xref: /linux/net/core/dev.c (revision b6459415b384cb829f0b2a4268f211c789f6cf0b)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *	Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:	Ross Biro
7  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *	Additional Authors:
11  *		Florian la Roche <rzsfl@rz.uni-sb.de>
12  *		Alan Cox <gw4pts@gw4pts.ampr.org>
13  *		David Hinds <dahinds@users.sourceforge.net>
14  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *		Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *	Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *		Alan Cox	:	device private ioctl copies fields back.
24  *		Alan Cox	:	Transmit queue code does relevant
25  *					stunts to keep the queue safe.
26  *		Alan Cox	:	Fixed double lock.
27  *		Alan Cox	:	Fixed promisc NULL pointer trap
28  *		????????	:	Support the full private ioctl range
29  *		Alan Cox	:	Moved ioctl permission check into
30  *					drivers
31  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
32  *		Alan Cox	:	100 backlog just doesn't cut it when
33  *					you start doing multicast video 8)
34  *		Alan Cox	:	Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *		Alan Cox	:	Took out transmit every packet pass
37  *					Saved a few bytes in the ioctl handler
38  *		Alan Cox	:	Network driver sets packet type before
39  *					calling netif_rx. Saves a function
40  *					call a packet.
41  *		Alan Cox	:	Hashed net_bh()
42  *		Richard Kooijman:	Timestamp fixes.
43  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
44  *		Alan Cox	:	Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *					changes.
47  *		Rudi Cilibrasi	:	Pass the right thing to
48  *					set_mac_address()
49  *		Dave Miller	:	32bit quantity for the device lock to
50  *					make it work out on a Sparc.
51  *		Bjorn Ekwall	:	Added KERNELD hack.
52  *		Alan Cox	:	Cleaned up the backlog initialise.
53  *		Craig Metz	:	SIOCGIFCONF fix if space for under
54  *					1 device.
55  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
56  *					is no device open function.
57  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
58  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
59  *		Cyrus Durgin	:	Cleaned for KMOD
60  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
61  *					A network device unload needs to purge
62  *					the backlog queue.
63  *	Paul Rusty Russell	:	SIOCSIFNAME
64  *              Pekka Riikonen  :	Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *				        - netif_rx() feedback
69  */
70 
71 #include <linux/uaccess.h>
72 #include <linux/bitops.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/rwsem.h>
83 #include <linux/string.h>
84 #include <linux/mm.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/errno.h>
88 #include <linux/interrupt.h>
89 #include <linux/if_ether.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/ethtool.h>
93 #include <linux/skbuff.h>
94 #include <linux/kthread.h>
95 #include <linux/bpf.h>
96 #include <linux/bpf_trace.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <net/busy_poll.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/stat.h>
102 #include <net/dsa.h>
103 #include <net/dst.h>
104 #include <net/dst_metadata.h>
105 #include <net/gro.h>
106 #include <net/pkt_sched.h>
107 #include <net/pkt_cls.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <linux/highmem.h>
111 #include <linux/init.h>
112 #include <linux/module.h>
113 #include <linux/netpoll.h>
114 #include <linux/rcupdate.h>
115 #include <linux/delay.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <net/mpls.h>
127 #include <linux/ipv6.h>
128 #include <linux/in.h>
129 #include <linux/jhash.h>
130 #include <linux/random.h>
131 #include <trace/events/napi.h>
132 #include <trace/events/net.h>
133 #include <trace/events/skb.h>
134 #include <trace/events/qdisc.h>
135 #include <linux/inetdevice.h>
136 #include <linux/cpu_rmap.h>
137 #include <linux/static_key.h>
138 #include <linux/hashtable.h>
139 #include <linux/vmalloc.h>
140 #include <linux/if_macvlan.h>
141 #include <linux/errqueue.h>
142 #include <linux/hrtimer.h>
143 #include <linux/netfilter_netdev.h>
144 #include <linux/crash_dump.h>
145 #include <linux/sctp.h>
146 #include <net/udp_tunnel.h>
147 #include <linux/net_namespace.h>
148 #include <linux/indirect_call_wrapper.h>
149 #include <net/devlink.h>
150 #include <linux/pm_runtime.h>
151 #include <linux/prandom.h>
152 #include <linux/once_lite.h>
153 
154 #include "net-sysfs.h"
155 
156 
157 static DEFINE_SPINLOCK(ptype_lock);
158 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
159 struct list_head ptype_all __read_mostly;	/* Taps */
160 
161 static int netif_rx_internal(struct sk_buff *skb);
162 static int call_netdevice_notifiers_info(unsigned long val,
163 					 struct netdev_notifier_info *info);
164 static int call_netdevice_notifiers_extack(unsigned long val,
165 					   struct net_device *dev,
166 					   struct netlink_ext_ack *extack);
167 static struct napi_struct *napi_by_id(unsigned int napi_id);
168 
169 /*
170  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
171  * semaphore.
172  *
173  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
174  *
175  * Writers must hold the rtnl semaphore while they loop through the
176  * dev_base_head list, and hold dev_base_lock for writing when they do the
177  * actual updates.  This allows pure readers to access the list even
178  * while a writer is preparing to update it.
179  *
180  * To put it another way, dev_base_lock is held for writing only to
181  * protect against pure readers; the rtnl semaphore provides the
182  * protection against other writers.
183  *
184  * See, for example usages, register_netdevice() and
185  * unregister_netdevice(), which must be called with the rtnl
186  * semaphore held.
187  */
188 DEFINE_RWLOCK(dev_base_lock);
189 EXPORT_SYMBOL(dev_base_lock);
190 
191 static DEFINE_MUTEX(ifalias_mutex);
192 
193 /* protects napi_hash addition/deletion and napi_gen_id */
194 static DEFINE_SPINLOCK(napi_hash_lock);
195 
196 static unsigned int napi_gen_id = NR_CPUS;
197 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
198 
199 static DECLARE_RWSEM(devnet_rename_sem);
200 
201 static inline void dev_base_seq_inc(struct net *net)
202 {
203 	while (++net->dev_base_seq == 0)
204 		;
205 }
206 
207 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
208 {
209 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
210 
211 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
212 }
213 
214 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
215 {
216 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
217 }
218 
219 static inline void rps_lock(struct softnet_data *sd)
220 {
221 #ifdef CONFIG_RPS
222 	spin_lock(&sd->input_pkt_queue.lock);
223 #endif
224 }
225 
226 static inline void rps_unlock(struct softnet_data *sd)
227 {
228 #ifdef CONFIG_RPS
229 	spin_unlock(&sd->input_pkt_queue.lock);
230 #endif
231 }
232 
233 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
234 						       const char *name)
235 {
236 	struct netdev_name_node *name_node;
237 
238 	name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
239 	if (!name_node)
240 		return NULL;
241 	INIT_HLIST_NODE(&name_node->hlist);
242 	name_node->dev = dev;
243 	name_node->name = name;
244 	return name_node;
245 }
246 
247 static struct netdev_name_node *
248 netdev_name_node_head_alloc(struct net_device *dev)
249 {
250 	struct netdev_name_node *name_node;
251 
252 	name_node = netdev_name_node_alloc(dev, dev->name);
253 	if (!name_node)
254 		return NULL;
255 	INIT_LIST_HEAD(&name_node->list);
256 	return name_node;
257 }
258 
259 static void netdev_name_node_free(struct netdev_name_node *name_node)
260 {
261 	kfree(name_node);
262 }
263 
264 static void netdev_name_node_add(struct net *net,
265 				 struct netdev_name_node *name_node)
266 {
267 	hlist_add_head_rcu(&name_node->hlist,
268 			   dev_name_hash(net, name_node->name));
269 }
270 
271 static void netdev_name_node_del(struct netdev_name_node *name_node)
272 {
273 	hlist_del_rcu(&name_node->hlist);
274 }
275 
276 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
277 							const char *name)
278 {
279 	struct hlist_head *head = dev_name_hash(net, name);
280 	struct netdev_name_node *name_node;
281 
282 	hlist_for_each_entry(name_node, head, hlist)
283 		if (!strcmp(name_node->name, name))
284 			return name_node;
285 	return NULL;
286 }
287 
288 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
289 							    const char *name)
290 {
291 	struct hlist_head *head = dev_name_hash(net, name);
292 	struct netdev_name_node *name_node;
293 
294 	hlist_for_each_entry_rcu(name_node, head, hlist)
295 		if (!strcmp(name_node->name, name))
296 			return name_node;
297 	return NULL;
298 }
299 
300 bool netdev_name_in_use(struct net *net, const char *name)
301 {
302 	return netdev_name_node_lookup(net, name);
303 }
304 EXPORT_SYMBOL(netdev_name_in_use);
305 
306 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
307 {
308 	struct netdev_name_node *name_node;
309 	struct net *net = dev_net(dev);
310 
311 	name_node = netdev_name_node_lookup(net, name);
312 	if (name_node)
313 		return -EEXIST;
314 	name_node = netdev_name_node_alloc(dev, name);
315 	if (!name_node)
316 		return -ENOMEM;
317 	netdev_name_node_add(net, name_node);
318 	/* The node that holds dev->name acts as a head of per-device list. */
319 	list_add_tail(&name_node->list, &dev->name_node->list);
320 
321 	return 0;
322 }
323 EXPORT_SYMBOL(netdev_name_node_alt_create);
324 
325 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
326 {
327 	list_del(&name_node->list);
328 	netdev_name_node_del(name_node);
329 	kfree(name_node->name);
330 	netdev_name_node_free(name_node);
331 }
332 
333 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
334 {
335 	struct netdev_name_node *name_node;
336 	struct net *net = dev_net(dev);
337 
338 	name_node = netdev_name_node_lookup(net, name);
339 	if (!name_node)
340 		return -ENOENT;
341 	/* lookup might have found our primary name or a name belonging
342 	 * to another device.
343 	 */
344 	if (name_node == dev->name_node || name_node->dev != dev)
345 		return -EINVAL;
346 
347 	__netdev_name_node_alt_destroy(name_node);
348 
349 	return 0;
350 }
351 EXPORT_SYMBOL(netdev_name_node_alt_destroy);
352 
353 static void netdev_name_node_alt_flush(struct net_device *dev)
354 {
355 	struct netdev_name_node *name_node, *tmp;
356 
357 	list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
358 		__netdev_name_node_alt_destroy(name_node);
359 }
360 
361 /* Device list insertion */
362 static void list_netdevice(struct net_device *dev)
363 {
364 	struct net *net = dev_net(dev);
365 
366 	ASSERT_RTNL();
367 
368 	write_lock(&dev_base_lock);
369 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
370 	netdev_name_node_add(net, dev->name_node);
371 	hlist_add_head_rcu(&dev->index_hlist,
372 			   dev_index_hash(net, dev->ifindex));
373 	write_unlock(&dev_base_lock);
374 
375 	dev_base_seq_inc(net);
376 }
377 
378 /* Device list removal
379  * caller must respect a RCU grace period before freeing/reusing dev
380  */
381 static void unlist_netdevice(struct net_device *dev)
382 {
383 	ASSERT_RTNL();
384 
385 	/* Unlink dev from the device chain */
386 	write_lock(&dev_base_lock);
387 	list_del_rcu(&dev->dev_list);
388 	netdev_name_node_del(dev->name_node);
389 	hlist_del_rcu(&dev->index_hlist);
390 	write_unlock(&dev_base_lock);
391 
392 	dev_base_seq_inc(dev_net(dev));
393 }
394 
395 /*
396  *	Our notifier list
397  */
398 
399 static RAW_NOTIFIER_HEAD(netdev_chain);
400 
401 /*
402  *	Device drivers call our routines to queue packets here. We empty the
403  *	queue in the local softnet handler.
404  */
405 
406 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
407 EXPORT_PER_CPU_SYMBOL(softnet_data);
408 
409 #ifdef CONFIG_LOCKDEP
410 /*
411  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
412  * according to dev->type
413  */
414 static const unsigned short netdev_lock_type[] = {
415 	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
416 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
417 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
418 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
419 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
420 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
421 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
422 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
423 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
424 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
425 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
426 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
427 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
428 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
429 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
430 
431 static const char *const netdev_lock_name[] = {
432 	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
433 	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
434 	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
435 	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
436 	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
437 	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
438 	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
439 	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
440 	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
441 	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
442 	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
443 	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
444 	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
445 	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
446 	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
447 
448 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
449 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
450 
451 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
452 {
453 	int i;
454 
455 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
456 		if (netdev_lock_type[i] == dev_type)
457 			return i;
458 	/* the last key is used by default */
459 	return ARRAY_SIZE(netdev_lock_type) - 1;
460 }
461 
462 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
463 						 unsigned short dev_type)
464 {
465 	int i;
466 
467 	i = netdev_lock_pos(dev_type);
468 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
469 				   netdev_lock_name[i]);
470 }
471 
472 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
473 {
474 	int i;
475 
476 	i = netdev_lock_pos(dev->type);
477 	lockdep_set_class_and_name(&dev->addr_list_lock,
478 				   &netdev_addr_lock_key[i],
479 				   netdev_lock_name[i]);
480 }
481 #else
482 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
483 						 unsigned short dev_type)
484 {
485 }
486 
487 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
488 {
489 }
490 #endif
491 
492 /*******************************************************************************
493  *
494  *		Protocol management and registration routines
495  *
496  *******************************************************************************/
497 
498 
499 /*
500  *	Add a protocol ID to the list. Now that the input handler is
501  *	smarter we can dispense with all the messy stuff that used to be
502  *	here.
503  *
504  *	BEWARE!!! Protocol handlers, mangling input packets,
505  *	MUST BE last in hash buckets and checking protocol handlers
506  *	MUST start from promiscuous ptype_all chain in net_bh.
507  *	It is true now, do not change it.
508  *	Explanation follows: if protocol handler, mangling packet, will
509  *	be the first on list, it is not able to sense, that packet
510  *	is cloned and should be copied-on-write, so that it will
511  *	change it and subsequent readers will get broken packet.
512  *							--ANK (980803)
513  */
514 
515 static inline struct list_head *ptype_head(const struct packet_type *pt)
516 {
517 	if (pt->type == htons(ETH_P_ALL))
518 		return pt->dev ? &pt->dev->ptype_all : &ptype_all;
519 	else
520 		return pt->dev ? &pt->dev->ptype_specific :
521 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
522 }
523 
524 /**
525  *	dev_add_pack - add packet handler
526  *	@pt: packet type declaration
527  *
528  *	Add a protocol handler to the networking stack. The passed &packet_type
529  *	is linked into kernel lists and may not be freed until it has been
530  *	removed from the kernel lists.
531  *
532  *	This call does not sleep therefore it can not
533  *	guarantee all CPU's that are in middle of receiving packets
534  *	will see the new packet type (until the next received packet).
535  */
536 
537 void dev_add_pack(struct packet_type *pt)
538 {
539 	struct list_head *head = ptype_head(pt);
540 
541 	spin_lock(&ptype_lock);
542 	list_add_rcu(&pt->list, head);
543 	spin_unlock(&ptype_lock);
544 }
545 EXPORT_SYMBOL(dev_add_pack);
546 
547 /**
548  *	__dev_remove_pack	 - remove packet handler
549  *	@pt: packet type declaration
550  *
551  *	Remove a protocol handler that was previously added to the kernel
552  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
553  *	from the kernel lists and can be freed or reused once this function
554  *	returns.
555  *
556  *      The packet type might still be in use by receivers
557  *	and must not be freed until after all the CPU's have gone
558  *	through a quiescent state.
559  */
560 void __dev_remove_pack(struct packet_type *pt)
561 {
562 	struct list_head *head = ptype_head(pt);
563 	struct packet_type *pt1;
564 
565 	spin_lock(&ptype_lock);
566 
567 	list_for_each_entry(pt1, head, list) {
568 		if (pt == pt1) {
569 			list_del_rcu(&pt->list);
570 			goto out;
571 		}
572 	}
573 
574 	pr_warn("dev_remove_pack: %p not found\n", pt);
575 out:
576 	spin_unlock(&ptype_lock);
577 }
578 EXPORT_SYMBOL(__dev_remove_pack);
579 
580 /**
581  *	dev_remove_pack	 - remove packet handler
582  *	@pt: packet type declaration
583  *
584  *	Remove a protocol handler that was previously added to the kernel
585  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
586  *	from the kernel lists and can be freed or reused once this function
587  *	returns.
588  *
589  *	This call sleeps to guarantee that no CPU is looking at the packet
590  *	type after return.
591  */
592 void dev_remove_pack(struct packet_type *pt)
593 {
594 	__dev_remove_pack(pt);
595 
596 	synchronize_net();
597 }
598 EXPORT_SYMBOL(dev_remove_pack);
599 
600 
601 /*******************************************************************************
602  *
603  *			    Device Interface Subroutines
604  *
605  *******************************************************************************/
606 
607 /**
608  *	dev_get_iflink	- get 'iflink' value of a interface
609  *	@dev: targeted interface
610  *
611  *	Indicates the ifindex the interface is linked to.
612  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
613  */
614 
615 int dev_get_iflink(const struct net_device *dev)
616 {
617 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
618 		return dev->netdev_ops->ndo_get_iflink(dev);
619 
620 	return dev->ifindex;
621 }
622 EXPORT_SYMBOL(dev_get_iflink);
623 
624 /**
625  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
626  *	@dev: targeted interface
627  *	@skb: The packet.
628  *
629  *	For better visibility of tunnel traffic OVS needs to retrieve
630  *	egress tunnel information for a packet. Following API allows
631  *	user to get this info.
632  */
633 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
634 {
635 	struct ip_tunnel_info *info;
636 
637 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
638 		return -EINVAL;
639 
640 	info = skb_tunnel_info_unclone(skb);
641 	if (!info)
642 		return -ENOMEM;
643 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
644 		return -EINVAL;
645 
646 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
647 }
648 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
649 
650 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
651 {
652 	int k = stack->num_paths++;
653 
654 	if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
655 		return NULL;
656 
657 	return &stack->path[k];
658 }
659 
660 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
661 			  struct net_device_path_stack *stack)
662 {
663 	const struct net_device *last_dev;
664 	struct net_device_path_ctx ctx = {
665 		.dev	= dev,
666 		.daddr	= daddr,
667 	};
668 	struct net_device_path *path;
669 	int ret = 0;
670 
671 	stack->num_paths = 0;
672 	while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
673 		last_dev = ctx.dev;
674 		path = dev_fwd_path(stack);
675 		if (!path)
676 			return -1;
677 
678 		memset(path, 0, sizeof(struct net_device_path));
679 		ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
680 		if (ret < 0)
681 			return -1;
682 
683 		if (WARN_ON_ONCE(last_dev == ctx.dev))
684 			return -1;
685 	}
686 	path = dev_fwd_path(stack);
687 	if (!path)
688 		return -1;
689 	path->type = DEV_PATH_ETHERNET;
690 	path->dev = ctx.dev;
691 
692 	return ret;
693 }
694 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
695 
696 /**
697  *	__dev_get_by_name	- find a device by its name
698  *	@net: the applicable net namespace
699  *	@name: name to find
700  *
701  *	Find an interface by name. Must be called under RTNL semaphore
702  *	or @dev_base_lock. If the name is found a pointer to the device
703  *	is returned. If the name is not found then %NULL is returned. The
704  *	reference counters are not incremented so the caller must be
705  *	careful with locks.
706  */
707 
708 struct net_device *__dev_get_by_name(struct net *net, const char *name)
709 {
710 	struct netdev_name_node *node_name;
711 
712 	node_name = netdev_name_node_lookup(net, name);
713 	return node_name ? node_name->dev : NULL;
714 }
715 EXPORT_SYMBOL(__dev_get_by_name);
716 
717 /**
718  * dev_get_by_name_rcu	- find a device by its name
719  * @net: the applicable net namespace
720  * @name: name to find
721  *
722  * Find an interface by name.
723  * If the name is found a pointer to the device is returned.
724  * If the name is not found then %NULL is returned.
725  * The reference counters are not incremented so the caller must be
726  * careful with locks. The caller must hold RCU lock.
727  */
728 
729 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
730 {
731 	struct netdev_name_node *node_name;
732 
733 	node_name = netdev_name_node_lookup_rcu(net, name);
734 	return node_name ? node_name->dev : NULL;
735 }
736 EXPORT_SYMBOL(dev_get_by_name_rcu);
737 
738 /**
739  *	dev_get_by_name		- find a device by its name
740  *	@net: the applicable net namespace
741  *	@name: name to find
742  *
743  *	Find an interface by name. This can be called from any
744  *	context and does its own locking. The returned handle has
745  *	the usage count incremented and the caller must use dev_put() to
746  *	release it when it is no longer needed. %NULL is returned if no
747  *	matching device is found.
748  */
749 
750 struct net_device *dev_get_by_name(struct net *net, const char *name)
751 {
752 	struct net_device *dev;
753 
754 	rcu_read_lock();
755 	dev = dev_get_by_name_rcu(net, name);
756 	dev_hold(dev);
757 	rcu_read_unlock();
758 	return dev;
759 }
760 EXPORT_SYMBOL(dev_get_by_name);
761 
762 /**
763  *	__dev_get_by_index - find a device by its ifindex
764  *	@net: the applicable net namespace
765  *	@ifindex: index of device
766  *
767  *	Search for an interface by index. Returns %NULL if the device
768  *	is not found or a pointer to the device. The device has not
769  *	had its reference counter increased so the caller must be careful
770  *	about locking. The caller must hold either the RTNL semaphore
771  *	or @dev_base_lock.
772  */
773 
774 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
775 {
776 	struct net_device *dev;
777 	struct hlist_head *head = dev_index_hash(net, ifindex);
778 
779 	hlist_for_each_entry(dev, head, index_hlist)
780 		if (dev->ifindex == ifindex)
781 			return dev;
782 
783 	return NULL;
784 }
785 EXPORT_SYMBOL(__dev_get_by_index);
786 
787 /**
788  *	dev_get_by_index_rcu - find a device by its ifindex
789  *	@net: the applicable net namespace
790  *	@ifindex: index of device
791  *
792  *	Search for an interface by index. Returns %NULL if the device
793  *	is not found or a pointer to the device. The device has not
794  *	had its reference counter increased so the caller must be careful
795  *	about locking. The caller must hold RCU lock.
796  */
797 
798 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
799 {
800 	struct net_device *dev;
801 	struct hlist_head *head = dev_index_hash(net, ifindex);
802 
803 	hlist_for_each_entry_rcu(dev, head, index_hlist)
804 		if (dev->ifindex == ifindex)
805 			return dev;
806 
807 	return NULL;
808 }
809 EXPORT_SYMBOL(dev_get_by_index_rcu);
810 
811 
812 /**
813  *	dev_get_by_index - find a device by its ifindex
814  *	@net: the applicable net namespace
815  *	@ifindex: index of device
816  *
817  *	Search for an interface by index. Returns NULL if the device
818  *	is not found or a pointer to the device. The device returned has
819  *	had a reference added and the pointer is safe until the user calls
820  *	dev_put to indicate they have finished with it.
821  */
822 
823 struct net_device *dev_get_by_index(struct net *net, int ifindex)
824 {
825 	struct net_device *dev;
826 
827 	rcu_read_lock();
828 	dev = dev_get_by_index_rcu(net, ifindex);
829 	dev_hold(dev);
830 	rcu_read_unlock();
831 	return dev;
832 }
833 EXPORT_SYMBOL(dev_get_by_index);
834 
835 /**
836  *	dev_get_by_napi_id - find a device by napi_id
837  *	@napi_id: ID of the NAPI struct
838  *
839  *	Search for an interface by NAPI ID. Returns %NULL if the device
840  *	is not found or a pointer to the device. The device has not had
841  *	its reference counter increased so the caller must be careful
842  *	about locking. The caller must hold RCU lock.
843  */
844 
845 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
846 {
847 	struct napi_struct *napi;
848 
849 	WARN_ON_ONCE(!rcu_read_lock_held());
850 
851 	if (napi_id < MIN_NAPI_ID)
852 		return NULL;
853 
854 	napi = napi_by_id(napi_id);
855 
856 	return napi ? napi->dev : NULL;
857 }
858 EXPORT_SYMBOL(dev_get_by_napi_id);
859 
860 /**
861  *	netdev_get_name - get a netdevice name, knowing its ifindex.
862  *	@net: network namespace
863  *	@name: a pointer to the buffer where the name will be stored.
864  *	@ifindex: the ifindex of the interface to get the name from.
865  */
866 int netdev_get_name(struct net *net, char *name, int ifindex)
867 {
868 	struct net_device *dev;
869 	int ret;
870 
871 	down_read(&devnet_rename_sem);
872 	rcu_read_lock();
873 
874 	dev = dev_get_by_index_rcu(net, ifindex);
875 	if (!dev) {
876 		ret = -ENODEV;
877 		goto out;
878 	}
879 
880 	strcpy(name, dev->name);
881 
882 	ret = 0;
883 out:
884 	rcu_read_unlock();
885 	up_read(&devnet_rename_sem);
886 	return ret;
887 }
888 
889 /**
890  *	dev_getbyhwaddr_rcu - find a device by its hardware address
891  *	@net: the applicable net namespace
892  *	@type: media type of device
893  *	@ha: hardware address
894  *
895  *	Search for an interface by MAC address. Returns NULL if the device
896  *	is not found or a pointer to the device.
897  *	The caller must hold RCU or RTNL.
898  *	The returned device has not had its ref count increased
899  *	and the caller must therefore be careful about locking
900  *
901  */
902 
903 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
904 				       const char *ha)
905 {
906 	struct net_device *dev;
907 
908 	for_each_netdev_rcu(net, dev)
909 		if (dev->type == type &&
910 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
911 			return dev;
912 
913 	return NULL;
914 }
915 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
916 
917 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
918 {
919 	struct net_device *dev, *ret = NULL;
920 
921 	rcu_read_lock();
922 	for_each_netdev_rcu(net, dev)
923 		if (dev->type == type) {
924 			dev_hold(dev);
925 			ret = dev;
926 			break;
927 		}
928 	rcu_read_unlock();
929 	return ret;
930 }
931 EXPORT_SYMBOL(dev_getfirstbyhwtype);
932 
933 /**
934  *	__dev_get_by_flags - find any device with given flags
935  *	@net: the applicable net namespace
936  *	@if_flags: IFF_* values
937  *	@mask: bitmask of bits in if_flags to check
938  *
939  *	Search for any interface with the given flags. Returns NULL if a device
940  *	is not found or a pointer to the device. Must be called inside
941  *	rtnl_lock(), and result refcount is unchanged.
942  */
943 
944 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
945 				      unsigned short mask)
946 {
947 	struct net_device *dev, *ret;
948 
949 	ASSERT_RTNL();
950 
951 	ret = NULL;
952 	for_each_netdev(net, dev) {
953 		if (((dev->flags ^ if_flags) & mask) == 0) {
954 			ret = dev;
955 			break;
956 		}
957 	}
958 	return ret;
959 }
960 EXPORT_SYMBOL(__dev_get_by_flags);
961 
962 /**
963  *	dev_valid_name - check if name is okay for network device
964  *	@name: name string
965  *
966  *	Network device names need to be valid file names to
967  *	allow sysfs to work.  We also disallow any kind of
968  *	whitespace.
969  */
970 bool dev_valid_name(const char *name)
971 {
972 	if (*name == '\0')
973 		return false;
974 	if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
975 		return false;
976 	if (!strcmp(name, ".") || !strcmp(name, ".."))
977 		return false;
978 
979 	while (*name) {
980 		if (*name == '/' || *name == ':' || isspace(*name))
981 			return false;
982 		name++;
983 	}
984 	return true;
985 }
986 EXPORT_SYMBOL(dev_valid_name);
987 
988 /**
989  *	__dev_alloc_name - allocate a name for a device
990  *	@net: network namespace to allocate the device name in
991  *	@name: name format string
992  *	@buf:  scratch buffer and result name string
993  *
994  *	Passed a format string - eg "lt%d" it will try and find a suitable
995  *	id. It scans list of devices to build up a free map, then chooses
996  *	the first empty slot. The caller must hold the dev_base or rtnl lock
997  *	while allocating the name and adding the device in order to avoid
998  *	duplicates.
999  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1000  *	Returns the number of the unit assigned or a negative errno code.
1001  */
1002 
1003 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1004 {
1005 	int i = 0;
1006 	const char *p;
1007 	const int max_netdevices = 8*PAGE_SIZE;
1008 	unsigned long *inuse;
1009 	struct net_device *d;
1010 
1011 	if (!dev_valid_name(name))
1012 		return -EINVAL;
1013 
1014 	p = strchr(name, '%');
1015 	if (p) {
1016 		/*
1017 		 * Verify the string as this thing may have come from
1018 		 * the user.  There must be either one "%d" and no other "%"
1019 		 * characters.
1020 		 */
1021 		if (p[1] != 'd' || strchr(p + 2, '%'))
1022 			return -EINVAL;
1023 
1024 		/* Use one page as a bit array of possible slots */
1025 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1026 		if (!inuse)
1027 			return -ENOMEM;
1028 
1029 		for_each_netdev(net, d) {
1030 			struct netdev_name_node *name_node;
1031 			list_for_each_entry(name_node, &d->name_node->list, list) {
1032 				if (!sscanf(name_node->name, name, &i))
1033 					continue;
1034 				if (i < 0 || i >= max_netdevices)
1035 					continue;
1036 
1037 				/*  avoid cases where sscanf is not exact inverse of printf */
1038 				snprintf(buf, IFNAMSIZ, name, i);
1039 				if (!strncmp(buf, name_node->name, IFNAMSIZ))
1040 					set_bit(i, inuse);
1041 			}
1042 			if (!sscanf(d->name, name, &i))
1043 				continue;
1044 			if (i < 0 || i >= max_netdevices)
1045 				continue;
1046 
1047 			/*  avoid cases where sscanf is not exact inverse of printf */
1048 			snprintf(buf, IFNAMSIZ, name, i);
1049 			if (!strncmp(buf, d->name, IFNAMSIZ))
1050 				set_bit(i, inuse);
1051 		}
1052 
1053 		i = find_first_zero_bit(inuse, max_netdevices);
1054 		free_page((unsigned long) inuse);
1055 	}
1056 
1057 	snprintf(buf, IFNAMSIZ, name, i);
1058 	if (!netdev_name_in_use(net, buf))
1059 		return i;
1060 
1061 	/* It is possible to run out of possible slots
1062 	 * when the name is long and there isn't enough space left
1063 	 * for the digits, or if all bits are used.
1064 	 */
1065 	return -ENFILE;
1066 }
1067 
1068 static int dev_alloc_name_ns(struct net *net,
1069 			     struct net_device *dev,
1070 			     const char *name)
1071 {
1072 	char buf[IFNAMSIZ];
1073 	int ret;
1074 
1075 	BUG_ON(!net);
1076 	ret = __dev_alloc_name(net, name, buf);
1077 	if (ret >= 0)
1078 		strlcpy(dev->name, buf, IFNAMSIZ);
1079 	return ret;
1080 }
1081 
1082 /**
1083  *	dev_alloc_name - allocate a name for a device
1084  *	@dev: device
1085  *	@name: name format string
1086  *
1087  *	Passed a format string - eg "lt%d" it will try and find a suitable
1088  *	id. It scans list of devices to build up a free map, then chooses
1089  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1090  *	while allocating the name and adding the device in order to avoid
1091  *	duplicates.
1092  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1093  *	Returns the number of the unit assigned or a negative errno code.
1094  */
1095 
1096 int dev_alloc_name(struct net_device *dev, const char *name)
1097 {
1098 	return dev_alloc_name_ns(dev_net(dev), dev, name);
1099 }
1100 EXPORT_SYMBOL(dev_alloc_name);
1101 
1102 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1103 			      const char *name)
1104 {
1105 	BUG_ON(!net);
1106 
1107 	if (!dev_valid_name(name))
1108 		return -EINVAL;
1109 
1110 	if (strchr(name, '%'))
1111 		return dev_alloc_name_ns(net, dev, name);
1112 	else if (netdev_name_in_use(net, name))
1113 		return -EEXIST;
1114 	else if (dev->name != name)
1115 		strlcpy(dev->name, name, IFNAMSIZ);
1116 
1117 	return 0;
1118 }
1119 
1120 /**
1121  *	dev_change_name - change name of a device
1122  *	@dev: device
1123  *	@newname: name (or format string) must be at least IFNAMSIZ
1124  *
1125  *	Change name of a device, can pass format strings "eth%d".
1126  *	for wildcarding.
1127  */
1128 int dev_change_name(struct net_device *dev, const char *newname)
1129 {
1130 	unsigned char old_assign_type;
1131 	char oldname[IFNAMSIZ];
1132 	int err = 0;
1133 	int ret;
1134 	struct net *net;
1135 
1136 	ASSERT_RTNL();
1137 	BUG_ON(!dev_net(dev));
1138 
1139 	net = dev_net(dev);
1140 
1141 	/* Some auto-enslaved devices e.g. failover slaves are
1142 	 * special, as userspace might rename the device after
1143 	 * the interface had been brought up and running since
1144 	 * the point kernel initiated auto-enslavement. Allow
1145 	 * live name change even when these slave devices are
1146 	 * up and running.
1147 	 *
1148 	 * Typically, users of these auto-enslaving devices
1149 	 * don't actually care about slave name change, as
1150 	 * they are supposed to operate on master interface
1151 	 * directly.
1152 	 */
1153 	if (dev->flags & IFF_UP &&
1154 	    likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1155 		return -EBUSY;
1156 
1157 	down_write(&devnet_rename_sem);
1158 
1159 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1160 		up_write(&devnet_rename_sem);
1161 		return 0;
1162 	}
1163 
1164 	memcpy(oldname, dev->name, IFNAMSIZ);
1165 
1166 	err = dev_get_valid_name(net, dev, newname);
1167 	if (err < 0) {
1168 		up_write(&devnet_rename_sem);
1169 		return err;
1170 	}
1171 
1172 	if (oldname[0] && !strchr(oldname, '%'))
1173 		netdev_info(dev, "renamed from %s\n", oldname);
1174 
1175 	old_assign_type = dev->name_assign_type;
1176 	dev->name_assign_type = NET_NAME_RENAMED;
1177 
1178 rollback:
1179 	ret = device_rename(&dev->dev, dev->name);
1180 	if (ret) {
1181 		memcpy(dev->name, oldname, IFNAMSIZ);
1182 		dev->name_assign_type = old_assign_type;
1183 		up_write(&devnet_rename_sem);
1184 		return ret;
1185 	}
1186 
1187 	up_write(&devnet_rename_sem);
1188 
1189 	netdev_adjacent_rename_links(dev, oldname);
1190 
1191 	write_lock(&dev_base_lock);
1192 	netdev_name_node_del(dev->name_node);
1193 	write_unlock(&dev_base_lock);
1194 
1195 	synchronize_rcu();
1196 
1197 	write_lock(&dev_base_lock);
1198 	netdev_name_node_add(net, dev->name_node);
1199 	write_unlock(&dev_base_lock);
1200 
1201 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1202 	ret = notifier_to_errno(ret);
1203 
1204 	if (ret) {
1205 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1206 		if (err >= 0) {
1207 			err = ret;
1208 			down_write(&devnet_rename_sem);
1209 			memcpy(dev->name, oldname, IFNAMSIZ);
1210 			memcpy(oldname, newname, IFNAMSIZ);
1211 			dev->name_assign_type = old_assign_type;
1212 			old_assign_type = NET_NAME_RENAMED;
1213 			goto rollback;
1214 		} else {
1215 			netdev_err(dev, "name change rollback failed: %d\n",
1216 				   ret);
1217 		}
1218 	}
1219 
1220 	return err;
1221 }
1222 
1223 /**
1224  *	dev_set_alias - change ifalias of a device
1225  *	@dev: device
1226  *	@alias: name up to IFALIASZ
1227  *	@len: limit of bytes to copy from info
1228  *
1229  *	Set ifalias for a device,
1230  */
1231 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1232 {
1233 	struct dev_ifalias *new_alias = NULL;
1234 
1235 	if (len >= IFALIASZ)
1236 		return -EINVAL;
1237 
1238 	if (len) {
1239 		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1240 		if (!new_alias)
1241 			return -ENOMEM;
1242 
1243 		memcpy(new_alias->ifalias, alias, len);
1244 		new_alias->ifalias[len] = 0;
1245 	}
1246 
1247 	mutex_lock(&ifalias_mutex);
1248 	new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1249 					mutex_is_locked(&ifalias_mutex));
1250 	mutex_unlock(&ifalias_mutex);
1251 
1252 	if (new_alias)
1253 		kfree_rcu(new_alias, rcuhead);
1254 
1255 	return len;
1256 }
1257 EXPORT_SYMBOL(dev_set_alias);
1258 
1259 /**
1260  *	dev_get_alias - get ifalias of a device
1261  *	@dev: device
1262  *	@name: buffer to store name of ifalias
1263  *	@len: size of buffer
1264  *
1265  *	get ifalias for a device.  Caller must make sure dev cannot go
1266  *	away,  e.g. rcu read lock or own a reference count to device.
1267  */
1268 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1269 {
1270 	const struct dev_ifalias *alias;
1271 	int ret = 0;
1272 
1273 	rcu_read_lock();
1274 	alias = rcu_dereference(dev->ifalias);
1275 	if (alias)
1276 		ret = snprintf(name, len, "%s", alias->ifalias);
1277 	rcu_read_unlock();
1278 
1279 	return ret;
1280 }
1281 
1282 /**
1283  *	netdev_features_change - device changes features
1284  *	@dev: device to cause notification
1285  *
1286  *	Called to indicate a device has changed features.
1287  */
1288 void netdev_features_change(struct net_device *dev)
1289 {
1290 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1291 }
1292 EXPORT_SYMBOL(netdev_features_change);
1293 
1294 /**
1295  *	netdev_state_change - device changes state
1296  *	@dev: device to cause notification
1297  *
1298  *	Called to indicate a device has changed state. This function calls
1299  *	the notifier chains for netdev_chain and sends a NEWLINK message
1300  *	to the routing socket.
1301  */
1302 void netdev_state_change(struct net_device *dev)
1303 {
1304 	if (dev->flags & IFF_UP) {
1305 		struct netdev_notifier_change_info change_info = {
1306 			.info.dev = dev,
1307 		};
1308 
1309 		call_netdevice_notifiers_info(NETDEV_CHANGE,
1310 					      &change_info.info);
1311 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1312 	}
1313 }
1314 EXPORT_SYMBOL(netdev_state_change);
1315 
1316 /**
1317  * __netdev_notify_peers - notify network peers about existence of @dev,
1318  * to be called when rtnl lock is already held.
1319  * @dev: network device
1320  *
1321  * Generate traffic such that interested network peers are aware of
1322  * @dev, such as by generating a gratuitous ARP. This may be used when
1323  * a device wants to inform the rest of the network about some sort of
1324  * reconfiguration such as a failover event or virtual machine
1325  * migration.
1326  */
1327 void __netdev_notify_peers(struct net_device *dev)
1328 {
1329 	ASSERT_RTNL();
1330 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1331 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1332 }
1333 EXPORT_SYMBOL(__netdev_notify_peers);
1334 
1335 /**
1336  * netdev_notify_peers - notify network peers about existence of @dev
1337  * @dev: network device
1338  *
1339  * Generate traffic such that interested network peers are aware of
1340  * @dev, such as by generating a gratuitous ARP. This may be used when
1341  * a device wants to inform the rest of the network about some sort of
1342  * reconfiguration such as a failover event or virtual machine
1343  * migration.
1344  */
1345 void netdev_notify_peers(struct net_device *dev)
1346 {
1347 	rtnl_lock();
1348 	__netdev_notify_peers(dev);
1349 	rtnl_unlock();
1350 }
1351 EXPORT_SYMBOL(netdev_notify_peers);
1352 
1353 static int napi_threaded_poll(void *data);
1354 
1355 static int napi_kthread_create(struct napi_struct *n)
1356 {
1357 	int err = 0;
1358 
1359 	/* Create and wake up the kthread once to put it in
1360 	 * TASK_INTERRUPTIBLE mode to avoid the blocked task
1361 	 * warning and work with loadavg.
1362 	 */
1363 	n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1364 				n->dev->name, n->napi_id);
1365 	if (IS_ERR(n->thread)) {
1366 		err = PTR_ERR(n->thread);
1367 		pr_err("kthread_run failed with err %d\n", err);
1368 		n->thread = NULL;
1369 	}
1370 
1371 	return err;
1372 }
1373 
1374 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1375 {
1376 	const struct net_device_ops *ops = dev->netdev_ops;
1377 	int ret;
1378 
1379 	ASSERT_RTNL();
1380 	dev_addr_check(dev);
1381 
1382 	if (!netif_device_present(dev)) {
1383 		/* may be detached because parent is runtime-suspended */
1384 		if (dev->dev.parent)
1385 			pm_runtime_resume(dev->dev.parent);
1386 		if (!netif_device_present(dev))
1387 			return -ENODEV;
1388 	}
1389 
1390 	/* Block netpoll from trying to do any rx path servicing.
1391 	 * If we don't do this there is a chance ndo_poll_controller
1392 	 * or ndo_poll may be running while we open the device
1393 	 */
1394 	netpoll_poll_disable(dev);
1395 
1396 	ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1397 	ret = notifier_to_errno(ret);
1398 	if (ret)
1399 		return ret;
1400 
1401 	set_bit(__LINK_STATE_START, &dev->state);
1402 
1403 	if (ops->ndo_validate_addr)
1404 		ret = ops->ndo_validate_addr(dev);
1405 
1406 	if (!ret && ops->ndo_open)
1407 		ret = ops->ndo_open(dev);
1408 
1409 	netpoll_poll_enable(dev);
1410 
1411 	if (ret)
1412 		clear_bit(__LINK_STATE_START, &dev->state);
1413 	else {
1414 		dev->flags |= IFF_UP;
1415 		dev_set_rx_mode(dev);
1416 		dev_activate(dev);
1417 		add_device_randomness(dev->dev_addr, dev->addr_len);
1418 	}
1419 
1420 	return ret;
1421 }
1422 
1423 /**
1424  *	dev_open	- prepare an interface for use.
1425  *	@dev: device to open
1426  *	@extack: netlink extended ack
1427  *
1428  *	Takes a device from down to up state. The device's private open
1429  *	function is invoked and then the multicast lists are loaded. Finally
1430  *	the device is moved into the up state and a %NETDEV_UP message is
1431  *	sent to the netdev notifier chain.
1432  *
1433  *	Calling this function on an active interface is a nop. On a failure
1434  *	a negative errno code is returned.
1435  */
1436 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1437 {
1438 	int ret;
1439 
1440 	if (dev->flags & IFF_UP)
1441 		return 0;
1442 
1443 	ret = __dev_open(dev, extack);
1444 	if (ret < 0)
1445 		return ret;
1446 
1447 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1448 	call_netdevice_notifiers(NETDEV_UP, dev);
1449 
1450 	return ret;
1451 }
1452 EXPORT_SYMBOL(dev_open);
1453 
1454 static void __dev_close_many(struct list_head *head)
1455 {
1456 	struct net_device *dev;
1457 
1458 	ASSERT_RTNL();
1459 	might_sleep();
1460 
1461 	list_for_each_entry(dev, head, close_list) {
1462 		/* Temporarily disable netpoll until the interface is down */
1463 		netpoll_poll_disable(dev);
1464 
1465 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1466 
1467 		clear_bit(__LINK_STATE_START, &dev->state);
1468 
1469 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1470 		 * can be even on different cpu. So just clear netif_running().
1471 		 *
1472 		 * dev->stop() will invoke napi_disable() on all of it's
1473 		 * napi_struct instances on this device.
1474 		 */
1475 		smp_mb__after_atomic(); /* Commit netif_running(). */
1476 	}
1477 
1478 	dev_deactivate_many(head);
1479 
1480 	list_for_each_entry(dev, head, close_list) {
1481 		const struct net_device_ops *ops = dev->netdev_ops;
1482 
1483 		/*
1484 		 *	Call the device specific close. This cannot fail.
1485 		 *	Only if device is UP
1486 		 *
1487 		 *	We allow it to be called even after a DETACH hot-plug
1488 		 *	event.
1489 		 */
1490 		if (ops->ndo_stop)
1491 			ops->ndo_stop(dev);
1492 
1493 		dev->flags &= ~IFF_UP;
1494 		netpoll_poll_enable(dev);
1495 	}
1496 }
1497 
1498 static void __dev_close(struct net_device *dev)
1499 {
1500 	LIST_HEAD(single);
1501 
1502 	list_add(&dev->close_list, &single);
1503 	__dev_close_many(&single);
1504 	list_del(&single);
1505 }
1506 
1507 void dev_close_many(struct list_head *head, bool unlink)
1508 {
1509 	struct net_device *dev, *tmp;
1510 
1511 	/* Remove the devices that don't need to be closed */
1512 	list_for_each_entry_safe(dev, tmp, head, close_list)
1513 		if (!(dev->flags & IFF_UP))
1514 			list_del_init(&dev->close_list);
1515 
1516 	__dev_close_many(head);
1517 
1518 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1519 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1520 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1521 		if (unlink)
1522 			list_del_init(&dev->close_list);
1523 	}
1524 }
1525 EXPORT_SYMBOL(dev_close_many);
1526 
1527 /**
1528  *	dev_close - shutdown an interface.
1529  *	@dev: device to shutdown
1530  *
1531  *	This function moves an active device into down state. A
1532  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1533  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1534  *	chain.
1535  */
1536 void dev_close(struct net_device *dev)
1537 {
1538 	if (dev->flags & IFF_UP) {
1539 		LIST_HEAD(single);
1540 
1541 		list_add(&dev->close_list, &single);
1542 		dev_close_many(&single, true);
1543 		list_del(&single);
1544 	}
1545 }
1546 EXPORT_SYMBOL(dev_close);
1547 
1548 
1549 /**
1550  *	dev_disable_lro - disable Large Receive Offload on a device
1551  *	@dev: device
1552  *
1553  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1554  *	called under RTNL.  This is needed if received packets may be
1555  *	forwarded to another interface.
1556  */
1557 void dev_disable_lro(struct net_device *dev)
1558 {
1559 	struct net_device *lower_dev;
1560 	struct list_head *iter;
1561 
1562 	dev->wanted_features &= ~NETIF_F_LRO;
1563 	netdev_update_features(dev);
1564 
1565 	if (unlikely(dev->features & NETIF_F_LRO))
1566 		netdev_WARN(dev, "failed to disable LRO!\n");
1567 
1568 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1569 		dev_disable_lro(lower_dev);
1570 }
1571 EXPORT_SYMBOL(dev_disable_lro);
1572 
1573 /**
1574  *	dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1575  *	@dev: device
1576  *
1577  *	Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1578  *	called under RTNL.  This is needed if Generic XDP is installed on
1579  *	the device.
1580  */
1581 static void dev_disable_gro_hw(struct net_device *dev)
1582 {
1583 	dev->wanted_features &= ~NETIF_F_GRO_HW;
1584 	netdev_update_features(dev);
1585 
1586 	if (unlikely(dev->features & NETIF_F_GRO_HW))
1587 		netdev_WARN(dev, "failed to disable GRO_HW!\n");
1588 }
1589 
1590 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1591 {
1592 #define N(val) 						\
1593 	case NETDEV_##val:				\
1594 		return "NETDEV_" __stringify(val);
1595 	switch (cmd) {
1596 	N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1597 	N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1598 	N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1599 	N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1600 	N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1601 	N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1602 	N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1603 	N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1604 	N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1605 	N(PRE_CHANGEADDR)
1606 	}
1607 #undef N
1608 	return "UNKNOWN_NETDEV_EVENT";
1609 }
1610 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1611 
1612 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1613 				   struct net_device *dev)
1614 {
1615 	struct netdev_notifier_info info = {
1616 		.dev = dev,
1617 	};
1618 
1619 	return nb->notifier_call(nb, val, &info);
1620 }
1621 
1622 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1623 					     struct net_device *dev)
1624 {
1625 	int err;
1626 
1627 	err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1628 	err = notifier_to_errno(err);
1629 	if (err)
1630 		return err;
1631 
1632 	if (!(dev->flags & IFF_UP))
1633 		return 0;
1634 
1635 	call_netdevice_notifier(nb, NETDEV_UP, dev);
1636 	return 0;
1637 }
1638 
1639 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1640 						struct net_device *dev)
1641 {
1642 	if (dev->flags & IFF_UP) {
1643 		call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1644 					dev);
1645 		call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1646 	}
1647 	call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1648 }
1649 
1650 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1651 						 struct net *net)
1652 {
1653 	struct net_device *dev;
1654 	int err;
1655 
1656 	for_each_netdev(net, dev) {
1657 		err = call_netdevice_register_notifiers(nb, dev);
1658 		if (err)
1659 			goto rollback;
1660 	}
1661 	return 0;
1662 
1663 rollback:
1664 	for_each_netdev_continue_reverse(net, dev)
1665 		call_netdevice_unregister_notifiers(nb, dev);
1666 	return err;
1667 }
1668 
1669 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1670 						    struct net *net)
1671 {
1672 	struct net_device *dev;
1673 
1674 	for_each_netdev(net, dev)
1675 		call_netdevice_unregister_notifiers(nb, dev);
1676 }
1677 
1678 static int dev_boot_phase = 1;
1679 
1680 /**
1681  * register_netdevice_notifier - register a network notifier block
1682  * @nb: notifier
1683  *
1684  * Register a notifier to be called when network device events occur.
1685  * The notifier passed is linked into the kernel structures and must
1686  * not be reused until it has been unregistered. A negative errno code
1687  * is returned on a failure.
1688  *
1689  * When registered all registration and up events are replayed
1690  * to the new notifier to allow device to have a race free
1691  * view of the network device list.
1692  */
1693 
1694 int register_netdevice_notifier(struct notifier_block *nb)
1695 {
1696 	struct net *net;
1697 	int err;
1698 
1699 	/* Close race with setup_net() and cleanup_net() */
1700 	down_write(&pernet_ops_rwsem);
1701 	rtnl_lock();
1702 	err = raw_notifier_chain_register(&netdev_chain, nb);
1703 	if (err)
1704 		goto unlock;
1705 	if (dev_boot_phase)
1706 		goto unlock;
1707 	for_each_net(net) {
1708 		err = call_netdevice_register_net_notifiers(nb, net);
1709 		if (err)
1710 			goto rollback;
1711 	}
1712 
1713 unlock:
1714 	rtnl_unlock();
1715 	up_write(&pernet_ops_rwsem);
1716 	return err;
1717 
1718 rollback:
1719 	for_each_net_continue_reverse(net)
1720 		call_netdevice_unregister_net_notifiers(nb, net);
1721 
1722 	raw_notifier_chain_unregister(&netdev_chain, nb);
1723 	goto unlock;
1724 }
1725 EXPORT_SYMBOL(register_netdevice_notifier);
1726 
1727 /**
1728  * unregister_netdevice_notifier - unregister a network notifier block
1729  * @nb: notifier
1730  *
1731  * Unregister a notifier previously registered by
1732  * register_netdevice_notifier(). The notifier is unlinked into the
1733  * kernel structures and may then be reused. A negative errno code
1734  * is returned on a failure.
1735  *
1736  * After unregistering unregister and down device events are synthesized
1737  * for all devices on the device list to the removed notifier to remove
1738  * the need for special case cleanup code.
1739  */
1740 
1741 int unregister_netdevice_notifier(struct notifier_block *nb)
1742 {
1743 	struct net *net;
1744 	int err;
1745 
1746 	/* Close race with setup_net() and cleanup_net() */
1747 	down_write(&pernet_ops_rwsem);
1748 	rtnl_lock();
1749 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1750 	if (err)
1751 		goto unlock;
1752 
1753 	for_each_net(net)
1754 		call_netdevice_unregister_net_notifiers(nb, net);
1755 
1756 unlock:
1757 	rtnl_unlock();
1758 	up_write(&pernet_ops_rwsem);
1759 	return err;
1760 }
1761 EXPORT_SYMBOL(unregister_netdevice_notifier);
1762 
1763 static int __register_netdevice_notifier_net(struct net *net,
1764 					     struct notifier_block *nb,
1765 					     bool ignore_call_fail)
1766 {
1767 	int err;
1768 
1769 	err = raw_notifier_chain_register(&net->netdev_chain, nb);
1770 	if (err)
1771 		return err;
1772 	if (dev_boot_phase)
1773 		return 0;
1774 
1775 	err = call_netdevice_register_net_notifiers(nb, net);
1776 	if (err && !ignore_call_fail)
1777 		goto chain_unregister;
1778 
1779 	return 0;
1780 
1781 chain_unregister:
1782 	raw_notifier_chain_unregister(&net->netdev_chain, nb);
1783 	return err;
1784 }
1785 
1786 static int __unregister_netdevice_notifier_net(struct net *net,
1787 					       struct notifier_block *nb)
1788 {
1789 	int err;
1790 
1791 	err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1792 	if (err)
1793 		return err;
1794 
1795 	call_netdevice_unregister_net_notifiers(nb, net);
1796 	return 0;
1797 }
1798 
1799 /**
1800  * register_netdevice_notifier_net - register a per-netns network notifier block
1801  * @net: network namespace
1802  * @nb: notifier
1803  *
1804  * Register a notifier to be called when network device events occur.
1805  * The notifier passed is linked into the kernel structures and must
1806  * not be reused until it has been unregistered. A negative errno code
1807  * is returned on a failure.
1808  *
1809  * When registered all registration and up events are replayed
1810  * to the new notifier to allow device to have a race free
1811  * view of the network device list.
1812  */
1813 
1814 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1815 {
1816 	int err;
1817 
1818 	rtnl_lock();
1819 	err = __register_netdevice_notifier_net(net, nb, false);
1820 	rtnl_unlock();
1821 	return err;
1822 }
1823 EXPORT_SYMBOL(register_netdevice_notifier_net);
1824 
1825 /**
1826  * unregister_netdevice_notifier_net - unregister a per-netns
1827  *                                     network notifier block
1828  * @net: network namespace
1829  * @nb: notifier
1830  *
1831  * Unregister a notifier previously registered by
1832  * register_netdevice_notifier(). The notifier is unlinked into the
1833  * kernel structures and may then be reused. A negative errno code
1834  * is returned on a failure.
1835  *
1836  * After unregistering unregister and down device events are synthesized
1837  * for all devices on the device list to the removed notifier to remove
1838  * the need for special case cleanup code.
1839  */
1840 
1841 int unregister_netdevice_notifier_net(struct net *net,
1842 				      struct notifier_block *nb)
1843 {
1844 	int err;
1845 
1846 	rtnl_lock();
1847 	err = __unregister_netdevice_notifier_net(net, nb);
1848 	rtnl_unlock();
1849 	return err;
1850 }
1851 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1852 
1853 int register_netdevice_notifier_dev_net(struct net_device *dev,
1854 					struct notifier_block *nb,
1855 					struct netdev_net_notifier *nn)
1856 {
1857 	int err;
1858 
1859 	rtnl_lock();
1860 	err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1861 	if (!err) {
1862 		nn->nb = nb;
1863 		list_add(&nn->list, &dev->net_notifier_list);
1864 	}
1865 	rtnl_unlock();
1866 	return err;
1867 }
1868 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1869 
1870 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1871 					  struct notifier_block *nb,
1872 					  struct netdev_net_notifier *nn)
1873 {
1874 	int err;
1875 
1876 	rtnl_lock();
1877 	list_del(&nn->list);
1878 	err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1879 	rtnl_unlock();
1880 	return err;
1881 }
1882 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1883 
1884 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1885 					     struct net *net)
1886 {
1887 	struct netdev_net_notifier *nn;
1888 
1889 	list_for_each_entry(nn, &dev->net_notifier_list, list) {
1890 		__unregister_netdevice_notifier_net(dev_net(dev), nn->nb);
1891 		__register_netdevice_notifier_net(net, nn->nb, true);
1892 	}
1893 }
1894 
1895 /**
1896  *	call_netdevice_notifiers_info - call all network notifier blocks
1897  *	@val: value passed unmodified to notifier function
1898  *	@info: notifier information data
1899  *
1900  *	Call all network notifier blocks.  Parameters and return value
1901  *	are as for raw_notifier_call_chain().
1902  */
1903 
1904 static int call_netdevice_notifiers_info(unsigned long val,
1905 					 struct netdev_notifier_info *info)
1906 {
1907 	struct net *net = dev_net(info->dev);
1908 	int ret;
1909 
1910 	ASSERT_RTNL();
1911 
1912 	/* Run per-netns notifier block chain first, then run the global one.
1913 	 * Hopefully, one day, the global one is going to be removed after
1914 	 * all notifier block registrators get converted to be per-netns.
1915 	 */
1916 	ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
1917 	if (ret & NOTIFY_STOP_MASK)
1918 		return ret;
1919 	return raw_notifier_call_chain(&netdev_chain, val, info);
1920 }
1921 
1922 static int call_netdevice_notifiers_extack(unsigned long val,
1923 					   struct net_device *dev,
1924 					   struct netlink_ext_ack *extack)
1925 {
1926 	struct netdev_notifier_info info = {
1927 		.dev = dev,
1928 		.extack = extack,
1929 	};
1930 
1931 	return call_netdevice_notifiers_info(val, &info);
1932 }
1933 
1934 /**
1935  *	call_netdevice_notifiers - call all network notifier blocks
1936  *      @val: value passed unmodified to notifier function
1937  *      @dev: net_device pointer passed unmodified to notifier function
1938  *
1939  *	Call all network notifier blocks.  Parameters and return value
1940  *	are as for raw_notifier_call_chain().
1941  */
1942 
1943 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1944 {
1945 	return call_netdevice_notifiers_extack(val, dev, NULL);
1946 }
1947 EXPORT_SYMBOL(call_netdevice_notifiers);
1948 
1949 /**
1950  *	call_netdevice_notifiers_mtu - call all network notifier blocks
1951  *	@val: value passed unmodified to notifier function
1952  *	@dev: net_device pointer passed unmodified to notifier function
1953  *	@arg: additional u32 argument passed to the notifier function
1954  *
1955  *	Call all network notifier blocks.  Parameters and return value
1956  *	are as for raw_notifier_call_chain().
1957  */
1958 static int call_netdevice_notifiers_mtu(unsigned long val,
1959 					struct net_device *dev, u32 arg)
1960 {
1961 	struct netdev_notifier_info_ext info = {
1962 		.info.dev = dev,
1963 		.ext.mtu = arg,
1964 	};
1965 
1966 	BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
1967 
1968 	return call_netdevice_notifiers_info(val, &info.info);
1969 }
1970 
1971 #ifdef CONFIG_NET_INGRESS
1972 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
1973 
1974 void net_inc_ingress_queue(void)
1975 {
1976 	static_branch_inc(&ingress_needed_key);
1977 }
1978 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1979 
1980 void net_dec_ingress_queue(void)
1981 {
1982 	static_branch_dec(&ingress_needed_key);
1983 }
1984 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1985 #endif
1986 
1987 #ifdef CONFIG_NET_EGRESS
1988 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
1989 
1990 void net_inc_egress_queue(void)
1991 {
1992 	static_branch_inc(&egress_needed_key);
1993 }
1994 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1995 
1996 void net_dec_egress_queue(void)
1997 {
1998 	static_branch_dec(&egress_needed_key);
1999 }
2000 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2001 #endif
2002 
2003 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2004 #ifdef CONFIG_JUMP_LABEL
2005 static atomic_t netstamp_needed_deferred;
2006 static atomic_t netstamp_wanted;
2007 static void netstamp_clear(struct work_struct *work)
2008 {
2009 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2010 	int wanted;
2011 
2012 	wanted = atomic_add_return(deferred, &netstamp_wanted);
2013 	if (wanted > 0)
2014 		static_branch_enable(&netstamp_needed_key);
2015 	else
2016 		static_branch_disable(&netstamp_needed_key);
2017 }
2018 static DECLARE_WORK(netstamp_work, netstamp_clear);
2019 #endif
2020 
2021 void net_enable_timestamp(void)
2022 {
2023 #ifdef CONFIG_JUMP_LABEL
2024 	int wanted;
2025 
2026 	while (1) {
2027 		wanted = atomic_read(&netstamp_wanted);
2028 		if (wanted <= 0)
2029 			break;
2030 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2031 			return;
2032 	}
2033 	atomic_inc(&netstamp_needed_deferred);
2034 	schedule_work(&netstamp_work);
2035 #else
2036 	static_branch_inc(&netstamp_needed_key);
2037 #endif
2038 }
2039 EXPORT_SYMBOL(net_enable_timestamp);
2040 
2041 void net_disable_timestamp(void)
2042 {
2043 #ifdef CONFIG_JUMP_LABEL
2044 	int wanted;
2045 
2046 	while (1) {
2047 		wanted = atomic_read(&netstamp_wanted);
2048 		if (wanted <= 1)
2049 			break;
2050 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2051 			return;
2052 	}
2053 	atomic_dec(&netstamp_needed_deferred);
2054 	schedule_work(&netstamp_work);
2055 #else
2056 	static_branch_dec(&netstamp_needed_key);
2057 #endif
2058 }
2059 EXPORT_SYMBOL(net_disable_timestamp);
2060 
2061 static inline void net_timestamp_set(struct sk_buff *skb)
2062 {
2063 	skb->tstamp = 0;
2064 	if (static_branch_unlikely(&netstamp_needed_key))
2065 		__net_timestamp(skb);
2066 }
2067 
2068 #define net_timestamp_check(COND, SKB)				\
2069 	if (static_branch_unlikely(&netstamp_needed_key)) {	\
2070 		if ((COND) && !(SKB)->tstamp)			\
2071 			__net_timestamp(SKB);			\
2072 	}							\
2073 
2074 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2075 {
2076 	return __is_skb_forwardable(dev, skb, true);
2077 }
2078 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2079 
2080 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2081 			      bool check_mtu)
2082 {
2083 	int ret = ____dev_forward_skb(dev, skb, check_mtu);
2084 
2085 	if (likely(!ret)) {
2086 		skb->protocol = eth_type_trans(skb, dev);
2087 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2088 	}
2089 
2090 	return ret;
2091 }
2092 
2093 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2094 {
2095 	return __dev_forward_skb2(dev, skb, true);
2096 }
2097 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2098 
2099 /**
2100  * dev_forward_skb - loopback an skb to another netif
2101  *
2102  * @dev: destination network device
2103  * @skb: buffer to forward
2104  *
2105  * return values:
2106  *	NET_RX_SUCCESS	(no congestion)
2107  *	NET_RX_DROP     (packet was dropped, but freed)
2108  *
2109  * dev_forward_skb can be used for injecting an skb from the
2110  * start_xmit function of one device into the receive queue
2111  * of another device.
2112  *
2113  * The receiving device may be in another namespace, so
2114  * we have to clear all information in the skb that could
2115  * impact namespace isolation.
2116  */
2117 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2118 {
2119 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2120 }
2121 EXPORT_SYMBOL_GPL(dev_forward_skb);
2122 
2123 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2124 {
2125 	return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2126 }
2127 
2128 static inline int deliver_skb(struct sk_buff *skb,
2129 			      struct packet_type *pt_prev,
2130 			      struct net_device *orig_dev)
2131 {
2132 	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2133 		return -ENOMEM;
2134 	refcount_inc(&skb->users);
2135 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2136 }
2137 
2138 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2139 					  struct packet_type **pt,
2140 					  struct net_device *orig_dev,
2141 					  __be16 type,
2142 					  struct list_head *ptype_list)
2143 {
2144 	struct packet_type *ptype, *pt_prev = *pt;
2145 
2146 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2147 		if (ptype->type != type)
2148 			continue;
2149 		if (pt_prev)
2150 			deliver_skb(skb, pt_prev, orig_dev);
2151 		pt_prev = ptype;
2152 	}
2153 	*pt = pt_prev;
2154 }
2155 
2156 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2157 {
2158 	if (!ptype->af_packet_priv || !skb->sk)
2159 		return false;
2160 
2161 	if (ptype->id_match)
2162 		return ptype->id_match(ptype, skb->sk);
2163 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2164 		return true;
2165 
2166 	return false;
2167 }
2168 
2169 /**
2170  * dev_nit_active - return true if any network interface taps are in use
2171  *
2172  * @dev: network device to check for the presence of taps
2173  */
2174 bool dev_nit_active(struct net_device *dev)
2175 {
2176 	return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2177 }
2178 EXPORT_SYMBOL_GPL(dev_nit_active);
2179 
2180 /*
2181  *	Support routine. Sends outgoing frames to any network
2182  *	taps currently in use.
2183  */
2184 
2185 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2186 {
2187 	struct packet_type *ptype;
2188 	struct sk_buff *skb2 = NULL;
2189 	struct packet_type *pt_prev = NULL;
2190 	struct list_head *ptype_list = &ptype_all;
2191 
2192 	rcu_read_lock();
2193 again:
2194 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2195 		if (ptype->ignore_outgoing)
2196 			continue;
2197 
2198 		/* Never send packets back to the socket
2199 		 * they originated from - MvS (miquels@drinkel.ow.org)
2200 		 */
2201 		if (skb_loop_sk(ptype, skb))
2202 			continue;
2203 
2204 		if (pt_prev) {
2205 			deliver_skb(skb2, pt_prev, skb->dev);
2206 			pt_prev = ptype;
2207 			continue;
2208 		}
2209 
2210 		/* need to clone skb, done only once */
2211 		skb2 = skb_clone(skb, GFP_ATOMIC);
2212 		if (!skb2)
2213 			goto out_unlock;
2214 
2215 		net_timestamp_set(skb2);
2216 
2217 		/* skb->nh should be correctly
2218 		 * set by sender, so that the second statement is
2219 		 * just protection against buggy protocols.
2220 		 */
2221 		skb_reset_mac_header(skb2);
2222 
2223 		if (skb_network_header(skb2) < skb2->data ||
2224 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2225 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2226 					     ntohs(skb2->protocol),
2227 					     dev->name);
2228 			skb_reset_network_header(skb2);
2229 		}
2230 
2231 		skb2->transport_header = skb2->network_header;
2232 		skb2->pkt_type = PACKET_OUTGOING;
2233 		pt_prev = ptype;
2234 	}
2235 
2236 	if (ptype_list == &ptype_all) {
2237 		ptype_list = &dev->ptype_all;
2238 		goto again;
2239 	}
2240 out_unlock:
2241 	if (pt_prev) {
2242 		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2243 			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2244 		else
2245 			kfree_skb(skb2);
2246 	}
2247 	rcu_read_unlock();
2248 }
2249 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2250 
2251 /**
2252  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2253  * @dev: Network device
2254  * @txq: number of queues available
2255  *
2256  * If real_num_tx_queues is changed the tc mappings may no longer be
2257  * valid. To resolve this verify the tc mapping remains valid and if
2258  * not NULL the mapping. With no priorities mapping to this
2259  * offset/count pair it will no longer be used. In the worst case TC0
2260  * is invalid nothing can be done so disable priority mappings. If is
2261  * expected that drivers will fix this mapping if they can before
2262  * calling netif_set_real_num_tx_queues.
2263  */
2264 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2265 {
2266 	int i;
2267 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2268 
2269 	/* If TC0 is invalidated disable TC mapping */
2270 	if (tc->offset + tc->count > txq) {
2271 		netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2272 		dev->num_tc = 0;
2273 		return;
2274 	}
2275 
2276 	/* Invalidated prio to tc mappings set to TC0 */
2277 	for (i = 1; i < TC_BITMASK + 1; i++) {
2278 		int q = netdev_get_prio_tc_map(dev, i);
2279 
2280 		tc = &dev->tc_to_txq[q];
2281 		if (tc->offset + tc->count > txq) {
2282 			netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2283 				    i, q);
2284 			netdev_set_prio_tc_map(dev, i, 0);
2285 		}
2286 	}
2287 }
2288 
2289 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2290 {
2291 	if (dev->num_tc) {
2292 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2293 		int i;
2294 
2295 		/* walk through the TCs and see if it falls into any of them */
2296 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2297 			if ((txq - tc->offset) < tc->count)
2298 				return i;
2299 		}
2300 
2301 		/* didn't find it, just return -1 to indicate no match */
2302 		return -1;
2303 	}
2304 
2305 	return 0;
2306 }
2307 EXPORT_SYMBOL(netdev_txq_to_tc);
2308 
2309 #ifdef CONFIG_XPS
2310 static struct static_key xps_needed __read_mostly;
2311 static struct static_key xps_rxqs_needed __read_mostly;
2312 static DEFINE_MUTEX(xps_map_mutex);
2313 #define xmap_dereference(P)		\
2314 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2315 
2316 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2317 			     struct xps_dev_maps *old_maps, int tci, u16 index)
2318 {
2319 	struct xps_map *map = NULL;
2320 	int pos;
2321 
2322 	if (dev_maps)
2323 		map = xmap_dereference(dev_maps->attr_map[tci]);
2324 	if (!map)
2325 		return false;
2326 
2327 	for (pos = map->len; pos--;) {
2328 		if (map->queues[pos] != index)
2329 			continue;
2330 
2331 		if (map->len > 1) {
2332 			map->queues[pos] = map->queues[--map->len];
2333 			break;
2334 		}
2335 
2336 		if (old_maps)
2337 			RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2338 		RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2339 		kfree_rcu(map, rcu);
2340 		return false;
2341 	}
2342 
2343 	return true;
2344 }
2345 
2346 static bool remove_xps_queue_cpu(struct net_device *dev,
2347 				 struct xps_dev_maps *dev_maps,
2348 				 int cpu, u16 offset, u16 count)
2349 {
2350 	int num_tc = dev_maps->num_tc;
2351 	bool active = false;
2352 	int tci;
2353 
2354 	for (tci = cpu * num_tc; num_tc--; tci++) {
2355 		int i, j;
2356 
2357 		for (i = count, j = offset; i--; j++) {
2358 			if (!remove_xps_queue(dev_maps, NULL, tci, j))
2359 				break;
2360 		}
2361 
2362 		active |= i < 0;
2363 	}
2364 
2365 	return active;
2366 }
2367 
2368 static void reset_xps_maps(struct net_device *dev,
2369 			   struct xps_dev_maps *dev_maps,
2370 			   enum xps_map_type type)
2371 {
2372 	static_key_slow_dec_cpuslocked(&xps_needed);
2373 	if (type == XPS_RXQS)
2374 		static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2375 
2376 	RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2377 
2378 	kfree_rcu(dev_maps, rcu);
2379 }
2380 
2381 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2382 			   u16 offset, u16 count)
2383 {
2384 	struct xps_dev_maps *dev_maps;
2385 	bool active = false;
2386 	int i, j;
2387 
2388 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2389 	if (!dev_maps)
2390 		return;
2391 
2392 	for (j = 0; j < dev_maps->nr_ids; j++)
2393 		active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2394 	if (!active)
2395 		reset_xps_maps(dev, dev_maps, type);
2396 
2397 	if (type == XPS_CPUS) {
2398 		for (i = offset + (count - 1); count--; i--)
2399 			netdev_queue_numa_node_write(
2400 				netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2401 	}
2402 }
2403 
2404 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2405 				   u16 count)
2406 {
2407 	if (!static_key_false(&xps_needed))
2408 		return;
2409 
2410 	cpus_read_lock();
2411 	mutex_lock(&xps_map_mutex);
2412 
2413 	if (static_key_false(&xps_rxqs_needed))
2414 		clean_xps_maps(dev, XPS_RXQS, offset, count);
2415 
2416 	clean_xps_maps(dev, XPS_CPUS, offset, count);
2417 
2418 	mutex_unlock(&xps_map_mutex);
2419 	cpus_read_unlock();
2420 }
2421 
2422 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2423 {
2424 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2425 }
2426 
2427 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2428 				      u16 index, bool is_rxqs_map)
2429 {
2430 	struct xps_map *new_map;
2431 	int alloc_len = XPS_MIN_MAP_ALLOC;
2432 	int i, pos;
2433 
2434 	for (pos = 0; map && pos < map->len; pos++) {
2435 		if (map->queues[pos] != index)
2436 			continue;
2437 		return map;
2438 	}
2439 
2440 	/* Need to add tx-queue to this CPU's/rx-queue's existing map */
2441 	if (map) {
2442 		if (pos < map->alloc_len)
2443 			return map;
2444 
2445 		alloc_len = map->alloc_len * 2;
2446 	}
2447 
2448 	/* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2449 	 *  map
2450 	 */
2451 	if (is_rxqs_map)
2452 		new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2453 	else
2454 		new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2455 				       cpu_to_node(attr_index));
2456 	if (!new_map)
2457 		return NULL;
2458 
2459 	for (i = 0; i < pos; i++)
2460 		new_map->queues[i] = map->queues[i];
2461 	new_map->alloc_len = alloc_len;
2462 	new_map->len = pos;
2463 
2464 	return new_map;
2465 }
2466 
2467 /* Copy xps maps at a given index */
2468 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2469 			      struct xps_dev_maps *new_dev_maps, int index,
2470 			      int tc, bool skip_tc)
2471 {
2472 	int i, tci = index * dev_maps->num_tc;
2473 	struct xps_map *map;
2474 
2475 	/* copy maps belonging to foreign traffic classes */
2476 	for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2477 		if (i == tc && skip_tc)
2478 			continue;
2479 
2480 		/* fill in the new device map from the old device map */
2481 		map = xmap_dereference(dev_maps->attr_map[tci]);
2482 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2483 	}
2484 }
2485 
2486 /* Must be called under cpus_read_lock */
2487 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2488 			  u16 index, enum xps_map_type type)
2489 {
2490 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2491 	const unsigned long *online_mask = NULL;
2492 	bool active = false, copy = false;
2493 	int i, j, tci, numa_node_id = -2;
2494 	int maps_sz, num_tc = 1, tc = 0;
2495 	struct xps_map *map, *new_map;
2496 	unsigned int nr_ids;
2497 
2498 	if (dev->num_tc) {
2499 		/* Do not allow XPS on subordinate device directly */
2500 		num_tc = dev->num_tc;
2501 		if (num_tc < 0)
2502 			return -EINVAL;
2503 
2504 		/* If queue belongs to subordinate dev use its map */
2505 		dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2506 
2507 		tc = netdev_txq_to_tc(dev, index);
2508 		if (tc < 0)
2509 			return -EINVAL;
2510 	}
2511 
2512 	mutex_lock(&xps_map_mutex);
2513 
2514 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2515 	if (type == XPS_RXQS) {
2516 		maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2517 		nr_ids = dev->num_rx_queues;
2518 	} else {
2519 		maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2520 		if (num_possible_cpus() > 1)
2521 			online_mask = cpumask_bits(cpu_online_mask);
2522 		nr_ids = nr_cpu_ids;
2523 	}
2524 
2525 	if (maps_sz < L1_CACHE_BYTES)
2526 		maps_sz = L1_CACHE_BYTES;
2527 
2528 	/* The old dev_maps could be larger or smaller than the one we're
2529 	 * setting up now, as dev->num_tc or nr_ids could have been updated in
2530 	 * between. We could try to be smart, but let's be safe instead and only
2531 	 * copy foreign traffic classes if the two map sizes match.
2532 	 */
2533 	if (dev_maps &&
2534 	    dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2535 		copy = true;
2536 
2537 	/* allocate memory for queue storage */
2538 	for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2539 	     j < nr_ids;) {
2540 		if (!new_dev_maps) {
2541 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2542 			if (!new_dev_maps) {
2543 				mutex_unlock(&xps_map_mutex);
2544 				return -ENOMEM;
2545 			}
2546 
2547 			new_dev_maps->nr_ids = nr_ids;
2548 			new_dev_maps->num_tc = num_tc;
2549 		}
2550 
2551 		tci = j * num_tc + tc;
2552 		map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2553 
2554 		map = expand_xps_map(map, j, index, type == XPS_RXQS);
2555 		if (!map)
2556 			goto error;
2557 
2558 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2559 	}
2560 
2561 	if (!new_dev_maps)
2562 		goto out_no_new_maps;
2563 
2564 	if (!dev_maps) {
2565 		/* Increment static keys at most once per type */
2566 		static_key_slow_inc_cpuslocked(&xps_needed);
2567 		if (type == XPS_RXQS)
2568 			static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2569 	}
2570 
2571 	for (j = 0; j < nr_ids; j++) {
2572 		bool skip_tc = false;
2573 
2574 		tci = j * num_tc + tc;
2575 		if (netif_attr_test_mask(j, mask, nr_ids) &&
2576 		    netif_attr_test_online(j, online_mask, nr_ids)) {
2577 			/* add tx-queue to CPU/rx-queue maps */
2578 			int pos = 0;
2579 
2580 			skip_tc = true;
2581 
2582 			map = xmap_dereference(new_dev_maps->attr_map[tci]);
2583 			while ((pos < map->len) && (map->queues[pos] != index))
2584 				pos++;
2585 
2586 			if (pos == map->len)
2587 				map->queues[map->len++] = index;
2588 #ifdef CONFIG_NUMA
2589 			if (type == XPS_CPUS) {
2590 				if (numa_node_id == -2)
2591 					numa_node_id = cpu_to_node(j);
2592 				else if (numa_node_id != cpu_to_node(j))
2593 					numa_node_id = -1;
2594 			}
2595 #endif
2596 		}
2597 
2598 		if (copy)
2599 			xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2600 					  skip_tc);
2601 	}
2602 
2603 	rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2604 
2605 	/* Cleanup old maps */
2606 	if (!dev_maps)
2607 		goto out_no_old_maps;
2608 
2609 	for (j = 0; j < dev_maps->nr_ids; j++) {
2610 		for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2611 			map = xmap_dereference(dev_maps->attr_map[tci]);
2612 			if (!map)
2613 				continue;
2614 
2615 			if (copy) {
2616 				new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2617 				if (map == new_map)
2618 					continue;
2619 			}
2620 
2621 			RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2622 			kfree_rcu(map, rcu);
2623 		}
2624 	}
2625 
2626 	old_dev_maps = dev_maps;
2627 
2628 out_no_old_maps:
2629 	dev_maps = new_dev_maps;
2630 	active = true;
2631 
2632 out_no_new_maps:
2633 	if (type == XPS_CPUS)
2634 		/* update Tx queue numa node */
2635 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2636 					     (numa_node_id >= 0) ?
2637 					     numa_node_id : NUMA_NO_NODE);
2638 
2639 	if (!dev_maps)
2640 		goto out_no_maps;
2641 
2642 	/* removes tx-queue from unused CPUs/rx-queues */
2643 	for (j = 0; j < dev_maps->nr_ids; j++) {
2644 		tci = j * dev_maps->num_tc;
2645 
2646 		for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2647 			if (i == tc &&
2648 			    netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2649 			    netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2650 				continue;
2651 
2652 			active |= remove_xps_queue(dev_maps,
2653 						   copy ? old_dev_maps : NULL,
2654 						   tci, index);
2655 		}
2656 	}
2657 
2658 	if (old_dev_maps)
2659 		kfree_rcu(old_dev_maps, rcu);
2660 
2661 	/* free map if not active */
2662 	if (!active)
2663 		reset_xps_maps(dev, dev_maps, type);
2664 
2665 out_no_maps:
2666 	mutex_unlock(&xps_map_mutex);
2667 
2668 	return 0;
2669 error:
2670 	/* remove any maps that we added */
2671 	for (j = 0; j < nr_ids; j++) {
2672 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2673 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2674 			map = copy ?
2675 			      xmap_dereference(dev_maps->attr_map[tci]) :
2676 			      NULL;
2677 			if (new_map && new_map != map)
2678 				kfree(new_map);
2679 		}
2680 	}
2681 
2682 	mutex_unlock(&xps_map_mutex);
2683 
2684 	kfree(new_dev_maps);
2685 	return -ENOMEM;
2686 }
2687 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2688 
2689 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2690 			u16 index)
2691 {
2692 	int ret;
2693 
2694 	cpus_read_lock();
2695 	ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2696 	cpus_read_unlock();
2697 
2698 	return ret;
2699 }
2700 EXPORT_SYMBOL(netif_set_xps_queue);
2701 
2702 #endif
2703 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2704 {
2705 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2706 
2707 	/* Unbind any subordinate channels */
2708 	while (txq-- != &dev->_tx[0]) {
2709 		if (txq->sb_dev)
2710 			netdev_unbind_sb_channel(dev, txq->sb_dev);
2711 	}
2712 }
2713 
2714 void netdev_reset_tc(struct net_device *dev)
2715 {
2716 #ifdef CONFIG_XPS
2717 	netif_reset_xps_queues_gt(dev, 0);
2718 #endif
2719 	netdev_unbind_all_sb_channels(dev);
2720 
2721 	/* Reset TC configuration of device */
2722 	dev->num_tc = 0;
2723 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2724 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2725 }
2726 EXPORT_SYMBOL(netdev_reset_tc);
2727 
2728 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2729 {
2730 	if (tc >= dev->num_tc)
2731 		return -EINVAL;
2732 
2733 #ifdef CONFIG_XPS
2734 	netif_reset_xps_queues(dev, offset, count);
2735 #endif
2736 	dev->tc_to_txq[tc].count = count;
2737 	dev->tc_to_txq[tc].offset = offset;
2738 	return 0;
2739 }
2740 EXPORT_SYMBOL(netdev_set_tc_queue);
2741 
2742 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2743 {
2744 	if (num_tc > TC_MAX_QUEUE)
2745 		return -EINVAL;
2746 
2747 #ifdef CONFIG_XPS
2748 	netif_reset_xps_queues_gt(dev, 0);
2749 #endif
2750 	netdev_unbind_all_sb_channels(dev);
2751 
2752 	dev->num_tc = num_tc;
2753 	return 0;
2754 }
2755 EXPORT_SYMBOL(netdev_set_num_tc);
2756 
2757 void netdev_unbind_sb_channel(struct net_device *dev,
2758 			      struct net_device *sb_dev)
2759 {
2760 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2761 
2762 #ifdef CONFIG_XPS
2763 	netif_reset_xps_queues_gt(sb_dev, 0);
2764 #endif
2765 	memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2766 	memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2767 
2768 	while (txq-- != &dev->_tx[0]) {
2769 		if (txq->sb_dev == sb_dev)
2770 			txq->sb_dev = NULL;
2771 	}
2772 }
2773 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2774 
2775 int netdev_bind_sb_channel_queue(struct net_device *dev,
2776 				 struct net_device *sb_dev,
2777 				 u8 tc, u16 count, u16 offset)
2778 {
2779 	/* Make certain the sb_dev and dev are already configured */
2780 	if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2781 		return -EINVAL;
2782 
2783 	/* We cannot hand out queues we don't have */
2784 	if ((offset + count) > dev->real_num_tx_queues)
2785 		return -EINVAL;
2786 
2787 	/* Record the mapping */
2788 	sb_dev->tc_to_txq[tc].count = count;
2789 	sb_dev->tc_to_txq[tc].offset = offset;
2790 
2791 	/* Provide a way for Tx queue to find the tc_to_txq map or
2792 	 * XPS map for itself.
2793 	 */
2794 	while (count--)
2795 		netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2796 
2797 	return 0;
2798 }
2799 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2800 
2801 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2802 {
2803 	/* Do not use a multiqueue device to represent a subordinate channel */
2804 	if (netif_is_multiqueue(dev))
2805 		return -ENODEV;
2806 
2807 	/* We allow channels 1 - 32767 to be used for subordinate channels.
2808 	 * Channel 0 is meant to be "native" mode and used only to represent
2809 	 * the main root device. We allow writing 0 to reset the device back
2810 	 * to normal mode after being used as a subordinate channel.
2811 	 */
2812 	if (channel > S16_MAX)
2813 		return -EINVAL;
2814 
2815 	dev->num_tc = -channel;
2816 
2817 	return 0;
2818 }
2819 EXPORT_SYMBOL(netdev_set_sb_channel);
2820 
2821 /*
2822  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2823  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2824  */
2825 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2826 {
2827 	bool disabling;
2828 	int rc;
2829 
2830 	disabling = txq < dev->real_num_tx_queues;
2831 
2832 	if (txq < 1 || txq > dev->num_tx_queues)
2833 		return -EINVAL;
2834 
2835 	if (dev->reg_state == NETREG_REGISTERED ||
2836 	    dev->reg_state == NETREG_UNREGISTERING) {
2837 		ASSERT_RTNL();
2838 
2839 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2840 						  txq);
2841 		if (rc)
2842 			return rc;
2843 
2844 		if (dev->num_tc)
2845 			netif_setup_tc(dev, txq);
2846 
2847 		dev_qdisc_change_real_num_tx(dev, txq);
2848 
2849 		dev->real_num_tx_queues = txq;
2850 
2851 		if (disabling) {
2852 			synchronize_net();
2853 			qdisc_reset_all_tx_gt(dev, txq);
2854 #ifdef CONFIG_XPS
2855 			netif_reset_xps_queues_gt(dev, txq);
2856 #endif
2857 		}
2858 	} else {
2859 		dev->real_num_tx_queues = txq;
2860 	}
2861 
2862 	return 0;
2863 }
2864 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2865 
2866 #ifdef CONFIG_SYSFS
2867 /**
2868  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2869  *	@dev: Network device
2870  *	@rxq: Actual number of RX queues
2871  *
2872  *	This must be called either with the rtnl_lock held or before
2873  *	registration of the net device.  Returns 0 on success, or a
2874  *	negative error code.  If called before registration, it always
2875  *	succeeds.
2876  */
2877 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2878 {
2879 	int rc;
2880 
2881 	if (rxq < 1 || rxq > dev->num_rx_queues)
2882 		return -EINVAL;
2883 
2884 	if (dev->reg_state == NETREG_REGISTERED) {
2885 		ASSERT_RTNL();
2886 
2887 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2888 						  rxq);
2889 		if (rc)
2890 			return rc;
2891 	}
2892 
2893 	dev->real_num_rx_queues = rxq;
2894 	return 0;
2895 }
2896 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2897 #endif
2898 
2899 /**
2900  *	netif_set_real_num_queues - set actual number of RX and TX queues used
2901  *	@dev: Network device
2902  *	@txq: Actual number of TX queues
2903  *	@rxq: Actual number of RX queues
2904  *
2905  *	Set the real number of both TX and RX queues.
2906  *	Does nothing if the number of queues is already correct.
2907  */
2908 int netif_set_real_num_queues(struct net_device *dev,
2909 			      unsigned int txq, unsigned int rxq)
2910 {
2911 	unsigned int old_rxq = dev->real_num_rx_queues;
2912 	int err;
2913 
2914 	if (txq < 1 || txq > dev->num_tx_queues ||
2915 	    rxq < 1 || rxq > dev->num_rx_queues)
2916 		return -EINVAL;
2917 
2918 	/* Start from increases, so the error path only does decreases -
2919 	 * decreases can't fail.
2920 	 */
2921 	if (rxq > dev->real_num_rx_queues) {
2922 		err = netif_set_real_num_rx_queues(dev, rxq);
2923 		if (err)
2924 			return err;
2925 	}
2926 	if (txq > dev->real_num_tx_queues) {
2927 		err = netif_set_real_num_tx_queues(dev, txq);
2928 		if (err)
2929 			goto undo_rx;
2930 	}
2931 	if (rxq < dev->real_num_rx_queues)
2932 		WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
2933 	if (txq < dev->real_num_tx_queues)
2934 		WARN_ON(netif_set_real_num_tx_queues(dev, txq));
2935 
2936 	return 0;
2937 undo_rx:
2938 	WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
2939 	return err;
2940 }
2941 EXPORT_SYMBOL(netif_set_real_num_queues);
2942 
2943 /**
2944  * netif_get_num_default_rss_queues - default number of RSS queues
2945  *
2946  * This routine should set an upper limit on the number of RSS queues
2947  * used by default by multiqueue devices.
2948  */
2949 int netif_get_num_default_rss_queues(void)
2950 {
2951 	return is_kdump_kernel() ?
2952 		1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2953 }
2954 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2955 
2956 static void __netif_reschedule(struct Qdisc *q)
2957 {
2958 	struct softnet_data *sd;
2959 	unsigned long flags;
2960 
2961 	local_irq_save(flags);
2962 	sd = this_cpu_ptr(&softnet_data);
2963 	q->next_sched = NULL;
2964 	*sd->output_queue_tailp = q;
2965 	sd->output_queue_tailp = &q->next_sched;
2966 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2967 	local_irq_restore(flags);
2968 }
2969 
2970 void __netif_schedule(struct Qdisc *q)
2971 {
2972 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2973 		__netif_reschedule(q);
2974 }
2975 EXPORT_SYMBOL(__netif_schedule);
2976 
2977 struct dev_kfree_skb_cb {
2978 	enum skb_free_reason reason;
2979 };
2980 
2981 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2982 {
2983 	return (struct dev_kfree_skb_cb *)skb->cb;
2984 }
2985 
2986 void netif_schedule_queue(struct netdev_queue *txq)
2987 {
2988 	rcu_read_lock();
2989 	if (!netif_xmit_stopped(txq)) {
2990 		struct Qdisc *q = rcu_dereference(txq->qdisc);
2991 
2992 		__netif_schedule(q);
2993 	}
2994 	rcu_read_unlock();
2995 }
2996 EXPORT_SYMBOL(netif_schedule_queue);
2997 
2998 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2999 {
3000 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3001 		struct Qdisc *q;
3002 
3003 		rcu_read_lock();
3004 		q = rcu_dereference(dev_queue->qdisc);
3005 		__netif_schedule(q);
3006 		rcu_read_unlock();
3007 	}
3008 }
3009 EXPORT_SYMBOL(netif_tx_wake_queue);
3010 
3011 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
3012 {
3013 	unsigned long flags;
3014 
3015 	if (unlikely(!skb))
3016 		return;
3017 
3018 	if (likely(refcount_read(&skb->users) == 1)) {
3019 		smp_rmb();
3020 		refcount_set(&skb->users, 0);
3021 	} else if (likely(!refcount_dec_and_test(&skb->users))) {
3022 		return;
3023 	}
3024 	get_kfree_skb_cb(skb)->reason = reason;
3025 	local_irq_save(flags);
3026 	skb->next = __this_cpu_read(softnet_data.completion_queue);
3027 	__this_cpu_write(softnet_data.completion_queue, skb);
3028 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3029 	local_irq_restore(flags);
3030 }
3031 EXPORT_SYMBOL(__dev_kfree_skb_irq);
3032 
3033 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
3034 {
3035 	if (in_hardirq() || irqs_disabled())
3036 		__dev_kfree_skb_irq(skb, reason);
3037 	else
3038 		dev_kfree_skb(skb);
3039 }
3040 EXPORT_SYMBOL(__dev_kfree_skb_any);
3041 
3042 
3043 /**
3044  * netif_device_detach - mark device as removed
3045  * @dev: network device
3046  *
3047  * Mark device as removed from system and therefore no longer available.
3048  */
3049 void netif_device_detach(struct net_device *dev)
3050 {
3051 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3052 	    netif_running(dev)) {
3053 		netif_tx_stop_all_queues(dev);
3054 	}
3055 }
3056 EXPORT_SYMBOL(netif_device_detach);
3057 
3058 /**
3059  * netif_device_attach - mark device as attached
3060  * @dev: network device
3061  *
3062  * Mark device as attached from system and restart if needed.
3063  */
3064 void netif_device_attach(struct net_device *dev)
3065 {
3066 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3067 	    netif_running(dev)) {
3068 		netif_tx_wake_all_queues(dev);
3069 		__netdev_watchdog_up(dev);
3070 	}
3071 }
3072 EXPORT_SYMBOL(netif_device_attach);
3073 
3074 /*
3075  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3076  * to be used as a distribution range.
3077  */
3078 static u16 skb_tx_hash(const struct net_device *dev,
3079 		       const struct net_device *sb_dev,
3080 		       struct sk_buff *skb)
3081 {
3082 	u32 hash;
3083 	u16 qoffset = 0;
3084 	u16 qcount = dev->real_num_tx_queues;
3085 
3086 	if (dev->num_tc) {
3087 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3088 
3089 		qoffset = sb_dev->tc_to_txq[tc].offset;
3090 		qcount = sb_dev->tc_to_txq[tc].count;
3091 		if (unlikely(!qcount)) {
3092 			net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3093 					     sb_dev->name, qoffset, tc);
3094 			qoffset = 0;
3095 			qcount = dev->real_num_tx_queues;
3096 		}
3097 	}
3098 
3099 	if (skb_rx_queue_recorded(skb)) {
3100 		hash = skb_get_rx_queue(skb);
3101 		if (hash >= qoffset)
3102 			hash -= qoffset;
3103 		while (unlikely(hash >= qcount))
3104 			hash -= qcount;
3105 		return hash + qoffset;
3106 	}
3107 
3108 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3109 }
3110 
3111 static void skb_warn_bad_offload(const struct sk_buff *skb)
3112 {
3113 	static const netdev_features_t null_features;
3114 	struct net_device *dev = skb->dev;
3115 	const char *name = "";
3116 
3117 	if (!net_ratelimit())
3118 		return;
3119 
3120 	if (dev) {
3121 		if (dev->dev.parent)
3122 			name = dev_driver_string(dev->dev.parent);
3123 		else
3124 			name = netdev_name(dev);
3125 	}
3126 	skb_dump(KERN_WARNING, skb, false);
3127 	WARN(1, "%s: caps=(%pNF, %pNF)\n",
3128 	     name, dev ? &dev->features : &null_features,
3129 	     skb->sk ? &skb->sk->sk_route_caps : &null_features);
3130 }
3131 
3132 /*
3133  * Invalidate hardware checksum when packet is to be mangled, and
3134  * complete checksum manually on outgoing path.
3135  */
3136 int skb_checksum_help(struct sk_buff *skb)
3137 {
3138 	__wsum csum;
3139 	int ret = 0, offset;
3140 
3141 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3142 		goto out_set_summed;
3143 
3144 	if (unlikely(skb_is_gso(skb))) {
3145 		skb_warn_bad_offload(skb);
3146 		return -EINVAL;
3147 	}
3148 
3149 	/* Before computing a checksum, we should make sure no frag could
3150 	 * be modified by an external entity : checksum could be wrong.
3151 	 */
3152 	if (skb_has_shared_frag(skb)) {
3153 		ret = __skb_linearize(skb);
3154 		if (ret)
3155 			goto out;
3156 	}
3157 
3158 	offset = skb_checksum_start_offset(skb);
3159 	BUG_ON(offset >= skb_headlen(skb));
3160 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
3161 
3162 	offset += skb->csum_offset;
3163 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
3164 
3165 	ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3166 	if (ret)
3167 		goto out;
3168 
3169 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3170 out_set_summed:
3171 	skb->ip_summed = CHECKSUM_NONE;
3172 out:
3173 	return ret;
3174 }
3175 EXPORT_SYMBOL(skb_checksum_help);
3176 
3177 int skb_crc32c_csum_help(struct sk_buff *skb)
3178 {
3179 	__le32 crc32c_csum;
3180 	int ret = 0, offset, start;
3181 
3182 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3183 		goto out;
3184 
3185 	if (unlikely(skb_is_gso(skb)))
3186 		goto out;
3187 
3188 	/* Before computing a checksum, we should make sure no frag could
3189 	 * be modified by an external entity : checksum could be wrong.
3190 	 */
3191 	if (unlikely(skb_has_shared_frag(skb))) {
3192 		ret = __skb_linearize(skb);
3193 		if (ret)
3194 			goto out;
3195 	}
3196 	start = skb_checksum_start_offset(skb);
3197 	offset = start + offsetof(struct sctphdr, checksum);
3198 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3199 		ret = -EINVAL;
3200 		goto out;
3201 	}
3202 
3203 	ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3204 	if (ret)
3205 		goto out;
3206 
3207 	crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3208 						  skb->len - start, ~(__u32)0,
3209 						  crc32c_csum_stub));
3210 	*(__le32 *)(skb->data + offset) = crc32c_csum;
3211 	skb->ip_summed = CHECKSUM_NONE;
3212 	skb->csum_not_inet = 0;
3213 out:
3214 	return ret;
3215 }
3216 
3217 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3218 {
3219 	__be16 type = skb->protocol;
3220 
3221 	/* Tunnel gso handlers can set protocol to ethernet. */
3222 	if (type == htons(ETH_P_TEB)) {
3223 		struct ethhdr *eth;
3224 
3225 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3226 			return 0;
3227 
3228 		eth = (struct ethhdr *)skb->data;
3229 		type = eth->h_proto;
3230 	}
3231 
3232 	return __vlan_get_protocol(skb, type, depth);
3233 }
3234 
3235 /* openvswitch calls this on rx path, so we need a different check.
3236  */
3237 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3238 {
3239 	if (tx_path)
3240 		return skb->ip_summed != CHECKSUM_PARTIAL &&
3241 		       skb->ip_summed != CHECKSUM_UNNECESSARY;
3242 
3243 	return skb->ip_summed == CHECKSUM_NONE;
3244 }
3245 
3246 /**
3247  *	__skb_gso_segment - Perform segmentation on skb.
3248  *	@skb: buffer to segment
3249  *	@features: features for the output path (see dev->features)
3250  *	@tx_path: whether it is called in TX path
3251  *
3252  *	This function segments the given skb and returns a list of segments.
3253  *
3254  *	It may return NULL if the skb requires no segmentation.  This is
3255  *	only possible when GSO is used for verifying header integrity.
3256  *
3257  *	Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
3258  */
3259 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3260 				  netdev_features_t features, bool tx_path)
3261 {
3262 	struct sk_buff *segs;
3263 
3264 	if (unlikely(skb_needs_check(skb, tx_path))) {
3265 		int err;
3266 
3267 		/* We're going to init ->check field in TCP or UDP header */
3268 		err = skb_cow_head(skb, 0);
3269 		if (err < 0)
3270 			return ERR_PTR(err);
3271 	}
3272 
3273 	/* Only report GSO partial support if it will enable us to
3274 	 * support segmentation on this frame without needing additional
3275 	 * work.
3276 	 */
3277 	if (features & NETIF_F_GSO_PARTIAL) {
3278 		netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3279 		struct net_device *dev = skb->dev;
3280 
3281 		partial_features |= dev->features & dev->gso_partial_features;
3282 		if (!skb_gso_ok(skb, features | partial_features))
3283 			features &= ~NETIF_F_GSO_PARTIAL;
3284 	}
3285 
3286 	BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
3287 		     sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3288 
3289 	SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3290 	SKB_GSO_CB(skb)->encap_level = 0;
3291 
3292 	skb_reset_mac_header(skb);
3293 	skb_reset_mac_len(skb);
3294 
3295 	segs = skb_mac_gso_segment(skb, features);
3296 
3297 	if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3298 		skb_warn_bad_offload(skb);
3299 
3300 	return segs;
3301 }
3302 EXPORT_SYMBOL(__skb_gso_segment);
3303 
3304 /* Take action when hardware reception checksum errors are detected. */
3305 #ifdef CONFIG_BUG
3306 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3307 {
3308 	netdev_err(dev, "hw csum failure\n");
3309 	skb_dump(KERN_ERR, skb, true);
3310 	dump_stack();
3311 }
3312 
3313 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3314 {
3315 	DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3316 }
3317 EXPORT_SYMBOL(netdev_rx_csum_fault);
3318 #endif
3319 
3320 /* XXX: check that highmem exists at all on the given machine. */
3321 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3322 {
3323 #ifdef CONFIG_HIGHMEM
3324 	int i;
3325 
3326 	if (!(dev->features & NETIF_F_HIGHDMA)) {
3327 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3328 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3329 
3330 			if (PageHighMem(skb_frag_page(frag)))
3331 				return 1;
3332 		}
3333 	}
3334 #endif
3335 	return 0;
3336 }
3337 
3338 /* If MPLS offload request, verify we are testing hardware MPLS features
3339  * instead of standard features for the netdev.
3340  */
3341 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3342 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3343 					   netdev_features_t features,
3344 					   __be16 type)
3345 {
3346 	if (eth_p_mpls(type))
3347 		features &= skb->dev->mpls_features;
3348 
3349 	return features;
3350 }
3351 #else
3352 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3353 					   netdev_features_t features,
3354 					   __be16 type)
3355 {
3356 	return features;
3357 }
3358 #endif
3359 
3360 static netdev_features_t harmonize_features(struct sk_buff *skb,
3361 	netdev_features_t features)
3362 {
3363 	__be16 type;
3364 
3365 	type = skb_network_protocol(skb, NULL);
3366 	features = net_mpls_features(skb, features, type);
3367 
3368 	if (skb->ip_summed != CHECKSUM_NONE &&
3369 	    !can_checksum_protocol(features, type)) {
3370 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3371 	}
3372 	if (illegal_highdma(skb->dev, skb))
3373 		features &= ~NETIF_F_SG;
3374 
3375 	return features;
3376 }
3377 
3378 netdev_features_t passthru_features_check(struct sk_buff *skb,
3379 					  struct net_device *dev,
3380 					  netdev_features_t features)
3381 {
3382 	return features;
3383 }
3384 EXPORT_SYMBOL(passthru_features_check);
3385 
3386 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3387 					     struct net_device *dev,
3388 					     netdev_features_t features)
3389 {
3390 	return vlan_features_check(skb, features);
3391 }
3392 
3393 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3394 					    struct net_device *dev,
3395 					    netdev_features_t features)
3396 {
3397 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
3398 
3399 	if (gso_segs > READ_ONCE(dev->gso_max_segs))
3400 		return features & ~NETIF_F_GSO_MASK;
3401 
3402 	if (!skb_shinfo(skb)->gso_type) {
3403 		skb_warn_bad_offload(skb);
3404 		return features & ~NETIF_F_GSO_MASK;
3405 	}
3406 
3407 	/* Support for GSO partial features requires software
3408 	 * intervention before we can actually process the packets
3409 	 * so we need to strip support for any partial features now
3410 	 * and we can pull them back in after we have partially
3411 	 * segmented the frame.
3412 	 */
3413 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3414 		features &= ~dev->gso_partial_features;
3415 
3416 	/* Make sure to clear the IPv4 ID mangling feature if the
3417 	 * IPv4 header has the potential to be fragmented.
3418 	 */
3419 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3420 		struct iphdr *iph = skb->encapsulation ?
3421 				    inner_ip_hdr(skb) : ip_hdr(skb);
3422 
3423 		if (!(iph->frag_off & htons(IP_DF)))
3424 			features &= ~NETIF_F_TSO_MANGLEID;
3425 	}
3426 
3427 	return features;
3428 }
3429 
3430 netdev_features_t netif_skb_features(struct sk_buff *skb)
3431 {
3432 	struct net_device *dev = skb->dev;
3433 	netdev_features_t features = dev->features;
3434 
3435 	if (skb_is_gso(skb))
3436 		features = gso_features_check(skb, dev, features);
3437 
3438 	/* If encapsulation offload request, verify we are testing
3439 	 * hardware encapsulation features instead of standard
3440 	 * features for the netdev
3441 	 */
3442 	if (skb->encapsulation)
3443 		features &= dev->hw_enc_features;
3444 
3445 	if (skb_vlan_tagged(skb))
3446 		features = netdev_intersect_features(features,
3447 						     dev->vlan_features |
3448 						     NETIF_F_HW_VLAN_CTAG_TX |
3449 						     NETIF_F_HW_VLAN_STAG_TX);
3450 
3451 	if (dev->netdev_ops->ndo_features_check)
3452 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
3453 								features);
3454 	else
3455 		features &= dflt_features_check(skb, dev, features);
3456 
3457 	return harmonize_features(skb, features);
3458 }
3459 EXPORT_SYMBOL(netif_skb_features);
3460 
3461 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3462 		    struct netdev_queue *txq, bool more)
3463 {
3464 	unsigned int len;
3465 	int rc;
3466 
3467 	if (dev_nit_active(dev))
3468 		dev_queue_xmit_nit(skb, dev);
3469 
3470 	len = skb->len;
3471 	PRANDOM_ADD_NOISE(skb, dev, txq, len + jiffies);
3472 	trace_net_dev_start_xmit(skb, dev);
3473 	rc = netdev_start_xmit(skb, dev, txq, more);
3474 	trace_net_dev_xmit(skb, rc, dev, len);
3475 
3476 	return rc;
3477 }
3478 
3479 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3480 				    struct netdev_queue *txq, int *ret)
3481 {
3482 	struct sk_buff *skb = first;
3483 	int rc = NETDEV_TX_OK;
3484 
3485 	while (skb) {
3486 		struct sk_buff *next = skb->next;
3487 
3488 		skb_mark_not_on_list(skb);
3489 		rc = xmit_one(skb, dev, txq, next != NULL);
3490 		if (unlikely(!dev_xmit_complete(rc))) {
3491 			skb->next = next;
3492 			goto out;
3493 		}
3494 
3495 		skb = next;
3496 		if (netif_tx_queue_stopped(txq) && skb) {
3497 			rc = NETDEV_TX_BUSY;
3498 			break;
3499 		}
3500 	}
3501 
3502 out:
3503 	*ret = rc;
3504 	return skb;
3505 }
3506 
3507 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3508 					  netdev_features_t features)
3509 {
3510 	if (skb_vlan_tag_present(skb) &&
3511 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3512 		skb = __vlan_hwaccel_push_inside(skb);
3513 	return skb;
3514 }
3515 
3516 int skb_csum_hwoffload_help(struct sk_buff *skb,
3517 			    const netdev_features_t features)
3518 {
3519 	if (unlikely(skb_csum_is_sctp(skb)))
3520 		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3521 			skb_crc32c_csum_help(skb);
3522 
3523 	if (features & NETIF_F_HW_CSUM)
3524 		return 0;
3525 
3526 	if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3527 		switch (skb->csum_offset) {
3528 		case offsetof(struct tcphdr, check):
3529 		case offsetof(struct udphdr, check):
3530 			return 0;
3531 		}
3532 	}
3533 
3534 	return skb_checksum_help(skb);
3535 }
3536 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3537 
3538 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3539 {
3540 	netdev_features_t features;
3541 
3542 	features = netif_skb_features(skb);
3543 	skb = validate_xmit_vlan(skb, features);
3544 	if (unlikely(!skb))
3545 		goto out_null;
3546 
3547 	skb = sk_validate_xmit_skb(skb, dev);
3548 	if (unlikely(!skb))
3549 		goto out_null;
3550 
3551 	if (netif_needs_gso(skb, features)) {
3552 		struct sk_buff *segs;
3553 
3554 		segs = skb_gso_segment(skb, features);
3555 		if (IS_ERR(segs)) {
3556 			goto out_kfree_skb;
3557 		} else if (segs) {
3558 			consume_skb(skb);
3559 			skb = segs;
3560 		}
3561 	} else {
3562 		if (skb_needs_linearize(skb, features) &&
3563 		    __skb_linearize(skb))
3564 			goto out_kfree_skb;
3565 
3566 		/* If packet is not checksummed and device does not
3567 		 * support checksumming for this protocol, complete
3568 		 * checksumming here.
3569 		 */
3570 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3571 			if (skb->encapsulation)
3572 				skb_set_inner_transport_header(skb,
3573 							       skb_checksum_start_offset(skb));
3574 			else
3575 				skb_set_transport_header(skb,
3576 							 skb_checksum_start_offset(skb));
3577 			if (skb_csum_hwoffload_help(skb, features))
3578 				goto out_kfree_skb;
3579 		}
3580 	}
3581 
3582 	skb = validate_xmit_xfrm(skb, features, again);
3583 
3584 	return skb;
3585 
3586 out_kfree_skb:
3587 	kfree_skb(skb);
3588 out_null:
3589 	atomic_long_inc(&dev->tx_dropped);
3590 	return NULL;
3591 }
3592 
3593 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3594 {
3595 	struct sk_buff *next, *head = NULL, *tail;
3596 
3597 	for (; skb != NULL; skb = next) {
3598 		next = skb->next;
3599 		skb_mark_not_on_list(skb);
3600 
3601 		/* in case skb wont be segmented, point to itself */
3602 		skb->prev = skb;
3603 
3604 		skb = validate_xmit_skb(skb, dev, again);
3605 		if (!skb)
3606 			continue;
3607 
3608 		if (!head)
3609 			head = skb;
3610 		else
3611 			tail->next = skb;
3612 		/* If skb was segmented, skb->prev points to
3613 		 * the last segment. If not, it still contains skb.
3614 		 */
3615 		tail = skb->prev;
3616 	}
3617 	return head;
3618 }
3619 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3620 
3621 static void qdisc_pkt_len_init(struct sk_buff *skb)
3622 {
3623 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3624 
3625 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3626 
3627 	/* To get more precise estimation of bytes sent on wire,
3628 	 * we add to pkt_len the headers size of all segments
3629 	 */
3630 	if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3631 		unsigned int hdr_len;
3632 		u16 gso_segs = shinfo->gso_segs;
3633 
3634 		/* mac layer + network layer */
3635 		hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3636 
3637 		/* + transport layer */
3638 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3639 			const struct tcphdr *th;
3640 			struct tcphdr _tcphdr;
3641 
3642 			th = skb_header_pointer(skb, skb_transport_offset(skb),
3643 						sizeof(_tcphdr), &_tcphdr);
3644 			if (likely(th))
3645 				hdr_len += __tcp_hdrlen(th);
3646 		} else {
3647 			struct udphdr _udphdr;
3648 
3649 			if (skb_header_pointer(skb, skb_transport_offset(skb),
3650 					       sizeof(_udphdr), &_udphdr))
3651 				hdr_len += sizeof(struct udphdr);
3652 		}
3653 
3654 		if (shinfo->gso_type & SKB_GSO_DODGY)
3655 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3656 						shinfo->gso_size);
3657 
3658 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3659 	}
3660 }
3661 
3662 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
3663 			     struct sk_buff **to_free,
3664 			     struct netdev_queue *txq)
3665 {
3666 	int rc;
3667 
3668 	rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
3669 	if (rc == NET_XMIT_SUCCESS)
3670 		trace_qdisc_enqueue(q, txq, skb);
3671 	return rc;
3672 }
3673 
3674 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3675 				 struct net_device *dev,
3676 				 struct netdev_queue *txq)
3677 {
3678 	spinlock_t *root_lock = qdisc_lock(q);
3679 	struct sk_buff *to_free = NULL;
3680 	bool contended;
3681 	int rc;
3682 
3683 	qdisc_calculate_pkt_len(skb, q);
3684 
3685 	if (q->flags & TCQ_F_NOLOCK) {
3686 		if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
3687 		    qdisc_run_begin(q)) {
3688 			/* Retest nolock_qdisc_is_empty() within the protection
3689 			 * of q->seqlock to protect from racing with requeuing.
3690 			 */
3691 			if (unlikely(!nolock_qdisc_is_empty(q))) {
3692 				rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3693 				__qdisc_run(q);
3694 				qdisc_run_end(q);
3695 
3696 				goto no_lock_out;
3697 			}
3698 
3699 			qdisc_bstats_cpu_update(q, skb);
3700 			if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
3701 			    !nolock_qdisc_is_empty(q))
3702 				__qdisc_run(q);
3703 
3704 			qdisc_run_end(q);
3705 			return NET_XMIT_SUCCESS;
3706 		}
3707 
3708 		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3709 		qdisc_run(q);
3710 
3711 no_lock_out:
3712 		if (unlikely(to_free))
3713 			kfree_skb_list(to_free);
3714 		return rc;
3715 	}
3716 
3717 	/*
3718 	 * Heuristic to force contended enqueues to serialize on a
3719 	 * separate lock before trying to get qdisc main lock.
3720 	 * This permits qdisc->running owner to get the lock more
3721 	 * often and dequeue packets faster.
3722 	 */
3723 	contended = qdisc_is_running(q);
3724 	if (unlikely(contended))
3725 		spin_lock(&q->busylock);
3726 
3727 	spin_lock(root_lock);
3728 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3729 		__qdisc_drop(skb, &to_free);
3730 		rc = NET_XMIT_DROP;
3731 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3732 		   qdisc_run_begin(q)) {
3733 		/*
3734 		 * This is a work-conserving queue; there are no old skbs
3735 		 * waiting to be sent out; and the qdisc is not running -
3736 		 * xmit the skb directly.
3737 		 */
3738 
3739 		qdisc_bstats_update(q, skb);
3740 
3741 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3742 			if (unlikely(contended)) {
3743 				spin_unlock(&q->busylock);
3744 				contended = false;
3745 			}
3746 			__qdisc_run(q);
3747 		}
3748 
3749 		qdisc_run_end(q);
3750 		rc = NET_XMIT_SUCCESS;
3751 	} else {
3752 		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3753 		if (qdisc_run_begin(q)) {
3754 			if (unlikely(contended)) {
3755 				spin_unlock(&q->busylock);
3756 				contended = false;
3757 			}
3758 			__qdisc_run(q);
3759 			qdisc_run_end(q);
3760 		}
3761 	}
3762 	spin_unlock(root_lock);
3763 	if (unlikely(to_free))
3764 		kfree_skb_list(to_free);
3765 	if (unlikely(contended))
3766 		spin_unlock(&q->busylock);
3767 	return rc;
3768 }
3769 
3770 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3771 static void skb_update_prio(struct sk_buff *skb)
3772 {
3773 	const struct netprio_map *map;
3774 	const struct sock *sk;
3775 	unsigned int prioidx;
3776 
3777 	if (skb->priority)
3778 		return;
3779 	map = rcu_dereference_bh(skb->dev->priomap);
3780 	if (!map)
3781 		return;
3782 	sk = skb_to_full_sk(skb);
3783 	if (!sk)
3784 		return;
3785 
3786 	prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3787 
3788 	if (prioidx < map->priomap_len)
3789 		skb->priority = map->priomap[prioidx];
3790 }
3791 #else
3792 #define skb_update_prio(skb)
3793 #endif
3794 
3795 /**
3796  *	dev_loopback_xmit - loop back @skb
3797  *	@net: network namespace this loopback is happening in
3798  *	@sk:  sk needed to be a netfilter okfn
3799  *	@skb: buffer to transmit
3800  */
3801 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3802 {
3803 	skb_reset_mac_header(skb);
3804 	__skb_pull(skb, skb_network_offset(skb));
3805 	skb->pkt_type = PACKET_LOOPBACK;
3806 	if (skb->ip_summed == CHECKSUM_NONE)
3807 		skb->ip_summed = CHECKSUM_UNNECESSARY;
3808 	WARN_ON(!skb_dst(skb));
3809 	skb_dst_force(skb);
3810 	netif_rx_ni(skb);
3811 	return 0;
3812 }
3813 EXPORT_SYMBOL(dev_loopback_xmit);
3814 
3815 #ifdef CONFIG_NET_EGRESS
3816 static struct sk_buff *
3817 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3818 {
3819 #ifdef CONFIG_NET_CLS_ACT
3820 	struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3821 	struct tcf_result cl_res;
3822 
3823 	if (!miniq)
3824 		return skb;
3825 
3826 	/* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3827 	qdisc_skb_cb(skb)->mru = 0;
3828 	qdisc_skb_cb(skb)->post_ct = false;
3829 	mini_qdisc_bstats_cpu_update(miniq, skb);
3830 
3831 	switch (tcf_classify(skb, miniq->block, miniq->filter_list, &cl_res, false)) {
3832 	case TC_ACT_OK:
3833 	case TC_ACT_RECLASSIFY:
3834 		skb->tc_index = TC_H_MIN(cl_res.classid);
3835 		break;
3836 	case TC_ACT_SHOT:
3837 		mini_qdisc_qstats_cpu_drop(miniq);
3838 		*ret = NET_XMIT_DROP;
3839 		kfree_skb(skb);
3840 		return NULL;
3841 	case TC_ACT_STOLEN:
3842 	case TC_ACT_QUEUED:
3843 	case TC_ACT_TRAP:
3844 		*ret = NET_XMIT_SUCCESS;
3845 		consume_skb(skb);
3846 		return NULL;
3847 	case TC_ACT_REDIRECT:
3848 		/* No need to push/pop skb's mac_header here on egress! */
3849 		skb_do_redirect(skb);
3850 		*ret = NET_XMIT_SUCCESS;
3851 		return NULL;
3852 	default:
3853 		break;
3854 	}
3855 #endif /* CONFIG_NET_CLS_ACT */
3856 
3857 	return skb;
3858 }
3859 #endif /* CONFIG_NET_EGRESS */
3860 
3861 #ifdef CONFIG_XPS
3862 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3863 			       struct xps_dev_maps *dev_maps, unsigned int tci)
3864 {
3865 	int tc = netdev_get_prio_tc_map(dev, skb->priority);
3866 	struct xps_map *map;
3867 	int queue_index = -1;
3868 
3869 	if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
3870 		return queue_index;
3871 
3872 	tci *= dev_maps->num_tc;
3873 	tci += tc;
3874 
3875 	map = rcu_dereference(dev_maps->attr_map[tci]);
3876 	if (map) {
3877 		if (map->len == 1)
3878 			queue_index = map->queues[0];
3879 		else
3880 			queue_index = map->queues[reciprocal_scale(
3881 						skb_get_hash(skb), map->len)];
3882 		if (unlikely(queue_index >= dev->real_num_tx_queues))
3883 			queue_index = -1;
3884 	}
3885 	return queue_index;
3886 }
3887 #endif
3888 
3889 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3890 			 struct sk_buff *skb)
3891 {
3892 #ifdef CONFIG_XPS
3893 	struct xps_dev_maps *dev_maps;
3894 	struct sock *sk = skb->sk;
3895 	int queue_index = -1;
3896 
3897 	if (!static_key_false(&xps_needed))
3898 		return -1;
3899 
3900 	rcu_read_lock();
3901 	if (!static_key_false(&xps_rxqs_needed))
3902 		goto get_cpus_map;
3903 
3904 	dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
3905 	if (dev_maps) {
3906 		int tci = sk_rx_queue_get(sk);
3907 
3908 		if (tci >= 0)
3909 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3910 							  tci);
3911 	}
3912 
3913 get_cpus_map:
3914 	if (queue_index < 0) {
3915 		dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
3916 		if (dev_maps) {
3917 			unsigned int tci = skb->sender_cpu - 1;
3918 
3919 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3920 							  tci);
3921 		}
3922 	}
3923 	rcu_read_unlock();
3924 
3925 	return queue_index;
3926 #else
3927 	return -1;
3928 #endif
3929 }
3930 
3931 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3932 		     struct net_device *sb_dev)
3933 {
3934 	return 0;
3935 }
3936 EXPORT_SYMBOL(dev_pick_tx_zero);
3937 
3938 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
3939 		       struct net_device *sb_dev)
3940 {
3941 	return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
3942 }
3943 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
3944 
3945 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
3946 		     struct net_device *sb_dev)
3947 {
3948 	struct sock *sk = skb->sk;
3949 	int queue_index = sk_tx_queue_get(sk);
3950 
3951 	sb_dev = sb_dev ? : dev;
3952 
3953 	if (queue_index < 0 || skb->ooo_okay ||
3954 	    queue_index >= dev->real_num_tx_queues) {
3955 		int new_index = get_xps_queue(dev, sb_dev, skb);
3956 
3957 		if (new_index < 0)
3958 			new_index = skb_tx_hash(dev, sb_dev, skb);
3959 
3960 		if (queue_index != new_index && sk &&
3961 		    sk_fullsock(sk) &&
3962 		    rcu_access_pointer(sk->sk_dst_cache))
3963 			sk_tx_queue_set(sk, new_index);
3964 
3965 		queue_index = new_index;
3966 	}
3967 
3968 	return queue_index;
3969 }
3970 EXPORT_SYMBOL(netdev_pick_tx);
3971 
3972 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
3973 					 struct sk_buff *skb,
3974 					 struct net_device *sb_dev)
3975 {
3976 	int queue_index = 0;
3977 
3978 #ifdef CONFIG_XPS
3979 	u32 sender_cpu = skb->sender_cpu - 1;
3980 
3981 	if (sender_cpu >= (u32)NR_CPUS)
3982 		skb->sender_cpu = raw_smp_processor_id() + 1;
3983 #endif
3984 
3985 	if (dev->real_num_tx_queues != 1) {
3986 		const struct net_device_ops *ops = dev->netdev_ops;
3987 
3988 		if (ops->ndo_select_queue)
3989 			queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
3990 		else
3991 			queue_index = netdev_pick_tx(dev, skb, sb_dev);
3992 
3993 		queue_index = netdev_cap_txqueue(dev, queue_index);
3994 	}
3995 
3996 	skb_set_queue_mapping(skb, queue_index);
3997 	return netdev_get_tx_queue(dev, queue_index);
3998 }
3999 
4000 /**
4001  *	__dev_queue_xmit - transmit a buffer
4002  *	@skb: buffer to transmit
4003  *	@sb_dev: suboordinate device used for L2 forwarding offload
4004  *
4005  *	Queue a buffer for transmission to a network device. The caller must
4006  *	have set the device and priority and built the buffer before calling
4007  *	this function. The function can be called from an interrupt.
4008  *
4009  *	A negative errno code is returned on a failure. A success does not
4010  *	guarantee the frame will be transmitted as it may be dropped due
4011  *	to congestion or traffic shaping.
4012  *
4013  * -----------------------------------------------------------------------------------
4014  *      I notice this method can also return errors from the queue disciplines,
4015  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
4016  *      be positive.
4017  *
4018  *      Regardless of the return value, the skb is consumed, so it is currently
4019  *      difficult to retry a send to this method.  (You can bump the ref count
4020  *      before sending to hold a reference for retry if you are careful.)
4021  *
4022  *      When calling this method, interrupts MUST be enabled.  This is because
4023  *      the BH enable code must have IRQs enabled so that it will not deadlock.
4024  *          --BLG
4025  */
4026 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4027 {
4028 	struct net_device *dev = skb->dev;
4029 	struct netdev_queue *txq;
4030 	struct Qdisc *q;
4031 	int rc = -ENOMEM;
4032 	bool again = false;
4033 
4034 	skb_reset_mac_header(skb);
4035 
4036 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4037 		__skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4038 
4039 	/* Disable soft irqs for various locks below. Also
4040 	 * stops preemption for RCU.
4041 	 */
4042 	rcu_read_lock_bh();
4043 
4044 	skb_update_prio(skb);
4045 
4046 	qdisc_pkt_len_init(skb);
4047 #ifdef CONFIG_NET_CLS_ACT
4048 	skb->tc_at_ingress = 0;
4049 #endif
4050 #ifdef CONFIG_NET_EGRESS
4051 	if (static_branch_unlikely(&egress_needed_key)) {
4052 		if (nf_hook_egress_active()) {
4053 			skb = nf_hook_egress(skb, &rc, dev);
4054 			if (!skb)
4055 				goto out;
4056 		}
4057 		nf_skip_egress(skb, true);
4058 		skb = sch_handle_egress(skb, &rc, dev);
4059 		if (!skb)
4060 			goto out;
4061 		nf_skip_egress(skb, false);
4062 	}
4063 #endif
4064 	/* If device/qdisc don't need skb->dst, release it right now while
4065 	 * its hot in this cpu cache.
4066 	 */
4067 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4068 		skb_dst_drop(skb);
4069 	else
4070 		skb_dst_force(skb);
4071 
4072 	txq = netdev_core_pick_tx(dev, skb, sb_dev);
4073 	q = rcu_dereference_bh(txq->qdisc);
4074 
4075 	trace_net_dev_queue(skb);
4076 	if (q->enqueue) {
4077 		rc = __dev_xmit_skb(skb, q, dev, txq);
4078 		goto out;
4079 	}
4080 
4081 	/* The device has no queue. Common case for software devices:
4082 	 * loopback, all the sorts of tunnels...
4083 
4084 	 * Really, it is unlikely that netif_tx_lock protection is necessary
4085 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4086 	 * counters.)
4087 	 * However, it is possible, that they rely on protection
4088 	 * made by us here.
4089 
4090 	 * Check this and shot the lock. It is not prone from deadlocks.
4091 	 *Either shot noqueue qdisc, it is even simpler 8)
4092 	 */
4093 	if (dev->flags & IFF_UP) {
4094 		int cpu = smp_processor_id(); /* ok because BHs are off */
4095 
4096 		/* Other cpus might concurrently change txq->xmit_lock_owner
4097 		 * to -1 or to their cpu id, but not to our id.
4098 		 */
4099 		if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4100 			if (dev_xmit_recursion())
4101 				goto recursion_alert;
4102 
4103 			skb = validate_xmit_skb(skb, dev, &again);
4104 			if (!skb)
4105 				goto out;
4106 
4107 			PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4108 			HARD_TX_LOCK(dev, txq, cpu);
4109 
4110 			if (!netif_xmit_stopped(txq)) {
4111 				dev_xmit_recursion_inc();
4112 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4113 				dev_xmit_recursion_dec();
4114 				if (dev_xmit_complete(rc)) {
4115 					HARD_TX_UNLOCK(dev, txq);
4116 					goto out;
4117 				}
4118 			}
4119 			HARD_TX_UNLOCK(dev, txq);
4120 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4121 					     dev->name);
4122 		} else {
4123 			/* Recursion is detected! It is possible,
4124 			 * unfortunately
4125 			 */
4126 recursion_alert:
4127 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4128 					     dev->name);
4129 		}
4130 	}
4131 
4132 	rc = -ENETDOWN;
4133 	rcu_read_unlock_bh();
4134 
4135 	atomic_long_inc(&dev->tx_dropped);
4136 	kfree_skb_list(skb);
4137 	return rc;
4138 out:
4139 	rcu_read_unlock_bh();
4140 	return rc;
4141 }
4142 
4143 int dev_queue_xmit(struct sk_buff *skb)
4144 {
4145 	return __dev_queue_xmit(skb, NULL);
4146 }
4147 EXPORT_SYMBOL(dev_queue_xmit);
4148 
4149 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
4150 {
4151 	return __dev_queue_xmit(skb, sb_dev);
4152 }
4153 EXPORT_SYMBOL(dev_queue_xmit_accel);
4154 
4155 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4156 {
4157 	struct net_device *dev = skb->dev;
4158 	struct sk_buff *orig_skb = skb;
4159 	struct netdev_queue *txq;
4160 	int ret = NETDEV_TX_BUSY;
4161 	bool again = false;
4162 
4163 	if (unlikely(!netif_running(dev) ||
4164 		     !netif_carrier_ok(dev)))
4165 		goto drop;
4166 
4167 	skb = validate_xmit_skb_list(skb, dev, &again);
4168 	if (skb != orig_skb)
4169 		goto drop;
4170 
4171 	skb_set_queue_mapping(skb, queue_id);
4172 	txq = skb_get_tx_queue(dev, skb);
4173 	PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4174 
4175 	local_bh_disable();
4176 
4177 	dev_xmit_recursion_inc();
4178 	HARD_TX_LOCK(dev, txq, smp_processor_id());
4179 	if (!netif_xmit_frozen_or_drv_stopped(txq))
4180 		ret = netdev_start_xmit(skb, dev, txq, false);
4181 	HARD_TX_UNLOCK(dev, txq);
4182 	dev_xmit_recursion_dec();
4183 
4184 	local_bh_enable();
4185 	return ret;
4186 drop:
4187 	atomic_long_inc(&dev->tx_dropped);
4188 	kfree_skb_list(skb);
4189 	return NET_XMIT_DROP;
4190 }
4191 EXPORT_SYMBOL(__dev_direct_xmit);
4192 
4193 /*************************************************************************
4194  *			Receiver routines
4195  *************************************************************************/
4196 
4197 int netdev_max_backlog __read_mostly = 1000;
4198 EXPORT_SYMBOL(netdev_max_backlog);
4199 
4200 int netdev_tstamp_prequeue __read_mostly = 1;
4201 int netdev_budget __read_mostly = 300;
4202 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4203 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4204 int weight_p __read_mostly = 64;           /* old backlog weight */
4205 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4206 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4207 int dev_rx_weight __read_mostly = 64;
4208 int dev_tx_weight __read_mostly = 64;
4209 
4210 /* Called with irq disabled */
4211 static inline void ____napi_schedule(struct softnet_data *sd,
4212 				     struct napi_struct *napi)
4213 {
4214 	struct task_struct *thread;
4215 
4216 	if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4217 		/* Paired with smp_mb__before_atomic() in
4218 		 * napi_enable()/dev_set_threaded().
4219 		 * Use READ_ONCE() to guarantee a complete
4220 		 * read on napi->thread. Only call
4221 		 * wake_up_process() when it's not NULL.
4222 		 */
4223 		thread = READ_ONCE(napi->thread);
4224 		if (thread) {
4225 			/* Avoid doing set_bit() if the thread is in
4226 			 * INTERRUPTIBLE state, cause napi_thread_wait()
4227 			 * makes sure to proceed with napi polling
4228 			 * if the thread is explicitly woken from here.
4229 			 */
4230 			if (READ_ONCE(thread->__state) != TASK_INTERRUPTIBLE)
4231 				set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4232 			wake_up_process(thread);
4233 			return;
4234 		}
4235 	}
4236 
4237 	list_add_tail(&napi->poll_list, &sd->poll_list);
4238 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4239 }
4240 
4241 #ifdef CONFIG_RPS
4242 
4243 /* One global table that all flow-based protocols share. */
4244 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4245 EXPORT_SYMBOL(rps_sock_flow_table);
4246 u32 rps_cpu_mask __read_mostly;
4247 EXPORT_SYMBOL(rps_cpu_mask);
4248 
4249 struct static_key_false rps_needed __read_mostly;
4250 EXPORT_SYMBOL(rps_needed);
4251 struct static_key_false rfs_needed __read_mostly;
4252 EXPORT_SYMBOL(rfs_needed);
4253 
4254 static struct rps_dev_flow *
4255 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4256 	    struct rps_dev_flow *rflow, u16 next_cpu)
4257 {
4258 	if (next_cpu < nr_cpu_ids) {
4259 #ifdef CONFIG_RFS_ACCEL
4260 		struct netdev_rx_queue *rxqueue;
4261 		struct rps_dev_flow_table *flow_table;
4262 		struct rps_dev_flow *old_rflow;
4263 		u32 flow_id;
4264 		u16 rxq_index;
4265 		int rc;
4266 
4267 		/* Should we steer this flow to a different hardware queue? */
4268 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4269 		    !(dev->features & NETIF_F_NTUPLE))
4270 			goto out;
4271 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4272 		if (rxq_index == skb_get_rx_queue(skb))
4273 			goto out;
4274 
4275 		rxqueue = dev->_rx + rxq_index;
4276 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
4277 		if (!flow_table)
4278 			goto out;
4279 		flow_id = skb_get_hash(skb) & flow_table->mask;
4280 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4281 							rxq_index, flow_id);
4282 		if (rc < 0)
4283 			goto out;
4284 		old_rflow = rflow;
4285 		rflow = &flow_table->flows[flow_id];
4286 		rflow->filter = rc;
4287 		if (old_rflow->filter == rflow->filter)
4288 			old_rflow->filter = RPS_NO_FILTER;
4289 	out:
4290 #endif
4291 		rflow->last_qtail =
4292 			per_cpu(softnet_data, next_cpu).input_queue_head;
4293 	}
4294 
4295 	rflow->cpu = next_cpu;
4296 	return rflow;
4297 }
4298 
4299 /*
4300  * get_rps_cpu is called from netif_receive_skb and returns the target
4301  * CPU from the RPS map of the receiving queue for a given skb.
4302  * rcu_read_lock must be held on entry.
4303  */
4304 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4305 		       struct rps_dev_flow **rflowp)
4306 {
4307 	const struct rps_sock_flow_table *sock_flow_table;
4308 	struct netdev_rx_queue *rxqueue = dev->_rx;
4309 	struct rps_dev_flow_table *flow_table;
4310 	struct rps_map *map;
4311 	int cpu = -1;
4312 	u32 tcpu;
4313 	u32 hash;
4314 
4315 	if (skb_rx_queue_recorded(skb)) {
4316 		u16 index = skb_get_rx_queue(skb);
4317 
4318 		if (unlikely(index >= dev->real_num_rx_queues)) {
4319 			WARN_ONCE(dev->real_num_rx_queues > 1,
4320 				  "%s received packet on queue %u, but number "
4321 				  "of RX queues is %u\n",
4322 				  dev->name, index, dev->real_num_rx_queues);
4323 			goto done;
4324 		}
4325 		rxqueue += index;
4326 	}
4327 
4328 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4329 
4330 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4331 	map = rcu_dereference(rxqueue->rps_map);
4332 	if (!flow_table && !map)
4333 		goto done;
4334 
4335 	skb_reset_network_header(skb);
4336 	hash = skb_get_hash(skb);
4337 	if (!hash)
4338 		goto done;
4339 
4340 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
4341 	if (flow_table && sock_flow_table) {
4342 		struct rps_dev_flow *rflow;
4343 		u32 next_cpu;
4344 		u32 ident;
4345 
4346 		/* First check into global flow table if there is a match */
4347 		ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4348 		if ((ident ^ hash) & ~rps_cpu_mask)
4349 			goto try_rps;
4350 
4351 		next_cpu = ident & rps_cpu_mask;
4352 
4353 		/* OK, now we know there is a match,
4354 		 * we can look at the local (per receive queue) flow table
4355 		 */
4356 		rflow = &flow_table->flows[hash & flow_table->mask];
4357 		tcpu = rflow->cpu;
4358 
4359 		/*
4360 		 * If the desired CPU (where last recvmsg was done) is
4361 		 * different from current CPU (one in the rx-queue flow
4362 		 * table entry), switch if one of the following holds:
4363 		 *   - Current CPU is unset (>= nr_cpu_ids).
4364 		 *   - Current CPU is offline.
4365 		 *   - The current CPU's queue tail has advanced beyond the
4366 		 *     last packet that was enqueued using this table entry.
4367 		 *     This guarantees that all previous packets for the flow
4368 		 *     have been dequeued, thus preserving in order delivery.
4369 		 */
4370 		if (unlikely(tcpu != next_cpu) &&
4371 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4372 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4373 		      rflow->last_qtail)) >= 0)) {
4374 			tcpu = next_cpu;
4375 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4376 		}
4377 
4378 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4379 			*rflowp = rflow;
4380 			cpu = tcpu;
4381 			goto done;
4382 		}
4383 	}
4384 
4385 try_rps:
4386 
4387 	if (map) {
4388 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4389 		if (cpu_online(tcpu)) {
4390 			cpu = tcpu;
4391 			goto done;
4392 		}
4393 	}
4394 
4395 done:
4396 	return cpu;
4397 }
4398 
4399 #ifdef CONFIG_RFS_ACCEL
4400 
4401 /**
4402  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4403  * @dev: Device on which the filter was set
4404  * @rxq_index: RX queue index
4405  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4406  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4407  *
4408  * Drivers that implement ndo_rx_flow_steer() should periodically call
4409  * this function for each installed filter and remove the filters for
4410  * which it returns %true.
4411  */
4412 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4413 			 u32 flow_id, u16 filter_id)
4414 {
4415 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4416 	struct rps_dev_flow_table *flow_table;
4417 	struct rps_dev_flow *rflow;
4418 	bool expire = true;
4419 	unsigned int cpu;
4420 
4421 	rcu_read_lock();
4422 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4423 	if (flow_table && flow_id <= flow_table->mask) {
4424 		rflow = &flow_table->flows[flow_id];
4425 		cpu = READ_ONCE(rflow->cpu);
4426 		if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4427 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4428 			   rflow->last_qtail) <
4429 		     (int)(10 * flow_table->mask)))
4430 			expire = false;
4431 	}
4432 	rcu_read_unlock();
4433 	return expire;
4434 }
4435 EXPORT_SYMBOL(rps_may_expire_flow);
4436 
4437 #endif /* CONFIG_RFS_ACCEL */
4438 
4439 /* Called from hardirq (IPI) context */
4440 static void rps_trigger_softirq(void *data)
4441 {
4442 	struct softnet_data *sd = data;
4443 
4444 	____napi_schedule(sd, &sd->backlog);
4445 	sd->received_rps++;
4446 }
4447 
4448 #endif /* CONFIG_RPS */
4449 
4450 /*
4451  * Check if this softnet_data structure is another cpu one
4452  * If yes, queue it to our IPI list and return 1
4453  * If no, return 0
4454  */
4455 static int rps_ipi_queued(struct softnet_data *sd)
4456 {
4457 #ifdef CONFIG_RPS
4458 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4459 
4460 	if (sd != mysd) {
4461 		sd->rps_ipi_next = mysd->rps_ipi_list;
4462 		mysd->rps_ipi_list = sd;
4463 
4464 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4465 		return 1;
4466 	}
4467 #endif /* CONFIG_RPS */
4468 	return 0;
4469 }
4470 
4471 #ifdef CONFIG_NET_FLOW_LIMIT
4472 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4473 #endif
4474 
4475 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4476 {
4477 #ifdef CONFIG_NET_FLOW_LIMIT
4478 	struct sd_flow_limit *fl;
4479 	struct softnet_data *sd;
4480 	unsigned int old_flow, new_flow;
4481 
4482 	if (qlen < (netdev_max_backlog >> 1))
4483 		return false;
4484 
4485 	sd = this_cpu_ptr(&softnet_data);
4486 
4487 	rcu_read_lock();
4488 	fl = rcu_dereference(sd->flow_limit);
4489 	if (fl) {
4490 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4491 		old_flow = fl->history[fl->history_head];
4492 		fl->history[fl->history_head] = new_flow;
4493 
4494 		fl->history_head++;
4495 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4496 
4497 		if (likely(fl->buckets[old_flow]))
4498 			fl->buckets[old_flow]--;
4499 
4500 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4501 			fl->count++;
4502 			rcu_read_unlock();
4503 			return true;
4504 		}
4505 	}
4506 	rcu_read_unlock();
4507 #endif
4508 	return false;
4509 }
4510 
4511 /*
4512  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4513  * queue (may be a remote CPU queue).
4514  */
4515 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4516 			      unsigned int *qtail)
4517 {
4518 	struct softnet_data *sd;
4519 	unsigned long flags;
4520 	unsigned int qlen;
4521 
4522 	sd = &per_cpu(softnet_data, cpu);
4523 
4524 	local_irq_save(flags);
4525 
4526 	rps_lock(sd);
4527 	if (!netif_running(skb->dev))
4528 		goto drop;
4529 	qlen = skb_queue_len(&sd->input_pkt_queue);
4530 	if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4531 		if (qlen) {
4532 enqueue:
4533 			__skb_queue_tail(&sd->input_pkt_queue, skb);
4534 			input_queue_tail_incr_save(sd, qtail);
4535 			rps_unlock(sd);
4536 			local_irq_restore(flags);
4537 			return NET_RX_SUCCESS;
4538 		}
4539 
4540 		/* Schedule NAPI for backlog device
4541 		 * We can use non atomic operation since we own the queue lock
4542 		 */
4543 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4544 			if (!rps_ipi_queued(sd))
4545 				____napi_schedule(sd, &sd->backlog);
4546 		}
4547 		goto enqueue;
4548 	}
4549 
4550 drop:
4551 	sd->dropped++;
4552 	rps_unlock(sd);
4553 
4554 	local_irq_restore(flags);
4555 
4556 	atomic_long_inc(&skb->dev->rx_dropped);
4557 	kfree_skb(skb);
4558 	return NET_RX_DROP;
4559 }
4560 
4561 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4562 {
4563 	struct net_device *dev = skb->dev;
4564 	struct netdev_rx_queue *rxqueue;
4565 
4566 	rxqueue = dev->_rx;
4567 
4568 	if (skb_rx_queue_recorded(skb)) {
4569 		u16 index = skb_get_rx_queue(skb);
4570 
4571 		if (unlikely(index >= dev->real_num_rx_queues)) {
4572 			WARN_ONCE(dev->real_num_rx_queues > 1,
4573 				  "%s received packet on queue %u, but number "
4574 				  "of RX queues is %u\n",
4575 				  dev->name, index, dev->real_num_rx_queues);
4576 
4577 			return rxqueue; /* Return first rxqueue */
4578 		}
4579 		rxqueue += index;
4580 	}
4581 	return rxqueue;
4582 }
4583 
4584 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
4585 			     struct bpf_prog *xdp_prog)
4586 {
4587 	void *orig_data, *orig_data_end, *hard_start;
4588 	struct netdev_rx_queue *rxqueue;
4589 	bool orig_bcast, orig_host;
4590 	u32 mac_len, frame_sz;
4591 	__be16 orig_eth_type;
4592 	struct ethhdr *eth;
4593 	u32 metalen, act;
4594 	int off;
4595 
4596 	/* The XDP program wants to see the packet starting at the MAC
4597 	 * header.
4598 	 */
4599 	mac_len = skb->data - skb_mac_header(skb);
4600 	hard_start = skb->data - skb_headroom(skb);
4601 
4602 	/* SKB "head" area always have tailroom for skb_shared_info */
4603 	frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4604 	frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4605 
4606 	rxqueue = netif_get_rxqueue(skb);
4607 	xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4608 	xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4609 			 skb_headlen(skb) + mac_len, true);
4610 
4611 	orig_data_end = xdp->data_end;
4612 	orig_data = xdp->data;
4613 	eth = (struct ethhdr *)xdp->data;
4614 	orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
4615 	orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4616 	orig_eth_type = eth->h_proto;
4617 
4618 	act = bpf_prog_run_xdp(xdp_prog, xdp);
4619 
4620 	/* check if bpf_xdp_adjust_head was used */
4621 	off = xdp->data - orig_data;
4622 	if (off) {
4623 		if (off > 0)
4624 			__skb_pull(skb, off);
4625 		else if (off < 0)
4626 			__skb_push(skb, -off);
4627 
4628 		skb->mac_header += off;
4629 		skb_reset_network_header(skb);
4630 	}
4631 
4632 	/* check if bpf_xdp_adjust_tail was used */
4633 	off = xdp->data_end - orig_data_end;
4634 	if (off != 0) {
4635 		skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4636 		skb->len += off; /* positive on grow, negative on shrink */
4637 	}
4638 
4639 	/* check if XDP changed eth hdr such SKB needs update */
4640 	eth = (struct ethhdr *)xdp->data;
4641 	if ((orig_eth_type != eth->h_proto) ||
4642 	    (orig_host != ether_addr_equal_64bits(eth->h_dest,
4643 						  skb->dev->dev_addr)) ||
4644 	    (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4645 		__skb_push(skb, ETH_HLEN);
4646 		skb->pkt_type = PACKET_HOST;
4647 		skb->protocol = eth_type_trans(skb, skb->dev);
4648 	}
4649 
4650 	/* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
4651 	 * before calling us again on redirect path. We do not call do_redirect
4652 	 * as we leave that up to the caller.
4653 	 *
4654 	 * Caller is responsible for managing lifetime of skb (i.e. calling
4655 	 * kfree_skb in response to actions it cannot handle/XDP_DROP).
4656 	 */
4657 	switch (act) {
4658 	case XDP_REDIRECT:
4659 	case XDP_TX:
4660 		__skb_push(skb, mac_len);
4661 		break;
4662 	case XDP_PASS:
4663 		metalen = xdp->data - xdp->data_meta;
4664 		if (metalen)
4665 			skb_metadata_set(skb, metalen);
4666 		break;
4667 	}
4668 
4669 	return act;
4670 }
4671 
4672 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4673 				     struct xdp_buff *xdp,
4674 				     struct bpf_prog *xdp_prog)
4675 {
4676 	u32 act = XDP_DROP;
4677 
4678 	/* Reinjected packets coming from act_mirred or similar should
4679 	 * not get XDP generic processing.
4680 	 */
4681 	if (skb_is_redirected(skb))
4682 		return XDP_PASS;
4683 
4684 	/* XDP packets must be linear and must have sufficient headroom
4685 	 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4686 	 * native XDP provides, thus we need to do it here as well.
4687 	 */
4688 	if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4689 	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4690 		int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4691 		int troom = skb->tail + skb->data_len - skb->end;
4692 
4693 		/* In case we have to go down the path and also linearize,
4694 		 * then lets do the pskb_expand_head() work just once here.
4695 		 */
4696 		if (pskb_expand_head(skb,
4697 				     hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4698 				     troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4699 			goto do_drop;
4700 		if (skb_linearize(skb))
4701 			goto do_drop;
4702 	}
4703 
4704 	act = bpf_prog_run_generic_xdp(skb, xdp, xdp_prog);
4705 	switch (act) {
4706 	case XDP_REDIRECT:
4707 	case XDP_TX:
4708 	case XDP_PASS:
4709 		break;
4710 	default:
4711 		bpf_warn_invalid_xdp_action(skb->dev, xdp_prog, act);
4712 		fallthrough;
4713 	case XDP_ABORTED:
4714 		trace_xdp_exception(skb->dev, xdp_prog, act);
4715 		fallthrough;
4716 	case XDP_DROP:
4717 	do_drop:
4718 		kfree_skb(skb);
4719 		break;
4720 	}
4721 
4722 	return act;
4723 }
4724 
4725 /* When doing generic XDP we have to bypass the qdisc layer and the
4726  * network taps in order to match in-driver-XDP behavior.
4727  */
4728 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4729 {
4730 	struct net_device *dev = skb->dev;
4731 	struct netdev_queue *txq;
4732 	bool free_skb = true;
4733 	int cpu, rc;
4734 
4735 	txq = netdev_core_pick_tx(dev, skb, NULL);
4736 	cpu = smp_processor_id();
4737 	HARD_TX_LOCK(dev, txq, cpu);
4738 	if (!netif_xmit_stopped(txq)) {
4739 		rc = netdev_start_xmit(skb, dev, txq, 0);
4740 		if (dev_xmit_complete(rc))
4741 			free_skb = false;
4742 	}
4743 	HARD_TX_UNLOCK(dev, txq);
4744 	if (free_skb) {
4745 		trace_xdp_exception(dev, xdp_prog, XDP_TX);
4746 		kfree_skb(skb);
4747 	}
4748 }
4749 
4750 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4751 
4752 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4753 {
4754 	if (xdp_prog) {
4755 		struct xdp_buff xdp;
4756 		u32 act;
4757 		int err;
4758 
4759 		act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4760 		if (act != XDP_PASS) {
4761 			switch (act) {
4762 			case XDP_REDIRECT:
4763 				err = xdp_do_generic_redirect(skb->dev, skb,
4764 							      &xdp, xdp_prog);
4765 				if (err)
4766 					goto out_redir;
4767 				break;
4768 			case XDP_TX:
4769 				generic_xdp_tx(skb, xdp_prog);
4770 				break;
4771 			}
4772 			return XDP_DROP;
4773 		}
4774 	}
4775 	return XDP_PASS;
4776 out_redir:
4777 	kfree_skb(skb);
4778 	return XDP_DROP;
4779 }
4780 EXPORT_SYMBOL_GPL(do_xdp_generic);
4781 
4782 static int netif_rx_internal(struct sk_buff *skb)
4783 {
4784 	int ret;
4785 
4786 	net_timestamp_check(netdev_tstamp_prequeue, skb);
4787 
4788 	trace_netif_rx(skb);
4789 
4790 #ifdef CONFIG_RPS
4791 	if (static_branch_unlikely(&rps_needed)) {
4792 		struct rps_dev_flow voidflow, *rflow = &voidflow;
4793 		int cpu;
4794 
4795 		preempt_disable();
4796 		rcu_read_lock();
4797 
4798 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
4799 		if (cpu < 0)
4800 			cpu = smp_processor_id();
4801 
4802 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4803 
4804 		rcu_read_unlock();
4805 		preempt_enable();
4806 	} else
4807 #endif
4808 	{
4809 		unsigned int qtail;
4810 
4811 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4812 		put_cpu();
4813 	}
4814 	return ret;
4815 }
4816 
4817 /**
4818  *	netif_rx	-	post buffer to the network code
4819  *	@skb: buffer to post
4820  *
4821  *	This function receives a packet from a device driver and queues it for
4822  *	the upper (protocol) levels to process.  It always succeeds. The buffer
4823  *	may be dropped during processing for congestion control or by the
4824  *	protocol layers.
4825  *
4826  *	return values:
4827  *	NET_RX_SUCCESS	(no congestion)
4828  *	NET_RX_DROP     (packet was dropped)
4829  *
4830  */
4831 
4832 int netif_rx(struct sk_buff *skb)
4833 {
4834 	int ret;
4835 
4836 	trace_netif_rx_entry(skb);
4837 
4838 	ret = netif_rx_internal(skb);
4839 	trace_netif_rx_exit(ret);
4840 
4841 	return ret;
4842 }
4843 EXPORT_SYMBOL(netif_rx);
4844 
4845 int netif_rx_ni(struct sk_buff *skb)
4846 {
4847 	int err;
4848 
4849 	trace_netif_rx_ni_entry(skb);
4850 
4851 	preempt_disable();
4852 	err = netif_rx_internal(skb);
4853 	if (local_softirq_pending())
4854 		do_softirq();
4855 	preempt_enable();
4856 	trace_netif_rx_ni_exit(err);
4857 
4858 	return err;
4859 }
4860 EXPORT_SYMBOL(netif_rx_ni);
4861 
4862 int netif_rx_any_context(struct sk_buff *skb)
4863 {
4864 	/*
4865 	 * If invoked from contexts which do not invoke bottom half
4866 	 * processing either at return from interrupt or when softrqs are
4867 	 * reenabled, use netif_rx_ni() which invokes bottomhalf processing
4868 	 * directly.
4869 	 */
4870 	if (in_interrupt())
4871 		return netif_rx(skb);
4872 	else
4873 		return netif_rx_ni(skb);
4874 }
4875 EXPORT_SYMBOL(netif_rx_any_context);
4876 
4877 static __latent_entropy void net_tx_action(struct softirq_action *h)
4878 {
4879 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4880 
4881 	if (sd->completion_queue) {
4882 		struct sk_buff *clist;
4883 
4884 		local_irq_disable();
4885 		clist = sd->completion_queue;
4886 		sd->completion_queue = NULL;
4887 		local_irq_enable();
4888 
4889 		while (clist) {
4890 			struct sk_buff *skb = clist;
4891 
4892 			clist = clist->next;
4893 
4894 			WARN_ON(refcount_read(&skb->users));
4895 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4896 				trace_consume_skb(skb);
4897 			else
4898 				trace_kfree_skb(skb, net_tx_action);
4899 
4900 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4901 				__kfree_skb(skb);
4902 			else
4903 				__kfree_skb_defer(skb);
4904 		}
4905 	}
4906 
4907 	if (sd->output_queue) {
4908 		struct Qdisc *head;
4909 
4910 		local_irq_disable();
4911 		head = sd->output_queue;
4912 		sd->output_queue = NULL;
4913 		sd->output_queue_tailp = &sd->output_queue;
4914 		local_irq_enable();
4915 
4916 		rcu_read_lock();
4917 
4918 		while (head) {
4919 			struct Qdisc *q = head;
4920 			spinlock_t *root_lock = NULL;
4921 
4922 			head = head->next_sched;
4923 
4924 			/* We need to make sure head->next_sched is read
4925 			 * before clearing __QDISC_STATE_SCHED
4926 			 */
4927 			smp_mb__before_atomic();
4928 
4929 			if (!(q->flags & TCQ_F_NOLOCK)) {
4930 				root_lock = qdisc_lock(q);
4931 				spin_lock(root_lock);
4932 			} else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
4933 						     &q->state))) {
4934 				/* There is a synchronize_net() between
4935 				 * STATE_DEACTIVATED flag being set and
4936 				 * qdisc_reset()/some_qdisc_is_busy() in
4937 				 * dev_deactivate(), so we can safely bail out
4938 				 * early here to avoid data race between
4939 				 * qdisc_deactivate() and some_qdisc_is_busy()
4940 				 * for lockless qdisc.
4941 				 */
4942 				clear_bit(__QDISC_STATE_SCHED, &q->state);
4943 				continue;
4944 			}
4945 
4946 			clear_bit(__QDISC_STATE_SCHED, &q->state);
4947 			qdisc_run(q);
4948 			if (root_lock)
4949 				spin_unlock(root_lock);
4950 		}
4951 
4952 		rcu_read_unlock();
4953 	}
4954 
4955 	xfrm_dev_backlog(sd);
4956 }
4957 
4958 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4959 /* This hook is defined here for ATM LANE */
4960 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4961 			     unsigned char *addr) __read_mostly;
4962 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4963 #endif
4964 
4965 static inline struct sk_buff *
4966 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4967 		   struct net_device *orig_dev, bool *another)
4968 {
4969 #ifdef CONFIG_NET_CLS_ACT
4970 	struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4971 	struct tcf_result cl_res;
4972 
4973 	/* If there's at least one ingress present somewhere (so
4974 	 * we get here via enabled static key), remaining devices
4975 	 * that are not configured with an ingress qdisc will bail
4976 	 * out here.
4977 	 */
4978 	if (!miniq)
4979 		return skb;
4980 
4981 	if (*pt_prev) {
4982 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
4983 		*pt_prev = NULL;
4984 	}
4985 
4986 	qdisc_skb_cb(skb)->pkt_len = skb->len;
4987 	qdisc_skb_cb(skb)->mru = 0;
4988 	qdisc_skb_cb(skb)->post_ct = false;
4989 	skb->tc_at_ingress = 1;
4990 	mini_qdisc_bstats_cpu_update(miniq, skb);
4991 
4992 	switch (tcf_classify(skb, miniq->block, miniq->filter_list, &cl_res, false)) {
4993 	case TC_ACT_OK:
4994 	case TC_ACT_RECLASSIFY:
4995 		skb->tc_index = TC_H_MIN(cl_res.classid);
4996 		break;
4997 	case TC_ACT_SHOT:
4998 		mini_qdisc_qstats_cpu_drop(miniq);
4999 		kfree_skb(skb);
5000 		return NULL;
5001 	case TC_ACT_STOLEN:
5002 	case TC_ACT_QUEUED:
5003 	case TC_ACT_TRAP:
5004 		consume_skb(skb);
5005 		return NULL;
5006 	case TC_ACT_REDIRECT:
5007 		/* skb_mac_header check was done by cls/act_bpf, so
5008 		 * we can safely push the L2 header back before
5009 		 * redirecting to another netdev
5010 		 */
5011 		__skb_push(skb, skb->mac_len);
5012 		if (skb_do_redirect(skb) == -EAGAIN) {
5013 			__skb_pull(skb, skb->mac_len);
5014 			*another = true;
5015 			break;
5016 		}
5017 		return NULL;
5018 	case TC_ACT_CONSUMED:
5019 		return NULL;
5020 	default:
5021 		break;
5022 	}
5023 #endif /* CONFIG_NET_CLS_ACT */
5024 	return skb;
5025 }
5026 
5027 /**
5028  *	netdev_is_rx_handler_busy - check if receive handler is registered
5029  *	@dev: device to check
5030  *
5031  *	Check if a receive handler is already registered for a given device.
5032  *	Return true if there one.
5033  *
5034  *	The caller must hold the rtnl_mutex.
5035  */
5036 bool netdev_is_rx_handler_busy(struct net_device *dev)
5037 {
5038 	ASSERT_RTNL();
5039 	return dev && rtnl_dereference(dev->rx_handler);
5040 }
5041 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5042 
5043 /**
5044  *	netdev_rx_handler_register - register receive handler
5045  *	@dev: device to register a handler for
5046  *	@rx_handler: receive handler to register
5047  *	@rx_handler_data: data pointer that is used by rx handler
5048  *
5049  *	Register a receive handler for a device. This handler will then be
5050  *	called from __netif_receive_skb. A negative errno code is returned
5051  *	on a failure.
5052  *
5053  *	The caller must hold the rtnl_mutex.
5054  *
5055  *	For a general description of rx_handler, see enum rx_handler_result.
5056  */
5057 int netdev_rx_handler_register(struct net_device *dev,
5058 			       rx_handler_func_t *rx_handler,
5059 			       void *rx_handler_data)
5060 {
5061 	if (netdev_is_rx_handler_busy(dev))
5062 		return -EBUSY;
5063 
5064 	if (dev->priv_flags & IFF_NO_RX_HANDLER)
5065 		return -EINVAL;
5066 
5067 	/* Note: rx_handler_data must be set before rx_handler */
5068 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5069 	rcu_assign_pointer(dev->rx_handler, rx_handler);
5070 
5071 	return 0;
5072 }
5073 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5074 
5075 /**
5076  *	netdev_rx_handler_unregister - unregister receive handler
5077  *	@dev: device to unregister a handler from
5078  *
5079  *	Unregister a receive handler from a device.
5080  *
5081  *	The caller must hold the rtnl_mutex.
5082  */
5083 void netdev_rx_handler_unregister(struct net_device *dev)
5084 {
5085 
5086 	ASSERT_RTNL();
5087 	RCU_INIT_POINTER(dev->rx_handler, NULL);
5088 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5089 	 * section has a guarantee to see a non NULL rx_handler_data
5090 	 * as well.
5091 	 */
5092 	synchronize_net();
5093 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5094 }
5095 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5096 
5097 /*
5098  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5099  * the special handling of PFMEMALLOC skbs.
5100  */
5101 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5102 {
5103 	switch (skb->protocol) {
5104 	case htons(ETH_P_ARP):
5105 	case htons(ETH_P_IP):
5106 	case htons(ETH_P_IPV6):
5107 	case htons(ETH_P_8021Q):
5108 	case htons(ETH_P_8021AD):
5109 		return true;
5110 	default:
5111 		return false;
5112 	}
5113 }
5114 
5115 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5116 			     int *ret, struct net_device *orig_dev)
5117 {
5118 	if (nf_hook_ingress_active(skb)) {
5119 		int ingress_retval;
5120 
5121 		if (*pt_prev) {
5122 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
5123 			*pt_prev = NULL;
5124 		}
5125 
5126 		rcu_read_lock();
5127 		ingress_retval = nf_hook_ingress(skb);
5128 		rcu_read_unlock();
5129 		return ingress_retval;
5130 	}
5131 	return 0;
5132 }
5133 
5134 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5135 				    struct packet_type **ppt_prev)
5136 {
5137 	struct packet_type *ptype, *pt_prev;
5138 	rx_handler_func_t *rx_handler;
5139 	struct sk_buff *skb = *pskb;
5140 	struct net_device *orig_dev;
5141 	bool deliver_exact = false;
5142 	int ret = NET_RX_DROP;
5143 	__be16 type;
5144 
5145 	net_timestamp_check(!netdev_tstamp_prequeue, skb);
5146 
5147 	trace_netif_receive_skb(skb);
5148 
5149 	orig_dev = skb->dev;
5150 
5151 	skb_reset_network_header(skb);
5152 	if (!skb_transport_header_was_set(skb))
5153 		skb_reset_transport_header(skb);
5154 	skb_reset_mac_len(skb);
5155 
5156 	pt_prev = NULL;
5157 
5158 another_round:
5159 	skb->skb_iif = skb->dev->ifindex;
5160 
5161 	__this_cpu_inc(softnet_data.processed);
5162 
5163 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
5164 		int ret2;
5165 
5166 		migrate_disable();
5167 		ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5168 		migrate_enable();
5169 
5170 		if (ret2 != XDP_PASS) {
5171 			ret = NET_RX_DROP;
5172 			goto out;
5173 		}
5174 	}
5175 
5176 	if (eth_type_vlan(skb->protocol)) {
5177 		skb = skb_vlan_untag(skb);
5178 		if (unlikely(!skb))
5179 			goto out;
5180 	}
5181 
5182 	if (skb_skip_tc_classify(skb))
5183 		goto skip_classify;
5184 
5185 	if (pfmemalloc)
5186 		goto skip_taps;
5187 
5188 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
5189 		if (pt_prev)
5190 			ret = deliver_skb(skb, pt_prev, orig_dev);
5191 		pt_prev = ptype;
5192 	}
5193 
5194 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5195 		if (pt_prev)
5196 			ret = deliver_skb(skb, pt_prev, orig_dev);
5197 		pt_prev = ptype;
5198 	}
5199 
5200 skip_taps:
5201 #ifdef CONFIG_NET_INGRESS
5202 	if (static_branch_unlikely(&ingress_needed_key)) {
5203 		bool another = false;
5204 
5205 		nf_skip_egress(skb, true);
5206 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5207 					 &another);
5208 		if (another)
5209 			goto another_round;
5210 		if (!skb)
5211 			goto out;
5212 
5213 		nf_skip_egress(skb, false);
5214 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5215 			goto out;
5216 	}
5217 #endif
5218 	skb_reset_redirect(skb);
5219 skip_classify:
5220 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5221 		goto drop;
5222 
5223 	if (skb_vlan_tag_present(skb)) {
5224 		if (pt_prev) {
5225 			ret = deliver_skb(skb, pt_prev, orig_dev);
5226 			pt_prev = NULL;
5227 		}
5228 		if (vlan_do_receive(&skb))
5229 			goto another_round;
5230 		else if (unlikely(!skb))
5231 			goto out;
5232 	}
5233 
5234 	rx_handler = rcu_dereference(skb->dev->rx_handler);
5235 	if (rx_handler) {
5236 		if (pt_prev) {
5237 			ret = deliver_skb(skb, pt_prev, orig_dev);
5238 			pt_prev = NULL;
5239 		}
5240 		switch (rx_handler(&skb)) {
5241 		case RX_HANDLER_CONSUMED:
5242 			ret = NET_RX_SUCCESS;
5243 			goto out;
5244 		case RX_HANDLER_ANOTHER:
5245 			goto another_round;
5246 		case RX_HANDLER_EXACT:
5247 			deliver_exact = true;
5248 			break;
5249 		case RX_HANDLER_PASS:
5250 			break;
5251 		default:
5252 			BUG();
5253 		}
5254 	}
5255 
5256 	if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5257 check_vlan_id:
5258 		if (skb_vlan_tag_get_id(skb)) {
5259 			/* Vlan id is non 0 and vlan_do_receive() above couldn't
5260 			 * find vlan device.
5261 			 */
5262 			skb->pkt_type = PACKET_OTHERHOST;
5263 		} else if (eth_type_vlan(skb->protocol)) {
5264 			/* Outer header is 802.1P with vlan 0, inner header is
5265 			 * 802.1Q or 802.1AD and vlan_do_receive() above could
5266 			 * not find vlan dev for vlan id 0.
5267 			 */
5268 			__vlan_hwaccel_clear_tag(skb);
5269 			skb = skb_vlan_untag(skb);
5270 			if (unlikely(!skb))
5271 				goto out;
5272 			if (vlan_do_receive(&skb))
5273 				/* After stripping off 802.1P header with vlan 0
5274 				 * vlan dev is found for inner header.
5275 				 */
5276 				goto another_round;
5277 			else if (unlikely(!skb))
5278 				goto out;
5279 			else
5280 				/* We have stripped outer 802.1P vlan 0 header.
5281 				 * But could not find vlan dev.
5282 				 * check again for vlan id to set OTHERHOST.
5283 				 */
5284 				goto check_vlan_id;
5285 		}
5286 		/* Note: we might in the future use prio bits
5287 		 * and set skb->priority like in vlan_do_receive()
5288 		 * For the time being, just ignore Priority Code Point
5289 		 */
5290 		__vlan_hwaccel_clear_tag(skb);
5291 	}
5292 
5293 	type = skb->protocol;
5294 
5295 	/* deliver only exact match when indicated */
5296 	if (likely(!deliver_exact)) {
5297 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5298 				       &ptype_base[ntohs(type) &
5299 						   PTYPE_HASH_MASK]);
5300 	}
5301 
5302 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5303 			       &orig_dev->ptype_specific);
5304 
5305 	if (unlikely(skb->dev != orig_dev)) {
5306 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5307 				       &skb->dev->ptype_specific);
5308 	}
5309 
5310 	if (pt_prev) {
5311 		if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5312 			goto drop;
5313 		*ppt_prev = pt_prev;
5314 	} else {
5315 drop:
5316 		if (!deliver_exact)
5317 			atomic_long_inc(&skb->dev->rx_dropped);
5318 		else
5319 			atomic_long_inc(&skb->dev->rx_nohandler);
5320 		kfree_skb(skb);
5321 		/* Jamal, now you will not able to escape explaining
5322 		 * me how you were going to use this. :-)
5323 		 */
5324 		ret = NET_RX_DROP;
5325 	}
5326 
5327 out:
5328 	/* The invariant here is that if *ppt_prev is not NULL
5329 	 * then skb should also be non-NULL.
5330 	 *
5331 	 * Apparently *ppt_prev assignment above holds this invariant due to
5332 	 * skb dereferencing near it.
5333 	 */
5334 	*pskb = skb;
5335 	return ret;
5336 }
5337 
5338 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5339 {
5340 	struct net_device *orig_dev = skb->dev;
5341 	struct packet_type *pt_prev = NULL;
5342 	int ret;
5343 
5344 	ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5345 	if (pt_prev)
5346 		ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5347 					 skb->dev, pt_prev, orig_dev);
5348 	return ret;
5349 }
5350 
5351 /**
5352  *	netif_receive_skb_core - special purpose version of netif_receive_skb
5353  *	@skb: buffer to process
5354  *
5355  *	More direct receive version of netif_receive_skb().  It should
5356  *	only be used by callers that have a need to skip RPS and Generic XDP.
5357  *	Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5358  *
5359  *	This function may only be called from softirq context and interrupts
5360  *	should be enabled.
5361  *
5362  *	Return values (usually ignored):
5363  *	NET_RX_SUCCESS: no congestion
5364  *	NET_RX_DROP: packet was dropped
5365  */
5366 int netif_receive_skb_core(struct sk_buff *skb)
5367 {
5368 	int ret;
5369 
5370 	rcu_read_lock();
5371 	ret = __netif_receive_skb_one_core(skb, false);
5372 	rcu_read_unlock();
5373 
5374 	return ret;
5375 }
5376 EXPORT_SYMBOL(netif_receive_skb_core);
5377 
5378 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5379 						  struct packet_type *pt_prev,
5380 						  struct net_device *orig_dev)
5381 {
5382 	struct sk_buff *skb, *next;
5383 
5384 	if (!pt_prev)
5385 		return;
5386 	if (list_empty(head))
5387 		return;
5388 	if (pt_prev->list_func != NULL)
5389 		INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5390 				   ip_list_rcv, head, pt_prev, orig_dev);
5391 	else
5392 		list_for_each_entry_safe(skb, next, head, list) {
5393 			skb_list_del_init(skb);
5394 			pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5395 		}
5396 }
5397 
5398 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5399 {
5400 	/* Fast-path assumptions:
5401 	 * - There is no RX handler.
5402 	 * - Only one packet_type matches.
5403 	 * If either of these fails, we will end up doing some per-packet
5404 	 * processing in-line, then handling the 'last ptype' for the whole
5405 	 * sublist.  This can't cause out-of-order delivery to any single ptype,
5406 	 * because the 'last ptype' must be constant across the sublist, and all
5407 	 * other ptypes are handled per-packet.
5408 	 */
5409 	/* Current (common) ptype of sublist */
5410 	struct packet_type *pt_curr = NULL;
5411 	/* Current (common) orig_dev of sublist */
5412 	struct net_device *od_curr = NULL;
5413 	struct list_head sublist;
5414 	struct sk_buff *skb, *next;
5415 
5416 	INIT_LIST_HEAD(&sublist);
5417 	list_for_each_entry_safe(skb, next, head, list) {
5418 		struct net_device *orig_dev = skb->dev;
5419 		struct packet_type *pt_prev = NULL;
5420 
5421 		skb_list_del_init(skb);
5422 		__netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5423 		if (!pt_prev)
5424 			continue;
5425 		if (pt_curr != pt_prev || od_curr != orig_dev) {
5426 			/* dispatch old sublist */
5427 			__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5428 			/* start new sublist */
5429 			INIT_LIST_HEAD(&sublist);
5430 			pt_curr = pt_prev;
5431 			od_curr = orig_dev;
5432 		}
5433 		list_add_tail(&skb->list, &sublist);
5434 	}
5435 
5436 	/* dispatch final sublist */
5437 	__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5438 }
5439 
5440 static int __netif_receive_skb(struct sk_buff *skb)
5441 {
5442 	int ret;
5443 
5444 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5445 		unsigned int noreclaim_flag;
5446 
5447 		/*
5448 		 * PFMEMALLOC skbs are special, they should
5449 		 * - be delivered to SOCK_MEMALLOC sockets only
5450 		 * - stay away from userspace
5451 		 * - have bounded memory usage
5452 		 *
5453 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
5454 		 * context down to all allocation sites.
5455 		 */
5456 		noreclaim_flag = memalloc_noreclaim_save();
5457 		ret = __netif_receive_skb_one_core(skb, true);
5458 		memalloc_noreclaim_restore(noreclaim_flag);
5459 	} else
5460 		ret = __netif_receive_skb_one_core(skb, false);
5461 
5462 	return ret;
5463 }
5464 
5465 static void __netif_receive_skb_list(struct list_head *head)
5466 {
5467 	unsigned long noreclaim_flag = 0;
5468 	struct sk_buff *skb, *next;
5469 	bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5470 
5471 	list_for_each_entry_safe(skb, next, head, list) {
5472 		if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5473 			struct list_head sublist;
5474 
5475 			/* Handle the previous sublist */
5476 			list_cut_before(&sublist, head, &skb->list);
5477 			if (!list_empty(&sublist))
5478 				__netif_receive_skb_list_core(&sublist, pfmemalloc);
5479 			pfmemalloc = !pfmemalloc;
5480 			/* See comments in __netif_receive_skb */
5481 			if (pfmemalloc)
5482 				noreclaim_flag = memalloc_noreclaim_save();
5483 			else
5484 				memalloc_noreclaim_restore(noreclaim_flag);
5485 		}
5486 	}
5487 	/* Handle the remaining sublist */
5488 	if (!list_empty(head))
5489 		__netif_receive_skb_list_core(head, pfmemalloc);
5490 	/* Restore pflags */
5491 	if (pfmemalloc)
5492 		memalloc_noreclaim_restore(noreclaim_flag);
5493 }
5494 
5495 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5496 {
5497 	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5498 	struct bpf_prog *new = xdp->prog;
5499 	int ret = 0;
5500 
5501 	switch (xdp->command) {
5502 	case XDP_SETUP_PROG:
5503 		rcu_assign_pointer(dev->xdp_prog, new);
5504 		if (old)
5505 			bpf_prog_put(old);
5506 
5507 		if (old && !new) {
5508 			static_branch_dec(&generic_xdp_needed_key);
5509 		} else if (new && !old) {
5510 			static_branch_inc(&generic_xdp_needed_key);
5511 			dev_disable_lro(dev);
5512 			dev_disable_gro_hw(dev);
5513 		}
5514 		break;
5515 
5516 	default:
5517 		ret = -EINVAL;
5518 		break;
5519 	}
5520 
5521 	return ret;
5522 }
5523 
5524 static int netif_receive_skb_internal(struct sk_buff *skb)
5525 {
5526 	int ret;
5527 
5528 	net_timestamp_check(netdev_tstamp_prequeue, skb);
5529 
5530 	if (skb_defer_rx_timestamp(skb))
5531 		return NET_RX_SUCCESS;
5532 
5533 	rcu_read_lock();
5534 #ifdef CONFIG_RPS
5535 	if (static_branch_unlikely(&rps_needed)) {
5536 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5537 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5538 
5539 		if (cpu >= 0) {
5540 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5541 			rcu_read_unlock();
5542 			return ret;
5543 		}
5544 	}
5545 #endif
5546 	ret = __netif_receive_skb(skb);
5547 	rcu_read_unlock();
5548 	return ret;
5549 }
5550 
5551 void netif_receive_skb_list_internal(struct list_head *head)
5552 {
5553 	struct sk_buff *skb, *next;
5554 	struct list_head sublist;
5555 
5556 	INIT_LIST_HEAD(&sublist);
5557 	list_for_each_entry_safe(skb, next, head, list) {
5558 		net_timestamp_check(netdev_tstamp_prequeue, skb);
5559 		skb_list_del_init(skb);
5560 		if (!skb_defer_rx_timestamp(skb))
5561 			list_add_tail(&skb->list, &sublist);
5562 	}
5563 	list_splice_init(&sublist, head);
5564 
5565 	rcu_read_lock();
5566 #ifdef CONFIG_RPS
5567 	if (static_branch_unlikely(&rps_needed)) {
5568 		list_for_each_entry_safe(skb, next, head, list) {
5569 			struct rps_dev_flow voidflow, *rflow = &voidflow;
5570 			int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5571 
5572 			if (cpu >= 0) {
5573 				/* Will be handled, remove from list */
5574 				skb_list_del_init(skb);
5575 				enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5576 			}
5577 		}
5578 	}
5579 #endif
5580 	__netif_receive_skb_list(head);
5581 	rcu_read_unlock();
5582 }
5583 
5584 /**
5585  *	netif_receive_skb - process receive buffer from network
5586  *	@skb: buffer to process
5587  *
5588  *	netif_receive_skb() is the main receive data processing function.
5589  *	It always succeeds. The buffer may be dropped during processing
5590  *	for congestion control or by the protocol layers.
5591  *
5592  *	This function may only be called from softirq context and interrupts
5593  *	should be enabled.
5594  *
5595  *	Return values (usually ignored):
5596  *	NET_RX_SUCCESS: no congestion
5597  *	NET_RX_DROP: packet was dropped
5598  */
5599 int netif_receive_skb(struct sk_buff *skb)
5600 {
5601 	int ret;
5602 
5603 	trace_netif_receive_skb_entry(skb);
5604 
5605 	ret = netif_receive_skb_internal(skb);
5606 	trace_netif_receive_skb_exit(ret);
5607 
5608 	return ret;
5609 }
5610 EXPORT_SYMBOL(netif_receive_skb);
5611 
5612 /**
5613  *	netif_receive_skb_list - process many receive buffers from network
5614  *	@head: list of skbs to process.
5615  *
5616  *	Since return value of netif_receive_skb() is normally ignored, and
5617  *	wouldn't be meaningful for a list, this function returns void.
5618  *
5619  *	This function may only be called from softirq context and interrupts
5620  *	should be enabled.
5621  */
5622 void netif_receive_skb_list(struct list_head *head)
5623 {
5624 	struct sk_buff *skb;
5625 
5626 	if (list_empty(head))
5627 		return;
5628 	if (trace_netif_receive_skb_list_entry_enabled()) {
5629 		list_for_each_entry(skb, head, list)
5630 			trace_netif_receive_skb_list_entry(skb);
5631 	}
5632 	netif_receive_skb_list_internal(head);
5633 	trace_netif_receive_skb_list_exit(0);
5634 }
5635 EXPORT_SYMBOL(netif_receive_skb_list);
5636 
5637 static DEFINE_PER_CPU(struct work_struct, flush_works);
5638 
5639 /* Network device is going away, flush any packets still pending */
5640 static void flush_backlog(struct work_struct *work)
5641 {
5642 	struct sk_buff *skb, *tmp;
5643 	struct softnet_data *sd;
5644 
5645 	local_bh_disable();
5646 	sd = this_cpu_ptr(&softnet_data);
5647 
5648 	local_irq_disable();
5649 	rps_lock(sd);
5650 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5651 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5652 			__skb_unlink(skb, &sd->input_pkt_queue);
5653 			dev_kfree_skb_irq(skb);
5654 			input_queue_head_incr(sd);
5655 		}
5656 	}
5657 	rps_unlock(sd);
5658 	local_irq_enable();
5659 
5660 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5661 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5662 			__skb_unlink(skb, &sd->process_queue);
5663 			kfree_skb(skb);
5664 			input_queue_head_incr(sd);
5665 		}
5666 	}
5667 	local_bh_enable();
5668 }
5669 
5670 static bool flush_required(int cpu)
5671 {
5672 #if IS_ENABLED(CONFIG_RPS)
5673 	struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5674 	bool do_flush;
5675 
5676 	local_irq_disable();
5677 	rps_lock(sd);
5678 
5679 	/* as insertion into process_queue happens with the rps lock held,
5680 	 * process_queue access may race only with dequeue
5681 	 */
5682 	do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5683 		   !skb_queue_empty_lockless(&sd->process_queue);
5684 	rps_unlock(sd);
5685 	local_irq_enable();
5686 
5687 	return do_flush;
5688 #endif
5689 	/* without RPS we can't safely check input_pkt_queue: during a
5690 	 * concurrent remote skb_queue_splice() we can detect as empty both
5691 	 * input_pkt_queue and process_queue even if the latter could end-up
5692 	 * containing a lot of packets.
5693 	 */
5694 	return true;
5695 }
5696 
5697 static void flush_all_backlogs(void)
5698 {
5699 	static cpumask_t flush_cpus;
5700 	unsigned int cpu;
5701 
5702 	/* since we are under rtnl lock protection we can use static data
5703 	 * for the cpumask and avoid allocating on stack the possibly
5704 	 * large mask
5705 	 */
5706 	ASSERT_RTNL();
5707 
5708 	cpus_read_lock();
5709 
5710 	cpumask_clear(&flush_cpus);
5711 	for_each_online_cpu(cpu) {
5712 		if (flush_required(cpu)) {
5713 			queue_work_on(cpu, system_highpri_wq,
5714 				      per_cpu_ptr(&flush_works, cpu));
5715 			cpumask_set_cpu(cpu, &flush_cpus);
5716 		}
5717 	}
5718 
5719 	/* we can have in flight packet[s] on the cpus we are not flushing,
5720 	 * synchronize_net() in unregister_netdevice_many() will take care of
5721 	 * them
5722 	 */
5723 	for_each_cpu(cpu, &flush_cpus)
5724 		flush_work(per_cpu_ptr(&flush_works, cpu));
5725 
5726 	cpus_read_unlock();
5727 }
5728 
5729 static void net_rps_send_ipi(struct softnet_data *remsd)
5730 {
5731 #ifdef CONFIG_RPS
5732 	while (remsd) {
5733 		struct softnet_data *next = remsd->rps_ipi_next;
5734 
5735 		if (cpu_online(remsd->cpu))
5736 			smp_call_function_single_async(remsd->cpu, &remsd->csd);
5737 		remsd = next;
5738 	}
5739 #endif
5740 }
5741 
5742 /*
5743  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5744  * Note: called with local irq disabled, but exits with local irq enabled.
5745  */
5746 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5747 {
5748 #ifdef CONFIG_RPS
5749 	struct softnet_data *remsd = sd->rps_ipi_list;
5750 
5751 	if (remsd) {
5752 		sd->rps_ipi_list = NULL;
5753 
5754 		local_irq_enable();
5755 
5756 		/* Send pending IPI's to kick RPS processing on remote cpus. */
5757 		net_rps_send_ipi(remsd);
5758 	} else
5759 #endif
5760 		local_irq_enable();
5761 }
5762 
5763 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5764 {
5765 #ifdef CONFIG_RPS
5766 	return sd->rps_ipi_list != NULL;
5767 #else
5768 	return false;
5769 #endif
5770 }
5771 
5772 static int process_backlog(struct napi_struct *napi, int quota)
5773 {
5774 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5775 	bool again = true;
5776 	int work = 0;
5777 
5778 	/* Check if we have pending ipi, its better to send them now,
5779 	 * not waiting net_rx_action() end.
5780 	 */
5781 	if (sd_has_rps_ipi_waiting(sd)) {
5782 		local_irq_disable();
5783 		net_rps_action_and_irq_enable(sd);
5784 	}
5785 
5786 	napi->weight = dev_rx_weight;
5787 	while (again) {
5788 		struct sk_buff *skb;
5789 
5790 		while ((skb = __skb_dequeue(&sd->process_queue))) {
5791 			rcu_read_lock();
5792 			__netif_receive_skb(skb);
5793 			rcu_read_unlock();
5794 			input_queue_head_incr(sd);
5795 			if (++work >= quota)
5796 				return work;
5797 
5798 		}
5799 
5800 		local_irq_disable();
5801 		rps_lock(sd);
5802 		if (skb_queue_empty(&sd->input_pkt_queue)) {
5803 			/*
5804 			 * Inline a custom version of __napi_complete().
5805 			 * only current cpu owns and manipulates this napi,
5806 			 * and NAPI_STATE_SCHED is the only possible flag set
5807 			 * on backlog.
5808 			 * We can use a plain write instead of clear_bit(),
5809 			 * and we dont need an smp_mb() memory barrier.
5810 			 */
5811 			napi->state = 0;
5812 			again = false;
5813 		} else {
5814 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
5815 						   &sd->process_queue);
5816 		}
5817 		rps_unlock(sd);
5818 		local_irq_enable();
5819 	}
5820 
5821 	return work;
5822 }
5823 
5824 /**
5825  * __napi_schedule - schedule for receive
5826  * @n: entry to schedule
5827  *
5828  * The entry's receive function will be scheduled to run.
5829  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5830  */
5831 void __napi_schedule(struct napi_struct *n)
5832 {
5833 	unsigned long flags;
5834 
5835 	local_irq_save(flags);
5836 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
5837 	local_irq_restore(flags);
5838 }
5839 EXPORT_SYMBOL(__napi_schedule);
5840 
5841 /**
5842  *	napi_schedule_prep - check if napi can be scheduled
5843  *	@n: napi context
5844  *
5845  * Test if NAPI routine is already running, and if not mark
5846  * it as running.  This is used as a condition variable to
5847  * insure only one NAPI poll instance runs.  We also make
5848  * sure there is no pending NAPI disable.
5849  */
5850 bool napi_schedule_prep(struct napi_struct *n)
5851 {
5852 	unsigned long val, new;
5853 
5854 	do {
5855 		val = READ_ONCE(n->state);
5856 		if (unlikely(val & NAPIF_STATE_DISABLE))
5857 			return false;
5858 		new = val | NAPIF_STATE_SCHED;
5859 
5860 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
5861 		 * This was suggested by Alexander Duyck, as compiler
5862 		 * emits better code than :
5863 		 * if (val & NAPIF_STATE_SCHED)
5864 		 *     new |= NAPIF_STATE_MISSED;
5865 		 */
5866 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
5867 						   NAPIF_STATE_MISSED;
5868 	} while (cmpxchg(&n->state, val, new) != val);
5869 
5870 	return !(val & NAPIF_STATE_SCHED);
5871 }
5872 EXPORT_SYMBOL(napi_schedule_prep);
5873 
5874 /**
5875  * __napi_schedule_irqoff - schedule for receive
5876  * @n: entry to schedule
5877  *
5878  * Variant of __napi_schedule() assuming hard irqs are masked.
5879  *
5880  * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
5881  * because the interrupt disabled assumption might not be true
5882  * due to force-threaded interrupts and spinlock substitution.
5883  */
5884 void __napi_schedule_irqoff(struct napi_struct *n)
5885 {
5886 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
5887 		____napi_schedule(this_cpu_ptr(&softnet_data), n);
5888 	else
5889 		__napi_schedule(n);
5890 }
5891 EXPORT_SYMBOL(__napi_schedule_irqoff);
5892 
5893 bool napi_complete_done(struct napi_struct *n, int work_done)
5894 {
5895 	unsigned long flags, val, new, timeout = 0;
5896 	bool ret = true;
5897 
5898 	/*
5899 	 * 1) Don't let napi dequeue from the cpu poll list
5900 	 *    just in case its running on a different cpu.
5901 	 * 2) If we are busy polling, do nothing here, we have
5902 	 *    the guarantee we will be called later.
5903 	 */
5904 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
5905 				 NAPIF_STATE_IN_BUSY_POLL)))
5906 		return false;
5907 
5908 	if (work_done) {
5909 		if (n->gro_bitmask)
5910 			timeout = READ_ONCE(n->dev->gro_flush_timeout);
5911 		n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
5912 	}
5913 	if (n->defer_hard_irqs_count > 0) {
5914 		n->defer_hard_irqs_count--;
5915 		timeout = READ_ONCE(n->dev->gro_flush_timeout);
5916 		if (timeout)
5917 			ret = false;
5918 	}
5919 	if (n->gro_bitmask) {
5920 		/* When the NAPI instance uses a timeout and keeps postponing
5921 		 * it, we need to bound somehow the time packets are kept in
5922 		 * the GRO layer
5923 		 */
5924 		napi_gro_flush(n, !!timeout);
5925 	}
5926 
5927 	gro_normal_list(n);
5928 
5929 	if (unlikely(!list_empty(&n->poll_list))) {
5930 		/* If n->poll_list is not empty, we need to mask irqs */
5931 		local_irq_save(flags);
5932 		list_del_init(&n->poll_list);
5933 		local_irq_restore(flags);
5934 	}
5935 
5936 	do {
5937 		val = READ_ONCE(n->state);
5938 
5939 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
5940 
5941 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
5942 			      NAPIF_STATE_SCHED_THREADED |
5943 			      NAPIF_STATE_PREFER_BUSY_POLL);
5944 
5945 		/* If STATE_MISSED was set, leave STATE_SCHED set,
5946 		 * because we will call napi->poll() one more time.
5947 		 * This C code was suggested by Alexander Duyck to help gcc.
5948 		 */
5949 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
5950 						    NAPIF_STATE_SCHED;
5951 	} while (cmpxchg(&n->state, val, new) != val);
5952 
5953 	if (unlikely(val & NAPIF_STATE_MISSED)) {
5954 		__napi_schedule(n);
5955 		return false;
5956 	}
5957 
5958 	if (timeout)
5959 		hrtimer_start(&n->timer, ns_to_ktime(timeout),
5960 			      HRTIMER_MODE_REL_PINNED);
5961 	return ret;
5962 }
5963 EXPORT_SYMBOL(napi_complete_done);
5964 
5965 /* must be called under rcu_read_lock(), as we dont take a reference */
5966 static struct napi_struct *napi_by_id(unsigned int napi_id)
5967 {
5968 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
5969 	struct napi_struct *napi;
5970 
5971 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
5972 		if (napi->napi_id == napi_id)
5973 			return napi;
5974 
5975 	return NULL;
5976 }
5977 
5978 #if defined(CONFIG_NET_RX_BUSY_POLL)
5979 
5980 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
5981 {
5982 	if (!skip_schedule) {
5983 		gro_normal_list(napi);
5984 		__napi_schedule(napi);
5985 		return;
5986 	}
5987 
5988 	if (napi->gro_bitmask) {
5989 		/* flush too old packets
5990 		 * If HZ < 1000, flush all packets.
5991 		 */
5992 		napi_gro_flush(napi, HZ >= 1000);
5993 	}
5994 
5995 	gro_normal_list(napi);
5996 	clear_bit(NAPI_STATE_SCHED, &napi->state);
5997 }
5998 
5999 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll,
6000 			   u16 budget)
6001 {
6002 	bool skip_schedule = false;
6003 	unsigned long timeout;
6004 	int rc;
6005 
6006 	/* Busy polling means there is a high chance device driver hard irq
6007 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6008 	 * set in napi_schedule_prep().
6009 	 * Since we are about to call napi->poll() once more, we can safely
6010 	 * clear NAPI_STATE_MISSED.
6011 	 *
6012 	 * Note: x86 could use a single "lock and ..." instruction
6013 	 * to perform these two clear_bit()
6014 	 */
6015 	clear_bit(NAPI_STATE_MISSED, &napi->state);
6016 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6017 
6018 	local_bh_disable();
6019 
6020 	if (prefer_busy_poll) {
6021 		napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6022 		timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6023 		if (napi->defer_hard_irqs_count && timeout) {
6024 			hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6025 			skip_schedule = true;
6026 		}
6027 	}
6028 
6029 	/* All we really want here is to re-enable device interrupts.
6030 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6031 	 */
6032 	rc = napi->poll(napi, budget);
6033 	/* We can't gro_normal_list() here, because napi->poll() might have
6034 	 * rearmed the napi (napi_complete_done()) in which case it could
6035 	 * already be running on another CPU.
6036 	 */
6037 	trace_napi_poll(napi, rc, budget);
6038 	netpoll_poll_unlock(have_poll_lock);
6039 	if (rc == budget)
6040 		__busy_poll_stop(napi, skip_schedule);
6041 	local_bh_enable();
6042 }
6043 
6044 void napi_busy_loop(unsigned int napi_id,
6045 		    bool (*loop_end)(void *, unsigned long),
6046 		    void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6047 {
6048 	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6049 	int (*napi_poll)(struct napi_struct *napi, int budget);
6050 	void *have_poll_lock = NULL;
6051 	struct napi_struct *napi;
6052 
6053 restart:
6054 	napi_poll = NULL;
6055 
6056 	rcu_read_lock();
6057 
6058 	napi = napi_by_id(napi_id);
6059 	if (!napi)
6060 		goto out;
6061 
6062 	preempt_disable();
6063 	for (;;) {
6064 		int work = 0;
6065 
6066 		local_bh_disable();
6067 		if (!napi_poll) {
6068 			unsigned long val = READ_ONCE(napi->state);
6069 
6070 			/* If multiple threads are competing for this napi,
6071 			 * we avoid dirtying napi->state as much as we can.
6072 			 */
6073 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6074 				   NAPIF_STATE_IN_BUSY_POLL)) {
6075 				if (prefer_busy_poll)
6076 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6077 				goto count;
6078 			}
6079 			if (cmpxchg(&napi->state, val,
6080 				    val | NAPIF_STATE_IN_BUSY_POLL |
6081 					  NAPIF_STATE_SCHED) != val) {
6082 				if (prefer_busy_poll)
6083 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6084 				goto count;
6085 			}
6086 			have_poll_lock = netpoll_poll_lock(napi);
6087 			napi_poll = napi->poll;
6088 		}
6089 		work = napi_poll(napi, budget);
6090 		trace_napi_poll(napi, work, budget);
6091 		gro_normal_list(napi);
6092 count:
6093 		if (work > 0)
6094 			__NET_ADD_STATS(dev_net(napi->dev),
6095 					LINUX_MIB_BUSYPOLLRXPACKETS, work);
6096 		local_bh_enable();
6097 
6098 		if (!loop_end || loop_end(loop_end_arg, start_time))
6099 			break;
6100 
6101 		if (unlikely(need_resched())) {
6102 			if (napi_poll)
6103 				busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6104 			preempt_enable();
6105 			rcu_read_unlock();
6106 			cond_resched();
6107 			if (loop_end(loop_end_arg, start_time))
6108 				return;
6109 			goto restart;
6110 		}
6111 		cpu_relax();
6112 	}
6113 	if (napi_poll)
6114 		busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6115 	preempt_enable();
6116 out:
6117 	rcu_read_unlock();
6118 }
6119 EXPORT_SYMBOL(napi_busy_loop);
6120 
6121 #endif /* CONFIG_NET_RX_BUSY_POLL */
6122 
6123 static void napi_hash_add(struct napi_struct *napi)
6124 {
6125 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6126 		return;
6127 
6128 	spin_lock(&napi_hash_lock);
6129 
6130 	/* 0..NR_CPUS range is reserved for sender_cpu use */
6131 	do {
6132 		if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6133 			napi_gen_id = MIN_NAPI_ID;
6134 	} while (napi_by_id(napi_gen_id));
6135 	napi->napi_id = napi_gen_id;
6136 
6137 	hlist_add_head_rcu(&napi->napi_hash_node,
6138 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6139 
6140 	spin_unlock(&napi_hash_lock);
6141 }
6142 
6143 /* Warning : caller is responsible to make sure rcu grace period
6144  * is respected before freeing memory containing @napi
6145  */
6146 static void napi_hash_del(struct napi_struct *napi)
6147 {
6148 	spin_lock(&napi_hash_lock);
6149 
6150 	hlist_del_init_rcu(&napi->napi_hash_node);
6151 
6152 	spin_unlock(&napi_hash_lock);
6153 }
6154 
6155 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6156 {
6157 	struct napi_struct *napi;
6158 
6159 	napi = container_of(timer, struct napi_struct, timer);
6160 
6161 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
6162 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6163 	 */
6164 	if (!napi_disable_pending(napi) &&
6165 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6166 		clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6167 		__napi_schedule_irqoff(napi);
6168 	}
6169 
6170 	return HRTIMER_NORESTART;
6171 }
6172 
6173 static void init_gro_hash(struct napi_struct *napi)
6174 {
6175 	int i;
6176 
6177 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6178 		INIT_LIST_HEAD(&napi->gro_hash[i].list);
6179 		napi->gro_hash[i].count = 0;
6180 	}
6181 	napi->gro_bitmask = 0;
6182 }
6183 
6184 int dev_set_threaded(struct net_device *dev, bool threaded)
6185 {
6186 	struct napi_struct *napi;
6187 	int err = 0;
6188 
6189 	if (dev->threaded == threaded)
6190 		return 0;
6191 
6192 	if (threaded) {
6193 		list_for_each_entry(napi, &dev->napi_list, dev_list) {
6194 			if (!napi->thread) {
6195 				err = napi_kthread_create(napi);
6196 				if (err) {
6197 					threaded = false;
6198 					break;
6199 				}
6200 			}
6201 		}
6202 	}
6203 
6204 	dev->threaded = threaded;
6205 
6206 	/* Make sure kthread is created before THREADED bit
6207 	 * is set.
6208 	 */
6209 	smp_mb__before_atomic();
6210 
6211 	/* Setting/unsetting threaded mode on a napi might not immediately
6212 	 * take effect, if the current napi instance is actively being
6213 	 * polled. In this case, the switch between threaded mode and
6214 	 * softirq mode will happen in the next round of napi_schedule().
6215 	 * This should not cause hiccups/stalls to the live traffic.
6216 	 */
6217 	list_for_each_entry(napi, &dev->napi_list, dev_list) {
6218 		if (threaded)
6219 			set_bit(NAPI_STATE_THREADED, &napi->state);
6220 		else
6221 			clear_bit(NAPI_STATE_THREADED, &napi->state);
6222 	}
6223 
6224 	return err;
6225 }
6226 EXPORT_SYMBOL(dev_set_threaded);
6227 
6228 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6229 		    int (*poll)(struct napi_struct *, int), int weight)
6230 {
6231 	if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6232 		return;
6233 
6234 	INIT_LIST_HEAD(&napi->poll_list);
6235 	INIT_HLIST_NODE(&napi->napi_hash_node);
6236 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6237 	napi->timer.function = napi_watchdog;
6238 	init_gro_hash(napi);
6239 	napi->skb = NULL;
6240 	INIT_LIST_HEAD(&napi->rx_list);
6241 	napi->rx_count = 0;
6242 	napi->poll = poll;
6243 	if (weight > NAPI_POLL_WEIGHT)
6244 		netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6245 				weight);
6246 	napi->weight = weight;
6247 	napi->dev = dev;
6248 #ifdef CONFIG_NETPOLL
6249 	napi->poll_owner = -1;
6250 #endif
6251 	set_bit(NAPI_STATE_SCHED, &napi->state);
6252 	set_bit(NAPI_STATE_NPSVC, &napi->state);
6253 	list_add_rcu(&napi->dev_list, &dev->napi_list);
6254 	napi_hash_add(napi);
6255 	/* Create kthread for this napi if dev->threaded is set.
6256 	 * Clear dev->threaded if kthread creation failed so that
6257 	 * threaded mode will not be enabled in napi_enable().
6258 	 */
6259 	if (dev->threaded && napi_kthread_create(napi))
6260 		dev->threaded = 0;
6261 }
6262 EXPORT_SYMBOL(netif_napi_add);
6263 
6264 void napi_disable(struct napi_struct *n)
6265 {
6266 	unsigned long val, new;
6267 
6268 	might_sleep();
6269 	set_bit(NAPI_STATE_DISABLE, &n->state);
6270 
6271 	for ( ; ; ) {
6272 		val = READ_ONCE(n->state);
6273 		if (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
6274 			usleep_range(20, 200);
6275 			continue;
6276 		}
6277 
6278 		new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
6279 		new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL);
6280 
6281 		if (cmpxchg(&n->state, val, new) == val)
6282 			break;
6283 	}
6284 
6285 	hrtimer_cancel(&n->timer);
6286 
6287 	clear_bit(NAPI_STATE_DISABLE, &n->state);
6288 }
6289 EXPORT_SYMBOL(napi_disable);
6290 
6291 /**
6292  *	napi_enable - enable NAPI scheduling
6293  *	@n: NAPI context
6294  *
6295  * Resume NAPI from being scheduled on this context.
6296  * Must be paired with napi_disable.
6297  */
6298 void napi_enable(struct napi_struct *n)
6299 {
6300 	unsigned long val, new;
6301 
6302 	do {
6303 		val = READ_ONCE(n->state);
6304 		BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
6305 
6306 		new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
6307 		if (n->dev->threaded && n->thread)
6308 			new |= NAPIF_STATE_THREADED;
6309 	} while (cmpxchg(&n->state, val, new) != val);
6310 }
6311 EXPORT_SYMBOL(napi_enable);
6312 
6313 static void flush_gro_hash(struct napi_struct *napi)
6314 {
6315 	int i;
6316 
6317 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6318 		struct sk_buff *skb, *n;
6319 
6320 		list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6321 			kfree_skb(skb);
6322 		napi->gro_hash[i].count = 0;
6323 	}
6324 }
6325 
6326 /* Must be called in process context */
6327 void __netif_napi_del(struct napi_struct *napi)
6328 {
6329 	if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6330 		return;
6331 
6332 	napi_hash_del(napi);
6333 	list_del_rcu(&napi->dev_list);
6334 	napi_free_frags(napi);
6335 
6336 	flush_gro_hash(napi);
6337 	napi->gro_bitmask = 0;
6338 
6339 	if (napi->thread) {
6340 		kthread_stop(napi->thread);
6341 		napi->thread = NULL;
6342 	}
6343 }
6344 EXPORT_SYMBOL(__netif_napi_del);
6345 
6346 static int __napi_poll(struct napi_struct *n, bool *repoll)
6347 {
6348 	int work, weight;
6349 
6350 	weight = n->weight;
6351 
6352 	/* This NAPI_STATE_SCHED test is for avoiding a race
6353 	 * with netpoll's poll_napi().  Only the entity which
6354 	 * obtains the lock and sees NAPI_STATE_SCHED set will
6355 	 * actually make the ->poll() call.  Therefore we avoid
6356 	 * accidentally calling ->poll() when NAPI is not scheduled.
6357 	 */
6358 	work = 0;
6359 	if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6360 		work = n->poll(n, weight);
6361 		trace_napi_poll(n, work, weight);
6362 	}
6363 
6364 	if (unlikely(work > weight))
6365 		netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6366 				n->poll, work, weight);
6367 
6368 	if (likely(work < weight))
6369 		return work;
6370 
6371 	/* Drivers must not modify the NAPI state if they
6372 	 * consume the entire weight.  In such cases this code
6373 	 * still "owns" the NAPI instance and therefore can
6374 	 * move the instance around on the list at-will.
6375 	 */
6376 	if (unlikely(napi_disable_pending(n))) {
6377 		napi_complete(n);
6378 		return work;
6379 	}
6380 
6381 	/* The NAPI context has more processing work, but busy-polling
6382 	 * is preferred. Exit early.
6383 	 */
6384 	if (napi_prefer_busy_poll(n)) {
6385 		if (napi_complete_done(n, work)) {
6386 			/* If timeout is not set, we need to make sure
6387 			 * that the NAPI is re-scheduled.
6388 			 */
6389 			napi_schedule(n);
6390 		}
6391 		return work;
6392 	}
6393 
6394 	if (n->gro_bitmask) {
6395 		/* flush too old packets
6396 		 * If HZ < 1000, flush all packets.
6397 		 */
6398 		napi_gro_flush(n, HZ >= 1000);
6399 	}
6400 
6401 	gro_normal_list(n);
6402 
6403 	/* Some drivers may have called napi_schedule
6404 	 * prior to exhausting their budget.
6405 	 */
6406 	if (unlikely(!list_empty(&n->poll_list))) {
6407 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6408 			     n->dev ? n->dev->name : "backlog");
6409 		return work;
6410 	}
6411 
6412 	*repoll = true;
6413 
6414 	return work;
6415 }
6416 
6417 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6418 {
6419 	bool do_repoll = false;
6420 	void *have;
6421 	int work;
6422 
6423 	list_del_init(&n->poll_list);
6424 
6425 	have = netpoll_poll_lock(n);
6426 
6427 	work = __napi_poll(n, &do_repoll);
6428 
6429 	if (do_repoll)
6430 		list_add_tail(&n->poll_list, repoll);
6431 
6432 	netpoll_poll_unlock(have);
6433 
6434 	return work;
6435 }
6436 
6437 static int napi_thread_wait(struct napi_struct *napi)
6438 {
6439 	bool woken = false;
6440 
6441 	set_current_state(TASK_INTERRUPTIBLE);
6442 
6443 	while (!kthread_should_stop()) {
6444 		/* Testing SCHED_THREADED bit here to make sure the current
6445 		 * kthread owns this napi and could poll on this napi.
6446 		 * Testing SCHED bit is not enough because SCHED bit might be
6447 		 * set by some other busy poll thread or by napi_disable().
6448 		 */
6449 		if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) {
6450 			WARN_ON(!list_empty(&napi->poll_list));
6451 			__set_current_state(TASK_RUNNING);
6452 			return 0;
6453 		}
6454 
6455 		schedule();
6456 		/* woken being true indicates this thread owns this napi. */
6457 		woken = true;
6458 		set_current_state(TASK_INTERRUPTIBLE);
6459 	}
6460 	__set_current_state(TASK_RUNNING);
6461 
6462 	return -1;
6463 }
6464 
6465 static int napi_threaded_poll(void *data)
6466 {
6467 	struct napi_struct *napi = data;
6468 	void *have;
6469 
6470 	while (!napi_thread_wait(napi)) {
6471 		for (;;) {
6472 			bool repoll = false;
6473 
6474 			local_bh_disable();
6475 
6476 			have = netpoll_poll_lock(napi);
6477 			__napi_poll(napi, &repoll);
6478 			netpoll_poll_unlock(have);
6479 
6480 			local_bh_enable();
6481 
6482 			if (!repoll)
6483 				break;
6484 
6485 			cond_resched();
6486 		}
6487 	}
6488 	return 0;
6489 }
6490 
6491 static __latent_entropy void net_rx_action(struct softirq_action *h)
6492 {
6493 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6494 	unsigned long time_limit = jiffies +
6495 		usecs_to_jiffies(netdev_budget_usecs);
6496 	int budget = netdev_budget;
6497 	LIST_HEAD(list);
6498 	LIST_HEAD(repoll);
6499 
6500 	local_irq_disable();
6501 	list_splice_init(&sd->poll_list, &list);
6502 	local_irq_enable();
6503 
6504 	for (;;) {
6505 		struct napi_struct *n;
6506 
6507 		if (list_empty(&list)) {
6508 			if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6509 				return;
6510 			break;
6511 		}
6512 
6513 		n = list_first_entry(&list, struct napi_struct, poll_list);
6514 		budget -= napi_poll(n, &repoll);
6515 
6516 		/* If softirq window is exhausted then punt.
6517 		 * Allow this to run for 2 jiffies since which will allow
6518 		 * an average latency of 1.5/HZ.
6519 		 */
6520 		if (unlikely(budget <= 0 ||
6521 			     time_after_eq(jiffies, time_limit))) {
6522 			sd->time_squeeze++;
6523 			break;
6524 		}
6525 	}
6526 
6527 	local_irq_disable();
6528 
6529 	list_splice_tail_init(&sd->poll_list, &list);
6530 	list_splice_tail(&repoll, &list);
6531 	list_splice(&list, &sd->poll_list);
6532 	if (!list_empty(&sd->poll_list))
6533 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
6534 
6535 	net_rps_action_and_irq_enable(sd);
6536 }
6537 
6538 struct netdev_adjacent {
6539 	struct net_device *dev;
6540 	netdevice_tracker dev_tracker;
6541 
6542 	/* upper master flag, there can only be one master device per list */
6543 	bool master;
6544 
6545 	/* lookup ignore flag */
6546 	bool ignore;
6547 
6548 	/* counter for the number of times this device was added to us */
6549 	u16 ref_nr;
6550 
6551 	/* private field for the users */
6552 	void *private;
6553 
6554 	struct list_head list;
6555 	struct rcu_head rcu;
6556 };
6557 
6558 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6559 						 struct list_head *adj_list)
6560 {
6561 	struct netdev_adjacent *adj;
6562 
6563 	list_for_each_entry(adj, adj_list, list) {
6564 		if (adj->dev == adj_dev)
6565 			return adj;
6566 	}
6567 	return NULL;
6568 }
6569 
6570 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
6571 				    struct netdev_nested_priv *priv)
6572 {
6573 	struct net_device *dev = (struct net_device *)priv->data;
6574 
6575 	return upper_dev == dev;
6576 }
6577 
6578 /**
6579  * netdev_has_upper_dev - Check if device is linked to an upper device
6580  * @dev: device
6581  * @upper_dev: upper device to check
6582  *
6583  * Find out if a device is linked to specified upper device and return true
6584  * in case it is. Note that this checks only immediate upper device,
6585  * not through a complete stack of devices. The caller must hold the RTNL lock.
6586  */
6587 bool netdev_has_upper_dev(struct net_device *dev,
6588 			  struct net_device *upper_dev)
6589 {
6590 	struct netdev_nested_priv priv = {
6591 		.data = (void *)upper_dev,
6592 	};
6593 
6594 	ASSERT_RTNL();
6595 
6596 	return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6597 					     &priv);
6598 }
6599 EXPORT_SYMBOL(netdev_has_upper_dev);
6600 
6601 /**
6602  * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
6603  * @dev: device
6604  * @upper_dev: upper device to check
6605  *
6606  * Find out if a device is linked to specified upper device and return true
6607  * in case it is. Note that this checks the entire upper device chain.
6608  * The caller must hold rcu lock.
6609  */
6610 
6611 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6612 				  struct net_device *upper_dev)
6613 {
6614 	struct netdev_nested_priv priv = {
6615 		.data = (void *)upper_dev,
6616 	};
6617 
6618 	return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6619 					       &priv);
6620 }
6621 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6622 
6623 /**
6624  * netdev_has_any_upper_dev - Check if device is linked to some device
6625  * @dev: device
6626  *
6627  * Find out if a device is linked to an upper device and return true in case
6628  * it is. The caller must hold the RTNL lock.
6629  */
6630 bool netdev_has_any_upper_dev(struct net_device *dev)
6631 {
6632 	ASSERT_RTNL();
6633 
6634 	return !list_empty(&dev->adj_list.upper);
6635 }
6636 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6637 
6638 /**
6639  * netdev_master_upper_dev_get - Get master upper device
6640  * @dev: device
6641  *
6642  * Find a master upper device and return pointer to it or NULL in case
6643  * it's not there. The caller must hold the RTNL lock.
6644  */
6645 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6646 {
6647 	struct netdev_adjacent *upper;
6648 
6649 	ASSERT_RTNL();
6650 
6651 	if (list_empty(&dev->adj_list.upper))
6652 		return NULL;
6653 
6654 	upper = list_first_entry(&dev->adj_list.upper,
6655 				 struct netdev_adjacent, list);
6656 	if (likely(upper->master))
6657 		return upper->dev;
6658 	return NULL;
6659 }
6660 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6661 
6662 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
6663 {
6664 	struct netdev_adjacent *upper;
6665 
6666 	ASSERT_RTNL();
6667 
6668 	if (list_empty(&dev->adj_list.upper))
6669 		return NULL;
6670 
6671 	upper = list_first_entry(&dev->adj_list.upper,
6672 				 struct netdev_adjacent, list);
6673 	if (likely(upper->master) && !upper->ignore)
6674 		return upper->dev;
6675 	return NULL;
6676 }
6677 
6678 /**
6679  * netdev_has_any_lower_dev - Check if device is linked to some device
6680  * @dev: device
6681  *
6682  * Find out if a device is linked to a lower device and return true in case
6683  * it is. The caller must hold the RTNL lock.
6684  */
6685 static bool netdev_has_any_lower_dev(struct net_device *dev)
6686 {
6687 	ASSERT_RTNL();
6688 
6689 	return !list_empty(&dev->adj_list.lower);
6690 }
6691 
6692 void *netdev_adjacent_get_private(struct list_head *adj_list)
6693 {
6694 	struct netdev_adjacent *adj;
6695 
6696 	adj = list_entry(adj_list, struct netdev_adjacent, list);
6697 
6698 	return adj->private;
6699 }
6700 EXPORT_SYMBOL(netdev_adjacent_get_private);
6701 
6702 /**
6703  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6704  * @dev: device
6705  * @iter: list_head ** of the current position
6706  *
6707  * Gets the next device from the dev's upper list, starting from iter
6708  * position. The caller must hold RCU read lock.
6709  */
6710 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6711 						 struct list_head **iter)
6712 {
6713 	struct netdev_adjacent *upper;
6714 
6715 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6716 
6717 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6718 
6719 	if (&upper->list == &dev->adj_list.upper)
6720 		return NULL;
6721 
6722 	*iter = &upper->list;
6723 
6724 	return upper->dev;
6725 }
6726 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6727 
6728 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
6729 						  struct list_head **iter,
6730 						  bool *ignore)
6731 {
6732 	struct netdev_adjacent *upper;
6733 
6734 	upper = list_entry((*iter)->next, struct netdev_adjacent, list);
6735 
6736 	if (&upper->list == &dev->adj_list.upper)
6737 		return NULL;
6738 
6739 	*iter = &upper->list;
6740 	*ignore = upper->ignore;
6741 
6742 	return upper->dev;
6743 }
6744 
6745 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6746 						    struct list_head **iter)
6747 {
6748 	struct netdev_adjacent *upper;
6749 
6750 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6751 
6752 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6753 
6754 	if (&upper->list == &dev->adj_list.upper)
6755 		return NULL;
6756 
6757 	*iter = &upper->list;
6758 
6759 	return upper->dev;
6760 }
6761 
6762 static int __netdev_walk_all_upper_dev(struct net_device *dev,
6763 				       int (*fn)(struct net_device *dev,
6764 					 struct netdev_nested_priv *priv),
6765 				       struct netdev_nested_priv *priv)
6766 {
6767 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6768 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6769 	int ret, cur = 0;
6770 	bool ignore;
6771 
6772 	now = dev;
6773 	iter = &dev->adj_list.upper;
6774 
6775 	while (1) {
6776 		if (now != dev) {
6777 			ret = fn(now, priv);
6778 			if (ret)
6779 				return ret;
6780 		}
6781 
6782 		next = NULL;
6783 		while (1) {
6784 			udev = __netdev_next_upper_dev(now, &iter, &ignore);
6785 			if (!udev)
6786 				break;
6787 			if (ignore)
6788 				continue;
6789 
6790 			next = udev;
6791 			niter = &udev->adj_list.upper;
6792 			dev_stack[cur] = now;
6793 			iter_stack[cur++] = iter;
6794 			break;
6795 		}
6796 
6797 		if (!next) {
6798 			if (!cur)
6799 				return 0;
6800 			next = dev_stack[--cur];
6801 			niter = iter_stack[cur];
6802 		}
6803 
6804 		now = next;
6805 		iter = niter;
6806 	}
6807 
6808 	return 0;
6809 }
6810 
6811 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
6812 				  int (*fn)(struct net_device *dev,
6813 					    struct netdev_nested_priv *priv),
6814 				  struct netdev_nested_priv *priv)
6815 {
6816 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6817 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6818 	int ret, cur = 0;
6819 
6820 	now = dev;
6821 	iter = &dev->adj_list.upper;
6822 
6823 	while (1) {
6824 		if (now != dev) {
6825 			ret = fn(now, priv);
6826 			if (ret)
6827 				return ret;
6828 		}
6829 
6830 		next = NULL;
6831 		while (1) {
6832 			udev = netdev_next_upper_dev_rcu(now, &iter);
6833 			if (!udev)
6834 				break;
6835 
6836 			next = udev;
6837 			niter = &udev->adj_list.upper;
6838 			dev_stack[cur] = now;
6839 			iter_stack[cur++] = iter;
6840 			break;
6841 		}
6842 
6843 		if (!next) {
6844 			if (!cur)
6845 				return 0;
6846 			next = dev_stack[--cur];
6847 			niter = iter_stack[cur];
6848 		}
6849 
6850 		now = next;
6851 		iter = niter;
6852 	}
6853 
6854 	return 0;
6855 }
6856 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
6857 
6858 static bool __netdev_has_upper_dev(struct net_device *dev,
6859 				   struct net_device *upper_dev)
6860 {
6861 	struct netdev_nested_priv priv = {
6862 		.flags = 0,
6863 		.data = (void *)upper_dev,
6864 	};
6865 
6866 	ASSERT_RTNL();
6867 
6868 	return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
6869 					   &priv);
6870 }
6871 
6872 /**
6873  * netdev_lower_get_next_private - Get the next ->private from the
6874  *				   lower neighbour list
6875  * @dev: device
6876  * @iter: list_head ** of the current position
6877  *
6878  * Gets the next netdev_adjacent->private from the dev's lower neighbour
6879  * list, starting from iter position. The caller must hold either hold the
6880  * RTNL lock or its own locking that guarantees that the neighbour lower
6881  * list will remain unchanged.
6882  */
6883 void *netdev_lower_get_next_private(struct net_device *dev,
6884 				    struct list_head **iter)
6885 {
6886 	struct netdev_adjacent *lower;
6887 
6888 	lower = list_entry(*iter, struct netdev_adjacent, list);
6889 
6890 	if (&lower->list == &dev->adj_list.lower)
6891 		return NULL;
6892 
6893 	*iter = lower->list.next;
6894 
6895 	return lower->private;
6896 }
6897 EXPORT_SYMBOL(netdev_lower_get_next_private);
6898 
6899 /**
6900  * netdev_lower_get_next_private_rcu - Get the next ->private from the
6901  *				       lower neighbour list, RCU
6902  *				       variant
6903  * @dev: device
6904  * @iter: list_head ** of the current position
6905  *
6906  * Gets the next netdev_adjacent->private from the dev's lower neighbour
6907  * list, starting from iter position. The caller must hold RCU read lock.
6908  */
6909 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
6910 					struct list_head **iter)
6911 {
6912 	struct netdev_adjacent *lower;
6913 
6914 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
6915 
6916 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6917 
6918 	if (&lower->list == &dev->adj_list.lower)
6919 		return NULL;
6920 
6921 	*iter = &lower->list;
6922 
6923 	return lower->private;
6924 }
6925 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
6926 
6927 /**
6928  * netdev_lower_get_next - Get the next device from the lower neighbour
6929  *                         list
6930  * @dev: device
6931  * @iter: list_head ** of the current position
6932  *
6933  * Gets the next netdev_adjacent from the dev's lower neighbour
6934  * list, starting from iter position. The caller must hold RTNL lock or
6935  * its own locking that guarantees that the neighbour lower
6936  * list will remain unchanged.
6937  */
6938 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
6939 {
6940 	struct netdev_adjacent *lower;
6941 
6942 	lower = list_entry(*iter, struct netdev_adjacent, list);
6943 
6944 	if (&lower->list == &dev->adj_list.lower)
6945 		return NULL;
6946 
6947 	*iter = lower->list.next;
6948 
6949 	return lower->dev;
6950 }
6951 EXPORT_SYMBOL(netdev_lower_get_next);
6952 
6953 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
6954 						struct list_head **iter)
6955 {
6956 	struct netdev_adjacent *lower;
6957 
6958 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
6959 
6960 	if (&lower->list == &dev->adj_list.lower)
6961 		return NULL;
6962 
6963 	*iter = &lower->list;
6964 
6965 	return lower->dev;
6966 }
6967 
6968 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
6969 						  struct list_head **iter,
6970 						  bool *ignore)
6971 {
6972 	struct netdev_adjacent *lower;
6973 
6974 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
6975 
6976 	if (&lower->list == &dev->adj_list.lower)
6977 		return NULL;
6978 
6979 	*iter = &lower->list;
6980 	*ignore = lower->ignore;
6981 
6982 	return lower->dev;
6983 }
6984 
6985 int netdev_walk_all_lower_dev(struct net_device *dev,
6986 			      int (*fn)(struct net_device *dev,
6987 					struct netdev_nested_priv *priv),
6988 			      struct netdev_nested_priv *priv)
6989 {
6990 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6991 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6992 	int ret, cur = 0;
6993 
6994 	now = dev;
6995 	iter = &dev->adj_list.lower;
6996 
6997 	while (1) {
6998 		if (now != dev) {
6999 			ret = fn(now, priv);
7000 			if (ret)
7001 				return ret;
7002 		}
7003 
7004 		next = NULL;
7005 		while (1) {
7006 			ldev = netdev_next_lower_dev(now, &iter);
7007 			if (!ldev)
7008 				break;
7009 
7010 			next = ldev;
7011 			niter = &ldev->adj_list.lower;
7012 			dev_stack[cur] = now;
7013 			iter_stack[cur++] = iter;
7014 			break;
7015 		}
7016 
7017 		if (!next) {
7018 			if (!cur)
7019 				return 0;
7020 			next = dev_stack[--cur];
7021 			niter = iter_stack[cur];
7022 		}
7023 
7024 		now = next;
7025 		iter = niter;
7026 	}
7027 
7028 	return 0;
7029 }
7030 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7031 
7032 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7033 				       int (*fn)(struct net_device *dev,
7034 					 struct netdev_nested_priv *priv),
7035 				       struct netdev_nested_priv *priv)
7036 {
7037 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7038 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7039 	int ret, cur = 0;
7040 	bool ignore;
7041 
7042 	now = dev;
7043 	iter = &dev->adj_list.lower;
7044 
7045 	while (1) {
7046 		if (now != dev) {
7047 			ret = fn(now, priv);
7048 			if (ret)
7049 				return ret;
7050 		}
7051 
7052 		next = NULL;
7053 		while (1) {
7054 			ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7055 			if (!ldev)
7056 				break;
7057 			if (ignore)
7058 				continue;
7059 
7060 			next = ldev;
7061 			niter = &ldev->adj_list.lower;
7062 			dev_stack[cur] = now;
7063 			iter_stack[cur++] = iter;
7064 			break;
7065 		}
7066 
7067 		if (!next) {
7068 			if (!cur)
7069 				return 0;
7070 			next = dev_stack[--cur];
7071 			niter = iter_stack[cur];
7072 		}
7073 
7074 		now = next;
7075 		iter = niter;
7076 	}
7077 
7078 	return 0;
7079 }
7080 
7081 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7082 					     struct list_head **iter)
7083 {
7084 	struct netdev_adjacent *lower;
7085 
7086 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7087 	if (&lower->list == &dev->adj_list.lower)
7088 		return NULL;
7089 
7090 	*iter = &lower->list;
7091 
7092 	return lower->dev;
7093 }
7094 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7095 
7096 static u8 __netdev_upper_depth(struct net_device *dev)
7097 {
7098 	struct net_device *udev;
7099 	struct list_head *iter;
7100 	u8 max_depth = 0;
7101 	bool ignore;
7102 
7103 	for (iter = &dev->adj_list.upper,
7104 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7105 	     udev;
7106 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7107 		if (ignore)
7108 			continue;
7109 		if (max_depth < udev->upper_level)
7110 			max_depth = udev->upper_level;
7111 	}
7112 
7113 	return max_depth;
7114 }
7115 
7116 static u8 __netdev_lower_depth(struct net_device *dev)
7117 {
7118 	struct net_device *ldev;
7119 	struct list_head *iter;
7120 	u8 max_depth = 0;
7121 	bool ignore;
7122 
7123 	for (iter = &dev->adj_list.lower,
7124 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7125 	     ldev;
7126 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7127 		if (ignore)
7128 			continue;
7129 		if (max_depth < ldev->lower_level)
7130 			max_depth = ldev->lower_level;
7131 	}
7132 
7133 	return max_depth;
7134 }
7135 
7136 static int __netdev_update_upper_level(struct net_device *dev,
7137 				       struct netdev_nested_priv *__unused)
7138 {
7139 	dev->upper_level = __netdev_upper_depth(dev) + 1;
7140 	return 0;
7141 }
7142 
7143 static int __netdev_update_lower_level(struct net_device *dev,
7144 				       struct netdev_nested_priv *priv)
7145 {
7146 	dev->lower_level = __netdev_lower_depth(dev) + 1;
7147 
7148 #ifdef CONFIG_LOCKDEP
7149 	if (!priv)
7150 		return 0;
7151 
7152 	if (priv->flags & NESTED_SYNC_IMM)
7153 		dev->nested_level = dev->lower_level - 1;
7154 	if (priv->flags & NESTED_SYNC_TODO)
7155 		net_unlink_todo(dev);
7156 #endif
7157 	return 0;
7158 }
7159 
7160 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7161 				  int (*fn)(struct net_device *dev,
7162 					    struct netdev_nested_priv *priv),
7163 				  struct netdev_nested_priv *priv)
7164 {
7165 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7166 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7167 	int ret, cur = 0;
7168 
7169 	now = dev;
7170 	iter = &dev->adj_list.lower;
7171 
7172 	while (1) {
7173 		if (now != dev) {
7174 			ret = fn(now, priv);
7175 			if (ret)
7176 				return ret;
7177 		}
7178 
7179 		next = NULL;
7180 		while (1) {
7181 			ldev = netdev_next_lower_dev_rcu(now, &iter);
7182 			if (!ldev)
7183 				break;
7184 
7185 			next = ldev;
7186 			niter = &ldev->adj_list.lower;
7187 			dev_stack[cur] = now;
7188 			iter_stack[cur++] = iter;
7189 			break;
7190 		}
7191 
7192 		if (!next) {
7193 			if (!cur)
7194 				return 0;
7195 			next = dev_stack[--cur];
7196 			niter = iter_stack[cur];
7197 		}
7198 
7199 		now = next;
7200 		iter = niter;
7201 	}
7202 
7203 	return 0;
7204 }
7205 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7206 
7207 /**
7208  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7209  *				       lower neighbour list, RCU
7210  *				       variant
7211  * @dev: device
7212  *
7213  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7214  * list. The caller must hold RCU read lock.
7215  */
7216 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7217 {
7218 	struct netdev_adjacent *lower;
7219 
7220 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
7221 			struct netdev_adjacent, list);
7222 	if (lower)
7223 		return lower->private;
7224 	return NULL;
7225 }
7226 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7227 
7228 /**
7229  * netdev_master_upper_dev_get_rcu - Get master upper device
7230  * @dev: device
7231  *
7232  * Find a master upper device and return pointer to it or NULL in case
7233  * it's not there. The caller must hold the RCU read lock.
7234  */
7235 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7236 {
7237 	struct netdev_adjacent *upper;
7238 
7239 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
7240 				       struct netdev_adjacent, list);
7241 	if (upper && likely(upper->master))
7242 		return upper->dev;
7243 	return NULL;
7244 }
7245 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7246 
7247 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7248 			      struct net_device *adj_dev,
7249 			      struct list_head *dev_list)
7250 {
7251 	char linkname[IFNAMSIZ+7];
7252 
7253 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7254 		"upper_%s" : "lower_%s", adj_dev->name);
7255 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7256 				 linkname);
7257 }
7258 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7259 			       char *name,
7260 			       struct list_head *dev_list)
7261 {
7262 	char linkname[IFNAMSIZ+7];
7263 
7264 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7265 		"upper_%s" : "lower_%s", name);
7266 	sysfs_remove_link(&(dev->dev.kobj), linkname);
7267 }
7268 
7269 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7270 						 struct net_device *adj_dev,
7271 						 struct list_head *dev_list)
7272 {
7273 	return (dev_list == &dev->adj_list.upper ||
7274 		dev_list == &dev->adj_list.lower) &&
7275 		net_eq(dev_net(dev), dev_net(adj_dev));
7276 }
7277 
7278 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7279 					struct net_device *adj_dev,
7280 					struct list_head *dev_list,
7281 					void *private, bool master)
7282 {
7283 	struct netdev_adjacent *adj;
7284 	int ret;
7285 
7286 	adj = __netdev_find_adj(adj_dev, dev_list);
7287 
7288 	if (adj) {
7289 		adj->ref_nr += 1;
7290 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7291 			 dev->name, adj_dev->name, adj->ref_nr);
7292 
7293 		return 0;
7294 	}
7295 
7296 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7297 	if (!adj)
7298 		return -ENOMEM;
7299 
7300 	adj->dev = adj_dev;
7301 	adj->master = master;
7302 	adj->ref_nr = 1;
7303 	adj->private = private;
7304 	adj->ignore = false;
7305 	dev_hold_track(adj_dev, &adj->dev_tracker, GFP_KERNEL);
7306 
7307 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7308 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7309 
7310 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7311 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7312 		if (ret)
7313 			goto free_adj;
7314 	}
7315 
7316 	/* Ensure that master link is always the first item in list. */
7317 	if (master) {
7318 		ret = sysfs_create_link(&(dev->dev.kobj),
7319 					&(adj_dev->dev.kobj), "master");
7320 		if (ret)
7321 			goto remove_symlinks;
7322 
7323 		list_add_rcu(&adj->list, dev_list);
7324 	} else {
7325 		list_add_tail_rcu(&adj->list, dev_list);
7326 	}
7327 
7328 	return 0;
7329 
7330 remove_symlinks:
7331 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7332 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7333 free_adj:
7334 	dev_put_track(adj_dev, &adj->dev_tracker);
7335 	kfree(adj);
7336 
7337 	return ret;
7338 }
7339 
7340 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7341 					 struct net_device *adj_dev,
7342 					 u16 ref_nr,
7343 					 struct list_head *dev_list)
7344 {
7345 	struct netdev_adjacent *adj;
7346 
7347 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7348 		 dev->name, adj_dev->name, ref_nr);
7349 
7350 	adj = __netdev_find_adj(adj_dev, dev_list);
7351 
7352 	if (!adj) {
7353 		pr_err("Adjacency does not exist for device %s from %s\n",
7354 		       dev->name, adj_dev->name);
7355 		WARN_ON(1);
7356 		return;
7357 	}
7358 
7359 	if (adj->ref_nr > ref_nr) {
7360 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7361 			 dev->name, adj_dev->name, ref_nr,
7362 			 adj->ref_nr - ref_nr);
7363 		adj->ref_nr -= ref_nr;
7364 		return;
7365 	}
7366 
7367 	if (adj->master)
7368 		sysfs_remove_link(&(dev->dev.kobj), "master");
7369 
7370 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7371 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7372 
7373 	list_del_rcu(&adj->list);
7374 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7375 		 adj_dev->name, dev->name, adj_dev->name);
7376 	dev_put_track(adj_dev, &adj->dev_tracker);
7377 	kfree_rcu(adj, rcu);
7378 }
7379 
7380 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7381 					    struct net_device *upper_dev,
7382 					    struct list_head *up_list,
7383 					    struct list_head *down_list,
7384 					    void *private, bool master)
7385 {
7386 	int ret;
7387 
7388 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7389 					   private, master);
7390 	if (ret)
7391 		return ret;
7392 
7393 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7394 					   private, false);
7395 	if (ret) {
7396 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7397 		return ret;
7398 	}
7399 
7400 	return 0;
7401 }
7402 
7403 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7404 					       struct net_device *upper_dev,
7405 					       u16 ref_nr,
7406 					       struct list_head *up_list,
7407 					       struct list_head *down_list)
7408 {
7409 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7410 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7411 }
7412 
7413 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7414 						struct net_device *upper_dev,
7415 						void *private, bool master)
7416 {
7417 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7418 						&dev->adj_list.upper,
7419 						&upper_dev->adj_list.lower,
7420 						private, master);
7421 }
7422 
7423 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7424 						   struct net_device *upper_dev)
7425 {
7426 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7427 					   &dev->adj_list.upper,
7428 					   &upper_dev->adj_list.lower);
7429 }
7430 
7431 static int __netdev_upper_dev_link(struct net_device *dev,
7432 				   struct net_device *upper_dev, bool master,
7433 				   void *upper_priv, void *upper_info,
7434 				   struct netdev_nested_priv *priv,
7435 				   struct netlink_ext_ack *extack)
7436 {
7437 	struct netdev_notifier_changeupper_info changeupper_info = {
7438 		.info = {
7439 			.dev = dev,
7440 			.extack = extack,
7441 		},
7442 		.upper_dev = upper_dev,
7443 		.master = master,
7444 		.linking = true,
7445 		.upper_info = upper_info,
7446 	};
7447 	struct net_device *master_dev;
7448 	int ret = 0;
7449 
7450 	ASSERT_RTNL();
7451 
7452 	if (dev == upper_dev)
7453 		return -EBUSY;
7454 
7455 	/* To prevent loops, check if dev is not upper device to upper_dev. */
7456 	if (__netdev_has_upper_dev(upper_dev, dev))
7457 		return -EBUSY;
7458 
7459 	if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7460 		return -EMLINK;
7461 
7462 	if (!master) {
7463 		if (__netdev_has_upper_dev(dev, upper_dev))
7464 			return -EEXIST;
7465 	} else {
7466 		master_dev = __netdev_master_upper_dev_get(dev);
7467 		if (master_dev)
7468 			return master_dev == upper_dev ? -EEXIST : -EBUSY;
7469 	}
7470 
7471 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7472 					    &changeupper_info.info);
7473 	ret = notifier_to_errno(ret);
7474 	if (ret)
7475 		return ret;
7476 
7477 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7478 						   master);
7479 	if (ret)
7480 		return ret;
7481 
7482 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7483 					    &changeupper_info.info);
7484 	ret = notifier_to_errno(ret);
7485 	if (ret)
7486 		goto rollback;
7487 
7488 	__netdev_update_upper_level(dev, NULL);
7489 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7490 
7491 	__netdev_update_lower_level(upper_dev, priv);
7492 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7493 				    priv);
7494 
7495 	return 0;
7496 
7497 rollback:
7498 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7499 
7500 	return ret;
7501 }
7502 
7503 /**
7504  * netdev_upper_dev_link - Add a link to the upper device
7505  * @dev: device
7506  * @upper_dev: new upper device
7507  * @extack: netlink extended ack
7508  *
7509  * Adds a link to device which is upper to this one. The caller must hold
7510  * the RTNL lock. On a failure a negative errno code is returned.
7511  * On success the reference counts are adjusted and the function
7512  * returns zero.
7513  */
7514 int netdev_upper_dev_link(struct net_device *dev,
7515 			  struct net_device *upper_dev,
7516 			  struct netlink_ext_ack *extack)
7517 {
7518 	struct netdev_nested_priv priv = {
7519 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7520 		.data = NULL,
7521 	};
7522 
7523 	return __netdev_upper_dev_link(dev, upper_dev, false,
7524 				       NULL, NULL, &priv, extack);
7525 }
7526 EXPORT_SYMBOL(netdev_upper_dev_link);
7527 
7528 /**
7529  * netdev_master_upper_dev_link - Add a master link to the upper device
7530  * @dev: device
7531  * @upper_dev: new upper device
7532  * @upper_priv: upper device private
7533  * @upper_info: upper info to be passed down via notifier
7534  * @extack: netlink extended ack
7535  *
7536  * Adds a link to device which is upper to this one. In this case, only
7537  * one master upper device can be linked, although other non-master devices
7538  * might be linked as well. The caller must hold the RTNL lock.
7539  * On a failure a negative errno code is returned. On success the reference
7540  * counts are adjusted and the function returns zero.
7541  */
7542 int netdev_master_upper_dev_link(struct net_device *dev,
7543 				 struct net_device *upper_dev,
7544 				 void *upper_priv, void *upper_info,
7545 				 struct netlink_ext_ack *extack)
7546 {
7547 	struct netdev_nested_priv priv = {
7548 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7549 		.data = NULL,
7550 	};
7551 
7552 	return __netdev_upper_dev_link(dev, upper_dev, true,
7553 				       upper_priv, upper_info, &priv, extack);
7554 }
7555 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7556 
7557 static void __netdev_upper_dev_unlink(struct net_device *dev,
7558 				      struct net_device *upper_dev,
7559 				      struct netdev_nested_priv *priv)
7560 {
7561 	struct netdev_notifier_changeupper_info changeupper_info = {
7562 		.info = {
7563 			.dev = dev,
7564 		},
7565 		.upper_dev = upper_dev,
7566 		.linking = false,
7567 	};
7568 
7569 	ASSERT_RTNL();
7570 
7571 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7572 
7573 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7574 				      &changeupper_info.info);
7575 
7576 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7577 
7578 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7579 				      &changeupper_info.info);
7580 
7581 	__netdev_update_upper_level(dev, NULL);
7582 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7583 
7584 	__netdev_update_lower_level(upper_dev, priv);
7585 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7586 				    priv);
7587 }
7588 
7589 /**
7590  * netdev_upper_dev_unlink - Removes a link to upper device
7591  * @dev: device
7592  * @upper_dev: new upper device
7593  *
7594  * Removes a link to device which is upper to this one. The caller must hold
7595  * the RTNL lock.
7596  */
7597 void netdev_upper_dev_unlink(struct net_device *dev,
7598 			     struct net_device *upper_dev)
7599 {
7600 	struct netdev_nested_priv priv = {
7601 		.flags = NESTED_SYNC_TODO,
7602 		.data = NULL,
7603 	};
7604 
7605 	__netdev_upper_dev_unlink(dev, upper_dev, &priv);
7606 }
7607 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7608 
7609 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7610 				      struct net_device *lower_dev,
7611 				      bool val)
7612 {
7613 	struct netdev_adjacent *adj;
7614 
7615 	adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7616 	if (adj)
7617 		adj->ignore = val;
7618 
7619 	adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7620 	if (adj)
7621 		adj->ignore = val;
7622 }
7623 
7624 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
7625 					struct net_device *lower_dev)
7626 {
7627 	__netdev_adjacent_dev_set(upper_dev, lower_dev, true);
7628 }
7629 
7630 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
7631 				       struct net_device *lower_dev)
7632 {
7633 	__netdev_adjacent_dev_set(upper_dev, lower_dev, false);
7634 }
7635 
7636 int netdev_adjacent_change_prepare(struct net_device *old_dev,
7637 				   struct net_device *new_dev,
7638 				   struct net_device *dev,
7639 				   struct netlink_ext_ack *extack)
7640 {
7641 	struct netdev_nested_priv priv = {
7642 		.flags = 0,
7643 		.data = NULL,
7644 	};
7645 	int err;
7646 
7647 	if (!new_dev)
7648 		return 0;
7649 
7650 	if (old_dev && new_dev != old_dev)
7651 		netdev_adjacent_dev_disable(dev, old_dev);
7652 	err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
7653 				      extack);
7654 	if (err) {
7655 		if (old_dev && new_dev != old_dev)
7656 			netdev_adjacent_dev_enable(dev, old_dev);
7657 		return err;
7658 	}
7659 
7660 	return 0;
7661 }
7662 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
7663 
7664 void netdev_adjacent_change_commit(struct net_device *old_dev,
7665 				   struct net_device *new_dev,
7666 				   struct net_device *dev)
7667 {
7668 	struct netdev_nested_priv priv = {
7669 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7670 		.data = NULL,
7671 	};
7672 
7673 	if (!new_dev || !old_dev)
7674 		return;
7675 
7676 	if (new_dev == old_dev)
7677 		return;
7678 
7679 	netdev_adjacent_dev_enable(dev, old_dev);
7680 	__netdev_upper_dev_unlink(old_dev, dev, &priv);
7681 }
7682 EXPORT_SYMBOL(netdev_adjacent_change_commit);
7683 
7684 void netdev_adjacent_change_abort(struct net_device *old_dev,
7685 				  struct net_device *new_dev,
7686 				  struct net_device *dev)
7687 {
7688 	struct netdev_nested_priv priv = {
7689 		.flags = 0,
7690 		.data = NULL,
7691 	};
7692 
7693 	if (!new_dev)
7694 		return;
7695 
7696 	if (old_dev && new_dev != old_dev)
7697 		netdev_adjacent_dev_enable(dev, old_dev);
7698 
7699 	__netdev_upper_dev_unlink(new_dev, dev, &priv);
7700 }
7701 EXPORT_SYMBOL(netdev_adjacent_change_abort);
7702 
7703 /**
7704  * netdev_bonding_info_change - Dispatch event about slave change
7705  * @dev: device
7706  * @bonding_info: info to dispatch
7707  *
7708  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7709  * The caller must hold the RTNL lock.
7710  */
7711 void netdev_bonding_info_change(struct net_device *dev,
7712 				struct netdev_bonding_info *bonding_info)
7713 {
7714 	struct netdev_notifier_bonding_info info = {
7715 		.info.dev = dev,
7716 	};
7717 
7718 	memcpy(&info.bonding_info, bonding_info,
7719 	       sizeof(struct netdev_bonding_info));
7720 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7721 				      &info.info);
7722 }
7723 EXPORT_SYMBOL(netdev_bonding_info_change);
7724 
7725 /**
7726  * netdev_get_xmit_slave - Get the xmit slave of master device
7727  * @dev: device
7728  * @skb: The packet
7729  * @all_slaves: assume all the slaves are active
7730  *
7731  * The reference counters are not incremented so the caller must be
7732  * careful with locks. The caller must hold RCU lock.
7733  * %NULL is returned if no slave is found.
7734  */
7735 
7736 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
7737 					 struct sk_buff *skb,
7738 					 bool all_slaves)
7739 {
7740 	const struct net_device_ops *ops = dev->netdev_ops;
7741 
7742 	if (!ops->ndo_get_xmit_slave)
7743 		return NULL;
7744 	return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
7745 }
7746 EXPORT_SYMBOL(netdev_get_xmit_slave);
7747 
7748 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
7749 						  struct sock *sk)
7750 {
7751 	const struct net_device_ops *ops = dev->netdev_ops;
7752 
7753 	if (!ops->ndo_sk_get_lower_dev)
7754 		return NULL;
7755 	return ops->ndo_sk_get_lower_dev(dev, sk);
7756 }
7757 
7758 /**
7759  * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
7760  * @dev: device
7761  * @sk: the socket
7762  *
7763  * %NULL is returned if no lower device is found.
7764  */
7765 
7766 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
7767 					    struct sock *sk)
7768 {
7769 	struct net_device *lower;
7770 
7771 	lower = netdev_sk_get_lower_dev(dev, sk);
7772 	while (lower) {
7773 		dev = lower;
7774 		lower = netdev_sk_get_lower_dev(dev, sk);
7775 	}
7776 
7777 	return dev;
7778 }
7779 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
7780 
7781 static void netdev_adjacent_add_links(struct net_device *dev)
7782 {
7783 	struct netdev_adjacent *iter;
7784 
7785 	struct net *net = dev_net(dev);
7786 
7787 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
7788 		if (!net_eq(net, dev_net(iter->dev)))
7789 			continue;
7790 		netdev_adjacent_sysfs_add(iter->dev, dev,
7791 					  &iter->dev->adj_list.lower);
7792 		netdev_adjacent_sysfs_add(dev, iter->dev,
7793 					  &dev->adj_list.upper);
7794 	}
7795 
7796 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
7797 		if (!net_eq(net, dev_net(iter->dev)))
7798 			continue;
7799 		netdev_adjacent_sysfs_add(iter->dev, dev,
7800 					  &iter->dev->adj_list.upper);
7801 		netdev_adjacent_sysfs_add(dev, iter->dev,
7802 					  &dev->adj_list.lower);
7803 	}
7804 }
7805 
7806 static void netdev_adjacent_del_links(struct net_device *dev)
7807 {
7808 	struct netdev_adjacent *iter;
7809 
7810 	struct net *net = dev_net(dev);
7811 
7812 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
7813 		if (!net_eq(net, dev_net(iter->dev)))
7814 			continue;
7815 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
7816 					  &iter->dev->adj_list.lower);
7817 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
7818 					  &dev->adj_list.upper);
7819 	}
7820 
7821 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
7822 		if (!net_eq(net, dev_net(iter->dev)))
7823 			continue;
7824 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
7825 					  &iter->dev->adj_list.upper);
7826 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
7827 					  &dev->adj_list.lower);
7828 	}
7829 }
7830 
7831 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
7832 {
7833 	struct netdev_adjacent *iter;
7834 
7835 	struct net *net = dev_net(dev);
7836 
7837 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
7838 		if (!net_eq(net, dev_net(iter->dev)))
7839 			continue;
7840 		netdev_adjacent_sysfs_del(iter->dev, oldname,
7841 					  &iter->dev->adj_list.lower);
7842 		netdev_adjacent_sysfs_add(iter->dev, dev,
7843 					  &iter->dev->adj_list.lower);
7844 	}
7845 
7846 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
7847 		if (!net_eq(net, dev_net(iter->dev)))
7848 			continue;
7849 		netdev_adjacent_sysfs_del(iter->dev, oldname,
7850 					  &iter->dev->adj_list.upper);
7851 		netdev_adjacent_sysfs_add(iter->dev, dev,
7852 					  &iter->dev->adj_list.upper);
7853 	}
7854 }
7855 
7856 void *netdev_lower_dev_get_private(struct net_device *dev,
7857 				   struct net_device *lower_dev)
7858 {
7859 	struct netdev_adjacent *lower;
7860 
7861 	if (!lower_dev)
7862 		return NULL;
7863 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
7864 	if (!lower)
7865 		return NULL;
7866 
7867 	return lower->private;
7868 }
7869 EXPORT_SYMBOL(netdev_lower_dev_get_private);
7870 
7871 
7872 /**
7873  * netdev_lower_state_changed - Dispatch event about lower device state change
7874  * @lower_dev: device
7875  * @lower_state_info: state to dispatch
7876  *
7877  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
7878  * The caller must hold the RTNL lock.
7879  */
7880 void netdev_lower_state_changed(struct net_device *lower_dev,
7881 				void *lower_state_info)
7882 {
7883 	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
7884 		.info.dev = lower_dev,
7885 	};
7886 
7887 	ASSERT_RTNL();
7888 	changelowerstate_info.lower_state_info = lower_state_info;
7889 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
7890 				      &changelowerstate_info.info);
7891 }
7892 EXPORT_SYMBOL(netdev_lower_state_changed);
7893 
7894 static void dev_change_rx_flags(struct net_device *dev, int flags)
7895 {
7896 	const struct net_device_ops *ops = dev->netdev_ops;
7897 
7898 	if (ops->ndo_change_rx_flags)
7899 		ops->ndo_change_rx_flags(dev, flags);
7900 }
7901 
7902 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
7903 {
7904 	unsigned int old_flags = dev->flags;
7905 	kuid_t uid;
7906 	kgid_t gid;
7907 
7908 	ASSERT_RTNL();
7909 
7910 	dev->flags |= IFF_PROMISC;
7911 	dev->promiscuity += inc;
7912 	if (dev->promiscuity == 0) {
7913 		/*
7914 		 * Avoid overflow.
7915 		 * If inc causes overflow, untouch promisc and return error.
7916 		 */
7917 		if (inc < 0)
7918 			dev->flags &= ~IFF_PROMISC;
7919 		else {
7920 			dev->promiscuity -= inc;
7921 			netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
7922 			return -EOVERFLOW;
7923 		}
7924 	}
7925 	if (dev->flags != old_flags) {
7926 		pr_info("device %s %s promiscuous mode\n",
7927 			dev->name,
7928 			dev->flags & IFF_PROMISC ? "entered" : "left");
7929 		if (audit_enabled) {
7930 			current_uid_gid(&uid, &gid);
7931 			audit_log(audit_context(), GFP_ATOMIC,
7932 				  AUDIT_ANOM_PROMISCUOUS,
7933 				  "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
7934 				  dev->name, (dev->flags & IFF_PROMISC),
7935 				  (old_flags & IFF_PROMISC),
7936 				  from_kuid(&init_user_ns, audit_get_loginuid(current)),
7937 				  from_kuid(&init_user_ns, uid),
7938 				  from_kgid(&init_user_ns, gid),
7939 				  audit_get_sessionid(current));
7940 		}
7941 
7942 		dev_change_rx_flags(dev, IFF_PROMISC);
7943 	}
7944 	if (notify)
7945 		__dev_notify_flags(dev, old_flags, IFF_PROMISC);
7946 	return 0;
7947 }
7948 
7949 /**
7950  *	dev_set_promiscuity	- update promiscuity count on a device
7951  *	@dev: device
7952  *	@inc: modifier
7953  *
7954  *	Add or remove promiscuity from a device. While the count in the device
7955  *	remains above zero the interface remains promiscuous. Once it hits zero
7956  *	the device reverts back to normal filtering operation. A negative inc
7957  *	value is used to drop promiscuity on the device.
7958  *	Return 0 if successful or a negative errno code on error.
7959  */
7960 int dev_set_promiscuity(struct net_device *dev, int inc)
7961 {
7962 	unsigned int old_flags = dev->flags;
7963 	int err;
7964 
7965 	err = __dev_set_promiscuity(dev, inc, true);
7966 	if (err < 0)
7967 		return err;
7968 	if (dev->flags != old_flags)
7969 		dev_set_rx_mode(dev);
7970 	return err;
7971 }
7972 EXPORT_SYMBOL(dev_set_promiscuity);
7973 
7974 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
7975 {
7976 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
7977 
7978 	ASSERT_RTNL();
7979 
7980 	dev->flags |= IFF_ALLMULTI;
7981 	dev->allmulti += inc;
7982 	if (dev->allmulti == 0) {
7983 		/*
7984 		 * Avoid overflow.
7985 		 * If inc causes overflow, untouch allmulti and return error.
7986 		 */
7987 		if (inc < 0)
7988 			dev->flags &= ~IFF_ALLMULTI;
7989 		else {
7990 			dev->allmulti -= inc;
7991 			netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
7992 			return -EOVERFLOW;
7993 		}
7994 	}
7995 	if (dev->flags ^ old_flags) {
7996 		dev_change_rx_flags(dev, IFF_ALLMULTI);
7997 		dev_set_rx_mode(dev);
7998 		if (notify)
7999 			__dev_notify_flags(dev, old_flags,
8000 					   dev->gflags ^ old_gflags);
8001 	}
8002 	return 0;
8003 }
8004 
8005 /**
8006  *	dev_set_allmulti	- update allmulti count on a device
8007  *	@dev: device
8008  *	@inc: modifier
8009  *
8010  *	Add or remove reception of all multicast frames to a device. While the
8011  *	count in the device remains above zero the interface remains listening
8012  *	to all interfaces. Once it hits zero the device reverts back to normal
8013  *	filtering operation. A negative @inc value is used to drop the counter
8014  *	when releasing a resource needing all multicasts.
8015  *	Return 0 if successful or a negative errno code on error.
8016  */
8017 
8018 int dev_set_allmulti(struct net_device *dev, int inc)
8019 {
8020 	return __dev_set_allmulti(dev, inc, true);
8021 }
8022 EXPORT_SYMBOL(dev_set_allmulti);
8023 
8024 /*
8025  *	Upload unicast and multicast address lists to device and
8026  *	configure RX filtering. When the device doesn't support unicast
8027  *	filtering it is put in promiscuous mode while unicast addresses
8028  *	are present.
8029  */
8030 void __dev_set_rx_mode(struct net_device *dev)
8031 {
8032 	const struct net_device_ops *ops = dev->netdev_ops;
8033 
8034 	/* dev_open will call this function so the list will stay sane. */
8035 	if (!(dev->flags&IFF_UP))
8036 		return;
8037 
8038 	if (!netif_device_present(dev))
8039 		return;
8040 
8041 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8042 		/* Unicast addresses changes may only happen under the rtnl,
8043 		 * therefore calling __dev_set_promiscuity here is safe.
8044 		 */
8045 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8046 			__dev_set_promiscuity(dev, 1, false);
8047 			dev->uc_promisc = true;
8048 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8049 			__dev_set_promiscuity(dev, -1, false);
8050 			dev->uc_promisc = false;
8051 		}
8052 	}
8053 
8054 	if (ops->ndo_set_rx_mode)
8055 		ops->ndo_set_rx_mode(dev);
8056 }
8057 
8058 void dev_set_rx_mode(struct net_device *dev)
8059 {
8060 	netif_addr_lock_bh(dev);
8061 	__dev_set_rx_mode(dev);
8062 	netif_addr_unlock_bh(dev);
8063 }
8064 
8065 /**
8066  *	dev_get_flags - get flags reported to userspace
8067  *	@dev: device
8068  *
8069  *	Get the combination of flag bits exported through APIs to userspace.
8070  */
8071 unsigned int dev_get_flags(const struct net_device *dev)
8072 {
8073 	unsigned int flags;
8074 
8075 	flags = (dev->flags & ~(IFF_PROMISC |
8076 				IFF_ALLMULTI |
8077 				IFF_RUNNING |
8078 				IFF_LOWER_UP |
8079 				IFF_DORMANT)) |
8080 		(dev->gflags & (IFF_PROMISC |
8081 				IFF_ALLMULTI));
8082 
8083 	if (netif_running(dev)) {
8084 		if (netif_oper_up(dev))
8085 			flags |= IFF_RUNNING;
8086 		if (netif_carrier_ok(dev))
8087 			flags |= IFF_LOWER_UP;
8088 		if (netif_dormant(dev))
8089 			flags |= IFF_DORMANT;
8090 	}
8091 
8092 	return flags;
8093 }
8094 EXPORT_SYMBOL(dev_get_flags);
8095 
8096 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8097 		       struct netlink_ext_ack *extack)
8098 {
8099 	unsigned int old_flags = dev->flags;
8100 	int ret;
8101 
8102 	ASSERT_RTNL();
8103 
8104 	/*
8105 	 *	Set the flags on our device.
8106 	 */
8107 
8108 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8109 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8110 			       IFF_AUTOMEDIA)) |
8111 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8112 				    IFF_ALLMULTI));
8113 
8114 	/*
8115 	 *	Load in the correct multicast list now the flags have changed.
8116 	 */
8117 
8118 	if ((old_flags ^ flags) & IFF_MULTICAST)
8119 		dev_change_rx_flags(dev, IFF_MULTICAST);
8120 
8121 	dev_set_rx_mode(dev);
8122 
8123 	/*
8124 	 *	Have we downed the interface. We handle IFF_UP ourselves
8125 	 *	according to user attempts to set it, rather than blindly
8126 	 *	setting it.
8127 	 */
8128 
8129 	ret = 0;
8130 	if ((old_flags ^ flags) & IFF_UP) {
8131 		if (old_flags & IFF_UP)
8132 			__dev_close(dev);
8133 		else
8134 			ret = __dev_open(dev, extack);
8135 	}
8136 
8137 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
8138 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
8139 		unsigned int old_flags = dev->flags;
8140 
8141 		dev->gflags ^= IFF_PROMISC;
8142 
8143 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
8144 			if (dev->flags != old_flags)
8145 				dev_set_rx_mode(dev);
8146 	}
8147 
8148 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8149 	 * is important. Some (broken) drivers set IFF_PROMISC, when
8150 	 * IFF_ALLMULTI is requested not asking us and not reporting.
8151 	 */
8152 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8153 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8154 
8155 		dev->gflags ^= IFF_ALLMULTI;
8156 		__dev_set_allmulti(dev, inc, false);
8157 	}
8158 
8159 	return ret;
8160 }
8161 
8162 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8163 			unsigned int gchanges)
8164 {
8165 	unsigned int changes = dev->flags ^ old_flags;
8166 
8167 	if (gchanges)
8168 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
8169 
8170 	if (changes & IFF_UP) {
8171 		if (dev->flags & IFF_UP)
8172 			call_netdevice_notifiers(NETDEV_UP, dev);
8173 		else
8174 			call_netdevice_notifiers(NETDEV_DOWN, dev);
8175 	}
8176 
8177 	if (dev->flags & IFF_UP &&
8178 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8179 		struct netdev_notifier_change_info change_info = {
8180 			.info = {
8181 				.dev = dev,
8182 			},
8183 			.flags_changed = changes,
8184 		};
8185 
8186 		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8187 	}
8188 }
8189 
8190 /**
8191  *	dev_change_flags - change device settings
8192  *	@dev: device
8193  *	@flags: device state flags
8194  *	@extack: netlink extended ack
8195  *
8196  *	Change settings on device based state flags. The flags are
8197  *	in the userspace exported format.
8198  */
8199 int dev_change_flags(struct net_device *dev, unsigned int flags,
8200 		     struct netlink_ext_ack *extack)
8201 {
8202 	int ret;
8203 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8204 
8205 	ret = __dev_change_flags(dev, flags, extack);
8206 	if (ret < 0)
8207 		return ret;
8208 
8209 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8210 	__dev_notify_flags(dev, old_flags, changes);
8211 	return ret;
8212 }
8213 EXPORT_SYMBOL(dev_change_flags);
8214 
8215 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8216 {
8217 	const struct net_device_ops *ops = dev->netdev_ops;
8218 
8219 	if (ops->ndo_change_mtu)
8220 		return ops->ndo_change_mtu(dev, new_mtu);
8221 
8222 	/* Pairs with all the lockless reads of dev->mtu in the stack */
8223 	WRITE_ONCE(dev->mtu, new_mtu);
8224 	return 0;
8225 }
8226 EXPORT_SYMBOL(__dev_set_mtu);
8227 
8228 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8229 		     struct netlink_ext_ack *extack)
8230 {
8231 	/* MTU must be positive, and in range */
8232 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8233 		NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8234 		return -EINVAL;
8235 	}
8236 
8237 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8238 		NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8239 		return -EINVAL;
8240 	}
8241 	return 0;
8242 }
8243 
8244 /**
8245  *	dev_set_mtu_ext - Change maximum transfer unit
8246  *	@dev: device
8247  *	@new_mtu: new transfer unit
8248  *	@extack: netlink extended ack
8249  *
8250  *	Change the maximum transfer size of the network device.
8251  */
8252 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8253 		    struct netlink_ext_ack *extack)
8254 {
8255 	int err, orig_mtu;
8256 
8257 	if (new_mtu == dev->mtu)
8258 		return 0;
8259 
8260 	err = dev_validate_mtu(dev, new_mtu, extack);
8261 	if (err)
8262 		return err;
8263 
8264 	if (!netif_device_present(dev))
8265 		return -ENODEV;
8266 
8267 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8268 	err = notifier_to_errno(err);
8269 	if (err)
8270 		return err;
8271 
8272 	orig_mtu = dev->mtu;
8273 	err = __dev_set_mtu(dev, new_mtu);
8274 
8275 	if (!err) {
8276 		err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8277 						   orig_mtu);
8278 		err = notifier_to_errno(err);
8279 		if (err) {
8280 			/* setting mtu back and notifying everyone again,
8281 			 * so that they have a chance to revert changes.
8282 			 */
8283 			__dev_set_mtu(dev, orig_mtu);
8284 			call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8285 						     new_mtu);
8286 		}
8287 	}
8288 	return err;
8289 }
8290 
8291 int dev_set_mtu(struct net_device *dev, int new_mtu)
8292 {
8293 	struct netlink_ext_ack extack;
8294 	int err;
8295 
8296 	memset(&extack, 0, sizeof(extack));
8297 	err = dev_set_mtu_ext(dev, new_mtu, &extack);
8298 	if (err && extack._msg)
8299 		net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8300 	return err;
8301 }
8302 EXPORT_SYMBOL(dev_set_mtu);
8303 
8304 /**
8305  *	dev_change_tx_queue_len - Change TX queue length of a netdevice
8306  *	@dev: device
8307  *	@new_len: new tx queue length
8308  */
8309 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8310 {
8311 	unsigned int orig_len = dev->tx_queue_len;
8312 	int res;
8313 
8314 	if (new_len != (unsigned int)new_len)
8315 		return -ERANGE;
8316 
8317 	if (new_len != orig_len) {
8318 		dev->tx_queue_len = new_len;
8319 		res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8320 		res = notifier_to_errno(res);
8321 		if (res)
8322 			goto err_rollback;
8323 		res = dev_qdisc_change_tx_queue_len(dev);
8324 		if (res)
8325 			goto err_rollback;
8326 	}
8327 
8328 	return 0;
8329 
8330 err_rollback:
8331 	netdev_err(dev, "refused to change device tx_queue_len\n");
8332 	dev->tx_queue_len = orig_len;
8333 	return res;
8334 }
8335 
8336 /**
8337  *	dev_set_group - Change group this device belongs to
8338  *	@dev: device
8339  *	@new_group: group this device should belong to
8340  */
8341 void dev_set_group(struct net_device *dev, int new_group)
8342 {
8343 	dev->group = new_group;
8344 }
8345 EXPORT_SYMBOL(dev_set_group);
8346 
8347 /**
8348  *	dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8349  *	@dev: device
8350  *	@addr: new address
8351  *	@extack: netlink extended ack
8352  */
8353 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8354 			      struct netlink_ext_ack *extack)
8355 {
8356 	struct netdev_notifier_pre_changeaddr_info info = {
8357 		.info.dev = dev,
8358 		.info.extack = extack,
8359 		.dev_addr = addr,
8360 	};
8361 	int rc;
8362 
8363 	rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8364 	return notifier_to_errno(rc);
8365 }
8366 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8367 
8368 /**
8369  *	dev_set_mac_address - Change Media Access Control Address
8370  *	@dev: device
8371  *	@sa: new address
8372  *	@extack: netlink extended ack
8373  *
8374  *	Change the hardware (MAC) address of the device
8375  */
8376 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8377 			struct netlink_ext_ack *extack)
8378 {
8379 	const struct net_device_ops *ops = dev->netdev_ops;
8380 	int err;
8381 
8382 	if (!ops->ndo_set_mac_address)
8383 		return -EOPNOTSUPP;
8384 	if (sa->sa_family != dev->type)
8385 		return -EINVAL;
8386 	if (!netif_device_present(dev))
8387 		return -ENODEV;
8388 	err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8389 	if (err)
8390 		return err;
8391 	err = ops->ndo_set_mac_address(dev, sa);
8392 	if (err)
8393 		return err;
8394 	dev->addr_assign_type = NET_ADDR_SET;
8395 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8396 	add_device_randomness(dev->dev_addr, dev->addr_len);
8397 	return 0;
8398 }
8399 EXPORT_SYMBOL(dev_set_mac_address);
8400 
8401 static DECLARE_RWSEM(dev_addr_sem);
8402 
8403 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
8404 			     struct netlink_ext_ack *extack)
8405 {
8406 	int ret;
8407 
8408 	down_write(&dev_addr_sem);
8409 	ret = dev_set_mac_address(dev, sa, extack);
8410 	up_write(&dev_addr_sem);
8411 	return ret;
8412 }
8413 EXPORT_SYMBOL(dev_set_mac_address_user);
8414 
8415 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
8416 {
8417 	size_t size = sizeof(sa->sa_data);
8418 	struct net_device *dev;
8419 	int ret = 0;
8420 
8421 	down_read(&dev_addr_sem);
8422 	rcu_read_lock();
8423 
8424 	dev = dev_get_by_name_rcu(net, dev_name);
8425 	if (!dev) {
8426 		ret = -ENODEV;
8427 		goto unlock;
8428 	}
8429 	if (!dev->addr_len)
8430 		memset(sa->sa_data, 0, size);
8431 	else
8432 		memcpy(sa->sa_data, dev->dev_addr,
8433 		       min_t(size_t, size, dev->addr_len));
8434 	sa->sa_family = dev->type;
8435 
8436 unlock:
8437 	rcu_read_unlock();
8438 	up_read(&dev_addr_sem);
8439 	return ret;
8440 }
8441 EXPORT_SYMBOL(dev_get_mac_address);
8442 
8443 /**
8444  *	dev_change_carrier - Change device carrier
8445  *	@dev: device
8446  *	@new_carrier: new value
8447  *
8448  *	Change device carrier
8449  */
8450 int dev_change_carrier(struct net_device *dev, bool new_carrier)
8451 {
8452 	const struct net_device_ops *ops = dev->netdev_ops;
8453 
8454 	if (!ops->ndo_change_carrier)
8455 		return -EOPNOTSUPP;
8456 	if (!netif_device_present(dev))
8457 		return -ENODEV;
8458 	return ops->ndo_change_carrier(dev, new_carrier);
8459 }
8460 EXPORT_SYMBOL(dev_change_carrier);
8461 
8462 /**
8463  *	dev_get_phys_port_id - Get device physical port ID
8464  *	@dev: device
8465  *	@ppid: port ID
8466  *
8467  *	Get device physical port ID
8468  */
8469 int dev_get_phys_port_id(struct net_device *dev,
8470 			 struct netdev_phys_item_id *ppid)
8471 {
8472 	const struct net_device_ops *ops = dev->netdev_ops;
8473 
8474 	if (!ops->ndo_get_phys_port_id)
8475 		return -EOPNOTSUPP;
8476 	return ops->ndo_get_phys_port_id(dev, ppid);
8477 }
8478 EXPORT_SYMBOL(dev_get_phys_port_id);
8479 
8480 /**
8481  *	dev_get_phys_port_name - Get device physical port name
8482  *	@dev: device
8483  *	@name: port name
8484  *	@len: limit of bytes to copy to name
8485  *
8486  *	Get device physical port name
8487  */
8488 int dev_get_phys_port_name(struct net_device *dev,
8489 			   char *name, size_t len)
8490 {
8491 	const struct net_device_ops *ops = dev->netdev_ops;
8492 	int err;
8493 
8494 	if (ops->ndo_get_phys_port_name) {
8495 		err = ops->ndo_get_phys_port_name(dev, name, len);
8496 		if (err != -EOPNOTSUPP)
8497 			return err;
8498 	}
8499 	return devlink_compat_phys_port_name_get(dev, name, len);
8500 }
8501 EXPORT_SYMBOL(dev_get_phys_port_name);
8502 
8503 /**
8504  *	dev_get_port_parent_id - Get the device's port parent identifier
8505  *	@dev: network device
8506  *	@ppid: pointer to a storage for the port's parent identifier
8507  *	@recurse: allow/disallow recursion to lower devices
8508  *
8509  *	Get the devices's port parent identifier
8510  */
8511 int dev_get_port_parent_id(struct net_device *dev,
8512 			   struct netdev_phys_item_id *ppid,
8513 			   bool recurse)
8514 {
8515 	const struct net_device_ops *ops = dev->netdev_ops;
8516 	struct netdev_phys_item_id first = { };
8517 	struct net_device *lower_dev;
8518 	struct list_head *iter;
8519 	int err;
8520 
8521 	if (ops->ndo_get_port_parent_id) {
8522 		err = ops->ndo_get_port_parent_id(dev, ppid);
8523 		if (err != -EOPNOTSUPP)
8524 			return err;
8525 	}
8526 
8527 	err = devlink_compat_switch_id_get(dev, ppid);
8528 	if (!recurse || err != -EOPNOTSUPP)
8529 		return err;
8530 
8531 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
8532 		err = dev_get_port_parent_id(lower_dev, ppid, true);
8533 		if (err)
8534 			break;
8535 		if (!first.id_len)
8536 			first = *ppid;
8537 		else if (memcmp(&first, ppid, sizeof(*ppid)))
8538 			return -EOPNOTSUPP;
8539 	}
8540 
8541 	return err;
8542 }
8543 EXPORT_SYMBOL(dev_get_port_parent_id);
8544 
8545 /**
8546  *	netdev_port_same_parent_id - Indicate if two network devices have
8547  *	the same port parent identifier
8548  *	@a: first network device
8549  *	@b: second network device
8550  */
8551 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
8552 {
8553 	struct netdev_phys_item_id a_id = { };
8554 	struct netdev_phys_item_id b_id = { };
8555 
8556 	if (dev_get_port_parent_id(a, &a_id, true) ||
8557 	    dev_get_port_parent_id(b, &b_id, true))
8558 		return false;
8559 
8560 	return netdev_phys_item_id_same(&a_id, &b_id);
8561 }
8562 EXPORT_SYMBOL(netdev_port_same_parent_id);
8563 
8564 /**
8565  *	dev_change_proto_down - set carrier according to proto_down.
8566  *
8567  *	@dev: device
8568  *	@proto_down: new value
8569  */
8570 int dev_change_proto_down(struct net_device *dev, bool proto_down)
8571 {
8572 	if (!(dev->priv_flags & IFF_CHANGE_PROTO_DOWN))
8573 		return -EOPNOTSUPP;
8574 	if (!netif_device_present(dev))
8575 		return -ENODEV;
8576 	if (proto_down)
8577 		netif_carrier_off(dev);
8578 	else
8579 		netif_carrier_on(dev);
8580 	dev->proto_down = proto_down;
8581 	return 0;
8582 }
8583 EXPORT_SYMBOL(dev_change_proto_down);
8584 
8585 /**
8586  *	dev_change_proto_down_reason - proto down reason
8587  *
8588  *	@dev: device
8589  *	@mask: proto down mask
8590  *	@value: proto down value
8591  */
8592 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
8593 				  u32 value)
8594 {
8595 	int b;
8596 
8597 	if (!mask) {
8598 		dev->proto_down_reason = value;
8599 	} else {
8600 		for_each_set_bit(b, &mask, 32) {
8601 			if (value & (1 << b))
8602 				dev->proto_down_reason |= BIT(b);
8603 			else
8604 				dev->proto_down_reason &= ~BIT(b);
8605 		}
8606 	}
8607 }
8608 EXPORT_SYMBOL(dev_change_proto_down_reason);
8609 
8610 struct bpf_xdp_link {
8611 	struct bpf_link link;
8612 	struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
8613 	int flags;
8614 };
8615 
8616 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
8617 {
8618 	if (flags & XDP_FLAGS_HW_MODE)
8619 		return XDP_MODE_HW;
8620 	if (flags & XDP_FLAGS_DRV_MODE)
8621 		return XDP_MODE_DRV;
8622 	if (flags & XDP_FLAGS_SKB_MODE)
8623 		return XDP_MODE_SKB;
8624 	return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
8625 }
8626 
8627 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
8628 {
8629 	switch (mode) {
8630 	case XDP_MODE_SKB:
8631 		return generic_xdp_install;
8632 	case XDP_MODE_DRV:
8633 	case XDP_MODE_HW:
8634 		return dev->netdev_ops->ndo_bpf;
8635 	default:
8636 		return NULL;
8637 	}
8638 }
8639 
8640 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
8641 					 enum bpf_xdp_mode mode)
8642 {
8643 	return dev->xdp_state[mode].link;
8644 }
8645 
8646 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
8647 				     enum bpf_xdp_mode mode)
8648 {
8649 	struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
8650 
8651 	if (link)
8652 		return link->link.prog;
8653 	return dev->xdp_state[mode].prog;
8654 }
8655 
8656 u8 dev_xdp_prog_count(struct net_device *dev)
8657 {
8658 	u8 count = 0;
8659 	int i;
8660 
8661 	for (i = 0; i < __MAX_XDP_MODE; i++)
8662 		if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
8663 			count++;
8664 	return count;
8665 }
8666 EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
8667 
8668 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
8669 {
8670 	struct bpf_prog *prog = dev_xdp_prog(dev, mode);
8671 
8672 	return prog ? prog->aux->id : 0;
8673 }
8674 
8675 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
8676 			     struct bpf_xdp_link *link)
8677 {
8678 	dev->xdp_state[mode].link = link;
8679 	dev->xdp_state[mode].prog = NULL;
8680 }
8681 
8682 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
8683 			     struct bpf_prog *prog)
8684 {
8685 	dev->xdp_state[mode].link = NULL;
8686 	dev->xdp_state[mode].prog = prog;
8687 }
8688 
8689 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
8690 			   bpf_op_t bpf_op, struct netlink_ext_ack *extack,
8691 			   u32 flags, struct bpf_prog *prog)
8692 {
8693 	struct netdev_bpf xdp;
8694 	int err;
8695 
8696 	memset(&xdp, 0, sizeof(xdp));
8697 	xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
8698 	xdp.extack = extack;
8699 	xdp.flags = flags;
8700 	xdp.prog = prog;
8701 
8702 	/* Drivers assume refcnt is already incremented (i.e, prog pointer is
8703 	 * "moved" into driver), so they don't increment it on their own, but
8704 	 * they do decrement refcnt when program is detached or replaced.
8705 	 * Given net_device also owns link/prog, we need to bump refcnt here
8706 	 * to prevent drivers from underflowing it.
8707 	 */
8708 	if (prog)
8709 		bpf_prog_inc(prog);
8710 	err = bpf_op(dev, &xdp);
8711 	if (err) {
8712 		if (prog)
8713 			bpf_prog_put(prog);
8714 		return err;
8715 	}
8716 
8717 	if (mode != XDP_MODE_HW)
8718 		bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
8719 
8720 	return 0;
8721 }
8722 
8723 static void dev_xdp_uninstall(struct net_device *dev)
8724 {
8725 	struct bpf_xdp_link *link;
8726 	struct bpf_prog *prog;
8727 	enum bpf_xdp_mode mode;
8728 	bpf_op_t bpf_op;
8729 
8730 	ASSERT_RTNL();
8731 
8732 	for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
8733 		prog = dev_xdp_prog(dev, mode);
8734 		if (!prog)
8735 			continue;
8736 
8737 		bpf_op = dev_xdp_bpf_op(dev, mode);
8738 		if (!bpf_op)
8739 			continue;
8740 
8741 		WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
8742 
8743 		/* auto-detach link from net device */
8744 		link = dev_xdp_link(dev, mode);
8745 		if (link)
8746 			link->dev = NULL;
8747 		else
8748 			bpf_prog_put(prog);
8749 
8750 		dev_xdp_set_link(dev, mode, NULL);
8751 	}
8752 }
8753 
8754 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
8755 			  struct bpf_xdp_link *link, struct bpf_prog *new_prog,
8756 			  struct bpf_prog *old_prog, u32 flags)
8757 {
8758 	unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
8759 	struct bpf_prog *cur_prog;
8760 	struct net_device *upper;
8761 	struct list_head *iter;
8762 	enum bpf_xdp_mode mode;
8763 	bpf_op_t bpf_op;
8764 	int err;
8765 
8766 	ASSERT_RTNL();
8767 
8768 	/* either link or prog attachment, never both */
8769 	if (link && (new_prog || old_prog))
8770 		return -EINVAL;
8771 	/* link supports only XDP mode flags */
8772 	if (link && (flags & ~XDP_FLAGS_MODES)) {
8773 		NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
8774 		return -EINVAL;
8775 	}
8776 	/* just one XDP mode bit should be set, zero defaults to drv/skb mode */
8777 	if (num_modes > 1) {
8778 		NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
8779 		return -EINVAL;
8780 	}
8781 	/* avoid ambiguity if offload + drv/skb mode progs are both loaded */
8782 	if (!num_modes && dev_xdp_prog_count(dev) > 1) {
8783 		NL_SET_ERR_MSG(extack,
8784 			       "More than one program loaded, unset mode is ambiguous");
8785 		return -EINVAL;
8786 	}
8787 	/* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
8788 	if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
8789 		NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
8790 		return -EINVAL;
8791 	}
8792 
8793 	mode = dev_xdp_mode(dev, flags);
8794 	/* can't replace attached link */
8795 	if (dev_xdp_link(dev, mode)) {
8796 		NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
8797 		return -EBUSY;
8798 	}
8799 
8800 	/* don't allow if an upper device already has a program */
8801 	netdev_for_each_upper_dev_rcu(dev, upper, iter) {
8802 		if (dev_xdp_prog_count(upper) > 0) {
8803 			NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
8804 			return -EEXIST;
8805 		}
8806 	}
8807 
8808 	cur_prog = dev_xdp_prog(dev, mode);
8809 	/* can't replace attached prog with link */
8810 	if (link && cur_prog) {
8811 		NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
8812 		return -EBUSY;
8813 	}
8814 	if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
8815 		NL_SET_ERR_MSG(extack, "Active program does not match expected");
8816 		return -EEXIST;
8817 	}
8818 
8819 	/* put effective new program into new_prog */
8820 	if (link)
8821 		new_prog = link->link.prog;
8822 
8823 	if (new_prog) {
8824 		bool offload = mode == XDP_MODE_HW;
8825 		enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
8826 					       ? XDP_MODE_DRV : XDP_MODE_SKB;
8827 
8828 		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
8829 			NL_SET_ERR_MSG(extack, "XDP program already attached");
8830 			return -EBUSY;
8831 		}
8832 		if (!offload && dev_xdp_prog(dev, other_mode)) {
8833 			NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
8834 			return -EEXIST;
8835 		}
8836 		if (!offload && bpf_prog_is_dev_bound(new_prog->aux)) {
8837 			NL_SET_ERR_MSG(extack, "Using device-bound program without HW_MODE flag is not supported");
8838 			return -EINVAL;
8839 		}
8840 		if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
8841 			NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
8842 			return -EINVAL;
8843 		}
8844 		if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
8845 			NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
8846 			return -EINVAL;
8847 		}
8848 	}
8849 
8850 	/* don't call drivers if the effective program didn't change */
8851 	if (new_prog != cur_prog) {
8852 		bpf_op = dev_xdp_bpf_op(dev, mode);
8853 		if (!bpf_op) {
8854 			NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
8855 			return -EOPNOTSUPP;
8856 		}
8857 
8858 		err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
8859 		if (err)
8860 			return err;
8861 	}
8862 
8863 	if (link)
8864 		dev_xdp_set_link(dev, mode, link);
8865 	else
8866 		dev_xdp_set_prog(dev, mode, new_prog);
8867 	if (cur_prog)
8868 		bpf_prog_put(cur_prog);
8869 
8870 	return 0;
8871 }
8872 
8873 static int dev_xdp_attach_link(struct net_device *dev,
8874 			       struct netlink_ext_ack *extack,
8875 			       struct bpf_xdp_link *link)
8876 {
8877 	return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
8878 }
8879 
8880 static int dev_xdp_detach_link(struct net_device *dev,
8881 			       struct netlink_ext_ack *extack,
8882 			       struct bpf_xdp_link *link)
8883 {
8884 	enum bpf_xdp_mode mode;
8885 	bpf_op_t bpf_op;
8886 
8887 	ASSERT_RTNL();
8888 
8889 	mode = dev_xdp_mode(dev, link->flags);
8890 	if (dev_xdp_link(dev, mode) != link)
8891 		return -EINVAL;
8892 
8893 	bpf_op = dev_xdp_bpf_op(dev, mode);
8894 	WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
8895 	dev_xdp_set_link(dev, mode, NULL);
8896 	return 0;
8897 }
8898 
8899 static void bpf_xdp_link_release(struct bpf_link *link)
8900 {
8901 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
8902 
8903 	rtnl_lock();
8904 
8905 	/* if racing with net_device's tear down, xdp_link->dev might be
8906 	 * already NULL, in which case link was already auto-detached
8907 	 */
8908 	if (xdp_link->dev) {
8909 		WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
8910 		xdp_link->dev = NULL;
8911 	}
8912 
8913 	rtnl_unlock();
8914 }
8915 
8916 static int bpf_xdp_link_detach(struct bpf_link *link)
8917 {
8918 	bpf_xdp_link_release(link);
8919 	return 0;
8920 }
8921 
8922 static void bpf_xdp_link_dealloc(struct bpf_link *link)
8923 {
8924 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
8925 
8926 	kfree(xdp_link);
8927 }
8928 
8929 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
8930 				     struct seq_file *seq)
8931 {
8932 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
8933 	u32 ifindex = 0;
8934 
8935 	rtnl_lock();
8936 	if (xdp_link->dev)
8937 		ifindex = xdp_link->dev->ifindex;
8938 	rtnl_unlock();
8939 
8940 	seq_printf(seq, "ifindex:\t%u\n", ifindex);
8941 }
8942 
8943 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
8944 				       struct bpf_link_info *info)
8945 {
8946 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
8947 	u32 ifindex = 0;
8948 
8949 	rtnl_lock();
8950 	if (xdp_link->dev)
8951 		ifindex = xdp_link->dev->ifindex;
8952 	rtnl_unlock();
8953 
8954 	info->xdp.ifindex = ifindex;
8955 	return 0;
8956 }
8957 
8958 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
8959 			       struct bpf_prog *old_prog)
8960 {
8961 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
8962 	enum bpf_xdp_mode mode;
8963 	bpf_op_t bpf_op;
8964 	int err = 0;
8965 
8966 	rtnl_lock();
8967 
8968 	/* link might have been auto-released already, so fail */
8969 	if (!xdp_link->dev) {
8970 		err = -ENOLINK;
8971 		goto out_unlock;
8972 	}
8973 
8974 	if (old_prog && link->prog != old_prog) {
8975 		err = -EPERM;
8976 		goto out_unlock;
8977 	}
8978 	old_prog = link->prog;
8979 	if (old_prog == new_prog) {
8980 		/* no-op, don't disturb drivers */
8981 		bpf_prog_put(new_prog);
8982 		goto out_unlock;
8983 	}
8984 
8985 	mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
8986 	bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
8987 	err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
8988 			      xdp_link->flags, new_prog);
8989 	if (err)
8990 		goto out_unlock;
8991 
8992 	old_prog = xchg(&link->prog, new_prog);
8993 	bpf_prog_put(old_prog);
8994 
8995 out_unlock:
8996 	rtnl_unlock();
8997 	return err;
8998 }
8999 
9000 static const struct bpf_link_ops bpf_xdp_link_lops = {
9001 	.release = bpf_xdp_link_release,
9002 	.dealloc = bpf_xdp_link_dealloc,
9003 	.detach = bpf_xdp_link_detach,
9004 	.show_fdinfo = bpf_xdp_link_show_fdinfo,
9005 	.fill_link_info = bpf_xdp_link_fill_link_info,
9006 	.update_prog = bpf_xdp_link_update,
9007 };
9008 
9009 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9010 {
9011 	struct net *net = current->nsproxy->net_ns;
9012 	struct bpf_link_primer link_primer;
9013 	struct bpf_xdp_link *link;
9014 	struct net_device *dev;
9015 	int err, fd;
9016 
9017 	rtnl_lock();
9018 	dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9019 	if (!dev) {
9020 		rtnl_unlock();
9021 		return -EINVAL;
9022 	}
9023 
9024 	link = kzalloc(sizeof(*link), GFP_USER);
9025 	if (!link) {
9026 		err = -ENOMEM;
9027 		goto unlock;
9028 	}
9029 
9030 	bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9031 	link->dev = dev;
9032 	link->flags = attr->link_create.flags;
9033 
9034 	err = bpf_link_prime(&link->link, &link_primer);
9035 	if (err) {
9036 		kfree(link);
9037 		goto unlock;
9038 	}
9039 
9040 	err = dev_xdp_attach_link(dev, NULL, link);
9041 	rtnl_unlock();
9042 
9043 	if (err) {
9044 		link->dev = NULL;
9045 		bpf_link_cleanup(&link_primer);
9046 		goto out_put_dev;
9047 	}
9048 
9049 	fd = bpf_link_settle(&link_primer);
9050 	/* link itself doesn't hold dev's refcnt to not complicate shutdown */
9051 	dev_put(dev);
9052 	return fd;
9053 
9054 unlock:
9055 	rtnl_unlock();
9056 
9057 out_put_dev:
9058 	dev_put(dev);
9059 	return err;
9060 }
9061 
9062 /**
9063  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
9064  *	@dev: device
9065  *	@extack: netlink extended ack
9066  *	@fd: new program fd or negative value to clear
9067  *	@expected_fd: old program fd that userspace expects to replace or clear
9068  *	@flags: xdp-related flags
9069  *
9070  *	Set or clear a bpf program for a device
9071  */
9072 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9073 		      int fd, int expected_fd, u32 flags)
9074 {
9075 	enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9076 	struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9077 	int err;
9078 
9079 	ASSERT_RTNL();
9080 
9081 	if (fd >= 0) {
9082 		new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9083 						 mode != XDP_MODE_SKB);
9084 		if (IS_ERR(new_prog))
9085 			return PTR_ERR(new_prog);
9086 	}
9087 
9088 	if (expected_fd >= 0) {
9089 		old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9090 						 mode != XDP_MODE_SKB);
9091 		if (IS_ERR(old_prog)) {
9092 			err = PTR_ERR(old_prog);
9093 			old_prog = NULL;
9094 			goto err_out;
9095 		}
9096 	}
9097 
9098 	err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9099 
9100 err_out:
9101 	if (err && new_prog)
9102 		bpf_prog_put(new_prog);
9103 	if (old_prog)
9104 		bpf_prog_put(old_prog);
9105 	return err;
9106 }
9107 
9108 /**
9109  *	dev_new_index	-	allocate an ifindex
9110  *	@net: the applicable net namespace
9111  *
9112  *	Returns a suitable unique value for a new device interface
9113  *	number.  The caller must hold the rtnl semaphore or the
9114  *	dev_base_lock to be sure it remains unique.
9115  */
9116 static int dev_new_index(struct net *net)
9117 {
9118 	int ifindex = net->ifindex;
9119 
9120 	for (;;) {
9121 		if (++ifindex <= 0)
9122 			ifindex = 1;
9123 		if (!__dev_get_by_index(net, ifindex))
9124 			return net->ifindex = ifindex;
9125 	}
9126 }
9127 
9128 /* Delayed registration/unregisteration */
9129 static LIST_HEAD(net_todo_list);
9130 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9131 
9132 static void net_set_todo(struct net_device *dev)
9133 {
9134 	list_add_tail(&dev->todo_list, &net_todo_list);
9135 	dev_net(dev)->dev_unreg_count++;
9136 }
9137 
9138 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9139 	struct net_device *upper, netdev_features_t features)
9140 {
9141 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9142 	netdev_features_t feature;
9143 	int feature_bit;
9144 
9145 	for_each_netdev_feature(upper_disables, feature_bit) {
9146 		feature = __NETIF_F_BIT(feature_bit);
9147 		if (!(upper->wanted_features & feature)
9148 		    && (features & feature)) {
9149 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9150 				   &feature, upper->name);
9151 			features &= ~feature;
9152 		}
9153 	}
9154 
9155 	return features;
9156 }
9157 
9158 static void netdev_sync_lower_features(struct net_device *upper,
9159 	struct net_device *lower, netdev_features_t features)
9160 {
9161 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9162 	netdev_features_t feature;
9163 	int feature_bit;
9164 
9165 	for_each_netdev_feature(upper_disables, feature_bit) {
9166 		feature = __NETIF_F_BIT(feature_bit);
9167 		if (!(features & feature) && (lower->features & feature)) {
9168 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9169 				   &feature, lower->name);
9170 			lower->wanted_features &= ~feature;
9171 			__netdev_update_features(lower);
9172 
9173 			if (unlikely(lower->features & feature))
9174 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9175 					    &feature, lower->name);
9176 			else
9177 				netdev_features_change(lower);
9178 		}
9179 	}
9180 }
9181 
9182 static netdev_features_t netdev_fix_features(struct net_device *dev,
9183 	netdev_features_t features)
9184 {
9185 	/* Fix illegal checksum combinations */
9186 	if ((features & NETIF_F_HW_CSUM) &&
9187 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9188 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9189 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9190 	}
9191 
9192 	/* TSO requires that SG is present as well. */
9193 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9194 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9195 		features &= ~NETIF_F_ALL_TSO;
9196 	}
9197 
9198 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9199 					!(features & NETIF_F_IP_CSUM)) {
9200 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9201 		features &= ~NETIF_F_TSO;
9202 		features &= ~NETIF_F_TSO_ECN;
9203 	}
9204 
9205 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9206 					 !(features & NETIF_F_IPV6_CSUM)) {
9207 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9208 		features &= ~NETIF_F_TSO6;
9209 	}
9210 
9211 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9212 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9213 		features &= ~NETIF_F_TSO_MANGLEID;
9214 
9215 	/* TSO ECN requires that TSO is present as well. */
9216 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9217 		features &= ~NETIF_F_TSO_ECN;
9218 
9219 	/* Software GSO depends on SG. */
9220 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9221 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9222 		features &= ~NETIF_F_GSO;
9223 	}
9224 
9225 	/* GSO partial features require GSO partial be set */
9226 	if ((features & dev->gso_partial_features) &&
9227 	    !(features & NETIF_F_GSO_PARTIAL)) {
9228 		netdev_dbg(dev,
9229 			   "Dropping partially supported GSO features since no GSO partial.\n");
9230 		features &= ~dev->gso_partial_features;
9231 	}
9232 
9233 	if (!(features & NETIF_F_RXCSUM)) {
9234 		/* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9235 		 * successfully merged by hardware must also have the
9236 		 * checksum verified by hardware.  If the user does not
9237 		 * want to enable RXCSUM, logically, we should disable GRO_HW.
9238 		 */
9239 		if (features & NETIF_F_GRO_HW) {
9240 			netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9241 			features &= ~NETIF_F_GRO_HW;
9242 		}
9243 	}
9244 
9245 	/* LRO/HW-GRO features cannot be combined with RX-FCS */
9246 	if (features & NETIF_F_RXFCS) {
9247 		if (features & NETIF_F_LRO) {
9248 			netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9249 			features &= ~NETIF_F_LRO;
9250 		}
9251 
9252 		if (features & NETIF_F_GRO_HW) {
9253 			netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9254 			features &= ~NETIF_F_GRO_HW;
9255 		}
9256 	}
9257 
9258 	if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
9259 		netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
9260 		features &= ~NETIF_F_LRO;
9261 	}
9262 
9263 	if (features & NETIF_F_HW_TLS_TX) {
9264 		bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9265 			(NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9266 		bool hw_csum = features & NETIF_F_HW_CSUM;
9267 
9268 		if (!ip_csum && !hw_csum) {
9269 			netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9270 			features &= ~NETIF_F_HW_TLS_TX;
9271 		}
9272 	}
9273 
9274 	if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9275 		netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9276 		features &= ~NETIF_F_HW_TLS_RX;
9277 	}
9278 
9279 	return features;
9280 }
9281 
9282 int __netdev_update_features(struct net_device *dev)
9283 {
9284 	struct net_device *upper, *lower;
9285 	netdev_features_t features;
9286 	struct list_head *iter;
9287 	int err = -1;
9288 
9289 	ASSERT_RTNL();
9290 
9291 	features = netdev_get_wanted_features(dev);
9292 
9293 	if (dev->netdev_ops->ndo_fix_features)
9294 		features = dev->netdev_ops->ndo_fix_features(dev, features);
9295 
9296 	/* driver might be less strict about feature dependencies */
9297 	features = netdev_fix_features(dev, features);
9298 
9299 	/* some features can't be enabled if they're off on an upper device */
9300 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
9301 		features = netdev_sync_upper_features(dev, upper, features);
9302 
9303 	if (dev->features == features)
9304 		goto sync_lower;
9305 
9306 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9307 		&dev->features, &features);
9308 
9309 	if (dev->netdev_ops->ndo_set_features)
9310 		err = dev->netdev_ops->ndo_set_features(dev, features);
9311 	else
9312 		err = 0;
9313 
9314 	if (unlikely(err < 0)) {
9315 		netdev_err(dev,
9316 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
9317 			err, &features, &dev->features);
9318 		/* return non-0 since some features might have changed and
9319 		 * it's better to fire a spurious notification than miss it
9320 		 */
9321 		return -1;
9322 	}
9323 
9324 sync_lower:
9325 	/* some features must be disabled on lower devices when disabled
9326 	 * on an upper device (think: bonding master or bridge)
9327 	 */
9328 	netdev_for_each_lower_dev(dev, lower, iter)
9329 		netdev_sync_lower_features(dev, lower, features);
9330 
9331 	if (!err) {
9332 		netdev_features_t diff = features ^ dev->features;
9333 
9334 		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9335 			/* udp_tunnel_{get,drop}_rx_info both need
9336 			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9337 			 * device, or they won't do anything.
9338 			 * Thus we need to update dev->features
9339 			 * *before* calling udp_tunnel_get_rx_info,
9340 			 * but *after* calling udp_tunnel_drop_rx_info.
9341 			 */
9342 			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9343 				dev->features = features;
9344 				udp_tunnel_get_rx_info(dev);
9345 			} else {
9346 				udp_tunnel_drop_rx_info(dev);
9347 			}
9348 		}
9349 
9350 		if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9351 			if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9352 				dev->features = features;
9353 				err |= vlan_get_rx_ctag_filter_info(dev);
9354 			} else {
9355 				vlan_drop_rx_ctag_filter_info(dev);
9356 			}
9357 		}
9358 
9359 		if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9360 			if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9361 				dev->features = features;
9362 				err |= vlan_get_rx_stag_filter_info(dev);
9363 			} else {
9364 				vlan_drop_rx_stag_filter_info(dev);
9365 			}
9366 		}
9367 
9368 		dev->features = features;
9369 	}
9370 
9371 	return err < 0 ? 0 : 1;
9372 }
9373 
9374 /**
9375  *	netdev_update_features - recalculate device features
9376  *	@dev: the device to check
9377  *
9378  *	Recalculate dev->features set and send notifications if it
9379  *	has changed. Should be called after driver or hardware dependent
9380  *	conditions might have changed that influence the features.
9381  */
9382 void netdev_update_features(struct net_device *dev)
9383 {
9384 	if (__netdev_update_features(dev))
9385 		netdev_features_change(dev);
9386 }
9387 EXPORT_SYMBOL(netdev_update_features);
9388 
9389 /**
9390  *	netdev_change_features - recalculate device features
9391  *	@dev: the device to check
9392  *
9393  *	Recalculate dev->features set and send notifications even
9394  *	if they have not changed. Should be called instead of
9395  *	netdev_update_features() if also dev->vlan_features might
9396  *	have changed to allow the changes to be propagated to stacked
9397  *	VLAN devices.
9398  */
9399 void netdev_change_features(struct net_device *dev)
9400 {
9401 	__netdev_update_features(dev);
9402 	netdev_features_change(dev);
9403 }
9404 EXPORT_SYMBOL(netdev_change_features);
9405 
9406 /**
9407  *	netif_stacked_transfer_operstate -	transfer operstate
9408  *	@rootdev: the root or lower level device to transfer state from
9409  *	@dev: the device to transfer operstate to
9410  *
9411  *	Transfer operational state from root to device. This is normally
9412  *	called when a stacking relationship exists between the root
9413  *	device and the device(a leaf device).
9414  */
9415 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9416 					struct net_device *dev)
9417 {
9418 	if (rootdev->operstate == IF_OPER_DORMANT)
9419 		netif_dormant_on(dev);
9420 	else
9421 		netif_dormant_off(dev);
9422 
9423 	if (rootdev->operstate == IF_OPER_TESTING)
9424 		netif_testing_on(dev);
9425 	else
9426 		netif_testing_off(dev);
9427 
9428 	if (netif_carrier_ok(rootdev))
9429 		netif_carrier_on(dev);
9430 	else
9431 		netif_carrier_off(dev);
9432 }
9433 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9434 
9435 static int netif_alloc_rx_queues(struct net_device *dev)
9436 {
9437 	unsigned int i, count = dev->num_rx_queues;
9438 	struct netdev_rx_queue *rx;
9439 	size_t sz = count * sizeof(*rx);
9440 	int err = 0;
9441 
9442 	BUG_ON(count < 1);
9443 
9444 	rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
9445 	if (!rx)
9446 		return -ENOMEM;
9447 
9448 	dev->_rx = rx;
9449 
9450 	for (i = 0; i < count; i++) {
9451 		rx[i].dev = dev;
9452 
9453 		/* XDP RX-queue setup */
9454 		err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
9455 		if (err < 0)
9456 			goto err_rxq_info;
9457 	}
9458 	return 0;
9459 
9460 err_rxq_info:
9461 	/* Rollback successful reg's and free other resources */
9462 	while (i--)
9463 		xdp_rxq_info_unreg(&rx[i].xdp_rxq);
9464 	kvfree(dev->_rx);
9465 	dev->_rx = NULL;
9466 	return err;
9467 }
9468 
9469 static void netif_free_rx_queues(struct net_device *dev)
9470 {
9471 	unsigned int i, count = dev->num_rx_queues;
9472 
9473 	/* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
9474 	if (!dev->_rx)
9475 		return;
9476 
9477 	for (i = 0; i < count; i++)
9478 		xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
9479 
9480 	kvfree(dev->_rx);
9481 }
9482 
9483 static void netdev_init_one_queue(struct net_device *dev,
9484 				  struct netdev_queue *queue, void *_unused)
9485 {
9486 	/* Initialize queue lock */
9487 	spin_lock_init(&queue->_xmit_lock);
9488 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
9489 	queue->xmit_lock_owner = -1;
9490 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
9491 	queue->dev = dev;
9492 #ifdef CONFIG_BQL
9493 	dql_init(&queue->dql, HZ);
9494 #endif
9495 }
9496 
9497 static void netif_free_tx_queues(struct net_device *dev)
9498 {
9499 	kvfree(dev->_tx);
9500 }
9501 
9502 static int netif_alloc_netdev_queues(struct net_device *dev)
9503 {
9504 	unsigned int count = dev->num_tx_queues;
9505 	struct netdev_queue *tx;
9506 	size_t sz = count * sizeof(*tx);
9507 
9508 	if (count < 1 || count > 0xffff)
9509 		return -EINVAL;
9510 
9511 	tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
9512 	if (!tx)
9513 		return -ENOMEM;
9514 
9515 	dev->_tx = tx;
9516 
9517 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
9518 	spin_lock_init(&dev->tx_global_lock);
9519 
9520 	return 0;
9521 }
9522 
9523 void netif_tx_stop_all_queues(struct net_device *dev)
9524 {
9525 	unsigned int i;
9526 
9527 	for (i = 0; i < dev->num_tx_queues; i++) {
9528 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
9529 
9530 		netif_tx_stop_queue(txq);
9531 	}
9532 }
9533 EXPORT_SYMBOL(netif_tx_stop_all_queues);
9534 
9535 /**
9536  *	register_netdevice	- register a network device
9537  *	@dev: device to register
9538  *
9539  *	Take a completed network device structure and add it to the kernel
9540  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
9541  *	chain. 0 is returned on success. A negative errno code is returned
9542  *	on a failure to set up the device, or if the name is a duplicate.
9543  *
9544  *	Callers must hold the rtnl semaphore. You may want
9545  *	register_netdev() instead of this.
9546  *
9547  *	BUGS:
9548  *	The locking appears insufficient to guarantee two parallel registers
9549  *	will not get the same name.
9550  */
9551 
9552 int register_netdevice(struct net_device *dev)
9553 {
9554 	int ret;
9555 	struct net *net = dev_net(dev);
9556 
9557 	BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
9558 		     NETDEV_FEATURE_COUNT);
9559 	BUG_ON(dev_boot_phase);
9560 	ASSERT_RTNL();
9561 
9562 	might_sleep();
9563 
9564 	/* When net_device's are persistent, this will be fatal. */
9565 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
9566 	BUG_ON(!net);
9567 
9568 	ret = ethtool_check_ops(dev->ethtool_ops);
9569 	if (ret)
9570 		return ret;
9571 
9572 	spin_lock_init(&dev->addr_list_lock);
9573 	netdev_set_addr_lockdep_class(dev);
9574 
9575 	ret = dev_get_valid_name(net, dev, dev->name);
9576 	if (ret < 0)
9577 		goto out;
9578 
9579 	ret = -ENOMEM;
9580 	dev->name_node = netdev_name_node_head_alloc(dev);
9581 	if (!dev->name_node)
9582 		goto out;
9583 
9584 	/* Init, if this function is available */
9585 	if (dev->netdev_ops->ndo_init) {
9586 		ret = dev->netdev_ops->ndo_init(dev);
9587 		if (ret) {
9588 			if (ret > 0)
9589 				ret = -EIO;
9590 			goto err_free_name;
9591 		}
9592 	}
9593 
9594 	if (((dev->hw_features | dev->features) &
9595 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
9596 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
9597 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
9598 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
9599 		ret = -EINVAL;
9600 		goto err_uninit;
9601 	}
9602 
9603 	ret = -EBUSY;
9604 	if (!dev->ifindex)
9605 		dev->ifindex = dev_new_index(net);
9606 	else if (__dev_get_by_index(net, dev->ifindex))
9607 		goto err_uninit;
9608 
9609 	/* Transfer changeable features to wanted_features and enable
9610 	 * software offloads (GSO and GRO).
9611 	 */
9612 	dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
9613 	dev->features |= NETIF_F_SOFT_FEATURES;
9614 
9615 	if (dev->udp_tunnel_nic_info) {
9616 		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9617 		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9618 	}
9619 
9620 	dev->wanted_features = dev->features & dev->hw_features;
9621 
9622 	if (!(dev->flags & IFF_LOOPBACK))
9623 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
9624 
9625 	/* If IPv4 TCP segmentation offload is supported we should also
9626 	 * allow the device to enable segmenting the frame with the option
9627 	 * of ignoring a static IP ID value.  This doesn't enable the
9628 	 * feature itself but allows the user to enable it later.
9629 	 */
9630 	if (dev->hw_features & NETIF_F_TSO)
9631 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
9632 	if (dev->vlan_features & NETIF_F_TSO)
9633 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
9634 	if (dev->mpls_features & NETIF_F_TSO)
9635 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
9636 	if (dev->hw_enc_features & NETIF_F_TSO)
9637 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
9638 
9639 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
9640 	 */
9641 	dev->vlan_features |= NETIF_F_HIGHDMA;
9642 
9643 	/* Make NETIF_F_SG inheritable to tunnel devices.
9644 	 */
9645 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
9646 
9647 	/* Make NETIF_F_SG inheritable to MPLS.
9648 	 */
9649 	dev->mpls_features |= NETIF_F_SG;
9650 
9651 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
9652 	ret = notifier_to_errno(ret);
9653 	if (ret)
9654 		goto err_uninit;
9655 
9656 	ret = netdev_register_kobject(dev);
9657 	if (ret) {
9658 		dev->reg_state = NETREG_UNREGISTERED;
9659 		goto err_uninit;
9660 	}
9661 	dev->reg_state = NETREG_REGISTERED;
9662 
9663 	__netdev_update_features(dev);
9664 
9665 	/*
9666 	 *	Default initial state at registry is that the
9667 	 *	device is present.
9668 	 */
9669 
9670 	set_bit(__LINK_STATE_PRESENT, &dev->state);
9671 
9672 	linkwatch_init_dev(dev);
9673 
9674 	dev_init_scheduler(dev);
9675 	dev_hold(dev);
9676 	list_netdevice(dev);
9677 	add_device_randomness(dev->dev_addr, dev->addr_len);
9678 
9679 	/* If the device has permanent device address, driver should
9680 	 * set dev_addr and also addr_assign_type should be set to
9681 	 * NET_ADDR_PERM (default value).
9682 	 */
9683 	if (dev->addr_assign_type == NET_ADDR_PERM)
9684 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
9685 
9686 	/* Notify protocols, that a new device appeared. */
9687 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
9688 	ret = notifier_to_errno(ret);
9689 	if (ret) {
9690 		/* Expect explicit free_netdev() on failure */
9691 		dev->needs_free_netdev = false;
9692 		unregister_netdevice_queue(dev, NULL);
9693 		goto out;
9694 	}
9695 	/*
9696 	 *	Prevent userspace races by waiting until the network
9697 	 *	device is fully setup before sending notifications.
9698 	 */
9699 	if (!dev->rtnl_link_ops ||
9700 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
9701 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
9702 
9703 out:
9704 	return ret;
9705 
9706 err_uninit:
9707 	if (dev->netdev_ops->ndo_uninit)
9708 		dev->netdev_ops->ndo_uninit(dev);
9709 	if (dev->priv_destructor)
9710 		dev->priv_destructor(dev);
9711 err_free_name:
9712 	netdev_name_node_free(dev->name_node);
9713 	goto out;
9714 }
9715 EXPORT_SYMBOL(register_netdevice);
9716 
9717 /**
9718  *	init_dummy_netdev	- init a dummy network device for NAPI
9719  *	@dev: device to init
9720  *
9721  *	This takes a network device structure and initialize the minimum
9722  *	amount of fields so it can be used to schedule NAPI polls without
9723  *	registering a full blown interface. This is to be used by drivers
9724  *	that need to tie several hardware interfaces to a single NAPI
9725  *	poll scheduler due to HW limitations.
9726  */
9727 int init_dummy_netdev(struct net_device *dev)
9728 {
9729 	/* Clear everything. Note we don't initialize spinlocks
9730 	 * are they aren't supposed to be taken by any of the
9731 	 * NAPI code and this dummy netdev is supposed to be
9732 	 * only ever used for NAPI polls
9733 	 */
9734 	memset(dev, 0, sizeof(struct net_device));
9735 
9736 	/* make sure we BUG if trying to hit standard
9737 	 * register/unregister code path
9738 	 */
9739 	dev->reg_state = NETREG_DUMMY;
9740 
9741 	/* NAPI wants this */
9742 	INIT_LIST_HEAD(&dev->napi_list);
9743 
9744 	/* a dummy interface is started by default */
9745 	set_bit(__LINK_STATE_PRESENT, &dev->state);
9746 	set_bit(__LINK_STATE_START, &dev->state);
9747 
9748 	/* napi_busy_loop stats accounting wants this */
9749 	dev_net_set(dev, &init_net);
9750 
9751 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
9752 	 * because users of this 'device' dont need to change
9753 	 * its refcount.
9754 	 */
9755 
9756 	return 0;
9757 }
9758 EXPORT_SYMBOL_GPL(init_dummy_netdev);
9759 
9760 
9761 /**
9762  *	register_netdev	- register a network device
9763  *	@dev: device to register
9764  *
9765  *	Take a completed network device structure and add it to the kernel
9766  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
9767  *	chain. 0 is returned on success. A negative errno code is returned
9768  *	on a failure to set up the device, or if the name is a duplicate.
9769  *
9770  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
9771  *	and expands the device name if you passed a format string to
9772  *	alloc_netdev.
9773  */
9774 int register_netdev(struct net_device *dev)
9775 {
9776 	int err;
9777 
9778 	if (rtnl_lock_killable())
9779 		return -EINTR;
9780 	err = register_netdevice(dev);
9781 	rtnl_unlock();
9782 	return err;
9783 }
9784 EXPORT_SYMBOL(register_netdev);
9785 
9786 int netdev_refcnt_read(const struct net_device *dev)
9787 {
9788 #ifdef CONFIG_PCPU_DEV_REFCNT
9789 	int i, refcnt = 0;
9790 
9791 	for_each_possible_cpu(i)
9792 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
9793 	return refcnt;
9794 #else
9795 	return refcount_read(&dev->dev_refcnt);
9796 #endif
9797 }
9798 EXPORT_SYMBOL(netdev_refcnt_read);
9799 
9800 int netdev_unregister_timeout_secs __read_mostly = 10;
9801 
9802 #define WAIT_REFS_MIN_MSECS 1
9803 #define WAIT_REFS_MAX_MSECS 250
9804 /**
9805  * netdev_wait_allrefs - wait until all references are gone.
9806  * @dev: target net_device
9807  *
9808  * This is called when unregistering network devices.
9809  *
9810  * Any protocol or device that holds a reference should register
9811  * for netdevice notification, and cleanup and put back the
9812  * reference if they receive an UNREGISTER event.
9813  * We can get stuck here if buggy protocols don't correctly
9814  * call dev_put.
9815  */
9816 static void netdev_wait_allrefs(struct net_device *dev)
9817 {
9818 	unsigned long rebroadcast_time, warning_time;
9819 	int wait = 0, refcnt;
9820 
9821 	linkwatch_forget_dev(dev);
9822 
9823 	rebroadcast_time = warning_time = jiffies;
9824 	refcnt = netdev_refcnt_read(dev);
9825 
9826 	while (refcnt != 1) {
9827 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
9828 			rtnl_lock();
9829 
9830 			/* Rebroadcast unregister notification */
9831 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
9832 
9833 			__rtnl_unlock();
9834 			rcu_barrier();
9835 			rtnl_lock();
9836 
9837 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
9838 				     &dev->state)) {
9839 				/* We must not have linkwatch events
9840 				 * pending on unregister. If this
9841 				 * happens, we simply run the queue
9842 				 * unscheduled, resulting in a noop
9843 				 * for this device.
9844 				 */
9845 				linkwatch_run_queue();
9846 			}
9847 
9848 			__rtnl_unlock();
9849 
9850 			rebroadcast_time = jiffies;
9851 		}
9852 
9853 		if (!wait) {
9854 			rcu_barrier();
9855 			wait = WAIT_REFS_MIN_MSECS;
9856 		} else {
9857 			msleep(wait);
9858 			wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
9859 		}
9860 
9861 		refcnt = netdev_refcnt_read(dev);
9862 
9863 		if (refcnt != 1 &&
9864 		    time_after(jiffies, warning_time +
9865 			       netdev_unregister_timeout_secs * HZ)) {
9866 			pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
9867 				 dev->name, refcnt);
9868 			ref_tracker_dir_print(&dev->refcnt_tracker, 10);
9869 			warning_time = jiffies;
9870 		}
9871 	}
9872 }
9873 
9874 /* The sequence is:
9875  *
9876  *	rtnl_lock();
9877  *	...
9878  *	register_netdevice(x1);
9879  *	register_netdevice(x2);
9880  *	...
9881  *	unregister_netdevice(y1);
9882  *	unregister_netdevice(y2);
9883  *      ...
9884  *	rtnl_unlock();
9885  *	free_netdev(y1);
9886  *	free_netdev(y2);
9887  *
9888  * We are invoked by rtnl_unlock().
9889  * This allows us to deal with problems:
9890  * 1) We can delete sysfs objects which invoke hotplug
9891  *    without deadlocking with linkwatch via keventd.
9892  * 2) Since we run with the RTNL semaphore not held, we can sleep
9893  *    safely in order to wait for the netdev refcnt to drop to zero.
9894  *
9895  * We must not return until all unregister events added during
9896  * the interval the lock was held have been completed.
9897  */
9898 void netdev_run_todo(void)
9899 {
9900 	struct list_head list;
9901 #ifdef CONFIG_LOCKDEP
9902 	struct list_head unlink_list;
9903 
9904 	list_replace_init(&net_unlink_list, &unlink_list);
9905 
9906 	while (!list_empty(&unlink_list)) {
9907 		struct net_device *dev = list_first_entry(&unlink_list,
9908 							  struct net_device,
9909 							  unlink_list);
9910 		list_del_init(&dev->unlink_list);
9911 		dev->nested_level = dev->lower_level - 1;
9912 	}
9913 #endif
9914 
9915 	/* Snapshot list, allow later requests */
9916 	list_replace_init(&net_todo_list, &list);
9917 
9918 	__rtnl_unlock();
9919 
9920 
9921 	/* Wait for rcu callbacks to finish before next phase */
9922 	if (!list_empty(&list))
9923 		rcu_barrier();
9924 
9925 	while (!list_empty(&list)) {
9926 		struct net_device *dev
9927 			= list_first_entry(&list, struct net_device, todo_list);
9928 		list_del(&dev->todo_list);
9929 
9930 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
9931 			pr_err("network todo '%s' but state %d\n",
9932 			       dev->name, dev->reg_state);
9933 			dump_stack();
9934 			continue;
9935 		}
9936 
9937 		dev->reg_state = NETREG_UNREGISTERED;
9938 
9939 		netdev_wait_allrefs(dev);
9940 
9941 		/* paranoia */
9942 		BUG_ON(netdev_refcnt_read(dev) != 1);
9943 		BUG_ON(!list_empty(&dev->ptype_all));
9944 		BUG_ON(!list_empty(&dev->ptype_specific));
9945 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
9946 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
9947 #if IS_ENABLED(CONFIG_DECNET)
9948 		WARN_ON(dev->dn_ptr);
9949 #endif
9950 		if (dev->priv_destructor)
9951 			dev->priv_destructor(dev);
9952 		if (dev->needs_free_netdev)
9953 			free_netdev(dev);
9954 
9955 		/* Report a network device has been unregistered */
9956 		rtnl_lock();
9957 		dev_net(dev)->dev_unreg_count--;
9958 		__rtnl_unlock();
9959 		wake_up(&netdev_unregistering_wq);
9960 
9961 		/* Free network device */
9962 		kobject_put(&dev->dev.kobj);
9963 	}
9964 }
9965 
9966 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
9967  * all the same fields in the same order as net_device_stats, with only
9968  * the type differing, but rtnl_link_stats64 may have additional fields
9969  * at the end for newer counters.
9970  */
9971 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
9972 			     const struct net_device_stats *netdev_stats)
9973 {
9974 #if BITS_PER_LONG == 64
9975 	BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
9976 	memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
9977 	/* zero out counters that only exist in rtnl_link_stats64 */
9978 	memset((char *)stats64 + sizeof(*netdev_stats), 0,
9979 	       sizeof(*stats64) - sizeof(*netdev_stats));
9980 #else
9981 	size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
9982 	const unsigned long *src = (const unsigned long *)netdev_stats;
9983 	u64 *dst = (u64 *)stats64;
9984 
9985 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
9986 	for (i = 0; i < n; i++)
9987 		dst[i] = src[i];
9988 	/* zero out counters that only exist in rtnl_link_stats64 */
9989 	memset((char *)stats64 + n * sizeof(u64), 0,
9990 	       sizeof(*stats64) - n * sizeof(u64));
9991 #endif
9992 }
9993 EXPORT_SYMBOL(netdev_stats_to_stats64);
9994 
9995 /**
9996  *	dev_get_stats	- get network device statistics
9997  *	@dev: device to get statistics from
9998  *	@storage: place to store stats
9999  *
10000  *	Get network statistics from device. Return @storage.
10001  *	The device driver may provide its own method by setting
10002  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10003  *	otherwise the internal statistics structure is used.
10004  */
10005 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10006 					struct rtnl_link_stats64 *storage)
10007 {
10008 	const struct net_device_ops *ops = dev->netdev_ops;
10009 
10010 	if (ops->ndo_get_stats64) {
10011 		memset(storage, 0, sizeof(*storage));
10012 		ops->ndo_get_stats64(dev, storage);
10013 	} else if (ops->ndo_get_stats) {
10014 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10015 	} else {
10016 		netdev_stats_to_stats64(storage, &dev->stats);
10017 	}
10018 	storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
10019 	storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
10020 	storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
10021 	return storage;
10022 }
10023 EXPORT_SYMBOL(dev_get_stats);
10024 
10025 /**
10026  *	dev_fetch_sw_netstats - get per-cpu network device statistics
10027  *	@s: place to store stats
10028  *	@netstats: per-cpu network stats to read from
10029  *
10030  *	Read per-cpu network statistics and populate the related fields in @s.
10031  */
10032 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10033 			   const struct pcpu_sw_netstats __percpu *netstats)
10034 {
10035 	int cpu;
10036 
10037 	for_each_possible_cpu(cpu) {
10038 		const struct pcpu_sw_netstats *stats;
10039 		struct pcpu_sw_netstats tmp;
10040 		unsigned int start;
10041 
10042 		stats = per_cpu_ptr(netstats, cpu);
10043 		do {
10044 			start = u64_stats_fetch_begin_irq(&stats->syncp);
10045 			tmp.rx_packets = stats->rx_packets;
10046 			tmp.rx_bytes   = stats->rx_bytes;
10047 			tmp.tx_packets = stats->tx_packets;
10048 			tmp.tx_bytes   = stats->tx_bytes;
10049 		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
10050 
10051 		s->rx_packets += tmp.rx_packets;
10052 		s->rx_bytes   += tmp.rx_bytes;
10053 		s->tx_packets += tmp.tx_packets;
10054 		s->tx_bytes   += tmp.tx_bytes;
10055 	}
10056 }
10057 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10058 
10059 /**
10060  *	dev_get_tstats64 - ndo_get_stats64 implementation
10061  *	@dev: device to get statistics from
10062  *	@s: place to store stats
10063  *
10064  *	Populate @s from dev->stats and dev->tstats. Can be used as
10065  *	ndo_get_stats64() callback.
10066  */
10067 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10068 {
10069 	netdev_stats_to_stats64(s, &dev->stats);
10070 	dev_fetch_sw_netstats(s, dev->tstats);
10071 }
10072 EXPORT_SYMBOL_GPL(dev_get_tstats64);
10073 
10074 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10075 {
10076 	struct netdev_queue *queue = dev_ingress_queue(dev);
10077 
10078 #ifdef CONFIG_NET_CLS_ACT
10079 	if (queue)
10080 		return queue;
10081 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10082 	if (!queue)
10083 		return NULL;
10084 	netdev_init_one_queue(dev, queue, NULL);
10085 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10086 	queue->qdisc_sleeping = &noop_qdisc;
10087 	rcu_assign_pointer(dev->ingress_queue, queue);
10088 #endif
10089 	return queue;
10090 }
10091 
10092 static const struct ethtool_ops default_ethtool_ops;
10093 
10094 void netdev_set_default_ethtool_ops(struct net_device *dev,
10095 				    const struct ethtool_ops *ops)
10096 {
10097 	if (dev->ethtool_ops == &default_ethtool_ops)
10098 		dev->ethtool_ops = ops;
10099 }
10100 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10101 
10102 void netdev_freemem(struct net_device *dev)
10103 {
10104 	char *addr = (char *)dev - dev->padded;
10105 
10106 	kvfree(addr);
10107 }
10108 
10109 /**
10110  * alloc_netdev_mqs - allocate network device
10111  * @sizeof_priv: size of private data to allocate space for
10112  * @name: device name format string
10113  * @name_assign_type: origin of device name
10114  * @setup: callback to initialize device
10115  * @txqs: the number of TX subqueues to allocate
10116  * @rxqs: the number of RX subqueues to allocate
10117  *
10118  * Allocates a struct net_device with private data area for driver use
10119  * and performs basic initialization.  Also allocates subqueue structs
10120  * for each queue on the device.
10121  */
10122 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10123 		unsigned char name_assign_type,
10124 		void (*setup)(struct net_device *),
10125 		unsigned int txqs, unsigned int rxqs)
10126 {
10127 	struct net_device *dev;
10128 	unsigned int alloc_size;
10129 	struct net_device *p;
10130 
10131 	BUG_ON(strlen(name) >= sizeof(dev->name));
10132 
10133 	if (txqs < 1) {
10134 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10135 		return NULL;
10136 	}
10137 
10138 	if (rxqs < 1) {
10139 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10140 		return NULL;
10141 	}
10142 
10143 	alloc_size = sizeof(struct net_device);
10144 	if (sizeof_priv) {
10145 		/* ensure 32-byte alignment of private area */
10146 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10147 		alloc_size += sizeof_priv;
10148 	}
10149 	/* ensure 32-byte alignment of whole construct */
10150 	alloc_size += NETDEV_ALIGN - 1;
10151 
10152 	p = kvzalloc(alloc_size, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10153 	if (!p)
10154 		return NULL;
10155 
10156 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
10157 	dev->padded = (char *)dev - (char *)p;
10158 
10159 	ref_tracker_dir_init(&dev->refcnt_tracker, 128);
10160 #ifdef CONFIG_PCPU_DEV_REFCNT
10161 	dev->pcpu_refcnt = alloc_percpu(int);
10162 	if (!dev->pcpu_refcnt)
10163 		goto free_dev;
10164 	dev_hold(dev);
10165 #else
10166 	refcount_set(&dev->dev_refcnt, 1);
10167 #endif
10168 
10169 	if (dev_addr_init(dev))
10170 		goto free_pcpu;
10171 
10172 	dev_mc_init(dev);
10173 	dev_uc_init(dev);
10174 
10175 	dev_net_set(dev, &init_net);
10176 
10177 	dev->gso_max_size = GSO_MAX_SIZE;
10178 	dev->gso_max_segs = GSO_MAX_SEGS;
10179 	dev->upper_level = 1;
10180 	dev->lower_level = 1;
10181 #ifdef CONFIG_LOCKDEP
10182 	dev->nested_level = 0;
10183 	INIT_LIST_HEAD(&dev->unlink_list);
10184 #endif
10185 
10186 	INIT_LIST_HEAD(&dev->napi_list);
10187 	INIT_LIST_HEAD(&dev->unreg_list);
10188 	INIT_LIST_HEAD(&dev->close_list);
10189 	INIT_LIST_HEAD(&dev->link_watch_list);
10190 	INIT_LIST_HEAD(&dev->adj_list.upper);
10191 	INIT_LIST_HEAD(&dev->adj_list.lower);
10192 	INIT_LIST_HEAD(&dev->ptype_all);
10193 	INIT_LIST_HEAD(&dev->ptype_specific);
10194 	INIT_LIST_HEAD(&dev->net_notifier_list);
10195 #ifdef CONFIG_NET_SCHED
10196 	hash_init(dev->qdisc_hash);
10197 #endif
10198 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10199 	setup(dev);
10200 
10201 	if (!dev->tx_queue_len) {
10202 		dev->priv_flags |= IFF_NO_QUEUE;
10203 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10204 	}
10205 
10206 	dev->num_tx_queues = txqs;
10207 	dev->real_num_tx_queues = txqs;
10208 	if (netif_alloc_netdev_queues(dev))
10209 		goto free_all;
10210 
10211 	dev->num_rx_queues = rxqs;
10212 	dev->real_num_rx_queues = rxqs;
10213 	if (netif_alloc_rx_queues(dev))
10214 		goto free_all;
10215 
10216 	strcpy(dev->name, name);
10217 	dev->name_assign_type = name_assign_type;
10218 	dev->group = INIT_NETDEV_GROUP;
10219 	if (!dev->ethtool_ops)
10220 		dev->ethtool_ops = &default_ethtool_ops;
10221 
10222 	nf_hook_netdev_init(dev);
10223 
10224 	return dev;
10225 
10226 free_all:
10227 	free_netdev(dev);
10228 	return NULL;
10229 
10230 free_pcpu:
10231 #ifdef CONFIG_PCPU_DEV_REFCNT
10232 	free_percpu(dev->pcpu_refcnt);
10233 free_dev:
10234 #endif
10235 	netdev_freemem(dev);
10236 	return NULL;
10237 }
10238 EXPORT_SYMBOL(alloc_netdev_mqs);
10239 
10240 /**
10241  * free_netdev - free network device
10242  * @dev: device
10243  *
10244  * This function does the last stage of destroying an allocated device
10245  * interface. The reference to the device object is released. If this
10246  * is the last reference then it will be freed.Must be called in process
10247  * context.
10248  */
10249 void free_netdev(struct net_device *dev)
10250 {
10251 	struct napi_struct *p, *n;
10252 
10253 	might_sleep();
10254 
10255 	/* When called immediately after register_netdevice() failed the unwind
10256 	 * handling may still be dismantling the device. Handle that case by
10257 	 * deferring the free.
10258 	 */
10259 	if (dev->reg_state == NETREG_UNREGISTERING) {
10260 		ASSERT_RTNL();
10261 		dev->needs_free_netdev = true;
10262 		return;
10263 	}
10264 
10265 	netif_free_tx_queues(dev);
10266 	netif_free_rx_queues(dev);
10267 
10268 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10269 
10270 	/* Flush device addresses */
10271 	dev_addr_flush(dev);
10272 
10273 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10274 		netif_napi_del(p);
10275 
10276 	ref_tracker_dir_exit(&dev->refcnt_tracker);
10277 #ifdef CONFIG_PCPU_DEV_REFCNT
10278 	free_percpu(dev->pcpu_refcnt);
10279 	dev->pcpu_refcnt = NULL;
10280 #endif
10281 	free_percpu(dev->xdp_bulkq);
10282 	dev->xdp_bulkq = NULL;
10283 
10284 	/*  Compatibility with error handling in drivers */
10285 	if (dev->reg_state == NETREG_UNINITIALIZED) {
10286 		netdev_freemem(dev);
10287 		return;
10288 	}
10289 
10290 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10291 	dev->reg_state = NETREG_RELEASED;
10292 
10293 	/* will free via device release */
10294 	put_device(&dev->dev);
10295 }
10296 EXPORT_SYMBOL(free_netdev);
10297 
10298 /**
10299  *	synchronize_net -  Synchronize with packet receive processing
10300  *
10301  *	Wait for packets currently being received to be done.
10302  *	Does not block later packets from starting.
10303  */
10304 void synchronize_net(void)
10305 {
10306 	might_sleep();
10307 	if (rtnl_is_locked())
10308 		synchronize_rcu_expedited();
10309 	else
10310 		synchronize_rcu();
10311 }
10312 EXPORT_SYMBOL(synchronize_net);
10313 
10314 /**
10315  *	unregister_netdevice_queue - remove device from the kernel
10316  *	@dev: device
10317  *	@head: list
10318  *
10319  *	This function shuts down a device interface and removes it
10320  *	from the kernel tables.
10321  *	If head not NULL, device is queued to be unregistered later.
10322  *
10323  *	Callers must hold the rtnl semaphore.  You may want
10324  *	unregister_netdev() instead of this.
10325  */
10326 
10327 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10328 {
10329 	ASSERT_RTNL();
10330 
10331 	if (head) {
10332 		list_move_tail(&dev->unreg_list, head);
10333 	} else {
10334 		LIST_HEAD(single);
10335 
10336 		list_add(&dev->unreg_list, &single);
10337 		unregister_netdevice_many(&single);
10338 	}
10339 }
10340 EXPORT_SYMBOL(unregister_netdevice_queue);
10341 
10342 /**
10343  *	unregister_netdevice_many - unregister many devices
10344  *	@head: list of devices
10345  *
10346  *  Note: As most callers use a stack allocated list_head,
10347  *  we force a list_del() to make sure stack wont be corrupted later.
10348  */
10349 void unregister_netdevice_many(struct list_head *head)
10350 {
10351 	struct net_device *dev, *tmp;
10352 	LIST_HEAD(close_head);
10353 
10354 	BUG_ON(dev_boot_phase);
10355 	ASSERT_RTNL();
10356 
10357 	if (list_empty(head))
10358 		return;
10359 
10360 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
10361 		/* Some devices call without registering
10362 		 * for initialization unwind. Remove those
10363 		 * devices and proceed with the remaining.
10364 		 */
10365 		if (dev->reg_state == NETREG_UNINITIALIZED) {
10366 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
10367 				 dev->name, dev);
10368 
10369 			WARN_ON(1);
10370 			list_del(&dev->unreg_list);
10371 			continue;
10372 		}
10373 		dev->dismantle = true;
10374 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
10375 	}
10376 
10377 	/* If device is running, close it first. */
10378 	list_for_each_entry(dev, head, unreg_list)
10379 		list_add_tail(&dev->close_list, &close_head);
10380 	dev_close_many(&close_head, true);
10381 
10382 	list_for_each_entry(dev, head, unreg_list) {
10383 		/* And unlink it from device chain. */
10384 		unlist_netdevice(dev);
10385 
10386 		dev->reg_state = NETREG_UNREGISTERING;
10387 	}
10388 	flush_all_backlogs();
10389 
10390 	synchronize_net();
10391 
10392 	list_for_each_entry(dev, head, unreg_list) {
10393 		struct sk_buff *skb = NULL;
10394 
10395 		/* Shutdown queueing discipline. */
10396 		dev_shutdown(dev);
10397 
10398 		dev_xdp_uninstall(dev);
10399 
10400 		/* Notify protocols, that we are about to destroy
10401 		 * this device. They should clean all the things.
10402 		 */
10403 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10404 
10405 		if (!dev->rtnl_link_ops ||
10406 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10407 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
10408 						     GFP_KERNEL, NULL, 0);
10409 
10410 		/*
10411 		 *	Flush the unicast and multicast chains
10412 		 */
10413 		dev_uc_flush(dev);
10414 		dev_mc_flush(dev);
10415 
10416 		netdev_name_node_alt_flush(dev);
10417 		netdev_name_node_free(dev->name_node);
10418 
10419 		if (dev->netdev_ops->ndo_uninit)
10420 			dev->netdev_ops->ndo_uninit(dev);
10421 
10422 		if (skb)
10423 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
10424 
10425 		/* Notifier chain MUST detach us all upper devices. */
10426 		WARN_ON(netdev_has_any_upper_dev(dev));
10427 		WARN_ON(netdev_has_any_lower_dev(dev));
10428 
10429 		/* Remove entries from kobject tree */
10430 		netdev_unregister_kobject(dev);
10431 #ifdef CONFIG_XPS
10432 		/* Remove XPS queueing entries */
10433 		netif_reset_xps_queues_gt(dev, 0);
10434 #endif
10435 	}
10436 
10437 	synchronize_net();
10438 
10439 	list_for_each_entry(dev, head, unreg_list) {
10440 		dev_put(dev);
10441 		net_set_todo(dev);
10442 	}
10443 
10444 	list_del(head);
10445 }
10446 EXPORT_SYMBOL(unregister_netdevice_many);
10447 
10448 /**
10449  *	unregister_netdev - remove device from the kernel
10450  *	@dev: device
10451  *
10452  *	This function shuts down a device interface and removes it
10453  *	from the kernel tables.
10454  *
10455  *	This is just a wrapper for unregister_netdevice that takes
10456  *	the rtnl semaphore.  In general you want to use this and not
10457  *	unregister_netdevice.
10458  */
10459 void unregister_netdev(struct net_device *dev)
10460 {
10461 	rtnl_lock();
10462 	unregister_netdevice(dev);
10463 	rtnl_unlock();
10464 }
10465 EXPORT_SYMBOL(unregister_netdev);
10466 
10467 /**
10468  *	__dev_change_net_namespace - move device to different nethost namespace
10469  *	@dev: device
10470  *	@net: network namespace
10471  *	@pat: If not NULL name pattern to try if the current device name
10472  *	      is already taken in the destination network namespace.
10473  *	@new_ifindex: If not zero, specifies device index in the target
10474  *	              namespace.
10475  *
10476  *	This function shuts down a device interface and moves it
10477  *	to a new network namespace. On success 0 is returned, on
10478  *	a failure a netagive errno code is returned.
10479  *
10480  *	Callers must hold the rtnl semaphore.
10481  */
10482 
10483 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
10484 			       const char *pat, int new_ifindex)
10485 {
10486 	struct net *net_old = dev_net(dev);
10487 	int err, new_nsid;
10488 
10489 	ASSERT_RTNL();
10490 
10491 	/* Don't allow namespace local devices to be moved. */
10492 	err = -EINVAL;
10493 	if (dev->features & NETIF_F_NETNS_LOCAL)
10494 		goto out;
10495 
10496 	/* Ensure the device has been registrered */
10497 	if (dev->reg_state != NETREG_REGISTERED)
10498 		goto out;
10499 
10500 	/* Get out if there is nothing todo */
10501 	err = 0;
10502 	if (net_eq(net_old, net))
10503 		goto out;
10504 
10505 	/* Pick the destination device name, and ensure
10506 	 * we can use it in the destination network namespace.
10507 	 */
10508 	err = -EEXIST;
10509 	if (netdev_name_in_use(net, dev->name)) {
10510 		/* We get here if we can't use the current device name */
10511 		if (!pat)
10512 			goto out;
10513 		err = dev_get_valid_name(net, dev, pat);
10514 		if (err < 0)
10515 			goto out;
10516 	}
10517 
10518 	/* Check that new_ifindex isn't used yet. */
10519 	err = -EBUSY;
10520 	if (new_ifindex && __dev_get_by_index(net, new_ifindex))
10521 		goto out;
10522 
10523 	/*
10524 	 * And now a mini version of register_netdevice unregister_netdevice.
10525 	 */
10526 
10527 	/* If device is running close it first. */
10528 	dev_close(dev);
10529 
10530 	/* And unlink it from device chain */
10531 	unlist_netdevice(dev);
10532 
10533 	synchronize_net();
10534 
10535 	/* Shutdown queueing discipline. */
10536 	dev_shutdown(dev);
10537 
10538 	/* Notify protocols, that we are about to destroy
10539 	 * this device. They should clean all the things.
10540 	 *
10541 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
10542 	 * This is wanted because this way 8021q and macvlan know
10543 	 * the device is just moving and can keep their slaves up.
10544 	 */
10545 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10546 	rcu_barrier();
10547 
10548 	new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
10549 	/* If there is an ifindex conflict assign a new one */
10550 	if (!new_ifindex) {
10551 		if (__dev_get_by_index(net, dev->ifindex))
10552 			new_ifindex = dev_new_index(net);
10553 		else
10554 			new_ifindex = dev->ifindex;
10555 	}
10556 
10557 	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
10558 			    new_ifindex);
10559 
10560 	/*
10561 	 *	Flush the unicast and multicast chains
10562 	 */
10563 	dev_uc_flush(dev);
10564 	dev_mc_flush(dev);
10565 
10566 	/* Send a netdev-removed uevent to the old namespace */
10567 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
10568 	netdev_adjacent_del_links(dev);
10569 
10570 	/* Move per-net netdevice notifiers that are following the netdevice */
10571 	move_netdevice_notifiers_dev_net(dev, net);
10572 
10573 	/* Actually switch the network namespace */
10574 	dev_net_set(dev, net);
10575 	dev->ifindex = new_ifindex;
10576 
10577 	/* Send a netdev-add uevent to the new namespace */
10578 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
10579 	netdev_adjacent_add_links(dev);
10580 
10581 	/* Fixup kobjects */
10582 	err = device_rename(&dev->dev, dev->name);
10583 	WARN_ON(err);
10584 
10585 	/* Adapt owner in case owning user namespace of target network
10586 	 * namespace is different from the original one.
10587 	 */
10588 	err = netdev_change_owner(dev, net_old, net);
10589 	WARN_ON(err);
10590 
10591 	/* Add the device back in the hashes */
10592 	list_netdevice(dev);
10593 
10594 	/* Notify protocols, that a new device appeared. */
10595 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
10596 
10597 	/*
10598 	 *	Prevent userspace races by waiting until the network
10599 	 *	device is fully setup before sending notifications.
10600 	 */
10601 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10602 
10603 	synchronize_net();
10604 	err = 0;
10605 out:
10606 	return err;
10607 }
10608 EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
10609 
10610 static int dev_cpu_dead(unsigned int oldcpu)
10611 {
10612 	struct sk_buff **list_skb;
10613 	struct sk_buff *skb;
10614 	unsigned int cpu;
10615 	struct softnet_data *sd, *oldsd, *remsd = NULL;
10616 
10617 	local_irq_disable();
10618 	cpu = smp_processor_id();
10619 	sd = &per_cpu(softnet_data, cpu);
10620 	oldsd = &per_cpu(softnet_data, oldcpu);
10621 
10622 	/* Find end of our completion_queue. */
10623 	list_skb = &sd->completion_queue;
10624 	while (*list_skb)
10625 		list_skb = &(*list_skb)->next;
10626 	/* Append completion queue from offline CPU. */
10627 	*list_skb = oldsd->completion_queue;
10628 	oldsd->completion_queue = NULL;
10629 
10630 	/* Append output queue from offline CPU. */
10631 	if (oldsd->output_queue) {
10632 		*sd->output_queue_tailp = oldsd->output_queue;
10633 		sd->output_queue_tailp = oldsd->output_queue_tailp;
10634 		oldsd->output_queue = NULL;
10635 		oldsd->output_queue_tailp = &oldsd->output_queue;
10636 	}
10637 	/* Append NAPI poll list from offline CPU, with one exception :
10638 	 * process_backlog() must be called by cpu owning percpu backlog.
10639 	 * We properly handle process_queue & input_pkt_queue later.
10640 	 */
10641 	while (!list_empty(&oldsd->poll_list)) {
10642 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
10643 							    struct napi_struct,
10644 							    poll_list);
10645 
10646 		list_del_init(&napi->poll_list);
10647 		if (napi->poll == process_backlog)
10648 			napi->state = 0;
10649 		else
10650 			____napi_schedule(sd, napi);
10651 	}
10652 
10653 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
10654 	local_irq_enable();
10655 
10656 #ifdef CONFIG_RPS
10657 	remsd = oldsd->rps_ipi_list;
10658 	oldsd->rps_ipi_list = NULL;
10659 #endif
10660 	/* send out pending IPI's on offline CPU */
10661 	net_rps_send_ipi(remsd);
10662 
10663 	/* Process offline CPU's input_pkt_queue */
10664 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
10665 		netif_rx_ni(skb);
10666 		input_queue_head_incr(oldsd);
10667 	}
10668 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
10669 		netif_rx_ni(skb);
10670 		input_queue_head_incr(oldsd);
10671 	}
10672 
10673 	return 0;
10674 }
10675 
10676 /**
10677  *	netdev_increment_features - increment feature set by one
10678  *	@all: current feature set
10679  *	@one: new feature set
10680  *	@mask: mask feature set
10681  *
10682  *	Computes a new feature set after adding a device with feature set
10683  *	@one to the master device with current feature set @all.  Will not
10684  *	enable anything that is off in @mask. Returns the new feature set.
10685  */
10686 netdev_features_t netdev_increment_features(netdev_features_t all,
10687 	netdev_features_t one, netdev_features_t mask)
10688 {
10689 	if (mask & NETIF_F_HW_CSUM)
10690 		mask |= NETIF_F_CSUM_MASK;
10691 	mask |= NETIF_F_VLAN_CHALLENGED;
10692 
10693 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
10694 	all &= one | ~NETIF_F_ALL_FOR_ALL;
10695 
10696 	/* If one device supports hw checksumming, set for all. */
10697 	if (all & NETIF_F_HW_CSUM)
10698 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
10699 
10700 	return all;
10701 }
10702 EXPORT_SYMBOL(netdev_increment_features);
10703 
10704 static struct hlist_head * __net_init netdev_create_hash(void)
10705 {
10706 	int i;
10707 	struct hlist_head *hash;
10708 
10709 	hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
10710 	if (hash != NULL)
10711 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
10712 			INIT_HLIST_HEAD(&hash[i]);
10713 
10714 	return hash;
10715 }
10716 
10717 /* Initialize per network namespace state */
10718 static int __net_init netdev_init(struct net *net)
10719 {
10720 	BUILD_BUG_ON(GRO_HASH_BUCKETS >
10721 		     8 * sizeof_field(struct napi_struct, gro_bitmask));
10722 
10723 	if (net != &init_net)
10724 		INIT_LIST_HEAD(&net->dev_base_head);
10725 
10726 	net->dev_name_head = netdev_create_hash();
10727 	if (net->dev_name_head == NULL)
10728 		goto err_name;
10729 
10730 	net->dev_index_head = netdev_create_hash();
10731 	if (net->dev_index_head == NULL)
10732 		goto err_idx;
10733 
10734 	RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
10735 
10736 	return 0;
10737 
10738 err_idx:
10739 	kfree(net->dev_name_head);
10740 err_name:
10741 	return -ENOMEM;
10742 }
10743 
10744 /**
10745  *	netdev_drivername - network driver for the device
10746  *	@dev: network device
10747  *
10748  *	Determine network driver for device.
10749  */
10750 const char *netdev_drivername(const struct net_device *dev)
10751 {
10752 	const struct device_driver *driver;
10753 	const struct device *parent;
10754 	const char *empty = "";
10755 
10756 	parent = dev->dev.parent;
10757 	if (!parent)
10758 		return empty;
10759 
10760 	driver = parent->driver;
10761 	if (driver && driver->name)
10762 		return driver->name;
10763 	return empty;
10764 }
10765 
10766 static void __netdev_printk(const char *level, const struct net_device *dev,
10767 			    struct va_format *vaf)
10768 {
10769 	if (dev && dev->dev.parent) {
10770 		dev_printk_emit(level[1] - '0',
10771 				dev->dev.parent,
10772 				"%s %s %s%s: %pV",
10773 				dev_driver_string(dev->dev.parent),
10774 				dev_name(dev->dev.parent),
10775 				netdev_name(dev), netdev_reg_state(dev),
10776 				vaf);
10777 	} else if (dev) {
10778 		printk("%s%s%s: %pV",
10779 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
10780 	} else {
10781 		printk("%s(NULL net_device): %pV", level, vaf);
10782 	}
10783 }
10784 
10785 void netdev_printk(const char *level, const struct net_device *dev,
10786 		   const char *format, ...)
10787 {
10788 	struct va_format vaf;
10789 	va_list args;
10790 
10791 	va_start(args, format);
10792 
10793 	vaf.fmt = format;
10794 	vaf.va = &args;
10795 
10796 	__netdev_printk(level, dev, &vaf);
10797 
10798 	va_end(args);
10799 }
10800 EXPORT_SYMBOL(netdev_printk);
10801 
10802 #define define_netdev_printk_level(func, level)			\
10803 void func(const struct net_device *dev, const char *fmt, ...)	\
10804 {								\
10805 	struct va_format vaf;					\
10806 	va_list args;						\
10807 								\
10808 	va_start(args, fmt);					\
10809 								\
10810 	vaf.fmt = fmt;						\
10811 	vaf.va = &args;						\
10812 								\
10813 	__netdev_printk(level, dev, &vaf);			\
10814 								\
10815 	va_end(args);						\
10816 }								\
10817 EXPORT_SYMBOL(func);
10818 
10819 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
10820 define_netdev_printk_level(netdev_alert, KERN_ALERT);
10821 define_netdev_printk_level(netdev_crit, KERN_CRIT);
10822 define_netdev_printk_level(netdev_err, KERN_ERR);
10823 define_netdev_printk_level(netdev_warn, KERN_WARNING);
10824 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
10825 define_netdev_printk_level(netdev_info, KERN_INFO);
10826 
10827 static void __net_exit netdev_exit(struct net *net)
10828 {
10829 	kfree(net->dev_name_head);
10830 	kfree(net->dev_index_head);
10831 	if (net != &init_net)
10832 		WARN_ON_ONCE(!list_empty(&net->dev_base_head));
10833 }
10834 
10835 static struct pernet_operations __net_initdata netdev_net_ops = {
10836 	.init = netdev_init,
10837 	.exit = netdev_exit,
10838 };
10839 
10840 static void __net_exit default_device_exit(struct net *net)
10841 {
10842 	struct net_device *dev, *aux;
10843 	/*
10844 	 * Push all migratable network devices back to the
10845 	 * initial network namespace
10846 	 */
10847 	rtnl_lock();
10848 	for_each_netdev_safe(net, dev, aux) {
10849 		int err;
10850 		char fb_name[IFNAMSIZ];
10851 
10852 		/* Ignore unmoveable devices (i.e. loopback) */
10853 		if (dev->features & NETIF_F_NETNS_LOCAL)
10854 			continue;
10855 
10856 		/* Leave virtual devices for the generic cleanup */
10857 		if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
10858 			continue;
10859 
10860 		/* Push remaining network devices to init_net */
10861 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
10862 		if (netdev_name_in_use(&init_net, fb_name))
10863 			snprintf(fb_name, IFNAMSIZ, "dev%%d");
10864 		err = dev_change_net_namespace(dev, &init_net, fb_name);
10865 		if (err) {
10866 			pr_emerg("%s: failed to move %s to init_net: %d\n",
10867 				 __func__, dev->name, err);
10868 			BUG();
10869 		}
10870 	}
10871 	rtnl_unlock();
10872 }
10873 
10874 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
10875 {
10876 	/* Return with the rtnl_lock held when there are no network
10877 	 * devices unregistering in any network namespace in net_list.
10878 	 */
10879 	struct net *net;
10880 	bool unregistering;
10881 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
10882 
10883 	add_wait_queue(&netdev_unregistering_wq, &wait);
10884 	for (;;) {
10885 		unregistering = false;
10886 		rtnl_lock();
10887 		list_for_each_entry(net, net_list, exit_list) {
10888 			if (net->dev_unreg_count > 0) {
10889 				unregistering = true;
10890 				break;
10891 			}
10892 		}
10893 		if (!unregistering)
10894 			break;
10895 		__rtnl_unlock();
10896 
10897 		wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
10898 	}
10899 	remove_wait_queue(&netdev_unregistering_wq, &wait);
10900 }
10901 
10902 static void __net_exit default_device_exit_batch(struct list_head *net_list)
10903 {
10904 	/* At exit all network devices most be removed from a network
10905 	 * namespace.  Do this in the reverse order of registration.
10906 	 * Do this across as many network namespaces as possible to
10907 	 * improve batching efficiency.
10908 	 */
10909 	struct net_device *dev;
10910 	struct net *net;
10911 	LIST_HEAD(dev_kill_list);
10912 
10913 	/* To prevent network device cleanup code from dereferencing
10914 	 * loopback devices or network devices that have been freed
10915 	 * wait here for all pending unregistrations to complete,
10916 	 * before unregistring the loopback device and allowing the
10917 	 * network namespace be freed.
10918 	 *
10919 	 * The netdev todo list containing all network devices
10920 	 * unregistrations that happen in default_device_exit_batch
10921 	 * will run in the rtnl_unlock() at the end of
10922 	 * default_device_exit_batch.
10923 	 */
10924 	rtnl_lock_unregistering(net_list);
10925 	list_for_each_entry(net, net_list, exit_list) {
10926 		for_each_netdev_reverse(net, dev) {
10927 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
10928 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
10929 			else
10930 				unregister_netdevice_queue(dev, &dev_kill_list);
10931 		}
10932 	}
10933 	unregister_netdevice_many(&dev_kill_list);
10934 	rtnl_unlock();
10935 }
10936 
10937 static struct pernet_operations __net_initdata default_device_ops = {
10938 	.exit = default_device_exit,
10939 	.exit_batch = default_device_exit_batch,
10940 };
10941 
10942 /*
10943  *	Initialize the DEV module. At boot time this walks the device list and
10944  *	unhooks any devices that fail to initialise (normally hardware not
10945  *	present) and leaves us with a valid list of present and active devices.
10946  *
10947  */
10948 
10949 /*
10950  *       This is called single threaded during boot, so no need
10951  *       to take the rtnl semaphore.
10952  */
10953 static int __init net_dev_init(void)
10954 {
10955 	int i, rc = -ENOMEM;
10956 
10957 	BUG_ON(!dev_boot_phase);
10958 
10959 	if (dev_proc_init())
10960 		goto out;
10961 
10962 	if (netdev_kobject_init())
10963 		goto out;
10964 
10965 	INIT_LIST_HEAD(&ptype_all);
10966 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
10967 		INIT_LIST_HEAD(&ptype_base[i]);
10968 
10969 	if (register_pernet_subsys(&netdev_net_ops))
10970 		goto out;
10971 
10972 	/*
10973 	 *	Initialise the packet receive queues.
10974 	 */
10975 
10976 	for_each_possible_cpu(i) {
10977 		struct work_struct *flush = per_cpu_ptr(&flush_works, i);
10978 		struct softnet_data *sd = &per_cpu(softnet_data, i);
10979 
10980 		INIT_WORK(flush, flush_backlog);
10981 
10982 		skb_queue_head_init(&sd->input_pkt_queue);
10983 		skb_queue_head_init(&sd->process_queue);
10984 #ifdef CONFIG_XFRM_OFFLOAD
10985 		skb_queue_head_init(&sd->xfrm_backlog);
10986 #endif
10987 		INIT_LIST_HEAD(&sd->poll_list);
10988 		sd->output_queue_tailp = &sd->output_queue;
10989 #ifdef CONFIG_RPS
10990 		INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
10991 		sd->cpu = i;
10992 #endif
10993 
10994 		init_gro_hash(&sd->backlog);
10995 		sd->backlog.poll = process_backlog;
10996 		sd->backlog.weight = weight_p;
10997 	}
10998 
10999 	dev_boot_phase = 0;
11000 
11001 	/* The loopback device is special if any other network devices
11002 	 * is present in a network namespace the loopback device must
11003 	 * be present. Since we now dynamically allocate and free the
11004 	 * loopback device ensure this invariant is maintained by
11005 	 * keeping the loopback device as the first device on the
11006 	 * list of network devices.  Ensuring the loopback devices
11007 	 * is the first device that appears and the last network device
11008 	 * that disappears.
11009 	 */
11010 	if (register_pernet_device(&loopback_net_ops))
11011 		goto out;
11012 
11013 	if (register_pernet_device(&default_device_ops))
11014 		goto out;
11015 
11016 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11017 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11018 
11019 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11020 				       NULL, dev_cpu_dead);
11021 	WARN_ON(rc < 0);
11022 	rc = 0;
11023 out:
11024 	return rc;
11025 }
11026 
11027 subsys_initcall(net_dev_init);
11028