1 /* 2 * NET3 Protocol independent device support routines. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Derived from the non IP parts of dev.c 1.0.19 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * 14 * Additional Authors: 15 * Florian la Roche <rzsfl@rz.uni-sb.de> 16 * Alan Cox <gw4pts@gw4pts.ampr.org> 17 * David Hinds <dahinds@users.sourceforge.net> 18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 19 * Adam Sulmicki <adam@cfar.umd.edu> 20 * Pekka Riikonen <priikone@poesidon.pspt.fi> 21 * 22 * Changes: 23 * D.J. Barrow : Fixed bug where dev->refcnt gets set 24 * to 2 if register_netdev gets called 25 * before net_dev_init & also removed a 26 * few lines of code in the process. 27 * Alan Cox : device private ioctl copies fields back. 28 * Alan Cox : Transmit queue code does relevant 29 * stunts to keep the queue safe. 30 * Alan Cox : Fixed double lock. 31 * Alan Cox : Fixed promisc NULL pointer trap 32 * ???????? : Support the full private ioctl range 33 * Alan Cox : Moved ioctl permission check into 34 * drivers 35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 36 * Alan Cox : 100 backlog just doesn't cut it when 37 * you start doing multicast video 8) 38 * Alan Cox : Rewrote net_bh and list manager. 39 * Alan Cox : Fix ETH_P_ALL echoback lengths. 40 * Alan Cox : Took out transmit every packet pass 41 * Saved a few bytes in the ioctl handler 42 * Alan Cox : Network driver sets packet type before 43 * calling netif_rx. Saves a function 44 * call a packet. 45 * Alan Cox : Hashed net_bh() 46 * Richard Kooijman: Timestamp fixes. 47 * Alan Cox : Wrong field in SIOCGIFDSTADDR 48 * Alan Cox : Device lock protection. 49 * Alan Cox : Fixed nasty side effect of device close 50 * changes. 51 * Rudi Cilibrasi : Pass the right thing to 52 * set_mac_address() 53 * Dave Miller : 32bit quantity for the device lock to 54 * make it work out on a Sparc. 55 * Bjorn Ekwall : Added KERNELD hack. 56 * Alan Cox : Cleaned up the backlog initialise. 57 * Craig Metz : SIOCGIFCONF fix if space for under 58 * 1 device. 59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 60 * is no device open function. 61 * Andi Kleen : Fix error reporting for SIOCGIFCONF 62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 63 * Cyrus Durgin : Cleaned for KMOD 64 * Adam Sulmicki : Bug Fix : Network Device Unload 65 * A network device unload needs to purge 66 * the backlog queue. 67 * Paul Rusty Russell : SIOCSIFNAME 68 * Pekka Riikonen : Netdev boot-time settings code 69 * Andrew Morton : Make unregister_netdevice wait 70 * indefinitely on dev->refcnt 71 * J Hadi Salim : - Backlog queue sampling 72 * - netif_rx() feedback 73 */ 74 75 #include <asm/uaccess.h> 76 #include <asm/system.h> 77 #include <linux/bitops.h> 78 #include <linux/capability.h> 79 #include <linux/cpu.h> 80 #include <linux/types.h> 81 #include <linux/kernel.h> 82 #include <linux/sched.h> 83 #include <linux/mutex.h> 84 #include <linux/string.h> 85 #include <linux/mm.h> 86 #include <linux/socket.h> 87 #include <linux/sockios.h> 88 #include <linux/errno.h> 89 #include <linux/interrupt.h> 90 #include <linux/if_ether.h> 91 #include <linux/netdevice.h> 92 #include <linux/etherdevice.h> 93 #include <linux/ethtool.h> 94 #include <linux/notifier.h> 95 #include <linux/skbuff.h> 96 #include <net/net_namespace.h> 97 #include <net/sock.h> 98 #include <linux/rtnetlink.h> 99 #include <linux/proc_fs.h> 100 #include <linux/seq_file.h> 101 #include <linux/stat.h> 102 #include <linux/if_bridge.h> 103 #include <linux/if_macvlan.h> 104 #include <net/dst.h> 105 #include <net/pkt_sched.h> 106 #include <net/checksum.h> 107 #include <linux/highmem.h> 108 #include <linux/init.h> 109 #include <linux/kmod.h> 110 #include <linux/module.h> 111 #include <linux/netpoll.h> 112 #include <linux/rcupdate.h> 113 #include <linux/delay.h> 114 #include <net/wext.h> 115 #include <net/iw_handler.h> 116 #include <asm/current.h> 117 #include <linux/audit.h> 118 #include <linux/dmaengine.h> 119 #include <linux/err.h> 120 #include <linux/ctype.h> 121 #include <linux/if_arp.h> 122 #include <linux/if_vlan.h> 123 #include <linux/ip.h> 124 #include <net/ip.h> 125 #include <linux/ipv6.h> 126 #include <linux/in.h> 127 #include <linux/jhash.h> 128 #include <linux/random.h> 129 #include <trace/events/napi.h> 130 131 #include "net-sysfs.h" 132 133 /* Instead of increasing this, you should create a hash table. */ 134 #define MAX_GRO_SKBS 8 135 136 /* This should be increased if a protocol with a bigger head is added. */ 137 #define GRO_MAX_HEAD (MAX_HEADER + 128) 138 139 /* 140 * The list of packet types we will receive (as opposed to discard) 141 * and the routines to invoke. 142 * 143 * Why 16. Because with 16 the only overlap we get on a hash of the 144 * low nibble of the protocol value is RARP/SNAP/X.25. 145 * 146 * NOTE: That is no longer true with the addition of VLAN tags. Not 147 * sure which should go first, but I bet it won't make much 148 * difference if we are running VLANs. The good news is that 149 * this protocol won't be in the list unless compiled in, so 150 * the average user (w/out VLANs) will not be adversely affected. 151 * --BLG 152 * 153 * 0800 IP 154 * 8100 802.1Q VLAN 155 * 0001 802.3 156 * 0002 AX.25 157 * 0004 802.2 158 * 8035 RARP 159 * 0005 SNAP 160 * 0805 X.25 161 * 0806 ARP 162 * 8137 IPX 163 * 0009 Localtalk 164 * 86DD IPv6 165 */ 166 167 #define PTYPE_HASH_SIZE (16) 168 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1) 169 170 static DEFINE_SPINLOCK(ptype_lock); 171 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 172 static struct list_head ptype_all __read_mostly; /* Taps */ 173 174 /* 175 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 176 * semaphore. 177 * 178 * Pure readers hold dev_base_lock for reading. 179 * 180 * Writers must hold the rtnl semaphore while they loop through the 181 * dev_base_head list, and hold dev_base_lock for writing when they do the 182 * actual updates. This allows pure readers to access the list even 183 * while a writer is preparing to update it. 184 * 185 * To put it another way, dev_base_lock is held for writing only to 186 * protect against pure readers; the rtnl semaphore provides the 187 * protection against other writers. 188 * 189 * See, for example usages, register_netdevice() and 190 * unregister_netdevice(), which must be called with the rtnl 191 * semaphore held. 192 */ 193 DEFINE_RWLOCK(dev_base_lock); 194 EXPORT_SYMBOL(dev_base_lock); 195 196 #define NETDEV_HASHBITS 8 197 #define NETDEV_HASHENTRIES (1 << NETDEV_HASHBITS) 198 199 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 200 { 201 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ)); 202 return &net->dev_name_head[hash & ((1 << NETDEV_HASHBITS) - 1)]; 203 } 204 205 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 206 { 207 return &net->dev_index_head[ifindex & ((1 << NETDEV_HASHBITS) - 1)]; 208 } 209 210 /* Device list insertion */ 211 static int list_netdevice(struct net_device *dev) 212 { 213 struct net *net = dev_net(dev); 214 215 ASSERT_RTNL(); 216 217 write_lock_bh(&dev_base_lock); 218 list_add_tail(&dev->dev_list, &net->dev_base_head); 219 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name)); 220 hlist_add_head(&dev->index_hlist, dev_index_hash(net, dev->ifindex)); 221 write_unlock_bh(&dev_base_lock); 222 return 0; 223 } 224 225 /* Device list removal */ 226 static void unlist_netdevice(struct net_device *dev) 227 { 228 ASSERT_RTNL(); 229 230 /* Unlink dev from the device chain */ 231 write_lock_bh(&dev_base_lock); 232 list_del(&dev->dev_list); 233 hlist_del(&dev->name_hlist); 234 hlist_del(&dev->index_hlist); 235 write_unlock_bh(&dev_base_lock); 236 } 237 238 /* 239 * Our notifier list 240 */ 241 242 static RAW_NOTIFIER_HEAD(netdev_chain); 243 244 /* 245 * Device drivers call our routines to queue packets here. We empty the 246 * queue in the local softnet handler. 247 */ 248 249 DEFINE_PER_CPU(struct softnet_data, softnet_data); 250 EXPORT_PER_CPU_SYMBOL(softnet_data); 251 252 #ifdef CONFIG_LOCKDEP 253 /* 254 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 255 * according to dev->type 256 */ 257 static const unsigned short netdev_lock_type[] = 258 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 259 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 260 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 261 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 262 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 263 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 264 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 265 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 266 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 267 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 268 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 269 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 270 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211, 271 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, 272 ARPHRD_PHONET_PIPE, ARPHRD_IEEE802154, 273 ARPHRD_VOID, ARPHRD_NONE}; 274 275 static const char *const netdev_lock_name[] = 276 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 277 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 278 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 279 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 280 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 281 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 282 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 283 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 284 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 285 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 286 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 287 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 288 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211", 289 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", 290 "_xmit_PHONET_PIPE", "_xmit_IEEE802154", 291 "_xmit_VOID", "_xmit_NONE"}; 292 293 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 294 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 295 296 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 297 { 298 int i; 299 300 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 301 if (netdev_lock_type[i] == dev_type) 302 return i; 303 /* the last key is used by default */ 304 return ARRAY_SIZE(netdev_lock_type) - 1; 305 } 306 307 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 308 unsigned short dev_type) 309 { 310 int i; 311 312 i = netdev_lock_pos(dev_type); 313 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 314 netdev_lock_name[i]); 315 } 316 317 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 318 { 319 int i; 320 321 i = netdev_lock_pos(dev->type); 322 lockdep_set_class_and_name(&dev->addr_list_lock, 323 &netdev_addr_lock_key[i], 324 netdev_lock_name[i]); 325 } 326 #else 327 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 328 unsigned short dev_type) 329 { 330 } 331 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 332 { 333 } 334 #endif 335 336 /******************************************************************************* 337 338 Protocol management and registration routines 339 340 *******************************************************************************/ 341 342 /* 343 * Add a protocol ID to the list. Now that the input handler is 344 * smarter we can dispense with all the messy stuff that used to be 345 * here. 346 * 347 * BEWARE!!! Protocol handlers, mangling input packets, 348 * MUST BE last in hash buckets and checking protocol handlers 349 * MUST start from promiscuous ptype_all chain in net_bh. 350 * It is true now, do not change it. 351 * Explanation follows: if protocol handler, mangling packet, will 352 * be the first on list, it is not able to sense, that packet 353 * is cloned and should be copied-on-write, so that it will 354 * change it and subsequent readers will get broken packet. 355 * --ANK (980803) 356 */ 357 358 /** 359 * dev_add_pack - add packet handler 360 * @pt: packet type declaration 361 * 362 * Add a protocol handler to the networking stack. The passed &packet_type 363 * is linked into kernel lists and may not be freed until it has been 364 * removed from the kernel lists. 365 * 366 * This call does not sleep therefore it can not 367 * guarantee all CPU's that are in middle of receiving packets 368 * will see the new packet type (until the next received packet). 369 */ 370 371 void dev_add_pack(struct packet_type *pt) 372 { 373 int hash; 374 375 spin_lock_bh(&ptype_lock); 376 if (pt->type == htons(ETH_P_ALL)) 377 list_add_rcu(&pt->list, &ptype_all); 378 else { 379 hash = ntohs(pt->type) & PTYPE_HASH_MASK; 380 list_add_rcu(&pt->list, &ptype_base[hash]); 381 } 382 spin_unlock_bh(&ptype_lock); 383 } 384 EXPORT_SYMBOL(dev_add_pack); 385 386 /** 387 * __dev_remove_pack - remove packet handler 388 * @pt: packet type declaration 389 * 390 * Remove a protocol handler that was previously added to the kernel 391 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 392 * from the kernel lists and can be freed or reused once this function 393 * returns. 394 * 395 * The packet type might still be in use by receivers 396 * and must not be freed until after all the CPU's have gone 397 * through a quiescent state. 398 */ 399 void __dev_remove_pack(struct packet_type *pt) 400 { 401 struct list_head *head; 402 struct packet_type *pt1; 403 404 spin_lock_bh(&ptype_lock); 405 406 if (pt->type == htons(ETH_P_ALL)) 407 head = &ptype_all; 408 else 409 head = &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 410 411 list_for_each_entry(pt1, head, list) { 412 if (pt == pt1) { 413 list_del_rcu(&pt->list); 414 goto out; 415 } 416 } 417 418 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt); 419 out: 420 spin_unlock_bh(&ptype_lock); 421 } 422 EXPORT_SYMBOL(__dev_remove_pack); 423 424 /** 425 * dev_remove_pack - remove packet handler 426 * @pt: packet type declaration 427 * 428 * Remove a protocol handler that was previously added to the kernel 429 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 430 * from the kernel lists and can be freed or reused once this function 431 * returns. 432 * 433 * This call sleeps to guarantee that no CPU is looking at the packet 434 * type after return. 435 */ 436 void dev_remove_pack(struct packet_type *pt) 437 { 438 __dev_remove_pack(pt); 439 440 synchronize_net(); 441 } 442 EXPORT_SYMBOL(dev_remove_pack); 443 444 /****************************************************************************** 445 446 Device Boot-time Settings Routines 447 448 *******************************************************************************/ 449 450 /* Boot time configuration table */ 451 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 452 453 /** 454 * netdev_boot_setup_add - add new setup entry 455 * @name: name of the device 456 * @map: configured settings for the device 457 * 458 * Adds new setup entry to the dev_boot_setup list. The function 459 * returns 0 on error and 1 on success. This is a generic routine to 460 * all netdevices. 461 */ 462 static int netdev_boot_setup_add(char *name, struct ifmap *map) 463 { 464 struct netdev_boot_setup *s; 465 int i; 466 467 s = dev_boot_setup; 468 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 469 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 470 memset(s[i].name, 0, sizeof(s[i].name)); 471 strlcpy(s[i].name, name, IFNAMSIZ); 472 memcpy(&s[i].map, map, sizeof(s[i].map)); 473 break; 474 } 475 } 476 477 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 478 } 479 480 /** 481 * netdev_boot_setup_check - check boot time settings 482 * @dev: the netdevice 483 * 484 * Check boot time settings for the device. 485 * The found settings are set for the device to be used 486 * later in the device probing. 487 * Returns 0 if no settings found, 1 if they are. 488 */ 489 int netdev_boot_setup_check(struct net_device *dev) 490 { 491 struct netdev_boot_setup *s = dev_boot_setup; 492 int i; 493 494 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 495 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 496 !strcmp(dev->name, s[i].name)) { 497 dev->irq = s[i].map.irq; 498 dev->base_addr = s[i].map.base_addr; 499 dev->mem_start = s[i].map.mem_start; 500 dev->mem_end = s[i].map.mem_end; 501 return 1; 502 } 503 } 504 return 0; 505 } 506 EXPORT_SYMBOL(netdev_boot_setup_check); 507 508 509 /** 510 * netdev_boot_base - get address from boot time settings 511 * @prefix: prefix for network device 512 * @unit: id for network device 513 * 514 * Check boot time settings for the base address of device. 515 * The found settings are set for the device to be used 516 * later in the device probing. 517 * Returns 0 if no settings found. 518 */ 519 unsigned long netdev_boot_base(const char *prefix, int unit) 520 { 521 const struct netdev_boot_setup *s = dev_boot_setup; 522 char name[IFNAMSIZ]; 523 int i; 524 525 sprintf(name, "%s%d", prefix, unit); 526 527 /* 528 * If device already registered then return base of 1 529 * to indicate not to probe for this interface 530 */ 531 if (__dev_get_by_name(&init_net, name)) 532 return 1; 533 534 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 535 if (!strcmp(name, s[i].name)) 536 return s[i].map.base_addr; 537 return 0; 538 } 539 540 /* 541 * Saves at boot time configured settings for any netdevice. 542 */ 543 int __init netdev_boot_setup(char *str) 544 { 545 int ints[5]; 546 struct ifmap map; 547 548 str = get_options(str, ARRAY_SIZE(ints), ints); 549 if (!str || !*str) 550 return 0; 551 552 /* Save settings */ 553 memset(&map, 0, sizeof(map)); 554 if (ints[0] > 0) 555 map.irq = ints[1]; 556 if (ints[0] > 1) 557 map.base_addr = ints[2]; 558 if (ints[0] > 2) 559 map.mem_start = ints[3]; 560 if (ints[0] > 3) 561 map.mem_end = ints[4]; 562 563 /* Add new entry to the list */ 564 return netdev_boot_setup_add(str, &map); 565 } 566 567 __setup("netdev=", netdev_boot_setup); 568 569 /******************************************************************************* 570 571 Device Interface Subroutines 572 573 *******************************************************************************/ 574 575 /** 576 * __dev_get_by_name - find a device by its name 577 * @net: the applicable net namespace 578 * @name: name to find 579 * 580 * Find an interface by name. Must be called under RTNL semaphore 581 * or @dev_base_lock. If the name is found a pointer to the device 582 * is returned. If the name is not found then %NULL is returned. The 583 * reference counters are not incremented so the caller must be 584 * careful with locks. 585 */ 586 587 struct net_device *__dev_get_by_name(struct net *net, const char *name) 588 { 589 struct hlist_node *p; 590 591 hlist_for_each(p, dev_name_hash(net, name)) { 592 struct net_device *dev 593 = hlist_entry(p, struct net_device, name_hlist); 594 if (!strncmp(dev->name, name, IFNAMSIZ)) 595 return dev; 596 } 597 return NULL; 598 } 599 EXPORT_SYMBOL(__dev_get_by_name); 600 601 /** 602 * dev_get_by_name - find a device by its name 603 * @net: the applicable net namespace 604 * @name: name to find 605 * 606 * Find an interface by name. This can be called from any 607 * context and does its own locking. The returned handle has 608 * the usage count incremented and the caller must use dev_put() to 609 * release it when it is no longer needed. %NULL is returned if no 610 * matching device is found. 611 */ 612 613 struct net_device *dev_get_by_name(struct net *net, const char *name) 614 { 615 struct net_device *dev; 616 617 read_lock(&dev_base_lock); 618 dev = __dev_get_by_name(net, name); 619 if (dev) 620 dev_hold(dev); 621 read_unlock(&dev_base_lock); 622 return dev; 623 } 624 EXPORT_SYMBOL(dev_get_by_name); 625 626 /** 627 * __dev_get_by_index - find a device by its ifindex 628 * @net: the applicable net namespace 629 * @ifindex: index of device 630 * 631 * Search for an interface by index. Returns %NULL if the device 632 * is not found or a pointer to the device. The device has not 633 * had its reference counter increased so the caller must be careful 634 * about locking. The caller must hold either the RTNL semaphore 635 * or @dev_base_lock. 636 */ 637 638 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 639 { 640 struct hlist_node *p; 641 642 hlist_for_each(p, dev_index_hash(net, ifindex)) { 643 struct net_device *dev 644 = hlist_entry(p, struct net_device, index_hlist); 645 if (dev->ifindex == ifindex) 646 return dev; 647 } 648 return NULL; 649 } 650 EXPORT_SYMBOL(__dev_get_by_index); 651 652 653 /** 654 * dev_get_by_index - find a device by its ifindex 655 * @net: the applicable net namespace 656 * @ifindex: index of device 657 * 658 * Search for an interface by index. Returns NULL if the device 659 * is not found or a pointer to the device. The device returned has 660 * had a reference added and the pointer is safe until the user calls 661 * dev_put to indicate they have finished with it. 662 */ 663 664 struct net_device *dev_get_by_index(struct net *net, int ifindex) 665 { 666 struct net_device *dev; 667 668 read_lock(&dev_base_lock); 669 dev = __dev_get_by_index(net, ifindex); 670 if (dev) 671 dev_hold(dev); 672 read_unlock(&dev_base_lock); 673 return dev; 674 } 675 EXPORT_SYMBOL(dev_get_by_index); 676 677 /** 678 * dev_getbyhwaddr - find a device by its hardware address 679 * @net: the applicable net namespace 680 * @type: media type of device 681 * @ha: hardware address 682 * 683 * Search for an interface by MAC address. Returns NULL if the device 684 * is not found or a pointer to the device. The caller must hold the 685 * rtnl semaphore. The returned device has not had its ref count increased 686 * and the caller must therefore be careful about locking 687 * 688 * BUGS: 689 * If the API was consistent this would be __dev_get_by_hwaddr 690 */ 691 692 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha) 693 { 694 struct net_device *dev; 695 696 ASSERT_RTNL(); 697 698 for_each_netdev(net, dev) 699 if (dev->type == type && 700 !memcmp(dev->dev_addr, ha, dev->addr_len)) 701 return dev; 702 703 return NULL; 704 } 705 EXPORT_SYMBOL(dev_getbyhwaddr); 706 707 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 708 { 709 struct net_device *dev; 710 711 ASSERT_RTNL(); 712 for_each_netdev(net, dev) 713 if (dev->type == type) 714 return dev; 715 716 return NULL; 717 } 718 EXPORT_SYMBOL(__dev_getfirstbyhwtype); 719 720 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 721 { 722 struct net_device *dev; 723 724 rtnl_lock(); 725 dev = __dev_getfirstbyhwtype(net, type); 726 if (dev) 727 dev_hold(dev); 728 rtnl_unlock(); 729 return dev; 730 } 731 EXPORT_SYMBOL(dev_getfirstbyhwtype); 732 733 /** 734 * dev_get_by_flags - find any device with given flags 735 * @net: the applicable net namespace 736 * @if_flags: IFF_* values 737 * @mask: bitmask of bits in if_flags to check 738 * 739 * Search for any interface with the given flags. Returns NULL if a device 740 * is not found or a pointer to the device. The device returned has 741 * had a reference added and the pointer is safe until the user calls 742 * dev_put to indicate they have finished with it. 743 */ 744 745 struct net_device *dev_get_by_flags(struct net *net, unsigned short if_flags, 746 unsigned short mask) 747 { 748 struct net_device *dev, *ret; 749 750 ret = NULL; 751 read_lock(&dev_base_lock); 752 for_each_netdev(net, dev) { 753 if (((dev->flags ^ if_flags) & mask) == 0) { 754 dev_hold(dev); 755 ret = dev; 756 break; 757 } 758 } 759 read_unlock(&dev_base_lock); 760 return ret; 761 } 762 EXPORT_SYMBOL(dev_get_by_flags); 763 764 /** 765 * dev_valid_name - check if name is okay for network device 766 * @name: name string 767 * 768 * Network device names need to be valid file names to 769 * to allow sysfs to work. We also disallow any kind of 770 * whitespace. 771 */ 772 int dev_valid_name(const char *name) 773 { 774 if (*name == '\0') 775 return 0; 776 if (strlen(name) >= IFNAMSIZ) 777 return 0; 778 if (!strcmp(name, ".") || !strcmp(name, "..")) 779 return 0; 780 781 while (*name) { 782 if (*name == '/' || isspace(*name)) 783 return 0; 784 name++; 785 } 786 return 1; 787 } 788 EXPORT_SYMBOL(dev_valid_name); 789 790 /** 791 * __dev_alloc_name - allocate a name for a device 792 * @net: network namespace to allocate the device name in 793 * @name: name format string 794 * @buf: scratch buffer and result name string 795 * 796 * Passed a format string - eg "lt%d" it will try and find a suitable 797 * id. It scans list of devices to build up a free map, then chooses 798 * the first empty slot. The caller must hold the dev_base or rtnl lock 799 * while allocating the name and adding the device in order to avoid 800 * duplicates. 801 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 802 * Returns the number of the unit assigned or a negative errno code. 803 */ 804 805 static int __dev_alloc_name(struct net *net, const char *name, char *buf) 806 { 807 int i = 0; 808 const char *p; 809 const int max_netdevices = 8*PAGE_SIZE; 810 unsigned long *inuse; 811 struct net_device *d; 812 813 p = strnchr(name, IFNAMSIZ-1, '%'); 814 if (p) { 815 /* 816 * Verify the string as this thing may have come from 817 * the user. There must be either one "%d" and no other "%" 818 * characters. 819 */ 820 if (p[1] != 'd' || strchr(p + 2, '%')) 821 return -EINVAL; 822 823 /* Use one page as a bit array of possible slots */ 824 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 825 if (!inuse) 826 return -ENOMEM; 827 828 for_each_netdev(net, d) { 829 if (!sscanf(d->name, name, &i)) 830 continue; 831 if (i < 0 || i >= max_netdevices) 832 continue; 833 834 /* avoid cases where sscanf is not exact inverse of printf */ 835 snprintf(buf, IFNAMSIZ, name, i); 836 if (!strncmp(buf, d->name, IFNAMSIZ)) 837 set_bit(i, inuse); 838 } 839 840 i = find_first_zero_bit(inuse, max_netdevices); 841 free_page((unsigned long) inuse); 842 } 843 844 snprintf(buf, IFNAMSIZ, name, i); 845 if (!__dev_get_by_name(net, buf)) 846 return i; 847 848 /* It is possible to run out of possible slots 849 * when the name is long and there isn't enough space left 850 * for the digits, or if all bits are used. 851 */ 852 return -ENFILE; 853 } 854 855 /** 856 * dev_alloc_name - allocate a name for a device 857 * @dev: device 858 * @name: name format string 859 * 860 * Passed a format string - eg "lt%d" it will try and find a suitable 861 * id. It scans list of devices to build up a free map, then chooses 862 * the first empty slot. The caller must hold the dev_base or rtnl lock 863 * while allocating the name and adding the device in order to avoid 864 * duplicates. 865 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 866 * Returns the number of the unit assigned or a negative errno code. 867 */ 868 869 int dev_alloc_name(struct net_device *dev, const char *name) 870 { 871 char buf[IFNAMSIZ]; 872 struct net *net; 873 int ret; 874 875 BUG_ON(!dev_net(dev)); 876 net = dev_net(dev); 877 ret = __dev_alloc_name(net, name, buf); 878 if (ret >= 0) 879 strlcpy(dev->name, buf, IFNAMSIZ); 880 return ret; 881 } 882 EXPORT_SYMBOL(dev_alloc_name); 883 884 885 /** 886 * dev_change_name - change name of a device 887 * @dev: device 888 * @newname: name (or format string) must be at least IFNAMSIZ 889 * 890 * Change name of a device, can pass format strings "eth%d". 891 * for wildcarding. 892 */ 893 int dev_change_name(struct net_device *dev, const char *newname) 894 { 895 char oldname[IFNAMSIZ]; 896 int err = 0; 897 int ret; 898 struct net *net; 899 900 ASSERT_RTNL(); 901 BUG_ON(!dev_net(dev)); 902 903 net = dev_net(dev); 904 if (dev->flags & IFF_UP) 905 return -EBUSY; 906 907 if (!dev_valid_name(newname)) 908 return -EINVAL; 909 910 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) 911 return 0; 912 913 memcpy(oldname, dev->name, IFNAMSIZ); 914 915 if (strchr(newname, '%')) { 916 err = dev_alloc_name(dev, newname); 917 if (err < 0) 918 return err; 919 } else if (__dev_get_by_name(net, newname)) 920 return -EEXIST; 921 else 922 strlcpy(dev->name, newname, IFNAMSIZ); 923 924 rollback: 925 /* For now only devices in the initial network namespace 926 * are in sysfs. 927 */ 928 if (net == &init_net) { 929 ret = device_rename(&dev->dev, dev->name); 930 if (ret) { 931 memcpy(dev->name, oldname, IFNAMSIZ); 932 return ret; 933 } 934 } 935 936 write_lock_bh(&dev_base_lock); 937 hlist_del(&dev->name_hlist); 938 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name)); 939 write_unlock_bh(&dev_base_lock); 940 941 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 942 ret = notifier_to_errno(ret); 943 944 if (ret) { 945 if (err) { 946 printk(KERN_ERR 947 "%s: name change rollback failed: %d.\n", 948 dev->name, ret); 949 } else { 950 err = ret; 951 memcpy(dev->name, oldname, IFNAMSIZ); 952 goto rollback; 953 } 954 } 955 956 return err; 957 } 958 959 /** 960 * dev_set_alias - change ifalias of a device 961 * @dev: device 962 * @alias: name up to IFALIASZ 963 * @len: limit of bytes to copy from info 964 * 965 * Set ifalias for a device, 966 */ 967 int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 968 { 969 ASSERT_RTNL(); 970 971 if (len >= IFALIASZ) 972 return -EINVAL; 973 974 if (!len) { 975 if (dev->ifalias) { 976 kfree(dev->ifalias); 977 dev->ifalias = NULL; 978 } 979 return 0; 980 } 981 982 dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL); 983 if (!dev->ifalias) 984 return -ENOMEM; 985 986 strlcpy(dev->ifalias, alias, len+1); 987 return len; 988 } 989 990 991 /** 992 * netdev_features_change - device changes features 993 * @dev: device to cause notification 994 * 995 * Called to indicate a device has changed features. 996 */ 997 void netdev_features_change(struct net_device *dev) 998 { 999 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1000 } 1001 EXPORT_SYMBOL(netdev_features_change); 1002 1003 /** 1004 * netdev_state_change - device changes state 1005 * @dev: device to cause notification 1006 * 1007 * Called to indicate a device has changed state. This function calls 1008 * the notifier chains for netdev_chain and sends a NEWLINK message 1009 * to the routing socket. 1010 */ 1011 void netdev_state_change(struct net_device *dev) 1012 { 1013 if (dev->flags & IFF_UP) { 1014 call_netdevice_notifiers(NETDEV_CHANGE, dev); 1015 rtmsg_ifinfo(RTM_NEWLINK, dev, 0); 1016 } 1017 } 1018 EXPORT_SYMBOL(netdev_state_change); 1019 1020 void netdev_bonding_change(struct net_device *dev, unsigned long event) 1021 { 1022 call_netdevice_notifiers(event, dev); 1023 } 1024 EXPORT_SYMBOL(netdev_bonding_change); 1025 1026 /** 1027 * dev_load - load a network module 1028 * @net: the applicable net namespace 1029 * @name: name of interface 1030 * 1031 * If a network interface is not present and the process has suitable 1032 * privileges this function loads the module. If module loading is not 1033 * available in this kernel then it becomes a nop. 1034 */ 1035 1036 void dev_load(struct net *net, const char *name) 1037 { 1038 struct net_device *dev; 1039 1040 read_lock(&dev_base_lock); 1041 dev = __dev_get_by_name(net, name); 1042 read_unlock(&dev_base_lock); 1043 1044 if (!dev && capable(CAP_NET_ADMIN)) 1045 request_module("%s", name); 1046 } 1047 EXPORT_SYMBOL(dev_load); 1048 1049 /** 1050 * dev_open - prepare an interface for use. 1051 * @dev: device to open 1052 * 1053 * Takes a device from down to up state. The device's private open 1054 * function is invoked and then the multicast lists are loaded. Finally 1055 * the device is moved into the up state and a %NETDEV_UP message is 1056 * sent to the netdev notifier chain. 1057 * 1058 * Calling this function on an active interface is a nop. On a failure 1059 * a negative errno code is returned. 1060 */ 1061 int dev_open(struct net_device *dev) 1062 { 1063 const struct net_device_ops *ops = dev->netdev_ops; 1064 int ret; 1065 1066 ASSERT_RTNL(); 1067 1068 /* 1069 * Is it already up? 1070 */ 1071 1072 if (dev->flags & IFF_UP) 1073 return 0; 1074 1075 /* 1076 * Is it even present? 1077 */ 1078 if (!netif_device_present(dev)) 1079 return -ENODEV; 1080 1081 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev); 1082 ret = notifier_to_errno(ret); 1083 if (ret) 1084 return ret; 1085 1086 /* 1087 * Call device private open method 1088 */ 1089 set_bit(__LINK_STATE_START, &dev->state); 1090 1091 if (ops->ndo_validate_addr) 1092 ret = ops->ndo_validate_addr(dev); 1093 1094 if (!ret && ops->ndo_open) 1095 ret = ops->ndo_open(dev); 1096 1097 /* 1098 * If it went open OK then: 1099 */ 1100 1101 if (ret) 1102 clear_bit(__LINK_STATE_START, &dev->state); 1103 else { 1104 /* 1105 * Set the flags. 1106 */ 1107 dev->flags |= IFF_UP; 1108 1109 /* 1110 * Enable NET_DMA 1111 */ 1112 net_dmaengine_get(); 1113 1114 /* 1115 * Initialize multicasting status 1116 */ 1117 dev_set_rx_mode(dev); 1118 1119 /* 1120 * Wakeup transmit queue engine 1121 */ 1122 dev_activate(dev); 1123 1124 /* 1125 * ... and announce new interface. 1126 */ 1127 call_netdevice_notifiers(NETDEV_UP, dev); 1128 } 1129 1130 return ret; 1131 } 1132 EXPORT_SYMBOL(dev_open); 1133 1134 /** 1135 * dev_close - shutdown an interface. 1136 * @dev: device to shutdown 1137 * 1138 * This function moves an active device into down state. A 1139 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1140 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1141 * chain. 1142 */ 1143 int dev_close(struct net_device *dev) 1144 { 1145 const struct net_device_ops *ops = dev->netdev_ops; 1146 ASSERT_RTNL(); 1147 1148 might_sleep(); 1149 1150 if (!(dev->flags & IFF_UP)) 1151 return 0; 1152 1153 /* 1154 * Tell people we are going down, so that they can 1155 * prepare to death, when device is still operating. 1156 */ 1157 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1158 1159 clear_bit(__LINK_STATE_START, &dev->state); 1160 1161 /* Synchronize to scheduled poll. We cannot touch poll list, 1162 * it can be even on different cpu. So just clear netif_running(). 1163 * 1164 * dev->stop() will invoke napi_disable() on all of it's 1165 * napi_struct instances on this device. 1166 */ 1167 smp_mb__after_clear_bit(); /* Commit netif_running(). */ 1168 1169 dev_deactivate(dev); 1170 1171 /* 1172 * Call the device specific close. This cannot fail. 1173 * Only if device is UP 1174 * 1175 * We allow it to be called even after a DETACH hot-plug 1176 * event. 1177 */ 1178 if (ops->ndo_stop) 1179 ops->ndo_stop(dev); 1180 1181 /* 1182 * Device is now down. 1183 */ 1184 1185 dev->flags &= ~IFF_UP; 1186 1187 /* 1188 * Tell people we are down 1189 */ 1190 call_netdevice_notifiers(NETDEV_DOWN, dev); 1191 1192 /* 1193 * Shutdown NET_DMA 1194 */ 1195 net_dmaengine_put(); 1196 1197 return 0; 1198 } 1199 EXPORT_SYMBOL(dev_close); 1200 1201 1202 /** 1203 * dev_disable_lro - disable Large Receive Offload on a device 1204 * @dev: device 1205 * 1206 * Disable Large Receive Offload (LRO) on a net device. Must be 1207 * called under RTNL. This is needed if received packets may be 1208 * forwarded to another interface. 1209 */ 1210 void dev_disable_lro(struct net_device *dev) 1211 { 1212 if (dev->ethtool_ops && dev->ethtool_ops->get_flags && 1213 dev->ethtool_ops->set_flags) { 1214 u32 flags = dev->ethtool_ops->get_flags(dev); 1215 if (flags & ETH_FLAG_LRO) { 1216 flags &= ~ETH_FLAG_LRO; 1217 dev->ethtool_ops->set_flags(dev, flags); 1218 } 1219 } 1220 WARN_ON(dev->features & NETIF_F_LRO); 1221 } 1222 EXPORT_SYMBOL(dev_disable_lro); 1223 1224 1225 static int dev_boot_phase = 1; 1226 1227 /* 1228 * Device change register/unregister. These are not inline or static 1229 * as we export them to the world. 1230 */ 1231 1232 /** 1233 * register_netdevice_notifier - register a network notifier block 1234 * @nb: notifier 1235 * 1236 * Register a notifier to be called when network device events occur. 1237 * The notifier passed is linked into the kernel structures and must 1238 * not be reused until it has been unregistered. A negative errno code 1239 * is returned on a failure. 1240 * 1241 * When registered all registration and up events are replayed 1242 * to the new notifier to allow device to have a race free 1243 * view of the network device list. 1244 */ 1245 1246 int register_netdevice_notifier(struct notifier_block *nb) 1247 { 1248 struct net_device *dev; 1249 struct net_device *last; 1250 struct net *net; 1251 int err; 1252 1253 rtnl_lock(); 1254 err = raw_notifier_chain_register(&netdev_chain, nb); 1255 if (err) 1256 goto unlock; 1257 if (dev_boot_phase) 1258 goto unlock; 1259 for_each_net(net) { 1260 for_each_netdev(net, dev) { 1261 err = nb->notifier_call(nb, NETDEV_REGISTER, dev); 1262 err = notifier_to_errno(err); 1263 if (err) 1264 goto rollback; 1265 1266 if (!(dev->flags & IFF_UP)) 1267 continue; 1268 1269 nb->notifier_call(nb, NETDEV_UP, dev); 1270 } 1271 } 1272 1273 unlock: 1274 rtnl_unlock(); 1275 return err; 1276 1277 rollback: 1278 last = dev; 1279 for_each_net(net) { 1280 for_each_netdev(net, dev) { 1281 if (dev == last) 1282 break; 1283 1284 if (dev->flags & IFF_UP) { 1285 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev); 1286 nb->notifier_call(nb, NETDEV_DOWN, dev); 1287 } 1288 nb->notifier_call(nb, NETDEV_UNREGISTER, dev); 1289 } 1290 } 1291 1292 raw_notifier_chain_unregister(&netdev_chain, nb); 1293 goto unlock; 1294 } 1295 EXPORT_SYMBOL(register_netdevice_notifier); 1296 1297 /** 1298 * unregister_netdevice_notifier - unregister a network notifier block 1299 * @nb: notifier 1300 * 1301 * Unregister a notifier previously registered by 1302 * register_netdevice_notifier(). The notifier is unlinked into the 1303 * kernel structures and may then be reused. A negative errno code 1304 * is returned on a failure. 1305 */ 1306 1307 int unregister_netdevice_notifier(struct notifier_block *nb) 1308 { 1309 int err; 1310 1311 rtnl_lock(); 1312 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1313 rtnl_unlock(); 1314 return err; 1315 } 1316 EXPORT_SYMBOL(unregister_netdevice_notifier); 1317 1318 /** 1319 * call_netdevice_notifiers - call all network notifier blocks 1320 * @val: value passed unmodified to notifier function 1321 * @dev: net_device pointer passed unmodified to notifier function 1322 * 1323 * Call all network notifier blocks. Parameters and return value 1324 * are as for raw_notifier_call_chain(). 1325 */ 1326 1327 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 1328 { 1329 return raw_notifier_call_chain(&netdev_chain, val, dev); 1330 } 1331 1332 /* When > 0 there are consumers of rx skb time stamps */ 1333 static atomic_t netstamp_needed = ATOMIC_INIT(0); 1334 1335 void net_enable_timestamp(void) 1336 { 1337 atomic_inc(&netstamp_needed); 1338 } 1339 EXPORT_SYMBOL(net_enable_timestamp); 1340 1341 void net_disable_timestamp(void) 1342 { 1343 atomic_dec(&netstamp_needed); 1344 } 1345 EXPORT_SYMBOL(net_disable_timestamp); 1346 1347 static inline void net_timestamp(struct sk_buff *skb) 1348 { 1349 if (atomic_read(&netstamp_needed)) 1350 __net_timestamp(skb); 1351 else 1352 skb->tstamp.tv64 = 0; 1353 } 1354 1355 /* 1356 * Support routine. Sends outgoing frames to any network 1357 * taps currently in use. 1358 */ 1359 1360 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 1361 { 1362 struct packet_type *ptype; 1363 1364 #ifdef CONFIG_NET_CLS_ACT 1365 if (!(skb->tstamp.tv64 && (G_TC_FROM(skb->tc_verd) & AT_INGRESS))) 1366 net_timestamp(skb); 1367 #else 1368 net_timestamp(skb); 1369 #endif 1370 1371 rcu_read_lock(); 1372 list_for_each_entry_rcu(ptype, &ptype_all, list) { 1373 /* Never send packets back to the socket 1374 * they originated from - MvS (miquels@drinkel.ow.org) 1375 */ 1376 if ((ptype->dev == dev || !ptype->dev) && 1377 (ptype->af_packet_priv == NULL || 1378 (struct sock *)ptype->af_packet_priv != skb->sk)) { 1379 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC); 1380 if (!skb2) 1381 break; 1382 1383 /* skb->nh should be correctly 1384 set by sender, so that the second statement is 1385 just protection against buggy protocols. 1386 */ 1387 skb_reset_mac_header(skb2); 1388 1389 if (skb_network_header(skb2) < skb2->data || 1390 skb2->network_header > skb2->tail) { 1391 if (net_ratelimit()) 1392 printk(KERN_CRIT "protocol %04x is " 1393 "buggy, dev %s\n", 1394 skb2->protocol, dev->name); 1395 skb_reset_network_header(skb2); 1396 } 1397 1398 skb2->transport_header = skb2->network_header; 1399 skb2->pkt_type = PACKET_OUTGOING; 1400 ptype->func(skb2, skb->dev, ptype, skb->dev); 1401 } 1402 } 1403 rcu_read_unlock(); 1404 } 1405 1406 1407 static inline void __netif_reschedule(struct Qdisc *q) 1408 { 1409 struct softnet_data *sd; 1410 unsigned long flags; 1411 1412 local_irq_save(flags); 1413 sd = &__get_cpu_var(softnet_data); 1414 q->next_sched = sd->output_queue; 1415 sd->output_queue = q; 1416 raise_softirq_irqoff(NET_TX_SOFTIRQ); 1417 local_irq_restore(flags); 1418 } 1419 1420 void __netif_schedule(struct Qdisc *q) 1421 { 1422 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 1423 __netif_reschedule(q); 1424 } 1425 EXPORT_SYMBOL(__netif_schedule); 1426 1427 void dev_kfree_skb_irq(struct sk_buff *skb) 1428 { 1429 if (atomic_dec_and_test(&skb->users)) { 1430 struct softnet_data *sd; 1431 unsigned long flags; 1432 1433 local_irq_save(flags); 1434 sd = &__get_cpu_var(softnet_data); 1435 skb->next = sd->completion_queue; 1436 sd->completion_queue = skb; 1437 raise_softirq_irqoff(NET_TX_SOFTIRQ); 1438 local_irq_restore(flags); 1439 } 1440 } 1441 EXPORT_SYMBOL(dev_kfree_skb_irq); 1442 1443 void dev_kfree_skb_any(struct sk_buff *skb) 1444 { 1445 if (in_irq() || irqs_disabled()) 1446 dev_kfree_skb_irq(skb); 1447 else 1448 dev_kfree_skb(skb); 1449 } 1450 EXPORT_SYMBOL(dev_kfree_skb_any); 1451 1452 1453 /** 1454 * netif_device_detach - mark device as removed 1455 * @dev: network device 1456 * 1457 * Mark device as removed from system and therefore no longer available. 1458 */ 1459 void netif_device_detach(struct net_device *dev) 1460 { 1461 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 1462 netif_running(dev)) { 1463 netif_tx_stop_all_queues(dev); 1464 } 1465 } 1466 EXPORT_SYMBOL(netif_device_detach); 1467 1468 /** 1469 * netif_device_attach - mark device as attached 1470 * @dev: network device 1471 * 1472 * Mark device as attached from system and restart if needed. 1473 */ 1474 void netif_device_attach(struct net_device *dev) 1475 { 1476 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 1477 netif_running(dev)) { 1478 netif_tx_wake_all_queues(dev); 1479 __netdev_watchdog_up(dev); 1480 } 1481 } 1482 EXPORT_SYMBOL(netif_device_attach); 1483 1484 static bool can_checksum_protocol(unsigned long features, __be16 protocol) 1485 { 1486 return ((features & NETIF_F_GEN_CSUM) || 1487 ((features & NETIF_F_IP_CSUM) && 1488 protocol == htons(ETH_P_IP)) || 1489 ((features & NETIF_F_IPV6_CSUM) && 1490 protocol == htons(ETH_P_IPV6)) || 1491 ((features & NETIF_F_FCOE_CRC) && 1492 protocol == htons(ETH_P_FCOE))); 1493 } 1494 1495 static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb) 1496 { 1497 if (can_checksum_protocol(dev->features, skb->protocol)) 1498 return true; 1499 1500 if (skb->protocol == htons(ETH_P_8021Q)) { 1501 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data; 1502 if (can_checksum_protocol(dev->features & dev->vlan_features, 1503 veh->h_vlan_encapsulated_proto)) 1504 return true; 1505 } 1506 1507 return false; 1508 } 1509 1510 /* 1511 * Invalidate hardware checksum when packet is to be mangled, and 1512 * complete checksum manually on outgoing path. 1513 */ 1514 int skb_checksum_help(struct sk_buff *skb) 1515 { 1516 __wsum csum; 1517 int ret = 0, offset; 1518 1519 if (skb->ip_summed == CHECKSUM_COMPLETE) 1520 goto out_set_summed; 1521 1522 if (unlikely(skb_shinfo(skb)->gso_size)) { 1523 /* Let GSO fix up the checksum. */ 1524 goto out_set_summed; 1525 } 1526 1527 offset = skb->csum_start - skb_headroom(skb); 1528 BUG_ON(offset >= skb_headlen(skb)); 1529 csum = skb_checksum(skb, offset, skb->len - offset, 0); 1530 1531 offset += skb->csum_offset; 1532 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 1533 1534 if (skb_cloned(skb) && 1535 !skb_clone_writable(skb, offset + sizeof(__sum16))) { 1536 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 1537 if (ret) 1538 goto out; 1539 } 1540 1541 *(__sum16 *)(skb->data + offset) = csum_fold(csum); 1542 out_set_summed: 1543 skb->ip_summed = CHECKSUM_NONE; 1544 out: 1545 return ret; 1546 } 1547 EXPORT_SYMBOL(skb_checksum_help); 1548 1549 /** 1550 * skb_gso_segment - Perform segmentation on skb. 1551 * @skb: buffer to segment 1552 * @features: features for the output path (see dev->features) 1553 * 1554 * This function segments the given skb and returns a list of segments. 1555 * 1556 * It may return NULL if the skb requires no segmentation. This is 1557 * only possible when GSO is used for verifying header integrity. 1558 */ 1559 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features) 1560 { 1561 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 1562 struct packet_type *ptype; 1563 __be16 type = skb->protocol; 1564 int err; 1565 1566 skb_reset_mac_header(skb); 1567 skb->mac_len = skb->network_header - skb->mac_header; 1568 __skb_pull(skb, skb->mac_len); 1569 1570 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) { 1571 struct net_device *dev = skb->dev; 1572 struct ethtool_drvinfo info = {}; 1573 1574 if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo) 1575 dev->ethtool_ops->get_drvinfo(dev, &info); 1576 1577 WARN(1, "%s: caps=(0x%lx, 0x%lx) len=%d data_len=%d " 1578 "ip_summed=%d", 1579 info.driver, dev ? dev->features : 0L, 1580 skb->sk ? skb->sk->sk_route_caps : 0L, 1581 skb->len, skb->data_len, skb->ip_summed); 1582 1583 if (skb_header_cloned(skb) && 1584 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))) 1585 return ERR_PTR(err); 1586 } 1587 1588 rcu_read_lock(); 1589 list_for_each_entry_rcu(ptype, 1590 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) { 1591 if (ptype->type == type && !ptype->dev && ptype->gso_segment) { 1592 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) { 1593 err = ptype->gso_send_check(skb); 1594 segs = ERR_PTR(err); 1595 if (err || skb_gso_ok(skb, features)) 1596 break; 1597 __skb_push(skb, (skb->data - 1598 skb_network_header(skb))); 1599 } 1600 segs = ptype->gso_segment(skb, features); 1601 break; 1602 } 1603 } 1604 rcu_read_unlock(); 1605 1606 __skb_push(skb, skb->data - skb_mac_header(skb)); 1607 1608 return segs; 1609 } 1610 EXPORT_SYMBOL(skb_gso_segment); 1611 1612 /* Take action when hardware reception checksum errors are detected. */ 1613 #ifdef CONFIG_BUG 1614 void netdev_rx_csum_fault(struct net_device *dev) 1615 { 1616 if (net_ratelimit()) { 1617 printk(KERN_ERR "%s: hw csum failure.\n", 1618 dev ? dev->name : "<unknown>"); 1619 dump_stack(); 1620 } 1621 } 1622 EXPORT_SYMBOL(netdev_rx_csum_fault); 1623 #endif 1624 1625 /* Actually, we should eliminate this check as soon as we know, that: 1626 * 1. IOMMU is present and allows to map all the memory. 1627 * 2. No high memory really exists on this machine. 1628 */ 1629 1630 static inline int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 1631 { 1632 #ifdef CONFIG_HIGHMEM 1633 int i; 1634 1635 if (dev->features & NETIF_F_HIGHDMA) 1636 return 0; 1637 1638 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1639 if (PageHighMem(skb_shinfo(skb)->frags[i].page)) 1640 return 1; 1641 1642 #endif 1643 return 0; 1644 } 1645 1646 struct dev_gso_cb { 1647 void (*destructor)(struct sk_buff *skb); 1648 }; 1649 1650 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb) 1651 1652 static void dev_gso_skb_destructor(struct sk_buff *skb) 1653 { 1654 struct dev_gso_cb *cb; 1655 1656 do { 1657 struct sk_buff *nskb = skb->next; 1658 1659 skb->next = nskb->next; 1660 nskb->next = NULL; 1661 kfree_skb(nskb); 1662 } while (skb->next); 1663 1664 cb = DEV_GSO_CB(skb); 1665 if (cb->destructor) 1666 cb->destructor(skb); 1667 } 1668 1669 /** 1670 * dev_gso_segment - Perform emulated hardware segmentation on skb. 1671 * @skb: buffer to segment 1672 * 1673 * This function segments the given skb and stores the list of segments 1674 * in skb->next. 1675 */ 1676 static int dev_gso_segment(struct sk_buff *skb) 1677 { 1678 struct net_device *dev = skb->dev; 1679 struct sk_buff *segs; 1680 int features = dev->features & ~(illegal_highdma(dev, skb) ? 1681 NETIF_F_SG : 0); 1682 1683 segs = skb_gso_segment(skb, features); 1684 1685 /* Verifying header integrity only. */ 1686 if (!segs) 1687 return 0; 1688 1689 if (IS_ERR(segs)) 1690 return PTR_ERR(segs); 1691 1692 skb->next = segs; 1693 DEV_GSO_CB(skb)->destructor = skb->destructor; 1694 skb->destructor = dev_gso_skb_destructor; 1695 1696 return 0; 1697 } 1698 1699 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 1700 struct netdev_queue *txq) 1701 { 1702 const struct net_device_ops *ops = dev->netdev_ops; 1703 int rc; 1704 1705 if (likely(!skb->next)) { 1706 if (!list_empty(&ptype_all)) 1707 dev_queue_xmit_nit(skb, dev); 1708 1709 if (netif_needs_gso(dev, skb)) { 1710 if (unlikely(dev_gso_segment(skb))) 1711 goto out_kfree_skb; 1712 if (skb->next) 1713 goto gso; 1714 } 1715 1716 /* 1717 * If device doesnt need skb->dst, release it right now while 1718 * its hot in this cpu cache 1719 */ 1720 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 1721 skb_dst_drop(skb); 1722 1723 rc = ops->ndo_start_xmit(skb, dev); 1724 if (rc == NETDEV_TX_OK) 1725 txq_trans_update(txq); 1726 /* 1727 * TODO: if skb_orphan() was called by 1728 * dev->hard_start_xmit() (for example, the unmodified 1729 * igb driver does that; bnx2 doesn't), then 1730 * skb_tx_software_timestamp() will be unable to send 1731 * back the time stamp. 1732 * 1733 * How can this be prevented? Always create another 1734 * reference to the socket before calling 1735 * dev->hard_start_xmit()? Prevent that skb_orphan() 1736 * does anything in dev->hard_start_xmit() by clearing 1737 * the skb destructor before the call and restoring it 1738 * afterwards, then doing the skb_orphan() ourselves? 1739 */ 1740 return rc; 1741 } 1742 1743 gso: 1744 do { 1745 struct sk_buff *nskb = skb->next; 1746 1747 skb->next = nskb->next; 1748 nskb->next = NULL; 1749 rc = ops->ndo_start_xmit(nskb, dev); 1750 if (unlikely(rc != NETDEV_TX_OK)) { 1751 nskb->next = skb->next; 1752 skb->next = nskb; 1753 return rc; 1754 } 1755 txq_trans_update(txq); 1756 if (unlikely(netif_tx_queue_stopped(txq) && skb->next)) 1757 return NETDEV_TX_BUSY; 1758 } while (skb->next); 1759 1760 skb->destructor = DEV_GSO_CB(skb)->destructor; 1761 1762 out_kfree_skb: 1763 kfree_skb(skb); 1764 return NETDEV_TX_OK; 1765 } 1766 1767 static u32 skb_tx_hashrnd; 1768 1769 u16 skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb) 1770 { 1771 u32 hash; 1772 1773 if (skb_rx_queue_recorded(skb)) { 1774 hash = skb_get_rx_queue(skb); 1775 while (unlikely(hash >= dev->real_num_tx_queues)) 1776 hash -= dev->real_num_tx_queues; 1777 return hash; 1778 } 1779 1780 if (skb->sk && skb->sk->sk_hash) 1781 hash = skb->sk->sk_hash; 1782 else 1783 hash = skb->protocol; 1784 1785 hash = jhash_1word(hash, skb_tx_hashrnd); 1786 1787 return (u16) (((u64) hash * dev->real_num_tx_queues) >> 32); 1788 } 1789 EXPORT_SYMBOL(skb_tx_hash); 1790 1791 static struct netdev_queue *dev_pick_tx(struct net_device *dev, 1792 struct sk_buff *skb) 1793 { 1794 const struct net_device_ops *ops = dev->netdev_ops; 1795 u16 queue_index = 0; 1796 1797 if (ops->ndo_select_queue) 1798 queue_index = ops->ndo_select_queue(dev, skb); 1799 else if (dev->real_num_tx_queues > 1) 1800 queue_index = skb_tx_hash(dev, skb); 1801 1802 skb_set_queue_mapping(skb, queue_index); 1803 return netdev_get_tx_queue(dev, queue_index); 1804 } 1805 1806 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 1807 struct net_device *dev, 1808 struct netdev_queue *txq) 1809 { 1810 spinlock_t *root_lock = qdisc_lock(q); 1811 int rc; 1812 1813 spin_lock(root_lock); 1814 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 1815 kfree_skb(skb); 1816 rc = NET_XMIT_DROP; 1817 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 1818 !test_and_set_bit(__QDISC_STATE_RUNNING, &q->state)) { 1819 /* 1820 * This is a work-conserving queue; there are no old skbs 1821 * waiting to be sent out; and the qdisc is not running - 1822 * xmit the skb directly. 1823 */ 1824 __qdisc_update_bstats(q, skb->len); 1825 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) 1826 __qdisc_run(q); 1827 else 1828 clear_bit(__QDISC_STATE_RUNNING, &q->state); 1829 1830 rc = NET_XMIT_SUCCESS; 1831 } else { 1832 rc = qdisc_enqueue_root(skb, q); 1833 qdisc_run(q); 1834 } 1835 spin_unlock(root_lock); 1836 1837 return rc; 1838 } 1839 1840 /** 1841 * dev_queue_xmit - transmit a buffer 1842 * @skb: buffer to transmit 1843 * 1844 * Queue a buffer for transmission to a network device. The caller must 1845 * have set the device and priority and built the buffer before calling 1846 * this function. The function can be called from an interrupt. 1847 * 1848 * A negative errno code is returned on a failure. A success does not 1849 * guarantee the frame will be transmitted as it may be dropped due 1850 * to congestion or traffic shaping. 1851 * 1852 * ----------------------------------------------------------------------------------- 1853 * I notice this method can also return errors from the queue disciplines, 1854 * including NET_XMIT_DROP, which is a positive value. So, errors can also 1855 * be positive. 1856 * 1857 * Regardless of the return value, the skb is consumed, so it is currently 1858 * difficult to retry a send to this method. (You can bump the ref count 1859 * before sending to hold a reference for retry if you are careful.) 1860 * 1861 * When calling this method, interrupts MUST be enabled. This is because 1862 * the BH enable code must have IRQs enabled so that it will not deadlock. 1863 * --BLG 1864 */ 1865 int dev_queue_xmit(struct sk_buff *skb) 1866 { 1867 struct net_device *dev = skb->dev; 1868 struct netdev_queue *txq; 1869 struct Qdisc *q; 1870 int rc = -ENOMEM; 1871 1872 /* GSO will handle the following emulations directly. */ 1873 if (netif_needs_gso(dev, skb)) 1874 goto gso; 1875 1876 if (skb_has_frags(skb) && 1877 !(dev->features & NETIF_F_FRAGLIST) && 1878 __skb_linearize(skb)) 1879 goto out_kfree_skb; 1880 1881 /* Fragmented skb is linearized if device does not support SG, 1882 * or if at least one of fragments is in highmem and device 1883 * does not support DMA from it. 1884 */ 1885 if (skb_shinfo(skb)->nr_frags && 1886 (!(dev->features & NETIF_F_SG) || illegal_highdma(dev, skb)) && 1887 __skb_linearize(skb)) 1888 goto out_kfree_skb; 1889 1890 /* If packet is not checksummed and device does not support 1891 * checksumming for this protocol, complete checksumming here. 1892 */ 1893 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1894 skb_set_transport_header(skb, skb->csum_start - 1895 skb_headroom(skb)); 1896 if (!dev_can_checksum(dev, skb) && skb_checksum_help(skb)) 1897 goto out_kfree_skb; 1898 } 1899 1900 gso: 1901 /* Disable soft irqs for various locks below. Also 1902 * stops preemption for RCU. 1903 */ 1904 rcu_read_lock_bh(); 1905 1906 txq = dev_pick_tx(dev, skb); 1907 q = rcu_dereference(txq->qdisc); 1908 1909 #ifdef CONFIG_NET_CLS_ACT 1910 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS); 1911 #endif 1912 if (q->enqueue) { 1913 rc = __dev_xmit_skb(skb, q, dev, txq); 1914 goto out; 1915 } 1916 1917 /* The device has no queue. Common case for software devices: 1918 loopback, all the sorts of tunnels... 1919 1920 Really, it is unlikely that netif_tx_lock protection is necessary 1921 here. (f.e. loopback and IP tunnels are clean ignoring statistics 1922 counters.) 1923 However, it is possible, that they rely on protection 1924 made by us here. 1925 1926 Check this and shot the lock. It is not prone from deadlocks. 1927 Either shot noqueue qdisc, it is even simpler 8) 1928 */ 1929 if (dev->flags & IFF_UP) { 1930 int cpu = smp_processor_id(); /* ok because BHs are off */ 1931 1932 if (txq->xmit_lock_owner != cpu) { 1933 1934 HARD_TX_LOCK(dev, txq, cpu); 1935 1936 if (!netif_tx_queue_stopped(txq)) { 1937 rc = NET_XMIT_SUCCESS; 1938 if (!dev_hard_start_xmit(skb, dev, txq)) { 1939 HARD_TX_UNLOCK(dev, txq); 1940 goto out; 1941 } 1942 } 1943 HARD_TX_UNLOCK(dev, txq); 1944 if (net_ratelimit()) 1945 printk(KERN_CRIT "Virtual device %s asks to " 1946 "queue packet!\n", dev->name); 1947 } else { 1948 /* Recursion is detected! It is possible, 1949 * unfortunately */ 1950 if (net_ratelimit()) 1951 printk(KERN_CRIT "Dead loop on virtual device " 1952 "%s, fix it urgently!\n", dev->name); 1953 } 1954 } 1955 1956 rc = -ENETDOWN; 1957 rcu_read_unlock_bh(); 1958 1959 out_kfree_skb: 1960 kfree_skb(skb); 1961 return rc; 1962 out: 1963 rcu_read_unlock_bh(); 1964 return rc; 1965 } 1966 EXPORT_SYMBOL(dev_queue_xmit); 1967 1968 1969 /*======================================================================= 1970 Receiver routines 1971 =======================================================================*/ 1972 1973 int netdev_max_backlog __read_mostly = 1000; 1974 int netdev_budget __read_mostly = 300; 1975 int weight_p __read_mostly = 64; /* old backlog weight */ 1976 1977 DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, }; 1978 1979 1980 /** 1981 * netif_rx - post buffer to the network code 1982 * @skb: buffer to post 1983 * 1984 * This function receives a packet from a device driver and queues it for 1985 * the upper (protocol) levels to process. It always succeeds. The buffer 1986 * may be dropped during processing for congestion control or by the 1987 * protocol layers. 1988 * 1989 * return values: 1990 * NET_RX_SUCCESS (no congestion) 1991 * NET_RX_DROP (packet was dropped) 1992 * 1993 */ 1994 1995 int netif_rx(struct sk_buff *skb) 1996 { 1997 struct softnet_data *queue; 1998 unsigned long flags; 1999 2000 /* if netpoll wants it, pretend we never saw it */ 2001 if (netpoll_rx(skb)) 2002 return NET_RX_DROP; 2003 2004 if (!skb->tstamp.tv64) 2005 net_timestamp(skb); 2006 2007 /* 2008 * The code is rearranged so that the path is the most 2009 * short when CPU is congested, but is still operating. 2010 */ 2011 local_irq_save(flags); 2012 queue = &__get_cpu_var(softnet_data); 2013 2014 __get_cpu_var(netdev_rx_stat).total++; 2015 if (queue->input_pkt_queue.qlen <= netdev_max_backlog) { 2016 if (queue->input_pkt_queue.qlen) { 2017 enqueue: 2018 __skb_queue_tail(&queue->input_pkt_queue, skb); 2019 local_irq_restore(flags); 2020 return NET_RX_SUCCESS; 2021 } 2022 2023 napi_schedule(&queue->backlog); 2024 goto enqueue; 2025 } 2026 2027 __get_cpu_var(netdev_rx_stat).dropped++; 2028 local_irq_restore(flags); 2029 2030 kfree_skb(skb); 2031 return NET_RX_DROP; 2032 } 2033 EXPORT_SYMBOL(netif_rx); 2034 2035 int netif_rx_ni(struct sk_buff *skb) 2036 { 2037 int err; 2038 2039 preempt_disable(); 2040 err = netif_rx(skb); 2041 if (local_softirq_pending()) 2042 do_softirq(); 2043 preempt_enable(); 2044 2045 return err; 2046 } 2047 EXPORT_SYMBOL(netif_rx_ni); 2048 2049 static void net_tx_action(struct softirq_action *h) 2050 { 2051 struct softnet_data *sd = &__get_cpu_var(softnet_data); 2052 2053 if (sd->completion_queue) { 2054 struct sk_buff *clist; 2055 2056 local_irq_disable(); 2057 clist = sd->completion_queue; 2058 sd->completion_queue = NULL; 2059 local_irq_enable(); 2060 2061 while (clist) { 2062 struct sk_buff *skb = clist; 2063 clist = clist->next; 2064 2065 WARN_ON(atomic_read(&skb->users)); 2066 __kfree_skb(skb); 2067 } 2068 } 2069 2070 if (sd->output_queue) { 2071 struct Qdisc *head; 2072 2073 local_irq_disable(); 2074 head = sd->output_queue; 2075 sd->output_queue = NULL; 2076 local_irq_enable(); 2077 2078 while (head) { 2079 struct Qdisc *q = head; 2080 spinlock_t *root_lock; 2081 2082 head = head->next_sched; 2083 2084 root_lock = qdisc_lock(q); 2085 if (spin_trylock(root_lock)) { 2086 smp_mb__before_clear_bit(); 2087 clear_bit(__QDISC_STATE_SCHED, 2088 &q->state); 2089 qdisc_run(q); 2090 spin_unlock(root_lock); 2091 } else { 2092 if (!test_bit(__QDISC_STATE_DEACTIVATED, 2093 &q->state)) { 2094 __netif_reschedule(q); 2095 } else { 2096 smp_mb__before_clear_bit(); 2097 clear_bit(__QDISC_STATE_SCHED, 2098 &q->state); 2099 } 2100 } 2101 } 2102 } 2103 } 2104 2105 static inline int deliver_skb(struct sk_buff *skb, 2106 struct packet_type *pt_prev, 2107 struct net_device *orig_dev) 2108 { 2109 atomic_inc(&skb->users); 2110 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 2111 } 2112 2113 #if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE) 2114 2115 #if defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE) 2116 /* This hook is defined here for ATM LANE */ 2117 int (*br_fdb_test_addr_hook)(struct net_device *dev, 2118 unsigned char *addr) __read_mostly; 2119 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 2120 #endif 2121 2122 /* 2123 * If bridge module is loaded call bridging hook. 2124 * returns NULL if packet was consumed. 2125 */ 2126 struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p, 2127 struct sk_buff *skb) __read_mostly; 2128 EXPORT_SYMBOL_GPL(br_handle_frame_hook); 2129 2130 static inline struct sk_buff *handle_bridge(struct sk_buff *skb, 2131 struct packet_type **pt_prev, int *ret, 2132 struct net_device *orig_dev) 2133 { 2134 struct net_bridge_port *port; 2135 2136 if (skb->pkt_type == PACKET_LOOPBACK || 2137 (port = rcu_dereference(skb->dev->br_port)) == NULL) 2138 return skb; 2139 2140 if (*pt_prev) { 2141 *ret = deliver_skb(skb, *pt_prev, orig_dev); 2142 *pt_prev = NULL; 2143 } 2144 2145 return br_handle_frame_hook(port, skb); 2146 } 2147 #else 2148 #define handle_bridge(skb, pt_prev, ret, orig_dev) (skb) 2149 #endif 2150 2151 #if defined(CONFIG_MACVLAN) || defined(CONFIG_MACVLAN_MODULE) 2152 struct sk_buff *(*macvlan_handle_frame_hook)(struct sk_buff *skb) __read_mostly; 2153 EXPORT_SYMBOL_GPL(macvlan_handle_frame_hook); 2154 2155 static inline struct sk_buff *handle_macvlan(struct sk_buff *skb, 2156 struct packet_type **pt_prev, 2157 int *ret, 2158 struct net_device *orig_dev) 2159 { 2160 if (skb->dev->macvlan_port == NULL) 2161 return skb; 2162 2163 if (*pt_prev) { 2164 *ret = deliver_skb(skb, *pt_prev, orig_dev); 2165 *pt_prev = NULL; 2166 } 2167 return macvlan_handle_frame_hook(skb); 2168 } 2169 #else 2170 #define handle_macvlan(skb, pt_prev, ret, orig_dev) (skb) 2171 #endif 2172 2173 #ifdef CONFIG_NET_CLS_ACT 2174 /* TODO: Maybe we should just force sch_ingress to be compiled in 2175 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions 2176 * a compare and 2 stores extra right now if we dont have it on 2177 * but have CONFIG_NET_CLS_ACT 2178 * NOTE: This doesnt stop any functionality; if you dont have 2179 * the ingress scheduler, you just cant add policies on ingress. 2180 * 2181 */ 2182 static int ing_filter(struct sk_buff *skb) 2183 { 2184 struct net_device *dev = skb->dev; 2185 u32 ttl = G_TC_RTTL(skb->tc_verd); 2186 struct netdev_queue *rxq; 2187 int result = TC_ACT_OK; 2188 struct Qdisc *q; 2189 2190 if (MAX_RED_LOOP < ttl++) { 2191 printk(KERN_WARNING 2192 "Redir loop detected Dropping packet (%d->%d)\n", 2193 skb->iif, dev->ifindex); 2194 return TC_ACT_SHOT; 2195 } 2196 2197 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl); 2198 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS); 2199 2200 rxq = &dev->rx_queue; 2201 2202 q = rxq->qdisc; 2203 if (q != &noop_qdisc) { 2204 spin_lock(qdisc_lock(q)); 2205 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) 2206 result = qdisc_enqueue_root(skb, q); 2207 spin_unlock(qdisc_lock(q)); 2208 } 2209 2210 return result; 2211 } 2212 2213 static inline struct sk_buff *handle_ing(struct sk_buff *skb, 2214 struct packet_type **pt_prev, 2215 int *ret, struct net_device *orig_dev) 2216 { 2217 if (skb->dev->rx_queue.qdisc == &noop_qdisc) 2218 goto out; 2219 2220 if (*pt_prev) { 2221 *ret = deliver_skb(skb, *pt_prev, orig_dev); 2222 *pt_prev = NULL; 2223 } else { 2224 /* Huh? Why does turning on AF_PACKET affect this? */ 2225 skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd); 2226 } 2227 2228 switch (ing_filter(skb)) { 2229 case TC_ACT_SHOT: 2230 case TC_ACT_STOLEN: 2231 kfree_skb(skb); 2232 return NULL; 2233 } 2234 2235 out: 2236 skb->tc_verd = 0; 2237 return skb; 2238 } 2239 #endif 2240 2241 /* 2242 * netif_nit_deliver - deliver received packets to network taps 2243 * @skb: buffer 2244 * 2245 * This function is used to deliver incoming packets to network 2246 * taps. It should be used when the normal netif_receive_skb path 2247 * is bypassed, for example because of VLAN acceleration. 2248 */ 2249 void netif_nit_deliver(struct sk_buff *skb) 2250 { 2251 struct packet_type *ptype; 2252 2253 if (list_empty(&ptype_all)) 2254 return; 2255 2256 skb_reset_network_header(skb); 2257 skb_reset_transport_header(skb); 2258 skb->mac_len = skb->network_header - skb->mac_header; 2259 2260 rcu_read_lock(); 2261 list_for_each_entry_rcu(ptype, &ptype_all, list) { 2262 if (!ptype->dev || ptype->dev == skb->dev) 2263 deliver_skb(skb, ptype, skb->dev); 2264 } 2265 rcu_read_unlock(); 2266 } 2267 2268 /** 2269 * netif_receive_skb - process receive buffer from network 2270 * @skb: buffer to process 2271 * 2272 * netif_receive_skb() is the main receive data processing function. 2273 * It always succeeds. The buffer may be dropped during processing 2274 * for congestion control or by the protocol layers. 2275 * 2276 * This function may only be called from softirq context and interrupts 2277 * should be enabled. 2278 * 2279 * Return values (usually ignored): 2280 * NET_RX_SUCCESS: no congestion 2281 * NET_RX_DROP: packet was dropped 2282 */ 2283 int netif_receive_skb(struct sk_buff *skb) 2284 { 2285 struct packet_type *ptype, *pt_prev; 2286 struct net_device *orig_dev; 2287 struct net_device *null_or_orig; 2288 int ret = NET_RX_DROP; 2289 __be16 type; 2290 2291 if (!skb->tstamp.tv64) 2292 net_timestamp(skb); 2293 2294 if (skb->vlan_tci && vlan_hwaccel_do_receive(skb)) 2295 return NET_RX_SUCCESS; 2296 2297 /* if we've gotten here through NAPI, check netpoll */ 2298 if (netpoll_receive_skb(skb)) 2299 return NET_RX_DROP; 2300 2301 if (!skb->iif) 2302 skb->iif = skb->dev->ifindex; 2303 2304 null_or_orig = NULL; 2305 orig_dev = skb->dev; 2306 if (orig_dev->master) { 2307 if (skb_bond_should_drop(skb)) 2308 null_or_orig = orig_dev; /* deliver only exact match */ 2309 else 2310 skb->dev = orig_dev->master; 2311 } 2312 2313 __get_cpu_var(netdev_rx_stat).total++; 2314 2315 skb_reset_network_header(skb); 2316 skb_reset_transport_header(skb); 2317 skb->mac_len = skb->network_header - skb->mac_header; 2318 2319 pt_prev = NULL; 2320 2321 rcu_read_lock(); 2322 2323 #ifdef CONFIG_NET_CLS_ACT 2324 if (skb->tc_verd & TC_NCLS) { 2325 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd); 2326 goto ncls; 2327 } 2328 #endif 2329 2330 list_for_each_entry_rcu(ptype, &ptype_all, list) { 2331 if (ptype->dev == null_or_orig || ptype->dev == skb->dev || 2332 ptype->dev == orig_dev) { 2333 if (pt_prev) 2334 ret = deliver_skb(skb, pt_prev, orig_dev); 2335 pt_prev = ptype; 2336 } 2337 } 2338 2339 #ifdef CONFIG_NET_CLS_ACT 2340 skb = handle_ing(skb, &pt_prev, &ret, orig_dev); 2341 if (!skb) 2342 goto out; 2343 ncls: 2344 #endif 2345 2346 skb = handle_bridge(skb, &pt_prev, &ret, orig_dev); 2347 if (!skb) 2348 goto out; 2349 skb = handle_macvlan(skb, &pt_prev, &ret, orig_dev); 2350 if (!skb) 2351 goto out; 2352 2353 type = skb->protocol; 2354 list_for_each_entry_rcu(ptype, 2355 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) { 2356 if (ptype->type == type && 2357 (ptype->dev == null_or_orig || ptype->dev == skb->dev || 2358 ptype->dev == orig_dev)) { 2359 if (pt_prev) 2360 ret = deliver_skb(skb, pt_prev, orig_dev); 2361 pt_prev = ptype; 2362 } 2363 } 2364 2365 if (pt_prev) { 2366 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 2367 } else { 2368 kfree_skb(skb); 2369 /* Jamal, now you will not able to escape explaining 2370 * me how you were going to use this. :-) 2371 */ 2372 ret = NET_RX_DROP; 2373 } 2374 2375 out: 2376 rcu_read_unlock(); 2377 return ret; 2378 } 2379 EXPORT_SYMBOL(netif_receive_skb); 2380 2381 /* Network device is going away, flush any packets still pending */ 2382 static void flush_backlog(void *arg) 2383 { 2384 struct net_device *dev = arg; 2385 struct softnet_data *queue = &__get_cpu_var(softnet_data); 2386 struct sk_buff *skb, *tmp; 2387 2388 skb_queue_walk_safe(&queue->input_pkt_queue, skb, tmp) 2389 if (skb->dev == dev) { 2390 __skb_unlink(skb, &queue->input_pkt_queue); 2391 kfree_skb(skb); 2392 } 2393 } 2394 2395 static int napi_gro_complete(struct sk_buff *skb) 2396 { 2397 struct packet_type *ptype; 2398 __be16 type = skb->protocol; 2399 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK]; 2400 int err = -ENOENT; 2401 2402 if (NAPI_GRO_CB(skb)->count == 1) { 2403 skb_shinfo(skb)->gso_size = 0; 2404 goto out; 2405 } 2406 2407 rcu_read_lock(); 2408 list_for_each_entry_rcu(ptype, head, list) { 2409 if (ptype->type != type || ptype->dev || !ptype->gro_complete) 2410 continue; 2411 2412 err = ptype->gro_complete(skb); 2413 break; 2414 } 2415 rcu_read_unlock(); 2416 2417 if (err) { 2418 WARN_ON(&ptype->list == head); 2419 kfree_skb(skb); 2420 return NET_RX_SUCCESS; 2421 } 2422 2423 out: 2424 return netif_receive_skb(skb); 2425 } 2426 2427 void napi_gro_flush(struct napi_struct *napi) 2428 { 2429 struct sk_buff *skb, *next; 2430 2431 for (skb = napi->gro_list; skb; skb = next) { 2432 next = skb->next; 2433 skb->next = NULL; 2434 napi_gro_complete(skb); 2435 } 2436 2437 napi->gro_count = 0; 2438 napi->gro_list = NULL; 2439 } 2440 EXPORT_SYMBOL(napi_gro_flush); 2441 2442 int dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 2443 { 2444 struct sk_buff **pp = NULL; 2445 struct packet_type *ptype; 2446 __be16 type = skb->protocol; 2447 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK]; 2448 int same_flow; 2449 int mac_len; 2450 int ret; 2451 2452 if (!(skb->dev->features & NETIF_F_GRO)) 2453 goto normal; 2454 2455 if (skb_is_gso(skb) || skb_has_frags(skb)) 2456 goto normal; 2457 2458 rcu_read_lock(); 2459 list_for_each_entry_rcu(ptype, head, list) { 2460 if (ptype->type != type || ptype->dev || !ptype->gro_receive) 2461 continue; 2462 2463 skb_set_network_header(skb, skb_gro_offset(skb)); 2464 mac_len = skb->network_header - skb->mac_header; 2465 skb->mac_len = mac_len; 2466 NAPI_GRO_CB(skb)->same_flow = 0; 2467 NAPI_GRO_CB(skb)->flush = 0; 2468 NAPI_GRO_CB(skb)->free = 0; 2469 2470 pp = ptype->gro_receive(&napi->gro_list, skb); 2471 break; 2472 } 2473 rcu_read_unlock(); 2474 2475 if (&ptype->list == head) 2476 goto normal; 2477 2478 same_flow = NAPI_GRO_CB(skb)->same_flow; 2479 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED; 2480 2481 if (pp) { 2482 struct sk_buff *nskb = *pp; 2483 2484 *pp = nskb->next; 2485 nskb->next = NULL; 2486 napi_gro_complete(nskb); 2487 napi->gro_count--; 2488 } 2489 2490 if (same_flow) 2491 goto ok; 2492 2493 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS) 2494 goto normal; 2495 2496 napi->gro_count++; 2497 NAPI_GRO_CB(skb)->count = 1; 2498 skb_shinfo(skb)->gso_size = skb_gro_len(skb); 2499 skb->next = napi->gro_list; 2500 napi->gro_list = skb; 2501 ret = GRO_HELD; 2502 2503 pull: 2504 if (skb_headlen(skb) < skb_gro_offset(skb)) { 2505 int grow = skb_gro_offset(skb) - skb_headlen(skb); 2506 2507 BUG_ON(skb->end - skb->tail < grow); 2508 2509 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow); 2510 2511 skb->tail += grow; 2512 skb->data_len -= grow; 2513 2514 skb_shinfo(skb)->frags[0].page_offset += grow; 2515 skb_shinfo(skb)->frags[0].size -= grow; 2516 2517 if (unlikely(!skb_shinfo(skb)->frags[0].size)) { 2518 put_page(skb_shinfo(skb)->frags[0].page); 2519 memmove(skb_shinfo(skb)->frags, 2520 skb_shinfo(skb)->frags + 1, 2521 --skb_shinfo(skb)->nr_frags); 2522 } 2523 } 2524 2525 ok: 2526 return ret; 2527 2528 normal: 2529 ret = GRO_NORMAL; 2530 goto pull; 2531 } 2532 EXPORT_SYMBOL(dev_gro_receive); 2533 2534 static int __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 2535 { 2536 struct sk_buff *p; 2537 2538 if (netpoll_rx_on(skb)) 2539 return GRO_NORMAL; 2540 2541 for (p = napi->gro_list; p; p = p->next) { 2542 NAPI_GRO_CB(p)->same_flow = (p->dev == skb->dev) 2543 && !compare_ether_header(skb_mac_header(p), 2544 skb_gro_mac_header(skb)); 2545 NAPI_GRO_CB(p)->flush = 0; 2546 } 2547 2548 return dev_gro_receive(napi, skb); 2549 } 2550 2551 int napi_skb_finish(int ret, struct sk_buff *skb) 2552 { 2553 int err = NET_RX_SUCCESS; 2554 2555 switch (ret) { 2556 case GRO_NORMAL: 2557 return netif_receive_skb(skb); 2558 2559 case GRO_DROP: 2560 err = NET_RX_DROP; 2561 /* fall through */ 2562 2563 case GRO_MERGED_FREE: 2564 kfree_skb(skb); 2565 break; 2566 } 2567 2568 return err; 2569 } 2570 EXPORT_SYMBOL(napi_skb_finish); 2571 2572 void skb_gro_reset_offset(struct sk_buff *skb) 2573 { 2574 NAPI_GRO_CB(skb)->data_offset = 0; 2575 NAPI_GRO_CB(skb)->frag0 = NULL; 2576 NAPI_GRO_CB(skb)->frag0_len = 0; 2577 2578 if (skb->mac_header == skb->tail && 2579 !PageHighMem(skb_shinfo(skb)->frags[0].page)) { 2580 NAPI_GRO_CB(skb)->frag0 = 2581 page_address(skb_shinfo(skb)->frags[0].page) + 2582 skb_shinfo(skb)->frags[0].page_offset; 2583 NAPI_GRO_CB(skb)->frag0_len = skb_shinfo(skb)->frags[0].size; 2584 } 2585 } 2586 EXPORT_SYMBOL(skb_gro_reset_offset); 2587 2588 int napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 2589 { 2590 skb_gro_reset_offset(skb); 2591 2592 return napi_skb_finish(__napi_gro_receive(napi, skb), skb); 2593 } 2594 EXPORT_SYMBOL(napi_gro_receive); 2595 2596 void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb) 2597 { 2598 __skb_pull(skb, skb_headlen(skb)); 2599 skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb)); 2600 2601 napi->skb = skb; 2602 } 2603 EXPORT_SYMBOL(napi_reuse_skb); 2604 2605 struct sk_buff *napi_get_frags(struct napi_struct *napi) 2606 { 2607 struct net_device *dev = napi->dev; 2608 struct sk_buff *skb = napi->skb; 2609 2610 if (!skb) { 2611 skb = netdev_alloc_skb(dev, GRO_MAX_HEAD + NET_IP_ALIGN); 2612 if (!skb) 2613 goto out; 2614 2615 skb_reserve(skb, NET_IP_ALIGN); 2616 2617 napi->skb = skb; 2618 } 2619 2620 out: 2621 return skb; 2622 } 2623 EXPORT_SYMBOL(napi_get_frags); 2624 2625 int napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb, int ret) 2626 { 2627 int err = NET_RX_SUCCESS; 2628 2629 switch (ret) { 2630 case GRO_NORMAL: 2631 case GRO_HELD: 2632 skb->protocol = eth_type_trans(skb, napi->dev); 2633 2634 if (ret == GRO_NORMAL) 2635 return netif_receive_skb(skb); 2636 2637 skb_gro_pull(skb, -ETH_HLEN); 2638 break; 2639 2640 case GRO_DROP: 2641 err = NET_RX_DROP; 2642 /* fall through */ 2643 2644 case GRO_MERGED_FREE: 2645 napi_reuse_skb(napi, skb); 2646 break; 2647 } 2648 2649 return err; 2650 } 2651 EXPORT_SYMBOL(napi_frags_finish); 2652 2653 struct sk_buff *napi_frags_skb(struct napi_struct *napi) 2654 { 2655 struct sk_buff *skb = napi->skb; 2656 struct ethhdr *eth; 2657 unsigned int hlen; 2658 unsigned int off; 2659 2660 napi->skb = NULL; 2661 2662 skb_reset_mac_header(skb); 2663 skb_gro_reset_offset(skb); 2664 2665 off = skb_gro_offset(skb); 2666 hlen = off + sizeof(*eth); 2667 eth = skb_gro_header_fast(skb, off); 2668 if (skb_gro_header_hard(skb, hlen)) { 2669 eth = skb_gro_header_slow(skb, hlen, off); 2670 if (unlikely(!eth)) { 2671 napi_reuse_skb(napi, skb); 2672 skb = NULL; 2673 goto out; 2674 } 2675 } 2676 2677 skb_gro_pull(skb, sizeof(*eth)); 2678 2679 /* 2680 * This works because the only protocols we care about don't require 2681 * special handling. We'll fix it up properly at the end. 2682 */ 2683 skb->protocol = eth->h_proto; 2684 2685 out: 2686 return skb; 2687 } 2688 EXPORT_SYMBOL(napi_frags_skb); 2689 2690 int napi_gro_frags(struct napi_struct *napi) 2691 { 2692 struct sk_buff *skb = napi_frags_skb(napi); 2693 2694 if (!skb) 2695 return NET_RX_DROP; 2696 2697 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb)); 2698 } 2699 EXPORT_SYMBOL(napi_gro_frags); 2700 2701 static int process_backlog(struct napi_struct *napi, int quota) 2702 { 2703 int work = 0; 2704 struct softnet_data *queue = &__get_cpu_var(softnet_data); 2705 unsigned long start_time = jiffies; 2706 2707 napi->weight = weight_p; 2708 do { 2709 struct sk_buff *skb; 2710 2711 local_irq_disable(); 2712 skb = __skb_dequeue(&queue->input_pkt_queue); 2713 if (!skb) { 2714 __napi_complete(napi); 2715 local_irq_enable(); 2716 break; 2717 } 2718 local_irq_enable(); 2719 2720 netif_receive_skb(skb); 2721 } while (++work < quota && jiffies == start_time); 2722 2723 return work; 2724 } 2725 2726 /** 2727 * __napi_schedule - schedule for receive 2728 * @n: entry to schedule 2729 * 2730 * The entry's receive function will be scheduled to run 2731 */ 2732 void __napi_schedule(struct napi_struct *n) 2733 { 2734 unsigned long flags; 2735 2736 local_irq_save(flags); 2737 list_add_tail(&n->poll_list, &__get_cpu_var(softnet_data).poll_list); 2738 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 2739 local_irq_restore(flags); 2740 } 2741 EXPORT_SYMBOL(__napi_schedule); 2742 2743 void __napi_complete(struct napi_struct *n) 2744 { 2745 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 2746 BUG_ON(n->gro_list); 2747 2748 list_del(&n->poll_list); 2749 smp_mb__before_clear_bit(); 2750 clear_bit(NAPI_STATE_SCHED, &n->state); 2751 } 2752 EXPORT_SYMBOL(__napi_complete); 2753 2754 void napi_complete(struct napi_struct *n) 2755 { 2756 unsigned long flags; 2757 2758 /* 2759 * don't let napi dequeue from the cpu poll list 2760 * just in case its running on a different cpu 2761 */ 2762 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state))) 2763 return; 2764 2765 napi_gro_flush(n); 2766 local_irq_save(flags); 2767 __napi_complete(n); 2768 local_irq_restore(flags); 2769 } 2770 EXPORT_SYMBOL(napi_complete); 2771 2772 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 2773 int (*poll)(struct napi_struct *, int), int weight) 2774 { 2775 INIT_LIST_HEAD(&napi->poll_list); 2776 napi->gro_count = 0; 2777 napi->gro_list = NULL; 2778 napi->skb = NULL; 2779 napi->poll = poll; 2780 napi->weight = weight; 2781 list_add(&napi->dev_list, &dev->napi_list); 2782 napi->dev = dev; 2783 #ifdef CONFIG_NETPOLL 2784 spin_lock_init(&napi->poll_lock); 2785 napi->poll_owner = -1; 2786 #endif 2787 set_bit(NAPI_STATE_SCHED, &napi->state); 2788 } 2789 EXPORT_SYMBOL(netif_napi_add); 2790 2791 void netif_napi_del(struct napi_struct *napi) 2792 { 2793 struct sk_buff *skb, *next; 2794 2795 list_del_init(&napi->dev_list); 2796 napi_free_frags(napi); 2797 2798 for (skb = napi->gro_list; skb; skb = next) { 2799 next = skb->next; 2800 skb->next = NULL; 2801 kfree_skb(skb); 2802 } 2803 2804 napi->gro_list = NULL; 2805 napi->gro_count = 0; 2806 } 2807 EXPORT_SYMBOL(netif_napi_del); 2808 2809 2810 static void net_rx_action(struct softirq_action *h) 2811 { 2812 struct list_head *list = &__get_cpu_var(softnet_data).poll_list; 2813 unsigned long time_limit = jiffies + 2; 2814 int budget = netdev_budget; 2815 void *have; 2816 2817 local_irq_disable(); 2818 2819 while (!list_empty(list)) { 2820 struct napi_struct *n; 2821 int work, weight; 2822 2823 /* If softirq window is exhuasted then punt. 2824 * Allow this to run for 2 jiffies since which will allow 2825 * an average latency of 1.5/HZ. 2826 */ 2827 if (unlikely(budget <= 0 || time_after(jiffies, time_limit))) 2828 goto softnet_break; 2829 2830 local_irq_enable(); 2831 2832 /* Even though interrupts have been re-enabled, this 2833 * access is safe because interrupts can only add new 2834 * entries to the tail of this list, and only ->poll() 2835 * calls can remove this head entry from the list. 2836 */ 2837 n = list_entry(list->next, struct napi_struct, poll_list); 2838 2839 have = netpoll_poll_lock(n); 2840 2841 weight = n->weight; 2842 2843 /* This NAPI_STATE_SCHED test is for avoiding a race 2844 * with netpoll's poll_napi(). Only the entity which 2845 * obtains the lock and sees NAPI_STATE_SCHED set will 2846 * actually make the ->poll() call. Therefore we avoid 2847 * accidently calling ->poll() when NAPI is not scheduled. 2848 */ 2849 work = 0; 2850 if (test_bit(NAPI_STATE_SCHED, &n->state)) { 2851 work = n->poll(n, weight); 2852 trace_napi_poll(n); 2853 } 2854 2855 WARN_ON_ONCE(work > weight); 2856 2857 budget -= work; 2858 2859 local_irq_disable(); 2860 2861 /* Drivers must not modify the NAPI state if they 2862 * consume the entire weight. In such cases this code 2863 * still "owns" the NAPI instance and therefore can 2864 * move the instance around on the list at-will. 2865 */ 2866 if (unlikely(work == weight)) { 2867 if (unlikely(napi_disable_pending(n))) { 2868 local_irq_enable(); 2869 napi_complete(n); 2870 local_irq_disable(); 2871 } else 2872 list_move_tail(&n->poll_list, list); 2873 } 2874 2875 netpoll_poll_unlock(have); 2876 } 2877 out: 2878 local_irq_enable(); 2879 2880 #ifdef CONFIG_NET_DMA 2881 /* 2882 * There may not be any more sk_buffs coming right now, so push 2883 * any pending DMA copies to hardware 2884 */ 2885 dma_issue_pending_all(); 2886 #endif 2887 2888 return; 2889 2890 softnet_break: 2891 __get_cpu_var(netdev_rx_stat).time_squeeze++; 2892 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 2893 goto out; 2894 } 2895 2896 static gifconf_func_t *gifconf_list[NPROTO]; 2897 2898 /** 2899 * register_gifconf - register a SIOCGIF handler 2900 * @family: Address family 2901 * @gifconf: Function handler 2902 * 2903 * Register protocol dependent address dumping routines. The handler 2904 * that is passed must not be freed or reused until it has been replaced 2905 * by another handler. 2906 */ 2907 int register_gifconf(unsigned int family, gifconf_func_t *gifconf) 2908 { 2909 if (family >= NPROTO) 2910 return -EINVAL; 2911 gifconf_list[family] = gifconf; 2912 return 0; 2913 } 2914 EXPORT_SYMBOL(register_gifconf); 2915 2916 2917 /* 2918 * Map an interface index to its name (SIOCGIFNAME) 2919 */ 2920 2921 /* 2922 * We need this ioctl for efficient implementation of the 2923 * if_indextoname() function required by the IPv6 API. Without 2924 * it, we would have to search all the interfaces to find a 2925 * match. --pb 2926 */ 2927 2928 static int dev_ifname(struct net *net, struct ifreq __user *arg) 2929 { 2930 struct net_device *dev; 2931 struct ifreq ifr; 2932 2933 /* 2934 * Fetch the caller's info block. 2935 */ 2936 2937 if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) 2938 return -EFAULT; 2939 2940 read_lock(&dev_base_lock); 2941 dev = __dev_get_by_index(net, ifr.ifr_ifindex); 2942 if (!dev) { 2943 read_unlock(&dev_base_lock); 2944 return -ENODEV; 2945 } 2946 2947 strcpy(ifr.ifr_name, dev->name); 2948 read_unlock(&dev_base_lock); 2949 2950 if (copy_to_user(arg, &ifr, sizeof(struct ifreq))) 2951 return -EFAULT; 2952 return 0; 2953 } 2954 2955 /* 2956 * Perform a SIOCGIFCONF call. This structure will change 2957 * size eventually, and there is nothing I can do about it. 2958 * Thus we will need a 'compatibility mode'. 2959 */ 2960 2961 static int dev_ifconf(struct net *net, char __user *arg) 2962 { 2963 struct ifconf ifc; 2964 struct net_device *dev; 2965 char __user *pos; 2966 int len; 2967 int total; 2968 int i; 2969 2970 /* 2971 * Fetch the caller's info block. 2972 */ 2973 2974 if (copy_from_user(&ifc, arg, sizeof(struct ifconf))) 2975 return -EFAULT; 2976 2977 pos = ifc.ifc_buf; 2978 len = ifc.ifc_len; 2979 2980 /* 2981 * Loop over the interfaces, and write an info block for each. 2982 */ 2983 2984 total = 0; 2985 for_each_netdev(net, dev) { 2986 for (i = 0; i < NPROTO; i++) { 2987 if (gifconf_list[i]) { 2988 int done; 2989 if (!pos) 2990 done = gifconf_list[i](dev, NULL, 0); 2991 else 2992 done = gifconf_list[i](dev, pos + total, 2993 len - total); 2994 if (done < 0) 2995 return -EFAULT; 2996 total += done; 2997 } 2998 } 2999 } 3000 3001 /* 3002 * All done. Write the updated control block back to the caller. 3003 */ 3004 ifc.ifc_len = total; 3005 3006 /* 3007 * Both BSD and Solaris return 0 here, so we do too. 3008 */ 3009 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0; 3010 } 3011 3012 #ifdef CONFIG_PROC_FS 3013 /* 3014 * This is invoked by the /proc filesystem handler to display a device 3015 * in detail. 3016 */ 3017 void *dev_seq_start(struct seq_file *seq, loff_t *pos) 3018 __acquires(dev_base_lock) 3019 { 3020 struct net *net = seq_file_net(seq); 3021 loff_t off; 3022 struct net_device *dev; 3023 3024 read_lock(&dev_base_lock); 3025 if (!*pos) 3026 return SEQ_START_TOKEN; 3027 3028 off = 1; 3029 for_each_netdev(net, dev) 3030 if (off++ == *pos) 3031 return dev; 3032 3033 return NULL; 3034 } 3035 3036 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3037 { 3038 struct net *net = seq_file_net(seq); 3039 ++*pos; 3040 return v == SEQ_START_TOKEN ? 3041 first_net_device(net) : next_net_device((struct net_device *)v); 3042 } 3043 3044 void dev_seq_stop(struct seq_file *seq, void *v) 3045 __releases(dev_base_lock) 3046 { 3047 read_unlock(&dev_base_lock); 3048 } 3049 3050 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev) 3051 { 3052 const struct net_device_stats *stats = dev_get_stats(dev); 3053 3054 seq_printf(seq, "%6s:%8lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu " 3055 "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n", 3056 dev->name, stats->rx_bytes, stats->rx_packets, 3057 stats->rx_errors, 3058 stats->rx_dropped + stats->rx_missed_errors, 3059 stats->rx_fifo_errors, 3060 stats->rx_length_errors + stats->rx_over_errors + 3061 stats->rx_crc_errors + stats->rx_frame_errors, 3062 stats->rx_compressed, stats->multicast, 3063 stats->tx_bytes, stats->tx_packets, 3064 stats->tx_errors, stats->tx_dropped, 3065 stats->tx_fifo_errors, stats->collisions, 3066 stats->tx_carrier_errors + 3067 stats->tx_aborted_errors + 3068 stats->tx_window_errors + 3069 stats->tx_heartbeat_errors, 3070 stats->tx_compressed); 3071 } 3072 3073 /* 3074 * Called from the PROCfs module. This now uses the new arbitrary sized 3075 * /proc/net interface to create /proc/net/dev 3076 */ 3077 static int dev_seq_show(struct seq_file *seq, void *v) 3078 { 3079 if (v == SEQ_START_TOKEN) 3080 seq_puts(seq, "Inter-| Receive " 3081 " | Transmit\n" 3082 " face |bytes packets errs drop fifo frame " 3083 "compressed multicast|bytes packets errs " 3084 "drop fifo colls carrier compressed\n"); 3085 else 3086 dev_seq_printf_stats(seq, v); 3087 return 0; 3088 } 3089 3090 static struct netif_rx_stats *softnet_get_online(loff_t *pos) 3091 { 3092 struct netif_rx_stats *rc = NULL; 3093 3094 while (*pos < nr_cpu_ids) 3095 if (cpu_online(*pos)) { 3096 rc = &per_cpu(netdev_rx_stat, *pos); 3097 break; 3098 } else 3099 ++*pos; 3100 return rc; 3101 } 3102 3103 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos) 3104 { 3105 return softnet_get_online(pos); 3106 } 3107 3108 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3109 { 3110 ++*pos; 3111 return softnet_get_online(pos); 3112 } 3113 3114 static void softnet_seq_stop(struct seq_file *seq, void *v) 3115 { 3116 } 3117 3118 static int softnet_seq_show(struct seq_file *seq, void *v) 3119 { 3120 struct netif_rx_stats *s = v; 3121 3122 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x\n", 3123 s->total, s->dropped, s->time_squeeze, 0, 3124 0, 0, 0, 0, /* was fastroute */ 3125 s->cpu_collision); 3126 return 0; 3127 } 3128 3129 static const struct seq_operations dev_seq_ops = { 3130 .start = dev_seq_start, 3131 .next = dev_seq_next, 3132 .stop = dev_seq_stop, 3133 .show = dev_seq_show, 3134 }; 3135 3136 static int dev_seq_open(struct inode *inode, struct file *file) 3137 { 3138 return seq_open_net(inode, file, &dev_seq_ops, 3139 sizeof(struct seq_net_private)); 3140 } 3141 3142 static const struct file_operations dev_seq_fops = { 3143 .owner = THIS_MODULE, 3144 .open = dev_seq_open, 3145 .read = seq_read, 3146 .llseek = seq_lseek, 3147 .release = seq_release_net, 3148 }; 3149 3150 static const struct seq_operations softnet_seq_ops = { 3151 .start = softnet_seq_start, 3152 .next = softnet_seq_next, 3153 .stop = softnet_seq_stop, 3154 .show = softnet_seq_show, 3155 }; 3156 3157 static int softnet_seq_open(struct inode *inode, struct file *file) 3158 { 3159 return seq_open(file, &softnet_seq_ops); 3160 } 3161 3162 static const struct file_operations softnet_seq_fops = { 3163 .owner = THIS_MODULE, 3164 .open = softnet_seq_open, 3165 .read = seq_read, 3166 .llseek = seq_lseek, 3167 .release = seq_release, 3168 }; 3169 3170 static void *ptype_get_idx(loff_t pos) 3171 { 3172 struct packet_type *pt = NULL; 3173 loff_t i = 0; 3174 int t; 3175 3176 list_for_each_entry_rcu(pt, &ptype_all, list) { 3177 if (i == pos) 3178 return pt; 3179 ++i; 3180 } 3181 3182 for (t = 0; t < PTYPE_HASH_SIZE; t++) { 3183 list_for_each_entry_rcu(pt, &ptype_base[t], list) { 3184 if (i == pos) 3185 return pt; 3186 ++i; 3187 } 3188 } 3189 return NULL; 3190 } 3191 3192 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos) 3193 __acquires(RCU) 3194 { 3195 rcu_read_lock(); 3196 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN; 3197 } 3198 3199 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3200 { 3201 struct packet_type *pt; 3202 struct list_head *nxt; 3203 int hash; 3204 3205 ++*pos; 3206 if (v == SEQ_START_TOKEN) 3207 return ptype_get_idx(0); 3208 3209 pt = v; 3210 nxt = pt->list.next; 3211 if (pt->type == htons(ETH_P_ALL)) { 3212 if (nxt != &ptype_all) 3213 goto found; 3214 hash = 0; 3215 nxt = ptype_base[0].next; 3216 } else 3217 hash = ntohs(pt->type) & PTYPE_HASH_MASK; 3218 3219 while (nxt == &ptype_base[hash]) { 3220 if (++hash >= PTYPE_HASH_SIZE) 3221 return NULL; 3222 nxt = ptype_base[hash].next; 3223 } 3224 found: 3225 return list_entry(nxt, struct packet_type, list); 3226 } 3227 3228 static void ptype_seq_stop(struct seq_file *seq, void *v) 3229 __releases(RCU) 3230 { 3231 rcu_read_unlock(); 3232 } 3233 3234 static int ptype_seq_show(struct seq_file *seq, void *v) 3235 { 3236 struct packet_type *pt = v; 3237 3238 if (v == SEQ_START_TOKEN) 3239 seq_puts(seq, "Type Device Function\n"); 3240 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) { 3241 if (pt->type == htons(ETH_P_ALL)) 3242 seq_puts(seq, "ALL "); 3243 else 3244 seq_printf(seq, "%04x", ntohs(pt->type)); 3245 3246 seq_printf(seq, " %-8s %pF\n", 3247 pt->dev ? pt->dev->name : "", pt->func); 3248 } 3249 3250 return 0; 3251 } 3252 3253 static const struct seq_operations ptype_seq_ops = { 3254 .start = ptype_seq_start, 3255 .next = ptype_seq_next, 3256 .stop = ptype_seq_stop, 3257 .show = ptype_seq_show, 3258 }; 3259 3260 static int ptype_seq_open(struct inode *inode, struct file *file) 3261 { 3262 return seq_open_net(inode, file, &ptype_seq_ops, 3263 sizeof(struct seq_net_private)); 3264 } 3265 3266 static const struct file_operations ptype_seq_fops = { 3267 .owner = THIS_MODULE, 3268 .open = ptype_seq_open, 3269 .read = seq_read, 3270 .llseek = seq_lseek, 3271 .release = seq_release_net, 3272 }; 3273 3274 3275 static int __net_init dev_proc_net_init(struct net *net) 3276 { 3277 int rc = -ENOMEM; 3278 3279 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops)) 3280 goto out; 3281 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops)) 3282 goto out_dev; 3283 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops)) 3284 goto out_softnet; 3285 3286 if (wext_proc_init(net)) 3287 goto out_ptype; 3288 rc = 0; 3289 out: 3290 return rc; 3291 out_ptype: 3292 proc_net_remove(net, "ptype"); 3293 out_softnet: 3294 proc_net_remove(net, "softnet_stat"); 3295 out_dev: 3296 proc_net_remove(net, "dev"); 3297 goto out; 3298 } 3299 3300 static void __net_exit dev_proc_net_exit(struct net *net) 3301 { 3302 wext_proc_exit(net); 3303 3304 proc_net_remove(net, "ptype"); 3305 proc_net_remove(net, "softnet_stat"); 3306 proc_net_remove(net, "dev"); 3307 } 3308 3309 static struct pernet_operations __net_initdata dev_proc_ops = { 3310 .init = dev_proc_net_init, 3311 .exit = dev_proc_net_exit, 3312 }; 3313 3314 static int __init dev_proc_init(void) 3315 { 3316 return register_pernet_subsys(&dev_proc_ops); 3317 } 3318 #else 3319 #define dev_proc_init() 0 3320 #endif /* CONFIG_PROC_FS */ 3321 3322 3323 /** 3324 * netdev_set_master - set up master/slave pair 3325 * @slave: slave device 3326 * @master: new master device 3327 * 3328 * Changes the master device of the slave. Pass %NULL to break the 3329 * bonding. The caller must hold the RTNL semaphore. On a failure 3330 * a negative errno code is returned. On success the reference counts 3331 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the 3332 * function returns zero. 3333 */ 3334 int netdev_set_master(struct net_device *slave, struct net_device *master) 3335 { 3336 struct net_device *old = slave->master; 3337 3338 ASSERT_RTNL(); 3339 3340 if (master) { 3341 if (old) 3342 return -EBUSY; 3343 dev_hold(master); 3344 } 3345 3346 slave->master = master; 3347 3348 synchronize_net(); 3349 3350 if (old) 3351 dev_put(old); 3352 3353 if (master) 3354 slave->flags |= IFF_SLAVE; 3355 else 3356 slave->flags &= ~IFF_SLAVE; 3357 3358 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE); 3359 return 0; 3360 } 3361 EXPORT_SYMBOL(netdev_set_master); 3362 3363 static void dev_change_rx_flags(struct net_device *dev, int flags) 3364 { 3365 const struct net_device_ops *ops = dev->netdev_ops; 3366 3367 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags) 3368 ops->ndo_change_rx_flags(dev, flags); 3369 } 3370 3371 static int __dev_set_promiscuity(struct net_device *dev, int inc) 3372 { 3373 unsigned short old_flags = dev->flags; 3374 uid_t uid; 3375 gid_t gid; 3376 3377 ASSERT_RTNL(); 3378 3379 dev->flags |= IFF_PROMISC; 3380 dev->promiscuity += inc; 3381 if (dev->promiscuity == 0) { 3382 /* 3383 * Avoid overflow. 3384 * If inc causes overflow, untouch promisc and return error. 3385 */ 3386 if (inc < 0) 3387 dev->flags &= ~IFF_PROMISC; 3388 else { 3389 dev->promiscuity -= inc; 3390 printk(KERN_WARNING "%s: promiscuity touches roof, " 3391 "set promiscuity failed, promiscuity feature " 3392 "of device might be broken.\n", dev->name); 3393 return -EOVERFLOW; 3394 } 3395 } 3396 if (dev->flags != old_flags) { 3397 printk(KERN_INFO "device %s %s promiscuous mode\n", 3398 dev->name, (dev->flags & IFF_PROMISC) ? "entered" : 3399 "left"); 3400 if (audit_enabled) { 3401 current_uid_gid(&uid, &gid); 3402 audit_log(current->audit_context, GFP_ATOMIC, 3403 AUDIT_ANOM_PROMISCUOUS, 3404 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 3405 dev->name, (dev->flags & IFF_PROMISC), 3406 (old_flags & IFF_PROMISC), 3407 audit_get_loginuid(current), 3408 uid, gid, 3409 audit_get_sessionid(current)); 3410 } 3411 3412 dev_change_rx_flags(dev, IFF_PROMISC); 3413 } 3414 return 0; 3415 } 3416 3417 /** 3418 * dev_set_promiscuity - update promiscuity count on a device 3419 * @dev: device 3420 * @inc: modifier 3421 * 3422 * Add or remove promiscuity from a device. While the count in the device 3423 * remains above zero the interface remains promiscuous. Once it hits zero 3424 * the device reverts back to normal filtering operation. A negative inc 3425 * value is used to drop promiscuity on the device. 3426 * Return 0 if successful or a negative errno code on error. 3427 */ 3428 int dev_set_promiscuity(struct net_device *dev, int inc) 3429 { 3430 unsigned short old_flags = dev->flags; 3431 int err; 3432 3433 err = __dev_set_promiscuity(dev, inc); 3434 if (err < 0) 3435 return err; 3436 if (dev->flags != old_flags) 3437 dev_set_rx_mode(dev); 3438 return err; 3439 } 3440 EXPORT_SYMBOL(dev_set_promiscuity); 3441 3442 /** 3443 * dev_set_allmulti - update allmulti count on a device 3444 * @dev: device 3445 * @inc: modifier 3446 * 3447 * Add or remove reception of all multicast frames to a device. While the 3448 * count in the device remains above zero the interface remains listening 3449 * to all interfaces. Once it hits zero the device reverts back to normal 3450 * filtering operation. A negative @inc value is used to drop the counter 3451 * when releasing a resource needing all multicasts. 3452 * Return 0 if successful or a negative errno code on error. 3453 */ 3454 3455 int dev_set_allmulti(struct net_device *dev, int inc) 3456 { 3457 unsigned short old_flags = dev->flags; 3458 3459 ASSERT_RTNL(); 3460 3461 dev->flags |= IFF_ALLMULTI; 3462 dev->allmulti += inc; 3463 if (dev->allmulti == 0) { 3464 /* 3465 * Avoid overflow. 3466 * If inc causes overflow, untouch allmulti and return error. 3467 */ 3468 if (inc < 0) 3469 dev->flags &= ~IFF_ALLMULTI; 3470 else { 3471 dev->allmulti -= inc; 3472 printk(KERN_WARNING "%s: allmulti touches roof, " 3473 "set allmulti failed, allmulti feature of " 3474 "device might be broken.\n", dev->name); 3475 return -EOVERFLOW; 3476 } 3477 } 3478 if (dev->flags ^ old_flags) { 3479 dev_change_rx_flags(dev, IFF_ALLMULTI); 3480 dev_set_rx_mode(dev); 3481 } 3482 return 0; 3483 } 3484 EXPORT_SYMBOL(dev_set_allmulti); 3485 3486 /* 3487 * Upload unicast and multicast address lists to device and 3488 * configure RX filtering. When the device doesn't support unicast 3489 * filtering it is put in promiscuous mode while unicast addresses 3490 * are present. 3491 */ 3492 void __dev_set_rx_mode(struct net_device *dev) 3493 { 3494 const struct net_device_ops *ops = dev->netdev_ops; 3495 3496 /* dev_open will call this function so the list will stay sane. */ 3497 if (!(dev->flags&IFF_UP)) 3498 return; 3499 3500 if (!netif_device_present(dev)) 3501 return; 3502 3503 if (ops->ndo_set_rx_mode) 3504 ops->ndo_set_rx_mode(dev); 3505 else { 3506 /* Unicast addresses changes may only happen under the rtnl, 3507 * therefore calling __dev_set_promiscuity here is safe. 3508 */ 3509 if (dev->uc.count > 0 && !dev->uc_promisc) { 3510 __dev_set_promiscuity(dev, 1); 3511 dev->uc_promisc = 1; 3512 } else if (dev->uc.count == 0 && dev->uc_promisc) { 3513 __dev_set_promiscuity(dev, -1); 3514 dev->uc_promisc = 0; 3515 } 3516 3517 if (ops->ndo_set_multicast_list) 3518 ops->ndo_set_multicast_list(dev); 3519 } 3520 } 3521 3522 void dev_set_rx_mode(struct net_device *dev) 3523 { 3524 netif_addr_lock_bh(dev); 3525 __dev_set_rx_mode(dev); 3526 netif_addr_unlock_bh(dev); 3527 } 3528 3529 /* hw addresses list handling functions */ 3530 3531 static int __hw_addr_add(struct netdev_hw_addr_list *list, unsigned char *addr, 3532 int addr_len, unsigned char addr_type) 3533 { 3534 struct netdev_hw_addr *ha; 3535 int alloc_size; 3536 3537 if (addr_len > MAX_ADDR_LEN) 3538 return -EINVAL; 3539 3540 list_for_each_entry(ha, &list->list, list) { 3541 if (!memcmp(ha->addr, addr, addr_len) && 3542 ha->type == addr_type) { 3543 ha->refcount++; 3544 return 0; 3545 } 3546 } 3547 3548 3549 alloc_size = sizeof(*ha); 3550 if (alloc_size < L1_CACHE_BYTES) 3551 alloc_size = L1_CACHE_BYTES; 3552 ha = kmalloc(alloc_size, GFP_ATOMIC); 3553 if (!ha) 3554 return -ENOMEM; 3555 memcpy(ha->addr, addr, addr_len); 3556 ha->type = addr_type; 3557 ha->refcount = 1; 3558 ha->synced = false; 3559 list_add_tail_rcu(&ha->list, &list->list); 3560 list->count++; 3561 return 0; 3562 } 3563 3564 static void ha_rcu_free(struct rcu_head *head) 3565 { 3566 struct netdev_hw_addr *ha; 3567 3568 ha = container_of(head, struct netdev_hw_addr, rcu_head); 3569 kfree(ha); 3570 } 3571 3572 static int __hw_addr_del(struct netdev_hw_addr_list *list, unsigned char *addr, 3573 int addr_len, unsigned char addr_type) 3574 { 3575 struct netdev_hw_addr *ha; 3576 3577 list_for_each_entry(ha, &list->list, list) { 3578 if (!memcmp(ha->addr, addr, addr_len) && 3579 (ha->type == addr_type || !addr_type)) { 3580 if (--ha->refcount) 3581 return 0; 3582 list_del_rcu(&ha->list); 3583 call_rcu(&ha->rcu_head, ha_rcu_free); 3584 list->count--; 3585 return 0; 3586 } 3587 } 3588 return -ENOENT; 3589 } 3590 3591 static int __hw_addr_add_multiple(struct netdev_hw_addr_list *to_list, 3592 struct netdev_hw_addr_list *from_list, 3593 int addr_len, 3594 unsigned char addr_type) 3595 { 3596 int err; 3597 struct netdev_hw_addr *ha, *ha2; 3598 unsigned char type; 3599 3600 list_for_each_entry(ha, &from_list->list, list) { 3601 type = addr_type ? addr_type : ha->type; 3602 err = __hw_addr_add(to_list, ha->addr, addr_len, type); 3603 if (err) 3604 goto unroll; 3605 } 3606 return 0; 3607 3608 unroll: 3609 list_for_each_entry(ha2, &from_list->list, list) { 3610 if (ha2 == ha) 3611 break; 3612 type = addr_type ? addr_type : ha2->type; 3613 __hw_addr_del(to_list, ha2->addr, addr_len, type); 3614 } 3615 return err; 3616 } 3617 3618 static void __hw_addr_del_multiple(struct netdev_hw_addr_list *to_list, 3619 struct netdev_hw_addr_list *from_list, 3620 int addr_len, 3621 unsigned char addr_type) 3622 { 3623 struct netdev_hw_addr *ha; 3624 unsigned char type; 3625 3626 list_for_each_entry(ha, &from_list->list, list) { 3627 type = addr_type ? addr_type : ha->type; 3628 __hw_addr_del(to_list, ha->addr, addr_len, addr_type); 3629 } 3630 } 3631 3632 static int __hw_addr_sync(struct netdev_hw_addr_list *to_list, 3633 struct netdev_hw_addr_list *from_list, 3634 int addr_len) 3635 { 3636 int err = 0; 3637 struct netdev_hw_addr *ha, *tmp; 3638 3639 list_for_each_entry_safe(ha, tmp, &from_list->list, list) { 3640 if (!ha->synced) { 3641 err = __hw_addr_add(to_list, ha->addr, 3642 addr_len, ha->type); 3643 if (err) 3644 break; 3645 ha->synced = true; 3646 ha->refcount++; 3647 } else if (ha->refcount == 1) { 3648 __hw_addr_del(to_list, ha->addr, addr_len, ha->type); 3649 __hw_addr_del(from_list, ha->addr, addr_len, ha->type); 3650 } 3651 } 3652 return err; 3653 } 3654 3655 static void __hw_addr_unsync(struct netdev_hw_addr_list *to_list, 3656 struct netdev_hw_addr_list *from_list, 3657 int addr_len) 3658 { 3659 struct netdev_hw_addr *ha, *tmp; 3660 3661 list_for_each_entry_safe(ha, tmp, &from_list->list, list) { 3662 if (ha->synced) { 3663 __hw_addr_del(to_list, ha->addr, 3664 addr_len, ha->type); 3665 ha->synced = false; 3666 __hw_addr_del(from_list, ha->addr, 3667 addr_len, ha->type); 3668 } 3669 } 3670 } 3671 3672 static void __hw_addr_flush(struct netdev_hw_addr_list *list) 3673 { 3674 struct netdev_hw_addr *ha, *tmp; 3675 3676 list_for_each_entry_safe(ha, tmp, &list->list, list) { 3677 list_del_rcu(&ha->list); 3678 call_rcu(&ha->rcu_head, ha_rcu_free); 3679 } 3680 list->count = 0; 3681 } 3682 3683 static void __hw_addr_init(struct netdev_hw_addr_list *list) 3684 { 3685 INIT_LIST_HEAD(&list->list); 3686 list->count = 0; 3687 } 3688 3689 /* Device addresses handling functions */ 3690 3691 static void dev_addr_flush(struct net_device *dev) 3692 { 3693 /* rtnl_mutex must be held here */ 3694 3695 __hw_addr_flush(&dev->dev_addrs); 3696 dev->dev_addr = NULL; 3697 } 3698 3699 static int dev_addr_init(struct net_device *dev) 3700 { 3701 unsigned char addr[MAX_ADDR_LEN]; 3702 struct netdev_hw_addr *ha; 3703 int err; 3704 3705 /* rtnl_mutex must be held here */ 3706 3707 __hw_addr_init(&dev->dev_addrs); 3708 memset(addr, 0, sizeof(addr)); 3709 err = __hw_addr_add(&dev->dev_addrs, addr, sizeof(addr), 3710 NETDEV_HW_ADDR_T_LAN); 3711 if (!err) { 3712 /* 3713 * Get the first (previously created) address from the list 3714 * and set dev_addr pointer to this location. 3715 */ 3716 ha = list_first_entry(&dev->dev_addrs.list, 3717 struct netdev_hw_addr, list); 3718 dev->dev_addr = ha->addr; 3719 } 3720 return err; 3721 } 3722 3723 /** 3724 * dev_addr_add - Add a device address 3725 * @dev: device 3726 * @addr: address to add 3727 * @addr_type: address type 3728 * 3729 * Add a device address to the device or increase the reference count if 3730 * it already exists. 3731 * 3732 * The caller must hold the rtnl_mutex. 3733 */ 3734 int dev_addr_add(struct net_device *dev, unsigned char *addr, 3735 unsigned char addr_type) 3736 { 3737 int err; 3738 3739 ASSERT_RTNL(); 3740 3741 err = __hw_addr_add(&dev->dev_addrs, addr, dev->addr_len, addr_type); 3742 if (!err) 3743 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 3744 return err; 3745 } 3746 EXPORT_SYMBOL(dev_addr_add); 3747 3748 /** 3749 * dev_addr_del - Release a device address. 3750 * @dev: device 3751 * @addr: address to delete 3752 * @addr_type: address type 3753 * 3754 * Release reference to a device address and remove it from the device 3755 * if the reference count drops to zero. 3756 * 3757 * The caller must hold the rtnl_mutex. 3758 */ 3759 int dev_addr_del(struct net_device *dev, unsigned char *addr, 3760 unsigned char addr_type) 3761 { 3762 int err; 3763 struct netdev_hw_addr *ha; 3764 3765 ASSERT_RTNL(); 3766 3767 /* 3768 * We can not remove the first address from the list because 3769 * dev->dev_addr points to that. 3770 */ 3771 ha = list_first_entry(&dev->dev_addrs.list, 3772 struct netdev_hw_addr, list); 3773 if (ha->addr == dev->dev_addr && ha->refcount == 1) 3774 return -ENOENT; 3775 3776 err = __hw_addr_del(&dev->dev_addrs, addr, dev->addr_len, 3777 addr_type); 3778 if (!err) 3779 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 3780 return err; 3781 } 3782 EXPORT_SYMBOL(dev_addr_del); 3783 3784 /** 3785 * dev_addr_add_multiple - Add device addresses from another device 3786 * @to_dev: device to which addresses will be added 3787 * @from_dev: device from which addresses will be added 3788 * @addr_type: address type - 0 means type will be used from from_dev 3789 * 3790 * Add device addresses of the one device to another. 3791 ** 3792 * The caller must hold the rtnl_mutex. 3793 */ 3794 int dev_addr_add_multiple(struct net_device *to_dev, 3795 struct net_device *from_dev, 3796 unsigned char addr_type) 3797 { 3798 int err; 3799 3800 ASSERT_RTNL(); 3801 3802 if (from_dev->addr_len != to_dev->addr_len) 3803 return -EINVAL; 3804 err = __hw_addr_add_multiple(&to_dev->dev_addrs, &from_dev->dev_addrs, 3805 to_dev->addr_len, addr_type); 3806 if (!err) 3807 call_netdevice_notifiers(NETDEV_CHANGEADDR, to_dev); 3808 return err; 3809 } 3810 EXPORT_SYMBOL(dev_addr_add_multiple); 3811 3812 /** 3813 * dev_addr_del_multiple - Delete device addresses by another device 3814 * @to_dev: device where the addresses will be deleted 3815 * @from_dev: device by which addresses the addresses will be deleted 3816 * @addr_type: address type - 0 means type will used from from_dev 3817 * 3818 * Deletes addresses in to device by the list of addresses in from device. 3819 * 3820 * The caller must hold the rtnl_mutex. 3821 */ 3822 int dev_addr_del_multiple(struct net_device *to_dev, 3823 struct net_device *from_dev, 3824 unsigned char addr_type) 3825 { 3826 ASSERT_RTNL(); 3827 3828 if (from_dev->addr_len != to_dev->addr_len) 3829 return -EINVAL; 3830 __hw_addr_del_multiple(&to_dev->dev_addrs, &from_dev->dev_addrs, 3831 to_dev->addr_len, addr_type); 3832 call_netdevice_notifiers(NETDEV_CHANGEADDR, to_dev); 3833 return 0; 3834 } 3835 EXPORT_SYMBOL(dev_addr_del_multiple); 3836 3837 /* multicast addresses handling functions */ 3838 3839 int __dev_addr_delete(struct dev_addr_list **list, int *count, 3840 void *addr, int alen, int glbl) 3841 { 3842 struct dev_addr_list *da; 3843 3844 for (; (da = *list) != NULL; list = &da->next) { 3845 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 && 3846 alen == da->da_addrlen) { 3847 if (glbl) { 3848 int old_glbl = da->da_gusers; 3849 da->da_gusers = 0; 3850 if (old_glbl == 0) 3851 break; 3852 } 3853 if (--da->da_users) 3854 return 0; 3855 3856 *list = da->next; 3857 kfree(da); 3858 (*count)--; 3859 return 0; 3860 } 3861 } 3862 return -ENOENT; 3863 } 3864 3865 int __dev_addr_add(struct dev_addr_list **list, int *count, 3866 void *addr, int alen, int glbl) 3867 { 3868 struct dev_addr_list *da; 3869 3870 for (da = *list; da != NULL; da = da->next) { 3871 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 && 3872 da->da_addrlen == alen) { 3873 if (glbl) { 3874 int old_glbl = da->da_gusers; 3875 da->da_gusers = 1; 3876 if (old_glbl) 3877 return 0; 3878 } 3879 da->da_users++; 3880 return 0; 3881 } 3882 } 3883 3884 da = kzalloc(sizeof(*da), GFP_ATOMIC); 3885 if (da == NULL) 3886 return -ENOMEM; 3887 memcpy(da->da_addr, addr, alen); 3888 da->da_addrlen = alen; 3889 da->da_users = 1; 3890 da->da_gusers = glbl ? 1 : 0; 3891 da->next = *list; 3892 *list = da; 3893 (*count)++; 3894 return 0; 3895 } 3896 3897 /** 3898 * dev_unicast_delete - Release secondary unicast address. 3899 * @dev: device 3900 * @addr: address to delete 3901 * 3902 * Release reference to a secondary unicast address and remove it 3903 * from the device if the reference count drops to zero. 3904 * 3905 * The caller must hold the rtnl_mutex. 3906 */ 3907 int dev_unicast_delete(struct net_device *dev, void *addr) 3908 { 3909 int err; 3910 3911 ASSERT_RTNL(); 3912 3913 netif_addr_lock_bh(dev); 3914 err = __hw_addr_del(&dev->uc, addr, dev->addr_len, 3915 NETDEV_HW_ADDR_T_UNICAST); 3916 if (!err) 3917 __dev_set_rx_mode(dev); 3918 netif_addr_unlock_bh(dev); 3919 return err; 3920 } 3921 EXPORT_SYMBOL(dev_unicast_delete); 3922 3923 /** 3924 * dev_unicast_add - add a secondary unicast address 3925 * @dev: device 3926 * @addr: address to add 3927 * 3928 * Add a secondary unicast address to the device or increase 3929 * the reference count if it already exists. 3930 * 3931 * The caller must hold the rtnl_mutex. 3932 */ 3933 int dev_unicast_add(struct net_device *dev, void *addr) 3934 { 3935 int err; 3936 3937 ASSERT_RTNL(); 3938 3939 netif_addr_lock_bh(dev); 3940 err = __hw_addr_add(&dev->uc, addr, dev->addr_len, 3941 NETDEV_HW_ADDR_T_UNICAST); 3942 if (!err) 3943 __dev_set_rx_mode(dev); 3944 netif_addr_unlock_bh(dev); 3945 return err; 3946 } 3947 EXPORT_SYMBOL(dev_unicast_add); 3948 3949 int __dev_addr_sync(struct dev_addr_list **to, int *to_count, 3950 struct dev_addr_list **from, int *from_count) 3951 { 3952 struct dev_addr_list *da, *next; 3953 int err = 0; 3954 3955 da = *from; 3956 while (da != NULL) { 3957 next = da->next; 3958 if (!da->da_synced) { 3959 err = __dev_addr_add(to, to_count, 3960 da->da_addr, da->da_addrlen, 0); 3961 if (err < 0) 3962 break; 3963 da->da_synced = 1; 3964 da->da_users++; 3965 } else if (da->da_users == 1) { 3966 __dev_addr_delete(to, to_count, 3967 da->da_addr, da->da_addrlen, 0); 3968 __dev_addr_delete(from, from_count, 3969 da->da_addr, da->da_addrlen, 0); 3970 } 3971 da = next; 3972 } 3973 return err; 3974 } 3975 EXPORT_SYMBOL_GPL(__dev_addr_sync); 3976 3977 void __dev_addr_unsync(struct dev_addr_list **to, int *to_count, 3978 struct dev_addr_list **from, int *from_count) 3979 { 3980 struct dev_addr_list *da, *next; 3981 3982 da = *from; 3983 while (da != NULL) { 3984 next = da->next; 3985 if (da->da_synced) { 3986 __dev_addr_delete(to, to_count, 3987 da->da_addr, da->da_addrlen, 0); 3988 da->da_synced = 0; 3989 __dev_addr_delete(from, from_count, 3990 da->da_addr, da->da_addrlen, 0); 3991 } 3992 da = next; 3993 } 3994 } 3995 EXPORT_SYMBOL_GPL(__dev_addr_unsync); 3996 3997 /** 3998 * dev_unicast_sync - Synchronize device's unicast list to another device 3999 * @to: destination device 4000 * @from: source device 4001 * 4002 * Add newly added addresses to the destination device and release 4003 * addresses that have no users left. The source device must be 4004 * locked by netif_tx_lock_bh. 4005 * 4006 * This function is intended to be called from the dev->set_rx_mode 4007 * function of layered software devices. 4008 */ 4009 int dev_unicast_sync(struct net_device *to, struct net_device *from) 4010 { 4011 int err = 0; 4012 4013 if (to->addr_len != from->addr_len) 4014 return -EINVAL; 4015 4016 netif_addr_lock_bh(to); 4017 err = __hw_addr_sync(&to->uc, &from->uc, to->addr_len); 4018 if (!err) 4019 __dev_set_rx_mode(to); 4020 netif_addr_unlock_bh(to); 4021 return err; 4022 } 4023 EXPORT_SYMBOL(dev_unicast_sync); 4024 4025 /** 4026 * dev_unicast_unsync - Remove synchronized addresses from the destination device 4027 * @to: destination device 4028 * @from: source device 4029 * 4030 * Remove all addresses that were added to the destination device by 4031 * dev_unicast_sync(). This function is intended to be called from the 4032 * dev->stop function of layered software devices. 4033 */ 4034 void dev_unicast_unsync(struct net_device *to, struct net_device *from) 4035 { 4036 if (to->addr_len != from->addr_len) 4037 return; 4038 4039 netif_addr_lock_bh(from); 4040 netif_addr_lock(to); 4041 __hw_addr_unsync(&to->uc, &from->uc, to->addr_len); 4042 __dev_set_rx_mode(to); 4043 netif_addr_unlock(to); 4044 netif_addr_unlock_bh(from); 4045 } 4046 EXPORT_SYMBOL(dev_unicast_unsync); 4047 4048 static void dev_unicast_flush(struct net_device *dev) 4049 { 4050 netif_addr_lock_bh(dev); 4051 __hw_addr_flush(&dev->uc); 4052 netif_addr_unlock_bh(dev); 4053 } 4054 4055 static void dev_unicast_init(struct net_device *dev) 4056 { 4057 __hw_addr_init(&dev->uc); 4058 } 4059 4060 4061 static void __dev_addr_discard(struct dev_addr_list **list) 4062 { 4063 struct dev_addr_list *tmp; 4064 4065 while (*list != NULL) { 4066 tmp = *list; 4067 *list = tmp->next; 4068 if (tmp->da_users > tmp->da_gusers) 4069 printk("__dev_addr_discard: address leakage! " 4070 "da_users=%d\n", tmp->da_users); 4071 kfree(tmp); 4072 } 4073 } 4074 4075 static void dev_addr_discard(struct net_device *dev) 4076 { 4077 netif_addr_lock_bh(dev); 4078 4079 __dev_addr_discard(&dev->mc_list); 4080 dev->mc_count = 0; 4081 4082 netif_addr_unlock_bh(dev); 4083 } 4084 4085 /** 4086 * dev_get_flags - get flags reported to userspace 4087 * @dev: device 4088 * 4089 * Get the combination of flag bits exported through APIs to userspace. 4090 */ 4091 unsigned dev_get_flags(const struct net_device *dev) 4092 { 4093 unsigned flags; 4094 4095 flags = (dev->flags & ~(IFF_PROMISC | 4096 IFF_ALLMULTI | 4097 IFF_RUNNING | 4098 IFF_LOWER_UP | 4099 IFF_DORMANT)) | 4100 (dev->gflags & (IFF_PROMISC | 4101 IFF_ALLMULTI)); 4102 4103 if (netif_running(dev)) { 4104 if (netif_oper_up(dev)) 4105 flags |= IFF_RUNNING; 4106 if (netif_carrier_ok(dev)) 4107 flags |= IFF_LOWER_UP; 4108 if (netif_dormant(dev)) 4109 flags |= IFF_DORMANT; 4110 } 4111 4112 return flags; 4113 } 4114 EXPORT_SYMBOL(dev_get_flags); 4115 4116 /** 4117 * dev_change_flags - change device settings 4118 * @dev: device 4119 * @flags: device state flags 4120 * 4121 * Change settings on device based state flags. The flags are 4122 * in the userspace exported format. 4123 */ 4124 int dev_change_flags(struct net_device *dev, unsigned flags) 4125 { 4126 int ret, changes; 4127 int old_flags = dev->flags; 4128 4129 ASSERT_RTNL(); 4130 4131 /* 4132 * Set the flags on our device. 4133 */ 4134 4135 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 4136 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 4137 IFF_AUTOMEDIA)) | 4138 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 4139 IFF_ALLMULTI)); 4140 4141 /* 4142 * Load in the correct multicast list now the flags have changed. 4143 */ 4144 4145 if ((old_flags ^ flags) & IFF_MULTICAST) 4146 dev_change_rx_flags(dev, IFF_MULTICAST); 4147 4148 dev_set_rx_mode(dev); 4149 4150 /* 4151 * Have we downed the interface. We handle IFF_UP ourselves 4152 * according to user attempts to set it, rather than blindly 4153 * setting it. 4154 */ 4155 4156 ret = 0; 4157 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */ 4158 ret = ((old_flags & IFF_UP) ? dev_close : dev_open)(dev); 4159 4160 if (!ret) 4161 dev_set_rx_mode(dev); 4162 } 4163 4164 if (dev->flags & IFF_UP && 4165 ((old_flags ^ dev->flags) & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | 4166 IFF_VOLATILE))) 4167 call_netdevice_notifiers(NETDEV_CHANGE, dev); 4168 4169 if ((flags ^ dev->gflags) & IFF_PROMISC) { 4170 int inc = (flags & IFF_PROMISC) ? 1 : -1; 4171 4172 dev->gflags ^= IFF_PROMISC; 4173 dev_set_promiscuity(dev, inc); 4174 } 4175 4176 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 4177 is important. Some (broken) drivers set IFF_PROMISC, when 4178 IFF_ALLMULTI is requested not asking us and not reporting. 4179 */ 4180 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 4181 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 4182 4183 dev->gflags ^= IFF_ALLMULTI; 4184 dev_set_allmulti(dev, inc); 4185 } 4186 4187 /* Exclude state transition flags, already notified */ 4188 changes = (old_flags ^ dev->flags) & ~(IFF_UP | IFF_RUNNING); 4189 if (changes) 4190 rtmsg_ifinfo(RTM_NEWLINK, dev, changes); 4191 4192 return ret; 4193 } 4194 EXPORT_SYMBOL(dev_change_flags); 4195 4196 /** 4197 * dev_set_mtu - Change maximum transfer unit 4198 * @dev: device 4199 * @new_mtu: new transfer unit 4200 * 4201 * Change the maximum transfer size of the network device. 4202 */ 4203 int dev_set_mtu(struct net_device *dev, int new_mtu) 4204 { 4205 const struct net_device_ops *ops = dev->netdev_ops; 4206 int err; 4207 4208 if (new_mtu == dev->mtu) 4209 return 0; 4210 4211 /* MTU must be positive. */ 4212 if (new_mtu < 0) 4213 return -EINVAL; 4214 4215 if (!netif_device_present(dev)) 4216 return -ENODEV; 4217 4218 err = 0; 4219 if (ops->ndo_change_mtu) 4220 err = ops->ndo_change_mtu(dev, new_mtu); 4221 else 4222 dev->mtu = new_mtu; 4223 4224 if (!err && dev->flags & IFF_UP) 4225 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 4226 return err; 4227 } 4228 EXPORT_SYMBOL(dev_set_mtu); 4229 4230 /** 4231 * dev_set_mac_address - Change Media Access Control Address 4232 * @dev: device 4233 * @sa: new address 4234 * 4235 * Change the hardware (MAC) address of the device 4236 */ 4237 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa) 4238 { 4239 const struct net_device_ops *ops = dev->netdev_ops; 4240 int err; 4241 4242 if (!ops->ndo_set_mac_address) 4243 return -EOPNOTSUPP; 4244 if (sa->sa_family != dev->type) 4245 return -EINVAL; 4246 if (!netif_device_present(dev)) 4247 return -ENODEV; 4248 err = ops->ndo_set_mac_address(dev, sa); 4249 if (!err) 4250 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 4251 return err; 4252 } 4253 EXPORT_SYMBOL(dev_set_mac_address); 4254 4255 /* 4256 * Perform the SIOCxIFxxx calls, inside read_lock(dev_base_lock) 4257 */ 4258 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd) 4259 { 4260 int err; 4261 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name); 4262 4263 if (!dev) 4264 return -ENODEV; 4265 4266 switch (cmd) { 4267 case SIOCGIFFLAGS: /* Get interface flags */ 4268 ifr->ifr_flags = (short) dev_get_flags(dev); 4269 return 0; 4270 4271 case SIOCGIFMETRIC: /* Get the metric on the interface 4272 (currently unused) */ 4273 ifr->ifr_metric = 0; 4274 return 0; 4275 4276 case SIOCGIFMTU: /* Get the MTU of a device */ 4277 ifr->ifr_mtu = dev->mtu; 4278 return 0; 4279 4280 case SIOCGIFHWADDR: 4281 if (!dev->addr_len) 4282 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data); 4283 else 4284 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr, 4285 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len)); 4286 ifr->ifr_hwaddr.sa_family = dev->type; 4287 return 0; 4288 4289 case SIOCGIFSLAVE: 4290 err = -EINVAL; 4291 break; 4292 4293 case SIOCGIFMAP: 4294 ifr->ifr_map.mem_start = dev->mem_start; 4295 ifr->ifr_map.mem_end = dev->mem_end; 4296 ifr->ifr_map.base_addr = dev->base_addr; 4297 ifr->ifr_map.irq = dev->irq; 4298 ifr->ifr_map.dma = dev->dma; 4299 ifr->ifr_map.port = dev->if_port; 4300 return 0; 4301 4302 case SIOCGIFINDEX: 4303 ifr->ifr_ifindex = dev->ifindex; 4304 return 0; 4305 4306 case SIOCGIFTXQLEN: 4307 ifr->ifr_qlen = dev->tx_queue_len; 4308 return 0; 4309 4310 default: 4311 /* dev_ioctl() should ensure this case 4312 * is never reached 4313 */ 4314 WARN_ON(1); 4315 err = -EINVAL; 4316 break; 4317 4318 } 4319 return err; 4320 } 4321 4322 /* 4323 * Perform the SIOCxIFxxx calls, inside rtnl_lock() 4324 */ 4325 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd) 4326 { 4327 int err; 4328 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name); 4329 const struct net_device_ops *ops; 4330 4331 if (!dev) 4332 return -ENODEV; 4333 4334 ops = dev->netdev_ops; 4335 4336 switch (cmd) { 4337 case SIOCSIFFLAGS: /* Set interface flags */ 4338 return dev_change_flags(dev, ifr->ifr_flags); 4339 4340 case SIOCSIFMETRIC: /* Set the metric on the interface 4341 (currently unused) */ 4342 return -EOPNOTSUPP; 4343 4344 case SIOCSIFMTU: /* Set the MTU of a device */ 4345 return dev_set_mtu(dev, ifr->ifr_mtu); 4346 4347 case SIOCSIFHWADDR: 4348 return dev_set_mac_address(dev, &ifr->ifr_hwaddr); 4349 4350 case SIOCSIFHWBROADCAST: 4351 if (ifr->ifr_hwaddr.sa_family != dev->type) 4352 return -EINVAL; 4353 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data, 4354 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len)); 4355 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 4356 return 0; 4357 4358 case SIOCSIFMAP: 4359 if (ops->ndo_set_config) { 4360 if (!netif_device_present(dev)) 4361 return -ENODEV; 4362 return ops->ndo_set_config(dev, &ifr->ifr_map); 4363 } 4364 return -EOPNOTSUPP; 4365 4366 case SIOCADDMULTI: 4367 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) || 4368 ifr->ifr_hwaddr.sa_family != AF_UNSPEC) 4369 return -EINVAL; 4370 if (!netif_device_present(dev)) 4371 return -ENODEV; 4372 return dev_mc_add(dev, ifr->ifr_hwaddr.sa_data, 4373 dev->addr_len, 1); 4374 4375 case SIOCDELMULTI: 4376 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) || 4377 ifr->ifr_hwaddr.sa_family != AF_UNSPEC) 4378 return -EINVAL; 4379 if (!netif_device_present(dev)) 4380 return -ENODEV; 4381 return dev_mc_delete(dev, ifr->ifr_hwaddr.sa_data, 4382 dev->addr_len, 1); 4383 4384 case SIOCSIFTXQLEN: 4385 if (ifr->ifr_qlen < 0) 4386 return -EINVAL; 4387 dev->tx_queue_len = ifr->ifr_qlen; 4388 return 0; 4389 4390 case SIOCSIFNAME: 4391 ifr->ifr_newname[IFNAMSIZ-1] = '\0'; 4392 return dev_change_name(dev, ifr->ifr_newname); 4393 4394 /* 4395 * Unknown or private ioctl 4396 */ 4397 default: 4398 if ((cmd >= SIOCDEVPRIVATE && 4399 cmd <= SIOCDEVPRIVATE + 15) || 4400 cmd == SIOCBONDENSLAVE || 4401 cmd == SIOCBONDRELEASE || 4402 cmd == SIOCBONDSETHWADDR || 4403 cmd == SIOCBONDSLAVEINFOQUERY || 4404 cmd == SIOCBONDINFOQUERY || 4405 cmd == SIOCBONDCHANGEACTIVE || 4406 cmd == SIOCGMIIPHY || 4407 cmd == SIOCGMIIREG || 4408 cmd == SIOCSMIIREG || 4409 cmd == SIOCBRADDIF || 4410 cmd == SIOCBRDELIF || 4411 cmd == SIOCSHWTSTAMP || 4412 cmd == SIOCWANDEV) { 4413 err = -EOPNOTSUPP; 4414 if (ops->ndo_do_ioctl) { 4415 if (netif_device_present(dev)) 4416 err = ops->ndo_do_ioctl(dev, ifr, cmd); 4417 else 4418 err = -ENODEV; 4419 } 4420 } else 4421 err = -EINVAL; 4422 4423 } 4424 return err; 4425 } 4426 4427 /* 4428 * This function handles all "interface"-type I/O control requests. The actual 4429 * 'doing' part of this is dev_ifsioc above. 4430 */ 4431 4432 /** 4433 * dev_ioctl - network device ioctl 4434 * @net: the applicable net namespace 4435 * @cmd: command to issue 4436 * @arg: pointer to a struct ifreq in user space 4437 * 4438 * Issue ioctl functions to devices. This is normally called by the 4439 * user space syscall interfaces but can sometimes be useful for 4440 * other purposes. The return value is the return from the syscall if 4441 * positive or a negative errno code on error. 4442 */ 4443 4444 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg) 4445 { 4446 struct ifreq ifr; 4447 int ret; 4448 char *colon; 4449 4450 /* One special case: SIOCGIFCONF takes ifconf argument 4451 and requires shared lock, because it sleeps writing 4452 to user space. 4453 */ 4454 4455 if (cmd == SIOCGIFCONF) { 4456 rtnl_lock(); 4457 ret = dev_ifconf(net, (char __user *) arg); 4458 rtnl_unlock(); 4459 return ret; 4460 } 4461 if (cmd == SIOCGIFNAME) 4462 return dev_ifname(net, (struct ifreq __user *)arg); 4463 4464 if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) 4465 return -EFAULT; 4466 4467 ifr.ifr_name[IFNAMSIZ-1] = 0; 4468 4469 colon = strchr(ifr.ifr_name, ':'); 4470 if (colon) 4471 *colon = 0; 4472 4473 /* 4474 * See which interface the caller is talking about. 4475 */ 4476 4477 switch (cmd) { 4478 /* 4479 * These ioctl calls: 4480 * - can be done by all. 4481 * - atomic and do not require locking. 4482 * - return a value 4483 */ 4484 case SIOCGIFFLAGS: 4485 case SIOCGIFMETRIC: 4486 case SIOCGIFMTU: 4487 case SIOCGIFHWADDR: 4488 case SIOCGIFSLAVE: 4489 case SIOCGIFMAP: 4490 case SIOCGIFINDEX: 4491 case SIOCGIFTXQLEN: 4492 dev_load(net, ifr.ifr_name); 4493 read_lock(&dev_base_lock); 4494 ret = dev_ifsioc_locked(net, &ifr, cmd); 4495 read_unlock(&dev_base_lock); 4496 if (!ret) { 4497 if (colon) 4498 *colon = ':'; 4499 if (copy_to_user(arg, &ifr, 4500 sizeof(struct ifreq))) 4501 ret = -EFAULT; 4502 } 4503 return ret; 4504 4505 case SIOCETHTOOL: 4506 dev_load(net, ifr.ifr_name); 4507 rtnl_lock(); 4508 ret = dev_ethtool(net, &ifr); 4509 rtnl_unlock(); 4510 if (!ret) { 4511 if (colon) 4512 *colon = ':'; 4513 if (copy_to_user(arg, &ifr, 4514 sizeof(struct ifreq))) 4515 ret = -EFAULT; 4516 } 4517 return ret; 4518 4519 /* 4520 * These ioctl calls: 4521 * - require superuser power. 4522 * - require strict serialization. 4523 * - return a value 4524 */ 4525 case SIOCGMIIPHY: 4526 case SIOCGMIIREG: 4527 case SIOCSIFNAME: 4528 if (!capable(CAP_NET_ADMIN)) 4529 return -EPERM; 4530 dev_load(net, ifr.ifr_name); 4531 rtnl_lock(); 4532 ret = dev_ifsioc(net, &ifr, cmd); 4533 rtnl_unlock(); 4534 if (!ret) { 4535 if (colon) 4536 *colon = ':'; 4537 if (copy_to_user(arg, &ifr, 4538 sizeof(struct ifreq))) 4539 ret = -EFAULT; 4540 } 4541 return ret; 4542 4543 /* 4544 * These ioctl calls: 4545 * - require superuser power. 4546 * - require strict serialization. 4547 * - do not return a value 4548 */ 4549 case SIOCSIFFLAGS: 4550 case SIOCSIFMETRIC: 4551 case SIOCSIFMTU: 4552 case SIOCSIFMAP: 4553 case SIOCSIFHWADDR: 4554 case SIOCSIFSLAVE: 4555 case SIOCADDMULTI: 4556 case SIOCDELMULTI: 4557 case SIOCSIFHWBROADCAST: 4558 case SIOCSIFTXQLEN: 4559 case SIOCSMIIREG: 4560 case SIOCBONDENSLAVE: 4561 case SIOCBONDRELEASE: 4562 case SIOCBONDSETHWADDR: 4563 case SIOCBONDCHANGEACTIVE: 4564 case SIOCBRADDIF: 4565 case SIOCBRDELIF: 4566 case SIOCSHWTSTAMP: 4567 if (!capable(CAP_NET_ADMIN)) 4568 return -EPERM; 4569 /* fall through */ 4570 case SIOCBONDSLAVEINFOQUERY: 4571 case SIOCBONDINFOQUERY: 4572 dev_load(net, ifr.ifr_name); 4573 rtnl_lock(); 4574 ret = dev_ifsioc(net, &ifr, cmd); 4575 rtnl_unlock(); 4576 return ret; 4577 4578 case SIOCGIFMEM: 4579 /* Get the per device memory space. We can add this but 4580 * currently do not support it */ 4581 case SIOCSIFMEM: 4582 /* Set the per device memory buffer space. 4583 * Not applicable in our case */ 4584 case SIOCSIFLINK: 4585 return -EINVAL; 4586 4587 /* 4588 * Unknown or private ioctl. 4589 */ 4590 default: 4591 if (cmd == SIOCWANDEV || 4592 (cmd >= SIOCDEVPRIVATE && 4593 cmd <= SIOCDEVPRIVATE + 15)) { 4594 dev_load(net, ifr.ifr_name); 4595 rtnl_lock(); 4596 ret = dev_ifsioc(net, &ifr, cmd); 4597 rtnl_unlock(); 4598 if (!ret && copy_to_user(arg, &ifr, 4599 sizeof(struct ifreq))) 4600 ret = -EFAULT; 4601 return ret; 4602 } 4603 /* Take care of Wireless Extensions */ 4604 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) 4605 return wext_handle_ioctl(net, &ifr, cmd, arg); 4606 return -EINVAL; 4607 } 4608 } 4609 4610 4611 /** 4612 * dev_new_index - allocate an ifindex 4613 * @net: the applicable net namespace 4614 * 4615 * Returns a suitable unique value for a new device interface 4616 * number. The caller must hold the rtnl semaphore or the 4617 * dev_base_lock to be sure it remains unique. 4618 */ 4619 static int dev_new_index(struct net *net) 4620 { 4621 static int ifindex; 4622 for (;;) { 4623 if (++ifindex <= 0) 4624 ifindex = 1; 4625 if (!__dev_get_by_index(net, ifindex)) 4626 return ifindex; 4627 } 4628 } 4629 4630 /* Delayed registration/unregisteration */ 4631 static LIST_HEAD(net_todo_list); 4632 4633 static void net_set_todo(struct net_device *dev) 4634 { 4635 list_add_tail(&dev->todo_list, &net_todo_list); 4636 } 4637 4638 static void rollback_registered(struct net_device *dev) 4639 { 4640 BUG_ON(dev_boot_phase); 4641 ASSERT_RTNL(); 4642 4643 /* Some devices call without registering for initialization unwind. */ 4644 if (dev->reg_state == NETREG_UNINITIALIZED) { 4645 printk(KERN_DEBUG "unregister_netdevice: device %s/%p never " 4646 "was registered\n", dev->name, dev); 4647 4648 WARN_ON(1); 4649 return; 4650 } 4651 4652 BUG_ON(dev->reg_state != NETREG_REGISTERED); 4653 4654 /* If device is running, close it first. */ 4655 dev_close(dev); 4656 4657 /* And unlink it from device chain. */ 4658 unlist_netdevice(dev); 4659 4660 dev->reg_state = NETREG_UNREGISTERING; 4661 4662 synchronize_net(); 4663 4664 /* Shutdown queueing discipline. */ 4665 dev_shutdown(dev); 4666 4667 4668 /* Notify protocols, that we are about to destroy 4669 this device. They should clean all the things. 4670 */ 4671 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 4672 4673 /* 4674 * Flush the unicast and multicast chains 4675 */ 4676 dev_unicast_flush(dev); 4677 dev_addr_discard(dev); 4678 4679 if (dev->netdev_ops->ndo_uninit) 4680 dev->netdev_ops->ndo_uninit(dev); 4681 4682 /* Notifier chain MUST detach us from master device. */ 4683 WARN_ON(dev->master); 4684 4685 /* Remove entries from kobject tree */ 4686 netdev_unregister_kobject(dev); 4687 4688 synchronize_net(); 4689 4690 dev_put(dev); 4691 } 4692 4693 static void __netdev_init_queue_locks_one(struct net_device *dev, 4694 struct netdev_queue *dev_queue, 4695 void *_unused) 4696 { 4697 spin_lock_init(&dev_queue->_xmit_lock); 4698 netdev_set_xmit_lockdep_class(&dev_queue->_xmit_lock, dev->type); 4699 dev_queue->xmit_lock_owner = -1; 4700 } 4701 4702 static void netdev_init_queue_locks(struct net_device *dev) 4703 { 4704 netdev_for_each_tx_queue(dev, __netdev_init_queue_locks_one, NULL); 4705 __netdev_init_queue_locks_one(dev, &dev->rx_queue, NULL); 4706 } 4707 4708 unsigned long netdev_fix_features(unsigned long features, const char *name) 4709 { 4710 /* Fix illegal SG+CSUM combinations. */ 4711 if ((features & NETIF_F_SG) && 4712 !(features & NETIF_F_ALL_CSUM)) { 4713 if (name) 4714 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no " 4715 "checksum feature.\n", name); 4716 features &= ~NETIF_F_SG; 4717 } 4718 4719 /* TSO requires that SG is present as well. */ 4720 if ((features & NETIF_F_TSO) && !(features & NETIF_F_SG)) { 4721 if (name) 4722 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no " 4723 "SG feature.\n", name); 4724 features &= ~NETIF_F_TSO; 4725 } 4726 4727 if (features & NETIF_F_UFO) { 4728 if (!(features & NETIF_F_GEN_CSUM)) { 4729 if (name) 4730 printk(KERN_ERR "%s: Dropping NETIF_F_UFO " 4731 "since no NETIF_F_HW_CSUM feature.\n", 4732 name); 4733 features &= ~NETIF_F_UFO; 4734 } 4735 4736 if (!(features & NETIF_F_SG)) { 4737 if (name) 4738 printk(KERN_ERR "%s: Dropping NETIF_F_UFO " 4739 "since no NETIF_F_SG feature.\n", name); 4740 features &= ~NETIF_F_UFO; 4741 } 4742 } 4743 4744 return features; 4745 } 4746 EXPORT_SYMBOL(netdev_fix_features); 4747 4748 /** 4749 * register_netdevice - register a network device 4750 * @dev: device to register 4751 * 4752 * Take a completed network device structure and add it to the kernel 4753 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 4754 * chain. 0 is returned on success. A negative errno code is returned 4755 * on a failure to set up the device, or if the name is a duplicate. 4756 * 4757 * Callers must hold the rtnl semaphore. You may want 4758 * register_netdev() instead of this. 4759 * 4760 * BUGS: 4761 * The locking appears insufficient to guarantee two parallel registers 4762 * will not get the same name. 4763 */ 4764 4765 int register_netdevice(struct net_device *dev) 4766 { 4767 struct hlist_head *head; 4768 struct hlist_node *p; 4769 int ret; 4770 struct net *net = dev_net(dev); 4771 4772 BUG_ON(dev_boot_phase); 4773 ASSERT_RTNL(); 4774 4775 might_sleep(); 4776 4777 /* When net_device's are persistent, this will be fatal. */ 4778 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 4779 BUG_ON(!net); 4780 4781 spin_lock_init(&dev->addr_list_lock); 4782 netdev_set_addr_lockdep_class(dev); 4783 netdev_init_queue_locks(dev); 4784 4785 dev->iflink = -1; 4786 4787 /* Init, if this function is available */ 4788 if (dev->netdev_ops->ndo_init) { 4789 ret = dev->netdev_ops->ndo_init(dev); 4790 if (ret) { 4791 if (ret > 0) 4792 ret = -EIO; 4793 goto out; 4794 } 4795 } 4796 4797 if (!dev_valid_name(dev->name)) { 4798 ret = -EINVAL; 4799 goto err_uninit; 4800 } 4801 4802 dev->ifindex = dev_new_index(net); 4803 if (dev->iflink == -1) 4804 dev->iflink = dev->ifindex; 4805 4806 /* Check for existence of name */ 4807 head = dev_name_hash(net, dev->name); 4808 hlist_for_each(p, head) { 4809 struct net_device *d 4810 = hlist_entry(p, struct net_device, name_hlist); 4811 if (!strncmp(d->name, dev->name, IFNAMSIZ)) { 4812 ret = -EEXIST; 4813 goto err_uninit; 4814 } 4815 } 4816 4817 /* Fix illegal checksum combinations */ 4818 if ((dev->features & NETIF_F_HW_CSUM) && 4819 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 4820 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n", 4821 dev->name); 4822 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 4823 } 4824 4825 if ((dev->features & NETIF_F_NO_CSUM) && 4826 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 4827 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n", 4828 dev->name); 4829 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM); 4830 } 4831 4832 dev->features = netdev_fix_features(dev->features, dev->name); 4833 4834 /* Enable software GSO if SG is supported. */ 4835 if (dev->features & NETIF_F_SG) 4836 dev->features |= NETIF_F_GSO; 4837 4838 netdev_initialize_kobject(dev); 4839 ret = netdev_register_kobject(dev); 4840 if (ret) 4841 goto err_uninit; 4842 dev->reg_state = NETREG_REGISTERED; 4843 4844 /* 4845 * Default initial state at registry is that the 4846 * device is present. 4847 */ 4848 4849 set_bit(__LINK_STATE_PRESENT, &dev->state); 4850 4851 dev_init_scheduler(dev); 4852 dev_hold(dev); 4853 list_netdevice(dev); 4854 4855 /* Notify protocols, that a new device appeared. */ 4856 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 4857 ret = notifier_to_errno(ret); 4858 if (ret) { 4859 rollback_registered(dev); 4860 dev->reg_state = NETREG_UNREGISTERED; 4861 } 4862 4863 out: 4864 return ret; 4865 4866 err_uninit: 4867 if (dev->netdev_ops->ndo_uninit) 4868 dev->netdev_ops->ndo_uninit(dev); 4869 goto out; 4870 } 4871 EXPORT_SYMBOL(register_netdevice); 4872 4873 /** 4874 * init_dummy_netdev - init a dummy network device for NAPI 4875 * @dev: device to init 4876 * 4877 * This takes a network device structure and initialize the minimum 4878 * amount of fields so it can be used to schedule NAPI polls without 4879 * registering a full blown interface. This is to be used by drivers 4880 * that need to tie several hardware interfaces to a single NAPI 4881 * poll scheduler due to HW limitations. 4882 */ 4883 int init_dummy_netdev(struct net_device *dev) 4884 { 4885 /* Clear everything. Note we don't initialize spinlocks 4886 * are they aren't supposed to be taken by any of the 4887 * NAPI code and this dummy netdev is supposed to be 4888 * only ever used for NAPI polls 4889 */ 4890 memset(dev, 0, sizeof(struct net_device)); 4891 4892 /* make sure we BUG if trying to hit standard 4893 * register/unregister code path 4894 */ 4895 dev->reg_state = NETREG_DUMMY; 4896 4897 /* initialize the ref count */ 4898 atomic_set(&dev->refcnt, 1); 4899 4900 /* NAPI wants this */ 4901 INIT_LIST_HEAD(&dev->napi_list); 4902 4903 /* a dummy interface is started by default */ 4904 set_bit(__LINK_STATE_PRESENT, &dev->state); 4905 set_bit(__LINK_STATE_START, &dev->state); 4906 4907 return 0; 4908 } 4909 EXPORT_SYMBOL_GPL(init_dummy_netdev); 4910 4911 4912 /** 4913 * register_netdev - register a network device 4914 * @dev: device to register 4915 * 4916 * Take a completed network device structure and add it to the kernel 4917 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 4918 * chain. 0 is returned on success. A negative errno code is returned 4919 * on a failure to set up the device, or if the name is a duplicate. 4920 * 4921 * This is a wrapper around register_netdevice that takes the rtnl semaphore 4922 * and expands the device name if you passed a format string to 4923 * alloc_netdev. 4924 */ 4925 int register_netdev(struct net_device *dev) 4926 { 4927 int err; 4928 4929 rtnl_lock(); 4930 4931 /* 4932 * If the name is a format string the caller wants us to do a 4933 * name allocation. 4934 */ 4935 if (strchr(dev->name, '%')) { 4936 err = dev_alloc_name(dev, dev->name); 4937 if (err < 0) 4938 goto out; 4939 } 4940 4941 err = register_netdevice(dev); 4942 out: 4943 rtnl_unlock(); 4944 return err; 4945 } 4946 EXPORT_SYMBOL(register_netdev); 4947 4948 /* 4949 * netdev_wait_allrefs - wait until all references are gone. 4950 * 4951 * This is called when unregistering network devices. 4952 * 4953 * Any protocol or device that holds a reference should register 4954 * for netdevice notification, and cleanup and put back the 4955 * reference if they receive an UNREGISTER event. 4956 * We can get stuck here if buggy protocols don't correctly 4957 * call dev_put. 4958 */ 4959 static void netdev_wait_allrefs(struct net_device *dev) 4960 { 4961 unsigned long rebroadcast_time, warning_time; 4962 4963 rebroadcast_time = warning_time = jiffies; 4964 while (atomic_read(&dev->refcnt) != 0) { 4965 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 4966 rtnl_lock(); 4967 4968 /* Rebroadcast unregister notification */ 4969 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 4970 4971 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 4972 &dev->state)) { 4973 /* We must not have linkwatch events 4974 * pending on unregister. If this 4975 * happens, we simply run the queue 4976 * unscheduled, resulting in a noop 4977 * for this device. 4978 */ 4979 linkwatch_run_queue(); 4980 } 4981 4982 __rtnl_unlock(); 4983 4984 rebroadcast_time = jiffies; 4985 } 4986 4987 msleep(250); 4988 4989 if (time_after(jiffies, warning_time + 10 * HZ)) { 4990 printk(KERN_EMERG "unregister_netdevice: " 4991 "waiting for %s to become free. Usage " 4992 "count = %d\n", 4993 dev->name, atomic_read(&dev->refcnt)); 4994 warning_time = jiffies; 4995 } 4996 } 4997 } 4998 4999 /* The sequence is: 5000 * 5001 * rtnl_lock(); 5002 * ... 5003 * register_netdevice(x1); 5004 * register_netdevice(x2); 5005 * ... 5006 * unregister_netdevice(y1); 5007 * unregister_netdevice(y2); 5008 * ... 5009 * rtnl_unlock(); 5010 * free_netdev(y1); 5011 * free_netdev(y2); 5012 * 5013 * We are invoked by rtnl_unlock(). 5014 * This allows us to deal with problems: 5015 * 1) We can delete sysfs objects which invoke hotplug 5016 * without deadlocking with linkwatch via keventd. 5017 * 2) Since we run with the RTNL semaphore not held, we can sleep 5018 * safely in order to wait for the netdev refcnt to drop to zero. 5019 * 5020 * We must not return until all unregister events added during 5021 * the interval the lock was held have been completed. 5022 */ 5023 void netdev_run_todo(void) 5024 { 5025 struct list_head list; 5026 5027 /* Snapshot list, allow later requests */ 5028 list_replace_init(&net_todo_list, &list); 5029 5030 __rtnl_unlock(); 5031 5032 while (!list_empty(&list)) { 5033 struct net_device *dev 5034 = list_entry(list.next, struct net_device, todo_list); 5035 list_del(&dev->todo_list); 5036 5037 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 5038 printk(KERN_ERR "network todo '%s' but state %d\n", 5039 dev->name, dev->reg_state); 5040 dump_stack(); 5041 continue; 5042 } 5043 5044 dev->reg_state = NETREG_UNREGISTERED; 5045 5046 on_each_cpu(flush_backlog, dev, 1); 5047 5048 netdev_wait_allrefs(dev); 5049 5050 /* paranoia */ 5051 BUG_ON(atomic_read(&dev->refcnt)); 5052 WARN_ON(dev->ip_ptr); 5053 WARN_ON(dev->ip6_ptr); 5054 WARN_ON(dev->dn_ptr); 5055 5056 if (dev->destructor) 5057 dev->destructor(dev); 5058 5059 /* Free network device */ 5060 kobject_put(&dev->dev.kobj); 5061 } 5062 } 5063 5064 /** 5065 * dev_get_stats - get network device statistics 5066 * @dev: device to get statistics from 5067 * 5068 * Get network statistics from device. The device driver may provide 5069 * its own method by setting dev->netdev_ops->get_stats; otherwise 5070 * the internal statistics structure is used. 5071 */ 5072 const struct net_device_stats *dev_get_stats(struct net_device *dev) 5073 { 5074 const struct net_device_ops *ops = dev->netdev_ops; 5075 5076 if (ops->ndo_get_stats) 5077 return ops->ndo_get_stats(dev); 5078 else { 5079 unsigned long tx_bytes = 0, tx_packets = 0, tx_dropped = 0; 5080 struct net_device_stats *stats = &dev->stats; 5081 unsigned int i; 5082 struct netdev_queue *txq; 5083 5084 for (i = 0; i < dev->num_tx_queues; i++) { 5085 txq = netdev_get_tx_queue(dev, i); 5086 tx_bytes += txq->tx_bytes; 5087 tx_packets += txq->tx_packets; 5088 tx_dropped += txq->tx_dropped; 5089 } 5090 if (tx_bytes || tx_packets || tx_dropped) { 5091 stats->tx_bytes = tx_bytes; 5092 stats->tx_packets = tx_packets; 5093 stats->tx_dropped = tx_dropped; 5094 } 5095 return stats; 5096 } 5097 } 5098 EXPORT_SYMBOL(dev_get_stats); 5099 5100 static void netdev_init_one_queue(struct net_device *dev, 5101 struct netdev_queue *queue, 5102 void *_unused) 5103 { 5104 queue->dev = dev; 5105 } 5106 5107 static void netdev_init_queues(struct net_device *dev) 5108 { 5109 netdev_init_one_queue(dev, &dev->rx_queue, NULL); 5110 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 5111 spin_lock_init(&dev->tx_global_lock); 5112 } 5113 5114 /** 5115 * alloc_netdev_mq - allocate network device 5116 * @sizeof_priv: size of private data to allocate space for 5117 * @name: device name format string 5118 * @setup: callback to initialize device 5119 * @queue_count: the number of subqueues to allocate 5120 * 5121 * Allocates a struct net_device with private data area for driver use 5122 * and performs basic initialization. Also allocates subquue structs 5123 * for each queue on the device at the end of the netdevice. 5124 */ 5125 struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name, 5126 void (*setup)(struct net_device *), unsigned int queue_count) 5127 { 5128 struct netdev_queue *tx; 5129 struct net_device *dev; 5130 size_t alloc_size; 5131 struct net_device *p; 5132 5133 BUG_ON(strlen(name) >= sizeof(dev->name)); 5134 5135 alloc_size = sizeof(struct net_device); 5136 if (sizeof_priv) { 5137 /* ensure 32-byte alignment of private area */ 5138 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); 5139 alloc_size += sizeof_priv; 5140 } 5141 /* ensure 32-byte alignment of whole construct */ 5142 alloc_size += NETDEV_ALIGN - 1; 5143 5144 p = kzalloc(alloc_size, GFP_KERNEL); 5145 if (!p) { 5146 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n"); 5147 return NULL; 5148 } 5149 5150 tx = kcalloc(queue_count, sizeof(struct netdev_queue), GFP_KERNEL); 5151 if (!tx) { 5152 printk(KERN_ERR "alloc_netdev: Unable to allocate " 5153 "tx qdiscs.\n"); 5154 goto free_p; 5155 } 5156 5157 dev = PTR_ALIGN(p, NETDEV_ALIGN); 5158 dev->padded = (char *)dev - (char *)p; 5159 5160 if (dev_addr_init(dev)) 5161 goto free_tx; 5162 5163 dev_unicast_init(dev); 5164 5165 dev_net_set(dev, &init_net); 5166 5167 dev->_tx = tx; 5168 dev->num_tx_queues = queue_count; 5169 dev->real_num_tx_queues = queue_count; 5170 5171 dev->gso_max_size = GSO_MAX_SIZE; 5172 5173 netdev_init_queues(dev); 5174 5175 INIT_LIST_HEAD(&dev->napi_list); 5176 dev->priv_flags = IFF_XMIT_DST_RELEASE; 5177 setup(dev); 5178 strcpy(dev->name, name); 5179 return dev; 5180 5181 free_tx: 5182 kfree(tx); 5183 5184 free_p: 5185 kfree(p); 5186 return NULL; 5187 } 5188 EXPORT_SYMBOL(alloc_netdev_mq); 5189 5190 /** 5191 * free_netdev - free network device 5192 * @dev: device 5193 * 5194 * This function does the last stage of destroying an allocated device 5195 * interface. The reference to the device object is released. 5196 * If this is the last reference then it will be freed. 5197 */ 5198 void free_netdev(struct net_device *dev) 5199 { 5200 struct napi_struct *p, *n; 5201 5202 release_net(dev_net(dev)); 5203 5204 kfree(dev->_tx); 5205 5206 /* Flush device addresses */ 5207 dev_addr_flush(dev); 5208 5209 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 5210 netif_napi_del(p); 5211 5212 /* Compatibility with error handling in drivers */ 5213 if (dev->reg_state == NETREG_UNINITIALIZED) { 5214 kfree((char *)dev - dev->padded); 5215 return; 5216 } 5217 5218 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 5219 dev->reg_state = NETREG_RELEASED; 5220 5221 /* will free via device release */ 5222 put_device(&dev->dev); 5223 } 5224 EXPORT_SYMBOL(free_netdev); 5225 5226 /** 5227 * synchronize_net - Synchronize with packet receive processing 5228 * 5229 * Wait for packets currently being received to be done. 5230 * Does not block later packets from starting. 5231 */ 5232 void synchronize_net(void) 5233 { 5234 might_sleep(); 5235 synchronize_rcu(); 5236 } 5237 EXPORT_SYMBOL(synchronize_net); 5238 5239 /** 5240 * unregister_netdevice - remove device from the kernel 5241 * @dev: device 5242 * 5243 * This function shuts down a device interface and removes it 5244 * from the kernel tables. 5245 * 5246 * Callers must hold the rtnl semaphore. You may want 5247 * unregister_netdev() instead of this. 5248 */ 5249 5250 void unregister_netdevice(struct net_device *dev) 5251 { 5252 ASSERT_RTNL(); 5253 5254 rollback_registered(dev); 5255 /* Finish processing unregister after unlock */ 5256 net_set_todo(dev); 5257 } 5258 EXPORT_SYMBOL(unregister_netdevice); 5259 5260 /** 5261 * unregister_netdev - remove device from the kernel 5262 * @dev: device 5263 * 5264 * This function shuts down a device interface and removes it 5265 * from the kernel tables. 5266 * 5267 * This is just a wrapper for unregister_netdevice that takes 5268 * the rtnl semaphore. In general you want to use this and not 5269 * unregister_netdevice. 5270 */ 5271 void unregister_netdev(struct net_device *dev) 5272 { 5273 rtnl_lock(); 5274 unregister_netdevice(dev); 5275 rtnl_unlock(); 5276 } 5277 EXPORT_SYMBOL(unregister_netdev); 5278 5279 /** 5280 * dev_change_net_namespace - move device to different nethost namespace 5281 * @dev: device 5282 * @net: network namespace 5283 * @pat: If not NULL name pattern to try if the current device name 5284 * is already taken in the destination network namespace. 5285 * 5286 * This function shuts down a device interface and moves it 5287 * to a new network namespace. On success 0 is returned, on 5288 * a failure a netagive errno code is returned. 5289 * 5290 * Callers must hold the rtnl semaphore. 5291 */ 5292 5293 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 5294 { 5295 char buf[IFNAMSIZ]; 5296 const char *destname; 5297 int err; 5298 5299 ASSERT_RTNL(); 5300 5301 /* Don't allow namespace local devices to be moved. */ 5302 err = -EINVAL; 5303 if (dev->features & NETIF_F_NETNS_LOCAL) 5304 goto out; 5305 5306 #ifdef CONFIG_SYSFS 5307 /* Don't allow real devices to be moved when sysfs 5308 * is enabled. 5309 */ 5310 err = -EINVAL; 5311 if (dev->dev.parent) 5312 goto out; 5313 #endif 5314 5315 /* Ensure the device has been registrered */ 5316 err = -EINVAL; 5317 if (dev->reg_state != NETREG_REGISTERED) 5318 goto out; 5319 5320 /* Get out if there is nothing todo */ 5321 err = 0; 5322 if (net_eq(dev_net(dev), net)) 5323 goto out; 5324 5325 /* Pick the destination device name, and ensure 5326 * we can use it in the destination network namespace. 5327 */ 5328 err = -EEXIST; 5329 destname = dev->name; 5330 if (__dev_get_by_name(net, destname)) { 5331 /* We get here if we can't use the current device name */ 5332 if (!pat) 5333 goto out; 5334 if (!dev_valid_name(pat)) 5335 goto out; 5336 if (strchr(pat, '%')) { 5337 if (__dev_alloc_name(net, pat, buf) < 0) 5338 goto out; 5339 destname = buf; 5340 } else 5341 destname = pat; 5342 if (__dev_get_by_name(net, destname)) 5343 goto out; 5344 } 5345 5346 /* 5347 * And now a mini version of register_netdevice unregister_netdevice. 5348 */ 5349 5350 /* If device is running close it first. */ 5351 dev_close(dev); 5352 5353 /* And unlink it from device chain */ 5354 err = -ENODEV; 5355 unlist_netdevice(dev); 5356 5357 synchronize_net(); 5358 5359 /* Shutdown queueing discipline. */ 5360 dev_shutdown(dev); 5361 5362 /* Notify protocols, that we are about to destroy 5363 this device. They should clean all the things. 5364 */ 5365 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 5366 5367 /* 5368 * Flush the unicast and multicast chains 5369 */ 5370 dev_unicast_flush(dev); 5371 dev_addr_discard(dev); 5372 5373 netdev_unregister_kobject(dev); 5374 5375 /* Actually switch the network namespace */ 5376 dev_net_set(dev, net); 5377 5378 /* Assign the new device name */ 5379 if (destname != dev->name) 5380 strcpy(dev->name, destname); 5381 5382 /* If there is an ifindex conflict assign a new one */ 5383 if (__dev_get_by_index(net, dev->ifindex)) { 5384 int iflink = (dev->iflink == dev->ifindex); 5385 dev->ifindex = dev_new_index(net); 5386 if (iflink) 5387 dev->iflink = dev->ifindex; 5388 } 5389 5390 /* Fixup kobjects */ 5391 err = netdev_register_kobject(dev); 5392 WARN_ON(err); 5393 5394 /* Add the device back in the hashes */ 5395 list_netdevice(dev); 5396 5397 /* Notify protocols, that a new device appeared. */ 5398 call_netdevice_notifiers(NETDEV_REGISTER, dev); 5399 5400 synchronize_net(); 5401 err = 0; 5402 out: 5403 return err; 5404 } 5405 EXPORT_SYMBOL_GPL(dev_change_net_namespace); 5406 5407 static int dev_cpu_callback(struct notifier_block *nfb, 5408 unsigned long action, 5409 void *ocpu) 5410 { 5411 struct sk_buff **list_skb; 5412 struct Qdisc **list_net; 5413 struct sk_buff *skb; 5414 unsigned int cpu, oldcpu = (unsigned long)ocpu; 5415 struct softnet_data *sd, *oldsd; 5416 5417 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN) 5418 return NOTIFY_OK; 5419 5420 local_irq_disable(); 5421 cpu = smp_processor_id(); 5422 sd = &per_cpu(softnet_data, cpu); 5423 oldsd = &per_cpu(softnet_data, oldcpu); 5424 5425 /* Find end of our completion_queue. */ 5426 list_skb = &sd->completion_queue; 5427 while (*list_skb) 5428 list_skb = &(*list_skb)->next; 5429 /* Append completion queue from offline CPU. */ 5430 *list_skb = oldsd->completion_queue; 5431 oldsd->completion_queue = NULL; 5432 5433 /* Find end of our output_queue. */ 5434 list_net = &sd->output_queue; 5435 while (*list_net) 5436 list_net = &(*list_net)->next_sched; 5437 /* Append output queue from offline CPU. */ 5438 *list_net = oldsd->output_queue; 5439 oldsd->output_queue = NULL; 5440 5441 raise_softirq_irqoff(NET_TX_SOFTIRQ); 5442 local_irq_enable(); 5443 5444 /* Process offline CPU's input_pkt_queue */ 5445 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) 5446 netif_rx(skb); 5447 5448 return NOTIFY_OK; 5449 } 5450 5451 5452 /** 5453 * netdev_increment_features - increment feature set by one 5454 * @all: current feature set 5455 * @one: new feature set 5456 * @mask: mask feature set 5457 * 5458 * Computes a new feature set after adding a device with feature set 5459 * @one to the master device with current feature set @all. Will not 5460 * enable anything that is off in @mask. Returns the new feature set. 5461 */ 5462 unsigned long netdev_increment_features(unsigned long all, unsigned long one, 5463 unsigned long mask) 5464 { 5465 /* If device needs checksumming, downgrade to it. */ 5466 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM)) 5467 all ^= NETIF_F_NO_CSUM | (one & NETIF_F_ALL_CSUM); 5468 else if (mask & NETIF_F_ALL_CSUM) { 5469 /* If one device supports v4/v6 checksumming, set for all. */ 5470 if (one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM) && 5471 !(all & NETIF_F_GEN_CSUM)) { 5472 all &= ~NETIF_F_ALL_CSUM; 5473 all |= one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM); 5474 } 5475 5476 /* If one device supports hw checksumming, set for all. */ 5477 if (one & NETIF_F_GEN_CSUM && !(all & NETIF_F_GEN_CSUM)) { 5478 all &= ~NETIF_F_ALL_CSUM; 5479 all |= NETIF_F_HW_CSUM; 5480 } 5481 } 5482 5483 one |= NETIF_F_ALL_CSUM; 5484 5485 one |= all & NETIF_F_ONE_FOR_ALL; 5486 all &= one | NETIF_F_LLTX | NETIF_F_GSO; 5487 all |= one & mask & NETIF_F_ONE_FOR_ALL; 5488 5489 return all; 5490 } 5491 EXPORT_SYMBOL(netdev_increment_features); 5492 5493 static struct hlist_head *netdev_create_hash(void) 5494 { 5495 int i; 5496 struct hlist_head *hash; 5497 5498 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL); 5499 if (hash != NULL) 5500 for (i = 0; i < NETDEV_HASHENTRIES; i++) 5501 INIT_HLIST_HEAD(&hash[i]); 5502 5503 return hash; 5504 } 5505 5506 /* Initialize per network namespace state */ 5507 static int __net_init netdev_init(struct net *net) 5508 { 5509 INIT_LIST_HEAD(&net->dev_base_head); 5510 5511 net->dev_name_head = netdev_create_hash(); 5512 if (net->dev_name_head == NULL) 5513 goto err_name; 5514 5515 net->dev_index_head = netdev_create_hash(); 5516 if (net->dev_index_head == NULL) 5517 goto err_idx; 5518 5519 return 0; 5520 5521 err_idx: 5522 kfree(net->dev_name_head); 5523 err_name: 5524 return -ENOMEM; 5525 } 5526 5527 /** 5528 * netdev_drivername - network driver for the device 5529 * @dev: network device 5530 * @buffer: buffer for resulting name 5531 * @len: size of buffer 5532 * 5533 * Determine network driver for device. 5534 */ 5535 char *netdev_drivername(const struct net_device *dev, char *buffer, int len) 5536 { 5537 const struct device_driver *driver; 5538 const struct device *parent; 5539 5540 if (len <= 0 || !buffer) 5541 return buffer; 5542 buffer[0] = 0; 5543 5544 parent = dev->dev.parent; 5545 5546 if (!parent) 5547 return buffer; 5548 5549 driver = parent->driver; 5550 if (driver && driver->name) 5551 strlcpy(buffer, driver->name, len); 5552 return buffer; 5553 } 5554 5555 static void __net_exit netdev_exit(struct net *net) 5556 { 5557 kfree(net->dev_name_head); 5558 kfree(net->dev_index_head); 5559 } 5560 5561 static struct pernet_operations __net_initdata netdev_net_ops = { 5562 .init = netdev_init, 5563 .exit = netdev_exit, 5564 }; 5565 5566 static void __net_exit default_device_exit(struct net *net) 5567 { 5568 struct net_device *dev; 5569 /* 5570 * Push all migratable of the network devices back to the 5571 * initial network namespace 5572 */ 5573 rtnl_lock(); 5574 restart: 5575 for_each_netdev(net, dev) { 5576 int err; 5577 char fb_name[IFNAMSIZ]; 5578 5579 /* Ignore unmoveable devices (i.e. loopback) */ 5580 if (dev->features & NETIF_F_NETNS_LOCAL) 5581 continue; 5582 5583 /* Delete virtual devices */ 5584 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) { 5585 dev->rtnl_link_ops->dellink(dev); 5586 goto restart; 5587 } 5588 5589 /* Push remaing network devices to init_net */ 5590 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 5591 err = dev_change_net_namespace(dev, &init_net, fb_name); 5592 if (err) { 5593 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n", 5594 __func__, dev->name, err); 5595 BUG(); 5596 } 5597 goto restart; 5598 } 5599 rtnl_unlock(); 5600 } 5601 5602 static struct pernet_operations __net_initdata default_device_ops = { 5603 .exit = default_device_exit, 5604 }; 5605 5606 /* 5607 * Initialize the DEV module. At boot time this walks the device list and 5608 * unhooks any devices that fail to initialise (normally hardware not 5609 * present) and leaves us with a valid list of present and active devices. 5610 * 5611 */ 5612 5613 /* 5614 * This is called single threaded during boot, so no need 5615 * to take the rtnl semaphore. 5616 */ 5617 static int __init net_dev_init(void) 5618 { 5619 int i, rc = -ENOMEM; 5620 5621 BUG_ON(!dev_boot_phase); 5622 5623 if (dev_proc_init()) 5624 goto out; 5625 5626 if (netdev_kobject_init()) 5627 goto out; 5628 5629 INIT_LIST_HEAD(&ptype_all); 5630 for (i = 0; i < PTYPE_HASH_SIZE; i++) 5631 INIT_LIST_HEAD(&ptype_base[i]); 5632 5633 if (register_pernet_subsys(&netdev_net_ops)) 5634 goto out; 5635 5636 /* 5637 * Initialise the packet receive queues. 5638 */ 5639 5640 for_each_possible_cpu(i) { 5641 struct softnet_data *queue; 5642 5643 queue = &per_cpu(softnet_data, i); 5644 skb_queue_head_init(&queue->input_pkt_queue); 5645 queue->completion_queue = NULL; 5646 INIT_LIST_HEAD(&queue->poll_list); 5647 5648 queue->backlog.poll = process_backlog; 5649 queue->backlog.weight = weight_p; 5650 queue->backlog.gro_list = NULL; 5651 queue->backlog.gro_count = 0; 5652 } 5653 5654 dev_boot_phase = 0; 5655 5656 /* The loopback device is special if any other network devices 5657 * is present in a network namespace the loopback device must 5658 * be present. Since we now dynamically allocate and free the 5659 * loopback device ensure this invariant is maintained by 5660 * keeping the loopback device as the first device on the 5661 * list of network devices. Ensuring the loopback devices 5662 * is the first device that appears and the last network device 5663 * that disappears. 5664 */ 5665 if (register_pernet_device(&loopback_net_ops)) 5666 goto out; 5667 5668 if (register_pernet_device(&default_device_ops)) 5669 goto out; 5670 5671 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 5672 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 5673 5674 hotcpu_notifier(dev_cpu_callback, 0); 5675 dst_init(); 5676 dev_mcast_init(); 5677 rc = 0; 5678 out: 5679 return rc; 5680 } 5681 5682 subsys_initcall(net_dev_init); 5683 5684 static int __init initialize_hashrnd(void) 5685 { 5686 get_random_bytes(&skb_tx_hashrnd, sizeof(skb_tx_hashrnd)); 5687 return 0; 5688 } 5689 5690 late_initcall_sync(initialize_hashrnd); 5691 5692