xref: /linux/net/core/dev.c (revision b0d5c81e872ed21de1e56feb0fa6e4161da7be61)
1 /*
2  *      NET3    Protocol independent device support routines.
3  *
4  *		This program is free software; you can redistribute it and/or
5  *		modify it under the terms of the GNU General Public License
6  *		as published by the Free Software Foundation; either version
7  *		2 of the License, or (at your option) any later version.
8  *
9  *	Derived from the non IP parts of dev.c 1.0.19
10  *              Authors:	Ross Biro
11  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *	Additional Authors:
15  *		Florian la Roche <rzsfl@rz.uni-sb.de>
16  *		Alan Cox <gw4pts@gw4pts.ampr.org>
17  *		David Hinds <dahinds@users.sourceforge.net>
18  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *		Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *	Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *                                      to 2 if register_netdev gets called
25  *                                      before net_dev_init & also removed a
26  *                                      few lines of code in the process.
27  *		Alan Cox	:	device private ioctl copies fields back.
28  *		Alan Cox	:	Transmit queue code does relevant
29  *					stunts to keep the queue safe.
30  *		Alan Cox	:	Fixed double lock.
31  *		Alan Cox	:	Fixed promisc NULL pointer trap
32  *		????????	:	Support the full private ioctl range
33  *		Alan Cox	:	Moved ioctl permission check into
34  *					drivers
35  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
36  *		Alan Cox	:	100 backlog just doesn't cut it when
37  *					you start doing multicast video 8)
38  *		Alan Cox	:	Rewrote net_bh and list manager.
39  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
40  *		Alan Cox	:	Took out transmit every packet pass
41  *					Saved a few bytes in the ioctl handler
42  *		Alan Cox	:	Network driver sets packet type before
43  *					calling netif_rx. Saves a function
44  *					call a packet.
45  *		Alan Cox	:	Hashed net_bh()
46  *		Richard Kooijman:	Timestamp fixes.
47  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
48  *		Alan Cox	:	Device lock protection.
49  *              Alan Cox        :       Fixed nasty side effect of device close
50  *					changes.
51  *		Rudi Cilibrasi	:	Pass the right thing to
52  *					set_mac_address()
53  *		Dave Miller	:	32bit quantity for the device lock to
54  *					make it work out on a Sparc.
55  *		Bjorn Ekwall	:	Added KERNELD hack.
56  *		Alan Cox	:	Cleaned up the backlog initialise.
57  *		Craig Metz	:	SIOCGIFCONF fix if space for under
58  *					1 device.
59  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
60  *					is no device open function.
61  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
62  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
63  *		Cyrus Durgin	:	Cleaned for KMOD
64  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
65  *					A network device unload needs to purge
66  *					the backlog queue.
67  *	Paul Rusty Russell	:	SIOCSIFNAME
68  *              Pekka Riikonen  :	Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *                                      indefinitely on dev->refcnt
71  *              J Hadi Salim    :       - Backlog queue sampling
72  *				        - netif_rx() feedback
73  */
74 
75 #include <linux/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/sched/mm.h>
85 #include <linux/mutex.h>
86 #include <linux/string.h>
87 #include <linux/mm.h>
88 #include <linux/socket.h>
89 #include <linux/sockios.h>
90 #include <linux/errno.h>
91 #include <linux/interrupt.h>
92 #include <linux/if_ether.h>
93 #include <linux/netdevice.h>
94 #include <linux/etherdevice.h>
95 #include <linux/ethtool.h>
96 #include <linux/notifier.h>
97 #include <linux/skbuff.h>
98 #include <linux/bpf.h>
99 #include <linux/bpf_trace.h>
100 #include <net/net_namespace.h>
101 #include <net/sock.h>
102 #include <net/busy_poll.h>
103 #include <linux/rtnetlink.h>
104 #include <linux/stat.h>
105 #include <net/dst.h>
106 #include <net/dst_metadata.h>
107 #include <net/pkt_sched.h>
108 #include <net/pkt_cls.h>
109 #include <net/checksum.h>
110 #include <net/xfrm.h>
111 #include <linux/highmem.h>
112 #include <linux/init.h>
113 #include <linux/module.h>
114 #include <linux/netpoll.h>
115 #include <linux/rcupdate.h>
116 #include <linux/delay.h>
117 #include <net/iw_handler.h>
118 #include <asm/current.h>
119 #include <linux/audit.h>
120 #include <linux/dmaengine.h>
121 #include <linux/err.h>
122 #include <linux/ctype.h>
123 #include <linux/if_arp.h>
124 #include <linux/if_vlan.h>
125 #include <linux/ip.h>
126 #include <net/ip.h>
127 #include <net/mpls.h>
128 #include <linux/ipv6.h>
129 #include <linux/in.h>
130 #include <linux/jhash.h>
131 #include <linux/random.h>
132 #include <trace/events/napi.h>
133 #include <trace/events/net.h>
134 #include <trace/events/skb.h>
135 #include <linux/pci.h>
136 #include <linux/inetdevice.h>
137 #include <linux/cpu_rmap.h>
138 #include <linux/static_key.h>
139 #include <linux/hashtable.h>
140 #include <linux/vmalloc.h>
141 #include <linux/if_macvlan.h>
142 #include <linux/errqueue.h>
143 #include <linux/hrtimer.h>
144 #include <linux/netfilter_ingress.h>
145 #include <linux/crash_dump.h>
146 #include <linux/sctp.h>
147 #include <net/udp_tunnel.h>
148 #include <linux/net_namespace.h>
149 
150 #include "net-sysfs.h"
151 
152 /* Instead of increasing this, you should create a hash table. */
153 #define MAX_GRO_SKBS 8
154 
155 /* This should be increased if a protocol with a bigger head is added. */
156 #define GRO_MAX_HEAD (MAX_HEADER + 128)
157 
158 static DEFINE_SPINLOCK(ptype_lock);
159 static DEFINE_SPINLOCK(offload_lock);
160 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
161 struct list_head ptype_all __read_mostly;	/* Taps */
162 static struct list_head offload_base __read_mostly;
163 
164 static int netif_rx_internal(struct sk_buff *skb);
165 static int call_netdevice_notifiers_info(unsigned long val,
166 					 struct netdev_notifier_info *info);
167 static struct napi_struct *napi_by_id(unsigned int napi_id);
168 
169 /*
170  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
171  * semaphore.
172  *
173  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
174  *
175  * Writers must hold the rtnl semaphore while they loop through the
176  * dev_base_head list, and hold dev_base_lock for writing when they do the
177  * actual updates.  This allows pure readers to access the list even
178  * while a writer is preparing to update it.
179  *
180  * To put it another way, dev_base_lock is held for writing only to
181  * protect against pure readers; the rtnl semaphore provides the
182  * protection against other writers.
183  *
184  * See, for example usages, register_netdevice() and
185  * unregister_netdevice(), which must be called with the rtnl
186  * semaphore held.
187  */
188 DEFINE_RWLOCK(dev_base_lock);
189 EXPORT_SYMBOL(dev_base_lock);
190 
191 static DEFINE_MUTEX(ifalias_mutex);
192 
193 /* protects napi_hash addition/deletion and napi_gen_id */
194 static DEFINE_SPINLOCK(napi_hash_lock);
195 
196 static unsigned int napi_gen_id = NR_CPUS;
197 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
198 
199 static seqcount_t devnet_rename_seq;
200 
201 static inline void dev_base_seq_inc(struct net *net)
202 {
203 	while (++net->dev_base_seq == 0)
204 		;
205 }
206 
207 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
208 {
209 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
210 
211 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
212 }
213 
214 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
215 {
216 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
217 }
218 
219 static inline void rps_lock(struct softnet_data *sd)
220 {
221 #ifdef CONFIG_RPS
222 	spin_lock(&sd->input_pkt_queue.lock);
223 #endif
224 }
225 
226 static inline void rps_unlock(struct softnet_data *sd)
227 {
228 #ifdef CONFIG_RPS
229 	spin_unlock(&sd->input_pkt_queue.lock);
230 #endif
231 }
232 
233 /* Device list insertion */
234 static void list_netdevice(struct net_device *dev)
235 {
236 	struct net *net = dev_net(dev);
237 
238 	ASSERT_RTNL();
239 
240 	write_lock_bh(&dev_base_lock);
241 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
242 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
243 	hlist_add_head_rcu(&dev->index_hlist,
244 			   dev_index_hash(net, dev->ifindex));
245 	write_unlock_bh(&dev_base_lock);
246 
247 	dev_base_seq_inc(net);
248 }
249 
250 /* Device list removal
251  * caller must respect a RCU grace period before freeing/reusing dev
252  */
253 static void unlist_netdevice(struct net_device *dev)
254 {
255 	ASSERT_RTNL();
256 
257 	/* Unlink dev from the device chain */
258 	write_lock_bh(&dev_base_lock);
259 	list_del_rcu(&dev->dev_list);
260 	hlist_del_rcu(&dev->name_hlist);
261 	hlist_del_rcu(&dev->index_hlist);
262 	write_unlock_bh(&dev_base_lock);
263 
264 	dev_base_seq_inc(dev_net(dev));
265 }
266 
267 /*
268  *	Our notifier list
269  */
270 
271 static RAW_NOTIFIER_HEAD(netdev_chain);
272 
273 /*
274  *	Device drivers call our routines to queue packets here. We empty the
275  *	queue in the local softnet handler.
276  */
277 
278 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
279 EXPORT_PER_CPU_SYMBOL(softnet_data);
280 
281 #ifdef CONFIG_LOCKDEP
282 /*
283  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
284  * according to dev->type
285  */
286 static const unsigned short netdev_lock_type[] = {
287 	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
288 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
289 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
290 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
291 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
292 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
293 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
294 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
295 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
296 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
297 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
298 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
299 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
300 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
301 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
302 
303 static const char *const netdev_lock_name[] = {
304 	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
305 	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
306 	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
307 	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
308 	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
309 	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
310 	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
311 	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
312 	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
313 	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
314 	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
315 	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
316 	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
317 	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
318 	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
319 
320 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
321 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
322 
323 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
324 {
325 	int i;
326 
327 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
328 		if (netdev_lock_type[i] == dev_type)
329 			return i;
330 	/* the last key is used by default */
331 	return ARRAY_SIZE(netdev_lock_type) - 1;
332 }
333 
334 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
335 						 unsigned short dev_type)
336 {
337 	int i;
338 
339 	i = netdev_lock_pos(dev_type);
340 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
341 				   netdev_lock_name[i]);
342 }
343 
344 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
345 {
346 	int i;
347 
348 	i = netdev_lock_pos(dev->type);
349 	lockdep_set_class_and_name(&dev->addr_list_lock,
350 				   &netdev_addr_lock_key[i],
351 				   netdev_lock_name[i]);
352 }
353 #else
354 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
355 						 unsigned short dev_type)
356 {
357 }
358 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
359 {
360 }
361 #endif
362 
363 /*******************************************************************************
364  *
365  *		Protocol management and registration routines
366  *
367  *******************************************************************************/
368 
369 
370 /*
371  *	Add a protocol ID to the list. Now that the input handler is
372  *	smarter we can dispense with all the messy stuff that used to be
373  *	here.
374  *
375  *	BEWARE!!! Protocol handlers, mangling input packets,
376  *	MUST BE last in hash buckets and checking protocol handlers
377  *	MUST start from promiscuous ptype_all chain in net_bh.
378  *	It is true now, do not change it.
379  *	Explanation follows: if protocol handler, mangling packet, will
380  *	be the first on list, it is not able to sense, that packet
381  *	is cloned and should be copied-on-write, so that it will
382  *	change it and subsequent readers will get broken packet.
383  *							--ANK (980803)
384  */
385 
386 static inline struct list_head *ptype_head(const struct packet_type *pt)
387 {
388 	if (pt->type == htons(ETH_P_ALL))
389 		return pt->dev ? &pt->dev->ptype_all : &ptype_all;
390 	else
391 		return pt->dev ? &pt->dev->ptype_specific :
392 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
393 }
394 
395 /**
396  *	dev_add_pack - add packet handler
397  *	@pt: packet type declaration
398  *
399  *	Add a protocol handler to the networking stack. The passed &packet_type
400  *	is linked into kernel lists and may not be freed until it has been
401  *	removed from the kernel lists.
402  *
403  *	This call does not sleep therefore it can not
404  *	guarantee all CPU's that are in middle of receiving packets
405  *	will see the new packet type (until the next received packet).
406  */
407 
408 void dev_add_pack(struct packet_type *pt)
409 {
410 	struct list_head *head = ptype_head(pt);
411 
412 	spin_lock(&ptype_lock);
413 	list_add_rcu(&pt->list, head);
414 	spin_unlock(&ptype_lock);
415 }
416 EXPORT_SYMBOL(dev_add_pack);
417 
418 /**
419  *	__dev_remove_pack	 - remove packet handler
420  *	@pt: packet type declaration
421  *
422  *	Remove a protocol handler that was previously added to the kernel
423  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
424  *	from the kernel lists and can be freed or reused once this function
425  *	returns.
426  *
427  *      The packet type might still be in use by receivers
428  *	and must not be freed until after all the CPU's have gone
429  *	through a quiescent state.
430  */
431 void __dev_remove_pack(struct packet_type *pt)
432 {
433 	struct list_head *head = ptype_head(pt);
434 	struct packet_type *pt1;
435 
436 	spin_lock(&ptype_lock);
437 
438 	list_for_each_entry(pt1, head, list) {
439 		if (pt == pt1) {
440 			list_del_rcu(&pt->list);
441 			goto out;
442 		}
443 	}
444 
445 	pr_warn("dev_remove_pack: %p not found\n", pt);
446 out:
447 	spin_unlock(&ptype_lock);
448 }
449 EXPORT_SYMBOL(__dev_remove_pack);
450 
451 /**
452  *	dev_remove_pack	 - remove packet handler
453  *	@pt: packet type declaration
454  *
455  *	Remove a protocol handler that was previously added to the kernel
456  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
457  *	from the kernel lists and can be freed or reused once this function
458  *	returns.
459  *
460  *	This call sleeps to guarantee that no CPU is looking at the packet
461  *	type after return.
462  */
463 void dev_remove_pack(struct packet_type *pt)
464 {
465 	__dev_remove_pack(pt);
466 
467 	synchronize_net();
468 }
469 EXPORT_SYMBOL(dev_remove_pack);
470 
471 
472 /**
473  *	dev_add_offload - register offload handlers
474  *	@po: protocol offload declaration
475  *
476  *	Add protocol offload handlers to the networking stack. The passed
477  *	&proto_offload is linked into kernel lists and may not be freed until
478  *	it has been removed from the kernel lists.
479  *
480  *	This call does not sleep therefore it can not
481  *	guarantee all CPU's that are in middle of receiving packets
482  *	will see the new offload handlers (until the next received packet).
483  */
484 void dev_add_offload(struct packet_offload *po)
485 {
486 	struct packet_offload *elem;
487 
488 	spin_lock(&offload_lock);
489 	list_for_each_entry(elem, &offload_base, list) {
490 		if (po->priority < elem->priority)
491 			break;
492 	}
493 	list_add_rcu(&po->list, elem->list.prev);
494 	spin_unlock(&offload_lock);
495 }
496 EXPORT_SYMBOL(dev_add_offload);
497 
498 /**
499  *	__dev_remove_offload	 - remove offload handler
500  *	@po: packet offload declaration
501  *
502  *	Remove a protocol offload handler that was previously added to the
503  *	kernel offload handlers by dev_add_offload(). The passed &offload_type
504  *	is removed from the kernel lists and can be freed or reused once this
505  *	function returns.
506  *
507  *      The packet type might still be in use by receivers
508  *	and must not be freed until after all the CPU's have gone
509  *	through a quiescent state.
510  */
511 static void __dev_remove_offload(struct packet_offload *po)
512 {
513 	struct list_head *head = &offload_base;
514 	struct packet_offload *po1;
515 
516 	spin_lock(&offload_lock);
517 
518 	list_for_each_entry(po1, head, list) {
519 		if (po == po1) {
520 			list_del_rcu(&po->list);
521 			goto out;
522 		}
523 	}
524 
525 	pr_warn("dev_remove_offload: %p not found\n", po);
526 out:
527 	spin_unlock(&offload_lock);
528 }
529 
530 /**
531  *	dev_remove_offload	 - remove packet offload handler
532  *	@po: packet offload declaration
533  *
534  *	Remove a packet offload handler that was previously added to the kernel
535  *	offload handlers by dev_add_offload(). The passed &offload_type is
536  *	removed from the kernel lists and can be freed or reused once this
537  *	function returns.
538  *
539  *	This call sleeps to guarantee that no CPU is looking at the packet
540  *	type after return.
541  */
542 void dev_remove_offload(struct packet_offload *po)
543 {
544 	__dev_remove_offload(po);
545 
546 	synchronize_net();
547 }
548 EXPORT_SYMBOL(dev_remove_offload);
549 
550 /******************************************************************************
551  *
552  *		      Device Boot-time Settings Routines
553  *
554  ******************************************************************************/
555 
556 /* Boot time configuration table */
557 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
558 
559 /**
560  *	netdev_boot_setup_add	- add new setup entry
561  *	@name: name of the device
562  *	@map: configured settings for the device
563  *
564  *	Adds new setup entry to the dev_boot_setup list.  The function
565  *	returns 0 on error and 1 on success.  This is a generic routine to
566  *	all netdevices.
567  */
568 static int netdev_boot_setup_add(char *name, struct ifmap *map)
569 {
570 	struct netdev_boot_setup *s;
571 	int i;
572 
573 	s = dev_boot_setup;
574 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
575 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
576 			memset(s[i].name, 0, sizeof(s[i].name));
577 			strlcpy(s[i].name, name, IFNAMSIZ);
578 			memcpy(&s[i].map, map, sizeof(s[i].map));
579 			break;
580 		}
581 	}
582 
583 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
584 }
585 
586 /**
587  * netdev_boot_setup_check	- check boot time settings
588  * @dev: the netdevice
589  *
590  * Check boot time settings for the device.
591  * The found settings are set for the device to be used
592  * later in the device probing.
593  * Returns 0 if no settings found, 1 if they are.
594  */
595 int netdev_boot_setup_check(struct net_device *dev)
596 {
597 	struct netdev_boot_setup *s = dev_boot_setup;
598 	int i;
599 
600 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
601 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
602 		    !strcmp(dev->name, s[i].name)) {
603 			dev->irq = s[i].map.irq;
604 			dev->base_addr = s[i].map.base_addr;
605 			dev->mem_start = s[i].map.mem_start;
606 			dev->mem_end = s[i].map.mem_end;
607 			return 1;
608 		}
609 	}
610 	return 0;
611 }
612 EXPORT_SYMBOL(netdev_boot_setup_check);
613 
614 
615 /**
616  * netdev_boot_base	- get address from boot time settings
617  * @prefix: prefix for network device
618  * @unit: id for network device
619  *
620  * Check boot time settings for the base address of device.
621  * The found settings are set for the device to be used
622  * later in the device probing.
623  * Returns 0 if no settings found.
624  */
625 unsigned long netdev_boot_base(const char *prefix, int unit)
626 {
627 	const struct netdev_boot_setup *s = dev_boot_setup;
628 	char name[IFNAMSIZ];
629 	int i;
630 
631 	sprintf(name, "%s%d", prefix, unit);
632 
633 	/*
634 	 * If device already registered then return base of 1
635 	 * to indicate not to probe for this interface
636 	 */
637 	if (__dev_get_by_name(&init_net, name))
638 		return 1;
639 
640 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
641 		if (!strcmp(name, s[i].name))
642 			return s[i].map.base_addr;
643 	return 0;
644 }
645 
646 /*
647  * Saves at boot time configured settings for any netdevice.
648  */
649 int __init netdev_boot_setup(char *str)
650 {
651 	int ints[5];
652 	struct ifmap map;
653 
654 	str = get_options(str, ARRAY_SIZE(ints), ints);
655 	if (!str || !*str)
656 		return 0;
657 
658 	/* Save settings */
659 	memset(&map, 0, sizeof(map));
660 	if (ints[0] > 0)
661 		map.irq = ints[1];
662 	if (ints[0] > 1)
663 		map.base_addr = ints[2];
664 	if (ints[0] > 2)
665 		map.mem_start = ints[3];
666 	if (ints[0] > 3)
667 		map.mem_end = ints[4];
668 
669 	/* Add new entry to the list */
670 	return netdev_boot_setup_add(str, &map);
671 }
672 
673 __setup("netdev=", netdev_boot_setup);
674 
675 /*******************************************************************************
676  *
677  *			    Device Interface Subroutines
678  *
679  *******************************************************************************/
680 
681 /**
682  *	dev_get_iflink	- get 'iflink' value of a interface
683  *	@dev: targeted interface
684  *
685  *	Indicates the ifindex the interface is linked to.
686  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
687  */
688 
689 int dev_get_iflink(const struct net_device *dev)
690 {
691 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
692 		return dev->netdev_ops->ndo_get_iflink(dev);
693 
694 	return dev->ifindex;
695 }
696 EXPORT_SYMBOL(dev_get_iflink);
697 
698 /**
699  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
700  *	@dev: targeted interface
701  *	@skb: The packet.
702  *
703  *	For better visibility of tunnel traffic OVS needs to retrieve
704  *	egress tunnel information for a packet. Following API allows
705  *	user to get this info.
706  */
707 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
708 {
709 	struct ip_tunnel_info *info;
710 
711 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
712 		return -EINVAL;
713 
714 	info = skb_tunnel_info_unclone(skb);
715 	if (!info)
716 		return -ENOMEM;
717 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
718 		return -EINVAL;
719 
720 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
721 }
722 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
723 
724 /**
725  *	__dev_get_by_name	- find a device by its name
726  *	@net: the applicable net namespace
727  *	@name: name to find
728  *
729  *	Find an interface by name. Must be called under RTNL semaphore
730  *	or @dev_base_lock. If the name is found a pointer to the device
731  *	is returned. If the name is not found then %NULL is returned. The
732  *	reference counters are not incremented so the caller must be
733  *	careful with locks.
734  */
735 
736 struct net_device *__dev_get_by_name(struct net *net, const char *name)
737 {
738 	struct net_device *dev;
739 	struct hlist_head *head = dev_name_hash(net, name);
740 
741 	hlist_for_each_entry(dev, head, name_hlist)
742 		if (!strncmp(dev->name, name, IFNAMSIZ))
743 			return dev;
744 
745 	return NULL;
746 }
747 EXPORT_SYMBOL(__dev_get_by_name);
748 
749 /**
750  * dev_get_by_name_rcu	- find a device by its name
751  * @net: the applicable net namespace
752  * @name: name to find
753  *
754  * Find an interface by name.
755  * If the name is found a pointer to the device is returned.
756  * If the name is not found then %NULL is returned.
757  * The reference counters are not incremented so the caller must be
758  * careful with locks. The caller must hold RCU lock.
759  */
760 
761 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
762 {
763 	struct net_device *dev;
764 	struct hlist_head *head = dev_name_hash(net, name);
765 
766 	hlist_for_each_entry_rcu(dev, head, name_hlist)
767 		if (!strncmp(dev->name, name, IFNAMSIZ))
768 			return dev;
769 
770 	return NULL;
771 }
772 EXPORT_SYMBOL(dev_get_by_name_rcu);
773 
774 /**
775  *	dev_get_by_name		- find a device by its name
776  *	@net: the applicable net namespace
777  *	@name: name to find
778  *
779  *	Find an interface by name. This can be called from any
780  *	context and does its own locking. The returned handle has
781  *	the usage count incremented and the caller must use dev_put() to
782  *	release it when it is no longer needed. %NULL is returned if no
783  *	matching device is found.
784  */
785 
786 struct net_device *dev_get_by_name(struct net *net, const char *name)
787 {
788 	struct net_device *dev;
789 
790 	rcu_read_lock();
791 	dev = dev_get_by_name_rcu(net, name);
792 	if (dev)
793 		dev_hold(dev);
794 	rcu_read_unlock();
795 	return dev;
796 }
797 EXPORT_SYMBOL(dev_get_by_name);
798 
799 /**
800  *	__dev_get_by_index - find a device by its ifindex
801  *	@net: the applicable net namespace
802  *	@ifindex: index of device
803  *
804  *	Search for an interface by index. Returns %NULL if the device
805  *	is not found or a pointer to the device. The device has not
806  *	had its reference counter increased so the caller must be careful
807  *	about locking. The caller must hold either the RTNL semaphore
808  *	or @dev_base_lock.
809  */
810 
811 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
812 {
813 	struct net_device *dev;
814 	struct hlist_head *head = dev_index_hash(net, ifindex);
815 
816 	hlist_for_each_entry(dev, head, index_hlist)
817 		if (dev->ifindex == ifindex)
818 			return dev;
819 
820 	return NULL;
821 }
822 EXPORT_SYMBOL(__dev_get_by_index);
823 
824 /**
825  *	dev_get_by_index_rcu - find a device by its ifindex
826  *	@net: the applicable net namespace
827  *	@ifindex: index of device
828  *
829  *	Search for an interface by index. Returns %NULL if the device
830  *	is not found or a pointer to the device. The device has not
831  *	had its reference counter increased so the caller must be careful
832  *	about locking. The caller must hold RCU lock.
833  */
834 
835 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
836 {
837 	struct net_device *dev;
838 	struct hlist_head *head = dev_index_hash(net, ifindex);
839 
840 	hlist_for_each_entry_rcu(dev, head, index_hlist)
841 		if (dev->ifindex == ifindex)
842 			return dev;
843 
844 	return NULL;
845 }
846 EXPORT_SYMBOL(dev_get_by_index_rcu);
847 
848 
849 /**
850  *	dev_get_by_index - find a device by its ifindex
851  *	@net: the applicable net namespace
852  *	@ifindex: index of device
853  *
854  *	Search for an interface by index. Returns NULL if the device
855  *	is not found or a pointer to the device. The device returned has
856  *	had a reference added and the pointer is safe until the user calls
857  *	dev_put to indicate they have finished with it.
858  */
859 
860 struct net_device *dev_get_by_index(struct net *net, int ifindex)
861 {
862 	struct net_device *dev;
863 
864 	rcu_read_lock();
865 	dev = dev_get_by_index_rcu(net, ifindex);
866 	if (dev)
867 		dev_hold(dev);
868 	rcu_read_unlock();
869 	return dev;
870 }
871 EXPORT_SYMBOL(dev_get_by_index);
872 
873 /**
874  *	dev_get_by_napi_id - find a device by napi_id
875  *	@napi_id: ID of the NAPI struct
876  *
877  *	Search for an interface by NAPI ID. Returns %NULL if the device
878  *	is not found or a pointer to the device. The device has not had
879  *	its reference counter increased so the caller must be careful
880  *	about locking. The caller must hold RCU lock.
881  */
882 
883 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
884 {
885 	struct napi_struct *napi;
886 
887 	WARN_ON_ONCE(!rcu_read_lock_held());
888 
889 	if (napi_id < MIN_NAPI_ID)
890 		return NULL;
891 
892 	napi = napi_by_id(napi_id);
893 
894 	return napi ? napi->dev : NULL;
895 }
896 EXPORT_SYMBOL(dev_get_by_napi_id);
897 
898 /**
899  *	netdev_get_name - get a netdevice name, knowing its ifindex.
900  *	@net: network namespace
901  *	@name: a pointer to the buffer where the name will be stored.
902  *	@ifindex: the ifindex of the interface to get the name from.
903  *
904  *	The use of raw_seqcount_begin() and cond_resched() before
905  *	retrying is required as we want to give the writers a chance
906  *	to complete when CONFIG_PREEMPT is not set.
907  */
908 int netdev_get_name(struct net *net, char *name, int ifindex)
909 {
910 	struct net_device *dev;
911 	unsigned int seq;
912 
913 retry:
914 	seq = raw_seqcount_begin(&devnet_rename_seq);
915 	rcu_read_lock();
916 	dev = dev_get_by_index_rcu(net, ifindex);
917 	if (!dev) {
918 		rcu_read_unlock();
919 		return -ENODEV;
920 	}
921 
922 	strcpy(name, dev->name);
923 	rcu_read_unlock();
924 	if (read_seqcount_retry(&devnet_rename_seq, seq)) {
925 		cond_resched();
926 		goto retry;
927 	}
928 
929 	return 0;
930 }
931 
932 /**
933  *	dev_getbyhwaddr_rcu - find a device by its hardware address
934  *	@net: the applicable net namespace
935  *	@type: media type of device
936  *	@ha: hardware address
937  *
938  *	Search for an interface by MAC address. Returns NULL if the device
939  *	is not found or a pointer to the device.
940  *	The caller must hold RCU or RTNL.
941  *	The returned device has not had its ref count increased
942  *	and the caller must therefore be careful about locking
943  *
944  */
945 
946 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
947 				       const char *ha)
948 {
949 	struct net_device *dev;
950 
951 	for_each_netdev_rcu(net, dev)
952 		if (dev->type == type &&
953 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
954 			return dev;
955 
956 	return NULL;
957 }
958 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
959 
960 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
961 {
962 	struct net_device *dev;
963 
964 	ASSERT_RTNL();
965 	for_each_netdev(net, dev)
966 		if (dev->type == type)
967 			return dev;
968 
969 	return NULL;
970 }
971 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
972 
973 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
974 {
975 	struct net_device *dev, *ret = NULL;
976 
977 	rcu_read_lock();
978 	for_each_netdev_rcu(net, dev)
979 		if (dev->type == type) {
980 			dev_hold(dev);
981 			ret = dev;
982 			break;
983 		}
984 	rcu_read_unlock();
985 	return ret;
986 }
987 EXPORT_SYMBOL(dev_getfirstbyhwtype);
988 
989 /**
990  *	__dev_get_by_flags - find any device with given flags
991  *	@net: the applicable net namespace
992  *	@if_flags: IFF_* values
993  *	@mask: bitmask of bits in if_flags to check
994  *
995  *	Search for any interface with the given flags. Returns NULL if a device
996  *	is not found or a pointer to the device. Must be called inside
997  *	rtnl_lock(), and result refcount is unchanged.
998  */
999 
1000 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1001 				      unsigned short mask)
1002 {
1003 	struct net_device *dev, *ret;
1004 
1005 	ASSERT_RTNL();
1006 
1007 	ret = NULL;
1008 	for_each_netdev(net, dev) {
1009 		if (((dev->flags ^ if_flags) & mask) == 0) {
1010 			ret = dev;
1011 			break;
1012 		}
1013 	}
1014 	return ret;
1015 }
1016 EXPORT_SYMBOL(__dev_get_by_flags);
1017 
1018 /**
1019  *	dev_valid_name - check if name is okay for network device
1020  *	@name: name string
1021  *
1022  *	Network device names need to be valid file names to
1023  *	to allow sysfs to work.  We also disallow any kind of
1024  *	whitespace.
1025  */
1026 bool dev_valid_name(const char *name)
1027 {
1028 	if (*name == '\0')
1029 		return false;
1030 	if (strlen(name) >= IFNAMSIZ)
1031 		return false;
1032 	if (!strcmp(name, ".") || !strcmp(name, ".."))
1033 		return false;
1034 
1035 	while (*name) {
1036 		if (*name == '/' || *name == ':' || isspace(*name))
1037 			return false;
1038 		name++;
1039 	}
1040 	return true;
1041 }
1042 EXPORT_SYMBOL(dev_valid_name);
1043 
1044 /**
1045  *	__dev_alloc_name - allocate a name for a device
1046  *	@net: network namespace to allocate the device name in
1047  *	@name: name format string
1048  *	@buf:  scratch buffer and result name string
1049  *
1050  *	Passed a format string - eg "lt%d" it will try and find a suitable
1051  *	id. It scans list of devices to build up a free map, then chooses
1052  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1053  *	while allocating the name and adding the device in order to avoid
1054  *	duplicates.
1055  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1056  *	Returns the number of the unit assigned or a negative errno code.
1057  */
1058 
1059 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1060 {
1061 	int i = 0;
1062 	const char *p;
1063 	const int max_netdevices = 8*PAGE_SIZE;
1064 	unsigned long *inuse;
1065 	struct net_device *d;
1066 
1067 	if (!dev_valid_name(name))
1068 		return -EINVAL;
1069 
1070 	p = strchr(name, '%');
1071 	if (p) {
1072 		/*
1073 		 * Verify the string as this thing may have come from
1074 		 * the user.  There must be either one "%d" and no other "%"
1075 		 * characters.
1076 		 */
1077 		if (p[1] != 'd' || strchr(p + 2, '%'))
1078 			return -EINVAL;
1079 
1080 		/* Use one page as a bit array of possible slots */
1081 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1082 		if (!inuse)
1083 			return -ENOMEM;
1084 
1085 		for_each_netdev(net, d) {
1086 			if (!sscanf(d->name, name, &i))
1087 				continue;
1088 			if (i < 0 || i >= max_netdevices)
1089 				continue;
1090 
1091 			/*  avoid cases where sscanf is not exact inverse of printf */
1092 			snprintf(buf, IFNAMSIZ, name, i);
1093 			if (!strncmp(buf, d->name, IFNAMSIZ))
1094 				set_bit(i, inuse);
1095 		}
1096 
1097 		i = find_first_zero_bit(inuse, max_netdevices);
1098 		free_page((unsigned long) inuse);
1099 	}
1100 
1101 	snprintf(buf, IFNAMSIZ, name, i);
1102 	if (!__dev_get_by_name(net, buf))
1103 		return i;
1104 
1105 	/* It is possible to run out of possible slots
1106 	 * when the name is long and there isn't enough space left
1107 	 * for the digits, or if all bits are used.
1108 	 */
1109 	return -ENFILE;
1110 }
1111 
1112 static int dev_alloc_name_ns(struct net *net,
1113 			     struct net_device *dev,
1114 			     const char *name)
1115 {
1116 	char buf[IFNAMSIZ];
1117 	int ret;
1118 
1119 	BUG_ON(!net);
1120 	ret = __dev_alloc_name(net, name, buf);
1121 	if (ret >= 0)
1122 		strlcpy(dev->name, buf, IFNAMSIZ);
1123 	return ret;
1124 }
1125 
1126 /**
1127  *	dev_alloc_name - allocate a name for a device
1128  *	@dev: device
1129  *	@name: name format string
1130  *
1131  *	Passed a format string - eg "lt%d" it will try and find a suitable
1132  *	id. It scans list of devices to build up a free map, then chooses
1133  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1134  *	while allocating the name and adding the device in order to avoid
1135  *	duplicates.
1136  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1137  *	Returns the number of the unit assigned or a negative errno code.
1138  */
1139 
1140 int dev_alloc_name(struct net_device *dev, const char *name)
1141 {
1142 	return dev_alloc_name_ns(dev_net(dev), dev, name);
1143 }
1144 EXPORT_SYMBOL(dev_alloc_name);
1145 
1146 int dev_get_valid_name(struct net *net, struct net_device *dev,
1147 		       const char *name)
1148 {
1149 	BUG_ON(!net);
1150 
1151 	if (!dev_valid_name(name))
1152 		return -EINVAL;
1153 
1154 	if (strchr(name, '%'))
1155 		return dev_alloc_name_ns(net, dev, name);
1156 	else if (__dev_get_by_name(net, name))
1157 		return -EEXIST;
1158 	else if (dev->name != name)
1159 		strlcpy(dev->name, name, IFNAMSIZ);
1160 
1161 	return 0;
1162 }
1163 EXPORT_SYMBOL(dev_get_valid_name);
1164 
1165 /**
1166  *	dev_change_name - change name of a device
1167  *	@dev: device
1168  *	@newname: name (or format string) must be at least IFNAMSIZ
1169  *
1170  *	Change name of a device, can pass format strings "eth%d".
1171  *	for wildcarding.
1172  */
1173 int dev_change_name(struct net_device *dev, const char *newname)
1174 {
1175 	unsigned char old_assign_type;
1176 	char oldname[IFNAMSIZ];
1177 	int err = 0;
1178 	int ret;
1179 	struct net *net;
1180 
1181 	ASSERT_RTNL();
1182 	BUG_ON(!dev_net(dev));
1183 
1184 	net = dev_net(dev);
1185 	if (dev->flags & IFF_UP)
1186 		return -EBUSY;
1187 
1188 	write_seqcount_begin(&devnet_rename_seq);
1189 
1190 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1191 		write_seqcount_end(&devnet_rename_seq);
1192 		return 0;
1193 	}
1194 
1195 	memcpy(oldname, dev->name, IFNAMSIZ);
1196 
1197 	err = dev_get_valid_name(net, dev, newname);
1198 	if (err < 0) {
1199 		write_seqcount_end(&devnet_rename_seq);
1200 		return err;
1201 	}
1202 
1203 	if (oldname[0] && !strchr(oldname, '%'))
1204 		netdev_info(dev, "renamed from %s\n", oldname);
1205 
1206 	old_assign_type = dev->name_assign_type;
1207 	dev->name_assign_type = NET_NAME_RENAMED;
1208 
1209 rollback:
1210 	ret = device_rename(&dev->dev, dev->name);
1211 	if (ret) {
1212 		memcpy(dev->name, oldname, IFNAMSIZ);
1213 		dev->name_assign_type = old_assign_type;
1214 		write_seqcount_end(&devnet_rename_seq);
1215 		return ret;
1216 	}
1217 
1218 	write_seqcount_end(&devnet_rename_seq);
1219 
1220 	netdev_adjacent_rename_links(dev, oldname);
1221 
1222 	write_lock_bh(&dev_base_lock);
1223 	hlist_del_rcu(&dev->name_hlist);
1224 	write_unlock_bh(&dev_base_lock);
1225 
1226 	synchronize_rcu();
1227 
1228 	write_lock_bh(&dev_base_lock);
1229 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1230 	write_unlock_bh(&dev_base_lock);
1231 
1232 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1233 	ret = notifier_to_errno(ret);
1234 
1235 	if (ret) {
1236 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1237 		if (err >= 0) {
1238 			err = ret;
1239 			write_seqcount_begin(&devnet_rename_seq);
1240 			memcpy(dev->name, oldname, IFNAMSIZ);
1241 			memcpy(oldname, newname, IFNAMSIZ);
1242 			dev->name_assign_type = old_assign_type;
1243 			old_assign_type = NET_NAME_RENAMED;
1244 			goto rollback;
1245 		} else {
1246 			pr_err("%s: name change rollback failed: %d\n",
1247 			       dev->name, ret);
1248 		}
1249 	}
1250 
1251 	return err;
1252 }
1253 
1254 /**
1255  *	dev_set_alias - change ifalias of a device
1256  *	@dev: device
1257  *	@alias: name up to IFALIASZ
1258  *	@len: limit of bytes to copy from info
1259  *
1260  *	Set ifalias for a device,
1261  */
1262 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1263 {
1264 	struct dev_ifalias *new_alias = NULL;
1265 
1266 	if (len >= IFALIASZ)
1267 		return -EINVAL;
1268 
1269 	if (len) {
1270 		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1271 		if (!new_alias)
1272 			return -ENOMEM;
1273 
1274 		memcpy(new_alias->ifalias, alias, len);
1275 		new_alias->ifalias[len] = 0;
1276 	}
1277 
1278 	mutex_lock(&ifalias_mutex);
1279 	rcu_swap_protected(dev->ifalias, new_alias,
1280 			   mutex_is_locked(&ifalias_mutex));
1281 	mutex_unlock(&ifalias_mutex);
1282 
1283 	if (new_alias)
1284 		kfree_rcu(new_alias, rcuhead);
1285 
1286 	return len;
1287 }
1288 
1289 /**
1290  *	dev_get_alias - get ifalias of a device
1291  *	@dev: device
1292  *	@name: buffer to store name of ifalias
1293  *	@len: size of buffer
1294  *
1295  *	get ifalias for a device.  Caller must make sure dev cannot go
1296  *	away,  e.g. rcu read lock or own a reference count to device.
1297  */
1298 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1299 {
1300 	const struct dev_ifalias *alias;
1301 	int ret = 0;
1302 
1303 	rcu_read_lock();
1304 	alias = rcu_dereference(dev->ifalias);
1305 	if (alias)
1306 		ret = snprintf(name, len, "%s", alias->ifalias);
1307 	rcu_read_unlock();
1308 
1309 	return ret;
1310 }
1311 
1312 /**
1313  *	netdev_features_change - device changes features
1314  *	@dev: device to cause notification
1315  *
1316  *	Called to indicate a device has changed features.
1317  */
1318 void netdev_features_change(struct net_device *dev)
1319 {
1320 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1321 }
1322 EXPORT_SYMBOL(netdev_features_change);
1323 
1324 /**
1325  *	netdev_state_change - device changes state
1326  *	@dev: device to cause notification
1327  *
1328  *	Called to indicate a device has changed state. This function calls
1329  *	the notifier chains for netdev_chain and sends a NEWLINK message
1330  *	to the routing socket.
1331  */
1332 void netdev_state_change(struct net_device *dev)
1333 {
1334 	if (dev->flags & IFF_UP) {
1335 		struct netdev_notifier_change_info change_info = {
1336 			.info.dev = dev,
1337 		};
1338 
1339 		call_netdevice_notifiers_info(NETDEV_CHANGE,
1340 					      &change_info.info);
1341 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1342 	}
1343 }
1344 EXPORT_SYMBOL(netdev_state_change);
1345 
1346 /**
1347  * netdev_notify_peers - notify network peers about existence of @dev
1348  * @dev: network device
1349  *
1350  * Generate traffic such that interested network peers are aware of
1351  * @dev, such as by generating a gratuitous ARP. This may be used when
1352  * a device wants to inform the rest of the network about some sort of
1353  * reconfiguration such as a failover event or virtual machine
1354  * migration.
1355  */
1356 void netdev_notify_peers(struct net_device *dev)
1357 {
1358 	rtnl_lock();
1359 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1360 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1361 	rtnl_unlock();
1362 }
1363 EXPORT_SYMBOL(netdev_notify_peers);
1364 
1365 static int __dev_open(struct net_device *dev)
1366 {
1367 	const struct net_device_ops *ops = dev->netdev_ops;
1368 	int ret;
1369 
1370 	ASSERT_RTNL();
1371 
1372 	if (!netif_device_present(dev))
1373 		return -ENODEV;
1374 
1375 	/* Block netpoll from trying to do any rx path servicing.
1376 	 * If we don't do this there is a chance ndo_poll_controller
1377 	 * or ndo_poll may be running while we open the device
1378 	 */
1379 	netpoll_poll_disable(dev);
1380 
1381 	ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1382 	ret = notifier_to_errno(ret);
1383 	if (ret)
1384 		return ret;
1385 
1386 	set_bit(__LINK_STATE_START, &dev->state);
1387 
1388 	if (ops->ndo_validate_addr)
1389 		ret = ops->ndo_validate_addr(dev);
1390 
1391 	if (!ret && ops->ndo_open)
1392 		ret = ops->ndo_open(dev);
1393 
1394 	netpoll_poll_enable(dev);
1395 
1396 	if (ret)
1397 		clear_bit(__LINK_STATE_START, &dev->state);
1398 	else {
1399 		dev->flags |= IFF_UP;
1400 		dev_set_rx_mode(dev);
1401 		dev_activate(dev);
1402 		add_device_randomness(dev->dev_addr, dev->addr_len);
1403 	}
1404 
1405 	return ret;
1406 }
1407 
1408 /**
1409  *	dev_open	- prepare an interface for use.
1410  *	@dev:	device to open
1411  *
1412  *	Takes a device from down to up state. The device's private open
1413  *	function is invoked and then the multicast lists are loaded. Finally
1414  *	the device is moved into the up state and a %NETDEV_UP message is
1415  *	sent to the netdev notifier chain.
1416  *
1417  *	Calling this function on an active interface is a nop. On a failure
1418  *	a negative errno code is returned.
1419  */
1420 int dev_open(struct net_device *dev)
1421 {
1422 	int ret;
1423 
1424 	if (dev->flags & IFF_UP)
1425 		return 0;
1426 
1427 	ret = __dev_open(dev);
1428 	if (ret < 0)
1429 		return ret;
1430 
1431 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1432 	call_netdevice_notifiers(NETDEV_UP, dev);
1433 
1434 	return ret;
1435 }
1436 EXPORT_SYMBOL(dev_open);
1437 
1438 static void __dev_close_many(struct list_head *head)
1439 {
1440 	struct net_device *dev;
1441 
1442 	ASSERT_RTNL();
1443 	might_sleep();
1444 
1445 	list_for_each_entry(dev, head, close_list) {
1446 		/* Temporarily disable netpoll until the interface is down */
1447 		netpoll_poll_disable(dev);
1448 
1449 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1450 
1451 		clear_bit(__LINK_STATE_START, &dev->state);
1452 
1453 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1454 		 * can be even on different cpu. So just clear netif_running().
1455 		 *
1456 		 * dev->stop() will invoke napi_disable() on all of it's
1457 		 * napi_struct instances on this device.
1458 		 */
1459 		smp_mb__after_atomic(); /* Commit netif_running(). */
1460 	}
1461 
1462 	dev_deactivate_many(head);
1463 
1464 	list_for_each_entry(dev, head, close_list) {
1465 		const struct net_device_ops *ops = dev->netdev_ops;
1466 
1467 		/*
1468 		 *	Call the device specific close. This cannot fail.
1469 		 *	Only if device is UP
1470 		 *
1471 		 *	We allow it to be called even after a DETACH hot-plug
1472 		 *	event.
1473 		 */
1474 		if (ops->ndo_stop)
1475 			ops->ndo_stop(dev);
1476 
1477 		dev->flags &= ~IFF_UP;
1478 		netpoll_poll_enable(dev);
1479 	}
1480 }
1481 
1482 static void __dev_close(struct net_device *dev)
1483 {
1484 	LIST_HEAD(single);
1485 
1486 	list_add(&dev->close_list, &single);
1487 	__dev_close_many(&single);
1488 	list_del(&single);
1489 }
1490 
1491 void dev_close_many(struct list_head *head, bool unlink)
1492 {
1493 	struct net_device *dev, *tmp;
1494 
1495 	/* Remove the devices that don't need to be closed */
1496 	list_for_each_entry_safe(dev, tmp, head, close_list)
1497 		if (!(dev->flags & IFF_UP))
1498 			list_del_init(&dev->close_list);
1499 
1500 	__dev_close_many(head);
1501 
1502 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1503 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1504 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1505 		if (unlink)
1506 			list_del_init(&dev->close_list);
1507 	}
1508 }
1509 EXPORT_SYMBOL(dev_close_many);
1510 
1511 /**
1512  *	dev_close - shutdown an interface.
1513  *	@dev: device to shutdown
1514  *
1515  *	This function moves an active device into down state. A
1516  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1517  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1518  *	chain.
1519  */
1520 void dev_close(struct net_device *dev)
1521 {
1522 	if (dev->flags & IFF_UP) {
1523 		LIST_HEAD(single);
1524 
1525 		list_add(&dev->close_list, &single);
1526 		dev_close_many(&single, true);
1527 		list_del(&single);
1528 	}
1529 }
1530 EXPORT_SYMBOL(dev_close);
1531 
1532 
1533 /**
1534  *	dev_disable_lro - disable Large Receive Offload on a device
1535  *	@dev: device
1536  *
1537  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1538  *	called under RTNL.  This is needed if received packets may be
1539  *	forwarded to another interface.
1540  */
1541 void dev_disable_lro(struct net_device *dev)
1542 {
1543 	struct net_device *lower_dev;
1544 	struct list_head *iter;
1545 
1546 	dev->wanted_features &= ~NETIF_F_LRO;
1547 	netdev_update_features(dev);
1548 
1549 	if (unlikely(dev->features & NETIF_F_LRO))
1550 		netdev_WARN(dev, "failed to disable LRO!\n");
1551 
1552 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1553 		dev_disable_lro(lower_dev);
1554 }
1555 EXPORT_SYMBOL(dev_disable_lro);
1556 
1557 /**
1558  *	dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1559  *	@dev: device
1560  *
1561  *	Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1562  *	called under RTNL.  This is needed if Generic XDP is installed on
1563  *	the device.
1564  */
1565 static void dev_disable_gro_hw(struct net_device *dev)
1566 {
1567 	dev->wanted_features &= ~NETIF_F_GRO_HW;
1568 	netdev_update_features(dev);
1569 
1570 	if (unlikely(dev->features & NETIF_F_GRO_HW))
1571 		netdev_WARN(dev, "failed to disable GRO_HW!\n");
1572 }
1573 
1574 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1575 				   struct net_device *dev)
1576 {
1577 	struct netdev_notifier_info info = {
1578 		.dev = dev,
1579 	};
1580 
1581 	return nb->notifier_call(nb, val, &info);
1582 }
1583 
1584 static int dev_boot_phase = 1;
1585 
1586 /**
1587  * register_netdevice_notifier - register a network notifier block
1588  * @nb: notifier
1589  *
1590  * Register a notifier to be called when network device events occur.
1591  * The notifier passed is linked into the kernel structures and must
1592  * not be reused until it has been unregistered. A negative errno code
1593  * is returned on a failure.
1594  *
1595  * When registered all registration and up events are replayed
1596  * to the new notifier to allow device to have a race free
1597  * view of the network device list.
1598  */
1599 
1600 int register_netdevice_notifier(struct notifier_block *nb)
1601 {
1602 	struct net_device *dev;
1603 	struct net_device *last;
1604 	struct net *net;
1605 	int err;
1606 
1607 	rtnl_lock();
1608 	err = raw_notifier_chain_register(&netdev_chain, nb);
1609 	if (err)
1610 		goto unlock;
1611 	if (dev_boot_phase)
1612 		goto unlock;
1613 	for_each_net(net) {
1614 		for_each_netdev(net, dev) {
1615 			err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1616 			err = notifier_to_errno(err);
1617 			if (err)
1618 				goto rollback;
1619 
1620 			if (!(dev->flags & IFF_UP))
1621 				continue;
1622 
1623 			call_netdevice_notifier(nb, NETDEV_UP, dev);
1624 		}
1625 	}
1626 
1627 unlock:
1628 	rtnl_unlock();
1629 	return err;
1630 
1631 rollback:
1632 	last = dev;
1633 	for_each_net(net) {
1634 		for_each_netdev(net, dev) {
1635 			if (dev == last)
1636 				goto outroll;
1637 
1638 			if (dev->flags & IFF_UP) {
1639 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1640 							dev);
1641 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1642 			}
1643 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1644 		}
1645 	}
1646 
1647 outroll:
1648 	raw_notifier_chain_unregister(&netdev_chain, nb);
1649 	goto unlock;
1650 }
1651 EXPORT_SYMBOL(register_netdevice_notifier);
1652 
1653 /**
1654  * unregister_netdevice_notifier - unregister a network notifier block
1655  * @nb: notifier
1656  *
1657  * Unregister a notifier previously registered by
1658  * register_netdevice_notifier(). The notifier is unlinked into the
1659  * kernel structures and may then be reused. A negative errno code
1660  * is returned on a failure.
1661  *
1662  * After unregistering unregister and down device events are synthesized
1663  * for all devices on the device list to the removed notifier to remove
1664  * the need for special case cleanup code.
1665  */
1666 
1667 int unregister_netdevice_notifier(struct notifier_block *nb)
1668 {
1669 	struct net_device *dev;
1670 	struct net *net;
1671 	int err;
1672 
1673 	rtnl_lock();
1674 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1675 	if (err)
1676 		goto unlock;
1677 
1678 	for_each_net(net) {
1679 		for_each_netdev(net, dev) {
1680 			if (dev->flags & IFF_UP) {
1681 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1682 							dev);
1683 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1684 			}
1685 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1686 		}
1687 	}
1688 unlock:
1689 	rtnl_unlock();
1690 	return err;
1691 }
1692 EXPORT_SYMBOL(unregister_netdevice_notifier);
1693 
1694 /**
1695  *	call_netdevice_notifiers_info - call all network notifier blocks
1696  *	@val: value passed unmodified to notifier function
1697  *	@info: notifier information data
1698  *
1699  *	Call all network notifier blocks.  Parameters and return value
1700  *	are as for raw_notifier_call_chain().
1701  */
1702 
1703 static int call_netdevice_notifiers_info(unsigned long val,
1704 					 struct netdev_notifier_info *info)
1705 {
1706 	ASSERT_RTNL();
1707 	return raw_notifier_call_chain(&netdev_chain, val, info);
1708 }
1709 
1710 /**
1711  *	call_netdevice_notifiers - call all network notifier blocks
1712  *      @val: value passed unmodified to notifier function
1713  *      @dev: net_device pointer passed unmodified to notifier function
1714  *
1715  *	Call all network notifier blocks.  Parameters and return value
1716  *	are as for raw_notifier_call_chain().
1717  */
1718 
1719 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1720 {
1721 	struct netdev_notifier_info info = {
1722 		.dev = dev,
1723 	};
1724 
1725 	return call_netdevice_notifiers_info(val, &info);
1726 }
1727 EXPORT_SYMBOL(call_netdevice_notifiers);
1728 
1729 #ifdef CONFIG_NET_INGRESS
1730 static struct static_key ingress_needed __read_mostly;
1731 
1732 void net_inc_ingress_queue(void)
1733 {
1734 	static_key_slow_inc(&ingress_needed);
1735 }
1736 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1737 
1738 void net_dec_ingress_queue(void)
1739 {
1740 	static_key_slow_dec(&ingress_needed);
1741 }
1742 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1743 #endif
1744 
1745 #ifdef CONFIG_NET_EGRESS
1746 static struct static_key egress_needed __read_mostly;
1747 
1748 void net_inc_egress_queue(void)
1749 {
1750 	static_key_slow_inc(&egress_needed);
1751 }
1752 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1753 
1754 void net_dec_egress_queue(void)
1755 {
1756 	static_key_slow_dec(&egress_needed);
1757 }
1758 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1759 #endif
1760 
1761 static struct static_key netstamp_needed __read_mostly;
1762 #ifdef HAVE_JUMP_LABEL
1763 static atomic_t netstamp_needed_deferred;
1764 static atomic_t netstamp_wanted;
1765 static void netstamp_clear(struct work_struct *work)
1766 {
1767 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1768 	int wanted;
1769 
1770 	wanted = atomic_add_return(deferred, &netstamp_wanted);
1771 	if (wanted > 0)
1772 		static_key_enable(&netstamp_needed);
1773 	else
1774 		static_key_disable(&netstamp_needed);
1775 }
1776 static DECLARE_WORK(netstamp_work, netstamp_clear);
1777 #endif
1778 
1779 void net_enable_timestamp(void)
1780 {
1781 #ifdef HAVE_JUMP_LABEL
1782 	int wanted;
1783 
1784 	while (1) {
1785 		wanted = atomic_read(&netstamp_wanted);
1786 		if (wanted <= 0)
1787 			break;
1788 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1789 			return;
1790 	}
1791 	atomic_inc(&netstamp_needed_deferred);
1792 	schedule_work(&netstamp_work);
1793 #else
1794 	static_key_slow_inc(&netstamp_needed);
1795 #endif
1796 }
1797 EXPORT_SYMBOL(net_enable_timestamp);
1798 
1799 void net_disable_timestamp(void)
1800 {
1801 #ifdef HAVE_JUMP_LABEL
1802 	int wanted;
1803 
1804 	while (1) {
1805 		wanted = atomic_read(&netstamp_wanted);
1806 		if (wanted <= 1)
1807 			break;
1808 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1809 			return;
1810 	}
1811 	atomic_dec(&netstamp_needed_deferred);
1812 	schedule_work(&netstamp_work);
1813 #else
1814 	static_key_slow_dec(&netstamp_needed);
1815 #endif
1816 }
1817 EXPORT_SYMBOL(net_disable_timestamp);
1818 
1819 static inline void net_timestamp_set(struct sk_buff *skb)
1820 {
1821 	skb->tstamp = 0;
1822 	if (static_key_false(&netstamp_needed))
1823 		__net_timestamp(skb);
1824 }
1825 
1826 #define net_timestamp_check(COND, SKB)			\
1827 	if (static_key_false(&netstamp_needed)) {		\
1828 		if ((COND) && !(SKB)->tstamp)	\
1829 			__net_timestamp(SKB);		\
1830 	}						\
1831 
1832 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1833 {
1834 	unsigned int len;
1835 
1836 	if (!(dev->flags & IFF_UP))
1837 		return false;
1838 
1839 	len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1840 	if (skb->len <= len)
1841 		return true;
1842 
1843 	/* if TSO is enabled, we don't care about the length as the packet
1844 	 * could be forwarded without being segmented before
1845 	 */
1846 	if (skb_is_gso(skb))
1847 		return true;
1848 
1849 	return false;
1850 }
1851 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1852 
1853 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1854 {
1855 	int ret = ____dev_forward_skb(dev, skb);
1856 
1857 	if (likely(!ret)) {
1858 		skb->protocol = eth_type_trans(skb, dev);
1859 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1860 	}
1861 
1862 	return ret;
1863 }
1864 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1865 
1866 /**
1867  * dev_forward_skb - loopback an skb to another netif
1868  *
1869  * @dev: destination network device
1870  * @skb: buffer to forward
1871  *
1872  * return values:
1873  *	NET_RX_SUCCESS	(no congestion)
1874  *	NET_RX_DROP     (packet was dropped, but freed)
1875  *
1876  * dev_forward_skb can be used for injecting an skb from the
1877  * start_xmit function of one device into the receive queue
1878  * of another device.
1879  *
1880  * The receiving device may be in another namespace, so
1881  * we have to clear all information in the skb that could
1882  * impact namespace isolation.
1883  */
1884 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1885 {
1886 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1887 }
1888 EXPORT_SYMBOL_GPL(dev_forward_skb);
1889 
1890 static inline int deliver_skb(struct sk_buff *skb,
1891 			      struct packet_type *pt_prev,
1892 			      struct net_device *orig_dev)
1893 {
1894 	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
1895 		return -ENOMEM;
1896 	refcount_inc(&skb->users);
1897 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1898 }
1899 
1900 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1901 					  struct packet_type **pt,
1902 					  struct net_device *orig_dev,
1903 					  __be16 type,
1904 					  struct list_head *ptype_list)
1905 {
1906 	struct packet_type *ptype, *pt_prev = *pt;
1907 
1908 	list_for_each_entry_rcu(ptype, ptype_list, list) {
1909 		if (ptype->type != type)
1910 			continue;
1911 		if (pt_prev)
1912 			deliver_skb(skb, pt_prev, orig_dev);
1913 		pt_prev = ptype;
1914 	}
1915 	*pt = pt_prev;
1916 }
1917 
1918 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1919 {
1920 	if (!ptype->af_packet_priv || !skb->sk)
1921 		return false;
1922 
1923 	if (ptype->id_match)
1924 		return ptype->id_match(ptype, skb->sk);
1925 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1926 		return true;
1927 
1928 	return false;
1929 }
1930 
1931 /*
1932  *	Support routine. Sends outgoing frames to any network
1933  *	taps currently in use.
1934  */
1935 
1936 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1937 {
1938 	struct packet_type *ptype;
1939 	struct sk_buff *skb2 = NULL;
1940 	struct packet_type *pt_prev = NULL;
1941 	struct list_head *ptype_list = &ptype_all;
1942 
1943 	rcu_read_lock();
1944 again:
1945 	list_for_each_entry_rcu(ptype, ptype_list, list) {
1946 		/* Never send packets back to the socket
1947 		 * they originated from - MvS (miquels@drinkel.ow.org)
1948 		 */
1949 		if (skb_loop_sk(ptype, skb))
1950 			continue;
1951 
1952 		if (pt_prev) {
1953 			deliver_skb(skb2, pt_prev, skb->dev);
1954 			pt_prev = ptype;
1955 			continue;
1956 		}
1957 
1958 		/* need to clone skb, done only once */
1959 		skb2 = skb_clone(skb, GFP_ATOMIC);
1960 		if (!skb2)
1961 			goto out_unlock;
1962 
1963 		net_timestamp_set(skb2);
1964 
1965 		/* skb->nh should be correctly
1966 		 * set by sender, so that the second statement is
1967 		 * just protection against buggy protocols.
1968 		 */
1969 		skb_reset_mac_header(skb2);
1970 
1971 		if (skb_network_header(skb2) < skb2->data ||
1972 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1973 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1974 					     ntohs(skb2->protocol),
1975 					     dev->name);
1976 			skb_reset_network_header(skb2);
1977 		}
1978 
1979 		skb2->transport_header = skb2->network_header;
1980 		skb2->pkt_type = PACKET_OUTGOING;
1981 		pt_prev = ptype;
1982 	}
1983 
1984 	if (ptype_list == &ptype_all) {
1985 		ptype_list = &dev->ptype_all;
1986 		goto again;
1987 	}
1988 out_unlock:
1989 	if (pt_prev) {
1990 		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
1991 			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1992 		else
1993 			kfree_skb(skb2);
1994 	}
1995 	rcu_read_unlock();
1996 }
1997 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
1998 
1999 /**
2000  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2001  * @dev: Network device
2002  * @txq: number of queues available
2003  *
2004  * If real_num_tx_queues is changed the tc mappings may no longer be
2005  * valid. To resolve this verify the tc mapping remains valid and if
2006  * not NULL the mapping. With no priorities mapping to this
2007  * offset/count pair it will no longer be used. In the worst case TC0
2008  * is invalid nothing can be done so disable priority mappings. If is
2009  * expected that drivers will fix this mapping if they can before
2010  * calling netif_set_real_num_tx_queues.
2011  */
2012 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2013 {
2014 	int i;
2015 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2016 
2017 	/* If TC0 is invalidated disable TC mapping */
2018 	if (tc->offset + tc->count > txq) {
2019 		pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2020 		dev->num_tc = 0;
2021 		return;
2022 	}
2023 
2024 	/* Invalidated prio to tc mappings set to TC0 */
2025 	for (i = 1; i < TC_BITMASK + 1; i++) {
2026 		int q = netdev_get_prio_tc_map(dev, i);
2027 
2028 		tc = &dev->tc_to_txq[q];
2029 		if (tc->offset + tc->count > txq) {
2030 			pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2031 				i, q);
2032 			netdev_set_prio_tc_map(dev, i, 0);
2033 		}
2034 	}
2035 }
2036 
2037 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2038 {
2039 	if (dev->num_tc) {
2040 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2041 		int i;
2042 
2043 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2044 			if ((txq - tc->offset) < tc->count)
2045 				return i;
2046 		}
2047 
2048 		return -1;
2049 	}
2050 
2051 	return 0;
2052 }
2053 EXPORT_SYMBOL(netdev_txq_to_tc);
2054 
2055 #ifdef CONFIG_XPS
2056 static DEFINE_MUTEX(xps_map_mutex);
2057 #define xmap_dereference(P)		\
2058 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2059 
2060 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2061 			     int tci, u16 index)
2062 {
2063 	struct xps_map *map = NULL;
2064 	int pos;
2065 
2066 	if (dev_maps)
2067 		map = xmap_dereference(dev_maps->cpu_map[tci]);
2068 	if (!map)
2069 		return false;
2070 
2071 	for (pos = map->len; pos--;) {
2072 		if (map->queues[pos] != index)
2073 			continue;
2074 
2075 		if (map->len > 1) {
2076 			map->queues[pos] = map->queues[--map->len];
2077 			break;
2078 		}
2079 
2080 		RCU_INIT_POINTER(dev_maps->cpu_map[tci], NULL);
2081 		kfree_rcu(map, rcu);
2082 		return false;
2083 	}
2084 
2085 	return true;
2086 }
2087 
2088 static bool remove_xps_queue_cpu(struct net_device *dev,
2089 				 struct xps_dev_maps *dev_maps,
2090 				 int cpu, u16 offset, u16 count)
2091 {
2092 	int num_tc = dev->num_tc ? : 1;
2093 	bool active = false;
2094 	int tci;
2095 
2096 	for (tci = cpu * num_tc; num_tc--; tci++) {
2097 		int i, j;
2098 
2099 		for (i = count, j = offset; i--; j++) {
2100 			if (!remove_xps_queue(dev_maps, cpu, j))
2101 				break;
2102 		}
2103 
2104 		active |= i < 0;
2105 	}
2106 
2107 	return active;
2108 }
2109 
2110 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2111 				   u16 count)
2112 {
2113 	struct xps_dev_maps *dev_maps;
2114 	int cpu, i;
2115 	bool active = false;
2116 
2117 	mutex_lock(&xps_map_mutex);
2118 	dev_maps = xmap_dereference(dev->xps_maps);
2119 
2120 	if (!dev_maps)
2121 		goto out_no_maps;
2122 
2123 	for_each_possible_cpu(cpu)
2124 		active |= remove_xps_queue_cpu(dev, dev_maps, cpu,
2125 					       offset, count);
2126 
2127 	if (!active) {
2128 		RCU_INIT_POINTER(dev->xps_maps, NULL);
2129 		kfree_rcu(dev_maps, rcu);
2130 	}
2131 
2132 	for (i = offset + (count - 1); count--; i--)
2133 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2134 					     NUMA_NO_NODE);
2135 
2136 out_no_maps:
2137 	mutex_unlock(&xps_map_mutex);
2138 }
2139 
2140 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2141 {
2142 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2143 }
2144 
2145 static struct xps_map *expand_xps_map(struct xps_map *map,
2146 				      int cpu, u16 index)
2147 {
2148 	struct xps_map *new_map;
2149 	int alloc_len = XPS_MIN_MAP_ALLOC;
2150 	int i, pos;
2151 
2152 	for (pos = 0; map && pos < map->len; pos++) {
2153 		if (map->queues[pos] != index)
2154 			continue;
2155 		return map;
2156 	}
2157 
2158 	/* Need to add queue to this CPU's existing map */
2159 	if (map) {
2160 		if (pos < map->alloc_len)
2161 			return map;
2162 
2163 		alloc_len = map->alloc_len * 2;
2164 	}
2165 
2166 	/* Need to allocate new map to store queue on this CPU's map */
2167 	new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2168 			       cpu_to_node(cpu));
2169 	if (!new_map)
2170 		return NULL;
2171 
2172 	for (i = 0; i < pos; i++)
2173 		new_map->queues[i] = map->queues[i];
2174 	new_map->alloc_len = alloc_len;
2175 	new_map->len = pos;
2176 
2177 	return new_map;
2178 }
2179 
2180 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2181 			u16 index)
2182 {
2183 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2184 	int i, cpu, tci, numa_node_id = -2;
2185 	int maps_sz, num_tc = 1, tc = 0;
2186 	struct xps_map *map, *new_map;
2187 	bool active = false;
2188 
2189 	if (dev->num_tc) {
2190 		num_tc = dev->num_tc;
2191 		tc = netdev_txq_to_tc(dev, index);
2192 		if (tc < 0)
2193 			return -EINVAL;
2194 	}
2195 
2196 	maps_sz = XPS_DEV_MAPS_SIZE(num_tc);
2197 	if (maps_sz < L1_CACHE_BYTES)
2198 		maps_sz = L1_CACHE_BYTES;
2199 
2200 	mutex_lock(&xps_map_mutex);
2201 
2202 	dev_maps = xmap_dereference(dev->xps_maps);
2203 
2204 	/* allocate memory for queue storage */
2205 	for_each_cpu_and(cpu, cpu_online_mask, mask) {
2206 		if (!new_dev_maps)
2207 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2208 		if (!new_dev_maps) {
2209 			mutex_unlock(&xps_map_mutex);
2210 			return -ENOMEM;
2211 		}
2212 
2213 		tci = cpu * num_tc + tc;
2214 		map = dev_maps ? xmap_dereference(dev_maps->cpu_map[tci]) :
2215 				 NULL;
2216 
2217 		map = expand_xps_map(map, cpu, index);
2218 		if (!map)
2219 			goto error;
2220 
2221 		RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2222 	}
2223 
2224 	if (!new_dev_maps)
2225 		goto out_no_new_maps;
2226 
2227 	for_each_possible_cpu(cpu) {
2228 		/* copy maps belonging to foreign traffic classes */
2229 		for (i = tc, tci = cpu * num_tc; dev_maps && i--; tci++) {
2230 			/* fill in the new device map from the old device map */
2231 			map = xmap_dereference(dev_maps->cpu_map[tci]);
2232 			RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2233 		}
2234 
2235 		/* We need to explicitly update tci as prevous loop
2236 		 * could break out early if dev_maps is NULL.
2237 		 */
2238 		tci = cpu * num_tc + tc;
2239 
2240 		if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2241 			/* add queue to CPU maps */
2242 			int pos = 0;
2243 
2244 			map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2245 			while ((pos < map->len) && (map->queues[pos] != index))
2246 				pos++;
2247 
2248 			if (pos == map->len)
2249 				map->queues[map->len++] = index;
2250 #ifdef CONFIG_NUMA
2251 			if (numa_node_id == -2)
2252 				numa_node_id = cpu_to_node(cpu);
2253 			else if (numa_node_id != cpu_to_node(cpu))
2254 				numa_node_id = -1;
2255 #endif
2256 		} else if (dev_maps) {
2257 			/* fill in the new device map from the old device map */
2258 			map = xmap_dereference(dev_maps->cpu_map[tci]);
2259 			RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2260 		}
2261 
2262 		/* copy maps belonging to foreign traffic classes */
2263 		for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2264 			/* fill in the new device map from the old device map */
2265 			map = xmap_dereference(dev_maps->cpu_map[tci]);
2266 			RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2267 		}
2268 	}
2269 
2270 	rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2271 
2272 	/* Cleanup old maps */
2273 	if (!dev_maps)
2274 		goto out_no_old_maps;
2275 
2276 	for_each_possible_cpu(cpu) {
2277 		for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2278 			new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2279 			map = xmap_dereference(dev_maps->cpu_map[tci]);
2280 			if (map && map != new_map)
2281 				kfree_rcu(map, rcu);
2282 		}
2283 	}
2284 
2285 	kfree_rcu(dev_maps, rcu);
2286 
2287 out_no_old_maps:
2288 	dev_maps = new_dev_maps;
2289 	active = true;
2290 
2291 out_no_new_maps:
2292 	/* update Tx queue numa node */
2293 	netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2294 				     (numa_node_id >= 0) ? numa_node_id :
2295 				     NUMA_NO_NODE);
2296 
2297 	if (!dev_maps)
2298 		goto out_no_maps;
2299 
2300 	/* removes queue from unused CPUs */
2301 	for_each_possible_cpu(cpu) {
2302 		for (i = tc, tci = cpu * num_tc; i--; tci++)
2303 			active |= remove_xps_queue(dev_maps, tci, index);
2304 		if (!cpumask_test_cpu(cpu, mask) || !cpu_online(cpu))
2305 			active |= remove_xps_queue(dev_maps, tci, index);
2306 		for (i = num_tc - tc, tci++; --i; tci++)
2307 			active |= remove_xps_queue(dev_maps, tci, index);
2308 	}
2309 
2310 	/* free map if not active */
2311 	if (!active) {
2312 		RCU_INIT_POINTER(dev->xps_maps, NULL);
2313 		kfree_rcu(dev_maps, rcu);
2314 	}
2315 
2316 out_no_maps:
2317 	mutex_unlock(&xps_map_mutex);
2318 
2319 	return 0;
2320 error:
2321 	/* remove any maps that we added */
2322 	for_each_possible_cpu(cpu) {
2323 		for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2324 			new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2325 			map = dev_maps ?
2326 			      xmap_dereference(dev_maps->cpu_map[tci]) :
2327 			      NULL;
2328 			if (new_map && new_map != map)
2329 				kfree(new_map);
2330 		}
2331 	}
2332 
2333 	mutex_unlock(&xps_map_mutex);
2334 
2335 	kfree(new_dev_maps);
2336 	return -ENOMEM;
2337 }
2338 EXPORT_SYMBOL(netif_set_xps_queue);
2339 
2340 #endif
2341 void netdev_reset_tc(struct net_device *dev)
2342 {
2343 #ifdef CONFIG_XPS
2344 	netif_reset_xps_queues_gt(dev, 0);
2345 #endif
2346 	dev->num_tc = 0;
2347 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2348 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2349 }
2350 EXPORT_SYMBOL(netdev_reset_tc);
2351 
2352 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2353 {
2354 	if (tc >= dev->num_tc)
2355 		return -EINVAL;
2356 
2357 #ifdef CONFIG_XPS
2358 	netif_reset_xps_queues(dev, offset, count);
2359 #endif
2360 	dev->tc_to_txq[tc].count = count;
2361 	dev->tc_to_txq[tc].offset = offset;
2362 	return 0;
2363 }
2364 EXPORT_SYMBOL(netdev_set_tc_queue);
2365 
2366 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2367 {
2368 	if (num_tc > TC_MAX_QUEUE)
2369 		return -EINVAL;
2370 
2371 #ifdef CONFIG_XPS
2372 	netif_reset_xps_queues_gt(dev, 0);
2373 #endif
2374 	dev->num_tc = num_tc;
2375 	return 0;
2376 }
2377 EXPORT_SYMBOL(netdev_set_num_tc);
2378 
2379 /*
2380  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2381  * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2382  */
2383 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2384 {
2385 	bool disabling;
2386 	int rc;
2387 
2388 	disabling = txq < dev->real_num_tx_queues;
2389 
2390 	if (txq < 1 || txq > dev->num_tx_queues)
2391 		return -EINVAL;
2392 
2393 	if (dev->reg_state == NETREG_REGISTERED ||
2394 	    dev->reg_state == NETREG_UNREGISTERING) {
2395 		ASSERT_RTNL();
2396 
2397 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2398 						  txq);
2399 		if (rc)
2400 			return rc;
2401 
2402 		if (dev->num_tc)
2403 			netif_setup_tc(dev, txq);
2404 
2405 		dev->real_num_tx_queues = txq;
2406 
2407 		if (disabling) {
2408 			synchronize_net();
2409 			qdisc_reset_all_tx_gt(dev, txq);
2410 #ifdef CONFIG_XPS
2411 			netif_reset_xps_queues_gt(dev, txq);
2412 #endif
2413 		}
2414 	} else {
2415 		dev->real_num_tx_queues = txq;
2416 	}
2417 
2418 	return 0;
2419 }
2420 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2421 
2422 #ifdef CONFIG_SYSFS
2423 /**
2424  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2425  *	@dev: Network device
2426  *	@rxq: Actual number of RX queues
2427  *
2428  *	This must be called either with the rtnl_lock held or before
2429  *	registration of the net device.  Returns 0 on success, or a
2430  *	negative error code.  If called before registration, it always
2431  *	succeeds.
2432  */
2433 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2434 {
2435 	int rc;
2436 
2437 	if (rxq < 1 || rxq > dev->num_rx_queues)
2438 		return -EINVAL;
2439 
2440 	if (dev->reg_state == NETREG_REGISTERED) {
2441 		ASSERT_RTNL();
2442 
2443 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2444 						  rxq);
2445 		if (rc)
2446 			return rc;
2447 	}
2448 
2449 	dev->real_num_rx_queues = rxq;
2450 	return 0;
2451 }
2452 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2453 #endif
2454 
2455 /**
2456  * netif_get_num_default_rss_queues - default number of RSS queues
2457  *
2458  * This routine should set an upper limit on the number of RSS queues
2459  * used by default by multiqueue devices.
2460  */
2461 int netif_get_num_default_rss_queues(void)
2462 {
2463 	return is_kdump_kernel() ?
2464 		1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2465 }
2466 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2467 
2468 static void __netif_reschedule(struct Qdisc *q)
2469 {
2470 	struct softnet_data *sd;
2471 	unsigned long flags;
2472 
2473 	local_irq_save(flags);
2474 	sd = this_cpu_ptr(&softnet_data);
2475 	q->next_sched = NULL;
2476 	*sd->output_queue_tailp = q;
2477 	sd->output_queue_tailp = &q->next_sched;
2478 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2479 	local_irq_restore(flags);
2480 }
2481 
2482 void __netif_schedule(struct Qdisc *q)
2483 {
2484 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2485 		__netif_reschedule(q);
2486 }
2487 EXPORT_SYMBOL(__netif_schedule);
2488 
2489 struct dev_kfree_skb_cb {
2490 	enum skb_free_reason reason;
2491 };
2492 
2493 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2494 {
2495 	return (struct dev_kfree_skb_cb *)skb->cb;
2496 }
2497 
2498 void netif_schedule_queue(struct netdev_queue *txq)
2499 {
2500 	rcu_read_lock();
2501 	if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2502 		struct Qdisc *q = rcu_dereference(txq->qdisc);
2503 
2504 		__netif_schedule(q);
2505 	}
2506 	rcu_read_unlock();
2507 }
2508 EXPORT_SYMBOL(netif_schedule_queue);
2509 
2510 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2511 {
2512 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2513 		struct Qdisc *q;
2514 
2515 		rcu_read_lock();
2516 		q = rcu_dereference(dev_queue->qdisc);
2517 		__netif_schedule(q);
2518 		rcu_read_unlock();
2519 	}
2520 }
2521 EXPORT_SYMBOL(netif_tx_wake_queue);
2522 
2523 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2524 {
2525 	unsigned long flags;
2526 
2527 	if (unlikely(!skb))
2528 		return;
2529 
2530 	if (likely(refcount_read(&skb->users) == 1)) {
2531 		smp_rmb();
2532 		refcount_set(&skb->users, 0);
2533 	} else if (likely(!refcount_dec_and_test(&skb->users))) {
2534 		return;
2535 	}
2536 	get_kfree_skb_cb(skb)->reason = reason;
2537 	local_irq_save(flags);
2538 	skb->next = __this_cpu_read(softnet_data.completion_queue);
2539 	__this_cpu_write(softnet_data.completion_queue, skb);
2540 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2541 	local_irq_restore(flags);
2542 }
2543 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2544 
2545 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2546 {
2547 	if (in_irq() || irqs_disabled())
2548 		__dev_kfree_skb_irq(skb, reason);
2549 	else
2550 		dev_kfree_skb(skb);
2551 }
2552 EXPORT_SYMBOL(__dev_kfree_skb_any);
2553 
2554 
2555 /**
2556  * netif_device_detach - mark device as removed
2557  * @dev: network device
2558  *
2559  * Mark device as removed from system and therefore no longer available.
2560  */
2561 void netif_device_detach(struct net_device *dev)
2562 {
2563 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2564 	    netif_running(dev)) {
2565 		netif_tx_stop_all_queues(dev);
2566 	}
2567 }
2568 EXPORT_SYMBOL(netif_device_detach);
2569 
2570 /**
2571  * netif_device_attach - mark device as attached
2572  * @dev: network device
2573  *
2574  * Mark device as attached from system and restart if needed.
2575  */
2576 void netif_device_attach(struct net_device *dev)
2577 {
2578 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2579 	    netif_running(dev)) {
2580 		netif_tx_wake_all_queues(dev);
2581 		__netdev_watchdog_up(dev);
2582 	}
2583 }
2584 EXPORT_SYMBOL(netif_device_attach);
2585 
2586 /*
2587  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2588  * to be used as a distribution range.
2589  */
2590 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2591 		  unsigned int num_tx_queues)
2592 {
2593 	u32 hash;
2594 	u16 qoffset = 0;
2595 	u16 qcount = num_tx_queues;
2596 
2597 	if (skb_rx_queue_recorded(skb)) {
2598 		hash = skb_get_rx_queue(skb);
2599 		while (unlikely(hash >= num_tx_queues))
2600 			hash -= num_tx_queues;
2601 		return hash;
2602 	}
2603 
2604 	if (dev->num_tc) {
2605 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2606 
2607 		qoffset = dev->tc_to_txq[tc].offset;
2608 		qcount = dev->tc_to_txq[tc].count;
2609 	}
2610 
2611 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2612 }
2613 EXPORT_SYMBOL(__skb_tx_hash);
2614 
2615 static void skb_warn_bad_offload(const struct sk_buff *skb)
2616 {
2617 	static const netdev_features_t null_features;
2618 	struct net_device *dev = skb->dev;
2619 	const char *name = "";
2620 
2621 	if (!net_ratelimit())
2622 		return;
2623 
2624 	if (dev) {
2625 		if (dev->dev.parent)
2626 			name = dev_driver_string(dev->dev.parent);
2627 		else
2628 			name = netdev_name(dev);
2629 	}
2630 	WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2631 	     "gso_type=%d ip_summed=%d\n",
2632 	     name, dev ? &dev->features : &null_features,
2633 	     skb->sk ? &skb->sk->sk_route_caps : &null_features,
2634 	     skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2635 	     skb_shinfo(skb)->gso_type, skb->ip_summed);
2636 }
2637 
2638 /*
2639  * Invalidate hardware checksum when packet is to be mangled, and
2640  * complete checksum manually on outgoing path.
2641  */
2642 int skb_checksum_help(struct sk_buff *skb)
2643 {
2644 	__wsum csum;
2645 	int ret = 0, offset;
2646 
2647 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2648 		goto out_set_summed;
2649 
2650 	if (unlikely(skb_shinfo(skb)->gso_size)) {
2651 		skb_warn_bad_offload(skb);
2652 		return -EINVAL;
2653 	}
2654 
2655 	/* Before computing a checksum, we should make sure no frag could
2656 	 * be modified by an external entity : checksum could be wrong.
2657 	 */
2658 	if (skb_has_shared_frag(skb)) {
2659 		ret = __skb_linearize(skb);
2660 		if (ret)
2661 			goto out;
2662 	}
2663 
2664 	offset = skb_checksum_start_offset(skb);
2665 	BUG_ON(offset >= skb_headlen(skb));
2666 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
2667 
2668 	offset += skb->csum_offset;
2669 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2670 
2671 	if (skb_cloned(skb) &&
2672 	    !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2673 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2674 		if (ret)
2675 			goto out;
2676 	}
2677 
2678 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2679 out_set_summed:
2680 	skb->ip_summed = CHECKSUM_NONE;
2681 out:
2682 	return ret;
2683 }
2684 EXPORT_SYMBOL(skb_checksum_help);
2685 
2686 int skb_crc32c_csum_help(struct sk_buff *skb)
2687 {
2688 	__le32 crc32c_csum;
2689 	int ret = 0, offset, start;
2690 
2691 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2692 		goto out;
2693 
2694 	if (unlikely(skb_is_gso(skb)))
2695 		goto out;
2696 
2697 	/* Before computing a checksum, we should make sure no frag could
2698 	 * be modified by an external entity : checksum could be wrong.
2699 	 */
2700 	if (unlikely(skb_has_shared_frag(skb))) {
2701 		ret = __skb_linearize(skb);
2702 		if (ret)
2703 			goto out;
2704 	}
2705 	start = skb_checksum_start_offset(skb);
2706 	offset = start + offsetof(struct sctphdr, checksum);
2707 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
2708 		ret = -EINVAL;
2709 		goto out;
2710 	}
2711 	if (skb_cloned(skb) &&
2712 	    !skb_clone_writable(skb, offset + sizeof(__le32))) {
2713 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2714 		if (ret)
2715 			goto out;
2716 	}
2717 	crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
2718 						  skb->len - start, ~(__u32)0,
2719 						  crc32c_csum_stub));
2720 	*(__le32 *)(skb->data + offset) = crc32c_csum;
2721 	skb->ip_summed = CHECKSUM_NONE;
2722 	skb->csum_not_inet = 0;
2723 out:
2724 	return ret;
2725 }
2726 
2727 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2728 {
2729 	__be16 type = skb->protocol;
2730 
2731 	/* Tunnel gso handlers can set protocol to ethernet. */
2732 	if (type == htons(ETH_P_TEB)) {
2733 		struct ethhdr *eth;
2734 
2735 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2736 			return 0;
2737 
2738 		eth = (struct ethhdr *)skb->data;
2739 		type = eth->h_proto;
2740 	}
2741 
2742 	return __vlan_get_protocol(skb, type, depth);
2743 }
2744 
2745 /**
2746  *	skb_mac_gso_segment - mac layer segmentation handler.
2747  *	@skb: buffer to segment
2748  *	@features: features for the output path (see dev->features)
2749  */
2750 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2751 				    netdev_features_t features)
2752 {
2753 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2754 	struct packet_offload *ptype;
2755 	int vlan_depth = skb->mac_len;
2756 	__be16 type = skb_network_protocol(skb, &vlan_depth);
2757 
2758 	if (unlikely(!type))
2759 		return ERR_PTR(-EINVAL);
2760 
2761 	__skb_pull(skb, vlan_depth);
2762 
2763 	rcu_read_lock();
2764 	list_for_each_entry_rcu(ptype, &offload_base, list) {
2765 		if (ptype->type == type && ptype->callbacks.gso_segment) {
2766 			segs = ptype->callbacks.gso_segment(skb, features);
2767 			break;
2768 		}
2769 	}
2770 	rcu_read_unlock();
2771 
2772 	__skb_push(skb, skb->data - skb_mac_header(skb));
2773 
2774 	return segs;
2775 }
2776 EXPORT_SYMBOL(skb_mac_gso_segment);
2777 
2778 
2779 /* openvswitch calls this on rx path, so we need a different check.
2780  */
2781 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2782 {
2783 	if (tx_path)
2784 		return skb->ip_summed != CHECKSUM_PARTIAL &&
2785 		       skb->ip_summed != CHECKSUM_UNNECESSARY;
2786 
2787 	return skb->ip_summed == CHECKSUM_NONE;
2788 }
2789 
2790 /**
2791  *	__skb_gso_segment - Perform segmentation on skb.
2792  *	@skb: buffer to segment
2793  *	@features: features for the output path (see dev->features)
2794  *	@tx_path: whether it is called in TX path
2795  *
2796  *	This function segments the given skb and returns a list of segments.
2797  *
2798  *	It may return NULL if the skb requires no segmentation.  This is
2799  *	only possible when GSO is used for verifying header integrity.
2800  *
2801  *	Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
2802  */
2803 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2804 				  netdev_features_t features, bool tx_path)
2805 {
2806 	struct sk_buff *segs;
2807 
2808 	if (unlikely(skb_needs_check(skb, tx_path))) {
2809 		int err;
2810 
2811 		/* We're going to init ->check field in TCP or UDP header */
2812 		err = skb_cow_head(skb, 0);
2813 		if (err < 0)
2814 			return ERR_PTR(err);
2815 	}
2816 
2817 	/* Only report GSO partial support if it will enable us to
2818 	 * support segmentation on this frame without needing additional
2819 	 * work.
2820 	 */
2821 	if (features & NETIF_F_GSO_PARTIAL) {
2822 		netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
2823 		struct net_device *dev = skb->dev;
2824 
2825 		partial_features |= dev->features & dev->gso_partial_features;
2826 		if (!skb_gso_ok(skb, features | partial_features))
2827 			features &= ~NETIF_F_GSO_PARTIAL;
2828 	}
2829 
2830 	BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2831 		     sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2832 
2833 	SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2834 	SKB_GSO_CB(skb)->encap_level = 0;
2835 
2836 	skb_reset_mac_header(skb);
2837 	skb_reset_mac_len(skb);
2838 
2839 	segs = skb_mac_gso_segment(skb, features);
2840 
2841 	if (unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
2842 		skb_warn_bad_offload(skb);
2843 
2844 	return segs;
2845 }
2846 EXPORT_SYMBOL(__skb_gso_segment);
2847 
2848 /* Take action when hardware reception checksum errors are detected. */
2849 #ifdef CONFIG_BUG
2850 void netdev_rx_csum_fault(struct net_device *dev)
2851 {
2852 	if (net_ratelimit()) {
2853 		pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2854 		dump_stack();
2855 	}
2856 }
2857 EXPORT_SYMBOL(netdev_rx_csum_fault);
2858 #endif
2859 
2860 /* Actually, we should eliminate this check as soon as we know, that:
2861  * 1. IOMMU is present and allows to map all the memory.
2862  * 2. No high memory really exists on this machine.
2863  */
2864 
2865 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2866 {
2867 #ifdef CONFIG_HIGHMEM
2868 	int i;
2869 
2870 	if (!(dev->features & NETIF_F_HIGHDMA)) {
2871 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2872 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2873 
2874 			if (PageHighMem(skb_frag_page(frag)))
2875 				return 1;
2876 		}
2877 	}
2878 
2879 	if (PCI_DMA_BUS_IS_PHYS) {
2880 		struct device *pdev = dev->dev.parent;
2881 
2882 		if (!pdev)
2883 			return 0;
2884 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2885 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2886 			dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2887 
2888 			if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2889 				return 1;
2890 		}
2891 	}
2892 #endif
2893 	return 0;
2894 }
2895 
2896 /* If MPLS offload request, verify we are testing hardware MPLS features
2897  * instead of standard features for the netdev.
2898  */
2899 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2900 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2901 					   netdev_features_t features,
2902 					   __be16 type)
2903 {
2904 	if (eth_p_mpls(type))
2905 		features &= skb->dev->mpls_features;
2906 
2907 	return features;
2908 }
2909 #else
2910 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2911 					   netdev_features_t features,
2912 					   __be16 type)
2913 {
2914 	return features;
2915 }
2916 #endif
2917 
2918 static netdev_features_t harmonize_features(struct sk_buff *skb,
2919 	netdev_features_t features)
2920 {
2921 	int tmp;
2922 	__be16 type;
2923 
2924 	type = skb_network_protocol(skb, &tmp);
2925 	features = net_mpls_features(skb, features, type);
2926 
2927 	if (skb->ip_summed != CHECKSUM_NONE &&
2928 	    !can_checksum_protocol(features, type)) {
2929 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2930 	}
2931 	if (illegal_highdma(skb->dev, skb))
2932 		features &= ~NETIF_F_SG;
2933 
2934 	return features;
2935 }
2936 
2937 netdev_features_t passthru_features_check(struct sk_buff *skb,
2938 					  struct net_device *dev,
2939 					  netdev_features_t features)
2940 {
2941 	return features;
2942 }
2943 EXPORT_SYMBOL(passthru_features_check);
2944 
2945 static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2946 					     struct net_device *dev,
2947 					     netdev_features_t features)
2948 {
2949 	return vlan_features_check(skb, features);
2950 }
2951 
2952 static netdev_features_t gso_features_check(const struct sk_buff *skb,
2953 					    struct net_device *dev,
2954 					    netdev_features_t features)
2955 {
2956 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
2957 
2958 	if (gso_segs > dev->gso_max_segs)
2959 		return features & ~NETIF_F_GSO_MASK;
2960 
2961 	/* Support for GSO partial features requires software
2962 	 * intervention before we can actually process the packets
2963 	 * so we need to strip support for any partial features now
2964 	 * and we can pull them back in after we have partially
2965 	 * segmented the frame.
2966 	 */
2967 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
2968 		features &= ~dev->gso_partial_features;
2969 
2970 	/* Make sure to clear the IPv4 ID mangling feature if the
2971 	 * IPv4 header has the potential to be fragmented.
2972 	 */
2973 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
2974 		struct iphdr *iph = skb->encapsulation ?
2975 				    inner_ip_hdr(skb) : ip_hdr(skb);
2976 
2977 		if (!(iph->frag_off & htons(IP_DF)))
2978 			features &= ~NETIF_F_TSO_MANGLEID;
2979 	}
2980 
2981 	return features;
2982 }
2983 
2984 netdev_features_t netif_skb_features(struct sk_buff *skb)
2985 {
2986 	struct net_device *dev = skb->dev;
2987 	netdev_features_t features = dev->features;
2988 
2989 	if (skb_is_gso(skb))
2990 		features = gso_features_check(skb, dev, features);
2991 
2992 	/* If encapsulation offload request, verify we are testing
2993 	 * hardware encapsulation features instead of standard
2994 	 * features for the netdev
2995 	 */
2996 	if (skb->encapsulation)
2997 		features &= dev->hw_enc_features;
2998 
2999 	if (skb_vlan_tagged(skb))
3000 		features = netdev_intersect_features(features,
3001 						     dev->vlan_features |
3002 						     NETIF_F_HW_VLAN_CTAG_TX |
3003 						     NETIF_F_HW_VLAN_STAG_TX);
3004 
3005 	if (dev->netdev_ops->ndo_features_check)
3006 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
3007 								features);
3008 	else
3009 		features &= dflt_features_check(skb, dev, features);
3010 
3011 	return harmonize_features(skb, features);
3012 }
3013 EXPORT_SYMBOL(netif_skb_features);
3014 
3015 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3016 		    struct netdev_queue *txq, bool more)
3017 {
3018 	unsigned int len;
3019 	int rc;
3020 
3021 	if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
3022 		dev_queue_xmit_nit(skb, dev);
3023 
3024 	len = skb->len;
3025 	trace_net_dev_start_xmit(skb, dev);
3026 	rc = netdev_start_xmit(skb, dev, txq, more);
3027 	trace_net_dev_xmit(skb, rc, dev, len);
3028 
3029 	return rc;
3030 }
3031 
3032 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3033 				    struct netdev_queue *txq, int *ret)
3034 {
3035 	struct sk_buff *skb = first;
3036 	int rc = NETDEV_TX_OK;
3037 
3038 	while (skb) {
3039 		struct sk_buff *next = skb->next;
3040 
3041 		skb->next = NULL;
3042 		rc = xmit_one(skb, dev, txq, next != NULL);
3043 		if (unlikely(!dev_xmit_complete(rc))) {
3044 			skb->next = next;
3045 			goto out;
3046 		}
3047 
3048 		skb = next;
3049 		if (netif_xmit_stopped(txq) && skb) {
3050 			rc = NETDEV_TX_BUSY;
3051 			break;
3052 		}
3053 	}
3054 
3055 out:
3056 	*ret = rc;
3057 	return skb;
3058 }
3059 
3060 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3061 					  netdev_features_t features)
3062 {
3063 	if (skb_vlan_tag_present(skb) &&
3064 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3065 		skb = __vlan_hwaccel_push_inside(skb);
3066 	return skb;
3067 }
3068 
3069 int skb_csum_hwoffload_help(struct sk_buff *skb,
3070 			    const netdev_features_t features)
3071 {
3072 	if (unlikely(skb->csum_not_inet))
3073 		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3074 			skb_crc32c_csum_help(skb);
3075 
3076 	return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3077 }
3078 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3079 
3080 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3081 {
3082 	netdev_features_t features;
3083 
3084 	features = netif_skb_features(skb);
3085 	skb = validate_xmit_vlan(skb, features);
3086 	if (unlikely(!skb))
3087 		goto out_null;
3088 
3089 	if (netif_needs_gso(skb, features)) {
3090 		struct sk_buff *segs;
3091 
3092 		segs = skb_gso_segment(skb, features);
3093 		if (IS_ERR(segs)) {
3094 			goto out_kfree_skb;
3095 		} else if (segs) {
3096 			consume_skb(skb);
3097 			skb = segs;
3098 		}
3099 	} else {
3100 		if (skb_needs_linearize(skb, features) &&
3101 		    __skb_linearize(skb))
3102 			goto out_kfree_skb;
3103 
3104 		/* If packet is not checksummed and device does not
3105 		 * support checksumming for this protocol, complete
3106 		 * checksumming here.
3107 		 */
3108 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3109 			if (skb->encapsulation)
3110 				skb_set_inner_transport_header(skb,
3111 							       skb_checksum_start_offset(skb));
3112 			else
3113 				skb_set_transport_header(skb,
3114 							 skb_checksum_start_offset(skb));
3115 			if (skb_csum_hwoffload_help(skb, features))
3116 				goto out_kfree_skb;
3117 		}
3118 	}
3119 
3120 	skb = validate_xmit_xfrm(skb, features, again);
3121 
3122 	return skb;
3123 
3124 out_kfree_skb:
3125 	kfree_skb(skb);
3126 out_null:
3127 	atomic_long_inc(&dev->tx_dropped);
3128 	return NULL;
3129 }
3130 
3131 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3132 {
3133 	struct sk_buff *next, *head = NULL, *tail;
3134 
3135 	for (; skb != NULL; skb = next) {
3136 		next = skb->next;
3137 		skb->next = NULL;
3138 
3139 		/* in case skb wont be segmented, point to itself */
3140 		skb->prev = skb;
3141 
3142 		skb = validate_xmit_skb(skb, dev, again);
3143 		if (!skb)
3144 			continue;
3145 
3146 		if (!head)
3147 			head = skb;
3148 		else
3149 			tail->next = skb;
3150 		/* If skb was segmented, skb->prev points to
3151 		 * the last segment. If not, it still contains skb.
3152 		 */
3153 		tail = skb->prev;
3154 	}
3155 	return head;
3156 }
3157 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3158 
3159 static void qdisc_pkt_len_init(struct sk_buff *skb)
3160 {
3161 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3162 
3163 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3164 
3165 	/* To get more precise estimation of bytes sent on wire,
3166 	 * we add to pkt_len the headers size of all segments
3167 	 */
3168 	if (shinfo->gso_size)  {
3169 		unsigned int hdr_len;
3170 		u16 gso_segs = shinfo->gso_segs;
3171 
3172 		/* mac layer + network layer */
3173 		hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3174 
3175 		/* + transport layer */
3176 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3177 			const struct tcphdr *th;
3178 			struct tcphdr _tcphdr;
3179 
3180 			th = skb_header_pointer(skb, skb_transport_offset(skb),
3181 						sizeof(_tcphdr), &_tcphdr);
3182 			if (likely(th))
3183 				hdr_len += __tcp_hdrlen(th);
3184 		} else {
3185 			struct udphdr _udphdr;
3186 
3187 			if (skb_header_pointer(skb, skb_transport_offset(skb),
3188 					       sizeof(_udphdr), &_udphdr))
3189 				hdr_len += sizeof(struct udphdr);
3190 		}
3191 
3192 		if (shinfo->gso_type & SKB_GSO_DODGY)
3193 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3194 						shinfo->gso_size);
3195 
3196 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3197 	}
3198 }
3199 
3200 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3201 				 struct net_device *dev,
3202 				 struct netdev_queue *txq)
3203 {
3204 	spinlock_t *root_lock = qdisc_lock(q);
3205 	struct sk_buff *to_free = NULL;
3206 	bool contended;
3207 	int rc;
3208 
3209 	qdisc_calculate_pkt_len(skb, q);
3210 
3211 	if (q->flags & TCQ_F_NOLOCK) {
3212 		if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3213 			__qdisc_drop(skb, &to_free);
3214 			rc = NET_XMIT_DROP;
3215 		} else {
3216 			rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3217 			__qdisc_run(q);
3218 		}
3219 
3220 		if (unlikely(to_free))
3221 			kfree_skb_list(to_free);
3222 		return rc;
3223 	}
3224 
3225 	/*
3226 	 * Heuristic to force contended enqueues to serialize on a
3227 	 * separate lock before trying to get qdisc main lock.
3228 	 * This permits qdisc->running owner to get the lock more
3229 	 * often and dequeue packets faster.
3230 	 */
3231 	contended = qdisc_is_running(q);
3232 	if (unlikely(contended))
3233 		spin_lock(&q->busylock);
3234 
3235 	spin_lock(root_lock);
3236 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3237 		__qdisc_drop(skb, &to_free);
3238 		rc = NET_XMIT_DROP;
3239 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3240 		   qdisc_run_begin(q)) {
3241 		/*
3242 		 * This is a work-conserving queue; there are no old skbs
3243 		 * waiting to be sent out; and the qdisc is not running -
3244 		 * xmit the skb directly.
3245 		 */
3246 
3247 		qdisc_bstats_update(q, skb);
3248 
3249 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3250 			if (unlikely(contended)) {
3251 				spin_unlock(&q->busylock);
3252 				contended = false;
3253 			}
3254 			__qdisc_run(q);
3255 		}
3256 
3257 		qdisc_run_end(q);
3258 		rc = NET_XMIT_SUCCESS;
3259 	} else {
3260 		rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3261 		if (qdisc_run_begin(q)) {
3262 			if (unlikely(contended)) {
3263 				spin_unlock(&q->busylock);
3264 				contended = false;
3265 			}
3266 			__qdisc_run(q);
3267 			qdisc_run_end(q);
3268 		}
3269 	}
3270 	spin_unlock(root_lock);
3271 	if (unlikely(to_free))
3272 		kfree_skb_list(to_free);
3273 	if (unlikely(contended))
3274 		spin_unlock(&q->busylock);
3275 	return rc;
3276 }
3277 
3278 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3279 static void skb_update_prio(struct sk_buff *skb)
3280 {
3281 	const struct netprio_map *map;
3282 	const struct sock *sk;
3283 	unsigned int prioidx;
3284 
3285 	if (skb->priority)
3286 		return;
3287 	map = rcu_dereference_bh(skb->dev->priomap);
3288 	if (!map)
3289 		return;
3290 	sk = skb_to_full_sk(skb);
3291 	if (!sk)
3292 		return;
3293 
3294 	prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3295 
3296 	if (prioidx < map->priomap_len)
3297 		skb->priority = map->priomap[prioidx];
3298 }
3299 #else
3300 #define skb_update_prio(skb)
3301 #endif
3302 
3303 DEFINE_PER_CPU(int, xmit_recursion);
3304 EXPORT_SYMBOL(xmit_recursion);
3305 
3306 /**
3307  *	dev_loopback_xmit - loop back @skb
3308  *	@net: network namespace this loopback is happening in
3309  *	@sk:  sk needed to be a netfilter okfn
3310  *	@skb: buffer to transmit
3311  */
3312 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3313 {
3314 	skb_reset_mac_header(skb);
3315 	__skb_pull(skb, skb_network_offset(skb));
3316 	skb->pkt_type = PACKET_LOOPBACK;
3317 	skb->ip_summed = CHECKSUM_UNNECESSARY;
3318 	WARN_ON(!skb_dst(skb));
3319 	skb_dst_force(skb);
3320 	netif_rx_ni(skb);
3321 	return 0;
3322 }
3323 EXPORT_SYMBOL(dev_loopback_xmit);
3324 
3325 #ifdef CONFIG_NET_EGRESS
3326 static struct sk_buff *
3327 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3328 {
3329 	struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3330 	struct tcf_result cl_res;
3331 
3332 	if (!miniq)
3333 		return skb;
3334 
3335 	/* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3336 	mini_qdisc_bstats_cpu_update(miniq, skb);
3337 
3338 	switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3339 	case TC_ACT_OK:
3340 	case TC_ACT_RECLASSIFY:
3341 		skb->tc_index = TC_H_MIN(cl_res.classid);
3342 		break;
3343 	case TC_ACT_SHOT:
3344 		mini_qdisc_qstats_cpu_drop(miniq);
3345 		*ret = NET_XMIT_DROP;
3346 		kfree_skb(skb);
3347 		return NULL;
3348 	case TC_ACT_STOLEN:
3349 	case TC_ACT_QUEUED:
3350 	case TC_ACT_TRAP:
3351 		*ret = NET_XMIT_SUCCESS;
3352 		consume_skb(skb);
3353 		return NULL;
3354 	case TC_ACT_REDIRECT:
3355 		/* No need to push/pop skb's mac_header here on egress! */
3356 		skb_do_redirect(skb);
3357 		*ret = NET_XMIT_SUCCESS;
3358 		return NULL;
3359 	default:
3360 		break;
3361 	}
3362 
3363 	return skb;
3364 }
3365 #endif /* CONFIG_NET_EGRESS */
3366 
3367 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3368 {
3369 #ifdef CONFIG_XPS
3370 	struct xps_dev_maps *dev_maps;
3371 	struct xps_map *map;
3372 	int queue_index = -1;
3373 
3374 	rcu_read_lock();
3375 	dev_maps = rcu_dereference(dev->xps_maps);
3376 	if (dev_maps) {
3377 		unsigned int tci = skb->sender_cpu - 1;
3378 
3379 		if (dev->num_tc) {
3380 			tci *= dev->num_tc;
3381 			tci += netdev_get_prio_tc_map(dev, skb->priority);
3382 		}
3383 
3384 		map = rcu_dereference(dev_maps->cpu_map[tci]);
3385 		if (map) {
3386 			if (map->len == 1)
3387 				queue_index = map->queues[0];
3388 			else
3389 				queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3390 									   map->len)];
3391 			if (unlikely(queue_index >= dev->real_num_tx_queues))
3392 				queue_index = -1;
3393 		}
3394 	}
3395 	rcu_read_unlock();
3396 
3397 	return queue_index;
3398 #else
3399 	return -1;
3400 #endif
3401 }
3402 
3403 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3404 {
3405 	struct sock *sk = skb->sk;
3406 	int queue_index = sk_tx_queue_get(sk);
3407 
3408 	if (queue_index < 0 || skb->ooo_okay ||
3409 	    queue_index >= dev->real_num_tx_queues) {
3410 		int new_index = get_xps_queue(dev, skb);
3411 
3412 		if (new_index < 0)
3413 			new_index = skb_tx_hash(dev, skb);
3414 
3415 		if (queue_index != new_index && sk &&
3416 		    sk_fullsock(sk) &&
3417 		    rcu_access_pointer(sk->sk_dst_cache))
3418 			sk_tx_queue_set(sk, new_index);
3419 
3420 		queue_index = new_index;
3421 	}
3422 
3423 	return queue_index;
3424 }
3425 
3426 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3427 				    struct sk_buff *skb,
3428 				    void *accel_priv)
3429 {
3430 	int queue_index = 0;
3431 
3432 #ifdef CONFIG_XPS
3433 	u32 sender_cpu = skb->sender_cpu - 1;
3434 
3435 	if (sender_cpu >= (u32)NR_CPUS)
3436 		skb->sender_cpu = raw_smp_processor_id() + 1;
3437 #endif
3438 
3439 	if (dev->real_num_tx_queues != 1) {
3440 		const struct net_device_ops *ops = dev->netdev_ops;
3441 
3442 		if (ops->ndo_select_queue)
3443 			queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3444 							    __netdev_pick_tx);
3445 		else
3446 			queue_index = __netdev_pick_tx(dev, skb);
3447 
3448 		queue_index = netdev_cap_txqueue(dev, queue_index);
3449 	}
3450 
3451 	skb_set_queue_mapping(skb, queue_index);
3452 	return netdev_get_tx_queue(dev, queue_index);
3453 }
3454 
3455 /**
3456  *	__dev_queue_xmit - transmit a buffer
3457  *	@skb: buffer to transmit
3458  *	@accel_priv: private data used for L2 forwarding offload
3459  *
3460  *	Queue a buffer for transmission to a network device. The caller must
3461  *	have set the device and priority and built the buffer before calling
3462  *	this function. The function can be called from an interrupt.
3463  *
3464  *	A negative errno code is returned on a failure. A success does not
3465  *	guarantee the frame will be transmitted as it may be dropped due
3466  *	to congestion or traffic shaping.
3467  *
3468  * -----------------------------------------------------------------------------------
3469  *      I notice this method can also return errors from the queue disciplines,
3470  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3471  *      be positive.
3472  *
3473  *      Regardless of the return value, the skb is consumed, so it is currently
3474  *      difficult to retry a send to this method.  (You can bump the ref count
3475  *      before sending to hold a reference for retry if you are careful.)
3476  *
3477  *      When calling this method, interrupts MUST be enabled.  This is because
3478  *      the BH enable code must have IRQs enabled so that it will not deadlock.
3479  *          --BLG
3480  */
3481 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3482 {
3483 	struct net_device *dev = skb->dev;
3484 	struct netdev_queue *txq;
3485 	struct Qdisc *q;
3486 	int rc = -ENOMEM;
3487 	bool again = false;
3488 
3489 	skb_reset_mac_header(skb);
3490 
3491 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3492 		__skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3493 
3494 	/* Disable soft irqs for various locks below. Also
3495 	 * stops preemption for RCU.
3496 	 */
3497 	rcu_read_lock_bh();
3498 
3499 	skb_update_prio(skb);
3500 
3501 	qdisc_pkt_len_init(skb);
3502 #ifdef CONFIG_NET_CLS_ACT
3503 	skb->tc_at_ingress = 0;
3504 # ifdef CONFIG_NET_EGRESS
3505 	if (static_key_false(&egress_needed)) {
3506 		skb = sch_handle_egress(skb, &rc, dev);
3507 		if (!skb)
3508 			goto out;
3509 	}
3510 # endif
3511 #endif
3512 	/* If device/qdisc don't need skb->dst, release it right now while
3513 	 * its hot in this cpu cache.
3514 	 */
3515 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3516 		skb_dst_drop(skb);
3517 	else
3518 		skb_dst_force(skb);
3519 
3520 	txq = netdev_pick_tx(dev, skb, accel_priv);
3521 	q = rcu_dereference_bh(txq->qdisc);
3522 
3523 	trace_net_dev_queue(skb);
3524 	if (q->enqueue) {
3525 		rc = __dev_xmit_skb(skb, q, dev, txq);
3526 		goto out;
3527 	}
3528 
3529 	/* The device has no queue. Common case for software devices:
3530 	 * loopback, all the sorts of tunnels...
3531 
3532 	 * Really, it is unlikely that netif_tx_lock protection is necessary
3533 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
3534 	 * counters.)
3535 	 * However, it is possible, that they rely on protection
3536 	 * made by us here.
3537 
3538 	 * Check this and shot the lock. It is not prone from deadlocks.
3539 	 *Either shot noqueue qdisc, it is even simpler 8)
3540 	 */
3541 	if (dev->flags & IFF_UP) {
3542 		int cpu = smp_processor_id(); /* ok because BHs are off */
3543 
3544 		if (txq->xmit_lock_owner != cpu) {
3545 			if (unlikely(__this_cpu_read(xmit_recursion) >
3546 				     XMIT_RECURSION_LIMIT))
3547 				goto recursion_alert;
3548 
3549 			skb = validate_xmit_skb(skb, dev, &again);
3550 			if (!skb)
3551 				goto out;
3552 
3553 			HARD_TX_LOCK(dev, txq, cpu);
3554 
3555 			if (!netif_xmit_stopped(txq)) {
3556 				__this_cpu_inc(xmit_recursion);
3557 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3558 				__this_cpu_dec(xmit_recursion);
3559 				if (dev_xmit_complete(rc)) {
3560 					HARD_TX_UNLOCK(dev, txq);
3561 					goto out;
3562 				}
3563 			}
3564 			HARD_TX_UNLOCK(dev, txq);
3565 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3566 					     dev->name);
3567 		} else {
3568 			/* Recursion is detected! It is possible,
3569 			 * unfortunately
3570 			 */
3571 recursion_alert:
3572 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3573 					     dev->name);
3574 		}
3575 	}
3576 
3577 	rc = -ENETDOWN;
3578 	rcu_read_unlock_bh();
3579 
3580 	atomic_long_inc(&dev->tx_dropped);
3581 	kfree_skb_list(skb);
3582 	return rc;
3583 out:
3584 	rcu_read_unlock_bh();
3585 	return rc;
3586 }
3587 
3588 int dev_queue_xmit(struct sk_buff *skb)
3589 {
3590 	return __dev_queue_xmit(skb, NULL);
3591 }
3592 EXPORT_SYMBOL(dev_queue_xmit);
3593 
3594 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3595 {
3596 	return __dev_queue_xmit(skb, accel_priv);
3597 }
3598 EXPORT_SYMBOL(dev_queue_xmit_accel);
3599 
3600 
3601 /*************************************************************************
3602  *			Receiver routines
3603  *************************************************************************/
3604 
3605 int netdev_max_backlog __read_mostly = 1000;
3606 EXPORT_SYMBOL(netdev_max_backlog);
3607 
3608 int netdev_tstamp_prequeue __read_mostly = 1;
3609 int netdev_budget __read_mostly = 300;
3610 unsigned int __read_mostly netdev_budget_usecs = 2000;
3611 int weight_p __read_mostly = 64;           /* old backlog weight */
3612 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
3613 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
3614 int dev_rx_weight __read_mostly = 64;
3615 int dev_tx_weight __read_mostly = 64;
3616 
3617 /* Called with irq disabled */
3618 static inline void ____napi_schedule(struct softnet_data *sd,
3619 				     struct napi_struct *napi)
3620 {
3621 	list_add_tail(&napi->poll_list, &sd->poll_list);
3622 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3623 }
3624 
3625 #ifdef CONFIG_RPS
3626 
3627 /* One global table that all flow-based protocols share. */
3628 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3629 EXPORT_SYMBOL(rps_sock_flow_table);
3630 u32 rps_cpu_mask __read_mostly;
3631 EXPORT_SYMBOL(rps_cpu_mask);
3632 
3633 struct static_key rps_needed __read_mostly;
3634 EXPORT_SYMBOL(rps_needed);
3635 struct static_key rfs_needed __read_mostly;
3636 EXPORT_SYMBOL(rfs_needed);
3637 
3638 static struct rps_dev_flow *
3639 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3640 	    struct rps_dev_flow *rflow, u16 next_cpu)
3641 {
3642 	if (next_cpu < nr_cpu_ids) {
3643 #ifdef CONFIG_RFS_ACCEL
3644 		struct netdev_rx_queue *rxqueue;
3645 		struct rps_dev_flow_table *flow_table;
3646 		struct rps_dev_flow *old_rflow;
3647 		u32 flow_id;
3648 		u16 rxq_index;
3649 		int rc;
3650 
3651 		/* Should we steer this flow to a different hardware queue? */
3652 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3653 		    !(dev->features & NETIF_F_NTUPLE))
3654 			goto out;
3655 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3656 		if (rxq_index == skb_get_rx_queue(skb))
3657 			goto out;
3658 
3659 		rxqueue = dev->_rx + rxq_index;
3660 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
3661 		if (!flow_table)
3662 			goto out;
3663 		flow_id = skb_get_hash(skb) & flow_table->mask;
3664 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3665 							rxq_index, flow_id);
3666 		if (rc < 0)
3667 			goto out;
3668 		old_rflow = rflow;
3669 		rflow = &flow_table->flows[flow_id];
3670 		rflow->filter = rc;
3671 		if (old_rflow->filter == rflow->filter)
3672 			old_rflow->filter = RPS_NO_FILTER;
3673 	out:
3674 #endif
3675 		rflow->last_qtail =
3676 			per_cpu(softnet_data, next_cpu).input_queue_head;
3677 	}
3678 
3679 	rflow->cpu = next_cpu;
3680 	return rflow;
3681 }
3682 
3683 /*
3684  * get_rps_cpu is called from netif_receive_skb and returns the target
3685  * CPU from the RPS map of the receiving queue for a given skb.
3686  * rcu_read_lock must be held on entry.
3687  */
3688 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3689 		       struct rps_dev_flow **rflowp)
3690 {
3691 	const struct rps_sock_flow_table *sock_flow_table;
3692 	struct netdev_rx_queue *rxqueue = dev->_rx;
3693 	struct rps_dev_flow_table *flow_table;
3694 	struct rps_map *map;
3695 	int cpu = -1;
3696 	u32 tcpu;
3697 	u32 hash;
3698 
3699 	if (skb_rx_queue_recorded(skb)) {
3700 		u16 index = skb_get_rx_queue(skb);
3701 
3702 		if (unlikely(index >= dev->real_num_rx_queues)) {
3703 			WARN_ONCE(dev->real_num_rx_queues > 1,
3704 				  "%s received packet on queue %u, but number "
3705 				  "of RX queues is %u\n",
3706 				  dev->name, index, dev->real_num_rx_queues);
3707 			goto done;
3708 		}
3709 		rxqueue += index;
3710 	}
3711 
3712 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3713 
3714 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
3715 	map = rcu_dereference(rxqueue->rps_map);
3716 	if (!flow_table && !map)
3717 		goto done;
3718 
3719 	skb_reset_network_header(skb);
3720 	hash = skb_get_hash(skb);
3721 	if (!hash)
3722 		goto done;
3723 
3724 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
3725 	if (flow_table && sock_flow_table) {
3726 		struct rps_dev_flow *rflow;
3727 		u32 next_cpu;
3728 		u32 ident;
3729 
3730 		/* First check into global flow table if there is a match */
3731 		ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3732 		if ((ident ^ hash) & ~rps_cpu_mask)
3733 			goto try_rps;
3734 
3735 		next_cpu = ident & rps_cpu_mask;
3736 
3737 		/* OK, now we know there is a match,
3738 		 * we can look at the local (per receive queue) flow table
3739 		 */
3740 		rflow = &flow_table->flows[hash & flow_table->mask];
3741 		tcpu = rflow->cpu;
3742 
3743 		/*
3744 		 * If the desired CPU (where last recvmsg was done) is
3745 		 * different from current CPU (one in the rx-queue flow
3746 		 * table entry), switch if one of the following holds:
3747 		 *   - Current CPU is unset (>= nr_cpu_ids).
3748 		 *   - Current CPU is offline.
3749 		 *   - The current CPU's queue tail has advanced beyond the
3750 		 *     last packet that was enqueued using this table entry.
3751 		 *     This guarantees that all previous packets for the flow
3752 		 *     have been dequeued, thus preserving in order delivery.
3753 		 */
3754 		if (unlikely(tcpu != next_cpu) &&
3755 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3756 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3757 		      rflow->last_qtail)) >= 0)) {
3758 			tcpu = next_cpu;
3759 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3760 		}
3761 
3762 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3763 			*rflowp = rflow;
3764 			cpu = tcpu;
3765 			goto done;
3766 		}
3767 	}
3768 
3769 try_rps:
3770 
3771 	if (map) {
3772 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3773 		if (cpu_online(tcpu)) {
3774 			cpu = tcpu;
3775 			goto done;
3776 		}
3777 	}
3778 
3779 done:
3780 	return cpu;
3781 }
3782 
3783 #ifdef CONFIG_RFS_ACCEL
3784 
3785 /**
3786  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3787  * @dev: Device on which the filter was set
3788  * @rxq_index: RX queue index
3789  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3790  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3791  *
3792  * Drivers that implement ndo_rx_flow_steer() should periodically call
3793  * this function for each installed filter and remove the filters for
3794  * which it returns %true.
3795  */
3796 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3797 			 u32 flow_id, u16 filter_id)
3798 {
3799 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3800 	struct rps_dev_flow_table *flow_table;
3801 	struct rps_dev_flow *rflow;
3802 	bool expire = true;
3803 	unsigned int cpu;
3804 
3805 	rcu_read_lock();
3806 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
3807 	if (flow_table && flow_id <= flow_table->mask) {
3808 		rflow = &flow_table->flows[flow_id];
3809 		cpu = READ_ONCE(rflow->cpu);
3810 		if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3811 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3812 			   rflow->last_qtail) <
3813 		     (int)(10 * flow_table->mask)))
3814 			expire = false;
3815 	}
3816 	rcu_read_unlock();
3817 	return expire;
3818 }
3819 EXPORT_SYMBOL(rps_may_expire_flow);
3820 
3821 #endif /* CONFIG_RFS_ACCEL */
3822 
3823 /* Called from hardirq (IPI) context */
3824 static void rps_trigger_softirq(void *data)
3825 {
3826 	struct softnet_data *sd = data;
3827 
3828 	____napi_schedule(sd, &sd->backlog);
3829 	sd->received_rps++;
3830 }
3831 
3832 #endif /* CONFIG_RPS */
3833 
3834 /*
3835  * Check if this softnet_data structure is another cpu one
3836  * If yes, queue it to our IPI list and return 1
3837  * If no, return 0
3838  */
3839 static int rps_ipi_queued(struct softnet_data *sd)
3840 {
3841 #ifdef CONFIG_RPS
3842 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3843 
3844 	if (sd != mysd) {
3845 		sd->rps_ipi_next = mysd->rps_ipi_list;
3846 		mysd->rps_ipi_list = sd;
3847 
3848 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3849 		return 1;
3850 	}
3851 #endif /* CONFIG_RPS */
3852 	return 0;
3853 }
3854 
3855 #ifdef CONFIG_NET_FLOW_LIMIT
3856 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3857 #endif
3858 
3859 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3860 {
3861 #ifdef CONFIG_NET_FLOW_LIMIT
3862 	struct sd_flow_limit *fl;
3863 	struct softnet_data *sd;
3864 	unsigned int old_flow, new_flow;
3865 
3866 	if (qlen < (netdev_max_backlog >> 1))
3867 		return false;
3868 
3869 	sd = this_cpu_ptr(&softnet_data);
3870 
3871 	rcu_read_lock();
3872 	fl = rcu_dereference(sd->flow_limit);
3873 	if (fl) {
3874 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3875 		old_flow = fl->history[fl->history_head];
3876 		fl->history[fl->history_head] = new_flow;
3877 
3878 		fl->history_head++;
3879 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3880 
3881 		if (likely(fl->buckets[old_flow]))
3882 			fl->buckets[old_flow]--;
3883 
3884 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3885 			fl->count++;
3886 			rcu_read_unlock();
3887 			return true;
3888 		}
3889 	}
3890 	rcu_read_unlock();
3891 #endif
3892 	return false;
3893 }
3894 
3895 /*
3896  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3897  * queue (may be a remote CPU queue).
3898  */
3899 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3900 			      unsigned int *qtail)
3901 {
3902 	struct softnet_data *sd;
3903 	unsigned long flags;
3904 	unsigned int qlen;
3905 
3906 	sd = &per_cpu(softnet_data, cpu);
3907 
3908 	local_irq_save(flags);
3909 
3910 	rps_lock(sd);
3911 	if (!netif_running(skb->dev))
3912 		goto drop;
3913 	qlen = skb_queue_len(&sd->input_pkt_queue);
3914 	if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3915 		if (qlen) {
3916 enqueue:
3917 			__skb_queue_tail(&sd->input_pkt_queue, skb);
3918 			input_queue_tail_incr_save(sd, qtail);
3919 			rps_unlock(sd);
3920 			local_irq_restore(flags);
3921 			return NET_RX_SUCCESS;
3922 		}
3923 
3924 		/* Schedule NAPI for backlog device
3925 		 * We can use non atomic operation since we own the queue lock
3926 		 */
3927 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3928 			if (!rps_ipi_queued(sd))
3929 				____napi_schedule(sd, &sd->backlog);
3930 		}
3931 		goto enqueue;
3932 	}
3933 
3934 drop:
3935 	sd->dropped++;
3936 	rps_unlock(sd);
3937 
3938 	local_irq_restore(flags);
3939 
3940 	atomic_long_inc(&skb->dev->rx_dropped);
3941 	kfree_skb(skb);
3942 	return NET_RX_DROP;
3943 }
3944 
3945 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
3946 {
3947 	struct net_device *dev = skb->dev;
3948 	struct netdev_rx_queue *rxqueue;
3949 
3950 	rxqueue = dev->_rx;
3951 
3952 	if (skb_rx_queue_recorded(skb)) {
3953 		u16 index = skb_get_rx_queue(skb);
3954 
3955 		if (unlikely(index >= dev->real_num_rx_queues)) {
3956 			WARN_ONCE(dev->real_num_rx_queues > 1,
3957 				  "%s received packet on queue %u, but number "
3958 				  "of RX queues is %u\n",
3959 				  dev->name, index, dev->real_num_rx_queues);
3960 
3961 			return rxqueue; /* Return first rxqueue */
3962 		}
3963 		rxqueue += index;
3964 	}
3965 	return rxqueue;
3966 }
3967 
3968 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
3969 				     struct bpf_prog *xdp_prog)
3970 {
3971 	struct netdev_rx_queue *rxqueue;
3972 	u32 metalen, act = XDP_DROP;
3973 	struct xdp_buff xdp;
3974 	void *orig_data;
3975 	int hlen, off;
3976 	u32 mac_len;
3977 
3978 	/* Reinjected packets coming from act_mirred or similar should
3979 	 * not get XDP generic processing.
3980 	 */
3981 	if (skb_cloned(skb))
3982 		return XDP_PASS;
3983 
3984 	/* XDP packets must be linear and must have sufficient headroom
3985 	 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
3986 	 * native XDP provides, thus we need to do it here as well.
3987 	 */
3988 	if (skb_is_nonlinear(skb) ||
3989 	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
3990 		int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
3991 		int troom = skb->tail + skb->data_len - skb->end;
3992 
3993 		/* In case we have to go down the path and also linearize,
3994 		 * then lets do the pskb_expand_head() work just once here.
3995 		 */
3996 		if (pskb_expand_head(skb,
3997 				     hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
3998 				     troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
3999 			goto do_drop;
4000 		if (skb_linearize(skb))
4001 			goto do_drop;
4002 	}
4003 
4004 	/* The XDP program wants to see the packet starting at the MAC
4005 	 * header.
4006 	 */
4007 	mac_len = skb->data - skb_mac_header(skb);
4008 	hlen = skb_headlen(skb) + mac_len;
4009 	xdp.data = skb->data - mac_len;
4010 	xdp.data_meta = xdp.data;
4011 	xdp.data_end = xdp.data + hlen;
4012 	xdp.data_hard_start = skb->data - skb_headroom(skb);
4013 	orig_data = xdp.data;
4014 
4015 	rxqueue = netif_get_rxqueue(skb);
4016 	xdp.rxq = &rxqueue->xdp_rxq;
4017 
4018 	act = bpf_prog_run_xdp(xdp_prog, &xdp);
4019 
4020 	off = xdp.data - orig_data;
4021 	if (off > 0)
4022 		__skb_pull(skb, off);
4023 	else if (off < 0)
4024 		__skb_push(skb, -off);
4025 	skb->mac_header += off;
4026 
4027 	switch (act) {
4028 	case XDP_REDIRECT:
4029 	case XDP_TX:
4030 		__skb_push(skb, mac_len);
4031 		break;
4032 	case XDP_PASS:
4033 		metalen = xdp.data - xdp.data_meta;
4034 		if (metalen)
4035 			skb_metadata_set(skb, metalen);
4036 		break;
4037 	default:
4038 		bpf_warn_invalid_xdp_action(act);
4039 		/* fall through */
4040 	case XDP_ABORTED:
4041 		trace_xdp_exception(skb->dev, xdp_prog, act);
4042 		/* fall through */
4043 	case XDP_DROP:
4044 	do_drop:
4045 		kfree_skb(skb);
4046 		break;
4047 	}
4048 
4049 	return act;
4050 }
4051 
4052 /* When doing generic XDP we have to bypass the qdisc layer and the
4053  * network taps in order to match in-driver-XDP behavior.
4054  */
4055 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4056 {
4057 	struct net_device *dev = skb->dev;
4058 	struct netdev_queue *txq;
4059 	bool free_skb = true;
4060 	int cpu, rc;
4061 
4062 	txq = netdev_pick_tx(dev, skb, NULL);
4063 	cpu = smp_processor_id();
4064 	HARD_TX_LOCK(dev, txq, cpu);
4065 	if (!netif_xmit_stopped(txq)) {
4066 		rc = netdev_start_xmit(skb, dev, txq, 0);
4067 		if (dev_xmit_complete(rc))
4068 			free_skb = false;
4069 	}
4070 	HARD_TX_UNLOCK(dev, txq);
4071 	if (free_skb) {
4072 		trace_xdp_exception(dev, xdp_prog, XDP_TX);
4073 		kfree_skb(skb);
4074 	}
4075 }
4076 EXPORT_SYMBOL_GPL(generic_xdp_tx);
4077 
4078 static struct static_key generic_xdp_needed __read_mostly;
4079 
4080 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4081 {
4082 	if (xdp_prog) {
4083 		u32 act = netif_receive_generic_xdp(skb, xdp_prog);
4084 		int err;
4085 
4086 		if (act != XDP_PASS) {
4087 			switch (act) {
4088 			case XDP_REDIRECT:
4089 				err = xdp_do_generic_redirect(skb->dev, skb,
4090 							      xdp_prog);
4091 				if (err)
4092 					goto out_redir;
4093 			/* fallthru to submit skb */
4094 			case XDP_TX:
4095 				generic_xdp_tx(skb, xdp_prog);
4096 				break;
4097 			}
4098 			return XDP_DROP;
4099 		}
4100 	}
4101 	return XDP_PASS;
4102 out_redir:
4103 	kfree_skb(skb);
4104 	return XDP_DROP;
4105 }
4106 EXPORT_SYMBOL_GPL(do_xdp_generic);
4107 
4108 static int netif_rx_internal(struct sk_buff *skb)
4109 {
4110 	int ret;
4111 
4112 	net_timestamp_check(netdev_tstamp_prequeue, skb);
4113 
4114 	trace_netif_rx(skb);
4115 
4116 	if (static_key_false(&generic_xdp_needed)) {
4117 		int ret;
4118 
4119 		preempt_disable();
4120 		rcu_read_lock();
4121 		ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4122 		rcu_read_unlock();
4123 		preempt_enable();
4124 
4125 		/* Consider XDP consuming the packet a success from
4126 		 * the netdev point of view we do not want to count
4127 		 * this as an error.
4128 		 */
4129 		if (ret != XDP_PASS)
4130 			return NET_RX_SUCCESS;
4131 	}
4132 
4133 #ifdef CONFIG_RPS
4134 	if (static_key_false(&rps_needed)) {
4135 		struct rps_dev_flow voidflow, *rflow = &voidflow;
4136 		int cpu;
4137 
4138 		preempt_disable();
4139 		rcu_read_lock();
4140 
4141 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
4142 		if (cpu < 0)
4143 			cpu = smp_processor_id();
4144 
4145 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4146 
4147 		rcu_read_unlock();
4148 		preempt_enable();
4149 	} else
4150 #endif
4151 	{
4152 		unsigned int qtail;
4153 
4154 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4155 		put_cpu();
4156 	}
4157 	return ret;
4158 }
4159 
4160 /**
4161  *	netif_rx	-	post buffer to the network code
4162  *	@skb: buffer to post
4163  *
4164  *	This function receives a packet from a device driver and queues it for
4165  *	the upper (protocol) levels to process.  It always succeeds. The buffer
4166  *	may be dropped during processing for congestion control or by the
4167  *	protocol layers.
4168  *
4169  *	return values:
4170  *	NET_RX_SUCCESS	(no congestion)
4171  *	NET_RX_DROP     (packet was dropped)
4172  *
4173  */
4174 
4175 int netif_rx(struct sk_buff *skb)
4176 {
4177 	trace_netif_rx_entry(skb);
4178 
4179 	return netif_rx_internal(skb);
4180 }
4181 EXPORT_SYMBOL(netif_rx);
4182 
4183 int netif_rx_ni(struct sk_buff *skb)
4184 {
4185 	int err;
4186 
4187 	trace_netif_rx_ni_entry(skb);
4188 
4189 	preempt_disable();
4190 	err = netif_rx_internal(skb);
4191 	if (local_softirq_pending())
4192 		do_softirq();
4193 	preempt_enable();
4194 
4195 	return err;
4196 }
4197 EXPORT_SYMBOL(netif_rx_ni);
4198 
4199 static __latent_entropy void net_tx_action(struct softirq_action *h)
4200 {
4201 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4202 
4203 	if (sd->completion_queue) {
4204 		struct sk_buff *clist;
4205 
4206 		local_irq_disable();
4207 		clist = sd->completion_queue;
4208 		sd->completion_queue = NULL;
4209 		local_irq_enable();
4210 
4211 		while (clist) {
4212 			struct sk_buff *skb = clist;
4213 
4214 			clist = clist->next;
4215 
4216 			WARN_ON(refcount_read(&skb->users));
4217 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4218 				trace_consume_skb(skb);
4219 			else
4220 				trace_kfree_skb(skb, net_tx_action);
4221 
4222 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4223 				__kfree_skb(skb);
4224 			else
4225 				__kfree_skb_defer(skb);
4226 		}
4227 
4228 		__kfree_skb_flush();
4229 	}
4230 
4231 	if (sd->output_queue) {
4232 		struct Qdisc *head;
4233 
4234 		local_irq_disable();
4235 		head = sd->output_queue;
4236 		sd->output_queue = NULL;
4237 		sd->output_queue_tailp = &sd->output_queue;
4238 		local_irq_enable();
4239 
4240 		while (head) {
4241 			struct Qdisc *q = head;
4242 			spinlock_t *root_lock = NULL;
4243 
4244 			head = head->next_sched;
4245 
4246 			if (!(q->flags & TCQ_F_NOLOCK)) {
4247 				root_lock = qdisc_lock(q);
4248 				spin_lock(root_lock);
4249 			}
4250 			/* We need to make sure head->next_sched is read
4251 			 * before clearing __QDISC_STATE_SCHED
4252 			 */
4253 			smp_mb__before_atomic();
4254 			clear_bit(__QDISC_STATE_SCHED, &q->state);
4255 			qdisc_run(q);
4256 			if (root_lock)
4257 				spin_unlock(root_lock);
4258 		}
4259 	}
4260 
4261 	xfrm_dev_backlog(sd);
4262 }
4263 
4264 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4265 /* This hook is defined here for ATM LANE */
4266 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4267 			     unsigned char *addr) __read_mostly;
4268 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4269 #endif
4270 
4271 static inline struct sk_buff *
4272 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4273 		   struct net_device *orig_dev)
4274 {
4275 #ifdef CONFIG_NET_CLS_ACT
4276 	struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4277 	struct tcf_result cl_res;
4278 
4279 	/* If there's at least one ingress present somewhere (so
4280 	 * we get here via enabled static key), remaining devices
4281 	 * that are not configured with an ingress qdisc will bail
4282 	 * out here.
4283 	 */
4284 	if (!miniq)
4285 		return skb;
4286 
4287 	if (*pt_prev) {
4288 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
4289 		*pt_prev = NULL;
4290 	}
4291 
4292 	qdisc_skb_cb(skb)->pkt_len = skb->len;
4293 	skb->tc_at_ingress = 1;
4294 	mini_qdisc_bstats_cpu_update(miniq, skb);
4295 
4296 	switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
4297 	case TC_ACT_OK:
4298 	case TC_ACT_RECLASSIFY:
4299 		skb->tc_index = TC_H_MIN(cl_res.classid);
4300 		break;
4301 	case TC_ACT_SHOT:
4302 		mini_qdisc_qstats_cpu_drop(miniq);
4303 		kfree_skb(skb);
4304 		return NULL;
4305 	case TC_ACT_STOLEN:
4306 	case TC_ACT_QUEUED:
4307 	case TC_ACT_TRAP:
4308 		consume_skb(skb);
4309 		return NULL;
4310 	case TC_ACT_REDIRECT:
4311 		/* skb_mac_header check was done by cls/act_bpf, so
4312 		 * we can safely push the L2 header back before
4313 		 * redirecting to another netdev
4314 		 */
4315 		__skb_push(skb, skb->mac_len);
4316 		skb_do_redirect(skb);
4317 		return NULL;
4318 	default:
4319 		break;
4320 	}
4321 #endif /* CONFIG_NET_CLS_ACT */
4322 	return skb;
4323 }
4324 
4325 /**
4326  *	netdev_is_rx_handler_busy - check if receive handler is registered
4327  *	@dev: device to check
4328  *
4329  *	Check if a receive handler is already registered for a given device.
4330  *	Return true if there one.
4331  *
4332  *	The caller must hold the rtnl_mutex.
4333  */
4334 bool netdev_is_rx_handler_busy(struct net_device *dev)
4335 {
4336 	ASSERT_RTNL();
4337 	return dev && rtnl_dereference(dev->rx_handler);
4338 }
4339 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4340 
4341 /**
4342  *	netdev_rx_handler_register - register receive handler
4343  *	@dev: device to register a handler for
4344  *	@rx_handler: receive handler to register
4345  *	@rx_handler_data: data pointer that is used by rx handler
4346  *
4347  *	Register a receive handler for a device. This handler will then be
4348  *	called from __netif_receive_skb. A negative errno code is returned
4349  *	on a failure.
4350  *
4351  *	The caller must hold the rtnl_mutex.
4352  *
4353  *	For a general description of rx_handler, see enum rx_handler_result.
4354  */
4355 int netdev_rx_handler_register(struct net_device *dev,
4356 			       rx_handler_func_t *rx_handler,
4357 			       void *rx_handler_data)
4358 {
4359 	if (netdev_is_rx_handler_busy(dev))
4360 		return -EBUSY;
4361 
4362 	/* Note: rx_handler_data must be set before rx_handler */
4363 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4364 	rcu_assign_pointer(dev->rx_handler, rx_handler);
4365 
4366 	return 0;
4367 }
4368 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4369 
4370 /**
4371  *	netdev_rx_handler_unregister - unregister receive handler
4372  *	@dev: device to unregister a handler from
4373  *
4374  *	Unregister a receive handler from a device.
4375  *
4376  *	The caller must hold the rtnl_mutex.
4377  */
4378 void netdev_rx_handler_unregister(struct net_device *dev)
4379 {
4380 
4381 	ASSERT_RTNL();
4382 	RCU_INIT_POINTER(dev->rx_handler, NULL);
4383 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4384 	 * section has a guarantee to see a non NULL rx_handler_data
4385 	 * as well.
4386 	 */
4387 	synchronize_net();
4388 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4389 }
4390 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4391 
4392 /*
4393  * Limit the use of PFMEMALLOC reserves to those protocols that implement
4394  * the special handling of PFMEMALLOC skbs.
4395  */
4396 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4397 {
4398 	switch (skb->protocol) {
4399 	case htons(ETH_P_ARP):
4400 	case htons(ETH_P_IP):
4401 	case htons(ETH_P_IPV6):
4402 	case htons(ETH_P_8021Q):
4403 	case htons(ETH_P_8021AD):
4404 		return true;
4405 	default:
4406 		return false;
4407 	}
4408 }
4409 
4410 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4411 			     int *ret, struct net_device *orig_dev)
4412 {
4413 #ifdef CONFIG_NETFILTER_INGRESS
4414 	if (nf_hook_ingress_active(skb)) {
4415 		int ingress_retval;
4416 
4417 		if (*pt_prev) {
4418 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
4419 			*pt_prev = NULL;
4420 		}
4421 
4422 		rcu_read_lock();
4423 		ingress_retval = nf_hook_ingress(skb);
4424 		rcu_read_unlock();
4425 		return ingress_retval;
4426 	}
4427 #endif /* CONFIG_NETFILTER_INGRESS */
4428 	return 0;
4429 }
4430 
4431 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
4432 {
4433 	struct packet_type *ptype, *pt_prev;
4434 	rx_handler_func_t *rx_handler;
4435 	struct net_device *orig_dev;
4436 	bool deliver_exact = false;
4437 	int ret = NET_RX_DROP;
4438 	__be16 type;
4439 
4440 	net_timestamp_check(!netdev_tstamp_prequeue, skb);
4441 
4442 	trace_netif_receive_skb(skb);
4443 
4444 	orig_dev = skb->dev;
4445 
4446 	skb_reset_network_header(skb);
4447 	if (!skb_transport_header_was_set(skb))
4448 		skb_reset_transport_header(skb);
4449 	skb_reset_mac_len(skb);
4450 
4451 	pt_prev = NULL;
4452 
4453 another_round:
4454 	skb->skb_iif = skb->dev->ifindex;
4455 
4456 	__this_cpu_inc(softnet_data.processed);
4457 
4458 	if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4459 	    skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4460 		skb = skb_vlan_untag(skb);
4461 		if (unlikely(!skb))
4462 			goto out;
4463 	}
4464 
4465 	if (skb_skip_tc_classify(skb))
4466 		goto skip_classify;
4467 
4468 	if (pfmemalloc)
4469 		goto skip_taps;
4470 
4471 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
4472 		if (pt_prev)
4473 			ret = deliver_skb(skb, pt_prev, orig_dev);
4474 		pt_prev = ptype;
4475 	}
4476 
4477 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4478 		if (pt_prev)
4479 			ret = deliver_skb(skb, pt_prev, orig_dev);
4480 		pt_prev = ptype;
4481 	}
4482 
4483 skip_taps:
4484 #ifdef CONFIG_NET_INGRESS
4485 	if (static_key_false(&ingress_needed)) {
4486 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4487 		if (!skb)
4488 			goto out;
4489 
4490 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4491 			goto out;
4492 	}
4493 #endif
4494 	skb_reset_tc(skb);
4495 skip_classify:
4496 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4497 		goto drop;
4498 
4499 	if (skb_vlan_tag_present(skb)) {
4500 		if (pt_prev) {
4501 			ret = deliver_skb(skb, pt_prev, orig_dev);
4502 			pt_prev = NULL;
4503 		}
4504 		if (vlan_do_receive(&skb))
4505 			goto another_round;
4506 		else if (unlikely(!skb))
4507 			goto out;
4508 	}
4509 
4510 	rx_handler = rcu_dereference(skb->dev->rx_handler);
4511 	if (rx_handler) {
4512 		if (pt_prev) {
4513 			ret = deliver_skb(skb, pt_prev, orig_dev);
4514 			pt_prev = NULL;
4515 		}
4516 		switch (rx_handler(&skb)) {
4517 		case RX_HANDLER_CONSUMED:
4518 			ret = NET_RX_SUCCESS;
4519 			goto out;
4520 		case RX_HANDLER_ANOTHER:
4521 			goto another_round;
4522 		case RX_HANDLER_EXACT:
4523 			deliver_exact = true;
4524 		case RX_HANDLER_PASS:
4525 			break;
4526 		default:
4527 			BUG();
4528 		}
4529 	}
4530 
4531 	if (unlikely(skb_vlan_tag_present(skb))) {
4532 		if (skb_vlan_tag_get_id(skb))
4533 			skb->pkt_type = PACKET_OTHERHOST;
4534 		/* Note: we might in the future use prio bits
4535 		 * and set skb->priority like in vlan_do_receive()
4536 		 * For the time being, just ignore Priority Code Point
4537 		 */
4538 		skb->vlan_tci = 0;
4539 	}
4540 
4541 	type = skb->protocol;
4542 
4543 	/* deliver only exact match when indicated */
4544 	if (likely(!deliver_exact)) {
4545 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4546 				       &ptype_base[ntohs(type) &
4547 						   PTYPE_HASH_MASK]);
4548 	}
4549 
4550 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4551 			       &orig_dev->ptype_specific);
4552 
4553 	if (unlikely(skb->dev != orig_dev)) {
4554 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4555 				       &skb->dev->ptype_specific);
4556 	}
4557 
4558 	if (pt_prev) {
4559 		if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
4560 			goto drop;
4561 		else
4562 			ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4563 	} else {
4564 drop:
4565 		if (!deliver_exact)
4566 			atomic_long_inc(&skb->dev->rx_dropped);
4567 		else
4568 			atomic_long_inc(&skb->dev->rx_nohandler);
4569 		kfree_skb(skb);
4570 		/* Jamal, now you will not able to escape explaining
4571 		 * me how you were going to use this. :-)
4572 		 */
4573 		ret = NET_RX_DROP;
4574 	}
4575 
4576 out:
4577 	return ret;
4578 }
4579 
4580 /**
4581  *	netif_receive_skb_core - special purpose version of netif_receive_skb
4582  *	@skb: buffer to process
4583  *
4584  *	More direct receive version of netif_receive_skb().  It should
4585  *	only be used by callers that have a need to skip RPS and Generic XDP.
4586  *	Caller must also take care of handling if (page_is_)pfmemalloc.
4587  *
4588  *	This function may only be called from softirq context and interrupts
4589  *	should be enabled.
4590  *
4591  *	Return values (usually ignored):
4592  *	NET_RX_SUCCESS: no congestion
4593  *	NET_RX_DROP: packet was dropped
4594  */
4595 int netif_receive_skb_core(struct sk_buff *skb)
4596 {
4597 	int ret;
4598 
4599 	rcu_read_lock();
4600 	ret = __netif_receive_skb_core(skb, false);
4601 	rcu_read_unlock();
4602 
4603 	return ret;
4604 }
4605 EXPORT_SYMBOL(netif_receive_skb_core);
4606 
4607 static int __netif_receive_skb(struct sk_buff *skb)
4608 {
4609 	int ret;
4610 
4611 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4612 		unsigned int noreclaim_flag;
4613 
4614 		/*
4615 		 * PFMEMALLOC skbs are special, they should
4616 		 * - be delivered to SOCK_MEMALLOC sockets only
4617 		 * - stay away from userspace
4618 		 * - have bounded memory usage
4619 		 *
4620 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
4621 		 * context down to all allocation sites.
4622 		 */
4623 		noreclaim_flag = memalloc_noreclaim_save();
4624 		ret = __netif_receive_skb_core(skb, true);
4625 		memalloc_noreclaim_restore(noreclaim_flag);
4626 	} else
4627 		ret = __netif_receive_skb_core(skb, false);
4628 
4629 	return ret;
4630 }
4631 
4632 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
4633 {
4634 	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
4635 	struct bpf_prog *new = xdp->prog;
4636 	int ret = 0;
4637 
4638 	switch (xdp->command) {
4639 	case XDP_SETUP_PROG:
4640 		rcu_assign_pointer(dev->xdp_prog, new);
4641 		if (old)
4642 			bpf_prog_put(old);
4643 
4644 		if (old && !new) {
4645 			static_key_slow_dec(&generic_xdp_needed);
4646 		} else if (new && !old) {
4647 			static_key_slow_inc(&generic_xdp_needed);
4648 			dev_disable_lro(dev);
4649 			dev_disable_gro_hw(dev);
4650 		}
4651 		break;
4652 
4653 	case XDP_QUERY_PROG:
4654 		xdp->prog_attached = !!old;
4655 		xdp->prog_id = old ? old->aux->id : 0;
4656 		break;
4657 
4658 	default:
4659 		ret = -EINVAL;
4660 		break;
4661 	}
4662 
4663 	return ret;
4664 }
4665 
4666 static int netif_receive_skb_internal(struct sk_buff *skb)
4667 {
4668 	int ret;
4669 
4670 	net_timestamp_check(netdev_tstamp_prequeue, skb);
4671 
4672 	if (skb_defer_rx_timestamp(skb))
4673 		return NET_RX_SUCCESS;
4674 
4675 	if (static_key_false(&generic_xdp_needed)) {
4676 		int ret;
4677 
4678 		preempt_disable();
4679 		rcu_read_lock();
4680 		ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4681 		rcu_read_unlock();
4682 		preempt_enable();
4683 
4684 		if (ret != XDP_PASS)
4685 			return NET_RX_DROP;
4686 	}
4687 
4688 	rcu_read_lock();
4689 #ifdef CONFIG_RPS
4690 	if (static_key_false(&rps_needed)) {
4691 		struct rps_dev_flow voidflow, *rflow = &voidflow;
4692 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
4693 
4694 		if (cpu >= 0) {
4695 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4696 			rcu_read_unlock();
4697 			return ret;
4698 		}
4699 	}
4700 #endif
4701 	ret = __netif_receive_skb(skb);
4702 	rcu_read_unlock();
4703 	return ret;
4704 }
4705 
4706 /**
4707  *	netif_receive_skb - process receive buffer from network
4708  *	@skb: buffer to process
4709  *
4710  *	netif_receive_skb() is the main receive data processing function.
4711  *	It always succeeds. The buffer may be dropped during processing
4712  *	for congestion control or by the protocol layers.
4713  *
4714  *	This function may only be called from softirq context and interrupts
4715  *	should be enabled.
4716  *
4717  *	Return values (usually ignored):
4718  *	NET_RX_SUCCESS: no congestion
4719  *	NET_RX_DROP: packet was dropped
4720  */
4721 int netif_receive_skb(struct sk_buff *skb)
4722 {
4723 	trace_netif_receive_skb_entry(skb);
4724 
4725 	return netif_receive_skb_internal(skb);
4726 }
4727 EXPORT_SYMBOL(netif_receive_skb);
4728 
4729 DEFINE_PER_CPU(struct work_struct, flush_works);
4730 
4731 /* Network device is going away, flush any packets still pending */
4732 static void flush_backlog(struct work_struct *work)
4733 {
4734 	struct sk_buff *skb, *tmp;
4735 	struct softnet_data *sd;
4736 
4737 	local_bh_disable();
4738 	sd = this_cpu_ptr(&softnet_data);
4739 
4740 	local_irq_disable();
4741 	rps_lock(sd);
4742 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
4743 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4744 			__skb_unlink(skb, &sd->input_pkt_queue);
4745 			kfree_skb(skb);
4746 			input_queue_head_incr(sd);
4747 		}
4748 	}
4749 	rps_unlock(sd);
4750 	local_irq_enable();
4751 
4752 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4753 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4754 			__skb_unlink(skb, &sd->process_queue);
4755 			kfree_skb(skb);
4756 			input_queue_head_incr(sd);
4757 		}
4758 	}
4759 	local_bh_enable();
4760 }
4761 
4762 static void flush_all_backlogs(void)
4763 {
4764 	unsigned int cpu;
4765 
4766 	get_online_cpus();
4767 
4768 	for_each_online_cpu(cpu)
4769 		queue_work_on(cpu, system_highpri_wq,
4770 			      per_cpu_ptr(&flush_works, cpu));
4771 
4772 	for_each_online_cpu(cpu)
4773 		flush_work(per_cpu_ptr(&flush_works, cpu));
4774 
4775 	put_online_cpus();
4776 }
4777 
4778 static int napi_gro_complete(struct sk_buff *skb)
4779 {
4780 	struct packet_offload *ptype;
4781 	__be16 type = skb->protocol;
4782 	struct list_head *head = &offload_base;
4783 	int err = -ENOENT;
4784 
4785 	BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4786 
4787 	if (NAPI_GRO_CB(skb)->count == 1) {
4788 		skb_shinfo(skb)->gso_size = 0;
4789 		goto out;
4790 	}
4791 
4792 	rcu_read_lock();
4793 	list_for_each_entry_rcu(ptype, head, list) {
4794 		if (ptype->type != type || !ptype->callbacks.gro_complete)
4795 			continue;
4796 
4797 		err = ptype->callbacks.gro_complete(skb, 0);
4798 		break;
4799 	}
4800 	rcu_read_unlock();
4801 
4802 	if (err) {
4803 		WARN_ON(&ptype->list == head);
4804 		kfree_skb(skb);
4805 		return NET_RX_SUCCESS;
4806 	}
4807 
4808 out:
4809 	return netif_receive_skb_internal(skb);
4810 }
4811 
4812 /* napi->gro_list contains packets ordered by age.
4813  * youngest packets at the head of it.
4814  * Complete skbs in reverse order to reduce latencies.
4815  */
4816 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4817 {
4818 	struct sk_buff *skb, *prev = NULL;
4819 
4820 	/* scan list and build reverse chain */
4821 	for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4822 		skb->prev = prev;
4823 		prev = skb;
4824 	}
4825 
4826 	for (skb = prev; skb; skb = prev) {
4827 		skb->next = NULL;
4828 
4829 		if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4830 			return;
4831 
4832 		prev = skb->prev;
4833 		napi_gro_complete(skb);
4834 		napi->gro_count--;
4835 	}
4836 
4837 	napi->gro_list = NULL;
4838 }
4839 EXPORT_SYMBOL(napi_gro_flush);
4840 
4841 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4842 {
4843 	struct sk_buff *p;
4844 	unsigned int maclen = skb->dev->hard_header_len;
4845 	u32 hash = skb_get_hash_raw(skb);
4846 
4847 	for (p = napi->gro_list; p; p = p->next) {
4848 		unsigned long diffs;
4849 
4850 		NAPI_GRO_CB(p)->flush = 0;
4851 
4852 		if (hash != skb_get_hash_raw(p)) {
4853 			NAPI_GRO_CB(p)->same_flow = 0;
4854 			continue;
4855 		}
4856 
4857 		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4858 		diffs |= p->vlan_tci ^ skb->vlan_tci;
4859 		diffs |= skb_metadata_dst_cmp(p, skb);
4860 		diffs |= skb_metadata_differs(p, skb);
4861 		if (maclen == ETH_HLEN)
4862 			diffs |= compare_ether_header(skb_mac_header(p),
4863 						      skb_mac_header(skb));
4864 		else if (!diffs)
4865 			diffs = memcmp(skb_mac_header(p),
4866 				       skb_mac_header(skb),
4867 				       maclen);
4868 		NAPI_GRO_CB(p)->same_flow = !diffs;
4869 	}
4870 }
4871 
4872 static void skb_gro_reset_offset(struct sk_buff *skb)
4873 {
4874 	const struct skb_shared_info *pinfo = skb_shinfo(skb);
4875 	const skb_frag_t *frag0 = &pinfo->frags[0];
4876 
4877 	NAPI_GRO_CB(skb)->data_offset = 0;
4878 	NAPI_GRO_CB(skb)->frag0 = NULL;
4879 	NAPI_GRO_CB(skb)->frag0_len = 0;
4880 
4881 	if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4882 	    pinfo->nr_frags &&
4883 	    !PageHighMem(skb_frag_page(frag0))) {
4884 		NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4885 		NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
4886 						    skb_frag_size(frag0),
4887 						    skb->end - skb->tail);
4888 	}
4889 }
4890 
4891 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4892 {
4893 	struct skb_shared_info *pinfo = skb_shinfo(skb);
4894 
4895 	BUG_ON(skb->end - skb->tail < grow);
4896 
4897 	memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4898 
4899 	skb->data_len -= grow;
4900 	skb->tail += grow;
4901 
4902 	pinfo->frags[0].page_offset += grow;
4903 	skb_frag_size_sub(&pinfo->frags[0], grow);
4904 
4905 	if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4906 		skb_frag_unref(skb, 0);
4907 		memmove(pinfo->frags, pinfo->frags + 1,
4908 			--pinfo->nr_frags * sizeof(pinfo->frags[0]));
4909 	}
4910 }
4911 
4912 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4913 {
4914 	struct sk_buff **pp = NULL;
4915 	struct packet_offload *ptype;
4916 	__be16 type = skb->protocol;
4917 	struct list_head *head = &offload_base;
4918 	int same_flow;
4919 	enum gro_result ret;
4920 	int grow;
4921 
4922 	if (netif_elide_gro(skb->dev))
4923 		goto normal;
4924 
4925 	gro_list_prepare(napi, skb);
4926 
4927 	rcu_read_lock();
4928 	list_for_each_entry_rcu(ptype, head, list) {
4929 		if (ptype->type != type || !ptype->callbacks.gro_receive)
4930 			continue;
4931 
4932 		skb_set_network_header(skb, skb_gro_offset(skb));
4933 		skb_reset_mac_len(skb);
4934 		NAPI_GRO_CB(skb)->same_flow = 0;
4935 		NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
4936 		NAPI_GRO_CB(skb)->free = 0;
4937 		NAPI_GRO_CB(skb)->encap_mark = 0;
4938 		NAPI_GRO_CB(skb)->recursion_counter = 0;
4939 		NAPI_GRO_CB(skb)->is_fou = 0;
4940 		NAPI_GRO_CB(skb)->is_atomic = 1;
4941 		NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4942 
4943 		/* Setup for GRO checksum validation */
4944 		switch (skb->ip_summed) {
4945 		case CHECKSUM_COMPLETE:
4946 			NAPI_GRO_CB(skb)->csum = skb->csum;
4947 			NAPI_GRO_CB(skb)->csum_valid = 1;
4948 			NAPI_GRO_CB(skb)->csum_cnt = 0;
4949 			break;
4950 		case CHECKSUM_UNNECESSARY:
4951 			NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4952 			NAPI_GRO_CB(skb)->csum_valid = 0;
4953 			break;
4954 		default:
4955 			NAPI_GRO_CB(skb)->csum_cnt = 0;
4956 			NAPI_GRO_CB(skb)->csum_valid = 0;
4957 		}
4958 
4959 		pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4960 		break;
4961 	}
4962 	rcu_read_unlock();
4963 
4964 	if (&ptype->list == head)
4965 		goto normal;
4966 
4967 	if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
4968 		ret = GRO_CONSUMED;
4969 		goto ok;
4970 	}
4971 
4972 	same_flow = NAPI_GRO_CB(skb)->same_flow;
4973 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4974 
4975 	if (pp) {
4976 		struct sk_buff *nskb = *pp;
4977 
4978 		*pp = nskb->next;
4979 		nskb->next = NULL;
4980 		napi_gro_complete(nskb);
4981 		napi->gro_count--;
4982 	}
4983 
4984 	if (same_flow)
4985 		goto ok;
4986 
4987 	if (NAPI_GRO_CB(skb)->flush)
4988 		goto normal;
4989 
4990 	if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4991 		struct sk_buff *nskb = napi->gro_list;
4992 
4993 		/* locate the end of the list to select the 'oldest' flow */
4994 		while (nskb->next) {
4995 			pp = &nskb->next;
4996 			nskb = *pp;
4997 		}
4998 		*pp = NULL;
4999 		nskb->next = NULL;
5000 		napi_gro_complete(nskb);
5001 	} else {
5002 		napi->gro_count++;
5003 	}
5004 	NAPI_GRO_CB(skb)->count = 1;
5005 	NAPI_GRO_CB(skb)->age = jiffies;
5006 	NAPI_GRO_CB(skb)->last = skb;
5007 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
5008 	skb->next = napi->gro_list;
5009 	napi->gro_list = skb;
5010 	ret = GRO_HELD;
5011 
5012 pull:
5013 	grow = skb_gro_offset(skb) - skb_headlen(skb);
5014 	if (grow > 0)
5015 		gro_pull_from_frag0(skb, grow);
5016 ok:
5017 	return ret;
5018 
5019 normal:
5020 	ret = GRO_NORMAL;
5021 	goto pull;
5022 }
5023 
5024 struct packet_offload *gro_find_receive_by_type(__be16 type)
5025 {
5026 	struct list_head *offload_head = &offload_base;
5027 	struct packet_offload *ptype;
5028 
5029 	list_for_each_entry_rcu(ptype, offload_head, list) {
5030 		if (ptype->type != type || !ptype->callbacks.gro_receive)
5031 			continue;
5032 		return ptype;
5033 	}
5034 	return NULL;
5035 }
5036 EXPORT_SYMBOL(gro_find_receive_by_type);
5037 
5038 struct packet_offload *gro_find_complete_by_type(__be16 type)
5039 {
5040 	struct list_head *offload_head = &offload_base;
5041 	struct packet_offload *ptype;
5042 
5043 	list_for_each_entry_rcu(ptype, offload_head, list) {
5044 		if (ptype->type != type || !ptype->callbacks.gro_complete)
5045 			continue;
5046 		return ptype;
5047 	}
5048 	return NULL;
5049 }
5050 EXPORT_SYMBOL(gro_find_complete_by_type);
5051 
5052 static void napi_skb_free_stolen_head(struct sk_buff *skb)
5053 {
5054 	skb_dst_drop(skb);
5055 	secpath_reset(skb);
5056 	kmem_cache_free(skbuff_head_cache, skb);
5057 }
5058 
5059 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
5060 {
5061 	switch (ret) {
5062 	case GRO_NORMAL:
5063 		if (netif_receive_skb_internal(skb))
5064 			ret = GRO_DROP;
5065 		break;
5066 
5067 	case GRO_DROP:
5068 		kfree_skb(skb);
5069 		break;
5070 
5071 	case GRO_MERGED_FREE:
5072 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5073 			napi_skb_free_stolen_head(skb);
5074 		else
5075 			__kfree_skb(skb);
5076 		break;
5077 
5078 	case GRO_HELD:
5079 	case GRO_MERGED:
5080 	case GRO_CONSUMED:
5081 		break;
5082 	}
5083 
5084 	return ret;
5085 }
5086 
5087 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5088 {
5089 	skb_mark_napi_id(skb, napi);
5090 	trace_napi_gro_receive_entry(skb);
5091 
5092 	skb_gro_reset_offset(skb);
5093 
5094 	return napi_skb_finish(dev_gro_receive(napi, skb), skb);
5095 }
5096 EXPORT_SYMBOL(napi_gro_receive);
5097 
5098 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
5099 {
5100 	if (unlikely(skb->pfmemalloc)) {
5101 		consume_skb(skb);
5102 		return;
5103 	}
5104 	__skb_pull(skb, skb_headlen(skb));
5105 	/* restore the reserve we had after netdev_alloc_skb_ip_align() */
5106 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
5107 	skb->vlan_tci = 0;
5108 	skb->dev = napi->dev;
5109 	skb->skb_iif = 0;
5110 	skb->encapsulation = 0;
5111 	skb_shinfo(skb)->gso_type = 0;
5112 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5113 	secpath_reset(skb);
5114 
5115 	napi->skb = skb;
5116 }
5117 
5118 struct sk_buff *napi_get_frags(struct napi_struct *napi)
5119 {
5120 	struct sk_buff *skb = napi->skb;
5121 
5122 	if (!skb) {
5123 		skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
5124 		if (skb) {
5125 			napi->skb = skb;
5126 			skb_mark_napi_id(skb, napi);
5127 		}
5128 	}
5129 	return skb;
5130 }
5131 EXPORT_SYMBOL(napi_get_frags);
5132 
5133 static gro_result_t napi_frags_finish(struct napi_struct *napi,
5134 				      struct sk_buff *skb,
5135 				      gro_result_t ret)
5136 {
5137 	switch (ret) {
5138 	case GRO_NORMAL:
5139 	case GRO_HELD:
5140 		__skb_push(skb, ETH_HLEN);
5141 		skb->protocol = eth_type_trans(skb, skb->dev);
5142 		if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
5143 			ret = GRO_DROP;
5144 		break;
5145 
5146 	case GRO_DROP:
5147 		napi_reuse_skb(napi, skb);
5148 		break;
5149 
5150 	case GRO_MERGED_FREE:
5151 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5152 			napi_skb_free_stolen_head(skb);
5153 		else
5154 			napi_reuse_skb(napi, skb);
5155 		break;
5156 
5157 	case GRO_MERGED:
5158 	case GRO_CONSUMED:
5159 		break;
5160 	}
5161 
5162 	return ret;
5163 }
5164 
5165 /* Upper GRO stack assumes network header starts at gro_offset=0
5166  * Drivers could call both napi_gro_frags() and napi_gro_receive()
5167  * We copy ethernet header into skb->data to have a common layout.
5168  */
5169 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
5170 {
5171 	struct sk_buff *skb = napi->skb;
5172 	const struct ethhdr *eth;
5173 	unsigned int hlen = sizeof(*eth);
5174 
5175 	napi->skb = NULL;
5176 
5177 	skb_reset_mac_header(skb);
5178 	skb_gro_reset_offset(skb);
5179 
5180 	eth = skb_gro_header_fast(skb, 0);
5181 	if (unlikely(skb_gro_header_hard(skb, hlen))) {
5182 		eth = skb_gro_header_slow(skb, hlen, 0);
5183 		if (unlikely(!eth)) {
5184 			net_warn_ratelimited("%s: dropping impossible skb from %s\n",
5185 					     __func__, napi->dev->name);
5186 			napi_reuse_skb(napi, skb);
5187 			return NULL;
5188 		}
5189 	} else {
5190 		gro_pull_from_frag0(skb, hlen);
5191 		NAPI_GRO_CB(skb)->frag0 += hlen;
5192 		NAPI_GRO_CB(skb)->frag0_len -= hlen;
5193 	}
5194 	__skb_pull(skb, hlen);
5195 
5196 	/*
5197 	 * This works because the only protocols we care about don't require
5198 	 * special handling.
5199 	 * We'll fix it up properly in napi_frags_finish()
5200 	 */
5201 	skb->protocol = eth->h_proto;
5202 
5203 	return skb;
5204 }
5205 
5206 gro_result_t napi_gro_frags(struct napi_struct *napi)
5207 {
5208 	struct sk_buff *skb = napi_frags_skb(napi);
5209 
5210 	if (!skb)
5211 		return GRO_DROP;
5212 
5213 	trace_napi_gro_frags_entry(skb);
5214 
5215 	return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5216 }
5217 EXPORT_SYMBOL(napi_gro_frags);
5218 
5219 /* Compute the checksum from gro_offset and return the folded value
5220  * after adding in any pseudo checksum.
5221  */
5222 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
5223 {
5224 	__wsum wsum;
5225 	__sum16 sum;
5226 
5227 	wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
5228 
5229 	/* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
5230 	sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
5231 	if (likely(!sum)) {
5232 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
5233 		    !skb->csum_complete_sw)
5234 			netdev_rx_csum_fault(skb->dev);
5235 	}
5236 
5237 	NAPI_GRO_CB(skb)->csum = wsum;
5238 	NAPI_GRO_CB(skb)->csum_valid = 1;
5239 
5240 	return sum;
5241 }
5242 EXPORT_SYMBOL(__skb_gro_checksum_complete);
5243 
5244 static void net_rps_send_ipi(struct softnet_data *remsd)
5245 {
5246 #ifdef CONFIG_RPS
5247 	while (remsd) {
5248 		struct softnet_data *next = remsd->rps_ipi_next;
5249 
5250 		if (cpu_online(remsd->cpu))
5251 			smp_call_function_single_async(remsd->cpu, &remsd->csd);
5252 		remsd = next;
5253 	}
5254 #endif
5255 }
5256 
5257 /*
5258  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5259  * Note: called with local irq disabled, but exits with local irq enabled.
5260  */
5261 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5262 {
5263 #ifdef CONFIG_RPS
5264 	struct softnet_data *remsd = sd->rps_ipi_list;
5265 
5266 	if (remsd) {
5267 		sd->rps_ipi_list = NULL;
5268 
5269 		local_irq_enable();
5270 
5271 		/* Send pending IPI's to kick RPS processing on remote cpus. */
5272 		net_rps_send_ipi(remsd);
5273 	} else
5274 #endif
5275 		local_irq_enable();
5276 }
5277 
5278 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5279 {
5280 #ifdef CONFIG_RPS
5281 	return sd->rps_ipi_list != NULL;
5282 #else
5283 	return false;
5284 #endif
5285 }
5286 
5287 static int process_backlog(struct napi_struct *napi, int quota)
5288 {
5289 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5290 	bool again = true;
5291 	int work = 0;
5292 
5293 	/* Check if we have pending ipi, its better to send them now,
5294 	 * not waiting net_rx_action() end.
5295 	 */
5296 	if (sd_has_rps_ipi_waiting(sd)) {
5297 		local_irq_disable();
5298 		net_rps_action_and_irq_enable(sd);
5299 	}
5300 
5301 	napi->weight = dev_rx_weight;
5302 	while (again) {
5303 		struct sk_buff *skb;
5304 
5305 		while ((skb = __skb_dequeue(&sd->process_queue))) {
5306 			rcu_read_lock();
5307 			__netif_receive_skb(skb);
5308 			rcu_read_unlock();
5309 			input_queue_head_incr(sd);
5310 			if (++work >= quota)
5311 				return work;
5312 
5313 		}
5314 
5315 		local_irq_disable();
5316 		rps_lock(sd);
5317 		if (skb_queue_empty(&sd->input_pkt_queue)) {
5318 			/*
5319 			 * Inline a custom version of __napi_complete().
5320 			 * only current cpu owns and manipulates this napi,
5321 			 * and NAPI_STATE_SCHED is the only possible flag set
5322 			 * on backlog.
5323 			 * We can use a plain write instead of clear_bit(),
5324 			 * and we dont need an smp_mb() memory barrier.
5325 			 */
5326 			napi->state = 0;
5327 			again = false;
5328 		} else {
5329 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
5330 						   &sd->process_queue);
5331 		}
5332 		rps_unlock(sd);
5333 		local_irq_enable();
5334 	}
5335 
5336 	return work;
5337 }
5338 
5339 /**
5340  * __napi_schedule - schedule for receive
5341  * @n: entry to schedule
5342  *
5343  * The entry's receive function will be scheduled to run.
5344  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5345  */
5346 void __napi_schedule(struct napi_struct *n)
5347 {
5348 	unsigned long flags;
5349 
5350 	local_irq_save(flags);
5351 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
5352 	local_irq_restore(flags);
5353 }
5354 EXPORT_SYMBOL(__napi_schedule);
5355 
5356 /**
5357  *	napi_schedule_prep - check if napi can be scheduled
5358  *	@n: napi context
5359  *
5360  * Test if NAPI routine is already running, and if not mark
5361  * it as running.  This is used as a condition variable
5362  * insure only one NAPI poll instance runs.  We also make
5363  * sure there is no pending NAPI disable.
5364  */
5365 bool napi_schedule_prep(struct napi_struct *n)
5366 {
5367 	unsigned long val, new;
5368 
5369 	do {
5370 		val = READ_ONCE(n->state);
5371 		if (unlikely(val & NAPIF_STATE_DISABLE))
5372 			return false;
5373 		new = val | NAPIF_STATE_SCHED;
5374 
5375 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
5376 		 * This was suggested by Alexander Duyck, as compiler
5377 		 * emits better code than :
5378 		 * if (val & NAPIF_STATE_SCHED)
5379 		 *     new |= NAPIF_STATE_MISSED;
5380 		 */
5381 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
5382 						   NAPIF_STATE_MISSED;
5383 	} while (cmpxchg(&n->state, val, new) != val);
5384 
5385 	return !(val & NAPIF_STATE_SCHED);
5386 }
5387 EXPORT_SYMBOL(napi_schedule_prep);
5388 
5389 /**
5390  * __napi_schedule_irqoff - schedule for receive
5391  * @n: entry to schedule
5392  *
5393  * Variant of __napi_schedule() assuming hard irqs are masked
5394  */
5395 void __napi_schedule_irqoff(struct napi_struct *n)
5396 {
5397 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
5398 }
5399 EXPORT_SYMBOL(__napi_schedule_irqoff);
5400 
5401 bool napi_complete_done(struct napi_struct *n, int work_done)
5402 {
5403 	unsigned long flags, val, new;
5404 
5405 	/*
5406 	 * 1) Don't let napi dequeue from the cpu poll list
5407 	 *    just in case its running on a different cpu.
5408 	 * 2) If we are busy polling, do nothing here, we have
5409 	 *    the guarantee we will be called later.
5410 	 */
5411 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
5412 				 NAPIF_STATE_IN_BUSY_POLL)))
5413 		return false;
5414 
5415 	if (n->gro_list) {
5416 		unsigned long timeout = 0;
5417 
5418 		if (work_done)
5419 			timeout = n->dev->gro_flush_timeout;
5420 
5421 		if (timeout)
5422 			hrtimer_start(&n->timer, ns_to_ktime(timeout),
5423 				      HRTIMER_MODE_REL_PINNED);
5424 		else
5425 			napi_gro_flush(n, false);
5426 	}
5427 	if (unlikely(!list_empty(&n->poll_list))) {
5428 		/* If n->poll_list is not empty, we need to mask irqs */
5429 		local_irq_save(flags);
5430 		list_del_init(&n->poll_list);
5431 		local_irq_restore(flags);
5432 	}
5433 
5434 	do {
5435 		val = READ_ONCE(n->state);
5436 
5437 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
5438 
5439 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
5440 
5441 		/* If STATE_MISSED was set, leave STATE_SCHED set,
5442 		 * because we will call napi->poll() one more time.
5443 		 * This C code was suggested by Alexander Duyck to help gcc.
5444 		 */
5445 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
5446 						    NAPIF_STATE_SCHED;
5447 	} while (cmpxchg(&n->state, val, new) != val);
5448 
5449 	if (unlikely(val & NAPIF_STATE_MISSED)) {
5450 		__napi_schedule(n);
5451 		return false;
5452 	}
5453 
5454 	return true;
5455 }
5456 EXPORT_SYMBOL(napi_complete_done);
5457 
5458 /* must be called under rcu_read_lock(), as we dont take a reference */
5459 static struct napi_struct *napi_by_id(unsigned int napi_id)
5460 {
5461 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
5462 	struct napi_struct *napi;
5463 
5464 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
5465 		if (napi->napi_id == napi_id)
5466 			return napi;
5467 
5468 	return NULL;
5469 }
5470 
5471 #if defined(CONFIG_NET_RX_BUSY_POLL)
5472 
5473 #define BUSY_POLL_BUDGET 8
5474 
5475 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
5476 {
5477 	int rc;
5478 
5479 	/* Busy polling means there is a high chance device driver hard irq
5480 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
5481 	 * set in napi_schedule_prep().
5482 	 * Since we are about to call napi->poll() once more, we can safely
5483 	 * clear NAPI_STATE_MISSED.
5484 	 *
5485 	 * Note: x86 could use a single "lock and ..." instruction
5486 	 * to perform these two clear_bit()
5487 	 */
5488 	clear_bit(NAPI_STATE_MISSED, &napi->state);
5489 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
5490 
5491 	local_bh_disable();
5492 
5493 	/* All we really want here is to re-enable device interrupts.
5494 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
5495 	 */
5496 	rc = napi->poll(napi, BUSY_POLL_BUDGET);
5497 	trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
5498 	netpoll_poll_unlock(have_poll_lock);
5499 	if (rc == BUSY_POLL_BUDGET)
5500 		__napi_schedule(napi);
5501 	local_bh_enable();
5502 }
5503 
5504 void napi_busy_loop(unsigned int napi_id,
5505 		    bool (*loop_end)(void *, unsigned long),
5506 		    void *loop_end_arg)
5507 {
5508 	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
5509 	int (*napi_poll)(struct napi_struct *napi, int budget);
5510 	void *have_poll_lock = NULL;
5511 	struct napi_struct *napi;
5512 
5513 restart:
5514 	napi_poll = NULL;
5515 
5516 	rcu_read_lock();
5517 
5518 	napi = napi_by_id(napi_id);
5519 	if (!napi)
5520 		goto out;
5521 
5522 	preempt_disable();
5523 	for (;;) {
5524 		int work = 0;
5525 
5526 		local_bh_disable();
5527 		if (!napi_poll) {
5528 			unsigned long val = READ_ONCE(napi->state);
5529 
5530 			/* If multiple threads are competing for this napi,
5531 			 * we avoid dirtying napi->state as much as we can.
5532 			 */
5533 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
5534 				   NAPIF_STATE_IN_BUSY_POLL))
5535 				goto count;
5536 			if (cmpxchg(&napi->state, val,
5537 				    val | NAPIF_STATE_IN_BUSY_POLL |
5538 					  NAPIF_STATE_SCHED) != val)
5539 				goto count;
5540 			have_poll_lock = netpoll_poll_lock(napi);
5541 			napi_poll = napi->poll;
5542 		}
5543 		work = napi_poll(napi, BUSY_POLL_BUDGET);
5544 		trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
5545 count:
5546 		if (work > 0)
5547 			__NET_ADD_STATS(dev_net(napi->dev),
5548 					LINUX_MIB_BUSYPOLLRXPACKETS, work);
5549 		local_bh_enable();
5550 
5551 		if (!loop_end || loop_end(loop_end_arg, start_time))
5552 			break;
5553 
5554 		if (unlikely(need_resched())) {
5555 			if (napi_poll)
5556 				busy_poll_stop(napi, have_poll_lock);
5557 			preempt_enable();
5558 			rcu_read_unlock();
5559 			cond_resched();
5560 			if (loop_end(loop_end_arg, start_time))
5561 				return;
5562 			goto restart;
5563 		}
5564 		cpu_relax();
5565 	}
5566 	if (napi_poll)
5567 		busy_poll_stop(napi, have_poll_lock);
5568 	preempt_enable();
5569 out:
5570 	rcu_read_unlock();
5571 }
5572 EXPORT_SYMBOL(napi_busy_loop);
5573 
5574 #endif /* CONFIG_NET_RX_BUSY_POLL */
5575 
5576 static void napi_hash_add(struct napi_struct *napi)
5577 {
5578 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
5579 	    test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
5580 		return;
5581 
5582 	spin_lock(&napi_hash_lock);
5583 
5584 	/* 0..NR_CPUS range is reserved for sender_cpu use */
5585 	do {
5586 		if (unlikely(++napi_gen_id < MIN_NAPI_ID))
5587 			napi_gen_id = MIN_NAPI_ID;
5588 	} while (napi_by_id(napi_gen_id));
5589 	napi->napi_id = napi_gen_id;
5590 
5591 	hlist_add_head_rcu(&napi->napi_hash_node,
5592 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
5593 
5594 	spin_unlock(&napi_hash_lock);
5595 }
5596 
5597 /* Warning : caller is responsible to make sure rcu grace period
5598  * is respected before freeing memory containing @napi
5599  */
5600 bool napi_hash_del(struct napi_struct *napi)
5601 {
5602 	bool rcu_sync_needed = false;
5603 
5604 	spin_lock(&napi_hash_lock);
5605 
5606 	if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
5607 		rcu_sync_needed = true;
5608 		hlist_del_rcu(&napi->napi_hash_node);
5609 	}
5610 	spin_unlock(&napi_hash_lock);
5611 	return rcu_sync_needed;
5612 }
5613 EXPORT_SYMBOL_GPL(napi_hash_del);
5614 
5615 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
5616 {
5617 	struct napi_struct *napi;
5618 
5619 	napi = container_of(timer, struct napi_struct, timer);
5620 
5621 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
5622 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
5623 	 */
5624 	if (napi->gro_list && !napi_disable_pending(napi) &&
5625 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
5626 		__napi_schedule_irqoff(napi);
5627 
5628 	return HRTIMER_NORESTART;
5629 }
5630 
5631 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5632 		    int (*poll)(struct napi_struct *, int), int weight)
5633 {
5634 	INIT_LIST_HEAD(&napi->poll_list);
5635 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5636 	napi->timer.function = napi_watchdog;
5637 	napi->gro_count = 0;
5638 	napi->gro_list = NULL;
5639 	napi->skb = NULL;
5640 	napi->poll = poll;
5641 	if (weight > NAPI_POLL_WEIGHT)
5642 		pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5643 			    weight, dev->name);
5644 	napi->weight = weight;
5645 	list_add(&napi->dev_list, &dev->napi_list);
5646 	napi->dev = dev;
5647 #ifdef CONFIG_NETPOLL
5648 	napi->poll_owner = -1;
5649 #endif
5650 	set_bit(NAPI_STATE_SCHED, &napi->state);
5651 	napi_hash_add(napi);
5652 }
5653 EXPORT_SYMBOL(netif_napi_add);
5654 
5655 void napi_disable(struct napi_struct *n)
5656 {
5657 	might_sleep();
5658 	set_bit(NAPI_STATE_DISABLE, &n->state);
5659 
5660 	while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5661 		msleep(1);
5662 	while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5663 		msleep(1);
5664 
5665 	hrtimer_cancel(&n->timer);
5666 
5667 	clear_bit(NAPI_STATE_DISABLE, &n->state);
5668 }
5669 EXPORT_SYMBOL(napi_disable);
5670 
5671 /* Must be called in process context */
5672 void netif_napi_del(struct napi_struct *napi)
5673 {
5674 	might_sleep();
5675 	if (napi_hash_del(napi))
5676 		synchronize_net();
5677 	list_del_init(&napi->dev_list);
5678 	napi_free_frags(napi);
5679 
5680 	kfree_skb_list(napi->gro_list);
5681 	napi->gro_list = NULL;
5682 	napi->gro_count = 0;
5683 }
5684 EXPORT_SYMBOL(netif_napi_del);
5685 
5686 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5687 {
5688 	void *have;
5689 	int work, weight;
5690 
5691 	list_del_init(&n->poll_list);
5692 
5693 	have = netpoll_poll_lock(n);
5694 
5695 	weight = n->weight;
5696 
5697 	/* This NAPI_STATE_SCHED test is for avoiding a race
5698 	 * with netpoll's poll_napi().  Only the entity which
5699 	 * obtains the lock and sees NAPI_STATE_SCHED set will
5700 	 * actually make the ->poll() call.  Therefore we avoid
5701 	 * accidentally calling ->poll() when NAPI is not scheduled.
5702 	 */
5703 	work = 0;
5704 	if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5705 		work = n->poll(n, weight);
5706 		trace_napi_poll(n, work, weight);
5707 	}
5708 
5709 	WARN_ON_ONCE(work > weight);
5710 
5711 	if (likely(work < weight))
5712 		goto out_unlock;
5713 
5714 	/* Drivers must not modify the NAPI state if they
5715 	 * consume the entire weight.  In such cases this code
5716 	 * still "owns" the NAPI instance and therefore can
5717 	 * move the instance around on the list at-will.
5718 	 */
5719 	if (unlikely(napi_disable_pending(n))) {
5720 		napi_complete(n);
5721 		goto out_unlock;
5722 	}
5723 
5724 	if (n->gro_list) {
5725 		/* flush too old packets
5726 		 * If HZ < 1000, flush all packets.
5727 		 */
5728 		napi_gro_flush(n, HZ >= 1000);
5729 	}
5730 
5731 	/* Some drivers may have called napi_schedule
5732 	 * prior to exhausting their budget.
5733 	 */
5734 	if (unlikely(!list_empty(&n->poll_list))) {
5735 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5736 			     n->dev ? n->dev->name : "backlog");
5737 		goto out_unlock;
5738 	}
5739 
5740 	list_add_tail(&n->poll_list, repoll);
5741 
5742 out_unlock:
5743 	netpoll_poll_unlock(have);
5744 
5745 	return work;
5746 }
5747 
5748 static __latent_entropy void net_rx_action(struct softirq_action *h)
5749 {
5750 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5751 	unsigned long time_limit = jiffies +
5752 		usecs_to_jiffies(netdev_budget_usecs);
5753 	int budget = netdev_budget;
5754 	LIST_HEAD(list);
5755 	LIST_HEAD(repoll);
5756 
5757 	local_irq_disable();
5758 	list_splice_init(&sd->poll_list, &list);
5759 	local_irq_enable();
5760 
5761 	for (;;) {
5762 		struct napi_struct *n;
5763 
5764 		if (list_empty(&list)) {
5765 			if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
5766 				goto out;
5767 			break;
5768 		}
5769 
5770 		n = list_first_entry(&list, struct napi_struct, poll_list);
5771 		budget -= napi_poll(n, &repoll);
5772 
5773 		/* If softirq window is exhausted then punt.
5774 		 * Allow this to run for 2 jiffies since which will allow
5775 		 * an average latency of 1.5/HZ.
5776 		 */
5777 		if (unlikely(budget <= 0 ||
5778 			     time_after_eq(jiffies, time_limit))) {
5779 			sd->time_squeeze++;
5780 			break;
5781 		}
5782 	}
5783 
5784 	local_irq_disable();
5785 
5786 	list_splice_tail_init(&sd->poll_list, &list);
5787 	list_splice_tail(&repoll, &list);
5788 	list_splice(&list, &sd->poll_list);
5789 	if (!list_empty(&sd->poll_list))
5790 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
5791 
5792 	net_rps_action_and_irq_enable(sd);
5793 out:
5794 	__kfree_skb_flush();
5795 }
5796 
5797 struct netdev_adjacent {
5798 	struct net_device *dev;
5799 
5800 	/* upper master flag, there can only be one master device per list */
5801 	bool master;
5802 
5803 	/* counter for the number of times this device was added to us */
5804 	u16 ref_nr;
5805 
5806 	/* private field for the users */
5807 	void *private;
5808 
5809 	struct list_head list;
5810 	struct rcu_head rcu;
5811 };
5812 
5813 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
5814 						 struct list_head *adj_list)
5815 {
5816 	struct netdev_adjacent *adj;
5817 
5818 	list_for_each_entry(adj, adj_list, list) {
5819 		if (adj->dev == adj_dev)
5820 			return adj;
5821 	}
5822 	return NULL;
5823 }
5824 
5825 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
5826 {
5827 	struct net_device *dev = data;
5828 
5829 	return upper_dev == dev;
5830 }
5831 
5832 /**
5833  * netdev_has_upper_dev - Check if device is linked to an upper device
5834  * @dev: device
5835  * @upper_dev: upper device to check
5836  *
5837  * Find out if a device is linked to specified upper device and return true
5838  * in case it is. Note that this checks only immediate upper device,
5839  * not through a complete stack of devices. The caller must hold the RTNL lock.
5840  */
5841 bool netdev_has_upper_dev(struct net_device *dev,
5842 			  struct net_device *upper_dev)
5843 {
5844 	ASSERT_RTNL();
5845 
5846 	return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5847 					     upper_dev);
5848 }
5849 EXPORT_SYMBOL(netdev_has_upper_dev);
5850 
5851 /**
5852  * netdev_has_upper_dev_all - Check if device is linked to an upper device
5853  * @dev: device
5854  * @upper_dev: upper device to check
5855  *
5856  * Find out if a device is linked to specified upper device and return true
5857  * in case it is. Note that this checks the entire upper device chain.
5858  * The caller must hold rcu lock.
5859  */
5860 
5861 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
5862 				  struct net_device *upper_dev)
5863 {
5864 	return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5865 					       upper_dev);
5866 }
5867 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
5868 
5869 /**
5870  * netdev_has_any_upper_dev - Check if device is linked to some device
5871  * @dev: device
5872  *
5873  * Find out if a device is linked to an upper device and return true in case
5874  * it is. The caller must hold the RTNL lock.
5875  */
5876 bool netdev_has_any_upper_dev(struct net_device *dev)
5877 {
5878 	ASSERT_RTNL();
5879 
5880 	return !list_empty(&dev->adj_list.upper);
5881 }
5882 EXPORT_SYMBOL(netdev_has_any_upper_dev);
5883 
5884 /**
5885  * netdev_master_upper_dev_get - Get master upper device
5886  * @dev: device
5887  *
5888  * Find a master upper device and return pointer to it or NULL in case
5889  * it's not there. The caller must hold the RTNL lock.
5890  */
5891 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5892 {
5893 	struct netdev_adjacent *upper;
5894 
5895 	ASSERT_RTNL();
5896 
5897 	if (list_empty(&dev->adj_list.upper))
5898 		return NULL;
5899 
5900 	upper = list_first_entry(&dev->adj_list.upper,
5901 				 struct netdev_adjacent, list);
5902 	if (likely(upper->master))
5903 		return upper->dev;
5904 	return NULL;
5905 }
5906 EXPORT_SYMBOL(netdev_master_upper_dev_get);
5907 
5908 /**
5909  * netdev_has_any_lower_dev - Check if device is linked to some device
5910  * @dev: device
5911  *
5912  * Find out if a device is linked to a lower device and return true in case
5913  * it is. The caller must hold the RTNL lock.
5914  */
5915 static bool netdev_has_any_lower_dev(struct net_device *dev)
5916 {
5917 	ASSERT_RTNL();
5918 
5919 	return !list_empty(&dev->adj_list.lower);
5920 }
5921 
5922 void *netdev_adjacent_get_private(struct list_head *adj_list)
5923 {
5924 	struct netdev_adjacent *adj;
5925 
5926 	adj = list_entry(adj_list, struct netdev_adjacent, list);
5927 
5928 	return adj->private;
5929 }
5930 EXPORT_SYMBOL(netdev_adjacent_get_private);
5931 
5932 /**
5933  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5934  * @dev: device
5935  * @iter: list_head ** of the current position
5936  *
5937  * Gets the next device from the dev's upper list, starting from iter
5938  * position. The caller must hold RCU read lock.
5939  */
5940 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5941 						 struct list_head **iter)
5942 {
5943 	struct netdev_adjacent *upper;
5944 
5945 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5946 
5947 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5948 
5949 	if (&upper->list == &dev->adj_list.upper)
5950 		return NULL;
5951 
5952 	*iter = &upper->list;
5953 
5954 	return upper->dev;
5955 }
5956 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5957 
5958 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
5959 						    struct list_head **iter)
5960 {
5961 	struct netdev_adjacent *upper;
5962 
5963 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5964 
5965 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5966 
5967 	if (&upper->list == &dev->adj_list.upper)
5968 		return NULL;
5969 
5970 	*iter = &upper->list;
5971 
5972 	return upper->dev;
5973 }
5974 
5975 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
5976 				  int (*fn)(struct net_device *dev,
5977 					    void *data),
5978 				  void *data)
5979 {
5980 	struct net_device *udev;
5981 	struct list_head *iter;
5982 	int ret;
5983 
5984 	for (iter = &dev->adj_list.upper,
5985 	     udev = netdev_next_upper_dev_rcu(dev, &iter);
5986 	     udev;
5987 	     udev = netdev_next_upper_dev_rcu(dev, &iter)) {
5988 		/* first is the upper device itself */
5989 		ret = fn(udev, data);
5990 		if (ret)
5991 			return ret;
5992 
5993 		/* then look at all of its upper devices */
5994 		ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
5995 		if (ret)
5996 			return ret;
5997 	}
5998 
5999 	return 0;
6000 }
6001 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
6002 
6003 /**
6004  * netdev_lower_get_next_private - Get the next ->private from the
6005  *				   lower neighbour list
6006  * @dev: device
6007  * @iter: list_head ** of the current position
6008  *
6009  * Gets the next netdev_adjacent->private from the dev's lower neighbour
6010  * list, starting from iter position. The caller must hold either hold the
6011  * RTNL lock or its own locking that guarantees that the neighbour lower
6012  * list will remain unchanged.
6013  */
6014 void *netdev_lower_get_next_private(struct net_device *dev,
6015 				    struct list_head **iter)
6016 {
6017 	struct netdev_adjacent *lower;
6018 
6019 	lower = list_entry(*iter, struct netdev_adjacent, list);
6020 
6021 	if (&lower->list == &dev->adj_list.lower)
6022 		return NULL;
6023 
6024 	*iter = lower->list.next;
6025 
6026 	return lower->private;
6027 }
6028 EXPORT_SYMBOL(netdev_lower_get_next_private);
6029 
6030 /**
6031  * netdev_lower_get_next_private_rcu - Get the next ->private from the
6032  *				       lower neighbour list, RCU
6033  *				       variant
6034  * @dev: device
6035  * @iter: list_head ** of the current position
6036  *
6037  * Gets the next netdev_adjacent->private from the dev's lower neighbour
6038  * list, starting from iter position. The caller must hold RCU read lock.
6039  */
6040 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
6041 					struct list_head **iter)
6042 {
6043 	struct netdev_adjacent *lower;
6044 
6045 	WARN_ON_ONCE(!rcu_read_lock_held());
6046 
6047 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6048 
6049 	if (&lower->list == &dev->adj_list.lower)
6050 		return NULL;
6051 
6052 	*iter = &lower->list;
6053 
6054 	return lower->private;
6055 }
6056 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
6057 
6058 /**
6059  * netdev_lower_get_next - Get the next device from the lower neighbour
6060  *                         list
6061  * @dev: device
6062  * @iter: list_head ** of the current position
6063  *
6064  * Gets the next netdev_adjacent from the dev's lower neighbour
6065  * list, starting from iter position. The caller must hold RTNL lock or
6066  * its own locking that guarantees that the neighbour lower
6067  * list will remain unchanged.
6068  */
6069 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
6070 {
6071 	struct netdev_adjacent *lower;
6072 
6073 	lower = list_entry(*iter, struct netdev_adjacent, list);
6074 
6075 	if (&lower->list == &dev->adj_list.lower)
6076 		return NULL;
6077 
6078 	*iter = lower->list.next;
6079 
6080 	return lower->dev;
6081 }
6082 EXPORT_SYMBOL(netdev_lower_get_next);
6083 
6084 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
6085 						struct list_head **iter)
6086 {
6087 	struct netdev_adjacent *lower;
6088 
6089 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
6090 
6091 	if (&lower->list == &dev->adj_list.lower)
6092 		return NULL;
6093 
6094 	*iter = &lower->list;
6095 
6096 	return lower->dev;
6097 }
6098 
6099 int netdev_walk_all_lower_dev(struct net_device *dev,
6100 			      int (*fn)(struct net_device *dev,
6101 					void *data),
6102 			      void *data)
6103 {
6104 	struct net_device *ldev;
6105 	struct list_head *iter;
6106 	int ret;
6107 
6108 	for (iter = &dev->adj_list.lower,
6109 	     ldev = netdev_next_lower_dev(dev, &iter);
6110 	     ldev;
6111 	     ldev = netdev_next_lower_dev(dev, &iter)) {
6112 		/* first is the lower device itself */
6113 		ret = fn(ldev, data);
6114 		if (ret)
6115 			return ret;
6116 
6117 		/* then look at all of its lower devices */
6118 		ret = netdev_walk_all_lower_dev(ldev, fn, data);
6119 		if (ret)
6120 			return ret;
6121 	}
6122 
6123 	return 0;
6124 }
6125 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
6126 
6127 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
6128 						    struct list_head **iter)
6129 {
6130 	struct netdev_adjacent *lower;
6131 
6132 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6133 	if (&lower->list == &dev->adj_list.lower)
6134 		return NULL;
6135 
6136 	*iter = &lower->list;
6137 
6138 	return lower->dev;
6139 }
6140 
6141 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
6142 				  int (*fn)(struct net_device *dev,
6143 					    void *data),
6144 				  void *data)
6145 {
6146 	struct net_device *ldev;
6147 	struct list_head *iter;
6148 	int ret;
6149 
6150 	for (iter = &dev->adj_list.lower,
6151 	     ldev = netdev_next_lower_dev_rcu(dev, &iter);
6152 	     ldev;
6153 	     ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
6154 		/* first is the lower device itself */
6155 		ret = fn(ldev, data);
6156 		if (ret)
6157 			return ret;
6158 
6159 		/* then look at all of its lower devices */
6160 		ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
6161 		if (ret)
6162 			return ret;
6163 	}
6164 
6165 	return 0;
6166 }
6167 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
6168 
6169 /**
6170  * netdev_lower_get_first_private_rcu - Get the first ->private from the
6171  *				       lower neighbour list, RCU
6172  *				       variant
6173  * @dev: device
6174  *
6175  * Gets the first netdev_adjacent->private from the dev's lower neighbour
6176  * list. The caller must hold RCU read lock.
6177  */
6178 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
6179 {
6180 	struct netdev_adjacent *lower;
6181 
6182 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
6183 			struct netdev_adjacent, list);
6184 	if (lower)
6185 		return lower->private;
6186 	return NULL;
6187 }
6188 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
6189 
6190 /**
6191  * netdev_master_upper_dev_get_rcu - Get master upper device
6192  * @dev: device
6193  *
6194  * Find a master upper device and return pointer to it or NULL in case
6195  * it's not there. The caller must hold the RCU read lock.
6196  */
6197 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
6198 {
6199 	struct netdev_adjacent *upper;
6200 
6201 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
6202 				       struct netdev_adjacent, list);
6203 	if (upper && likely(upper->master))
6204 		return upper->dev;
6205 	return NULL;
6206 }
6207 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
6208 
6209 static int netdev_adjacent_sysfs_add(struct net_device *dev,
6210 			      struct net_device *adj_dev,
6211 			      struct list_head *dev_list)
6212 {
6213 	char linkname[IFNAMSIZ+7];
6214 
6215 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
6216 		"upper_%s" : "lower_%s", adj_dev->name);
6217 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
6218 				 linkname);
6219 }
6220 static void netdev_adjacent_sysfs_del(struct net_device *dev,
6221 			       char *name,
6222 			       struct list_head *dev_list)
6223 {
6224 	char linkname[IFNAMSIZ+7];
6225 
6226 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
6227 		"upper_%s" : "lower_%s", name);
6228 	sysfs_remove_link(&(dev->dev.kobj), linkname);
6229 }
6230 
6231 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
6232 						 struct net_device *adj_dev,
6233 						 struct list_head *dev_list)
6234 {
6235 	return (dev_list == &dev->adj_list.upper ||
6236 		dev_list == &dev->adj_list.lower) &&
6237 		net_eq(dev_net(dev), dev_net(adj_dev));
6238 }
6239 
6240 static int __netdev_adjacent_dev_insert(struct net_device *dev,
6241 					struct net_device *adj_dev,
6242 					struct list_head *dev_list,
6243 					void *private, bool master)
6244 {
6245 	struct netdev_adjacent *adj;
6246 	int ret;
6247 
6248 	adj = __netdev_find_adj(adj_dev, dev_list);
6249 
6250 	if (adj) {
6251 		adj->ref_nr += 1;
6252 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
6253 			 dev->name, adj_dev->name, adj->ref_nr);
6254 
6255 		return 0;
6256 	}
6257 
6258 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
6259 	if (!adj)
6260 		return -ENOMEM;
6261 
6262 	adj->dev = adj_dev;
6263 	adj->master = master;
6264 	adj->ref_nr = 1;
6265 	adj->private = private;
6266 	dev_hold(adj_dev);
6267 
6268 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
6269 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
6270 
6271 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
6272 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
6273 		if (ret)
6274 			goto free_adj;
6275 	}
6276 
6277 	/* Ensure that master link is always the first item in list. */
6278 	if (master) {
6279 		ret = sysfs_create_link(&(dev->dev.kobj),
6280 					&(adj_dev->dev.kobj), "master");
6281 		if (ret)
6282 			goto remove_symlinks;
6283 
6284 		list_add_rcu(&adj->list, dev_list);
6285 	} else {
6286 		list_add_tail_rcu(&adj->list, dev_list);
6287 	}
6288 
6289 	return 0;
6290 
6291 remove_symlinks:
6292 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6293 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6294 free_adj:
6295 	kfree(adj);
6296 	dev_put(adj_dev);
6297 
6298 	return ret;
6299 }
6300 
6301 static void __netdev_adjacent_dev_remove(struct net_device *dev,
6302 					 struct net_device *adj_dev,
6303 					 u16 ref_nr,
6304 					 struct list_head *dev_list)
6305 {
6306 	struct netdev_adjacent *adj;
6307 
6308 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
6309 		 dev->name, adj_dev->name, ref_nr);
6310 
6311 	adj = __netdev_find_adj(adj_dev, dev_list);
6312 
6313 	if (!adj) {
6314 		pr_err("Adjacency does not exist for device %s from %s\n",
6315 		       dev->name, adj_dev->name);
6316 		WARN_ON(1);
6317 		return;
6318 	}
6319 
6320 	if (adj->ref_nr > ref_nr) {
6321 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
6322 			 dev->name, adj_dev->name, ref_nr,
6323 			 adj->ref_nr - ref_nr);
6324 		adj->ref_nr -= ref_nr;
6325 		return;
6326 	}
6327 
6328 	if (adj->master)
6329 		sysfs_remove_link(&(dev->dev.kobj), "master");
6330 
6331 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6332 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6333 
6334 	list_del_rcu(&adj->list);
6335 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
6336 		 adj_dev->name, dev->name, adj_dev->name);
6337 	dev_put(adj_dev);
6338 	kfree_rcu(adj, rcu);
6339 }
6340 
6341 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
6342 					    struct net_device *upper_dev,
6343 					    struct list_head *up_list,
6344 					    struct list_head *down_list,
6345 					    void *private, bool master)
6346 {
6347 	int ret;
6348 
6349 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
6350 					   private, master);
6351 	if (ret)
6352 		return ret;
6353 
6354 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
6355 					   private, false);
6356 	if (ret) {
6357 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
6358 		return ret;
6359 	}
6360 
6361 	return 0;
6362 }
6363 
6364 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
6365 					       struct net_device *upper_dev,
6366 					       u16 ref_nr,
6367 					       struct list_head *up_list,
6368 					       struct list_head *down_list)
6369 {
6370 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
6371 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
6372 }
6373 
6374 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
6375 						struct net_device *upper_dev,
6376 						void *private, bool master)
6377 {
6378 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
6379 						&dev->adj_list.upper,
6380 						&upper_dev->adj_list.lower,
6381 						private, master);
6382 }
6383 
6384 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
6385 						   struct net_device *upper_dev)
6386 {
6387 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
6388 					   &dev->adj_list.upper,
6389 					   &upper_dev->adj_list.lower);
6390 }
6391 
6392 static int __netdev_upper_dev_link(struct net_device *dev,
6393 				   struct net_device *upper_dev, bool master,
6394 				   void *upper_priv, void *upper_info,
6395 				   struct netlink_ext_ack *extack)
6396 {
6397 	struct netdev_notifier_changeupper_info changeupper_info = {
6398 		.info = {
6399 			.dev = dev,
6400 			.extack = extack,
6401 		},
6402 		.upper_dev = upper_dev,
6403 		.master = master,
6404 		.linking = true,
6405 		.upper_info = upper_info,
6406 	};
6407 	struct net_device *master_dev;
6408 	int ret = 0;
6409 
6410 	ASSERT_RTNL();
6411 
6412 	if (dev == upper_dev)
6413 		return -EBUSY;
6414 
6415 	/* To prevent loops, check if dev is not upper device to upper_dev. */
6416 	if (netdev_has_upper_dev(upper_dev, dev))
6417 		return -EBUSY;
6418 
6419 	if (!master) {
6420 		if (netdev_has_upper_dev(dev, upper_dev))
6421 			return -EEXIST;
6422 	} else {
6423 		master_dev = netdev_master_upper_dev_get(dev);
6424 		if (master_dev)
6425 			return master_dev == upper_dev ? -EEXIST : -EBUSY;
6426 	}
6427 
6428 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
6429 					    &changeupper_info.info);
6430 	ret = notifier_to_errno(ret);
6431 	if (ret)
6432 		return ret;
6433 
6434 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
6435 						   master);
6436 	if (ret)
6437 		return ret;
6438 
6439 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
6440 					    &changeupper_info.info);
6441 	ret = notifier_to_errno(ret);
6442 	if (ret)
6443 		goto rollback;
6444 
6445 	return 0;
6446 
6447 rollback:
6448 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6449 
6450 	return ret;
6451 }
6452 
6453 /**
6454  * netdev_upper_dev_link - Add a link to the upper device
6455  * @dev: device
6456  * @upper_dev: new upper device
6457  * @extack: netlink extended ack
6458  *
6459  * Adds a link to device which is upper to this one. The caller must hold
6460  * the RTNL lock. On a failure a negative errno code is returned.
6461  * On success the reference counts are adjusted and the function
6462  * returns zero.
6463  */
6464 int netdev_upper_dev_link(struct net_device *dev,
6465 			  struct net_device *upper_dev,
6466 			  struct netlink_ext_ack *extack)
6467 {
6468 	return __netdev_upper_dev_link(dev, upper_dev, false,
6469 				       NULL, NULL, extack);
6470 }
6471 EXPORT_SYMBOL(netdev_upper_dev_link);
6472 
6473 /**
6474  * netdev_master_upper_dev_link - Add a master link to the upper device
6475  * @dev: device
6476  * @upper_dev: new upper device
6477  * @upper_priv: upper device private
6478  * @upper_info: upper info to be passed down via notifier
6479  * @extack: netlink extended ack
6480  *
6481  * Adds a link to device which is upper to this one. In this case, only
6482  * one master upper device can be linked, although other non-master devices
6483  * might be linked as well. The caller must hold the RTNL lock.
6484  * On a failure a negative errno code is returned. On success the reference
6485  * counts are adjusted and the function returns zero.
6486  */
6487 int netdev_master_upper_dev_link(struct net_device *dev,
6488 				 struct net_device *upper_dev,
6489 				 void *upper_priv, void *upper_info,
6490 				 struct netlink_ext_ack *extack)
6491 {
6492 	return __netdev_upper_dev_link(dev, upper_dev, true,
6493 				       upper_priv, upper_info, extack);
6494 }
6495 EXPORT_SYMBOL(netdev_master_upper_dev_link);
6496 
6497 /**
6498  * netdev_upper_dev_unlink - Removes a link to upper device
6499  * @dev: device
6500  * @upper_dev: new upper device
6501  *
6502  * Removes a link to device which is upper to this one. The caller must hold
6503  * the RTNL lock.
6504  */
6505 void netdev_upper_dev_unlink(struct net_device *dev,
6506 			     struct net_device *upper_dev)
6507 {
6508 	struct netdev_notifier_changeupper_info changeupper_info = {
6509 		.info = {
6510 			.dev = dev,
6511 		},
6512 		.upper_dev = upper_dev,
6513 		.linking = false,
6514 	};
6515 
6516 	ASSERT_RTNL();
6517 
6518 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
6519 
6520 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
6521 				      &changeupper_info.info);
6522 
6523 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6524 
6525 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
6526 				      &changeupper_info.info);
6527 }
6528 EXPORT_SYMBOL(netdev_upper_dev_unlink);
6529 
6530 /**
6531  * netdev_bonding_info_change - Dispatch event about slave change
6532  * @dev: device
6533  * @bonding_info: info to dispatch
6534  *
6535  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
6536  * The caller must hold the RTNL lock.
6537  */
6538 void netdev_bonding_info_change(struct net_device *dev,
6539 				struct netdev_bonding_info *bonding_info)
6540 {
6541 	struct netdev_notifier_bonding_info info = {
6542 		.info.dev = dev,
6543 	};
6544 
6545 	memcpy(&info.bonding_info, bonding_info,
6546 	       sizeof(struct netdev_bonding_info));
6547 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
6548 				      &info.info);
6549 }
6550 EXPORT_SYMBOL(netdev_bonding_info_change);
6551 
6552 static void netdev_adjacent_add_links(struct net_device *dev)
6553 {
6554 	struct netdev_adjacent *iter;
6555 
6556 	struct net *net = dev_net(dev);
6557 
6558 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
6559 		if (!net_eq(net, dev_net(iter->dev)))
6560 			continue;
6561 		netdev_adjacent_sysfs_add(iter->dev, dev,
6562 					  &iter->dev->adj_list.lower);
6563 		netdev_adjacent_sysfs_add(dev, iter->dev,
6564 					  &dev->adj_list.upper);
6565 	}
6566 
6567 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
6568 		if (!net_eq(net, dev_net(iter->dev)))
6569 			continue;
6570 		netdev_adjacent_sysfs_add(iter->dev, dev,
6571 					  &iter->dev->adj_list.upper);
6572 		netdev_adjacent_sysfs_add(dev, iter->dev,
6573 					  &dev->adj_list.lower);
6574 	}
6575 }
6576 
6577 static void netdev_adjacent_del_links(struct net_device *dev)
6578 {
6579 	struct netdev_adjacent *iter;
6580 
6581 	struct net *net = dev_net(dev);
6582 
6583 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
6584 		if (!net_eq(net, dev_net(iter->dev)))
6585 			continue;
6586 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
6587 					  &iter->dev->adj_list.lower);
6588 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
6589 					  &dev->adj_list.upper);
6590 	}
6591 
6592 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
6593 		if (!net_eq(net, dev_net(iter->dev)))
6594 			continue;
6595 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
6596 					  &iter->dev->adj_list.upper);
6597 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
6598 					  &dev->adj_list.lower);
6599 	}
6600 }
6601 
6602 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
6603 {
6604 	struct netdev_adjacent *iter;
6605 
6606 	struct net *net = dev_net(dev);
6607 
6608 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
6609 		if (!net_eq(net, dev_net(iter->dev)))
6610 			continue;
6611 		netdev_adjacent_sysfs_del(iter->dev, oldname,
6612 					  &iter->dev->adj_list.lower);
6613 		netdev_adjacent_sysfs_add(iter->dev, dev,
6614 					  &iter->dev->adj_list.lower);
6615 	}
6616 
6617 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
6618 		if (!net_eq(net, dev_net(iter->dev)))
6619 			continue;
6620 		netdev_adjacent_sysfs_del(iter->dev, oldname,
6621 					  &iter->dev->adj_list.upper);
6622 		netdev_adjacent_sysfs_add(iter->dev, dev,
6623 					  &iter->dev->adj_list.upper);
6624 	}
6625 }
6626 
6627 void *netdev_lower_dev_get_private(struct net_device *dev,
6628 				   struct net_device *lower_dev)
6629 {
6630 	struct netdev_adjacent *lower;
6631 
6632 	if (!lower_dev)
6633 		return NULL;
6634 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
6635 	if (!lower)
6636 		return NULL;
6637 
6638 	return lower->private;
6639 }
6640 EXPORT_SYMBOL(netdev_lower_dev_get_private);
6641 
6642 
6643 int dev_get_nest_level(struct net_device *dev)
6644 {
6645 	struct net_device *lower = NULL;
6646 	struct list_head *iter;
6647 	int max_nest = -1;
6648 	int nest;
6649 
6650 	ASSERT_RTNL();
6651 
6652 	netdev_for_each_lower_dev(dev, lower, iter) {
6653 		nest = dev_get_nest_level(lower);
6654 		if (max_nest < nest)
6655 			max_nest = nest;
6656 	}
6657 
6658 	return max_nest + 1;
6659 }
6660 EXPORT_SYMBOL(dev_get_nest_level);
6661 
6662 /**
6663  * netdev_lower_change - Dispatch event about lower device state change
6664  * @lower_dev: device
6665  * @lower_state_info: state to dispatch
6666  *
6667  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
6668  * The caller must hold the RTNL lock.
6669  */
6670 void netdev_lower_state_changed(struct net_device *lower_dev,
6671 				void *lower_state_info)
6672 {
6673 	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
6674 		.info.dev = lower_dev,
6675 	};
6676 
6677 	ASSERT_RTNL();
6678 	changelowerstate_info.lower_state_info = lower_state_info;
6679 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
6680 				      &changelowerstate_info.info);
6681 }
6682 EXPORT_SYMBOL(netdev_lower_state_changed);
6683 
6684 static void dev_change_rx_flags(struct net_device *dev, int flags)
6685 {
6686 	const struct net_device_ops *ops = dev->netdev_ops;
6687 
6688 	if (ops->ndo_change_rx_flags)
6689 		ops->ndo_change_rx_flags(dev, flags);
6690 }
6691 
6692 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
6693 {
6694 	unsigned int old_flags = dev->flags;
6695 	kuid_t uid;
6696 	kgid_t gid;
6697 
6698 	ASSERT_RTNL();
6699 
6700 	dev->flags |= IFF_PROMISC;
6701 	dev->promiscuity += inc;
6702 	if (dev->promiscuity == 0) {
6703 		/*
6704 		 * Avoid overflow.
6705 		 * If inc causes overflow, untouch promisc and return error.
6706 		 */
6707 		if (inc < 0)
6708 			dev->flags &= ~IFF_PROMISC;
6709 		else {
6710 			dev->promiscuity -= inc;
6711 			pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6712 				dev->name);
6713 			return -EOVERFLOW;
6714 		}
6715 	}
6716 	if (dev->flags != old_flags) {
6717 		pr_info("device %s %s promiscuous mode\n",
6718 			dev->name,
6719 			dev->flags & IFF_PROMISC ? "entered" : "left");
6720 		if (audit_enabled) {
6721 			current_uid_gid(&uid, &gid);
6722 			audit_log(current->audit_context, GFP_ATOMIC,
6723 				AUDIT_ANOM_PROMISCUOUS,
6724 				"dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6725 				dev->name, (dev->flags & IFF_PROMISC),
6726 				(old_flags & IFF_PROMISC),
6727 				from_kuid(&init_user_ns, audit_get_loginuid(current)),
6728 				from_kuid(&init_user_ns, uid),
6729 				from_kgid(&init_user_ns, gid),
6730 				audit_get_sessionid(current));
6731 		}
6732 
6733 		dev_change_rx_flags(dev, IFF_PROMISC);
6734 	}
6735 	if (notify)
6736 		__dev_notify_flags(dev, old_flags, IFF_PROMISC);
6737 	return 0;
6738 }
6739 
6740 /**
6741  *	dev_set_promiscuity	- update promiscuity count on a device
6742  *	@dev: device
6743  *	@inc: modifier
6744  *
6745  *	Add or remove promiscuity from a device. While the count in the device
6746  *	remains above zero the interface remains promiscuous. Once it hits zero
6747  *	the device reverts back to normal filtering operation. A negative inc
6748  *	value is used to drop promiscuity on the device.
6749  *	Return 0 if successful or a negative errno code on error.
6750  */
6751 int dev_set_promiscuity(struct net_device *dev, int inc)
6752 {
6753 	unsigned int old_flags = dev->flags;
6754 	int err;
6755 
6756 	err = __dev_set_promiscuity(dev, inc, true);
6757 	if (err < 0)
6758 		return err;
6759 	if (dev->flags != old_flags)
6760 		dev_set_rx_mode(dev);
6761 	return err;
6762 }
6763 EXPORT_SYMBOL(dev_set_promiscuity);
6764 
6765 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
6766 {
6767 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
6768 
6769 	ASSERT_RTNL();
6770 
6771 	dev->flags |= IFF_ALLMULTI;
6772 	dev->allmulti += inc;
6773 	if (dev->allmulti == 0) {
6774 		/*
6775 		 * Avoid overflow.
6776 		 * If inc causes overflow, untouch allmulti and return error.
6777 		 */
6778 		if (inc < 0)
6779 			dev->flags &= ~IFF_ALLMULTI;
6780 		else {
6781 			dev->allmulti -= inc;
6782 			pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6783 				dev->name);
6784 			return -EOVERFLOW;
6785 		}
6786 	}
6787 	if (dev->flags ^ old_flags) {
6788 		dev_change_rx_flags(dev, IFF_ALLMULTI);
6789 		dev_set_rx_mode(dev);
6790 		if (notify)
6791 			__dev_notify_flags(dev, old_flags,
6792 					   dev->gflags ^ old_gflags);
6793 	}
6794 	return 0;
6795 }
6796 
6797 /**
6798  *	dev_set_allmulti	- update allmulti count on a device
6799  *	@dev: device
6800  *	@inc: modifier
6801  *
6802  *	Add or remove reception of all multicast frames to a device. While the
6803  *	count in the device remains above zero the interface remains listening
6804  *	to all interfaces. Once it hits zero the device reverts back to normal
6805  *	filtering operation. A negative @inc value is used to drop the counter
6806  *	when releasing a resource needing all multicasts.
6807  *	Return 0 if successful or a negative errno code on error.
6808  */
6809 
6810 int dev_set_allmulti(struct net_device *dev, int inc)
6811 {
6812 	return __dev_set_allmulti(dev, inc, true);
6813 }
6814 EXPORT_SYMBOL(dev_set_allmulti);
6815 
6816 /*
6817  *	Upload unicast and multicast address lists to device and
6818  *	configure RX filtering. When the device doesn't support unicast
6819  *	filtering it is put in promiscuous mode while unicast addresses
6820  *	are present.
6821  */
6822 void __dev_set_rx_mode(struct net_device *dev)
6823 {
6824 	const struct net_device_ops *ops = dev->netdev_ops;
6825 
6826 	/* dev_open will call this function so the list will stay sane. */
6827 	if (!(dev->flags&IFF_UP))
6828 		return;
6829 
6830 	if (!netif_device_present(dev))
6831 		return;
6832 
6833 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
6834 		/* Unicast addresses changes may only happen under the rtnl,
6835 		 * therefore calling __dev_set_promiscuity here is safe.
6836 		 */
6837 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
6838 			__dev_set_promiscuity(dev, 1, false);
6839 			dev->uc_promisc = true;
6840 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
6841 			__dev_set_promiscuity(dev, -1, false);
6842 			dev->uc_promisc = false;
6843 		}
6844 	}
6845 
6846 	if (ops->ndo_set_rx_mode)
6847 		ops->ndo_set_rx_mode(dev);
6848 }
6849 
6850 void dev_set_rx_mode(struct net_device *dev)
6851 {
6852 	netif_addr_lock_bh(dev);
6853 	__dev_set_rx_mode(dev);
6854 	netif_addr_unlock_bh(dev);
6855 }
6856 
6857 /**
6858  *	dev_get_flags - get flags reported to userspace
6859  *	@dev: device
6860  *
6861  *	Get the combination of flag bits exported through APIs to userspace.
6862  */
6863 unsigned int dev_get_flags(const struct net_device *dev)
6864 {
6865 	unsigned int flags;
6866 
6867 	flags = (dev->flags & ~(IFF_PROMISC |
6868 				IFF_ALLMULTI |
6869 				IFF_RUNNING |
6870 				IFF_LOWER_UP |
6871 				IFF_DORMANT)) |
6872 		(dev->gflags & (IFF_PROMISC |
6873 				IFF_ALLMULTI));
6874 
6875 	if (netif_running(dev)) {
6876 		if (netif_oper_up(dev))
6877 			flags |= IFF_RUNNING;
6878 		if (netif_carrier_ok(dev))
6879 			flags |= IFF_LOWER_UP;
6880 		if (netif_dormant(dev))
6881 			flags |= IFF_DORMANT;
6882 	}
6883 
6884 	return flags;
6885 }
6886 EXPORT_SYMBOL(dev_get_flags);
6887 
6888 int __dev_change_flags(struct net_device *dev, unsigned int flags)
6889 {
6890 	unsigned int old_flags = dev->flags;
6891 	int ret;
6892 
6893 	ASSERT_RTNL();
6894 
6895 	/*
6896 	 *	Set the flags on our device.
6897 	 */
6898 
6899 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6900 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6901 			       IFF_AUTOMEDIA)) |
6902 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6903 				    IFF_ALLMULTI));
6904 
6905 	/*
6906 	 *	Load in the correct multicast list now the flags have changed.
6907 	 */
6908 
6909 	if ((old_flags ^ flags) & IFF_MULTICAST)
6910 		dev_change_rx_flags(dev, IFF_MULTICAST);
6911 
6912 	dev_set_rx_mode(dev);
6913 
6914 	/*
6915 	 *	Have we downed the interface. We handle IFF_UP ourselves
6916 	 *	according to user attempts to set it, rather than blindly
6917 	 *	setting it.
6918 	 */
6919 
6920 	ret = 0;
6921 	if ((old_flags ^ flags) & IFF_UP) {
6922 		if (old_flags & IFF_UP)
6923 			__dev_close(dev);
6924 		else
6925 			ret = __dev_open(dev);
6926 	}
6927 
6928 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
6929 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
6930 		unsigned int old_flags = dev->flags;
6931 
6932 		dev->gflags ^= IFF_PROMISC;
6933 
6934 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
6935 			if (dev->flags != old_flags)
6936 				dev_set_rx_mode(dev);
6937 	}
6938 
6939 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
6940 	 * is important. Some (broken) drivers set IFF_PROMISC, when
6941 	 * IFF_ALLMULTI is requested not asking us and not reporting.
6942 	 */
6943 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
6944 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6945 
6946 		dev->gflags ^= IFF_ALLMULTI;
6947 		__dev_set_allmulti(dev, inc, false);
6948 	}
6949 
6950 	return ret;
6951 }
6952 
6953 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6954 			unsigned int gchanges)
6955 {
6956 	unsigned int changes = dev->flags ^ old_flags;
6957 
6958 	if (gchanges)
6959 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
6960 
6961 	if (changes & IFF_UP) {
6962 		if (dev->flags & IFF_UP)
6963 			call_netdevice_notifiers(NETDEV_UP, dev);
6964 		else
6965 			call_netdevice_notifiers(NETDEV_DOWN, dev);
6966 	}
6967 
6968 	if (dev->flags & IFF_UP &&
6969 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
6970 		struct netdev_notifier_change_info change_info = {
6971 			.info = {
6972 				.dev = dev,
6973 			},
6974 			.flags_changed = changes,
6975 		};
6976 
6977 		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
6978 	}
6979 }
6980 
6981 /**
6982  *	dev_change_flags - change device settings
6983  *	@dev: device
6984  *	@flags: device state flags
6985  *
6986  *	Change settings on device based state flags. The flags are
6987  *	in the userspace exported format.
6988  */
6989 int dev_change_flags(struct net_device *dev, unsigned int flags)
6990 {
6991 	int ret;
6992 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
6993 
6994 	ret = __dev_change_flags(dev, flags);
6995 	if (ret < 0)
6996 		return ret;
6997 
6998 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
6999 	__dev_notify_flags(dev, old_flags, changes);
7000 	return ret;
7001 }
7002 EXPORT_SYMBOL(dev_change_flags);
7003 
7004 int __dev_set_mtu(struct net_device *dev, int new_mtu)
7005 {
7006 	const struct net_device_ops *ops = dev->netdev_ops;
7007 
7008 	if (ops->ndo_change_mtu)
7009 		return ops->ndo_change_mtu(dev, new_mtu);
7010 
7011 	dev->mtu = new_mtu;
7012 	return 0;
7013 }
7014 EXPORT_SYMBOL(__dev_set_mtu);
7015 
7016 /**
7017  *	dev_set_mtu - Change maximum transfer unit
7018  *	@dev: device
7019  *	@new_mtu: new transfer unit
7020  *
7021  *	Change the maximum transfer size of the network device.
7022  */
7023 int dev_set_mtu(struct net_device *dev, int new_mtu)
7024 {
7025 	int err, orig_mtu;
7026 
7027 	if (new_mtu == dev->mtu)
7028 		return 0;
7029 
7030 	/* MTU must be positive, and in range */
7031 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
7032 		net_err_ratelimited("%s: Invalid MTU %d requested, hw min %d\n",
7033 				    dev->name, new_mtu, dev->min_mtu);
7034 		return -EINVAL;
7035 	}
7036 
7037 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
7038 		net_err_ratelimited("%s: Invalid MTU %d requested, hw max %d\n",
7039 				    dev->name, new_mtu, dev->max_mtu);
7040 		return -EINVAL;
7041 	}
7042 
7043 	if (!netif_device_present(dev))
7044 		return -ENODEV;
7045 
7046 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
7047 	err = notifier_to_errno(err);
7048 	if (err)
7049 		return err;
7050 
7051 	orig_mtu = dev->mtu;
7052 	err = __dev_set_mtu(dev, new_mtu);
7053 
7054 	if (!err) {
7055 		err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
7056 		err = notifier_to_errno(err);
7057 		if (err) {
7058 			/* setting mtu back and notifying everyone again,
7059 			 * so that they have a chance to revert changes.
7060 			 */
7061 			__dev_set_mtu(dev, orig_mtu);
7062 			call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
7063 		}
7064 	}
7065 	return err;
7066 }
7067 EXPORT_SYMBOL(dev_set_mtu);
7068 
7069 /**
7070  *	dev_change_tx_queue_len - Change TX queue length of a netdevice
7071  *	@dev: device
7072  *	@new_len: new tx queue length
7073  */
7074 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
7075 {
7076 	unsigned int orig_len = dev->tx_queue_len;
7077 	int res;
7078 
7079 	if (new_len != (unsigned int)new_len)
7080 		return -ERANGE;
7081 
7082 	if (new_len != orig_len) {
7083 		dev->tx_queue_len = new_len;
7084 		res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
7085 		res = notifier_to_errno(res);
7086 		if (res) {
7087 			netdev_err(dev,
7088 				   "refused to change device tx_queue_len\n");
7089 			dev->tx_queue_len = orig_len;
7090 			return res;
7091 		}
7092 		return dev_qdisc_change_tx_queue_len(dev);
7093 	}
7094 
7095 	return 0;
7096 }
7097 
7098 /**
7099  *	dev_set_group - Change group this device belongs to
7100  *	@dev: device
7101  *	@new_group: group this device should belong to
7102  */
7103 void dev_set_group(struct net_device *dev, int new_group)
7104 {
7105 	dev->group = new_group;
7106 }
7107 EXPORT_SYMBOL(dev_set_group);
7108 
7109 /**
7110  *	dev_set_mac_address - Change Media Access Control Address
7111  *	@dev: device
7112  *	@sa: new address
7113  *
7114  *	Change the hardware (MAC) address of the device
7115  */
7116 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
7117 {
7118 	const struct net_device_ops *ops = dev->netdev_ops;
7119 	int err;
7120 
7121 	if (!ops->ndo_set_mac_address)
7122 		return -EOPNOTSUPP;
7123 	if (sa->sa_family != dev->type)
7124 		return -EINVAL;
7125 	if (!netif_device_present(dev))
7126 		return -ENODEV;
7127 	err = ops->ndo_set_mac_address(dev, sa);
7128 	if (err)
7129 		return err;
7130 	dev->addr_assign_type = NET_ADDR_SET;
7131 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7132 	add_device_randomness(dev->dev_addr, dev->addr_len);
7133 	return 0;
7134 }
7135 EXPORT_SYMBOL(dev_set_mac_address);
7136 
7137 /**
7138  *	dev_change_carrier - Change device carrier
7139  *	@dev: device
7140  *	@new_carrier: new value
7141  *
7142  *	Change device carrier
7143  */
7144 int dev_change_carrier(struct net_device *dev, bool new_carrier)
7145 {
7146 	const struct net_device_ops *ops = dev->netdev_ops;
7147 
7148 	if (!ops->ndo_change_carrier)
7149 		return -EOPNOTSUPP;
7150 	if (!netif_device_present(dev))
7151 		return -ENODEV;
7152 	return ops->ndo_change_carrier(dev, new_carrier);
7153 }
7154 EXPORT_SYMBOL(dev_change_carrier);
7155 
7156 /**
7157  *	dev_get_phys_port_id - Get device physical port ID
7158  *	@dev: device
7159  *	@ppid: port ID
7160  *
7161  *	Get device physical port ID
7162  */
7163 int dev_get_phys_port_id(struct net_device *dev,
7164 			 struct netdev_phys_item_id *ppid)
7165 {
7166 	const struct net_device_ops *ops = dev->netdev_ops;
7167 
7168 	if (!ops->ndo_get_phys_port_id)
7169 		return -EOPNOTSUPP;
7170 	return ops->ndo_get_phys_port_id(dev, ppid);
7171 }
7172 EXPORT_SYMBOL(dev_get_phys_port_id);
7173 
7174 /**
7175  *	dev_get_phys_port_name - Get device physical port name
7176  *	@dev: device
7177  *	@name: port name
7178  *	@len: limit of bytes to copy to name
7179  *
7180  *	Get device physical port name
7181  */
7182 int dev_get_phys_port_name(struct net_device *dev,
7183 			   char *name, size_t len)
7184 {
7185 	const struct net_device_ops *ops = dev->netdev_ops;
7186 
7187 	if (!ops->ndo_get_phys_port_name)
7188 		return -EOPNOTSUPP;
7189 	return ops->ndo_get_phys_port_name(dev, name, len);
7190 }
7191 EXPORT_SYMBOL(dev_get_phys_port_name);
7192 
7193 /**
7194  *	dev_change_proto_down - update protocol port state information
7195  *	@dev: device
7196  *	@proto_down: new value
7197  *
7198  *	This info can be used by switch drivers to set the phys state of the
7199  *	port.
7200  */
7201 int dev_change_proto_down(struct net_device *dev, bool proto_down)
7202 {
7203 	const struct net_device_ops *ops = dev->netdev_ops;
7204 
7205 	if (!ops->ndo_change_proto_down)
7206 		return -EOPNOTSUPP;
7207 	if (!netif_device_present(dev))
7208 		return -ENODEV;
7209 	return ops->ndo_change_proto_down(dev, proto_down);
7210 }
7211 EXPORT_SYMBOL(dev_change_proto_down);
7212 
7213 void __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op,
7214 		     struct netdev_bpf *xdp)
7215 {
7216 	memset(xdp, 0, sizeof(*xdp));
7217 	xdp->command = XDP_QUERY_PROG;
7218 
7219 	/* Query must always succeed. */
7220 	WARN_ON(bpf_op(dev, xdp) < 0);
7221 }
7222 
7223 static u8 __dev_xdp_attached(struct net_device *dev, bpf_op_t bpf_op)
7224 {
7225 	struct netdev_bpf xdp;
7226 
7227 	__dev_xdp_query(dev, bpf_op, &xdp);
7228 
7229 	return xdp.prog_attached;
7230 }
7231 
7232 static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op,
7233 			   struct netlink_ext_ack *extack, u32 flags,
7234 			   struct bpf_prog *prog)
7235 {
7236 	struct netdev_bpf xdp;
7237 
7238 	memset(&xdp, 0, sizeof(xdp));
7239 	if (flags & XDP_FLAGS_HW_MODE)
7240 		xdp.command = XDP_SETUP_PROG_HW;
7241 	else
7242 		xdp.command = XDP_SETUP_PROG;
7243 	xdp.extack = extack;
7244 	xdp.flags = flags;
7245 	xdp.prog = prog;
7246 
7247 	return bpf_op(dev, &xdp);
7248 }
7249 
7250 static void dev_xdp_uninstall(struct net_device *dev)
7251 {
7252 	struct netdev_bpf xdp;
7253 	bpf_op_t ndo_bpf;
7254 
7255 	/* Remove generic XDP */
7256 	WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL));
7257 
7258 	/* Remove from the driver */
7259 	ndo_bpf = dev->netdev_ops->ndo_bpf;
7260 	if (!ndo_bpf)
7261 		return;
7262 
7263 	__dev_xdp_query(dev, ndo_bpf, &xdp);
7264 	if (xdp.prog_attached == XDP_ATTACHED_NONE)
7265 		return;
7266 
7267 	/* Program removal should always succeed */
7268 	WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags, NULL));
7269 }
7270 
7271 /**
7272  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
7273  *	@dev: device
7274  *	@extack: netlink extended ack
7275  *	@fd: new program fd or negative value to clear
7276  *	@flags: xdp-related flags
7277  *
7278  *	Set or clear a bpf program for a device
7279  */
7280 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
7281 		      int fd, u32 flags)
7282 {
7283 	const struct net_device_ops *ops = dev->netdev_ops;
7284 	struct bpf_prog *prog = NULL;
7285 	bpf_op_t bpf_op, bpf_chk;
7286 	int err;
7287 
7288 	ASSERT_RTNL();
7289 
7290 	bpf_op = bpf_chk = ops->ndo_bpf;
7291 	if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE)))
7292 		return -EOPNOTSUPP;
7293 	if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE))
7294 		bpf_op = generic_xdp_install;
7295 	if (bpf_op == bpf_chk)
7296 		bpf_chk = generic_xdp_install;
7297 
7298 	if (fd >= 0) {
7299 		if (bpf_chk && __dev_xdp_attached(dev, bpf_chk))
7300 			return -EEXIST;
7301 		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) &&
7302 		    __dev_xdp_attached(dev, bpf_op))
7303 			return -EBUSY;
7304 
7305 		prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
7306 					     bpf_op == ops->ndo_bpf);
7307 		if (IS_ERR(prog))
7308 			return PTR_ERR(prog);
7309 
7310 		if (!(flags & XDP_FLAGS_HW_MODE) &&
7311 		    bpf_prog_is_dev_bound(prog->aux)) {
7312 			NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported");
7313 			bpf_prog_put(prog);
7314 			return -EINVAL;
7315 		}
7316 	}
7317 
7318 	err = dev_xdp_install(dev, bpf_op, extack, flags, prog);
7319 	if (err < 0 && prog)
7320 		bpf_prog_put(prog);
7321 
7322 	return err;
7323 }
7324 
7325 /**
7326  *	dev_new_index	-	allocate an ifindex
7327  *	@net: the applicable net namespace
7328  *
7329  *	Returns a suitable unique value for a new device interface
7330  *	number.  The caller must hold the rtnl semaphore or the
7331  *	dev_base_lock to be sure it remains unique.
7332  */
7333 static int dev_new_index(struct net *net)
7334 {
7335 	int ifindex = net->ifindex;
7336 
7337 	for (;;) {
7338 		if (++ifindex <= 0)
7339 			ifindex = 1;
7340 		if (!__dev_get_by_index(net, ifindex))
7341 			return net->ifindex = ifindex;
7342 	}
7343 }
7344 
7345 /* Delayed registration/unregisteration */
7346 static LIST_HEAD(net_todo_list);
7347 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
7348 
7349 static void net_set_todo(struct net_device *dev)
7350 {
7351 	list_add_tail(&dev->todo_list, &net_todo_list);
7352 	dev_net(dev)->dev_unreg_count++;
7353 }
7354 
7355 static void rollback_registered_many(struct list_head *head)
7356 {
7357 	struct net_device *dev, *tmp;
7358 	LIST_HEAD(close_head);
7359 
7360 	BUG_ON(dev_boot_phase);
7361 	ASSERT_RTNL();
7362 
7363 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
7364 		/* Some devices call without registering
7365 		 * for initialization unwind. Remove those
7366 		 * devices and proceed with the remaining.
7367 		 */
7368 		if (dev->reg_state == NETREG_UNINITIALIZED) {
7369 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
7370 				 dev->name, dev);
7371 
7372 			WARN_ON(1);
7373 			list_del(&dev->unreg_list);
7374 			continue;
7375 		}
7376 		dev->dismantle = true;
7377 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
7378 	}
7379 
7380 	/* If device is running, close it first. */
7381 	list_for_each_entry(dev, head, unreg_list)
7382 		list_add_tail(&dev->close_list, &close_head);
7383 	dev_close_many(&close_head, true);
7384 
7385 	list_for_each_entry(dev, head, unreg_list) {
7386 		/* And unlink it from device chain. */
7387 		unlist_netdevice(dev);
7388 
7389 		dev->reg_state = NETREG_UNREGISTERING;
7390 	}
7391 	flush_all_backlogs();
7392 
7393 	synchronize_net();
7394 
7395 	list_for_each_entry(dev, head, unreg_list) {
7396 		struct sk_buff *skb = NULL;
7397 
7398 		/* Shutdown queueing discipline. */
7399 		dev_shutdown(dev);
7400 
7401 		dev_xdp_uninstall(dev);
7402 
7403 		/* Notify protocols, that we are about to destroy
7404 		 * this device. They should clean all the things.
7405 		 */
7406 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7407 
7408 		if (!dev->rtnl_link_ops ||
7409 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7410 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
7411 						     GFP_KERNEL, NULL, 0);
7412 
7413 		/*
7414 		 *	Flush the unicast and multicast chains
7415 		 */
7416 		dev_uc_flush(dev);
7417 		dev_mc_flush(dev);
7418 
7419 		if (dev->netdev_ops->ndo_uninit)
7420 			dev->netdev_ops->ndo_uninit(dev);
7421 
7422 		if (skb)
7423 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
7424 
7425 		/* Notifier chain MUST detach us all upper devices. */
7426 		WARN_ON(netdev_has_any_upper_dev(dev));
7427 		WARN_ON(netdev_has_any_lower_dev(dev));
7428 
7429 		/* Remove entries from kobject tree */
7430 		netdev_unregister_kobject(dev);
7431 #ifdef CONFIG_XPS
7432 		/* Remove XPS queueing entries */
7433 		netif_reset_xps_queues_gt(dev, 0);
7434 #endif
7435 	}
7436 
7437 	synchronize_net();
7438 
7439 	list_for_each_entry(dev, head, unreg_list)
7440 		dev_put(dev);
7441 }
7442 
7443 static void rollback_registered(struct net_device *dev)
7444 {
7445 	LIST_HEAD(single);
7446 
7447 	list_add(&dev->unreg_list, &single);
7448 	rollback_registered_many(&single);
7449 	list_del(&single);
7450 }
7451 
7452 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
7453 	struct net_device *upper, netdev_features_t features)
7454 {
7455 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
7456 	netdev_features_t feature;
7457 	int feature_bit;
7458 
7459 	for_each_netdev_feature(&upper_disables, feature_bit) {
7460 		feature = __NETIF_F_BIT(feature_bit);
7461 		if (!(upper->wanted_features & feature)
7462 		    && (features & feature)) {
7463 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
7464 				   &feature, upper->name);
7465 			features &= ~feature;
7466 		}
7467 	}
7468 
7469 	return features;
7470 }
7471 
7472 static void netdev_sync_lower_features(struct net_device *upper,
7473 	struct net_device *lower, netdev_features_t features)
7474 {
7475 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
7476 	netdev_features_t feature;
7477 	int feature_bit;
7478 
7479 	for_each_netdev_feature(&upper_disables, feature_bit) {
7480 		feature = __NETIF_F_BIT(feature_bit);
7481 		if (!(features & feature) && (lower->features & feature)) {
7482 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
7483 				   &feature, lower->name);
7484 			lower->wanted_features &= ~feature;
7485 			netdev_update_features(lower);
7486 
7487 			if (unlikely(lower->features & feature))
7488 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
7489 					    &feature, lower->name);
7490 		}
7491 	}
7492 }
7493 
7494 static netdev_features_t netdev_fix_features(struct net_device *dev,
7495 	netdev_features_t features)
7496 {
7497 	/* Fix illegal checksum combinations */
7498 	if ((features & NETIF_F_HW_CSUM) &&
7499 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
7500 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
7501 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
7502 	}
7503 
7504 	/* TSO requires that SG is present as well. */
7505 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
7506 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
7507 		features &= ~NETIF_F_ALL_TSO;
7508 	}
7509 
7510 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
7511 					!(features & NETIF_F_IP_CSUM)) {
7512 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
7513 		features &= ~NETIF_F_TSO;
7514 		features &= ~NETIF_F_TSO_ECN;
7515 	}
7516 
7517 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
7518 					 !(features & NETIF_F_IPV6_CSUM)) {
7519 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
7520 		features &= ~NETIF_F_TSO6;
7521 	}
7522 
7523 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
7524 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
7525 		features &= ~NETIF_F_TSO_MANGLEID;
7526 
7527 	/* TSO ECN requires that TSO is present as well. */
7528 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
7529 		features &= ~NETIF_F_TSO_ECN;
7530 
7531 	/* Software GSO depends on SG. */
7532 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
7533 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
7534 		features &= ~NETIF_F_GSO;
7535 	}
7536 
7537 	/* GSO partial features require GSO partial be set */
7538 	if ((features & dev->gso_partial_features) &&
7539 	    !(features & NETIF_F_GSO_PARTIAL)) {
7540 		netdev_dbg(dev,
7541 			   "Dropping partially supported GSO features since no GSO partial.\n");
7542 		features &= ~dev->gso_partial_features;
7543 	}
7544 
7545 	if (!(features & NETIF_F_RXCSUM)) {
7546 		/* NETIF_F_GRO_HW implies doing RXCSUM since every packet
7547 		 * successfully merged by hardware must also have the
7548 		 * checksum verified by hardware.  If the user does not
7549 		 * want to enable RXCSUM, logically, we should disable GRO_HW.
7550 		 */
7551 		if (features & NETIF_F_GRO_HW) {
7552 			netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
7553 			features &= ~NETIF_F_GRO_HW;
7554 		}
7555 	}
7556 
7557 	return features;
7558 }
7559 
7560 int __netdev_update_features(struct net_device *dev)
7561 {
7562 	struct net_device *upper, *lower;
7563 	netdev_features_t features;
7564 	struct list_head *iter;
7565 	int err = -1;
7566 
7567 	ASSERT_RTNL();
7568 
7569 	features = netdev_get_wanted_features(dev);
7570 
7571 	if (dev->netdev_ops->ndo_fix_features)
7572 		features = dev->netdev_ops->ndo_fix_features(dev, features);
7573 
7574 	/* driver might be less strict about feature dependencies */
7575 	features = netdev_fix_features(dev, features);
7576 
7577 	/* some features can't be enabled if they're off an an upper device */
7578 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
7579 		features = netdev_sync_upper_features(dev, upper, features);
7580 
7581 	if (dev->features == features)
7582 		goto sync_lower;
7583 
7584 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
7585 		&dev->features, &features);
7586 
7587 	if (dev->netdev_ops->ndo_set_features)
7588 		err = dev->netdev_ops->ndo_set_features(dev, features);
7589 	else
7590 		err = 0;
7591 
7592 	if (unlikely(err < 0)) {
7593 		netdev_err(dev,
7594 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
7595 			err, &features, &dev->features);
7596 		/* return non-0 since some features might have changed and
7597 		 * it's better to fire a spurious notification than miss it
7598 		 */
7599 		return -1;
7600 	}
7601 
7602 sync_lower:
7603 	/* some features must be disabled on lower devices when disabled
7604 	 * on an upper device (think: bonding master or bridge)
7605 	 */
7606 	netdev_for_each_lower_dev(dev, lower, iter)
7607 		netdev_sync_lower_features(dev, lower, features);
7608 
7609 	if (!err) {
7610 		netdev_features_t diff = features ^ dev->features;
7611 
7612 		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
7613 			/* udp_tunnel_{get,drop}_rx_info both need
7614 			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
7615 			 * device, or they won't do anything.
7616 			 * Thus we need to update dev->features
7617 			 * *before* calling udp_tunnel_get_rx_info,
7618 			 * but *after* calling udp_tunnel_drop_rx_info.
7619 			 */
7620 			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
7621 				dev->features = features;
7622 				udp_tunnel_get_rx_info(dev);
7623 			} else {
7624 				udp_tunnel_drop_rx_info(dev);
7625 			}
7626 		}
7627 
7628 		dev->features = features;
7629 	}
7630 
7631 	return err < 0 ? 0 : 1;
7632 }
7633 
7634 /**
7635  *	netdev_update_features - recalculate device features
7636  *	@dev: the device to check
7637  *
7638  *	Recalculate dev->features set and send notifications if it
7639  *	has changed. Should be called after driver or hardware dependent
7640  *	conditions might have changed that influence the features.
7641  */
7642 void netdev_update_features(struct net_device *dev)
7643 {
7644 	if (__netdev_update_features(dev))
7645 		netdev_features_change(dev);
7646 }
7647 EXPORT_SYMBOL(netdev_update_features);
7648 
7649 /**
7650  *	netdev_change_features - recalculate device features
7651  *	@dev: the device to check
7652  *
7653  *	Recalculate dev->features set and send notifications even
7654  *	if they have not changed. Should be called instead of
7655  *	netdev_update_features() if also dev->vlan_features might
7656  *	have changed to allow the changes to be propagated to stacked
7657  *	VLAN devices.
7658  */
7659 void netdev_change_features(struct net_device *dev)
7660 {
7661 	__netdev_update_features(dev);
7662 	netdev_features_change(dev);
7663 }
7664 EXPORT_SYMBOL(netdev_change_features);
7665 
7666 /**
7667  *	netif_stacked_transfer_operstate -	transfer operstate
7668  *	@rootdev: the root or lower level device to transfer state from
7669  *	@dev: the device to transfer operstate to
7670  *
7671  *	Transfer operational state from root to device. This is normally
7672  *	called when a stacking relationship exists between the root
7673  *	device and the device(a leaf device).
7674  */
7675 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
7676 					struct net_device *dev)
7677 {
7678 	if (rootdev->operstate == IF_OPER_DORMANT)
7679 		netif_dormant_on(dev);
7680 	else
7681 		netif_dormant_off(dev);
7682 
7683 	if (netif_carrier_ok(rootdev))
7684 		netif_carrier_on(dev);
7685 	else
7686 		netif_carrier_off(dev);
7687 }
7688 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
7689 
7690 static int netif_alloc_rx_queues(struct net_device *dev)
7691 {
7692 	unsigned int i, count = dev->num_rx_queues;
7693 	struct netdev_rx_queue *rx;
7694 	size_t sz = count * sizeof(*rx);
7695 	int err = 0;
7696 
7697 	BUG_ON(count < 1);
7698 
7699 	rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
7700 	if (!rx)
7701 		return -ENOMEM;
7702 
7703 	dev->_rx = rx;
7704 
7705 	for (i = 0; i < count; i++) {
7706 		rx[i].dev = dev;
7707 
7708 		/* XDP RX-queue setup */
7709 		err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
7710 		if (err < 0)
7711 			goto err_rxq_info;
7712 	}
7713 	return 0;
7714 
7715 err_rxq_info:
7716 	/* Rollback successful reg's and free other resources */
7717 	while (i--)
7718 		xdp_rxq_info_unreg(&rx[i].xdp_rxq);
7719 	kvfree(dev->_rx);
7720 	dev->_rx = NULL;
7721 	return err;
7722 }
7723 
7724 static void netif_free_rx_queues(struct net_device *dev)
7725 {
7726 	unsigned int i, count = dev->num_rx_queues;
7727 
7728 	/* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
7729 	if (!dev->_rx)
7730 		return;
7731 
7732 	for (i = 0; i < count; i++)
7733 		xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
7734 
7735 	kvfree(dev->_rx);
7736 }
7737 
7738 static void netdev_init_one_queue(struct net_device *dev,
7739 				  struct netdev_queue *queue, void *_unused)
7740 {
7741 	/* Initialize queue lock */
7742 	spin_lock_init(&queue->_xmit_lock);
7743 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
7744 	queue->xmit_lock_owner = -1;
7745 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
7746 	queue->dev = dev;
7747 #ifdef CONFIG_BQL
7748 	dql_init(&queue->dql, HZ);
7749 #endif
7750 }
7751 
7752 static void netif_free_tx_queues(struct net_device *dev)
7753 {
7754 	kvfree(dev->_tx);
7755 }
7756 
7757 static int netif_alloc_netdev_queues(struct net_device *dev)
7758 {
7759 	unsigned int count = dev->num_tx_queues;
7760 	struct netdev_queue *tx;
7761 	size_t sz = count * sizeof(*tx);
7762 
7763 	if (count < 1 || count > 0xffff)
7764 		return -EINVAL;
7765 
7766 	tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
7767 	if (!tx)
7768 		return -ENOMEM;
7769 
7770 	dev->_tx = tx;
7771 
7772 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
7773 	spin_lock_init(&dev->tx_global_lock);
7774 
7775 	return 0;
7776 }
7777 
7778 void netif_tx_stop_all_queues(struct net_device *dev)
7779 {
7780 	unsigned int i;
7781 
7782 	for (i = 0; i < dev->num_tx_queues; i++) {
7783 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
7784 
7785 		netif_tx_stop_queue(txq);
7786 	}
7787 }
7788 EXPORT_SYMBOL(netif_tx_stop_all_queues);
7789 
7790 /**
7791  *	register_netdevice	- register a network device
7792  *	@dev: device to register
7793  *
7794  *	Take a completed network device structure and add it to the kernel
7795  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7796  *	chain. 0 is returned on success. A negative errno code is returned
7797  *	on a failure to set up the device, or if the name is a duplicate.
7798  *
7799  *	Callers must hold the rtnl semaphore. You may want
7800  *	register_netdev() instead of this.
7801  *
7802  *	BUGS:
7803  *	The locking appears insufficient to guarantee two parallel registers
7804  *	will not get the same name.
7805  */
7806 
7807 int register_netdevice(struct net_device *dev)
7808 {
7809 	int ret;
7810 	struct net *net = dev_net(dev);
7811 
7812 	BUG_ON(dev_boot_phase);
7813 	ASSERT_RTNL();
7814 
7815 	might_sleep();
7816 
7817 	/* When net_device's are persistent, this will be fatal. */
7818 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
7819 	BUG_ON(!net);
7820 
7821 	spin_lock_init(&dev->addr_list_lock);
7822 	netdev_set_addr_lockdep_class(dev);
7823 
7824 	ret = dev_get_valid_name(net, dev, dev->name);
7825 	if (ret < 0)
7826 		goto out;
7827 
7828 	/* Init, if this function is available */
7829 	if (dev->netdev_ops->ndo_init) {
7830 		ret = dev->netdev_ops->ndo_init(dev);
7831 		if (ret) {
7832 			if (ret > 0)
7833 				ret = -EIO;
7834 			goto out;
7835 		}
7836 	}
7837 
7838 	if (((dev->hw_features | dev->features) &
7839 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
7840 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
7841 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
7842 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
7843 		ret = -EINVAL;
7844 		goto err_uninit;
7845 	}
7846 
7847 	ret = -EBUSY;
7848 	if (!dev->ifindex)
7849 		dev->ifindex = dev_new_index(net);
7850 	else if (__dev_get_by_index(net, dev->ifindex))
7851 		goto err_uninit;
7852 
7853 	/* Transfer changeable features to wanted_features and enable
7854 	 * software offloads (GSO and GRO).
7855 	 */
7856 	dev->hw_features |= NETIF_F_SOFT_FEATURES;
7857 	dev->features |= NETIF_F_SOFT_FEATURES;
7858 
7859 	if (dev->netdev_ops->ndo_udp_tunnel_add) {
7860 		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
7861 		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
7862 	}
7863 
7864 	dev->wanted_features = dev->features & dev->hw_features;
7865 
7866 	if (!(dev->flags & IFF_LOOPBACK))
7867 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
7868 
7869 	/* If IPv4 TCP segmentation offload is supported we should also
7870 	 * allow the device to enable segmenting the frame with the option
7871 	 * of ignoring a static IP ID value.  This doesn't enable the
7872 	 * feature itself but allows the user to enable it later.
7873 	 */
7874 	if (dev->hw_features & NETIF_F_TSO)
7875 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
7876 	if (dev->vlan_features & NETIF_F_TSO)
7877 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
7878 	if (dev->mpls_features & NETIF_F_TSO)
7879 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
7880 	if (dev->hw_enc_features & NETIF_F_TSO)
7881 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
7882 
7883 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
7884 	 */
7885 	dev->vlan_features |= NETIF_F_HIGHDMA;
7886 
7887 	/* Make NETIF_F_SG inheritable to tunnel devices.
7888 	 */
7889 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
7890 
7891 	/* Make NETIF_F_SG inheritable to MPLS.
7892 	 */
7893 	dev->mpls_features |= NETIF_F_SG;
7894 
7895 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
7896 	ret = notifier_to_errno(ret);
7897 	if (ret)
7898 		goto err_uninit;
7899 
7900 	ret = netdev_register_kobject(dev);
7901 	if (ret)
7902 		goto err_uninit;
7903 	dev->reg_state = NETREG_REGISTERED;
7904 
7905 	__netdev_update_features(dev);
7906 
7907 	/*
7908 	 *	Default initial state at registry is that the
7909 	 *	device is present.
7910 	 */
7911 
7912 	set_bit(__LINK_STATE_PRESENT, &dev->state);
7913 
7914 	linkwatch_init_dev(dev);
7915 
7916 	dev_init_scheduler(dev);
7917 	dev_hold(dev);
7918 	list_netdevice(dev);
7919 	add_device_randomness(dev->dev_addr, dev->addr_len);
7920 
7921 	/* If the device has permanent device address, driver should
7922 	 * set dev_addr and also addr_assign_type should be set to
7923 	 * NET_ADDR_PERM (default value).
7924 	 */
7925 	if (dev->addr_assign_type == NET_ADDR_PERM)
7926 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
7927 
7928 	/* Notify protocols, that a new device appeared. */
7929 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
7930 	ret = notifier_to_errno(ret);
7931 	if (ret) {
7932 		rollback_registered(dev);
7933 		dev->reg_state = NETREG_UNREGISTERED;
7934 	}
7935 	/*
7936 	 *	Prevent userspace races by waiting until the network
7937 	 *	device is fully setup before sending notifications.
7938 	 */
7939 	if (!dev->rtnl_link_ops ||
7940 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7941 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7942 
7943 out:
7944 	return ret;
7945 
7946 err_uninit:
7947 	if (dev->netdev_ops->ndo_uninit)
7948 		dev->netdev_ops->ndo_uninit(dev);
7949 	if (dev->priv_destructor)
7950 		dev->priv_destructor(dev);
7951 	goto out;
7952 }
7953 EXPORT_SYMBOL(register_netdevice);
7954 
7955 /**
7956  *	init_dummy_netdev	- init a dummy network device for NAPI
7957  *	@dev: device to init
7958  *
7959  *	This takes a network device structure and initialize the minimum
7960  *	amount of fields so it can be used to schedule NAPI polls without
7961  *	registering a full blown interface. This is to be used by drivers
7962  *	that need to tie several hardware interfaces to a single NAPI
7963  *	poll scheduler due to HW limitations.
7964  */
7965 int init_dummy_netdev(struct net_device *dev)
7966 {
7967 	/* Clear everything. Note we don't initialize spinlocks
7968 	 * are they aren't supposed to be taken by any of the
7969 	 * NAPI code and this dummy netdev is supposed to be
7970 	 * only ever used for NAPI polls
7971 	 */
7972 	memset(dev, 0, sizeof(struct net_device));
7973 
7974 	/* make sure we BUG if trying to hit standard
7975 	 * register/unregister code path
7976 	 */
7977 	dev->reg_state = NETREG_DUMMY;
7978 
7979 	/* NAPI wants this */
7980 	INIT_LIST_HEAD(&dev->napi_list);
7981 
7982 	/* a dummy interface is started by default */
7983 	set_bit(__LINK_STATE_PRESENT, &dev->state);
7984 	set_bit(__LINK_STATE_START, &dev->state);
7985 
7986 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
7987 	 * because users of this 'device' dont need to change
7988 	 * its refcount.
7989 	 */
7990 
7991 	return 0;
7992 }
7993 EXPORT_SYMBOL_GPL(init_dummy_netdev);
7994 
7995 
7996 /**
7997  *	register_netdev	- register a network device
7998  *	@dev: device to register
7999  *
8000  *	Take a completed network device structure and add it to the kernel
8001  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8002  *	chain. 0 is returned on success. A negative errno code is returned
8003  *	on a failure to set up the device, or if the name is a duplicate.
8004  *
8005  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
8006  *	and expands the device name if you passed a format string to
8007  *	alloc_netdev.
8008  */
8009 int register_netdev(struct net_device *dev)
8010 {
8011 	int err;
8012 
8013 	rtnl_lock();
8014 	err = register_netdevice(dev);
8015 	rtnl_unlock();
8016 	return err;
8017 }
8018 EXPORT_SYMBOL(register_netdev);
8019 
8020 int netdev_refcnt_read(const struct net_device *dev)
8021 {
8022 	int i, refcnt = 0;
8023 
8024 	for_each_possible_cpu(i)
8025 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
8026 	return refcnt;
8027 }
8028 EXPORT_SYMBOL(netdev_refcnt_read);
8029 
8030 /**
8031  * netdev_wait_allrefs - wait until all references are gone.
8032  * @dev: target net_device
8033  *
8034  * This is called when unregistering network devices.
8035  *
8036  * Any protocol or device that holds a reference should register
8037  * for netdevice notification, and cleanup and put back the
8038  * reference if they receive an UNREGISTER event.
8039  * We can get stuck here if buggy protocols don't correctly
8040  * call dev_put.
8041  */
8042 static void netdev_wait_allrefs(struct net_device *dev)
8043 {
8044 	unsigned long rebroadcast_time, warning_time;
8045 	int refcnt;
8046 
8047 	linkwatch_forget_dev(dev);
8048 
8049 	rebroadcast_time = warning_time = jiffies;
8050 	refcnt = netdev_refcnt_read(dev);
8051 
8052 	while (refcnt != 0) {
8053 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
8054 			rtnl_lock();
8055 
8056 			/* Rebroadcast unregister notification */
8057 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8058 
8059 			__rtnl_unlock();
8060 			rcu_barrier();
8061 			rtnl_lock();
8062 
8063 			call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
8064 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
8065 				     &dev->state)) {
8066 				/* We must not have linkwatch events
8067 				 * pending on unregister. If this
8068 				 * happens, we simply run the queue
8069 				 * unscheduled, resulting in a noop
8070 				 * for this device.
8071 				 */
8072 				linkwatch_run_queue();
8073 			}
8074 
8075 			__rtnl_unlock();
8076 
8077 			rebroadcast_time = jiffies;
8078 		}
8079 
8080 		msleep(250);
8081 
8082 		refcnt = netdev_refcnt_read(dev);
8083 
8084 		if (time_after(jiffies, warning_time + 10 * HZ)) {
8085 			pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
8086 				 dev->name, refcnt);
8087 			warning_time = jiffies;
8088 		}
8089 	}
8090 }
8091 
8092 /* The sequence is:
8093  *
8094  *	rtnl_lock();
8095  *	...
8096  *	register_netdevice(x1);
8097  *	register_netdevice(x2);
8098  *	...
8099  *	unregister_netdevice(y1);
8100  *	unregister_netdevice(y2);
8101  *      ...
8102  *	rtnl_unlock();
8103  *	free_netdev(y1);
8104  *	free_netdev(y2);
8105  *
8106  * We are invoked by rtnl_unlock().
8107  * This allows us to deal with problems:
8108  * 1) We can delete sysfs objects which invoke hotplug
8109  *    without deadlocking with linkwatch via keventd.
8110  * 2) Since we run with the RTNL semaphore not held, we can sleep
8111  *    safely in order to wait for the netdev refcnt to drop to zero.
8112  *
8113  * We must not return until all unregister events added during
8114  * the interval the lock was held have been completed.
8115  */
8116 void netdev_run_todo(void)
8117 {
8118 	struct list_head list;
8119 
8120 	/* Snapshot list, allow later requests */
8121 	list_replace_init(&net_todo_list, &list);
8122 
8123 	__rtnl_unlock();
8124 
8125 
8126 	/* Wait for rcu callbacks to finish before next phase */
8127 	if (!list_empty(&list))
8128 		rcu_barrier();
8129 
8130 	while (!list_empty(&list)) {
8131 		struct net_device *dev
8132 			= list_first_entry(&list, struct net_device, todo_list);
8133 		list_del(&dev->todo_list);
8134 
8135 		rtnl_lock();
8136 		call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
8137 		__rtnl_unlock();
8138 
8139 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
8140 			pr_err("network todo '%s' but state %d\n",
8141 			       dev->name, dev->reg_state);
8142 			dump_stack();
8143 			continue;
8144 		}
8145 
8146 		dev->reg_state = NETREG_UNREGISTERED;
8147 
8148 		netdev_wait_allrefs(dev);
8149 
8150 		/* paranoia */
8151 		BUG_ON(netdev_refcnt_read(dev));
8152 		BUG_ON(!list_empty(&dev->ptype_all));
8153 		BUG_ON(!list_empty(&dev->ptype_specific));
8154 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
8155 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
8156 		WARN_ON(dev->dn_ptr);
8157 
8158 		if (dev->priv_destructor)
8159 			dev->priv_destructor(dev);
8160 		if (dev->needs_free_netdev)
8161 			free_netdev(dev);
8162 
8163 		/* Report a network device has been unregistered */
8164 		rtnl_lock();
8165 		dev_net(dev)->dev_unreg_count--;
8166 		__rtnl_unlock();
8167 		wake_up(&netdev_unregistering_wq);
8168 
8169 		/* Free network device */
8170 		kobject_put(&dev->dev.kobj);
8171 	}
8172 }
8173 
8174 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
8175  * all the same fields in the same order as net_device_stats, with only
8176  * the type differing, but rtnl_link_stats64 may have additional fields
8177  * at the end for newer counters.
8178  */
8179 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
8180 			     const struct net_device_stats *netdev_stats)
8181 {
8182 #if BITS_PER_LONG == 64
8183 	BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
8184 	memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
8185 	/* zero out counters that only exist in rtnl_link_stats64 */
8186 	memset((char *)stats64 + sizeof(*netdev_stats), 0,
8187 	       sizeof(*stats64) - sizeof(*netdev_stats));
8188 #else
8189 	size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
8190 	const unsigned long *src = (const unsigned long *)netdev_stats;
8191 	u64 *dst = (u64 *)stats64;
8192 
8193 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
8194 	for (i = 0; i < n; i++)
8195 		dst[i] = src[i];
8196 	/* zero out counters that only exist in rtnl_link_stats64 */
8197 	memset((char *)stats64 + n * sizeof(u64), 0,
8198 	       sizeof(*stats64) - n * sizeof(u64));
8199 #endif
8200 }
8201 EXPORT_SYMBOL(netdev_stats_to_stats64);
8202 
8203 /**
8204  *	dev_get_stats	- get network device statistics
8205  *	@dev: device to get statistics from
8206  *	@storage: place to store stats
8207  *
8208  *	Get network statistics from device. Return @storage.
8209  *	The device driver may provide its own method by setting
8210  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
8211  *	otherwise the internal statistics structure is used.
8212  */
8213 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
8214 					struct rtnl_link_stats64 *storage)
8215 {
8216 	const struct net_device_ops *ops = dev->netdev_ops;
8217 
8218 	if (ops->ndo_get_stats64) {
8219 		memset(storage, 0, sizeof(*storage));
8220 		ops->ndo_get_stats64(dev, storage);
8221 	} else if (ops->ndo_get_stats) {
8222 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
8223 	} else {
8224 		netdev_stats_to_stats64(storage, &dev->stats);
8225 	}
8226 	storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
8227 	storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
8228 	storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
8229 	return storage;
8230 }
8231 EXPORT_SYMBOL(dev_get_stats);
8232 
8233 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
8234 {
8235 	struct netdev_queue *queue = dev_ingress_queue(dev);
8236 
8237 #ifdef CONFIG_NET_CLS_ACT
8238 	if (queue)
8239 		return queue;
8240 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
8241 	if (!queue)
8242 		return NULL;
8243 	netdev_init_one_queue(dev, queue, NULL);
8244 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
8245 	queue->qdisc_sleeping = &noop_qdisc;
8246 	rcu_assign_pointer(dev->ingress_queue, queue);
8247 #endif
8248 	return queue;
8249 }
8250 
8251 static const struct ethtool_ops default_ethtool_ops;
8252 
8253 void netdev_set_default_ethtool_ops(struct net_device *dev,
8254 				    const struct ethtool_ops *ops)
8255 {
8256 	if (dev->ethtool_ops == &default_ethtool_ops)
8257 		dev->ethtool_ops = ops;
8258 }
8259 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
8260 
8261 void netdev_freemem(struct net_device *dev)
8262 {
8263 	char *addr = (char *)dev - dev->padded;
8264 
8265 	kvfree(addr);
8266 }
8267 
8268 /**
8269  * alloc_netdev_mqs - allocate network device
8270  * @sizeof_priv: size of private data to allocate space for
8271  * @name: device name format string
8272  * @name_assign_type: origin of device name
8273  * @setup: callback to initialize device
8274  * @txqs: the number of TX subqueues to allocate
8275  * @rxqs: the number of RX subqueues to allocate
8276  *
8277  * Allocates a struct net_device with private data area for driver use
8278  * and performs basic initialization.  Also allocates subqueue structs
8279  * for each queue on the device.
8280  */
8281 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
8282 		unsigned char name_assign_type,
8283 		void (*setup)(struct net_device *),
8284 		unsigned int txqs, unsigned int rxqs)
8285 {
8286 	struct net_device *dev;
8287 	unsigned int alloc_size;
8288 	struct net_device *p;
8289 
8290 	BUG_ON(strlen(name) >= sizeof(dev->name));
8291 
8292 	if (txqs < 1) {
8293 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
8294 		return NULL;
8295 	}
8296 
8297 	if (rxqs < 1) {
8298 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
8299 		return NULL;
8300 	}
8301 
8302 	alloc_size = sizeof(struct net_device);
8303 	if (sizeof_priv) {
8304 		/* ensure 32-byte alignment of private area */
8305 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
8306 		alloc_size += sizeof_priv;
8307 	}
8308 	/* ensure 32-byte alignment of whole construct */
8309 	alloc_size += NETDEV_ALIGN - 1;
8310 
8311 	p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8312 	if (!p)
8313 		return NULL;
8314 
8315 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
8316 	dev->padded = (char *)dev - (char *)p;
8317 
8318 	dev->pcpu_refcnt = alloc_percpu(int);
8319 	if (!dev->pcpu_refcnt)
8320 		goto free_dev;
8321 
8322 	if (dev_addr_init(dev))
8323 		goto free_pcpu;
8324 
8325 	dev_mc_init(dev);
8326 	dev_uc_init(dev);
8327 
8328 	dev_net_set(dev, &init_net);
8329 
8330 	dev->gso_max_size = GSO_MAX_SIZE;
8331 	dev->gso_max_segs = GSO_MAX_SEGS;
8332 
8333 	INIT_LIST_HEAD(&dev->napi_list);
8334 	INIT_LIST_HEAD(&dev->unreg_list);
8335 	INIT_LIST_HEAD(&dev->close_list);
8336 	INIT_LIST_HEAD(&dev->link_watch_list);
8337 	INIT_LIST_HEAD(&dev->adj_list.upper);
8338 	INIT_LIST_HEAD(&dev->adj_list.lower);
8339 	INIT_LIST_HEAD(&dev->ptype_all);
8340 	INIT_LIST_HEAD(&dev->ptype_specific);
8341 #ifdef CONFIG_NET_SCHED
8342 	hash_init(dev->qdisc_hash);
8343 #endif
8344 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
8345 	setup(dev);
8346 
8347 	if (!dev->tx_queue_len) {
8348 		dev->priv_flags |= IFF_NO_QUEUE;
8349 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
8350 	}
8351 
8352 	dev->num_tx_queues = txqs;
8353 	dev->real_num_tx_queues = txqs;
8354 	if (netif_alloc_netdev_queues(dev))
8355 		goto free_all;
8356 
8357 	dev->num_rx_queues = rxqs;
8358 	dev->real_num_rx_queues = rxqs;
8359 	if (netif_alloc_rx_queues(dev))
8360 		goto free_all;
8361 
8362 	strcpy(dev->name, name);
8363 	dev->name_assign_type = name_assign_type;
8364 	dev->group = INIT_NETDEV_GROUP;
8365 	if (!dev->ethtool_ops)
8366 		dev->ethtool_ops = &default_ethtool_ops;
8367 
8368 	nf_hook_ingress_init(dev);
8369 
8370 	return dev;
8371 
8372 free_all:
8373 	free_netdev(dev);
8374 	return NULL;
8375 
8376 free_pcpu:
8377 	free_percpu(dev->pcpu_refcnt);
8378 free_dev:
8379 	netdev_freemem(dev);
8380 	return NULL;
8381 }
8382 EXPORT_SYMBOL(alloc_netdev_mqs);
8383 
8384 /**
8385  * free_netdev - free network device
8386  * @dev: device
8387  *
8388  * This function does the last stage of destroying an allocated device
8389  * interface. The reference to the device object is released. If this
8390  * is the last reference then it will be freed.Must be called in process
8391  * context.
8392  */
8393 void free_netdev(struct net_device *dev)
8394 {
8395 	struct napi_struct *p, *n;
8396 
8397 	might_sleep();
8398 	netif_free_tx_queues(dev);
8399 	netif_free_rx_queues(dev);
8400 
8401 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
8402 
8403 	/* Flush device addresses */
8404 	dev_addr_flush(dev);
8405 
8406 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
8407 		netif_napi_del(p);
8408 
8409 	free_percpu(dev->pcpu_refcnt);
8410 	dev->pcpu_refcnt = NULL;
8411 
8412 	/*  Compatibility with error handling in drivers */
8413 	if (dev->reg_state == NETREG_UNINITIALIZED) {
8414 		netdev_freemem(dev);
8415 		return;
8416 	}
8417 
8418 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
8419 	dev->reg_state = NETREG_RELEASED;
8420 
8421 	/* will free via device release */
8422 	put_device(&dev->dev);
8423 }
8424 EXPORT_SYMBOL(free_netdev);
8425 
8426 /**
8427  *	synchronize_net -  Synchronize with packet receive processing
8428  *
8429  *	Wait for packets currently being received to be done.
8430  *	Does not block later packets from starting.
8431  */
8432 void synchronize_net(void)
8433 {
8434 	might_sleep();
8435 	if (rtnl_is_locked())
8436 		synchronize_rcu_expedited();
8437 	else
8438 		synchronize_rcu();
8439 }
8440 EXPORT_SYMBOL(synchronize_net);
8441 
8442 /**
8443  *	unregister_netdevice_queue - remove device from the kernel
8444  *	@dev: device
8445  *	@head: list
8446  *
8447  *	This function shuts down a device interface and removes it
8448  *	from the kernel tables.
8449  *	If head not NULL, device is queued to be unregistered later.
8450  *
8451  *	Callers must hold the rtnl semaphore.  You may want
8452  *	unregister_netdev() instead of this.
8453  */
8454 
8455 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
8456 {
8457 	ASSERT_RTNL();
8458 
8459 	if (head) {
8460 		list_move_tail(&dev->unreg_list, head);
8461 	} else {
8462 		rollback_registered(dev);
8463 		/* Finish processing unregister after unlock */
8464 		net_set_todo(dev);
8465 	}
8466 }
8467 EXPORT_SYMBOL(unregister_netdevice_queue);
8468 
8469 /**
8470  *	unregister_netdevice_many - unregister many devices
8471  *	@head: list of devices
8472  *
8473  *  Note: As most callers use a stack allocated list_head,
8474  *  we force a list_del() to make sure stack wont be corrupted later.
8475  */
8476 void unregister_netdevice_many(struct list_head *head)
8477 {
8478 	struct net_device *dev;
8479 
8480 	if (!list_empty(head)) {
8481 		rollback_registered_many(head);
8482 		list_for_each_entry(dev, head, unreg_list)
8483 			net_set_todo(dev);
8484 		list_del(head);
8485 	}
8486 }
8487 EXPORT_SYMBOL(unregister_netdevice_many);
8488 
8489 /**
8490  *	unregister_netdev - remove device from the kernel
8491  *	@dev: device
8492  *
8493  *	This function shuts down a device interface and removes it
8494  *	from the kernel tables.
8495  *
8496  *	This is just a wrapper for unregister_netdevice that takes
8497  *	the rtnl semaphore.  In general you want to use this and not
8498  *	unregister_netdevice.
8499  */
8500 void unregister_netdev(struct net_device *dev)
8501 {
8502 	rtnl_lock();
8503 	unregister_netdevice(dev);
8504 	rtnl_unlock();
8505 }
8506 EXPORT_SYMBOL(unregister_netdev);
8507 
8508 /**
8509  *	dev_change_net_namespace - move device to different nethost namespace
8510  *	@dev: device
8511  *	@net: network namespace
8512  *	@pat: If not NULL name pattern to try if the current device name
8513  *	      is already taken in the destination network namespace.
8514  *
8515  *	This function shuts down a device interface and moves it
8516  *	to a new network namespace. On success 0 is returned, on
8517  *	a failure a netagive errno code is returned.
8518  *
8519  *	Callers must hold the rtnl semaphore.
8520  */
8521 
8522 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
8523 {
8524 	int err, new_nsid, new_ifindex;
8525 
8526 	ASSERT_RTNL();
8527 
8528 	/* Don't allow namespace local devices to be moved. */
8529 	err = -EINVAL;
8530 	if (dev->features & NETIF_F_NETNS_LOCAL)
8531 		goto out;
8532 
8533 	/* Ensure the device has been registrered */
8534 	if (dev->reg_state != NETREG_REGISTERED)
8535 		goto out;
8536 
8537 	/* Get out if there is nothing todo */
8538 	err = 0;
8539 	if (net_eq(dev_net(dev), net))
8540 		goto out;
8541 
8542 	/* Pick the destination device name, and ensure
8543 	 * we can use it in the destination network namespace.
8544 	 */
8545 	err = -EEXIST;
8546 	if (__dev_get_by_name(net, dev->name)) {
8547 		/* We get here if we can't use the current device name */
8548 		if (!pat)
8549 			goto out;
8550 		if (dev_get_valid_name(net, dev, pat) < 0)
8551 			goto out;
8552 	}
8553 
8554 	/*
8555 	 * And now a mini version of register_netdevice unregister_netdevice.
8556 	 */
8557 
8558 	/* If device is running close it first. */
8559 	dev_close(dev);
8560 
8561 	/* And unlink it from device chain */
8562 	err = -ENODEV;
8563 	unlist_netdevice(dev);
8564 
8565 	synchronize_net();
8566 
8567 	/* Shutdown queueing discipline. */
8568 	dev_shutdown(dev);
8569 
8570 	/* Notify protocols, that we are about to destroy
8571 	 * this device. They should clean all the things.
8572 	 *
8573 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
8574 	 * This is wanted because this way 8021q and macvlan know
8575 	 * the device is just moving and can keep their slaves up.
8576 	 */
8577 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8578 	rcu_barrier();
8579 	call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
8580 
8581 	new_nsid = peernet2id_alloc(dev_net(dev), net);
8582 	/* If there is an ifindex conflict assign a new one */
8583 	if (__dev_get_by_index(net, dev->ifindex))
8584 		new_ifindex = dev_new_index(net);
8585 	else
8586 		new_ifindex = dev->ifindex;
8587 
8588 	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
8589 			    new_ifindex);
8590 
8591 	/*
8592 	 *	Flush the unicast and multicast chains
8593 	 */
8594 	dev_uc_flush(dev);
8595 	dev_mc_flush(dev);
8596 
8597 	/* Send a netdev-removed uevent to the old namespace */
8598 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
8599 	netdev_adjacent_del_links(dev);
8600 
8601 	/* Actually switch the network namespace */
8602 	dev_net_set(dev, net);
8603 	dev->ifindex = new_ifindex;
8604 
8605 	/* Send a netdev-add uevent to the new namespace */
8606 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
8607 	netdev_adjacent_add_links(dev);
8608 
8609 	/* Fixup kobjects */
8610 	err = device_rename(&dev->dev, dev->name);
8611 	WARN_ON(err);
8612 
8613 	/* Add the device back in the hashes */
8614 	list_netdevice(dev);
8615 
8616 	/* Notify protocols, that a new device appeared. */
8617 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
8618 
8619 	/*
8620 	 *	Prevent userspace races by waiting until the network
8621 	 *	device is fully setup before sending notifications.
8622 	 */
8623 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
8624 
8625 	synchronize_net();
8626 	err = 0;
8627 out:
8628 	return err;
8629 }
8630 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
8631 
8632 static int dev_cpu_dead(unsigned int oldcpu)
8633 {
8634 	struct sk_buff **list_skb;
8635 	struct sk_buff *skb;
8636 	unsigned int cpu;
8637 	struct softnet_data *sd, *oldsd, *remsd = NULL;
8638 
8639 	local_irq_disable();
8640 	cpu = smp_processor_id();
8641 	sd = &per_cpu(softnet_data, cpu);
8642 	oldsd = &per_cpu(softnet_data, oldcpu);
8643 
8644 	/* Find end of our completion_queue. */
8645 	list_skb = &sd->completion_queue;
8646 	while (*list_skb)
8647 		list_skb = &(*list_skb)->next;
8648 	/* Append completion queue from offline CPU. */
8649 	*list_skb = oldsd->completion_queue;
8650 	oldsd->completion_queue = NULL;
8651 
8652 	/* Append output queue from offline CPU. */
8653 	if (oldsd->output_queue) {
8654 		*sd->output_queue_tailp = oldsd->output_queue;
8655 		sd->output_queue_tailp = oldsd->output_queue_tailp;
8656 		oldsd->output_queue = NULL;
8657 		oldsd->output_queue_tailp = &oldsd->output_queue;
8658 	}
8659 	/* Append NAPI poll list from offline CPU, with one exception :
8660 	 * process_backlog() must be called by cpu owning percpu backlog.
8661 	 * We properly handle process_queue & input_pkt_queue later.
8662 	 */
8663 	while (!list_empty(&oldsd->poll_list)) {
8664 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
8665 							    struct napi_struct,
8666 							    poll_list);
8667 
8668 		list_del_init(&napi->poll_list);
8669 		if (napi->poll == process_backlog)
8670 			napi->state = 0;
8671 		else
8672 			____napi_schedule(sd, napi);
8673 	}
8674 
8675 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
8676 	local_irq_enable();
8677 
8678 #ifdef CONFIG_RPS
8679 	remsd = oldsd->rps_ipi_list;
8680 	oldsd->rps_ipi_list = NULL;
8681 #endif
8682 	/* send out pending IPI's on offline CPU */
8683 	net_rps_send_ipi(remsd);
8684 
8685 	/* Process offline CPU's input_pkt_queue */
8686 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
8687 		netif_rx_ni(skb);
8688 		input_queue_head_incr(oldsd);
8689 	}
8690 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
8691 		netif_rx_ni(skb);
8692 		input_queue_head_incr(oldsd);
8693 	}
8694 
8695 	return 0;
8696 }
8697 
8698 /**
8699  *	netdev_increment_features - increment feature set by one
8700  *	@all: current feature set
8701  *	@one: new feature set
8702  *	@mask: mask feature set
8703  *
8704  *	Computes a new feature set after adding a device with feature set
8705  *	@one to the master device with current feature set @all.  Will not
8706  *	enable anything that is off in @mask. Returns the new feature set.
8707  */
8708 netdev_features_t netdev_increment_features(netdev_features_t all,
8709 	netdev_features_t one, netdev_features_t mask)
8710 {
8711 	if (mask & NETIF_F_HW_CSUM)
8712 		mask |= NETIF_F_CSUM_MASK;
8713 	mask |= NETIF_F_VLAN_CHALLENGED;
8714 
8715 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
8716 	all &= one | ~NETIF_F_ALL_FOR_ALL;
8717 
8718 	/* If one device supports hw checksumming, set for all. */
8719 	if (all & NETIF_F_HW_CSUM)
8720 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
8721 
8722 	return all;
8723 }
8724 EXPORT_SYMBOL(netdev_increment_features);
8725 
8726 static struct hlist_head * __net_init netdev_create_hash(void)
8727 {
8728 	int i;
8729 	struct hlist_head *hash;
8730 
8731 	hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
8732 	if (hash != NULL)
8733 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
8734 			INIT_HLIST_HEAD(&hash[i]);
8735 
8736 	return hash;
8737 }
8738 
8739 /* Initialize per network namespace state */
8740 static int __net_init netdev_init(struct net *net)
8741 {
8742 	if (net != &init_net)
8743 		INIT_LIST_HEAD(&net->dev_base_head);
8744 
8745 	net->dev_name_head = netdev_create_hash();
8746 	if (net->dev_name_head == NULL)
8747 		goto err_name;
8748 
8749 	net->dev_index_head = netdev_create_hash();
8750 	if (net->dev_index_head == NULL)
8751 		goto err_idx;
8752 
8753 	return 0;
8754 
8755 err_idx:
8756 	kfree(net->dev_name_head);
8757 err_name:
8758 	return -ENOMEM;
8759 }
8760 
8761 /**
8762  *	netdev_drivername - network driver for the device
8763  *	@dev: network device
8764  *
8765  *	Determine network driver for device.
8766  */
8767 const char *netdev_drivername(const struct net_device *dev)
8768 {
8769 	const struct device_driver *driver;
8770 	const struct device *parent;
8771 	const char *empty = "";
8772 
8773 	parent = dev->dev.parent;
8774 	if (!parent)
8775 		return empty;
8776 
8777 	driver = parent->driver;
8778 	if (driver && driver->name)
8779 		return driver->name;
8780 	return empty;
8781 }
8782 
8783 static void __netdev_printk(const char *level, const struct net_device *dev,
8784 			    struct va_format *vaf)
8785 {
8786 	if (dev && dev->dev.parent) {
8787 		dev_printk_emit(level[1] - '0',
8788 				dev->dev.parent,
8789 				"%s %s %s%s: %pV",
8790 				dev_driver_string(dev->dev.parent),
8791 				dev_name(dev->dev.parent),
8792 				netdev_name(dev), netdev_reg_state(dev),
8793 				vaf);
8794 	} else if (dev) {
8795 		printk("%s%s%s: %pV",
8796 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
8797 	} else {
8798 		printk("%s(NULL net_device): %pV", level, vaf);
8799 	}
8800 }
8801 
8802 void netdev_printk(const char *level, const struct net_device *dev,
8803 		   const char *format, ...)
8804 {
8805 	struct va_format vaf;
8806 	va_list args;
8807 
8808 	va_start(args, format);
8809 
8810 	vaf.fmt = format;
8811 	vaf.va = &args;
8812 
8813 	__netdev_printk(level, dev, &vaf);
8814 
8815 	va_end(args);
8816 }
8817 EXPORT_SYMBOL(netdev_printk);
8818 
8819 #define define_netdev_printk_level(func, level)			\
8820 void func(const struct net_device *dev, const char *fmt, ...)	\
8821 {								\
8822 	struct va_format vaf;					\
8823 	va_list args;						\
8824 								\
8825 	va_start(args, fmt);					\
8826 								\
8827 	vaf.fmt = fmt;						\
8828 	vaf.va = &args;						\
8829 								\
8830 	__netdev_printk(level, dev, &vaf);			\
8831 								\
8832 	va_end(args);						\
8833 }								\
8834 EXPORT_SYMBOL(func);
8835 
8836 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
8837 define_netdev_printk_level(netdev_alert, KERN_ALERT);
8838 define_netdev_printk_level(netdev_crit, KERN_CRIT);
8839 define_netdev_printk_level(netdev_err, KERN_ERR);
8840 define_netdev_printk_level(netdev_warn, KERN_WARNING);
8841 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
8842 define_netdev_printk_level(netdev_info, KERN_INFO);
8843 
8844 static void __net_exit netdev_exit(struct net *net)
8845 {
8846 	kfree(net->dev_name_head);
8847 	kfree(net->dev_index_head);
8848 	if (net != &init_net)
8849 		WARN_ON_ONCE(!list_empty(&net->dev_base_head));
8850 }
8851 
8852 static struct pernet_operations __net_initdata netdev_net_ops = {
8853 	.init = netdev_init,
8854 	.exit = netdev_exit,
8855 };
8856 
8857 static void __net_exit default_device_exit(struct net *net)
8858 {
8859 	struct net_device *dev, *aux;
8860 	/*
8861 	 * Push all migratable network devices back to the
8862 	 * initial network namespace
8863 	 */
8864 	rtnl_lock();
8865 	for_each_netdev_safe(net, dev, aux) {
8866 		int err;
8867 		char fb_name[IFNAMSIZ];
8868 
8869 		/* Ignore unmoveable devices (i.e. loopback) */
8870 		if (dev->features & NETIF_F_NETNS_LOCAL)
8871 			continue;
8872 
8873 		/* Leave virtual devices for the generic cleanup */
8874 		if (dev->rtnl_link_ops)
8875 			continue;
8876 
8877 		/* Push remaining network devices to init_net */
8878 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
8879 		err = dev_change_net_namespace(dev, &init_net, fb_name);
8880 		if (err) {
8881 			pr_emerg("%s: failed to move %s to init_net: %d\n",
8882 				 __func__, dev->name, err);
8883 			BUG();
8884 		}
8885 	}
8886 	rtnl_unlock();
8887 }
8888 
8889 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
8890 {
8891 	/* Return with the rtnl_lock held when there are no network
8892 	 * devices unregistering in any network namespace in net_list.
8893 	 */
8894 	struct net *net;
8895 	bool unregistering;
8896 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
8897 
8898 	add_wait_queue(&netdev_unregistering_wq, &wait);
8899 	for (;;) {
8900 		unregistering = false;
8901 		rtnl_lock();
8902 		list_for_each_entry(net, net_list, exit_list) {
8903 			if (net->dev_unreg_count > 0) {
8904 				unregistering = true;
8905 				break;
8906 			}
8907 		}
8908 		if (!unregistering)
8909 			break;
8910 		__rtnl_unlock();
8911 
8912 		wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
8913 	}
8914 	remove_wait_queue(&netdev_unregistering_wq, &wait);
8915 }
8916 
8917 static void __net_exit default_device_exit_batch(struct list_head *net_list)
8918 {
8919 	/* At exit all network devices most be removed from a network
8920 	 * namespace.  Do this in the reverse order of registration.
8921 	 * Do this across as many network namespaces as possible to
8922 	 * improve batching efficiency.
8923 	 */
8924 	struct net_device *dev;
8925 	struct net *net;
8926 	LIST_HEAD(dev_kill_list);
8927 
8928 	/* To prevent network device cleanup code from dereferencing
8929 	 * loopback devices or network devices that have been freed
8930 	 * wait here for all pending unregistrations to complete,
8931 	 * before unregistring the loopback device and allowing the
8932 	 * network namespace be freed.
8933 	 *
8934 	 * The netdev todo list containing all network devices
8935 	 * unregistrations that happen in default_device_exit_batch
8936 	 * will run in the rtnl_unlock() at the end of
8937 	 * default_device_exit_batch.
8938 	 */
8939 	rtnl_lock_unregistering(net_list);
8940 	list_for_each_entry(net, net_list, exit_list) {
8941 		for_each_netdev_reverse(net, dev) {
8942 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
8943 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
8944 			else
8945 				unregister_netdevice_queue(dev, &dev_kill_list);
8946 		}
8947 	}
8948 	unregister_netdevice_many(&dev_kill_list);
8949 	rtnl_unlock();
8950 }
8951 
8952 static struct pernet_operations __net_initdata default_device_ops = {
8953 	.exit = default_device_exit,
8954 	.exit_batch = default_device_exit_batch,
8955 };
8956 
8957 /*
8958  *	Initialize the DEV module. At boot time this walks the device list and
8959  *	unhooks any devices that fail to initialise (normally hardware not
8960  *	present) and leaves us with a valid list of present and active devices.
8961  *
8962  */
8963 
8964 /*
8965  *       This is called single threaded during boot, so no need
8966  *       to take the rtnl semaphore.
8967  */
8968 static int __init net_dev_init(void)
8969 {
8970 	int i, rc = -ENOMEM;
8971 
8972 	BUG_ON(!dev_boot_phase);
8973 
8974 	if (dev_proc_init())
8975 		goto out;
8976 
8977 	if (netdev_kobject_init())
8978 		goto out;
8979 
8980 	INIT_LIST_HEAD(&ptype_all);
8981 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
8982 		INIT_LIST_HEAD(&ptype_base[i]);
8983 
8984 	INIT_LIST_HEAD(&offload_base);
8985 
8986 	if (register_pernet_subsys(&netdev_net_ops))
8987 		goto out;
8988 
8989 	/*
8990 	 *	Initialise the packet receive queues.
8991 	 */
8992 
8993 	for_each_possible_cpu(i) {
8994 		struct work_struct *flush = per_cpu_ptr(&flush_works, i);
8995 		struct softnet_data *sd = &per_cpu(softnet_data, i);
8996 
8997 		INIT_WORK(flush, flush_backlog);
8998 
8999 		skb_queue_head_init(&sd->input_pkt_queue);
9000 		skb_queue_head_init(&sd->process_queue);
9001 #ifdef CONFIG_XFRM_OFFLOAD
9002 		skb_queue_head_init(&sd->xfrm_backlog);
9003 #endif
9004 		INIT_LIST_HEAD(&sd->poll_list);
9005 		sd->output_queue_tailp = &sd->output_queue;
9006 #ifdef CONFIG_RPS
9007 		sd->csd.func = rps_trigger_softirq;
9008 		sd->csd.info = sd;
9009 		sd->cpu = i;
9010 #endif
9011 
9012 		sd->backlog.poll = process_backlog;
9013 		sd->backlog.weight = weight_p;
9014 	}
9015 
9016 	dev_boot_phase = 0;
9017 
9018 	/* The loopback device is special if any other network devices
9019 	 * is present in a network namespace the loopback device must
9020 	 * be present. Since we now dynamically allocate and free the
9021 	 * loopback device ensure this invariant is maintained by
9022 	 * keeping the loopback device as the first device on the
9023 	 * list of network devices.  Ensuring the loopback devices
9024 	 * is the first device that appears and the last network device
9025 	 * that disappears.
9026 	 */
9027 	if (register_pernet_device(&loopback_net_ops))
9028 		goto out;
9029 
9030 	if (register_pernet_device(&default_device_ops))
9031 		goto out;
9032 
9033 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
9034 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
9035 
9036 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
9037 				       NULL, dev_cpu_dead);
9038 	WARN_ON(rc < 0);
9039 	rc = 0;
9040 out:
9041 	return rc;
9042 }
9043 
9044 subsys_initcall(net_dev_init);
9045