1 /* 2 * NET3 Protocol independent device support routines. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Derived from the non IP parts of dev.c 1.0.19 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * 14 * Additional Authors: 15 * Florian la Roche <rzsfl@rz.uni-sb.de> 16 * Alan Cox <gw4pts@gw4pts.ampr.org> 17 * David Hinds <dahinds@users.sourceforge.net> 18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 19 * Adam Sulmicki <adam@cfar.umd.edu> 20 * Pekka Riikonen <priikone@poesidon.pspt.fi> 21 * 22 * Changes: 23 * D.J. Barrow : Fixed bug where dev->refcnt gets set 24 * to 2 if register_netdev gets called 25 * before net_dev_init & also removed a 26 * few lines of code in the process. 27 * Alan Cox : device private ioctl copies fields back. 28 * Alan Cox : Transmit queue code does relevant 29 * stunts to keep the queue safe. 30 * Alan Cox : Fixed double lock. 31 * Alan Cox : Fixed promisc NULL pointer trap 32 * ???????? : Support the full private ioctl range 33 * Alan Cox : Moved ioctl permission check into 34 * drivers 35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 36 * Alan Cox : 100 backlog just doesn't cut it when 37 * you start doing multicast video 8) 38 * Alan Cox : Rewrote net_bh and list manager. 39 * Alan Cox : Fix ETH_P_ALL echoback lengths. 40 * Alan Cox : Took out transmit every packet pass 41 * Saved a few bytes in the ioctl handler 42 * Alan Cox : Network driver sets packet type before 43 * calling netif_rx. Saves a function 44 * call a packet. 45 * Alan Cox : Hashed net_bh() 46 * Richard Kooijman: Timestamp fixes. 47 * Alan Cox : Wrong field in SIOCGIFDSTADDR 48 * Alan Cox : Device lock protection. 49 * Alan Cox : Fixed nasty side effect of device close 50 * changes. 51 * Rudi Cilibrasi : Pass the right thing to 52 * set_mac_address() 53 * Dave Miller : 32bit quantity for the device lock to 54 * make it work out on a Sparc. 55 * Bjorn Ekwall : Added KERNELD hack. 56 * Alan Cox : Cleaned up the backlog initialise. 57 * Craig Metz : SIOCGIFCONF fix if space for under 58 * 1 device. 59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 60 * is no device open function. 61 * Andi Kleen : Fix error reporting for SIOCGIFCONF 62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 63 * Cyrus Durgin : Cleaned for KMOD 64 * Adam Sulmicki : Bug Fix : Network Device Unload 65 * A network device unload needs to purge 66 * the backlog queue. 67 * Paul Rusty Russell : SIOCSIFNAME 68 * Pekka Riikonen : Netdev boot-time settings code 69 * Andrew Morton : Make unregister_netdevice wait 70 * indefinitely on dev->refcnt 71 * J Hadi Salim : - Backlog queue sampling 72 * - netif_rx() feedback 73 */ 74 75 #include <asm/uaccess.h> 76 #include <asm/system.h> 77 #include <linux/bitops.h> 78 #include <linux/capability.h> 79 #include <linux/cpu.h> 80 #include <linux/types.h> 81 #include <linux/kernel.h> 82 #include <linux/sched.h> 83 #include <linux/mutex.h> 84 #include <linux/string.h> 85 #include <linux/mm.h> 86 #include <linux/socket.h> 87 #include <linux/sockios.h> 88 #include <linux/errno.h> 89 #include <linux/interrupt.h> 90 #include <linux/if_ether.h> 91 #include <linux/netdevice.h> 92 #include <linux/etherdevice.h> 93 #include <linux/ethtool.h> 94 #include <linux/notifier.h> 95 #include <linux/skbuff.h> 96 #include <net/net_namespace.h> 97 #include <net/sock.h> 98 #include <linux/rtnetlink.h> 99 #include <linux/proc_fs.h> 100 #include <linux/seq_file.h> 101 #include <linux/stat.h> 102 #include <linux/if_bridge.h> 103 #include <linux/if_macvlan.h> 104 #include <net/dst.h> 105 #include <net/pkt_sched.h> 106 #include <net/checksum.h> 107 #include <linux/highmem.h> 108 #include <linux/init.h> 109 #include <linux/kmod.h> 110 #include <linux/module.h> 111 #include <linux/netpoll.h> 112 #include <linux/rcupdate.h> 113 #include <linux/delay.h> 114 #include <net/wext.h> 115 #include <net/iw_handler.h> 116 #include <asm/current.h> 117 #include <linux/audit.h> 118 #include <linux/dmaengine.h> 119 #include <linux/err.h> 120 #include <linux/ctype.h> 121 #include <linux/if_arp.h> 122 #include <linux/if_vlan.h> 123 #include <linux/ip.h> 124 #include <net/ip.h> 125 #include <linux/ipv6.h> 126 #include <linux/in.h> 127 #include <linux/jhash.h> 128 #include <linux/random.h> 129 130 #include "net-sysfs.h" 131 132 /* Instead of increasing this, you should create a hash table. */ 133 #define MAX_GRO_SKBS 8 134 135 /* This should be increased if a protocol with a bigger head is added. */ 136 #define GRO_MAX_HEAD (MAX_HEADER + 128) 137 138 /* 139 * The list of packet types we will receive (as opposed to discard) 140 * and the routines to invoke. 141 * 142 * Why 16. Because with 16 the only overlap we get on a hash of the 143 * low nibble of the protocol value is RARP/SNAP/X.25. 144 * 145 * NOTE: That is no longer true with the addition of VLAN tags. Not 146 * sure which should go first, but I bet it won't make much 147 * difference if we are running VLANs. The good news is that 148 * this protocol won't be in the list unless compiled in, so 149 * the average user (w/out VLANs) will not be adversely affected. 150 * --BLG 151 * 152 * 0800 IP 153 * 8100 802.1Q VLAN 154 * 0001 802.3 155 * 0002 AX.25 156 * 0004 802.2 157 * 8035 RARP 158 * 0005 SNAP 159 * 0805 X.25 160 * 0806 ARP 161 * 8137 IPX 162 * 0009 Localtalk 163 * 86DD IPv6 164 */ 165 166 #define PTYPE_HASH_SIZE (16) 167 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1) 168 169 static DEFINE_SPINLOCK(ptype_lock); 170 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 171 static struct list_head ptype_all __read_mostly; /* Taps */ 172 173 /* 174 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 175 * semaphore. 176 * 177 * Pure readers hold dev_base_lock for reading. 178 * 179 * Writers must hold the rtnl semaphore while they loop through the 180 * dev_base_head list, and hold dev_base_lock for writing when they do the 181 * actual updates. This allows pure readers to access the list even 182 * while a writer is preparing to update it. 183 * 184 * To put it another way, dev_base_lock is held for writing only to 185 * protect against pure readers; the rtnl semaphore provides the 186 * protection against other writers. 187 * 188 * See, for example usages, register_netdevice() and 189 * unregister_netdevice(), which must be called with the rtnl 190 * semaphore held. 191 */ 192 DEFINE_RWLOCK(dev_base_lock); 193 194 EXPORT_SYMBOL(dev_base_lock); 195 196 #define NETDEV_HASHBITS 8 197 #define NETDEV_HASHENTRIES (1 << NETDEV_HASHBITS) 198 199 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 200 { 201 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ)); 202 return &net->dev_name_head[hash & ((1 << NETDEV_HASHBITS) - 1)]; 203 } 204 205 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 206 { 207 return &net->dev_index_head[ifindex & ((1 << NETDEV_HASHBITS) - 1)]; 208 } 209 210 /* Device list insertion */ 211 static int list_netdevice(struct net_device *dev) 212 { 213 struct net *net = dev_net(dev); 214 215 ASSERT_RTNL(); 216 217 write_lock_bh(&dev_base_lock); 218 list_add_tail(&dev->dev_list, &net->dev_base_head); 219 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name)); 220 hlist_add_head(&dev->index_hlist, dev_index_hash(net, dev->ifindex)); 221 write_unlock_bh(&dev_base_lock); 222 return 0; 223 } 224 225 /* Device list removal */ 226 static void unlist_netdevice(struct net_device *dev) 227 { 228 ASSERT_RTNL(); 229 230 /* Unlink dev from the device chain */ 231 write_lock_bh(&dev_base_lock); 232 list_del(&dev->dev_list); 233 hlist_del(&dev->name_hlist); 234 hlist_del(&dev->index_hlist); 235 write_unlock_bh(&dev_base_lock); 236 } 237 238 /* 239 * Our notifier list 240 */ 241 242 static RAW_NOTIFIER_HEAD(netdev_chain); 243 244 /* 245 * Device drivers call our routines to queue packets here. We empty the 246 * queue in the local softnet handler. 247 */ 248 249 DEFINE_PER_CPU(struct softnet_data, softnet_data); 250 251 #ifdef CONFIG_LOCKDEP 252 /* 253 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 254 * according to dev->type 255 */ 256 static const unsigned short netdev_lock_type[] = 257 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 258 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 259 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 260 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 261 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 262 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 263 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 264 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 265 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 266 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 267 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 268 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 269 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211, 270 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, 271 ARPHRD_PHONET_PIPE, ARPHRD_VOID, ARPHRD_NONE}; 272 273 static const char *netdev_lock_name[] = 274 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 275 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 276 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 277 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 278 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 279 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 280 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 281 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 282 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 283 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 284 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 285 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 286 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211", 287 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", 288 "_xmit_PHONET_PIPE", "_xmit_VOID", "_xmit_NONE"}; 289 290 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 291 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 292 293 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 294 { 295 int i; 296 297 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 298 if (netdev_lock_type[i] == dev_type) 299 return i; 300 /* the last key is used by default */ 301 return ARRAY_SIZE(netdev_lock_type) - 1; 302 } 303 304 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 305 unsigned short dev_type) 306 { 307 int i; 308 309 i = netdev_lock_pos(dev_type); 310 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 311 netdev_lock_name[i]); 312 } 313 314 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 315 { 316 int i; 317 318 i = netdev_lock_pos(dev->type); 319 lockdep_set_class_and_name(&dev->addr_list_lock, 320 &netdev_addr_lock_key[i], 321 netdev_lock_name[i]); 322 } 323 #else 324 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 325 unsigned short dev_type) 326 { 327 } 328 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 329 { 330 } 331 #endif 332 333 /******************************************************************************* 334 335 Protocol management and registration routines 336 337 *******************************************************************************/ 338 339 /* 340 * Add a protocol ID to the list. Now that the input handler is 341 * smarter we can dispense with all the messy stuff that used to be 342 * here. 343 * 344 * BEWARE!!! Protocol handlers, mangling input packets, 345 * MUST BE last in hash buckets and checking protocol handlers 346 * MUST start from promiscuous ptype_all chain in net_bh. 347 * It is true now, do not change it. 348 * Explanation follows: if protocol handler, mangling packet, will 349 * be the first on list, it is not able to sense, that packet 350 * is cloned and should be copied-on-write, so that it will 351 * change it and subsequent readers will get broken packet. 352 * --ANK (980803) 353 */ 354 355 /** 356 * dev_add_pack - add packet handler 357 * @pt: packet type declaration 358 * 359 * Add a protocol handler to the networking stack. The passed &packet_type 360 * is linked into kernel lists and may not be freed until it has been 361 * removed from the kernel lists. 362 * 363 * This call does not sleep therefore it can not 364 * guarantee all CPU's that are in middle of receiving packets 365 * will see the new packet type (until the next received packet). 366 */ 367 368 void dev_add_pack(struct packet_type *pt) 369 { 370 int hash; 371 372 spin_lock_bh(&ptype_lock); 373 if (pt->type == htons(ETH_P_ALL)) 374 list_add_rcu(&pt->list, &ptype_all); 375 else { 376 hash = ntohs(pt->type) & PTYPE_HASH_MASK; 377 list_add_rcu(&pt->list, &ptype_base[hash]); 378 } 379 spin_unlock_bh(&ptype_lock); 380 } 381 382 /** 383 * __dev_remove_pack - remove packet handler 384 * @pt: packet type declaration 385 * 386 * Remove a protocol handler that was previously added to the kernel 387 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 388 * from the kernel lists and can be freed or reused once this function 389 * returns. 390 * 391 * The packet type might still be in use by receivers 392 * and must not be freed until after all the CPU's have gone 393 * through a quiescent state. 394 */ 395 void __dev_remove_pack(struct packet_type *pt) 396 { 397 struct list_head *head; 398 struct packet_type *pt1; 399 400 spin_lock_bh(&ptype_lock); 401 402 if (pt->type == htons(ETH_P_ALL)) 403 head = &ptype_all; 404 else 405 head = &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 406 407 list_for_each_entry(pt1, head, list) { 408 if (pt == pt1) { 409 list_del_rcu(&pt->list); 410 goto out; 411 } 412 } 413 414 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt); 415 out: 416 spin_unlock_bh(&ptype_lock); 417 } 418 /** 419 * dev_remove_pack - remove packet handler 420 * @pt: packet type declaration 421 * 422 * Remove a protocol handler that was previously added to the kernel 423 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 424 * from the kernel lists and can be freed or reused once this function 425 * returns. 426 * 427 * This call sleeps to guarantee that no CPU is looking at the packet 428 * type after return. 429 */ 430 void dev_remove_pack(struct packet_type *pt) 431 { 432 __dev_remove_pack(pt); 433 434 synchronize_net(); 435 } 436 437 /****************************************************************************** 438 439 Device Boot-time Settings Routines 440 441 *******************************************************************************/ 442 443 /* Boot time configuration table */ 444 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 445 446 /** 447 * netdev_boot_setup_add - add new setup entry 448 * @name: name of the device 449 * @map: configured settings for the device 450 * 451 * Adds new setup entry to the dev_boot_setup list. The function 452 * returns 0 on error and 1 on success. This is a generic routine to 453 * all netdevices. 454 */ 455 static int netdev_boot_setup_add(char *name, struct ifmap *map) 456 { 457 struct netdev_boot_setup *s; 458 int i; 459 460 s = dev_boot_setup; 461 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 462 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 463 memset(s[i].name, 0, sizeof(s[i].name)); 464 strlcpy(s[i].name, name, IFNAMSIZ); 465 memcpy(&s[i].map, map, sizeof(s[i].map)); 466 break; 467 } 468 } 469 470 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 471 } 472 473 /** 474 * netdev_boot_setup_check - check boot time settings 475 * @dev: the netdevice 476 * 477 * Check boot time settings for the device. 478 * The found settings are set for the device to be used 479 * later in the device probing. 480 * Returns 0 if no settings found, 1 if they are. 481 */ 482 int netdev_boot_setup_check(struct net_device *dev) 483 { 484 struct netdev_boot_setup *s = dev_boot_setup; 485 int i; 486 487 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 488 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 489 !strcmp(dev->name, s[i].name)) { 490 dev->irq = s[i].map.irq; 491 dev->base_addr = s[i].map.base_addr; 492 dev->mem_start = s[i].map.mem_start; 493 dev->mem_end = s[i].map.mem_end; 494 return 1; 495 } 496 } 497 return 0; 498 } 499 500 501 /** 502 * netdev_boot_base - get address from boot time settings 503 * @prefix: prefix for network device 504 * @unit: id for network device 505 * 506 * Check boot time settings for the base address of device. 507 * The found settings are set for the device to be used 508 * later in the device probing. 509 * Returns 0 if no settings found. 510 */ 511 unsigned long netdev_boot_base(const char *prefix, int unit) 512 { 513 const struct netdev_boot_setup *s = dev_boot_setup; 514 char name[IFNAMSIZ]; 515 int i; 516 517 sprintf(name, "%s%d", prefix, unit); 518 519 /* 520 * If device already registered then return base of 1 521 * to indicate not to probe for this interface 522 */ 523 if (__dev_get_by_name(&init_net, name)) 524 return 1; 525 526 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 527 if (!strcmp(name, s[i].name)) 528 return s[i].map.base_addr; 529 return 0; 530 } 531 532 /* 533 * Saves at boot time configured settings for any netdevice. 534 */ 535 int __init netdev_boot_setup(char *str) 536 { 537 int ints[5]; 538 struct ifmap map; 539 540 str = get_options(str, ARRAY_SIZE(ints), ints); 541 if (!str || !*str) 542 return 0; 543 544 /* Save settings */ 545 memset(&map, 0, sizeof(map)); 546 if (ints[0] > 0) 547 map.irq = ints[1]; 548 if (ints[0] > 1) 549 map.base_addr = ints[2]; 550 if (ints[0] > 2) 551 map.mem_start = ints[3]; 552 if (ints[0] > 3) 553 map.mem_end = ints[4]; 554 555 /* Add new entry to the list */ 556 return netdev_boot_setup_add(str, &map); 557 } 558 559 __setup("netdev=", netdev_boot_setup); 560 561 /******************************************************************************* 562 563 Device Interface Subroutines 564 565 *******************************************************************************/ 566 567 /** 568 * __dev_get_by_name - find a device by its name 569 * @net: the applicable net namespace 570 * @name: name to find 571 * 572 * Find an interface by name. Must be called under RTNL semaphore 573 * or @dev_base_lock. If the name is found a pointer to the device 574 * is returned. If the name is not found then %NULL is returned. The 575 * reference counters are not incremented so the caller must be 576 * careful with locks. 577 */ 578 579 struct net_device *__dev_get_by_name(struct net *net, const char *name) 580 { 581 struct hlist_node *p; 582 583 hlist_for_each(p, dev_name_hash(net, name)) { 584 struct net_device *dev 585 = hlist_entry(p, struct net_device, name_hlist); 586 if (!strncmp(dev->name, name, IFNAMSIZ)) 587 return dev; 588 } 589 return NULL; 590 } 591 592 /** 593 * dev_get_by_name - find a device by its name 594 * @net: the applicable net namespace 595 * @name: name to find 596 * 597 * Find an interface by name. This can be called from any 598 * context and does its own locking. The returned handle has 599 * the usage count incremented and the caller must use dev_put() to 600 * release it when it is no longer needed. %NULL is returned if no 601 * matching device is found. 602 */ 603 604 struct net_device *dev_get_by_name(struct net *net, const char *name) 605 { 606 struct net_device *dev; 607 608 read_lock(&dev_base_lock); 609 dev = __dev_get_by_name(net, name); 610 if (dev) 611 dev_hold(dev); 612 read_unlock(&dev_base_lock); 613 return dev; 614 } 615 616 /** 617 * __dev_get_by_index - find a device by its ifindex 618 * @net: the applicable net namespace 619 * @ifindex: index of device 620 * 621 * Search for an interface by index. Returns %NULL if the device 622 * is not found or a pointer to the device. The device has not 623 * had its reference counter increased so the caller must be careful 624 * about locking. The caller must hold either the RTNL semaphore 625 * or @dev_base_lock. 626 */ 627 628 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 629 { 630 struct hlist_node *p; 631 632 hlist_for_each(p, dev_index_hash(net, ifindex)) { 633 struct net_device *dev 634 = hlist_entry(p, struct net_device, index_hlist); 635 if (dev->ifindex == ifindex) 636 return dev; 637 } 638 return NULL; 639 } 640 641 642 /** 643 * dev_get_by_index - find a device by its ifindex 644 * @net: the applicable net namespace 645 * @ifindex: index of device 646 * 647 * Search for an interface by index. Returns NULL if the device 648 * is not found or a pointer to the device. The device returned has 649 * had a reference added and the pointer is safe until the user calls 650 * dev_put to indicate they have finished with it. 651 */ 652 653 struct net_device *dev_get_by_index(struct net *net, int ifindex) 654 { 655 struct net_device *dev; 656 657 read_lock(&dev_base_lock); 658 dev = __dev_get_by_index(net, ifindex); 659 if (dev) 660 dev_hold(dev); 661 read_unlock(&dev_base_lock); 662 return dev; 663 } 664 665 /** 666 * dev_getbyhwaddr - find a device by its hardware address 667 * @net: the applicable net namespace 668 * @type: media type of device 669 * @ha: hardware address 670 * 671 * Search for an interface by MAC address. Returns NULL if the device 672 * is not found or a pointer to the device. The caller must hold the 673 * rtnl semaphore. The returned device has not had its ref count increased 674 * and the caller must therefore be careful about locking 675 * 676 * BUGS: 677 * If the API was consistent this would be __dev_get_by_hwaddr 678 */ 679 680 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha) 681 { 682 struct net_device *dev; 683 684 ASSERT_RTNL(); 685 686 for_each_netdev(net, dev) 687 if (dev->type == type && 688 !memcmp(dev->dev_addr, ha, dev->addr_len)) 689 return dev; 690 691 return NULL; 692 } 693 694 EXPORT_SYMBOL(dev_getbyhwaddr); 695 696 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 697 { 698 struct net_device *dev; 699 700 ASSERT_RTNL(); 701 for_each_netdev(net, dev) 702 if (dev->type == type) 703 return dev; 704 705 return NULL; 706 } 707 708 EXPORT_SYMBOL(__dev_getfirstbyhwtype); 709 710 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 711 { 712 struct net_device *dev; 713 714 rtnl_lock(); 715 dev = __dev_getfirstbyhwtype(net, type); 716 if (dev) 717 dev_hold(dev); 718 rtnl_unlock(); 719 return dev; 720 } 721 722 EXPORT_SYMBOL(dev_getfirstbyhwtype); 723 724 /** 725 * dev_get_by_flags - find any device with given flags 726 * @net: the applicable net namespace 727 * @if_flags: IFF_* values 728 * @mask: bitmask of bits in if_flags to check 729 * 730 * Search for any interface with the given flags. Returns NULL if a device 731 * is not found or a pointer to the device. The device returned has 732 * had a reference added and the pointer is safe until the user calls 733 * dev_put to indicate they have finished with it. 734 */ 735 736 struct net_device * dev_get_by_flags(struct net *net, unsigned short if_flags, unsigned short mask) 737 { 738 struct net_device *dev, *ret; 739 740 ret = NULL; 741 read_lock(&dev_base_lock); 742 for_each_netdev(net, dev) { 743 if (((dev->flags ^ if_flags) & mask) == 0) { 744 dev_hold(dev); 745 ret = dev; 746 break; 747 } 748 } 749 read_unlock(&dev_base_lock); 750 return ret; 751 } 752 753 /** 754 * dev_valid_name - check if name is okay for network device 755 * @name: name string 756 * 757 * Network device names need to be valid file names to 758 * to allow sysfs to work. We also disallow any kind of 759 * whitespace. 760 */ 761 int dev_valid_name(const char *name) 762 { 763 if (*name == '\0') 764 return 0; 765 if (strlen(name) >= IFNAMSIZ) 766 return 0; 767 if (!strcmp(name, ".") || !strcmp(name, "..")) 768 return 0; 769 770 while (*name) { 771 if (*name == '/' || isspace(*name)) 772 return 0; 773 name++; 774 } 775 return 1; 776 } 777 778 /** 779 * __dev_alloc_name - allocate a name for a device 780 * @net: network namespace to allocate the device name in 781 * @name: name format string 782 * @buf: scratch buffer and result name string 783 * 784 * Passed a format string - eg "lt%d" it will try and find a suitable 785 * id. It scans list of devices to build up a free map, then chooses 786 * the first empty slot. The caller must hold the dev_base or rtnl lock 787 * while allocating the name and adding the device in order to avoid 788 * duplicates. 789 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 790 * Returns the number of the unit assigned or a negative errno code. 791 */ 792 793 static int __dev_alloc_name(struct net *net, const char *name, char *buf) 794 { 795 int i = 0; 796 const char *p; 797 const int max_netdevices = 8*PAGE_SIZE; 798 unsigned long *inuse; 799 struct net_device *d; 800 801 p = strnchr(name, IFNAMSIZ-1, '%'); 802 if (p) { 803 /* 804 * Verify the string as this thing may have come from 805 * the user. There must be either one "%d" and no other "%" 806 * characters. 807 */ 808 if (p[1] != 'd' || strchr(p + 2, '%')) 809 return -EINVAL; 810 811 /* Use one page as a bit array of possible slots */ 812 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 813 if (!inuse) 814 return -ENOMEM; 815 816 for_each_netdev(net, d) { 817 if (!sscanf(d->name, name, &i)) 818 continue; 819 if (i < 0 || i >= max_netdevices) 820 continue; 821 822 /* avoid cases where sscanf is not exact inverse of printf */ 823 snprintf(buf, IFNAMSIZ, name, i); 824 if (!strncmp(buf, d->name, IFNAMSIZ)) 825 set_bit(i, inuse); 826 } 827 828 i = find_first_zero_bit(inuse, max_netdevices); 829 free_page((unsigned long) inuse); 830 } 831 832 snprintf(buf, IFNAMSIZ, name, i); 833 if (!__dev_get_by_name(net, buf)) 834 return i; 835 836 /* It is possible to run out of possible slots 837 * when the name is long and there isn't enough space left 838 * for the digits, or if all bits are used. 839 */ 840 return -ENFILE; 841 } 842 843 /** 844 * dev_alloc_name - allocate a name for a device 845 * @dev: device 846 * @name: name format string 847 * 848 * Passed a format string - eg "lt%d" it will try and find a suitable 849 * id. It scans list of devices to build up a free map, then chooses 850 * the first empty slot. The caller must hold the dev_base or rtnl lock 851 * while allocating the name and adding the device in order to avoid 852 * duplicates. 853 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 854 * Returns the number of the unit assigned or a negative errno code. 855 */ 856 857 int dev_alloc_name(struct net_device *dev, const char *name) 858 { 859 char buf[IFNAMSIZ]; 860 struct net *net; 861 int ret; 862 863 BUG_ON(!dev_net(dev)); 864 net = dev_net(dev); 865 ret = __dev_alloc_name(net, name, buf); 866 if (ret >= 0) 867 strlcpy(dev->name, buf, IFNAMSIZ); 868 return ret; 869 } 870 871 872 /** 873 * dev_change_name - change name of a device 874 * @dev: device 875 * @newname: name (or format string) must be at least IFNAMSIZ 876 * 877 * Change name of a device, can pass format strings "eth%d". 878 * for wildcarding. 879 */ 880 int dev_change_name(struct net_device *dev, const char *newname) 881 { 882 char oldname[IFNAMSIZ]; 883 int err = 0; 884 int ret; 885 struct net *net; 886 887 ASSERT_RTNL(); 888 BUG_ON(!dev_net(dev)); 889 890 net = dev_net(dev); 891 if (dev->flags & IFF_UP) 892 return -EBUSY; 893 894 if (!dev_valid_name(newname)) 895 return -EINVAL; 896 897 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) 898 return 0; 899 900 memcpy(oldname, dev->name, IFNAMSIZ); 901 902 if (strchr(newname, '%')) { 903 err = dev_alloc_name(dev, newname); 904 if (err < 0) 905 return err; 906 } 907 else if (__dev_get_by_name(net, newname)) 908 return -EEXIST; 909 else 910 strlcpy(dev->name, newname, IFNAMSIZ); 911 912 rollback: 913 /* For now only devices in the initial network namespace 914 * are in sysfs. 915 */ 916 if (net == &init_net) { 917 ret = device_rename(&dev->dev, dev->name); 918 if (ret) { 919 memcpy(dev->name, oldname, IFNAMSIZ); 920 return ret; 921 } 922 } 923 924 write_lock_bh(&dev_base_lock); 925 hlist_del(&dev->name_hlist); 926 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name)); 927 write_unlock_bh(&dev_base_lock); 928 929 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 930 ret = notifier_to_errno(ret); 931 932 if (ret) { 933 if (err) { 934 printk(KERN_ERR 935 "%s: name change rollback failed: %d.\n", 936 dev->name, ret); 937 } else { 938 err = ret; 939 memcpy(dev->name, oldname, IFNAMSIZ); 940 goto rollback; 941 } 942 } 943 944 return err; 945 } 946 947 /** 948 * dev_set_alias - change ifalias of a device 949 * @dev: device 950 * @alias: name up to IFALIASZ 951 * @len: limit of bytes to copy from info 952 * 953 * Set ifalias for a device, 954 */ 955 int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 956 { 957 ASSERT_RTNL(); 958 959 if (len >= IFALIASZ) 960 return -EINVAL; 961 962 if (!len) { 963 if (dev->ifalias) { 964 kfree(dev->ifalias); 965 dev->ifalias = NULL; 966 } 967 return 0; 968 } 969 970 dev->ifalias = krealloc(dev->ifalias, len+1, GFP_KERNEL); 971 if (!dev->ifalias) 972 return -ENOMEM; 973 974 strlcpy(dev->ifalias, alias, len+1); 975 return len; 976 } 977 978 979 /** 980 * netdev_features_change - device changes features 981 * @dev: device to cause notification 982 * 983 * Called to indicate a device has changed features. 984 */ 985 void netdev_features_change(struct net_device *dev) 986 { 987 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 988 } 989 EXPORT_SYMBOL(netdev_features_change); 990 991 /** 992 * netdev_state_change - device changes state 993 * @dev: device to cause notification 994 * 995 * Called to indicate a device has changed state. This function calls 996 * the notifier chains for netdev_chain and sends a NEWLINK message 997 * to the routing socket. 998 */ 999 void netdev_state_change(struct net_device *dev) 1000 { 1001 if (dev->flags & IFF_UP) { 1002 call_netdevice_notifiers(NETDEV_CHANGE, dev); 1003 rtmsg_ifinfo(RTM_NEWLINK, dev, 0); 1004 } 1005 } 1006 1007 void netdev_bonding_change(struct net_device *dev) 1008 { 1009 call_netdevice_notifiers(NETDEV_BONDING_FAILOVER, dev); 1010 } 1011 EXPORT_SYMBOL(netdev_bonding_change); 1012 1013 /** 1014 * dev_load - load a network module 1015 * @net: the applicable net namespace 1016 * @name: name of interface 1017 * 1018 * If a network interface is not present and the process has suitable 1019 * privileges this function loads the module. If module loading is not 1020 * available in this kernel then it becomes a nop. 1021 */ 1022 1023 void dev_load(struct net *net, const char *name) 1024 { 1025 struct net_device *dev; 1026 1027 read_lock(&dev_base_lock); 1028 dev = __dev_get_by_name(net, name); 1029 read_unlock(&dev_base_lock); 1030 1031 if (!dev && capable(CAP_SYS_MODULE)) 1032 request_module("%s", name); 1033 } 1034 1035 /** 1036 * dev_open - prepare an interface for use. 1037 * @dev: device to open 1038 * 1039 * Takes a device from down to up state. The device's private open 1040 * function is invoked and then the multicast lists are loaded. Finally 1041 * the device is moved into the up state and a %NETDEV_UP message is 1042 * sent to the netdev notifier chain. 1043 * 1044 * Calling this function on an active interface is a nop. On a failure 1045 * a negative errno code is returned. 1046 */ 1047 int dev_open(struct net_device *dev) 1048 { 1049 const struct net_device_ops *ops = dev->netdev_ops; 1050 int ret = 0; 1051 1052 ASSERT_RTNL(); 1053 1054 /* 1055 * Is it already up? 1056 */ 1057 1058 if (dev->flags & IFF_UP) 1059 return 0; 1060 1061 /* 1062 * Is it even present? 1063 */ 1064 if (!netif_device_present(dev)) 1065 return -ENODEV; 1066 1067 /* 1068 * Call device private open method 1069 */ 1070 set_bit(__LINK_STATE_START, &dev->state); 1071 1072 if (ops->ndo_validate_addr) 1073 ret = ops->ndo_validate_addr(dev); 1074 1075 if (!ret && ops->ndo_open) 1076 ret = ops->ndo_open(dev); 1077 1078 /* 1079 * If it went open OK then: 1080 */ 1081 1082 if (ret) 1083 clear_bit(__LINK_STATE_START, &dev->state); 1084 else { 1085 /* 1086 * Set the flags. 1087 */ 1088 dev->flags |= IFF_UP; 1089 1090 /* 1091 * Enable NET_DMA 1092 */ 1093 net_dmaengine_get(); 1094 1095 /* 1096 * Initialize multicasting status 1097 */ 1098 dev_set_rx_mode(dev); 1099 1100 /* 1101 * Wakeup transmit queue engine 1102 */ 1103 dev_activate(dev); 1104 1105 /* 1106 * ... and announce new interface. 1107 */ 1108 call_netdevice_notifiers(NETDEV_UP, dev); 1109 } 1110 1111 return ret; 1112 } 1113 1114 /** 1115 * dev_close - shutdown an interface. 1116 * @dev: device to shutdown 1117 * 1118 * This function moves an active device into down state. A 1119 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1120 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1121 * chain. 1122 */ 1123 int dev_close(struct net_device *dev) 1124 { 1125 const struct net_device_ops *ops = dev->netdev_ops; 1126 ASSERT_RTNL(); 1127 1128 might_sleep(); 1129 1130 if (!(dev->flags & IFF_UP)) 1131 return 0; 1132 1133 /* 1134 * Tell people we are going down, so that they can 1135 * prepare to death, when device is still operating. 1136 */ 1137 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1138 1139 clear_bit(__LINK_STATE_START, &dev->state); 1140 1141 /* Synchronize to scheduled poll. We cannot touch poll list, 1142 * it can be even on different cpu. So just clear netif_running(). 1143 * 1144 * dev->stop() will invoke napi_disable() on all of it's 1145 * napi_struct instances on this device. 1146 */ 1147 smp_mb__after_clear_bit(); /* Commit netif_running(). */ 1148 1149 dev_deactivate(dev); 1150 1151 /* 1152 * Call the device specific close. This cannot fail. 1153 * Only if device is UP 1154 * 1155 * We allow it to be called even after a DETACH hot-plug 1156 * event. 1157 */ 1158 if (ops->ndo_stop) 1159 ops->ndo_stop(dev); 1160 1161 /* 1162 * Device is now down. 1163 */ 1164 1165 dev->flags &= ~IFF_UP; 1166 1167 /* 1168 * Tell people we are down 1169 */ 1170 call_netdevice_notifiers(NETDEV_DOWN, dev); 1171 1172 /* 1173 * Shutdown NET_DMA 1174 */ 1175 net_dmaengine_put(); 1176 1177 return 0; 1178 } 1179 1180 1181 /** 1182 * dev_disable_lro - disable Large Receive Offload on a device 1183 * @dev: device 1184 * 1185 * Disable Large Receive Offload (LRO) on a net device. Must be 1186 * called under RTNL. This is needed if received packets may be 1187 * forwarded to another interface. 1188 */ 1189 void dev_disable_lro(struct net_device *dev) 1190 { 1191 if (dev->ethtool_ops && dev->ethtool_ops->get_flags && 1192 dev->ethtool_ops->set_flags) { 1193 u32 flags = dev->ethtool_ops->get_flags(dev); 1194 if (flags & ETH_FLAG_LRO) { 1195 flags &= ~ETH_FLAG_LRO; 1196 dev->ethtool_ops->set_flags(dev, flags); 1197 } 1198 } 1199 WARN_ON(dev->features & NETIF_F_LRO); 1200 } 1201 EXPORT_SYMBOL(dev_disable_lro); 1202 1203 1204 static int dev_boot_phase = 1; 1205 1206 /* 1207 * Device change register/unregister. These are not inline or static 1208 * as we export them to the world. 1209 */ 1210 1211 /** 1212 * register_netdevice_notifier - register a network notifier block 1213 * @nb: notifier 1214 * 1215 * Register a notifier to be called when network device events occur. 1216 * The notifier passed is linked into the kernel structures and must 1217 * not be reused until it has been unregistered. A negative errno code 1218 * is returned on a failure. 1219 * 1220 * When registered all registration and up events are replayed 1221 * to the new notifier to allow device to have a race free 1222 * view of the network device list. 1223 */ 1224 1225 int register_netdevice_notifier(struct notifier_block *nb) 1226 { 1227 struct net_device *dev; 1228 struct net_device *last; 1229 struct net *net; 1230 int err; 1231 1232 rtnl_lock(); 1233 err = raw_notifier_chain_register(&netdev_chain, nb); 1234 if (err) 1235 goto unlock; 1236 if (dev_boot_phase) 1237 goto unlock; 1238 for_each_net(net) { 1239 for_each_netdev(net, dev) { 1240 err = nb->notifier_call(nb, NETDEV_REGISTER, dev); 1241 err = notifier_to_errno(err); 1242 if (err) 1243 goto rollback; 1244 1245 if (!(dev->flags & IFF_UP)) 1246 continue; 1247 1248 nb->notifier_call(nb, NETDEV_UP, dev); 1249 } 1250 } 1251 1252 unlock: 1253 rtnl_unlock(); 1254 return err; 1255 1256 rollback: 1257 last = dev; 1258 for_each_net(net) { 1259 for_each_netdev(net, dev) { 1260 if (dev == last) 1261 break; 1262 1263 if (dev->flags & IFF_UP) { 1264 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev); 1265 nb->notifier_call(nb, NETDEV_DOWN, dev); 1266 } 1267 nb->notifier_call(nb, NETDEV_UNREGISTER, dev); 1268 } 1269 } 1270 1271 raw_notifier_chain_unregister(&netdev_chain, nb); 1272 goto unlock; 1273 } 1274 1275 /** 1276 * unregister_netdevice_notifier - unregister a network notifier block 1277 * @nb: notifier 1278 * 1279 * Unregister a notifier previously registered by 1280 * register_netdevice_notifier(). The notifier is unlinked into the 1281 * kernel structures and may then be reused. A negative errno code 1282 * is returned on a failure. 1283 */ 1284 1285 int unregister_netdevice_notifier(struct notifier_block *nb) 1286 { 1287 int err; 1288 1289 rtnl_lock(); 1290 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1291 rtnl_unlock(); 1292 return err; 1293 } 1294 1295 /** 1296 * call_netdevice_notifiers - call all network notifier blocks 1297 * @val: value passed unmodified to notifier function 1298 * @dev: net_device pointer passed unmodified to notifier function 1299 * 1300 * Call all network notifier blocks. Parameters and return value 1301 * are as for raw_notifier_call_chain(). 1302 */ 1303 1304 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 1305 { 1306 return raw_notifier_call_chain(&netdev_chain, val, dev); 1307 } 1308 1309 /* When > 0 there are consumers of rx skb time stamps */ 1310 static atomic_t netstamp_needed = ATOMIC_INIT(0); 1311 1312 void net_enable_timestamp(void) 1313 { 1314 atomic_inc(&netstamp_needed); 1315 } 1316 1317 void net_disable_timestamp(void) 1318 { 1319 atomic_dec(&netstamp_needed); 1320 } 1321 1322 static inline void net_timestamp(struct sk_buff *skb) 1323 { 1324 if (atomic_read(&netstamp_needed)) 1325 __net_timestamp(skb); 1326 else 1327 skb->tstamp.tv64 = 0; 1328 } 1329 1330 /* 1331 * Support routine. Sends outgoing frames to any network 1332 * taps currently in use. 1333 */ 1334 1335 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 1336 { 1337 struct packet_type *ptype; 1338 1339 net_timestamp(skb); 1340 1341 rcu_read_lock(); 1342 list_for_each_entry_rcu(ptype, &ptype_all, list) { 1343 /* Never send packets back to the socket 1344 * they originated from - MvS (miquels@drinkel.ow.org) 1345 */ 1346 if ((ptype->dev == dev || !ptype->dev) && 1347 (ptype->af_packet_priv == NULL || 1348 (struct sock *)ptype->af_packet_priv != skb->sk)) { 1349 struct sk_buff *skb2= skb_clone(skb, GFP_ATOMIC); 1350 if (!skb2) 1351 break; 1352 1353 /* skb->nh should be correctly 1354 set by sender, so that the second statement is 1355 just protection against buggy protocols. 1356 */ 1357 skb_reset_mac_header(skb2); 1358 1359 if (skb_network_header(skb2) < skb2->data || 1360 skb2->network_header > skb2->tail) { 1361 if (net_ratelimit()) 1362 printk(KERN_CRIT "protocol %04x is " 1363 "buggy, dev %s\n", 1364 skb2->protocol, dev->name); 1365 skb_reset_network_header(skb2); 1366 } 1367 1368 skb2->transport_header = skb2->network_header; 1369 skb2->pkt_type = PACKET_OUTGOING; 1370 ptype->func(skb2, skb->dev, ptype, skb->dev); 1371 } 1372 } 1373 rcu_read_unlock(); 1374 } 1375 1376 1377 static inline void __netif_reschedule(struct Qdisc *q) 1378 { 1379 struct softnet_data *sd; 1380 unsigned long flags; 1381 1382 local_irq_save(flags); 1383 sd = &__get_cpu_var(softnet_data); 1384 q->next_sched = sd->output_queue; 1385 sd->output_queue = q; 1386 raise_softirq_irqoff(NET_TX_SOFTIRQ); 1387 local_irq_restore(flags); 1388 } 1389 1390 void __netif_schedule(struct Qdisc *q) 1391 { 1392 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 1393 __netif_reschedule(q); 1394 } 1395 EXPORT_SYMBOL(__netif_schedule); 1396 1397 void dev_kfree_skb_irq(struct sk_buff *skb) 1398 { 1399 if (atomic_dec_and_test(&skb->users)) { 1400 struct softnet_data *sd; 1401 unsigned long flags; 1402 1403 local_irq_save(flags); 1404 sd = &__get_cpu_var(softnet_data); 1405 skb->next = sd->completion_queue; 1406 sd->completion_queue = skb; 1407 raise_softirq_irqoff(NET_TX_SOFTIRQ); 1408 local_irq_restore(flags); 1409 } 1410 } 1411 EXPORT_SYMBOL(dev_kfree_skb_irq); 1412 1413 void dev_kfree_skb_any(struct sk_buff *skb) 1414 { 1415 if (in_irq() || irqs_disabled()) 1416 dev_kfree_skb_irq(skb); 1417 else 1418 dev_kfree_skb(skb); 1419 } 1420 EXPORT_SYMBOL(dev_kfree_skb_any); 1421 1422 1423 /** 1424 * netif_device_detach - mark device as removed 1425 * @dev: network device 1426 * 1427 * Mark device as removed from system and therefore no longer available. 1428 */ 1429 void netif_device_detach(struct net_device *dev) 1430 { 1431 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 1432 netif_running(dev)) { 1433 netif_stop_queue(dev); 1434 } 1435 } 1436 EXPORT_SYMBOL(netif_device_detach); 1437 1438 /** 1439 * netif_device_attach - mark device as attached 1440 * @dev: network device 1441 * 1442 * Mark device as attached from system and restart if needed. 1443 */ 1444 void netif_device_attach(struct net_device *dev) 1445 { 1446 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 1447 netif_running(dev)) { 1448 netif_wake_queue(dev); 1449 __netdev_watchdog_up(dev); 1450 } 1451 } 1452 EXPORT_SYMBOL(netif_device_attach); 1453 1454 static bool can_checksum_protocol(unsigned long features, __be16 protocol) 1455 { 1456 return ((features & NETIF_F_GEN_CSUM) || 1457 ((features & NETIF_F_IP_CSUM) && 1458 protocol == htons(ETH_P_IP)) || 1459 ((features & NETIF_F_IPV6_CSUM) && 1460 protocol == htons(ETH_P_IPV6))); 1461 } 1462 1463 static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb) 1464 { 1465 if (can_checksum_protocol(dev->features, skb->protocol)) 1466 return true; 1467 1468 if (skb->protocol == htons(ETH_P_8021Q)) { 1469 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data; 1470 if (can_checksum_protocol(dev->features & dev->vlan_features, 1471 veh->h_vlan_encapsulated_proto)) 1472 return true; 1473 } 1474 1475 return false; 1476 } 1477 1478 /* 1479 * Invalidate hardware checksum when packet is to be mangled, and 1480 * complete checksum manually on outgoing path. 1481 */ 1482 int skb_checksum_help(struct sk_buff *skb) 1483 { 1484 __wsum csum; 1485 int ret = 0, offset; 1486 1487 if (skb->ip_summed == CHECKSUM_COMPLETE) 1488 goto out_set_summed; 1489 1490 if (unlikely(skb_shinfo(skb)->gso_size)) { 1491 /* Let GSO fix up the checksum. */ 1492 goto out_set_summed; 1493 } 1494 1495 offset = skb->csum_start - skb_headroom(skb); 1496 BUG_ON(offset >= skb_headlen(skb)); 1497 csum = skb_checksum(skb, offset, skb->len - offset, 0); 1498 1499 offset += skb->csum_offset; 1500 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 1501 1502 if (skb_cloned(skb) && 1503 !skb_clone_writable(skb, offset + sizeof(__sum16))) { 1504 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 1505 if (ret) 1506 goto out; 1507 } 1508 1509 *(__sum16 *)(skb->data + offset) = csum_fold(csum); 1510 out_set_summed: 1511 skb->ip_summed = CHECKSUM_NONE; 1512 out: 1513 return ret; 1514 } 1515 1516 /** 1517 * skb_gso_segment - Perform segmentation on skb. 1518 * @skb: buffer to segment 1519 * @features: features for the output path (see dev->features) 1520 * 1521 * This function segments the given skb and returns a list of segments. 1522 * 1523 * It may return NULL if the skb requires no segmentation. This is 1524 * only possible when GSO is used for verifying header integrity. 1525 */ 1526 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features) 1527 { 1528 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 1529 struct packet_type *ptype; 1530 __be16 type = skb->protocol; 1531 int err; 1532 1533 skb_reset_mac_header(skb); 1534 skb->mac_len = skb->network_header - skb->mac_header; 1535 __skb_pull(skb, skb->mac_len); 1536 1537 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) { 1538 struct net_device *dev = skb->dev; 1539 struct ethtool_drvinfo info = {}; 1540 1541 if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo) 1542 dev->ethtool_ops->get_drvinfo(dev, &info); 1543 1544 WARN(1, "%s: caps=(0x%lx, 0x%lx) len=%d data_len=%d " 1545 "ip_summed=%d", 1546 info.driver, dev ? dev->features : 0L, 1547 skb->sk ? skb->sk->sk_route_caps : 0L, 1548 skb->len, skb->data_len, skb->ip_summed); 1549 1550 if (skb_header_cloned(skb) && 1551 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))) 1552 return ERR_PTR(err); 1553 } 1554 1555 rcu_read_lock(); 1556 list_for_each_entry_rcu(ptype, 1557 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) { 1558 if (ptype->type == type && !ptype->dev && ptype->gso_segment) { 1559 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) { 1560 err = ptype->gso_send_check(skb); 1561 segs = ERR_PTR(err); 1562 if (err || skb_gso_ok(skb, features)) 1563 break; 1564 __skb_push(skb, (skb->data - 1565 skb_network_header(skb))); 1566 } 1567 segs = ptype->gso_segment(skb, features); 1568 break; 1569 } 1570 } 1571 rcu_read_unlock(); 1572 1573 __skb_push(skb, skb->data - skb_mac_header(skb)); 1574 1575 return segs; 1576 } 1577 1578 EXPORT_SYMBOL(skb_gso_segment); 1579 1580 /* Take action when hardware reception checksum errors are detected. */ 1581 #ifdef CONFIG_BUG 1582 void netdev_rx_csum_fault(struct net_device *dev) 1583 { 1584 if (net_ratelimit()) { 1585 printk(KERN_ERR "%s: hw csum failure.\n", 1586 dev ? dev->name : "<unknown>"); 1587 dump_stack(); 1588 } 1589 } 1590 EXPORT_SYMBOL(netdev_rx_csum_fault); 1591 #endif 1592 1593 /* Actually, we should eliminate this check as soon as we know, that: 1594 * 1. IOMMU is present and allows to map all the memory. 1595 * 2. No high memory really exists on this machine. 1596 */ 1597 1598 static inline int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 1599 { 1600 #ifdef CONFIG_HIGHMEM 1601 int i; 1602 1603 if (dev->features & NETIF_F_HIGHDMA) 1604 return 0; 1605 1606 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1607 if (PageHighMem(skb_shinfo(skb)->frags[i].page)) 1608 return 1; 1609 1610 #endif 1611 return 0; 1612 } 1613 1614 struct dev_gso_cb { 1615 void (*destructor)(struct sk_buff *skb); 1616 }; 1617 1618 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb) 1619 1620 static void dev_gso_skb_destructor(struct sk_buff *skb) 1621 { 1622 struct dev_gso_cb *cb; 1623 1624 do { 1625 struct sk_buff *nskb = skb->next; 1626 1627 skb->next = nskb->next; 1628 nskb->next = NULL; 1629 kfree_skb(nskb); 1630 } while (skb->next); 1631 1632 cb = DEV_GSO_CB(skb); 1633 if (cb->destructor) 1634 cb->destructor(skb); 1635 } 1636 1637 /** 1638 * dev_gso_segment - Perform emulated hardware segmentation on skb. 1639 * @skb: buffer to segment 1640 * 1641 * This function segments the given skb and stores the list of segments 1642 * in skb->next. 1643 */ 1644 static int dev_gso_segment(struct sk_buff *skb) 1645 { 1646 struct net_device *dev = skb->dev; 1647 struct sk_buff *segs; 1648 int features = dev->features & ~(illegal_highdma(dev, skb) ? 1649 NETIF_F_SG : 0); 1650 1651 segs = skb_gso_segment(skb, features); 1652 1653 /* Verifying header integrity only. */ 1654 if (!segs) 1655 return 0; 1656 1657 if (IS_ERR(segs)) 1658 return PTR_ERR(segs); 1659 1660 skb->next = segs; 1661 DEV_GSO_CB(skb)->destructor = skb->destructor; 1662 skb->destructor = dev_gso_skb_destructor; 1663 1664 return 0; 1665 } 1666 1667 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 1668 struct netdev_queue *txq) 1669 { 1670 const struct net_device_ops *ops = dev->netdev_ops; 1671 1672 prefetch(&dev->netdev_ops->ndo_start_xmit); 1673 if (likely(!skb->next)) { 1674 if (!list_empty(&ptype_all)) 1675 dev_queue_xmit_nit(skb, dev); 1676 1677 if (netif_needs_gso(dev, skb)) { 1678 if (unlikely(dev_gso_segment(skb))) 1679 goto out_kfree_skb; 1680 if (skb->next) 1681 goto gso; 1682 } 1683 1684 return ops->ndo_start_xmit(skb, dev); 1685 } 1686 1687 gso: 1688 do { 1689 struct sk_buff *nskb = skb->next; 1690 int rc; 1691 1692 skb->next = nskb->next; 1693 nskb->next = NULL; 1694 rc = ops->ndo_start_xmit(nskb, dev); 1695 if (unlikely(rc)) { 1696 nskb->next = skb->next; 1697 skb->next = nskb; 1698 return rc; 1699 } 1700 if (unlikely(netif_tx_queue_stopped(txq) && skb->next)) 1701 return NETDEV_TX_BUSY; 1702 } while (skb->next); 1703 1704 skb->destructor = DEV_GSO_CB(skb)->destructor; 1705 1706 out_kfree_skb: 1707 kfree_skb(skb); 1708 return 0; 1709 } 1710 1711 static u32 simple_tx_hashrnd; 1712 static int simple_tx_hashrnd_initialized = 0; 1713 1714 static u16 simple_tx_hash(struct net_device *dev, struct sk_buff *skb) 1715 { 1716 u32 addr1, addr2, ports; 1717 u32 hash, ihl; 1718 u8 ip_proto = 0; 1719 1720 if (unlikely(!simple_tx_hashrnd_initialized)) { 1721 get_random_bytes(&simple_tx_hashrnd, 4); 1722 simple_tx_hashrnd_initialized = 1; 1723 } 1724 1725 switch (skb->protocol) { 1726 case htons(ETH_P_IP): 1727 if (!(ip_hdr(skb)->frag_off & htons(IP_MF | IP_OFFSET))) 1728 ip_proto = ip_hdr(skb)->protocol; 1729 addr1 = ip_hdr(skb)->saddr; 1730 addr2 = ip_hdr(skb)->daddr; 1731 ihl = ip_hdr(skb)->ihl; 1732 break; 1733 case htons(ETH_P_IPV6): 1734 ip_proto = ipv6_hdr(skb)->nexthdr; 1735 addr1 = ipv6_hdr(skb)->saddr.s6_addr32[3]; 1736 addr2 = ipv6_hdr(skb)->daddr.s6_addr32[3]; 1737 ihl = (40 >> 2); 1738 break; 1739 default: 1740 return 0; 1741 } 1742 1743 1744 switch (ip_proto) { 1745 case IPPROTO_TCP: 1746 case IPPROTO_UDP: 1747 case IPPROTO_DCCP: 1748 case IPPROTO_ESP: 1749 case IPPROTO_AH: 1750 case IPPROTO_SCTP: 1751 case IPPROTO_UDPLITE: 1752 ports = *((u32 *) (skb_network_header(skb) + (ihl * 4))); 1753 break; 1754 1755 default: 1756 ports = 0; 1757 break; 1758 } 1759 1760 hash = jhash_3words(addr1, addr2, ports, simple_tx_hashrnd); 1761 1762 return (u16) (((u64) hash * dev->real_num_tx_queues) >> 32); 1763 } 1764 1765 static struct netdev_queue *dev_pick_tx(struct net_device *dev, 1766 struct sk_buff *skb) 1767 { 1768 const struct net_device_ops *ops = dev->netdev_ops; 1769 u16 queue_index = 0; 1770 1771 if (ops->ndo_select_queue) 1772 queue_index = ops->ndo_select_queue(dev, skb); 1773 else if (dev->real_num_tx_queues > 1) 1774 queue_index = simple_tx_hash(dev, skb); 1775 1776 skb_set_queue_mapping(skb, queue_index); 1777 return netdev_get_tx_queue(dev, queue_index); 1778 } 1779 1780 /** 1781 * dev_queue_xmit - transmit a buffer 1782 * @skb: buffer to transmit 1783 * 1784 * Queue a buffer for transmission to a network device. The caller must 1785 * have set the device and priority and built the buffer before calling 1786 * this function. The function can be called from an interrupt. 1787 * 1788 * A negative errno code is returned on a failure. A success does not 1789 * guarantee the frame will be transmitted as it may be dropped due 1790 * to congestion or traffic shaping. 1791 * 1792 * ----------------------------------------------------------------------------------- 1793 * I notice this method can also return errors from the queue disciplines, 1794 * including NET_XMIT_DROP, which is a positive value. So, errors can also 1795 * be positive. 1796 * 1797 * Regardless of the return value, the skb is consumed, so it is currently 1798 * difficult to retry a send to this method. (You can bump the ref count 1799 * before sending to hold a reference for retry if you are careful.) 1800 * 1801 * When calling this method, interrupts MUST be enabled. This is because 1802 * the BH enable code must have IRQs enabled so that it will not deadlock. 1803 * --BLG 1804 */ 1805 int dev_queue_xmit(struct sk_buff *skb) 1806 { 1807 struct net_device *dev = skb->dev; 1808 struct netdev_queue *txq; 1809 struct Qdisc *q; 1810 int rc = -ENOMEM; 1811 1812 /* GSO will handle the following emulations directly. */ 1813 if (netif_needs_gso(dev, skb)) 1814 goto gso; 1815 1816 if (skb_shinfo(skb)->frag_list && 1817 !(dev->features & NETIF_F_FRAGLIST) && 1818 __skb_linearize(skb)) 1819 goto out_kfree_skb; 1820 1821 /* Fragmented skb is linearized if device does not support SG, 1822 * or if at least one of fragments is in highmem and device 1823 * does not support DMA from it. 1824 */ 1825 if (skb_shinfo(skb)->nr_frags && 1826 (!(dev->features & NETIF_F_SG) || illegal_highdma(dev, skb)) && 1827 __skb_linearize(skb)) 1828 goto out_kfree_skb; 1829 1830 /* If packet is not checksummed and device does not support 1831 * checksumming for this protocol, complete checksumming here. 1832 */ 1833 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1834 skb_set_transport_header(skb, skb->csum_start - 1835 skb_headroom(skb)); 1836 if (!dev_can_checksum(dev, skb) && skb_checksum_help(skb)) 1837 goto out_kfree_skb; 1838 } 1839 1840 gso: 1841 /* Disable soft irqs for various locks below. Also 1842 * stops preemption for RCU. 1843 */ 1844 rcu_read_lock_bh(); 1845 1846 txq = dev_pick_tx(dev, skb); 1847 q = rcu_dereference(txq->qdisc); 1848 1849 #ifdef CONFIG_NET_CLS_ACT 1850 skb->tc_verd = SET_TC_AT(skb->tc_verd,AT_EGRESS); 1851 #endif 1852 if (q->enqueue) { 1853 spinlock_t *root_lock = qdisc_lock(q); 1854 1855 spin_lock(root_lock); 1856 1857 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 1858 kfree_skb(skb); 1859 rc = NET_XMIT_DROP; 1860 } else { 1861 rc = qdisc_enqueue_root(skb, q); 1862 qdisc_run(q); 1863 } 1864 spin_unlock(root_lock); 1865 1866 goto out; 1867 } 1868 1869 /* The device has no queue. Common case for software devices: 1870 loopback, all the sorts of tunnels... 1871 1872 Really, it is unlikely that netif_tx_lock protection is necessary 1873 here. (f.e. loopback and IP tunnels are clean ignoring statistics 1874 counters.) 1875 However, it is possible, that they rely on protection 1876 made by us here. 1877 1878 Check this and shot the lock. It is not prone from deadlocks. 1879 Either shot noqueue qdisc, it is even simpler 8) 1880 */ 1881 if (dev->flags & IFF_UP) { 1882 int cpu = smp_processor_id(); /* ok because BHs are off */ 1883 1884 if (txq->xmit_lock_owner != cpu) { 1885 1886 HARD_TX_LOCK(dev, txq, cpu); 1887 1888 if (!netif_tx_queue_stopped(txq)) { 1889 rc = 0; 1890 if (!dev_hard_start_xmit(skb, dev, txq)) { 1891 HARD_TX_UNLOCK(dev, txq); 1892 goto out; 1893 } 1894 } 1895 HARD_TX_UNLOCK(dev, txq); 1896 if (net_ratelimit()) 1897 printk(KERN_CRIT "Virtual device %s asks to " 1898 "queue packet!\n", dev->name); 1899 } else { 1900 /* Recursion is detected! It is possible, 1901 * unfortunately */ 1902 if (net_ratelimit()) 1903 printk(KERN_CRIT "Dead loop on virtual device " 1904 "%s, fix it urgently!\n", dev->name); 1905 } 1906 } 1907 1908 rc = -ENETDOWN; 1909 rcu_read_unlock_bh(); 1910 1911 out_kfree_skb: 1912 kfree_skb(skb); 1913 return rc; 1914 out: 1915 rcu_read_unlock_bh(); 1916 return rc; 1917 } 1918 1919 1920 /*======================================================================= 1921 Receiver routines 1922 =======================================================================*/ 1923 1924 int netdev_max_backlog __read_mostly = 1000; 1925 int netdev_budget __read_mostly = 300; 1926 int weight_p __read_mostly = 64; /* old backlog weight */ 1927 1928 DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, }; 1929 1930 1931 /** 1932 * netif_rx - post buffer to the network code 1933 * @skb: buffer to post 1934 * 1935 * This function receives a packet from a device driver and queues it for 1936 * the upper (protocol) levels to process. It always succeeds. The buffer 1937 * may be dropped during processing for congestion control or by the 1938 * protocol layers. 1939 * 1940 * return values: 1941 * NET_RX_SUCCESS (no congestion) 1942 * NET_RX_DROP (packet was dropped) 1943 * 1944 */ 1945 1946 int netif_rx(struct sk_buff *skb) 1947 { 1948 struct softnet_data *queue; 1949 unsigned long flags; 1950 1951 /* if netpoll wants it, pretend we never saw it */ 1952 if (netpoll_rx(skb)) 1953 return NET_RX_DROP; 1954 1955 if (!skb->tstamp.tv64) 1956 net_timestamp(skb); 1957 1958 /* 1959 * The code is rearranged so that the path is the most 1960 * short when CPU is congested, but is still operating. 1961 */ 1962 local_irq_save(flags); 1963 queue = &__get_cpu_var(softnet_data); 1964 1965 __get_cpu_var(netdev_rx_stat).total++; 1966 if (queue->input_pkt_queue.qlen <= netdev_max_backlog) { 1967 if (queue->input_pkt_queue.qlen) { 1968 enqueue: 1969 __skb_queue_tail(&queue->input_pkt_queue, skb); 1970 local_irq_restore(flags); 1971 return NET_RX_SUCCESS; 1972 } 1973 1974 napi_schedule(&queue->backlog); 1975 goto enqueue; 1976 } 1977 1978 __get_cpu_var(netdev_rx_stat).dropped++; 1979 local_irq_restore(flags); 1980 1981 kfree_skb(skb); 1982 return NET_RX_DROP; 1983 } 1984 1985 int netif_rx_ni(struct sk_buff *skb) 1986 { 1987 int err; 1988 1989 preempt_disable(); 1990 err = netif_rx(skb); 1991 if (local_softirq_pending()) 1992 do_softirq(); 1993 preempt_enable(); 1994 1995 return err; 1996 } 1997 1998 EXPORT_SYMBOL(netif_rx_ni); 1999 2000 static void net_tx_action(struct softirq_action *h) 2001 { 2002 struct softnet_data *sd = &__get_cpu_var(softnet_data); 2003 2004 if (sd->completion_queue) { 2005 struct sk_buff *clist; 2006 2007 local_irq_disable(); 2008 clist = sd->completion_queue; 2009 sd->completion_queue = NULL; 2010 local_irq_enable(); 2011 2012 while (clist) { 2013 struct sk_buff *skb = clist; 2014 clist = clist->next; 2015 2016 WARN_ON(atomic_read(&skb->users)); 2017 __kfree_skb(skb); 2018 } 2019 } 2020 2021 if (sd->output_queue) { 2022 struct Qdisc *head; 2023 2024 local_irq_disable(); 2025 head = sd->output_queue; 2026 sd->output_queue = NULL; 2027 local_irq_enable(); 2028 2029 while (head) { 2030 struct Qdisc *q = head; 2031 spinlock_t *root_lock; 2032 2033 head = head->next_sched; 2034 2035 root_lock = qdisc_lock(q); 2036 if (spin_trylock(root_lock)) { 2037 smp_mb__before_clear_bit(); 2038 clear_bit(__QDISC_STATE_SCHED, 2039 &q->state); 2040 qdisc_run(q); 2041 spin_unlock(root_lock); 2042 } else { 2043 if (!test_bit(__QDISC_STATE_DEACTIVATED, 2044 &q->state)) { 2045 __netif_reschedule(q); 2046 } else { 2047 smp_mb__before_clear_bit(); 2048 clear_bit(__QDISC_STATE_SCHED, 2049 &q->state); 2050 } 2051 } 2052 } 2053 } 2054 } 2055 2056 static inline int deliver_skb(struct sk_buff *skb, 2057 struct packet_type *pt_prev, 2058 struct net_device *orig_dev) 2059 { 2060 atomic_inc(&skb->users); 2061 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 2062 } 2063 2064 #if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE) 2065 /* These hooks defined here for ATM */ 2066 struct net_bridge; 2067 struct net_bridge_fdb_entry *(*br_fdb_get_hook)(struct net_bridge *br, 2068 unsigned char *addr); 2069 void (*br_fdb_put_hook)(struct net_bridge_fdb_entry *ent) __read_mostly; 2070 2071 /* 2072 * If bridge module is loaded call bridging hook. 2073 * returns NULL if packet was consumed. 2074 */ 2075 struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p, 2076 struct sk_buff *skb) __read_mostly; 2077 static inline struct sk_buff *handle_bridge(struct sk_buff *skb, 2078 struct packet_type **pt_prev, int *ret, 2079 struct net_device *orig_dev) 2080 { 2081 struct net_bridge_port *port; 2082 2083 if (skb->pkt_type == PACKET_LOOPBACK || 2084 (port = rcu_dereference(skb->dev->br_port)) == NULL) 2085 return skb; 2086 2087 if (*pt_prev) { 2088 *ret = deliver_skb(skb, *pt_prev, orig_dev); 2089 *pt_prev = NULL; 2090 } 2091 2092 return br_handle_frame_hook(port, skb); 2093 } 2094 #else 2095 #define handle_bridge(skb, pt_prev, ret, orig_dev) (skb) 2096 #endif 2097 2098 #if defined(CONFIG_MACVLAN) || defined(CONFIG_MACVLAN_MODULE) 2099 struct sk_buff *(*macvlan_handle_frame_hook)(struct sk_buff *skb) __read_mostly; 2100 EXPORT_SYMBOL_GPL(macvlan_handle_frame_hook); 2101 2102 static inline struct sk_buff *handle_macvlan(struct sk_buff *skb, 2103 struct packet_type **pt_prev, 2104 int *ret, 2105 struct net_device *orig_dev) 2106 { 2107 if (skb->dev->macvlan_port == NULL) 2108 return skb; 2109 2110 if (*pt_prev) { 2111 *ret = deliver_skb(skb, *pt_prev, orig_dev); 2112 *pt_prev = NULL; 2113 } 2114 return macvlan_handle_frame_hook(skb); 2115 } 2116 #else 2117 #define handle_macvlan(skb, pt_prev, ret, orig_dev) (skb) 2118 #endif 2119 2120 #ifdef CONFIG_NET_CLS_ACT 2121 /* TODO: Maybe we should just force sch_ingress to be compiled in 2122 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions 2123 * a compare and 2 stores extra right now if we dont have it on 2124 * but have CONFIG_NET_CLS_ACT 2125 * NOTE: This doesnt stop any functionality; if you dont have 2126 * the ingress scheduler, you just cant add policies on ingress. 2127 * 2128 */ 2129 static int ing_filter(struct sk_buff *skb) 2130 { 2131 struct net_device *dev = skb->dev; 2132 u32 ttl = G_TC_RTTL(skb->tc_verd); 2133 struct netdev_queue *rxq; 2134 int result = TC_ACT_OK; 2135 struct Qdisc *q; 2136 2137 if (MAX_RED_LOOP < ttl++) { 2138 printk(KERN_WARNING 2139 "Redir loop detected Dropping packet (%d->%d)\n", 2140 skb->iif, dev->ifindex); 2141 return TC_ACT_SHOT; 2142 } 2143 2144 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl); 2145 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS); 2146 2147 rxq = &dev->rx_queue; 2148 2149 q = rxq->qdisc; 2150 if (q != &noop_qdisc) { 2151 spin_lock(qdisc_lock(q)); 2152 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) 2153 result = qdisc_enqueue_root(skb, q); 2154 spin_unlock(qdisc_lock(q)); 2155 } 2156 2157 return result; 2158 } 2159 2160 static inline struct sk_buff *handle_ing(struct sk_buff *skb, 2161 struct packet_type **pt_prev, 2162 int *ret, struct net_device *orig_dev) 2163 { 2164 if (skb->dev->rx_queue.qdisc == &noop_qdisc) 2165 goto out; 2166 2167 if (*pt_prev) { 2168 *ret = deliver_skb(skb, *pt_prev, orig_dev); 2169 *pt_prev = NULL; 2170 } else { 2171 /* Huh? Why does turning on AF_PACKET affect this? */ 2172 skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd); 2173 } 2174 2175 switch (ing_filter(skb)) { 2176 case TC_ACT_SHOT: 2177 case TC_ACT_STOLEN: 2178 kfree_skb(skb); 2179 return NULL; 2180 } 2181 2182 out: 2183 skb->tc_verd = 0; 2184 return skb; 2185 } 2186 #endif 2187 2188 /* 2189 * netif_nit_deliver - deliver received packets to network taps 2190 * @skb: buffer 2191 * 2192 * This function is used to deliver incoming packets to network 2193 * taps. It should be used when the normal netif_receive_skb path 2194 * is bypassed, for example because of VLAN acceleration. 2195 */ 2196 void netif_nit_deliver(struct sk_buff *skb) 2197 { 2198 struct packet_type *ptype; 2199 2200 if (list_empty(&ptype_all)) 2201 return; 2202 2203 skb_reset_network_header(skb); 2204 skb_reset_transport_header(skb); 2205 skb->mac_len = skb->network_header - skb->mac_header; 2206 2207 rcu_read_lock(); 2208 list_for_each_entry_rcu(ptype, &ptype_all, list) { 2209 if (!ptype->dev || ptype->dev == skb->dev) 2210 deliver_skb(skb, ptype, skb->dev); 2211 } 2212 rcu_read_unlock(); 2213 } 2214 2215 /** 2216 * netif_receive_skb - process receive buffer from network 2217 * @skb: buffer to process 2218 * 2219 * netif_receive_skb() is the main receive data processing function. 2220 * It always succeeds. The buffer may be dropped during processing 2221 * for congestion control or by the protocol layers. 2222 * 2223 * This function may only be called from softirq context and interrupts 2224 * should be enabled. 2225 * 2226 * Return values (usually ignored): 2227 * NET_RX_SUCCESS: no congestion 2228 * NET_RX_DROP: packet was dropped 2229 */ 2230 int netif_receive_skb(struct sk_buff *skb) 2231 { 2232 struct packet_type *ptype, *pt_prev; 2233 struct net_device *orig_dev; 2234 struct net_device *null_or_orig; 2235 int ret = NET_RX_DROP; 2236 __be16 type; 2237 2238 if (skb->vlan_tci && vlan_hwaccel_do_receive(skb)) 2239 return NET_RX_SUCCESS; 2240 2241 /* if we've gotten here through NAPI, check netpoll */ 2242 if (netpoll_receive_skb(skb)) 2243 return NET_RX_DROP; 2244 2245 if (!skb->tstamp.tv64) 2246 net_timestamp(skb); 2247 2248 if (!skb->iif) 2249 skb->iif = skb->dev->ifindex; 2250 2251 null_or_orig = NULL; 2252 orig_dev = skb->dev; 2253 if (orig_dev->master) { 2254 if (skb_bond_should_drop(skb)) 2255 null_or_orig = orig_dev; /* deliver only exact match */ 2256 else 2257 skb->dev = orig_dev->master; 2258 } 2259 2260 __get_cpu_var(netdev_rx_stat).total++; 2261 2262 skb_reset_network_header(skb); 2263 skb_reset_transport_header(skb); 2264 skb->mac_len = skb->network_header - skb->mac_header; 2265 2266 pt_prev = NULL; 2267 2268 rcu_read_lock(); 2269 2270 /* Don't receive packets in an exiting network namespace */ 2271 if (!net_alive(dev_net(skb->dev))) { 2272 kfree_skb(skb); 2273 goto out; 2274 } 2275 2276 #ifdef CONFIG_NET_CLS_ACT 2277 if (skb->tc_verd & TC_NCLS) { 2278 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd); 2279 goto ncls; 2280 } 2281 #endif 2282 2283 list_for_each_entry_rcu(ptype, &ptype_all, list) { 2284 if (ptype->dev == null_or_orig || ptype->dev == skb->dev || 2285 ptype->dev == orig_dev) { 2286 if (pt_prev) 2287 ret = deliver_skb(skb, pt_prev, orig_dev); 2288 pt_prev = ptype; 2289 } 2290 } 2291 2292 #ifdef CONFIG_NET_CLS_ACT 2293 skb = handle_ing(skb, &pt_prev, &ret, orig_dev); 2294 if (!skb) 2295 goto out; 2296 ncls: 2297 #endif 2298 2299 skb = handle_bridge(skb, &pt_prev, &ret, orig_dev); 2300 if (!skb) 2301 goto out; 2302 skb = handle_macvlan(skb, &pt_prev, &ret, orig_dev); 2303 if (!skb) 2304 goto out; 2305 2306 type = skb->protocol; 2307 list_for_each_entry_rcu(ptype, 2308 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) { 2309 if (ptype->type == type && 2310 (ptype->dev == null_or_orig || ptype->dev == skb->dev || 2311 ptype->dev == orig_dev)) { 2312 if (pt_prev) 2313 ret = deliver_skb(skb, pt_prev, orig_dev); 2314 pt_prev = ptype; 2315 } 2316 } 2317 2318 if (pt_prev) { 2319 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 2320 } else { 2321 kfree_skb(skb); 2322 /* Jamal, now you will not able to escape explaining 2323 * me how you were going to use this. :-) 2324 */ 2325 ret = NET_RX_DROP; 2326 } 2327 2328 out: 2329 rcu_read_unlock(); 2330 return ret; 2331 } 2332 2333 /* Network device is going away, flush any packets still pending */ 2334 static void flush_backlog(void *arg) 2335 { 2336 struct net_device *dev = arg; 2337 struct softnet_data *queue = &__get_cpu_var(softnet_data); 2338 struct sk_buff *skb, *tmp; 2339 2340 skb_queue_walk_safe(&queue->input_pkt_queue, skb, tmp) 2341 if (skb->dev == dev) { 2342 __skb_unlink(skb, &queue->input_pkt_queue); 2343 kfree_skb(skb); 2344 } 2345 } 2346 2347 static int napi_gro_complete(struct sk_buff *skb) 2348 { 2349 struct packet_type *ptype; 2350 __be16 type = skb->protocol; 2351 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK]; 2352 int err = -ENOENT; 2353 2354 if (NAPI_GRO_CB(skb)->count == 1) 2355 goto out; 2356 2357 rcu_read_lock(); 2358 list_for_each_entry_rcu(ptype, head, list) { 2359 if (ptype->type != type || ptype->dev || !ptype->gro_complete) 2360 continue; 2361 2362 err = ptype->gro_complete(skb); 2363 break; 2364 } 2365 rcu_read_unlock(); 2366 2367 if (err) { 2368 WARN_ON(&ptype->list == head); 2369 kfree_skb(skb); 2370 return NET_RX_SUCCESS; 2371 } 2372 2373 out: 2374 skb_shinfo(skb)->gso_size = 0; 2375 __skb_push(skb, -skb_network_offset(skb)); 2376 return netif_receive_skb(skb); 2377 } 2378 2379 void napi_gro_flush(struct napi_struct *napi) 2380 { 2381 struct sk_buff *skb, *next; 2382 2383 for (skb = napi->gro_list; skb; skb = next) { 2384 next = skb->next; 2385 skb->next = NULL; 2386 napi_gro_complete(skb); 2387 } 2388 2389 napi->gro_list = NULL; 2390 } 2391 EXPORT_SYMBOL(napi_gro_flush); 2392 2393 int dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 2394 { 2395 struct sk_buff **pp = NULL; 2396 struct packet_type *ptype; 2397 __be16 type = skb->protocol; 2398 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK]; 2399 int count = 0; 2400 int same_flow; 2401 int mac_len; 2402 int free; 2403 2404 if (!(skb->dev->features & NETIF_F_GRO)) 2405 goto normal; 2406 2407 if (skb_is_gso(skb) || skb_shinfo(skb)->frag_list) 2408 goto normal; 2409 2410 rcu_read_lock(); 2411 list_for_each_entry_rcu(ptype, head, list) { 2412 struct sk_buff *p; 2413 2414 if (ptype->type != type || ptype->dev || !ptype->gro_receive) 2415 continue; 2416 2417 skb_reset_network_header(skb); 2418 mac_len = skb->network_header - skb->mac_header; 2419 skb->mac_len = mac_len; 2420 NAPI_GRO_CB(skb)->same_flow = 0; 2421 NAPI_GRO_CB(skb)->flush = 0; 2422 NAPI_GRO_CB(skb)->free = 0; 2423 2424 for (p = napi->gro_list; p; p = p->next) { 2425 count++; 2426 2427 if (!NAPI_GRO_CB(p)->same_flow) 2428 continue; 2429 2430 if (p->mac_len != mac_len || 2431 memcmp(skb_mac_header(p), skb_mac_header(skb), 2432 mac_len)) 2433 NAPI_GRO_CB(p)->same_flow = 0; 2434 } 2435 2436 pp = ptype->gro_receive(&napi->gro_list, skb); 2437 break; 2438 } 2439 rcu_read_unlock(); 2440 2441 if (&ptype->list == head) 2442 goto normal; 2443 2444 same_flow = NAPI_GRO_CB(skb)->same_flow; 2445 free = NAPI_GRO_CB(skb)->free; 2446 2447 if (pp) { 2448 struct sk_buff *nskb = *pp; 2449 2450 *pp = nskb->next; 2451 nskb->next = NULL; 2452 napi_gro_complete(nskb); 2453 count--; 2454 } 2455 2456 if (same_flow) 2457 goto ok; 2458 2459 if (NAPI_GRO_CB(skb)->flush || count >= MAX_GRO_SKBS) { 2460 __skb_push(skb, -skb_network_offset(skb)); 2461 goto normal; 2462 } 2463 2464 NAPI_GRO_CB(skb)->count = 1; 2465 skb_shinfo(skb)->gso_size = skb->len; 2466 skb->next = napi->gro_list; 2467 napi->gro_list = skb; 2468 2469 ok: 2470 return free; 2471 2472 normal: 2473 return -1; 2474 } 2475 EXPORT_SYMBOL(dev_gro_receive); 2476 2477 static int __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 2478 { 2479 struct sk_buff *p; 2480 2481 for (p = napi->gro_list; p; p = p->next) { 2482 NAPI_GRO_CB(p)->same_flow = 1; 2483 NAPI_GRO_CB(p)->flush = 0; 2484 } 2485 2486 return dev_gro_receive(napi, skb); 2487 } 2488 2489 int napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 2490 { 2491 switch (__napi_gro_receive(napi, skb)) { 2492 case -1: 2493 return netif_receive_skb(skb); 2494 2495 case 1: 2496 kfree_skb(skb); 2497 break; 2498 } 2499 2500 return NET_RX_SUCCESS; 2501 } 2502 EXPORT_SYMBOL(napi_gro_receive); 2503 2504 void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb) 2505 { 2506 __skb_pull(skb, skb_headlen(skb)); 2507 skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb)); 2508 2509 napi->skb = skb; 2510 } 2511 EXPORT_SYMBOL(napi_reuse_skb); 2512 2513 struct sk_buff *napi_fraginfo_skb(struct napi_struct *napi, 2514 struct napi_gro_fraginfo *info) 2515 { 2516 struct net_device *dev = napi->dev; 2517 struct sk_buff *skb = napi->skb; 2518 2519 napi->skb = NULL; 2520 2521 if (!skb) { 2522 skb = netdev_alloc_skb(dev, GRO_MAX_HEAD + NET_IP_ALIGN); 2523 if (!skb) 2524 goto out; 2525 2526 skb_reserve(skb, NET_IP_ALIGN); 2527 } 2528 2529 BUG_ON(info->nr_frags > MAX_SKB_FRAGS); 2530 skb_shinfo(skb)->nr_frags = info->nr_frags; 2531 memcpy(skb_shinfo(skb)->frags, info->frags, sizeof(info->frags)); 2532 2533 skb->data_len = info->len; 2534 skb->len += info->len; 2535 skb->truesize += info->len; 2536 2537 if (!pskb_may_pull(skb, ETH_HLEN)) { 2538 napi_reuse_skb(napi, skb); 2539 skb = NULL; 2540 goto out; 2541 } 2542 2543 skb->protocol = eth_type_trans(skb, dev); 2544 2545 skb->ip_summed = info->ip_summed; 2546 skb->csum = info->csum; 2547 2548 out: 2549 return skb; 2550 } 2551 EXPORT_SYMBOL(napi_fraginfo_skb); 2552 2553 int napi_gro_frags(struct napi_struct *napi, struct napi_gro_fraginfo *info) 2554 { 2555 struct sk_buff *skb = napi_fraginfo_skb(napi, info); 2556 int err = NET_RX_DROP; 2557 2558 if (!skb) 2559 goto out; 2560 2561 err = NET_RX_SUCCESS; 2562 2563 switch (__napi_gro_receive(napi, skb)) { 2564 case -1: 2565 return netif_receive_skb(skb); 2566 2567 case 0: 2568 goto out; 2569 } 2570 2571 napi_reuse_skb(napi, skb); 2572 2573 out: 2574 return err; 2575 } 2576 EXPORT_SYMBOL(napi_gro_frags); 2577 2578 static int process_backlog(struct napi_struct *napi, int quota) 2579 { 2580 int work = 0; 2581 struct softnet_data *queue = &__get_cpu_var(softnet_data); 2582 unsigned long start_time = jiffies; 2583 2584 napi->weight = weight_p; 2585 do { 2586 struct sk_buff *skb; 2587 2588 local_irq_disable(); 2589 skb = __skb_dequeue(&queue->input_pkt_queue); 2590 if (!skb) { 2591 __napi_complete(napi); 2592 local_irq_enable(); 2593 break; 2594 } 2595 local_irq_enable(); 2596 2597 napi_gro_receive(napi, skb); 2598 } while (++work < quota && jiffies == start_time); 2599 2600 napi_gro_flush(napi); 2601 2602 return work; 2603 } 2604 2605 /** 2606 * __napi_schedule - schedule for receive 2607 * @n: entry to schedule 2608 * 2609 * The entry's receive function will be scheduled to run 2610 */ 2611 void __napi_schedule(struct napi_struct *n) 2612 { 2613 unsigned long flags; 2614 2615 local_irq_save(flags); 2616 list_add_tail(&n->poll_list, &__get_cpu_var(softnet_data).poll_list); 2617 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 2618 local_irq_restore(flags); 2619 } 2620 EXPORT_SYMBOL(__napi_schedule); 2621 2622 void __napi_complete(struct napi_struct *n) 2623 { 2624 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 2625 BUG_ON(n->gro_list); 2626 2627 list_del(&n->poll_list); 2628 smp_mb__before_clear_bit(); 2629 clear_bit(NAPI_STATE_SCHED, &n->state); 2630 } 2631 EXPORT_SYMBOL(__napi_complete); 2632 2633 void napi_complete(struct napi_struct *n) 2634 { 2635 unsigned long flags; 2636 2637 /* 2638 * don't let napi dequeue from the cpu poll list 2639 * just in case its running on a different cpu 2640 */ 2641 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state))) 2642 return; 2643 2644 napi_gro_flush(n); 2645 local_irq_save(flags); 2646 __napi_complete(n); 2647 local_irq_restore(flags); 2648 } 2649 EXPORT_SYMBOL(napi_complete); 2650 2651 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 2652 int (*poll)(struct napi_struct *, int), int weight) 2653 { 2654 INIT_LIST_HEAD(&napi->poll_list); 2655 napi->gro_list = NULL; 2656 napi->skb = NULL; 2657 napi->poll = poll; 2658 napi->weight = weight; 2659 list_add(&napi->dev_list, &dev->napi_list); 2660 napi->dev = dev; 2661 #ifdef CONFIG_NETPOLL 2662 spin_lock_init(&napi->poll_lock); 2663 napi->poll_owner = -1; 2664 #endif 2665 set_bit(NAPI_STATE_SCHED, &napi->state); 2666 } 2667 EXPORT_SYMBOL(netif_napi_add); 2668 2669 void netif_napi_del(struct napi_struct *napi) 2670 { 2671 struct sk_buff *skb, *next; 2672 2673 list_del_init(&napi->dev_list); 2674 kfree(napi->skb); 2675 2676 for (skb = napi->gro_list; skb; skb = next) { 2677 next = skb->next; 2678 skb->next = NULL; 2679 kfree_skb(skb); 2680 } 2681 2682 napi->gro_list = NULL; 2683 } 2684 EXPORT_SYMBOL(netif_napi_del); 2685 2686 2687 static void net_rx_action(struct softirq_action *h) 2688 { 2689 struct list_head *list = &__get_cpu_var(softnet_data).poll_list; 2690 unsigned long time_limit = jiffies + 2; 2691 int budget = netdev_budget; 2692 void *have; 2693 2694 local_irq_disable(); 2695 2696 while (!list_empty(list)) { 2697 struct napi_struct *n; 2698 int work, weight; 2699 2700 /* If softirq window is exhuasted then punt. 2701 * Allow this to run for 2 jiffies since which will allow 2702 * an average latency of 1.5/HZ. 2703 */ 2704 if (unlikely(budget <= 0 || time_after(jiffies, time_limit))) 2705 goto softnet_break; 2706 2707 local_irq_enable(); 2708 2709 /* Even though interrupts have been re-enabled, this 2710 * access is safe because interrupts can only add new 2711 * entries to the tail of this list, and only ->poll() 2712 * calls can remove this head entry from the list. 2713 */ 2714 n = list_entry(list->next, struct napi_struct, poll_list); 2715 2716 have = netpoll_poll_lock(n); 2717 2718 weight = n->weight; 2719 2720 /* This NAPI_STATE_SCHED test is for avoiding a race 2721 * with netpoll's poll_napi(). Only the entity which 2722 * obtains the lock and sees NAPI_STATE_SCHED set will 2723 * actually make the ->poll() call. Therefore we avoid 2724 * accidently calling ->poll() when NAPI is not scheduled. 2725 */ 2726 work = 0; 2727 if (test_bit(NAPI_STATE_SCHED, &n->state)) 2728 work = n->poll(n, weight); 2729 2730 WARN_ON_ONCE(work > weight); 2731 2732 budget -= work; 2733 2734 local_irq_disable(); 2735 2736 /* Drivers must not modify the NAPI state if they 2737 * consume the entire weight. In such cases this code 2738 * still "owns" the NAPI instance and therefore can 2739 * move the instance around on the list at-will. 2740 */ 2741 if (unlikely(work == weight)) { 2742 if (unlikely(napi_disable_pending(n))) 2743 __napi_complete(n); 2744 else 2745 list_move_tail(&n->poll_list, list); 2746 } 2747 2748 netpoll_poll_unlock(have); 2749 } 2750 out: 2751 local_irq_enable(); 2752 2753 #ifdef CONFIG_NET_DMA 2754 /* 2755 * There may not be any more sk_buffs coming right now, so push 2756 * any pending DMA copies to hardware 2757 */ 2758 dma_issue_pending_all(); 2759 #endif 2760 2761 return; 2762 2763 softnet_break: 2764 __get_cpu_var(netdev_rx_stat).time_squeeze++; 2765 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 2766 goto out; 2767 } 2768 2769 static gifconf_func_t * gifconf_list [NPROTO]; 2770 2771 /** 2772 * register_gifconf - register a SIOCGIF handler 2773 * @family: Address family 2774 * @gifconf: Function handler 2775 * 2776 * Register protocol dependent address dumping routines. The handler 2777 * that is passed must not be freed or reused until it has been replaced 2778 * by another handler. 2779 */ 2780 int register_gifconf(unsigned int family, gifconf_func_t * gifconf) 2781 { 2782 if (family >= NPROTO) 2783 return -EINVAL; 2784 gifconf_list[family] = gifconf; 2785 return 0; 2786 } 2787 2788 2789 /* 2790 * Map an interface index to its name (SIOCGIFNAME) 2791 */ 2792 2793 /* 2794 * We need this ioctl for efficient implementation of the 2795 * if_indextoname() function required by the IPv6 API. Without 2796 * it, we would have to search all the interfaces to find a 2797 * match. --pb 2798 */ 2799 2800 static int dev_ifname(struct net *net, struct ifreq __user *arg) 2801 { 2802 struct net_device *dev; 2803 struct ifreq ifr; 2804 2805 /* 2806 * Fetch the caller's info block. 2807 */ 2808 2809 if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) 2810 return -EFAULT; 2811 2812 read_lock(&dev_base_lock); 2813 dev = __dev_get_by_index(net, ifr.ifr_ifindex); 2814 if (!dev) { 2815 read_unlock(&dev_base_lock); 2816 return -ENODEV; 2817 } 2818 2819 strcpy(ifr.ifr_name, dev->name); 2820 read_unlock(&dev_base_lock); 2821 2822 if (copy_to_user(arg, &ifr, sizeof(struct ifreq))) 2823 return -EFAULT; 2824 return 0; 2825 } 2826 2827 /* 2828 * Perform a SIOCGIFCONF call. This structure will change 2829 * size eventually, and there is nothing I can do about it. 2830 * Thus we will need a 'compatibility mode'. 2831 */ 2832 2833 static int dev_ifconf(struct net *net, char __user *arg) 2834 { 2835 struct ifconf ifc; 2836 struct net_device *dev; 2837 char __user *pos; 2838 int len; 2839 int total; 2840 int i; 2841 2842 /* 2843 * Fetch the caller's info block. 2844 */ 2845 2846 if (copy_from_user(&ifc, arg, sizeof(struct ifconf))) 2847 return -EFAULT; 2848 2849 pos = ifc.ifc_buf; 2850 len = ifc.ifc_len; 2851 2852 /* 2853 * Loop over the interfaces, and write an info block for each. 2854 */ 2855 2856 total = 0; 2857 for_each_netdev(net, dev) { 2858 for (i = 0; i < NPROTO; i++) { 2859 if (gifconf_list[i]) { 2860 int done; 2861 if (!pos) 2862 done = gifconf_list[i](dev, NULL, 0); 2863 else 2864 done = gifconf_list[i](dev, pos + total, 2865 len - total); 2866 if (done < 0) 2867 return -EFAULT; 2868 total += done; 2869 } 2870 } 2871 } 2872 2873 /* 2874 * All done. Write the updated control block back to the caller. 2875 */ 2876 ifc.ifc_len = total; 2877 2878 /* 2879 * Both BSD and Solaris return 0 here, so we do too. 2880 */ 2881 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0; 2882 } 2883 2884 #ifdef CONFIG_PROC_FS 2885 /* 2886 * This is invoked by the /proc filesystem handler to display a device 2887 * in detail. 2888 */ 2889 void *dev_seq_start(struct seq_file *seq, loff_t *pos) 2890 __acquires(dev_base_lock) 2891 { 2892 struct net *net = seq_file_net(seq); 2893 loff_t off; 2894 struct net_device *dev; 2895 2896 read_lock(&dev_base_lock); 2897 if (!*pos) 2898 return SEQ_START_TOKEN; 2899 2900 off = 1; 2901 for_each_netdev(net, dev) 2902 if (off++ == *pos) 2903 return dev; 2904 2905 return NULL; 2906 } 2907 2908 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2909 { 2910 struct net *net = seq_file_net(seq); 2911 ++*pos; 2912 return v == SEQ_START_TOKEN ? 2913 first_net_device(net) : next_net_device((struct net_device *)v); 2914 } 2915 2916 void dev_seq_stop(struct seq_file *seq, void *v) 2917 __releases(dev_base_lock) 2918 { 2919 read_unlock(&dev_base_lock); 2920 } 2921 2922 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev) 2923 { 2924 const struct net_device_stats *stats = dev_get_stats(dev); 2925 2926 seq_printf(seq, "%6s:%8lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu " 2927 "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n", 2928 dev->name, stats->rx_bytes, stats->rx_packets, 2929 stats->rx_errors, 2930 stats->rx_dropped + stats->rx_missed_errors, 2931 stats->rx_fifo_errors, 2932 stats->rx_length_errors + stats->rx_over_errors + 2933 stats->rx_crc_errors + stats->rx_frame_errors, 2934 stats->rx_compressed, stats->multicast, 2935 stats->tx_bytes, stats->tx_packets, 2936 stats->tx_errors, stats->tx_dropped, 2937 stats->tx_fifo_errors, stats->collisions, 2938 stats->tx_carrier_errors + 2939 stats->tx_aborted_errors + 2940 stats->tx_window_errors + 2941 stats->tx_heartbeat_errors, 2942 stats->tx_compressed); 2943 } 2944 2945 /* 2946 * Called from the PROCfs module. This now uses the new arbitrary sized 2947 * /proc/net interface to create /proc/net/dev 2948 */ 2949 static int dev_seq_show(struct seq_file *seq, void *v) 2950 { 2951 if (v == SEQ_START_TOKEN) 2952 seq_puts(seq, "Inter-| Receive " 2953 " | Transmit\n" 2954 " face |bytes packets errs drop fifo frame " 2955 "compressed multicast|bytes packets errs " 2956 "drop fifo colls carrier compressed\n"); 2957 else 2958 dev_seq_printf_stats(seq, v); 2959 return 0; 2960 } 2961 2962 static struct netif_rx_stats *softnet_get_online(loff_t *pos) 2963 { 2964 struct netif_rx_stats *rc = NULL; 2965 2966 while (*pos < nr_cpu_ids) 2967 if (cpu_online(*pos)) { 2968 rc = &per_cpu(netdev_rx_stat, *pos); 2969 break; 2970 } else 2971 ++*pos; 2972 return rc; 2973 } 2974 2975 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos) 2976 { 2977 return softnet_get_online(pos); 2978 } 2979 2980 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2981 { 2982 ++*pos; 2983 return softnet_get_online(pos); 2984 } 2985 2986 static void softnet_seq_stop(struct seq_file *seq, void *v) 2987 { 2988 } 2989 2990 static int softnet_seq_show(struct seq_file *seq, void *v) 2991 { 2992 struct netif_rx_stats *s = v; 2993 2994 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x\n", 2995 s->total, s->dropped, s->time_squeeze, 0, 2996 0, 0, 0, 0, /* was fastroute */ 2997 s->cpu_collision ); 2998 return 0; 2999 } 3000 3001 static const struct seq_operations dev_seq_ops = { 3002 .start = dev_seq_start, 3003 .next = dev_seq_next, 3004 .stop = dev_seq_stop, 3005 .show = dev_seq_show, 3006 }; 3007 3008 static int dev_seq_open(struct inode *inode, struct file *file) 3009 { 3010 return seq_open_net(inode, file, &dev_seq_ops, 3011 sizeof(struct seq_net_private)); 3012 } 3013 3014 static const struct file_operations dev_seq_fops = { 3015 .owner = THIS_MODULE, 3016 .open = dev_seq_open, 3017 .read = seq_read, 3018 .llseek = seq_lseek, 3019 .release = seq_release_net, 3020 }; 3021 3022 static const struct seq_operations softnet_seq_ops = { 3023 .start = softnet_seq_start, 3024 .next = softnet_seq_next, 3025 .stop = softnet_seq_stop, 3026 .show = softnet_seq_show, 3027 }; 3028 3029 static int softnet_seq_open(struct inode *inode, struct file *file) 3030 { 3031 return seq_open(file, &softnet_seq_ops); 3032 } 3033 3034 static const struct file_operations softnet_seq_fops = { 3035 .owner = THIS_MODULE, 3036 .open = softnet_seq_open, 3037 .read = seq_read, 3038 .llseek = seq_lseek, 3039 .release = seq_release, 3040 }; 3041 3042 static void *ptype_get_idx(loff_t pos) 3043 { 3044 struct packet_type *pt = NULL; 3045 loff_t i = 0; 3046 int t; 3047 3048 list_for_each_entry_rcu(pt, &ptype_all, list) { 3049 if (i == pos) 3050 return pt; 3051 ++i; 3052 } 3053 3054 for (t = 0; t < PTYPE_HASH_SIZE; t++) { 3055 list_for_each_entry_rcu(pt, &ptype_base[t], list) { 3056 if (i == pos) 3057 return pt; 3058 ++i; 3059 } 3060 } 3061 return NULL; 3062 } 3063 3064 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos) 3065 __acquires(RCU) 3066 { 3067 rcu_read_lock(); 3068 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN; 3069 } 3070 3071 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3072 { 3073 struct packet_type *pt; 3074 struct list_head *nxt; 3075 int hash; 3076 3077 ++*pos; 3078 if (v == SEQ_START_TOKEN) 3079 return ptype_get_idx(0); 3080 3081 pt = v; 3082 nxt = pt->list.next; 3083 if (pt->type == htons(ETH_P_ALL)) { 3084 if (nxt != &ptype_all) 3085 goto found; 3086 hash = 0; 3087 nxt = ptype_base[0].next; 3088 } else 3089 hash = ntohs(pt->type) & PTYPE_HASH_MASK; 3090 3091 while (nxt == &ptype_base[hash]) { 3092 if (++hash >= PTYPE_HASH_SIZE) 3093 return NULL; 3094 nxt = ptype_base[hash].next; 3095 } 3096 found: 3097 return list_entry(nxt, struct packet_type, list); 3098 } 3099 3100 static void ptype_seq_stop(struct seq_file *seq, void *v) 3101 __releases(RCU) 3102 { 3103 rcu_read_unlock(); 3104 } 3105 3106 static int ptype_seq_show(struct seq_file *seq, void *v) 3107 { 3108 struct packet_type *pt = v; 3109 3110 if (v == SEQ_START_TOKEN) 3111 seq_puts(seq, "Type Device Function\n"); 3112 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) { 3113 if (pt->type == htons(ETH_P_ALL)) 3114 seq_puts(seq, "ALL "); 3115 else 3116 seq_printf(seq, "%04x", ntohs(pt->type)); 3117 3118 seq_printf(seq, " %-8s %pF\n", 3119 pt->dev ? pt->dev->name : "", pt->func); 3120 } 3121 3122 return 0; 3123 } 3124 3125 static const struct seq_operations ptype_seq_ops = { 3126 .start = ptype_seq_start, 3127 .next = ptype_seq_next, 3128 .stop = ptype_seq_stop, 3129 .show = ptype_seq_show, 3130 }; 3131 3132 static int ptype_seq_open(struct inode *inode, struct file *file) 3133 { 3134 return seq_open_net(inode, file, &ptype_seq_ops, 3135 sizeof(struct seq_net_private)); 3136 } 3137 3138 static const struct file_operations ptype_seq_fops = { 3139 .owner = THIS_MODULE, 3140 .open = ptype_seq_open, 3141 .read = seq_read, 3142 .llseek = seq_lseek, 3143 .release = seq_release_net, 3144 }; 3145 3146 3147 static int __net_init dev_proc_net_init(struct net *net) 3148 { 3149 int rc = -ENOMEM; 3150 3151 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops)) 3152 goto out; 3153 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops)) 3154 goto out_dev; 3155 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops)) 3156 goto out_softnet; 3157 3158 if (wext_proc_init(net)) 3159 goto out_ptype; 3160 rc = 0; 3161 out: 3162 return rc; 3163 out_ptype: 3164 proc_net_remove(net, "ptype"); 3165 out_softnet: 3166 proc_net_remove(net, "softnet_stat"); 3167 out_dev: 3168 proc_net_remove(net, "dev"); 3169 goto out; 3170 } 3171 3172 static void __net_exit dev_proc_net_exit(struct net *net) 3173 { 3174 wext_proc_exit(net); 3175 3176 proc_net_remove(net, "ptype"); 3177 proc_net_remove(net, "softnet_stat"); 3178 proc_net_remove(net, "dev"); 3179 } 3180 3181 static struct pernet_operations __net_initdata dev_proc_ops = { 3182 .init = dev_proc_net_init, 3183 .exit = dev_proc_net_exit, 3184 }; 3185 3186 static int __init dev_proc_init(void) 3187 { 3188 return register_pernet_subsys(&dev_proc_ops); 3189 } 3190 #else 3191 #define dev_proc_init() 0 3192 #endif /* CONFIG_PROC_FS */ 3193 3194 3195 /** 3196 * netdev_set_master - set up master/slave pair 3197 * @slave: slave device 3198 * @master: new master device 3199 * 3200 * Changes the master device of the slave. Pass %NULL to break the 3201 * bonding. The caller must hold the RTNL semaphore. On a failure 3202 * a negative errno code is returned. On success the reference counts 3203 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the 3204 * function returns zero. 3205 */ 3206 int netdev_set_master(struct net_device *slave, struct net_device *master) 3207 { 3208 struct net_device *old = slave->master; 3209 3210 ASSERT_RTNL(); 3211 3212 if (master) { 3213 if (old) 3214 return -EBUSY; 3215 dev_hold(master); 3216 } 3217 3218 slave->master = master; 3219 3220 synchronize_net(); 3221 3222 if (old) 3223 dev_put(old); 3224 3225 if (master) 3226 slave->flags |= IFF_SLAVE; 3227 else 3228 slave->flags &= ~IFF_SLAVE; 3229 3230 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE); 3231 return 0; 3232 } 3233 3234 static void dev_change_rx_flags(struct net_device *dev, int flags) 3235 { 3236 const struct net_device_ops *ops = dev->netdev_ops; 3237 3238 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags) 3239 ops->ndo_change_rx_flags(dev, flags); 3240 } 3241 3242 static int __dev_set_promiscuity(struct net_device *dev, int inc) 3243 { 3244 unsigned short old_flags = dev->flags; 3245 uid_t uid; 3246 gid_t gid; 3247 3248 ASSERT_RTNL(); 3249 3250 dev->flags |= IFF_PROMISC; 3251 dev->promiscuity += inc; 3252 if (dev->promiscuity == 0) { 3253 /* 3254 * Avoid overflow. 3255 * If inc causes overflow, untouch promisc and return error. 3256 */ 3257 if (inc < 0) 3258 dev->flags &= ~IFF_PROMISC; 3259 else { 3260 dev->promiscuity -= inc; 3261 printk(KERN_WARNING "%s: promiscuity touches roof, " 3262 "set promiscuity failed, promiscuity feature " 3263 "of device might be broken.\n", dev->name); 3264 return -EOVERFLOW; 3265 } 3266 } 3267 if (dev->flags != old_flags) { 3268 printk(KERN_INFO "device %s %s promiscuous mode\n", 3269 dev->name, (dev->flags & IFF_PROMISC) ? "entered" : 3270 "left"); 3271 if (audit_enabled) { 3272 current_uid_gid(&uid, &gid); 3273 audit_log(current->audit_context, GFP_ATOMIC, 3274 AUDIT_ANOM_PROMISCUOUS, 3275 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 3276 dev->name, (dev->flags & IFF_PROMISC), 3277 (old_flags & IFF_PROMISC), 3278 audit_get_loginuid(current), 3279 uid, gid, 3280 audit_get_sessionid(current)); 3281 } 3282 3283 dev_change_rx_flags(dev, IFF_PROMISC); 3284 } 3285 return 0; 3286 } 3287 3288 /** 3289 * dev_set_promiscuity - update promiscuity count on a device 3290 * @dev: device 3291 * @inc: modifier 3292 * 3293 * Add or remove promiscuity from a device. While the count in the device 3294 * remains above zero the interface remains promiscuous. Once it hits zero 3295 * the device reverts back to normal filtering operation. A negative inc 3296 * value is used to drop promiscuity on the device. 3297 * Return 0 if successful or a negative errno code on error. 3298 */ 3299 int dev_set_promiscuity(struct net_device *dev, int inc) 3300 { 3301 unsigned short old_flags = dev->flags; 3302 int err; 3303 3304 err = __dev_set_promiscuity(dev, inc); 3305 if (err < 0) 3306 return err; 3307 if (dev->flags != old_flags) 3308 dev_set_rx_mode(dev); 3309 return err; 3310 } 3311 3312 /** 3313 * dev_set_allmulti - update allmulti count on a device 3314 * @dev: device 3315 * @inc: modifier 3316 * 3317 * Add or remove reception of all multicast frames to a device. While the 3318 * count in the device remains above zero the interface remains listening 3319 * to all interfaces. Once it hits zero the device reverts back to normal 3320 * filtering operation. A negative @inc value is used to drop the counter 3321 * when releasing a resource needing all multicasts. 3322 * Return 0 if successful or a negative errno code on error. 3323 */ 3324 3325 int dev_set_allmulti(struct net_device *dev, int inc) 3326 { 3327 unsigned short old_flags = dev->flags; 3328 3329 ASSERT_RTNL(); 3330 3331 dev->flags |= IFF_ALLMULTI; 3332 dev->allmulti += inc; 3333 if (dev->allmulti == 0) { 3334 /* 3335 * Avoid overflow. 3336 * If inc causes overflow, untouch allmulti and return error. 3337 */ 3338 if (inc < 0) 3339 dev->flags &= ~IFF_ALLMULTI; 3340 else { 3341 dev->allmulti -= inc; 3342 printk(KERN_WARNING "%s: allmulti touches roof, " 3343 "set allmulti failed, allmulti feature of " 3344 "device might be broken.\n", dev->name); 3345 return -EOVERFLOW; 3346 } 3347 } 3348 if (dev->flags ^ old_flags) { 3349 dev_change_rx_flags(dev, IFF_ALLMULTI); 3350 dev_set_rx_mode(dev); 3351 } 3352 return 0; 3353 } 3354 3355 /* 3356 * Upload unicast and multicast address lists to device and 3357 * configure RX filtering. When the device doesn't support unicast 3358 * filtering it is put in promiscuous mode while unicast addresses 3359 * are present. 3360 */ 3361 void __dev_set_rx_mode(struct net_device *dev) 3362 { 3363 const struct net_device_ops *ops = dev->netdev_ops; 3364 3365 /* dev_open will call this function so the list will stay sane. */ 3366 if (!(dev->flags&IFF_UP)) 3367 return; 3368 3369 if (!netif_device_present(dev)) 3370 return; 3371 3372 if (ops->ndo_set_rx_mode) 3373 ops->ndo_set_rx_mode(dev); 3374 else { 3375 /* Unicast addresses changes may only happen under the rtnl, 3376 * therefore calling __dev_set_promiscuity here is safe. 3377 */ 3378 if (dev->uc_count > 0 && !dev->uc_promisc) { 3379 __dev_set_promiscuity(dev, 1); 3380 dev->uc_promisc = 1; 3381 } else if (dev->uc_count == 0 && dev->uc_promisc) { 3382 __dev_set_promiscuity(dev, -1); 3383 dev->uc_promisc = 0; 3384 } 3385 3386 if (ops->ndo_set_multicast_list) 3387 ops->ndo_set_multicast_list(dev); 3388 } 3389 } 3390 3391 void dev_set_rx_mode(struct net_device *dev) 3392 { 3393 netif_addr_lock_bh(dev); 3394 __dev_set_rx_mode(dev); 3395 netif_addr_unlock_bh(dev); 3396 } 3397 3398 int __dev_addr_delete(struct dev_addr_list **list, int *count, 3399 void *addr, int alen, int glbl) 3400 { 3401 struct dev_addr_list *da; 3402 3403 for (; (da = *list) != NULL; list = &da->next) { 3404 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 && 3405 alen == da->da_addrlen) { 3406 if (glbl) { 3407 int old_glbl = da->da_gusers; 3408 da->da_gusers = 0; 3409 if (old_glbl == 0) 3410 break; 3411 } 3412 if (--da->da_users) 3413 return 0; 3414 3415 *list = da->next; 3416 kfree(da); 3417 (*count)--; 3418 return 0; 3419 } 3420 } 3421 return -ENOENT; 3422 } 3423 3424 int __dev_addr_add(struct dev_addr_list **list, int *count, 3425 void *addr, int alen, int glbl) 3426 { 3427 struct dev_addr_list *da; 3428 3429 for (da = *list; da != NULL; da = da->next) { 3430 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 && 3431 da->da_addrlen == alen) { 3432 if (glbl) { 3433 int old_glbl = da->da_gusers; 3434 da->da_gusers = 1; 3435 if (old_glbl) 3436 return 0; 3437 } 3438 da->da_users++; 3439 return 0; 3440 } 3441 } 3442 3443 da = kzalloc(sizeof(*da), GFP_ATOMIC); 3444 if (da == NULL) 3445 return -ENOMEM; 3446 memcpy(da->da_addr, addr, alen); 3447 da->da_addrlen = alen; 3448 da->da_users = 1; 3449 da->da_gusers = glbl ? 1 : 0; 3450 da->next = *list; 3451 *list = da; 3452 (*count)++; 3453 return 0; 3454 } 3455 3456 /** 3457 * dev_unicast_delete - Release secondary unicast address. 3458 * @dev: device 3459 * @addr: address to delete 3460 * @alen: length of @addr 3461 * 3462 * Release reference to a secondary unicast address and remove it 3463 * from the device if the reference count drops to zero. 3464 * 3465 * The caller must hold the rtnl_mutex. 3466 */ 3467 int dev_unicast_delete(struct net_device *dev, void *addr, int alen) 3468 { 3469 int err; 3470 3471 ASSERT_RTNL(); 3472 3473 netif_addr_lock_bh(dev); 3474 err = __dev_addr_delete(&dev->uc_list, &dev->uc_count, addr, alen, 0); 3475 if (!err) 3476 __dev_set_rx_mode(dev); 3477 netif_addr_unlock_bh(dev); 3478 return err; 3479 } 3480 EXPORT_SYMBOL(dev_unicast_delete); 3481 3482 /** 3483 * dev_unicast_add - add a secondary unicast address 3484 * @dev: device 3485 * @addr: address to add 3486 * @alen: length of @addr 3487 * 3488 * Add a secondary unicast address to the device or increase 3489 * the reference count if it already exists. 3490 * 3491 * The caller must hold the rtnl_mutex. 3492 */ 3493 int dev_unicast_add(struct net_device *dev, void *addr, int alen) 3494 { 3495 int err; 3496 3497 ASSERT_RTNL(); 3498 3499 netif_addr_lock_bh(dev); 3500 err = __dev_addr_add(&dev->uc_list, &dev->uc_count, addr, alen, 0); 3501 if (!err) 3502 __dev_set_rx_mode(dev); 3503 netif_addr_unlock_bh(dev); 3504 return err; 3505 } 3506 EXPORT_SYMBOL(dev_unicast_add); 3507 3508 int __dev_addr_sync(struct dev_addr_list **to, int *to_count, 3509 struct dev_addr_list **from, int *from_count) 3510 { 3511 struct dev_addr_list *da, *next; 3512 int err = 0; 3513 3514 da = *from; 3515 while (da != NULL) { 3516 next = da->next; 3517 if (!da->da_synced) { 3518 err = __dev_addr_add(to, to_count, 3519 da->da_addr, da->da_addrlen, 0); 3520 if (err < 0) 3521 break; 3522 da->da_synced = 1; 3523 da->da_users++; 3524 } else if (da->da_users == 1) { 3525 __dev_addr_delete(to, to_count, 3526 da->da_addr, da->da_addrlen, 0); 3527 __dev_addr_delete(from, from_count, 3528 da->da_addr, da->da_addrlen, 0); 3529 } 3530 da = next; 3531 } 3532 return err; 3533 } 3534 3535 void __dev_addr_unsync(struct dev_addr_list **to, int *to_count, 3536 struct dev_addr_list **from, int *from_count) 3537 { 3538 struct dev_addr_list *da, *next; 3539 3540 da = *from; 3541 while (da != NULL) { 3542 next = da->next; 3543 if (da->da_synced) { 3544 __dev_addr_delete(to, to_count, 3545 da->da_addr, da->da_addrlen, 0); 3546 da->da_synced = 0; 3547 __dev_addr_delete(from, from_count, 3548 da->da_addr, da->da_addrlen, 0); 3549 } 3550 da = next; 3551 } 3552 } 3553 3554 /** 3555 * dev_unicast_sync - Synchronize device's unicast list to another device 3556 * @to: destination device 3557 * @from: source device 3558 * 3559 * Add newly added addresses to the destination device and release 3560 * addresses that have no users left. The source device must be 3561 * locked by netif_tx_lock_bh. 3562 * 3563 * This function is intended to be called from the dev->set_rx_mode 3564 * function of layered software devices. 3565 */ 3566 int dev_unicast_sync(struct net_device *to, struct net_device *from) 3567 { 3568 int err = 0; 3569 3570 netif_addr_lock_bh(to); 3571 err = __dev_addr_sync(&to->uc_list, &to->uc_count, 3572 &from->uc_list, &from->uc_count); 3573 if (!err) 3574 __dev_set_rx_mode(to); 3575 netif_addr_unlock_bh(to); 3576 return err; 3577 } 3578 EXPORT_SYMBOL(dev_unicast_sync); 3579 3580 /** 3581 * dev_unicast_unsync - Remove synchronized addresses from the destination device 3582 * @to: destination device 3583 * @from: source device 3584 * 3585 * Remove all addresses that were added to the destination device by 3586 * dev_unicast_sync(). This function is intended to be called from the 3587 * dev->stop function of layered software devices. 3588 */ 3589 void dev_unicast_unsync(struct net_device *to, struct net_device *from) 3590 { 3591 netif_addr_lock_bh(from); 3592 netif_addr_lock(to); 3593 3594 __dev_addr_unsync(&to->uc_list, &to->uc_count, 3595 &from->uc_list, &from->uc_count); 3596 __dev_set_rx_mode(to); 3597 3598 netif_addr_unlock(to); 3599 netif_addr_unlock_bh(from); 3600 } 3601 EXPORT_SYMBOL(dev_unicast_unsync); 3602 3603 static void __dev_addr_discard(struct dev_addr_list **list) 3604 { 3605 struct dev_addr_list *tmp; 3606 3607 while (*list != NULL) { 3608 tmp = *list; 3609 *list = tmp->next; 3610 if (tmp->da_users > tmp->da_gusers) 3611 printk("__dev_addr_discard: address leakage! " 3612 "da_users=%d\n", tmp->da_users); 3613 kfree(tmp); 3614 } 3615 } 3616 3617 static void dev_addr_discard(struct net_device *dev) 3618 { 3619 netif_addr_lock_bh(dev); 3620 3621 __dev_addr_discard(&dev->uc_list); 3622 dev->uc_count = 0; 3623 3624 __dev_addr_discard(&dev->mc_list); 3625 dev->mc_count = 0; 3626 3627 netif_addr_unlock_bh(dev); 3628 } 3629 3630 /** 3631 * dev_get_flags - get flags reported to userspace 3632 * @dev: device 3633 * 3634 * Get the combination of flag bits exported through APIs to userspace. 3635 */ 3636 unsigned dev_get_flags(const struct net_device *dev) 3637 { 3638 unsigned flags; 3639 3640 flags = (dev->flags & ~(IFF_PROMISC | 3641 IFF_ALLMULTI | 3642 IFF_RUNNING | 3643 IFF_LOWER_UP | 3644 IFF_DORMANT)) | 3645 (dev->gflags & (IFF_PROMISC | 3646 IFF_ALLMULTI)); 3647 3648 if (netif_running(dev)) { 3649 if (netif_oper_up(dev)) 3650 flags |= IFF_RUNNING; 3651 if (netif_carrier_ok(dev)) 3652 flags |= IFF_LOWER_UP; 3653 if (netif_dormant(dev)) 3654 flags |= IFF_DORMANT; 3655 } 3656 3657 return flags; 3658 } 3659 3660 /** 3661 * dev_change_flags - change device settings 3662 * @dev: device 3663 * @flags: device state flags 3664 * 3665 * Change settings on device based state flags. The flags are 3666 * in the userspace exported format. 3667 */ 3668 int dev_change_flags(struct net_device *dev, unsigned flags) 3669 { 3670 int ret, changes; 3671 int old_flags = dev->flags; 3672 3673 ASSERT_RTNL(); 3674 3675 /* 3676 * Set the flags on our device. 3677 */ 3678 3679 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 3680 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 3681 IFF_AUTOMEDIA)) | 3682 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 3683 IFF_ALLMULTI)); 3684 3685 /* 3686 * Load in the correct multicast list now the flags have changed. 3687 */ 3688 3689 if ((old_flags ^ flags) & IFF_MULTICAST) 3690 dev_change_rx_flags(dev, IFF_MULTICAST); 3691 3692 dev_set_rx_mode(dev); 3693 3694 /* 3695 * Have we downed the interface. We handle IFF_UP ourselves 3696 * according to user attempts to set it, rather than blindly 3697 * setting it. 3698 */ 3699 3700 ret = 0; 3701 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */ 3702 ret = ((old_flags & IFF_UP) ? dev_close : dev_open)(dev); 3703 3704 if (!ret) 3705 dev_set_rx_mode(dev); 3706 } 3707 3708 if (dev->flags & IFF_UP && 3709 ((old_flags ^ dev->flags) &~ (IFF_UP | IFF_PROMISC | IFF_ALLMULTI | 3710 IFF_VOLATILE))) 3711 call_netdevice_notifiers(NETDEV_CHANGE, dev); 3712 3713 if ((flags ^ dev->gflags) & IFF_PROMISC) { 3714 int inc = (flags & IFF_PROMISC) ? +1 : -1; 3715 dev->gflags ^= IFF_PROMISC; 3716 dev_set_promiscuity(dev, inc); 3717 } 3718 3719 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 3720 is important. Some (broken) drivers set IFF_PROMISC, when 3721 IFF_ALLMULTI is requested not asking us and not reporting. 3722 */ 3723 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 3724 int inc = (flags & IFF_ALLMULTI) ? +1 : -1; 3725 dev->gflags ^= IFF_ALLMULTI; 3726 dev_set_allmulti(dev, inc); 3727 } 3728 3729 /* Exclude state transition flags, already notified */ 3730 changes = (old_flags ^ dev->flags) & ~(IFF_UP | IFF_RUNNING); 3731 if (changes) 3732 rtmsg_ifinfo(RTM_NEWLINK, dev, changes); 3733 3734 return ret; 3735 } 3736 3737 /** 3738 * dev_set_mtu - Change maximum transfer unit 3739 * @dev: device 3740 * @new_mtu: new transfer unit 3741 * 3742 * Change the maximum transfer size of the network device. 3743 */ 3744 int dev_set_mtu(struct net_device *dev, int new_mtu) 3745 { 3746 const struct net_device_ops *ops = dev->netdev_ops; 3747 int err; 3748 3749 if (new_mtu == dev->mtu) 3750 return 0; 3751 3752 /* MTU must be positive. */ 3753 if (new_mtu < 0) 3754 return -EINVAL; 3755 3756 if (!netif_device_present(dev)) 3757 return -ENODEV; 3758 3759 err = 0; 3760 if (ops->ndo_change_mtu) 3761 err = ops->ndo_change_mtu(dev, new_mtu); 3762 else 3763 dev->mtu = new_mtu; 3764 3765 if (!err && dev->flags & IFF_UP) 3766 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 3767 return err; 3768 } 3769 3770 /** 3771 * dev_set_mac_address - Change Media Access Control Address 3772 * @dev: device 3773 * @sa: new address 3774 * 3775 * Change the hardware (MAC) address of the device 3776 */ 3777 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa) 3778 { 3779 const struct net_device_ops *ops = dev->netdev_ops; 3780 int err; 3781 3782 if (!ops->ndo_set_mac_address) 3783 return -EOPNOTSUPP; 3784 if (sa->sa_family != dev->type) 3785 return -EINVAL; 3786 if (!netif_device_present(dev)) 3787 return -ENODEV; 3788 err = ops->ndo_set_mac_address(dev, sa); 3789 if (!err) 3790 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 3791 return err; 3792 } 3793 3794 /* 3795 * Perform the SIOCxIFxxx calls, inside read_lock(dev_base_lock) 3796 */ 3797 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd) 3798 { 3799 int err; 3800 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name); 3801 3802 if (!dev) 3803 return -ENODEV; 3804 3805 switch (cmd) { 3806 case SIOCGIFFLAGS: /* Get interface flags */ 3807 ifr->ifr_flags = dev_get_flags(dev); 3808 return 0; 3809 3810 case SIOCGIFMETRIC: /* Get the metric on the interface 3811 (currently unused) */ 3812 ifr->ifr_metric = 0; 3813 return 0; 3814 3815 case SIOCGIFMTU: /* Get the MTU of a device */ 3816 ifr->ifr_mtu = dev->mtu; 3817 return 0; 3818 3819 case SIOCGIFHWADDR: 3820 if (!dev->addr_len) 3821 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data); 3822 else 3823 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr, 3824 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len)); 3825 ifr->ifr_hwaddr.sa_family = dev->type; 3826 return 0; 3827 3828 case SIOCGIFSLAVE: 3829 err = -EINVAL; 3830 break; 3831 3832 case SIOCGIFMAP: 3833 ifr->ifr_map.mem_start = dev->mem_start; 3834 ifr->ifr_map.mem_end = dev->mem_end; 3835 ifr->ifr_map.base_addr = dev->base_addr; 3836 ifr->ifr_map.irq = dev->irq; 3837 ifr->ifr_map.dma = dev->dma; 3838 ifr->ifr_map.port = dev->if_port; 3839 return 0; 3840 3841 case SIOCGIFINDEX: 3842 ifr->ifr_ifindex = dev->ifindex; 3843 return 0; 3844 3845 case SIOCGIFTXQLEN: 3846 ifr->ifr_qlen = dev->tx_queue_len; 3847 return 0; 3848 3849 default: 3850 /* dev_ioctl() should ensure this case 3851 * is never reached 3852 */ 3853 WARN_ON(1); 3854 err = -EINVAL; 3855 break; 3856 3857 } 3858 return err; 3859 } 3860 3861 /* 3862 * Perform the SIOCxIFxxx calls, inside rtnl_lock() 3863 */ 3864 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd) 3865 { 3866 int err; 3867 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name); 3868 const struct net_device_ops *ops; 3869 3870 if (!dev) 3871 return -ENODEV; 3872 3873 ops = dev->netdev_ops; 3874 3875 switch (cmd) { 3876 case SIOCSIFFLAGS: /* Set interface flags */ 3877 return dev_change_flags(dev, ifr->ifr_flags); 3878 3879 case SIOCSIFMETRIC: /* Set the metric on the interface 3880 (currently unused) */ 3881 return -EOPNOTSUPP; 3882 3883 case SIOCSIFMTU: /* Set the MTU of a device */ 3884 return dev_set_mtu(dev, ifr->ifr_mtu); 3885 3886 case SIOCSIFHWADDR: 3887 return dev_set_mac_address(dev, &ifr->ifr_hwaddr); 3888 3889 case SIOCSIFHWBROADCAST: 3890 if (ifr->ifr_hwaddr.sa_family != dev->type) 3891 return -EINVAL; 3892 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data, 3893 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len)); 3894 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 3895 return 0; 3896 3897 case SIOCSIFMAP: 3898 if (ops->ndo_set_config) { 3899 if (!netif_device_present(dev)) 3900 return -ENODEV; 3901 return ops->ndo_set_config(dev, &ifr->ifr_map); 3902 } 3903 return -EOPNOTSUPP; 3904 3905 case SIOCADDMULTI: 3906 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) || 3907 ifr->ifr_hwaddr.sa_family != AF_UNSPEC) 3908 return -EINVAL; 3909 if (!netif_device_present(dev)) 3910 return -ENODEV; 3911 return dev_mc_add(dev, ifr->ifr_hwaddr.sa_data, 3912 dev->addr_len, 1); 3913 3914 case SIOCDELMULTI: 3915 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) || 3916 ifr->ifr_hwaddr.sa_family != AF_UNSPEC) 3917 return -EINVAL; 3918 if (!netif_device_present(dev)) 3919 return -ENODEV; 3920 return dev_mc_delete(dev, ifr->ifr_hwaddr.sa_data, 3921 dev->addr_len, 1); 3922 3923 case SIOCSIFTXQLEN: 3924 if (ifr->ifr_qlen < 0) 3925 return -EINVAL; 3926 dev->tx_queue_len = ifr->ifr_qlen; 3927 return 0; 3928 3929 case SIOCSIFNAME: 3930 ifr->ifr_newname[IFNAMSIZ-1] = '\0'; 3931 return dev_change_name(dev, ifr->ifr_newname); 3932 3933 /* 3934 * Unknown or private ioctl 3935 */ 3936 3937 default: 3938 if ((cmd >= SIOCDEVPRIVATE && 3939 cmd <= SIOCDEVPRIVATE + 15) || 3940 cmd == SIOCBONDENSLAVE || 3941 cmd == SIOCBONDRELEASE || 3942 cmd == SIOCBONDSETHWADDR || 3943 cmd == SIOCBONDSLAVEINFOQUERY || 3944 cmd == SIOCBONDINFOQUERY || 3945 cmd == SIOCBONDCHANGEACTIVE || 3946 cmd == SIOCGMIIPHY || 3947 cmd == SIOCGMIIREG || 3948 cmd == SIOCSMIIREG || 3949 cmd == SIOCBRADDIF || 3950 cmd == SIOCBRDELIF || 3951 cmd == SIOCWANDEV) { 3952 err = -EOPNOTSUPP; 3953 if (ops->ndo_do_ioctl) { 3954 if (netif_device_present(dev)) 3955 err = ops->ndo_do_ioctl(dev, ifr, cmd); 3956 else 3957 err = -ENODEV; 3958 } 3959 } else 3960 err = -EINVAL; 3961 3962 } 3963 return err; 3964 } 3965 3966 /* 3967 * This function handles all "interface"-type I/O control requests. The actual 3968 * 'doing' part of this is dev_ifsioc above. 3969 */ 3970 3971 /** 3972 * dev_ioctl - network device ioctl 3973 * @net: the applicable net namespace 3974 * @cmd: command to issue 3975 * @arg: pointer to a struct ifreq in user space 3976 * 3977 * Issue ioctl functions to devices. This is normally called by the 3978 * user space syscall interfaces but can sometimes be useful for 3979 * other purposes. The return value is the return from the syscall if 3980 * positive or a negative errno code on error. 3981 */ 3982 3983 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg) 3984 { 3985 struct ifreq ifr; 3986 int ret; 3987 char *colon; 3988 3989 /* One special case: SIOCGIFCONF takes ifconf argument 3990 and requires shared lock, because it sleeps writing 3991 to user space. 3992 */ 3993 3994 if (cmd == SIOCGIFCONF) { 3995 rtnl_lock(); 3996 ret = dev_ifconf(net, (char __user *) arg); 3997 rtnl_unlock(); 3998 return ret; 3999 } 4000 if (cmd == SIOCGIFNAME) 4001 return dev_ifname(net, (struct ifreq __user *)arg); 4002 4003 if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) 4004 return -EFAULT; 4005 4006 ifr.ifr_name[IFNAMSIZ-1] = 0; 4007 4008 colon = strchr(ifr.ifr_name, ':'); 4009 if (colon) 4010 *colon = 0; 4011 4012 /* 4013 * See which interface the caller is talking about. 4014 */ 4015 4016 switch (cmd) { 4017 /* 4018 * These ioctl calls: 4019 * - can be done by all. 4020 * - atomic and do not require locking. 4021 * - return a value 4022 */ 4023 case SIOCGIFFLAGS: 4024 case SIOCGIFMETRIC: 4025 case SIOCGIFMTU: 4026 case SIOCGIFHWADDR: 4027 case SIOCGIFSLAVE: 4028 case SIOCGIFMAP: 4029 case SIOCGIFINDEX: 4030 case SIOCGIFTXQLEN: 4031 dev_load(net, ifr.ifr_name); 4032 read_lock(&dev_base_lock); 4033 ret = dev_ifsioc_locked(net, &ifr, cmd); 4034 read_unlock(&dev_base_lock); 4035 if (!ret) { 4036 if (colon) 4037 *colon = ':'; 4038 if (copy_to_user(arg, &ifr, 4039 sizeof(struct ifreq))) 4040 ret = -EFAULT; 4041 } 4042 return ret; 4043 4044 case SIOCETHTOOL: 4045 dev_load(net, ifr.ifr_name); 4046 rtnl_lock(); 4047 ret = dev_ethtool(net, &ifr); 4048 rtnl_unlock(); 4049 if (!ret) { 4050 if (colon) 4051 *colon = ':'; 4052 if (copy_to_user(arg, &ifr, 4053 sizeof(struct ifreq))) 4054 ret = -EFAULT; 4055 } 4056 return ret; 4057 4058 /* 4059 * These ioctl calls: 4060 * - require superuser power. 4061 * - require strict serialization. 4062 * - return a value 4063 */ 4064 case SIOCGMIIPHY: 4065 case SIOCGMIIREG: 4066 case SIOCSIFNAME: 4067 if (!capable(CAP_NET_ADMIN)) 4068 return -EPERM; 4069 dev_load(net, ifr.ifr_name); 4070 rtnl_lock(); 4071 ret = dev_ifsioc(net, &ifr, cmd); 4072 rtnl_unlock(); 4073 if (!ret) { 4074 if (colon) 4075 *colon = ':'; 4076 if (copy_to_user(arg, &ifr, 4077 sizeof(struct ifreq))) 4078 ret = -EFAULT; 4079 } 4080 return ret; 4081 4082 /* 4083 * These ioctl calls: 4084 * - require superuser power. 4085 * - require strict serialization. 4086 * - do not return a value 4087 */ 4088 case SIOCSIFFLAGS: 4089 case SIOCSIFMETRIC: 4090 case SIOCSIFMTU: 4091 case SIOCSIFMAP: 4092 case SIOCSIFHWADDR: 4093 case SIOCSIFSLAVE: 4094 case SIOCADDMULTI: 4095 case SIOCDELMULTI: 4096 case SIOCSIFHWBROADCAST: 4097 case SIOCSIFTXQLEN: 4098 case SIOCSMIIREG: 4099 case SIOCBONDENSLAVE: 4100 case SIOCBONDRELEASE: 4101 case SIOCBONDSETHWADDR: 4102 case SIOCBONDCHANGEACTIVE: 4103 case SIOCBRADDIF: 4104 case SIOCBRDELIF: 4105 if (!capable(CAP_NET_ADMIN)) 4106 return -EPERM; 4107 /* fall through */ 4108 case SIOCBONDSLAVEINFOQUERY: 4109 case SIOCBONDINFOQUERY: 4110 dev_load(net, ifr.ifr_name); 4111 rtnl_lock(); 4112 ret = dev_ifsioc(net, &ifr, cmd); 4113 rtnl_unlock(); 4114 return ret; 4115 4116 case SIOCGIFMEM: 4117 /* Get the per device memory space. We can add this but 4118 * currently do not support it */ 4119 case SIOCSIFMEM: 4120 /* Set the per device memory buffer space. 4121 * Not applicable in our case */ 4122 case SIOCSIFLINK: 4123 return -EINVAL; 4124 4125 /* 4126 * Unknown or private ioctl. 4127 */ 4128 default: 4129 if (cmd == SIOCWANDEV || 4130 (cmd >= SIOCDEVPRIVATE && 4131 cmd <= SIOCDEVPRIVATE + 15)) { 4132 dev_load(net, ifr.ifr_name); 4133 rtnl_lock(); 4134 ret = dev_ifsioc(net, &ifr, cmd); 4135 rtnl_unlock(); 4136 if (!ret && copy_to_user(arg, &ifr, 4137 sizeof(struct ifreq))) 4138 ret = -EFAULT; 4139 return ret; 4140 } 4141 /* Take care of Wireless Extensions */ 4142 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) 4143 return wext_handle_ioctl(net, &ifr, cmd, arg); 4144 return -EINVAL; 4145 } 4146 } 4147 4148 4149 /** 4150 * dev_new_index - allocate an ifindex 4151 * @net: the applicable net namespace 4152 * 4153 * Returns a suitable unique value for a new device interface 4154 * number. The caller must hold the rtnl semaphore or the 4155 * dev_base_lock to be sure it remains unique. 4156 */ 4157 static int dev_new_index(struct net *net) 4158 { 4159 static int ifindex; 4160 for (;;) { 4161 if (++ifindex <= 0) 4162 ifindex = 1; 4163 if (!__dev_get_by_index(net, ifindex)) 4164 return ifindex; 4165 } 4166 } 4167 4168 /* Delayed registration/unregisteration */ 4169 static LIST_HEAD(net_todo_list); 4170 4171 static void net_set_todo(struct net_device *dev) 4172 { 4173 list_add_tail(&dev->todo_list, &net_todo_list); 4174 } 4175 4176 static void rollback_registered(struct net_device *dev) 4177 { 4178 BUG_ON(dev_boot_phase); 4179 ASSERT_RTNL(); 4180 4181 /* Some devices call without registering for initialization unwind. */ 4182 if (dev->reg_state == NETREG_UNINITIALIZED) { 4183 printk(KERN_DEBUG "unregister_netdevice: device %s/%p never " 4184 "was registered\n", dev->name, dev); 4185 4186 WARN_ON(1); 4187 return; 4188 } 4189 4190 BUG_ON(dev->reg_state != NETREG_REGISTERED); 4191 4192 /* If device is running, close it first. */ 4193 dev_close(dev); 4194 4195 /* And unlink it from device chain. */ 4196 unlist_netdevice(dev); 4197 4198 dev->reg_state = NETREG_UNREGISTERING; 4199 4200 synchronize_net(); 4201 4202 /* Shutdown queueing discipline. */ 4203 dev_shutdown(dev); 4204 4205 4206 /* Notify protocols, that we are about to destroy 4207 this device. They should clean all the things. 4208 */ 4209 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 4210 4211 /* 4212 * Flush the unicast and multicast chains 4213 */ 4214 dev_addr_discard(dev); 4215 4216 if (dev->netdev_ops->ndo_uninit) 4217 dev->netdev_ops->ndo_uninit(dev); 4218 4219 /* Notifier chain MUST detach us from master device. */ 4220 WARN_ON(dev->master); 4221 4222 /* Remove entries from kobject tree */ 4223 netdev_unregister_kobject(dev); 4224 4225 synchronize_net(); 4226 4227 dev_put(dev); 4228 } 4229 4230 static void __netdev_init_queue_locks_one(struct net_device *dev, 4231 struct netdev_queue *dev_queue, 4232 void *_unused) 4233 { 4234 spin_lock_init(&dev_queue->_xmit_lock); 4235 netdev_set_xmit_lockdep_class(&dev_queue->_xmit_lock, dev->type); 4236 dev_queue->xmit_lock_owner = -1; 4237 } 4238 4239 static void netdev_init_queue_locks(struct net_device *dev) 4240 { 4241 netdev_for_each_tx_queue(dev, __netdev_init_queue_locks_one, NULL); 4242 __netdev_init_queue_locks_one(dev, &dev->rx_queue, NULL); 4243 } 4244 4245 unsigned long netdev_fix_features(unsigned long features, const char *name) 4246 { 4247 /* Fix illegal SG+CSUM combinations. */ 4248 if ((features & NETIF_F_SG) && 4249 !(features & NETIF_F_ALL_CSUM)) { 4250 if (name) 4251 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no " 4252 "checksum feature.\n", name); 4253 features &= ~NETIF_F_SG; 4254 } 4255 4256 /* TSO requires that SG is present as well. */ 4257 if ((features & NETIF_F_TSO) && !(features & NETIF_F_SG)) { 4258 if (name) 4259 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no " 4260 "SG feature.\n", name); 4261 features &= ~NETIF_F_TSO; 4262 } 4263 4264 if (features & NETIF_F_UFO) { 4265 if (!(features & NETIF_F_GEN_CSUM)) { 4266 if (name) 4267 printk(KERN_ERR "%s: Dropping NETIF_F_UFO " 4268 "since no NETIF_F_HW_CSUM feature.\n", 4269 name); 4270 features &= ~NETIF_F_UFO; 4271 } 4272 4273 if (!(features & NETIF_F_SG)) { 4274 if (name) 4275 printk(KERN_ERR "%s: Dropping NETIF_F_UFO " 4276 "since no NETIF_F_SG feature.\n", name); 4277 features &= ~NETIF_F_UFO; 4278 } 4279 } 4280 4281 return features; 4282 } 4283 EXPORT_SYMBOL(netdev_fix_features); 4284 4285 /** 4286 * register_netdevice - register a network device 4287 * @dev: device to register 4288 * 4289 * Take a completed network device structure and add it to the kernel 4290 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 4291 * chain. 0 is returned on success. A negative errno code is returned 4292 * on a failure to set up the device, or if the name is a duplicate. 4293 * 4294 * Callers must hold the rtnl semaphore. You may want 4295 * register_netdev() instead of this. 4296 * 4297 * BUGS: 4298 * The locking appears insufficient to guarantee two parallel registers 4299 * will not get the same name. 4300 */ 4301 4302 int register_netdevice(struct net_device *dev) 4303 { 4304 struct hlist_head *head; 4305 struct hlist_node *p; 4306 int ret; 4307 struct net *net = dev_net(dev); 4308 4309 BUG_ON(dev_boot_phase); 4310 ASSERT_RTNL(); 4311 4312 might_sleep(); 4313 4314 /* When net_device's are persistent, this will be fatal. */ 4315 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 4316 BUG_ON(!net); 4317 4318 spin_lock_init(&dev->addr_list_lock); 4319 netdev_set_addr_lockdep_class(dev); 4320 netdev_init_queue_locks(dev); 4321 4322 dev->iflink = -1; 4323 4324 #ifdef CONFIG_COMPAT_NET_DEV_OPS 4325 /* Netdevice_ops API compatiability support. 4326 * This is temporary until all network devices are converted. 4327 */ 4328 if (dev->netdev_ops) { 4329 const struct net_device_ops *ops = dev->netdev_ops; 4330 4331 dev->init = ops->ndo_init; 4332 dev->uninit = ops->ndo_uninit; 4333 dev->open = ops->ndo_open; 4334 dev->change_rx_flags = ops->ndo_change_rx_flags; 4335 dev->set_rx_mode = ops->ndo_set_rx_mode; 4336 dev->set_multicast_list = ops->ndo_set_multicast_list; 4337 dev->set_mac_address = ops->ndo_set_mac_address; 4338 dev->validate_addr = ops->ndo_validate_addr; 4339 dev->do_ioctl = ops->ndo_do_ioctl; 4340 dev->set_config = ops->ndo_set_config; 4341 dev->change_mtu = ops->ndo_change_mtu; 4342 dev->tx_timeout = ops->ndo_tx_timeout; 4343 dev->get_stats = ops->ndo_get_stats; 4344 dev->vlan_rx_register = ops->ndo_vlan_rx_register; 4345 dev->vlan_rx_add_vid = ops->ndo_vlan_rx_add_vid; 4346 dev->vlan_rx_kill_vid = ops->ndo_vlan_rx_kill_vid; 4347 #ifdef CONFIG_NET_POLL_CONTROLLER 4348 dev->poll_controller = ops->ndo_poll_controller; 4349 #endif 4350 } else { 4351 char drivername[64]; 4352 pr_info("%s (%s): not using net_device_ops yet\n", 4353 dev->name, netdev_drivername(dev, drivername, 64)); 4354 4355 /* This works only because net_device_ops and the 4356 compatiablity structure are the same. */ 4357 dev->netdev_ops = (void *) &(dev->init); 4358 } 4359 #endif 4360 4361 /* Init, if this function is available */ 4362 if (dev->netdev_ops->ndo_init) { 4363 ret = dev->netdev_ops->ndo_init(dev); 4364 if (ret) { 4365 if (ret > 0) 4366 ret = -EIO; 4367 goto out; 4368 } 4369 } 4370 4371 if (!dev_valid_name(dev->name)) { 4372 ret = -EINVAL; 4373 goto err_uninit; 4374 } 4375 4376 dev->ifindex = dev_new_index(net); 4377 if (dev->iflink == -1) 4378 dev->iflink = dev->ifindex; 4379 4380 /* Check for existence of name */ 4381 head = dev_name_hash(net, dev->name); 4382 hlist_for_each(p, head) { 4383 struct net_device *d 4384 = hlist_entry(p, struct net_device, name_hlist); 4385 if (!strncmp(d->name, dev->name, IFNAMSIZ)) { 4386 ret = -EEXIST; 4387 goto err_uninit; 4388 } 4389 } 4390 4391 /* Fix illegal checksum combinations */ 4392 if ((dev->features & NETIF_F_HW_CSUM) && 4393 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 4394 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n", 4395 dev->name); 4396 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 4397 } 4398 4399 if ((dev->features & NETIF_F_NO_CSUM) && 4400 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 4401 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n", 4402 dev->name); 4403 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM); 4404 } 4405 4406 dev->features = netdev_fix_features(dev->features, dev->name); 4407 4408 /* Enable software GSO if SG is supported. */ 4409 if (dev->features & NETIF_F_SG) 4410 dev->features |= NETIF_F_GSO; 4411 4412 netdev_initialize_kobject(dev); 4413 ret = netdev_register_kobject(dev); 4414 if (ret) 4415 goto err_uninit; 4416 dev->reg_state = NETREG_REGISTERED; 4417 4418 /* 4419 * Default initial state at registry is that the 4420 * device is present. 4421 */ 4422 4423 set_bit(__LINK_STATE_PRESENT, &dev->state); 4424 4425 dev_init_scheduler(dev); 4426 dev_hold(dev); 4427 list_netdevice(dev); 4428 4429 /* Notify protocols, that a new device appeared. */ 4430 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 4431 ret = notifier_to_errno(ret); 4432 if (ret) { 4433 rollback_registered(dev); 4434 dev->reg_state = NETREG_UNREGISTERED; 4435 } 4436 4437 out: 4438 return ret; 4439 4440 err_uninit: 4441 if (dev->netdev_ops->ndo_uninit) 4442 dev->netdev_ops->ndo_uninit(dev); 4443 goto out; 4444 } 4445 4446 /** 4447 * init_dummy_netdev - init a dummy network device for NAPI 4448 * @dev: device to init 4449 * 4450 * This takes a network device structure and initialize the minimum 4451 * amount of fields so it can be used to schedule NAPI polls without 4452 * registering a full blown interface. This is to be used by drivers 4453 * that need to tie several hardware interfaces to a single NAPI 4454 * poll scheduler due to HW limitations. 4455 */ 4456 int init_dummy_netdev(struct net_device *dev) 4457 { 4458 /* Clear everything. Note we don't initialize spinlocks 4459 * are they aren't supposed to be taken by any of the 4460 * NAPI code and this dummy netdev is supposed to be 4461 * only ever used for NAPI polls 4462 */ 4463 memset(dev, 0, sizeof(struct net_device)); 4464 4465 /* make sure we BUG if trying to hit standard 4466 * register/unregister code path 4467 */ 4468 dev->reg_state = NETREG_DUMMY; 4469 4470 /* initialize the ref count */ 4471 atomic_set(&dev->refcnt, 1); 4472 4473 /* NAPI wants this */ 4474 INIT_LIST_HEAD(&dev->napi_list); 4475 4476 /* a dummy interface is started by default */ 4477 set_bit(__LINK_STATE_PRESENT, &dev->state); 4478 set_bit(__LINK_STATE_START, &dev->state); 4479 4480 return 0; 4481 } 4482 EXPORT_SYMBOL_GPL(init_dummy_netdev); 4483 4484 4485 /** 4486 * register_netdev - register a network device 4487 * @dev: device to register 4488 * 4489 * Take a completed network device structure and add it to the kernel 4490 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 4491 * chain. 0 is returned on success. A negative errno code is returned 4492 * on a failure to set up the device, or if the name is a duplicate. 4493 * 4494 * This is a wrapper around register_netdevice that takes the rtnl semaphore 4495 * and expands the device name if you passed a format string to 4496 * alloc_netdev. 4497 */ 4498 int register_netdev(struct net_device *dev) 4499 { 4500 int err; 4501 4502 rtnl_lock(); 4503 4504 /* 4505 * If the name is a format string the caller wants us to do a 4506 * name allocation. 4507 */ 4508 if (strchr(dev->name, '%')) { 4509 err = dev_alloc_name(dev, dev->name); 4510 if (err < 0) 4511 goto out; 4512 } 4513 4514 err = register_netdevice(dev); 4515 out: 4516 rtnl_unlock(); 4517 return err; 4518 } 4519 EXPORT_SYMBOL(register_netdev); 4520 4521 /* 4522 * netdev_wait_allrefs - wait until all references are gone. 4523 * 4524 * This is called when unregistering network devices. 4525 * 4526 * Any protocol or device that holds a reference should register 4527 * for netdevice notification, and cleanup and put back the 4528 * reference if they receive an UNREGISTER event. 4529 * We can get stuck here if buggy protocols don't correctly 4530 * call dev_put. 4531 */ 4532 static void netdev_wait_allrefs(struct net_device *dev) 4533 { 4534 unsigned long rebroadcast_time, warning_time; 4535 4536 rebroadcast_time = warning_time = jiffies; 4537 while (atomic_read(&dev->refcnt) != 0) { 4538 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 4539 rtnl_lock(); 4540 4541 /* Rebroadcast unregister notification */ 4542 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 4543 4544 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 4545 &dev->state)) { 4546 /* We must not have linkwatch events 4547 * pending on unregister. If this 4548 * happens, we simply run the queue 4549 * unscheduled, resulting in a noop 4550 * for this device. 4551 */ 4552 linkwatch_run_queue(); 4553 } 4554 4555 __rtnl_unlock(); 4556 4557 rebroadcast_time = jiffies; 4558 } 4559 4560 msleep(250); 4561 4562 if (time_after(jiffies, warning_time + 10 * HZ)) { 4563 printk(KERN_EMERG "unregister_netdevice: " 4564 "waiting for %s to become free. Usage " 4565 "count = %d\n", 4566 dev->name, atomic_read(&dev->refcnt)); 4567 warning_time = jiffies; 4568 } 4569 } 4570 } 4571 4572 /* The sequence is: 4573 * 4574 * rtnl_lock(); 4575 * ... 4576 * register_netdevice(x1); 4577 * register_netdevice(x2); 4578 * ... 4579 * unregister_netdevice(y1); 4580 * unregister_netdevice(y2); 4581 * ... 4582 * rtnl_unlock(); 4583 * free_netdev(y1); 4584 * free_netdev(y2); 4585 * 4586 * We are invoked by rtnl_unlock(). 4587 * This allows us to deal with problems: 4588 * 1) We can delete sysfs objects which invoke hotplug 4589 * without deadlocking with linkwatch via keventd. 4590 * 2) Since we run with the RTNL semaphore not held, we can sleep 4591 * safely in order to wait for the netdev refcnt to drop to zero. 4592 * 4593 * We must not return until all unregister events added during 4594 * the interval the lock was held have been completed. 4595 */ 4596 void netdev_run_todo(void) 4597 { 4598 struct list_head list; 4599 4600 /* Snapshot list, allow later requests */ 4601 list_replace_init(&net_todo_list, &list); 4602 4603 __rtnl_unlock(); 4604 4605 while (!list_empty(&list)) { 4606 struct net_device *dev 4607 = list_entry(list.next, struct net_device, todo_list); 4608 list_del(&dev->todo_list); 4609 4610 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 4611 printk(KERN_ERR "network todo '%s' but state %d\n", 4612 dev->name, dev->reg_state); 4613 dump_stack(); 4614 continue; 4615 } 4616 4617 dev->reg_state = NETREG_UNREGISTERED; 4618 4619 on_each_cpu(flush_backlog, dev, 1); 4620 4621 netdev_wait_allrefs(dev); 4622 4623 /* paranoia */ 4624 BUG_ON(atomic_read(&dev->refcnt)); 4625 WARN_ON(dev->ip_ptr); 4626 WARN_ON(dev->ip6_ptr); 4627 WARN_ON(dev->dn_ptr); 4628 4629 if (dev->destructor) 4630 dev->destructor(dev); 4631 4632 /* Free network device */ 4633 kobject_put(&dev->dev.kobj); 4634 } 4635 } 4636 4637 /** 4638 * dev_get_stats - get network device statistics 4639 * @dev: device to get statistics from 4640 * 4641 * Get network statistics from device. The device driver may provide 4642 * its own method by setting dev->netdev_ops->get_stats; otherwise 4643 * the internal statistics structure is used. 4644 */ 4645 const struct net_device_stats *dev_get_stats(struct net_device *dev) 4646 { 4647 const struct net_device_ops *ops = dev->netdev_ops; 4648 4649 if (ops->ndo_get_stats) 4650 return ops->ndo_get_stats(dev); 4651 else 4652 return &dev->stats; 4653 } 4654 EXPORT_SYMBOL(dev_get_stats); 4655 4656 static void netdev_init_one_queue(struct net_device *dev, 4657 struct netdev_queue *queue, 4658 void *_unused) 4659 { 4660 queue->dev = dev; 4661 } 4662 4663 static void netdev_init_queues(struct net_device *dev) 4664 { 4665 netdev_init_one_queue(dev, &dev->rx_queue, NULL); 4666 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 4667 spin_lock_init(&dev->tx_global_lock); 4668 } 4669 4670 /** 4671 * alloc_netdev_mq - allocate network device 4672 * @sizeof_priv: size of private data to allocate space for 4673 * @name: device name format string 4674 * @setup: callback to initialize device 4675 * @queue_count: the number of subqueues to allocate 4676 * 4677 * Allocates a struct net_device with private data area for driver use 4678 * and performs basic initialization. Also allocates subquue structs 4679 * for each queue on the device at the end of the netdevice. 4680 */ 4681 struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name, 4682 void (*setup)(struct net_device *), unsigned int queue_count) 4683 { 4684 struct netdev_queue *tx; 4685 struct net_device *dev; 4686 size_t alloc_size; 4687 void *p; 4688 4689 BUG_ON(strlen(name) >= sizeof(dev->name)); 4690 4691 alloc_size = sizeof(struct net_device); 4692 if (sizeof_priv) { 4693 /* ensure 32-byte alignment of private area */ 4694 alloc_size = (alloc_size + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST; 4695 alloc_size += sizeof_priv; 4696 } 4697 /* ensure 32-byte alignment of whole construct */ 4698 alloc_size += NETDEV_ALIGN_CONST; 4699 4700 p = kzalloc(alloc_size, GFP_KERNEL); 4701 if (!p) { 4702 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n"); 4703 return NULL; 4704 } 4705 4706 tx = kcalloc(queue_count, sizeof(struct netdev_queue), GFP_KERNEL); 4707 if (!tx) { 4708 printk(KERN_ERR "alloc_netdev: Unable to allocate " 4709 "tx qdiscs.\n"); 4710 kfree(p); 4711 return NULL; 4712 } 4713 4714 dev = (struct net_device *) 4715 (((long)p + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST); 4716 dev->padded = (char *)dev - (char *)p; 4717 dev_net_set(dev, &init_net); 4718 4719 dev->_tx = tx; 4720 dev->num_tx_queues = queue_count; 4721 dev->real_num_tx_queues = queue_count; 4722 4723 dev->gso_max_size = GSO_MAX_SIZE; 4724 4725 netdev_init_queues(dev); 4726 4727 INIT_LIST_HEAD(&dev->napi_list); 4728 setup(dev); 4729 strcpy(dev->name, name); 4730 return dev; 4731 } 4732 EXPORT_SYMBOL(alloc_netdev_mq); 4733 4734 /** 4735 * free_netdev - free network device 4736 * @dev: device 4737 * 4738 * This function does the last stage of destroying an allocated device 4739 * interface. The reference to the device object is released. 4740 * If this is the last reference then it will be freed. 4741 */ 4742 void free_netdev(struct net_device *dev) 4743 { 4744 struct napi_struct *p, *n; 4745 4746 release_net(dev_net(dev)); 4747 4748 kfree(dev->_tx); 4749 4750 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 4751 netif_napi_del(p); 4752 4753 /* Compatibility with error handling in drivers */ 4754 if (dev->reg_state == NETREG_UNINITIALIZED) { 4755 kfree((char *)dev - dev->padded); 4756 return; 4757 } 4758 4759 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 4760 dev->reg_state = NETREG_RELEASED; 4761 4762 /* will free via device release */ 4763 put_device(&dev->dev); 4764 } 4765 4766 /** 4767 * synchronize_net - Synchronize with packet receive processing 4768 * 4769 * Wait for packets currently being received to be done. 4770 * Does not block later packets from starting. 4771 */ 4772 void synchronize_net(void) 4773 { 4774 might_sleep(); 4775 synchronize_rcu(); 4776 } 4777 4778 /** 4779 * unregister_netdevice - remove device from the kernel 4780 * @dev: device 4781 * 4782 * This function shuts down a device interface and removes it 4783 * from the kernel tables. 4784 * 4785 * Callers must hold the rtnl semaphore. You may want 4786 * unregister_netdev() instead of this. 4787 */ 4788 4789 void unregister_netdevice(struct net_device *dev) 4790 { 4791 ASSERT_RTNL(); 4792 4793 rollback_registered(dev); 4794 /* Finish processing unregister after unlock */ 4795 net_set_todo(dev); 4796 } 4797 4798 /** 4799 * unregister_netdev - remove device from the kernel 4800 * @dev: device 4801 * 4802 * This function shuts down a device interface and removes it 4803 * from the kernel tables. 4804 * 4805 * This is just a wrapper for unregister_netdevice that takes 4806 * the rtnl semaphore. In general you want to use this and not 4807 * unregister_netdevice. 4808 */ 4809 void unregister_netdev(struct net_device *dev) 4810 { 4811 rtnl_lock(); 4812 unregister_netdevice(dev); 4813 rtnl_unlock(); 4814 } 4815 4816 EXPORT_SYMBOL(unregister_netdev); 4817 4818 /** 4819 * dev_change_net_namespace - move device to different nethost namespace 4820 * @dev: device 4821 * @net: network namespace 4822 * @pat: If not NULL name pattern to try if the current device name 4823 * is already taken in the destination network namespace. 4824 * 4825 * This function shuts down a device interface and moves it 4826 * to a new network namespace. On success 0 is returned, on 4827 * a failure a netagive errno code is returned. 4828 * 4829 * Callers must hold the rtnl semaphore. 4830 */ 4831 4832 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 4833 { 4834 char buf[IFNAMSIZ]; 4835 const char *destname; 4836 int err; 4837 4838 ASSERT_RTNL(); 4839 4840 /* Don't allow namespace local devices to be moved. */ 4841 err = -EINVAL; 4842 if (dev->features & NETIF_F_NETNS_LOCAL) 4843 goto out; 4844 4845 #ifdef CONFIG_SYSFS 4846 /* Don't allow real devices to be moved when sysfs 4847 * is enabled. 4848 */ 4849 err = -EINVAL; 4850 if (dev->dev.parent) 4851 goto out; 4852 #endif 4853 4854 /* Ensure the device has been registrered */ 4855 err = -EINVAL; 4856 if (dev->reg_state != NETREG_REGISTERED) 4857 goto out; 4858 4859 /* Get out if there is nothing todo */ 4860 err = 0; 4861 if (net_eq(dev_net(dev), net)) 4862 goto out; 4863 4864 /* Pick the destination device name, and ensure 4865 * we can use it in the destination network namespace. 4866 */ 4867 err = -EEXIST; 4868 destname = dev->name; 4869 if (__dev_get_by_name(net, destname)) { 4870 /* We get here if we can't use the current device name */ 4871 if (!pat) 4872 goto out; 4873 if (!dev_valid_name(pat)) 4874 goto out; 4875 if (strchr(pat, '%')) { 4876 if (__dev_alloc_name(net, pat, buf) < 0) 4877 goto out; 4878 destname = buf; 4879 } else 4880 destname = pat; 4881 if (__dev_get_by_name(net, destname)) 4882 goto out; 4883 } 4884 4885 /* 4886 * And now a mini version of register_netdevice unregister_netdevice. 4887 */ 4888 4889 /* If device is running close it first. */ 4890 dev_close(dev); 4891 4892 /* And unlink it from device chain */ 4893 err = -ENODEV; 4894 unlist_netdevice(dev); 4895 4896 synchronize_net(); 4897 4898 /* Shutdown queueing discipline. */ 4899 dev_shutdown(dev); 4900 4901 /* Notify protocols, that we are about to destroy 4902 this device. They should clean all the things. 4903 */ 4904 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 4905 4906 /* 4907 * Flush the unicast and multicast chains 4908 */ 4909 dev_addr_discard(dev); 4910 4911 netdev_unregister_kobject(dev); 4912 4913 /* Actually switch the network namespace */ 4914 dev_net_set(dev, net); 4915 4916 /* Assign the new device name */ 4917 if (destname != dev->name) 4918 strcpy(dev->name, destname); 4919 4920 /* If there is an ifindex conflict assign a new one */ 4921 if (__dev_get_by_index(net, dev->ifindex)) { 4922 int iflink = (dev->iflink == dev->ifindex); 4923 dev->ifindex = dev_new_index(net); 4924 if (iflink) 4925 dev->iflink = dev->ifindex; 4926 } 4927 4928 /* Fixup kobjects */ 4929 err = netdev_register_kobject(dev); 4930 WARN_ON(err); 4931 4932 /* Add the device back in the hashes */ 4933 list_netdevice(dev); 4934 4935 /* Notify protocols, that a new device appeared. */ 4936 call_netdevice_notifiers(NETDEV_REGISTER, dev); 4937 4938 synchronize_net(); 4939 err = 0; 4940 out: 4941 return err; 4942 } 4943 4944 static int dev_cpu_callback(struct notifier_block *nfb, 4945 unsigned long action, 4946 void *ocpu) 4947 { 4948 struct sk_buff **list_skb; 4949 struct Qdisc **list_net; 4950 struct sk_buff *skb; 4951 unsigned int cpu, oldcpu = (unsigned long)ocpu; 4952 struct softnet_data *sd, *oldsd; 4953 4954 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN) 4955 return NOTIFY_OK; 4956 4957 local_irq_disable(); 4958 cpu = smp_processor_id(); 4959 sd = &per_cpu(softnet_data, cpu); 4960 oldsd = &per_cpu(softnet_data, oldcpu); 4961 4962 /* Find end of our completion_queue. */ 4963 list_skb = &sd->completion_queue; 4964 while (*list_skb) 4965 list_skb = &(*list_skb)->next; 4966 /* Append completion queue from offline CPU. */ 4967 *list_skb = oldsd->completion_queue; 4968 oldsd->completion_queue = NULL; 4969 4970 /* Find end of our output_queue. */ 4971 list_net = &sd->output_queue; 4972 while (*list_net) 4973 list_net = &(*list_net)->next_sched; 4974 /* Append output queue from offline CPU. */ 4975 *list_net = oldsd->output_queue; 4976 oldsd->output_queue = NULL; 4977 4978 raise_softirq_irqoff(NET_TX_SOFTIRQ); 4979 local_irq_enable(); 4980 4981 /* Process offline CPU's input_pkt_queue */ 4982 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) 4983 netif_rx(skb); 4984 4985 return NOTIFY_OK; 4986 } 4987 4988 4989 /** 4990 * netdev_increment_features - increment feature set by one 4991 * @all: current feature set 4992 * @one: new feature set 4993 * @mask: mask feature set 4994 * 4995 * Computes a new feature set after adding a device with feature set 4996 * @one to the master device with current feature set @all. Will not 4997 * enable anything that is off in @mask. Returns the new feature set. 4998 */ 4999 unsigned long netdev_increment_features(unsigned long all, unsigned long one, 5000 unsigned long mask) 5001 { 5002 /* If device needs checksumming, downgrade to it. */ 5003 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM)) 5004 all ^= NETIF_F_NO_CSUM | (one & NETIF_F_ALL_CSUM); 5005 else if (mask & NETIF_F_ALL_CSUM) { 5006 /* If one device supports v4/v6 checksumming, set for all. */ 5007 if (one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM) && 5008 !(all & NETIF_F_GEN_CSUM)) { 5009 all &= ~NETIF_F_ALL_CSUM; 5010 all |= one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM); 5011 } 5012 5013 /* If one device supports hw checksumming, set for all. */ 5014 if (one & NETIF_F_GEN_CSUM && !(all & NETIF_F_GEN_CSUM)) { 5015 all &= ~NETIF_F_ALL_CSUM; 5016 all |= NETIF_F_HW_CSUM; 5017 } 5018 } 5019 5020 one |= NETIF_F_ALL_CSUM; 5021 5022 one |= all & NETIF_F_ONE_FOR_ALL; 5023 all &= one | NETIF_F_LLTX | NETIF_F_GSO; 5024 all |= one & mask & NETIF_F_ONE_FOR_ALL; 5025 5026 return all; 5027 } 5028 EXPORT_SYMBOL(netdev_increment_features); 5029 5030 static struct hlist_head *netdev_create_hash(void) 5031 { 5032 int i; 5033 struct hlist_head *hash; 5034 5035 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL); 5036 if (hash != NULL) 5037 for (i = 0; i < NETDEV_HASHENTRIES; i++) 5038 INIT_HLIST_HEAD(&hash[i]); 5039 5040 return hash; 5041 } 5042 5043 /* Initialize per network namespace state */ 5044 static int __net_init netdev_init(struct net *net) 5045 { 5046 INIT_LIST_HEAD(&net->dev_base_head); 5047 5048 net->dev_name_head = netdev_create_hash(); 5049 if (net->dev_name_head == NULL) 5050 goto err_name; 5051 5052 net->dev_index_head = netdev_create_hash(); 5053 if (net->dev_index_head == NULL) 5054 goto err_idx; 5055 5056 return 0; 5057 5058 err_idx: 5059 kfree(net->dev_name_head); 5060 err_name: 5061 return -ENOMEM; 5062 } 5063 5064 /** 5065 * netdev_drivername - network driver for the device 5066 * @dev: network device 5067 * @buffer: buffer for resulting name 5068 * @len: size of buffer 5069 * 5070 * Determine network driver for device. 5071 */ 5072 char *netdev_drivername(const struct net_device *dev, char *buffer, int len) 5073 { 5074 const struct device_driver *driver; 5075 const struct device *parent; 5076 5077 if (len <= 0 || !buffer) 5078 return buffer; 5079 buffer[0] = 0; 5080 5081 parent = dev->dev.parent; 5082 5083 if (!parent) 5084 return buffer; 5085 5086 driver = parent->driver; 5087 if (driver && driver->name) 5088 strlcpy(buffer, driver->name, len); 5089 return buffer; 5090 } 5091 5092 static void __net_exit netdev_exit(struct net *net) 5093 { 5094 kfree(net->dev_name_head); 5095 kfree(net->dev_index_head); 5096 } 5097 5098 static struct pernet_operations __net_initdata netdev_net_ops = { 5099 .init = netdev_init, 5100 .exit = netdev_exit, 5101 }; 5102 5103 static void __net_exit default_device_exit(struct net *net) 5104 { 5105 struct net_device *dev; 5106 /* 5107 * Push all migratable of the network devices back to the 5108 * initial network namespace 5109 */ 5110 rtnl_lock(); 5111 restart: 5112 for_each_netdev(net, dev) { 5113 int err; 5114 char fb_name[IFNAMSIZ]; 5115 5116 /* Ignore unmoveable devices (i.e. loopback) */ 5117 if (dev->features & NETIF_F_NETNS_LOCAL) 5118 continue; 5119 5120 /* Delete virtual devices */ 5121 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) { 5122 dev->rtnl_link_ops->dellink(dev); 5123 goto restart; 5124 } 5125 5126 /* Push remaing network devices to init_net */ 5127 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 5128 err = dev_change_net_namespace(dev, &init_net, fb_name); 5129 if (err) { 5130 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n", 5131 __func__, dev->name, err); 5132 BUG(); 5133 } 5134 goto restart; 5135 } 5136 rtnl_unlock(); 5137 } 5138 5139 static struct pernet_operations __net_initdata default_device_ops = { 5140 .exit = default_device_exit, 5141 }; 5142 5143 /* 5144 * Initialize the DEV module. At boot time this walks the device list and 5145 * unhooks any devices that fail to initialise (normally hardware not 5146 * present) and leaves us with a valid list of present and active devices. 5147 * 5148 */ 5149 5150 /* 5151 * This is called single threaded during boot, so no need 5152 * to take the rtnl semaphore. 5153 */ 5154 static int __init net_dev_init(void) 5155 { 5156 int i, rc = -ENOMEM; 5157 5158 BUG_ON(!dev_boot_phase); 5159 5160 if (dev_proc_init()) 5161 goto out; 5162 5163 if (netdev_kobject_init()) 5164 goto out; 5165 5166 INIT_LIST_HEAD(&ptype_all); 5167 for (i = 0; i < PTYPE_HASH_SIZE; i++) 5168 INIT_LIST_HEAD(&ptype_base[i]); 5169 5170 if (register_pernet_subsys(&netdev_net_ops)) 5171 goto out; 5172 5173 /* 5174 * Initialise the packet receive queues. 5175 */ 5176 5177 for_each_possible_cpu(i) { 5178 struct softnet_data *queue; 5179 5180 queue = &per_cpu(softnet_data, i); 5181 skb_queue_head_init(&queue->input_pkt_queue); 5182 queue->completion_queue = NULL; 5183 INIT_LIST_HEAD(&queue->poll_list); 5184 5185 queue->backlog.poll = process_backlog; 5186 queue->backlog.weight = weight_p; 5187 queue->backlog.gro_list = NULL; 5188 } 5189 5190 dev_boot_phase = 0; 5191 5192 /* The loopback device is special if any other network devices 5193 * is present in a network namespace the loopback device must 5194 * be present. Since we now dynamically allocate and free the 5195 * loopback device ensure this invariant is maintained by 5196 * keeping the loopback device as the first device on the 5197 * list of network devices. Ensuring the loopback devices 5198 * is the first device that appears and the last network device 5199 * that disappears. 5200 */ 5201 if (register_pernet_device(&loopback_net_ops)) 5202 goto out; 5203 5204 if (register_pernet_device(&default_device_ops)) 5205 goto out; 5206 5207 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 5208 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 5209 5210 hotcpu_notifier(dev_cpu_callback, 0); 5211 dst_init(); 5212 dev_mcast_init(); 5213 rc = 0; 5214 out: 5215 return rc; 5216 } 5217 5218 subsys_initcall(net_dev_init); 5219 5220 EXPORT_SYMBOL(__dev_get_by_index); 5221 EXPORT_SYMBOL(__dev_get_by_name); 5222 EXPORT_SYMBOL(__dev_remove_pack); 5223 EXPORT_SYMBOL(dev_valid_name); 5224 EXPORT_SYMBOL(dev_add_pack); 5225 EXPORT_SYMBOL(dev_alloc_name); 5226 EXPORT_SYMBOL(dev_close); 5227 EXPORT_SYMBOL(dev_get_by_flags); 5228 EXPORT_SYMBOL(dev_get_by_index); 5229 EXPORT_SYMBOL(dev_get_by_name); 5230 EXPORT_SYMBOL(dev_open); 5231 EXPORT_SYMBOL(dev_queue_xmit); 5232 EXPORT_SYMBOL(dev_remove_pack); 5233 EXPORT_SYMBOL(dev_set_allmulti); 5234 EXPORT_SYMBOL(dev_set_promiscuity); 5235 EXPORT_SYMBOL(dev_change_flags); 5236 EXPORT_SYMBOL(dev_set_mtu); 5237 EXPORT_SYMBOL(dev_set_mac_address); 5238 EXPORT_SYMBOL(free_netdev); 5239 EXPORT_SYMBOL(netdev_boot_setup_check); 5240 EXPORT_SYMBOL(netdev_set_master); 5241 EXPORT_SYMBOL(netdev_state_change); 5242 EXPORT_SYMBOL(netif_receive_skb); 5243 EXPORT_SYMBOL(netif_rx); 5244 EXPORT_SYMBOL(register_gifconf); 5245 EXPORT_SYMBOL(register_netdevice); 5246 EXPORT_SYMBOL(register_netdevice_notifier); 5247 EXPORT_SYMBOL(skb_checksum_help); 5248 EXPORT_SYMBOL(synchronize_net); 5249 EXPORT_SYMBOL(unregister_netdevice); 5250 EXPORT_SYMBOL(unregister_netdevice_notifier); 5251 EXPORT_SYMBOL(net_enable_timestamp); 5252 EXPORT_SYMBOL(net_disable_timestamp); 5253 EXPORT_SYMBOL(dev_get_flags); 5254 5255 #if defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE) 5256 EXPORT_SYMBOL(br_handle_frame_hook); 5257 EXPORT_SYMBOL(br_fdb_get_hook); 5258 EXPORT_SYMBOL(br_fdb_put_hook); 5259 #endif 5260 5261 EXPORT_SYMBOL(dev_load); 5262 5263 EXPORT_PER_CPU_SYMBOL(softnet_data); 5264