1576 case NETDEV_##val: \ 1577 return "NETDEV_" __stringify(val); 1578 switch (cmd) { 1579 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER) 1580 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE) 1581 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE) 1582 N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER) 1583 N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO) 1584 N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO) 1585 N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN) 1586 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO) 1587 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO) 1588 } 1589 #undef N 1590 return "UNKNOWN_NETDEV_EVENT"; 1591 } 1592 EXPORT_SYMBOL_GPL(netdev_cmd_to_name); 1593 1594 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val, 1595 struct net_device *dev) 1596 { 1597 struct netdev_notifier_info info = { 1598 .dev = dev, 1599 }; 1600 1601 return nb->notifier_call(nb, val, &info); 1602 } 1603 1604 static int dev_boot_phase = 1; 1605 1606 /** 1607 * register_netdevice_notifier - register a network notifier block 1608 * @nb: notifier 1609 * 1610 * Register a notifier to be called when network device events occur. 1611 * The notifier passed is linked into the kernel structures and must 1612 * not be reused until it has been unregistered. A negative errno code 1613 * is returned on a failure. 1614 * 1615 * When registered all registration and up events are replayed 1616 * to the new notifier to allow device to have a race free 1617 * view of the network device list. 1618 */ 1619 1620 int register_netdevice_notifier(struct notifier_block *nb) 1621 { 1622 struct net_device *dev; 1623 struct net_device *last; 1624 struct net *net; 1625 int err; 1626 1627 /* Close race with setup_net() and cleanup_net() */ 1628 down_write(&pernet_ops_rwsem); 1629 rtnl_lock(); 1630 err = raw_notifier_chain_register(&netdev_chain, nb); 1631 if (err) 1632 goto unlock; 1633 if (dev_boot_phase) 1634 goto unlock; 1635 for_each_net(net) { 1636 for_each_netdev(net, dev) { 1637 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev); 1638 err = notifier_to_errno(err); 1639 if (err) 1640 goto rollback; 1641 1642 if (!(dev->flags & IFF_UP)) 1643 continue; 1644 1645 call_netdevice_notifier(nb, NETDEV_UP, dev); 1646 } 1647 } 1648 1649 unlock: 1650 rtnl_unlock(); 1651 up_write(&pernet_ops_rwsem); 1652 return err; 1653 1654 rollback: 1655 last = dev; 1656 for_each_net(net) { 1657 for_each_netdev(net, dev) { 1658 if (dev == last) 1659 goto outroll; 1660 1661 if (dev->flags & IFF_UP) { 1662 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1663 dev); 1664 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1665 } 1666 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1667 } 1668 } 1669 1670 outroll: 1671 raw_notifier_chain_unregister(&netdev_chain, nb); 1672 goto unlock; 1673 } 1674 EXPORT_SYMBOL(register_netdevice_notifier); 1675 1676 /** 1677 * unregister_netdevice_notifier - unregister a network notifier block 1678 * @nb: notifier 1679 * 1680 * Unregister a notifier previously registered by 1681 * register_netdevice_notifier(). The notifier is unlinked into the 1682 * kernel structures and may then be reused. A negative errno code 1683 * is returned on a failure. 1684 * 1685 * After unregistering unregister and down device events are synthesized 1686 * for all devices on the device list to the removed notifier to remove 1687 * the need for special case cleanup code. 1688 */ 1689 1690 int unregister_netdevice_notifier(struct notifier_block *nb) 1691 { 1692 struct net_device *dev; 1693 struct net *net; 1694 int err; 1695 1696 /* Close race with setup_net() and cleanup_net() */ 1697 down_write(&pernet_ops_rwsem); 1698 rtnl_lock(); 1699 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1700 if (err) 1701 goto unlock; 1702 1703 for_each_net(net) { 1704 for_each_netdev(net, dev) { 1705 if (dev->flags & IFF_UP) { 1706 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1707 dev); 1708 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1709 } 1710 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1711 } 1712 } 1713 unlock: 1714 rtnl_unlock(); 1715 up_write(&pernet_ops_rwsem); 1716 return err; 1717 } 1718 EXPORT_SYMBOL(unregister_netdevice_notifier); 1719 1720 /** 1721 * call_netdevice_notifiers_info - call all network notifier blocks 1722 * @val: value passed unmodified to notifier function 1723 * @info: notifier information data 1724 * 1725 * Call all network notifier blocks. Parameters and return value 1726 * are as for raw_notifier_call_chain(). 1727 */ 1728 1729 static int call_netdevice_notifiers_info(unsigned long val, 1730 struct netdev_notifier_info *info) 1731 { 1732 ASSERT_RTNL(); 1733 return raw_notifier_call_chain(&netdev_chain, val, info); 1734 } 1735 1736 /** 1737 * call_netdevice_notifiers - call all network notifier blocks 1738 * @val: value passed unmodified to notifier function 1739 * @dev: net_device pointer passed unmodified to notifier function 1740 * 1741 * Call all network notifier blocks. Parameters and return value 1742 * are as for raw_notifier_call_chain(). 1743 */ 1744 1745 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 1746 { 1747 struct netdev_notifier_info info = { 1748 .dev = dev, 1749 }; 1750 1751 return call_netdevice_notifiers_info(val, &info); 1752 } 1753 EXPORT_SYMBOL(call_netdevice_notifiers); 1754 1755 /** 1756 * call_netdevice_notifiers_mtu - call all network notifier blocks 1757 * @val: value passed unmodified to notifier function 1758 * @dev: net_device pointer passed unmodified to notifier function 1759 * @arg: additional u32 argument passed to the notifier function 1760 * 1761 * Call all network notifier blocks. Parameters and return value 1762 * are as for raw_notifier_call_chain(). 1763 */ 1764 static int call_netdevice_notifiers_mtu(unsigned long val, 1765 struct net_device *dev, u32 arg) 1766 { 1767 struct netdev_notifier_info_ext info = { 1768 .info.dev = dev, 1769 .ext.mtu = arg, 1770 }; 1771 1772 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0); 1773 1774 return call_netdevice_notifiers_info(val, &info.info); 1775 } 1776 1777 #ifdef CONFIG_NET_INGRESS 1778 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key); 1779 1780 void net_inc_ingress_queue(void) 1781 { 1782 static_branch_inc(&ingress_needed_key); 1783 } 1784 EXPORT_SYMBOL_GPL(net_inc_ingress_queue); 1785 1786 void net_dec_ingress_queue(void) 1787 { 1788 static_branch_dec(&ingress_needed_key); 1789 } 1790 EXPORT_SYMBOL_GPL(net_dec_ingress_queue); 1791 #endif 1792 1793 #ifdef CONFIG_NET_EGRESS 1794 static DEFINE_STATIC_KEY_FALSE(egress_needed_key); 1795 1796 void net_inc_egress_queue(void) 1797 { 1798 static_branch_inc(&egress_needed_key); 1799 } 1800 EXPORT_SYMBOL_GPL(net_inc_egress_queue); 1801 1802 void net_dec_egress_queue(void) 1803 { 1804 static_branch_dec(&egress_needed_key); 1805 } 1806 EXPORT_SYMBOL_GPL(net_dec_egress_queue); 1807 #endif 1808 1809 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key); 1810 #ifdef HAVE_JUMP_LABEL 1811 static atomic_t netstamp_needed_deferred; 1812 static atomic_t netstamp_wanted; 1813 static void netstamp_clear(struct work_struct *work) 1814 { 1815 int deferred = atomic_xchg(&netstamp_needed_deferred, 0); 1816 int wanted; 1817 1818 wanted = atomic_add_return(deferred, &netstamp_wanted); 1819 if (wanted > 0) 1820 static_branch_enable(&netstamp_needed_key); 1821 else 1822 static_branch_disable(&netstamp_needed_key); 1823 } 1824 static DECLARE_WORK(netstamp_work, netstamp_clear); 1825 #endif 1826 1827 void net_enable_timestamp(void) 1828 { 1829 #ifdef HAVE_JUMP_LABEL 1830 int wanted; 1831 1832 while (1) { 1833 wanted = atomic_read(&netstamp_wanted); 1834 if (wanted <= 0) 1835 break; 1836 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted) 1837 return; 1838 } 1839 atomic_inc(&netstamp_needed_deferred); 1840 schedule_work(&netstamp_work); 1841 #else 1842 static_branch_inc(&netstamp_needed_key); 1843 #endif 1844 } 1845 EXPORT_SYMBOL(net_enable_timestamp); 1846 1847 void net_disable_timestamp(void) 1848 { 1849 #ifdef HAVE_JUMP_LABEL 1850 int wanted; 1851 1852 while (1) { 1853 wanted = atomic_read(&netstamp_wanted); 1854 if (wanted <= 1) 1855 break; 1856 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted) 1857 return; 1858 } 1859 atomic_dec(&netstamp_needed_deferred); 1860 schedule_work(&netstamp_work); 1861 #else 1862 static_branch_dec(&netstamp_needed_key); 1863 #endif 1864 } 1865 EXPORT_SYMBOL(net_disable_timestamp); 1866 1867 static inline void net_timestamp_set(struct sk_buff *skb) 1868 { 1869 skb->tstamp = 0; 1870 if (static_branch_unlikely(&netstamp_needed_key)) 1871 __net_timestamp(skb); 1872 } 1873 1874 #define net_timestamp_check(COND, SKB) \ 1875 if (static_branch_unlikely(&netstamp_needed_key)) { \ 1876 if ((COND) && !(SKB)->tstamp) \ 1877 __net_timestamp(SKB); \ 1878 } \ 1879 1880 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb) 1881 { 1882 unsigned int len; 1883 1884 if (!(dev->flags & IFF_UP)) 1885 return false; 1886 1887 len = dev->mtu + dev->hard_header_len + VLAN_HLEN; 1888 if (skb->len <= len) 1889 return true; 1890 1891 /* if TSO is enabled, we don't care about the length as the packet 1892 * could be forwarded without being segmented before 1893 */ 1894 if (skb_is_gso(skb)) 1895 return true; 1896 1897 return false; 1898 } 1899 EXPORT_SYMBOL_GPL(is_skb_forwardable); 1900 1901 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1902 { 1903 int ret = ____dev_forward_skb(dev, skb); 1904 1905 if (likely(!ret)) { 1906 skb->protocol = eth_type_trans(skb, dev); 1907 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN); 1908 } 1909 1910 return ret; 1911 } 1912 EXPORT_SYMBOL_GPL(__dev_forward_skb); 1913 1914 /** 1915 * dev_forward_skb - loopback an skb to another netif 1916 * 1917 * @dev: destination network device 1918 * @skb: buffer to forward 1919 * 1920 * return values: 1921 * NET_RX_SUCCESS (no congestion) 1922 * NET_RX_DROP (packet was dropped, but freed) 1923 * 1924 * dev_forward_skb can be used for injecting an skb from the 1925 * start_xmit function of one device into the receive queue 1926 * of another device. 1927 * 1928 * The receiving device may be in another namespace, so 1929 * we have to clear all information in the skb that could 1930 * impact namespace isolation. 1931 */ 1932 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1933 { 1934 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb); 1935 } 1936 EXPORT_SYMBOL_GPL(dev_forward_skb); 1937 1938 static inline int deliver_skb(struct sk_buff *skb, 1939 struct packet_type *pt_prev, 1940 struct net_device *orig_dev) 1941 { 1942 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 1943 return -ENOMEM; 1944 refcount_inc(&skb->users); 1945 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 1946 } 1947 1948 static inline void deliver_ptype_list_skb(struct sk_buff *skb, 1949 struct packet_type **pt, 1950 struct net_device *orig_dev, 1951 __be16 type, 1952 struct list_head *ptype_list) 1953 { 1954 struct packet_type *ptype, *pt_prev = *pt; 1955 1956 list_for_each_entry_rcu(ptype, ptype_list, list) { 1957 if (ptype->type != type) 1958 continue; 1959 if (pt_prev) 1960 deliver_skb(skb, pt_prev, orig_dev); 1961 pt_prev = ptype; 1962 } 1963 *pt = pt_prev; 1964 } 1965 1966 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb) 1967 { 1968 if (!ptype->af_packet_priv || !skb->sk) 1969 return false; 1970 1971 if (ptype->id_match) 1972 return ptype->id_match(ptype, skb->sk); 1973 else if ((struct sock *)ptype->af_packet_priv == skb->sk) 1974 return true; 1975 1976 return false; 1977 } 1978 1979 /* 1980 * Support routine. Sends outgoing frames to any network 1981 * taps currently in use. 1982 */ 1983 1984 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 1985 { 1986 struct packet_type *ptype; 1987 struct sk_buff *skb2 = NULL; 1988 struct packet_type *pt_prev = NULL; 1989 struct list_head *ptype_list = &ptype_all; 1990 1991 rcu_read_lock(); 1992 again: 1993 list_for_each_entry_rcu(ptype, ptype_list, list) { 1994 /* Never send packets back to the socket 1995 * they originated from - MvS (miquels@drinkel.ow.org) 1996 */ 1997 if (skb_loop_sk(ptype, skb)) 1998 continue; 1999 2000 if (pt_prev) { 2001 deliver_skb(skb2, pt_prev, skb->dev); 2002 pt_prev = ptype; 2003 continue; 2004 } 2005 2006 /* need to clone skb, done only once */ 2007 skb2 = skb_clone(skb, GFP_ATOMIC); 2008 if (!skb2) 2009 goto out_unlock; 2010 2011 net_timestamp_set(skb2); 2012 2013 /* skb->nh should be correctly 2014 * set by sender, so that the second statement is 2015 * just protection against buggy protocols. 2016 */ 2017 skb_reset_mac_header(skb2); 2018 2019 if (skb_network_header(skb2) < skb2->data || 2020 skb_network_header(skb2) > skb_tail_pointer(skb2)) { 2021 net_crit_ratelimited("protocol %04x is buggy, dev %s\n", 2022 ntohs(skb2->protocol), 2023 dev->name); 2024 skb_reset_network_header(skb2); 2025 } 2026 2027 skb2->transport_header = skb2->network_header; 2028 skb2->pkt_type = PACKET_OUTGOING; 2029 pt_prev = ptype; 2030 } 2031 2032 if (ptype_list == &ptype_all) { 2033 ptype_list = &dev->ptype_all; 2034 goto again; 2035 } 2036 out_unlock: 2037 if (pt_prev) { 2038 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC)) 2039 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 2040 else 2041 kfree_skb(skb2); 2042 } 2043 rcu_read_unlock(); 2044 } 2045 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit); 2046 2047 /** 2048 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change 2049 * @dev: Network device 2050 * @txq: number of queues available 2051 * 2052 * If real_num_tx_queues is changed the tc mappings may no longer be 2053 * valid. To resolve this verify the tc mapping remains valid and if 2054 * not NULL the mapping. With no priorities mapping to this 2055 * offset/count pair it will no longer be used. In the worst case TC0 2056 * is invalid nothing can be done so disable priority mappings. If is 2057 * expected that drivers will fix this mapping if they can before 2058 * calling netif_set_real_num_tx_queues. 2059 */ 2060 static void netif_setup_tc(struct net_device *dev, unsigned int txq) 2061 { 2062 int i; 2063 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2064 2065 /* If TC0 is invalidated disable TC mapping */ 2066 if (tc->offset + tc->count > txq) { 2067 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n"); 2068 dev->num_tc = 0; 2069 return; 2070 } 2071 2072 /* Invalidated prio to tc mappings set to TC0 */ 2073 for (i = 1; i < TC_BITMASK + 1; i++) { 2074 int q = netdev_get_prio_tc_map(dev, i); 2075 2076 tc = &dev->tc_to_txq[q]; 2077 if (tc->offset + tc->count > txq) { 2078 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n", 2079 i, q); 2080 netdev_set_prio_tc_map(dev, i, 0); 2081 } 2082 } 2083 } 2084 2085 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq) 2086 { 2087 if (dev->num_tc) { 2088 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2089 int i; 2090 2091 /* walk through the TCs and see if it falls into any of them */ 2092 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) { 2093 if ((txq - tc->offset) < tc->count) 2094 return i; 2095 } 2096 2097 /* didn't find it, just return -1 to indicate no match */ 2098 return -1; 2099 } 2100 2101 return 0; 2102 } 2103 EXPORT_SYMBOL(netdev_txq_to_tc); 2104 2105 #ifdef CONFIG_XPS 2106 struct static_key xps_needed __read_mostly; 2107 EXPORT_SYMBOL(xps_needed); 2108 struct static_key xps_rxqs_needed __read_mostly; 2109 EXPORT_SYMBOL(xps_rxqs_needed); 2110 static DEFINE_MUTEX(xps_map_mutex); 2111 #define xmap_dereference(P) \ 2112 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex)) 2113 2114 static bool remove_xps_queue(struct xps_dev_maps *dev_maps, 2115 int tci, u16 index) 2116 { 2117 struct xps_map *map = NULL; 2118 int pos; 2119 2120 if (dev_maps) 2121 map = xmap_dereference(dev_maps->attr_map[tci]); 2122 if (!map) 2123 return false; 2124 2125 for (pos = map->len; pos--;) { 2126 if (map->queues[pos] != index) 2127 continue; 2128 2129 if (map->len > 1) { 2130 map->queues[pos] = map->queues[--map->len]; 2131 break; 2132 } 2133 2134 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL); 2135 kfree_rcu(map, rcu); 2136 return false; 2137 } 2138 2139 return true; 2140 } 2141 2142 static bool remove_xps_queue_cpu(struct net_device *dev, 2143 struct xps_dev_maps *dev_maps, 2144 int cpu, u16 offset, u16 count) 2145 { 2146 int num_tc = dev->num_tc ? : 1; 2147 bool active = false; 2148 int tci; 2149 2150 for (tci = cpu * num_tc; num_tc--; tci++) { 2151 int i, j; 2152 2153 for (i = count, j = offset; i--; j++) { 2154 if (!remove_xps_queue(dev_maps, tci, j)) 2155 break; 2156 } 2157 2158 active |= i < 0; 2159 } 2160 2161 return active; 2162 } 2163 2164 static void clean_xps_maps(struct net_device *dev, const unsigned long *mask, 2165 struct xps_dev_maps *dev_maps, unsigned int nr_ids, 2166 u16 offset, u16 count, bool is_rxqs_map) 2167 { 2168 bool active = false; 2169 int i, j; 2170 2171 for (j = -1; j = netif_attrmask_next(j, mask, nr_ids), 2172 j < nr_ids;) 2173 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, 2174 count); 2175 if (!active) { 2176 if (is_rxqs_map) { 2177 RCU_INIT_POINTER(dev->xps_rxqs_map, NULL); 2178 } else { 2179 RCU_INIT_POINTER(dev->xps_cpus_map, NULL); 2180 2181 for (i = offset + (count - 1); count--; i--) 2182 netdev_queue_numa_node_write( 2183 netdev_get_tx_queue(dev, i), 2184 NUMA_NO_NODE); 2185 } 2186 kfree_rcu(dev_maps, rcu); 2187 } 2188 } 2189 2190 static void netif_reset_xps_queues(struct net_device *dev, u16 offset, 2191 u16 count) 2192 { 2193 const unsigned long *possible_mask = NULL; 2194 struct xps_dev_maps *dev_maps; 2195 unsigned int nr_ids; 2196 2197 if (!static_key_false(&xps_needed)) 2198 return; 2199 2200 cpus_read_lock(); 2201 mutex_lock(&xps_map_mutex); 2202 2203 if (static_key_false(&xps_rxqs_needed)) { 2204 dev_maps = xmap_dereference(dev->xps_rxqs_map); 2205 if (dev_maps) { 2206 nr_ids = dev->num_rx_queues; 2207 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, 2208 offset, count, true); 2209 } 2210 } 2211 2212 dev_maps = xmap_dereference(dev->xps_cpus_map); 2213 if (!dev_maps) 2214 goto out_no_maps; 2215 2216 if (num_possible_cpus() > 1) 2217 possible_mask = cpumask_bits(cpu_possible_mask); 2218 nr_ids = nr_cpu_ids; 2219 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count, 2220 false); 2221 2222 out_no_maps: 2223 if (static_key_enabled(&xps_rxqs_needed)) 2224 static_key_slow_dec_cpuslocked(&xps_rxqs_needed); 2225 2226 static_key_slow_dec_cpuslocked(&xps_needed); 2227 mutex_unlock(&xps_map_mutex); 2228 cpus_read_unlock(); 2229 } 2230 2231 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index) 2232 { 2233 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index); 2234 } 2235 2236 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index, 2237 u16 index, bool is_rxqs_map) 2238 { 2239 struct xps_map *new_map; 2240 int alloc_len = XPS_MIN_MAP_ALLOC; 2241 int i, pos; 2242 2243 for (pos = 0; map && pos < map->len; pos++) { 2244 if (map->queues[pos] != index) 2245 continue; 2246 return map; 2247 } 2248 2249 /* Need to add tx-queue to this CPU's/rx-queue's existing map */ 2250 if (map) { 2251 if (pos < map->alloc_len) 2252 return map; 2253 2254 alloc_len = map->alloc_len * 2; 2255 } 2256 2257 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's 2258 * map 2259 */ 2260 if (is_rxqs_map) 2261 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL); 2262 else 2263 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL, 2264 cpu_to_node(attr_index)); 2265 if (!new_map) 2266 return NULL; 2267 2268 for (i = 0; i < pos; i++) 2269 new_map->queues[i] = map->queues[i]; 2270 new_map->alloc_len = alloc_len; 2271 new_map->len = pos; 2272 2273 return new_map; 2274 } 2275 2276 /* Must be called under cpus_read_lock */ 2277 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask, 2278 u16 index, bool is_rxqs_map) 2279 { 2280 const unsigned long *online_mask = NULL, *possible_mask = NULL; 2281 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL; 2282 int i, j, tci, numa_node_id = -2; 2283 int maps_sz, num_tc = 1, tc = 0; 2284 struct xps_map *map, *new_map; 2285 bool active = false; 2286 unsigned int nr_ids; 2287 2288 if (dev->num_tc) { 2289 /* Do not allow XPS on subordinate device directly */ 2290 num_tc = dev->num_tc; 2291 if (num_tc < 0) 2292 return -EINVAL; 2293 2294 /* If queue belongs to subordinate dev use its map */ 2295 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev; 2296 2297 tc = netdev_txq_to_tc(dev, index); 2298 if (tc < 0) 2299 return -EINVAL; 2300 } 2301 2302 mutex_lock(&xps_map_mutex); 2303 if (is_rxqs_map) { 2304 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues); 2305 dev_maps = xmap_dereference(dev->xps_rxqs_map); 2306 nr_ids = dev->num_rx_queues; 2307 } else { 2308 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc); 2309 if (num_possible_cpus() > 1) { 2310 online_mask = cpumask_bits(cpu_online_mask); 2311 possible_mask = cpumask_bits(cpu_possible_mask); 2312 } 2313 dev_maps = xmap_dereference(dev->xps_cpus_map); 2314 nr_ids = nr_cpu_ids; 2315 } 2316 2317 if (maps_sz < L1_CACHE_BYTES) 2318 maps_sz = L1_CACHE_BYTES; 2319 2320 /* allocate memory for queue storage */ 2321 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids), 2322 j < nr_ids;) { 2323 if (!new_dev_maps) 2324 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL); 2325 if (!new_dev_maps) { 2326 mutex_unlock(&xps_map_mutex); 2327 return -ENOMEM; 2328 } 2329 2330 tci = j * num_tc + tc; 2331 map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) : 2332 NULL; 2333 2334 map = expand_xps_map(map, j, index, is_rxqs_map); 2335 if (!map) 2336 goto error; 2337 2338 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2339 } 2340 2341 if (!new_dev_maps) 2342 goto out_no_new_maps; 2343 2344 static_key_slow_inc_cpuslocked(&xps_needed); 2345 if (is_rxqs_map) 2346 static_key_slow_inc_cpuslocked(&xps_rxqs_needed); 2347 2348 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids), 2349 j < nr_ids;) { 2350 /* copy maps belonging to foreign traffic classes */ 2351 for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) { 2352 /* fill in the new device map from the old device map */ 2353 map = xmap_dereference(dev_maps->attr_map[tci]); 2354 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2355 } 2356 2357 /* We need to explicitly update tci as prevous loop 2358 * could break out early if dev_maps is NULL. 2359 */ 2360 tci = j * num_tc + tc; 2361 2362 if (netif_attr_test_mask(j, mask, nr_ids) && 2363 netif_attr_test_online(j, online_mask, nr_ids)) { 2364 /* add tx-queue to CPU/rx-queue maps */ 2365 int pos = 0; 2366 2367 map = xmap_dereference(new_dev_maps->attr_map[tci]); 2368 while ((pos < map->len) && (map->queues[pos] != index)) 2369 pos++; 2370 2371 if (pos == map->len) 2372 map->queues[map->len++] = index; 2373 #ifdef CONFIG_NUMA 2374 if (!is_rxqs_map) { 2375 if (numa_node_id == -2) 2376 numa_node_id = cpu_to_node(j); 2377 else if (numa_node_id != cpu_to_node(j)) 2378 numa_node_id = -1; 2379 } 2380 #endif 2381 } else if (dev_maps) { 2382 /* fill in the new device map from the old device map */ 2383 map = xmap_dereference(dev_maps->attr_map[tci]); 2384 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2385 } 2386 2387 /* copy maps belonging to foreign traffic classes */ 2388 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) { 2389 /* fill in the new device map from the old device map */ 2390 map = xmap_dereference(dev_maps->attr_map[tci]); 2391 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2392 } 2393 } 2394 2395 if (is_rxqs_map) 2396 rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps); 2397 else 2398 rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps); 2399 2400 /* Cleanup old maps */ 2401 if (!dev_maps) 2402 goto out_no_old_maps; 2403 2404 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids), 2405 j < nr_ids;) { 2406 for (i = num_tc, tci = j * num_tc; i--; tci++) { 2407 new_map = xmap_dereference(new_dev_maps->attr_map[tci]); 2408 map = xmap_dereference(dev_maps->attr_map[tci]); 2409 if (map && map != new_map) 2410 kfree_rcu(map, rcu); 2411 } 2412 } 2413 2414 kfree_rcu(dev_maps, rcu); 2415 2416 out_no_old_maps: 2417 dev_maps = new_dev_maps; 2418 active = true; 2419 2420 out_no_new_maps: 2421 if (!is_rxqs_map) { 2422 /* update Tx queue numa node */ 2423 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index), 2424 (numa_node_id >= 0) ? 2425 numa_node_id : NUMA_NO_NODE); 2426 } 2427 2428 if (!dev_maps) 2429 goto out_no_maps; 2430 2431 /* removes tx-queue from unused CPUs/rx-queues */ 2432 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids), 2433 j < nr_ids;) { 2434 for (i = tc, tci = j * num_tc; i--; tci++) 2435 active |= remove_xps_queue(dev_maps, tci, index); 2436 if (!netif_attr_test_mask(j, mask, nr_ids) || 2437 !netif_attr_test_online(j, online_mask, nr_ids)) 2438 active |= remove_xps_queue(dev_maps, tci, index); 2439 for (i = num_tc - tc, tci++; --i; tci++) 2440 active |= remove_xps_queue(dev_maps, tci, index); 2441 } 2442 2443 /* free map if not active */ 2444 if (!active) { 2445 if (is_rxqs_map) 2446 RCU_INIT_POINTER(dev->xps_rxqs_map, NULL); 2447 else 2448 RCU_INIT_POINTER(dev->xps_cpus_map, NULL); 2449 kfree_rcu(dev_maps, rcu); 2450 } 2451 2452 out_no_maps: 2453 mutex_unlock(&xps_map_mutex); 2454 2455 return 0; 2456 error: 2457 /* remove any maps that we added */ 2458 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids), 2459 j < nr_ids;) { 2460 for (i = num_tc, tci = j * num_tc; i--; tci++) { 2461 new_map = xmap_dereference(new_dev_maps->attr_map[tci]); 2462 map = dev_maps ? 2463 xmap_dereference(dev_maps->attr_map[tci]) : 2464 NULL; 2465 if (new_map && new_map != map) 2466 kfree(new_map); 2467 } 2468 } 2469 2470 mutex_unlock(&xps_map_mutex); 2471 2472 kfree(new_dev_maps); 2473 return -ENOMEM; 2474 } 2475 EXPORT_SYMBOL_GPL(__netif_set_xps_queue); 2476 2477 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 2478 u16 index) 2479 { 2480 int ret; 2481 2482 cpus_read_lock(); 2483 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, false); 2484 cpus_read_unlock(); 2485 2486 return ret; 2487 } 2488 EXPORT_SYMBOL(netif_set_xps_queue); 2489 2490 #endif 2491 static void netdev_unbind_all_sb_channels(struct net_device *dev) 2492 { 2493 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues]; 2494 2495 /* Unbind any subordinate channels */ 2496 while (txq-- != &dev->_tx[0]) { 2497 if (txq->sb_dev) 2498 netdev_unbind_sb_channel(dev, txq->sb_dev); 2499 } 2500 } 2501 2502 void netdev_reset_tc(struct net_device *dev) 2503 { 2504 #ifdef CONFIG_XPS 2505 netif_reset_xps_queues_gt(dev, 0); 2506 #endif 2507 netdev_unbind_all_sb_channels(dev); 2508 2509 /* Reset TC configuration of device */ 2510 dev->num_tc = 0; 2511 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq)); 2512 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map)); 2513 } 2514 EXPORT_SYMBOL(netdev_reset_tc); 2515 2516 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset) 2517 { 2518 if (tc >= dev->num_tc) 2519 return -EINVAL; 2520 2521 #ifdef CONFIG_XPS 2522 netif_reset_xps_queues(dev, offset, count); 2523 #endif 2524 dev->tc_to_txq[tc].count = count; 2525 dev->tc_to_txq[tc].offset = offset; 2526 return 0; 2527 } 2528 EXPORT_SYMBOL(netdev_set_tc_queue); 2529 2530 int netdev_set_num_tc(struct net_device *dev, u8 num_tc) 2531 { 2532 if (num_tc > TC_MAX_QUEUE) 2533 return -EINVAL; 2534 2535 #ifdef CONFIG_XPS 2536 netif_reset_xps_queues_gt(dev, 0); 2537 #endif 2538 netdev_unbind_all_sb_channels(dev); 2539 2540 dev->num_tc = num_tc; 2541 return 0; 2542 } 2543 EXPORT_SYMBOL(netdev_set_num_tc); 2544 2545 void netdev_unbind_sb_channel(struct net_device *dev, 2546 struct net_device *sb_dev) 2547 { 2548 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues]; 2549 2550 #ifdef CONFIG_XPS 2551 netif_reset_xps_queues_gt(sb_dev, 0); 2552 #endif 2553 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq)); 2554 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map)); 2555 2556 while (txq-- != &dev->_tx[0]) { 2557 if (txq->sb_dev == sb_dev) 2558 txq->sb_dev = NULL; 2559 } 2560 } 2561 EXPORT_SYMBOL(netdev_unbind_sb_channel); 2562 2563 int netdev_bind_sb_channel_queue(struct net_device *dev, 2564 struct net_device *sb_dev, 2565 u8 tc, u16 count, u16 offset) 2566 { 2567 /* Make certain the sb_dev and dev are already configured */ 2568 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc) 2569 return -EINVAL; 2570 2571 /* We cannot hand out queues we don't have */ 2572 if ((offset + count) > dev->real_num_tx_queues) 2573 return -EINVAL; 2574 2575 /* Record the mapping */ 2576 sb_dev->tc_to_txq[tc].count = count; 2577 sb_dev->tc_to_txq[tc].offset = offset; 2578 2579 /* Provide a way for Tx queue to find the tc_to_txq map or 2580 * XPS map for itself. 2581 */ 2582 while (count--) 2583 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev; 2584 2585 return 0; 2586 } 2587 EXPORT_SYMBOL(netdev_bind_sb_channel_queue); 2588 2589 int netdev_set_sb_channel(struct net_device *dev, u16 channel) 2590 { 2591 /* Do not use a multiqueue device to represent a subordinate channel */ 2592 if (netif_is_multiqueue(dev)) 2593 return -ENODEV; 2594 2595 /* We allow channels 1 - 32767 to be used for subordinate channels. 2596 * Channel 0 is meant to be "native" mode and used only to represent 2597 * the main root device. We allow writing 0 to reset the device back 2598 * to normal mode after being used as a subordinate channel. 2599 */ 2600 if (channel > S16_MAX) 2601 return -EINVAL; 2602 2603 dev->num_tc = -channel; 2604 2605 return 0; 2606 } 2607 EXPORT_SYMBOL(netdev_set_sb_channel); 2608 2609 /* 2610 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 2611 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed. 2612 */ 2613 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 2614 { 2615 bool disabling; 2616 int rc; 2617 2618 disabling = txq < dev->real_num_tx_queues; 2619 2620 if (txq < 1 || txq > dev->num_tx_queues) 2621 return -EINVAL; 2622 2623 if (dev->reg_state == NETREG_REGISTERED || 2624 dev->reg_state == NETREG_UNREGISTERING) { 2625 ASSERT_RTNL(); 2626 2627 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 2628 txq); 2629 if (rc) 2630 return rc; 2631 2632 if (dev->num_tc) 2633 netif_setup_tc(dev, txq); 2634 2635 dev->real_num_tx_queues = txq; 2636 2637 if (disabling) { 2638 synchronize_net(); 2639 qdisc_reset_all_tx_gt(dev, txq); 2640 #ifdef CONFIG_XPS 2641 netif_reset_xps_queues_gt(dev, txq); 2642 #endif 2643 } 2644 } else { 2645 dev->real_num_tx_queues = txq; 2646 } 2647 2648 return 0; 2649 } 2650 EXPORT_SYMBOL(netif_set_real_num_tx_queues); 2651 2652 #ifdef CONFIG_SYSFS 2653 /** 2654 * netif_set_real_num_rx_queues - set actual number of RX queues used 2655 * @dev: Network device 2656 * @rxq: Actual number of RX queues 2657 * 2658 * This must be called either with the rtnl_lock held or before 2659 * registration of the net device. Returns 0 on success, or a 2660 * negative error code. If called before registration, it always 2661 * succeeds. 2662 */ 2663 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 2664 { 2665 int rc; 2666 2667 if (rxq < 1 || rxq > dev->num_rx_queues) 2668 return -EINVAL; 2669 2670 if (dev->reg_state == NETREG_REGISTERED) { 2671 ASSERT_RTNL(); 2672 2673 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 2674 rxq); 2675 if (rc) 2676 return rc; 2677 } 2678 2679 dev->real_num_rx_queues = rxq; 2680 return 0; 2681 } 2682 EXPORT_SYMBOL(netif_set_real_num_rx_queues); 2683 #endif 2684 2685 /** 2686 * netif_get_num_default_rss_queues - default number of RSS queues 2687 * 2688 * This routine should set an upper limit on the number of RSS queues 2689 * used by default by multiqueue devices. 2690 */ 2691 int netif_get_num_default_rss_queues(void) 2692 { 2693 return is_kdump_kernel() ? 2694 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus()); 2695 } 2696 EXPORT_SYMBOL(netif_get_num_default_rss_queues); 2697 2698 static void __netif_reschedule(struct Qdisc *q) 2699 { 2700 struct softnet_data *sd; 2701 unsigned long flags; 2702 2703 local_irq_save(flags); 2704 sd = this_cpu_ptr(&softnet_data); 2705 q->next_sched = NULL; 2706 *sd->output_queue_tailp = q; 2707 sd->output_queue_tailp = &q->next_sched; 2708 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2709 local_irq_restore(flags); 2710 } 2711 2712 void __netif_schedule(struct Qdisc *q) 2713 { 2714 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 2715 __netif_reschedule(q); 2716 } 2717 EXPORT_SYMBOL(__netif_schedule); 2718 2719 struct dev_kfree_skb_cb { 2720 enum skb_free_reason reason; 2721 }; 2722 2723 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb) 2724 { 2725 return (struct dev_kfree_skb_cb *)skb->cb; 2726 } 2727 2728 void netif_schedule_queue(struct netdev_queue *txq) 2729 { 2730 rcu_read_lock(); 2731 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) { 2732 struct Qdisc *q = rcu_dereference(txq->qdisc); 2733 2734 __netif_schedule(q); 2735 } 2736 rcu_read_unlock(); 2737 } 2738 EXPORT_SYMBOL(netif_schedule_queue); 2739 2740 void netif_tx_wake_queue(struct netdev_queue *dev_queue) 2741 { 2742 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) { 2743 struct Qdisc *q; 2744 2745 rcu_read_lock(); 2746 q = rcu_dereference(dev_queue->qdisc); 2747 __netif_schedule(q); 2748 rcu_read_unlock(); 2749 } 2750 } 2751 EXPORT_SYMBOL(netif_tx_wake_queue); 2752 2753 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason) 2754 { 2755 unsigned long flags; 2756 2757 if (unlikely(!skb)) 2758 return; 2759 2760 if (likely(refcount_read(&skb->users) == 1)) { 2761 smp_rmb(); 2762 refcount_set(&skb->users, 0); 2763 } else if (likely(!refcount_dec_and_test(&skb->users))) { 2764 return; 2765 } 2766 get_kfree_skb_cb(skb)->reason = reason; 2767 local_irq_save(flags); 2768 skb->next = __this_cpu_read(softnet_data.completion_queue); 2769 __this_cpu_write(softnet_data.completion_queue, skb); 2770 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2771 local_irq_restore(flags); 2772 } 2773 EXPORT_SYMBOL(__dev_kfree_skb_irq); 2774 2775 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason) 2776 { 2777 if (in_irq() || irqs_disabled()) 2778 __dev_kfree_skb_irq(skb, reason); 2779 else 2780 dev_kfree_skb(skb); 2781 } 2782 EXPORT_SYMBOL(__dev_kfree_skb_any); 2783 2784 2785 /** 2786 * netif_device_detach - mark device as removed 2787 * @dev: network device 2788 * 2789 * Mark device as removed from system and therefore no longer available. 2790 */ 2791 void netif_device_detach(struct net_device *dev) 2792 { 2793 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 2794 netif_running(dev)) { 2795 netif_tx_stop_all_queues(dev); 2796 } 2797 } 2798 EXPORT_SYMBOL(netif_device_detach); 2799 2800 /** 2801 * netif_device_attach - mark device as attached 2802 * @dev: network device 2803 * 2804 * Mark device as attached from system and restart if needed. 2805 */ 2806 void netif_device_attach(struct net_device *dev) 2807 { 2808 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 2809 netif_running(dev)) { 2810 netif_tx_wake_all_queues(dev); 2811 __netdev_watchdog_up(dev); 2812 } 2813 } 2814 EXPORT_SYMBOL(netif_device_attach); 2815 2816 /* 2817 * Returns a Tx hash based on the given packet descriptor a Tx queues' number 2818 * to be used as a distribution range. 2819 */ 2820 static u16 skb_tx_hash(const struct net_device *dev, 2821 const struct net_device *sb_dev, 2822 struct sk_buff *skb) 2823 { 2824 u32 hash; 2825 u16 qoffset = 0; 2826 u16 qcount = dev->real_num_tx_queues; 2827 2828 if (dev->num_tc) { 2829 u8 tc = netdev_get_prio_tc_map(dev, skb->priority); 2830 2831 qoffset = sb_dev->tc_to_txq[tc].offset; 2832 qcount = sb_dev->tc_to_txq[tc].count; 2833 } 2834 2835 if (skb_rx_queue_recorded(skb)) { 2836 hash = skb_get_rx_queue(skb); 2837 while (unlikely(hash >= qcount)) 2838 hash -= qcount; 2839 return hash + qoffset; 2840 } 2841 2842 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset; 2843 } 2844 2845 static void skb_warn_bad_offload(const struct sk_buff *skb) 2846 { 2847 static const netdev_features_t null_features; 2848 struct net_device *dev = skb->dev; 2849 const char *name = ""; 2850 2851 if (!net_ratelimit()) 2852 return; 2853 2854 if (dev) { 2855 if (dev->dev.parent) 2856 name = dev_driver_string(dev->dev.parent); 2857 else 2858 name = netdev_name(dev); 2859 } 2860 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d " 2861 "gso_type=%d ip_summed=%d\n", 2862 name, dev ? &dev->features : &null_features, 2863 skb->sk ? &skb->sk->sk_route_caps : &null_features, 2864 skb->len, skb->data_len, skb_shinfo(skb)->gso_size, 2865 skb_shinfo(skb)->gso_type, skb->ip_summed); 2866 } 2867 2868 /* 2869 * Invalidate hardware checksum when packet is to be mangled, and 2870 * complete checksum manually on outgoing path. 2871 */ 2872 int skb_checksum_help(struct sk_buff *skb) 2873 { 2874 __wsum csum; 2875 int ret = 0, offset; 2876 2877 if (skb->ip_summed == CHECKSUM_COMPLETE) 2878 goto out_set_summed; 2879 2880 if (unlikely(skb_shinfo(skb)->gso_size)) { 2881 skb_warn_bad_offload(skb); 2882 return -EINVAL; 2883 } 2884 2885 /* Before computing a checksum, we should make sure no frag could 2886 * be modified by an external entity : checksum could be wrong. 2887 */ 2888 if (skb_has_shared_frag(skb)) { 2889 ret = __skb_linearize(skb); 2890 if (ret) 2891 goto out; 2892 } 2893 2894 offset = skb_checksum_start_offset(skb); 2895 BUG_ON(offset >= skb_headlen(skb)); 2896 csum = skb_checksum(skb, offset, skb->len - offset, 0); 2897 2898 offset += skb->csum_offset; 2899 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 2900 2901 if (skb_cloned(skb) && 2902 !skb_clone_writable(skb, offset + sizeof(__sum16))) { 2903 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2904 if (ret) 2905 goto out; 2906 } 2907 2908 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0; 2909 out_set_summed: 2910 skb->ip_summed = CHECKSUM_NONE; 2911 out: 2912 return ret; 2913 } 2914 EXPORT_SYMBOL(skb_checksum_help); 2915 2916 int skb_crc32c_csum_help(struct sk_buff *skb) 2917 { 2918 __le32 crc32c_csum; 2919 int ret = 0, offset, start; 2920 2921 if (skb->ip_summed != CHECKSUM_PARTIAL) 2922 goto out; 2923 2924 if (unlikely(skb_is_gso(skb))) 2925 goto out; 2926 2927 /* Before computing a checksum, we should make sure no frag could 2928 * be modified by an external entity : checksum could be wrong. 2929 */ 2930 if (unlikely(skb_has_shared_frag(skb))) { 2931 ret = __skb_linearize(skb); 2932 if (ret) 2933 goto out; 2934 } 2935 start = skb_checksum_start_offset(skb); 2936 offset = start + offsetof(struct sctphdr, checksum); 2937 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) { 2938 ret = -EINVAL; 2939 goto out; 2940 } 2941 if (skb_cloned(skb) && 2942 !skb_clone_writable(skb, offset + sizeof(__le32))) { 2943 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2944 if (ret) 2945 goto out; 2946 } 2947 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start, 2948 skb->len - start, ~(__u32)0, 2949 crc32c_csum_stub)); 2950 *(__le32 *)(skb->data + offset) = crc32c_csum; 2951 skb->ip_summed = CHECKSUM_NONE; 2952 skb->csum_not_inet = 0; 2953 out: 2954 return ret; 2955 } 2956 2957 __be16 skb_network_protocol(struct sk_buff *skb, int *depth) 2958 { 2959 __be16 type = skb->protocol; 2960 2961 /* Tunnel gso handlers can set protocol to ethernet. */ 2962 if (type == htons(ETH_P_TEB)) { 2963 struct ethhdr *eth; 2964 2965 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr)))) 2966 return 0; 2967 2968 eth = (struct ethhdr *)skb->data; 2969 type = eth->h_proto; 2970 } 2971 2972 return __vlan_get_protocol(skb, type, depth); 2973 } 2974 2975 /** 2976 * skb_mac_gso_segment - mac layer segmentation handler. 2977 * @skb: buffer to segment 2978 * @features: features for the output path (see dev->features) 2979 */ 2980 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 2981 netdev_features_t features) 2982 { 2983 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 2984 struct packet_offload *ptype; 2985 int vlan_depth = skb->mac_len; 2986 __be16 type = skb_network_protocol(skb, &vlan_depth); 2987 2988 if (unlikely(!type)) 2989 return ERR_PTR(-EINVAL); 2990 2991 __skb_pull(skb, vlan_depth); 2992 2993 rcu_read_lock(); 2994 list_for_each_entry_rcu(ptype, &offload_base, list) { 2995 if (ptype->type == type && ptype->callbacks.gso_segment) { 2996 segs = ptype->callbacks.gso_segment(skb, features); 2997 break; 2998 } 2999 } 3000 rcu_read_unlock(); 3001 3002 __skb_push(skb, skb->data - skb_mac_header(skb)); 3003 3004 return segs; 3005 } 3006 EXPORT_SYMBOL(skb_mac_gso_segment); 3007 3008 3009 /* openvswitch calls this on rx path, so we need a different check. 3010 */ 3011 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path) 3012 { 3013 if (tx_path) 3014 return skb->ip_summed != CHECKSUM_PARTIAL && 3015 skb->ip_summed != CHECKSUM_UNNECESSARY; 3016 3017 return skb->ip_summed == CHECKSUM_NONE; 3018 } 3019 3020 /** 3021 * __skb_gso_segment - Perform segmentation on skb. 3022 * @skb: buffer to segment 3023 * @features: features for the output path (see dev->features) 3024 * @tx_path: whether it is called in TX path 3025 * 3026 * This function segments the given skb and returns a list of segments. 3027 * 3028 * It may return NULL if the skb requires no segmentation. This is 3029 * only possible when GSO is used for verifying header integrity. 3030 * 3031 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb. 3032 */ 3033 struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 3034 netdev_features_t features, bool tx_path) 3035 { 3036 struct sk_buff *segs; 3037 3038 if (unlikely(skb_needs_check(skb, tx_path))) { 3039 int err; 3040 3041 /* We're going to init ->check field in TCP or UDP header */ 3042 err = skb_cow_head(skb, 0); 3043 if (err < 0) 3044 return ERR_PTR(err); 3045 } 3046 3047 /* Only report GSO partial support if it will enable us to 3048 * support segmentation on this frame without needing additional 3049 * work. 3050 */ 3051 if (features & NETIF_F_GSO_PARTIAL) { 3052 netdev_features_t partial_features = NETIF_F_GSO_ROBUST; 3053 struct net_device *dev = skb->dev; 3054 3055 partial_features |= dev->features & dev->gso_partial_features; 3056 if (!skb_gso_ok(skb, features | partial_features)) 3057 features &= ~NETIF_F_GSO_PARTIAL; 3058 } 3059 3060 BUILD_BUG_ON(SKB_SGO_CB_OFFSET + 3061 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb)); 3062 3063 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb); 3064 SKB_GSO_CB(skb)->encap_level = 0; 3065 3066 skb_reset_mac_header(skb); 3067 skb_reset_mac_len(skb); 3068 3069 segs = skb_mac_gso_segment(skb, features); 3070 3071 if (unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs))) 3072 skb_warn_bad_offload(skb); 3073 3074 return segs; 3075 } 3076 EXPORT_SYMBOL(__skb_gso_segment); 3077 3078 /* Take action when hardware reception checksum errors are detected. */ 3079 #ifdef CONFIG_BUG 3080 void netdev_rx_csum_fault(struct net_device *dev) 3081 { 3082 if (net_ratelimit()) { 3083 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>"); 3084 dump_stack(); 3085 } 3086 } 3087 EXPORT_SYMBOL(netdev_rx_csum_fault); 3088 #endif 3089 3090 /* XXX: check that highmem exists at all on the given machine. */ 3091 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 3092 { 3093 #ifdef CONFIG_HIGHMEM 3094 int i; 3095 3096 if (!(dev->features & NETIF_F_HIGHDMA)) { 3097 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3098 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3099 3100 if (PageHighMem(skb_frag_page(frag))) 3101 return 1; 3102 } 3103 } 3104 #endif 3105 return 0; 3106 } 3107 3108 /* If MPLS offload request, verify we are testing hardware MPLS features 3109 * instead of standard features for the netdev. 3110 */ 3111 #if IS_ENABLED(CONFIG_NET_MPLS_GSO) 3112 static netdev_features_t net_mpls_features(struct sk_buff *skb, 3113 netdev_features_t features, 3114 __be16 type) 3115 { 3116 if (eth_p_mpls(type)) 3117 features &= skb->dev->mpls_features; 3118 3119 return features; 3120 } 3121 #else 3122 static netdev_features_t net_mpls_features(struct sk_buff *skb, 3123 netdev_features_t features, 3124 __be16 type) 3125 { 3126 return features; 3127 } 3128 #endif 3129 3130 static netdev_features_t harmonize_features(struct sk_buff *skb, 3131 netdev_features_t features) 3132 { 3133 int tmp; 3134 __be16 type; 3135 3136 type = skb_network_protocol(skb, &tmp); 3137 features = net_mpls_features(skb, features, type); 3138 3139 if (skb->ip_summed != CHECKSUM_NONE && 3140 !can_checksum_protocol(features, type)) { 3141 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 3142 } 3143 if (illegal_highdma(skb->dev, skb)) 3144 features &= ~NETIF_F_SG; 3145 3146 return features; 3147 } 3148 3149 netdev_features_t passthru_features_check(struct sk_buff *skb, 3150 struct net_device *dev, 3151 netdev_features_t features) 3152 { 3153 return features; 3154 } 3155 EXPORT_SYMBOL(passthru_features_check); 3156 3157 static netdev_features_t dflt_features_check(struct sk_buff *skb, 3158 struct net_device *dev, 3159 netdev_features_t features) 3160 { 3161 return vlan_features_check(skb, features); 3162 } 3163 3164 static netdev_features_t gso_features_check(const struct sk_buff *skb, 3165 struct net_device *dev, 3166 netdev_features_t features) 3167 { 3168 u16 gso_segs = skb_shinfo(skb)->gso_segs; 3169 3170 if (gso_segs > dev->gso_max_segs) 3171 return features & ~NETIF_F_GSO_MASK; 3172 3173 /* Support for GSO partial features requires software 3174 * intervention before we can actually process the packets 3175 * so we need to strip support for any partial features now 3176 * and we can pull them back in after we have partially 3177 * segmented the frame. 3178 */ 3179 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL)) 3180 features &= ~dev->gso_partial_features; 3181 3182 /* Make sure to clear the IPv4 ID mangling feature if the 3183 * IPv4 header has the potential to be fragmented. 3184 */ 3185 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) { 3186 struct iphdr *iph = skb->encapsulation ? 3187 inner_ip_hdr(skb) : ip_hdr(skb); 3188 3189 if (!(iph->frag_off & htons(IP_DF))) 3190 features &= ~NETIF_F_TSO_MANGLEID; 3191 } 3192 3193 return features; 3194 } 3195 3196 netdev_features_t netif_skb_features(struct sk_buff *skb) 3197 { 3198 struct net_device *dev = skb->dev; 3199 netdev_features_t features = dev->features; 3200 3201 if (skb_is_gso(skb)) 3202 features = gso_features_check(skb, dev, features); 3203 3204 /* If encapsulation offload request, verify we are testing 3205 * hardware encapsulation features instead of standard 3206 * features for the netdev 3207 */ 3208 if (skb->encapsulation) 3209 features &= dev->hw_enc_features; 3210 3211 if (skb_vlan_tagged(skb)) 3212 features = netdev_intersect_features(features, 3213 dev->vlan_features | 3214 NETIF_F_HW_VLAN_CTAG_TX | 3215 NETIF_F_HW_VLAN_STAG_TX); 3216 3217 if (dev->netdev_ops->ndo_features_check) 3218 features &= dev->netdev_ops->ndo_features_check(skb, dev, 3219 features); 3220 else 3221 features &= dflt_features_check(skb, dev, features); 3222 3223 return harmonize_features(skb, features); 3224 } 3225 EXPORT_SYMBOL(netif_skb_features); 3226 3227 static int xmit_one(struct sk_buff *skb, struct net_device *dev, 3228 struct netdev_queue *txq, bool more) 3229 { 3230 unsigned int len; 3231 int rc; 3232 3233 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all)) 3234 dev_queue_xmit_nit(skb, dev); 3235 3236 len = skb->len; 3237 trace_net_dev_start_xmit(skb, dev); 3238 rc = netdev_start_xmit(skb, dev, txq, more); 3239 trace_net_dev_xmit(skb, rc, dev, len); 3240 3241 return rc; 3242 } 3243 3244 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev, 3245 struct netdev_queue *txq, int *ret) 3246 { 3247 struct sk_buff *skb = first; 3248 int rc = NETDEV_TX_OK; 3249 3250 while (skb) { 3251 struct sk_buff *next = skb->next; 3252 3253 skb->next = NULL; 3254 rc = xmit_one(skb, dev, txq, next != NULL); 3255 if (unlikely(!dev_xmit_complete(rc))) { 3256 skb->next = next; 3257 goto out; 3258 } 3259 3260 skb = next; 3261 if (netif_xmit_stopped(txq) && skb) { 3262 rc = NETDEV_TX_BUSY; 3263 break; 3264 } 3265 } 3266 3267 out: 3268 *ret = rc; 3269 return skb; 3270 } 3271 3272 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb, 3273 netdev_features_t features) 3274 { 3275 if (skb_vlan_tag_present(skb) && 3276 !vlan_hw_offload_capable(features, skb->vlan_proto)) 3277 skb = __vlan_hwaccel_push_inside(skb); 3278 return skb; 3279 } 3280 3281 int skb_csum_hwoffload_help(struct sk_buff *skb, 3282 const netdev_features_t features) 3283 { 3284 if (unlikely(skb->csum_not_inet)) 3285 return !!(features & NETIF_F_SCTP_CRC) ? 0 : 3286 skb_crc32c_csum_help(skb); 3287 3288 return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb); 3289 } 3290 EXPORT_SYMBOL(skb_csum_hwoffload_help); 3291 3292 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again) 3293 { 3294 netdev_features_t features; 3295 3296 features = netif_skb_features(skb); 3297 skb = validate_xmit_vlan(skb, features); 3298 if (unlikely(!skb)) 3299 goto out_null; 3300 3301 skb = sk_validate_xmit_skb(skb, dev); 3302 if (unlikely(!skb)) 3303 goto out_null; 3304 3305 if (netif_needs_gso(skb, features)) { 3306 struct sk_buff *segs; 3307 3308 segs = skb_gso_segment(skb, features); 3309 if (IS_ERR(segs)) { 3310 goto out_kfree_skb; 3311 } else if (segs) { 3312 consume_skb(skb); 3313 skb = segs; 3314 } 3315 } else { 3316 if (skb_needs_linearize(skb, features) && 3317 __skb_linearize(skb)) 3318 goto out_kfree_skb; 3319 3320 /* If packet is not checksummed and device does not 3321 * support checksumming for this protocol, complete 3322 * checksumming here. 3323 */ 3324 if (skb->ip_summed == CHECKSUM_PARTIAL) { 3325 if (skb->encapsulation) 3326 skb_set_inner_transport_header(skb, 3327 skb_checksum_start_offset(skb)); 3328 else 3329 skb_set_transport_header(skb, 3330 skb_checksum_start_offset(skb)); 3331 if (skb_csum_hwoffload_help(skb, features)) 3332 goto out_kfree_skb; 3333 } 3334 } 3335 3336 skb = validate_xmit_xfrm(skb, features, again); 3337 3338 return skb; 3339 3340 out_kfree_skb: 3341 kfree_skb(skb); 3342 out_null: 3343 atomic_long_inc(&dev->tx_dropped); 3344 return NULL; 3345 } 3346 3347 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again) 3348 { 3349 struct sk_buff *next, *head = NULL, *tail; 3350 3351 for (; skb != NULL; skb = next) { 3352 next = skb->next; 3353 skb->next = NULL; 3354 3355 /* in case skb wont be segmented, point to itself */ 3356 skb->prev = skb; 3357 3358 skb = validate_xmit_skb(skb, dev, again); 3359 if (!skb) 3360 continue; 3361 3362 if (!head) 3363 head = skb; 3364 else 3365 tail->next = skb; 3366 /* If skb was segmented, skb->prev points to 3367 * the last segment. If not, it still contains skb. 3368 */ 3369 tail = skb->prev; 3370 } 3371 return head; 3372 } 3373 EXPORT_SYMBOL_GPL(validate_xmit_skb_list); 3374 3375 static void qdisc_pkt_len_init(struct sk_buff *skb) 3376 { 3377 const struct skb_shared_info *shinfo = skb_shinfo(skb); 3378 3379 qdisc_skb_cb(skb)->pkt_len = skb->len; 3380 3381 /* To get more precise estimation of bytes sent on wire, 3382 * we add to pkt_len the headers size of all segments 3383 */ 3384 if (shinfo->gso_size) { 3385 unsigned int hdr_len; 3386 u16 gso_segs = shinfo->gso_segs; 3387 3388 /* mac layer + network layer */ 3389 hdr_len = skb_transport_header(skb) - skb_mac_header(skb); 3390 3391 /* + transport layer */ 3392 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) { 3393 const struct tcphdr *th; 3394 struct tcphdr _tcphdr; 3395 3396 th = skb_header_pointer(skb, skb_transport_offset(skb), 3397 sizeof(_tcphdr), &_tcphdr); 3398 if (likely(th)) 3399 hdr_len += __tcp_hdrlen(th); 3400 } else { 3401 struct udphdr _udphdr; 3402 3403 if (skb_header_pointer(skb, skb_transport_offset(skb), 3404 sizeof(_udphdr), &_udphdr)) 3405 hdr_len += sizeof(struct udphdr); 3406 } 3407 3408 if (shinfo->gso_type & SKB_GSO_DODGY) 3409 gso_segs = DIV_ROUND_UP(skb->len - hdr_len, 3410 shinfo->gso_size); 3411 3412 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len; 3413 } 3414 } 3415 3416 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 3417 struct net_device *dev, 3418 struct netdev_queue *txq) 3419 { 3420 spinlock_t *root_lock = qdisc_lock(q); 3421 struct sk_buff *to_free = NULL; 3422 bool contended; 3423 int rc; 3424 3425 qdisc_calculate_pkt_len(skb, q); 3426 3427 if (q->flags & TCQ_F_NOLOCK) { 3428 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 3429 __qdisc_drop(skb, &to_free); 3430 rc = NET_XMIT_DROP; 3431 } else { 3432 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK; 3433 qdisc_run(q); 3434 } 3435 3436 if (unlikely(to_free)) 3437 kfree_skb_list(to_free); 3438 return rc; 3439 } 3440 3441 /* 3442 * Heuristic to force contended enqueues to serialize on a 3443 * separate lock before trying to get qdisc main lock. 3444 * This permits qdisc->running owner to get the lock more 3445 * often and dequeue packets faster. 3446 */ 3447 contended = qdisc_is_running(q); 3448 if (unlikely(contended)) 3449 spin_lock(&q->busylock); 3450 3451 spin_lock(root_lock); 3452 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 3453 __qdisc_drop(skb, &to_free); 3454 rc = NET_XMIT_DROP; 3455 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 3456 qdisc_run_begin(q)) { 3457 /* 3458 * This is a work-conserving queue; there are no old skbs 3459 * waiting to be sent out; and the qdisc is not running - 3460 * xmit the skb directly. 3461 */ 3462 3463 qdisc_bstats_update(q, skb); 3464 3465 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) { 3466 if (unlikely(contended)) { 3467 spin_unlock(&q->busylock); 3468 contended = false; 3469 } 3470 __qdisc_run(q); 3471 } 3472 3473 qdisc_run_end(q); 3474 rc = NET_XMIT_SUCCESS; 3475 } else { 3476 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK; 3477 if (qdisc_run_begin(q)) { 3478 if (unlikely(contended)) { 3479 spin_unlock(&q->busylock); 3480 contended = false; 3481 } 3482 __qdisc_run(q); 3483 qdisc_run_end(q); 3484 } 3485 } 3486 spin_unlock(root_lock); 3487 if (unlikely(to_free)) 3488 kfree_skb_list(to_free); 3489 if (unlikely(contended)) 3490 spin_unlock(&q->busylock); 3491 return rc; 3492 } 3493 3494 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 3495 static void skb_update_prio(struct sk_buff *skb) 3496 { 3497 const struct netprio_map *map; 3498 const struct sock *sk; 3499 unsigned int prioidx; 3500 3501 if (skb->priority) 3502 return; 3503 map = rcu_dereference_bh(skb->dev->priomap); 3504 if (!map) 3505 return; 3506 sk = skb_to_full_sk(skb); 3507 if (!sk) 3508 return; 3509 3510 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data); 3511 3512 if (prioidx < map->priomap_len) 3513 skb->priority = map->priomap[prioidx]; 3514 } 3515 #else 3516 #define skb_update_prio(skb) 3517 #endif 3518 3519 DEFINE_PER_CPU(int, xmit_recursion); 3520 EXPORT_SYMBOL(xmit_recursion); 3521 3522 /** 3523 * dev_loopback_xmit - loop back @skb 3524 * @net: network namespace this loopback is happening in 3525 * @sk: sk needed to be a netfilter okfn 3526 * @skb: buffer to transmit 3527 */ 3528 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb) 3529 { 3530 skb_reset_mac_header(skb); 3531 __skb_pull(skb, skb_network_offset(skb)); 3532 skb->pkt_type = PACKET_LOOPBACK; 3533 skb->ip_summed = CHECKSUM_UNNECESSARY; 3534 WARN_ON(!skb_dst(skb)); 3535 skb_dst_force(skb); 3536 netif_rx_ni(skb); 3537 return 0; 3538 } 3539 EXPORT_SYMBOL(dev_loopback_xmit); 3540 3541 #ifdef CONFIG_NET_EGRESS 3542 static struct sk_buff * 3543 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev) 3544 { 3545 struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress); 3546 struct tcf_result cl_res; 3547 3548 if (!miniq) 3549 return skb; 3550 3551 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */ 3552 mini_qdisc_bstats_cpu_update(miniq, skb); 3553 3554 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) { 3555 case TC_ACT_OK: 3556 case TC_ACT_RECLASSIFY: 3557 skb->tc_index = TC_H_MIN(cl_res.classid); 3558 break; 3559 case TC_ACT_SHOT: 3560 mini_qdisc_qstats_cpu_drop(miniq); 3561 *ret = NET_XMIT_DROP; 3562 kfree_skb(skb); 3563 return NULL; 3564 case TC_ACT_STOLEN: 3565 case TC_ACT_QUEUED: 3566 case TC_ACT_TRAP: 3567 *ret = NET_XMIT_SUCCESS; 3568 consume_skb(skb); 3569 return NULL; 3570 case TC_ACT_REDIRECT: 3571 /* No need to push/pop skb's mac_header here on egress! */ 3572 skb_do_redirect(skb); 3573 *ret = NET_XMIT_SUCCESS; 3574 return NULL; 3575 default: 3576 break; 3577 } 3578 3579 return skb; 3580 } 3581 #endif /* CONFIG_NET_EGRESS */ 3582 3583 #ifdef CONFIG_XPS 3584 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb, 3585 struct xps_dev_maps *dev_maps, unsigned int tci) 3586 { 3587 struct xps_map *map; 3588 int queue_index = -1; 3589 3590 if (dev->num_tc) { 3591 tci *= dev->num_tc; 3592 tci += netdev_get_prio_tc_map(dev, skb->priority); 3593 } 3594 3595 map = rcu_dereference(dev_maps->attr_map[tci]); 3596 if (map) { 3597 if (map->len == 1) 3598 queue_index = map->queues[0]; 3599 else 3600 queue_index = map->queues[reciprocal_scale( 3601 skb_get_hash(skb), map->len)]; 3602 if (unlikely(queue_index >= dev->real_num_tx_queues)) 3603 queue_index = -1; 3604 } 3605 return queue_index; 3606 } 3607 #endif 3608 3609 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev, 3610 struct sk_buff *skb) 3611 { 3612 #ifdef CONFIG_XPS 3613 struct xps_dev_maps *dev_maps; 3614 struct sock *sk = skb->sk; 3615 int queue_index = -1; 3616 3617 if (!static_key_false(&xps_needed)) 3618 return -1; 3619 3620 rcu_read_lock(); 3621 if (!static_key_false(&xps_rxqs_needed)) 3622 goto get_cpus_map; 3623 3624 dev_maps = rcu_dereference(sb_dev->xps_rxqs_map); 3625 if (dev_maps) { 3626 int tci = sk_rx_queue_get(sk); 3627 3628 if (tci >= 0 && tci < dev->num_rx_queues) 3629 queue_index = __get_xps_queue_idx(dev, skb, dev_maps, 3630 tci); 3631 } 3632 3633 get_cpus_map: 3634 if (queue_index < 0) { 3635 dev_maps = rcu_dereference(sb_dev->xps_cpus_map); 3636 if (dev_maps) { 3637 unsigned int tci = skb->sender_cpu - 1; 3638 3639 queue_index = __get_xps_queue_idx(dev, skb, dev_maps, 3640 tci); 3641 } 3642 } 3643 rcu_read_unlock(); 3644 3645 return queue_index; 3646 #else 3647 return -1; 3648 #endif 3649 } 3650 3651 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb, 3652 struct net_device *sb_dev, 3653 select_queue_fallback_t fallback) 3654 { 3655 return 0; 3656 } 3657 EXPORT_SYMBOL(dev_pick_tx_zero); 3658 3659 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb, 3660 struct net_device *sb_dev, 3661 select_queue_fallback_t fallback) 3662 { 3663 return (u16)raw_smp_processor_id() % dev->real_num_tx_queues; 3664 } 3665 EXPORT_SYMBOL(dev_pick_tx_cpu_id); 3666 3667 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb, 3668 struct net_device *sb_dev) 3669 { 3670 struct sock *sk = skb->sk; 3671 int queue_index = sk_tx_queue_get(sk); 3672 3673 sb_dev = sb_dev ? : dev; 3674 3675 if (queue_index < 0 || skb->ooo_okay || 3676 queue_index >= dev->real_num_tx_queues) { 3677 int new_index = get_xps_queue(dev, sb_dev, skb); 3678 3679 if (new_index < 0) 3680 new_index = skb_tx_hash(dev, sb_dev, skb); 3681 3682 if (queue_index != new_index && sk && 3683 sk_fullsock(sk) && 3684 rcu_access_pointer(sk->sk_dst_cache)) 3685 sk_tx_queue_set(sk, new_index); 3686 3687 queue_index = new_index; 3688 } 3689 3690 return queue_index; 3691 } 3692 3693 struct netdev_queue *netdev_pick_tx(struct net_device *dev, 3694 struct sk_buff *skb, 3695 struct net_device *sb_dev) 3696 { 3697 int queue_index = 0; 3698 3699 #ifdef CONFIG_XPS 3700 u32 sender_cpu = skb->sender_cpu - 1; 3701 3702 if (sender_cpu >= (u32)NR_CPUS) 3703 skb->sender_cpu = raw_smp_processor_id() + 1; 3704 #endif 3705 3706 if (dev->real_num_tx_queues != 1) { 3707 const struct net_device_ops *ops = dev->netdev_ops; 3708 3709 if (ops->ndo_select_queue) 3710 queue_index = ops->ndo_select_queue(dev, skb, sb_dev, 3711 __netdev_pick_tx); 3712 else 3713 queue_index = __netdev_pick_tx(dev, skb, sb_dev); 3714 3715 queue_index = netdev_cap_txqueue(dev, queue_index); 3716 } 3717 3718 skb_set_queue_mapping(skb, queue_index); 3719 return netdev_get_tx_queue(dev, queue_index); 3720 } 3721 3722 /** 3723 * __dev_queue_xmit - transmit a buffer 3724 * @skb: buffer to transmit 3725 * @sb_dev: suboordinate device used for L2 forwarding offload 3726 * 3727 * Queue a buffer for transmission to a network device. The caller must 3728 * have set the device and priority and built the buffer before calling 3729 * this function. The function can be called from an interrupt. 3730 * 3731 * A negative errno code is returned on a failure. A success does not 3732 * guarantee the frame will be transmitted as it may be dropped due 3733 * to congestion or traffic shaping. 3734 * 3735 * ----------------------------------------------------------------------------------- 3736 * I notice this method can also return errors from the queue disciplines, 3737 * including NET_XMIT_DROP, which is a positive value. So, errors can also 3738 * be positive. 3739 * 3740 * Regardless of the return value, the skb is consumed, so it is currently 3741 * difficult to retry a send to this method. (You can bump the ref count 3742 * before sending to hold a reference for retry if you are careful.) 3743 * 3744 * When calling this method, interrupts MUST be enabled. This is because 3745 * the BH enable code must have IRQs enabled so that it will not deadlock. 3746 * --BLG 3747 */ 3748 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev) 3749 { 3750 struct net_device *dev = skb->dev; 3751 struct netdev_queue *txq; 3752 struct Qdisc *q; 3753 int rc = -ENOMEM; 3754 bool again = false; 3755 3756 skb_reset_mac_header(skb); 3757 3758 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP)) 3759 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED); 3760 3761 /* Disable soft irqs for various locks below. Also 3762 * stops preemption for RCU. 3763 */ 3764 rcu_read_lock_bh(); 3765 3766 skb_update_prio(skb); 3767 3768 qdisc_pkt_len_init(skb); 3769 #ifdef CONFIG_NET_CLS_ACT 3770 skb->tc_at_ingress = 0; 3771 # ifdef CONFIG_NET_EGRESS 3772 if (static_branch_unlikely(&egress_needed_key)) { 3773 skb = sch_handle_egress(skb, &rc, dev); 3774 if (!skb) 3775 goto out; 3776 } 3777 # endif 3778 #endif 3779 /* If device/qdisc don't need skb->dst, release it right now while 3780 * its hot in this cpu cache. 3781 */ 3782 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 3783 skb_dst_drop(skb); 3784 else 3785 skb_dst_force(skb); 3786 3787 txq = netdev_pick_tx(dev, skb, sb_dev); 3788 q = rcu_dereference_bh(txq->qdisc); 3789 3790 trace_net_dev_queue(skb); 3791 if (q->enqueue) { 3792 rc = __dev_xmit_skb(skb, q, dev, txq); 3793 goto out; 3794 } 3795 3796 /* The device has no queue. Common case for software devices: 3797 * loopback, all the sorts of tunnels... 3798 3799 * Really, it is unlikely that netif_tx_lock protection is necessary 3800 * here. (f.e. loopback and IP tunnels are clean ignoring statistics 3801 * counters.) 3802 * However, it is possible, that they rely on protection 3803 * made by us here. 3804 3805 * Check this and shot the lock. It is not prone from deadlocks. 3806 *Either shot noqueue qdisc, it is even simpler 8) 3807 */ 3808 if (dev->flags & IFF_UP) { 3809 int cpu = smp_processor_id(); /* ok because BHs are off */ 3810 3811 if (txq->xmit_lock_owner != cpu) { 3812 if (unlikely(__this_cpu_read(xmit_recursion) > 3813 XMIT_RECURSION_LIMIT)) 3814 goto recursion_alert; 3815 3816 skb = validate_xmit_skb(skb, dev, &again); 3817 if (!skb) 3818 goto out; 3819 3820 HARD_TX_LOCK(dev, txq, cpu); 3821 3822 if (!netif_xmit_stopped(txq)) { 3823 __this_cpu_inc(xmit_recursion); 3824 skb = dev_hard_start_xmit(skb, dev, txq, &rc); 3825 __this_cpu_dec(xmit_recursion); 3826 if (dev_xmit_complete(rc)) { 3827 HARD_TX_UNLOCK(dev, txq); 3828 goto out; 3829 } 3830 } 3831 HARD_TX_UNLOCK(dev, txq); 3832 net_crit_ratelimited("Virtual device %s asks to queue packet!\n", 3833 dev->name); 3834 } else { 3835 /* Recursion is detected! It is possible, 3836 * unfortunately 3837 */ 3838 recursion_alert: 3839 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n", 3840 dev->name); 3841 } 3842 } 3843 3844 rc = -ENETDOWN; 3845 rcu_read_unlock_bh(); 3846 3847 atomic_long_inc(&dev->tx_dropped); 3848 kfree_skb_list(skb); 3849 return rc; 3850 out: 3851 rcu_read_unlock_bh(); 3852 return rc; 3853 } 3854 3855 int dev_queue_xmit(struct sk_buff *skb) 3856 { 3857 return __dev_queue_xmit(skb, NULL); 3858 } 3859 EXPORT_SYMBOL(dev_queue_xmit); 3860 3861 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev) 3862 { 3863 return __dev_queue_xmit(skb, sb_dev); 3864 } 3865 EXPORT_SYMBOL(dev_queue_xmit_accel); 3866 3867 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id) 3868 { 3869 struct net_device *dev = skb->dev; 3870 struct sk_buff *orig_skb = skb; 3871 struct netdev_queue *txq; 3872 int ret = NETDEV_TX_BUSY; 3873 bool again = false; 3874 3875 if (unlikely(!netif_running(dev) || 3876 !netif_carrier_ok(dev))) 3877 goto drop; 3878 3879 skb = validate_xmit_skb_list(skb, dev, &again); 3880 if (skb != orig_skb) 3881 goto drop; 3882 3883 skb_set_queue_mapping(skb, queue_id); 3884 txq = skb_get_tx_queue(dev, skb); 3885 3886 local_bh_disable(); 3887 3888 HARD_TX_LOCK(dev, txq, smp_processor_id()); 3889 if (!netif_xmit_frozen_or_drv_stopped(txq)) 3890 ret = netdev_start_xmit(skb, dev, txq, false); 3891 HARD_TX_UNLOCK(dev, txq); 3892 3893 local_bh_enable(); 3894 3895 if (!dev_xmit_complete(ret)) 3896 kfree_skb(skb); 3897 3898 return ret; 3899 drop: 3900 atomic_long_inc(&dev->tx_dropped); 3901 kfree_skb_list(skb); 3902 return NET_XMIT_DROP; 3903 } 3904 EXPORT_SYMBOL(dev_direct_xmit); 3905 3906 /************************************************************************* 3907 * Receiver routines 3908 *************************************************************************/ 3909 3910 int netdev_max_backlog __read_mostly = 1000; 3911 EXPORT_SYMBOL(netdev_max_backlog); 3912 3913 int netdev_tstamp_prequeue __read_mostly = 1; 3914 int netdev_budget __read_mostly = 300; 3915 unsigned int __read_mostly netdev_budget_usecs = 2000; 3916 int weight_p __read_mostly = 64; /* old backlog weight */ 3917 int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */ 3918 int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */ 3919 int dev_rx_weight __read_mostly = 64; 3920 int dev_tx_weight __read_mostly = 64; 3921 3922 /* Called with irq disabled */ 3923 static inline void ____napi_schedule(struct softnet_data *sd, 3924 struct napi_struct *napi) 3925 { 3926 list_add_tail(&napi->poll_list, &sd->poll_list); 3927 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3928 } 3929 3930 #ifdef CONFIG_RPS 3931 3932 /* One global table that all flow-based protocols share. */ 3933 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly; 3934 EXPORT_SYMBOL(rps_sock_flow_table); 3935 u32 rps_cpu_mask __read_mostly; 3936 EXPORT_SYMBOL(rps_cpu_mask); 3937 3938 struct static_key rps_needed __read_mostly; 3939 EXPORT_SYMBOL(rps_needed); 3940 struct static_key rfs_needed __read_mostly; 3941 EXPORT_SYMBOL(rfs_needed); 3942 3943 static struct rps_dev_flow * 3944 set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 3945 struct rps_dev_flow *rflow, u16 next_cpu) 3946 { 3947 if (next_cpu < nr_cpu_ids) { 3948 #ifdef CONFIG_RFS_ACCEL 3949 struct netdev_rx_queue *rxqueue; 3950 struct rps_dev_flow_table *flow_table; 3951 struct rps_dev_flow *old_rflow; 3952 u32 flow_id; 3953 u16 rxq_index; 3954 int rc; 3955 3956 /* Should we steer this flow to a different hardware queue? */ 3957 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 3958 !(dev->features & NETIF_F_NTUPLE)) 3959 goto out; 3960 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 3961 if (rxq_index == skb_get_rx_queue(skb)) 3962 goto out; 3963 3964 rxqueue = dev->_rx + rxq_index; 3965 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3966 if (!flow_table) 3967 goto out; 3968 flow_id = skb_get_hash(skb) & flow_table->mask; 3969 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 3970 rxq_index, flow_id); 3971 if (rc < 0) 3972 goto out; 3973 old_rflow = rflow; 3974 rflow = &flow_table->flows[flow_id]; 3975 rflow->filter = rc; 3976 if (old_rflow->filter == rflow->filter) 3977 old_rflow->filter = RPS_NO_FILTER; 3978 out: 3979 #endif 3980 rflow->last_qtail = 3981 per_cpu(softnet_data, next_cpu).input_queue_head; 3982 } 3983 3984 rflow->cpu = next_cpu; 3985 return rflow; 3986 } 3987 3988 /* 3989 * get_rps_cpu is called from netif_receive_skb and returns the target 3990 * CPU from the RPS map of the receiving queue for a given skb. 3991 * rcu_read_lock must be held on entry. 3992 */ 3993 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 3994 struct rps_dev_flow **rflowp) 3995 { 3996 const struct rps_sock_flow_table *sock_flow_table; 3997 struct netdev_rx_queue *rxqueue = dev->_rx; 3998 struct rps_dev_flow_table *flow_table; 3999 struct rps_map *map; 4000 int cpu = -1; 4001 u32 tcpu; 4002 u32 hash; 4003 4004 if (skb_rx_queue_recorded(skb)) { 4005 u16 index = skb_get_rx_queue(skb); 4006 4007 if (unlikely(index >= dev->real_num_rx_queues)) { 4008 WARN_ONCE(dev->real_num_rx_queues > 1, 4009 "%s received packet on queue %u, but number " 4010 "of RX queues is %u\n", 4011 dev->name, index, dev->real_num_rx_queues); 4012 goto done; 4013 } 4014 rxqueue += index; 4015 } 4016 4017 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */ 4018 4019 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4020 map = rcu_dereference(rxqueue->rps_map); 4021 if (!flow_table && !map) 4022 goto done; 4023 4024 skb_reset_network_header(skb); 4025 hash = skb_get_hash(skb); 4026 if (!hash) 4027 goto done; 4028 4029 sock_flow_table = rcu_dereference(rps_sock_flow_table); 4030 if (flow_table && sock_flow_table) { 4031 struct rps_dev_flow *rflow; 4032 u32 next_cpu; 4033 u32 ident; 4034 4035 /* First check into global flow table if there is a match */ 4036 ident = sock_flow_table->ents[hash & sock_flow_table->mask]; 4037 if ((ident ^ hash) & ~rps_cpu_mask) 4038 goto try_rps; 4039 4040 next_cpu = ident & rps_cpu_mask; 4041 4042 /* OK, now we know there is a match, 4043 * we can look at the local (per receive queue) flow table 4044 */ 4045 rflow = &flow_table->flows[hash & flow_table->mask]; 4046 tcpu = rflow->cpu; 4047 4048 /* 4049 * If the desired CPU (where last recvmsg was done) is 4050 * different from current CPU (one in the rx-queue flow 4051 * table entry), switch if one of the following holds: 4052 * - Current CPU is unset (>= nr_cpu_ids). 4053 * - Current CPU is offline. 4054 * - The current CPU's queue tail has advanced beyond the 4055 * last packet that was enqueued using this table entry. 4056 * This guarantees that all previous packets for the flow 4057 * have been dequeued, thus preserving in order delivery. 4058 */ 4059 if (unlikely(tcpu != next_cpu) && 4060 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) || 4061 ((int)(per_cpu(softnet_data, tcpu).input_queue_head - 4062 rflow->last_qtail)) >= 0)) { 4063 tcpu = next_cpu; 4064 rflow = set_rps_cpu(dev, skb, rflow, next_cpu); 4065 } 4066 4067 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) { 4068 *rflowp = rflow; 4069 cpu = tcpu; 4070 goto done; 4071 } 4072 } 4073 4074 try_rps: 4075 4076 if (map) { 4077 tcpu = map->cpus[reciprocal_scale(hash, map->len)]; 4078 if (cpu_online(tcpu)) { 4079 cpu = tcpu; 4080 goto done; 4081 } 4082 } 4083 4084 done: 4085 return cpu; 4086 } 4087 4088 #ifdef CONFIG_RFS_ACCEL 4089 4090 /** 4091 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 4092 * @dev: Device on which the filter was set 4093 * @rxq_index: RX queue index 4094 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 4095 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 4096 * 4097 * Drivers that implement ndo_rx_flow_steer() should periodically call 4098 * this function for each installed filter and remove the filters for 4099 * which it returns %true. 4100 */ 4101 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 4102 u32 flow_id, u16 filter_id) 4103 { 4104 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 4105 struct rps_dev_flow_table *flow_table; 4106 struct rps_dev_flow *rflow; 4107 bool expire = true; 4108 unsigned int cpu; 4109 4110 rcu_read_lock(); 4111 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4112 if (flow_table && flow_id <= flow_table->mask) { 4113 rflow = &flow_table->flows[flow_id]; 4114 cpu = READ_ONCE(rflow->cpu); 4115 if (rflow->filter == filter_id && cpu < nr_cpu_ids && 4116 ((int)(per_cpu(softnet_data, cpu).input_queue_head - 4117 rflow->last_qtail) < 4118 (int)(10 * flow_table->mask))) 4119 expire = false; 4120 } 4121 rcu_read_unlock(); 4122 return expire; 4123 } 4124 EXPORT_SYMBOL(rps_may_expire_flow); 4125 4126 #endif /* CONFIG_RFS_ACCEL */ 4127 4128 /* Called from hardirq (IPI) context */ 4129 static void rps_trigger_softirq(void *data) 4130 { 4131 struct softnet_data *sd = data; 4132 4133 ____napi_schedule(sd, &sd->backlog); 4134 sd->received_rps++; 4135 } 4136 4137 #endif /* CONFIG_RPS */ 4138 4139 /* 4140 * Check if this softnet_data structure is another cpu one 4141 * If yes, queue it to our IPI list and return 1 4142 * If no, return 0 4143 */ 4144 static int rps_ipi_queued(struct softnet_data *sd) 4145 { 4146 #ifdef CONFIG_RPS 4147 struct softnet_data *mysd = this_cpu_ptr(&softnet_data); 4148 4149 if (sd != mysd) { 4150 sd->rps_ipi_next = mysd->rps_ipi_list; 4151 mysd->rps_ipi_list = sd; 4152 4153 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 4154 return 1; 4155 } 4156 #endif /* CONFIG_RPS */ 4157 return 0; 4158 } 4159 4160 #ifdef CONFIG_NET_FLOW_LIMIT 4161 int netdev_flow_limit_table_len __read_mostly = (1 << 12); 4162 #endif 4163 4164 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen) 4165 { 4166 #ifdef CONFIG_NET_FLOW_LIMIT 4167 struct sd_flow_limit *fl; 4168 struct softnet_data *sd; 4169 unsigned int old_flow, new_flow; 4170 4171 if (qlen < (netdev_max_backlog >> 1)) 4172 return false; 4173 4174 sd = this_cpu_ptr(&softnet_data); 4175 4176 rcu_read_lock(); 4177 fl = rcu_dereference(sd->flow_limit); 4178 if (fl) { 4179 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1); 4180 old_flow = fl->history[fl->history_head]; 4181 fl->history[fl->history_head] = new_flow; 4182 4183 fl->history_head++; 4184 fl->history_head &= FLOW_LIMIT_HISTORY - 1; 4185 4186 if (likely(fl->buckets[old_flow])) 4187 fl->buckets[old_flow]--; 4188 4189 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) { 4190 fl->count++; 4191 rcu_read_unlock(); 4192 return true; 4193 } 4194 } 4195 rcu_read_unlock(); 4196 #endif 4197 return false; 4198 } 4199 4200 /* 4201 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 4202 * queue (may be a remote CPU queue). 4203 */ 4204 static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 4205 unsigned int *qtail) 4206 { 4207 struct softnet_data *sd; 4208 unsigned long flags; 4209 unsigned int qlen; 4210 4211 sd = &per_cpu(softnet_data, cpu); 4212 4213 local_irq_save(flags); 4214 4215 rps_lock(sd); 4216 if (!netif_running(skb->dev)) 4217 goto drop; 4218 qlen = skb_queue_len(&sd->input_pkt_queue); 4219 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) { 4220 if (qlen) { 4221 enqueue: 4222 __skb_queue_tail(&sd->input_pkt_queue, skb); 4223 input_queue_tail_incr_save(sd, qtail); 4224 rps_unlock(sd); 4225 local_irq_restore(flags); 4226 return NET_RX_SUCCESS; 4227 } 4228 4229 /* Schedule NAPI for backlog device 4230 * We can use non atomic operation since we own the queue lock 4231 */ 4232 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) { 4233 if (!rps_ipi_queued(sd)) 4234 ____napi_schedule(sd, &sd->backlog); 4235 } 4236 goto enqueue; 4237 } 4238 4239 drop: 4240 sd->dropped++; 4241 rps_unlock(sd); 4242 4243 local_irq_restore(flags); 4244 4245 atomic_long_inc(&skb->dev->rx_dropped); 4246 kfree_skb(skb); 4247 return NET_RX_DROP; 4248 } 4249 4250 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb) 4251 { 4252 struct net_device *dev = skb->dev; 4253 struct netdev_rx_queue *rxqueue; 4254 4255 rxqueue = dev->_rx; 4256 4257 if (skb_rx_queue_recorded(skb)) { 4258 u16 index = skb_get_rx_queue(skb); 4259 4260 if (unlikely(index >= dev->real_num_rx_queues)) { 4261 WARN_ONCE(dev->real_num_rx_queues > 1, 4262 "%s received packet on queue %u, but number " 4263 "of RX queues is %u\n", 4264 dev->name, index, dev->real_num_rx_queues); 4265 4266 return rxqueue; /* Return first rxqueue */ 4267 } 4268 rxqueue += index; 4269 } 4270 return rxqueue; 4271 } 4272 4273 static u32 netif_receive_generic_xdp(struct sk_buff *skb, 4274 struct xdp_buff *xdp, 4275 struct bpf_prog *xdp_prog) 4276 { 4277 struct netdev_rx_queue *rxqueue; 4278 void *orig_data, *orig_data_end; 4279 u32 metalen, act = XDP_DROP; 4280 int hlen, off; 4281 u32 mac_len; 4282 4283 /* Reinjected packets coming from act_mirred or similar should 4284 * not get XDP generic processing. 4285 */ 4286 if (skb_cloned(skb) || skb_is_tc_redirected(skb)) 4287 return XDP_PASS; 4288 4289 /* XDP packets must be linear and must have sufficient headroom 4290 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also 4291 * native XDP provides, thus we need to do it here as well. 4292 */ 4293 if (skb_is_nonlinear(skb) || 4294 skb_headroom(skb) < XDP_PACKET_HEADROOM) { 4295 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb); 4296 int troom = skb->tail + skb->data_len - skb->end; 4297 4298 /* In case we have to go down the path and also linearize, 4299 * then lets do the pskb_expand_head() work just once here. 4300 */ 4301 if (pskb_expand_head(skb, 4302 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0, 4303 troom > 0 ? troom + 128 : 0, GFP_ATOMIC)) 4304 goto do_drop; 4305 if (skb_linearize(skb)) 4306 goto do_drop; 4307 } 4308 4309 /* The XDP program wants to see the packet starting at the MAC 4310 * header. 4311 */ 4312 mac_len = skb->data - skb_mac_header(skb); 4313 hlen = skb_headlen(skb) + mac_len; 4314 xdp->data = skb->data - mac_len; 4315 xdp->data_meta = xdp->data; 4316 xdp->data_end = xdp->data + hlen; 4317 xdp->data_hard_start = skb->data - skb_headroom(skb); 4318 orig_data_end = xdp->data_end; 4319 orig_data = xdp->data; 4320 4321 rxqueue = netif_get_rxqueue(skb); 4322 xdp->rxq = &rxqueue->xdp_rxq; 4323 4324 act = bpf_prog_run_xdp(xdp_prog, xdp); 4325 4326 off = xdp->data - orig_data; 4327 if (off > 0) 4328 __skb_pull(skb, off); 4329 else if (off < 0) 4330 __skb_push(skb, -off); 4331 skb->mac_header += off; 4332 4333 /* check if bpf_xdp_adjust_tail was used. it can only "shrink" 4334 * pckt. 4335 */ 4336 off = orig_data_end - xdp->data_end; 4337 if (off != 0) { 4338 skb_set_tail_pointer(skb, xdp->data_end - xdp->data); 4339 skb->len -= off; 4340 4341 } 4342 4343 switch (act) { 4344 case XDP_REDIRECT: 4345 case XDP_TX: 4346 __skb_push(skb, mac_len); 4347 break; 4348 case XDP_PASS: 4349 metalen = xdp->data - xdp->data_meta; 4350 if (metalen) 4351 skb_metadata_set(skb, metalen); 4352 break; 4353 default: 4354 bpf_warn_invalid_xdp_action(act); 4355 /* fall through */ 4356 case XDP_ABORTED: 4357 trace_xdp_exception(skb->dev, xdp_prog, act); 4358 /* fall through */ 4359 case XDP_DROP: 4360 do_drop: 4361 kfree_skb(skb); 4362 break; 4363 } 4364 4365 return act; 4366 } 4367 4368 /* When doing generic XDP we have to bypass the qdisc layer and the 4369 * network taps in order to match in-driver-XDP behavior. 4370 */ 4371 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog) 4372 { 4373 struct net_device *dev = skb->dev; 4374 struct netdev_queue *txq; 4375 bool free_skb = true; 4376 int cpu, rc; 4377 4378 txq = netdev_pick_tx(dev, skb, NULL); 4379 cpu = smp_processor_id(); 4380 HARD_TX_LOCK(dev, txq, cpu); 4381 if (!netif_xmit_stopped(txq)) { 4382 rc = netdev_start_xmit(skb, dev, txq, 0); 4383 if (dev_xmit_complete(rc)) 4384 free_skb = false; 4385 } 4386 HARD_TX_UNLOCK(dev, txq); 4387 if (free_skb) { 4388 trace_xdp_exception(dev, xdp_prog, XDP_TX); 4389 kfree_skb(skb); 4390 } 4391 } 4392 EXPORT_SYMBOL_GPL(generic_xdp_tx); 4393 4394 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key); 4395 4396 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb) 4397 { 4398 if (xdp_prog) { 4399 struct xdp_buff xdp; 4400 u32 act; 4401 int err; 4402 4403 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog); 4404 if (act != XDP_PASS) { 4405 switch (act) { 4406 case XDP_REDIRECT: 4407 err = xdp_do_generic_redirect(skb->dev, skb, 4408 &xdp, xdp_prog); 4409 if (err) 4410 goto out_redir; 4411 break; 4412 case XDP_TX: 4413 generic_xdp_tx(skb, xdp_prog); 4414 break; 4415 } 4416 return XDP_DROP; 4417 } 4418 } 4419 return XDP_PASS; 4420 out_redir: 4421 kfree_skb(skb); 4422 return XDP_DROP; 4423 } 4424 EXPORT_SYMBOL_GPL(do_xdp_generic); 4425 4426 static int netif_rx_internal(struct sk_buff *skb) 4427 { 4428 int ret; 4429 4430 net_timestamp_check(netdev_tstamp_prequeue, skb); 4431 4432 trace_netif_rx(skb); 4433 4434 if (static_branch_unlikely(&generic_xdp_needed_key)) { 4435 int ret; 4436 4437 preempt_disable(); 4438 rcu_read_lock(); 4439 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb); 4440 rcu_read_unlock(); 4441 preempt_enable(); 4442 4443 /* Consider XDP consuming the packet a success from 4444 * the netdev point of view we do not want to count 4445 * this as an error. 4446 */ 4447 if (ret != XDP_PASS) 4448 return NET_RX_SUCCESS; 4449 } 4450 4451 #ifdef CONFIG_RPS 4452 if (static_key_false(&rps_needed)) { 4453 struct rps_dev_flow voidflow, *rflow = &voidflow; 4454 int cpu; 4455 4456 preempt_disable(); 4457 rcu_read_lock(); 4458 4459 cpu = get_rps_cpu(skb->dev, skb, &rflow); 4460 if (cpu < 0) 4461 cpu = smp_processor_id(); 4462 4463 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 4464 4465 rcu_read_unlock(); 4466 preempt_enable(); 4467 } else 4468 #endif 4469 { 4470 unsigned int qtail; 4471 4472 ret = enqueue_to_backlog(skb, get_cpu(), &qtail); 4473 put_cpu(); 4474 } 4475 return ret; 4476 } 4477 4478 /** 4479 * netif_rx - post buffer to the network code 4480 * @skb: buffer to post 4481 * 4482 * This function receives a packet from a device driver and queues it for 4483 * the upper (protocol) levels to process. It always succeeds. The buffer 4484 * may be dropped during processing for congestion control or by the 4485 * protocol layers. 4486 * 4487 * return values: 4488 * NET_RX_SUCCESS (no congestion) 4489 * NET_RX_DROP (packet was dropped) 4490 * 4491 */ 4492 4493 int netif_rx(struct sk_buff *skb) 4494 { 4495 trace_netif_rx_entry(skb); 4496 4497 return netif_rx_internal(skb); 4498 } 4499 EXPORT_SYMBOL(netif_rx); 4500 4501 int netif_rx_ni(struct sk_buff *skb) 4502 { 4503 int err; 4504 4505 trace_netif_rx_ni_entry(skb); 4506 4507 preempt_disable(); 4508 err = netif_rx_internal(skb); 4509 if (local_softirq_pending()) 4510 do_softirq(); 4511 preempt_enable(); 4512 4513 return err; 4514 } 4515 EXPORT_SYMBOL(netif_rx_ni); 4516 4517 static __latent_entropy void net_tx_action(struct softirq_action *h) 4518 { 4519 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 4520 4521 if (sd->completion_queue) { 4522 struct sk_buff *clist; 4523 4524 local_irq_disable(); 4525 clist = sd->completion_queue; 4526 sd->completion_queue = NULL; 4527 local_irq_enable(); 4528 4529 while (clist) { 4530 struct sk_buff *skb = clist; 4531 4532 clist = clist->next; 4533 4534 WARN_ON(refcount_read(&skb->users)); 4535 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED)) 4536 trace_consume_skb(skb); 4537 else 4538 trace_kfree_skb(skb, net_tx_action); 4539 4540 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) 4541 __kfree_skb(skb); 4542 else 4543 __kfree_skb_defer(skb); 4544 } 4545 4546 __kfree_skb_flush(); 4547 } 4548 4549 if (sd->output_queue) { 4550 struct Qdisc *head; 4551 4552 local_irq_disable(); 4553 head = sd->output_queue; 4554 sd->output_queue = NULL; 4555 sd->output_queue_tailp = &sd->output_queue; 4556 local_irq_enable(); 4557 4558 while (head) { 4559 struct Qdisc *q = head; 4560 spinlock_t *root_lock = NULL; 4561 4562 head = head->next_sched; 4563 4564 if (!(q->flags & TCQ_F_NOLOCK)) { 4565 root_lock = qdisc_lock(q); 4566 spin_lock(root_lock); 4567 } 4568 /* We need to make sure head->next_sched is read 4569 * before clearing __QDISC_STATE_SCHED 4570 */ 4571 smp_mb__before_atomic(); 4572 clear_bit(__QDISC_STATE_SCHED, &q->state); 4573 qdisc_run(q); 4574 if (root_lock) 4575 spin_unlock(root_lock); 4576 } 4577 } 4578 4579 xfrm_dev_backlog(sd); 4580 } 4581 4582 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE) 4583 /* This hook is defined here for ATM LANE */ 4584 int (*br_fdb_test_addr_hook)(struct net_device *dev, 4585 unsigned char *addr) __read_mostly; 4586 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 4587 #endif 4588 4589 static inline struct sk_buff * 4590 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret, 4591 struct net_device *orig_dev) 4592 { 4593 #ifdef CONFIG_NET_CLS_ACT 4594 struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress); 4595 struct tcf_result cl_res; 4596 4597 /* If there's at least one ingress present somewhere (so 4598 * we get here via enabled static key), remaining devices 4599 * that are not configured with an ingress qdisc will bail 4600 * out here. 4601 */ 4602 if (!miniq) 4603 return skb; 4604 4605 if (*pt_prev) { 4606 *ret = deliver_skb(skb, *pt_prev, orig_dev); 4607 *pt_prev = NULL; 4608 } 4609 4610 qdisc_skb_cb(skb)->pkt_len = skb->len; 4611 skb->tc_at_ingress = 1; 4612 mini_qdisc_bstats_cpu_update(miniq, skb); 4613 4614 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) { 4615 case TC_ACT_OK: 4616 case TC_ACT_RECLASSIFY: 4617 skb->tc_index = TC_H_MIN(cl_res.classid); 4618 break; 4619 case TC_ACT_SHOT: 4620 mini_qdisc_qstats_cpu_drop(miniq); 4621 kfree_skb(skb); 4622 return NULL; 4623 case TC_ACT_STOLEN: 4624 case TC_ACT_QUEUED: 4625 case TC_ACT_TRAP: 4626 consume_skb(skb); 4627 return NULL; 4628 case TC_ACT_REDIRECT: 4629 /* skb_mac_header check was done by cls/act_bpf, so 4630 * we can safely push the L2 header back before 4631 * redirecting to another netdev 4632 */ 4633 __skb_push(skb, skb->mac_len); 4634 skb_do_redirect(skb); 4635 return NULL; 4636 case TC_ACT_REINSERT: 4637 /* this does not scrub the packet, and updates stats on error */ 4638 skb_tc_reinsert(skb, &cl_res); 4639 return NULL; 4640 default: 4641 break; 4642 } 4643 #endif /* CONFIG_NET_CLS_ACT */ 4644 return skb; 4645 } 4646 4647 /** 4648 * netdev_is_rx_handler_busy - check if receive handler is registered 4649 * @dev: device to check 4650 * 4651 * Check if a receive handler is already registered for a given device. 4652 * Return true if there one. 4653 * 4654 * The caller must hold the rtnl_mutex. 4655 */ 4656 bool netdev_is_rx_handler_busy(struct net_device *dev) 4657 { 4658 ASSERT_RTNL(); 4659 return dev && rtnl_dereference(dev->rx_handler); 4660 } 4661 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy); 4662 4663 /** 4664 * netdev_rx_handler_register - register receive handler 4665 * @dev: device to register a handler for 4666 * @rx_handler: receive handler to register 4667 * @rx_handler_data: data pointer that is used by rx handler 4668 * 4669 * Register a receive handler for a device. This handler will then be 4670 * called from __netif_receive_skb. A negative errno code is returned 4671 * on a failure. 4672 * 4673 * The caller must hold the rtnl_mutex. 4674 * 4675 * For a general description of rx_handler, see enum rx_handler_result. 4676 */ 4677 int netdev_rx_handler_register(struct net_device *dev, 4678 rx_handler_func_t *rx_handler, 4679 void *rx_handler_data) 4680 { 4681 if (netdev_is_rx_handler_busy(dev)) 4682 return -EBUSY; 4683 4684 if (dev->priv_flags & IFF_NO_RX_HANDLER) 4685 return -EINVAL; 4686 4687 /* Note: rx_handler_data must be set before rx_handler */ 4688 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 4689 rcu_assign_pointer(dev->rx_handler, rx_handler); 4690 4691 return 0; 4692 } 4693 EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 4694 4695 /** 4696 * netdev_rx_handler_unregister - unregister receive handler 4697 * @dev: device to unregister a handler from 4698 * 4699 * Unregister a receive handler from a device. 4700 * 4701 * The caller must hold the rtnl_mutex. 4702 */ 4703 void netdev_rx_handler_unregister(struct net_device *dev) 4704 { 4705 4706 ASSERT_RTNL(); 4707 RCU_INIT_POINTER(dev->rx_handler, NULL); 4708 /* a reader seeing a non NULL rx_handler in a rcu_read_lock() 4709 * section has a guarantee to see a non NULL rx_handler_data 4710 * as well. 4711 */ 4712 synchronize_net(); 4713 RCU_INIT_POINTER(dev->rx_handler_data, NULL); 4714 } 4715 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 4716 4717 /* 4718 * Limit the use of PFMEMALLOC reserves to those protocols that implement 4719 * the special handling of PFMEMALLOC skbs. 4720 */ 4721 static bool skb_pfmemalloc_protocol(struct sk_buff *skb) 4722 { 4723 switch (skb->protocol) { 4724 case htons(ETH_P_ARP): 4725 case htons(ETH_P_IP): 4726 case htons(ETH_P_IPV6): 4727 case htons(ETH_P_8021Q): 4728 case htons(ETH_P_8021AD): 4729 return true; 4730 default: 4731 return false; 4732 } 4733 } 4734 4735 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev, 4736 int *ret, struct net_device *orig_dev) 4737 { 4738 #ifdef CONFIG_NETFILTER_INGRESS 4739 if (nf_hook_ingress_active(skb)) { 4740 int ingress_retval; 4741 4742 if (*pt_prev) { 4743 *ret = deliver_skb(skb, *pt_prev, orig_dev); 4744 *pt_prev = NULL; 4745 } 4746 4747 rcu_read_lock(); 4748 ingress_retval = nf_hook_ingress(skb); 4749 rcu_read_unlock(); 4750 return ingress_retval; 4751 } 4752 #endif /* CONFIG_NETFILTER_INGRESS */ 4753 return 0; 4754 } 4755 4756 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc, 4757 struct packet_type **ppt_prev) 4758 { 4759 struct packet_type *ptype, *pt_prev; 4760 rx_handler_func_t *rx_handler; 4761 struct net_device *orig_dev; 4762 bool deliver_exact = false; 4763 int ret = NET_RX_DROP; 4764 __be16 type; 4765 4766 net_timestamp_check(!netdev_tstamp_prequeue, skb); 4767 4768 trace_netif_receive_skb(skb); 4769 4770 orig_dev = skb->dev; 4771 4772 skb_reset_network_header(skb); 4773 if (!skb_transport_header_was_set(skb)) 4774 skb_reset_transport_header(skb); 4775 skb_reset_mac_len(skb); 4776 4777 pt_prev = NULL; 4778 4779 another_round: 4780 skb->skb_iif = skb->dev->ifindex; 4781 4782 __this_cpu_inc(softnet_data.processed); 4783 4784 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) || 4785 skb->protocol == cpu_to_be16(ETH_P_8021AD)) { 4786 skb = skb_vlan_untag(skb); 4787 if (unlikely(!skb)) 4788 goto out; 4789 } 4790 4791 if (skb_skip_tc_classify(skb)) 4792 goto skip_classify; 4793 4794 if (pfmemalloc) 4795 goto skip_taps; 4796 4797 list_for_each_entry_rcu(ptype, &ptype_all, list) { 4798 if (pt_prev) 4799 ret = deliver_skb(skb, pt_prev, orig_dev); 4800 pt_prev = ptype; 4801 } 4802 4803 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) { 4804 if (pt_prev) 4805 ret = deliver_skb(skb, pt_prev, orig_dev); 4806 pt_prev = ptype; 4807 } 4808 4809 skip_taps: 4810 #ifdef CONFIG_NET_INGRESS 4811 if (static_branch_unlikely(&ingress_needed_key)) { 4812 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev); 4813 if (!skb) 4814 goto out; 4815 4816 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0) 4817 goto out; 4818 } 4819 #endif 4820 skb_reset_tc(skb); 4821 skip_classify: 4822 if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) 4823 goto drop; 4824 4825 if (skb_vlan_tag_present(skb)) { 4826 if (pt_prev) { 4827 ret = deliver_skb(skb, pt_prev, orig_dev); 4828 pt_prev = NULL; 4829 } 4830 if (vlan_do_receive(&skb)) 4831 goto another_round; 4832 else if (unlikely(!skb)) 4833 goto out; 4834 } 4835 4836 rx_handler = rcu_dereference(skb->dev->rx_handler); 4837 if (rx_handler) { 4838 if (pt_prev) { 4839 ret = deliver_skb(skb, pt_prev, orig_dev); 4840 pt_prev = NULL; 4841 } 4842 switch (rx_handler(&skb)) { 4843 case RX_HANDLER_CONSUMED: 4844 ret = NET_RX_SUCCESS; 4845 goto out; 4846 case RX_HANDLER_ANOTHER: 4847 goto another_round; 4848 case RX_HANDLER_EXACT: 4849 deliver_exact = true; 4850 case RX_HANDLER_PASS: 4851 break; 4852 default: 4853 BUG(); 4854 } 4855 } 4856 4857 if (unlikely(skb_vlan_tag_present(skb))) { 4858 if (skb_vlan_tag_get_id(skb)) 4859 skb->pkt_type = PACKET_OTHERHOST; 4860 /* Note: we might in the future use prio bits 4861 * and set skb->priority like in vlan_do_receive() 4862 * For the time being, just ignore Priority Code Point 4863 */ 4864 skb->vlan_tci = 0; 4865 } 4866 4867 type = skb->protocol; 4868 4869 /* deliver only exact match when indicated */ 4870 if (likely(!deliver_exact)) { 4871 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 4872 &ptype_base[ntohs(type) & 4873 PTYPE_HASH_MASK]); 4874 } 4875 4876 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 4877 &orig_dev->ptype_specific); 4878 4879 if (unlikely(skb->dev != orig_dev)) { 4880 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 4881 &skb->dev->ptype_specific); 4882 } 4883 4884 if (pt_prev) { 4885 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 4886 goto drop; 4887 *ppt_prev = pt_prev; 4888 } else { 4889 drop: 4890 if (!deliver_exact) 4891 atomic_long_inc(&skb->dev->rx_dropped); 4892 else 4893 atomic_long_inc(&skb->dev->rx_nohandler); 4894 kfree_skb(skb); 4895 /* Jamal, now you will not able to escape explaining 4896 * me how you were going to use this. :-) 4897 */ 4898 ret = NET_RX_DROP; 4899 } 4900 4901 out: 4902 return ret; 4903 } 4904 4905 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc) 4906 { 4907 struct net_device *orig_dev = skb->dev; 4908 struct packet_type *pt_prev = NULL; 4909 int ret; 4910 4911 ret = __netif_receive_skb_core(skb, pfmemalloc, &pt_prev); 4912 if (pt_prev) 4913 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 4914 return ret; 4915 } 4916 4917 /** 4918 * netif_receive_skb_core - special purpose version of netif_receive_skb 4919 * @skb: buffer to process 4920 * 4921 * More direct receive version of netif_receive_skb(). It should 4922 * only be used by callers that have a need to skip RPS and Generic XDP. 4923 * Caller must also take care of handling if (page_is_)pfmemalloc. 4924 * 4925 * This function may only be called from softirq context and interrupts 4926 * should be enabled. 4927 * 4928 * Return values (usually ignored): 4929 * NET_RX_SUCCESS: no congestion 4930 * NET_RX_DROP: packet was dropped 4931 */ 4932 int netif_receive_skb_core(struct sk_buff *skb) 4933 { 4934 int ret; 4935 4936 rcu_read_lock(); 4937 ret = __netif_receive_skb_one_core(skb, false); 4938 rcu_read_unlock(); 4939 4940 return ret; 4941 } 4942 EXPORT_SYMBOL(netif_receive_skb_core); 4943 4944 static inline void __netif_receive_skb_list_ptype(struct list_head *head, 4945 struct packet_type *pt_prev, 4946 struct net_device *orig_dev) 4947 { 4948 struct sk_buff *skb, *next; 4949 4950 if (!pt_prev) 4951 return; 4952 if (list_empty(head)) 4953 return; 4954 if (pt_prev->list_func != NULL) 4955 pt_prev->list_func(head, pt_prev, orig_dev); 4956 else 4957 list_for_each_entry_safe(skb, next, head, list) 4958 pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 4959 } 4960 4961 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc) 4962 { 4963 /* Fast-path assumptions: 4964 * - There is no RX handler. 4965 * - Only one packet_type matches. 4966 * If either of these fails, we will end up doing some per-packet 4967 * processing in-line, then handling the 'last ptype' for the whole 4968 * sublist. This can't cause out-of-order delivery to any single ptype, 4969 * because the 'last ptype' must be constant across the sublist, and all 4970 * other ptypes are handled per-packet. 4971 */ 4972 /* Current (common) ptype of sublist */ 4973 struct packet_type *pt_curr = NULL; 4974 /* Current (common) orig_dev of sublist */ 4975 struct net_device *od_curr = NULL; 4976 struct list_head sublist; 4977 struct sk_buff *skb, *next; 4978 4979 INIT_LIST_HEAD(&sublist); 4980 list_for_each_entry_safe(skb, next, head, list) { 4981 struct net_device *orig_dev = skb->dev; 4982 struct packet_type *pt_prev = NULL; 4983 4984 list_del(&skb->list); 4985 __netif_receive_skb_core(skb, pfmemalloc, &pt_prev); 4986 if (!pt_prev) 4987 continue; 4988 if (pt_curr != pt_prev || od_curr != orig_dev) { 4989 /* dispatch old sublist */ 4990 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr); 4991 /* start new sublist */ 4992 INIT_LIST_HEAD(&sublist); 4993 pt_curr = pt_prev; 4994 od_curr = orig_dev; 4995 } 4996 list_add_tail(&skb->list, &sublist); 4997 } 4998 4999 /* dispatch final sublist */ 5000 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr); 5001 } 5002 5003 static int __netif_receive_skb(struct sk_buff *skb) 5004 { 5005 int ret; 5006 5007 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) { 5008 unsigned int noreclaim_flag; 5009 5010 /* 5011 * PFMEMALLOC skbs are special, they should 5012 * - be delivered to SOCK_MEMALLOC sockets only 5013 * - stay away from userspace 5014 * - have bounded memory usage 5015 * 5016 * Use PF_MEMALLOC as this saves us from propagating the allocation 5017 * context down to all allocation sites. 5018 */ 5019 noreclaim_flag = memalloc_noreclaim_save(); 5020 ret = __netif_receive_skb_one_core(skb, true); 5021 memalloc_noreclaim_restore(noreclaim_flag); 5022 } else 5023 ret = __netif_receive_skb_one_core(skb, false); 5024 5025 return ret; 5026 } 5027 5028 static void __netif_receive_skb_list(struct list_head *head) 5029 { 5030 unsigned long noreclaim_flag = 0; 5031 struct sk_buff *skb, *next; 5032 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */ 5033 5034 list_for_each_entry_safe(skb, next, head, list) { 5035 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) { 5036 struct list_head sublist; 5037 5038 /* Handle the previous sublist */ 5039 list_cut_before(&sublist, head, &skb->list); 5040 if (!list_empty(&sublist)) 5041 __netif_receive_skb_list_core(&sublist, pfmemalloc); 5042 pfmemalloc = !pfmemalloc; 5043 /* See comments in __netif_receive_skb */ 5044 if (pfmemalloc) 5045 noreclaim_flag = memalloc_noreclaim_save(); 5046 else 5047 memalloc_noreclaim_restore(noreclaim_flag); 5048 } 5049 } 5050 /* Handle the remaining sublist */ 5051 if (!list_empty(head)) 5052 __netif_receive_skb_list_core(head, pfmemalloc); 5053 /* Restore pflags */ 5054 if (pfmemalloc) 5055 memalloc_noreclaim_restore(noreclaim_flag); 5056 } 5057 5058 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp) 5059 { 5060 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog); 5061 struct bpf_prog *new = xdp->prog; 5062 int ret = 0; 5063 5064 switch (xdp->command) { 5065 case XDP_SETUP_PROG: 5066 rcu_assign_pointer(dev->xdp_prog, new); 5067 if (old) 5068 bpf_prog_put(old); 5069 5070 if (old && !new) { 5071 static_branch_dec(&generic_xdp_needed_key); 5072 } else if (new && !old) { 5073 static_branch_inc(&generic_xdp_needed_key); 5074 dev_disable_lro(dev); 5075 dev_disable_gro_hw(dev); 5076 } 5077 break; 5078 5079 case XDP_QUERY_PROG: 5080 xdp->prog_id = old ? old->aux->id : 0; 5081 break; 5082 5083 default: 5084 ret = -EINVAL; 5085 break; 5086 } 5087 5088 return ret; 5089 } 5090 5091 static int netif_receive_skb_internal(struct sk_buff *skb) 5092 { 5093 int ret; 5094 5095 net_timestamp_check(netdev_tstamp_prequeue, skb); 5096 5097 if (skb_defer_rx_timestamp(skb)) 5098 return NET_RX_SUCCESS; 5099 5100 if (static_branch_unlikely(&generic_xdp_needed_key)) { 5101 int ret; 5102 5103 preempt_disable(); 5104 rcu_read_lock(); 5105 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb); 5106 rcu_read_unlock(); 5107 preempt_enable(); 5108 5109 if (ret != XDP_PASS) 5110 return NET_RX_DROP; 5111 } 5112 5113 rcu_read_lock(); 5114 #ifdef CONFIG_RPS 5115 if (static_key_false(&rps_needed)) { 5116 struct rps_dev_flow voidflow, *rflow = &voidflow; 5117 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 5118 5119 if (cpu >= 0) { 5120 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 5121 rcu_read_unlock(); 5122 return ret; 5123 } 5124 } 5125 #endif 5126 ret = __netif_receive_skb(skb); 5127 rcu_read_unlock(); 5128 return ret; 5129 } 5130 5131 static void netif_receive_skb_list_internal(struct list_head *head) 5132 { 5133 struct bpf_prog *xdp_prog = NULL; 5134 struct sk_buff *skb, *next; 5135 struct list_head sublist; 5136 5137 INIT_LIST_HEAD(&sublist); 5138 list_for_each_entry_safe(skb, next, head, list) { 5139 net_timestamp_check(netdev_tstamp_prequeue, skb); 5140 list_del(&skb->list); 5141 if (!skb_defer_rx_timestamp(skb)) 5142 list_add_tail(&skb->list, &sublist); 5143 } 5144 list_splice_init(&sublist, head); 5145 5146 if (static_branch_unlikely(&generic_xdp_needed_key)) { 5147 preempt_disable(); 5148 rcu_read_lock(); 5149 list_for_each_entry_safe(skb, next, head, list) { 5150 xdp_prog = rcu_dereference(skb->dev->xdp_prog); 5151 list_del(&skb->list); 5152 if (do_xdp_generic(xdp_prog, skb) == XDP_PASS) 5153 list_add_tail(&skb->list, &sublist); 5154 } 5155 rcu_read_unlock(); 5156 preempt_enable(); 5157 /* Put passed packets back on main list */ 5158 list_splice_init(&sublist, head); 5159 } 5160 5161 rcu_read_lock(); 5162 #ifdef CONFIG_RPS 5163 if (static_key_false(&rps_needed)) { 5164 list_for_each_entry_safe(skb, next, head, list) { 5165 struct rps_dev_flow voidflow, *rflow = &voidflow; 5166 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 5167 5168 if (cpu >= 0) { 5169 /* Will be handled, remove from list */ 5170 list_del(&skb->list); 5171 enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 5172 } 5173 } 5174 } 5175 #endif 5176 __netif_receive_skb_list(head); 5177 rcu_read_unlock(); 5178 } 5179 5180 /** 5181 * netif_receive_skb - process receive buffer from network 5182 * @skb: buffer to process 5183 * 5184 * netif_receive_skb() is the main receive data processing function. 5185 * It always succeeds. The buffer may be dropped during processing 5186 * for congestion control or by the protocol layers. 5187 * 5188 * This function may only be called from softirq context and interrupts 5189 * should be enabled. 5190 * 5191 * Return values (usually ignored): 5192 * NET_RX_SUCCESS: no congestion 5193 * NET_RX_DROP: packet was dropped 5194 */ 5195 int netif_receive_skb(struct sk_buff *skb) 5196 { 5197 trace_netif_receive_skb_entry(skb); 5198 5199 return netif_receive_skb_internal(skb); 5200 } 5201 EXPORT_SYMBOL(netif_receive_skb); 5202 5203 /** 5204 * netif_receive_skb_list - process many receive buffers from network 5205 * @head: list of skbs to process. 5206 * 5207 * Since return value of netif_receive_skb() is normally ignored, and 5208 * wouldn't be meaningful for a list, this function returns void. 5209 * 5210 * This function may only be called from softirq context and interrupts 5211 * should be enabled. 5212 */ 5213 void netif_receive_skb_list(struct list_head *head) 5214 { 5215 struct sk_buff *skb; 5216 5217 if (list_empty(head)) 5218 return; 5219 list_for_each_entry(skb, head, list) 5220 trace_netif_receive_skb_list_entry(skb); 5221 netif_receive_skb_list_internal(head); 5222 } 5223 EXPORT_SYMBOL(netif_receive_skb_list); 5224 5225 DEFINE_PER_CPU(struct work_struct, flush_works); 5226 5227 /* Network device is going away, flush any packets still pending */ 5228 static void flush_backlog(struct work_struct *work) 5229 { 5230 struct sk_buff *skb, *tmp; 5231 struct softnet_data *sd; 5232 5233 local_bh_disable(); 5234 sd = this_cpu_ptr(&softnet_data); 5235 5236 local_irq_disable(); 5237 rps_lock(sd); 5238 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 5239 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 5240 __skb_unlink(skb, &sd->input_pkt_queue); 5241 kfree_skb(skb); 5242 input_queue_head_incr(sd); 5243 } 5244 } 5245 rps_unlock(sd); 5246 local_irq_enable(); 5247 5248 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 5249 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 5250 __skb_unlink(skb, &sd->process_queue); 5251 kfree_skb(skb); 5252 input_queue_head_incr(sd); 5253 } 5254 } 5255 local_bh_enable(); 5256 } 5257 5258 static void flush_all_backlogs(void) 5259 { 5260 unsigned int cpu; 5261 5262 get_online_cpus(); 5263 5264 for_each_online_cpu(cpu) 5265 queue_work_on(cpu, system_highpri_wq, 5266 per_cpu_ptr(&flush_works, cpu)); 5267 5268 for_each_online_cpu(cpu) 5269 flush_work(per_cpu_ptr(&flush_works, cpu)); 5270 5271 put_online_cpus(); 5272 } 5273 5274 static int napi_gro_complete(struct sk_buff *skb) 5275 { 5276 struct packet_offload *ptype; 5277 __be16 type = skb->protocol; 5278 struct list_head *head = &offload_base; 5279 int err = -ENOENT; 5280 5281 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb)); 5282 5283 if (NAPI_GRO_CB(skb)->count == 1) { 5284 skb_shinfo(skb)->gso_size = 0; 5285 goto out; 5286 } 5287 5288 rcu_read_lock(); 5289 list_for_each_entry_rcu(ptype, head, list) { 5290 if (ptype->type != type || !ptype->callbacks.gro_complete) 5291 continue; 5292 5293 err = ptype->callbacks.gro_complete(skb, 0); 5294 break; 5295 } 5296 rcu_read_unlock(); 5297 5298 if (err) { 5299 WARN_ON(&ptype->list == head); 5300 kfree_skb(skb); 5301 return NET_RX_SUCCESS; 5302 } 5303 5304 out: 5305 return netif_receive_skb_internal(skb); 5306 } 5307 5308 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index, 5309 bool flush_old) 5310 { 5311 struct list_head *head = &napi->gro_hash[index].list; 5312 struct sk_buff *skb, *p; 5313 5314 list_for_each_entry_safe_reverse(skb, p, head, list) { 5315 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies) 5316 return; 5317 list_del(&skb->list); 5318 skb->next = NULL; 5319 napi_gro_complete(skb); 5320 napi->gro_hash[index].count--; 5321 } 5322 5323 if (!napi->gro_hash[index].count) 5324 __clear_bit(index, &napi->gro_bitmask); 5325 } 5326 5327 /* napi->gro_hash[].list contains packets ordered by age. 5328 * youngest packets at the head of it. 5329 * Complete skbs in reverse order to reduce latencies. 5330 */ 5331 void napi_gro_flush(struct napi_struct *napi, bool flush_old) 5332 { 5333 u32 i; 5334 5335 for (i = 0; i < GRO_HASH_BUCKETS; i++) { 5336 if (test_bit(i, &napi->gro_bitmask)) 5337 __napi_gro_flush_chain(napi, i, flush_old); 5338 } 5339 } 5340 EXPORT_SYMBOL(napi_gro_flush); 5341 5342 static struct list_head *gro_list_prepare(struct napi_struct *napi, 5343 struct sk_buff *skb) 5344 { 5345 unsigned int maclen = skb->dev->hard_header_len; 5346 u32 hash = skb_get_hash_raw(skb); 5347 struct list_head *head; 5348 struct sk_buff *p; 5349 5350 head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list; 5351 list_for_each_entry(p, head, list) { 5352 unsigned long diffs; 5353 5354 NAPI_GRO_CB(p)->flush = 0; 5355 5356 if (hash != skb_get_hash_raw(p)) { 5357 NAPI_GRO_CB(p)->same_flow = 0; 5358 continue; 5359 } 5360 5361 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev; 5362 diffs |= p->vlan_tci ^ skb->vlan_tci; 5363 diffs |= skb_metadata_dst_cmp(p, skb); 5364 diffs |= skb_metadata_differs(p, skb); 5365 if (maclen == ETH_HLEN) 5366 diffs |= compare_ether_header(skb_mac_header(p), 5367 skb_mac_header(skb)); 5368 else if (!diffs) 5369 diffs = memcmp(skb_mac_header(p), 5370 skb_mac_header(skb), 5371 maclen); 5372 NAPI_GRO_CB(p)->same_flow = !diffs; 5373 } 5374 5375 return head; 5376 } 5377 5378 static void skb_gro_reset_offset(struct sk_buff *skb) 5379 { 5380 const struct skb_shared_info *pinfo = skb_shinfo(skb); 5381 const skb_frag_t *frag0 = &pinfo->frags[0]; 5382 5383 NAPI_GRO_CB(skb)->data_offset = 0; 5384 NAPI_GRO_CB(skb)->frag0 = NULL; 5385 NAPI_GRO_CB(skb)->frag0_len = 0; 5386 5387 if (skb_mac_header(skb) == skb_tail_pointer(skb) && 5388 pinfo->nr_frags && 5389 !PageHighMem(skb_frag_page(frag0))) { 5390 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0); 5391 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int, 5392 skb_frag_size(frag0), 5393 skb->end - skb->tail); 5394 } 5395 } 5396 5397 static void gro_pull_from_frag0(struct sk_buff *skb, int grow) 5398 { 5399 struct skb_shared_info *pinfo = skb_shinfo(skb); 5400 5401 BUG_ON(skb->end - skb->tail < grow); 5402 5403 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow); 5404 5405 skb->data_len -= grow; 5406 skb->tail += grow; 5407 5408 pinfo->frags[0].page_offset += grow; 5409 skb_frag_size_sub(&pinfo->frags[0], grow); 5410 5411 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) { 5412 skb_frag_unref(skb, 0); 5413 memmove(pinfo->frags, pinfo->frags + 1, 5414 --pinfo->nr_frags * sizeof(pinfo->frags[0])); 5415 } 5416 } 5417 5418 static void gro_flush_oldest(struct list_head *head) 5419 { 5420 struct sk_buff *oldest; 5421 5422 oldest = list_last_entry(head, struct sk_buff, list); 5423 5424 /* We are called with head length >= MAX_GRO_SKBS, so this is 5425 * impossible. 5426 */ 5427 if (WARN_ON_ONCE(!oldest)) 5428 return; 5429 5430 /* Do not adjust napi->gro_hash[].count, caller is adding a new 5431 * SKB to the chain. 5432 */ 5433 list_del(&oldest->list); 5434 napi_gro_complete(oldest); 5435 } 5436 5437 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 5438 { 5439 u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1); 5440 struct list_head *head = &offload_base; 5441 struct packet_offload *ptype; 5442 __be16 type = skb->protocol; 5443 struct list_head *gro_head; 5444 struct sk_buff *pp = NULL; 5445 enum gro_result ret; 5446 int same_flow; 5447 int grow; 5448 5449 if (netif_elide_gro(skb->dev)) 5450 goto normal; 5451 5452 gro_head = gro_list_prepare(napi, skb); 5453 5454 rcu_read_lock(); 5455 list_for_each_entry_rcu(ptype, head, list) { 5456 if (ptype->type != type || !ptype->callbacks.gro_receive) 5457 continue; 5458 5459 skb_set_network_header(skb, skb_gro_offset(skb)); 5460 skb_reset_mac_len(skb); 5461 NAPI_GRO_CB(skb)->same_flow = 0; 5462 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb); 5463 NAPI_GRO_CB(skb)->free = 0; 5464 NAPI_GRO_CB(skb)->encap_mark = 0; 5465 NAPI_GRO_CB(skb)->recursion_counter = 0; 5466 NAPI_GRO_CB(skb)->is_fou = 0; 5467 NAPI_GRO_CB(skb)->is_atomic = 1; 5468 NAPI_GRO_CB(skb)->gro_remcsum_start = 0; 5469 5470 /* Setup for GRO checksum validation */ 5471 switch (skb->ip_summed) { 5472 case CHECKSUM_COMPLETE: 5473 NAPI_GRO_CB(skb)->csum = skb->csum; 5474 NAPI_GRO_CB(skb)->csum_valid = 1; 5475 NAPI_GRO_CB(skb)->csum_cnt = 0; 5476 break; 5477 case CHECKSUM_UNNECESSARY: 5478 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1; 5479 NAPI_GRO_CB(skb)->csum_valid = 0; 5480 break; 5481 default: 5482 NAPI_GRO_CB(skb)->csum_cnt = 0; 5483 NAPI_GRO_CB(skb)->csum_valid = 0; 5484 } 5485 5486 pp = ptype->callbacks.gro_receive(gro_head, skb); 5487 break; 5488 } 5489 rcu_read_unlock(); 5490 5491 if (&ptype->list == head) 5492 goto normal; 5493 5494 if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) { 5495 ret = GRO_CONSUMED; 5496 goto ok; 5497 } 5498 5499 same_flow = NAPI_GRO_CB(skb)->same_flow; 5500 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED; 5501 5502 if (pp) { 5503 list_del(&pp->list); 5504 pp->next = NULL; 5505 napi_gro_complete(pp); 5506 napi->gro_hash[hash].count--; 5507 } 5508 5509 if (same_flow) 5510 goto ok; 5511 5512 if (NAPI_GRO_CB(skb)->flush) 5513 goto normal; 5514 5515 if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) { 5516 gro_flush_oldest(gro_head); 5517 } else { 5518 napi->gro_hash[hash].count++; 5519 } 5520 NAPI_GRO_CB(skb)->count = 1; 5521 NAPI_GRO_CB(skb)->age = jiffies; 5522 NAPI_GRO_CB(skb)->last = skb; 5523 skb_shinfo(skb)->gso_size = skb_gro_len(skb); 5524 list_add(&skb->list, gro_head); 5525 ret = GRO_HELD; 5526 5527 pull: 5528 grow = skb_gro_offset(skb) - skb_headlen(skb); 5529 if (grow > 0) 5530 gro_pull_from_frag0(skb, grow); 5531 ok: 5532 if (napi->gro_hash[hash].count) { 5533 if (!test_bit(hash, &napi->gro_bitmask)) 5534 __set_bit(hash, &napi->gro_bitmask); 5535 } else if (test_bit(hash, &napi->gro_bitmask)) { 5536 __clear_bit(hash, &napi->gro_bitmask); 5537 } 5538 5539 return ret; 5540 5541 normal: 5542 ret = GRO_NORMAL; 5543 goto pull; 5544 } 5545 5546 struct packet_offload *gro_find_receive_by_type(__be16 type) 5547 { 5548 struct list_head *offload_head = &offload_base; 5549 struct packet_offload *ptype; 5550 5551 list_for_each_entry_rcu(ptype, offload_head, list) { 5552 if (ptype->type != type || !ptype->callbacks.gro_receive) 5553 continue; 5554 return ptype; 5555 } 5556 return NULL; 5557 } 5558 EXPORT_SYMBOL(gro_find_receive_by_type); 5559 5560 struct packet_offload *gro_find_complete_by_type(__be16 type) 5561 { 5562 struct list_head *offload_head = &offload_base; 5563 struct packet_offload *ptype; 5564 5565 list_for_each_entry_rcu(ptype, offload_head, list) { 5566 if (ptype->type != type || !ptype->callbacks.gro_complete) 5567 continue; 5568 return ptype; 5569 } 5570 return NULL; 5571 } 5572 EXPORT_SYMBOL(gro_find_complete_by_type); 5573 5574 static void napi_skb_free_stolen_head(struct sk_buff *skb) 5575 { 5576 skb_dst_drop(skb); 5577 secpath_reset(skb); 5578 kmem_cache_free(skbuff_head_cache, skb); 5579 } 5580 5581 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb) 5582 { 5583 switch (ret) { 5584 case GRO_NORMAL: 5585 if (netif_receive_skb_internal(skb)) 5586 ret = GRO_DROP; 5587 break; 5588 5589 case GRO_DROP: 5590 kfree_skb(skb); 5591 break; 5592 5593 case GRO_MERGED_FREE: 5594 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) 5595 napi_skb_free_stolen_head(skb); 5596 else 5597 __kfree_skb(skb); 5598 break; 5599 5600 case GRO_HELD: 5601 case GRO_MERGED: 5602 case GRO_CONSUMED: 5603 break; 5604 } 5605 5606 return ret; 5607 } 5608 5609 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 5610 { 5611 skb_mark_napi_id(skb, napi); 5612 trace_napi_gro_receive_entry(skb); 5613 5614 skb_gro_reset_offset(skb); 5615 5616 return napi_skb_finish(dev_gro_receive(napi, skb), skb); 5617 } 5618 EXPORT_SYMBOL(napi_gro_receive); 5619 5620 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb) 5621 { 5622 if (unlikely(skb->pfmemalloc)) { 5623 consume_skb(skb); 5624 return; 5625 } 5626 __skb_pull(skb, skb_headlen(skb)); 5627 /* restore the reserve we had after netdev_alloc_skb_ip_align() */ 5628 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb)); 5629 skb->vlan_tci = 0; 5630 skb->dev = napi->dev; 5631 skb->skb_iif = 0; 5632 skb->encapsulation = 0; 5633 skb_shinfo(skb)->gso_type = 0; 5634 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 5635 secpath_reset(skb); 5636 5637 napi->skb = skb; 5638 } 5639 5640 struct sk_buff *napi_get_frags(struct napi_struct *napi) 5641 { 5642 struct sk_buff *skb = napi->skb; 5643 5644 if (!skb) { 5645 skb = napi_alloc_skb(napi, GRO_MAX_HEAD); 5646 if (skb) { 5647 napi->skb = skb; 5648 skb_mark_napi_id(skb, napi); 5649 } 5650 } 5651 return skb; 5652 } 5653 EXPORT_SYMBOL(napi_get_frags); 5654 5655 static gro_result_t napi_frags_finish(struct napi_struct *napi, 5656 struct sk_buff *skb, 5657 gro_result_t ret) 5658 { 5659 switch (ret) { 5660 case GRO_NORMAL: 5661 case GRO_HELD: 5662 __skb_push(skb, ETH_HLEN); 5663 skb->protocol = eth_type_trans(skb, skb->dev); 5664 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb)) 5665 ret = GRO_DROP; 5666 break; 5667 5668 case GRO_DROP: 5669 napi_reuse_skb(napi, skb); 5670 break; 5671 5672 case GRO_MERGED_FREE: 5673 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) 5674 napi_skb_free_stolen_head(skb); 5675 else 5676 napi_reuse_skb(napi, skb); 5677 break; 5678 5679 case GRO_MERGED: 5680 case GRO_CONSUMED: 5681 break; 5682 } 5683 5684 return ret; 5685 } 5686 5687 /* Upper GRO stack assumes network header starts at gro_offset=0 5688 * Drivers could call both napi_gro_frags() and napi_gro_receive() 5689 * We copy ethernet header into skb->data to have a common layout. 5690 */ 5691 static struct sk_buff *napi_frags_skb(struct napi_struct *napi) 5692 { 5693 struct sk_buff *skb = napi->skb; 5694 const struct ethhdr *eth; 5695 unsigned int hlen = sizeof(*eth); 5696 5697 napi->skb = NULL; 5698 5699 skb_reset_mac_header(skb); 5700 skb_gro_reset_offset(skb); 5701 5702 eth = skb_gro_header_fast(skb, 0); 5703 if (unlikely(skb_gro_header_hard(skb, hlen))) { 5704 eth = skb_gro_header_slow(skb, hlen, 0); 5705 if (unlikely(!eth)) { 5706 net_warn_ratelimited("%s: dropping impossible skb from %s\n", 5707 __func__, napi->dev->name); 5708 napi_reuse_skb(napi, skb); 5709 return NULL; 5710 } 5711 } else { 5712 gro_pull_from_frag0(skb, hlen); 5713 NAPI_GRO_CB(skb)->frag0 += hlen; 5714 NAPI_GRO_CB(skb)->frag0_len -= hlen; 5715 } 5716 __skb_pull(skb, hlen); 5717 5718 /* 5719 * This works because the only protocols we care about don't require 5720 * special handling. 5721 * We'll fix it up properly in napi_frags_finish() 5722 */ 5723 skb->protocol = eth->h_proto; 5724 5725 return skb; 5726 } 5727 5728 gro_result_t napi_gro_frags(struct napi_struct *napi) 5729 { 5730 struct sk_buff *skb = napi_frags_skb(napi); 5731 5732 if (!skb) 5733 return GRO_DROP; 5734 5735 trace_napi_gro_frags_entry(skb); 5736 5737 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb)); 5738 } 5739 EXPORT_SYMBOL(napi_gro_frags); 5740 5741 /* Compute the checksum from gro_offset and return the folded value 5742 * after adding in any pseudo checksum. 5743 */ 5744 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb) 5745 { 5746 __wsum wsum; 5747 __sum16 sum; 5748 5749 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0); 5750 5751 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */ 5752 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum)); 5753 if (likely(!sum)) { 5754 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 5755 !skb->csum_complete_sw) 5756 netdev_rx_csum_fault(skb->dev); 5757 } 5758 5759 NAPI_GRO_CB(skb)->csum = wsum; 5760 NAPI_GRO_CB(skb)->csum_valid = 1; 5761 5762 return sum; 5763 } 5764 EXPORT_SYMBOL(__skb_gro_checksum_complete); 5765 5766 static void net_rps_send_ipi(struct softnet_data *remsd) 5767 { 5768 #ifdef CONFIG_RPS 5769 while (remsd) { 5770 struct softnet_data *next = remsd->rps_ipi_next; 5771 5772 if (cpu_online(remsd->cpu)) 5773 smp_call_function_single_async(remsd->cpu, &remsd->csd); 5774 remsd = next; 5775 } 5776 #endif 5777 } 5778 5779 /* 5780 * net_rps_action_and_irq_enable sends any pending IPI's for rps. 5781 * Note: called with local irq disabled, but exits with local irq enabled. 5782 */ 5783 static void net_rps_action_and_irq_enable(struct softnet_data *sd) 5784 { 5785 #ifdef CONFIG_RPS 5786 struct softnet_data *remsd = sd->rps_ipi_list; 5787 5788 if (remsd) { 5789 sd->rps_ipi_list = NULL; 5790 5791 local_irq_enable(); 5792 5793 /* Send pending IPI's to kick RPS processing on remote cpus. */ 5794 net_rps_send_ipi(remsd); 5795 } else 5796 #endif 5797 local_irq_enable(); 5798 } 5799 5800 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd) 5801 { 5802 #ifdef CONFIG_RPS 5803 return sd->rps_ipi_list != NULL; 5804 #else 5805 return false; 5806 #endif 5807 } 5808 5809 static int process_backlog(struct napi_struct *napi, int quota) 5810 { 5811 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 5812 bool again = true; 5813 int work = 0; 5814 5815 /* Check if we have pending ipi, its better to send them now, 5816 * not waiting net_rx_action() end. 5817 */ 5818 if (sd_has_rps_ipi_waiting(sd)) { 5819 local_irq_disable(); 5820 net_rps_action_and_irq_enable(sd); 5821 } 5822 5823 napi->weight = dev_rx_weight; 5824 while (again) { 5825 struct sk_buff *skb; 5826 5827 while ((skb = __skb_dequeue(&sd->process_queue))) { 5828 rcu_read_lock(); 5829 __netif_receive_skb(skb); 5830 rcu_read_unlock(); 5831 input_queue_head_incr(sd); 5832 if (++work >= quota) 5833 return work; 5834 5835 } 5836 5837 local_irq_disable(); 5838 rps_lock(sd); 5839 if (skb_queue_empty(&sd->input_pkt_queue)) { 5840 /* 5841 * Inline a custom version of __napi_complete(). 5842 * only current cpu owns and manipulates this napi, 5843 * and NAPI_STATE_SCHED is the only possible flag set 5844 * on backlog. 5845 * We can use a plain write instead of clear_bit(), 5846 * and we dont need an smp_mb() memory barrier. 5847 */ 5848 napi->state = 0; 5849 again = false; 5850 } else { 5851 skb_queue_splice_tail_init(&sd->input_pkt_queue, 5852 &sd->process_queue); 5853 } 5854 rps_unlock(sd); 5855 local_irq_enable(); 5856 } 5857 5858 return work; 5859 } 5860 5861 /** 5862 * __napi_schedule - schedule for receive 5863 * @n: entry to schedule 5864 * 5865 * The entry's receive function will be scheduled to run. 5866 * Consider using __napi_schedule_irqoff() if hard irqs are masked. 5867 */ 5868 void __napi_schedule(struct napi_struct *n) 5869 { 5870 unsigned long flags; 5871 5872 local_irq_save(flags); 5873 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 5874 local_irq_restore(flags); 5875 } 5876 EXPORT_SYMBOL(__napi_schedule); 5877 5878 /** 5879 * napi_schedule_prep - check if napi can be scheduled 5880 * @n: napi context 5881 * 5882 * Test if NAPI routine is already running, and if not mark 5883 * it as running. This is used as a condition variable 5884 * insure only one NAPI poll instance runs. We also make 5885 * sure there is no pending NAPI disable. 5886 */ 5887 bool napi_schedule_prep(struct napi_struct *n) 5888 { 5889 unsigned long val, new; 5890 5891 do { 5892 val = READ_ONCE(n->state); 5893 if (unlikely(val & NAPIF_STATE_DISABLE)) 5894 return false; 5895 new = val | NAPIF_STATE_SCHED; 5896 5897 /* Sets STATE_MISSED bit if STATE_SCHED was already set 5898 * This was suggested by Alexander Duyck, as compiler 5899 * emits better code than : 5900 * if (val & NAPIF_STATE_SCHED) 5901 * new |= NAPIF_STATE_MISSED; 5902 */ 5903 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED * 5904 NAPIF_STATE_MISSED; 5905 } while (cmpxchg(&n->state, val, new) != val); 5906 5907 return !(val & NAPIF_STATE_SCHED); 5908 } 5909 EXPORT_SYMBOL(napi_schedule_prep); 5910 5911 /** 5912 * __napi_schedule_irqoff - schedule for receive 5913 * @n: entry to schedule 5914 * 5915 * Variant of __napi_schedule() assuming hard irqs are masked 5916 */ 5917 void __napi_schedule_irqoff(struct napi_struct *n) 5918 { 5919 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 5920 } 5921 EXPORT_SYMBOL(__napi_schedule_irqoff); 5922 5923 bool napi_complete_done(struct napi_struct *n, int work_done) 5924 { 5925 unsigned long flags, val, new; 5926 5927 /* 5928 * 1) Don't let napi dequeue from the cpu poll list 5929 * just in case its running on a different cpu. 5930 * 2) If we are busy polling, do nothing here, we have 5931 * the guarantee we will be called later. 5932 */ 5933 if (unlikely(n->state & (NAPIF_STATE_NPSVC | 5934 NAPIF_STATE_IN_BUSY_POLL))) 5935 return false; 5936 5937 if (n->gro_bitmask) { 5938 unsigned long timeout = 0; 5939 5940 if (work_done) 5941 timeout = n->dev->gro_flush_timeout; 5942 5943 if (timeout) 5944 hrtimer_start(&n->timer, ns_to_ktime(timeout), 5945 HRTIMER_MODE_REL_PINNED); 5946 else 5947 napi_gro_flush(n, false); 5948 } 5949 if (unlikely(!list_empty(&n->poll_list))) { 5950 /* If n->poll_list is not empty, we need to mask irqs */ 5951 local_irq_save(flags); 5952 list_del_init(&n->poll_list); 5953 local_irq_restore(flags); 5954 } 5955 5956 do { 5957 val = READ_ONCE(n->state); 5958 5959 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED)); 5960 5961 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED); 5962 5963 /* If STATE_MISSED was set, leave STATE_SCHED set, 5964 * because we will call napi->poll() one more time. 5965 * This C code was suggested by Alexander Duyck to help gcc. 5966 */ 5967 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED * 5968 NAPIF_STATE_SCHED; 5969 } while (cmpxchg(&n->state, val, new) != val); 5970 5971 if (unlikely(val & NAPIF_STATE_MISSED)) { 5972 __napi_schedule(n); 5973 return false; 5974 } 5975 5976 return true; 5977 } 5978 EXPORT_SYMBOL(napi_complete_done); 5979 5980 /* must be called under rcu_read_lock(), as we dont take a reference */ 5981 static struct napi_struct *napi_by_id(unsigned int napi_id) 5982 { 5983 unsigned int hash = napi_id % HASH_SIZE(napi_hash); 5984 struct napi_struct *napi; 5985 5986 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node) 5987 if (napi->napi_id == napi_id) 5988 return napi; 5989 5990 return NULL; 5991 } 5992 5993 #if defined(CONFIG_NET_RX_BUSY_POLL) 5994 5995 #define BUSY_POLL_BUDGET 8 5996 5997 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock) 5998 { 5999 int rc; 6000 6001 /* Busy polling means there is a high chance device driver hard irq 6002 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was 6003 * set in napi_schedule_prep(). 6004 * Since we are about to call napi->poll() once more, we can safely 6005 * clear NAPI_STATE_MISSED. 6006 * 6007 * Note: x86 could use a single "lock and ..." instruction 6008 * to perform these two clear_bit() 6009 */ 6010 clear_bit(NAPI_STATE_MISSED, &napi->state); 6011 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state); 6012 6013 local_bh_disable(); 6014 6015 /* All we really want here is to re-enable device interrupts. 6016 * Ideally, a new ndo_busy_poll_stop() could avoid another round. 6017 */ 6018 rc = napi->poll(napi, BUSY_POLL_BUDGET); 6019 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET); 6020 netpoll_poll_unlock(have_poll_lock); 6021 if (rc == BUSY_POLL_BUDGET) 6022 __napi_schedule(napi); 6023 local_bh_enable(); 6024 } 6025 6026 void napi_busy_loop(unsigned int napi_id, 6027 bool (*loop_end)(void *, unsigned long), 6028 void *loop_end_arg) 6029 { 6030 unsigned long start_time = loop_end ? busy_loop_current_time() : 0; 6031 int (*napi_poll)(struct napi_struct *napi, int budget); 6032 void *have_poll_lock = NULL; 6033 struct napi_struct *napi; 6034 6035 restart: 6036 napi_poll = NULL; 6037 6038 rcu_read_lock(); 6039 6040 napi = napi_by_id(napi_id); 6041 if (!napi) 6042 goto out; 6043 6044 preempt_disable(); 6045 for (;;) { 6046 int work = 0; 6047 6048 local_bh_disable(); 6049 if (!napi_poll) { 6050 unsigned long val = READ_ONCE(napi->state); 6051 6052 /* If multiple threads are competing for this napi, 6053 * we avoid dirtying napi->state as much as we can. 6054 */ 6055 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED | 6056 NAPIF_STATE_IN_BUSY_POLL)) 6057 goto count; 6058 if (cmpxchg(&napi->state, val, 6059 val | NAPIF_STATE_IN_BUSY_POLL | 6060 NAPIF_STATE_SCHED) != val) 6061 goto count; 6062 have_poll_lock = netpoll_poll_lock(napi); 6063 napi_poll = napi->poll; 6064 } 6065 work = napi_poll(napi, BUSY_POLL_BUDGET); 6066 trace_napi_poll(napi, work, BUSY_POLL_BUDGET); 6067 count: 6068 if (work > 0) 6069 __NET_ADD_STATS(dev_net(napi->dev), 6070 LINUX_MIB_BUSYPOLLRXPACKETS, work); 6071 local_bh_enable(); 6072 6073 if (!loop_end || loop_end(loop_end_arg, start_time)) 6074 break; 6075 6076 if (unlikely(need_resched())) { 6077 if (napi_poll) 6078 busy_poll_stop(napi, have_poll_lock); 6079 preempt_enable(); 6080 rcu_read_unlock(); 6081 cond_resched(); 6082 if (loop_end(loop_end_arg, start_time)) 6083 return; 6084 goto restart; 6085 } 6086 cpu_relax(); 6087 } 6088 if (napi_poll) 6089 busy_poll_stop(napi, have_poll_lock); 6090 preempt_enable(); 6091 out: 6092 rcu_read_unlock(); 6093 } 6094 EXPORT_SYMBOL(napi_busy_loop); 6095 6096 #endif /* CONFIG_NET_RX_BUSY_POLL */ 6097 6098 static void napi_hash_add(struct napi_struct *napi) 6099 { 6100 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) || 6101 test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) 6102 return; 6103 6104 spin_lock(&napi_hash_lock); 6105 6106 /* 0..NR_CPUS range is reserved for sender_cpu use */ 6107 do { 6108 if (unlikely(++napi_gen_id < MIN_NAPI_ID)) 6109 napi_gen_id = MIN_NAPI_ID; 6110 } while (napi_by_id(napi_gen_id)); 6111 napi->napi_id = napi_gen_id; 6112 6113 hlist_add_head_rcu(&napi->napi_hash_node, 6114 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]); 6115 6116 spin_unlock(&napi_hash_lock); 6117 } 6118 6119 /* Warning : caller is responsible to make sure rcu grace period 6120 * is respected before freeing memory containing @napi 6121 */ 6122 bool napi_hash_del(struct napi_struct *napi) 6123 { 6124 bool rcu_sync_needed = false; 6125 6126 spin_lock(&napi_hash_lock); 6127 6128 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) { 6129 rcu_sync_needed = true; 6130 hlist_del_rcu(&napi->napi_hash_node); 6131 } 6132 spin_unlock(&napi_hash_lock); 6133 return rcu_sync_needed; 6134 } 6135 EXPORT_SYMBOL_GPL(napi_hash_del); 6136 6137 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer) 6138 { 6139 struct napi_struct *napi; 6140 6141 napi = container_of(timer, struct napi_struct, timer); 6142 6143 /* Note : we use a relaxed variant of napi_schedule_prep() not setting 6144 * NAPI_STATE_MISSED, since we do not react to a device IRQ. 6145 */ 6146 if (napi->gro_bitmask && !napi_disable_pending(napi) && 6147 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) 6148 __napi_schedule_irqoff(napi); 6149 6150 return HRTIMER_NORESTART; 6151 } 6152 6153 static void init_gro_hash(struct napi_struct *napi) 6154 { 6155 int i; 6156 6157 for (i = 0; i < GRO_HASH_BUCKETS; i++) { 6158 INIT_LIST_HEAD(&napi->gro_hash[i].list); 6159 napi->gro_hash[i].count = 0; 6160 } 6161 napi->gro_bitmask = 0; 6162 } 6163 6164 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 6165 int (*poll)(struct napi_struct *, int), int weight) 6166 { 6167 INIT_LIST_HEAD(&napi->poll_list); 6168 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED); 6169 napi->timer.function = napi_watchdog; 6170 init_gro_hash(napi); 6171 napi->skb = NULL; 6172 napi->poll = poll; 6173 if (weight > NAPI_POLL_WEIGHT) 6174 pr_err_once("netif_napi_add() called with weight %d on device %s\n", 6175 weight, dev->name); 6176 napi->weight = weight; 6177 list_add(&napi->dev_list, &dev->napi_list); 6178 napi->dev = dev; 6179 #ifdef CONFIG_NETPOLL 6180 napi->poll_owner = -1; 6181 #endif 6182 set_bit(NAPI_STATE_SCHED, &napi->state); 6183 napi_hash_add(napi); 6184 } 6185 EXPORT_SYMBOL(netif_napi_add); 6186 6187 void napi_disable(struct napi_struct *n) 6188 { 6189 might_sleep(); 6190 set_bit(NAPI_STATE_DISABLE, &n->state); 6191 6192 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state)) 6193 msleep(1); 6194 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state)) 6195 msleep(1); 6196 6197 hrtimer_cancel(&n->timer); 6198 6199 clear_bit(NAPI_STATE_DISABLE, &n->state); 6200 } 6201 EXPORT_SYMBOL(napi_disable); 6202 6203 static void flush_gro_hash(struct napi_struct *napi) 6204 { 6205 int i; 6206 6207 for (i = 0; i < GRO_HASH_BUCKETS; i++) { 6208 struct sk_buff *skb, *n; 6209 6210 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list) 6211 kfree_skb(skb); 6212 napi->gro_hash[i].count = 0; 6213 } 6214 } 6215 6216 /* Must be called in process context */ 6217 void netif_napi_del(struct napi_struct *napi) 6218 { 6219 might_sleep(); 6220 if (napi_hash_del(napi)) 6221 synchronize_net(); 6222 list_del_init(&napi->dev_list); 6223 napi_free_frags(napi); 6224 6225 flush_gro_hash(napi); 6226 napi->gro_bitmask = 0; 6227 } 6228 EXPORT_SYMBOL(netif_napi_del); 6229 6230 static int napi_poll(struct napi_struct *n, struct list_head *repoll) 6231 { 6232 void *have; 6233 int work, weight; 6234 6235 list_del_init(&n->poll_list); 6236 6237 have = netpoll_poll_lock(n); 6238 6239 weight = n->weight; 6240 6241 /* This NAPI_STATE_SCHED test is for avoiding a race 6242 * with netpoll's poll_napi(). Only the entity which 6243 * obtains the lock and sees NAPI_STATE_SCHED set will 6244 * actually make the ->poll() call. Therefore we avoid 6245 * accidentally calling ->poll() when NAPI is not scheduled. 6246 */ 6247 work = 0; 6248 if (test_bit(NAPI_STATE_SCHED, &n->state)) { 6249 work = n->poll(n, weight); 6250 trace_napi_poll(n, work, weight); 6251 } 6252 6253 WARN_ON_ONCE(work > weight); 6254 6255 if (likely(work < weight)) 6256 goto out_unlock; 6257 6258 /* Drivers must not modify the NAPI state if they 6259 * consume the entire weight. In such cases this code 6260 * still "owns" the NAPI instance and therefore can 6261 * move the instance around on the list at-will. 6262 */ 6263 if (unlikely(napi_disable_pending(n))) { 6264 napi_complete(n); 6265 goto out_unlock; 6266 } 6267 6268 if (n->gro_bitmask) { 6269 /* flush too old packets 6270 * If HZ < 1000, flush all packets. 6271 */ 6272 napi_gro_flush(n, HZ >= 1000); 6273 } 6274 6275 /* Some drivers may have called napi_schedule 6276 * prior to exhausting their budget. 6277 */ 6278 if (unlikely(!list_empty(&n->poll_list))) { 6279 pr_warn_once("%s: Budget exhausted after napi rescheduled\n", 6280 n->dev ? n->dev->name : "backlog"); 6281 goto out_unlock; 6282 } 6283 6284 list_add_tail(&n->poll_list, repoll); 6285 6286 out_unlock: 6287 netpoll_poll_unlock(have); 6288 6289 return work; 6290 } 6291 6292 static __latent_entropy void net_rx_action(struct softirq_action *h) 6293 { 6294 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 6295 unsigned long time_limit = jiffies + 6296 usecs_to_jiffies(netdev_budget_usecs); 6297 int budget = netdev_budget; 6298 LIST_HEAD(list); 6299 LIST_HEAD(repoll); 6300 6301 local_irq_disable(); 6302 list_splice_init(&sd->poll_list, &list); 6303 local_irq_enable(); 6304 6305 for (;;) { 6306 struct napi_struct *n; 6307 6308 if (list_empty(&list)) { 6309 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll)) 6310 goto out; 6311 break; 6312 } 6313 6314 n = list_first_entry(&list, struct napi_struct, poll_list); 6315 budget -= napi_poll(n, &repoll); 6316 6317 /* If softirq window is exhausted then punt. 6318 * Allow this to run for 2 jiffies since which will allow 6319 * an average latency of 1.5/HZ. 6320 */ 6321 if (unlikely(budget <= 0 || 6322 time_after_eq(jiffies, time_limit))) { 6323 sd->time_squeeze++; 6324 break; 6325 } 6326 } 6327 6328 local_irq_disable(); 6329 6330 list_splice_tail_init(&sd->poll_list, &list); 6331 list_splice_tail(&repoll, &list); 6332 list_splice(&list, &sd->poll_list); 6333 if (!list_empty(&sd->poll_list)) 6334 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 6335 6336 net_rps_action_and_irq_enable(sd); 6337 out: 6338 __kfree_skb_flush(); 6339 } 6340 6341 struct netdev_adjacent { 6342 struct net_device *dev; 6343 6344 /* upper master flag, there can only be one master device per list */ 6345 bool master; 6346 6347 /* counter for the number of times this device was added to us */ 6348 u16 ref_nr; 6349 6350 /* private field for the users */ 6351 void *private; 6352 6353 struct list_head list; 6354 struct rcu_head rcu; 6355 }; 6356 6357 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev, 6358 struct list_head *adj_list) 6359 { 6360 struct netdev_adjacent *adj; 6361 6362 list_for_each_entry(adj, adj_list, list) { 6363 if (adj->dev == adj_dev) 6364 return adj; 6365 } 6366 return NULL; 6367 } 6368 6369 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data) 6370 { 6371 struct net_device *dev = data; 6372 6373 return upper_dev == dev; 6374 } 6375 6376 /** 6377 * netdev_has_upper_dev - Check if device is linked to an upper device 6378 * @dev: device 6379 * @upper_dev: upper device to check 6380 * 6381 * Find out if a device is linked to specified upper device and return true 6382 * in case it is. Note that this checks only immediate upper device, 6383 * not through a complete stack of devices. The caller must hold the RTNL lock. 6384 */ 6385 bool netdev_has_upper_dev(struct net_device *dev, 6386 struct net_device *upper_dev) 6387 { 6388 ASSERT_RTNL(); 6389 6390 return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev, 6391 upper_dev); 6392 } 6393 EXPORT_SYMBOL(netdev_has_upper_dev); 6394 6395 /** 6396 * netdev_has_upper_dev_all - Check if device is linked to an upper device 6397 * @dev: device 6398 * @upper_dev: upper device to check 6399 * 6400 * Find out if a device is linked to specified upper device and return true 6401 * in case it is. Note that this checks the entire upper device chain. 6402 * The caller must hold rcu lock. 6403 */ 6404 6405 bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 6406 struct net_device *upper_dev) 6407 { 6408 return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev, 6409 upper_dev); 6410 } 6411 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu); 6412 6413 /** 6414 * netdev_has_any_upper_dev - Check if device is linked to some device 6415 * @dev: device 6416 * 6417 * Find out if a device is linked to an upper device and return true in case 6418 * it is. The caller must hold the RTNL lock. 6419 */ 6420 bool netdev_has_any_upper_dev(struct net_device *dev) 6421 { 6422 ASSERT_RTNL(); 6423 6424 return !list_empty(&dev->adj_list.upper); 6425 } 6426 EXPORT_SYMBOL(netdev_has_any_upper_dev); 6427 6428 /** 6429 * netdev_master_upper_dev_get - Get master upper device 6430 * @dev: device 6431 * 6432 * Find a master upper device and return pointer to it or NULL in case 6433 * it's not there. The caller must hold the RTNL lock. 6434 */ 6435 struct net_device *netdev_master_upper_dev_get(struct net_device *dev) 6436 { 6437 struct netdev_adjacent *upper; 6438 6439 ASSERT_RTNL(); 6440 6441 if (list_empty(&dev->adj_list.upper)) 6442 return NULL; 6443 6444 upper = list_first_entry(&dev->adj_list.upper, 6445 struct netdev_adjacent, list); 6446 if (likely(upper->master)) 6447 return upper->dev; 6448 return NULL; 6449 } 6450 EXPORT_SYMBOL(netdev_master_upper_dev_get); 6451 6452 /** 6453 * netdev_has_any_lower_dev - Check if device is linked to some device 6454 * @dev: device 6455 * 6456 * Find out if a device is linked to a lower device and return true in case 6457 * it is. The caller must hold the RTNL lock. 6458 */ 6459 static bool netdev_has_any_lower_dev(struct net_device *dev) 6460 { 6461 ASSERT_RTNL(); 6462 6463 return !list_empty(&dev->adj_list.lower); 6464 } 6465 6466 void *netdev_adjacent_get_private(struct list_head *adj_list) 6467 { 6468 struct netdev_adjacent *adj; 6469 6470 adj = list_entry(adj_list, struct netdev_adjacent, list); 6471 6472 return adj->private; 6473 } 6474 EXPORT_SYMBOL(netdev_adjacent_get_private); 6475 6476 /** 6477 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list 6478 * @dev: device 6479 * @iter: list_head ** of the current position 6480 * 6481 * Gets the next device from the dev's upper list, starting from iter 6482 * position. The caller must hold RCU read lock. 6483 */ 6484 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 6485 struct list_head **iter) 6486 { 6487 struct netdev_adjacent *upper; 6488 6489 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 6490 6491 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 6492 6493 if (&upper->list == &dev->adj_list.upper) 6494 return NULL; 6495 6496 *iter = &upper->list; 6497 6498 return upper->dev; 6499 } 6500 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu); 6501 6502 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev, 6503 struct list_head **iter) 6504 { 6505 struct netdev_adjacent *upper; 6506 6507 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 6508 6509 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 6510 6511 if (&upper->list == &dev->adj_list.upper) 6512 return NULL; 6513 6514 *iter = &upper->list; 6515 6516 return upper->dev; 6517 } 6518 6519 int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 6520 int (*fn)(struct net_device *dev, 6521 void *data), 6522 void *data) 6523 { 6524 struct net_device *udev; 6525 struct list_head *iter; 6526 int ret; 6527 6528 for (iter = &dev->adj_list.upper, 6529 udev = netdev_next_upper_dev_rcu(dev, &iter); 6530 udev; 6531 udev = netdev_next_upper_dev_rcu(dev, &iter)) { 6532 /* first is the upper device itself */ 6533 ret = fn(udev, data); 6534 if (ret) 6535 return ret; 6536 6537 /* then look at all of its upper devices */ 6538 ret = netdev_walk_all_upper_dev_rcu(udev, fn, data); 6539 if (ret) 6540 return ret; 6541 } 6542 6543 return 0; 6544 } 6545 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu); 6546 6547 /** 6548 * netdev_lower_get_next_private - Get the next ->private from the 6549 * lower neighbour list 6550 * @dev: device 6551 * @iter: list_head ** of the current position 6552 * 6553 * Gets the next netdev_adjacent->private from the dev's lower neighbour 6554 * list, starting from iter position. The caller must hold either hold the 6555 * RTNL lock or its own locking that guarantees that the neighbour lower 6556 * list will remain unchanged. 6557 */ 6558 void *netdev_lower_get_next_private(struct net_device *dev, 6559 struct list_head **iter) 6560 { 6561 struct netdev_adjacent *lower; 6562 6563 lower = list_entry(*iter, struct netdev_adjacent, list); 6564 6565 if (&lower->list == &dev->adj_list.lower) 6566 return NULL; 6567 6568 *iter = lower->list.next; 6569 6570 return lower->private; 6571 } 6572 EXPORT_SYMBOL(netdev_lower_get_next_private); 6573 6574 /** 6575 * netdev_lower_get_next_private_rcu - Get the next ->private from the 6576 * lower neighbour list, RCU 6577 * variant 6578 * @dev: device 6579 * @iter: list_head ** of the current position 6580 * 6581 * Gets the next netdev_adjacent->private from the dev's lower neighbour 6582 * list, starting from iter position. The caller must hold RCU read lock. 6583 */ 6584 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 6585 struct list_head **iter) 6586 { 6587 struct netdev_adjacent *lower; 6588 6589 WARN_ON_ONCE(!rcu_read_lock_held()); 6590 6591 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 6592 6593 if (&lower->list == &dev->adj_list.lower) 6594 return NULL; 6595 6596 *iter = &lower->list; 6597 6598 return lower->private; 6599 } 6600 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu); 6601 6602 /** 6603 * netdev_lower_get_next - Get the next device from the lower neighbour 6604 * list 6605 * @dev: device 6606 * @iter: list_head ** of the current position 6607 * 6608 * Gets the next netdev_adjacent from the dev's lower neighbour 6609 * list, starting from iter position. The caller must hold RTNL lock or 6610 * its own locking that guarantees that the neighbour lower 6611 * list will remain unchanged. 6612 */ 6613 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter) 6614 { 6615 struct netdev_adjacent *lower; 6616 6617 lower = list_entry(*iter, struct netdev_adjacent, list); 6618 6619 if (&lower->list == &dev->adj_list.lower) 6620 return NULL; 6621 6622 *iter = lower->list.next; 6623 6624 return lower->dev; 6625 } 6626 EXPORT_SYMBOL(netdev_lower_get_next); 6627 6628 static struct net_device *netdev_next_lower_dev(struct net_device *dev, 6629 struct list_head **iter) 6630 { 6631 struct netdev_adjacent *lower; 6632 6633 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 6634 6635 if (&lower->list == &dev->adj_list.lower) 6636 return NULL; 6637 6638 *iter = &lower->list; 6639 6640 return lower->dev; 6641 } 6642 6643 int netdev_walk_all_lower_dev(struct net_device *dev, 6644 int (*fn)(struct net_device *dev, 6645 void *data), 6646 void *data) 6647 { 6648 struct net_device *ldev; 6649 struct list_head *iter; 6650 int ret; 6651 6652 for (iter = &dev->adj_list.lower, 6653 ldev = netdev_next_lower_dev(dev, &iter); 6654 ldev; 6655 ldev = netdev_next_lower_dev(dev, &iter)) { 6656 /* first is the lower device itself */ 6657 ret = fn(ldev, data); 6658 if (ret) 6659 return ret; 6660 6661 /* then look at all of its lower devices */ 6662 ret = netdev_walk_all_lower_dev(ldev, fn, data); 6663 if (ret) 6664 return ret; 6665 } 6666 6667 return 0; 6668 } 6669 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev); 6670 6671 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev, 6672 struct list_head **iter) 6673 { 6674 struct netdev_adjacent *lower; 6675 6676 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 6677 if (&lower->list == &dev->adj_list.lower) 6678 return NULL; 6679 6680 *iter = &lower->list; 6681 6682 return lower->dev; 6683 } 6684 6685 int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 6686 int (*fn)(struct net_device *dev, 6687 void *data), 6688 void *data) 6689 { 6690 struct net_device *ldev; 6691 struct list_head *iter; 6692 int ret; 6693 6694 for (iter = &dev->adj_list.lower, 6695 ldev = netdev_next_lower_dev_rcu(dev, &iter); 6696 ldev; 6697 ldev = netdev_next_lower_dev_rcu(dev, &iter)) { 6698 /* first is the lower device itself */ 6699 ret = fn(ldev, data); 6700 if (ret) 6701 return ret; 6702 6703 /* then look at all of its lower devices */ 6704 ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data); 6705 if (ret) 6706 return ret; 6707 } 6708 6709 return 0; 6710 } 6711 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu); 6712 6713 /** 6714 * netdev_lower_get_first_private_rcu - Get the first ->private from the 6715 * lower neighbour list, RCU 6716 * variant 6717 * @dev: device 6718 * 6719 * Gets the first netdev_adjacent->private from the dev's lower neighbour 6720 * list. The caller must hold RCU read lock. 6721 */ 6722 void *netdev_lower_get_first_private_rcu(struct net_device *dev) 6723 { 6724 struct netdev_adjacent *lower; 6725 6726 lower = list_first_or_null_rcu(&dev->adj_list.lower, 6727 struct netdev_adjacent, list); 6728 if (lower) 6729 return lower->private; 6730 return NULL; 6731 } 6732 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu); 6733 6734 /** 6735 * netdev_master_upper_dev_get_rcu - Get master upper device 6736 * @dev: device 6737 * 6738 * Find a master upper device and return pointer to it or NULL in case 6739 * it's not there. The caller must hold the RCU read lock. 6740 */ 6741 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev) 6742 { 6743 struct netdev_adjacent *upper; 6744 6745 upper = list_first_or_null_rcu(&dev->adj_list.upper, 6746 struct netdev_adjacent, list); 6747 if (upper && likely(upper->master)) 6748 return upper->dev; 6749 return NULL; 6750 } 6751 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu); 6752 6753 static int netdev_adjacent_sysfs_add(struct net_device *dev, 6754 struct net_device *adj_dev, 6755 struct list_head *dev_list) 6756 { 6757 char linkname[IFNAMSIZ+7]; 6758 6759 sprintf(linkname, dev_list == &dev->adj_list.upper ? 6760 "upper_%s" : "lower_%s", adj_dev->name); 6761 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj), 6762 linkname); 6763 } 6764 static void netdev_adjacent_sysfs_del(struct net_device *dev, 6765 char *name, 6766 struct list_head *dev_list) 6767 { 6768 char linkname[IFNAMSIZ+7]; 6769 6770 sprintf(linkname, dev_list == &dev->adj_list.upper ? 6771 "upper_%s" : "lower_%s", name); 6772 sysfs_remove_link(&(dev->dev.kobj), linkname); 6773 } 6774 6775 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev, 6776 struct net_device *adj_dev, 6777 struct list_head *dev_list) 6778 { 6779 return (dev_list == &dev->adj_list.upper || 6780 dev_list == &dev->adj_list.lower) && 6781 net_eq(dev_net(dev), dev_net(adj_dev)); 6782 } 6783 6784 static int __netdev_adjacent_dev_insert(struct net_device *dev, 6785 struct net_device *adj_dev, 6786 struct list_head *dev_list, 6787 void *private, bool master) 6788 { 6789 struct netdev_adjacent *adj; 6790 int ret; 6791 6792 adj = __netdev_find_adj(adj_dev, dev_list); 6793 6794 if (adj) { 6795 adj->ref_nr += 1; 6796 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n", 6797 dev->name, adj_dev->name, adj->ref_nr); 6798 6799 return 0; 6800 } 6801 6802 adj = kmalloc(sizeof(*adj), GFP_KERNEL); 6803 if (!adj) 6804 return -ENOMEM; 6805 6806 adj->dev = adj_dev; 6807 adj->master = master; 6808 adj->ref_nr = 1; 6809 adj->private = private; 6810 dev_hold(adj_dev); 6811 6812 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n", 6813 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name); 6814 6815 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) { 6816 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list); 6817 if (ret) 6818 goto free_adj; 6819 } 6820 6821 /* Ensure that master link is always the first item in list. */ 6822 if (master) { 6823 ret = sysfs_create_link(&(dev->dev.kobj), 6824 &(adj_dev->dev.kobj), "master"); 6825 if (ret) 6826 goto remove_symlinks; 6827 6828 list_add_rcu(&adj->list, dev_list); 6829 } else { 6830 list_add_tail_rcu(&adj->list, dev_list); 6831 } 6832 6833 return 0; 6834 6835 remove_symlinks: 6836 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 6837 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 6838 free_adj: 6839 kfree(adj); 6840 dev_put(adj_dev); 6841 6842 return ret; 6843 } 6844 6845 static void __netdev_adjacent_dev_remove(struct net_device *dev, 6846 struct net_device *adj_dev, 6847 u16 ref_nr, 6848 struct list_head *dev_list) 6849 { 6850 struct netdev_adjacent *adj; 6851 6852 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n", 6853 dev->name, adj_dev->name, ref_nr); 6854 6855 adj = __netdev_find_adj(adj_dev, dev_list); 6856 6857 if (!adj) { 6858 pr_err("Adjacency does not exist for device %s from %s\n", 6859 dev->name, adj_dev->name); 6860 WARN_ON(1); 6861 return; 6862 } 6863 6864 if (adj->ref_nr > ref_nr) { 6865 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n", 6866 dev->name, adj_dev->name, ref_nr, 6867 adj->ref_nr - ref_nr); 6868 adj->ref_nr -= ref_nr; 6869 return; 6870 } 6871 6872 if (adj->master) 6873 sysfs_remove_link(&(dev->dev.kobj), "master"); 6874 6875 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 6876 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 6877 6878 list_del_rcu(&adj->list); 6879 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n", 6880 adj_dev->name, dev->name, adj_dev->name); 6881 dev_put(adj_dev); 6882 kfree_rcu(adj, rcu); 6883 } 6884 6885 static int __netdev_adjacent_dev_link_lists(struct net_device *dev, 6886 struct net_device *upper_dev, 6887 struct list_head *up_list, 6888 struct list_head *down_list, 6889 void *private, bool master) 6890 { 6891 int ret; 6892 6893 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, 6894 private, master); 6895 if (ret) 6896 return ret; 6897 6898 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, 6899 private, false); 6900 if (ret) { 6901 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list); 6902 return ret; 6903 } 6904 6905 return 0; 6906 } 6907 6908 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev, 6909 struct net_device *upper_dev, 6910 u16 ref_nr, 6911 struct list_head *up_list, 6912 struct list_head *down_list) 6913 { 6914 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list); 6915 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list); 6916 } 6917 6918 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev, 6919 struct net_device *upper_dev, 6920 void *private, bool master) 6921 { 6922 return __netdev_adjacent_dev_link_lists(dev, upper_dev, 6923 &dev->adj_list.upper, 6924 &upper_dev->adj_list.lower, 6925 private, master); 6926 } 6927 6928 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev, 6929 struct net_device *upper_dev) 6930 { 6931 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1, 6932 &dev->adj_list.upper, 6933 &upper_dev->adj_list.lower); 6934 } 6935 6936 static int __netdev_upper_dev_link(struct net_device *dev, 6937 struct net_device *upper_dev, bool master, 6938 void *upper_priv, void *upper_info, 6939 struct netlink_ext_ack *extack) 6940 { 6941 struct netdev_notifier_changeupper_info changeupper_info = { 6942 .info = { 6943 .dev = dev, 6944 .extack = extack, 6945 }, 6946 .upper_dev = upper_dev, 6947 .master = master, 6948 .linking = true, 6949 .upper_info = upper_info, 6950 }; 6951 struct net_device *master_dev; 6952 int ret = 0; 6953 6954 ASSERT_RTNL(); 6955 6956 if (dev == upper_dev) 6957 return -EBUSY; 6958 6959 /* To prevent loops, check if dev is not upper device to upper_dev. */ 6960 if (netdev_has_upper_dev(upper_dev, dev)) 6961 return -EBUSY; 6962 6963 if (!master) { 6964 if (netdev_has_upper_dev(dev, upper_dev)) 6965 return -EEXIST; 6966 } else { 6967 master_dev = netdev_master_upper_dev_get(dev); 6968 if (master_dev) 6969 return master_dev == upper_dev ? -EEXIST : -EBUSY; 6970 } 6971 6972 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 6973 &changeupper_info.info); 6974 ret = notifier_to_errno(ret); 6975 if (ret) 6976 return ret; 6977 6978 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv, 6979 master); 6980 if (ret) 6981 return ret; 6982 6983 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 6984 &changeupper_info.info); 6985 ret = notifier_to_errno(ret); 6986 if (ret) 6987 goto rollback; 6988 6989 return 0; 6990 6991 rollback: 6992 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 6993 6994 return ret; 6995 } 6996 6997 /** 6998 * netdev_upper_dev_link - Add a link to the upper device 6999 * @dev: device 7000 * @upper_dev: new upper device 7001 * @extack: netlink extended ack 7002 * 7003 * Adds a link to device which is upper to this one. The caller must hold 7004 * the RTNL lock. On a failure a negative errno code is returned. 7005 * On success the reference counts are adjusted and the function 7006 * returns zero. 7007 */ 7008 int netdev_upper_dev_link(struct net_device *dev, 7009 struct net_device *upper_dev, 7010 struct netlink_ext_ack *extack) 7011 { 7012 return __netdev_upper_dev_link(dev, upper_dev, false, 7013 NULL, NULL, extack); 7014 } 7015 EXPORT_SYMBOL(netdev_upper_dev_link); 7016 7017 /** 7018 * netdev_master_upper_dev_link - Add a master link to the upper device 7019 * @dev: device 7020 * @upper_dev: new upper device 7021 * @upper_priv: upper device private 7022 * @upper_info: upper info to be passed down via notifier 7023 * @extack: netlink extended ack 7024 * 7025 * Adds a link to device which is upper to this one. In this case, only 7026 * one master upper device can be linked, although other non-master devices 7027 * might be linked as well. The caller must hold the RTNL lock. 7028 * On a failure a negative errno code is returned. On success the reference 7029 * counts are adjusted and the function returns zero. 7030 */ 7031 int netdev_master_upper_dev_link(struct net_device *dev, 7032 struct net_device *upper_dev, 7033 void *upper_priv, void *upper_info, 7034 struct netlink_ext_ack *extack) 7035 { 7036 return __netdev_upper_dev_link(dev, upper_dev, true, 7037 upper_priv, upper_info, extack); 7038 } 7039 EXPORT_SYMBOL(netdev_master_upper_dev_link); 7040 7041 /** 7042 * netdev_upper_dev_unlink - Removes a link to upper device 7043 * @dev: device 7044 * @upper_dev: new upper device 7045 * 7046 * Removes a link to device which is upper to this one. The caller must hold 7047 * the RTNL lock. 7048 */ 7049 void netdev_upper_dev_unlink(struct net_device *dev, 7050 struct net_device *upper_dev) 7051 { 7052 struct netdev_notifier_changeupper_info changeupper_info = { 7053 .info = { 7054 .dev = dev, 7055 }, 7056 .upper_dev = upper_dev, 7057 .linking = false, 7058 }; 7059 7060 ASSERT_RTNL(); 7061 7062 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev; 7063 7064 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 7065 &changeupper_info.info); 7066 7067 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 7068 7069 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 7070 &changeupper_info.info); 7071 } 7072 EXPORT_SYMBOL(netdev_upper_dev_unlink); 7073 7074 /** 7075 * netdev_bonding_info_change - Dispatch event about slave change 7076 * @dev: device 7077 * @bonding_info: info to dispatch 7078 * 7079 * Send NETDEV_BONDING_INFO to netdev notifiers with info. 7080 * The caller must hold the RTNL lock. 7081 */ 7082 void netdev_bonding_info_change(struct net_device *dev, 7083 struct netdev_bonding_info *bonding_info) 7084 { 7085 struct netdev_notifier_bonding_info info = { 7086 .info.dev = dev, 7087 }; 7088 7089 memcpy(&info.bonding_info, bonding_info, 7090 sizeof(struct netdev_bonding_info)); 7091 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, 7092 &info.info); 7093 } 7094 EXPORT_SYMBOL(netdev_bonding_info_change); 7095 7096 static void netdev_adjacent_add_links(struct net_device *dev) 7097 { 7098 struct netdev_adjacent *iter; 7099 7100 struct net *net = dev_net(dev); 7101 7102 list_for_each_entry(iter, &dev->adj_list.upper, list) { 7103 if (!net_eq(net, dev_net(iter->dev))) 7104 continue; 7105 netdev_adjacent_sysfs_add(iter->dev, dev, 7106 &iter->dev->adj_list.lower); 7107 netdev_adjacent_sysfs_add(dev, iter->dev, 7108 &dev->adj_list.upper); 7109 } 7110 7111 list_for_each_entry(iter, &dev->adj_list.lower, list) { 7112 if (!net_eq(net, dev_net(iter->dev))) 7113 continue; 7114 netdev_adjacent_sysfs_add(iter->dev, dev, 7115 &iter->dev->adj_list.upper); 7116 netdev_adjacent_sysfs_add(dev, iter->dev, 7117 &dev->adj_list.lower); 7118 } 7119 } 7120 7121 static void netdev_adjacent_del_links(struct net_device *dev) 7122 { 7123 struct netdev_adjacent *iter; 7124 7125 struct net *net = dev_net(dev); 7126 7127 list_for_each_entry(iter, &dev->adj_list.upper, list) { 7128 if (!net_eq(net, dev_net(iter->dev))) 7129 continue; 7130 netdev_adjacent_sysfs_del(iter->dev, dev->name, 7131 &iter->dev->adj_list.lower); 7132 netdev_adjacent_sysfs_del(dev, iter->dev->name, 7133 &dev->adj_list.upper); 7134 } 7135 7136 list_for_each_entry(iter, &dev->adj_list.lower, list) { 7137 if (!net_eq(net, dev_net(iter->dev))) 7138 continue; 7139 netdev_adjacent_sysfs_del(iter->dev, dev->name, 7140 &iter->dev->adj_list.upper); 7141 netdev_adjacent_sysfs_del(dev, iter->dev->name, 7142 &dev->adj_list.lower); 7143 } 7144 } 7145 7146 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname) 7147 { 7148 struct netdev_adjacent *iter; 7149 7150 struct net *net = dev_net(dev); 7151 7152 list_for_each_entry(iter, &dev->adj_list.upper, list) { 7153 if (!net_eq(net, dev_net(iter->dev))) 7154 continue; 7155 netdev_adjacent_sysfs_del(iter->dev, oldname, 7156 &iter->dev->adj_list.lower); 7157 netdev_adjacent_sysfs_add(iter->dev, dev, 7158 &iter->dev->adj_list.lower); 7159 } 7160 7161 list_for_each_entry(iter, &dev->adj_list.lower, list) { 7162 if (!net_eq(net, dev_net(iter->dev))) 7163 continue; 7164 netdev_adjacent_sysfs_del(iter->dev, oldname, 7165 &iter->dev->adj_list.upper); 7166 netdev_adjacent_sysfs_add(iter->dev, dev, 7167 &iter->dev->adj_list.upper); 7168 } 7169 } 7170 7171 void *netdev_lower_dev_get_private(struct net_device *dev, 7172 struct net_device *lower_dev) 7173 { 7174 struct netdev_adjacent *lower; 7175 7176 if (!lower_dev) 7177 return NULL; 7178 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower); 7179 if (!lower) 7180 return NULL; 7181 7182 return lower->private; 7183 } 7184 EXPORT_SYMBOL(netdev_lower_dev_get_private); 7185 7186 7187 int dev_get_nest_level(struct net_device *dev) 7188 { 7189 struct net_device *lower = NULL; 7190 struct list_head *iter; 7191 int max_nest = -1; 7192 int nest; 7193 7194 ASSERT_RTNL(); 7195 7196 netdev_for_each_lower_dev(dev, lower, iter) { 7197 nest = dev_get_nest_level(lower); 7198 if (max_nest < nest) 7199 max_nest = nest; 7200 } 7201 7202 return max_nest + 1; 7203 } 7204 EXPORT_SYMBOL(dev_get_nest_level); 7205 7206 /** 7207 * netdev_lower_change - Dispatch event about lower device state change 7208 * @lower_dev: device 7209 * @lower_state_info: state to dispatch 7210 * 7211 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info. 7212 * The caller must hold the RTNL lock. 7213 */ 7214 void netdev_lower_state_changed(struct net_device *lower_dev, 7215 void *lower_state_info) 7216 { 7217 struct netdev_notifier_changelowerstate_info changelowerstate_info = { 7218 .info.dev = lower_dev, 7219 }; 7220 7221 ASSERT_RTNL(); 7222 changelowerstate_info.lower_state_info = lower_state_info; 7223 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, 7224 &changelowerstate_info.info); 7225 } 7226 EXPORT_SYMBOL(netdev_lower_state_changed); 7227 7228 static void dev_change_rx_flags(struct net_device *dev, int flags) 7229 { 7230 const struct net_device_ops *ops = dev->netdev_ops; 7231 7232 if (ops->ndo_change_rx_flags) 7233 ops->ndo_change_rx_flags(dev, flags); 7234 } 7235 7236 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify) 7237 { 7238 unsigned int old_flags = dev->flags; 7239 kuid_t uid; 7240 kgid_t gid; 7241 7242 ASSERT_RTNL(); 7243 7244 dev->flags |= IFF_PROMISC; 7245 dev->promiscuity += inc; 7246 if (dev->promiscuity == 0) { 7247 /* 7248 * Avoid overflow. 7249 * If inc causes overflow, untouch promisc and return error. 7250 */ 7251 if (inc < 0) 7252 dev->flags &= ~IFF_PROMISC; 7253 else { 7254 dev->promiscuity -= inc; 7255 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n", 7256 dev->name); 7257 return -EOVERFLOW; 7258 } 7259 } 7260 if (dev->flags != old_flags) { 7261 pr_info("device %s %s promiscuous mode\n", 7262 dev->name, 7263 dev->flags & IFF_PROMISC ? "entered" : "left"); 7264 if (audit_enabled) { 7265 current_uid_gid(&uid, &gid); 7266 audit_log(audit_context(), GFP_ATOMIC, 7267 AUDIT_ANOM_PROMISCUOUS, 7268 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 7269 dev->name, (dev->flags & IFF_PROMISC), 7270 (old_flags & IFF_PROMISC), 7271 from_kuid(&init_user_ns, audit_get_loginuid(current)), 7272 from_kuid(&init_user_ns, uid), 7273 from_kgid(&init_user_ns, gid), 7274 audit_get_sessionid(current)); 7275 } 7276 7277 dev_change_rx_flags(dev, IFF_PROMISC); 7278 } 7279 if (notify) 7280 __dev_notify_flags(dev, old_flags, IFF_PROMISC); 7281 return 0; 7282 } 7283 7284 /** 7285 * dev_set_promiscuity - update promiscuity count on a device 7286 * @dev: device 7287 * @inc: modifier 7288 * 7289 * Add or remove promiscuity from a device. While the count in the device 7290 * remains above zero the interface remains promiscuous. Once it hits zero 7291 * the device reverts back to normal filtering operation. A negative inc 7292 * value is used to drop promiscuity on the device. 7293 * Return 0 if successful or a negative errno code on error. 7294 */ 7295 int dev_set_promiscuity(struct net_device *dev, int inc) 7296 { 7297 unsigned int old_flags = dev->flags; 7298 int err; 7299 7300 err = __dev_set_promiscuity(dev, inc, true); 7301 if (err < 0) 7302 return err; 7303 if (dev->flags != old_flags) 7304 dev_set_rx_mode(dev); 7305 return err; 7306 } 7307 EXPORT_SYMBOL(dev_set_promiscuity); 7308 7309 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify) 7310 { 7311 unsigned int old_flags = dev->flags, old_gflags = dev->gflags; 7312 7313 ASSERT_RTNL(); 7314 7315 dev->flags |= IFF_ALLMULTI; 7316 dev->allmulti += inc; 7317 if (dev->allmulti == 0) { 7318 /* 7319 * Avoid overflow. 7320 * If inc causes overflow, untouch allmulti and return error. 7321 */ 7322 if (inc < 0) 7323 dev->flags &= ~IFF_ALLMULTI; 7324 else { 7325 dev->allmulti -= inc; 7326 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n", 7327 dev->name); 7328 return -EOVERFLOW; 7329 } 7330 } 7331 if (dev->flags ^ old_flags) { 7332 dev_change_rx_flags(dev, IFF_ALLMULTI); 7333 dev_set_rx_mode(dev); 7334 if (notify) 7335 __dev_notify_flags(dev, old_flags, 7336 dev->gflags ^ old_gflags); 7337 } 7338 return 0; 7339 } 7340 7341 /** 7342 * dev_set_allmulti - update allmulti count on a device 7343 * @dev: device 7344 * @inc: modifier 7345 * 7346 * Add or remove reception of all multicast frames to a device. While the 7347 * count in the device remains above zero the interface remains listening 7348 * to all interfaces. Once it hits zero the device reverts back to normal 7349 * filtering operation. A negative @inc value is used to drop the counter 7350 * when releasing a resource needing all multicasts. 7351 * Return 0 if successful or a negative errno code on error. 7352 */ 7353 7354 int dev_set_allmulti(struct net_device *dev, int inc) 7355 { 7356 return __dev_set_allmulti(dev, inc, true); 7357 } 7358 EXPORT_SYMBOL(dev_set_allmulti); 7359 7360 /* 7361 * Upload unicast and multicast address lists to device and 7362 * configure RX filtering. When the device doesn't support unicast 7363 * filtering it is put in promiscuous mode while unicast addresses 7364 * are present. 7365 */ 7366 void __dev_set_rx_mode(struct net_device *dev) 7367 { 7368 const struct net_device_ops *ops = dev->netdev_ops; 7369 7370 /* dev_open will call this function so the list will stay sane. */ 7371 if (!(dev->flags&IFF_UP)) 7372 return; 7373 7374 if (!netif_device_present(dev)) 7375 return; 7376 7377 if (!(dev->priv_flags & IFF_UNICAST_FLT)) { 7378 /* Unicast addresses changes may only happen under the rtnl, 7379 * therefore calling __dev_set_promiscuity here is safe. 7380 */ 7381 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 7382 __dev_set_promiscuity(dev, 1, false); 7383 dev->uc_promisc = true; 7384 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 7385 __dev_set_promiscuity(dev, -1, false); 7386 dev->uc_promisc = false; 7387 } 7388 } 7389 7390 if (ops->ndo_set_rx_mode) 7391 ops->ndo_set_rx_mode(dev); 7392 } 7393 7394 void dev_set_rx_mode(struct net_device *dev) 7395 { 7396 netif_addr_lock_bh(dev); 7397 __dev_set_rx_mode(dev); 7398 netif_addr_unlock_bh(dev); 7399 } 7400 7401 /** 7402 * dev_get_flags - get flags reported to userspace 7403 * @dev: device 7404 * 7405 * Get the combination of flag bits exported through APIs to userspace. 7406 */ 7407 unsigned int dev_get_flags(const struct net_device *dev) 7408 { 7409 unsigned int flags; 7410 7411 flags = (dev->flags & ~(IFF_PROMISC | 7412 IFF_ALLMULTI | 7413 IFF_RUNNING | 7414 IFF_LOWER_UP | 7415 IFF_DORMANT)) | 7416 (dev->gflags & (IFF_PROMISC | 7417 IFF_ALLMULTI)); 7418 7419 if (netif_running(dev)) { 7420 if (netif_oper_up(dev)) 7421 flags |= IFF_RUNNING; 7422 if (netif_carrier_ok(dev)) 7423 flags |= IFF_LOWER_UP; 7424 if (netif_dormant(dev)) 7425 flags |= IFF_DORMANT; 7426 } 7427 7428 return flags; 7429 } 7430 EXPORT_SYMBOL(dev_get_flags); 7431 7432 int __dev_change_flags(struct net_device *dev, unsigned int flags) 7433 { 7434 unsigned int old_flags = dev->flags; 7435 int ret; 7436 7437 ASSERT_RTNL(); 7438 7439 /* 7440 * Set the flags on our device. 7441 */ 7442 7443 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 7444 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 7445 IFF_AUTOMEDIA)) | 7446 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 7447 IFF_ALLMULTI)); 7448 7449 /* 7450 * Load in the correct multicast list now the flags have changed. 7451 */ 7452 7453 if ((old_flags ^ flags) & IFF_MULTICAST) 7454 dev_change_rx_flags(dev, IFF_MULTICAST); 7455 7456 dev_set_rx_mode(dev); 7457 7458 /* 7459 * Have we downed the interface. We handle IFF_UP ourselves 7460 * according to user attempts to set it, rather than blindly 7461 * setting it. 7462 */ 7463 7464 ret = 0; 7465 if ((old_flags ^ flags) & IFF_UP) { 7466 if (old_flags & IFF_UP) 7467 __dev_close(dev); 7468 else 7469 ret = __dev_open(dev); 7470 } 7471 7472 if ((flags ^ dev->gflags) & IFF_PROMISC) { 7473 int inc = (flags & IFF_PROMISC) ? 1 : -1; 7474 unsigned int old_flags = dev->flags; 7475 7476 dev->gflags ^= IFF_PROMISC; 7477 7478 if (__dev_set_promiscuity(dev, inc, false) >= 0) 7479 if (dev->flags != old_flags) 7480 dev_set_rx_mode(dev); 7481 } 7482 7483 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 7484 * is important. Some (broken) drivers set IFF_PROMISC, when 7485 * IFF_ALLMULTI is requested not asking us and not reporting. 7486 */ 7487 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 7488 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 7489 7490 dev->gflags ^= IFF_ALLMULTI; 7491 __dev_set_allmulti(dev, inc, false); 7492 } 7493 7494 return ret; 7495 } 7496 7497 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags, 7498 unsigned int gchanges) 7499 { 7500 unsigned int changes = dev->flags ^ old_flags; 7501 7502 if (gchanges) 7503 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC); 7504 7505 if (changes & IFF_UP) { 7506 if (dev->flags & IFF_UP) 7507 call_netdevice_notifiers(NETDEV_UP, dev); 7508 else 7509 call_netdevice_notifiers(NETDEV_DOWN, dev); 7510 } 7511 7512 if (dev->flags & IFF_UP && 7513 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) { 7514 struct netdev_notifier_change_info change_info = { 7515 .info = { 7516 .dev = dev, 7517 }, 7518 .flags_changed = changes, 7519 }; 7520 7521 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info); 7522 } 7523 } 7524 7525 /** 7526 * dev_change_flags - change device settings 7527 * @dev: device 7528 * @flags: device state flags 7529 * 7530 * Change settings on device based state flags. The flags are 7531 * in the userspace exported format. 7532 */ 7533 int dev_change_flags(struct net_device *dev, unsigned int flags) 7534 { 7535 int ret; 7536 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags; 7537 7538 ret = __dev_change_flags(dev, flags); 7539 if (ret < 0) 7540 return ret; 7541 7542 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags); 7543 __dev_notify_flags(dev, old_flags, changes); 7544 return ret; 7545 } 7546 EXPORT_SYMBOL(dev_change_flags); 7547 7548 int __dev_set_mtu(struct net_device *dev, int new_mtu) 7549 { 7550 const struct net_device_ops *ops = dev->netdev_ops; 7551 7552 if (ops->ndo_change_mtu) 7553 return ops->ndo_change_mtu(dev, new_mtu); 7554 7555 dev->mtu = new_mtu; 7556 return 0; 7557 } 7558 EXPORT_SYMBOL(__dev_set_mtu); 7559 7560 /** 7561 * dev_set_mtu_ext - Change maximum transfer unit 7562 * @dev: device 7563 * @new_mtu: new transfer unit 7564 * @extack: netlink extended ack 7565 * 7566 * Change the maximum transfer size of the network device. 7567 */ 7568 int dev_set_mtu_ext(struct net_device *dev, int new_mtu, 7569 struct netlink_ext_ack *extack) 7570 { 7571 int err, orig_mtu; 7572 7573 if (new_mtu == dev->mtu) 7574 return 0; 7575 7576 /* MTU must be positive, and in range */ 7577 if (new_mtu < 0 || new_mtu < dev->min_mtu) { 7578 NL_SET_ERR_MSG(extack, "mtu less than device minimum"); 7579 return -EINVAL; 7580 } 7581 7582 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) { 7583 NL_SET_ERR_MSG(extack, "mtu greater than device maximum"); 7584 return -EINVAL; 7585 } 7586 7587 if (!netif_device_present(dev)) 7588 return -ENODEV; 7589 7590 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev); 7591 err = notifier_to_errno(err); 7592 if (err) 7593 return err; 7594 7595 orig_mtu = dev->mtu; 7596 err = __dev_set_mtu(dev, new_mtu); 7597 7598 if (!err) { 7599 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev, 7600 orig_mtu); 7601 err = notifier_to_errno(err); 7602 if (err) { 7603 /* setting mtu back and notifying everyone again, 7604 * so that they have a chance to revert changes. 7605 */ 7606 __dev_set_mtu(dev, orig_mtu); 7607 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev, 7608 new_mtu); 7609 } 7610 } 7611 return err; 7612 } 7613 7614 int dev_set_mtu(struct net_device *dev, int new_mtu) 7615 { 7616 struct netlink_ext_ack extack; 7617 int err; 7618 7619 memset(&extack, 0, sizeof(extack)); 7620 err = dev_set_mtu_ext(dev, new_mtu, &extack); 7621 if (err && extack._msg) 7622 net_err_ratelimited("%s: %s\n", dev->name, extack._msg); 7623 return err; 7624 } 7625 EXPORT_SYMBOL(dev_set_mtu); 7626 7627 /** 7628 * dev_change_tx_queue_len - Change TX queue length of a netdevice 7629 * @dev: device 7630 * @new_len: new tx queue length 7631 */ 7632 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len) 7633 { 7634 unsigned int orig_len = dev->tx_queue_len; 7635 int res; 7636 7637 if (new_len != (unsigned int)new_len) 7638 return -ERANGE; 7639 7640 if (new_len != orig_len) { 7641 dev->tx_queue_len = new_len; 7642 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev); 7643 res = notifier_to_errno(res); 7644 if (res) 7645 goto err_rollback; 7646 res = dev_qdisc_change_tx_queue_len(dev); 7647 if (res) 7648 goto err_rollback; 7649 } 7650 7651 return 0; 7652 7653 err_rollback: 7654 netdev_err(dev, "refused to change device tx_queue_len\n"); 7655 dev->tx_queue_len = orig_len; 7656 return res; 7657 } 7658 7659 /** 7660 * dev_set_group - Change group this device belongs to 7661 * @dev: device 7662 * @new_group: group this device should belong to 7663 */ 7664 void dev_set_group(struct net_device *dev, int new_group) 7665 { 7666 dev->group = new_group; 7667 } 7668 EXPORT_SYMBOL(dev_set_group); 7669 7670 /** 7671 * dev_set_mac_address - Change Media Access Control Address 7672 * @dev: device 7673 * @sa: new address 7674 * 7675 * Change the hardware (MAC) address of the device 7676 */ 7677 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa) 7678 { 7679 const struct net_device_ops *ops = dev->netdev_ops; 7680 int err; 7681 7682 if (!ops->ndo_set_mac_address) 7683 return -EOPNOTSUPP; 7684 if (sa->sa_family != dev->type) 7685 return -EINVAL; 7686 if (!netif_device_present(dev)) 7687 return -ENODEV; 7688 err = ops->ndo_set_mac_address(dev, sa); 7689 if (err) 7690 return err; 7691 dev->addr_assign_type = NET_ADDR_SET; 7692 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 7693 add_device_randomness(dev->dev_addr, dev->addr_len); 7694 return 0; 7695 } 7696 EXPORT_SYMBOL(dev_set_mac_address); 7697 7698 /** 7699 * dev_change_carrier - Change device carrier 7700 * @dev: device 7701 * @new_carrier: new value 7702 * 7703 * Change device carrier 7704 */ 7705 int dev_change_carrier(struct net_device *dev, bool new_carrier) 7706 { 7707 const struct net_device_ops *ops = dev->netdev_ops; 7708 7709 if (!ops->ndo_change_carrier) 7710 return -EOPNOTSUPP; 7711 if (!netif_device_present(dev)) 7712 return -ENODEV; 7713 return ops->ndo_change_carrier(dev, new_carrier); 7714 } 7715 EXPORT_SYMBOL(dev_change_carrier); 7716 7717 /** 7718 * dev_get_phys_port_id - Get device physical port ID 7719 * @dev: device 7720 * @ppid: port ID 7721 * 7722 * Get device physical port ID 7723 */ 7724 int dev_get_phys_port_id(struct net_device *dev, 7725 struct netdev_phys_item_id *ppid) 7726 { 7727 const struct net_device_ops *ops = dev->netdev_ops; 7728 7729 if (!ops->ndo_get_phys_port_id) 7730 return -EOPNOTSUPP; 7731 return ops->ndo_get_phys_port_id(dev, ppid); 7732 } 7733 EXPORT_SYMBOL(dev_get_phys_port_id); 7734 7735 /** 7736 * dev_get_phys_port_name - Get device physical port name 7737 * @dev: device 7738 * @name: port name 7739 * @len: limit of bytes to copy to name 7740 * 7741 * Get device physical port name 7742 */ 7743 int dev_get_phys_port_name(struct net_device *dev, 7744 char *name, size_t len) 7745 { 7746 const struct net_device_ops *ops = dev->netdev_ops; 7747 7748 if (!ops->ndo_get_phys_port_name) 7749 return -EOPNOTSUPP; 7750 return ops->ndo_get_phys_port_name(dev, name, len); 7751 } 7752 EXPORT_SYMBOL(dev_get_phys_port_name); 7753 7754 /** 7755 * dev_change_proto_down - update protocol port state information 7756 * @dev: device 7757 * @proto_down: new value 7758 * 7759 * This info can be used by switch drivers to set the phys state of the 7760 * port. 7761 */ 7762 int dev_change_proto_down(struct net_device *dev, bool proto_down) 7763 { 7764 const struct net_device_ops *ops = dev->netdev_ops; 7765 7766 if (!ops->ndo_change_proto_down) 7767 return -EOPNOTSUPP; 7768 if (!netif_device_present(dev)) 7769 return -ENODEV; 7770 return ops->ndo_change_proto_down(dev, proto_down); 7771 } 7772 EXPORT_SYMBOL(dev_change_proto_down); 7773 7774 u32 __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op, 7775 enum bpf_netdev_command cmd) 7776 { 7777 struct netdev_bpf xdp; 7778 7779 if (!bpf_op) 7780 return 0; 7781 7782 memset(&xdp, 0, sizeof(xdp)); 7783 xdp.command = cmd; 7784 7785 /* Query must always succeed. */ 7786 WARN_ON(bpf_op(dev, &xdp) < 0 && cmd == XDP_QUERY_PROG); 7787 7788 return xdp.prog_id; 7789 } 7790 7791 static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op, 7792 struct netlink_ext_ack *extack, u32 flags, 7793 struct bpf_prog *prog) 7794 { 7795 struct netdev_bpf xdp; 7796 7797 memset(&xdp, 0, sizeof(xdp)); 7798 if (flags & XDP_FLAGS_HW_MODE) 7799 xdp.command = XDP_SETUP_PROG_HW; 7800 else 7801 xdp.command = XDP_SETUP_PROG; 7802 xdp.extack = extack; 7803 xdp.flags = flags; 7804 xdp.prog = prog; 7805 7806 return bpf_op(dev, &xdp); 7807 } 7808 7809 static void dev_xdp_uninstall(struct net_device *dev) 7810 { 7811 struct netdev_bpf xdp; 7812 bpf_op_t ndo_bpf; 7813 7814 /* Remove generic XDP */ 7815 WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL)); 7816 7817 /* Remove from the driver */ 7818 ndo_bpf = dev->netdev_ops->ndo_bpf; 7819 if (!ndo_bpf) 7820 return; 7821 7822 memset(&xdp, 0, sizeof(xdp)); 7823 xdp.command = XDP_QUERY_PROG; 7824 WARN_ON(ndo_bpf(dev, &xdp)); 7825 if (xdp.prog_id) 7826 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags, 7827 NULL)); 7828 7829 /* Remove HW offload */ 7830 memset(&xdp, 0, sizeof(xdp)); 7831 xdp.command = XDP_QUERY_PROG_HW; 7832 if (!ndo_bpf(dev, &xdp) && xdp.prog_id) 7833 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags, 7834 NULL)); 7835 } 7836 7837 /** 7838 * dev_change_xdp_fd - set or clear a bpf program for a device rx path 7839 * @dev: device 7840 * @extack: netlink extended ack 7841 * @fd: new program fd or negative value to clear 7842 * @flags: xdp-related flags 7843 * 7844 * Set or clear a bpf program for a device 7845 */ 7846 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack, 7847 int fd, u32 flags) 7848 { 7849 const struct net_device_ops *ops = dev->netdev_ops; 7850 enum bpf_netdev_command query; 7851 struct bpf_prog *prog = NULL; 7852 bpf_op_t bpf_op, bpf_chk; 7853 int err; 7854 7855 ASSERT_RTNL(); 7856 7857 query = flags & XDP_FLAGS_HW_MODE ? XDP_QUERY_PROG_HW : XDP_QUERY_PROG; 7858 7859 bpf_op = bpf_chk = ops->ndo_bpf; 7860 if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE))) 7861 return -EOPNOTSUPP; 7862 if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE)) 7863 bpf_op = generic_xdp_install; 7864 if (bpf_op == bpf_chk) 7865 bpf_chk = generic_xdp_install; 7866 7867 if (fd >= 0) { 7868 if (__dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG) || 7869 __dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG_HW)) 7870 return -EEXIST; 7871 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && 7872 __dev_xdp_query(dev, bpf_op, query)) 7873 return -EBUSY; 7874 7875 prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP, 7876 bpf_op == ops->ndo_bpf); 7877 if (IS_ERR(prog)) 7878 return PTR_ERR(prog); 7879 7880 if (!(flags & XDP_FLAGS_HW_MODE) && 7881 bpf_prog_is_dev_bound(prog->aux)) { 7882 NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported"); 7883 bpf_prog_put(prog); 7884 return -EINVAL; 7885 } 7886 } 7887 7888 err = dev_xdp_install(dev, bpf_op, extack, flags, prog); 7889 if (err < 0 && prog) 7890 bpf_prog_put(prog); 7891 7892 return err; 7893 } 7894 7895 /** 7896 * dev_new_index - allocate an ifindex 7897 * @net: the applicable net namespace 7898 * 7899 * Returns a suitable unique value for a new device interface 7900 * number. The caller must hold the rtnl semaphore or the 7901 * dev_base_lock to be sure it remains unique. 7902 */ 7903 static int dev_new_index(struct net *net) 7904 { 7905 int ifindex = net->ifindex; 7906 7907 for (;;) { 7908 if (++ifindex <= 0) 7909 ifindex = 1; 7910 if (!__dev_get_by_index(net, ifindex)) 7911 return net->ifindex = ifindex; 7912 } 7913 } 7914 7915 /* Delayed registration/unregisteration */ 7916 static LIST_HEAD(net_todo_list); 7917 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq); 7918 7919 static void net_set_todo(struct net_device *dev) 7920 { 7921 list_add_tail(&dev->todo_list, &net_todo_list); 7922 dev_net(dev)->dev_unreg_count++; 7923 } 7924 7925 static void rollback_registered_many(struct list_head *head) 7926 { 7927 struct net_device *dev, *tmp; 7928 LIST_HEAD(close_head); 7929 7930 BUG_ON(dev_boot_phase); 7931 ASSERT_RTNL(); 7932 7933 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 7934 /* Some devices call without registering 7935 * for initialization unwind. Remove those 7936 * devices and proceed with the remaining. 7937 */ 7938 if (dev->reg_state == NETREG_UNINITIALIZED) { 7939 pr_debug("unregister_netdevice: device %s/%p never was registered\n", 7940 dev->name, dev); 7941 7942 WARN_ON(1); 7943 list_del(&dev->unreg_list); 7944 continue; 7945 } 7946 dev->dismantle = true; 7947 BUG_ON(dev->reg_state != NETREG_REGISTERED); 7948 } 7949 7950 /* If device is running, close it first. */ 7951 list_for_each_entry(dev, head, unreg_list) 7952 list_add_tail(&dev->close_list, &close_head); 7953 dev_close_many(&close_head, true); 7954 7955 list_for_each_entry(dev, head, unreg_list) { 7956 /* And unlink it from device chain. */ 7957 unlist_netdevice(dev); 7958 7959 dev->reg_state = NETREG_UNREGISTERING; 7960 } 7961 flush_all_backlogs(); 7962 7963 synchronize_net(); 7964 7965 list_for_each_entry(dev, head, unreg_list) { 7966 struct sk_buff *skb = NULL; 7967 7968 /* Shutdown queueing discipline. */ 7969 dev_shutdown(dev); 7970 7971 dev_xdp_uninstall(dev); 7972 7973 /* Notify protocols, that we are about to destroy 7974 * this device. They should clean all the things. 7975 */ 7976 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 7977 7978 if (!dev->rtnl_link_ops || 7979 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 7980 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0, 7981 GFP_KERNEL, NULL, 0); 7982 7983 /* 7984 * Flush the unicast and multicast chains 7985 */ 7986 dev_uc_flush(dev); 7987 dev_mc_flush(dev); 7988 7989 if (dev->netdev_ops->ndo_uninit) 7990 dev->netdev_ops->ndo_uninit(dev); 7991 7992 if (skb) 7993 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL); 7994 7995 /* Notifier chain MUST detach us all upper devices. */ 7996 WARN_ON(netdev_has_any_upper_dev(dev)); 7997 WARN_ON(netdev_has_any_lower_dev(dev)); 7998 7999 /* Remove entries from kobject tree */ 8000 netdev_unregister_kobject(dev); 8001 #ifdef CONFIG_XPS 8002 /* Remove XPS queueing entries */ 8003 netif_reset_xps_queues_gt(dev, 0); 8004 #endif 8005 } 8006 8007 synchronize_net(); 8008 8009 list_for_each_entry(dev, head, unreg_list) 8010 dev_put(dev); 8011 } 8012 8013 static void rollback_registered(struct net_device *dev) 8014 { 8015 LIST_HEAD(single); 8016 8017 list_add(&dev->unreg_list, &single); 8018 rollback_registered_many(&single); 8019 list_del(&single); 8020 } 8021 8022 static netdev_features_t netdev_sync_upper_features(struct net_device *lower, 8023 struct net_device *upper, netdev_features_t features) 8024 { 8025 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 8026 netdev_features_t feature; 8027 int feature_bit; 8028 8029 for_each_netdev_feature(&upper_disables, feature_bit) { 8030 feature = __NETIF_F_BIT(feature_bit); 8031 if (!(upper->wanted_features & feature) 8032 && (features & feature)) { 8033 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n", 8034 &feature, upper->name); 8035 features &= ~feature; 8036 } 8037 } 8038 8039 return features; 8040 } 8041 8042 static void netdev_sync_lower_features(struct net_device *upper, 8043 struct net_device *lower, netdev_features_t features) 8044 { 8045 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 8046 netdev_features_t feature; 8047 int feature_bit; 8048 8049 for_each_netdev_feature(&upper_disables, feature_bit) { 8050 feature = __NETIF_F_BIT(feature_bit); 8051 if (!(features & feature) && (lower->features & feature)) { 8052 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n", 8053 &feature, lower->name); 8054 lower->wanted_features &= ~feature; 8055 netdev_update_features(lower); 8056 8057 if (unlikely(lower->features & feature)) 8058 netdev_WARN(upper, "failed to disable %pNF on %s!\n", 8059 &feature, lower->name); 8060 } 8061 } 8062 } 8063 8064 static netdev_features_t netdev_fix_features(struct net_device *dev, 8065 netdev_features_t features) 8066 { 8067 /* Fix illegal checksum combinations */ 8068 if ((features & NETIF_F_HW_CSUM) && 8069 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 8070 netdev_warn(dev, "mixed HW and IP checksum settings.\n"); 8071 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 8072 } 8073 8074 /* TSO requires that SG is present as well. */ 8075 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { 8076 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); 8077 features &= ~NETIF_F_ALL_TSO; 8078 } 8079 8080 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) && 8081 !(features & NETIF_F_IP_CSUM)) { 8082 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n"); 8083 features &= ~NETIF_F_TSO; 8084 features &= ~NETIF_F_TSO_ECN; 8085 } 8086 8087 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) && 8088 !(features & NETIF_F_IPV6_CSUM)) { 8089 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n"); 8090 features &= ~NETIF_F_TSO6; 8091 } 8092 8093 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */ 8094 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO)) 8095 features &= ~NETIF_F_TSO_MANGLEID; 8096 8097 /* TSO ECN requires that TSO is present as well. */ 8098 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) 8099 features &= ~NETIF_F_TSO_ECN; 8100 8101 /* Software GSO depends on SG. */ 8102 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 8103 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 8104 features &= ~NETIF_F_GSO; 8105 } 8106 8107 /* GSO partial features require GSO partial be set */ 8108 if ((features & dev->gso_partial_features) && 8109 !(features & NETIF_F_GSO_PARTIAL)) { 8110 netdev_dbg(dev, 8111 "Dropping partially supported GSO features since no GSO partial.\n"); 8112 features &= ~dev->gso_partial_features; 8113 } 8114 8115 if (!(features & NETIF_F_RXCSUM)) { 8116 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet 8117 * successfully merged by hardware must also have the 8118 * checksum verified by hardware. If the user does not 8119 * want to enable RXCSUM, logically, we should disable GRO_HW. 8120 */ 8121 if (features & NETIF_F_GRO_HW) { 8122 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n"); 8123 features &= ~NETIF_F_GRO_HW; 8124 } 8125 } 8126 8127 /* LRO/HW-GRO features cannot be combined with RX-FCS */ 8128 if (features & NETIF_F_RXFCS) { 8129 if (features & NETIF_F_LRO) { 8130 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n"); 8131 features &= ~NETIF_F_LRO; 8132 } 8133 8134 if (features & NETIF_F_GRO_HW) { 8135 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n"); 8136 features &= ~NETIF_F_GRO_HW; 8137 } 8138 } 8139 8140 return features; 8141 } 8142 8143 int __netdev_update_features(struct net_device *dev) 8144 { 8145 struct net_device *upper, *lower; 8146 netdev_features_t features; 8147 struct list_head *iter; 8148 int err = -1; 8149 8150 ASSERT_RTNL(); 8151 8152 features = netdev_get_wanted_features(dev); 8153 8154 if (dev->netdev_ops->ndo_fix_features) 8155 features = dev->netdev_ops->ndo_fix_features(dev, features); 8156 8157 /* driver might be less strict about feature dependencies */ 8158 features = netdev_fix_features(dev, features); 8159 8160 /* some features can't be enabled if they're off an an upper device */ 8161 netdev_for_each_upper_dev_rcu(dev, upper, iter) 8162 features = netdev_sync_upper_features(dev, upper, features); 8163 8164 if (dev->features == features) 8165 goto sync_lower; 8166 8167 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n", 8168 &dev->features, &features); 8169 8170 if (dev->netdev_ops->ndo_set_features) 8171 err = dev->netdev_ops->ndo_set_features(dev, features); 8172 else 8173 err = 0; 8174 8175 if (unlikely(err < 0)) { 8176 netdev_err(dev, 8177 "set_features() failed (%d); wanted %pNF, left %pNF\n", 8178 err, &features, &dev->features); 8179 /* return non-0 since some features might have changed and 8180 * it's better to fire a spurious notification than miss it 8181 */ 8182 return -1; 8183 } 8184 8185 sync_lower: 8186 /* some features must be disabled on lower devices when disabled 8187 * on an upper device (think: bonding master or bridge) 8188 */ 8189 netdev_for_each_lower_dev(dev, lower, iter) 8190 netdev_sync_lower_features(dev, lower, features); 8191 8192 if (!err) { 8193 netdev_features_t diff = features ^ dev->features; 8194 8195 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) { 8196 /* udp_tunnel_{get,drop}_rx_info both need 8197 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the 8198 * device, or they won't do anything. 8199 * Thus we need to update dev->features 8200 * *before* calling udp_tunnel_get_rx_info, 8201 * but *after* calling udp_tunnel_drop_rx_info. 8202 */ 8203 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) { 8204 dev->features = features; 8205 udp_tunnel_get_rx_info(dev); 8206 } else { 8207 udp_tunnel_drop_rx_info(dev); 8208 } 8209 } 8210 8211 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) { 8212 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) { 8213 dev->features = features; 8214 err |= vlan_get_rx_ctag_filter_info(dev); 8215 } else { 8216 vlan_drop_rx_ctag_filter_info(dev); 8217 } 8218 } 8219 8220 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) { 8221 if (features & NETIF_F_HW_VLAN_STAG_FILTER) { 8222 dev->features = features; 8223 err |= vlan_get_rx_stag_filter_info(dev); 8224 } else { 8225 vlan_drop_rx_stag_filter_info(dev); 8226 } 8227 } 8228 8229 dev->features = features; 8230 } 8231 8232 return err < 0 ? 0 : 1; 8233 } 8234 8235 /** 8236 * netdev_update_features - recalculate device features 8237 * @dev: the device to check 8238 * 8239 * Recalculate dev->features set and send notifications if it 8240 * has changed. Should be called after driver or hardware dependent 8241 * conditions might have changed that influence the features. 8242 */ 8243 void netdev_update_features(struct net_device *dev) 8244 { 8245 if (__netdev_update_features(dev)) 8246 netdev_features_change(dev); 8247 } 8248 EXPORT_SYMBOL(netdev_update_features); 8249 8250 /** 8251 * netdev_change_features - recalculate device features 8252 * @dev: the device to check 8253 * 8254 * Recalculate dev->features set and send notifications even 8255 * if they have not changed. Should be called instead of 8256 * netdev_update_features() if also dev->vlan_features might 8257 * have changed to allow the changes to be propagated to stacked 8258 * VLAN devices. 8259 */ 8260 void netdev_change_features(struct net_device *dev) 8261 { 8262 __netdev_update_features(dev); 8263 netdev_features_change(dev); 8264 } 8265 EXPORT_SYMBOL(netdev_change_features); 8266 8267 /** 8268 * netif_stacked_transfer_operstate - transfer operstate 8269 * @rootdev: the root or lower level device to transfer state from 8270 * @dev: the device to transfer operstate to 8271 * 8272 * Transfer operational state from root to device. This is normally 8273 * called when a stacking relationship exists between the root 8274 * device and the device(a leaf device). 8275 */ 8276 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 8277 struct net_device *dev) 8278 { 8279 if (rootdev->operstate == IF_OPER_DORMANT) 8280 netif_dormant_on(dev); 8281 else 8282 netif_dormant_off(dev); 8283 8284 if (netif_carrier_ok(rootdev)) 8285 netif_carrier_on(dev); 8286 else 8287 netif_carrier_off(dev); 8288 } 8289 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 8290 8291 static int netif_alloc_rx_queues(struct net_device *dev) 8292 { 8293 unsigned int i, count = dev->num_rx_queues; 8294 struct netdev_rx_queue *rx; 8295 size_t sz = count * sizeof(*rx); 8296 int err = 0; 8297 8298 BUG_ON(count < 1); 8299 8300 rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 8301 if (!rx) 8302 return -ENOMEM; 8303 8304 dev->_rx = rx; 8305 8306 for (i = 0; i < count; i++) { 8307 rx[i].dev = dev; 8308 8309 /* XDP RX-queue setup */ 8310 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i); 8311 if (err < 0) 8312 goto err_rxq_info; 8313 } 8314 return 0; 8315 8316 err_rxq_info: 8317 /* Rollback successful reg's and free other resources */ 8318 while (i--) 8319 xdp_rxq_info_unreg(&rx[i].xdp_rxq); 8320 kvfree(dev->_rx); 8321 dev->_rx = NULL; 8322 return err; 8323 } 8324 8325 static void netif_free_rx_queues(struct net_device *dev) 8326 { 8327 unsigned int i, count = dev->num_rx_queues; 8328 8329 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */ 8330 if (!dev->_rx) 8331 return; 8332 8333 for (i = 0; i < count; i++) 8334 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq); 8335 8336 kvfree(dev->_rx); 8337 } 8338 8339 static void netdev_init_one_queue(struct net_device *dev, 8340 struct netdev_queue *queue, void *_unused) 8341 { 8342 /* Initialize queue lock */ 8343 spin_lock_init(&queue->_xmit_lock); 8344 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); 8345 queue->xmit_lock_owner = -1; 8346 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 8347 queue->dev = dev; 8348 #ifdef CONFIG_BQL 8349 dql_init(&queue->dql, HZ); 8350 #endif 8351 } 8352 8353 static void netif_free_tx_queues(struct net_device *dev) 8354 { 8355 kvfree(dev->_tx); 8356 } 8357 8358 static int netif_alloc_netdev_queues(struct net_device *dev) 8359 { 8360 unsigned int count = dev->num_tx_queues; 8361 struct netdev_queue *tx; 8362 size_t sz = count * sizeof(*tx); 8363 8364 if (count < 1 || count > 0xffff) 8365 return -EINVAL; 8366 8367 tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 8368 if (!tx) 8369 return -ENOMEM; 8370 8371 dev->_tx = tx; 8372 8373 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 8374 spin_lock_init(&dev->tx_global_lock); 8375 8376 return 0; 8377 } 8378 8379 void netif_tx_stop_all_queues(struct net_device *dev) 8380 { 8381 unsigned int i; 8382 8383 for (i = 0; i < dev->num_tx_queues; i++) { 8384 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 8385 8386 netif_tx_stop_queue(txq); 8387 } 8388 } 8389 EXPORT_SYMBOL(netif_tx_stop_all_queues); 8390 8391 /** 8392 * register_netdevice - register a network device 8393 * @dev: device to register 8394 * 8395 * Take a completed network device structure and add it to the kernel 8396 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 8397 * chain. 0 is returned on success. A negative errno code is returned 8398 * on a failure to set up the device, or if the name is a duplicate. 8399 * 8400 * Callers must hold the rtnl semaphore. You may want 8401 * register_netdev() instead of this. 8402 * 8403 * BUGS: 8404 * The locking appears insufficient to guarantee two parallel registers 8405 * will not get the same name. 8406 */ 8407 8408 int register_netdevice(struct net_device *dev) 8409 { 8410 int ret; 8411 struct net *net = dev_net(dev); 8412 8413 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE < 8414 NETDEV_FEATURE_COUNT); 8415 BUG_ON(dev_boot_phase); 8416 ASSERT_RTNL(); 8417 8418 might_sleep(); 8419 8420 /* When net_device's are persistent, this will be fatal. */ 8421 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 8422 BUG_ON(!net); 8423 8424 spin_lock_init(&dev->addr_list_lock); 8425 netdev_set_addr_lockdep_class(dev); 8426 8427 ret = dev_get_valid_name(net, dev, dev->name); 8428 if (ret < 0) 8429 goto out; 8430 8431 /* Init, if this function is available */ 8432 if (dev->netdev_ops->ndo_init) { 8433 ret = dev->netdev_ops->ndo_init(dev); 8434 if (ret) { 8435 if (ret > 0) 8436 ret = -EIO; 8437 goto out; 8438 } 8439 } 8440 8441 if (((dev->hw_features | dev->features) & 8442 NETIF_F_HW_VLAN_CTAG_FILTER) && 8443 (!dev->netdev_ops->ndo_vlan_rx_add_vid || 8444 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) { 8445 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n"); 8446 ret = -EINVAL; 8447 goto err_uninit; 8448 } 8449 8450 ret = -EBUSY; 8451 if (!dev->ifindex) 8452 dev->ifindex = dev_new_index(net); 8453 else if (__dev_get_by_index(net, dev->ifindex)) 8454 goto err_uninit; 8455 8456 /* Transfer changeable features to wanted_features and enable 8457 * software offloads (GSO and GRO). 8458 */ 8459 dev->hw_features |= NETIF_F_SOFT_FEATURES; 8460 dev->features |= NETIF_F_SOFT_FEATURES; 8461 8462 if (dev->netdev_ops->ndo_udp_tunnel_add) { 8463 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT; 8464 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT; 8465 } 8466 8467 dev->wanted_features = dev->features & dev->hw_features; 8468 8469 if (!(dev->flags & IFF_LOOPBACK)) 8470 dev->hw_features |= NETIF_F_NOCACHE_COPY; 8471 8472 /* If IPv4 TCP segmentation offload is supported we should also 8473 * allow the device to enable segmenting the frame with the option 8474 * of ignoring a static IP ID value. This doesn't enable the 8475 * feature itself but allows the user to enable it later. 8476 */ 8477 if (dev->hw_features & NETIF_F_TSO) 8478 dev->hw_features |= NETIF_F_TSO_MANGLEID; 8479 if (dev->vlan_features & NETIF_F_TSO) 8480 dev->vlan_features |= NETIF_F_TSO_MANGLEID; 8481 if (dev->mpls_features & NETIF_F_TSO) 8482 dev->mpls_features |= NETIF_F_TSO_MANGLEID; 8483 if (dev->hw_enc_features & NETIF_F_TSO) 8484 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 8485 8486 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. 8487 */ 8488 dev->vlan_features |= NETIF_F_HIGHDMA; 8489 8490 /* Make NETIF_F_SG inheritable to tunnel devices. 8491 */ 8492 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL; 8493 8494 /* Make NETIF_F_SG inheritable to MPLS. 8495 */ 8496 dev->mpls_features |= NETIF_F_SG; 8497 8498 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 8499 ret = notifier_to_errno(ret); 8500 if (ret) 8501 goto err_uninit; 8502 8503 ret = netdev_register_kobject(dev); 8504 if (ret) 8505 goto err_uninit; 8506 dev->reg_state = NETREG_REGISTERED; 8507 8508 __netdev_update_features(dev); 8509 8510 /* 8511 * Default initial state at registry is that the 8512 * device is present. 8513 */ 8514 8515 set_bit(__LINK_STATE_PRESENT, &dev->state); 8516 8517 linkwatch_init_dev(dev); 8518 8519 dev_init_scheduler(dev); 8520 dev_hold(dev); 8521 list_netdevice(dev); 8522 add_device_randomness(dev->dev_addr, dev->addr_len); 8523 8524 /* If the device has permanent device address, driver should 8525 * set dev_addr and also addr_assign_type should be set to 8526 * NET_ADDR_PERM (default value). 8527 */ 8528 if (dev->addr_assign_type == NET_ADDR_PERM) 8529 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); 8530 8531 /* Notify protocols, that a new device appeared. */ 8532 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 8533 ret = notifier_to_errno(ret); 8534 if (ret) { 8535 rollback_registered(dev); 8536 dev->reg_state = NETREG_UNREGISTERED; 8537 } 8538 /* 8539 * Prevent userspace races by waiting until the network 8540 * device is fully setup before sending notifications. 8541 */ 8542 if (!dev->rtnl_link_ops || 8543 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 8544 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 8545 8546 out: 8547 return ret; 8548 8549 err_uninit: 8550 if (dev->netdev_ops->ndo_uninit) 8551 dev->netdev_ops->ndo_uninit(dev); 8552 if (dev->priv_destructor) 8553 dev->priv_destructor(dev); 8554 goto out; 8555 } 8556 EXPORT_SYMBOL(register_netdevice); 8557 8558 /** 8559 * init_dummy_netdev - init a dummy network device for NAPI 8560 * @dev: device to init 8561 * 8562 * This takes a network device structure and initialize the minimum 8563 * amount of fields so it can be used to schedule NAPI polls without 8564 * registering a full blown interface. This is to be used by drivers 8565 * that need to tie several hardware interfaces to a single NAPI 8566 * poll scheduler due to HW limitations. 8567 */ 8568 int init_dummy_netdev(struct net_device *dev) 8569 { 8570 /* Clear everything. Note we don't initialize spinlocks 8571 * are they aren't supposed to be taken by any of the 8572 * NAPI code and this dummy netdev is supposed to be 8573 * only ever used for NAPI polls 8574 */ 8575 memset(dev, 0, sizeof(struct net_device)); 8576 8577 /* make sure we BUG if trying to hit standard 8578 * register/unregister code path 8579 */ 8580 dev->reg_state = NETREG_DUMMY; 8581 8582 /* NAPI wants this */ 8583 INIT_LIST_HEAD(&dev->napi_list); 8584 8585 /* a dummy interface is started by default */ 8586 set_bit(__LINK_STATE_PRESENT, &dev->state); 8587 set_bit(__LINK_STATE_START, &dev->state); 8588 8589 /* Note : We dont allocate pcpu_refcnt for dummy devices, 8590 * because users of this 'device' dont need to change 8591 * its refcount. 8592 */ 8593 8594 return 0; 8595 } 8596 EXPORT_SYMBOL_GPL(init_dummy_netdev); 8597 8598 8599 /** 8600 * register_netdev - register a network device 8601 * @dev: device to register 8602 * 8603 * Take a completed network device structure and add it to the kernel 8604 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 8605 * chain. 0 is returned on success. A negative errno code is returned 8606 * on a failure to set up the device, or if the name is a duplicate. 8607 * 8608 * This is a wrapper around register_netdevice that takes the rtnl semaphore 8609 * and expands the device name if you passed a format string to 8610 * alloc_netdev. 8611 */ 8612 int register_netdev(struct net_device *dev) 8613 { 8614 int err; 8615 8616 if (rtnl_lock_killable()) 8617 return -EINTR; 8618 err = register_netdevice(dev); 8619 rtnl_unlock(); 8620 return err; 8621 } 8622 EXPORT_SYMBOL(register_netdev); 8623 8624 int netdev_refcnt_read(const struct net_device *dev) 8625 { 8626 int i, refcnt = 0; 8627 8628 for_each_possible_cpu(i) 8629 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 8630 return refcnt; 8631 } 8632 EXPORT_SYMBOL(netdev_refcnt_read); 8633 8634 /** 8635 * netdev_wait_allrefs - wait until all references are gone. 8636 * @dev: target net_device 8637 * 8638 * This is called when unregistering network devices. 8639 * 8640 * Any protocol or device that holds a reference should register 8641 * for netdevice notification, and cleanup and put back the 8642 * reference if they receive an UNREGISTER event. 8643 * We can get stuck here if buggy protocols don't correctly 8644 * call dev_put. 8645 */ 8646 static void netdev_wait_allrefs(struct net_device *dev) 8647 { 8648 unsigned long rebroadcast_time, warning_time; 8649 int refcnt; 8650 8651 linkwatch_forget_dev(dev); 8652 8653 rebroadcast_time = warning_time = jiffies; 8654 refcnt = netdev_refcnt_read(dev); 8655 8656 while (refcnt != 0) { 8657 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 8658 rtnl_lock(); 8659 8660 /* Rebroadcast unregister notification */ 8661 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 8662 8663 __rtnl_unlock(); 8664 rcu_barrier(); 8665 rtnl_lock(); 8666 8667 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 8668 &dev->state)) { 8669 /* We must not have linkwatch events 8670 * pending on unregister. If this 8671 * happens, we simply run the queue 8672 * unscheduled, resulting in a noop 8673 * for this device. 8674 */ 8675 linkwatch_run_queue(); 8676 } 8677 8678 __rtnl_unlock(); 8679 8680 rebroadcast_time = jiffies; 8681 } 8682 8683 msleep(250); 8684 8685 refcnt = netdev_refcnt_read(dev); 8686 8687 if (time_after(jiffies, warning_time + 10 * HZ)) { 8688 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n", 8689 dev->name, refcnt); 8690 warning_time = jiffies; 8691 } 8692 } 8693 } 8694 8695 /* The sequence is: 8696 * 8697 * rtnl_lock(); 8698 * ... 8699 * register_netdevice(x1); 8700 * register_netdevice(x2); 8701 * ... 8702 * unregister_netdevice(y1); 8703 * unregister_netdevice(y2); 8704 * ... 8705 * rtnl_unlock(); 8706 * free_netdev(y1); 8707 * free_netdev(y2); 8708 * 8709 * We are invoked by rtnl_unlock(). 8710 * This allows us to deal with problems: 8711 * 1) We can delete sysfs objects which invoke hotplug 8712 * without deadlocking with linkwatch via keventd. 8713 * 2) Since we run with the RTNL semaphore not held, we can sleep 8714 * safely in order to wait for the netdev refcnt to drop to zero. 8715 * 8716 * We must not return until all unregister events added during 8717 * the interval the lock was held have been completed. 8718 */ 8719 void netdev_run_todo(void) 8720 { 8721 struct list_head list; 8722 8723 /* Snapshot list, allow later requests */ 8724 list_replace_init(&net_todo_list, &list); 8725 8726 __rtnl_unlock(); 8727 8728 8729 /* Wait for rcu callbacks to finish before next phase */ 8730 if (!list_empty(&list)) 8731 rcu_barrier(); 8732 8733 while (!list_empty(&list)) { 8734 struct net_device *dev 8735 = list_first_entry(&list, struct net_device, todo_list); 8736 list_del(&dev->todo_list); 8737 8738 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 8739 pr_err("network todo '%s' but state %d\n", 8740 dev->name, dev->reg_state); 8741 dump_stack(); 8742 continue; 8743 } 8744 8745 dev->reg_state = NETREG_UNREGISTERED; 8746 8747 netdev_wait_allrefs(dev); 8748 8749 /* paranoia */ 8750 BUG_ON(netdev_refcnt_read(dev)); 8751 BUG_ON(!list_empty(&dev->ptype_all)); 8752 BUG_ON(!list_empty(&dev->ptype_specific)); 8753 WARN_ON(rcu_access_pointer(dev->ip_ptr)); 8754 WARN_ON(rcu_access_pointer(dev->ip6_ptr)); 8755 #if IS_ENABLED(CONFIG_DECNET) 8756 WARN_ON(dev->dn_ptr); 8757 #endif 8758 if (dev->priv_destructor) 8759 dev->priv_destructor(dev); 8760 if (dev->needs_free_netdev) 8761 free_netdev(dev); 8762 8763 /* Report a network device has been unregistered */ 8764 rtnl_lock(); 8765 dev_net(dev)->dev_unreg_count--; 8766 __rtnl_unlock(); 8767 wake_up(&netdev_unregistering_wq); 8768 8769 /* Free network device */ 8770 kobject_put(&dev->dev.kobj); 8771 } 8772 } 8773 8774 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has 8775 * all the same fields in the same order as net_device_stats, with only 8776 * the type differing, but rtnl_link_stats64 may have additional fields 8777 * at the end for newer counters. 8778 */ 8779 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 8780 const struct net_device_stats *netdev_stats) 8781 { 8782 #if BITS_PER_LONG == 64 8783 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats)); 8784 memcpy(stats64, netdev_stats, sizeof(*netdev_stats)); 8785 /* zero out counters that only exist in rtnl_link_stats64 */ 8786 memset((char *)stats64 + sizeof(*netdev_stats), 0, 8787 sizeof(*stats64) - sizeof(*netdev_stats)); 8788 #else 8789 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long); 8790 const unsigned long *src = (const unsigned long *)netdev_stats; 8791 u64 *dst = (u64 *)stats64; 8792 8793 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64)); 8794 for (i = 0; i < n; i++) 8795 dst[i] = src[i]; 8796 /* zero out counters that only exist in rtnl_link_stats64 */ 8797 memset((char *)stats64 + n * sizeof(u64), 0, 8798 sizeof(*stats64) - n * sizeof(u64)); 8799 #endif 8800 } 8801 EXPORT_SYMBOL(netdev_stats_to_stats64); 8802 8803 /** 8804 * dev_get_stats - get network device statistics 8805 * @dev: device to get statistics from 8806 * @storage: place to store stats 8807 * 8808 * Get network statistics from device. Return @storage. 8809 * The device driver may provide its own method by setting 8810 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 8811 * otherwise the internal statistics structure is used. 8812 */ 8813 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 8814 struct rtnl_link_stats64 *storage) 8815 { 8816 const struct net_device_ops *ops = dev->netdev_ops; 8817 8818 if (ops->ndo_get_stats64) { 8819 memset(storage, 0, sizeof(*storage)); 8820 ops->ndo_get_stats64(dev, storage); 8821 } else if (ops->ndo_get_stats) { 8822 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 8823 } else { 8824 netdev_stats_to_stats64(storage, &dev->stats); 8825 } 8826 storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped); 8827 storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped); 8828 storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler); 8829 return storage; 8830 } 8831 EXPORT_SYMBOL(dev_get_stats); 8832 8833 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 8834 { 8835 struct netdev_queue *queue = dev_ingress_queue(dev); 8836 8837 #ifdef CONFIG_NET_CLS_ACT 8838 if (queue) 8839 return queue; 8840 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 8841 if (!queue) 8842 return NULL; 8843 netdev_init_one_queue(dev, queue, NULL); 8844 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc); 8845 queue->qdisc_sleeping = &noop_qdisc; 8846 rcu_assign_pointer(dev->ingress_queue, queue); 8847 #endif 8848 return queue; 8849 } 8850 8851 static const struct ethtool_ops default_ethtool_ops; 8852 8853 void netdev_set_default_ethtool_ops(struct net_device *dev, 8854 const struct ethtool_ops *ops) 8855 { 8856 if (dev->ethtool_ops == &default_ethtool_ops) 8857 dev->ethtool_ops = ops; 8858 } 8859 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops); 8860 8861 void netdev_freemem(struct net_device *dev) 8862 { 8863 char *addr = (char *)dev - dev->padded; 8864 8865 kvfree(addr); 8866 } 8867 8868 /** 8869 * alloc_netdev_mqs - allocate network device 8870 * @sizeof_priv: size of private data to allocate space for 8871 * @name: device name format string 8872 * @name_assign_type: origin of device name 8873 * @setup: callback to initialize device 8874 * @txqs: the number of TX subqueues to allocate 8875 * @rxqs: the number of RX subqueues to allocate 8876 * 8877 * Allocates a struct net_device with private data area for driver use 8878 * and performs basic initialization. Also allocates subqueue structs 8879 * for each queue on the device. 8880 */ 8881 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 8882 unsigned char name_assign_type, 8883 void (*setup)(struct net_device *), 8884 unsigned int txqs, unsigned int rxqs) 8885 { 8886 struct net_device *dev; 8887 unsigned int alloc_size; 8888 struct net_device *p; 8889 8890 BUG_ON(strlen(name) >= sizeof(dev->name)); 8891 8892 if (txqs < 1) { 8893 pr_err("alloc_netdev: Unable to allocate device with zero queues\n"); 8894 return NULL; 8895 } 8896 8897 if (rxqs < 1) { 8898 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n"); 8899 return NULL; 8900 } 8901 8902 alloc_size = sizeof(struct net_device); 8903 if (sizeof_priv) { 8904 /* ensure 32-byte alignment of private area */ 8905 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); 8906 alloc_size += sizeof_priv; 8907 } 8908 /* ensure 32-byte alignment of whole construct */ 8909 alloc_size += NETDEV_ALIGN - 1; 8910 8911 p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 8912 if (!p) 8913 return NULL; 8914 8915 dev = PTR_ALIGN(p, NETDEV_ALIGN); 8916 dev->padded = (char *)dev - (char *)p; 8917 8918 dev->pcpu_refcnt = alloc_percpu(int); 8919 if (!dev->pcpu_refcnt) 8920 goto free_dev; 8921 8922 if (dev_addr_init(dev)) 8923 goto free_pcpu; 8924 8925 dev_mc_init(dev); 8926 dev_uc_init(dev); 8927 8928 dev_net_set(dev, &init_net); 8929 8930 dev->gso_max_size = GSO_MAX_SIZE; 8931 dev->gso_max_segs = GSO_MAX_SEGS; 8932 8933 INIT_LIST_HEAD(&dev->napi_list); 8934 INIT_LIST_HEAD(&dev->unreg_list); 8935 INIT_LIST_HEAD(&dev->close_list); 8936 INIT_LIST_HEAD(&dev->link_watch_list); 8937 INIT_LIST_HEAD(&dev->adj_list.upper); 8938 INIT_LIST_HEAD(&dev->adj_list.lower); 8939 INIT_LIST_HEAD(&dev->ptype_all); 8940 INIT_LIST_HEAD(&dev->ptype_specific); 8941 #ifdef CONFIG_NET_SCHED 8942 hash_init(dev->qdisc_hash); 8943 #endif 8944 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM; 8945 setup(dev); 8946 8947 if (!dev->tx_queue_len) { 8948 dev->priv_flags |= IFF_NO_QUEUE; 8949 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN; 8950 } 8951 8952 dev->num_tx_queues = txqs; 8953 dev->real_num_tx_queues = txqs; 8954 if (netif_alloc_netdev_queues(dev)) 8955 goto free_all; 8956 8957 dev->num_rx_queues = rxqs; 8958 dev->real_num_rx_queues = rxqs; 8959 if (netif_alloc_rx_queues(dev)) 8960 goto free_all; 8961 8962 strcpy(dev->name, name); 8963 dev->name_assign_type = name_assign_type; 8964 dev->group = INIT_NETDEV_GROUP; 8965 if (!dev->ethtool_ops) 8966 dev->ethtool_ops = &default_ethtool_ops; 8967 8968 nf_hook_ingress_init(dev); 8969 8970 return dev; 8971 8972 free_all: 8973 free_netdev(dev); 8974 return NULL; 8975 8976 free_pcpu: 8977 free_percpu(dev->pcpu_refcnt); 8978 free_dev: 8979 netdev_freemem(dev); 8980 return NULL; 8981 } 8982 EXPORT_SYMBOL(alloc_netdev_mqs); 8983 8984 /** 8985 * free_netdev - free network device 8986 * @dev: device 8987 * 8988 * This function does the last stage of destroying an allocated device 8989 * interface. The reference to the device object is released. If this 8990 * is the last reference then it will be freed.Must be called in process 8991 * context. 8992 */ 8993 void free_netdev(struct net_device *dev) 8994 { 8995 struct napi_struct *p, *n; 8996 8997 might_sleep(); 8998 netif_free_tx_queues(dev); 8999 netif_free_rx_queues(dev); 9000 9001 kfree(rcu_dereference_protected(dev->ingress_queue, 1)); 9002 9003 /* Flush device addresses */ 9004 dev_addr_flush(dev); 9005 9006 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 9007 netif_napi_del(p); 9008 9009 free_percpu(dev->pcpu_refcnt); 9010 dev->pcpu_refcnt = NULL; 9011 9012 /* Compatibility with error handling in drivers */ 9013 if (dev->reg_state == NETREG_UNINITIALIZED) { 9014 netdev_freemem(dev); 9015 return; 9016 } 9017 9018 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 9019 dev->reg_state = NETREG_RELEASED; 9020 9021 /* will free via device release */ 9022 put_device(&dev->dev); 9023 } 9024 EXPORT_SYMBOL(free_netdev); 9025 9026 /** 9027 * synchronize_net - Synchronize with packet receive processing 9028 * 9029 * Wait for packets currently being received to be done. 9030 * Does not block later packets from starting. 9031 */ 9032 void synchronize_net(void) 9033 { 9034 might_sleep(); 9035 if (rtnl_is_locked()) 9036 synchronize_rcu_expedited(); 9037 else 9038 synchronize_rcu(); 9039 } 9040 EXPORT_SYMBOL(synchronize_net); 9041 9042 /** 9043 * unregister_netdevice_queue - remove device from the kernel 9044 * @dev: device 9045 * @head: list 9046 * 9047 * This function shuts down a device interface and removes it 9048 * from the kernel tables. 9049 * If head not NULL, device is queued to be unregistered later. 9050 * 9051 * Callers must hold the rtnl semaphore. You may want 9052 * unregister_netdev() instead of this. 9053 */ 9054 9055 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 9056 { 9057 ASSERT_RTNL(); 9058 9059 if (head) { 9060 list_move_tail(&dev->unreg_list, head); 9061 } else { 9062 rollback_registered(dev); 9063 /* Finish processing unregister after unlock */ 9064 net_set_todo(dev); 9065 } 9066 } 9067 EXPORT_SYMBOL(unregister_netdevice_queue); 9068 9069 /** 9070 * unregister_netdevice_many - unregister many devices 9071 * @head: list of devices 9072 * 9073 * Note: As most callers use a stack allocated list_head, 9074 * we force a list_del() to make sure stack wont be corrupted later. 9075 */ 9076 void unregister_netdevice_many(struct list_head *head) 9077 { 9078 struct net_device *dev; 9079 9080 if (!list_empty(head)) { 9081 rollback_registered_many(head); 9082 list_for_each_entry(dev, head, unreg_list) 9083 net_set_todo(dev); 9084 list_del(head); 9085 } 9086 } 9087 EXPORT_SYMBOL(unregister_netdevice_many); 9088 9089 /** 9090 * unregister_netdev - remove device from the kernel 9091 * @dev: device 9092 * 9093 * This function shuts down a device interface and removes it 9094 * from the kernel tables. 9095 * 9096 * This is just a wrapper for unregister_netdevice that takes 9097 * the rtnl semaphore. In general you want to use this and not 9098 * unregister_netdevice. 9099 */ 9100 void unregister_netdev(struct net_device *dev) 9101 { 9102 rtnl_lock(); 9103 unregister_netdevice(dev); 9104 rtnl_unlock(); 9105 } 9106 EXPORT_SYMBOL(unregister_netdev); 9107 9108 /** 9109 * dev_change_net_namespace - move device to different nethost namespace 9110 * @dev: device 9111 * @net: network namespace 9112 * @pat: If not NULL name pattern to try if the current device name 9113 * is already taken in the destination network namespace. 9114 * 9115 * This function shuts down a device interface and moves it 9116 * to a new network namespace. On success 0 is returned, on 9117 * a failure a netagive errno code is returned. 9118 * 9119 * Callers must hold the rtnl semaphore. 9120 */ 9121 9122 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 9123 { 9124 int err, new_nsid, new_ifindex; 9125 9126 ASSERT_RTNL(); 9127 9128 /* Don't allow namespace local devices to be moved. */ 9129 err = -EINVAL; 9130 if (dev->features & NETIF_F_NETNS_LOCAL) 9131 goto out; 9132 9133 /* Ensure the device has been registrered */ 9134 if (dev->reg_state != NETREG_REGISTERED) 9135 goto out; 9136 9137 /* Get out if there is nothing todo */ 9138 err = 0; 9139 if (net_eq(dev_net(dev), net)) 9140 goto out; 9141 9142 /* Pick the destination device name, and ensure 9143 * we can use it in the destination network namespace. 9144 */ 9145 err = -EEXIST; 9146 if (__dev_get_by_name(net, dev->name)) { 9147 /* We get here if we can't use the current device name */ 9148 if (!pat) 9149 goto out; 9150 err = dev_get_valid_name(net, dev, pat); 9151 if (err < 0) 9152 goto out; 9153 } 9154 9155 /* 9156 * And now a mini version of register_netdevice unregister_netdevice. 9157 */ 9158 9159 /* If device is running close it first. */ 9160 dev_close(dev); 9161 9162 /* And unlink it from device chain */ 9163 unlist_netdevice(dev); 9164 9165 synchronize_net(); 9166 9167 /* Shutdown queueing discipline. */ 9168 dev_shutdown(dev); 9169 9170 /* Notify protocols, that we are about to destroy 9171 * this device. They should clean all the things. 9172 * 9173 * Note that dev->reg_state stays at NETREG_REGISTERED. 9174 * This is wanted because this way 8021q and macvlan know 9175 * the device is just moving and can keep their slaves up. 9176 */ 9177 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 9178 rcu_barrier(); 9179 9180 new_nsid = peernet2id_alloc(dev_net(dev), net); 9181 /* If there is an ifindex conflict assign a new one */ 9182 if (__dev_get_by_index(net, dev->ifindex)) 9183 new_ifindex = dev_new_index(net); 9184 else 9185 new_ifindex = dev->ifindex; 9186 9187 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid, 9188 new_ifindex); 9189 9190 /* 9191 * Flush the unicast and multicast chains 9192 */ 9193 dev_uc_flush(dev); 9194 dev_mc_flush(dev); 9195 9196 /* Send a netdev-removed uevent to the old namespace */ 9197 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE); 9198 netdev_adjacent_del_links(dev); 9199 9200 /* Actually switch the network namespace */ 9201 dev_net_set(dev, net); 9202 dev->ifindex = new_ifindex; 9203 9204 /* Send a netdev-add uevent to the new namespace */ 9205 kobject_uevent(&dev->dev.kobj, KOBJ_ADD); 9206 netdev_adjacent_add_links(dev); 9207 9208 /* Fixup kobjects */ 9209 err = device_rename(&dev->dev, dev->name); 9210 WARN_ON(err); 9211 9212 /* Add the device back in the hashes */ 9213 list_netdevice(dev); 9214 9215 /* Notify protocols, that a new device appeared. */ 9216 call_netdevice_notifiers(NETDEV_REGISTER, dev); 9217 9218 /* 9219 * Prevent userspace races by waiting until the network 9220 * device is fully setup before sending notifications. 9221 */ 9222 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 9223 9224 synchronize_net(); 9225 err = 0; 9226 out: 9227 return err; 9228 } 9229 EXPORT_SYMBOL_GPL(dev_change_net_namespace); 9230 9231 static int dev_cpu_dead(unsigned int oldcpu) 9232 { 9233 struct sk_buff **list_skb; 9234 struct sk_buff *skb; 9235 unsigned int cpu; 9236 struct softnet_data *sd, *oldsd, *remsd = NULL; 9237 9238 local_irq_disable(); 9239 cpu = smp_processor_id(); 9240 sd = &per_cpu(softnet_data, cpu); 9241 oldsd = &per_cpu(softnet_data, oldcpu); 9242 9243 /* Find end of our completion_queue. */ 9244 list_skb = &sd->completion_queue; 9245 while (*list_skb) 9246 list_skb = &(*list_skb)->next; 9247 /* Append completion queue from offline CPU. */ 9248 *list_skb = oldsd->completion_queue; 9249 oldsd->completion_queue = NULL; 9250 9251 /* Append output queue from offline CPU. */ 9252 if (oldsd->output_queue) { 9253 *sd->output_queue_tailp = oldsd->output_queue; 9254 sd->output_queue_tailp = oldsd->output_queue_tailp; 9255 oldsd->output_queue = NULL; 9256 oldsd->output_queue_tailp = &oldsd->output_queue; 9257 } 9258 /* Append NAPI poll list from offline CPU, with one exception : 9259 * process_backlog() must be called by cpu owning percpu backlog. 9260 * We properly handle process_queue & input_pkt_queue later. 9261 */ 9262 while (!list_empty(&oldsd->poll_list)) { 9263 struct napi_struct *napi = list_first_entry(&oldsd->poll_list, 9264 struct napi_struct, 9265 poll_list); 9266 9267 list_del_init(&napi->poll_list); 9268 if (napi->poll == process_backlog) 9269 napi->state = 0; 9270 else 9271 ____napi_schedule(sd, napi); 9272 } 9273 9274 raise_softirq_irqoff(NET_TX_SOFTIRQ); 9275 local_irq_enable(); 9276 9277 #ifdef CONFIG_RPS 9278 remsd = oldsd->rps_ipi_list; 9279 oldsd->rps_ipi_list = NULL; 9280 #endif 9281 /* send out pending IPI's on offline CPU */ 9282 net_rps_send_ipi(remsd); 9283 9284 /* Process offline CPU's input_pkt_queue */ 9285 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 9286 netif_rx_ni(skb); 9287 input_queue_head_incr(oldsd); 9288 } 9289 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) { 9290 netif_rx_ni(skb); 9291 input_queue_head_incr(oldsd); 9292 } 9293 9294 return 0; 9295 } 9296 9297 /** 9298 * netdev_increment_features - increment feature set by one 9299 * @all: current feature set 9300 * @one: new feature set 9301 * @mask: mask feature set 9302 * 9303 * Computes a new feature set after adding a device with feature set 9304 * @one to the master device with current feature set @all. Will not 9305 * enable anything that is off in @mask. Returns the new feature set. 9306 */ 9307 netdev_features_t netdev_increment_features(netdev_features_t all, 9308 netdev_features_t one, netdev_features_t mask) 9309 { 9310 if (mask & NETIF_F_HW_CSUM) 9311 mask |= NETIF_F_CSUM_MASK; 9312 mask |= NETIF_F_VLAN_CHALLENGED; 9313 9314 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask; 9315 all &= one | ~NETIF_F_ALL_FOR_ALL; 9316 9317 /* If one device supports hw checksumming, set for all. */ 9318 if (all & NETIF_F_HW_CSUM) 9319 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM); 9320 9321 return all; 9322 } 9323 EXPORT_SYMBOL(netdev_increment_features); 9324 9325 static struct hlist_head * __net_init netdev_create_hash(void) 9326 { 9327 int i; 9328 struct hlist_head *hash; 9329 9330 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL); 9331 if (hash != NULL) 9332 for (i = 0; i < NETDEV_HASHENTRIES; i++) 9333 INIT_HLIST_HEAD(&hash[i]); 9334 9335 return hash; 9336 } 9337 9338 /* Initialize per network namespace state */ 9339 static int __net_init netdev_init(struct net *net) 9340 { 9341 BUILD_BUG_ON(GRO_HASH_BUCKETS > 9342 8 * FIELD_SIZEOF(struct napi_struct, gro_bitmask)); 9343 9344 if (net != &init_net) 9345 INIT_LIST_HEAD(&net->dev_base_head); 9346 9347 net->dev_name_head = netdev_create_hash(); 9348 if (net->dev_name_head == NULL) 9349 goto err_name; 9350 9351 net->dev_index_head = netdev_create_hash(); 9352 if (net->dev_index_head == NULL) 9353 goto err_idx; 9354 9355 return 0; 9356 9357 err_idx: 9358 kfree(net->dev_name_head); 9359 err_name: 9360 return -ENOMEM; 9361 } 9362 9363 /** 9364 * netdev_drivername - network driver for the device 9365 * @dev: network device 9366 * 9367 * Determine network driver for device. 9368 */ 9369 const char *netdev_drivername(const struct net_device *dev) 9370 { 9371 const struct device_driver *driver; 9372 const struct device *parent; 9373 const char *empty = ""; 9374 9375 parent = dev->dev.parent; 9376 if (!parent) 9377 return empty; 9378 9379 driver = parent->driver; 9380 if (driver && driver->name) 9381 return driver->name; 9382 return empty; 9383 } 9384 9385 static void __netdev_printk(const char *level, const struct net_device *dev, 9386 struct va_format *vaf) 9387 { 9388 if (dev && dev->dev.parent) { 9389 dev_printk_emit(level[1] - '0', 9390 dev->dev.parent, 9391 "%s %s %s%s: %pV", 9392 dev_driver_string(dev->dev.parent), 9393 dev_name(dev->dev.parent), 9394 netdev_name(dev), netdev_reg_state(dev), 9395 vaf); 9396 } else if (dev) { 9397 printk("%s%s%s: %pV", 9398 level, netdev_name(dev), netdev_reg_state(dev), vaf); 9399 } else { 9400 printk("%s(NULL net_device): %pV", level, vaf); 9401 } 9402 } 9403 9404 void netdev_printk(const char *level, const struct net_device *dev, 9405 const char *format, ...) 9406 { 9407 struct va_format vaf; 9408 va_list args; 9409 9410 va_start(args, format); 9411 9412 vaf.fmt = format; 9413 vaf.va = &args; 9414 9415 __netdev_printk(level, dev, &vaf); 9416 9417 va_end(args); 9418 } 9419 EXPORT_SYMBOL(netdev_printk); 9420 9421 #define define_netdev_printk_level(func, level) \ 9422 void func(const struct net_device *dev, const char *fmt, ...) \ 9423 { \ 9424 struct va_format vaf; \ 9425 va_list args; \ 9426 \ 9427 va_start(args, fmt); \ 9428 \ 9429 vaf.fmt = fmt; \ 9430 vaf.va = &args; \ 9431 \ 9432 __netdev_printk(level, dev, &vaf); \ 9433 \ 9434 va_end(args); \ 9435 } \ 9436 EXPORT_SYMBOL(func); 9437 9438 define_netdev_printk_level(netdev_emerg, KERN_EMERG); 9439 define_netdev_printk_level(netdev_alert, KERN_ALERT); 9440 define_netdev_printk_level(netdev_crit, KERN_CRIT); 9441 define_netdev_printk_level(netdev_err, KERN_ERR); 9442 define_netdev_printk_level(netdev_warn, KERN_WARNING); 9443 define_netdev_printk_level(netdev_notice, KERN_NOTICE); 9444 define_netdev_printk_level(netdev_info, KERN_INFO); 9445 9446 static void __net_exit netdev_exit(struct net *net) 9447 { 9448 kfree(net->dev_name_head); 9449 kfree(net->dev_index_head); 9450 if (net != &init_net) 9451 WARN_ON_ONCE(!list_empty(&net->dev_base_head)); 9452 } 9453 9454 static struct pernet_operations __net_initdata netdev_net_ops = { 9455 .init = netdev_init, 9456 .exit = netdev_exit, 9457 }; 9458 9459 static void __net_exit default_device_exit(struct net *net) 9460 { 9461 struct net_device *dev, *aux; 9462 /* 9463 * Push all migratable network devices back to the 9464 * initial network namespace 9465 */ 9466 rtnl_lock(); 9467 for_each_netdev_safe(net, dev, aux) { 9468 int err; 9469 char fb_name[IFNAMSIZ]; 9470 9471 /* Ignore unmoveable devices (i.e. loopback) */ 9472 if (dev->features & NETIF_F_NETNS_LOCAL) 9473 continue; 9474 9475 /* Leave virtual devices for the generic cleanup */ 9476 if (dev->rtnl_link_ops) 9477 continue; 9478 9479 /* Push remaining network devices to init_net */ 9480 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 9481 err = dev_change_net_namespace(dev, &init_net, fb_name); 9482 if (err) { 9483 pr_emerg("%s: failed to move %s to init_net: %d\n", 9484 __func__, dev->name, err); 9485 BUG(); 9486 } 9487 } 9488 rtnl_unlock(); 9489 } 9490 9491 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list) 9492 { 9493 /* Return with the rtnl_lock held when there are no network 9494 * devices unregistering in any network namespace in net_list. 9495 */ 9496 struct net *net; 9497 bool unregistering; 9498 DEFINE_WAIT_FUNC(wait, woken_wake_function); 9499 9500 add_wait_queue(&netdev_unregistering_wq, &wait); 9501 for (;;) { 9502 unregistering = false; 9503 rtnl_lock(); 9504 list_for_each_entry(net, net_list, exit_list) { 9505 if (net->dev_unreg_count > 0) { 9506 unregistering = true; 9507 break; 9508 } 9509 } 9510 if (!unregistering) 9511 break; 9512 __rtnl_unlock(); 9513 9514 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); 9515 } 9516 remove_wait_queue(&netdev_unregistering_wq, &wait); 9517 } 9518 9519 static void __net_exit default_device_exit_batch(struct list_head *net_list) 9520 { 9521 /* At exit all network devices most be removed from a network 9522 * namespace. Do this in the reverse order of registration. 9523 * Do this across as many network namespaces as possible to 9524 * improve batching efficiency. 9525 */ 9526 struct net_device *dev; 9527 struct net *net; 9528 LIST_HEAD(dev_kill_list); 9529 9530 /* To prevent network device cleanup code from dereferencing 9531 * loopback devices or network devices that have been freed 9532 * wait here for all pending unregistrations to complete, 9533 * before unregistring the loopback device and allowing the 9534 * network namespace be freed. 9535 * 9536 * The netdev todo list containing all network devices 9537 * unregistrations that happen in default_device_exit_batch 9538 * will run in the rtnl_unlock() at the end of 9539 * default_device_exit_batch. 9540 */ 9541 rtnl_lock_unregistering(net_list); 9542 list_for_each_entry(net, net_list, exit_list) { 9543 for_each_netdev_reverse(net, dev) { 9544 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) 9545 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 9546 else 9547 unregister_netdevice_queue(dev, &dev_kill_list); 9548 } 9549 } 9550 unregister_netdevice_many(&dev_kill_list); 9551 rtnl_unlock(); 9552 } 9553 9554 static struct pernet_operations __net_initdata default_device_ops = { 9555 .exit = default_device_exit, 9556 .exit_batch = default_device_exit_batch, 9557 }; 9558 9559 /* 9560 * Initialize the DEV module. At boot time this walks the device list and 9561 * unhooks any devices that fail to initialise (normally hardware not 9562 * present) and leaves us with a valid list of present and active devices. 9563 * 9564 */ 9565 9566 /* 9567 * This is called single threaded during boot, so no need 9568 * to take the rtnl semaphore. 9569 */ 9570 static int __init net_dev_init(void) 9571 { 9572 int i, rc = -ENOMEM; 9573 9574 BUG_ON(!dev_boot_phase); 9575 9576 if (dev_proc_init()) 9577 goto out; 9578 9579 if (netdev_kobject_init()) 9580 goto out; 9581 9582 INIT_LIST_HEAD(&ptype_all); 9583 for (i = 0; i < PTYPE_HASH_SIZE; i++) 9584 INIT_LIST_HEAD(&ptype_base[i]); 9585 9586 INIT_LIST_HEAD(&offload_base); 9587 9588 if (register_pernet_subsys(&netdev_net_ops)) 9589 goto out; 9590 9591 /* 9592 * Initialise the packet receive queues. 9593 */ 9594 9595 for_each_possible_cpu(i) { 9596 struct work_struct *flush = per_cpu_ptr(&flush_works, i); 9597 struct softnet_data *sd = &per_cpu(softnet_data, i); 9598 9599 INIT_WORK(flush, flush_backlog); 9600 9601 skb_queue_head_init(&sd->input_pkt_queue); 9602 skb_queue_head_init(&sd->process_queue); 9603 #ifdef CONFIG_XFRM_OFFLOAD 9604 skb_queue_head_init(&sd->xfrm_backlog); 9605 #endif 9606 INIT_LIST_HEAD(&sd->poll_list); 9607 sd->output_queue_tailp = &sd->output_queue; 9608 #ifdef CONFIG_RPS 9609 sd->csd.func = rps_trigger_softirq; 9610 sd->csd.info = sd; 9611 sd->cpu = i; 9612 #endif 9613 9614 init_gro_hash(&sd->backlog); 9615 sd->backlog.poll = process_backlog; 9616 sd->backlog.weight = weight_p; 9617 } 9618 9619 dev_boot_phase = 0; 9620 9621 /* The loopback device is special if any other network devices 9622 * is present in a network namespace the loopback device must 9623 * be present. Since we now dynamically allocate and free the 9624 * loopback device ensure this invariant is maintained by 9625 * keeping the loopback device as the first device on the 9626 * list of network devices. Ensuring the loopback devices 9627 * is the first device that appears and the last network device 9628 * that disappears. 9629 */ 9630 if (register_pernet_device(&loopback_net_ops)) 9631 goto out; 9632 9633 if (register_pernet_device(&default_device_ops)) 9634 goto out; 9635 9636 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 9637 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 9638 9639 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead", 9640 NULL, dev_cpu_dead); 9641 WARN_ON(rc < 0); 9642 rc = 0; 9643 out: 9644 return rc; 9645 } 9646 9647 subsys_initcall(net_dev_init); 9648