1 /* 2 * NET3 Protocol independent device support routines. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Derived from the non IP parts of dev.c 1.0.19 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * 14 * Additional Authors: 15 * Florian la Roche <rzsfl@rz.uni-sb.de> 16 * Alan Cox <gw4pts@gw4pts.ampr.org> 17 * David Hinds <dahinds@users.sourceforge.net> 18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 19 * Adam Sulmicki <adam@cfar.umd.edu> 20 * Pekka Riikonen <priikone@poesidon.pspt.fi> 21 * 22 * Changes: 23 * D.J. Barrow : Fixed bug where dev->refcnt gets set 24 * to 2 if register_netdev gets called 25 * before net_dev_init & also removed a 26 * few lines of code in the process. 27 * Alan Cox : device private ioctl copies fields back. 28 * Alan Cox : Transmit queue code does relevant 29 * stunts to keep the queue safe. 30 * Alan Cox : Fixed double lock. 31 * Alan Cox : Fixed promisc NULL pointer trap 32 * ???????? : Support the full private ioctl range 33 * Alan Cox : Moved ioctl permission check into 34 * drivers 35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 36 * Alan Cox : 100 backlog just doesn't cut it when 37 * you start doing multicast video 8) 38 * Alan Cox : Rewrote net_bh and list manager. 39 * Alan Cox : Fix ETH_P_ALL echoback lengths. 40 * Alan Cox : Took out transmit every packet pass 41 * Saved a few bytes in the ioctl handler 42 * Alan Cox : Network driver sets packet type before 43 * calling netif_rx. Saves a function 44 * call a packet. 45 * Alan Cox : Hashed net_bh() 46 * Richard Kooijman: Timestamp fixes. 47 * Alan Cox : Wrong field in SIOCGIFDSTADDR 48 * Alan Cox : Device lock protection. 49 * Alan Cox : Fixed nasty side effect of device close 50 * changes. 51 * Rudi Cilibrasi : Pass the right thing to 52 * set_mac_address() 53 * Dave Miller : 32bit quantity for the device lock to 54 * make it work out on a Sparc. 55 * Bjorn Ekwall : Added KERNELD hack. 56 * Alan Cox : Cleaned up the backlog initialise. 57 * Craig Metz : SIOCGIFCONF fix if space for under 58 * 1 device. 59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 60 * is no device open function. 61 * Andi Kleen : Fix error reporting for SIOCGIFCONF 62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 63 * Cyrus Durgin : Cleaned for KMOD 64 * Adam Sulmicki : Bug Fix : Network Device Unload 65 * A network device unload needs to purge 66 * the backlog queue. 67 * Paul Rusty Russell : SIOCSIFNAME 68 * Pekka Riikonen : Netdev boot-time settings code 69 * Andrew Morton : Make unregister_netdevice wait 70 * indefinitely on dev->refcnt 71 * J Hadi Salim : - Backlog queue sampling 72 * - netif_rx() feedback 73 */ 74 75 #include <asm/uaccess.h> 76 #include <asm/system.h> 77 #include <linux/bitops.h> 78 #include <linux/capability.h> 79 #include <linux/cpu.h> 80 #include <linux/types.h> 81 #include <linux/kernel.h> 82 #include <linux/hash.h> 83 #include <linux/slab.h> 84 #include <linux/sched.h> 85 #include <linux/mutex.h> 86 #include <linux/string.h> 87 #include <linux/mm.h> 88 #include <linux/socket.h> 89 #include <linux/sockios.h> 90 #include <linux/errno.h> 91 #include <linux/interrupt.h> 92 #include <linux/if_ether.h> 93 #include <linux/netdevice.h> 94 #include <linux/etherdevice.h> 95 #include <linux/ethtool.h> 96 #include <linux/notifier.h> 97 #include <linux/skbuff.h> 98 #include <net/net_namespace.h> 99 #include <net/sock.h> 100 #include <linux/rtnetlink.h> 101 #include <linux/proc_fs.h> 102 #include <linux/seq_file.h> 103 #include <linux/stat.h> 104 #include <net/dst.h> 105 #include <net/pkt_sched.h> 106 #include <net/checksum.h> 107 #include <net/xfrm.h> 108 #include <linux/highmem.h> 109 #include <linux/init.h> 110 #include <linux/kmod.h> 111 #include <linux/module.h> 112 #include <linux/netpoll.h> 113 #include <linux/rcupdate.h> 114 #include <linux/delay.h> 115 #include <net/wext.h> 116 #include <net/iw_handler.h> 117 #include <asm/current.h> 118 #include <linux/audit.h> 119 #include <linux/dmaengine.h> 120 #include <linux/err.h> 121 #include <linux/ctype.h> 122 #include <linux/if_arp.h> 123 #include <linux/if_vlan.h> 124 #include <linux/ip.h> 125 #include <net/ip.h> 126 #include <linux/ipv6.h> 127 #include <linux/in.h> 128 #include <linux/jhash.h> 129 #include <linux/random.h> 130 #include <trace/events/napi.h> 131 #include <trace/events/net.h> 132 #include <trace/events/skb.h> 133 #include <linux/pci.h> 134 #include <linux/inetdevice.h> 135 #include <linux/cpu_rmap.h> 136 #include <linux/net_tstamp.h> 137 #include <linux/jump_label.h> 138 #include <net/flow_keys.h> 139 140 #include "net-sysfs.h" 141 142 /* Instead of increasing this, you should create a hash table. */ 143 #define MAX_GRO_SKBS 8 144 145 /* This should be increased if a protocol with a bigger head is added. */ 146 #define GRO_MAX_HEAD (MAX_HEADER + 128) 147 148 /* 149 * The list of packet types we will receive (as opposed to discard) 150 * and the routines to invoke. 151 * 152 * Why 16. Because with 16 the only overlap we get on a hash of the 153 * low nibble of the protocol value is RARP/SNAP/X.25. 154 * 155 * NOTE: That is no longer true with the addition of VLAN tags. Not 156 * sure which should go first, but I bet it won't make much 157 * difference if we are running VLANs. The good news is that 158 * this protocol won't be in the list unless compiled in, so 159 * the average user (w/out VLANs) will not be adversely affected. 160 * --BLG 161 * 162 * 0800 IP 163 * 8100 802.1Q VLAN 164 * 0001 802.3 165 * 0002 AX.25 166 * 0004 802.2 167 * 8035 RARP 168 * 0005 SNAP 169 * 0805 X.25 170 * 0806 ARP 171 * 8137 IPX 172 * 0009 Localtalk 173 * 86DD IPv6 174 */ 175 176 #define PTYPE_HASH_SIZE (16) 177 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1) 178 179 static DEFINE_SPINLOCK(ptype_lock); 180 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 181 static struct list_head ptype_all __read_mostly; /* Taps */ 182 183 /* 184 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 185 * semaphore. 186 * 187 * Pure readers hold dev_base_lock for reading, or rcu_read_lock() 188 * 189 * Writers must hold the rtnl semaphore while they loop through the 190 * dev_base_head list, and hold dev_base_lock for writing when they do the 191 * actual updates. This allows pure readers to access the list even 192 * while a writer is preparing to update it. 193 * 194 * To put it another way, dev_base_lock is held for writing only to 195 * protect against pure readers; the rtnl semaphore provides the 196 * protection against other writers. 197 * 198 * See, for example usages, register_netdevice() and 199 * unregister_netdevice(), which must be called with the rtnl 200 * semaphore held. 201 */ 202 DEFINE_RWLOCK(dev_base_lock); 203 EXPORT_SYMBOL(dev_base_lock); 204 205 static inline void dev_base_seq_inc(struct net *net) 206 { 207 while (++net->dev_base_seq == 0); 208 } 209 210 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 211 { 212 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ)); 213 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 214 } 215 216 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 217 { 218 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 219 } 220 221 static inline void rps_lock(struct softnet_data *sd) 222 { 223 #ifdef CONFIG_RPS 224 spin_lock(&sd->input_pkt_queue.lock); 225 #endif 226 } 227 228 static inline void rps_unlock(struct softnet_data *sd) 229 { 230 #ifdef CONFIG_RPS 231 spin_unlock(&sd->input_pkt_queue.lock); 232 #endif 233 } 234 235 /* Device list insertion */ 236 static int list_netdevice(struct net_device *dev) 237 { 238 struct net *net = dev_net(dev); 239 240 ASSERT_RTNL(); 241 242 write_lock_bh(&dev_base_lock); 243 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 244 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 245 hlist_add_head_rcu(&dev->index_hlist, 246 dev_index_hash(net, dev->ifindex)); 247 write_unlock_bh(&dev_base_lock); 248 249 dev_base_seq_inc(net); 250 251 return 0; 252 } 253 254 /* Device list removal 255 * caller must respect a RCU grace period before freeing/reusing dev 256 */ 257 static void unlist_netdevice(struct net_device *dev) 258 { 259 ASSERT_RTNL(); 260 261 /* Unlink dev from the device chain */ 262 write_lock_bh(&dev_base_lock); 263 list_del_rcu(&dev->dev_list); 264 hlist_del_rcu(&dev->name_hlist); 265 hlist_del_rcu(&dev->index_hlist); 266 write_unlock_bh(&dev_base_lock); 267 268 dev_base_seq_inc(dev_net(dev)); 269 } 270 271 /* 272 * Our notifier list 273 */ 274 275 static RAW_NOTIFIER_HEAD(netdev_chain); 276 277 /* 278 * Device drivers call our routines to queue packets here. We empty the 279 * queue in the local softnet handler. 280 */ 281 282 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 283 EXPORT_PER_CPU_SYMBOL(softnet_data); 284 285 #ifdef CONFIG_LOCKDEP 286 /* 287 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 288 * according to dev->type 289 */ 290 static const unsigned short netdev_lock_type[] = 291 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 292 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 293 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 294 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 295 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 296 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 297 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 298 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 299 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 300 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 301 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 302 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 303 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211, 304 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, 305 ARPHRD_PHONET_PIPE, ARPHRD_IEEE802154, 306 ARPHRD_VOID, ARPHRD_NONE}; 307 308 static const char *const netdev_lock_name[] = 309 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 310 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 311 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 312 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 313 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 314 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 315 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 316 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 317 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 318 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 319 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 320 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 321 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211", 322 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", 323 "_xmit_PHONET_PIPE", "_xmit_IEEE802154", 324 "_xmit_VOID", "_xmit_NONE"}; 325 326 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 327 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 328 329 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 330 { 331 int i; 332 333 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 334 if (netdev_lock_type[i] == dev_type) 335 return i; 336 /* the last key is used by default */ 337 return ARRAY_SIZE(netdev_lock_type) - 1; 338 } 339 340 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 341 unsigned short dev_type) 342 { 343 int i; 344 345 i = netdev_lock_pos(dev_type); 346 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 347 netdev_lock_name[i]); 348 } 349 350 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 351 { 352 int i; 353 354 i = netdev_lock_pos(dev->type); 355 lockdep_set_class_and_name(&dev->addr_list_lock, 356 &netdev_addr_lock_key[i], 357 netdev_lock_name[i]); 358 } 359 #else 360 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 361 unsigned short dev_type) 362 { 363 } 364 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 365 { 366 } 367 #endif 368 369 /******************************************************************************* 370 371 Protocol management and registration routines 372 373 *******************************************************************************/ 374 375 /* 376 * Add a protocol ID to the list. Now that the input handler is 377 * smarter we can dispense with all the messy stuff that used to be 378 * here. 379 * 380 * BEWARE!!! Protocol handlers, mangling input packets, 381 * MUST BE last in hash buckets and checking protocol handlers 382 * MUST start from promiscuous ptype_all chain in net_bh. 383 * It is true now, do not change it. 384 * Explanation follows: if protocol handler, mangling packet, will 385 * be the first on list, it is not able to sense, that packet 386 * is cloned and should be copied-on-write, so that it will 387 * change it and subsequent readers will get broken packet. 388 * --ANK (980803) 389 */ 390 391 static inline struct list_head *ptype_head(const struct packet_type *pt) 392 { 393 if (pt->type == htons(ETH_P_ALL)) 394 return &ptype_all; 395 else 396 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 397 } 398 399 /** 400 * dev_add_pack - add packet handler 401 * @pt: packet type declaration 402 * 403 * Add a protocol handler to the networking stack. The passed &packet_type 404 * is linked into kernel lists and may not be freed until it has been 405 * removed from the kernel lists. 406 * 407 * This call does not sleep therefore it can not 408 * guarantee all CPU's that are in middle of receiving packets 409 * will see the new packet type (until the next received packet). 410 */ 411 412 void dev_add_pack(struct packet_type *pt) 413 { 414 struct list_head *head = ptype_head(pt); 415 416 spin_lock(&ptype_lock); 417 list_add_rcu(&pt->list, head); 418 spin_unlock(&ptype_lock); 419 } 420 EXPORT_SYMBOL(dev_add_pack); 421 422 /** 423 * __dev_remove_pack - remove packet handler 424 * @pt: packet type declaration 425 * 426 * Remove a protocol handler that was previously added to the kernel 427 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 428 * from the kernel lists and can be freed or reused once this function 429 * returns. 430 * 431 * The packet type might still be in use by receivers 432 * and must not be freed until after all the CPU's have gone 433 * through a quiescent state. 434 */ 435 void __dev_remove_pack(struct packet_type *pt) 436 { 437 struct list_head *head = ptype_head(pt); 438 struct packet_type *pt1; 439 440 spin_lock(&ptype_lock); 441 442 list_for_each_entry(pt1, head, list) { 443 if (pt == pt1) { 444 list_del_rcu(&pt->list); 445 goto out; 446 } 447 } 448 449 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt); 450 out: 451 spin_unlock(&ptype_lock); 452 } 453 EXPORT_SYMBOL(__dev_remove_pack); 454 455 /** 456 * dev_remove_pack - remove packet handler 457 * @pt: packet type declaration 458 * 459 * Remove a protocol handler that was previously added to the kernel 460 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 461 * from the kernel lists and can be freed or reused once this function 462 * returns. 463 * 464 * This call sleeps to guarantee that no CPU is looking at the packet 465 * type after return. 466 */ 467 void dev_remove_pack(struct packet_type *pt) 468 { 469 __dev_remove_pack(pt); 470 471 synchronize_net(); 472 } 473 EXPORT_SYMBOL(dev_remove_pack); 474 475 /****************************************************************************** 476 477 Device Boot-time Settings Routines 478 479 *******************************************************************************/ 480 481 /* Boot time configuration table */ 482 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 483 484 /** 485 * netdev_boot_setup_add - add new setup entry 486 * @name: name of the device 487 * @map: configured settings for the device 488 * 489 * Adds new setup entry to the dev_boot_setup list. The function 490 * returns 0 on error and 1 on success. This is a generic routine to 491 * all netdevices. 492 */ 493 static int netdev_boot_setup_add(char *name, struct ifmap *map) 494 { 495 struct netdev_boot_setup *s; 496 int i; 497 498 s = dev_boot_setup; 499 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 500 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 501 memset(s[i].name, 0, sizeof(s[i].name)); 502 strlcpy(s[i].name, name, IFNAMSIZ); 503 memcpy(&s[i].map, map, sizeof(s[i].map)); 504 break; 505 } 506 } 507 508 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 509 } 510 511 /** 512 * netdev_boot_setup_check - check boot time settings 513 * @dev: the netdevice 514 * 515 * Check boot time settings for the device. 516 * The found settings are set for the device to be used 517 * later in the device probing. 518 * Returns 0 if no settings found, 1 if they are. 519 */ 520 int netdev_boot_setup_check(struct net_device *dev) 521 { 522 struct netdev_boot_setup *s = dev_boot_setup; 523 int i; 524 525 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 526 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 527 !strcmp(dev->name, s[i].name)) { 528 dev->irq = s[i].map.irq; 529 dev->base_addr = s[i].map.base_addr; 530 dev->mem_start = s[i].map.mem_start; 531 dev->mem_end = s[i].map.mem_end; 532 return 1; 533 } 534 } 535 return 0; 536 } 537 EXPORT_SYMBOL(netdev_boot_setup_check); 538 539 540 /** 541 * netdev_boot_base - get address from boot time settings 542 * @prefix: prefix for network device 543 * @unit: id for network device 544 * 545 * Check boot time settings for the base address of device. 546 * The found settings are set for the device to be used 547 * later in the device probing. 548 * Returns 0 if no settings found. 549 */ 550 unsigned long netdev_boot_base(const char *prefix, int unit) 551 { 552 const struct netdev_boot_setup *s = dev_boot_setup; 553 char name[IFNAMSIZ]; 554 int i; 555 556 sprintf(name, "%s%d", prefix, unit); 557 558 /* 559 * If device already registered then return base of 1 560 * to indicate not to probe for this interface 561 */ 562 if (__dev_get_by_name(&init_net, name)) 563 return 1; 564 565 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 566 if (!strcmp(name, s[i].name)) 567 return s[i].map.base_addr; 568 return 0; 569 } 570 571 /* 572 * Saves at boot time configured settings for any netdevice. 573 */ 574 int __init netdev_boot_setup(char *str) 575 { 576 int ints[5]; 577 struct ifmap map; 578 579 str = get_options(str, ARRAY_SIZE(ints), ints); 580 if (!str || !*str) 581 return 0; 582 583 /* Save settings */ 584 memset(&map, 0, sizeof(map)); 585 if (ints[0] > 0) 586 map.irq = ints[1]; 587 if (ints[0] > 1) 588 map.base_addr = ints[2]; 589 if (ints[0] > 2) 590 map.mem_start = ints[3]; 591 if (ints[0] > 3) 592 map.mem_end = ints[4]; 593 594 /* Add new entry to the list */ 595 return netdev_boot_setup_add(str, &map); 596 } 597 598 __setup("netdev=", netdev_boot_setup); 599 600 /******************************************************************************* 601 602 Device Interface Subroutines 603 604 *******************************************************************************/ 605 606 /** 607 * __dev_get_by_name - find a device by its name 608 * @net: the applicable net namespace 609 * @name: name to find 610 * 611 * Find an interface by name. Must be called under RTNL semaphore 612 * or @dev_base_lock. If the name is found a pointer to the device 613 * is returned. If the name is not found then %NULL is returned. The 614 * reference counters are not incremented so the caller must be 615 * careful with locks. 616 */ 617 618 struct net_device *__dev_get_by_name(struct net *net, const char *name) 619 { 620 struct hlist_node *p; 621 struct net_device *dev; 622 struct hlist_head *head = dev_name_hash(net, name); 623 624 hlist_for_each_entry(dev, p, head, name_hlist) 625 if (!strncmp(dev->name, name, IFNAMSIZ)) 626 return dev; 627 628 return NULL; 629 } 630 EXPORT_SYMBOL(__dev_get_by_name); 631 632 /** 633 * dev_get_by_name_rcu - find a device by its name 634 * @net: the applicable net namespace 635 * @name: name to find 636 * 637 * Find an interface by name. 638 * If the name is found a pointer to the device is returned. 639 * If the name is not found then %NULL is returned. 640 * The reference counters are not incremented so the caller must be 641 * careful with locks. The caller must hold RCU lock. 642 */ 643 644 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 645 { 646 struct hlist_node *p; 647 struct net_device *dev; 648 struct hlist_head *head = dev_name_hash(net, name); 649 650 hlist_for_each_entry_rcu(dev, p, head, name_hlist) 651 if (!strncmp(dev->name, name, IFNAMSIZ)) 652 return dev; 653 654 return NULL; 655 } 656 EXPORT_SYMBOL(dev_get_by_name_rcu); 657 658 /** 659 * dev_get_by_name - find a device by its name 660 * @net: the applicable net namespace 661 * @name: name to find 662 * 663 * Find an interface by name. This can be called from any 664 * context and does its own locking. The returned handle has 665 * the usage count incremented and the caller must use dev_put() to 666 * release it when it is no longer needed. %NULL is returned if no 667 * matching device is found. 668 */ 669 670 struct net_device *dev_get_by_name(struct net *net, const char *name) 671 { 672 struct net_device *dev; 673 674 rcu_read_lock(); 675 dev = dev_get_by_name_rcu(net, name); 676 if (dev) 677 dev_hold(dev); 678 rcu_read_unlock(); 679 return dev; 680 } 681 EXPORT_SYMBOL(dev_get_by_name); 682 683 /** 684 * __dev_get_by_index - find a device by its ifindex 685 * @net: the applicable net namespace 686 * @ifindex: index of device 687 * 688 * Search for an interface by index. Returns %NULL if the device 689 * is not found or a pointer to the device. The device has not 690 * had its reference counter increased so the caller must be careful 691 * about locking. The caller must hold either the RTNL semaphore 692 * or @dev_base_lock. 693 */ 694 695 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 696 { 697 struct hlist_node *p; 698 struct net_device *dev; 699 struct hlist_head *head = dev_index_hash(net, ifindex); 700 701 hlist_for_each_entry(dev, p, head, index_hlist) 702 if (dev->ifindex == ifindex) 703 return dev; 704 705 return NULL; 706 } 707 EXPORT_SYMBOL(__dev_get_by_index); 708 709 /** 710 * dev_get_by_index_rcu - find a device by its ifindex 711 * @net: the applicable net namespace 712 * @ifindex: index of device 713 * 714 * Search for an interface by index. Returns %NULL if the device 715 * is not found or a pointer to the device. The device has not 716 * had its reference counter increased so the caller must be careful 717 * about locking. The caller must hold RCU lock. 718 */ 719 720 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 721 { 722 struct hlist_node *p; 723 struct net_device *dev; 724 struct hlist_head *head = dev_index_hash(net, ifindex); 725 726 hlist_for_each_entry_rcu(dev, p, head, index_hlist) 727 if (dev->ifindex == ifindex) 728 return dev; 729 730 return NULL; 731 } 732 EXPORT_SYMBOL(dev_get_by_index_rcu); 733 734 735 /** 736 * dev_get_by_index - find a device by its ifindex 737 * @net: the applicable net namespace 738 * @ifindex: index of device 739 * 740 * Search for an interface by index. Returns NULL if the device 741 * is not found or a pointer to the device. The device returned has 742 * had a reference added and the pointer is safe until the user calls 743 * dev_put to indicate they have finished with it. 744 */ 745 746 struct net_device *dev_get_by_index(struct net *net, int ifindex) 747 { 748 struct net_device *dev; 749 750 rcu_read_lock(); 751 dev = dev_get_by_index_rcu(net, ifindex); 752 if (dev) 753 dev_hold(dev); 754 rcu_read_unlock(); 755 return dev; 756 } 757 EXPORT_SYMBOL(dev_get_by_index); 758 759 /** 760 * dev_getbyhwaddr_rcu - find a device by its hardware address 761 * @net: the applicable net namespace 762 * @type: media type of device 763 * @ha: hardware address 764 * 765 * Search for an interface by MAC address. Returns NULL if the device 766 * is not found or a pointer to the device. 767 * The caller must hold RCU or RTNL. 768 * The returned device has not had its ref count increased 769 * and the caller must therefore be careful about locking 770 * 771 */ 772 773 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 774 const char *ha) 775 { 776 struct net_device *dev; 777 778 for_each_netdev_rcu(net, dev) 779 if (dev->type == type && 780 !memcmp(dev->dev_addr, ha, dev->addr_len)) 781 return dev; 782 783 return NULL; 784 } 785 EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 786 787 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 788 { 789 struct net_device *dev; 790 791 ASSERT_RTNL(); 792 for_each_netdev(net, dev) 793 if (dev->type == type) 794 return dev; 795 796 return NULL; 797 } 798 EXPORT_SYMBOL(__dev_getfirstbyhwtype); 799 800 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 801 { 802 struct net_device *dev, *ret = NULL; 803 804 rcu_read_lock(); 805 for_each_netdev_rcu(net, dev) 806 if (dev->type == type) { 807 dev_hold(dev); 808 ret = dev; 809 break; 810 } 811 rcu_read_unlock(); 812 return ret; 813 } 814 EXPORT_SYMBOL(dev_getfirstbyhwtype); 815 816 /** 817 * dev_get_by_flags_rcu - find any device with given flags 818 * @net: the applicable net namespace 819 * @if_flags: IFF_* values 820 * @mask: bitmask of bits in if_flags to check 821 * 822 * Search for any interface with the given flags. Returns NULL if a device 823 * is not found or a pointer to the device. Must be called inside 824 * rcu_read_lock(), and result refcount is unchanged. 825 */ 826 827 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags, 828 unsigned short mask) 829 { 830 struct net_device *dev, *ret; 831 832 ret = NULL; 833 for_each_netdev_rcu(net, dev) { 834 if (((dev->flags ^ if_flags) & mask) == 0) { 835 ret = dev; 836 break; 837 } 838 } 839 return ret; 840 } 841 EXPORT_SYMBOL(dev_get_by_flags_rcu); 842 843 /** 844 * dev_valid_name - check if name is okay for network device 845 * @name: name string 846 * 847 * Network device names need to be valid file names to 848 * to allow sysfs to work. We also disallow any kind of 849 * whitespace. 850 */ 851 int dev_valid_name(const char *name) 852 { 853 if (*name == '\0') 854 return 0; 855 if (strlen(name) >= IFNAMSIZ) 856 return 0; 857 if (!strcmp(name, ".") || !strcmp(name, "..")) 858 return 0; 859 860 while (*name) { 861 if (*name == '/' || isspace(*name)) 862 return 0; 863 name++; 864 } 865 return 1; 866 } 867 EXPORT_SYMBOL(dev_valid_name); 868 869 /** 870 * __dev_alloc_name - allocate a name for a device 871 * @net: network namespace to allocate the device name in 872 * @name: name format string 873 * @buf: scratch buffer and result name string 874 * 875 * Passed a format string - eg "lt%d" it will try and find a suitable 876 * id. It scans list of devices to build up a free map, then chooses 877 * the first empty slot. The caller must hold the dev_base or rtnl lock 878 * while allocating the name and adding the device in order to avoid 879 * duplicates. 880 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 881 * Returns the number of the unit assigned or a negative errno code. 882 */ 883 884 static int __dev_alloc_name(struct net *net, const char *name, char *buf) 885 { 886 int i = 0; 887 const char *p; 888 const int max_netdevices = 8*PAGE_SIZE; 889 unsigned long *inuse; 890 struct net_device *d; 891 892 p = strnchr(name, IFNAMSIZ-1, '%'); 893 if (p) { 894 /* 895 * Verify the string as this thing may have come from 896 * the user. There must be either one "%d" and no other "%" 897 * characters. 898 */ 899 if (p[1] != 'd' || strchr(p + 2, '%')) 900 return -EINVAL; 901 902 /* Use one page as a bit array of possible slots */ 903 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 904 if (!inuse) 905 return -ENOMEM; 906 907 for_each_netdev(net, d) { 908 if (!sscanf(d->name, name, &i)) 909 continue; 910 if (i < 0 || i >= max_netdevices) 911 continue; 912 913 /* avoid cases where sscanf is not exact inverse of printf */ 914 snprintf(buf, IFNAMSIZ, name, i); 915 if (!strncmp(buf, d->name, IFNAMSIZ)) 916 set_bit(i, inuse); 917 } 918 919 i = find_first_zero_bit(inuse, max_netdevices); 920 free_page((unsigned long) inuse); 921 } 922 923 if (buf != name) 924 snprintf(buf, IFNAMSIZ, name, i); 925 if (!__dev_get_by_name(net, buf)) 926 return i; 927 928 /* It is possible to run out of possible slots 929 * when the name is long and there isn't enough space left 930 * for the digits, or if all bits are used. 931 */ 932 return -ENFILE; 933 } 934 935 /** 936 * dev_alloc_name - allocate a name for a device 937 * @dev: device 938 * @name: name format string 939 * 940 * Passed a format string - eg "lt%d" it will try and find a suitable 941 * id. It scans list of devices to build up a free map, then chooses 942 * the first empty slot. The caller must hold the dev_base or rtnl lock 943 * while allocating the name and adding the device in order to avoid 944 * duplicates. 945 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 946 * Returns the number of the unit assigned or a negative errno code. 947 */ 948 949 int dev_alloc_name(struct net_device *dev, const char *name) 950 { 951 char buf[IFNAMSIZ]; 952 struct net *net; 953 int ret; 954 955 BUG_ON(!dev_net(dev)); 956 net = dev_net(dev); 957 ret = __dev_alloc_name(net, name, buf); 958 if (ret >= 0) 959 strlcpy(dev->name, buf, IFNAMSIZ); 960 return ret; 961 } 962 EXPORT_SYMBOL(dev_alloc_name); 963 964 static int dev_get_valid_name(struct net_device *dev, const char *name) 965 { 966 struct net *net; 967 968 BUG_ON(!dev_net(dev)); 969 net = dev_net(dev); 970 971 if (!dev_valid_name(name)) 972 return -EINVAL; 973 974 if (strchr(name, '%')) 975 return dev_alloc_name(dev, name); 976 else if (__dev_get_by_name(net, name)) 977 return -EEXIST; 978 else if (dev->name != name) 979 strlcpy(dev->name, name, IFNAMSIZ); 980 981 return 0; 982 } 983 984 /** 985 * dev_change_name - change name of a device 986 * @dev: device 987 * @newname: name (or format string) must be at least IFNAMSIZ 988 * 989 * Change name of a device, can pass format strings "eth%d". 990 * for wildcarding. 991 */ 992 int dev_change_name(struct net_device *dev, const char *newname) 993 { 994 char oldname[IFNAMSIZ]; 995 int err = 0; 996 int ret; 997 struct net *net; 998 999 ASSERT_RTNL(); 1000 BUG_ON(!dev_net(dev)); 1001 1002 net = dev_net(dev); 1003 if (dev->flags & IFF_UP) 1004 return -EBUSY; 1005 1006 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) 1007 return 0; 1008 1009 memcpy(oldname, dev->name, IFNAMSIZ); 1010 1011 err = dev_get_valid_name(dev, newname); 1012 if (err < 0) 1013 return err; 1014 1015 rollback: 1016 ret = device_rename(&dev->dev, dev->name); 1017 if (ret) { 1018 memcpy(dev->name, oldname, IFNAMSIZ); 1019 return ret; 1020 } 1021 1022 write_lock_bh(&dev_base_lock); 1023 hlist_del_rcu(&dev->name_hlist); 1024 write_unlock_bh(&dev_base_lock); 1025 1026 synchronize_rcu(); 1027 1028 write_lock_bh(&dev_base_lock); 1029 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 1030 write_unlock_bh(&dev_base_lock); 1031 1032 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1033 ret = notifier_to_errno(ret); 1034 1035 if (ret) { 1036 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1037 if (err >= 0) { 1038 err = ret; 1039 memcpy(dev->name, oldname, IFNAMSIZ); 1040 goto rollback; 1041 } else { 1042 printk(KERN_ERR 1043 "%s: name change rollback failed: %d.\n", 1044 dev->name, ret); 1045 } 1046 } 1047 1048 return err; 1049 } 1050 1051 /** 1052 * dev_set_alias - change ifalias of a device 1053 * @dev: device 1054 * @alias: name up to IFALIASZ 1055 * @len: limit of bytes to copy from info 1056 * 1057 * Set ifalias for a device, 1058 */ 1059 int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1060 { 1061 ASSERT_RTNL(); 1062 1063 if (len >= IFALIASZ) 1064 return -EINVAL; 1065 1066 if (!len) { 1067 if (dev->ifalias) { 1068 kfree(dev->ifalias); 1069 dev->ifalias = NULL; 1070 } 1071 return 0; 1072 } 1073 1074 dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL); 1075 if (!dev->ifalias) 1076 return -ENOMEM; 1077 1078 strlcpy(dev->ifalias, alias, len+1); 1079 return len; 1080 } 1081 1082 1083 /** 1084 * netdev_features_change - device changes features 1085 * @dev: device to cause notification 1086 * 1087 * Called to indicate a device has changed features. 1088 */ 1089 void netdev_features_change(struct net_device *dev) 1090 { 1091 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1092 } 1093 EXPORT_SYMBOL(netdev_features_change); 1094 1095 /** 1096 * netdev_state_change - device changes state 1097 * @dev: device to cause notification 1098 * 1099 * Called to indicate a device has changed state. This function calls 1100 * the notifier chains for netdev_chain and sends a NEWLINK message 1101 * to the routing socket. 1102 */ 1103 void netdev_state_change(struct net_device *dev) 1104 { 1105 if (dev->flags & IFF_UP) { 1106 call_netdevice_notifiers(NETDEV_CHANGE, dev); 1107 rtmsg_ifinfo(RTM_NEWLINK, dev, 0); 1108 } 1109 } 1110 EXPORT_SYMBOL(netdev_state_change); 1111 1112 int netdev_bonding_change(struct net_device *dev, unsigned long event) 1113 { 1114 return call_netdevice_notifiers(event, dev); 1115 } 1116 EXPORT_SYMBOL(netdev_bonding_change); 1117 1118 /** 1119 * dev_load - load a network module 1120 * @net: the applicable net namespace 1121 * @name: name of interface 1122 * 1123 * If a network interface is not present and the process has suitable 1124 * privileges this function loads the module. If module loading is not 1125 * available in this kernel then it becomes a nop. 1126 */ 1127 1128 void dev_load(struct net *net, const char *name) 1129 { 1130 struct net_device *dev; 1131 int no_module; 1132 1133 rcu_read_lock(); 1134 dev = dev_get_by_name_rcu(net, name); 1135 rcu_read_unlock(); 1136 1137 no_module = !dev; 1138 if (no_module && capable(CAP_NET_ADMIN)) 1139 no_module = request_module("netdev-%s", name); 1140 if (no_module && capable(CAP_SYS_MODULE)) { 1141 if (!request_module("%s", name)) 1142 pr_err("Loading kernel module for a network device " 1143 "with CAP_SYS_MODULE (deprecated). Use CAP_NET_ADMIN and alias netdev-%s " 1144 "instead\n", name); 1145 } 1146 } 1147 EXPORT_SYMBOL(dev_load); 1148 1149 static int __dev_open(struct net_device *dev) 1150 { 1151 const struct net_device_ops *ops = dev->netdev_ops; 1152 int ret; 1153 1154 ASSERT_RTNL(); 1155 1156 if (!netif_device_present(dev)) 1157 return -ENODEV; 1158 1159 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev); 1160 ret = notifier_to_errno(ret); 1161 if (ret) 1162 return ret; 1163 1164 set_bit(__LINK_STATE_START, &dev->state); 1165 1166 if (ops->ndo_validate_addr) 1167 ret = ops->ndo_validate_addr(dev); 1168 1169 if (!ret && ops->ndo_open) 1170 ret = ops->ndo_open(dev); 1171 1172 if (ret) 1173 clear_bit(__LINK_STATE_START, &dev->state); 1174 else { 1175 dev->flags |= IFF_UP; 1176 net_dmaengine_get(); 1177 dev_set_rx_mode(dev); 1178 dev_activate(dev); 1179 } 1180 1181 return ret; 1182 } 1183 1184 /** 1185 * dev_open - prepare an interface for use. 1186 * @dev: device to open 1187 * 1188 * Takes a device from down to up state. The device's private open 1189 * function is invoked and then the multicast lists are loaded. Finally 1190 * the device is moved into the up state and a %NETDEV_UP message is 1191 * sent to the netdev notifier chain. 1192 * 1193 * Calling this function on an active interface is a nop. On a failure 1194 * a negative errno code is returned. 1195 */ 1196 int dev_open(struct net_device *dev) 1197 { 1198 int ret; 1199 1200 if (dev->flags & IFF_UP) 1201 return 0; 1202 1203 ret = __dev_open(dev); 1204 if (ret < 0) 1205 return ret; 1206 1207 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING); 1208 call_netdevice_notifiers(NETDEV_UP, dev); 1209 1210 return ret; 1211 } 1212 EXPORT_SYMBOL(dev_open); 1213 1214 static int __dev_close_many(struct list_head *head) 1215 { 1216 struct net_device *dev; 1217 1218 ASSERT_RTNL(); 1219 might_sleep(); 1220 1221 list_for_each_entry(dev, head, unreg_list) { 1222 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1223 1224 clear_bit(__LINK_STATE_START, &dev->state); 1225 1226 /* Synchronize to scheduled poll. We cannot touch poll list, it 1227 * can be even on different cpu. So just clear netif_running(). 1228 * 1229 * dev->stop() will invoke napi_disable() on all of it's 1230 * napi_struct instances on this device. 1231 */ 1232 smp_mb__after_clear_bit(); /* Commit netif_running(). */ 1233 } 1234 1235 dev_deactivate_many(head); 1236 1237 list_for_each_entry(dev, head, unreg_list) { 1238 const struct net_device_ops *ops = dev->netdev_ops; 1239 1240 /* 1241 * Call the device specific close. This cannot fail. 1242 * Only if device is UP 1243 * 1244 * We allow it to be called even after a DETACH hot-plug 1245 * event. 1246 */ 1247 if (ops->ndo_stop) 1248 ops->ndo_stop(dev); 1249 1250 dev->flags &= ~IFF_UP; 1251 net_dmaengine_put(); 1252 } 1253 1254 return 0; 1255 } 1256 1257 static int __dev_close(struct net_device *dev) 1258 { 1259 int retval; 1260 LIST_HEAD(single); 1261 1262 list_add(&dev->unreg_list, &single); 1263 retval = __dev_close_many(&single); 1264 list_del(&single); 1265 return retval; 1266 } 1267 1268 static int dev_close_many(struct list_head *head) 1269 { 1270 struct net_device *dev, *tmp; 1271 LIST_HEAD(tmp_list); 1272 1273 list_for_each_entry_safe(dev, tmp, head, unreg_list) 1274 if (!(dev->flags & IFF_UP)) 1275 list_move(&dev->unreg_list, &tmp_list); 1276 1277 __dev_close_many(head); 1278 1279 list_for_each_entry(dev, head, unreg_list) { 1280 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING); 1281 call_netdevice_notifiers(NETDEV_DOWN, dev); 1282 } 1283 1284 /* rollback_registered_many needs the complete original list */ 1285 list_splice(&tmp_list, head); 1286 return 0; 1287 } 1288 1289 /** 1290 * dev_close - shutdown an interface. 1291 * @dev: device to shutdown 1292 * 1293 * This function moves an active device into down state. A 1294 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1295 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1296 * chain. 1297 */ 1298 int dev_close(struct net_device *dev) 1299 { 1300 if (dev->flags & IFF_UP) { 1301 LIST_HEAD(single); 1302 1303 list_add(&dev->unreg_list, &single); 1304 dev_close_many(&single); 1305 list_del(&single); 1306 } 1307 return 0; 1308 } 1309 EXPORT_SYMBOL(dev_close); 1310 1311 1312 /** 1313 * dev_disable_lro - disable Large Receive Offload on a device 1314 * @dev: device 1315 * 1316 * Disable Large Receive Offload (LRO) on a net device. Must be 1317 * called under RTNL. This is needed if received packets may be 1318 * forwarded to another interface. 1319 */ 1320 void dev_disable_lro(struct net_device *dev) 1321 { 1322 /* 1323 * If we're trying to disable lro on a vlan device 1324 * use the underlying physical device instead 1325 */ 1326 if (is_vlan_dev(dev)) 1327 dev = vlan_dev_real_dev(dev); 1328 1329 dev->wanted_features &= ~NETIF_F_LRO; 1330 netdev_update_features(dev); 1331 1332 if (unlikely(dev->features & NETIF_F_LRO)) 1333 netdev_WARN(dev, "failed to disable LRO!\n"); 1334 } 1335 EXPORT_SYMBOL(dev_disable_lro); 1336 1337 1338 static int dev_boot_phase = 1; 1339 1340 /** 1341 * register_netdevice_notifier - register a network notifier block 1342 * @nb: notifier 1343 * 1344 * Register a notifier to be called when network device events occur. 1345 * The notifier passed is linked into the kernel structures and must 1346 * not be reused until it has been unregistered. A negative errno code 1347 * is returned on a failure. 1348 * 1349 * When registered all registration and up events are replayed 1350 * to the new notifier to allow device to have a race free 1351 * view of the network device list. 1352 */ 1353 1354 int register_netdevice_notifier(struct notifier_block *nb) 1355 { 1356 struct net_device *dev; 1357 struct net_device *last; 1358 struct net *net; 1359 int err; 1360 1361 rtnl_lock(); 1362 err = raw_notifier_chain_register(&netdev_chain, nb); 1363 if (err) 1364 goto unlock; 1365 if (dev_boot_phase) 1366 goto unlock; 1367 for_each_net(net) { 1368 for_each_netdev(net, dev) { 1369 err = nb->notifier_call(nb, NETDEV_REGISTER, dev); 1370 err = notifier_to_errno(err); 1371 if (err) 1372 goto rollback; 1373 1374 if (!(dev->flags & IFF_UP)) 1375 continue; 1376 1377 nb->notifier_call(nb, NETDEV_UP, dev); 1378 } 1379 } 1380 1381 unlock: 1382 rtnl_unlock(); 1383 return err; 1384 1385 rollback: 1386 last = dev; 1387 for_each_net(net) { 1388 for_each_netdev(net, dev) { 1389 if (dev == last) 1390 goto outroll; 1391 1392 if (dev->flags & IFF_UP) { 1393 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev); 1394 nb->notifier_call(nb, NETDEV_DOWN, dev); 1395 } 1396 nb->notifier_call(nb, NETDEV_UNREGISTER, dev); 1397 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev); 1398 } 1399 } 1400 1401 outroll: 1402 raw_notifier_chain_unregister(&netdev_chain, nb); 1403 goto unlock; 1404 } 1405 EXPORT_SYMBOL(register_netdevice_notifier); 1406 1407 /** 1408 * unregister_netdevice_notifier - unregister a network notifier block 1409 * @nb: notifier 1410 * 1411 * Unregister a notifier previously registered by 1412 * register_netdevice_notifier(). The notifier is unlinked into the 1413 * kernel structures and may then be reused. A negative errno code 1414 * is returned on a failure. 1415 */ 1416 1417 int unregister_netdevice_notifier(struct notifier_block *nb) 1418 { 1419 int err; 1420 1421 rtnl_lock(); 1422 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1423 rtnl_unlock(); 1424 return err; 1425 } 1426 EXPORT_SYMBOL(unregister_netdevice_notifier); 1427 1428 /** 1429 * call_netdevice_notifiers - call all network notifier blocks 1430 * @val: value passed unmodified to notifier function 1431 * @dev: net_device pointer passed unmodified to notifier function 1432 * 1433 * Call all network notifier blocks. Parameters and return value 1434 * are as for raw_notifier_call_chain(). 1435 */ 1436 1437 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 1438 { 1439 ASSERT_RTNL(); 1440 return raw_notifier_call_chain(&netdev_chain, val, dev); 1441 } 1442 EXPORT_SYMBOL(call_netdevice_notifiers); 1443 1444 static struct jump_label_key netstamp_needed __read_mostly; 1445 #ifdef HAVE_JUMP_LABEL 1446 /* We are not allowed to call jump_label_dec() from irq context 1447 * If net_disable_timestamp() is called from irq context, defer the 1448 * jump_label_dec() calls. 1449 */ 1450 static atomic_t netstamp_needed_deferred; 1451 #endif 1452 1453 void net_enable_timestamp(void) 1454 { 1455 #ifdef HAVE_JUMP_LABEL 1456 int deferred = atomic_xchg(&netstamp_needed_deferred, 0); 1457 1458 if (deferred) { 1459 while (--deferred) 1460 jump_label_dec(&netstamp_needed); 1461 return; 1462 } 1463 #endif 1464 WARN_ON(in_interrupt()); 1465 jump_label_inc(&netstamp_needed); 1466 } 1467 EXPORT_SYMBOL(net_enable_timestamp); 1468 1469 void net_disable_timestamp(void) 1470 { 1471 #ifdef HAVE_JUMP_LABEL 1472 if (in_interrupt()) { 1473 atomic_inc(&netstamp_needed_deferred); 1474 return; 1475 } 1476 #endif 1477 jump_label_dec(&netstamp_needed); 1478 } 1479 EXPORT_SYMBOL(net_disable_timestamp); 1480 1481 static inline void net_timestamp_set(struct sk_buff *skb) 1482 { 1483 skb->tstamp.tv64 = 0; 1484 if (static_branch(&netstamp_needed)) 1485 __net_timestamp(skb); 1486 } 1487 1488 #define net_timestamp_check(COND, SKB) \ 1489 if (static_branch(&netstamp_needed)) { \ 1490 if ((COND) && !(SKB)->tstamp.tv64) \ 1491 __net_timestamp(SKB); \ 1492 } \ 1493 1494 static int net_hwtstamp_validate(struct ifreq *ifr) 1495 { 1496 struct hwtstamp_config cfg; 1497 enum hwtstamp_tx_types tx_type; 1498 enum hwtstamp_rx_filters rx_filter; 1499 int tx_type_valid = 0; 1500 int rx_filter_valid = 0; 1501 1502 if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg))) 1503 return -EFAULT; 1504 1505 if (cfg.flags) /* reserved for future extensions */ 1506 return -EINVAL; 1507 1508 tx_type = cfg.tx_type; 1509 rx_filter = cfg.rx_filter; 1510 1511 switch (tx_type) { 1512 case HWTSTAMP_TX_OFF: 1513 case HWTSTAMP_TX_ON: 1514 case HWTSTAMP_TX_ONESTEP_SYNC: 1515 tx_type_valid = 1; 1516 break; 1517 } 1518 1519 switch (rx_filter) { 1520 case HWTSTAMP_FILTER_NONE: 1521 case HWTSTAMP_FILTER_ALL: 1522 case HWTSTAMP_FILTER_SOME: 1523 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: 1524 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: 1525 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: 1526 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 1527 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 1528 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 1529 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: 1530 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: 1531 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: 1532 case HWTSTAMP_FILTER_PTP_V2_EVENT: 1533 case HWTSTAMP_FILTER_PTP_V2_SYNC: 1534 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 1535 rx_filter_valid = 1; 1536 break; 1537 } 1538 1539 if (!tx_type_valid || !rx_filter_valid) 1540 return -ERANGE; 1541 1542 return 0; 1543 } 1544 1545 static inline bool is_skb_forwardable(struct net_device *dev, 1546 struct sk_buff *skb) 1547 { 1548 unsigned int len; 1549 1550 if (!(dev->flags & IFF_UP)) 1551 return false; 1552 1553 len = dev->mtu + dev->hard_header_len + VLAN_HLEN; 1554 if (skb->len <= len) 1555 return true; 1556 1557 /* if TSO is enabled, we don't care about the length as the packet 1558 * could be forwarded without being segmented before 1559 */ 1560 if (skb_is_gso(skb)) 1561 return true; 1562 1563 return false; 1564 } 1565 1566 /** 1567 * dev_forward_skb - loopback an skb to another netif 1568 * 1569 * @dev: destination network device 1570 * @skb: buffer to forward 1571 * 1572 * return values: 1573 * NET_RX_SUCCESS (no congestion) 1574 * NET_RX_DROP (packet was dropped, but freed) 1575 * 1576 * dev_forward_skb can be used for injecting an skb from the 1577 * start_xmit function of one device into the receive queue 1578 * of another device. 1579 * 1580 * The receiving device may be in another namespace, so 1581 * we have to clear all information in the skb that could 1582 * impact namespace isolation. 1583 */ 1584 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1585 { 1586 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) { 1587 if (skb_copy_ubufs(skb, GFP_ATOMIC)) { 1588 atomic_long_inc(&dev->rx_dropped); 1589 kfree_skb(skb); 1590 return NET_RX_DROP; 1591 } 1592 } 1593 1594 skb_orphan(skb); 1595 nf_reset(skb); 1596 1597 if (unlikely(!is_skb_forwardable(dev, skb))) { 1598 atomic_long_inc(&dev->rx_dropped); 1599 kfree_skb(skb); 1600 return NET_RX_DROP; 1601 } 1602 skb_set_dev(skb, dev); 1603 skb->tstamp.tv64 = 0; 1604 skb->pkt_type = PACKET_HOST; 1605 skb->protocol = eth_type_trans(skb, dev); 1606 return netif_rx(skb); 1607 } 1608 EXPORT_SYMBOL_GPL(dev_forward_skb); 1609 1610 static inline int deliver_skb(struct sk_buff *skb, 1611 struct packet_type *pt_prev, 1612 struct net_device *orig_dev) 1613 { 1614 atomic_inc(&skb->users); 1615 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 1616 } 1617 1618 /* 1619 * Support routine. Sends outgoing frames to any network 1620 * taps currently in use. 1621 */ 1622 1623 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 1624 { 1625 struct packet_type *ptype; 1626 struct sk_buff *skb2 = NULL; 1627 struct packet_type *pt_prev = NULL; 1628 1629 rcu_read_lock(); 1630 list_for_each_entry_rcu(ptype, &ptype_all, list) { 1631 /* Never send packets back to the socket 1632 * they originated from - MvS (miquels@drinkel.ow.org) 1633 */ 1634 if ((ptype->dev == dev || !ptype->dev) && 1635 (ptype->af_packet_priv == NULL || 1636 (struct sock *)ptype->af_packet_priv != skb->sk)) { 1637 if (pt_prev) { 1638 deliver_skb(skb2, pt_prev, skb->dev); 1639 pt_prev = ptype; 1640 continue; 1641 } 1642 1643 skb2 = skb_clone(skb, GFP_ATOMIC); 1644 if (!skb2) 1645 break; 1646 1647 net_timestamp_set(skb2); 1648 1649 /* skb->nh should be correctly 1650 set by sender, so that the second statement is 1651 just protection against buggy protocols. 1652 */ 1653 skb_reset_mac_header(skb2); 1654 1655 if (skb_network_header(skb2) < skb2->data || 1656 skb2->network_header > skb2->tail) { 1657 if (net_ratelimit()) 1658 printk(KERN_CRIT "protocol %04x is " 1659 "buggy, dev %s\n", 1660 ntohs(skb2->protocol), 1661 dev->name); 1662 skb_reset_network_header(skb2); 1663 } 1664 1665 skb2->transport_header = skb2->network_header; 1666 skb2->pkt_type = PACKET_OUTGOING; 1667 pt_prev = ptype; 1668 } 1669 } 1670 if (pt_prev) 1671 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 1672 rcu_read_unlock(); 1673 } 1674 1675 /* netif_setup_tc - Handle tc mappings on real_num_tx_queues change 1676 * @dev: Network device 1677 * @txq: number of queues available 1678 * 1679 * If real_num_tx_queues is changed the tc mappings may no longer be 1680 * valid. To resolve this verify the tc mapping remains valid and if 1681 * not NULL the mapping. With no priorities mapping to this 1682 * offset/count pair it will no longer be used. In the worst case TC0 1683 * is invalid nothing can be done so disable priority mappings. If is 1684 * expected that drivers will fix this mapping if they can before 1685 * calling netif_set_real_num_tx_queues. 1686 */ 1687 static void netif_setup_tc(struct net_device *dev, unsigned int txq) 1688 { 1689 int i; 1690 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 1691 1692 /* If TC0 is invalidated disable TC mapping */ 1693 if (tc->offset + tc->count > txq) { 1694 pr_warning("Number of in use tx queues changed " 1695 "invalidating tc mappings. Priority " 1696 "traffic classification disabled!\n"); 1697 dev->num_tc = 0; 1698 return; 1699 } 1700 1701 /* Invalidated prio to tc mappings set to TC0 */ 1702 for (i = 1; i < TC_BITMASK + 1; i++) { 1703 int q = netdev_get_prio_tc_map(dev, i); 1704 1705 tc = &dev->tc_to_txq[q]; 1706 if (tc->offset + tc->count > txq) { 1707 pr_warning("Number of in use tx queues " 1708 "changed. Priority %i to tc " 1709 "mapping %i is no longer valid " 1710 "setting map to 0\n", 1711 i, q); 1712 netdev_set_prio_tc_map(dev, i, 0); 1713 } 1714 } 1715 } 1716 1717 /* 1718 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 1719 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed. 1720 */ 1721 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 1722 { 1723 int rc; 1724 1725 if (txq < 1 || txq > dev->num_tx_queues) 1726 return -EINVAL; 1727 1728 if (dev->reg_state == NETREG_REGISTERED || 1729 dev->reg_state == NETREG_UNREGISTERING) { 1730 ASSERT_RTNL(); 1731 1732 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 1733 txq); 1734 if (rc) 1735 return rc; 1736 1737 if (dev->num_tc) 1738 netif_setup_tc(dev, txq); 1739 1740 if (txq < dev->real_num_tx_queues) 1741 qdisc_reset_all_tx_gt(dev, txq); 1742 } 1743 1744 dev->real_num_tx_queues = txq; 1745 return 0; 1746 } 1747 EXPORT_SYMBOL(netif_set_real_num_tx_queues); 1748 1749 #ifdef CONFIG_RPS 1750 /** 1751 * netif_set_real_num_rx_queues - set actual number of RX queues used 1752 * @dev: Network device 1753 * @rxq: Actual number of RX queues 1754 * 1755 * This must be called either with the rtnl_lock held or before 1756 * registration of the net device. Returns 0 on success, or a 1757 * negative error code. If called before registration, it always 1758 * succeeds. 1759 */ 1760 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 1761 { 1762 int rc; 1763 1764 if (rxq < 1 || rxq > dev->num_rx_queues) 1765 return -EINVAL; 1766 1767 if (dev->reg_state == NETREG_REGISTERED) { 1768 ASSERT_RTNL(); 1769 1770 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 1771 rxq); 1772 if (rc) 1773 return rc; 1774 } 1775 1776 dev->real_num_rx_queues = rxq; 1777 return 0; 1778 } 1779 EXPORT_SYMBOL(netif_set_real_num_rx_queues); 1780 #endif 1781 1782 static inline void __netif_reschedule(struct Qdisc *q) 1783 { 1784 struct softnet_data *sd; 1785 unsigned long flags; 1786 1787 local_irq_save(flags); 1788 sd = &__get_cpu_var(softnet_data); 1789 q->next_sched = NULL; 1790 *sd->output_queue_tailp = q; 1791 sd->output_queue_tailp = &q->next_sched; 1792 raise_softirq_irqoff(NET_TX_SOFTIRQ); 1793 local_irq_restore(flags); 1794 } 1795 1796 void __netif_schedule(struct Qdisc *q) 1797 { 1798 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 1799 __netif_reschedule(q); 1800 } 1801 EXPORT_SYMBOL(__netif_schedule); 1802 1803 void dev_kfree_skb_irq(struct sk_buff *skb) 1804 { 1805 if (atomic_dec_and_test(&skb->users)) { 1806 struct softnet_data *sd; 1807 unsigned long flags; 1808 1809 local_irq_save(flags); 1810 sd = &__get_cpu_var(softnet_data); 1811 skb->next = sd->completion_queue; 1812 sd->completion_queue = skb; 1813 raise_softirq_irqoff(NET_TX_SOFTIRQ); 1814 local_irq_restore(flags); 1815 } 1816 } 1817 EXPORT_SYMBOL(dev_kfree_skb_irq); 1818 1819 void dev_kfree_skb_any(struct sk_buff *skb) 1820 { 1821 if (in_irq() || irqs_disabled()) 1822 dev_kfree_skb_irq(skb); 1823 else 1824 dev_kfree_skb(skb); 1825 } 1826 EXPORT_SYMBOL(dev_kfree_skb_any); 1827 1828 1829 /** 1830 * netif_device_detach - mark device as removed 1831 * @dev: network device 1832 * 1833 * Mark device as removed from system and therefore no longer available. 1834 */ 1835 void netif_device_detach(struct net_device *dev) 1836 { 1837 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 1838 netif_running(dev)) { 1839 netif_tx_stop_all_queues(dev); 1840 } 1841 } 1842 EXPORT_SYMBOL(netif_device_detach); 1843 1844 /** 1845 * netif_device_attach - mark device as attached 1846 * @dev: network device 1847 * 1848 * Mark device as attached from system and restart if needed. 1849 */ 1850 void netif_device_attach(struct net_device *dev) 1851 { 1852 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 1853 netif_running(dev)) { 1854 netif_tx_wake_all_queues(dev); 1855 __netdev_watchdog_up(dev); 1856 } 1857 } 1858 EXPORT_SYMBOL(netif_device_attach); 1859 1860 /** 1861 * skb_dev_set -- assign a new device to a buffer 1862 * @skb: buffer for the new device 1863 * @dev: network device 1864 * 1865 * If an skb is owned by a device already, we have to reset 1866 * all data private to the namespace a device belongs to 1867 * before assigning it a new device. 1868 */ 1869 #ifdef CONFIG_NET_NS 1870 void skb_set_dev(struct sk_buff *skb, struct net_device *dev) 1871 { 1872 skb_dst_drop(skb); 1873 if (skb->dev && !net_eq(dev_net(skb->dev), dev_net(dev))) { 1874 secpath_reset(skb); 1875 nf_reset(skb); 1876 skb_init_secmark(skb); 1877 skb->mark = 0; 1878 skb->priority = 0; 1879 skb->nf_trace = 0; 1880 skb->ipvs_property = 0; 1881 #ifdef CONFIG_NET_SCHED 1882 skb->tc_index = 0; 1883 #endif 1884 } 1885 skb->dev = dev; 1886 } 1887 EXPORT_SYMBOL(skb_set_dev); 1888 #endif /* CONFIG_NET_NS */ 1889 1890 static void skb_warn_bad_offload(const struct sk_buff *skb) 1891 { 1892 static const netdev_features_t null_features = 0; 1893 struct net_device *dev = skb->dev; 1894 const char *driver = ""; 1895 1896 if (dev && dev->dev.parent) 1897 driver = dev_driver_string(dev->dev.parent); 1898 1899 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d " 1900 "gso_type=%d ip_summed=%d\n", 1901 driver, dev ? &dev->features : &null_features, 1902 skb->sk ? &skb->sk->sk_route_caps : &null_features, 1903 skb->len, skb->data_len, skb_shinfo(skb)->gso_size, 1904 skb_shinfo(skb)->gso_type, skb->ip_summed); 1905 } 1906 1907 /* 1908 * Invalidate hardware checksum when packet is to be mangled, and 1909 * complete checksum manually on outgoing path. 1910 */ 1911 int skb_checksum_help(struct sk_buff *skb) 1912 { 1913 __wsum csum; 1914 int ret = 0, offset; 1915 1916 if (skb->ip_summed == CHECKSUM_COMPLETE) 1917 goto out_set_summed; 1918 1919 if (unlikely(skb_shinfo(skb)->gso_size)) { 1920 skb_warn_bad_offload(skb); 1921 return -EINVAL; 1922 } 1923 1924 offset = skb_checksum_start_offset(skb); 1925 BUG_ON(offset >= skb_headlen(skb)); 1926 csum = skb_checksum(skb, offset, skb->len - offset, 0); 1927 1928 offset += skb->csum_offset; 1929 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 1930 1931 if (skb_cloned(skb) && 1932 !skb_clone_writable(skb, offset + sizeof(__sum16))) { 1933 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 1934 if (ret) 1935 goto out; 1936 } 1937 1938 *(__sum16 *)(skb->data + offset) = csum_fold(csum); 1939 out_set_summed: 1940 skb->ip_summed = CHECKSUM_NONE; 1941 out: 1942 return ret; 1943 } 1944 EXPORT_SYMBOL(skb_checksum_help); 1945 1946 /** 1947 * skb_gso_segment - Perform segmentation on skb. 1948 * @skb: buffer to segment 1949 * @features: features for the output path (see dev->features) 1950 * 1951 * This function segments the given skb and returns a list of segments. 1952 * 1953 * It may return NULL if the skb requires no segmentation. This is 1954 * only possible when GSO is used for verifying header integrity. 1955 */ 1956 struct sk_buff *skb_gso_segment(struct sk_buff *skb, 1957 netdev_features_t features) 1958 { 1959 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 1960 struct packet_type *ptype; 1961 __be16 type = skb->protocol; 1962 int vlan_depth = ETH_HLEN; 1963 int err; 1964 1965 while (type == htons(ETH_P_8021Q)) { 1966 struct vlan_hdr *vh; 1967 1968 if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN))) 1969 return ERR_PTR(-EINVAL); 1970 1971 vh = (struct vlan_hdr *)(skb->data + vlan_depth); 1972 type = vh->h_vlan_encapsulated_proto; 1973 vlan_depth += VLAN_HLEN; 1974 } 1975 1976 skb_reset_mac_header(skb); 1977 skb->mac_len = skb->network_header - skb->mac_header; 1978 __skb_pull(skb, skb->mac_len); 1979 1980 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) { 1981 skb_warn_bad_offload(skb); 1982 1983 if (skb_header_cloned(skb) && 1984 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))) 1985 return ERR_PTR(err); 1986 } 1987 1988 rcu_read_lock(); 1989 list_for_each_entry_rcu(ptype, 1990 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) { 1991 if (ptype->type == type && !ptype->dev && ptype->gso_segment) { 1992 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) { 1993 err = ptype->gso_send_check(skb); 1994 segs = ERR_PTR(err); 1995 if (err || skb_gso_ok(skb, features)) 1996 break; 1997 __skb_push(skb, (skb->data - 1998 skb_network_header(skb))); 1999 } 2000 segs = ptype->gso_segment(skb, features); 2001 break; 2002 } 2003 } 2004 rcu_read_unlock(); 2005 2006 __skb_push(skb, skb->data - skb_mac_header(skb)); 2007 2008 return segs; 2009 } 2010 EXPORT_SYMBOL(skb_gso_segment); 2011 2012 /* Take action when hardware reception checksum errors are detected. */ 2013 #ifdef CONFIG_BUG 2014 void netdev_rx_csum_fault(struct net_device *dev) 2015 { 2016 if (net_ratelimit()) { 2017 printk(KERN_ERR "%s: hw csum failure.\n", 2018 dev ? dev->name : "<unknown>"); 2019 dump_stack(); 2020 } 2021 } 2022 EXPORT_SYMBOL(netdev_rx_csum_fault); 2023 #endif 2024 2025 /* Actually, we should eliminate this check as soon as we know, that: 2026 * 1. IOMMU is present and allows to map all the memory. 2027 * 2. No high memory really exists on this machine. 2028 */ 2029 2030 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 2031 { 2032 #ifdef CONFIG_HIGHMEM 2033 int i; 2034 if (!(dev->features & NETIF_F_HIGHDMA)) { 2035 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2036 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2037 if (PageHighMem(skb_frag_page(frag))) 2038 return 1; 2039 } 2040 } 2041 2042 if (PCI_DMA_BUS_IS_PHYS) { 2043 struct device *pdev = dev->dev.parent; 2044 2045 if (!pdev) 2046 return 0; 2047 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2048 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2049 dma_addr_t addr = page_to_phys(skb_frag_page(frag)); 2050 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask) 2051 return 1; 2052 } 2053 } 2054 #endif 2055 return 0; 2056 } 2057 2058 struct dev_gso_cb { 2059 void (*destructor)(struct sk_buff *skb); 2060 }; 2061 2062 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb) 2063 2064 static void dev_gso_skb_destructor(struct sk_buff *skb) 2065 { 2066 struct dev_gso_cb *cb; 2067 2068 do { 2069 struct sk_buff *nskb = skb->next; 2070 2071 skb->next = nskb->next; 2072 nskb->next = NULL; 2073 kfree_skb(nskb); 2074 } while (skb->next); 2075 2076 cb = DEV_GSO_CB(skb); 2077 if (cb->destructor) 2078 cb->destructor(skb); 2079 } 2080 2081 /** 2082 * dev_gso_segment - Perform emulated hardware segmentation on skb. 2083 * @skb: buffer to segment 2084 * @features: device features as applicable to this skb 2085 * 2086 * This function segments the given skb and stores the list of segments 2087 * in skb->next. 2088 */ 2089 static int dev_gso_segment(struct sk_buff *skb, netdev_features_t features) 2090 { 2091 struct sk_buff *segs; 2092 2093 segs = skb_gso_segment(skb, features); 2094 2095 /* Verifying header integrity only. */ 2096 if (!segs) 2097 return 0; 2098 2099 if (IS_ERR(segs)) 2100 return PTR_ERR(segs); 2101 2102 skb->next = segs; 2103 DEV_GSO_CB(skb)->destructor = skb->destructor; 2104 skb->destructor = dev_gso_skb_destructor; 2105 2106 return 0; 2107 } 2108 2109 /* 2110 * Try to orphan skb early, right before transmission by the device. 2111 * We cannot orphan skb if tx timestamp is requested or the sk-reference 2112 * is needed on driver level for other reasons, e.g. see net/can/raw.c 2113 */ 2114 static inline void skb_orphan_try(struct sk_buff *skb) 2115 { 2116 struct sock *sk = skb->sk; 2117 2118 if (sk && !skb_shinfo(skb)->tx_flags) { 2119 /* skb_tx_hash() wont be able to get sk. 2120 * We copy sk_hash into skb->rxhash 2121 */ 2122 if (!skb->rxhash) 2123 skb->rxhash = sk->sk_hash; 2124 skb_orphan(skb); 2125 } 2126 } 2127 2128 static bool can_checksum_protocol(netdev_features_t features, __be16 protocol) 2129 { 2130 return ((features & NETIF_F_GEN_CSUM) || 2131 ((features & NETIF_F_V4_CSUM) && 2132 protocol == htons(ETH_P_IP)) || 2133 ((features & NETIF_F_V6_CSUM) && 2134 protocol == htons(ETH_P_IPV6)) || 2135 ((features & NETIF_F_FCOE_CRC) && 2136 protocol == htons(ETH_P_FCOE))); 2137 } 2138 2139 static netdev_features_t harmonize_features(struct sk_buff *skb, 2140 __be16 protocol, netdev_features_t features) 2141 { 2142 if (!can_checksum_protocol(features, protocol)) { 2143 features &= ~NETIF_F_ALL_CSUM; 2144 features &= ~NETIF_F_SG; 2145 } else if (illegal_highdma(skb->dev, skb)) { 2146 features &= ~NETIF_F_SG; 2147 } 2148 2149 return features; 2150 } 2151 2152 netdev_features_t netif_skb_features(struct sk_buff *skb) 2153 { 2154 __be16 protocol = skb->protocol; 2155 netdev_features_t features = skb->dev->features; 2156 2157 if (protocol == htons(ETH_P_8021Q)) { 2158 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data; 2159 protocol = veh->h_vlan_encapsulated_proto; 2160 } else if (!vlan_tx_tag_present(skb)) { 2161 return harmonize_features(skb, protocol, features); 2162 } 2163 2164 features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_TX); 2165 2166 if (protocol != htons(ETH_P_8021Q)) { 2167 return harmonize_features(skb, protocol, features); 2168 } else { 2169 features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST | 2170 NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_TX; 2171 return harmonize_features(skb, protocol, features); 2172 } 2173 } 2174 EXPORT_SYMBOL(netif_skb_features); 2175 2176 /* 2177 * Returns true if either: 2178 * 1. skb has frag_list and the device doesn't support FRAGLIST, or 2179 * 2. skb is fragmented and the device does not support SG, or if 2180 * at least one of fragments is in highmem and device does not 2181 * support DMA from it. 2182 */ 2183 static inline int skb_needs_linearize(struct sk_buff *skb, 2184 int features) 2185 { 2186 return skb_is_nonlinear(skb) && 2187 ((skb_has_frag_list(skb) && 2188 !(features & NETIF_F_FRAGLIST)) || 2189 (skb_shinfo(skb)->nr_frags && 2190 !(features & NETIF_F_SG))); 2191 } 2192 2193 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 2194 struct netdev_queue *txq) 2195 { 2196 const struct net_device_ops *ops = dev->netdev_ops; 2197 int rc = NETDEV_TX_OK; 2198 unsigned int skb_len; 2199 2200 if (likely(!skb->next)) { 2201 netdev_features_t features; 2202 2203 /* 2204 * If device doesn't need skb->dst, release it right now while 2205 * its hot in this cpu cache 2206 */ 2207 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 2208 skb_dst_drop(skb); 2209 2210 if (!list_empty(&ptype_all)) 2211 dev_queue_xmit_nit(skb, dev); 2212 2213 skb_orphan_try(skb); 2214 2215 features = netif_skb_features(skb); 2216 2217 if (vlan_tx_tag_present(skb) && 2218 !(features & NETIF_F_HW_VLAN_TX)) { 2219 skb = __vlan_put_tag(skb, vlan_tx_tag_get(skb)); 2220 if (unlikely(!skb)) 2221 goto out; 2222 2223 skb->vlan_tci = 0; 2224 } 2225 2226 if (netif_needs_gso(skb, features)) { 2227 if (unlikely(dev_gso_segment(skb, features))) 2228 goto out_kfree_skb; 2229 if (skb->next) 2230 goto gso; 2231 } else { 2232 if (skb_needs_linearize(skb, features) && 2233 __skb_linearize(skb)) 2234 goto out_kfree_skb; 2235 2236 /* If packet is not checksummed and device does not 2237 * support checksumming for this protocol, complete 2238 * checksumming here. 2239 */ 2240 if (skb->ip_summed == CHECKSUM_PARTIAL) { 2241 skb_set_transport_header(skb, 2242 skb_checksum_start_offset(skb)); 2243 if (!(features & NETIF_F_ALL_CSUM) && 2244 skb_checksum_help(skb)) 2245 goto out_kfree_skb; 2246 } 2247 } 2248 2249 skb_len = skb->len; 2250 rc = ops->ndo_start_xmit(skb, dev); 2251 trace_net_dev_xmit(skb, rc, dev, skb_len); 2252 if (rc == NETDEV_TX_OK) 2253 txq_trans_update(txq); 2254 return rc; 2255 } 2256 2257 gso: 2258 do { 2259 struct sk_buff *nskb = skb->next; 2260 2261 skb->next = nskb->next; 2262 nskb->next = NULL; 2263 2264 /* 2265 * If device doesn't need nskb->dst, release it right now while 2266 * its hot in this cpu cache 2267 */ 2268 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 2269 skb_dst_drop(nskb); 2270 2271 skb_len = nskb->len; 2272 rc = ops->ndo_start_xmit(nskb, dev); 2273 trace_net_dev_xmit(nskb, rc, dev, skb_len); 2274 if (unlikely(rc != NETDEV_TX_OK)) { 2275 if (rc & ~NETDEV_TX_MASK) 2276 goto out_kfree_gso_skb; 2277 nskb->next = skb->next; 2278 skb->next = nskb; 2279 return rc; 2280 } 2281 txq_trans_update(txq); 2282 if (unlikely(netif_xmit_stopped(txq) && skb->next)) 2283 return NETDEV_TX_BUSY; 2284 } while (skb->next); 2285 2286 out_kfree_gso_skb: 2287 if (likely(skb->next == NULL)) 2288 skb->destructor = DEV_GSO_CB(skb)->destructor; 2289 out_kfree_skb: 2290 kfree_skb(skb); 2291 out: 2292 return rc; 2293 } 2294 2295 static u32 hashrnd __read_mostly; 2296 2297 /* 2298 * Returns a Tx hash based on the given packet descriptor a Tx queues' number 2299 * to be used as a distribution range. 2300 */ 2301 u16 __skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb, 2302 unsigned int num_tx_queues) 2303 { 2304 u32 hash; 2305 u16 qoffset = 0; 2306 u16 qcount = num_tx_queues; 2307 2308 if (skb_rx_queue_recorded(skb)) { 2309 hash = skb_get_rx_queue(skb); 2310 while (unlikely(hash >= num_tx_queues)) 2311 hash -= num_tx_queues; 2312 return hash; 2313 } 2314 2315 if (dev->num_tc) { 2316 u8 tc = netdev_get_prio_tc_map(dev, skb->priority); 2317 qoffset = dev->tc_to_txq[tc].offset; 2318 qcount = dev->tc_to_txq[tc].count; 2319 } 2320 2321 if (skb->sk && skb->sk->sk_hash) 2322 hash = skb->sk->sk_hash; 2323 else 2324 hash = (__force u16) skb->protocol ^ skb->rxhash; 2325 hash = jhash_1word(hash, hashrnd); 2326 2327 return (u16) (((u64) hash * qcount) >> 32) + qoffset; 2328 } 2329 EXPORT_SYMBOL(__skb_tx_hash); 2330 2331 static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index) 2332 { 2333 if (unlikely(queue_index >= dev->real_num_tx_queues)) { 2334 if (net_ratelimit()) { 2335 pr_warning("%s selects TX queue %d, but " 2336 "real number of TX queues is %d\n", 2337 dev->name, queue_index, dev->real_num_tx_queues); 2338 } 2339 return 0; 2340 } 2341 return queue_index; 2342 } 2343 2344 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb) 2345 { 2346 #ifdef CONFIG_XPS 2347 struct xps_dev_maps *dev_maps; 2348 struct xps_map *map; 2349 int queue_index = -1; 2350 2351 rcu_read_lock(); 2352 dev_maps = rcu_dereference(dev->xps_maps); 2353 if (dev_maps) { 2354 map = rcu_dereference( 2355 dev_maps->cpu_map[raw_smp_processor_id()]); 2356 if (map) { 2357 if (map->len == 1) 2358 queue_index = map->queues[0]; 2359 else { 2360 u32 hash; 2361 if (skb->sk && skb->sk->sk_hash) 2362 hash = skb->sk->sk_hash; 2363 else 2364 hash = (__force u16) skb->protocol ^ 2365 skb->rxhash; 2366 hash = jhash_1word(hash, hashrnd); 2367 queue_index = map->queues[ 2368 ((u64)hash * map->len) >> 32]; 2369 } 2370 if (unlikely(queue_index >= dev->real_num_tx_queues)) 2371 queue_index = -1; 2372 } 2373 } 2374 rcu_read_unlock(); 2375 2376 return queue_index; 2377 #else 2378 return -1; 2379 #endif 2380 } 2381 2382 static struct netdev_queue *dev_pick_tx(struct net_device *dev, 2383 struct sk_buff *skb) 2384 { 2385 int queue_index; 2386 const struct net_device_ops *ops = dev->netdev_ops; 2387 2388 if (dev->real_num_tx_queues == 1) 2389 queue_index = 0; 2390 else if (ops->ndo_select_queue) { 2391 queue_index = ops->ndo_select_queue(dev, skb); 2392 queue_index = dev_cap_txqueue(dev, queue_index); 2393 } else { 2394 struct sock *sk = skb->sk; 2395 queue_index = sk_tx_queue_get(sk); 2396 2397 if (queue_index < 0 || skb->ooo_okay || 2398 queue_index >= dev->real_num_tx_queues) { 2399 int old_index = queue_index; 2400 2401 queue_index = get_xps_queue(dev, skb); 2402 if (queue_index < 0) 2403 queue_index = skb_tx_hash(dev, skb); 2404 2405 if (queue_index != old_index && sk) { 2406 struct dst_entry *dst = 2407 rcu_dereference_check(sk->sk_dst_cache, 1); 2408 2409 if (dst && skb_dst(skb) == dst) 2410 sk_tx_queue_set(sk, queue_index); 2411 } 2412 } 2413 } 2414 2415 skb_set_queue_mapping(skb, queue_index); 2416 return netdev_get_tx_queue(dev, queue_index); 2417 } 2418 2419 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 2420 struct net_device *dev, 2421 struct netdev_queue *txq) 2422 { 2423 spinlock_t *root_lock = qdisc_lock(q); 2424 bool contended; 2425 int rc; 2426 2427 qdisc_skb_cb(skb)->pkt_len = skb->len; 2428 qdisc_calculate_pkt_len(skb, q); 2429 /* 2430 * Heuristic to force contended enqueues to serialize on a 2431 * separate lock before trying to get qdisc main lock. 2432 * This permits __QDISC_STATE_RUNNING owner to get the lock more often 2433 * and dequeue packets faster. 2434 */ 2435 contended = qdisc_is_running(q); 2436 if (unlikely(contended)) 2437 spin_lock(&q->busylock); 2438 2439 spin_lock(root_lock); 2440 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 2441 kfree_skb(skb); 2442 rc = NET_XMIT_DROP; 2443 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 2444 qdisc_run_begin(q)) { 2445 /* 2446 * This is a work-conserving queue; there are no old skbs 2447 * waiting to be sent out; and the qdisc is not running - 2448 * xmit the skb directly. 2449 */ 2450 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE)) 2451 skb_dst_force(skb); 2452 2453 qdisc_bstats_update(q, skb); 2454 2455 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) { 2456 if (unlikely(contended)) { 2457 spin_unlock(&q->busylock); 2458 contended = false; 2459 } 2460 __qdisc_run(q); 2461 } else 2462 qdisc_run_end(q); 2463 2464 rc = NET_XMIT_SUCCESS; 2465 } else { 2466 skb_dst_force(skb); 2467 rc = q->enqueue(skb, q) & NET_XMIT_MASK; 2468 if (qdisc_run_begin(q)) { 2469 if (unlikely(contended)) { 2470 spin_unlock(&q->busylock); 2471 contended = false; 2472 } 2473 __qdisc_run(q); 2474 } 2475 } 2476 spin_unlock(root_lock); 2477 if (unlikely(contended)) 2478 spin_unlock(&q->busylock); 2479 return rc; 2480 } 2481 2482 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP) 2483 static void skb_update_prio(struct sk_buff *skb) 2484 { 2485 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap); 2486 2487 if ((!skb->priority) && (skb->sk) && map) 2488 skb->priority = map->priomap[skb->sk->sk_cgrp_prioidx]; 2489 } 2490 #else 2491 #define skb_update_prio(skb) 2492 #endif 2493 2494 static DEFINE_PER_CPU(int, xmit_recursion); 2495 #define RECURSION_LIMIT 10 2496 2497 /** 2498 * dev_queue_xmit - transmit a buffer 2499 * @skb: buffer to transmit 2500 * 2501 * Queue a buffer for transmission to a network device. The caller must 2502 * have set the device and priority and built the buffer before calling 2503 * this function. The function can be called from an interrupt. 2504 * 2505 * A negative errno code is returned on a failure. A success does not 2506 * guarantee the frame will be transmitted as it may be dropped due 2507 * to congestion or traffic shaping. 2508 * 2509 * ----------------------------------------------------------------------------------- 2510 * I notice this method can also return errors from the queue disciplines, 2511 * including NET_XMIT_DROP, which is a positive value. So, errors can also 2512 * be positive. 2513 * 2514 * Regardless of the return value, the skb is consumed, so it is currently 2515 * difficult to retry a send to this method. (You can bump the ref count 2516 * before sending to hold a reference for retry if you are careful.) 2517 * 2518 * When calling this method, interrupts MUST be enabled. This is because 2519 * the BH enable code must have IRQs enabled so that it will not deadlock. 2520 * --BLG 2521 */ 2522 int dev_queue_xmit(struct sk_buff *skb) 2523 { 2524 struct net_device *dev = skb->dev; 2525 struct netdev_queue *txq; 2526 struct Qdisc *q; 2527 int rc = -ENOMEM; 2528 2529 /* Disable soft irqs for various locks below. Also 2530 * stops preemption for RCU. 2531 */ 2532 rcu_read_lock_bh(); 2533 2534 skb_update_prio(skb); 2535 2536 txq = dev_pick_tx(dev, skb); 2537 q = rcu_dereference_bh(txq->qdisc); 2538 2539 #ifdef CONFIG_NET_CLS_ACT 2540 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS); 2541 #endif 2542 trace_net_dev_queue(skb); 2543 if (q->enqueue) { 2544 rc = __dev_xmit_skb(skb, q, dev, txq); 2545 goto out; 2546 } 2547 2548 /* The device has no queue. Common case for software devices: 2549 loopback, all the sorts of tunnels... 2550 2551 Really, it is unlikely that netif_tx_lock protection is necessary 2552 here. (f.e. loopback and IP tunnels are clean ignoring statistics 2553 counters.) 2554 However, it is possible, that they rely on protection 2555 made by us here. 2556 2557 Check this and shot the lock. It is not prone from deadlocks. 2558 Either shot noqueue qdisc, it is even simpler 8) 2559 */ 2560 if (dev->flags & IFF_UP) { 2561 int cpu = smp_processor_id(); /* ok because BHs are off */ 2562 2563 if (txq->xmit_lock_owner != cpu) { 2564 2565 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT) 2566 goto recursion_alert; 2567 2568 HARD_TX_LOCK(dev, txq, cpu); 2569 2570 if (!netif_xmit_stopped(txq)) { 2571 __this_cpu_inc(xmit_recursion); 2572 rc = dev_hard_start_xmit(skb, dev, txq); 2573 __this_cpu_dec(xmit_recursion); 2574 if (dev_xmit_complete(rc)) { 2575 HARD_TX_UNLOCK(dev, txq); 2576 goto out; 2577 } 2578 } 2579 HARD_TX_UNLOCK(dev, txq); 2580 if (net_ratelimit()) 2581 printk(KERN_CRIT "Virtual device %s asks to " 2582 "queue packet!\n", dev->name); 2583 } else { 2584 /* Recursion is detected! It is possible, 2585 * unfortunately 2586 */ 2587 recursion_alert: 2588 if (net_ratelimit()) 2589 printk(KERN_CRIT "Dead loop on virtual device " 2590 "%s, fix it urgently!\n", dev->name); 2591 } 2592 } 2593 2594 rc = -ENETDOWN; 2595 rcu_read_unlock_bh(); 2596 2597 kfree_skb(skb); 2598 return rc; 2599 out: 2600 rcu_read_unlock_bh(); 2601 return rc; 2602 } 2603 EXPORT_SYMBOL(dev_queue_xmit); 2604 2605 2606 /*======================================================================= 2607 Receiver routines 2608 =======================================================================*/ 2609 2610 int netdev_max_backlog __read_mostly = 1000; 2611 int netdev_tstamp_prequeue __read_mostly = 1; 2612 int netdev_budget __read_mostly = 300; 2613 int weight_p __read_mostly = 64; /* old backlog weight */ 2614 2615 /* Called with irq disabled */ 2616 static inline void ____napi_schedule(struct softnet_data *sd, 2617 struct napi_struct *napi) 2618 { 2619 list_add_tail(&napi->poll_list, &sd->poll_list); 2620 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 2621 } 2622 2623 /* 2624 * __skb_get_rxhash: calculate a flow hash based on src/dst addresses 2625 * and src/dst port numbers. Sets rxhash in skb to non-zero hash value 2626 * on success, zero indicates no valid hash. Also, sets l4_rxhash in skb 2627 * if hash is a canonical 4-tuple hash over transport ports. 2628 */ 2629 void __skb_get_rxhash(struct sk_buff *skb) 2630 { 2631 struct flow_keys keys; 2632 u32 hash; 2633 2634 if (!skb_flow_dissect(skb, &keys)) 2635 return; 2636 2637 if (keys.ports) { 2638 if ((__force u16)keys.port16[1] < (__force u16)keys.port16[0]) 2639 swap(keys.port16[0], keys.port16[1]); 2640 skb->l4_rxhash = 1; 2641 } 2642 2643 /* get a consistent hash (same value on both flow directions) */ 2644 if ((__force u32)keys.dst < (__force u32)keys.src) 2645 swap(keys.dst, keys.src); 2646 2647 hash = jhash_3words((__force u32)keys.dst, 2648 (__force u32)keys.src, 2649 (__force u32)keys.ports, hashrnd); 2650 if (!hash) 2651 hash = 1; 2652 2653 skb->rxhash = hash; 2654 } 2655 EXPORT_SYMBOL(__skb_get_rxhash); 2656 2657 #ifdef CONFIG_RPS 2658 2659 /* One global table that all flow-based protocols share. */ 2660 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly; 2661 EXPORT_SYMBOL(rps_sock_flow_table); 2662 2663 struct jump_label_key rps_needed __read_mostly; 2664 2665 static struct rps_dev_flow * 2666 set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 2667 struct rps_dev_flow *rflow, u16 next_cpu) 2668 { 2669 if (next_cpu != RPS_NO_CPU) { 2670 #ifdef CONFIG_RFS_ACCEL 2671 struct netdev_rx_queue *rxqueue; 2672 struct rps_dev_flow_table *flow_table; 2673 struct rps_dev_flow *old_rflow; 2674 u32 flow_id; 2675 u16 rxq_index; 2676 int rc; 2677 2678 /* Should we steer this flow to a different hardware queue? */ 2679 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 2680 !(dev->features & NETIF_F_NTUPLE)) 2681 goto out; 2682 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 2683 if (rxq_index == skb_get_rx_queue(skb)) 2684 goto out; 2685 2686 rxqueue = dev->_rx + rxq_index; 2687 flow_table = rcu_dereference(rxqueue->rps_flow_table); 2688 if (!flow_table) 2689 goto out; 2690 flow_id = skb->rxhash & flow_table->mask; 2691 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 2692 rxq_index, flow_id); 2693 if (rc < 0) 2694 goto out; 2695 old_rflow = rflow; 2696 rflow = &flow_table->flows[flow_id]; 2697 rflow->filter = rc; 2698 if (old_rflow->filter == rflow->filter) 2699 old_rflow->filter = RPS_NO_FILTER; 2700 out: 2701 #endif 2702 rflow->last_qtail = 2703 per_cpu(softnet_data, next_cpu).input_queue_head; 2704 } 2705 2706 rflow->cpu = next_cpu; 2707 return rflow; 2708 } 2709 2710 /* 2711 * get_rps_cpu is called from netif_receive_skb and returns the target 2712 * CPU from the RPS map of the receiving queue for a given skb. 2713 * rcu_read_lock must be held on entry. 2714 */ 2715 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 2716 struct rps_dev_flow **rflowp) 2717 { 2718 struct netdev_rx_queue *rxqueue; 2719 struct rps_map *map; 2720 struct rps_dev_flow_table *flow_table; 2721 struct rps_sock_flow_table *sock_flow_table; 2722 int cpu = -1; 2723 u16 tcpu; 2724 2725 if (skb_rx_queue_recorded(skb)) { 2726 u16 index = skb_get_rx_queue(skb); 2727 if (unlikely(index >= dev->real_num_rx_queues)) { 2728 WARN_ONCE(dev->real_num_rx_queues > 1, 2729 "%s received packet on queue %u, but number " 2730 "of RX queues is %u\n", 2731 dev->name, index, dev->real_num_rx_queues); 2732 goto done; 2733 } 2734 rxqueue = dev->_rx + index; 2735 } else 2736 rxqueue = dev->_rx; 2737 2738 map = rcu_dereference(rxqueue->rps_map); 2739 if (map) { 2740 if (map->len == 1 && 2741 !rcu_access_pointer(rxqueue->rps_flow_table)) { 2742 tcpu = map->cpus[0]; 2743 if (cpu_online(tcpu)) 2744 cpu = tcpu; 2745 goto done; 2746 } 2747 } else if (!rcu_access_pointer(rxqueue->rps_flow_table)) { 2748 goto done; 2749 } 2750 2751 skb_reset_network_header(skb); 2752 if (!skb_get_rxhash(skb)) 2753 goto done; 2754 2755 flow_table = rcu_dereference(rxqueue->rps_flow_table); 2756 sock_flow_table = rcu_dereference(rps_sock_flow_table); 2757 if (flow_table && sock_flow_table) { 2758 u16 next_cpu; 2759 struct rps_dev_flow *rflow; 2760 2761 rflow = &flow_table->flows[skb->rxhash & flow_table->mask]; 2762 tcpu = rflow->cpu; 2763 2764 next_cpu = sock_flow_table->ents[skb->rxhash & 2765 sock_flow_table->mask]; 2766 2767 /* 2768 * If the desired CPU (where last recvmsg was done) is 2769 * different from current CPU (one in the rx-queue flow 2770 * table entry), switch if one of the following holds: 2771 * - Current CPU is unset (equal to RPS_NO_CPU). 2772 * - Current CPU is offline. 2773 * - The current CPU's queue tail has advanced beyond the 2774 * last packet that was enqueued using this table entry. 2775 * This guarantees that all previous packets for the flow 2776 * have been dequeued, thus preserving in order delivery. 2777 */ 2778 if (unlikely(tcpu != next_cpu) && 2779 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) || 2780 ((int)(per_cpu(softnet_data, tcpu).input_queue_head - 2781 rflow->last_qtail)) >= 0)) 2782 rflow = set_rps_cpu(dev, skb, rflow, next_cpu); 2783 2784 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) { 2785 *rflowp = rflow; 2786 cpu = tcpu; 2787 goto done; 2788 } 2789 } 2790 2791 if (map) { 2792 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32]; 2793 2794 if (cpu_online(tcpu)) { 2795 cpu = tcpu; 2796 goto done; 2797 } 2798 } 2799 2800 done: 2801 return cpu; 2802 } 2803 2804 #ifdef CONFIG_RFS_ACCEL 2805 2806 /** 2807 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 2808 * @dev: Device on which the filter was set 2809 * @rxq_index: RX queue index 2810 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 2811 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 2812 * 2813 * Drivers that implement ndo_rx_flow_steer() should periodically call 2814 * this function for each installed filter and remove the filters for 2815 * which it returns %true. 2816 */ 2817 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 2818 u32 flow_id, u16 filter_id) 2819 { 2820 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 2821 struct rps_dev_flow_table *flow_table; 2822 struct rps_dev_flow *rflow; 2823 bool expire = true; 2824 int cpu; 2825 2826 rcu_read_lock(); 2827 flow_table = rcu_dereference(rxqueue->rps_flow_table); 2828 if (flow_table && flow_id <= flow_table->mask) { 2829 rflow = &flow_table->flows[flow_id]; 2830 cpu = ACCESS_ONCE(rflow->cpu); 2831 if (rflow->filter == filter_id && cpu != RPS_NO_CPU && 2832 ((int)(per_cpu(softnet_data, cpu).input_queue_head - 2833 rflow->last_qtail) < 2834 (int)(10 * flow_table->mask))) 2835 expire = false; 2836 } 2837 rcu_read_unlock(); 2838 return expire; 2839 } 2840 EXPORT_SYMBOL(rps_may_expire_flow); 2841 2842 #endif /* CONFIG_RFS_ACCEL */ 2843 2844 /* Called from hardirq (IPI) context */ 2845 static void rps_trigger_softirq(void *data) 2846 { 2847 struct softnet_data *sd = data; 2848 2849 ____napi_schedule(sd, &sd->backlog); 2850 sd->received_rps++; 2851 } 2852 2853 #endif /* CONFIG_RPS */ 2854 2855 /* 2856 * Check if this softnet_data structure is another cpu one 2857 * If yes, queue it to our IPI list and return 1 2858 * If no, return 0 2859 */ 2860 static int rps_ipi_queued(struct softnet_data *sd) 2861 { 2862 #ifdef CONFIG_RPS 2863 struct softnet_data *mysd = &__get_cpu_var(softnet_data); 2864 2865 if (sd != mysd) { 2866 sd->rps_ipi_next = mysd->rps_ipi_list; 2867 mysd->rps_ipi_list = sd; 2868 2869 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 2870 return 1; 2871 } 2872 #endif /* CONFIG_RPS */ 2873 return 0; 2874 } 2875 2876 /* 2877 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 2878 * queue (may be a remote CPU queue). 2879 */ 2880 static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 2881 unsigned int *qtail) 2882 { 2883 struct softnet_data *sd; 2884 unsigned long flags; 2885 2886 sd = &per_cpu(softnet_data, cpu); 2887 2888 local_irq_save(flags); 2889 2890 rps_lock(sd); 2891 if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) { 2892 if (skb_queue_len(&sd->input_pkt_queue)) { 2893 enqueue: 2894 __skb_queue_tail(&sd->input_pkt_queue, skb); 2895 input_queue_tail_incr_save(sd, qtail); 2896 rps_unlock(sd); 2897 local_irq_restore(flags); 2898 return NET_RX_SUCCESS; 2899 } 2900 2901 /* Schedule NAPI for backlog device 2902 * We can use non atomic operation since we own the queue lock 2903 */ 2904 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) { 2905 if (!rps_ipi_queued(sd)) 2906 ____napi_schedule(sd, &sd->backlog); 2907 } 2908 goto enqueue; 2909 } 2910 2911 sd->dropped++; 2912 rps_unlock(sd); 2913 2914 local_irq_restore(flags); 2915 2916 atomic_long_inc(&skb->dev->rx_dropped); 2917 kfree_skb(skb); 2918 return NET_RX_DROP; 2919 } 2920 2921 /** 2922 * netif_rx - post buffer to the network code 2923 * @skb: buffer to post 2924 * 2925 * This function receives a packet from a device driver and queues it for 2926 * the upper (protocol) levels to process. It always succeeds. The buffer 2927 * may be dropped during processing for congestion control or by the 2928 * protocol layers. 2929 * 2930 * return values: 2931 * NET_RX_SUCCESS (no congestion) 2932 * NET_RX_DROP (packet was dropped) 2933 * 2934 */ 2935 2936 int netif_rx(struct sk_buff *skb) 2937 { 2938 int ret; 2939 2940 /* if netpoll wants it, pretend we never saw it */ 2941 if (netpoll_rx(skb)) 2942 return NET_RX_DROP; 2943 2944 net_timestamp_check(netdev_tstamp_prequeue, skb); 2945 2946 trace_netif_rx(skb); 2947 #ifdef CONFIG_RPS 2948 if (static_branch(&rps_needed)) { 2949 struct rps_dev_flow voidflow, *rflow = &voidflow; 2950 int cpu; 2951 2952 preempt_disable(); 2953 rcu_read_lock(); 2954 2955 cpu = get_rps_cpu(skb->dev, skb, &rflow); 2956 if (cpu < 0) 2957 cpu = smp_processor_id(); 2958 2959 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 2960 2961 rcu_read_unlock(); 2962 preempt_enable(); 2963 } else 2964 #endif 2965 { 2966 unsigned int qtail; 2967 ret = enqueue_to_backlog(skb, get_cpu(), &qtail); 2968 put_cpu(); 2969 } 2970 return ret; 2971 } 2972 EXPORT_SYMBOL(netif_rx); 2973 2974 int netif_rx_ni(struct sk_buff *skb) 2975 { 2976 int err; 2977 2978 preempt_disable(); 2979 err = netif_rx(skb); 2980 if (local_softirq_pending()) 2981 do_softirq(); 2982 preempt_enable(); 2983 2984 return err; 2985 } 2986 EXPORT_SYMBOL(netif_rx_ni); 2987 2988 static void net_tx_action(struct softirq_action *h) 2989 { 2990 struct softnet_data *sd = &__get_cpu_var(softnet_data); 2991 2992 if (sd->completion_queue) { 2993 struct sk_buff *clist; 2994 2995 local_irq_disable(); 2996 clist = sd->completion_queue; 2997 sd->completion_queue = NULL; 2998 local_irq_enable(); 2999 3000 while (clist) { 3001 struct sk_buff *skb = clist; 3002 clist = clist->next; 3003 3004 WARN_ON(atomic_read(&skb->users)); 3005 trace_kfree_skb(skb, net_tx_action); 3006 __kfree_skb(skb); 3007 } 3008 } 3009 3010 if (sd->output_queue) { 3011 struct Qdisc *head; 3012 3013 local_irq_disable(); 3014 head = sd->output_queue; 3015 sd->output_queue = NULL; 3016 sd->output_queue_tailp = &sd->output_queue; 3017 local_irq_enable(); 3018 3019 while (head) { 3020 struct Qdisc *q = head; 3021 spinlock_t *root_lock; 3022 3023 head = head->next_sched; 3024 3025 root_lock = qdisc_lock(q); 3026 if (spin_trylock(root_lock)) { 3027 smp_mb__before_clear_bit(); 3028 clear_bit(__QDISC_STATE_SCHED, 3029 &q->state); 3030 qdisc_run(q); 3031 spin_unlock(root_lock); 3032 } else { 3033 if (!test_bit(__QDISC_STATE_DEACTIVATED, 3034 &q->state)) { 3035 __netif_reschedule(q); 3036 } else { 3037 smp_mb__before_clear_bit(); 3038 clear_bit(__QDISC_STATE_SCHED, 3039 &q->state); 3040 } 3041 } 3042 } 3043 } 3044 } 3045 3046 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \ 3047 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE)) 3048 /* This hook is defined here for ATM LANE */ 3049 int (*br_fdb_test_addr_hook)(struct net_device *dev, 3050 unsigned char *addr) __read_mostly; 3051 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 3052 #endif 3053 3054 #ifdef CONFIG_NET_CLS_ACT 3055 /* TODO: Maybe we should just force sch_ingress to be compiled in 3056 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions 3057 * a compare and 2 stores extra right now if we dont have it on 3058 * but have CONFIG_NET_CLS_ACT 3059 * NOTE: This doesn't stop any functionality; if you dont have 3060 * the ingress scheduler, you just can't add policies on ingress. 3061 * 3062 */ 3063 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq) 3064 { 3065 struct net_device *dev = skb->dev; 3066 u32 ttl = G_TC_RTTL(skb->tc_verd); 3067 int result = TC_ACT_OK; 3068 struct Qdisc *q; 3069 3070 if (unlikely(MAX_RED_LOOP < ttl++)) { 3071 if (net_ratelimit()) 3072 pr_warning( "Redir loop detected Dropping packet (%d->%d)\n", 3073 skb->skb_iif, dev->ifindex); 3074 return TC_ACT_SHOT; 3075 } 3076 3077 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl); 3078 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS); 3079 3080 q = rxq->qdisc; 3081 if (q != &noop_qdisc) { 3082 spin_lock(qdisc_lock(q)); 3083 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) 3084 result = qdisc_enqueue_root(skb, q); 3085 spin_unlock(qdisc_lock(q)); 3086 } 3087 3088 return result; 3089 } 3090 3091 static inline struct sk_buff *handle_ing(struct sk_buff *skb, 3092 struct packet_type **pt_prev, 3093 int *ret, struct net_device *orig_dev) 3094 { 3095 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue); 3096 3097 if (!rxq || rxq->qdisc == &noop_qdisc) 3098 goto out; 3099 3100 if (*pt_prev) { 3101 *ret = deliver_skb(skb, *pt_prev, orig_dev); 3102 *pt_prev = NULL; 3103 } 3104 3105 switch (ing_filter(skb, rxq)) { 3106 case TC_ACT_SHOT: 3107 case TC_ACT_STOLEN: 3108 kfree_skb(skb); 3109 return NULL; 3110 } 3111 3112 out: 3113 skb->tc_verd = 0; 3114 return skb; 3115 } 3116 #endif 3117 3118 /** 3119 * netdev_rx_handler_register - register receive handler 3120 * @dev: device to register a handler for 3121 * @rx_handler: receive handler to register 3122 * @rx_handler_data: data pointer that is used by rx handler 3123 * 3124 * Register a receive hander for a device. This handler will then be 3125 * called from __netif_receive_skb. A negative errno code is returned 3126 * on a failure. 3127 * 3128 * The caller must hold the rtnl_mutex. 3129 * 3130 * For a general description of rx_handler, see enum rx_handler_result. 3131 */ 3132 int netdev_rx_handler_register(struct net_device *dev, 3133 rx_handler_func_t *rx_handler, 3134 void *rx_handler_data) 3135 { 3136 ASSERT_RTNL(); 3137 3138 if (dev->rx_handler) 3139 return -EBUSY; 3140 3141 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 3142 rcu_assign_pointer(dev->rx_handler, rx_handler); 3143 3144 return 0; 3145 } 3146 EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 3147 3148 /** 3149 * netdev_rx_handler_unregister - unregister receive handler 3150 * @dev: device to unregister a handler from 3151 * 3152 * Unregister a receive hander from a device. 3153 * 3154 * The caller must hold the rtnl_mutex. 3155 */ 3156 void netdev_rx_handler_unregister(struct net_device *dev) 3157 { 3158 3159 ASSERT_RTNL(); 3160 RCU_INIT_POINTER(dev->rx_handler, NULL); 3161 RCU_INIT_POINTER(dev->rx_handler_data, NULL); 3162 } 3163 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 3164 3165 static int __netif_receive_skb(struct sk_buff *skb) 3166 { 3167 struct packet_type *ptype, *pt_prev; 3168 rx_handler_func_t *rx_handler; 3169 struct net_device *orig_dev; 3170 struct net_device *null_or_dev; 3171 bool deliver_exact = false; 3172 int ret = NET_RX_DROP; 3173 __be16 type; 3174 3175 net_timestamp_check(!netdev_tstamp_prequeue, skb); 3176 3177 trace_netif_receive_skb(skb); 3178 3179 /* if we've gotten here through NAPI, check netpoll */ 3180 if (netpoll_receive_skb(skb)) 3181 return NET_RX_DROP; 3182 3183 if (!skb->skb_iif) 3184 skb->skb_iif = skb->dev->ifindex; 3185 orig_dev = skb->dev; 3186 3187 skb_reset_network_header(skb); 3188 skb_reset_transport_header(skb); 3189 skb_reset_mac_len(skb); 3190 3191 pt_prev = NULL; 3192 3193 rcu_read_lock(); 3194 3195 another_round: 3196 3197 __this_cpu_inc(softnet_data.processed); 3198 3199 if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) { 3200 skb = vlan_untag(skb); 3201 if (unlikely(!skb)) 3202 goto out; 3203 } 3204 3205 #ifdef CONFIG_NET_CLS_ACT 3206 if (skb->tc_verd & TC_NCLS) { 3207 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd); 3208 goto ncls; 3209 } 3210 #endif 3211 3212 list_for_each_entry_rcu(ptype, &ptype_all, list) { 3213 if (!ptype->dev || ptype->dev == skb->dev) { 3214 if (pt_prev) 3215 ret = deliver_skb(skb, pt_prev, orig_dev); 3216 pt_prev = ptype; 3217 } 3218 } 3219 3220 #ifdef CONFIG_NET_CLS_ACT 3221 skb = handle_ing(skb, &pt_prev, &ret, orig_dev); 3222 if (!skb) 3223 goto out; 3224 ncls: 3225 #endif 3226 3227 rx_handler = rcu_dereference(skb->dev->rx_handler); 3228 if (vlan_tx_tag_present(skb)) { 3229 if (pt_prev) { 3230 ret = deliver_skb(skb, pt_prev, orig_dev); 3231 pt_prev = NULL; 3232 } 3233 if (vlan_do_receive(&skb, !rx_handler)) 3234 goto another_round; 3235 else if (unlikely(!skb)) 3236 goto out; 3237 } 3238 3239 if (rx_handler) { 3240 if (pt_prev) { 3241 ret = deliver_skb(skb, pt_prev, orig_dev); 3242 pt_prev = NULL; 3243 } 3244 switch (rx_handler(&skb)) { 3245 case RX_HANDLER_CONSUMED: 3246 goto out; 3247 case RX_HANDLER_ANOTHER: 3248 goto another_round; 3249 case RX_HANDLER_EXACT: 3250 deliver_exact = true; 3251 case RX_HANDLER_PASS: 3252 break; 3253 default: 3254 BUG(); 3255 } 3256 } 3257 3258 /* deliver only exact match when indicated */ 3259 null_or_dev = deliver_exact ? skb->dev : NULL; 3260 3261 type = skb->protocol; 3262 list_for_each_entry_rcu(ptype, 3263 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) { 3264 if (ptype->type == type && 3265 (ptype->dev == null_or_dev || ptype->dev == skb->dev || 3266 ptype->dev == orig_dev)) { 3267 if (pt_prev) 3268 ret = deliver_skb(skb, pt_prev, orig_dev); 3269 pt_prev = ptype; 3270 } 3271 } 3272 3273 if (pt_prev) { 3274 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 3275 } else { 3276 atomic_long_inc(&skb->dev->rx_dropped); 3277 kfree_skb(skb); 3278 /* Jamal, now you will not able to escape explaining 3279 * me how you were going to use this. :-) 3280 */ 3281 ret = NET_RX_DROP; 3282 } 3283 3284 out: 3285 rcu_read_unlock(); 3286 return ret; 3287 } 3288 3289 /** 3290 * netif_receive_skb - process receive buffer from network 3291 * @skb: buffer to process 3292 * 3293 * netif_receive_skb() is the main receive data processing function. 3294 * It always succeeds. The buffer may be dropped during processing 3295 * for congestion control or by the protocol layers. 3296 * 3297 * This function may only be called from softirq context and interrupts 3298 * should be enabled. 3299 * 3300 * Return values (usually ignored): 3301 * NET_RX_SUCCESS: no congestion 3302 * NET_RX_DROP: packet was dropped 3303 */ 3304 int netif_receive_skb(struct sk_buff *skb) 3305 { 3306 net_timestamp_check(netdev_tstamp_prequeue, skb); 3307 3308 if (skb_defer_rx_timestamp(skb)) 3309 return NET_RX_SUCCESS; 3310 3311 #ifdef CONFIG_RPS 3312 if (static_branch(&rps_needed)) { 3313 struct rps_dev_flow voidflow, *rflow = &voidflow; 3314 int cpu, ret; 3315 3316 rcu_read_lock(); 3317 3318 cpu = get_rps_cpu(skb->dev, skb, &rflow); 3319 3320 if (cpu >= 0) { 3321 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 3322 rcu_read_unlock(); 3323 return ret; 3324 } 3325 rcu_read_unlock(); 3326 } 3327 #endif 3328 return __netif_receive_skb(skb); 3329 } 3330 EXPORT_SYMBOL(netif_receive_skb); 3331 3332 /* Network device is going away, flush any packets still pending 3333 * Called with irqs disabled. 3334 */ 3335 static void flush_backlog(void *arg) 3336 { 3337 struct net_device *dev = arg; 3338 struct softnet_data *sd = &__get_cpu_var(softnet_data); 3339 struct sk_buff *skb, *tmp; 3340 3341 rps_lock(sd); 3342 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 3343 if (skb->dev == dev) { 3344 __skb_unlink(skb, &sd->input_pkt_queue); 3345 kfree_skb(skb); 3346 input_queue_head_incr(sd); 3347 } 3348 } 3349 rps_unlock(sd); 3350 3351 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 3352 if (skb->dev == dev) { 3353 __skb_unlink(skb, &sd->process_queue); 3354 kfree_skb(skb); 3355 input_queue_head_incr(sd); 3356 } 3357 } 3358 } 3359 3360 static int napi_gro_complete(struct sk_buff *skb) 3361 { 3362 struct packet_type *ptype; 3363 __be16 type = skb->protocol; 3364 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK]; 3365 int err = -ENOENT; 3366 3367 if (NAPI_GRO_CB(skb)->count == 1) { 3368 skb_shinfo(skb)->gso_size = 0; 3369 goto out; 3370 } 3371 3372 rcu_read_lock(); 3373 list_for_each_entry_rcu(ptype, head, list) { 3374 if (ptype->type != type || ptype->dev || !ptype->gro_complete) 3375 continue; 3376 3377 err = ptype->gro_complete(skb); 3378 break; 3379 } 3380 rcu_read_unlock(); 3381 3382 if (err) { 3383 WARN_ON(&ptype->list == head); 3384 kfree_skb(skb); 3385 return NET_RX_SUCCESS; 3386 } 3387 3388 out: 3389 return netif_receive_skb(skb); 3390 } 3391 3392 inline void napi_gro_flush(struct napi_struct *napi) 3393 { 3394 struct sk_buff *skb, *next; 3395 3396 for (skb = napi->gro_list; skb; skb = next) { 3397 next = skb->next; 3398 skb->next = NULL; 3399 napi_gro_complete(skb); 3400 } 3401 3402 napi->gro_count = 0; 3403 napi->gro_list = NULL; 3404 } 3405 EXPORT_SYMBOL(napi_gro_flush); 3406 3407 enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 3408 { 3409 struct sk_buff **pp = NULL; 3410 struct packet_type *ptype; 3411 __be16 type = skb->protocol; 3412 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK]; 3413 int same_flow; 3414 int mac_len; 3415 enum gro_result ret; 3416 3417 if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb)) 3418 goto normal; 3419 3420 if (skb_is_gso(skb) || skb_has_frag_list(skb)) 3421 goto normal; 3422 3423 rcu_read_lock(); 3424 list_for_each_entry_rcu(ptype, head, list) { 3425 if (ptype->type != type || ptype->dev || !ptype->gro_receive) 3426 continue; 3427 3428 skb_set_network_header(skb, skb_gro_offset(skb)); 3429 mac_len = skb->network_header - skb->mac_header; 3430 skb->mac_len = mac_len; 3431 NAPI_GRO_CB(skb)->same_flow = 0; 3432 NAPI_GRO_CB(skb)->flush = 0; 3433 NAPI_GRO_CB(skb)->free = 0; 3434 3435 pp = ptype->gro_receive(&napi->gro_list, skb); 3436 break; 3437 } 3438 rcu_read_unlock(); 3439 3440 if (&ptype->list == head) 3441 goto normal; 3442 3443 same_flow = NAPI_GRO_CB(skb)->same_flow; 3444 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED; 3445 3446 if (pp) { 3447 struct sk_buff *nskb = *pp; 3448 3449 *pp = nskb->next; 3450 nskb->next = NULL; 3451 napi_gro_complete(nskb); 3452 napi->gro_count--; 3453 } 3454 3455 if (same_flow) 3456 goto ok; 3457 3458 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS) 3459 goto normal; 3460 3461 napi->gro_count++; 3462 NAPI_GRO_CB(skb)->count = 1; 3463 skb_shinfo(skb)->gso_size = skb_gro_len(skb); 3464 skb->next = napi->gro_list; 3465 napi->gro_list = skb; 3466 ret = GRO_HELD; 3467 3468 pull: 3469 if (skb_headlen(skb) < skb_gro_offset(skb)) { 3470 int grow = skb_gro_offset(skb) - skb_headlen(skb); 3471 3472 BUG_ON(skb->end - skb->tail < grow); 3473 3474 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow); 3475 3476 skb->tail += grow; 3477 skb->data_len -= grow; 3478 3479 skb_shinfo(skb)->frags[0].page_offset += grow; 3480 skb_frag_size_sub(&skb_shinfo(skb)->frags[0], grow); 3481 3482 if (unlikely(!skb_frag_size(&skb_shinfo(skb)->frags[0]))) { 3483 skb_frag_unref(skb, 0); 3484 memmove(skb_shinfo(skb)->frags, 3485 skb_shinfo(skb)->frags + 1, 3486 --skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t)); 3487 } 3488 } 3489 3490 ok: 3491 return ret; 3492 3493 normal: 3494 ret = GRO_NORMAL; 3495 goto pull; 3496 } 3497 EXPORT_SYMBOL(dev_gro_receive); 3498 3499 static inline gro_result_t 3500 __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 3501 { 3502 struct sk_buff *p; 3503 3504 for (p = napi->gro_list; p; p = p->next) { 3505 unsigned long diffs; 3506 3507 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev; 3508 diffs |= p->vlan_tci ^ skb->vlan_tci; 3509 diffs |= compare_ether_header(skb_mac_header(p), 3510 skb_gro_mac_header(skb)); 3511 NAPI_GRO_CB(p)->same_flow = !diffs; 3512 NAPI_GRO_CB(p)->flush = 0; 3513 } 3514 3515 return dev_gro_receive(napi, skb); 3516 } 3517 3518 gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb) 3519 { 3520 switch (ret) { 3521 case GRO_NORMAL: 3522 if (netif_receive_skb(skb)) 3523 ret = GRO_DROP; 3524 break; 3525 3526 case GRO_DROP: 3527 case GRO_MERGED_FREE: 3528 kfree_skb(skb); 3529 break; 3530 3531 case GRO_HELD: 3532 case GRO_MERGED: 3533 break; 3534 } 3535 3536 return ret; 3537 } 3538 EXPORT_SYMBOL(napi_skb_finish); 3539 3540 void skb_gro_reset_offset(struct sk_buff *skb) 3541 { 3542 NAPI_GRO_CB(skb)->data_offset = 0; 3543 NAPI_GRO_CB(skb)->frag0 = NULL; 3544 NAPI_GRO_CB(skb)->frag0_len = 0; 3545 3546 if (skb->mac_header == skb->tail && 3547 !PageHighMem(skb_frag_page(&skb_shinfo(skb)->frags[0]))) { 3548 NAPI_GRO_CB(skb)->frag0 = 3549 skb_frag_address(&skb_shinfo(skb)->frags[0]); 3550 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(&skb_shinfo(skb)->frags[0]); 3551 } 3552 } 3553 EXPORT_SYMBOL(skb_gro_reset_offset); 3554 3555 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 3556 { 3557 skb_gro_reset_offset(skb); 3558 3559 return napi_skb_finish(__napi_gro_receive(napi, skb), skb); 3560 } 3561 EXPORT_SYMBOL(napi_gro_receive); 3562 3563 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb) 3564 { 3565 __skb_pull(skb, skb_headlen(skb)); 3566 skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb)); 3567 skb->vlan_tci = 0; 3568 skb->dev = napi->dev; 3569 skb->skb_iif = 0; 3570 3571 napi->skb = skb; 3572 } 3573 3574 struct sk_buff *napi_get_frags(struct napi_struct *napi) 3575 { 3576 struct sk_buff *skb = napi->skb; 3577 3578 if (!skb) { 3579 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD); 3580 if (skb) 3581 napi->skb = skb; 3582 } 3583 return skb; 3584 } 3585 EXPORT_SYMBOL(napi_get_frags); 3586 3587 gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb, 3588 gro_result_t ret) 3589 { 3590 switch (ret) { 3591 case GRO_NORMAL: 3592 case GRO_HELD: 3593 skb->protocol = eth_type_trans(skb, skb->dev); 3594 3595 if (ret == GRO_HELD) 3596 skb_gro_pull(skb, -ETH_HLEN); 3597 else if (netif_receive_skb(skb)) 3598 ret = GRO_DROP; 3599 break; 3600 3601 case GRO_DROP: 3602 case GRO_MERGED_FREE: 3603 napi_reuse_skb(napi, skb); 3604 break; 3605 3606 case GRO_MERGED: 3607 break; 3608 } 3609 3610 return ret; 3611 } 3612 EXPORT_SYMBOL(napi_frags_finish); 3613 3614 struct sk_buff *napi_frags_skb(struct napi_struct *napi) 3615 { 3616 struct sk_buff *skb = napi->skb; 3617 struct ethhdr *eth; 3618 unsigned int hlen; 3619 unsigned int off; 3620 3621 napi->skb = NULL; 3622 3623 skb_reset_mac_header(skb); 3624 skb_gro_reset_offset(skb); 3625 3626 off = skb_gro_offset(skb); 3627 hlen = off + sizeof(*eth); 3628 eth = skb_gro_header_fast(skb, off); 3629 if (skb_gro_header_hard(skb, hlen)) { 3630 eth = skb_gro_header_slow(skb, hlen, off); 3631 if (unlikely(!eth)) { 3632 napi_reuse_skb(napi, skb); 3633 skb = NULL; 3634 goto out; 3635 } 3636 } 3637 3638 skb_gro_pull(skb, sizeof(*eth)); 3639 3640 /* 3641 * This works because the only protocols we care about don't require 3642 * special handling. We'll fix it up properly at the end. 3643 */ 3644 skb->protocol = eth->h_proto; 3645 3646 out: 3647 return skb; 3648 } 3649 EXPORT_SYMBOL(napi_frags_skb); 3650 3651 gro_result_t napi_gro_frags(struct napi_struct *napi) 3652 { 3653 struct sk_buff *skb = napi_frags_skb(napi); 3654 3655 if (!skb) 3656 return GRO_DROP; 3657 3658 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb)); 3659 } 3660 EXPORT_SYMBOL(napi_gro_frags); 3661 3662 /* 3663 * net_rps_action sends any pending IPI's for rps. 3664 * Note: called with local irq disabled, but exits with local irq enabled. 3665 */ 3666 static void net_rps_action_and_irq_enable(struct softnet_data *sd) 3667 { 3668 #ifdef CONFIG_RPS 3669 struct softnet_data *remsd = sd->rps_ipi_list; 3670 3671 if (remsd) { 3672 sd->rps_ipi_list = NULL; 3673 3674 local_irq_enable(); 3675 3676 /* Send pending IPI's to kick RPS processing on remote cpus. */ 3677 while (remsd) { 3678 struct softnet_data *next = remsd->rps_ipi_next; 3679 3680 if (cpu_online(remsd->cpu)) 3681 __smp_call_function_single(remsd->cpu, 3682 &remsd->csd, 0); 3683 remsd = next; 3684 } 3685 } else 3686 #endif 3687 local_irq_enable(); 3688 } 3689 3690 static int process_backlog(struct napi_struct *napi, int quota) 3691 { 3692 int work = 0; 3693 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 3694 3695 #ifdef CONFIG_RPS 3696 /* Check if we have pending ipi, its better to send them now, 3697 * not waiting net_rx_action() end. 3698 */ 3699 if (sd->rps_ipi_list) { 3700 local_irq_disable(); 3701 net_rps_action_and_irq_enable(sd); 3702 } 3703 #endif 3704 napi->weight = weight_p; 3705 local_irq_disable(); 3706 while (work < quota) { 3707 struct sk_buff *skb; 3708 unsigned int qlen; 3709 3710 while ((skb = __skb_dequeue(&sd->process_queue))) { 3711 local_irq_enable(); 3712 __netif_receive_skb(skb); 3713 local_irq_disable(); 3714 input_queue_head_incr(sd); 3715 if (++work >= quota) { 3716 local_irq_enable(); 3717 return work; 3718 } 3719 } 3720 3721 rps_lock(sd); 3722 qlen = skb_queue_len(&sd->input_pkt_queue); 3723 if (qlen) 3724 skb_queue_splice_tail_init(&sd->input_pkt_queue, 3725 &sd->process_queue); 3726 3727 if (qlen < quota - work) { 3728 /* 3729 * Inline a custom version of __napi_complete(). 3730 * only current cpu owns and manipulates this napi, 3731 * and NAPI_STATE_SCHED is the only possible flag set on backlog. 3732 * we can use a plain write instead of clear_bit(), 3733 * and we dont need an smp_mb() memory barrier. 3734 */ 3735 list_del(&napi->poll_list); 3736 napi->state = 0; 3737 3738 quota = work + qlen; 3739 } 3740 rps_unlock(sd); 3741 } 3742 local_irq_enable(); 3743 3744 return work; 3745 } 3746 3747 /** 3748 * __napi_schedule - schedule for receive 3749 * @n: entry to schedule 3750 * 3751 * The entry's receive function will be scheduled to run 3752 */ 3753 void __napi_schedule(struct napi_struct *n) 3754 { 3755 unsigned long flags; 3756 3757 local_irq_save(flags); 3758 ____napi_schedule(&__get_cpu_var(softnet_data), n); 3759 local_irq_restore(flags); 3760 } 3761 EXPORT_SYMBOL(__napi_schedule); 3762 3763 void __napi_complete(struct napi_struct *n) 3764 { 3765 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 3766 BUG_ON(n->gro_list); 3767 3768 list_del(&n->poll_list); 3769 smp_mb__before_clear_bit(); 3770 clear_bit(NAPI_STATE_SCHED, &n->state); 3771 } 3772 EXPORT_SYMBOL(__napi_complete); 3773 3774 void napi_complete(struct napi_struct *n) 3775 { 3776 unsigned long flags; 3777 3778 /* 3779 * don't let napi dequeue from the cpu poll list 3780 * just in case its running on a different cpu 3781 */ 3782 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state))) 3783 return; 3784 3785 napi_gro_flush(n); 3786 local_irq_save(flags); 3787 __napi_complete(n); 3788 local_irq_restore(flags); 3789 } 3790 EXPORT_SYMBOL(napi_complete); 3791 3792 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 3793 int (*poll)(struct napi_struct *, int), int weight) 3794 { 3795 INIT_LIST_HEAD(&napi->poll_list); 3796 napi->gro_count = 0; 3797 napi->gro_list = NULL; 3798 napi->skb = NULL; 3799 napi->poll = poll; 3800 napi->weight = weight; 3801 list_add(&napi->dev_list, &dev->napi_list); 3802 napi->dev = dev; 3803 #ifdef CONFIG_NETPOLL 3804 spin_lock_init(&napi->poll_lock); 3805 napi->poll_owner = -1; 3806 #endif 3807 set_bit(NAPI_STATE_SCHED, &napi->state); 3808 } 3809 EXPORT_SYMBOL(netif_napi_add); 3810 3811 void netif_napi_del(struct napi_struct *napi) 3812 { 3813 struct sk_buff *skb, *next; 3814 3815 list_del_init(&napi->dev_list); 3816 napi_free_frags(napi); 3817 3818 for (skb = napi->gro_list; skb; skb = next) { 3819 next = skb->next; 3820 skb->next = NULL; 3821 kfree_skb(skb); 3822 } 3823 3824 napi->gro_list = NULL; 3825 napi->gro_count = 0; 3826 } 3827 EXPORT_SYMBOL(netif_napi_del); 3828 3829 static void net_rx_action(struct softirq_action *h) 3830 { 3831 struct softnet_data *sd = &__get_cpu_var(softnet_data); 3832 unsigned long time_limit = jiffies + 2; 3833 int budget = netdev_budget; 3834 void *have; 3835 3836 local_irq_disable(); 3837 3838 while (!list_empty(&sd->poll_list)) { 3839 struct napi_struct *n; 3840 int work, weight; 3841 3842 /* If softirq window is exhuasted then punt. 3843 * Allow this to run for 2 jiffies since which will allow 3844 * an average latency of 1.5/HZ. 3845 */ 3846 if (unlikely(budget <= 0 || time_after(jiffies, time_limit))) 3847 goto softnet_break; 3848 3849 local_irq_enable(); 3850 3851 /* Even though interrupts have been re-enabled, this 3852 * access is safe because interrupts can only add new 3853 * entries to the tail of this list, and only ->poll() 3854 * calls can remove this head entry from the list. 3855 */ 3856 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list); 3857 3858 have = netpoll_poll_lock(n); 3859 3860 weight = n->weight; 3861 3862 /* This NAPI_STATE_SCHED test is for avoiding a race 3863 * with netpoll's poll_napi(). Only the entity which 3864 * obtains the lock and sees NAPI_STATE_SCHED set will 3865 * actually make the ->poll() call. Therefore we avoid 3866 * accidentally calling ->poll() when NAPI is not scheduled. 3867 */ 3868 work = 0; 3869 if (test_bit(NAPI_STATE_SCHED, &n->state)) { 3870 work = n->poll(n, weight); 3871 trace_napi_poll(n); 3872 } 3873 3874 WARN_ON_ONCE(work > weight); 3875 3876 budget -= work; 3877 3878 local_irq_disable(); 3879 3880 /* Drivers must not modify the NAPI state if they 3881 * consume the entire weight. In such cases this code 3882 * still "owns" the NAPI instance and therefore can 3883 * move the instance around on the list at-will. 3884 */ 3885 if (unlikely(work == weight)) { 3886 if (unlikely(napi_disable_pending(n))) { 3887 local_irq_enable(); 3888 napi_complete(n); 3889 local_irq_disable(); 3890 } else 3891 list_move_tail(&n->poll_list, &sd->poll_list); 3892 } 3893 3894 netpoll_poll_unlock(have); 3895 } 3896 out: 3897 net_rps_action_and_irq_enable(sd); 3898 3899 #ifdef CONFIG_NET_DMA 3900 /* 3901 * There may not be any more sk_buffs coming right now, so push 3902 * any pending DMA copies to hardware 3903 */ 3904 dma_issue_pending_all(); 3905 #endif 3906 3907 return; 3908 3909 softnet_break: 3910 sd->time_squeeze++; 3911 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3912 goto out; 3913 } 3914 3915 static gifconf_func_t *gifconf_list[NPROTO]; 3916 3917 /** 3918 * register_gifconf - register a SIOCGIF handler 3919 * @family: Address family 3920 * @gifconf: Function handler 3921 * 3922 * Register protocol dependent address dumping routines. The handler 3923 * that is passed must not be freed or reused until it has been replaced 3924 * by another handler. 3925 */ 3926 int register_gifconf(unsigned int family, gifconf_func_t *gifconf) 3927 { 3928 if (family >= NPROTO) 3929 return -EINVAL; 3930 gifconf_list[family] = gifconf; 3931 return 0; 3932 } 3933 EXPORT_SYMBOL(register_gifconf); 3934 3935 3936 /* 3937 * Map an interface index to its name (SIOCGIFNAME) 3938 */ 3939 3940 /* 3941 * We need this ioctl for efficient implementation of the 3942 * if_indextoname() function required by the IPv6 API. Without 3943 * it, we would have to search all the interfaces to find a 3944 * match. --pb 3945 */ 3946 3947 static int dev_ifname(struct net *net, struct ifreq __user *arg) 3948 { 3949 struct net_device *dev; 3950 struct ifreq ifr; 3951 3952 /* 3953 * Fetch the caller's info block. 3954 */ 3955 3956 if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) 3957 return -EFAULT; 3958 3959 rcu_read_lock(); 3960 dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex); 3961 if (!dev) { 3962 rcu_read_unlock(); 3963 return -ENODEV; 3964 } 3965 3966 strcpy(ifr.ifr_name, dev->name); 3967 rcu_read_unlock(); 3968 3969 if (copy_to_user(arg, &ifr, sizeof(struct ifreq))) 3970 return -EFAULT; 3971 return 0; 3972 } 3973 3974 /* 3975 * Perform a SIOCGIFCONF call. This structure will change 3976 * size eventually, and there is nothing I can do about it. 3977 * Thus we will need a 'compatibility mode'. 3978 */ 3979 3980 static int dev_ifconf(struct net *net, char __user *arg) 3981 { 3982 struct ifconf ifc; 3983 struct net_device *dev; 3984 char __user *pos; 3985 int len; 3986 int total; 3987 int i; 3988 3989 /* 3990 * Fetch the caller's info block. 3991 */ 3992 3993 if (copy_from_user(&ifc, arg, sizeof(struct ifconf))) 3994 return -EFAULT; 3995 3996 pos = ifc.ifc_buf; 3997 len = ifc.ifc_len; 3998 3999 /* 4000 * Loop over the interfaces, and write an info block for each. 4001 */ 4002 4003 total = 0; 4004 for_each_netdev(net, dev) { 4005 for (i = 0; i < NPROTO; i++) { 4006 if (gifconf_list[i]) { 4007 int done; 4008 if (!pos) 4009 done = gifconf_list[i](dev, NULL, 0); 4010 else 4011 done = gifconf_list[i](dev, pos + total, 4012 len - total); 4013 if (done < 0) 4014 return -EFAULT; 4015 total += done; 4016 } 4017 } 4018 } 4019 4020 /* 4021 * All done. Write the updated control block back to the caller. 4022 */ 4023 ifc.ifc_len = total; 4024 4025 /* 4026 * Both BSD and Solaris return 0 here, so we do too. 4027 */ 4028 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0; 4029 } 4030 4031 #ifdef CONFIG_PROC_FS 4032 4033 #define BUCKET_SPACE (32 - NETDEV_HASHBITS) 4034 4035 struct dev_iter_state { 4036 struct seq_net_private p; 4037 unsigned int pos; /* bucket << BUCKET_SPACE + offset */ 4038 }; 4039 4040 #define get_bucket(x) ((x) >> BUCKET_SPACE) 4041 #define get_offset(x) ((x) & ((1 << BUCKET_SPACE) - 1)) 4042 #define set_bucket_offset(b, o) ((b) << BUCKET_SPACE | (o)) 4043 4044 static inline struct net_device *dev_from_same_bucket(struct seq_file *seq) 4045 { 4046 struct dev_iter_state *state = seq->private; 4047 struct net *net = seq_file_net(seq); 4048 struct net_device *dev; 4049 struct hlist_node *p; 4050 struct hlist_head *h; 4051 unsigned int count, bucket, offset; 4052 4053 bucket = get_bucket(state->pos); 4054 offset = get_offset(state->pos); 4055 h = &net->dev_name_head[bucket]; 4056 count = 0; 4057 hlist_for_each_entry_rcu(dev, p, h, name_hlist) { 4058 if (count++ == offset) { 4059 state->pos = set_bucket_offset(bucket, count); 4060 return dev; 4061 } 4062 } 4063 4064 return NULL; 4065 } 4066 4067 static inline struct net_device *dev_from_new_bucket(struct seq_file *seq) 4068 { 4069 struct dev_iter_state *state = seq->private; 4070 struct net_device *dev; 4071 unsigned int bucket; 4072 4073 bucket = get_bucket(state->pos); 4074 do { 4075 dev = dev_from_same_bucket(seq); 4076 if (dev) 4077 return dev; 4078 4079 bucket++; 4080 state->pos = set_bucket_offset(bucket, 0); 4081 } while (bucket < NETDEV_HASHENTRIES); 4082 4083 return NULL; 4084 } 4085 4086 /* 4087 * This is invoked by the /proc filesystem handler to display a device 4088 * in detail. 4089 */ 4090 void *dev_seq_start(struct seq_file *seq, loff_t *pos) 4091 __acquires(RCU) 4092 { 4093 struct dev_iter_state *state = seq->private; 4094 4095 rcu_read_lock(); 4096 if (!*pos) 4097 return SEQ_START_TOKEN; 4098 4099 /* check for end of the hash */ 4100 if (state->pos == 0 && *pos > 1) 4101 return NULL; 4102 4103 return dev_from_new_bucket(seq); 4104 } 4105 4106 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos) 4107 { 4108 struct net_device *dev; 4109 4110 ++*pos; 4111 4112 if (v == SEQ_START_TOKEN) 4113 return dev_from_new_bucket(seq); 4114 4115 dev = dev_from_same_bucket(seq); 4116 if (dev) 4117 return dev; 4118 4119 return dev_from_new_bucket(seq); 4120 } 4121 4122 void dev_seq_stop(struct seq_file *seq, void *v) 4123 __releases(RCU) 4124 { 4125 rcu_read_unlock(); 4126 } 4127 4128 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev) 4129 { 4130 struct rtnl_link_stats64 temp; 4131 const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp); 4132 4133 seq_printf(seq, "%6s: %7llu %7llu %4llu %4llu %4llu %5llu %10llu %9llu " 4134 "%8llu %7llu %4llu %4llu %4llu %5llu %7llu %10llu\n", 4135 dev->name, stats->rx_bytes, stats->rx_packets, 4136 stats->rx_errors, 4137 stats->rx_dropped + stats->rx_missed_errors, 4138 stats->rx_fifo_errors, 4139 stats->rx_length_errors + stats->rx_over_errors + 4140 stats->rx_crc_errors + stats->rx_frame_errors, 4141 stats->rx_compressed, stats->multicast, 4142 stats->tx_bytes, stats->tx_packets, 4143 stats->tx_errors, stats->tx_dropped, 4144 stats->tx_fifo_errors, stats->collisions, 4145 stats->tx_carrier_errors + 4146 stats->tx_aborted_errors + 4147 stats->tx_window_errors + 4148 stats->tx_heartbeat_errors, 4149 stats->tx_compressed); 4150 } 4151 4152 /* 4153 * Called from the PROCfs module. This now uses the new arbitrary sized 4154 * /proc/net interface to create /proc/net/dev 4155 */ 4156 static int dev_seq_show(struct seq_file *seq, void *v) 4157 { 4158 if (v == SEQ_START_TOKEN) 4159 seq_puts(seq, "Inter-| Receive " 4160 " | Transmit\n" 4161 " face |bytes packets errs drop fifo frame " 4162 "compressed multicast|bytes packets errs " 4163 "drop fifo colls carrier compressed\n"); 4164 else 4165 dev_seq_printf_stats(seq, v); 4166 return 0; 4167 } 4168 4169 static struct softnet_data *softnet_get_online(loff_t *pos) 4170 { 4171 struct softnet_data *sd = NULL; 4172 4173 while (*pos < nr_cpu_ids) 4174 if (cpu_online(*pos)) { 4175 sd = &per_cpu(softnet_data, *pos); 4176 break; 4177 } else 4178 ++*pos; 4179 return sd; 4180 } 4181 4182 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos) 4183 { 4184 return softnet_get_online(pos); 4185 } 4186 4187 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos) 4188 { 4189 ++*pos; 4190 return softnet_get_online(pos); 4191 } 4192 4193 static void softnet_seq_stop(struct seq_file *seq, void *v) 4194 { 4195 } 4196 4197 static int softnet_seq_show(struct seq_file *seq, void *v) 4198 { 4199 struct softnet_data *sd = v; 4200 4201 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n", 4202 sd->processed, sd->dropped, sd->time_squeeze, 0, 4203 0, 0, 0, 0, /* was fastroute */ 4204 sd->cpu_collision, sd->received_rps); 4205 return 0; 4206 } 4207 4208 static const struct seq_operations dev_seq_ops = { 4209 .start = dev_seq_start, 4210 .next = dev_seq_next, 4211 .stop = dev_seq_stop, 4212 .show = dev_seq_show, 4213 }; 4214 4215 static int dev_seq_open(struct inode *inode, struct file *file) 4216 { 4217 return seq_open_net(inode, file, &dev_seq_ops, 4218 sizeof(struct dev_iter_state)); 4219 } 4220 4221 int dev_seq_open_ops(struct inode *inode, struct file *file, 4222 const struct seq_operations *ops) 4223 { 4224 return seq_open_net(inode, file, ops, sizeof(struct dev_iter_state)); 4225 } 4226 4227 static const struct file_operations dev_seq_fops = { 4228 .owner = THIS_MODULE, 4229 .open = dev_seq_open, 4230 .read = seq_read, 4231 .llseek = seq_lseek, 4232 .release = seq_release_net, 4233 }; 4234 4235 static const struct seq_operations softnet_seq_ops = { 4236 .start = softnet_seq_start, 4237 .next = softnet_seq_next, 4238 .stop = softnet_seq_stop, 4239 .show = softnet_seq_show, 4240 }; 4241 4242 static int softnet_seq_open(struct inode *inode, struct file *file) 4243 { 4244 return seq_open(file, &softnet_seq_ops); 4245 } 4246 4247 static const struct file_operations softnet_seq_fops = { 4248 .owner = THIS_MODULE, 4249 .open = softnet_seq_open, 4250 .read = seq_read, 4251 .llseek = seq_lseek, 4252 .release = seq_release, 4253 }; 4254 4255 static void *ptype_get_idx(loff_t pos) 4256 { 4257 struct packet_type *pt = NULL; 4258 loff_t i = 0; 4259 int t; 4260 4261 list_for_each_entry_rcu(pt, &ptype_all, list) { 4262 if (i == pos) 4263 return pt; 4264 ++i; 4265 } 4266 4267 for (t = 0; t < PTYPE_HASH_SIZE; t++) { 4268 list_for_each_entry_rcu(pt, &ptype_base[t], list) { 4269 if (i == pos) 4270 return pt; 4271 ++i; 4272 } 4273 } 4274 return NULL; 4275 } 4276 4277 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos) 4278 __acquires(RCU) 4279 { 4280 rcu_read_lock(); 4281 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN; 4282 } 4283 4284 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos) 4285 { 4286 struct packet_type *pt; 4287 struct list_head *nxt; 4288 int hash; 4289 4290 ++*pos; 4291 if (v == SEQ_START_TOKEN) 4292 return ptype_get_idx(0); 4293 4294 pt = v; 4295 nxt = pt->list.next; 4296 if (pt->type == htons(ETH_P_ALL)) { 4297 if (nxt != &ptype_all) 4298 goto found; 4299 hash = 0; 4300 nxt = ptype_base[0].next; 4301 } else 4302 hash = ntohs(pt->type) & PTYPE_HASH_MASK; 4303 4304 while (nxt == &ptype_base[hash]) { 4305 if (++hash >= PTYPE_HASH_SIZE) 4306 return NULL; 4307 nxt = ptype_base[hash].next; 4308 } 4309 found: 4310 return list_entry(nxt, struct packet_type, list); 4311 } 4312 4313 static void ptype_seq_stop(struct seq_file *seq, void *v) 4314 __releases(RCU) 4315 { 4316 rcu_read_unlock(); 4317 } 4318 4319 static int ptype_seq_show(struct seq_file *seq, void *v) 4320 { 4321 struct packet_type *pt = v; 4322 4323 if (v == SEQ_START_TOKEN) 4324 seq_puts(seq, "Type Device Function\n"); 4325 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) { 4326 if (pt->type == htons(ETH_P_ALL)) 4327 seq_puts(seq, "ALL "); 4328 else 4329 seq_printf(seq, "%04x", ntohs(pt->type)); 4330 4331 seq_printf(seq, " %-8s %pF\n", 4332 pt->dev ? pt->dev->name : "", pt->func); 4333 } 4334 4335 return 0; 4336 } 4337 4338 static const struct seq_operations ptype_seq_ops = { 4339 .start = ptype_seq_start, 4340 .next = ptype_seq_next, 4341 .stop = ptype_seq_stop, 4342 .show = ptype_seq_show, 4343 }; 4344 4345 static int ptype_seq_open(struct inode *inode, struct file *file) 4346 { 4347 return seq_open_net(inode, file, &ptype_seq_ops, 4348 sizeof(struct seq_net_private)); 4349 } 4350 4351 static const struct file_operations ptype_seq_fops = { 4352 .owner = THIS_MODULE, 4353 .open = ptype_seq_open, 4354 .read = seq_read, 4355 .llseek = seq_lseek, 4356 .release = seq_release_net, 4357 }; 4358 4359 4360 static int __net_init dev_proc_net_init(struct net *net) 4361 { 4362 int rc = -ENOMEM; 4363 4364 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops)) 4365 goto out; 4366 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops)) 4367 goto out_dev; 4368 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops)) 4369 goto out_softnet; 4370 4371 if (wext_proc_init(net)) 4372 goto out_ptype; 4373 rc = 0; 4374 out: 4375 return rc; 4376 out_ptype: 4377 proc_net_remove(net, "ptype"); 4378 out_softnet: 4379 proc_net_remove(net, "softnet_stat"); 4380 out_dev: 4381 proc_net_remove(net, "dev"); 4382 goto out; 4383 } 4384 4385 static void __net_exit dev_proc_net_exit(struct net *net) 4386 { 4387 wext_proc_exit(net); 4388 4389 proc_net_remove(net, "ptype"); 4390 proc_net_remove(net, "softnet_stat"); 4391 proc_net_remove(net, "dev"); 4392 } 4393 4394 static struct pernet_operations __net_initdata dev_proc_ops = { 4395 .init = dev_proc_net_init, 4396 .exit = dev_proc_net_exit, 4397 }; 4398 4399 static int __init dev_proc_init(void) 4400 { 4401 return register_pernet_subsys(&dev_proc_ops); 4402 } 4403 #else 4404 #define dev_proc_init() 0 4405 #endif /* CONFIG_PROC_FS */ 4406 4407 4408 /** 4409 * netdev_set_master - set up master pointer 4410 * @slave: slave device 4411 * @master: new master device 4412 * 4413 * Changes the master device of the slave. Pass %NULL to break the 4414 * bonding. The caller must hold the RTNL semaphore. On a failure 4415 * a negative errno code is returned. On success the reference counts 4416 * are adjusted and the function returns zero. 4417 */ 4418 int netdev_set_master(struct net_device *slave, struct net_device *master) 4419 { 4420 struct net_device *old = slave->master; 4421 4422 ASSERT_RTNL(); 4423 4424 if (master) { 4425 if (old) 4426 return -EBUSY; 4427 dev_hold(master); 4428 } 4429 4430 slave->master = master; 4431 4432 if (old) 4433 dev_put(old); 4434 return 0; 4435 } 4436 EXPORT_SYMBOL(netdev_set_master); 4437 4438 /** 4439 * netdev_set_bond_master - set up bonding master/slave pair 4440 * @slave: slave device 4441 * @master: new master device 4442 * 4443 * Changes the master device of the slave. Pass %NULL to break the 4444 * bonding. The caller must hold the RTNL semaphore. On a failure 4445 * a negative errno code is returned. On success %RTM_NEWLINK is sent 4446 * to the routing socket and the function returns zero. 4447 */ 4448 int netdev_set_bond_master(struct net_device *slave, struct net_device *master) 4449 { 4450 int err; 4451 4452 ASSERT_RTNL(); 4453 4454 err = netdev_set_master(slave, master); 4455 if (err) 4456 return err; 4457 if (master) 4458 slave->flags |= IFF_SLAVE; 4459 else 4460 slave->flags &= ~IFF_SLAVE; 4461 4462 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE); 4463 return 0; 4464 } 4465 EXPORT_SYMBOL(netdev_set_bond_master); 4466 4467 static void dev_change_rx_flags(struct net_device *dev, int flags) 4468 { 4469 const struct net_device_ops *ops = dev->netdev_ops; 4470 4471 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags) 4472 ops->ndo_change_rx_flags(dev, flags); 4473 } 4474 4475 static int __dev_set_promiscuity(struct net_device *dev, int inc) 4476 { 4477 unsigned int old_flags = dev->flags; 4478 uid_t uid; 4479 gid_t gid; 4480 4481 ASSERT_RTNL(); 4482 4483 dev->flags |= IFF_PROMISC; 4484 dev->promiscuity += inc; 4485 if (dev->promiscuity == 0) { 4486 /* 4487 * Avoid overflow. 4488 * If inc causes overflow, untouch promisc and return error. 4489 */ 4490 if (inc < 0) 4491 dev->flags &= ~IFF_PROMISC; 4492 else { 4493 dev->promiscuity -= inc; 4494 printk(KERN_WARNING "%s: promiscuity touches roof, " 4495 "set promiscuity failed, promiscuity feature " 4496 "of device might be broken.\n", dev->name); 4497 return -EOVERFLOW; 4498 } 4499 } 4500 if (dev->flags != old_flags) { 4501 printk(KERN_INFO "device %s %s promiscuous mode\n", 4502 dev->name, (dev->flags & IFF_PROMISC) ? "entered" : 4503 "left"); 4504 if (audit_enabled) { 4505 current_uid_gid(&uid, &gid); 4506 audit_log(current->audit_context, GFP_ATOMIC, 4507 AUDIT_ANOM_PROMISCUOUS, 4508 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 4509 dev->name, (dev->flags & IFF_PROMISC), 4510 (old_flags & IFF_PROMISC), 4511 audit_get_loginuid(current), 4512 uid, gid, 4513 audit_get_sessionid(current)); 4514 } 4515 4516 dev_change_rx_flags(dev, IFF_PROMISC); 4517 } 4518 return 0; 4519 } 4520 4521 /** 4522 * dev_set_promiscuity - update promiscuity count on a device 4523 * @dev: device 4524 * @inc: modifier 4525 * 4526 * Add or remove promiscuity from a device. While the count in the device 4527 * remains above zero the interface remains promiscuous. Once it hits zero 4528 * the device reverts back to normal filtering operation. A negative inc 4529 * value is used to drop promiscuity on the device. 4530 * Return 0 if successful or a negative errno code on error. 4531 */ 4532 int dev_set_promiscuity(struct net_device *dev, int inc) 4533 { 4534 unsigned int old_flags = dev->flags; 4535 int err; 4536 4537 err = __dev_set_promiscuity(dev, inc); 4538 if (err < 0) 4539 return err; 4540 if (dev->flags != old_flags) 4541 dev_set_rx_mode(dev); 4542 return err; 4543 } 4544 EXPORT_SYMBOL(dev_set_promiscuity); 4545 4546 /** 4547 * dev_set_allmulti - update allmulti count on a device 4548 * @dev: device 4549 * @inc: modifier 4550 * 4551 * Add or remove reception of all multicast frames to a device. While the 4552 * count in the device remains above zero the interface remains listening 4553 * to all interfaces. Once it hits zero the device reverts back to normal 4554 * filtering operation. A negative @inc value is used to drop the counter 4555 * when releasing a resource needing all multicasts. 4556 * Return 0 if successful or a negative errno code on error. 4557 */ 4558 4559 int dev_set_allmulti(struct net_device *dev, int inc) 4560 { 4561 unsigned int old_flags = dev->flags; 4562 4563 ASSERT_RTNL(); 4564 4565 dev->flags |= IFF_ALLMULTI; 4566 dev->allmulti += inc; 4567 if (dev->allmulti == 0) { 4568 /* 4569 * Avoid overflow. 4570 * If inc causes overflow, untouch allmulti and return error. 4571 */ 4572 if (inc < 0) 4573 dev->flags &= ~IFF_ALLMULTI; 4574 else { 4575 dev->allmulti -= inc; 4576 printk(KERN_WARNING "%s: allmulti touches roof, " 4577 "set allmulti failed, allmulti feature of " 4578 "device might be broken.\n", dev->name); 4579 return -EOVERFLOW; 4580 } 4581 } 4582 if (dev->flags ^ old_flags) { 4583 dev_change_rx_flags(dev, IFF_ALLMULTI); 4584 dev_set_rx_mode(dev); 4585 } 4586 return 0; 4587 } 4588 EXPORT_SYMBOL(dev_set_allmulti); 4589 4590 /* 4591 * Upload unicast and multicast address lists to device and 4592 * configure RX filtering. When the device doesn't support unicast 4593 * filtering it is put in promiscuous mode while unicast addresses 4594 * are present. 4595 */ 4596 void __dev_set_rx_mode(struct net_device *dev) 4597 { 4598 const struct net_device_ops *ops = dev->netdev_ops; 4599 4600 /* dev_open will call this function so the list will stay sane. */ 4601 if (!(dev->flags&IFF_UP)) 4602 return; 4603 4604 if (!netif_device_present(dev)) 4605 return; 4606 4607 if (!(dev->priv_flags & IFF_UNICAST_FLT)) { 4608 /* Unicast addresses changes may only happen under the rtnl, 4609 * therefore calling __dev_set_promiscuity here is safe. 4610 */ 4611 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 4612 __dev_set_promiscuity(dev, 1); 4613 dev->uc_promisc = true; 4614 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 4615 __dev_set_promiscuity(dev, -1); 4616 dev->uc_promisc = false; 4617 } 4618 } 4619 4620 if (ops->ndo_set_rx_mode) 4621 ops->ndo_set_rx_mode(dev); 4622 } 4623 4624 void dev_set_rx_mode(struct net_device *dev) 4625 { 4626 netif_addr_lock_bh(dev); 4627 __dev_set_rx_mode(dev); 4628 netif_addr_unlock_bh(dev); 4629 } 4630 4631 /** 4632 * dev_get_flags - get flags reported to userspace 4633 * @dev: device 4634 * 4635 * Get the combination of flag bits exported through APIs to userspace. 4636 */ 4637 unsigned dev_get_flags(const struct net_device *dev) 4638 { 4639 unsigned flags; 4640 4641 flags = (dev->flags & ~(IFF_PROMISC | 4642 IFF_ALLMULTI | 4643 IFF_RUNNING | 4644 IFF_LOWER_UP | 4645 IFF_DORMANT)) | 4646 (dev->gflags & (IFF_PROMISC | 4647 IFF_ALLMULTI)); 4648 4649 if (netif_running(dev)) { 4650 if (netif_oper_up(dev)) 4651 flags |= IFF_RUNNING; 4652 if (netif_carrier_ok(dev)) 4653 flags |= IFF_LOWER_UP; 4654 if (netif_dormant(dev)) 4655 flags |= IFF_DORMANT; 4656 } 4657 4658 return flags; 4659 } 4660 EXPORT_SYMBOL(dev_get_flags); 4661 4662 int __dev_change_flags(struct net_device *dev, unsigned int flags) 4663 { 4664 unsigned int old_flags = dev->flags; 4665 int ret; 4666 4667 ASSERT_RTNL(); 4668 4669 /* 4670 * Set the flags on our device. 4671 */ 4672 4673 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 4674 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 4675 IFF_AUTOMEDIA)) | 4676 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 4677 IFF_ALLMULTI)); 4678 4679 /* 4680 * Load in the correct multicast list now the flags have changed. 4681 */ 4682 4683 if ((old_flags ^ flags) & IFF_MULTICAST) 4684 dev_change_rx_flags(dev, IFF_MULTICAST); 4685 4686 dev_set_rx_mode(dev); 4687 4688 /* 4689 * Have we downed the interface. We handle IFF_UP ourselves 4690 * according to user attempts to set it, rather than blindly 4691 * setting it. 4692 */ 4693 4694 ret = 0; 4695 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */ 4696 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev); 4697 4698 if (!ret) 4699 dev_set_rx_mode(dev); 4700 } 4701 4702 if ((flags ^ dev->gflags) & IFF_PROMISC) { 4703 int inc = (flags & IFF_PROMISC) ? 1 : -1; 4704 4705 dev->gflags ^= IFF_PROMISC; 4706 dev_set_promiscuity(dev, inc); 4707 } 4708 4709 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 4710 is important. Some (broken) drivers set IFF_PROMISC, when 4711 IFF_ALLMULTI is requested not asking us and not reporting. 4712 */ 4713 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 4714 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 4715 4716 dev->gflags ^= IFF_ALLMULTI; 4717 dev_set_allmulti(dev, inc); 4718 } 4719 4720 return ret; 4721 } 4722 4723 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags) 4724 { 4725 unsigned int changes = dev->flags ^ old_flags; 4726 4727 if (changes & IFF_UP) { 4728 if (dev->flags & IFF_UP) 4729 call_netdevice_notifiers(NETDEV_UP, dev); 4730 else 4731 call_netdevice_notifiers(NETDEV_DOWN, dev); 4732 } 4733 4734 if (dev->flags & IFF_UP && 4735 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) 4736 call_netdevice_notifiers(NETDEV_CHANGE, dev); 4737 } 4738 4739 /** 4740 * dev_change_flags - change device settings 4741 * @dev: device 4742 * @flags: device state flags 4743 * 4744 * Change settings on device based state flags. The flags are 4745 * in the userspace exported format. 4746 */ 4747 int dev_change_flags(struct net_device *dev, unsigned int flags) 4748 { 4749 int ret; 4750 unsigned int changes, old_flags = dev->flags; 4751 4752 ret = __dev_change_flags(dev, flags); 4753 if (ret < 0) 4754 return ret; 4755 4756 changes = old_flags ^ dev->flags; 4757 if (changes) 4758 rtmsg_ifinfo(RTM_NEWLINK, dev, changes); 4759 4760 __dev_notify_flags(dev, old_flags); 4761 return ret; 4762 } 4763 EXPORT_SYMBOL(dev_change_flags); 4764 4765 /** 4766 * dev_set_mtu - Change maximum transfer unit 4767 * @dev: device 4768 * @new_mtu: new transfer unit 4769 * 4770 * Change the maximum transfer size of the network device. 4771 */ 4772 int dev_set_mtu(struct net_device *dev, int new_mtu) 4773 { 4774 const struct net_device_ops *ops = dev->netdev_ops; 4775 int err; 4776 4777 if (new_mtu == dev->mtu) 4778 return 0; 4779 4780 /* MTU must be positive. */ 4781 if (new_mtu < 0) 4782 return -EINVAL; 4783 4784 if (!netif_device_present(dev)) 4785 return -ENODEV; 4786 4787 err = 0; 4788 if (ops->ndo_change_mtu) 4789 err = ops->ndo_change_mtu(dev, new_mtu); 4790 else 4791 dev->mtu = new_mtu; 4792 4793 if (!err && dev->flags & IFF_UP) 4794 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 4795 return err; 4796 } 4797 EXPORT_SYMBOL(dev_set_mtu); 4798 4799 /** 4800 * dev_set_group - Change group this device belongs to 4801 * @dev: device 4802 * @new_group: group this device should belong to 4803 */ 4804 void dev_set_group(struct net_device *dev, int new_group) 4805 { 4806 dev->group = new_group; 4807 } 4808 EXPORT_SYMBOL(dev_set_group); 4809 4810 /** 4811 * dev_set_mac_address - Change Media Access Control Address 4812 * @dev: device 4813 * @sa: new address 4814 * 4815 * Change the hardware (MAC) address of the device 4816 */ 4817 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa) 4818 { 4819 const struct net_device_ops *ops = dev->netdev_ops; 4820 int err; 4821 4822 if (!ops->ndo_set_mac_address) 4823 return -EOPNOTSUPP; 4824 if (sa->sa_family != dev->type) 4825 return -EINVAL; 4826 if (!netif_device_present(dev)) 4827 return -ENODEV; 4828 err = ops->ndo_set_mac_address(dev, sa); 4829 if (!err) 4830 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 4831 return err; 4832 } 4833 EXPORT_SYMBOL(dev_set_mac_address); 4834 4835 /* 4836 * Perform the SIOCxIFxxx calls, inside rcu_read_lock() 4837 */ 4838 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd) 4839 { 4840 int err; 4841 struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name); 4842 4843 if (!dev) 4844 return -ENODEV; 4845 4846 switch (cmd) { 4847 case SIOCGIFFLAGS: /* Get interface flags */ 4848 ifr->ifr_flags = (short) dev_get_flags(dev); 4849 return 0; 4850 4851 case SIOCGIFMETRIC: /* Get the metric on the interface 4852 (currently unused) */ 4853 ifr->ifr_metric = 0; 4854 return 0; 4855 4856 case SIOCGIFMTU: /* Get the MTU of a device */ 4857 ifr->ifr_mtu = dev->mtu; 4858 return 0; 4859 4860 case SIOCGIFHWADDR: 4861 if (!dev->addr_len) 4862 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data); 4863 else 4864 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr, 4865 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len)); 4866 ifr->ifr_hwaddr.sa_family = dev->type; 4867 return 0; 4868 4869 case SIOCGIFSLAVE: 4870 err = -EINVAL; 4871 break; 4872 4873 case SIOCGIFMAP: 4874 ifr->ifr_map.mem_start = dev->mem_start; 4875 ifr->ifr_map.mem_end = dev->mem_end; 4876 ifr->ifr_map.base_addr = dev->base_addr; 4877 ifr->ifr_map.irq = dev->irq; 4878 ifr->ifr_map.dma = dev->dma; 4879 ifr->ifr_map.port = dev->if_port; 4880 return 0; 4881 4882 case SIOCGIFINDEX: 4883 ifr->ifr_ifindex = dev->ifindex; 4884 return 0; 4885 4886 case SIOCGIFTXQLEN: 4887 ifr->ifr_qlen = dev->tx_queue_len; 4888 return 0; 4889 4890 default: 4891 /* dev_ioctl() should ensure this case 4892 * is never reached 4893 */ 4894 WARN_ON(1); 4895 err = -ENOTTY; 4896 break; 4897 4898 } 4899 return err; 4900 } 4901 4902 /* 4903 * Perform the SIOCxIFxxx calls, inside rtnl_lock() 4904 */ 4905 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd) 4906 { 4907 int err; 4908 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name); 4909 const struct net_device_ops *ops; 4910 4911 if (!dev) 4912 return -ENODEV; 4913 4914 ops = dev->netdev_ops; 4915 4916 switch (cmd) { 4917 case SIOCSIFFLAGS: /* Set interface flags */ 4918 return dev_change_flags(dev, ifr->ifr_flags); 4919 4920 case SIOCSIFMETRIC: /* Set the metric on the interface 4921 (currently unused) */ 4922 return -EOPNOTSUPP; 4923 4924 case SIOCSIFMTU: /* Set the MTU of a device */ 4925 return dev_set_mtu(dev, ifr->ifr_mtu); 4926 4927 case SIOCSIFHWADDR: 4928 return dev_set_mac_address(dev, &ifr->ifr_hwaddr); 4929 4930 case SIOCSIFHWBROADCAST: 4931 if (ifr->ifr_hwaddr.sa_family != dev->type) 4932 return -EINVAL; 4933 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data, 4934 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len)); 4935 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 4936 return 0; 4937 4938 case SIOCSIFMAP: 4939 if (ops->ndo_set_config) { 4940 if (!netif_device_present(dev)) 4941 return -ENODEV; 4942 return ops->ndo_set_config(dev, &ifr->ifr_map); 4943 } 4944 return -EOPNOTSUPP; 4945 4946 case SIOCADDMULTI: 4947 if (!ops->ndo_set_rx_mode || 4948 ifr->ifr_hwaddr.sa_family != AF_UNSPEC) 4949 return -EINVAL; 4950 if (!netif_device_present(dev)) 4951 return -ENODEV; 4952 return dev_mc_add_global(dev, ifr->ifr_hwaddr.sa_data); 4953 4954 case SIOCDELMULTI: 4955 if (!ops->ndo_set_rx_mode || 4956 ifr->ifr_hwaddr.sa_family != AF_UNSPEC) 4957 return -EINVAL; 4958 if (!netif_device_present(dev)) 4959 return -ENODEV; 4960 return dev_mc_del_global(dev, ifr->ifr_hwaddr.sa_data); 4961 4962 case SIOCSIFTXQLEN: 4963 if (ifr->ifr_qlen < 0) 4964 return -EINVAL; 4965 dev->tx_queue_len = ifr->ifr_qlen; 4966 return 0; 4967 4968 case SIOCSIFNAME: 4969 ifr->ifr_newname[IFNAMSIZ-1] = '\0'; 4970 return dev_change_name(dev, ifr->ifr_newname); 4971 4972 case SIOCSHWTSTAMP: 4973 err = net_hwtstamp_validate(ifr); 4974 if (err) 4975 return err; 4976 /* fall through */ 4977 4978 /* 4979 * Unknown or private ioctl 4980 */ 4981 default: 4982 if ((cmd >= SIOCDEVPRIVATE && 4983 cmd <= SIOCDEVPRIVATE + 15) || 4984 cmd == SIOCBONDENSLAVE || 4985 cmd == SIOCBONDRELEASE || 4986 cmd == SIOCBONDSETHWADDR || 4987 cmd == SIOCBONDSLAVEINFOQUERY || 4988 cmd == SIOCBONDINFOQUERY || 4989 cmd == SIOCBONDCHANGEACTIVE || 4990 cmd == SIOCGMIIPHY || 4991 cmd == SIOCGMIIREG || 4992 cmd == SIOCSMIIREG || 4993 cmd == SIOCBRADDIF || 4994 cmd == SIOCBRDELIF || 4995 cmd == SIOCSHWTSTAMP || 4996 cmd == SIOCWANDEV) { 4997 err = -EOPNOTSUPP; 4998 if (ops->ndo_do_ioctl) { 4999 if (netif_device_present(dev)) 5000 err = ops->ndo_do_ioctl(dev, ifr, cmd); 5001 else 5002 err = -ENODEV; 5003 } 5004 } else 5005 err = -EINVAL; 5006 5007 } 5008 return err; 5009 } 5010 5011 /* 5012 * This function handles all "interface"-type I/O control requests. The actual 5013 * 'doing' part of this is dev_ifsioc above. 5014 */ 5015 5016 /** 5017 * dev_ioctl - network device ioctl 5018 * @net: the applicable net namespace 5019 * @cmd: command to issue 5020 * @arg: pointer to a struct ifreq in user space 5021 * 5022 * Issue ioctl functions to devices. This is normally called by the 5023 * user space syscall interfaces but can sometimes be useful for 5024 * other purposes. The return value is the return from the syscall if 5025 * positive or a negative errno code on error. 5026 */ 5027 5028 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg) 5029 { 5030 struct ifreq ifr; 5031 int ret; 5032 char *colon; 5033 5034 /* One special case: SIOCGIFCONF takes ifconf argument 5035 and requires shared lock, because it sleeps writing 5036 to user space. 5037 */ 5038 5039 if (cmd == SIOCGIFCONF) { 5040 rtnl_lock(); 5041 ret = dev_ifconf(net, (char __user *) arg); 5042 rtnl_unlock(); 5043 return ret; 5044 } 5045 if (cmd == SIOCGIFNAME) 5046 return dev_ifname(net, (struct ifreq __user *)arg); 5047 5048 if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) 5049 return -EFAULT; 5050 5051 ifr.ifr_name[IFNAMSIZ-1] = 0; 5052 5053 colon = strchr(ifr.ifr_name, ':'); 5054 if (colon) 5055 *colon = 0; 5056 5057 /* 5058 * See which interface the caller is talking about. 5059 */ 5060 5061 switch (cmd) { 5062 /* 5063 * These ioctl calls: 5064 * - can be done by all. 5065 * - atomic and do not require locking. 5066 * - return a value 5067 */ 5068 case SIOCGIFFLAGS: 5069 case SIOCGIFMETRIC: 5070 case SIOCGIFMTU: 5071 case SIOCGIFHWADDR: 5072 case SIOCGIFSLAVE: 5073 case SIOCGIFMAP: 5074 case SIOCGIFINDEX: 5075 case SIOCGIFTXQLEN: 5076 dev_load(net, ifr.ifr_name); 5077 rcu_read_lock(); 5078 ret = dev_ifsioc_locked(net, &ifr, cmd); 5079 rcu_read_unlock(); 5080 if (!ret) { 5081 if (colon) 5082 *colon = ':'; 5083 if (copy_to_user(arg, &ifr, 5084 sizeof(struct ifreq))) 5085 ret = -EFAULT; 5086 } 5087 return ret; 5088 5089 case SIOCETHTOOL: 5090 dev_load(net, ifr.ifr_name); 5091 rtnl_lock(); 5092 ret = dev_ethtool(net, &ifr); 5093 rtnl_unlock(); 5094 if (!ret) { 5095 if (colon) 5096 *colon = ':'; 5097 if (copy_to_user(arg, &ifr, 5098 sizeof(struct ifreq))) 5099 ret = -EFAULT; 5100 } 5101 return ret; 5102 5103 /* 5104 * These ioctl calls: 5105 * - require superuser power. 5106 * - require strict serialization. 5107 * - return a value 5108 */ 5109 case SIOCGMIIPHY: 5110 case SIOCGMIIREG: 5111 case SIOCSIFNAME: 5112 if (!capable(CAP_NET_ADMIN)) 5113 return -EPERM; 5114 dev_load(net, ifr.ifr_name); 5115 rtnl_lock(); 5116 ret = dev_ifsioc(net, &ifr, cmd); 5117 rtnl_unlock(); 5118 if (!ret) { 5119 if (colon) 5120 *colon = ':'; 5121 if (copy_to_user(arg, &ifr, 5122 sizeof(struct ifreq))) 5123 ret = -EFAULT; 5124 } 5125 return ret; 5126 5127 /* 5128 * These ioctl calls: 5129 * - require superuser power. 5130 * - require strict serialization. 5131 * - do not return a value 5132 */ 5133 case SIOCSIFFLAGS: 5134 case SIOCSIFMETRIC: 5135 case SIOCSIFMTU: 5136 case SIOCSIFMAP: 5137 case SIOCSIFHWADDR: 5138 case SIOCSIFSLAVE: 5139 case SIOCADDMULTI: 5140 case SIOCDELMULTI: 5141 case SIOCSIFHWBROADCAST: 5142 case SIOCSIFTXQLEN: 5143 case SIOCSMIIREG: 5144 case SIOCBONDENSLAVE: 5145 case SIOCBONDRELEASE: 5146 case SIOCBONDSETHWADDR: 5147 case SIOCBONDCHANGEACTIVE: 5148 case SIOCBRADDIF: 5149 case SIOCBRDELIF: 5150 case SIOCSHWTSTAMP: 5151 if (!capable(CAP_NET_ADMIN)) 5152 return -EPERM; 5153 /* fall through */ 5154 case SIOCBONDSLAVEINFOQUERY: 5155 case SIOCBONDINFOQUERY: 5156 dev_load(net, ifr.ifr_name); 5157 rtnl_lock(); 5158 ret = dev_ifsioc(net, &ifr, cmd); 5159 rtnl_unlock(); 5160 return ret; 5161 5162 case SIOCGIFMEM: 5163 /* Get the per device memory space. We can add this but 5164 * currently do not support it */ 5165 case SIOCSIFMEM: 5166 /* Set the per device memory buffer space. 5167 * Not applicable in our case */ 5168 case SIOCSIFLINK: 5169 return -ENOTTY; 5170 5171 /* 5172 * Unknown or private ioctl. 5173 */ 5174 default: 5175 if (cmd == SIOCWANDEV || 5176 (cmd >= SIOCDEVPRIVATE && 5177 cmd <= SIOCDEVPRIVATE + 15)) { 5178 dev_load(net, ifr.ifr_name); 5179 rtnl_lock(); 5180 ret = dev_ifsioc(net, &ifr, cmd); 5181 rtnl_unlock(); 5182 if (!ret && copy_to_user(arg, &ifr, 5183 sizeof(struct ifreq))) 5184 ret = -EFAULT; 5185 return ret; 5186 } 5187 /* Take care of Wireless Extensions */ 5188 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) 5189 return wext_handle_ioctl(net, &ifr, cmd, arg); 5190 return -ENOTTY; 5191 } 5192 } 5193 5194 5195 /** 5196 * dev_new_index - allocate an ifindex 5197 * @net: the applicable net namespace 5198 * 5199 * Returns a suitable unique value for a new device interface 5200 * number. The caller must hold the rtnl semaphore or the 5201 * dev_base_lock to be sure it remains unique. 5202 */ 5203 static int dev_new_index(struct net *net) 5204 { 5205 static int ifindex; 5206 for (;;) { 5207 if (++ifindex <= 0) 5208 ifindex = 1; 5209 if (!__dev_get_by_index(net, ifindex)) 5210 return ifindex; 5211 } 5212 } 5213 5214 /* Delayed registration/unregisteration */ 5215 static LIST_HEAD(net_todo_list); 5216 5217 static void net_set_todo(struct net_device *dev) 5218 { 5219 list_add_tail(&dev->todo_list, &net_todo_list); 5220 } 5221 5222 static void rollback_registered_many(struct list_head *head) 5223 { 5224 struct net_device *dev, *tmp; 5225 5226 BUG_ON(dev_boot_phase); 5227 ASSERT_RTNL(); 5228 5229 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 5230 /* Some devices call without registering 5231 * for initialization unwind. Remove those 5232 * devices and proceed with the remaining. 5233 */ 5234 if (dev->reg_state == NETREG_UNINITIALIZED) { 5235 pr_debug("unregister_netdevice: device %s/%p never " 5236 "was registered\n", dev->name, dev); 5237 5238 WARN_ON(1); 5239 list_del(&dev->unreg_list); 5240 continue; 5241 } 5242 dev->dismantle = true; 5243 BUG_ON(dev->reg_state != NETREG_REGISTERED); 5244 } 5245 5246 /* If device is running, close it first. */ 5247 dev_close_many(head); 5248 5249 list_for_each_entry(dev, head, unreg_list) { 5250 /* And unlink it from device chain. */ 5251 unlist_netdevice(dev); 5252 5253 dev->reg_state = NETREG_UNREGISTERING; 5254 } 5255 5256 synchronize_net(); 5257 5258 list_for_each_entry(dev, head, unreg_list) { 5259 /* Shutdown queueing discipline. */ 5260 dev_shutdown(dev); 5261 5262 5263 /* Notify protocols, that we are about to destroy 5264 this device. They should clean all the things. 5265 */ 5266 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 5267 5268 if (!dev->rtnl_link_ops || 5269 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 5270 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U); 5271 5272 /* 5273 * Flush the unicast and multicast chains 5274 */ 5275 dev_uc_flush(dev); 5276 dev_mc_flush(dev); 5277 5278 if (dev->netdev_ops->ndo_uninit) 5279 dev->netdev_ops->ndo_uninit(dev); 5280 5281 /* Notifier chain MUST detach us from master device. */ 5282 WARN_ON(dev->master); 5283 5284 /* Remove entries from kobject tree */ 5285 netdev_unregister_kobject(dev); 5286 } 5287 5288 /* Process any work delayed until the end of the batch */ 5289 dev = list_first_entry(head, struct net_device, unreg_list); 5290 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev); 5291 5292 synchronize_net(); 5293 5294 list_for_each_entry(dev, head, unreg_list) 5295 dev_put(dev); 5296 } 5297 5298 static void rollback_registered(struct net_device *dev) 5299 { 5300 LIST_HEAD(single); 5301 5302 list_add(&dev->unreg_list, &single); 5303 rollback_registered_many(&single); 5304 list_del(&single); 5305 } 5306 5307 static netdev_features_t netdev_fix_features(struct net_device *dev, 5308 netdev_features_t features) 5309 { 5310 /* Fix illegal checksum combinations */ 5311 if ((features & NETIF_F_HW_CSUM) && 5312 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 5313 netdev_warn(dev, "mixed HW and IP checksum settings.\n"); 5314 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 5315 } 5316 5317 /* Fix illegal SG+CSUM combinations. */ 5318 if ((features & NETIF_F_SG) && 5319 !(features & NETIF_F_ALL_CSUM)) { 5320 netdev_dbg(dev, 5321 "Dropping NETIF_F_SG since no checksum feature.\n"); 5322 features &= ~NETIF_F_SG; 5323 } 5324 5325 /* TSO requires that SG is present as well. */ 5326 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { 5327 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); 5328 features &= ~NETIF_F_ALL_TSO; 5329 } 5330 5331 /* TSO ECN requires that TSO is present as well. */ 5332 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) 5333 features &= ~NETIF_F_TSO_ECN; 5334 5335 /* Software GSO depends on SG. */ 5336 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 5337 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 5338 features &= ~NETIF_F_GSO; 5339 } 5340 5341 /* UFO needs SG and checksumming */ 5342 if (features & NETIF_F_UFO) { 5343 /* maybe split UFO into V4 and V6? */ 5344 if (!((features & NETIF_F_GEN_CSUM) || 5345 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM)) 5346 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 5347 netdev_dbg(dev, 5348 "Dropping NETIF_F_UFO since no checksum offload features.\n"); 5349 features &= ~NETIF_F_UFO; 5350 } 5351 5352 if (!(features & NETIF_F_SG)) { 5353 netdev_dbg(dev, 5354 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n"); 5355 features &= ~NETIF_F_UFO; 5356 } 5357 } 5358 5359 return features; 5360 } 5361 5362 int __netdev_update_features(struct net_device *dev) 5363 { 5364 netdev_features_t features; 5365 int err = 0; 5366 5367 ASSERT_RTNL(); 5368 5369 features = netdev_get_wanted_features(dev); 5370 5371 if (dev->netdev_ops->ndo_fix_features) 5372 features = dev->netdev_ops->ndo_fix_features(dev, features); 5373 5374 /* driver might be less strict about feature dependencies */ 5375 features = netdev_fix_features(dev, features); 5376 5377 if (dev->features == features) 5378 return 0; 5379 5380 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n", 5381 &dev->features, &features); 5382 5383 if (dev->netdev_ops->ndo_set_features) 5384 err = dev->netdev_ops->ndo_set_features(dev, features); 5385 5386 if (unlikely(err < 0)) { 5387 netdev_err(dev, 5388 "set_features() failed (%d); wanted %pNF, left %pNF\n", 5389 err, &features, &dev->features); 5390 return -1; 5391 } 5392 5393 if (!err) 5394 dev->features = features; 5395 5396 return 1; 5397 } 5398 5399 /** 5400 * netdev_update_features - recalculate device features 5401 * @dev: the device to check 5402 * 5403 * Recalculate dev->features set and send notifications if it 5404 * has changed. Should be called after driver or hardware dependent 5405 * conditions might have changed that influence the features. 5406 */ 5407 void netdev_update_features(struct net_device *dev) 5408 { 5409 if (__netdev_update_features(dev)) 5410 netdev_features_change(dev); 5411 } 5412 EXPORT_SYMBOL(netdev_update_features); 5413 5414 /** 5415 * netdev_change_features - recalculate device features 5416 * @dev: the device to check 5417 * 5418 * Recalculate dev->features set and send notifications even 5419 * if they have not changed. Should be called instead of 5420 * netdev_update_features() if also dev->vlan_features might 5421 * have changed to allow the changes to be propagated to stacked 5422 * VLAN devices. 5423 */ 5424 void netdev_change_features(struct net_device *dev) 5425 { 5426 __netdev_update_features(dev); 5427 netdev_features_change(dev); 5428 } 5429 EXPORT_SYMBOL(netdev_change_features); 5430 5431 /** 5432 * netif_stacked_transfer_operstate - transfer operstate 5433 * @rootdev: the root or lower level device to transfer state from 5434 * @dev: the device to transfer operstate to 5435 * 5436 * Transfer operational state from root to device. This is normally 5437 * called when a stacking relationship exists between the root 5438 * device and the device(a leaf device). 5439 */ 5440 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 5441 struct net_device *dev) 5442 { 5443 if (rootdev->operstate == IF_OPER_DORMANT) 5444 netif_dormant_on(dev); 5445 else 5446 netif_dormant_off(dev); 5447 5448 if (netif_carrier_ok(rootdev)) { 5449 if (!netif_carrier_ok(dev)) 5450 netif_carrier_on(dev); 5451 } else { 5452 if (netif_carrier_ok(dev)) 5453 netif_carrier_off(dev); 5454 } 5455 } 5456 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 5457 5458 #ifdef CONFIG_RPS 5459 static int netif_alloc_rx_queues(struct net_device *dev) 5460 { 5461 unsigned int i, count = dev->num_rx_queues; 5462 struct netdev_rx_queue *rx; 5463 5464 BUG_ON(count < 1); 5465 5466 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL); 5467 if (!rx) { 5468 pr_err("netdev: Unable to allocate %u rx queues.\n", count); 5469 return -ENOMEM; 5470 } 5471 dev->_rx = rx; 5472 5473 for (i = 0; i < count; i++) 5474 rx[i].dev = dev; 5475 return 0; 5476 } 5477 #endif 5478 5479 static void netdev_init_one_queue(struct net_device *dev, 5480 struct netdev_queue *queue, void *_unused) 5481 { 5482 /* Initialize queue lock */ 5483 spin_lock_init(&queue->_xmit_lock); 5484 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); 5485 queue->xmit_lock_owner = -1; 5486 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 5487 queue->dev = dev; 5488 #ifdef CONFIG_BQL 5489 dql_init(&queue->dql, HZ); 5490 #endif 5491 } 5492 5493 static int netif_alloc_netdev_queues(struct net_device *dev) 5494 { 5495 unsigned int count = dev->num_tx_queues; 5496 struct netdev_queue *tx; 5497 5498 BUG_ON(count < 1); 5499 5500 tx = kcalloc(count, sizeof(struct netdev_queue), GFP_KERNEL); 5501 if (!tx) { 5502 pr_err("netdev: Unable to allocate %u tx queues.\n", 5503 count); 5504 return -ENOMEM; 5505 } 5506 dev->_tx = tx; 5507 5508 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 5509 spin_lock_init(&dev->tx_global_lock); 5510 5511 return 0; 5512 } 5513 5514 /** 5515 * register_netdevice - register a network device 5516 * @dev: device to register 5517 * 5518 * Take a completed network device structure and add it to the kernel 5519 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 5520 * chain. 0 is returned on success. A negative errno code is returned 5521 * on a failure to set up the device, or if the name is a duplicate. 5522 * 5523 * Callers must hold the rtnl semaphore. You may want 5524 * register_netdev() instead of this. 5525 * 5526 * BUGS: 5527 * The locking appears insufficient to guarantee two parallel registers 5528 * will not get the same name. 5529 */ 5530 5531 int register_netdevice(struct net_device *dev) 5532 { 5533 int ret; 5534 struct net *net = dev_net(dev); 5535 5536 BUG_ON(dev_boot_phase); 5537 ASSERT_RTNL(); 5538 5539 might_sleep(); 5540 5541 /* When net_device's are persistent, this will be fatal. */ 5542 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 5543 BUG_ON(!net); 5544 5545 spin_lock_init(&dev->addr_list_lock); 5546 netdev_set_addr_lockdep_class(dev); 5547 5548 dev->iflink = -1; 5549 5550 ret = dev_get_valid_name(dev, dev->name); 5551 if (ret < 0) 5552 goto out; 5553 5554 /* Init, if this function is available */ 5555 if (dev->netdev_ops->ndo_init) { 5556 ret = dev->netdev_ops->ndo_init(dev); 5557 if (ret) { 5558 if (ret > 0) 5559 ret = -EIO; 5560 goto out; 5561 } 5562 } 5563 5564 dev->ifindex = dev_new_index(net); 5565 if (dev->iflink == -1) 5566 dev->iflink = dev->ifindex; 5567 5568 /* Transfer changeable features to wanted_features and enable 5569 * software offloads (GSO and GRO). 5570 */ 5571 dev->hw_features |= NETIF_F_SOFT_FEATURES; 5572 dev->features |= NETIF_F_SOFT_FEATURES; 5573 dev->wanted_features = dev->features & dev->hw_features; 5574 5575 /* Turn on no cache copy if HW is doing checksum */ 5576 if (!(dev->flags & IFF_LOOPBACK)) { 5577 dev->hw_features |= NETIF_F_NOCACHE_COPY; 5578 if (dev->features & NETIF_F_ALL_CSUM) { 5579 dev->wanted_features |= NETIF_F_NOCACHE_COPY; 5580 dev->features |= NETIF_F_NOCACHE_COPY; 5581 } 5582 } 5583 5584 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. 5585 */ 5586 dev->vlan_features |= NETIF_F_HIGHDMA; 5587 5588 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 5589 ret = notifier_to_errno(ret); 5590 if (ret) 5591 goto err_uninit; 5592 5593 ret = netdev_register_kobject(dev); 5594 if (ret) 5595 goto err_uninit; 5596 dev->reg_state = NETREG_REGISTERED; 5597 5598 __netdev_update_features(dev); 5599 5600 /* 5601 * Default initial state at registry is that the 5602 * device is present. 5603 */ 5604 5605 set_bit(__LINK_STATE_PRESENT, &dev->state); 5606 5607 dev_init_scheduler(dev); 5608 dev_hold(dev); 5609 list_netdevice(dev); 5610 5611 /* Notify protocols, that a new device appeared. */ 5612 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 5613 ret = notifier_to_errno(ret); 5614 if (ret) { 5615 rollback_registered(dev); 5616 dev->reg_state = NETREG_UNREGISTERED; 5617 } 5618 /* 5619 * Prevent userspace races by waiting until the network 5620 * device is fully setup before sending notifications. 5621 */ 5622 if (!dev->rtnl_link_ops || 5623 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 5624 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U); 5625 5626 out: 5627 return ret; 5628 5629 err_uninit: 5630 if (dev->netdev_ops->ndo_uninit) 5631 dev->netdev_ops->ndo_uninit(dev); 5632 goto out; 5633 } 5634 EXPORT_SYMBOL(register_netdevice); 5635 5636 /** 5637 * init_dummy_netdev - init a dummy network device for NAPI 5638 * @dev: device to init 5639 * 5640 * This takes a network device structure and initialize the minimum 5641 * amount of fields so it can be used to schedule NAPI polls without 5642 * registering a full blown interface. This is to be used by drivers 5643 * that need to tie several hardware interfaces to a single NAPI 5644 * poll scheduler due to HW limitations. 5645 */ 5646 int init_dummy_netdev(struct net_device *dev) 5647 { 5648 /* Clear everything. Note we don't initialize spinlocks 5649 * are they aren't supposed to be taken by any of the 5650 * NAPI code and this dummy netdev is supposed to be 5651 * only ever used for NAPI polls 5652 */ 5653 memset(dev, 0, sizeof(struct net_device)); 5654 5655 /* make sure we BUG if trying to hit standard 5656 * register/unregister code path 5657 */ 5658 dev->reg_state = NETREG_DUMMY; 5659 5660 /* NAPI wants this */ 5661 INIT_LIST_HEAD(&dev->napi_list); 5662 5663 /* a dummy interface is started by default */ 5664 set_bit(__LINK_STATE_PRESENT, &dev->state); 5665 set_bit(__LINK_STATE_START, &dev->state); 5666 5667 /* Note : We dont allocate pcpu_refcnt for dummy devices, 5668 * because users of this 'device' dont need to change 5669 * its refcount. 5670 */ 5671 5672 return 0; 5673 } 5674 EXPORT_SYMBOL_GPL(init_dummy_netdev); 5675 5676 5677 /** 5678 * register_netdev - register a network device 5679 * @dev: device to register 5680 * 5681 * Take a completed network device structure and add it to the kernel 5682 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 5683 * chain. 0 is returned on success. A negative errno code is returned 5684 * on a failure to set up the device, or if the name is a duplicate. 5685 * 5686 * This is a wrapper around register_netdevice that takes the rtnl semaphore 5687 * and expands the device name if you passed a format string to 5688 * alloc_netdev. 5689 */ 5690 int register_netdev(struct net_device *dev) 5691 { 5692 int err; 5693 5694 rtnl_lock(); 5695 err = register_netdevice(dev); 5696 rtnl_unlock(); 5697 return err; 5698 } 5699 EXPORT_SYMBOL(register_netdev); 5700 5701 int netdev_refcnt_read(const struct net_device *dev) 5702 { 5703 int i, refcnt = 0; 5704 5705 for_each_possible_cpu(i) 5706 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 5707 return refcnt; 5708 } 5709 EXPORT_SYMBOL(netdev_refcnt_read); 5710 5711 /* 5712 * netdev_wait_allrefs - wait until all references are gone. 5713 * 5714 * This is called when unregistering network devices. 5715 * 5716 * Any protocol or device that holds a reference should register 5717 * for netdevice notification, and cleanup and put back the 5718 * reference if they receive an UNREGISTER event. 5719 * We can get stuck here if buggy protocols don't correctly 5720 * call dev_put. 5721 */ 5722 static void netdev_wait_allrefs(struct net_device *dev) 5723 { 5724 unsigned long rebroadcast_time, warning_time; 5725 int refcnt; 5726 5727 linkwatch_forget_dev(dev); 5728 5729 rebroadcast_time = warning_time = jiffies; 5730 refcnt = netdev_refcnt_read(dev); 5731 5732 while (refcnt != 0) { 5733 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 5734 rtnl_lock(); 5735 5736 /* Rebroadcast unregister notification */ 5737 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 5738 /* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users 5739 * should have already handle it the first time */ 5740 5741 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 5742 &dev->state)) { 5743 /* We must not have linkwatch events 5744 * pending on unregister. If this 5745 * happens, we simply run the queue 5746 * unscheduled, resulting in a noop 5747 * for this device. 5748 */ 5749 linkwatch_run_queue(); 5750 } 5751 5752 __rtnl_unlock(); 5753 5754 rebroadcast_time = jiffies; 5755 } 5756 5757 msleep(250); 5758 5759 refcnt = netdev_refcnt_read(dev); 5760 5761 if (time_after(jiffies, warning_time + 10 * HZ)) { 5762 printk(KERN_EMERG "unregister_netdevice: " 5763 "waiting for %s to become free. Usage " 5764 "count = %d\n", 5765 dev->name, refcnt); 5766 warning_time = jiffies; 5767 } 5768 } 5769 } 5770 5771 /* The sequence is: 5772 * 5773 * rtnl_lock(); 5774 * ... 5775 * register_netdevice(x1); 5776 * register_netdevice(x2); 5777 * ... 5778 * unregister_netdevice(y1); 5779 * unregister_netdevice(y2); 5780 * ... 5781 * rtnl_unlock(); 5782 * free_netdev(y1); 5783 * free_netdev(y2); 5784 * 5785 * We are invoked by rtnl_unlock(). 5786 * This allows us to deal with problems: 5787 * 1) We can delete sysfs objects which invoke hotplug 5788 * without deadlocking with linkwatch via keventd. 5789 * 2) Since we run with the RTNL semaphore not held, we can sleep 5790 * safely in order to wait for the netdev refcnt to drop to zero. 5791 * 5792 * We must not return until all unregister events added during 5793 * the interval the lock was held have been completed. 5794 */ 5795 void netdev_run_todo(void) 5796 { 5797 struct list_head list; 5798 5799 /* Snapshot list, allow later requests */ 5800 list_replace_init(&net_todo_list, &list); 5801 5802 __rtnl_unlock(); 5803 5804 /* Wait for rcu callbacks to finish before attempting to drain 5805 * the device list. This usually avoids a 250ms wait. 5806 */ 5807 if (!list_empty(&list)) 5808 rcu_barrier(); 5809 5810 while (!list_empty(&list)) { 5811 struct net_device *dev 5812 = list_first_entry(&list, struct net_device, todo_list); 5813 list_del(&dev->todo_list); 5814 5815 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 5816 printk(KERN_ERR "network todo '%s' but state %d\n", 5817 dev->name, dev->reg_state); 5818 dump_stack(); 5819 continue; 5820 } 5821 5822 dev->reg_state = NETREG_UNREGISTERED; 5823 5824 on_each_cpu(flush_backlog, dev, 1); 5825 5826 netdev_wait_allrefs(dev); 5827 5828 /* paranoia */ 5829 BUG_ON(netdev_refcnt_read(dev)); 5830 WARN_ON(rcu_access_pointer(dev->ip_ptr)); 5831 WARN_ON(rcu_access_pointer(dev->ip6_ptr)); 5832 WARN_ON(dev->dn_ptr); 5833 5834 if (dev->destructor) 5835 dev->destructor(dev); 5836 5837 /* Free network device */ 5838 kobject_put(&dev->dev.kobj); 5839 } 5840 } 5841 5842 /* Convert net_device_stats to rtnl_link_stats64. They have the same 5843 * fields in the same order, with only the type differing. 5844 */ 5845 static void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 5846 const struct net_device_stats *netdev_stats) 5847 { 5848 #if BITS_PER_LONG == 64 5849 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats)); 5850 memcpy(stats64, netdev_stats, sizeof(*stats64)); 5851 #else 5852 size_t i, n = sizeof(*stats64) / sizeof(u64); 5853 const unsigned long *src = (const unsigned long *)netdev_stats; 5854 u64 *dst = (u64 *)stats64; 5855 5856 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) != 5857 sizeof(*stats64) / sizeof(u64)); 5858 for (i = 0; i < n; i++) 5859 dst[i] = src[i]; 5860 #endif 5861 } 5862 5863 /** 5864 * dev_get_stats - get network device statistics 5865 * @dev: device to get statistics from 5866 * @storage: place to store stats 5867 * 5868 * Get network statistics from device. Return @storage. 5869 * The device driver may provide its own method by setting 5870 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 5871 * otherwise the internal statistics structure is used. 5872 */ 5873 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 5874 struct rtnl_link_stats64 *storage) 5875 { 5876 const struct net_device_ops *ops = dev->netdev_ops; 5877 5878 if (ops->ndo_get_stats64) { 5879 memset(storage, 0, sizeof(*storage)); 5880 ops->ndo_get_stats64(dev, storage); 5881 } else if (ops->ndo_get_stats) { 5882 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 5883 } else { 5884 netdev_stats_to_stats64(storage, &dev->stats); 5885 } 5886 storage->rx_dropped += atomic_long_read(&dev->rx_dropped); 5887 return storage; 5888 } 5889 EXPORT_SYMBOL(dev_get_stats); 5890 5891 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 5892 { 5893 struct netdev_queue *queue = dev_ingress_queue(dev); 5894 5895 #ifdef CONFIG_NET_CLS_ACT 5896 if (queue) 5897 return queue; 5898 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 5899 if (!queue) 5900 return NULL; 5901 netdev_init_one_queue(dev, queue, NULL); 5902 queue->qdisc = &noop_qdisc; 5903 queue->qdisc_sleeping = &noop_qdisc; 5904 rcu_assign_pointer(dev->ingress_queue, queue); 5905 #endif 5906 return queue; 5907 } 5908 5909 /** 5910 * alloc_netdev_mqs - allocate network device 5911 * @sizeof_priv: size of private data to allocate space for 5912 * @name: device name format string 5913 * @setup: callback to initialize device 5914 * @txqs: the number of TX subqueues to allocate 5915 * @rxqs: the number of RX subqueues to allocate 5916 * 5917 * Allocates a struct net_device with private data area for driver use 5918 * and performs basic initialization. Also allocates subquue structs 5919 * for each queue on the device. 5920 */ 5921 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 5922 void (*setup)(struct net_device *), 5923 unsigned int txqs, unsigned int rxqs) 5924 { 5925 struct net_device *dev; 5926 size_t alloc_size; 5927 struct net_device *p; 5928 5929 BUG_ON(strlen(name) >= sizeof(dev->name)); 5930 5931 if (txqs < 1) { 5932 pr_err("alloc_netdev: Unable to allocate device " 5933 "with zero queues.\n"); 5934 return NULL; 5935 } 5936 5937 #ifdef CONFIG_RPS 5938 if (rxqs < 1) { 5939 pr_err("alloc_netdev: Unable to allocate device " 5940 "with zero RX queues.\n"); 5941 return NULL; 5942 } 5943 #endif 5944 5945 alloc_size = sizeof(struct net_device); 5946 if (sizeof_priv) { 5947 /* ensure 32-byte alignment of private area */ 5948 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); 5949 alloc_size += sizeof_priv; 5950 } 5951 /* ensure 32-byte alignment of whole construct */ 5952 alloc_size += NETDEV_ALIGN - 1; 5953 5954 p = kzalloc(alloc_size, GFP_KERNEL); 5955 if (!p) { 5956 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n"); 5957 return NULL; 5958 } 5959 5960 dev = PTR_ALIGN(p, NETDEV_ALIGN); 5961 dev->padded = (char *)dev - (char *)p; 5962 5963 dev->pcpu_refcnt = alloc_percpu(int); 5964 if (!dev->pcpu_refcnt) 5965 goto free_p; 5966 5967 if (dev_addr_init(dev)) 5968 goto free_pcpu; 5969 5970 dev_mc_init(dev); 5971 dev_uc_init(dev); 5972 5973 dev_net_set(dev, &init_net); 5974 5975 dev->gso_max_size = GSO_MAX_SIZE; 5976 5977 INIT_LIST_HEAD(&dev->napi_list); 5978 INIT_LIST_HEAD(&dev->unreg_list); 5979 INIT_LIST_HEAD(&dev->link_watch_list); 5980 dev->priv_flags = IFF_XMIT_DST_RELEASE; 5981 setup(dev); 5982 5983 dev->num_tx_queues = txqs; 5984 dev->real_num_tx_queues = txqs; 5985 if (netif_alloc_netdev_queues(dev)) 5986 goto free_all; 5987 5988 #ifdef CONFIG_RPS 5989 dev->num_rx_queues = rxqs; 5990 dev->real_num_rx_queues = rxqs; 5991 if (netif_alloc_rx_queues(dev)) 5992 goto free_all; 5993 #endif 5994 5995 strcpy(dev->name, name); 5996 dev->group = INIT_NETDEV_GROUP; 5997 return dev; 5998 5999 free_all: 6000 free_netdev(dev); 6001 return NULL; 6002 6003 free_pcpu: 6004 free_percpu(dev->pcpu_refcnt); 6005 kfree(dev->_tx); 6006 #ifdef CONFIG_RPS 6007 kfree(dev->_rx); 6008 #endif 6009 6010 free_p: 6011 kfree(p); 6012 return NULL; 6013 } 6014 EXPORT_SYMBOL(alloc_netdev_mqs); 6015 6016 /** 6017 * free_netdev - free network device 6018 * @dev: device 6019 * 6020 * This function does the last stage of destroying an allocated device 6021 * interface. The reference to the device object is released. 6022 * If this is the last reference then it will be freed. 6023 */ 6024 void free_netdev(struct net_device *dev) 6025 { 6026 struct napi_struct *p, *n; 6027 6028 release_net(dev_net(dev)); 6029 6030 kfree(dev->_tx); 6031 #ifdef CONFIG_RPS 6032 kfree(dev->_rx); 6033 #endif 6034 6035 kfree(rcu_dereference_protected(dev->ingress_queue, 1)); 6036 6037 /* Flush device addresses */ 6038 dev_addr_flush(dev); 6039 6040 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 6041 netif_napi_del(p); 6042 6043 free_percpu(dev->pcpu_refcnt); 6044 dev->pcpu_refcnt = NULL; 6045 6046 /* Compatibility with error handling in drivers */ 6047 if (dev->reg_state == NETREG_UNINITIALIZED) { 6048 kfree((char *)dev - dev->padded); 6049 return; 6050 } 6051 6052 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 6053 dev->reg_state = NETREG_RELEASED; 6054 6055 /* will free via device release */ 6056 put_device(&dev->dev); 6057 } 6058 EXPORT_SYMBOL(free_netdev); 6059 6060 /** 6061 * synchronize_net - Synchronize with packet receive processing 6062 * 6063 * Wait for packets currently being received to be done. 6064 * Does not block later packets from starting. 6065 */ 6066 void synchronize_net(void) 6067 { 6068 might_sleep(); 6069 if (rtnl_is_locked()) 6070 synchronize_rcu_expedited(); 6071 else 6072 synchronize_rcu(); 6073 } 6074 EXPORT_SYMBOL(synchronize_net); 6075 6076 /** 6077 * unregister_netdevice_queue - remove device from the kernel 6078 * @dev: device 6079 * @head: list 6080 * 6081 * This function shuts down a device interface and removes it 6082 * from the kernel tables. 6083 * If head not NULL, device is queued to be unregistered later. 6084 * 6085 * Callers must hold the rtnl semaphore. You may want 6086 * unregister_netdev() instead of this. 6087 */ 6088 6089 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 6090 { 6091 ASSERT_RTNL(); 6092 6093 if (head) { 6094 list_move_tail(&dev->unreg_list, head); 6095 } else { 6096 rollback_registered(dev); 6097 /* Finish processing unregister after unlock */ 6098 net_set_todo(dev); 6099 } 6100 } 6101 EXPORT_SYMBOL(unregister_netdevice_queue); 6102 6103 /** 6104 * unregister_netdevice_many - unregister many devices 6105 * @head: list of devices 6106 */ 6107 void unregister_netdevice_many(struct list_head *head) 6108 { 6109 struct net_device *dev; 6110 6111 if (!list_empty(head)) { 6112 rollback_registered_many(head); 6113 list_for_each_entry(dev, head, unreg_list) 6114 net_set_todo(dev); 6115 } 6116 } 6117 EXPORT_SYMBOL(unregister_netdevice_many); 6118 6119 /** 6120 * unregister_netdev - remove device from the kernel 6121 * @dev: device 6122 * 6123 * This function shuts down a device interface and removes it 6124 * from the kernel tables. 6125 * 6126 * This is just a wrapper for unregister_netdevice that takes 6127 * the rtnl semaphore. In general you want to use this and not 6128 * unregister_netdevice. 6129 */ 6130 void unregister_netdev(struct net_device *dev) 6131 { 6132 rtnl_lock(); 6133 unregister_netdevice(dev); 6134 rtnl_unlock(); 6135 } 6136 EXPORT_SYMBOL(unregister_netdev); 6137 6138 /** 6139 * dev_change_net_namespace - move device to different nethost namespace 6140 * @dev: device 6141 * @net: network namespace 6142 * @pat: If not NULL name pattern to try if the current device name 6143 * is already taken in the destination network namespace. 6144 * 6145 * This function shuts down a device interface and moves it 6146 * to a new network namespace. On success 0 is returned, on 6147 * a failure a netagive errno code is returned. 6148 * 6149 * Callers must hold the rtnl semaphore. 6150 */ 6151 6152 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 6153 { 6154 int err; 6155 6156 ASSERT_RTNL(); 6157 6158 /* Don't allow namespace local devices to be moved. */ 6159 err = -EINVAL; 6160 if (dev->features & NETIF_F_NETNS_LOCAL) 6161 goto out; 6162 6163 /* Ensure the device has been registrered */ 6164 err = -EINVAL; 6165 if (dev->reg_state != NETREG_REGISTERED) 6166 goto out; 6167 6168 /* Get out if there is nothing todo */ 6169 err = 0; 6170 if (net_eq(dev_net(dev), net)) 6171 goto out; 6172 6173 /* Pick the destination device name, and ensure 6174 * we can use it in the destination network namespace. 6175 */ 6176 err = -EEXIST; 6177 if (__dev_get_by_name(net, dev->name)) { 6178 /* We get here if we can't use the current device name */ 6179 if (!pat) 6180 goto out; 6181 if (dev_get_valid_name(dev, pat) < 0) 6182 goto out; 6183 } 6184 6185 /* 6186 * And now a mini version of register_netdevice unregister_netdevice. 6187 */ 6188 6189 /* If device is running close it first. */ 6190 dev_close(dev); 6191 6192 /* And unlink it from device chain */ 6193 err = -ENODEV; 6194 unlist_netdevice(dev); 6195 6196 synchronize_net(); 6197 6198 /* Shutdown queueing discipline. */ 6199 dev_shutdown(dev); 6200 6201 /* Notify protocols, that we are about to destroy 6202 this device. They should clean all the things. 6203 6204 Note that dev->reg_state stays at NETREG_REGISTERED. 6205 This is wanted because this way 8021q and macvlan know 6206 the device is just moving and can keep their slaves up. 6207 */ 6208 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 6209 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev); 6210 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U); 6211 6212 /* 6213 * Flush the unicast and multicast chains 6214 */ 6215 dev_uc_flush(dev); 6216 dev_mc_flush(dev); 6217 6218 /* Actually switch the network namespace */ 6219 dev_net_set(dev, net); 6220 6221 /* If there is an ifindex conflict assign a new one */ 6222 if (__dev_get_by_index(net, dev->ifindex)) { 6223 int iflink = (dev->iflink == dev->ifindex); 6224 dev->ifindex = dev_new_index(net); 6225 if (iflink) 6226 dev->iflink = dev->ifindex; 6227 } 6228 6229 /* Fixup kobjects */ 6230 err = device_rename(&dev->dev, dev->name); 6231 WARN_ON(err); 6232 6233 /* Add the device back in the hashes */ 6234 list_netdevice(dev); 6235 6236 /* Notify protocols, that a new device appeared. */ 6237 call_netdevice_notifiers(NETDEV_REGISTER, dev); 6238 6239 /* 6240 * Prevent userspace races by waiting until the network 6241 * device is fully setup before sending notifications. 6242 */ 6243 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U); 6244 6245 synchronize_net(); 6246 err = 0; 6247 out: 6248 return err; 6249 } 6250 EXPORT_SYMBOL_GPL(dev_change_net_namespace); 6251 6252 static int dev_cpu_callback(struct notifier_block *nfb, 6253 unsigned long action, 6254 void *ocpu) 6255 { 6256 struct sk_buff **list_skb; 6257 struct sk_buff *skb; 6258 unsigned int cpu, oldcpu = (unsigned long)ocpu; 6259 struct softnet_data *sd, *oldsd; 6260 6261 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN) 6262 return NOTIFY_OK; 6263 6264 local_irq_disable(); 6265 cpu = smp_processor_id(); 6266 sd = &per_cpu(softnet_data, cpu); 6267 oldsd = &per_cpu(softnet_data, oldcpu); 6268 6269 /* Find end of our completion_queue. */ 6270 list_skb = &sd->completion_queue; 6271 while (*list_skb) 6272 list_skb = &(*list_skb)->next; 6273 /* Append completion queue from offline CPU. */ 6274 *list_skb = oldsd->completion_queue; 6275 oldsd->completion_queue = NULL; 6276 6277 /* Append output queue from offline CPU. */ 6278 if (oldsd->output_queue) { 6279 *sd->output_queue_tailp = oldsd->output_queue; 6280 sd->output_queue_tailp = oldsd->output_queue_tailp; 6281 oldsd->output_queue = NULL; 6282 oldsd->output_queue_tailp = &oldsd->output_queue; 6283 } 6284 /* Append NAPI poll list from offline CPU. */ 6285 if (!list_empty(&oldsd->poll_list)) { 6286 list_splice_init(&oldsd->poll_list, &sd->poll_list); 6287 raise_softirq_irqoff(NET_RX_SOFTIRQ); 6288 } 6289 6290 raise_softirq_irqoff(NET_TX_SOFTIRQ); 6291 local_irq_enable(); 6292 6293 /* Process offline CPU's input_pkt_queue */ 6294 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 6295 netif_rx(skb); 6296 input_queue_head_incr(oldsd); 6297 } 6298 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) { 6299 netif_rx(skb); 6300 input_queue_head_incr(oldsd); 6301 } 6302 6303 return NOTIFY_OK; 6304 } 6305 6306 6307 /** 6308 * netdev_increment_features - increment feature set by one 6309 * @all: current feature set 6310 * @one: new feature set 6311 * @mask: mask feature set 6312 * 6313 * Computes a new feature set after adding a device with feature set 6314 * @one to the master device with current feature set @all. Will not 6315 * enable anything that is off in @mask. Returns the new feature set. 6316 */ 6317 netdev_features_t netdev_increment_features(netdev_features_t all, 6318 netdev_features_t one, netdev_features_t mask) 6319 { 6320 if (mask & NETIF_F_GEN_CSUM) 6321 mask |= NETIF_F_ALL_CSUM; 6322 mask |= NETIF_F_VLAN_CHALLENGED; 6323 6324 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask; 6325 all &= one | ~NETIF_F_ALL_FOR_ALL; 6326 6327 /* If one device supports hw checksumming, set for all. */ 6328 if (all & NETIF_F_GEN_CSUM) 6329 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM); 6330 6331 return all; 6332 } 6333 EXPORT_SYMBOL(netdev_increment_features); 6334 6335 static struct hlist_head *netdev_create_hash(void) 6336 { 6337 int i; 6338 struct hlist_head *hash; 6339 6340 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL); 6341 if (hash != NULL) 6342 for (i = 0; i < NETDEV_HASHENTRIES; i++) 6343 INIT_HLIST_HEAD(&hash[i]); 6344 6345 return hash; 6346 } 6347 6348 /* Initialize per network namespace state */ 6349 static int __net_init netdev_init(struct net *net) 6350 { 6351 INIT_LIST_HEAD(&net->dev_base_head); 6352 6353 net->dev_name_head = netdev_create_hash(); 6354 if (net->dev_name_head == NULL) 6355 goto err_name; 6356 6357 net->dev_index_head = netdev_create_hash(); 6358 if (net->dev_index_head == NULL) 6359 goto err_idx; 6360 6361 return 0; 6362 6363 err_idx: 6364 kfree(net->dev_name_head); 6365 err_name: 6366 return -ENOMEM; 6367 } 6368 6369 /** 6370 * netdev_drivername - network driver for the device 6371 * @dev: network device 6372 * 6373 * Determine network driver for device. 6374 */ 6375 const char *netdev_drivername(const struct net_device *dev) 6376 { 6377 const struct device_driver *driver; 6378 const struct device *parent; 6379 const char *empty = ""; 6380 6381 parent = dev->dev.parent; 6382 if (!parent) 6383 return empty; 6384 6385 driver = parent->driver; 6386 if (driver && driver->name) 6387 return driver->name; 6388 return empty; 6389 } 6390 6391 int __netdev_printk(const char *level, const struct net_device *dev, 6392 struct va_format *vaf) 6393 { 6394 int r; 6395 6396 if (dev && dev->dev.parent) 6397 r = dev_printk(level, dev->dev.parent, "%s: %pV", 6398 netdev_name(dev), vaf); 6399 else if (dev) 6400 r = printk("%s%s: %pV", level, netdev_name(dev), vaf); 6401 else 6402 r = printk("%s(NULL net_device): %pV", level, vaf); 6403 6404 return r; 6405 } 6406 EXPORT_SYMBOL(__netdev_printk); 6407 6408 int netdev_printk(const char *level, const struct net_device *dev, 6409 const char *format, ...) 6410 { 6411 struct va_format vaf; 6412 va_list args; 6413 int r; 6414 6415 va_start(args, format); 6416 6417 vaf.fmt = format; 6418 vaf.va = &args; 6419 6420 r = __netdev_printk(level, dev, &vaf); 6421 va_end(args); 6422 6423 return r; 6424 } 6425 EXPORT_SYMBOL(netdev_printk); 6426 6427 #define define_netdev_printk_level(func, level) \ 6428 int func(const struct net_device *dev, const char *fmt, ...) \ 6429 { \ 6430 int r; \ 6431 struct va_format vaf; \ 6432 va_list args; \ 6433 \ 6434 va_start(args, fmt); \ 6435 \ 6436 vaf.fmt = fmt; \ 6437 vaf.va = &args; \ 6438 \ 6439 r = __netdev_printk(level, dev, &vaf); \ 6440 va_end(args); \ 6441 \ 6442 return r; \ 6443 } \ 6444 EXPORT_SYMBOL(func); 6445 6446 define_netdev_printk_level(netdev_emerg, KERN_EMERG); 6447 define_netdev_printk_level(netdev_alert, KERN_ALERT); 6448 define_netdev_printk_level(netdev_crit, KERN_CRIT); 6449 define_netdev_printk_level(netdev_err, KERN_ERR); 6450 define_netdev_printk_level(netdev_warn, KERN_WARNING); 6451 define_netdev_printk_level(netdev_notice, KERN_NOTICE); 6452 define_netdev_printk_level(netdev_info, KERN_INFO); 6453 6454 static void __net_exit netdev_exit(struct net *net) 6455 { 6456 kfree(net->dev_name_head); 6457 kfree(net->dev_index_head); 6458 } 6459 6460 static struct pernet_operations __net_initdata netdev_net_ops = { 6461 .init = netdev_init, 6462 .exit = netdev_exit, 6463 }; 6464 6465 static void __net_exit default_device_exit(struct net *net) 6466 { 6467 struct net_device *dev, *aux; 6468 /* 6469 * Push all migratable network devices back to the 6470 * initial network namespace 6471 */ 6472 rtnl_lock(); 6473 for_each_netdev_safe(net, dev, aux) { 6474 int err; 6475 char fb_name[IFNAMSIZ]; 6476 6477 /* Ignore unmoveable devices (i.e. loopback) */ 6478 if (dev->features & NETIF_F_NETNS_LOCAL) 6479 continue; 6480 6481 /* Leave virtual devices for the generic cleanup */ 6482 if (dev->rtnl_link_ops) 6483 continue; 6484 6485 /* Push remaining network devices to init_net */ 6486 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 6487 err = dev_change_net_namespace(dev, &init_net, fb_name); 6488 if (err) { 6489 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n", 6490 __func__, dev->name, err); 6491 BUG(); 6492 } 6493 } 6494 rtnl_unlock(); 6495 } 6496 6497 static void __net_exit default_device_exit_batch(struct list_head *net_list) 6498 { 6499 /* At exit all network devices most be removed from a network 6500 * namespace. Do this in the reverse order of registration. 6501 * Do this across as many network namespaces as possible to 6502 * improve batching efficiency. 6503 */ 6504 struct net_device *dev; 6505 struct net *net; 6506 LIST_HEAD(dev_kill_list); 6507 6508 rtnl_lock(); 6509 list_for_each_entry(net, net_list, exit_list) { 6510 for_each_netdev_reverse(net, dev) { 6511 if (dev->rtnl_link_ops) 6512 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 6513 else 6514 unregister_netdevice_queue(dev, &dev_kill_list); 6515 } 6516 } 6517 unregister_netdevice_many(&dev_kill_list); 6518 list_del(&dev_kill_list); 6519 rtnl_unlock(); 6520 } 6521 6522 static struct pernet_operations __net_initdata default_device_ops = { 6523 .exit = default_device_exit, 6524 .exit_batch = default_device_exit_batch, 6525 }; 6526 6527 /* 6528 * Initialize the DEV module. At boot time this walks the device list and 6529 * unhooks any devices that fail to initialise (normally hardware not 6530 * present) and leaves us with a valid list of present and active devices. 6531 * 6532 */ 6533 6534 /* 6535 * This is called single threaded during boot, so no need 6536 * to take the rtnl semaphore. 6537 */ 6538 static int __init net_dev_init(void) 6539 { 6540 int i, rc = -ENOMEM; 6541 6542 BUG_ON(!dev_boot_phase); 6543 6544 if (dev_proc_init()) 6545 goto out; 6546 6547 if (netdev_kobject_init()) 6548 goto out; 6549 6550 INIT_LIST_HEAD(&ptype_all); 6551 for (i = 0; i < PTYPE_HASH_SIZE; i++) 6552 INIT_LIST_HEAD(&ptype_base[i]); 6553 6554 if (register_pernet_subsys(&netdev_net_ops)) 6555 goto out; 6556 6557 /* 6558 * Initialise the packet receive queues. 6559 */ 6560 6561 for_each_possible_cpu(i) { 6562 struct softnet_data *sd = &per_cpu(softnet_data, i); 6563 6564 memset(sd, 0, sizeof(*sd)); 6565 skb_queue_head_init(&sd->input_pkt_queue); 6566 skb_queue_head_init(&sd->process_queue); 6567 sd->completion_queue = NULL; 6568 INIT_LIST_HEAD(&sd->poll_list); 6569 sd->output_queue = NULL; 6570 sd->output_queue_tailp = &sd->output_queue; 6571 #ifdef CONFIG_RPS 6572 sd->csd.func = rps_trigger_softirq; 6573 sd->csd.info = sd; 6574 sd->csd.flags = 0; 6575 sd->cpu = i; 6576 #endif 6577 6578 sd->backlog.poll = process_backlog; 6579 sd->backlog.weight = weight_p; 6580 sd->backlog.gro_list = NULL; 6581 sd->backlog.gro_count = 0; 6582 } 6583 6584 dev_boot_phase = 0; 6585 6586 /* The loopback device is special if any other network devices 6587 * is present in a network namespace the loopback device must 6588 * be present. Since we now dynamically allocate and free the 6589 * loopback device ensure this invariant is maintained by 6590 * keeping the loopback device as the first device on the 6591 * list of network devices. Ensuring the loopback devices 6592 * is the first device that appears and the last network device 6593 * that disappears. 6594 */ 6595 if (register_pernet_device(&loopback_net_ops)) 6596 goto out; 6597 6598 if (register_pernet_device(&default_device_ops)) 6599 goto out; 6600 6601 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 6602 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 6603 6604 hotcpu_notifier(dev_cpu_callback, 0); 6605 dst_init(); 6606 dev_mcast_init(); 6607 rc = 0; 6608 out: 6609 return rc; 6610 } 6611 6612 subsys_initcall(net_dev_init); 6613 6614 static int __init initialize_hashrnd(void) 6615 { 6616 get_random_bytes(&hashrnd, sizeof(hashrnd)); 6617 return 0; 6618 } 6619 6620 late_initcall_sync(initialize_hashrnd); 6621 6622