xref: /linux/net/core/dev.c (revision b43ab901d671e3e3cad425ea5e9a3c74e266dcdd)
1 /*
2  * 	NET3	Protocol independent device support routines.
3  *
4  *		This program is free software; you can redistribute it and/or
5  *		modify it under the terms of the GNU General Public License
6  *		as published by the Free Software Foundation; either version
7  *		2 of the License, or (at your option) any later version.
8  *
9  *	Derived from the non IP parts of dev.c 1.0.19
10  * 		Authors:	Ross Biro
11  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *	Additional Authors:
15  *		Florian la Roche <rzsfl@rz.uni-sb.de>
16  *		Alan Cox <gw4pts@gw4pts.ampr.org>
17  *		David Hinds <dahinds@users.sourceforge.net>
18  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *		Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *	Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *              			to 2 if register_netdev gets called
25  *              			before net_dev_init & also removed a
26  *              			few lines of code in the process.
27  *		Alan Cox	:	device private ioctl copies fields back.
28  *		Alan Cox	:	Transmit queue code does relevant
29  *					stunts to keep the queue safe.
30  *		Alan Cox	:	Fixed double lock.
31  *		Alan Cox	:	Fixed promisc NULL pointer trap
32  *		????????	:	Support the full private ioctl range
33  *		Alan Cox	:	Moved ioctl permission check into
34  *					drivers
35  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
36  *		Alan Cox	:	100 backlog just doesn't cut it when
37  *					you start doing multicast video 8)
38  *		Alan Cox	:	Rewrote net_bh and list manager.
39  *		Alan Cox	: 	Fix ETH_P_ALL echoback lengths.
40  *		Alan Cox	:	Took out transmit every packet pass
41  *					Saved a few bytes in the ioctl handler
42  *		Alan Cox	:	Network driver sets packet type before
43  *					calling netif_rx. Saves a function
44  *					call a packet.
45  *		Alan Cox	:	Hashed net_bh()
46  *		Richard Kooijman:	Timestamp fixes.
47  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
48  *		Alan Cox	:	Device lock protection.
49  *		Alan Cox	: 	Fixed nasty side effect of device close
50  *					changes.
51  *		Rudi Cilibrasi	:	Pass the right thing to
52  *					set_mac_address()
53  *		Dave Miller	:	32bit quantity for the device lock to
54  *					make it work out on a Sparc.
55  *		Bjorn Ekwall	:	Added KERNELD hack.
56  *		Alan Cox	:	Cleaned up the backlog initialise.
57  *		Craig Metz	:	SIOCGIFCONF fix if space for under
58  *					1 device.
59  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
60  *					is no device open function.
61  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
62  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
63  *		Cyrus Durgin	:	Cleaned for KMOD
64  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
65  *					A network device unload needs to purge
66  *					the backlog queue.
67  *	Paul Rusty Russell	:	SIOCSIFNAME
68  *              Pekka Riikonen  :	Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *              			indefinitely on dev->refcnt
71  * 		J Hadi Salim	:	- Backlog queue sampling
72  *				        - netif_rx() feedback
73  */
74 
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/hash.h>
83 #include <linux/slab.h>
84 #include <linux/sched.h>
85 #include <linux/mutex.h>
86 #include <linux/string.h>
87 #include <linux/mm.h>
88 #include <linux/socket.h>
89 #include <linux/sockios.h>
90 #include <linux/errno.h>
91 #include <linux/interrupt.h>
92 #include <linux/if_ether.h>
93 #include <linux/netdevice.h>
94 #include <linux/etherdevice.h>
95 #include <linux/ethtool.h>
96 #include <linux/notifier.h>
97 #include <linux/skbuff.h>
98 #include <net/net_namespace.h>
99 #include <net/sock.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/proc_fs.h>
102 #include <linux/seq_file.h>
103 #include <linux/stat.h>
104 #include <net/dst.h>
105 #include <net/pkt_sched.h>
106 #include <net/checksum.h>
107 #include <net/xfrm.h>
108 #include <linux/highmem.h>
109 #include <linux/init.h>
110 #include <linux/kmod.h>
111 #include <linux/module.h>
112 #include <linux/netpoll.h>
113 #include <linux/rcupdate.h>
114 #include <linux/delay.h>
115 #include <net/wext.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <linux/ipv6.h>
127 #include <linux/in.h>
128 #include <linux/jhash.h>
129 #include <linux/random.h>
130 #include <trace/events/napi.h>
131 #include <trace/events/net.h>
132 #include <trace/events/skb.h>
133 #include <linux/pci.h>
134 #include <linux/inetdevice.h>
135 #include <linux/cpu_rmap.h>
136 #include <linux/net_tstamp.h>
137 #include <linux/jump_label.h>
138 #include <net/flow_keys.h>
139 
140 #include "net-sysfs.h"
141 
142 /* Instead of increasing this, you should create a hash table. */
143 #define MAX_GRO_SKBS 8
144 
145 /* This should be increased if a protocol with a bigger head is added. */
146 #define GRO_MAX_HEAD (MAX_HEADER + 128)
147 
148 /*
149  *	The list of packet types we will receive (as opposed to discard)
150  *	and the routines to invoke.
151  *
152  *	Why 16. Because with 16 the only overlap we get on a hash of the
153  *	low nibble of the protocol value is RARP/SNAP/X.25.
154  *
155  *      NOTE:  That is no longer true with the addition of VLAN tags.  Not
156  *             sure which should go first, but I bet it won't make much
157  *             difference if we are running VLANs.  The good news is that
158  *             this protocol won't be in the list unless compiled in, so
159  *             the average user (w/out VLANs) will not be adversely affected.
160  *             --BLG
161  *
162  *		0800	IP
163  *		8100    802.1Q VLAN
164  *		0001	802.3
165  *		0002	AX.25
166  *		0004	802.2
167  *		8035	RARP
168  *		0005	SNAP
169  *		0805	X.25
170  *		0806	ARP
171  *		8137	IPX
172  *		0009	Localtalk
173  *		86DD	IPv6
174  */
175 
176 #define PTYPE_HASH_SIZE	(16)
177 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
178 
179 static DEFINE_SPINLOCK(ptype_lock);
180 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
181 static struct list_head ptype_all __read_mostly;	/* Taps */
182 
183 /*
184  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
185  * semaphore.
186  *
187  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
188  *
189  * Writers must hold the rtnl semaphore while they loop through the
190  * dev_base_head list, and hold dev_base_lock for writing when they do the
191  * actual updates.  This allows pure readers to access the list even
192  * while a writer is preparing to update it.
193  *
194  * To put it another way, dev_base_lock is held for writing only to
195  * protect against pure readers; the rtnl semaphore provides the
196  * protection against other writers.
197  *
198  * See, for example usages, register_netdevice() and
199  * unregister_netdevice(), which must be called with the rtnl
200  * semaphore held.
201  */
202 DEFINE_RWLOCK(dev_base_lock);
203 EXPORT_SYMBOL(dev_base_lock);
204 
205 static inline void dev_base_seq_inc(struct net *net)
206 {
207 	while (++net->dev_base_seq == 0);
208 }
209 
210 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
211 {
212 	unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
213 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
214 }
215 
216 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
217 {
218 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
219 }
220 
221 static inline void rps_lock(struct softnet_data *sd)
222 {
223 #ifdef CONFIG_RPS
224 	spin_lock(&sd->input_pkt_queue.lock);
225 #endif
226 }
227 
228 static inline void rps_unlock(struct softnet_data *sd)
229 {
230 #ifdef CONFIG_RPS
231 	spin_unlock(&sd->input_pkt_queue.lock);
232 #endif
233 }
234 
235 /* Device list insertion */
236 static int list_netdevice(struct net_device *dev)
237 {
238 	struct net *net = dev_net(dev);
239 
240 	ASSERT_RTNL();
241 
242 	write_lock_bh(&dev_base_lock);
243 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
244 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
245 	hlist_add_head_rcu(&dev->index_hlist,
246 			   dev_index_hash(net, dev->ifindex));
247 	write_unlock_bh(&dev_base_lock);
248 
249 	dev_base_seq_inc(net);
250 
251 	return 0;
252 }
253 
254 /* Device list removal
255  * caller must respect a RCU grace period before freeing/reusing dev
256  */
257 static void unlist_netdevice(struct net_device *dev)
258 {
259 	ASSERT_RTNL();
260 
261 	/* Unlink dev from the device chain */
262 	write_lock_bh(&dev_base_lock);
263 	list_del_rcu(&dev->dev_list);
264 	hlist_del_rcu(&dev->name_hlist);
265 	hlist_del_rcu(&dev->index_hlist);
266 	write_unlock_bh(&dev_base_lock);
267 
268 	dev_base_seq_inc(dev_net(dev));
269 }
270 
271 /*
272  *	Our notifier list
273  */
274 
275 static RAW_NOTIFIER_HEAD(netdev_chain);
276 
277 /*
278  *	Device drivers call our routines to queue packets here. We empty the
279  *	queue in the local softnet handler.
280  */
281 
282 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
283 EXPORT_PER_CPU_SYMBOL(softnet_data);
284 
285 #ifdef CONFIG_LOCKDEP
286 /*
287  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
288  * according to dev->type
289  */
290 static const unsigned short netdev_lock_type[] =
291 	{ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
292 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
293 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
294 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
295 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
296 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
297 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
298 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
299 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
300 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
301 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
302 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
303 	 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
304 	 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET,
305 	 ARPHRD_PHONET_PIPE, ARPHRD_IEEE802154,
306 	 ARPHRD_VOID, ARPHRD_NONE};
307 
308 static const char *const netdev_lock_name[] =
309 	{"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
310 	 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
311 	 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
312 	 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
313 	 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
314 	 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
315 	 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
316 	 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
317 	 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
318 	 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
319 	 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
320 	 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
321 	 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
322 	 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET",
323 	 "_xmit_PHONET_PIPE", "_xmit_IEEE802154",
324 	 "_xmit_VOID", "_xmit_NONE"};
325 
326 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
327 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
328 
329 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
330 {
331 	int i;
332 
333 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
334 		if (netdev_lock_type[i] == dev_type)
335 			return i;
336 	/* the last key is used by default */
337 	return ARRAY_SIZE(netdev_lock_type) - 1;
338 }
339 
340 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
341 						 unsigned short dev_type)
342 {
343 	int i;
344 
345 	i = netdev_lock_pos(dev_type);
346 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
347 				   netdev_lock_name[i]);
348 }
349 
350 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
351 {
352 	int i;
353 
354 	i = netdev_lock_pos(dev->type);
355 	lockdep_set_class_and_name(&dev->addr_list_lock,
356 				   &netdev_addr_lock_key[i],
357 				   netdev_lock_name[i]);
358 }
359 #else
360 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
361 						 unsigned short dev_type)
362 {
363 }
364 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
365 {
366 }
367 #endif
368 
369 /*******************************************************************************
370 
371 		Protocol management and registration routines
372 
373 *******************************************************************************/
374 
375 /*
376  *	Add a protocol ID to the list. Now that the input handler is
377  *	smarter we can dispense with all the messy stuff that used to be
378  *	here.
379  *
380  *	BEWARE!!! Protocol handlers, mangling input packets,
381  *	MUST BE last in hash buckets and checking protocol handlers
382  *	MUST start from promiscuous ptype_all chain in net_bh.
383  *	It is true now, do not change it.
384  *	Explanation follows: if protocol handler, mangling packet, will
385  *	be the first on list, it is not able to sense, that packet
386  *	is cloned and should be copied-on-write, so that it will
387  *	change it and subsequent readers will get broken packet.
388  *							--ANK (980803)
389  */
390 
391 static inline struct list_head *ptype_head(const struct packet_type *pt)
392 {
393 	if (pt->type == htons(ETH_P_ALL))
394 		return &ptype_all;
395 	else
396 		return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
397 }
398 
399 /**
400  *	dev_add_pack - add packet handler
401  *	@pt: packet type declaration
402  *
403  *	Add a protocol handler to the networking stack. The passed &packet_type
404  *	is linked into kernel lists and may not be freed until it has been
405  *	removed from the kernel lists.
406  *
407  *	This call does not sleep therefore it can not
408  *	guarantee all CPU's that are in middle of receiving packets
409  *	will see the new packet type (until the next received packet).
410  */
411 
412 void dev_add_pack(struct packet_type *pt)
413 {
414 	struct list_head *head = ptype_head(pt);
415 
416 	spin_lock(&ptype_lock);
417 	list_add_rcu(&pt->list, head);
418 	spin_unlock(&ptype_lock);
419 }
420 EXPORT_SYMBOL(dev_add_pack);
421 
422 /**
423  *	__dev_remove_pack	 - remove packet handler
424  *	@pt: packet type declaration
425  *
426  *	Remove a protocol handler that was previously added to the kernel
427  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
428  *	from the kernel lists and can be freed or reused once this function
429  *	returns.
430  *
431  *      The packet type might still be in use by receivers
432  *	and must not be freed until after all the CPU's have gone
433  *	through a quiescent state.
434  */
435 void __dev_remove_pack(struct packet_type *pt)
436 {
437 	struct list_head *head = ptype_head(pt);
438 	struct packet_type *pt1;
439 
440 	spin_lock(&ptype_lock);
441 
442 	list_for_each_entry(pt1, head, list) {
443 		if (pt == pt1) {
444 			list_del_rcu(&pt->list);
445 			goto out;
446 		}
447 	}
448 
449 	printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
450 out:
451 	spin_unlock(&ptype_lock);
452 }
453 EXPORT_SYMBOL(__dev_remove_pack);
454 
455 /**
456  *	dev_remove_pack	 - remove packet handler
457  *	@pt: packet type declaration
458  *
459  *	Remove a protocol handler that was previously added to the kernel
460  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
461  *	from the kernel lists and can be freed or reused once this function
462  *	returns.
463  *
464  *	This call sleeps to guarantee that no CPU is looking at the packet
465  *	type after return.
466  */
467 void dev_remove_pack(struct packet_type *pt)
468 {
469 	__dev_remove_pack(pt);
470 
471 	synchronize_net();
472 }
473 EXPORT_SYMBOL(dev_remove_pack);
474 
475 /******************************************************************************
476 
477 		      Device Boot-time Settings Routines
478 
479 *******************************************************************************/
480 
481 /* Boot time configuration table */
482 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
483 
484 /**
485  *	netdev_boot_setup_add	- add new setup entry
486  *	@name: name of the device
487  *	@map: configured settings for the device
488  *
489  *	Adds new setup entry to the dev_boot_setup list.  The function
490  *	returns 0 on error and 1 on success.  This is a generic routine to
491  *	all netdevices.
492  */
493 static int netdev_boot_setup_add(char *name, struct ifmap *map)
494 {
495 	struct netdev_boot_setup *s;
496 	int i;
497 
498 	s = dev_boot_setup;
499 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
500 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
501 			memset(s[i].name, 0, sizeof(s[i].name));
502 			strlcpy(s[i].name, name, IFNAMSIZ);
503 			memcpy(&s[i].map, map, sizeof(s[i].map));
504 			break;
505 		}
506 	}
507 
508 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
509 }
510 
511 /**
512  *	netdev_boot_setup_check	- check boot time settings
513  *	@dev: the netdevice
514  *
515  * 	Check boot time settings for the device.
516  *	The found settings are set for the device to be used
517  *	later in the device probing.
518  *	Returns 0 if no settings found, 1 if they are.
519  */
520 int netdev_boot_setup_check(struct net_device *dev)
521 {
522 	struct netdev_boot_setup *s = dev_boot_setup;
523 	int i;
524 
525 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
526 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
527 		    !strcmp(dev->name, s[i].name)) {
528 			dev->irq 	= s[i].map.irq;
529 			dev->base_addr 	= s[i].map.base_addr;
530 			dev->mem_start 	= s[i].map.mem_start;
531 			dev->mem_end 	= s[i].map.mem_end;
532 			return 1;
533 		}
534 	}
535 	return 0;
536 }
537 EXPORT_SYMBOL(netdev_boot_setup_check);
538 
539 
540 /**
541  *	netdev_boot_base	- get address from boot time settings
542  *	@prefix: prefix for network device
543  *	@unit: id for network device
544  *
545  * 	Check boot time settings for the base address of device.
546  *	The found settings are set for the device to be used
547  *	later in the device probing.
548  *	Returns 0 if no settings found.
549  */
550 unsigned long netdev_boot_base(const char *prefix, int unit)
551 {
552 	const struct netdev_boot_setup *s = dev_boot_setup;
553 	char name[IFNAMSIZ];
554 	int i;
555 
556 	sprintf(name, "%s%d", prefix, unit);
557 
558 	/*
559 	 * If device already registered then return base of 1
560 	 * to indicate not to probe for this interface
561 	 */
562 	if (__dev_get_by_name(&init_net, name))
563 		return 1;
564 
565 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
566 		if (!strcmp(name, s[i].name))
567 			return s[i].map.base_addr;
568 	return 0;
569 }
570 
571 /*
572  * Saves at boot time configured settings for any netdevice.
573  */
574 int __init netdev_boot_setup(char *str)
575 {
576 	int ints[5];
577 	struct ifmap map;
578 
579 	str = get_options(str, ARRAY_SIZE(ints), ints);
580 	if (!str || !*str)
581 		return 0;
582 
583 	/* Save settings */
584 	memset(&map, 0, sizeof(map));
585 	if (ints[0] > 0)
586 		map.irq = ints[1];
587 	if (ints[0] > 1)
588 		map.base_addr = ints[2];
589 	if (ints[0] > 2)
590 		map.mem_start = ints[3];
591 	if (ints[0] > 3)
592 		map.mem_end = ints[4];
593 
594 	/* Add new entry to the list */
595 	return netdev_boot_setup_add(str, &map);
596 }
597 
598 __setup("netdev=", netdev_boot_setup);
599 
600 /*******************************************************************************
601 
602 			    Device Interface Subroutines
603 
604 *******************************************************************************/
605 
606 /**
607  *	__dev_get_by_name	- find a device by its name
608  *	@net: the applicable net namespace
609  *	@name: name to find
610  *
611  *	Find an interface by name. Must be called under RTNL semaphore
612  *	or @dev_base_lock. If the name is found a pointer to the device
613  *	is returned. If the name is not found then %NULL is returned. The
614  *	reference counters are not incremented so the caller must be
615  *	careful with locks.
616  */
617 
618 struct net_device *__dev_get_by_name(struct net *net, const char *name)
619 {
620 	struct hlist_node *p;
621 	struct net_device *dev;
622 	struct hlist_head *head = dev_name_hash(net, name);
623 
624 	hlist_for_each_entry(dev, p, head, name_hlist)
625 		if (!strncmp(dev->name, name, IFNAMSIZ))
626 			return dev;
627 
628 	return NULL;
629 }
630 EXPORT_SYMBOL(__dev_get_by_name);
631 
632 /**
633  *	dev_get_by_name_rcu	- find a device by its name
634  *	@net: the applicable net namespace
635  *	@name: name to find
636  *
637  *	Find an interface by name.
638  *	If the name is found a pointer to the device is returned.
639  * 	If the name is not found then %NULL is returned.
640  *	The reference counters are not incremented so the caller must be
641  *	careful with locks. The caller must hold RCU lock.
642  */
643 
644 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
645 {
646 	struct hlist_node *p;
647 	struct net_device *dev;
648 	struct hlist_head *head = dev_name_hash(net, name);
649 
650 	hlist_for_each_entry_rcu(dev, p, head, name_hlist)
651 		if (!strncmp(dev->name, name, IFNAMSIZ))
652 			return dev;
653 
654 	return NULL;
655 }
656 EXPORT_SYMBOL(dev_get_by_name_rcu);
657 
658 /**
659  *	dev_get_by_name		- find a device by its name
660  *	@net: the applicable net namespace
661  *	@name: name to find
662  *
663  *	Find an interface by name. This can be called from any
664  *	context and does its own locking. The returned handle has
665  *	the usage count incremented and the caller must use dev_put() to
666  *	release it when it is no longer needed. %NULL is returned if no
667  *	matching device is found.
668  */
669 
670 struct net_device *dev_get_by_name(struct net *net, const char *name)
671 {
672 	struct net_device *dev;
673 
674 	rcu_read_lock();
675 	dev = dev_get_by_name_rcu(net, name);
676 	if (dev)
677 		dev_hold(dev);
678 	rcu_read_unlock();
679 	return dev;
680 }
681 EXPORT_SYMBOL(dev_get_by_name);
682 
683 /**
684  *	__dev_get_by_index - find a device by its ifindex
685  *	@net: the applicable net namespace
686  *	@ifindex: index of device
687  *
688  *	Search for an interface by index. Returns %NULL if the device
689  *	is not found or a pointer to the device. The device has not
690  *	had its reference counter increased so the caller must be careful
691  *	about locking. The caller must hold either the RTNL semaphore
692  *	or @dev_base_lock.
693  */
694 
695 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
696 {
697 	struct hlist_node *p;
698 	struct net_device *dev;
699 	struct hlist_head *head = dev_index_hash(net, ifindex);
700 
701 	hlist_for_each_entry(dev, p, head, index_hlist)
702 		if (dev->ifindex == ifindex)
703 			return dev;
704 
705 	return NULL;
706 }
707 EXPORT_SYMBOL(__dev_get_by_index);
708 
709 /**
710  *	dev_get_by_index_rcu - find a device by its ifindex
711  *	@net: the applicable net namespace
712  *	@ifindex: index of device
713  *
714  *	Search for an interface by index. Returns %NULL if the device
715  *	is not found or a pointer to the device. The device has not
716  *	had its reference counter increased so the caller must be careful
717  *	about locking. The caller must hold RCU lock.
718  */
719 
720 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
721 {
722 	struct hlist_node *p;
723 	struct net_device *dev;
724 	struct hlist_head *head = dev_index_hash(net, ifindex);
725 
726 	hlist_for_each_entry_rcu(dev, p, head, index_hlist)
727 		if (dev->ifindex == ifindex)
728 			return dev;
729 
730 	return NULL;
731 }
732 EXPORT_SYMBOL(dev_get_by_index_rcu);
733 
734 
735 /**
736  *	dev_get_by_index - find a device by its ifindex
737  *	@net: the applicable net namespace
738  *	@ifindex: index of device
739  *
740  *	Search for an interface by index. Returns NULL if the device
741  *	is not found or a pointer to the device. The device returned has
742  *	had a reference added and the pointer is safe until the user calls
743  *	dev_put to indicate they have finished with it.
744  */
745 
746 struct net_device *dev_get_by_index(struct net *net, int ifindex)
747 {
748 	struct net_device *dev;
749 
750 	rcu_read_lock();
751 	dev = dev_get_by_index_rcu(net, ifindex);
752 	if (dev)
753 		dev_hold(dev);
754 	rcu_read_unlock();
755 	return dev;
756 }
757 EXPORT_SYMBOL(dev_get_by_index);
758 
759 /**
760  *	dev_getbyhwaddr_rcu - find a device by its hardware address
761  *	@net: the applicable net namespace
762  *	@type: media type of device
763  *	@ha: hardware address
764  *
765  *	Search for an interface by MAC address. Returns NULL if the device
766  *	is not found or a pointer to the device.
767  *	The caller must hold RCU or RTNL.
768  *	The returned device has not had its ref count increased
769  *	and the caller must therefore be careful about locking
770  *
771  */
772 
773 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
774 				       const char *ha)
775 {
776 	struct net_device *dev;
777 
778 	for_each_netdev_rcu(net, dev)
779 		if (dev->type == type &&
780 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
781 			return dev;
782 
783 	return NULL;
784 }
785 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
786 
787 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
788 {
789 	struct net_device *dev;
790 
791 	ASSERT_RTNL();
792 	for_each_netdev(net, dev)
793 		if (dev->type == type)
794 			return dev;
795 
796 	return NULL;
797 }
798 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
799 
800 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
801 {
802 	struct net_device *dev, *ret = NULL;
803 
804 	rcu_read_lock();
805 	for_each_netdev_rcu(net, dev)
806 		if (dev->type == type) {
807 			dev_hold(dev);
808 			ret = dev;
809 			break;
810 		}
811 	rcu_read_unlock();
812 	return ret;
813 }
814 EXPORT_SYMBOL(dev_getfirstbyhwtype);
815 
816 /**
817  *	dev_get_by_flags_rcu - find any device with given flags
818  *	@net: the applicable net namespace
819  *	@if_flags: IFF_* values
820  *	@mask: bitmask of bits in if_flags to check
821  *
822  *	Search for any interface with the given flags. Returns NULL if a device
823  *	is not found or a pointer to the device. Must be called inside
824  *	rcu_read_lock(), and result refcount is unchanged.
825  */
826 
827 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
828 				    unsigned short mask)
829 {
830 	struct net_device *dev, *ret;
831 
832 	ret = NULL;
833 	for_each_netdev_rcu(net, dev) {
834 		if (((dev->flags ^ if_flags) & mask) == 0) {
835 			ret = dev;
836 			break;
837 		}
838 	}
839 	return ret;
840 }
841 EXPORT_SYMBOL(dev_get_by_flags_rcu);
842 
843 /**
844  *	dev_valid_name - check if name is okay for network device
845  *	@name: name string
846  *
847  *	Network device names need to be valid file names to
848  *	to allow sysfs to work.  We also disallow any kind of
849  *	whitespace.
850  */
851 int dev_valid_name(const char *name)
852 {
853 	if (*name == '\0')
854 		return 0;
855 	if (strlen(name) >= IFNAMSIZ)
856 		return 0;
857 	if (!strcmp(name, ".") || !strcmp(name, ".."))
858 		return 0;
859 
860 	while (*name) {
861 		if (*name == '/' || isspace(*name))
862 			return 0;
863 		name++;
864 	}
865 	return 1;
866 }
867 EXPORT_SYMBOL(dev_valid_name);
868 
869 /**
870  *	__dev_alloc_name - allocate a name for a device
871  *	@net: network namespace to allocate the device name in
872  *	@name: name format string
873  *	@buf:  scratch buffer and result name string
874  *
875  *	Passed a format string - eg "lt%d" it will try and find a suitable
876  *	id. It scans list of devices to build up a free map, then chooses
877  *	the first empty slot. The caller must hold the dev_base or rtnl lock
878  *	while allocating the name and adding the device in order to avoid
879  *	duplicates.
880  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
881  *	Returns the number of the unit assigned or a negative errno code.
882  */
883 
884 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
885 {
886 	int i = 0;
887 	const char *p;
888 	const int max_netdevices = 8*PAGE_SIZE;
889 	unsigned long *inuse;
890 	struct net_device *d;
891 
892 	p = strnchr(name, IFNAMSIZ-1, '%');
893 	if (p) {
894 		/*
895 		 * Verify the string as this thing may have come from
896 		 * the user.  There must be either one "%d" and no other "%"
897 		 * characters.
898 		 */
899 		if (p[1] != 'd' || strchr(p + 2, '%'))
900 			return -EINVAL;
901 
902 		/* Use one page as a bit array of possible slots */
903 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
904 		if (!inuse)
905 			return -ENOMEM;
906 
907 		for_each_netdev(net, d) {
908 			if (!sscanf(d->name, name, &i))
909 				continue;
910 			if (i < 0 || i >= max_netdevices)
911 				continue;
912 
913 			/*  avoid cases where sscanf is not exact inverse of printf */
914 			snprintf(buf, IFNAMSIZ, name, i);
915 			if (!strncmp(buf, d->name, IFNAMSIZ))
916 				set_bit(i, inuse);
917 		}
918 
919 		i = find_first_zero_bit(inuse, max_netdevices);
920 		free_page((unsigned long) inuse);
921 	}
922 
923 	if (buf != name)
924 		snprintf(buf, IFNAMSIZ, name, i);
925 	if (!__dev_get_by_name(net, buf))
926 		return i;
927 
928 	/* It is possible to run out of possible slots
929 	 * when the name is long and there isn't enough space left
930 	 * for the digits, or if all bits are used.
931 	 */
932 	return -ENFILE;
933 }
934 
935 /**
936  *	dev_alloc_name - allocate a name for a device
937  *	@dev: device
938  *	@name: name format string
939  *
940  *	Passed a format string - eg "lt%d" it will try and find a suitable
941  *	id. It scans list of devices to build up a free map, then chooses
942  *	the first empty slot. The caller must hold the dev_base or rtnl lock
943  *	while allocating the name and adding the device in order to avoid
944  *	duplicates.
945  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
946  *	Returns the number of the unit assigned or a negative errno code.
947  */
948 
949 int dev_alloc_name(struct net_device *dev, const char *name)
950 {
951 	char buf[IFNAMSIZ];
952 	struct net *net;
953 	int ret;
954 
955 	BUG_ON(!dev_net(dev));
956 	net = dev_net(dev);
957 	ret = __dev_alloc_name(net, name, buf);
958 	if (ret >= 0)
959 		strlcpy(dev->name, buf, IFNAMSIZ);
960 	return ret;
961 }
962 EXPORT_SYMBOL(dev_alloc_name);
963 
964 static int dev_get_valid_name(struct net_device *dev, const char *name)
965 {
966 	struct net *net;
967 
968 	BUG_ON(!dev_net(dev));
969 	net = dev_net(dev);
970 
971 	if (!dev_valid_name(name))
972 		return -EINVAL;
973 
974 	if (strchr(name, '%'))
975 		return dev_alloc_name(dev, name);
976 	else if (__dev_get_by_name(net, name))
977 		return -EEXIST;
978 	else if (dev->name != name)
979 		strlcpy(dev->name, name, IFNAMSIZ);
980 
981 	return 0;
982 }
983 
984 /**
985  *	dev_change_name - change name of a device
986  *	@dev: device
987  *	@newname: name (or format string) must be at least IFNAMSIZ
988  *
989  *	Change name of a device, can pass format strings "eth%d".
990  *	for wildcarding.
991  */
992 int dev_change_name(struct net_device *dev, const char *newname)
993 {
994 	char oldname[IFNAMSIZ];
995 	int err = 0;
996 	int ret;
997 	struct net *net;
998 
999 	ASSERT_RTNL();
1000 	BUG_ON(!dev_net(dev));
1001 
1002 	net = dev_net(dev);
1003 	if (dev->flags & IFF_UP)
1004 		return -EBUSY;
1005 
1006 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
1007 		return 0;
1008 
1009 	memcpy(oldname, dev->name, IFNAMSIZ);
1010 
1011 	err = dev_get_valid_name(dev, newname);
1012 	if (err < 0)
1013 		return err;
1014 
1015 rollback:
1016 	ret = device_rename(&dev->dev, dev->name);
1017 	if (ret) {
1018 		memcpy(dev->name, oldname, IFNAMSIZ);
1019 		return ret;
1020 	}
1021 
1022 	write_lock_bh(&dev_base_lock);
1023 	hlist_del_rcu(&dev->name_hlist);
1024 	write_unlock_bh(&dev_base_lock);
1025 
1026 	synchronize_rcu();
1027 
1028 	write_lock_bh(&dev_base_lock);
1029 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1030 	write_unlock_bh(&dev_base_lock);
1031 
1032 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1033 	ret = notifier_to_errno(ret);
1034 
1035 	if (ret) {
1036 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1037 		if (err >= 0) {
1038 			err = ret;
1039 			memcpy(dev->name, oldname, IFNAMSIZ);
1040 			goto rollback;
1041 		} else {
1042 			printk(KERN_ERR
1043 			       "%s: name change rollback failed: %d.\n",
1044 			       dev->name, ret);
1045 		}
1046 	}
1047 
1048 	return err;
1049 }
1050 
1051 /**
1052  *	dev_set_alias - change ifalias of a device
1053  *	@dev: device
1054  *	@alias: name up to IFALIASZ
1055  *	@len: limit of bytes to copy from info
1056  *
1057  *	Set ifalias for a device,
1058  */
1059 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1060 {
1061 	ASSERT_RTNL();
1062 
1063 	if (len >= IFALIASZ)
1064 		return -EINVAL;
1065 
1066 	if (!len) {
1067 		if (dev->ifalias) {
1068 			kfree(dev->ifalias);
1069 			dev->ifalias = NULL;
1070 		}
1071 		return 0;
1072 	}
1073 
1074 	dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1075 	if (!dev->ifalias)
1076 		return -ENOMEM;
1077 
1078 	strlcpy(dev->ifalias, alias, len+1);
1079 	return len;
1080 }
1081 
1082 
1083 /**
1084  *	netdev_features_change - device changes features
1085  *	@dev: device to cause notification
1086  *
1087  *	Called to indicate a device has changed features.
1088  */
1089 void netdev_features_change(struct net_device *dev)
1090 {
1091 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1092 }
1093 EXPORT_SYMBOL(netdev_features_change);
1094 
1095 /**
1096  *	netdev_state_change - device changes state
1097  *	@dev: device to cause notification
1098  *
1099  *	Called to indicate a device has changed state. This function calls
1100  *	the notifier chains for netdev_chain and sends a NEWLINK message
1101  *	to the routing socket.
1102  */
1103 void netdev_state_change(struct net_device *dev)
1104 {
1105 	if (dev->flags & IFF_UP) {
1106 		call_netdevice_notifiers(NETDEV_CHANGE, dev);
1107 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1108 	}
1109 }
1110 EXPORT_SYMBOL(netdev_state_change);
1111 
1112 int netdev_bonding_change(struct net_device *dev, unsigned long event)
1113 {
1114 	return call_netdevice_notifiers(event, dev);
1115 }
1116 EXPORT_SYMBOL(netdev_bonding_change);
1117 
1118 /**
1119  *	dev_load 	- load a network module
1120  *	@net: the applicable net namespace
1121  *	@name: name of interface
1122  *
1123  *	If a network interface is not present and the process has suitable
1124  *	privileges this function loads the module. If module loading is not
1125  *	available in this kernel then it becomes a nop.
1126  */
1127 
1128 void dev_load(struct net *net, const char *name)
1129 {
1130 	struct net_device *dev;
1131 	int no_module;
1132 
1133 	rcu_read_lock();
1134 	dev = dev_get_by_name_rcu(net, name);
1135 	rcu_read_unlock();
1136 
1137 	no_module = !dev;
1138 	if (no_module && capable(CAP_NET_ADMIN))
1139 		no_module = request_module("netdev-%s", name);
1140 	if (no_module && capable(CAP_SYS_MODULE)) {
1141 		if (!request_module("%s", name))
1142 			pr_err("Loading kernel module for a network device "
1143 "with CAP_SYS_MODULE (deprecated).  Use CAP_NET_ADMIN and alias netdev-%s "
1144 "instead\n", name);
1145 	}
1146 }
1147 EXPORT_SYMBOL(dev_load);
1148 
1149 static int __dev_open(struct net_device *dev)
1150 {
1151 	const struct net_device_ops *ops = dev->netdev_ops;
1152 	int ret;
1153 
1154 	ASSERT_RTNL();
1155 
1156 	if (!netif_device_present(dev))
1157 		return -ENODEV;
1158 
1159 	ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1160 	ret = notifier_to_errno(ret);
1161 	if (ret)
1162 		return ret;
1163 
1164 	set_bit(__LINK_STATE_START, &dev->state);
1165 
1166 	if (ops->ndo_validate_addr)
1167 		ret = ops->ndo_validate_addr(dev);
1168 
1169 	if (!ret && ops->ndo_open)
1170 		ret = ops->ndo_open(dev);
1171 
1172 	if (ret)
1173 		clear_bit(__LINK_STATE_START, &dev->state);
1174 	else {
1175 		dev->flags |= IFF_UP;
1176 		net_dmaengine_get();
1177 		dev_set_rx_mode(dev);
1178 		dev_activate(dev);
1179 	}
1180 
1181 	return ret;
1182 }
1183 
1184 /**
1185  *	dev_open	- prepare an interface for use.
1186  *	@dev:	device to open
1187  *
1188  *	Takes a device from down to up state. The device's private open
1189  *	function is invoked and then the multicast lists are loaded. Finally
1190  *	the device is moved into the up state and a %NETDEV_UP message is
1191  *	sent to the netdev notifier chain.
1192  *
1193  *	Calling this function on an active interface is a nop. On a failure
1194  *	a negative errno code is returned.
1195  */
1196 int dev_open(struct net_device *dev)
1197 {
1198 	int ret;
1199 
1200 	if (dev->flags & IFF_UP)
1201 		return 0;
1202 
1203 	ret = __dev_open(dev);
1204 	if (ret < 0)
1205 		return ret;
1206 
1207 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1208 	call_netdevice_notifiers(NETDEV_UP, dev);
1209 
1210 	return ret;
1211 }
1212 EXPORT_SYMBOL(dev_open);
1213 
1214 static int __dev_close_many(struct list_head *head)
1215 {
1216 	struct net_device *dev;
1217 
1218 	ASSERT_RTNL();
1219 	might_sleep();
1220 
1221 	list_for_each_entry(dev, head, unreg_list) {
1222 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1223 
1224 		clear_bit(__LINK_STATE_START, &dev->state);
1225 
1226 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1227 		 * can be even on different cpu. So just clear netif_running().
1228 		 *
1229 		 * dev->stop() will invoke napi_disable() on all of it's
1230 		 * napi_struct instances on this device.
1231 		 */
1232 		smp_mb__after_clear_bit(); /* Commit netif_running(). */
1233 	}
1234 
1235 	dev_deactivate_many(head);
1236 
1237 	list_for_each_entry(dev, head, unreg_list) {
1238 		const struct net_device_ops *ops = dev->netdev_ops;
1239 
1240 		/*
1241 		 *	Call the device specific close. This cannot fail.
1242 		 *	Only if device is UP
1243 		 *
1244 		 *	We allow it to be called even after a DETACH hot-plug
1245 		 *	event.
1246 		 */
1247 		if (ops->ndo_stop)
1248 			ops->ndo_stop(dev);
1249 
1250 		dev->flags &= ~IFF_UP;
1251 		net_dmaengine_put();
1252 	}
1253 
1254 	return 0;
1255 }
1256 
1257 static int __dev_close(struct net_device *dev)
1258 {
1259 	int retval;
1260 	LIST_HEAD(single);
1261 
1262 	list_add(&dev->unreg_list, &single);
1263 	retval = __dev_close_many(&single);
1264 	list_del(&single);
1265 	return retval;
1266 }
1267 
1268 static int dev_close_many(struct list_head *head)
1269 {
1270 	struct net_device *dev, *tmp;
1271 	LIST_HEAD(tmp_list);
1272 
1273 	list_for_each_entry_safe(dev, tmp, head, unreg_list)
1274 		if (!(dev->flags & IFF_UP))
1275 			list_move(&dev->unreg_list, &tmp_list);
1276 
1277 	__dev_close_many(head);
1278 
1279 	list_for_each_entry(dev, head, unreg_list) {
1280 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1281 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1282 	}
1283 
1284 	/* rollback_registered_many needs the complete original list */
1285 	list_splice(&tmp_list, head);
1286 	return 0;
1287 }
1288 
1289 /**
1290  *	dev_close - shutdown an interface.
1291  *	@dev: device to shutdown
1292  *
1293  *	This function moves an active device into down state. A
1294  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1295  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1296  *	chain.
1297  */
1298 int dev_close(struct net_device *dev)
1299 {
1300 	if (dev->flags & IFF_UP) {
1301 		LIST_HEAD(single);
1302 
1303 		list_add(&dev->unreg_list, &single);
1304 		dev_close_many(&single);
1305 		list_del(&single);
1306 	}
1307 	return 0;
1308 }
1309 EXPORT_SYMBOL(dev_close);
1310 
1311 
1312 /**
1313  *	dev_disable_lro - disable Large Receive Offload on a device
1314  *	@dev: device
1315  *
1316  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1317  *	called under RTNL.  This is needed if received packets may be
1318  *	forwarded to another interface.
1319  */
1320 void dev_disable_lro(struct net_device *dev)
1321 {
1322 	/*
1323 	 * If we're trying to disable lro on a vlan device
1324 	 * use the underlying physical device instead
1325 	 */
1326 	if (is_vlan_dev(dev))
1327 		dev = vlan_dev_real_dev(dev);
1328 
1329 	dev->wanted_features &= ~NETIF_F_LRO;
1330 	netdev_update_features(dev);
1331 
1332 	if (unlikely(dev->features & NETIF_F_LRO))
1333 		netdev_WARN(dev, "failed to disable LRO!\n");
1334 }
1335 EXPORT_SYMBOL(dev_disable_lro);
1336 
1337 
1338 static int dev_boot_phase = 1;
1339 
1340 /**
1341  *	register_netdevice_notifier - register a network notifier block
1342  *	@nb: notifier
1343  *
1344  *	Register a notifier to be called when network device events occur.
1345  *	The notifier passed is linked into the kernel structures and must
1346  *	not be reused until it has been unregistered. A negative errno code
1347  *	is returned on a failure.
1348  *
1349  * 	When registered all registration and up events are replayed
1350  *	to the new notifier to allow device to have a race free
1351  *	view of the network device list.
1352  */
1353 
1354 int register_netdevice_notifier(struct notifier_block *nb)
1355 {
1356 	struct net_device *dev;
1357 	struct net_device *last;
1358 	struct net *net;
1359 	int err;
1360 
1361 	rtnl_lock();
1362 	err = raw_notifier_chain_register(&netdev_chain, nb);
1363 	if (err)
1364 		goto unlock;
1365 	if (dev_boot_phase)
1366 		goto unlock;
1367 	for_each_net(net) {
1368 		for_each_netdev(net, dev) {
1369 			err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1370 			err = notifier_to_errno(err);
1371 			if (err)
1372 				goto rollback;
1373 
1374 			if (!(dev->flags & IFF_UP))
1375 				continue;
1376 
1377 			nb->notifier_call(nb, NETDEV_UP, dev);
1378 		}
1379 	}
1380 
1381 unlock:
1382 	rtnl_unlock();
1383 	return err;
1384 
1385 rollback:
1386 	last = dev;
1387 	for_each_net(net) {
1388 		for_each_netdev(net, dev) {
1389 			if (dev == last)
1390 				goto outroll;
1391 
1392 			if (dev->flags & IFF_UP) {
1393 				nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1394 				nb->notifier_call(nb, NETDEV_DOWN, dev);
1395 			}
1396 			nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1397 			nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev);
1398 		}
1399 	}
1400 
1401 outroll:
1402 	raw_notifier_chain_unregister(&netdev_chain, nb);
1403 	goto unlock;
1404 }
1405 EXPORT_SYMBOL(register_netdevice_notifier);
1406 
1407 /**
1408  *	unregister_netdevice_notifier - unregister a network notifier block
1409  *	@nb: notifier
1410  *
1411  *	Unregister a notifier previously registered by
1412  *	register_netdevice_notifier(). The notifier is unlinked into the
1413  *	kernel structures and may then be reused. A negative errno code
1414  *	is returned on a failure.
1415  */
1416 
1417 int unregister_netdevice_notifier(struct notifier_block *nb)
1418 {
1419 	int err;
1420 
1421 	rtnl_lock();
1422 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1423 	rtnl_unlock();
1424 	return err;
1425 }
1426 EXPORT_SYMBOL(unregister_netdevice_notifier);
1427 
1428 /**
1429  *	call_netdevice_notifiers - call all network notifier blocks
1430  *      @val: value passed unmodified to notifier function
1431  *      @dev: net_device pointer passed unmodified to notifier function
1432  *
1433  *	Call all network notifier blocks.  Parameters and return value
1434  *	are as for raw_notifier_call_chain().
1435  */
1436 
1437 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1438 {
1439 	ASSERT_RTNL();
1440 	return raw_notifier_call_chain(&netdev_chain, val, dev);
1441 }
1442 EXPORT_SYMBOL(call_netdevice_notifiers);
1443 
1444 static struct jump_label_key netstamp_needed __read_mostly;
1445 #ifdef HAVE_JUMP_LABEL
1446 /* We are not allowed to call jump_label_dec() from irq context
1447  * If net_disable_timestamp() is called from irq context, defer the
1448  * jump_label_dec() calls.
1449  */
1450 static atomic_t netstamp_needed_deferred;
1451 #endif
1452 
1453 void net_enable_timestamp(void)
1454 {
1455 #ifdef HAVE_JUMP_LABEL
1456 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1457 
1458 	if (deferred) {
1459 		while (--deferred)
1460 			jump_label_dec(&netstamp_needed);
1461 		return;
1462 	}
1463 #endif
1464 	WARN_ON(in_interrupt());
1465 	jump_label_inc(&netstamp_needed);
1466 }
1467 EXPORT_SYMBOL(net_enable_timestamp);
1468 
1469 void net_disable_timestamp(void)
1470 {
1471 #ifdef HAVE_JUMP_LABEL
1472 	if (in_interrupt()) {
1473 		atomic_inc(&netstamp_needed_deferred);
1474 		return;
1475 	}
1476 #endif
1477 	jump_label_dec(&netstamp_needed);
1478 }
1479 EXPORT_SYMBOL(net_disable_timestamp);
1480 
1481 static inline void net_timestamp_set(struct sk_buff *skb)
1482 {
1483 	skb->tstamp.tv64 = 0;
1484 	if (static_branch(&netstamp_needed))
1485 		__net_timestamp(skb);
1486 }
1487 
1488 #define net_timestamp_check(COND, SKB)			\
1489 	if (static_branch(&netstamp_needed)) {		\
1490 		if ((COND) && !(SKB)->tstamp.tv64)	\
1491 			__net_timestamp(SKB);		\
1492 	}						\
1493 
1494 static int net_hwtstamp_validate(struct ifreq *ifr)
1495 {
1496 	struct hwtstamp_config cfg;
1497 	enum hwtstamp_tx_types tx_type;
1498 	enum hwtstamp_rx_filters rx_filter;
1499 	int tx_type_valid = 0;
1500 	int rx_filter_valid = 0;
1501 
1502 	if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg)))
1503 		return -EFAULT;
1504 
1505 	if (cfg.flags) /* reserved for future extensions */
1506 		return -EINVAL;
1507 
1508 	tx_type = cfg.tx_type;
1509 	rx_filter = cfg.rx_filter;
1510 
1511 	switch (tx_type) {
1512 	case HWTSTAMP_TX_OFF:
1513 	case HWTSTAMP_TX_ON:
1514 	case HWTSTAMP_TX_ONESTEP_SYNC:
1515 		tx_type_valid = 1;
1516 		break;
1517 	}
1518 
1519 	switch (rx_filter) {
1520 	case HWTSTAMP_FILTER_NONE:
1521 	case HWTSTAMP_FILTER_ALL:
1522 	case HWTSTAMP_FILTER_SOME:
1523 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1524 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1525 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1526 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1527 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1528 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1529 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1530 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1531 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1532 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
1533 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
1534 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1535 		rx_filter_valid = 1;
1536 		break;
1537 	}
1538 
1539 	if (!tx_type_valid || !rx_filter_valid)
1540 		return -ERANGE;
1541 
1542 	return 0;
1543 }
1544 
1545 static inline bool is_skb_forwardable(struct net_device *dev,
1546 				      struct sk_buff *skb)
1547 {
1548 	unsigned int len;
1549 
1550 	if (!(dev->flags & IFF_UP))
1551 		return false;
1552 
1553 	len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1554 	if (skb->len <= len)
1555 		return true;
1556 
1557 	/* if TSO is enabled, we don't care about the length as the packet
1558 	 * could be forwarded without being segmented before
1559 	 */
1560 	if (skb_is_gso(skb))
1561 		return true;
1562 
1563 	return false;
1564 }
1565 
1566 /**
1567  * dev_forward_skb - loopback an skb to another netif
1568  *
1569  * @dev: destination network device
1570  * @skb: buffer to forward
1571  *
1572  * return values:
1573  *	NET_RX_SUCCESS	(no congestion)
1574  *	NET_RX_DROP     (packet was dropped, but freed)
1575  *
1576  * dev_forward_skb can be used for injecting an skb from the
1577  * start_xmit function of one device into the receive queue
1578  * of another device.
1579  *
1580  * The receiving device may be in another namespace, so
1581  * we have to clear all information in the skb that could
1582  * impact namespace isolation.
1583  */
1584 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1585 {
1586 	if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1587 		if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1588 			atomic_long_inc(&dev->rx_dropped);
1589 			kfree_skb(skb);
1590 			return NET_RX_DROP;
1591 		}
1592 	}
1593 
1594 	skb_orphan(skb);
1595 	nf_reset(skb);
1596 
1597 	if (unlikely(!is_skb_forwardable(dev, skb))) {
1598 		atomic_long_inc(&dev->rx_dropped);
1599 		kfree_skb(skb);
1600 		return NET_RX_DROP;
1601 	}
1602 	skb_set_dev(skb, dev);
1603 	skb->tstamp.tv64 = 0;
1604 	skb->pkt_type = PACKET_HOST;
1605 	skb->protocol = eth_type_trans(skb, dev);
1606 	return netif_rx(skb);
1607 }
1608 EXPORT_SYMBOL_GPL(dev_forward_skb);
1609 
1610 static inline int deliver_skb(struct sk_buff *skb,
1611 			      struct packet_type *pt_prev,
1612 			      struct net_device *orig_dev)
1613 {
1614 	atomic_inc(&skb->users);
1615 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1616 }
1617 
1618 /*
1619  *	Support routine. Sends outgoing frames to any network
1620  *	taps currently in use.
1621  */
1622 
1623 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1624 {
1625 	struct packet_type *ptype;
1626 	struct sk_buff *skb2 = NULL;
1627 	struct packet_type *pt_prev = NULL;
1628 
1629 	rcu_read_lock();
1630 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
1631 		/* Never send packets back to the socket
1632 		 * they originated from - MvS (miquels@drinkel.ow.org)
1633 		 */
1634 		if ((ptype->dev == dev || !ptype->dev) &&
1635 		    (ptype->af_packet_priv == NULL ||
1636 		     (struct sock *)ptype->af_packet_priv != skb->sk)) {
1637 			if (pt_prev) {
1638 				deliver_skb(skb2, pt_prev, skb->dev);
1639 				pt_prev = ptype;
1640 				continue;
1641 			}
1642 
1643 			skb2 = skb_clone(skb, GFP_ATOMIC);
1644 			if (!skb2)
1645 				break;
1646 
1647 			net_timestamp_set(skb2);
1648 
1649 			/* skb->nh should be correctly
1650 			   set by sender, so that the second statement is
1651 			   just protection against buggy protocols.
1652 			 */
1653 			skb_reset_mac_header(skb2);
1654 
1655 			if (skb_network_header(skb2) < skb2->data ||
1656 			    skb2->network_header > skb2->tail) {
1657 				if (net_ratelimit())
1658 					printk(KERN_CRIT "protocol %04x is "
1659 					       "buggy, dev %s\n",
1660 					       ntohs(skb2->protocol),
1661 					       dev->name);
1662 				skb_reset_network_header(skb2);
1663 			}
1664 
1665 			skb2->transport_header = skb2->network_header;
1666 			skb2->pkt_type = PACKET_OUTGOING;
1667 			pt_prev = ptype;
1668 		}
1669 	}
1670 	if (pt_prev)
1671 		pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1672 	rcu_read_unlock();
1673 }
1674 
1675 /* netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1676  * @dev: Network device
1677  * @txq: number of queues available
1678  *
1679  * If real_num_tx_queues is changed the tc mappings may no longer be
1680  * valid. To resolve this verify the tc mapping remains valid and if
1681  * not NULL the mapping. With no priorities mapping to this
1682  * offset/count pair it will no longer be used. In the worst case TC0
1683  * is invalid nothing can be done so disable priority mappings. If is
1684  * expected that drivers will fix this mapping if they can before
1685  * calling netif_set_real_num_tx_queues.
1686  */
1687 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1688 {
1689 	int i;
1690 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1691 
1692 	/* If TC0 is invalidated disable TC mapping */
1693 	if (tc->offset + tc->count > txq) {
1694 		pr_warning("Number of in use tx queues changed "
1695 			   "invalidating tc mappings. Priority "
1696 			   "traffic classification disabled!\n");
1697 		dev->num_tc = 0;
1698 		return;
1699 	}
1700 
1701 	/* Invalidated prio to tc mappings set to TC0 */
1702 	for (i = 1; i < TC_BITMASK + 1; i++) {
1703 		int q = netdev_get_prio_tc_map(dev, i);
1704 
1705 		tc = &dev->tc_to_txq[q];
1706 		if (tc->offset + tc->count > txq) {
1707 			pr_warning("Number of in use tx queues "
1708 				   "changed. Priority %i to tc "
1709 				   "mapping %i is no longer valid "
1710 				   "setting map to 0\n",
1711 				   i, q);
1712 			netdev_set_prio_tc_map(dev, i, 0);
1713 		}
1714 	}
1715 }
1716 
1717 /*
1718  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
1719  * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
1720  */
1721 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
1722 {
1723 	int rc;
1724 
1725 	if (txq < 1 || txq > dev->num_tx_queues)
1726 		return -EINVAL;
1727 
1728 	if (dev->reg_state == NETREG_REGISTERED ||
1729 	    dev->reg_state == NETREG_UNREGISTERING) {
1730 		ASSERT_RTNL();
1731 
1732 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
1733 						  txq);
1734 		if (rc)
1735 			return rc;
1736 
1737 		if (dev->num_tc)
1738 			netif_setup_tc(dev, txq);
1739 
1740 		if (txq < dev->real_num_tx_queues)
1741 			qdisc_reset_all_tx_gt(dev, txq);
1742 	}
1743 
1744 	dev->real_num_tx_queues = txq;
1745 	return 0;
1746 }
1747 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
1748 
1749 #ifdef CONFIG_RPS
1750 /**
1751  *	netif_set_real_num_rx_queues - set actual number of RX queues used
1752  *	@dev: Network device
1753  *	@rxq: Actual number of RX queues
1754  *
1755  *	This must be called either with the rtnl_lock held or before
1756  *	registration of the net device.  Returns 0 on success, or a
1757  *	negative error code.  If called before registration, it always
1758  *	succeeds.
1759  */
1760 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
1761 {
1762 	int rc;
1763 
1764 	if (rxq < 1 || rxq > dev->num_rx_queues)
1765 		return -EINVAL;
1766 
1767 	if (dev->reg_state == NETREG_REGISTERED) {
1768 		ASSERT_RTNL();
1769 
1770 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
1771 						  rxq);
1772 		if (rc)
1773 			return rc;
1774 	}
1775 
1776 	dev->real_num_rx_queues = rxq;
1777 	return 0;
1778 }
1779 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
1780 #endif
1781 
1782 static inline void __netif_reschedule(struct Qdisc *q)
1783 {
1784 	struct softnet_data *sd;
1785 	unsigned long flags;
1786 
1787 	local_irq_save(flags);
1788 	sd = &__get_cpu_var(softnet_data);
1789 	q->next_sched = NULL;
1790 	*sd->output_queue_tailp = q;
1791 	sd->output_queue_tailp = &q->next_sched;
1792 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
1793 	local_irq_restore(flags);
1794 }
1795 
1796 void __netif_schedule(struct Qdisc *q)
1797 {
1798 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1799 		__netif_reschedule(q);
1800 }
1801 EXPORT_SYMBOL(__netif_schedule);
1802 
1803 void dev_kfree_skb_irq(struct sk_buff *skb)
1804 {
1805 	if (atomic_dec_and_test(&skb->users)) {
1806 		struct softnet_data *sd;
1807 		unsigned long flags;
1808 
1809 		local_irq_save(flags);
1810 		sd = &__get_cpu_var(softnet_data);
1811 		skb->next = sd->completion_queue;
1812 		sd->completion_queue = skb;
1813 		raise_softirq_irqoff(NET_TX_SOFTIRQ);
1814 		local_irq_restore(flags);
1815 	}
1816 }
1817 EXPORT_SYMBOL(dev_kfree_skb_irq);
1818 
1819 void dev_kfree_skb_any(struct sk_buff *skb)
1820 {
1821 	if (in_irq() || irqs_disabled())
1822 		dev_kfree_skb_irq(skb);
1823 	else
1824 		dev_kfree_skb(skb);
1825 }
1826 EXPORT_SYMBOL(dev_kfree_skb_any);
1827 
1828 
1829 /**
1830  * netif_device_detach - mark device as removed
1831  * @dev: network device
1832  *
1833  * Mark device as removed from system and therefore no longer available.
1834  */
1835 void netif_device_detach(struct net_device *dev)
1836 {
1837 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1838 	    netif_running(dev)) {
1839 		netif_tx_stop_all_queues(dev);
1840 	}
1841 }
1842 EXPORT_SYMBOL(netif_device_detach);
1843 
1844 /**
1845  * netif_device_attach - mark device as attached
1846  * @dev: network device
1847  *
1848  * Mark device as attached from system and restart if needed.
1849  */
1850 void netif_device_attach(struct net_device *dev)
1851 {
1852 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1853 	    netif_running(dev)) {
1854 		netif_tx_wake_all_queues(dev);
1855 		__netdev_watchdog_up(dev);
1856 	}
1857 }
1858 EXPORT_SYMBOL(netif_device_attach);
1859 
1860 /**
1861  * skb_dev_set -- assign a new device to a buffer
1862  * @skb: buffer for the new device
1863  * @dev: network device
1864  *
1865  * If an skb is owned by a device already, we have to reset
1866  * all data private to the namespace a device belongs to
1867  * before assigning it a new device.
1868  */
1869 #ifdef CONFIG_NET_NS
1870 void skb_set_dev(struct sk_buff *skb, struct net_device *dev)
1871 {
1872 	skb_dst_drop(skb);
1873 	if (skb->dev && !net_eq(dev_net(skb->dev), dev_net(dev))) {
1874 		secpath_reset(skb);
1875 		nf_reset(skb);
1876 		skb_init_secmark(skb);
1877 		skb->mark = 0;
1878 		skb->priority = 0;
1879 		skb->nf_trace = 0;
1880 		skb->ipvs_property = 0;
1881 #ifdef CONFIG_NET_SCHED
1882 		skb->tc_index = 0;
1883 #endif
1884 	}
1885 	skb->dev = dev;
1886 }
1887 EXPORT_SYMBOL(skb_set_dev);
1888 #endif /* CONFIG_NET_NS */
1889 
1890 static void skb_warn_bad_offload(const struct sk_buff *skb)
1891 {
1892 	static const netdev_features_t null_features = 0;
1893 	struct net_device *dev = skb->dev;
1894 	const char *driver = "";
1895 
1896 	if (dev && dev->dev.parent)
1897 		driver = dev_driver_string(dev->dev.parent);
1898 
1899 	WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
1900 	     "gso_type=%d ip_summed=%d\n",
1901 	     driver, dev ? &dev->features : &null_features,
1902 	     skb->sk ? &skb->sk->sk_route_caps : &null_features,
1903 	     skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
1904 	     skb_shinfo(skb)->gso_type, skb->ip_summed);
1905 }
1906 
1907 /*
1908  * Invalidate hardware checksum when packet is to be mangled, and
1909  * complete checksum manually on outgoing path.
1910  */
1911 int skb_checksum_help(struct sk_buff *skb)
1912 {
1913 	__wsum csum;
1914 	int ret = 0, offset;
1915 
1916 	if (skb->ip_summed == CHECKSUM_COMPLETE)
1917 		goto out_set_summed;
1918 
1919 	if (unlikely(skb_shinfo(skb)->gso_size)) {
1920 		skb_warn_bad_offload(skb);
1921 		return -EINVAL;
1922 	}
1923 
1924 	offset = skb_checksum_start_offset(skb);
1925 	BUG_ON(offset >= skb_headlen(skb));
1926 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
1927 
1928 	offset += skb->csum_offset;
1929 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1930 
1931 	if (skb_cloned(skb) &&
1932 	    !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1933 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1934 		if (ret)
1935 			goto out;
1936 	}
1937 
1938 	*(__sum16 *)(skb->data + offset) = csum_fold(csum);
1939 out_set_summed:
1940 	skb->ip_summed = CHECKSUM_NONE;
1941 out:
1942 	return ret;
1943 }
1944 EXPORT_SYMBOL(skb_checksum_help);
1945 
1946 /**
1947  *	skb_gso_segment - Perform segmentation on skb.
1948  *	@skb: buffer to segment
1949  *	@features: features for the output path (see dev->features)
1950  *
1951  *	This function segments the given skb and returns a list of segments.
1952  *
1953  *	It may return NULL if the skb requires no segmentation.  This is
1954  *	only possible when GSO is used for verifying header integrity.
1955  */
1956 struct sk_buff *skb_gso_segment(struct sk_buff *skb,
1957 	netdev_features_t features)
1958 {
1959 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1960 	struct packet_type *ptype;
1961 	__be16 type = skb->protocol;
1962 	int vlan_depth = ETH_HLEN;
1963 	int err;
1964 
1965 	while (type == htons(ETH_P_8021Q)) {
1966 		struct vlan_hdr *vh;
1967 
1968 		if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN)))
1969 			return ERR_PTR(-EINVAL);
1970 
1971 		vh = (struct vlan_hdr *)(skb->data + vlan_depth);
1972 		type = vh->h_vlan_encapsulated_proto;
1973 		vlan_depth += VLAN_HLEN;
1974 	}
1975 
1976 	skb_reset_mac_header(skb);
1977 	skb->mac_len = skb->network_header - skb->mac_header;
1978 	__skb_pull(skb, skb->mac_len);
1979 
1980 	if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1981 		skb_warn_bad_offload(skb);
1982 
1983 		if (skb_header_cloned(skb) &&
1984 		    (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1985 			return ERR_PTR(err);
1986 	}
1987 
1988 	rcu_read_lock();
1989 	list_for_each_entry_rcu(ptype,
1990 			&ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1991 		if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1992 			if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1993 				err = ptype->gso_send_check(skb);
1994 				segs = ERR_PTR(err);
1995 				if (err || skb_gso_ok(skb, features))
1996 					break;
1997 				__skb_push(skb, (skb->data -
1998 						 skb_network_header(skb)));
1999 			}
2000 			segs = ptype->gso_segment(skb, features);
2001 			break;
2002 		}
2003 	}
2004 	rcu_read_unlock();
2005 
2006 	__skb_push(skb, skb->data - skb_mac_header(skb));
2007 
2008 	return segs;
2009 }
2010 EXPORT_SYMBOL(skb_gso_segment);
2011 
2012 /* Take action when hardware reception checksum errors are detected. */
2013 #ifdef CONFIG_BUG
2014 void netdev_rx_csum_fault(struct net_device *dev)
2015 {
2016 	if (net_ratelimit()) {
2017 		printk(KERN_ERR "%s: hw csum failure.\n",
2018 			dev ? dev->name : "<unknown>");
2019 		dump_stack();
2020 	}
2021 }
2022 EXPORT_SYMBOL(netdev_rx_csum_fault);
2023 #endif
2024 
2025 /* Actually, we should eliminate this check as soon as we know, that:
2026  * 1. IOMMU is present and allows to map all the memory.
2027  * 2. No high memory really exists on this machine.
2028  */
2029 
2030 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2031 {
2032 #ifdef CONFIG_HIGHMEM
2033 	int i;
2034 	if (!(dev->features & NETIF_F_HIGHDMA)) {
2035 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2036 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2037 			if (PageHighMem(skb_frag_page(frag)))
2038 				return 1;
2039 		}
2040 	}
2041 
2042 	if (PCI_DMA_BUS_IS_PHYS) {
2043 		struct device *pdev = dev->dev.parent;
2044 
2045 		if (!pdev)
2046 			return 0;
2047 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2048 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2049 			dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2050 			if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2051 				return 1;
2052 		}
2053 	}
2054 #endif
2055 	return 0;
2056 }
2057 
2058 struct dev_gso_cb {
2059 	void (*destructor)(struct sk_buff *skb);
2060 };
2061 
2062 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
2063 
2064 static void dev_gso_skb_destructor(struct sk_buff *skb)
2065 {
2066 	struct dev_gso_cb *cb;
2067 
2068 	do {
2069 		struct sk_buff *nskb = skb->next;
2070 
2071 		skb->next = nskb->next;
2072 		nskb->next = NULL;
2073 		kfree_skb(nskb);
2074 	} while (skb->next);
2075 
2076 	cb = DEV_GSO_CB(skb);
2077 	if (cb->destructor)
2078 		cb->destructor(skb);
2079 }
2080 
2081 /**
2082  *	dev_gso_segment - Perform emulated hardware segmentation on skb.
2083  *	@skb: buffer to segment
2084  *	@features: device features as applicable to this skb
2085  *
2086  *	This function segments the given skb and stores the list of segments
2087  *	in skb->next.
2088  */
2089 static int dev_gso_segment(struct sk_buff *skb, netdev_features_t features)
2090 {
2091 	struct sk_buff *segs;
2092 
2093 	segs = skb_gso_segment(skb, features);
2094 
2095 	/* Verifying header integrity only. */
2096 	if (!segs)
2097 		return 0;
2098 
2099 	if (IS_ERR(segs))
2100 		return PTR_ERR(segs);
2101 
2102 	skb->next = segs;
2103 	DEV_GSO_CB(skb)->destructor = skb->destructor;
2104 	skb->destructor = dev_gso_skb_destructor;
2105 
2106 	return 0;
2107 }
2108 
2109 /*
2110  * Try to orphan skb early, right before transmission by the device.
2111  * We cannot orphan skb if tx timestamp is requested or the sk-reference
2112  * is needed on driver level for other reasons, e.g. see net/can/raw.c
2113  */
2114 static inline void skb_orphan_try(struct sk_buff *skb)
2115 {
2116 	struct sock *sk = skb->sk;
2117 
2118 	if (sk && !skb_shinfo(skb)->tx_flags) {
2119 		/* skb_tx_hash() wont be able to get sk.
2120 		 * We copy sk_hash into skb->rxhash
2121 		 */
2122 		if (!skb->rxhash)
2123 			skb->rxhash = sk->sk_hash;
2124 		skb_orphan(skb);
2125 	}
2126 }
2127 
2128 static bool can_checksum_protocol(netdev_features_t features, __be16 protocol)
2129 {
2130 	return ((features & NETIF_F_GEN_CSUM) ||
2131 		((features & NETIF_F_V4_CSUM) &&
2132 		 protocol == htons(ETH_P_IP)) ||
2133 		((features & NETIF_F_V6_CSUM) &&
2134 		 protocol == htons(ETH_P_IPV6)) ||
2135 		((features & NETIF_F_FCOE_CRC) &&
2136 		 protocol == htons(ETH_P_FCOE)));
2137 }
2138 
2139 static netdev_features_t harmonize_features(struct sk_buff *skb,
2140 	__be16 protocol, netdev_features_t features)
2141 {
2142 	if (!can_checksum_protocol(features, protocol)) {
2143 		features &= ~NETIF_F_ALL_CSUM;
2144 		features &= ~NETIF_F_SG;
2145 	} else if (illegal_highdma(skb->dev, skb)) {
2146 		features &= ~NETIF_F_SG;
2147 	}
2148 
2149 	return features;
2150 }
2151 
2152 netdev_features_t netif_skb_features(struct sk_buff *skb)
2153 {
2154 	__be16 protocol = skb->protocol;
2155 	netdev_features_t features = skb->dev->features;
2156 
2157 	if (protocol == htons(ETH_P_8021Q)) {
2158 		struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2159 		protocol = veh->h_vlan_encapsulated_proto;
2160 	} else if (!vlan_tx_tag_present(skb)) {
2161 		return harmonize_features(skb, protocol, features);
2162 	}
2163 
2164 	features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_TX);
2165 
2166 	if (protocol != htons(ETH_P_8021Q)) {
2167 		return harmonize_features(skb, protocol, features);
2168 	} else {
2169 		features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST |
2170 				NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_TX;
2171 		return harmonize_features(skb, protocol, features);
2172 	}
2173 }
2174 EXPORT_SYMBOL(netif_skb_features);
2175 
2176 /*
2177  * Returns true if either:
2178  *	1. skb has frag_list and the device doesn't support FRAGLIST, or
2179  *	2. skb is fragmented and the device does not support SG, or if
2180  *	   at least one of fragments is in highmem and device does not
2181  *	   support DMA from it.
2182  */
2183 static inline int skb_needs_linearize(struct sk_buff *skb,
2184 				      int features)
2185 {
2186 	return skb_is_nonlinear(skb) &&
2187 			((skb_has_frag_list(skb) &&
2188 				!(features & NETIF_F_FRAGLIST)) ||
2189 			(skb_shinfo(skb)->nr_frags &&
2190 				!(features & NETIF_F_SG)));
2191 }
2192 
2193 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2194 			struct netdev_queue *txq)
2195 {
2196 	const struct net_device_ops *ops = dev->netdev_ops;
2197 	int rc = NETDEV_TX_OK;
2198 	unsigned int skb_len;
2199 
2200 	if (likely(!skb->next)) {
2201 		netdev_features_t features;
2202 
2203 		/*
2204 		 * If device doesn't need skb->dst, release it right now while
2205 		 * its hot in this cpu cache
2206 		 */
2207 		if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2208 			skb_dst_drop(skb);
2209 
2210 		if (!list_empty(&ptype_all))
2211 			dev_queue_xmit_nit(skb, dev);
2212 
2213 		skb_orphan_try(skb);
2214 
2215 		features = netif_skb_features(skb);
2216 
2217 		if (vlan_tx_tag_present(skb) &&
2218 		    !(features & NETIF_F_HW_VLAN_TX)) {
2219 			skb = __vlan_put_tag(skb, vlan_tx_tag_get(skb));
2220 			if (unlikely(!skb))
2221 				goto out;
2222 
2223 			skb->vlan_tci = 0;
2224 		}
2225 
2226 		if (netif_needs_gso(skb, features)) {
2227 			if (unlikely(dev_gso_segment(skb, features)))
2228 				goto out_kfree_skb;
2229 			if (skb->next)
2230 				goto gso;
2231 		} else {
2232 			if (skb_needs_linearize(skb, features) &&
2233 			    __skb_linearize(skb))
2234 				goto out_kfree_skb;
2235 
2236 			/* If packet is not checksummed and device does not
2237 			 * support checksumming for this protocol, complete
2238 			 * checksumming here.
2239 			 */
2240 			if (skb->ip_summed == CHECKSUM_PARTIAL) {
2241 				skb_set_transport_header(skb,
2242 					skb_checksum_start_offset(skb));
2243 				if (!(features & NETIF_F_ALL_CSUM) &&
2244 				     skb_checksum_help(skb))
2245 					goto out_kfree_skb;
2246 			}
2247 		}
2248 
2249 		skb_len = skb->len;
2250 		rc = ops->ndo_start_xmit(skb, dev);
2251 		trace_net_dev_xmit(skb, rc, dev, skb_len);
2252 		if (rc == NETDEV_TX_OK)
2253 			txq_trans_update(txq);
2254 		return rc;
2255 	}
2256 
2257 gso:
2258 	do {
2259 		struct sk_buff *nskb = skb->next;
2260 
2261 		skb->next = nskb->next;
2262 		nskb->next = NULL;
2263 
2264 		/*
2265 		 * If device doesn't need nskb->dst, release it right now while
2266 		 * its hot in this cpu cache
2267 		 */
2268 		if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2269 			skb_dst_drop(nskb);
2270 
2271 		skb_len = nskb->len;
2272 		rc = ops->ndo_start_xmit(nskb, dev);
2273 		trace_net_dev_xmit(nskb, rc, dev, skb_len);
2274 		if (unlikely(rc != NETDEV_TX_OK)) {
2275 			if (rc & ~NETDEV_TX_MASK)
2276 				goto out_kfree_gso_skb;
2277 			nskb->next = skb->next;
2278 			skb->next = nskb;
2279 			return rc;
2280 		}
2281 		txq_trans_update(txq);
2282 		if (unlikely(netif_xmit_stopped(txq) && skb->next))
2283 			return NETDEV_TX_BUSY;
2284 	} while (skb->next);
2285 
2286 out_kfree_gso_skb:
2287 	if (likely(skb->next == NULL))
2288 		skb->destructor = DEV_GSO_CB(skb)->destructor;
2289 out_kfree_skb:
2290 	kfree_skb(skb);
2291 out:
2292 	return rc;
2293 }
2294 
2295 static u32 hashrnd __read_mostly;
2296 
2297 /*
2298  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2299  * to be used as a distribution range.
2300  */
2301 u16 __skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb,
2302 		  unsigned int num_tx_queues)
2303 {
2304 	u32 hash;
2305 	u16 qoffset = 0;
2306 	u16 qcount = num_tx_queues;
2307 
2308 	if (skb_rx_queue_recorded(skb)) {
2309 		hash = skb_get_rx_queue(skb);
2310 		while (unlikely(hash >= num_tx_queues))
2311 			hash -= num_tx_queues;
2312 		return hash;
2313 	}
2314 
2315 	if (dev->num_tc) {
2316 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2317 		qoffset = dev->tc_to_txq[tc].offset;
2318 		qcount = dev->tc_to_txq[tc].count;
2319 	}
2320 
2321 	if (skb->sk && skb->sk->sk_hash)
2322 		hash = skb->sk->sk_hash;
2323 	else
2324 		hash = (__force u16) skb->protocol ^ skb->rxhash;
2325 	hash = jhash_1word(hash, hashrnd);
2326 
2327 	return (u16) (((u64) hash * qcount) >> 32) + qoffset;
2328 }
2329 EXPORT_SYMBOL(__skb_tx_hash);
2330 
2331 static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index)
2332 {
2333 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2334 		if (net_ratelimit()) {
2335 			pr_warning("%s selects TX queue %d, but "
2336 				"real number of TX queues is %d\n",
2337 				dev->name, queue_index, dev->real_num_tx_queues);
2338 		}
2339 		return 0;
2340 	}
2341 	return queue_index;
2342 }
2343 
2344 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
2345 {
2346 #ifdef CONFIG_XPS
2347 	struct xps_dev_maps *dev_maps;
2348 	struct xps_map *map;
2349 	int queue_index = -1;
2350 
2351 	rcu_read_lock();
2352 	dev_maps = rcu_dereference(dev->xps_maps);
2353 	if (dev_maps) {
2354 		map = rcu_dereference(
2355 		    dev_maps->cpu_map[raw_smp_processor_id()]);
2356 		if (map) {
2357 			if (map->len == 1)
2358 				queue_index = map->queues[0];
2359 			else {
2360 				u32 hash;
2361 				if (skb->sk && skb->sk->sk_hash)
2362 					hash = skb->sk->sk_hash;
2363 				else
2364 					hash = (__force u16) skb->protocol ^
2365 					    skb->rxhash;
2366 				hash = jhash_1word(hash, hashrnd);
2367 				queue_index = map->queues[
2368 				    ((u64)hash * map->len) >> 32];
2369 			}
2370 			if (unlikely(queue_index >= dev->real_num_tx_queues))
2371 				queue_index = -1;
2372 		}
2373 	}
2374 	rcu_read_unlock();
2375 
2376 	return queue_index;
2377 #else
2378 	return -1;
2379 #endif
2380 }
2381 
2382 static struct netdev_queue *dev_pick_tx(struct net_device *dev,
2383 					struct sk_buff *skb)
2384 {
2385 	int queue_index;
2386 	const struct net_device_ops *ops = dev->netdev_ops;
2387 
2388 	if (dev->real_num_tx_queues == 1)
2389 		queue_index = 0;
2390 	else if (ops->ndo_select_queue) {
2391 		queue_index = ops->ndo_select_queue(dev, skb);
2392 		queue_index = dev_cap_txqueue(dev, queue_index);
2393 	} else {
2394 		struct sock *sk = skb->sk;
2395 		queue_index = sk_tx_queue_get(sk);
2396 
2397 		if (queue_index < 0 || skb->ooo_okay ||
2398 		    queue_index >= dev->real_num_tx_queues) {
2399 			int old_index = queue_index;
2400 
2401 			queue_index = get_xps_queue(dev, skb);
2402 			if (queue_index < 0)
2403 				queue_index = skb_tx_hash(dev, skb);
2404 
2405 			if (queue_index != old_index && sk) {
2406 				struct dst_entry *dst =
2407 				    rcu_dereference_check(sk->sk_dst_cache, 1);
2408 
2409 				if (dst && skb_dst(skb) == dst)
2410 					sk_tx_queue_set(sk, queue_index);
2411 			}
2412 		}
2413 	}
2414 
2415 	skb_set_queue_mapping(skb, queue_index);
2416 	return netdev_get_tx_queue(dev, queue_index);
2417 }
2418 
2419 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2420 				 struct net_device *dev,
2421 				 struct netdev_queue *txq)
2422 {
2423 	spinlock_t *root_lock = qdisc_lock(q);
2424 	bool contended;
2425 	int rc;
2426 
2427 	qdisc_skb_cb(skb)->pkt_len = skb->len;
2428 	qdisc_calculate_pkt_len(skb, q);
2429 	/*
2430 	 * Heuristic to force contended enqueues to serialize on a
2431 	 * separate lock before trying to get qdisc main lock.
2432 	 * This permits __QDISC_STATE_RUNNING owner to get the lock more often
2433 	 * and dequeue packets faster.
2434 	 */
2435 	contended = qdisc_is_running(q);
2436 	if (unlikely(contended))
2437 		spin_lock(&q->busylock);
2438 
2439 	spin_lock(root_lock);
2440 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2441 		kfree_skb(skb);
2442 		rc = NET_XMIT_DROP;
2443 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2444 		   qdisc_run_begin(q)) {
2445 		/*
2446 		 * This is a work-conserving queue; there are no old skbs
2447 		 * waiting to be sent out; and the qdisc is not running -
2448 		 * xmit the skb directly.
2449 		 */
2450 		if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2451 			skb_dst_force(skb);
2452 
2453 		qdisc_bstats_update(q, skb);
2454 
2455 		if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2456 			if (unlikely(contended)) {
2457 				spin_unlock(&q->busylock);
2458 				contended = false;
2459 			}
2460 			__qdisc_run(q);
2461 		} else
2462 			qdisc_run_end(q);
2463 
2464 		rc = NET_XMIT_SUCCESS;
2465 	} else {
2466 		skb_dst_force(skb);
2467 		rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2468 		if (qdisc_run_begin(q)) {
2469 			if (unlikely(contended)) {
2470 				spin_unlock(&q->busylock);
2471 				contended = false;
2472 			}
2473 			__qdisc_run(q);
2474 		}
2475 	}
2476 	spin_unlock(root_lock);
2477 	if (unlikely(contended))
2478 		spin_unlock(&q->busylock);
2479 	return rc;
2480 }
2481 
2482 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP)
2483 static void skb_update_prio(struct sk_buff *skb)
2484 {
2485 	struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2486 
2487 	if ((!skb->priority) && (skb->sk) && map)
2488 		skb->priority = map->priomap[skb->sk->sk_cgrp_prioidx];
2489 }
2490 #else
2491 #define skb_update_prio(skb)
2492 #endif
2493 
2494 static DEFINE_PER_CPU(int, xmit_recursion);
2495 #define RECURSION_LIMIT 10
2496 
2497 /**
2498  *	dev_queue_xmit - transmit a buffer
2499  *	@skb: buffer to transmit
2500  *
2501  *	Queue a buffer for transmission to a network device. The caller must
2502  *	have set the device and priority and built the buffer before calling
2503  *	this function. The function can be called from an interrupt.
2504  *
2505  *	A negative errno code is returned on a failure. A success does not
2506  *	guarantee the frame will be transmitted as it may be dropped due
2507  *	to congestion or traffic shaping.
2508  *
2509  * -----------------------------------------------------------------------------------
2510  *      I notice this method can also return errors from the queue disciplines,
2511  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
2512  *      be positive.
2513  *
2514  *      Regardless of the return value, the skb is consumed, so it is currently
2515  *      difficult to retry a send to this method.  (You can bump the ref count
2516  *      before sending to hold a reference for retry if you are careful.)
2517  *
2518  *      When calling this method, interrupts MUST be enabled.  This is because
2519  *      the BH enable code must have IRQs enabled so that it will not deadlock.
2520  *          --BLG
2521  */
2522 int dev_queue_xmit(struct sk_buff *skb)
2523 {
2524 	struct net_device *dev = skb->dev;
2525 	struct netdev_queue *txq;
2526 	struct Qdisc *q;
2527 	int rc = -ENOMEM;
2528 
2529 	/* Disable soft irqs for various locks below. Also
2530 	 * stops preemption for RCU.
2531 	 */
2532 	rcu_read_lock_bh();
2533 
2534 	skb_update_prio(skb);
2535 
2536 	txq = dev_pick_tx(dev, skb);
2537 	q = rcu_dereference_bh(txq->qdisc);
2538 
2539 #ifdef CONFIG_NET_CLS_ACT
2540 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2541 #endif
2542 	trace_net_dev_queue(skb);
2543 	if (q->enqueue) {
2544 		rc = __dev_xmit_skb(skb, q, dev, txq);
2545 		goto out;
2546 	}
2547 
2548 	/* The device has no queue. Common case for software devices:
2549 	   loopback, all the sorts of tunnels...
2550 
2551 	   Really, it is unlikely that netif_tx_lock protection is necessary
2552 	   here.  (f.e. loopback and IP tunnels are clean ignoring statistics
2553 	   counters.)
2554 	   However, it is possible, that they rely on protection
2555 	   made by us here.
2556 
2557 	   Check this and shot the lock. It is not prone from deadlocks.
2558 	   Either shot noqueue qdisc, it is even simpler 8)
2559 	 */
2560 	if (dev->flags & IFF_UP) {
2561 		int cpu = smp_processor_id(); /* ok because BHs are off */
2562 
2563 		if (txq->xmit_lock_owner != cpu) {
2564 
2565 			if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2566 				goto recursion_alert;
2567 
2568 			HARD_TX_LOCK(dev, txq, cpu);
2569 
2570 			if (!netif_xmit_stopped(txq)) {
2571 				__this_cpu_inc(xmit_recursion);
2572 				rc = dev_hard_start_xmit(skb, dev, txq);
2573 				__this_cpu_dec(xmit_recursion);
2574 				if (dev_xmit_complete(rc)) {
2575 					HARD_TX_UNLOCK(dev, txq);
2576 					goto out;
2577 				}
2578 			}
2579 			HARD_TX_UNLOCK(dev, txq);
2580 			if (net_ratelimit())
2581 				printk(KERN_CRIT "Virtual device %s asks to "
2582 				       "queue packet!\n", dev->name);
2583 		} else {
2584 			/* Recursion is detected! It is possible,
2585 			 * unfortunately
2586 			 */
2587 recursion_alert:
2588 			if (net_ratelimit())
2589 				printk(KERN_CRIT "Dead loop on virtual device "
2590 				       "%s, fix it urgently!\n", dev->name);
2591 		}
2592 	}
2593 
2594 	rc = -ENETDOWN;
2595 	rcu_read_unlock_bh();
2596 
2597 	kfree_skb(skb);
2598 	return rc;
2599 out:
2600 	rcu_read_unlock_bh();
2601 	return rc;
2602 }
2603 EXPORT_SYMBOL(dev_queue_xmit);
2604 
2605 
2606 /*=======================================================================
2607 			Receiver routines
2608   =======================================================================*/
2609 
2610 int netdev_max_backlog __read_mostly = 1000;
2611 int netdev_tstamp_prequeue __read_mostly = 1;
2612 int netdev_budget __read_mostly = 300;
2613 int weight_p __read_mostly = 64;            /* old backlog weight */
2614 
2615 /* Called with irq disabled */
2616 static inline void ____napi_schedule(struct softnet_data *sd,
2617 				     struct napi_struct *napi)
2618 {
2619 	list_add_tail(&napi->poll_list, &sd->poll_list);
2620 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
2621 }
2622 
2623 /*
2624  * __skb_get_rxhash: calculate a flow hash based on src/dst addresses
2625  * and src/dst port numbers.  Sets rxhash in skb to non-zero hash value
2626  * on success, zero indicates no valid hash.  Also, sets l4_rxhash in skb
2627  * if hash is a canonical 4-tuple hash over transport ports.
2628  */
2629 void __skb_get_rxhash(struct sk_buff *skb)
2630 {
2631 	struct flow_keys keys;
2632 	u32 hash;
2633 
2634 	if (!skb_flow_dissect(skb, &keys))
2635 		return;
2636 
2637 	if (keys.ports) {
2638 		if ((__force u16)keys.port16[1] < (__force u16)keys.port16[0])
2639 			swap(keys.port16[0], keys.port16[1]);
2640 		skb->l4_rxhash = 1;
2641 	}
2642 
2643 	/* get a consistent hash (same value on both flow directions) */
2644 	if ((__force u32)keys.dst < (__force u32)keys.src)
2645 		swap(keys.dst, keys.src);
2646 
2647 	hash = jhash_3words((__force u32)keys.dst,
2648 			    (__force u32)keys.src,
2649 			    (__force u32)keys.ports, hashrnd);
2650 	if (!hash)
2651 		hash = 1;
2652 
2653 	skb->rxhash = hash;
2654 }
2655 EXPORT_SYMBOL(__skb_get_rxhash);
2656 
2657 #ifdef CONFIG_RPS
2658 
2659 /* One global table that all flow-based protocols share. */
2660 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
2661 EXPORT_SYMBOL(rps_sock_flow_table);
2662 
2663 struct jump_label_key rps_needed __read_mostly;
2664 
2665 static struct rps_dev_flow *
2666 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2667 	    struct rps_dev_flow *rflow, u16 next_cpu)
2668 {
2669 	if (next_cpu != RPS_NO_CPU) {
2670 #ifdef CONFIG_RFS_ACCEL
2671 		struct netdev_rx_queue *rxqueue;
2672 		struct rps_dev_flow_table *flow_table;
2673 		struct rps_dev_flow *old_rflow;
2674 		u32 flow_id;
2675 		u16 rxq_index;
2676 		int rc;
2677 
2678 		/* Should we steer this flow to a different hardware queue? */
2679 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
2680 		    !(dev->features & NETIF_F_NTUPLE))
2681 			goto out;
2682 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
2683 		if (rxq_index == skb_get_rx_queue(skb))
2684 			goto out;
2685 
2686 		rxqueue = dev->_rx + rxq_index;
2687 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
2688 		if (!flow_table)
2689 			goto out;
2690 		flow_id = skb->rxhash & flow_table->mask;
2691 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
2692 							rxq_index, flow_id);
2693 		if (rc < 0)
2694 			goto out;
2695 		old_rflow = rflow;
2696 		rflow = &flow_table->flows[flow_id];
2697 		rflow->filter = rc;
2698 		if (old_rflow->filter == rflow->filter)
2699 			old_rflow->filter = RPS_NO_FILTER;
2700 	out:
2701 #endif
2702 		rflow->last_qtail =
2703 			per_cpu(softnet_data, next_cpu).input_queue_head;
2704 	}
2705 
2706 	rflow->cpu = next_cpu;
2707 	return rflow;
2708 }
2709 
2710 /*
2711  * get_rps_cpu is called from netif_receive_skb and returns the target
2712  * CPU from the RPS map of the receiving queue for a given skb.
2713  * rcu_read_lock must be held on entry.
2714  */
2715 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2716 		       struct rps_dev_flow **rflowp)
2717 {
2718 	struct netdev_rx_queue *rxqueue;
2719 	struct rps_map *map;
2720 	struct rps_dev_flow_table *flow_table;
2721 	struct rps_sock_flow_table *sock_flow_table;
2722 	int cpu = -1;
2723 	u16 tcpu;
2724 
2725 	if (skb_rx_queue_recorded(skb)) {
2726 		u16 index = skb_get_rx_queue(skb);
2727 		if (unlikely(index >= dev->real_num_rx_queues)) {
2728 			WARN_ONCE(dev->real_num_rx_queues > 1,
2729 				  "%s received packet on queue %u, but number "
2730 				  "of RX queues is %u\n",
2731 				  dev->name, index, dev->real_num_rx_queues);
2732 			goto done;
2733 		}
2734 		rxqueue = dev->_rx + index;
2735 	} else
2736 		rxqueue = dev->_rx;
2737 
2738 	map = rcu_dereference(rxqueue->rps_map);
2739 	if (map) {
2740 		if (map->len == 1 &&
2741 		    !rcu_access_pointer(rxqueue->rps_flow_table)) {
2742 			tcpu = map->cpus[0];
2743 			if (cpu_online(tcpu))
2744 				cpu = tcpu;
2745 			goto done;
2746 		}
2747 	} else if (!rcu_access_pointer(rxqueue->rps_flow_table)) {
2748 		goto done;
2749 	}
2750 
2751 	skb_reset_network_header(skb);
2752 	if (!skb_get_rxhash(skb))
2753 		goto done;
2754 
2755 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
2756 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
2757 	if (flow_table && sock_flow_table) {
2758 		u16 next_cpu;
2759 		struct rps_dev_flow *rflow;
2760 
2761 		rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
2762 		tcpu = rflow->cpu;
2763 
2764 		next_cpu = sock_flow_table->ents[skb->rxhash &
2765 		    sock_flow_table->mask];
2766 
2767 		/*
2768 		 * If the desired CPU (where last recvmsg was done) is
2769 		 * different from current CPU (one in the rx-queue flow
2770 		 * table entry), switch if one of the following holds:
2771 		 *   - Current CPU is unset (equal to RPS_NO_CPU).
2772 		 *   - Current CPU is offline.
2773 		 *   - The current CPU's queue tail has advanced beyond the
2774 		 *     last packet that was enqueued using this table entry.
2775 		 *     This guarantees that all previous packets for the flow
2776 		 *     have been dequeued, thus preserving in order delivery.
2777 		 */
2778 		if (unlikely(tcpu != next_cpu) &&
2779 		    (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
2780 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
2781 		      rflow->last_qtail)) >= 0))
2782 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
2783 
2784 		if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
2785 			*rflowp = rflow;
2786 			cpu = tcpu;
2787 			goto done;
2788 		}
2789 	}
2790 
2791 	if (map) {
2792 		tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
2793 
2794 		if (cpu_online(tcpu)) {
2795 			cpu = tcpu;
2796 			goto done;
2797 		}
2798 	}
2799 
2800 done:
2801 	return cpu;
2802 }
2803 
2804 #ifdef CONFIG_RFS_ACCEL
2805 
2806 /**
2807  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
2808  * @dev: Device on which the filter was set
2809  * @rxq_index: RX queue index
2810  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
2811  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
2812  *
2813  * Drivers that implement ndo_rx_flow_steer() should periodically call
2814  * this function for each installed filter and remove the filters for
2815  * which it returns %true.
2816  */
2817 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
2818 			 u32 flow_id, u16 filter_id)
2819 {
2820 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
2821 	struct rps_dev_flow_table *flow_table;
2822 	struct rps_dev_flow *rflow;
2823 	bool expire = true;
2824 	int cpu;
2825 
2826 	rcu_read_lock();
2827 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
2828 	if (flow_table && flow_id <= flow_table->mask) {
2829 		rflow = &flow_table->flows[flow_id];
2830 		cpu = ACCESS_ONCE(rflow->cpu);
2831 		if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
2832 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
2833 			   rflow->last_qtail) <
2834 		     (int)(10 * flow_table->mask)))
2835 			expire = false;
2836 	}
2837 	rcu_read_unlock();
2838 	return expire;
2839 }
2840 EXPORT_SYMBOL(rps_may_expire_flow);
2841 
2842 #endif /* CONFIG_RFS_ACCEL */
2843 
2844 /* Called from hardirq (IPI) context */
2845 static void rps_trigger_softirq(void *data)
2846 {
2847 	struct softnet_data *sd = data;
2848 
2849 	____napi_schedule(sd, &sd->backlog);
2850 	sd->received_rps++;
2851 }
2852 
2853 #endif /* CONFIG_RPS */
2854 
2855 /*
2856  * Check if this softnet_data structure is another cpu one
2857  * If yes, queue it to our IPI list and return 1
2858  * If no, return 0
2859  */
2860 static int rps_ipi_queued(struct softnet_data *sd)
2861 {
2862 #ifdef CONFIG_RPS
2863 	struct softnet_data *mysd = &__get_cpu_var(softnet_data);
2864 
2865 	if (sd != mysd) {
2866 		sd->rps_ipi_next = mysd->rps_ipi_list;
2867 		mysd->rps_ipi_list = sd;
2868 
2869 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
2870 		return 1;
2871 	}
2872 #endif /* CONFIG_RPS */
2873 	return 0;
2874 }
2875 
2876 /*
2877  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
2878  * queue (may be a remote CPU queue).
2879  */
2880 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
2881 			      unsigned int *qtail)
2882 {
2883 	struct softnet_data *sd;
2884 	unsigned long flags;
2885 
2886 	sd = &per_cpu(softnet_data, cpu);
2887 
2888 	local_irq_save(flags);
2889 
2890 	rps_lock(sd);
2891 	if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) {
2892 		if (skb_queue_len(&sd->input_pkt_queue)) {
2893 enqueue:
2894 			__skb_queue_tail(&sd->input_pkt_queue, skb);
2895 			input_queue_tail_incr_save(sd, qtail);
2896 			rps_unlock(sd);
2897 			local_irq_restore(flags);
2898 			return NET_RX_SUCCESS;
2899 		}
2900 
2901 		/* Schedule NAPI for backlog device
2902 		 * We can use non atomic operation since we own the queue lock
2903 		 */
2904 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
2905 			if (!rps_ipi_queued(sd))
2906 				____napi_schedule(sd, &sd->backlog);
2907 		}
2908 		goto enqueue;
2909 	}
2910 
2911 	sd->dropped++;
2912 	rps_unlock(sd);
2913 
2914 	local_irq_restore(flags);
2915 
2916 	atomic_long_inc(&skb->dev->rx_dropped);
2917 	kfree_skb(skb);
2918 	return NET_RX_DROP;
2919 }
2920 
2921 /**
2922  *	netif_rx	-	post buffer to the network code
2923  *	@skb: buffer to post
2924  *
2925  *	This function receives a packet from a device driver and queues it for
2926  *	the upper (protocol) levels to process.  It always succeeds. The buffer
2927  *	may be dropped during processing for congestion control or by the
2928  *	protocol layers.
2929  *
2930  *	return values:
2931  *	NET_RX_SUCCESS	(no congestion)
2932  *	NET_RX_DROP     (packet was dropped)
2933  *
2934  */
2935 
2936 int netif_rx(struct sk_buff *skb)
2937 {
2938 	int ret;
2939 
2940 	/* if netpoll wants it, pretend we never saw it */
2941 	if (netpoll_rx(skb))
2942 		return NET_RX_DROP;
2943 
2944 	net_timestamp_check(netdev_tstamp_prequeue, skb);
2945 
2946 	trace_netif_rx(skb);
2947 #ifdef CONFIG_RPS
2948 	if (static_branch(&rps_needed))	{
2949 		struct rps_dev_flow voidflow, *rflow = &voidflow;
2950 		int cpu;
2951 
2952 		preempt_disable();
2953 		rcu_read_lock();
2954 
2955 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
2956 		if (cpu < 0)
2957 			cpu = smp_processor_id();
2958 
2959 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
2960 
2961 		rcu_read_unlock();
2962 		preempt_enable();
2963 	} else
2964 #endif
2965 	{
2966 		unsigned int qtail;
2967 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
2968 		put_cpu();
2969 	}
2970 	return ret;
2971 }
2972 EXPORT_SYMBOL(netif_rx);
2973 
2974 int netif_rx_ni(struct sk_buff *skb)
2975 {
2976 	int err;
2977 
2978 	preempt_disable();
2979 	err = netif_rx(skb);
2980 	if (local_softirq_pending())
2981 		do_softirq();
2982 	preempt_enable();
2983 
2984 	return err;
2985 }
2986 EXPORT_SYMBOL(netif_rx_ni);
2987 
2988 static void net_tx_action(struct softirq_action *h)
2989 {
2990 	struct softnet_data *sd = &__get_cpu_var(softnet_data);
2991 
2992 	if (sd->completion_queue) {
2993 		struct sk_buff *clist;
2994 
2995 		local_irq_disable();
2996 		clist = sd->completion_queue;
2997 		sd->completion_queue = NULL;
2998 		local_irq_enable();
2999 
3000 		while (clist) {
3001 			struct sk_buff *skb = clist;
3002 			clist = clist->next;
3003 
3004 			WARN_ON(atomic_read(&skb->users));
3005 			trace_kfree_skb(skb, net_tx_action);
3006 			__kfree_skb(skb);
3007 		}
3008 	}
3009 
3010 	if (sd->output_queue) {
3011 		struct Qdisc *head;
3012 
3013 		local_irq_disable();
3014 		head = sd->output_queue;
3015 		sd->output_queue = NULL;
3016 		sd->output_queue_tailp = &sd->output_queue;
3017 		local_irq_enable();
3018 
3019 		while (head) {
3020 			struct Qdisc *q = head;
3021 			spinlock_t *root_lock;
3022 
3023 			head = head->next_sched;
3024 
3025 			root_lock = qdisc_lock(q);
3026 			if (spin_trylock(root_lock)) {
3027 				smp_mb__before_clear_bit();
3028 				clear_bit(__QDISC_STATE_SCHED,
3029 					  &q->state);
3030 				qdisc_run(q);
3031 				spin_unlock(root_lock);
3032 			} else {
3033 				if (!test_bit(__QDISC_STATE_DEACTIVATED,
3034 					      &q->state)) {
3035 					__netif_reschedule(q);
3036 				} else {
3037 					smp_mb__before_clear_bit();
3038 					clear_bit(__QDISC_STATE_SCHED,
3039 						  &q->state);
3040 				}
3041 			}
3042 		}
3043 	}
3044 }
3045 
3046 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3047     (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3048 /* This hook is defined here for ATM LANE */
3049 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3050 			     unsigned char *addr) __read_mostly;
3051 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3052 #endif
3053 
3054 #ifdef CONFIG_NET_CLS_ACT
3055 /* TODO: Maybe we should just force sch_ingress to be compiled in
3056  * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3057  * a compare and 2 stores extra right now if we dont have it on
3058  * but have CONFIG_NET_CLS_ACT
3059  * NOTE: This doesn't stop any functionality; if you dont have
3060  * the ingress scheduler, you just can't add policies on ingress.
3061  *
3062  */
3063 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
3064 {
3065 	struct net_device *dev = skb->dev;
3066 	u32 ttl = G_TC_RTTL(skb->tc_verd);
3067 	int result = TC_ACT_OK;
3068 	struct Qdisc *q;
3069 
3070 	if (unlikely(MAX_RED_LOOP < ttl++)) {
3071 		if (net_ratelimit())
3072 			pr_warning( "Redir loop detected Dropping packet (%d->%d)\n",
3073 			       skb->skb_iif, dev->ifindex);
3074 		return TC_ACT_SHOT;
3075 	}
3076 
3077 	skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3078 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3079 
3080 	q = rxq->qdisc;
3081 	if (q != &noop_qdisc) {
3082 		spin_lock(qdisc_lock(q));
3083 		if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3084 			result = qdisc_enqueue_root(skb, q);
3085 		spin_unlock(qdisc_lock(q));
3086 	}
3087 
3088 	return result;
3089 }
3090 
3091 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3092 					 struct packet_type **pt_prev,
3093 					 int *ret, struct net_device *orig_dev)
3094 {
3095 	struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3096 
3097 	if (!rxq || rxq->qdisc == &noop_qdisc)
3098 		goto out;
3099 
3100 	if (*pt_prev) {
3101 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
3102 		*pt_prev = NULL;
3103 	}
3104 
3105 	switch (ing_filter(skb, rxq)) {
3106 	case TC_ACT_SHOT:
3107 	case TC_ACT_STOLEN:
3108 		kfree_skb(skb);
3109 		return NULL;
3110 	}
3111 
3112 out:
3113 	skb->tc_verd = 0;
3114 	return skb;
3115 }
3116 #endif
3117 
3118 /**
3119  *	netdev_rx_handler_register - register receive handler
3120  *	@dev: device to register a handler for
3121  *	@rx_handler: receive handler to register
3122  *	@rx_handler_data: data pointer that is used by rx handler
3123  *
3124  *	Register a receive hander for a device. This handler will then be
3125  *	called from __netif_receive_skb. A negative errno code is returned
3126  *	on a failure.
3127  *
3128  *	The caller must hold the rtnl_mutex.
3129  *
3130  *	For a general description of rx_handler, see enum rx_handler_result.
3131  */
3132 int netdev_rx_handler_register(struct net_device *dev,
3133 			       rx_handler_func_t *rx_handler,
3134 			       void *rx_handler_data)
3135 {
3136 	ASSERT_RTNL();
3137 
3138 	if (dev->rx_handler)
3139 		return -EBUSY;
3140 
3141 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3142 	rcu_assign_pointer(dev->rx_handler, rx_handler);
3143 
3144 	return 0;
3145 }
3146 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3147 
3148 /**
3149  *	netdev_rx_handler_unregister - unregister receive handler
3150  *	@dev: device to unregister a handler from
3151  *
3152  *	Unregister a receive hander from a device.
3153  *
3154  *	The caller must hold the rtnl_mutex.
3155  */
3156 void netdev_rx_handler_unregister(struct net_device *dev)
3157 {
3158 
3159 	ASSERT_RTNL();
3160 	RCU_INIT_POINTER(dev->rx_handler, NULL);
3161 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3162 }
3163 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3164 
3165 static int __netif_receive_skb(struct sk_buff *skb)
3166 {
3167 	struct packet_type *ptype, *pt_prev;
3168 	rx_handler_func_t *rx_handler;
3169 	struct net_device *orig_dev;
3170 	struct net_device *null_or_dev;
3171 	bool deliver_exact = false;
3172 	int ret = NET_RX_DROP;
3173 	__be16 type;
3174 
3175 	net_timestamp_check(!netdev_tstamp_prequeue, skb);
3176 
3177 	trace_netif_receive_skb(skb);
3178 
3179 	/* if we've gotten here through NAPI, check netpoll */
3180 	if (netpoll_receive_skb(skb))
3181 		return NET_RX_DROP;
3182 
3183 	if (!skb->skb_iif)
3184 		skb->skb_iif = skb->dev->ifindex;
3185 	orig_dev = skb->dev;
3186 
3187 	skb_reset_network_header(skb);
3188 	skb_reset_transport_header(skb);
3189 	skb_reset_mac_len(skb);
3190 
3191 	pt_prev = NULL;
3192 
3193 	rcu_read_lock();
3194 
3195 another_round:
3196 
3197 	__this_cpu_inc(softnet_data.processed);
3198 
3199 	if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) {
3200 		skb = vlan_untag(skb);
3201 		if (unlikely(!skb))
3202 			goto out;
3203 	}
3204 
3205 #ifdef CONFIG_NET_CLS_ACT
3206 	if (skb->tc_verd & TC_NCLS) {
3207 		skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3208 		goto ncls;
3209 	}
3210 #endif
3211 
3212 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
3213 		if (!ptype->dev || ptype->dev == skb->dev) {
3214 			if (pt_prev)
3215 				ret = deliver_skb(skb, pt_prev, orig_dev);
3216 			pt_prev = ptype;
3217 		}
3218 	}
3219 
3220 #ifdef CONFIG_NET_CLS_ACT
3221 	skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3222 	if (!skb)
3223 		goto out;
3224 ncls:
3225 #endif
3226 
3227 	rx_handler = rcu_dereference(skb->dev->rx_handler);
3228 	if (vlan_tx_tag_present(skb)) {
3229 		if (pt_prev) {
3230 			ret = deliver_skb(skb, pt_prev, orig_dev);
3231 			pt_prev = NULL;
3232 		}
3233 		if (vlan_do_receive(&skb, !rx_handler))
3234 			goto another_round;
3235 		else if (unlikely(!skb))
3236 			goto out;
3237 	}
3238 
3239 	if (rx_handler) {
3240 		if (pt_prev) {
3241 			ret = deliver_skb(skb, pt_prev, orig_dev);
3242 			pt_prev = NULL;
3243 		}
3244 		switch (rx_handler(&skb)) {
3245 		case RX_HANDLER_CONSUMED:
3246 			goto out;
3247 		case RX_HANDLER_ANOTHER:
3248 			goto another_round;
3249 		case RX_HANDLER_EXACT:
3250 			deliver_exact = true;
3251 		case RX_HANDLER_PASS:
3252 			break;
3253 		default:
3254 			BUG();
3255 		}
3256 	}
3257 
3258 	/* deliver only exact match when indicated */
3259 	null_or_dev = deliver_exact ? skb->dev : NULL;
3260 
3261 	type = skb->protocol;
3262 	list_for_each_entry_rcu(ptype,
3263 			&ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3264 		if (ptype->type == type &&
3265 		    (ptype->dev == null_or_dev || ptype->dev == skb->dev ||
3266 		     ptype->dev == orig_dev)) {
3267 			if (pt_prev)
3268 				ret = deliver_skb(skb, pt_prev, orig_dev);
3269 			pt_prev = ptype;
3270 		}
3271 	}
3272 
3273 	if (pt_prev) {
3274 		ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3275 	} else {
3276 		atomic_long_inc(&skb->dev->rx_dropped);
3277 		kfree_skb(skb);
3278 		/* Jamal, now you will not able to escape explaining
3279 		 * me how you were going to use this. :-)
3280 		 */
3281 		ret = NET_RX_DROP;
3282 	}
3283 
3284 out:
3285 	rcu_read_unlock();
3286 	return ret;
3287 }
3288 
3289 /**
3290  *	netif_receive_skb - process receive buffer from network
3291  *	@skb: buffer to process
3292  *
3293  *	netif_receive_skb() is the main receive data processing function.
3294  *	It always succeeds. The buffer may be dropped during processing
3295  *	for congestion control or by the protocol layers.
3296  *
3297  *	This function may only be called from softirq context and interrupts
3298  *	should be enabled.
3299  *
3300  *	Return values (usually ignored):
3301  *	NET_RX_SUCCESS: no congestion
3302  *	NET_RX_DROP: packet was dropped
3303  */
3304 int netif_receive_skb(struct sk_buff *skb)
3305 {
3306 	net_timestamp_check(netdev_tstamp_prequeue, skb);
3307 
3308 	if (skb_defer_rx_timestamp(skb))
3309 		return NET_RX_SUCCESS;
3310 
3311 #ifdef CONFIG_RPS
3312 	if (static_branch(&rps_needed)) {
3313 		struct rps_dev_flow voidflow, *rflow = &voidflow;
3314 		int cpu, ret;
3315 
3316 		rcu_read_lock();
3317 
3318 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
3319 
3320 		if (cpu >= 0) {
3321 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3322 			rcu_read_unlock();
3323 			return ret;
3324 		}
3325 		rcu_read_unlock();
3326 	}
3327 #endif
3328 	return __netif_receive_skb(skb);
3329 }
3330 EXPORT_SYMBOL(netif_receive_skb);
3331 
3332 /* Network device is going away, flush any packets still pending
3333  * Called with irqs disabled.
3334  */
3335 static void flush_backlog(void *arg)
3336 {
3337 	struct net_device *dev = arg;
3338 	struct softnet_data *sd = &__get_cpu_var(softnet_data);
3339 	struct sk_buff *skb, *tmp;
3340 
3341 	rps_lock(sd);
3342 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3343 		if (skb->dev == dev) {
3344 			__skb_unlink(skb, &sd->input_pkt_queue);
3345 			kfree_skb(skb);
3346 			input_queue_head_incr(sd);
3347 		}
3348 	}
3349 	rps_unlock(sd);
3350 
3351 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3352 		if (skb->dev == dev) {
3353 			__skb_unlink(skb, &sd->process_queue);
3354 			kfree_skb(skb);
3355 			input_queue_head_incr(sd);
3356 		}
3357 	}
3358 }
3359 
3360 static int napi_gro_complete(struct sk_buff *skb)
3361 {
3362 	struct packet_type *ptype;
3363 	__be16 type = skb->protocol;
3364 	struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3365 	int err = -ENOENT;
3366 
3367 	if (NAPI_GRO_CB(skb)->count == 1) {
3368 		skb_shinfo(skb)->gso_size = 0;
3369 		goto out;
3370 	}
3371 
3372 	rcu_read_lock();
3373 	list_for_each_entry_rcu(ptype, head, list) {
3374 		if (ptype->type != type || ptype->dev || !ptype->gro_complete)
3375 			continue;
3376 
3377 		err = ptype->gro_complete(skb);
3378 		break;
3379 	}
3380 	rcu_read_unlock();
3381 
3382 	if (err) {
3383 		WARN_ON(&ptype->list == head);
3384 		kfree_skb(skb);
3385 		return NET_RX_SUCCESS;
3386 	}
3387 
3388 out:
3389 	return netif_receive_skb(skb);
3390 }
3391 
3392 inline void napi_gro_flush(struct napi_struct *napi)
3393 {
3394 	struct sk_buff *skb, *next;
3395 
3396 	for (skb = napi->gro_list; skb; skb = next) {
3397 		next = skb->next;
3398 		skb->next = NULL;
3399 		napi_gro_complete(skb);
3400 	}
3401 
3402 	napi->gro_count = 0;
3403 	napi->gro_list = NULL;
3404 }
3405 EXPORT_SYMBOL(napi_gro_flush);
3406 
3407 enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3408 {
3409 	struct sk_buff **pp = NULL;
3410 	struct packet_type *ptype;
3411 	__be16 type = skb->protocol;
3412 	struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3413 	int same_flow;
3414 	int mac_len;
3415 	enum gro_result ret;
3416 
3417 	if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb))
3418 		goto normal;
3419 
3420 	if (skb_is_gso(skb) || skb_has_frag_list(skb))
3421 		goto normal;
3422 
3423 	rcu_read_lock();
3424 	list_for_each_entry_rcu(ptype, head, list) {
3425 		if (ptype->type != type || ptype->dev || !ptype->gro_receive)
3426 			continue;
3427 
3428 		skb_set_network_header(skb, skb_gro_offset(skb));
3429 		mac_len = skb->network_header - skb->mac_header;
3430 		skb->mac_len = mac_len;
3431 		NAPI_GRO_CB(skb)->same_flow = 0;
3432 		NAPI_GRO_CB(skb)->flush = 0;
3433 		NAPI_GRO_CB(skb)->free = 0;
3434 
3435 		pp = ptype->gro_receive(&napi->gro_list, skb);
3436 		break;
3437 	}
3438 	rcu_read_unlock();
3439 
3440 	if (&ptype->list == head)
3441 		goto normal;
3442 
3443 	same_flow = NAPI_GRO_CB(skb)->same_flow;
3444 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3445 
3446 	if (pp) {
3447 		struct sk_buff *nskb = *pp;
3448 
3449 		*pp = nskb->next;
3450 		nskb->next = NULL;
3451 		napi_gro_complete(nskb);
3452 		napi->gro_count--;
3453 	}
3454 
3455 	if (same_flow)
3456 		goto ok;
3457 
3458 	if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
3459 		goto normal;
3460 
3461 	napi->gro_count++;
3462 	NAPI_GRO_CB(skb)->count = 1;
3463 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3464 	skb->next = napi->gro_list;
3465 	napi->gro_list = skb;
3466 	ret = GRO_HELD;
3467 
3468 pull:
3469 	if (skb_headlen(skb) < skb_gro_offset(skb)) {
3470 		int grow = skb_gro_offset(skb) - skb_headlen(skb);
3471 
3472 		BUG_ON(skb->end - skb->tail < grow);
3473 
3474 		memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3475 
3476 		skb->tail += grow;
3477 		skb->data_len -= grow;
3478 
3479 		skb_shinfo(skb)->frags[0].page_offset += grow;
3480 		skb_frag_size_sub(&skb_shinfo(skb)->frags[0], grow);
3481 
3482 		if (unlikely(!skb_frag_size(&skb_shinfo(skb)->frags[0]))) {
3483 			skb_frag_unref(skb, 0);
3484 			memmove(skb_shinfo(skb)->frags,
3485 				skb_shinfo(skb)->frags + 1,
3486 				--skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t));
3487 		}
3488 	}
3489 
3490 ok:
3491 	return ret;
3492 
3493 normal:
3494 	ret = GRO_NORMAL;
3495 	goto pull;
3496 }
3497 EXPORT_SYMBOL(dev_gro_receive);
3498 
3499 static inline gro_result_t
3500 __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3501 {
3502 	struct sk_buff *p;
3503 
3504 	for (p = napi->gro_list; p; p = p->next) {
3505 		unsigned long diffs;
3506 
3507 		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3508 		diffs |= p->vlan_tci ^ skb->vlan_tci;
3509 		diffs |= compare_ether_header(skb_mac_header(p),
3510 					      skb_gro_mac_header(skb));
3511 		NAPI_GRO_CB(p)->same_flow = !diffs;
3512 		NAPI_GRO_CB(p)->flush = 0;
3513 	}
3514 
3515 	return dev_gro_receive(napi, skb);
3516 }
3517 
3518 gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
3519 {
3520 	switch (ret) {
3521 	case GRO_NORMAL:
3522 		if (netif_receive_skb(skb))
3523 			ret = GRO_DROP;
3524 		break;
3525 
3526 	case GRO_DROP:
3527 	case GRO_MERGED_FREE:
3528 		kfree_skb(skb);
3529 		break;
3530 
3531 	case GRO_HELD:
3532 	case GRO_MERGED:
3533 		break;
3534 	}
3535 
3536 	return ret;
3537 }
3538 EXPORT_SYMBOL(napi_skb_finish);
3539 
3540 void skb_gro_reset_offset(struct sk_buff *skb)
3541 {
3542 	NAPI_GRO_CB(skb)->data_offset = 0;
3543 	NAPI_GRO_CB(skb)->frag0 = NULL;
3544 	NAPI_GRO_CB(skb)->frag0_len = 0;
3545 
3546 	if (skb->mac_header == skb->tail &&
3547 	    !PageHighMem(skb_frag_page(&skb_shinfo(skb)->frags[0]))) {
3548 		NAPI_GRO_CB(skb)->frag0 =
3549 			skb_frag_address(&skb_shinfo(skb)->frags[0]);
3550 		NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(&skb_shinfo(skb)->frags[0]);
3551 	}
3552 }
3553 EXPORT_SYMBOL(skb_gro_reset_offset);
3554 
3555 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3556 {
3557 	skb_gro_reset_offset(skb);
3558 
3559 	return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
3560 }
3561 EXPORT_SYMBOL(napi_gro_receive);
3562 
3563 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
3564 {
3565 	__skb_pull(skb, skb_headlen(skb));
3566 	skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb));
3567 	skb->vlan_tci = 0;
3568 	skb->dev = napi->dev;
3569 	skb->skb_iif = 0;
3570 
3571 	napi->skb = skb;
3572 }
3573 
3574 struct sk_buff *napi_get_frags(struct napi_struct *napi)
3575 {
3576 	struct sk_buff *skb = napi->skb;
3577 
3578 	if (!skb) {
3579 		skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3580 		if (skb)
3581 			napi->skb = skb;
3582 	}
3583 	return skb;
3584 }
3585 EXPORT_SYMBOL(napi_get_frags);
3586 
3587 gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3588 			       gro_result_t ret)
3589 {
3590 	switch (ret) {
3591 	case GRO_NORMAL:
3592 	case GRO_HELD:
3593 		skb->protocol = eth_type_trans(skb, skb->dev);
3594 
3595 		if (ret == GRO_HELD)
3596 			skb_gro_pull(skb, -ETH_HLEN);
3597 		else if (netif_receive_skb(skb))
3598 			ret = GRO_DROP;
3599 		break;
3600 
3601 	case GRO_DROP:
3602 	case GRO_MERGED_FREE:
3603 		napi_reuse_skb(napi, skb);
3604 		break;
3605 
3606 	case GRO_MERGED:
3607 		break;
3608 	}
3609 
3610 	return ret;
3611 }
3612 EXPORT_SYMBOL(napi_frags_finish);
3613 
3614 struct sk_buff *napi_frags_skb(struct napi_struct *napi)
3615 {
3616 	struct sk_buff *skb = napi->skb;
3617 	struct ethhdr *eth;
3618 	unsigned int hlen;
3619 	unsigned int off;
3620 
3621 	napi->skb = NULL;
3622 
3623 	skb_reset_mac_header(skb);
3624 	skb_gro_reset_offset(skb);
3625 
3626 	off = skb_gro_offset(skb);
3627 	hlen = off + sizeof(*eth);
3628 	eth = skb_gro_header_fast(skb, off);
3629 	if (skb_gro_header_hard(skb, hlen)) {
3630 		eth = skb_gro_header_slow(skb, hlen, off);
3631 		if (unlikely(!eth)) {
3632 			napi_reuse_skb(napi, skb);
3633 			skb = NULL;
3634 			goto out;
3635 		}
3636 	}
3637 
3638 	skb_gro_pull(skb, sizeof(*eth));
3639 
3640 	/*
3641 	 * This works because the only protocols we care about don't require
3642 	 * special handling.  We'll fix it up properly at the end.
3643 	 */
3644 	skb->protocol = eth->h_proto;
3645 
3646 out:
3647 	return skb;
3648 }
3649 EXPORT_SYMBOL(napi_frags_skb);
3650 
3651 gro_result_t napi_gro_frags(struct napi_struct *napi)
3652 {
3653 	struct sk_buff *skb = napi_frags_skb(napi);
3654 
3655 	if (!skb)
3656 		return GRO_DROP;
3657 
3658 	return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
3659 }
3660 EXPORT_SYMBOL(napi_gro_frags);
3661 
3662 /*
3663  * net_rps_action sends any pending IPI's for rps.
3664  * Note: called with local irq disabled, but exits with local irq enabled.
3665  */
3666 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
3667 {
3668 #ifdef CONFIG_RPS
3669 	struct softnet_data *remsd = sd->rps_ipi_list;
3670 
3671 	if (remsd) {
3672 		sd->rps_ipi_list = NULL;
3673 
3674 		local_irq_enable();
3675 
3676 		/* Send pending IPI's to kick RPS processing on remote cpus. */
3677 		while (remsd) {
3678 			struct softnet_data *next = remsd->rps_ipi_next;
3679 
3680 			if (cpu_online(remsd->cpu))
3681 				__smp_call_function_single(remsd->cpu,
3682 							   &remsd->csd, 0);
3683 			remsd = next;
3684 		}
3685 	} else
3686 #endif
3687 		local_irq_enable();
3688 }
3689 
3690 static int process_backlog(struct napi_struct *napi, int quota)
3691 {
3692 	int work = 0;
3693 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
3694 
3695 #ifdef CONFIG_RPS
3696 	/* Check if we have pending ipi, its better to send them now,
3697 	 * not waiting net_rx_action() end.
3698 	 */
3699 	if (sd->rps_ipi_list) {
3700 		local_irq_disable();
3701 		net_rps_action_and_irq_enable(sd);
3702 	}
3703 #endif
3704 	napi->weight = weight_p;
3705 	local_irq_disable();
3706 	while (work < quota) {
3707 		struct sk_buff *skb;
3708 		unsigned int qlen;
3709 
3710 		while ((skb = __skb_dequeue(&sd->process_queue))) {
3711 			local_irq_enable();
3712 			__netif_receive_skb(skb);
3713 			local_irq_disable();
3714 			input_queue_head_incr(sd);
3715 			if (++work >= quota) {
3716 				local_irq_enable();
3717 				return work;
3718 			}
3719 		}
3720 
3721 		rps_lock(sd);
3722 		qlen = skb_queue_len(&sd->input_pkt_queue);
3723 		if (qlen)
3724 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
3725 						   &sd->process_queue);
3726 
3727 		if (qlen < quota - work) {
3728 			/*
3729 			 * Inline a custom version of __napi_complete().
3730 			 * only current cpu owns and manipulates this napi,
3731 			 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
3732 			 * we can use a plain write instead of clear_bit(),
3733 			 * and we dont need an smp_mb() memory barrier.
3734 			 */
3735 			list_del(&napi->poll_list);
3736 			napi->state = 0;
3737 
3738 			quota = work + qlen;
3739 		}
3740 		rps_unlock(sd);
3741 	}
3742 	local_irq_enable();
3743 
3744 	return work;
3745 }
3746 
3747 /**
3748  * __napi_schedule - schedule for receive
3749  * @n: entry to schedule
3750  *
3751  * The entry's receive function will be scheduled to run
3752  */
3753 void __napi_schedule(struct napi_struct *n)
3754 {
3755 	unsigned long flags;
3756 
3757 	local_irq_save(flags);
3758 	____napi_schedule(&__get_cpu_var(softnet_data), n);
3759 	local_irq_restore(flags);
3760 }
3761 EXPORT_SYMBOL(__napi_schedule);
3762 
3763 void __napi_complete(struct napi_struct *n)
3764 {
3765 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
3766 	BUG_ON(n->gro_list);
3767 
3768 	list_del(&n->poll_list);
3769 	smp_mb__before_clear_bit();
3770 	clear_bit(NAPI_STATE_SCHED, &n->state);
3771 }
3772 EXPORT_SYMBOL(__napi_complete);
3773 
3774 void napi_complete(struct napi_struct *n)
3775 {
3776 	unsigned long flags;
3777 
3778 	/*
3779 	 * don't let napi dequeue from the cpu poll list
3780 	 * just in case its running on a different cpu
3781 	 */
3782 	if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
3783 		return;
3784 
3785 	napi_gro_flush(n);
3786 	local_irq_save(flags);
3787 	__napi_complete(n);
3788 	local_irq_restore(flags);
3789 }
3790 EXPORT_SYMBOL(napi_complete);
3791 
3792 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
3793 		    int (*poll)(struct napi_struct *, int), int weight)
3794 {
3795 	INIT_LIST_HEAD(&napi->poll_list);
3796 	napi->gro_count = 0;
3797 	napi->gro_list = NULL;
3798 	napi->skb = NULL;
3799 	napi->poll = poll;
3800 	napi->weight = weight;
3801 	list_add(&napi->dev_list, &dev->napi_list);
3802 	napi->dev = dev;
3803 #ifdef CONFIG_NETPOLL
3804 	spin_lock_init(&napi->poll_lock);
3805 	napi->poll_owner = -1;
3806 #endif
3807 	set_bit(NAPI_STATE_SCHED, &napi->state);
3808 }
3809 EXPORT_SYMBOL(netif_napi_add);
3810 
3811 void netif_napi_del(struct napi_struct *napi)
3812 {
3813 	struct sk_buff *skb, *next;
3814 
3815 	list_del_init(&napi->dev_list);
3816 	napi_free_frags(napi);
3817 
3818 	for (skb = napi->gro_list; skb; skb = next) {
3819 		next = skb->next;
3820 		skb->next = NULL;
3821 		kfree_skb(skb);
3822 	}
3823 
3824 	napi->gro_list = NULL;
3825 	napi->gro_count = 0;
3826 }
3827 EXPORT_SYMBOL(netif_napi_del);
3828 
3829 static void net_rx_action(struct softirq_action *h)
3830 {
3831 	struct softnet_data *sd = &__get_cpu_var(softnet_data);
3832 	unsigned long time_limit = jiffies + 2;
3833 	int budget = netdev_budget;
3834 	void *have;
3835 
3836 	local_irq_disable();
3837 
3838 	while (!list_empty(&sd->poll_list)) {
3839 		struct napi_struct *n;
3840 		int work, weight;
3841 
3842 		/* If softirq window is exhuasted then punt.
3843 		 * Allow this to run for 2 jiffies since which will allow
3844 		 * an average latency of 1.5/HZ.
3845 		 */
3846 		if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
3847 			goto softnet_break;
3848 
3849 		local_irq_enable();
3850 
3851 		/* Even though interrupts have been re-enabled, this
3852 		 * access is safe because interrupts can only add new
3853 		 * entries to the tail of this list, and only ->poll()
3854 		 * calls can remove this head entry from the list.
3855 		 */
3856 		n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
3857 
3858 		have = netpoll_poll_lock(n);
3859 
3860 		weight = n->weight;
3861 
3862 		/* This NAPI_STATE_SCHED test is for avoiding a race
3863 		 * with netpoll's poll_napi().  Only the entity which
3864 		 * obtains the lock and sees NAPI_STATE_SCHED set will
3865 		 * actually make the ->poll() call.  Therefore we avoid
3866 		 * accidentally calling ->poll() when NAPI is not scheduled.
3867 		 */
3868 		work = 0;
3869 		if (test_bit(NAPI_STATE_SCHED, &n->state)) {
3870 			work = n->poll(n, weight);
3871 			trace_napi_poll(n);
3872 		}
3873 
3874 		WARN_ON_ONCE(work > weight);
3875 
3876 		budget -= work;
3877 
3878 		local_irq_disable();
3879 
3880 		/* Drivers must not modify the NAPI state if they
3881 		 * consume the entire weight.  In such cases this code
3882 		 * still "owns" the NAPI instance and therefore can
3883 		 * move the instance around on the list at-will.
3884 		 */
3885 		if (unlikely(work == weight)) {
3886 			if (unlikely(napi_disable_pending(n))) {
3887 				local_irq_enable();
3888 				napi_complete(n);
3889 				local_irq_disable();
3890 			} else
3891 				list_move_tail(&n->poll_list, &sd->poll_list);
3892 		}
3893 
3894 		netpoll_poll_unlock(have);
3895 	}
3896 out:
3897 	net_rps_action_and_irq_enable(sd);
3898 
3899 #ifdef CONFIG_NET_DMA
3900 	/*
3901 	 * There may not be any more sk_buffs coming right now, so push
3902 	 * any pending DMA copies to hardware
3903 	 */
3904 	dma_issue_pending_all();
3905 #endif
3906 
3907 	return;
3908 
3909 softnet_break:
3910 	sd->time_squeeze++;
3911 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3912 	goto out;
3913 }
3914 
3915 static gifconf_func_t *gifconf_list[NPROTO];
3916 
3917 /**
3918  *	register_gifconf	-	register a SIOCGIF handler
3919  *	@family: Address family
3920  *	@gifconf: Function handler
3921  *
3922  *	Register protocol dependent address dumping routines. The handler
3923  *	that is passed must not be freed or reused until it has been replaced
3924  *	by another handler.
3925  */
3926 int register_gifconf(unsigned int family, gifconf_func_t *gifconf)
3927 {
3928 	if (family >= NPROTO)
3929 		return -EINVAL;
3930 	gifconf_list[family] = gifconf;
3931 	return 0;
3932 }
3933 EXPORT_SYMBOL(register_gifconf);
3934 
3935 
3936 /*
3937  *	Map an interface index to its name (SIOCGIFNAME)
3938  */
3939 
3940 /*
3941  *	We need this ioctl for efficient implementation of the
3942  *	if_indextoname() function required by the IPv6 API.  Without
3943  *	it, we would have to search all the interfaces to find a
3944  *	match.  --pb
3945  */
3946 
3947 static int dev_ifname(struct net *net, struct ifreq __user *arg)
3948 {
3949 	struct net_device *dev;
3950 	struct ifreq ifr;
3951 
3952 	/*
3953 	 *	Fetch the caller's info block.
3954 	 */
3955 
3956 	if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3957 		return -EFAULT;
3958 
3959 	rcu_read_lock();
3960 	dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex);
3961 	if (!dev) {
3962 		rcu_read_unlock();
3963 		return -ENODEV;
3964 	}
3965 
3966 	strcpy(ifr.ifr_name, dev->name);
3967 	rcu_read_unlock();
3968 
3969 	if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
3970 		return -EFAULT;
3971 	return 0;
3972 }
3973 
3974 /*
3975  *	Perform a SIOCGIFCONF call. This structure will change
3976  *	size eventually, and there is nothing I can do about it.
3977  *	Thus we will need a 'compatibility mode'.
3978  */
3979 
3980 static int dev_ifconf(struct net *net, char __user *arg)
3981 {
3982 	struct ifconf ifc;
3983 	struct net_device *dev;
3984 	char __user *pos;
3985 	int len;
3986 	int total;
3987 	int i;
3988 
3989 	/*
3990 	 *	Fetch the caller's info block.
3991 	 */
3992 
3993 	if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
3994 		return -EFAULT;
3995 
3996 	pos = ifc.ifc_buf;
3997 	len = ifc.ifc_len;
3998 
3999 	/*
4000 	 *	Loop over the interfaces, and write an info block for each.
4001 	 */
4002 
4003 	total = 0;
4004 	for_each_netdev(net, dev) {
4005 		for (i = 0; i < NPROTO; i++) {
4006 			if (gifconf_list[i]) {
4007 				int done;
4008 				if (!pos)
4009 					done = gifconf_list[i](dev, NULL, 0);
4010 				else
4011 					done = gifconf_list[i](dev, pos + total,
4012 							       len - total);
4013 				if (done < 0)
4014 					return -EFAULT;
4015 				total += done;
4016 			}
4017 		}
4018 	}
4019 
4020 	/*
4021 	 *	All done.  Write the updated control block back to the caller.
4022 	 */
4023 	ifc.ifc_len = total;
4024 
4025 	/*
4026 	 * 	Both BSD and Solaris return 0 here, so we do too.
4027 	 */
4028 	return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
4029 }
4030 
4031 #ifdef CONFIG_PROC_FS
4032 
4033 #define BUCKET_SPACE (32 - NETDEV_HASHBITS)
4034 
4035 struct dev_iter_state {
4036 	struct seq_net_private p;
4037 	unsigned int pos; /* bucket << BUCKET_SPACE + offset */
4038 };
4039 
4040 #define get_bucket(x) ((x) >> BUCKET_SPACE)
4041 #define get_offset(x) ((x) & ((1 << BUCKET_SPACE) - 1))
4042 #define set_bucket_offset(b, o) ((b) << BUCKET_SPACE | (o))
4043 
4044 static inline struct net_device *dev_from_same_bucket(struct seq_file *seq)
4045 {
4046 	struct dev_iter_state *state = seq->private;
4047 	struct net *net = seq_file_net(seq);
4048 	struct net_device *dev;
4049 	struct hlist_node *p;
4050 	struct hlist_head *h;
4051 	unsigned int count, bucket, offset;
4052 
4053 	bucket = get_bucket(state->pos);
4054 	offset = get_offset(state->pos);
4055 	h = &net->dev_name_head[bucket];
4056 	count = 0;
4057 	hlist_for_each_entry_rcu(dev, p, h, name_hlist) {
4058 		if (count++ == offset) {
4059 			state->pos = set_bucket_offset(bucket, count);
4060 			return dev;
4061 		}
4062 	}
4063 
4064 	return NULL;
4065 }
4066 
4067 static inline struct net_device *dev_from_new_bucket(struct seq_file *seq)
4068 {
4069 	struct dev_iter_state *state = seq->private;
4070 	struct net_device *dev;
4071 	unsigned int bucket;
4072 
4073 	bucket = get_bucket(state->pos);
4074 	do {
4075 		dev = dev_from_same_bucket(seq);
4076 		if (dev)
4077 			return dev;
4078 
4079 		bucket++;
4080 		state->pos = set_bucket_offset(bucket, 0);
4081 	} while (bucket < NETDEV_HASHENTRIES);
4082 
4083 	return NULL;
4084 }
4085 
4086 /*
4087  *	This is invoked by the /proc filesystem handler to display a device
4088  *	in detail.
4089  */
4090 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
4091 	__acquires(RCU)
4092 {
4093 	struct dev_iter_state *state = seq->private;
4094 
4095 	rcu_read_lock();
4096 	if (!*pos)
4097 		return SEQ_START_TOKEN;
4098 
4099 	/* check for end of the hash */
4100 	if (state->pos == 0 && *pos > 1)
4101 		return NULL;
4102 
4103 	return dev_from_new_bucket(seq);
4104 }
4105 
4106 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4107 {
4108 	struct net_device *dev;
4109 
4110 	++*pos;
4111 
4112 	if (v == SEQ_START_TOKEN)
4113 		return dev_from_new_bucket(seq);
4114 
4115 	dev = dev_from_same_bucket(seq);
4116 	if (dev)
4117 		return dev;
4118 
4119 	return dev_from_new_bucket(seq);
4120 }
4121 
4122 void dev_seq_stop(struct seq_file *seq, void *v)
4123 	__releases(RCU)
4124 {
4125 	rcu_read_unlock();
4126 }
4127 
4128 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
4129 {
4130 	struct rtnl_link_stats64 temp;
4131 	const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp);
4132 
4133 	seq_printf(seq, "%6s: %7llu %7llu %4llu %4llu %4llu %5llu %10llu %9llu "
4134 		   "%8llu %7llu %4llu %4llu %4llu %5llu %7llu %10llu\n",
4135 		   dev->name, stats->rx_bytes, stats->rx_packets,
4136 		   stats->rx_errors,
4137 		   stats->rx_dropped + stats->rx_missed_errors,
4138 		   stats->rx_fifo_errors,
4139 		   stats->rx_length_errors + stats->rx_over_errors +
4140 		    stats->rx_crc_errors + stats->rx_frame_errors,
4141 		   stats->rx_compressed, stats->multicast,
4142 		   stats->tx_bytes, stats->tx_packets,
4143 		   stats->tx_errors, stats->tx_dropped,
4144 		   stats->tx_fifo_errors, stats->collisions,
4145 		   stats->tx_carrier_errors +
4146 		    stats->tx_aborted_errors +
4147 		    stats->tx_window_errors +
4148 		    stats->tx_heartbeat_errors,
4149 		   stats->tx_compressed);
4150 }
4151 
4152 /*
4153  *	Called from the PROCfs module. This now uses the new arbitrary sized
4154  *	/proc/net interface to create /proc/net/dev
4155  */
4156 static int dev_seq_show(struct seq_file *seq, void *v)
4157 {
4158 	if (v == SEQ_START_TOKEN)
4159 		seq_puts(seq, "Inter-|   Receive                            "
4160 			      "                    |  Transmit\n"
4161 			      " face |bytes    packets errs drop fifo frame "
4162 			      "compressed multicast|bytes    packets errs "
4163 			      "drop fifo colls carrier compressed\n");
4164 	else
4165 		dev_seq_printf_stats(seq, v);
4166 	return 0;
4167 }
4168 
4169 static struct softnet_data *softnet_get_online(loff_t *pos)
4170 {
4171 	struct softnet_data *sd = NULL;
4172 
4173 	while (*pos < nr_cpu_ids)
4174 		if (cpu_online(*pos)) {
4175 			sd = &per_cpu(softnet_data, *pos);
4176 			break;
4177 		} else
4178 			++*pos;
4179 	return sd;
4180 }
4181 
4182 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
4183 {
4184 	return softnet_get_online(pos);
4185 }
4186 
4187 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4188 {
4189 	++*pos;
4190 	return softnet_get_online(pos);
4191 }
4192 
4193 static void softnet_seq_stop(struct seq_file *seq, void *v)
4194 {
4195 }
4196 
4197 static int softnet_seq_show(struct seq_file *seq, void *v)
4198 {
4199 	struct softnet_data *sd = v;
4200 
4201 	seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
4202 		   sd->processed, sd->dropped, sd->time_squeeze, 0,
4203 		   0, 0, 0, 0, /* was fastroute */
4204 		   sd->cpu_collision, sd->received_rps);
4205 	return 0;
4206 }
4207 
4208 static const struct seq_operations dev_seq_ops = {
4209 	.start = dev_seq_start,
4210 	.next  = dev_seq_next,
4211 	.stop  = dev_seq_stop,
4212 	.show  = dev_seq_show,
4213 };
4214 
4215 static int dev_seq_open(struct inode *inode, struct file *file)
4216 {
4217 	return seq_open_net(inode, file, &dev_seq_ops,
4218 			    sizeof(struct dev_iter_state));
4219 }
4220 
4221 int dev_seq_open_ops(struct inode *inode, struct file *file,
4222 		     const struct seq_operations *ops)
4223 {
4224 	return seq_open_net(inode, file, ops, sizeof(struct dev_iter_state));
4225 }
4226 
4227 static const struct file_operations dev_seq_fops = {
4228 	.owner	 = THIS_MODULE,
4229 	.open    = dev_seq_open,
4230 	.read    = seq_read,
4231 	.llseek  = seq_lseek,
4232 	.release = seq_release_net,
4233 };
4234 
4235 static const struct seq_operations softnet_seq_ops = {
4236 	.start = softnet_seq_start,
4237 	.next  = softnet_seq_next,
4238 	.stop  = softnet_seq_stop,
4239 	.show  = softnet_seq_show,
4240 };
4241 
4242 static int softnet_seq_open(struct inode *inode, struct file *file)
4243 {
4244 	return seq_open(file, &softnet_seq_ops);
4245 }
4246 
4247 static const struct file_operations softnet_seq_fops = {
4248 	.owner	 = THIS_MODULE,
4249 	.open    = softnet_seq_open,
4250 	.read    = seq_read,
4251 	.llseek  = seq_lseek,
4252 	.release = seq_release,
4253 };
4254 
4255 static void *ptype_get_idx(loff_t pos)
4256 {
4257 	struct packet_type *pt = NULL;
4258 	loff_t i = 0;
4259 	int t;
4260 
4261 	list_for_each_entry_rcu(pt, &ptype_all, list) {
4262 		if (i == pos)
4263 			return pt;
4264 		++i;
4265 	}
4266 
4267 	for (t = 0; t < PTYPE_HASH_SIZE; t++) {
4268 		list_for_each_entry_rcu(pt, &ptype_base[t], list) {
4269 			if (i == pos)
4270 				return pt;
4271 			++i;
4272 		}
4273 	}
4274 	return NULL;
4275 }
4276 
4277 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
4278 	__acquires(RCU)
4279 {
4280 	rcu_read_lock();
4281 	return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
4282 }
4283 
4284 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4285 {
4286 	struct packet_type *pt;
4287 	struct list_head *nxt;
4288 	int hash;
4289 
4290 	++*pos;
4291 	if (v == SEQ_START_TOKEN)
4292 		return ptype_get_idx(0);
4293 
4294 	pt = v;
4295 	nxt = pt->list.next;
4296 	if (pt->type == htons(ETH_P_ALL)) {
4297 		if (nxt != &ptype_all)
4298 			goto found;
4299 		hash = 0;
4300 		nxt = ptype_base[0].next;
4301 	} else
4302 		hash = ntohs(pt->type) & PTYPE_HASH_MASK;
4303 
4304 	while (nxt == &ptype_base[hash]) {
4305 		if (++hash >= PTYPE_HASH_SIZE)
4306 			return NULL;
4307 		nxt = ptype_base[hash].next;
4308 	}
4309 found:
4310 	return list_entry(nxt, struct packet_type, list);
4311 }
4312 
4313 static void ptype_seq_stop(struct seq_file *seq, void *v)
4314 	__releases(RCU)
4315 {
4316 	rcu_read_unlock();
4317 }
4318 
4319 static int ptype_seq_show(struct seq_file *seq, void *v)
4320 {
4321 	struct packet_type *pt = v;
4322 
4323 	if (v == SEQ_START_TOKEN)
4324 		seq_puts(seq, "Type Device      Function\n");
4325 	else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
4326 		if (pt->type == htons(ETH_P_ALL))
4327 			seq_puts(seq, "ALL ");
4328 		else
4329 			seq_printf(seq, "%04x", ntohs(pt->type));
4330 
4331 		seq_printf(seq, " %-8s %pF\n",
4332 			   pt->dev ? pt->dev->name : "", pt->func);
4333 	}
4334 
4335 	return 0;
4336 }
4337 
4338 static const struct seq_operations ptype_seq_ops = {
4339 	.start = ptype_seq_start,
4340 	.next  = ptype_seq_next,
4341 	.stop  = ptype_seq_stop,
4342 	.show  = ptype_seq_show,
4343 };
4344 
4345 static int ptype_seq_open(struct inode *inode, struct file *file)
4346 {
4347 	return seq_open_net(inode, file, &ptype_seq_ops,
4348 			sizeof(struct seq_net_private));
4349 }
4350 
4351 static const struct file_operations ptype_seq_fops = {
4352 	.owner	 = THIS_MODULE,
4353 	.open    = ptype_seq_open,
4354 	.read    = seq_read,
4355 	.llseek  = seq_lseek,
4356 	.release = seq_release_net,
4357 };
4358 
4359 
4360 static int __net_init dev_proc_net_init(struct net *net)
4361 {
4362 	int rc = -ENOMEM;
4363 
4364 	if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
4365 		goto out;
4366 	if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
4367 		goto out_dev;
4368 	if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
4369 		goto out_softnet;
4370 
4371 	if (wext_proc_init(net))
4372 		goto out_ptype;
4373 	rc = 0;
4374 out:
4375 	return rc;
4376 out_ptype:
4377 	proc_net_remove(net, "ptype");
4378 out_softnet:
4379 	proc_net_remove(net, "softnet_stat");
4380 out_dev:
4381 	proc_net_remove(net, "dev");
4382 	goto out;
4383 }
4384 
4385 static void __net_exit dev_proc_net_exit(struct net *net)
4386 {
4387 	wext_proc_exit(net);
4388 
4389 	proc_net_remove(net, "ptype");
4390 	proc_net_remove(net, "softnet_stat");
4391 	proc_net_remove(net, "dev");
4392 }
4393 
4394 static struct pernet_operations __net_initdata dev_proc_ops = {
4395 	.init = dev_proc_net_init,
4396 	.exit = dev_proc_net_exit,
4397 };
4398 
4399 static int __init dev_proc_init(void)
4400 {
4401 	return register_pernet_subsys(&dev_proc_ops);
4402 }
4403 #else
4404 #define dev_proc_init() 0
4405 #endif	/* CONFIG_PROC_FS */
4406 
4407 
4408 /**
4409  *	netdev_set_master	-	set up master pointer
4410  *	@slave: slave device
4411  *	@master: new master device
4412  *
4413  *	Changes the master device of the slave. Pass %NULL to break the
4414  *	bonding. The caller must hold the RTNL semaphore. On a failure
4415  *	a negative errno code is returned. On success the reference counts
4416  *	are adjusted and the function returns zero.
4417  */
4418 int netdev_set_master(struct net_device *slave, struct net_device *master)
4419 {
4420 	struct net_device *old = slave->master;
4421 
4422 	ASSERT_RTNL();
4423 
4424 	if (master) {
4425 		if (old)
4426 			return -EBUSY;
4427 		dev_hold(master);
4428 	}
4429 
4430 	slave->master = master;
4431 
4432 	if (old)
4433 		dev_put(old);
4434 	return 0;
4435 }
4436 EXPORT_SYMBOL(netdev_set_master);
4437 
4438 /**
4439  *	netdev_set_bond_master	-	set up bonding master/slave pair
4440  *	@slave: slave device
4441  *	@master: new master device
4442  *
4443  *	Changes the master device of the slave. Pass %NULL to break the
4444  *	bonding. The caller must hold the RTNL semaphore. On a failure
4445  *	a negative errno code is returned. On success %RTM_NEWLINK is sent
4446  *	to the routing socket and the function returns zero.
4447  */
4448 int netdev_set_bond_master(struct net_device *slave, struct net_device *master)
4449 {
4450 	int err;
4451 
4452 	ASSERT_RTNL();
4453 
4454 	err = netdev_set_master(slave, master);
4455 	if (err)
4456 		return err;
4457 	if (master)
4458 		slave->flags |= IFF_SLAVE;
4459 	else
4460 		slave->flags &= ~IFF_SLAVE;
4461 
4462 	rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
4463 	return 0;
4464 }
4465 EXPORT_SYMBOL(netdev_set_bond_master);
4466 
4467 static void dev_change_rx_flags(struct net_device *dev, int flags)
4468 {
4469 	const struct net_device_ops *ops = dev->netdev_ops;
4470 
4471 	if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
4472 		ops->ndo_change_rx_flags(dev, flags);
4473 }
4474 
4475 static int __dev_set_promiscuity(struct net_device *dev, int inc)
4476 {
4477 	unsigned int old_flags = dev->flags;
4478 	uid_t uid;
4479 	gid_t gid;
4480 
4481 	ASSERT_RTNL();
4482 
4483 	dev->flags |= IFF_PROMISC;
4484 	dev->promiscuity += inc;
4485 	if (dev->promiscuity == 0) {
4486 		/*
4487 		 * Avoid overflow.
4488 		 * If inc causes overflow, untouch promisc and return error.
4489 		 */
4490 		if (inc < 0)
4491 			dev->flags &= ~IFF_PROMISC;
4492 		else {
4493 			dev->promiscuity -= inc;
4494 			printk(KERN_WARNING "%s: promiscuity touches roof, "
4495 				"set promiscuity failed, promiscuity feature "
4496 				"of device might be broken.\n", dev->name);
4497 			return -EOVERFLOW;
4498 		}
4499 	}
4500 	if (dev->flags != old_flags) {
4501 		printk(KERN_INFO "device %s %s promiscuous mode\n",
4502 		       dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
4503 							       "left");
4504 		if (audit_enabled) {
4505 			current_uid_gid(&uid, &gid);
4506 			audit_log(current->audit_context, GFP_ATOMIC,
4507 				AUDIT_ANOM_PROMISCUOUS,
4508 				"dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
4509 				dev->name, (dev->flags & IFF_PROMISC),
4510 				(old_flags & IFF_PROMISC),
4511 				audit_get_loginuid(current),
4512 				uid, gid,
4513 				audit_get_sessionid(current));
4514 		}
4515 
4516 		dev_change_rx_flags(dev, IFF_PROMISC);
4517 	}
4518 	return 0;
4519 }
4520 
4521 /**
4522  *	dev_set_promiscuity	- update promiscuity count on a device
4523  *	@dev: device
4524  *	@inc: modifier
4525  *
4526  *	Add or remove promiscuity from a device. While the count in the device
4527  *	remains above zero the interface remains promiscuous. Once it hits zero
4528  *	the device reverts back to normal filtering operation. A negative inc
4529  *	value is used to drop promiscuity on the device.
4530  *	Return 0 if successful or a negative errno code on error.
4531  */
4532 int dev_set_promiscuity(struct net_device *dev, int inc)
4533 {
4534 	unsigned int old_flags = dev->flags;
4535 	int err;
4536 
4537 	err = __dev_set_promiscuity(dev, inc);
4538 	if (err < 0)
4539 		return err;
4540 	if (dev->flags != old_flags)
4541 		dev_set_rx_mode(dev);
4542 	return err;
4543 }
4544 EXPORT_SYMBOL(dev_set_promiscuity);
4545 
4546 /**
4547  *	dev_set_allmulti	- update allmulti count on a device
4548  *	@dev: device
4549  *	@inc: modifier
4550  *
4551  *	Add or remove reception of all multicast frames to a device. While the
4552  *	count in the device remains above zero the interface remains listening
4553  *	to all interfaces. Once it hits zero the device reverts back to normal
4554  *	filtering operation. A negative @inc value is used to drop the counter
4555  *	when releasing a resource needing all multicasts.
4556  *	Return 0 if successful or a negative errno code on error.
4557  */
4558 
4559 int dev_set_allmulti(struct net_device *dev, int inc)
4560 {
4561 	unsigned int old_flags = dev->flags;
4562 
4563 	ASSERT_RTNL();
4564 
4565 	dev->flags |= IFF_ALLMULTI;
4566 	dev->allmulti += inc;
4567 	if (dev->allmulti == 0) {
4568 		/*
4569 		 * Avoid overflow.
4570 		 * If inc causes overflow, untouch allmulti and return error.
4571 		 */
4572 		if (inc < 0)
4573 			dev->flags &= ~IFF_ALLMULTI;
4574 		else {
4575 			dev->allmulti -= inc;
4576 			printk(KERN_WARNING "%s: allmulti touches roof, "
4577 				"set allmulti failed, allmulti feature of "
4578 				"device might be broken.\n", dev->name);
4579 			return -EOVERFLOW;
4580 		}
4581 	}
4582 	if (dev->flags ^ old_flags) {
4583 		dev_change_rx_flags(dev, IFF_ALLMULTI);
4584 		dev_set_rx_mode(dev);
4585 	}
4586 	return 0;
4587 }
4588 EXPORT_SYMBOL(dev_set_allmulti);
4589 
4590 /*
4591  *	Upload unicast and multicast address lists to device and
4592  *	configure RX filtering. When the device doesn't support unicast
4593  *	filtering it is put in promiscuous mode while unicast addresses
4594  *	are present.
4595  */
4596 void __dev_set_rx_mode(struct net_device *dev)
4597 {
4598 	const struct net_device_ops *ops = dev->netdev_ops;
4599 
4600 	/* dev_open will call this function so the list will stay sane. */
4601 	if (!(dev->flags&IFF_UP))
4602 		return;
4603 
4604 	if (!netif_device_present(dev))
4605 		return;
4606 
4607 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
4608 		/* Unicast addresses changes may only happen under the rtnl,
4609 		 * therefore calling __dev_set_promiscuity here is safe.
4610 		 */
4611 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
4612 			__dev_set_promiscuity(dev, 1);
4613 			dev->uc_promisc = true;
4614 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
4615 			__dev_set_promiscuity(dev, -1);
4616 			dev->uc_promisc = false;
4617 		}
4618 	}
4619 
4620 	if (ops->ndo_set_rx_mode)
4621 		ops->ndo_set_rx_mode(dev);
4622 }
4623 
4624 void dev_set_rx_mode(struct net_device *dev)
4625 {
4626 	netif_addr_lock_bh(dev);
4627 	__dev_set_rx_mode(dev);
4628 	netif_addr_unlock_bh(dev);
4629 }
4630 
4631 /**
4632  *	dev_get_flags - get flags reported to userspace
4633  *	@dev: device
4634  *
4635  *	Get the combination of flag bits exported through APIs to userspace.
4636  */
4637 unsigned dev_get_flags(const struct net_device *dev)
4638 {
4639 	unsigned flags;
4640 
4641 	flags = (dev->flags & ~(IFF_PROMISC |
4642 				IFF_ALLMULTI |
4643 				IFF_RUNNING |
4644 				IFF_LOWER_UP |
4645 				IFF_DORMANT)) |
4646 		(dev->gflags & (IFF_PROMISC |
4647 				IFF_ALLMULTI));
4648 
4649 	if (netif_running(dev)) {
4650 		if (netif_oper_up(dev))
4651 			flags |= IFF_RUNNING;
4652 		if (netif_carrier_ok(dev))
4653 			flags |= IFF_LOWER_UP;
4654 		if (netif_dormant(dev))
4655 			flags |= IFF_DORMANT;
4656 	}
4657 
4658 	return flags;
4659 }
4660 EXPORT_SYMBOL(dev_get_flags);
4661 
4662 int __dev_change_flags(struct net_device *dev, unsigned int flags)
4663 {
4664 	unsigned int old_flags = dev->flags;
4665 	int ret;
4666 
4667 	ASSERT_RTNL();
4668 
4669 	/*
4670 	 *	Set the flags on our device.
4671 	 */
4672 
4673 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4674 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4675 			       IFF_AUTOMEDIA)) |
4676 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4677 				    IFF_ALLMULTI));
4678 
4679 	/*
4680 	 *	Load in the correct multicast list now the flags have changed.
4681 	 */
4682 
4683 	if ((old_flags ^ flags) & IFF_MULTICAST)
4684 		dev_change_rx_flags(dev, IFF_MULTICAST);
4685 
4686 	dev_set_rx_mode(dev);
4687 
4688 	/*
4689 	 *	Have we downed the interface. We handle IFF_UP ourselves
4690 	 *	according to user attempts to set it, rather than blindly
4691 	 *	setting it.
4692 	 */
4693 
4694 	ret = 0;
4695 	if ((old_flags ^ flags) & IFF_UP) {	/* Bit is different  ? */
4696 		ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
4697 
4698 		if (!ret)
4699 			dev_set_rx_mode(dev);
4700 	}
4701 
4702 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
4703 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
4704 
4705 		dev->gflags ^= IFF_PROMISC;
4706 		dev_set_promiscuity(dev, inc);
4707 	}
4708 
4709 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4710 	   is important. Some (broken) drivers set IFF_PROMISC, when
4711 	   IFF_ALLMULTI is requested not asking us and not reporting.
4712 	 */
4713 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4714 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4715 
4716 		dev->gflags ^= IFF_ALLMULTI;
4717 		dev_set_allmulti(dev, inc);
4718 	}
4719 
4720 	return ret;
4721 }
4722 
4723 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
4724 {
4725 	unsigned int changes = dev->flags ^ old_flags;
4726 
4727 	if (changes & IFF_UP) {
4728 		if (dev->flags & IFF_UP)
4729 			call_netdevice_notifiers(NETDEV_UP, dev);
4730 		else
4731 			call_netdevice_notifiers(NETDEV_DOWN, dev);
4732 	}
4733 
4734 	if (dev->flags & IFF_UP &&
4735 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE)))
4736 		call_netdevice_notifiers(NETDEV_CHANGE, dev);
4737 }
4738 
4739 /**
4740  *	dev_change_flags - change device settings
4741  *	@dev: device
4742  *	@flags: device state flags
4743  *
4744  *	Change settings on device based state flags. The flags are
4745  *	in the userspace exported format.
4746  */
4747 int dev_change_flags(struct net_device *dev, unsigned int flags)
4748 {
4749 	int ret;
4750 	unsigned int changes, old_flags = dev->flags;
4751 
4752 	ret = __dev_change_flags(dev, flags);
4753 	if (ret < 0)
4754 		return ret;
4755 
4756 	changes = old_flags ^ dev->flags;
4757 	if (changes)
4758 		rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4759 
4760 	__dev_notify_flags(dev, old_flags);
4761 	return ret;
4762 }
4763 EXPORT_SYMBOL(dev_change_flags);
4764 
4765 /**
4766  *	dev_set_mtu - Change maximum transfer unit
4767  *	@dev: device
4768  *	@new_mtu: new transfer unit
4769  *
4770  *	Change the maximum transfer size of the network device.
4771  */
4772 int dev_set_mtu(struct net_device *dev, int new_mtu)
4773 {
4774 	const struct net_device_ops *ops = dev->netdev_ops;
4775 	int err;
4776 
4777 	if (new_mtu == dev->mtu)
4778 		return 0;
4779 
4780 	/*	MTU must be positive.	 */
4781 	if (new_mtu < 0)
4782 		return -EINVAL;
4783 
4784 	if (!netif_device_present(dev))
4785 		return -ENODEV;
4786 
4787 	err = 0;
4788 	if (ops->ndo_change_mtu)
4789 		err = ops->ndo_change_mtu(dev, new_mtu);
4790 	else
4791 		dev->mtu = new_mtu;
4792 
4793 	if (!err && dev->flags & IFF_UP)
4794 		call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4795 	return err;
4796 }
4797 EXPORT_SYMBOL(dev_set_mtu);
4798 
4799 /**
4800  *	dev_set_group - Change group this device belongs to
4801  *	@dev: device
4802  *	@new_group: group this device should belong to
4803  */
4804 void dev_set_group(struct net_device *dev, int new_group)
4805 {
4806 	dev->group = new_group;
4807 }
4808 EXPORT_SYMBOL(dev_set_group);
4809 
4810 /**
4811  *	dev_set_mac_address - Change Media Access Control Address
4812  *	@dev: device
4813  *	@sa: new address
4814  *
4815  *	Change the hardware (MAC) address of the device
4816  */
4817 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4818 {
4819 	const struct net_device_ops *ops = dev->netdev_ops;
4820 	int err;
4821 
4822 	if (!ops->ndo_set_mac_address)
4823 		return -EOPNOTSUPP;
4824 	if (sa->sa_family != dev->type)
4825 		return -EINVAL;
4826 	if (!netif_device_present(dev))
4827 		return -ENODEV;
4828 	err = ops->ndo_set_mac_address(dev, sa);
4829 	if (!err)
4830 		call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4831 	return err;
4832 }
4833 EXPORT_SYMBOL(dev_set_mac_address);
4834 
4835 /*
4836  *	Perform the SIOCxIFxxx calls, inside rcu_read_lock()
4837  */
4838 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
4839 {
4840 	int err;
4841 	struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name);
4842 
4843 	if (!dev)
4844 		return -ENODEV;
4845 
4846 	switch (cmd) {
4847 	case SIOCGIFFLAGS:	/* Get interface flags */
4848 		ifr->ifr_flags = (short) dev_get_flags(dev);
4849 		return 0;
4850 
4851 	case SIOCGIFMETRIC:	/* Get the metric on the interface
4852 				   (currently unused) */
4853 		ifr->ifr_metric = 0;
4854 		return 0;
4855 
4856 	case SIOCGIFMTU:	/* Get the MTU of a device */
4857 		ifr->ifr_mtu = dev->mtu;
4858 		return 0;
4859 
4860 	case SIOCGIFHWADDR:
4861 		if (!dev->addr_len)
4862 			memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
4863 		else
4864 			memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
4865 			       min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4866 		ifr->ifr_hwaddr.sa_family = dev->type;
4867 		return 0;
4868 
4869 	case SIOCGIFSLAVE:
4870 		err = -EINVAL;
4871 		break;
4872 
4873 	case SIOCGIFMAP:
4874 		ifr->ifr_map.mem_start = dev->mem_start;
4875 		ifr->ifr_map.mem_end   = dev->mem_end;
4876 		ifr->ifr_map.base_addr = dev->base_addr;
4877 		ifr->ifr_map.irq       = dev->irq;
4878 		ifr->ifr_map.dma       = dev->dma;
4879 		ifr->ifr_map.port      = dev->if_port;
4880 		return 0;
4881 
4882 	case SIOCGIFINDEX:
4883 		ifr->ifr_ifindex = dev->ifindex;
4884 		return 0;
4885 
4886 	case SIOCGIFTXQLEN:
4887 		ifr->ifr_qlen = dev->tx_queue_len;
4888 		return 0;
4889 
4890 	default:
4891 		/* dev_ioctl() should ensure this case
4892 		 * is never reached
4893 		 */
4894 		WARN_ON(1);
4895 		err = -ENOTTY;
4896 		break;
4897 
4898 	}
4899 	return err;
4900 }
4901 
4902 /*
4903  *	Perform the SIOCxIFxxx calls, inside rtnl_lock()
4904  */
4905 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
4906 {
4907 	int err;
4908 	struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
4909 	const struct net_device_ops *ops;
4910 
4911 	if (!dev)
4912 		return -ENODEV;
4913 
4914 	ops = dev->netdev_ops;
4915 
4916 	switch (cmd) {
4917 	case SIOCSIFFLAGS:	/* Set interface flags */
4918 		return dev_change_flags(dev, ifr->ifr_flags);
4919 
4920 	case SIOCSIFMETRIC:	/* Set the metric on the interface
4921 				   (currently unused) */
4922 		return -EOPNOTSUPP;
4923 
4924 	case SIOCSIFMTU:	/* Set the MTU of a device */
4925 		return dev_set_mtu(dev, ifr->ifr_mtu);
4926 
4927 	case SIOCSIFHWADDR:
4928 		return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
4929 
4930 	case SIOCSIFHWBROADCAST:
4931 		if (ifr->ifr_hwaddr.sa_family != dev->type)
4932 			return -EINVAL;
4933 		memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
4934 		       min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4935 		call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4936 		return 0;
4937 
4938 	case SIOCSIFMAP:
4939 		if (ops->ndo_set_config) {
4940 			if (!netif_device_present(dev))
4941 				return -ENODEV;
4942 			return ops->ndo_set_config(dev, &ifr->ifr_map);
4943 		}
4944 		return -EOPNOTSUPP;
4945 
4946 	case SIOCADDMULTI:
4947 		if (!ops->ndo_set_rx_mode ||
4948 		    ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4949 			return -EINVAL;
4950 		if (!netif_device_present(dev))
4951 			return -ENODEV;
4952 		return dev_mc_add_global(dev, ifr->ifr_hwaddr.sa_data);
4953 
4954 	case SIOCDELMULTI:
4955 		if (!ops->ndo_set_rx_mode ||
4956 		    ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4957 			return -EINVAL;
4958 		if (!netif_device_present(dev))
4959 			return -ENODEV;
4960 		return dev_mc_del_global(dev, ifr->ifr_hwaddr.sa_data);
4961 
4962 	case SIOCSIFTXQLEN:
4963 		if (ifr->ifr_qlen < 0)
4964 			return -EINVAL;
4965 		dev->tx_queue_len = ifr->ifr_qlen;
4966 		return 0;
4967 
4968 	case SIOCSIFNAME:
4969 		ifr->ifr_newname[IFNAMSIZ-1] = '\0';
4970 		return dev_change_name(dev, ifr->ifr_newname);
4971 
4972 	case SIOCSHWTSTAMP:
4973 		err = net_hwtstamp_validate(ifr);
4974 		if (err)
4975 			return err;
4976 		/* fall through */
4977 
4978 	/*
4979 	 *	Unknown or private ioctl
4980 	 */
4981 	default:
4982 		if ((cmd >= SIOCDEVPRIVATE &&
4983 		    cmd <= SIOCDEVPRIVATE + 15) ||
4984 		    cmd == SIOCBONDENSLAVE ||
4985 		    cmd == SIOCBONDRELEASE ||
4986 		    cmd == SIOCBONDSETHWADDR ||
4987 		    cmd == SIOCBONDSLAVEINFOQUERY ||
4988 		    cmd == SIOCBONDINFOQUERY ||
4989 		    cmd == SIOCBONDCHANGEACTIVE ||
4990 		    cmd == SIOCGMIIPHY ||
4991 		    cmd == SIOCGMIIREG ||
4992 		    cmd == SIOCSMIIREG ||
4993 		    cmd == SIOCBRADDIF ||
4994 		    cmd == SIOCBRDELIF ||
4995 		    cmd == SIOCSHWTSTAMP ||
4996 		    cmd == SIOCWANDEV) {
4997 			err = -EOPNOTSUPP;
4998 			if (ops->ndo_do_ioctl) {
4999 				if (netif_device_present(dev))
5000 					err = ops->ndo_do_ioctl(dev, ifr, cmd);
5001 				else
5002 					err = -ENODEV;
5003 			}
5004 		} else
5005 			err = -EINVAL;
5006 
5007 	}
5008 	return err;
5009 }
5010 
5011 /*
5012  *	This function handles all "interface"-type I/O control requests. The actual
5013  *	'doing' part of this is dev_ifsioc above.
5014  */
5015 
5016 /**
5017  *	dev_ioctl	-	network device ioctl
5018  *	@net: the applicable net namespace
5019  *	@cmd: command to issue
5020  *	@arg: pointer to a struct ifreq in user space
5021  *
5022  *	Issue ioctl functions to devices. This is normally called by the
5023  *	user space syscall interfaces but can sometimes be useful for
5024  *	other purposes. The return value is the return from the syscall if
5025  *	positive or a negative errno code on error.
5026  */
5027 
5028 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
5029 {
5030 	struct ifreq ifr;
5031 	int ret;
5032 	char *colon;
5033 
5034 	/* One special case: SIOCGIFCONF takes ifconf argument
5035 	   and requires shared lock, because it sleeps writing
5036 	   to user space.
5037 	 */
5038 
5039 	if (cmd == SIOCGIFCONF) {
5040 		rtnl_lock();
5041 		ret = dev_ifconf(net, (char __user *) arg);
5042 		rtnl_unlock();
5043 		return ret;
5044 	}
5045 	if (cmd == SIOCGIFNAME)
5046 		return dev_ifname(net, (struct ifreq __user *)arg);
5047 
5048 	if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
5049 		return -EFAULT;
5050 
5051 	ifr.ifr_name[IFNAMSIZ-1] = 0;
5052 
5053 	colon = strchr(ifr.ifr_name, ':');
5054 	if (colon)
5055 		*colon = 0;
5056 
5057 	/*
5058 	 *	See which interface the caller is talking about.
5059 	 */
5060 
5061 	switch (cmd) {
5062 	/*
5063 	 *	These ioctl calls:
5064 	 *	- can be done by all.
5065 	 *	- atomic and do not require locking.
5066 	 *	- return a value
5067 	 */
5068 	case SIOCGIFFLAGS:
5069 	case SIOCGIFMETRIC:
5070 	case SIOCGIFMTU:
5071 	case SIOCGIFHWADDR:
5072 	case SIOCGIFSLAVE:
5073 	case SIOCGIFMAP:
5074 	case SIOCGIFINDEX:
5075 	case SIOCGIFTXQLEN:
5076 		dev_load(net, ifr.ifr_name);
5077 		rcu_read_lock();
5078 		ret = dev_ifsioc_locked(net, &ifr, cmd);
5079 		rcu_read_unlock();
5080 		if (!ret) {
5081 			if (colon)
5082 				*colon = ':';
5083 			if (copy_to_user(arg, &ifr,
5084 					 sizeof(struct ifreq)))
5085 				ret = -EFAULT;
5086 		}
5087 		return ret;
5088 
5089 	case SIOCETHTOOL:
5090 		dev_load(net, ifr.ifr_name);
5091 		rtnl_lock();
5092 		ret = dev_ethtool(net, &ifr);
5093 		rtnl_unlock();
5094 		if (!ret) {
5095 			if (colon)
5096 				*colon = ':';
5097 			if (copy_to_user(arg, &ifr,
5098 					 sizeof(struct ifreq)))
5099 				ret = -EFAULT;
5100 		}
5101 		return ret;
5102 
5103 	/*
5104 	 *	These ioctl calls:
5105 	 *	- require superuser power.
5106 	 *	- require strict serialization.
5107 	 *	- return a value
5108 	 */
5109 	case SIOCGMIIPHY:
5110 	case SIOCGMIIREG:
5111 	case SIOCSIFNAME:
5112 		if (!capable(CAP_NET_ADMIN))
5113 			return -EPERM;
5114 		dev_load(net, ifr.ifr_name);
5115 		rtnl_lock();
5116 		ret = dev_ifsioc(net, &ifr, cmd);
5117 		rtnl_unlock();
5118 		if (!ret) {
5119 			if (colon)
5120 				*colon = ':';
5121 			if (copy_to_user(arg, &ifr,
5122 					 sizeof(struct ifreq)))
5123 				ret = -EFAULT;
5124 		}
5125 		return ret;
5126 
5127 	/*
5128 	 *	These ioctl calls:
5129 	 *	- require superuser power.
5130 	 *	- require strict serialization.
5131 	 *	- do not return a value
5132 	 */
5133 	case SIOCSIFFLAGS:
5134 	case SIOCSIFMETRIC:
5135 	case SIOCSIFMTU:
5136 	case SIOCSIFMAP:
5137 	case SIOCSIFHWADDR:
5138 	case SIOCSIFSLAVE:
5139 	case SIOCADDMULTI:
5140 	case SIOCDELMULTI:
5141 	case SIOCSIFHWBROADCAST:
5142 	case SIOCSIFTXQLEN:
5143 	case SIOCSMIIREG:
5144 	case SIOCBONDENSLAVE:
5145 	case SIOCBONDRELEASE:
5146 	case SIOCBONDSETHWADDR:
5147 	case SIOCBONDCHANGEACTIVE:
5148 	case SIOCBRADDIF:
5149 	case SIOCBRDELIF:
5150 	case SIOCSHWTSTAMP:
5151 		if (!capable(CAP_NET_ADMIN))
5152 			return -EPERM;
5153 		/* fall through */
5154 	case SIOCBONDSLAVEINFOQUERY:
5155 	case SIOCBONDINFOQUERY:
5156 		dev_load(net, ifr.ifr_name);
5157 		rtnl_lock();
5158 		ret = dev_ifsioc(net, &ifr, cmd);
5159 		rtnl_unlock();
5160 		return ret;
5161 
5162 	case SIOCGIFMEM:
5163 		/* Get the per device memory space. We can add this but
5164 		 * currently do not support it */
5165 	case SIOCSIFMEM:
5166 		/* Set the per device memory buffer space.
5167 		 * Not applicable in our case */
5168 	case SIOCSIFLINK:
5169 		return -ENOTTY;
5170 
5171 	/*
5172 	 *	Unknown or private ioctl.
5173 	 */
5174 	default:
5175 		if (cmd == SIOCWANDEV ||
5176 		    (cmd >= SIOCDEVPRIVATE &&
5177 		     cmd <= SIOCDEVPRIVATE + 15)) {
5178 			dev_load(net, ifr.ifr_name);
5179 			rtnl_lock();
5180 			ret = dev_ifsioc(net, &ifr, cmd);
5181 			rtnl_unlock();
5182 			if (!ret && copy_to_user(arg, &ifr,
5183 						 sizeof(struct ifreq)))
5184 				ret = -EFAULT;
5185 			return ret;
5186 		}
5187 		/* Take care of Wireless Extensions */
5188 		if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
5189 			return wext_handle_ioctl(net, &ifr, cmd, arg);
5190 		return -ENOTTY;
5191 	}
5192 }
5193 
5194 
5195 /**
5196  *	dev_new_index	-	allocate an ifindex
5197  *	@net: the applicable net namespace
5198  *
5199  *	Returns a suitable unique value for a new device interface
5200  *	number.  The caller must hold the rtnl semaphore or the
5201  *	dev_base_lock to be sure it remains unique.
5202  */
5203 static int dev_new_index(struct net *net)
5204 {
5205 	static int ifindex;
5206 	for (;;) {
5207 		if (++ifindex <= 0)
5208 			ifindex = 1;
5209 		if (!__dev_get_by_index(net, ifindex))
5210 			return ifindex;
5211 	}
5212 }
5213 
5214 /* Delayed registration/unregisteration */
5215 static LIST_HEAD(net_todo_list);
5216 
5217 static void net_set_todo(struct net_device *dev)
5218 {
5219 	list_add_tail(&dev->todo_list, &net_todo_list);
5220 }
5221 
5222 static void rollback_registered_many(struct list_head *head)
5223 {
5224 	struct net_device *dev, *tmp;
5225 
5226 	BUG_ON(dev_boot_phase);
5227 	ASSERT_RTNL();
5228 
5229 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
5230 		/* Some devices call without registering
5231 		 * for initialization unwind. Remove those
5232 		 * devices and proceed with the remaining.
5233 		 */
5234 		if (dev->reg_state == NETREG_UNINITIALIZED) {
5235 			pr_debug("unregister_netdevice: device %s/%p never "
5236 				 "was registered\n", dev->name, dev);
5237 
5238 			WARN_ON(1);
5239 			list_del(&dev->unreg_list);
5240 			continue;
5241 		}
5242 		dev->dismantle = true;
5243 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
5244 	}
5245 
5246 	/* If device is running, close it first. */
5247 	dev_close_many(head);
5248 
5249 	list_for_each_entry(dev, head, unreg_list) {
5250 		/* And unlink it from device chain. */
5251 		unlist_netdevice(dev);
5252 
5253 		dev->reg_state = NETREG_UNREGISTERING;
5254 	}
5255 
5256 	synchronize_net();
5257 
5258 	list_for_each_entry(dev, head, unreg_list) {
5259 		/* Shutdown queueing discipline. */
5260 		dev_shutdown(dev);
5261 
5262 
5263 		/* Notify protocols, that we are about to destroy
5264 		   this device. They should clean all the things.
5265 		*/
5266 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5267 
5268 		if (!dev->rtnl_link_ops ||
5269 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5270 			rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
5271 
5272 		/*
5273 		 *	Flush the unicast and multicast chains
5274 		 */
5275 		dev_uc_flush(dev);
5276 		dev_mc_flush(dev);
5277 
5278 		if (dev->netdev_ops->ndo_uninit)
5279 			dev->netdev_ops->ndo_uninit(dev);
5280 
5281 		/* Notifier chain MUST detach us from master device. */
5282 		WARN_ON(dev->master);
5283 
5284 		/* Remove entries from kobject tree */
5285 		netdev_unregister_kobject(dev);
5286 	}
5287 
5288 	/* Process any work delayed until the end of the batch */
5289 	dev = list_first_entry(head, struct net_device, unreg_list);
5290 	call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
5291 
5292 	synchronize_net();
5293 
5294 	list_for_each_entry(dev, head, unreg_list)
5295 		dev_put(dev);
5296 }
5297 
5298 static void rollback_registered(struct net_device *dev)
5299 {
5300 	LIST_HEAD(single);
5301 
5302 	list_add(&dev->unreg_list, &single);
5303 	rollback_registered_many(&single);
5304 	list_del(&single);
5305 }
5306 
5307 static netdev_features_t netdev_fix_features(struct net_device *dev,
5308 	netdev_features_t features)
5309 {
5310 	/* Fix illegal checksum combinations */
5311 	if ((features & NETIF_F_HW_CSUM) &&
5312 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5313 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
5314 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5315 	}
5316 
5317 	/* Fix illegal SG+CSUM combinations. */
5318 	if ((features & NETIF_F_SG) &&
5319 	    !(features & NETIF_F_ALL_CSUM)) {
5320 		netdev_dbg(dev,
5321 			"Dropping NETIF_F_SG since no checksum feature.\n");
5322 		features &= ~NETIF_F_SG;
5323 	}
5324 
5325 	/* TSO requires that SG is present as well. */
5326 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
5327 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
5328 		features &= ~NETIF_F_ALL_TSO;
5329 	}
5330 
5331 	/* TSO ECN requires that TSO is present as well. */
5332 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
5333 		features &= ~NETIF_F_TSO_ECN;
5334 
5335 	/* Software GSO depends on SG. */
5336 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
5337 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
5338 		features &= ~NETIF_F_GSO;
5339 	}
5340 
5341 	/* UFO needs SG and checksumming */
5342 	if (features & NETIF_F_UFO) {
5343 		/* maybe split UFO into V4 and V6? */
5344 		if (!((features & NETIF_F_GEN_CSUM) ||
5345 		    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
5346 			    == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5347 			netdev_dbg(dev,
5348 				"Dropping NETIF_F_UFO since no checksum offload features.\n");
5349 			features &= ~NETIF_F_UFO;
5350 		}
5351 
5352 		if (!(features & NETIF_F_SG)) {
5353 			netdev_dbg(dev,
5354 				"Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
5355 			features &= ~NETIF_F_UFO;
5356 		}
5357 	}
5358 
5359 	return features;
5360 }
5361 
5362 int __netdev_update_features(struct net_device *dev)
5363 {
5364 	netdev_features_t features;
5365 	int err = 0;
5366 
5367 	ASSERT_RTNL();
5368 
5369 	features = netdev_get_wanted_features(dev);
5370 
5371 	if (dev->netdev_ops->ndo_fix_features)
5372 		features = dev->netdev_ops->ndo_fix_features(dev, features);
5373 
5374 	/* driver might be less strict about feature dependencies */
5375 	features = netdev_fix_features(dev, features);
5376 
5377 	if (dev->features == features)
5378 		return 0;
5379 
5380 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
5381 		&dev->features, &features);
5382 
5383 	if (dev->netdev_ops->ndo_set_features)
5384 		err = dev->netdev_ops->ndo_set_features(dev, features);
5385 
5386 	if (unlikely(err < 0)) {
5387 		netdev_err(dev,
5388 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
5389 			err, &features, &dev->features);
5390 		return -1;
5391 	}
5392 
5393 	if (!err)
5394 		dev->features = features;
5395 
5396 	return 1;
5397 }
5398 
5399 /**
5400  *	netdev_update_features - recalculate device features
5401  *	@dev: the device to check
5402  *
5403  *	Recalculate dev->features set and send notifications if it
5404  *	has changed. Should be called after driver or hardware dependent
5405  *	conditions might have changed that influence the features.
5406  */
5407 void netdev_update_features(struct net_device *dev)
5408 {
5409 	if (__netdev_update_features(dev))
5410 		netdev_features_change(dev);
5411 }
5412 EXPORT_SYMBOL(netdev_update_features);
5413 
5414 /**
5415  *	netdev_change_features - recalculate device features
5416  *	@dev: the device to check
5417  *
5418  *	Recalculate dev->features set and send notifications even
5419  *	if they have not changed. Should be called instead of
5420  *	netdev_update_features() if also dev->vlan_features might
5421  *	have changed to allow the changes to be propagated to stacked
5422  *	VLAN devices.
5423  */
5424 void netdev_change_features(struct net_device *dev)
5425 {
5426 	__netdev_update_features(dev);
5427 	netdev_features_change(dev);
5428 }
5429 EXPORT_SYMBOL(netdev_change_features);
5430 
5431 /**
5432  *	netif_stacked_transfer_operstate -	transfer operstate
5433  *	@rootdev: the root or lower level device to transfer state from
5434  *	@dev: the device to transfer operstate to
5435  *
5436  *	Transfer operational state from root to device. This is normally
5437  *	called when a stacking relationship exists between the root
5438  *	device and the device(a leaf device).
5439  */
5440 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5441 					struct net_device *dev)
5442 {
5443 	if (rootdev->operstate == IF_OPER_DORMANT)
5444 		netif_dormant_on(dev);
5445 	else
5446 		netif_dormant_off(dev);
5447 
5448 	if (netif_carrier_ok(rootdev)) {
5449 		if (!netif_carrier_ok(dev))
5450 			netif_carrier_on(dev);
5451 	} else {
5452 		if (netif_carrier_ok(dev))
5453 			netif_carrier_off(dev);
5454 	}
5455 }
5456 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5457 
5458 #ifdef CONFIG_RPS
5459 static int netif_alloc_rx_queues(struct net_device *dev)
5460 {
5461 	unsigned int i, count = dev->num_rx_queues;
5462 	struct netdev_rx_queue *rx;
5463 
5464 	BUG_ON(count < 1);
5465 
5466 	rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5467 	if (!rx) {
5468 		pr_err("netdev: Unable to allocate %u rx queues.\n", count);
5469 		return -ENOMEM;
5470 	}
5471 	dev->_rx = rx;
5472 
5473 	for (i = 0; i < count; i++)
5474 		rx[i].dev = dev;
5475 	return 0;
5476 }
5477 #endif
5478 
5479 static void netdev_init_one_queue(struct net_device *dev,
5480 				  struct netdev_queue *queue, void *_unused)
5481 {
5482 	/* Initialize queue lock */
5483 	spin_lock_init(&queue->_xmit_lock);
5484 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
5485 	queue->xmit_lock_owner = -1;
5486 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
5487 	queue->dev = dev;
5488 #ifdef CONFIG_BQL
5489 	dql_init(&queue->dql, HZ);
5490 #endif
5491 }
5492 
5493 static int netif_alloc_netdev_queues(struct net_device *dev)
5494 {
5495 	unsigned int count = dev->num_tx_queues;
5496 	struct netdev_queue *tx;
5497 
5498 	BUG_ON(count < 1);
5499 
5500 	tx = kcalloc(count, sizeof(struct netdev_queue), GFP_KERNEL);
5501 	if (!tx) {
5502 		pr_err("netdev: Unable to allocate %u tx queues.\n",
5503 		       count);
5504 		return -ENOMEM;
5505 	}
5506 	dev->_tx = tx;
5507 
5508 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5509 	spin_lock_init(&dev->tx_global_lock);
5510 
5511 	return 0;
5512 }
5513 
5514 /**
5515  *	register_netdevice	- register a network device
5516  *	@dev: device to register
5517  *
5518  *	Take a completed network device structure and add it to the kernel
5519  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5520  *	chain. 0 is returned on success. A negative errno code is returned
5521  *	on a failure to set up the device, or if the name is a duplicate.
5522  *
5523  *	Callers must hold the rtnl semaphore. You may want
5524  *	register_netdev() instead of this.
5525  *
5526  *	BUGS:
5527  *	The locking appears insufficient to guarantee two parallel registers
5528  *	will not get the same name.
5529  */
5530 
5531 int register_netdevice(struct net_device *dev)
5532 {
5533 	int ret;
5534 	struct net *net = dev_net(dev);
5535 
5536 	BUG_ON(dev_boot_phase);
5537 	ASSERT_RTNL();
5538 
5539 	might_sleep();
5540 
5541 	/* When net_device's are persistent, this will be fatal. */
5542 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
5543 	BUG_ON(!net);
5544 
5545 	spin_lock_init(&dev->addr_list_lock);
5546 	netdev_set_addr_lockdep_class(dev);
5547 
5548 	dev->iflink = -1;
5549 
5550 	ret = dev_get_valid_name(dev, dev->name);
5551 	if (ret < 0)
5552 		goto out;
5553 
5554 	/* Init, if this function is available */
5555 	if (dev->netdev_ops->ndo_init) {
5556 		ret = dev->netdev_ops->ndo_init(dev);
5557 		if (ret) {
5558 			if (ret > 0)
5559 				ret = -EIO;
5560 			goto out;
5561 		}
5562 	}
5563 
5564 	dev->ifindex = dev_new_index(net);
5565 	if (dev->iflink == -1)
5566 		dev->iflink = dev->ifindex;
5567 
5568 	/* Transfer changeable features to wanted_features and enable
5569 	 * software offloads (GSO and GRO).
5570 	 */
5571 	dev->hw_features |= NETIF_F_SOFT_FEATURES;
5572 	dev->features |= NETIF_F_SOFT_FEATURES;
5573 	dev->wanted_features = dev->features & dev->hw_features;
5574 
5575 	/* Turn on no cache copy if HW is doing checksum */
5576 	if (!(dev->flags & IFF_LOOPBACK)) {
5577 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
5578 		if (dev->features & NETIF_F_ALL_CSUM) {
5579 			dev->wanted_features |= NETIF_F_NOCACHE_COPY;
5580 			dev->features |= NETIF_F_NOCACHE_COPY;
5581 		}
5582 	}
5583 
5584 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
5585 	 */
5586 	dev->vlan_features |= NETIF_F_HIGHDMA;
5587 
5588 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5589 	ret = notifier_to_errno(ret);
5590 	if (ret)
5591 		goto err_uninit;
5592 
5593 	ret = netdev_register_kobject(dev);
5594 	if (ret)
5595 		goto err_uninit;
5596 	dev->reg_state = NETREG_REGISTERED;
5597 
5598 	__netdev_update_features(dev);
5599 
5600 	/*
5601 	 *	Default initial state at registry is that the
5602 	 *	device is present.
5603 	 */
5604 
5605 	set_bit(__LINK_STATE_PRESENT, &dev->state);
5606 
5607 	dev_init_scheduler(dev);
5608 	dev_hold(dev);
5609 	list_netdevice(dev);
5610 
5611 	/* Notify protocols, that a new device appeared. */
5612 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5613 	ret = notifier_to_errno(ret);
5614 	if (ret) {
5615 		rollback_registered(dev);
5616 		dev->reg_state = NETREG_UNREGISTERED;
5617 	}
5618 	/*
5619 	 *	Prevent userspace races by waiting until the network
5620 	 *	device is fully setup before sending notifications.
5621 	 */
5622 	if (!dev->rtnl_link_ops ||
5623 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5624 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5625 
5626 out:
5627 	return ret;
5628 
5629 err_uninit:
5630 	if (dev->netdev_ops->ndo_uninit)
5631 		dev->netdev_ops->ndo_uninit(dev);
5632 	goto out;
5633 }
5634 EXPORT_SYMBOL(register_netdevice);
5635 
5636 /**
5637  *	init_dummy_netdev	- init a dummy network device for NAPI
5638  *	@dev: device to init
5639  *
5640  *	This takes a network device structure and initialize the minimum
5641  *	amount of fields so it can be used to schedule NAPI polls without
5642  *	registering a full blown interface. This is to be used by drivers
5643  *	that need to tie several hardware interfaces to a single NAPI
5644  *	poll scheduler due to HW limitations.
5645  */
5646 int init_dummy_netdev(struct net_device *dev)
5647 {
5648 	/* Clear everything. Note we don't initialize spinlocks
5649 	 * are they aren't supposed to be taken by any of the
5650 	 * NAPI code and this dummy netdev is supposed to be
5651 	 * only ever used for NAPI polls
5652 	 */
5653 	memset(dev, 0, sizeof(struct net_device));
5654 
5655 	/* make sure we BUG if trying to hit standard
5656 	 * register/unregister code path
5657 	 */
5658 	dev->reg_state = NETREG_DUMMY;
5659 
5660 	/* NAPI wants this */
5661 	INIT_LIST_HEAD(&dev->napi_list);
5662 
5663 	/* a dummy interface is started by default */
5664 	set_bit(__LINK_STATE_PRESENT, &dev->state);
5665 	set_bit(__LINK_STATE_START, &dev->state);
5666 
5667 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
5668 	 * because users of this 'device' dont need to change
5669 	 * its refcount.
5670 	 */
5671 
5672 	return 0;
5673 }
5674 EXPORT_SYMBOL_GPL(init_dummy_netdev);
5675 
5676 
5677 /**
5678  *	register_netdev	- register a network device
5679  *	@dev: device to register
5680  *
5681  *	Take a completed network device structure and add it to the kernel
5682  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5683  *	chain. 0 is returned on success. A negative errno code is returned
5684  *	on a failure to set up the device, or if the name is a duplicate.
5685  *
5686  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
5687  *	and expands the device name if you passed a format string to
5688  *	alloc_netdev.
5689  */
5690 int register_netdev(struct net_device *dev)
5691 {
5692 	int err;
5693 
5694 	rtnl_lock();
5695 	err = register_netdevice(dev);
5696 	rtnl_unlock();
5697 	return err;
5698 }
5699 EXPORT_SYMBOL(register_netdev);
5700 
5701 int netdev_refcnt_read(const struct net_device *dev)
5702 {
5703 	int i, refcnt = 0;
5704 
5705 	for_each_possible_cpu(i)
5706 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
5707 	return refcnt;
5708 }
5709 EXPORT_SYMBOL(netdev_refcnt_read);
5710 
5711 /*
5712  * netdev_wait_allrefs - wait until all references are gone.
5713  *
5714  * This is called when unregistering network devices.
5715  *
5716  * Any protocol or device that holds a reference should register
5717  * for netdevice notification, and cleanup and put back the
5718  * reference if they receive an UNREGISTER event.
5719  * We can get stuck here if buggy protocols don't correctly
5720  * call dev_put.
5721  */
5722 static void netdev_wait_allrefs(struct net_device *dev)
5723 {
5724 	unsigned long rebroadcast_time, warning_time;
5725 	int refcnt;
5726 
5727 	linkwatch_forget_dev(dev);
5728 
5729 	rebroadcast_time = warning_time = jiffies;
5730 	refcnt = netdev_refcnt_read(dev);
5731 
5732 	while (refcnt != 0) {
5733 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5734 			rtnl_lock();
5735 
5736 			/* Rebroadcast unregister notification */
5737 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5738 			/* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users
5739 			 * should have already handle it the first time */
5740 
5741 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5742 				     &dev->state)) {
5743 				/* We must not have linkwatch events
5744 				 * pending on unregister. If this
5745 				 * happens, we simply run the queue
5746 				 * unscheduled, resulting in a noop
5747 				 * for this device.
5748 				 */
5749 				linkwatch_run_queue();
5750 			}
5751 
5752 			__rtnl_unlock();
5753 
5754 			rebroadcast_time = jiffies;
5755 		}
5756 
5757 		msleep(250);
5758 
5759 		refcnt = netdev_refcnt_read(dev);
5760 
5761 		if (time_after(jiffies, warning_time + 10 * HZ)) {
5762 			printk(KERN_EMERG "unregister_netdevice: "
5763 			       "waiting for %s to become free. Usage "
5764 			       "count = %d\n",
5765 			       dev->name, refcnt);
5766 			warning_time = jiffies;
5767 		}
5768 	}
5769 }
5770 
5771 /* The sequence is:
5772  *
5773  *	rtnl_lock();
5774  *	...
5775  *	register_netdevice(x1);
5776  *	register_netdevice(x2);
5777  *	...
5778  *	unregister_netdevice(y1);
5779  *	unregister_netdevice(y2);
5780  *      ...
5781  *	rtnl_unlock();
5782  *	free_netdev(y1);
5783  *	free_netdev(y2);
5784  *
5785  * We are invoked by rtnl_unlock().
5786  * This allows us to deal with problems:
5787  * 1) We can delete sysfs objects which invoke hotplug
5788  *    without deadlocking with linkwatch via keventd.
5789  * 2) Since we run with the RTNL semaphore not held, we can sleep
5790  *    safely in order to wait for the netdev refcnt to drop to zero.
5791  *
5792  * We must not return until all unregister events added during
5793  * the interval the lock was held have been completed.
5794  */
5795 void netdev_run_todo(void)
5796 {
5797 	struct list_head list;
5798 
5799 	/* Snapshot list, allow later requests */
5800 	list_replace_init(&net_todo_list, &list);
5801 
5802 	__rtnl_unlock();
5803 
5804 	/* Wait for rcu callbacks to finish before attempting to drain
5805 	 * the device list.  This usually avoids a 250ms wait.
5806 	 */
5807 	if (!list_empty(&list))
5808 		rcu_barrier();
5809 
5810 	while (!list_empty(&list)) {
5811 		struct net_device *dev
5812 			= list_first_entry(&list, struct net_device, todo_list);
5813 		list_del(&dev->todo_list);
5814 
5815 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5816 			printk(KERN_ERR "network todo '%s' but state %d\n",
5817 			       dev->name, dev->reg_state);
5818 			dump_stack();
5819 			continue;
5820 		}
5821 
5822 		dev->reg_state = NETREG_UNREGISTERED;
5823 
5824 		on_each_cpu(flush_backlog, dev, 1);
5825 
5826 		netdev_wait_allrefs(dev);
5827 
5828 		/* paranoia */
5829 		BUG_ON(netdev_refcnt_read(dev));
5830 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
5831 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
5832 		WARN_ON(dev->dn_ptr);
5833 
5834 		if (dev->destructor)
5835 			dev->destructor(dev);
5836 
5837 		/* Free network device */
5838 		kobject_put(&dev->dev.kobj);
5839 	}
5840 }
5841 
5842 /* Convert net_device_stats to rtnl_link_stats64.  They have the same
5843  * fields in the same order, with only the type differing.
5844  */
5845 static void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
5846 				    const struct net_device_stats *netdev_stats)
5847 {
5848 #if BITS_PER_LONG == 64
5849         BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
5850         memcpy(stats64, netdev_stats, sizeof(*stats64));
5851 #else
5852 	size_t i, n = sizeof(*stats64) / sizeof(u64);
5853 	const unsigned long *src = (const unsigned long *)netdev_stats;
5854 	u64 *dst = (u64 *)stats64;
5855 
5856 	BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
5857 		     sizeof(*stats64) / sizeof(u64));
5858 	for (i = 0; i < n; i++)
5859 		dst[i] = src[i];
5860 #endif
5861 }
5862 
5863 /**
5864  *	dev_get_stats	- get network device statistics
5865  *	@dev: device to get statistics from
5866  *	@storage: place to store stats
5867  *
5868  *	Get network statistics from device. Return @storage.
5869  *	The device driver may provide its own method by setting
5870  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
5871  *	otherwise the internal statistics structure is used.
5872  */
5873 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
5874 					struct rtnl_link_stats64 *storage)
5875 {
5876 	const struct net_device_ops *ops = dev->netdev_ops;
5877 
5878 	if (ops->ndo_get_stats64) {
5879 		memset(storage, 0, sizeof(*storage));
5880 		ops->ndo_get_stats64(dev, storage);
5881 	} else if (ops->ndo_get_stats) {
5882 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
5883 	} else {
5884 		netdev_stats_to_stats64(storage, &dev->stats);
5885 	}
5886 	storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
5887 	return storage;
5888 }
5889 EXPORT_SYMBOL(dev_get_stats);
5890 
5891 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
5892 {
5893 	struct netdev_queue *queue = dev_ingress_queue(dev);
5894 
5895 #ifdef CONFIG_NET_CLS_ACT
5896 	if (queue)
5897 		return queue;
5898 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
5899 	if (!queue)
5900 		return NULL;
5901 	netdev_init_one_queue(dev, queue, NULL);
5902 	queue->qdisc = &noop_qdisc;
5903 	queue->qdisc_sleeping = &noop_qdisc;
5904 	rcu_assign_pointer(dev->ingress_queue, queue);
5905 #endif
5906 	return queue;
5907 }
5908 
5909 /**
5910  *	alloc_netdev_mqs - allocate network device
5911  *	@sizeof_priv:	size of private data to allocate space for
5912  *	@name:		device name format string
5913  *	@setup:		callback to initialize device
5914  *	@txqs:		the number of TX subqueues to allocate
5915  *	@rxqs:		the number of RX subqueues to allocate
5916  *
5917  *	Allocates a struct net_device with private data area for driver use
5918  *	and performs basic initialization.  Also allocates subquue structs
5919  *	for each queue on the device.
5920  */
5921 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
5922 		void (*setup)(struct net_device *),
5923 		unsigned int txqs, unsigned int rxqs)
5924 {
5925 	struct net_device *dev;
5926 	size_t alloc_size;
5927 	struct net_device *p;
5928 
5929 	BUG_ON(strlen(name) >= sizeof(dev->name));
5930 
5931 	if (txqs < 1) {
5932 		pr_err("alloc_netdev: Unable to allocate device "
5933 		       "with zero queues.\n");
5934 		return NULL;
5935 	}
5936 
5937 #ifdef CONFIG_RPS
5938 	if (rxqs < 1) {
5939 		pr_err("alloc_netdev: Unable to allocate device "
5940 		       "with zero RX queues.\n");
5941 		return NULL;
5942 	}
5943 #endif
5944 
5945 	alloc_size = sizeof(struct net_device);
5946 	if (sizeof_priv) {
5947 		/* ensure 32-byte alignment of private area */
5948 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
5949 		alloc_size += sizeof_priv;
5950 	}
5951 	/* ensure 32-byte alignment of whole construct */
5952 	alloc_size += NETDEV_ALIGN - 1;
5953 
5954 	p = kzalloc(alloc_size, GFP_KERNEL);
5955 	if (!p) {
5956 		printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
5957 		return NULL;
5958 	}
5959 
5960 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
5961 	dev->padded = (char *)dev - (char *)p;
5962 
5963 	dev->pcpu_refcnt = alloc_percpu(int);
5964 	if (!dev->pcpu_refcnt)
5965 		goto free_p;
5966 
5967 	if (dev_addr_init(dev))
5968 		goto free_pcpu;
5969 
5970 	dev_mc_init(dev);
5971 	dev_uc_init(dev);
5972 
5973 	dev_net_set(dev, &init_net);
5974 
5975 	dev->gso_max_size = GSO_MAX_SIZE;
5976 
5977 	INIT_LIST_HEAD(&dev->napi_list);
5978 	INIT_LIST_HEAD(&dev->unreg_list);
5979 	INIT_LIST_HEAD(&dev->link_watch_list);
5980 	dev->priv_flags = IFF_XMIT_DST_RELEASE;
5981 	setup(dev);
5982 
5983 	dev->num_tx_queues = txqs;
5984 	dev->real_num_tx_queues = txqs;
5985 	if (netif_alloc_netdev_queues(dev))
5986 		goto free_all;
5987 
5988 #ifdef CONFIG_RPS
5989 	dev->num_rx_queues = rxqs;
5990 	dev->real_num_rx_queues = rxqs;
5991 	if (netif_alloc_rx_queues(dev))
5992 		goto free_all;
5993 #endif
5994 
5995 	strcpy(dev->name, name);
5996 	dev->group = INIT_NETDEV_GROUP;
5997 	return dev;
5998 
5999 free_all:
6000 	free_netdev(dev);
6001 	return NULL;
6002 
6003 free_pcpu:
6004 	free_percpu(dev->pcpu_refcnt);
6005 	kfree(dev->_tx);
6006 #ifdef CONFIG_RPS
6007 	kfree(dev->_rx);
6008 #endif
6009 
6010 free_p:
6011 	kfree(p);
6012 	return NULL;
6013 }
6014 EXPORT_SYMBOL(alloc_netdev_mqs);
6015 
6016 /**
6017  *	free_netdev - free network device
6018  *	@dev: device
6019  *
6020  *	This function does the last stage of destroying an allocated device
6021  * 	interface. The reference to the device object is released.
6022  *	If this is the last reference then it will be freed.
6023  */
6024 void free_netdev(struct net_device *dev)
6025 {
6026 	struct napi_struct *p, *n;
6027 
6028 	release_net(dev_net(dev));
6029 
6030 	kfree(dev->_tx);
6031 #ifdef CONFIG_RPS
6032 	kfree(dev->_rx);
6033 #endif
6034 
6035 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
6036 
6037 	/* Flush device addresses */
6038 	dev_addr_flush(dev);
6039 
6040 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
6041 		netif_napi_del(p);
6042 
6043 	free_percpu(dev->pcpu_refcnt);
6044 	dev->pcpu_refcnt = NULL;
6045 
6046 	/*  Compatibility with error handling in drivers */
6047 	if (dev->reg_state == NETREG_UNINITIALIZED) {
6048 		kfree((char *)dev - dev->padded);
6049 		return;
6050 	}
6051 
6052 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
6053 	dev->reg_state = NETREG_RELEASED;
6054 
6055 	/* will free via device release */
6056 	put_device(&dev->dev);
6057 }
6058 EXPORT_SYMBOL(free_netdev);
6059 
6060 /**
6061  *	synchronize_net -  Synchronize with packet receive processing
6062  *
6063  *	Wait for packets currently being received to be done.
6064  *	Does not block later packets from starting.
6065  */
6066 void synchronize_net(void)
6067 {
6068 	might_sleep();
6069 	if (rtnl_is_locked())
6070 		synchronize_rcu_expedited();
6071 	else
6072 		synchronize_rcu();
6073 }
6074 EXPORT_SYMBOL(synchronize_net);
6075 
6076 /**
6077  *	unregister_netdevice_queue - remove device from the kernel
6078  *	@dev: device
6079  *	@head: list
6080  *
6081  *	This function shuts down a device interface and removes it
6082  *	from the kernel tables.
6083  *	If head not NULL, device is queued to be unregistered later.
6084  *
6085  *	Callers must hold the rtnl semaphore.  You may want
6086  *	unregister_netdev() instead of this.
6087  */
6088 
6089 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
6090 {
6091 	ASSERT_RTNL();
6092 
6093 	if (head) {
6094 		list_move_tail(&dev->unreg_list, head);
6095 	} else {
6096 		rollback_registered(dev);
6097 		/* Finish processing unregister after unlock */
6098 		net_set_todo(dev);
6099 	}
6100 }
6101 EXPORT_SYMBOL(unregister_netdevice_queue);
6102 
6103 /**
6104  *	unregister_netdevice_many - unregister many devices
6105  *	@head: list of devices
6106  */
6107 void unregister_netdevice_many(struct list_head *head)
6108 {
6109 	struct net_device *dev;
6110 
6111 	if (!list_empty(head)) {
6112 		rollback_registered_many(head);
6113 		list_for_each_entry(dev, head, unreg_list)
6114 			net_set_todo(dev);
6115 	}
6116 }
6117 EXPORT_SYMBOL(unregister_netdevice_many);
6118 
6119 /**
6120  *	unregister_netdev - remove device from the kernel
6121  *	@dev: device
6122  *
6123  *	This function shuts down a device interface and removes it
6124  *	from the kernel tables.
6125  *
6126  *	This is just a wrapper for unregister_netdevice that takes
6127  *	the rtnl semaphore.  In general you want to use this and not
6128  *	unregister_netdevice.
6129  */
6130 void unregister_netdev(struct net_device *dev)
6131 {
6132 	rtnl_lock();
6133 	unregister_netdevice(dev);
6134 	rtnl_unlock();
6135 }
6136 EXPORT_SYMBOL(unregister_netdev);
6137 
6138 /**
6139  *	dev_change_net_namespace - move device to different nethost namespace
6140  *	@dev: device
6141  *	@net: network namespace
6142  *	@pat: If not NULL name pattern to try if the current device name
6143  *	      is already taken in the destination network namespace.
6144  *
6145  *	This function shuts down a device interface and moves it
6146  *	to a new network namespace. On success 0 is returned, on
6147  *	a failure a netagive errno code is returned.
6148  *
6149  *	Callers must hold the rtnl semaphore.
6150  */
6151 
6152 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
6153 {
6154 	int err;
6155 
6156 	ASSERT_RTNL();
6157 
6158 	/* Don't allow namespace local devices to be moved. */
6159 	err = -EINVAL;
6160 	if (dev->features & NETIF_F_NETNS_LOCAL)
6161 		goto out;
6162 
6163 	/* Ensure the device has been registrered */
6164 	err = -EINVAL;
6165 	if (dev->reg_state != NETREG_REGISTERED)
6166 		goto out;
6167 
6168 	/* Get out if there is nothing todo */
6169 	err = 0;
6170 	if (net_eq(dev_net(dev), net))
6171 		goto out;
6172 
6173 	/* Pick the destination device name, and ensure
6174 	 * we can use it in the destination network namespace.
6175 	 */
6176 	err = -EEXIST;
6177 	if (__dev_get_by_name(net, dev->name)) {
6178 		/* We get here if we can't use the current device name */
6179 		if (!pat)
6180 			goto out;
6181 		if (dev_get_valid_name(dev, pat) < 0)
6182 			goto out;
6183 	}
6184 
6185 	/*
6186 	 * And now a mini version of register_netdevice unregister_netdevice.
6187 	 */
6188 
6189 	/* If device is running close it first. */
6190 	dev_close(dev);
6191 
6192 	/* And unlink it from device chain */
6193 	err = -ENODEV;
6194 	unlist_netdevice(dev);
6195 
6196 	synchronize_net();
6197 
6198 	/* Shutdown queueing discipline. */
6199 	dev_shutdown(dev);
6200 
6201 	/* Notify protocols, that we are about to destroy
6202 	   this device. They should clean all the things.
6203 
6204 	   Note that dev->reg_state stays at NETREG_REGISTERED.
6205 	   This is wanted because this way 8021q and macvlan know
6206 	   the device is just moving and can keep their slaves up.
6207 	*/
6208 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6209 	call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
6210 	rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
6211 
6212 	/*
6213 	 *	Flush the unicast and multicast chains
6214 	 */
6215 	dev_uc_flush(dev);
6216 	dev_mc_flush(dev);
6217 
6218 	/* Actually switch the network namespace */
6219 	dev_net_set(dev, net);
6220 
6221 	/* If there is an ifindex conflict assign a new one */
6222 	if (__dev_get_by_index(net, dev->ifindex)) {
6223 		int iflink = (dev->iflink == dev->ifindex);
6224 		dev->ifindex = dev_new_index(net);
6225 		if (iflink)
6226 			dev->iflink = dev->ifindex;
6227 	}
6228 
6229 	/* Fixup kobjects */
6230 	err = device_rename(&dev->dev, dev->name);
6231 	WARN_ON(err);
6232 
6233 	/* Add the device back in the hashes */
6234 	list_netdevice(dev);
6235 
6236 	/* Notify protocols, that a new device appeared. */
6237 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
6238 
6239 	/*
6240 	 *	Prevent userspace races by waiting until the network
6241 	 *	device is fully setup before sending notifications.
6242 	 */
6243 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
6244 
6245 	synchronize_net();
6246 	err = 0;
6247 out:
6248 	return err;
6249 }
6250 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
6251 
6252 static int dev_cpu_callback(struct notifier_block *nfb,
6253 			    unsigned long action,
6254 			    void *ocpu)
6255 {
6256 	struct sk_buff **list_skb;
6257 	struct sk_buff *skb;
6258 	unsigned int cpu, oldcpu = (unsigned long)ocpu;
6259 	struct softnet_data *sd, *oldsd;
6260 
6261 	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
6262 		return NOTIFY_OK;
6263 
6264 	local_irq_disable();
6265 	cpu = smp_processor_id();
6266 	sd = &per_cpu(softnet_data, cpu);
6267 	oldsd = &per_cpu(softnet_data, oldcpu);
6268 
6269 	/* Find end of our completion_queue. */
6270 	list_skb = &sd->completion_queue;
6271 	while (*list_skb)
6272 		list_skb = &(*list_skb)->next;
6273 	/* Append completion queue from offline CPU. */
6274 	*list_skb = oldsd->completion_queue;
6275 	oldsd->completion_queue = NULL;
6276 
6277 	/* Append output queue from offline CPU. */
6278 	if (oldsd->output_queue) {
6279 		*sd->output_queue_tailp = oldsd->output_queue;
6280 		sd->output_queue_tailp = oldsd->output_queue_tailp;
6281 		oldsd->output_queue = NULL;
6282 		oldsd->output_queue_tailp = &oldsd->output_queue;
6283 	}
6284 	/* Append NAPI poll list from offline CPU. */
6285 	if (!list_empty(&oldsd->poll_list)) {
6286 		list_splice_init(&oldsd->poll_list, &sd->poll_list);
6287 		raise_softirq_irqoff(NET_RX_SOFTIRQ);
6288 	}
6289 
6290 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
6291 	local_irq_enable();
6292 
6293 	/* Process offline CPU's input_pkt_queue */
6294 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
6295 		netif_rx(skb);
6296 		input_queue_head_incr(oldsd);
6297 	}
6298 	while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
6299 		netif_rx(skb);
6300 		input_queue_head_incr(oldsd);
6301 	}
6302 
6303 	return NOTIFY_OK;
6304 }
6305 
6306 
6307 /**
6308  *	netdev_increment_features - increment feature set by one
6309  *	@all: current feature set
6310  *	@one: new feature set
6311  *	@mask: mask feature set
6312  *
6313  *	Computes a new feature set after adding a device with feature set
6314  *	@one to the master device with current feature set @all.  Will not
6315  *	enable anything that is off in @mask. Returns the new feature set.
6316  */
6317 netdev_features_t netdev_increment_features(netdev_features_t all,
6318 	netdev_features_t one, netdev_features_t mask)
6319 {
6320 	if (mask & NETIF_F_GEN_CSUM)
6321 		mask |= NETIF_F_ALL_CSUM;
6322 	mask |= NETIF_F_VLAN_CHALLENGED;
6323 
6324 	all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
6325 	all &= one | ~NETIF_F_ALL_FOR_ALL;
6326 
6327 	/* If one device supports hw checksumming, set for all. */
6328 	if (all & NETIF_F_GEN_CSUM)
6329 		all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
6330 
6331 	return all;
6332 }
6333 EXPORT_SYMBOL(netdev_increment_features);
6334 
6335 static struct hlist_head *netdev_create_hash(void)
6336 {
6337 	int i;
6338 	struct hlist_head *hash;
6339 
6340 	hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
6341 	if (hash != NULL)
6342 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
6343 			INIT_HLIST_HEAD(&hash[i]);
6344 
6345 	return hash;
6346 }
6347 
6348 /* Initialize per network namespace state */
6349 static int __net_init netdev_init(struct net *net)
6350 {
6351 	INIT_LIST_HEAD(&net->dev_base_head);
6352 
6353 	net->dev_name_head = netdev_create_hash();
6354 	if (net->dev_name_head == NULL)
6355 		goto err_name;
6356 
6357 	net->dev_index_head = netdev_create_hash();
6358 	if (net->dev_index_head == NULL)
6359 		goto err_idx;
6360 
6361 	return 0;
6362 
6363 err_idx:
6364 	kfree(net->dev_name_head);
6365 err_name:
6366 	return -ENOMEM;
6367 }
6368 
6369 /**
6370  *	netdev_drivername - network driver for the device
6371  *	@dev: network device
6372  *
6373  *	Determine network driver for device.
6374  */
6375 const char *netdev_drivername(const struct net_device *dev)
6376 {
6377 	const struct device_driver *driver;
6378 	const struct device *parent;
6379 	const char *empty = "";
6380 
6381 	parent = dev->dev.parent;
6382 	if (!parent)
6383 		return empty;
6384 
6385 	driver = parent->driver;
6386 	if (driver && driver->name)
6387 		return driver->name;
6388 	return empty;
6389 }
6390 
6391 int __netdev_printk(const char *level, const struct net_device *dev,
6392 			   struct va_format *vaf)
6393 {
6394 	int r;
6395 
6396 	if (dev && dev->dev.parent)
6397 		r = dev_printk(level, dev->dev.parent, "%s: %pV",
6398 			       netdev_name(dev), vaf);
6399 	else if (dev)
6400 		r = printk("%s%s: %pV", level, netdev_name(dev), vaf);
6401 	else
6402 		r = printk("%s(NULL net_device): %pV", level, vaf);
6403 
6404 	return r;
6405 }
6406 EXPORT_SYMBOL(__netdev_printk);
6407 
6408 int netdev_printk(const char *level, const struct net_device *dev,
6409 		  const char *format, ...)
6410 {
6411 	struct va_format vaf;
6412 	va_list args;
6413 	int r;
6414 
6415 	va_start(args, format);
6416 
6417 	vaf.fmt = format;
6418 	vaf.va = &args;
6419 
6420 	r = __netdev_printk(level, dev, &vaf);
6421 	va_end(args);
6422 
6423 	return r;
6424 }
6425 EXPORT_SYMBOL(netdev_printk);
6426 
6427 #define define_netdev_printk_level(func, level)			\
6428 int func(const struct net_device *dev, const char *fmt, ...)	\
6429 {								\
6430 	int r;							\
6431 	struct va_format vaf;					\
6432 	va_list args;						\
6433 								\
6434 	va_start(args, fmt);					\
6435 								\
6436 	vaf.fmt = fmt;						\
6437 	vaf.va = &args;						\
6438 								\
6439 	r = __netdev_printk(level, dev, &vaf);			\
6440 	va_end(args);						\
6441 								\
6442 	return r;						\
6443 }								\
6444 EXPORT_SYMBOL(func);
6445 
6446 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
6447 define_netdev_printk_level(netdev_alert, KERN_ALERT);
6448 define_netdev_printk_level(netdev_crit, KERN_CRIT);
6449 define_netdev_printk_level(netdev_err, KERN_ERR);
6450 define_netdev_printk_level(netdev_warn, KERN_WARNING);
6451 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
6452 define_netdev_printk_level(netdev_info, KERN_INFO);
6453 
6454 static void __net_exit netdev_exit(struct net *net)
6455 {
6456 	kfree(net->dev_name_head);
6457 	kfree(net->dev_index_head);
6458 }
6459 
6460 static struct pernet_operations __net_initdata netdev_net_ops = {
6461 	.init = netdev_init,
6462 	.exit = netdev_exit,
6463 };
6464 
6465 static void __net_exit default_device_exit(struct net *net)
6466 {
6467 	struct net_device *dev, *aux;
6468 	/*
6469 	 * Push all migratable network devices back to the
6470 	 * initial network namespace
6471 	 */
6472 	rtnl_lock();
6473 	for_each_netdev_safe(net, dev, aux) {
6474 		int err;
6475 		char fb_name[IFNAMSIZ];
6476 
6477 		/* Ignore unmoveable devices (i.e. loopback) */
6478 		if (dev->features & NETIF_F_NETNS_LOCAL)
6479 			continue;
6480 
6481 		/* Leave virtual devices for the generic cleanup */
6482 		if (dev->rtnl_link_ops)
6483 			continue;
6484 
6485 		/* Push remaining network devices to init_net */
6486 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
6487 		err = dev_change_net_namespace(dev, &init_net, fb_name);
6488 		if (err) {
6489 			printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
6490 				__func__, dev->name, err);
6491 			BUG();
6492 		}
6493 	}
6494 	rtnl_unlock();
6495 }
6496 
6497 static void __net_exit default_device_exit_batch(struct list_head *net_list)
6498 {
6499 	/* At exit all network devices most be removed from a network
6500 	 * namespace.  Do this in the reverse order of registration.
6501 	 * Do this across as many network namespaces as possible to
6502 	 * improve batching efficiency.
6503 	 */
6504 	struct net_device *dev;
6505 	struct net *net;
6506 	LIST_HEAD(dev_kill_list);
6507 
6508 	rtnl_lock();
6509 	list_for_each_entry(net, net_list, exit_list) {
6510 		for_each_netdev_reverse(net, dev) {
6511 			if (dev->rtnl_link_ops)
6512 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
6513 			else
6514 				unregister_netdevice_queue(dev, &dev_kill_list);
6515 		}
6516 	}
6517 	unregister_netdevice_many(&dev_kill_list);
6518 	list_del(&dev_kill_list);
6519 	rtnl_unlock();
6520 }
6521 
6522 static struct pernet_operations __net_initdata default_device_ops = {
6523 	.exit = default_device_exit,
6524 	.exit_batch = default_device_exit_batch,
6525 };
6526 
6527 /*
6528  *	Initialize the DEV module. At boot time this walks the device list and
6529  *	unhooks any devices that fail to initialise (normally hardware not
6530  *	present) and leaves us with a valid list of present and active devices.
6531  *
6532  */
6533 
6534 /*
6535  *       This is called single threaded during boot, so no need
6536  *       to take the rtnl semaphore.
6537  */
6538 static int __init net_dev_init(void)
6539 {
6540 	int i, rc = -ENOMEM;
6541 
6542 	BUG_ON(!dev_boot_phase);
6543 
6544 	if (dev_proc_init())
6545 		goto out;
6546 
6547 	if (netdev_kobject_init())
6548 		goto out;
6549 
6550 	INIT_LIST_HEAD(&ptype_all);
6551 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
6552 		INIT_LIST_HEAD(&ptype_base[i]);
6553 
6554 	if (register_pernet_subsys(&netdev_net_ops))
6555 		goto out;
6556 
6557 	/*
6558 	 *	Initialise the packet receive queues.
6559 	 */
6560 
6561 	for_each_possible_cpu(i) {
6562 		struct softnet_data *sd = &per_cpu(softnet_data, i);
6563 
6564 		memset(sd, 0, sizeof(*sd));
6565 		skb_queue_head_init(&sd->input_pkt_queue);
6566 		skb_queue_head_init(&sd->process_queue);
6567 		sd->completion_queue = NULL;
6568 		INIT_LIST_HEAD(&sd->poll_list);
6569 		sd->output_queue = NULL;
6570 		sd->output_queue_tailp = &sd->output_queue;
6571 #ifdef CONFIG_RPS
6572 		sd->csd.func = rps_trigger_softirq;
6573 		sd->csd.info = sd;
6574 		sd->csd.flags = 0;
6575 		sd->cpu = i;
6576 #endif
6577 
6578 		sd->backlog.poll = process_backlog;
6579 		sd->backlog.weight = weight_p;
6580 		sd->backlog.gro_list = NULL;
6581 		sd->backlog.gro_count = 0;
6582 	}
6583 
6584 	dev_boot_phase = 0;
6585 
6586 	/* The loopback device is special if any other network devices
6587 	 * is present in a network namespace the loopback device must
6588 	 * be present. Since we now dynamically allocate and free the
6589 	 * loopback device ensure this invariant is maintained by
6590 	 * keeping the loopback device as the first device on the
6591 	 * list of network devices.  Ensuring the loopback devices
6592 	 * is the first device that appears and the last network device
6593 	 * that disappears.
6594 	 */
6595 	if (register_pernet_device(&loopback_net_ops))
6596 		goto out;
6597 
6598 	if (register_pernet_device(&default_device_ops))
6599 		goto out;
6600 
6601 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
6602 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
6603 
6604 	hotcpu_notifier(dev_cpu_callback, 0);
6605 	dst_init();
6606 	dev_mcast_init();
6607 	rc = 0;
6608 out:
6609 	return rc;
6610 }
6611 
6612 subsys_initcall(net_dev_init);
6613 
6614 static int __init initialize_hashrnd(void)
6615 {
6616 	get_random_bytes(&hashrnd, sizeof(hashrnd));
6617 	return 0;
6618 }
6619 
6620 late_initcall_sync(initialize_hashrnd);
6621 
6622