1 /* 2 * NET3 Protocol independent device support routines. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Derived from the non IP parts of dev.c 1.0.19 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * 14 * Additional Authors: 15 * Florian la Roche <rzsfl@rz.uni-sb.de> 16 * Alan Cox <gw4pts@gw4pts.ampr.org> 17 * David Hinds <dahinds@users.sourceforge.net> 18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 19 * Adam Sulmicki <adam@cfar.umd.edu> 20 * Pekka Riikonen <priikone@poesidon.pspt.fi> 21 * 22 * Changes: 23 * D.J. Barrow : Fixed bug where dev->refcnt gets set 24 * to 2 if register_netdev gets called 25 * before net_dev_init & also removed a 26 * few lines of code in the process. 27 * Alan Cox : device private ioctl copies fields back. 28 * Alan Cox : Transmit queue code does relevant 29 * stunts to keep the queue safe. 30 * Alan Cox : Fixed double lock. 31 * Alan Cox : Fixed promisc NULL pointer trap 32 * ???????? : Support the full private ioctl range 33 * Alan Cox : Moved ioctl permission check into 34 * drivers 35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 36 * Alan Cox : 100 backlog just doesn't cut it when 37 * you start doing multicast video 8) 38 * Alan Cox : Rewrote net_bh and list manager. 39 * Alan Cox : Fix ETH_P_ALL echoback lengths. 40 * Alan Cox : Took out transmit every packet pass 41 * Saved a few bytes in the ioctl handler 42 * Alan Cox : Network driver sets packet type before 43 * calling netif_rx. Saves a function 44 * call a packet. 45 * Alan Cox : Hashed net_bh() 46 * Richard Kooijman: Timestamp fixes. 47 * Alan Cox : Wrong field in SIOCGIFDSTADDR 48 * Alan Cox : Device lock protection. 49 * Alan Cox : Fixed nasty side effect of device close 50 * changes. 51 * Rudi Cilibrasi : Pass the right thing to 52 * set_mac_address() 53 * Dave Miller : 32bit quantity for the device lock to 54 * make it work out on a Sparc. 55 * Bjorn Ekwall : Added KERNELD hack. 56 * Alan Cox : Cleaned up the backlog initialise. 57 * Craig Metz : SIOCGIFCONF fix if space for under 58 * 1 device. 59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 60 * is no device open function. 61 * Andi Kleen : Fix error reporting for SIOCGIFCONF 62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 63 * Cyrus Durgin : Cleaned for KMOD 64 * Adam Sulmicki : Bug Fix : Network Device Unload 65 * A network device unload needs to purge 66 * the backlog queue. 67 * Paul Rusty Russell : SIOCSIFNAME 68 * Pekka Riikonen : Netdev boot-time settings code 69 * Andrew Morton : Make unregister_netdevice wait 70 * indefinitely on dev->refcnt 71 * J Hadi Salim : - Backlog queue sampling 72 * - netif_rx() feedback 73 */ 74 75 #include <asm/uaccess.h> 76 #include <asm/system.h> 77 #include <linux/bitops.h> 78 #include <linux/capability.h> 79 #include <linux/cpu.h> 80 #include <linux/types.h> 81 #include <linux/kernel.h> 82 #include <linux/sched.h> 83 #include <linux/mutex.h> 84 #include <linux/string.h> 85 #include <linux/mm.h> 86 #include <linux/socket.h> 87 #include <linux/sockios.h> 88 #include <linux/errno.h> 89 #include <linux/interrupt.h> 90 #include <linux/if_ether.h> 91 #include <linux/netdevice.h> 92 #include <linux/etherdevice.h> 93 #include <linux/notifier.h> 94 #include <linux/skbuff.h> 95 #include <net/sock.h> 96 #include <linux/rtnetlink.h> 97 #include <linux/proc_fs.h> 98 #include <linux/seq_file.h> 99 #include <linux/stat.h> 100 #include <linux/if_bridge.h> 101 #include <net/dst.h> 102 #include <net/pkt_sched.h> 103 #include <net/checksum.h> 104 #include <linux/highmem.h> 105 #include <linux/init.h> 106 #include <linux/kmod.h> 107 #include <linux/module.h> 108 #include <linux/kallsyms.h> 109 #include <linux/netpoll.h> 110 #include <linux/rcupdate.h> 111 #include <linux/delay.h> 112 #include <net/wext.h> 113 #include <net/iw_handler.h> 114 #include <asm/current.h> 115 #include <linux/audit.h> 116 #include <linux/dmaengine.h> 117 #include <linux/err.h> 118 #include <linux/ctype.h> 119 #include <linux/if_arp.h> 120 121 /* 122 * The list of packet types we will receive (as opposed to discard) 123 * and the routines to invoke. 124 * 125 * Why 16. Because with 16 the only overlap we get on a hash of the 126 * low nibble of the protocol value is RARP/SNAP/X.25. 127 * 128 * NOTE: That is no longer true with the addition of VLAN tags. Not 129 * sure which should go first, but I bet it won't make much 130 * difference if we are running VLANs. The good news is that 131 * this protocol won't be in the list unless compiled in, so 132 * the average user (w/out VLANs) will not be adversely affected. 133 * --BLG 134 * 135 * 0800 IP 136 * 8100 802.1Q VLAN 137 * 0001 802.3 138 * 0002 AX.25 139 * 0004 802.2 140 * 8035 RARP 141 * 0005 SNAP 142 * 0805 X.25 143 * 0806 ARP 144 * 8137 IPX 145 * 0009 Localtalk 146 * 86DD IPv6 147 */ 148 149 static DEFINE_SPINLOCK(ptype_lock); 150 static struct list_head ptype_base[16] __read_mostly; /* 16 way hashed list */ 151 static struct list_head ptype_all __read_mostly; /* Taps */ 152 153 #ifdef CONFIG_NET_DMA 154 static struct dma_client *net_dma_client; 155 static unsigned int net_dma_count; 156 static spinlock_t net_dma_event_lock; 157 #endif 158 159 /* 160 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 161 * semaphore. 162 * 163 * Pure readers hold dev_base_lock for reading. 164 * 165 * Writers must hold the rtnl semaphore while they loop through the 166 * dev_base_head list, and hold dev_base_lock for writing when they do the 167 * actual updates. This allows pure readers to access the list even 168 * while a writer is preparing to update it. 169 * 170 * To put it another way, dev_base_lock is held for writing only to 171 * protect against pure readers; the rtnl semaphore provides the 172 * protection against other writers. 173 * 174 * See, for example usages, register_netdevice() and 175 * unregister_netdevice(), which must be called with the rtnl 176 * semaphore held. 177 */ 178 LIST_HEAD(dev_base_head); 179 DEFINE_RWLOCK(dev_base_lock); 180 181 EXPORT_SYMBOL(dev_base_head); 182 EXPORT_SYMBOL(dev_base_lock); 183 184 #define NETDEV_HASHBITS 8 185 static struct hlist_head dev_name_head[1<<NETDEV_HASHBITS]; 186 static struct hlist_head dev_index_head[1<<NETDEV_HASHBITS]; 187 188 static inline struct hlist_head *dev_name_hash(const char *name) 189 { 190 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ)); 191 return &dev_name_head[hash & ((1<<NETDEV_HASHBITS)-1)]; 192 } 193 194 static inline struct hlist_head *dev_index_hash(int ifindex) 195 { 196 return &dev_index_head[ifindex & ((1<<NETDEV_HASHBITS)-1)]; 197 } 198 199 /* 200 * Our notifier list 201 */ 202 203 static RAW_NOTIFIER_HEAD(netdev_chain); 204 205 /* 206 * Device drivers call our routines to queue packets here. We empty the 207 * queue in the local softnet handler. 208 */ 209 DEFINE_PER_CPU(struct softnet_data, softnet_data) = { NULL }; 210 211 #ifdef CONFIG_SYSFS 212 extern int netdev_sysfs_init(void); 213 extern int netdev_register_sysfs(struct net_device *); 214 extern void netdev_unregister_sysfs(struct net_device *); 215 #else 216 #define netdev_sysfs_init() (0) 217 #define netdev_register_sysfs(dev) (0) 218 #define netdev_unregister_sysfs(dev) do { } while(0) 219 #endif 220 221 #ifdef CONFIG_DEBUG_LOCK_ALLOC 222 /* 223 * register_netdevice() inits dev->_xmit_lock and sets lockdep class 224 * according to dev->type 225 */ 226 static const unsigned short netdev_lock_type[] = 227 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 228 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 229 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 230 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 231 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 232 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 233 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 234 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 235 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 236 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 237 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 238 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 239 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211, 240 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_VOID, 241 ARPHRD_NONE}; 242 243 static const char *netdev_lock_name[] = 244 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 245 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 246 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 247 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 248 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 249 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 250 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 251 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 252 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 253 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 254 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 255 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 256 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211", 257 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_VOID", 258 "_xmit_NONE"}; 259 260 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 261 262 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 263 { 264 int i; 265 266 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 267 if (netdev_lock_type[i] == dev_type) 268 return i; 269 /* the last key is used by default */ 270 return ARRAY_SIZE(netdev_lock_type) - 1; 271 } 272 273 static inline void netdev_set_lockdep_class(spinlock_t *lock, 274 unsigned short dev_type) 275 { 276 int i; 277 278 i = netdev_lock_pos(dev_type); 279 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 280 netdev_lock_name[i]); 281 } 282 #else 283 static inline void netdev_set_lockdep_class(spinlock_t *lock, 284 unsigned short dev_type) 285 { 286 } 287 #endif 288 289 /******************************************************************************* 290 291 Protocol management and registration routines 292 293 *******************************************************************************/ 294 295 /* 296 * Add a protocol ID to the list. Now that the input handler is 297 * smarter we can dispense with all the messy stuff that used to be 298 * here. 299 * 300 * BEWARE!!! Protocol handlers, mangling input packets, 301 * MUST BE last in hash buckets and checking protocol handlers 302 * MUST start from promiscuous ptype_all chain in net_bh. 303 * It is true now, do not change it. 304 * Explanation follows: if protocol handler, mangling packet, will 305 * be the first on list, it is not able to sense, that packet 306 * is cloned and should be copied-on-write, so that it will 307 * change it and subsequent readers will get broken packet. 308 * --ANK (980803) 309 */ 310 311 /** 312 * dev_add_pack - add packet handler 313 * @pt: packet type declaration 314 * 315 * Add a protocol handler to the networking stack. The passed &packet_type 316 * is linked into kernel lists and may not be freed until it has been 317 * removed from the kernel lists. 318 * 319 * This call does not sleep therefore it can not 320 * guarantee all CPU's that are in middle of receiving packets 321 * will see the new packet type (until the next received packet). 322 */ 323 324 void dev_add_pack(struct packet_type *pt) 325 { 326 int hash; 327 328 spin_lock_bh(&ptype_lock); 329 if (pt->type == htons(ETH_P_ALL)) 330 list_add_rcu(&pt->list, &ptype_all); 331 else { 332 hash = ntohs(pt->type) & 15; 333 list_add_rcu(&pt->list, &ptype_base[hash]); 334 } 335 spin_unlock_bh(&ptype_lock); 336 } 337 338 /** 339 * __dev_remove_pack - remove packet handler 340 * @pt: packet type declaration 341 * 342 * Remove a protocol handler that was previously added to the kernel 343 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 344 * from the kernel lists and can be freed or reused once this function 345 * returns. 346 * 347 * The packet type might still be in use by receivers 348 * and must not be freed until after all the CPU's have gone 349 * through a quiescent state. 350 */ 351 void __dev_remove_pack(struct packet_type *pt) 352 { 353 struct list_head *head; 354 struct packet_type *pt1; 355 356 spin_lock_bh(&ptype_lock); 357 358 if (pt->type == htons(ETH_P_ALL)) 359 head = &ptype_all; 360 else 361 head = &ptype_base[ntohs(pt->type) & 15]; 362 363 list_for_each_entry(pt1, head, list) { 364 if (pt == pt1) { 365 list_del_rcu(&pt->list); 366 goto out; 367 } 368 } 369 370 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt); 371 out: 372 spin_unlock_bh(&ptype_lock); 373 } 374 /** 375 * dev_remove_pack - remove packet handler 376 * @pt: packet type declaration 377 * 378 * Remove a protocol handler that was previously added to the kernel 379 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 380 * from the kernel lists and can be freed or reused once this function 381 * returns. 382 * 383 * This call sleeps to guarantee that no CPU is looking at the packet 384 * type after return. 385 */ 386 void dev_remove_pack(struct packet_type *pt) 387 { 388 __dev_remove_pack(pt); 389 390 synchronize_net(); 391 } 392 393 /****************************************************************************** 394 395 Device Boot-time Settings Routines 396 397 *******************************************************************************/ 398 399 /* Boot time configuration table */ 400 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 401 402 /** 403 * netdev_boot_setup_add - add new setup entry 404 * @name: name of the device 405 * @map: configured settings for the device 406 * 407 * Adds new setup entry to the dev_boot_setup list. The function 408 * returns 0 on error and 1 on success. This is a generic routine to 409 * all netdevices. 410 */ 411 static int netdev_boot_setup_add(char *name, struct ifmap *map) 412 { 413 struct netdev_boot_setup *s; 414 int i; 415 416 s = dev_boot_setup; 417 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 418 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 419 memset(s[i].name, 0, sizeof(s[i].name)); 420 strcpy(s[i].name, name); 421 memcpy(&s[i].map, map, sizeof(s[i].map)); 422 break; 423 } 424 } 425 426 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 427 } 428 429 /** 430 * netdev_boot_setup_check - check boot time settings 431 * @dev: the netdevice 432 * 433 * Check boot time settings for the device. 434 * The found settings are set for the device to be used 435 * later in the device probing. 436 * Returns 0 if no settings found, 1 if they are. 437 */ 438 int netdev_boot_setup_check(struct net_device *dev) 439 { 440 struct netdev_boot_setup *s = dev_boot_setup; 441 int i; 442 443 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 444 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 445 !strncmp(dev->name, s[i].name, strlen(s[i].name))) { 446 dev->irq = s[i].map.irq; 447 dev->base_addr = s[i].map.base_addr; 448 dev->mem_start = s[i].map.mem_start; 449 dev->mem_end = s[i].map.mem_end; 450 return 1; 451 } 452 } 453 return 0; 454 } 455 456 457 /** 458 * netdev_boot_base - get address from boot time settings 459 * @prefix: prefix for network device 460 * @unit: id for network device 461 * 462 * Check boot time settings for the base address of device. 463 * The found settings are set for the device to be used 464 * later in the device probing. 465 * Returns 0 if no settings found. 466 */ 467 unsigned long netdev_boot_base(const char *prefix, int unit) 468 { 469 const struct netdev_boot_setup *s = dev_boot_setup; 470 char name[IFNAMSIZ]; 471 int i; 472 473 sprintf(name, "%s%d", prefix, unit); 474 475 /* 476 * If device already registered then return base of 1 477 * to indicate not to probe for this interface 478 */ 479 if (__dev_get_by_name(name)) 480 return 1; 481 482 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 483 if (!strcmp(name, s[i].name)) 484 return s[i].map.base_addr; 485 return 0; 486 } 487 488 /* 489 * Saves at boot time configured settings for any netdevice. 490 */ 491 int __init netdev_boot_setup(char *str) 492 { 493 int ints[5]; 494 struct ifmap map; 495 496 str = get_options(str, ARRAY_SIZE(ints), ints); 497 if (!str || !*str) 498 return 0; 499 500 /* Save settings */ 501 memset(&map, 0, sizeof(map)); 502 if (ints[0] > 0) 503 map.irq = ints[1]; 504 if (ints[0] > 1) 505 map.base_addr = ints[2]; 506 if (ints[0] > 2) 507 map.mem_start = ints[3]; 508 if (ints[0] > 3) 509 map.mem_end = ints[4]; 510 511 /* Add new entry to the list */ 512 return netdev_boot_setup_add(str, &map); 513 } 514 515 __setup("netdev=", netdev_boot_setup); 516 517 /******************************************************************************* 518 519 Device Interface Subroutines 520 521 *******************************************************************************/ 522 523 /** 524 * __dev_get_by_name - find a device by its name 525 * @name: name to find 526 * 527 * Find an interface by name. Must be called under RTNL semaphore 528 * or @dev_base_lock. If the name is found a pointer to the device 529 * is returned. If the name is not found then %NULL is returned. The 530 * reference counters are not incremented so the caller must be 531 * careful with locks. 532 */ 533 534 struct net_device *__dev_get_by_name(const char *name) 535 { 536 struct hlist_node *p; 537 538 hlist_for_each(p, dev_name_hash(name)) { 539 struct net_device *dev 540 = hlist_entry(p, struct net_device, name_hlist); 541 if (!strncmp(dev->name, name, IFNAMSIZ)) 542 return dev; 543 } 544 return NULL; 545 } 546 547 /** 548 * dev_get_by_name - find a device by its name 549 * @name: name to find 550 * 551 * Find an interface by name. This can be called from any 552 * context and does its own locking. The returned handle has 553 * the usage count incremented and the caller must use dev_put() to 554 * release it when it is no longer needed. %NULL is returned if no 555 * matching device is found. 556 */ 557 558 struct net_device *dev_get_by_name(const char *name) 559 { 560 struct net_device *dev; 561 562 read_lock(&dev_base_lock); 563 dev = __dev_get_by_name(name); 564 if (dev) 565 dev_hold(dev); 566 read_unlock(&dev_base_lock); 567 return dev; 568 } 569 570 /** 571 * __dev_get_by_index - find a device by its ifindex 572 * @ifindex: index of device 573 * 574 * Search for an interface by index. Returns %NULL if the device 575 * is not found or a pointer to the device. The device has not 576 * had its reference counter increased so the caller must be careful 577 * about locking. The caller must hold either the RTNL semaphore 578 * or @dev_base_lock. 579 */ 580 581 struct net_device *__dev_get_by_index(int ifindex) 582 { 583 struct hlist_node *p; 584 585 hlist_for_each(p, dev_index_hash(ifindex)) { 586 struct net_device *dev 587 = hlist_entry(p, struct net_device, index_hlist); 588 if (dev->ifindex == ifindex) 589 return dev; 590 } 591 return NULL; 592 } 593 594 595 /** 596 * dev_get_by_index - find a device by its ifindex 597 * @ifindex: index of device 598 * 599 * Search for an interface by index. Returns NULL if the device 600 * is not found or a pointer to the device. The device returned has 601 * had a reference added and the pointer is safe until the user calls 602 * dev_put to indicate they have finished with it. 603 */ 604 605 struct net_device *dev_get_by_index(int ifindex) 606 { 607 struct net_device *dev; 608 609 read_lock(&dev_base_lock); 610 dev = __dev_get_by_index(ifindex); 611 if (dev) 612 dev_hold(dev); 613 read_unlock(&dev_base_lock); 614 return dev; 615 } 616 617 /** 618 * dev_getbyhwaddr - find a device by its hardware address 619 * @type: media type of device 620 * @ha: hardware address 621 * 622 * Search for an interface by MAC address. Returns NULL if the device 623 * is not found or a pointer to the device. The caller must hold the 624 * rtnl semaphore. The returned device has not had its ref count increased 625 * and the caller must therefore be careful about locking 626 * 627 * BUGS: 628 * If the API was consistent this would be __dev_get_by_hwaddr 629 */ 630 631 struct net_device *dev_getbyhwaddr(unsigned short type, char *ha) 632 { 633 struct net_device *dev; 634 635 ASSERT_RTNL(); 636 637 for_each_netdev(dev) 638 if (dev->type == type && 639 !memcmp(dev->dev_addr, ha, dev->addr_len)) 640 return dev; 641 642 return NULL; 643 } 644 645 EXPORT_SYMBOL(dev_getbyhwaddr); 646 647 struct net_device *__dev_getfirstbyhwtype(unsigned short type) 648 { 649 struct net_device *dev; 650 651 ASSERT_RTNL(); 652 for_each_netdev(dev) 653 if (dev->type == type) 654 return dev; 655 656 return NULL; 657 } 658 659 EXPORT_SYMBOL(__dev_getfirstbyhwtype); 660 661 struct net_device *dev_getfirstbyhwtype(unsigned short type) 662 { 663 struct net_device *dev; 664 665 rtnl_lock(); 666 dev = __dev_getfirstbyhwtype(type); 667 if (dev) 668 dev_hold(dev); 669 rtnl_unlock(); 670 return dev; 671 } 672 673 EXPORT_SYMBOL(dev_getfirstbyhwtype); 674 675 /** 676 * dev_get_by_flags - find any device with given flags 677 * @if_flags: IFF_* values 678 * @mask: bitmask of bits in if_flags to check 679 * 680 * Search for any interface with the given flags. Returns NULL if a device 681 * is not found or a pointer to the device. The device returned has 682 * had a reference added and the pointer is safe until the user calls 683 * dev_put to indicate they have finished with it. 684 */ 685 686 struct net_device * dev_get_by_flags(unsigned short if_flags, unsigned short mask) 687 { 688 struct net_device *dev, *ret; 689 690 ret = NULL; 691 read_lock(&dev_base_lock); 692 for_each_netdev(dev) { 693 if (((dev->flags ^ if_flags) & mask) == 0) { 694 dev_hold(dev); 695 ret = dev; 696 break; 697 } 698 } 699 read_unlock(&dev_base_lock); 700 return ret; 701 } 702 703 /** 704 * dev_valid_name - check if name is okay for network device 705 * @name: name string 706 * 707 * Network device names need to be valid file names to 708 * to allow sysfs to work. We also disallow any kind of 709 * whitespace. 710 */ 711 int dev_valid_name(const char *name) 712 { 713 if (*name == '\0') 714 return 0; 715 if (strlen(name) >= IFNAMSIZ) 716 return 0; 717 if (!strcmp(name, ".") || !strcmp(name, "..")) 718 return 0; 719 720 while (*name) { 721 if (*name == '/' || isspace(*name)) 722 return 0; 723 name++; 724 } 725 return 1; 726 } 727 728 /** 729 * dev_alloc_name - allocate a name for a device 730 * @dev: device 731 * @name: name format string 732 * 733 * Passed a format string - eg "lt%d" it will try and find a suitable 734 * id. It scans list of devices to build up a free map, then chooses 735 * the first empty slot. The caller must hold the dev_base or rtnl lock 736 * while allocating the name and adding the device in order to avoid 737 * duplicates. 738 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 739 * Returns the number of the unit assigned or a negative errno code. 740 */ 741 742 int dev_alloc_name(struct net_device *dev, const char *name) 743 { 744 int i = 0; 745 char buf[IFNAMSIZ]; 746 const char *p; 747 const int max_netdevices = 8*PAGE_SIZE; 748 long *inuse; 749 struct net_device *d; 750 751 p = strnchr(name, IFNAMSIZ-1, '%'); 752 if (p) { 753 /* 754 * Verify the string as this thing may have come from 755 * the user. There must be either one "%d" and no other "%" 756 * characters. 757 */ 758 if (p[1] != 'd' || strchr(p + 2, '%')) 759 return -EINVAL; 760 761 /* Use one page as a bit array of possible slots */ 762 inuse = (long *) get_zeroed_page(GFP_ATOMIC); 763 if (!inuse) 764 return -ENOMEM; 765 766 for_each_netdev(d) { 767 if (!sscanf(d->name, name, &i)) 768 continue; 769 if (i < 0 || i >= max_netdevices) 770 continue; 771 772 /* avoid cases where sscanf is not exact inverse of printf */ 773 snprintf(buf, sizeof(buf), name, i); 774 if (!strncmp(buf, d->name, IFNAMSIZ)) 775 set_bit(i, inuse); 776 } 777 778 i = find_first_zero_bit(inuse, max_netdevices); 779 free_page((unsigned long) inuse); 780 } 781 782 snprintf(buf, sizeof(buf), name, i); 783 if (!__dev_get_by_name(buf)) { 784 strlcpy(dev->name, buf, IFNAMSIZ); 785 return i; 786 } 787 788 /* It is possible to run out of possible slots 789 * when the name is long and there isn't enough space left 790 * for the digits, or if all bits are used. 791 */ 792 return -ENFILE; 793 } 794 795 796 /** 797 * dev_change_name - change name of a device 798 * @dev: device 799 * @newname: name (or format string) must be at least IFNAMSIZ 800 * 801 * Change name of a device, can pass format strings "eth%d". 802 * for wildcarding. 803 */ 804 int dev_change_name(struct net_device *dev, char *newname) 805 { 806 int err = 0; 807 808 ASSERT_RTNL(); 809 810 if (dev->flags & IFF_UP) 811 return -EBUSY; 812 813 if (!dev_valid_name(newname)) 814 return -EINVAL; 815 816 if (strchr(newname, '%')) { 817 err = dev_alloc_name(dev, newname); 818 if (err < 0) 819 return err; 820 strcpy(newname, dev->name); 821 } 822 else if (__dev_get_by_name(newname)) 823 return -EEXIST; 824 else 825 strlcpy(dev->name, newname, IFNAMSIZ); 826 827 device_rename(&dev->dev, dev->name); 828 hlist_del(&dev->name_hlist); 829 hlist_add_head(&dev->name_hlist, dev_name_hash(dev->name)); 830 raw_notifier_call_chain(&netdev_chain, NETDEV_CHANGENAME, dev); 831 832 return err; 833 } 834 835 /** 836 * netdev_features_change - device changes features 837 * @dev: device to cause notification 838 * 839 * Called to indicate a device has changed features. 840 */ 841 void netdev_features_change(struct net_device *dev) 842 { 843 raw_notifier_call_chain(&netdev_chain, NETDEV_FEAT_CHANGE, dev); 844 } 845 EXPORT_SYMBOL(netdev_features_change); 846 847 /** 848 * netdev_state_change - device changes state 849 * @dev: device to cause notification 850 * 851 * Called to indicate a device has changed state. This function calls 852 * the notifier chains for netdev_chain and sends a NEWLINK message 853 * to the routing socket. 854 */ 855 void netdev_state_change(struct net_device *dev) 856 { 857 if (dev->flags & IFF_UP) { 858 raw_notifier_call_chain(&netdev_chain, 859 NETDEV_CHANGE, dev); 860 rtmsg_ifinfo(RTM_NEWLINK, dev, 0); 861 } 862 } 863 864 /** 865 * dev_load - load a network module 866 * @name: name of interface 867 * 868 * If a network interface is not present and the process has suitable 869 * privileges this function loads the module. If module loading is not 870 * available in this kernel then it becomes a nop. 871 */ 872 873 void dev_load(const char *name) 874 { 875 struct net_device *dev; 876 877 read_lock(&dev_base_lock); 878 dev = __dev_get_by_name(name); 879 read_unlock(&dev_base_lock); 880 881 if (!dev && capable(CAP_SYS_MODULE)) 882 request_module("%s", name); 883 } 884 885 static int default_rebuild_header(struct sk_buff *skb) 886 { 887 printk(KERN_DEBUG "%s: default_rebuild_header called -- BUG!\n", 888 skb->dev ? skb->dev->name : "NULL!!!"); 889 kfree_skb(skb); 890 return 1; 891 } 892 893 /** 894 * dev_open - prepare an interface for use. 895 * @dev: device to open 896 * 897 * Takes a device from down to up state. The device's private open 898 * function is invoked and then the multicast lists are loaded. Finally 899 * the device is moved into the up state and a %NETDEV_UP message is 900 * sent to the netdev notifier chain. 901 * 902 * Calling this function on an active interface is a nop. On a failure 903 * a negative errno code is returned. 904 */ 905 int dev_open(struct net_device *dev) 906 { 907 int ret = 0; 908 909 /* 910 * Is it already up? 911 */ 912 913 if (dev->flags & IFF_UP) 914 return 0; 915 916 /* 917 * Is it even present? 918 */ 919 if (!netif_device_present(dev)) 920 return -ENODEV; 921 922 /* 923 * Call device private open method 924 */ 925 set_bit(__LINK_STATE_START, &dev->state); 926 if (dev->open) { 927 ret = dev->open(dev); 928 if (ret) 929 clear_bit(__LINK_STATE_START, &dev->state); 930 } 931 932 /* 933 * If it went open OK then: 934 */ 935 936 if (!ret) { 937 /* 938 * Set the flags. 939 */ 940 dev->flags |= IFF_UP; 941 942 /* 943 * Initialize multicasting status 944 */ 945 dev_mc_upload(dev); 946 947 /* 948 * Wakeup transmit queue engine 949 */ 950 dev_activate(dev); 951 952 /* 953 * ... and announce new interface. 954 */ 955 raw_notifier_call_chain(&netdev_chain, NETDEV_UP, dev); 956 } 957 return ret; 958 } 959 960 /** 961 * dev_close - shutdown an interface. 962 * @dev: device to shutdown 963 * 964 * This function moves an active device into down state. A 965 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 966 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 967 * chain. 968 */ 969 int dev_close(struct net_device *dev) 970 { 971 if (!(dev->flags & IFF_UP)) 972 return 0; 973 974 /* 975 * Tell people we are going down, so that they can 976 * prepare to death, when device is still operating. 977 */ 978 raw_notifier_call_chain(&netdev_chain, NETDEV_GOING_DOWN, dev); 979 980 dev_deactivate(dev); 981 982 clear_bit(__LINK_STATE_START, &dev->state); 983 984 /* Synchronize to scheduled poll. We cannot touch poll list, 985 * it can be even on different cpu. So just clear netif_running(), 986 * and wait when poll really will happen. Actually, the best place 987 * for this is inside dev->stop() after device stopped its irq 988 * engine, but this requires more changes in devices. */ 989 990 smp_mb__after_clear_bit(); /* Commit netif_running(). */ 991 while (test_bit(__LINK_STATE_RX_SCHED, &dev->state)) { 992 /* No hurry. */ 993 msleep(1); 994 } 995 996 /* 997 * Call the device specific close. This cannot fail. 998 * Only if device is UP 999 * 1000 * We allow it to be called even after a DETACH hot-plug 1001 * event. 1002 */ 1003 if (dev->stop) 1004 dev->stop(dev); 1005 1006 /* 1007 * Device is now down. 1008 */ 1009 1010 dev->flags &= ~IFF_UP; 1011 1012 /* 1013 * Tell people we are down 1014 */ 1015 raw_notifier_call_chain(&netdev_chain, NETDEV_DOWN, dev); 1016 1017 return 0; 1018 } 1019 1020 1021 /* 1022 * Device change register/unregister. These are not inline or static 1023 * as we export them to the world. 1024 */ 1025 1026 /** 1027 * register_netdevice_notifier - register a network notifier block 1028 * @nb: notifier 1029 * 1030 * Register a notifier to be called when network device events occur. 1031 * The notifier passed is linked into the kernel structures and must 1032 * not be reused until it has been unregistered. A negative errno code 1033 * is returned on a failure. 1034 * 1035 * When registered all registration and up events are replayed 1036 * to the new notifier to allow device to have a race free 1037 * view of the network device list. 1038 */ 1039 1040 int register_netdevice_notifier(struct notifier_block *nb) 1041 { 1042 struct net_device *dev; 1043 int err; 1044 1045 rtnl_lock(); 1046 err = raw_notifier_chain_register(&netdev_chain, nb); 1047 if (!err) { 1048 for_each_netdev(dev) { 1049 nb->notifier_call(nb, NETDEV_REGISTER, dev); 1050 1051 if (dev->flags & IFF_UP) 1052 nb->notifier_call(nb, NETDEV_UP, dev); 1053 } 1054 } 1055 rtnl_unlock(); 1056 return err; 1057 } 1058 1059 /** 1060 * unregister_netdevice_notifier - unregister a network notifier block 1061 * @nb: notifier 1062 * 1063 * Unregister a notifier previously registered by 1064 * register_netdevice_notifier(). The notifier is unlinked into the 1065 * kernel structures and may then be reused. A negative errno code 1066 * is returned on a failure. 1067 */ 1068 1069 int unregister_netdevice_notifier(struct notifier_block *nb) 1070 { 1071 int err; 1072 1073 rtnl_lock(); 1074 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1075 rtnl_unlock(); 1076 return err; 1077 } 1078 1079 /** 1080 * call_netdevice_notifiers - call all network notifier blocks 1081 * @val: value passed unmodified to notifier function 1082 * @v: pointer passed unmodified to notifier function 1083 * 1084 * Call all network notifier blocks. Parameters and return value 1085 * are as for raw_notifier_call_chain(). 1086 */ 1087 1088 int call_netdevice_notifiers(unsigned long val, void *v) 1089 { 1090 return raw_notifier_call_chain(&netdev_chain, val, v); 1091 } 1092 1093 /* When > 0 there are consumers of rx skb time stamps */ 1094 static atomic_t netstamp_needed = ATOMIC_INIT(0); 1095 1096 void net_enable_timestamp(void) 1097 { 1098 atomic_inc(&netstamp_needed); 1099 } 1100 1101 void net_disable_timestamp(void) 1102 { 1103 atomic_dec(&netstamp_needed); 1104 } 1105 1106 static inline void net_timestamp(struct sk_buff *skb) 1107 { 1108 if (atomic_read(&netstamp_needed)) 1109 __net_timestamp(skb); 1110 else 1111 skb->tstamp.tv64 = 0; 1112 } 1113 1114 /* 1115 * Support routine. Sends outgoing frames to any network 1116 * taps currently in use. 1117 */ 1118 1119 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 1120 { 1121 struct packet_type *ptype; 1122 1123 net_timestamp(skb); 1124 1125 rcu_read_lock(); 1126 list_for_each_entry_rcu(ptype, &ptype_all, list) { 1127 /* Never send packets back to the socket 1128 * they originated from - MvS (miquels@drinkel.ow.org) 1129 */ 1130 if ((ptype->dev == dev || !ptype->dev) && 1131 (ptype->af_packet_priv == NULL || 1132 (struct sock *)ptype->af_packet_priv != skb->sk)) { 1133 struct sk_buff *skb2= skb_clone(skb, GFP_ATOMIC); 1134 if (!skb2) 1135 break; 1136 1137 /* skb->nh should be correctly 1138 set by sender, so that the second statement is 1139 just protection against buggy protocols. 1140 */ 1141 skb_reset_mac_header(skb2); 1142 1143 if (skb_network_header(skb2) < skb2->data || 1144 skb2->network_header > skb2->tail) { 1145 if (net_ratelimit()) 1146 printk(KERN_CRIT "protocol %04x is " 1147 "buggy, dev %s\n", 1148 skb2->protocol, dev->name); 1149 skb_reset_network_header(skb2); 1150 } 1151 1152 skb2->transport_header = skb2->network_header; 1153 skb2->pkt_type = PACKET_OUTGOING; 1154 ptype->func(skb2, skb->dev, ptype, skb->dev); 1155 } 1156 } 1157 rcu_read_unlock(); 1158 } 1159 1160 1161 void __netif_schedule(struct net_device *dev) 1162 { 1163 if (!test_and_set_bit(__LINK_STATE_SCHED, &dev->state)) { 1164 unsigned long flags; 1165 struct softnet_data *sd; 1166 1167 local_irq_save(flags); 1168 sd = &__get_cpu_var(softnet_data); 1169 dev->next_sched = sd->output_queue; 1170 sd->output_queue = dev; 1171 raise_softirq_irqoff(NET_TX_SOFTIRQ); 1172 local_irq_restore(flags); 1173 } 1174 } 1175 EXPORT_SYMBOL(__netif_schedule); 1176 1177 void __netif_rx_schedule(struct net_device *dev) 1178 { 1179 unsigned long flags; 1180 1181 local_irq_save(flags); 1182 dev_hold(dev); 1183 list_add_tail(&dev->poll_list, &__get_cpu_var(softnet_data).poll_list); 1184 if (dev->quota < 0) 1185 dev->quota += dev->weight; 1186 else 1187 dev->quota = dev->weight; 1188 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 1189 local_irq_restore(flags); 1190 } 1191 EXPORT_SYMBOL(__netif_rx_schedule); 1192 1193 void dev_kfree_skb_any(struct sk_buff *skb) 1194 { 1195 if (in_irq() || irqs_disabled()) 1196 dev_kfree_skb_irq(skb); 1197 else 1198 dev_kfree_skb(skb); 1199 } 1200 EXPORT_SYMBOL(dev_kfree_skb_any); 1201 1202 1203 /* Hot-plugging. */ 1204 void netif_device_detach(struct net_device *dev) 1205 { 1206 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 1207 netif_running(dev)) { 1208 netif_stop_queue(dev); 1209 } 1210 } 1211 EXPORT_SYMBOL(netif_device_detach); 1212 1213 void netif_device_attach(struct net_device *dev) 1214 { 1215 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 1216 netif_running(dev)) { 1217 netif_wake_queue(dev); 1218 __netdev_watchdog_up(dev); 1219 } 1220 } 1221 EXPORT_SYMBOL(netif_device_attach); 1222 1223 1224 /* 1225 * Invalidate hardware checksum when packet is to be mangled, and 1226 * complete checksum manually on outgoing path. 1227 */ 1228 int skb_checksum_help(struct sk_buff *skb) 1229 { 1230 __wsum csum; 1231 int ret = 0, offset; 1232 1233 if (skb->ip_summed == CHECKSUM_COMPLETE) 1234 goto out_set_summed; 1235 1236 if (unlikely(skb_shinfo(skb)->gso_size)) { 1237 /* Let GSO fix up the checksum. */ 1238 goto out_set_summed; 1239 } 1240 1241 if (skb_cloned(skb)) { 1242 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 1243 if (ret) 1244 goto out; 1245 } 1246 1247 offset = skb->csum_start - skb_headroom(skb); 1248 BUG_ON(offset > (int)skb->len); 1249 csum = skb_checksum(skb, offset, skb->len-offset, 0); 1250 1251 offset = skb_headlen(skb) - offset; 1252 BUG_ON(offset <= 0); 1253 BUG_ON(skb->csum_offset + 2 > offset); 1254 1255 *(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 1256 csum_fold(csum); 1257 out_set_summed: 1258 skb->ip_summed = CHECKSUM_NONE; 1259 out: 1260 return ret; 1261 } 1262 1263 /** 1264 * skb_gso_segment - Perform segmentation on skb. 1265 * @skb: buffer to segment 1266 * @features: features for the output path (see dev->features) 1267 * 1268 * This function segments the given skb and returns a list of segments. 1269 * 1270 * It may return NULL if the skb requires no segmentation. This is 1271 * only possible when GSO is used for verifying header integrity. 1272 */ 1273 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features) 1274 { 1275 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 1276 struct packet_type *ptype; 1277 __be16 type = skb->protocol; 1278 int err; 1279 1280 BUG_ON(skb_shinfo(skb)->frag_list); 1281 1282 skb_reset_mac_header(skb); 1283 skb->mac_len = skb->network_header - skb->mac_header; 1284 __skb_pull(skb, skb->mac_len); 1285 1286 if (WARN_ON(skb->ip_summed != CHECKSUM_PARTIAL)) { 1287 if (skb_header_cloned(skb) && 1288 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))) 1289 return ERR_PTR(err); 1290 } 1291 1292 rcu_read_lock(); 1293 list_for_each_entry_rcu(ptype, &ptype_base[ntohs(type) & 15], list) { 1294 if (ptype->type == type && !ptype->dev && ptype->gso_segment) { 1295 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) { 1296 err = ptype->gso_send_check(skb); 1297 segs = ERR_PTR(err); 1298 if (err || skb_gso_ok(skb, features)) 1299 break; 1300 __skb_push(skb, (skb->data - 1301 skb_network_header(skb))); 1302 } 1303 segs = ptype->gso_segment(skb, features); 1304 break; 1305 } 1306 } 1307 rcu_read_unlock(); 1308 1309 __skb_push(skb, skb->data - skb_mac_header(skb)); 1310 1311 return segs; 1312 } 1313 1314 EXPORT_SYMBOL(skb_gso_segment); 1315 1316 /* Take action when hardware reception checksum errors are detected. */ 1317 #ifdef CONFIG_BUG 1318 void netdev_rx_csum_fault(struct net_device *dev) 1319 { 1320 if (net_ratelimit()) { 1321 printk(KERN_ERR "%s: hw csum failure.\n", 1322 dev ? dev->name : "<unknown>"); 1323 dump_stack(); 1324 } 1325 } 1326 EXPORT_SYMBOL(netdev_rx_csum_fault); 1327 #endif 1328 1329 /* Actually, we should eliminate this check as soon as we know, that: 1330 * 1. IOMMU is present and allows to map all the memory. 1331 * 2. No high memory really exists on this machine. 1332 */ 1333 1334 static inline int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 1335 { 1336 #ifdef CONFIG_HIGHMEM 1337 int i; 1338 1339 if (dev->features & NETIF_F_HIGHDMA) 1340 return 0; 1341 1342 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1343 if (PageHighMem(skb_shinfo(skb)->frags[i].page)) 1344 return 1; 1345 1346 #endif 1347 return 0; 1348 } 1349 1350 struct dev_gso_cb { 1351 void (*destructor)(struct sk_buff *skb); 1352 }; 1353 1354 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb) 1355 1356 static void dev_gso_skb_destructor(struct sk_buff *skb) 1357 { 1358 struct dev_gso_cb *cb; 1359 1360 do { 1361 struct sk_buff *nskb = skb->next; 1362 1363 skb->next = nskb->next; 1364 nskb->next = NULL; 1365 kfree_skb(nskb); 1366 } while (skb->next); 1367 1368 cb = DEV_GSO_CB(skb); 1369 if (cb->destructor) 1370 cb->destructor(skb); 1371 } 1372 1373 /** 1374 * dev_gso_segment - Perform emulated hardware segmentation on skb. 1375 * @skb: buffer to segment 1376 * 1377 * This function segments the given skb and stores the list of segments 1378 * in skb->next. 1379 */ 1380 static int dev_gso_segment(struct sk_buff *skb) 1381 { 1382 struct net_device *dev = skb->dev; 1383 struct sk_buff *segs; 1384 int features = dev->features & ~(illegal_highdma(dev, skb) ? 1385 NETIF_F_SG : 0); 1386 1387 segs = skb_gso_segment(skb, features); 1388 1389 /* Verifying header integrity only. */ 1390 if (!segs) 1391 return 0; 1392 1393 if (unlikely(IS_ERR(segs))) 1394 return PTR_ERR(segs); 1395 1396 skb->next = segs; 1397 DEV_GSO_CB(skb)->destructor = skb->destructor; 1398 skb->destructor = dev_gso_skb_destructor; 1399 1400 return 0; 1401 } 1402 1403 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev) 1404 { 1405 if (likely(!skb->next)) { 1406 if (!list_empty(&ptype_all)) 1407 dev_queue_xmit_nit(skb, dev); 1408 1409 if (netif_needs_gso(dev, skb)) { 1410 if (unlikely(dev_gso_segment(skb))) 1411 goto out_kfree_skb; 1412 if (skb->next) 1413 goto gso; 1414 } 1415 1416 return dev->hard_start_xmit(skb, dev); 1417 } 1418 1419 gso: 1420 do { 1421 struct sk_buff *nskb = skb->next; 1422 int rc; 1423 1424 skb->next = nskb->next; 1425 nskb->next = NULL; 1426 rc = dev->hard_start_xmit(nskb, dev); 1427 if (unlikely(rc)) { 1428 nskb->next = skb->next; 1429 skb->next = nskb; 1430 return rc; 1431 } 1432 if (unlikely(netif_queue_stopped(dev) && skb->next)) 1433 return NETDEV_TX_BUSY; 1434 } while (skb->next); 1435 1436 skb->destructor = DEV_GSO_CB(skb)->destructor; 1437 1438 out_kfree_skb: 1439 kfree_skb(skb); 1440 return 0; 1441 } 1442 1443 #define HARD_TX_LOCK(dev, cpu) { \ 1444 if ((dev->features & NETIF_F_LLTX) == 0) { \ 1445 netif_tx_lock(dev); \ 1446 } \ 1447 } 1448 1449 #define HARD_TX_UNLOCK(dev) { \ 1450 if ((dev->features & NETIF_F_LLTX) == 0) { \ 1451 netif_tx_unlock(dev); \ 1452 } \ 1453 } 1454 1455 /** 1456 * dev_queue_xmit - transmit a buffer 1457 * @skb: buffer to transmit 1458 * 1459 * Queue a buffer for transmission to a network device. The caller must 1460 * have set the device and priority and built the buffer before calling 1461 * this function. The function can be called from an interrupt. 1462 * 1463 * A negative errno code is returned on a failure. A success does not 1464 * guarantee the frame will be transmitted as it may be dropped due 1465 * to congestion or traffic shaping. 1466 * 1467 * ----------------------------------------------------------------------------------- 1468 * I notice this method can also return errors from the queue disciplines, 1469 * including NET_XMIT_DROP, which is a positive value. So, errors can also 1470 * be positive. 1471 * 1472 * Regardless of the return value, the skb is consumed, so it is currently 1473 * difficult to retry a send to this method. (You can bump the ref count 1474 * before sending to hold a reference for retry if you are careful.) 1475 * 1476 * When calling this method, interrupts MUST be enabled. This is because 1477 * the BH enable code must have IRQs enabled so that it will not deadlock. 1478 * --BLG 1479 */ 1480 1481 int dev_queue_xmit(struct sk_buff *skb) 1482 { 1483 struct net_device *dev = skb->dev; 1484 struct Qdisc *q; 1485 int rc = -ENOMEM; 1486 1487 /* GSO will handle the following emulations directly. */ 1488 if (netif_needs_gso(dev, skb)) 1489 goto gso; 1490 1491 if (skb_shinfo(skb)->frag_list && 1492 !(dev->features & NETIF_F_FRAGLIST) && 1493 __skb_linearize(skb)) 1494 goto out_kfree_skb; 1495 1496 /* Fragmented skb is linearized if device does not support SG, 1497 * or if at least one of fragments is in highmem and device 1498 * does not support DMA from it. 1499 */ 1500 if (skb_shinfo(skb)->nr_frags && 1501 (!(dev->features & NETIF_F_SG) || illegal_highdma(dev, skb)) && 1502 __skb_linearize(skb)) 1503 goto out_kfree_skb; 1504 1505 /* If packet is not checksummed and device does not support 1506 * checksumming for this protocol, complete checksumming here. 1507 */ 1508 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1509 skb_set_transport_header(skb, skb->csum_start - 1510 skb_headroom(skb)); 1511 1512 if (!(dev->features & NETIF_F_GEN_CSUM) && 1513 (!(dev->features & NETIF_F_IP_CSUM) || 1514 skb->protocol != htons(ETH_P_IP))) 1515 if (skb_checksum_help(skb)) 1516 goto out_kfree_skb; 1517 } 1518 1519 gso: 1520 spin_lock_prefetch(&dev->queue_lock); 1521 1522 /* Disable soft irqs for various locks below. Also 1523 * stops preemption for RCU. 1524 */ 1525 rcu_read_lock_bh(); 1526 1527 /* Updates of qdisc are serialized by queue_lock. 1528 * The struct Qdisc which is pointed to by qdisc is now a 1529 * rcu structure - it may be accessed without acquiring 1530 * a lock (but the structure may be stale.) The freeing of the 1531 * qdisc will be deferred until it's known that there are no 1532 * more references to it. 1533 * 1534 * If the qdisc has an enqueue function, we still need to 1535 * hold the queue_lock before calling it, since queue_lock 1536 * also serializes access to the device queue. 1537 */ 1538 1539 q = rcu_dereference(dev->qdisc); 1540 #ifdef CONFIG_NET_CLS_ACT 1541 skb->tc_verd = SET_TC_AT(skb->tc_verd,AT_EGRESS); 1542 #endif 1543 if (q->enqueue) { 1544 /* Grab device queue */ 1545 spin_lock(&dev->queue_lock); 1546 q = dev->qdisc; 1547 if (q->enqueue) { 1548 rc = q->enqueue(skb, q); 1549 qdisc_run(dev); 1550 spin_unlock(&dev->queue_lock); 1551 1552 rc = rc == NET_XMIT_BYPASS ? NET_XMIT_SUCCESS : rc; 1553 goto out; 1554 } 1555 spin_unlock(&dev->queue_lock); 1556 } 1557 1558 /* The device has no queue. Common case for software devices: 1559 loopback, all the sorts of tunnels... 1560 1561 Really, it is unlikely that netif_tx_lock protection is necessary 1562 here. (f.e. loopback and IP tunnels are clean ignoring statistics 1563 counters.) 1564 However, it is possible, that they rely on protection 1565 made by us here. 1566 1567 Check this and shot the lock. It is not prone from deadlocks. 1568 Either shot noqueue qdisc, it is even simpler 8) 1569 */ 1570 if (dev->flags & IFF_UP) { 1571 int cpu = smp_processor_id(); /* ok because BHs are off */ 1572 1573 if (dev->xmit_lock_owner != cpu) { 1574 1575 HARD_TX_LOCK(dev, cpu); 1576 1577 if (!netif_queue_stopped(dev)) { 1578 rc = 0; 1579 if (!dev_hard_start_xmit(skb, dev)) { 1580 HARD_TX_UNLOCK(dev); 1581 goto out; 1582 } 1583 } 1584 HARD_TX_UNLOCK(dev); 1585 if (net_ratelimit()) 1586 printk(KERN_CRIT "Virtual device %s asks to " 1587 "queue packet!\n", dev->name); 1588 } else { 1589 /* Recursion is detected! It is possible, 1590 * unfortunately */ 1591 if (net_ratelimit()) 1592 printk(KERN_CRIT "Dead loop on virtual device " 1593 "%s, fix it urgently!\n", dev->name); 1594 } 1595 } 1596 1597 rc = -ENETDOWN; 1598 rcu_read_unlock_bh(); 1599 1600 out_kfree_skb: 1601 kfree_skb(skb); 1602 return rc; 1603 out: 1604 rcu_read_unlock_bh(); 1605 return rc; 1606 } 1607 1608 1609 /*======================================================================= 1610 Receiver routines 1611 =======================================================================*/ 1612 1613 int netdev_max_backlog __read_mostly = 1000; 1614 int netdev_budget __read_mostly = 300; 1615 int weight_p __read_mostly = 64; /* old backlog weight */ 1616 1617 DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, }; 1618 1619 1620 /** 1621 * netif_rx - post buffer to the network code 1622 * @skb: buffer to post 1623 * 1624 * This function receives a packet from a device driver and queues it for 1625 * the upper (protocol) levels to process. It always succeeds. The buffer 1626 * may be dropped during processing for congestion control or by the 1627 * protocol layers. 1628 * 1629 * return values: 1630 * NET_RX_SUCCESS (no congestion) 1631 * NET_RX_CN_LOW (low congestion) 1632 * NET_RX_CN_MOD (moderate congestion) 1633 * NET_RX_CN_HIGH (high congestion) 1634 * NET_RX_DROP (packet was dropped) 1635 * 1636 */ 1637 1638 int netif_rx(struct sk_buff *skb) 1639 { 1640 struct softnet_data *queue; 1641 unsigned long flags; 1642 1643 /* if netpoll wants it, pretend we never saw it */ 1644 if (netpoll_rx(skb)) 1645 return NET_RX_DROP; 1646 1647 if (!skb->tstamp.tv64) 1648 net_timestamp(skb); 1649 1650 /* 1651 * The code is rearranged so that the path is the most 1652 * short when CPU is congested, but is still operating. 1653 */ 1654 local_irq_save(flags); 1655 queue = &__get_cpu_var(softnet_data); 1656 1657 __get_cpu_var(netdev_rx_stat).total++; 1658 if (queue->input_pkt_queue.qlen <= netdev_max_backlog) { 1659 if (queue->input_pkt_queue.qlen) { 1660 enqueue: 1661 dev_hold(skb->dev); 1662 __skb_queue_tail(&queue->input_pkt_queue, skb); 1663 local_irq_restore(flags); 1664 return NET_RX_SUCCESS; 1665 } 1666 1667 netif_rx_schedule(&queue->backlog_dev); 1668 goto enqueue; 1669 } 1670 1671 __get_cpu_var(netdev_rx_stat).dropped++; 1672 local_irq_restore(flags); 1673 1674 kfree_skb(skb); 1675 return NET_RX_DROP; 1676 } 1677 1678 int netif_rx_ni(struct sk_buff *skb) 1679 { 1680 int err; 1681 1682 preempt_disable(); 1683 err = netif_rx(skb); 1684 if (local_softirq_pending()) 1685 do_softirq(); 1686 preempt_enable(); 1687 1688 return err; 1689 } 1690 1691 EXPORT_SYMBOL(netif_rx_ni); 1692 1693 static inline struct net_device *skb_bond(struct sk_buff *skb) 1694 { 1695 struct net_device *dev = skb->dev; 1696 1697 if (dev->master) { 1698 if (skb_bond_should_drop(skb)) { 1699 kfree_skb(skb); 1700 return NULL; 1701 } 1702 skb->dev = dev->master; 1703 } 1704 1705 return dev; 1706 } 1707 1708 static void net_tx_action(struct softirq_action *h) 1709 { 1710 struct softnet_data *sd = &__get_cpu_var(softnet_data); 1711 1712 if (sd->completion_queue) { 1713 struct sk_buff *clist; 1714 1715 local_irq_disable(); 1716 clist = sd->completion_queue; 1717 sd->completion_queue = NULL; 1718 local_irq_enable(); 1719 1720 while (clist) { 1721 struct sk_buff *skb = clist; 1722 clist = clist->next; 1723 1724 BUG_TRAP(!atomic_read(&skb->users)); 1725 __kfree_skb(skb); 1726 } 1727 } 1728 1729 if (sd->output_queue) { 1730 struct net_device *head; 1731 1732 local_irq_disable(); 1733 head = sd->output_queue; 1734 sd->output_queue = NULL; 1735 local_irq_enable(); 1736 1737 while (head) { 1738 struct net_device *dev = head; 1739 head = head->next_sched; 1740 1741 smp_mb__before_clear_bit(); 1742 clear_bit(__LINK_STATE_SCHED, &dev->state); 1743 1744 if (spin_trylock(&dev->queue_lock)) { 1745 qdisc_run(dev); 1746 spin_unlock(&dev->queue_lock); 1747 } else { 1748 netif_schedule(dev); 1749 } 1750 } 1751 } 1752 } 1753 1754 static inline int deliver_skb(struct sk_buff *skb, 1755 struct packet_type *pt_prev, 1756 struct net_device *orig_dev) 1757 { 1758 atomic_inc(&skb->users); 1759 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 1760 } 1761 1762 #if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE) 1763 /* These hooks defined here for ATM */ 1764 struct net_bridge; 1765 struct net_bridge_fdb_entry *(*br_fdb_get_hook)(struct net_bridge *br, 1766 unsigned char *addr); 1767 void (*br_fdb_put_hook)(struct net_bridge_fdb_entry *ent) __read_mostly; 1768 1769 /* 1770 * If bridge module is loaded call bridging hook. 1771 * returns NULL if packet was consumed. 1772 */ 1773 struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p, 1774 struct sk_buff *skb) __read_mostly; 1775 static inline struct sk_buff *handle_bridge(struct sk_buff *skb, 1776 struct packet_type **pt_prev, int *ret, 1777 struct net_device *orig_dev) 1778 { 1779 struct net_bridge_port *port; 1780 1781 if (skb->pkt_type == PACKET_LOOPBACK || 1782 (port = rcu_dereference(skb->dev->br_port)) == NULL) 1783 return skb; 1784 1785 if (*pt_prev) { 1786 *ret = deliver_skb(skb, *pt_prev, orig_dev); 1787 *pt_prev = NULL; 1788 } 1789 1790 return br_handle_frame_hook(port, skb); 1791 } 1792 #else 1793 #define handle_bridge(skb, pt_prev, ret, orig_dev) (skb) 1794 #endif 1795 1796 #ifdef CONFIG_NET_CLS_ACT 1797 /* TODO: Maybe we should just force sch_ingress to be compiled in 1798 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions 1799 * a compare and 2 stores extra right now if we dont have it on 1800 * but have CONFIG_NET_CLS_ACT 1801 * NOTE: This doesnt stop any functionality; if you dont have 1802 * the ingress scheduler, you just cant add policies on ingress. 1803 * 1804 */ 1805 static int ing_filter(struct sk_buff *skb) 1806 { 1807 struct Qdisc *q; 1808 struct net_device *dev = skb->dev; 1809 int result = TC_ACT_OK; 1810 1811 if (dev->qdisc_ingress) { 1812 __u32 ttl = (__u32) G_TC_RTTL(skb->tc_verd); 1813 if (MAX_RED_LOOP < ttl++) { 1814 printk(KERN_WARNING "Redir loop detected Dropping packet (%d->%d)\n", 1815 skb->iif, skb->dev->ifindex); 1816 return TC_ACT_SHOT; 1817 } 1818 1819 skb->tc_verd = SET_TC_RTTL(skb->tc_verd,ttl); 1820 1821 skb->tc_verd = SET_TC_AT(skb->tc_verd,AT_INGRESS); 1822 1823 spin_lock(&dev->ingress_lock); 1824 if ((q = dev->qdisc_ingress) != NULL) 1825 result = q->enqueue(skb, q); 1826 spin_unlock(&dev->ingress_lock); 1827 1828 } 1829 1830 return result; 1831 } 1832 #endif 1833 1834 int netif_receive_skb(struct sk_buff *skb) 1835 { 1836 struct packet_type *ptype, *pt_prev; 1837 struct net_device *orig_dev; 1838 int ret = NET_RX_DROP; 1839 __be16 type; 1840 1841 /* if we've gotten here through NAPI, check netpoll */ 1842 if (skb->dev->poll && netpoll_rx(skb)) 1843 return NET_RX_DROP; 1844 1845 if (!skb->tstamp.tv64) 1846 net_timestamp(skb); 1847 1848 if (!skb->iif) 1849 skb->iif = skb->dev->ifindex; 1850 1851 orig_dev = skb_bond(skb); 1852 1853 if (!orig_dev) 1854 return NET_RX_DROP; 1855 1856 __get_cpu_var(netdev_rx_stat).total++; 1857 1858 skb_reset_network_header(skb); 1859 skb_reset_transport_header(skb); 1860 skb->mac_len = skb->network_header - skb->mac_header; 1861 1862 pt_prev = NULL; 1863 1864 rcu_read_lock(); 1865 1866 #ifdef CONFIG_NET_CLS_ACT 1867 if (skb->tc_verd & TC_NCLS) { 1868 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd); 1869 goto ncls; 1870 } 1871 #endif 1872 1873 list_for_each_entry_rcu(ptype, &ptype_all, list) { 1874 if (!ptype->dev || ptype->dev == skb->dev) { 1875 if (pt_prev) 1876 ret = deliver_skb(skb, pt_prev, orig_dev); 1877 pt_prev = ptype; 1878 } 1879 } 1880 1881 #ifdef CONFIG_NET_CLS_ACT 1882 if (pt_prev) { 1883 ret = deliver_skb(skb, pt_prev, orig_dev); 1884 pt_prev = NULL; /* noone else should process this after*/ 1885 } else { 1886 skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd); 1887 } 1888 1889 ret = ing_filter(skb); 1890 1891 if (ret == TC_ACT_SHOT || (ret == TC_ACT_STOLEN)) { 1892 kfree_skb(skb); 1893 goto out; 1894 } 1895 1896 skb->tc_verd = 0; 1897 ncls: 1898 #endif 1899 1900 skb = handle_bridge(skb, &pt_prev, &ret, orig_dev); 1901 if (!skb) 1902 goto out; 1903 1904 type = skb->protocol; 1905 list_for_each_entry_rcu(ptype, &ptype_base[ntohs(type)&15], list) { 1906 if (ptype->type == type && 1907 (!ptype->dev || ptype->dev == skb->dev)) { 1908 if (pt_prev) 1909 ret = deliver_skb(skb, pt_prev, orig_dev); 1910 pt_prev = ptype; 1911 } 1912 } 1913 1914 if (pt_prev) { 1915 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 1916 } else { 1917 kfree_skb(skb); 1918 /* Jamal, now you will not able to escape explaining 1919 * me how you were going to use this. :-) 1920 */ 1921 ret = NET_RX_DROP; 1922 } 1923 1924 out: 1925 rcu_read_unlock(); 1926 return ret; 1927 } 1928 1929 static int process_backlog(struct net_device *backlog_dev, int *budget) 1930 { 1931 int work = 0; 1932 int quota = min(backlog_dev->quota, *budget); 1933 struct softnet_data *queue = &__get_cpu_var(softnet_data); 1934 unsigned long start_time = jiffies; 1935 1936 backlog_dev->weight = weight_p; 1937 for (;;) { 1938 struct sk_buff *skb; 1939 struct net_device *dev; 1940 1941 local_irq_disable(); 1942 skb = __skb_dequeue(&queue->input_pkt_queue); 1943 if (!skb) 1944 goto job_done; 1945 local_irq_enable(); 1946 1947 dev = skb->dev; 1948 1949 netif_receive_skb(skb); 1950 1951 dev_put(dev); 1952 1953 work++; 1954 1955 if (work >= quota || jiffies - start_time > 1) 1956 break; 1957 1958 } 1959 1960 backlog_dev->quota -= work; 1961 *budget -= work; 1962 return -1; 1963 1964 job_done: 1965 backlog_dev->quota -= work; 1966 *budget -= work; 1967 1968 list_del(&backlog_dev->poll_list); 1969 smp_mb__before_clear_bit(); 1970 netif_poll_enable(backlog_dev); 1971 1972 local_irq_enable(); 1973 return 0; 1974 } 1975 1976 static void net_rx_action(struct softirq_action *h) 1977 { 1978 struct softnet_data *queue = &__get_cpu_var(softnet_data); 1979 unsigned long start_time = jiffies; 1980 int budget = netdev_budget; 1981 void *have; 1982 1983 local_irq_disable(); 1984 1985 while (!list_empty(&queue->poll_list)) { 1986 struct net_device *dev; 1987 1988 if (budget <= 0 || jiffies - start_time > 1) 1989 goto softnet_break; 1990 1991 local_irq_enable(); 1992 1993 dev = list_entry(queue->poll_list.next, 1994 struct net_device, poll_list); 1995 have = netpoll_poll_lock(dev); 1996 1997 if (dev->quota <= 0 || dev->poll(dev, &budget)) { 1998 netpoll_poll_unlock(have); 1999 local_irq_disable(); 2000 list_move_tail(&dev->poll_list, &queue->poll_list); 2001 if (dev->quota < 0) 2002 dev->quota += dev->weight; 2003 else 2004 dev->quota = dev->weight; 2005 } else { 2006 netpoll_poll_unlock(have); 2007 dev_put(dev); 2008 local_irq_disable(); 2009 } 2010 } 2011 out: 2012 local_irq_enable(); 2013 #ifdef CONFIG_NET_DMA 2014 /* 2015 * There may not be any more sk_buffs coming right now, so push 2016 * any pending DMA copies to hardware 2017 */ 2018 if (net_dma_client) { 2019 struct dma_chan *chan; 2020 rcu_read_lock(); 2021 list_for_each_entry_rcu(chan, &net_dma_client->channels, client_node) 2022 dma_async_memcpy_issue_pending(chan); 2023 rcu_read_unlock(); 2024 } 2025 #endif 2026 return; 2027 2028 softnet_break: 2029 __get_cpu_var(netdev_rx_stat).time_squeeze++; 2030 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 2031 goto out; 2032 } 2033 2034 static gifconf_func_t * gifconf_list [NPROTO]; 2035 2036 /** 2037 * register_gifconf - register a SIOCGIF handler 2038 * @family: Address family 2039 * @gifconf: Function handler 2040 * 2041 * Register protocol dependent address dumping routines. The handler 2042 * that is passed must not be freed or reused until it has been replaced 2043 * by another handler. 2044 */ 2045 int register_gifconf(unsigned int family, gifconf_func_t * gifconf) 2046 { 2047 if (family >= NPROTO) 2048 return -EINVAL; 2049 gifconf_list[family] = gifconf; 2050 return 0; 2051 } 2052 2053 2054 /* 2055 * Map an interface index to its name (SIOCGIFNAME) 2056 */ 2057 2058 /* 2059 * We need this ioctl for efficient implementation of the 2060 * if_indextoname() function required by the IPv6 API. Without 2061 * it, we would have to search all the interfaces to find a 2062 * match. --pb 2063 */ 2064 2065 static int dev_ifname(struct ifreq __user *arg) 2066 { 2067 struct net_device *dev; 2068 struct ifreq ifr; 2069 2070 /* 2071 * Fetch the caller's info block. 2072 */ 2073 2074 if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) 2075 return -EFAULT; 2076 2077 read_lock(&dev_base_lock); 2078 dev = __dev_get_by_index(ifr.ifr_ifindex); 2079 if (!dev) { 2080 read_unlock(&dev_base_lock); 2081 return -ENODEV; 2082 } 2083 2084 strcpy(ifr.ifr_name, dev->name); 2085 read_unlock(&dev_base_lock); 2086 2087 if (copy_to_user(arg, &ifr, sizeof(struct ifreq))) 2088 return -EFAULT; 2089 return 0; 2090 } 2091 2092 /* 2093 * Perform a SIOCGIFCONF call. This structure will change 2094 * size eventually, and there is nothing I can do about it. 2095 * Thus we will need a 'compatibility mode'. 2096 */ 2097 2098 static int dev_ifconf(char __user *arg) 2099 { 2100 struct ifconf ifc; 2101 struct net_device *dev; 2102 char __user *pos; 2103 int len; 2104 int total; 2105 int i; 2106 2107 /* 2108 * Fetch the caller's info block. 2109 */ 2110 2111 if (copy_from_user(&ifc, arg, sizeof(struct ifconf))) 2112 return -EFAULT; 2113 2114 pos = ifc.ifc_buf; 2115 len = ifc.ifc_len; 2116 2117 /* 2118 * Loop over the interfaces, and write an info block for each. 2119 */ 2120 2121 total = 0; 2122 for_each_netdev(dev) { 2123 for (i = 0; i < NPROTO; i++) { 2124 if (gifconf_list[i]) { 2125 int done; 2126 if (!pos) 2127 done = gifconf_list[i](dev, NULL, 0); 2128 else 2129 done = gifconf_list[i](dev, pos + total, 2130 len - total); 2131 if (done < 0) 2132 return -EFAULT; 2133 total += done; 2134 } 2135 } 2136 } 2137 2138 /* 2139 * All done. Write the updated control block back to the caller. 2140 */ 2141 ifc.ifc_len = total; 2142 2143 /* 2144 * Both BSD and Solaris return 0 here, so we do too. 2145 */ 2146 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0; 2147 } 2148 2149 #ifdef CONFIG_PROC_FS 2150 /* 2151 * This is invoked by the /proc filesystem handler to display a device 2152 * in detail. 2153 */ 2154 void *dev_seq_start(struct seq_file *seq, loff_t *pos) 2155 { 2156 loff_t off; 2157 struct net_device *dev; 2158 2159 read_lock(&dev_base_lock); 2160 if (!*pos) 2161 return SEQ_START_TOKEN; 2162 2163 off = 1; 2164 for_each_netdev(dev) 2165 if (off++ == *pos) 2166 return dev; 2167 2168 return NULL; 2169 } 2170 2171 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2172 { 2173 ++*pos; 2174 return v == SEQ_START_TOKEN ? 2175 first_net_device() : next_net_device((struct net_device *)v); 2176 } 2177 2178 void dev_seq_stop(struct seq_file *seq, void *v) 2179 { 2180 read_unlock(&dev_base_lock); 2181 } 2182 2183 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev) 2184 { 2185 struct net_device_stats *stats = dev->get_stats(dev); 2186 2187 seq_printf(seq, "%6s:%8lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu " 2188 "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n", 2189 dev->name, stats->rx_bytes, stats->rx_packets, 2190 stats->rx_errors, 2191 stats->rx_dropped + stats->rx_missed_errors, 2192 stats->rx_fifo_errors, 2193 stats->rx_length_errors + stats->rx_over_errors + 2194 stats->rx_crc_errors + stats->rx_frame_errors, 2195 stats->rx_compressed, stats->multicast, 2196 stats->tx_bytes, stats->tx_packets, 2197 stats->tx_errors, stats->tx_dropped, 2198 stats->tx_fifo_errors, stats->collisions, 2199 stats->tx_carrier_errors + 2200 stats->tx_aborted_errors + 2201 stats->tx_window_errors + 2202 stats->tx_heartbeat_errors, 2203 stats->tx_compressed); 2204 } 2205 2206 /* 2207 * Called from the PROCfs module. This now uses the new arbitrary sized 2208 * /proc/net interface to create /proc/net/dev 2209 */ 2210 static int dev_seq_show(struct seq_file *seq, void *v) 2211 { 2212 if (v == SEQ_START_TOKEN) 2213 seq_puts(seq, "Inter-| Receive " 2214 " | Transmit\n" 2215 " face |bytes packets errs drop fifo frame " 2216 "compressed multicast|bytes packets errs " 2217 "drop fifo colls carrier compressed\n"); 2218 else 2219 dev_seq_printf_stats(seq, v); 2220 return 0; 2221 } 2222 2223 static struct netif_rx_stats *softnet_get_online(loff_t *pos) 2224 { 2225 struct netif_rx_stats *rc = NULL; 2226 2227 while (*pos < NR_CPUS) 2228 if (cpu_online(*pos)) { 2229 rc = &per_cpu(netdev_rx_stat, *pos); 2230 break; 2231 } else 2232 ++*pos; 2233 return rc; 2234 } 2235 2236 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos) 2237 { 2238 return softnet_get_online(pos); 2239 } 2240 2241 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2242 { 2243 ++*pos; 2244 return softnet_get_online(pos); 2245 } 2246 2247 static void softnet_seq_stop(struct seq_file *seq, void *v) 2248 { 2249 } 2250 2251 static int softnet_seq_show(struct seq_file *seq, void *v) 2252 { 2253 struct netif_rx_stats *s = v; 2254 2255 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x\n", 2256 s->total, s->dropped, s->time_squeeze, 0, 2257 0, 0, 0, 0, /* was fastroute */ 2258 s->cpu_collision ); 2259 return 0; 2260 } 2261 2262 static const struct seq_operations dev_seq_ops = { 2263 .start = dev_seq_start, 2264 .next = dev_seq_next, 2265 .stop = dev_seq_stop, 2266 .show = dev_seq_show, 2267 }; 2268 2269 static int dev_seq_open(struct inode *inode, struct file *file) 2270 { 2271 return seq_open(file, &dev_seq_ops); 2272 } 2273 2274 static const struct file_operations dev_seq_fops = { 2275 .owner = THIS_MODULE, 2276 .open = dev_seq_open, 2277 .read = seq_read, 2278 .llseek = seq_lseek, 2279 .release = seq_release, 2280 }; 2281 2282 static const struct seq_operations softnet_seq_ops = { 2283 .start = softnet_seq_start, 2284 .next = softnet_seq_next, 2285 .stop = softnet_seq_stop, 2286 .show = softnet_seq_show, 2287 }; 2288 2289 static int softnet_seq_open(struct inode *inode, struct file *file) 2290 { 2291 return seq_open(file, &softnet_seq_ops); 2292 } 2293 2294 static const struct file_operations softnet_seq_fops = { 2295 .owner = THIS_MODULE, 2296 .open = softnet_seq_open, 2297 .read = seq_read, 2298 .llseek = seq_lseek, 2299 .release = seq_release, 2300 }; 2301 2302 static void *ptype_get_idx(loff_t pos) 2303 { 2304 struct packet_type *pt = NULL; 2305 loff_t i = 0; 2306 int t; 2307 2308 list_for_each_entry_rcu(pt, &ptype_all, list) { 2309 if (i == pos) 2310 return pt; 2311 ++i; 2312 } 2313 2314 for (t = 0; t < 16; t++) { 2315 list_for_each_entry_rcu(pt, &ptype_base[t], list) { 2316 if (i == pos) 2317 return pt; 2318 ++i; 2319 } 2320 } 2321 return NULL; 2322 } 2323 2324 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos) 2325 { 2326 rcu_read_lock(); 2327 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN; 2328 } 2329 2330 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2331 { 2332 struct packet_type *pt; 2333 struct list_head *nxt; 2334 int hash; 2335 2336 ++*pos; 2337 if (v == SEQ_START_TOKEN) 2338 return ptype_get_idx(0); 2339 2340 pt = v; 2341 nxt = pt->list.next; 2342 if (pt->type == htons(ETH_P_ALL)) { 2343 if (nxt != &ptype_all) 2344 goto found; 2345 hash = 0; 2346 nxt = ptype_base[0].next; 2347 } else 2348 hash = ntohs(pt->type) & 15; 2349 2350 while (nxt == &ptype_base[hash]) { 2351 if (++hash >= 16) 2352 return NULL; 2353 nxt = ptype_base[hash].next; 2354 } 2355 found: 2356 return list_entry(nxt, struct packet_type, list); 2357 } 2358 2359 static void ptype_seq_stop(struct seq_file *seq, void *v) 2360 { 2361 rcu_read_unlock(); 2362 } 2363 2364 static void ptype_seq_decode(struct seq_file *seq, void *sym) 2365 { 2366 #ifdef CONFIG_KALLSYMS 2367 unsigned long offset = 0, symsize; 2368 const char *symname; 2369 char *modname; 2370 char namebuf[128]; 2371 2372 symname = kallsyms_lookup((unsigned long)sym, &symsize, &offset, 2373 &modname, namebuf); 2374 2375 if (symname) { 2376 char *delim = ":"; 2377 2378 if (!modname) 2379 modname = delim = ""; 2380 seq_printf(seq, "%s%s%s%s+0x%lx", delim, modname, delim, 2381 symname, offset); 2382 return; 2383 } 2384 #endif 2385 2386 seq_printf(seq, "[%p]", sym); 2387 } 2388 2389 static int ptype_seq_show(struct seq_file *seq, void *v) 2390 { 2391 struct packet_type *pt = v; 2392 2393 if (v == SEQ_START_TOKEN) 2394 seq_puts(seq, "Type Device Function\n"); 2395 else { 2396 if (pt->type == htons(ETH_P_ALL)) 2397 seq_puts(seq, "ALL "); 2398 else 2399 seq_printf(seq, "%04x", ntohs(pt->type)); 2400 2401 seq_printf(seq, " %-8s ", 2402 pt->dev ? pt->dev->name : ""); 2403 ptype_seq_decode(seq, pt->func); 2404 seq_putc(seq, '\n'); 2405 } 2406 2407 return 0; 2408 } 2409 2410 static const struct seq_operations ptype_seq_ops = { 2411 .start = ptype_seq_start, 2412 .next = ptype_seq_next, 2413 .stop = ptype_seq_stop, 2414 .show = ptype_seq_show, 2415 }; 2416 2417 static int ptype_seq_open(struct inode *inode, struct file *file) 2418 { 2419 return seq_open(file, &ptype_seq_ops); 2420 } 2421 2422 static const struct file_operations ptype_seq_fops = { 2423 .owner = THIS_MODULE, 2424 .open = ptype_seq_open, 2425 .read = seq_read, 2426 .llseek = seq_lseek, 2427 .release = seq_release, 2428 }; 2429 2430 2431 static int __init dev_proc_init(void) 2432 { 2433 int rc = -ENOMEM; 2434 2435 if (!proc_net_fops_create("dev", S_IRUGO, &dev_seq_fops)) 2436 goto out; 2437 if (!proc_net_fops_create("softnet_stat", S_IRUGO, &softnet_seq_fops)) 2438 goto out_dev; 2439 if (!proc_net_fops_create("ptype", S_IRUGO, &ptype_seq_fops)) 2440 goto out_dev2; 2441 2442 if (wext_proc_init()) 2443 goto out_softnet; 2444 rc = 0; 2445 out: 2446 return rc; 2447 out_softnet: 2448 proc_net_remove("ptype"); 2449 out_dev2: 2450 proc_net_remove("softnet_stat"); 2451 out_dev: 2452 proc_net_remove("dev"); 2453 goto out; 2454 } 2455 #else 2456 #define dev_proc_init() 0 2457 #endif /* CONFIG_PROC_FS */ 2458 2459 2460 /** 2461 * netdev_set_master - set up master/slave pair 2462 * @slave: slave device 2463 * @master: new master device 2464 * 2465 * Changes the master device of the slave. Pass %NULL to break the 2466 * bonding. The caller must hold the RTNL semaphore. On a failure 2467 * a negative errno code is returned. On success the reference counts 2468 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the 2469 * function returns zero. 2470 */ 2471 int netdev_set_master(struct net_device *slave, struct net_device *master) 2472 { 2473 struct net_device *old = slave->master; 2474 2475 ASSERT_RTNL(); 2476 2477 if (master) { 2478 if (old) 2479 return -EBUSY; 2480 dev_hold(master); 2481 } 2482 2483 slave->master = master; 2484 2485 synchronize_net(); 2486 2487 if (old) 2488 dev_put(old); 2489 2490 if (master) 2491 slave->flags |= IFF_SLAVE; 2492 else 2493 slave->flags &= ~IFF_SLAVE; 2494 2495 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE); 2496 return 0; 2497 } 2498 2499 /** 2500 * dev_set_promiscuity - update promiscuity count on a device 2501 * @dev: device 2502 * @inc: modifier 2503 * 2504 * Add or remove promiscuity from a device. While the count in the device 2505 * remains above zero the interface remains promiscuous. Once it hits zero 2506 * the device reverts back to normal filtering operation. A negative inc 2507 * value is used to drop promiscuity on the device. 2508 */ 2509 void dev_set_promiscuity(struct net_device *dev, int inc) 2510 { 2511 unsigned short old_flags = dev->flags; 2512 2513 if ((dev->promiscuity += inc) == 0) 2514 dev->flags &= ~IFF_PROMISC; 2515 else 2516 dev->flags |= IFF_PROMISC; 2517 if (dev->flags != old_flags) { 2518 dev_mc_upload(dev); 2519 printk(KERN_INFO "device %s %s promiscuous mode\n", 2520 dev->name, (dev->flags & IFF_PROMISC) ? "entered" : 2521 "left"); 2522 audit_log(current->audit_context, GFP_ATOMIC, 2523 AUDIT_ANOM_PROMISCUOUS, 2524 "dev=%s prom=%d old_prom=%d auid=%u", 2525 dev->name, (dev->flags & IFF_PROMISC), 2526 (old_flags & IFF_PROMISC), 2527 audit_get_loginuid(current->audit_context)); 2528 } 2529 } 2530 2531 /** 2532 * dev_set_allmulti - update allmulti count on a device 2533 * @dev: device 2534 * @inc: modifier 2535 * 2536 * Add or remove reception of all multicast frames to a device. While the 2537 * count in the device remains above zero the interface remains listening 2538 * to all interfaces. Once it hits zero the device reverts back to normal 2539 * filtering operation. A negative @inc value is used to drop the counter 2540 * when releasing a resource needing all multicasts. 2541 */ 2542 2543 void dev_set_allmulti(struct net_device *dev, int inc) 2544 { 2545 unsigned short old_flags = dev->flags; 2546 2547 dev->flags |= IFF_ALLMULTI; 2548 if ((dev->allmulti += inc) == 0) 2549 dev->flags &= ~IFF_ALLMULTI; 2550 if (dev->flags ^ old_flags) 2551 dev_mc_upload(dev); 2552 } 2553 2554 unsigned dev_get_flags(const struct net_device *dev) 2555 { 2556 unsigned flags; 2557 2558 flags = (dev->flags & ~(IFF_PROMISC | 2559 IFF_ALLMULTI | 2560 IFF_RUNNING | 2561 IFF_LOWER_UP | 2562 IFF_DORMANT)) | 2563 (dev->gflags & (IFF_PROMISC | 2564 IFF_ALLMULTI)); 2565 2566 if (netif_running(dev)) { 2567 if (netif_oper_up(dev)) 2568 flags |= IFF_RUNNING; 2569 if (netif_carrier_ok(dev)) 2570 flags |= IFF_LOWER_UP; 2571 if (netif_dormant(dev)) 2572 flags |= IFF_DORMANT; 2573 } 2574 2575 return flags; 2576 } 2577 2578 int dev_change_flags(struct net_device *dev, unsigned flags) 2579 { 2580 int ret, changes; 2581 int old_flags = dev->flags; 2582 2583 /* 2584 * Set the flags on our device. 2585 */ 2586 2587 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 2588 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 2589 IFF_AUTOMEDIA)) | 2590 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 2591 IFF_ALLMULTI)); 2592 2593 /* 2594 * Load in the correct multicast list now the flags have changed. 2595 */ 2596 2597 dev_mc_upload(dev); 2598 2599 /* 2600 * Have we downed the interface. We handle IFF_UP ourselves 2601 * according to user attempts to set it, rather than blindly 2602 * setting it. 2603 */ 2604 2605 ret = 0; 2606 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */ 2607 ret = ((old_flags & IFF_UP) ? dev_close : dev_open)(dev); 2608 2609 if (!ret) 2610 dev_mc_upload(dev); 2611 } 2612 2613 if (dev->flags & IFF_UP && 2614 ((old_flags ^ dev->flags) &~ (IFF_UP | IFF_PROMISC | IFF_ALLMULTI | 2615 IFF_VOLATILE))) 2616 raw_notifier_call_chain(&netdev_chain, 2617 NETDEV_CHANGE, dev); 2618 2619 if ((flags ^ dev->gflags) & IFF_PROMISC) { 2620 int inc = (flags & IFF_PROMISC) ? +1 : -1; 2621 dev->gflags ^= IFF_PROMISC; 2622 dev_set_promiscuity(dev, inc); 2623 } 2624 2625 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 2626 is important. Some (broken) drivers set IFF_PROMISC, when 2627 IFF_ALLMULTI is requested not asking us and not reporting. 2628 */ 2629 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 2630 int inc = (flags & IFF_ALLMULTI) ? +1 : -1; 2631 dev->gflags ^= IFF_ALLMULTI; 2632 dev_set_allmulti(dev, inc); 2633 } 2634 2635 /* Exclude state transition flags, already notified */ 2636 changes = (old_flags ^ dev->flags) & ~(IFF_UP | IFF_RUNNING); 2637 if (changes) 2638 rtmsg_ifinfo(RTM_NEWLINK, dev, changes); 2639 2640 return ret; 2641 } 2642 2643 int dev_set_mtu(struct net_device *dev, int new_mtu) 2644 { 2645 int err; 2646 2647 if (new_mtu == dev->mtu) 2648 return 0; 2649 2650 /* MTU must be positive. */ 2651 if (new_mtu < 0) 2652 return -EINVAL; 2653 2654 if (!netif_device_present(dev)) 2655 return -ENODEV; 2656 2657 err = 0; 2658 if (dev->change_mtu) 2659 err = dev->change_mtu(dev, new_mtu); 2660 else 2661 dev->mtu = new_mtu; 2662 if (!err && dev->flags & IFF_UP) 2663 raw_notifier_call_chain(&netdev_chain, 2664 NETDEV_CHANGEMTU, dev); 2665 return err; 2666 } 2667 2668 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa) 2669 { 2670 int err; 2671 2672 if (!dev->set_mac_address) 2673 return -EOPNOTSUPP; 2674 if (sa->sa_family != dev->type) 2675 return -EINVAL; 2676 if (!netif_device_present(dev)) 2677 return -ENODEV; 2678 err = dev->set_mac_address(dev, sa); 2679 if (!err) 2680 raw_notifier_call_chain(&netdev_chain, 2681 NETDEV_CHANGEADDR, dev); 2682 return err; 2683 } 2684 2685 /* 2686 * Perform the SIOCxIFxxx calls. 2687 */ 2688 static int dev_ifsioc(struct ifreq *ifr, unsigned int cmd) 2689 { 2690 int err; 2691 struct net_device *dev = __dev_get_by_name(ifr->ifr_name); 2692 2693 if (!dev) 2694 return -ENODEV; 2695 2696 switch (cmd) { 2697 case SIOCGIFFLAGS: /* Get interface flags */ 2698 ifr->ifr_flags = dev_get_flags(dev); 2699 return 0; 2700 2701 case SIOCSIFFLAGS: /* Set interface flags */ 2702 return dev_change_flags(dev, ifr->ifr_flags); 2703 2704 case SIOCGIFMETRIC: /* Get the metric on the interface 2705 (currently unused) */ 2706 ifr->ifr_metric = 0; 2707 return 0; 2708 2709 case SIOCSIFMETRIC: /* Set the metric on the interface 2710 (currently unused) */ 2711 return -EOPNOTSUPP; 2712 2713 case SIOCGIFMTU: /* Get the MTU of a device */ 2714 ifr->ifr_mtu = dev->mtu; 2715 return 0; 2716 2717 case SIOCSIFMTU: /* Set the MTU of a device */ 2718 return dev_set_mtu(dev, ifr->ifr_mtu); 2719 2720 case SIOCGIFHWADDR: 2721 if (!dev->addr_len) 2722 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data); 2723 else 2724 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr, 2725 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len)); 2726 ifr->ifr_hwaddr.sa_family = dev->type; 2727 return 0; 2728 2729 case SIOCSIFHWADDR: 2730 return dev_set_mac_address(dev, &ifr->ifr_hwaddr); 2731 2732 case SIOCSIFHWBROADCAST: 2733 if (ifr->ifr_hwaddr.sa_family != dev->type) 2734 return -EINVAL; 2735 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data, 2736 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len)); 2737 raw_notifier_call_chain(&netdev_chain, 2738 NETDEV_CHANGEADDR, dev); 2739 return 0; 2740 2741 case SIOCGIFMAP: 2742 ifr->ifr_map.mem_start = dev->mem_start; 2743 ifr->ifr_map.mem_end = dev->mem_end; 2744 ifr->ifr_map.base_addr = dev->base_addr; 2745 ifr->ifr_map.irq = dev->irq; 2746 ifr->ifr_map.dma = dev->dma; 2747 ifr->ifr_map.port = dev->if_port; 2748 return 0; 2749 2750 case SIOCSIFMAP: 2751 if (dev->set_config) { 2752 if (!netif_device_present(dev)) 2753 return -ENODEV; 2754 return dev->set_config(dev, &ifr->ifr_map); 2755 } 2756 return -EOPNOTSUPP; 2757 2758 case SIOCADDMULTI: 2759 if (!dev->set_multicast_list || 2760 ifr->ifr_hwaddr.sa_family != AF_UNSPEC) 2761 return -EINVAL; 2762 if (!netif_device_present(dev)) 2763 return -ENODEV; 2764 return dev_mc_add(dev, ifr->ifr_hwaddr.sa_data, 2765 dev->addr_len, 1); 2766 2767 case SIOCDELMULTI: 2768 if (!dev->set_multicast_list || 2769 ifr->ifr_hwaddr.sa_family != AF_UNSPEC) 2770 return -EINVAL; 2771 if (!netif_device_present(dev)) 2772 return -ENODEV; 2773 return dev_mc_delete(dev, ifr->ifr_hwaddr.sa_data, 2774 dev->addr_len, 1); 2775 2776 case SIOCGIFINDEX: 2777 ifr->ifr_ifindex = dev->ifindex; 2778 return 0; 2779 2780 case SIOCGIFTXQLEN: 2781 ifr->ifr_qlen = dev->tx_queue_len; 2782 return 0; 2783 2784 case SIOCSIFTXQLEN: 2785 if (ifr->ifr_qlen < 0) 2786 return -EINVAL; 2787 dev->tx_queue_len = ifr->ifr_qlen; 2788 return 0; 2789 2790 case SIOCSIFNAME: 2791 ifr->ifr_newname[IFNAMSIZ-1] = '\0'; 2792 return dev_change_name(dev, ifr->ifr_newname); 2793 2794 /* 2795 * Unknown or private ioctl 2796 */ 2797 2798 default: 2799 if ((cmd >= SIOCDEVPRIVATE && 2800 cmd <= SIOCDEVPRIVATE + 15) || 2801 cmd == SIOCBONDENSLAVE || 2802 cmd == SIOCBONDRELEASE || 2803 cmd == SIOCBONDSETHWADDR || 2804 cmd == SIOCBONDSLAVEINFOQUERY || 2805 cmd == SIOCBONDINFOQUERY || 2806 cmd == SIOCBONDCHANGEACTIVE || 2807 cmd == SIOCGMIIPHY || 2808 cmd == SIOCGMIIREG || 2809 cmd == SIOCSMIIREG || 2810 cmd == SIOCBRADDIF || 2811 cmd == SIOCBRDELIF || 2812 cmd == SIOCWANDEV) { 2813 err = -EOPNOTSUPP; 2814 if (dev->do_ioctl) { 2815 if (netif_device_present(dev)) 2816 err = dev->do_ioctl(dev, ifr, 2817 cmd); 2818 else 2819 err = -ENODEV; 2820 } 2821 } else 2822 err = -EINVAL; 2823 2824 } 2825 return err; 2826 } 2827 2828 /* 2829 * This function handles all "interface"-type I/O control requests. The actual 2830 * 'doing' part of this is dev_ifsioc above. 2831 */ 2832 2833 /** 2834 * dev_ioctl - network device ioctl 2835 * @cmd: command to issue 2836 * @arg: pointer to a struct ifreq in user space 2837 * 2838 * Issue ioctl functions to devices. This is normally called by the 2839 * user space syscall interfaces but can sometimes be useful for 2840 * other purposes. The return value is the return from the syscall if 2841 * positive or a negative errno code on error. 2842 */ 2843 2844 int dev_ioctl(unsigned int cmd, void __user *arg) 2845 { 2846 struct ifreq ifr; 2847 int ret; 2848 char *colon; 2849 2850 /* One special case: SIOCGIFCONF takes ifconf argument 2851 and requires shared lock, because it sleeps writing 2852 to user space. 2853 */ 2854 2855 if (cmd == SIOCGIFCONF) { 2856 rtnl_lock(); 2857 ret = dev_ifconf((char __user *) arg); 2858 rtnl_unlock(); 2859 return ret; 2860 } 2861 if (cmd == SIOCGIFNAME) 2862 return dev_ifname((struct ifreq __user *)arg); 2863 2864 if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) 2865 return -EFAULT; 2866 2867 ifr.ifr_name[IFNAMSIZ-1] = 0; 2868 2869 colon = strchr(ifr.ifr_name, ':'); 2870 if (colon) 2871 *colon = 0; 2872 2873 /* 2874 * See which interface the caller is talking about. 2875 */ 2876 2877 switch (cmd) { 2878 /* 2879 * These ioctl calls: 2880 * - can be done by all. 2881 * - atomic and do not require locking. 2882 * - return a value 2883 */ 2884 case SIOCGIFFLAGS: 2885 case SIOCGIFMETRIC: 2886 case SIOCGIFMTU: 2887 case SIOCGIFHWADDR: 2888 case SIOCGIFSLAVE: 2889 case SIOCGIFMAP: 2890 case SIOCGIFINDEX: 2891 case SIOCGIFTXQLEN: 2892 dev_load(ifr.ifr_name); 2893 read_lock(&dev_base_lock); 2894 ret = dev_ifsioc(&ifr, cmd); 2895 read_unlock(&dev_base_lock); 2896 if (!ret) { 2897 if (colon) 2898 *colon = ':'; 2899 if (copy_to_user(arg, &ifr, 2900 sizeof(struct ifreq))) 2901 ret = -EFAULT; 2902 } 2903 return ret; 2904 2905 case SIOCETHTOOL: 2906 dev_load(ifr.ifr_name); 2907 rtnl_lock(); 2908 ret = dev_ethtool(&ifr); 2909 rtnl_unlock(); 2910 if (!ret) { 2911 if (colon) 2912 *colon = ':'; 2913 if (copy_to_user(arg, &ifr, 2914 sizeof(struct ifreq))) 2915 ret = -EFAULT; 2916 } 2917 return ret; 2918 2919 /* 2920 * These ioctl calls: 2921 * - require superuser power. 2922 * - require strict serialization. 2923 * - return a value 2924 */ 2925 case SIOCGMIIPHY: 2926 case SIOCGMIIREG: 2927 case SIOCSIFNAME: 2928 if (!capable(CAP_NET_ADMIN)) 2929 return -EPERM; 2930 dev_load(ifr.ifr_name); 2931 rtnl_lock(); 2932 ret = dev_ifsioc(&ifr, cmd); 2933 rtnl_unlock(); 2934 if (!ret) { 2935 if (colon) 2936 *colon = ':'; 2937 if (copy_to_user(arg, &ifr, 2938 sizeof(struct ifreq))) 2939 ret = -EFAULT; 2940 } 2941 return ret; 2942 2943 /* 2944 * These ioctl calls: 2945 * - require superuser power. 2946 * - require strict serialization. 2947 * - do not return a value 2948 */ 2949 case SIOCSIFFLAGS: 2950 case SIOCSIFMETRIC: 2951 case SIOCSIFMTU: 2952 case SIOCSIFMAP: 2953 case SIOCSIFHWADDR: 2954 case SIOCSIFSLAVE: 2955 case SIOCADDMULTI: 2956 case SIOCDELMULTI: 2957 case SIOCSIFHWBROADCAST: 2958 case SIOCSIFTXQLEN: 2959 case SIOCSMIIREG: 2960 case SIOCBONDENSLAVE: 2961 case SIOCBONDRELEASE: 2962 case SIOCBONDSETHWADDR: 2963 case SIOCBONDCHANGEACTIVE: 2964 case SIOCBRADDIF: 2965 case SIOCBRDELIF: 2966 if (!capable(CAP_NET_ADMIN)) 2967 return -EPERM; 2968 /* fall through */ 2969 case SIOCBONDSLAVEINFOQUERY: 2970 case SIOCBONDINFOQUERY: 2971 dev_load(ifr.ifr_name); 2972 rtnl_lock(); 2973 ret = dev_ifsioc(&ifr, cmd); 2974 rtnl_unlock(); 2975 return ret; 2976 2977 case SIOCGIFMEM: 2978 /* Get the per device memory space. We can add this but 2979 * currently do not support it */ 2980 case SIOCSIFMEM: 2981 /* Set the per device memory buffer space. 2982 * Not applicable in our case */ 2983 case SIOCSIFLINK: 2984 return -EINVAL; 2985 2986 /* 2987 * Unknown or private ioctl. 2988 */ 2989 default: 2990 if (cmd == SIOCWANDEV || 2991 (cmd >= SIOCDEVPRIVATE && 2992 cmd <= SIOCDEVPRIVATE + 15)) { 2993 dev_load(ifr.ifr_name); 2994 rtnl_lock(); 2995 ret = dev_ifsioc(&ifr, cmd); 2996 rtnl_unlock(); 2997 if (!ret && copy_to_user(arg, &ifr, 2998 sizeof(struct ifreq))) 2999 ret = -EFAULT; 3000 return ret; 3001 } 3002 /* Take care of Wireless Extensions */ 3003 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) 3004 return wext_handle_ioctl(&ifr, cmd, arg); 3005 return -EINVAL; 3006 } 3007 } 3008 3009 3010 /** 3011 * dev_new_index - allocate an ifindex 3012 * 3013 * Returns a suitable unique value for a new device interface 3014 * number. The caller must hold the rtnl semaphore or the 3015 * dev_base_lock to be sure it remains unique. 3016 */ 3017 static int dev_new_index(void) 3018 { 3019 static int ifindex; 3020 for (;;) { 3021 if (++ifindex <= 0) 3022 ifindex = 1; 3023 if (!__dev_get_by_index(ifindex)) 3024 return ifindex; 3025 } 3026 } 3027 3028 static int dev_boot_phase = 1; 3029 3030 /* Delayed registration/unregisteration */ 3031 static DEFINE_SPINLOCK(net_todo_list_lock); 3032 static struct list_head net_todo_list = LIST_HEAD_INIT(net_todo_list); 3033 3034 static void net_set_todo(struct net_device *dev) 3035 { 3036 spin_lock(&net_todo_list_lock); 3037 list_add_tail(&dev->todo_list, &net_todo_list); 3038 spin_unlock(&net_todo_list_lock); 3039 } 3040 3041 /** 3042 * register_netdevice - register a network device 3043 * @dev: device to register 3044 * 3045 * Take a completed network device structure and add it to the kernel 3046 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 3047 * chain. 0 is returned on success. A negative errno code is returned 3048 * on a failure to set up the device, or if the name is a duplicate. 3049 * 3050 * Callers must hold the rtnl semaphore. You may want 3051 * register_netdev() instead of this. 3052 * 3053 * BUGS: 3054 * The locking appears insufficient to guarantee two parallel registers 3055 * will not get the same name. 3056 */ 3057 3058 int register_netdevice(struct net_device *dev) 3059 { 3060 struct hlist_head *head; 3061 struct hlist_node *p; 3062 int ret; 3063 3064 BUG_ON(dev_boot_phase); 3065 ASSERT_RTNL(); 3066 3067 might_sleep(); 3068 3069 /* When net_device's are persistent, this will be fatal. */ 3070 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 3071 3072 spin_lock_init(&dev->queue_lock); 3073 spin_lock_init(&dev->_xmit_lock); 3074 netdev_set_lockdep_class(&dev->_xmit_lock, dev->type); 3075 dev->xmit_lock_owner = -1; 3076 spin_lock_init(&dev->ingress_lock); 3077 3078 dev->iflink = -1; 3079 3080 /* Init, if this function is available */ 3081 if (dev->init) { 3082 ret = dev->init(dev); 3083 if (ret) { 3084 if (ret > 0) 3085 ret = -EIO; 3086 goto out; 3087 } 3088 } 3089 3090 if (!dev_valid_name(dev->name)) { 3091 ret = -EINVAL; 3092 goto out; 3093 } 3094 3095 dev->ifindex = dev_new_index(); 3096 if (dev->iflink == -1) 3097 dev->iflink = dev->ifindex; 3098 3099 /* Check for existence of name */ 3100 head = dev_name_hash(dev->name); 3101 hlist_for_each(p, head) { 3102 struct net_device *d 3103 = hlist_entry(p, struct net_device, name_hlist); 3104 if (!strncmp(d->name, dev->name, IFNAMSIZ)) { 3105 ret = -EEXIST; 3106 goto out; 3107 } 3108 } 3109 3110 /* Fix illegal SG+CSUM combinations. */ 3111 if ((dev->features & NETIF_F_SG) && 3112 !(dev->features & NETIF_F_ALL_CSUM)) { 3113 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no checksum feature.\n", 3114 dev->name); 3115 dev->features &= ~NETIF_F_SG; 3116 } 3117 3118 /* TSO requires that SG is present as well. */ 3119 if ((dev->features & NETIF_F_TSO) && 3120 !(dev->features & NETIF_F_SG)) { 3121 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no SG feature.\n", 3122 dev->name); 3123 dev->features &= ~NETIF_F_TSO; 3124 } 3125 if (dev->features & NETIF_F_UFO) { 3126 if (!(dev->features & NETIF_F_HW_CSUM)) { 3127 printk(KERN_ERR "%s: Dropping NETIF_F_UFO since no " 3128 "NETIF_F_HW_CSUM feature.\n", 3129 dev->name); 3130 dev->features &= ~NETIF_F_UFO; 3131 } 3132 if (!(dev->features & NETIF_F_SG)) { 3133 printk(KERN_ERR "%s: Dropping NETIF_F_UFO since no " 3134 "NETIF_F_SG feature.\n", 3135 dev->name); 3136 dev->features &= ~NETIF_F_UFO; 3137 } 3138 } 3139 3140 /* 3141 * nil rebuild_header routine, 3142 * that should be never called and used as just bug trap. 3143 */ 3144 3145 if (!dev->rebuild_header) 3146 dev->rebuild_header = default_rebuild_header; 3147 3148 ret = netdev_register_sysfs(dev); 3149 if (ret) 3150 goto out; 3151 dev->reg_state = NETREG_REGISTERED; 3152 3153 /* 3154 * Default initial state at registry is that the 3155 * device is present. 3156 */ 3157 3158 set_bit(__LINK_STATE_PRESENT, &dev->state); 3159 3160 dev_init_scheduler(dev); 3161 write_lock_bh(&dev_base_lock); 3162 list_add_tail(&dev->dev_list, &dev_base_head); 3163 hlist_add_head(&dev->name_hlist, head); 3164 hlist_add_head(&dev->index_hlist, dev_index_hash(dev->ifindex)); 3165 dev_hold(dev); 3166 write_unlock_bh(&dev_base_lock); 3167 3168 /* Notify protocols, that a new device appeared. */ 3169 raw_notifier_call_chain(&netdev_chain, NETDEV_REGISTER, dev); 3170 3171 ret = 0; 3172 3173 out: 3174 return ret; 3175 } 3176 3177 /** 3178 * register_netdev - register a network device 3179 * @dev: device to register 3180 * 3181 * Take a completed network device structure and add it to the kernel 3182 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 3183 * chain. 0 is returned on success. A negative errno code is returned 3184 * on a failure to set up the device, or if the name is a duplicate. 3185 * 3186 * This is a wrapper around register_netdevice that takes the rtnl semaphore 3187 * and expands the device name if you passed a format string to 3188 * alloc_netdev. 3189 */ 3190 int register_netdev(struct net_device *dev) 3191 { 3192 int err; 3193 3194 rtnl_lock(); 3195 3196 /* 3197 * If the name is a format string the caller wants us to do a 3198 * name allocation. 3199 */ 3200 if (strchr(dev->name, '%')) { 3201 err = dev_alloc_name(dev, dev->name); 3202 if (err < 0) 3203 goto out; 3204 } 3205 3206 err = register_netdevice(dev); 3207 out: 3208 rtnl_unlock(); 3209 return err; 3210 } 3211 EXPORT_SYMBOL(register_netdev); 3212 3213 /* 3214 * netdev_wait_allrefs - wait until all references are gone. 3215 * 3216 * This is called when unregistering network devices. 3217 * 3218 * Any protocol or device that holds a reference should register 3219 * for netdevice notification, and cleanup and put back the 3220 * reference if they receive an UNREGISTER event. 3221 * We can get stuck here if buggy protocols don't correctly 3222 * call dev_put. 3223 */ 3224 static void netdev_wait_allrefs(struct net_device *dev) 3225 { 3226 unsigned long rebroadcast_time, warning_time; 3227 3228 rebroadcast_time = warning_time = jiffies; 3229 while (atomic_read(&dev->refcnt) != 0) { 3230 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 3231 rtnl_lock(); 3232 3233 /* Rebroadcast unregister notification */ 3234 raw_notifier_call_chain(&netdev_chain, 3235 NETDEV_UNREGISTER, dev); 3236 3237 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 3238 &dev->state)) { 3239 /* We must not have linkwatch events 3240 * pending on unregister. If this 3241 * happens, we simply run the queue 3242 * unscheduled, resulting in a noop 3243 * for this device. 3244 */ 3245 linkwatch_run_queue(); 3246 } 3247 3248 __rtnl_unlock(); 3249 3250 rebroadcast_time = jiffies; 3251 } 3252 3253 msleep(250); 3254 3255 if (time_after(jiffies, warning_time + 10 * HZ)) { 3256 printk(KERN_EMERG "unregister_netdevice: " 3257 "waiting for %s to become free. Usage " 3258 "count = %d\n", 3259 dev->name, atomic_read(&dev->refcnt)); 3260 warning_time = jiffies; 3261 } 3262 } 3263 } 3264 3265 /* The sequence is: 3266 * 3267 * rtnl_lock(); 3268 * ... 3269 * register_netdevice(x1); 3270 * register_netdevice(x2); 3271 * ... 3272 * unregister_netdevice(y1); 3273 * unregister_netdevice(y2); 3274 * ... 3275 * rtnl_unlock(); 3276 * free_netdev(y1); 3277 * free_netdev(y2); 3278 * 3279 * We are invoked by rtnl_unlock() after it drops the semaphore. 3280 * This allows us to deal with problems: 3281 * 1) We can delete sysfs objects which invoke hotplug 3282 * without deadlocking with linkwatch via keventd. 3283 * 2) Since we run with the RTNL semaphore not held, we can sleep 3284 * safely in order to wait for the netdev refcnt to drop to zero. 3285 */ 3286 static DEFINE_MUTEX(net_todo_run_mutex); 3287 void netdev_run_todo(void) 3288 { 3289 struct list_head list; 3290 3291 /* Need to guard against multiple cpu's getting out of order. */ 3292 mutex_lock(&net_todo_run_mutex); 3293 3294 /* Not safe to do outside the semaphore. We must not return 3295 * until all unregister events invoked by the local processor 3296 * have been completed (either by this todo run, or one on 3297 * another cpu). 3298 */ 3299 if (list_empty(&net_todo_list)) 3300 goto out; 3301 3302 /* Snapshot list, allow later requests */ 3303 spin_lock(&net_todo_list_lock); 3304 list_replace_init(&net_todo_list, &list); 3305 spin_unlock(&net_todo_list_lock); 3306 3307 while (!list_empty(&list)) { 3308 struct net_device *dev 3309 = list_entry(list.next, struct net_device, todo_list); 3310 list_del(&dev->todo_list); 3311 3312 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 3313 printk(KERN_ERR "network todo '%s' but state %d\n", 3314 dev->name, dev->reg_state); 3315 dump_stack(); 3316 continue; 3317 } 3318 3319 dev->reg_state = NETREG_UNREGISTERED; 3320 3321 netdev_wait_allrefs(dev); 3322 3323 /* paranoia */ 3324 BUG_ON(atomic_read(&dev->refcnt)); 3325 BUG_TRAP(!dev->ip_ptr); 3326 BUG_TRAP(!dev->ip6_ptr); 3327 BUG_TRAP(!dev->dn_ptr); 3328 3329 if (dev->destructor) 3330 dev->destructor(dev); 3331 3332 /* Free network device */ 3333 kobject_put(&dev->dev.kobj); 3334 } 3335 3336 out: 3337 mutex_unlock(&net_todo_run_mutex); 3338 } 3339 3340 static struct net_device_stats *internal_stats(struct net_device *dev) 3341 { 3342 return &dev->stats; 3343 } 3344 3345 /** 3346 * alloc_netdev - allocate network device 3347 * @sizeof_priv: size of private data to allocate space for 3348 * @name: device name format string 3349 * @setup: callback to initialize device 3350 * 3351 * Allocates a struct net_device with private data area for driver use 3352 * and performs basic initialization. 3353 */ 3354 struct net_device *alloc_netdev(int sizeof_priv, const char *name, 3355 void (*setup)(struct net_device *)) 3356 { 3357 void *p; 3358 struct net_device *dev; 3359 int alloc_size; 3360 3361 BUG_ON(strlen(name) >= sizeof(dev->name)); 3362 3363 /* ensure 32-byte alignment of both the device and private area */ 3364 alloc_size = (sizeof(*dev) + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST; 3365 alloc_size += sizeof_priv + NETDEV_ALIGN_CONST; 3366 3367 p = kzalloc(alloc_size, GFP_KERNEL); 3368 if (!p) { 3369 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n"); 3370 return NULL; 3371 } 3372 3373 dev = (struct net_device *) 3374 (((long)p + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST); 3375 dev->padded = (char *)dev - (char *)p; 3376 3377 if (sizeof_priv) 3378 dev->priv = netdev_priv(dev); 3379 3380 dev->get_stats = internal_stats; 3381 setup(dev); 3382 strcpy(dev->name, name); 3383 return dev; 3384 } 3385 EXPORT_SYMBOL(alloc_netdev); 3386 3387 /** 3388 * free_netdev - free network device 3389 * @dev: device 3390 * 3391 * This function does the last stage of destroying an allocated device 3392 * interface. The reference to the device object is released. 3393 * If this is the last reference then it will be freed. 3394 */ 3395 void free_netdev(struct net_device *dev) 3396 { 3397 #ifdef CONFIG_SYSFS 3398 /* Compatibility with error handling in drivers */ 3399 if (dev->reg_state == NETREG_UNINITIALIZED) { 3400 kfree((char *)dev - dev->padded); 3401 return; 3402 } 3403 3404 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 3405 dev->reg_state = NETREG_RELEASED; 3406 3407 /* will free via device release */ 3408 put_device(&dev->dev); 3409 #else 3410 kfree((char *)dev - dev->padded); 3411 #endif 3412 } 3413 3414 /* Synchronize with packet receive processing. */ 3415 void synchronize_net(void) 3416 { 3417 might_sleep(); 3418 synchronize_rcu(); 3419 } 3420 3421 /** 3422 * unregister_netdevice - remove device from the kernel 3423 * @dev: device 3424 * 3425 * This function shuts down a device interface and removes it 3426 * from the kernel tables. On success 0 is returned, on a failure 3427 * a negative errno code is returned. 3428 * 3429 * Callers must hold the rtnl semaphore. You may want 3430 * unregister_netdev() instead of this. 3431 */ 3432 3433 void unregister_netdevice(struct net_device *dev) 3434 { 3435 BUG_ON(dev_boot_phase); 3436 ASSERT_RTNL(); 3437 3438 /* Some devices call without registering for initialization unwind. */ 3439 if (dev->reg_state == NETREG_UNINITIALIZED) { 3440 printk(KERN_DEBUG "unregister_netdevice: device %s/%p never " 3441 "was registered\n", dev->name, dev); 3442 3443 WARN_ON(1); 3444 return; 3445 } 3446 3447 BUG_ON(dev->reg_state != NETREG_REGISTERED); 3448 3449 /* If device is running, close it first. */ 3450 if (dev->flags & IFF_UP) 3451 dev_close(dev); 3452 3453 /* And unlink it from device chain. */ 3454 write_lock_bh(&dev_base_lock); 3455 list_del(&dev->dev_list); 3456 hlist_del(&dev->name_hlist); 3457 hlist_del(&dev->index_hlist); 3458 write_unlock_bh(&dev_base_lock); 3459 3460 dev->reg_state = NETREG_UNREGISTERING; 3461 3462 synchronize_net(); 3463 3464 /* Shutdown queueing discipline. */ 3465 dev_shutdown(dev); 3466 3467 3468 /* Notify protocols, that we are about to destroy 3469 this device. They should clean all the things. 3470 */ 3471 raw_notifier_call_chain(&netdev_chain, NETDEV_UNREGISTER, dev); 3472 3473 /* 3474 * Flush the multicast chain 3475 */ 3476 dev_mc_discard(dev); 3477 3478 if (dev->uninit) 3479 dev->uninit(dev); 3480 3481 /* Notifier chain MUST detach us from master device. */ 3482 BUG_TRAP(!dev->master); 3483 3484 /* Remove entries from sysfs */ 3485 netdev_unregister_sysfs(dev); 3486 3487 /* Finish processing unregister after unlock */ 3488 net_set_todo(dev); 3489 3490 synchronize_net(); 3491 3492 dev_put(dev); 3493 } 3494 3495 /** 3496 * unregister_netdev - remove device from the kernel 3497 * @dev: device 3498 * 3499 * This function shuts down a device interface and removes it 3500 * from the kernel tables. On success 0 is returned, on a failure 3501 * a negative errno code is returned. 3502 * 3503 * This is just a wrapper for unregister_netdevice that takes 3504 * the rtnl semaphore. In general you want to use this and not 3505 * unregister_netdevice. 3506 */ 3507 void unregister_netdev(struct net_device *dev) 3508 { 3509 rtnl_lock(); 3510 unregister_netdevice(dev); 3511 rtnl_unlock(); 3512 } 3513 3514 EXPORT_SYMBOL(unregister_netdev); 3515 3516 static int dev_cpu_callback(struct notifier_block *nfb, 3517 unsigned long action, 3518 void *ocpu) 3519 { 3520 struct sk_buff **list_skb; 3521 struct net_device **list_net; 3522 struct sk_buff *skb; 3523 unsigned int cpu, oldcpu = (unsigned long)ocpu; 3524 struct softnet_data *sd, *oldsd; 3525 3526 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN) 3527 return NOTIFY_OK; 3528 3529 local_irq_disable(); 3530 cpu = smp_processor_id(); 3531 sd = &per_cpu(softnet_data, cpu); 3532 oldsd = &per_cpu(softnet_data, oldcpu); 3533 3534 /* Find end of our completion_queue. */ 3535 list_skb = &sd->completion_queue; 3536 while (*list_skb) 3537 list_skb = &(*list_skb)->next; 3538 /* Append completion queue from offline CPU. */ 3539 *list_skb = oldsd->completion_queue; 3540 oldsd->completion_queue = NULL; 3541 3542 /* Find end of our output_queue. */ 3543 list_net = &sd->output_queue; 3544 while (*list_net) 3545 list_net = &(*list_net)->next_sched; 3546 /* Append output queue from offline CPU. */ 3547 *list_net = oldsd->output_queue; 3548 oldsd->output_queue = NULL; 3549 3550 raise_softirq_irqoff(NET_TX_SOFTIRQ); 3551 local_irq_enable(); 3552 3553 /* Process offline CPU's input_pkt_queue */ 3554 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) 3555 netif_rx(skb); 3556 3557 return NOTIFY_OK; 3558 } 3559 3560 #ifdef CONFIG_NET_DMA 3561 /** 3562 * net_dma_rebalance - 3563 * This is called when the number of channels allocated to the net_dma_client 3564 * changes. The net_dma_client tries to have one DMA channel per CPU. 3565 */ 3566 static void net_dma_rebalance(void) 3567 { 3568 unsigned int cpu, i, n; 3569 struct dma_chan *chan; 3570 3571 if (net_dma_count == 0) { 3572 for_each_online_cpu(cpu) 3573 rcu_assign_pointer(per_cpu(softnet_data, cpu).net_dma, NULL); 3574 return; 3575 } 3576 3577 i = 0; 3578 cpu = first_cpu(cpu_online_map); 3579 3580 rcu_read_lock(); 3581 list_for_each_entry(chan, &net_dma_client->channels, client_node) { 3582 n = ((num_online_cpus() / net_dma_count) 3583 + (i < (num_online_cpus() % net_dma_count) ? 1 : 0)); 3584 3585 while(n) { 3586 per_cpu(softnet_data, cpu).net_dma = chan; 3587 cpu = next_cpu(cpu, cpu_online_map); 3588 n--; 3589 } 3590 i++; 3591 } 3592 rcu_read_unlock(); 3593 } 3594 3595 /** 3596 * netdev_dma_event - event callback for the net_dma_client 3597 * @client: should always be net_dma_client 3598 * @chan: DMA channel for the event 3599 * @event: event type 3600 */ 3601 static void netdev_dma_event(struct dma_client *client, struct dma_chan *chan, 3602 enum dma_event event) 3603 { 3604 spin_lock(&net_dma_event_lock); 3605 switch (event) { 3606 case DMA_RESOURCE_ADDED: 3607 net_dma_count++; 3608 net_dma_rebalance(); 3609 break; 3610 case DMA_RESOURCE_REMOVED: 3611 net_dma_count--; 3612 net_dma_rebalance(); 3613 break; 3614 default: 3615 break; 3616 } 3617 spin_unlock(&net_dma_event_lock); 3618 } 3619 3620 /** 3621 * netdev_dma_regiser - register the networking subsystem as a DMA client 3622 */ 3623 static int __init netdev_dma_register(void) 3624 { 3625 spin_lock_init(&net_dma_event_lock); 3626 net_dma_client = dma_async_client_register(netdev_dma_event); 3627 if (net_dma_client == NULL) 3628 return -ENOMEM; 3629 3630 dma_async_client_chan_request(net_dma_client, num_online_cpus()); 3631 return 0; 3632 } 3633 3634 #else 3635 static int __init netdev_dma_register(void) { return -ENODEV; } 3636 #endif /* CONFIG_NET_DMA */ 3637 3638 /* 3639 * Initialize the DEV module. At boot time this walks the device list and 3640 * unhooks any devices that fail to initialise (normally hardware not 3641 * present) and leaves us with a valid list of present and active devices. 3642 * 3643 */ 3644 3645 /* 3646 * This is called single threaded during boot, so no need 3647 * to take the rtnl semaphore. 3648 */ 3649 static int __init net_dev_init(void) 3650 { 3651 int i, rc = -ENOMEM; 3652 3653 BUG_ON(!dev_boot_phase); 3654 3655 if (dev_proc_init()) 3656 goto out; 3657 3658 if (netdev_sysfs_init()) 3659 goto out; 3660 3661 INIT_LIST_HEAD(&ptype_all); 3662 for (i = 0; i < 16; i++) 3663 INIT_LIST_HEAD(&ptype_base[i]); 3664 3665 for (i = 0; i < ARRAY_SIZE(dev_name_head); i++) 3666 INIT_HLIST_HEAD(&dev_name_head[i]); 3667 3668 for (i = 0; i < ARRAY_SIZE(dev_index_head); i++) 3669 INIT_HLIST_HEAD(&dev_index_head[i]); 3670 3671 /* 3672 * Initialise the packet receive queues. 3673 */ 3674 3675 for_each_possible_cpu(i) { 3676 struct softnet_data *queue; 3677 3678 queue = &per_cpu(softnet_data, i); 3679 skb_queue_head_init(&queue->input_pkt_queue); 3680 queue->completion_queue = NULL; 3681 INIT_LIST_HEAD(&queue->poll_list); 3682 set_bit(__LINK_STATE_START, &queue->backlog_dev.state); 3683 queue->backlog_dev.weight = weight_p; 3684 queue->backlog_dev.poll = process_backlog; 3685 atomic_set(&queue->backlog_dev.refcnt, 1); 3686 } 3687 3688 netdev_dma_register(); 3689 3690 dev_boot_phase = 0; 3691 3692 open_softirq(NET_TX_SOFTIRQ, net_tx_action, NULL); 3693 open_softirq(NET_RX_SOFTIRQ, net_rx_action, NULL); 3694 3695 hotcpu_notifier(dev_cpu_callback, 0); 3696 dst_init(); 3697 dev_mcast_init(); 3698 rc = 0; 3699 out: 3700 return rc; 3701 } 3702 3703 subsys_initcall(net_dev_init); 3704 3705 EXPORT_SYMBOL(__dev_get_by_index); 3706 EXPORT_SYMBOL(__dev_get_by_name); 3707 EXPORT_SYMBOL(__dev_remove_pack); 3708 EXPORT_SYMBOL(dev_valid_name); 3709 EXPORT_SYMBOL(dev_add_pack); 3710 EXPORT_SYMBOL(dev_alloc_name); 3711 EXPORT_SYMBOL(dev_close); 3712 EXPORT_SYMBOL(dev_get_by_flags); 3713 EXPORT_SYMBOL(dev_get_by_index); 3714 EXPORT_SYMBOL(dev_get_by_name); 3715 EXPORT_SYMBOL(dev_open); 3716 EXPORT_SYMBOL(dev_queue_xmit); 3717 EXPORT_SYMBOL(dev_remove_pack); 3718 EXPORT_SYMBOL(dev_set_allmulti); 3719 EXPORT_SYMBOL(dev_set_promiscuity); 3720 EXPORT_SYMBOL(dev_change_flags); 3721 EXPORT_SYMBOL(dev_set_mtu); 3722 EXPORT_SYMBOL(dev_set_mac_address); 3723 EXPORT_SYMBOL(free_netdev); 3724 EXPORT_SYMBOL(netdev_boot_setup_check); 3725 EXPORT_SYMBOL(netdev_set_master); 3726 EXPORT_SYMBOL(netdev_state_change); 3727 EXPORT_SYMBOL(netif_receive_skb); 3728 EXPORT_SYMBOL(netif_rx); 3729 EXPORT_SYMBOL(register_gifconf); 3730 EXPORT_SYMBOL(register_netdevice); 3731 EXPORT_SYMBOL(register_netdevice_notifier); 3732 EXPORT_SYMBOL(skb_checksum_help); 3733 EXPORT_SYMBOL(synchronize_net); 3734 EXPORT_SYMBOL(unregister_netdevice); 3735 EXPORT_SYMBOL(unregister_netdevice_notifier); 3736 EXPORT_SYMBOL(net_enable_timestamp); 3737 EXPORT_SYMBOL(net_disable_timestamp); 3738 EXPORT_SYMBOL(dev_get_flags); 3739 3740 #if defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE) 3741 EXPORT_SYMBOL(br_handle_frame_hook); 3742 EXPORT_SYMBOL(br_fdb_get_hook); 3743 EXPORT_SYMBOL(br_fdb_put_hook); 3744 #endif 3745 3746 #ifdef CONFIG_KMOD 3747 EXPORT_SYMBOL(dev_load); 3748 #endif 3749 3750 EXPORT_PER_CPU_SYMBOL(softnet_data); 3751