1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * NET3 Protocol independent device support routines. 4 * 5 * Derived from the non IP parts of dev.c 1.0.19 6 * Authors: Ross Biro 7 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 8 * Mark Evans, <evansmp@uhura.aston.ac.uk> 9 * 10 * Additional Authors: 11 * Florian la Roche <rzsfl@rz.uni-sb.de> 12 * Alan Cox <gw4pts@gw4pts.ampr.org> 13 * David Hinds <dahinds@users.sourceforge.net> 14 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 15 * Adam Sulmicki <adam@cfar.umd.edu> 16 * Pekka Riikonen <priikone@poesidon.pspt.fi> 17 * 18 * Changes: 19 * D.J. Barrow : Fixed bug where dev->refcnt gets set 20 * to 2 if register_netdev gets called 21 * before net_dev_init & also removed a 22 * few lines of code in the process. 23 * Alan Cox : device private ioctl copies fields back. 24 * Alan Cox : Transmit queue code does relevant 25 * stunts to keep the queue safe. 26 * Alan Cox : Fixed double lock. 27 * Alan Cox : Fixed promisc NULL pointer trap 28 * ???????? : Support the full private ioctl range 29 * Alan Cox : Moved ioctl permission check into 30 * drivers 31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 32 * Alan Cox : 100 backlog just doesn't cut it when 33 * you start doing multicast video 8) 34 * Alan Cox : Rewrote net_bh and list manager. 35 * Alan Cox : Fix ETH_P_ALL echoback lengths. 36 * Alan Cox : Took out transmit every packet pass 37 * Saved a few bytes in the ioctl handler 38 * Alan Cox : Network driver sets packet type before 39 * calling netif_rx. Saves a function 40 * call a packet. 41 * Alan Cox : Hashed net_bh() 42 * Richard Kooijman: Timestamp fixes. 43 * Alan Cox : Wrong field in SIOCGIFDSTADDR 44 * Alan Cox : Device lock protection. 45 * Alan Cox : Fixed nasty side effect of device close 46 * changes. 47 * Rudi Cilibrasi : Pass the right thing to 48 * set_mac_address() 49 * Dave Miller : 32bit quantity for the device lock to 50 * make it work out on a Sparc. 51 * Bjorn Ekwall : Added KERNELD hack. 52 * Alan Cox : Cleaned up the backlog initialise. 53 * Craig Metz : SIOCGIFCONF fix if space for under 54 * 1 device. 55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 56 * is no device open function. 57 * Andi Kleen : Fix error reporting for SIOCGIFCONF 58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 59 * Cyrus Durgin : Cleaned for KMOD 60 * Adam Sulmicki : Bug Fix : Network Device Unload 61 * A network device unload needs to purge 62 * the backlog queue. 63 * Paul Rusty Russell : SIOCSIFNAME 64 * Pekka Riikonen : Netdev boot-time settings code 65 * Andrew Morton : Make unregister_netdevice wait 66 * indefinitely on dev->refcnt 67 * J Hadi Salim : - Backlog queue sampling 68 * - netif_rx() feedback 69 */ 70 71 #include <linux/uaccess.h> 72 #include <linux/bitops.h> 73 #include <linux/capability.h> 74 #include <linux/cpu.h> 75 #include <linux/types.h> 76 #include <linux/kernel.h> 77 #include <linux/hash.h> 78 #include <linux/slab.h> 79 #include <linux/sched.h> 80 #include <linux/sched/mm.h> 81 #include <linux/mutex.h> 82 #include <linux/string.h> 83 #include <linux/mm.h> 84 #include <linux/socket.h> 85 #include <linux/sockios.h> 86 #include <linux/errno.h> 87 #include <linux/interrupt.h> 88 #include <linux/if_ether.h> 89 #include <linux/netdevice.h> 90 #include <linux/etherdevice.h> 91 #include <linux/ethtool.h> 92 #include <linux/skbuff.h> 93 #include <linux/bpf.h> 94 #include <linux/bpf_trace.h> 95 #include <net/net_namespace.h> 96 #include <net/sock.h> 97 #include <net/busy_poll.h> 98 #include <linux/rtnetlink.h> 99 #include <linux/stat.h> 100 #include <net/dst.h> 101 #include <net/dst_metadata.h> 102 #include <net/pkt_sched.h> 103 #include <net/pkt_cls.h> 104 #include <net/checksum.h> 105 #include <net/xfrm.h> 106 #include <linux/highmem.h> 107 #include <linux/init.h> 108 #include <linux/module.h> 109 #include <linux/netpoll.h> 110 #include <linux/rcupdate.h> 111 #include <linux/delay.h> 112 #include <net/iw_handler.h> 113 #include <asm/current.h> 114 #include <linux/audit.h> 115 #include <linux/dmaengine.h> 116 #include <linux/err.h> 117 #include <linux/ctype.h> 118 #include <linux/if_arp.h> 119 #include <linux/if_vlan.h> 120 #include <linux/ip.h> 121 #include <net/ip.h> 122 #include <net/mpls.h> 123 #include <linux/ipv6.h> 124 #include <linux/in.h> 125 #include <linux/jhash.h> 126 #include <linux/random.h> 127 #include <trace/events/napi.h> 128 #include <trace/events/net.h> 129 #include <trace/events/skb.h> 130 #include <linux/inetdevice.h> 131 #include <linux/cpu_rmap.h> 132 #include <linux/static_key.h> 133 #include <linux/hashtable.h> 134 #include <linux/vmalloc.h> 135 #include <linux/if_macvlan.h> 136 #include <linux/errqueue.h> 137 #include <linux/hrtimer.h> 138 #include <linux/netfilter_ingress.h> 139 #include <linux/crash_dump.h> 140 #include <linux/sctp.h> 141 #include <net/udp_tunnel.h> 142 #include <linux/net_namespace.h> 143 #include <linux/indirect_call_wrapper.h> 144 #include <net/devlink.h> 145 146 #include "net-sysfs.h" 147 148 #define MAX_GRO_SKBS 8 149 150 /* This should be increased if a protocol with a bigger head is added. */ 151 #define GRO_MAX_HEAD (MAX_HEADER + 128) 152 153 static DEFINE_SPINLOCK(ptype_lock); 154 static DEFINE_SPINLOCK(offload_lock); 155 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 156 struct list_head ptype_all __read_mostly; /* Taps */ 157 static struct list_head offload_base __read_mostly; 158 159 static int netif_rx_internal(struct sk_buff *skb); 160 static int call_netdevice_notifiers_info(unsigned long val, 161 struct netdev_notifier_info *info); 162 static int call_netdevice_notifiers_extack(unsigned long val, 163 struct net_device *dev, 164 struct netlink_ext_ack *extack); 165 static struct napi_struct *napi_by_id(unsigned int napi_id); 166 167 /* 168 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 169 * semaphore. 170 * 171 * Pure readers hold dev_base_lock for reading, or rcu_read_lock() 172 * 173 * Writers must hold the rtnl semaphore while they loop through the 174 * dev_base_head list, and hold dev_base_lock for writing when they do the 175 * actual updates. This allows pure readers to access the list even 176 * while a writer is preparing to update it. 177 * 178 * To put it another way, dev_base_lock is held for writing only to 179 * protect against pure readers; the rtnl semaphore provides the 180 * protection against other writers. 181 * 182 * See, for example usages, register_netdevice() and 183 * unregister_netdevice(), which must be called with the rtnl 184 * semaphore held. 185 */ 186 DEFINE_RWLOCK(dev_base_lock); 187 EXPORT_SYMBOL(dev_base_lock); 188 189 static DEFINE_MUTEX(ifalias_mutex); 190 191 /* protects napi_hash addition/deletion and napi_gen_id */ 192 static DEFINE_SPINLOCK(napi_hash_lock); 193 194 static unsigned int napi_gen_id = NR_CPUS; 195 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8); 196 197 static seqcount_t devnet_rename_seq; 198 199 static inline void dev_base_seq_inc(struct net *net) 200 { 201 while (++net->dev_base_seq == 0) 202 ; 203 } 204 205 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 206 { 207 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ)); 208 209 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 210 } 211 212 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 213 { 214 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 215 } 216 217 static inline void rps_lock(struct softnet_data *sd) 218 { 219 #ifdef CONFIG_RPS 220 spin_lock(&sd->input_pkt_queue.lock); 221 #endif 222 } 223 224 static inline void rps_unlock(struct softnet_data *sd) 225 { 226 #ifdef CONFIG_RPS 227 spin_unlock(&sd->input_pkt_queue.lock); 228 #endif 229 } 230 231 /* Device list insertion */ 232 static void list_netdevice(struct net_device *dev) 233 { 234 struct net *net = dev_net(dev); 235 236 ASSERT_RTNL(); 237 238 write_lock_bh(&dev_base_lock); 239 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 240 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 241 hlist_add_head_rcu(&dev->index_hlist, 242 dev_index_hash(net, dev->ifindex)); 243 write_unlock_bh(&dev_base_lock); 244 245 dev_base_seq_inc(net); 246 } 247 248 /* Device list removal 249 * caller must respect a RCU grace period before freeing/reusing dev 250 */ 251 static void unlist_netdevice(struct net_device *dev) 252 { 253 ASSERT_RTNL(); 254 255 /* Unlink dev from the device chain */ 256 write_lock_bh(&dev_base_lock); 257 list_del_rcu(&dev->dev_list); 258 hlist_del_rcu(&dev->name_hlist); 259 hlist_del_rcu(&dev->index_hlist); 260 write_unlock_bh(&dev_base_lock); 261 262 dev_base_seq_inc(dev_net(dev)); 263 } 264 265 /* 266 * Our notifier list 267 */ 268 269 static RAW_NOTIFIER_HEAD(netdev_chain); 270 271 /* 272 * Device drivers call our routines to queue packets here. We empty the 273 * queue in the local softnet handler. 274 */ 275 276 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 277 EXPORT_PER_CPU_SYMBOL(softnet_data); 278 279 #ifdef CONFIG_LOCKDEP 280 /* 281 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 282 * according to dev->type 283 */ 284 static const unsigned short netdev_lock_type[] = { 285 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 286 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 287 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 288 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 289 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 290 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 291 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 292 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 293 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 294 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 295 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 296 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 297 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM, 298 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE, 299 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE}; 300 301 static const char *const netdev_lock_name[] = { 302 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 303 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 304 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 305 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 306 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 307 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 308 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 309 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 310 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 311 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 312 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 313 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 314 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM", 315 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE", 316 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"}; 317 318 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 319 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 320 321 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 322 { 323 int i; 324 325 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 326 if (netdev_lock_type[i] == dev_type) 327 return i; 328 /* the last key is used by default */ 329 return ARRAY_SIZE(netdev_lock_type) - 1; 330 } 331 332 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 333 unsigned short dev_type) 334 { 335 int i; 336 337 i = netdev_lock_pos(dev_type); 338 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 339 netdev_lock_name[i]); 340 } 341 342 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 343 { 344 int i; 345 346 i = netdev_lock_pos(dev->type); 347 lockdep_set_class_and_name(&dev->addr_list_lock, 348 &netdev_addr_lock_key[i], 349 netdev_lock_name[i]); 350 } 351 #else 352 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 353 unsigned short dev_type) 354 { 355 } 356 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 357 { 358 } 359 #endif 360 361 /******************************************************************************* 362 * 363 * Protocol management and registration routines 364 * 365 *******************************************************************************/ 366 367 368 /* 369 * Add a protocol ID to the list. Now that the input handler is 370 * smarter we can dispense with all the messy stuff that used to be 371 * here. 372 * 373 * BEWARE!!! Protocol handlers, mangling input packets, 374 * MUST BE last in hash buckets and checking protocol handlers 375 * MUST start from promiscuous ptype_all chain in net_bh. 376 * It is true now, do not change it. 377 * Explanation follows: if protocol handler, mangling packet, will 378 * be the first on list, it is not able to sense, that packet 379 * is cloned and should be copied-on-write, so that it will 380 * change it and subsequent readers will get broken packet. 381 * --ANK (980803) 382 */ 383 384 static inline struct list_head *ptype_head(const struct packet_type *pt) 385 { 386 if (pt->type == htons(ETH_P_ALL)) 387 return pt->dev ? &pt->dev->ptype_all : &ptype_all; 388 else 389 return pt->dev ? &pt->dev->ptype_specific : 390 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 391 } 392 393 /** 394 * dev_add_pack - add packet handler 395 * @pt: packet type declaration 396 * 397 * Add a protocol handler to the networking stack. The passed &packet_type 398 * is linked into kernel lists and may not be freed until it has been 399 * removed from the kernel lists. 400 * 401 * This call does not sleep therefore it can not 402 * guarantee all CPU's that are in middle of receiving packets 403 * will see the new packet type (until the next received packet). 404 */ 405 406 void dev_add_pack(struct packet_type *pt) 407 { 408 struct list_head *head = ptype_head(pt); 409 410 spin_lock(&ptype_lock); 411 list_add_rcu(&pt->list, head); 412 spin_unlock(&ptype_lock); 413 } 414 EXPORT_SYMBOL(dev_add_pack); 415 416 /** 417 * __dev_remove_pack - remove packet handler 418 * @pt: packet type declaration 419 * 420 * Remove a protocol handler that was previously added to the kernel 421 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 422 * from the kernel lists and can be freed or reused once this function 423 * returns. 424 * 425 * The packet type might still be in use by receivers 426 * and must not be freed until after all the CPU's have gone 427 * through a quiescent state. 428 */ 429 void __dev_remove_pack(struct packet_type *pt) 430 { 431 struct list_head *head = ptype_head(pt); 432 struct packet_type *pt1; 433 434 spin_lock(&ptype_lock); 435 436 list_for_each_entry(pt1, head, list) { 437 if (pt == pt1) { 438 list_del_rcu(&pt->list); 439 goto out; 440 } 441 } 442 443 pr_warn("dev_remove_pack: %p not found\n", pt); 444 out: 445 spin_unlock(&ptype_lock); 446 } 447 EXPORT_SYMBOL(__dev_remove_pack); 448 449 /** 450 * dev_remove_pack - remove packet handler 451 * @pt: packet type declaration 452 * 453 * Remove a protocol handler that was previously added to the kernel 454 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 455 * from the kernel lists and can be freed or reused once this function 456 * returns. 457 * 458 * This call sleeps to guarantee that no CPU is looking at the packet 459 * type after return. 460 */ 461 void dev_remove_pack(struct packet_type *pt) 462 { 463 __dev_remove_pack(pt); 464 465 synchronize_net(); 466 } 467 EXPORT_SYMBOL(dev_remove_pack); 468 469 470 /** 471 * dev_add_offload - register offload handlers 472 * @po: protocol offload declaration 473 * 474 * Add protocol offload handlers to the networking stack. The passed 475 * &proto_offload is linked into kernel lists and may not be freed until 476 * it has been removed from the kernel lists. 477 * 478 * This call does not sleep therefore it can not 479 * guarantee all CPU's that are in middle of receiving packets 480 * will see the new offload handlers (until the next received packet). 481 */ 482 void dev_add_offload(struct packet_offload *po) 483 { 484 struct packet_offload *elem; 485 486 spin_lock(&offload_lock); 487 list_for_each_entry(elem, &offload_base, list) { 488 if (po->priority < elem->priority) 489 break; 490 } 491 list_add_rcu(&po->list, elem->list.prev); 492 spin_unlock(&offload_lock); 493 } 494 EXPORT_SYMBOL(dev_add_offload); 495 496 /** 497 * __dev_remove_offload - remove offload handler 498 * @po: packet offload declaration 499 * 500 * Remove a protocol offload handler that was previously added to the 501 * kernel offload handlers by dev_add_offload(). The passed &offload_type 502 * is removed from the kernel lists and can be freed or reused once this 503 * function returns. 504 * 505 * The packet type might still be in use by receivers 506 * and must not be freed until after all the CPU's have gone 507 * through a quiescent state. 508 */ 509 static void __dev_remove_offload(struct packet_offload *po) 510 { 511 struct list_head *head = &offload_base; 512 struct packet_offload *po1; 513 514 spin_lock(&offload_lock); 515 516 list_for_each_entry(po1, head, list) { 517 if (po == po1) { 518 list_del_rcu(&po->list); 519 goto out; 520 } 521 } 522 523 pr_warn("dev_remove_offload: %p not found\n", po); 524 out: 525 spin_unlock(&offload_lock); 526 } 527 528 /** 529 * dev_remove_offload - remove packet offload handler 530 * @po: packet offload declaration 531 * 532 * Remove a packet offload handler that was previously added to the kernel 533 * offload handlers by dev_add_offload(). The passed &offload_type is 534 * removed from the kernel lists and can be freed or reused once this 535 * function returns. 536 * 537 * This call sleeps to guarantee that no CPU is looking at the packet 538 * type after return. 539 */ 540 void dev_remove_offload(struct packet_offload *po) 541 { 542 __dev_remove_offload(po); 543 544 synchronize_net(); 545 } 546 EXPORT_SYMBOL(dev_remove_offload); 547 548 /****************************************************************************** 549 * 550 * Device Boot-time Settings Routines 551 * 552 ******************************************************************************/ 553 554 /* Boot time configuration table */ 555 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 556 557 /** 558 * netdev_boot_setup_add - add new setup entry 559 * @name: name of the device 560 * @map: configured settings for the device 561 * 562 * Adds new setup entry to the dev_boot_setup list. The function 563 * returns 0 on error and 1 on success. This is a generic routine to 564 * all netdevices. 565 */ 566 static int netdev_boot_setup_add(char *name, struct ifmap *map) 567 { 568 struct netdev_boot_setup *s; 569 int i; 570 571 s = dev_boot_setup; 572 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 573 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 574 memset(s[i].name, 0, sizeof(s[i].name)); 575 strlcpy(s[i].name, name, IFNAMSIZ); 576 memcpy(&s[i].map, map, sizeof(s[i].map)); 577 break; 578 } 579 } 580 581 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 582 } 583 584 /** 585 * netdev_boot_setup_check - check boot time settings 586 * @dev: the netdevice 587 * 588 * Check boot time settings for the device. 589 * The found settings are set for the device to be used 590 * later in the device probing. 591 * Returns 0 if no settings found, 1 if they are. 592 */ 593 int netdev_boot_setup_check(struct net_device *dev) 594 { 595 struct netdev_boot_setup *s = dev_boot_setup; 596 int i; 597 598 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 599 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 600 !strcmp(dev->name, s[i].name)) { 601 dev->irq = s[i].map.irq; 602 dev->base_addr = s[i].map.base_addr; 603 dev->mem_start = s[i].map.mem_start; 604 dev->mem_end = s[i].map.mem_end; 605 return 1; 606 } 607 } 608 return 0; 609 } 610 EXPORT_SYMBOL(netdev_boot_setup_check); 611 612 613 /** 614 * netdev_boot_base - get address from boot time settings 615 * @prefix: prefix for network device 616 * @unit: id for network device 617 * 618 * Check boot time settings for the base address of device. 619 * The found settings are set for the device to be used 620 * later in the device probing. 621 * Returns 0 if no settings found. 622 */ 623 unsigned long netdev_boot_base(const char *prefix, int unit) 624 { 625 const struct netdev_boot_setup *s = dev_boot_setup; 626 char name[IFNAMSIZ]; 627 int i; 628 629 sprintf(name, "%s%d", prefix, unit); 630 631 /* 632 * If device already registered then return base of 1 633 * to indicate not to probe for this interface 634 */ 635 if (__dev_get_by_name(&init_net, name)) 636 return 1; 637 638 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 639 if (!strcmp(name, s[i].name)) 640 return s[i].map.base_addr; 641 return 0; 642 } 643 644 /* 645 * Saves at boot time configured settings for any netdevice. 646 */ 647 int __init netdev_boot_setup(char *str) 648 { 649 int ints[5]; 650 struct ifmap map; 651 652 str = get_options(str, ARRAY_SIZE(ints), ints); 653 if (!str || !*str) 654 return 0; 655 656 /* Save settings */ 657 memset(&map, 0, sizeof(map)); 658 if (ints[0] > 0) 659 map.irq = ints[1]; 660 if (ints[0] > 1) 661 map.base_addr = ints[2]; 662 if (ints[0] > 2) 663 map.mem_start = ints[3]; 664 if (ints[0] > 3) 665 map.mem_end = ints[4]; 666 667 /* Add new entry to the list */ 668 return netdev_boot_setup_add(str, &map); 669 } 670 671 __setup("netdev=", netdev_boot_setup); 672 673 /******************************************************************************* 674 * 675 * Device Interface Subroutines 676 * 677 *******************************************************************************/ 678 679 /** 680 * dev_get_iflink - get 'iflink' value of a interface 681 * @dev: targeted interface 682 * 683 * Indicates the ifindex the interface is linked to. 684 * Physical interfaces have the same 'ifindex' and 'iflink' values. 685 */ 686 687 int dev_get_iflink(const struct net_device *dev) 688 { 689 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink) 690 return dev->netdev_ops->ndo_get_iflink(dev); 691 692 return dev->ifindex; 693 } 694 EXPORT_SYMBOL(dev_get_iflink); 695 696 /** 697 * dev_fill_metadata_dst - Retrieve tunnel egress information. 698 * @dev: targeted interface 699 * @skb: The packet. 700 * 701 * For better visibility of tunnel traffic OVS needs to retrieve 702 * egress tunnel information for a packet. Following API allows 703 * user to get this info. 704 */ 705 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb) 706 { 707 struct ip_tunnel_info *info; 708 709 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst) 710 return -EINVAL; 711 712 info = skb_tunnel_info_unclone(skb); 713 if (!info) 714 return -ENOMEM; 715 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX))) 716 return -EINVAL; 717 718 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb); 719 } 720 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst); 721 722 /** 723 * __dev_get_by_name - find a device by its name 724 * @net: the applicable net namespace 725 * @name: name to find 726 * 727 * Find an interface by name. Must be called under RTNL semaphore 728 * or @dev_base_lock. If the name is found a pointer to the device 729 * is returned. If the name is not found then %NULL is returned. The 730 * reference counters are not incremented so the caller must be 731 * careful with locks. 732 */ 733 734 struct net_device *__dev_get_by_name(struct net *net, const char *name) 735 { 736 struct net_device *dev; 737 struct hlist_head *head = dev_name_hash(net, name); 738 739 hlist_for_each_entry(dev, head, name_hlist) 740 if (!strncmp(dev->name, name, IFNAMSIZ)) 741 return dev; 742 743 return NULL; 744 } 745 EXPORT_SYMBOL(__dev_get_by_name); 746 747 /** 748 * dev_get_by_name_rcu - find a device by its name 749 * @net: the applicable net namespace 750 * @name: name to find 751 * 752 * Find an interface by name. 753 * If the name is found a pointer to the device is returned. 754 * If the name is not found then %NULL is returned. 755 * The reference counters are not incremented so the caller must be 756 * careful with locks. The caller must hold RCU lock. 757 */ 758 759 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 760 { 761 struct net_device *dev; 762 struct hlist_head *head = dev_name_hash(net, name); 763 764 hlist_for_each_entry_rcu(dev, head, name_hlist) 765 if (!strncmp(dev->name, name, IFNAMSIZ)) 766 return dev; 767 768 return NULL; 769 } 770 EXPORT_SYMBOL(dev_get_by_name_rcu); 771 772 /** 773 * dev_get_by_name - find a device by its name 774 * @net: the applicable net namespace 775 * @name: name to find 776 * 777 * Find an interface by name. This can be called from any 778 * context and does its own locking. The returned handle has 779 * the usage count incremented and the caller must use dev_put() to 780 * release it when it is no longer needed. %NULL is returned if no 781 * matching device is found. 782 */ 783 784 struct net_device *dev_get_by_name(struct net *net, const char *name) 785 { 786 struct net_device *dev; 787 788 rcu_read_lock(); 789 dev = dev_get_by_name_rcu(net, name); 790 if (dev) 791 dev_hold(dev); 792 rcu_read_unlock(); 793 return dev; 794 } 795 EXPORT_SYMBOL(dev_get_by_name); 796 797 /** 798 * __dev_get_by_index - find a device by its ifindex 799 * @net: the applicable net namespace 800 * @ifindex: index of device 801 * 802 * Search for an interface by index. Returns %NULL if the device 803 * is not found or a pointer to the device. The device has not 804 * had its reference counter increased so the caller must be careful 805 * about locking. The caller must hold either the RTNL semaphore 806 * or @dev_base_lock. 807 */ 808 809 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 810 { 811 struct net_device *dev; 812 struct hlist_head *head = dev_index_hash(net, ifindex); 813 814 hlist_for_each_entry(dev, head, index_hlist) 815 if (dev->ifindex == ifindex) 816 return dev; 817 818 return NULL; 819 } 820 EXPORT_SYMBOL(__dev_get_by_index); 821 822 /** 823 * dev_get_by_index_rcu - find a device by its ifindex 824 * @net: the applicable net namespace 825 * @ifindex: index of device 826 * 827 * Search for an interface by index. Returns %NULL if the device 828 * is not found or a pointer to the device. The device has not 829 * had its reference counter increased so the caller must be careful 830 * about locking. The caller must hold RCU lock. 831 */ 832 833 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 834 { 835 struct net_device *dev; 836 struct hlist_head *head = dev_index_hash(net, ifindex); 837 838 hlist_for_each_entry_rcu(dev, head, index_hlist) 839 if (dev->ifindex == ifindex) 840 return dev; 841 842 return NULL; 843 } 844 EXPORT_SYMBOL(dev_get_by_index_rcu); 845 846 847 /** 848 * dev_get_by_index - find a device by its ifindex 849 * @net: the applicable net namespace 850 * @ifindex: index of device 851 * 852 * Search for an interface by index. Returns NULL if the device 853 * is not found or a pointer to the device. The device returned has 854 * had a reference added and the pointer is safe until the user calls 855 * dev_put to indicate they have finished with it. 856 */ 857 858 struct net_device *dev_get_by_index(struct net *net, int ifindex) 859 { 860 struct net_device *dev; 861 862 rcu_read_lock(); 863 dev = dev_get_by_index_rcu(net, ifindex); 864 if (dev) 865 dev_hold(dev); 866 rcu_read_unlock(); 867 return dev; 868 } 869 EXPORT_SYMBOL(dev_get_by_index); 870 871 /** 872 * dev_get_by_napi_id - find a device by napi_id 873 * @napi_id: ID of the NAPI struct 874 * 875 * Search for an interface by NAPI ID. Returns %NULL if the device 876 * is not found or a pointer to the device. The device has not had 877 * its reference counter increased so the caller must be careful 878 * about locking. The caller must hold RCU lock. 879 */ 880 881 struct net_device *dev_get_by_napi_id(unsigned int napi_id) 882 { 883 struct napi_struct *napi; 884 885 WARN_ON_ONCE(!rcu_read_lock_held()); 886 887 if (napi_id < MIN_NAPI_ID) 888 return NULL; 889 890 napi = napi_by_id(napi_id); 891 892 return napi ? napi->dev : NULL; 893 } 894 EXPORT_SYMBOL(dev_get_by_napi_id); 895 896 /** 897 * netdev_get_name - get a netdevice name, knowing its ifindex. 898 * @net: network namespace 899 * @name: a pointer to the buffer where the name will be stored. 900 * @ifindex: the ifindex of the interface to get the name from. 901 * 902 * The use of raw_seqcount_begin() and cond_resched() before 903 * retrying is required as we want to give the writers a chance 904 * to complete when CONFIG_PREEMPT is not set. 905 */ 906 int netdev_get_name(struct net *net, char *name, int ifindex) 907 { 908 struct net_device *dev; 909 unsigned int seq; 910 911 retry: 912 seq = raw_seqcount_begin(&devnet_rename_seq); 913 rcu_read_lock(); 914 dev = dev_get_by_index_rcu(net, ifindex); 915 if (!dev) { 916 rcu_read_unlock(); 917 return -ENODEV; 918 } 919 920 strcpy(name, dev->name); 921 rcu_read_unlock(); 922 if (read_seqcount_retry(&devnet_rename_seq, seq)) { 923 cond_resched(); 924 goto retry; 925 } 926 927 return 0; 928 } 929 930 /** 931 * dev_getbyhwaddr_rcu - find a device by its hardware address 932 * @net: the applicable net namespace 933 * @type: media type of device 934 * @ha: hardware address 935 * 936 * Search for an interface by MAC address. Returns NULL if the device 937 * is not found or a pointer to the device. 938 * The caller must hold RCU or RTNL. 939 * The returned device has not had its ref count increased 940 * and the caller must therefore be careful about locking 941 * 942 */ 943 944 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 945 const char *ha) 946 { 947 struct net_device *dev; 948 949 for_each_netdev_rcu(net, dev) 950 if (dev->type == type && 951 !memcmp(dev->dev_addr, ha, dev->addr_len)) 952 return dev; 953 954 return NULL; 955 } 956 EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 957 958 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 959 { 960 struct net_device *dev; 961 962 ASSERT_RTNL(); 963 for_each_netdev(net, dev) 964 if (dev->type == type) 965 return dev; 966 967 return NULL; 968 } 969 EXPORT_SYMBOL(__dev_getfirstbyhwtype); 970 971 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 972 { 973 struct net_device *dev, *ret = NULL; 974 975 rcu_read_lock(); 976 for_each_netdev_rcu(net, dev) 977 if (dev->type == type) { 978 dev_hold(dev); 979 ret = dev; 980 break; 981 } 982 rcu_read_unlock(); 983 return ret; 984 } 985 EXPORT_SYMBOL(dev_getfirstbyhwtype); 986 987 /** 988 * __dev_get_by_flags - find any device with given flags 989 * @net: the applicable net namespace 990 * @if_flags: IFF_* values 991 * @mask: bitmask of bits in if_flags to check 992 * 993 * Search for any interface with the given flags. Returns NULL if a device 994 * is not found or a pointer to the device. Must be called inside 995 * rtnl_lock(), and result refcount is unchanged. 996 */ 997 998 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags, 999 unsigned short mask) 1000 { 1001 struct net_device *dev, *ret; 1002 1003 ASSERT_RTNL(); 1004 1005 ret = NULL; 1006 for_each_netdev(net, dev) { 1007 if (((dev->flags ^ if_flags) & mask) == 0) { 1008 ret = dev; 1009 break; 1010 } 1011 } 1012 return ret; 1013 } 1014 EXPORT_SYMBOL(__dev_get_by_flags); 1015 1016 /** 1017 * dev_valid_name - check if name is okay for network device 1018 * @name: name string 1019 * 1020 * Network device names need to be valid file names to 1021 * to allow sysfs to work. We also disallow any kind of 1022 * whitespace. 1023 */ 1024 bool dev_valid_name(const char *name) 1025 { 1026 if (*name == '\0') 1027 return false; 1028 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ) 1029 return false; 1030 if (!strcmp(name, ".") || !strcmp(name, "..")) 1031 return false; 1032 1033 while (*name) { 1034 if (*name == '/' || *name == ':' || isspace(*name)) 1035 return false; 1036 name++; 1037 } 1038 return true; 1039 } 1040 EXPORT_SYMBOL(dev_valid_name); 1041 1042 /** 1043 * __dev_alloc_name - allocate a name for a device 1044 * @net: network namespace to allocate the device name in 1045 * @name: name format string 1046 * @buf: scratch buffer and result name string 1047 * 1048 * Passed a format string - eg "lt%d" it will try and find a suitable 1049 * id. It scans list of devices to build up a free map, then chooses 1050 * the first empty slot. The caller must hold the dev_base or rtnl lock 1051 * while allocating the name and adding the device in order to avoid 1052 * duplicates. 1053 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1054 * Returns the number of the unit assigned or a negative errno code. 1055 */ 1056 1057 static int __dev_alloc_name(struct net *net, const char *name, char *buf) 1058 { 1059 int i = 0; 1060 const char *p; 1061 const int max_netdevices = 8*PAGE_SIZE; 1062 unsigned long *inuse; 1063 struct net_device *d; 1064 1065 if (!dev_valid_name(name)) 1066 return -EINVAL; 1067 1068 p = strchr(name, '%'); 1069 if (p) { 1070 /* 1071 * Verify the string as this thing may have come from 1072 * the user. There must be either one "%d" and no other "%" 1073 * characters. 1074 */ 1075 if (p[1] != 'd' || strchr(p + 2, '%')) 1076 return -EINVAL; 1077 1078 /* Use one page as a bit array of possible slots */ 1079 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 1080 if (!inuse) 1081 return -ENOMEM; 1082 1083 for_each_netdev(net, d) { 1084 if (!sscanf(d->name, name, &i)) 1085 continue; 1086 if (i < 0 || i >= max_netdevices) 1087 continue; 1088 1089 /* avoid cases where sscanf is not exact inverse of printf */ 1090 snprintf(buf, IFNAMSIZ, name, i); 1091 if (!strncmp(buf, d->name, IFNAMSIZ)) 1092 set_bit(i, inuse); 1093 } 1094 1095 i = find_first_zero_bit(inuse, max_netdevices); 1096 free_page((unsigned long) inuse); 1097 } 1098 1099 snprintf(buf, IFNAMSIZ, name, i); 1100 if (!__dev_get_by_name(net, buf)) 1101 return i; 1102 1103 /* It is possible to run out of possible slots 1104 * when the name is long and there isn't enough space left 1105 * for the digits, or if all bits are used. 1106 */ 1107 return -ENFILE; 1108 } 1109 1110 static int dev_alloc_name_ns(struct net *net, 1111 struct net_device *dev, 1112 const char *name) 1113 { 1114 char buf[IFNAMSIZ]; 1115 int ret; 1116 1117 BUG_ON(!net); 1118 ret = __dev_alloc_name(net, name, buf); 1119 if (ret >= 0) 1120 strlcpy(dev->name, buf, IFNAMSIZ); 1121 return ret; 1122 } 1123 1124 /** 1125 * dev_alloc_name - allocate a name for a device 1126 * @dev: device 1127 * @name: name format string 1128 * 1129 * Passed a format string - eg "lt%d" it will try and find a suitable 1130 * id. It scans list of devices to build up a free map, then chooses 1131 * the first empty slot. The caller must hold the dev_base or rtnl lock 1132 * while allocating the name and adding the device in order to avoid 1133 * duplicates. 1134 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1135 * Returns the number of the unit assigned or a negative errno code. 1136 */ 1137 1138 int dev_alloc_name(struct net_device *dev, const char *name) 1139 { 1140 return dev_alloc_name_ns(dev_net(dev), dev, name); 1141 } 1142 EXPORT_SYMBOL(dev_alloc_name); 1143 1144 int dev_get_valid_name(struct net *net, struct net_device *dev, 1145 const char *name) 1146 { 1147 BUG_ON(!net); 1148 1149 if (!dev_valid_name(name)) 1150 return -EINVAL; 1151 1152 if (strchr(name, '%')) 1153 return dev_alloc_name_ns(net, dev, name); 1154 else if (__dev_get_by_name(net, name)) 1155 return -EEXIST; 1156 else if (dev->name != name) 1157 strlcpy(dev->name, name, IFNAMSIZ); 1158 1159 return 0; 1160 } 1161 EXPORT_SYMBOL(dev_get_valid_name); 1162 1163 /** 1164 * dev_change_name - change name of a device 1165 * @dev: device 1166 * @newname: name (or format string) must be at least IFNAMSIZ 1167 * 1168 * Change name of a device, can pass format strings "eth%d". 1169 * for wildcarding. 1170 */ 1171 int dev_change_name(struct net_device *dev, const char *newname) 1172 { 1173 unsigned char old_assign_type; 1174 char oldname[IFNAMSIZ]; 1175 int err = 0; 1176 int ret; 1177 struct net *net; 1178 1179 ASSERT_RTNL(); 1180 BUG_ON(!dev_net(dev)); 1181 1182 net = dev_net(dev); 1183 1184 /* Some auto-enslaved devices e.g. failover slaves are 1185 * special, as userspace might rename the device after 1186 * the interface had been brought up and running since 1187 * the point kernel initiated auto-enslavement. Allow 1188 * live name change even when these slave devices are 1189 * up and running. 1190 * 1191 * Typically, users of these auto-enslaving devices 1192 * don't actually care about slave name change, as 1193 * they are supposed to operate on master interface 1194 * directly. 1195 */ 1196 if (dev->flags & IFF_UP && 1197 likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK))) 1198 return -EBUSY; 1199 1200 write_seqcount_begin(&devnet_rename_seq); 1201 1202 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) { 1203 write_seqcount_end(&devnet_rename_seq); 1204 return 0; 1205 } 1206 1207 memcpy(oldname, dev->name, IFNAMSIZ); 1208 1209 err = dev_get_valid_name(net, dev, newname); 1210 if (err < 0) { 1211 write_seqcount_end(&devnet_rename_seq); 1212 return err; 1213 } 1214 1215 if (oldname[0] && !strchr(oldname, '%')) 1216 netdev_info(dev, "renamed from %s\n", oldname); 1217 1218 old_assign_type = dev->name_assign_type; 1219 dev->name_assign_type = NET_NAME_RENAMED; 1220 1221 rollback: 1222 ret = device_rename(&dev->dev, dev->name); 1223 if (ret) { 1224 memcpy(dev->name, oldname, IFNAMSIZ); 1225 dev->name_assign_type = old_assign_type; 1226 write_seqcount_end(&devnet_rename_seq); 1227 return ret; 1228 } 1229 1230 write_seqcount_end(&devnet_rename_seq); 1231 1232 netdev_adjacent_rename_links(dev, oldname); 1233 1234 write_lock_bh(&dev_base_lock); 1235 hlist_del_rcu(&dev->name_hlist); 1236 write_unlock_bh(&dev_base_lock); 1237 1238 synchronize_rcu(); 1239 1240 write_lock_bh(&dev_base_lock); 1241 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 1242 write_unlock_bh(&dev_base_lock); 1243 1244 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1245 ret = notifier_to_errno(ret); 1246 1247 if (ret) { 1248 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1249 if (err >= 0) { 1250 err = ret; 1251 write_seqcount_begin(&devnet_rename_seq); 1252 memcpy(dev->name, oldname, IFNAMSIZ); 1253 memcpy(oldname, newname, IFNAMSIZ); 1254 dev->name_assign_type = old_assign_type; 1255 old_assign_type = NET_NAME_RENAMED; 1256 goto rollback; 1257 } else { 1258 pr_err("%s: name change rollback failed: %d\n", 1259 dev->name, ret); 1260 } 1261 } 1262 1263 return err; 1264 } 1265 1266 /** 1267 * dev_set_alias - change ifalias of a device 1268 * @dev: device 1269 * @alias: name up to IFALIASZ 1270 * @len: limit of bytes to copy from info 1271 * 1272 * Set ifalias for a device, 1273 */ 1274 int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1275 { 1276 struct dev_ifalias *new_alias = NULL; 1277 1278 if (len >= IFALIASZ) 1279 return -EINVAL; 1280 1281 if (len) { 1282 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL); 1283 if (!new_alias) 1284 return -ENOMEM; 1285 1286 memcpy(new_alias->ifalias, alias, len); 1287 new_alias->ifalias[len] = 0; 1288 } 1289 1290 mutex_lock(&ifalias_mutex); 1291 rcu_swap_protected(dev->ifalias, new_alias, 1292 mutex_is_locked(&ifalias_mutex)); 1293 mutex_unlock(&ifalias_mutex); 1294 1295 if (new_alias) 1296 kfree_rcu(new_alias, rcuhead); 1297 1298 return len; 1299 } 1300 EXPORT_SYMBOL(dev_set_alias); 1301 1302 /** 1303 * dev_get_alias - get ifalias of a device 1304 * @dev: device 1305 * @name: buffer to store name of ifalias 1306 * @len: size of buffer 1307 * 1308 * get ifalias for a device. Caller must make sure dev cannot go 1309 * away, e.g. rcu read lock or own a reference count to device. 1310 */ 1311 int dev_get_alias(const struct net_device *dev, char *name, size_t len) 1312 { 1313 const struct dev_ifalias *alias; 1314 int ret = 0; 1315 1316 rcu_read_lock(); 1317 alias = rcu_dereference(dev->ifalias); 1318 if (alias) 1319 ret = snprintf(name, len, "%s", alias->ifalias); 1320 rcu_read_unlock(); 1321 1322 return ret; 1323 } 1324 1325 /** 1326 * netdev_features_change - device changes features 1327 * @dev: device to cause notification 1328 * 1329 * Called to indicate a device has changed features. 1330 */ 1331 void netdev_features_change(struct net_device *dev) 1332 { 1333 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1334 } 1335 EXPORT_SYMBOL(netdev_features_change); 1336 1337 /** 1338 * netdev_state_change - device changes state 1339 * @dev: device to cause notification 1340 * 1341 * Called to indicate a device has changed state. This function calls 1342 * the notifier chains for netdev_chain and sends a NEWLINK message 1343 * to the routing socket. 1344 */ 1345 void netdev_state_change(struct net_device *dev) 1346 { 1347 if (dev->flags & IFF_UP) { 1348 struct netdev_notifier_change_info change_info = { 1349 .info.dev = dev, 1350 }; 1351 1352 call_netdevice_notifiers_info(NETDEV_CHANGE, 1353 &change_info.info); 1354 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL); 1355 } 1356 } 1357 EXPORT_SYMBOL(netdev_state_change); 1358 1359 /** 1360 * netdev_notify_peers - notify network peers about existence of @dev 1361 * @dev: network device 1362 * 1363 * Generate traffic such that interested network peers are aware of 1364 * @dev, such as by generating a gratuitous ARP. This may be used when 1365 * a device wants to inform the rest of the network about some sort of 1366 * reconfiguration such as a failover event or virtual machine 1367 * migration. 1368 */ 1369 void netdev_notify_peers(struct net_device *dev) 1370 { 1371 rtnl_lock(); 1372 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev); 1373 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev); 1374 rtnl_unlock(); 1375 } 1376 EXPORT_SYMBOL(netdev_notify_peers); 1377 1378 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack) 1379 { 1380 const struct net_device_ops *ops = dev->netdev_ops; 1381 int ret; 1382 1383 ASSERT_RTNL(); 1384 1385 if (!netif_device_present(dev)) 1386 return -ENODEV; 1387 1388 /* Block netpoll from trying to do any rx path servicing. 1389 * If we don't do this there is a chance ndo_poll_controller 1390 * or ndo_poll may be running while we open the device 1391 */ 1392 netpoll_poll_disable(dev); 1393 1394 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack); 1395 ret = notifier_to_errno(ret); 1396 if (ret) 1397 return ret; 1398 1399 set_bit(__LINK_STATE_START, &dev->state); 1400 1401 if (ops->ndo_validate_addr) 1402 ret = ops->ndo_validate_addr(dev); 1403 1404 if (!ret && ops->ndo_open) 1405 ret = ops->ndo_open(dev); 1406 1407 netpoll_poll_enable(dev); 1408 1409 if (ret) 1410 clear_bit(__LINK_STATE_START, &dev->state); 1411 else { 1412 dev->flags |= IFF_UP; 1413 dev_set_rx_mode(dev); 1414 dev_activate(dev); 1415 add_device_randomness(dev->dev_addr, dev->addr_len); 1416 } 1417 1418 return ret; 1419 } 1420 1421 /** 1422 * dev_open - prepare an interface for use. 1423 * @dev: device to open 1424 * @extack: netlink extended ack 1425 * 1426 * Takes a device from down to up state. The device's private open 1427 * function is invoked and then the multicast lists are loaded. Finally 1428 * the device is moved into the up state and a %NETDEV_UP message is 1429 * sent to the netdev notifier chain. 1430 * 1431 * Calling this function on an active interface is a nop. On a failure 1432 * a negative errno code is returned. 1433 */ 1434 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack) 1435 { 1436 int ret; 1437 1438 if (dev->flags & IFF_UP) 1439 return 0; 1440 1441 ret = __dev_open(dev, extack); 1442 if (ret < 0) 1443 return ret; 1444 1445 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1446 call_netdevice_notifiers(NETDEV_UP, dev); 1447 1448 return ret; 1449 } 1450 EXPORT_SYMBOL(dev_open); 1451 1452 static void __dev_close_many(struct list_head *head) 1453 { 1454 struct net_device *dev; 1455 1456 ASSERT_RTNL(); 1457 might_sleep(); 1458 1459 list_for_each_entry(dev, head, close_list) { 1460 /* Temporarily disable netpoll until the interface is down */ 1461 netpoll_poll_disable(dev); 1462 1463 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1464 1465 clear_bit(__LINK_STATE_START, &dev->state); 1466 1467 /* Synchronize to scheduled poll. We cannot touch poll list, it 1468 * can be even on different cpu. So just clear netif_running(). 1469 * 1470 * dev->stop() will invoke napi_disable() on all of it's 1471 * napi_struct instances on this device. 1472 */ 1473 smp_mb__after_atomic(); /* Commit netif_running(). */ 1474 } 1475 1476 dev_deactivate_many(head); 1477 1478 list_for_each_entry(dev, head, close_list) { 1479 const struct net_device_ops *ops = dev->netdev_ops; 1480 1481 /* 1482 * Call the device specific close. This cannot fail. 1483 * Only if device is UP 1484 * 1485 * We allow it to be called even after a DETACH hot-plug 1486 * event. 1487 */ 1488 if (ops->ndo_stop) 1489 ops->ndo_stop(dev); 1490 1491 dev->flags &= ~IFF_UP; 1492 netpoll_poll_enable(dev); 1493 } 1494 } 1495 1496 static void __dev_close(struct net_device *dev) 1497 { 1498 LIST_HEAD(single); 1499 1500 list_add(&dev->close_list, &single); 1501 __dev_close_many(&single); 1502 list_del(&single); 1503 } 1504 1505 void dev_close_many(struct list_head *head, bool unlink) 1506 { 1507 struct net_device *dev, *tmp; 1508 1509 /* Remove the devices that don't need to be closed */ 1510 list_for_each_entry_safe(dev, tmp, head, close_list) 1511 if (!(dev->flags & IFF_UP)) 1512 list_del_init(&dev->close_list); 1513 1514 __dev_close_many(head); 1515 1516 list_for_each_entry_safe(dev, tmp, head, close_list) { 1517 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1518 call_netdevice_notifiers(NETDEV_DOWN, dev); 1519 if (unlink) 1520 list_del_init(&dev->close_list); 1521 } 1522 } 1523 EXPORT_SYMBOL(dev_close_many); 1524 1525 /** 1526 * dev_close - shutdown an interface. 1527 * @dev: device to shutdown 1528 * 1529 * This function moves an active device into down state. A 1530 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1531 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1532 * chain. 1533 */ 1534 void dev_close(struct net_device *dev) 1535 { 1536 if (dev->flags & IFF_UP) { 1537 LIST_HEAD(single); 1538 1539 list_add(&dev->close_list, &single); 1540 dev_close_many(&single, true); 1541 list_del(&single); 1542 } 1543 } 1544 EXPORT_SYMBOL(dev_close); 1545 1546 1547 /** 1548 * dev_disable_lro - disable Large Receive Offload on a device 1549 * @dev: device 1550 * 1551 * Disable Large Receive Offload (LRO) on a net device. Must be 1552 * called under RTNL. This is needed if received packets may be 1553 * forwarded to another interface. 1554 */ 1555 void dev_disable_lro(struct net_device *dev) 1556 { 1557 struct net_device *lower_dev; 1558 struct list_head *iter; 1559 1560 dev->wanted_features &= ~NETIF_F_LRO; 1561 netdev_update_features(dev); 1562 1563 if (unlikely(dev->features & NETIF_F_LRO)) 1564 netdev_WARN(dev, "failed to disable LRO!\n"); 1565 1566 netdev_for_each_lower_dev(dev, lower_dev, iter) 1567 dev_disable_lro(lower_dev); 1568 } 1569 EXPORT_SYMBOL(dev_disable_lro); 1570 1571 /** 1572 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device 1573 * @dev: device 1574 * 1575 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be 1576 * called under RTNL. This is needed if Generic XDP is installed on 1577 * the device. 1578 */ 1579 static void dev_disable_gro_hw(struct net_device *dev) 1580 { 1581 dev->wanted_features &= ~NETIF_F_GRO_HW; 1582 netdev_update_features(dev); 1583 1584 if (unlikely(dev->features & NETIF_F_GRO_HW)) 1585 netdev_WARN(dev, "failed to disable GRO_HW!\n"); 1586 } 1587 1588 const char *netdev_cmd_to_name(enum netdev_cmd cmd) 1589 { 1590 #define N(val) \ 1591 case NETDEV_##val: \ 1592 return "NETDEV_" __stringify(val); 1593 switch (cmd) { 1594 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER) 1595 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE) 1596 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE) 1597 N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER) 1598 N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO) 1599 N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO) 1600 N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN) 1601 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO) 1602 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO) 1603 N(PRE_CHANGEADDR) 1604 } 1605 #undef N 1606 return "UNKNOWN_NETDEV_EVENT"; 1607 } 1608 EXPORT_SYMBOL_GPL(netdev_cmd_to_name); 1609 1610 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val, 1611 struct net_device *dev) 1612 { 1613 struct netdev_notifier_info info = { 1614 .dev = dev, 1615 }; 1616 1617 return nb->notifier_call(nb, val, &info); 1618 } 1619 1620 static int dev_boot_phase = 1; 1621 1622 /** 1623 * register_netdevice_notifier - register a network notifier block 1624 * @nb: notifier 1625 * 1626 * Register a notifier to be called when network device events occur. 1627 * The notifier passed is linked into the kernel structures and must 1628 * not be reused until it has been unregistered. A negative errno code 1629 * is returned on a failure. 1630 * 1631 * When registered all registration and up events are replayed 1632 * to the new notifier to allow device to have a race free 1633 * view of the network device list. 1634 */ 1635 1636 int register_netdevice_notifier(struct notifier_block *nb) 1637 { 1638 struct net_device *dev; 1639 struct net_device *last; 1640 struct net *net; 1641 int err; 1642 1643 /* Close race with setup_net() and cleanup_net() */ 1644 down_write(&pernet_ops_rwsem); 1645 rtnl_lock(); 1646 err = raw_notifier_chain_register(&netdev_chain, nb); 1647 if (err) 1648 goto unlock; 1649 if (dev_boot_phase) 1650 goto unlock; 1651 for_each_net(net) { 1652 for_each_netdev(net, dev) { 1653 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev); 1654 err = notifier_to_errno(err); 1655 if (err) 1656 goto rollback; 1657 1658 if (!(dev->flags & IFF_UP)) 1659 continue; 1660 1661 call_netdevice_notifier(nb, NETDEV_UP, dev); 1662 } 1663 } 1664 1665 unlock: 1666 rtnl_unlock(); 1667 up_write(&pernet_ops_rwsem); 1668 return err; 1669 1670 rollback: 1671 last = dev; 1672 for_each_net(net) { 1673 for_each_netdev(net, dev) { 1674 if (dev == last) 1675 goto outroll; 1676 1677 if (dev->flags & IFF_UP) { 1678 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1679 dev); 1680 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1681 } 1682 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1683 } 1684 } 1685 1686 outroll: 1687 raw_notifier_chain_unregister(&netdev_chain, nb); 1688 goto unlock; 1689 } 1690 EXPORT_SYMBOL(register_netdevice_notifier); 1691 1692 /** 1693 * unregister_netdevice_notifier - unregister a network notifier block 1694 * @nb: notifier 1695 * 1696 * Unregister a notifier previously registered by 1697 * register_netdevice_notifier(). The notifier is unlinked into the 1698 * kernel structures and may then be reused. A negative errno code 1699 * is returned on a failure. 1700 * 1701 * After unregistering unregister and down device events are synthesized 1702 * for all devices on the device list to the removed notifier to remove 1703 * the need for special case cleanup code. 1704 */ 1705 1706 int unregister_netdevice_notifier(struct notifier_block *nb) 1707 { 1708 struct net_device *dev; 1709 struct net *net; 1710 int err; 1711 1712 /* Close race with setup_net() and cleanup_net() */ 1713 down_write(&pernet_ops_rwsem); 1714 rtnl_lock(); 1715 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1716 if (err) 1717 goto unlock; 1718 1719 for_each_net(net) { 1720 for_each_netdev(net, dev) { 1721 if (dev->flags & IFF_UP) { 1722 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1723 dev); 1724 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1725 } 1726 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1727 } 1728 } 1729 unlock: 1730 rtnl_unlock(); 1731 up_write(&pernet_ops_rwsem); 1732 return err; 1733 } 1734 EXPORT_SYMBOL(unregister_netdevice_notifier); 1735 1736 /** 1737 * call_netdevice_notifiers_info - call all network notifier blocks 1738 * @val: value passed unmodified to notifier function 1739 * @info: notifier information data 1740 * 1741 * Call all network notifier blocks. Parameters and return value 1742 * are as for raw_notifier_call_chain(). 1743 */ 1744 1745 static int call_netdevice_notifiers_info(unsigned long val, 1746 struct netdev_notifier_info *info) 1747 { 1748 ASSERT_RTNL(); 1749 return raw_notifier_call_chain(&netdev_chain, val, info); 1750 } 1751 1752 static int call_netdevice_notifiers_extack(unsigned long val, 1753 struct net_device *dev, 1754 struct netlink_ext_ack *extack) 1755 { 1756 struct netdev_notifier_info info = { 1757 .dev = dev, 1758 .extack = extack, 1759 }; 1760 1761 return call_netdevice_notifiers_info(val, &info); 1762 } 1763 1764 /** 1765 * call_netdevice_notifiers - call all network notifier blocks 1766 * @val: value passed unmodified to notifier function 1767 * @dev: net_device pointer passed unmodified to notifier function 1768 * 1769 * Call all network notifier blocks. Parameters and return value 1770 * are as for raw_notifier_call_chain(). 1771 */ 1772 1773 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 1774 { 1775 return call_netdevice_notifiers_extack(val, dev, NULL); 1776 } 1777 EXPORT_SYMBOL(call_netdevice_notifiers); 1778 1779 /** 1780 * call_netdevice_notifiers_mtu - call all network notifier blocks 1781 * @val: value passed unmodified to notifier function 1782 * @dev: net_device pointer passed unmodified to notifier function 1783 * @arg: additional u32 argument passed to the notifier function 1784 * 1785 * Call all network notifier blocks. Parameters and return value 1786 * are as for raw_notifier_call_chain(). 1787 */ 1788 static int call_netdevice_notifiers_mtu(unsigned long val, 1789 struct net_device *dev, u32 arg) 1790 { 1791 struct netdev_notifier_info_ext info = { 1792 .info.dev = dev, 1793 .ext.mtu = arg, 1794 }; 1795 1796 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0); 1797 1798 return call_netdevice_notifiers_info(val, &info.info); 1799 } 1800 1801 #ifdef CONFIG_NET_INGRESS 1802 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key); 1803 1804 void net_inc_ingress_queue(void) 1805 { 1806 static_branch_inc(&ingress_needed_key); 1807 } 1808 EXPORT_SYMBOL_GPL(net_inc_ingress_queue); 1809 1810 void net_dec_ingress_queue(void) 1811 { 1812 static_branch_dec(&ingress_needed_key); 1813 } 1814 EXPORT_SYMBOL_GPL(net_dec_ingress_queue); 1815 #endif 1816 1817 #ifdef CONFIG_NET_EGRESS 1818 static DEFINE_STATIC_KEY_FALSE(egress_needed_key); 1819 1820 void net_inc_egress_queue(void) 1821 { 1822 static_branch_inc(&egress_needed_key); 1823 } 1824 EXPORT_SYMBOL_GPL(net_inc_egress_queue); 1825 1826 void net_dec_egress_queue(void) 1827 { 1828 static_branch_dec(&egress_needed_key); 1829 } 1830 EXPORT_SYMBOL_GPL(net_dec_egress_queue); 1831 #endif 1832 1833 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key); 1834 #ifdef CONFIG_JUMP_LABEL 1835 static atomic_t netstamp_needed_deferred; 1836 static atomic_t netstamp_wanted; 1837 static void netstamp_clear(struct work_struct *work) 1838 { 1839 int deferred = atomic_xchg(&netstamp_needed_deferred, 0); 1840 int wanted; 1841 1842 wanted = atomic_add_return(deferred, &netstamp_wanted); 1843 if (wanted > 0) 1844 static_branch_enable(&netstamp_needed_key); 1845 else 1846 static_branch_disable(&netstamp_needed_key); 1847 } 1848 static DECLARE_WORK(netstamp_work, netstamp_clear); 1849 #endif 1850 1851 void net_enable_timestamp(void) 1852 { 1853 #ifdef CONFIG_JUMP_LABEL 1854 int wanted; 1855 1856 while (1) { 1857 wanted = atomic_read(&netstamp_wanted); 1858 if (wanted <= 0) 1859 break; 1860 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted) 1861 return; 1862 } 1863 atomic_inc(&netstamp_needed_deferred); 1864 schedule_work(&netstamp_work); 1865 #else 1866 static_branch_inc(&netstamp_needed_key); 1867 #endif 1868 } 1869 EXPORT_SYMBOL(net_enable_timestamp); 1870 1871 void net_disable_timestamp(void) 1872 { 1873 #ifdef CONFIG_JUMP_LABEL 1874 int wanted; 1875 1876 while (1) { 1877 wanted = atomic_read(&netstamp_wanted); 1878 if (wanted <= 1) 1879 break; 1880 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted) 1881 return; 1882 } 1883 atomic_dec(&netstamp_needed_deferred); 1884 schedule_work(&netstamp_work); 1885 #else 1886 static_branch_dec(&netstamp_needed_key); 1887 #endif 1888 } 1889 EXPORT_SYMBOL(net_disable_timestamp); 1890 1891 static inline void net_timestamp_set(struct sk_buff *skb) 1892 { 1893 skb->tstamp = 0; 1894 if (static_branch_unlikely(&netstamp_needed_key)) 1895 __net_timestamp(skb); 1896 } 1897 1898 #define net_timestamp_check(COND, SKB) \ 1899 if (static_branch_unlikely(&netstamp_needed_key)) { \ 1900 if ((COND) && !(SKB)->tstamp) \ 1901 __net_timestamp(SKB); \ 1902 } \ 1903 1904 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb) 1905 { 1906 unsigned int len; 1907 1908 if (!(dev->flags & IFF_UP)) 1909 return false; 1910 1911 len = dev->mtu + dev->hard_header_len + VLAN_HLEN; 1912 if (skb->len <= len) 1913 return true; 1914 1915 /* if TSO is enabled, we don't care about the length as the packet 1916 * could be forwarded without being segmented before 1917 */ 1918 if (skb_is_gso(skb)) 1919 return true; 1920 1921 return false; 1922 } 1923 EXPORT_SYMBOL_GPL(is_skb_forwardable); 1924 1925 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1926 { 1927 int ret = ____dev_forward_skb(dev, skb); 1928 1929 if (likely(!ret)) { 1930 skb->protocol = eth_type_trans(skb, dev); 1931 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN); 1932 } 1933 1934 return ret; 1935 } 1936 EXPORT_SYMBOL_GPL(__dev_forward_skb); 1937 1938 /** 1939 * dev_forward_skb - loopback an skb to another netif 1940 * 1941 * @dev: destination network device 1942 * @skb: buffer to forward 1943 * 1944 * return values: 1945 * NET_RX_SUCCESS (no congestion) 1946 * NET_RX_DROP (packet was dropped, but freed) 1947 * 1948 * dev_forward_skb can be used for injecting an skb from the 1949 * start_xmit function of one device into the receive queue 1950 * of another device. 1951 * 1952 * The receiving device may be in another namespace, so 1953 * we have to clear all information in the skb that could 1954 * impact namespace isolation. 1955 */ 1956 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1957 { 1958 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb); 1959 } 1960 EXPORT_SYMBOL_GPL(dev_forward_skb); 1961 1962 static inline int deliver_skb(struct sk_buff *skb, 1963 struct packet_type *pt_prev, 1964 struct net_device *orig_dev) 1965 { 1966 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 1967 return -ENOMEM; 1968 refcount_inc(&skb->users); 1969 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 1970 } 1971 1972 static inline void deliver_ptype_list_skb(struct sk_buff *skb, 1973 struct packet_type **pt, 1974 struct net_device *orig_dev, 1975 __be16 type, 1976 struct list_head *ptype_list) 1977 { 1978 struct packet_type *ptype, *pt_prev = *pt; 1979 1980 list_for_each_entry_rcu(ptype, ptype_list, list) { 1981 if (ptype->type != type) 1982 continue; 1983 if (pt_prev) 1984 deliver_skb(skb, pt_prev, orig_dev); 1985 pt_prev = ptype; 1986 } 1987 *pt = pt_prev; 1988 } 1989 1990 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb) 1991 { 1992 if (!ptype->af_packet_priv || !skb->sk) 1993 return false; 1994 1995 if (ptype->id_match) 1996 return ptype->id_match(ptype, skb->sk); 1997 else if ((struct sock *)ptype->af_packet_priv == skb->sk) 1998 return true; 1999 2000 return false; 2001 } 2002 2003 /** 2004 * dev_nit_active - return true if any network interface taps are in use 2005 * 2006 * @dev: network device to check for the presence of taps 2007 */ 2008 bool dev_nit_active(struct net_device *dev) 2009 { 2010 return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all); 2011 } 2012 EXPORT_SYMBOL_GPL(dev_nit_active); 2013 2014 /* 2015 * Support routine. Sends outgoing frames to any network 2016 * taps currently in use. 2017 */ 2018 2019 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 2020 { 2021 struct packet_type *ptype; 2022 struct sk_buff *skb2 = NULL; 2023 struct packet_type *pt_prev = NULL; 2024 struct list_head *ptype_list = &ptype_all; 2025 2026 rcu_read_lock(); 2027 again: 2028 list_for_each_entry_rcu(ptype, ptype_list, list) { 2029 if (ptype->ignore_outgoing) 2030 continue; 2031 2032 /* Never send packets back to the socket 2033 * they originated from - MvS (miquels@drinkel.ow.org) 2034 */ 2035 if (skb_loop_sk(ptype, skb)) 2036 continue; 2037 2038 if (pt_prev) { 2039 deliver_skb(skb2, pt_prev, skb->dev); 2040 pt_prev = ptype; 2041 continue; 2042 } 2043 2044 /* need to clone skb, done only once */ 2045 skb2 = skb_clone(skb, GFP_ATOMIC); 2046 if (!skb2) 2047 goto out_unlock; 2048 2049 net_timestamp_set(skb2); 2050 2051 /* skb->nh should be correctly 2052 * set by sender, so that the second statement is 2053 * just protection against buggy protocols. 2054 */ 2055 skb_reset_mac_header(skb2); 2056 2057 if (skb_network_header(skb2) < skb2->data || 2058 skb_network_header(skb2) > skb_tail_pointer(skb2)) { 2059 net_crit_ratelimited("protocol %04x is buggy, dev %s\n", 2060 ntohs(skb2->protocol), 2061 dev->name); 2062 skb_reset_network_header(skb2); 2063 } 2064 2065 skb2->transport_header = skb2->network_header; 2066 skb2->pkt_type = PACKET_OUTGOING; 2067 pt_prev = ptype; 2068 } 2069 2070 if (ptype_list == &ptype_all) { 2071 ptype_list = &dev->ptype_all; 2072 goto again; 2073 } 2074 out_unlock: 2075 if (pt_prev) { 2076 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC)) 2077 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 2078 else 2079 kfree_skb(skb2); 2080 } 2081 rcu_read_unlock(); 2082 } 2083 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit); 2084 2085 /** 2086 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change 2087 * @dev: Network device 2088 * @txq: number of queues available 2089 * 2090 * If real_num_tx_queues is changed the tc mappings may no longer be 2091 * valid. To resolve this verify the tc mapping remains valid and if 2092 * not NULL the mapping. With no priorities mapping to this 2093 * offset/count pair it will no longer be used. In the worst case TC0 2094 * is invalid nothing can be done so disable priority mappings. If is 2095 * expected that drivers will fix this mapping if they can before 2096 * calling netif_set_real_num_tx_queues. 2097 */ 2098 static void netif_setup_tc(struct net_device *dev, unsigned int txq) 2099 { 2100 int i; 2101 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2102 2103 /* If TC0 is invalidated disable TC mapping */ 2104 if (tc->offset + tc->count > txq) { 2105 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n"); 2106 dev->num_tc = 0; 2107 return; 2108 } 2109 2110 /* Invalidated prio to tc mappings set to TC0 */ 2111 for (i = 1; i < TC_BITMASK + 1; i++) { 2112 int q = netdev_get_prio_tc_map(dev, i); 2113 2114 tc = &dev->tc_to_txq[q]; 2115 if (tc->offset + tc->count > txq) { 2116 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n", 2117 i, q); 2118 netdev_set_prio_tc_map(dev, i, 0); 2119 } 2120 } 2121 } 2122 2123 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq) 2124 { 2125 if (dev->num_tc) { 2126 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2127 int i; 2128 2129 /* walk through the TCs and see if it falls into any of them */ 2130 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) { 2131 if ((txq - tc->offset) < tc->count) 2132 return i; 2133 } 2134 2135 /* didn't find it, just return -1 to indicate no match */ 2136 return -1; 2137 } 2138 2139 return 0; 2140 } 2141 EXPORT_SYMBOL(netdev_txq_to_tc); 2142 2143 #ifdef CONFIG_XPS 2144 struct static_key xps_needed __read_mostly; 2145 EXPORT_SYMBOL(xps_needed); 2146 struct static_key xps_rxqs_needed __read_mostly; 2147 EXPORT_SYMBOL(xps_rxqs_needed); 2148 static DEFINE_MUTEX(xps_map_mutex); 2149 #define xmap_dereference(P) \ 2150 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex)) 2151 2152 static bool remove_xps_queue(struct xps_dev_maps *dev_maps, 2153 int tci, u16 index) 2154 { 2155 struct xps_map *map = NULL; 2156 int pos; 2157 2158 if (dev_maps) 2159 map = xmap_dereference(dev_maps->attr_map[tci]); 2160 if (!map) 2161 return false; 2162 2163 for (pos = map->len; pos--;) { 2164 if (map->queues[pos] != index) 2165 continue; 2166 2167 if (map->len > 1) { 2168 map->queues[pos] = map->queues[--map->len]; 2169 break; 2170 } 2171 2172 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL); 2173 kfree_rcu(map, rcu); 2174 return false; 2175 } 2176 2177 return true; 2178 } 2179 2180 static bool remove_xps_queue_cpu(struct net_device *dev, 2181 struct xps_dev_maps *dev_maps, 2182 int cpu, u16 offset, u16 count) 2183 { 2184 int num_tc = dev->num_tc ? : 1; 2185 bool active = false; 2186 int tci; 2187 2188 for (tci = cpu * num_tc; num_tc--; tci++) { 2189 int i, j; 2190 2191 for (i = count, j = offset; i--; j++) { 2192 if (!remove_xps_queue(dev_maps, tci, j)) 2193 break; 2194 } 2195 2196 active |= i < 0; 2197 } 2198 2199 return active; 2200 } 2201 2202 static void reset_xps_maps(struct net_device *dev, 2203 struct xps_dev_maps *dev_maps, 2204 bool is_rxqs_map) 2205 { 2206 if (is_rxqs_map) { 2207 static_key_slow_dec_cpuslocked(&xps_rxqs_needed); 2208 RCU_INIT_POINTER(dev->xps_rxqs_map, NULL); 2209 } else { 2210 RCU_INIT_POINTER(dev->xps_cpus_map, NULL); 2211 } 2212 static_key_slow_dec_cpuslocked(&xps_needed); 2213 kfree_rcu(dev_maps, rcu); 2214 } 2215 2216 static void clean_xps_maps(struct net_device *dev, const unsigned long *mask, 2217 struct xps_dev_maps *dev_maps, unsigned int nr_ids, 2218 u16 offset, u16 count, bool is_rxqs_map) 2219 { 2220 bool active = false; 2221 int i, j; 2222 2223 for (j = -1; j = netif_attrmask_next(j, mask, nr_ids), 2224 j < nr_ids;) 2225 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, 2226 count); 2227 if (!active) 2228 reset_xps_maps(dev, dev_maps, is_rxqs_map); 2229 2230 if (!is_rxqs_map) { 2231 for (i = offset + (count - 1); count--; i--) { 2232 netdev_queue_numa_node_write( 2233 netdev_get_tx_queue(dev, i), 2234 NUMA_NO_NODE); 2235 } 2236 } 2237 } 2238 2239 static void netif_reset_xps_queues(struct net_device *dev, u16 offset, 2240 u16 count) 2241 { 2242 const unsigned long *possible_mask = NULL; 2243 struct xps_dev_maps *dev_maps; 2244 unsigned int nr_ids; 2245 2246 if (!static_key_false(&xps_needed)) 2247 return; 2248 2249 cpus_read_lock(); 2250 mutex_lock(&xps_map_mutex); 2251 2252 if (static_key_false(&xps_rxqs_needed)) { 2253 dev_maps = xmap_dereference(dev->xps_rxqs_map); 2254 if (dev_maps) { 2255 nr_ids = dev->num_rx_queues; 2256 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, 2257 offset, count, true); 2258 } 2259 } 2260 2261 dev_maps = xmap_dereference(dev->xps_cpus_map); 2262 if (!dev_maps) 2263 goto out_no_maps; 2264 2265 if (num_possible_cpus() > 1) 2266 possible_mask = cpumask_bits(cpu_possible_mask); 2267 nr_ids = nr_cpu_ids; 2268 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count, 2269 false); 2270 2271 out_no_maps: 2272 mutex_unlock(&xps_map_mutex); 2273 cpus_read_unlock(); 2274 } 2275 2276 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index) 2277 { 2278 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index); 2279 } 2280 2281 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index, 2282 u16 index, bool is_rxqs_map) 2283 { 2284 struct xps_map *new_map; 2285 int alloc_len = XPS_MIN_MAP_ALLOC; 2286 int i, pos; 2287 2288 for (pos = 0; map && pos < map->len; pos++) { 2289 if (map->queues[pos] != index) 2290 continue; 2291 return map; 2292 } 2293 2294 /* Need to add tx-queue to this CPU's/rx-queue's existing map */ 2295 if (map) { 2296 if (pos < map->alloc_len) 2297 return map; 2298 2299 alloc_len = map->alloc_len * 2; 2300 } 2301 2302 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's 2303 * map 2304 */ 2305 if (is_rxqs_map) 2306 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL); 2307 else 2308 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL, 2309 cpu_to_node(attr_index)); 2310 if (!new_map) 2311 return NULL; 2312 2313 for (i = 0; i < pos; i++) 2314 new_map->queues[i] = map->queues[i]; 2315 new_map->alloc_len = alloc_len; 2316 new_map->len = pos; 2317 2318 return new_map; 2319 } 2320 2321 /* Must be called under cpus_read_lock */ 2322 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask, 2323 u16 index, bool is_rxqs_map) 2324 { 2325 const unsigned long *online_mask = NULL, *possible_mask = NULL; 2326 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL; 2327 int i, j, tci, numa_node_id = -2; 2328 int maps_sz, num_tc = 1, tc = 0; 2329 struct xps_map *map, *new_map; 2330 bool active = false; 2331 unsigned int nr_ids; 2332 2333 if (dev->num_tc) { 2334 /* Do not allow XPS on subordinate device directly */ 2335 num_tc = dev->num_tc; 2336 if (num_tc < 0) 2337 return -EINVAL; 2338 2339 /* If queue belongs to subordinate dev use its map */ 2340 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev; 2341 2342 tc = netdev_txq_to_tc(dev, index); 2343 if (tc < 0) 2344 return -EINVAL; 2345 } 2346 2347 mutex_lock(&xps_map_mutex); 2348 if (is_rxqs_map) { 2349 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues); 2350 dev_maps = xmap_dereference(dev->xps_rxqs_map); 2351 nr_ids = dev->num_rx_queues; 2352 } else { 2353 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc); 2354 if (num_possible_cpus() > 1) { 2355 online_mask = cpumask_bits(cpu_online_mask); 2356 possible_mask = cpumask_bits(cpu_possible_mask); 2357 } 2358 dev_maps = xmap_dereference(dev->xps_cpus_map); 2359 nr_ids = nr_cpu_ids; 2360 } 2361 2362 if (maps_sz < L1_CACHE_BYTES) 2363 maps_sz = L1_CACHE_BYTES; 2364 2365 /* allocate memory for queue storage */ 2366 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids), 2367 j < nr_ids;) { 2368 if (!new_dev_maps) 2369 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL); 2370 if (!new_dev_maps) { 2371 mutex_unlock(&xps_map_mutex); 2372 return -ENOMEM; 2373 } 2374 2375 tci = j * num_tc + tc; 2376 map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) : 2377 NULL; 2378 2379 map = expand_xps_map(map, j, index, is_rxqs_map); 2380 if (!map) 2381 goto error; 2382 2383 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2384 } 2385 2386 if (!new_dev_maps) 2387 goto out_no_new_maps; 2388 2389 if (!dev_maps) { 2390 /* Increment static keys at most once per type */ 2391 static_key_slow_inc_cpuslocked(&xps_needed); 2392 if (is_rxqs_map) 2393 static_key_slow_inc_cpuslocked(&xps_rxqs_needed); 2394 } 2395 2396 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids), 2397 j < nr_ids;) { 2398 /* copy maps belonging to foreign traffic classes */ 2399 for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) { 2400 /* fill in the new device map from the old device map */ 2401 map = xmap_dereference(dev_maps->attr_map[tci]); 2402 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2403 } 2404 2405 /* We need to explicitly update tci as prevous loop 2406 * could break out early if dev_maps is NULL. 2407 */ 2408 tci = j * num_tc + tc; 2409 2410 if (netif_attr_test_mask(j, mask, nr_ids) && 2411 netif_attr_test_online(j, online_mask, nr_ids)) { 2412 /* add tx-queue to CPU/rx-queue maps */ 2413 int pos = 0; 2414 2415 map = xmap_dereference(new_dev_maps->attr_map[tci]); 2416 while ((pos < map->len) && (map->queues[pos] != index)) 2417 pos++; 2418 2419 if (pos == map->len) 2420 map->queues[map->len++] = index; 2421 #ifdef CONFIG_NUMA 2422 if (!is_rxqs_map) { 2423 if (numa_node_id == -2) 2424 numa_node_id = cpu_to_node(j); 2425 else if (numa_node_id != cpu_to_node(j)) 2426 numa_node_id = -1; 2427 } 2428 #endif 2429 } else if (dev_maps) { 2430 /* fill in the new device map from the old device map */ 2431 map = xmap_dereference(dev_maps->attr_map[tci]); 2432 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2433 } 2434 2435 /* copy maps belonging to foreign traffic classes */ 2436 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) { 2437 /* fill in the new device map from the old device map */ 2438 map = xmap_dereference(dev_maps->attr_map[tci]); 2439 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2440 } 2441 } 2442 2443 if (is_rxqs_map) 2444 rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps); 2445 else 2446 rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps); 2447 2448 /* Cleanup old maps */ 2449 if (!dev_maps) 2450 goto out_no_old_maps; 2451 2452 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids), 2453 j < nr_ids;) { 2454 for (i = num_tc, tci = j * num_tc; i--; tci++) { 2455 new_map = xmap_dereference(new_dev_maps->attr_map[tci]); 2456 map = xmap_dereference(dev_maps->attr_map[tci]); 2457 if (map && map != new_map) 2458 kfree_rcu(map, rcu); 2459 } 2460 } 2461 2462 kfree_rcu(dev_maps, rcu); 2463 2464 out_no_old_maps: 2465 dev_maps = new_dev_maps; 2466 active = true; 2467 2468 out_no_new_maps: 2469 if (!is_rxqs_map) { 2470 /* update Tx queue numa node */ 2471 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index), 2472 (numa_node_id >= 0) ? 2473 numa_node_id : NUMA_NO_NODE); 2474 } 2475 2476 if (!dev_maps) 2477 goto out_no_maps; 2478 2479 /* removes tx-queue from unused CPUs/rx-queues */ 2480 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids), 2481 j < nr_ids;) { 2482 for (i = tc, tci = j * num_tc; i--; tci++) 2483 active |= remove_xps_queue(dev_maps, tci, index); 2484 if (!netif_attr_test_mask(j, mask, nr_ids) || 2485 !netif_attr_test_online(j, online_mask, nr_ids)) 2486 active |= remove_xps_queue(dev_maps, tci, index); 2487 for (i = num_tc - tc, tci++; --i; tci++) 2488 active |= remove_xps_queue(dev_maps, tci, index); 2489 } 2490 2491 /* free map if not active */ 2492 if (!active) 2493 reset_xps_maps(dev, dev_maps, is_rxqs_map); 2494 2495 out_no_maps: 2496 mutex_unlock(&xps_map_mutex); 2497 2498 return 0; 2499 error: 2500 /* remove any maps that we added */ 2501 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids), 2502 j < nr_ids;) { 2503 for (i = num_tc, tci = j * num_tc; i--; tci++) { 2504 new_map = xmap_dereference(new_dev_maps->attr_map[tci]); 2505 map = dev_maps ? 2506 xmap_dereference(dev_maps->attr_map[tci]) : 2507 NULL; 2508 if (new_map && new_map != map) 2509 kfree(new_map); 2510 } 2511 } 2512 2513 mutex_unlock(&xps_map_mutex); 2514 2515 kfree(new_dev_maps); 2516 return -ENOMEM; 2517 } 2518 EXPORT_SYMBOL_GPL(__netif_set_xps_queue); 2519 2520 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 2521 u16 index) 2522 { 2523 int ret; 2524 2525 cpus_read_lock(); 2526 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, false); 2527 cpus_read_unlock(); 2528 2529 return ret; 2530 } 2531 EXPORT_SYMBOL(netif_set_xps_queue); 2532 2533 #endif 2534 static void netdev_unbind_all_sb_channels(struct net_device *dev) 2535 { 2536 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues]; 2537 2538 /* Unbind any subordinate channels */ 2539 while (txq-- != &dev->_tx[0]) { 2540 if (txq->sb_dev) 2541 netdev_unbind_sb_channel(dev, txq->sb_dev); 2542 } 2543 } 2544 2545 void netdev_reset_tc(struct net_device *dev) 2546 { 2547 #ifdef CONFIG_XPS 2548 netif_reset_xps_queues_gt(dev, 0); 2549 #endif 2550 netdev_unbind_all_sb_channels(dev); 2551 2552 /* Reset TC configuration of device */ 2553 dev->num_tc = 0; 2554 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq)); 2555 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map)); 2556 } 2557 EXPORT_SYMBOL(netdev_reset_tc); 2558 2559 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset) 2560 { 2561 if (tc >= dev->num_tc) 2562 return -EINVAL; 2563 2564 #ifdef CONFIG_XPS 2565 netif_reset_xps_queues(dev, offset, count); 2566 #endif 2567 dev->tc_to_txq[tc].count = count; 2568 dev->tc_to_txq[tc].offset = offset; 2569 return 0; 2570 } 2571 EXPORT_SYMBOL(netdev_set_tc_queue); 2572 2573 int netdev_set_num_tc(struct net_device *dev, u8 num_tc) 2574 { 2575 if (num_tc > TC_MAX_QUEUE) 2576 return -EINVAL; 2577 2578 #ifdef CONFIG_XPS 2579 netif_reset_xps_queues_gt(dev, 0); 2580 #endif 2581 netdev_unbind_all_sb_channels(dev); 2582 2583 dev->num_tc = num_tc; 2584 return 0; 2585 } 2586 EXPORT_SYMBOL(netdev_set_num_tc); 2587 2588 void netdev_unbind_sb_channel(struct net_device *dev, 2589 struct net_device *sb_dev) 2590 { 2591 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues]; 2592 2593 #ifdef CONFIG_XPS 2594 netif_reset_xps_queues_gt(sb_dev, 0); 2595 #endif 2596 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq)); 2597 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map)); 2598 2599 while (txq-- != &dev->_tx[0]) { 2600 if (txq->sb_dev == sb_dev) 2601 txq->sb_dev = NULL; 2602 } 2603 } 2604 EXPORT_SYMBOL(netdev_unbind_sb_channel); 2605 2606 int netdev_bind_sb_channel_queue(struct net_device *dev, 2607 struct net_device *sb_dev, 2608 u8 tc, u16 count, u16 offset) 2609 { 2610 /* Make certain the sb_dev and dev are already configured */ 2611 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc) 2612 return -EINVAL; 2613 2614 /* We cannot hand out queues we don't have */ 2615 if ((offset + count) > dev->real_num_tx_queues) 2616 return -EINVAL; 2617 2618 /* Record the mapping */ 2619 sb_dev->tc_to_txq[tc].count = count; 2620 sb_dev->tc_to_txq[tc].offset = offset; 2621 2622 /* Provide a way for Tx queue to find the tc_to_txq map or 2623 * XPS map for itself. 2624 */ 2625 while (count--) 2626 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev; 2627 2628 return 0; 2629 } 2630 EXPORT_SYMBOL(netdev_bind_sb_channel_queue); 2631 2632 int netdev_set_sb_channel(struct net_device *dev, u16 channel) 2633 { 2634 /* Do not use a multiqueue device to represent a subordinate channel */ 2635 if (netif_is_multiqueue(dev)) 2636 return -ENODEV; 2637 2638 /* We allow channels 1 - 32767 to be used for subordinate channels. 2639 * Channel 0 is meant to be "native" mode and used only to represent 2640 * the main root device. We allow writing 0 to reset the device back 2641 * to normal mode after being used as a subordinate channel. 2642 */ 2643 if (channel > S16_MAX) 2644 return -EINVAL; 2645 2646 dev->num_tc = -channel; 2647 2648 return 0; 2649 } 2650 EXPORT_SYMBOL(netdev_set_sb_channel); 2651 2652 /* 2653 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 2654 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed. 2655 */ 2656 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 2657 { 2658 bool disabling; 2659 int rc; 2660 2661 disabling = txq < dev->real_num_tx_queues; 2662 2663 if (txq < 1 || txq > dev->num_tx_queues) 2664 return -EINVAL; 2665 2666 if (dev->reg_state == NETREG_REGISTERED || 2667 dev->reg_state == NETREG_UNREGISTERING) { 2668 ASSERT_RTNL(); 2669 2670 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 2671 txq); 2672 if (rc) 2673 return rc; 2674 2675 if (dev->num_tc) 2676 netif_setup_tc(dev, txq); 2677 2678 dev->real_num_tx_queues = txq; 2679 2680 if (disabling) { 2681 synchronize_net(); 2682 qdisc_reset_all_tx_gt(dev, txq); 2683 #ifdef CONFIG_XPS 2684 netif_reset_xps_queues_gt(dev, txq); 2685 #endif 2686 } 2687 } else { 2688 dev->real_num_tx_queues = txq; 2689 } 2690 2691 return 0; 2692 } 2693 EXPORT_SYMBOL(netif_set_real_num_tx_queues); 2694 2695 #ifdef CONFIG_SYSFS 2696 /** 2697 * netif_set_real_num_rx_queues - set actual number of RX queues used 2698 * @dev: Network device 2699 * @rxq: Actual number of RX queues 2700 * 2701 * This must be called either with the rtnl_lock held or before 2702 * registration of the net device. Returns 0 on success, or a 2703 * negative error code. If called before registration, it always 2704 * succeeds. 2705 */ 2706 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 2707 { 2708 int rc; 2709 2710 if (rxq < 1 || rxq > dev->num_rx_queues) 2711 return -EINVAL; 2712 2713 if (dev->reg_state == NETREG_REGISTERED) { 2714 ASSERT_RTNL(); 2715 2716 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 2717 rxq); 2718 if (rc) 2719 return rc; 2720 } 2721 2722 dev->real_num_rx_queues = rxq; 2723 return 0; 2724 } 2725 EXPORT_SYMBOL(netif_set_real_num_rx_queues); 2726 #endif 2727 2728 /** 2729 * netif_get_num_default_rss_queues - default number of RSS queues 2730 * 2731 * This routine should set an upper limit on the number of RSS queues 2732 * used by default by multiqueue devices. 2733 */ 2734 int netif_get_num_default_rss_queues(void) 2735 { 2736 return is_kdump_kernel() ? 2737 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus()); 2738 } 2739 EXPORT_SYMBOL(netif_get_num_default_rss_queues); 2740 2741 static void __netif_reschedule(struct Qdisc *q) 2742 { 2743 struct softnet_data *sd; 2744 unsigned long flags; 2745 2746 local_irq_save(flags); 2747 sd = this_cpu_ptr(&softnet_data); 2748 q->next_sched = NULL; 2749 *sd->output_queue_tailp = q; 2750 sd->output_queue_tailp = &q->next_sched; 2751 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2752 local_irq_restore(flags); 2753 } 2754 2755 void __netif_schedule(struct Qdisc *q) 2756 { 2757 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 2758 __netif_reschedule(q); 2759 } 2760 EXPORT_SYMBOL(__netif_schedule); 2761 2762 struct dev_kfree_skb_cb { 2763 enum skb_free_reason reason; 2764 }; 2765 2766 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb) 2767 { 2768 return (struct dev_kfree_skb_cb *)skb->cb; 2769 } 2770 2771 void netif_schedule_queue(struct netdev_queue *txq) 2772 { 2773 rcu_read_lock(); 2774 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) { 2775 struct Qdisc *q = rcu_dereference(txq->qdisc); 2776 2777 __netif_schedule(q); 2778 } 2779 rcu_read_unlock(); 2780 } 2781 EXPORT_SYMBOL(netif_schedule_queue); 2782 2783 void netif_tx_wake_queue(struct netdev_queue *dev_queue) 2784 { 2785 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) { 2786 struct Qdisc *q; 2787 2788 rcu_read_lock(); 2789 q = rcu_dereference(dev_queue->qdisc); 2790 __netif_schedule(q); 2791 rcu_read_unlock(); 2792 } 2793 } 2794 EXPORT_SYMBOL(netif_tx_wake_queue); 2795 2796 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason) 2797 { 2798 unsigned long flags; 2799 2800 if (unlikely(!skb)) 2801 return; 2802 2803 if (likely(refcount_read(&skb->users) == 1)) { 2804 smp_rmb(); 2805 refcount_set(&skb->users, 0); 2806 } else if (likely(!refcount_dec_and_test(&skb->users))) { 2807 return; 2808 } 2809 get_kfree_skb_cb(skb)->reason = reason; 2810 local_irq_save(flags); 2811 skb->next = __this_cpu_read(softnet_data.completion_queue); 2812 __this_cpu_write(softnet_data.completion_queue, skb); 2813 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2814 local_irq_restore(flags); 2815 } 2816 EXPORT_SYMBOL(__dev_kfree_skb_irq); 2817 2818 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason) 2819 { 2820 if (in_irq() || irqs_disabled()) 2821 __dev_kfree_skb_irq(skb, reason); 2822 else 2823 dev_kfree_skb(skb); 2824 } 2825 EXPORT_SYMBOL(__dev_kfree_skb_any); 2826 2827 2828 /** 2829 * netif_device_detach - mark device as removed 2830 * @dev: network device 2831 * 2832 * Mark device as removed from system and therefore no longer available. 2833 */ 2834 void netif_device_detach(struct net_device *dev) 2835 { 2836 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 2837 netif_running(dev)) { 2838 netif_tx_stop_all_queues(dev); 2839 } 2840 } 2841 EXPORT_SYMBOL(netif_device_detach); 2842 2843 /** 2844 * netif_device_attach - mark device as attached 2845 * @dev: network device 2846 * 2847 * Mark device as attached from system and restart if needed. 2848 */ 2849 void netif_device_attach(struct net_device *dev) 2850 { 2851 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 2852 netif_running(dev)) { 2853 netif_tx_wake_all_queues(dev); 2854 __netdev_watchdog_up(dev); 2855 } 2856 } 2857 EXPORT_SYMBOL(netif_device_attach); 2858 2859 /* 2860 * Returns a Tx hash based on the given packet descriptor a Tx queues' number 2861 * to be used as a distribution range. 2862 */ 2863 static u16 skb_tx_hash(const struct net_device *dev, 2864 const struct net_device *sb_dev, 2865 struct sk_buff *skb) 2866 { 2867 u32 hash; 2868 u16 qoffset = 0; 2869 u16 qcount = dev->real_num_tx_queues; 2870 2871 if (dev->num_tc) { 2872 u8 tc = netdev_get_prio_tc_map(dev, skb->priority); 2873 2874 qoffset = sb_dev->tc_to_txq[tc].offset; 2875 qcount = sb_dev->tc_to_txq[tc].count; 2876 } 2877 2878 if (skb_rx_queue_recorded(skb)) { 2879 hash = skb_get_rx_queue(skb); 2880 while (unlikely(hash >= qcount)) 2881 hash -= qcount; 2882 return hash + qoffset; 2883 } 2884 2885 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset; 2886 } 2887 2888 static void skb_warn_bad_offload(const struct sk_buff *skb) 2889 { 2890 static const netdev_features_t null_features; 2891 struct net_device *dev = skb->dev; 2892 const char *name = ""; 2893 2894 if (!net_ratelimit()) 2895 return; 2896 2897 if (dev) { 2898 if (dev->dev.parent) 2899 name = dev_driver_string(dev->dev.parent); 2900 else 2901 name = netdev_name(dev); 2902 } 2903 skb_dump(KERN_WARNING, skb, false); 2904 WARN(1, "%s: caps=(%pNF, %pNF)\n", 2905 name, dev ? &dev->features : &null_features, 2906 skb->sk ? &skb->sk->sk_route_caps : &null_features); 2907 } 2908 2909 /* 2910 * Invalidate hardware checksum when packet is to be mangled, and 2911 * complete checksum manually on outgoing path. 2912 */ 2913 int skb_checksum_help(struct sk_buff *skb) 2914 { 2915 __wsum csum; 2916 int ret = 0, offset; 2917 2918 if (skb->ip_summed == CHECKSUM_COMPLETE) 2919 goto out_set_summed; 2920 2921 if (unlikely(skb_shinfo(skb)->gso_size)) { 2922 skb_warn_bad_offload(skb); 2923 return -EINVAL; 2924 } 2925 2926 /* Before computing a checksum, we should make sure no frag could 2927 * be modified by an external entity : checksum could be wrong. 2928 */ 2929 if (skb_has_shared_frag(skb)) { 2930 ret = __skb_linearize(skb); 2931 if (ret) 2932 goto out; 2933 } 2934 2935 offset = skb_checksum_start_offset(skb); 2936 BUG_ON(offset >= skb_headlen(skb)); 2937 csum = skb_checksum(skb, offset, skb->len - offset, 0); 2938 2939 offset += skb->csum_offset; 2940 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 2941 2942 if (skb_cloned(skb) && 2943 !skb_clone_writable(skb, offset + sizeof(__sum16))) { 2944 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2945 if (ret) 2946 goto out; 2947 } 2948 2949 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0; 2950 out_set_summed: 2951 skb->ip_summed = CHECKSUM_NONE; 2952 out: 2953 return ret; 2954 } 2955 EXPORT_SYMBOL(skb_checksum_help); 2956 2957 int skb_crc32c_csum_help(struct sk_buff *skb) 2958 { 2959 __le32 crc32c_csum; 2960 int ret = 0, offset, start; 2961 2962 if (skb->ip_summed != CHECKSUM_PARTIAL) 2963 goto out; 2964 2965 if (unlikely(skb_is_gso(skb))) 2966 goto out; 2967 2968 /* Before computing a checksum, we should make sure no frag could 2969 * be modified by an external entity : checksum could be wrong. 2970 */ 2971 if (unlikely(skb_has_shared_frag(skb))) { 2972 ret = __skb_linearize(skb); 2973 if (ret) 2974 goto out; 2975 } 2976 start = skb_checksum_start_offset(skb); 2977 offset = start + offsetof(struct sctphdr, checksum); 2978 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) { 2979 ret = -EINVAL; 2980 goto out; 2981 } 2982 if (skb_cloned(skb) && 2983 !skb_clone_writable(skb, offset + sizeof(__le32))) { 2984 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2985 if (ret) 2986 goto out; 2987 } 2988 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start, 2989 skb->len - start, ~(__u32)0, 2990 crc32c_csum_stub)); 2991 *(__le32 *)(skb->data + offset) = crc32c_csum; 2992 skb->ip_summed = CHECKSUM_NONE; 2993 skb->csum_not_inet = 0; 2994 out: 2995 return ret; 2996 } 2997 2998 __be16 skb_network_protocol(struct sk_buff *skb, int *depth) 2999 { 3000 __be16 type = skb->protocol; 3001 3002 /* Tunnel gso handlers can set protocol to ethernet. */ 3003 if (type == htons(ETH_P_TEB)) { 3004 struct ethhdr *eth; 3005 3006 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr)))) 3007 return 0; 3008 3009 eth = (struct ethhdr *)skb->data; 3010 type = eth->h_proto; 3011 } 3012 3013 return __vlan_get_protocol(skb, type, depth); 3014 } 3015 3016 /** 3017 * skb_mac_gso_segment - mac layer segmentation handler. 3018 * @skb: buffer to segment 3019 * @features: features for the output path (see dev->features) 3020 */ 3021 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 3022 netdev_features_t features) 3023 { 3024 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 3025 struct packet_offload *ptype; 3026 int vlan_depth = skb->mac_len; 3027 __be16 type = skb_network_protocol(skb, &vlan_depth); 3028 3029 if (unlikely(!type)) 3030 return ERR_PTR(-EINVAL); 3031 3032 __skb_pull(skb, vlan_depth); 3033 3034 rcu_read_lock(); 3035 list_for_each_entry_rcu(ptype, &offload_base, list) { 3036 if (ptype->type == type && ptype->callbacks.gso_segment) { 3037 segs = ptype->callbacks.gso_segment(skb, features); 3038 break; 3039 } 3040 } 3041 rcu_read_unlock(); 3042 3043 __skb_push(skb, skb->data - skb_mac_header(skb)); 3044 3045 return segs; 3046 } 3047 EXPORT_SYMBOL(skb_mac_gso_segment); 3048 3049 3050 /* openvswitch calls this on rx path, so we need a different check. 3051 */ 3052 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path) 3053 { 3054 if (tx_path) 3055 return skb->ip_summed != CHECKSUM_PARTIAL && 3056 skb->ip_summed != CHECKSUM_UNNECESSARY; 3057 3058 return skb->ip_summed == CHECKSUM_NONE; 3059 } 3060 3061 /** 3062 * __skb_gso_segment - Perform segmentation on skb. 3063 * @skb: buffer to segment 3064 * @features: features for the output path (see dev->features) 3065 * @tx_path: whether it is called in TX path 3066 * 3067 * This function segments the given skb and returns a list of segments. 3068 * 3069 * It may return NULL if the skb requires no segmentation. This is 3070 * only possible when GSO is used for verifying header integrity. 3071 * 3072 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb. 3073 */ 3074 struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 3075 netdev_features_t features, bool tx_path) 3076 { 3077 struct sk_buff *segs; 3078 3079 if (unlikely(skb_needs_check(skb, tx_path))) { 3080 int err; 3081 3082 /* We're going to init ->check field in TCP or UDP header */ 3083 err = skb_cow_head(skb, 0); 3084 if (err < 0) 3085 return ERR_PTR(err); 3086 } 3087 3088 /* Only report GSO partial support if it will enable us to 3089 * support segmentation on this frame without needing additional 3090 * work. 3091 */ 3092 if (features & NETIF_F_GSO_PARTIAL) { 3093 netdev_features_t partial_features = NETIF_F_GSO_ROBUST; 3094 struct net_device *dev = skb->dev; 3095 3096 partial_features |= dev->features & dev->gso_partial_features; 3097 if (!skb_gso_ok(skb, features | partial_features)) 3098 features &= ~NETIF_F_GSO_PARTIAL; 3099 } 3100 3101 BUILD_BUG_ON(SKB_SGO_CB_OFFSET + 3102 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb)); 3103 3104 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb); 3105 SKB_GSO_CB(skb)->encap_level = 0; 3106 3107 skb_reset_mac_header(skb); 3108 skb_reset_mac_len(skb); 3109 3110 segs = skb_mac_gso_segment(skb, features); 3111 3112 if (unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs))) 3113 skb_warn_bad_offload(skb); 3114 3115 return segs; 3116 } 3117 EXPORT_SYMBOL(__skb_gso_segment); 3118 3119 /* Take action when hardware reception checksum errors are detected. */ 3120 #ifdef CONFIG_BUG 3121 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb) 3122 { 3123 if (net_ratelimit()) { 3124 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>"); 3125 skb_dump(KERN_ERR, skb, true); 3126 dump_stack(); 3127 } 3128 } 3129 EXPORT_SYMBOL(netdev_rx_csum_fault); 3130 #endif 3131 3132 /* XXX: check that highmem exists at all on the given machine. */ 3133 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 3134 { 3135 #ifdef CONFIG_HIGHMEM 3136 int i; 3137 3138 if (!(dev->features & NETIF_F_HIGHDMA)) { 3139 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3140 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3141 3142 if (PageHighMem(skb_frag_page(frag))) 3143 return 1; 3144 } 3145 } 3146 #endif 3147 return 0; 3148 } 3149 3150 /* If MPLS offload request, verify we are testing hardware MPLS features 3151 * instead of standard features for the netdev. 3152 */ 3153 #if IS_ENABLED(CONFIG_NET_MPLS_GSO) 3154 static netdev_features_t net_mpls_features(struct sk_buff *skb, 3155 netdev_features_t features, 3156 __be16 type) 3157 { 3158 if (eth_p_mpls(type)) 3159 features &= skb->dev->mpls_features; 3160 3161 return features; 3162 } 3163 #else 3164 static netdev_features_t net_mpls_features(struct sk_buff *skb, 3165 netdev_features_t features, 3166 __be16 type) 3167 { 3168 return features; 3169 } 3170 #endif 3171 3172 static netdev_features_t harmonize_features(struct sk_buff *skb, 3173 netdev_features_t features) 3174 { 3175 int tmp; 3176 __be16 type; 3177 3178 type = skb_network_protocol(skb, &tmp); 3179 features = net_mpls_features(skb, features, type); 3180 3181 if (skb->ip_summed != CHECKSUM_NONE && 3182 !can_checksum_protocol(features, type)) { 3183 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 3184 } 3185 if (illegal_highdma(skb->dev, skb)) 3186 features &= ~NETIF_F_SG; 3187 3188 return features; 3189 } 3190 3191 netdev_features_t passthru_features_check(struct sk_buff *skb, 3192 struct net_device *dev, 3193 netdev_features_t features) 3194 { 3195 return features; 3196 } 3197 EXPORT_SYMBOL(passthru_features_check); 3198 3199 static netdev_features_t dflt_features_check(struct sk_buff *skb, 3200 struct net_device *dev, 3201 netdev_features_t features) 3202 { 3203 return vlan_features_check(skb, features); 3204 } 3205 3206 static netdev_features_t gso_features_check(const struct sk_buff *skb, 3207 struct net_device *dev, 3208 netdev_features_t features) 3209 { 3210 u16 gso_segs = skb_shinfo(skb)->gso_segs; 3211 3212 if (gso_segs > dev->gso_max_segs) 3213 return features & ~NETIF_F_GSO_MASK; 3214 3215 /* Support for GSO partial features requires software 3216 * intervention before we can actually process the packets 3217 * so we need to strip support for any partial features now 3218 * and we can pull them back in after we have partially 3219 * segmented the frame. 3220 */ 3221 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL)) 3222 features &= ~dev->gso_partial_features; 3223 3224 /* Make sure to clear the IPv4 ID mangling feature if the 3225 * IPv4 header has the potential to be fragmented. 3226 */ 3227 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) { 3228 struct iphdr *iph = skb->encapsulation ? 3229 inner_ip_hdr(skb) : ip_hdr(skb); 3230 3231 if (!(iph->frag_off & htons(IP_DF))) 3232 features &= ~NETIF_F_TSO_MANGLEID; 3233 } 3234 3235 return features; 3236 } 3237 3238 netdev_features_t netif_skb_features(struct sk_buff *skb) 3239 { 3240 struct net_device *dev = skb->dev; 3241 netdev_features_t features = dev->features; 3242 3243 if (skb_is_gso(skb)) 3244 features = gso_features_check(skb, dev, features); 3245 3246 /* If encapsulation offload request, verify we are testing 3247 * hardware encapsulation features instead of standard 3248 * features for the netdev 3249 */ 3250 if (skb->encapsulation) 3251 features &= dev->hw_enc_features; 3252 3253 if (skb_vlan_tagged(skb)) 3254 features = netdev_intersect_features(features, 3255 dev->vlan_features | 3256 NETIF_F_HW_VLAN_CTAG_TX | 3257 NETIF_F_HW_VLAN_STAG_TX); 3258 3259 if (dev->netdev_ops->ndo_features_check) 3260 features &= dev->netdev_ops->ndo_features_check(skb, dev, 3261 features); 3262 else 3263 features &= dflt_features_check(skb, dev, features); 3264 3265 return harmonize_features(skb, features); 3266 } 3267 EXPORT_SYMBOL(netif_skb_features); 3268 3269 static int xmit_one(struct sk_buff *skb, struct net_device *dev, 3270 struct netdev_queue *txq, bool more) 3271 { 3272 unsigned int len; 3273 int rc; 3274 3275 if (dev_nit_active(dev)) 3276 dev_queue_xmit_nit(skb, dev); 3277 3278 len = skb->len; 3279 trace_net_dev_start_xmit(skb, dev); 3280 rc = netdev_start_xmit(skb, dev, txq, more); 3281 trace_net_dev_xmit(skb, rc, dev, len); 3282 3283 return rc; 3284 } 3285 3286 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev, 3287 struct netdev_queue *txq, int *ret) 3288 { 3289 struct sk_buff *skb = first; 3290 int rc = NETDEV_TX_OK; 3291 3292 while (skb) { 3293 struct sk_buff *next = skb->next; 3294 3295 skb_mark_not_on_list(skb); 3296 rc = xmit_one(skb, dev, txq, next != NULL); 3297 if (unlikely(!dev_xmit_complete(rc))) { 3298 skb->next = next; 3299 goto out; 3300 } 3301 3302 skb = next; 3303 if (netif_tx_queue_stopped(txq) && skb) { 3304 rc = NETDEV_TX_BUSY; 3305 break; 3306 } 3307 } 3308 3309 out: 3310 *ret = rc; 3311 return skb; 3312 } 3313 3314 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb, 3315 netdev_features_t features) 3316 { 3317 if (skb_vlan_tag_present(skb) && 3318 !vlan_hw_offload_capable(features, skb->vlan_proto)) 3319 skb = __vlan_hwaccel_push_inside(skb); 3320 return skb; 3321 } 3322 3323 int skb_csum_hwoffload_help(struct sk_buff *skb, 3324 const netdev_features_t features) 3325 { 3326 if (unlikely(skb->csum_not_inet)) 3327 return !!(features & NETIF_F_SCTP_CRC) ? 0 : 3328 skb_crc32c_csum_help(skb); 3329 3330 return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb); 3331 } 3332 EXPORT_SYMBOL(skb_csum_hwoffload_help); 3333 3334 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again) 3335 { 3336 netdev_features_t features; 3337 3338 features = netif_skb_features(skb); 3339 skb = validate_xmit_vlan(skb, features); 3340 if (unlikely(!skb)) 3341 goto out_null; 3342 3343 skb = sk_validate_xmit_skb(skb, dev); 3344 if (unlikely(!skb)) 3345 goto out_null; 3346 3347 if (netif_needs_gso(skb, features)) { 3348 struct sk_buff *segs; 3349 3350 segs = skb_gso_segment(skb, features); 3351 if (IS_ERR(segs)) { 3352 goto out_kfree_skb; 3353 } else if (segs) { 3354 consume_skb(skb); 3355 skb = segs; 3356 } 3357 } else { 3358 if (skb_needs_linearize(skb, features) && 3359 __skb_linearize(skb)) 3360 goto out_kfree_skb; 3361 3362 /* If packet is not checksummed and device does not 3363 * support checksumming for this protocol, complete 3364 * checksumming here. 3365 */ 3366 if (skb->ip_summed == CHECKSUM_PARTIAL) { 3367 if (skb->encapsulation) 3368 skb_set_inner_transport_header(skb, 3369 skb_checksum_start_offset(skb)); 3370 else 3371 skb_set_transport_header(skb, 3372 skb_checksum_start_offset(skb)); 3373 if (skb_csum_hwoffload_help(skb, features)) 3374 goto out_kfree_skb; 3375 } 3376 } 3377 3378 skb = validate_xmit_xfrm(skb, features, again); 3379 3380 return skb; 3381 3382 out_kfree_skb: 3383 kfree_skb(skb); 3384 out_null: 3385 atomic_long_inc(&dev->tx_dropped); 3386 return NULL; 3387 } 3388 3389 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again) 3390 { 3391 struct sk_buff *next, *head = NULL, *tail; 3392 3393 for (; skb != NULL; skb = next) { 3394 next = skb->next; 3395 skb_mark_not_on_list(skb); 3396 3397 /* in case skb wont be segmented, point to itself */ 3398 skb->prev = skb; 3399 3400 skb = validate_xmit_skb(skb, dev, again); 3401 if (!skb) 3402 continue; 3403 3404 if (!head) 3405 head = skb; 3406 else 3407 tail->next = skb; 3408 /* If skb was segmented, skb->prev points to 3409 * the last segment. If not, it still contains skb. 3410 */ 3411 tail = skb->prev; 3412 } 3413 return head; 3414 } 3415 EXPORT_SYMBOL_GPL(validate_xmit_skb_list); 3416 3417 static void qdisc_pkt_len_init(struct sk_buff *skb) 3418 { 3419 const struct skb_shared_info *shinfo = skb_shinfo(skb); 3420 3421 qdisc_skb_cb(skb)->pkt_len = skb->len; 3422 3423 /* To get more precise estimation of bytes sent on wire, 3424 * we add to pkt_len the headers size of all segments 3425 */ 3426 if (shinfo->gso_size && skb_transport_header_was_set(skb)) { 3427 unsigned int hdr_len; 3428 u16 gso_segs = shinfo->gso_segs; 3429 3430 /* mac layer + network layer */ 3431 hdr_len = skb_transport_header(skb) - skb_mac_header(skb); 3432 3433 /* + transport layer */ 3434 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) { 3435 const struct tcphdr *th; 3436 struct tcphdr _tcphdr; 3437 3438 th = skb_header_pointer(skb, skb_transport_offset(skb), 3439 sizeof(_tcphdr), &_tcphdr); 3440 if (likely(th)) 3441 hdr_len += __tcp_hdrlen(th); 3442 } else { 3443 struct udphdr _udphdr; 3444 3445 if (skb_header_pointer(skb, skb_transport_offset(skb), 3446 sizeof(_udphdr), &_udphdr)) 3447 hdr_len += sizeof(struct udphdr); 3448 } 3449 3450 if (shinfo->gso_type & SKB_GSO_DODGY) 3451 gso_segs = DIV_ROUND_UP(skb->len - hdr_len, 3452 shinfo->gso_size); 3453 3454 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len; 3455 } 3456 } 3457 3458 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 3459 struct net_device *dev, 3460 struct netdev_queue *txq) 3461 { 3462 spinlock_t *root_lock = qdisc_lock(q); 3463 struct sk_buff *to_free = NULL; 3464 bool contended; 3465 int rc; 3466 3467 qdisc_calculate_pkt_len(skb, q); 3468 3469 if (q->flags & TCQ_F_NOLOCK) { 3470 if ((q->flags & TCQ_F_CAN_BYPASS) && q->empty && 3471 qdisc_run_begin(q)) { 3472 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, 3473 &q->state))) { 3474 __qdisc_drop(skb, &to_free); 3475 rc = NET_XMIT_DROP; 3476 goto end_run; 3477 } 3478 qdisc_bstats_cpu_update(q, skb); 3479 3480 rc = NET_XMIT_SUCCESS; 3481 if (sch_direct_xmit(skb, q, dev, txq, NULL, true)) 3482 __qdisc_run(q); 3483 3484 end_run: 3485 qdisc_run_end(q); 3486 } else { 3487 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK; 3488 qdisc_run(q); 3489 } 3490 3491 if (unlikely(to_free)) 3492 kfree_skb_list(to_free); 3493 return rc; 3494 } 3495 3496 /* 3497 * Heuristic to force contended enqueues to serialize on a 3498 * separate lock before trying to get qdisc main lock. 3499 * This permits qdisc->running owner to get the lock more 3500 * often and dequeue packets faster. 3501 */ 3502 contended = qdisc_is_running(q); 3503 if (unlikely(contended)) 3504 spin_lock(&q->busylock); 3505 3506 spin_lock(root_lock); 3507 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 3508 __qdisc_drop(skb, &to_free); 3509 rc = NET_XMIT_DROP; 3510 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 3511 qdisc_run_begin(q)) { 3512 /* 3513 * This is a work-conserving queue; there are no old skbs 3514 * waiting to be sent out; and the qdisc is not running - 3515 * xmit the skb directly. 3516 */ 3517 3518 qdisc_bstats_update(q, skb); 3519 3520 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) { 3521 if (unlikely(contended)) { 3522 spin_unlock(&q->busylock); 3523 contended = false; 3524 } 3525 __qdisc_run(q); 3526 } 3527 3528 qdisc_run_end(q); 3529 rc = NET_XMIT_SUCCESS; 3530 } else { 3531 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK; 3532 if (qdisc_run_begin(q)) { 3533 if (unlikely(contended)) { 3534 spin_unlock(&q->busylock); 3535 contended = false; 3536 } 3537 __qdisc_run(q); 3538 qdisc_run_end(q); 3539 } 3540 } 3541 spin_unlock(root_lock); 3542 if (unlikely(to_free)) 3543 kfree_skb_list(to_free); 3544 if (unlikely(contended)) 3545 spin_unlock(&q->busylock); 3546 return rc; 3547 } 3548 3549 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 3550 static void skb_update_prio(struct sk_buff *skb) 3551 { 3552 const struct netprio_map *map; 3553 const struct sock *sk; 3554 unsigned int prioidx; 3555 3556 if (skb->priority) 3557 return; 3558 map = rcu_dereference_bh(skb->dev->priomap); 3559 if (!map) 3560 return; 3561 sk = skb_to_full_sk(skb); 3562 if (!sk) 3563 return; 3564 3565 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data); 3566 3567 if (prioidx < map->priomap_len) 3568 skb->priority = map->priomap[prioidx]; 3569 } 3570 #else 3571 #define skb_update_prio(skb) 3572 #endif 3573 3574 /** 3575 * dev_loopback_xmit - loop back @skb 3576 * @net: network namespace this loopback is happening in 3577 * @sk: sk needed to be a netfilter okfn 3578 * @skb: buffer to transmit 3579 */ 3580 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb) 3581 { 3582 skb_reset_mac_header(skb); 3583 __skb_pull(skb, skb_network_offset(skb)); 3584 skb->pkt_type = PACKET_LOOPBACK; 3585 skb->ip_summed = CHECKSUM_UNNECESSARY; 3586 WARN_ON(!skb_dst(skb)); 3587 skb_dst_force(skb); 3588 netif_rx_ni(skb); 3589 return 0; 3590 } 3591 EXPORT_SYMBOL(dev_loopback_xmit); 3592 3593 #ifdef CONFIG_NET_EGRESS 3594 static struct sk_buff * 3595 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev) 3596 { 3597 struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress); 3598 struct tcf_result cl_res; 3599 3600 if (!miniq) 3601 return skb; 3602 3603 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */ 3604 mini_qdisc_bstats_cpu_update(miniq, skb); 3605 3606 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) { 3607 case TC_ACT_OK: 3608 case TC_ACT_RECLASSIFY: 3609 skb->tc_index = TC_H_MIN(cl_res.classid); 3610 break; 3611 case TC_ACT_SHOT: 3612 mini_qdisc_qstats_cpu_drop(miniq); 3613 *ret = NET_XMIT_DROP; 3614 kfree_skb(skb); 3615 return NULL; 3616 case TC_ACT_STOLEN: 3617 case TC_ACT_QUEUED: 3618 case TC_ACT_TRAP: 3619 *ret = NET_XMIT_SUCCESS; 3620 consume_skb(skb); 3621 return NULL; 3622 case TC_ACT_REDIRECT: 3623 /* No need to push/pop skb's mac_header here on egress! */ 3624 skb_do_redirect(skb); 3625 *ret = NET_XMIT_SUCCESS; 3626 return NULL; 3627 default: 3628 break; 3629 } 3630 3631 return skb; 3632 } 3633 #endif /* CONFIG_NET_EGRESS */ 3634 3635 #ifdef CONFIG_XPS 3636 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb, 3637 struct xps_dev_maps *dev_maps, unsigned int tci) 3638 { 3639 struct xps_map *map; 3640 int queue_index = -1; 3641 3642 if (dev->num_tc) { 3643 tci *= dev->num_tc; 3644 tci += netdev_get_prio_tc_map(dev, skb->priority); 3645 } 3646 3647 map = rcu_dereference(dev_maps->attr_map[tci]); 3648 if (map) { 3649 if (map->len == 1) 3650 queue_index = map->queues[0]; 3651 else 3652 queue_index = map->queues[reciprocal_scale( 3653 skb_get_hash(skb), map->len)]; 3654 if (unlikely(queue_index >= dev->real_num_tx_queues)) 3655 queue_index = -1; 3656 } 3657 return queue_index; 3658 } 3659 #endif 3660 3661 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev, 3662 struct sk_buff *skb) 3663 { 3664 #ifdef CONFIG_XPS 3665 struct xps_dev_maps *dev_maps; 3666 struct sock *sk = skb->sk; 3667 int queue_index = -1; 3668 3669 if (!static_key_false(&xps_needed)) 3670 return -1; 3671 3672 rcu_read_lock(); 3673 if (!static_key_false(&xps_rxqs_needed)) 3674 goto get_cpus_map; 3675 3676 dev_maps = rcu_dereference(sb_dev->xps_rxqs_map); 3677 if (dev_maps) { 3678 int tci = sk_rx_queue_get(sk); 3679 3680 if (tci >= 0 && tci < dev->num_rx_queues) 3681 queue_index = __get_xps_queue_idx(dev, skb, dev_maps, 3682 tci); 3683 } 3684 3685 get_cpus_map: 3686 if (queue_index < 0) { 3687 dev_maps = rcu_dereference(sb_dev->xps_cpus_map); 3688 if (dev_maps) { 3689 unsigned int tci = skb->sender_cpu - 1; 3690 3691 queue_index = __get_xps_queue_idx(dev, skb, dev_maps, 3692 tci); 3693 } 3694 } 3695 rcu_read_unlock(); 3696 3697 return queue_index; 3698 #else 3699 return -1; 3700 #endif 3701 } 3702 3703 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb, 3704 struct net_device *sb_dev) 3705 { 3706 return 0; 3707 } 3708 EXPORT_SYMBOL(dev_pick_tx_zero); 3709 3710 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb, 3711 struct net_device *sb_dev) 3712 { 3713 return (u16)raw_smp_processor_id() % dev->real_num_tx_queues; 3714 } 3715 EXPORT_SYMBOL(dev_pick_tx_cpu_id); 3716 3717 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb, 3718 struct net_device *sb_dev) 3719 { 3720 struct sock *sk = skb->sk; 3721 int queue_index = sk_tx_queue_get(sk); 3722 3723 sb_dev = sb_dev ? : dev; 3724 3725 if (queue_index < 0 || skb->ooo_okay || 3726 queue_index >= dev->real_num_tx_queues) { 3727 int new_index = get_xps_queue(dev, sb_dev, skb); 3728 3729 if (new_index < 0) 3730 new_index = skb_tx_hash(dev, sb_dev, skb); 3731 3732 if (queue_index != new_index && sk && 3733 sk_fullsock(sk) && 3734 rcu_access_pointer(sk->sk_dst_cache)) 3735 sk_tx_queue_set(sk, new_index); 3736 3737 queue_index = new_index; 3738 } 3739 3740 return queue_index; 3741 } 3742 EXPORT_SYMBOL(netdev_pick_tx); 3743 3744 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev, 3745 struct sk_buff *skb, 3746 struct net_device *sb_dev) 3747 { 3748 int queue_index = 0; 3749 3750 #ifdef CONFIG_XPS 3751 u32 sender_cpu = skb->sender_cpu - 1; 3752 3753 if (sender_cpu >= (u32)NR_CPUS) 3754 skb->sender_cpu = raw_smp_processor_id() + 1; 3755 #endif 3756 3757 if (dev->real_num_tx_queues != 1) { 3758 const struct net_device_ops *ops = dev->netdev_ops; 3759 3760 if (ops->ndo_select_queue) 3761 queue_index = ops->ndo_select_queue(dev, skb, sb_dev); 3762 else 3763 queue_index = netdev_pick_tx(dev, skb, sb_dev); 3764 3765 queue_index = netdev_cap_txqueue(dev, queue_index); 3766 } 3767 3768 skb_set_queue_mapping(skb, queue_index); 3769 return netdev_get_tx_queue(dev, queue_index); 3770 } 3771 3772 /** 3773 * __dev_queue_xmit - transmit a buffer 3774 * @skb: buffer to transmit 3775 * @sb_dev: suboordinate device used for L2 forwarding offload 3776 * 3777 * Queue a buffer for transmission to a network device. The caller must 3778 * have set the device and priority and built the buffer before calling 3779 * this function. The function can be called from an interrupt. 3780 * 3781 * A negative errno code is returned on a failure. A success does not 3782 * guarantee the frame will be transmitted as it may be dropped due 3783 * to congestion or traffic shaping. 3784 * 3785 * ----------------------------------------------------------------------------------- 3786 * I notice this method can also return errors from the queue disciplines, 3787 * including NET_XMIT_DROP, which is a positive value. So, errors can also 3788 * be positive. 3789 * 3790 * Regardless of the return value, the skb is consumed, so it is currently 3791 * difficult to retry a send to this method. (You can bump the ref count 3792 * before sending to hold a reference for retry if you are careful.) 3793 * 3794 * When calling this method, interrupts MUST be enabled. This is because 3795 * the BH enable code must have IRQs enabled so that it will not deadlock. 3796 * --BLG 3797 */ 3798 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev) 3799 { 3800 struct net_device *dev = skb->dev; 3801 struct netdev_queue *txq; 3802 struct Qdisc *q; 3803 int rc = -ENOMEM; 3804 bool again = false; 3805 3806 skb_reset_mac_header(skb); 3807 3808 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP)) 3809 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED); 3810 3811 /* Disable soft irqs for various locks below. Also 3812 * stops preemption for RCU. 3813 */ 3814 rcu_read_lock_bh(); 3815 3816 skb_update_prio(skb); 3817 3818 qdisc_pkt_len_init(skb); 3819 #ifdef CONFIG_NET_CLS_ACT 3820 skb->tc_at_ingress = 0; 3821 # ifdef CONFIG_NET_EGRESS 3822 if (static_branch_unlikely(&egress_needed_key)) { 3823 skb = sch_handle_egress(skb, &rc, dev); 3824 if (!skb) 3825 goto out; 3826 } 3827 # endif 3828 #endif 3829 /* If device/qdisc don't need skb->dst, release it right now while 3830 * its hot in this cpu cache. 3831 */ 3832 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 3833 skb_dst_drop(skb); 3834 else 3835 skb_dst_force(skb); 3836 3837 txq = netdev_core_pick_tx(dev, skb, sb_dev); 3838 q = rcu_dereference_bh(txq->qdisc); 3839 3840 trace_net_dev_queue(skb); 3841 if (q->enqueue) { 3842 rc = __dev_xmit_skb(skb, q, dev, txq); 3843 goto out; 3844 } 3845 3846 /* The device has no queue. Common case for software devices: 3847 * loopback, all the sorts of tunnels... 3848 3849 * Really, it is unlikely that netif_tx_lock protection is necessary 3850 * here. (f.e. loopback and IP tunnels are clean ignoring statistics 3851 * counters.) 3852 * However, it is possible, that they rely on protection 3853 * made by us here. 3854 3855 * Check this and shot the lock. It is not prone from deadlocks. 3856 *Either shot noqueue qdisc, it is even simpler 8) 3857 */ 3858 if (dev->flags & IFF_UP) { 3859 int cpu = smp_processor_id(); /* ok because BHs are off */ 3860 3861 if (txq->xmit_lock_owner != cpu) { 3862 if (dev_xmit_recursion()) 3863 goto recursion_alert; 3864 3865 skb = validate_xmit_skb(skb, dev, &again); 3866 if (!skb) 3867 goto out; 3868 3869 HARD_TX_LOCK(dev, txq, cpu); 3870 3871 if (!netif_xmit_stopped(txq)) { 3872 dev_xmit_recursion_inc(); 3873 skb = dev_hard_start_xmit(skb, dev, txq, &rc); 3874 dev_xmit_recursion_dec(); 3875 if (dev_xmit_complete(rc)) { 3876 HARD_TX_UNLOCK(dev, txq); 3877 goto out; 3878 } 3879 } 3880 HARD_TX_UNLOCK(dev, txq); 3881 net_crit_ratelimited("Virtual device %s asks to queue packet!\n", 3882 dev->name); 3883 } else { 3884 /* Recursion is detected! It is possible, 3885 * unfortunately 3886 */ 3887 recursion_alert: 3888 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n", 3889 dev->name); 3890 } 3891 } 3892 3893 rc = -ENETDOWN; 3894 rcu_read_unlock_bh(); 3895 3896 atomic_long_inc(&dev->tx_dropped); 3897 kfree_skb_list(skb); 3898 return rc; 3899 out: 3900 rcu_read_unlock_bh(); 3901 return rc; 3902 } 3903 3904 int dev_queue_xmit(struct sk_buff *skb) 3905 { 3906 return __dev_queue_xmit(skb, NULL); 3907 } 3908 EXPORT_SYMBOL(dev_queue_xmit); 3909 3910 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev) 3911 { 3912 return __dev_queue_xmit(skb, sb_dev); 3913 } 3914 EXPORT_SYMBOL(dev_queue_xmit_accel); 3915 3916 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id) 3917 { 3918 struct net_device *dev = skb->dev; 3919 struct sk_buff *orig_skb = skb; 3920 struct netdev_queue *txq; 3921 int ret = NETDEV_TX_BUSY; 3922 bool again = false; 3923 3924 if (unlikely(!netif_running(dev) || 3925 !netif_carrier_ok(dev))) 3926 goto drop; 3927 3928 skb = validate_xmit_skb_list(skb, dev, &again); 3929 if (skb != orig_skb) 3930 goto drop; 3931 3932 skb_set_queue_mapping(skb, queue_id); 3933 txq = skb_get_tx_queue(dev, skb); 3934 3935 local_bh_disable(); 3936 3937 HARD_TX_LOCK(dev, txq, smp_processor_id()); 3938 if (!netif_xmit_frozen_or_drv_stopped(txq)) 3939 ret = netdev_start_xmit(skb, dev, txq, false); 3940 HARD_TX_UNLOCK(dev, txq); 3941 3942 local_bh_enable(); 3943 3944 if (!dev_xmit_complete(ret)) 3945 kfree_skb(skb); 3946 3947 return ret; 3948 drop: 3949 atomic_long_inc(&dev->tx_dropped); 3950 kfree_skb_list(skb); 3951 return NET_XMIT_DROP; 3952 } 3953 EXPORT_SYMBOL(dev_direct_xmit); 3954 3955 /************************************************************************* 3956 * Receiver routines 3957 *************************************************************************/ 3958 3959 int netdev_max_backlog __read_mostly = 1000; 3960 EXPORT_SYMBOL(netdev_max_backlog); 3961 3962 int netdev_tstamp_prequeue __read_mostly = 1; 3963 int netdev_budget __read_mostly = 300; 3964 unsigned int __read_mostly netdev_budget_usecs = 2000; 3965 int weight_p __read_mostly = 64; /* old backlog weight */ 3966 int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */ 3967 int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */ 3968 int dev_rx_weight __read_mostly = 64; 3969 int dev_tx_weight __read_mostly = 64; 3970 /* Maximum number of GRO_NORMAL skbs to batch up for list-RX */ 3971 int gro_normal_batch __read_mostly = 8; 3972 3973 /* Called with irq disabled */ 3974 static inline void ____napi_schedule(struct softnet_data *sd, 3975 struct napi_struct *napi) 3976 { 3977 list_add_tail(&napi->poll_list, &sd->poll_list); 3978 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3979 } 3980 3981 #ifdef CONFIG_RPS 3982 3983 /* One global table that all flow-based protocols share. */ 3984 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly; 3985 EXPORT_SYMBOL(rps_sock_flow_table); 3986 u32 rps_cpu_mask __read_mostly; 3987 EXPORT_SYMBOL(rps_cpu_mask); 3988 3989 struct static_key_false rps_needed __read_mostly; 3990 EXPORT_SYMBOL(rps_needed); 3991 struct static_key_false rfs_needed __read_mostly; 3992 EXPORT_SYMBOL(rfs_needed); 3993 3994 static struct rps_dev_flow * 3995 set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 3996 struct rps_dev_flow *rflow, u16 next_cpu) 3997 { 3998 if (next_cpu < nr_cpu_ids) { 3999 #ifdef CONFIG_RFS_ACCEL 4000 struct netdev_rx_queue *rxqueue; 4001 struct rps_dev_flow_table *flow_table; 4002 struct rps_dev_flow *old_rflow; 4003 u32 flow_id; 4004 u16 rxq_index; 4005 int rc; 4006 4007 /* Should we steer this flow to a different hardware queue? */ 4008 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 4009 !(dev->features & NETIF_F_NTUPLE)) 4010 goto out; 4011 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 4012 if (rxq_index == skb_get_rx_queue(skb)) 4013 goto out; 4014 4015 rxqueue = dev->_rx + rxq_index; 4016 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4017 if (!flow_table) 4018 goto out; 4019 flow_id = skb_get_hash(skb) & flow_table->mask; 4020 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 4021 rxq_index, flow_id); 4022 if (rc < 0) 4023 goto out; 4024 old_rflow = rflow; 4025 rflow = &flow_table->flows[flow_id]; 4026 rflow->filter = rc; 4027 if (old_rflow->filter == rflow->filter) 4028 old_rflow->filter = RPS_NO_FILTER; 4029 out: 4030 #endif 4031 rflow->last_qtail = 4032 per_cpu(softnet_data, next_cpu).input_queue_head; 4033 } 4034 4035 rflow->cpu = next_cpu; 4036 return rflow; 4037 } 4038 4039 /* 4040 * get_rps_cpu is called from netif_receive_skb and returns the target 4041 * CPU from the RPS map of the receiving queue for a given skb. 4042 * rcu_read_lock must be held on entry. 4043 */ 4044 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 4045 struct rps_dev_flow **rflowp) 4046 { 4047 const struct rps_sock_flow_table *sock_flow_table; 4048 struct netdev_rx_queue *rxqueue = dev->_rx; 4049 struct rps_dev_flow_table *flow_table; 4050 struct rps_map *map; 4051 int cpu = -1; 4052 u32 tcpu; 4053 u32 hash; 4054 4055 if (skb_rx_queue_recorded(skb)) { 4056 u16 index = skb_get_rx_queue(skb); 4057 4058 if (unlikely(index >= dev->real_num_rx_queues)) { 4059 WARN_ONCE(dev->real_num_rx_queues > 1, 4060 "%s received packet on queue %u, but number " 4061 "of RX queues is %u\n", 4062 dev->name, index, dev->real_num_rx_queues); 4063 goto done; 4064 } 4065 rxqueue += index; 4066 } 4067 4068 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */ 4069 4070 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4071 map = rcu_dereference(rxqueue->rps_map); 4072 if (!flow_table && !map) 4073 goto done; 4074 4075 skb_reset_network_header(skb); 4076 hash = skb_get_hash(skb); 4077 if (!hash) 4078 goto done; 4079 4080 sock_flow_table = rcu_dereference(rps_sock_flow_table); 4081 if (flow_table && sock_flow_table) { 4082 struct rps_dev_flow *rflow; 4083 u32 next_cpu; 4084 u32 ident; 4085 4086 /* First check into global flow table if there is a match */ 4087 ident = sock_flow_table->ents[hash & sock_flow_table->mask]; 4088 if ((ident ^ hash) & ~rps_cpu_mask) 4089 goto try_rps; 4090 4091 next_cpu = ident & rps_cpu_mask; 4092 4093 /* OK, now we know there is a match, 4094 * we can look at the local (per receive queue) flow table 4095 */ 4096 rflow = &flow_table->flows[hash & flow_table->mask]; 4097 tcpu = rflow->cpu; 4098 4099 /* 4100 * If the desired CPU (where last recvmsg was done) is 4101 * different from current CPU (one in the rx-queue flow 4102 * table entry), switch if one of the following holds: 4103 * - Current CPU is unset (>= nr_cpu_ids). 4104 * - Current CPU is offline. 4105 * - The current CPU's queue tail has advanced beyond the 4106 * last packet that was enqueued using this table entry. 4107 * This guarantees that all previous packets for the flow 4108 * have been dequeued, thus preserving in order delivery. 4109 */ 4110 if (unlikely(tcpu != next_cpu) && 4111 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) || 4112 ((int)(per_cpu(softnet_data, tcpu).input_queue_head - 4113 rflow->last_qtail)) >= 0)) { 4114 tcpu = next_cpu; 4115 rflow = set_rps_cpu(dev, skb, rflow, next_cpu); 4116 } 4117 4118 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) { 4119 *rflowp = rflow; 4120 cpu = tcpu; 4121 goto done; 4122 } 4123 } 4124 4125 try_rps: 4126 4127 if (map) { 4128 tcpu = map->cpus[reciprocal_scale(hash, map->len)]; 4129 if (cpu_online(tcpu)) { 4130 cpu = tcpu; 4131 goto done; 4132 } 4133 } 4134 4135 done: 4136 return cpu; 4137 } 4138 4139 #ifdef CONFIG_RFS_ACCEL 4140 4141 /** 4142 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 4143 * @dev: Device on which the filter was set 4144 * @rxq_index: RX queue index 4145 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 4146 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 4147 * 4148 * Drivers that implement ndo_rx_flow_steer() should periodically call 4149 * this function for each installed filter and remove the filters for 4150 * which it returns %true. 4151 */ 4152 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 4153 u32 flow_id, u16 filter_id) 4154 { 4155 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 4156 struct rps_dev_flow_table *flow_table; 4157 struct rps_dev_flow *rflow; 4158 bool expire = true; 4159 unsigned int cpu; 4160 4161 rcu_read_lock(); 4162 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4163 if (flow_table && flow_id <= flow_table->mask) { 4164 rflow = &flow_table->flows[flow_id]; 4165 cpu = READ_ONCE(rflow->cpu); 4166 if (rflow->filter == filter_id && cpu < nr_cpu_ids && 4167 ((int)(per_cpu(softnet_data, cpu).input_queue_head - 4168 rflow->last_qtail) < 4169 (int)(10 * flow_table->mask))) 4170 expire = false; 4171 } 4172 rcu_read_unlock(); 4173 return expire; 4174 } 4175 EXPORT_SYMBOL(rps_may_expire_flow); 4176 4177 #endif /* CONFIG_RFS_ACCEL */ 4178 4179 /* Called from hardirq (IPI) context */ 4180 static void rps_trigger_softirq(void *data) 4181 { 4182 struct softnet_data *sd = data; 4183 4184 ____napi_schedule(sd, &sd->backlog); 4185 sd->received_rps++; 4186 } 4187 4188 #endif /* CONFIG_RPS */ 4189 4190 /* 4191 * Check if this softnet_data structure is another cpu one 4192 * If yes, queue it to our IPI list and return 1 4193 * If no, return 0 4194 */ 4195 static int rps_ipi_queued(struct softnet_data *sd) 4196 { 4197 #ifdef CONFIG_RPS 4198 struct softnet_data *mysd = this_cpu_ptr(&softnet_data); 4199 4200 if (sd != mysd) { 4201 sd->rps_ipi_next = mysd->rps_ipi_list; 4202 mysd->rps_ipi_list = sd; 4203 4204 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 4205 return 1; 4206 } 4207 #endif /* CONFIG_RPS */ 4208 return 0; 4209 } 4210 4211 #ifdef CONFIG_NET_FLOW_LIMIT 4212 int netdev_flow_limit_table_len __read_mostly = (1 << 12); 4213 #endif 4214 4215 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen) 4216 { 4217 #ifdef CONFIG_NET_FLOW_LIMIT 4218 struct sd_flow_limit *fl; 4219 struct softnet_data *sd; 4220 unsigned int old_flow, new_flow; 4221 4222 if (qlen < (netdev_max_backlog >> 1)) 4223 return false; 4224 4225 sd = this_cpu_ptr(&softnet_data); 4226 4227 rcu_read_lock(); 4228 fl = rcu_dereference(sd->flow_limit); 4229 if (fl) { 4230 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1); 4231 old_flow = fl->history[fl->history_head]; 4232 fl->history[fl->history_head] = new_flow; 4233 4234 fl->history_head++; 4235 fl->history_head &= FLOW_LIMIT_HISTORY - 1; 4236 4237 if (likely(fl->buckets[old_flow])) 4238 fl->buckets[old_flow]--; 4239 4240 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) { 4241 fl->count++; 4242 rcu_read_unlock(); 4243 return true; 4244 } 4245 } 4246 rcu_read_unlock(); 4247 #endif 4248 return false; 4249 } 4250 4251 /* 4252 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 4253 * queue (may be a remote CPU queue). 4254 */ 4255 static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 4256 unsigned int *qtail) 4257 { 4258 struct softnet_data *sd; 4259 unsigned long flags; 4260 unsigned int qlen; 4261 4262 sd = &per_cpu(softnet_data, cpu); 4263 4264 local_irq_save(flags); 4265 4266 rps_lock(sd); 4267 if (!netif_running(skb->dev)) 4268 goto drop; 4269 qlen = skb_queue_len(&sd->input_pkt_queue); 4270 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) { 4271 if (qlen) { 4272 enqueue: 4273 __skb_queue_tail(&sd->input_pkt_queue, skb); 4274 input_queue_tail_incr_save(sd, qtail); 4275 rps_unlock(sd); 4276 local_irq_restore(flags); 4277 return NET_RX_SUCCESS; 4278 } 4279 4280 /* Schedule NAPI for backlog device 4281 * We can use non atomic operation since we own the queue lock 4282 */ 4283 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) { 4284 if (!rps_ipi_queued(sd)) 4285 ____napi_schedule(sd, &sd->backlog); 4286 } 4287 goto enqueue; 4288 } 4289 4290 drop: 4291 sd->dropped++; 4292 rps_unlock(sd); 4293 4294 local_irq_restore(flags); 4295 4296 atomic_long_inc(&skb->dev->rx_dropped); 4297 kfree_skb(skb); 4298 return NET_RX_DROP; 4299 } 4300 4301 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb) 4302 { 4303 struct net_device *dev = skb->dev; 4304 struct netdev_rx_queue *rxqueue; 4305 4306 rxqueue = dev->_rx; 4307 4308 if (skb_rx_queue_recorded(skb)) { 4309 u16 index = skb_get_rx_queue(skb); 4310 4311 if (unlikely(index >= dev->real_num_rx_queues)) { 4312 WARN_ONCE(dev->real_num_rx_queues > 1, 4313 "%s received packet on queue %u, but number " 4314 "of RX queues is %u\n", 4315 dev->name, index, dev->real_num_rx_queues); 4316 4317 return rxqueue; /* Return first rxqueue */ 4318 } 4319 rxqueue += index; 4320 } 4321 return rxqueue; 4322 } 4323 4324 static u32 netif_receive_generic_xdp(struct sk_buff *skb, 4325 struct xdp_buff *xdp, 4326 struct bpf_prog *xdp_prog) 4327 { 4328 struct netdev_rx_queue *rxqueue; 4329 void *orig_data, *orig_data_end; 4330 u32 metalen, act = XDP_DROP; 4331 __be16 orig_eth_type; 4332 struct ethhdr *eth; 4333 bool orig_bcast; 4334 int hlen, off; 4335 u32 mac_len; 4336 4337 /* Reinjected packets coming from act_mirred or similar should 4338 * not get XDP generic processing. 4339 */ 4340 if (skb_cloned(skb) || skb_is_tc_redirected(skb)) 4341 return XDP_PASS; 4342 4343 /* XDP packets must be linear and must have sufficient headroom 4344 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also 4345 * native XDP provides, thus we need to do it here as well. 4346 */ 4347 if (skb_is_nonlinear(skb) || 4348 skb_headroom(skb) < XDP_PACKET_HEADROOM) { 4349 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb); 4350 int troom = skb->tail + skb->data_len - skb->end; 4351 4352 /* In case we have to go down the path and also linearize, 4353 * then lets do the pskb_expand_head() work just once here. 4354 */ 4355 if (pskb_expand_head(skb, 4356 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0, 4357 troom > 0 ? troom + 128 : 0, GFP_ATOMIC)) 4358 goto do_drop; 4359 if (skb_linearize(skb)) 4360 goto do_drop; 4361 } 4362 4363 /* The XDP program wants to see the packet starting at the MAC 4364 * header. 4365 */ 4366 mac_len = skb->data - skb_mac_header(skb); 4367 hlen = skb_headlen(skb) + mac_len; 4368 xdp->data = skb->data - mac_len; 4369 xdp->data_meta = xdp->data; 4370 xdp->data_end = xdp->data + hlen; 4371 xdp->data_hard_start = skb->data - skb_headroom(skb); 4372 orig_data_end = xdp->data_end; 4373 orig_data = xdp->data; 4374 eth = (struct ethhdr *)xdp->data; 4375 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest); 4376 orig_eth_type = eth->h_proto; 4377 4378 rxqueue = netif_get_rxqueue(skb); 4379 xdp->rxq = &rxqueue->xdp_rxq; 4380 4381 act = bpf_prog_run_xdp(xdp_prog, xdp); 4382 4383 /* check if bpf_xdp_adjust_head was used */ 4384 off = xdp->data - orig_data; 4385 if (off) { 4386 if (off > 0) 4387 __skb_pull(skb, off); 4388 else if (off < 0) 4389 __skb_push(skb, -off); 4390 4391 skb->mac_header += off; 4392 skb_reset_network_header(skb); 4393 } 4394 4395 /* check if bpf_xdp_adjust_tail was used. it can only "shrink" 4396 * pckt. 4397 */ 4398 off = orig_data_end - xdp->data_end; 4399 if (off != 0) { 4400 skb_set_tail_pointer(skb, xdp->data_end - xdp->data); 4401 skb->len -= off; 4402 4403 } 4404 4405 /* check if XDP changed eth hdr such SKB needs update */ 4406 eth = (struct ethhdr *)xdp->data; 4407 if ((orig_eth_type != eth->h_proto) || 4408 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) { 4409 __skb_push(skb, ETH_HLEN); 4410 skb->protocol = eth_type_trans(skb, skb->dev); 4411 } 4412 4413 switch (act) { 4414 case XDP_REDIRECT: 4415 case XDP_TX: 4416 __skb_push(skb, mac_len); 4417 break; 4418 case XDP_PASS: 4419 metalen = xdp->data - xdp->data_meta; 4420 if (metalen) 4421 skb_metadata_set(skb, metalen); 4422 break; 4423 default: 4424 bpf_warn_invalid_xdp_action(act); 4425 /* fall through */ 4426 case XDP_ABORTED: 4427 trace_xdp_exception(skb->dev, xdp_prog, act); 4428 /* fall through */ 4429 case XDP_DROP: 4430 do_drop: 4431 kfree_skb(skb); 4432 break; 4433 } 4434 4435 return act; 4436 } 4437 4438 /* When doing generic XDP we have to bypass the qdisc layer and the 4439 * network taps in order to match in-driver-XDP behavior. 4440 */ 4441 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog) 4442 { 4443 struct net_device *dev = skb->dev; 4444 struct netdev_queue *txq; 4445 bool free_skb = true; 4446 int cpu, rc; 4447 4448 txq = netdev_core_pick_tx(dev, skb, NULL); 4449 cpu = smp_processor_id(); 4450 HARD_TX_LOCK(dev, txq, cpu); 4451 if (!netif_xmit_stopped(txq)) { 4452 rc = netdev_start_xmit(skb, dev, txq, 0); 4453 if (dev_xmit_complete(rc)) 4454 free_skb = false; 4455 } 4456 HARD_TX_UNLOCK(dev, txq); 4457 if (free_skb) { 4458 trace_xdp_exception(dev, xdp_prog, XDP_TX); 4459 kfree_skb(skb); 4460 } 4461 } 4462 EXPORT_SYMBOL_GPL(generic_xdp_tx); 4463 4464 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key); 4465 4466 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb) 4467 { 4468 if (xdp_prog) { 4469 struct xdp_buff xdp; 4470 u32 act; 4471 int err; 4472 4473 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog); 4474 if (act != XDP_PASS) { 4475 switch (act) { 4476 case XDP_REDIRECT: 4477 err = xdp_do_generic_redirect(skb->dev, skb, 4478 &xdp, xdp_prog); 4479 if (err) 4480 goto out_redir; 4481 break; 4482 case XDP_TX: 4483 generic_xdp_tx(skb, xdp_prog); 4484 break; 4485 } 4486 return XDP_DROP; 4487 } 4488 } 4489 return XDP_PASS; 4490 out_redir: 4491 kfree_skb(skb); 4492 return XDP_DROP; 4493 } 4494 EXPORT_SYMBOL_GPL(do_xdp_generic); 4495 4496 static int netif_rx_internal(struct sk_buff *skb) 4497 { 4498 int ret; 4499 4500 net_timestamp_check(netdev_tstamp_prequeue, skb); 4501 4502 trace_netif_rx(skb); 4503 4504 #ifdef CONFIG_RPS 4505 if (static_branch_unlikely(&rps_needed)) { 4506 struct rps_dev_flow voidflow, *rflow = &voidflow; 4507 int cpu; 4508 4509 preempt_disable(); 4510 rcu_read_lock(); 4511 4512 cpu = get_rps_cpu(skb->dev, skb, &rflow); 4513 if (cpu < 0) 4514 cpu = smp_processor_id(); 4515 4516 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 4517 4518 rcu_read_unlock(); 4519 preempt_enable(); 4520 } else 4521 #endif 4522 { 4523 unsigned int qtail; 4524 4525 ret = enqueue_to_backlog(skb, get_cpu(), &qtail); 4526 put_cpu(); 4527 } 4528 return ret; 4529 } 4530 4531 /** 4532 * netif_rx - post buffer to the network code 4533 * @skb: buffer to post 4534 * 4535 * This function receives a packet from a device driver and queues it for 4536 * the upper (protocol) levels to process. It always succeeds. The buffer 4537 * may be dropped during processing for congestion control or by the 4538 * protocol layers. 4539 * 4540 * return values: 4541 * NET_RX_SUCCESS (no congestion) 4542 * NET_RX_DROP (packet was dropped) 4543 * 4544 */ 4545 4546 int netif_rx(struct sk_buff *skb) 4547 { 4548 int ret; 4549 4550 trace_netif_rx_entry(skb); 4551 4552 ret = netif_rx_internal(skb); 4553 trace_netif_rx_exit(ret); 4554 4555 return ret; 4556 } 4557 EXPORT_SYMBOL(netif_rx); 4558 4559 int netif_rx_ni(struct sk_buff *skb) 4560 { 4561 int err; 4562 4563 trace_netif_rx_ni_entry(skb); 4564 4565 preempt_disable(); 4566 err = netif_rx_internal(skb); 4567 if (local_softirq_pending()) 4568 do_softirq(); 4569 preempt_enable(); 4570 trace_netif_rx_ni_exit(err); 4571 4572 return err; 4573 } 4574 EXPORT_SYMBOL(netif_rx_ni); 4575 4576 static __latent_entropy void net_tx_action(struct softirq_action *h) 4577 { 4578 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 4579 4580 if (sd->completion_queue) { 4581 struct sk_buff *clist; 4582 4583 local_irq_disable(); 4584 clist = sd->completion_queue; 4585 sd->completion_queue = NULL; 4586 local_irq_enable(); 4587 4588 while (clist) { 4589 struct sk_buff *skb = clist; 4590 4591 clist = clist->next; 4592 4593 WARN_ON(refcount_read(&skb->users)); 4594 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED)) 4595 trace_consume_skb(skb); 4596 else 4597 trace_kfree_skb(skb, net_tx_action); 4598 4599 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) 4600 __kfree_skb(skb); 4601 else 4602 __kfree_skb_defer(skb); 4603 } 4604 4605 __kfree_skb_flush(); 4606 } 4607 4608 if (sd->output_queue) { 4609 struct Qdisc *head; 4610 4611 local_irq_disable(); 4612 head = sd->output_queue; 4613 sd->output_queue = NULL; 4614 sd->output_queue_tailp = &sd->output_queue; 4615 local_irq_enable(); 4616 4617 while (head) { 4618 struct Qdisc *q = head; 4619 spinlock_t *root_lock = NULL; 4620 4621 head = head->next_sched; 4622 4623 if (!(q->flags & TCQ_F_NOLOCK)) { 4624 root_lock = qdisc_lock(q); 4625 spin_lock(root_lock); 4626 } 4627 /* We need to make sure head->next_sched is read 4628 * before clearing __QDISC_STATE_SCHED 4629 */ 4630 smp_mb__before_atomic(); 4631 clear_bit(__QDISC_STATE_SCHED, &q->state); 4632 qdisc_run(q); 4633 if (root_lock) 4634 spin_unlock(root_lock); 4635 } 4636 } 4637 4638 xfrm_dev_backlog(sd); 4639 } 4640 4641 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE) 4642 /* This hook is defined here for ATM LANE */ 4643 int (*br_fdb_test_addr_hook)(struct net_device *dev, 4644 unsigned char *addr) __read_mostly; 4645 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 4646 #endif 4647 4648 static inline struct sk_buff * 4649 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret, 4650 struct net_device *orig_dev) 4651 { 4652 #ifdef CONFIG_NET_CLS_ACT 4653 struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress); 4654 struct tcf_result cl_res; 4655 4656 /* If there's at least one ingress present somewhere (so 4657 * we get here via enabled static key), remaining devices 4658 * that are not configured with an ingress qdisc will bail 4659 * out here. 4660 */ 4661 if (!miniq) 4662 return skb; 4663 4664 if (*pt_prev) { 4665 *ret = deliver_skb(skb, *pt_prev, orig_dev); 4666 *pt_prev = NULL; 4667 } 4668 4669 qdisc_skb_cb(skb)->pkt_len = skb->len; 4670 skb->tc_at_ingress = 1; 4671 mini_qdisc_bstats_cpu_update(miniq, skb); 4672 4673 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) { 4674 case TC_ACT_OK: 4675 case TC_ACT_RECLASSIFY: 4676 skb->tc_index = TC_H_MIN(cl_res.classid); 4677 break; 4678 case TC_ACT_SHOT: 4679 mini_qdisc_qstats_cpu_drop(miniq); 4680 kfree_skb(skb); 4681 return NULL; 4682 case TC_ACT_STOLEN: 4683 case TC_ACT_QUEUED: 4684 case TC_ACT_TRAP: 4685 consume_skb(skb); 4686 return NULL; 4687 case TC_ACT_REDIRECT: 4688 /* skb_mac_header check was done by cls/act_bpf, so 4689 * we can safely push the L2 header back before 4690 * redirecting to another netdev 4691 */ 4692 __skb_push(skb, skb->mac_len); 4693 skb_do_redirect(skb); 4694 return NULL; 4695 case TC_ACT_CONSUMED: 4696 return NULL; 4697 default: 4698 break; 4699 } 4700 #endif /* CONFIG_NET_CLS_ACT */ 4701 return skb; 4702 } 4703 4704 /** 4705 * netdev_is_rx_handler_busy - check if receive handler is registered 4706 * @dev: device to check 4707 * 4708 * Check if a receive handler is already registered for a given device. 4709 * Return true if there one. 4710 * 4711 * The caller must hold the rtnl_mutex. 4712 */ 4713 bool netdev_is_rx_handler_busy(struct net_device *dev) 4714 { 4715 ASSERT_RTNL(); 4716 return dev && rtnl_dereference(dev->rx_handler); 4717 } 4718 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy); 4719 4720 /** 4721 * netdev_rx_handler_register - register receive handler 4722 * @dev: device to register a handler for 4723 * @rx_handler: receive handler to register 4724 * @rx_handler_data: data pointer that is used by rx handler 4725 * 4726 * Register a receive handler for a device. This handler will then be 4727 * called from __netif_receive_skb. A negative errno code is returned 4728 * on a failure. 4729 * 4730 * The caller must hold the rtnl_mutex. 4731 * 4732 * For a general description of rx_handler, see enum rx_handler_result. 4733 */ 4734 int netdev_rx_handler_register(struct net_device *dev, 4735 rx_handler_func_t *rx_handler, 4736 void *rx_handler_data) 4737 { 4738 if (netdev_is_rx_handler_busy(dev)) 4739 return -EBUSY; 4740 4741 if (dev->priv_flags & IFF_NO_RX_HANDLER) 4742 return -EINVAL; 4743 4744 /* Note: rx_handler_data must be set before rx_handler */ 4745 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 4746 rcu_assign_pointer(dev->rx_handler, rx_handler); 4747 4748 return 0; 4749 } 4750 EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 4751 4752 /** 4753 * netdev_rx_handler_unregister - unregister receive handler 4754 * @dev: device to unregister a handler from 4755 * 4756 * Unregister a receive handler from a device. 4757 * 4758 * The caller must hold the rtnl_mutex. 4759 */ 4760 void netdev_rx_handler_unregister(struct net_device *dev) 4761 { 4762 4763 ASSERT_RTNL(); 4764 RCU_INIT_POINTER(dev->rx_handler, NULL); 4765 /* a reader seeing a non NULL rx_handler in a rcu_read_lock() 4766 * section has a guarantee to see a non NULL rx_handler_data 4767 * as well. 4768 */ 4769 synchronize_net(); 4770 RCU_INIT_POINTER(dev->rx_handler_data, NULL); 4771 } 4772 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 4773 4774 /* 4775 * Limit the use of PFMEMALLOC reserves to those protocols that implement 4776 * the special handling of PFMEMALLOC skbs. 4777 */ 4778 static bool skb_pfmemalloc_protocol(struct sk_buff *skb) 4779 { 4780 switch (skb->protocol) { 4781 case htons(ETH_P_ARP): 4782 case htons(ETH_P_IP): 4783 case htons(ETH_P_IPV6): 4784 case htons(ETH_P_8021Q): 4785 case htons(ETH_P_8021AD): 4786 return true; 4787 default: 4788 return false; 4789 } 4790 } 4791 4792 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev, 4793 int *ret, struct net_device *orig_dev) 4794 { 4795 #ifdef CONFIG_NETFILTER_INGRESS 4796 if (nf_hook_ingress_active(skb)) { 4797 int ingress_retval; 4798 4799 if (*pt_prev) { 4800 *ret = deliver_skb(skb, *pt_prev, orig_dev); 4801 *pt_prev = NULL; 4802 } 4803 4804 rcu_read_lock(); 4805 ingress_retval = nf_hook_ingress(skb); 4806 rcu_read_unlock(); 4807 return ingress_retval; 4808 } 4809 #endif /* CONFIG_NETFILTER_INGRESS */ 4810 return 0; 4811 } 4812 4813 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc, 4814 struct packet_type **ppt_prev) 4815 { 4816 struct packet_type *ptype, *pt_prev; 4817 rx_handler_func_t *rx_handler; 4818 struct net_device *orig_dev; 4819 bool deliver_exact = false; 4820 int ret = NET_RX_DROP; 4821 __be16 type; 4822 4823 net_timestamp_check(!netdev_tstamp_prequeue, skb); 4824 4825 trace_netif_receive_skb(skb); 4826 4827 orig_dev = skb->dev; 4828 4829 skb_reset_network_header(skb); 4830 if (!skb_transport_header_was_set(skb)) 4831 skb_reset_transport_header(skb); 4832 skb_reset_mac_len(skb); 4833 4834 pt_prev = NULL; 4835 4836 another_round: 4837 skb->skb_iif = skb->dev->ifindex; 4838 4839 __this_cpu_inc(softnet_data.processed); 4840 4841 if (static_branch_unlikely(&generic_xdp_needed_key)) { 4842 int ret2; 4843 4844 preempt_disable(); 4845 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb); 4846 preempt_enable(); 4847 4848 if (ret2 != XDP_PASS) 4849 return NET_RX_DROP; 4850 skb_reset_mac_len(skb); 4851 } 4852 4853 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) || 4854 skb->protocol == cpu_to_be16(ETH_P_8021AD)) { 4855 skb = skb_vlan_untag(skb); 4856 if (unlikely(!skb)) 4857 goto out; 4858 } 4859 4860 if (skb_skip_tc_classify(skb)) 4861 goto skip_classify; 4862 4863 if (pfmemalloc) 4864 goto skip_taps; 4865 4866 list_for_each_entry_rcu(ptype, &ptype_all, list) { 4867 if (pt_prev) 4868 ret = deliver_skb(skb, pt_prev, orig_dev); 4869 pt_prev = ptype; 4870 } 4871 4872 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) { 4873 if (pt_prev) 4874 ret = deliver_skb(skb, pt_prev, orig_dev); 4875 pt_prev = ptype; 4876 } 4877 4878 skip_taps: 4879 #ifdef CONFIG_NET_INGRESS 4880 if (static_branch_unlikely(&ingress_needed_key)) { 4881 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev); 4882 if (!skb) 4883 goto out; 4884 4885 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0) 4886 goto out; 4887 } 4888 #endif 4889 skb_reset_tc(skb); 4890 skip_classify: 4891 if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) 4892 goto drop; 4893 4894 if (skb_vlan_tag_present(skb)) { 4895 if (pt_prev) { 4896 ret = deliver_skb(skb, pt_prev, orig_dev); 4897 pt_prev = NULL; 4898 } 4899 if (vlan_do_receive(&skb)) 4900 goto another_round; 4901 else if (unlikely(!skb)) 4902 goto out; 4903 } 4904 4905 rx_handler = rcu_dereference(skb->dev->rx_handler); 4906 if (rx_handler) { 4907 if (pt_prev) { 4908 ret = deliver_skb(skb, pt_prev, orig_dev); 4909 pt_prev = NULL; 4910 } 4911 switch (rx_handler(&skb)) { 4912 case RX_HANDLER_CONSUMED: 4913 ret = NET_RX_SUCCESS; 4914 goto out; 4915 case RX_HANDLER_ANOTHER: 4916 goto another_round; 4917 case RX_HANDLER_EXACT: 4918 deliver_exact = true; 4919 case RX_HANDLER_PASS: 4920 break; 4921 default: 4922 BUG(); 4923 } 4924 } 4925 4926 if (unlikely(skb_vlan_tag_present(skb))) { 4927 check_vlan_id: 4928 if (skb_vlan_tag_get_id(skb)) { 4929 /* Vlan id is non 0 and vlan_do_receive() above couldn't 4930 * find vlan device. 4931 */ 4932 skb->pkt_type = PACKET_OTHERHOST; 4933 } else if (skb->protocol == cpu_to_be16(ETH_P_8021Q) || 4934 skb->protocol == cpu_to_be16(ETH_P_8021AD)) { 4935 /* Outer header is 802.1P with vlan 0, inner header is 4936 * 802.1Q or 802.1AD and vlan_do_receive() above could 4937 * not find vlan dev for vlan id 0. 4938 */ 4939 __vlan_hwaccel_clear_tag(skb); 4940 skb = skb_vlan_untag(skb); 4941 if (unlikely(!skb)) 4942 goto out; 4943 if (vlan_do_receive(&skb)) 4944 /* After stripping off 802.1P header with vlan 0 4945 * vlan dev is found for inner header. 4946 */ 4947 goto another_round; 4948 else if (unlikely(!skb)) 4949 goto out; 4950 else 4951 /* We have stripped outer 802.1P vlan 0 header. 4952 * But could not find vlan dev. 4953 * check again for vlan id to set OTHERHOST. 4954 */ 4955 goto check_vlan_id; 4956 } 4957 /* Note: we might in the future use prio bits 4958 * and set skb->priority like in vlan_do_receive() 4959 * For the time being, just ignore Priority Code Point 4960 */ 4961 __vlan_hwaccel_clear_tag(skb); 4962 } 4963 4964 type = skb->protocol; 4965 4966 /* deliver only exact match when indicated */ 4967 if (likely(!deliver_exact)) { 4968 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 4969 &ptype_base[ntohs(type) & 4970 PTYPE_HASH_MASK]); 4971 } 4972 4973 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 4974 &orig_dev->ptype_specific); 4975 4976 if (unlikely(skb->dev != orig_dev)) { 4977 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 4978 &skb->dev->ptype_specific); 4979 } 4980 4981 if (pt_prev) { 4982 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 4983 goto drop; 4984 *ppt_prev = pt_prev; 4985 } else { 4986 drop: 4987 if (!deliver_exact) 4988 atomic_long_inc(&skb->dev->rx_dropped); 4989 else 4990 atomic_long_inc(&skb->dev->rx_nohandler); 4991 kfree_skb(skb); 4992 /* Jamal, now you will not able to escape explaining 4993 * me how you were going to use this. :-) 4994 */ 4995 ret = NET_RX_DROP; 4996 } 4997 4998 out: 4999 return ret; 5000 } 5001 5002 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc) 5003 { 5004 struct net_device *orig_dev = skb->dev; 5005 struct packet_type *pt_prev = NULL; 5006 int ret; 5007 5008 ret = __netif_receive_skb_core(skb, pfmemalloc, &pt_prev); 5009 if (pt_prev) 5010 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb, 5011 skb->dev, pt_prev, orig_dev); 5012 return ret; 5013 } 5014 5015 /** 5016 * netif_receive_skb_core - special purpose version of netif_receive_skb 5017 * @skb: buffer to process 5018 * 5019 * More direct receive version of netif_receive_skb(). It should 5020 * only be used by callers that have a need to skip RPS and Generic XDP. 5021 * Caller must also take care of handling if (page_is_)pfmemalloc. 5022 * 5023 * This function may only be called from softirq context and interrupts 5024 * should be enabled. 5025 * 5026 * Return values (usually ignored): 5027 * NET_RX_SUCCESS: no congestion 5028 * NET_RX_DROP: packet was dropped 5029 */ 5030 int netif_receive_skb_core(struct sk_buff *skb) 5031 { 5032 int ret; 5033 5034 rcu_read_lock(); 5035 ret = __netif_receive_skb_one_core(skb, false); 5036 rcu_read_unlock(); 5037 5038 return ret; 5039 } 5040 EXPORT_SYMBOL(netif_receive_skb_core); 5041 5042 static inline void __netif_receive_skb_list_ptype(struct list_head *head, 5043 struct packet_type *pt_prev, 5044 struct net_device *orig_dev) 5045 { 5046 struct sk_buff *skb, *next; 5047 5048 if (!pt_prev) 5049 return; 5050 if (list_empty(head)) 5051 return; 5052 if (pt_prev->list_func != NULL) 5053 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv, 5054 ip_list_rcv, head, pt_prev, orig_dev); 5055 else 5056 list_for_each_entry_safe(skb, next, head, list) { 5057 skb_list_del_init(skb); 5058 pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 5059 } 5060 } 5061 5062 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc) 5063 { 5064 /* Fast-path assumptions: 5065 * - There is no RX handler. 5066 * - Only one packet_type matches. 5067 * If either of these fails, we will end up doing some per-packet 5068 * processing in-line, then handling the 'last ptype' for the whole 5069 * sublist. This can't cause out-of-order delivery to any single ptype, 5070 * because the 'last ptype' must be constant across the sublist, and all 5071 * other ptypes are handled per-packet. 5072 */ 5073 /* Current (common) ptype of sublist */ 5074 struct packet_type *pt_curr = NULL; 5075 /* Current (common) orig_dev of sublist */ 5076 struct net_device *od_curr = NULL; 5077 struct list_head sublist; 5078 struct sk_buff *skb, *next; 5079 5080 INIT_LIST_HEAD(&sublist); 5081 list_for_each_entry_safe(skb, next, head, list) { 5082 struct net_device *orig_dev = skb->dev; 5083 struct packet_type *pt_prev = NULL; 5084 5085 skb_list_del_init(skb); 5086 __netif_receive_skb_core(skb, pfmemalloc, &pt_prev); 5087 if (!pt_prev) 5088 continue; 5089 if (pt_curr != pt_prev || od_curr != orig_dev) { 5090 /* dispatch old sublist */ 5091 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr); 5092 /* start new sublist */ 5093 INIT_LIST_HEAD(&sublist); 5094 pt_curr = pt_prev; 5095 od_curr = orig_dev; 5096 } 5097 list_add_tail(&skb->list, &sublist); 5098 } 5099 5100 /* dispatch final sublist */ 5101 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr); 5102 } 5103 5104 static int __netif_receive_skb(struct sk_buff *skb) 5105 { 5106 int ret; 5107 5108 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) { 5109 unsigned int noreclaim_flag; 5110 5111 /* 5112 * PFMEMALLOC skbs are special, they should 5113 * - be delivered to SOCK_MEMALLOC sockets only 5114 * - stay away from userspace 5115 * - have bounded memory usage 5116 * 5117 * Use PF_MEMALLOC as this saves us from propagating the allocation 5118 * context down to all allocation sites. 5119 */ 5120 noreclaim_flag = memalloc_noreclaim_save(); 5121 ret = __netif_receive_skb_one_core(skb, true); 5122 memalloc_noreclaim_restore(noreclaim_flag); 5123 } else 5124 ret = __netif_receive_skb_one_core(skb, false); 5125 5126 return ret; 5127 } 5128 5129 static void __netif_receive_skb_list(struct list_head *head) 5130 { 5131 unsigned long noreclaim_flag = 0; 5132 struct sk_buff *skb, *next; 5133 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */ 5134 5135 list_for_each_entry_safe(skb, next, head, list) { 5136 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) { 5137 struct list_head sublist; 5138 5139 /* Handle the previous sublist */ 5140 list_cut_before(&sublist, head, &skb->list); 5141 if (!list_empty(&sublist)) 5142 __netif_receive_skb_list_core(&sublist, pfmemalloc); 5143 pfmemalloc = !pfmemalloc; 5144 /* See comments in __netif_receive_skb */ 5145 if (pfmemalloc) 5146 noreclaim_flag = memalloc_noreclaim_save(); 5147 else 5148 memalloc_noreclaim_restore(noreclaim_flag); 5149 } 5150 } 5151 /* Handle the remaining sublist */ 5152 if (!list_empty(head)) 5153 __netif_receive_skb_list_core(head, pfmemalloc); 5154 /* Restore pflags */ 5155 if (pfmemalloc) 5156 memalloc_noreclaim_restore(noreclaim_flag); 5157 } 5158 5159 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp) 5160 { 5161 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog); 5162 struct bpf_prog *new = xdp->prog; 5163 int ret = 0; 5164 5165 switch (xdp->command) { 5166 case XDP_SETUP_PROG: 5167 rcu_assign_pointer(dev->xdp_prog, new); 5168 if (old) 5169 bpf_prog_put(old); 5170 5171 if (old && !new) { 5172 static_branch_dec(&generic_xdp_needed_key); 5173 } else if (new && !old) { 5174 static_branch_inc(&generic_xdp_needed_key); 5175 dev_disable_lro(dev); 5176 dev_disable_gro_hw(dev); 5177 } 5178 break; 5179 5180 case XDP_QUERY_PROG: 5181 xdp->prog_id = old ? old->aux->id : 0; 5182 break; 5183 5184 default: 5185 ret = -EINVAL; 5186 break; 5187 } 5188 5189 return ret; 5190 } 5191 5192 static int netif_receive_skb_internal(struct sk_buff *skb) 5193 { 5194 int ret; 5195 5196 net_timestamp_check(netdev_tstamp_prequeue, skb); 5197 5198 if (skb_defer_rx_timestamp(skb)) 5199 return NET_RX_SUCCESS; 5200 5201 rcu_read_lock(); 5202 #ifdef CONFIG_RPS 5203 if (static_branch_unlikely(&rps_needed)) { 5204 struct rps_dev_flow voidflow, *rflow = &voidflow; 5205 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 5206 5207 if (cpu >= 0) { 5208 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 5209 rcu_read_unlock(); 5210 return ret; 5211 } 5212 } 5213 #endif 5214 ret = __netif_receive_skb(skb); 5215 rcu_read_unlock(); 5216 return ret; 5217 } 5218 5219 static void netif_receive_skb_list_internal(struct list_head *head) 5220 { 5221 struct sk_buff *skb, *next; 5222 struct list_head sublist; 5223 5224 INIT_LIST_HEAD(&sublist); 5225 list_for_each_entry_safe(skb, next, head, list) { 5226 net_timestamp_check(netdev_tstamp_prequeue, skb); 5227 skb_list_del_init(skb); 5228 if (!skb_defer_rx_timestamp(skb)) 5229 list_add_tail(&skb->list, &sublist); 5230 } 5231 list_splice_init(&sublist, head); 5232 5233 rcu_read_lock(); 5234 #ifdef CONFIG_RPS 5235 if (static_branch_unlikely(&rps_needed)) { 5236 list_for_each_entry_safe(skb, next, head, list) { 5237 struct rps_dev_flow voidflow, *rflow = &voidflow; 5238 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 5239 5240 if (cpu >= 0) { 5241 /* Will be handled, remove from list */ 5242 skb_list_del_init(skb); 5243 enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 5244 } 5245 } 5246 } 5247 #endif 5248 __netif_receive_skb_list(head); 5249 rcu_read_unlock(); 5250 } 5251 5252 /** 5253 * netif_receive_skb - process receive buffer from network 5254 * @skb: buffer to process 5255 * 5256 * netif_receive_skb() is the main receive data processing function. 5257 * It always succeeds. The buffer may be dropped during processing 5258 * for congestion control or by the protocol layers. 5259 * 5260 * This function may only be called from softirq context and interrupts 5261 * should be enabled. 5262 * 5263 * Return values (usually ignored): 5264 * NET_RX_SUCCESS: no congestion 5265 * NET_RX_DROP: packet was dropped 5266 */ 5267 int netif_receive_skb(struct sk_buff *skb) 5268 { 5269 int ret; 5270 5271 trace_netif_receive_skb_entry(skb); 5272 5273 ret = netif_receive_skb_internal(skb); 5274 trace_netif_receive_skb_exit(ret); 5275 5276 return ret; 5277 } 5278 EXPORT_SYMBOL(netif_receive_skb); 5279 5280 /** 5281 * netif_receive_skb_list - process many receive buffers from network 5282 * @head: list of skbs to process. 5283 * 5284 * Since return value of netif_receive_skb() is normally ignored, and 5285 * wouldn't be meaningful for a list, this function returns void. 5286 * 5287 * This function may only be called from softirq context and interrupts 5288 * should be enabled. 5289 */ 5290 void netif_receive_skb_list(struct list_head *head) 5291 { 5292 struct sk_buff *skb; 5293 5294 if (list_empty(head)) 5295 return; 5296 if (trace_netif_receive_skb_list_entry_enabled()) { 5297 list_for_each_entry(skb, head, list) 5298 trace_netif_receive_skb_list_entry(skb); 5299 } 5300 netif_receive_skb_list_internal(head); 5301 trace_netif_receive_skb_list_exit(0); 5302 } 5303 EXPORT_SYMBOL(netif_receive_skb_list); 5304 5305 DEFINE_PER_CPU(struct work_struct, flush_works); 5306 5307 /* Network device is going away, flush any packets still pending */ 5308 static void flush_backlog(struct work_struct *work) 5309 { 5310 struct sk_buff *skb, *tmp; 5311 struct softnet_data *sd; 5312 5313 local_bh_disable(); 5314 sd = this_cpu_ptr(&softnet_data); 5315 5316 local_irq_disable(); 5317 rps_lock(sd); 5318 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 5319 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 5320 __skb_unlink(skb, &sd->input_pkt_queue); 5321 kfree_skb(skb); 5322 input_queue_head_incr(sd); 5323 } 5324 } 5325 rps_unlock(sd); 5326 local_irq_enable(); 5327 5328 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 5329 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 5330 __skb_unlink(skb, &sd->process_queue); 5331 kfree_skb(skb); 5332 input_queue_head_incr(sd); 5333 } 5334 } 5335 local_bh_enable(); 5336 } 5337 5338 static void flush_all_backlogs(void) 5339 { 5340 unsigned int cpu; 5341 5342 get_online_cpus(); 5343 5344 for_each_online_cpu(cpu) 5345 queue_work_on(cpu, system_highpri_wq, 5346 per_cpu_ptr(&flush_works, cpu)); 5347 5348 for_each_online_cpu(cpu) 5349 flush_work(per_cpu_ptr(&flush_works, cpu)); 5350 5351 put_online_cpus(); 5352 } 5353 5354 INDIRECT_CALLABLE_DECLARE(int inet_gro_complete(struct sk_buff *, int)); 5355 INDIRECT_CALLABLE_DECLARE(int ipv6_gro_complete(struct sk_buff *, int)); 5356 static int napi_gro_complete(struct sk_buff *skb) 5357 { 5358 struct packet_offload *ptype; 5359 __be16 type = skb->protocol; 5360 struct list_head *head = &offload_base; 5361 int err = -ENOENT; 5362 5363 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb)); 5364 5365 if (NAPI_GRO_CB(skb)->count == 1) { 5366 skb_shinfo(skb)->gso_size = 0; 5367 goto out; 5368 } 5369 5370 rcu_read_lock(); 5371 list_for_each_entry_rcu(ptype, head, list) { 5372 if (ptype->type != type || !ptype->callbacks.gro_complete) 5373 continue; 5374 5375 err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete, 5376 ipv6_gro_complete, inet_gro_complete, 5377 skb, 0); 5378 break; 5379 } 5380 rcu_read_unlock(); 5381 5382 if (err) { 5383 WARN_ON(&ptype->list == head); 5384 kfree_skb(skb); 5385 return NET_RX_SUCCESS; 5386 } 5387 5388 out: 5389 return netif_receive_skb_internal(skb); 5390 } 5391 5392 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index, 5393 bool flush_old) 5394 { 5395 struct list_head *head = &napi->gro_hash[index].list; 5396 struct sk_buff *skb, *p; 5397 5398 list_for_each_entry_safe_reverse(skb, p, head, list) { 5399 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies) 5400 return; 5401 skb_list_del_init(skb); 5402 napi_gro_complete(skb); 5403 napi->gro_hash[index].count--; 5404 } 5405 5406 if (!napi->gro_hash[index].count) 5407 __clear_bit(index, &napi->gro_bitmask); 5408 } 5409 5410 /* napi->gro_hash[].list contains packets ordered by age. 5411 * youngest packets at the head of it. 5412 * Complete skbs in reverse order to reduce latencies. 5413 */ 5414 void napi_gro_flush(struct napi_struct *napi, bool flush_old) 5415 { 5416 unsigned long bitmask = napi->gro_bitmask; 5417 unsigned int i, base = ~0U; 5418 5419 while ((i = ffs(bitmask)) != 0) { 5420 bitmask >>= i; 5421 base += i; 5422 __napi_gro_flush_chain(napi, base, flush_old); 5423 } 5424 } 5425 EXPORT_SYMBOL(napi_gro_flush); 5426 5427 static struct list_head *gro_list_prepare(struct napi_struct *napi, 5428 struct sk_buff *skb) 5429 { 5430 unsigned int maclen = skb->dev->hard_header_len; 5431 u32 hash = skb_get_hash_raw(skb); 5432 struct list_head *head; 5433 struct sk_buff *p; 5434 5435 head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list; 5436 list_for_each_entry(p, head, list) { 5437 unsigned long diffs; 5438 5439 NAPI_GRO_CB(p)->flush = 0; 5440 5441 if (hash != skb_get_hash_raw(p)) { 5442 NAPI_GRO_CB(p)->same_flow = 0; 5443 continue; 5444 } 5445 5446 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev; 5447 diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb); 5448 if (skb_vlan_tag_present(p)) 5449 diffs |= p->vlan_tci ^ skb->vlan_tci; 5450 diffs |= skb_metadata_dst_cmp(p, skb); 5451 diffs |= skb_metadata_differs(p, skb); 5452 if (maclen == ETH_HLEN) 5453 diffs |= compare_ether_header(skb_mac_header(p), 5454 skb_mac_header(skb)); 5455 else if (!diffs) 5456 diffs = memcmp(skb_mac_header(p), 5457 skb_mac_header(skb), 5458 maclen); 5459 NAPI_GRO_CB(p)->same_flow = !diffs; 5460 } 5461 5462 return head; 5463 } 5464 5465 static void skb_gro_reset_offset(struct sk_buff *skb) 5466 { 5467 const struct skb_shared_info *pinfo = skb_shinfo(skb); 5468 const skb_frag_t *frag0 = &pinfo->frags[0]; 5469 5470 NAPI_GRO_CB(skb)->data_offset = 0; 5471 NAPI_GRO_CB(skb)->frag0 = NULL; 5472 NAPI_GRO_CB(skb)->frag0_len = 0; 5473 5474 if (skb_mac_header(skb) == skb_tail_pointer(skb) && 5475 pinfo->nr_frags && 5476 !PageHighMem(skb_frag_page(frag0))) { 5477 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0); 5478 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int, 5479 skb_frag_size(frag0), 5480 skb->end - skb->tail); 5481 } 5482 } 5483 5484 static void gro_pull_from_frag0(struct sk_buff *skb, int grow) 5485 { 5486 struct skb_shared_info *pinfo = skb_shinfo(skb); 5487 5488 BUG_ON(skb->end - skb->tail < grow); 5489 5490 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow); 5491 5492 skb->data_len -= grow; 5493 skb->tail += grow; 5494 5495 skb_frag_off_add(&pinfo->frags[0], grow); 5496 skb_frag_size_sub(&pinfo->frags[0], grow); 5497 5498 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) { 5499 skb_frag_unref(skb, 0); 5500 memmove(pinfo->frags, pinfo->frags + 1, 5501 --pinfo->nr_frags * sizeof(pinfo->frags[0])); 5502 } 5503 } 5504 5505 static void gro_flush_oldest(struct list_head *head) 5506 { 5507 struct sk_buff *oldest; 5508 5509 oldest = list_last_entry(head, struct sk_buff, list); 5510 5511 /* We are called with head length >= MAX_GRO_SKBS, so this is 5512 * impossible. 5513 */ 5514 if (WARN_ON_ONCE(!oldest)) 5515 return; 5516 5517 /* Do not adjust napi->gro_hash[].count, caller is adding a new 5518 * SKB to the chain. 5519 */ 5520 skb_list_del_init(oldest); 5521 napi_gro_complete(oldest); 5522 } 5523 5524 INDIRECT_CALLABLE_DECLARE(struct sk_buff *inet_gro_receive(struct list_head *, 5525 struct sk_buff *)); 5526 INDIRECT_CALLABLE_DECLARE(struct sk_buff *ipv6_gro_receive(struct list_head *, 5527 struct sk_buff *)); 5528 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 5529 { 5530 u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1); 5531 struct list_head *head = &offload_base; 5532 struct packet_offload *ptype; 5533 __be16 type = skb->protocol; 5534 struct list_head *gro_head; 5535 struct sk_buff *pp = NULL; 5536 enum gro_result ret; 5537 int same_flow; 5538 int grow; 5539 5540 if (netif_elide_gro(skb->dev)) 5541 goto normal; 5542 5543 gro_head = gro_list_prepare(napi, skb); 5544 5545 rcu_read_lock(); 5546 list_for_each_entry_rcu(ptype, head, list) { 5547 if (ptype->type != type || !ptype->callbacks.gro_receive) 5548 continue; 5549 5550 skb_set_network_header(skb, skb_gro_offset(skb)); 5551 skb_reset_mac_len(skb); 5552 NAPI_GRO_CB(skb)->same_flow = 0; 5553 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb); 5554 NAPI_GRO_CB(skb)->free = 0; 5555 NAPI_GRO_CB(skb)->encap_mark = 0; 5556 NAPI_GRO_CB(skb)->recursion_counter = 0; 5557 NAPI_GRO_CB(skb)->is_fou = 0; 5558 NAPI_GRO_CB(skb)->is_atomic = 1; 5559 NAPI_GRO_CB(skb)->gro_remcsum_start = 0; 5560 5561 /* Setup for GRO checksum validation */ 5562 switch (skb->ip_summed) { 5563 case CHECKSUM_COMPLETE: 5564 NAPI_GRO_CB(skb)->csum = skb->csum; 5565 NAPI_GRO_CB(skb)->csum_valid = 1; 5566 NAPI_GRO_CB(skb)->csum_cnt = 0; 5567 break; 5568 case CHECKSUM_UNNECESSARY: 5569 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1; 5570 NAPI_GRO_CB(skb)->csum_valid = 0; 5571 break; 5572 default: 5573 NAPI_GRO_CB(skb)->csum_cnt = 0; 5574 NAPI_GRO_CB(skb)->csum_valid = 0; 5575 } 5576 5577 pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive, 5578 ipv6_gro_receive, inet_gro_receive, 5579 gro_head, skb); 5580 break; 5581 } 5582 rcu_read_unlock(); 5583 5584 if (&ptype->list == head) 5585 goto normal; 5586 5587 if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) { 5588 ret = GRO_CONSUMED; 5589 goto ok; 5590 } 5591 5592 same_flow = NAPI_GRO_CB(skb)->same_flow; 5593 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED; 5594 5595 if (pp) { 5596 skb_list_del_init(pp); 5597 napi_gro_complete(pp); 5598 napi->gro_hash[hash].count--; 5599 } 5600 5601 if (same_flow) 5602 goto ok; 5603 5604 if (NAPI_GRO_CB(skb)->flush) 5605 goto normal; 5606 5607 if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) { 5608 gro_flush_oldest(gro_head); 5609 } else { 5610 napi->gro_hash[hash].count++; 5611 } 5612 NAPI_GRO_CB(skb)->count = 1; 5613 NAPI_GRO_CB(skb)->age = jiffies; 5614 NAPI_GRO_CB(skb)->last = skb; 5615 skb_shinfo(skb)->gso_size = skb_gro_len(skb); 5616 list_add(&skb->list, gro_head); 5617 ret = GRO_HELD; 5618 5619 pull: 5620 grow = skb_gro_offset(skb) - skb_headlen(skb); 5621 if (grow > 0) 5622 gro_pull_from_frag0(skb, grow); 5623 ok: 5624 if (napi->gro_hash[hash].count) { 5625 if (!test_bit(hash, &napi->gro_bitmask)) 5626 __set_bit(hash, &napi->gro_bitmask); 5627 } else if (test_bit(hash, &napi->gro_bitmask)) { 5628 __clear_bit(hash, &napi->gro_bitmask); 5629 } 5630 5631 return ret; 5632 5633 normal: 5634 ret = GRO_NORMAL; 5635 goto pull; 5636 } 5637 5638 struct packet_offload *gro_find_receive_by_type(__be16 type) 5639 { 5640 struct list_head *offload_head = &offload_base; 5641 struct packet_offload *ptype; 5642 5643 list_for_each_entry_rcu(ptype, offload_head, list) { 5644 if (ptype->type != type || !ptype->callbacks.gro_receive) 5645 continue; 5646 return ptype; 5647 } 5648 return NULL; 5649 } 5650 EXPORT_SYMBOL(gro_find_receive_by_type); 5651 5652 struct packet_offload *gro_find_complete_by_type(__be16 type) 5653 { 5654 struct list_head *offload_head = &offload_base; 5655 struct packet_offload *ptype; 5656 5657 list_for_each_entry_rcu(ptype, offload_head, list) { 5658 if (ptype->type != type || !ptype->callbacks.gro_complete) 5659 continue; 5660 return ptype; 5661 } 5662 return NULL; 5663 } 5664 EXPORT_SYMBOL(gro_find_complete_by_type); 5665 5666 static void napi_skb_free_stolen_head(struct sk_buff *skb) 5667 { 5668 skb_dst_drop(skb); 5669 secpath_reset(skb); 5670 kmem_cache_free(skbuff_head_cache, skb); 5671 } 5672 5673 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb) 5674 { 5675 switch (ret) { 5676 case GRO_NORMAL: 5677 if (netif_receive_skb_internal(skb)) 5678 ret = GRO_DROP; 5679 break; 5680 5681 case GRO_DROP: 5682 kfree_skb(skb); 5683 break; 5684 5685 case GRO_MERGED_FREE: 5686 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) 5687 napi_skb_free_stolen_head(skb); 5688 else 5689 __kfree_skb(skb); 5690 break; 5691 5692 case GRO_HELD: 5693 case GRO_MERGED: 5694 case GRO_CONSUMED: 5695 break; 5696 } 5697 5698 return ret; 5699 } 5700 5701 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 5702 { 5703 gro_result_t ret; 5704 5705 skb_mark_napi_id(skb, napi); 5706 trace_napi_gro_receive_entry(skb); 5707 5708 skb_gro_reset_offset(skb); 5709 5710 ret = napi_skb_finish(dev_gro_receive(napi, skb), skb); 5711 trace_napi_gro_receive_exit(ret); 5712 5713 return ret; 5714 } 5715 EXPORT_SYMBOL(napi_gro_receive); 5716 5717 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb) 5718 { 5719 if (unlikely(skb->pfmemalloc)) { 5720 consume_skb(skb); 5721 return; 5722 } 5723 __skb_pull(skb, skb_headlen(skb)); 5724 /* restore the reserve we had after netdev_alloc_skb_ip_align() */ 5725 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb)); 5726 __vlan_hwaccel_clear_tag(skb); 5727 skb->dev = napi->dev; 5728 skb->skb_iif = 0; 5729 5730 /* eth_type_trans() assumes pkt_type is PACKET_HOST */ 5731 skb->pkt_type = PACKET_HOST; 5732 5733 skb->encapsulation = 0; 5734 skb_shinfo(skb)->gso_type = 0; 5735 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 5736 secpath_reset(skb); 5737 5738 napi->skb = skb; 5739 } 5740 5741 struct sk_buff *napi_get_frags(struct napi_struct *napi) 5742 { 5743 struct sk_buff *skb = napi->skb; 5744 5745 if (!skb) { 5746 skb = napi_alloc_skb(napi, GRO_MAX_HEAD); 5747 if (skb) { 5748 napi->skb = skb; 5749 skb_mark_napi_id(skb, napi); 5750 } 5751 } 5752 return skb; 5753 } 5754 EXPORT_SYMBOL(napi_get_frags); 5755 5756 /* Pass the currently batched GRO_NORMAL SKBs up to the stack. */ 5757 static void gro_normal_list(struct napi_struct *napi) 5758 { 5759 if (!napi->rx_count) 5760 return; 5761 netif_receive_skb_list_internal(&napi->rx_list); 5762 INIT_LIST_HEAD(&napi->rx_list); 5763 napi->rx_count = 0; 5764 } 5765 5766 /* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded, 5767 * pass the whole batch up to the stack. 5768 */ 5769 static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb) 5770 { 5771 list_add_tail(&skb->list, &napi->rx_list); 5772 if (++napi->rx_count >= gro_normal_batch) 5773 gro_normal_list(napi); 5774 } 5775 5776 static gro_result_t napi_frags_finish(struct napi_struct *napi, 5777 struct sk_buff *skb, 5778 gro_result_t ret) 5779 { 5780 switch (ret) { 5781 case GRO_NORMAL: 5782 case GRO_HELD: 5783 __skb_push(skb, ETH_HLEN); 5784 skb->protocol = eth_type_trans(skb, skb->dev); 5785 if (ret == GRO_NORMAL) 5786 gro_normal_one(napi, skb); 5787 break; 5788 5789 case GRO_DROP: 5790 napi_reuse_skb(napi, skb); 5791 break; 5792 5793 case GRO_MERGED_FREE: 5794 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) 5795 napi_skb_free_stolen_head(skb); 5796 else 5797 napi_reuse_skb(napi, skb); 5798 break; 5799 5800 case GRO_MERGED: 5801 case GRO_CONSUMED: 5802 break; 5803 } 5804 5805 return ret; 5806 } 5807 5808 /* Upper GRO stack assumes network header starts at gro_offset=0 5809 * Drivers could call both napi_gro_frags() and napi_gro_receive() 5810 * We copy ethernet header into skb->data to have a common layout. 5811 */ 5812 static struct sk_buff *napi_frags_skb(struct napi_struct *napi) 5813 { 5814 struct sk_buff *skb = napi->skb; 5815 const struct ethhdr *eth; 5816 unsigned int hlen = sizeof(*eth); 5817 5818 napi->skb = NULL; 5819 5820 skb_reset_mac_header(skb); 5821 skb_gro_reset_offset(skb); 5822 5823 if (unlikely(skb_gro_header_hard(skb, hlen))) { 5824 eth = skb_gro_header_slow(skb, hlen, 0); 5825 if (unlikely(!eth)) { 5826 net_warn_ratelimited("%s: dropping impossible skb from %s\n", 5827 __func__, napi->dev->name); 5828 napi_reuse_skb(napi, skb); 5829 return NULL; 5830 } 5831 } else { 5832 eth = (const struct ethhdr *)skb->data; 5833 gro_pull_from_frag0(skb, hlen); 5834 NAPI_GRO_CB(skb)->frag0 += hlen; 5835 NAPI_GRO_CB(skb)->frag0_len -= hlen; 5836 } 5837 __skb_pull(skb, hlen); 5838 5839 /* 5840 * This works because the only protocols we care about don't require 5841 * special handling. 5842 * We'll fix it up properly in napi_frags_finish() 5843 */ 5844 skb->protocol = eth->h_proto; 5845 5846 return skb; 5847 } 5848 5849 gro_result_t napi_gro_frags(struct napi_struct *napi) 5850 { 5851 gro_result_t ret; 5852 struct sk_buff *skb = napi_frags_skb(napi); 5853 5854 if (!skb) 5855 return GRO_DROP; 5856 5857 trace_napi_gro_frags_entry(skb); 5858 5859 ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb)); 5860 trace_napi_gro_frags_exit(ret); 5861 5862 return ret; 5863 } 5864 EXPORT_SYMBOL(napi_gro_frags); 5865 5866 /* Compute the checksum from gro_offset and return the folded value 5867 * after adding in any pseudo checksum. 5868 */ 5869 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb) 5870 { 5871 __wsum wsum; 5872 __sum16 sum; 5873 5874 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0); 5875 5876 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */ 5877 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum)); 5878 /* See comments in __skb_checksum_complete(). */ 5879 if (likely(!sum)) { 5880 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 5881 !skb->csum_complete_sw) 5882 netdev_rx_csum_fault(skb->dev, skb); 5883 } 5884 5885 NAPI_GRO_CB(skb)->csum = wsum; 5886 NAPI_GRO_CB(skb)->csum_valid = 1; 5887 5888 return sum; 5889 } 5890 EXPORT_SYMBOL(__skb_gro_checksum_complete); 5891 5892 static void net_rps_send_ipi(struct softnet_data *remsd) 5893 { 5894 #ifdef CONFIG_RPS 5895 while (remsd) { 5896 struct softnet_data *next = remsd->rps_ipi_next; 5897 5898 if (cpu_online(remsd->cpu)) 5899 smp_call_function_single_async(remsd->cpu, &remsd->csd); 5900 remsd = next; 5901 } 5902 #endif 5903 } 5904 5905 /* 5906 * net_rps_action_and_irq_enable sends any pending IPI's for rps. 5907 * Note: called with local irq disabled, but exits with local irq enabled. 5908 */ 5909 static void net_rps_action_and_irq_enable(struct softnet_data *sd) 5910 { 5911 #ifdef CONFIG_RPS 5912 struct softnet_data *remsd = sd->rps_ipi_list; 5913 5914 if (remsd) { 5915 sd->rps_ipi_list = NULL; 5916 5917 local_irq_enable(); 5918 5919 /* Send pending IPI's to kick RPS processing on remote cpus. */ 5920 net_rps_send_ipi(remsd); 5921 } else 5922 #endif 5923 local_irq_enable(); 5924 } 5925 5926 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd) 5927 { 5928 #ifdef CONFIG_RPS 5929 return sd->rps_ipi_list != NULL; 5930 #else 5931 return false; 5932 #endif 5933 } 5934 5935 static int process_backlog(struct napi_struct *napi, int quota) 5936 { 5937 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 5938 bool again = true; 5939 int work = 0; 5940 5941 /* Check if we have pending ipi, its better to send them now, 5942 * not waiting net_rx_action() end. 5943 */ 5944 if (sd_has_rps_ipi_waiting(sd)) { 5945 local_irq_disable(); 5946 net_rps_action_and_irq_enable(sd); 5947 } 5948 5949 napi->weight = dev_rx_weight; 5950 while (again) { 5951 struct sk_buff *skb; 5952 5953 while ((skb = __skb_dequeue(&sd->process_queue))) { 5954 rcu_read_lock(); 5955 __netif_receive_skb(skb); 5956 rcu_read_unlock(); 5957 input_queue_head_incr(sd); 5958 if (++work >= quota) 5959 return work; 5960 5961 } 5962 5963 local_irq_disable(); 5964 rps_lock(sd); 5965 if (skb_queue_empty(&sd->input_pkt_queue)) { 5966 /* 5967 * Inline a custom version of __napi_complete(). 5968 * only current cpu owns and manipulates this napi, 5969 * and NAPI_STATE_SCHED is the only possible flag set 5970 * on backlog. 5971 * We can use a plain write instead of clear_bit(), 5972 * and we dont need an smp_mb() memory barrier. 5973 */ 5974 napi->state = 0; 5975 again = false; 5976 } else { 5977 skb_queue_splice_tail_init(&sd->input_pkt_queue, 5978 &sd->process_queue); 5979 } 5980 rps_unlock(sd); 5981 local_irq_enable(); 5982 } 5983 5984 return work; 5985 } 5986 5987 /** 5988 * __napi_schedule - schedule for receive 5989 * @n: entry to schedule 5990 * 5991 * The entry's receive function will be scheduled to run. 5992 * Consider using __napi_schedule_irqoff() if hard irqs are masked. 5993 */ 5994 void __napi_schedule(struct napi_struct *n) 5995 { 5996 unsigned long flags; 5997 5998 local_irq_save(flags); 5999 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 6000 local_irq_restore(flags); 6001 } 6002 EXPORT_SYMBOL(__napi_schedule); 6003 6004 /** 6005 * napi_schedule_prep - check if napi can be scheduled 6006 * @n: napi context 6007 * 6008 * Test if NAPI routine is already running, and if not mark 6009 * it as running. This is used as a condition variable 6010 * insure only one NAPI poll instance runs. We also make 6011 * sure there is no pending NAPI disable. 6012 */ 6013 bool napi_schedule_prep(struct napi_struct *n) 6014 { 6015 unsigned long val, new; 6016 6017 do { 6018 val = READ_ONCE(n->state); 6019 if (unlikely(val & NAPIF_STATE_DISABLE)) 6020 return false; 6021 new = val | NAPIF_STATE_SCHED; 6022 6023 /* Sets STATE_MISSED bit if STATE_SCHED was already set 6024 * This was suggested by Alexander Duyck, as compiler 6025 * emits better code than : 6026 * if (val & NAPIF_STATE_SCHED) 6027 * new |= NAPIF_STATE_MISSED; 6028 */ 6029 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED * 6030 NAPIF_STATE_MISSED; 6031 } while (cmpxchg(&n->state, val, new) != val); 6032 6033 return !(val & NAPIF_STATE_SCHED); 6034 } 6035 EXPORT_SYMBOL(napi_schedule_prep); 6036 6037 /** 6038 * __napi_schedule_irqoff - schedule for receive 6039 * @n: entry to schedule 6040 * 6041 * Variant of __napi_schedule() assuming hard irqs are masked 6042 */ 6043 void __napi_schedule_irqoff(struct napi_struct *n) 6044 { 6045 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 6046 } 6047 EXPORT_SYMBOL(__napi_schedule_irqoff); 6048 6049 bool napi_complete_done(struct napi_struct *n, int work_done) 6050 { 6051 unsigned long flags, val, new; 6052 6053 /* 6054 * 1) Don't let napi dequeue from the cpu poll list 6055 * just in case its running on a different cpu. 6056 * 2) If we are busy polling, do nothing here, we have 6057 * the guarantee we will be called later. 6058 */ 6059 if (unlikely(n->state & (NAPIF_STATE_NPSVC | 6060 NAPIF_STATE_IN_BUSY_POLL))) 6061 return false; 6062 6063 gro_normal_list(n); 6064 6065 if (n->gro_bitmask) { 6066 unsigned long timeout = 0; 6067 6068 if (work_done) 6069 timeout = n->dev->gro_flush_timeout; 6070 6071 /* When the NAPI instance uses a timeout and keeps postponing 6072 * it, we need to bound somehow the time packets are kept in 6073 * the GRO layer 6074 */ 6075 napi_gro_flush(n, !!timeout); 6076 if (timeout) 6077 hrtimer_start(&n->timer, ns_to_ktime(timeout), 6078 HRTIMER_MODE_REL_PINNED); 6079 } 6080 if (unlikely(!list_empty(&n->poll_list))) { 6081 /* If n->poll_list is not empty, we need to mask irqs */ 6082 local_irq_save(flags); 6083 list_del_init(&n->poll_list); 6084 local_irq_restore(flags); 6085 } 6086 6087 do { 6088 val = READ_ONCE(n->state); 6089 6090 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED)); 6091 6092 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED); 6093 6094 /* If STATE_MISSED was set, leave STATE_SCHED set, 6095 * because we will call napi->poll() one more time. 6096 * This C code was suggested by Alexander Duyck to help gcc. 6097 */ 6098 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED * 6099 NAPIF_STATE_SCHED; 6100 } while (cmpxchg(&n->state, val, new) != val); 6101 6102 if (unlikely(val & NAPIF_STATE_MISSED)) { 6103 __napi_schedule(n); 6104 return false; 6105 } 6106 6107 return true; 6108 } 6109 EXPORT_SYMBOL(napi_complete_done); 6110 6111 /* must be called under rcu_read_lock(), as we dont take a reference */ 6112 static struct napi_struct *napi_by_id(unsigned int napi_id) 6113 { 6114 unsigned int hash = napi_id % HASH_SIZE(napi_hash); 6115 struct napi_struct *napi; 6116 6117 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node) 6118 if (napi->napi_id == napi_id) 6119 return napi; 6120 6121 return NULL; 6122 } 6123 6124 #if defined(CONFIG_NET_RX_BUSY_POLL) 6125 6126 #define BUSY_POLL_BUDGET 8 6127 6128 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock) 6129 { 6130 int rc; 6131 6132 /* Busy polling means there is a high chance device driver hard irq 6133 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was 6134 * set in napi_schedule_prep(). 6135 * Since we are about to call napi->poll() once more, we can safely 6136 * clear NAPI_STATE_MISSED. 6137 * 6138 * Note: x86 could use a single "lock and ..." instruction 6139 * to perform these two clear_bit() 6140 */ 6141 clear_bit(NAPI_STATE_MISSED, &napi->state); 6142 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state); 6143 6144 local_bh_disable(); 6145 6146 /* All we really want here is to re-enable device interrupts. 6147 * Ideally, a new ndo_busy_poll_stop() could avoid another round. 6148 */ 6149 rc = napi->poll(napi, BUSY_POLL_BUDGET); 6150 /* We can't gro_normal_list() here, because napi->poll() might have 6151 * rearmed the napi (napi_complete_done()) in which case it could 6152 * already be running on another CPU. 6153 */ 6154 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET); 6155 netpoll_poll_unlock(have_poll_lock); 6156 if (rc == BUSY_POLL_BUDGET) { 6157 /* As the whole budget was spent, we still own the napi so can 6158 * safely handle the rx_list. 6159 */ 6160 gro_normal_list(napi); 6161 __napi_schedule(napi); 6162 } 6163 local_bh_enable(); 6164 } 6165 6166 void napi_busy_loop(unsigned int napi_id, 6167 bool (*loop_end)(void *, unsigned long), 6168 void *loop_end_arg) 6169 { 6170 unsigned long start_time = loop_end ? busy_loop_current_time() : 0; 6171 int (*napi_poll)(struct napi_struct *napi, int budget); 6172 void *have_poll_lock = NULL; 6173 struct napi_struct *napi; 6174 6175 restart: 6176 napi_poll = NULL; 6177 6178 rcu_read_lock(); 6179 6180 napi = napi_by_id(napi_id); 6181 if (!napi) 6182 goto out; 6183 6184 preempt_disable(); 6185 for (;;) { 6186 int work = 0; 6187 6188 local_bh_disable(); 6189 if (!napi_poll) { 6190 unsigned long val = READ_ONCE(napi->state); 6191 6192 /* If multiple threads are competing for this napi, 6193 * we avoid dirtying napi->state as much as we can. 6194 */ 6195 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED | 6196 NAPIF_STATE_IN_BUSY_POLL)) 6197 goto count; 6198 if (cmpxchg(&napi->state, val, 6199 val | NAPIF_STATE_IN_BUSY_POLL | 6200 NAPIF_STATE_SCHED) != val) 6201 goto count; 6202 have_poll_lock = netpoll_poll_lock(napi); 6203 napi_poll = napi->poll; 6204 } 6205 work = napi_poll(napi, BUSY_POLL_BUDGET); 6206 trace_napi_poll(napi, work, BUSY_POLL_BUDGET); 6207 gro_normal_list(napi); 6208 count: 6209 if (work > 0) 6210 __NET_ADD_STATS(dev_net(napi->dev), 6211 LINUX_MIB_BUSYPOLLRXPACKETS, work); 6212 local_bh_enable(); 6213 6214 if (!loop_end || loop_end(loop_end_arg, start_time)) 6215 break; 6216 6217 if (unlikely(need_resched())) { 6218 if (napi_poll) 6219 busy_poll_stop(napi, have_poll_lock); 6220 preempt_enable(); 6221 rcu_read_unlock(); 6222 cond_resched(); 6223 if (loop_end(loop_end_arg, start_time)) 6224 return; 6225 goto restart; 6226 } 6227 cpu_relax(); 6228 } 6229 if (napi_poll) 6230 busy_poll_stop(napi, have_poll_lock); 6231 preempt_enable(); 6232 out: 6233 rcu_read_unlock(); 6234 } 6235 EXPORT_SYMBOL(napi_busy_loop); 6236 6237 #endif /* CONFIG_NET_RX_BUSY_POLL */ 6238 6239 static void napi_hash_add(struct napi_struct *napi) 6240 { 6241 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) || 6242 test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) 6243 return; 6244 6245 spin_lock(&napi_hash_lock); 6246 6247 /* 0..NR_CPUS range is reserved for sender_cpu use */ 6248 do { 6249 if (unlikely(++napi_gen_id < MIN_NAPI_ID)) 6250 napi_gen_id = MIN_NAPI_ID; 6251 } while (napi_by_id(napi_gen_id)); 6252 napi->napi_id = napi_gen_id; 6253 6254 hlist_add_head_rcu(&napi->napi_hash_node, 6255 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]); 6256 6257 spin_unlock(&napi_hash_lock); 6258 } 6259 6260 /* Warning : caller is responsible to make sure rcu grace period 6261 * is respected before freeing memory containing @napi 6262 */ 6263 bool napi_hash_del(struct napi_struct *napi) 6264 { 6265 bool rcu_sync_needed = false; 6266 6267 spin_lock(&napi_hash_lock); 6268 6269 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) { 6270 rcu_sync_needed = true; 6271 hlist_del_rcu(&napi->napi_hash_node); 6272 } 6273 spin_unlock(&napi_hash_lock); 6274 return rcu_sync_needed; 6275 } 6276 EXPORT_SYMBOL_GPL(napi_hash_del); 6277 6278 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer) 6279 { 6280 struct napi_struct *napi; 6281 6282 napi = container_of(timer, struct napi_struct, timer); 6283 6284 /* Note : we use a relaxed variant of napi_schedule_prep() not setting 6285 * NAPI_STATE_MISSED, since we do not react to a device IRQ. 6286 */ 6287 if (napi->gro_bitmask && !napi_disable_pending(napi) && 6288 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) 6289 __napi_schedule_irqoff(napi); 6290 6291 return HRTIMER_NORESTART; 6292 } 6293 6294 static void init_gro_hash(struct napi_struct *napi) 6295 { 6296 int i; 6297 6298 for (i = 0; i < GRO_HASH_BUCKETS; i++) { 6299 INIT_LIST_HEAD(&napi->gro_hash[i].list); 6300 napi->gro_hash[i].count = 0; 6301 } 6302 napi->gro_bitmask = 0; 6303 } 6304 6305 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 6306 int (*poll)(struct napi_struct *, int), int weight) 6307 { 6308 INIT_LIST_HEAD(&napi->poll_list); 6309 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED); 6310 napi->timer.function = napi_watchdog; 6311 init_gro_hash(napi); 6312 napi->skb = NULL; 6313 INIT_LIST_HEAD(&napi->rx_list); 6314 napi->rx_count = 0; 6315 napi->poll = poll; 6316 if (weight > NAPI_POLL_WEIGHT) 6317 netdev_err_once(dev, "%s() called with weight %d\n", __func__, 6318 weight); 6319 napi->weight = weight; 6320 list_add(&napi->dev_list, &dev->napi_list); 6321 napi->dev = dev; 6322 #ifdef CONFIG_NETPOLL 6323 napi->poll_owner = -1; 6324 #endif 6325 set_bit(NAPI_STATE_SCHED, &napi->state); 6326 napi_hash_add(napi); 6327 } 6328 EXPORT_SYMBOL(netif_napi_add); 6329 6330 void napi_disable(struct napi_struct *n) 6331 { 6332 might_sleep(); 6333 set_bit(NAPI_STATE_DISABLE, &n->state); 6334 6335 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state)) 6336 msleep(1); 6337 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state)) 6338 msleep(1); 6339 6340 hrtimer_cancel(&n->timer); 6341 6342 clear_bit(NAPI_STATE_DISABLE, &n->state); 6343 } 6344 EXPORT_SYMBOL(napi_disable); 6345 6346 static void flush_gro_hash(struct napi_struct *napi) 6347 { 6348 int i; 6349 6350 for (i = 0; i < GRO_HASH_BUCKETS; i++) { 6351 struct sk_buff *skb, *n; 6352 6353 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list) 6354 kfree_skb(skb); 6355 napi->gro_hash[i].count = 0; 6356 } 6357 } 6358 6359 /* Must be called in process context */ 6360 void netif_napi_del(struct napi_struct *napi) 6361 { 6362 might_sleep(); 6363 if (napi_hash_del(napi)) 6364 synchronize_net(); 6365 list_del_init(&napi->dev_list); 6366 napi_free_frags(napi); 6367 6368 flush_gro_hash(napi); 6369 napi->gro_bitmask = 0; 6370 } 6371 EXPORT_SYMBOL(netif_napi_del); 6372 6373 static int napi_poll(struct napi_struct *n, struct list_head *repoll) 6374 { 6375 void *have; 6376 int work, weight; 6377 6378 list_del_init(&n->poll_list); 6379 6380 have = netpoll_poll_lock(n); 6381 6382 weight = n->weight; 6383 6384 /* This NAPI_STATE_SCHED test is for avoiding a race 6385 * with netpoll's poll_napi(). Only the entity which 6386 * obtains the lock and sees NAPI_STATE_SCHED set will 6387 * actually make the ->poll() call. Therefore we avoid 6388 * accidentally calling ->poll() when NAPI is not scheduled. 6389 */ 6390 work = 0; 6391 if (test_bit(NAPI_STATE_SCHED, &n->state)) { 6392 work = n->poll(n, weight); 6393 trace_napi_poll(n, work, weight); 6394 } 6395 6396 WARN_ON_ONCE(work > weight); 6397 6398 if (likely(work < weight)) 6399 goto out_unlock; 6400 6401 /* Drivers must not modify the NAPI state if they 6402 * consume the entire weight. In such cases this code 6403 * still "owns" the NAPI instance and therefore can 6404 * move the instance around on the list at-will. 6405 */ 6406 if (unlikely(napi_disable_pending(n))) { 6407 napi_complete(n); 6408 goto out_unlock; 6409 } 6410 6411 gro_normal_list(n); 6412 6413 if (n->gro_bitmask) { 6414 /* flush too old packets 6415 * If HZ < 1000, flush all packets. 6416 */ 6417 napi_gro_flush(n, HZ >= 1000); 6418 } 6419 6420 /* Some drivers may have called napi_schedule 6421 * prior to exhausting their budget. 6422 */ 6423 if (unlikely(!list_empty(&n->poll_list))) { 6424 pr_warn_once("%s: Budget exhausted after napi rescheduled\n", 6425 n->dev ? n->dev->name : "backlog"); 6426 goto out_unlock; 6427 } 6428 6429 list_add_tail(&n->poll_list, repoll); 6430 6431 out_unlock: 6432 netpoll_poll_unlock(have); 6433 6434 return work; 6435 } 6436 6437 static __latent_entropy void net_rx_action(struct softirq_action *h) 6438 { 6439 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 6440 unsigned long time_limit = jiffies + 6441 usecs_to_jiffies(netdev_budget_usecs); 6442 int budget = netdev_budget; 6443 LIST_HEAD(list); 6444 LIST_HEAD(repoll); 6445 6446 local_irq_disable(); 6447 list_splice_init(&sd->poll_list, &list); 6448 local_irq_enable(); 6449 6450 for (;;) { 6451 struct napi_struct *n; 6452 6453 if (list_empty(&list)) { 6454 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll)) 6455 goto out; 6456 break; 6457 } 6458 6459 n = list_first_entry(&list, struct napi_struct, poll_list); 6460 budget -= napi_poll(n, &repoll); 6461 6462 /* If softirq window is exhausted then punt. 6463 * Allow this to run for 2 jiffies since which will allow 6464 * an average latency of 1.5/HZ. 6465 */ 6466 if (unlikely(budget <= 0 || 6467 time_after_eq(jiffies, time_limit))) { 6468 sd->time_squeeze++; 6469 break; 6470 } 6471 } 6472 6473 local_irq_disable(); 6474 6475 list_splice_tail_init(&sd->poll_list, &list); 6476 list_splice_tail(&repoll, &list); 6477 list_splice(&list, &sd->poll_list); 6478 if (!list_empty(&sd->poll_list)) 6479 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 6480 6481 net_rps_action_and_irq_enable(sd); 6482 out: 6483 __kfree_skb_flush(); 6484 } 6485 6486 struct netdev_adjacent { 6487 struct net_device *dev; 6488 6489 /* upper master flag, there can only be one master device per list */ 6490 bool master; 6491 6492 /* counter for the number of times this device was added to us */ 6493 u16 ref_nr; 6494 6495 /* private field for the users */ 6496 void *private; 6497 6498 struct list_head list; 6499 struct rcu_head rcu; 6500 }; 6501 6502 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev, 6503 struct list_head *adj_list) 6504 { 6505 struct netdev_adjacent *adj; 6506 6507 list_for_each_entry(adj, adj_list, list) { 6508 if (adj->dev == adj_dev) 6509 return adj; 6510 } 6511 return NULL; 6512 } 6513 6514 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data) 6515 { 6516 struct net_device *dev = data; 6517 6518 return upper_dev == dev; 6519 } 6520 6521 /** 6522 * netdev_has_upper_dev - Check if device is linked to an upper device 6523 * @dev: device 6524 * @upper_dev: upper device to check 6525 * 6526 * Find out if a device is linked to specified upper device and return true 6527 * in case it is. Note that this checks only immediate upper device, 6528 * not through a complete stack of devices. The caller must hold the RTNL lock. 6529 */ 6530 bool netdev_has_upper_dev(struct net_device *dev, 6531 struct net_device *upper_dev) 6532 { 6533 ASSERT_RTNL(); 6534 6535 return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev, 6536 upper_dev); 6537 } 6538 EXPORT_SYMBOL(netdev_has_upper_dev); 6539 6540 /** 6541 * netdev_has_upper_dev_all - Check if device is linked to an upper device 6542 * @dev: device 6543 * @upper_dev: upper device to check 6544 * 6545 * Find out if a device is linked to specified upper device and return true 6546 * in case it is. Note that this checks the entire upper device chain. 6547 * The caller must hold rcu lock. 6548 */ 6549 6550 bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 6551 struct net_device *upper_dev) 6552 { 6553 return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev, 6554 upper_dev); 6555 } 6556 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu); 6557 6558 /** 6559 * netdev_has_any_upper_dev - Check if device is linked to some device 6560 * @dev: device 6561 * 6562 * Find out if a device is linked to an upper device and return true in case 6563 * it is. The caller must hold the RTNL lock. 6564 */ 6565 bool netdev_has_any_upper_dev(struct net_device *dev) 6566 { 6567 ASSERT_RTNL(); 6568 6569 return !list_empty(&dev->adj_list.upper); 6570 } 6571 EXPORT_SYMBOL(netdev_has_any_upper_dev); 6572 6573 /** 6574 * netdev_master_upper_dev_get - Get master upper device 6575 * @dev: device 6576 * 6577 * Find a master upper device and return pointer to it or NULL in case 6578 * it's not there. The caller must hold the RTNL lock. 6579 */ 6580 struct net_device *netdev_master_upper_dev_get(struct net_device *dev) 6581 { 6582 struct netdev_adjacent *upper; 6583 6584 ASSERT_RTNL(); 6585 6586 if (list_empty(&dev->adj_list.upper)) 6587 return NULL; 6588 6589 upper = list_first_entry(&dev->adj_list.upper, 6590 struct netdev_adjacent, list); 6591 if (likely(upper->master)) 6592 return upper->dev; 6593 return NULL; 6594 } 6595 EXPORT_SYMBOL(netdev_master_upper_dev_get); 6596 6597 /** 6598 * netdev_has_any_lower_dev - Check if device is linked to some device 6599 * @dev: device 6600 * 6601 * Find out if a device is linked to a lower device and return true in case 6602 * it is. The caller must hold the RTNL lock. 6603 */ 6604 static bool netdev_has_any_lower_dev(struct net_device *dev) 6605 { 6606 ASSERT_RTNL(); 6607 6608 return !list_empty(&dev->adj_list.lower); 6609 } 6610 6611 void *netdev_adjacent_get_private(struct list_head *adj_list) 6612 { 6613 struct netdev_adjacent *adj; 6614 6615 adj = list_entry(adj_list, struct netdev_adjacent, list); 6616 6617 return adj->private; 6618 } 6619 EXPORT_SYMBOL(netdev_adjacent_get_private); 6620 6621 /** 6622 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list 6623 * @dev: device 6624 * @iter: list_head ** of the current position 6625 * 6626 * Gets the next device from the dev's upper list, starting from iter 6627 * position. The caller must hold RCU read lock. 6628 */ 6629 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 6630 struct list_head **iter) 6631 { 6632 struct netdev_adjacent *upper; 6633 6634 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 6635 6636 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 6637 6638 if (&upper->list == &dev->adj_list.upper) 6639 return NULL; 6640 6641 *iter = &upper->list; 6642 6643 return upper->dev; 6644 } 6645 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu); 6646 6647 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev, 6648 struct list_head **iter) 6649 { 6650 struct netdev_adjacent *upper; 6651 6652 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 6653 6654 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 6655 6656 if (&upper->list == &dev->adj_list.upper) 6657 return NULL; 6658 6659 *iter = &upper->list; 6660 6661 return upper->dev; 6662 } 6663 6664 int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 6665 int (*fn)(struct net_device *dev, 6666 void *data), 6667 void *data) 6668 { 6669 struct net_device *udev; 6670 struct list_head *iter; 6671 int ret; 6672 6673 for (iter = &dev->adj_list.upper, 6674 udev = netdev_next_upper_dev_rcu(dev, &iter); 6675 udev; 6676 udev = netdev_next_upper_dev_rcu(dev, &iter)) { 6677 /* first is the upper device itself */ 6678 ret = fn(udev, data); 6679 if (ret) 6680 return ret; 6681 6682 /* then look at all of its upper devices */ 6683 ret = netdev_walk_all_upper_dev_rcu(udev, fn, data); 6684 if (ret) 6685 return ret; 6686 } 6687 6688 return 0; 6689 } 6690 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu); 6691 6692 /** 6693 * netdev_lower_get_next_private - Get the next ->private from the 6694 * lower neighbour list 6695 * @dev: device 6696 * @iter: list_head ** of the current position 6697 * 6698 * Gets the next netdev_adjacent->private from the dev's lower neighbour 6699 * list, starting from iter position. The caller must hold either hold the 6700 * RTNL lock or its own locking that guarantees that the neighbour lower 6701 * list will remain unchanged. 6702 */ 6703 void *netdev_lower_get_next_private(struct net_device *dev, 6704 struct list_head **iter) 6705 { 6706 struct netdev_adjacent *lower; 6707 6708 lower = list_entry(*iter, struct netdev_adjacent, list); 6709 6710 if (&lower->list == &dev->adj_list.lower) 6711 return NULL; 6712 6713 *iter = lower->list.next; 6714 6715 return lower->private; 6716 } 6717 EXPORT_SYMBOL(netdev_lower_get_next_private); 6718 6719 /** 6720 * netdev_lower_get_next_private_rcu - Get the next ->private from the 6721 * lower neighbour list, RCU 6722 * variant 6723 * @dev: device 6724 * @iter: list_head ** of the current position 6725 * 6726 * Gets the next netdev_adjacent->private from the dev's lower neighbour 6727 * list, starting from iter position. The caller must hold RCU read lock. 6728 */ 6729 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 6730 struct list_head **iter) 6731 { 6732 struct netdev_adjacent *lower; 6733 6734 WARN_ON_ONCE(!rcu_read_lock_held()); 6735 6736 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 6737 6738 if (&lower->list == &dev->adj_list.lower) 6739 return NULL; 6740 6741 *iter = &lower->list; 6742 6743 return lower->private; 6744 } 6745 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu); 6746 6747 /** 6748 * netdev_lower_get_next - Get the next device from the lower neighbour 6749 * list 6750 * @dev: device 6751 * @iter: list_head ** of the current position 6752 * 6753 * Gets the next netdev_adjacent from the dev's lower neighbour 6754 * list, starting from iter position. The caller must hold RTNL lock or 6755 * its own locking that guarantees that the neighbour lower 6756 * list will remain unchanged. 6757 */ 6758 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter) 6759 { 6760 struct netdev_adjacent *lower; 6761 6762 lower = list_entry(*iter, struct netdev_adjacent, list); 6763 6764 if (&lower->list == &dev->adj_list.lower) 6765 return NULL; 6766 6767 *iter = lower->list.next; 6768 6769 return lower->dev; 6770 } 6771 EXPORT_SYMBOL(netdev_lower_get_next); 6772 6773 static struct net_device *netdev_next_lower_dev(struct net_device *dev, 6774 struct list_head **iter) 6775 { 6776 struct netdev_adjacent *lower; 6777 6778 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 6779 6780 if (&lower->list == &dev->adj_list.lower) 6781 return NULL; 6782 6783 *iter = &lower->list; 6784 6785 return lower->dev; 6786 } 6787 6788 int netdev_walk_all_lower_dev(struct net_device *dev, 6789 int (*fn)(struct net_device *dev, 6790 void *data), 6791 void *data) 6792 { 6793 struct net_device *ldev; 6794 struct list_head *iter; 6795 int ret; 6796 6797 for (iter = &dev->adj_list.lower, 6798 ldev = netdev_next_lower_dev(dev, &iter); 6799 ldev; 6800 ldev = netdev_next_lower_dev(dev, &iter)) { 6801 /* first is the lower device itself */ 6802 ret = fn(ldev, data); 6803 if (ret) 6804 return ret; 6805 6806 /* then look at all of its lower devices */ 6807 ret = netdev_walk_all_lower_dev(ldev, fn, data); 6808 if (ret) 6809 return ret; 6810 } 6811 6812 return 0; 6813 } 6814 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev); 6815 6816 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev, 6817 struct list_head **iter) 6818 { 6819 struct netdev_adjacent *lower; 6820 6821 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 6822 if (&lower->list == &dev->adj_list.lower) 6823 return NULL; 6824 6825 *iter = &lower->list; 6826 6827 return lower->dev; 6828 } 6829 6830 int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 6831 int (*fn)(struct net_device *dev, 6832 void *data), 6833 void *data) 6834 { 6835 struct net_device *ldev; 6836 struct list_head *iter; 6837 int ret; 6838 6839 for (iter = &dev->adj_list.lower, 6840 ldev = netdev_next_lower_dev_rcu(dev, &iter); 6841 ldev; 6842 ldev = netdev_next_lower_dev_rcu(dev, &iter)) { 6843 /* first is the lower device itself */ 6844 ret = fn(ldev, data); 6845 if (ret) 6846 return ret; 6847 6848 /* then look at all of its lower devices */ 6849 ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data); 6850 if (ret) 6851 return ret; 6852 } 6853 6854 return 0; 6855 } 6856 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu); 6857 6858 /** 6859 * netdev_lower_get_first_private_rcu - Get the first ->private from the 6860 * lower neighbour list, RCU 6861 * variant 6862 * @dev: device 6863 * 6864 * Gets the first netdev_adjacent->private from the dev's lower neighbour 6865 * list. The caller must hold RCU read lock. 6866 */ 6867 void *netdev_lower_get_first_private_rcu(struct net_device *dev) 6868 { 6869 struct netdev_adjacent *lower; 6870 6871 lower = list_first_or_null_rcu(&dev->adj_list.lower, 6872 struct netdev_adjacent, list); 6873 if (lower) 6874 return lower->private; 6875 return NULL; 6876 } 6877 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu); 6878 6879 /** 6880 * netdev_master_upper_dev_get_rcu - Get master upper device 6881 * @dev: device 6882 * 6883 * Find a master upper device and return pointer to it or NULL in case 6884 * it's not there. The caller must hold the RCU read lock. 6885 */ 6886 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev) 6887 { 6888 struct netdev_adjacent *upper; 6889 6890 upper = list_first_or_null_rcu(&dev->adj_list.upper, 6891 struct netdev_adjacent, list); 6892 if (upper && likely(upper->master)) 6893 return upper->dev; 6894 return NULL; 6895 } 6896 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu); 6897 6898 static int netdev_adjacent_sysfs_add(struct net_device *dev, 6899 struct net_device *adj_dev, 6900 struct list_head *dev_list) 6901 { 6902 char linkname[IFNAMSIZ+7]; 6903 6904 sprintf(linkname, dev_list == &dev->adj_list.upper ? 6905 "upper_%s" : "lower_%s", adj_dev->name); 6906 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj), 6907 linkname); 6908 } 6909 static void netdev_adjacent_sysfs_del(struct net_device *dev, 6910 char *name, 6911 struct list_head *dev_list) 6912 { 6913 char linkname[IFNAMSIZ+7]; 6914 6915 sprintf(linkname, dev_list == &dev->adj_list.upper ? 6916 "upper_%s" : "lower_%s", name); 6917 sysfs_remove_link(&(dev->dev.kobj), linkname); 6918 } 6919 6920 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev, 6921 struct net_device *adj_dev, 6922 struct list_head *dev_list) 6923 { 6924 return (dev_list == &dev->adj_list.upper || 6925 dev_list == &dev->adj_list.lower) && 6926 net_eq(dev_net(dev), dev_net(adj_dev)); 6927 } 6928 6929 static int __netdev_adjacent_dev_insert(struct net_device *dev, 6930 struct net_device *adj_dev, 6931 struct list_head *dev_list, 6932 void *private, bool master) 6933 { 6934 struct netdev_adjacent *adj; 6935 int ret; 6936 6937 adj = __netdev_find_adj(adj_dev, dev_list); 6938 6939 if (adj) { 6940 adj->ref_nr += 1; 6941 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n", 6942 dev->name, adj_dev->name, adj->ref_nr); 6943 6944 return 0; 6945 } 6946 6947 adj = kmalloc(sizeof(*adj), GFP_KERNEL); 6948 if (!adj) 6949 return -ENOMEM; 6950 6951 adj->dev = adj_dev; 6952 adj->master = master; 6953 adj->ref_nr = 1; 6954 adj->private = private; 6955 dev_hold(adj_dev); 6956 6957 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n", 6958 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name); 6959 6960 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) { 6961 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list); 6962 if (ret) 6963 goto free_adj; 6964 } 6965 6966 /* Ensure that master link is always the first item in list. */ 6967 if (master) { 6968 ret = sysfs_create_link(&(dev->dev.kobj), 6969 &(adj_dev->dev.kobj), "master"); 6970 if (ret) 6971 goto remove_symlinks; 6972 6973 list_add_rcu(&adj->list, dev_list); 6974 } else { 6975 list_add_tail_rcu(&adj->list, dev_list); 6976 } 6977 6978 return 0; 6979 6980 remove_symlinks: 6981 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 6982 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 6983 free_adj: 6984 kfree(adj); 6985 dev_put(adj_dev); 6986 6987 return ret; 6988 } 6989 6990 static void __netdev_adjacent_dev_remove(struct net_device *dev, 6991 struct net_device *adj_dev, 6992 u16 ref_nr, 6993 struct list_head *dev_list) 6994 { 6995 struct netdev_adjacent *adj; 6996 6997 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n", 6998 dev->name, adj_dev->name, ref_nr); 6999 7000 adj = __netdev_find_adj(adj_dev, dev_list); 7001 7002 if (!adj) { 7003 pr_err("Adjacency does not exist for device %s from %s\n", 7004 dev->name, adj_dev->name); 7005 WARN_ON(1); 7006 return; 7007 } 7008 7009 if (adj->ref_nr > ref_nr) { 7010 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n", 7011 dev->name, adj_dev->name, ref_nr, 7012 adj->ref_nr - ref_nr); 7013 adj->ref_nr -= ref_nr; 7014 return; 7015 } 7016 7017 if (adj->master) 7018 sysfs_remove_link(&(dev->dev.kobj), "master"); 7019 7020 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 7021 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 7022 7023 list_del_rcu(&adj->list); 7024 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n", 7025 adj_dev->name, dev->name, adj_dev->name); 7026 dev_put(adj_dev); 7027 kfree_rcu(adj, rcu); 7028 } 7029 7030 static int __netdev_adjacent_dev_link_lists(struct net_device *dev, 7031 struct net_device *upper_dev, 7032 struct list_head *up_list, 7033 struct list_head *down_list, 7034 void *private, bool master) 7035 { 7036 int ret; 7037 7038 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, 7039 private, master); 7040 if (ret) 7041 return ret; 7042 7043 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, 7044 private, false); 7045 if (ret) { 7046 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list); 7047 return ret; 7048 } 7049 7050 return 0; 7051 } 7052 7053 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev, 7054 struct net_device *upper_dev, 7055 u16 ref_nr, 7056 struct list_head *up_list, 7057 struct list_head *down_list) 7058 { 7059 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list); 7060 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list); 7061 } 7062 7063 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev, 7064 struct net_device *upper_dev, 7065 void *private, bool master) 7066 { 7067 return __netdev_adjacent_dev_link_lists(dev, upper_dev, 7068 &dev->adj_list.upper, 7069 &upper_dev->adj_list.lower, 7070 private, master); 7071 } 7072 7073 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev, 7074 struct net_device *upper_dev) 7075 { 7076 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1, 7077 &dev->adj_list.upper, 7078 &upper_dev->adj_list.lower); 7079 } 7080 7081 static int __netdev_upper_dev_link(struct net_device *dev, 7082 struct net_device *upper_dev, bool master, 7083 void *upper_priv, void *upper_info, 7084 struct netlink_ext_ack *extack) 7085 { 7086 struct netdev_notifier_changeupper_info changeupper_info = { 7087 .info = { 7088 .dev = dev, 7089 .extack = extack, 7090 }, 7091 .upper_dev = upper_dev, 7092 .master = master, 7093 .linking = true, 7094 .upper_info = upper_info, 7095 }; 7096 struct net_device *master_dev; 7097 int ret = 0; 7098 7099 ASSERT_RTNL(); 7100 7101 if (dev == upper_dev) 7102 return -EBUSY; 7103 7104 /* To prevent loops, check if dev is not upper device to upper_dev. */ 7105 if (netdev_has_upper_dev(upper_dev, dev)) 7106 return -EBUSY; 7107 7108 if (!master) { 7109 if (netdev_has_upper_dev(dev, upper_dev)) 7110 return -EEXIST; 7111 } else { 7112 master_dev = netdev_master_upper_dev_get(dev); 7113 if (master_dev) 7114 return master_dev == upper_dev ? -EEXIST : -EBUSY; 7115 } 7116 7117 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 7118 &changeupper_info.info); 7119 ret = notifier_to_errno(ret); 7120 if (ret) 7121 return ret; 7122 7123 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv, 7124 master); 7125 if (ret) 7126 return ret; 7127 7128 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 7129 &changeupper_info.info); 7130 ret = notifier_to_errno(ret); 7131 if (ret) 7132 goto rollback; 7133 7134 return 0; 7135 7136 rollback: 7137 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 7138 7139 return ret; 7140 } 7141 7142 /** 7143 * netdev_upper_dev_link - Add a link to the upper device 7144 * @dev: device 7145 * @upper_dev: new upper device 7146 * @extack: netlink extended ack 7147 * 7148 * Adds a link to device which is upper to this one. The caller must hold 7149 * the RTNL lock. On a failure a negative errno code is returned. 7150 * On success the reference counts are adjusted and the function 7151 * returns zero. 7152 */ 7153 int netdev_upper_dev_link(struct net_device *dev, 7154 struct net_device *upper_dev, 7155 struct netlink_ext_ack *extack) 7156 { 7157 return __netdev_upper_dev_link(dev, upper_dev, false, 7158 NULL, NULL, extack); 7159 } 7160 EXPORT_SYMBOL(netdev_upper_dev_link); 7161 7162 /** 7163 * netdev_master_upper_dev_link - Add a master link to the upper device 7164 * @dev: device 7165 * @upper_dev: new upper device 7166 * @upper_priv: upper device private 7167 * @upper_info: upper info to be passed down via notifier 7168 * @extack: netlink extended ack 7169 * 7170 * Adds a link to device which is upper to this one. In this case, only 7171 * one master upper device can be linked, although other non-master devices 7172 * might be linked as well. The caller must hold the RTNL lock. 7173 * On a failure a negative errno code is returned. On success the reference 7174 * counts are adjusted and the function returns zero. 7175 */ 7176 int netdev_master_upper_dev_link(struct net_device *dev, 7177 struct net_device *upper_dev, 7178 void *upper_priv, void *upper_info, 7179 struct netlink_ext_ack *extack) 7180 { 7181 return __netdev_upper_dev_link(dev, upper_dev, true, 7182 upper_priv, upper_info, extack); 7183 } 7184 EXPORT_SYMBOL(netdev_master_upper_dev_link); 7185 7186 /** 7187 * netdev_upper_dev_unlink - Removes a link to upper device 7188 * @dev: device 7189 * @upper_dev: new upper device 7190 * 7191 * Removes a link to device which is upper to this one. The caller must hold 7192 * the RTNL lock. 7193 */ 7194 void netdev_upper_dev_unlink(struct net_device *dev, 7195 struct net_device *upper_dev) 7196 { 7197 struct netdev_notifier_changeupper_info changeupper_info = { 7198 .info = { 7199 .dev = dev, 7200 }, 7201 .upper_dev = upper_dev, 7202 .linking = false, 7203 }; 7204 7205 ASSERT_RTNL(); 7206 7207 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev; 7208 7209 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 7210 &changeupper_info.info); 7211 7212 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 7213 7214 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 7215 &changeupper_info.info); 7216 } 7217 EXPORT_SYMBOL(netdev_upper_dev_unlink); 7218 7219 /** 7220 * netdev_bonding_info_change - Dispatch event about slave change 7221 * @dev: device 7222 * @bonding_info: info to dispatch 7223 * 7224 * Send NETDEV_BONDING_INFO to netdev notifiers with info. 7225 * The caller must hold the RTNL lock. 7226 */ 7227 void netdev_bonding_info_change(struct net_device *dev, 7228 struct netdev_bonding_info *bonding_info) 7229 { 7230 struct netdev_notifier_bonding_info info = { 7231 .info.dev = dev, 7232 }; 7233 7234 memcpy(&info.bonding_info, bonding_info, 7235 sizeof(struct netdev_bonding_info)); 7236 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, 7237 &info.info); 7238 } 7239 EXPORT_SYMBOL(netdev_bonding_info_change); 7240 7241 static void netdev_adjacent_add_links(struct net_device *dev) 7242 { 7243 struct netdev_adjacent *iter; 7244 7245 struct net *net = dev_net(dev); 7246 7247 list_for_each_entry(iter, &dev->adj_list.upper, list) { 7248 if (!net_eq(net, dev_net(iter->dev))) 7249 continue; 7250 netdev_adjacent_sysfs_add(iter->dev, dev, 7251 &iter->dev->adj_list.lower); 7252 netdev_adjacent_sysfs_add(dev, iter->dev, 7253 &dev->adj_list.upper); 7254 } 7255 7256 list_for_each_entry(iter, &dev->adj_list.lower, list) { 7257 if (!net_eq(net, dev_net(iter->dev))) 7258 continue; 7259 netdev_adjacent_sysfs_add(iter->dev, dev, 7260 &iter->dev->adj_list.upper); 7261 netdev_adjacent_sysfs_add(dev, iter->dev, 7262 &dev->adj_list.lower); 7263 } 7264 } 7265 7266 static void netdev_adjacent_del_links(struct net_device *dev) 7267 { 7268 struct netdev_adjacent *iter; 7269 7270 struct net *net = dev_net(dev); 7271 7272 list_for_each_entry(iter, &dev->adj_list.upper, list) { 7273 if (!net_eq(net, dev_net(iter->dev))) 7274 continue; 7275 netdev_adjacent_sysfs_del(iter->dev, dev->name, 7276 &iter->dev->adj_list.lower); 7277 netdev_adjacent_sysfs_del(dev, iter->dev->name, 7278 &dev->adj_list.upper); 7279 } 7280 7281 list_for_each_entry(iter, &dev->adj_list.lower, list) { 7282 if (!net_eq(net, dev_net(iter->dev))) 7283 continue; 7284 netdev_adjacent_sysfs_del(iter->dev, dev->name, 7285 &iter->dev->adj_list.upper); 7286 netdev_adjacent_sysfs_del(dev, iter->dev->name, 7287 &dev->adj_list.lower); 7288 } 7289 } 7290 7291 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname) 7292 { 7293 struct netdev_adjacent *iter; 7294 7295 struct net *net = dev_net(dev); 7296 7297 list_for_each_entry(iter, &dev->adj_list.upper, list) { 7298 if (!net_eq(net, dev_net(iter->dev))) 7299 continue; 7300 netdev_adjacent_sysfs_del(iter->dev, oldname, 7301 &iter->dev->adj_list.lower); 7302 netdev_adjacent_sysfs_add(iter->dev, dev, 7303 &iter->dev->adj_list.lower); 7304 } 7305 7306 list_for_each_entry(iter, &dev->adj_list.lower, list) { 7307 if (!net_eq(net, dev_net(iter->dev))) 7308 continue; 7309 netdev_adjacent_sysfs_del(iter->dev, oldname, 7310 &iter->dev->adj_list.upper); 7311 netdev_adjacent_sysfs_add(iter->dev, dev, 7312 &iter->dev->adj_list.upper); 7313 } 7314 } 7315 7316 void *netdev_lower_dev_get_private(struct net_device *dev, 7317 struct net_device *lower_dev) 7318 { 7319 struct netdev_adjacent *lower; 7320 7321 if (!lower_dev) 7322 return NULL; 7323 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower); 7324 if (!lower) 7325 return NULL; 7326 7327 return lower->private; 7328 } 7329 EXPORT_SYMBOL(netdev_lower_dev_get_private); 7330 7331 7332 int dev_get_nest_level(struct net_device *dev) 7333 { 7334 struct net_device *lower = NULL; 7335 struct list_head *iter; 7336 int max_nest = -1; 7337 int nest; 7338 7339 ASSERT_RTNL(); 7340 7341 netdev_for_each_lower_dev(dev, lower, iter) { 7342 nest = dev_get_nest_level(lower); 7343 if (max_nest < nest) 7344 max_nest = nest; 7345 } 7346 7347 return max_nest + 1; 7348 } 7349 EXPORT_SYMBOL(dev_get_nest_level); 7350 7351 /** 7352 * netdev_lower_change - Dispatch event about lower device state change 7353 * @lower_dev: device 7354 * @lower_state_info: state to dispatch 7355 * 7356 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info. 7357 * The caller must hold the RTNL lock. 7358 */ 7359 void netdev_lower_state_changed(struct net_device *lower_dev, 7360 void *lower_state_info) 7361 { 7362 struct netdev_notifier_changelowerstate_info changelowerstate_info = { 7363 .info.dev = lower_dev, 7364 }; 7365 7366 ASSERT_RTNL(); 7367 changelowerstate_info.lower_state_info = lower_state_info; 7368 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, 7369 &changelowerstate_info.info); 7370 } 7371 EXPORT_SYMBOL(netdev_lower_state_changed); 7372 7373 static void dev_change_rx_flags(struct net_device *dev, int flags) 7374 { 7375 const struct net_device_ops *ops = dev->netdev_ops; 7376 7377 if (ops->ndo_change_rx_flags) 7378 ops->ndo_change_rx_flags(dev, flags); 7379 } 7380 7381 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify) 7382 { 7383 unsigned int old_flags = dev->flags; 7384 kuid_t uid; 7385 kgid_t gid; 7386 7387 ASSERT_RTNL(); 7388 7389 dev->flags |= IFF_PROMISC; 7390 dev->promiscuity += inc; 7391 if (dev->promiscuity == 0) { 7392 /* 7393 * Avoid overflow. 7394 * If inc causes overflow, untouch promisc and return error. 7395 */ 7396 if (inc < 0) 7397 dev->flags &= ~IFF_PROMISC; 7398 else { 7399 dev->promiscuity -= inc; 7400 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n", 7401 dev->name); 7402 return -EOVERFLOW; 7403 } 7404 } 7405 if (dev->flags != old_flags) { 7406 pr_info("device %s %s promiscuous mode\n", 7407 dev->name, 7408 dev->flags & IFF_PROMISC ? "entered" : "left"); 7409 if (audit_enabled) { 7410 current_uid_gid(&uid, &gid); 7411 audit_log(audit_context(), GFP_ATOMIC, 7412 AUDIT_ANOM_PROMISCUOUS, 7413 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 7414 dev->name, (dev->flags & IFF_PROMISC), 7415 (old_flags & IFF_PROMISC), 7416 from_kuid(&init_user_ns, audit_get_loginuid(current)), 7417 from_kuid(&init_user_ns, uid), 7418 from_kgid(&init_user_ns, gid), 7419 audit_get_sessionid(current)); 7420 } 7421 7422 dev_change_rx_flags(dev, IFF_PROMISC); 7423 } 7424 if (notify) 7425 __dev_notify_flags(dev, old_flags, IFF_PROMISC); 7426 return 0; 7427 } 7428 7429 /** 7430 * dev_set_promiscuity - update promiscuity count on a device 7431 * @dev: device 7432 * @inc: modifier 7433 * 7434 * Add or remove promiscuity from a device. While the count in the device 7435 * remains above zero the interface remains promiscuous. Once it hits zero 7436 * the device reverts back to normal filtering operation. A negative inc 7437 * value is used to drop promiscuity on the device. 7438 * Return 0 if successful or a negative errno code on error. 7439 */ 7440 int dev_set_promiscuity(struct net_device *dev, int inc) 7441 { 7442 unsigned int old_flags = dev->flags; 7443 int err; 7444 7445 err = __dev_set_promiscuity(dev, inc, true); 7446 if (err < 0) 7447 return err; 7448 if (dev->flags != old_flags) 7449 dev_set_rx_mode(dev); 7450 return err; 7451 } 7452 EXPORT_SYMBOL(dev_set_promiscuity); 7453 7454 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify) 7455 { 7456 unsigned int old_flags = dev->flags, old_gflags = dev->gflags; 7457 7458 ASSERT_RTNL(); 7459 7460 dev->flags |= IFF_ALLMULTI; 7461 dev->allmulti += inc; 7462 if (dev->allmulti == 0) { 7463 /* 7464 * Avoid overflow. 7465 * If inc causes overflow, untouch allmulti and return error. 7466 */ 7467 if (inc < 0) 7468 dev->flags &= ~IFF_ALLMULTI; 7469 else { 7470 dev->allmulti -= inc; 7471 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n", 7472 dev->name); 7473 return -EOVERFLOW; 7474 } 7475 } 7476 if (dev->flags ^ old_flags) { 7477 dev_change_rx_flags(dev, IFF_ALLMULTI); 7478 dev_set_rx_mode(dev); 7479 if (notify) 7480 __dev_notify_flags(dev, old_flags, 7481 dev->gflags ^ old_gflags); 7482 } 7483 return 0; 7484 } 7485 7486 /** 7487 * dev_set_allmulti - update allmulti count on a device 7488 * @dev: device 7489 * @inc: modifier 7490 * 7491 * Add or remove reception of all multicast frames to a device. While the 7492 * count in the device remains above zero the interface remains listening 7493 * to all interfaces. Once it hits zero the device reverts back to normal 7494 * filtering operation. A negative @inc value is used to drop the counter 7495 * when releasing a resource needing all multicasts. 7496 * Return 0 if successful or a negative errno code on error. 7497 */ 7498 7499 int dev_set_allmulti(struct net_device *dev, int inc) 7500 { 7501 return __dev_set_allmulti(dev, inc, true); 7502 } 7503 EXPORT_SYMBOL(dev_set_allmulti); 7504 7505 /* 7506 * Upload unicast and multicast address lists to device and 7507 * configure RX filtering. When the device doesn't support unicast 7508 * filtering it is put in promiscuous mode while unicast addresses 7509 * are present. 7510 */ 7511 void __dev_set_rx_mode(struct net_device *dev) 7512 { 7513 const struct net_device_ops *ops = dev->netdev_ops; 7514 7515 /* dev_open will call this function so the list will stay sane. */ 7516 if (!(dev->flags&IFF_UP)) 7517 return; 7518 7519 if (!netif_device_present(dev)) 7520 return; 7521 7522 if (!(dev->priv_flags & IFF_UNICAST_FLT)) { 7523 /* Unicast addresses changes may only happen under the rtnl, 7524 * therefore calling __dev_set_promiscuity here is safe. 7525 */ 7526 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 7527 __dev_set_promiscuity(dev, 1, false); 7528 dev->uc_promisc = true; 7529 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 7530 __dev_set_promiscuity(dev, -1, false); 7531 dev->uc_promisc = false; 7532 } 7533 } 7534 7535 if (ops->ndo_set_rx_mode) 7536 ops->ndo_set_rx_mode(dev); 7537 } 7538 7539 void dev_set_rx_mode(struct net_device *dev) 7540 { 7541 netif_addr_lock_bh(dev); 7542 __dev_set_rx_mode(dev); 7543 netif_addr_unlock_bh(dev); 7544 } 7545 7546 /** 7547 * dev_get_flags - get flags reported to userspace 7548 * @dev: device 7549 * 7550 * Get the combination of flag bits exported through APIs to userspace. 7551 */ 7552 unsigned int dev_get_flags(const struct net_device *dev) 7553 { 7554 unsigned int flags; 7555 7556 flags = (dev->flags & ~(IFF_PROMISC | 7557 IFF_ALLMULTI | 7558 IFF_RUNNING | 7559 IFF_LOWER_UP | 7560 IFF_DORMANT)) | 7561 (dev->gflags & (IFF_PROMISC | 7562 IFF_ALLMULTI)); 7563 7564 if (netif_running(dev)) { 7565 if (netif_oper_up(dev)) 7566 flags |= IFF_RUNNING; 7567 if (netif_carrier_ok(dev)) 7568 flags |= IFF_LOWER_UP; 7569 if (netif_dormant(dev)) 7570 flags |= IFF_DORMANT; 7571 } 7572 7573 return flags; 7574 } 7575 EXPORT_SYMBOL(dev_get_flags); 7576 7577 int __dev_change_flags(struct net_device *dev, unsigned int flags, 7578 struct netlink_ext_ack *extack) 7579 { 7580 unsigned int old_flags = dev->flags; 7581 int ret; 7582 7583 ASSERT_RTNL(); 7584 7585 /* 7586 * Set the flags on our device. 7587 */ 7588 7589 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 7590 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 7591 IFF_AUTOMEDIA)) | 7592 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 7593 IFF_ALLMULTI)); 7594 7595 /* 7596 * Load in the correct multicast list now the flags have changed. 7597 */ 7598 7599 if ((old_flags ^ flags) & IFF_MULTICAST) 7600 dev_change_rx_flags(dev, IFF_MULTICAST); 7601 7602 dev_set_rx_mode(dev); 7603 7604 /* 7605 * Have we downed the interface. We handle IFF_UP ourselves 7606 * according to user attempts to set it, rather than blindly 7607 * setting it. 7608 */ 7609 7610 ret = 0; 7611 if ((old_flags ^ flags) & IFF_UP) { 7612 if (old_flags & IFF_UP) 7613 __dev_close(dev); 7614 else 7615 ret = __dev_open(dev, extack); 7616 } 7617 7618 if ((flags ^ dev->gflags) & IFF_PROMISC) { 7619 int inc = (flags & IFF_PROMISC) ? 1 : -1; 7620 unsigned int old_flags = dev->flags; 7621 7622 dev->gflags ^= IFF_PROMISC; 7623 7624 if (__dev_set_promiscuity(dev, inc, false) >= 0) 7625 if (dev->flags != old_flags) 7626 dev_set_rx_mode(dev); 7627 } 7628 7629 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 7630 * is important. Some (broken) drivers set IFF_PROMISC, when 7631 * IFF_ALLMULTI is requested not asking us and not reporting. 7632 */ 7633 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 7634 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 7635 7636 dev->gflags ^= IFF_ALLMULTI; 7637 __dev_set_allmulti(dev, inc, false); 7638 } 7639 7640 return ret; 7641 } 7642 7643 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags, 7644 unsigned int gchanges) 7645 { 7646 unsigned int changes = dev->flags ^ old_flags; 7647 7648 if (gchanges) 7649 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC); 7650 7651 if (changes & IFF_UP) { 7652 if (dev->flags & IFF_UP) 7653 call_netdevice_notifiers(NETDEV_UP, dev); 7654 else 7655 call_netdevice_notifiers(NETDEV_DOWN, dev); 7656 } 7657 7658 if (dev->flags & IFF_UP && 7659 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) { 7660 struct netdev_notifier_change_info change_info = { 7661 .info = { 7662 .dev = dev, 7663 }, 7664 .flags_changed = changes, 7665 }; 7666 7667 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info); 7668 } 7669 } 7670 7671 /** 7672 * dev_change_flags - change device settings 7673 * @dev: device 7674 * @flags: device state flags 7675 * @extack: netlink extended ack 7676 * 7677 * Change settings on device based state flags. The flags are 7678 * in the userspace exported format. 7679 */ 7680 int dev_change_flags(struct net_device *dev, unsigned int flags, 7681 struct netlink_ext_ack *extack) 7682 { 7683 int ret; 7684 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags; 7685 7686 ret = __dev_change_flags(dev, flags, extack); 7687 if (ret < 0) 7688 return ret; 7689 7690 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags); 7691 __dev_notify_flags(dev, old_flags, changes); 7692 return ret; 7693 } 7694 EXPORT_SYMBOL(dev_change_flags); 7695 7696 int __dev_set_mtu(struct net_device *dev, int new_mtu) 7697 { 7698 const struct net_device_ops *ops = dev->netdev_ops; 7699 7700 if (ops->ndo_change_mtu) 7701 return ops->ndo_change_mtu(dev, new_mtu); 7702 7703 dev->mtu = new_mtu; 7704 return 0; 7705 } 7706 EXPORT_SYMBOL(__dev_set_mtu); 7707 7708 /** 7709 * dev_set_mtu_ext - Change maximum transfer unit 7710 * @dev: device 7711 * @new_mtu: new transfer unit 7712 * @extack: netlink extended ack 7713 * 7714 * Change the maximum transfer size of the network device. 7715 */ 7716 int dev_set_mtu_ext(struct net_device *dev, int new_mtu, 7717 struct netlink_ext_ack *extack) 7718 { 7719 int err, orig_mtu; 7720 7721 if (new_mtu == dev->mtu) 7722 return 0; 7723 7724 /* MTU must be positive, and in range */ 7725 if (new_mtu < 0 || new_mtu < dev->min_mtu) { 7726 NL_SET_ERR_MSG(extack, "mtu less than device minimum"); 7727 return -EINVAL; 7728 } 7729 7730 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) { 7731 NL_SET_ERR_MSG(extack, "mtu greater than device maximum"); 7732 return -EINVAL; 7733 } 7734 7735 if (!netif_device_present(dev)) 7736 return -ENODEV; 7737 7738 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev); 7739 err = notifier_to_errno(err); 7740 if (err) 7741 return err; 7742 7743 orig_mtu = dev->mtu; 7744 err = __dev_set_mtu(dev, new_mtu); 7745 7746 if (!err) { 7747 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev, 7748 orig_mtu); 7749 err = notifier_to_errno(err); 7750 if (err) { 7751 /* setting mtu back and notifying everyone again, 7752 * so that they have a chance to revert changes. 7753 */ 7754 __dev_set_mtu(dev, orig_mtu); 7755 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev, 7756 new_mtu); 7757 } 7758 } 7759 return err; 7760 } 7761 7762 int dev_set_mtu(struct net_device *dev, int new_mtu) 7763 { 7764 struct netlink_ext_ack extack; 7765 int err; 7766 7767 memset(&extack, 0, sizeof(extack)); 7768 err = dev_set_mtu_ext(dev, new_mtu, &extack); 7769 if (err && extack._msg) 7770 net_err_ratelimited("%s: %s\n", dev->name, extack._msg); 7771 return err; 7772 } 7773 EXPORT_SYMBOL(dev_set_mtu); 7774 7775 /** 7776 * dev_change_tx_queue_len - Change TX queue length of a netdevice 7777 * @dev: device 7778 * @new_len: new tx queue length 7779 */ 7780 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len) 7781 { 7782 unsigned int orig_len = dev->tx_queue_len; 7783 int res; 7784 7785 if (new_len != (unsigned int)new_len) 7786 return -ERANGE; 7787 7788 if (new_len != orig_len) { 7789 dev->tx_queue_len = new_len; 7790 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev); 7791 res = notifier_to_errno(res); 7792 if (res) 7793 goto err_rollback; 7794 res = dev_qdisc_change_tx_queue_len(dev); 7795 if (res) 7796 goto err_rollback; 7797 } 7798 7799 return 0; 7800 7801 err_rollback: 7802 netdev_err(dev, "refused to change device tx_queue_len\n"); 7803 dev->tx_queue_len = orig_len; 7804 return res; 7805 } 7806 7807 /** 7808 * dev_set_group - Change group this device belongs to 7809 * @dev: device 7810 * @new_group: group this device should belong to 7811 */ 7812 void dev_set_group(struct net_device *dev, int new_group) 7813 { 7814 dev->group = new_group; 7815 } 7816 EXPORT_SYMBOL(dev_set_group); 7817 7818 /** 7819 * dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR. 7820 * @dev: device 7821 * @addr: new address 7822 * @extack: netlink extended ack 7823 */ 7824 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr, 7825 struct netlink_ext_ack *extack) 7826 { 7827 struct netdev_notifier_pre_changeaddr_info info = { 7828 .info.dev = dev, 7829 .info.extack = extack, 7830 .dev_addr = addr, 7831 }; 7832 int rc; 7833 7834 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info); 7835 return notifier_to_errno(rc); 7836 } 7837 EXPORT_SYMBOL(dev_pre_changeaddr_notify); 7838 7839 /** 7840 * dev_set_mac_address - Change Media Access Control Address 7841 * @dev: device 7842 * @sa: new address 7843 * @extack: netlink extended ack 7844 * 7845 * Change the hardware (MAC) address of the device 7846 */ 7847 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa, 7848 struct netlink_ext_ack *extack) 7849 { 7850 const struct net_device_ops *ops = dev->netdev_ops; 7851 int err; 7852 7853 if (!ops->ndo_set_mac_address) 7854 return -EOPNOTSUPP; 7855 if (sa->sa_family != dev->type) 7856 return -EINVAL; 7857 if (!netif_device_present(dev)) 7858 return -ENODEV; 7859 err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack); 7860 if (err) 7861 return err; 7862 err = ops->ndo_set_mac_address(dev, sa); 7863 if (err) 7864 return err; 7865 dev->addr_assign_type = NET_ADDR_SET; 7866 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 7867 add_device_randomness(dev->dev_addr, dev->addr_len); 7868 return 0; 7869 } 7870 EXPORT_SYMBOL(dev_set_mac_address); 7871 7872 /** 7873 * dev_change_carrier - Change device carrier 7874 * @dev: device 7875 * @new_carrier: new value 7876 * 7877 * Change device carrier 7878 */ 7879 int dev_change_carrier(struct net_device *dev, bool new_carrier) 7880 { 7881 const struct net_device_ops *ops = dev->netdev_ops; 7882 7883 if (!ops->ndo_change_carrier) 7884 return -EOPNOTSUPP; 7885 if (!netif_device_present(dev)) 7886 return -ENODEV; 7887 return ops->ndo_change_carrier(dev, new_carrier); 7888 } 7889 EXPORT_SYMBOL(dev_change_carrier); 7890 7891 /** 7892 * dev_get_phys_port_id - Get device physical port ID 7893 * @dev: device 7894 * @ppid: port ID 7895 * 7896 * Get device physical port ID 7897 */ 7898 int dev_get_phys_port_id(struct net_device *dev, 7899 struct netdev_phys_item_id *ppid) 7900 { 7901 const struct net_device_ops *ops = dev->netdev_ops; 7902 7903 if (!ops->ndo_get_phys_port_id) 7904 return -EOPNOTSUPP; 7905 return ops->ndo_get_phys_port_id(dev, ppid); 7906 } 7907 EXPORT_SYMBOL(dev_get_phys_port_id); 7908 7909 /** 7910 * dev_get_phys_port_name - Get device physical port name 7911 * @dev: device 7912 * @name: port name 7913 * @len: limit of bytes to copy to name 7914 * 7915 * Get device physical port name 7916 */ 7917 int dev_get_phys_port_name(struct net_device *dev, 7918 char *name, size_t len) 7919 { 7920 const struct net_device_ops *ops = dev->netdev_ops; 7921 int err; 7922 7923 if (ops->ndo_get_phys_port_name) { 7924 err = ops->ndo_get_phys_port_name(dev, name, len); 7925 if (err != -EOPNOTSUPP) 7926 return err; 7927 } 7928 return devlink_compat_phys_port_name_get(dev, name, len); 7929 } 7930 EXPORT_SYMBOL(dev_get_phys_port_name); 7931 7932 /** 7933 * dev_get_port_parent_id - Get the device's port parent identifier 7934 * @dev: network device 7935 * @ppid: pointer to a storage for the port's parent identifier 7936 * @recurse: allow/disallow recursion to lower devices 7937 * 7938 * Get the devices's port parent identifier 7939 */ 7940 int dev_get_port_parent_id(struct net_device *dev, 7941 struct netdev_phys_item_id *ppid, 7942 bool recurse) 7943 { 7944 const struct net_device_ops *ops = dev->netdev_ops; 7945 struct netdev_phys_item_id first = { }; 7946 struct net_device *lower_dev; 7947 struct list_head *iter; 7948 int err; 7949 7950 if (ops->ndo_get_port_parent_id) { 7951 err = ops->ndo_get_port_parent_id(dev, ppid); 7952 if (err != -EOPNOTSUPP) 7953 return err; 7954 } 7955 7956 err = devlink_compat_switch_id_get(dev, ppid); 7957 if (!err || err != -EOPNOTSUPP) 7958 return err; 7959 7960 if (!recurse) 7961 return -EOPNOTSUPP; 7962 7963 netdev_for_each_lower_dev(dev, lower_dev, iter) { 7964 err = dev_get_port_parent_id(lower_dev, ppid, recurse); 7965 if (err) 7966 break; 7967 if (!first.id_len) 7968 first = *ppid; 7969 else if (memcmp(&first, ppid, sizeof(*ppid))) 7970 return -ENODATA; 7971 } 7972 7973 return err; 7974 } 7975 EXPORT_SYMBOL(dev_get_port_parent_id); 7976 7977 /** 7978 * netdev_port_same_parent_id - Indicate if two network devices have 7979 * the same port parent identifier 7980 * @a: first network device 7981 * @b: second network device 7982 */ 7983 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b) 7984 { 7985 struct netdev_phys_item_id a_id = { }; 7986 struct netdev_phys_item_id b_id = { }; 7987 7988 if (dev_get_port_parent_id(a, &a_id, true) || 7989 dev_get_port_parent_id(b, &b_id, true)) 7990 return false; 7991 7992 return netdev_phys_item_id_same(&a_id, &b_id); 7993 } 7994 EXPORT_SYMBOL(netdev_port_same_parent_id); 7995 7996 /** 7997 * dev_change_proto_down - update protocol port state information 7998 * @dev: device 7999 * @proto_down: new value 8000 * 8001 * This info can be used by switch drivers to set the phys state of the 8002 * port. 8003 */ 8004 int dev_change_proto_down(struct net_device *dev, bool proto_down) 8005 { 8006 const struct net_device_ops *ops = dev->netdev_ops; 8007 8008 if (!ops->ndo_change_proto_down) 8009 return -EOPNOTSUPP; 8010 if (!netif_device_present(dev)) 8011 return -ENODEV; 8012 return ops->ndo_change_proto_down(dev, proto_down); 8013 } 8014 EXPORT_SYMBOL(dev_change_proto_down); 8015 8016 /** 8017 * dev_change_proto_down_generic - generic implementation for 8018 * ndo_change_proto_down that sets carrier according to 8019 * proto_down. 8020 * 8021 * @dev: device 8022 * @proto_down: new value 8023 */ 8024 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down) 8025 { 8026 if (proto_down) 8027 netif_carrier_off(dev); 8028 else 8029 netif_carrier_on(dev); 8030 dev->proto_down = proto_down; 8031 return 0; 8032 } 8033 EXPORT_SYMBOL(dev_change_proto_down_generic); 8034 8035 u32 __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op, 8036 enum bpf_netdev_command cmd) 8037 { 8038 struct netdev_bpf xdp; 8039 8040 if (!bpf_op) 8041 return 0; 8042 8043 memset(&xdp, 0, sizeof(xdp)); 8044 xdp.command = cmd; 8045 8046 /* Query must always succeed. */ 8047 WARN_ON(bpf_op(dev, &xdp) < 0 && cmd == XDP_QUERY_PROG); 8048 8049 return xdp.prog_id; 8050 } 8051 8052 static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op, 8053 struct netlink_ext_ack *extack, u32 flags, 8054 struct bpf_prog *prog) 8055 { 8056 struct netdev_bpf xdp; 8057 8058 memset(&xdp, 0, sizeof(xdp)); 8059 if (flags & XDP_FLAGS_HW_MODE) 8060 xdp.command = XDP_SETUP_PROG_HW; 8061 else 8062 xdp.command = XDP_SETUP_PROG; 8063 xdp.extack = extack; 8064 xdp.flags = flags; 8065 xdp.prog = prog; 8066 8067 return bpf_op(dev, &xdp); 8068 } 8069 8070 static void dev_xdp_uninstall(struct net_device *dev) 8071 { 8072 struct netdev_bpf xdp; 8073 bpf_op_t ndo_bpf; 8074 8075 /* Remove generic XDP */ 8076 WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL)); 8077 8078 /* Remove from the driver */ 8079 ndo_bpf = dev->netdev_ops->ndo_bpf; 8080 if (!ndo_bpf) 8081 return; 8082 8083 memset(&xdp, 0, sizeof(xdp)); 8084 xdp.command = XDP_QUERY_PROG; 8085 WARN_ON(ndo_bpf(dev, &xdp)); 8086 if (xdp.prog_id) 8087 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags, 8088 NULL)); 8089 8090 /* Remove HW offload */ 8091 memset(&xdp, 0, sizeof(xdp)); 8092 xdp.command = XDP_QUERY_PROG_HW; 8093 if (!ndo_bpf(dev, &xdp) && xdp.prog_id) 8094 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags, 8095 NULL)); 8096 } 8097 8098 /** 8099 * dev_change_xdp_fd - set or clear a bpf program for a device rx path 8100 * @dev: device 8101 * @extack: netlink extended ack 8102 * @fd: new program fd or negative value to clear 8103 * @flags: xdp-related flags 8104 * 8105 * Set or clear a bpf program for a device 8106 */ 8107 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack, 8108 int fd, u32 flags) 8109 { 8110 const struct net_device_ops *ops = dev->netdev_ops; 8111 enum bpf_netdev_command query; 8112 struct bpf_prog *prog = NULL; 8113 bpf_op_t bpf_op, bpf_chk; 8114 bool offload; 8115 int err; 8116 8117 ASSERT_RTNL(); 8118 8119 offload = flags & XDP_FLAGS_HW_MODE; 8120 query = offload ? XDP_QUERY_PROG_HW : XDP_QUERY_PROG; 8121 8122 bpf_op = bpf_chk = ops->ndo_bpf; 8123 if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE))) { 8124 NL_SET_ERR_MSG(extack, "underlying driver does not support XDP in native mode"); 8125 return -EOPNOTSUPP; 8126 } 8127 if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE)) 8128 bpf_op = generic_xdp_install; 8129 if (bpf_op == bpf_chk) 8130 bpf_chk = generic_xdp_install; 8131 8132 if (fd >= 0) { 8133 u32 prog_id; 8134 8135 if (!offload && __dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG)) { 8136 NL_SET_ERR_MSG(extack, "native and generic XDP can't be active at the same time"); 8137 return -EEXIST; 8138 } 8139 8140 prog_id = __dev_xdp_query(dev, bpf_op, query); 8141 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && prog_id) { 8142 NL_SET_ERR_MSG(extack, "XDP program already attached"); 8143 return -EBUSY; 8144 } 8145 8146 prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP, 8147 bpf_op == ops->ndo_bpf); 8148 if (IS_ERR(prog)) 8149 return PTR_ERR(prog); 8150 8151 if (!offload && bpf_prog_is_dev_bound(prog->aux)) { 8152 NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported"); 8153 bpf_prog_put(prog); 8154 return -EINVAL; 8155 } 8156 8157 if (prog->aux->id == prog_id) { 8158 bpf_prog_put(prog); 8159 return 0; 8160 } 8161 } else { 8162 if (!__dev_xdp_query(dev, bpf_op, query)) 8163 return 0; 8164 } 8165 8166 err = dev_xdp_install(dev, bpf_op, extack, flags, prog); 8167 if (err < 0 && prog) 8168 bpf_prog_put(prog); 8169 8170 return err; 8171 } 8172 8173 /** 8174 * dev_new_index - allocate an ifindex 8175 * @net: the applicable net namespace 8176 * 8177 * Returns a suitable unique value for a new device interface 8178 * number. The caller must hold the rtnl semaphore or the 8179 * dev_base_lock to be sure it remains unique. 8180 */ 8181 static int dev_new_index(struct net *net) 8182 { 8183 int ifindex = net->ifindex; 8184 8185 for (;;) { 8186 if (++ifindex <= 0) 8187 ifindex = 1; 8188 if (!__dev_get_by_index(net, ifindex)) 8189 return net->ifindex = ifindex; 8190 } 8191 } 8192 8193 /* Delayed registration/unregisteration */ 8194 static LIST_HEAD(net_todo_list); 8195 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq); 8196 8197 static void net_set_todo(struct net_device *dev) 8198 { 8199 list_add_tail(&dev->todo_list, &net_todo_list); 8200 dev_net(dev)->dev_unreg_count++; 8201 } 8202 8203 static void rollback_registered_many(struct list_head *head) 8204 { 8205 struct net_device *dev, *tmp; 8206 LIST_HEAD(close_head); 8207 8208 BUG_ON(dev_boot_phase); 8209 ASSERT_RTNL(); 8210 8211 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 8212 /* Some devices call without registering 8213 * for initialization unwind. Remove those 8214 * devices and proceed with the remaining. 8215 */ 8216 if (dev->reg_state == NETREG_UNINITIALIZED) { 8217 pr_debug("unregister_netdevice: device %s/%p never was registered\n", 8218 dev->name, dev); 8219 8220 WARN_ON(1); 8221 list_del(&dev->unreg_list); 8222 continue; 8223 } 8224 dev->dismantle = true; 8225 BUG_ON(dev->reg_state != NETREG_REGISTERED); 8226 } 8227 8228 /* If device is running, close it first. */ 8229 list_for_each_entry(dev, head, unreg_list) 8230 list_add_tail(&dev->close_list, &close_head); 8231 dev_close_many(&close_head, true); 8232 8233 list_for_each_entry(dev, head, unreg_list) { 8234 /* And unlink it from device chain. */ 8235 unlist_netdevice(dev); 8236 8237 dev->reg_state = NETREG_UNREGISTERING; 8238 } 8239 flush_all_backlogs(); 8240 8241 synchronize_net(); 8242 8243 list_for_each_entry(dev, head, unreg_list) { 8244 struct sk_buff *skb = NULL; 8245 8246 /* Shutdown queueing discipline. */ 8247 dev_shutdown(dev); 8248 8249 dev_xdp_uninstall(dev); 8250 8251 /* Notify protocols, that we are about to destroy 8252 * this device. They should clean all the things. 8253 */ 8254 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 8255 8256 if (!dev->rtnl_link_ops || 8257 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 8258 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0, 8259 GFP_KERNEL, NULL, 0); 8260 8261 /* 8262 * Flush the unicast and multicast chains 8263 */ 8264 dev_uc_flush(dev); 8265 dev_mc_flush(dev); 8266 8267 if (dev->netdev_ops->ndo_uninit) 8268 dev->netdev_ops->ndo_uninit(dev); 8269 8270 if (skb) 8271 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL); 8272 8273 /* Notifier chain MUST detach us all upper devices. */ 8274 WARN_ON(netdev_has_any_upper_dev(dev)); 8275 WARN_ON(netdev_has_any_lower_dev(dev)); 8276 8277 /* Remove entries from kobject tree */ 8278 netdev_unregister_kobject(dev); 8279 #ifdef CONFIG_XPS 8280 /* Remove XPS queueing entries */ 8281 netif_reset_xps_queues_gt(dev, 0); 8282 #endif 8283 } 8284 8285 synchronize_net(); 8286 8287 list_for_each_entry(dev, head, unreg_list) 8288 dev_put(dev); 8289 } 8290 8291 static void rollback_registered(struct net_device *dev) 8292 { 8293 LIST_HEAD(single); 8294 8295 list_add(&dev->unreg_list, &single); 8296 rollback_registered_many(&single); 8297 list_del(&single); 8298 } 8299 8300 static netdev_features_t netdev_sync_upper_features(struct net_device *lower, 8301 struct net_device *upper, netdev_features_t features) 8302 { 8303 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 8304 netdev_features_t feature; 8305 int feature_bit; 8306 8307 for_each_netdev_feature(upper_disables, feature_bit) { 8308 feature = __NETIF_F_BIT(feature_bit); 8309 if (!(upper->wanted_features & feature) 8310 && (features & feature)) { 8311 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n", 8312 &feature, upper->name); 8313 features &= ~feature; 8314 } 8315 } 8316 8317 return features; 8318 } 8319 8320 static void netdev_sync_lower_features(struct net_device *upper, 8321 struct net_device *lower, netdev_features_t features) 8322 { 8323 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 8324 netdev_features_t feature; 8325 int feature_bit; 8326 8327 for_each_netdev_feature(upper_disables, feature_bit) { 8328 feature = __NETIF_F_BIT(feature_bit); 8329 if (!(features & feature) && (lower->features & feature)) { 8330 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n", 8331 &feature, lower->name); 8332 lower->wanted_features &= ~feature; 8333 netdev_update_features(lower); 8334 8335 if (unlikely(lower->features & feature)) 8336 netdev_WARN(upper, "failed to disable %pNF on %s!\n", 8337 &feature, lower->name); 8338 } 8339 } 8340 } 8341 8342 static netdev_features_t netdev_fix_features(struct net_device *dev, 8343 netdev_features_t features) 8344 { 8345 /* Fix illegal checksum combinations */ 8346 if ((features & NETIF_F_HW_CSUM) && 8347 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 8348 netdev_warn(dev, "mixed HW and IP checksum settings.\n"); 8349 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 8350 } 8351 8352 /* TSO requires that SG is present as well. */ 8353 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { 8354 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); 8355 features &= ~NETIF_F_ALL_TSO; 8356 } 8357 8358 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) && 8359 !(features & NETIF_F_IP_CSUM)) { 8360 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n"); 8361 features &= ~NETIF_F_TSO; 8362 features &= ~NETIF_F_TSO_ECN; 8363 } 8364 8365 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) && 8366 !(features & NETIF_F_IPV6_CSUM)) { 8367 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n"); 8368 features &= ~NETIF_F_TSO6; 8369 } 8370 8371 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */ 8372 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO)) 8373 features &= ~NETIF_F_TSO_MANGLEID; 8374 8375 /* TSO ECN requires that TSO is present as well. */ 8376 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) 8377 features &= ~NETIF_F_TSO_ECN; 8378 8379 /* Software GSO depends on SG. */ 8380 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 8381 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 8382 features &= ~NETIF_F_GSO; 8383 } 8384 8385 /* GSO partial features require GSO partial be set */ 8386 if ((features & dev->gso_partial_features) && 8387 !(features & NETIF_F_GSO_PARTIAL)) { 8388 netdev_dbg(dev, 8389 "Dropping partially supported GSO features since no GSO partial.\n"); 8390 features &= ~dev->gso_partial_features; 8391 } 8392 8393 if (!(features & NETIF_F_RXCSUM)) { 8394 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet 8395 * successfully merged by hardware must also have the 8396 * checksum verified by hardware. If the user does not 8397 * want to enable RXCSUM, logically, we should disable GRO_HW. 8398 */ 8399 if (features & NETIF_F_GRO_HW) { 8400 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n"); 8401 features &= ~NETIF_F_GRO_HW; 8402 } 8403 } 8404 8405 /* LRO/HW-GRO features cannot be combined with RX-FCS */ 8406 if (features & NETIF_F_RXFCS) { 8407 if (features & NETIF_F_LRO) { 8408 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n"); 8409 features &= ~NETIF_F_LRO; 8410 } 8411 8412 if (features & NETIF_F_GRO_HW) { 8413 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n"); 8414 features &= ~NETIF_F_GRO_HW; 8415 } 8416 } 8417 8418 return features; 8419 } 8420 8421 int __netdev_update_features(struct net_device *dev) 8422 { 8423 struct net_device *upper, *lower; 8424 netdev_features_t features; 8425 struct list_head *iter; 8426 int err = -1; 8427 8428 ASSERT_RTNL(); 8429 8430 features = netdev_get_wanted_features(dev); 8431 8432 if (dev->netdev_ops->ndo_fix_features) 8433 features = dev->netdev_ops->ndo_fix_features(dev, features); 8434 8435 /* driver might be less strict about feature dependencies */ 8436 features = netdev_fix_features(dev, features); 8437 8438 /* some features can't be enabled if they're off an an upper device */ 8439 netdev_for_each_upper_dev_rcu(dev, upper, iter) 8440 features = netdev_sync_upper_features(dev, upper, features); 8441 8442 if (dev->features == features) 8443 goto sync_lower; 8444 8445 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n", 8446 &dev->features, &features); 8447 8448 if (dev->netdev_ops->ndo_set_features) 8449 err = dev->netdev_ops->ndo_set_features(dev, features); 8450 else 8451 err = 0; 8452 8453 if (unlikely(err < 0)) { 8454 netdev_err(dev, 8455 "set_features() failed (%d); wanted %pNF, left %pNF\n", 8456 err, &features, &dev->features); 8457 /* return non-0 since some features might have changed and 8458 * it's better to fire a spurious notification than miss it 8459 */ 8460 return -1; 8461 } 8462 8463 sync_lower: 8464 /* some features must be disabled on lower devices when disabled 8465 * on an upper device (think: bonding master or bridge) 8466 */ 8467 netdev_for_each_lower_dev(dev, lower, iter) 8468 netdev_sync_lower_features(dev, lower, features); 8469 8470 if (!err) { 8471 netdev_features_t diff = features ^ dev->features; 8472 8473 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) { 8474 /* udp_tunnel_{get,drop}_rx_info both need 8475 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the 8476 * device, or they won't do anything. 8477 * Thus we need to update dev->features 8478 * *before* calling udp_tunnel_get_rx_info, 8479 * but *after* calling udp_tunnel_drop_rx_info. 8480 */ 8481 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) { 8482 dev->features = features; 8483 udp_tunnel_get_rx_info(dev); 8484 } else { 8485 udp_tunnel_drop_rx_info(dev); 8486 } 8487 } 8488 8489 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) { 8490 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) { 8491 dev->features = features; 8492 err |= vlan_get_rx_ctag_filter_info(dev); 8493 } else { 8494 vlan_drop_rx_ctag_filter_info(dev); 8495 } 8496 } 8497 8498 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) { 8499 if (features & NETIF_F_HW_VLAN_STAG_FILTER) { 8500 dev->features = features; 8501 err |= vlan_get_rx_stag_filter_info(dev); 8502 } else { 8503 vlan_drop_rx_stag_filter_info(dev); 8504 } 8505 } 8506 8507 dev->features = features; 8508 } 8509 8510 return err < 0 ? 0 : 1; 8511 } 8512 8513 /** 8514 * netdev_update_features - recalculate device features 8515 * @dev: the device to check 8516 * 8517 * Recalculate dev->features set and send notifications if it 8518 * has changed. Should be called after driver or hardware dependent 8519 * conditions might have changed that influence the features. 8520 */ 8521 void netdev_update_features(struct net_device *dev) 8522 { 8523 if (__netdev_update_features(dev)) 8524 netdev_features_change(dev); 8525 } 8526 EXPORT_SYMBOL(netdev_update_features); 8527 8528 /** 8529 * netdev_change_features - recalculate device features 8530 * @dev: the device to check 8531 * 8532 * Recalculate dev->features set and send notifications even 8533 * if they have not changed. Should be called instead of 8534 * netdev_update_features() if also dev->vlan_features might 8535 * have changed to allow the changes to be propagated to stacked 8536 * VLAN devices. 8537 */ 8538 void netdev_change_features(struct net_device *dev) 8539 { 8540 __netdev_update_features(dev); 8541 netdev_features_change(dev); 8542 } 8543 EXPORT_SYMBOL(netdev_change_features); 8544 8545 /** 8546 * netif_stacked_transfer_operstate - transfer operstate 8547 * @rootdev: the root or lower level device to transfer state from 8548 * @dev: the device to transfer operstate to 8549 * 8550 * Transfer operational state from root to device. This is normally 8551 * called when a stacking relationship exists between the root 8552 * device and the device(a leaf device). 8553 */ 8554 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 8555 struct net_device *dev) 8556 { 8557 if (rootdev->operstate == IF_OPER_DORMANT) 8558 netif_dormant_on(dev); 8559 else 8560 netif_dormant_off(dev); 8561 8562 if (netif_carrier_ok(rootdev)) 8563 netif_carrier_on(dev); 8564 else 8565 netif_carrier_off(dev); 8566 } 8567 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 8568 8569 static int netif_alloc_rx_queues(struct net_device *dev) 8570 { 8571 unsigned int i, count = dev->num_rx_queues; 8572 struct netdev_rx_queue *rx; 8573 size_t sz = count * sizeof(*rx); 8574 int err = 0; 8575 8576 BUG_ON(count < 1); 8577 8578 rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 8579 if (!rx) 8580 return -ENOMEM; 8581 8582 dev->_rx = rx; 8583 8584 for (i = 0; i < count; i++) { 8585 rx[i].dev = dev; 8586 8587 /* XDP RX-queue setup */ 8588 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i); 8589 if (err < 0) 8590 goto err_rxq_info; 8591 } 8592 return 0; 8593 8594 err_rxq_info: 8595 /* Rollback successful reg's and free other resources */ 8596 while (i--) 8597 xdp_rxq_info_unreg(&rx[i].xdp_rxq); 8598 kvfree(dev->_rx); 8599 dev->_rx = NULL; 8600 return err; 8601 } 8602 8603 static void netif_free_rx_queues(struct net_device *dev) 8604 { 8605 unsigned int i, count = dev->num_rx_queues; 8606 8607 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */ 8608 if (!dev->_rx) 8609 return; 8610 8611 for (i = 0; i < count; i++) 8612 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq); 8613 8614 kvfree(dev->_rx); 8615 } 8616 8617 static void netdev_init_one_queue(struct net_device *dev, 8618 struct netdev_queue *queue, void *_unused) 8619 { 8620 /* Initialize queue lock */ 8621 spin_lock_init(&queue->_xmit_lock); 8622 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); 8623 queue->xmit_lock_owner = -1; 8624 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 8625 queue->dev = dev; 8626 #ifdef CONFIG_BQL 8627 dql_init(&queue->dql, HZ); 8628 #endif 8629 } 8630 8631 static void netif_free_tx_queues(struct net_device *dev) 8632 { 8633 kvfree(dev->_tx); 8634 } 8635 8636 static int netif_alloc_netdev_queues(struct net_device *dev) 8637 { 8638 unsigned int count = dev->num_tx_queues; 8639 struct netdev_queue *tx; 8640 size_t sz = count * sizeof(*tx); 8641 8642 if (count < 1 || count > 0xffff) 8643 return -EINVAL; 8644 8645 tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 8646 if (!tx) 8647 return -ENOMEM; 8648 8649 dev->_tx = tx; 8650 8651 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 8652 spin_lock_init(&dev->tx_global_lock); 8653 8654 return 0; 8655 } 8656 8657 void netif_tx_stop_all_queues(struct net_device *dev) 8658 { 8659 unsigned int i; 8660 8661 for (i = 0; i < dev->num_tx_queues; i++) { 8662 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 8663 8664 netif_tx_stop_queue(txq); 8665 } 8666 } 8667 EXPORT_SYMBOL(netif_tx_stop_all_queues); 8668 8669 /** 8670 * register_netdevice - register a network device 8671 * @dev: device to register 8672 * 8673 * Take a completed network device structure and add it to the kernel 8674 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 8675 * chain. 0 is returned on success. A negative errno code is returned 8676 * on a failure to set up the device, or if the name is a duplicate. 8677 * 8678 * Callers must hold the rtnl semaphore. You may want 8679 * register_netdev() instead of this. 8680 * 8681 * BUGS: 8682 * The locking appears insufficient to guarantee two parallel registers 8683 * will not get the same name. 8684 */ 8685 8686 int register_netdevice(struct net_device *dev) 8687 { 8688 int ret; 8689 struct net *net = dev_net(dev); 8690 8691 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE < 8692 NETDEV_FEATURE_COUNT); 8693 BUG_ON(dev_boot_phase); 8694 ASSERT_RTNL(); 8695 8696 might_sleep(); 8697 8698 /* When net_device's are persistent, this will be fatal. */ 8699 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 8700 BUG_ON(!net); 8701 8702 spin_lock_init(&dev->addr_list_lock); 8703 netdev_set_addr_lockdep_class(dev); 8704 8705 ret = dev_get_valid_name(net, dev, dev->name); 8706 if (ret < 0) 8707 goto out; 8708 8709 /* Init, if this function is available */ 8710 if (dev->netdev_ops->ndo_init) { 8711 ret = dev->netdev_ops->ndo_init(dev); 8712 if (ret) { 8713 if (ret > 0) 8714 ret = -EIO; 8715 goto out; 8716 } 8717 } 8718 8719 if (((dev->hw_features | dev->features) & 8720 NETIF_F_HW_VLAN_CTAG_FILTER) && 8721 (!dev->netdev_ops->ndo_vlan_rx_add_vid || 8722 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) { 8723 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n"); 8724 ret = -EINVAL; 8725 goto err_uninit; 8726 } 8727 8728 ret = -EBUSY; 8729 if (!dev->ifindex) 8730 dev->ifindex = dev_new_index(net); 8731 else if (__dev_get_by_index(net, dev->ifindex)) 8732 goto err_uninit; 8733 8734 /* Transfer changeable features to wanted_features and enable 8735 * software offloads (GSO and GRO). 8736 */ 8737 dev->hw_features |= NETIF_F_SOFT_FEATURES; 8738 dev->features |= NETIF_F_SOFT_FEATURES; 8739 8740 if (dev->netdev_ops->ndo_udp_tunnel_add) { 8741 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT; 8742 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT; 8743 } 8744 8745 dev->wanted_features = dev->features & dev->hw_features; 8746 8747 if (!(dev->flags & IFF_LOOPBACK)) 8748 dev->hw_features |= NETIF_F_NOCACHE_COPY; 8749 8750 /* If IPv4 TCP segmentation offload is supported we should also 8751 * allow the device to enable segmenting the frame with the option 8752 * of ignoring a static IP ID value. This doesn't enable the 8753 * feature itself but allows the user to enable it later. 8754 */ 8755 if (dev->hw_features & NETIF_F_TSO) 8756 dev->hw_features |= NETIF_F_TSO_MANGLEID; 8757 if (dev->vlan_features & NETIF_F_TSO) 8758 dev->vlan_features |= NETIF_F_TSO_MANGLEID; 8759 if (dev->mpls_features & NETIF_F_TSO) 8760 dev->mpls_features |= NETIF_F_TSO_MANGLEID; 8761 if (dev->hw_enc_features & NETIF_F_TSO) 8762 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 8763 8764 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. 8765 */ 8766 dev->vlan_features |= NETIF_F_HIGHDMA; 8767 8768 /* Make NETIF_F_SG inheritable to tunnel devices. 8769 */ 8770 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL; 8771 8772 /* Make NETIF_F_SG inheritable to MPLS. 8773 */ 8774 dev->mpls_features |= NETIF_F_SG; 8775 8776 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 8777 ret = notifier_to_errno(ret); 8778 if (ret) 8779 goto err_uninit; 8780 8781 ret = netdev_register_kobject(dev); 8782 if (ret) 8783 goto err_uninit; 8784 dev->reg_state = NETREG_REGISTERED; 8785 8786 __netdev_update_features(dev); 8787 8788 /* 8789 * Default initial state at registry is that the 8790 * device is present. 8791 */ 8792 8793 set_bit(__LINK_STATE_PRESENT, &dev->state); 8794 8795 linkwatch_init_dev(dev); 8796 8797 dev_init_scheduler(dev); 8798 dev_hold(dev); 8799 list_netdevice(dev); 8800 add_device_randomness(dev->dev_addr, dev->addr_len); 8801 8802 /* If the device has permanent device address, driver should 8803 * set dev_addr and also addr_assign_type should be set to 8804 * NET_ADDR_PERM (default value). 8805 */ 8806 if (dev->addr_assign_type == NET_ADDR_PERM) 8807 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); 8808 8809 /* Notify protocols, that a new device appeared. */ 8810 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 8811 ret = notifier_to_errno(ret); 8812 if (ret) { 8813 rollback_registered(dev); 8814 rcu_barrier(); 8815 8816 dev->reg_state = NETREG_UNREGISTERED; 8817 } 8818 /* 8819 * Prevent userspace races by waiting until the network 8820 * device is fully setup before sending notifications. 8821 */ 8822 if (!dev->rtnl_link_ops || 8823 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 8824 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 8825 8826 out: 8827 return ret; 8828 8829 err_uninit: 8830 if (dev->netdev_ops->ndo_uninit) 8831 dev->netdev_ops->ndo_uninit(dev); 8832 if (dev->priv_destructor) 8833 dev->priv_destructor(dev); 8834 goto out; 8835 } 8836 EXPORT_SYMBOL(register_netdevice); 8837 8838 /** 8839 * init_dummy_netdev - init a dummy network device for NAPI 8840 * @dev: device to init 8841 * 8842 * This takes a network device structure and initialize the minimum 8843 * amount of fields so it can be used to schedule NAPI polls without 8844 * registering a full blown interface. This is to be used by drivers 8845 * that need to tie several hardware interfaces to a single NAPI 8846 * poll scheduler due to HW limitations. 8847 */ 8848 int init_dummy_netdev(struct net_device *dev) 8849 { 8850 /* Clear everything. Note we don't initialize spinlocks 8851 * are they aren't supposed to be taken by any of the 8852 * NAPI code and this dummy netdev is supposed to be 8853 * only ever used for NAPI polls 8854 */ 8855 memset(dev, 0, sizeof(struct net_device)); 8856 8857 /* make sure we BUG if trying to hit standard 8858 * register/unregister code path 8859 */ 8860 dev->reg_state = NETREG_DUMMY; 8861 8862 /* NAPI wants this */ 8863 INIT_LIST_HEAD(&dev->napi_list); 8864 8865 /* a dummy interface is started by default */ 8866 set_bit(__LINK_STATE_PRESENT, &dev->state); 8867 set_bit(__LINK_STATE_START, &dev->state); 8868 8869 /* napi_busy_loop stats accounting wants this */ 8870 dev_net_set(dev, &init_net); 8871 8872 /* Note : We dont allocate pcpu_refcnt for dummy devices, 8873 * because users of this 'device' dont need to change 8874 * its refcount. 8875 */ 8876 8877 return 0; 8878 } 8879 EXPORT_SYMBOL_GPL(init_dummy_netdev); 8880 8881 8882 /** 8883 * register_netdev - register a network device 8884 * @dev: device to register 8885 * 8886 * Take a completed network device structure and add it to the kernel 8887 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 8888 * chain. 0 is returned on success. A negative errno code is returned 8889 * on a failure to set up the device, or if the name is a duplicate. 8890 * 8891 * This is a wrapper around register_netdevice that takes the rtnl semaphore 8892 * and expands the device name if you passed a format string to 8893 * alloc_netdev. 8894 */ 8895 int register_netdev(struct net_device *dev) 8896 { 8897 int err; 8898 8899 if (rtnl_lock_killable()) 8900 return -EINTR; 8901 err = register_netdevice(dev); 8902 rtnl_unlock(); 8903 return err; 8904 } 8905 EXPORT_SYMBOL(register_netdev); 8906 8907 int netdev_refcnt_read(const struct net_device *dev) 8908 { 8909 int i, refcnt = 0; 8910 8911 for_each_possible_cpu(i) 8912 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 8913 return refcnt; 8914 } 8915 EXPORT_SYMBOL(netdev_refcnt_read); 8916 8917 /** 8918 * netdev_wait_allrefs - wait until all references are gone. 8919 * @dev: target net_device 8920 * 8921 * This is called when unregistering network devices. 8922 * 8923 * Any protocol or device that holds a reference should register 8924 * for netdevice notification, and cleanup and put back the 8925 * reference if they receive an UNREGISTER event. 8926 * We can get stuck here if buggy protocols don't correctly 8927 * call dev_put. 8928 */ 8929 static void netdev_wait_allrefs(struct net_device *dev) 8930 { 8931 unsigned long rebroadcast_time, warning_time; 8932 int refcnt; 8933 8934 linkwatch_forget_dev(dev); 8935 8936 rebroadcast_time = warning_time = jiffies; 8937 refcnt = netdev_refcnt_read(dev); 8938 8939 while (refcnt != 0) { 8940 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 8941 rtnl_lock(); 8942 8943 /* Rebroadcast unregister notification */ 8944 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 8945 8946 __rtnl_unlock(); 8947 rcu_barrier(); 8948 rtnl_lock(); 8949 8950 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 8951 &dev->state)) { 8952 /* We must not have linkwatch events 8953 * pending on unregister. If this 8954 * happens, we simply run the queue 8955 * unscheduled, resulting in a noop 8956 * for this device. 8957 */ 8958 linkwatch_run_queue(); 8959 } 8960 8961 __rtnl_unlock(); 8962 8963 rebroadcast_time = jiffies; 8964 } 8965 8966 msleep(250); 8967 8968 refcnt = netdev_refcnt_read(dev); 8969 8970 if (refcnt && time_after(jiffies, warning_time + 10 * HZ)) { 8971 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n", 8972 dev->name, refcnt); 8973 warning_time = jiffies; 8974 } 8975 } 8976 } 8977 8978 /* The sequence is: 8979 * 8980 * rtnl_lock(); 8981 * ... 8982 * register_netdevice(x1); 8983 * register_netdevice(x2); 8984 * ... 8985 * unregister_netdevice(y1); 8986 * unregister_netdevice(y2); 8987 * ... 8988 * rtnl_unlock(); 8989 * free_netdev(y1); 8990 * free_netdev(y2); 8991 * 8992 * We are invoked by rtnl_unlock(). 8993 * This allows us to deal with problems: 8994 * 1) We can delete sysfs objects which invoke hotplug 8995 * without deadlocking with linkwatch via keventd. 8996 * 2) Since we run with the RTNL semaphore not held, we can sleep 8997 * safely in order to wait for the netdev refcnt to drop to zero. 8998 * 8999 * We must not return until all unregister events added during 9000 * the interval the lock was held have been completed. 9001 */ 9002 void netdev_run_todo(void) 9003 { 9004 struct list_head list; 9005 9006 /* Snapshot list, allow later requests */ 9007 list_replace_init(&net_todo_list, &list); 9008 9009 __rtnl_unlock(); 9010 9011 9012 /* Wait for rcu callbacks to finish before next phase */ 9013 if (!list_empty(&list)) 9014 rcu_barrier(); 9015 9016 while (!list_empty(&list)) { 9017 struct net_device *dev 9018 = list_first_entry(&list, struct net_device, todo_list); 9019 list_del(&dev->todo_list); 9020 9021 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 9022 pr_err("network todo '%s' but state %d\n", 9023 dev->name, dev->reg_state); 9024 dump_stack(); 9025 continue; 9026 } 9027 9028 dev->reg_state = NETREG_UNREGISTERED; 9029 9030 netdev_wait_allrefs(dev); 9031 9032 /* paranoia */ 9033 BUG_ON(netdev_refcnt_read(dev)); 9034 BUG_ON(!list_empty(&dev->ptype_all)); 9035 BUG_ON(!list_empty(&dev->ptype_specific)); 9036 WARN_ON(rcu_access_pointer(dev->ip_ptr)); 9037 WARN_ON(rcu_access_pointer(dev->ip6_ptr)); 9038 #if IS_ENABLED(CONFIG_DECNET) 9039 WARN_ON(dev->dn_ptr); 9040 #endif 9041 if (dev->priv_destructor) 9042 dev->priv_destructor(dev); 9043 if (dev->needs_free_netdev) 9044 free_netdev(dev); 9045 9046 /* Report a network device has been unregistered */ 9047 rtnl_lock(); 9048 dev_net(dev)->dev_unreg_count--; 9049 __rtnl_unlock(); 9050 wake_up(&netdev_unregistering_wq); 9051 9052 /* Free network device */ 9053 kobject_put(&dev->dev.kobj); 9054 } 9055 } 9056 9057 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has 9058 * all the same fields in the same order as net_device_stats, with only 9059 * the type differing, but rtnl_link_stats64 may have additional fields 9060 * at the end for newer counters. 9061 */ 9062 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 9063 const struct net_device_stats *netdev_stats) 9064 { 9065 #if BITS_PER_LONG == 64 9066 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats)); 9067 memcpy(stats64, netdev_stats, sizeof(*netdev_stats)); 9068 /* zero out counters that only exist in rtnl_link_stats64 */ 9069 memset((char *)stats64 + sizeof(*netdev_stats), 0, 9070 sizeof(*stats64) - sizeof(*netdev_stats)); 9071 #else 9072 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long); 9073 const unsigned long *src = (const unsigned long *)netdev_stats; 9074 u64 *dst = (u64 *)stats64; 9075 9076 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64)); 9077 for (i = 0; i < n; i++) 9078 dst[i] = src[i]; 9079 /* zero out counters that only exist in rtnl_link_stats64 */ 9080 memset((char *)stats64 + n * sizeof(u64), 0, 9081 sizeof(*stats64) - n * sizeof(u64)); 9082 #endif 9083 } 9084 EXPORT_SYMBOL(netdev_stats_to_stats64); 9085 9086 /** 9087 * dev_get_stats - get network device statistics 9088 * @dev: device to get statistics from 9089 * @storage: place to store stats 9090 * 9091 * Get network statistics from device. Return @storage. 9092 * The device driver may provide its own method by setting 9093 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 9094 * otherwise the internal statistics structure is used. 9095 */ 9096 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 9097 struct rtnl_link_stats64 *storage) 9098 { 9099 const struct net_device_ops *ops = dev->netdev_ops; 9100 9101 if (ops->ndo_get_stats64) { 9102 memset(storage, 0, sizeof(*storage)); 9103 ops->ndo_get_stats64(dev, storage); 9104 } else if (ops->ndo_get_stats) { 9105 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 9106 } else { 9107 netdev_stats_to_stats64(storage, &dev->stats); 9108 } 9109 storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped); 9110 storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped); 9111 storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler); 9112 return storage; 9113 } 9114 EXPORT_SYMBOL(dev_get_stats); 9115 9116 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 9117 { 9118 struct netdev_queue *queue = dev_ingress_queue(dev); 9119 9120 #ifdef CONFIG_NET_CLS_ACT 9121 if (queue) 9122 return queue; 9123 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 9124 if (!queue) 9125 return NULL; 9126 netdev_init_one_queue(dev, queue, NULL); 9127 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc); 9128 queue->qdisc_sleeping = &noop_qdisc; 9129 rcu_assign_pointer(dev->ingress_queue, queue); 9130 #endif 9131 return queue; 9132 } 9133 9134 static const struct ethtool_ops default_ethtool_ops; 9135 9136 void netdev_set_default_ethtool_ops(struct net_device *dev, 9137 const struct ethtool_ops *ops) 9138 { 9139 if (dev->ethtool_ops == &default_ethtool_ops) 9140 dev->ethtool_ops = ops; 9141 } 9142 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops); 9143 9144 void netdev_freemem(struct net_device *dev) 9145 { 9146 char *addr = (char *)dev - dev->padded; 9147 9148 kvfree(addr); 9149 } 9150 9151 /** 9152 * alloc_netdev_mqs - allocate network device 9153 * @sizeof_priv: size of private data to allocate space for 9154 * @name: device name format string 9155 * @name_assign_type: origin of device name 9156 * @setup: callback to initialize device 9157 * @txqs: the number of TX subqueues to allocate 9158 * @rxqs: the number of RX subqueues to allocate 9159 * 9160 * Allocates a struct net_device with private data area for driver use 9161 * and performs basic initialization. Also allocates subqueue structs 9162 * for each queue on the device. 9163 */ 9164 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 9165 unsigned char name_assign_type, 9166 void (*setup)(struct net_device *), 9167 unsigned int txqs, unsigned int rxqs) 9168 { 9169 struct net_device *dev; 9170 unsigned int alloc_size; 9171 struct net_device *p; 9172 9173 BUG_ON(strlen(name) >= sizeof(dev->name)); 9174 9175 if (txqs < 1) { 9176 pr_err("alloc_netdev: Unable to allocate device with zero queues\n"); 9177 return NULL; 9178 } 9179 9180 if (rxqs < 1) { 9181 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n"); 9182 return NULL; 9183 } 9184 9185 alloc_size = sizeof(struct net_device); 9186 if (sizeof_priv) { 9187 /* ensure 32-byte alignment of private area */ 9188 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); 9189 alloc_size += sizeof_priv; 9190 } 9191 /* ensure 32-byte alignment of whole construct */ 9192 alloc_size += NETDEV_ALIGN - 1; 9193 9194 p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 9195 if (!p) 9196 return NULL; 9197 9198 dev = PTR_ALIGN(p, NETDEV_ALIGN); 9199 dev->padded = (char *)dev - (char *)p; 9200 9201 dev->pcpu_refcnt = alloc_percpu(int); 9202 if (!dev->pcpu_refcnt) 9203 goto free_dev; 9204 9205 if (dev_addr_init(dev)) 9206 goto free_pcpu; 9207 9208 dev_mc_init(dev); 9209 dev_uc_init(dev); 9210 9211 dev_net_set(dev, &init_net); 9212 9213 dev->gso_max_size = GSO_MAX_SIZE; 9214 dev->gso_max_segs = GSO_MAX_SEGS; 9215 9216 INIT_LIST_HEAD(&dev->napi_list); 9217 INIT_LIST_HEAD(&dev->unreg_list); 9218 INIT_LIST_HEAD(&dev->close_list); 9219 INIT_LIST_HEAD(&dev->link_watch_list); 9220 INIT_LIST_HEAD(&dev->adj_list.upper); 9221 INIT_LIST_HEAD(&dev->adj_list.lower); 9222 INIT_LIST_HEAD(&dev->ptype_all); 9223 INIT_LIST_HEAD(&dev->ptype_specific); 9224 #ifdef CONFIG_NET_SCHED 9225 hash_init(dev->qdisc_hash); 9226 #endif 9227 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM; 9228 setup(dev); 9229 9230 if (!dev->tx_queue_len) { 9231 dev->priv_flags |= IFF_NO_QUEUE; 9232 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN; 9233 } 9234 9235 dev->num_tx_queues = txqs; 9236 dev->real_num_tx_queues = txqs; 9237 if (netif_alloc_netdev_queues(dev)) 9238 goto free_all; 9239 9240 dev->num_rx_queues = rxqs; 9241 dev->real_num_rx_queues = rxqs; 9242 if (netif_alloc_rx_queues(dev)) 9243 goto free_all; 9244 9245 strcpy(dev->name, name); 9246 dev->name_assign_type = name_assign_type; 9247 dev->group = INIT_NETDEV_GROUP; 9248 if (!dev->ethtool_ops) 9249 dev->ethtool_ops = &default_ethtool_ops; 9250 9251 nf_hook_ingress_init(dev); 9252 9253 return dev; 9254 9255 free_all: 9256 free_netdev(dev); 9257 return NULL; 9258 9259 free_pcpu: 9260 free_percpu(dev->pcpu_refcnt); 9261 free_dev: 9262 netdev_freemem(dev); 9263 return NULL; 9264 } 9265 EXPORT_SYMBOL(alloc_netdev_mqs); 9266 9267 /** 9268 * free_netdev - free network device 9269 * @dev: device 9270 * 9271 * This function does the last stage of destroying an allocated device 9272 * interface. The reference to the device object is released. If this 9273 * is the last reference then it will be freed.Must be called in process 9274 * context. 9275 */ 9276 void free_netdev(struct net_device *dev) 9277 { 9278 struct napi_struct *p, *n; 9279 9280 might_sleep(); 9281 netif_free_tx_queues(dev); 9282 netif_free_rx_queues(dev); 9283 9284 kfree(rcu_dereference_protected(dev->ingress_queue, 1)); 9285 9286 /* Flush device addresses */ 9287 dev_addr_flush(dev); 9288 9289 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 9290 netif_napi_del(p); 9291 9292 free_percpu(dev->pcpu_refcnt); 9293 dev->pcpu_refcnt = NULL; 9294 9295 /* Compatibility with error handling in drivers */ 9296 if (dev->reg_state == NETREG_UNINITIALIZED) { 9297 netdev_freemem(dev); 9298 return; 9299 } 9300 9301 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 9302 dev->reg_state = NETREG_RELEASED; 9303 9304 /* will free via device release */ 9305 put_device(&dev->dev); 9306 } 9307 EXPORT_SYMBOL(free_netdev); 9308 9309 /** 9310 * synchronize_net - Synchronize with packet receive processing 9311 * 9312 * Wait for packets currently being received to be done. 9313 * Does not block later packets from starting. 9314 */ 9315 void synchronize_net(void) 9316 { 9317 might_sleep(); 9318 if (rtnl_is_locked()) 9319 synchronize_rcu_expedited(); 9320 else 9321 synchronize_rcu(); 9322 } 9323 EXPORT_SYMBOL(synchronize_net); 9324 9325 /** 9326 * unregister_netdevice_queue - remove device from the kernel 9327 * @dev: device 9328 * @head: list 9329 * 9330 * This function shuts down a device interface and removes it 9331 * from the kernel tables. 9332 * If head not NULL, device is queued to be unregistered later. 9333 * 9334 * Callers must hold the rtnl semaphore. You may want 9335 * unregister_netdev() instead of this. 9336 */ 9337 9338 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 9339 { 9340 ASSERT_RTNL(); 9341 9342 if (head) { 9343 list_move_tail(&dev->unreg_list, head); 9344 } else { 9345 rollback_registered(dev); 9346 /* Finish processing unregister after unlock */ 9347 net_set_todo(dev); 9348 } 9349 } 9350 EXPORT_SYMBOL(unregister_netdevice_queue); 9351 9352 /** 9353 * unregister_netdevice_many - unregister many devices 9354 * @head: list of devices 9355 * 9356 * Note: As most callers use a stack allocated list_head, 9357 * we force a list_del() to make sure stack wont be corrupted later. 9358 */ 9359 void unregister_netdevice_many(struct list_head *head) 9360 { 9361 struct net_device *dev; 9362 9363 if (!list_empty(head)) { 9364 rollback_registered_many(head); 9365 list_for_each_entry(dev, head, unreg_list) 9366 net_set_todo(dev); 9367 list_del(head); 9368 } 9369 } 9370 EXPORT_SYMBOL(unregister_netdevice_many); 9371 9372 /** 9373 * unregister_netdev - remove device from the kernel 9374 * @dev: device 9375 * 9376 * This function shuts down a device interface and removes it 9377 * from the kernel tables. 9378 * 9379 * This is just a wrapper for unregister_netdevice that takes 9380 * the rtnl semaphore. In general you want to use this and not 9381 * unregister_netdevice. 9382 */ 9383 void unregister_netdev(struct net_device *dev) 9384 { 9385 rtnl_lock(); 9386 unregister_netdevice(dev); 9387 rtnl_unlock(); 9388 } 9389 EXPORT_SYMBOL(unregister_netdev); 9390 9391 /** 9392 * dev_change_net_namespace - move device to different nethost namespace 9393 * @dev: device 9394 * @net: network namespace 9395 * @pat: If not NULL name pattern to try if the current device name 9396 * is already taken in the destination network namespace. 9397 * 9398 * This function shuts down a device interface and moves it 9399 * to a new network namespace. On success 0 is returned, on 9400 * a failure a netagive errno code is returned. 9401 * 9402 * Callers must hold the rtnl semaphore. 9403 */ 9404 9405 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 9406 { 9407 int err, new_nsid, new_ifindex; 9408 9409 ASSERT_RTNL(); 9410 9411 /* Don't allow namespace local devices to be moved. */ 9412 err = -EINVAL; 9413 if (dev->features & NETIF_F_NETNS_LOCAL) 9414 goto out; 9415 9416 /* Ensure the device has been registrered */ 9417 if (dev->reg_state != NETREG_REGISTERED) 9418 goto out; 9419 9420 /* Get out if there is nothing todo */ 9421 err = 0; 9422 if (net_eq(dev_net(dev), net)) 9423 goto out; 9424 9425 /* Pick the destination device name, and ensure 9426 * we can use it in the destination network namespace. 9427 */ 9428 err = -EEXIST; 9429 if (__dev_get_by_name(net, dev->name)) { 9430 /* We get here if we can't use the current device name */ 9431 if (!pat) 9432 goto out; 9433 err = dev_get_valid_name(net, dev, pat); 9434 if (err < 0) 9435 goto out; 9436 } 9437 9438 /* 9439 * And now a mini version of register_netdevice unregister_netdevice. 9440 */ 9441 9442 /* If device is running close it first. */ 9443 dev_close(dev); 9444 9445 /* And unlink it from device chain */ 9446 unlist_netdevice(dev); 9447 9448 synchronize_net(); 9449 9450 /* Shutdown queueing discipline. */ 9451 dev_shutdown(dev); 9452 9453 /* Notify protocols, that we are about to destroy 9454 * this device. They should clean all the things. 9455 * 9456 * Note that dev->reg_state stays at NETREG_REGISTERED. 9457 * This is wanted because this way 8021q and macvlan know 9458 * the device is just moving and can keep their slaves up. 9459 */ 9460 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 9461 rcu_barrier(); 9462 9463 new_nsid = peernet2id_alloc(dev_net(dev), net); 9464 /* If there is an ifindex conflict assign a new one */ 9465 if (__dev_get_by_index(net, dev->ifindex)) 9466 new_ifindex = dev_new_index(net); 9467 else 9468 new_ifindex = dev->ifindex; 9469 9470 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid, 9471 new_ifindex); 9472 9473 /* 9474 * Flush the unicast and multicast chains 9475 */ 9476 dev_uc_flush(dev); 9477 dev_mc_flush(dev); 9478 9479 /* Send a netdev-removed uevent to the old namespace */ 9480 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE); 9481 netdev_adjacent_del_links(dev); 9482 9483 /* Actually switch the network namespace */ 9484 dev_net_set(dev, net); 9485 dev->ifindex = new_ifindex; 9486 9487 /* Send a netdev-add uevent to the new namespace */ 9488 kobject_uevent(&dev->dev.kobj, KOBJ_ADD); 9489 netdev_adjacent_add_links(dev); 9490 9491 /* Fixup kobjects */ 9492 err = device_rename(&dev->dev, dev->name); 9493 WARN_ON(err); 9494 9495 /* Add the device back in the hashes */ 9496 list_netdevice(dev); 9497 9498 /* Notify protocols, that a new device appeared. */ 9499 call_netdevice_notifiers(NETDEV_REGISTER, dev); 9500 9501 /* 9502 * Prevent userspace races by waiting until the network 9503 * device is fully setup before sending notifications. 9504 */ 9505 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 9506 9507 synchronize_net(); 9508 err = 0; 9509 out: 9510 return err; 9511 } 9512 EXPORT_SYMBOL_GPL(dev_change_net_namespace); 9513 9514 static int dev_cpu_dead(unsigned int oldcpu) 9515 { 9516 struct sk_buff **list_skb; 9517 struct sk_buff *skb; 9518 unsigned int cpu; 9519 struct softnet_data *sd, *oldsd, *remsd = NULL; 9520 9521 local_irq_disable(); 9522 cpu = smp_processor_id(); 9523 sd = &per_cpu(softnet_data, cpu); 9524 oldsd = &per_cpu(softnet_data, oldcpu); 9525 9526 /* Find end of our completion_queue. */ 9527 list_skb = &sd->completion_queue; 9528 while (*list_skb) 9529 list_skb = &(*list_skb)->next; 9530 /* Append completion queue from offline CPU. */ 9531 *list_skb = oldsd->completion_queue; 9532 oldsd->completion_queue = NULL; 9533 9534 /* Append output queue from offline CPU. */ 9535 if (oldsd->output_queue) { 9536 *sd->output_queue_tailp = oldsd->output_queue; 9537 sd->output_queue_tailp = oldsd->output_queue_tailp; 9538 oldsd->output_queue = NULL; 9539 oldsd->output_queue_tailp = &oldsd->output_queue; 9540 } 9541 /* Append NAPI poll list from offline CPU, with one exception : 9542 * process_backlog() must be called by cpu owning percpu backlog. 9543 * We properly handle process_queue & input_pkt_queue later. 9544 */ 9545 while (!list_empty(&oldsd->poll_list)) { 9546 struct napi_struct *napi = list_first_entry(&oldsd->poll_list, 9547 struct napi_struct, 9548 poll_list); 9549 9550 list_del_init(&napi->poll_list); 9551 if (napi->poll == process_backlog) 9552 napi->state = 0; 9553 else 9554 ____napi_schedule(sd, napi); 9555 } 9556 9557 raise_softirq_irqoff(NET_TX_SOFTIRQ); 9558 local_irq_enable(); 9559 9560 #ifdef CONFIG_RPS 9561 remsd = oldsd->rps_ipi_list; 9562 oldsd->rps_ipi_list = NULL; 9563 #endif 9564 /* send out pending IPI's on offline CPU */ 9565 net_rps_send_ipi(remsd); 9566 9567 /* Process offline CPU's input_pkt_queue */ 9568 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 9569 netif_rx_ni(skb); 9570 input_queue_head_incr(oldsd); 9571 } 9572 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) { 9573 netif_rx_ni(skb); 9574 input_queue_head_incr(oldsd); 9575 } 9576 9577 return 0; 9578 } 9579 9580 /** 9581 * netdev_increment_features - increment feature set by one 9582 * @all: current feature set 9583 * @one: new feature set 9584 * @mask: mask feature set 9585 * 9586 * Computes a new feature set after adding a device with feature set 9587 * @one to the master device with current feature set @all. Will not 9588 * enable anything that is off in @mask. Returns the new feature set. 9589 */ 9590 netdev_features_t netdev_increment_features(netdev_features_t all, 9591 netdev_features_t one, netdev_features_t mask) 9592 { 9593 if (mask & NETIF_F_HW_CSUM) 9594 mask |= NETIF_F_CSUM_MASK; 9595 mask |= NETIF_F_VLAN_CHALLENGED; 9596 9597 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask; 9598 all &= one | ~NETIF_F_ALL_FOR_ALL; 9599 9600 /* If one device supports hw checksumming, set for all. */ 9601 if (all & NETIF_F_HW_CSUM) 9602 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM); 9603 9604 return all; 9605 } 9606 EXPORT_SYMBOL(netdev_increment_features); 9607 9608 static struct hlist_head * __net_init netdev_create_hash(void) 9609 { 9610 int i; 9611 struct hlist_head *hash; 9612 9613 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL); 9614 if (hash != NULL) 9615 for (i = 0; i < NETDEV_HASHENTRIES; i++) 9616 INIT_HLIST_HEAD(&hash[i]); 9617 9618 return hash; 9619 } 9620 9621 /* Initialize per network namespace state */ 9622 static int __net_init netdev_init(struct net *net) 9623 { 9624 BUILD_BUG_ON(GRO_HASH_BUCKETS > 9625 8 * FIELD_SIZEOF(struct napi_struct, gro_bitmask)); 9626 9627 if (net != &init_net) 9628 INIT_LIST_HEAD(&net->dev_base_head); 9629 9630 net->dev_name_head = netdev_create_hash(); 9631 if (net->dev_name_head == NULL) 9632 goto err_name; 9633 9634 net->dev_index_head = netdev_create_hash(); 9635 if (net->dev_index_head == NULL) 9636 goto err_idx; 9637 9638 return 0; 9639 9640 err_idx: 9641 kfree(net->dev_name_head); 9642 err_name: 9643 return -ENOMEM; 9644 } 9645 9646 /** 9647 * netdev_drivername - network driver for the device 9648 * @dev: network device 9649 * 9650 * Determine network driver for device. 9651 */ 9652 const char *netdev_drivername(const struct net_device *dev) 9653 { 9654 const struct device_driver *driver; 9655 const struct device *parent; 9656 const char *empty = ""; 9657 9658 parent = dev->dev.parent; 9659 if (!parent) 9660 return empty; 9661 9662 driver = parent->driver; 9663 if (driver && driver->name) 9664 return driver->name; 9665 return empty; 9666 } 9667 9668 static void __netdev_printk(const char *level, const struct net_device *dev, 9669 struct va_format *vaf) 9670 { 9671 if (dev && dev->dev.parent) { 9672 dev_printk_emit(level[1] - '0', 9673 dev->dev.parent, 9674 "%s %s %s%s: %pV", 9675 dev_driver_string(dev->dev.parent), 9676 dev_name(dev->dev.parent), 9677 netdev_name(dev), netdev_reg_state(dev), 9678 vaf); 9679 } else if (dev) { 9680 printk("%s%s%s: %pV", 9681 level, netdev_name(dev), netdev_reg_state(dev), vaf); 9682 } else { 9683 printk("%s(NULL net_device): %pV", level, vaf); 9684 } 9685 } 9686 9687 void netdev_printk(const char *level, const struct net_device *dev, 9688 const char *format, ...) 9689 { 9690 struct va_format vaf; 9691 va_list args; 9692 9693 va_start(args, format); 9694 9695 vaf.fmt = format; 9696 vaf.va = &args; 9697 9698 __netdev_printk(level, dev, &vaf); 9699 9700 va_end(args); 9701 } 9702 EXPORT_SYMBOL(netdev_printk); 9703 9704 #define define_netdev_printk_level(func, level) \ 9705 void func(const struct net_device *dev, const char *fmt, ...) \ 9706 { \ 9707 struct va_format vaf; \ 9708 va_list args; \ 9709 \ 9710 va_start(args, fmt); \ 9711 \ 9712 vaf.fmt = fmt; \ 9713 vaf.va = &args; \ 9714 \ 9715 __netdev_printk(level, dev, &vaf); \ 9716 \ 9717 va_end(args); \ 9718 } \ 9719 EXPORT_SYMBOL(func); 9720 9721 define_netdev_printk_level(netdev_emerg, KERN_EMERG); 9722 define_netdev_printk_level(netdev_alert, KERN_ALERT); 9723 define_netdev_printk_level(netdev_crit, KERN_CRIT); 9724 define_netdev_printk_level(netdev_err, KERN_ERR); 9725 define_netdev_printk_level(netdev_warn, KERN_WARNING); 9726 define_netdev_printk_level(netdev_notice, KERN_NOTICE); 9727 define_netdev_printk_level(netdev_info, KERN_INFO); 9728 9729 static void __net_exit netdev_exit(struct net *net) 9730 { 9731 kfree(net->dev_name_head); 9732 kfree(net->dev_index_head); 9733 if (net != &init_net) 9734 WARN_ON_ONCE(!list_empty(&net->dev_base_head)); 9735 } 9736 9737 static struct pernet_operations __net_initdata netdev_net_ops = { 9738 .init = netdev_init, 9739 .exit = netdev_exit, 9740 }; 9741 9742 static void __net_exit default_device_exit(struct net *net) 9743 { 9744 struct net_device *dev, *aux; 9745 /* 9746 * Push all migratable network devices back to the 9747 * initial network namespace 9748 */ 9749 rtnl_lock(); 9750 for_each_netdev_safe(net, dev, aux) { 9751 int err; 9752 char fb_name[IFNAMSIZ]; 9753 9754 /* Ignore unmoveable devices (i.e. loopback) */ 9755 if (dev->features & NETIF_F_NETNS_LOCAL) 9756 continue; 9757 9758 /* Leave virtual devices for the generic cleanup */ 9759 if (dev->rtnl_link_ops) 9760 continue; 9761 9762 /* Push remaining network devices to init_net */ 9763 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 9764 if (__dev_get_by_name(&init_net, fb_name)) 9765 snprintf(fb_name, IFNAMSIZ, "dev%%d"); 9766 err = dev_change_net_namespace(dev, &init_net, fb_name); 9767 if (err) { 9768 pr_emerg("%s: failed to move %s to init_net: %d\n", 9769 __func__, dev->name, err); 9770 BUG(); 9771 } 9772 } 9773 rtnl_unlock(); 9774 } 9775 9776 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list) 9777 { 9778 /* Return with the rtnl_lock held when there are no network 9779 * devices unregistering in any network namespace in net_list. 9780 */ 9781 struct net *net; 9782 bool unregistering; 9783 DEFINE_WAIT_FUNC(wait, woken_wake_function); 9784 9785 add_wait_queue(&netdev_unregistering_wq, &wait); 9786 for (;;) { 9787 unregistering = false; 9788 rtnl_lock(); 9789 list_for_each_entry(net, net_list, exit_list) { 9790 if (net->dev_unreg_count > 0) { 9791 unregistering = true; 9792 break; 9793 } 9794 } 9795 if (!unregistering) 9796 break; 9797 __rtnl_unlock(); 9798 9799 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); 9800 } 9801 remove_wait_queue(&netdev_unregistering_wq, &wait); 9802 } 9803 9804 static void __net_exit default_device_exit_batch(struct list_head *net_list) 9805 { 9806 /* At exit all network devices most be removed from a network 9807 * namespace. Do this in the reverse order of registration. 9808 * Do this across as many network namespaces as possible to 9809 * improve batching efficiency. 9810 */ 9811 struct net_device *dev; 9812 struct net *net; 9813 LIST_HEAD(dev_kill_list); 9814 9815 /* To prevent network device cleanup code from dereferencing 9816 * loopback devices or network devices that have been freed 9817 * wait here for all pending unregistrations to complete, 9818 * before unregistring the loopback device and allowing the 9819 * network namespace be freed. 9820 * 9821 * The netdev todo list containing all network devices 9822 * unregistrations that happen in default_device_exit_batch 9823 * will run in the rtnl_unlock() at the end of 9824 * default_device_exit_batch. 9825 */ 9826 rtnl_lock_unregistering(net_list); 9827 list_for_each_entry(net, net_list, exit_list) { 9828 for_each_netdev_reverse(net, dev) { 9829 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) 9830 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 9831 else 9832 unregister_netdevice_queue(dev, &dev_kill_list); 9833 } 9834 } 9835 unregister_netdevice_many(&dev_kill_list); 9836 rtnl_unlock(); 9837 } 9838 9839 static struct pernet_operations __net_initdata default_device_ops = { 9840 .exit = default_device_exit, 9841 .exit_batch = default_device_exit_batch, 9842 }; 9843 9844 /* 9845 * Initialize the DEV module. At boot time this walks the device list and 9846 * unhooks any devices that fail to initialise (normally hardware not 9847 * present) and leaves us with a valid list of present and active devices. 9848 * 9849 */ 9850 9851 /* 9852 * This is called single threaded during boot, so no need 9853 * to take the rtnl semaphore. 9854 */ 9855 static int __init net_dev_init(void) 9856 { 9857 int i, rc = -ENOMEM; 9858 9859 BUG_ON(!dev_boot_phase); 9860 9861 if (dev_proc_init()) 9862 goto out; 9863 9864 if (netdev_kobject_init()) 9865 goto out; 9866 9867 INIT_LIST_HEAD(&ptype_all); 9868 for (i = 0; i < PTYPE_HASH_SIZE; i++) 9869 INIT_LIST_HEAD(&ptype_base[i]); 9870 9871 INIT_LIST_HEAD(&offload_base); 9872 9873 if (register_pernet_subsys(&netdev_net_ops)) 9874 goto out; 9875 9876 /* 9877 * Initialise the packet receive queues. 9878 */ 9879 9880 for_each_possible_cpu(i) { 9881 struct work_struct *flush = per_cpu_ptr(&flush_works, i); 9882 struct softnet_data *sd = &per_cpu(softnet_data, i); 9883 9884 INIT_WORK(flush, flush_backlog); 9885 9886 skb_queue_head_init(&sd->input_pkt_queue); 9887 skb_queue_head_init(&sd->process_queue); 9888 #ifdef CONFIG_XFRM_OFFLOAD 9889 skb_queue_head_init(&sd->xfrm_backlog); 9890 #endif 9891 INIT_LIST_HEAD(&sd->poll_list); 9892 sd->output_queue_tailp = &sd->output_queue; 9893 #ifdef CONFIG_RPS 9894 sd->csd.func = rps_trigger_softirq; 9895 sd->csd.info = sd; 9896 sd->cpu = i; 9897 #endif 9898 9899 init_gro_hash(&sd->backlog); 9900 sd->backlog.poll = process_backlog; 9901 sd->backlog.weight = weight_p; 9902 } 9903 9904 dev_boot_phase = 0; 9905 9906 /* The loopback device is special if any other network devices 9907 * is present in a network namespace the loopback device must 9908 * be present. Since we now dynamically allocate and free the 9909 * loopback device ensure this invariant is maintained by 9910 * keeping the loopback device as the first device on the 9911 * list of network devices. Ensuring the loopback devices 9912 * is the first device that appears and the last network device 9913 * that disappears. 9914 */ 9915 if (register_pernet_device(&loopback_net_ops)) 9916 goto out; 9917 9918 if (register_pernet_device(&default_device_ops)) 9919 goto out; 9920 9921 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 9922 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 9923 9924 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead", 9925 NULL, dev_cpu_dead); 9926 WARN_ON(rc < 0); 9927 rc = 0; 9928 out: 9929 return rc; 9930 } 9931 9932 subsys_initcall(net_dev_init); 9933