1 /* 2 * NET3 Protocol independent device support routines. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Derived from the non IP parts of dev.c 1.0.19 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * 14 * Additional Authors: 15 * Florian la Roche <rzsfl@rz.uni-sb.de> 16 * Alan Cox <gw4pts@gw4pts.ampr.org> 17 * David Hinds <dahinds@users.sourceforge.net> 18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 19 * Adam Sulmicki <adam@cfar.umd.edu> 20 * Pekka Riikonen <priikone@poesidon.pspt.fi> 21 * 22 * Changes: 23 * D.J. Barrow : Fixed bug where dev->refcnt gets set 24 * to 2 if register_netdev gets called 25 * before net_dev_init & also removed a 26 * few lines of code in the process. 27 * Alan Cox : device private ioctl copies fields back. 28 * Alan Cox : Transmit queue code does relevant 29 * stunts to keep the queue safe. 30 * Alan Cox : Fixed double lock. 31 * Alan Cox : Fixed promisc NULL pointer trap 32 * ???????? : Support the full private ioctl range 33 * Alan Cox : Moved ioctl permission check into 34 * drivers 35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 36 * Alan Cox : 100 backlog just doesn't cut it when 37 * you start doing multicast video 8) 38 * Alan Cox : Rewrote net_bh and list manager. 39 * Alan Cox : Fix ETH_P_ALL echoback lengths. 40 * Alan Cox : Took out transmit every packet pass 41 * Saved a few bytes in the ioctl handler 42 * Alan Cox : Network driver sets packet type before 43 * calling netif_rx. Saves a function 44 * call a packet. 45 * Alan Cox : Hashed net_bh() 46 * Richard Kooijman: Timestamp fixes. 47 * Alan Cox : Wrong field in SIOCGIFDSTADDR 48 * Alan Cox : Device lock protection. 49 * Alan Cox : Fixed nasty side effect of device close 50 * changes. 51 * Rudi Cilibrasi : Pass the right thing to 52 * set_mac_address() 53 * Dave Miller : 32bit quantity for the device lock to 54 * make it work out on a Sparc. 55 * Bjorn Ekwall : Added KERNELD hack. 56 * Alan Cox : Cleaned up the backlog initialise. 57 * Craig Metz : SIOCGIFCONF fix if space for under 58 * 1 device. 59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 60 * is no device open function. 61 * Andi Kleen : Fix error reporting for SIOCGIFCONF 62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 63 * Cyrus Durgin : Cleaned for KMOD 64 * Adam Sulmicki : Bug Fix : Network Device Unload 65 * A network device unload needs to purge 66 * the backlog queue. 67 * Paul Rusty Russell : SIOCSIFNAME 68 * Pekka Riikonen : Netdev boot-time settings code 69 * Andrew Morton : Make unregister_netdevice wait 70 * indefinitely on dev->refcnt 71 * J Hadi Salim : - Backlog queue sampling 72 * - netif_rx() feedback 73 */ 74 75 #include <asm/uaccess.h> 76 #include <asm/system.h> 77 #include <linux/bitops.h> 78 #include <linux/capability.h> 79 #include <linux/cpu.h> 80 #include <linux/types.h> 81 #include <linux/kernel.h> 82 #include <linux/sched.h> 83 #include <linux/mutex.h> 84 #include <linux/string.h> 85 #include <linux/mm.h> 86 #include <linux/socket.h> 87 #include <linux/sockios.h> 88 #include <linux/errno.h> 89 #include <linux/interrupt.h> 90 #include <linux/if_ether.h> 91 #include <linux/netdevice.h> 92 #include <linux/etherdevice.h> 93 #include <linux/notifier.h> 94 #include <linux/skbuff.h> 95 #include <net/sock.h> 96 #include <linux/rtnetlink.h> 97 #include <linux/proc_fs.h> 98 #include <linux/seq_file.h> 99 #include <linux/stat.h> 100 #include <linux/if_bridge.h> 101 #include <net/dst.h> 102 #include <net/pkt_sched.h> 103 #include <net/checksum.h> 104 #include <linux/highmem.h> 105 #include <linux/init.h> 106 #include <linux/kmod.h> 107 #include <linux/module.h> 108 #include <linux/kallsyms.h> 109 #include <linux/netpoll.h> 110 #include <linux/rcupdate.h> 111 #include <linux/delay.h> 112 #include <linux/wireless.h> 113 #include <net/iw_handler.h> 114 #include <asm/current.h> 115 #include <linux/audit.h> 116 #include <linux/dmaengine.h> 117 #include <linux/err.h> 118 #include <linux/ctype.h> 119 120 /* 121 * The list of packet types we will receive (as opposed to discard) 122 * and the routines to invoke. 123 * 124 * Why 16. Because with 16 the only overlap we get on a hash of the 125 * low nibble of the protocol value is RARP/SNAP/X.25. 126 * 127 * NOTE: That is no longer true with the addition of VLAN tags. Not 128 * sure which should go first, but I bet it won't make much 129 * difference if we are running VLANs. The good news is that 130 * this protocol won't be in the list unless compiled in, so 131 * the average user (w/out VLANs) will not be adversely affected. 132 * --BLG 133 * 134 * 0800 IP 135 * 8100 802.1Q VLAN 136 * 0001 802.3 137 * 0002 AX.25 138 * 0004 802.2 139 * 8035 RARP 140 * 0005 SNAP 141 * 0805 X.25 142 * 0806 ARP 143 * 8137 IPX 144 * 0009 Localtalk 145 * 86DD IPv6 146 */ 147 148 static DEFINE_SPINLOCK(ptype_lock); 149 static struct list_head ptype_base[16]; /* 16 way hashed list */ 150 static struct list_head ptype_all; /* Taps */ 151 152 #ifdef CONFIG_NET_DMA 153 static struct dma_client *net_dma_client; 154 static unsigned int net_dma_count; 155 static spinlock_t net_dma_event_lock; 156 #endif 157 158 /* 159 * The @dev_base list is protected by @dev_base_lock and the rtnl 160 * semaphore. 161 * 162 * Pure readers hold dev_base_lock for reading. 163 * 164 * Writers must hold the rtnl semaphore while they loop through the 165 * dev_base list, and hold dev_base_lock for writing when they do the 166 * actual updates. This allows pure readers to access the list even 167 * while a writer is preparing to update it. 168 * 169 * To put it another way, dev_base_lock is held for writing only to 170 * protect against pure readers; the rtnl semaphore provides the 171 * protection against other writers. 172 * 173 * See, for example usages, register_netdevice() and 174 * unregister_netdevice(), which must be called with the rtnl 175 * semaphore held. 176 */ 177 struct net_device *dev_base; 178 static struct net_device **dev_tail = &dev_base; 179 DEFINE_RWLOCK(dev_base_lock); 180 181 EXPORT_SYMBOL(dev_base); 182 EXPORT_SYMBOL(dev_base_lock); 183 184 #define NETDEV_HASHBITS 8 185 static struct hlist_head dev_name_head[1<<NETDEV_HASHBITS]; 186 static struct hlist_head dev_index_head[1<<NETDEV_HASHBITS]; 187 188 static inline struct hlist_head *dev_name_hash(const char *name) 189 { 190 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ)); 191 return &dev_name_head[hash & ((1<<NETDEV_HASHBITS)-1)]; 192 } 193 194 static inline struct hlist_head *dev_index_hash(int ifindex) 195 { 196 return &dev_index_head[ifindex & ((1<<NETDEV_HASHBITS)-1)]; 197 } 198 199 /* 200 * Our notifier list 201 */ 202 203 static RAW_NOTIFIER_HEAD(netdev_chain); 204 205 /* 206 * Device drivers call our routines to queue packets here. We empty the 207 * queue in the local softnet handler. 208 */ 209 DEFINE_PER_CPU(struct softnet_data, softnet_data) = { NULL }; 210 211 #ifdef CONFIG_SYSFS 212 extern int netdev_sysfs_init(void); 213 extern int netdev_register_sysfs(struct net_device *); 214 extern void netdev_unregister_sysfs(struct net_device *); 215 #else 216 #define netdev_sysfs_init() (0) 217 #define netdev_register_sysfs(dev) (0) 218 #define netdev_unregister_sysfs(dev) do { } while(0) 219 #endif 220 221 222 /******************************************************************************* 223 224 Protocol management and registration routines 225 226 *******************************************************************************/ 227 228 /* 229 * For efficiency 230 */ 231 232 static int netdev_nit; 233 234 /* 235 * Add a protocol ID to the list. Now that the input handler is 236 * smarter we can dispense with all the messy stuff that used to be 237 * here. 238 * 239 * BEWARE!!! Protocol handlers, mangling input packets, 240 * MUST BE last in hash buckets and checking protocol handlers 241 * MUST start from promiscuous ptype_all chain in net_bh. 242 * It is true now, do not change it. 243 * Explanation follows: if protocol handler, mangling packet, will 244 * be the first on list, it is not able to sense, that packet 245 * is cloned and should be copied-on-write, so that it will 246 * change it and subsequent readers will get broken packet. 247 * --ANK (980803) 248 */ 249 250 /** 251 * dev_add_pack - add packet handler 252 * @pt: packet type declaration 253 * 254 * Add a protocol handler to the networking stack. The passed &packet_type 255 * is linked into kernel lists and may not be freed until it has been 256 * removed from the kernel lists. 257 * 258 * This call does not sleep therefore it can not 259 * guarantee all CPU's that are in middle of receiving packets 260 * will see the new packet type (until the next received packet). 261 */ 262 263 void dev_add_pack(struct packet_type *pt) 264 { 265 int hash; 266 267 spin_lock_bh(&ptype_lock); 268 if (pt->type == htons(ETH_P_ALL)) { 269 netdev_nit++; 270 list_add_rcu(&pt->list, &ptype_all); 271 } else { 272 hash = ntohs(pt->type) & 15; 273 list_add_rcu(&pt->list, &ptype_base[hash]); 274 } 275 spin_unlock_bh(&ptype_lock); 276 } 277 278 /** 279 * __dev_remove_pack - remove packet handler 280 * @pt: packet type declaration 281 * 282 * Remove a protocol handler that was previously added to the kernel 283 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 284 * from the kernel lists and can be freed or reused once this function 285 * returns. 286 * 287 * The packet type might still be in use by receivers 288 * and must not be freed until after all the CPU's have gone 289 * through a quiescent state. 290 */ 291 void __dev_remove_pack(struct packet_type *pt) 292 { 293 struct list_head *head; 294 struct packet_type *pt1; 295 296 spin_lock_bh(&ptype_lock); 297 298 if (pt->type == htons(ETH_P_ALL)) { 299 netdev_nit--; 300 head = &ptype_all; 301 } else 302 head = &ptype_base[ntohs(pt->type) & 15]; 303 304 list_for_each_entry(pt1, head, list) { 305 if (pt == pt1) { 306 list_del_rcu(&pt->list); 307 goto out; 308 } 309 } 310 311 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt); 312 out: 313 spin_unlock_bh(&ptype_lock); 314 } 315 /** 316 * dev_remove_pack - remove packet handler 317 * @pt: packet type declaration 318 * 319 * Remove a protocol handler that was previously added to the kernel 320 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 321 * from the kernel lists and can be freed or reused once this function 322 * returns. 323 * 324 * This call sleeps to guarantee that no CPU is looking at the packet 325 * type after return. 326 */ 327 void dev_remove_pack(struct packet_type *pt) 328 { 329 __dev_remove_pack(pt); 330 331 synchronize_net(); 332 } 333 334 /****************************************************************************** 335 336 Device Boot-time Settings Routines 337 338 *******************************************************************************/ 339 340 /* Boot time configuration table */ 341 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 342 343 /** 344 * netdev_boot_setup_add - add new setup entry 345 * @name: name of the device 346 * @map: configured settings for the device 347 * 348 * Adds new setup entry to the dev_boot_setup list. The function 349 * returns 0 on error and 1 on success. This is a generic routine to 350 * all netdevices. 351 */ 352 static int netdev_boot_setup_add(char *name, struct ifmap *map) 353 { 354 struct netdev_boot_setup *s; 355 int i; 356 357 s = dev_boot_setup; 358 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 359 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 360 memset(s[i].name, 0, sizeof(s[i].name)); 361 strcpy(s[i].name, name); 362 memcpy(&s[i].map, map, sizeof(s[i].map)); 363 break; 364 } 365 } 366 367 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 368 } 369 370 /** 371 * netdev_boot_setup_check - check boot time settings 372 * @dev: the netdevice 373 * 374 * Check boot time settings for the device. 375 * The found settings are set for the device to be used 376 * later in the device probing. 377 * Returns 0 if no settings found, 1 if they are. 378 */ 379 int netdev_boot_setup_check(struct net_device *dev) 380 { 381 struct netdev_boot_setup *s = dev_boot_setup; 382 int i; 383 384 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 385 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 386 !strncmp(dev->name, s[i].name, strlen(s[i].name))) { 387 dev->irq = s[i].map.irq; 388 dev->base_addr = s[i].map.base_addr; 389 dev->mem_start = s[i].map.mem_start; 390 dev->mem_end = s[i].map.mem_end; 391 return 1; 392 } 393 } 394 return 0; 395 } 396 397 398 /** 399 * netdev_boot_base - get address from boot time settings 400 * @prefix: prefix for network device 401 * @unit: id for network device 402 * 403 * Check boot time settings for the base address of device. 404 * The found settings are set for the device to be used 405 * later in the device probing. 406 * Returns 0 if no settings found. 407 */ 408 unsigned long netdev_boot_base(const char *prefix, int unit) 409 { 410 const struct netdev_boot_setup *s = dev_boot_setup; 411 char name[IFNAMSIZ]; 412 int i; 413 414 sprintf(name, "%s%d", prefix, unit); 415 416 /* 417 * If device already registered then return base of 1 418 * to indicate not to probe for this interface 419 */ 420 if (__dev_get_by_name(name)) 421 return 1; 422 423 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 424 if (!strcmp(name, s[i].name)) 425 return s[i].map.base_addr; 426 return 0; 427 } 428 429 /* 430 * Saves at boot time configured settings for any netdevice. 431 */ 432 int __init netdev_boot_setup(char *str) 433 { 434 int ints[5]; 435 struct ifmap map; 436 437 str = get_options(str, ARRAY_SIZE(ints), ints); 438 if (!str || !*str) 439 return 0; 440 441 /* Save settings */ 442 memset(&map, 0, sizeof(map)); 443 if (ints[0] > 0) 444 map.irq = ints[1]; 445 if (ints[0] > 1) 446 map.base_addr = ints[2]; 447 if (ints[0] > 2) 448 map.mem_start = ints[3]; 449 if (ints[0] > 3) 450 map.mem_end = ints[4]; 451 452 /* Add new entry to the list */ 453 return netdev_boot_setup_add(str, &map); 454 } 455 456 __setup("netdev=", netdev_boot_setup); 457 458 /******************************************************************************* 459 460 Device Interface Subroutines 461 462 *******************************************************************************/ 463 464 /** 465 * __dev_get_by_name - find a device by its name 466 * @name: name to find 467 * 468 * Find an interface by name. Must be called under RTNL semaphore 469 * or @dev_base_lock. If the name is found a pointer to the device 470 * is returned. If the name is not found then %NULL is returned. The 471 * reference counters are not incremented so the caller must be 472 * careful with locks. 473 */ 474 475 struct net_device *__dev_get_by_name(const char *name) 476 { 477 struct hlist_node *p; 478 479 hlist_for_each(p, dev_name_hash(name)) { 480 struct net_device *dev 481 = hlist_entry(p, struct net_device, name_hlist); 482 if (!strncmp(dev->name, name, IFNAMSIZ)) 483 return dev; 484 } 485 return NULL; 486 } 487 488 /** 489 * dev_get_by_name - find a device by its name 490 * @name: name to find 491 * 492 * Find an interface by name. This can be called from any 493 * context and does its own locking. The returned handle has 494 * the usage count incremented and the caller must use dev_put() to 495 * release it when it is no longer needed. %NULL is returned if no 496 * matching device is found. 497 */ 498 499 struct net_device *dev_get_by_name(const char *name) 500 { 501 struct net_device *dev; 502 503 read_lock(&dev_base_lock); 504 dev = __dev_get_by_name(name); 505 if (dev) 506 dev_hold(dev); 507 read_unlock(&dev_base_lock); 508 return dev; 509 } 510 511 /** 512 * __dev_get_by_index - find a device by its ifindex 513 * @ifindex: index of device 514 * 515 * Search for an interface by index. Returns %NULL if the device 516 * is not found or a pointer to the device. The device has not 517 * had its reference counter increased so the caller must be careful 518 * about locking. The caller must hold either the RTNL semaphore 519 * or @dev_base_lock. 520 */ 521 522 struct net_device *__dev_get_by_index(int ifindex) 523 { 524 struct hlist_node *p; 525 526 hlist_for_each(p, dev_index_hash(ifindex)) { 527 struct net_device *dev 528 = hlist_entry(p, struct net_device, index_hlist); 529 if (dev->ifindex == ifindex) 530 return dev; 531 } 532 return NULL; 533 } 534 535 536 /** 537 * dev_get_by_index - find a device by its ifindex 538 * @ifindex: index of device 539 * 540 * Search for an interface by index. Returns NULL if the device 541 * is not found or a pointer to the device. The device returned has 542 * had a reference added and the pointer is safe until the user calls 543 * dev_put to indicate they have finished with it. 544 */ 545 546 struct net_device *dev_get_by_index(int ifindex) 547 { 548 struct net_device *dev; 549 550 read_lock(&dev_base_lock); 551 dev = __dev_get_by_index(ifindex); 552 if (dev) 553 dev_hold(dev); 554 read_unlock(&dev_base_lock); 555 return dev; 556 } 557 558 /** 559 * dev_getbyhwaddr - find a device by its hardware address 560 * @type: media type of device 561 * @ha: hardware address 562 * 563 * Search for an interface by MAC address. Returns NULL if the device 564 * is not found or a pointer to the device. The caller must hold the 565 * rtnl semaphore. The returned device has not had its ref count increased 566 * and the caller must therefore be careful about locking 567 * 568 * BUGS: 569 * If the API was consistent this would be __dev_get_by_hwaddr 570 */ 571 572 struct net_device *dev_getbyhwaddr(unsigned short type, char *ha) 573 { 574 struct net_device *dev; 575 576 ASSERT_RTNL(); 577 578 for (dev = dev_base; dev; dev = dev->next) 579 if (dev->type == type && 580 !memcmp(dev->dev_addr, ha, dev->addr_len)) 581 break; 582 return dev; 583 } 584 585 EXPORT_SYMBOL(dev_getbyhwaddr); 586 587 struct net_device *dev_getfirstbyhwtype(unsigned short type) 588 { 589 struct net_device *dev; 590 591 rtnl_lock(); 592 for (dev = dev_base; dev; dev = dev->next) { 593 if (dev->type == type) { 594 dev_hold(dev); 595 break; 596 } 597 } 598 rtnl_unlock(); 599 return dev; 600 } 601 602 EXPORT_SYMBOL(dev_getfirstbyhwtype); 603 604 /** 605 * dev_get_by_flags - find any device with given flags 606 * @if_flags: IFF_* values 607 * @mask: bitmask of bits in if_flags to check 608 * 609 * Search for any interface with the given flags. Returns NULL if a device 610 * is not found or a pointer to the device. The device returned has 611 * had a reference added and the pointer is safe until the user calls 612 * dev_put to indicate they have finished with it. 613 */ 614 615 struct net_device * dev_get_by_flags(unsigned short if_flags, unsigned short mask) 616 { 617 struct net_device *dev; 618 619 read_lock(&dev_base_lock); 620 for (dev = dev_base; dev != NULL; dev = dev->next) { 621 if (((dev->flags ^ if_flags) & mask) == 0) { 622 dev_hold(dev); 623 break; 624 } 625 } 626 read_unlock(&dev_base_lock); 627 return dev; 628 } 629 630 /** 631 * dev_valid_name - check if name is okay for network device 632 * @name: name string 633 * 634 * Network device names need to be valid file names to 635 * to allow sysfs to work. We also disallow any kind of 636 * whitespace. 637 */ 638 int dev_valid_name(const char *name) 639 { 640 if (*name == '\0') 641 return 0; 642 if (strlen(name) >= IFNAMSIZ) 643 return 0; 644 if (!strcmp(name, ".") || !strcmp(name, "..")) 645 return 0; 646 647 while (*name) { 648 if (*name == '/' || isspace(*name)) 649 return 0; 650 name++; 651 } 652 return 1; 653 } 654 655 /** 656 * dev_alloc_name - allocate a name for a device 657 * @dev: device 658 * @name: name format string 659 * 660 * Passed a format string - eg "lt%d" it will try and find a suitable 661 * id. It scans list of devices to build up a free map, then chooses 662 * the first empty slot. The caller must hold the dev_base or rtnl lock 663 * while allocating the name and adding the device in order to avoid 664 * duplicates. 665 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 666 * Returns the number of the unit assigned or a negative errno code. 667 */ 668 669 int dev_alloc_name(struct net_device *dev, const char *name) 670 { 671 int i = 0; 672 char buf[IFNAMSIZ]; 673 const char *p; 674 const int max_netdevices = 8*PAGE_SIZE; 675 long *inuse; 676 struct net_device *d; 677 678 p = strnchr(name, IFNAMSIZ-1, '%'); 679 if (p) { 680 /* 681 * Verify the string as this thing may have come from 682 * the user. There must be either one "%d" and no other "%" 683 * characters. 684 */ 685 if (p[1] != 'd' || strchr(p + 2, '%')) 686 return -EINVAL; 687 688 /* Use one page as a bit array of possible slots */ 689 inuse = (long *) get_zeroed_page(GFP_ATOMIC); 690 if (!inuse) 691 return -ENOMEM; 692 693 for (d = dev_base; d; d = d->next) { 694 if (!sscanf(d->name, name, &i)) 695 continue; 696 if (i < 0 || i >= max_netdevices) 697 continue; 698 699 /* avoid cases where sscanf is not exact inverse of printf */ 700 snprintf(buf, sizeof(buf), name, i); 701 if (!strncmp(buf, d->name, IFNAMSIZ)) 702 set_bit(i, inuse); 703 } 704 705 i = find_first_zero_bit(inuse, max_netdevices); 706 free_page((unsigned long) inuse); 707 } 708 709 snprintf(buf, sizeof(buf), name, i); 710 if (!__dev_get_by_name(buf)) { 711 strlcpy(dev->name, buf, IFNAMSIZ); 712 return i; 713 } 714 715 /* It is possible to run out of possible slots 716 * when the name is long and there isn't enough space left 717 * for the digits, or if all bits are used. 718 */ 719 return -ENFILE; 720 } 721 722 723 /** 724 * dev_change_name - change name of a device 725 * @dev: device 726 * @newname: name (or format string) must be at least IFNAMSIZ 727 * 728 * Change name of a device, can pass format strings "eth%d". 729 * for wildcarding. 730 */ 731 int dev_change_name(struct net_device *dev, char *newname) 732 { 733 int err = 0; 734 735 ASSERT_RTNL(); 736 737 if (dev->flags & IFF_UP) 738 return -EBUSY; 739 740 if (!dev_valid_name(newname)) 741 return -EINVAL; 742 743 if (strchr(newname, '%')) { 744 err = dev_alloc_name(dev, newname); 745 if (err < 0) 746 return err; 747 strcpy(newname, dev->name); 748 } 749 else if (__dev_get_by_name(newname)) 750 return -EEXIST; 751 else 752 strlcpy(dev->name, newname, IFNAMSIZ); 753 754 device_rename(&dev->dev, dev->name); 755 hlist_del(&dev->name_hlist); 756 hlist_add_head(&dev->name_hlist, dev_name_hash(dev->name)); 757 raw_notifier_call_chain(&netdev_chain, NETDEV_CHANGENAME, dev); 758 759 return err; 760 } 761 762 /** 763 * netdev_features_change - device changes features 764 * @dev: device to cause notification 765 * 766 * Called to indicate a device has changed features. 767 */ 768 void netdev_features_change(struct net_device *dev) 769 { 770 raw_notifier_call_chain(&netdev_chain, NETDEV_FEAT_CHANGE, dev); 771 } 772 EXPORT_SYMBOL(netdev_features_change); 773 774 /** 775 * netdev_state_change - device changes state 776 * @dev: device to cause notification 777 * 778 * Called to indicate a device has changed state. This function calls 779 * the notifier chains for netdev_chain and sends a NEWLINK message 780 * to the routing socket. 781 */ 782 void netdev_state_change(struct net_device *dev) 783 { 784 if (dev->flags & IFF_UP) { 785 raw_notifier_call_chain(&netdev_chain, 786 NETDEV_CHANGE, dev); 787 rtmsg_ifinfo(RTM_NEWLINK, dev, 0); 788 } 789 } 790 791 /** 792 * dev_load - load a network module 793 * @name: name of interface 794 * 795 * If a network interface is not present and the process has suitable 796 * privileges this function loads the module. If module loading is not 797 * available in this kernel then it becomes a nop. 798 */ 799 800 void dev_load(const char *name) 801 { 802 struct net_device *dev; 803 804 read_lock(&dev_base_lock); 805 dev = __dev_get_by_name(name); 806 read_unlock(&dev_base_lock); 807 808 if (!dev && capable(CAP_SYS_MODULE)) 809 request_module("%s", name); 810 } 811 812 static int default_rebuild_header(struct sk_buff *skb) 813 { 814 printk(KERN_DEBUG "%s: default_rebuild_header called -- BUG!\n", 815 skb->dev ? skb->dev->name : "NULL!!!"); 816 kfree_skb(skb); 817 return 1; 818 } 819 820 821 /** 822 * dev_open - prepare an interface for use. 823 * @dev: device to open 824 * 825 * Takes a device from down to up state. The device's private open 826 * function is invoked and then the multicast lists are loaded. Finally 827 * the device is moved into the up state and a %NETDEV_UP message is 828 * sent to the netdev notifier chain. 829 * 830 * Calling this function on an active interface is a nop. On a failure 831 * a negative errno code is returned. 832 */ 833 int dev_open(struct net_device *dev) 834 { 835 int ret = 0; 836 837 /* 838 * Is it already up? 839 */ 840 841 if (dev->flags & IFF_UP) 842 return 0; 843 844 /* 845 * Is it even present? 846 */ 847 if (!netif_device_present(dev)) 848 return -ENODEV; 849 850 /* 851 * Call device private open method 852 */ 853 set_bit(__LINK_STATE_START, &dev->state); 854 if (dev->open) { 855 ret = dev->open(dev); 856 if (ret) 857 clear_bit(__LINK_STATE_START, &dev->state); 858 } 859 860 /* 861 * If it went open OK then: 862 */ 863 864 if (!ret) { 865 /* 866 * Set the flags. 867 */ 868 dev->flags |= IFF_UP; 869 870 /* 871 * Initialize multicasting status 872 */ 873 dev_mc_upload(dev); 874 875 /* 876 * Wakeup transmit queue engine 877 */ 878 dev_activate(dev); 879 880 /* 881 * ... and announce new interface. 882 */ 883 raw_notifier_call_chain(&netdev_chain, NETDEV_UP, dev); 884 } 885 return ret; 886 } 887 888 /** 889 * dev_close - shutdown an interface. 890 * @dev: device to shutdown 891 * 892 * This function moves an active device into down state. A 893 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 894 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 895 * chain. 896 */ 897 int dev_close(struct net_device *dev) 898 { 899 if (!(dev->flags & IFF_UP)) 900 return 0; 901 902 /* 903 * Tell people we are going down, so that they can 904 * prepare to death, when device is still operating. 905 */ 906 raw_notifier_call_chain(&netdev_chain, NETDEV_GOING_DOWN, dev); 907 908 dev_deactivate(dev); 909 910 clear_bit(__LINK_STATE_START, &dev->state); 911 912 /* Synchronize to scheduled poll. We cannot touch poll list, 913 * it can be even on different cpu. So just clear netif_running(), 914 * and wait when poll really will happen. Actually, the best place 915 * for this is inside dev->stop() after device stopped its irq 916 * engine, but this requires more changes in devices. */ 917 918 smp_mb__after_clear_bit(); /* Commit netif_running(). */ 919 while (test_bit(__LINK_STATE_RX_SCHED, &dev->state)) { 920 /* No hurry. */ 921 msleep(1); 922 } 923 924 /* 925 * Call the device specific close. This cannot fail. 926 * Only if device is UP 927 * 928 * We allow it to be called even after a DETACH hot-plug 929 * event. 930 */ 931 if (dev->stop) 932 dev->stop(dev); 933 934 /* 935 * Device is now down. 936 */ 937 938 dev->flags &= ~IFF_UP; 939 940 /* 941 * Tell people we are down 942 */ 943 raw_notifier_call_chain(&netdev_chain, NETDEV_DOWN, dev); 944 945 return 0; 946 } 947 948 949 /* 950 * Device change register/unregister. These are not inline or static 951 * as we export them to the world. 952 */ 953 954 /** 955 * register_netdevice_notifier - register a network notifier block 956 * @nb: notifier 957 * 958 * Register a notifier to be called when network device events occur. 959 * The notifier passed is linked into the kernel structures and must 960 * not be reused until it has been unregistered. A negative errno code 961 * is returned on a failure. 962 * 963 * When registered all registration and up events are replayed 964 * to the new notifier to allow device to have a race free 965 * view of the network device list. 966 */ 967 968 int register_netdevice_notifier(struct notifier_block *nb) 969 { 970 struct net_device *dev; 971 int err; 972 973 rtnl_lock(); 974 err = raw_notifier_chain_register(&netdev_chain, nb); 975 if (!err) { 976 for (dev = dev_base; dev; dev = dev->next) { 977 nb->notifier_call(nb, NETDEV_REGISTER, dev); 978 979 if (dev->flags & IFF_UP) 980 nb->notifier_call(nb, NETDEV_UP, dev); 981 } 982 } 983 rtnl_unlock(); 984 return err; 985 } 986 987 /** 988 * unregister_netdevice_notifier - unregister a network notifier block 989 * @nb: notifier 990 * 991 * Unregister a notifier previously registered by 992 * register_netdevice_notifier(). The notifier is unlinked into the 993 * kernel structures and may then be reused. A negative errno code 994 * is returned on a failure. 995 */ 996 997 int unregister_netdevice_notifier(struct notifier_block *nb) 998 { 999 int err; 1000 1001 rtnl_lock(); 1002 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1003 rtnl_unlock(); 1004 return err; 1005 } 1006 1007 /** 1008 * call_netdevice_notifiers - call all network notifier blocks 1009 * @val: value passed unmodified to notifier function 1010 * @v: pointer passed unmodified to notifier function 1011 * 1012 * Call all network notifier blocks. Parameters and return value 1013 * are as for raw_notifier_call_chain(). 1014 */ 1015 1016 int call_netdevice_notifiers(unsigned long val, void *v) 1017 { 1018 return raw_notifier_call_chain(&netdev_chain, val, v); 1019 } 1020 1021 /* When > 0 there are consumers of rx skb time stamps */ 1022 static atomic_t netstamp_needed = ATOMIC_INIT(0); 1023 1024 void net_enable_timestamp(void) 1025 { 1026 atomic_inc(&netstamp_needed); 1027 } 1028 1029 void net_disable_timestamp(void) 1030 { 1031 atomic_dec(&netstamp_needed); 1032 } 1033 1034 void __net_timestamp(struct sk_buff *skb) 1035 { 1036 struct timeval tv; 1037 1038 do_gettimeofday(&tv); 1039 skb_set_timestamp(skb, &tv); 1040 } 1041 EXPORT_SYMBOL(__net_timestamp); 1042 1043 static inline void net_timestamp(struct sk_buff *skb) 1044 { 1045 if (atomic_read(&netstamp_needed)) 1046 __net_timestamp(skb); 1047 else { 1048 skb->tstamp.off_sec = 0; 1049 skb->tstamp.off_usec = 0; 1050 } 1051 } 1052 1053 /* 1054 * Support routine. Sends outgoing frames to any network 1055 * taps currently in use. 1056 */ 1057 1058 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 1059 { 1060 struct packet_type *ptype; 1061 1062 net_timestamp(skb); 1063 1064 rcu_read_lock(); 1065 list_for_each_entry_rcu(ptype, &ptype_all, list) { 1066 /* Never send packets back to the socket 1067 * they originated from - MvS (miquels@drinkel.ow.org) 1068 */ 1069 if ((ptype->dev == dev || !ptype->dev) && 1070 (ptype->af_packet_priv == NULL || 1071 (struct sock *)ptype->af_packet_priv != skb->sk)) { 1072 struct sk_buff *skb2= skb_clone(skb, GFP_ATOMIC); 1073 if (!skb2) 1074 break; 1075 1076 /* skb->nh should be correctly 1077 set by sender, so that the second statement is 1078 just protection against buggy protocols. 1079 */ 1080 skb2->mac.raw = skb2->data; 1081 1082 if (skb2->nh.raw < skb2->data || 1083 skb2->nh.raw > skb2->tail) { 1084 if (net_ratelimit()) 1085 printk(KERN_CRIT "protocol %04x is " 1086 "buggy, dev %s\n", 1087 skb2->protocol, dev->name); 1088 skb2->nh.raw = skb2->data; 1089 } 1090 1091 skb2->h.raw = skb2->nh.raw; 1092 skb2->pkt_type = PACKET_OUTGOING; 1093 ptype->func(skb2, skb->dev, ptype, skb->dev); 1094 } 1095 } 1096 rcu_read_unlock(); 1097 } 1098 1099 1100 void __netif_schedule(struct net_device *dev) 1101 { 1102 if (!test_and_set_bit(__LINK_STATE_SCHED, &dev->state)) { 1103 unsigned long flags; 1104 struct softnet_data *sd; 1105 1106 local_irq_save(flags); 1107 sd = &__get_cpu_var(softnet_data); 1108 dev->next_sched = sd->output_queue; 1109 sd->output_queue = dev; 1110 raise_softirq_irqoff(NET_TX_SOFTIRQ); 1111 local_irq_restore(flags); 1112 } 1113 } 1114 EXPORT_SYMBOL(__netif_schedule); 1115 1116 void __netif_rx_schedule(struct net_device *dev) 1117 { 1118 unsigned long flags; 1119 1120 local_irq_save(flags); 1121 dev_hold(dev); 1122 list_add_tail(&dev->poll_list, &__get_cpu_var(softnet_data).poll_list); 1123 if (dev->quota < 0) 1124 dev->quota += dev->weight; 1125 else 1126 dev->quota = dev->weight; 1127 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 1128 local_irq_restore(flags); 1129 } 1130 EXPORT_SYMBOL(__netif_rx_schedule); 1131 1132 void dev_kfree_skb_any(struct sk_buff *skb) 1133 { 1134 if (in_irq() || irqs_disabled()) 1135 dev_kfree_skb_irq(skb); 1136 else 1137 dev_kfree_skb(skb); 1138 } 1139 EXPORT_SYMBOL(dev_kfree_skb_any); 1140 1141 1142 /* Hot-plugging. */ 1143 void netif_device_detach(struct net_device *dev) 1144 { 1145 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 1146 netif_running(dev)) { 1147 netif_stop_queue(dev); 1148 } 1149 } 1150 EXPORT_SYMBOL(netif_device_detach); 1151 1152 void netif_device_attach(struct net_device *dev) 1153 { 1154 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 1155 netif_running(dev)) { 1156 netif_wake_queue(dev); 1157 __netdev_watchdog_up(dev); 1158 } 1159 } 1160 EXPORT_SYMBOL(netif_device_attach); 1161 1162 1163 /* 1164 * Invalidate hardware checksum when packet is to be mangled, and 1165 * complete checksum manually on outgoing path. 1166 */ 1167 int skb_checksum_help(struct sk_buff *skb) 1168 { 1169 __wsum csum; 1170 int ret = 0, offset = skb->h.raw - skb->data; 1171 1172 if (skb->ip_summed == CHECKSUM_COMPLETE) 1173 goto out_set_summed; 1174 1175 if (unlikely(skb_shinfo(skb)->gso_size)) { 1176 /* Let GSO fix up the checksum. */ 1177 goto out_set_summed; 1178 } 1179 1180 if (skb_cloned(skb)) { 1181 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 1182 if (ret) 1183 goto out; 1184 } 1185 1186 BUG_ON(offset > (int)skb->len); 1187 csum = skb_checksum(skb, offset, skb->len-offset, 0); 1188 1189 offset = skb->tail - skb->h.raw; 1190 BUG_ON(offset <= 0); 1191 BUG_ON(skb->csum_offset + 2 > offset); 1192 1193 *(__sum16*)(skb->h.raw + skb->csum_offset) = csum_fold(csum); 1194 1195 out_set_summed: 1196 skb->ip_summed = CHECKSUM_NONE; 1197 out: 1198 return ret; 1199 } 1200 1201 /** 1202 * skb_gso_segment - Perform segmentation on skb. 1203 * @skb: buffer to segment 1204 * @features: features for the output path (see dev->features) 1205 * 1206 * This function segments the given skb and returns a list of segments. 1207 * 1208 * It may return NULL if the skb requires no segmentation. This is 1209 * only possible when GSO is used for verifying header integrity. 1210 */ 1211 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features) 1212 { 1213 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 1214 struct packet_type *ptype; 1215 __be16 type = skb->protocol; 1216 int err; 1217 1218 BUG_ON(skb_shinfo(skb)->frag_list); 1219 1220 skb->mac.raw = skb->data; 1221 skb->mac_len = skb->nh.raw - skb->data; 1222 __skb_pull(skb, skb->mac_len); 1223 1224 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) { 1225 if (skb_header_cloned(skb) && 1226 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))) 1227 return ERR_PTR(err); 1228 } 1229 1230 rcu_read_lock(); 1231 list_for_each_entry_rcu(ptype, &ptype_base[ntohs(type) & 15], list) { 1232 if (ptype->type == type && !ptype->dev && ptype->gso_segment) { 1233 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) { 1234 err = ptype->gso_send_check(skb); 1235 segs = ERR_PTR(err); 1236 if (err || skb_gso_ok(skb, features)) 1237 break; 1238 __skb_push(skb, skb->data - skb->nh.raw); 1239 } 1240 segs = ptype->gso_segment(skb, features); 1241 break; 1242 } 1243 } 1244 rcu_read_unlock(); 1245 1246 __skb_push(skb, skb->data - skb->mac.raw); 1247 1248 return segs; 1249 } 1250 1251 EXPORT_SYMBOL(skb_gso_segment); 1252 1253 /* Take action when hardware reception checksum errors are detected. */ 1254 #ifdef CONFIG_BUG 1255 void netdev_rx_csum_fault(struct net_device *dev) 1256 { 1257 if (net_ratelimit()) { 1258 printk(KERN_ERR "%s: hw csum failure.\n", 1259 dev ? dev->name : "<unknown>"); 1260 dump_stack(); 1261 } 1262 } 1263 EXPORT_SYMBOL(netdev_rx_csum_fault); 1264 #endif 1265 1266 /* Actually, we should eliminate this check as soon as we know, that: 1267 * 1. IOMMU is present and allows to map all the memory. 1268 * 2. No high memory really exists on this machine. 1269 */ 1270 1271 static inline int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 1272 { 1273 #ifdef CONFIG_HIGHMEM 1274 int i; 1275 1276 if (dev->features & NETIF_F_HIGHDMA) 1277 return 0; 1278 1279 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1280 if (PageHighMem(skb_shinfo(skb)->frags[i].page)) 1281 return 1; 1282 1283 #endif 1284 return 0; 1285 } 1286 1287 struct dev_gso_cb { 1288 void (*destructor)(struct sk_buff *skb); 1289 }; 1290 1291 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb) 1292 1293 static void dev_gso_skb_destructor(struct sk_buff *skb) 1294 { 1295 struct dev_gso_cb *cb; 1296 1297 do { 1298 struct sk_buff *nskb = skb->next; 1299 1300 skb->next = nskb->next; 1301 nskb->next = NULL; 1302 kfree_skb(nskb); 1303 } while (skb->next); 1304 1305 cb = DEV_GSO_CB(skb); 1306 if (cb->destructor) 1307 cb->destructor(skb); 1308 } 1309 1310 /** 1311 * dev_gso_segment - Perform emulated hardware segmentation on skb. 1312 * @skb: buffer to segment 1313 * 1314 * This function segments the given skb and stores the list of segments 1315 * in skb->next. 1316 */ 1317 static int dev_gso_segment(struct sk_buff *skb) 1318 { 1319 struct net_device *dev = skb->dev; 1320 struct sk_buff *segs; 1321 int features = dev->features & ~(illegal_highdma(dev, skb) ? 1322 NETIF_F_SG : 0); 1323 1324 segs = skb_gso_segment(skb, features); 1325 1326 /* Verifying header integrity only. */ 1327 if (!segs) 1328 return 0; 1329 1330 if (unlikely(IS_ERR(segs))) 1331 return PTR_ERR(segs); 1332 1333 skb->next = segs; 1334 DEV_GSO_CB(skb)->destructor = skb->destructor; 1335 skb->destructor = dev_gso_skb_destructor; 1336 1337 return 0; 1338 } 1339 1340 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev) 1341 { 1342 if (likely(!skb->next)) { 1343 if (netdev_nit) 1344 dev_queue_xmit_nit(skb, dev); 1345 1346 if (netif_needs_gso(dev, skb)) { 1347 if (unlikely(dev_gso_segment(skb))) 1348 goto out_kfree_skb; 1349 if (skb->next) 1350 goto gso; 1351 } 1352 1353 return dev->hard_start_xmit(skb, dev); 1354 } 1355 1356 gso: 1357 do { 1358 struct sk_buff *nskb = skb->next; 1359 int rc; 1360 1361 skb->next = nskb->next; 1362 nskb->next = NULL; 1363 rc = dev->hard_start_xmit(nskb, dev); 1364 if (unlikely(rc)) { 1365 nskb->next = skb->next; 1366 skb->next = nskb; 1367 return rc; 1368 } 1369 if (unlikely(netif_queue_stopped(dev) && skb->next)) 1370 return NETDEV_TX_BUSY; 1371 } while (skb->next); 1372 1373 skb->destructor = DEV_GSO_CB(skb)->destructor; 1374 1375 out_kfree_skb: 1376 kfree_skb(skb); 1377 return 0; 1378 } 1379 1380 #define HARD_TX_LOCK(dev, cpu) { \ 1381 if ((dev->features & NETIF_F_LLTX) == 0) { \ 1382 netif_tx_lock(dev); \ 1383 } \ 1384 } 1385 1386 #define HARD_TX_UNLOCK(dev) { \ 1387 if ((dev->features & NETIF_F_LLTX) == 0) { \ 1388 netif_tx_unlock(dev); \ 1389 } \ 1390 } 1391 1392 /** 1393 * dev_queue_xmit - transmit a buffer 1394 * @skb: buffer to transmit 1395 * 1396 * Queue a buffer for transmission to a network device. The caller must 1397 * have set the device and priority and built the buffer before calling 1398 * this function. The function can be called from an interrupt. 1399 * 1400 * A negative errno code is returned on a failure. A success does not 1401 * guarantee the frame will be transmitted as it may be dropped due 1402 * to congestion or traffic shaping. 1403 * 1404 * ----------------------------------------------------------------------------------- 1405 * I notice this method can also return errors from the queue disciplines, 1406 * including NET_XMIT_DROP, which is a positive value. So, errors can also 1407 * be positive. 1408 * 1409 * Regardless of the return value, the skb is consumed, so it is currently 1410 * difficult to retry a send to this method. (You can bump the ref count 1411 * before sending to hold a reference for retry if you are careful.) 1412 * 1413 * When calling this method, interrupts MUST be enabled. This is because 1414 * the BH enable code must have IRQs enabled so that it will not deadlock. 1415 * --BLG 1416 */ 1417 1418 int dev_queue_xmit(struct sk_buff *skb) 1419 { 1420 struct net_device *dev = skb->dev; 1421 struct Qdisc *q; 1422 int rc = -ENOMEM; 1423 1424 /* GSO will handle the following emulations directly. */ 1425 if (netif_needs_gso(dev, skb)) 1426 goto gso; 1427 1428 if (skb_shinfo(skb)->frag_list && 1429 !(dev->features & NETIF_F_FRAGLIST) && 1430 __skb_linearize(skb)) 1431 goto out_kfree_skb; 1432 1433 /* Fragmented skb is linearized if device does not support SG, 1434 * or if at least one of fragments is in highmem and device 1435 * does not support DMA from it. 1436 */ 1437 if (skb_shinfo(skb)->nr_frags && 1438 (!(dev->features & NETIF_F_SG) || illegal_highdma(dev, skb)) && 1439 __skb_linearize(skb)) 1440 goto out_kfree_skb; 1441 1442 /* If packet is not checksummed and device does not support 1443 * checksumming for this protocol, complete checksumming here. 1444 */ 1445 if (skb->ip_summed == CHECKSUM_PARTIAL && 1446 (!(dev->features & NETIF_F_GEN_CSUM) && 1447 (!(dev->features & NETIF_F_IP_CSUM) || 1448 skb->protocol != htons(ETH_P_IP)))) 1449 if (skb_checksum_help(skb)) 1450 goto out_kfree_skb; 1451 1452 gso: 1453 spin_lock_prefetch(&dev->queue_lock); 1454 1455 /* Disable soft irqs for various locks below. Also 1456 * stops preemption for RCU. 1457 */ 1458 rcu_read_lock_bh(); 1459 1460 /* Updates of qdisc are serialized by queue_lock. 1461 * The struct Qdisc which is pointed to by qdisc is now a 1462 * rcu structure - it may be accessed without acquiring 1463 * a lock (but the structure may be stale.) The freeing of the 1464 * qdisc will be deferred until it's known that there are no 1465 * more references to it. 1466 * 1467 * If the qdisc has an enqueue function, we still need to 1468 * hold the queue_lock before calling it, since queue_lock 1469 * also serializes access to the device queue. 1470 */ 1471 1472 q = rcu_dereference(dev->qdisc); 1473 #ifdef CONFIG_NET_CLS_ACT 1474 skb->tc_verd = SET_TC_AT(skb->tc_verd,AT_EGRESS); 1475 #endif 1476 if (q->enqueue) { 1477 /* Grab device queue */ 1478 spin_lock(&dev->queue_lock); 1479 q = dev->qdisc; 1480 if (q->enqueue) { 1481 rc = q->enqueue(skb, q); 1482 qdisc_run(dev); 1483 spin_unlock(&dev->queue_lock); 1484 1485 rc = rc == NET_XMIT_BYPASS ? NET_XMIT_SUCCESS : rc; 1486 goto out; 1487 } 1488 spin_unlock(&dev->queue_lock); 1489 } 1490 1491 /* The device has no queue. Common case for software devices: 1492 loopback, all the sorts of tunnels... 1493 1494 Really, it is unlikely that netif_tx_lock protection is necessary 1495 here. (f.e. loopback and IP tunnels are clean ignoring statistics 1496 counters.) 1497 However, it is possible, that they rely on protection 1498 made by us here. 1499 1500 Check this and shot the lock. It is not prone from deadlocks. 1501 Either shot noqueue qdisc, it is even simpler 8) 1502 */ 1503 if (dev->flags & IFF_UP) { 1504 int cpu = smp_processor_id(); /* ok because BHs are off */ 1505 1506 if (dev->xmit_lock_owner != cpu) { 1507 1508 HARD_TX_LOCK(dev, cpu); 1509 1510 if (!netif_queue_stopped(dev)) { 1511 rc = 0; 1512 if (!dev_hard_start_xmit(skb, dev)) { 1513 HARD_TX_UNLOCK(dev); 1514 goto out; 1515 } 1516 } 1517 HARD_TX_UNLOCK(dev); 1518 if (net_ratelimit()) 1519 printk(KERN_CRIT "Virtual device %s asks to " 1520 "queue packet!\n", dev->name); 1521 } else { 1522 /* Recursion is detected! It is possible, 1523 * unfortunately */ 1524 if (net_ratelimit()) 1525 printk(KERN_CRIT "Dead loop on virtual device " 1526 "%s, fix it urgently!\n", dev->name); 1527 } 1528 } 1529 1530 rc = -ENETDOWN; 1531 rcu_read_unlock_bh(); 1532 1533 out_kfree_skb: 1534 kfree_skb(skb); 1535 return rc; 1536 out: 1537 rcu_read_unlock_bh(); 1538 return rc; 1539 } 1540 1541 1542 /*======================================================================= 1543 Receiver routines 1544 =======================================================================*/ 1545 1546 int netdev_max_backlog = 1000; 1547 int netdev_budget = 300; 1548 int weight_p = 64; /* old backlog weight */ 1549 1550 DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, }; 1551 1552 1553 /** 1554 * netif_rx - post buffer to the network code 1555 * @skb: buffer to post 1556 * 1557 * This function receives a packet from a device driver and queues it for 1558 * the upper (protocol) levels to process. It always succeeds. The buffer 1559 * may be dropped during processing for congestion control or by the 1560 * protocol layers. 1561 * 1562 * return values: 1563 * NET_RX_SUCCESS (no congestion) 1564 * NET_RX_CN_LOW (low congestion) 1565 * NET_RX_CN_MOD (moderate congestion) 1566 * NET_RX_CN_HIGH (high congestion) 1567 * NET_RX_DROP (packet was dropped) 1568 * 1569 */ 1570 1571 int netif_rx(struct sk_buff *skb) 1572 { 1573 struct softnet_data *queue; 1574 unsigned long flags; 1575 1576 /* if netpoll wants it, pretend we never saw it */ 1577 if (netpoll_rx(skb)) 1578 return NET_RX_DROP; 1579 1580 if (!skb->tstamp.off_sec) 1581 net_timestamp(skb); 1582 1583 /* 1584 * The code is rearranged so that the path is the most 1585 * short when CPU is congested, but is still operating. 1586 */ 1587 local_irq_save(flags); 1588 queue = &__get_cpu_var(softnet_data); 1589 1590 __get_cpu_var(netdev_rx_stat).total++; 1591 if (queue->input_pkt_queue.qlen <= netdev_max_backlog) { 1592 if (queue->input_pkt_queue.qlen) { 1593 enqueue: 1594 dev_hold(skb->dev); 1595 __skb_queue_tail(&queue->input_pkt_queue, skb); 1596 local_irq_restore(flags); 1597 return NET_RX_SUCCESS; 1598 } 1599 1600 netif_rx_schedule(&queue->backlog_dev); 1601 goto enqueue; 1602 } 1603 1604 __get_cpu_var(netdev_rx_stat).dropped++; 1605 local_irq_restore(flags); 1606 1607 kfree_skb(skb); 1608 return NET_RX_DROP; 1609 } 1610 1611 int netif_rx_ni(struct sk_buff *skb) 1612 { 1613 int err; 1614 1615 preempt_disable(); 1616 err = netif_rx(skb); 1617 if (local_softirq_pending()) 1618 do_softirq(); 1619 preempt_enable(); 1620 1621 return err; 1622 } 1623 1624 EXPORT_SYMBOL(netif_rx_ni); 1625 1626 static inline struct net_device *skb_bond(struct sk_buff *skb) 1627 { 1628 struct net_device *dev = skb->dev; 1629 1630 if (dev->master) { 1631 if (skb_bond_should_drop(skb)) { 1632 kfree_skb(skb); 1633 return NULL; 1634 } 1635 skb->dev = dev->master; 1636 } 1637 1638 return dev; 1639 } 1640 1641 static void net_tx_action(struct softirq_action *h) 1642 { 1643 struct softnet_data *sd = &__get_cpu_var(softnet_data); 1644 1645 if (sd->completion_queue) { 1646 struct sk_buff *clist; 1647 1648 local_irq_disable(); 1649 clist = sd->completion_queue; 1650 sd->completion_queue = NULL; 1651 local_irq_enable(); 1652 1653 while (clist) { 1654 struct sk_buff *skb = clist; 1655 clist = clist->next; 1656 1657 BUG_TRAP(!atomic_read(&skb->users)); 1658 __kfree_skb(skb); 1659 } 1660 } 1661 1662 if (sd->output_queue) { 1663 struct net_device *head; 1664 1665 local_irq_disable(); 1666 head = sd->output_queue; 1667 sd->output_queue = NULL; 1668 local_irq_enable(); 1669 1670 while (head) { 1671 struct net_device *dev = head; 1672 head = head->next_sched; 1673 1674 smp_mb__before_clear_bit(); 1675 clear_bit(__LINK_STATE_SCHED, &dev->state); 1676 1677 if (spin_trylock(&dev->queue_lock)) { 1678 qdisc_run(dev); 1679 spin_unlock(&dev->queue_lock); 1680 } else { 1681 netif_schedule(dev); 1682 } 1683 } 1684 } 1685 } 1686 1687 static __inline__ int deliver_skb(struct sk_buff *skb, 1688 struct packet_type *pt_prev, 1689 struct net_device *orig_dev) 1690 { 1691 atomic_inc(&skb->users); 1692 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 1693 } 1694 1695 #if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE) 1696 int (*br_handle_frame_hook)(struct net_bridge_port *p, struct sk_buff **pskb); 1697 struct net_bridge; 1698 struct net_bridge_fdb_entry *(*br_fdb_get_hook)(struct net_bridge *br, 1699 unsigned char *addr); 1700 void (*br_fdb_put_hook)(struct net_bridge_fdb_entry *ent); 1701 1702 static __inline__ int handle_bridge(struct sk_buff **pskb, 1703 struct packet_type **pt_prev, int *ret, 1704 struct net_device *orig_dev) 1705 { 1706 struct net_bridge_port *port; 1707 1708 if ((*pskb)->pkt_type == PACKET_LOOPBACK || 1709 (port = rcu_dereference((*pskb)->dev->br_port)) == NULL) 1710 return 0; 1711 1712 if (*pt_prev) { 1713 *ret = deliver_skb(*pskb, *pt_prev, orig_dev); 1714 *pt_prev = NULL; 1715 } 1716 1717 return br_handle_frame_hook(port, pskb); 1718 } 1719 #else 1720 #define handle_bridge(skb, pt_prev, ret, orig_dev) (0) 1721 #endif 1722 1723 #ifdef CONFIG_NET_CLS_ACT 1724 /* TODO: Maybe we should just force sch_ingress to be compiled in 1725 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions 1726 * a compare and 2 stores extra right now if we dont have it on 1727 * but have CONFIG_NET_CLS_ACT 1728 * NOTE: This doesnt stop any functionality; if you dont have 1729 * the ingress scheduler, you just cant add policies on ingress. 1730 * 1731 */ 1732 static int ing_filter(struct sk_buff *skb) 1733 { 1734 struct Qdisc *q; 1735 struct net_device *dev = skb->dev; 1736 int result = TC_ACT_OK; 1737 1738 if (dev->qdisc_ingress) { 1739 __u32 ttl = (__u32) G_TC_RTTL(skb->tc_verd); 1740 if (MAX_RED_LOOP < ttl++) { 1741 printk(KERN_WARNING "Redir loop detected Dropping packet (%d->%d)\n", 1742 skb->iif, skb->dev->ifindex); 1743 return TC_ACT_SHOT; 1744 } 1745 1746 skb->tc_verd = SET_TC_RTTL(skb->tc_verd,ttl); 1747 1748 skb->tc_verd = SET_TC_AT(skb->tc_verd,AT_INGRESS); 1749 1750 spin_lock(&dev->queue_lock); 1751 if ((q = dev->qdisc_ingress) != NULL) 1752 result = q->enqueue(skb, q); 1753 spin_unlock(&dev->queue_lock); 1754 1755 } 1756 1757 return result; 1758 } 1759 #endif 1760 1761 int netif_receive_skb(struct sk_buff *skb) 1762 { 1763 struct packet_type *ptype, *pt_prev; 1764 struct net_device *orig_dev; 1765 int ret = NET_RX_DROP; 1766 __be16 type; 1767 1768 /* if we've gotten here through NAPI, check netpoll */ 1769 if (skb->dev->poll && netpoll_rx(skb)) 1770 return NET_RX_DROP; 1771 1772 if (!skb->tstamp.off_sec) 1773 net_timestamp(skb); 1774 1775 if (!skb->iif) 1776 skb->iif = skb->dev->ifindex; 1777 1778 orig_dev = skb_bond(skb); 1779 1780 if (!orig_dev) 1781 return NET_RX_DROP; 1782 1783 __get_cpu_var(netdev_rx_stat).total++; 1784 1785 skb->h.raw = skb->nh.raw = skb->data; 1786 skb->mac_len = skb->nh.raw - skb->mac.raw; 1787 1788 pt_prev = NULL; 1789 1790 rcu_read_lock(); 1791 1792 #ifdef CONFIG_NET_CLS_ACT 1793 if (skb->tc_verd & TC_NCLS) { 1794 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd); 1795 goto ncls; 1796 } 1797 #endif 1798 1799 list_for_each_entry_rcu(ptype, &ptype_all, list) { 1800 if (!ptype->dev || ptype->dev == skb->dev) { 1801 if (pt_prev) 1802 ret = deliver_skb(skb, pt_prev, orig_dev); 1803 pt_prev = ptype; 1804 } 1805 } 1806 1807 #ifdef CONFIG_NET_CLS_ACT 1808 if (pt_prev) { 1809 ret = deliver_skb(skb, pt_prev, orig_dev); 1810 pt_prev = NULL; /* noone else should process this after*/ 1811 } else { 1812 skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd); 1813 } 1814 1815 ret = ing_filter(skb); 1816 1817 if (ret == TC_ACT_SHOT || (ret == TC_ACT_STOLEN)) { 1818 kfree_skb(skb); 1819 goto out; 1820 } 1821 1822 skb->tc_verd = 0; 1823 ncls: 1824 #endif 1825 1826 if (handle_bridge(&skb, &pt_prev, &ret, orig_dev)) 1827 goto out; 1828 1829 type = skb->protocol; 1830 list_for_each_entry_rcu(ptype, &ptype_base[ntohs(type)&15], list) { 1831 if (ptype->type == type && 1832 (!ptype->dev || ptype->dev == skb->dev)) { 1833 if (pt_prev) 1834 ret = deliver_skb(skb, pt_prev, orig_dev); 1835 pt_prev = ptype; 1836 } 1837 } 1838 1839 if (pt_prev) { 1840 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 1841 } else { 1842 kfree_skb(skb); 1843 /* Jamal, now you will not able to escape explaining 1844 * me how you were going to use this. :-) 1845 */ 1846 ret = NET_RX_DROP; 1847 } 1848 1849 out: 1850 rcu_read_unlock(); 1851 return ret; 1852 } 1853 1854 static int process_backlog(struct net_device *backlog_dev, int *budget) 1855 { 1856 int work = 0; 1857 int quota = min(backlog_dev->quota, *budget); 1858 struct softnet_data *queue = &__get_cpu_var(softnet_data); 1859 unsigned long start_time = jiffies; 1860 1861 backlog_dev->weight = weight_p; 1862 for (;;) { 1863 struct sk_buff *skb; 1864 struct net_device *dev; 1865 1866 local_irq_disable(); 1867 skb = __skb_dequeue(&queue->input_pkt_queue); 1868 if (!skb) 1869 goto job_done; 1870 local_irq_enable(); 1871 1872 dev = skb->dev; 1873 1874 netif_receive_skb(skb); 1875 1876 dev_put(dev); 1877 1878 work++; 1879 1880 if (work >= quota || jiffies - start_time > 1) 1881 break; 1882 1883 } 1884 1885 backlog_dev->quota -= work; 1886 *budget -= work; 1887 return -1; 1888 1889 job_done: 1890 backlog_dev->quota -= work; 1891 *budget -= work; 1892 1893 list_del(&backlog_dev->poll_list); 1894 smp_mb__before_clear_bit(); 1895 netif_poll_enable(backlog_dev); 1896 1897 local_irq_enable(); 1898 return 0; 1899 } 1900 1901 static void net_rx_action(struct softirq_action *h) 1902 { 1903 struct softnet_data *queue = &__get_cpu_var(softnet_data); 1904 unsigned long start_time = jiffies; 1905 int budget = netdev_budget; 1906 void *have; 1907 1908 local_irq_disable(); 1909 1910 while (!list_empty(&queue->poll_list)) { 1911 struct net_device *dev; 1912 1913 if (budget <= 0 || jiffies - start_time > 1) 1914 goto softnet_break; 1915 1916 local_irq_enable(); 1917 1918 dev = list_entry(queue->poll_list.next, 1919 struct net_device, poll_list); 1920 have = netpoll_poll_lock(dev); 1921 1922 if (dev->quota <= 0 || dev->poll(dev, &budget)) { 1923 netpoll_poll_unlock(have); 1924 local_irq_disable(); 1925 list_move_tail(&dev->poll_list, &queue->poll_list); 1926 if (dev->quota < 0) 1927 dev->quota += dev->weight; 1928 else 1929 dev->quota = dev->weight; 1930 } else { 1931 netpoll_poll_unlock(have); 1932 dev_put(dev); 1933 local_irq_disable(); 1934 } 1935 } 1936 out: 1937 #ifdef CONFIG_NET_DMA 1938 /* 1939 * There may not be any more sk_buffs coming right now, so push 1940 * any pending DMA copies to hardware 1941 */ 1942 if (net_dma_client) { 1943 struct dma_chan *chan; 1944 rcu_read_lock(); 1945 list_for_each_entry_rcu(chan, &net_dma_client->channels, client_node) 1946 dma_async_memcpy_issue_pending(chan); 1947 rcu_read_unlock(); 1948 } 1949 #endif 1950 local_irq_enable(); 1951 return; 1952 1953 softnet_break: 1954 __get_cpu_var(netdev_rx_stat).time_squeeze++; 1955 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 1956 goto out; 1957 } 1958 1959 static gifconf_func_t * gifconf_list [NPROTO]; 1960 1961 /** 1962 * register_gifconf - register a SIOCGIF handler 1963 * @family: Address family 1964 * @gifconf: Function handler 1965 * 1966 * Register protocol dependent address dumping routines. The handler 1967 * that is passed must not be freed or reused until it has been replaced 1968 * by another handler. 1969 */ 1970 int register_gifconf(unsigned int family, gifconf_func_t * gifconf) 1971 { 1972 if (family >= NPROTO) 1973 return -EINVAL; 1974 gifconf_list[family] = gifconf; 1975 return 0; 1976 } 1977 1978 1979 /* 1980 * Map an interface index to its name (SIOCGIFNAME) 1981 */ 1982 1983 /* 1984 * We need this ioctl for efficient implementation of the 1985 * if_indextoname() function required by the IPv6 API. Without 1986 * it, we would have to search all the interfaces to find a 1987 * match. --pb 1988 */ 1989 1990 static int dev_ifname(struct ifreq __user *arg) 1991 { 1992 struct net_device *dev; 1993 struct ifreq ifr; 1994 1995 /* 1996 * Fetch the caller's info block. 1997 */ 1998 1999 if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) 2000 return -EFAULT; 2001 2002 read_lock(&dev_base_lock); 2003 dev = __dev_get_by_index(ifr.ifr_ifindex); 2004 if (!dev) { 2005 read_unlock(&dev_base_lock); 2006 return -ENODEV; 2007 } 2008 2009 strcpy(ifr.ifr_name, dev->name); 2010 read_unlock(&dev_base_lock); 2011 2012 if (copy_to_user(arg, &ifr, sizeof(struct ifreq))) 2013 return -EFAULT; 2014 return 0; 2015 } 2016 2017 /* 2018 * Perform a SIOCGIFCONF call. This structure will change 2019 * size eventually, and there is nothing I can do about it. 2020 * Thus we will need a 'compatibility mode'. 2021 */ 2022 2023 static int dev_ifconf(char __user *arg) 2024 { 2025 struct ifconf ifc; 2026 struct net_device *dev; 2027 char __user *pos; 2028 int len; 2029 int total; 2030 int i; 2031 2032 /* 2033 * Fetch the caller's info block. 2034 */ 2035 2036 if (copy_from_user(&ifc, arg, sizeof(struct ifconf))) 2037 return -EFAULT; 2038 2039 pos = ifc.ifc_buf; 2040 len = ifc.ifc_len; 2041 2042 /* 2043 * Loop over the interfaces, and write an info block for each. 2044 */ 2045 2046 total = 0; 2047 for (dev = dev_base; dev; dev = dev->next) { 2048 for (i = 0; i < NPROTO; i++) { 2049 if (gifconf_list[i]) { 2050 int done; 2051 if (!pos) 2052 done = gifconf_list[i](dev, NULL, 0); 2053 else 2054 done = gifconf_list[i](dev, pos + total, 2055 len - total); 2056 if (done < 0) 2057 return -EFAULT; 2058 total += done; 2059 } 2060 } 2061 } 2062 2063 /* 2064 * All done. Write the updated control block back to the caller. 2065 */ 2066 ifc.ifc_len = total; 2067 2068 /* 2069 * Both BSD and Solaris return 0 here, so we do too. 2070 */ 2071 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0; 2072 } 2073 2074 #ifdef CONFIG_PROC_FS 2075 /* 2076 * This is invoked by the /proc filesystem handler to display a device 2077 * in detail. 2078 */ 2079 static __inline__ struct net_device *dev_get_idx(loff_t pos) 2080 { 2081 struct net_device *dev; 2082 loff_t i; 2083 2084 for (i = 0, dev = dev_base; dev && i < pos; ++i, dev = dev->next); 2085 2086 return i == pos ? dev : NULL; 2087 } 2088 2089 void *dev_seq_start(struct seq_file *seq, loff_t *pos) 2090 { 2091 read_lock(&dev_base_lock); 2092 return *pos ? dev_get_idx(*pos - 1) : SEQ_START_TOKEN; 2093 } 2094 2095 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2096 { 2097 ++*pos; 2098 return v == SEQ_START_TOKEN ? dev_base : ((struct net_device *)v)->next; 2099 } 2100 2101 void dev_seq_stop(struct seq_file *seq, void *v) 2102 { 2103 read_unlock(&dev_base_lock); 2104 } 2105 2106 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev) 2107 { 2108 if (dev->get_stats) { 2109 struct net_device_stats *stats = dev->get_stats(dev); 2110 2111 seq_printf(seq, "%6s:%8lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu " 2112 "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n", 2113 dev->name, stats->rx_bytes, stats->rx_packets, 2114 stats->rx_errors, 2115 stats->rx_dropped + stats->rx_missed_errors, 2116 stats->rx_fifo_errors, 2117 stats->rx_length_errors + stats->rx_over_errors + 2118 stats->rx_crc_errors + stats->rx_frame_errors, 2119 stats->rx_compressed, stats->multicast, 2120 stats->tx_bytes, stats->tx_packets, 2121 stats->tx_errors, stats->tx_dropped, 2122 stats->tx_fifo_errors, stats->collisions, 2123 stats->tx_carrier_errors + 2124 stats->tx_aborted_errors + 2125 stats->tx_window_errors + 2126 stats->tx_heartbeat_errors, 2127 stats->tx_compressed); 2128 } else 2129 seq_printf(seq, "%6s: No statistics available.\n", dev->name); 2130 } 2131 2132 /* 2133 * Called from the PROCfs module. This now uses the new arbitrary sized 2134 * /proc/net interface to create /proc/net/dev 2135 */ 2136 static int dev_seq_show(struct seq_file *seq, void *v) 2137 { 2138 if (v == SEQ_START_TOKEN) 2139 seq_puts(seq, "Inter-| Receive " 2140 " | Transmit\n" 2141 " face |bytes packets errs drop fifo frame " 2142 "compressed multicast|bytes packets errs " 2143 "drop fifo colls carrier compressed\n"); 2144 else 2145 dev_seq_printf_stats(seq, v); 2146 return 0; 2147 } 2148 2149 static struct netif_rx_stats *softnet_get_online(loff_t *pos) 2150 { 2151 struct netif_rx_stats *rc = NULL; 2152 2153 while (*pos < NR_CPUS) 2154 if (cpu_online(*pos)) { 2155 rc = &per_cpu(netdev_rx_stat, *pos); 2156 break; 2157 } else 2158 ++*pos; 2159 return rc; 2160 } 2161 2162 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos) 2163 { 2164 return softnet_get_online(pos); 2165 } 2166 2167 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2168 { 2169 ++*pos; 2170 return softnet_get_online(pos); 2171 } 2172 2173 static void softnet_seq_stop(struct seq_file *seq, void *v) 2174 { 2175 } 2176 2177 static int softnet_seq_show(struct seq_file *seq, void *v) 2178 { 2179 struct netif_rx_stats *s = v; 2180 2181 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x\n", 2182 s->total, s->dropped, s->time_squeeze, 0, 2183 0, 0, 0, 0, /* was fastroute */ 2184 s->cpu_collision ); 2185 return 0; 2186 } 2187 2188 static struct seq_operations dev_seq_ops = { 2189 .start = dev_seq_start, 2190 .next = dev_seq_next, 2191 .stop = dev_seq_stop, 2192 .show = dev_seq_show, 2193 }; 2194 2195 static int dev_seq_open(struct inode *inode, struct file *file) 2196 { 2197 return seq_open(file, &dev_seq_ops); 2198 } 2199 2200 static const struct file_operations dev_seq_fops = { 2201 .owner = THIS_MODULE, 2202 .open = dev_seq_open, 2203 .read = seq_read, 2204 .llseek = seq_lseek, 2205 .release = seq_release, 2206 }; 2207 2208 static struct seq_operations softnet_seq_ops = { 2209 .start = softnet_seq_start, 2210 .next = softnet_seq_next, 2211 .stop = softnet_seq_stop, 2212 .show = softnet_seq_show, 2213 }; 2214 2215 static int softnet_seq_open(struct inode *inode, struct file *file) 2216 { 2217 return seq_open(file, &softnet_seq_ops); 2218 } 2219 2220 static const struct file_operations softnet_seq_fops = { 2221 .owner = THIS_MODULE, 2222 .open = softnet_seq_open, 2223 .read = seq_read, 2224 .llseek = seq_lseek, 2225 .release = seq_release, 2226 }; 2227 2228 #ifdef CONFIG_WIRELESS_EXT 2229 extern int wireless_proc_init(void); 2230 #else 2231 #define wireless_proc_init() 0 2232 #endif 2233 2234 static int __init dev_proc_init(void) 2235 { 2236 int rc = -ENOMEM; 2237 2238 if (!proc_net_fops_create("dev", S_IRUGO, &dev_seq_fops)) 2239 goto out; 2240 if (!proc_net_fops_create("softnet_stat", S_IRUGO, &softnet_seq_fops)) 2241 goto out_dev; 2242 if (wireless_proc_init()) 2243 goto out_softnet; 2244 rc = 0; 2245 out: 2246 return rc; 2247 out_softnet: 2248 proc_net_remove("softnet_stat"); 2249 out_dev: 2250 proc_net_remove("dev"); 2251 goto out; 2252 } 2253 #else 2254 #define dev_proc_init() 0 2255 #endif /* CONFIG_PROC_FS */ 2256 2257 2258 /** 2259 * netdev_set_master - set up master/slave pair 2260 * @slave: slave device 2261 * @master: new master device 2262 * 2263 * Changes the master device of the slave. Pass %NULL to break the 2264 * bonding. The caller must hold the RTNL semaphore. On a failure 2265 * a negative errno code is returned. On success the reference counts 2266 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the 2267 * function returns zero. 2268 */ 2269 int netdev_set_master(struct net_device *slave, struct net_device *master) 2270 { 2271 struct net_device *old = slave->master; 2272 2273 ASSERT_RTNL(); 2274 2275 if (master) { 2276 if (old) 2277 return -EBUSY; 2278 dev_hold(master); 2279 } 2280 2281 slave->master = master; 2282 2283 synchronize_net(); 2284 2285 if (old) 2286 dev_put(old); 2287 2288 if (master) 2289 slave->flags |= IFF_SLAVE; 2290 else 2291 slave->flags &= ~IFF_SLAVE; 2292 2293 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE); 2294 return 0; 2295 } 2296 2297 /** 2298 * dev_set_promiscuity - update promiscuity count on a device 2299 * @dev: device 2300 * @inc: modifier 2301 * 2302 * Add or remove promiscuity from a device. While the count in the device 2303 * remains above zero the interface remains promiscuous. Once it hits zero 2304 * the device reverts back to normal filtering operation. A negative inc 2305 * value is used to drop promiscuity on the device. 2306 */ 2307 void dev_set_promiscuity(struct net_device *dev, int inc) 2308 { 2309 unsigned short old_flags = dev->flags; 2310 2311 if ((dev->promiscuity += inc) == 0) 2312 dev->flags &= ~IFF_PROMISC; 2313 else 2314 dev->flags |= IFF_PROMISC; 2315 if (dev->flags != old_flags) { 2316 dev_mc_upload(dev); 2317 printk(KERN_INFO "device %s %s promiscuous mode\n", 2318 dev->name, (dev->flags & IFF_PROMISC) ? "entered" : 2319 "left"); 2320 audit_log(current->audit_context, GFP_ATOMIC, 2321 AUDIT_ANOM_PROMISCUOUS, 2322 "dev=%s prom=%d old_prom=%d auid=%u", 2323 dev->name, (dev->flags & IFF_PROMISC), 2324 (old_flags & IFF_PROMISC), 2325 audit_get_loginuid(current->audit_context)); 2326 } 2327 } 2328 2329 /** 2330 * dev_set_allmulti - update allmulti count on a device 2331 * @dev: device 2332 * @inc: modifier 2333 * 2334 * Add or remove reception of all multicast frames to a device. While the 2335 * count in the device remains above zero the interface remains listening 2336 * to all interfaces. Once it hits zero the device reverts back to normal 2337 * filtering operation. A negative @inc value is used to drop the counter 2338 * when releasing a resource needing all multicasts. 2339 */ 2340 2341 void dev_set_allmulti(struct net_device *dev, int inc) 2342 { 2343 unsigned short old_flags = dev->flags; 2344 2345 dev->flags |= IFF_ALLMULTI; 2346 if ((dev->allmulti += inc) == 0) 2347 dev->flags &= ~IFF_ALLMULTI; 2348 if (dev->flags ^ old_flags) 2349 dev_mc_upload(dev); 2350 } 2351 2352 unsigned dev_get_flags(const struct net_device *dev) 2353 { 2354 unsigned flags; 2355 2356 flags = (dev->flags & ~(IFF_PROMISC | 2357 IFF_ALLMULTI | 2358 IFF_RUNNING | 2359 IFF_LOWER_UP | 2360 IFF_DORMANT)) | 2361 (dev->gflags & (IFF_PROMISC | 2362 IFF_ALLMULTI)); 2363 2364 if (netif_running(dev)) { 2365 if (netif_oper_up(dev)) 2366 flags |= IFF_RUNNING; 2367 if (netif_carrier_ok(dev)) 2368 flags |= IFF_LOWER_UP; 2369 if (netif_dormant(dev)) 2370 flags |= IFF_DORMANT; 2371 } 2372 2373 return flags; 2374 } 2375 2376 int dev_change_flags(struct net_device *dev, unsigned flags) 2377 { 2378 int ret; 2379 int old_flags = dev->flags; 2380 2381 /* 2382 * Set the flags on our device. 2383 */ 2384 2385 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 2386 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 2387 IFF_AUTOMEDIA)) | 2388 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 2389 IFF_ALLMULTI)); 2390 2391 /* 2392 * Load in the correct multicast list now the flags have changed. 2393 */ 2394 2395 dev_mc_upload(dev); 2396 2397 /* 2398 * Have we downed the interface. We handle IFF_UP ourselves 2399 * according to user attempts to set it, rather than blindly 2400 * setting it. 2401 */ 2402 2403 ret = 0; 2404 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */ 2405 ret = ((old_flags & IFF_UP) ? dev_close : dev_open)(dev); 2406 2407 if (!ret) 2408 dev_mc_upload(dev); 2409 } 2410 2411 if (dev->flags & IFF_UP && 2412 ((old_flags ^ dev->flags) &~ (IFF_UP | IFF_PROMISC | IFF_ALLMULTI | 2413 IFF_VOLATILE))) 2414 raw_notifier_call_chain(&netdev_chain, 2415 NETDEV_CHANGE, dev); 2416 2417 if ((flags ^ dev->gflags) & IFF_PROMISC) { 2418 int inc = (flags & IFF_PROMISC) ? +1 : -1; 2419 dev->gflags ^= IFF_PROMISC; 2420 dev_set_promiscuity(dev, inc); 2421 } 2422 2423 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 2424 is important. Some (broken) drivers set IFF_PROMISC, when 2425 IFF_ALLMULTI is requested not asking us and not reporting. 2426 */ 2427 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 2428 int inc = (flags & IFF_ALLMULTI) ? +1 : -1; 2429 dev->gflags ^= IFF_ALLMULTI; 2430 dev_set_allmulti(dev, inc); 2431 } 2432 2433 if (old_flags ^ dev->flags) 2434 rtmsg_ifinfo(RTM_NEWLINK, dev, old_flags ^ dev->flags); 2435 2436 return ret; 2437 } 2438 2439 int dev_set_mtu(struct net_device *dev, int new_mtu) 2440 { 2441 int err; 2442 2443 if (new_mtu == dev->mtu) 2444 return 0; 2445 2446 /* MTU must be positive. */ 2447 if (new_mtu < 0) 2448 return -EINVAL; 2449 2450 if (!netif_device_present(dev)) 2451 return -ENODEV; 2452 2453 err = 0; 2454 if (dev->change_mtu) 2455 err = dev->change_mtu(dev, new_mtu); 2456 else 2457 dev->mtu = new_mtu; 2458 if (!err && dev->flags & IFF_UP) 2459 raw_notifier_call_chain(&netdev_chain, 2460 NETDEV_CHANGEMTU, dev); 2461 return err; 2462 } 2463 2464 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa) 2465 { 2466 int err; 2467 2468 if (!dev->set_mac_address) 2469 return -EOPNOTSUPP; 2470 if (sa->sa_family != dev->type) 2471 return -EINVAL; 2472 if (!netif_device_present(dev)) 2473 return -ENODEV; 2474 err = dev->set_mac_address(dev, sa); 2475 if (!err) 2476 raw_notifier_call_chain(&netdev_chain, 2477 NETDEV_CHANGEADDR, dev); 2478 return err; 2479 } 2480 2481 /* 2482 * Perform the SIOCxIFxxx calls. 2483 */ 2484 static int dev_ifsioc(struct ifreq *ifr, unsigned int cmd) 2485 { 2486 int err; 2487 struct net_device *dev = __dev_get_by_name(ifr->ifr_name); 2488 2489 if (!dev) 2490 return -ENODEV; 2491 2492 switch (cmd) { 2493 case SIOCGIFFLAGS: /* Get interface flags */ 2494 ifr->ifr_flags = dev_get_flags(dev); 2495 return 0; 2496 2497 case SIOCSIFFLAGS: /* Set interface flags */ 2498 return dev_change_flags(dev, ifr->ifr_flags); 2499 2500 case SIOCGIFMETRIC: /* Get the metric on the interface 2501 (currently unused) */ 2502 ifr->ifr_metric = 0; 2503 return 0; 2504 2505 case SIOCSIFMETRIC: /* Set the metric on the interface 2506 (currently unused) */ 2507 return -EOPNOTSUPP; 2508 2509 case SIOCGIFMTU: /* Get the MTU of a device */ 2510 ifr->ifr_mtu = dev->mtu; 2511 return 0; 2512 2513 case SIOCSIFMTU: /* Set the MTU of a device */ 2514 return dev_set_mtu(dev, ifr->ifr_mtu); 2515 2516 case SIOCGIFHWADDR: 2517 if (!dev->addr_len) 2518 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data); 2519 else 2520 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr, 2521 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len)); 2522 ifr->ifr_hwaddr.sa_family = dev->type; 2523 return 0; 2524 2525 case SIOCSIFHWADDR: 2526 return dev_set_mac_address(dev, &ifr->ifr_hwaddr); 2527 2528 case SIOCSIFHWBROADCAST: 2529 if (ifr->ifr_hwaddr.sa_family != dev->type) 2530 return -EINVAL; 2531 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data, 2532 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len)); 2533 raw_notifier_call_chain(&netdev_chain, 2534 NETDEV_CHANGEADDR, dev); 2535 return 0; 2536 2537 case SIOCGIFMAP: 2538 ifr->ifr_map.mem_start = dev->mem_start; 2539 ifr->ifr_map.mem_end = dev->mem_end; 2540 ifr->ifr_map.base_addr = dev->base_addr; 2541 ifr->ifr_map.irq = dev->irq; 2542 ifr->ifr_map.dma = dev->dma; 2543 ifr->ifr_map.port = dev->if_port; 2544 return 0; 2545 2546 case SIOCSIFMAP: 2547 if (dev->set_config) { 2548 if (!netif_device_present(dev)) 2549 return -ENODEV; 2550 return dev->set_config(dev, &ifr->ifr_map); 2551 } 2552 return -EOPNOTSUPP; 2553 2554 case SIOCADDMULTI: 2555 if (!dev->set_multicast_list || 2556 ifr->ifr_hwaddr.sa_family != AF_UNSPEC) 2557 return -EINVAL; 2558 if (!netif_device_present(dev)) 2559 return -ENODEV; 2560 return dev_mc_add(dev, ifr->ifr_hwaddr.sa_data, 2561 dev->addr_len, 1); 2562 2563 case SIOCDELMULTI: 2564 if (!dev->set_multicast_list || 2565 ifr->ifr_hwaddr.sa_family != AF_UNSPEC) 2566 return -EINVAL; 2567 if (!netif_device_present(dev)) 2568 return -ENODEV; 2569 return dev_mc_delete(dev, ifr->ifr_hwaddr.sa_data, 2570 dev->addr_len, 1); 2571 2572 case SIOCGIFINDEX: 2573 ifr->ifr_ifindex = dev->ifindex; 2574 return 0; 2575 2576 case SIOCGIFTXQLEN: 2577 ifr->ifr_qlen = dev->tx_queue_len; 2578 return 0; 2579 2580 case SIOCSIFTXQLEN: 2581 if (ifr->ifr_qlen < 0) 2582 return -EINVAL; 2583 dev->tx_queue_len = ifr->ifr_qlen; 2584 return 0; 2585 2586 case SIOCSIFNAME: 2587 ifr->ifr_newname[IFNAMSIZ-1] = '\0'; 2588 return dev_change_name(dev, ifr->ifr_newname); 2589 2590 /* 2591 * Unknown or private ioctl 2592 */ 2593 2594 default: 2595 if ((cmd >= SIOCDEVPRIVATE && 2596 cmd <= SIOCDEVPRIVATE + 15) || 2597 cmd == SIOCBONDENSLAVE || 2598 cmd == SIOCBONDRELEASE || 2599 cmd == SIOCBONDSETHWADDR || 2600 cmd == SIOCBONDSLAVEINFOQUERY || 2601 cmd == SIOCBONDINFOQUERY || 2602 cmd == SIOCBONDCHANGEACTIVE || 2603 cmd == SIOCGMIIPHY || 2604 cmd == SIOCGMIIREG || 2605 cmd == SIOCSMIIREG || 2606 cmd == SIOCBRADDIF || 2607 cmd == SIOCBRDELIF || 2608 cmd == SIOCWANDEV) { 2609 err = -EOPNOTSUPP; 2610 if (dev->do_ioctl) { 2611 if (netif_device_present(dev)) 2612 err = dev->do_ioctl(dev, ifr, 2613 cmd); 2614 else 2615 err = -ENODEV; 2616 } 2617 } else 2618 err = -EINVAL; 2619 2620 } 2621 return err; 2622 } 2623 2624 /* 2625 * This function handles all "interface"-type I/O control requests. The actual 2626 * 'doing' part of this is dev_ifsioc above. 2627 */ 2628 2629 /** 2630 * dev_ioctl - network device ioctl 2631 * @cmd: command to issue 2632 * @arg: pointer to a struct ifreq in user space 2633 * 2634 * Issue ioctl functions to devices. This is normally called by the 2635 * user space syscall interfaces but can sometimes be useful for 2636 * other purposes. The return value is the return from the syscall if 2637 * positive or a negative errno code on error. 2638 */ 2639 2640 int dev_ioctl(unsigned int cmd, void __user *arg) 2641 { 2642 struct ifreq ifr; 2643 int ret; 2644 char *colon; 2645 2646 /* One special case: SIOCGIFCONF takes ifconf argument 2647 and requires shared lock, because it sleeps writing 2648 to user space. 2649 */ 2650 2651 if (cmd == SIOCGIFCONF) { 2652 rtnl_lock(); 2653 ret = dev_ifconf((char __user *) arg); 2654 rtnl_unlock(); 2655 return ret; 2656 } 2657 if (cmd == SIOCGIFNAME) 2658 return dev_ifname((struct ifreq __user *)arg); 2659 2660 if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) 2661 return -EFAULT; 2662 2663 ifr.ifr_name[IFNAMSIZ-1] = 0; 2664 2665 colon = strchr(ifr.ifr_name, ':'); 2666 if (colon) 2667 *colon = 0; 2668 2669 /* 2670 * See which interface the caller is talking about. 2671 */ 2672 2673 switch (cmd) { 2674 /* 2675 * These ioctl calls: 2676 * - can be done by all. 2677 * - atomic and do not require locking. 2678 * - return a value 2679 */ 2680 case SIOCGIFFLAGS: 2681 case SIOCGIFMETRIC: 2682 case SIOCGIFMTU: 2683 case SIOCGIFHWADDR: 2684 case SIOCGIFSLAVE: 2685 case SIOCGIFMAP: 2686 case SIOCGIFINDEX: 2687 case SIOCGIFTXQLEN: 2688 dev_load(ifr.ifr_name); 2689 read_lock(&dev_base_lock); 2690 ret = dev_ifsioc(&ifr, cmd); 2691 read_unlock(&dev_base_lock); 2692 if (!ret) { 2693 if (colon) 2694 *colon = ':'; 2695 if (copy_to_user(arg, &ifr, 2696 sizeof(struct ifreq))) 2697 ret = -EFAULT; 2698 } 2699 return ret; 2700 2701 case SIOCETHTOOL: 2702 dev_load(ifr.ifr_name); 2703 rtnl_lock(); 2704 ret = dev_ethtool(&ifr); 2705 rtnl_unlock(); 2706 if (!ret) { 2707 if (colon) 2708 *colon = ':'; 2709 if (copy_to_user(arg, &ifr, 2710 sizeof(struct ifreq))) 2711 ret = -EFAULT; 2712 } 2713 return ret; 2714 2715 /* 2716 * These ioctl calls: 2717 * - require superuser power. 2718 * - require strict serialization. 2719 * - return a value 2720 */ 2721 case SIOCGMIIPHY: 2722 case SIOCGMIIREG: 2723 case SIOCSIFNAME: 2724 if (!capable(CAP_NET_ADMIN)) 2725 return -EPERM; 2726 dev_load(ifr.ifr_name); 2727 rtnl_lock(); 2728 ret = dev_ifsioc(&ifr, cmd); 2729 rtnl_unlock(); 2730 if (!ret) { 2731 if (colon) 2732 *colon = ':'; 2733 if (copy_to_user(arg, &ifr, 2734 sizeof(struct ifreq))) 2735 ret = -EFAULT; 2736 } 2737 return ret; 2738 2739 /* 2740 * These ioctl calls: 2741 * - require superuser power. 2742 * - require strict serialization. 2743 * - do not return a value 2744 */ 2745 case SIOCSIFFLAGS: 2746 case SIOCSIFMETRIC: 2747 case SIOCSIFMTU: 2748 case SIOCSIFMAP: 2749 case SIOCSIFHWADDR: 2750 case SIOCSIFSLAVE: 2751 case SIOCADDMULTI: 2752 case SIOCDELMULTI: 2753 case SIOCSIFHWBROADCAST: 2754 case SIOCSIFTXQLEN: 2755 case SIOCSMIIREG: 2756 case SIOCBONDENSLAVE: 2757 case SIOCBONDRELEASE: 2758 case SIOCBONDSETHWADDR: 2759 case SIOCBONDCHANGEACTIVE: 2760 case SIOCBRADDIF: 2761 case SIOCBRDELIF: 2762 if (!capable(CAP_NET_ADMIN)) 2763 return -EPERM; 2764 /* fall through */ 2765 case SIOCBONDSLAVEINFOQUERY: 2766 case SIOCBONDINFOQUERY: 2767 dev_load(ifr.ifr_name); 2768 rtnl_lock(); 2769 ret = dev_ifsioc(&ifr, cmd); 2770 rtnl_unlock(); 2771 return ret; 2772 2773 case SIOCGIFMEM: 2774 /* Get the per device memory space. We can add this but 2775 * currently do not support it */ 2776 case SIOCSIFMEM: 2777 /* Set the per device memory buffer space. 2778 * Not applicable in our case */ 2779 case SIOCSIFLINK: 2780 return -EINVAL; 2781 2782 /* 2783 * Unknown or private ioctl. 2784 */ 2785 default: 2786 if (cmd == SIOCWANDEV || 2787 (cmd >= SIOCDEVPRIVATE && 2788 cmd <= SIOCDEVPRIVATE + 15)) { 2789 dev_load(ifr.ifr_name); 2790 rtnl_lock(); 2791 ret = dev_ifsioc(&ifr, cmd); 2792 rtnl_unlock(); 2793 if (!ret && copy_to_user(arg, &ifr, 2794 sizeof(struct ifreq))) 2795 ret = -EFAULT; 2796 return ret; 2797 } 2798 #ifdef CONFIG_WIRELESS_EXT 2799 /* Take care of Wireless Extensions */ 2800 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) { 2801 /* If command is `set a parameter', or 2802 * `get the encoding parameters', check if 2803 * the user has the right to do it */ 2804 if (IW_IS_SET(cmd) || cmd == SIOCGIWENCODE 2805 || cmd == SIOCGIWENCODEEXT) { 2806 if (!capable(CAP_NET_ADMIN)) 2807 return -EPERM; 2808 } 2809 dev_load(ifr.ifr_name); 2810 rtnl_lock(); 2811 /* Follow me in net/core/wireless.c */ 2812 ret = wireless_process_ioctl(&ifr, cmd); 2813 rtnl_unlock(); 2814 if (IW_IS_GET(cmd) && 2815 copy_to_user(arg, &ifr, 2816 sizeof(struct ifreq))) 2817 ret = -EFAULT; 2818 return ret; 2819 } 2820 #endif /* CONFIG_WIRELESS_EXT */ 2821 return -EINVAL; 2822 } 2823 } 2824 2825 2826 /** 2827 * dev_new_index - allocate an ifindex 2828 * 2829 * Returns a suitable unique value for a new device interface 2830 * number. The caller must hold the rtnl semaphore or the 2831 * dev_base_lock to be sure it remains unique. 2832 */ 2833 static int dev_new_index(void) 2834 { 2835 static int ifindex; 2836 for (;;) { 2837 if (++ifindex <= 0) 2838 ifindex = 1; 2839 if (!__dev_get_by_index(ifindex)) 2840 return ifindex; 2841 } 2842 } 2843 2844 static int dev_boot_phase = 1; 2845 2846 /* Delayed registration/unregisteration */ 2847 static DEFINE_SPINLOCK(net_todo_list_lock); 2848 static struct list_head net_todo_list = LIST_HEAD_INIT(net_todo_list); 2849 2850 static inline void net_set_todo(struct net_device *dev) 2851 { 2852 spin_lock(&net_todo_list_lock); 2853 list_add_tail(&dev->todo_list, &net_todo_list); 2854 spin_unlock(&net_todo_list_lock); 2855 } 2856 2857 /** 2858 * register_netdevice - register a network device 2859 * @dev: device to register 2860 * 2861 * Take a completed network device structure and add it to the kernel 2862 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 2863 * chain. 0 is returned on success. A negative errno code is returned 2864 * on a failure to set up the device, or if the name is a duplicate. 2865 * 2866 * Callers must hold the rtnl semaphore. You may want 2867 * register_netdev() instead of this. 2868 * 2869 * BUGS: 2870 * The locking appears insufficient to guarantee two parallel registers 2871 * will not get the same name. 2872 */ 2873 2874 int register_netdevice(struct net_device *dev) 2875 { 2876 struct hlist_head *head; 2877 struct hlist_node *p; 2878 int ret; 2879 2880 BUG_ON(dev_boot_phase); 2881 ASSERT_RTNL(); 2882 2883 might_sleep(); 2884 2885 /* When net_device's are persistent, this will be fatal. */ 2886 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 2887 2888 spin_lock_init(&dev->queue_lock); 2889 spin_lock_init(&dev->_xmit_lock); 2890 dev->xmit_lock_owner = -1; 2891 #ifdef CONFIG_NET_CLS_ACT 2892 spin_lock_init(&dev->ingress_lock); 2893 #endif 2894 2895 dev->iflink = -1; 2896 2897 /* Init, if this function is available */ 2898 if (dev->init) { 2899 ret = dev->init(dev); 2900 if (ret) { 2901 if (ret > 0) 2902 ret = -EIO; 2903 goto out; 2904 } 2905 } 2906 2907 if (!dev_valid_name(dev->name)) { 2908 ret = -EINVAL; 2909 goto out; 2910 } 2911 2912 dev->ifindex = dev_new_index(); 2913 if (dev->iflink == -1) 2914 dev->iflink = dev->ifindex; 2915 2916 /* Check for existence of name */ 2917 head = dev_name_hash(dev->name); 2918 hlist_for_each(p, head) { 2919 struct net_device *d 2920 = hlist_entry(p, struct net_device, name_hlist); 2921 if (!strncmp(d->name, dev->name, IFNAMSIZ)) { 2922 ret = -EEXIST; 2923 goto out; 2924 } 2925 } 2926 2927 /* Fix illegal SG+CSUM combinations. */ 2928 if ((dev->features & NETIF_F_SG) && 2929 !(dev->features & NETIF_F_ALL_CSUM)) { 2930 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no checksum feature.\n", 2931 dev->name); 2932 dev->features &= ~NETIF_F_SG; 2933 } 2934 2935 /* TSO requires that SG is present as well. */ 2936 if ((dev->features & NETIF_F_TSO) && 2937 !(dev->features & NETIF_F_SG)) { 2938 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no SG feature.\n", 2939 dev->name); 2940 dev->features &= ~NETIF_F_TSO; 2941 } 2942 if (dev->features & NETIF_F_UFO) { 2943 if (!(dev->features & NETIF_F_HW_CSUM)) { 2944 printk(KERN_ERR "%s: Dropping NETIF_F_UFO since no " 2945 "NETIF_F_HW_CSUM feature.\n", 2946 dev->name); 2947 dev->features &= ~NETIF_F_UFO; 2948 } 2949 if (!(dev->features & NETIF_F_SG)) { 2950 printk(KERN_ERR "%s: Dropping NETIF_F_UFO since no " 2951 "NETIF_F_SG feature.\n", 2952 dev->name); 2953 dev->features &= ~NETIF_F_UFO; 2954 } 2955 } 2956 2957 /* 2958 * nil rebuild_header routine, 2959 * that should be never called and used as just bug trap. 2960 */ 2961 2962 if (!dev->rebuild_header) 2963 dev->rebuild_header = default_rebuild_header; 2964 2965 ret = netdev_register_sysfs(dev); 2966 if (ret) 2967 goto out; 2968 dev->reg_state = NETREG_REGISTERED; 2969 2970 /* 2971 * Default initial state at registry is that the 2972 * device is present. 2973 */ 2974 2975 set_bit(__LINK_STATE_PRESENT, &dev->state); 2976 2977 dev->next = NULL; 2978 dev_init_scheduler(dev); 2979 write_lock_bh(&dev_base_lock); 2980 *dev_tail = dev; 2981 dev_tail = &dev->next; 2982 hlist_add_head(&dev->name_hlist, head); 2983 hlist_add_head(&dev->index_hlist, dev_index_hash(dev->ifindex)); 2984 dev_hold(dev); 2985 write_unlock_bh(&dev_base_lock); 2986 2987 /* Notify protocols, that a new device appeared. */ 2988 raw_notifier_call_chain(&netdev_chain, NETDEV_REGISTER, dev); 2989 2990 ret = 0; 2991 2992 out: 2993 return ret; 2994 } 2995 2996 /** 2997 * register_netdev - register a network device 2998 * @dev: device to register 2999 * 3000 * Take a completed network device structure and add it to the kernel 3001 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 3002 * chain. 0 is returned on success. A negative errno code is returned 3003 * on a failure to set up the device, or if the name is a duplicate. 3004 * 3005 * This is a wrapper around register_netdev that takes the rtnl semaphore 3006 * and expands the device name if you passed a format string to 3007 * alloc_netdev. 3008 */ 3009 int register_netdev(struct net_device *dev) 3010 { 3011 int err; 3012 3013 rtnl_lock(); 3014 3015 /* 3016 * If the name is a format string the caller wants us to do a 3017 * name allocation. 3018 */ 3019 if (strchr(dev->name, '%')) { 3020 err = dev_alloc_name(dev, dev->name); 3021 if (err < 0) 3022 goto out; 3023 } 3024 3025 err = register_netdevice(dev); 3026 out: 3027 rtnl_unlock(); 3028 return err; 3029 } 3030 EXPORT_SYMBOL(register_netdev); 3031 3032 /* 3033 * netdev_wait_allrefs - wait until all references are gone. 3034 * 3035 * This is called when unregistering network devices. 3036 * 3037 * Any protocol or device that holds a reference should register 3038 * for netdevice notification, and cleanup and put back the 3039 * reference if they receive an UNREGISTER event. 3040 * We can get stuck here if buggy protocols don't correctly 3041 * call dev_put. 3042 */ 3043 static void netdev_wait_allrefs(struct net_device *dev) 3044 { 3045 unsigned long rebroadcast_time, warning_time; 3046 3047 rebroadcast_time = warning_time = jiffies; 3048 while (atomic_read(&dev->refcnt) != 0) { 3049 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 3050 rtnl_lock(); 3051 3052 /* Rebroadcast unregister notification */ 3053 raw_notifier_call_chain(&netdev_chain, 3054 NETDEV_UNREGISTER, dev); 3055 3056 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 3057 &dev->state)) { 3058 /* We must not have linkwatch events 3059 * pending on unregister. If this 3060 * happens, we simply run the queue 3061 * unscheduled, resulting in a noop 3062 * for this device. 3063 */ 3064 linkwatch_run_queue(); 3065 } 3066 3067 __rtnl_unlock(); 3068 3069 rebroadcast_time = jiffies; 3070 } 3071 3072 msleep(250); 3073 3074 if (time_after(jiffies, warning_time + 10 * HZ)) { 3075 printk(KERN_EMERG "unregister_netdevice: " 3076 "waiting for %s to become free. Usage " 3077 "count = %d\n", 3078 dev->name, atomic_read(&dev->refcnt)); 3079 warning_time = jiffies; 3080 } 3081 } 3082 } 3083 3084 /* The sequence is: 3085 * 3086 * rtnl_lock(); 3087 * ... 3088 * register_netdevice(x1); 3089 * register_netdevice(x2); 3090 * ... 3091 * unregister_netdevice(y1); 3092 * unregister_netdevice(y2); 3093 * ... 3094 * rtnl_unlock(); 3095 * free_netdev(y1); 3096 * free_netdev(y2); 3097 * 3098 * We are invoked by rtnl_unlock() after it drops the semaphore. 3099 * This allows us to deal with problems: 3100 * 1) We can delete sysfs objects which invoke hotplug 3101 * without deadlocking with linkwatch via keventd. 3102 * 2) Since we run with the RTNL semaphore not held, we can sleep 3103 * safely in order to wait for the netdev refcnt to drop to zero. 3104 */ 3105 static DEFINE_MUTEX(net_todo_run_mutex); 3106 void netdev_run_todo(void) 3107 { 3108 struct list_head list; 3109 3110 /* Need to guard against multiple cpu's getting out of order. */ 3111 mutex_lock(&net_todo_run_mutex); 3112 3113 /* Not safe to do outside the semaphore. We must not return 3114 * until all unregister events invoked by the local processor 3115 * have been completed (either by this todo run, or one on 3116 * another cpu). 3117 */ 3118 if (list_empty(&net_todo_list)) 3119 goto out; 3120 3121 /* Snapshot list, allow later requests */ 3122 spin_lock(&net_todo_list_lock); 3123 list_replace_init(&net_todo_list, &list); 3124 spin_unlock(&net_todo_list_lock); 3125 3126 while (!list_empty(&list)) { 3127 struct net_device *dev 3128 = list_entry(list.next, struct net_device, todo_list); 3129 list_del(&dev->todo_list); 3130 3131 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 3132 printk(KERN_ERR "network todo '%s' but state %d\n", 3133 dev->name, dev->reg_state); 3134 dump_stack(); 3135 continue; 3136 } 3137 3138 netdev_unregister_sysfs(dev); 3139 dev->reg_state = NETREG_UNREGISTERED; 3140 3141 netdev_wait_allrefs(dev); 3142 3143 /* paranoia */ 3144 BUG_ON(atomic_read(&dev->refcnt)); 3145 BUG_TRAP(!dev->ip_ptr); 3146 BUG_TRAP(!dev->ip6_ptr); 3147 BUG_TRAP(!dev->dn_ptr); 3148 3149 /* It must be the very last action, 3150 * after this 'dev' may point to freed up memory. 3151 */ 3152 if (dev->destructor) 3153 dev->destructor(dev); 3154 } 3155 3156 out: 3157 mutex_unlock(&net_todo_run_mutex); 3158 } 3159 3160 /** 3161 * alloc_netdev - allocate network device 3162 * @sizeof_priv: size of private data to allocate space for 3163 * @name: device name format string 3164 * @setup: callback to initialize device 3165 * 3166 * Allocates a struct net_device with private data area for driver use 3167 * and performs basic initialization. 3168 */ 3169 struct net_device *alloc_netdev(int sizeof_priv, const char *name, 3170 void (*setup)(struct net_device *)) 3171 { 3172 void *p; 3173 struct net_device *dev; 3174 int alloc_size; 3175 3176 BUG_ON(strlen(name) >= sizeof(dev->name)); 3177 3178 /* ensure 32-byte alignment of both the device and private area */ 3179 alloc_size = (sizeof(*dev) + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST; 3180 alloc_size += sizeof_priv + NETDEV_ALIGN_CONST; 3181 3182 p = kzalloc(alloc_size, GFP_KERNEL); 3183 if (!p) { 3184 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n"); 3185 return NULL; 3186 } 3187 3188 dev = (struct net_device *) 3189 (((long)p + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST); 3190 dev->padded = (char *)dev - (char *)p; 3191 3192 if (sizeof_priv) 3193 dev->priv = netdev_priv(dev); 3194 3195 setup(dev); 3196 strcpy(dev->name, name); 3197 return dev; 3198 } 3199 EXPORT_SYMBOL(alloc_netdev); 3200 3201 /** 3202 * free_netdev - free network device 3203 * @dev: device 3204 * 3205 * This function does the last stage of destroying an allocated device 3206 * interface. The reference to the device object is released. 3207 * If this is the last reference then it will be freed. 3208 */ 3209 void free_netdev(struct net_device *dev) 3210 { 3211 #ifdef CONFIG_SYSFS 3212 /* Compatibility with error handling in drivers */ 3213 if (dev->reg_state == NETREG_UNINITIALIZED) { 3214 kfree((char *)dev - dev->padded); 3215 return; 3216 } 3217 3218 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 3219 dev->reg_state = NETREG_RELEASED; 3220 3221 /* will free via device release */ 3222 put_device(&dev->dev); 3223 #else 3224 kfree((char *)dev - dev->padded); 3225 #endif 3226 } 3227 3228 /* Synchronize with packet receive processing. */ 3229 void synchronize_net(void) 3230 { 3231 might_sleep(); 3232 synchronize_rcu(); 3233 } 3234 3235 /** 3236 * unregister_netdevice - remove device from the kernel 3237 * @dev: device 3238 * 3239 * This function shuts down a device interface and removes it 3240 * from the kernel tables. On success 0 is returned, on a failure 3241 * a negative errno code is returned. 3242 * 3243 * Callers must hold the rtnl semaphore. You may want 3244 * unregister_netdev() instead of this. 3245 */ 3246 3247 void unregister_netdevice(struct net_device *dev) 3248 { 3249 struct net_device *d, **dp; 3250 3251 BUG_ON(dev_boot_phase); 3252 ASSERT_RTNL(); 3253 3254 /* Some devices call without registering for initialization unwind. */ 3255 if (dev->reg_state == NETREG_UNINITIALIZED) { 3256 printk(KERN_DEBUG "unregister_netdevice: device %s/%p never " 3257 "was registered\n", dev->name, dev); 3258 3259 WARN_ON(1); 3260 return; 3261 } 3262 3263 BUG_ON(dev->reg_state != NETREG_REGISTERED); 3264 3265 /* If device is running, close it first. */ 3266 if (dev->flags & IFF_UP) 3267 dev_close(dev); 3268 3269 /* And unlink it from device chain. */ 3270 for (dp = &dev_base; (d = *dp) != NULL; dp = &d->next) { 3271 if (d == dev) { 3272 write_lock_bh(&dev_base_lock); 3273 hlist_del(&dev->name_hlist); 3274 hlist_del(&dev->index_hlist); 3275 if (dev_tail == &dev->next) 3276 dev_tail = dp; 3277 *dp = d->next; 3278 write_unlock_bh(&dev_base_lock); 3279 break; 3280 } 3281 } 3282 BUG_ON(!d); 3283 3284 dev->reg_state = NETREG_UNREGISTERING; 3285 3286 synchronize_net(); 3287 3288 /* Shutdown queueing discipline. */ 3289 dev_shutdown(dev); 3290 3291 3292 /* Notify protocols, that we are about to destroy 3293 this device. They should clean all the things. 3294 */ 3295 raw_notifier_call_chain(&netdev_chain, NETDEV_UNREGISTER, dev); 3296 3297 /* 3298 * Flush the multicast chain 3299 */ 3300 dev_mc_discard(dev); 3301 3302 if (dev->uninit) 3303 dev->uninit(dev); 3304 3305 /* Notifier chain MUST detach us from master device. */ 3306 BUG_TRAP(!dev->master); 3307 3308 /* Finish processing unregister after unlock */ 3309 net_set_todo(dev); 3310 3311 synchronize_net(); 3312 3313 dev_put(dev); 3314 } 3315 3316 /** 3317 * unregister_netdev - remove device from the kernel 3318 * @dev: device 3319 * 3320 * This function shuts down a device interface and removes it 3321 * from the kernel tables. On success 0 is returned, on a failure 3322 * a negative errno code is returned. 3323 * 3324 * This is just a wrapper for unregister_netdevice that takes 3325 * the rtnl semaphore. In general you want to use this and not 3326 * unregister_netdevice. 3327 */ 3328 void unregister_netdev(struct net_device *dev) 3329 { 3330 rtnl_lock(); 3331 unregister_netdevice(dev); 3332 rtnl_unlock(); 3333 } 3334 3335 EXPORT_SYMBOL(unregister_netdev); 3336 3337 static int dev_cpu_callback(struct notifier_block *nfb, 3338 unsigned long action, 3339 void *ocpu) 3340 { 3341 struct sk_buff **list_skb; 3342 struct net_device **list_net; 3343 struct sk_buff *skb; 3344 unsigned int cpu, oldcpu = (unsigned long)ocpu; 3345 struct softnet_data *sd, *oldsd; 3346 3347 if (action != CPU_DEAD) 3348 return NOTIFY_OK; 3349 3350 local_irq_disable(); 3351 cpu = smp_processor_id(); 3352 sd = &per_cpu(softnet_data, cpu); 3353 oldsd = &per_cpu(softnet_data, oldcpu); 3354 3355 /* Find end of our completion_queue. */ 3356 list_skb = &sd->completion_queue; 3357 while (*list_skb) 3358 list_skb = &(*list_skb)->next; 3359 /* Append completion queue from offline CPU. */ 3360 *list_skb = oldsd->completion_queue; 3361 oldsd->completion_queue = NULL; 3362 3363 /* Find end of our output_queue. */ 3364 list_net = &sd->output_queue; 3365 while (*list_net) 3366 list_net = &(*list_net)->next_sched; 3367 /* Append output queue from offline CPU. */ 3368 *list_net = oldsd->output_queue; 3369 oldsd->output_queue = NULL; 3370 3371 raise_softirq_irqoff(NET_TX_SOFTIRQ); 3372 local_irq_enable(); 3373 3374 /* Process offline CPU's input_pkt_queue */ 3375 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) 3376 netif_rx(skb); 3377 3378 return NOTIFY_OK; 3379 } 3380 3381 #ifdef CONFIG_NET_DMA 3382 /** 3383 * net_dma_rebalance - 3384 * This is called when the number of channels allocated to the net_dma_client 3385 * changes. The net_dma_client tries to have one DMA channel per CPU. 3386 */ 3387 static void net_dma_rebalance(void) 3388 { 3389 unsigned int cpu, i, n; 3390 struct dma_chan *chan; 3391 3392 if (net_dma_count == 0) { 3393 for_each_online_cpu(cpu) 3394 rcu_assign_pointer(per_cpu(softnet_data, cpu).net_dma, NULL); 3395 return; 3396 } 3397 3398 i = 0; 3399 cpu = first_cpu(cpu_online_map); 3400 3401 rcu_read_lock(); 3402 list_for_each_entry(chan, &net_dma_client->channels, client_node) { 3403 n = ((num_online_cpus() / net_dma_count) 3404 + (i < (num_online_cpus() % net_dma_count) ? 1 : 0)); 3405 3406 while(n) { 3407 per_cpu(softnet_data, cpu).net_dma = chan; 3408 cpu = next_cpu(cpu, cpu_online_map); 3409 n--; 3410 } 3411 i++; 3412 } 3413 rcu_read_unlock(); 3414 } 3415 3416 /** 3417 * netdev_dma_event - event callback for the net_dma_client 3418 * @client: should always be net_dma_client 3419 * @chan: DMA channel for the event 3420 * @event: event type 3421 */ 3422 static void netdev_dma_event(struct dma_client *client, struct dma_chan *chan, 3423 enum dma_event event) 3424 { 3425 spin_lock(&net_dma_event_lock); 3426 switch (event) { 3427 case DMA_RESOURCE_ADDED: 3428 net_dma_count++; 3429 net_dma_rebalance(); 3430 break; 3431 case DMA_RESOURCE_REMOVED: 3432 net_dma_count--; 3433 net_dma_rebalance(); 3434 break; 3435 default: 3436 break; 3437 } 3438 spin_unlock(&net_dma_event_lock); 3439 } 3440 3441 /** 3442 * netdev_dma_regiser - register the networking subsystem as a DMA client 3443 */ 3444 static int __init netdev_dma_register(void) 3445 { 3446 spin_lock_init(&net_dma_event_lock); 3447 net_dma_client = dma_async_client_register(netdev_dma_event); 3448 if (net_dma_client == NULL) 3449 return -ENOMEM; 3450 3451 dma_async_client_chan_request(net_dma_client, num_online_cpus()); 3452 return 0; 3453 } 3454 3455 #else 3456 static int __init netdev_dma_register(void) { return -ENODEV; } 3457 #endif /* CONFIG_NET_DMA */ 3458 3459 /* 3460 * Initialize the DEV module. At boot time this walks the device list and 3461 * unhooks any devices that fail to initialise (normally hardware not 3462 * present) and leaves us with a valid list of present and active devices. 3463 * 3464 */ 3465 3466 /* 3467 * This is called single threaded during boot, so no need 3468 * to take the rtnl semaphore. 3469 */ 3470 static int __init net_dev_init(void) 3471 { 3472 int i, rc = -ENOMEM; 3473 3474 BUG_ON(!dev_boot_phase); 3475 3476 if (dev_proc_init()) 3477 goto out; 3478 3479 if (netdev_sysfs_init()) 3480 goto out; 3481 3482 INIT_LIST_HEAD(&ptype_all); 3483 for (i = 0; i < 16; i++) 3484 INIT_LIST_HEAD(&ptype_base[i]); 3485 3486 for (i = 0; i < ARRAY_SIZE(dev_name_head); i++) 3487 INIT_HLIST_HEAD(&dev_name_head[i]); 3488 3489 for (i = 0; i < ARRAY_SIZE(dev_index_head); i++) 3490 INIT_HLIST_HEAD(&dev_index_head[i]); 3491 3492 /* 3493 * Initialise the packet receive queues. 3494 */ 3495 3496 for_each_possible_cpu(i) { 3497 struct softnet_data *queue; 3498 3499 queue = &per_cpu(softnet_data, i); 3500 skb_queue_head_init(&queue->input_pkt_queue); 3501 queue->completion_queue = NULL; 3502 INIT_LIST_HEAD(&queue->poll_list); 3503 set_bit(__LINK_STATE_START, &queue->backlog_dev.state); 3504 queue->backlog_dev.weight = weight_p; 3505 queue->backlog_dev.poll = process_backlog; 3506 atomic_set(&queue->backlog_dev.refcnt, 1); 3507 } 3508 3509 netdev_dma_register(); 3510 3511 dev_boot_phase = 0; 3512 3513 open_softirq(NET_TX_SOFTIRQ, net_tx_action, NULL); 3514 open_softirq(NET_RX_SOFTIRQ, net_rx_action, NULL); 3515 3516 hotcpu_notifier(dev_cpu_callback, 0); 3517 dst_init(); 3518 dev_mcast_init(); 3519 rc = 0; 3520 out: 3521 return rc; 3522 } 3523 3524 subsys_initcall(net_dev_init); 3525 3526 EXPORT_SYMBOL(__dev_get_by_index); 3527 EXPORT_SYMBOL(__dev_get_by_name); 3528 EXPORT_SYMBOL(__dev_remove_pack); 3529 EXPORT_SYMBOL(dev_valid_name); 3530 EXPORT_SYMBOL(dev_add_pack); 3531 EXPORT_SYMBOL(dev_alloc_name); 3532 EXPORT_SYMBOL(dev_close); 3533 EXPORT_SYMBOL(dev_get_by_flags); 3534 EXPORT_SYMBOL(dev_get_by_index); 3535 EXPORT_SYMBOL(dev_get_by_name); 3536 EXPORT_SYMBOL(dev_open); 3537 EXPORT_SYMBOL(dev_queue_xmit); 3538 EXPORT_SYMBOL(dev_remove_pack); 3539 EXPORT_SYMBOL(dev_set_allmulti); 3540 EXPORT_SYMBOL(dev_set_promiscuity); 3541 EXPORT_SYMBOL(dev_change_flags); 3542 EXPORT_SYMBOL(dev_set_mtu); 3543 EXPORT_SYMBOL(dev_set_mac_address); 3544 EXPORT_SYMBOL(free_netdev); 3545 EXPORT_SYMBOL(netdev_boot_setup_check); 3546 EXPORT_SYMBOL(netdev_set_master); 3547 EXPORT_SYMBOL(netdev_state_change); 3548 EXPORT_SYMBOL(netif_receive_skb); 3549 EXPORT_SYMBOL(netif_rx); 3550 EXPORT_SYMBOL(register_gifconf); 3551 EXPORT_SYMBOL(register_netdevice); 3552 EXPORT_SYMBOL(register_netdevice_notifier); 3553 EXPORT_SYMBOL(skb_checksum_help); 3554 EXPORT_SYMBOL(synchronize_net); 3555 EXPORT_SYMBOL(unregister_netdevice); 3556 EXPORT_SYMBOL(unregister_netdevice_notifier); 3557 EXPORT_SYMBOL(net_enable_timestamp); 3558 EXPORT_SYMBOL(net_disable_timestamp); 3559 EXPORT_SYMBOL(dev_get_flags); 3560 3561 #if defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE) 3562 EXPORT_SYMBOL(br_handle_frame_hook); 3563 EXPORT_SYMBOL(br_fdb_get_hook); 3564 EXPORT_SYMBOL(br_fdb_put_hook); 3565 #endif 3566 3567 #ifdef CONFIG_KMOD 3568 EXPORT_SYMBOL(dev_load); 3569 #endif 3570 3571 EXPORT_PER_CPU_SYMBOL(softnet_data); 3572