xref: /linux/net/core/dev.c (revision b45e0c30bc58fb6fcaa42f1d1d813cefb8ab4117)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *	Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:	Ross Biro
7  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *	Additional Authors:
11  *		Florian la Roche <rzsfl@rz.uni-sb.de>
12  *		Alan Cox <gw4pts@gw4pts.ampr.org>
13  *		David Hinds <dahinds@users.sourceforge.net>
14  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *		Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *	Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *		Alan Cox	:	device private ioctl copies fields back.
24  *		Alan Cox	:	Transmit queue code does relevant
25  *					stunts to keep the queue safe.
26  *		Alan Cox	:	Fixed double lock.
27  *		Alan Cox	:	Fixed promisc NULL pointer trap
28  *		????????	:	Support the full private ioctl range
29  *		Alan Cox	:	Moved ioctl permission check into
30  *					drivers
31  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
32  *		Alan Cox	:	100 backlog just doesn't cut it when
33  *					you start doing multicast video 8)
34  *		Alan Cox	:	Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *		Alan Cox	:	Took out transmit every packet pass
37  *					Saved a few bytes in the ioctl handler
38  *		Alan Cox	:	Network driver sets packet type before
39  *					calling netif_rx. Saves a function
40  *					call a packet.
41  *		Alan Cox	:	Hashed net_bh()
42  *		Richard Kooijman:	Timestamp fixes.
43  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
44  *		Alan Cox	:	Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *					changes.
47  *		Rudi Cilibrasi	:	Pass the right thing to
48  *					set_mac_address()
49  *		Dave Miller	:	32bit quantity for the device lock to
50  *					make it work out on a Sparc.
51  *		Bjorn Ekwall	:	Added KERNELD hack.
52  *		Alan Cox	:	Cleaned up the backlog initialise.
53  *		Craig Metz	:	SIOCGIFCONF fix if space for under
54  *					1 device.
55  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
56  *					is no device open function.
57  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
58  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
59  *		Cyrus Durgin	:	Cleaned for KMOD
60  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
61  *					A network device unload needs to purge
62  *					the backlog queue.
63  *	Paul Rusty Russell	:	SIOCSIFNAME
64  *              Pekka Riikonen  :	Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *				        - netif_rx() feedback
69  */
70 
71 #include <linux/uaccess.h>
72 #include <linux/bitops.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/string.h>
83 #include <linux/mm.h>
84 #include <linux/socket.h>
85 #include <linux/sockios.h>
86 #include <linux/errno.h>
87 #include <linux/interrupt.h>
88 #include <linux/if_ether.h>
89 #include <linux/netdevice.h>
90 #include <linux/etherdevice.h>
91 #include <linux/ethtool.h>
92 #include <linux/skbuff.h>
93 #include <linux/bpf.h>
94 #include <linux/bpf_trace.h>
95 #include <net/net_namespace.h>
96 #include <net/sock.h>
97 #include <net/busy_poll.h>
98 #include <linux/rtnetlink.h>
99 #include <linux/stat.h>
100 #include <net/dst.h>
101 #include <net/dst_metadata.h>
102 #include <net/pkt_sched.h>
103 #include <net/pkt_cls.h>
104 #include <net/checksum.h>
105 #include <net/xfrm.h>
106 #include <linux/highmem.h>
107 #include <linux/init.h>
108 #include <linux/module.h>
109 #include <linux/netpoll.h>
110 #include <linux/rcupdate.h>
111 #include <linux/delay.h>
112 #include <net/iw_handler.h>
113 #include <asm/current.h>
114 #include <linux/audit.h>
115 #include <linux/dmaengine.h>
116 #include <linux/err.h>
117 #include <linux/ctype.h>
118 #include <linux/if_arp.h>
119 #include <linux/if_vlan.h>
120 #include <linux/ip.h>
121 #include <net/ip.h>
122 #include <net/mpls.h>
123 #include <linux/ipv6.h>
124 #include <linux/in.h>
125 #include <linux/jhash.h>
126 #include <linux/random.h>
127 #include <trace/events/napi.h>
128 #include <trace/events/net.h>
129 #include <trace/events/skb.h>
130 #include <linux/inetdevice.h>
131 #include <linux/cpu_rmap.h>
132 #include <linux/static_key.h>
133 #include <linux/hashtable.h>
134 #include <linux/vmalloc.h>
135 #include <linux/if_macvlan.h>
136 #include <linux/errqueue.h>
137 #include <linux/hrtimer.h>
138 #include <linux/netfilter_ingress.h>
139 #include <linux/crash_dump.h>
140 #include <linux/sctp.h>
141 #include <net/udp_tunnel.h>
142 #include <linux/net_namespace.h>
143 #include <linux/indirect_call_wrapper.h>
144 #include <net/devlink.h>
145 
146 #include "net-sysfs.h"
147 
148 #define MAX_GRO_SKBS 8
149 
150 /* This should be increased if a protocol with a bigger head is added. */
151 #define GRO_MAX_HEAD (MAX_HEADER + 128)
152 
153 static DEFINE_SPINLOCK(ptype_lock);
154 static DEFINE_SPINLOCK(offload_lock);
155 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
156 struct list_head ptype_all __read_mostly;	/* Taps */
157 static struct list_head offload_base __read_mostly;
158 
159 static int netif_rx_internal(struct sk_buff *skb);
160 static int call_netdevice_notifiers_info(unsigned long val,
161 					 struct netdev_notifier_info *info);
162 static int call_netdevice_notifiers_extack(unsigned long val,
163 					   struct net_device *dev,
164 					   struct netlink_ext_ack *extack);
165 static struct napi_struct *napi_by_id(unsigned int napi_id);
166 
167 /*
168  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
169  * semaphore.
170  *
171  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
172  *
173  * Writers must hold the rtnl semaphore while they loop through the
174  * dev_base_head list, and hold dev_base_lock for writing when they do the
175  * actual updates.  This allows pure readers to access the list even
176  * while a writer is preparing to update it.
177  *
178  * To put it another way, dev_base_lock is held for writing only to
179  * protect against pure readers; the rtnl semaphore provides the
180  * protection against other writers.
181  *
182  * See, for example usages, register_netdevice() and
183  * unregister_netdevice(), which must be called with the rtnl
184  * semaphore held.
185  */
186 DEFINE_RWLOCK(dev_base_lock);
187 EXPORT_SYMBOL(dev_base_lock);
188 
189 static DEFINE_MUTEX(ifalias_mutex);
190 
191 /* protects napi_hash addition/deletion and napi_gen_id */
192 static DEFINE_SPINLOCK(napi_hash_lock);
193 
194 static unsigned int napi_gen_id = NR_CPUS;
195 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
196 
197 static seqcount_t devnet_rename_seq;
198 
199 static inline void dev_base_seq_inc(struct net *net)
200 {
201 	while (++net->dev_base_seq == 0)
202 		;
203 }
204 
205 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
206 {
207 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
208 
209 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
210 }
211 
212 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
213 {
214 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
215 }
216 
217 static inline void rps_lock(struct softnet_data *sd)
218 {
219 #ifdef CONFIG_RPS
220 	spin_lock(&sd->input_pkt_queue.lock);
221 #endif
222 }
223 
224 static inline void rps_unlock(struct softnet_data *sd)
225 {
226 #ifdef CONFIG_RPS
227 	spin_unlock(&sd->input_pkt_queue.lock);
228 #endif
229 }
230 
231 /* Device list insertion */
232 static void list_netdevice(struct net_device *dev)
233 {
234 	struct net *net = dev_net(dev);
235 
236 	ASSERT_RTNL();
237 
238 	write_lock_bh(&dev_base_lock);
239 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
240 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
241 	hlist_add_head_rcu(&dev->index_hlist,
242 			   dev_index_hash(net, dev->ifindex));
243 	write_unlock_bh(&dev_base_lock);
244 
245 	dev_base_seq_inc(net);
246 }
247 
248 /* Device list removal
249  * caller must respect a RCU grace period before freeing/reusing dev
250  */
251 static void unlist_netdevice(struct net_device *dev)
252 {
253 	ASSERT_RTNL();
254 
255 	/* Unlink dev from the device chain */
256 	write_lock_bh(&dev_base_lock);
257 	list_del_rcu(&dev->dev_list);
258 	hlist_del_rcu(&dev->name_hlist);
259 	hlist_del_rcu(&dev->index_hlist);
260 	write_unlock_bh(&dev_base_lock);
261 
262 	dev_base_seq_inc(dev_net(dev));
263 }
264 
265 /*
266  *	Our notifier list
267  */
268 
269 static RAW_NOTIFIER_HEAD(netdev_chain);
270 
271 /*
272  *	Device drivers call our routines to queue packets here. We empty the
273  *	queue in the local softnet handler.
274  */
275 
276 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
277 EXPORT_PER_CPU_SYMBOL(softnet_data);
278 
279 #ifdef CONFIG_LOCKDEP
280 /*
281  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
282  * according to dev->type
283  */
284 static const unsigned short netdev_lock_type[] = {
285 	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
286 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
287 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
288 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
289 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
290 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
291 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
292 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
293 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
294 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
295 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
296 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
297 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
298 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
299 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
300 
301 static const char *const netdev_lock_name[] = {
302 	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
303 	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
304 	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
305 	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
306 	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
307 	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
308 	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
309 	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
310 	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
311 	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
312 	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
313 	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
314 	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
315 	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
316 	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
317 
318 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
319 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
320 
321 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
322 {
323 	int i;
324 
325 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
326 		if (netdev_lock_type[i] == dev_type)
327 			return i;
328 	/* the last key is used by default */
329 	return ARRAY_SIZE(netdev_lock_type) - 1;
330 }
331 
332 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
333 						 unsigned short dev_type)
334 {
335 	int i;
336 
337 	i = netdev_lock_pos(dev_type);
338 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
339 				   netdev_lock_name[i]);
340 }
341 
342 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
343 {
344 	int i;
345 
346 	i = netdev_lock_pos(dev->type);
347 	lockdep_set_class_and_name(&dev->addr_list_lock,
348 				   &netdev_addr_lock_key[i],
349 				   netdev_lock_name[i]);
350 }
351 #else
352 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
353 						 unsigned short dev_type)
354 {
355 }
356 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
357 {
358 }
359 #endif
360 
361 /*******************************************************************************
362  *
363  *		Protocol management and registration routines
364  *
365  *******************************************************************************/
366 
367 
368 /*
369  *	Add a protocol ID to the list. Now that the input handler is
370  *	smarter we can dispense with all the messy stuff that used to be
371  *	here.
372  *
373  *	BEWARE!!! Protocol handlers, mangling input packets,
374  *	MUST BE last in hash buckets and checking protocol handlers
375  *	MUST start from promiscuous ptype_all chain in net_bh.
376  *	It is true now, do not change it.
377  *	Explanation follows: if protocol handler, mangling packet, will
378  *	be the first on list, it is not able to sense, that packet
379  *	is cloned and should be copied-on-write, so that it will
380  *	change it and subsequent readers will get broken packet.
381  *							--ANK (980803)
382  */
383 
384 static inline struct list_head *ptype_head(const struct packet_type *pt)
385 {
386 	if (pt->type == htons(ETH_P_ALL))
387 		return pt->dev ? &pt->dev->ptype_all : &ptype_all;
388 	else
389 		return pt->dev ? &pt->dev->ptype_specific :
390 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
391 }
392 
393 /**
394  *	dev_add_pack - add packet handler
395  *	@pt: packet type declaration
396  *
397  *	Add a protocol handler to the networking stack. The passed &packet_type
398  *	is linked into kernel lists and may not be freed until it has been
399  *	removed from the kernel lists.
400  *
401  *	This call does not sleep therefore it can not
402  *	guarantee all CPU's that are in middle of receiving packets
403  *	will see the new packet type (until the next received packet).
404  */
405 
406 void dev_add_pack(struct packet_type *pt)
407 {
408 	struct list_head *head = ptype_head(pt);
409 
410 	spin_lock(&ptype_lock);
411 	list_add_rcu(&pt->list, head);
412 	spin_unlock(&ptype_lock);
413 }
414 EXPORT_SYMBOL(dev_add_pack);
415 
416 /**
417  *	__dev_remove_pack	 - remove packet handler
418  *	@pt: packet type declaration
419  *
420  *	Remove a protocol handler that was previously added to the kernel
421  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
422  *	from the kernel lists and can be freed or reused once this function
423  *	returns.
424  *
425  *      The packet type might still be in use by receivers
426  *	and must not be freed until after all the CPU's have gone
427  *	through a quiescent state.
428  */
429 void __dev_remove_pack(struct packet_type *pt)
430 {
431 	struct list_head *head = ptype_head(pt);
432 	struct packet_type *pt1;
433 
434 	spin_lock(&ptype_lock);
435 
436 	list_for_each_entry(pt1, head, list) {
437 		if (pt == pt1) {
438 			list_del_rcu(&pt->list);
439 			goto out;
440 		}
441 	}
442 
443 	pr_warn("dev_remove_pack: %p not found\n", pt);
444 out:
445 	spin_unlock(&ptype_lock);
446 }
447 EXPORT_SYMBOL(__dev_remove_pack);
448 
449 /**
450  *	dev_remove_pack	 - remove packet handler
451  *	@pt: packet type declaration
452  *
453  *	Remove a protocol handler that was previously added to the kernel
454  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
455  *	from the kernel lists and can be freed or reused once this function
456  *	returns.
457  *
458  *	This call sleeps to guarantee that no CPU is looking at the packet
459  *	type after return.
460  */
461 void dev_remove_pack(struct packet_type *pt)
462 {
463 	__dev_remove_pack(pt);
464 
465 	synchronize_net();
466 }
467 EXPORT_SYMBOL(dev_remove_pack);
468 
469 
470 /**
471  *	dev_add_offload - register offload handlers
472  *	@po: protocol offload declaration
473  *
474  *	Add protocol offload handlers to the networking stack. The passed
475  *	&proto_offload is linked into kernel lists and may not be freed until
476  *	it has been removed from the kernel lists.
477  *
478  *	This call does not sleep therefore it can not
479  *	guarantee all CPU's that are in middle of receiving packets
480  *	will see the new offload handlers (until the next received packet).
481  */
482 void dev_add_offload(struct packet_offload *po)
483 {
484 	struct packet_offload *elem;
485 
486 	spin_lock(&offload_lock);
487 	list_for_each_entry(elem, &offload_base, list) {
488 		if (po->priority < elem->priority)
489 			break;
490 	}
491 	list_add_rcu(&po->list, elem->list.prev);
492 	spin_unlock(&offload_lock);
493 }
494 EXPORT_SYMBOL(dev_add_offload);
495 
496 /**
497  *	__dev_remove_offload	 - remove offload handler
498  *	@po: packet offload declaration
499  *
500  *	Remove a protocol offload handler that was previously added to the
501  *	kernel offload handlers by dev_add_offload(). The passed &offload_type
502  *	is removed from the kernel lists and can be freed or reused once this
503  *	function returns.
504  *
505  *      The packet type might still be in use by receivers
506  *	and must not be freed until after all the CPU's have gone
507  *	through a quiescent state.
508  */
509 static void __dev_remove_offload(struct packet_offload *po)
510 {
511 	struct list_head *head = &offload_base;
512 	struct packet_offload *po1;
513 
514 	spin_lock(&offload_lock);
515 
516 	list_for_each_entry(po1, head, list) {
517 		if (po == po1) {
518 			list_del_rcu(&po->list);
519 			goto out;
520 		}
521 	}
522 
523 	pr_warn("dev_remove_offload: %p not found\n", po);
524 out:
525 	spin_unlock(&offload_lock);
526 }
527 
528 /**
529  *	dev_remove_offload	 - remove packet offload handler
530  *	@po: packet offload declaration
531  *
532  *	Remove a packet offload handler that was previously added to the kernel
533  *	offload handlers by dev_add_offload(). The passed &offload_type is
534  *	removed from the kernel lists and can be freed or reused once this
535  *	function returns.
536  *
537  *	This call sleeps to guarantee that no CPU is looking at the packet
538  *	type after return.
539  */
540 void dev_remove_offload(struct packet_offload *po)
541 {
542 	__dev_remove_offload(po);
543 
544 	synchronize_net();
545 }
546 EXPORT_SYMBOL(dev_remove_offload);
547 
548 /******************************************************************************
549  *
550  *		      Device Boot-time Settings Routines
551  *
552  ******************************************************************************/
553 
554 /* Boot time configuration table */
555 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
556 
557 /**
558  *	netdev_boot_setup_add	- add new setup entry
559  *	@name: name of the device
560  *	@map: configured settings for the device
561  *
562  *	Adds new setup entry to the dev_boot_setup list.  The function
563  *	returns 0 on error and 1 on success.  This is a generic routine to
564  *	all netdevices.
565  */
566 static int netdev_boot_setup_add(char *name, struct ifmap *map)
567 {
568 	struct netdev_boot_setup *s;
569 	int i;
570 
571 	s = dev_boot_setup;
572 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
573 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
574 			memset(s[i].name, 0, sizeof(s[i].name));
575 			strlcpy(s[i].name, name, IFNAMSIZ);
576 			memcpy(&s[i].map, map, sizeof(s[i].map));
577 			break;
578 		}
579 	}
580 
581 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
582 }
583 
584 /**
585  * netdev_boot_setup_check	- check boot time settings
586  * @dev: the netdevice
587  *
588  * Check boot time settings for the device.
589  * The found settings are set for the device to be used
590  * later in the device probing.
591  * Returns 0 if no settings found, 1 if they are.
592  */
593 int netdev_boot_setup_check(struct net_device *dev)
594 {
595 	struct netdev_boot_setup *s = dev_boot_setup;
596 	int i;
597 
598 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
599 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
600 		    !strcmp(dev->name, s[i].name)) {
601 			dev->irq = s[i].map.irq;
602 			dev->base_addr = s[i].map.base_addr;
603 			dev->mem_start = s[i].map.mem_start;
604 			dev->mem_end = s[i].map.mem_end;
605 			return 1;
606 		}
607 	}
608 	return 0;
609 }
610 EXPORT_SYMBOL(netdev_boot_setup_check);
611 
612 
613 /**
614  * netdev_boot_base	- get address from boot time settings
615  * @prefix: prefix for network device
616  * @unit: id for network device
617  *
618  * Check boot time settings for the base address of device.
619  * The found settings are set for the device to be used
620  * later in the device probing.
621  * Returns 0 if no settings found.
622  */
623 unsigned long netdev_boot_base(const char *prefix, int unit)
624 {
625 	const struct netdev_boot_setup *s = dev_boot_setup;
626 	char name[IFNAMSIZ];
627 	int i;
628 
629 	sprintf(name, "%s%d", prefix, unit);
630 
631 	/*
632 	 * If device already registered then return base of 1
633 	 * to indicate not to probe for this interface
634 	 */
635 	if (__dev_get_by_name(&init_net, name))
636 		return 1;
637 
638 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
639 		if (!strcmp(name, s[i].name))
640 			return s[i].map.base_addr;
641 	return 0;
642 }
643 
644 /*
645  * Saves at boot time configured settings for any netdevice.
646  */
647 int __init netdev_boot_setup(char *str)
648 {
649 	int ints[5];
650 	struct ifmap map;
651 
652 	str = get_options(str, ARRAY_SIZE(ints), ints);
653 	if (!str || !*str)
654 		return 0;
655 
656 	/* Save settings */
657 	memset(&map, 0, sizeof(map));
658 	if (ints[0] > 0)
659 		map.irq = ints[1];
660 	if (ints[0] > 1)
661 		map.base_addr = ints[2];
662 	if (ints[0] > 2)
663 		map.mem_start = ints[3];
664 	if (ints[0] > 3)
665 		map.mem_end = ints[4];
666 
667 	/* Add new entry to the list */
668 	return netdev_boot_setup_add(str, &map);
669 }
670 
671 __setup("netdev=", netdev_boot_setup);
672 
673 /*******************************************************************************
674  *
675  *			    Device Interface Subroutines
676  *
677  *******************************************************************************/
678 
679 /**
680  *	dev_get_iflink	- get 'iflink' value of a interface
681  *	@dev: targeted interface
682  *
683  *	Indicates the ifindex the interface is linked to.
684  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
685  */
686 
687 int dev_get_iflink(const struct net_device *dev)
688 {
689 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
690 		return dev->netdev_ops->ndo_get_iflink(dev);
691 
692 	return dev->ifindex;
693 }
694 EXPORT_SYMBOL(dev_get_iflink);
695 
696 /**
697  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
698  *	@dev: targeted interface
699  *	@skb: The packet.
700  *
701  *	For better visibility of tunnel traffic OVS needs to retrieve
702  *	egress tunnel information for a packet. Following API allows
703  *	user to get this info.
704  */
705 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
706 {
707 	struct ip_tunnel_info *info;
708 
709 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
710 		return -EINVAL;
711 
712 	info = skb_tunnel_info_unclone(skb);
713 	if (!info)
714 		return -ENOMEM;
715 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
716 		return -EINVAL;
717 
718 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
719 }
720 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
721 
722 /**
723  *	__dev_get_by_name	- find a device by its name
724  *	@net: the applicable net namespace
725  *	@name: name to find
726  *
727  *	Find an interface by name. Must be called under RTNL semaphore
728  *	or @dev_base_lock. If the name is found a pointer to the device
729  *	is returned. If the name is not found then %NULL is returned. The
730  *	reference counters are not incremented so the caller must be
731  *	careful with locks.
732  */
733 
734 struct net_device *__dev_get_by_name(struct net *net, const char *name)
735 {
736 	struct net_device *dev;
737 	struct hlist_head *head = dev_name_hash(net, name);
738 
739 	hlist_for_each_entry(dev, head, name_hlist)
740 		if (!strncmp(dev->name, name, IFNAMSIZ))
741 			return dev;
742 
743 	return NULL;
744 }
745 EXPORT_SYMBOL(__dev_get_by_name);
746 
747 /**
748  * dev_get_by_name_rcu	- find a device by its name
749  * @net: the applicable net namespace
750  * @name: name to find
751  *
752  * Find an interface by name.
753  * If the name is found a pointer to the device is returned.
754  * If the name is not found then %NULL is returned.
755  * The reference counters are not incremented so the caller must be
756  * careful with locks. The caller must hold RCU lock.
757  */
758 
759 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
760 {
761 	struct net_device *dev;
762 	struct hlist_head *head = dev_name_hash(net, name);
763 
764 	hlist_for_each_entry_rcu(dev, head, name_hlist)
765 		if (!strncmp(dev->name, name, IFNAMSIZ))
766 			return dev;
767 
768 	return NULL;
769 }
770 EXPORT_SYMBOL(dev_get_by_name_rcu);
771 
772 /**
773  *	dev_get_by_name		- find a device by its name
774  *	@net: the applicable net namespace
775  *	@name: name to find
776  *
777  *	Find an interface by name. This can be called from any
778  *	context and does its own locking. The returned handle has
779  *	the usage count incremented and the caller must use dev_put() to
780  *	release it when it is no longer needed. %NULL is returned if no
781  *	matching device is found.
782  */
783 
784 struct net_device *dev_get_by_name(struct net *net, const char *name)
785 {
786 	struct net_device *dev;
787 
788 	rcu_read_lock();
789 	dev = dev_get_by_name_rcu(net, name);
790 	if (dev)
791 		dev_hold(dev);
792 	rcu_read_unlock();
793 	return dev;
794 }
795 EXPORT_SYMBOL(dev_get_by_name);
796 
797 /**
798  *	__dev_get_by_index - find a device by its ifindex
799  *	@net: the applicable net namespace
800  *	@ifindex: index of device
801  *
802  *	Search for an interface by index. Returns %NULL if the device
803  *	is not found or a pointer to the device. The device has not
804  *	had its reference counter increased so the caller must be careful
805  *	about locking. The caller must hold either the RTNL semaphore
806  *	or @dev_base_lock.
807  */
808 
809 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
810 {
811 	struct net_device *dev;
812 	struct hlist_head *head = dev_index_hash(net, ifindex);
813 
814 	hlist_for_each_entry(dev, head, index_hlist)
815 		if (dev->ifindex == ifindex)
816 			return dev;
817 
818 	return NULL;
819 }
820 EXPORT_SYMBOL(__dev_get_by_index);
821 
822 /**
823  *	dev_get_by_index_rcu - find a device by its ifindex
824  *	@net: the applicable net namespace
825  *	@ifindex: index of device
826  *
827  *	Search for an interface by index. Returns %NULL if the device
828  *	is not found or a pointer to the device. The device has not
829  *	had its reference counter increased so the caller must be careful
830  *	about locking. The caller must hold RCU lock.
831  */
832 
833 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
834 {
835 	struct net_device *dev;
836 	struct hlist_head *head = dev_index_hash(net, ifindex);
837 
838 	hlist_for_each_entry_rcu(dev, head, index_hlist)
839 		if (dev->ifindex == ifindex)
840 			return dev;
841 
842 	return NULL;
843 }
844 EXPORT_SYMBOL(dev_get_by_index_rcu);
845 
846 
847 /**
848  *	dev_get_by_index - find a device by its ifindex
849  *	@net: the applicable net namespace
850  *	@ifindex: index of device
851  *
852  *	Search for an interface by index. Returns NULL if the device
853  *	is not found or a pointer to the device. The device returned has
854  *	had a reference added and the pointer is safe until the user calls
855  *	dev_put to indicate they have finished with it.
856  */
857 
858 struct net_device *dev_get_by_index(struct net *net, int ifindex)
859 {
860 	struct net_device *dev;
861 
862 	rcu_read_lock();
863 	dev = dev_get_by_index_rcu(net, ifindex);
864 	if (dev)
865 		dev_hold(dev);
866 	rcu_read_unlock();
867 	return dev;
868 }
869 EXPORT_SYMBOL(dev_get_by_index);
870 
871 /**
872  *	dev_get_by_napi_id - find a device by napi_id
873  *	@napi_id: ID of the NAPI struct
874  *
875  *	Search for an interface by NAPI ID. Returns %NULL if the device
876  *	is not found or a pointer to the device. The device has not had
877  *	its reference counter increased so the caller must be careful
878  *	about locking. The caller must hold RCU lock.
879  */
880 
881 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
882 {
883 	struct napi_struct *napi;
884 
885 	WARN_ON_ONCE(!rcu_read_lock_held());
886 
887 	if (napi_id < MIN_NAPI_ID)
888 		return NULL;
889 
890 	napi = napi_by_id(napi_id);
891 
892 	return napi ? napi->dev : NULL;
893 }
894 EXPORT_SYMBOL(dev_get_by_napi_id);
895 
896 /**
897  *	netdev_get_name - get a netdevice name, knowing its ifindex.
898  *	@net: network namespace
899  *	@name: a pointer to the buffer where the name will be stored.
900  *	@ifindex: the ifindex of the interface to get the name from.
901  *
902  *	The use of raw_seqcount_begin() and cond_resched() before
903  *	retrying is required as we want to give the writers a chance
904  *	to complete when CONFIG_PREEMPT is not set.
905  */
906 int netdev_get_name(struct net *net, char *name, int ifindex)
907 {
908 	struct net_device *dev;
909 	unsigned int seq;
910 
911 retry:
912 	seq = raw_seqcount_begin(&devnet_rename_seq);
913 	rcu_read_lock();
914 	dev = dev_get_by_index_rcu(net, ifindex);
915 	if (!dev) {
916 		rcu_read_unlock();
917 		return -ENODEV;
918 	}
919 
920 	strcpy(name, dev->name);
921 	rcu_read_unlock();
922 	if (read_seqcount_retry(&devnet_rename_seq, seq)) {
923 		cond_resched();
924 		goto retry;
925 	}
926 
927 	return 0;
928 }
929 
930 /**
931  *	dev_getbyhwaddr_rcu - find a device by its hardware address
932  *	@net: the applicable net namespace
933  *	@type: media type of device
934  *	@ha: hardware address
935  *
936  *	Search for an interface by MAC address. Returns NULL if the device
937  *	is not found or a pointer to the device.
938  *	The caller must hold RCU or RTNL.
939  *	The returned device has not had its ref count increased
940  *	and the caller must therefore be careful about locking
941  *
942  */
943 
944 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
945 				       const char *ha)
946 {
947 	struct net_device *dev;
948 
949 	for_each_netdev_rcu(net, dev)
950 		if (dev->type == type &&
951 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
952 			return dev;
953 
954 	return NULL;
955 }
956 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
957 
958 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
959 {
960 	struct net_device *dev;
961 
962 	ASSERT_RTNL();
963 	for_each_netdev(net, dev)
964 		if (dev->type == type)
965 			return dev;
966 
967 	return NULL;
968 }
969 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
970 
971 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
972 {
973 	struct net_device *dev, *ret = NULL;
974 
975 	rcu_read_lock();
976 	for_each_netdev_rcu(net, dev)
977 		if (dev->type == type) {
978 			dev_hold(dev);
979 			ret = dev;
980 			break;
981 		}
982 	rcu_read_unlock();
983 	return ret;
984 }
985 EXPORT_SYMBOL(dev_getfirstbyhwtype);
986 
987 /**
988  *	__dev_get_by_flags - find any device with given flags
989  *	@net: the applicable net namespace
990  *	@if_flags: IFF_* values
991  *	@mask: bitmask of bits in if_flags to check
992  *
993  *	Search for any interface with the given flags. Returns NULL if a device
994  *	is not found or a pointer to the device. Must be called inside
995  *	rtnl_lock(), and result refcount is unchanged.
996  */
997 
998 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
999 				      unsigned short mask)
1000 {
1001 	struct net_device *dev, *ret;
1002 
1003 	ASSERT_RTNL();
1004 
1005 	ret = NULL;
1006 	for_each_netdev(net, dev) {
1007 		if (((dev->flags ^ if_flags) & mask) == 0) {
1008 			ret = dev;
1009 			break;
1010 		}
1011 	}
1012 	return ret;
1013 }
1014 EXPORT_SYMBOL(__dev_get_by_flags);
1015 
1016 /**
1017  *	dev_valid_name - check if name is okay for network device
1018  *	@name: name string
1019  *
1020  *	Network device names need to be valid file names to
1021  *	to allow sysfs to work.  We also disallow any kind of
1022  *	whitespace.
1023  */
1024 bool dev_valid_name(const char *name)
1025 {
1026 	if (*name == '\0')
1027 		return false;
1028 	if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1029 		return false;
1030 	if (!strcmp(name, ".") || !strcmp(name, ".."))
1031 		return false;
1032 
1033 	while (*name) {
1034 		if (*name == '/' || *name == ':' || isspace(*name))
1035 			return false;
1036 		name++;
1037 	}
1038 	return true;
1039 }
1040 EXPORT_SYMBOL(dev_valid_name);
1041 
1042 /**
1043  *	__dev_alloc_name - allocate a name for a device
1044  *	@net: network namespace to allocate the device name in
1045  *	@name: name format string
1046  *	@buf:  scratch buffer and result name string
1047  *
1048  *	Passed a format string - eg "lt%d" it will try and find a suitable
1049  *	id. It scans list of devices to build up a free map, then chooses
1050  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1051  *	while allocating the name and adding the device in order to avoid
1052  *	duplicates.
1053  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1054  *	Returns the number of the unit assigned or a negative errno code.
1055  */
1056 
1057 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1058 {
1059 	int i = 0;
1060 	const char *p;
1061 	const int max_netdevices = 8*PAGE_SIZE;
1062 	unsigned long *inuse;
1063 	struct net_device *d;
1064 
1065 	if (!dev_valid_name(name))
1066 		return -EINVAL;
1067 
1068 	p = strchr(name, '%');
1069 	if (p) {
1070 		/*
1071 		 * Verify the string as this thing may have come from
1072 		 * the user.  There must be either one "%d" and no other "%"
1073 		 * characters.
1074 		 */
1075 		if (p[1] != 'd' || strchr(p + 2, '%'))
1076 			return -EINVAL;
1077 
1078 		/* Use one page as a bit array of possible slots */
1079 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1080 		if (!inuse)
1081 			return -ENOMEM;
1082 
1083 		for_each_netdev(net, d) {
1084 			if (!sscanf(d->name, name, &i))
1085 				continue;
1086 			if (i < 0 || i >= max_netdevices)
1087 				continue;
1088 
1089 			/*  avoid cases where sscanf is not exact inverse of printf */
1090 			snprintf(buf, IFNAMSIZ, name, i);
1091 			if (!strncmp(buf, d->name, IFNAMSIZ))
1092 				set_bit(i, inuse);
1093 		}
1094 
1095 		i = find_first_zero_bit(inuse, max_netdevices);
1096 		free_page((unsigned long) inuse);
1097 	}
1098 
1099 	snprintf(buf, IFNAMSIZ, name, i);
1100 	if (!__dev_get_by_name(net, buf))
1101 		return i;
1102 
1103 	/* It is possible to run out of possible slots
1104 	 * when the name is long and there isn't enough space left
1105 	 * for the digits, or if all bits are used.
1106 	 */
1107 	return -ENFILE;
1108 }
1109 
1110 static int dev_alloc_name_ns(struct net *net,
1111 			     struct net_device *dev,
1112 			     const char *name)
1113 {
1114 	char buf[IFNAMSIZ];
1115 	int ret;
1116 
1117 	BUG_ON(!net);
1118 	ret = __dev_alloc_name(net, name, buf);
1119 	if (ret >= 0)
1120 		strlcpy(dev->name, buf, IFNAMSIZ);
1121 	return ret;
1122 }
1123 
1124 /**
1125  *	dev_alloc_name - allocate a name for a device
1126  *	@dev: device
1127  *	@name: name format string
1128  *
1129  *	Passed a format string - eg "lt%d" it will try and find a suitable
1130  *	id. It scans list of devices to build up a free map, then chooses
1131  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1132  *	while allocating the name and adding the device in order to avoid
1133  *	duplicates.
1134  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1135  *	Returns the number of the unit assigned or a negative errno code.
1136  */
1137 
1138 int dev_alloc_name(struct net_device *dev, const char *name)
1139 {
1140 	return dev_alloc_name_ns(dev_net(dev), dev, name);
1141 }
1142 EXPORT_SYMBOL(dev_alloc_name);
1143 
1144 int dev_get_valid_name(struct net *net, struct net_device *dev,
1145 		       const char *name)
1146 {
1147 	BUG_ON(!net);
1148 
1149 	if (!dev_valid_name(name))
1150 		return -EINVAL;
1151 
1152 	if (strchr(name, '%'))
1153 		return dev_alloc_name_ns(net, dev, name);
1154 	else if (__dev_get_by_name(net, name))
1155 		return -EEXIST;
1156 	else if (dev->name != name)
1157 		strlcpy(dev->name, name, IFNAMSIZ);
1158 
1159 	return 0;
1160 }
1161 EXPORT_SYMBOL(dev_get_valid_name);
1162 
1163 /**
1164  *	dev_change_name - change name of a device
1165  *	@dev: device
1166  *	@newname: name (or format string) must be at least IFNAMSIZ
1167  *
1168  *	Change name of a device, can pass format strings "eth%d".
1169  *	for wildcarding.
1170  */
1171 int dev_change_name(struct net_device *dev, const char *newname)
1172 {
1173 	unsigned char old_assign_type;
1174 	char oldname[IFNAMSIZ];
1175 	int err = 0;
1176 	int ret;
1177 	struct net *net;
1178 
1179 	ASSERT_RTNL();
1180 	BUG_ON(!dev_net(dev));
1181 
1182 	net = dev_net(dev);
1183 
1184 	/* Some auto-enslaved devices e.g. failover slaves are
1185 	 * special, as userspace might rename the device after
1186 	 * the interface had been brought up and running since
1187 	 * the point kernel initiated auto-enslavement. Allow
1188 	 * live name change even when these slave devices are
1189 	 * up and running.
1190 	 *
1191 	 * Typically, users of these auto-enslaving devices
1192 	 * don't actually care about slave name change, as
1193 	 * they are supposed to operate on master interface
1194 	 * directly.
1195 	 */
1196 	if (dev->flags & IFF_UP &&
1197 	    likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1198 		return -EBUSY;
1199 
1200 	write_seqcount_begin(&devnet_rename_seq);
1201 
1202 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1203 		write_seqcount_end(&devnet_rename_seq);
1204 		return 0;
1205 	}
1206 
1207 	memcpy(oldname, dev->name, IFNAMSIZ);
1208 
1209 	err = dev_get_valid_name(net, dev, newname);
1210 	if (err < 0) {
1211 		write_seqcount_end(&devnet_rename_seq);
1212 		return err;
1213 	}
1214 
1215 	if (oldname[0] && !strchr(oldname, '%'))
1216 		netdev_info(dev, "renamed from %s\n", oldname);
1217 
1218 	old_assign_type = dev->name_assign_type;
1219 	dev->name_assign_type = NET_NAME_RENAMED;
1220 
1221 rollback:
1222 	ret = device_rename(&dev->dev, dev->name);
1223 	if (ret) {
1224 		memcpy(dev->name, oldname, IFNAMSIZ);
1225 		dev->name_assign_type = old_assign_type;
1226 		write_seqcount_end(&devnet_rename_seq);
1227 		return ret;
1228 	}
1229 
1230 	write_seqcount_end(&devnet_rename_seq);
1231 
1232 	netdev_adjacent_rename_links(dev, oldname);
1233 
1234 	write_lock_bh(&dev_base_lock);
1235 	hlist_del_rcu(&dev->name_hlist);
1236 	write_unlock_bh(&dev_base_lock);
1237 
1238 	synchronize_rcu();
1239 
1240 	write_lock_bh(&dev_base_lock);
1241 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1242 	write_unlock_bh(&dev_base_lock);
1243 
1244 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1245 	ret = notifier_to_errno(ret);
1246 
1247 	if (ret) {
1248 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1249 		if (err >= 0) {
1250 			err = ret;
1251 			write_seqcount_begin(&devnet_rename_seq);
1252 			memcpy(dev->name, oldname, IFNAMSIZ);
1253 			memcpy(oldname, newname, IFNAMSIZ);
1254 			dev->name_assign_type = old_assign_type;
1255 			old_assign_type = NET_NAME_RENAMED;
1256 			goto rollback;
1257 		} else {
1258 			pr_err("%s: name change rollback failed: %d\n",
1259 			       dev->name, ret);
1260 		}
1261 	}
1262 
1263 	return err;
1264 }
1265 
1266 /**
1267  *	dev_set_alias - change ifalias of a device
1268  *	@dev: device
1269  *	@alias: name up to IFALIASZ
1270  *	@len: limit of bytes to copy from info
1271  *
1272  *	Set ifalias for a device,
1273  */
1274 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1275 {
1276 	struct dev_ifalias *new_alias = NULL;
1277 
1278 	if (len >= IFALIASZ)
1279 		return -EINVAL;
1280 
1281 	if (len) {
1282 		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1283 		if (!new_alias)
1284 			return -ENOMEM;
1285 
1286 		memcpy(new_alias->ifalias, alias, len);
1287 		new_alias->ifalias[len] = 0;
1288 	}
1289 
1290 	mutex_lock(&ifalias_mutex);
1291 	rcu_swap_protected(dev->ifalias, new_alias,
1292 			   mutex_is_locked(&ifalias_mutex));
1293 	mutex_unlock(&ifalias_mutex);
1294 
1295 	if (new_alias)
1296 		kfree_rcu(new_alias, rcuhead);
1297 
1298 	return len;
1299 }
1300 EXPORT_SYMBOL(dev_set_alias);
1301 
1302 /**
1303  *	dev_get_alias - get ifalias of a device
1304  *	@dev: device
1305  *	@name: buffer to store name of ifalias
1306  *	@len: size of buffer
1307  *
1308  *	get ifalias for a device.  Caller must make sure dev cannot go
1309  *	away,  e.g. rcu read lock or own a reference count to device.
1310  */
1311 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1312 {
1313 	const struct dev_ifalias *alias;
1314 	int ret = 0;
1315 
1316 	rcu_read_lock();
1317 	alias = rcu_dereference(dev->ifalias);
1318 	if (alias)
1319 		ret = snprintf(name, len, "%s", alias->ifalias);
1320 	rcu_read_unlock();
1321 
1322 	return ret;
1323 }
1324 
1325 /**
1326  *	netdev_features_change - device changes features
1327  *	@dev: device to cause notification
1328  *
1329  *	Called to indicate a device has changed features.
1330  */
1331 void netdev_features_change(struct net_device *dev)
1332 {
1333 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1334 }
1335 EXPORT_SYMBOL(netdev_features_change);
1336 
1337 /**
1338  *	netdev_state_change - device changes state
1339  *	@dev: device to cause notification
1340  *
1341  *	Called to indicate a device has changed state. This function calls
1342  *	the notifier chains for netdev_chain and sends a NEWLINK message
1343  *	to the routing socket.
1344  */
1345 void netdev_state_change(struct net_device *dev)
1346 {
1347 	if (dev->flags & IFF_UP) {
1348 		struct netdev_notifier_change_info change_info = {
1349 			.info.dev = dev,
1350 		};
1351 
1352 		call_netdevice_notifiers_info(NETDEV_CHANGE,
1353 					      &change_info.info);
1354 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1355 	}
1356 }
1357 EXPORT_SYMBOL(netdev_state_change);
1358 
1359 /**
1360  * netdev_notify_peers - notify network peers about existence of @dev
1361  * @dev: network device
1362  *
1363  * Generate traffic such that interested network peers are aware of
1364  * @dev, such as by generating a gratuitous ARP. This may be used when
1365  * a device wants to inform the rest of the network about some sort of
1366  * reconfiguration such as a failover event or virtual machine
1367  * migration.
1368  */
1369 void netdev_notify_peers(struct net_device *dev)
1370 {
1371 	rtnl_lock();
1372 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1373 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1374 	rtnl_unlock();
1375 }
1376 EXPORT_SYMBOL(netdev_notify_peers);
1377 
1378 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1379 {
1380 	const struct net_device_ops *ops = dev->netdev_ops;
1381 	int ret;
1382 
1383 	ASSERT_RTNL();
1384 
1385 	if (!netif_device_present(dev))
1386 		return -ENODEV;
1387 
1388 	/* Block netpoll from trying to do any rx path servicing.
1389 	 * If we don't do this there is a chance ndo_poll_controller
1390 	 * or ndo_poll may be running while we open the device
1391 	 */
1392 	netpoll_poll_disable(dev);
1393 
1394 	ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1395 	ret = notifier_to_errno(ret);
1396 	if (ret)
1397 		return ret;
1398 
1399 	set_bit(__LINK_STATE_START, &dev->state);
1400 
1401 	if (ops->ndo_validate_addr)
1402 		ret = ops->ndo_validate_addr(dev);
1403 
1404 	if (!ret && ops->ndo_open)
1405 		ret = ops->ndo_open(dev);
1406 
1407 	netpoll_poll_enable(dev);
1408 
1409 	if (ret)
1410 		clear_bit(__LINK_STATE_START, &dev->state);
1411 	else {
1412 		dev->flags |= IFF_UP;
1413 		dev_set_rx_mode(dev);
1414 		dev_activate(dev);
1415 		add_device_randomness(dev->dev_addr, dev->addr_len);
1416 	}
1417 
1418 	return ret;
1419 }
1420 
1421 /**
1422  *	dev_open	- prepare an interface for use.
1423  *	@dev: device to open
1424  *	@extack: netlink extended ack
1425  *
1426  *	Takes a device from down to up state. The device's private open
1427  *	function is invoked and then the multicast lists are loaded. Finally
1428  *	the device is moved into the up state and a %NETDEV_UP message is
1429  *	sent to the netdev notifier chain.
1430  *
1431  *	Calling this function on an active interface is a nop. On a failure
1432  *	a negative errno code is returned.
1433  */
1434 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1435 {
1436 	int ret;
1437 
1438 	if (dev->flags & IFF_UP)
1439 		return 0;
1440 
1441 	ret = __dev_open(dev, extack);
1442 	if (ret < 0)
1443 		return ret;
1444 
1445 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1446 	call_netdevice_notifiers(NETDEV_UP, dev);
1447 
1448 	return ret;
1449 }
1450 EXPORT_SYMBOL(dev_open);
1451 
1452 static void __dev_close_many(struct list_head *head)
1453 {
1454 	struct net_device *dev;
1455 
1456 	ASSERT_RTNL();
1457 	might_sleep();
1458 
1459 	list_for_each_entry(dev, head, close_list) {
1460 		/* Temporarily disable netpoll until the interface is down */
1461 		netpoll_poll_disable(dev);
1462 
1463 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1464 
1465 		clear_bit(__LINK_STATE_START, &dev->state);
1466 
1467 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1468 		 * can be even on different cpu. So just clear netif_running().
1469 		 *
1470 		 * dev->stop() will invoke napi_disable() on all of it's
1471 		 * napi_struct instances on this device.
1472 		 */
1473 		smp_mb__after_atomic(); /* Commit netif_running(). */
1474 	}
1475 
1476 	dev_deactivate_many(head);
1477 
1478 	list_for_each_entry(dev, head, close_list) {
1479 		const struct net_device_ops *ops = dev->netdev_ops;
1480 
1481 		/*
1482 		 *	Call the device specific close. This cannot fail.
1483 		 *	Only if device is UP
1484 		 *
1485 		 *	We allow it to be called even after a DETACH hot-plug
1486 		 *	event.
1487 		 */
1488 		if (ops->ndo_stop)
1489 			ops->ndo_stop(dev);
1490 
1491 		dev->flags &= ~IFF_UP;
1492 		netpoll_poll_enable(dev);
1493 	}
1494 }
1495 
1496 static void __dev_close(struct net_device *dev)
1497 {
1498 	LIST_HEAD(single);
1499 
1500 	list_add(&dev->close_list, &single);
1501 	__dev_close_many(&single);
1502 	list_del(&single);
1503 }
1504 
1505 void dev_close_many(struct list_head *head, bool unlink)
1506 {
1507 	struct net_device *dev, *tmp;
1508 
1509 	/* Remove the devices that don't need to be closed */
1510 	list_for_each_entry_safe(dev, tmp, head, close_list)
1511 		if (!(dev->flags & IFF_UP))
1512 			list_del_init(&dev->close_list);
1513 
1514 	__dev_close_many(head);
1515 
1516 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1517 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1518 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1519 		if (unlink)
1520 			list_del_init(&dev->close_list);
1521 	}
1522 }
1523 EXPORT_SYMBOL(dev_close_many);
1524 
1525 /**
1526  *	dev_close - shutdown an interface.
1527  *	@dev: device to shutdown
1528  *
1529  *	This function moves an active device into down state. A
1530  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1531  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1532  *	chain.
1533  */
1534 void dev_close(struct net_device *dev)
1535 {
1536 	if (dev->flags & IFF_UP) {
1537 		LIST_HEAD(single);
1538 
1539 		list_add(&dev->close_list, &single);
1540 		dev_close_many(&single, true);
1541 		list_del(&single);
1542 	}
1543 }
1544 EXPORT_SYMBOL(dev_close);
1545 
1546 
1547 /**
1548  *	dev_disable_lro - disable Large Receive Offload on a device
1549  *	@dev: device
1550  *
1551  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1552  *	called under RTNL.  This is needed if received packets may be
1553  *	forwarded to another interface.
1554  */
1555 void dev_disable_lro(struct net_device *dev)
1556 {
1557 	struct net_device *lower_dev;
1558 	struct list_head *iter;
1559 
1560 	dev->wanted_features &= ~NETIF_F_LRO;
1561 	netdev_update_features(dev);
1562 
1563 	if (unlikely(dev->features & NETIF_F_LRO))
1564 		netdev_WARN(dev, "failed to disable LRO!\n");
1565 
1566 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1567 		dev_disable_lro(lower_dev);
1568 }
1569 EXPORT_SYMBOL(dev_disable_lro);
1570 
1571 /**
1572  *	dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1573  *	@dev: device
1574  *
1575  *	Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1576  *	called under RTNL.  This is needed if Generic XDP is installed on
1577  *	the device.
1578  */
1579 static void dev_disable_gro_hw(struct net_device *dev)
1580 {
1581 	dev->wanted_features &= ~NETIF_F_GRO_HW;
1582 	netdev_update_features(dev);
1583 
1584 	if (unlikely(dev->features & NETIF_F_GRO_HW))
1585 		netdev_WARN(dev, "failed to disable GRO_HW!\n");
1586 }
1587 
1588 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1589 {
1590 #define N(val) 						\
1591 	case NETDEV_##val:				\
1592 		return "NETDEV_" __stringify(val);
1593 	switch (cmd) {
1594 	N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1595 	N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1596 	N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1597 	N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1598 	N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1599 	N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1600 	N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1601 	N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1602 	N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1603 	N(PRE_CHANGEADDR)
1604 	}
1605 #undef N
1606 	return "UNKNOWN_NETDEV_EVENT";
1607 }
1608 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1609 
1610 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1611 				   struct net_device *dev)
1612 {
1613 	struct netdev_notifier_info info = {
1614 		.dev = dev,
1615 	};
1616 
1617 	return nb->notifier_call(nb, val, &info);
1618 }
1619 
1620 static int dev_boot_phase = 1;
1621 
1622 /**
1623  * register_netdevice_notifier - register a network notifier block
1624  * @nb: notifier
1625  *
1626  * Register a notifier to be called when network device events occur.
1627  * The notifier passed is linked into the kernel structures and must
1628  * not be reused until it has been unregistered. A negative errno code
1629  * is returned on a failure.
1630  *
1631  * When registered all registration and up events are replayed
1632  * to the new notifier to allow device to have a race free
1633  * view of the network device list.
1634  */
1635 
1636 int register_netdevice_notifier(struct notifier_block *nb)
1637 {
1638 	struct net_device *dev;
1639 	struct net_device *last;
1640 	struct net *net;
1641 	int err;
1642 
1643 	/* Close race with setup_net() and cleanup_net() */
1644 	down_write(&pernet_ops_rwsem);
1645 	rtnl_lock();
1646 	err = raw_notifier_chain_register(&netdev_chain, nb);
1647 	if (err)
1648 		goto unlock;
1649 	if (dev_boot_phase)
1650 		goto unlock;
1651 	for_each_net(net) {
1652 		for_each_netdev(net, dev) {
1653 			err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1654 			err = notifier_to_errno(err);
1655 			if (err)
1656 				goto rollback;
1657 
1658 			if (!(dev->flags & IFF_UP))
1659 				continue;
1660 
1661 			call_netdevice_notifier(nb, NETDEV_UP, dev);
1662 		}
1663 	}
1664 
1665 unlock:
1666 	rtnl_unlock();
1667 	up_write(&pernet_ops_rwsem);
1668 	return err;
1669 
1670 rollback:
1671 	last = dev;
1672 	for_each_net(net) {
1673 		for_each_netdev(net, dev) {
1674 			if (dev == last)
1675 				goto outroll;
1676 
1677 			if (dev->flags & IFF_UP) {
1678 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1679 							dev);
1680 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1681 			}
1682 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1683 		}
1684 	}
1685 
1686 outroll:
1687 	raw_notifier_chain_unregister(&netdev_chain, nb);
1688 	goto unlock;
1689 }
1690 EXPORT_SYMBOL(register_netdevice_notifier);
1691 
1692 /**
1693  * unregister_netdevice_notifier - unregister a network notifier block
1694  * @nb: notifier
1695  *
1696  * Unregister a notifier previously registered by
1697  * register_netdevice_notifier(). The notifier is unlinked into the
1698  * kernel structures and may then be reused. A negative errno code
1699  * is returned on a failure.
1700  *
1701  * After unregistering unregister and down device events are synthesized
1702  * for all devices on the device list to the removed notifier to remove
1703  * the need for special case cleanup code.
1704  */
1705 
1706 int unregister_netdevice_notifier(struct notifier_block *nb)
1707 {
1708 	struct net_device *dev;
1709 	struct net *net;
1710 	int err;
1711 
1712 	/* Close race with setup_net() and cleanup_net() */
1713 	down_write(&pernet_ops_rwsem);
1714 	rtnl_lock();
1715 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1716 	if (err)
1717 		goto unlock;
1718 
1719 	for_each_net(net) {
1720 		for_each_netdev(net, dev) {
1721 			if (dev->flags & IFF_UP) {
1722 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1723 							dev);
1724 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1725 			}
1726 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1727 		}
1728 	}
1729 unlock:
1730 	rtnl_unlock();
1731 	up_write(&pernet_ops_rwsem);
1732 	return err;
1733 }
1734 EXPORT_SYMBOL(unregister_netdevice_notifier);
1735 
1736 /**
1737  *	call_netdevice_notifiers_info - call all network notifier blocks
1738  *	@val: value passed unmodified to notifier function
1739  *	@info: notifier information data
1740  *
1741  *	Call all network notifier blocks.  Parameters and return value
1742  *	are as for raw_notifier_call_chain().
1743  */
1744 
1745 static int call_netdevice_notifiers_info(unsigned long val,
1746 					 struct netdev_notifier_info *info)
1747 {
1748 	ASSERT_RTNL();
1749 	return raw_notifier_call_chain(&netdev_chain, val, info);
1750 }
1751 
1752 static int call_netdevice_notifiers_extack(unsigned long val,
1753 					   struct net_device *dev,
1754 					   struct netlink_ext_ack *extack)
1755 {
1756 	struct netdev_notifier_info info = {
1757 		.dev = dev,
1758 		.extack = extack,
1759 	};
1760 
1761 	return call_netdevice_notifiers_info(val, &info);
1762 }
1763 
1764 /**
1765  *	call_netdevice_notifiers - call all network notifier blocks
1766  *      @val: value passed unmodified to notifier function
1767  *      @dev: net_device pointer passed unmodified to notifier function
1768  *
1769  *	Call all network notifier blocks.  Parameters and return value
1770  *	are as for raw_notifier_call_chain().
1771  */
1772 
1773 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1774 {
1775 	return call_netdevice_notifiers_extack(val, dev, NULL);
1776 }
1777 EXPORT_SYMBOL(call_netdevice_notifiers);
1778 
1779 /**
1780  *	call_netdevice_notifiers_mtu - call all network notifier blocks
1781  *	@val: value passed unmodified to notifier function
1782  *	@dev: net_device pointer passed unmodified to notifier function
1783  *	@arg: additional u32 argument passed to the notifier function
1784  *
1785  *	Call all network notifier blocks.  Parameters and return value
1786  *	are as for raw_notifier_call_chain().
1787  */
1788 static int call_netdevice_notifiers_mtu(unsigned long val,
1789 					struct net_device *dev, u32 arg)
1790 {
1791 	struct netdev_notifier_info_ext info = {
1792 		.info.dev = dev,
1793 		.ext.mtu = arg,
1794 	};
1795 
1796 	BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
1797 
1798 	return call_netdevice_notifiers_info(val, &info.info);
1799 }
1800 
1801 #ifdef CONFIG_NET_INGRESS
1802 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
1803 
1804 void net_inc_ingress_queue(void)
1805 {
1806 	static_branch_inc(&ingress_needed_key);
1807 }
1808 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1809 
1810 void net_dec_ingress_queue(void)
1811 {
1812 	static_branch_dec(&ingress_needed_key);
1813 }
1814 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1815 #endif
1816 
1817 #ifdef CONFIG_NET_EGRESS
1818 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
1819 
1820 void net_inc_egress_queue(void)
1821 {
1822 	static_branch_inc(&egress_needed_key);
1823 }
1824 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1825 
1826 void net_dec_egress_queue(void)
1827 {
1828 	static_branch_dec(&egress_needed_key);
1829 }
1830 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1831 #endif
1832 
1833 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
1834 #ifdef CONFIG_JUMP_LABEL
1835 static atomic_t netstamp_needed_deferred;
1836 static atomic_t netstamp_wanted;
1837 static void netstamp_clear(struct work_struct *work)
1838 {
1839 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1840 	int wanted;
1841 
1842 	wanted = atomic_add_return(deferred, &netstamp_wanted);
1843 	if (wanted > 0)
1844 		static_branch_enable(&netstamp_needed_key);
1845 	else
1846 		static_branch_disable(&netstamp_needed_key);
1847 }
1848 static DECLARE_WORK(netstamp_work, netstamp_clear);
1849 #endif
1850 
1851 void net_enable_timestamp(void)
1852 {
1853 #ifdef CONFIG_JUMP_LABEL
1854 	int wanted;
1855 
1856 	while (1) {
1857 		wanted = atomic_read(&netstamp_wanted);
1858 		if (wanted <= 0)
1859 			break;
1860 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1861 			return;
1862 	}
1863 	atomic_inc(&netstamp_needed_deferred);
1864 	schedule_work(&netstamp_work);
1865 #else
1866 	static_branch_inc(&netstamp_needed_key);
1867 #endif
1868 }
1869 EXPORT_SYMBOL(net_enable_timestamp);
1870 
1871 void net_disable_timestamp(void)
1872 {
1873 #ifdef CONFIG_JUMP_LABEL
1874 	int wanted;
1875 
1876 	while (1) {
1877 		wanted = atomic_read(&netstamp_wanted);
1878 		if (wanted <= 1)
1879 			break;
1880 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1881 			return;
1882 	}
1883 	atomic_dec(&netstamp_needed_deferred);
1884 	schedule_work(&netstamp_work);
1885 #else
1886 	static_branch_dec(&netstamp_needed_key);
1887 #endif
1888 }
1889 EXPORT_SYMBOL(net_disable_timestamp);
1890 
1891 static inline void net_timestamp_set(struct sk_buff *skb)
1892 {
1893 	skb->tstamp = 0;
1894 	if (static_branch_unlikely(&netstamp_needed_key))
1895 		__net_timestamp(skb);
1896 }
1897 
1898 #define net_timestamp_check(COND, SKB)				\
1899 	if (static_branch_unlikely(&netstamp_needed_key)) {	\
1900 		if ((COND) && !(SKB)->tstamp)			\
1901 			__net_timestamp(SKB);			\
1902 	}							\
1903 
1904 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1905 {
1906 	unsigned int len;
1907 
1908 	if (!(dev->flags & IFF_UP))
1909 		return false;
1910 
1911 	len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1912 	if (skb->len <= len)
1913 		return true;
1914 
1915 	/* if TSO is enabled, we don't care about the length as the packet
1916 	 * could be forwarded without being segmented before
1917 	 */
1918 	if (skb_is_gso(skb))
1919 		return true;
1920 
1921 	return false;
1922 }
1923 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1924 
1925 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1926 {
1927 	int ret = ____dev_forward_skb(dev, skb);
1928 
1929 	if (likely(!ret)) {
1930 		skb->protocol = eth_type_trans(skb, dev);
1931 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1932 	}
1933 
1934 	return ret;
1935 }
1936 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1937 
1938 /**
1939  * dev_forward_skb - loopback an skb to another netif
1940  *
1941  * @dev: destination network device
1942  * @skb: buffer to forward
1943  *
1944  * return values:
1945  *	NET_RX_SUCCESS	(no congestion)
1946  *	NET_RX_DROP     (packet was dropped, but freed)
1947  *
1948  * dev_forward_skb can be used for injecting an skb from the
1949  * start_xmit function of one device into the receive queue
1950  * of another device.
1951  *
1952  * The receiving device may be in another namespace, so
1953  * we have to clear all information in the skb that could
1954  * impact namespace isolation.
1955  */
1956 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1957 {
1958 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1959 }
1960 EXPORT_SYMBOL_GPL(dev_forward_skb);
1961 
1962 static inline int deliver_skb(struct sk_buff *skb,
1963 			      struct packet_type *pt_prev,
1964 			      struct net_device *orig_dev)
1965 {
1966 	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
1967 		return -ENOMEM;
1968 	refcount_inc(&skb->users);
1969 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1970 }
1971 
1972 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1973 					  struct packet_type **pt,
1974 					  struct net_device *orig_dev,
1975 					  __be16 type,
1976 					  struct list_head *ptype_list)
1977 {
1978 	struct packet_type *ptype, *pt_prev = *pt;
1979 
1980 	list_for_each_entry_rcu(ptype, ptype_list, list) {
1981 		if (ptype->type != type)
1982 			continue;
1983 		if (pt_prev)
1984 			deliver_skb(skb, pt_prev, orig_dev);
1985 		pt_prev = ptype;
1986 	}
1987 	*pt = pt_prev;
1988 }
1989 
1990 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1991 {
1992 	if (!ptype->af_packet_priv || !skb->sk)
1993 		return false;
1994 
1995 	if (ptype->id_match)
1996 		return ptype->id_match(ptype, skb->sk);
1997 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1998 		return true;
1999 
2000 	return false;
2001 }
2002 
2003 /**
2004  * dev_nit_active - return true if any network interface taps are in use
2005  *
2006  * @dev: network device to check for the presence of taps
2007  */
2008 bool dev_nit_active(struct net_device *dev)
2009 {
2010 	return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2011 }
2012 EXPORT_SYMBOL_GPL(dev_nit_active);
2013 
2014 /*
2015  *	Support routine. Sends outgoing frames to any network
2016  *	taps currently in use.
2017  */
2018 
2019 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2020 {
2021 	struct packet_type *ptype;
2022 	struct sk_buff *skb2 = NULL;
2023 	struct packet_type *pt_prev = NULL;
2024 	struct list_head *ptype_list = &ptype_all;
2025 
2026 	rcu_read_lock();
2027 again:
2028 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2029 		if (ptype->ignore_outgoing)
2030 			continue;
2031 
2032 		/* Never send packets back to the socket
2033 		 * they originated from - MvS (miquels@drinkel.ow.org)
2034 		 */
2035 		if (skb_loop_sk(ptype, skb))
2036 			continue;
2037 
2038 		if (pt_prev) {
2039 			deliver_skb(skb2, pt_prev, skb->dev);
2040 			pt_prev = ptype;
2041 			continue;
2042 		}
2043 
2044 		/* need to clone skb, done only once */
2045 		skb2 = skb_clone(skb, GFP_ATOMIC);
2046 		if (!skb2)
2047 			goto out_unlock;
2048 
2049 		net_timestamp_set(skb2);
2050 
2051 		/* skb->nh should be correctly
2052 		 * set by sender, so that the second statement is
2053 		 * just protection against buggy protocols.
2054 		 */
2055 		skb_reset_mac_header(skb2);
2056 
2057 		if (skb_network_header(skb2) < skb2->data ||
2058 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2059 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2060 					     ntohs(skb2->protocol),
2061 					     dev->name);
2062 			skb_reset_network_header(skb2);
2063 		}
2064 
2065 		skb2->transport_header = skb2->network_header;
2066 		skb2->pkt_type = PACKET_OUTGOING;
2067 		pt_prev = ptype;
2068 	}
2069 
2070 	if (ptype_list == &ptype_all) {
2071 		ptype_list = &dev->ptype_all;
2072 		goto again;
2073 	}
2074 out_unlock:
2075 	if (pt_prev) {
2076 		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2077 			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2078 		else
2079 			kfree_skb(skb2);
2080 	}
2081 	rcu_read_unlock();
2082 }
2083 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2084 
2085 /**
2086  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2087  * @dev: Network device
2088  * @txq: number of queues available
2089  *
2090  * If real_num_tx_queues is changed the tc mappings may no longer be
2091  * valid. To resolve this verify the tc mapping remains valid and if
2092  * not NULL the mapping. With no priorities mapping to this
2093  * offset/count pair it will no longer be used. In the worst case TC0
2094  * is invalid nothing can be done so disable priority mappings. If is
2095  * expected that drivers will fix this mapping if they can before
2096  * calling netif_set_real_num_tx_queues.
2097  */
2098 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2099 {
2100 	int i;
2101 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2102 
2103 	/* If TC0 is invalidated disable TC mapping */
2104 	if (tc->offset + tc->count > txq) {
2105 		pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2106 		dev->num_tc = 0;
2107 		return;
2108 	}
2109 
2110 	/* Invalidated prio to tc mappings set to TC0 */
2111 	for (i = 1; i < TC_BITMASK + 1; i++) {
2112 		int q = netdev_get_prio_tc_map(dev, i);
2113 
2114 		tc = &dev->tc_to_txq[q];
2115 		if (tc->offset + tc->count > txq) {
2116 			pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2117 				i, q);
2118 			netdev_set_prio_tc_map(dev, i, 0);
2119 		}
2120 	}
2121 }
2122 
2123 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2124 {
2125 	if (dev->num_tc) {
2126 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2127 		int i;
2128 
2129 		/* walk through the TCs and see if it falls into any of them */
2130 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2131 			if ((txq - tc->offset) < tc->count)
2132 				return i;
2133 		}
2134 
2135 		/* didn't find it, just return -1 to indicate no match */
2136 		return -1;
2137 	}
2138 
2139 	return 0;
2140 }
2141 EXPORT_SYMBOL(netdev_txq_to_tc);
2142 
2143 #ifdef CONFIG_XPS
2144 struct static_key xps_needed __read_mostly;
2145 EXPORT_SYMBOL(xps_needed);
2146 struct static_key xps_rxqs_needed __read_mostly;
2147 EXPORT_SYMBOL(xps_rxqs_needed);
2148 static DEFINE_MUTEX(xps_map_mutex);
2149 #define xmap_dereference(P)		\
2150 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2151 
2152 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2153 			     int tci, u16 index)
2154 {
2155 	struct xps_map *map = NULL;
2156 	int pos;
2157 
2158 	if (dev_maps)
2159 		map = xmap_dereference(dev_maps->attr_map[tci]);
2160 	if (!map)
2161 		return false;
2162 
2163 	for (pos = map->len; pos--;) {
2164 		if (map->queues[pos] != index)
2165 			continue;
2166 
2167 		if (map->len > 1) {
2168 			map->queues[pos] = map->queues[--map->len];
2169 			break;
2170 		}
2171 
2172 		RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2173 		kfree_rcu(map, rcu);
2174 		return false;
2175 	}
2176 
2177 	return true;
2178 }
2179 
2180 static bool remove_xps_queue_cpu(struct net_device *dev,
2181 				 struct xps_dev_maps *dev_maps,
2182 				 int cpu, u16 offset, u16 count)
2183 {
2184 	int num_tc = dev->num_tc ? : 1;
2185 	bool active = false;
2186 	int tci;
2187 
2188 	for (tci = cpu * num_tc; num_tc--; tci++) {
2189 		int i, j;
2190 
2191 		for (i = count, j = offset; i--; j++) {
2192 			if (!remove_xps_queue(dev_maps, tci, j))
2193 				break;
2194 		}
2195 
2196 		active |= i < 0;
2197 	}
2198 
2199 	return active;
2200 }
2201 
2202 static void reset_xps_maps(struct net_device *dev,
2203 			   struct xps_dev_maps *dev_maps,
2204 			   bool is_rxqs_map)
2205 {
2206 	if (is_rxqs_map) {
2207 		static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2208 		RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2209 	} else {
2210 		RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2211 	}
2212 	static_key_slow_dec_cpuslocked(&xps_needed);
2213 	kfree_rcu(dev_maps, rcu);
2214 }
2215 
2216 static void clean_xps_maps(struct net_device *dev, const unsigned long *mask,
2217 			   struct xps_dev_maps *dev_maps, unsigned int nr_ids,
2218 			   u16 offset, u16 count, bool is_rxqs_map)
2219 {
2220 	bool active = false;
2221 	int i, j;
2222 
2223 	for (j = -1; j = netif_attrmask_next(j, mask, nr_ids),
2224 	     j < nr_ids;)
2225 		active |= remove_xps_queue_cpu(dev, dev_maps, j, offset,
2226 					       count);
2227 	if (!active)
2228 		reset_xps_maps(dev, dev_maps, is_rxqs_map);
2229 
2230 	if (!is_rxqs_map) {
2231 		for (i = offset + (count - 1); count--; i--) {
2232 			netdev_queue_numa_node_write(
2233 				netdev_get_tx_queue(dev, i),
2234 				NUMA_NO_NODE);
2235 		}
2236 	}
2237 }
2238 
2239 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2240 				   u16 count)
2241 {
2242 	const unsigned long *possible_mask = NULL;
2243 	struct xps_dev_maps *dev_maps;
2244 	unsigned int nr_ids;
2245 
2246 	if (!static_key_false(&xps_needed))
2247 		return;
2248 
2249 	cpus_read_lock();
2250 	mutex_lock(&xps_map_mutex);
2251 
2252 	if (static_key_false(&xps_rxqs_needed)) {
2253 		dev_maps = xmap_dereference(dev->xps_rxqs_map);
2254 		if (dev_maps) {
2255 			nr_ids = dev->num_rx_queues;
2256 			clean_xps_maps(dev, possible_mask, dev_maps, nr_ids,
2257 				       offset, count, true);
2258 		}
2259 	}
2260 
2261 	dev_maps = xmap_dereference(dev->xps_cpus_map);
2262 	if (!dev_maps)
2263 		goto out_no_maps;
2264 
2265 	if (num_possible_cpus() > 1)
2266 		possible_mask = cpumask_bits(cpu_possible_mask);
2267 	nr_ids = nr_cpu_ids;
2268 	clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count,
2269 		       false);
2270 
2271 out_no_maps:
2272 	mutex_unlock(&xps_map_mutex);
2273 	cpus_read_unlock();
2274 }
2275 
2276 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2277 {
2278 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2279 }
2280 
2281 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2282 				      u16 index, bool is_rxqs_map)
2283 {
2284 	struct xps_map *new_map;
2285 	int alloc_len = XPS_MIN_MAP_ALLOC;
2286 	int i, pos;
2287 
2288 	for (pos = 0; map && pos < map->len; pos++) {
2289 		if (map->queues[pos] != index)
2290 			continue;
2291 		return map;
2292 	}
2293 
2294 	/* Need to add tx-queue to this CPU's/rx-queue's existing map */
2295 	if (map) {
2296 		if (pos < map->alloc_len)
2297 			return map;
2298 
2299 		alloc_len = map->alloc_len * 2;
2300 	}
2301 
2302 	/* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2303 	 *  map
2304 	 */
2305 	if (is_rxqs_map)
2306 		new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2307 	else
2308 		new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2309 				       cpu_to_node(attr_index));
2310 	if (!new_map)
2311 		return NULL;
2312 
2313 	for (i = 0; i < pos; i++)
2314 		new_map->queues[i] = map->queues[i];
2315 	new_map->alloc_len = alloc_len;
2316 	new_map->len = pos;
2317 
2318 	return new_map;
2319 }
2320 
2321 /* Must be called under cpus_read_lock */
2322 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2323 			  u16 index, bool is_rxqs_map)
2324 {
2325 	const unsigned long *online_mask = NULL, *possible_mask = NULL;
2326 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2327 	int i, j, tci, numa_node_id = -2;
2328 	int maps_sz, num_tc = 1, tc = 0;
2329 	struct xps_map *map, *new_map;
2330 	bool active = false;
2331 	unsigned int nr_ids;
2332 
2333 	if (dev->num_tc) {
2334 		/* Do not allow XPS on subordinate device directly */
2335 		num_tc = dev->num_tc;
2336 		if (num_tc < 0)
2337 			return -EINVAL;
2338 
2339 		/* If queue belongs to subordinate dev use its map */
2340 		dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2341 
2342 		tc = netdev_txq_to_tc(dev, index);
2343 		if (tc < 0)
2344 			return -EINVAL;
2345 	}
2346 
2347 	mutex_lock(&xps_map_mutex);
2348 	if (is_rxqs_map) {
2349 		maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2350 		dev_maps = xmap_dereference(dev->xps_rxqs_map);
2351 		nr_ids = dev->num_rx_queues;
2352 	} else {
2353 		maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2354 		if (num_possible_cpus() > 1) {
2355 			online_mask = cpumask_bits(cpu_online_mask);
2356 			possible_mask = cpumask_bits(cpu_possible_mask);
2357 		}
2358 		dev_maps = xmap_dereference(dev->xps_cpus_map);
2359 		nr_ids = nr_cpu_ids;
2360 	}
2361 
2362 	if (maps_sz < L1_CACHE_BYTES)
2363 		maps_sz = L1_CACHE_BYTES;
2364 
2365 	/* allocate memory for queue storage */
2366 	for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2367 	     j < nr_ids;) {
2368 		if (!new_dev_maps)
2369 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2370 		if (!new_dev_maps) {
2371 			mutex_unlock(&xps_map_mutex);
2372 			return -ENOMEM;
2373 		}
2374 
2375 		tci = j * num_tc + tc;
2376 		map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) :
2377 				 NULL;
2378 
2379 		map = expand_xps_map(map, j, index, is_rxqs_map);
2380 		if (!map)
2381 			goto error;
2382 
2383 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2384 	}
2385 
2386 	if (!new_dev_maps)
2387 		goto out_no_new_maps;
2388 
2389 	if (!dev_maps) {
2390 		/* Increment static keys at most once per type */
2391 		static_key_slow_inc_cpuslocked(&xps_needed);
2392 		if (is_rxqs_map)
2393 			static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2394 	}
2395 
2396 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2397 	     j < nr_ids;) {
2398 		/* copy maps belonging to foreign traffic classes */
2399 		for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) {
2400 			/* fill in the new device map from the old device map */
2401 			map = xmap_dereference(dev_maps->attr_map[tci]);
2402 			RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2403 		}
2404 
2405 		/* We need to explicitly update tci as prevous loop
2406 		 * could break out early if dev_maps is NULL.
2407 		 */
2408 		tci = j * num_tc + tc;
2409 
2410 		if (netif_attr_test_mask(j, mask, nr_ids) &&
2411 		    netif_attr_test_online(j, online_mask, nr_ids)) {
2412 			/* add tx-queue to CPU/rx-queue maps */
2413 			int pos = 0;
2414 
2415 			map = xmap_dereference(new_dev_maps->attr_map[tci]);
2416 			while ((pos < map->len) && (map->queues[pos] != index))
2417 				pos++;
2418 
2419 			if (pos == map->len)
2420 				map->queues[map->len++] = index;
2421 #ifdef CONFIG_NUMA
2422 			if (!is_rxqs_map) {
2423 				if (numa_node_id == -2)
2424 					numa_node_id = cpu_to_node(j);
2425 				else if (numa_node_id != cpu_to_node(j))
2426 					numa_node_id = -1;
2427 			}
2428 #endif
2429 		} else if (dev_maps) {
2430 			/* fill in the new device map from the old device map */
2431 			map = xmap_dereference(dev_maps->attr_map[tci]);
2432 			RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2433 		}
2434 
2435 		/* copy maps belonging to foreign traffic classes */
2436 		for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2437 			/* fill in the new device map from the old device map */
2438 			map = xmap_dereference(dev_maps->attr_map[tci]);
2439 			RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2440 		}
2441 	}
2442 
2443 	if (is_rxqs_map)
2444 		rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps);
2445 	else
2446 		rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps);
2447 
2448 	/* Cleanup old maps */
2449 	if (!dev_maps)
2450 		goto out_no_old_maps;
2451 
2452 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2453 	     j < nr_ids;) {
2454 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2455 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2456 			map = xmap_dereference(dev_maps->attr_map[tci]);
2457 			if (map && map != new_map)
2458 				kfree_rcu(map, rcu);
2459 		}
2460 	}
2461 
2462 	kfree_rcu(dev_maps, rcu);
2463 
2464 out_no_old_maps:
2465 	dev_maps = new_dev_maps;
2466 	active = true;
2467 
2468 out_no_new_maps:
2469 	if (!is_rxqs_map) {
2470 		/* update Tx queue numa node */
2471 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2472 					     (numa_node_id >= 0) ?
2473 					     numa_node_id : NUMA_NO_NODE);
2474 	}
2475 
2476 	if (!dev_maps)
2477 		goto out_no_maps;
2478 
2479 	/* removes tx-queue from unused CPUs/rx-queues */
2480 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2481 	     j < nr_ids;) {
2482 		for (i = tc, tci = j * num_tc; i--; tci++)
2483 			active |= remove_xps_queue(dev_maps, tci, index);
2484 		if (!netif_attr_test_mask(j, mask, nr_ids) ||
2485 		    !netif_attr_test_online(j, online_mask, nr_ids))
2486 			active |= remove_xps_queue(dev_maps, tci, index);
2487 		for (i = num_tc - tc, tci++; --i; tci++)
2488 			active |= remove_xps_queue(dev_maps, tci, index);
2489 	}
2490 
2491 	/* free map if not active */
2492 	if (!active)
2493 		reset_xps_maps(dev, dev_maps, is_rxqs_map);
2494 
2495 out_no_maps:
2496 	mutex_unlock(&xps_map_mutex);
2497 
2498 	return 0;
2499 error:
2500 	/* remove any maps that we added */
2501 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2502 	     j < nr_ids;) {
2503 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2504 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2505 			map = dev_maps ?
2506 			      xmap_dereference(dev_maps->attr_map[tci]) :
2507 			      NULL;
2508 			if (new_map && new_map != map)
2509 				kfree(new_map);
2510 		}
2511 	}
2512 
2513 	mutex_unlock(&xps_map_mutex);
2514 
2515 	kfree(new_dev_maps);
2516 	return -ENOMEM;
2517 }
2518 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2519 
2520 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2521 			u16 index)
2522 {
2523 	int ret;
2524 
2525 	cpus_read_lock();
2526 	ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, false);
2527 	cpus_read_unlock();
2528 
2529 	return ret;
2530 }
2531 EXPORT_SYMBOL(netif_set_xps_queue);
2532 
2533 #endif
2534 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2535 {
2536 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2537 
2538 	/* Unbind any subordinate channels */
2539 	while (txq-- != &dev->_tx[0]) {
2540 		if (txq->sb_dev)
2541 			netdev_unbind_sb_channel(dev, txq->sb_dev);
2542 	}
2543 }
2544 
2545 void netdev_reset_tc(struct net_device *dev)
2546 {
2547 #ifdef CONFIG_XPS
2548 	netif_reset_xps_queues_gt(dev, 0);
2549 #endif
2550 	netdev_unbind_all_sb_channels(dev);
2551 
2552 	/* Reset TC configuration of device */
2553 	dev->num_tc = 0;
2554 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2555 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2556 }
2557 EXPORT_SYMBOL(netdev_reset_tc);
2558 
2559 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2560 {
2561 	if (tc >= dev->num_tc)
2562 		return -EINVAL;
2563 
2564 #ifdef CONFIG_XPS
2565 	netif_reset_xps_queues(dev, offset, count);
2566 #endif
2567 	dev->tc_to_txq[tc].count = count;
2568 	dev->tc_to_txq[tc].offset = offset;
2569 	return 0;
2570 }
2571 EXPORT_SYMBOL(netdev_set_tc_queue);
2572 
2573 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2574 {
2575 	if (num_tc > TC_MAX_QUEUE)
2576 		return -EINVAL;
2577 
2578 #ifdef CONFIG_XPS
2579 	netif_reset_xps_queues_gt(dev, 0);
2580 #endif
2581 	netdev_unbind_all_sb_channels(dev);
2582 
2583 	dev->num_tc = num_tc;
2584 	return 0;
2585 }
2586 EXPORT_SYMBOL(netdev_set_num_tc);
2587 
2588 void netdev_unbind_sb_channel(struct net_device *dev,
2589 			      struct net_device *sb_dev)
2590 {
2591 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2592 
2593 #ifdef CONFIG_XPS
2594 	netif_reset_xps_queues_gt(sb_dev, 0);
2595 #endif
2596 	memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2597 	memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2598 
2599 	while (txq-- != &dev->_tx[0]) {
2600 		if (txq->sb_dev == sb_dev)
2601 			txq->sb_dev = NULL;
2602 	}
2603 }
2604 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2605 
2606 int netdev_bind_sb_channel_queue(struct net_device *dev,
2607 				 struct net_device *sb_dev,
2608 				 u8 tc, u16 count, u16 offset)
2609 {
2610 	/* Make certain the sb_dev and dev are already configured */
2611 	if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2612 		return -EINVAL;
2613 
2614 	/* We cannot hand out queues we don't have */
2615 	if ((offset + count) > dev->real_num_tx_queues)
2616 		return -EINVAL;
2617 
2618 	/* Record the mapping */
2619 	sb_dev->tc_to_txq[tc].count = count;
2620 	sb_dev->tc_to_txq[tc].offset = offset;
2621 
2622 	/* Provide a way for Tx queue to find the tc_to_txq map or
2623 	 * XPS map for itself.
2624 	 */
2625 	while (count--)
2626 		netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2627 
2628 	return 0;
2629 }
2630 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2631 
2632 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2633 {
2634 	/* Do not use a multiqueue device to represent a subordinate channel */
2635 	if (netif_is_multiqueue(dev))
2636 		return -ENODEV;
2637 
2638 	/* We allow channels 1 - 32767 to be used for subordinate channels.
2639 	 * Channel 0 is meant to be "native" mode and used only to represent
2640 	 * the main root device. We allow writing 0 to reset the device back
2641 	 * to normal mode after being used as a subordinate channel.
2642 	 */
2643 	if (channel > S16_MAX)
2644 		return -EINVAL;
2645 
2646 	dev->num_tc = -channel;
2647 
2648 	return 0;
2649 }
2650 EXPORT_SYMBOL(netdev_set_sb_channel);
2651 
2652 /*
2653  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2654  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2655  */
2656 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2657 {
2658 	bool disabling;
2659 	int rc;
2660 
2661 	disabling = txq < dev->real_num_tx_queues;
2662 
2663 	if (txq < 1 || txq > dev->num_tx_queues)
2664 		return -EINVAL;
2665 
2666 	if (dev->reg_state == NETREG_REGISTERED ||
2667 	    dev->reg_state == NETREG_UNREGISTERING) {
2668 		ASSERT_RTNL();
2669 
2670 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2671 						  txq);
2672 		if (rc)
2673 			return rc;
2674 
2675 		if (dev->num_tc)
2676 			netif_setup_tc(dev, txq);
2677 
2678 		dev->real_num_tx_queues = txq;
2679 
2680 		if (disabling) {
2681 			synchronize_net();
2682 			qdisc_reset_all_tx_gt(dev, txq);
2683 #ifdef CONFIG_XPS
2684 			netif_reset_xps_queues_gt(dev, txq);
2685 #endif
2686 		}
2687 	} else {
2688 		dev->real_num_tx_queues = txq;
2689 	}
2690 
2691 	return 0;
2692 }
2693 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2694 
2695 #ifdef CONFIG_SYSFS
2696 /**
2697  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2698  *	@dev: Network device
2699  *	@rxq: Actual number of RX queues
2700  *
2701  *	This must be called either with the rtnl_lock held or before
2702  *	registration of the net device.  Returns 0 on success, or a
2703  *	negative error code.  If called before registration, it always
2704  *	succeeds.
2705  */
2706 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2707 {
2708 	int rc;
2709 
2710 	if (rxq < 1 || rxq > dev->num_rx_queues)
2711 		return -EINVAL;
2712 
2713 	if (dev->reg_state == NETREG_REGISTERED) {
2714 		ASSERT_RTNL();
2715 
2716 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2717 						  rxq);
2718 		if (rc)
2719 			return rc;
2720 	}
2721 
2722 	dev->real_num_rx_queues = rxq;
2723 	return 0;
2724 }
2725 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2726 #endif
2727 
2728 /**
2729  * netif_get_num_default_rss_queues - default number of RSS queues
2730  *
2731  * This routine should set an upper limit on the number of RSS queues
2732  * used by default by multiqueue devices.
2733  */
2734 int netif_get_num_default_rss_queues(void)
2735 {
2736 	return is_kdump_kernel() ?
2737 		1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2738 }
2739 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2740 
2741 static void __netif_reschedule(struct Qdisc *q)
2742 {
2743 	struct softnet_data *sd;
2744 	unsigned long flags;
2745 
2746 	local_irq_save(flags);
2747 	sd = this_cpu_ptr(&softnet_data);
2748 	q->next_sched = NULL;
2749 	*sd->output_queue_tailp = q;
2750 	sd->output_queue_tailp = &q->next_sched;
2751 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2752 	local_irq_restore(flags);
2753 }
2754 
2755 void __netif_schedule(struct Qdisc *q)
2756 {
2757 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2758 		__netif_reschedule(q);
2759 }
2760 EXPORT_SYMBOL(__netif_schedule);
2761 
2762 struct dev_kfree_skb_cb {
2763 	enum skb_free_reason reason;
2764 };
2765 
2766 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2767 {
2768 	return (struct dev_kfree_skb_cb *)skb->cb;
2769 }
2770 
2771 void netif_schedule_queue(struct netdev_queue *txq)
2772 {
2773 	rcu_read_lock();
2774 	if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2775 		struct Qdisc *q = rcu_dereference(txq->qdisc);
2776 
2777 		__netif_schedule(q);
2778 	}
2779 	rcu_read_unlock();
2780 }
2781 EXPORT_SYMBOL(netif_schedule_queue);
2782 
2783 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2784 {
2785 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2786 		struct Qdisc *q;
2787 
2788 		rcu_read_lock();
2789 		q = rcu_dereference(dev_queue->qdisc);
2790 		__netif_schedule(q);
2791 		rcu_read_unlock();
2792 	}
2793 }
2794 EXPORT_SYMBOL(netif_tx_wake_queue);
2795 
2796 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2797 {
2798 	unsigned long flags;
2799 
2800 	if (unlikely(!skb))
2801 		return;
2802 
2803 	if (likely(refcount_read(&skb->users) == 1)) {
2804 		smp_rmb();
2805 		refcount_set(&skb->users, 0);
2806 	} else if (likely(!refcount_dec_and_test(&skb->users))) {
2807 		return;
2808 	}
2809 	get_kfree_skb_cb(skb)->reason = reason;
2810 	local_irq_save(flags);
2811 	skb->next = __this_cpu_read(softnet_data.completion_queue);
2812 	__this_cpu_write(softnet_data.completion_queue, skb);
2813 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2814 	local_irq_restore(flags);
2815 }
2816 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2817 
2818 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2819 {
2820 	if (in_irq() || irqs_disabled())
2821 		__dev_kfree_skb_irq(skb, reason);
2822 	else
2823 		dev_kfree_skb(skb);
2824 }
2825 EXPORT_SYMBOL(__dev_kfree_skb_any);
2826 
2827 
2828 /**
2829  * netif_device_detach - mark device as removed
2830  * @dev: network device
2831  *
2832  * Mark device as removed from system and therefore no longer available.
2833  */
2834 void netif_device_detach(struct net_device *dev)
2835 {
2836 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2837 	    netif_running(dev)) {
2838 		netif_tx_stop_all_queues(dev);
2839 	}
2840 }
2841 EXPORT_SYMBOL(netif_device_detach);
2842 
2843 /**
2844  * netif_device_attach - mark device as attached
2845  * @dev: network device
2846  *
2847  * Mark device as attached from system and restart if needed.
2848  */
2849 void netif_device_attach(struct net_device *dev)
2850 {
2851 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2852 	    netif_running(dev)) {
2853 		netif_tx_wake_all_queues(dev);
2854 		__netdev_watchdog_up(dev);
2855 	}
2856 }
2857 EXPORT_SYMBOL(netif_device_attach);
2858 
2859 /*
2860  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2861  * to be used as a distribution range.
2862  */
2863 static u16 skb_tx_hash(const struct net_device *dev,
2864 		       const struct net_device *sb_dev,
2865 		       struct sk_buff *skb)
2866 {
2867 	u32 hash;
2868 	u16 qoffset = 0;
2869 	u16 qcount = dev->real_num_tx_queues;
2870 
2871 	if (dev->num_tc) {
2872 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2873 
2874 		qoffset = sb_dev->tc_to_txq[tc].offset;
2875 		qcount = sb_dev->tc_to_txq[tc].count;
2876 	}
2877 
2878 	if (skb_rx_queue_recorded(skb)) {
2879 		hash = skb_get_rx_queue(skb);
2880 		while (unlikely(hash >= qcount))
2881 			hash -= qcount;
2882 		return hash + qoffset;
2883 	}
2884 
2885 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2886 }
2887 
2888 static void skb_warn_bad_offload(const struct sk_buff *skb)
2889 {
2890 	static const netdev_features_t null_features;
2891 	struct net_device *dev = skb->dev;
2892 	const char *name = "";
2893 
2894 	if (!net_ratelimit())
2895 		return;
2896 
2897 	if (dev) {
2898 		if (dev->dev.parent)
2899 			name = dev_driver_string(dev->dev.parent);
2900 		else
2901 			name = netdev_name(dev);
2902 	}
2903 	skb_dump(KERN_WARNING, skb, false);
2904 	WARN(1, "%s: caps=(%pNF, %pNF)\n",
2905 	     name, dev ? &dev->features : &null_features,
2906 	     skb->sk ? &skb->sk->sk_route_caps : &null_features);
2907 }
2908 
2909 /*
2910  * Invalidate hardware checksum when packet is to be mangled, and
2911  * complete checksum manually on outgoing path.
2912  */
2913 int skb_checksum_help(struct sk_buff *skb)
2914 {
2915 	__wsum csum;
2916 	int ret = 0, offset;
2917 
2918 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2919 		goto out_set_summed;
2920 
2921 	if (unlikely(skb_shinfo(skb)->gso_size)) {
2922 		skb_warn_bad_offload(skb);
2923 		return -EINVAL;
2924 	}
2925 
2926 	/* Before computing a checksum, we should make sure no frag could
2927 	 * be modified by an external entity : checksum could be wrong.
2928 	 */
2929 	if (skb_has_shared_frag(skb)) {
2930 		ret = __skb_linearize(skb);
2931 		if (ret)
2932 			goto out;
2933 	}
2934 
2935 	offset = skb_checksum_start_offset(skb);
2936 	BUG_ON(offset >= skb_headlen(skb));
2937 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
2938 
2939 	offset += skb->csum_offset;
2940 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2941 
2942 	if (skb_cloned(skb) &&
2943 	    !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2944 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2945 		if (ret)
2946 			goto out;
2947 	}
2948 
2949 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2950 out_set_summed:
2951 	skb->ip_summed = CHECKSUM_NONE;
2952 out:
2953 	return ret;
2954 }
2955 EXPORT_SYMBOL(skb_checksum_help);
2956 
2957 int skb_crc32c_csum_help(struct sk_buff *skb)
2958 {
2959 	__le32 crc32c_csum;
2960 	int ret = 0, offset, start;
2961 
2962 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2963 		goto out;
2964 
2965 	if (unlikely(skb_is_gso(skb)))
2966 		goto out;
2967 
2968 	/* Before computing a checksum, we should make sure no frag could
2969 	 * be modified by an external entity : checksum could be wrong.
2970 	 */
2971 	if (unlikely(skb_has_shared_frag(skb))) {
2972 		ret = __skb_linearize(skb);
2973 		if (ret)
2974 			goto out;
2975 	}
2976 	start = skb_checksum_start_offset(skb);
2977 	offset = start + offsetof(struct sctphdr, checksum);
2978 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
2979 		ret = -EINVAL;
2980 		goto out;
2981 	}
2982 	if (skb_cloned(skb) &&
2983 	    !skb_clone_writable(skb, offset + sizeof(__le32))) {
2984 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2985 		if (ret)
2986 			goto out;
2987 	}
2988 	crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
2989 						  skb->len - start, ~(__u32)0,
2990 						  crc32c_csum_stub));
2991 	*(__le32 *)(skb->data + offset) = crc32c_csum;
2992 	skb->ip_summed = CHECKSUM_NONE;
2993 	skb->csum_not_inet = 0;
2994 out:
2995 	return ret;
2996 }
2997 
2998 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2999 {
3000 	__be16 type = skb->protocol;
3001 
3002 	/* Tunnel gso handlers can set protocol to ethernet. */
3003 	if (type == htons(ETH_P_TEB)) {
3004 		struct ethhdr *eth;
3005 
3006 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3007 			return 0;
3008 
3009 		eth = (struct ethhdr *)skb->data;
3010 		type = eth->h_proto;
3011 	}
3012 
3013 	return __vlan_get_protocol(skb, type, depth);
3014 }
3015 
3016 /**
3017  *	skb_mac_gso_segment - mac layer segmentation handler.
3018  *	@skb: buffer to segment
3019  *	@features: features for the output path (see dev->features)
3020  */
3021 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3022 				    netdev_features_t features)
3023 {
3024 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3025 	struct packet_offload *ptype;
3026 	int vlan_depth = skb->mac_len;
3027 	__be16 type = skb_network_protocol(skb, &vlan_depth);
3028 
3029 	if (unlikely(!type))
3030 		return ERR_PTR(-EINVAL);
3031 
3032 	__skb_pull(skb, vlan_depth);
3033 
3034 	rcu_read_lock();
3035 	list_for_each_entry_rcu(ptype, &offload_base, list) {
3036 		if (ptype->type == type && ptype->callbacks.gso_segment) {
3037 			segs = ptype->callbacks.gso_segment(skb, features);
3038 			break;
3039 		}
3040 	}
3041 	rcu_read_unlock();
3042 
3043 	__skb_push(skb, skb->data - skb_mac_header(skb));
3044 
3045 	return segs;
3046 }
3047 EXPORT_SYMBOL(skb_mac_gso_segment);
3048 
3049 
3050 /* openvswitch calls this on rx path, so we need a different check.
3051  */
3052 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3053 {
3054 	if (tx_path)
3055 		return skb->ip_summed != CHECKSUM_PARTIAL &&
3056 		       skb->ip_summed != CHECKSUM_UNNECESSARY;
3057 
3058 	return skb->ip_summed == CHECKSUM_NONE;
3059 }
3060 
3061 /**
3062  *	__skb_gso_segment - Perform segmentation on skb.
3063  *	@skb: buffer to segment
3064  *	@features: features for the output path (see dev->features)
3065  *	@tx_path: whether it is called in TX path
3066  *
3067  *	This function segments the given skb and returns a list of segments.
3068  *
3069  *	It may return NULL if the skb requires no segmentation.  This is
3070  *	only possible when GSO is used for verifying header integrity.
3071  *
3072  *	Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
3073  */
3074 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3075 				  netdev_features_t features, bool tx_path)
3076 {
3077 	struct sk_buff *segs;
3078 
3079 	if (unlikely(skb_needs_check(skb, tx_path))) {
3080 		int err;
3081 
3082 		/* We're going to init ->check field in TCP or UDP header */
3083 		err = skb_cow_head(skb, 0);
3084 		if (err < 0)
3085 			return ERR_PTR(err);
3086 	}
3087 
3088 	/* Only report GSO partial support if it will enable us to
3089 	 * support segmentation on this frame without needing additional
3090 	 * work.
3091 	 */
3092 	if (features & NETIF_F_GSO_PARTIAL) {
3093 		netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3094 		struct net_device *dev = skb->dev;
3095 
3096 		partial_features |= dev->features & dev->gso_partial_features;
3097 		if (!skb_gso_ok(skb, features | partial_features))
3098 			features &= ~NETIF_F_GSO_PARTIAL;
3099 	}
3100 
3101 	BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
3102 		     sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3103 
3104 	SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3105 	SKB_GSO_CB(skb)->encap_level = 0;
3106 
3107 	skb_reset_mac_header(skb);
3108 	skb_reset_mac_len(skb);
3109 
3110 	segs = skb_mac_gso_segment(skb, features);
3111 
3112 	if (unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3113 		skb_warn_bad_offload(skb);
3114 
3115 	return segs;
3116 }
3117 EXPORT_SYMBOL(__skb_gso_segment);
3118 
3119 /* Take action when hardware reception checksum errors are detected. */
3120 #ifdef CONFIG_BUG
3121 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3122 {
3123 	if (net_ratelimit()) {
3124 		pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3125 		skb_dump(KERN_ERR, skb, true);
3126 		dump_stack();
3127 	}
3128 }
3129 EXPORT_SYMBOL(netdev_rx_csum_fault);
3130 #endif
3131 
3132 /* XXX: check that highmem exists at all on the given machine. */
3133 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3134 {
3135 #ifdef CONFIG_HIGHMEM
3136 	int i;
3137 
3138 	if (!(dev->features & NETIF_F_HIGHDMA)) {
3139 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3140 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3141 
3142 			if (PageHighMem(skb_frag_page(frag)))
3143 				return 1;
3144 		}
3145 	}
3146 #endif
3147 	return 0;
3148 }
3149 
3150 /* If MPLS offload request, verify we are testing hardware MPLS features
3151  * instead of standard features for the netdev.
3152  */
3153 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3154 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3155 					   netdev_features_t features,
3156 					   __be16 type)
3157 {
3158 	if (eth_p_mpls(type))
3159 		features &= skb->dev->mpls_features;
3160 
3161 	return features;
3162 }
3163 #else
3164 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3165 					   netdev_features_t features,
3166 					   __be16 type)
3167 {
3168 	return features;
3169 }
3170 #endif
3171 
3172 static netdev_features_t harmonize_features(struct sk_buff *skb,
3173 	netdev_features_t features)
3174 {
3175 	int tmp;
3176 	__be16 type;
3177 
3178 	type = skb_network_protocol(skb, &tmp);
3179 	features = net_mpls_features(skb, features, type);
3180 
3181 	if (skb->ip_summed != CHECKSUM_NONE &&
3182 	    !can_checksum_protocol(features, type)) {
3183 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3184 	}
3185 	if (illegal_highdma(skb->dev, skb))
3186 		features &= ~NETIF_F_SG;
3187 
3188 	return features;
3189 }
3190 
3191 netdev_features_t passthru_features_check(struct sk_buff *skb,
3192 					  struct net_device *dev,
3193 					  netdev_features_t features)
3194 {
3195 	return features;
3196 }
3197 EXPORT_SYMBOL(passthru_features_check);
3198 
3199 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3200 					     struct net_device *dev,
3201 					     netdev_features_t features)
3202 {
3203 	return vlan_features_check(skb, features);
3204 }
3205 
3206 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3207 					    struct net_device *dev,
3208 					    netdev_features_t features)
3209 {
3210 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
3211 
3212 	if (gso_segs > dev->gso_max_segs)
3213 		return features & ~NETIF_F_GSO_MASK;
3214 
3215 	/* Support for GSO partial features requires software
3216 	 * intervention before we can actually process the packets
3217 	 * so we need to strip support for any partial features now
3218 	 * and we can pull them back in after we have partially
3219 	 * segmented the frame.
3220 	 */
3221 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3222 		features &= ~dev->gso_partial_features;
3223 
3224 	/* Make sure to clear the IPv4 ID mangling feature if the
3225 	 * IPv4 header has the potential to be fragmented.
3226 	 */
3227 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3228 		struct iphdr *iph = skb->encapsulation ?
3229 				    inner_ip_hdr(skb) : ip_hdr(skb);
3230 
3231 		if (!(iph->frag_off & htons(IP_DF)))
3232 			features &= ~NETIF_F_TSO_MANGLEID;
3233 	}
3234 
3235 	return features;
3236 }
3237 
3238 netdev_features_t netif_skb_features(struct sk_buff *skb)
3239 {
3240 	struct net_device *dev = skb->dev;
3241 	netdev_features_t features = dev->features;
3242 
3243 	if (skb_is_gso(skb))
3244 		features = gso_features_check(skb, dev, features);
3245 
3246 	/* If encapsulation offload request, verify we are testing
3247 	 * hardware encapsulation features instead of standard
3248 	 * features for the netdev
3249 	 */
3250 	if (skb->encapsulation)
3251 		features &= dev->hw_enc_features;
3252 
3253 	if (skb_vlan_tagged(skb))
3254 		features = netdev_intersect_features(features,
3255 						     dev->vlan_features |
3256 						     NETIF_F_HW_VLAN_CTAG_TX |
3257 						     NETIF_F_HW_VLAN_STAG_TX);
3258 
3259 	if (dev->netdev_ops->ndo_features_check)
3260 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
3261 								features);
3262 	else
3263 		features &= dflt_features_check(skb, dev, features);
3264 
3265 	return harmonize_features(skb, features);
3266 }
3267 EXPORT_SYMBOL(netif_skb_features);
3268 
3269 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3270 		    struct netdev_queue *txq, bool more)
3271 {
3272 	unsigned int len;
3273 	int rc;
3274 
3275 	if (dev_nit_active(dev))
3276 		dev_queue_xmit_nit(skb, dev);
3277 
3278 	len = skb->len;
3279 	trace_net_dev_start_xmit(skb, dev);
3280 	rc = netdev_start_xmit(skb, dev, txq, more);
3281 	trace_net_dev_xmit(skb, rc, dev, len);
3282 
3283 	return rc;
3284 }
3285 
3286 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3287 				    struct netdev_queue *txq, int *ret)
3288 {
3289 	struct sk_buff *skb = first;
3290 	int rc = NETDEV_TX_OK;
3291 
3292 	while (skb) {
3293 		struct sk_buff *next = skb->next;
3294 
3295 		skb_mark_not_on_list(skb);
3296 		rc = xmit_one(skb, dev, txq, next != NULL);
3297 		if (unlikely(!dev_xmit_complete(rc))) {
3298 			skb->next = next;
3299 			goto out;
3300 		}
3301 
3302 		skb = next;
3303 		if (netif_tx_queue_stopped(txq) && skb) {
3304 			rc = NETDEV_TX_BUSY;
3305 			break;
3306 		}
3307 	}
3308 
3309 out:
3310 	*ret = rc;
3311 	return skb;
3312 }
3313 
3314 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3315 					  netdev_features_t features)
3316 {
3317 	if (skb_vlan_tag_present(skb) &&
3318 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3319 		skb = __vlan_hwaccel_push_inside(skb);
3320 	return skb;
3321 }
3322 
3323 int skb_csum_hwoffload_help(struct sk_buff *skb,
3324 			    const netdev_features_t features)
3325 {
3326 	if (unlikely(skb->csum_not_inet))
3327 		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3328 			skb_crc32c_csum_help(skb);
3329 
3330 	return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3331 }
3332 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3333 
3334 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3335 {
3336 	netdev_features_t features;
3337 
3338 	features = netif_skb_features(skb);
3339 	skb = validate_xmit_vlan(skb, features);
3340 	if (unlikely(!skb))
3341 		goto out_null;
3342 
3343 	skb = sk_validate_xmit_skb(skb, dev);
3344 	if (unlikely(!skb))
3345 		goto out_null;
3346 
3347 	if (netif_needs_gso(skb, features)) {
3348 		struct sk_buff *segs;
3349 
3350 		segs = skb_gso_segment(skb, features);
3351 		if (IS_ERR(segs)) {
3352 			goto out_kfree_skb;
3353 		} else if (segs) {
3354 			consume_skb(skb);
3355 			skb = segs;
3356 		}
3357 	} else {
3358 		if (skb_needs_linearize(skb, features) &&
3359 		    __skb_linearize(skb))
3360 			goto out_kfree_skb;
3361 
3362 		/* If packet is not checksummed and device does not
3363 		 * support checksumming for this protocol, complete
3364 		 * checksumming here.
3365 		 */
3366 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3367 			if (skb->encapsulation)
3368 				skb_set_inner_transport_header(skb,
3369 							       skb_checksum_start_offset(skb));
3370 			else
3371 				skb_set_transport_header(skb,
3372 							 skb_checksum_start_offset(skb));
3373 			if (skb_csum_hwoffload_help(skb, features))
3374 				goto out_kfree_skb;
3375 		}
3376 	}
3377 
3378 	skb = validate_xmit_xfrm(skb, features, again);
3379 
3380 	return skb;
3381 
3382 out_kfree_skb:
3383 	kfree_skb(skb);
3384 out_null:
3385 	atomic_long_inc(&dev->tx_dropped);
3386 	return NULL;
3387 }
3388 
3389 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3390 {
3391 	struct sk_buff *next, *head = NULL, *tail;
3392 
3393 	for (; skb != NULL; skb = next) {
3394 		next = skb->next;
3395 		skb_mark_not_on_list(skb);
3396 
3397 		/* in case skb wont be segmented, point to itself */
3398 		skb->prev = skb;
3399 
3400 		skb = validate_xmit_skb(skb, dev, again);
3401 		if (!skb)
3402 			continue;
3403 
3404 		if (!head)
3405 			head = skb;
3406 		else
3407 			tail->next = skb;
3408 		/* If skb was segmented, skb->prev points to
3409 		 * the last segment. If not, it still contains skb.
3410 		 */
3411 		tail = skb->prev;
3412 	}
3413 	return head;
3414 }
3415 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3416 
3417 static void qdisc_pkt_len_init(struct sk_buff *skb)
3418 {
3419 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3420 
3421 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3422 
3423 	/* To get more precise estimation of bytes sent on wire,
3424 	 * we add to pkt_len the headers size of all segments
3425 	 */
3426 	if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3427 		unsigned int hdr_len;
3428 		u16 gso_segs = shinfo->gso_segs;
3429 
3430 		/* mac layer + network layer */
3431 		hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3432 
3433 		/* + transport layer */
3434 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3435 			const struct tcphdr *th;
3436 			struct tcphdr _tcphdr;
3437 
3438 			th = skb_header_pointer(skb, skb_transport_offset(skb),
3439 						sizeof(_tcphdr), &_tcphdr);
3440 			if (likely(th))
3441 				hdr_len += __tcp_hdrlen(th);
3442 		} else {
3443 			struct udphdr _udphdr;
3444 
3445 			if (skb_header_pointer(skb, skb_transport_offset(skb),
3446 					       sizeof(_udphdr), &_udphdr))
3447 				hdr_len += sizeof(struct udphdr);
3448 		}
3449 
3450 		if (shinfo->gso_type & SKB_GSO_DODGY)
3451 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3452 						shinfo->gso_size);
3453 
3454 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3455 	}
3456 }
3457 
3458 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3459 				 struct net_device *dev,
3460 				 struct netdev_queue *txq)
3461 {
3462 	spinlock_t *root_lock = qdisc_lock(q);
3463 	struct sk_buff *to_free = NULL;
3464 	bool contended;
3465 	int rc;
3466 
3467 	qdisc_calculate_pkt_len(skb, q);
3468 
3469 	if (q->flags & TCQ_F_NOLOCK) {
3470 		if ((q->flags & TCQ_F_CAN_BYPASS) && q->empty &&
3471 		    qdisc_run_begin(q)) {
3472 			if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
3473 					      &q->state))) {
3474 				__qdisc_drop(skb, &to_free);
3475 				rc = NET_XMIT_DROP;
3476 				goto end_run;
3477 			}
3478 			qdisc_bstats_cpu_update(q, skb);
3479 
3480 			rc = NET_XMIT_SUCCESS;
3481 			if (sch_direct_xmit(skb, q, dev, txq, NULL, true))
3482 				__qdisc_run(q);
3483 
3484 end_run:
3485 			qdisc_run_end(q);
3486 		} else {
3487 			rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3488 			qdisc_run(q);
3489 		}
3490 
3491 		if (unlikely(to_free))
3492 			kfree_skb_list(to_free);
3493 		return rc;
3494 	}
3495 
3496 	/*
3497 	 * Heuristic to force contended enqueues to serialize on a
3498 	 * separate lock before trying to get qdisc main lock.
3499 	 * This permits qdisc->running owner to get the lock more
3500 	 * often and dequeue packets faster.
3501 	 */
3502 	contended = qdisc_is_running(q);
3503 	if (unlikely(contended))
3504 		spin_lock(&q->busylock);
3505 
3506 	spin_lock(root_lock);
3507 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3508 		__qdisc_drop(skb, &to_free);
3509 		rc = NET_XMIT_DROP;
3510 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3511 		   qdisc_run_begin(q)) {
3512 		/*
3513 		 * This is a work-conserving queue; there are no old skbs
3514 		 * waiting to be sent out; and the qdisc is not running -
3515 		 * xmit the skb directly.
3516 		 */
3517 
3518 		qdisc_bstats_update(q, skb);
3519 
3520 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3521 			if (unlikely(contended)) {
3522 				spin_unlock(&q->busylock);
3523 				contended = false;
3524 			}
3525 			__qdisc_run(q);
3526 		}
3527 
3528 		qdisc_run_end(q);
3529 		rc = NET_XMIT_SUCCESS;
3530 	} else {
3531 		rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3532 		if (qdisc_run_begin(q)) {
3533 			if (unlikely(contended)) {
3534 				spin_unlock(&q->busylock);
3535 				contended = false;
3536 			}
3537 			__qdisc_run(q);
3538 			qdisc_run_end(q);
3539 		}
3540 	}
3541 	spin_unlock(root_lock);
3542 	if (unlikely(to_free))
3543 		kfree_skb_list(to_free);
3544 	if (unlikely(contended))
3545 		spin_unlock(&q->busylock);
3546 	return rc;
3547 }
3548 
3549 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3550 static void skb_update_prio(struct sk_buff *skb)
3551 {
3552 	const struct netprio_map *map;
3553 	const struct sock *sk;
3554 	unsigned int prioidx;
3555 
3556 	if (skb->priority)
3557 		return;
3558 	map = rcu_dereference_bh(skb->dev->priomap);
3559 	if (!map)
3560 		return;
3561 	sk = skb_to_full_sk(skb);
3562 	if (!sk)
3563 		return;
3564 
3565 	prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3566 
3567 	if (prioidx < map->priomap_len)
3568 		skb->priority = map->priomap[prioidx];
3569 }
3570 #else
3571 #define skb_update_prio(skb)
3572 #endif
3573 
3574 /**
3575  *	dev_loopback_xmit - loop back @skb
3576  *	@net: network namespace this loopback is happening in
3577  *	@sk:  sk needed to be a netfilter okfn
3578  *	@skb: buffer to transmit
3579  */
3580 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3581 {
3582 	skb_reset_mac_header(skb);
3583 	__skb_pull(skb, skb_network_offset(skb));
3584 	skb->pkt_type = PACKET_LOOPBACK;
3585 	skb->ip_summed = CHECKSUM_UNNECESSARY;
3586 	WARN_ON(!skb_dst(skb));
3587 	skb_dst_force(skb);
3588 	netif_rx_ni(skb);
3589 	return 0;
3590 }
3591 EXPORT_SYMBOL(dev_loopback_xmit);
3592 
3593 #ifdef CONFIG_NET_EGRESS
3594 static struct sk_buff *
3595 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3596 {
3597 	struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3598 	struct tcf_result cl_res;
3599 
3600 	if (!miniq)
3601 		return skb;
3602 
3603 	/* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3604 	mini_qdisc_bstats_cpu_update(miniq, skb);
3605 
3606 	switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3607 	case TC_ACT_OK:
3608 	case TC_ACT_RECLASSIFY:
3609 		skb->tc_index = TC_H_MIN(cl_res.classid);
3610 		break;
3611 	case TC_ACT_SHOT:
3612 		mini_qdisc_qstats_cpu_drop(miniq);
3613 		*ret = NET_XMIT_DROP;
3614 		kfree_skb(skb);
3615 		return NULL;
3616 	case TC_ACT_STOLEN:
3617 	case TC_ACT_QUEUED:
3618 	case TC_ACT_TRAP:
3619 		*ret = NET_XMIT_SUCCESS;
3620 		consume_skb(skb);
3621 		return NULL;
3622 	case TC_ACT_REDIRECT:
3623 		/* No need to push/pop skb's mac_header here on egress! */
3624 		skb_do_redirect(skb);
3625 		*ret = NET_XMIT_SUCCESS;
3626 		return NULL;
3627 	default:
3628 		break;
3629 	}
3630 
3631 	return skb;
3632 }
3633 #endif /* CONFIG_NET_EGRESS */
3634 
3635 #ifdef CONFIG_XPS
3636 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3637 			       struct xps_dev_maps *dev_maps, unsigned int tci)
3638 {
3639 	struct xps_map *map;
3640 	int queue_index = -1;
3641 
3642 	if (dev->num_tc) {
3643 		tci *= dev->num_tc;
3644 		tci += netdev_get_prio_tc_map(dev, skb->priority);
3645 	}
3646 
3647 	map = rcu_dereference(dev_maps->attr_map[tci]);
3648 	if (map) {
3649 		if (map->len == 1)
3650 			queue_index = map->queues[0];
3651 		else
3652 			queue_index = map->queues[reciprocal_scale(
3653 						skb_get_hash(skb), map->len)];
3654 		if (unlikely(queue_index >= dev->real_num_tx_queues))
3655 			queue_index = -1;
3656 	}
3657 	return queue_index;
3658 }
3659 #endif
3660 
3661 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3662 			 struct sk_buff *skb)
3663 {
3664 #ifdef CONFIG_XPS
3665 	struct xps_dev_maps *dev_maps;
3666 	struct sock *sk = skb->sk;
3667 	int queue_index = -1;
3668 
3669 	if (!static_key_false(&xps_needed))
3670 		return -1;
3671 
3672 	rcu_read_lock();
3673 	if (!static_key_false(&xps_rxqs_needed))
3674 		goto get_cpus_map;
3675 
3676 	dev_maps = rcu_dereference(sb_dev->xps_rxqs_map);
3677 	if (dev_maps) {
3678 		int tci = sk_rx_queue_get(sk);
3679 
3680 		if (tci >= 0 && tci < dev->num_rx_queues)
3681 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3682 							  tci);
3683 	}
3684 
3685 get_cpus_map:
3686 	if (queue_index < 0) {
3687 		dev_maps = rcu_dereference(sb_dev->xps_cpus_map);
3688 		if (dev_maps) {
3689 			unsigned int tci = skb->sender_cpu - 1;
3690 
3691 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3692 							  tci);
3693 		}
3694 	}
3695 	rcu_read_unlock();
3696 
3697 	return queue_index;
3698 #else
3699 	return -1;
3700 #endif
3701 }
3702 
3703 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3704 		     struct net_device *sb_dev)
3705 {
3706 	return 0;
3707 }
3708 EXPORT_SYMBOL(dev_pick_tx_zero);
3709 
3710 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
3711 		       struct net_device *sb_dev)
3712 {
3713 	return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
3714 }
3715 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
3716 
3717 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
3718 		     struct net_device *sb_dev)
3719 {
3720 	struct sock *sk = skb->sk;
3721 	int queue_index = sk_tx_queue_get(sk);
3722 
3723 	sb_dev = sb_dev ? : dev;
3724 
3725 	if (queue_index < 0 || skb->ooo_okay ||
3726 	    queue_index >= dev->real_num_tx_queues) {
3727 		int new_index = get_xps_queue(dev, sb_dev, skb);
3728 
3729 		if (new_index < 0)
3730 			new_index = skb_tx_hash(dev, sb_dev, skb);
3731 
3732 		if (queue_index != new_index && sk &&
3733 		    sk_fullsock(sk) &&
3734 		    rcu_access_pointer(sk->sk_dst_cache))
3735 			sk_tx_queue_set(sk, new_index);
3736 
3737 		queue_index = new_index;
3738 	}
3739 
3740 	return queue_index;
3741 }
3742 EXPORT_SYMBOL(netdev_pick_tx);
3743 
3744 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
3745 					 struct sk_buff *skb,
3746 					 struct net_device *sb_dev)
3747 {
3748 	int queue_index = 0;
3749 
3750 #ifdef CONFIG_XPS
3751 	u32 sender_cpu = skb->sender_cpu - 1;
3752 
3753 	if (sender_cpu >= (u32)NR_CPUS)
3754 		skb->sender_cpu = raw_smp_processor_id() + 1;
3755 #endif
3756 
3757 	if (dev->real_num_tx_queues != 1) {
3758 		const struct net_device_ops *ops = dev->netdev_ops;
3759 
3760 		if (ops->ndo_select_queue)
3761 			queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
3762 		else
3763 			queue_index = netdev_pick_tx(dev, skb, sb_dev);
3764 
3765 		queue_index = netdev_cap_txqueue(dev, queue_index);
3766 	}
3767 
3768 	skb_set_queue_mapping(skb, queue_index);
3769 	return netdev_get_tx_queue(dev, queue_index);
3770 }
3771 
3772 /**
3773  *	__dev_queue_xmit - transmit a buffer
3774  *	@skb: buffer to transmit
3775  *	@sb_dev: suboordinate device used for L2 forwarding offload
3776  *
3777  *	Queue a buffer for transmission to a network device. The caller must
3778  *	have set the device and priority and built the buffer before calling
3779  *	this function. The function can be called from an interrupt.
3780  *
3781  *	A negative errno code is returned on a failure. A success does not
3782  *	guarantee the frame will be transmitted as it may be dropped due
3783  *	to congestion or traffic shaping.
3784  *
3785  * -----------------------------------------------------------------------------------
3786  *      I notice this method can also return errors from the queue disciplines,
3787  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3788  *      be positive.
3789  *
3790  *      Regardless of the return value, the skb is consumed, so it is currently
3791  *      difficult to retry a send to this method.  (You can bump the ref count
3792  *      before sending to hold a reference for retry if you are careful.)
3793  *
3794  *      When calling this method, interrupts MUST be enabled.  This is because
3795  *      the BH enable code must have IRQs enabled so that it will not deadlock.
3796  *          --BLG
3797  */
3798 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
3799 {
3800 	struct net_device *dev = skb->dev;
3801 	struct netdev_queue *txq;
3802 	struct Qdisc *q;
3803 	int rc = -ENOMEM;
3804 	bool again = false;
3805 
3806 	skb_reset_mac_header(skb);
3807 
3808 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3809 		__skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3810 
3811 	/* Disable soft irqs for various locks below. Also
3812 	 * stops preemption for RCU.
3813 	 */
3814 	rcu_read_lock_bh();
3815 
3816 	skb_update_prio(skb);
3817 
3818 	qdisc_pkt_len_init(skb);
3819 #ifdef CONFIG_NET_CLS_ACT
3820 	skb->tc_at_ingress = 0;
3821 # ifdef CONFIG_NET_EGRESS
3822 	if (static_branch_unlikely(&egress_needed_key)) {
3823 		skb = sch_handle_egress(skb, &rc, dev);
3824 		if (!skb)
3825 			goto out;
3826 	}
3827 # endif
3828 #endif
3829 	/* If device/qdisc don't need skb->dst, release it right now while
3830 	 * its hot in this cpu cache.
3831 	 */
3832 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3833 		skb_dst_drop(skb);
3834 	else
3835 		skb_dst_force(skb);
3836 
3837 	txq = netdev_core_pick_tx(dev, skb, sb_dev);
3838 	q = rcu_dereference_bh(txq->qdisc);
3839 
3840 	trace_net_dev_queue(skb);
3841 	if (q->enqueue) {
3842 		rc = __dev_xmit_skb(skb, q, dev, txq);
3843 		goto out;
3844 	}
3845 
3846 	/* The device has no queue. Common case for software devices:
3847 	 * loopback, all the sorts of tunnels...
3848 
3849 	 * Really, it is unlikely that netif_tx_lock protection is necessary
3850 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
3851 	 * counters.)
3852 	 * However, it is possible, that they rely on protection
3853 	 * made by us here.
3854 
3855 	 * Check this and shot the lock. It is not prone from deadlocks.
3856 	 *Either shot noqueue qdisc, it is even simpler 8)
3857 	 */
3858 	if (dev->flags & IFF_UP) {
3859 		int cpu = smp_processor_id(); /* ok because BHs are off */
3860 
3861 		if (txq->xmit_lock_owner != cpu) {
3862 			if (dev_xmit_recursion())
3863 				goto recursion_alert;
3864 
3865 			skb = validate_xmit_skb(skb, dev, &again);
3866 			if (!skb)
3867 				goto out;
3868 
3869 			HARD_TX_LOCK(dev, txq, cpu);
3870 
3871 			if (!netif_xmit_stopped(txq)) {
3872 				dev_xmit_recursion_inc();
3873 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3874 				dev_xmit_recursion_dec();
3875 				if (dev_xmit_complete(rc)) {
3876 					HARD_TX_UNLOCK(dev, txq);
3877 					goto out;
3878 				}
3879 			}
3880 			HARD_TX_UNLOCK(dev, txq);
3881 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3882 					     dev->name);
3883 		} else {
3884 			/* Recursion is detected! It is possible,
3885 			 * unfortunately
3886 			 */
3887 recursion_alert:
3888 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3889 					     dev->name);
3890 		}
3891 	}
3892 
3893 	rc = -ENETDOWN;
3894 	rcu_read_unlock_bh();
3895 
3896 	atomic_long_inc(&dev->tx_dropped);
3897 	kfree_skb_list(skb);
3898 	return rc;
3899 out:
3900 	rcu_read_unlock_bh();
3901 	return rc;
3902 }
3903 
3904 int dev_queue_xmit(struct sk_buff *skb)
3905 {
3906 	return __dev_queue_xmit(skb, NULL);
3907 }
3908 EXPORT_SYMBOL(dev_queue_xmit);
3909 
3910 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
3911 {
3912 	return __dev_queue_xmit(skb, sb_dev);
3913 }
3914 EXPORT_SYMBOL(dev_queue_xmit_accel);
3915 
3916 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
3917 {
3918 	struct net_device *dev = skb->dev;
3919 	struct sk_buff *orig_skb = skb;
3920 	struct netdev_queue *txq;
3921 	int ret = NETDEV_TX_BUSY;
3922 	bool again = false;
3923 
3924 	if (unlikely(!netif_running(dev) ||
3925 		     !netif_carrier_ok(dev)))
3926 		goto drop;
3927 
3928 	skb = validate_xmit_skb_list(skb, dev, &again);
3929 	if (skb != orig_skb)
3930 		goto drop;
3931 
3932 	skb_set_queue_mapping(skb, queue_id);
3933 	txq = skb_get_tx_queue(dev, skb);
3934 
3935 	local_bh_disable();
3936 
3937 	HARD_TX_LOCK(dev, txq, smp_processor_id());
3938 	if (!netif_xmit_frozen_or_drv_stopped(txq))
3939 		ret = netdev_start_xmit(skb, dev, txq, false);
3940 	HARD_TX_UNLOCK(dev, txq);
3941 
3942 	local_bh_enable();
3943 
3944 	if (!dev_xmit_complete(ret))
3945 		kfree_skb(skb);
3946 
3947 	return ret;
3948 drop:
3949 	atomic_long_inc(&dev->tx_dropped);
3950 	kfree_skb_list(skb);
3951 	return NET_XMIT_DROP;
3952 }
3953 EXPORT_SYMBOL(dev_direct_xmit);
3954 
3955 /*************************************************************************
3956  *			Receiver routines
3957  *************************************************************************/
3958 
3959 int netdev_max_backlog __read_mostly = 1000;
3960 EXPORT_SYMBOL(netdev_max_backlog);
3961 
3962 int netdev_tstamp_prequeue __read_mostly = 1;
3963 int netdev_budget __read_mostly = 300;
3964 unsigned int __read_mostly netdev_budget_usecs = 2000;
3965 int weight_p __read_mostly = 64;           /* old backlog weight */
3966 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
3967 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
3968 int dev_rx_weight __read_mostly = 64;
3969 int dev_tx_weight __read_mostly = 64;
3970 /* Maximum number of GRO_NORMAL skbs to batch up for list-RX */
3971 int gro_normal_batch __read_mostly = 8;
3972 
3973 /* Called with irq disabled */
3974 static inline void ____napi_schedule(struct softnet_data *sd,
3975 				     struct napi_struct *napi)
3976 {
3977 	list_add_tail(&napi->poll_list, &sd->poll_list);
3978 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3979 }
3980 
3981 #ifdef CONFIG_RPS
3982 
3983 /* One global table that all flow-based protocols share. */
3984 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3985 EXPORT_SYMBOL(rps_sock_flow_table);
3986 u32 rps_cpu_mask __read_mostly;
3987 EXPORT_SYMBOL(rps_cpu_mask);
3988 
3989 struct static_key_false rps_needed __read_mostly;
3990 EXPORT_SYMBOL(rps_needed);
3991 struct static_key_false rfs_needed __read_mostly;
3992 EXPORT_SYMBOL(rfs_needed);
3993 
3994 static struct rps_dev_flow *
3995 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3996 	    struct rps_dev_flow *rflow, u16 next_cpu)
3997 {
3998 	if (next_cpu < nr_cpu_ids) {
3999 #ifdef CONFIG_RFS_ACCEL
4000 		struct netdev_rx_queue *rxqueue;
4001 		struct rps_dev_flow_table *flow_table;
4002 		struct rps_dev_flow *old_rflow;
4003 		u32 flow_id;
4004 		u16 rxq_index;
4005 		int rc;
4006 
4007 		/* Should we steer this flow to a different hardware queue? */
4008 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4009 		    !(dev->features & NETIF_F_NTUPLE))
4010 			goto out;
4011 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4012 		if (rxq_index == skb_get_rx_queue(skb))
4013 			goto out;
4014 
4015 		rxqueue = dev->_rx + rxq_index;
4016 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
4017 		if (!flow_table)
4018 			goto out;
4019 		flow_id = skb_get_hash(skb) & flow_table->mask;
4020 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4021 							rxq_index, flow_id);
4022 		if (rc < 0)
4023 			goto out;
4024 		old_rflow = rflow;
4025 		rflow = &flow_table->flows[flow_id];
4026 		rflow->filter = rc;
4027 		if (old_rflow->filter == rflow->filter)
4028 			old_rflow->filter = RPS_NO_FILTER;
4029 	out:
4030 #endif
4031 		rflow->last_qtail =
4032 			per_cpu(softnet_data, next_cpu).input_queue_head;
4033 	}
4034 
4035 	rflow->cpu = next_cpu;
4036 	return rflow;
4037 }
4038 
4039 /*
4040  * get_rps_cpu is called from netif_receive_skb and returns the target
4041  * CPU from the RPS map of the receiving queue for a given skb.
4042  * rcu_read_lock must be held on entry.
4043  */
4044 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4045 		       struct rps_dev_flow **rflowp)
4046 {
4047 	const struct rps_sock_flow_table *sock_flow_table;
4048 	struct netdev_rx_queue *rxqueue = dev->_rx;
4049 	struct rps_dev_flow_table *flow_table;
4050 	struct rps_map *map;
4051 	int cpu = -1;
4052 	u32 tcpu;
4053 	u32 hash;
4054 
4055 	if (skb_rx_queue_recorded(skb)) {
4056 		u16 index = skb_get_rx_queue(skb);
4057 
4058 		if (unlikely(index >= dev->real_num_rx_queues)) {
4059 			WARN_ONCE(dev->real_num_rx_queues > 1,
4060 				  "%s received packet on queue %u, but number "
4061 				  "of RX queues is %u\n",
4062 				  dev->name, index, dev->real_num_rx_queues);
4063 			goto done;
4064 		}
4065 		rxqueue += index;
4066 	}
4067 
4068 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4069 
4070 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4071 	map = rcu_dereference(rxqueue->rps_map);
4072 	if (!flow_table && !map)
4073 		goto done;
4074 
4075 	skb_reset_network_header(skb);
4076 	hash = skb_get_hash(skb);
4077 	if (!hash)
4078 		goto done;
4079 
4080 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
4081 	if (flow_table && sock_flow_table) {
4082 		struct rps_dev_flow *rflow;
4083 		u32 next_cpu;
4084 		u32 ident;
4085 
4086 		/* First check into global flow table if there is a match */
4087 		ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4088 		if ((ident ^ hash) & ~rps_cpu_mask)
4089 			goto try_rps;
4090 
4091 		next_cpu = ident & rps_cpu_mask;
4092 
4093 		/* OK, now we know there is a match,
4094 		 * we can look at the local (per receive queue) flow table
4095 		 */
4096 		rflow = &flow_table->flows[hash & flow_table->mask];
4097 		tcpu = rflow->cpu;
4098 
4099 		/*
4100 		 * If the desired CPU (where last recvmsg was done) is
4101 		 * different from current CPU (one in the rx-queue flow
4102 		 * table entry), switch if one of the following holds:
4103 		 *   - Current CPU is unset (>= nr_cpu_ids).
4104 		 *   - Current CPU is offline.
4105 		 *   - The current CPU's queue tail has advanced beyond the
4106 		 *     last packet that was enqueued using this table entry.
4107 		 *     This guarantees that all previous packets for the flow
4108 		 *     have been dequeued, thus preserving in order delivery.
4109 		 */
4110 		if (unlikely(tcpu != next_cpu) &&
4111 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4112 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4113 		      rflow->last_qtail)) >= 0)) {
4114 			tcpu = next_cpu;
4115 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4116 		}
4117 
4118 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4119 			*rflowp = rflow;
4120 			cpu = tcpu;
4121 			goto done;
4122 		}
4123 	}
4124 
4125 try_rps:
4126 
4127 	if (map) {
4128 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4129 		if (cpu_online(tcpu)) {
4130 			cpu = tcpu;
4131 			goto done;
4132 		}
4133 	}
4134 
4135 done:
4136 	return cpu;
4137 }
4138 
4139 #ifdef CONFIG_RFS_ACCEL
4140 
4141 /**
4142  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4143  * @dev: Device on which the filter was set
4144  * @rxq_index: RX queue index
4145  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4146  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4147  *
4148  * Drivers that implement ndo_rx_flow_steer() should periodically call
4149  * this function for each installed filter and remove the filters for
4150  * which it returns %true.
4151  */
4152 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4153 			 u32 flow_id, u16 filter_id)
4154 {
4155 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4156 	struct rps_dev_flow_table *flow_table;
4157 	struct rps_dev_flow *rflow;
4158 	bool expire = true;
4159 	unsigned int cpu;
4160 
4161 	rcu_read_lock();
4162 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4163 	if (flow_table && flow_id <= flow_table->mask) {
4164 		rflow = &flow_table->flows[flow_id];
4165 		cpu = READ_ONCE(rflow->cpu);
4166 		if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4167 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4168 			   rflow->last_qtail) <
4169 		     (int)(10 * flow_table->mask)))
4170 			expire = false;
4171 	}
4172 	rcu_read_unlock();
4173 	return expire;
4174 }
4175 EXPORT_SYMBOL(rps_may_expire_flow);
4176 
4177 #endif /* CONFIG_RFS_ACCEL */
4178 
4179 /* Called from hardirq (IPI) context */
4180 static void rps_trigger_softirq(void *data)
4181 {
4182 	struct softnet_data *sd = data;
4183 
4184 	____napi_schedule(sd, &sd->backlog);
4185 	sd->received_rps++;
4186 }
4187 
4188 #endif /* CONFIG_RPS */
4189 
4190 /*
4191  * Check if this softnet_data structure is another cpu one
4192  * If yes, queue it to our IPI list and return 1
4193  * If no, return 0
4194  */
4195 static int rps_ipi_queued(struct softnet_data *sd)
4196 {
4197 #ifdef CONFIG_RPS
4198 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4199 
4200 	if (sd != mysd) {
4201 		sd->rps_ipi_next = mysd->rps_ipi_list;
4202 		mysd->rps_ipi_list = sd;
4203 
4204 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4205 		return 1;
4206 	}
4207 #endif /* CONFIG_RPS */
4208 	return 0;
4209 }
4210 
4211 #ifdef CONFIG_NET_FLOW_LIMIT
4212 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4213 #endif
4214 
4215 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4216 {
4217 #ifdef CONFIG_NET_FLOW_LIMIT
4218 	struct sd_flow_limit *fl;
4219 	struct softnet_data *sd;
4220 	unsigned int old_flow, new_flow;
4221 
4222 	if (qlen < (netdev_max_backlog >> 1))
4223 		return false;
4224 
4225 	sd = this_cpu_ptr(&softnet_data);
4226 
4227 	rcu_read_lock();
4228 	fl = rcu_dereference(sd->flow_limit);
4229 	if (fl) {
4230 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4231 		old_flow = fl->history[fl->history_head];
4232 		fl->history[fl->history_head] = new_flow;
4233 
4234 		fl->history_head++;
4235 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4236 
4237 		if (likely(fl->buckets[old_flow]))
4238 			fl->buckets[old_flow]--;
4239 
4240 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4241 			fl->count++;
4242 			rcu_read_unlock();
4243 			return true;
4244 		}
4245 	}
4246 	rcu_read_unlock();
4247 #endif
4248 	return false;
4249 }
4250 
4251 /*
4252  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4253  * queue (may be a remote CPU queue).
4254  */
4255 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4256 			      unsigned int *qtail)
4257 {
4258 	struct softnet_data *sd;
4259 	unsigned long flags;
4260 	unsigned int qlen;
4261 
4262 	sd = &per_cpu(softnet_data, cpu);
4263 
4264 	local_irq_save(flags);
4265 
4266 	rps_lock(sd);
4267 	if (!netif_running(skb->dev))
4268 		goto drop;
4269 	qlen = skb_queue_len(&sd->input_pkt_queue);
4270 	if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4271 		if (qlen) {
4272 enqueue:
4273 			__skb_queue_tail(&sd->input_pkt_queue, skb);
4274 			input_queue_tail_incr_save(sd, qtail);
4275 			rps_unlock(sd);
4276 			local_irq_restore(flags);
4277 			return NET_RX_SUCCESS;
4278 		}
4279 
4280 		/* Schedule NAPI for backlog device
4281 		 * We can use non atomic operation since we own the queue lock
4282 		 */
4283 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4284 			if (!rps_ipi_queued(sd))
4285 				____napi_schedule(sd, &sd->backlog);
4286 		}
4287 		goto enqueue;
4288 	}
4289 
4290 drop:
4291 	sd->dropped++;
4292 	rps_unlock(sd);
4293 
4294 	local_irq_restore(flags);
4295 
4296 	atomic_long_inc(&skb->dev->rx_dropped);
4297 	kfree_skb(skb);
4298 	return NET_RX_DROP;
4299 }
4300 
4301 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4302 {
4303 	struct net_device *dev = skb->dev;
4304 	struct netdev_rx_queue *rxqueue;
4305 
4306 	rxqueue = dev->_rx;
4307 
4308 	if (skb_rx_queue_recorded(skb)) {
4309 		u16 index = skb_get_rx_queue(skb);
4310 
4311 		if (unlikely(index >= dev->real_num_rx_queues)) {
4312 			WARN_ONCE(dev->real_num_rx_queues > 1,
4313 				  "%s received packet on queue %u, but number "
4314 				  "of RX queues is %u\n",
4315 				  dev->name, index, dev->real_num_rx_queues);
4316 
4317 			return rxqueue; /* Return first rxqueue */
4318 		}
4319 		rxqueue += index;
4320 	}
4321 	return rxqueue;
4322 }
4323 
4324 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4325 				     struct xdp_buff *xdp,
4326 				     struct bpf_prog *xdp_prog)
4327 {
4328 	struct netdev_rx_queue *rxqueue;
4329 	void *orig_data, *orig_data_end;
4330 	u32 metalen, act = XDP_DROP;
4331 	__be16 orig_eth_type;
4332 	struct ethhdr *eth;
4333 	bool orig_bcast;
4334 	int hlen, off;
4335 	u32 mac_len;
4336 
4337 	/* Reinjected packets coming from act_mirred or similar should
4338 	 * not get XDP generic processing.
4339 	 */
4340 	if (skb_cloned(skb) || skb_is_tc_redirected(skb))
4341 		return XDP_PASS;
4342 
4343 	/* XDP packets must be linear and must have sufficient headroom
4344 	 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4345 	 * native XDP provides, thus we need to do it here as well.
4346 	 */
4347 	if (skb_is_nonlinear(skb) ||
4348 	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4349 		int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4350 		int troom = skb->tail + skb->data_len - skb->end;
4351 
4352 		/* In case we have to go down the path and also linearize,
4353 		 * then lets do the pskb_expand_head() work just once here.
4354 		 */
4355 		if (pskb_expand_head(skb,
4356 				     hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4357 				     troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4358 			goto do_drop;
4359 		if (skb_linearize(skb))
4360 			goto do_drop;
4361 	}
4362 
4363 	/* The XDP program wants to see the packet starting at the MAC
4364 	 * header.
4365 	 */
4366 	mac_len = skb->data - skb_mac_header(skb);
4367 	hlen = skb_headlen(skb) + mac_len;
4368 	xdp->data = skb->data - mac_len;
4369 	xdp->data_meta = xdp->data;
4370 	xdp->data_end = xdp->data + hlen;
4371 	xdp->data_hard_start = skb->data - skb_headroom(skb);
4372 	orig_data_end = xdp->data_end;
4373 	orig_data = xdp->data;
4374 	eth = (struct ethhdr *)xdp->data;
4375 	orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4376 	orig_eth_type = eth->h_proto;
4377 
4378 	rxqueue = netif_get_rxqueue(skb);
4379 	xdp->rxq = &rxqueue->xdp_rxq;
4380 
4381 	act = bpf_prog_run_xdp(xdp_prog, xdp);
4382 
4383 	/* check if bpf_xdp_adjust_head was used */
4384 	off = xdp->data - orig_data;
4385 	if (off) {
4386 		if (off > 0)
4387 			__skb_pull(skb, off);
4388 		else if (off < 0)
4389 			__skb_push(skb, -off);
4390 
4391 		skb->mac_header += off;
4392 		skb_reset_network_header(skb);
4393 	}
4394 
4395 	/* check if bpf_xdp_adjust_tail was used. it can only "shrink"
4396 	 * pckt.
4397 	 */
4398 	off = orig_data_end - xdp->data_end;
4399 	if (off != 0) {
4400 		skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4401 		skb->len -= off;
4402 
4403 	}
4404 
4405 	/* check if XDP changed eth hdr such SKB needs update */
4406 	eth = (struct ethhdr *)xdp->data;
4407 	if ((orig_eth_type != eth->h_proto) ||
4408 	    (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4409 		__skb_push(skb, ETH_HLEN);
4410 		skb->protocol = eth_type_trans(skb, skb->dev);
4411 	}
4412 
4413 	switch (act) {
4414 	case XDP_REDIRECT:
4415 	case XDP_TX:
4416 		__skb_push(skb, mac_len);
4417 		break;
4418 	case XDP_PASS:
4419 		metalen = xdp->data - xdp->data_meta;
4420 		if (metalen)
4421 			skb_metadata_set(skb, metalen);
4422 		break;
4423 	default:
4424 		bpf_warn_invalid_xdp_action(act);
4425 		/* fall through */
4426 	case XDP_ABORTED:
4427 		trace_xdp_exception(skb->dev, xdp_prog, act);
4428 		/* fall through */
4429 	case XDP_DROP:
4430 	do_drop:
4431 		kfree_skb(skb);
4432 		break;
4433 	}
4434 
4435 	return act;
4436 }
4437 
4438 /* When doing generic XDP we have to bypass the qdisc layer and the
4439  * network taps in order to match in-driver-XDP behavior.
4440  */
4441 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4442 {
4443 	struct net_device *dev = skb->dev;
4444 	struct netdev_queue *txq;
4445 	bool free_skb = true;
4446 	int cpu, rc;
4447 
4448 	txq = netdev_core_pick_tx(dev, skb, NULL);
4449 	cpu = smp_processor_id();
4450 	HARD_TX_LOCK(dev, txq, cpu);
4451 	if (!netif_xmit_stopped(txq)) {
4452 		rc = netdev_start_xmit(skb, dev, txq, 0);
4453 		if (dev_xmit_complete(rc))
4454 			free_skb = false;
4455 	}
4456 	HARD_TX_UNLOCK(dev, txq);
4457 	if (free_skb) {
4458 		trace_xdp_exception(dev, xdp_prog, XDP_TX);
4459 		kfree_skb(skb);
4460 	}
4461 }
4462 EXPORT_SYMBOL_GPL(generic_xdp_tx);
4463 
4464 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4465 
4466 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4467 {
4468 	if (xdp_prog) {
4469 		struct xdp_buff xdp;
4470 		u32 act;
4471 		int err;
4472 
4473 		act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4474 		if (act != XDP_PASS) {
4475 			switch (act) {
4476 			case XDP_REDIRECT:
4477 				err = xdp_do_generic_redirect(skb->dev, skb,
4478 							      &xdp, xdp_prog);
4479 				if (err)
4480 					goto out_redir;
4481 				break;
4482 			case XDP_TX:
4483 				generic_xdp_tx(skb, xdp_prog);
4484 				break;
4485 			}
4486 			return XDP_DROP;
4487 		}
4488 	}
4489 	return XDP_PASS;
4490 out_redir:
4491 	kfree_skb(skb);
4492 	return XDP_DROP;
4493 }
4494 EXPORT_SYMBOL_GPL(do_xdp_generic);
4495 
4496 static int netif_rx_internal(struct sk_buff *skb)
4497 {
4498 	int ret;
4499 
4500 	net_timestamp_check(netdev_tstamp_prequeue, skb);
4501 
4502 	trace_netif_rx(skb);
4503 
4504 #ifdef CONFIG_RPS
4505 	if (static_branch_unlikely(&rps_needed)) {
4506 		struct rps_dev_flow voidflow, *rflow = &voidflow;
4507 		int cpu;
4508 
4509 		preempt_disable();
4510 		rcu_read_lock();
4511 
4512 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
4513 		if (cpu < 0)
4514 			cpu = smp_processor_id();
4515 
4516 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4517 
4518 		rcu_read_unlock();
4519 		preempt_enable();
4520 	} else
4521 #endif
4522 	{
4523 		unsigned int qtail;
4524 
4525 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4526 		put_cpu();
4527 	}
4528 	return ret;
4529 }
4530 
4531 /**
4532  *	netif_rx	-	post buffer to the network code
4533  *	@skb: buffer to post
4534  *
4535  *	This function receives a packet from a device driver and queues it for
4536  *	the upper (protocol) levels to process.  It always succeeds. The buffer
4537  *	may be dropped during processing for congestion control or by the
4538  *	protocol layers.
4539  *
4540  *	return values:
4541  *	NET_RX_SUCCESS	(no congestion)
4542  *	NET_RX_DROP     (packet was dropped)
4543  *
4544  */
4545 
4546 int netif_rx(struct sk_buff *skb)
4547 {
4548 	int ret;
4549 
4550 	trace_netif_rx_entry(skb);
4551 
4552 	ret = netif_rx_internal(skb);
4553 	trace_netif_rx_exit(ret);
4554 
4555 	return ret;
4556 }
4557 EXPORT_SYMBOL(netif_rx);
4558 
4559 int netif_rx_ni(struct sk_buff *skb)
4560 {
4561 	int err;
4562 
4563 	trace_netif_rx_ni_entry(skb);
4564 
4565 	preempt_disable();
4566 	err = netif_rx_internal(skb);
4567 	if (local_softirq_pending())
4568 		do_softirq();
4569 	preempt_enable();
4570 	trace_netif_rx_ni_exit(err);
4571 
4572 	return err;
4573 }
4574 EXPORT_SYMBOL(netif_rx_ni);
4575 
4576 static __latent_entropy void net_tx_action(struct softirq_action *h)
4577 {
4578 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4579 
4580 	if (sd->completion_queue) {
4581 		struct sk_buff *clist;
4582 
4583 		local_irq_disable();
4584 		clist = sd->completion_queue;
4585 		sd->completion_queue = NULL;
4586 		local_irq_enable();
4587 
4588 		while (clist) {
4589 			struct sk_buff *skb = clist;
4590 
4591 			clist = clist->next;
4592 
4593 			WARN_ON(refcount_read(&skb->users));
4594 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4595 				trace_consume_skb(skb);
4596 			else
4597 				trace_kfree_skb(skb, net_tx_action);
4598 
4599 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4600 				__kfree_skb(skb);
4601 			else
4602 				__kfree_skb_defer(skb);
4603 		}
4604 
4605 		__kfree_skb_flush();
4606 	}
4607 
4608 	if (sd->output_queue) {
4609 		struct Qdisc *head;
4610 
4611 		local_irq_disable();
4612 		head = sd->output_queue;
4613 		sd->output_queue = NULL;
4614 		sd->output_queue_tailp = &sd->output_queue;
4615 		local_irq_enable();
4616 
4617 		while (head) {
4618 			struct Qdisc *q = head;
4619 			spinlock_t *root_lock = NULL;
4620 
4621 			head = head->next_sched;
4622 
4623 			if (!(q->flags & TCQ_F_NOLOCK)) {
4624 				root_lock = qdisc_lock(q);
4625 				spin_lock(root_lock);
4626 			}
4627 			/* We need to make sure head->next_sched is read
4628 			 * before clearing __QDISC_STATE_SCHED
4629 			 */
4630 			smp_mb__before_atomic();
4631 			clear_bit(__QDISC_STATE_SCHED, &q->state);
4632 			qdisc_run(q);
4633 			if (root_lock)
4634 				spin_unlock(root_lock);
4635 		}
4636 	}
4637 
4638 	xfrm_dev_backlog(sd);
4639 }
4640 
4641 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4642 /* This hook is defined here for ATM LANE */
4643 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4644 			     unsigned char *addr) __read_mostly;
4645 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4646 #endif
4647 
4648 static inline struct sk_buff *
4649 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4650 		   struct net_device *orig_dev)
4651 {
4652 #ifdef CONFIG_NET_CLS_ACT
4653 	struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4654 	struct tcf_result cl_res;
4655 
4656 	/* If there's at least one ingress present somewhere (so
4657 	 * we get here via enabled static key), remaining devices
4658 	 * that are not configured with an ingress qdisc will bail
4659 	 * out here.
4660 	 */
4661 	if (!miniq)
4662 		return skb;
4663 
4664 	if (*pt_prev) {
4665 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
4666 		*pt_prev = NULL;
4667 	}
4668 
4669 	qdisc_skb_cb(skb)->pkt_len = skb->len;
4670 	skb->tc_at_ingress = 1;
4671 	mini_qdisc_bstats_cpu_update(miniq, skb);
4672 
4673 	switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
4674 	case TC_ACT_OK:
4675 	case TC_ACT_RECLASSIFY:
4676 		skb->tc_index = TC_H_MIN(cl_res.classid);
4677 		break;
4678 	case TC_ACT_SHOT:
4679 		mini_qdisc_qstats_cpu_drop(miniq);
4680 		kfree_skb(skb);
4681 		return NULL;
4682 	case TC_ACT_STOLEN:
4683 	case TC_ACT_QUEUED:
4684 	case TC_ACT_TRAP:
4685 		consume_skb(skb);
4686 		return NULL;
4687 	case TC_ACT_REDIRECT:
4688 		/* skb_mac_header check was done by cls/act_bpf, so
4689 		 * we can safely push the L2 header back before
4690 		 * redirecting to another netdev
4691 		 */
4692 		__skb_push(skb, skb->mac_len);
4693 		skb_do_redirect(skb);
4694 		return NULL;
4695 	case TC_ACT_CONSUMED:
4696 		return NULL;
4697 	default:
4698 		break;
4699 	}
4700 #endif /* CONFIG_NET_CLS_ACT */
4701 	return skb;
4702 }
4703 
4704 /**
4705  *	netdev_is_rx_handler_busy - check if receive handler is registered
4706  *	@dev: device to check
4707  *
4708  *	Check if a receive handler is already registered for a given device.
4709  *	Return true if there one.
4710  *
4711  *	The caller must hold the rtnl_mutex.
4712  */
4713 bool netdev_is_rx_handler_busy(struct net_device *dev)
4714 {
4715 	ASSERT_RTNL();
4716 	return dev && rtnl_dereference(dev->rx_handler);
4717 }
4718 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4719 
4720 /**
4721  *	netdev_rx_handler_register - register receive handler
4722  *	@dev: device to register a handler for
4723  *	@rx_handler: receive handler to register
4724  *	@rx_handler_data: data pointer that is used by rx handler
4725  *
4726  *	Register a receive handler for a device. This handler will then be
4727  *	called from __netif_receive_skb. A negative errno code is returned
4728  *	on a failure.
4729  *
4730  *	The caller must hold the rtnl_mutex.
4731  *
4732  *	For a general description of rx_handler, see enum rx_handler_result.
4733  */
4734 int netdev_rx_handler_register(struct net_device *dev,
4735 			       rx_handler_func_t *rx_handler,
4736 			       void *rx_handler_data)
4737 {
4738 	if (netdev_is_rx_handler_busy(dev))
4739 		return -EBUSY;
4740 
4741 	if (dev->priv_flags & IFF_NO_RX_HANDLER)
4742 		return -EINVAL;
4743 
4744 	/* Note: rx_handler_data must be set before rx_handler */
4745 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4746 	rcu_assign_pointer(dev->rx_handler, rx_handler);
4747 
4748 	return 0;
4749 }
4750 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4751 
4752 /**
4753  *	netdev_rx_handler_unregister - unregister receive handler
4754  *	@dev: device to unregister a handler from
4755  *
4756  *	Unregister a receive handler from a device.
4757  *
4758  *	The caller must hold the rtnl_mutex.
4759  */
4760 void netdev_rx_handler_unregister(struct net_device *dev)
4761 {
4762 
4763 	ASSERT_RTNL();
4764 	RCU_INIT_POINTER(dev->rx_handler, NULL);
4765 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4766 	 * section has a guarantee to see a non NULL rx_handler_data
4767 	 * as well.
4768 	 */
4769 	synchronize_net();
4770 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4771 }
4772 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4773 
4774 /*
4775  * Limit the use of PFMEMALLOC reserves to those protocols that implement
4776  * the special handling of PFMEMALLOC skbs.
4777  */
4778 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4779 {
4780 	switch (skb->protocol) {
4781 	case htons(ETH_P_ARP):
4782 	case htons(ETH_P_IP):
4783 	case htons(ETH_P_IPV6):
4784 	case htons(ETH_P_8021Q):
4785 	case htons(ETH_P_8021AD):
4786 		return true;
4787 	default:
4788 		return false;
4789 	}
4790 }
4791 
4792 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4793 			     int *ret, struct net_device *orig_dev)
4794 {
4795 #ifdef CONFIG_NETFILTER_INGRESS
4796 	if (nf_hook_ingress_active(skb)) {
4797 		int ingress_retval;
4798 
4799 		if (*pt_prev) {
4800 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
4801 			*pt_prev = NULL;
4802 		}
4803 
4804 		rcu_read_lock();
4805 		ingress_retval = nf_hook_ingress(skb);
4806 		rcu_read_unlock();
4807 		return ingress_retval;
4808 	}
4809 #endif /* CONFIG_NETFILTER_INGRESS */
4810 	return 0;
4811 }
4812 
4813 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc,
4814 				    struct packet_type **ppt_prev)
4815 {
4816 	struct packet_type *ptype, *pt_prev;
4817 	rx_handler_func_t *rx_handler;
4818 	struct net_device *orig_dev;
4819 	bool deliver_exact = false;
4820 	int ret = NET_RX_DROP;
4821 	__be16 type;
4822 
4823 	net_timestamp_check(!netdev_tstamp_prequeue, skb);
4824 
4825 	trace_netif_receive_skb(skb);
4826 
4827 	orig_dev = skb->dev;
4828 
4829 	skb_reset_network_header(skb);
4830 	if (!skb_transport_header_was_set(skb))
4831 		skb_reset_transport_header(skb);
4832 	skb_reset_mac_len(skb);
4833 
4834 	pt_prev = NULL;
4835 
4836 another_round:
4837 	skb->skb_iif = skb->dev->ifindex;
4838 
4839 	__this_cpu_inc(softnet_data.processed);
4840 
4841 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
4842 		int ret2;
4843 
4844 		preempt_disable();
4845 		ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4846 		preempt_enable();
4847 
4848 		if (ret2 != XDP_PASS)
4849 			return NET_RX_DROP;
4850 		skb_reset_mac_len(skb);
4851 	}
4852 
4853 	if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4854 	    skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4855 		skb = skb_vlan_untag(skb);
4856 		if (unlikely(!skb))
4857 			goto out;
4858 	}
4859 
4860 	if (skb_skip_tc_classify(skb))
4861 		goto skip_classify;
4862 
4863 	if (pfmemalloc)
4864 		goto skip_taps;
4865 
4866 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
4867 		if (pt_prev)
4868 			ret = deliver_skb(skb, pt_prev, orig_dev);
4869 		pt_prev = ptype;
4870 	}
4871 
4872 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4873 		if (pt_prev)
4874 			ret = deliver_skb(skb, pt_prev, orig_dev);
4875 		pt_prev = ptype;
4876 	}
4877 
4878 skip_taps:
4879 #ifdef CONFIG_NET_INGRESS
4880 	if (static_branch_unlikely(&ingress_needed_key)) {
4881 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4882 		if (!skb)
4883 			goto out;
4884 
4885 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4886 			goto out;
4887 	}
4888 #endif
4889 	skb_reset_tc(skb);
4890 skip_classify:
4891 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4892 		goto drop;
4893 
4894 	if (skb_vlan_tag_present(skb)) {
4895 		if (pt_prev) {
4896 			ret = deliver_skb(skb, pt_prev, orig_dev);
4897 			pt_prev = NULL;
4898 		}
4899 		if (vlan_do_receive(&skb))
4900 			goto another_round;
4901 		else if (unlikely(!skb))
4902 			goto out;
4903 	}
4904 
4905 	rx_handler = rcu_dereference(skb->dev->rx_handler);
4906 	if (rx_handler) {
4907 		if (pt_prev) {
4908 			ret = deliver_skb(skb, pt_prev, orig_dev);
4909 			pt_prev = NULL;
4910 		}
4911 		switch (rx_handler(&skb)) {
4912 		case RX_HANDLER_CONSUMED:
4913 			ret = NET_RX_SUCCESS;
4914 			goto out;
4915 		case RX_HANDLER_ANOTHER:
4916 			goto another_round;
4917 		case RX_HANDLER_EXACT:
4918 			deliver_exact = true;
4919 		case RX_HANDLER_PASS:
4920 			break;
4921 		default:
4922 			BUG();
4923 		}
4924 	}
4925 
4926 	if (unlikely(skb_vlan_tag_present(skb))) {
4927 check_vlan_id:
4928 		if (skb_vlan_tag_get_id(skb)) {
4929 			/* Vlan id is non 0 and vlan_do_receive() above couldn't
4930 			 * find vlan device.
4931 			 */
4932 			skb->pkt_type = PACKET_OTHERHOST;
4933 		} else if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4934 			   skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4935 			/* Outer header is 802.1P with vlan 0, inner header is
4936 			 * 802.1Q or 802.1AD and vlan_do_receive() above could
4937 			 * not find vlan dev for vlan id 0.
4938 			 */
4939 			__vlan_hwaccel_clear_tag(skb);
4940 			skb = skb_vlan_untag(skb);
4941 			if (unlikely(!skb))
4942 				goto out;
4943 			if (vlan_do_receive(&skb))
4944 				/* After stripping off 802.1P header with vlan 0
4945 				 * vlan dev is found for inner header.
4946 				 */
4947 				goto another_round;
4948 			else if (unlikely(!skb))
4949 				goto out;
4950 			else
4951 				/* We have stripped outer 802.1P vlan 0 header.
4952 				 * But could not find vlan dev.
4953 				 * check again for vlan id to set OTHERHOST.
4954 				 */
4955 				goto check_vlan_id;
4956 		}
4957 		/* Note: we might in the future use prio bits
4958 		 * and set skb->priority like in vlan_do_receive()
4959 		 * For the time being, just ignore Priority Code Point
4960 		 */
4961 		__vlan_hwaccel_clear_tag(skb);
4962 	}
4963 
4964 	type = skb->protocol;
4965 
4966 	/* deliver only exact match when indicated */
4967 	if (likely(!deliver_exact)) {
4968 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4969 				       &ptype_base[ntohs(type) &
4970 						   PTYPE_HASH_MASK]);
4971 	}
4972 
4973 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4974 			       &orig_dev->ptype_specific);
4975 
4976 	if (unlikely(skb->dev != orig_dev)) {
4977 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4978 				       &skb->dev->ptype_specific);
4979 	}
4980 
4981 	if (pt_prev) {
4982 		if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
4983 			goto drop;
4984 		*ppt_prev = pt_prev;
4985 	} else {
4986 drop:
4987 		if (!deliver_exact)
4988 			atomic_long_inc(&skb->dev->rx_dropped);
4989 		else
4990 			atomic_long_inc(&skb->dev->rx_nohandler);
4991 		kfree_skb(skb);
4992 		/* Jamal, now you will not able to escape explaining
4993 		 * me how you were going to use this. :-)
4994 		 */
4995 		ret = NET_RX_DROP;
4996 	}
4997 
4998 out:
4999 	return ret;
5000 }
5001 
5002 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5003 {
5004 	struct net_device *orig_dev = skb->dev;
5005 	struct packet_type *pt_prev = NULL;
5006 	int ret;
5007 
5008 	ret = __netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
5009 	if (pt_prev)
5010 		ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5011 					 skb->dev, pt_prev, orig_dev);
5012 	return ret;
5013 }
5014 
5015 /**
5016  *	netif_receive_skb_core - special purpose version of netif_receive_skb
5017  *	@skb: buffer to process
5018  *
5019  *	More direct receive version of netif_receive_skb().  It should
5020  *	only be used by callers that have a need to skip RPS and Generic XDP.
5021  *	Caller must also take care of handling if (page_is_)pfmemalloc.
5022  *
5023  *	This function may only be called from softirq context and interrupts
5024  *	should be enabled.
5025  *
5026  *	Return values (usually ignored):
5027  *	NET_RX_SUCCESS: no congestion
5028  *	NET_RX_DROP: packet was dropped
5029  */
5030 int netif_receive_skb_core(struct sk_buff *skb)
5031 {
5032 	int ret;
5033 
5034 	rcu_read_lock();
5035 	ret = __netif_receive_skb_one_core(skb, false);
5036 	rcu_read_unlock();
5037 
5038 	return ret;
5039 }
5040 EXPORT_SYMBOL(netif_receive_skb_core);
5041 
5042 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5043 						  struct packet_type *pt_prev,
5044 						  struct net_device *orig_dev)
5045 {
5046 	struct sk_buff *skb, *next;
5047 
5048 	if (!pt_prev)
5049 		return;
5050 	if (list_empty(head))
5051 		return;
5052 	if (pt_prev->list_func != NULL)
5053 		INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5054 				   ip_list_rcv, head, pt_prev, orig_dev);
5055 	else
5056 		list_for_each_entry_safe(skb, next, head, list) {
5057 			skb_list_del_init(skb);
5058 			pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5059 		}
5060 }
5061 
5062 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5063 {
5064 	/* Fast-path assumptions:
5065 	 * - There is no RX handler.
5066 	 * - Only one packet_type matches.
5067 	 * If either of these fails, we will end up doing some per-packet
5068 	 * processing in-line, then handling the 'last ptype' for the whole
5069 	 * sublist.  This can't cause out-of-order delivery to any single ptype,
5070 	 * because the 'last ptype' must be constant across the sublist, and all
5071 	 * other ptypes are handled per-packet.
5072 	 */
5073 	/* Current (common) ptype of sublist */
5074 	struct packet_type *pt_curr = NULL;
5075 	/* Current (common) orig_dev of sublist */
5076 	struct net_device *od_curr = NULL;
5077 	struct list_head sublist;
5078 	struct sk_buff *skb, *next;
5079 
5080 	INIT_LIST_HEAD(&sublist);
5081 	list_for_each_entry_safe(skb, next, head, list) {
5082 		struct net_device *orig_dev = skb->dev;
5083 		struct packet_type *pt_prev = NULL;
5084 
5085 		skb_list_del_init(skb);
5086 		__netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
5087 		if (!pt_prev)
5088 			continue;
5089 		if (pt_curr != pt_prev || od_curr != orig_dev) {
5090 			/* dispatch old sublist */
5091 			__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5092 			/* start new sublist */
5093 			INIT_LIST_HEAD(&sublist);
5094 			pt_curr = pt_prev;
5095 			od_curr = orig_dev;
5096 		}
5097 		list_add_tail(&skb->list, &sublist);
5098 	}
5099 
5100 	/* dispatch final sublist */
5101 	__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5102 }
5103 
5104 static int __netif_receive_skb(struct sk_buff *skb)
5105 {
5106 	int ret;
5107 
5108 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5109 		unsigned int noreclaim_flag;
5110 
5111 		/*
5112 		 * PFMEMALLOC skbs are special, they should
5113 		 * - be delivered to SOCK_MEMALLOC sockets only
5114 		 * - stay away from userspace
5115 		 * - have bounded memory usage
5116 		 *
5117 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
5118 		 * context down to all allocation sites.
5119 		 */
5120 		noreclaim_flag = memalloc_noreclaim_save();
5121 		ret = __netif_receive_skb_one_core(skb, true);
5122 		memalloc_noreclaim_restore(noreclaim_flag);
5123 	} else
5124 		ret = __netif_receive_skb_one_core(skb, false);
5125 
5126 	return ret;
5127 }
5128 
5129 static void __netif_receive_skb_list(struct list_head *head)
5130 {
5131 	unsigned long noreclaim_flag = 0;
5132 	struct sk_buff *skb, *next;
5133 	bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5134 
5135 	list_for_each_entry_safe(skb, next, head, list) {
5136 		if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5137 			struct list_head sublist;
5138 
5139 			/* Handle the previous sublist */
5140 			list_cut_before(&sublist, head, &skb->list);
5141 			if (!list_empty(&sublist))
5142 				__netif_receive_skb_list_core(&sublist, pfmemalloc);
5143 			pfmemalloc = !pfmemalloc;
5144 			/* See comments in __netif_receive_skb */
5145 			if (pfmemalloc)
5146 				noreclaim_flag = memalloc_noreclaim_save();
5147 			else
5148 				memalloc_noreclaim_restore(noreclaim_flag);
5149 		}
5150 	}
5151 	/* Handle the remaining sublist */
5152 	if (!list_empty(head))
5153 		__netif_receive_skb_list_core(head, pfmemalloc);
5154 	/* Restore pflags */
5155 	if (pfmemalloc)
5156 		memalloc_noreclaim_restore(noreclaim_flag);
5157 }
5158 
5159 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5160 {
5161 	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5162 	struct bpf_prog *new = xdp->prog;
5163 	int ret = 0;
5164 
5165 	switch (xdp->command) {
5166 	case XDP_SETUP_PROG:
5167 		rcu_assign_pointer(dev->xdp_prog, new);
5168 		if (old)
5169 			bpf_prog_put(old);
5170 
5171 		if (old && !new) {
5172 			static_branch_dec(&generic_xdp_needed_key);
5173 		} else if (new && !old) {
5174 			static_branch_inc(&generic_xdp_needed_key);
5175 			dev_disable_lro(dev);
5176 			dev_disable_gro_hw(dev);
5177 		}
5178 		break;
5179 
5180 	case XDP_QUERY_PROG:
5181 		xdp->prog_id = old ? old->aux->id : 0;
5182 		break;
5183 
5184 	default:
5185 		ret = -EINVAL;
5186 		break;
5187 	}
5188 
5189 	return ret;
5190 }
5191 
5192 static int netif_receive_skb_internal(struct sk_buff *skb)
5193 {
5194 	int ret;
5195 
5196 	net_timestamp_check(netdev_tstamp_prequeue, skb);
5197 
5198 	if (skb_defer_rx_timestamp(skb))
5199 		return NET_RX_SUCCESS;
5200 
5201 	rcu_read_lock();
5202 #ifdef CONFIG_RPS
5203 	if (static_branch_unlikely(&rps_needed)) {
5204 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5205 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5206 
5207 		if (cpu >= 0) {
5208 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5209 			rcu_read_unlock();
5210 			return ret;
5211 		}
5212 	}
5213 #endif
5214 	ret = __netif_receive_skb(skb);
5215 	rcu_read_unlock();
5216 	return ret;
5217 }
5218 
5219 static void netif_receive_skb_list_internal(struct list_head *head)
5220 {
5221 	struct sk_buff *skb, *next;
5222 	struct list_head sublist;
5223 
5224 	INIT_LIST_HEAD(&sublist);
5225 	list_for_each_entry_safe(skb, next, head, list) {
5226 		net_timestamp_check(netdev_tstamp_prequeue, skb);
5227 		skb_list_del_init(skb);
5228 		if (!skb_defer_rx_timestamp(skb))
5229 			list_add_tail(&skb->list, &sublist);
5230 	}
5231 	list_splice_init(&sublist, head);
5232 
5233 	rcu_read_lock();
5234 #ifdef CONFIG_RPS
5235 	if (static_branch_unlikely(&rps_needed)) {
5236 		list_for_each_entry_safe(skb, next, head, list) {
5237 			struct rps_dev_flow voidflow, *rflow = &voidflow;
5238 			int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5239 
5240 			if (cpu >= 0) {
5241 				/* Will be handled, remove from list */
5242 				skb_list_del_init(skb);
5243 				enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5244 			}
5245 		}
5246 	}
5247 #endif
5248 	__netif_receive_skb_list(head);
5249 	rcu_read_unlock();
5250 }
5251 
5252 /**
5253  *	netif_receive_skb - process receive buffer from network
5254  *	@skb: buffer to process
5255  *
5256  *	netif_receive_skb() is the main receive data processing function.
5257  *	It always succeeds. The buffer may be dropped during processing
5258  *	for congestion control or by the protocol layers.
5259  *
5260  *	This function may only be called from softirq context and interrupts
5261  *	should be enabled.
5262  *
5263  *	Return values (usually ignored):
5264  *	NET_RX_SUCCESS: no congestion
5265  *	NET_RX_DROP: packet was dropped
5266  */
5267 int netif_receive_skb(struct sk_buff *skb)
5268 {
5269 	int ret;
5270 
5271 	trace_netif_receive_skb_entry(skb);
5272 
5273 	ret = netif_receive_skb_internal(skb);
5274 	trace_netif_receive_skb_exit(ret);
5275 
5276 	return ret;
5277 }
5278 EXPORT_SYMBOL(netif_receive_skb);
5279 
5280 /**
5281  *	netif_receive_skb_list - process many receive buffers from network
5282  *	@head: list of skbs to process.
5283  *
5284  *	Since return value of netif_receive_skb() is normally ignored, and
5285  *	wouldn't be meaningful for a list, this function returns void.
5286  *
5287  *	This function may only be called from softirq context and interrupts
5288  *	should be enabled.
5289  */
5290 void netif_receive_skb_list(struct list_head *head)
5291 {
5292 	struct sk_buff *skb;
5293 
5294 	if (list_empty(head))
5295 		return;
5296 	if (trace_netif_receive_skb_list_entry_enabled()) {
5297 		list_for_each_entry(skb, head, list)
5298 			trace_netif_receive_skb_list_entry(skb);
5299 	}
5300 	netif_receive_skb_list_internal(head);
5301 	trace_netif_receive_skb_list_exit(0);
5302 }
5303 EXPORT_SYMBOL(netif_receive_skb_list);
5304 
5305 DEFINE_PER_CPU(struct work_struct, flush_works);
5306 
5307 /* Network device is going away, flush any packets still pending */
5308 static void flush_backlog(struct work_struct *work)
5309 {
5310 	struct sk_buff *skb, *tmp;
5311 	struct softnet_data *sd;
5312 
5313 	local_bh_disable();
5314 	sd = this_cpu_ptr(&softnet_data);
5315 
5316 	local_irq_disable();
5317 	rps_lock(sd);
5318 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5319 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5320 			__skb_unlink(skb, &sd->input_pkt_queue);
5321 			kfree_skb(skb);
5322 			input_queue_head_incr(sd);
5323 		}
5324 	}
5325 	rps_unlock(sd);
5326 	local_irq_enable();
5327 
5328 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5329 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5330 			__skb_unlink(skb, &sd->process_queue);
5331 			kfree_skb(skb);
5332 			input_queue_head_incr(sd);
5333 		}
5334 	}
5335 	local_bh_enable();
5336 }
5337 
5338 static void flush_all_backlogs(void)
5339 {
5340 	unsigned int cpu;
5341 
5342 	get_online_cpus();
5343 
5344 	for_each_online_cpu(cpu)
5345 		queue_work_on(cpu, system_highpri_wq,
5346 			      per_cpu_ptr(&flush_works, cpu));
5347 
5348 	for_each_online_cpu(cpu)
5349 		flush_work(per_cpu_ptr(&flush_works, cpu));
5350 
5351 	put_online_cpus();
5352 }
5353 
5354 INDIRECT_CALLABLE_DECLARE(int inet_gro_complete(struct sk_buff *, int));
5355 INDIRECT_CALLABLE_DECLARE(int ipv6_gro_complete(struct sk_buff *, int));
5356 static int napi_gro_complete(struct sk_buff *skb)
5357 {
5358 	struct packet_offload *ptype;
5359 	__be16 type = skb->protocol;
5360 	struct list_head *head = &offload_base;
5361 	int err = -ENOENT;
5362 
5363 	BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5364 
5365 	if (NAPI_GRO_CB(skb)->count == 1) {
5366 		skb_shinfo(skb)->gso_size = 0;
5367 		goto out;
5368 	}
5369 
5370 	rcu_read_lock();
5371 	list_for_each_entry_rcu(ptype, head, list) {
5372 		if (ptype->type != type || !ptype->callbacks.gro_complete)
5373 			continue;
5374 
5375 		err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5376 					 ipv6_gro_complete, inet_gro_complete,
5377 					 skb, 0);
5378 		break;
5379 	}
5380 	rcu_read_unlock();
5381 
5382 	if (err) {
5383 		WARN_ON(&ptype->list == head);
5384 		kfree_skb(skb);
5385 		return NET_RX_SUCCESS;
5386 	}
5387 
5388 out:
5389 	return netif_receive_skb_internal(skb);
5390 }
5391 
5392 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5393 				   bool flush_old)
5394 {
5395 	struct list_head *head = &napi->gro_hash[index].list;
5396 	struct sk_buff *skb, *p;
5397 
5398 	list_for_each_entry_safe_reverse(skb, p, head, list) {
5399 		if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5400 			return;
5401 		skb_list_del_init(skb);
5402 		napi_gro_complete(skb);
5403 		napi->gro_hash[index].count--;
5404 	}
5405 
5406 	if (!napi->gro_hash[index].count)
5407 		__clear_bit(index, &napi->gro_bitmask);
5408 }
5409 
5410 /* napi->gro_hash[].list contains packets ordered by age.
5411  * youngest packets at the head of it.
5412  * Complete skbs in reverse order to reduce latencies.
5413  */
5414 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5415 {
5416 	unsigned long bitmask = napi->gro_bitmask;
5417 	unsigned int i, base = ~0U;
5418 
5419 	while ((i = ffs(bitmask)) != 0) {
5420 		bitmask >>= i;
5421 		base += i;
5422 		__napi_gro_flush_chain(napi, base, flush_old);
5423 	}
5424 }
5425 EXPORT_SYMBOL(napi_gro_flush);
5426 
5427 static struct list_head *gro_list_prepare(struct napi_struct *napi,
5428 					  struct sk_buff *skb)
5429 {
5430 	unsigned int maclen = skb->dev->hard_header_len;
5431 	u32 hash = skb_get_hash_raw(skb);
5432 	struct list_head *head;
5433 	struct sk_buff *p;
5434 
5435 	head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list;
5436 	list_for_each_entry(p, head, list) {
5437 		unsigned long diffs;
5438 
5439 		NAPI_GRO_CB(p)->flush = 0;
5440 
5441 		if (hash != skb_get_hash_raw(p)) {
5442 			NAPI_GRO_CB(p)->same_flow = 0;
5443 			continue;
5444 		}
5445 
5446 		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5447 		diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5448 		if (skb_vlan_tag_present(p))
5449 			diffs |= p->vlan_tci ^ skb->vlan_tci;
5450 		diffs |= skb_metadata_dst_cmp(p, skb);
5451 		diffs |= skb_metadata_differs(p, skb);
5452 		if (maclen == ETH_HLEN)
5453 			diffs |= compare_ether_header(skb_mac_header(p),
5454 						      skb_mac_header(skb));
5455 		else if (!diffs)
5456 			diffs = memcmp(skb_mac_header(p),
5457 				       skb_mac_header(skb),
5458 				       maclen);
5459 		NAPI_GRO_CB(p)->same_flow = !diffs;
5460 	}
5461 
5462 	return head;
5463 }
5464 
5465 static void skb_gro_reset_offset(struct sk_buff *skb)
5466 {
5467 	const struct skb_shared_info *pinfo = skb_shinfo(skb);
5468 	const skb_frag_t *frag0 = &pinfo->frags[0];
5469 
5470 	NAPI_GRO_CB(skb)->data_offset = 0;
5471 	NAPI_GRO_CB(skb)->frag0 = NULL;
5472 	NAPI_GRO_CB(skb)->frag0_len = 0;
5473 
5474 	if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
5475 	    pinfo->nr_frags &&
5476 	    !PageHighMem(skb_frag_page(frag0))) {
5477 		NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
5478 		NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5479 						    skb_frag_size(frag0),
5480 						    skb->end - skb->tail);
5481 	}
5482 }
5483 
5484 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5485 {
5486 	struct skb_shared_info *pinfo = skb_shinfo(skb);
5487 
5488 	BUG_ON(skb->end - skb->tail < grow);
5489 
5490 	memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5491 
5492 	skb->data_len -= grow;
5493 	skb->tail += grow;
5494 
5495 	skb_frag_off_add(&pinfo->frags[0], grow);
5496 	skb_frag_size_sub(&pinfo->frags[0], grow);
5497 
5498 	if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5499 		skb_frag_unref(skb, 0);
5500 		memmove(pinfo->frags, pinfo->frags + 1,
5501 			--pinfo->nr_frags * sizeof(pinfo->frags[0]));
5502 	}
5503 }
5504 
5505 static void gro_flush_oldest(struct list_head *head)
5506 {
5507 	struct sk_buff *oldest;
5508 
5509 	oldest = list_last_entry(head, struct sk_buff, list);
5510 
5511 	/* We are called with head length >= MAX_GRO_SKBS, so this is
5512 	 * impossible.
5513 	 */
5514 	if (WARN_ON_ONCE(!oldest))
5515 		return;
5516 
5517 	/* Do not adjust napi->gro_hash[].count, caller is adding a new
5518 	 * SKB to the chain.
5519 	 */
5520 	skb_list_del_init(oldest);
5521 	napi_gro_complete(oldest);
5522 }
5523 
5524 INDIRECT_CALLABLE_DECLARE(struct sk_buff *inet_gro_receive(struct list_head *,
5525 							   struct sk_buff *));
5526 INDIRECT_CALLABLE_DECLARE(struct sk_buff *ipv6_gro_receive(struct list_head *,
5527 							   struct sk_buff *));
5528 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5529 {
5530 	u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
5531 	struct list_head *head = &offload_base;
5532 	struct packet_offload *ptype;
5533 	__be16 type = skb->protocol;
5534 	struct list_head *gro_head;
5535 	struct sk_buff *pp = NULL;
5536 	enum gro_result ret;
5537 	int same_flow;
5538 	int grow;
5539 
5540 	if (netif_elide_gro(skb->dev))
5541 		goto normal;
5542 
5543 	gro_head = gro_list_prepare(napi, skb);
5544 
5545 	rcu_read_lock();
5546 	list_for_each_entry_rcu(ptype, head, list) {
5547 		if (ptype->type != type || !ptype->callbacks.gro_receive)
5548 			continue;
5549 
5550 		skb_set_network_header(skb, skb_gro_offset(skb));
5551 		skb_reset_mac_len(skb);
5552 		NAPI_GRO_CB(skb)->same_flow = 0;
5553 		NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5554 		NAPI_GRO_CB(skb)->free = 0;
5555 		NAPI_GRO_CB(skb)->encap_mark = 0;
5556 		NAPI_GRO_CB(skb)->recursion_counter = 0;
5557 		NAPI_GRO_CB(skb)->is_fou = 0;
5558 		NAPI_GRO_CB(skb)->is_atomic = 1;
5559 		NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
5560 
5561 		/* Setup for GRO checksum validation */
5562 		switch (skb->ip_summed) {
5563 		case CHECKSUM_COMPLETE:
5564 			NAPI_GRO_CB(skb)->csum = skb->csum;
5565 			NAPI_GRO_CB(skb)->csum_valid = 1;
5566 			NAPI_GRO_CB(skb)->csum_cnt = 0;
5567 			break;
5568 		case CHECKSUM_UNNECESSARY:
5569 			NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
5570 			NAPI_GRO_CB(skb)->csum_valid = 0;
5571 			break;
5572 		default:
5573 			NAPI_GRO_CB(skb)->csum_cnt = 0;
5574 			NAPI_GRO_CB(skb)->csum_valid = 0;
5575 		}
5576 
5577 		pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
5578 					ipv6_gro_receive, inet_gro_receive,
5579 					gro_head, skb);
5580 		break;
5581 	}
5582 	rcu_read_unlock();
5583 
5584 	if (&ptype->list == head)
5585 		goto normal;
5586 
5587 	if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
5588 		ret = GRO_CONSUMED;
5589 		goto ok;
5590 	}
5591 
5592 	same_flow = NAPI_GRO_CB(skb)->same_flow;
5593 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
5594 
5595 	if (pp) {
5596 		skb_list_del_init(pp);
5597 		napi_gro_complete(pp);
5598 		napi->gro_hash[hash].count--;
5599 	}
5600 
5601 	if (same_flow)
5602 		goto ok;
5603 
5604 	if (NAPI_GRO_CB(skb)->flush)
5605 		goto normal;
5606 
5607 	if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) {
5608 		gro_flush_oldest(gro_head);
5609 	} else {
5610 		napi->gro_hash[hash].count++;
5611 	}
5612 	NAPI_GRO_CB(skb)->count = 1;
5613 	NAPI_GRO_CB(skb)->age = jiffies;
5614 	NAPI_GRO_CB(skb)->last = skb;
5615 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
5616 	list_add(&skb->list, gro_head);
5617 	ret = GRO_HELD;
5618 
5619 pull:
5620 	grow = skb_gro_offset(skb) - skb_headlen(skb);
5621 	if (grow > 0)
5622 		gro_pull_from_frag0(skb, grow);
5623 ok:
5624 	if (napi->gro_hash[hash].count) {
5625 		if (!test_bit(hash, &napi->gro_bitmask))
5626 			__set_bit(hash, &napi->gro_bitmask);
5627 	} else if (test_bit(hash, &napi->gro_bitmask)) {
5628 		__clear_bit(hash, &napi->gro_bitmask);
5629 	}
5630 
5631 	return ret;
5632 
5633 normal:
5634 	ret = GRO_NORMAL;
5635 	goto pull;
5636 }
5637 
5638 struct packet_offload *gro_find_receive_by_type(__be16 type)
5639 {
5640 	struct list_head *offload_head = &offload_base;
5641 	struct packet_offload *ptype;
5642 
5643 	list_for_each_entry_rcu(ptype, offload_head, list) {
5644 		if (ptype->type != type || !ptype->callbacks.gro_receive)
5645 			continue;
5646 		return ptype;
5647 	}
5648 	return NULL;
5649 }
5650 EXPORT_SYMBOL(gro_find_receive_by_type);
5651 
5652 struct packet_offload *gro_find_complete_by_type(__be16 type)
5653 {
5654 	struct list_head *offload_head = &offload_base;
5655 	struct packet_offload *ptype;
5656 
5657 	list_for_each_entry_rcu(ptype, offload_head, list) {
5658 		if (ptype->type != type || !ptype->callbacks.gro_complete)
5659 			continue;
5660 		return ptype;
5661 	}
5662 	return NULL;
5663 }
5664 EXPORT_SYMBOL(gro_find_complete_by_type);
5665 
5666 static void napi_skb_free_stolen_head(struct sk_buff *skb)
5667 {
5668 	skb_dst_drop(skb);
5669 	secpath_reset(skb);
5670 	kmem_cache_free(skbuff_head_cache, skb);
5671 }
5672 
5673 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
5674 {
5675 	switch (ret) {
5676 	case GRO_NORMAL:
5677 		if (netif_receive_skb_internal(skb))
5678 			ret = GRO_DROP;
5679 		break;
5680 
5681 	case GRO_DROP:
5682 		kfree_skb(skb);
5683 		break;
5684 
5685 	case GRO_MERGED_FREE:
5686 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5687 			napi_skb_free_stolen_head(skb);
5688 		else
5689 			__kfree_skb(skb);
5690 		break;
5691 
5692 	case GRO_HELD:
5693 	case GRO_MERGED:
5694 	case GRO_CONSUMED:
5695 		break;
5696 	}
5697 
5698 	return ret;
5699 }
5700 
5701 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5702 {
5703 	gro_result_t ret;
5704 
5705 	skb_mark_napi_id(skb, napi);
5706 	trace_napi_gro_receive_entry(skb);
5707 
5708 	skb_gro_reset_offset(skb);
5709 
5710 	ret = napi_skb_finish(dev_gro_receive(napi, skb), skb);
5711 	trace_napi_gro_receive_exit(ret);
5712 
5713 	return ret;
5714 }
5715 EXPORT_SYMBOL(napi_gro_receive);
5716 
5717 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
5718 {
5719 	if (unlikely(skb->pfmemalloc)) {
5720 		consume_skb(skb);
5721 		return;
5722 	}
5723 	__skb_pull(skb, skb_headlen(skb));
5724 	/* restore the reserve we had after netdev_alloc_skb_ip_align() */
5725 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
5726 	__vlan_hwaccel_clear_tag(skb);
5727 	skb->dev = napi->dev;
5728 	skb->skb_iif = 0;
5729 
5730 	/* eth_type_trans() assumes pkt_type is PACKET_HOST */
5731 	skb->pkt_type = PACKET_HOST;
5732 
5733 	skb->encapsulation = 0;
5734 	skb_shinfo(skb)->gso_type = 0;
5735 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5736 	secpath_reset(skb);
5737 
5738 	napi->skb = skb;
5739 }
5740 
5741 struct sk_buff *napi_get_frags(struct napi_struct *napi)
5742 {
5743 	struct sk_buff *skb = napi->skb;
5744 
5745 	if (!skb) {
5746 		skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
5747 		if (skb) {
5748 			napi->skb = skb;
5749 			skb_mark_napi_id(skb, napi);
5750 		}
5751 	}
5752 	return skb;
5753 }
5754 EXPORT_SYMBOL(napi_get_frags);
5755 
5756 /* Pass the currently batched GRO_NORMAL SKBs up to the stack. */
5757 static void gro_normal_list(struct napi_struct *napi)
5758 {
5759 	if (!napi->rx_count)
5760 		return;
5761 	netif_receive_skb_list_internal(&napi->rx_list);
5762 	INIT_LIST_HEAD(&napi->rx_list);
5763 	napi->rx_count = 0;
5764 }
5765 
5766 /* Queue one GRO_NORMAL SKB up for list processing.  If batch size exceeded,
5767  * pass the whole batch up to the stack.
5768  */
5769 static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb)
5770 {
5771 	list_add_tail(&skb->list, &napi->rx_list);
5772 	if (++napi->rx_count >= gro_normal_batch)
5773 		gro_normal_list(napi);
5774 }
5775 
5776 static gro_result_t napi_frags_finish(struct napi_struct *napi,
5777 				      struct sk_buff *skb,
5778 				      gro_result_t ret)
5779 {
5780 	switch (ret) {
5781 	case GRO_NORMAL:
5782 	case GRO_HELD:
5783 		__skb_push(skb, ETH_HLEN);
5784 		skb->protocol = eth_type_trans(skb, skb->dev);
5785 		if (ret == GRO_NORMAL)
5786 			gro_normal_one(napi, skb);
5787 		break;
5788 
5789 	case GRO_DROP:
5790 		napi_reuse_skb(napi, skb);
5791 		break;
5792 
5793 	case GRO_MERGED_FREE:
5794 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5795 			napi_skb_free_stolen_head(skb);
5796 		else
5797 			napi_reuse_skb(napi, skb);
5798 		break;
5799 
5800 	case GRO_MERGED:
5801 	case GRO_CONSUMED:
5802 		break;
5803 	}
5804 
5805 	return ret;
5806 }
5807 
5808 /* Upper GRO stack assumes network header starts at gro_offset=0
5809  * Drivers could call both napi_gro_frags() and napi_gro_receive()
5810  * We copy ethernet header into skb->data to have a common layout.
5811  */
5812 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
5813 {
5814 	struct sk_buff *skb = napi->skb;
5815 	const struct ethhdr *eth;
5816 	unsigned int hlen = sizeof(*eth);
5817 
5818 	napi->skb = NULL;
5819 
5820 	skb_reset_mac_header(skb);
5821 	skb_gro_reset_offset(skb);
5822 
5823 	if (unlikely(skb_gro_header_hard(skb, hlen))) {
5824 		eth = skb_gro_header_slow(skb, hlen, 0);
5825 		if (unlikely(!eth)) {
5826 			net_warn_ratelimited("%s: dropping impossible skb from %s\n",
5827 					     __func__, napi->dev->name);
5828 			napi_reuse_skb(napi, skb);
5829 			return NULL;
5830 		}
5831 	} else {
5832 		eth = (const struct ethhdr *)skb->data;
5833 		gro_pull_from_frag0(skb, hlen);
5834 		NAPI_GRO_CB(skb)->frag0 += hlen;
5835 		NAPI_GRO_CB(skb)->frag0_len -= hlen;
5836 	}
5837 	__skb_pull(skb, hlen);
5838 
5839 	/*
5840 	 * This works because the only protocols we care about don't require
5841 	 * special handling.
5842 	 * We'll fix it up properly in napi_frags_finish()
5843 	 */
5844 	skb->protocol = eth->h_proto;
5845 
5846 	return skb;
5847 }
5848 
5849 gro_result_t napi_gro_frags(struct napi_struct *napi)
5850 {
5851 	gro_result_t ret;
5852 	struct sk_buff *skb = napi_frags_skb(napi);
5853 
5854 	if (!skb)
5855 		return GRO_DROP;
5856 
5857 	trace_napi_gro_frags_entry(skb);
5858 
5859 	ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5860 	trace_napi_gro_frags_exit(ret);
5861 
5862 	return ret;
5863 }
5864 EXPORT_SYMBOL(napi_gro_frags);
5865 
5866 /* Compute the checksum from gro_offset and return the folded value
5867  * after adding in any pseudo checksum.
5868  */
5869 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
5870 {
5871 	__wsum wsum;
5872 	__sum16 sum;
5873 
5874 	wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
5875 
5876 	/* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
5877 	sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
5878 	/* See comments in __skb_checksum_complete(). */
5879 	if (likely(!sum)) {
5880 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
5881 		    !skb->csum_complete_sw)
5882 			netdev_rx_csum_fault(skb->dev, skb);
5883 	}
5884 
5885 	NAPI_GRO_CB(skb)->csum = wsum;
5886 	NAPI_GRO_CB(skb)->csum_valid = 1;
5887 
5888 	return sum;
5889 }
5890 EXPORT_SYMBOL(__skb_gro_checksum_complete);
5891 
5892 static void net_rps_send_ipi(struct softnet_data *remsd)
5893 {
5894 #ifdef CONFIG_RPS
5895 	while (remsd) {
5896 		struct softnet_data *next = remsd->rps_ipi_next;
5897 
5898 		if (cpu_online(remsd->cpu))
5899 			smp_call_function_single_async(remsd->cpu, &remsd->csd);
5900 		remsd = next;
5901 	}
5902 #endif
5903 }
5904 
5905 /*
5906  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5907  * Note: called with local irq disabled, but exits with local irq enabled.
5908  */
5909 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5910 {
5911 #ifdef CONFIG_RPS
5912 	struct softnet_data *remsd = sd->rps_ipi_list;
5913 
5914 	if (remsd) {
5915 		sd->rps_ipi_list = NULL;
5916 
5917 		local_irq_enable();
5918 
5919 		/* Send pending IPI's to kick RPS processing on remote cpus. */
5920 		net_rps_send_ipi(remsd);
5921 	} else
5922 #endif
5923 		local_irq_enable();
5924 }
5925 
5926 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5927 {
5928 #ifdef CONFIG_RPS
5929 	return sd->rps_ipi_list != NULL;
5930 #else
5931 	return false;
5932 #endif
5933 }
5934 
5935 static int process_backlog(struct napi_struct *napi, int quota)
5936 {
5937 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5938 	bool again = true;
5939 	int work = 0;
5940 
5941 	/* Check if we have pending ipi, its better to send them now,
5942 	 * not waiting net_rx_action() end.
5943 	 */
5944 	if (sd_has_rps_ipi_waiting(sd)) {
5945 		local_irq_disable();
5946 		net_rps_action_and_irq_enable(sd);
5947 	}
5948 
5949 	napi->weight = dev_rx_weight;
5950 	while (again) {
5951 		struct sk_buff *skb;
5952 
5953 		while ((skb = __skb_dequeue(&sd->process_queue))) {
5954 			rcu_read_lock();
5955 			__netif_receive_skb(skb);
5956 			rcu_read_unlock();
5957 			input_queue_head_incr(sd);
5958 			if (++work >= quota)
5959 				return work;
5960 
5961 		}
5962 
5963 		local_irq_disable();
5964 		rps_lock(sd);
5965 		if (skb_queue_empty(&sd->input_pkt_queue)) {
5966 			/*
5967 			 * Inline a custom version of __napi_complete().
5968 			 * only current cpu owns and manipulates this napi,
5969 			 * and NAPI_STATE_SCHED is the only possible flag set
5970 			 * on backlog.
5971 			 * We can use a plain write instead of clear_bit(),
5972 			 * and we dont need an smp_mb() memory barrier.
5973 			 */
5974 			napi->state = 0;
5975 			again = false;
5976 		} else {
5977 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
5978 						   &sd->process_queue);
5979 		}
5980 		rps_unlock(sd);
5981 		local_irq_enable();
5982 	}
5983 
5984 	return work;
5985 }
5986 
5987 /**
5988  * __napi_schedule - schedule for receive
5989  * @n: entry to schedule
5990  *
5991  * The entry's receive function will be scheduled to run.
5992  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5993  */
5994 void __napi_schedule(struct napi_struct *n)
5995 {
5996 	unsigned long flags;
5997 
5998 	local_irq_save(flags);
5999 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
6000 	local_irq_restore(flags);
6001 }
6002 EXPORT_SYMBOL(__napi_schedule);
6003 
6004 /**
6005  *	napi_schedule_prep - check if napi can be scheduled
6006  *	@n: napi context
6007  *
6008  * Test if NAPI routine is already running, and if not mark
6009  * it as running.  This is used as a condition variable
6010  * insure only one NAPI poll instance runs.  We also make
6011  * sure there is no pending NAPI disable.
6012  */
6013 bool napi_schedule_prep(struct napi_struct *n)
6014 {
6015 	unsigned long val, new;
6016 
6017 	do {
6018 		val = READ_ONCE(n->state);
6019 		if (unlikely(val & NAPIF_STATE_DISABLE))
6020 			return false;
6021 		new = val | NAPIF_STATE_SCHED;
6022 
6023 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
6024 		 * This was suggested by Alexander Duyck, as compiler
6025 		 * emits better code than :
6026 		 * if (val & NAPIF_STATE_SCHED)
6027 		 *     new |= NAPIF_STATE_MISSED;
6028 		 */
6029 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6030 						   NAPIF_STATE_MISSED;
6031 	} while (cmpxchg(&n->state, val, new) != val);
6032 
6033 	return !(val & NAPIF_STATE_SCHED);
6034 }
6035 EXPORT_SYMBOL(napi_schedule_prep);
6036 
6037 /**
6038  * __napi_schedule_irqoff - schedule for receive
6039  * @n: entry to schedule
6040  *
6041  * Variant of __napi_schedule() assuming hard irqs are masked
6042  */
6043 void __napi_schedule_irqoff(struct napi_struct *n)
6044 {
6045 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
6046 }
6047 EXPORT_SYMBOL(__napi_schedule_irqoff);
6048 
6049 bool napi_complete_done(struct napi_struct *n, int work_done)
6050 {
6051 	unsigned long flags, val, new;
6052 
6053 	/*
6054 	 * 1) Don't let napi dequeue from the cpu poll list
6055 	 *    just in case its running on a different cpu.
6056 	 * 2) If we are busy polling, do nothing here, we have
6057 	 *    the guarantee we will be called later.
6058 	 */
6059 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6060 				 NAPIF_STATE_IN_BUSY_POLL)))
6061 		return false;
6062 
6063 	gro_normal_list(n);
6064 
6065 	if (n->gro_bitmask) {
6066 		unsigned long timeout = 0;
6067 
6068 		if (work_done)
6069 			timeout = n->dev->gro_flush_timeout;
6070 
6071 		/* When the NAPI instance uses a timeout and keeps postponing
6072 		 * it, we need to bound somehow the time packets are kept in
6073 		 * the GRO layer
6074 		 */
6075 		napi_gro_flush(n, !!timeout);
6076 		if (timeout)
6077 			hrtimer_start(&n->timer, ns_to_ktime(timeout),
6078 				      HRTIMER_MODE_REL_PINNED);
6079 	}
6080 	if (unlikely(!list_empty(&n->poll_list))) {
6081 		/* If n->poll_list is not empty, we need to mask irqs */
6082 		local_irq_save(flags);
6083 		list_del_init(&n->poll_list);
6084 		local_irq_restore(flags);
6085 	}
6086 
6087 	do {
6088 		val = READ_ONCE(n->state);
6089 
6090 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6091 
6092 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
6093 
6094 		/* If STATE_MISSED was set, leave STATE_SCHED set,
6095 		 * because we will call napi->poll() one more time.
6096 		 * This C code was suggested by Alexander Duyck to help gcc.
6097 		 */
6098 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6099 						    NAPIF_STATE_SCHED;
6100 	} while (cmpxchg(&n->state, val, new) != val);
6101 
6102 	if (unlikely(val & NAPIF_STATE_MISSED)) {
6103 		__napi_schedule(n);
6104 		return false;
6105 	}
6106 
6107 	return true;
6108 }
6109 EXPORT_SYMBOL(napi_complete_done);
6110 
6111 /* must be called under rcu_read_lock(), as we dont take a reference */
6112 static struct napi_struct *napi_by_id(unsigned int napi_id)
6113 {
6114 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6115 	struct napi_struct *napi;
6116 
6117 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6118 		if (napi->napi_id == napi_id)
6119 			return napi;
6120 
6121 	return NULL;
6122 }
6123 
6124 #if defined(CONFIG_NET_RX_BUSY_POLL)
6125 
6126 #define BUSY_POLL_BUDGET 8
6127 
6128 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
6129 {
6130 	int rc;
6131 
6132 	/* Busy polling means there is a high chance device driver hard irq
6133 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6134 	 * set in napi_schedule_prep().
6135 	 * Since we are about to call napi->poll() once more, we can safely
6136 	 * clear NAPI_STATE_MISSED.
6137 	 *
6138 	 * Note: x86 could use a single "lock and ..." instruction
6139 	 * to perform these two clear_bit()
6140 	 */
6141 	clear_bit(NAPI_STATE_MISSED, &napi->state);
6142 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6143 
6144 	local_bh_disable();
6145 
6146 	/* All we really want here is to re-enable device interrupts.
6147 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6148 	 */
6149 	rc = napi->poll(napi, BUSY_POLL_BUDGET);
6150 	/* We can't gro_normal_list() here, because napi->poll() might have
6151 	 * rearmed the napi (napi_complete_done()) in which case it could
6152 	 * already be running on another CPU.
6153 	 */
6154 	trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
6155 	netpoll_poll_unlock(have_poll_lock);
6156 	if (rc == BUSY_POLL_BUDGET) {
6157 		/* As the whole budget was spent, we still own the napi so can
6158 		 * safely handle the rx_list.
6159 		 */
6160 		gro_normal_list(napi);
6161 		__napi_schedule(napi);
6162 	}
6163 	local_bh_enable();
6164 }
6165 
6166 void napi_busy_loop(unsigned int napi_id,
6167 		    bool (*loop_end)(void *, unsigned long),
6168 		    void *loop_end_arg)
6169 {
6170 	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6171 	int (*napi_poll)(struct napi_struct *napi, int budget);
6172 	void *have_poll_lock = NULL;
6173 	struct napi_struct *napi;
6174 
6175 restart:
6176 	napi_poll = NULL;
6177 
6178 	rcu_read_lock();
6179 
6180 	napi = napi_by_id(napi_id);
6181 	if (!napi)
6182 		goto out;
6183 
6184 	preempt_disable();
6185 	for (;;) {
6186 		int work = 0;
6187 
6188 		local_bh_disable();
6189 		if (!napi_poll) {
6190 			unsigned long val = READ_ONCE(napi->state);
6191 
6192 			/* If multiple threads are competing for this napi,
6193 			 * we avoid dirtying napi->state as much as we can.
6194 			 */
6195 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6196 				   NAPIF_STATE_IN_BUSY_POLL))
6197 				goto count;
6198 			if (cmpxchg(&napi->state, val,
6199 				    val | NAPIF_STATE_IN_BUSY_POLL |
6200 					  NAPIF_STATE_SCHED) != val)
6201 				goto count;
6202 			have_poll_lock = netpoll_poll_lock(napi);
6203 			napi_poll = napi->poll;
6204 		}
6205 		work = napi_poll(napi, BUSY_POLL_BUDGET);
6206 		trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
6207 		gro_normal_list(napi);
6208 count:
6209 		if (work > 0)
6210 			__NET_ADD_STATS(dev_net(napi->dev),
6211 					LINUX_MIB_BUSYPOLLRXPACKETS, work);
6212 		local_bh_enable();
6213 
6214 		if (!loop_end || loop_end(loop_end_arg, start_time))
6215 			break;
6216 
6217 		if (unlikely(need_resched())) {
6218 			if (napi_poll)
6219 				busy_poll_stop(napi, have_poll_lock);
6220 			preempt_enable();
6221 			rcu_read_unlock();
6222 			cond_resched();
6223 			if (loop_end(loop_end_arg, start_time))
6224 				return;
6225 			goto restart;
6226 		}
6227 		cpu_relax();
6228 	}
6229 	if (napi_poll)
6230 		busy_poll_stop(napi, have_poll_lock);
6231 	preempt_enable();
6232 out:
6233 	rcu_read_unlock();
6234 }
6235 EXPORT_SYMBOL(napi_busy_loop);
6236 
6237 #endif /* CONFIG_NET_RX_BUSY_POLL */
6238 
6239 static void napi_hash_add(struct napi_struct *napi)
6240 {
6241 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
6242 	    test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
6243 		return;
6244 
6245 	spin_lock(&napi_hash_lock);
6246 
6247 	/* 0..NR_CPUS range is reserved for sender_cpu use */
6248 	do {
6249 		if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6250 			napi_gen_id = MIN_NAPI_ID;
6251 	} while (napi_by_id(napi_gen_id));
6252 	napi->napi_id = napi_gen_id;
6253 
6254 	hlist_add_head_rcu(&napi->napi_hash_node,
6255 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6256 
6257 	spin_unlock(&napi_hash_lock);
6258 }
6259 
6260 /* Warning : caller is responsible to make sure rcu grace period
6261  * is respected before freeing memory containing @napi
6262  */
6263 bool napi_hash_del(struct napi_struct *napi)
6264 {
6265 	bool rcu_sync_needed = false;
6266 
6267 	spin_lock(&napi_hash_lock);
6268 
6269 	if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
6270 		rcu_sync_needed = true;
6271 		hlist_del_rcu(&napi->napi_hash_node);
6272 	}
6273 	spin_unlock(&napi_hash_lock);
6274 	return rcu_sync_needed;
6275 }
6276 EXPORT_SYMBOL_GPL(napi_hash_del);
6277 
6278 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6279 {
6280 	struct napi_struct *napi;
6281 
6282 	napi = container_of(timer, struct napi_struct, timer);
6283 
6284 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
6285 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6286 	 */
6287 	if (napi->gro_bitmask && !napi_disable_pending(napi) &&
6288 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
6289 		__napi_schedule_irqoff(napi);
6290 
6291 	return HRTIMER_NORESTART;
6292 }
6293 
6294 static void init_gro_hash(struct napi_struct *napi)
6295 {
6296 	int i;
6297 
6298 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6299 		INIT_LIST_HEAD(&napi->gro_hash[i].list);
6300 		napi->gro_hash[i].count = 0;
6301 	}
6302 	napi->gro_bitmask = 0;
6303 }
6304 
6305 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6306 		    int (*poll)(struct napi_struct *, int), int weight)
6307 {
6308 	INIT_LIST_HEAD(&napi->poll_list);
6309 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6310 	napi->timer.function = napi_watchdog;
6311 	init_gro_hash(napi);
6312 	napi->skb = NULL;
6313 	INIT_LIST_HEAD(&napi->rx_list);
6314 	napi->rx_count = 0;
6315 	napi->poll = poll;
6316 	if (weight > NAPI_POLL_WEIGHT)
6317 		netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6318 				weight);
6319 	napi->weight = weight;
6320 	list_add(&napi->dev_list, &dev->napi_list);
6321 	napi->dev = dev;
6322 #ifdef CONFIG_NETPOLL
6323 	napi->poll_owner = -1;
6324 #endif
6325 	set_bit(NAPI_STATE_SCHED, &napi->state);
6326 	napi_hash_add(napi);
6327 }
6328 EXPORT_SYMBOL(netif_napi_add);
6329 
6330 void napi_disable(struct napi_struct *n)
6331 {
6332 	might_sleep();
6333 	set_bit(NAPI_STATE_DISABLE, &n->state);
6334 
6335 	while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6336 		msleep(1);
6337 	while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6338 		msleep(1);
6339 
6340 	hrtimer_cancel(&n->timer);
6341 
6342 	clear_bit(NAPI_STATE_DISABLE, &n->state);
6343 }
6344 EXPORT_SYMBOL(napi_disable);
6345 
6346 static void flush_gro_hash(struct napi_struct *napi)
6347 {
6348 	int i;
6349 
6350 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6351 		struct sk_buff *skb, *n;
6352 
6353 		list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6354 			kfree_skb(skb);
6355 		napi->gro_hash[i].count = 0;
6356 	}
6357 }
6358 
6359 /* Must be called in process context */
6360 void netif_napi_del(struct napi_struct *napi)
6361 {
6362 	might_sleep();
6363 	if (napi_hash_del(napi))
6364 		synchronize_net();
6365 	list_del_init(&napi->dev_list);
6366 	napi_free_frags(napi);
6367 
6368 	flush_gro_hash(napi);
6369 	napi->gro_bitmask = 0;
6370 }
6371 EXPORT_SYMBOL(netif_napi_del);
6372 
6373 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6374 {
6375 	void *have;
6376 	int work, weight;
6377 
6378 	list_del_init(&n->poll_list);
6379 
6380 	have = netpoll_poll_lock(n);
6381 
6382 	weight = n->weight;
6383 
6384 	/* This NAPI_STATE_SCHED test is for avoiding a race
6385 	 * with netpoll's poll_napi().  Only the entity which
6386 	 * obtains the lock and sees NAPI_STATE_SCHED set will
6387 	 * actually make the ->poll() call.  Therefore we avoid
6388 	 * accidentally calling ->poll() when NAPI is not scheduled.
6389 	 */
6390 	work = 0;
6391 	if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6392 		work = n->poll(n, weight);
6393 		trace_napi_poll(n, work, weight);
6394 	}
6395 
6396 	WARN_ON_ONCE(work > weight);
6397 
6398 	if (likely(work < weight))
6399 		goto out_unlock;
6400 
6401 	/* Drivers must not modify the NAPI state if they
6402 	 * consume the entire weight.  In such cases this code
6403 	 * still "owns" the NAPI instance and therefore can
6404 	 * move the instance around on the list at-will.
6405 	 */
6406 	if (unlikely(napi_disable_pending(n))) {
6407 		napi_complete(n);
6408 		goto out_unlock;
6409 	}
6410 
6411 	gro_normal_list(n);
6412 
6413 	if (n->gro_bitmask) {
6414 		/* flush too old packets
6415 		 * If HZ < 1000, flush all packets.
6416 		 */
6417 		napi_gro_flush(n, HZ >= 1000);
6418 	}
6419 
6420 	/* Some drivers may have called napi_schedule
6421 	 * prior to exhausting their budget.
6422 	 */
6423 	if (unlikely(!list_empty(&n->poll_list))) {
6424 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6425 			     n->dev ? n->dev->name : "backlog");
6426 		goto out_unlock;
6427 	}
6428 
6429 	list_add_tail(&n->poll_list, repoll);
6430 
6431 out_unlock:
6432 	netpoll_poll_unlock(have);
6433 
6434 	return work;
6435 }
6436 
6437 static __latent_entropy void net_rx_action(struct softirq_action *h)
6438 {
6439 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6440 	unsigned long time_limit = jiffies +
6441 		usecs_to_jiffies(netdev_budget_usecs);
6442 	int budget = netdev_budget;
6443 	LIST_HEAD(list);
6444 	LIST_HEAD(repoll);
6445 
6446 	local_irq_disable();
6447 	list_splice_init(&sd->poll_list, &list);
6448 	local_irq_enable();
6449 
6450 	for (;;) {
6451 		struct napi_struct *n;
6452 
6453 		if (list_empty(&list)) {
6454 			if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6455 				goto out;
6456 			break;
6457 		}
6458 
6459 		n = list_first_entry(&list, struct napi_struct, poll_list);
6460 		budget -= napi_poll(n, &repoll);
6461 
6462 		/* If softirq window is exhausted then punt.
6463 		 * Allow this to run for 2 jiffies since which will allow
6464 		 * an average latency of 1.5/HZ.
6465 		 */
6466 		if (unlikely(budget <= 0 ||
6467 			     time_after_eq(jiffies, time_limit))) {
6468 			sd->time_squeeze++;
6469 			break;
6470 		}
6471 	}
6472 
6473 	local_irq_disable();
6474 
6475 	list_splice_tail_init(&sd->poll_list, &list);
6476 	list_splice_tail(&repoll, &list);
6477 	list_splice(&list, &sd->poll_list);
6478 	if (!list_empty(&sd->poll_list))
6479 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
6480 
6481 	net_rps_action_and_irq_enable(sd);
6482 out:
6483 	__kfree_skb_flush();
6484 }
6485 
6486 struct netdev_adjacent {
6487 	struct net_device *dev;
6488 
6489 	/* upper master flag, there can only be one master device per list */
6490 	bool master;
6491 
6492 	/* counter for the number of times this device was added to us */
6493 	u16 ref_nr;
6494 
6495 	/* private field for the users */
6496 	void *private;
6497 
6498 	struct list_head list;
6499 	struct rcu_head rcu;
6500 };
6501 
6502 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6503 						 struct list_head *adj_list)
6504 {
6505 	struct netdev_adjacent *adj;
6506 
6507 	list_for_each_entry(adj, adj_list, list) {
6508 		if (adj->dev == adj_dev)
6509 			return adj;
6510 	}
6511 	return NULL;
6512 }
6513 
6514 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
6515 {
6516 	struct net_device *dev = data;
6517 
6518 	return upper_dev == dev;
6519 }
6520 
6521 /**
6522  * netdev_has_upper_dev - Check if device is linked to an upper device
6523  * @dev: device
6524  * @upper_dev: upper device to check
6525  *
6526  * Find out if a device is linked to specified upper device and return true
6527  * in case it is. Note that this checks only immediate upper device,
6528  * not through a complete stack of devices. The caller must hold the RTNL lock.
6529  */
6530 bool netdev_has_upper_dev(struct net_device *dev,
6531 			  struct net_device *upper_dev)
6532 {
6533 	ASSERT_RTNL();
6534 
6535 	return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
6536 					     upper_dev);
6537 }
6538 EXPORT_SYMBOL(netdev_has_upper_dev);
6539 
6540 /**
6541  * netdev_has_upper_dev_all - Check if device is linked to an upper device
6542  * @dev: device
6543  * @upper_dev: upper device to check
6544  *
6545  * Find out if a device is linked to specified upper device and return true
6546  * in case it is. Note that this checks the entire upper device chain.
6547  * The caller must hold rcu lock.
6548  */
6549 
6550 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6551 				  struct net_device *upper_dev)
6552 {
6553 	return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
6554 					       upper_dev);
6555 }
6556 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6557 
6558 /**
6559  * netdev_has_any_upper_dev - Check if device is linked to some device
6560  * @dev: device
6561  *
6562  * Find out if a device is linked to an upper device and return true in case
6563  * it is. The caller must hold the RTNL lock.
6564  */
6565 bool netdev_has_any_upper_dev(struct net_device *dev)
6566 {
6567 	ASSERT_RTNL();
6568 
6569 	return !list_empty(&dev->adj_list.upper);
6570 }
6571 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6572 
6573 /**
6574  * netdev_master_upper_dev_get - Get master upper device
6575  * @dev: device
6576  *
6577  * Find a master upper device and return pointer to it or NULL in case
6578  * it's not there. The caller must hold the RTNL lock.
6579  */
6580 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6581 {
6582 	struct netdev_adjacent *upper;
6583 
6584 	ASSERT_RTNL();
6585 
6586 	if (list_empty(&dev->adj_list.upper))
6587 		return NULL;
6588 
6589 	upper = list_first_entry(&dev->adj_list.upper,
6590 				 struct netdev_adjacent, list);
6591 	if (likely(upper->master))
6592 		return upper->dev;
6593 	return NULL;
6594 }
6595 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6596 
6597 /**
6598  * netdev_has_any_lower_dev - Check if device is linked to some device
6599  * @dev: device
6600  *
6601  * Find out if a device is linked to a lower device and return true in case
6602  * it is. The caller must hold the RTNL lock.
6603  */
6604 static bool netdev_has_any_lower_dev(struct net_device *dev)
6605 {
6606 	ASSERT_RTNL();
6607 
6608 	return !list_empty(&dev->adj_list.lower);
6609 }
6610 
6611 void *netdev_adjacent_get_private(struct list_head *adj_list)
6612 {
6613 	struct netdev_adjacent *adj;
6614 
6615 	adj = list_entry(adj_list, struct netdev_adjacent, list);
6616 
6617 	return adj->private;
6618 }
6619 EXPORT_SYMBOL(netdev_adjacent_get_private);
6620 
6621 /**
6622  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6623  * @dev: device
6624  * @iter: list_head ** of the current position
6625  *
6626  * Gets the next device from the dev's upper list, starting from iter
6627  * position. The caller must hold RCU read lock.
6628  */
6629 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6630 						 struct list_head **iter)
6631 {
6632 	struct netdev_adjacent *upper;
6633 
6634 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6635 
6636 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6637 
6638 	if (&upper->list == &dev->adj_list.upper)
6639 		return NULL;
6640 
6641 	*iter = &upper->list;
6642 
6643 	return upper->dev;
6644 }
6645 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6646 
6647 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6648 						    struct list_head **iter)
6649 {
6650 	struct netdev_adjacent *upper;
6651 
6652 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6653 
6654 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6655 
6656 	if (&upper->list == &dev->adj_list.upper)
6657 		return NULL;
6658 
6659 	*iter = &upper->list;
6660 
6661 	return upper->dev;
6662 }
6663 
6664 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
6665 				  int (*fn)(struct net_device *dev,
6666 					    void *data),
6667 				  void *data)
6668 {
6669 	struct net_device *udev;
6670 	struct list_head *iter;
6671 	int ret;
6672 
6673 	for (iter = &dev->adj_list.upper,
6674 	     udev = netdev_next_upper_dev_rcu(dev, &iter);
6675 	     udev;
6676 	     udev = netdev_next_upper_dev_rcu(dev, &iter)) {
6677 		/* first is the upper device itself */
6678 		ret = fn(udev, data);
6679 		if (ret)
6680 			return ret;
6681 
6682 		/* then look at all of its upper devices */
6683 		ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
6684 		if (ret)
6685 			return ret;
6686 	}
6687 
6688 	return 0;
6689 }
6690 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
6691 
6692 /**
6693  * netdev_lower_get_next_private - Get the next ->private from the
6694  *				   lower neighbour list
6695  * @dev: device
6696  * @iter: list_head ** of the current position
6697  *
6698  * Gets the next netdev_adjacent->private from the dev's lower neighbour
6699  * list, starting from iter position. The caller must hold either hold the
6700  * RTNL lock or its own locking that guarantees that the neighbour lower
6701  * list will remain unchanged.
6702  */
6703 void *netdev_lower_get_next_private(struct net_device *dev,
6704 				    struct list_head **iter)
6705 {
6706 	struct netdev_adjacent *lower;
6707 
6708 	lower = list_entry(*iter, struct netdev_adjacent, list);
6709 
6710 	if (&lower->list == &dev->adj_list.lower)
6711 		return NULL;
6712 
6713 	*iter = lower->list.next;
6714 
6715 	return lower->private;
6716 }
6717 EXPORT_SYMBOL(netdev_lower_get_next_private);
6718 
6719 /**
6720  * netdev_lower_get_next_private_rcu - Get the next ->private from the
6721  *				       lower neighbour list, RCU
6722  *				       variant
6723  * @dev: device
6724  * @iter: list_head ** of the current position
6725  *
6726  * Gets the next netdev_adjacent->private from the dev's lower neighbour
6727  * list, starting from iter position. The caller must hold RCU read lock.
6728  */
6729 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
6730 					struct list_head **iter)
6731 {
6732 	struct netdev_adjacent *lower;
6733 
6734 	WARN_ON_ONCE(!rcu_read_lock_held());
6735 
6736 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6737 
6738 	if (&lower->list == &dev->adj_list.lower)
6739 		return NULL;
6740 
6741 	*iter = &lower->list;
6742 
6743 	return lower->private;
6744 }
6745 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
6746 
6747 /**
6748  * netdev_lower_get_next - Get the next device from the lower neighbour
6749  *                         list
6750  * @dev: device
6751  * @iter: list_head ** of the current position
6752  *
6753  * Gets the next netdev_adjacent from the dev's lower neighbour
6754  * list, starting from iter position. The caller must hold RTNL lock or
6755  * its own locking that guarantees that the neighbour lower
6756  * list will remain unchanged.
6757  */
6758 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
6759 {
6760 	struct netdev_adjacent *lower;
6761 
6762 	lower = list_entry(*iter, struct netdev_adjacent, list);
6763 
6764 	if (&lower->list == &dev->adj_list.lower)
6765 		return NULL;
6766 
6767 	*iter = lower->list.next;
6768 
6769 	return lower->dev;
6770 }
6771 EXPORT_SYMBOL(netdev_lower_get_next);
6772 
6773 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
6774 						struct list_head **iter)
6775 {
6776 	struct netdev_adjacent *lower;
6777 
6778 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
6779 
6780 	if (&lower->list == &dev->adj_list.lower)
6781 		return NULL;
6782 
6783 	*iter = &lower->list;
6784 
6785 	return lower->dev;
6786 }
6787 
6788 int netdev_walk_all_lower_dev(struct net_device *dev,
6789 			      int (*fn)(struct net_device *dev,
6790 					void *data),
6791 			      void *data)
6792 {
6793 	struct net_device *ldev;
6794 	struct list_head *iter;
6795 	int ret;
6796 
6797 	for (iter = &dev->adj_list.lower,
6798 	     ldev = netdev_next_lower_dev(dev, &iter);
6799 	     ldev;
6800 	     ldev = netdev_next_lower_dev(dev, &iter)) {
6801 		/* first is the lower device itself */
6802 		ret = fn(ldev, data);
6803 		if (ret)
6804 			return ret;
6805 
6806 		/* then look at all of its lower devices */
6807 		ret = netdev_walk_all_lower_dev(ldev, fn, data);
6808 		if (ret)
6809 			return ret;
6810 	}
6811 
6812 	return 0;
6813 }
6814 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
6815 
6816 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
6817 						    struct list_head **iter)
6818 {
6819 	struct netdev_adjacent *lower;
6820 
6821 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6822 	if (&lower->list == &dev->adj_list.lower)
6823 		return NULL;
6824 
6825 	*iter = &lower->list;
6826 
6827 	return lower->dev;
6828 }
6829 
6830 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
6831 				  int (*fn)(struct net_device *dev,
6832 					    void *data),
6833 				  void *data)
6834 {
6835 	struct net_device *ldev;
6836 	struct list_head *iter;
6837 	int ret;
6838 
6839 	for (iter = &dev->adj_list.lower,
6840 	     ldev = netdev_next_lower_dev_rcu(dev, &iter);
6841 	     ldev;
6842 	     ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
6843 		/* first is the lower device itself */
6844 		ret = fn(ldev, data);
6845 		if (ret)
6846 			return ret;
6847 
6848 		/* then look at all of its lower devices */
6849 		ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
6850 		if (ret)
6851 			return ret;
6852 	}
6853 
6854 	return 0;
6855 }
6856 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
6857 
6858 /**
6859  * netdev_lower_get_first_private_rcu - Get the first ->private from the
6860  *				       lower neighbour list, RCU
6861  *				       variant
6862  * @dev: device
6863  *
6864  * Gets the first netdev_adjacent->private from the dev's lower neighbour
6865  * list. The caller must hold RCU read lock.
6866  */
6867 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
6868 {
6869 	struct netdev_adjacent *lower;
6870 
6871 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
6872 			struct netdev_adjacent, list);
6873 	if (lower)
6874 		return lower->private;
6875 	return NULL;
6876 }
6877 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
6878 
6879 /**
6880  * netdev_master_upper_dev_get_rcu - Get master upper device
6881  * @dev: device
6882  *
6883  * Find a master upper device and return pointer to it or NULL in case
6884  * it's not there. The caller must hold the RCU read lock.
6885  */
6886 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
6887 {
6888 	struct netdev_adjacent *upper;
6889 
6890 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
6891 				       struct netdev_adjacent, list);
6892 	if (upper && likely(upper->master))
6893 		return upper->dev;
6894 	return NULL;
6895 }
6896 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
6897 
6898 static int netdev_adjacent_sysfs_add(struct net_device *dev,
6899 			      struct net_device *adj_dev,
6900 			      struct list_head *dev_list)
6901 {
6902 	char linkname[IFNAMSIZ+7];
6903 
6904 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
6905 		"upper_%s" : "lower_%s", adj_dev->name);
6906 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
6907 				 linkname);
6908 }
6909 static void netdev_adjacent_sysfs_del(struct net_device *dev,
6910 			       char *name,
6911 			       struct list_head *dev_list)
6912 {
6913 	char linkname[IFNAMSIZ+7];
6914 
6915 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
6916 		"upper_%s" : "lower_%s", name);
6917 	sysfs_remove_link(&(dev->dev.kobj), linkname);
6918 }
6919 
6920 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
6921 						 struct net_device *adj_dev,
6922 						 struct list_head *dev_list)
6923 {
6924 	return (dev_list == &dev->adj_list.upper ||
6925 		dev_list == &dev->adj_list.lower) &&
6926 		net_eq(dev_net(dev), dev_net(adj_dev));
6927 }
6928 
6929 static int __netdev_adjacent_dev_insert(struct net_device *dev,
6930 					struct net_device *adj_dev,
6931 					struct list_head *dev_list,
6932 					void *private, bool master)
6933 {
6934 	struct netdev_adjacent *adj;
6935 	int ret;
6936 
6937 	adj = __netdev_find_adj(adj_dev, dev_list);
6938 
6939 	if (adj) {
6940 		adj->ref_nr += 1;
6941 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
6942 			 dev->name, adj_dev->name, adj->ref_nr);
6943 
6944 		return 0;
6945 	}
6946 
6947 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
6948 	if (!adj)
6949 		return -ENOMEM;
6950 
6951 	adj->dev = adj_dev;
6952 	adj->master = master;
6953 	adj->ref_nr = 1;
6954 	adj->private = private;
6955 	dev_hold(adj_dev);
6956 
6957 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
6958 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
6959 
6960 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
6961 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
6962 		if (ret)
6963 			goto free_adj;
6964 	}
6965 
6966 	/* Ensure that master link is always the first item in list. */
6967 	if (master) {
6968 		ret = sysfs_create_link(&(dev->dev.kobj),
6969 					&(adj_dev->dev.kobj), "master");
6970 		if (ret)
6971 			goto remove_symlinks;
6972 
6973 		list_add_rcu(&adj->list, dev_list);
6974 	} else {
6975 		list_add_tail_rcu(&adj->list, dev_list);
6976 	}
6977 
6978 	return 0;
6979 
6980 remove_symlinks:
6981 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6982 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6983 free_adj:
6984 	kfree(adj);
6985 	dev_put(adj_dev);
6986 
6987 	return ret;
6988 }
6989 
6990 static void __netdev_adjacent_dev_remove(struct net_device *dev,
6991 					 struct net_device *adj_dev,
6992 					 u16 ref_nr,
6993 					 struct list_head *dev_list)
6994 {
6995 	struct netdev_adjacent *adj;
6996 
6997 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
6998 		 dev->name, adj_dev->name, ref_nr);
6999 
7000 	adj = __netdev_find_adj(adj_dev, dev_list);
7001 
7002 	if (!adj) {
7003 		pr_err("Adjacency does not exist for device %s from %s\n",
7004 		       dev->name, adj_dev->name);
7005 		WARN_ON(1);
7006 		return;
7007 	}
7008 
7009 	if (adj->ref_nr > ref_nr) {
7010 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7011 			 dev->name, adj_dev->name, ref_nr,
7012 			 adj->ref_nr - ref_nr);
7013 		adj->ref_nr -= ref_nr;
7014 		return;
7015 	}
7016 
7017 	if (adj->master)
7018 		sysfs_remove_link(&(dev->dev.kobj), "master");
7019 
7020 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7021 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7022 
7023 	list_del_rcu(&adj->list);
7024 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7025 		 adj_dev->name, dev->name, adj_dev->name);
7026 	dev_put(adj_dev);
7027 	kfree_rcu(adj, rcu);
7028 }
7029 
7030 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7031 					    struct net_device *upper_dev,
7032 					    struct list_head *up_list,
7033 					    struct list_head *down_list,
7034 					    void *private, bool master)
7035 {
7036 	int ret;
7037 
7038 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7039 					   private, master);
7040 	if (ret)
7041 		return ret;
7042 
7043 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7044 					   private, false);
7045 	if (ret) {
7046 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7047 		return ret;
7048 	}
7049 
7050 	return 0;
7051 }
7052 
7053 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7054 					       struct net_device *upper_dev,
7055 					       u16 ref_nr,
7056 					       struct list_head *up_list,
7057 					       struct list_head *down_list)
7058 {
7059 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7060 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7061 }
7062 
7063 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7064 						struct net_device *upper_dev,
7065 						void *private, bool master)
7066 {
7067 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7068 						&dev->adj_list.upper,
7069 						&upper_dev->adj_list.lower,
7070 						private, master);
7071 }
7072 
7073 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7074 						   struct net_device *upper_dev)
7075 {
7076 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7077 					   &dev->adj_list.upper,
7078 					   &upper_dev->adj_list.lower);
7079 }
7080 
7081 static int __netdev_upper_dev_link(struct net_device *dev,
7082 				   struct net_device *upper_dev, bool master,
7083 				   void *upper_priv, void *upper_info,
7084 				   struct netlink_ext_ack *extack)
7085 {
7086 	struct netdev_notifier_changeupper_info changeupper_info = {
7087 		.info = {
7088 			.dev = dev,
7089 			.extack = extack,
7090 		},
7091 		.upper_dev = upper_dev,
7092 		.master = master,
7093 		.linking = true,
7094 		.upper_info = upper_info,
7095 	};
7096 	struct net_device *master_dev;
7097 	int ret = 0;
7098 
7099 	ASSERT_RTNL();
7100 
7101 	if (dev == upper_dev)
7102 		return -EBUSY;
7103 
7104 	/* To prevent loops, check if dev is not upper device to upper_dev. */
7105 	if (netdev_has_upper_dev(upper_dev, dev))
7106 		return -EBUSY;
7107 
7108 	if (!master) {
7109 		if (netdev_has_upper_dev(dev, upper_dev))
7110 			return -EEXIST;
7111 	} else {
7112 		master_dev = netdev_master_upper_dev_get(dev);
7113 		if (master_dev)
7114 			return master_dev == upper_dev ? -EEXIST : -EBUSY;
7115 	}
7116 
7117 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7118 					    &changeupper_info.info);
7119 	ret = notifier_to_errno(ret);
7120 	if (ret)
7121 		return ret;
7122 
7123 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7124 						   master);
7125 	if (ret)
7126 		return ret;
7127 
7128 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7129 					    &changeupper_info.info);
7130 	ret = notifier_to_errno(ret);
7131 	if (ret)
7132 		goto rollback;
7133 
7134 	return 0;
7135 
7136 rollback:
7137 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7138 
7139 	return ret;
7140 }
7141 
7142 /**
7143  * netdev_upper_dev_link - Add a link to the upper device
7144  * @dev: device
7145  * @upper_dev: new upper device
7146  * @extack: netlink extended ack
7147  *
7148  * Adds a link to device which is upper to this one. The caller must hold
7149  * the RTNL lock. On a failure a negative errno code is returned.
7150  * On success the reference counts are adjusted and the function
7151  * returns zero.
7152  */
7153 int netdev_upper_dev_link(struct net_device *dev,
7154 			  struct net_device *upper_dev,
7155 			  struct netlink_ext_ack *extack)
7156 {
7157 	return __netdev_upper_dev_link(dev, upper_dev, false,
7158 				       NULL, NULL, extack);
7159 }
7160 EXPORT_SYMBOL(netdev_upper_dev_link);
7161 
7162 /**
7163  * netdev_master_upper_dev_link - Add a master link to the upper device
7164  * @dev: device
7165  * @upper_dev: new upper device
7166  * @upper_priv: upper device private
7167  * @upper_info: upper info to be passed down via notifier
7168  * @extack: netlink extended ack
7169  *
7170  * Adds a link to device which is upper to this one. In this case, only
7171  * one master upper device can be linked, although other non-master devices
7172  * might be linked as well. The caller must hold the RTNL lock.
7173  * On a failure a negative errno code is returned. On success the reference
7174  * counts are adjusted and the function returns zero.
7175  */
7176 int netdev_master_upper_dev_link(struct net_device *dev,
7177 				 struct net_device *upper_dev,
7178 				 void *upper_priv, void *upper_info,
7179 				 struct netlink_ext_ack *extack)
7180 {
7181 	return __netdev_upper_dev_link(dev, upper_dev, true,
7182 				       upper_priv, upper_info, extack);
7183 }
7184 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7185 
7186 /**
7187  * netdev_upper_dev_unlink - Removes a link to upper device
7188  * @dev: device
7189  * @upper_dev: new upper device
7190  *
7191  * Removes a link to device which is upper to this one. The caller must hold
7192  * the RTNL lock.
7193  */
7194 void netdev_upper_dev_unlink(struct net_device *dev,
7195 			     struct net_device *upper_dev)
7196 {
7197 	struct netdev_notifier_changeupper_info changeupper_info = {
7198 		.info = {
7199 			.dev = dev,
7200 		},
7201 		.upper_dev = upper_dev,
7202 		.linking = false,
7203 	};
7204 
7205 	ASSERT_RTNL();
7206 
7207 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7208 
7209 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7210 				      &changeupper_info.info);
7211 
7212 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7213 
7214 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7215 				      &changeupper_info.info);
7216 }
7217 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7218 
7219 /**
7220  * netdev_bonding_info_change - Dispatch event about slave change
7221  * @dev: device
7222  * @bonding_info: info to dispatch
7223  *
7224  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7225  * The caller must hold the RTNL lock.
7226  */
7227 void netdev_bonding_info_change(struct net_device *dev,
7228 				struct netdev_bonding_info *bonding_info)
7229 {
7230 	struct netdev_notifier_bonding_info info = {
7231 		.info.dev = dev,
7232 	};
7233 
7234 	memcpy(&info.bonding_info, bonding_info,
7235 	       sizeof(struct netdev_bonding_info));
7236 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7237 				      &info.info);
7238 }
7239 EXPORT_SYMBOL(netdev_bonding_info_change);
7240 
7241 static void netdev_adjacent_add_links(struct net_device *dev)
7242 {
7243 	struct netdev_adjacent *iter;
7244 
7245 	struct net *net = dev_net(dev);
7246 
7247 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
7248 		if (!net_eq(net, dev_net(iter->dev)))
7249 			continue;
7250 		netdev_adjacent_sysfs_add(iter->dev, dev,
7251 					  &iter->dev->adj_list.lower);
7252 		netdev_adjacent_sysfs_add(dev, iter->dev,
7253 					  &dev->adj_list.upper);
7254 	}
7255 
7256 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
7257 		if (!net_eq(net, dev_net(iter->dev)))
7258 			continue;
7259 		netdev_adjacent_sysfs_add(iter->dev, dev,
7260 					  &iter->dev->adj_list.upper);
7261 		netdev_adjacent_sysfs_add(dev, iter->dev,
7262 					  &dev->adj_list.lower);
7263 	}
7264 }
7265 
7266 static void netdev_adjacent_del_links(struct net_device *dev)
7267 {
7268 	struct netdev_adjacent *iter;
7269 
7270 	struct net *net = dev_net(dev);
7271 
7272 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
7273 		if (!net_eq(net, dev_net(iter->dev)))
7274 			continue;
7275 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
7276 					  &iter->dev->adj_list.lower);
7277 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
7278 					  &dev->adj_list.upper);
7279 	}
7280 
7281 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
7282 		if (!net_eq(net, dev_net(iter->dev)))
7283 			continue;
7284 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
7285 					  &iter->dev->adj_list.upper);
7286 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
7287 					  &dev->adj_list.lower);
7288 	}
7289 }
7290 
7291 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
7292 {
7293 	struct netdev_adjacent *iter;
7294 
7295 	struct net *net = dev_net(dev);
7296 
7297 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
7298 		if (!net_eq(net, dev_net(iter->dev)))
7299 			continue;
7300 		netdev_adjacent_sysfs_del(iter->dev, oldname,
7301 					  &iter->dev->adj_list.lower);
7302 		netdev_adjacent_sysfs_add(iter->dev, dev,
7303 					  &iter->dev->adj_list.lower);
7304 	}
7305 
7306 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
7307 		if (!net_eq(net, dev_net(iter->dev)))
7308 			continue;
7309 		netdev_adjacent_sysfs_del(iter->dev, oldname,
7310 					  &iter->dev->adj_list.upper);
7311 		netdev_adjacent_sysfs_add(iter->dev, dev,
7312 					  &iter->dev->adj_list.upper);
7313 	}
7314 }
7315 
7316 void *netdev_lower_dev_get_private(struct net_device *dev,
7317 				   struct net_device *lower_dev)
7318 {
7319 	struct netdev_adjacent *lower;
7320 
7321 	if (!lower_dev)
7322 		return NULL;
7323 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
7324 	if (!lower)
7325 		return NULL;
7326 
7327 	return lower->private;
7328 }
7329 EXPORT_SYMBOL(netdev_lower_dev_get_private);
7330 
7331 
7332 int dev_get_nest_level(struct net_device *dev)
7333 {
7334 	struct net_device *lower = NULL;
7335 	struct list_head *iter;
7336 	int max_nest = -1;
7337 	int nest;
7338 
7339 	ASSERT_RTNL();
7340 
7341 	netdev_for_each_lower_dev(dev, lower, iter) {
7342 		nest = dev_get_nest_level(lower);
7343 		if (max_nest < nest)
7344 			max_nest = nest;
7345 	}
7346 
7347 	return max_nest + 1;
7348 }
7349 EXPORT_SYMBOL(dev_get_nest_level);
7350 
7351 /**
7352  * netdev_lower_change - Dispatch event about lower device state change
7353  * @lower_dev: device
7354  * @lower_state_info: state to dispatch
7355  *
7356  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
7357  * The caller must hold the RTNL lock.
7358  */
7359 void netdev_lower_state_changed(struct net_device *lower_dev,
7360 				void *lower_state_info)
7361 {
7362 	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
7363 		.info.dev = lower_dev,
7364 	};
7365 
7366 	ASSERT_RTNL();
7367 	changelowerstate_info.lower_state_info = lower_state_info;
7368 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
7369 				      &changelowerstate_info.info);
7370 }
7371 EXPORT_SYMBOL(netdev_lower_state_changed);
7372 
7373 static void dev_change_rx_flags(struct net_device *dev, int flags)
7374 {
7375 	const struct net_device_ops *ops = dev->netdev_ops;
7376 
7377 	if (ops->ndo_change_rx_flags)
7378 		ops->ndo_change_rx_flags(dev, flags);
7379 }
7380 
7381 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
7382 {
7383 	unsigned int old_flags = dev->flags;
7384 	kuid_t uid;
7385 	kgid_t gid;
7386 
7387 	ASSERT_RTNL();
7388 
7389 	dev->flags |= IFF_PROMISC;
7390 	dev->promiscuity += inc;
7391 	if (dev->promiscuity == 0) {
7392 		/*
7393 		 * Avoid overflow.
7394 		 * If inc causes overflow, untouch promisc and return error.
7395 		 */
7396 		if (inc < 0)
7397 			dev->flags &= ~IFF_PROMISC;
7398 		else {
7399 			dev->promiscuity -= inc;
7400 			pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
7401 				dev->name);
7402 			return -EOVERFLOW;
7403 		}
7404 	}
7405 	if (dev->flags != old_flags) {
7406 		pr_info("device %s %s promiscuous mode\n",
7407 			dev->name,
7408 			dev->flags & IFF_PROMISC ? "entered" : "left");
7409 		if (audit_enabled) {
7410 			current_uid_gid(&uid, &gid);
7411 			audit_log(audit_context(), GFP_ATOMIC,
7412 				  AUDIT_ANOM_PROMISCUOUS,
7413 				  "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
7414 				  dev->name, (dev->flags & IFF_PROMISC),
7415 				  (old_flags & IFF_PROMISC),
7416 				  from_kuid(&init_user_ns, audit_get_loginuid(current)),
7417 				  from_kuid(&init_user_ns, uid),
7418 				  from_kgid(&init_user_ns, gid),
7419 				  audit_get_sessionid(current));
7420 		}
7421 
7422 		dev_change_rx_flags(dev, IFF_PROMISC);
7423 	}
7424 	if (notify)
7425 		__dev_notify_flags(dev, old_flags, IFF_PROMISC);
7426 	return 0;
7427 }
7428 
7429 /**
7430  *	dev_set_promiscuity	- update promiscuity count on a device
7431  *	@dev: device
7432  *	@inc: modifier
7433  *
7434  *	Add or remove promiscuity from a device. While the count in the device
7435  *	remains above zero the interface remains promiscuous. Once it hits zero
7436  *	the device reverts back to normal filtering operation. A negative inc
7437  *	value is used to drop promiscuity on the device.
7438  *	Return 0 if successful or a negative errno code on error.
7439  */
7440 int dev_set_promiscuity(struct net_device *dev, int inc)
7441 {
7442 	unsigned int old_flags = dev->flags;
7443 	int err;
7444 
7445 	err = __dev_set_promiscuity(dev, inc, true);
7446 	if (err < 0)
7447 		return err;
7448 	if (dev->flags != old_flags)
7449 		dev_set_rx_mode(dev);
7450 	return err;
7451 }
7452 EXPORT_SYMBOL(dev_set_promiscuity);
7453 
7454 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
7455 {
7456 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
7457 
7458 	ASSERT_RTNL();
7459 
7460 	dev->flags |= IFF_ALLMULTI;
7461 	dev->allmulti += inc;
7462 	if (dev->allmulti == 0) {
7463 		/*
7464 		 * Avoid overflow.
7465 		 * If inc causes overflow, untouch allmulti and return error.
7466 		 */
7467 		if (inc < 0)
7468 			dev->flags &= ~IFF_ALLMULTI;
7469 		else {
7470 			dev->allmulti -= inc;
7471 			pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
7472 				dev->name);
7473 			return -EOVERFLOW;
7474 		}
7475 	}
7476 	if (dev->flags ^ old_flags) {
7477 		dev_change_rx_flags(dev, IFF_ALLMULTI);
7478 		dev_set_rx_mode(dev);
7479 		if (notify)
7480 			__dev_notify_flags(dev, old_flags,
7481 					   dev->gflags ^ old_gflags);
7482 	}
7483 	return 0;
7484 }
7485 
7486 /**
7487  *	dev_set_allmulti	- update allmulti count on a device
7488  *	@dev: device
7489  *	@inc: modifier
7490  *
7491  *	Add or remove reception of all multicast frames to a device. While the
7492  *	count in the device remains above zero the interface remains listening
7493  *	to all interfaces. Once it hits zero the device reverts back to normal
7494  *	filtering operation. A negative @inc value is used to drop the counter
7495  *	when releasing a resource needing all multicasts.
7496  *	Return 0 if successful or a negative errno code on error.
7497  */
7498 
7499 int dev_set_allmulti(struct net_device *dev, int inc)
7500 {
7501 	return __dev_set_allmulti(dev, inc, true);
7502 }
7503 EXPORT_SYMBOL(dev_set_allmulti);
7504 
7505 /*
7506  *	Upload unicast and multicast address lists to device and
7507  *	configure RX filtering. When the device doesn't support unicast
7508  *	filtering it is put in promiscuous mode while unicast addresses
7509  *	are present.
7510  */
7511 void __dev_set_rx_mode(struct net_device *dev)
7512 {
7513 	const struct net_device_ops *ops = dev->netdev_ops;
7514 
7515 	/* dev_open will call this function so the list will stay sane. */
7516 	if (!(dev->flags&IFF_UP))
7517 		return;
7518 
7519 	if (!netif_device_present(dev))
7520 		return;
7521 
7522 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
7523 		/* Unicast addresses changes may only happen under the rtnl,
7524 		 * therefore calling __dev_set_promiscuity here is safe.
7525 		 */
7526 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
7527 			__dev_set_promiscuity(dev, 1, false);
7528 			dev->uc_promisc = true;
7529 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
7530 			__dev_set_promiscuity(dev, -1, false);
7531 			dev->uc_promisc = false;
7532 		}
7533 	}
7534 
7535 	if (ops->ndo_set_rx_mode)
7536 		ops->ndo_set_rx_mode(dev);
7537 }
7538 
7539 void dev_set_rx_mode(struct net_device *dev)
7540 {
7541 	netif_addr_lock_bh(dev);
7542 	__dev_set_rx_mode(dev);
7543 	netif_addr_unlock_bh(dev);
7544 }
7545 
7546 /**
7547  *	dev_get_flags - get flags reported to userspace
7548  *	@dev: device
7549  *
7550  *	Get the combination of flag bits exported through APIs to userspace.
7551  */
7552 unsigned int dev_get_flags(const struct net_device *dev)
7553 {
7554 	unsigned int flags;
7555 
7556 	flags = (dev->flags & ~(IFF_PROMISC |
7557 				IFF_ALLMULTI |
7558 				IFF_RUNNING |
7559 				IFF_LOWER_UP |
7560 				IFF_DORMANT)) |
7561 		(dev->gflags & (IFF_PROMISC |
7562 				IFF_ALLMULTI));
7563 
7564 	if (netif_running(dev)) {
7565 		if (netif_oper_up(dev))
7566 			flags |= IFF_RUNNING;
7567 		if (netif_carrier_ok(dev))
7568 			flags |= IFF_LOWER_UP;
7569 		if (netif_dormant(dev))
7570 			flags |= IFF_DORMANT;
7571 	}
7572 
7573 	return flags;
7574 }
7575 EXPORT_SYMBOL(dev_get_flags);
7576 
7577 int __dev_change_flags(struct net_device *dev, unsigned int flags,
7578 		       struct netlink_ext_ack *extack)
7579 {
7580 	unsigned int old_flags = dev->flags;
7581 	int ret;
7582 
7583 	ASSERT_RTNL();
7584 
7585 	/*
7586 	 *	Set the flags on our device.
7587 	 */
7588 
7589 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
7590 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
7591 			       IFF_AUTOMEDIA)) |
7592 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
7593 				    IFF_ALLMULTI));
7594 
7595 	/*
7596 	 *	Load in the correct multicast list now the flags have changed.
7597 	 */
7598 
7599 	if ((old_flags ^ flags) & IFF_MULTICAST)
7600 		dev_change_rx_flags(dev, IFF_MULTICAST);
7601 
7602 	dev_set_rx_mode(dev);
7603 
7604 	/*
7605 	 *	Have we downed the interface. We handle IFF_UP ourselves
7606 	 *	according to user attempts to set it, rather than blindly
7607 	 *	setting it.
7608 	 */
7609 
7610 	ret = 0;
7611 	if ((old_flags ^ flags) & IFF_UP) {
7612 		if (old_flags & IFF_UP)
7613 			__dev_close(dev);
7614 		else
7615 			ret = __dev_open(dev, extack);
7616 	}
7617 
7618 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
7619 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
7620 		unsigned int old_flags = dev->flags;
7621 
7622 		dev->gflags ^= IFF_PROMISC;
7623 
7624 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
7625 			if (dev->flags != old_flags)
7626 				dev_set_rx_mode(dev);
7627 	}
7628 
7629 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
7630 	 * is important. Some (broken) drivers set IFF_PROMISC, when
7631 	 * IFF_ALLMULTI is requested not asking us and not reporting.
7632 	 */
7633 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
7634 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
7635 
7636 		dev->gflags ^= IFF_ALLMULTI;
7637 		__dev_set_allmulti(dev, inc, false);
7638 	}
7639 
7640 	return ret;
7641 }
7642 
7643 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
7644 			unsigned int gchanges)
7645 {
7646 	unsigned int changes = dev->flags ^ old_flags;
7647 
7648 	if (gchanges)
7649 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
7650 
7651 	if (changes & IFF_UP) {
7652 		if (dev->flags & IFF_UP)
7653 			call_netdevice_notifiers(NETDEV_UP, dev);
7654 		else
7655 			call_netdevice_notifiers(NETDEV_DOWN, dev);
7656 	}
7657 
7658 	if (dev->flags & IFF_UP &&
7659 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
7660 		struct netdev_notifier_change_info change_info = {
7661 			.info = {
7662 				.dev = dev,
7663 			},
7664 			.flags_changed = changes,
7665 		};
7666 
7667 		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
7668 	}
7669 }
7670 
7671 /**
7672  *	dev_change_flags - change device settings
7673  *	@dev: device
7674  *	@flags: device state flags
7675  *	@extack: netlink extended ack
7676  *
7677  *	Change settings on device based state flags. The flags are
7678  *	in the userspace exported format.
7679  */
7680 int dev_change_flags(struct net_device *dev, unsigned int flags,
7681 		     struct netlink_ext_ack *extack)
7682 {
7683 	int ret;
7684 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
7685 
7686 	ret = __dev_change_flags(dev, flags, extack);
7687 	if (ret < 0)
7688 		return ret;
7689 
7690 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
7691 	__dev_notify_flags(dev, old_flags, changes);
7692 	return ret;
7693 }
7694 EXPORT_SYMBOL(dev_change_flags);
7695 
7696 int __dev_set_mtu(struct net_device *dev, int new_mtu)
7697 {
7698 	const struct net_device_ops *ops = dev->netdev_ops;
7699 
7700 	if (ops->ndo_change_mtu)
7701 		return ops->ndo_change_mtu(dev, new_mtu);
7702 
7703 	dev->mtu = new_mtu;
7704 	return 0;
7705 }
7706 EXPORT_SYMBOL(__dev_set_mtu);
7707 
7708 /**
7709  *	dev_set_mtu_ext - Change maximum transfer unit
7710  *	@dev: device
7711  *	@new_mtu: new transfer unit
7712  *	@extack: netlink extended ack
7713  *
7714  *	Change the maximum transfer size of the network device.
7715  */
7716 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
7717 		    struct netlink_ext_ack *extack)
7718 {
7719 	int err, orig_mtu;
7720 
7721 	if (new_mtu == dev->mtu)
7722 		return 0;
7723 
7724 	/* MTU must be positive, and in range */
7725 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
7726 		NL_SET_ERR_MSG(extack, "mtu less than device minimum");
7727 		return -EINVAL;
7728 	}
7729 
7730 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
7731 		NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
7732 		return -EINVAL;
7733 	}
7734 
7735 	if (!netif_device_present(dev))
7736 		return -ENODEV;
7737 
7738 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
7739 	err = notifier_to_errno(err);
7740 	if (err)
7741 		return err;
7742 
7743 	orig_mtu = dev->mtu;
7744 	err = __dev_set_mtu(dev, new_mtu);
7745 
7746 	if (!err) {
7747 		err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
7748 						   orig_mtu);
7749 		err = notifier_to_errno(err);
7750 		if (err) {
7751 			/* setting mtu back and notifying everyone again,
7752 			 * so that they have a chance to revert changes.
7753 			 */
7754 			__dev_set_mtu(dev, orig_mtu);
7755 			call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
7756 						     new_mtu);
7757 		}
7758 	}
7759 	return err;
7760 }
7761 
7762 int dev_set_mtu(struct net_device *dev, int new_mtu)
7763 {
7764 	struct netlink_ext_ack extack;
7765 	int err;
7766 
7767 	memset(&extack, 0, sizeof(extack));
7768 	err = dev_set_mtu_ext(dev, new_mtu, &extack);
7769 	if (err && extack._msg)
7770 		net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
7771 	return err;
7772 }
7773 EXPORT_SYMBOL(dev_set_mtu);
7774 
7775 /**
7776  *	dev_change_tx_queue_len - Change TX queue length of a netdevice
7777  *	@dev: device
7778  *	@new_len: new tx queue length
7779  */
7780 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
7781 {
7782 	unsigned int orig_len = dev->tx_queue_len;
7783 	int res;
7784 
7785 	if (new_len != (unsigned int)new_len)
7786 		return -ERANGE;
7787 
7788 	if (new_len != orig_len) {
7789 		dev->tx_queue_len = new_len;
7790 		res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
7791 		res = notifier_to_errno(res);
7792 		if (res)
7793 			goto err_rollback;
7794 		res = dev_qdisc_change_tx_queue_len(dev);
7795 		if (res)
7796 			goto err_rollback;
7797 	}
7798 
7799 	return 0;
7800 
7801 err_rollback:
7802 	netdev_err(dev, "refused to change device tx_queue_len\n");
7803 	dev->tx_queue_len = orig_len;
7804 	return res;
7805 }
7806 
7807 /**
7808  *	dev_set_group - Change group this device belongs to
7809  *	@dev: device
7810  *	@new_group: group this device should belong to
7811  */
7812 void dev_set_group(struct net_device *dev, int new_group)
7813 {
7814 	dev->group = new_group;
7815 }
7816 EXPORT_SYMBOL(dev_set_group);
7817 
7818 /**
7819  *	dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
7820  *	@dev: device
7821  *	@addr: new address
7822  *	@extack: netlink extended ack
7823  */
7824 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
7825 			      struct netlink_ext_ack *extack)
7826 {
7827 	struct netdev_notifier_pre_changeaddr_info info = {
7828 		.info.dev = dev,
7829 		.info.extack = extack,
7830 		.dev_addr = addr,
7831 	};
7832 	int rc;
7833 
7834 	rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
7835 	return notifier_to_errno(rc);
7836 }
7837 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
7838 
7839 /**
7840  *	dev_set_mac_address - Change Media Access Control Address
7841  *	@dev: device
7842  *	@sa: new address
7843  *	@extack: netlink extended ack
7844  *
7845  *	Change the hardware (MAC) address of the device
7846  */
7847 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
7848 			struct netlink_ext_ack *extack)
7849 {
7850 	const struct net_device_ops *ops = dev->netdev_ops;
7851 	int err;
7852 
7853 	if (!ops->ndo_set_mac_address)
7854 		return -EOPNOTSUPP;
7855 	if (sa->sa_family != dev->type)
7856 		return -EINVAL;
7857 	if (!netif_device_present(dev))
7858 		return -ENODEV;
7859 	err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
7860 	if (err)
7861 		return err;
7862 	err = ops->ndo_set_mac_address(dev, sa);
7863 	if (err)
7864 		return err;
7865 	dev->addr_assign_type = NET_ADDR_SET;
7866 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7867 	add_device_randomness(dev->dev_addr, dev->addr_len);
7868 	return 0;
7869 }
7870 EXPORT_SYMBOL(dev_set_mac_address);
7871 
7872 /**
7873  *	dev_change_carrier - Change device carrier
7874  *	@dev: device
7875  *	@new_carrier: new value
7876  *
7877  *	Change device carrier
7878  */
7879 int dev_change_carrier(struct net_device *dev, bool new_carrier)
7880 {
7881 	const struct net_device_ops *ops = dev->netdev_ops;
7882 
7883 	if (!ops->ndo_change_carrier)
7884 		return -EOPNOTSUPP;
7885 	if (!netif_device_present(dev))
7886 		return -ENODEV;
7887 	return ops->ndo_change_carrier(dev, new_carrier);
7888 }
7889 EXPORT_SYMBOL(dev_change_carrier);
7890 
7891 /**
7892  *	dev_get_phys_port_id - Get device physical port ID
7893  *	@dev: device
7894  *	@ppid: port ID
7895  *
7896  *	Get device physical port ID
7897  */
7898 int dev_get_phys_port_id(struct net_device *dev,
7899 			 struct netdev_phys_item_id *ppid)
7900 {
7901 	const struct net_device_ops *ops = dev->netdev_ops;
7902 
7903 	if (!ops->ndo_get_phys_port_id)
7904 		return -EOPNOTSUPP;
7905 	return ops->ndo_get_phys_port_id(dev, ppid);
7906 }
7907 EXPORT_SYMBOL(dev_get_phys_port_id);
7908 
7909 /**
7910  *	dev_get_phys_port_name - Get device physical port name
7911  *	@dev: device
7912  *	@name: port name
7913  *	@len: limit of bytes to copy to name
7914  *
7915  *	Get device physical port name
7916  */
7917 int dev_get_phys_port_name(struct net_device *dev,
7918 			   char *name, size_t len)
7919 {
7920 	const struct net_device_ops *ops = dev->netdev_ops;
7921 	int err;
7922 
7923 	if (ops->ndo_get_phys_port_name) {
7924 		err = ops->ndo_get_phys_port_name(dev, name, len);
7925 		if (err != -EOPNOTSUPP)
7926 			return err;
7927 	}
7928 	return devlink_compat_phys_port_name_get(dev, name, len);
7929 }
7930 EXPORT_SYMBOL(dev_get_phys_port_name);
7931 
7932 /**
7933  *	dev_get_port_parent_id - Get the device's port parent identifier
7934  *	@dev: network device
7935  *	@ppid: pointer to a storage for the port's parent identifier
7936  *	@recurse: allow/disallow recursion to lower devices
7937  *
7938  *	Get the devices's port parent identifier
7939  */
7940 int dev_get_port_parent_id(struct net_device *dev,
7941 			   struct netdev_phys_item_id *ppid,
7942 			   bool recurse)
7943 {
7944 	const struct net_device_ops *ops = dev->netdev_ops;
7945 	struct netdev_phys_item_id first = { };
7946 	struct net_device *lower_dev;
7947 	struct list_head *iter;
7948 	int err;
7949 
7950 	if (ops->ndo_get_port_parent_id) {
7951 		err = ops->ndo_get_port_parent_id(dev, ppid);
7952 		if (err != -EOPNOTSUPP)
7953 			return err;
7954 	}
7955 
7956 	err = devlink_compat_switch_id_get(dev, ppid);
7957 	if (!err || err != -EOPNOTSUPP)
7958 		return err;
7959 
7960 	if (!recurse)
7961 		return -EOPNOTSUPP;
7962 
7963 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
7964 		err = dev_get_port_parent_id(lower_dev, ppid, recurse);
7965 		if (err)
7966 			break;
7967 		if (!first.id_len)
7968 			first = *ppid;
7969 		else if (memcmp(&first, ppid, sizeof(*ppid)))
7970 			return -ENODATA;
7971 	}
7972 
7973 	return err;
7974 }
7975 EXPORT_SYMBOL(dev_get_port_parent_id);
7976 
7977 /**
7978  *	netdev_port_same_parent_id - Indicate if two network devices have
7979  *	the same port parent identifier
7980  *	@a: first network device
7981  *	@b: second network device
7982  */
7983 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
7984 {
7985 	struct netdev_phys_item_id a_id = { };
7986 	struct netdev_phys_item_id b_id = { };
7987 
7988 	if (dev_get_port_parent_id(a, &a_id, true) ||
7989 	    dev_get_port_parent_id(b, &b_id, true))
7990 		return false;
7991 
7992 	return netdev_phys_item_id_same(&a_id, &b_id);
7993 }
7994 EXPORT_SYMBOL(netdev_port_same_parent_id);
7995 
7996 /**
7997  *	dev_change_proto_down - update protocol port state information
7998  *	@dev: device
7999  *	@proto_down: new value
8000  *
8001  *	This info can be used by switch drivers to set the phys state of the
8002  *	port.
8003  */
8004 int dev_change_proto_down(struct net_device *dev, bool proto_down)
8005 {
8006 	const struct net_device_ops *ops = dev->netdev_ops;
8007 
8008 	if (!ops->ndo_change_proto_down)
8009 		return -EOPNOTSUPP;
8010 	if (!netif_device_present(dev))
8011 		return -ENODEV;
8012 	return ops->ndo_change_proto_down(dev, proto_down);
8013 }
8014 EXPORT_SYMBOL(dev_change_proto_down);
8015 
8016 /**
8017  *	dev_change_proto_down_generic - generic implementation for
8018  * 	ndo_change_proto_down that sets carrier according to
8019  * 	proto_down.
8020  *
8021  *	@dev: device
8022  *	@proto_down: new value
8023  */
8024 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
8025 {
8026 	if (proto_down)
8027 		netif_carrier_off(dev);
8028 	else
8029 		netif_carrier_on(dev);
8030 	dev->proto_down = proto_down;
8031 	return 0;
8032 }
8033 EXPORT_SYMBOL(dev_change_proto_down_generic);
8034 
8035 u32 __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op,
8036 		    enum bpf_netdev_command cmd)
8037 {
8038 	struct netdev_bpf xdp;
8039 
8040 	if (!bpf_op)
8041 		return 0;
8042 
8043 	memset(&xdp, 0, sizeof(xdp));
8044 	xdp.command = cmd;
8045 
8046 	/* Query must always succeed. */
8047 	WARN_ON(bpf_op(dev, &xdp) < 0 && cmd == XDP_QUERY_PROG);
8048 
8049 	return xdp.prog_id;
8050 }
8051 
8052 static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op,
8053 			   struct netlink_ext_ack *extack, u32 flags,
8054 			   struct bpf_prog *prog)
8055 {
8056 	struct netdev_bpf xdp;
8057 
8058 	memset(&xdp, 0, sizeof(xdp));
8059 	if (flags & XDP_FLAGS_HW_MODE)
8060 		xdp.command = XDP_SETUP_PROG_HW;
8061 	else
8062 		xdp.command = XDP_SETUP_PROG;
8063 	xdp.extack = extack;
8064 	xdp.flags = flags;
8065 	xdp.prog = prog;
8066 
8067 	return bpf_op(dev, &xdp);
8068 }
8069 
8070 static void dev_xdp_uninstall(struct net_device *dev)
8071 {
8072 	struct netdev_bpf xdp;
8073 	bpf_op_t ndo_bpf;
8074 
8075 	/* Remove generic XDP */
8076 	WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL));
8077 
8078 	/* Remove from the driver */
8079 	ndo_bpf = dev->netdev_ops->ndo_bpf;
8080 	if (!ndo_bpf)
8081 		return;
8082 
8083 	memset(&xdp, 0, sizeof(xdp));
8084 	xdp.command = XDP_QUERY_PROG;
8085 	WARN_ON(ndo_bpf(dev, &xdp));
8086 	if (xdp.prog_id)
8087 		WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
8088 					NULL));
8089 
8090 	/* Remove HW offload */
8091 	memset(&xdp, 0, sizeof(xdp));
8092 	xdp.command = XDP_QUERY_PROG_HW;
8093 	if (!ndo_bpf(dev, &xdp) && xdp.prog_id)
8094 		WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
8095 					NULL));
8096 }
8097 
8098 /**
8099  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
8100  *	@dev: device
8101  *	@extack: netlink extended ack
8102  *	@fd: new program fd or negative value to clear
8103  *	@flags: xdp-related flags
8104  *
8105  *	Set or clear a bpf program for a device
8106  */
8107 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
8108 		      int fd, u32 flags)
8109 {
8110 	const struct net_device_ops *ops = dev->netdev_ops;
8111 	enum bpf_netdev_command query;
8112 	struct bpf_prog *prog = NULL;
8113 	bpf_op_t bpf_op, bpf_chk;
8114 	bool offload;
8115 	int err;
8116 
8117 	ASSERT_RTNL();
8118 
8119 	offload = flags & XDP_FLAGS_HW_MODE;
8120 	query = offload ? XDP_QUERY_PROG_HW : XDP_QUERY_PROG;
8121 
8122 	bpf_op = bpf_chk = ops->ndo_bpf;
8123 	if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE))) {
8124 		NL_SET_ERR_MSG(extack, "underlying driver does not support XDP in native mode");
8125 		return -EOPNOTSUPP;
8126 	}
8127 	if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE))
8128 		bpf_op = generic_xdp_install;
8129 	if (bpf_op == bpf_chk)
8130 		bpf_chk = generic_xdp_install;
8131 
8132 	if (fd >= 0) {
8133 		u32 prog_id;
8134 
8135 		if (!offload && __dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG)) {
8136 			NL_SET_ERR_MSG(extack, "native and generic XDP can't be active at the same time");
8137 			return -EEXIST;
8138 		}
8139 
8140 		prog_id = __dev_xdp_query(dev, bpf_op, query);
8141 		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && prog_id) {
8142 			NL_SET_ERR_MSG(extack, "XDP program already attached");
8143 			return -EBUSY;
8144 		}
8145 
8146 		prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
8147 					     bpf_op == ops->ndo_bpf);
8148 		if (IS_ERR(prog))
8149 			return PTR_ERR(prog);
8150 
8151 		if (!offload && bpf_prog_is_dev_bound(prog->aux)) {
8152 			NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported");
8153 			bpf_prog_put(prog);
8154 			return -EINVAL;
8155 		}
8156 
8157 		if (prog->aux->id == prog_id) {
8158 			bpf_prog_put(prog);
8159 			return 0;
8160 		}
8161 	} else {
8162 		if (!__dev_xdp_query(dev, bpf_op, query))
8163 			return 0;
8164 	}
8165 
8166 	err = dev_xdp_install(dev, bpf_op, extack, flags, prog);
8167 	if (err < 0 && prog)
8168 		bpf_prog_put(prog);
8169 
8170 	return err;
8171 }
8172 
8173 /**
8174  *	dev_new_index	-	allocate an ifindex
8175  *	@net: the applicable net namespace
8176  *
8177  *	Returns a suitable unique value for a new device interface
8178  *	number.  The caller must hold the rtnl semaphore or the
8179  *	dev_base_lock to be sure it remains unique.
8180  */
8181 static int dev_new_index(struct net *net)
8182 {
8183 	int ifindex = net->ifindex;
8184 
8185 	for (;;) {
8186 		if (++ifindex <= 0)
8187 			ifindex = 1;
8188 		if (!__dev_get_by_index(net, ifindex))
8189 			return net->ifindex = ifindex;
8190 	}
8191 }
8192 
8193 /* Delayed registration/unregisteration */
8194 static LIST_HEAD(net_todo_list);
8195 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
8196 
8197 static void net_set_todo(struct net_device *dev)
8198 {
8199 	list_add_tail(&dev->todo_list, &net_todo_list);
8200 	dev_net(dev)->dev_unreg_count++;
8201 }
8202 
8203 static void rollback_registered_many(struct list_head *head)
8204 {
8205 	struct net_device *dev, *tmp;
8206 	LIST_HEAD(close_head);
8207 
8208 	BUG_ON(dev_boot_phase);
8209 	ASSERT_RTNL();
8210 
8211 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
8212 		/* Some devices call without registering
8213 		 * for initialization unwind. Remove those
8214 		 * devices and proceed with the remaining.
8215 		 */
8216 		if (dev->reg_state == NETREG_UNINITIALIZED) {
8217 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
8218 				 dev->name, dev);
8219 
8220 			WARN_ON(1);
8221 			list_del(&dev->unreg_list);
8222 			continue;
8223 		}
8224 		dev->dismantle = true;
8225 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
8226 	}
8227 
8228 	/* If device is running, close it first. */
8229 	list_for_each_entry(dev, head, unreg_list)
8230 		list_add_tail(&dev->close_list, &close_head);
8231 	dev_close_many(&close_head, true);
8232 
8233 	list_for_each_entry(dev, head, unreg_list) {
8234 		/* And unlink it from device chain. */
8235 		unlist_netdevice(dev);
8236 
8237 		dev->reg_state = NETREG_UNREGISTERING;
8238 	}
8239 	flush_all_backlogs();
8240 
8241 	synchronize_net();
8242 
8243 	list_for_each_entry(dev, head, unreg_list) {
8244 		struct sk_buff *skb = NULL;
8245 
8246 		/* Shutdown queueing discipline. */
8247 		dev_shutdown(dev);
8248 
8249 		dev_xdp_uninstall(dev);
8250 
8251 		/* Notify protocols, that we are about to destroy
8252 		 * this device. They should clean all the things.
8253 		 */
8254 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8255 
8256 		if (!dev->rtnl_link_ops ||
8257 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
8258 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
8259 						     GFP_KERNEL, NULL, 0);
8260 
8261 		/*
8262 		 *	Flush the unicast and multicast chains
8263 		 */
8264 		dev_uc_flush(dev);
8265 		dev_mc_flush(dev);
8266 
8267 		if (dev->netdev_ops->ndo_uninit)
8268 			dev->netdev_ops->ndo_uninit(dev);
8269 
8270 		if (skb)
8271 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
8272 
8273 		/* Notifier chain MUST detach us all upper devices. */
8274 		WARN_ON(netdev_has_any_upper_dev(dev));
8275 		WARN_ON(netdev_has_any_lower_dev(dev));
8276 
8277 		/* Remove entries from kobject tree */
8278 		netdev_unregister_kobject(dev);
8279 #ifdef CONFIG_XPS
8280 		/* Remove XPS queueing entries */
8281 		netif_reset_xps_queues_gt(dev, 0);
8282 #endif
8283 	}
8284 
8285 	synchronize_net();
8286 
8287 	list_for_each_entry(dev, head, unreg_list)
8288 		dev_put(dev);
8289 }
8290 
8291 static void rollback_registered(struct net_device *dev)
8292 {
8293 	LIST_HEAD(single);
8294 
8295 	list_add(&dev->unreg_list, &single);
8296 	rollback_registered_many(&single);
8297 	list_del(&single);
8298 }
8299 
8300 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
8301 	struct net_device *upper, netdev_features_t features)
8302 {
8303 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8304 	netdev_features_t feature;
8305 	int feature_bit;
8306 
8307 	for_each_netdev_feature(upper_disables, feature_bit) {
8308 		feature = __NETIF_F_BIT(feature_bit);
8309 		if (!(upper->wanted_features & feature)
8310 		    && (features & feature)) {
8311 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
8312 				   &feature, upper->name);
8313 			features &= ~feature;
8314 		}
8315 	}
8316 
8317 	return features;
8318 }
8319 
8320 static void netdev_sync_lower_features(struct net_device *upper,
8321 	struct net_device *lower, netdev_features_t features)
8322 {
8323 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8324 	netdev_features_t feature;
8325 	int feature_bit;
8326 
8327 	for_each_netdev_feature(upper_disables, feature_bit) {
8328 		feature = __NETIF_F_BIT(feature_bit);
8329 		if (!(features & feature) && (lower->features & feature)) {
8330 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
8331 				   &feature, lower->name);
8332 			lower->wanted_features &= ~feature;
8333 			netdev_update_features(lower);
8334 
8335 			if (unlikely(lower->features & feature))
8336 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
8337 					    &feature, lower->name);
8338 		}
8339 	}
8340 }
8341 
8342 static netdev_features_t netdev_fix_features(struct net_device *dev,
8343 	netdev_features_t features)
8344 {
8345 	/* Fix illegal checksum combinations */
8346 	if ((features & NETIF_F_HW_CSUM) &&
8347 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
8348 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
8349 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
8350 	}
8351 
8352 	/* TSO requires that SG is present as well. */
8353 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
8354 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
8355 		features &= ~NETIF_F_ALL_TSO;
8356 	}
8357 
8358 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
8359 					!(features & NETIF_F_IP_CSUM)) {
8360 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
8361 		features &= ~NETIF_F_TSO;
8362 		features &= ~NETIF_F_TSO_ECN;
8363 	}
8364 
8365 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
8366 					 !(features & NETIF_F_IPV6_CSUM)) {
8367 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
8368 		features &= ~NETIF_F_TSO6;
8369 	}
8370 
8371 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
8372 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
8373 		features &= ~NETIF_F_TSO_MANGLEID;
8374 
8375 	/* TSO ECN requires that TSO is present as well. */
8376 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
8377 		features &= ~NETIF_F_TSO_ECN;
8378 
8379 	/* Software GSO depends on SG. */
8380 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
8381 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
8382 		features &= ~NETIF_F_GSO;
8383 	}
8384 
8385 	/* GSO partial features require GSO partial be set */
8386 	if ((features & dev->gso_partial_features) &&
8387 	    !(features & NETIF_F_GSO_PARTIAL)) {
8388 		netdev_dbg(dev,
8389 			   "Dropping partially supported GSO features since no GSO partial.\n");
8390 		features &= ~dev->gso_partial_features;
8391 	}
8392 
8393 	if (!(features & NETIF_F_RXCSUM)) {
8394 		/* NETIF_F_GRO_HW implies doing RXCSUM since every packet
8395 		 * successfully merged by hardware must also have the
8396 		 * checksum verified by hardware.  If the user does not
8397 		 * want to enable RXCSUM, logically, we should disable GRO_HW.
8398 		 */
8399 		if (features & NETIF_F_GRO_HW) {
8400 			netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
8401 			features &= ~NETIF_F_GRO_HW;
8402 		}
8403 	}
8404 
8405 	/* LRO/HW-GRO features cannot be combined with RX-FCS */
8406 	if (features & NETIF_F_RXFCS) {
8407 		if (features & NETIF_F_LRO) {
8408 			netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
8409 			features &= ~NETIF_F_LRO;
8410 		}
8411 
8412 		if (features & NETIF_F_GRO_HW) {
8413 			netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
8414 			features &= ~NETIF_F_GRO_HW;
8415 		}
8416 	}
8417 
8418 	return features;
8419 }
8420 
8421 int __netdev_update_features(struct net_device *dev)
8422 {
8423 	struct net_device *upper, *lower;
8424 	netdev_features_t features;
8425 	struct list_head *iter;
8426 	int err = -1;
8427 
8428 	ASSERT_RTNL();
8429 
8430 	features = netdev_get_wanted_features(dev);
8431 
8432 	if (dev->netdev_ops->ndo_fix_features)
8433 		features = dev->netdev_ops->ndo_fix_features(dev, features);
8434 
8435 	/* driver might be less strict about feature dependencies */
8436 	features = netdev_fix_features(dev, features);
8437 
8438 	/* some features can't be enabled if they're off an an upper device */
8439 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
8440 		features = netdev_sync_upper_features(dev, upper, features);
8441 
8442 	if (dev->features == features)
8443 		goto sync_lower;
8444 
8445 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
8446 		&dev->features, &features);
8447 
8448 	if (dev->netdev_ops->ndo_set_features)
8449 		err = dev->netdev_ops->ndo_set_features(dev, features);
8450 	else
8451 		err = 0;
8452 
8453 	if (unlikely(err < 0)) {
8454 		netdev_err(dev,
8455 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
8456 			err, &features, &dev->features);
8457 		/* return non-0 since some features might have changed and
8458 		 * it's better to fire a spurious notification than miss it
8459 		 */
8460 		return -1;
8461 	}
8462 
8463 sync_lower:
8464 	/* some features must be disabled on lower devices when disabled
8465 	 * on an upper device (think: bonding master or bridge)
8466 	 */
8467 	netdev_for_each_lower_dev(dev, lower, iter)
8468 		netdev_sync_lower_features(dev, lower, features);
8469 
8470 	if (!err) {
8471 		netdev_features_t diff = features ^ dev->features;
8472 
8473 		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
8474 			/* udp_tunnel_{get,drop}_rx_info both need
8475 			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
8476 			 * device, or they won't do anything.
8477 			 * Thus we need to update dev->features
8478 			 * *before* calling udp_tunnel_get_rx_info,
8479 			 * but *after* calling udp_tunnel_drop_rx_info.
8480 			 */
8481 			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
8482 				dev->features = features;
8483 				udp_tunnel_get_rx_info(dev);
8484 			} else {
8485 				udp_tunnel_drop_rx_info(dev);
8486 			}
8487 		}
8488 
8489 		if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
8490 			if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
8491 				dev->features = features;
8492 				err |= vlan_get_rx_ctag_filter_info(dev);
8493 			} else {
8494 				vlan_drop_rx_ctag_filter_info(dev);
8495 			}
8496 		}
8497 
8498 		if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
8499 			if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
8500 				dev->features = features;
8501 				err |= vlan_get_rx_stag_filter_info(dev);
8502 			} else {
8503 				vlan_drop_rx_stag_filter_info(dev);
8504 			}
8505 		}
8506 
8507 		dev->features = features;
8508 	}
8509 
8510 	return err < 0 ? 0 : 1;
8511 }
8512 
8513 /**
8514  *	netdev_update_features - recalculate device features
8515  *	@dev: the device to check
8516  *
8517  *	Recalculate dev->features set and send notifications if it
8518  *	has changed. Should be called after driver or hardware dependent
8519  *	conditions might have changed that influence the features.
8520  */
8521 void netdev_update_features(struct net_device *dev)
8522 {
8523 	if (__netdev_update_features(dev))
8524 		netdev_features_change(dev);
8525 }
8526 EXPORT_SYMBOL(netdev_update_features);
8527 
8528 /**
8529  *	netdev_change_features - recalculate device features
8530  *	@dev: the device to check
8531  *
8532  *	Recalculate dev->features set and send notifications even
8533  *	if they have not changed. Should be called instead of
8534  *	netdev_update_features() if also dev->vlan_features might
8535  *	have changed to allow the changes to be propagated to stacked
8536  *	VLAN devices.
8537  */
8538 void netdev_change_features(struct net_device *dev)
8539 {
8540 	__netdev_update_features(dev);
8541 	netdev_features_change(dev);
8542 }
8543 EXPORT_SYMBOL(netdev_change_features);
8544 
8545 /**
8546  *	netif_stacked_transfer_operstate -	transfer operstate
8547  *	@rootdev: the root or lower level device to transfer state from
8548  *	@dev: the device to transfer operstate to
8549  *
8550  *	Transfer operational state from root to device. This is normally
8551  *	called when a stacking relationship exists between the root
8552  *	device and the device(a leaf device).
8553  */
8554 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
8555 					struct net_device *dev)
8556 {
8557 	if (rootdev->operstate == IF_OPER_DORMANT)
8558 		netif_dormant_on(dev);
8559 	else
8560 		netif_dormant_off(dev);
8561 
8562 	if (netif_carrier_ok(rootdev))
8563 		netif_carrier_on(dev);
8564 	else
8565 		netif_carrier_off(dev);
8566 }
8567 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
8568 
8569 static int netif_alloc_rx_queues(struct net_device *dev)
8570 {
8571 	unsigned int i, count = dev->num_rx_queues;
8572 	struct netdev_rx_queue *rx;
8573 	size_t sz = count * sizeof(*rx);
8574 	int err = 0;
8575 
8576 	BUG_ON(count < 1);
8577 
8578 	rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8579 	if (!rx)
8580 		return -ENOMEM;
8581 
8582 	dev->_rx = rx;
8583 
8584 	for (i = 0; i < count; i++) {
8585 		rx[i].dev = dev;
8586 
8587 		/* XDP RX-queue setup */
8588 		err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
8589 		if (err < 0)
8590 			goto err_rxq_info;
8591 	}
8592 	return 0;
8593 
8594 err_rxq_info:
8595 	/* Rollback successful reg's and free other resources */
8596 	while (i--)
8597 		xdp_rxq_info_unreg(&rx[i].xdp_rxq);
8598 	kvfree(dev->_rx);
8599 	dev->_rx = NULL;
8600 	return err;
8601 }
8602 
8603 static void netif_free_rx_queues(struct net_device *dev)
8604 {
8605 	unsigned int i, count = dev->num_rx_queues;
8606 
8607 	/* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
8608 	if (!dev->_rx)
8609 		return;
8610 
8611 	for (i = 0; i < count; i++)
8612 		xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
8613 
8614 	kvfree(dev->_rx);
8615 }
8616 
8617 static void netdev_init_one_queue(struct net_device *dev,
8618 				  struct netdev_queue *queue, void *_unused)
8619 {
8620 	/* Initialize queue lock */
8621 	spin_lock_init(&queue->_xmit_lock);
8622 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
8623 	queue->xmit_lock_owner = -1;
8624 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
8625 	queue->dev = dev;
8626 #ifdef CONFIG_BQL
8627 	dql_init(&queue->dql, HZ);
8628 #endif
8629 }
8630 
8631 static void netif_free_tx_queues(struct net_device *dev)
8632 {
8633 	kvfree(dev->_tx);
8634 }
8635 
8636 static int netif_alloc_netdev_queues(struct net_device *dev)
8637 {
8638 	unsigned int count = dev->num_tx_queues;
8639 	struct netdev_queue *tx;
8640 	size_t sz = count * sizeof(*tx);
8641 
8642 	if (count < 1 || count > 0xffff)
8643 		return -EINVAL;
8644 
8645 	tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8646 	if (!tx)
8647 		return -ENOMEM;
8648 
8649 	dev->_tx = tx;
8650 
8651 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
8652 	spin_lock_init(&dev->tx_global_lock);
8653 
8654 	return 0;
8655 }
8656 
8657 void netif_tx_stop_all_queues(struct net_device *dev)
8658 {
8659 	unsigned int i;
8660 
8661 	for (i = 0; i < dev->num_tx_queues; i++) {
8662 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
8663 
8664 		netif_tx_stop_queue(txq);
8665 	}
8666 }
8667 EXPORT_SYMBOL(netif_tx_stop_all_queues);
8668 
8669 /**
8670  *	register_netdevice	- register a network device
8671  *	@dev: device to register
8672  *
8673  *	Take a completed network device structure and add it to the kernel
8674  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8675  *	chain. 0 is returned on success. A negative errno code is returned
8676  *	on a failure to set up the device, or if the name is a duplicate.
8677  *
8678  *	Callers must hold the rtnl semaphore. You may want
8679  *	register_netdev() instead of this.
8680  *
8681  *	BUGS:
8682  *	The locking appears insufficient to guarantee two parallel registers
8683  *	will not get the same name.
8684  */
8685 
8686 int register_netdevice(struct net_device *dev)
8687 {
8688 	int ret;
8689 	struct net *net = dev_net(dev);
8690 
8691 	BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
8692 		     NETDEV_FEATURE_COUNT);
8693 	BUG_ON(dev_boot_phase);
8694 	ASSERT_RTNL();
8695 
8696 	might_sleep();
8697 
8698 	/* When net_device's are persistent, this will be fatal. */
8699 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
8700 	BUG_ON(!net);
8701 
8702 	spin_lock_init(&dev->addr_list_lock);
8703 	netdev_set_addr_lockdep_class(dev);
8704 
8705 	ret = dev_get_valid_name(net, dev, dev->name);
8706 	if (ret < 0)
8707 		goto out;
8708 
8709 	/* Init, if this function is available */
8710 	if (dev->netdev_ops->ndo_init) {
8711 		ret = dev->netdev_ops->ndo_init(dev);
8712 		if (ret) {
8713 			if (ret > 0)
8714 				ret = -EIO;
8715 			goto out;
8716 		}
8717 	}
8718 
8719 	if (((dev->hw_features | dev->features) &
8720 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
8721 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
8722 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
8723 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
8724 		ret = -EINVAL;
8725 		goto err_uninit;
8726 	}
8727 
8728 	ret = -EBUSY;
8729 	if (!dev->ifindex)
8730 		dev->ifindex = dev_new_index(net);
8731 	else if (__dev_get_by_index(net, dev->ifindex))
8732 		goto err_uninit;
8733 
8734 	/* Transfer changeable features to wanted_features and enable
8735 	 * software offloads (GSO and GRO).
8736 	 */
8737 	dev->hw_features |= NETIF_F_SOFT_FEATURES;
8738 	dev->features |= NETIF_F_SOFT_FEATURES;
8739 
8740 	if (dev->netdev_ops->ndo_udp_tunnel_add) {
8741 		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
8742 		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
8743 	}
8744 
8745 	dev->wanted_features = dev->features & dev->hw_features;
8746 
8747 	if (!(dev->flags & IFF_LOOPBACK))
8748 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
8749 
8750 	/* If IPv4 TCP segmentation offload is supported we should also
8751 	 * allow the device to enable segmenting the frame with the option
8752 	 * of ignoring a static IP ID value.  This doesn't enable the
8753 	 * feature itself but allows the user to enable it later.
8754 	 */
8755 	if (dev->hw_features & NETIF_F_TSO)
8756 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
8757 	if (dev->vlan_features & NETIF_F_TSO)
8758 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
8759 	if (dev->mpls_features & NETIF_F_TSO)
8760 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
8761 	if (dev->hw_enc_features & NETIF_F_TSO)
8762 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
8763 
8764 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
8765 	 */
8766 	dev->vlan_features |= NETIF_F_HIGHDMA;
8767 
8768 	/* Make NETIF_F_SG inheritable to tunnel devices.
8769 	 */
8770 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
8771 
8772 	/* Make NETIF_F_SG inheritable to MPLS.
8773 	 */
8774 	dev->mpls_features |= NETIF_F_SG;
8775 
8776 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
8777 	ret = notifier_to_errno(ret);
8778 	if (ret)
8779 		goto err_uninit;
8780 
8781 	ret = netdev_register_kobject(dev);
8782 	if (ret)
8783 		goto err_uninit;
8784 	dev->reg_state = NETREG_REGISTERED;
8785 
8786 	__netdev_update_features(dev);
8787 
8788 	/*
8789 	 *	Default initial state at registry is that the
8790 	 *	device is present.
8791 	 */
8792 
8793 	set_bit(__LINK_STATE_PRESENT, &dev->state);
8794 
8795 	linkwatch_init_dev(dev);
8796 
8797 	dev_init_scheduler(dev);
8798 	dev_hold(dev);
8799 	list_netdevice(dev);
8800 	add_device_randomness(dev->dev_addr, dev->addr_len);
8801 
8802 	/* If the device has permanent device address, driver should
8803 	 * set dev_addr and also addr_assign_type should be set to
8804 	 * NET_ADDR_PERM (default value).
8805 	 */
8806 	if (dev->addr_assign_type == NET_ADDR_PERM)
8807 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
8808 
8809 	/* Notify protocols, that a new device appeared. */
8810 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
8811 	ret = notifier_to_errno(ret);
8812 	if (ret) {
8813 		rollback_registered(dev);
8814 		rcu_barrier();
8815 
8816 		dev->reg_state = NETREG_UNREGISTERED;
8817 	}
8818 	/*
8819 	 *	Prevent userspace races by waiting until the network
8820 	 *	device is fully setup before sending notifications.
8821 	 */
8822 	if (!dev->rtnl_link_ops ||
8823 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
8824 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
8825 
8826 out:
8827 	return ret;
8828 
8829 err_uninit:
8830 	if (dev->netdev_ops->ndo_uninit)
8831 		dev->netdev_ops->ndo_uninit(dev);
8832 	if (dev->priv_destructor)
8833 		dev->priv_destructor(dev);
8834 	goto out;
8835 }
8836 EXPORT_SYMBOL(register_netdevice);
8837 
8838 /**
8839  *	init_dummy_netdev	- init a dummy network device for NAPI
8840  *	@dev: device to init
8841  *
8842  *	This takes a network device structure and initialize the minimum
8843  *	amount of fields so it can be used to schedule NAPI polls without
8844  *	registering a full blown interface. This is to be used by drivers
8845  *	that need to tie several hardware interfaces to a single NAPI
8846  *	poll scheduler due to HW limitations.
8847  */
8848 int init_dummy_netdev(struct net_device *dev)
8849 {
8850 	/* Clear everything. Note we don't initialize spinlocks
8851 	 * are they aren't supposed to be taken by any of the
8852 	 * NAPI code and this dummy netdev is supposed to be
8853 	 * only ever used for NAPI polls
8854 	 */
8855 	memset(dev, 0, sizeof(struct net_device));
8856 
8857 	/* make sure we BUG if trying to hit standard
8858 	 * register/unregister code path
8859 	 */
8860 	dev->reg_state = NETREG_DUMMY;
8861 
8862 	/* NAPI wants this */
8863 	INIT_LIST_HEAD(&dev->napi_list);
8864 
8865 	/* a dummy interface is started by default */
8866 	set_bit(__LINK_STATE_PRESENT, &dev->state);
8867 	set_bit(__LINK_STATE_START, &dev->state);
8868 
8869 	/* napi_busy_loop stats accounting wants this */
8870 	dev_net_set(dev, &init_net);
8871 
8872 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
8873 	 * because users of this 'device' dont need to change
8874 	 * its refcount.
8875 	 */
8876 
8877 	return 0;
8878 }
8879 EXPORT_SYMBOL_GPL(init_dummy_netdev);
8880 
8881 
8882 /**
8883  *	register_netdev	- register a network device
8884  *	@dev: device to register
8885  *
8886  *	Take a completed network device structure and add it to the kernel
8887  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8888  *	chain. 0 is returned on success. A negative errno code is returned
8889  *	on a failure to set up the device, or if the name is a duplicate.
8890  *
8891  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
8892  *	and expands the device name if you passed a format string to
8893  *	alloc_netdev.
8894  */
8895 int register_netdev(struct net_device *dev)
8896 {
8897 	int err;
8898 
8899 	if (rtnl_lock_killable())
8900 		return -EINTR;
8901 	err = register_netdevice(dev);
8902 	rtnl_unlock();
8903 	return err;
8904 }
8905 EXPORT_SYMBOL(register_netdev);
8906 
8907 int netdev_refcnt_read(const struct net_device *dev)
8908 {
8909 	int i, refcnt = 0;
8910 
8911 	for_each_possible_cpu(i)
8912 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
8913 	return refcnt;
8914 }
8915 EXPORT_SYMBOL(netdev_refcnt_read);
8916 
8917 /**
8918  * netdev_wait_allrefs - wait until all references are gone.
8919  * @dev: target net_device
8920  *
8921  * This is called when unregistering network devices.
8922  *
8923  * Any protocol or device that holds a reference should register
8924  * for netdevice notification, and cleanup and put back the
8925  * reference if they receive an UNREGISTER event.
8926  * We can get stuck here if buggy protocols don't correctly
8927  * call dev_put.
8928  */
8929 static void netdev_wait_allrefs(struct net_device *dev)
8930 {
8931 	unsigned long rebroadcast_time, warning_time;
8932 	int refcnt;
8933 
8934 	linkwatch_forget_dev(dev);
8935 
8936 	rebroadcast_time = warning_time = jiffies;
8937 	refcnt = netdev_refcnt_read(dev);
8938 
8939 	while (refcnt != 0) {
8940 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
8941 			rtnl_lock();
8942 
8943 			/* Rebroadcast unregister notification */
8944 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8945 
8946 			__rtnl_unlock();
8947 			rcu_barrier();
8948 			rtnl_lock();
8949 
8950 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
8951 				     &dev->state)) {
8952 				/* We must not have linkwatch events
8953 				 * pending on unregister. If this
8954 				 * happens, we simply run the queue
8955 				 * unscheduled, resulting in a noop
8956 				 * for this device.
8957 				 */
8958 				linkwatch_run_queue();
8959 			}
8960 
8961 			__rtnl_unlock();
8962 
8963 			rebroadcast_time = jiffies;
8964 		}
8965 
8966 		msleep(250);
8967 
8968 		refcnt = netdev_refcnt_read(dev);
8969 
8970 		if (refcnt && time_after(jiffies, warning_time + 10 * HZ)) {
8971 			pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
8972 				 dev->name, refcnt);
8973 			warning_time = jiffies;
8974 		}
8975 	}
8976 }
8977 
8978 /* The sequence is:
8979  *
8980  *	rtnl_lock();
8981  *	...
8982  *	register_netdevice(x1);
8983  *	register_netdevice(x2);
8984  *	...
8985  *	unregister_netdevice(y1);
8986  *	unregister_netdevice(y2);
8987  *      ...
8988  *	rtnl_unlock();
8989  *	free_netdev(y1);
8990  *	free_netdev(y2);
8991  *
8992  * We are invoked by rtnl_unlock().
8993  * This allows us to deal with problems:
8994  * 1) We can delete sysfs objects which invoke hotplug
8995  *    without deadlocking with linkwatch via keventd.
8996  * 2) Since we run with the RTNL semaphore not held, we can sleep
8997  *    safely in order to wait for the netdev refcnt to drop to zero.
8998  *
8999  * We must not return until all unregister events added during
9000  * the interval the lock was held have been completed.
9001  */
9002 void netdev_run_todo(void)
9003 {
9004 	struct list_head list;
9005 
9006 	/* Snapshot list, allow later requests */
9007 	list_replace_init(&net_todo_list, &list);
9008 
9009 	__rtnl_unlock();
9010 
9011 
9012 	/* Wait for rcu callbacks to finish before next phase */
9013 	if (!list_empty(&list))
9014 		rcu_barrier();
9015 
9016 	while (!list_empty(&list)) {
9017 		struct net_device *dev
9018 			= list_first_entry(&list, struct net_device, todo_list);
9019 		list_del(&dev->todo_list);
9020 
9021 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
9022 			pr_err("network todo '%s' but state %d\n",
9023 			       dev->name, dev->reg_state);
9024 			dump_stack();
9025 			continue;
9026 		}
9027 
9028 		dev->reg_state = NETREG_UNREGISTERED;
9029 
9030 		netdev_wait_allrefs(dev);
9031 
9032 		/* paranoia */
9033 		BUG_ON(netdev_refcnt_read(dev));
9034 		BUG_ON(!list_empty(&dev->ptype_all));
9035 		BUG_ON(!list_empty(&dev->ptype_specific));
9036 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
9037 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
9038 #if IS_ENABLED(CONFIG_DECNET)
9039 		WARN_ON(dev->dn_ptr);
9040 #endif
9041 		if (dev->priv_destructor)
9042 			dev->priv_destructor(dev);
9043 		if (dev->needs_free_netdev)
9044 			free_netdev(dev);
9045 
9046 		/* Report a network device has been unregistered */
9047 		rtnl_lock();
9048 		dev_net(dev)->dev_unreg_count--;
9049 		__rtnl_unlock();
9050 		wake_up(&netdev_unregistering_wq);
9051 
9052 		/* Free network device */
9053 		kobject_put(&dev->dev.kobj);
9054 	}
9055 }
9056 
9057 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
9058  * all the same fields in the same order as net_device_stats, with only
9059  * the type differing, but rtnl_link_stats64 may have additional fields
9060  * at the end for newer counters.
9061  */
9062 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
9063 			     const struct net_device_stats *netdev_stats)
9064 {
9065 #if BITS_PER_LONG == 64
9066 	BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
9067 	memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
9068 	/* zero out counters that only exist in rtnl_link_stats64 */
9069 	memset((char *)stats64 + sizeof(*netdev_stats), 0,
9070 	       sizeof(*stats64) - sizeof(*netdev_stats));
9071 #else
9072 	size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
9073 	const unsigned long *src = (const unsigned long *)netdev_stats;
9074 	u64 *dst = (u64 *)stats64;
9075 
9076 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
9077 	for (i = 0; i < n; i++)
9078 		dst[i] = src[i];
9079 	/* zero out counters that only exist in rtnl_link_stats64 */
9080 	memset((char *)stats64 + n * sizeof(u64), 0,
9081 	       sizeof(*stats64) - n * sizeof(u64));
9082 #endif
9083 }
9084 EXPORT_SYMBOL(netdev_stats_to_stats64);
9085 
9086 /**
9087  *	dev_get_stats	- get network device statistics
9088  *	@dev: device to get statistics from
9089  *	@storage: place to store stats
9090  *
9091  *	Get network statistics from device. Return @storage.
9092  *	The device driver may provide its own method by setting
9093  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
9094  *	otherwise the internal statistics structure is used.
9095  */
9096 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
9097 					struct rtnl_link_stats64 *storage)
9098 {
9099 	const struct net_device_ops *ops = dev->netdev_ops;
9100 
9101 	if (ops->ndo_get_stats64) {
9102 		memset(storage, 0, sizeof(*storage));
9103 		ops->ndo_get_stats64(dev, storage);
9104 	} else if (ops->ndo_get_stats) {
9105 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
9106 	} else {
9107 		netdev_stats_to_stats64(storage, &dev->stats);
9108 	}
9109 	storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
9110 	storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
9111 	storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
9112 	return storage;
9113 }
9114 EXPORT_SYMBOL(dev_get_stats);
9115 
9116 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
9117 {
9118 	struct netdev_queue *queue = dev_ingress_queue(dev);
9119 
9120 #ifdef CONFIG_NET_CLS_ACT
9121 	if (queue)
9122 		return queue;
9123 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
9124 	if (!queue)
9125 		return NULL;
9126 	netdev_init_one_queue(dev, queue, NULL);
9127 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
9128 	queue->qdisc_sleeping = &noop_qdisc;
9129 	rcu_assign_pointer(dev->ingress_queue, queue);
9130 #endif
9131 	return queue;
9132 }
9133 
9134 static const struct ethtool_ops default_ethtool_ops;
9135 
9136 void netdev_set_default_ethtool_ops(struct net_device *dev,
9137 				    const struct ethtool_ops *ops)
9138 {
9139 	if (dev->ethtool_ops == &default_ethtool_ops)
9140 		dev->ethtool_ops = ops;
9141 }
9142 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
9143 
9144 void netdev_freemem(struct net_device *dev)
9145 {
9146 	char *addr = (char *)dev - dev->padded;
9147 
9148 	kvfree(addr);
9149 }
9150 
9151 /**
9152  * alloc_netdev_mqs - allocate network device
9153  * @sizeof_priv: size of private data to allocate space for
9154  * @name: device name format string
9155  * @name_assign_type: origin of device name
9156  * @setup: callback to initialize device
9157  * @txqs: the number of TX subqueues to allocate
9158  * @rxqs: the number of RX subqueues to allocate
9159  *
9160  * Allocates a struct net_device with private data area for driver use
9161  * and performs basic initialization.  Also allocates subqueue structs
9162  * for each queue on the device.
9163  */
9164 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
9165 		unsigned char name_assign_type,
9166 		void (*setup)(struct net_device *),
9167 		unsigned int txqs, unsigned int rxqs)
9168 {
9169 	struct net_device *dev;
9170 	unsigned int alloc_size;
9171 	struct net_device *p;
9172 
9173 	BUG_ON(strlen(name) >= sizeof(dev->name));
9174 
9175 	if (txqs < 1) {
9176 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
9177 		return NULL;
9178 	}
9179 
9180 	if (rxqs < 1) {
9181 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
9182 		return NULL;
9183 	}
9184 
9185 	alloc_size = sizeof(struct net_device);
9186 	if (sizeof_priv) {
9187 		/* ensure 32-byte alignment of private area */
9188 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
9189 		alloc_size += sizeof_priv;
9190 	}
9191 	/* ensure 32-byte alignment of whole construct */
9192 	alloc_size += NETDEV_ALIGN - 1;
9193 
9194 	p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9195 	if (!p)
9196 		return NULL;
9197 
9198 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
9199 	dev->padded = (char *)dev - (char *)p;
9200 
9201 	dev->pcpu_refcnt = alloc_percpu(int);
9202 	if (!dev->pcpu_refcnt)
9203 		goto free_dev;
9204 
9205 	if (dev_addr_init(dev))
9206 		goto free_pcpu;
9207 
9208 	dev_mc_init(dev);
9209 	dev_uc_init(dev);
9210 
9211 	dev_net_set(dev, &init_net);
9212 
9213 	dev->gso_max_size = GSO_MAX_SIZE;
9214 	dev->gso_max_segs = GSO_MAX_SEGS;
9215 
9216 	INIT_LIST_HEAD(&dev->napi_list);
9217 	INIT_LIST_HEAD(&dev->unreg_list);
9218 	INIT_LIST_HEAD(&dev->close_list);
9219 	INIT_LIST_HEAD(&dev->link_watch_list);
9220 	INIT_LIST_HEAD(&dev->adj_list.upper);
9221 	INIT_LIST_HEAD(&dev->adj_list.lower);
9222 	INIT_LIST_HEAD(&dev->ptype_all);
9223 	INIT_LIST_HEAD(&dev->ptype_specific);
9224 #ifdef CONFIG_NET_SCHED
9225 	hash_init(dev->qdisc_hash);
9226 #endif
9227 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
9228 	setup(dev);
9229 
9230 	if (!dev->tx_queue_len) {
9231 		dev->priv_flags |= IFF_NO_QUEUE;
9232 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
9233 	}
9234 
9235 	dev->num_tx_queues = txqs;
9236 	dev->real_num_tx_queues = txqs;
9237 	if (netif_alloc_netdev_queues(dev))
9238 		goto free_all;
9239 
9240 	dev->num_rx_queues = rxqs;
9241 	dev->real_num_rx_queues = rxqs;
9242 	if (netif_alloc_rx_queues(dev))
9243 		goto free_all;
9244 
9245 	strcpy(dev->name, name);
9246 	dev->name_assign_type = name_assign_type;
9247 	dev->group = INIT_NETDEV_GROUP;
9248 	if (!dev->ethtool_ops)
9249 		dev->ethtool_ops = &default_ethtool_ops;
9250 
9251 	nf_hook_ingress_init(dev);
9252 
9253 	return dev;
9254 
9255 free_all:
9256 	free_netdev(dev);
9257 	return NULL;
9258 
9259 free_pcpu:
9260 	free_percpu(dev->pcpu_refcnt);
9261 free_dev:
9262 	netdev_freemem(dev);
9263 	return NULL;
9264 }
9265 EXPORT_SYMBOL(alloc_netdev_mqs);
9266 
9267 /**
9268  * free_netdev - free network device
9269  * @dev: device
9270  *
9271  * This function does the last stage of destroying an allocated device
9272  * interface. The reference to the device object is released. If this
9273  * is the last reference then it will be freed.Must be called in process
9274  * context.
9275  */
9276 void free_netdev(struct net_device *dev)
9277 {
9278 	struct napi_struct *p, *n;
9279 
9280 	might_sleep();
9281 	netif_free_tx_queues(dev);
9282 	netif_free_rx_queues(dev);
9283 
9284 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
9285 
9286 	/* Flush device addresses */
9287 	dev_addr_flush(dev);
9288 
9289 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
9290 		netif_napi_del(p);
9291 
9292 	free_percpu(dev->pcpu_refcnt);
9293 	dev->pcpu_refcnt = NULL;
9294 
9295 	/*  Compatibility with error handling in drivers */
9296 	if (dev->reg_state == NETREG_UNINITIALIZED) {
9297 		netdev_freemem(dev);
9298 		return;
9299 	}
9300 
9301 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
9302 	dev->reg_state = NETREG_RELEASED;
9303 
9304 	/* will free via device release */
9305 	put_device(&dev->dev);
9306 }
9307 EXPORT_SYMBOL(free_netdev);
9308 
9309 /**
9310  *	synchronize_net -  Synchronize with packet receive processing
9311  *
9312  *	Wait for packets currently being received to be done.
9313  *	Does not block later packets from starting.
9314  */
9315 void synchronize_net(void)
9316 {
9317 	might_sleep();
9318 	if (rtnl_is_locked())
9319 		synchronize_rcu_expedited();
9320 	else
9321 		synchronize_rcu();
9322 }
9323 EXPORT_SYMBOL(synchronize_net);
9324 
9325 /**
9326  *	unregister_netdevice_queue - remove device from the kernel
9327  *	@dev: device
9328  *	@head: list
9329  *
9330  *	This function shuts down a device interface and removes it
9331  *	from the kernel tables.
9332  *	If head not NULL, device is queued to be unregistered later.
9333  *
9334  *	Callers must hold the rtnl semaphore.  You may want
9335  *	unregister_netdev() instead of this.
9336  */
9337 
9338 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
9339 {
9340 	ASSERT_RTNL();
9341 
9342 	if (head) {
9343 		list_move_tail(&dev->unreg_list, head);
9344 	} else {
9345 		rollback_registered(dev);
9346 		/* Finish processing unregister after unlock */
9347 		net_set_todo(dev);
9348 	}
9349 }
9350 EXPORT_SYMBOL(unregister_netdevice_queue);
9351 
9352 /**
9353  *	unregister_netdevice_many - unregister many devices
9354  *	@head: list of devices
9355  *
9356  *  Note: As most callers use a stack allocated list_head,
9357  *  we force a list_del() to make sure stack wont be corrupted later.
9358  */
9359 void unregister_netdevice_many(struct list_head *head)
9360 {
9361 	struct net_device *dev;
9362 
9363 	if (!list_empty(head)) {
9364 		rollback_registered_many(head);
9365 		list_for_each_entry(dev, head, unreg_list)
9366 			net_set_todo(dev);
9367 		list_del(head);
9368 	}
9369 }
9370 EXPORT_SYMBOL(unregister_netdevice_many);
9371 
9372 /**
9373  *	unregister_netdev - remove device from the kernel
9374  *	@dev: device
9375  *
9376  *	This function shuts down a device interface and removes it
9377  *	from the kernel tables.
9378  *
9379  *	This is just a wrapper for unregister_netdevice that takes
9380  *	the rtnl semaphore.  In general you want to use this and not
9381  *	unregister_netdevice.
9382  */
9383 void unregister_netdev(struct net_device *dev)
9384 {
9385 	rtnl_lock();
9386 	unregister_netdevice(dev);
9387 	rtnl_unlock();
9388 }
9389 EXPORT_SYMBOL(unregister_netdev);
9390 
9391 /**
9392  *	dev_change_net_namespace - move device to different nethost namespace
9393  *	@dev: device
9394  *	@net: network namespace
9395  *	@pat: If not NULL name pattern to try if the current device name
9396  *	      is already taken in the destination network namespace.
9397  *
9398  *	This function shuts down a device interface and moves it
9399  *	to a new network namespace. On success 0 is returned, on
9400  *	a failure a netagive errno code is returned.
9401  *
9402  *	Callers must hold the rtnl semaphore.
9403  */
9404 
9405 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
9406 {
9407 	int err, new_nsid, new_ifindex;
9408 
9409 	ASSERT_RTNL();
9410 
9411 	/* Don't allow namespace local devices to be moved. */
9412 	err = -EINVAL;
9413 	if (dev->features & NETIF_F_NETNS_LOCAL)
9414 		goto out;
9415 
9416 	/* Ensure the device has been registrered */
9417 	if (dev->reg_state != NETREG_REGISTERED)
9418 		goto out;
9419 
9420 	/* Get out if there is nothing todo */
9421 	err = 0;
9422 	if (net_eq(dev_net(dev), net))
9423 		goto out;
9424 
9425 	/* Pick the destination device name, and ensure
9426 	 * we can use it in the destination network namespace.
9427 	 */
9428 	err = -EEXIST;
9429 	if (__dev_get_by_name(net, dev->name)) {
9430 		/* We get here if we can't use the current device name */
9431 		if (!pat)
9432 			goto out;
9433 		err = dev_get_valid_name(net, dev, pat);
9434 		if (err < 0)
9435 			goto out;
9436 	}
9437 
9438 	/*
9439 	 * And now a mini version of register_netdevice unregister_netdevice.
9440 	 */
9441 
9442 	/* If device is running close it first. */
9443 	dev_close(dev);
9444 
9445 	/* And unlink it from device chain */
9446 	unlist_netdevice(dev);
9447 
9448 	synchronize_net();
9449 
9450 	/* Shutdown queueing discipline. */
9451 	dev_shutdown(dev);
9452 
9453 	/* Notify protocols, that we are about to destroy
9454 	 * this device. They should clean all the things.
9455 	 *
9456 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
9457 	 * This is wanted because this way 8021q and macvlan know
9458 	 * the device is just moving and can keep their slaves up.
9459 	 */
9460 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
9461 	rcu_barrier();
9462 
9463 	new_nsid = peernet2id_alloc(dev_net(dev), net);
9464 	/* If there is an ifindex conflict assign a new one */
9465 	if (__dev_get_by_index(net, dev->ifindex))
9466 		new_ifindex = dev_new_index(net);
9467 	else
9468 		new_ifindex = dev->ifindex;
9469 
9470 	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
9471 			    new_ifindex);
9472 
9473 	/*
9474 	 *	Flush the unicast and multicast chains
9475 	 */
9476 	dev_uc_flush(dev);
9477 	dev_mc_flush(dev);
9478 
9479 	/* Send a netdev-removed uevent to the old namespace */
9480 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
9481 	netdev_adjacent_del_links(dev);
9482 
9483 	/* Actually switch the network namespace */
9484 	dev_net_set(dev, net);
9485 	dev->ifindex = new_ifindex;
9486 
9487 	/* Send a netdev-add uevent to the new namespace */
9488 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
9489 	netdev_adjacent_add_links(dev);
9490 
9491 	/* Fixup kobjects */
9492 	err = device_rename(&dev->dev, dev->name);
9493 	WARN_ON(err);
9494 
9495 	/* Add the device back in the hashes */
9496 	list_netdevice(dev);
9497 
9498 	/* Notify protocols, that a new device appeared. */
9499 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
9500 
9501 	/*
9502 	 *	Prevent userspace races by waiting until the network
9503 	 *	device is fully setup before sending notifications.
9504 	 */
9505 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
9506 
9507 	synchronize_net();
9508 	err = 0;
9509 out:
9510 	return err;
9511 }
9512 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
9513 
9514 static int dev_cpu_dead(unsigned int oldcpu)
9515 {
9516 	struct sk_buff **list_skb;
9517 	struct sk_buff *skb;
9518 	unsigned int cpu;
9519 	struct softnet_data *sd, *oldsd, *remsd = NULL;
9520 
9521 	local_irq_disable();
9522 	cpu = smp_processor_id();
9523 	sd = &per_cpu(softnet_data, cpu);
9524 	oldsd = &per_cpu(softnet_data, oldcpu);
9525 
9526 	/* Find end of our completion_queue. */
9527 	list_skb = &sd->completion_queue;
9528 	while (*list_skb)
9529 		list_skb = &(*list_skb)->next;
9530 	/* Append completion queue from offline CPU. */
9531 	*list_skb = oldsd->completion_queue;
9532 	oldsd->completion_queue = NULL;
9533 
9534 	/* Append output queue from offline CPU. */
9535 	if (oldsd->output_queue) {
9536 		*sd->output_queue_tailp = oldsd->output_queue;
9537 		sd->output_queue_tailp = oldsd->output_queue_tailp;
9538 		oldsd->output_queue = NULL;
9539 		oldsd->output_queue_tailp = &oldsd->output_queue;
9540 	}
9541 	/* Append NAPI poll list from offline CPU, with one exception :
9542 	 * process_backlog() must be called by cpu owning percpu backlog.
9543 	 * We properly handle process_queue & input_pkt_queue later.
9544 	 */
9545 	while (!list_empty(&oldsd->poll_list)) {
9546 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
9547 							    struct napi_struct,
9548 							    poll_list);
9549 
9550 		list_del_init(&napi->poll_list);
9551 		if (napi->poll == process_backlog)
9552 			napi->state = 0;
9553 		else
9554 			____napi_schedule(sd, napi);
9555 	}
9556 
9557 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
9558 	local_irq_enable();
9559 
9560 #ifdef CONFIG_RPS
9561 	remsd = oldsd->rps_ipi_list;
9562 	oldsd->rps_ipi_list = NULL;
9563 #endif
9564 	/* send out pending IPI's on offline CPU */
9565 	net_rps_send_ipi(remsd);
9566 
9567 	/* Process offline CPU's input_pkt_queue */
9568 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
9569 		netif_rx_ni(skb);
9570 		input_queue_head_incr(oldsd);
9571 	}
9572 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
9573 		netif_rx_ni(skb);
9574 		input_queue_head_incr(oldsd);
9575 	}
9576 
9577 	return 0;
9578 }
9579 
9580 /**
9581  *	netdev_increment_features - increment feature set by one
9582  *	@all: current feature set
9583  *	@one: new feature set
9584  *	@mask: mask feature set
9585  *
9586  *	Computes a new feature set after adding a device with feature set
9587  *	@one to the master device with current feature set @all.  Will not
9588  *	enable anything that is off in @mask. Returns the new feature set.
9589  */
9590 netdev_features_t netdev_increment_features(netdev_features_t all,
9591 	netdev_features_t one, netdev_features_t mask)
9592 {
9593 	if (mask & NETIF_F_HW_CSUM)
9594 		mask |= NETIF_F_CSUM_MASK;
9595 	mask |= NETIF_F_VLAN_CHALLENGED;
9596 
9597 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
9598 	all &= one | ~NETIF_F_ALL_FOR_ALL;
9599 
9600 	/* If one device supports hw checksumming, set for all. */
9601 	if (all & NETIF_F_HW_CSUM)
9602 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
9603 
9604 	return all;
9605 }
9606 EXPORT_SYMBOL(netdev_increment_features);
9607 
9608 static struct hlist_head * __net_init netdev_create_hash(void)
9609 {
9610 	int i;
9611 	struct hlist_head *hash;
9612 
9613 	hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
9614 	if (hash != NULL)
9615 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
9616 			INIT_HLIST_HEAD(&hash[i]);
9617 
9618 	return hash;
9619 }
9620 
9621 /* Initialize per network namespace state */
9622 static int __net_init netdev_init(struct net *net)
9623 {
9624 	BUILD_BUG_ON(GRO_HASH_BUCKETS >
9625 		     8 * FIELD_SIZEOF(struct napi_struct, gro_bitmask));
9626 
9627 	if (net != &init_net)
9628 		INIT_LIST_HEAD(&net->dev_base_head);
9629 
9630 	net->dev_name_head = netdev_create_hash();
9631 	if (net->dev_name_head == NULL)
9632 		goto err_name;
9633 
9634 	net->dev_index_head = netdev_create_hash();
9635 	if (net->dev_index_head == NULL)
9636 		goto err_idx;
9637 
9638 	return 0;
9639 
9640 err_idx:
9641 	kfree(net->dev_name_head);
9642 err_name:
9643 	return -ENOMEM;
9644 }
9645 
9646 /**
9647  *	netdev_drivername - network driver for the device
9648  *	@dev: network device
9649  *
9650  *	Determine network driver for device.
9651  */
9652 const char *netdev_drivername(const struct net_device *dev)
9653 {
9654 	const struct device_driver *driver;
9655 	const struct device *parent;
9656 	const char *empty = "";
9657 
9658 	parent = dev->dev.parent;
9659 	if (!parent)
9660 		return empty;
9661 
9662 	driver = parent->driver;
9663 	if (driver && driver->name)
9664 		return driver->name;
9665 	return empty;
9666 }
9667 
9668 static void __netdev_printk(const char *level, const struct net_device *dev,
9669 			    struct va_format *vaf)
9670 {
9671 	if (dev && dev->dev.parent) {
9672 		dev_printk_emit(level[1] - '0',
9673 				dev->dev.parent,
9674 				"%s %s %s%s: %pV",
9675 				dev_driver_string(dev->dev.parent),
9676 				dev_name(dev->dev.parent),
9677 				netdev_name(dev), netdev_reg_state(dev),
9678 				vaf);
9679 	} else if (dev) {
9680 		printk("%s%s%s: %pV",
9681 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
9682 	} else {
9683 		printk("%s(NULL net_device): %pV", level, vaf);
9684 	}
9685 }
9686 
9687 void netdev_printk(const char *level, const struct net_device *dev,
9688 		   const char *format, ...)
9689 {
9690 	struct va_format vaf;
9691 	va_list args;
9692 
9693 	va_start(args, format);
9694 
9695 	vaf.fmt = format;
9696 	vaf.va = &args;
9697 
9698 	__netdev_printk(level, dev, &vaf);
9699 
9700 	va_end(args);
9701 }
9702 EXPORT_SYMBOL(netdev_printk);
9703 
9704 #define define_netdev_printk_level(func, level)			\
9705 void func(const struct net_device *dev, const char *fmt, ...)	\
9706 {								\
9707 	struct va_format vaf;					\
9708 	va_list args;						\
9709 								\
9710 	va_start(args, fmt);					\
9711 								\
9712 	vaf.fmt = fmt;						\
9713 	vaf.va = &args;						\
9714 								\
9715 	__netdev_printk(level, dev, &vaf);			\
9716 								\
9717 	va_end(args);						\
9718 }								\
9719 EXPORT_SYMBOL(func);
9720 
9721 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
9722 define_netdev_printk_level(netdev_alert, KERN_ALERT);
9723 define_netdev_printk_level(netdev_crit, KERN_CRIT);
9724 define_netdev_printk_level(netdev_err, KERN_ERR);
9725 define_netdev_printk_level(netdev_warn, KERN_WARNING);
9726 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
9727 define_netdev_printk_level(netdev_info, KERN_INFO);
9728 
9729 static void __net_exit netdev_exit(struct net *net)
9730 {
9731 	kfree(net->dev_name_head);
9732 	kfree(net->dev_index_head);
9733 	if (net != &init_net)
9734 		WARN_ON_ONCE(!list_empty(&net->dev_base_head));
9735 }
9736 
9737 static struct pernet_operations __net_initdata netdev_net_ops = {
9738 	.init = netdev_init,
9739 	.exit = netdev_exit,
9740 };
9741 
9742 static void __net_exit default_device_exit(struct net *net)
9743 {
9744 	struct net_device *dev, *aux;
9745 	/*
9746 	 * Push all migratable network devices back to the
9747 	 * initial network namespace
9748 	 */
9749 	rtnl_lock();
9750 	for_each_netdev_safe(net, dev, aux) {
9751 		int err;
9752 		char fb_name[IFNAMSIZ];
9753 
9754 		/* Ignore unmoveable devices (i.e. loopback) */
9755 		if (dev->features & NETIF_F_NETNS_LOCAL)
9756 			continue;
9757 
9758 		/* Leave virtual devices for the generic cleanup */
9759 		if (dev->rtnl_link_ops)
9760 			continue;
9761 
9762 		/* Push remaining network devices to init_net */
9763 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
9764 		if (__dev_get_by_name(&init_net, fb_name))
9765 			snprintf(fb_name, IFNAMSIZ, "dev%%d");
9766 		err = dev_change_net_namespace(dev, &init_net, fb_name);
9767 		if (err) {
9768 			pr_emerg("%s: failed to move %s to init_net: %d\n",
9769 				 __func__, dev->name, err);
9770 			BUG();
9771 		}
9772 	}
9773 	rtnl_unlock();
9774 }
9775 
9776 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
9777 {
9778 	/* Return with the rtnl_lock held when there are no network
9779 	 * devices unregistering in any network namespace in net_list.
9780 	 */
9781 	struct net *net;
9782 	bool unregistering;
9783 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
9784 
9785 	add_wait_queue(&netdev_unregistering_wq, &wait);
9786 	for (;;) {
9787 		unregistering = false;
9788 		rtnl_lock();
9789 		list_for_each_entry(net, net_list, exit_list) {
9790 			if (net->dev_unreg_count > 0) {
9791 				unregistering = true;
9792 				break;
9793 			}
9794 		}
9795 		if (!unregistering)
9796 			break;
9797 		__rtnl_unlock();
9798 
9799 		wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
9800 	}
9801 	remove_wait_queue(&netdev_unregistering_wq, &wait);
9802 }
9803 
9804 static void __net_exit default_device_exit_batch(struct list_head *net_list)
9805 {
9806 	/* At exit all network devices most be removed from a network
9807 	 * namespace.  Do this in the reverse order of registration.
9808 	 * Do this across as many network namespaces as possible to
9809 	 * improve batching efficiency.
9810 	 */
9811 	struct net_device *dev;
9812 	struct net *net;
9813 	LIST_HEAD(dev_kill_list);
9814 
9815 	/* To prevent network device cleanup code from dereferencing
9816 	 * loopback devices or network devices that have been freed
9817 	 * wait here for all pending unregistrations to complete,
9818 	 * before unregistring the loopback device and allowing the
9819 	 * network namespace be freed.
9820 	 *
9821 	 * The netdev todo list containing all network devices
9822 	 * unregistrations that happen in default_device_exit_batch
9823 	 * will run in the rtnl_unlock() at the end of
9824 	 * default_device_exit_batch.
9825 	 */
9826 	rtnl_lock_unregistering(net_list);
9827 	list_for_each_entry(net, net_list, exit_list) {
9828 		for_each_netdev_reverse(net, dev) {
9829 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
9830 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
9831 			else
9832 				unregister_netdevice_queue(dev, &dev_kill_list);
9833 		}
9834 	}
9835 	unregister_netdevice_many(&dev_kill_list);
9836 	rtnl_unlock();
9837 }
9838 
9839 static struct pernet_operations __net_initdata default_device_ops = {
9840 	.exit = default_device_exit,
9841 	.exit_batch = default_device_exit_batch,
9842 };
9843 
9844 /*
9845  *	Initialize the DEV module. At boot time this walks the device list and
9846  *	unhooks any devices that fail to initialise (normally hardware not
9847  *	present) and leaves us with a valid list of present and active devices.
9848  *
9849  */
9850 
9851 /*
9852  *       This is called single threaded during boot, so no need
9853  *       to take the rtnl semaphore.
9854  */
9855 static int __init net_dev_init(void)
9856 {
9857 	int i, rc = -ENOMEM;
9858 
9859 	BUG_ON(!dev_boot_phase);
9860 
9861 	if (dev_proc_init())
9862 		goto out;
9863 
9864 	if (netdev_kobject_init())
9865 		goto out;
9866 
9867 	INIT_LIST_HEAD(&ptype_all);
9868 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
9869 		INIT_LIST_HEAD(&ptype_base[i]);
9870 
9871 	INIT_LIST_HEAD(&offload_base);
9872 
9873 	if (register_pernet_subsys(&netdev_net_ops))
9874 		goto out;
9875 
9876 	/*
9877 	 *	Initialise the packet receive queues.
9878 	 */
9879 
9880 	for_each_possible_cpu(i) {
9881 		struct work_struct *flush = per_cpu_ptr(&flush_works, i);
9882 		struct softnet_data *sd = &per_cpu(softnet_data, i);
9883 
9884 		INIT_WORK(flush, flush_backlog);
9885 
9886 		skb_queue_head_init(&sd->input_pkt_queue);
9887 		skb_queue_head_init(&sd->process_queue);
9888 #ifdef CONFIG_XFRM_OFFLOAD
9889 		skb_queue_head_init(&sd->xfrm_backlog);
9890 #endif
9891 		INIT_LIST_HEAD(&sd->poll_list);
9892 		sd->output_queue_tailp = &sd->output_queue;
9893 #ifdef CONFIG_RPS
9894 		sd->csd.func = rps_trigger_softirq;
9895 		sd->csd.info = sd;
9896 		sd->cpu = i;
9897 #endif
9898 
9899 		init_gro_hash(&sd->backlog);
9900 		sd->backlog.poll = process_backlog;
9901 		sd->backlog.weight = weight_p;
9902 	}
9903 
9904 	dev_boot_phase = 0;
9905 
9906 	/* The loopback device is special if any other network devices
9907 	 * is present in a network namespace the loopback device must
9908 	 * be present. Since we now dynamically allocate and free the
9909 	 * loopback device ensure this invariant is maintained by
9910 	 * keeping the loopback device as the first device on the
9911 	 * list of network devices.  Ensuring the loopback devices
9912 	 * is the first device that appears and the last network device
9913 	 * that disappears.
9914 	 */
9915 	if (register_pernet_device(&loopback_net_ops))
9916 		goto out;
9917 
9918 	if (register_pernet_device(&default_device_ops))
9919 		goto out;
9920 
9921 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
9922 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
9923 
9924 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
9925 				       NULL, dev_cpu_dead);
9926 	WARN_ON(rc < 0);
9927 	rc = 0;
9928 out:
9929 	return rc;
9930 }
9931 
9932 subsys_initcall(net_dev_init);
9933