xref: /linux/net/core/dev.c (revision baf69e275317602bb1f2c87e40d1e03c90b31e38)
1 /*
2  * 	NET3	Protocol independent device support routines.
3  *
4  *		This program is free software; you can redistribute it and/or
5  *		modify it under the terms of the GNU General Public License
6  *		as published by the Free Software Foundation; either version
7  *		2 of the License, or (at your option) any later version.
8  *
9  *	Derived from the non IP parts of dev.c 1.0.19
10  * 		Authors:	Ross Biro
11  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *	Additional Authors:
15  *		Florian la Roche <rzsfl@rz.uni-sb.de>
16  *		Alan Cox <gw4pts@gw4pts.ampr.org>
17  *		David Hinds <dahinds@users.sourceforge.net>
18  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *		Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *	Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *              			to 2 if register_netdev gets called
25  *              			before net_dev_init & also removed a
26  *              			few lines of code in the process.
27  *		Alan Cox	:	device private ioctl copies fields back.
28  *		Alan Cox	:	Transmit queue code does relevant
29  *					stunts to keep the queue safe.
30  *		Alan Cox	:	Fixed double lock.
31  *		Alan Cox	:	Fixed promisc NULL pointer trap
32  *		????????	:	Support the full private ioctl range
33  *		Alan Cox	:	Moved ioctl permission check into
34  *					drivers
35  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
36  *		Alan Cox	:	100 backlog just doesn't cut it when
37  *					you start doing multicast video 8)
38  *		Alan Cox	:	Rewrote net_bh and list manager.
39  *		Alan Cox	: 	Fix ETH_P_ALL echoback lengths.
40  *		Alan Cox	:	Took out transmit every packet pass
41  *					Saved a few bytes in the ioctl handler
42  *		Alan Cox	:	Network driver sets packet type before
43  *					calling netif_rx. Saves a function
44  *					call a packet.
45  *		Alan Cox	:	Hashed net_bh()
46  *		Richard Kooijman:	Timestamp fixes.
47  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
48  *		Alan Cox	:	Device lock protection.
49  *		Alan Cox	: 	Fixed nasty side effect of device close
50  *					changes.
51  *		Rudi Cilibrasi	:	Pass the right thing to
52  *					set_mac_address()
53  *		Dave Miller	:	32bit quantity for the device lock to
54  *					make it work out on a Sparc.
55  *		Bjorn Ekwall	:	Added KERNELD hack.
56  *		Alan Cox	:	Cleaned up the backlog initialise.
57  *		Craig Metz	:	SIOCGIFCONF fix if space for under
58  *					1 device.
59  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
60  *					is no device open function.
61  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
62  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
63  *		Cyrus Durgin	:	Cleaned for KMOD
64  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
65  *					A network device unload needs to purge
66  *					the backlog queue.
67  *	Paul Rusty Russell	:	SIOCSIFNAME
68  *              Pekka Riikonen  :	Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *              			indefinitely on dev->refcnt
71  * 		J Hadi Salim	:	- Backlog queue sampling
72  *				        - netif_rx() feedback
73  */
74 
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/proc_fs.h>
101 #include <linux/seq_file.h>
102 #include <linux/stat.h>
103 #include <net/dst.h>
104 #include <net/pkt_sched.h>
105 #include <net/checksum.h>
106 #include <net/xfrm.h>
107 #include <linux/highmem.h>
108 #include <linux/init.h>
109 #include <linux/kmod.h>
110 #include <linux/module.h>
111 #include <linux/netpoll.h>
112 #include <linux/rcupdate.h>
113 #include <linux/delay.h>
114 #include <net/wext.h>
115 #include <net/iw_handler.h>
116 #include <asm/current.h>
117 #include <linux/audit.h>
118 #include <linux/dmaengine.h>
119 #include <linux/err.h>
120 #include <linux/ctype.h>
121 #include <linux/if_arp.h>
122 #include <linux/if_vlan.h>
123 #include <linux/ip.h>
124 #include <net/ip.h>
125 #include <linux/ipv6.h>
126 #include <linux/in.h>
127 #include <linux/jhash.h>
128 #include <linux/random.h>
129 #include <trace/events/napi.h>
130 #include <trace/events/net.h>
131 #include <trace/events/skb.h>
132 #include <linux/pci.h>
133 #include <linux/inetdevice.h>
134 #include <linux/cpu_rmap.h>
135 #include <linux/net_tstamp.h>
136 #include <linux/static_key.h>
137 #include <net/flow_keys.h>
138 
139 #include "net-sysfs.h"
140 
141 /* Instead of increasing this, you should create a hash table. */
142 #define MAX_GRO_SKBS 8
143 
144 /* This should be increased if a protocol with a bigger head is added. */
145 #define GRO_MAX_HEAD (MAX_HEADER + 128)
146 
147 /*
148  *	The list of packet types we will receive (as opposed to discard)
149  *	and the routines to invoke.
150  *
151  *	Why 16. Because with 16 the only overlap we get on a hash of the
152  *	low nibble of the protocol value is RARP/SNAP/X.25.
153  *
154  *      NOTE:  That is no longer true with the addition of VLAN tags.  Not
155  *             sure which should go first, but I bet it won't make much
156  *             difference if we are running VLANs.  The good news is that
157  *             this protocol won't be in the list unless compiled in, so
158  *             the average user (w/out VLANs) will not be adversely affected.
159  *             --BLG
160  *
161  *		0800	IP
162  *		8100    802.1Q VLAN
163  *		0001	802.3
164  *		0002	AX.25
165  *		0004	802.2
166  *		8035	RARP
167  *		0005	SNAP
168  *		0805	X.25
169  *		0806	ARP
170  *		8137	IPX
171  *		0009	Localtalk
172  *		86DD	IPv6
173  */
174 
175 #define PTYPE_HASH_SIZE	(16)
176 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
177 
178 static DEFINE_SPINLOCK(ptype_lock);
179 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
180 static struct list_head ptype_all __read_mostly;	/* Taps */
181 
182 /*
183  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
184  * semaphore.
185  *
186  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
187  *
188  * Writers must hold the rtnl semaphore while they loop through the
189  * dev_base_head list, and hold dev_base_lock for writing when they do the
190  * actual updates.  This allows pure readers to access the list even
191  * while a writer is preparing to update it.
192  *
193  * To put it another way, dev_base_lock is held for writing only to
194  * protect against pure readers; the rtnl semaphore provides the
195  * protection against other writers.
196  *
197  * See, for example usages, register_netdevice() and
198  * unregister_netdevice(), which must be called with the rtnl
199  * semaphore held.
200  */
201 DEFINE_RWLOCK(dev_base_lock);
202 EXPORT_SYMBOL(dev_base_lock);
203 
204 static inline void dev_base_seq_inc(struct net *net)
205 {
206 	while (++net->dev_base_seq == 0);
207 }
208 
209 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
210 {
211 	unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
212 
213 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
214 }
215 
216 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
217 {
218 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
219 }
220 
221 static inline void rps_lock(struct softnet_data *sd)
222 {
223 #ifdef CONFIG_RPS
224 	spin_lock(&sd->input_pkt_queue.lock);
225 #endif
226 }
227 
228 static inline void rps_unlock(struct softnet_data *sd)
229 {
230 #ifdef CONFIG_RPS
231 	spin_unlock(&sd->input_pkt_queue.lock);
232 #endif
233 }
234 
235 /* Device list insertion */
236 static int list_netdevice(struct net_device *dev)
237 {
238 	struct net *net = dev_net(dev);
239 
240 	ASSERT_RTNL();
241 
242 	write_lock_bh(&dev_base_lock);
243 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
244 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
245 	hlist_add_head_rcu(&dev->index_hlist,
246 			   dev_index_hash(net, dev->ifindex));
247 	write_unlock_bh(&dev_base_lock);
248 
249 	dev_base_seq_inc(net);
250 
251 	return 0;
252 }
253 
254 /* Device list removal
255  * caller must respect a RCU grace period before freeing/reusing dev
256  */
257 static void unlist_netdevice(struct net_device *dev)
258 {
259 	ASSERT_RTNL();
260 
261 	/* Unlink dev from the device chain */
262 	write_lock_bh(&dev_base_lock);
263 	list_del_rcu(&dev->dev_list);
264 	hlist_del_rcu(&dev->name_hlist);
265 	hlist_del_rcu(&dev->index_hlist);
266 	write_unlock_bh(&dev_base_lock);
267 
268 	dev_base_seq_inc(dev_net(dev));
269 }
270 
271 /*
272  *	Our notifier list
273  */
274 
275 static RAW_NOTIFIER_HEAD(netdev_chain);
276 
277 /*
278  *	Device drivers call our routines to queue packets here. We empty the
279  *	queue in the local softnet handler.
280  */
281 
282 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
283 EXPORT_PER_CPU_SYMBOL(softnet_data);
284 
285 #ifdef CONFIG_LOCKDEP
286 /*
287  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
288  * according to dev->type
289  */
290 static const unsigned short netdev_lock_type[] =
291 	{ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
292 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
293 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
294 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
295 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
296 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
297 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
298 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
299 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
300 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
301 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
302 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
303 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
304 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
305 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
306 
307 static const char *const netdev_lock_name[] =
308 	{"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
309 	 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
310 	 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
311 	 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
312 	 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
313 	 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
314 	 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
315 	 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
316 	 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
317 	 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
318 	 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
319 	 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
320 	 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
321 	 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
322 	 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
323 
324 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
325 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
326 
327 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
328 {
329 	int i;
330 
331 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
332 		if (netdev_lock_type[i] == dev_type)
333 			return i;
334 	/* the last key is used by default */
335 	return ARRAY_SIZE(netdev_lock_type) - 1;
336 }
337 
338 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
339 						 unsigned short dev_type)
340 {
341 	int i;
342 
343 	i = netdev_lock_pos(dev_type);
344 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
345 				   netdev_lock_name[i]);
346 }
347 
348 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
349 {
350 	int i;
351 
352 	i = netdev_lock_pos(dev->type);
353 	lockdep_set_class_and_name(&dev->addr_list_lock,
354 				   &netdev_addr_lock_key[i],
355 				   netdev_lock_name[i]);
356 }
357 #else
358 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
359 						 unsigned short dev_type)
360 {
361 }
362 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
363 {
364 }
365 #endif
366 
367 /*******************************************************************************
368 
369 		Protocol management and registration routines
370 
371 *******************************************************************************/
372 
373 /*
374  *	Add a protocol ID to the list. Now that the input handler is
375  *	smarter we can dispense with all the messy stuff that used to be
376  *	here.
377  *
378  *	BEWARE!!! Protocol handlers, mangling input packets,
379  *	MUST BE last in hash buckets and checking protocol handlers
380  *	MUST start from promiscuous ptype_all chain in net_bh.
381  *	It is true now, do not change it.
382  *	Explanation follows: if protocol handler, mangling packet, will
383  *	be the first on list, it is not able to sense, that packet
384  *	is cloned and should be copied-on-write, so that it will
385  *	change it and subsequent readers will get broken packet.
386  *							--ANK (980803)
387  */
388 
389 static inline struct list_head *ptype_head(const struct packet_type *pt)
390 {
391 	if (pt->type == htons(ETH_P_ALL))
392 		return &ptype_all;
393 	else
394 		return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
395 }
396 
397 /**
398  *	dev_add_pack - add packet handler
399  *	@pt: packet type declaration
400  *
401  *	Add a protocol handler to the networking stack. The passed &packet_type
402  *	is linked into kernel lists and may not be freed until it has been
403  *	removed from the kernel lists.
404  *
405  *	This call does not sleep therefore it can not
406  *	guarantee all CPU's that are in middle of receiving packets
407  *	will see the new packet type (until the next received packet).
408  */
409 
410 void dev_add_pack(struct packet_type *pt)
411 {
412 	struct list_head *head = ptype_head(pt);
413 
414 	spin_lock(&ptype_lock);
415 	list_add_rcu(&pt->list, head);
416 	spin_unlock(&ptype_lock);
417 }
418 EXPORT_SYMBOL(dev_add_pack);
419 
420 /**
421  *	__dev_remove_pack	 - remove packet handler
422  *	@pt: packet type declaration
423  *
424  *	Remove a protocol handler that was previously added to the kernel
425  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
426  *	from the kernel lists and can be freed or reused once this function
427  *	returns.
428  *
429  *      The packet type might still be in use by receivers
430  *	and must not be freed until after all the CPU's have gone
431  *	through a quiescent state.
432  */
433 void __dev_remove_pack(struct packet_type *pt)
434 {
435 	struct list_head *head = ptype_head(pt);
436 	struct packet_type *pt1;
437 
438 	spin_lock(&ptype_lock);
439 
440 	list_for_each_entry(pt1, head, list) {
441 		if (pt == pt1) {
442 			list_del_rcu(&pt->list);
443 			goto out;
444 		}
445 	}
446 
447 	pr_warn("dev_remove_pack: %p not found\n", pt);
448 out:
449 	spin_unlock(&ptype_lock);
450 }
451 EXPORT_SYMBOL(__dev_remove_pack);
452 
453 /**
454  *	dev_remove_pack	 - remove packet handler
455  *	@pt: packet type declaration
456  *
457  *	Remove a protocol handler that was previously added to the kernel
458  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
459  *	from the kernel lists and can be freed or reused once this function
460  *	returns.
461  *
462  *	This call sleeps to guarantee that no CPU is looking at the packet
463  *	type after return.
464  */
465 void dev_remove_pack(struct packet_type *pt)
466 {
467 	__dev_remove_pack(pt);
468 
469 	synchronize_net();
470 }
471 EXPORT_SYMBOL(dev_remove_pack);
472 
473 /******************************************************************************
474 
475 		      Device Boot-time Settings Routines
476 
477 *******************************************************************************/
478 
479 /* Boot time configuration table */
480 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
481 
482 /**
483  *	netdev_boot_setup_add	- add new setup entry
484  *	@name: name of the device
485  *	@map: configured settings for the device
486  *
487  *	Adds new setup entry to the dev_boot_setup list.  The function
488  *	returns 0 on error and 1 on success.  This is a generic routine to
489  *	all netdevices.
490  */
491 static int netdev_boot_setup_add(char *name, struct ifmap *map)
492 {
493 	struct netdev_boot_setup *s;
494 	int i;
495 
496 	s = dev_boot_setup;
497 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
498 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
499 			memset(s[i].name, 0, sizeof(s[i].name));
500 			strlcpy(s[i].name, name, IFNAMSIZ);
501 			memcpy(&s[i].map, map, sizeof(s[i].map));
502 			break;
503 		}
504 	}
505 
506 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
507 }
508 
509 /**
510  *	netdev_boot_setup_check	- check boot time settings
511  *	@dev: the netdevice
512  *
513  * 	Check boot time settings for the device.
514  *	The found settings are set for the device to be used
515  *	later in the device probing.
516  *	Returns 0 if no settings found, 1 if they are.
517  */
518 int netdev_boot_setup_check(struct net_device *dev)
519 {
520 	struct netdev_boot_setup *s = dev_boot_setup;
521 	int i;
522 
523 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
524 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
525 		    !strcmp(dev->name, s[i].name)) {
526 			dev->irq 	= s[i].map.irq;
527 			dev->base_addr 	= s[i].map.base_addr;
528 			dev->mem_start 	= s[i].map.mem_start;
529 			dev->mem_end 	= s[i].map.mem_end;
530 			return 1;
531 		}
532 	}
533 	return 0;
534 }
535 EXPORT_SYMBOL(netdev_boot_setup_check);
536 
537 
538 /**
539  *	netdev_boot_base	- get address from boot time settings
540  *	@prefix: prefix for network device
541  *	@unit: id for network device
542  *
543  * 	Check boot time settings for the base address of device.
544  *	The found settings are set for the device to be used
545  *	later in the device probing.
546  *	Returns 0 if no settings found.
547  */
548 unsigned long netdev_boot_base(const char *prefix, int unit)
549 {
550 	const struct netdev_boot_setup *s = dev_boot_setup;
551 	char name[IFNAMSIZ];
552 	int i;
553 
554 	sprintf(name, "%s%d", prefix, unit);
555 
556 	/*
557 	 * If device already registered then return base of 1
558 	 * to indicate not to probe for this interface
559 	 */
560 	if (__dev_get_by_name(&init_net, name))
561 		return 1;
562 
563 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
564 		if (!strcmp(name, s[i].name))
565 			return s[i].map.base_addr;
566 	return 0;
567 }
568 
569 /*
570  * Saves at boot time configured settings for any netdevice.
571  */
572 int __init netdev_boot_setup(char *str)
573 {
574 	int ints[5];
575 	struct ifmap map;
576 
577 	str = get_options(str, ARRAY_SIZE(ints), ints);
578 	if (!str || !*str)
579 		return 0;
580 
581 	/* Save settings */
582 	memset(&map, 0, sizeof(map));
583 	if (ints[0] > 0)
584 		map.irq = ints[1];
585 	if (ints[0] > 1)
586 		map.base_addr = ints[2];
587 	if (ints[0] > 2)
588 		map.mem_start = ints[3];
589 	if (ints[0] > 3)
590 		map.mem_end = ints[4];
591 
592 	/* Add new entry to the list */
593 	return netdev_boot_setup_add(str, &map);
594 }
595 
596 __setup("netdev=", netdev_boot_setup);
597 
598 /*******************************************************************************
599 
600 			    Device Interface Subroutines
601 
602 *******************************************************************************/
603 
604 /**
605  *	__dev_get_by_name	- find a device by its name
606  *	@net: the applicable net namespace
607  *	@name: name to find
608  *
609  *	Find an interface by name. Must be called under RTNL semaphore
610  *	or @dev_base_lock. If the name is found a pointer to the device
611  *	is returned. If the name is not found then %NULL is returned. The
612  *	reference counters are not incremented so the caller must be
613  *	careful with locks.
614  */
615 
616 struct net_device *__dev_get_by_name(struct net *net, const char *name)
617 {
618 	struct hlist_node *p;
619 	struct net_device *dev;
620 	struct hlist_head *head = dev_name_hash(net, name);
621 
622 	hlist_for_each_entry(dev, p, head, name_hlist)
623 		if (!strncmp(dev->name, name, IFNAMSIZ))
624 			return dev;
625 
626 	return NULL;
627 }
628 EXPORT_SYMBOL(__dev_get_by_name);
629 
630 /**
631  *	dev_get_by_name_rcu	- find a device by its name
632  *	@net: the applicable net namespace
633  *	@name: name to find
634  *
635  *	Find an interface by name.
636  *	If the name is found a pointer to the device is returned.
637  * 	If the name is not found then %NULL is returned.
638  *	The reference counters are not incremented so the caller must be
639  *	careful with locks. The caller must hold RCU lock.
640  */
641 
642 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
643 {
644 	struct hlist_node *p;
645 	struct net_device *dev;
646 	struct hlist_head *head = dev_name_hash(net, name);
647 
648 	hlist_for_each_entry_rcu(dev, p, head, name_hlist)
649 		if (!strncmp(dev->name, name, IFNAMSIZ))
650 			return dev;
651 
652 	return NULL;
653 }
654 EXPORT_SYMBOL(dev_get_by_name_rcu);
655 
656 /**
657  *	dev_get_by_name		- find a device by its name
658  *	@net: the applicable net namespace
659  *	@name: name to find
660  *
661  *	Find an interface by name. This can be called from any
662  *	context and does its own locking. The returned handle has
663  *	the usage count incremented and the caller must use dev_put() to
664  *	release it when it is no longer needed. %NULL is returned if no
665  *	matching device is found.
666  */
667 
668 struct net_device *dev_get_by_name(struct net *net, const char *name)
669 {
670 	struct net_device *dev;
671 
672 	rcu_read_lock();
673 	dev = dev_get_by_name_rcu(net, name);
674 	if (dev)
675 		dev_hold(dev);
676 	rcu_read_unlock();
677 	return dev;
678 }
679 EXPORT_SYMBOL(dev_get_by_name);
680 
681 /**
682  *	__dev_get_by_index - find a device by its ifindex
683  *	@net: the applicable net namespace
684  *	@ifindex: index of device
685  *
686  *	Search for an interface by index. Returns %NULL if the device
687  *	is not found or a pointer to the device. The device has not
688  *	had its reference counter increased so the caller must be careful
689  *	about locking. The caller must hold either the RTNL semaphore
690  *	or @dev_base_lock.
691  */
692 
693 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
694 {
695 	struct hlist_node *p;
696 	struct net_device *dev;
697 	struct hlist_head *head = dev_index_hash(net, ifindex);
698 
699 	hlist_for_each_entry(dev, p, head, index_hlist)
700 		if (dev->ifindex == ifindex)
701 			return dev;
702 
703 	return NULL;
704 }
705 EXPORT_SYMBOL(__dev_get_by_index);
706 
707 /**
708  *	dev_get_by_index_rcu - find a device by its ifindex
709  *	@net: the applicable net namespace
710  *	@ifindex: index of device
711  *
712  *	Search for an interface by index. Returns %NULL if the device
713  *	is not found or a pointer to the device. The device has not
714  *	had its reference counter increased so the caller must be careful
715  *	about locking. The caller must hold RCU lock.
716  */
717 
718 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
719 {
720 	struct hlist_node *p;
721 	struct net_device *dev;
722 	struct hlist_head *head = dev_index_hash(net, ifindex);
723 
724 	hlist_for_each_entry_rcu(dev, p, head, index_hlist)
725 		if (dev->ifindex == ifindex)
726 			return dev;
727 
728 	return NULL;
729 }
730 EXPORT_SYMBOL(dev_get_by_index_rcu);
731 
732 
733 /**
734  *	dev_get_by_index - find a device by its ifindex
735  *	@net: the applicable net namespace
736  *	@ifindex: index of device
737  *
738  *	Search for an interface by index. Returns NULL if the device
739  *	is not found or a pointer to the device. The device returned has
740  *	had a reference added and the pointer is safe until the user calls
741  *	dev_put to indicate they have finished with it.
742  */
743 
744 struct net_device *dev_get_by_index(struct net *net, int ifindex)
745 {
746 	struct net_device *dev;
747 
748 	rcu_read_lock();
749 	dev = dev_get_by_index_rcu(net, ifindex);
750 	if (dev)
751 		dev_hold(dev);
752 	rcu_read_unlock();
753 	return dev;
754 }
755 EXPORT_SYMBOL(dev_get_by_index);
756 
757 /**
758  *	dev_getbyhwaddr_rcu - find a device by its hardware address
759  *	@net: the applicable net namespace
760  *	@type: media type of device
761  *	@ha: hardware address
762  *
763  *	Search for an interface by MAC address. Returns NULL if the device
764  *	is not found or a pointer to the device.
765  *	The caller must hold RCU or RTNL.
766  *	The returned device has not had its ref count increased
767  *	and the caller must therefore be careful about locking
768  *
769  */
770 
771 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
772 				       const char *ha)
773 {
774 	struct net_device *dev;
775 
776 	for_each_netdev_rcu(net, dev)
777 		if (dev->type == type &&
778 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
779 			return dev;
780 
781 	return NULL;
782 }
783 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
784 
785 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
786 {
787 	struct net_device *dev;
788 
789 	ASSERT_RTNL();
790 	for_each_netdev(net, dev)
791 		if (dev->type == type)
792 			return dev;
793 
794 	return NULL;
795 }
796 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
797 
798 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
799 {
800 	struct net_device *dev, *ret = NULL;
801 
802 	rcu_read_lock();
803 	for_each_netdev_rcu(net, dev)
804 		if (dev->type == type) {
805 			dev_hold(dev);
806 			ret = dev;
807 			break;
808 		}
809 	rcu_read_unlock();
810 	return ret;
811 }
812 EXPORT_SYMBOL(dev_getfirstbyhwtype);
813 
814 /**
815  *	dev_get_by_flags_rcu - find any device with given flags
816  *	@net: the applicable net namespace
817  *	@if_flags: IFF_* values
818  *	@mask: bitmask of bits in if_flags to check
819  *
820  *	Search for any interface with the given flags. Returns NULL if a device
821  *	is not found or a pointer to the device. Must be called inside
822  *	rcu_read_lock(), and result refcount is unchanged.
823  */
824 
825 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
826 				    unsigned short mask)
827 {
828 	struct net_device *dev, *ret;
829 
830 	ret = NULL;
831 	for_each_netdev_rcu(net, dev) {
832 		if (((dev->flags ^ if_flags) & mask) == 0) {
833 			ret = dev;
834 			break;
835 		}
836 	}
837 	return ret;
838 }
839 EXPORT_SYMBOL(dev_get_by_flags_rcu);
840 
841 /**
842  *	dev_valid_name - check if name is okay for network device
843  *	@name: name string
844  *
845  *	Network device names need to be valid file names to
846  *	to allow sysfs to work.  We also disallow any kind of
847  *	whitespace.
848  */
849 bool dev_valid_name(const char *name)
850 {
851 	if (*name == '\0')
852 		return false;
853 	if (strlen(name) >= IFNAMSIZ)
854 		return false;
855 	if (!strcmp(name, ".") || !strcmp(name, ".."))
856 		return false;
857 
858 	while (*name) {
859 		if (*name == '/' || isspace(*name))
860 			return false;
861 		name++;
862 	}
863 	return true;
864 }
865 EXPORT_SYMBOL(dev_valid_name);
866 
867 /**
868  *	__dev_alloc_name - allocate a name for a device
869  *	@net: network namespace to allocate the device name in
870  *	@name: name format string
871  *	@buf:  scratch buffer and result name string
872  *
873  *	Passed a format string - eg "lt%d" it will try and find a suitable
874  *	id. It scans list of devices to build up a free map, then chooses
875  *	the first empty slot. The caller must hold the dev_base or rtnl lock
876  *	while allocating the name and adding the device in order to avoid
877  *	duplicates.
878  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
879  *	Returns the number of the unit assigned or a negative errno code.
880  */
881 
882 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
883 {
884 	int i = 0;
885 	const char *p;
886 	const int max_netdevices = 8*PAGE_SIZE;
887 	unsigned long *inuse;
888 	struct net_device *d;
889 
890 	p = strnchr(name, IFNAMSIZ-1, '%');
891 	if (p) {
892 		/*
893 		 * Verify the string as this thing may have come from
894 		 * the user.  There must be either one "%d" and no other "%"
895 		 * characters.
896 		 */
897 		if (p[1] != 'd' || strchr(p + 2, '%'))
898 			return -EINVAL;
899 
900 		/* Use one page as a bit array of possible slots */
901 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
902 		if (!inuse)
903 			return -ENOMEM;
904 
905 		for_each_netdev(net, d) {
906 			if (!sscanf(d->name, name, &i))
907 				continue;
908 			if (i < 0 || i >= max_netdevices)
909 				continue;
910 
911 			/*  avoid cases where sscanf is not exact inverse of printf */
912 			snprintf(buf, IFNAMSIZ, name, i);
913 			if (!strncmp(buf, d->name, IFNAMSIZ))
914 				set_bit(i, inuse);
915 		}
916 
917 		i = find_first_zero_bit(inuse, max_netdevices);
918 		free_page((unsigned long) inuse);
919 	}
920 
921 	if (buf != name)
922 		snprintf(buf, IFNAMSIZ, name, i);
923 	if (!__dev_get_by_name(net, buf))
924 		return i;
925 
926 	/* It is possible to run out of possible slots
927 	 * when the name is long and there isn't enough space left
928 	 * for the digits, or if all bits are used.
929 	 */
930 	return -ENFILE;
931 }
932 
933 /**
934  *	dev_alloc_name - allocate a name for a device
935  *	@dev: device
936  *	@name: name format string
937  *
938  *	Passed a format string - eg "lt%d" it will try and find a suitable
939  *	id. It scans list of devices to build up a free map, then chooses
940  *	the first empty slot. The caller must hold the dev_base or rtnl lock
941  *	while allocating the name and adding the device in order to avoid
942  *	duplicates.
943  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
944  *	Returns the number of the unit assigned or a negative errno code.
945  */
946 
947 int dev_alloc_name(struct net_device *dev, const char *name)
948 {
949 	char buf[IFNAMSIZ];
950 	struct net *net;
951 	int ret;
952 
953 	BUG_ON(!dev_net(dev));
954 	net = dev_net(dev);
955 	ret = __dev_alloc_name(net, name, buf);
956 	if (ret >= 0)
957 		strlcpy(dev->name, buf, IFNAMSIZ);
958 	return ret;
959 }
960 EXPORT_SYMBOL(dev_alloc_name);
961 
962 static int dev_get_valid_name(struct net_device *dev, const char *name)
963 {
964 	struct net *net;
965 
966 	BUG_ON(!dev_net(dev));
967 	net = dev_net(dev);
968 
969 	if (!dev_valid_name(name))
970 		return -EINVAL;
971 
972 	if (strchr(name, '%'))
973 		return dev_alloc_name(dev, name);
974 	else if (__dev_get_by_name(net, name))
975 		return -EEXIST;
976 	else if (dev->name != name)
977 		strlcpy(dev->name, name, IFNAMSIZ);
978 
979 	return 0;
980 }
981 
982 /**
983  *	dev_change_name - change name of a device
984  *	@dev: device
985  *	@newname: name (or format string) must be at least IFNAMSIZ
986  *
987  *	Change name of a device, can pass format strings "eth%d".
988  *	for wildcarding.
989  */
990 int dev_change_name(struct net_device *dev, const char *newname)
991 {
992 	char oldname[IFNAMSIZ];
993 	int err = 0;
994 	int ret;
995 	struct net *net;
996 
997 	ASSERT_RTNL();
998 	BUG_ON(!dev_net(dev));
999 
1000 	net = dev_net(dev);
1001 	if (dev->flags & IFF_UP)
1002 		return -EBUSY;
1003 
1004 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
1005 		return 0;
1006 
1007 	memcpy(oldname, dev->name, IFNAMSIZ);
1008 
1009 	err = dev_get_valid_name(dev, newname);
1010 	if (err < 0)
1011 		return err;
1012 
1013 rollback:
1014 	ret = device_rename(&dev->dev, dev->name);
1015 	if (ret) {
1016 		memcpy(dev->name, oldname, IFNAMSIZ);
1017 		return ret;
1018 	}
1019 
1020 	write_lock_bh(&dev_base_lock);
1021 	hlist_del_rcu(&dev->name_hlist);
1022 	write_unlock_bh(&dev_base_lock);
1023 
1024 	synchronize_rcu();
1025 
1026 	write_lock_bh(&dev_base_lock);
1027 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1028 	write_unlock_bh(&dev_base_lock);
1029 
1030 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1031 	ret = notifier_to_errno(ret);
1032 
1033 	if (ret) {
1034 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1035 		if (err >= 0) {
1036 			err = ret;
1037 			memcpy(dev->name, oldname, IFNAMSIZ);
1038 			goto rollback;
1039 		} else {
1040 			pr_err("%s: name change rollback failed: %d\n",
1041 			       dev->name, ret);
1042 		}
1043 	}
1044 
1045 	return err;
1046 }
1047 
1048 /**
1049  *	dev_set_alias - change ifalias of a device
1050  *	@dev: device
1051  *	@alias: name up to IFALIASZ
1052  *	@len: limit of bytes to copy from info
1053  *
1054  *	Set ifalias for a device,
1055  */
1056 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1057 {
1058 	ASSERT_RTNL();
1059 
1060 	if (len >= IFALIASZ)
1061 		return -EINVAL;
1062 
1063 	if (!len) {
1064 		if (dev->ifalias) {
1065 			kfree(dev->ifalias);
1066 			dev->ifalias = NULL;
1067 		}
1068 		return 0;
1069 	}
1070 
1071 	dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1072 	if (!dev->ifalias)
1073 		return -ENOMEM;
1074 
1075 	strlcpy(dev->ifalias, alias, len+1);
1076 	return len;
1077 }
1078 
1079 
1080 /**
1081  *	netdev_features_change - device changes features
1082  *	@dev: device to cause notification
1083  *
1084  *	Called to indicate a device has changed features.
1085  */
1086 void netdev_features_change(struct net_device *dev)
1087 {
1088 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1089 }
1090 EXPORT_SYMBOL(netdev_features_change);
1091 
1092 /**
1093  *	netdev_state_change - device changes state
1094  *	@dev: device to cause notification
1095  *
1096  *	Called to indicate a device has changed state. This function calls
1097  *	the notifier chains for netdev_chain and sends a NEWLINK message
1098  *	to the routing socket.
1099  */
1100 void netdev_state_change(struct net_device *dev)
1101 {
1102 	if (dev->flags & IFF_UP) {
1103 		call_netdevice_notifiers(NETDEV_CHANGE, dev);
1104 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1105 	}
1106 }
1107 EXPORT_SYMBOL(netdev_state_change);
1108 
1109 int netdev_bonding_change(struct net_device *dev, unsigned long event)
1110 {
1111 	return call_netdevice_notifiers(event, dev);
1112 }
1113 EXPORT_SYMBOL(netdev_bonding_change);
1114 
1115 /**
1116  *	dev_load 	- load a network module
1117  *	@net: the applicable net namespace
1118  *	@name: name of interface
1119  *
1120  *	If a network interface is not present and the process has suitable
1121  *	privileges this function loads the module. If module loading is not
1122  *	available in this kernel then it becomes a nop.
1123  */
1124 
1125 void dev_load(struct net *net, const char *name)
1126 {
1127 	struct net_device *dev;
1128 	int no_module;
1129 
1130 	rcu_read_lock();
1131 	dev = dev_get_by_name_rcu(net, name);
1132 	rcu_read_unlock();
1133 
1134 	no_module = !dev;
1135 	if (no_module && capable(CAP_NET_ADMIN))
1136 		no_module = request_module("netdev-%s", name);
1137 	if (no_module && capable(CAP_SYS_MODULE)) {
1138 		if (!request_module("%s", name))
1139 			pr_warn("Loading kernel module for a network device with CAP_SYS_MODULE (deprecated).  Use CAP_NET_ADMIN and alias netdev-%s instead.\n",
1140 				name);
1141 	}
1142 }
1143 EXPORT_SYMBOL(dev_load);
1144 
1145 static int __dev_open(struct net_device *dev)
1146 {
1147 	const struct net_device_ops *ops = dev->netdev_ops;
1148 	int ret;
1149 
1150 	ASSERT_RTNL();
1151 
1152 	if (!netif_device_present(dev))
1153 		return -ENODEV;
1154 
1155 	ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1156 	ret = notifier_to_errno(ret);
1157 	if (ret)
1158 		return ret;
1159 
1160 	set_bit(__LINK_STATE_START, &dev->state);
1161 
1162 	if (ops->ndo_validate_addr)
1163 		ret = ops->ndo_validate_addr(dev);
1164 
1165 	if (!ret && ops->ndo_open)
1166 		ret = ops->ndo_open(dev);
1167 
1168 	if (ret)
1169 		clear_bit(__LINK_STATE_START, &dev->state);
1170 	else {
1171 		dev->flags |= IFF_UP;
1172 		net_dmaengine_get();
1173 		dev_set_rx_mode(dev);
1174 		dev_activate(dev);
1175 	}
1176 
1177 	return ret;
1178 }
1179 
1180 /**
1181  *	dev_open	- prepare an interface for use.
1182  *	@dev:	device to open
1183  *
1184  *	Takes a device from down to up state. The device's private open
1185  *	function is invoked and then the multicast lists are loaded. Finally
1186  *	the device is moved into the up state and a %NETDEV_UP message is
1187  *	sent to the netdev notifier chain.
1188  *
1189  *	Calling this function on an active interface is a nop. On a failure
1190  *	a negative errno code is returned.
1191  */
1192 int dev_open(struct net_device *dev)
1193 {
1194 	int ret;
1195 
1196 	if (dev->flags & IFF_UP)
1197 		return 0;
1198 
1199 	ret = __dev_open(dev);
1200 	if (ret < 0)
1201 		return ret;
1202 
1203 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1204 	call_netdevice_notifiers(NETDEV_UP, dev);
1205 
1206 	return ret;
1207 }
1208 EXPORT_SYMBOL(dev_open);
1209 
1210 static int __dev_close_many(struct list_head *head)
1211 {
1212 	struct net_device *dev;
1213 
1214 	ASSERT_RTNL();
1215 	might_sleep();
1216 
1217 	list_for_each_entry(dev, head, unreg_list) {
1218 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1219 
1220 		clear_bit(__LINK_STATE_START, &dev->state);
1221 
1222 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1223 		 * can be even on different cpu. So just clear netif_running().
1224 		 *
1225 		 * dev->stop() will invoke napi_disable() on all of it's
1226 		 * napi_struct instances on this device.
1227 		 */
1228 		smp_mb__after_clear_bit(); /* Commit netif_running(). */
1229 	}
1230 
1231 	dev_deactivate_many(head);
1232 
1233 	list_for_each_entry(dev, head, unreg_list) {
1234 		const struct net_device_ops *ops = dev->netdev_ops;
1235 
1236 		/*
1237 		 *	Call the device specific close. This cannot fail.
1238 		 *	Only if device is UP
1239 		 *
1240 		 *	We allow it to be called even after a DETACH hot-plug
1241 		 *	event.
1242 		 */
1243 		if (ops->ndo_stop)
1244 			ops->ndo_stop(dev);
1245 
1246 		dev->flags &= ~IFF_UP;
1247 		net_dmaengine_put();
1248 	}
1249 
1250 	return 0;
1251 }
1252 
1253 static int __dev_close(struct net_device *dev)
1254 {
1255 	int retval;
1256 	LIST_HEAD(single);
1257 
1258 	list_add(&dev->unreg_list, &single);
1259 	retval = __dev_close_many(&single);
1260 	list_del(&single);
1261 	return retval;
1262 }
1263 
1264 static int dev_close_many(struct list_head *head)
1265 {
1266 	struct net_device *dev, *tmp;
1267 	LIST_HEAD(tmp_list);
1268 
1269 	list_for_each_entry_safe(dev, tmp, head, unreg_list)
1270 		if (!(dev->flags & IFF_UP))
1271 			list_move(&dev->unreg_list, &tmp_list);
1272 
1273 	__dev_close_many(head);
1274 
1275 	list_for_each_entry(dev, head, unreg_list) {
1276 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1277 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1278 	}
1279 
1280 	/* rollback_registered_many needs the complete original list */
1281 	list_splice(&tmp_list, head);
1282 	return 0;
1283 }
1284 
1285 /**
1286  *	dev_close - shutdown an interface.
1287  *	@dev: device to shutdown
1288  *
1289  *	This function moves an active device into down state. A
1290  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1291  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1292  *	chain.
1293  */
1294 int dev_close(struct net_device *dev)
1295 {
1296 	if (dev->flags & IFF_UP) {
1297 		LIST_HEAD(single);
1298 
1299 		list_add(&dev->unreg_list, &single);
1300 		dev_close_many(&single);
1301 		list_del(&single);
1302 	}
1303 	return 0;
1304 }
1305 EXPORT_SYMBOL(dev_close);
1306 
1307 
1308 /**
1309  *	dev_disable_lro - disable Large Receive Offload on a device
1310  *	@dev: device
1311  *
1312  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1313  *	called under RTNL.  This is needed if received packets may be
1314  *	forwarded to another interface.
1315  */
1316 void dev_disable_lro(struct net_device *dev)
1317 {
1318 	/*
1319 	 * If we're trying to disable lro on a vlan device
1320 	 * use the underlying physical device instead
1321 	 */
1322 	if (is_vlan_dev(dev))
1323 		dev = vlan_dev_real_dev(dev);
1324 
1325 	dev->wanted_features &= ~NETIF_F_LRO;
1326 	netdev_update_features(dev);
1327 
1328 	if (unlikely(dev->features & NETIF_F_LRO))
1329 		netdev_WARN(dev, "failed to disable LRO!\n");
1330 }
1331 EXPORT_SYMBOL(dev_disable_lro);
1332 
1333 
1334 static int dev_boot_phase = 1;
1335 
1336 /**
1337  *	register_netdevice_notifier - register a network notifier block
1338  *	@nb: notifier
1339  *
1340  *	Register a notifier to be called when network device events occur.
1341  *	The notifier passed is linked into the kernel structures and must
1342  *	not be reused until it has been unregistered. A negative errno code
1343  *	is returned on a failure.
1344  *
1345  * 	When registered all registration and up events are replayed
1346  *	to the new notifier to allow device to have a race free
1347  *	view of the network device list.
1348  */
1349 
1350 int register_netdevice_notifier(struct notifier_block *nb)
1351 {
1352 	struct net_device *dev;
1353 	struct net_device *last;
1354 	struct net *net;
1355 	int err;
1356 
1357 	rtnl_lock();
1358 	err = raw_notifier_chain_register(&netdev_chain, nb);
1359 	if (err)
1360 		goto unlock;
1361 	if (dev_boot_phase)
1362 		goto unlock;
1363 	for_each_net(net) {
1364 		for_each_netdev(net, dev) {
1365 			err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1366 			err = notifier_to_errno(err);
1367 			if (err)
1368 				goto rollback;
1369 
1370 			if (!(dev->flags & IFF_UP))
1371 				continue;
1372 
1373 			nb->notifier_call(nb, NETDEV_UP, dev);
1374 		}
1375 	}
1376 
1377 unlock:
1378 	rtnl_unlock();
1379 	return err;
1380 
1381 rollback:
1382 	last = dev;
1383 	for_each_net(net) {
1384 		for_each_netdev(net, dev) {
1385 			if (dev == last)
1386 				goto outroll;
1387 
1388 			if (dev->flags & IFF_UP) {
1389 				nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1390 				nb->notifier_call(nb, NETDEV_DOWN, dev);
1391 			}
1392 			nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1393 			nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev);
1394 		}
1395 	}
1396 
1397 outroll:
1398 	raw_notifier_chain_unregister(&netdev_chain, nb);
1399 	goto unlock;
1400 }
1401 EXPORT_SYMBOL(register_netdevice_notifier);
1402 
1403 /**
1404  *	unregister_netdevice_notifier - unregister a network notifier block
1405  *	@nb: notifier
1406  *
1407  *	Unregister a notifier previously registered by
1408  *	register_netdevice_notifier(). The notifier is unlinked into the
1409  *	kernel structures and may then be reused. A negative errno code
1410  *	is returned on a failure.
1411  *
1412  * 	After unregistering unregister and down device events are synthesized
1413  *	for all devices on the device list to the removed notifier to remove
1414  *	the need for special case cleanup code.
1415  */
1416 
1417 int unregister_netdevice_notifier(struct notifier_block *nb)
1418 {
1419 	struct net_device *dev;
1420 	struct net *net;
1421 	int err;
1422 
1423 	rtnl_lock();
1424 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1425 	if (err)
1426 		goto unlock;
1427 
1428 	for_each_net(net) {
1429 		for_each_netdev(net, dev) {
1430 			if (dev->flags & IFF_UP) {
1431 				nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1432 				nb->notifier_call(nb, NETDEV_DOWN, dev);
1433 			}
1434 			nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1435 			nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev);
1436 		}
1437 	}
1438 unlock:
1439 	rtnl_unlock();
1440 	return err;
1441 }
1442 EXPORT_SYMBOL(unregister_netdevice_notifier);
1443 
1444 /**
1445  *	call_netdevice_notifiers - call all network notifier blocks
1446  *      @val: value passed unmodified to notifier function
1447  *      @dev: net_device pointer passed unmodified to notifier function
1448  *
1449  *	Call all network notifier blocks.  Parameters and return value
1450  *	are as for raw_notifier_call_chain().
1451  */
1452 
1453 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1454 {
1455 	ASSERT_RTNL();
1456 	return raw_notifier_call_chain(&netdev_chain, val, dev);
1457 }
1458 EXPORT_SYMBOL(call_netdevice_notifiers);
1459 
1460 static struct static_key netstamp_needed __read_mostly;
1461 #ifdef HAVE_JUMP_LABEL
1462 /* We are not allowed to call static_key_slow_dec() from irq context
1463  * If net_disable_timestamp() is called from irq context, defer the
1464  * static_key_slow_dec() calls.
1465  */
1466 static atomic_t netstamp_needed_deferred;
1467 #endif
1468 
1469 void net_enable_timestamp(void)
1470 {
1471 #ifdef HAVE_JUMP_LABEL
1472 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1473 
1474 	if (deferred) {
1475 		while (--deferred)
1476 			static_key_slow_dec(&netstamp_needed);
1477 		return;
1478 	}
1479 #endif
1480 	WARN_ON(in_interrupt());
1481 	static_key_slow_inc(&netstamp_needed);
1482 }
1483 EXPORT_SYMBOL(net_enable_timestamp);
1484 
1485 void net_disable_timestamp(void)
1486 {
1487 #ifdef HAVE_JUMP_LABEL
1488 	if (in_interrupt()) {
1489 		atomic_inc(&netstamp_needed_deferred);
1490 		return;
1491 	}
1492 #endif
1493 	static_key_slow_dec(&netstamp_needed);
1494 }
1495 EXPORT_SYMBOL(net_disable_timestamp);
1496 
1497 static inline void net_timestamp_set(struct sk_buff *skb)
1498 {
1499 	skb->tstamp.tv64 = 0;
1500 	if (static_key_false(&netstamp_needed))
1501 		__net_timestamp(skb);
1502 }
1503 
1504 #define net_timestamp_check(COND, SKB)			\
1505 	if (static_key_false(&netstamp_needed)) {		\
1506 		if ((COND) && !(SKB)->tstamp.tv64)	\
1507 			__net_timestamp(SKB);		\
1508 	}						\
1509 
1510 static int net_hwtstamp_validate(struct ifreq *ifr)
1511 {
1512 	struct hwtstamp_config cfg;
1513 	enum hwtstamp_tx_types tx_type;
1514 	enum hwtstamp_rx_filters rx_filter;
1515 	int tx_type_valid = 0;
1516 	int rx_filter_valid = 0;
1517 
1518 	if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg)))
1519 		return -EFAULT;
1520 
1521 	if (cfg.flags) /* reserved for future extensions */
1522 		return -EINVAL;
1523 
1524 	tx_type = cfg.tx_type;
1525 	rx_filter = cfg.rx_filter;
1526 
1527 	switch (tx_type) {
1528 	case HWTSTAMP_TX_OFF:
1529 	case HWTSTAMP_TX_ON:
1530 	case HWTSTAMP_TX_ONESTEP_SYNC:
1531 		tx_type_valid = 1;
1532 		break;
1533 	}
1534 
1535 	switch (rx_filter) {
1536 	case HWTSTAMP_FILTER_NONE:
1537 	case HWTSTAMP_FILTER_ALL:
1538 	case HWTSTAMP_FILTER_SOME:
1539 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1540 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1541 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1542 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1543 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1544 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1545 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1546 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1547 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1548 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
1549 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
1550 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1551 		rx_filter_valid = 1;
1552 		break;
1553 	}
1554 
1555 	if (!tx_type_valid || !rx_filter_valid)
1556 		return -ERANGE;
1557 
1558 	return 0;
1559 }
1560 
1561 static inline bool is_skb_forwardable(struct net_device *dev,
1562 				      struct sk_buff *skb)
1563 {
1564 	unsigned int len;
1565 
1566 	if (!(dev->flags & IFF_UP))
1567 		return false;
1568 
1569 	len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1570 	if (skb->len <= len)
1571 		return true;
1572 
1573 	/* if TSO is enabled, we don't care about the length as the packet
1574 	 * could be forwarded without being segmented before
1575 	 */
1576 	if (skb_is_gso(skb))
1577 		return true;
1578 
1579 	return false;
1580 }
1581 
1582 /**
1583  * dev_forward_skb - loopback an skb to another netif
1584  *
1585  * @dev: destination network device
1586  * @skb: buffer to forward
1587  *
1588  * return values:
1589  *	NET_RX_SUCCESS	(no congestion)
1590  *	NET_RX_DROP     (packet was dropped, but freed)
1591  *
1592  * dev_forward_skb can be used for injecting an skb from the
1593  * start_xmit function of one device into the receive queue
1594  * of another device.
1595  *
1596  * The receiving device may be in another namespace, so
1597  * we have to clear all information in the skb that could
1598  * impact namespace isolation.
1599  */
1600 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1601 {
1602 	if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1603 		if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1604 			atomic_long_inc(&dev->rx_dropped);
1605 			kfree_skb(skb);
1606 			return NET_RX_DROP;
1607 		}
1608 	}
1609 
1610 	skb_orphan(skb);
1611 	nf_reset(skb);
1612 
1613 	if (unlikely(!is_skb_forwardable(dev, skb))) {
1614 		atomic_long_inc(&dev->rx_dropped);
1615 		kfree_skb(skb);
1616 		return NET_RX_DROP;
1617 	}
1618 	skb->skb_iif = 0;
1619 	skb->dev = dev;
1620 	skb_dst_drop(skb);
1621 	skb->tstamp.tv64 = 0;
1622 	skb->pkt_type = PACKET_HOST;
1623 	skb->protocol = eth_type_trans(skb, dev);
1624 	skb->mark = 0;
1625 	secpath_reset(skb);
1626 	nf_reset(skb);
1627 	return netif_rx(skb);
1628 }
1629 EXPORT_SYMBOL_GPL(dev_forward_skb);
1630 
1631 static inline int deliver_skb(struct sk_buff *skb,
1632 			      struct packet_type *pt_prev,
1633 			      struct net_device *orig_dev)
1634 {
1635 	atomic_inc(&skb->users);
1636 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1637 }
1638 
1639 /*
1640  *	Support routine. Sends outgoing frames to any network
1641  *	taps currently in use.
1642  */
1643 
1644 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1645 {
1646 	struct packet_type *ptype;
1647 	struct sk_buff *skb2 = NULL;
1648 	struct packet_type *pt_prev = NULL;
1649 
1650 	rcu_read_lock();
1651 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
1652 		/* Never send packets back to the socket
1653 		 * they originated from - MvS (miquels@drinkel.ow.org)
1654 		 */
1655 		if ((ptype->dev == dev || !ptype->dev) &&
1656 		    (ptype->af_packet_priv == NULL ||
1657 		     (struct sock *)ptype->af_packet_priv != skb->sk)) {
1658 			if (pt_prev) {
1659 				deliver_skb(skb2, pt_prev, skb->dev);
1660 				pt_prev = ptype;
1661 				continue;
1662 			}
1663 
1664 			skb2 = skb_clone(skb, GFP_ATOMIC);
1665 			if (!skb2)
1666 				break;
1667 
1668 			net_timestamp_set(skb2);
1669 
1670 			/* skb->nh should be correctly
1671 			   set by sender, so that the second statement is
1672 			   just protection against buggy protocols.
1673 			 */
1674 			skb_reset_mac_header(skb2);
1675 
1676 			if (skb_network_header(skb2) < skb2->data ||
1677 			    skb2->network_header > skb2->tail) {
1678 				net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1679 						     ntohs(skb2->protocol),
1680 						     dev->name);
1681 				skb_reset_network_header(skb2);
1682 			}
1683 
1684 			skb2->transport_header = skb2->network_header;
1685 			skb2->pkt_type = PACKET_OUTGOING;
1686 			pt_prev = ptype;
1687 		}
1688 	}
1689 	if (pt_prev)
1690 		pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1691 	rcu_read_unlock();
1692 }
1693 
1694 /* netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1695  * @dev: Network device
1696  * @txq: number of queues available
1697  *
1698  * If real_num_tx_queues is changed the tc mappings may no longer be
1699  * valid. To resolve this verify the tc mapping remains valid and if
1700  * not NULL the mapping. With no priorities mapping to this
1701  * offset/count pair it will no longer be used. In the worst case TC0
1702  * is invalid nothing can be done so disable priority mappings. If is
1703  * expected that drivers will fix this mapping if they can before
1704  * calling netif_set_real_num_tx_queues.
1705  */
1706 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1707 {
1708 	int i;
1709 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1710 
1711 	/* If TC0 is invalidated disable TC mapping */
1712 	if (tc->offset + tc->count > txq) {
1713 		pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1714 		dev->num_tc = 0;
1715 		return;
1716 	}
1717 
1718 	/* Invalidated prio to tc mappings set to TC0 */
1719 	for (i = 1; i < TC_BITMASK + 1; i++) {
1720 		int q = netdev_get_prio_tc_map(dev, i);
1721 
1722 		tc = &dev->tc_to_txq[q];
1723 		if (tc->offset + tc->count > txq) {
1724 			pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1725 				i, q);
1726 			netdev_set_prio_tc_map(dev, i, 0);
1727 		}
1728 	}
1729 }
1730 
1731 /*
1732  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
1733  * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
1734  */
1735 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
1736 {
1737 	int rc;
1738 
1739 	if (txq < 1 || txq > dev->num_tx_queues)
1740 		return -EINVAL;
1741 
1742 	if (dev->reg_state == NETREG_REGISTERED ||
1743 	    dev->reg_state == NETREG_UNREGISTERING) {
1744 		ASSERT_RTNL();
1745 
1746 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
1747 						  txq);
1748 		if (rc)
1749 			return rc;
1750 
1751 		if (dev->num_tc)
1752 			netif_setup_tc(dev, txq);
1753 
1754 		if (txq < dev->real_num_tx_queues)
1755 			qdisc_reset_all_tx_gt(dev, txq);
1756 	}
1757 
1758 	dev->real_num_tx_queues = txq;
1759 	return 0;
1760 }
1761 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
1762 
1763 #ifdef CONFIG_RPS
1764 /**
1765  *	netif_set_real_num_rx_queues - set actual number of RX queues used
1766  *	@dev: Network device
1767  *	@rxq: Actual number of RX queues
1768  *
1769  *	This must be called either with the rtnl_lock held or before
1770  *	registration of the net device.  Returns 0 on success, or a
1771  *	negative error code.  If called before registration, it always
1772  *	succeeds.
1773  */
1774 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
1775 {
1776 	int rc;
1777 
1778 	if (rxq < 1 || rxq > dev->num_rx_queues)
1779 		return -EINVAL;
1780 
1781 	if (dev->reg_state == NETREG_REGISTERED) {
1782 		ASSERT_RTNL();
1783 
1784 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
1785 						  rxq);
1786 		if (rc)
1787 			return rc;
1788 	}
1789 
1790 	dev->real_num_rx_queues = rxq;
1791 	return 0;
1792 }
1793 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
1794 #endif
1795 
1796 static inline void __netif_reschedule(struct Qdisc *q)
1797 {
1798 	struct softnet_data *sd;
1799 	unsigned long flags;
1800 
1801 	local_irq_save(flags);
1802 	sd = &__get_cpu_var(softnet_data);
1803 	q->next_sched = NULL;
1804 	*sd->output_queue_tailp = q;
1805 	sd->output_queue_tailp = &q->next_sched;
1806 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
1807 	local_irq_restore(flags);
1808 }
1809 
1810 void __netif_schedule(struct Qdisc *q)
1811 {
1812 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1813 		__netif_reschedule(q);
1814 }
1815 EXPORT_SYMBOL(__netif_schedule);
1816 
1817 void dev_kfree_skb_irq(struct sk_buff *skb)
1818 {
1819 	if (atomic_dec_and_test(&skb->users)) {
1820 		struct softnet_data *sd;
1821 		unsigned long flags;
1822 
1823 		local_irq_save(flags);
1824 		sd = &__get_cpu_var(softnet_data);
1825 		skb->next = sd->completion_queue;
1826 		sd->completion_queue = skb;
1827 		raise_softirq_irqoff(NET_TX_SOFTIRQ);
1828 		local_irq_restore(flags);
1829 	}
1830 }
1831 EXPORT_SYMBOL(dev_kfree_skb_irq);
1832 
1833 void dev_kfree_skb_any(struct sk_buff *skb)
1834 {
1835 	if (in_irq() || irqs_disabled())
1836 		dev_kfree_skb_irq(skb);
1837 	else
1838 		dev_kfree_skb(skb);
1839 }
1840 EXPORT_SYMBOL(dev_kfree_skb_any);
1841 
1842 
1843 /**
1844  * netif_device_detach - mark device as removed
1845  * @dev: network device
1846  *
1847  * Mark device as removed from system and therefore no longer available.
1848  */
1849 void netif_device_detach(struct net_device *dev)
1850 {
1851 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1852 	    netif_running(dev)) {
1853 		netif_tx_stop_all_queues(dev);
1854 	}
1855 }
1856 EXPORT_SYMBOL(netif_device_detach);
1857 
1858 /**
1859  * netif_device_attach - mark device as attached
1860  * @dev: network device
1861  *
1862  * Mark device as attached from system and restart if needed.
1863  */
1864 void netif_device_attach(struct net_device *dev)
1865 {
1866 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1867 	    netif_running(dev)) {
1868 		netif_tx_wake_all_queues(dev);
1869 		__netdev_watchdog_up(dev);
1870 	}
1871 }
1872 EXPORT_SYMBOL(netif_device_attach);
1873 
1874 static void skb_warn_bad_offload(const struct sk_buff *skb)
1875 {
1876 	static const netdev_features_t null_features = 0;
1877 	struct net_device *dev = skb->dev;
1878 	const char *driver = "";
1879 
1880 	if (dev && dev->dev.parent)
1881 		driver = dev_driver_string(dev->dev.parent);
1882 
1883 	WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
1884 	     "gso_type=%d ip_summed=%d\n",
1885 	     driver, dev ? &dev->features : &null_features,
1886 	     skb->sk ? &skb->sk->sk_route_caps : &null_features,
1887 	     skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
1888 	     skb_shinfo(skb)->gso_type, skb->ip_summed);
1889 }
1890 
1891 /*
1892  * Invalidate hardware checksum when packet is to be mangled, and
1893  * complete checksum manually on outgoing path.
1894  */
1895 int skb_checksum_help(struct sk_buff *skb)
1896 {
1897 	__wsum csum;
1898 	int ret = 0, offset;
1899 
1900 	if (skb->ip_summed == CHECKSUM_COMPLETE)
1901 		goto out_set_summed;
1902 
1903 	if (unlikely(skb_shinfo(skb)->gso_size)) {
1904 		skb_warn_bad_offload(skb);
1905 		return -EINVAL;
1906 	}
1907 
1908 	offset = skb_checksum_start_offset(skb);
1909 	BUG_ON(offset >= skb_headlen(skb));
1910 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
1911 
1912 	offset += skb->csum_offset;
1913 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1914 
1915 	if (skb_cloned(skb) &&
1916 	    !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1917 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1918 		if (ret)
1919 			goto out;
1920 	}
1921 
1922 	*(__sum16 *)(skb->data + offset) = csum_fold(csum);
1923 out_set_summed:
1924 	skb->ip_summed = CHECKSUM_NONE;
1925 out:
1926 	return ret;
1927 }
1928 EXPORT_SYMBOL(skb_checksum_help);
1929 
1930 /**
1931  *	skb_gso_segment - Perform segmentation on skb.
1932  *	@skb: buffer to segment
1933  *	@features: features for the output path (see dev->features)
1934  *
1935  *	This function segments the given skb and returns a list of segments.
1936  *
1937  *	It may return NULL if the skb requires no segmentation.  This is
1938  *	only possible when GSO is used for verifying header integrity.
1939  */
1940 struct sk_buff *skb_gso_segment(struct sk_buff *skb,
1941 	netdev_features_t features)
1942 {
1943 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1944 	struct packet_type *ptype;
1945 	__be16 type = skb->protocol;
1946 	int vlan_depth = ETH_HLEN;
1947 	int err;
1948 
1949 	while (type == htons(ETH_P_8021Q)) {
1950 		struct vlan_hdr *vh;
1951 
1952 		if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN)))
1953 			return ERR_PTR(-EINVAL);
1954 
1955 		vh = (struct vlan_hdr *)(skb->data + vlan_depth);
1956 		type = vh->h_vlan_encapsulated_proto;
1957 		vlan_depth += VLAN_HLEN;
1958 	}
1959 
1960 	skb_reset_mac_header(skb);
1961 	skb->mac_len = skb->network_header - skb->mac_header;
1962 	__skb_pull(skb, skb->mac_len);
1963 
1964 	if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1965 		skb_warn_bad_offload(skb);
1966 
1967 		if (skb_header_cloned(skb) &&
1968 		    (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1969 			return ERR_PTR(err);
1970 	}
1971 
1972 	rcu_read_lock();
1973 	list_for_each_entry_rcu(ptype,
1974 			&ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1975 		if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1976 			if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1977 				err = ptype->gso_send_check(skb);
1978 				segs = ERR_PTR(err);
1979 				if (err || skb_gso_ok(skb, features))
1980 					break;
1981 				__skb_push(skb, (skb->data -
1982 						 skb_network_header(skb)));
1983 			}
1984 			segs = ptype->gso_segment(skb, features);
1985 			break;
1986 		}
1987 	}
1988 	rcu_read_unlock();
1989 
1990 	__skb_push(skb, skb->data - skb_mac_header(skb));
1991 
1992 	return segs;
1993 }
1994 EXPORT_SYMBOL(skb_gso_segment);
1995 
1996 /* Take action when hardware reception checksum errors are detected. */
1997 #ifdef CONFIG_BUG
1998 void netdev_rx_csum_fault(struct net_device *dev)
1999 {
2000 	if (net_ratelimit()) {
2001 		pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2002 		dump_stack();
2003 	}
2004 }
2005 EXPORT_SYMBOL(netdev_rx_csum_fault);
2006 #endif
2007 
2008 /* Actually, we should eliminate this check as soon as we know, that:
2009  * 1. IOMMU is present and allows to map all the memory.
2010  * 2. No high memory really exists on this machine.
2011  */
2012 
2013 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2014 {
2015 #ifdef CONFIG_HIGHMEM
2016 	int i;
2017 	if (!(dev->features & NETIF_F_HIGHDMA)) {
2018 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2019 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2020 			if (PageHighMem(skb_frag_page(frag)))
2021 				return 1;
2022 		}
2023 	}
2024 
2025 	if (PCI_DMA_BUS_IS_PHYS) {
2026 		struct device *pdev = dev->dev.parent;
2027 
2028 		if (!pdev)
2029 			return 0;
2030 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2031 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2032 			dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2033 			if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2034 				return 1;
2035 		}
2036 	}
2037 #endif
2038 	return 0;
2039 }
2040 
2041 struct dev_gso_cb {
2042 	void (*destructor)(struct sk_buff *skb);
2043 };
2044 
2045 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
2046 
2047 static void dev_gso_skb_destructor(struct sk_buff *skb)
2048 {
2049 	struct dev_gso_cb *cb;
2050 
2051 	do {
2052 		struct sk_buff *nskb = skb->next;
2053 
2054 		skb->next = nskb->next;
2055 		nskb->next = NULL;
2056 		kfree_skb(nskb);
2057 	} while (skb->next);
2058 
2059 	cb = DEV_GSO_CB(skb);
2060 	if (cb->destructor)
2061 		cb->destructor(skb);
2062 }
2063 
2064 /**
2065  *	dev_gso_segment - Perform emulated hardware segmentation on skb.
2066  *	@skb: buffer to segment
2067  *	@features: device features as applicable to this skb
2068  *
2069  *	This function segments the given skb and stores the list of segments
2070  *	in skb->next.
2071  */
2072 static int dev_gso_segment(struct sk_buff *skb, netdev_features_t features)
2073 {
2074 	struct sk_buff *segs;
2075 
2076 	segs = skb_gso_segment(skb, features);
2077 
2078 	/* Verifying header integrity only. */
2079 	if (!segs)
2080 		return 0;
2081 
2082 	if (IS_ERR(segs))
2083 		return PTR_ERR(segs);
2084 
2085 	skb->next = segs;
2086 	DEV_GSO_CB(skb)->destructor = skb->destructor;
2087 	skb->destructor = dev_gso_skb_destructor;
2088 
2089 	return 0;
2090 }
2091 
2092 static bool can_checksum_protocol(netdev_features_t features, __be16 protocol)
2093 {
2094 	return ((features & NETIF_F_GEN_CSUM) ||
2095 		((features & NETIF_F_V4_CSUM) &&
2096 		 protocol == htons(ETH_P_IP)) ||
2097 		((features & NETIF_F_V6_CSUM) &&
2098 		 protocol == htons(ETH_P_IPV6)) ||
2099 		((features & NETIF_F_FCOE_CRC) &&
2100 		 protocol == htons(ETH_P_FCOE)));
2101 }
2102 
2103 static netdev_features_t harmonize_features(struct sk_buff *skb,
2104 	__be16 protocol, netdev_features_t features)
2105 {
2106 	if (!can_checksum_protocol(features, protocol)) {
2107 		features &= ~NETIF_F_ALL_CSUM;
2108 		features &= ~NETIF_F_SG;
2109 	} else if (illegal_highdma(skb->dev, skb)) {
2110 		features &= ~NETIF_F_SG;
2111 	}
2112 
2113 	return features;
2114 }
2115 
2116 netdev_features_t netif_skb_features(struct sk_buff *skb)
2117 {
2118 	__be16 protocol = skb->protocol;
2119 	netdev_features_t features = skb->dev->features;
2120 
2121 	if (protocol == htons(ETH_P_8021Q)) {
2122 		struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2123 		protocol = veh->h_vlan_encapsulated_proto;
2124 	} else if (!vlan_tx_tag_present(skb)) {
2125 		return harmonize_features(skb, protocol, features);
2126 	}
2127 
2128 	features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_TX);
2129 
2130 	if (protocol != htons(ETH_P_8021Q)) {
2131 		return harmonize_features(skb, protocol, features);
2132 	} else {
2133 		features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST |
2134 				NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_TX;
2135 		return harmonize_features(skb, protocol, features);
2136 	}
2137 }
2138 EXPORT_SYMBOL(netif_skb_features);
2139 
2140 /*
2141  * Returns true if either:
2142  *	1. skb has frag_list and the device doesn't support FRAGLIST, or
2143  *	2. skb is fragmented and the device does not support SG, or if
2144  *	   at least one of fragments is in highmem and device does not
2145  *	   support DMA from it.
2146  */
2147 static inline int skb_needs_linearize(struct sk_buff *skb,
2148 				      int features)
2149 {
2150 	return skb_is_nonlinear(skb) &&
2151 			((skb_has_frag_list(skb) &&
2152 				!(features & NETIF_F_FRAGLIST)) ||
2153 			(skb_shinfo(skb)->nr_frags &&
2154 				!(features & NETIF_F_SG)));
2155 }
2156 
2157 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2158 			struct netdev_queue *txq)
2159 {
2160 	const struct net_device_ops *ops = dev->netdev_ops;
2161 	int rc = NETDEV_TX_OK;
2162 	unsigned int skb_len;
2163 
2164 	if (likely(!skb->next)) {
2165 		netdev_features_t features;
2166 
2167 		/*
2168 		 * If device doesn't need skb->dst, release it right now while
2169 		 * its hot in this cpu cache
2170 		 */
2171 		if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2172 			skb_dst_drop(skb);
2173 
2174 		if (!list_empty(&ptype_all))
2175 			dev_queue_xmit_nit(skb, dev);
2176 
2177 		features = netif_skb_features(skb);
2178 
2179 		if (vlan_tx_tag_present(skb) &&
2180 		    !(features & NETIF_F_HW_VLAN_TX)) {
2181 			skb = __vlan_put_tag(skb, vlan_tx_tag_get(skb));
2182 			if (unlikely(!skb))
2183 				goto out;
2184 
2185 			skb->vlan_tci = 0;
2186 		}
2187 
2188 		if (netif_needs_gso(skb, features)) {
2189 			if (unlikely(dev_gso_segment(skb, features)))
2190 				goto out_kfree_skb;
2191 			if (skb->next)
2192 				goto gso;
2193 		} else {
2194 			if (skb_needs_linearize(skb, features) &&
2195 			    __skb_linearize(skb))
2196 				goto out_kfree_skb;
2197 
2198 			/* If packet is not checksummed and device does not
2199 			 * support checksumming for this protocol, complete
2200 			 * checksumming here.
2201 			 */
2202 			if (skb->ip_summed == CHECKSUM_PARTIAL) {
2203 				skb_set_transport_header(skb,
2204 					skb_checksum_start_offset(skb));
2205 				if (!(features & NETIF_F_ALL_CSUM) &&
2206 				     skb_checksum_help(skb))
2207 					goto out_kfree_skb;
2208 			}
2209 		}
2210 
2211 		skb_len = skb->len;
2212 		rc = ops->ndo_start_xmit(skb, dev);
2213 		trace_net_dev_xmit(skb, rc, dev, skb_len);
2214 		if (rc == NETDEV_TX_OK)
2215 			txq_trans_update(txq);
2216 		return rc;
2217 	}
2218 
2219 gso:
2220 	do {
2221 		struct sk_buff *nskb = skb->next;
2222 
2223 		skb->next = nskb->next;
2224 		nskb->next = NULL;
2225 
2226 		/*
2227 		 * If device doesn't need nskb->dst, release it right now while
2228 		 * its hot in this cpu cache
2229 		 */
2230 		if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2231 			skb_dst_drop(nskb);
2232 
2233 		skb_len = nskb->len;
2234 		rc = ops->ndo_start_xmit(nskb, dev);
2235 		trace_net_dev_xmit(nskb, rc, dev, skb_len);
2236 		if (unlikely(rc != NETDEV_TX_OK)) {
2237 			if (rc & ~NETDEV_TX_MASK)
2238 				goto out_kfree_gso_skb;
2239 			nskb->next = skb->next;
2240 			skb->next = nskb;
2241 			return rc;
2242 		}
2243 		txq_trans_update(txq);
2244 		if (unlikely(netif_xmit_stopped(txq) && skb->next))
2245 			return NETDEV_TX_BUSY;
2246 	} while (skb->next);
2247 
2248 out_kfree_gso_skb:
2249 	if (likely(skb->next == NULL))
2250 		skb->destructor = DEV_GSO_CB(skb)->destructor;
2251 out_kfree_skb:
2252 	kfree_skb(skb);
2253 out:
2254 	return rc;
2255 }
2256 
2257 static u32 hashrnd __read_mostly;
2258 
2259 /*
2260  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2261  * to be used as a distribution range.
2262  */
2263 u16 __skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb,
2264 		  unsigned int num_tx_queues)
2265 {
2266 	u32 hash;
2267 	u16 qoffset = 0;
2268 	u16 qcount = num_tx_queues;
2269 
2270 	if (skb_rx_queue_recorded(skb)) {
2271 		hash = skb_get_rx_queue(skb);
2272 		while (unlikely(hash >= num_tx_queues))
2273 			hash -= num_tx_queues;
2274 		return hash;
2275 	}
2276 
2277 	if (dev->num_tc) {
2278 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2279 		qoffset = dev->tc_to_txq[tc].offset;
2280 		qcount = dev->tc_to_txq[tc].count;
2281 	}
2282 
2283 	if (skb->sk && skb->sk->sk_hash)
2284 		hash = skb->sk->sk_hash;
2285 	else
2286 		hash = (__force u16) skb->protocol;
2287 	hash = jhash_1word(hash, hashrnd);
2288 
2289 	return (u16) (((u64) hash * qcount) >> 32) + qoffset;
2290 }
2291 EXPORT_SYMBOL(__skb_tx_hash);
2292 
2293 static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index)
2294 {
2295 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2296 		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
2297 				     dev->name, queue_index,
2298 				     dev->real_num_tx_queues);
2299 		return 0;
2300 	}
2301 	return queue_index;
2302 }
2303 
2304 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
2305 {
2306 #ifdef CONFIG_XPS
2307 	struct xps_dev_maps *dev_maps;
2308 	struct xps_map *map;
2309 	int queue_index = -1;
2310 
2311 	rcu_read_lock();
2312 	dev_maps = rcu_dereference(dev->xps_maps);
2313 	if (dev_maps) {
2314 		map = rcu_dereference(
2315 		    dev_maps->cpu_map[raw_smp_processor_id()]);
2316 		if (map) {
2317 			if (map->len == 1)
2318 				queue_index = map->queues[0];
2319 			else {
2320 				u32 hash;
2321 				if (skb->sk && skb->sk->sk_hash)
2322 					hash = skb->sk->sk_hash;
2323 				else
2324 					hash = (__force u16) skb->protocol ^
2325 					    skb->rxhash;
2326 				hash = jhash_1word(hash, hashrnd);
2327 				queue_index = map->queues[
2328 				    ((u64)hash * map->len) >> 32];
2329 			}
2330 			if (unlikely(queue_index >= dev->real_num_tx_queues))
2331 				queue_index = -1;
2332 		}
2333 	}
2334 	rcu_read_unlock();
2335 
2336 	return queue_index;
2337 #else
2338 	return -1;
2339 #endif
2340 }
2341 
2342 static struct netdev_queue *dev_pick_tx(struct net_device *dev,
2343 					struct sk_buff *skb)
2344 {
2345 	int queue_index;
2346 	const struct net_device_ops *ops = dev->netdev_ops;
2347 
2348 	if (dev->real_num_tx_queues == 1)
2349 		queue_index = 0;
2350 	else if (ops->ndo_select_queue) {
2351 		queue_index = ops->ndo_select_queue(dev, skb);
2352 		queue_index = dev_cap_txqueue(dev, queue_index);
2353 	} else {
2354 		struct sock *sk = skb->sk;
2355 		queue_index = sk_tx_queue_get(sk);
2356 
2357 		if (queue_index < 0 || skb->ooo_okay ||
2358 		    queue_index >= dev->real_num_tx_queues) {
2359 			int old_index = queue_index;
2360 
2361 			queue_index = get_xps_queue(dev, skb);
2362 			if (queue_index < 0)
2363 				queue_index = skb_tx_hash(dev, skb);
2364 
2365 			if (queue_index != old_index && sk) {
2366 				struct dst_entry *dst =
2367 				    rcu_dereference_check(sk->sk_dst_cache, 1);
2368 
2369 				if (dst && skb_dst(skb) == dst)
2370 					sk_tx_queue_set(sk, queue_index);
2371 			}
2372 		}
2373 	}
2374 
2375 	skb_set_queue_mapping(skb, queue_index);
2376 	return netdev_get_tx_queue(dev, queue_index);
2377 }
2378 
2379 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2380 				 struct net_device *dev,
2381 				 struct netdev_queue *txq)
2382 {
2383 	spinlock_t *root_lock = qdisc_lock(q);
2384 	bool contended;
2385 	int rc;
2386 
2387 	qdisc_skb_cb(skb)->pkt_len = skb->len;
2388 	qdisc_calculate_pkt_len(skb, q);
2389 	/*
2390 	 * Heuristic to force contended enqueues to serialize on a
2391 	 * separate lock before trying to get qdisc main lock.
2392 	 * This permits __QDISC_STATE_RUNNING owner to get the lock more often
2393 	 * and dequeue packets faster.
2394 	 */
2395 	contended = qdisc_is_running(q);
2396 	if (unlikely(contended))
2397 		spin_lock(&q->busylock);
2398 
2399 	spin_lock(root_lock);
2400 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2401 		kfree_skb(skb);
2402 		rc = NET_XMIT_DROP;
2403 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2404 		   qdisc_run_begin(q)) {
2405 		/*
2406 		 * This is a work-conserving queue; there are no old skbs
2407 		 * waiting to be sent out; and the qdisc is not running -
2408 		 * xmit the skb directly.
2409 		 */
2410 		if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2411 			skb_dst_force(skb);
2412 
2413 		qdisc_bstats_update(q, skb);
2414 
2415 		if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2416 			if (unlikely(contended)) {
2417 				spin_unlock(&q->busylock);
2418 				contended = false;
2419 			}
2420 			__qdisc_run(q);
2421 		} else
2422 			qdisc_run_end(q);
2423 
2424 		rc = NET_XMIT_SUCCESS;
2425 	} else {
2426 		skb_dst_force(skb);
2427 		rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2428 		if (qdisc_run_begin(q)) {
2429 			if (unlikely(contended)) {
2430 				spin_unlock(&q->busylock);
2431 				contended = false;
2432 			}
2433 			__qdisc_run(q);
2434 		}
2435 	}
2436 	spin_unlock(root_lock);
2437 	if (unlikely(contended))
2438 		spin_unlock(&q->busylock);
2439 	return rc;
2440 }
2441 
2442 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP)
2443 static void skb_update_prio(struct sk_buff *skb)
2444 {
2445 	struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2446 
2447 	if (!skb->priority && skb->sk && map) {
2448 		unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2449 
2450 		if (prioidx < map->priomap_len)
2451 			skb->priority = map->priomap[prioidx];
2452 	}
2453 }
2454 #else
2455 #define skb_update_prio(skb)
2456 #endif
2457 
2458 static DEFINE_PER_CPU(int, xmit_recursion);
2459 #define RECURSION_LIMIT 10
2460 
2461 /**
2462  *	dev_queue_xmit - transmit a buffer
2463  *	@skb: buffer to transmit
2464  *
2465  *	Queue a buffer for transmission to a network device. The caller must
2466  *	have set the device and priority and built the buffer before calling
2467  *	this function. The function can be called from an interrupt.
2468  *
2469  *	A negative errno code is returned on a failure. A success does not
2470  *	guarantee the frame will be transmitted as it may be dropped due
2471  *	to congestion or traffic shaping.
2472  *
2473  * -----------------------------------------------------------------------------------
2474  *      I notice this method can also return errors from the queue disciplines,
2475  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
2476  *      be positive.
2477  *
2478  *      Regardless of the return value, the skb is consumed, so it is currently
2479  *      difficult to retry a send to this method.  (You can bump the ref count
2480  *      before sending to hold a reference for retry if you are careful.)
2481  *
2482  *      When calling this method, interrupts MUST be enabled.  This is because
2483  *      the BH enable code must have IRQs enabled so that it will not deadlock.
2484  *          --BLG
2485  */
2486 int dev_queue_xmit(struct sk_buff *skb)
2487 {
2488 	struct net_device *dev = skb->dev;
2489 	struct netdev_queue *txq;
2490 	struct Qdisc *q;
2491 	int rc = -ENOMEM;
2492 
2493 	/* Disable soft irqs for various locks below. Also
2494 	 * stops preemption for RCU.
2495 	 */
2496 	rcu_read_lock_bh();
2497 
2498 	skb_update_prio(skb);
2499 
2500 	txq = dev_pick_tx(dev, skb);
2501 	q = rcu_dereference_bh(txq->qdisc);
2502 
2503 #ifdef CONFIG_NET_CLS_ACT
2504 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2505 #endif
2506 	trace_net_dev_queue(skb);
2507 	if (q->enqueue) {
2508 		rc = __dev_xmit_skb(skb, q, dev, txq);
2509 		goto out;
2510 	}
2511 
2512 	/* The device has no queue. Common case for software devices:
2513 	   loopback, all the sorts of tunnels...
2514 
2515 	   Really, it is unlikely that netif_tx_lock protection is necessary
2516 	   here.  (f.e. loopback and IP tunnels are clean ignoring statistics
2517 	   counters.)
2518 	   However, it is possible, that they rely on protection
2519 	   made by us here.
2520 
2521 	   Check this and shot the lock. It is not prone from deadlocks.
2522 	   Either shot noqueue qdisc, it is even simpler 8)
2523 	 */
2524 	if (dev->flags & IFF_UP) {
2525 		int cpu = smp_processor_id(); /* ok because BHs are off */
2526 
2527 		if (txq->xmit_lock_owner != cpu) {
2528 
2529 			if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2530 				goto recursion_alert;
2531 
2532 			HARD_TX_LOCK(dev, txq, cpu);
2533 
2534 			if (!netif_xmit_stopped(txq)) {
2535 				__this_cpu_inc(xmit_recursion);
2536 				rc = dev_hard_start_xmit(skb, dev, txq);
2537 				__this_cpu_dec(xmit_recursion);
2538 				if (dev_xmit_complete(rc)) {
2539 					HARD_TX_UNLOCK(dev, txq);
2540 					goto out;
2541 				}
2542 			}
2543 			HARD_TX_UNLOCK(dev, txq);
2544 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
2545 					     dev->name);
2546 		} else {
2547 			/* Recursion is detected! It is possible,
2548 			 * unfortunately
2549 			 */
2550 recursion_alert:
2551 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
2552 					     dev->name);
2553 		}
2554 	}
2555 
2556 	rc = -ENETDOWN;
2557 	rcu_read_unlock_bh();
2558 
2559 	kfree_skb(skb);
2560 	return rc;
2561 out:
2562 	rcu_read_unlock_bh();
2563 	return rc;
2564 }
2565 EXPORT_SYMBOL(dev_queue_xmit);
2566 
2567 
2568 /*=======================================================================
2569 			Receiver routines
2570   =======================================================================*/
2571 
2572 int netdev_max_backlog __read_mostly = 1000;
2573 int netdev_tstamp_prequeue __read_mostly = 1;
2574 int netdev_budget __read_mostly = 300;
2575 int weight_p __read_mostly = 64;            /* old backlog weight */
2576 
2577 /* Called with irq disabled */
2578 static inline void ____napi_schedule(struct softnet_data *sd,
2579 				     struct napi_struct *napi)
2580 {
2581 	list_add_tail(&napi->poll_list, &sd->poll_list);
2582 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
2583 }
2584 
2585 /*
2586  * __skb_get_rxhash: calculate a flow hash based on src/dst addresses
2587  * and src/dst port numbers.  Sets rxhash in skb to non-zero hash value
2588  * on success, zero indicates no valid hash.  Also, sets l4_rxhash in skb
2589  * if hash is a canonical 4-tuple hash over transport ports.
2590  */
2591 void __skb_get_rxhash(struct sk_buff *skb)
2592 {
2593 	struct flow_keys keys;
2594 	u32 hash;
2595 
2596 	if (!skb_flow_dissect(skb, &keys))
2597 		return;
2598 
2599 	if (keys.ports) {
2600 		if ((__force u16)keys.port16[1] < (__force u16)keys.port16[0])
2601 			swap(keys.port16[0], keys.port16[1]);
2602 		skb->l4_rxhash = 1;
2603 	}
2604 
2605 	/* get a consistent hash (same value on both flow directions) */
2606 	if ((__force u32)keys.dst < (__force u32)keys.src)
2607 		swap(keys.dst, keys.src);
2608 
2609 	hash = jhash_3words((__force u32)keys.dst,
2610 			    (__force u32)keys.src,
2611 			    (__force u32)keys.ports, hashrnd);
2612 	if (!hash)
2613 		hash = 1;
2614 
2615 	skb->rxhash = hash;
2616 }
2617 EXPORT_SYMBOL(__skb_get_rxhash);
2618 
2619 #ifdef CONFIG_RPS
2620 
2621 /* One global table that all flow-based protocols share. */
2622 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
2623 EXPORT_SYMBOL(rps_sock_flow_table);
2624 
2625 struct static_key rps_needed __read_mostly;
2626 
2627 static struct rps_dev_flow *
2628 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2629 	    struct rps_dev_flow *rflow, u16 next_cpu)
2630 {
2631 	if (next_cpu != RPS_NO_CPU) {
2632 #ifdef CONFIG_RFS_ACCEL
2633 		struct netdev_rx_queue *rxqueue;
2634 		struct rps_dev_flow_table *flow_table;
2635 		struct rps_dev_flow *old_rflow;
2636 		u32 flow_id;
2637 		u16 rxq_index;
2638 		int rc;
2639 
2640 		/* Should we steer this flow to a different hardware queue? */
2641 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
2642 		    !(dev->features & NETIF_F_NTUPLE))
2643 			goto out;
2644 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
2645 		if (rxq_index == skb_get_rx_queue(skb))
2646 			goto out;
2647 
2648 		rxqueue = dev->_rx + rxq_index;
2649 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
2650 		if (!flow_table)
2651 			goto out;
2652 		flow_id = skb->rxhash & flow_table->mask;
2653 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
2654 							rxq_index, flow_id);
2655 		if (rc < 0)
2656 			goto out;
2657 		old_rflow = rflow;
2658 		rflow = &flow_table->flows[flow_id];
2659 		rflow->filter = rc;
2660 		if (old_rflow->filter == rflow->filter)
2661 			old_rflow->filter = RPS_NO_FILTER;
2662 	out:
2663 #endif
2664 		rflow->last_qtail =
2665 			per_cpu(softnet_data, next_cpu).input_queue_head;
2666 	}
2667 
2668 	rflow->cpu = next_cpu;
2669 	return rflow;
2670 }
2671 
2672 /*
2673  * get_rps_cpu is called from netif_receive_skb and returns the target
2674  * CPU from the RPS map of the receiving queue for a given skb.
2675  * rcu_read_lock must be held on entry.
2676  */
2677 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2678 		       struct rps_dev_flow **rflowp)
2679 {
2680 	struct netdev_rx_queue *rxqueue;
2681 	struct rps_map *map;
2682 	struct rps_dev_flow_table *flow_table;
2683 	struct rps_sock_flow_table *sock_flow_table;
2684 	int cpu = -1;
2685 	u16 tcpu;
2686 
2687 	if (skb_rx_queue_recorded(skb)) {
2688 		u16 index = skb_get_rx_queue(skb);
2689 		if (unlikely(index >= dev->real_num_rx_queues)) {
2690 			WARN_ONCE(dev->real_num_rx_queues > 1,
2691 				  "%s received packet on queue %u, but number "
2692 				  "of RX queues is %u\n",
2693 				  dev->name, index, dev->real_num_rx_queues);
2694 			goto done;
2695 		}
2696 		rxqueue = dev->_rx + index;
2697 	} else
2698 		rxqueue = dev->_rx;
2699 
2700 	map = rcu_dereference(rxqueue->rps_map);
2701 	if (map) {
2702 		if (map->len == 1 &&
2703 		    !rcu_access_pointer(rxqueue->rps_flow_table)) {
2704 			tcpu = map->cpus[0];
2705 			if (cpu_online(tcpu))
2706 				cpu = tcpu;
2707 			goto done;
2708 		}
2709 	} else if (!rcu_access_pointer(rxqueue->rps_flow_table)) {
2710 		goto done;
2711 	}
2712 
2713 	skb_reset_network_header(skb);
2714 	if (!skb_get_rxhash(skb))
2715 		goto done;
2716 
2717 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
2718 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
2719 	if (flow_table && sock_flow_table) {
2720 		u16 next_cpu;
2721 		struct rps_dev_flow *rflow;
2722 
2723 		rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
2724 		tcpu = rflow->cpu;
2725 
2726 		next_cpu = sock_flow_table->ents[skb->rxhash &
2727 		    sock_flow_table->mask];
2728 
2729 		/*
2730 		 * If the desired CPU (where last recvmsg was done) is
2731 		 * different from current CPU (one in the rx-queue flow
2732 		 * table entry), switch if one of the following holds:
2733 		 *   - Current CPU is unset (equal to RPS_NO_CPU).
2734 		 *   - Current CPU is offline.
2735 		 *   - The current CPU's queue tail has advanced beyond the
2736 		 *     last packet that was enqueued using this table entry.
2737 		 *     This guarantees that all previous packets for the flow
2738 		 *     have been dequeued, thus preserving in order delivery.
2739 		 */
2740 		if (unlikely(tcpu != next_cpu) &&
2741 		    (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
2742 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
2743 		      rflow->last_qtail)) >= 0))
2744 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
2745 
2746 		if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
2747 			*rflowp = rflow;
2748 			cpu = tcpu;
2749 			goto done;
2750 		}
2751 	}
2752 
2753 	if (map) {
2754 		tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
2755 
2756 		if (cpu_online(tcpu)) {
2757 			cpu = tcpu;
2758 			goto done;
2759 		}
2760 	}
2761 
2762 done:
2763 	return cpu;
2764 }
2765 
2766 #ifdef CONFIG_RFS_ACCEL
2767 
2768 /**
2769  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
2770  * @dev: Device on which the filter was set
2771  * @rxq_index: RX queue index
2772  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
2773  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
2774  *
2775  * Drivers that implement ndo_rx_flow_steer() should periodically call
2776  * this function for each installed filter and remove the filters for
2777  * which it returns %true.
2778  */
2779 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
2780 			 u32 flow_id, u16 filter_id)
2781 {
2782 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
2783 	struct rps_dev_flow_table *flow_table;
2784 	struct rps_dev_flow *rflow;
2785 	bool expire = true;
2786 	int cpu;
2787 
2788 	rcu_read_lock();
2789 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
2790 	if (flow_table && flow_id <= flow_table->mask) {
2791 		rflow = &flow_table->flows[flow_id];
2792 		cpu = ACCESS_ONCE(rflow->cpu);
2793 		if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
2794 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
2795 			   rflow->last_qtail) <
2796 		     (int)(10 * flow_table->mask)))
2797 			expire = false;
2798 	}
2799 	rcu_read_unlock();
2800 	return expire;
2801 }
2802 EXPORT_SYMBOL(rps_may_expire_flow);
2803 
2804 #endif /* CONFIG_RFS_ACCEL */
2805 
2806 /* Called from hardirq (IPI) context */
2807 static void rps_trigger_softirq(void *data)
2808 {
2809 	struct softnet_data *sd = data;
2810 
2811 	____napi_schedule(sd, &sd->backlog);
2812 	sd->received_rps++;
2813 }
2814 
2815 #endif /* CONFIG_RPS */
2816 
2817 /*
2818  * Check if this softnet_data structure is another cpu one
2819  * If yes, queue it to our IPI list and return 1
2820  * If no, return 0
2821  */
2822 static int rps_ipi_queued(struct softnet_data *sd)
2823 {
2824 #ifdef CONFIG_RPS
2825 	struct softnet_data *mysd = &__get_cpu_var(softnet_data);
2826 
2827 	if (sd != mysd) {
2828 		sd->rps_ipi_next = mysd->rps_ipi_list;
2829 		mysd->rps_ipi_list = sd;
2830 
2831 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
2832 		return 1;
2833 	}
2834 #endif /* CONFIG_RPS */
2835 	return 0;
2836 }
2837 
2838 /*
2839  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
2840  * queue (may be a remote CPU queue).
2841  */
2842 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
2843 			      unsigned int *qtail)
2844 {
2845 	struct softnet_data *sd;
2846 	unsigned long flags;
2847 
2848 	sd = &per_cpu(softnet_data, cpu);
2849 
2850 	local_irq_save(flags);
2851 
2852 	rps_lock(sd);
2853 	if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) {
2854 		if (skb_queue_len(&sd->input_pkt_queue)) {
2855 enqueue:
2856 			__skb_queue_tail(&sd->input_pkt_queue, skb);
2857 			input_queue_tail_incr_save(sd, qtail);
2858 			rps_unlock(sd);
2859 			local_irq_restore(flags);
2860 			return NET_RX_SUCCESS;
2861 		}
2862 
2863 		/* Schedule NAPI for backlog device
2864 		 * We can use non atomic operation since we own the queue lock
2865 		 */
2866 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
2867 			if (!rps_ipi_queued(sd))
2868 				____napi_schedule(sd, &sd->backlog);
2869 		}
2870 		goto enqueue;
2871 	}
2872 
2873 	sd->dropped++;
2874 	rps_unlock(sd);
2875 
2876 	local_irq_restore(flags);
2877 
2878 	atomic_long_inc(&skb->dev->rx_dropped);
2879 	kfree_skb(skb);
2880 	return NET_RX_DROP;
2881 }
2882 
2883 /**
2884  *	netif_rx	-	post buffer to the network code
2885  *	@skb: buffer to post
2886  *
2887  *	This function receives a packet from a device driver and queues it for
2888  *	the upper (protocol) levels to process.  It always succeeds. The buffer
2889  *	may be dropped during processing for congestion control or by the
2890  *	protocol layers.
2891  *
2892  *	return values:
2893  *	NET_RX_SUCCESS	(no congestion)
2894  *	NET_RX_DROP     (packet was dropped)
2895  *
2896  */
2897 
2898 int netif_rx(struct sk_buff *skb)
2899 {
2900 	int ret;
2901 
2902 	/* if netpoll wants it, pretend we never saw it */
2903 	if (netpoll_rx(skb))
2904 		return NET_RX_DROP;
2905 
2906 	net_timestamp_check(netdev_tstamp_prequeue, skb);
2907 
2908 	trace_netif_rx(skb);
2909 #ifdef CONFIG_RPS
2910 	if (static_key_false(&rps_needed)) {
2911 		struct rps_dev_flow voidflow, *rflow = &voidflow;
2912 		int cpu;
2913 
2914 		preempt_disable();
2915 		rcu_read_lock();
2916 
2917 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
2918 		if (cpu < 0)
2919 			cpu = smp_processor_id();
2920 
2921 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
2922 
2923 		rcu_read_unlock();
2924 		preempt_enable();
2925 	} else
2926 #endif
2927 	{
2928 		unsigned int qtail;
2929 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
2930 		put_cpu();
2931 	}
2932 	return ret;
2933 }
2934 EXPORT_SYMBOL(netif_rx);
2935 
2936 int netif_rx_ni(struct sk_buff *skb)
2937 {
2938 	int err;
2939 
2940 	preempt_disable();
2941 	err = netif_rx(skb);
2942 	if (local_softirq_pending())
2943 		do_softirq();
2944 	preempt_enable();
2945 
2946 	return err;
2947 }
2948 EXPORT_SYMBOL(netif_rx_ni);
2949 
2950 static void net_tx_action(struct softirq_action *h)
2951 {
2952 	struct softnet_data *sd = &__get_cpu_var(softnet_data);
2953 
2954 	if (sd->completion_queue) {
2955 		struct sk_buff *clist;
2956 
2957 		local_irq_disable();
2958 		clist = sd->completion_queue;
2959 		sd->completion_queue = NULL;
2960 		local_irq_enable();
2961 
2962 		while (clist) {
2963 			struct sk_buff *skb = clist;
2964 			clist = clist->next;
2965 
2966 			WARN_ON(atomic_read(&skb->users));
2967 			trace_kfree_skb(skb, net_tx_action);
2968 			__kfree_skb(skb);
2969 		}
2970 	}
2971 
2972 	if (sd->output_queue) {
2973 		struct Qdisc *head;
2974 
2975 		local_irq_disable();
2976 		head = sd->output_queue;
2977 		sd->output_queue = NULL;
2978 		sd->output_queue_tailp = &sd->output_queue;
2979 		local_irq_enable();
2980 
2981 		while (head) {
2982 			struct Qdisc *q = head;
2983 			spinlock_t *root_lock;
2984 
2985 			head = head->next_sched;
2986 
2987 			root_lock = qdisc_lock(q);
2988 			if (spin_trylock(root_lock)) {
2989 				smp_mb__before_clear_bit();
2990 				clear_bit(__QDISC_STATE_SCHED,
2991 					  &q->state);
2992 				qdisc_run(q);
2993 				spin_unlock(root_lock);
2994 			} else {
2995 				if (!test_bit(__QDISC_STATE_DEACTIVATED,
2996 					      &q->state)) {
2997 					__netif_reschedule(q);
2998 				} else {
2999 					smp_mb__before_clear_bit();
3000 					clear_bit(__QDISC_STATE_SCHED,
3001 						  &q->state);
3002 				}
3003 			}
3004 		}
3005 	}
3006 }
3007 
3008 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3009     (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3010 /* This hook is defined here for ATM LANE */
3011 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3012 			     unsigned char *addr) __read_mostly;
3013 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3014 #endif
3015 
3016 #ifdef CONFIG_NET_CLS_ACT
3017 /* TODO: Maybe we should just force sch_ingress to be compiled in
3018  * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3019  * a compare and 2 stores extra right now if we dont have it on
3020  * but have CONFIG_NET_CLS_ACT
3021  * NOTE: This doesn't stop any functionality; if you dont have
3022  * the ingress scheduler, you just can't add policies on ingress.
3023  *
3024  */
3025 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
3026 {
3027 	struct net_device *dev = skb->dev;
3028 	u32 ttl = G_TC_RTTL(skb->tc_verd);
3029 	int result = TC_ACT_OK;
3030 	struct Qdisc *q;
3031 
3032 	if (unlikely(MAX_RED_LOOP < ttl++)) {
3033 		net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n",
3034 				     skb->skb_iif, dev->ifindex);
3035 		return TC_ACT_SHOT;
3036 	}
3037 
3038 	skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3039 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3040 
3041 	q = rxq->qdisc;
3042 	if (q != &noop_qdisc) {
3043 		spin_lock(qdisc_lock(q));
3044 		if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3045 			result = qdisc_enqueue_root(skb, q);
3046 		spin_unlock(qdisc_lock(q));
3047 	}
3048 
3049 	return result;
3050 }
3051 
3052 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3053 					 struct packet_type **pt_prev,
3054 					 int *ret, struct net_device *orig_dev)
3055 {
3056 	struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3057 
3058 	if (!rxq || rxq->qdisc == &noop_qdisc)
3059 		goto out;
3060 
3061 	if (*pt_prev) {
3062 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
3063 		*pt_prev = NULL;
3064 	}
3065 
3066 	switch (ing_filter(skb, rxq)) {
3067 	case TC_ACT_SHOT:
3068 	case TC_ACT_STOLEN:
3069 		kfree_skb(skb);
3070 		return NULL;
3071 	}
3072 
3073 out:
3074 	skb->tc_verd = 0;
3075 	return skb;
3076 }
3077 #endif
3078 
3079 /**
3080  *	netdev_rx_handler_register - register receive handler
3081  *	@dev: device to register a handler for
3082  *	@rx_handler: receive handler to register
3083  *	@rx_handler_data: data pointer that is used by rx handler
3084  *
3085  *	Register a receive hander for a device. This handler will then be
3086  *	called from __netif_receive_skb. A negative errno code is returned
3087  *	on a failure.
3088  *
3089  *	The caller must hold the rtnl_mutex.
3090  *
3091  *	For a general description of rx_handler, see enum rx_handler_result.
3092  */
3093 int netdev_rx_handler_register(struct net_device *dev,
3094 			       rx_handler_func_t *rx_handler,
3095 			       void *rx_handler_data)
3096 {
3097 	ASSERT_RTNL();
3098 
3099 	if (dev->rx_handler)
3100 		return -EBUSY;
3101 
3102 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3103 	rcu_assign_pointer(dev->rx_handler, rx_handler);
3104 
3105 	return 0;
3106 }
3107 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3108 
3109 /**
3110  *	netdev_rx_handler_unregister - unregister receive handler
3111  *	@dev: device to unregister a handler from
3112  *
3113  *	Unregister a receive hander from a device.
3114  *
3115  *	The caller must hold the rtnl_mutex.
3116  */
3117 void netdev_rx_handler_unregister(struct net_device *dev)
3118 {
3119 
3120 	ASSERT_RTNL();
3121 	RCU_INIT_POINTER(dev->rx_handler, NULL);
3122 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3123 }
3124 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3125 
3126 static int __netif_receive_skb(struct sk_buff *skb)
3127 {
3128 	struct packet_type *ptype, *pt_prev;
3129 	rx_handler_func_t *rx_handler;
3130 	struct net_device *orig_dev;
3131 	struct net_device *null_or_dev;
3132 	bool deliver_exact = false;
3133 	int ret = NET_RX_DROP;
3134 	__be16 type;
3135 
3136 	net_timestamp_check(!netdev_tstamp_prequeue, skb);
3137 
3138 	trace_netif_receive_skb(skb);
3139 
3140 	/* if we've gotten here through NAPI, check netpoll */
3141 	if (netpoll_receive_skb(skb))
3142 		return NET_RX_DROP;
3143 
3144 	if (!skb->skb_iif)
3145 		skb->skb_iif = skb->dev->ifindex;
3146 	orig_dev = skb->dev;
3147 
3148 	skb_reset_network_header(skb);
3149 	skb_reset_transport_header(skb);
3150 	skb_reset_mac_len(skb);
3151 
3152 	pt_prev = NULL;
3153 
3154 	rcu_read_lock();
3155 
3156 another_round:
3157 
3158 	__this_cpu_inc(softnet_data.processed);
3159 
3160 	if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) {
3161 		skb = vlan_untag(skb);
3162 		if (unlikely(!skb))
3163 			goto out;
3164 	}
3165 
3166 #ifdef CONFIG_NET_CLS_ACT
3167 	if (skb->tc_verd & TC_NCLS) {
3168 		skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3169 		goto ncls;
3170 	}
3171 #endif
3172 
3173 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
3174 		if (!ptype->dev || ptype->dev == skb->dev) {
3175 			if (pt_prev)
3176 				ret = deliver_skb(skb, pt_prev, orig_dev);
3177 			pt_prev = ptype;
3178 		}
3179 	}
3180 
3181 #ifdef CONFIG_NET_CLS_ACT
3182 	skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3183 	if (!skb)
3184 		goto out;
3185 ncls:
3186 #endif
3187 
3188 	rx_handler = rcu_dereference(skb->dev->rx_handler);
3189 	if (vlan_tx_tag_present(skb)) {
3190 		if (pt_prev) {
3191 			ret = deliver_skb(skb, pt_prev, orig_dev);
3192 			pt_prev = NULL;
3193 		}
3194 		if (vlan_do_receive(&skb, !rx_handler))
3195 			goto another_round;
3196 		else if (unlikely(!skb))
3197 			goto out;
3198 	}
3199 
3200 	if (rx_handler) {
3201 		if (pt_prev) {
3202 			ret = deliver_skb(skb, pt_prev, orig_dev);
3203 			pt_prev = NULL;
3204 		}
3205 		switch (rx_handler(&skb)) {
3206 		case RX_HANDLER_CONSUMED:
3207 			goto out;
3208 		case RX_HANDLER_ANOTHER:
3209 			goto another_round;
3210 		case RX_HANDLER_EXACT:
3211 			deliver_exact = true;
3212 		case RX_HANDLER_PASS:
3213 			break;
3214 		default:
3215 			BUG();
3216 		}
3217 	}
3218 
3219 	/* deliver only exact match when indicated */
3220 	null_or_dev = deliver_exact ? skb->dev : NULL;
3221 
3222 	type = skb->protocol;
3223 	list_for_each_entry_rcu(ptype,
3224 			&ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3225 		if (ptype->type == type &&
3226 		    (ptype->dev == null_or_dev || ptype->dev == skb->dev ||
3227 		     ptype->dev == orig_dev)) {
3228 			if (pt_prev)
3229 				ret = deliver_skb(skb, pt_prev, orig_dev);
3230 			pt_prev = ptype;
3231 		}
3232 	}
3233 
3234 	if (pt_prev) {
3235 		ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3236 	} else {
3237 		atomic_long_inc(&skb->dev->rx_dropped);
3238 		kfree_skb(skb);
3239 		/* Jamal, now you will not able to escape explaining
3240 		 * me how you were going to use this. :-)
3241 		 */
3242 		ret = NET_RX_DROP;
3243 	}
3244 
3245 out:
3246 	rcu_read_unlock();
3247 	return ret;
3248 }
3249 
3250 /**
3251  *	netif_receive_skb - process receive buffer from network
3252  *	@skb: buffer to process
3253  *
3254  *	netif_receive_skb() is the main receive data processing function.
3255  *	It always succeeds. The buffer may be dropped during processing
3256  *	for congestion control or by the protocol layers.
3257  *
3258  *	This function may only be called from softirq context and interrupts
3259  *	should be enabled.
3260  *
3261  *	Return values (usually ignored):
3262  *	NET_RX_SUCCESS: no congestion
3263  *	NET_RX_DROP: packet was dropped
3264  */
3265 int netif_receive_skb(struct sk_buff *skb)
3266 {
3267 	net_timestamp_check(netdev_tstamp_prequeue, skb);
3268 
3269 	if (skb_defer_rx_timestamp(skb))
3270 		return NET_RX_SUCCESS;
3271 
3272 #ifdef CONFIG_RPS
3273 	if (static_key_false(&rps_needed)) {
3274 		struct rps_dev_flow voidflow, *rflow = &voidflow;
3275 		int cpu, ret;
3276 
3277 		rcu_read_lock();
3278 
3279 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
3280 
3281 		if (cpu >= 0) {
3282 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3283 			rcu_read_unlock();
3284 			return ret;
3285 		}
3286 		rcu_read_unlock();
3287 	}
3288 #endif
3289 	return __netif_receive_skb(skb);
3290 }
3291 EXPORT_SYMBOL(netif_receive_skb);
3292 
3293 /* Network device is going away, flush any packets still pending
3294  * Called with irqs disabled.
3295  */
3296 static void flush_backlog(void *arg)
3297 {
3298 	struct net_device *dev = arg;
3299 	struct softnet_data *sd = &__get_cpu_var(softnet_data);
3300 	struct sk_buff *skb, *tmp;
3301 
3302 	rps_lock(sd);
3303 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3304 		if (skb->dev == dev) {
3305 			__skb_unlink(skb, &sd->input_pkt_queue);
3306 			kfree_skb(skb);
3307 			input_queue_head_incr(sd);
3308 		}
3309 	}
3310 	rps_unlock(sd);
3311 
3312 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3313 		if (skb->dev == dev) {
3314 			__skb_unlink(skb, &sd->process_queue);
3315 			kfree_skb(skb);
3316 			input_queue_head_incr(sd);
3317 		}
3318 	}
3319 }
3320 
3321 static int napi_gro_complete(struct sk_buff *skb)
3322 {
3323 	struct packet_type *ptype;
3324 	__be16 type = skb->protocol;
3325 	struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3326 	int err = -ENOENT;
3327 
3328 	if (NAPI_GRO_CB(skb)->count == 1) {
3329 		skb_shinfo(skb)->gso_size = 0;
3330 		goto out;
3331 	}
3332 
3333 	rcu_read_lock();
3334 	list_for_each_entry_rcu(ptype, head, list) {
3335 		if (ptype->type != type || ptype->dev || !ptype->gro_complete)
3336 			continue;
3337 
3338 		err = ptype->gro_complete(skb);
3339 		break;
3340 	}
3341 	rcu_read_unlock();
3342 
3343 	if (err) {
3344 		WARN_ON(&ptype->list == head);
3345 		kfree_skb(skb);
3346 		return NET_RX_SUCCESS;
3347 	}
3348 
3349 out:
3350 	return netif_receive_skb(skb);
3351 }
3352 
3353 inline void napi_gro_flush(struct napi_struct *napi)
3354 {
3355 	struct sk_buff *skb, *next;
3356 
3357 	for (skb = napi->gro_list; skb; skb = next) {
3358 		next = skb->next;
3359 		skb->next = NULL;
3360 		napi_gro_complete(skb);
3361 	}
3362 
3363 	napi->gro_count = 0;
3364 	napi->gro_list = NULL;
3365 }
3366 EXPORT_SYMBOL(napi_gro_flush);
3367 
3368 enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3369 {
3370 	struct sk_buff **pp = NULL;
3371 	struct packet_type *ptype;
3372 	__be16 type = skb->protocol;
3373 	struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3374 	int same_flow;
3375 	int mac_len;
3376 	enum gro_result ret;
3377 
3378 	if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb))
3379 		goto normal;
3380 
3381 	if (skb_is_gso(skb) || skb_has_frag_list(skb))
3382 		goto normal;
3383 
3384 	rcu_read_lock();
3385 	list_for_each_entry_rcu(ptype, head, list) {
3386 		if (ptype->type != type || ptype->dev || !ptype->gro_receive)
3387 			continue;
3388 
3389 		skb_set_network_header(skb, skb_gro_offset(skb));
3390 		mac_len = skb->network_header - skb->mac_header;
3391 		skb->mac_len = mac_len;
3392 		NAPI_GRO_CB(skb)->same_flow = 0;
3393 		NAPI_GRO_CB(skb)->flush = 0;
3394 		NAPI_GRO_CB(skb)->free = 0;
3395 
3396 		pp = ptype->gro_receive(&napi->gro_list, skb);
3397 		break;
3398 	}
3399 	rcu_read_unlock();
3400 
3401 	if (&ptype->list == head)
3402 		goto normal;
3403 
3404 	same_flow = NAPI_GRO_CB(skb)->same_flow;
3405 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3406 
3407 	if (pp) {
3408 		struct sk_buff *nskb = *pp;
3409 
3410 		*pp = nskb->next;
3411 		nskb->next = NULL;
3412 		napi_gro_complete(nskb);
3413 		napi->gro_count--;
3414 	}
3415 
3416 	if (same_flow)
3417 		goto ok;
3418 
3419 	if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
3420 		goto normal;
3421 
3422 	napi->gro_count++;
3423 	NAPI_GRO_CB(skb)->count = 1;
3424 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3425 	skb->next = napi->gro_list;
3426 	napi->gro_list = skb;
3427 	ret = GRO_HELD;
3428 
3429 pull:
3430 	if (skb_headlen(skb) < skb_gro_offset(skb)) {
3431 		int grow = skb_gro_offset(skb) - skb_headlen(skb);
3432 
3433 		BUG_ON(skb->end - skb->tail < grow);
3434 
3435 		memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3436 
3437 		skb->tail += grow;
3438 		skb->data_len -= grow;
3439 
3440 		skb_shinfo(skb)->frags[0].page_offset += grow;
3441 		skb_frag_size_sub(&skb_shinfo(skb)->frags[0], grow);
3442 
3443 		if (unlikely(!skb_frag_size(&skb_shinfo(skb)->frags[0]))) {
3444 			skb_frag_unref(skb, 0);
3445 			memmove(skb_shinfo(skb)->frags,
3446 				skb_shinfo(skb)->frags + 1,
3447 				--skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t));
3448 		}
3449 	}
3450 
3451 ok:
3452 	return ret;
3453 
3454 normal:
3455 	ret = GRO_NORMAL;
3456 	goto pull;
3457 }
3458 EXPORT_SYMBOL(dev_gro_receive);
3459 
3460 static inline gro_result_t
3461 __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3462 {
3463 	struct sk_buff *p;
3464 	unsigned int maclen = skb->dev->hard_header_len;
3465 
3466 	for (p = napi->gro_list; p; p = p->next) {
3467 		unsigned long diffs;
3468 
3469 		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3470 		diffs |= p->vlan_tci ^ skb->vlan_tci;
3471 		if (maclen == ETH_HLEN)
3472 			diffs |= compare_ether_header(skb_mac_header(p),
3473 						      skb_gro_mac_header(skb));
3474 		else if (!diffs)
3475 			diffs = memcmp(skb_mac_header(p),
3476 				       skb_gro_mac_header(skb),
3477 				       maclen);
3478 		NAPI_GRO_CB(p)->same_flow = !diffs;
3479 		NAPI_GRO_CB(p)->flush = 0;
3480 	}
3481 
3482 	return dev_gro_receive(napi, skb);
3483 }
3484 
3485 gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
3486 {
3487 	switch (ret) {
3488 	case GRO_NORMAL:
3489 		if (netif_receive_skb(skb))
3490 			ret = GRO_DROP;
3491 		break;
3492 
3493 	case GRO_DROP:
3494 		kfree_skb(skb);
3495 		break;
3496 
3497 	case GRO_MERGED_FREE:
3498 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
3499 			kmem_cache_free(skbuff_head_cache, skb);
3500 		else
3501 			__kfree_skb(skb);
3502 		break;
3503 
3504 	case GRO_HELD:
3505 	case GRO_MERGED:
3506 		break;
3507 	}
3508 
3509 	return ret;
3510 }
3511 EXPORT_SYMBOL(napi_skb_finish);
3512 
3513 void skb_gro_reset_offset(struct sk_buff *skb)
3514 {
3515 	NAPI_GRO_CB(skb)->data_offset = 0;
3516 	NAPI_GRO_CB(skb)->frag0 = NULL;
3517 	NAPI_GRO_CB(skb)->frag0_len = 0;
3518 
3519 	if (skb->mac_header == skb->tail &&
3520 	    !PageHighMem(skb_frag_page(&skb_shinfo(skb)->frags[0]))) {
3521 		NAPI_GRO_CB(skb)->frag0 =
3522 			skb_frag_address(&skb_shinfo(skb)->frags[0]);
3523 		NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(&skb_shinfo(skb)->frags[0]);
3524 	}
3525 }
3526 EXPORT_SYMBOL(skb_gro_reset_offset);
3527 
3528 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3529 {
3530 	skb_gro_reset_offset(skb);
3531 
3532 	return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
3533 }
3534 EXPORT_SYMBOL(napi_gro_receive);
3535 
3536 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
3537 {
3538 	__skb_pull(skb, skb_headlen(skb));
3539 	/* restore the reserve we had after netdev_alloc_skb_ip_align() */
3540 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
3541 	skb->vlan_tci = 0;
3542 	skb->dev = napi->dev;
3543 	skb->skb_iif = 0;
3544 
3545 	napi->skb = skb;
3546 }
3547 
3548 struct sk_buff *napi_get_frags(struct napi_struct *napi)
3549 {
3550 	struct sk_buff *skb = napi->skb;
3551 
3552 	if (!skb) {
3553 		skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3554 		if (skb)
3555 			napi->skb = skb;
3556 	}
3557 	return skb;
3558 }
3559 EXPORT_SYMBOL(napi_get_frags);
3560 
3561 gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3562 			       gro_result_t ret)
3563 {
3564 	switch (ret) {
3565 	case GRO_NORMAL:
3566 	case GRO_HELD:
3567 		skb->protocol = eth_type_trans(skb, skb->dev);
3568 
3569 		if (ret == GRO_HELD)
3570 			skb_gro_pull(skb, -ETH_HLEN);
3571 		else if (netif_receive_skb(skb))
3572 			ret = GRO_DROP;
3573 		break;
3574 
3575 	case GRO_DROP:
3576 	case GRO_MERGED_FREE:
3577 		napi_reuse_skb(napi, skb);
3578 		break;
3579 
3580 	case GRO_MERGED:
3581 		break;
3582 	}
3583 
3584 	return ret;
3585 }
3586 EXPORT_SYMBOL(napi_frags_finish);
3587 
3588 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
3589 {
3590 	struct sk_buff *skb = napi->skb;
3591 	struct ethhdr *eth;
3592 	unsigned int hlen;
3593 	unsigned int off;
3594 
3595 	napi->skb = NULL;
3596 
3597 	skb_reset_mac_header(skb);
3598 	skb_gro_reset_offset(skb);
3599 
3600 	off = skb_gro_offset(skb);
3601 	hlen = off + sizeof(*eth);
3602 	eth = skb_gro_header_fast(skb, off);
3603 	if (skb_gro_header_hard(skb, hlen)) {
3604 		eth = skb_gro_header_slow(skb, hlen, off);
3605 		if (unlikely(!eth)) {
3606 			napi_reuse_skb(napi, skb);
3607 			skb = NULL;
3608 			goto out;
3609 		}
3610 	}
3611 
3612 	skb_gro_pull(skb, sizeof(*eth));
3613 
3614 	/*
3615 	 * This works because the only protocols we care about don't require
3616 	 * special handling.  We'll fix it up properly at the end.
3617 	 */
3618 	skb->protocol = eth->h_proto;
3619 
3620 out:
3621 	return skb;
3622 }
3623 
3624 gro_result_t napi_gro_frags(struct napi_struct *napi)
3625 {
3626 	struct sk_buff *skb = napi_frags_skb(napi);
3627 
3628 	if (!skb)
3629 		return GRO_DROP;
3630 
3631 	return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
3632 }
3633 EXPORT_SYMBOL(napi_gro_frags);
3634 
3635 /*
3636  * net_rps_action sends any pending IPI's for rps.
3637  * Note: called with local irq disabled, but exits with local irq enabled.
3638  */
3639 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
3640 {
3641 #ifdef CONFIG_RPS
3642 	struct softnet_data *remsd = sd->rps_ipi_list;
3643 
3644 	if (remsd) {
3645 		sd->rps_ipi_list = NULL;
3646 
3647 		local_irq_enable();
3648 
3649 		/* Send pending IPI's to kick RPS processing on remote cpus. */
3650 		while (remsd) {
3651 			struct softnet_data *next = remsd->rps_ipi_next;
3652 
3653 			if (cpu_online(remsd->cpu))
3654 				__smp_call_function_single(remsd->cpu,
3655 							   &remsd->csd, 0);
3656 			remsd = next;
3657 		}
3658 	} else
3659 #endif
3660 		local_irq_enable();
3661 }
3662 
3663 static int process_backlog(struct napi_struct *napi, int quota)
3664 {
3665 	int work = 0;
3666 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
3667 
3668 #ifdef CONFIG_RPS
3669 	/* Check if we have pending ipi, its better to send them now,
3670 	 * not waiting net_rx_action() end.
3671 	 */
3672 	if (sd->rps_ipi_list) {
3673 		local_irq_disable();
3674 		net_rps_action_and_irq_enable(sd);
3675 	}
3676 #endif
3677 	napi->weight = weight_p;
3678 	local_irq_disable();
3679 	while (work < quota) {
3680 		struct sk_buff *skb;
3681 		unsigned int qlen;
3682 
3683 		while ((skb = __skb_dequeue(&sd->process_queue))) {
3684 			local_irq_enable();
3685 			__netif_receive_skb(skb);
3686 			local_irq_disable();
3687 			input_queue_head_incr(sd);
3688 			if (++work >= quota) {
3689 				local_irq_enable();
3690 				return work;
3691 			}
3692 		}
3693 
3694 		rps_lock(sd);
3695 		qlen = skb_queue_len(&sd->input_pkt_queue);
3696 		if (qlen)
3697 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
3698 						   &sd->process_queue);
3699 
3700 		if (qlen < quota - work) {
3701 			/*
3702 			 * Inline a custom version of __napi_complete().
3703 			 * only current cpu owns and manipulates this napi,
3704 			 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
3705 			 * we can use a plain write instead of clear_bit(),
3706 			 * and we dont need an smp_mb() memory barrier.
3707 			 */
3708 			list_del(&napi->poll_list);
3709 			napi->state = 0;
3710 
3711 			quota = work + qlen;
3712 		}
3713 		rps_unlock(sd);
3714 	}
3715 	local_irq_enable();
3716 
3717 	return work;
3718 }
3719 
3720 /**
3721  * __napi_schedule - schedule for receive
3722  * @n: entry to schedule
3723  *
3724  * The entry's receive function will be scheduled to run
3725  */
3726 void __napi_schedule(struct napi_struct *n)
3727 {
3728 	unsigned long flags;
3729 
3730 	local_irq_save(flags);
3731 	____napi_schedule(&__get_cpu_var(softnet_data), n);
3732 	local_irq_restore(flags);
3733 }
3734 EXPORT_SYMBOL(__napi_schedule);
3735 
3736 void __napi_complete(struct napi_struct *n)
3737 {
3738 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
3739 	BUG_ON(n->gro_list);
3740 
3741 	list_del(&n->poll_list);
3742 	smp_mb__before_clear_bit();
3743 	clear_bit(NAPI_STATE_SCHED, &n->state);
3744 }
3745 EXPORT_SYMBOL(__napi_complete);
3746 
3747 void napi_complete(struct napi_struct *n)
3748 {
3749 	unsigned long flags;
3750 
3751 	/*
3752 	 * don't let napi dequeue from the cpu poll list
3753 	 * just in case its running on a different cpu
3754 	 */
3755 	if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
3756 		return;
3757 
3758 	napi_gro_flush(n);
3759 	local_irq_save(flags);
3760 	__napi_complete(n);
3761 	local_irq_restore(flags);
3762 }
3763 EXPORT_SYMBOL(napi_complete);
3764 
3765 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
3766 		    int (*poll)(struct napi_struct *, int), int weight)
3767 {
3768 	INIT_LIST_HEAD(&napi->poll_list);
3769 	napi->gro_count = 0;
3770 	napi->gro_list = NULL;
3771 	napi->skb = NULL;
3772 	napi->poll = poll;
3773 	napi->weight = weight;
3774 	list_add(&napi->dev_list, &dev->napi_list);
3775 	napi->dev = dev;
3776 #ifdef CONFIG_NETPOLL
3777 	spin_lock_init(&napi->poll_lock);
3778 	napi->poll_owner = -1;
3779 #endif
3780 	set_bit(NAPI_STATE_SCHED, &napi->state);
3781 }
3782 EXPORT_SYMBOL(netif_napi_add);
3783 
3784 void netif_napi_del(struct napi_struct *napi)
3785 {
3786 	struct sk_buff *skb, *next;
3787 
3788 	list_del_init(&napi->dev_list);
3789 	napi_free_frags(napi);
3790 
3791 	for (skb = napi->gro_list; skb; skb = next) {
3792 		next = skb->next;
3793 		skb->next = NULL;
3794 		kfree_skb(skb);
3795 	}
3796 
3797 	napi->gro_list = NULL;
3798 	napi->gro_count = 0;
3799 }
3800 EXPORT_SYMBOL(netif_napi_del);
3801 
3802 static void net_rx_action(struct softirq_action *h)
3803 {
3804 	struct softnet_data *sd = &__get_cpu_var(softnet_data);
3805 	unsigned long time_limit = jiffies + 2;
3806 	int budget = netdev_budget;
3807 	void *have;
3808 
3809 	local_irq_disable();
3810 
3811 	while (!list_empty(&sd->poll_list)) {
3812 		struct napi_struct *n;
3813 		int work, weight;
3814 
3815 		/* If softirq window is exhuasted then punt.
3816 		 * Allow this to run for 2 jiffies since which will allow
3817 		 * an average latency of 1.5/HZ.
3818 		 */
3819 		if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
3820 			goto softnet_break;
3821 
3822 		local_irq_enable();
3823 
3824 		/* Even though interrupts have been re-enabled, this
3825 		 * access is safe because interrupts can only add new
3826 		 * entries to the tail of this list, and only ->poll()
3827 		 * calls can remove this head entry from the list.
3828 		 */
3829 		n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
3830 
3831 		have = netpoll_poll_lock(n);
3832 
3833 		weight = n->weight;
3834 
3835 		/* This NAPI_STATE_SCHED test is for avoiding a race
3836 		 * with netpoll's poll_napi().  Only the entity which
3837 		 * obtains the lock and sees NAPI_STATE_SCHED set will
3838 		 * actually make the ->poll() call.  Therefore we avoid
3839 		 * accidentally calling ->poll() when NAPI is not scheduled.
3840 		 */
3841 		work = 0;
3842 		if (test_bit(NAPI_STATE_SCHED, &n->state)) {
3843 			work = n->poll(n, weight);
3844 			trace_napi_poll(n);
3845 		}
3846 
3847 		WARN_ON_ONCE(work > weight);
3848 
3849 		budget -= work;
3850 
3851 		local_irq_disable();
3852 
3853 		/* Drivers must not modify the NAPI state if they
3854 		 * consume the entire weight.  In such cases this code
3855 		 * still "owns" the NAPI instance and therefore can
3856 		 * move the instance around on the list at-will.
3857 		 */
3858 		if (unlikely(work == weight)) {
3859 			if (unlikely(napi_disable_pending(n))) {
3860 				local_irq_enable();
3861 				napi_complete(n);
3862 				local_irq_disable();
3863 			} else
3864 				list_move_tail(&n->poll_list, &sd->poll_list);
3865 		}
3866 
3867 		netpoll_poll_unlock(have);
3868 	}
3869 out:
3870 	net_rps_action_and_irq_enable(sd);
3871 
3872 #ifdef CONFIG_NET_DMA
3873 	/*
3874 	 * There may not be any more sk_buffs coming right now, so push
3875 	 * any pending DMA copies to hardware
3876 	 */
3877 	dma_issue_pending_all();
3878 #endif
3879 
3880 	return;
3881 
3882 softnet_break:
3883 	sd->time_squeeze++;
3884 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3885 	goto out;
3886 }
3887 
3888 static gifconf_func_t *gifconf_list[NPROTO];
3889 
3890 /**
3891  *	register_gifconf	-	register a SIOCGIF handler
3892  *	@family: Address family
3893  *	@gifconf: Function handler
3894  *
3895  *	Register protocol dependent address dumping routines. The handler
3896  *	that is passed must not be freed or reused until it has been replaced
3897  *	by another handler.
3898  */
3899 int register_gifconf(unsigned int family, gifconf_func_t *gifconf)
3900 {
3901 	if (family >= NPROTO)
3902 		return -EINVAL;
3903 	gifconf_list[family] = gifconf;
3904 	return 0;
3905 }
3906 EXPORT_SYMBOL(register_gifconf);
3907 
3908 
3909 /*
3910  *	Map an interface index to its name (SIOCGIFNAME)
3911  */
3912 
3913 /*
3914  *	We need this ioctl for efficient implementation of the
3915  *	if_indextoname() function required by the IPv6 API.  Without
3916  *	it, we would have to search all the interfaces to find a
3917  *	match.  --pb
3918  */
3919 
3920 static int dev_ifname(struct net *net, struct ifreq __user *arg)
3921 {
3922 	struct net_device *dev;
3923 	struct ifreq ifr;
3924 
3925 	/*
3926 	 *	Fetch the caller's info block.
3927 	 */
3928 
3929 	if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3930 		return -EFAULT;
3931 
3932 	rcu_read_lock();
3933 	dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex);
3934 	if (!dev) {
3935 		rcu_read_unlock();
3936 		return -ENODEV;
3937 	}
3938 
3939 	strcpy(ifr.ifr_name, dev->name);
3940 	rcu_read_unlock();
3941 
3942 	if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
3943 		return -EFAULT;
3944 	return 0;
3945 }
3946 
3947 /*
3948  *	Perform a SIOCGIFCONF call. This structure will change
3949  *	size eventually, and there is nothing I can do about it.
3950  *	Thus we will need a 'compatibility mode'.
3951  */
3952 
3953 static int dev_ifconf(struct net *net, char __user *arg)
3954 {
3955 	struct ifconf ifc;
3956 	struct net_device *dev;
3957 	char __user *pos;
3958 	int len;
3959 	int total;
3960 	int i;
3961 
3962 	/*
3963 	 *	Fetch the caller's info block.
3964 	 */
3965 
3966 	if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
3967 		return -EFAULT;
3968 
3969 	pos = ifc.ifc_buf;
3970 	len = ifc.ifc_len;
3971 
3972 	/*
3973 	 *	Loop over the interfaces, and write an info block for each.
3974 	 */
3975 
3976 	total = 0;
3977 	for_each_netdev(net, dev) {
3978 		for (i = 0; i < NPROTO; i++) {
3979 			if (gifconf_list[i]) {
3980 				int done;
3981 				if (!pos)
3982 					done = gifconf_list[i](dev, NULL, 0);
3983 				else
3984 					done = gifconf_list[i](dev, pos + total,
3985 							       len - total);
3986 				if (done < 0)
3987 					return -EFAULT;
3988 				total += done;
3989 			}
3990 		}
3991 	}
3992 
3993 	/*
3994 	 *	All done.  Write the updated control block back to the caller.
3995 	 */
3996 	ifc.ifc_len = total;
3997 
3998 	/*
3999 	 * 	Both BSD and Solaris return 0 here, so we do too.
4000 	 */
4001 	return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
4002 }
4003 
4004 #ifdef CONFIG_PROC_FS
4005 
4006 #define BUCKET_SPACE (32 - NETDEV_HASHBITS - 1)
4007 
4008 #define get_bucket(x) ((x) >> BUCKET_SPACE)
4009 #define get_offset(x) ((x) & ((1 << BUCKET_SPACE) - 1))
4010 #define set_bucket_offset(b, o) ((b) << BUCKET_SPACE | (o))
4011 
4012 static inline struct net_device *dev_from_same_bucket(struct seq_file *seq, loff_t *pos)
4013 {
4014 	struct net *net = seq_file_net(seq);
4015 	struct net_device *dev;
4016 	struct hlist_node *p;
4017 	struct hlist_head *h;
4018 	unsigned int count = 0, offset = get_offset(*pos);
4019 
4020 	h = &net->dev_name_head[get_bucket(*pos)];
4021 	hlist_for_each_entry_rcu(dev, p, h, name_hlist) {
4022 		if (++count == offset)
4023 			return dev;
4024 	}
4025 
4026 	return NULL;
4027 }
4028 
4029 static inline struct net_device *dev_from_bucket(struct seq_file *seq, loff_t *pos)
4030 {
4031 	struct net_device *dev;
4032 	unsigned int bucket;
4033 
4034 	do {
4035 		dev = dev_from_same_bucket(seq, pos);
4036 		if (dev)
4037 			return dev;
4038 
4039 		bucket = get_bucket(*pos) + 1;
4040 		*pos = set_bucket_offset(bucket, 1);
4041 	} while (bucket < NETDEV_HASHENTRIES);
4042 
4043 	return NULL;
4044 }
4045 
4046 /*
4047  *	This is invoked by the /proc filesystem handler to display a device
4048  *	in detail.
4049  */
4050 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
4051 	__acquires(RCU)
4052 {
4053 	rcu_read_lock();
4054 	if (!*pos)
4055 		return SEQ_START_TOKEN;
4056 
4057 	if (get_bucket(*pos) >= NETDEV_HASHENTRIES)
4058 		return NULL;
4059 
4060 	return dev_from_bucket(seq, pos);
4061 }
4062 
4063 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4064 {
4065 	++*pos;
4066 	return dev_from_bucket(seq, pos);
4067 }
4068 
4069 void dev_seq_stop(struct seq_file *seq, void *v)
4070 	__releases(RCU)
4071 {
4072 	rcu_read_unlock();
4073 }
4074 
4075 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
4076 {
4077 	struct rtnl_link_stats64 temp;
4078 	const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp);
4079 
4080 	seq_printf(seq, "%6s: %7llu %7llu %4llu %4llu %4llu %5llu %10llu %9llu "
4081 		   "%8llu %7llu %4llu %4llu %4llu %5llu %7llu %10llu\n",
4082 		   dev->name, stats->rx_bytes, stats->rx_packets,
4083 		   stats->rx_errors,
4084 		   stats->rx_dropped + stats->rx_missed_errors,
4085 		   stats->rx_fifo_errors,
4086 		   stats->rx_length_errors + stats->rx_over_errors +
4087 		    stats->rx_crc_errors + stats->rx_frame_errors,
4088 		   stats->rx_compressed, stats->multicast,
4089 		   stats->tx_bytes, stats->tx_packets,
4090 		   stats->tx_errors, stats->tx_dropped,
4091 		   stats->tx_fifo_errors, stats->collisions,
4092 		   stats->tx_carrier_errors +
4093 		    stats->tx_aborted_errors +
4094 		    stats->tx_window_errors +
4095 		    stats->tx_heartbeat_errors,
4096 		   stats->tx_compressed);
4097 }
4098 
4099 /*
4100  *	Called from the PROCfs module. This now uses the new arbitrary sized
4101  *	/proc/net interface to create /proc/net/dev
4102  */
4103 static int dev_seq_show(struct seq_file *seq, void *v)
4104 {
4105 	if (v == SEQ_START_TOKEN)
4106 		seq_puts(seq, "Inter-|   Receive                            "
4107 			      "                    |  Transmit\n"
4108 			      " face |bytes    packets errs drop fifo frame "
4109 			      "compressed multicast|bytes    packets errs "
4110 			      "drop fifo colls carrier compressed\n");
4111 	else
4112 		dev_seq_printf_stats(seq, v);
4113 	return 0;
4114 }
4115 
4116 static struct softnet_data *softnet_get_online(loff_t *pos)
4117 {
4118 	struct softnet_data *sd = NULL;
4119 
4120 	while (*pos < nr_cpu_ids)
4121 		if (cpu_online(*pos)) {
4122 			sd = &per_cpu(softnet_data, *pos);
4123 			break;
4124 		} else
4125 			++*pos;
4126 	return sd;
4127 }
4128 
4129 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
4130 {
4131 	return softnet_get_online(pos);
4132 }
4133 
4134 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4135 {
4136 	++*pos;
4137 	return softnet_get_online(pos);
4138 }
4139 
4140 static void softnet_seq_stop(struct seq_file *seq, void *v)
4141 {
4142 }
4143 
4144 static int softnet_seq_show(struct seq_file *seq, void *v)
4145 {
4146 	struct softnet_data *sd = v;
4147 
4148 	seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
4149 		   sd->processed, sd->dropped, sd->time_squeeze, 0,
4150 		   0, 0, 0, 0, /* was fastroute */
4151 		   sd->cpu_collision, sd->received_rps);
4152 	return 0;
4153 }
4154 
4155 static const struct seq_operations dev_seq_ops = {
4156 	.start = dev_seq_start,
4157 	.next  = dev_seq_next,
4158 	.stop  = dev_seq_stop,
4159 	.show  = dev_seq_show,
4160 };
4161 
4162 static int dev_seq_open(struct inode *inode, struct file *file)
4163 {
4164 	return seq_open_net(inode, file, &dev_seq_ops,
4165 			    sizeof(struct seq_net_private));
4166 }
4167 
4168 static const struct file_operations dev_seq_fops = {
4169 	.owner	 = THIS_MODULE,
4170 	.open    = dev_seq_open,
4171 	.read    = seq_read,
4172 	.llseek  = seq_lseek,
4173 	.release = seq_release_net,
4174 };
4175 
4176 static const struct seq_operations softnet_seq_ops = {
4177 	.start = softnet_seq_start,
4178 	.next  = softnet_seq_next,
4179 	.stop  = softnet_seq_stop,
4180 	.show  = softnet_seq_show,
4181 };
4182 
4183 static int softnet_seq_open(struct inode *inode, struct file *file)
4184 {
4185 	return seq_open(file, &softnet_seq_ops);
4186 }
4187 
4188 static const struct file_operations softnet_seq_fops = {
4189 	.owner	 = THIS_MODULE,
4190 	.open    = softnet_seq_open,
4191 	.read    = seq_read,
4192 	.llseek  = seq_lseek,
4193 	.release = seq_release,
4194 };
4195 
4196 static void *ptype_get_idx(loff_t pos)
4197 {
4198 	struct packet_type *pt = NULL;
4199 	loff_t i = 0;
4200 	int t;
4201 
4202 	list_for_each_entry_rcu(pt, &ptype_all, list) {
4203 		if (i == pos)
4204 			return pt;
4205 		++i;
4206 	}
4207 
4208 	for (t = 0; t < PTYPE_HASH_SIZE; t++) {
4209 		list_for_each_entry_rcu(pt, &ptype_base[t], list) {
4210 			if (i == pos)
4211 				return pt;
4212 			++i;
4213 		}
4214 	}
4215 	return NULL;
4216 }
4217 
4218 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
4219 	__acquires(RCU)
4220 {
4221 	rcu_read_lock();
4222 	return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
4223 }
4224 
4225 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4226 {
4227 	struct packet_type *pt;
4228 	struct list_head *nxt;
4229 	int hash;
4230 
4231 	++*pos;
4232 	if (v == SEQ_START_TOKEN)
4233 		return ptype_get_idx(0);
4234 
4235 	pt = v;
4236 	nxt = pt->list.next;
4237 	if (pt->type == htons(ETH_P_ALL)) {
4238 		if (nxt != &ptype_all)
4239 			goto found;
4240 		hash = 0;
4241 		nxt = ptype_base[0].next;
4242 	} else
4243 		hash = ntohs(pt->type) & PTYPE_HASH_MASK;
4244 
4245 	while (nxt == &ptype_base[hash]) {
4246 		if (++hash >= PTYPE_HASH_SIZE)
4247 			return NULL;
4248 		nxt = ptype_base[hash].next;
4249 	}
4250 found:
4251 	return list_entry(nxt, struct packet_type, list);
4252 }
4253 
4254 static void ptype_seq_stop(struct seq_file *seq, void *v)
4255 	__releases(RCU)
4256 {
4257 	rcu_read_unlock();
4258 }
4259 
4260 static int ptype_seq_show(struct seq_file *seq, void *v)
4261 {
4262 	struct packet_type *pt = v;
4263 
4264 	if (v == SEQ_START_TOKEN)
4265 		seq_puts(seq, "Type Device      Function\n");
4266 	else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
4267 		if (pt->type == htons(ETH_P_ALL))
4268 			seq_puts(seq, "ALL ");
4269 		else
4270 			seq_printf(seq, "%04x", ntohs(pt->type));
4271 
4272 		seq_printf(seq, " %-8s %pF\n",
4273 			   pt->dev ? pt->dev->name : "", pt->func);
4274 	}
4275 
4276 	return 0;
4277 }
4278 
4279 static const struct seq_operations ptype_seq_ops = {
4280 	.start = ptype_seq_start,
4281 	.next  = ptype_seq_next,
4282 	.stop  = ptype_seq_stop,
4283 	.show  = ptype_seq_show,
4284 };
4285 
4286 static int ptype_seq_open(struct inode *inode, struct file *file)
4287 {
4288 	return seq_open_net(inode, file, &ptype_seq_ops,
4289 			sizeof(struct seq_net_private));
4290 }
4291 
4292 static const struct file_operations ptype_seq_fops = {
4293 	.owner	 = THIS_MODULE,
4294 	.open    = ptype_seq_open,
4295 	.read    = seq_read,
4296 	.llseek  = seq_lseek,
4297 	.release = seq_release_net,
4298 };
4299 
4300 
4301 static int __net_init dev_proc_net_init(struct net *net)
4302 {
4303 	int rc = -ENOMEM;
4304 
4305 	if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
4306 		goto out;
4307 	if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
4308 		goto out_dev;
4309 	if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
4310 		goto out_softnet;
4311 
4312 	if (wext_proc_init(net))
4313 		goto out_ptype;
4314 	rc = 0;
4315 out:
4316 	return rc;
4317 out_ptype:
4318 	proc_net_remove(net, "ptype");
4319 out_softnet:
4320 	proc_net_remove(net, "softnet_stat");
4321 out_dev:
4322 	proc_net_remove(net, "dev");
4323 	goto out;
4324 }
4325 
4326 static void __net_exit dev_proc_net_exit(struct net *net)
4327 {
4328 	wext_proc_exit(net);
4329 
4330 	proc_net_remove(net, "ptype");
4331 	proc_net_remove(net, "softnet_stat");
4332 	proc_net_remove(net, "dev");
4333 }
4334 
4335 static struct pernet_operations __net_initdata dev_proc_ops = {
4336 	.init = dev_proc_net_init,
4337 	.exit = dev_proc_net_exit,
4338 };
4339 
4340 static int __init dev_proc_init(void)
4341 {
4342 	return register_pernet_subsys(&dev_proc_ops);
4343 }
4344 #else
4345 #define dev_proc_init() 0
4346 #endif	/* CONFIG_PROC_FS */
4347 
4348 
4349 /**
4350  *	netdev_set_master	-	set up master pointer
4351  *	@slave: slave device
4352  *	@master: new master device
4353  *
4354  *	Changes the master device of the slave. Pass %NULL to break the
4355  *	bonding. The caller must hold the RTNL semaphore. On a failure
4356  *	a negative errno code is returned. On success the reference counts
4357  *	are adjusted and the function returns zero.
4358  */
4359 int netdev_set_master(struct net_device *slave, struct net_device *master)
4360 {
4361 	struct net_device *old = slave->master;
4362 
4363 	ASSERT_RTNL();
4364 
4365 	if (master) {
4366 		if (old)
4367 			return -EBUSY;
4368 		dev_hold(master);
4369 	}
4370 
4371 	slave->master = master;
4372 
4373 	if (old)
4374 		dev_put(old);
4375 	return 0;
4376 }
4377 EXPORT_SYMBOL(netdev_set_master);
4378 
4379 /**
4380  *	netdev_set_bond_master	-	set up bonding master/slave pair
4381  *	@slave: slave device
4382  *	@master: new master device
4383  *
4384  *	Changes the master device of the slave. Pass %NULL to break the
4385  *	bonding. The caller must hold the RTNL semaphore. On a failure
4386  *	a negative errno code is returned. On success %RTM_NEWLINK is sent
4387  *	to the routing socket and the function returns zero.
4388  */
4389 int netdev_set_bond_master(struct net_device *slave, struct net_device *master)
4390 {
4391 	int err;
4392 
4393 	ASSERT_RTNL();
4394 
4395 	err = netdev_set_master(slave, master);
4396 	if (err)
4397 		return err;
4398 	if (master)
4399 		slave->flags |= IFF_SLAVE;
4400 	else
4401 		slave->flags &= ~IFF_SLAVE;
4402 
4403 	rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
4404 	return 0;
4405 }
4406 EXPORT_SYMBOL(netdev_set_bond_master);
4407 
4408 static void dev_change_rx_flags(struct net_device *dev, int flags)
4409 {
4410 	const struct net_device_ops *ops = dev->netdev_ops;
4411 
4412 	if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
4413 		ops->ndo_change_rx_flags(dev, flags);
4414 }
4415 
4416 static int __dev_set_promiscuity(struct net_device *dev, int inc)
4417 {
4418 	unsigned int old_flags = dev->flags;
4419 	uid_t uid;
4420 	gid_t gid;
4421 
4422 	ASSERT_RTNL();
4423 
4424 	dev->flags |= IFF_PROMISC;
4425 	dev->promiscuity += inc;
4426 	if (dev->promiscuity == 0) {
4427 		/*
4428 		 * Avoid overflow.
4429 		 * If inc causes overflow, untouch promisc and return error.
4430 		 */
4431 		if (inc < 0)
4432 			dev->flags &= ~IFF_PROMISC;
4433 		else {
4434 			dev->promiscuity -= inc;
4435 			pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
4436 				dev->name);
4437 			return -EOVERFLOW;
4438 		}
4439 	}
4440 	if (dev->flags != old_flags) {
4441 		pr_info("device %s %s promiscuous mode\n",
4442 			dev->name,
4443 			dev->flags & IFF_PROMISC ? "entered" : "left");
4444 		if (audit_enabled) {
4445 			current_uid_gid(&uid, &gid);
4446 			audit_log(current->audit_context, GFP_ATOMIC,
4447 				AUDIT_ANOM_PROMISCUOUS,
4448 				"dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
4449 				dev->name, (dev->flags & IFF_PROMISC),
4450 				(old_flags & IFF_PROMISC),
4451 				audit_get_loginuid(current),
4452 				uid, gid,
4453 				audit_get_sessionid(current));
4454 		}
4455 
4456 		dev_change_rx_flags(dev, IFF_PROMISC);
4457 	}
4458 	return 0;
4459 }
4460 
4461 /**
4462  *	dev_set_promiscuity	- update promiscuity count on a device
4463  *	@dev: device
4464  *	@inc: modifier
4465  *
4466  *	Add or remove promiscuity from a device. While the count in the device
4467  *	remains above zero the interface remains promiscuous. Once it hits zero
4468  *	the device reverts back to normal filtering operation. A negative inc
4469  *	value is used to drop promiscuity on the device.
4470  *	Return 0 if successful or a negative errno code on error.
4471  */
4472 int dev_set_promiscuity(struct net_device *dev, int inc)
4473 {
4474 	unsigned int old_flags = dev->flags;
4475 	int err;
4476 
4477 	err = __dev_set_promiscuity(dev, inc);
4478 	if (err < 0)
4479 		return err;
4480 	if (dev->flags != old_flags)
4481 		dev_set_rx_mode(dev);
4482 	return err;
4483 }
4484 EXPORT_SYMBOL(dev_set_promiscuity);
4485 
4486 /**
4487  *	dev_set_allmulti	- update allmulti count on a device
4488  *	@dev: device
4489  *	@inc: modifier
4490  *
4491  *	Add or remove reception of all multicast frames to a device. While the
4492  *	count in the device remains above zero the interface remains listening
4493  *	to all interfaces. Once it hits zero the device reverts back to normal
4494  *	filtering operation. A negative @inc value is used to drop the counter
4495  *	when releasing a resource needing all multicasts.
4496  *	Return 0 if successful or a negative errno code on error.
4497  */
4498 
4499 int dev_set_allmulti(struct net_device *dev, int inc)
4500 {
4501 	unsigned int old_flags = dev->flags;
4502 
4503 	ASSERT_RTNL();
4504 
4505 	dev->flags |= IFF_ALLMULTI;
4506 	dev->allmulti += inc;
4507 	if (dev->allmulti == 0) {
4508 		/*
4509 		 * Avoid overflow.
4510 		 * If inc causes overflow, untouch allmulti and return error.
4511 		 */
4512 		if (inc < 0)
4513 			dev->flags &= ~IFF_ALLMULTI;
4514 		else {
4515 			dev->allmulti -= inc;
4516 			pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
4517 				dev->name);
4518 			return -EOVERFLOW;
4519 		}
4520 	}
4521 	if (dev->flags ^ old_flags) {
4522 		dev_change_rx_flags(dev, IFF_ALLMULTI);
4523 		dev_set_rx_mode(dev);
4524 	}
4525 	return 0;
4526 }
4527 EXPORT_SYMBOL(dev_set_allmulti);
4528 
4529 /*
4530  *	Upload unicast and multicast address lists to device and
4531  *	configure RX filtering. When the device doesn't support unicast
4532  *	filtering it is put in promiscuous mode while unicast addresses
4533  *	are present.
4534  */
4535 void __dev_set_rx_mode(struct net_device *dev)
4536 {
4537 	const struct net_device_ops *ops = dev->netdev_ops;
4538 
4539 	/* dev_open will call this function so the list will stay sane. */
4540 	if (!(dev->flags&IFF_UP))
4541 		return;
4542 
4543 	if (!netif_device_present(dev))
4544 		return;
4545 
4546 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
4547 		/* Unicast addresses changes may only happen under the rtnl,
4548 		 * therefore calling __dev_set_promiscuity here is safe.
4549 		 */
4550 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
4551 			__dev_set_promiscuity(dev, 1);
4552 			dev->uc_promisc = true;
4553 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
4554 			__dev_set_promiscuity(dev, -1);
4555 			dev->uc_promisc = false;
4556 		}
4557 	}
4558 
4559 	if (ops->ndo_set_rx_mode)
4560 		ops->ndo_set_rx_mode(dev);
4561 }
4562 
4563 void dev_set_rx_mode(struct net_device *dev)
4564 {
4565 	netif_addr_lock_bh(dev);
4566 	__dev_set_rx_mode(dev);
4567 	netif_addr_unlock_bh(dev);
4568 }
4569 
4570 /**
4571  *	dev_get_flags - get flags reported to userspace
4572  *	@dev: device
4573  *
4574  *	Get the combination of flag bits exported through APIs to userspace.
4575  */
4576 unsigned int dev_get_flags(const struct net_device *dev)
4577 {
4578 	unsigned int flags;
4579 
4580 	flags = (dev->flags & ~(IFF_PROMISC |
4581 				IFF_ALLMULTI |
4582 				IFF_RUNNING |
4583 				IFF_LOWER_UP |
4584 				IFF_DORMANT)) |
4585 		(dev->gflags & (IFF_PROMISC |
4586 				IFF_ALLMULTI));
4587 
4588 	if (netif_running(dev)) {
4589 		if (netif_oper_up(dev))
4590 			flags |= IFF_RUNNING;
4591 		if (netif_carrier_ok(dev))
4592 			flags |= IFF_LOWER_UP;
4593 		if (netif_dormant(dev))
4594 			flags |= IFF_DORMANT;
4595 	}
4596 
4597 	return flags;
4598 }
4599 EXPORT_SYMBOL(dev_get_flags);
4600 
4601 int __dev_change_flags(struct net_device *dev, unsigned int flags)
4602 {
4603 	unsigned int old_flags = dev->flags;
4604 	int ret;
4605 
4606 	ASSERT_RTNL();
4607 
4608 	/*
4609 	 *	Set the flags on our device.
4610 	 */
4611 
4612 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4613 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4614 			       IFF_AUTOMEDIA)) |
4615 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4616 				    IFF_ALLMULTI));
4617 
4618 	/*
4619 	 *	Load in the correct multicast list now the flags have changed.
4620 	 */
4621 
4622 	if ((old_flags ^ flags) & IFF_MULTICAST)
4623 		dev_change_rx_flags(dev, IFF_MULTICAST);
4624 
4625 	dev_set_rx_mode(dev);
4626 
4627 	/*
4628 	 *	Have we downed the interface. We handle IFF_UP ourselves
4629 	 *	according to user attempts to set it, rather than blindly
4630 	 *	setting it.
4631 	 */
4632 
4633 	ret = 0;
4634 	if ((old_flags ^ flags) & IFF_UP) {	/* Bit is different  ? */
4635 		ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
4636 
4637 		if (!ret)
4638 			dev_set_rx_mode(dev);
4639 	}
4640 
4641 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
4642 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
4643 
4644 		dev->gflags ^= IFF_PROMISC;
4645 		dev_set_promiscuity(dev, inc);
4646 	}
4647 
4648 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4649 	   is important. Some (broken) drivers set IFF_PROMISC, when
4650 	   IFF_ALLMULTI is requested not asking us and not reporting.
4651 	 */
4652 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4653 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4654 
4655 		dev->gflags ^= IFF_ALLMULTI;
4656 		dev_set_allmulti(dev, inc);
4657 	}
4658 
4659 	return ret;
4660 }
4661 
4662 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
4663 {
4664 	unsigned int changes = dev->flags ^ old_flags;
4665 
4666 	if (changes & IFF_UP) {
4667 		if (dev->flags & IFF_UP)
4668 			call_netdevice_notifiers(NETDEV_UP, dev);
4669 		else
4670 			call_netdevice_notifiers(NETDEV_DOWN, dev);
4671 	}
4672 
4673 	if (dev->flags & IFF_UP &&
4674 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE)))
4675 		call_netdevice_notifiers(NETDEV_CHANGE, dev);
4676 }
4677 
4678 /**
4679  *	dev_change_flags - change device settings
4680  *	@dev: device
4681  *	@flags: device state flags
4682  *
4683  *	Change settings on device based state flags. The flags are
4684  *	in the userspace exported format.
4685  */
4686 int dev_change_flags(struct net_device *dev, unsigned int flags)
4687 {
4688 	int ret;
4689 	unsigned int changes, old_flags = dev->flags;
4690 
4691 	ret = __dev_change_flags(dev, flags);
4692 	if (ret < 0)
4693 		return ret;
4694 
4695 	changes = old_flags ^ dev->flags;
4696 	if (changes)
4697 		rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4698 
4699 	__dev_notify_flags(dev, old_flags);
4700 	return ret;
4701 }
4702 EXPORT_SYMBOL(dev_change_flags);
4703 
4704 /**
4705  *	dev_set_mtu - Change maximum transfer unit
4706  *	@dev: device
4707  *	@new_mtu: new transfer unit
4708  *
4709  *	Change the maximum transfer size of the network device.
4710  */
4711 int dev_set_mtu(struct net_device *dev, int new_mtu)
4712 {
4713 	const struct net_device_ops *ops = dev->netdev_ops;
4714 	int err;
4715 
4716 	if (new_mtu == dev->mtu)
4717 		return 0;
4718 
4719 	/*	MTU must be positive.	 */
4720 	if (new_mtu < 0)
4721 		return -EINVAL;
4722 
4723 	if (!netif_device_present(dev))
4724 		return -ENODEV;
4725 
4726 	err = 0;
4727 	if (ops->ndo_change_mtu)
4728 		err = ops->ndo_change_mtu(dev, new_mtu);
4729 	else
4730 		dev->mtu = new_mtu;
4731 
4732 	if (!err && dev->flags & IFF_UP)
4733 		call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4734 	return err;
4735 }
4736 EXPORT_SYMBOL(dev_set_mtu);
4737 
4738 /**
4739  *	dev_set_group - Change group this device belongs to
4740  *	@dev: device
4741  *	@new_group: group this device should belong to
4742  */
4743 void dev_set_group(struct net_device *dev, int new_group)
4744 {
4745 	dev->group = new_group;
4746 }
4747 EXPORT_SYMBOL(dev_set_group);
4748 
4749 /**
4750  *	dev_set_mac_address - Change Media Access Control Address
4751  *	@dev: device
4752  *	@sa: new address
4753  *
4754  *	Change the hardware (MAC) address of the device
4755  */
4756 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4757 {
4758 	const struct net_device_ops *ops = dev->netdev_ops;
4759 	int err;
4760 
4761 	if (!ops->ndo_set_mac_address)
4762 		return -EOPNOTSUPP;
4763 	if (sa->sa_family != dev->type)
4764 		return -EINVAL;
4765 	if (!netif_device_present(dev))
4766 		return -ENODEV;
4767 	err = ops->ndo_set_mac_address(dev, sa);
4768 	if (!err)
4769 		call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4770 	return err;
4771 }
4772 EXPORT_SYMBOL(dev_set_mac_address);
4773 
4774 /*
4775  *	Perform the SIOCxIFxxx calls, inside rcu_read_lock()
4776  */
4777 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
4778 {
4779 	int err;
4780 	struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name);
4781 
4782 	if (!dev)
4783 		return -ENODEV;
4784 
4785 	switch (cmd) {
4786 	case SIOCGIFFLAGS:	/* Get interface flags */
4787 		ifr->ifr_flags = (short) dev_get_flags(dev);
4788 		return 0;
4789 
4790 	case SIOCGIFMETRIC:	/* Get the metric on the interface
4791 				   (currently unused) */
4792 		ifr->ifr_metric = 0;
4793 		return 0;
4794 
4795 	case SIOCGIFMTU:	/* Get the MTU of a device */
4796 		ifr->ifr_mtu = dev->mtu;
4797 		return 0;
4798 
4799 	case SIOCGIFHWADDR:
4800 		if (!dev->addr_len)
4801 			memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
4802 		else
4803 			memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
4804 			       min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4805 		ifr->ifr_hwaddr.sa_family = dev->type;
4806 		return 0;
4807 
4808 	case SIOCGIFSLAVE:
4809 		err = -EINVAL;
4810 		break;
4811 
4812 	case SIOCGIFMAP:
4813 		ifr->ifr_map.mem_start = dev->mem_start;
4814 		ifr->ifr_map.mem_end   = dev->mem_end;
4815 		ifr->ifr_map.base_addr = dev->base_addr;
4816 		ifr->ifr_map.irq       = dev->irq;
4817 		ifr->ifr_map.dma       = dev->dma;
4818 		ifr->ifr_map.port      = dev->if_port;
4819 		return 0;
4820 
4821 	case SIOCGIFINDEX:
4822 		ifr->ifr_ifindex = dev->ifindex;
4823 		return 0;
4824 
4825 	case SIOCGIFTXQLEN:
4826 		ifr->ifr_qlen = dev->tx_queue_len;
4827 		return 0;
4828 
4829 	default:
4830 		/* dev_ioctl() should ensure this case
4831 		 * is never reached
4832 		 */
4833 		WARN_ON(1);
4834 		err = -ENOTTY;
4835 		break;
4836 
4837 	}
4838 	return err;
4839 }
4840 
4841 /*
4842  *	Perform the SIOCxIFxxx calls, inside rtnl_lock()
4843  */
4844 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
4845 {
4846 	int err;
4847 	struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
4848 	const struct net_device_ops *ops;
4849 
4850 	if (!dev)
4851 		return -ENODEV;
4852 
4853 	ops = dev->netdev_ops;
4854 
4855 	switch (cmd) {
4856 	case SIOCSIFFLAGS:	/* Set interface flags */
4857 		return dev_change_flags(dev, ifr->ifr_flags);
4858 
4859 	case SIOCSIFMETRIC:	/* Set the metric on the interface
4860 				   (currently unused) */
4861 		return -EOPNOTSUPP;
4862 
4863 	case SIOCSIFMTU:	/* Set the MTU of a device */
4864 		return dev_set_mtu(dev, ifr->ifr_mtu);
4865 
4866 	case SIOCSIFHWADDR:
4867 		return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
4868 
4869 	case SIOCSIFHWBROADCAST:
4870 		if (ifr->ifr_hwaddr.sa_family != dev->type)
4871 			return -EINVAL;
4872 		memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
4873 		       min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4874 		call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4875 		return 0;
4876 
4877 	case SIOCSIFMAP:
4878 		if (ops->ndo_set_config) {
4879 			if (!netif_device_present(dev))
4880 				return -ENODEV;
4881 			return ops->ndo_set_config(dev, &ifr->ifr_map);
4882 		}
4883 		return -EOPNOTSUPP;
4884 
4885 	case SIOCADDMULTI:
4886 		if (!ops->ndo_set_rx_mode ||
4887 		    ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4888 			return -EINVAL;
4889 		if (!netif_device_present(dev))
4890 			return -ENODEV;
4891 		return dev_mc_add_global(dev, ifr->ifr_hwaddr.sa_data);
4892 
4893 	case SIOCDELMULTI:
4894 		if (!ops->ndo_set_rx_mode ||
4895 		    ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4896 			return -EINVAL;
4897 		if (!netif_device_present(dev))
4898 			return -ENODEV;
4899 		return dev_mc_del_global(dev, ifr->ifr_hwaddr.sa_data);
4900 
4901 	case SIOCSIFTXQLEN:
4902 		if (ifr->ifr_qlen < 0)
4903 			return -EINVAL;
4904 		dev->tx_queue_len = ifr->ifr_qlen;
4905 		return 0;
4906 
4907 	case SIOCSIFNAME:
4908 		ifr->ifr_newname[IFNAMSIZ-1] = '\0';
4909 		return dev_change_name(dev, ifr->ifr_newname);
4910 
4911 	case SIOCSHWTSTAMP:
4912 		err = net_hwtstamp_validate(ifr);
4913 		if (err)
4914 			return err;
4915 		/* fall through */
4916 
4917 	/*
4918 	 *	Unknown or private ioctl
4919 	 */
4920 	default:
4921 		if ((cmd >= SIOCDEVPRIVATE &&
4922 		    cmd <= SIOCDEVPRIVATE + 15) ||
4923 		    cmd == SIOCBONDENSLAVE ||
4924 		    cmd == SIOCBONDRELEASE ||
4925 		    cmd == SIOCBONDSETHWADDR ||
4926 		    cmd == SIOCBONDSLAVEINFOQUERY ||
4927 		    cmd == SIOCBONDINFOQUERY ||
4928 		    cmd == SIOCBONDCHANGEACTIVE ||
4929 		    cmd == SIOCGMIIPHY ||
4930 		    cmd == SIOCGMIIREG ||
4931 		    cmd == SIOCSMIIREG ||
4932 		    cmd == SIOCBRADDIF ||
4933 		    cmd == SIOCBRDELIF ||
4934 		    cmd == SIOCSHWTSTAMP ||
4935 		    cmd == SIOCWANDEV) {
4936 			err = -EOPNOTSUPP;
4937 			if (ops->ndo_do_ioctl) {
4938 				if (netif_device_present(dev))
4939 					err = ops->ndo_do_ioctl(dev, ifr, cmd);
4940 				else
4941 					err = -ENODEV;
4942 			}
4943 		} else
4944 			err = -EINVAL;
4945 
4946 	}
4947 	return err;
4948 }
4949 
4950 /*
4951  *	This function handles all "interface"-type I/O control requests. The actual
4952  *	'doing' part of this is dev_ifsioc above.
4953  */
4954 
4955 /**
4956  *	dev_ioctl	-	network device ioctl
4957  *	@net: the applicable net namespace
4958  *	@cmd: command to issue
4959  *	@arg: pointer to a struct ifreq in user space
4960  *
4961  *	Issue ioctl functions to devices. This is normally called by the
4962  *	user space syscall interfaces but can sometimes be useful for
4963  *	other purposes. The return value is the return from the syscall if
4964  *	positive or a negative errno code on error.
4965  */
4966 
4967 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
4968 {
4969 	struct ifreq ifr;
4970 	int ret;
4971 	char *colon;
4972 
4973 	/* One special case: SIOCGIFCONF takes ifconf argument
4974 	   and requires shared lock, because it sleeps writing
4975 	   to user space.
4976 	 */
4977 
4978 	if (cmd == SIOCGIFCONF) {
4979 		rtnl_lock();
4980 		ret = dev_ifconf(net, (char __user *) arg);
4981 		rtnl_unlock();
4982 		return ret;
4983 	}
4984 	if (cmd == SIOCGIFNAME)
4985 		return dev_ifname(net, (struct ifreq __user *)arg);
4986 
4987 	if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
4988 		return -EFAULT;
4989 
4990 	ifr.ifr_name[IFNAMSIZ-1] = 0;
4991 
4992 	colon = strchr(ifr.ifr_name, ':');
4993 	if (colon)
4994 		*colon = 0;
4995 
4996 	/*
4997 	 *	See which interface the caller is talking about.
4998 	 */
4999 
5000 	switch (cmd) {
5001 	/*
5002 	 *	These ioctl calls:
5003 	 *	- can be done by all.
5004 	 *	- atomic and do not require locking.
5005 	 *	- return a value
5006 	 */
5007 	case SIOCGIFFLAGS:
5008 	case SIOCGIFMETRIC:
5009 	case SIOCGIFMTU:
5010 	case SIOCGIFHWADDR:
5011 	case SIOCGIFSLAVE:
5012 	case SIOCGIFMAP:
5013 	case SIOCGIFINDEX:
5014 	case SIOCGIFTXQLEN:
5015 		dev_load(net, ifr.ifr_name);
5016 		rcu_read_lock();
5017 		ret = dev_ifsioc_locked(net, &ifr, cmd);
5018 		rcu_read_unlock();
5019 		if (!ret) {
5020 			if (colon)
5021 				*colon = ':';
5022 			if (copy_to_user(arg, &ifr,
5023 					 sizeof(struct ifreq)))
5024 				ret = -EFAULT;
5025 		}
5026 		return ret;
5027 
5028 	case SIOCETHTOOL:
5029 		dev_load(net, ifr.ifr_name);
5030 		rtnl_lock();
5031 		ret = dev_ethtool(net, &ifr);
5032 		rtnl_unlock();
5033 		if (!ret) {
5034 			if (colon)
5035 				*colon = ':';
5036 			if (copy_to_user(arg, &ifr,
5037 					 sizeof(struct ifreq)))
5038 				ret = -EFAULT;
5039 		}
5040 		return ret;
5041 
5042 	/*
5043 	 *	These ioctl calls:
5044 	 *	- require superuser power.
5045 	 *	- require strict serialization.
5046 	 *	- return a value
5047 	 */
5048 	case SIOCGMIIPHY:
5049 	case SIOCGMIIREG:
5050 	case SIOCSIFNAME:
5051 		if (!capable(CAP_NET_ADMIN))
5052 			return -EPERM;
5053 		dev_load(net, ifr.ifr_name);
5054 		rtnl_lock();
5055 		ret = dev_ifsioc(net, &ifr, cmd);
5056 		rtnl_unlock();
5057 		if (!ret) {
5058 			if (colon)
5059 				*colon = ':';
5060 			if (copy_to_user(arg, &ifr,
5061 					 sizeof(struct ifreq)))
5062 				ret = -EFAULT;
5063 		}
5064 		return ret;
5065 
5066 	/*
5067 	 *	These ioctl calls:
5068 	 *	- require superuser power.
5069 	 *	- require strict serialization.
5070 	 *	- do not return a value
5071 	 */
5072 	case SIOCSIFFLAGS:
5073 	case SIOCSIFMETRIC:
5074 	case SIOCSIFMTU:
5075 	case SIOCSIFMAP:
5076 	case SIOCSIFHWADDR:
5077 	case SIOCSIFSLAVE:
5078 	case SIOCADDMULTI:
5079 	case SIOCDELMULTI:
5080 	case SIOCSIFHWBROADCAST:
5081 	case SIOCSIFTXQLEN:
5082 	case SIOCSMIIREG:
5083 	case SIOCBONDENSLAVE:
5084 	case SIOCBONDRELEASE:
5085 	case SIOCBONDSETHWADDR:
5086 	case SIOCBONDCHANGEACTIVE:
5087 	case SIOCBRADDIF:
5088 	case SIOCBRDELIF:
5089 	case SIOCSHWTSTAMP:
5090 		if (!capable(CAP_NET_ADMIN))
5091 			return -EPERM;
5092 		/* fall through */
5093 	case SIOCBONDSLAVEINFOQUERY:
5094 	case SIOCBONDINFOQUERY:
5095 		dev_load(net, ifr.ifr_name);
5096 		rtnl_lock();
5097 		ret = dev_ifsioc(net, &ifr, cmd);
5098 		rtnl_unlock();
5099 		return ret;
5100 
5101 	case SIOCGIFMEM:
5102 		/* Get the per device memory space. We can add this but
5103 		 * currently do not support it */
5104 	case SIOCSIFMEM:
5105 		/* Set the per device memory buffer space.
5106 		 * Not applicable in our case */
5107 	case SIOCSIFLINK:
5108 		return -ENOTTY;
5109 
5110 	/*
5111 	 *	Unknown or private ioctl.
5112 	 */
5113 	default:
5114 		if (cmd == SIOCWANDEV ||
5115 		    (cmd >= SIOCDEVPRIVATE &&
5116 		     cmd <= SIOCDEVPRIVATE + 15)) {
5117 			dev_load(net, ifr.ifr_name);
5118 			rtnl_lock();
5119 			ret = dev_ifsioc(net, &ifr, cmd);
5120 			rtnl_unlock();
5121 			if (!ret && copy_to_user(arg, &ifr,
5122 						 sizeof(struct ifreq)))
5123 				ret = -EFAULT;
5124 			return ret;
5125 		}
5126 		/* Take care of Wireless Extensions */
5127 		if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
5128 			return wext_handle_ioctl(net, &ifr, cmd, arg);
5129 		return -ENOTTY;
5130 	}
5131 }
5132 
5133 
5134 /**
5135  *	dev_new_index	-	allocate an ifindex
5136  *	@net: the applicable net namespace
5137  *
5138  *	Returns a suitable unique value for a new device interface
5139  *	number.  The caller must hold the rtnl semaphore or the
5140  *	dev_base_lock to be sure it remains unique.
5141  */
5142 static int dev_new_index(struct net *net)
5143 {
5144 	static int ifindex;
5145 	for (;;) {
5146 		if (++ifindex <= 0)
5147 			ifindex = 1;
5148 		if (!__dev_get_by_index(net, ifindex))
5149 			return ifindex;
5150 	}
5151 }
5152 
5153 /* Delayed registration/unregisteration */
5154 static LIST_HEAD(net_todo_list);
5155 
5156 static void net_set_todo(struct net_device *dev)
5157 {
5158 	list_add_tail(&dev->todo_list, &net_todo_list);
5159 }
5160 
5161 static void rollback_registered_many(struct list_head *head)
5162 {
5163 	struct net_device *dev, *tmp;
5164 
5165 	BUG_ON(dev_boot_phase);
5166 	ASSERT_RTNL();
5167 
5168 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
5169 		/* Some devices call without registering
5170 		 * for initialization unwind. Remove those
5171 		 * devices and proceed with the remaining.
5172 		 */
5173 		if (dev->reg_state == NETREG_UNINITIALIZED) {
5174 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
5175 				 dev->name, dev);
5176 
5177 			WARN_ON(1);
5178 			list_del(&dev->unreg_list);
5179 			continue;
5180 		}
5181 		dev->dismantle = true;
5182 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
5183 	}
5184 
5185 	/* If device is running, close it first. */
5186 	dev_close_many(head);
5187 
5188 	list_for_each_entry(dev, head, unreg_list) {
5189 		/* And unlink it from device chain. */
5190 		unlist_netdevice(dev);
5191 
5192 		dev->reg_state = NETREG_UNREGISTERING;
5193 	}
5194 
5195 	synchronize_net();
5196 
5197 	list_for_each_entry(dev, head, unreg_list) {
5198 		/* Shutdown queueing discipline. */
5199 		dev_shutdown(dev);
5200 
5201 
5202 		/* Notify protocols, that we are about to destroy
5203 		   this device. They should clean all the things.
5204 		*/
5205 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5206 
5207 		if (!dev->rtnl_link_ops ||
5208 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5209 			rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
5210 
5211 		/*
5212 		 *	Flush the unicast and multicast chains
5213 		 */
5214 		dev_uc_flush(dev);
5215 		dev_mc_flush(dev);
5216 
5217 		if (dev->netdev_ops->ndo_uninit)
5218 			dev->netdev_ops->ndo_uninit(dev);
5219 
5220 		/* Notifier chain MUST detach us from master device. */
5221 		WARN_ON(dev->master);
5222 
5223 		/* Remove entries from kobject tree */
5224 		netdev_unregister_kobject(dev);
5225 	}
5226 
5227 	/* Process any work delayed until the end of the batch */
5228 	dev = list_first_entry(head, struct net_device, unreg_list);
5229 	call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
5230 
5231 	synchronize_net();
5232 
5233 	list_for_each_entry(dev, head, unreg_list)
5234 		dev_put(dev);
5235 }
5236 
5237 static void rollback_registered(struct net_device *dev)
5238 {
5239 	LIST_HEAD(single);
5240 
5241 	list_add(&dev->unreg_list, &single);
5242 	rollback_registered_many(&single);
5243 	list_del(&single);
5244 }
5245 
5246 static netdev_features_t netdev_fix_features(struct net_device *dev,
5247 	netdev_features_t features)
5248 {
5249 	/* Fix illegal checksum combinations */
5250 	if ((features & NETIF_F_HW_CSUM) &&
5251 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5252 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
5253 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5254 	}
5255 
5256 	/* Fix illegal SG+CSUM combinations. */
5257 	if ((features & NETIF_F_SG) &&
5258 	    !(features & NETIF_F_ALL_CSUM)) {
5259 		netdev_dbg(dev,
5260 			"Dropping NETIF_F_SG since no checksum feature.\n");
5261 		features &= ~NETIF_F_SG;
5262 	}
5263 
5264 	/* TSO requires that SG is present as well. */
5265 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
5266 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
5267 		features &= ~NETIF_F_ALL_TSO;
5268 	}
5269 
5270 	/* TSO ECN requires that TSO is present as well. */
5271 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
5272 		features &= ~NETIF_F_TSO_ECN;
5273 
5274 	/* Software GSO depends on SG. */
5275 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
5276 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
5277 		features &= ~NETIF_F_GSO;
5278 	}
5279 
5280 	/* UFO needs SG and checksumming */
5281 	if (features & NETIF_F_UFO) {
5282 		/* maybe split UFO into V4 and V6? */
5283 		if (!((features & NETIF_F_GEN_CSUM) ||
5284 		    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
5285 			    == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5286 			netdev_dbg(dev,
5287 				"Dropping NETIF_F_UFO since no checksum offload features.\n");
5288 			features &= ~NETIF_F_UFO;
5289 		}
5290 
5291 		if (!(features & NETIF_F_SG)) {
5292 			netdev_dbg(dev,
5293 				"Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
5294 			features &= ~NETIF_F_UFO;
5295 		}
5296 	}
5297 
5298 	return features;
5299 }
5300 
5301 int __netdev_update_features(struct net_device *dev)
5302 {
5303 	netdev_features_t features;
5304 	int err = 0;
5305 
5306 	ASSERT_RTNL();
5307 
5308 	features = netdev_get_wanted_features(dev);
5309 
5310 	if (dev->netdev_ops->ndo_fix_features)
5311 		features = dev->netdev_ops->ndo_fix_features(dev, features);
5312 
5313 	/* driver might be less strict about feature dependencies */
5314 	features = netdev_fix_features(dev, features);
5315 
5316 	if (dev->features == features)
5317 		return 0;
5318 
5319 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
5320 		&dev->features, &features);
5321 
5322 	if (dev->netdev_ops->ndo_set_features)
5323 		err = dev->netdev_ops->ndo_set_features(dev, features);
5324 
5325 	if (unlikely(err < 0)) {
5326 		netdev_err(dev,
5327 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
5328 			err, &features, &dev->features);
5329 		return -1;
5330 	}
5331 
5332 	if (!err)
5333 		dev->features = features;
5334 
5335 	return 1;
5336 }
5337 
5338 /**
5339  *	netdev_update_features - recalculate device features
5340  *	@dev: the device to check
5341  *
5342  *	Recalculate dev->features set and send notifications if it
5343  *	has changed. Should be called after driver or hardware dependent
5344  *	conditions might have changed that influence the features.
5345  */
5346 void netdev_update_features(struct net_device *dev)
5347 {
5348 	if (__netdev_update_features(dev))
5349 		netdev_features_change(dev);
5350 }
5351 EXPORT_SYMBOL(netdev_update_features);
5352 
5353 /**
5354  *	netdev_change_features - recalculate device features
5355  *	@dev: the device to check
5356  *
5357  *	Recalculate dev->features set and send notifications even
5358  *	if they have not changed. Should be called instead of
5359  *	netdev_update_features() if also dev->vlan_features might
5360  *	have changed to allow the changes to be propagated to stacked
5361  *	VLAN devices.
5362  */
5363 void netdev_change_features(struct net_device *dev)
5364 {
5365 	__netdev_update_features(dev);
5366 	netdev_features_change(dev);
5367 }
5368 EXPORT_SYMBOL(netdev_change_features);
5369 
5370 /**
5371  *	netif_stacked_transfer_operstate -	transfer operstate
5372  *	@rootdev: the root or lower level device to transfer state from
5373  *	@dev: the device to transfer operstate to
5374  *
5375  *	Transfer operational state from root to device. This is normally
5376  *	called when a stacking relationship exists between the root
5377  *	device and the device(a leaf device).
5378  */
5379 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5380 					struct net_device *dev)
5381 {
5382 	if (rootdev->operstate == IF_OPER_DORMANT)
5383 		netif_dormant_on(dev);
5384 	else
5385 		netif_dormant_off(dev);
5386 
5387 	if (netif_carrier_ok(rootdev)) {
5388 		if (!netif_carrier_ok(dev))
5389 			netif_carrier_on(dev);
5390 	} else {
5391 		if (netif_carrier_ok(dev))
5392 			netif_carrier_off(dev);
5393 	}
5394 }
5395 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5396 
5397 #ifdef CONFIG_RPS
5398 static int netif_alloc_rx_queues(struct net_device *dev)
5399 {
5400 	unsigned int i, count = dev->num_rx_queues;
5401 	struct netdev_rx_queue *rx;
5402 
5403 	BUG_ON(count < 1);
5404 
5405 	rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5406 	if (!rx) {
5407 		pr_err("netdev: Unable to allocate %u rx queues\n", count);
5408 		return -ENOMEM;
5409 	}
5410 	dev->_rx = rx;
5411 
5412 	for (i = 0; i < count; i++)
5413 		rx[i].dev = dev;
5414 	return 0;
5415 }
5416 #endif
5417 
5418 static void netdev_init_one_queue(struct net_device *dev,
5419 				  struct netdev_queue *queue, void *_unused)
5420 {
5421 	/* Initialize queue lock */
5422 	spin_lock_init(&queue->_xmit_lock);
5423 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
5424 	queue->xmit_lock_owner = -1;
5425 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
5426 	queue->dev = dev;
5427 #ifdef CONFIG_BQL
5428 	dql_init(&queue->dql, HZ);
5429 #endif
5430 }
5431 
5432 static int netif_alloc_netdev_queues(struct net_device *dev)
5433 {
5434 	unsigned int count = dev->num_tx_queues;
5435 	struct netdev_queue *tx;
5436 
5437 	BUG_ON(count < 1);
5438 
5439 	tx = kcalloc(count, sizeof(struct netdev_queue), GFP_KERNEL);
5440 	if (!tx) {
5441 		pr_err("netdev: Unable to allocate %u tx queues\n", count);
5442 		return -ENOMEM;
5443 	}
5444 	dev->_tx = tx;
5445 
5446 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5447 	spin_lock_init(&dev->tx_global_lock);
5448 
5449 	return 0;
5450 }
5451 
5452 /**
5453  *	register_netdevice	- register a network device
5454  *	@dev: device to register
5455  *
5456  *	Take a completed network device structure and add it to the kernel
5457  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5458  *	chain. 0 is returned on success. A negative errno code is returned
5459  *	on a failure to set up the device, or if the name is a duplicate.
5460  *
5461  *	Callers must hold the rtnl semaphore. You may want
5462  *	register_netdev() instead of this.
5463  *
5464  *	BUGS:
5465  *	The locking appears insufficient to guarantee two parallel registers
5466  *	will not get the same name.
5467  */
5468 
5469 int register_netdevice(struct net_device *dev)
5470 {
5471 	int ret;
5472 	struct net *net = dev_net(dev);
5473 
5474 	BUG_ON(dev_boot_phase);
5475 	ASSERT_RTNL();
5476 
5477 	might_sleep();
5478 
5479 	/* When net_device's are persistent, this will be fatal. */
5480 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
5481 	BUG_ON(!net);
5482 
5483 	spin_lock_init(&dev->addr_list_lock);
5484 	netdev_set_addr_lockdep_class(dev);
5485 
5486 	dev->iflink = -1;
5487 
5488 	ret = dev_get_valid_name(dev, dev->name);
5489 	if (ret < 0)
5490 		goto out;
5491 
5492 	/* Init, if this function is available */
5493 	if (dev->netdev_ops->ndo_init) {
5494 		ret = dev->netdev_ops->ndo_init(dev);
5495 		if (ret) {
5496 			if (ret > 0)
5497 				ret = -EIO;
5498 			goto out;
5499 		}
5500 	}
5501 
5502 	dev->ifindex = dev_new_index(net);
5503 	if (dev->iflink == -1)
5504 		dev->iflink = dev->ifindex;
5505 
5506 	/* Transfer changeable features to wanted_features and enable
5507 	 * software offloads (GSO and GRO).
5508 	 */
5509 	dev->hw_features |= NETIF_F_SOFT_FEATURES;
5510 	dev->features |= NETIF_F_SOFT_FEATURES;
5511 	dev->wanted_features = dev->features & dev->hw_features;
5512 
5513 	/* Turn on no cache copy if HW is doing checksum */
5514 	if (!(dev->flags & IFF_LOOPBACK)) {
5515 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
5516 		if (dev->features & NETIF_F_ALL_CSUM) {
5517 			dev->wanted_features |= NETIF_F_NOCACHE_COPY;
5518 			dev->features |= NETIF_F_NOCACHE_COPY;
5519 		}
5520 	}
5521 
5522 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
5523 	 */
5524 	dev->vlan_features |= NETIF_F_HIGHDMA;
5525 
5526 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5527 	ret = notifier_to_errno(ret);
5528 	if (ret)
5529 		goto err_uninit;
5530 
5531 	ret = netdev_register_kobject(dev);
5532 	if (ret)
5533 		goto err_uninit;
5534 	dev->reg_state = NETREG_REGISTERED;
5535 
5536 	__netdev_update_features(dev);
5537 
5538 	/*
5539 	 *	Default initial state at registry is that the
5540 	 *	device is present.
5541 	 */
5542 
5543 	set_bit(__LINK_STATE_PRESENT, &dev->state);
5544 
5545 	dev_init_scheduler(dev);
5546 	dev_hold(dev);
5547 	list_netdevice(dev);
5548 
5549 	/* Notify protocols, that a new device appeared. */
5550 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5551 	ret = notifier_to_errno(ret);
5552 	if (ret) {
5553 		rollback_registered(dev);
5554 		dev->reg_state = NETREG_UNREGISTERED;
5555 	}
5556 	/*
5557 	 *	Prevent userspace races by waiting until the network
5558 	 *	device is fully setup before sending notifications.
5559 	 */
5560 	if (!dev->rtnl_link_ops ||
5561 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5562 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5563 
5564 out:
5565 	return ret;
5566 
5567 err_uninit:
5568 	if (dev->netdev_ops->ndo_uninit)
5569 		dev->netdev_ops->ndo_uninit(dev);
5570 	goto out;
5571 }
5572 EXPORT_SYMBOL(register_netdevice);
5573 
5574 /**
5575  *	init_dummy_netdev	- init a dummy network device for NAPI
5576  *	@dev: device to init
5577  *
5578  *	This takes a network device structure and initialize the minimum
5579  *	amount of fields so it can be used to schedule NAPI polls without
5580  *	registering a full blown interface. This is to be used by drivers
5581  *	that need to tie several hardware interfaces to a single NAPI
5582  *	poll scheduler due to HW limitations.
5583  */
5584 int init_dummy_netdev(struct net_device *dev)
5585 {
5586 	/* Clear everything. Note we don't initialize spinlocks
5587 	 * are they aren't supposed to be taken by any of the
5588 	 * NAPI code and this dummy netdev is supposed to be
5589 	 * only ever used for NAPI polls
5590 	 */
5591 	memset(dev, 0, sizeof(struct net_device));
5592 
5593 	/* make sure we BUG if trying to hit standard
5594 	 * register/unregister code path
5595 	 */
5596 	dev->reg_state = NETREG_DUMMY;
5597 
5598 	/* NAPI wants this */
5599 	INIT_LIST_HEAD(&dev->napi_list);
5600 
5601 	/* a dummy interface is started by default */
5602 	set_bit(__LINK_STATE_PRESENT, &dev->state);
5603 	set_bit(__LINK_STATE_START, &dev->state);
5604 
5605 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
5606 	 * because users of this 'device' dont need to change
5607 	 * its refcount.
5608 	 */
5609 
5610 	return 0;
5611 }
5612 EXPORT_SYMBOL_GPL(init_dummy_netdev);
5613 
5614 
5615 /**
5616  *	register_netdev	- register a network device
5617  *	@dev: device to register
5618  *
5619  *	Take a completed network device structure and add it to the kernel
5620  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5621  *	chain. 0 is returned on success. A negative errno code is returned
5622  *	on a failure to set up the device, or if the name is a duplicate.
5623  *
5624  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
5625  *	and expands the device name if you passed a format string to
5626  *	alloc_netdev.
5627  */
5628 int register_netdev(struct net_device *dev)
5629 {
5630 	int err;
5631 
5632 	rtnl_lock();
5633 	err = register_netdevice(dev);
5634 	rtnl_unlock();
5635 	return err;
5636 }
5637 EXPORT_SYMBOL(register_netdev);
5638 
5639 int netdev_refcnt_read(const struct net_device *dev)
5640 {
5641 	int i, refcnt = 0;
5642 
5643 	for_each_possible_cpu(i)
5644 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
5645 	return refcnt;
5646 }
5647 EXPORT_SYMBOL(netdev_refcnt_read);
5648 
5649 /*
5650  * netdev_wait_allrefs - wait until all references are gone.
5651  *
5652  * This is called when unregistering network devices.
5653  *
5654  * Any protocol or device that holds a reference should register
5655  * for netdevice notification, and cleanup and put back the
5656  * reference if they receive an UNREGISTER event.
5657  * We can get stuck here if buggy protocols don't correctly
5658  * call dev_put.
5659  */
5660 static void netdev_wait_allrefs(struct net_device *dev)
5661 {
5662 	unsigned long rebroadcast_time, warning_time;
5663 	int refcnt;
5664 
5665 	linkwatch_forget_dev(dev);
5666 
5667 	rebroadcast_time = warning_time = jiffies;
5668 	refcnt = netdev_refcnt_read(dev);
5669 
5670 	while (refcnt != 0) {
5671 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5672 			rtnl_lock();
5673 
5674 			/* Rebroadcast unregister notification */
5675 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5676 			/* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users
5677 			 * should have already handle it the first time */
5678 
5679 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5680 				     &dev->state)) {
5681 				/* We must not have linkwatch events
5682 				 * pending on unregister. If this
5683 				 * happens, we simply run the queue
5684 				 * unscheduled, resulting in a noop
5685 				 * for this device.
5686 				 */
5687 				linkwatch_run_queue();
5688 			}
5689 
5690 			__rtnl_unlock();
5691 
5692 			rebroadcast_time = jiffies;
5693 		}
5694 
5695 		msleep(250);
5696 
5697 		refcnt = netdev_refcnt_read(dev);
5698 
5699 		if (time_after(jiffies, warning_time + 10 * HZ)) {
5700 			pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
5701 				 dev->name, refcnt);
5702 			warning_time = jiffies;
5703 		}
5704 	}
5705 }
5706 
5707 /* The sequence is:
5708  *
5709  *	rtnl_lock();
5710  *	...
5711  *	register_netdevice(x1);
5712  *	register_netdevice(x2);
5713  *	...
5714  *	unregister_netdevice(y1);
5715  *	unregister_netdevice(y2);
5716  *      ...
5717  *	rtnl_unlock();
5718  *	free_netdev(y1);
5719  *	free_netdev(y2);
5720  *
5721  * We are invoked by rtnl_unlock().
5722  * This allows us to deal with problems:
5723  * 1) We can delete sysfs objects which invoke hotplug
5724  *    without deadlocking with linkwatch via keventd.
5725  * 2) Since we run with the RTNL semaphore not held, we can sleep
5726  *    safely in order to wait for the netdev refcnt to drop to zero.
5727  *
5728  * We must not return until all unregister events added during
5729  * the interval the lock was held have been completed.
5730  */
5731 void netdev_run_todo(void)
5732 {
5733 	struct list_head list;
5734 
5735 	/* Snapshot list, allow later requests */
5736 	list_replace_init(&net_todo_list, &list);
5737 
5738 	__rtnl_unlock();
5739 
5740 	/* Wait for rcu callbacks to finish before attempting to drain
5741 	 * the device list.  This usually avoids a 250ms wait.
5742 	 */
5743 	if (!list_empty(&list))
5744 		rcu_barrier();
5745 
5746 	while (!list_empty(&list)) {
5747 		struct net_device *dev
5748 			= list_first_entry(&list, struct net_device, todo_list);
5749 		list_del(&dev->todo_list);
5750 
5751 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5752 			pr_err("network todo '%s' but state %d\n",
5753 			       dev->name, dev->reg_state);
5754 			dump_stack();
5755 			continue;
5756 		}
5757 
5758 		dev->reg_state = NETREG_UNREGISTERED;
5759 
5760 		on_each_cpu(flush_backlog, dev, 1);
5761 
5762 		netdev_wait_allrefs(dev);
5763 
5764 		/* paranoia */
5765 		BUG_ON(netdev_refcnt_read(dev));
5766 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
5767 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
5768 		WARN_ON(dev->dn_ptr);
5769 
5770 		if (dev->destructor)
5771 			dev->destructor(dev);
5772 
5773 		/* Free network device */
5774 		kobject_put(&dev->dev.kobj);
5775 	}
5776 }
5777 
5778 /* Convert net_device_stats to rtnl_link_stats64.  They have the same
5779  * fields in the same order, with only the type differing.
5780  */
5781 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
5782 			     const struct net_device_stats *netdev_stats)
5783 {
5784 #if BITS_PER_LONG == 64
5785 	BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
5786 	memcpy(stats64, netdev_stats, sizeof(*stats64));
5787 #else
5788 	size_t i, n = sizeof(*stats64) / sizeof(u64);
5789 	const unsigned long *src = (const unsigned long *)netdev_stats;
5790 	u64 *dst = (u64 *)stats64;
5791 
5792 	BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
5793 		     sizeof(*stats64) / sizeof(u64));
5794 	for (i = 0; i < n; i++)
5795 		dst[i] = src[i];
5796 #endif
5797 }
5798 EXPORT_SYMBOL(netdev_stats_to_stats64);
5799 
5800 /**
5801  *	dev_get_stats	- get network device statistics
5802  *	@dev: device to get statistics from
5803  *	@storage: place to store stats
5804  *
5805  *	Get network statistics from device. Return @storage.
5806  *	The device driver may provide its own method by setting
5807  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
5808  *	otherwise the internal statistics structure is used.
5809  */
5810 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
5811 					struct rtnl_link_stats64 *storage)
5812 {
5813 	const struct net_device_ops *ops = dev->netdev_ops;
5814 
5815 	if (ops->ndo_get_stats64) {
5816 		memset(storage, 0, sizeof(*storage));
5817 		ops->ndo_get_stats64(dev, storage);
5818 	} else if (ops->ndo_get_stats) {
5819 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
5820 	} else {
5821 		netdev_stats_to_stats64(storage, &dev->stats);
5822 	}
5823 	storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
5824 	return storage;
5825 }
5826 EXPORT_SYMBOL(dev_get_stats);
5827 
5828 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
5829 {
5830 	struct netdev_queue *queue = dev_ingress_queue(dev);
5831 
5832 #ifdef CONFIG_NET_CLS_ACT
5833 	if (queue)
5834 		return queue;
5835 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
5836 	if (!queue)
5837 		return NULL;
5838 	netdev_init_one_queue(dev, queue, NULL);
5839 	queue->qdisc = &noop_qdisc;
5840 	queue->qdisc_sleeping = &noop_qdisc;
5841 	rcu_assign_pointer(dev->ingress_queue, queue);
5842 #endif
5843 	return queue;
5844 }
5845 
5846 /**
5847  *	alloc_netdev_mqs - allocate network device
5848  *	@sizeof_priv:	size of private data to allocate space for
5849  *	@name:		device name format string
5850  *	@setup:		callback to initialize device
5851  *	@txqs:		the number of TX subqueues to allocate
5852  *	@rxqs:		the number of RX subqueues to allocate
5853  *
5854  *	Allocates a struct net_device with private data area for driver use
5855  *	and performs basic initialization.  Also allocates subquue structs
5856  *	for each queue on the device.
5857  */
5858 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
5859 		void (*setup)(struct net_device *),
5860 		unsigned int txqs, unsigned int rxqs)
5861 {
5862 	struct net_device *dev;
5863 	size_t alloc_size;
5864 	struct net_device *p;
5865 
5866 	BUG_ON(strlen(name) >= sizeof(dev->name));
5867 
5868 	if (txqs < 1) {
5869 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
5870 		return NULL;
5871 	}
5872 
5873 #ifdef CONFIG_RPS
5874 	if (rxqs < 1) {
5875 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
5876 		return NULL;
5877 	}
5878 #endif
5879 
5880 	alloc_size = sizeof(struct net_device);
5881 	if (sizeof_priv) {
5882 		/* ensure 32-byte alignment of private area */
5883 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
5884 		alloc_size += sizeof_priv;
5885 	}
5886 	/* ensure 32-byte alignment of whole construct */
5887 	alloc_size += NETDEV_ALIGN - 1;
5888 
5889 	p = kzalloc(alloc_size, GFP_KERNEL);
5890 	if (!p) {
5891 		pr_err("alloc_netdev: Unable to allocate device\n");
5892 		return NULL;
5893 	}
5894 
5895 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
5896 	dev->padded = (char *)dev - (char *)p;
5897 
5898 	dev->pcpu_refcnt = alloc_percpu(int);
5899 	if (!dev->pcpu_refcnt)
5900 		goto free_p;
5901 
5902 	if (dev_addr_init(dev))
5903 		goto free_pcpu;
5904 
5905 	dev_mc_init(dev);
5906 	dev_uc_init(dev);
5907 
5908 	dev_net_set(dev, &init_net);
5909 
5910 	dev->gso_max_size = GSO_MAX_SIZE;
5911 
5912 	INIT_LIST_HEAD(&dev->napi_list);
5913 	INIT_LIST_HEAD(&dev->unreg_list);
5914 	INIT_LIST_HEAD(&dev->link_watch_list);
5915 	dev->priv_flags = IFF_XMIT_DST_RELEASE;
5916 	setup(dev);
5917 
5918 	dev->num_tx_queues = txqs;
5919 	dev->real_num_tx_queues = txqs;
5920 	if (netif_alloc_netdev_queues(dev))
5921 		goto free_all;
5922 
5923 #ifdef CONFIG_RPS
5924 	dev->num_rx_queues = rxqs;
5925 	dev->real_num_rx_queues = rxqs;
5926 	if (netif_alloc_rx_queues(dev))
5927 		goto free_all;
5928 #endif
5929 
5930 	strcpy(dev->name, name);
5931 	dev->group = INIT_NETDEV_GROUP;
5932 	return dev;
5933 
5934 free_all:
5935 	free_netdev(dev);
5936 	return NULL;
5937 
5938 free_pcpu:
5939 	free_percpu(dev->pcpu_refcnt);
5940 	kfree(dev->_tx);
5941 #ifdef CONFIG_RPS
5942 	kfree(dev->_rx);
5943 #endif
5944 
5945 free_p:
5946 	kfree(p);
5947 	return NULL;
5948 }
5949 EXPORT_SYMBOL(alloc_netdev_mqs);
5950 
5951 /**
5952  *	free_netdev - free network device
5953  *	@dev: device
5954  *
5955  *	This function does the last stage of destroying an allocated device
5956  * 	interface. The reference to the device object is released.
5957  *	If this is the last reference then it will be freed.
5958  */
5959 void free_netdev(struct net_device *dev)
5960 {
5961 	struct napi_struct *p, *n;
5962 
5963 	release_net(dev_net(dev));
5964 
5965 	kfree(dev->_tx);
5966 #ifdef CONFIG_RPS
5967 	kfree(dev->_rx);
5968 #endif
5969 
5970 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
5971 
5972 	/* Flush device addresses */
5973 	dev_addr_flush(dev);
5974 
5975 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
5976 		netif_napi_del(p);
5977 
5978 	free_percpu(dev->pcpu_refcnt);
5979 	dev->pcpu_refcnt = NULL;
5980 
5981 	/*  Compatibility with error handling in drivers */
5982 	if (dev->reg_state == NETREG_UNINITIALIZED) {
5983 		kfree((char *)dev - dev->padded);
5984 		return;
5985 	}
5986 
5987 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
5988 	dev->reg_state = NETREG_RELEASED;
5989 
5990 	/* will free via device release */
5991 	put_device(&dev->dev);
5992 }
5993 EXPORT_SYMBOL(free_netdev);
5994 
5995 /**
5996  *	synchronize_net -  Synchronize with packet receive processing
5997  *
5998  *	Wait for packets currently being received to be done.
5999  *	Does not block later packets from starting.
6000  */
6001 void synchronize_net(void)
6002 {
6003 	might_sleep();
6004 	if (rtnl_is_locked())
6005 		synchronize_rcu_expedited();
6006 	else
6007 		synchronize_rcu();
6008 }
6009 EXPORT_SYMBOL(synchronize_net);
6010 
6011 /**
6012  *	unregister_netdevice_queue - remove device from the kernel
6013  *	@dev: device
6014  *	@head: list
6015  *
6016  *	This function shuts down a device interface and removes it
6017  *	from the kernel tables.
6018  *	If head not NULL, device is queued to be unregistered later.
6019  *
6020  *	Callers must hold the rtnl semaphore.  You may want
6021  *	unregister_netdev() instead of this.
6022  */
6023 
6024 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
6025 {
6026 	ASSERT_RTNL();
6027 
6028 	if (head) {
6029 		list_move_tail(&dev->unreg_list, head);
6030 	} else {
6031 		rollback_registered(dev);
6032 		/* Finish processing unregister after unlock */
6033 		net_set_todo(dev);
6034 	}
6035 }
6036 EXPORT_SYMBOL(unregister_netdevice_queue);
6037 
6038 /**
6039  *	unregister_netdevice_many - unregister many devices
6040  *	@head: list of devices
6041  */
6042 void unregister_netdevice_many(struct list_head *head)
6043 {
6044 	struct net_device *dev;
6045 
6046 	if (!list_empty(head)) {
6047 		rollback_registered_many(head);
6048 		list_for_each_entry(dev, head, unreg_list)
6049 			net_set_todo(dev);
6050 	}
6051 }
6052 EXPORT_SYMBOL(unregister_netdevice_many);
6053 
6054 /**
6055  *	unregister_netdev - remove device from the kernel
6056  *	@dev: device
6057  *
6058  *	This function shuts down a device interface and removes it
6059  *	from the kernel tables.
6060  *
6061  *	This is just a wrapper for unregister_netdevice that takes
6062  *	the rtnl semaphore.  In general you want to use this and not
6063  *	unregister_netdevice.
6064  */
6065 void unregister_netdev(struct net_device *dev)
6066 {
6067 	rtnl_lock();
6068 	unregister_netdevice(dev);
6069 	rtnl_unlock();
6070 }
6071 EXPORT_SYMBOL(unregister_netdev);
6072 
6073 /**
6074  *	dev_change_net_namespace - move device to different nethost namespace
6075  *	@dev: device
6076  *	@net: network namespace
6077  *	@pat: If not NULL name pattern to try if the current device name
6078  *	      is already taken in the destination network namespace.
6079  *
6080  *	This function shuts down a device interface and moves it
6081  *	to a new network namespace. On success 0 is returned, on
6082  *	a failure a netagive errno code is returned.
6083  *
6084  *	Callers must hold the rtnl semaphore.
6085  */
6086 
6087 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
6088 {
6089 	int err;
6090 
6091 	ASSERT_RTNL();
6092 
6093 	/* Don't allow namespace local devices to be moved. */
6094 	err = -EINVAL;
6095 	if (dev->features & NETIF_F_NETNS_LOCAL)
6096 		goto out;
6097 
6098 	/* Ensure the device has been registrered */
6099 	err = -EINVAL;
6100 	if (dev->reg_state != NETREG_REGISTERED)
6101 		goto out;
6102 
6103 	/* Get out if there is nothing todo */
6104 	err = 0;
6105 	if (net_eq(dev_net(dev), net))
6106 		goto out;
6107 
6108 	/* Pick the destination device name, and ensure
6109 	 * we can use it in the destination network namespace.
6110 	 */
6111 	err = -EEXIST;
6112 	if (__dev_get_by_name(net, dev->name)) {
6113 		/* We get here if we can't use the current device name */
6114 		if (!pat)
6115 			goto out;
6116 		if (dev_get_valid_name(dev, pat) < 0)
6117 			goto out;
6118 	}
6119 
6120 	/*
6121 	 * And now a mini version of register_netdevice unregister_netdevice.
6122 	 */
6123 
6124 	/* If device is running close it first. */
6125 	dev_close(dev);
6126 
6127 	/* And unlink it from device chain */
6128 	err = -ENODEV;
6129 	unlist_netdevice(dev);
6130 
6131 	synchronize_net();
6132 
6133 	/* Shutdown queueing discipline. */
6134 	dev_shutdown(dev);
6135 
6136 	/* Notify protocols, that we are about to destroy
6137 	   this device. They should clean all the things.
6138 
6139 	   Note that dev->reg_state stays at NETREG_REGISTERED.
6140 	   This is wanted because this way 8021q and macvlan know
6141 	   the device is just moving and can keep their slaves up.
6142 	*/
6143 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6144 	call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
6145 	rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
6146 
6147 	/*
6148 	 *	Flush the unicast and multicast chains
6149 	 */
6150 	dev_uc_flush(dev);
6151 	dev_mc_flush(dev);
6152 
6153 	/* Actually switch the network namespace */
6154 	dev_net_set(dev, net);
6155 
6156 	/* If there is an ifindex conflict assign a new one */
6157 	if (__dev_get_by_index(net, dev->ifindex)) {
6158 		int iflink = (dev->iflink == dev->ifindex);
6159 		dev->ifindex = dev_new_index(net);
6160 		if (iflink)
6161 			dev->iflink = dev->ifindex;
6162 	}
6163 
6164 	/* Fixup kobjects */
6165 	err = device_rename(&dev->dev, dev->name);
6166 	WARN_ON(err);
6167 
6168 	/* Add the device back in the hashes */
6169 	list_netdevice(dev);
6170 
6171 	/* Notify protocols, that a new device appeared. */
6172 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
6173 
6174 	/*
6175 	 *	Prevent userspace races by waiting until the network
6176 	 *	device is fully setup before sending notifications.
6177 	 */
6178 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
6179 
6180 	synchronize_net();
6181 	err = 0;
6182 out:
6183 	return err;
6184 }
6185 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
6186 
6187 static int dev_cpu_callback(struct notifier_block *nfb,
6188 			    unsigned long action,
6189 			    void *ocpu)
6190 {
6191 	struct sk_buff **list_skb;
6192 	struct sk_buff *skb;
6193 	unsigned int cpu, oldcpu = (unsigned long)ocpu;
6194 	struct softnet_data *sd, *oldsd;
6195 
6196 	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
6197 		return NOTIFY_OK;
6198 
6199 	local_irq_disable();
6200 	cpu = smp_processor_id();
6201 	sd = &per_cpu(softnet_data, cpu);
6202 	oldsd = &per_cpu(softnet_data, oldcpu);
6203 
6204 	/* Find end of our completion_queue. */
6205 	list_skb = &sd->completion_queue;
6206 	while (*list_skb)
6207 		list_skb = &(*list_skb)->next;
6208 	/* Append completion queue from offline CPU. */
6209 	*list_skb = oldsd->completion_queue;
6210 	oldsd->completion_queue = NULL;
6211 
6212 	/* Append output queue from offline CPU. */
6213 	if (oldsd->output_queue) {
6214 		*sd->output_queue_tailp = oldsd->output_queue;
6215 		sd->output_queue_tailp = oldsd->output_queue_tailp;
6216 		oldsd->output_queue = NULL;
6217 		oldsd->output_queue_tailp = &oldsd->output_queue;
6218 	}
6219 	/* Append NAPI poll list from offline CPU. */
6220 	if (!list_empty(&oldsd->poll_list)) {
6221 		list_splice_init(&oldsd->poll_list, &sd->poll_list);
6222 		raise_softirq_irqoff(NET_RX_SOFTIRQ);
6223 	}
6224 
6225 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
6226 	local_irq_enable();
6227 
6228 	/* Process offline CPU's input_pkt_queue */
6229 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
6230 		netif_rx(skb);
6231 		input_queue_head_incr(oldsd);
6232 	}
6233 	while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
6234 		netif_rx(skb);
6235 		input_queue_head_incr(oldsd);
6236 	}
6237 
6238 	return NOTIFY_OK;
6239 }
6240 
6241 
6242 /**
6243  *	netdev_increment_features - increment feature set by one
6244  *	@all: current feature set
6245  *	@one: new feature set
6246  *	@mask: mask feature set
6247  *
6248  *	Computes a new feature set after adding a device with feature set
6249  *	@one to the master device with current feature set @all.  Will not
6250  *	enable anything that is off in @mask. Returns the new feature set.
6251  */
6252 netdev_features_t netdev_increment_features(netdev_features_t all,
6253 	netdev_features_t one, netdev_features_t mask)
6254 {
6255 	if (mask & NETIF_F_GEN_CSUM)
6256 		mask |= NETIF_F_ALL_CSUM;
6257 	mask |= NETIF_F_VLAN_CHALLENGED;
6258 
6259 	all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
6260 	all &= one | ~NETIF_F_ALL_FOR_ALL;
6261 
6262 	/* If one device supports hw checksumming, set for all. */
6263 	if (all & NETIF_F_GEN_CSUM)
6264 		all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
6265 
6266 	return all;
6267 }
6268 EXPORT_SYMBOL(netdev_increment_features);
6269 
6270 static struct hlist_head *netdev_create_hash(void)
6271 {
6272 	int i;
6273 	struct hlist_head *hash;
6274 
6275 	hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
6276 	if (hash != NULL)
6277 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
6278 			INIT_HLIST_HEAD(&hash[i]);
6279 
6280 	return hash;
6281 }
6282 
6283 /* Initialize per network namespace state */
6284 static int __net_init netdev_init(struct net *net)
6285 {
6286 	if (net != &init_net)
6287 		INIT_LIST_HEAD(&net->dev_base_head);
6288 
6289 	net->dev_name_head = netdev_create_hash();
6290 	if (net->dev_name_head == NULL)
6291 		goto err_name;
6292 
6293 	net->dev_index_head = netdev_create_hash();
6294 	if (net->dev_index_head == NULL)
6295 		goto err_idx;
6296 
6297 	return 0;
6298 
6299 err_idx:
6300 	kfree(net->dev_name_head);
6301 err_name:
6302 	return -ENOMEM;
6303 }
6304 
6305 /**
6306  *	netdev_drivername - network driver for the device
6307  *	@dev: network device
6308  *
6309  *	Determine network driver for device.
6310  */
6311 const char *netdev_drivername(const struct net_device *dev)
6312 {
6313 	const struct device_driver *driver;
6314 	const struct device *parent;
6315 	const char *empty = "";
6316 
6317 	parent = dev->dev.parent;
6318 	if (!parent)
6319 		return empty;
6320 
6321 	driver = parent->driver;
6322 	if (driver && driver->name)
6323 		return driver->name;
6324 	return empty;
6325 }
6326 
6327 int __netdev_printk(const char *level, const struct net_device *dev,
6328 			   struct va_format *vaf)
6329 {
6330 	int r;
6331 
6332 	if (dev && dev->dev.parent)
6333 		r = dev_printk(level, dev->dev.parent, "%s: %pV",
6334 			       netdev_name(dev), vaf);
6335 	else if (dev)
6336 		r = printk("%s%s: %pV", level, netdev_name(dev), vaf);
6337 	else
6338 		r = printk("%s(NULL net_device): %pV", level, vaf);
6339 
6340 	return r;
6341 }
6342 EXPORT_SYMBOL(__netdev_printk);
6343 
6344 int netdev_printk(const char *level, const struct net_device *dev,
6345 		  const char *format, ...)
6346 {
6347 	struct va_format vaf;
6348 	va_list args;
6349 	int r;
6350 
6351 	va_start(args, format);
6352 
6353 	vaf.fmt = format;
6354 	vaf.va = &args;
6355 
6356 	r = __netdev_printk(level, dev, &vaf);
6357 	va_end(args);
6358 
6359 	return r;
6360 }
6361 EXPORT_SYMBOL(netdev_printk);
6362 
6363 #define define_netdev_printk_level(func, level)			\
6364 int func(const struct net_device *dev, const char *fmt, ...)	\
6365 {								\
6366 	int r;							\
6367 	struct va_format vaf;					\
6368 	va_list args;						\
6369 								\
6370 	va_start(args, fmt);					\
6371 								\
6372 	vaf.fmt = fmt;						\
6373 	vaf.va = &args;						\
6374 								\
6375 	r = __netdev_printk(level, dev, &vaf);			\
6376 	va_end(args);						\
6377 								\
6378 	return r;						\
6379 }								\
6380 EXPORT_SYMBOL(func);
6381 
6382 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
6383 define_netdev_printk_level(netdev_alert, KERN_ALERT);
6384 define_netdev_printk_level(netdev_crit, KERN_CRIT);
6385 define_netdev_printk_level(netdev_err, KERN_ERR);
6386 define_netdev_printk_level(netdev_warn, KERN_WARNING);
6387 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
6388 define_netdev_printk_level(netdev_info, KERN_INFO);
6389 
6390 static void __net_exit netdev_exit(struct net *net)
6391 {
6392 	kfree(net->dev_name_head);
6393 	kfree(net->dev_index_head);
6394 }
6395 
6396 static struct pernet_operations __net_initdata netdev_net_ops = {
6397 	.init = netdev_init,
6398 	.exit = netdev_exit,
6399 };
6400 
6401 static void __net_exit default_device_exit(struct net *net)
6402 {
6403 	struct net_device *dev, *aux;
6404 	/*
6405 	 * Push all migratable network devices back to the
6406 	 * initial network namespace
6407 	 */
6408 	rtnl_lock();
6409 	for_each_netdev_safe(net, dev, aux) {
6410 		int err;
6411 		char fb_name[IFNAMSIZ];
6412 
6413 		/* Ignore unmoveable devices (i.e. loopback) */
6414 		if (dev->features & NETIF_F_NETNS_LOCAL)
6415 			continue;
6416 
6417 		/* Leave virtual devices for the generic cleanup */
6418 		if (dev->rtnl_link_ops)
6419 			continue;
6420 
6421 		/* Push remaining network devices to init_net */
6422 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
6423 		err = dev_change_net_namespace(dev, &init_net, fb_name);
6424 		if (err) {
6425 			pr_emerg("%s: failed to move %s to init_net: %d\n",
6426 				 __func__, dev->name, err);
6427 			BUG();
6428 		}
6429 	}
6430 	rtnl_unlock();
6431 }
6432 
6433 static void __net_exit default_device_exit_batch(struct list_head *net_list)
6434 {
6435 	/* At exit all network devices most be removed from a network
6436 	 * namespace.  Do this in the reverse order of registration.
6437 	 * Do this across as many network namespaces as possible to
6438 	 * improve batching efficiency.
6439 	 */
6440 	struct net_device *dev;
6441 	struct net *net;
6442 	LIST_HEAD(dev_kill_list);
6443 
6444 	rtnl_lock();
6445 	list_for_each_entry(net, net_list, exit_list) {
6446 		for_each_netdev_reverse(net, dev) {
6447 			if (dev->rtnl_link_ops)
6448 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
6449 			else
6450 				unregister_netdevice_queue(dev, &dev_kill_list);
6451 		}
6452 	}
6453 	unregister_netdevice_many(&dev_kill_list);
6454 	list_del(&dev_kill_list);
6455 	rtnl_unlock();
6456 }
6457 
6458 static struct pernet_operations __net_initdata default_device_ops = {
6459 	.exit = default_device_exit,
6460 	.exit_batch = default_device_exit_batch,
6461 };
6462 
6463 /*
6464  *	Initialize the DEV module. At boot time this walks the device list and
6465  *	unhooks any devices that fail to initialise (normally hardware not
6466  *	present) and leaves us with a valid list of present and active devices.
6467  *
6468  */
6469 
6470 /*
6471  *       This is called single threaded during boot, so no need
6472  *       to take the rtnl semaphore.
6473  */
6474 static int __init net_dev_init(void)
6475 {
6476 	int i, rc = -ENOMEM;
6477 
6478 	BUG_ON(!dev_boot_phase);
6479 
6480 	if (dev_proc_init())
6481 		goto out;
6482 
6483 	if (netdev_kobject_init())
6484 		goto out;
6485 
6486 	INIT_LIST_HEAD(&ptype_all);
6487 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
6488 		INIT_LIST_HEAD(&ptype_base[i]);
6489 
6490 	if (register_pernet_subsys(&netdev_net_ops))
6491 		goto out;
6492 
6493 	/*
6494 	 *	Initialise the packet receive queues.
6495 	 */
6496 
6497 	for_each_possible_cpu(i) {
6498 		struct softnet_data *sd = &per_cpu(softnet_data, i);
6499 
6500 		memset(sd, 0, sizeof(*sd));
6501 		skb_queue_head_init(&sd->input_pkt_queue);
6502 		skb_queue_head_init(&sd->process_queue);
6503 		sd->completion_queue = NULL;
6504 		INIT_LIST_HEAD(&sd->poll_list);
6505 		sd->output_queue = NULL;
6506 		sd->output_queue_tailp = &sd->output_queue;
6507 #ifdef CONFIG_RPS
6508 		sd->csd.func = rps_trigger_softirq;
6509 		sd->csd.info = sd;
6510 		sd->csd.flags = 0;
6511 		sd->cpu = i;
6512 #endif
6513 
6514 		sd->backlog.poll = process_backlog;
6515 		sd->backlog.weight = weight_p;
6516 		sd->backlog.gro_list = NULL;
6517 		sd->backlog.gro_count = 0;
6518 	}
6519 
6520 	dev_boot_phase = 0;
6521 
6522 	/* The loopback device is special if any other network devices
6523 	 * is present in a network namespace the loopback device must
6524 	 * be present. Since we now dynamically allocate and free the
6525 	 * loopback device ensure this invariant is maintained by
6526 	 * keeping the loopback device as the first device on the
6527 	 * list of network devices.  Ensuring the loopback devices
6528 	 * is the first device that appears and the last network device
6529 	 * that disappears.
6530 	 */
6531 	if (register_pernet_device(&loopback_net_ops))
6532 		goto out;
6533 
6534 	if (register_pernet_device(&default_device_ops))
6535 		goto out;
6536 
6537 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
6538 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
6539 
6540 	hotcpu_notifier(dev_cpu_callback, 0);
6541 	dst_init();
6542 	dev_mcast_init();
6543 	rc = 0;
6544 out:
6545 	return rc;
6546 }
6547 
6548 subsys_initcall(net_dev_init);
6549 
6550 static int __init initialize_hashrnd(void)
6551 {
6552 	get_random_bytes(&hashrnd, sizeof(hashrnd));
6553 	return 0;
6554 }
6555 
6556 late_initcall_sync(initialize_hashrnd);
6557 
6558