1 /* 2 * NET3 Protocol independent device support routines. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Derived from the non IP parts of dev.c 1.0.19 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * 14 * Additional Authors: 15 * Florian la Roche <rzsfl@rz.uni-sb.de> 16 * Alan Cox <gw4pts@gw4pts.ampr.org> 17 * David Hinds <dahinds@users.sourceforge.net> 18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 19 * Adam Sulmicki <adam@cfar.umd.edu> 20 * Pekka Riikonen <priikone@poesidon.pspt.fi> 21 * 22 * Changes: 23 * D.J. Barrow : Fixed bug where dev->refcnt gets set 24 * to 2 if register_netdev gets called 25 * before net_dev_init & also removed a 26 * few lines of code in the process. 27 * Alan Cox : device private ioctl copies fields back. 28 * Alan Cox : Transmit queue code does relevant 29 * stunts to keep the queue safe. 30 * Alan Cox : Fixed double lock. 31 * Alan Cox : Fixed promisc NULL pointer trap 32 * ???????? : Support the full private ioctl range 33 * Alan Cox : Moved ioctl permission check into 34 * drivers 35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 36 * Alan Cox : 100 backlog just doesn't cut it when 37 * you start doing multicast video 8) 38 * Alan Cox : Rewrote net_bh and list manager. 39 * Alan Cox : Fix ETH_P_ALL echoback lengths. 40 * Alan Cox : Took out transmit every packet pass 41 * Saved a few bytes in the ioctl handler 42 * Alan Cox : Network driver sets packet type before 43 * calling netif_rx. Saves a function 44 * call a packet. 45 * Alan Cox : Hashed net_bh() 46 * Richard Kooijman: Timestamp fixes. 47 * Alan Cox : Wrong field in SIOCGIFDSTADDR 48 * Alan Cox : Device lock protection. 49 * Alan Cox : Fixed nasty side effect of device close 50 * changes. 51 * Rudi Cilibrasi : Pass the right thing to 52 * set_mac_address() 53 * Dave Miller : 32bit quantity for the device lock to 54 * make it work out on a Sparc. 55 * Bjorn Ekwall : Added KERNELD hack. 56 * Alan Cox : Cleaned up the backlog initialise. 57 * Craig Metz : SIOCGIFCONF fix if space for under 58 * 1 device. 59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 60 * is no device open function. 61 * Andi Kleen : Fix error reporting for SIOCGIFCONF 62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 63 * Cyrus Durgin : Cleaned for KMOD 64 * Adam Sulmicki : Bug Fix : Network Device Unload 65 * A network device unload needs to purge 66 * the backlog queue. 67 * Paul Rusty Russell : SIOCSIFNAME 68 * Pekka Riikonen : Netdev boot-time settings code 69 * Andrew Morton : Make unregister_netdevice wait 70 * indefinitely on dev->refcnt 71 * J Hadi Salim : - Backlog queue sampling 72 * - netif_rx() feedback 73 */ 74 75 #include <linux/uaccess.h> 76 #include <linux/bitops.h> 77 #include <linux/capability.h> 78 #include <linux/cpu.h> 79 #include <linux/types.h> 80 #include <linux/kernel.h> 81 #include <linux/hash.h> 82 #include <linux/slab.h> 83 #include <linux/sched.h> 84 #include <linux/sched/mm.h> 85 #include <linux/mutex.h> 86 #include <linux/string.h> 87 #include <linux/mm.h> 88 #include <linux/socket.h> 89 #include <linux/sockios.h> 90 #include <linux/errno.h> 91 #include <linux/interrupt.h> 92 #include <linux/if_ether.h> 93 #include <linux/netdevice.h> 94 #include <linux/etherdevice.h> 95 #include <linux/ethtool.h> 96 #include <linux/notifier.h> 97 #include <linux/skbuff.h> 98 #include <linux/bpf.h> 99 #include <linux/bpf_trace.h> 100 #include <net/net_namespace.h> 101 #include <net/sock.h> 102 #include <net/busy_poll.h> 103 #include <linux/rtnetlink.h> 104 #include <linux/stat.h> 105 #include <net/dst.h> 106 #include <net/dst_metadata.h> 107 #include <net/pkt_sched.h> 108 #include <net/pkt_cls.h> 109 #include <net/checksum.h> 110 #include <net/xfrm.h> 111 #include <linux/highmem.h> 112 #include <linux/init.h> 113 #include <linux/module.h> 114 #include <linux/netpoll.h> 115 #include <linux/rcupdate.h> 116 #include <linux/delay.h> 117 #include <net/iw_handler.h> 118 #include <asm/current.h> 119 #include <linux/audit.h> 120 #include <linux/dmaengine.h> 121 #include <linux/err.h> 122 #include <linux/ctype.h> 123 #include <linux/if_arp.h> 124 #include <linux/if_vlan.h> 125 #include <linux/ip.h> 126 #include <net/ip.h> 127 #include <net/mpls.h> 128 #include <linux/ipv6.h> 129 #include <linux/in.h> 130 #include <linux/jhash.h> 131 #include <linux/random.h> 132 #include <trace/events/napi.h> 133 #include <trace/events/net.h> 134 #include <trace/events/skb.h> 135 #include <linux/pci.h> 136 #include <linux/inetdevice.h> 137 #include <linux/cpu_rmap.h> 138 #include <linux/static_key.h> 139 #include <linux/hashtable.h> 140 #include <linux/vmalloc.h> 141 #include <linux/if_macvlan.h> 142 #include <linux/errqueue.h> 143 #include <linux/hrtimer.h> 144 #include <linux/netfilter_ingress.h> 145 #include <linux/crash_dump.h> 146 #include <linux/sctp.h> 147 #include <net/udp_tunnel.h> 148 #include <linux/net_namespace.h> 149 150 #include "net-sysfs.h" 151 152 /* Instead of increasing this, you should create a hash table. */ 153 #define MAX_GRO_SKBS 8 154 155 /* This should be increased if a protocol with a bigger head is added. */ 156 #define GRO_MAX_HEAD (MAX_HEADER + 128) 157 158 static DEFINE_SPINLOCK(ptype_lock); 159 static DEFINE_SPINLOCK(offload_lock); 160 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 161 struct list_head ptype_all __read_mostly; /* Taps */ 162 static struct list_head offload_base __read_mostly; 163 164 static int netif_rx_internal(struct sk_buff *skb); 165 static int call_netdevice_notifiers_info(unsigned long val, 166 struct netdev_notifier_info *info); 167 static struct napi_struct *napi_by_id(unsigned int napi_id); 168 169 /* 170 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 171 * semaphore. 172 * 173 * Pure readers hold dev_base_lock for reading, or rcu_read_lock() 174 * 175 * Writers must hold the rtnl semaphore while they loop through the 176 * dev_base_head list, and hold dev_base_lock for writing when they do the 177 * actual updates. This allows pure readers to access the list even 178 * while a writer is preparing to update it. 179 * 180 * To put it another way, dev_base_lock is held for writing only to 181 * protect against pure readers; the rtnl semaphore provides the 182 * protection against other writers. 183 * 184 * See, for example usages, register_netdevice() and 185 * unregister_netdevice(), which must be called with the rtnl 186 * semaphore held. 187 */ 188 DEFINE_RWLOCK(dev_base_lock); 189 EXPORT_SYMBOL(dev_base_lock); 190 191 static DEFINE_MUTEX(ifalias_mutex); 192 193 /* protects napi_hash addition/deletion and napi_gen_id */ 194 static DEFINE_SPINLOCK(napi_hash_lock); 195 196 static unsigned int napi_gen_id = NR_CPUS; 197 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8); 198 199 static seqcount_t devnet_rename_seq; 200 201 static inline void dev_base_seq_inc(struct net *net) 202 { 203 while (++net->dev_base_seq == 0) 204 ; 205 } 206 207 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 208 { 209 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ)); 210 211 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 212 } 213 214 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 215 { 216 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 217 } 218 219 static inline void rps_lock(struct softnet_data *sd) 220 { 221 #ifdef CONFIG_RPS 222 spin_lock(&sd->input_pkt_queue.lock); 223 #endif 224 } 225 226 static inline void rps_unlock(struct softnet_data *sd) 227 { 228 #ifdef CONFIG_RPS 229 spin_unlock(&sd->input_pkt_queue.lock); 230 #endif 231 } 232 233 /* Device list insertion */ 234 static void list_netdevice(struct net_device *dev) 235 { 236 struct net *net = dev_net(dev); 237 238 ASSERT_RTNL(); 239 240 write_lock_bh(&dev_base_lock); 241 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 242 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 243 hlist_add_head_rcu(&dev->index_hlist, 244 dev_index_hash(net, dev->ifindex)); 245 write_unlock_bh(&dev_base_lock); 246 247 dev_base_seq_inc(net); 248 } 249 250 /* Device list removal 251 * caller must respect a RCU grace period before freeing/reusing dev 252 */ 253 static void unlist_netdevice(struct net_device *dev) 254 { 255 ASSERT_RTNL(); 256 257 /* Unlink dev from the device chain */ 258 write_lock_bh(&dev_base_lock); 259 list_del_rcu(&dev->dev_list); 260 hlist_del_rcu(&dev->name_hlist); 261 hlist_del_rcu(&dev->index_hlist); 262 write_unlock_bh(&dev_base_lock); 263 264 dev_base_seq_inc(dev_net(dev)); 265 } 266 267 /* 268 * Our notifier list 269 */ 270 271 static RAW_NOTIFIER_HEAD(netdev_chain); 272 273 /* 274 * Device drivers call our routines to queue packets here. We empty the 275 * queue in the local softnet handler. 276 */ 277 278 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 279 EXPORT_PER_CPU_SYMBOL(softnet_data); 280 281 #ifdef CONFIG_LOCKDEP 282 /* 283 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 284 * according to dev->type 285 */ 286 static const unsigned short netdev_lock_type[] = { 287 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 288 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 289 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 290 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 291 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 292 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 293 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 294 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 295 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 296 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 297 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 298 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 299 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM, 300 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE, 301 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE}; 302 303 static const char *const netdev_lock_name[] = { 304 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 305 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 306 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 307 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 308 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 309 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 310 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 311 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 312 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 313 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 314 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 315 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 316 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM", 317 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE", 318 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"}; 319 320 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 321 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 322 323 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 324 { 325 int i; 326 327 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 328 if (netdev_lock_type[i] == dev_type) 329 return i; 330 /* the last key is used by default */ 331 return ARRAY_SIZE(netdev_lock_type) - 1; 332 } 333 334 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 335 unsigned short dev_type) 336 { 337 int i; 338 339 i = netdev_lock_pos(dev_type); 340 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 341 netdev_lock_name[i]); 342 } 343 344 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 345 { 346 int i; 347 348 i = netdev_lock_pos(dev->type); 349 lockdep_set_class_and_name(&dev->addr_list_lock, 350 &netdev_addr_lock_key[i], 351 netdev_lock_name[i]); 352 } 353 #else 354 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 355 unsigned short dev_type) 356 { 357 } 358 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 359 { 360 } 361 #endif 362 363 /******************************************************************************* 364 * 365 * Protocol management and registration routines 366 * 367 *******************************************************************************/ 368 369 370 /* 371 * Add a protocol ID to the list. Now that the input handler is 372 * smarter we can dispense with all the messy stuff that used to be 373 * here. 374 * 375 * BEWARE!!! Protocol handlers, mangling input packets, 376 * MUST BE last in hash buckets and checking protocol handlers 377 * MUST start from promiscuous ptype_all chain in net_bh. 378 * It is true now, do not change it. 379 * Explanation follows: if protocol handler, mangling packet, will 380 * be the first on list, it is not able to sense, that packet 381 * is cloned and should be copied-on-write, so that it will 382 * change it and subsequent readers will get broken packet. 383 * --ANK (980803) 384 */ 385 386 static inline struct list_head *ptype_head(const struct packet_type *pt) 387 { 388 if (pt->type == htons(ETH_P_ALL)) 389 return pt->dev ? &pt->dev->ptype_all : &ptype_all; 390 else 391 return pt->dev ? &pt->dev->ptype_specific : 392 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 393 } 394 395 /** 396 * dev_add_pack - add packet handler 397 * @pt: packet type declaration 398 * 399 * Add a protocol handler to the networking stack. The passed &packet_type 400 * is linked into kernel lists and may not be freed until it has been 401 * removed from the kernel lists. 402 * 403 * This call does not sleep therefore it can not 404 * guarantee all CPU's that are in middle of receiving packets 405 * will see the new packet type (until the next received packet). 406 */ 407 408 void dev_add_pack(struct packet_type *pt) 409 { 410 struct list_head *head = ptype_head(pt); 411 412 spin_lock(&ptype_lock); 413 list_add_rcu(&pt->list, head); 414 spin_unlock(&ptype_lock); 415 } 416 EXPORT_SYMBOL(dev_add_pack); 417 418 /** 419 * __dev_remove_pack - remove packet handler 420 * @pt: packet type declaration 421 * 422 * Remove a protocol handler that was previously added to the kernel 423 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 424 * from the kernel lists and can be freed or reused once this function 425 * returns. 426 * 427 * The packet type might still be in use by receivers 428 * and must not be freed until after all the CPU's have gone 429 * through a quiescent state. 430 */ 431 void __dev_remove_pack(struct packet_type *pt) 432 { 433 struct list_head *head = ptype_head(pt); 434 struct packet_type *pt1; 435 436 spin_lock(&ptype_lock); 437 438 list_for_each_entry(pt1, head, list) { 439 if (pt == pt1) { 440 list_del_rcu(&pt->list); 441 goto out; 442 } 443 } 444 445 pr_warn("dev_remove_pack: %p not found\n", pt); 446 out: 447 spin_unlock(&ptype_lock); 448 } 449 EXPORT_SYMBOL(__dev_remove_pack); 450 451 /** 452 * dev_remove_pack - remove packet handler 453 * @pt: packet type declaration 454 * 455 * Remove a protocol handler that was previously added to the kernel 456 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 457 * from the kernel lists and can be freed or reused once this function 458 * returns. 459 * 460 * This call sleeps to guarantee that no CPU is looking at the packet 461 * type after return. 462 */ 463 void dev_remove_pack(struct packet_type *pt) 464 { 465 __dev_remove_pack(pt); 466 467 synchronize_net(); 468 } 469 EXPORT_SYMBOL(dev_remove_pack); 470 471 472 /** 473 * dev_add_offload - register offload handlers 474 * @po: protocol offload declaration 475 * 476 * Add protocol offload handlers to the networking stack. The passed 477 * &proto_offload is linked into kernel lists and may not be freed until 478 * it has been removed from the kernel lists. 479 * 480 * This call does not sleep therefore it can not 481 * guarantee all CPU's that are in middle of receiving packets 482 * will see the new offload handlers (until the next received packet). 483 */ 484 void dev_add_offload(struct packet_offload *po) 485 { 486 struct packet_offload *elem; 487 488 spin_lock(&offload_lock); 489 list_for_each_entry(elem, &offload_base, list) { 490 if (po->priority < elem->priority) 491 break; 492 } 493 list_add_rcu(&po->list, elem->list.prev); 494 spin_unlock(&offload_lock); 495 } 496 EXPORT_SYMBOL(dev_add_offload); 497 498 /** 499 * __dev_remove_offload - remove offload handler 500 * @po: packet offload declaration 501 * 502 * Remove a protocol offload handler that was previously added to the 503 * kernel offload handlers by dev_add_offload(). The passed &offload_type 504 * is removed from the kernel lists and can be freed or reused once this 505 * function returns. 506 * 507 * The packet type might still be in use by receivers 508 * and must not be freed until after all the CPU's have gone 509 * through a quiescent state. 510 */ 511 static void __dev_remove_offload(struct packet_offload *po) 512 { 513 struct list_head *head = &offload_base; 514 struct packet_offload *po1; 515 516 spin_lock(&offload_lock); 517 518 list_for_each_entry(po1, head, list) { 519 if (po == po1) { 520 list_del_rcu(&po->list); 521 goto out; 522 } 523 } 524 525 pr_warn("dev_remove_offload: %p not found\n", po); 526 out: 527 spin_unlock(&offload_lock); 528 } 529 530 /** 531 * dev_remove_offload - remove packet offload handler 532 * @po: packet offload declaration 533 * 534 * Remove a packet offload handler that was previously added to the kernel 535 * offload handlers by dev_add_offload(). The passed &offload_type is 536 * removed from the kernel lists and can be freed or reused once this 537 * function returns. 538 * 539 * This call sleeps to guarantee that no CPU is looking at the packet 540 * type after return. 541 */ 542 void dev_remove_offload(struct packet_offload *po) 543 { 544 __dev_remove_offload(po); 545 546 synchronize_net(); 547 } 548 EXPORT_SYMBOL(dev_remove_offload); 549 550 /****************************************************************************** 551 * 552 * Device Boot-time Settings Routines 553 * 554 ******************************************************************************/ 555 556 /* Boot time configuration table */ 557 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 558 559 /** 560 * netdev_boot_setup_add - add new setup entry 561 * @name: name of the device 562 * @map: configured settings for the device 563 * 564 * Adds new setup entry to the dev_boot_setup list. The function 565 * returns 0 on error and 1 on success. This is a generic routine to 566 * all netdevices. 567 */ 568 static int netdev_boot_setup_add(char *name, struct ifmap *map) 569 { 570 struct netdev_boot_setup *s; 571 int i; 572 573 s = dev_boot_setup; 574 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 575 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 576 memset(s[i].name, 0, sizeof(s[i].name)); 577 strlcpy(s[i].name, name, IFNAMSIZ); 578 memcpy(&s[i].map, map, sizeof(s[i].map)); 579 break; 580 } 581 } 582 583 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 584 } 585 586 /** 587 * netdev_boot_setup_check - check boot time settings 588 * @dev: the netdevice 589 * 590 * Check boot time settings for the device. 591 * The found settings are set for the device to be used 592 * later in the device probing. 593 * Returns 0 if no settings found, 1 if they are. 594 */ 595 int netdev_boot_setup_check(struct net_device *dev) 596 { 597 struct netdev_boot_setup *s = dev_boot_setup; 598 int i; 599 600 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 601 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 602 !strcmp(dev->name, s[i].name)) { 603 dev->irq = s[i].map.irq; 604 dev->base_addr = s[i].map.base_addr; 605 dev->mem_start = s[i].map.mem_start; 606 dev->mem_end = s[i].map.mem_end; 607 return 1; 608 } 609 } 610 return 0; 611 } 612 EXPORT_SYMBOL(netdev_boot_setup_check); 613 614 615 /** 616 * netdev_boot_base - get address from boot time settings 617 * @prefix: prefix for network device 618 * @unit: id for network device 619 * 620 * Check boot time settings for the base address of device. 621 * The found settings are set for the device to be used 622 * later in the device probing. 623 * Returns 0 if no settings found. 624 */ 625 unsigned long netdev_boot_base(const char *prefix, int unit) 626 { 627 const struct netdev_boot_setup *s = dev_boot_setup; 628 char name[IFNAMSIZ]; 629 int i; 630 631 sprintf(name, "%s%d", prefix, unit); 632 633 /* 634 * If device already registered then return base of 1 635 * to indicate not to probe for this interface 636 */ 637 if (__dev_get_by_name(&init_net, name)) 638 return 1; 639 640 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 641 if (!strcmp(name, s[i].name)) 642 return s[i].map.base_addr; 643 return 0; 644 } 645 646 /* 647 * Saves at boot time configured settings for any netdevice. 648 */ 649 int __init netdev_boot_setup(char *str) 650 { 651 int ints[5]; 652 struct ifmap map; 653 654 str = get_options(str, ARRAY_SIZE(ints), ints); 655 if (!str || !*str) 656 return 0; 657 658 /* Save settings */ 659 memset(&map, 0, sizeof(map)); 660 if (ints[0] > 0) 661 map.irq = ints[1]; 662 if (ints[0] > 1) 663 map.base_addr = ints[2]; 664 if (ints[0] > 2) 665 map.mem_start = ints[3]; 666 if (ints[0] > 3) 667 map.mem_end = ints[4]; 668 669 /* Add new entry to the list */ 670 return netdev_boot_setup_add(str, &map); 671 } 672 673 __setup("netdev=", netdev_boot_setup); 674 675 /******************************************************************************* 676 * 677 * Device Interface Subroutines 678 * 679 *******************************************************************************/ 680 681 /** 682 * dev_get_iflink - get 'iflink' value of a interface 683 * @dev: targeted interface 684 * 685 * Indicates the ifindex the interface is linked to. 686 * Physical interfaces have the same 'ifindex' and 'iflink' values. 687 */ 688 689 int dev_get_iflink(const struct net_device *dev) 690 { 691 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink) 692 return dev->netdev_ops->ndo_get_iflink(dev); 693 694 return dev->ifindex; 695 } 696 EXPORT_SYMBOL(dev_get_iflink); 697 698 /** 699 * dev_fill_metadata_dst - Retrieve tunnel egress information. 700 * @dev: targeted interface 701 * @skb: The packet. 702 * 703 * For better visibility of tunnel traffic OVS needs to retrieve 704 * egress tunnel information for a packet. Following API allows 705 * user to get this info. 706 */ 707 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb) 708 { 709 struct ip_tunnel_info *info; 710 711 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst) 712 return -EINVAL; 713 714 info = skb_tunnel_info_unclone(skb); 715 if (!info) 716 return -ENOMEM; 717 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX))) 718 return -EINVAL; 719 720 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb); 721 } 722 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst); 723 724 /** 725 * __dev_get_by_name - find a device by its name 726 * @net: the applicable net namespace 727 * @name: name to find 728 * 729 * Find an interface by name. Must be called under RTNL semaphore 730 * or @dev_base_lock. If the name is found a pointer to the device 731 * is returned. If the name is not found then %NULL is returned. The 732 * reference counters are not incremented so the caller must be 733 * careful with locks. 734 */ 735 736 struct net_device *__dev_get_by_name(struct net *net, const char *name) 737 { 738 struct net_device *dev; 739 struct hlist_head *head = dev_name_hash(net, name); 740 741 hlist_for_each_entry(dev, head, name_hlist) 742 if (!strncmp(dev->name, name, IFNAMSIZ)) 743 return dev; 744 745 return NULL; 746 } 747 EXPORT_SYMBOL(__dev_get_by_name); 748 749 /** 750 * dev_get_by_name_rcu - find a device by its name 751 * @net: the applicable net namespace 752 * @name: name to find 753 * 754 * Find an interface by name. 755 * If the name is found a pointer to the device is returned. 756 * If the name is not found then %NULL is returned. 757 * The reference counters are not incremented so the caller must be 758 * careful with locks. The caller must hold RCU lock. 759 */ 760 761 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 762 { 763 struct net_device *dev; 764 struct hlist_head *head = dev_name_hash(net, name); 765 766 hlist_for_each_entry_rcu(dev, head, name_hlist) 767 if (!strncmp(dev->name, name, IFNAMSIZ)) 768 return dev; 769 770 return NULL; 771 } 772 EXPORT_SYMBOL(dev_get_by_name_rcu); 773 774 /** 775 * dev_get_by_name - find a device by its name 776 * @net: the applicable net namespace 777 * @name: name to find 778 * 779 * Find an interface by name. This can be called from any 780 * context and does its own locking. The returned handle has 781 * the usage count incremented and the caller must use dev_put() to 782 * release it when it is no longer needed. %NULL is returned if no 783 * matching device is found. 784 */ 785 786 struct net_device *dev_get_by_name(struct net *net, const char *name) 787 { 788 struct net_device *dev; 789 790 rcu_read_lock(); 791 dev = dev_get_by_name_rcu(net, name); 792 if (dev) 793 dev_hold(dev); 794 rcu_read_unlock(); 795 return dev; 796 } 797 EXPORT_SYMBOL(dev_get_by_name); 798 799 /** 800 * __dev_get_by_index - find a device by its ifindex 801 * @net: the applicable net namespace 802 * @ifindex: index of device 803 * 804 * Search for an interface by index. Returns %NULL if the device 805 * is not found or a pointer to the device. The device has not 806 * had its reference counter increased so the caller must be careful 807 * about locking. The caller must hold either the RTNL semaphore 808 * or @dev_base_lock. 809 */ 810 811 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 812 { 813 struct net_device *dev; 814 struct hlist_head *head = dev_index_hash(net, ifindex); 815 816 hlist_for_each_entry(dev, head, index_hlist) 817 if (dev->ifindex == ifindex) 818 return dev; 819 820 return NULL; 821 } 822 EXPORT_SYMBOL(__dev_get_by_index); 823 824 /** 825 * dev_get_by_index_rcu - find a device by its ifindex 826 * @net: the applicable net namespace 827 * @ifindex: index of device 828 * 829 * Search for an interface by index. Returns %NULL if the device 830 * is not found or a pointer to the device. The device has not 831 * had its reference counter increased so the caller must be careful 832 * about locking. The caller must hold RCU lock. 833 */ 834 835 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 836 { 837 struct net_device *dev; 838 struct hlist_head *head = dev_index_hash(net, ifindex); 839 840 hlist_for_each_entry_rcu(dev, head, index_hlist) 841 if (dev->ifindex == ifindex) 842 return dev; 843 844 return NULL; 845 } 846 EXPORT_SYMBOL(dev_get_by_index_rcu); 847 848 849 /** 850 * dev_get_by_index - find a device by its ifindex 851 * @net: the applicable net namespace 852 * @ifindex: index of device 853 * 854 * Search for an interface by index. Returns NULL if the device 855 * is not found or a pointer to the device. The device returned has 856 * had a reference added and the pointer is safe until the user calls 857 * dev_put to indicate they have finished with it. 858 */ 859 860 struct net_device *dev_get_by_index(struct net *net, int ifindex) 861 { 862 struct net_device *dev; 863 864 rcu_read_lock(); 865 dev = dev_get_by_index_rcu(net, ifindex); 866 if (dev) 867 dev_hold(dev); 868 rcu_read_unlock(); 869 return dev; 870 } 871 EXPORT_SYMBOL(dev_get_by_index); 872 873 /** 874 * dev_get_by_napi_id - find a device by napi_id 875 * @napi_id: ID of the NAPI struct 876 * 877 * Search for an interface by NAPI ID. Returns %NULL if the device 878 * is not found or a pointer to the device. The device has not had 879 * its reference counter increased so the caller must be careful 880 * about locking. The caller must hold RCU lock. 881 */ 882 883 struct net_device *dev_get_by_napi_id(unsigned int napi_id) 884 { 885 struct napi_struct *napi; 886 887 WARN_ON_ONCE(!rcu_read_lock_held()); 888 889 if (napi_id < MIN_NAPI_ID) 890 return NULL; 891 892 napi = napi_by_id(napi_id); 893 894 return napi ? napi->dev : NULL; 895 } 896 EXPORT_SYMBOL(dev_get_by_napi_id); 897 898 /** 899 * netdev_get_name - get a netdevice name, knowing its ifindex. 900 * @net: network namespace 901 * @name: a pointer to the buffer where the name will be stored. 902 * @ifindex: the ifindex of the interface to get the name from. 903 * 904 * The use of raw_seqcount_begin() and cond_resched() before 905 * retrying is required as we want to give the writers a chance 906 * to complete when CONFIG_PREEMPT is not set. 907 */ 908 int netdev_get_name(struct net *net, char *name, int ifindex) 909 { 910 struct net_device *dev; 911 unsigned int seq; 912 913 retry: 914 seq = raw_seqcount_begin(&devnet_rename_seq); 915 rcu_read_lock(); 916 dev = dev_get_by_index_rcu(net, ifindex); 917 if (!dev) { 918 rcu_read_unlock(); 919 return -ENODEV; 920 } 921 922 strcpy(name, dev->name); 923 rcu_read_unlock(); 924 if (read_seqcount_retry(&devnet_rename_seq, seq)) { 925 cond_resched(); 926 goto retry; 927 } 928 929 return 0; 930 } 931 932 /** 933 * dev_getbyhwaddr_rcu - find a device by its hardware address 934 * @net: the applicable net namespace 935 * @type: media type of device 936 * @ha: hardware address 937 * 938 * Search for an interface by MAC address. Returns NULL if the device 939 * is not found or a pointer to the device. 940 * The caller must hold RCU or RTNL. 941 * The returned device has not had its ref count increased 942 * and the caller must therefore be careful about locking 943 * 944 */ 945 946 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 947 const char *ha) 948 { 949 struct net_device *dev; 950 951 for_each_netdev_rcu(net, dev) 952 if (dev->type == type && 953 !memcmp(dev->dev_addr, ha, dev->addr_len)) 954 return dev; 955 956 return NULL; 957 } 958 EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 959 960 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 961 { 962 struct net_device *dev; 963 964 ASSERT_RTNL(); 965 for_each_netdev(net, dev) 966 if (dev->type == type) 967 return dev; 968 969 return NULL; 970 } 971 EXPORT_SYMBOL(__dev_getfirstbyhwtype); 972 973 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 974 { 975 struct net_device *dev, *ret = NULL; 976 977 rcu_read_lock(); 978 for_each_netdev_rcu(net, dev) 979 if (dev->type == type) { 980 dev_hold(dev); 981 ret = dev; 982 break; 983 } 984 rcu_read_unlock(); 985 return ret; 986 } 987 EXPORT_SYMBOL(dev_getfirstbyhwtype); 988 989 /** 990 * __dev_get_by_flags - find any device with given flags 991 * @net: the applicable net namespace 992 * @if_flags: IFF_* values 993 * @mask: bitmask of bits in if_flags to check 994 * 995 * Search for any interface with the given flags. Returns NULL if a device 996 * is not found or a pointer to the device. Must be called inside 997 * rtnl_lock(), and result refcount is unchanged. 998 */ 999 1000 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags, 1001 unsigned short mask) 1002 { 1003 struct net_device *dev, *ret; 1004 1005 ASSERT_RTNL(); 1006 1007 ret = NULL; 1008 for_each_netdev(net, dev) { 1009 if (((dev->flags ^ if_flags) & mask) == 0) { 1010 ret = dev; 1011 break; 1012 } 1013 } 1014 return ret; 1015 } 1016 EXPORT_SYMBOL(__dev_get_by_flags); 1017 1018 /** 1019 * dev_valid_name - check if name is okay for network device 1020 * @name: name string 1021 * 1022 * Network device names need to be valid file names to 1023 * to allow sysfs to work. We also disallow any kind of 1024 * whitespace. 1025 */ 1026 bool dev_valid_name(const char *name) 1027 { 1028 if (*name == '\0') 1029 return false; 1030 if (strlen(name) >= IFNAMSIZ) 1031 return false; 1032 if (!strcmp(name, ".") || !strcmp(name, "..")) 1033 return false; 1034 1035 while (*name) { 1036 if (*name == '/' || *name == ':' || isspace(*name)) 1037 return false; 1038 name++; 1039 } 1040 return true; 1041 } 1042 EXPORT_SYMBOL(dev_valid_name); 1043 1044 /** 1045 * __dev_alloc_name - allocate a name for a device 1046 * @net: network namespace to allocate the device name in 1047 * @name: name format string 1048 * @buf: scratch buffer and result name string 1049 * 1050 * Passed a format string - eg "lt%d" it will try and find a suitable 1051 * id. It scans list of devices to build up a free map, then chooses 1052 * the first empty slot. The caller must hold the dev_base or rtnl lock 1053 * while allocating the name and adding the device in order to avoid 1054 * duplicates. 1055 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1056 * Returns the number of the unit assigned or a negative errno code. 1057 */ 1058 1059 static int __dev_alloc_name(struct net *net, const char *name, char *buf) 1060 { 1061 int i = 0; 1062 const char *p; 1063 const int max_netdevices = 8*PAGE_SIZE; 1064 unsigned long *inuse; 1065 struct net_device *d; 1066 1067 if (!dev_valid_name(name)) 1068 return -EINVAL; 1069 1070 p = strchr(name, '%'); 1071 if (p) { 1072 /* 1073 * Verify the string as this thing may have come from 1074 * the user. There must be either one "%d" and no other "%" 1075 * characters. 1076 */ 1077 if (p[1] != 'd' || strchr(p + 2, '%')) 1078 return -EINVAL; 1079 1080 /* Use one page as a bit array of possible slots */ 1081 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 1082 if (!inuse) 1083 return -ENOMEM; 1084 1085 for_each_netdev(net, d) { 1086 if (!sscanf(d->name, name, &i)) 1087 continue; 1088 if (i < 0 || i >= max_netdevices) 1089 continue; 1090 1091 /* avoid cases where sscanf is not exact inverse of printf */ 1092 snprintf(buf, IFNAMSIZ, name, i); 1093 if (!strncmp(buf, d->name, IFNAMSIZ)) 1094 set_bit(i, inuse); 1095 } 1096 1097 i = find_first_zero_bit(inuse, max_netdevices); 1098 free_page((unsigned long) inuse); 1099 } 1100 1101 snprintf(buf, IFNAMSIZ, name, i); 1102 if (!__dev_get_by_name(net, buf)) 1103 return i; 1104 1105 /* It is possible to run out of possible slots 1106 * when the name is long and there isn't enough space left 1107 * for the digits, or if all bits are used. 1108 */ 1109 return -ENFILE; 1110 } 1111 1112 static int dev_alloc_name_ns(struct net *net, 1113 struct net_device *dev, 1114 const char *name) 1115 { 1116 char buf[IFNAMSIZ]; 1117 int ret; 1118 1119 BUG_ON(!net); 1120 ret = __dev_alloc_name(net, name, buf); 1121 if (ret >= 0) 1122 strlcpy(dev->name, buf, IFNAMSIZ); 1123 return ret; 1124 } 1125 1126 /** 1127 * dev_alloc_name - allocate a name for a device 1128 * @dev: device 1129 * @name: name format string 1130 * 1131 * Passed a format string - eg "lt%d" it will try and find a suitable 1132 * id. It scans list of devices to build up a free map, then chooses 1133 * the first empty slot. The caller must hold the dev_base or rtnl lock 1134 * while allocating the name and adding the device in order to avoid 1135 * duplicates. 1136 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1137 * Returns the number of the unit assigned or a negative errno code. 1138 */ 1139 1140 int dev_alloc_name(struct net_device *dev, const char *name) 1141 { 1142 return dev_alloc_name_ns(dev_net(dev), dev, name); 1143 } 1144 EXPORT_SYMBOL(dev_alloc_name); 1145 1146 int dev_get_valid_name(struct net *net, struct net_device *dev, 1147 const char *name) 1148 { 1149 BUG_ON(!net); 1150 1151 if (!dev_valid_name(name)) 1152 return -EINVAL; 1153 1154 if (strchr(name, '%')) 1155 return dev_alloc_name_ns(net, dev, name); 1156 else if (__dev_get_by_name(net, name)) 1157 return -EEXIST; 1158 else if (dev->name != name) 1159 strlcpy(dev->name, name, IFNAMSIZ); 1160 1161 return 0; 1162 } 1163 EXPORT_SYMBOL(dev_get_valid_name); 1164 1165 /** 1166 * dev_change_name - change name of a device 1167 * @dev: device 1168 * @newname: name (or format string) must be at least IFNAMSIZ 1169 * 1170 * Change name of a device, can pass format strings "eth%d". 1171 * for wildcarding. 1172 */ 1173 int dev_change_name(struct net_device *dev, const char *newname) 1174 { 1175 unsigned char old_assign_type; 1176 char oldname[IFNAMSIZ]; 1177 int err = 0; 1178 int ret; 1179 struct net *net; 1180 1181 ASSERT_RTNL(); 1182 BUG_ON(!dev_net(dev)); 1183 1184 net = dev_net(dev); 1185 if (dev->flags & IFF_UP) 1186 return -EBUSY; 1187 1188 write_seqcount_begin(&devnet_rename_seq); 1189 1190 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) { 1191 write_seqcount_end(&devnet_rename_seq); 1192 return 0; 1193 } 1194 1195 memcpy(oldname, dev->name, IFNAMSIZ); 1196 1197 err = dev_get_valid_name(net, dev, newname); 1198 if (err < 0) { 1199 write_seqcount_end(&devnet_rename_seq); 1200 return err; 1201 } 1202 1203 if (oldname[0] && !strchr(oldname, '%')) 1204 netdev_info(dev, "renamed from %s\n", oldname); 1205 1206 old_assign_type = dev->name_assign_type; 1207 dev->name_assign_type = NET_NAME_RENAMED; 1208 1209 rollback: 1210 ret = device_rename(&dev->dev, dev->name); 1211 if (ret) { 1212 memcpy(dev->name, oldname, IFNAMSIZ); 1213 dev->name_assign_type = old_assign_type; 1214 write_seqcount_end(&devnet_rename_seq); 1215 return ret; 1216 } 1217 1218 write_seqcount_end(&devnet_rename_seq); 1219 1220 netdev_adjacent_rename_links(dev, oldname); 1221 1222 write_lock_bh(&dev_base_lock); 1223 hlist_del_rcu(&dev->name_hlist); 1224 write_unlock_bh(&dev_base_lock); 1225 1226 synchronize_rcu(); 1227 1228 write_lock_bh(&dev_base_lock); 1229 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 1230 write_unlock_bh(&dev_base_lock); 1231 1232 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1233 ret = notifier_to_errno(ret); 1234 1235 if (ret) { 1236 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1237 if (err >= 0) { 1238 err = ret; 1239 write_seqcount_begin(&devnet_rename_seq); 1240 memcpy(dev->name, oldname, IFNAMSIZ); 1241 memcpy(oldname, newname, IFNAMSIZ); 1242 dev->name_assign_type = old_assign_type; 1243 old_assign_type = NET_NAME_RENAMED; 1244 goto rollback; 1245 } else { 1246 pr_err("%s: name change rollback failed: %d\n", 1247 dev->name, ret); 1248 } 1249 } 1250 1251 return err; 1252 } 1253 1254 /** 1255 * dev_set_alias - change ifalias of a device 1256 * @dev: device 1257 * @alias: name up to IFALIASZ 1258 * @len: limit of bytes to copy from info 1259 * 1260 * Set ifalias for a device, 1261 */ 1262 int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1263 { 1264 struct dev_ifalias *new_alias = NULL; 1265 1266 if (len >= IFALIASZ) 1267 return -EINVAL; 1268 1269 if (len) { 1270 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL); 1271 if (!new_alias) 1272 return -ENOMEM; 1273 1274 memcpy(new_alias->ifalias, alias, len); 1275 new_alias->ifalias[len] = 0; 1276 } 1277 1278 mutex_lock(&ifalias_mutex); 1279 rcu_swap_protected(dev->ifalias, new_alias, 1280 mutex_is_locked(&ifalias_mutex)); 1281 mutex_unlock(&ifalias_mutex); 1282 1283 if (new_alias) 1284 kfree_rcu(new_alias, rcuhead); 1285 1286 return len; 1287 } 1288 1289 /** 1290 * dev_get_alias - get ifalias of a device 1291 * @dev: device 1292 * @name: buffer to store name of ifalias 1293 * @len: size of buffer 1294 * 1295 * get ifalias for a device. Caller must make sure dev cannot go 1296 * away, e.g. rcu read lock or own a reference count to device. 1297 */ 1298 int dev_get_alias(const struct net_device *dev, char *name, size_t len) 1299 { 1300 const struct dev_ifalias *alias; 1301 int ret = 0; 1302 1303 rcu_read_lock(); 1304 alias = rcu_dereference(dev->ifalias); 1305 if (alias) 1306 ret = snprintf(name, len, "%s", alias->ifalias); 1307 rcu_read_unlock(); 1308 1309 return ret; 1310 } 1311 1312 /** 1313 * netdev_features_change - device changes features 1314 * @dev: device to cause notification 1315 * 1316 * Called to indicate a device has changed features. 1317 */ 1318 void netdev_features_change(struct net_device *dev) 1319 { 1320 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1321 } 1322 EXPORT_SYMBOL(netdev_features_change); 1323 1324 /** 1325 * netdev_state_change - device changes state 1326 * @dev: device to cause notification 1327 * 1328 * Called to indicate a device has changed state. This function calls 1329 * the notifier chains for netdev_chain and sends a NEWLINK message 1330 * to the routing socket. 1331 */ 1332 void netdev_state_change(struct net_device *dev) 1333 { 1334 if (dev->flags & IFF_UP) { 1335 struct netdev_notifier_change_info change_info = { 1336 .info.dev = dev, 1337 }; 1338 1339 call_netdevice_notifiers_info(NETDEV_CHANGE, 1340 &change_info.info); 1341 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL); 1342 } 1343 } 1344 EXPORT_SYMBOL(netdev_state_change); 1345 1346 /** 1347 * netdev_notify_peers - notify network peers about existence of @dev 1348 * @dev: network device 1349 * 1350 * Generate traffic such that interested network peers are aware of 1351 * @dev, such as by generating a gratuitous ARP. This may be used when 1352 * a device wants to inform the rest of the network about some sort of 1353 * reconfiguration such as a failover event or virtual machine 1354 * migration. 1355 */ 1356 void netdev_notify_peers(struct net_device *dev) 1357 { 1358 rtnl_lock(); 1359 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev); 1360 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev); 1361 rtnl_unlock(); 1362 } 1363 EXPORT_SYMBOL(netdev_notify_peers); 1364 1365 static int __dev_open(struct net_device *dev) 1366 { 1367 const struct net_device_ops *ops = dev->netdev_ops; 1368 int ret; 1369 1370 ASSERT_RTNL(); 1371 1372 if (!netif_device_present(dev)) 1373 return -ENODEV; 1374 1375 /* Block netpoll from trying to do any rx path servicing. 1376 * If we don't do this there is a chance ndo_poll_controller 1377 * or ndo_poll may be running while we open the device 1378 */ 1379 netpoll_poll_disable(dev); 1380 1381 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev); 1382 ret = notifier_to_errno(ret); 1383 if (ret) 1384 return ret; 1385 1386 set_bit(__LINK_STATE_START, &dev->state); 1387 1388 if (ops->ndo_validate_addr) 1389 ret = ops->ndo_validate_addr(dev); 1390 1391 if (!ret && ops->ndo_open) 1392 ret = ops->ndo_open(dev); 1393 1394 netpoll_poll_enable(dev); 1395 1396 if (ret) 1397 clear_bit(__LINK_STATE_START, &dev->state); 1398 else { 1399 dev->flags |= IFF_UP; 1400 dev_set_rx_mode(dev); 1401 dev_activate(dev); 1402 add_device_randomness(dev->dev_addr, dev->addr_len); 1403 } 1404 1405 return ret; 1406 } 1407 1408 /** 1409 * dev_open - prepare an interface for use. 1410 * @dev: device to open 1411 * 1412 * Takes a device from down to up state. The device's private open 1413 * function is invoked and then the multicast lists are loaded. Finally 1414 * the device is moved into the up state and a %NETDEV_UP message is 1415 * sent to the netdev notifier chain. 1416 * 1417 * Calling this function on an active interface is a nop. On a failure 1418 * a negative errno code is returned. 1419 */ 1420 int dev_open(struct net_device *dev) 1421 { 1422 int ret; 1423 1424 if (dev->flags & IFF_UP) 1425 return 0; 1426 1427 ret = __dev_open(dev); 1428 if (ret < 0) 1429 return ret; 1430 1431 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1432 call_netdevice_notifiers(NETDEV_UP, dev); 1433 1434 return ret; 1435 } 1436 EXPORT_SYMBOL(dev_open); 1437 1438 static void __dev_close_many(struct list_head *head) 1439 { 1440 struct net_device *dev; 1441 1442 ASSERT_RTNL(); 1443 might_sleep(); 1444 1445 list_for_each_entry(dev, head, close_list) { 1446 /* Temporarily disable netpoll until the interface is down */ 1447 netpoll_poll_disable(dev); 1448 1449 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1450 1451 clear_bit(__LINK_STATE_START, &dev->state); 1452 1453 /* Synchronize to scheduled poll. We cannot touch poll list, it 1454 * can be even on different cpu. So just clear netif_running(). 1455 * 1456 * dev->stop() will invoke napi_disable() on all of it's 1457 * napi_struct instances on this device. 1458 */ 1459 smp_mb__after_atomic(); /* Commit netif_running(). */ 1460 } 1461 1462 dev_deactivate_many(head); 1463 1464 list_for_each_entry(dev, head, close_list) { 1465 const struct net_device_ops *ops = dev->netdev_ops; 1466 1467 /* 1468 * Call the device specific close. This cannot fail. 1469 * Only if device is UP 1470 * 1471 * We allow it to be called even after a DETACH hot-plug 1472 * event. 1473 */ 1474 if (ops->ndo_stop) 1475 ops->ndo_stop(dev); 1476 1477 dev->flags &= ~IFF_UP; 1478 netpoll_poll_enable(dev); 1479 } 1480 } 1481 1482 static void __dev_close(struct net_device *dev) 1483 { 1484 LIST_HEAD(single); 1485 1486 list_add(&dev->close_list, &single); 1487 __dev_close_many(&single); 1488 list_del(&single); 1489 } 1490 1491 void dev_close_many(struct list_head *head, bool unlink) 1492 { 1493 struct net_device *dev, *tmp; 1494 1495 /* Remove the devices that don't need to be closed */ 1496 list_for_each_entry_safe(dev, tmp, head, close_list) 1497 if (!(dev->flags & IFF_UP)) 1498 list_del_init(&dev->close_list); 1499 1500 __dev_close_many(head); 1501 1502 list_for_each_entry_safe(dev, tmp, head, close_list) { 1503 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1504 call_netdevice_notifiers(NETDEV_DOWN, dev); 1505 if (unlink) 1506 list_del_init(&dev->close_list); 1507 } 1508 } 1509 EXPORT_SYMBOL(dev_close_many); 1510 1511 /** 1512 * dev_close - shutdown an interface. 1513 * @dev: device to shutdown 1514 * 1515 * This function moves an active device into down state. A 1516 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1517 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1518 * chain. 1519 */ 1520 void dev_close(struct net_device *dev) 1521 { 1522 if (dev->flags & IFF_UP) { 1523 LIST_HEAD(single); 1524 1525 list_add(&dev->close_list, &single); 1526 dev_close_many(&single, true); 1527 list_del(&single); 1528 } 1529 } 1530 EXPORT_SYMBOL(dev_close); 1531 1532 1533 /** 1534 * dev_disable_lro - disable Large Receive Offload on a device 1535 * @dev: device 1536 * 1537 * Disable Large Receive Offload (LRO) on a net device. Must be 1538 * called under RTNL. This is needed if received packets may be 1539 * forwarded to another interface. 1540 */ 1541 void dev_disable_lro(struct net_device *dev) 1542 { 1543 struct net_device *lower_dev; 1544 struct list_head *iter; 1545 1546 dev->wanted_features &= ~NETIF_F_LRO; 1547 netdev_update_features(dev); 1548 1549 if (unlikely(dev->features & NETIF_F_LRO)) 1550 netdev_WARN(dev, "failed to disable LRO!\n"); 1551 1552 netdev_for_each_lower_dev(dev, lower_dev, iter) 1553 dev_disable_lro(lower_dev); 1554 } 1555 EXPORT_SYMBOL(dev_disable_lro); 1556 1557 /** 1558 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device 1559 * @dev: device 1560 * 1561 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be 1562 * called under RTNL. This is needed if Generic XDP is installed on 1563 * the device. 1564 */ 1565 static void dev_disable_gro_hw(struct net_device *dev) 1566 { 1567 dev->wanted_features &= ~NETIF_F_GRO_HW; 1568 netdev_update_features(dev); 1569 1570 if (unlikely(dev->features & NETIF_F_GRO_HW)) 1571 netdev_WARN(dev, "failed to disable GRO_HW!\n"); 1572 } 1573 1574 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val, 1575 struct net_device *dev) 1576 { 1577 struct netdev_notifier_info info = { 1578 .dev = dev, 1579 }; 1580 1581 return nb->notifier_call(nb, val, &info); 1582 } 1583 1584 static int dev_boot_phase = 1; 1585 1586 /** 1587 * register_netdevice_notifier - register a network notifier block 1588 * @nb: notifier 1589 * 1590 * Register a notifier to be called when network device events occur. 1591 * The notifier passed is linked into the kernel structures and must 1592 * not be reused until it has been unregistered. A negative errno code 1593 * is returned on a failure. 1594 * 1595 * When registered all registration and up events are replayed 1596 * to the new notifier to allow device to have a race free 1597 * view of the network device list. 1598 */ 1599 1600 int register_netdevice_notifier(struct notifier_block *nb) 1601 { 1602 struct net_device *dev; 1603 struct net_device *last; 1604 struct net *net; 1605 int err; 1606 1607 rtnl_lock(); 1608 err = raw_notifier_chain_register(&netdev_chain, nb); 1609 if (err) 1610 goto unlock; 1611 if (dev_boot_phase) 1612 goto unlock; 1613 for_each_net(net) { 1614 for_each_netdev(net, dev) { 1615 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev); 1616 err = notifier_to_errno(err); 1617 if (err) 1618 goto rollback; 1619 1620 if (!(dev->flags & IFF_UP)) 1621 continue; 1622 1623 call_netdevice_notifier(nb, NETDEV_UP, dev); 1624 } 1625 } 1626 1627 unlock: 1628 rtnl_unlock(); 1629 return err; 1630 1631 rollback: 1632 last = dev; 1633 for_each_net(net) { 1634 for_each_netdev(net, dev) { 1635 if (dev == last) 1636 goto outroll; 1637 1638 if (dev->flags & IFF_UP) { 1639 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1640 dev); 1641 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1642 } 1643 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1644 } 1645 } 1646 1647 outroll: 1648 raw_notifier_chain_unregister(&netdev_chain, nb); 1649 goto unlock; 1650 } 1651 EXPORT_SYMBOL(register_netdevice_notifier); 1652 1653 /** 1654 * unregister_netdevice_notifier - unregister a network notifier block 1655 * @nb: notifier 1656 * 1657 * Unregister a notifier previously registered by 1658 * register_netdevice_notifier(). The notifier is unlinked into the 1659 * kernel structures and may then be reused. A negative errno code 1660 * is returned on a failure. 1661 * 1662 * After unregistering unregister and down device events are synthesized 1663 * for all devices on the device list to the removed notifier to remove 1664 * the need for special case cleanup code. 1665 */ 1666 1667 int unregister_netdevice_notifier(struct notifier_block *nb) 1668 { 1669 struct net_device *dev; 1670 struct net *net; 1671 int err; 1672 1673 rtnl_lock(); 1674 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1675 if (err) 1676 goto unlock; 1677 1678 for_each_net(net) { 1679 for_each_netdev(net, dev) { 1680 if (dev->flags & IFF_UP) { 1681 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1682 dev); 1683 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1684 } 1685 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1686 } 1687 } 1688 unlock: 1689 rtnl_unlock(); 1690 return err; 1691 } 1692 EXPORT_SYMBOL(unregister_netdevice_notifier); 1693 1694 /** 1695 * call_netdevice_notifiers_info - call all network notifier blocks 1696 * @val: value passed unmodified to notifier function 1697 * @info: notifier information data 1698 * 1699 * Call all network notifier blocks. Parameters and return value 1700 * are as for raw_notifier_call_chain(). 1701 */ 1702 1703 static int call_netdevice_notifiers_info(unsigned long val, 1704 struct netdev_notifier_info *info) 1705 { 1706 ASSERT_RTNL(); 1707 return raw_notifier_call_chain(&netdev_chain, val, info); 1708 } 1709 1710 /** 1711 * call_netdevice_notifiers - call all network notifier blocks 1712 * @val: value passed unmodified to notifier function 1713 * @dev: net_device pointer passed unmodified to notifier function 1714 * 1715 * Call all network notifier blocks. Parameters and return value 1716 * are as for raw_notifier_call_chain(). 1717 */ 1718 1719 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 1720 { 1721 struct netdev_notifier_info info = { 1722 .dev = dev, 1723 }; 1724 1725 return call_netdevice_notifiers_info(val, &info); 1726 } 1727 EXPORT_SYMBOL(call_netdevice_notifiers); 1728 1729 #ifdef CONFIG_NET_INGRESS 1730 static struct static_key ingress_needed __read_mostly; 1731 1732 void net_inc_ingress_queue(void) 1733 { 1734 static_key_slow_inc(&ingress_needed); 1735 } 1736 EXPORT_SYMBOL_GPL(net_inc_ingress_queue); 1737 1738 void net_dec_ingress_queue(void) 1739 { 1740 static_key_slow_dec(&ingress_needed); 1741 } 1742 EXPORT_SYMBOL_GPL(net_dec_ingress_queue); 1743 #endif 1744 1745 #ifdef CONFIG_NET_EGRESS 1746 static struct static_key egress_needed __read_mostly; 1747 1748 void net_inc_egress_queue(void) 1749 { 1750 static_key_slow_inc(&egress_needed); 1751 } 1752 EXPORT_SYMBOL_GPL(net_inc_egress_queue); 1753 1754 void net_dec_egress_queue(void) 1755 { 1756 static_key_slow_dec(&egress_needed); 1757 } 1758 EXPORT_SYMBOL_GPL(net_dec_egress_queue); 1759 #endif 1760 1761 static struct static_key netstamp_needed __read_mostly; 1762 #ifdef HAVE_JUMP_LABEL 1763 static atomic_t netstamp_needed_deferred; 1764 static atomic_t netstamp_wanted; 1765 static void netstamp_clear(struct work_struct *work) 1766 { 1767 int deferred = atomic_xchg(&netstamp_needed_deferred, 0); 1768 int wanted; 1769 1770 wanted = atomic_add_return(deferred, &netstamp_wanted); 1771 if (wanted > 0) 1772 static_key_enable(&netstamp_needed); 1773 else 1774 static_key_disable(&netstamp_needed); 1775 } 1776 static DECLARE_WORK(netstamp_work, netstamp_clear); 1777 #endif 1778 1779 void net_enable_timestamp(void) 1780 { 1781 #ifdef HAVE_JUMP_LABEL 1782 int wanted; 1783 1784 while (1) { 1785 wanted = atomic_read(&netstamp_wanted); 1786 if (wanted <= 0) 1787 break; 1788 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted) 1789 return; 1790 } 1791 atomic_inc(&netstamp_needed_deferred); 1792 schedule_work(&netstamp_work); 1793 #else 1794 static_key_slow_inc(&netstamp_needed); 1795 #endif 1796 } 1797 EXPORT_SYMBOL(net_enable_timestamp); 1798 1799 void net_disable_timestamp(void) 1800 { 1801 #ifdef HAVE_JUMP_LABEL 1802 int wanted; 1803 1804 while (1) { 1805 wanted = atomic_read(&netstamp_wanted); 1806 if (wanted <= 1) 1807 break; 1808 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted) 1809 return; 1810 } 1811 atomic_dec(&netstamp_needed_deferred); 1812 schedule_work(&netstamp_work); 1813 #else 1814 static_key_slow_dec(&netstamp_needed); 1815 #endif 1816 } 1817 EXPORT_SYMBOL(net_disable_timestamp); 1818 1819 static inline void net_timestamp_set(struct sk_buff *skb) 1820 { 1821 skb->tstamp = 0; 1822 if (static_key_false(&netstamp_needed)) 1823 __net_timestamp(skb); 1824 } 1825 1826 #define net_timestamp_check(COND, SKB) \ 1827 if (static_key_false(&netstamp_needed)) { \ 1828 if ((COND) && !(SKB)->tstamp) \ 1829 __net_timestamp(SKB); \ 1830 } \ 1831 1832 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb) 1833 { 1834 unsigned int len; 1835 1836 if (!(dev->flags & IFF_UP)) 1837 return false; 1838 1839 len = dev->mtu + dev->hard_header_len + VLAN_HLEN; 1840 if (skb->len <= len) 1841 return true; 1842 1843 /* if TSO is enabled, we don't care about the length as the packet 1844 * could be forwarded without being segmented before 1845 */ 1846 if (skb_is_gso(skb)) 1847 return true; 1848 1849 return false; 1850 } 1851 EXPORT_SYMBOL_GPL(is_skb_forwardable); 1852 1853 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1854 { 1855 int ret = ____dev_forward_skb(dev, skb); 1856 1857 if (likely(!ret)) { 1858 skb->protocol = eth_type_trans(skb, dev); 1859 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN); 1860 } 1861 1862 return ret; 1863 } 1864 EXPORT_SYMBOL_GPL(__dev_forward_skb); 1865 1866 /** 1867 * dev_forward_skb - loopback an skb to another netif 1868 * 1869 * @dev: destination network device 1870 * @skb: buffer to forward 1871 * 1872 * return values: 1873 * NET_RX_SUCCESS (no congestion) 1874 * NET_RX_DROP (packet was dropped, but freed) 1875 * 1876 * dev_forward_skb can be used for injecting an skb from the 1877 * start_xmit function of one device into the receive queue 1878 * of another device. 1879 * 1880 * The receiving device may be in another namespace, so 1881 * we have to clear all information in the skb that could 1882 * impact namespace isolation. 1883 */ 1884 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1885 { 1886 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb); 1887 } 1888 EXPORT_SYMBOL_GPL(dev_forward_skb); 1889 1890 static inline int deliver_skb(struct sk_buff *skb, 1891 struct packet_type *pt_prev, 1892 struct net_device *orig_dev) 1893 { 1894 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 1895 return -ENOMEM; 1896 refcount_inc(&skb->users); 1897 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 1898 } 1899 1900 static inline void deliver_ptype_list_skb(struct sk_buff *skb, 1901 struct packet_type **pt, 1902 struct net_device *orig_dev, 1903 __be16 type, 1904 struct list_head *ptype_list) 1905 { 1906 struct packet_type *ptype, *pt_prev = *pt; 1907 1908 list_for_each_entry_rcu(ptype, ptype_list, list) { 1909 if (ptype->type != type) 1910 continue; 1911 if (pt_prev) 1912 deliver_skb(skb, pt_prev, orig_dev); 1913 pt_prev = ptype; 1914 } 1915 *pt = pt_prev; 1916 } 1917 1918 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb) 1919 { 1920 if (!ptype->af_packet_priv || !skb->sk) 1921 return false; 1922 1923 if (ptype->id_match) 1924 return ptype->id_match(ptype, skb->sk); 1925 else if ((struct sock *)ptype->af_packet_priv == skb->sk) 1926 return true; 1927 1928 return false; 1929 } 1930 1931 /* 1932 * Support routine. Sends outgoing frames to any network 1933 * taps currently in use. 1934 */ 1935 1936 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 1937 { 1938 struct packet_type *ptype; 1939 struct sk_buff *skb2 = NULL; 1940 struct packet_type *pt_prev = NULL; 1941 struct list_head *ptype_list = &ptype_all; 1942 1943 rcu_read_lock(); 1944 again: 1945 list_for_each_entry_rcu(ptype, ptype_list, list) { 1946 /* Never send packets back to the socket 1947 * they originated from - MvS (miquels@drinkel.ow.org) 1948 */ 1949 if (skb_loop_sk(ptype, skb)) 1950 continue; 1951 1952 if (pt_prev) { 1953 deliver_skb(skb2, pt_prev, skb->dev); 1954 pt_prev = ptype; 1955 continue; 1956 } 1957 1958 /* need to clone skb, done only once */ 1959 skb2 = skb_clone(skb, GFP_ATOMIC); 1960 if (!skb2) 1961 goto out_unlock; 1962 1963 net_timestamp_set(skb2); 1964 1965 /* skb->nh should be correctly 1966 * set by sender, so that the second statement is 1967 * just protection against buggy protocols. 1968 */ 1969 skb_reset_mac_header(skb2); 1970 1971 if (skb_network_header(skb2) < skb2->data || 1972 skb_network_header(skb2) > skb_tail_pointer(skb2)) { 1973 net_crit_ratelimited("protocol %04x is buggy, dev %s\n", 1974 ntohs(skb2->protocol), 1975 dev->name); 1976 skb_reset_network_header(skb2); 1977 } 1978 1979 skb2->transport_header = skb2->network_header; 1980 skb2->pkt_type = PACKET_OUTGOING; 1981 pt_prev = ptype; 1982 } 1983 1984 if (ptype_list == &ptype_all) { 1985 ptype_list = &dev->ptype_all; 1986 goto again; 1987 } 1988 out_unlock: 1989 if (pt_prev) { 1990 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC)) 1991 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 1992 else 1993 kfree_skb(skb2); 1994 } 1995 rcu_read_unlock(); 1996 } 1997 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit); 1998 1999 /** 2000 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change 2001 * @dev: Network device 2002 * @txq: number of queues available 2003 * 2004 * If real_num_tx_queues is changed the tc mappings may no longer be 2005 * valid. To resolve this verify the tc mapping remains valid and if 2006 * not NULL the mapping. With no priorities mapping to this 2007 * offset/count pair it will no longer be used. In the worst case TC0 2008 * is invalid nothing can be done so disable priority mappings. If is 2009 * expected that drivers will fix this mapping if they can before 2010 * calling netif_set_real_num_tx_queues. 2011 */ 2012 static void netif_setup_tc(struct net_device *dev, unsigned int txq) 2013 { 2014 int i; 2015 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2016 2017 /* If TC0 is invalidated disable TC mapping */ 2018 if (tc->offset + tc->count > txq) { 2019 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n"); 2020 dev->num_tc = 0; 2021 return; 2022 } 2023 2024 /* Invalidated prio to tc mappings set to TC0 */ 2025 for (i = 1; i < TC_BITMASK + 1; i++) { 2026 int q = netdev_get_prio_tc_map(dev, i); 2027 2028 tc = &dev->tc_to_txq[q]; 2029 if (tc->offset + tc->count > txq) { 2030 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n", 2031 i, q); 2032 netdev_set_prio_tc_map(dev, i, 0); 2033 } 2034 } 2035 } 2036 2037 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq) 2038 { 2039 if (dev->num_tc) { 2040 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2041 int i; 2042 2043 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) { 2044 if ((txq - tc->offset) < tc->count) 2045 return i; 2046 } 2047 2048 return -1; 2049 } 2050 2051 return 0; 2052 } 2053 EXPORT_SYMBOL(netdev_txq_to_tc); 2054 2055 #ifdef CONFIG_XPS 2056 static DEFINE_MUTEX(xps_map_mutex); 2057 #define xmap_dereference(P) \ 2058 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex)) 2059 2060 static bool remove_xps_queue(struct xps_dev_maps *dev_maps, 2061 int tci, u16 index) 2062 { 2063 struct xps_map *map = NULL; 2064 int pos; 2065 2066 if (dev_maps) 2067 map = xmap_dereference(dev_maps->cpu_map[tci]); 2068 if (!map) 2069 return false; 2070 2071 for (pos = map->len; pos--;) { 2072 if (map->queues[pos] != index) 2073 continue; 2074 2075 if (map->len > 1) { 2076 map->queues[pos] = map->queues[--map->len]; 2077 break; 2078 } 2079 2080 RCU_INIT_POINTER(dev_maps->cpu_map[tci], NULL); 2081 kfree_rcu(map, rcu); 2082 return false; 2083 } 2084 2085 return true; 2086 } 2087 2088 static bool remove_xps_queue_cpu(struct net_device *dev, 2089 struct xps_dev_maps *dev_maps, 2090 int cpu, u16 offset, u16 count) 2091 { 2092 int num_tc = dev->num_tc ? : 1; 2093 bool active = false; 2094 int tci; 2095 2096 for (tci = cpu * num_tc; num_tc--; tci++) { 2097 int i, j; 2098 2099 for (i = count, j = offset; i--; j++) { 2100 if (!remove_xps_queue(dev_maps, cpu, j)) 2101 break; 2102 } 2103 2104 active |= i < 0; 2105 } 2106 2107 return active; 2108 } 2109 2110 static void netif_reset_xps_queues(struct net_device *dev, u16 offset, 2111 u16 count) 2112 { 2113 struct xps_dev_maps *dev_maps; 2114 int cpu, i; 2115 bool active = false; 2116 2117 mutex_lock(&xps_map_mutex); 2118 dev_maps = xmap_dereference(dev->xps_maps); 2119 2120 if (!dev_maps) 2121 goto out_no_maps; 2122 2123 for_each_possible_cpu(cpu) 2124 active |= remove_xps_queue_cpu(dev, dev_maps, cpu, 2125 offset, count); 2126 2127 if (!active) { 2128 RCU_INIT_POINTER(dev->xps_maps, NULL); 2129 kfree_rcu(dev_maps, rcu); 2130 } 2131 2132 for (i = offset + (count - 1); count--; i--) 2133 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i), 2134 NUMA_NO_NODE); 2135 2136 out_no_maps: 2137 mutex_unlock(&xps_map_mutex); 2138 } 2139 2140 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index) 2141 { 2142 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index); 2143 } 2144 2145 static struct xps_map *expand_xps_map(struct xps_map *map, 2146 int cpu, u16 index) 2147 { 2148 struct xps_map *new_map; 2149 int alloc_len = XPS_MIN_MAP_ALLOC; 2150 int i, pos; 2151 2152 for (pos = 0; map && pos < map->len; pos++) { 2153 if (map->queues[pos] != index) 2154 continue; 2155 return map; 2156 } 2157 2158 /* Need to add queue to this CPU's existing map */ 2159 if (map) { 2160 if (pos < map->alloc_len) 2161 return map; 2162 2163 alloc_len = map->alloc_len * 2; 2164 } 2165 2166 /* Need to allocate new map to store queue on this CPU's map */ 2167 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL, 2168 cpu_to_node(cpu)); 2169 if (!new_map) 2170 return NULL; 2171 2172 for (i = 0; i < pos; i++) 2173 new_map->queues[i] = map->queues[i]; 2174 new_map->alloc_len = alloc_len; 2175 new_map->len = pos; 2176 2177 return new_map; 2178 } 2179 2180 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 2181 u16 index) 2182 { 2183 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL; 2184 int i, cpu, tci, numa_node_id = -2; 2185 int maps_sz, num_tc = 1, tc = 0; 2186 struct xps_map *map, *new_map; 2187 bool active = false; 2188 2189 if (dev->num_tc) { 2190 num_tc = dev->num_tc; 2191 tc = netdev_txq_to_tc(dev, index); 2192 if (tc < 0) 2193 return -EINVAL; 2194 } 2195 2196 maps_sz = XPS_DEV_MAPS_SIZE(num_tc); 2197 if (maps_sz < L1_CACHE_BYTES) 2198 maps_sz = L1_CACHE_BYTES; 2199 2200 mutex_lock(&xps_map_mutex); 2201 2202 dev_maps = xmap_dereference(dev->xps_maps); 2203 2204 /* allocate memory for queue storage */ 2205 for_each_cpu_and(cpu, cpu_online_mask, mask) { 2206 if (!new_dev_maps) 2207 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL); 2208 if (!new_dev_maps) { 2209 mutex_unlock(&xps_map_mutex); 2210 return -ENOMEM; 2211 } 2212 2213 tci = cpu * num_tc + tc; 2214 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[tci]) : 2215 NULL; 2216 2217 map = expand_xps_map(map, cpu, index); 2218 if (!map) 2219 goto error; 2220 2221 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map); 2222 } 2223 2224 if (!new_dev_maps) 2225 goto out_no_new_maps; 2226 2227 for_each_possible_cpu(cpu) { 2228 /* copy maps belonging to foreign traffic classes */ 2229 for (i = tc, tci = cpu * num_tc; dev_maps && i--; tci++) { 2230 /* fill in the new device map from the old device map */ 2231 map = xmap_dereference(dev_maps->cpu_map[tci]); 2232 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map); 2233 } 2234 2235 /* We need to explicitly update tci as prevous loop 2236 * could break out early if dev_maps is NULL. 2237 */ 2238 tci = cpu * num_tc + tc; 2239 2240 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) { 2241 /* add queue to CPU maps */ 2242 int pos = 0; 2243 2244 map = xmap_dereference(new_dev_maps->cpu_map[tci]); 2245 while ((pos < map->len) && (map->queues[pos] != index)) 2246 pos++; 2247 2248 if (pos == map->len) 2249 map->queues[map->len++] = index; 2250 #ifdef CONFIG_NUMA 2251 if (numa_node_id == -2) 2252 numa_node_id = cpu_to_node(cpu); 2253 else if (numa_node_id != cpu_to_node(cpu)) 2254 numa_node_id = -1; 2255 #endif 2256 } else if (dev_maps) { 2257 /* fill in the new device map from the old device map */ 2258 map = xmap_dereference(dev_maps->cpu_map[tci]); 2259 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map); 2260 } 2261 2262 /* copy maps belonging to foreign traffic classes */ 2263 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) { 2264 /* fill in the new device map from the old device map */ 2265 map = xmap_dereference(dev_maps->cpu_map[tci]); 2266 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map); 2267 } 2268 } 2269 2270 rcu_assign_pointer(dev->xps_maps, new_dev_maps); 2271 2272 /* Cleanup old maps */ 2273 if (!dev_maps) 2274 goto out_no_old_maps; 2275 2276 for_each_possible_cpu(cpu) { 2277 for (i = num_tc, tci = cpu * num_tc; i--; tci++) { 2278 new_map = xmap_dereference(new_dev_maps->cpu_map[tci]); 2279 map = xmap_dereference(dev_maps->cpu_map[tci]); 2280 if (map && map != new_map) 2281 kfree_rcu(map, rcu); 2282 } 2283 } 2284 2285 kfree_rcu(dev_maps, rcu); 2286 2287 out_no_old_maps: 2288 dev_maps = new_dev_maps; 2289 active = true; 2290 2291 out_no_new_maps: 2292 /* update Tx queue numa node */ 2293 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index), 2294 (numa_node_id >= 0) ? numa_node_id : 2295 NUMA_NO_NODE); 2296 2297 if (!dev_maps) 2298 goto out_no_maps; 2299 2300 /* removes queue from unused CPUs */ 2301 for_each_possible_cpu(cpu) { 2302 for (i = tc, tci = cpu * num_tc; i--; tci++) 2303 active |= remove_xps_queue(dev_maps, tci, index); 2304 if (!cpumask_test_cpu(cpu, mask) || !cpu_online(cpu)) 2305 active |= remove_xps_queue(dev_maps, tci, index); 2306 for (i = num_tc - tc, tci++; --i; tci++) 2307 active |= remove_xps_queue(dev_maps, tci, index); 2308 } 2309 2310 /* free map if not active */ 2311 if (!active) { 2312 RCU_INIT_POINTER(dev->xps_maps, NULL); 2313 kfree_rcu(dev_maps, rcu); 2314 } 2315 2316 out_no_maps: 2317 mutex_unlock(&xps_map_mutex); 2318 2319 return 0; 2320 error: 2321 /* remove any maps that we added */ 2322 for_each_possible_cpu(cpu) { 2323 for (i = num_tc, tci = cpu * num_tc; i--; tci++) { 2324 new_map = xmap_dereference(new_dev_maps->cpu_map[tci]); 2325 map = dev_maps ? 2326 xmap_dereference(dev_maps->cpu_map[tci]) : 2327 NULL; 2328 if (new_map && new_map != map) 2329 kfree(new_map); 2330 } 2331 } 2332 2333 mutex_unlock(&xps_map_mutex); 2334 2335 kfree(new_dev_maps); 2336 return -ENOMEM; 2337 } 2338 EXPORT_SYMBOL(netif_set_xps_queue); 2339 2340 #endif 2341 void netdev_reset_tc(struct net_device *dev) 2342 { 2343 #ifdef CONFIG_XPS 2344 netif_reset_xps_queues_gt(dev, 0); 2345 #endif 2346 dev->num_tc = 0; 2347 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq)); 2348 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map)); 2349 } 2350 EXPORT_SYMBOL(netdev_reset_tc); 2351 2352 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset) 2353 { 2354 if (tc >= dev->num_tc) 2355 return -EINVAL; 2356 2357 #ifdef CONFIG_XPS 2358 netif_reset_xps_queues(dev, offset, count); 2359 #endif 2360 dev->tc_to_txq[tc].count = count; 2361 dev->tc_to_txq[tc].offset = offset; 2362 return 0; 2363 } 2364 EXPORT_SYMBOL(netdev_set_tc_queue); 2365 2366 int netdev_set_num_tc(struct net_device *dev, u8 num_tc) 2367 { 2368 if (num_tc > TC_MAX_QUEUE) 2369 return -EINVAL; 2370 2371 #ifdef CONFIG_XPS 2372 netif_reset_xps_queues_gt(dev, 0); 2373 #endif 2374 dev->num_tc = num_tc; 2375 return 0; 2376 } 2377 EXPORT_SYMBOL(netdev_set_num_tc); 2378 2379 /* 2380 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 2381 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed. 2382 */ 2383 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 2384 { 2385 bool disabling; 2386 int rc; 2387 2388 disabling = txq < dev->real_num_tx_queues; 2389 2390 if (txq < 1 || txq > dev->num_tx_queues) 2391 return -EINVAL; 2392 2393 if (dev->reg_state == NETREG_REGISTERED || 2394 dev->reg_state == NETREG_UNREGISTERING) { 2395 ASSERT_RTNL(); 2396 2397 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 2398 txq); 2399 if (rc) 2400 return rc; 2401 2402 if (dev->num_tc) 2403 netif_setup_tc(dev, txq); 2404 2405 dev->real_num_tx_queues = txq; 2406 2407 if (disabling) { 2408 synchronize_net(); 2409 qdisc_reset_all_tx_gt(dev, txq); 2410 #ifdef CONFIG_XPS 2411 netif_reset_xps_queues_gt(dev, txq); 2412 #endif 2413 } 2414 } else { 2415 dev->real_num_tx_queues = txq; 2416 } 2417 2418 return 0; 2419 } 2420 EXPORT_SYMBOL(netif_set_real_num_tx_queues); 2421 2422 #ifdef CONFIG_SYSFS 2423 /** 2424 * netif_set_real_num_rx_queues - set actual number of RX queues used 2425 * @dev: Network device 2426 * @rxq: Actual number of RX queues 2427 * 2428 * This must be called either with the rtnl_lock held or before 2429 * registration of the net device. Returns 0 on success, or a 2430 * negative error code. If called before registration, it always 2431 * succeeds. 2432 */ 2433 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 2434 { 2435 int rc; 2436 2437 if (rxq < 1 || rxq > dev->num_rx_queues) 2438 return -EINVAL; 2439 2440 if (dev->reg_state == NETREG_REGISTERED) { 2441 ASSERT_RTNL(); 2442 2443 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 2444 rxq); 2445 if (rc) 2446 return rc; 2447 } 2448 2449 dev->real_num_rx_queues = rxq; 2450 return 0; 2451 } 2452 EXPORT_SYMBOL(netif_set_real_num_rx_queues); 2453 #endif 2454 2455 /** 2456 * netif_get_num_default_rss_queues - default number of RSS queues 2457 * 2458 * This routine should set an upper limit on the number of RSS queues 2459 * used by default by multiqueue devices. 2460 */ 2461 int netif_get_num_default_rss_queues(void) 2462 { 2463 return is_kdump_kernel() ? 2464 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus()); 2465 } 2466 EXPORT_SYMBOL(netif_get_num_default_rss_queues); 2467 2468 static void __netif_reschedule(struct Qdisc *q) 2469 { 2470 struct softnet_data *sd; 2471 unsigned long flags; 2472 2473 local_irq_save(flags); 2474 sd = this_cpu_ptr(&softnet_data); 2475 q->next_sched = NULL; 2476 *sd->output_queue_tailp = q; 2477 sd->output_queue_tailp = &q->next_sched; 2478 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2479 local_irq_restore(flags); 2480 } 2481 2482 void __netif_schedule(struct Qdisc *q) 2483 { 2484 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 2485 __netif_reschedule(q); 2486 } 2487 EXPORT_SYMBOL(__netif_schedule); 2488 2489 struct dev_kfree_skb_cb { 2490 enum skb_free_reason reason; 2491 }; 2492 2493 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb) 2494 { 2495 return (struct dev_kfree_skb_cb *)skb->cb; 2496 } 2497 2498 void netif_schedule_queue(struct netdev_queue *txq) 2499 { 2500 rcu_read_lock(); 2501 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) { 2502 struct Qdisc *q = rcu_dereference(txq->qdisc); 2503 2504 __netif_schedule(q); 2505 } 2506 rcu_read_unlock(); 2507 } 2508 EXPORT_SYMBOL(netif_schedule_queue); 2509 2510 void netif_tx_wake_queue(struct netdev_queue *dev_queue) 2511 { 2512 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) { 2513 struct Qdisc *q; 2514 2515 rcu_read_lock(); 2516 q = rcu_dereference(dev_queue->qdisc); 2517 __netif_schedule(q); 2518 rcu_read_unlock(); 2519 } 2520 } 2521 EXPORT_SYMBOL(netif_tx_wake_queue); 2522 2523 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason) 2524 { 2525 unsigned long flags; 2526 2527 if (unlikely(!skb)) 2528 return; 2529 2530 if (likely(refcount_read(&skb->users) == 1)) { 2531 smp_rmb(); 2532 refcount_set(&skb->users, 0); 2533 } else if (likely(!refcount_dec_and_test(&skb->users))) { 2534 return; 2535 } 2536 get_kfree_skb_cb(skb)->reason = reason; 2537 local_irq_save(flags); 2538 skb->next = __this_cpu_read(softnet_data.completion_queue); 2539 __this_cpu_write(softnet_data.completion_queue, skb); 2540 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2541 local_irq_restore(flags); 2542 } 2543 EXPORT_SYMBOL(__dev_kfree_skb_irq); 2544 2545 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason) 2546 { 2547 if (in_irq() || irqs_disabled()) 2548 __dev_kfree_skb_irq(skb, reason); 2549 else 2550 dev_kfree_skb(skb); 2551 } 2552 EXPORT_SYMBOL(__dev_kfree_skb_any); 2553 2554 2555 /** 2556 * netif_device_detach - mark device as removed 2557 * @dev: network device 2558 * 2559 * Mark device as removed from system and therefore no longer available. 2560 */ 2561 void netif_device_detach(struct net_device *dev) 2562 { 2563 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 2564 netif_running(dev)) { 2565 netif_tx_stop_all_queues(dev); 2566 } 2567 } 2568 EXPORT_SYMBOL(netif_device_detach); 2569 2570 /** 2571 * netif_device_attach - mark device as attached 2572 * @dev: network device 2573 * 2574 * Mark device as attached from system and restart if needed. 2575 */ 2576 void netif_device_attach(struct net_device *dev) 2577 { 2578 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 2579 netif_running(dev)) { 2580 netif_tx_wake_all_queues(dev); 2581 __netdev_watchdog_up(dev); 2582 } 2583 } 2584 EXPORT_SYMBOL(netif_device_attach); 2585 2586 /* 2587 * Returns a Tx hash based on the given packet descriptor a Tx queues' number 2588 * to be used as a distribution range. 2589 */ 2590 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb, 2591 unsigned int num_tx_queues) 2592 { 2593 u32 hash; 2594 u16 qoffset = 0; 2595 u16 qcount = num_tx_queues; 2596 2597 if (skb_rx_queue_recorded(skb)) { 2598 hash = skb_get_rx_queue(skb); 2599 while (unlikely(hash >= num_tx_queues)) 2600 hash -= num_tx_queues; 2601 return hash; 2602 } 2603 2604 if (dev->num_tc) { 2605 u8 tc = netdev_get_prio_tc_map(dev, skb->priority); 2606 2607 qoffset = dev->tc_to_txq[tc].offset; 2608 qcount = dev->tc_to_txq[tc].count; 2609 } 2610 2611 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset; 2612 } 2613 EXPORT_SYMBOL(__skb_tx_hash); 2614 2615 static void skb_warn_bad_offload(const struct sk_buff *skb) 2616 { 2617 static const netdev_features_t null_features; 2618 struct net_device *dev = skb->dev; 2619 const char *name = ""; 2620 2621 if (!net_ratelimit()) 2622 return; 2623 2624 if (dev) { 2625 if (dev->dev.parent) 2626 name = dev_driver_string(dev->dev.parent); 2627 else 2628 name = netdev_name(dev); 2629 } 2630 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d " 2631 "gso_type=%d ip_summed=%d\n", 2632 name, dev ? &dev->features : &null_features, 2633 skb->sk ? &skb->sk->sk_route_caps : &null_features, 2634 skb->len, skb->data_len, skb_shinfo(skb)->gso_size, 2635 skb_shinfo(skb)->gso_type, skb->ip_summed); 2636 } 2637 2638 /* 2639 * Invalidate hardware checksum when packet is to be mangled, and 2640 * complete checksum manually on outgoing path. 2641 */ 2642 int skb_checksum_help(struct sk_buff *skb) 2643 { 2644 __wsum csum; 2645 int ret = 0, offset; 2646 2647 if (skb->ip_summed == CHECKSUM_COMPLETE) 2648 goto out_set_summed; 2649 2650 if (unlikely(skb_shinfo(skb)->gso_size)) { 2651 skb_warn_bad_offload(skb); 2652 return -EINVAL; 2653 } 2654 2655 /* Before computing a checksum, we should make sure no frag could 2656 * be modified by an external entity : checksum could be wrong. 2657 */ 2658 if (skb_has_shared_frag(skb)) { 2659 ret = __skb_linearize(skb); 2660 if (ret) 2661 goto out; 2662 } 2663 2664 offset = skb_checksum_start_offset(skb); 2665 BUG_ON(offset >= skb_headlen(skb)); 2666 csum = skb_checksum(skb, offset, skb->len - offset, 0); 2667 2668 offset += skb->csum_offset; 2669 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 2670 2671 if (skb_cloned(skb) && 2672 !skb_clone_writable(skb, offset + sizeof(__sum16))) { 2673 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2674 if (ret) 2675 goto out; 2676 } 2677 2678 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0; 2679 out_set_summed: 2680 skb->ip_summed = CHECKSUM_NONE; 2681 out: 2682 return ret; 2683 } 2684 EXPORT_SYMBOL(skb_checksum_help); 2685 2686 int skb_crc32c_csum_help(struct sk_buff *skb) 2687 { 2688 __le32 crc32c_csum; 2689 int ret = 0, offset, start; 2690 2691 if (skb->ip_summed != CHECKSUM_PARTIAL) 2692 goto out; 2693 2694 if (unlikely(skb_is_gso(skb))) 2695 goto out; 2696 2697 /* Before computing a checksum, we should make sure no frag could 2698 * be modified by an external entity : checksum could be wrong. 2699 */ 2700 if (unlikely(skb_has_shared_frag(skb))) { 2701 ret = __skb_linearize(skb); 2702 if (ret) 2703 goto out; 2704 } 2705 start = skb_checksum_start_offset(skb); 2706 offset = start + offsetof(struct sctphdr, checksum); 2707 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) { 2708 ret = -EINVAL; 2709 goto out; 2710 } 2711 if (skb_cloned(skb) && 2712 !skb_clone_writable(skb, offset + sizeof(__le32))) { 2713 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2714 if (ret) 2715 goto out; 2716 } 2717 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start, 2718 skb->len - start, ~(__u32)0, 2719 crc32c_csum_stub)); 2720 *(__le32 *)(skb->data + offset) = crc32c_csum; 2721 skb->ip_summed = CHECKSUM_NONE; 2722 skb->csum_not_inet = 0; 2723 out: 2724 return ret; 2725 } 2726 2727 __be16 skb_network_protocol(struct sk_buff *skb, int *depth) 2728 { 2729 __be16 type = skb->protocol; 2730 2731 /* Tunnel gso handlers can set protocol to ethernet. */ 2732 if (type == htons(ETH_P_TEB)) { 2733 struct ethhdr *eth; 2734 2735 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr)))) 2736 return 0; 2737 2738 eth = (struct ethhdr *)skb->data; 2739 type = eth->h_proto; 2740 } 2741 2742 return __vlan_get_protocol(skb, type, depth); 2743 } 2744 2745 /** 2746 * skb_mac_gso_segment - mac layer segmentation handler. 2747 * @skb: buffer to segment 2748 * @features: features for the output path (see dev->features) 2749 */ 2750 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 2751 netdev_features_t features) 2752 { 2753 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 2754 struct packet_offload *ptype; 2755 int vlan_depth = skb->mac_len; 2756 __be16 type = skb_network_protocol(skb, &vlan_depth); 2757 2758 if (unlikely(!type)) 2759 return ERR_PTR(-EINVAL); 2760 2761 __skb_pull(skb, vlan_depth); 2762 2763 rcu_read_lock(); 2764 list_for_each_entry_rcu(ptype, &offload_base, list) { 2765 if (ptype->type == type && ptype->callbacks.gso_segment) { 2766 segs = ptype->callbacks.gso_segment(skb, features); 2767 break; 2768 } 2769 } 2770 rcu_read_unlock(); 2771 2772 __skb_push(skb, skb->data - skb_mac_header(skb)); 2773 2774 return segs; 2775 } 2776 EXPORT_SYMBOL(skb_mac_gso_segment); 2777 2778 2779 /* openvswitch calls this on rx path, so we need a different check. 2780 */ 2781 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path) 2782 { 2783 if (tx_path) 2784 return skb->ip_summed != CHECKSUM_PARTIAL && 2785 skb->ip_summed != CHECKSUM_UNNECESSARY; 2786 2787 return skb->ip_summed == CHECKSUM_NONE; 2788 } 2789 2790 /** 2791 * __skb_gso_segment - Perform segmentation on skb. 2792 * @skb: buffer to segment 2793 * @features: features for the output path (see dev->features) 2794 * @tx_path: whether it is called in TX path 2795 * 2796 * This function segments the given skb and returns a list of segments. 2797 * 2798 * It may return NULL if the skb requires no segmentation. This is 2799 * only possible when GSO is used for verifying header integrity. 2800 * 2801 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb. 2802 */ 2803 struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 2804 netdev_features_t features, bool tx_path) 2805 { 2806 struct sk_buff *segs; 2807 2808 if (unlikely(skb_needs_check(skb, tx_path))) { 2809 int err; 2810 2811 /* We're going to init ->check field in TCP or UDP header */ 2812 err = skb_cow_head(skb, 0); 2813 if (err < 0) 2814 return ERR_PTR(err); 2815 } 2816 2817 /* Only report GSO partial support if it will enable us to 2818 * support segmentation on this frame without needing additional 2819 * work. 2820 */ 2821 if (features & NETIF_F_GSO_PARTIAL) { 2822 netdev_features_t partial_features = NETIF_F_GSO_ROBUST; 2823 struct net_device *dev = skb->dev; 2824 2825 partial_features |= dev->features & dev->gso_partial_features; 2826 if (!skb_gso_ok(skb, features | partial_features)) 2827 features &= ~NETIF_F_GSO_PARTIAL; 2828 } 2829 2830 BUILD_BUG_ON(SKB_SGO_CB_OFFSET + 2831 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb)); 2832 2833 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb); 2834 SKB_GSO_CB(skb)->encap_level = 0; 2835 2836 skb_reset_mac_header(skb); 2837 skb_reset_mac_len(skb); 2838 2839 segs = skb_mac_gso_segment(skb, features); 2840 2841 if (unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs))) 2842 skb_warn_bad_offload(skb); 2843 2844 return segs; 2845 } 2846 EXPORT_SYMBOL(__skb_gso_segment); 2847 2848 /* Take action when hardware reception checksum errors are detected. */ 2849 #ifdef CONFIG_BUG 2850 void netdev_rx_csum_fault(struct net_device *dev) 2851 { 2852 if (net_ratelimit()) { 2853 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>"); 2854 dump_stack(); 2855 } 2856 } 2857 EXPORT_SYMBOL(netdev_rx_csum_fault); 2858 #endif 2859 2860 /* Actually, we should eliminate this check as soon as we know, that: 2861 * 1. IOMMU is present and allows to map all the memory. 2862 * 2. No high memory really exists on this machine. 2863 */ 2864 2865 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 2866 { 2867 #ifdef CONFIG_HIGHMEM 2868 int i; 2869 2870 if (!(dev->features & NETIF_F_HIGHDMA)) { 2871 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2872 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2873 2874 if (PageHighMem(skb_frag_page(frag))) 2875 return 1; 2876 } 2877 } 2878 2879 if (PCI_DMA_BUS_IS_PHYS) { 2880 struct device *pdev = dev->dev.parent; 2881 2882 if (!pdev) 2883 return 0; 2884 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2885 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2886 dma_addr_t addr = page_to_phys(skb_frag_page(frag)); 2887 2888 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask) 2889 return 1; 2890 } 2891 } 2892 #endif 2893 return 0; 2894 } 2895 2896 /* If MPLS offload request, verify we are testing hardware MPLS features 2897 * instead of standard features for the netdev. 2898 */ 2899 #if IS_ENABLED(CONFIG_NET_MPLS_GSO) 2900 static netdev_features_t net_mpls_features(struct sk_buff *skb, 2901 netdev_features_t features, 2902 __be16 type) 2903 { 2904 if (eth_p_mpls(type)) 2905 features &= skb->dev->mpls_features; 2906 2907 return features; 2908 } 2909 #else 2910 static netdev_features_t net_mpls_features(struct sk_buff *skb, 2911 netdev_features_t features, 2912 __be16 type) 2913 { 2914 return features; 2915 } 2916 #endif 2917 2918 static netdev_features_t harmonize_features(struct sk_buff *skb, 2919 netdev_features_t features) 2920 { 2921 int tmp; 2922 __be16 type; 2923 2924 type = skb_network_protocol(skb, &tmp); 2925 features = net_mpls_features(skb, features, type); 2926 2927 if (skb->ip_summed != CHECKSUM_NONE && 2928 !can_checksum_protocol(features, type)) { 2929 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 2930 } 2931 if (illegal_highdma(skb->dev, skb)) 2932 features &= ~NETIF_F_SG; 2933 2934 return features; 2935 } 2936 2937 netdev_features_t passthru_features_check(struct sk_buff *skb, 2938 struct net_device *dev, 2939 netdev_features_t features) 2940 { 2941 return features; 2942 } 2943 EXPORT_SYMBOL(passthru_features_check); 2944 2945 static netdev_features_t dflt_features_check(const struct sk_buff *skb, 2946 struct net_device *dev, 2947 netdev_features_t features) 2948 { 2949 return vlan_features_check(skb, features); 2950 } 2951 2952 static netdev_features_t gso_features_check(const struct sk_buff *skb, 2953 struct net_device *dev, 2954 netdev_features_t features) 2955 { 2956 u16 gso_segs = skb_shinfo(skb)->gso_segs; 2957 2958 if (gso_segs > dev->gso_max_segs) 2959 return features & ~NETIF_F_GSO_MASK; 2960 2961 /* Support for GSO partial features requires software 2962 * intervention before we can actually process the packets 2963 * so we need to strip support for any partial features now 2964 * and we can pull them back in after we have partially 2965 * segmented the frame. 2966 */ 2967 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL)) 2968 features &= ~dev->gso_partial_features; 2969 2970 /* Make sure to clear the IPv4 ID mangling feature if the 2971 * IPv4 header has the potential to be fragmented. 2972 */ 2973 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) { 2974 struct iphdr *iph = skb->encapsulation ? 2975 inner_ip_hdr(skb) : ip_hdr(skb); 2976 2977 if (!(iph->frag_off & htons(IP_DF))) 2978 features &= ~NETIF_F_TSO_MANGLEID; 2979 } 2980 2981 return features; 2982 } 2983 2984 netdev_features_t netif_skb_features(struct sk_buff *skb) 2985 { 2986 struct net_device *dev = skb->dev; 2987 netdev_features_t features = dev->features; 2988 2989 if (skb_is_gso(skb)) 2990 features = gso_features_check(skb, dev, features); 2991 2992 /* If encapsulation offload request, verify we are testing 2993 * hardware encapsulation features instead of standard 2994 * features for the netdev 2995 */ 2996 if (skb->encapsulation) 2997 features &= dev->hw_enc_features; 2998 2999 if (skb_vlan_tagged(skb)) 3000 features = netdev_intersect_features(features, 3001 dev->vlan_features | 3002 NETIF_F_HW_VLAN_CTAG_TX | 3003 NETIF_F_HW_VLAN_STAG_TX); 3004 3005 if (dev->netdev_ops->ndo_features_check) 3006 features &= dev->netdev_ops->ndo_features_check(skb, dev, 3007 features); 3008 else 3009 features &= dflt_features_check(skb, dev, features); 3010 3011 return harmonize_features(skb, features); 3012 } 3013 EXPORT_SYMBOL(netif_skb_features); 3014 3015 static int xmit_one(struct sk_buff *skb, struct net_device *dev, 3016 struct netdev_queue *txq, bool more) 3017 { 3018 unsigned int len; 3019 int rc; 3020 3021 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all)) 3022 dev_queue_xmit_nit(skb, dev); 3023 3024 len = skb->len; 3025 trace_net_dev_start_xmit(skb, dev); 3026 rc = netdev_start_xmit(skb, dev, txq, more); 3027 trace_net_dev_xmit(skb, rc, dev, len); 3028 3029 return rc; 3030 } 3031 3032 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev, 3033 struct netdev_queue *txq, int *ret) 3034 { 3035 struct sk_buff *skb = first; 3036 int rc = NETDEV_TX_OK; 3037 3038 while (skb) { 3039 struct sk_buff *next = skb->next; 3040 3041 skb->next = NULL; 3042 rc = xmit_one(skb, dev, txq, next != NULL); 3043 if (unlikely(!dev_xmit_complete(rc))) { 3044 skb->next = next; 3045 goto out; 3046 } 3047 3048 skb = next; 3049 if (netif_xmit_stopped(txq) && skb) { 3050 rc = NETDEV_TX_BUSY; 3051 break; 3052 } 3053 } 3054 3055 out: 3056 *ret = rc; 3057 return skb; 3058 } 3059 3060 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb, 3061 netdev_features_t features) 3062 { 3063 if (skb_vlan_tag_present(skb) && 3064 !vlan_hw_offload_capable(features, skb->vlan_proto)) 3065 skb = __vlan_hwaccel_push_inside(skb); 3066 return skb; 3067 } 3068 3069 int skb_csum_hwoffload_help(struct sk_buff *skb, 3070 const netdev_features_t features) 3071 { 3072 if (unlikely(skb->csum_not_inet)) 3073 return !!(features & NETIF_F_SCTP_CRC) ? 0 : 3074 skb_crc32c_csum_help(skb); 3075 3076 return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb); 3077 } 3078 EXPORT_SYMBOL(skb_csum_hwoffload_help); 3079 3080 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again) 3081 { 3082 netdev_features_t features; 3083 3084 features = netif_skb_features(skb); 3085 skb = validate_xmit_vlan(skb, features); 3086 if (unlikely(!skb)) 3087 goto out_null; 3088 3089 if (netif_needs_gso(skb, features)) { 3090 struct sk_buff *segs; 3091 3092 segs = skb_gso_segment(skb, features); 3093 if (IS_ERR(segs)) { 3094 goto out_kfree_skb; 3095 } else if (segs) { 3096 consume_skb(skb); 3097 skb = segs; 3098 } 3099 } else { 3100 if (skb_needs_linearize(skb, features) && 3101 __skb_linearize(skb)) 3102 goto out_kfree_skb; 3103 3104 /* If packet is not checksummed and device does not 3105 * support checksumming for this protocol, complete 3106 * checksumming here. 3107 */ 3108 if (skb->ip_summed == CHECKSUM_PARTIAL) { 3109 if (skb->encapsulation) 3110 skb_set_inner_transport_header(skb, 3111 skb_checksum_start_offset(skb)); 3112 else 3113 skb_set_transport_header(skb, 3114 skb_checksum_start_offset(skb)); 3115 if (skb_csum_hwoffload_help(skb, features)) 3116 goto out_kfree_skb; 3117 } 3118 } 3119 3120 skb = validate_xmit_xfrm(skb, features, again); 3121 3122 return skb; 3123 3124 out_kfree_skb: 3125 kfree_skb(skb); 3126 out_null: 3127 atomic_long_inc(&dev->tx_dropped); 3128 return NULL; 3129 } 3130 3131 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again) 3132 { 3133 struct sk_buff *next, *head = NULL, *tail; 3134 3135 for (; skb != NULL; skb = next) { 3136 next = skb->next; 3137 skb->next = NULL; 3138 3139 /* in case skb wont be segmented, point to itself */ 3140 skb->prev = skb; 3141 3142 skb = validate_xmit_skb(skb, dev, again); 3143 if (!skb) 3144 continue; 3145 3146 if (!head) 3147 head = skb; 3148 else 3149 tail->next = skb; 3150 /* If skb was segmented, skb->prev points to 3151 * the last segment. If not, it still contains skb. 3152 */ 3153 tail = skb->prev; 3154 } 3155 return head; 3156 } 3157 EXPORT_SYMBOL_GPL(validate_xmit_skb_list); 3158 3159 static void qdisc_pkt_len_init(struct sk_buff *skb) 3160 { 3161 const struct skb_shared_info *shinfo = skb_shinfo(skb); 3162 3163 qdisc_skb_cb(skb)->pkt_len = skb->len; 3164 3165 /* To get more precise estimation of bytes sent on wire, 3166 * we add to pkt_len the headers size of all segments 3167 */ 3168 if (shinfo->gso_size) { 3169 unsigned int hdr_len; 3170 u16 gso_segs = shinfo->gso_segs; 3171 3172 /* mac layer + network layer */ 3173 hdr_len = skb_transport_header(skb) - skb_mac_header(skb); 3174 3175 /* + transport layer */ 3176 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) { 3177 const struct tcphdr *th; 3178 struct tcphdr _tcphdr; 3179 3180 th = skb_header_pointer(skb, skb_transport_offset(skb), 3181 sizeof(_tcphdr), &_tcphdr); 3182 if (likely(th)) 3183 hdr_len += __tcp_hdrlen(th); 3184 } else { 3185 struct udphdr _udphdr; 3186 3187 if (skb_header_pointer(skb, skb_transport_offset(skb), 3188 sizeof(_udphdr), &_udphdr)) 3189 hdr_len += sizeof(struct udphdr); 3190 } 3191 3192 if (shinfo->gso_type & SKB_GSO_DODGY) 3193 gso_segs = DIV_ROUND_UP(skb->len - hdr_len, 3194 shinfo->gso_size); 3195 3196 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len; 3197 } 3198 } 3199 3200 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 3201 struct net_device *dev, 3202 struct netdev_queue *txq) 3203 { 3204 spinlock_t *root_lock = qdisc_lock(q); 3205 struct sk_buff *to_free = NULL; 3206 bool contended; 3207 int rc; 3208 3209 qdisc_calculate_pkt_len(skb, q); 3210 3211 if (q->flags & TCQ_F_NOLOCK) { 3212 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 3213 __qdisc_drop(skb, &to_free); 3214 rc = NET_XMIT_DROP; 3215 } else { 3216 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK; 3217 __qdisc_run(q); 3218 } 3219 3220 if (unlikely(to_free)) 3221 kfree_skb_list(to_free); 3222 return rc; 3223 } 3224 3225 /* 3226 * Heuristic to force contended enqueues to serialize on a 3227 * separate lock before trying to get qdisc main lock. 3228 * This permits qdisc->running owner to get the lock more 3229 * often and dequeue packets faster. 3230 */ 3231 contended = qdisc_is_running(q); 3232 if (unlikely(contended)) 3233 spin_lock(&q->busylock); 3234 3235 spin_lock(root_lock); 3236 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 3237 __qdisc_drop(skb, &to_free); 3238 rc = NET_XMIT_DROP; 3239 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 3240 qdisc_run_begin(q)) { 3241 /* 3242 * This is a work-conserving queue; there are no old skbs 3243 * waiting to be sent out; and the qdisc is not running - 3244 * xmit the skb directly. 3245 */ 3246 3247 qdisc_bstats_update(q, skb); 3248 3249 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) { 3250 if (unlikely(contended)) { 3251 spin_unlock(&q->busylock); 3252 contended = false; 3253 } 3254 __qdisc_run(q); 3255 } 3256 3257 qdisc_run_end(q); 3258 rc = NET_XMIT_SUCCESS; 3259 } else { 3260 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK; 3261 if (qdisc_run_begin(q)) { 3262 if (unlikely(contended)) { 3263 spin_unlock(&q->busylock); 3264 contended = false; 3265 } 3266 __qdisc_run(q); 3267 qdisc_run_end(q); 3268 } 3269 } 3270 spin_unlock(root_lock); 3271 if (unlikely(to_free)) 3272 kfree_skb_list(to_free); 3273 if (unlikely(contended)) 3274 spin_unlock(&q->busylock); 3275 return rc; 3276 } 3277 3278 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 3279 static void skb_update_prio(struct sk_buff *skb) 3280 { 3281 const struct netprio_map *map; 3282 const struct sock *sk; 3283 unsigned int prioidx; 3284 3285 if (skb->priority) 3286 return; 3287 map = rcu_dereference_bh(skb->dev->priomap); 3288 if (!map) 3289 return; 3290 sk = skb_to_full_sk(skb); 3291 if (!sk) 3292 return; 3293 3294 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data); 3295 3296 if (prioidx < map->priomap_len) 3297 skb->priority = map->priomap[prioidx]; 3298 } 3299 #else 3300 #define skb_update_prio(skb) 3301 #endif 3302 3303 DEFINE_PER_CPU(int, xmit_recursion); 3304 EXPORT_SYMBOL(xmit_recursion); 3305 3306 /** 3307 * dev_loopback_xmit - loop back @skb 3308 * @net: network namespace this loopback is happening in 3309 * @sk: sk needed to be a netfilter okfn 3310 * @skb: buffer to transmit 3311 */ 3312 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb) 3313 { 3314 skb_reset_mac_header(skb); 3315 __skb_pull(skb, skb_network_offset(skb)); 3316 skb->pkt_type = PACKET_LOOPBACK; 3317 skb->ip_summed = CHECKSUM_UNNECESSARY; 3318 WARN_ON(!skb_dst(skb)); 3319 skb_dst_force(skb); 3320 netif_rx_ni(skb); 3321 return 0; 3322 } 3323 EXPORT_SYMBOL(dev_loopback_xmit); 3324 3325 #ifdef CONFIG_NET_EGRESS 3326 static struct sk_buff * 3327 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev) 3328 { 3329 struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress); 3330 struct tcf_result cl_res; 3331 3332 if (!miniq) 3333 return skb; 3334 3335 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */ 3336 mini_qdisc_bstats_cpu_update(miniq, skb); 3337 3338 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) { 3339 case TC_ACT_OK: 3340 case TC_ACT_RECLASSIFY: 3341 skb->tc_index = TC_H_MIN(cl_res.classid); 3342 break; 3343 case TC_ACT_SHOT: 3344 mini_qdisc_qstats_cpu_drop(miniq); 3345 *ret = NET_XMIT_DROP; 3346 kfree_skb(skb); 3347 return NULL; 3348 case TC_ACT_STOLEN: 3349 case TC_ACT_QUEUED: 3350 case TC_ACT_TRAP: 3351 *ret = NET_XMIT_SUCCESS; 3352 consume_skb(skb); 3353 return NULL; 3354 case TC_ACT_REDIRECT: 3355 /* No need to push/pop skb's mac_header here on egress! */ 3356 skb_do_redirect(skb); 3357 *ret = NET_XMIT_SUCCESS; 3358 return NULL; 3359 default: 3360 break; 3361 } 3362 3363 return skb; 3364 } 3365 #endif /* CONFIG_NET_EGRESS */ 3366 3367 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb) 3368 { 3369 #ifdef CONFIG_XPS 3370 struct xps_dev_maps *dev_maps; 3371 struct xps_map *map; 3372 int queue_index = -1; 3373 3374 rcu_read_lock(); 3375 dev_maps = rcu_dereference(dev->xps_maps); 3376 if (dev_maps) { 3377 unsigned int tci = skb->sender_cpu - 1; 3378 3379 if (dev->num_tc) { 3380 tci *= dev->num_tc; 3381 tci += netdev_get_prio_tc_map(dev, skb->priority); 3382 } 3383 3384 map = rcu_dereference(dev_maps->cpu_map[tci]); 3385 if (map) { 3386 if (map->len == 1) 3387 queue_index = map->queues[0]; 3388 else 3389 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb), 3390 map->len)]; 3391 if (unlikely(queue_index >= dev->real_num_tx_queues)) 3392 queue_index = -1; 3393 } 3394 } 3395 rcu_read_unlock(); 3396 3397 return queue_index; 3398 #else 3399 return -1; 3400 #endif 3401 } 3402 3403 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb) 3404 { 3405 struct sock *sk = skb->sk; 3406 int queue_index = sk_tx_queue_get(sk); 3407 3408 if (queue_index < 0 || skb->ooo_okay || 3409 queue_index >= dev->real_num_tx_queues) { 3410 int new_index = get_xps_queue(dev, skb); 3411 3412 if (new_index < 0) 3413 new_index = skb_tx_hash(dev, skb); 3414 3415 if (queue_index != new_index && sk && 3416 sk_fullsock(sk) && 3417 rcu_access_pointer(sk->sk_dst_cache)) 3418 sk_tx_queue_set(sk, new_index); 3419 3420 queue_index = new_index; 3421 } 3422 3423 return queue_index; 3424 } 3425 3426 struct netdev_queue *netdev_pick_tx(struct net_device *dev, 3427 struct sk_buff *skb, 3428 void *accel_priv) 3429 { 3430 int queue_index = 0; 3431 3432 #ifdef CONFIG_XPS 3433 u32 sender_cpu = skb->sender_cpu - 1; 3434 3435 if (sender_cpu >= (u32)NR_CPUS) 3436 skb->sender_cpu = raw_smp_processor_id() + 1; 3437 #endif 3438 3439 if (dev->real_num_tx_queues != 1) { 3440 const struct net_device_ops *ops = dev->netdev_ops; 3441 3442 if (ops->ndo_select_queue) 3443 queue_index = ops->ndo_select_queue(dev, skb, accel_priv, 3444 __netdev_pick_tx); 3445 else 3446 queue_index = __netdev_pick_tx(dev, skb); 3447 3448 queue_index = netdev_cap_txqueue(dev, queue_index); 3449 } 3450 3451 skb_set_queue_mapping(skb, queue_index); 3452 return netdev_get_tx_queue(dev, queue_index); 3453 } 3454 3455 /** 3456 * __dev_queue_xmit - transmit a buffer 3457 * @skb: buffer to transmit 3458 * @accel_priv: private data used for L2 forwarding offload 3459 * 3460 * Queue a buffer for transmission to a network device. The caller must 3461 * have set the device and priority and built the buffer before calling 3462 * this function. The function can be called from an interrupt. 3463 * 3464 * A negative errno code is returned on a failure. A success does not 3465 * guarantee the frame will be transmitted as it may be dropped due 3466 * to congestion or traffic shaping. 3467 * 3468 * ----------------------------------------------------------------------------------- 3469 * I notice this method can also return errors from the queue disciplines, 3470 * including NET_XMIT_DROP, which is a positive value. So, errors can also 3471 * be positive. 3472 * 3473 * Regardless of the return value, the skb is consumed, so it is currently 3474 * difficult to retry a send to this method. (You can bump the ref count 3475 * before sending to hold a reference for retry if you are careful.) 3476 * 3477 * When calling this method, interrupts MUST be enabled. This is because 3478 * the BH enable code must have IRQs enabled so that it will not deadlock. 3479 * --BLG 3480 */ 3481 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv) 3482 { 3483 struct net_device *dev = skb->dev; 3484 struct netdev_queue *txq; 3485 struct Qdisc *q; 3486 int rc = -ENOMEM; 3487 bool again = false; 3488 3489 skb_reset_mac_header(skb); 3490 3491 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP)) 3492 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED); 3493 3494 /* Disable soft irqs for various locks below. Also 3495 * stops preemption for RCU. 3496 */ 3497 rcu_read_lock_bh(); 3498 3499 skb_update_prio(skb); 3500 3501 qdisc_pkt_len_init(skb); 3502 #ifdef CONFIG_NET_CLS_ACT 3503 skb->tc_at_ingress = 0; 3504 # ifdef CONFIG_NET_EGRESS 3505 if (static_key_false(&egress_needed)) { 3506 skb = sch_handle_egress(skb, &rc, dev); 3507 if (!skb) 3508 goto out; 3509 } 3510 # endif 3511 #endif 3512 /* If device/qdisc don't need skb->dst, release it right now while 3513 * its hot in this cpu cache. 3514 */ 3515 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 3516 skb_dst_drop(skb); 3517 else 3518 skb_dst_force(skb); 3519 3520 txq = netdev_pick_tx(dev, skb, accel_priv); 3521 q = rcu_dereference_bh(txq->qdisc); 3522 3523 trace_net_dev_queue(skb); 3524 if (q->enqueue) { 3525 rc = __dev_xmit_skb(skb, q, dev, txq); 3526 goto out; 3527 } 3528 3529 /* The device has no queue. Common case for software devices: 3530 * loopback, all the sorts of tunnels... 3531 3532 * Really, it is unlikely that netif_tx_lock protection is necessary 3533 * here. (f.e. loopback and IP tunnels are clean ignoring statistics 3534 * counters.) 3535 * However, it is possible, that they rely on protection 3536 * made by us here. 3537 3538 * Check this and shot the lock. It is not prone from deadlocks. 3539 *Either shot noqueue qdisc, it is even simpler 8) 3540 */ 3541 if (dev->flags & IFF_UP) { 3542 int cpu = smp_processor_id(); /* ok because BHs are off */ 3543 3544 if (txq->xmit_lock_owner != cpu) { 3545 if (unlikely(__this_cpu_read(xmit_recursion) > 3546 XMIT_RECURSION_LIMIT)) 3547 goto recursion_alert; 3548 3549 skb = validate_xmit_skb(skb, dev, &again); 3550 if (!skb) 3551 goto out; 3552 3553 HARD_TX_LOCK(dev, txq, cpu); 3554 3555 if (!netif_xmit_stopped(txq)) { 3556 __this_cpu_inc(xmit_recursion); 3557 skb = dev_hard_start_xmit(skb, dev, txq, &rc); 3558 __this_cpu_dec(xmit_recursion); 3559 if (dev_xmit_complete(rc)) { 3560 HARD_TX_UNLOCK(dev, txq); 3561 goto out; 3562 } 3563 } 3564 HARD_TX_UNLOCK(dev, txq); 3565 net_crit_ratelimited("Virtual device %s asks to queue packet!\n", 3566 dev->name); 3567 } else { 3568 /* Recursion is detected! It is possible, 3569 * unfortunately 3570 */ 3571 recursion_alert: 3572 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n", 3573 dev->name); 3574 } 3575 } 3576 3577 rc = -ENETDOWN; 3578 rcu_read_unlock_bh(); 3579 3580 atomic_long_inc(&dev->tx_dropped); 3581 kfree_skb_list(skb); 3582 return rc; 3583 out: 3584 rcu_read_unlock_bh(); 3585 return rc; 3586 } 3587 3588 int dev_queue_xmit(struct sk_buff *skb) 3589 { 3590 return __dev_queue_xmit(skb, NULL); 3591 } 3592 EXPORT_SYMBOL(dev_queue_xmit); 3593 3594 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv) 3595 { 3596 return __dev_queue_xmit(skb, accel_priv); 3597 } 3598 EXPORT_SYMBOL(dev_queue_xmit_accel); 3599 3600 3601 /************************************************************************* 3602 * Receiver routines 3603 *************************************************************************/ 3604 3605 int netdev_max_backlog __read_mostly = 1000; 3606 EXPORT_SYMBOL(netdev_max_backlog); 3607 3608 int netdev_tstamp_prequeue __read_mostly = 1; 3609 int netdev_budget __read_mostly = 300; 3610 unsigned int __read_mostly netdev_budget_usecs = 2000; 3611 int weight_p __read_mostly = 64; /* old backlog weight */ 3612 int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */ 3613 int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */ 3614 int dev_rx_weight __read_mostly = 64; 3615 int dev_tx_weight __read_mostly = 64; 3616 3617 /* Called with irq disabled */ 3618 static inline void ____napi_schedule(struct softnet_data *sd, 3619 struct napi_struct *napi) 3620 { 3621 list_add_tail(&napi->poll_list, &sd->poll_list); 3622 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3623 } 3624 3625 #ifdef CONFIG_RPS 3626 3627 /* One global table that all flow-based protocols share. */ 3628 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly; 3629 EXPORT_SYMBOL(rps_sock_flow_table); 3630 u32 rps_cpu_mask __read_mostly; 3631 EXPORT_SYMBOL(rps_cpu_mask); 3632 3633 struct static_key rps_needed __read_mostly; 3634 EXPORT_SYMBOL(rps_needed); 3635 struct static_key rfs_needed __read_mostly; 3636 EXPORT_SYMBOL(rfs_needed); 3637 3638 static struct rps_dev_flow * 3639 set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 3640 struct rps_dev_flow *rflow, u16 next_cpu) 3641 { 3642 if (next_cpu < nr_cpu_ids) { 3643 #ifdef CONFIG_RFS_ACCEL 3644 struct netdev_rx_queue *rxqueue; 3645 struct rps_dev_flow_table *flow_table; 3646 struct rps_dev_flow *old_rflow; 3647 u32 flow_id; 3648 u16 rxq_index; 3649 int rc; 3650 3651 /* Should we steer this flow to a different hardware queue? */ 3652 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 3653 !(dev->features & NETIF_F_NTUPLE)) 3654 goto out; 3655 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 3656 if (rxq_index == skb_get_rx_queue(skb)) 3657 goto out; 3658 3659 rxqueue = dev->_rx + rxq_index; 3660 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3661 if (!flow_table) 3662 goto out; 3663 flow_id = skb_get_hash(skb) & flow_table->mask; 3664 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 3665 rxq_index, flow_id); 3666 if (rc < 0) 3667 goto out; 3668 old_rflow = rflow; 3669 rflow = &flow_table->flows[flow_id]; 3670 rflow->filter = rc; 3671 if (old_rflow->filter == rflow->filter) 3672 old_rflow->filter = RPS_NO_FILTER; 3673 out: 3674 #endif 3675 rflow->last_qtail = 3676 per_cpu(softnet_data, next_cpu).input_queue_head; 3677 } 3678 3679 rflow->cpu = next_cpu; 3680 return rflow; 3681 } 3682 3683 /* 3684 * get_rps_cpu is called from netif_receive_skb and returns the target 3685 * CPU from the RPS map of the receiving queue for a given skb. 3686 * rcu_read_lock must be held on entry. 3687 */ 3688 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 3689 struct rps_dev_flow **rflowp) 3690 { 3691 const struct rps_sock_flow_table *sock_flow_table; 3692 struct netdev_rx_queue *rxqueue = dev->_rx; 3693 struct rps_dev_flow_table *flow_table; 3694 struct rps_map *map; 3695 int cpu = -1; 3696 u32 tcpu; 3697 u32 hash; 3698 3699 if (skb_rx_queue_recorded(skb)) { 3700 u16 index = skb_get_rx_queue(skb); 3701 3702 if (unlikely(index >= dev->real_num_rx_queues)) { 3703 WARN_ONCE(dev->real_num_rx_queues > 1, 3704 "%s received packet on queue %u, but number " 3705 "of RX queues is %u\n", 3706 dev->name, index, dev->real_num_rx_queues); 3707 goto done; 3708 } 3709 rxqueue += index; 3710 } 3711 3712 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */ 3713 3714 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3715 map = rcu_dereference(rxqueue->rps_map); 3716 if (!flow_table && !map) 3717 goto done; 3718 3719 skb_reset_network_header(skb); 3720 hash = skb_get_hash(skb); 3721 if (!hash) 3722 goto done; 3723 3724 sock_flow_table = rcu_dereference(rps_sock_flow_table); 3725 if (flow_table && sock_flow_table) { 3726 struct rps_dev_flow *rflow; 3727 u32 next_cpu; 3728 u32 ident; 3729 3730 /* First check into global flow table if there is a match */ 3731 ident = sock_flow_table->ents[hash & sock_flow_table->mask]; 3732 if ((ident ^ hash) & ~rps_cpu_mask) 3733 goto try_rps; 3734 3735 next_cpu = ident & rps_cpu_mask; 3736 3737 /* OK, now we know there is a match, 3738 * we can look at the local (per receive queue) flow table 3739 */ 3740 rflow = &flow_table->flows[hash & flow_table->mask]; 3741 tcpu = rflow->cpu; 3742 3743 /* 3744 * If the desired CPU (where last recvmsg was done) is 3745 * different from current CPU (one in the rx-queue flow 3746 * table entry), switch if one of the following holds: 3747 * - Current CPU is unset (>= nr_cpu_ids). 3748 * - Current CPU is offline. 3749 * - The current CPU's queue tail has advanced beyond the 3750 * last packet that was enqueued using this table entry. 3751 * This guarantees that all previous packets for the flow 3752 * have been dequeued, thus preserving in order delivery. 3753 */ 3754 if (unlikely(tcpu != next_cpu) && 3755 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) || 3756 ((int)(per_cpu(softnet_data, tcpu).input_queue_head - 3757 rflow->last_qtail)) >= 0)) { 3758 tcpu = next_cpu; 3759 rflow = set_rps_cpu(dev, skb, rflow, next_cpu); 3760 } 3761 3762 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) { 3763 *rflowp = rflow; 3764 cpu = tcpu; 3765 goto done; 3766 } 3767 } 3768 3769 try_rps: 3770 3771 if (map) { 3772 tcpu = map->cpus[reciprocal_scale(hash, map->len)]; 3773 if (cpu_online(tcpu)) { 3774 cpu = tcpu; 3775 goto done; 3776 } 3777 } 3778 3779 done: 3780 return cpu; 3781 } 3782 3783 #ifdef CONFIG_RFS_ACCEL 3784 3785 /** 3786 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 3787 * @dev: Device on which the filter was set 3788 * @rxq_index: RX queue index 3789 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 3790 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 3791 * 3792 * Drivers that implement ndo_rx_flow_steer() should periodically call 3793 * this function for each installed filter and remove the filters for 3794 * which it returns %true. 3795 */ 3796 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 3797 u32 flow_id, u16 filter_id) 3798 { 3799 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 3800 struct rps_dev_flow_table *flow_table; 3801 struct rps_dev_flow *rflow; 3802 bool expire = true; 3803 unsigned int cpu; 3804 3805 rcu_read_lock(); 3806 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3807 if (flow_table && flow_id <= flow_table->mask) { 3808 rflow = &flow_table->flows[flow_id]; 3809 cpu = READ_ONCE(rflow->cpu); 3810 if (rflow->filter == filter_id && cpu < nr_cpu_ids && 3811 ((int)(per_cpu(softnet_data, cpu).input_queue_head - 3812 rflow->last_qtail) < 3813 (int)(10 * flow_table->mask))) 3814 expire = false; 3815 } 3816 rcu_read_unlock(); 3817 return expire; 3818 } 3819 EXPORT_SYMBOL(rps_may_expire_flow); 3820 3821 #endif /* CONFIG_RFS_ACCEL */ 3822 3823 /* Called from hardirq (IPI) context */ 3824 static void rps_trigger_softirq(void *data) 3825 { 3826 struct softnet_data *sd = data; 3827 3828 ____napi_schedule(sd, &sd->backlog); 3829 sd->received_rps++; 3830 } 3831 3832 #endif /* CONFIG_RPS */ 3833 3834 /* 3835 * Check if this softnet_data structure is another cpu one 3836 * If yes, queue it to our IPI list and return 1 3837 * If no, return 0 3838 */ 3839 static int rps_ipi_queued(struct softnet_data *sd) 3840 { 3841 #ifdef CONFIG_RPS 3842 struct softnet_data *mysd = this_cpu_ptr(&softnet_data); 3843 3844 if (sd != mysd) { 3845 sd->rps_ipi_next = mysd->rps_ipi_list; 3846 mysd->rps_ipi_list = sd; 3847 3848 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3849 return 1; 3850 } 3851 #endif /* CONFIG_RPS */ 3852 return 0; 3853 } 3854 3855 #ifdef CONFIG_NET_FLOW_LIMIT 3856 int netdev_flow_limit_table_len __read_mostly = (1 << 12); 3857 #endif 3858 3859 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen) 3860 { 3861 #ifdef CONFIG_NET_FLOW_LIMIT 3862 struct sd_flow_limit *fl; 3863 struct softnet_data *sd; 3864 unsigned int old_flow, new_flow; 3865 3866 if (qlen < (netdev_max_backlog >> 1)) 3867 return false; 3868 3869 sd = this_cpu_ptr(&softnet_data); 3870 3871 rcu_read_lock(); 3872 fl = rcu_dereference(sd->flow_limit); 3873 if (fl) { 3874 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1); 3875 old_flow = fl->history[fl->history_head]; 3876 fl->history[fl->history_head] = new_flow; 3877 3878 fl->history_head++; 3879 fl->history_head &= FLOW_LIMIT_HISTORY - 1; 3880 3881 if (likely(fl->buckets[old_flow])) 3882 fl->buckets[old_flow]--; 3883 3884 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) { 3885 fl->count++; 3886 rcu_read_unlock(); 3887 return true; 3888 } 3889 } 3890 rcu_read_unlock(); 3891 #endif 3892 return false; 3893 } 3894 3895 /* 3896 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 3897 * queue (may be a remote CPU queue). 3898 */ 3899 static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 3900 unsigned int *qtail) 3901 { 3902 struct softnet_data *sd; 3903 unsigned long flags; 3904 unsigned int qlen; 3905 3906 sd = &per_cpu(softnet_data, cpu); 3907 3908 local_irq_save(flags); 3909 3910 rps_lock(sd); 3911 if (!netif_running(skb->dev)) 3912 goto drop; 3913 qlen = skb_queue_len(&sd->input_pkt_queue); 3914 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) { 3915 if (qlen) { 3916 enqueue: 3917 __skb_queue_tail(&sd->input_pkt_queue, skb); 3918 input_queue_tail_incr_save(sd, qtail); 3919 rps_unlock(sd); 3920 local_irq_restore(flags); 3921 return NET_RX_SUCCESS; 3922 } 3923 3924 /* Schedule NAPI for backlog device 3925 * We can use non atomic operation since we own the queue lock 3926 */ 3927 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) { 3928 if (!rps_ipi_queued(sd)) 3929 ____napi_schedule(sd, &sd->backlog); 3930 } 3931 goto enqueue; 3932 } 3933 3934 drop: 3935 sd->dropped++; 3936 rps_unlock(sd); 3937 3938 local_irq_restore(flags); 3939 3940 atomic_long_inc(&skb->dev->rx_dropped); 3941 kfree_skb(skb); 3942 return NET_RX_DROP; 3943 } 3944 3945 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb) 3946 { 3947 struct net_device *dev = skb->dev; 3948 struct netdev_rx_queue *rxqueue; 3949 3950 rxqueue = dev->_rx; 3951 3952 if (skb_rx_queue_recorded(skb)) { 3953 u16 index = skb_get_rx_queue(skb); 3954 3955 if (unlikely(index >= dev->real_num_rx_queues)) { 3956 WARN_ONCE(dev->real_num_rx_queues > 1, 3957 "%s received packet on queue %u, but number " 3958 "of RX queues is %u\n", 3959 dev->name, index, dev->real_num_rx_queues); 3960 3961 return rxqueue; /* Return first rxqueue */ 3962 } 3963 rxqueue += index; 3964 } 3965 return rxqueue; 3966 } 3967 3968 static u32 netif_receive_generic_xdp(struct sk_buff *skb, 3969 struct bpf_prog *xdp_prog) 3970 { 3971 struct netdev_rx_queue *rxqueue; 3972 u32 metalen, act = XDP_DROP; 3973 struct xdp_buff xdp; 3974 void *orig_data; 3975 int hlen, off; 3976 u32 mac_len; 3977 3978 /* Reinjected packets coming from act_mirred or similar should 3979 * not get XDP generic processing. 3980 */ 3981 if (skb_cloned(skb)) 3982 return XDP_PASS; 3983 3984 /* XDP packets must be linear and must have sufficient headroom 3985 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also 3986 * native XDP provides, thus we need to do it here as well. 3987 */ 3988 if (skb_is_nonlinear(skb) || 3989 skb_headroom(skb) < XDP_PACKET_HEADROOM) { 3990 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb); 3991 int troom = skb->tail + skb->data_len - skb->end; 3992 3993 /* In case we have to go down the path and also linearize, 3994 * then lets do the pskb_expand_head() work just once here. 3995 */ 3996 if (pskb_expand_head(skb, 3997 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0, 3998 troom > 0 ? troom + 128 : 0, GFP_ATOMIC)) 3999 goto do_drop; 4000 if (skb_linearize(skb)) 4001 goto do_drop; 4002 } 4003 4004 /* The XDP program wants to see the packet starting at the MAC 4005 * header. 4006 */ 4007 mac_len = skb->data - skb_mac_header(skb); 4008 hlen = skb_headlen(skb) + mac_len; 4009 xdp.data = skb->data - mac_len; 4010 xdp.data_meta = xdp.data; 4011 xdp.data_end = xdp.data + hlen; 4012 xdp.data_hard_start = skb->data - skb_headroom(skb); 4013 orig_data = xdp.data; 4014 4015 rxqueue = netif_get_rxqueue(skb); 4016 xdp.rxq = &rxqueue->xdp_rxq; 4017 4018 act = bpf_prog_run_xdp(xdp_prog, &xdp); 4019 4020 off = xdp.data - orig_data; 4021 if (off > 0) 4022 __skb_pull(skb, off); 4023 else if (off < 0) 4024 __skb_push(skb, -off); 4025 skb->mac_header += off; 4026 4027 switch (act) { 4028 case XDP_REDIRECT: 4029 case XDP_TX: 4030 __skb_push(skb, mac_len); 4031 break; 4032 case XDP_PASS: 4033 metalen = xdp.data - xdp.data_meta; 4034 if (metalen) 4035 skb_metadata_set(skb, metalen); 4036 break; 4037 default: 4038 bpf_warn_invalid_xdp_action(act); 4039 /* fall through */ 4040 case XDP_ABORTED: 4041 trace_xdp_exception(skb->dev, xdp_prog, act); 4042 /* fall through */ 4043 case XDP_DROP: 4044 do_drop: 4045 kfree_skb(skb); 4046 break; 4047 } 4048 4049 return act; 4050 } 4051 4052 /* When doing generic XDP we have to bypass the qdisc layer and the 4053 * network taps in order to match in-driver-XDP behavior. 4054 */ 4055 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog) 4056 { 4057 struct net_device *dev = skb->dev; 4058 struct netdev_queue *txq; 4059 bool free_skb = true; 4060 int cpu, rc; 4061 4062 txq = netdev_pick_tx(dev, skb, NULL); 4063 cpu = smp_processor_id(); 4064 HARD_TX_LOCK(dev, txq, cpu); 4065 if (!netif_xmit_stopped(txq)) { 4066 rc = netdev_start_xmit(skb, dev, txq, 0); 4067 if (dev_xmit_complete(rc)) 4068 free_skb = false; 4069 } 4070 HARD_TX_UNLOCK(dev, txq); 4071 if (free_skb) { 4072 trace_xdp_exception(dev, xdp_prog, XDP_TX); 4073 kfree_skb(skb); 4074 } 4075 } 4076 EXPORT_SYMBOL_GPL(generic_xdp_tx); 4077 4078 static struct static_key generic_xdp_needed __read_mostly; 4079 4080 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb) 4081 { 4082 if (xdp_prog) { 4083 u32 act = netif_receive_generic_xdp(skb, xdp_prog); 4084 int err; 4085 4086 if (act != XDP_PASS) { 4087 switch (act) { 4088 case XDP_REDIRECT: 4089 err = xdp_do_generic_redirect(skb->dev, skb, 4090 xdp_prog); 4091 if (err) 4092 goto out_redir; 4093 /* fallthru to submit skb */ 4094 case XDP_TX: 4095 generic_xdp_tx(skb, xdp_prog); 4096 break; 4097 } 4098 return XDP_DROP; 4099 } 4100 } 4101 return XDP_PASS; 4102 out_redir: 4103 kfree_skb(skb); 4104 return XDP_DROP; 4105 } 4106 EXPORT_SYMBOL_GPL(do_xdp_generic); 4107 4108 static int netif_rx_internal(struct sk_buff *skb) 4109 { 4110 int ret; 4111 4112 net_timestamp_check(netdev_tstamp_prequeue, skb); 4113 4114 trace_netif_rx(skb); 4115 4116 if (static_key_false(&generic_xdp_needed)) { 4117 int ret; 4118 4119 preempt_disable(); 4120 rcu_read_lock(); 4121 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb); 4122 rcu_read_unlock(); 4123 preempt_enable(); 4124 4125 /* Consider XDP consuming the packet a success from 4126 * the netdev point of view we do not want to count 4127 * this as an error. 4128 */ 4129 if (ret != XDP_PASS) 4130 return NET_RX_SUCCESS; 4131 } 4132 4133 #ifdef CONFIG_RPS 4134 if (static_key_false(&rps_needed)) { 4135 struct rps_dev_flow voidflow, *rflow = &voidflow; 4136 int cpu; 4137 4138 preempt_disable(); 4139 rcu_read_lock(); 4140 4141 cpu = get_rps_cpu(skb->dev, skb, &rflow); 4142 if (cpu < 0) 4143 cpu = smp_processor_id(); 4144 4145 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 4146 4147 rcu_read_unlock(); 4148 preempt_enable(); 4149 } else 4150 #endif 4151 { 4152 unsigned int qtail; 4153 4154 ret = enqueue_to_backlog(skb, get_cpu(), &qtail); 4155 put_cpu(); 4156 } 4157 return ret; 4158 } 4159 4160 /** 4161 * netif_rx - post buffer to the network code 4162 * @skb: buffer to post 4163 * 4164 * This function receives a packet from a device driver and queues it for 4165 * the upper (protocol) levels to process. It always succeeds. The buffer 4166 * may be dropped during processing for congestion control or by the 4167 * protocol layers. 4168 * 4169 * return values: 4170 * NET_RX_SUCCESS (no congestion) 4171 * NET_RX_DROP (packet was dropped) 4172 * 4173 */ 4174 4175 int netif_rx(struct sk_buff *skb) 4176 { 4177 trace_netif_rx_entry(skb); 4178 4179 return netif_rx_internal(skb); 4180 } 4181 EXPORT_SYMBOL(netif_rx); 4182 4183 int netif_rx_ni(struct sk_buff *skb) 4184 { 4185 int err; 4186 4187 trace_netif_rx_ni_entry(skb); 4188 4189 preempt_disable(); 4190 err = netif_rx_internal(skb); 4191 if (local_softirq_pending()) 4192 do_softirq(); 4193 preempt_enable(); 4194 4195 return err; 4196 } 4197 EXPORT_SYMBOL(netif_rx_ni); 4198 4199 static __latent_entropy void net_tx_action(struct softirq_action *h) 4200 { 4201 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 4202 4203 if (sd->completion_queue) { 4204 struct sk_buff *clist; 4205 4206 local_irq_disable(); 4207 clist = sd->completion_queue; 4208 sd->completion_queue = NULL; 4209 local_irq_enable(); 4210 4211 while (clist) { 4212 struct sk_buff *skb = clist; 4213 4214 clist = clist->next; 4215 4216 WARN_ON(refcount_read(&skb->users)); 4217 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED)) 4218 trace_consume_skb(skb); 4219 else 4220 trace_kfree_skb(skb, net_tx_action); 4221 4222 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) 4223 __kfree_skb(skb); 4224 else 4225 __kfree_skb_defer(skb); 4226 } 4227 4228 __kfree_skb_flush(); 4229 } 4230 4231 if (sd->output_queue) { 4232 struct Qdisc *head; 4233 4234 local_irq_disable(); 4235 head = sd->output_queue; 4236 sd->output_queue = NULL; 4237 sd->output_queue_tailp = &sd->output_queue; 4238 local_irq_enable(); 4239 4240 while (head) { 4241 struct Qdisc *q = head; 4242 spinlock_t *root_lock = NULL; 4243 4244 head = head->next_sched; 4245 4246 if (!(q->flags & TCQ_F_NOLOCK)) { 4247 root_lock = qdisc_lock(q); 4248 spin_lock(root_lock); 4249 } 4250 /* We need to make sure head->next_sched is read 4251 * before clearing __QDISC_STATE_SCHED 4252 */ 4253 smp_mb__before_atomic(); 4254 clear_bit(__QDISC_STATE_SCHED, &q->state); 4255 qdisc_run(q); 4256 if (root_lock) 4257 spin_unlock(root_lock); 4258 } 4259 } 4260 4261 xfrm_dev_backlog(sd); 4262 } 4263 4264 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE) 4265 /* This hook is defined here for ATM LANE */ 4266 int (*br_fdb_test_addr_hook)(struct net_device *dev, 4267 unsigned char *addr) __read_mostly; 4268 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 4269 #endif 4270 4271 static inline struct sk_buff * 4272 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret, 4273 struct net_device *orig_dev) 4274 { 4275 #ifdef CONFIG_NET_CLS_ACT 4276 struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress); 4277 struct tcf_result cl_res; 4278 4279 /* If there's at least one ingress present somewhere (so 4280 * we get here via enabled static key), remaining devices 4281 * that are not configured with an ingress qdisc will bail 4282 * out here. 4283 */ 4284 if (!miniq) 4285 return skb; 4286 4287 if (*pt_prev) { 4288 *ret = deliver_skb(skb, *pt_prev, orig_dev); 4289 *pt_prev = NULL; 4290 } 4291 4292 qdisc_skb_cb(skb)->pkt_len = skb->len; 4293 skb->tc_at_ingress = 1; 4294 mini_qdisc_bstats_cpu_update(miniq, skb); 4295 4296 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) { 4297 case TC_ACT_OK: 4298 case TC_ACT_RECLASSIFY: 4299 skb->tc_index = TC_H_MIN(cl_res.classid); 4300 break; 4301 case TC_ACT_SHOT: 4302 mini_qdisc_qstats_cpu_drop(miniq); 4303 kfree_skb(skb); 4304 return NULL; 4305 case TC_ACT_STOLEN: 4306 case TC_ACT_QUEUED: 4307 case TC_ACT_TRAP: 4308 consume_skb(skb); 4309 return NULL; 4310 case TC_ACT_REDIRECT: 4311 /* skb_mac_header check was done by cls/act_bpf, so 4312 * we can safely push the L2 header back before 4313 * redirecting to another netdev 4314 */ 4315 __skb_push(skb, skb->mac_len); 4316 skb_do_redirect(skb); 4317 return NULL; 4318 default: 4319 break; 4320 } 4321 #endif /* CONFIG_NET_CLS_ACT */ 4322 return skb; 4323 } 4324 4325 /** 4326 * netdev_is_rx_handler_busy - check if receive handler is registered 4327 * @dev: device to check 4328 * 4329 * Check if a receive handler is already registered for a given device. 4330 * Return true if there one. 4331 * 4332 * The caller must hold the rtnl_mutex. 4333 */ 4334 bool netdev_is_rx_handler_busy(struct net_device *dev) 4335 { 4336 ASSERT_RTNL(); 4337 return dev && rtnl_dereference(dev->rx_handler); 4338 } 4339 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy); 4340 4341 /** 4342 * netdev_rx_handler_register - register receive handler 4343 * @dev: device to register a handler for 4344 * @rx_handler: receive handler to register 4345 * @rx_handler_data: data pointer that is used by rx handler 4346 * 4347 * Register a receive handler for a device. This handler will then be 4348 * called from __netif_receive_skb. A negative errno code is returned 4349 * on a failure. 4350 * 4351 * The caller must hold the rtnl_mutex. 4352 * 4353 * For a general description of rx_handler, see enum rx_handler_result. 4354 */ 4355 int netdev_rx_handler_register(struct net_device *dev, 4356 rx_handler_func_t *rx_handler, 4357 void *rx_handler_data) 4358 { 4359 if (netdev_is_rx_handler_busy(dev)) 4360 return -EBUSY; 4361 4362 /* Note: rx_handler_data must be set before rx_handler */ 4363 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 4364 rcu_assign_pointer(dev->rx_handler, rx_handler); 4365 4366 return 0; 4367 } 4368 EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 4369 4370 /** 4371 * netdev_rx_handler_unregister - unregister receive handler 4372 * @dev: device to unregister a handler from 4373 * 4374 * Unregister a receive handler from a device. 4375 * 4376 * The caller must hold the rtnl_mutex. 4377 */ 4378 void netdev_rx_handler_unregister(struct net_device *dev) 4379 { 4380 4381 ASSERT_RTNL(); 4382 RCU_INIT_POINTER(dev->rx_handler, NULL); 4383 /* a reader seeing a non NULL rx_handler in a rcu_read_lock() 4384 * section has a guarantee to see a non NULL rx_handler_data 4385 * as well. 4386 */ 4387 synchronize_net(); 4388 RCU_INIT_POINTER(dev->rx_handler_data, NULL); 4389 } 4390 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 4391 4392 /* 4393 * Limit the use of PFMEMALLOC reserves to those protocols that implement 4394 * the special handling of PFMEMALLOC skbs. 4395 */ 4396 static bool skb_pfmemalloc_protocol(struct sk_buff *skb) 4397 { 4398 switch (skb->protocol) { 4399 case htons(ETH_P_ARP): 4400 case htons(ETH_P_IP): 4401 case htons(ETH_P_IPV6): 4402 case htons(ETH_P_8021Q): 4403 case htons(ETH_P_8021AD): 4404 return true; 4405 default: 4406 return false; 4407 } 4408 } 4409 4410 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev, 4411 int *ret, struct net_device *orig_dev) 4412 { 4413 #ifdef CONFIG_NETFILTER_INGRESS 4414 if (nf_hook_ingress_active(skb)) { 4415 int ingress_retval; 4416 4417 if (*pt_prev) { 4418 *ret = deliver_skb(skb, *pt_prev, orig_dev); 4419 *pt_prev = NULL; 4420 } 4421 4422 rcu_read_lock(); 4423 ingress_retval = nf_hook_ingress(skb); 4424 rcu_read_unlock(); 4425 return ingress_retval; 4426 } 4427 #endif /* CONFIG_NETFILTER_INGRESS */ 4428 return 0; 4429 } 4430 4431 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc) 4432 { 4433 struct packet_type *ptype, *pt_prev; 4434 rx_handler_func_t *rx_handler; 4435 struct net_device *orig_dev; 4436 bool deliver_exact = false; 4437 int ret = NET_RX_DROP; 4438 __be16 type; 4439 4440 net_timestamp_check(!netdev_tstamp_prequeue, skb); 4441 4442 trace_netif_receive_skb(skb); 4443 4444 orig_dev = skb->dev; 4445 4446 skb_reset_network_header(skb); 4447 if (!skb_transport_header_was_set(skb)) 4448 skb_reset_transport_header(skb); 4449 skb_reset_mac_len(skb); 4450 4451 pt_prev = NULL; 4452 4453 another_round: 4454 skb->skb_iif = skb->dev->ifindex; 4455 4456 __this_cpu_inc(softnet_data.processed); 4457 4458 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) || 4459 skb->protocol == cpu_to_be16(ETH_P_8021AD)) { 4460 skb = skb_vlan_untag(skb); 4461 if (unlikely(!skb)) 4462 goto out; 4463 } 4464 4465 if (skb_skip_tc_classify(skb)) 4466 goto skip_classify; 4467 4468 if (pfmemalloc) 4469 goto skip_taps; 4470 4471 list_for_each_entry_rcu(ptype, &ptype_all, list) { 4472 if (pt_prev) 4473 ret = deliver_skb(skb, pt_prev, orig_dev); 4474 pt_prev = ptype; 4475 } 4476 4477 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) { 4478 if (pt_prev) 4479 ret = deliver_skb(skb, pt_prev, orig_dev); 4480 pt_prev = ptype; 4481 } 4482 4483 skip_taps: 4484 #ifdef CONFIG_NET_INGRESS 4485 if (static_key_false(&ingress_needed)) { 4486 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev); 4487 if (!skb) 4488 goto out; 4489 4490 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0) 4491 goto out; 4492 } 4493 #endif 4494 skb_reset_tc(skb); 4495 skip_classify: 4496 if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) 4497 goto drop; 4498 4499 if (skb_vlan_tag_present(skb)) { 4500 if (pt_prev) { 4501 ret = deliver_skb(skb, pt_prev, orig_dev); 4502 pt_prev = NULL; 4503 } 4504 if (vlan_do_receive(&skb)) 4505 goto another_round; 4506 else if (unlikely(!skb)) 4507 goto out; 4508 } 4509 4510 rx_handler = rcu_dereference(skb->dev->rx_handler); 4511 if (rx_handler) { 4512 if (pt_prev) { 4513 ret = deliver_skb(skb, pt_prev, orig_dev); 4514 pt_prev = NULL; 4515 } 4516 switch (rx_handler(&skb)) { 4517 case RX_HANDLER_CONSUMED: 4518 ret = NET_RX_SUCCESS; 4519 goto out; 4520 case RX_HANDLER_ANOTHER: 4521 goto another_round; 4522 case RX_HANDLER_EXACT: 4523 deliver_exact = true; 4524 case RX_HANDLER_PASS: 4525 break; 4526 default: 4527 BUG(); 4528 } 4529 } 4530 4531 if (unlikely(skb_vlan_tag_present(skb))) { 4532 if (skb_vlan_tag_get_id(skb)) 4533 skb->pkt_type = PACKET_OTHERHOST; 4534 /* Note: we might in the future use prio bits 4535 * and set skb->priority like in vlan_do_receive() 4536 * For the time being, just ignore Priority Code Point 4537 */ 4538 skb->vlan_tci = 0; 4539 } 4540 4541 type = skb->protocol; 4542 4543 /* deliver only exact match when indicated */ 4544 if (likely(!deliver_exact)) { 4545 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 4546 &ptype_base[ntohs(type) & 4547 PTYPE_HASH_MASK]); 4548 } 4549 4550 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 4551 &orig_dev->ptype_specific); 4552 4553 if (unlikely(skb->dev != orig_dev)) { 4554 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 4555 &skb->dev->ptype_specific); 4556 } 4557 4558 if (pt_prev) { 4559 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 4560 goto drop; 4561 else 4562 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 4563 } else { 4564 drop: 4565 if (!deliver_exact) 4566 atomic_long_inc(&skb->dev->rx_dropped); 4567 else 4568 atomic_long_inc(&skb->dev->rx_nohandler); 4569 kfree_skb(skb); 4570 /* Jamal, now you will not able to escape explaining 4571 * me how you were going to use this. :-) 4572 */ 4573 ret = NET_RX_DROP; 4574 } 4575 4576 out: 4577 return ret; 4578 } 4579 4580 /** 4581 * netif_receive_skb_core - special purpose version of netif_receive_skb 4582 * @skb: buffer to process 4583 * 4584 * More direct receive version of netif_receive_skb(). It should 4585 * only be used by callers that have a need to skip RPS and Generic XDP. 4586 * Caller must also take care of handling if (page_is_)pfmemalloc. 4587 * 4588 * This function may only be called from softirq context and interrupts 4589 * should be enabled. 4590 * 4591 * Return values (usually ignored): 4592 * NET_RX_SUCCESS: no congestion 4593 * NET_RX_DROP: packet was dropped 4594 */ 4595 int netif_receive_skb_core(struct sk_buff *skb) 4596 { 4597 int ret; 4598 4599 rcu_read_lock(); 4600 ret = __netif_receive_skb_core(skb, false); 4601 rcu_read_unlock(); 4602 4603 return ret; 4604 } 4605 EXPORT_SYMBOL(netif_receive_skb_core); 4606 4607 static int __netif_receive_skb(struct sk_buff *skb) 4608 { 4609 int ret; 4610 4611 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) { 4612 unsigned int noreclaim_flag; 4613 4614 /* 4615 * PFMEMALLOC skbs are special, they should 4616 * - be delivered to SOCK_MEMALLOC sockets only 4617 * - stay away from userspace 4618 * - have bounded memory usage 4619 * 4620 * Use PF_MEMALLOC as this saves us from propagating the allocation 4621 * context down to all allocation sites. 4622 */ 4623 noreclaim_flag = memalloc_noreclaim_save(); 4624 ret = __netif_receive_skb_core(skb, true); 4625 memalloc_noreclaim_restore(noreclaim_flag); 4626 } else 4627 ret = __netif_receive_skb_core(skb, false); 4628 4629 return ret; 4630 } 4631 4632 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp) 4633 { 4634 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog); 4635 struct bpf_prog *new = xdp->prog; 4636 int ret = 0; 4637 4638 switch (xdp->command) { 4639 case XDP_SETUP_PROG: 4640 rcu_assign_pointer(dev->xdp_prog, new); 4641 if (old) 4642 bpf_prog_put(old); 4643 4644 if (old && !new) { 4645 static_key_slow_dec(&generic_xdp_needed); 4646 } else if (new && !old) { 4647 static_key_slow_inc(&generic_xdp_needed); 4648 dev_disable_lro(dev); 4649 dev_disable_gro_hw(dev); 4650 } 4651 break; 4652 4653 case XDP_QUERY_PROG: 4654 xdp->prog_attached = !!old; 4655 xdp->prog_id = old ? old->aux->id : 0; 4656 break; 4657 4658 default: 4659 ret = -EINVAL; 4660 break; 4661 } 4662 4663 return ret; 4664 } 4665 4666 static int netif_receive_skb_internal(struct sk_buff *skb) 4667 { 4668 int ret; 4669 4670 net_timestamp_check(netdev_tstamp_prequeue, skb); 4671 4672 if (skb_defer_rx_timestamp(skb)) 4673 return NET_RX_SUCCESS; 4674 4675 if (static_key_false(&generic_xdp_needed)) { 4676 int ret; 4677 4678 preempt_disable(); 4679 rcu_read_lock(); 4680 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb); 4681 rcu_read_unlock(); 4682 preempt_enable(); 4683 4684 if (ret != XDP_PASS) 4685 return NET_RX_DROP; 4686 } 4687 4688 rcu_read_lock(); 4689 #ifdef CONFIG_RPS 4690 if (static_key_false(&rps_needed)) { 4691 struct rps_dev_flow voidflow, *rflow = &voidflow; 4692 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 4693 4694 if (cpu >= 0) { 4695 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 4696 rcu_read_unlock(); 4697 return ret; 4698 } 4699 } 4700 #endif 4701 ret = __netif_receive_skb(skb); 4702 rcu_read_unlock(); 4703 return ret; 4704 } 4705 4706 /** 4707 * netif_receive_skb - process receive buffer from network 4708 * @skb: buffer to process 4709 * 4710 * netif_receive_skb() is the main receive data processing function. 4711 * It always succeeds. The buffer may be dropped during processing 4712 * for congestion control or by the protocol layers. 4713 * 4714 * This function may only be called from softirq context and interrupts 4715 * should be enabled. 4716 * 4717 * Return values (usually ignored): 4718 * NET_RX_SUCCESS: no congestion 4719 * NET_RX_DROP: packet was dropped 4720 */ 4721 int netif_receive_skb(struct sk_buff *skb) 4722 { 4723 trace_netif_receive_skb_entry(skb); 4724 4725 return netif_receive_skb_internal(skb); 4726 } 4727 EXPORT_SYMBOL(netif_receive_skb); 4728 4729 DEFINE_PER_CPU(struct work_struct, flush_works); 4730 4731 /* Network device is going away, flush any packets still pending */ 4732 static void flush_backlog(struct work_struct *work) 4733 { 4734 struct sk_buff *skb, *tmp; 4735 struct softnet_data *sd; 4736 4737 local_bh_disable(); 4738 sd = this_cpu_ptr(&softnet_data); 4739 4740 local_irq_disable(); 4741 rps_lock(sd); 4742 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 4743 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 4744 __skb_unlink(skb, &sd->input_pkt_queue); 4745 kfree_skb(skb); 4746 input_queue_head_incr(sd); 4747 } 4748 } 4749 rps_unlock(sd); 4750 local_irq_enable(); 4751 4752 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 4753 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 4754 __skb_unlink(skb, &sd->process_queue); 4755 kfree_skb(skb); 4756 input_queue_head_incr(sd); 4757 } 4758 } 4759 local_bh_enable(); 4760 } 4761 4762 static void flush_all_backlogs(void) 4763 { 4764 unsigned int cpu; 4765 4766 get_online_cpus(); 4767 4768 for_each_online_cpu(cpu) 4769 queue_work_on(cpu, system_highpri_wq, 4770 per_cpu_ptr(&flush_works, cpu)); 4771 4772 for_each_online_cpu(cpu) 4773 flush_work(per_cpu_ptr(&flush_works, cpu)); 4774 4775 put_online_cpus(); 4776 } 4777 4778 static int napi_gro_complete(struct sk_buff *skb) 4779 { 4780 struct packet_offload *ptype; 4781 __be16 type = skb->protocol; 4782 struct list_head *head = &offload_base; 4783 int err = -ENOENT; 4784 4785 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb)); 4786 4787 if (NAPI_GRO_CB(skb)->count == 1) { 4788 skb_shinfo(skb)->gso_size = 0; 4789 goto out; 4790 } 4791 4792 rcu_read_lock(); 4793 list_for_each_entry_rcu(ptype, head, list) { 4794 if (ptype->type != type || !ptype->callbacks.gro_complete) 4795 continue; 4796 4797 err = ptype->callbacks.gro_complete(skb, 0); 4798 break; 4799 } 4800 rcu_read_unlock(); 4801 4802 if (err) { 4803 WARN_ON(&ptype->list == head); 4804 kfree_skb(skb); 4805 return NET_RX_SUCCESS; 4806 } 4807 4808 out: 4809 return netif_receive_skb_internal(skb); 4810 } 4811 4812 /* napi->gro_list contains packets ordered by age. 4813 * youngest packets at the head of it. 4814 * Complete skbs in reverse order to reduce latencies. 4815 */ 4816 void napi_gro_flush(struct napi_struct *napi, bool flush_old) 4817 { 4818 struct sk_buff *skb, *prev = NULL; 4819 4820 /* scan list and build reverse chain */ 4821 for (skb = napi->gro_list; skb != NULL; skb = skb->next) { 4822 skb->prev = prev; 4823 prev = skb; 4824 } 4825 4826 for (skb = prev; skb; skb = prev) { 4827 skb->next = NULL; 4828 4829 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies) 4830 return; 4831 4832 prev = skb->prev; 4833 napi_gro_complete(skb); 4834 napi->gro_count--; 4835 } 4836 4837 napi->gro_list = NULL; 4838 } 4839 EXPORT_SYMBOL(napi_gro_flush); 4840 4841 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb) 4842 { 4843 struct sk_buff *p; 4844 unsigned int maclen = skb->dev->hard_header_len; 4845 u32 hash = skb_get_hash_raw(skb); 4846 4847 for (p = napi->gro_list; p; p = p->next) { 4848 unsigned long diffs; 4849 4850 NAPI_GRO_CB(p)->flush = 0; 4851 4852 if (hash != skb_get_hash_raw(p)) { 4853 NAPI_GRO_CB(p)->same_flow = 0; 4854 continue; 4855 } 4856 4857 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev; 4858 diffs |= p->vlan_tci ^ skb->vlan_tci; 4859 diffs |= skb_metadata_dst_cmp(p, skb); 4860 diffs |= skb_metadata_differs(p, skb); 4861 if (maclen == ETH_HLEN) 4862 diffs |= compare_ether_header(skb_mac_header(p), 4863 skb_mac_header(skb)); 4864 else if (!diffs) 4865 diffs = memcmp(skb_mac_header(p), 4866 skb_mac_header(skb), 4867 maclen); 4868 NAPI_GRO_CB(p)->same_flow = !diffs; 4869 } 4870 } 4871 4872 static void skb_gro_reset_offset(struct sk_buff *skb) 4873 { 4874 const struct skb_shared_info *pinfo = skb_shinfo(skb); 4875 const skb_frag_t *frag0 = &pinfo->frags[0]; 4876 4877 NAPI_GRO_CB(skb)->data_offset = 0; 4878 NAPI_GRO_CB(skb)->frag0 = NULL; 4879 NAPI_GRO_CB(skb)->frag0_len = 0; 4880 4881 if (skb_mac_header(skb) == skb_tail_pointer(skb) && 4882 pinfo->nr_frags && 4883 !PageHighMem(skb_frag_page(frag0))) { 4884 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0); 4885 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int, 4886 skb_frag_size(frag0), 4887 skb->end - skb->tail); 4888 } 4889 } 4890 4891 static void gro_pull_from_frag0(struct sk_buff *skb, int grow) 4892 { 4893 struct skb_shared_info *pinfo = skb_shinfo(skb); 4894 4895 BUG_ON(skb->end - skb->tail < grow); 4896 4897 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow); 4898 4899 skb->data_len -= grow; 4900 skb->tail += grow; 4901 4902 pinfo->frags[0].page_offset += grow; 4903 skb_frag_size_sub(&pinfo->frags[0], grow); 4904 4905 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) { 4906 skb_frag_unref(skb, 0); 4907 memmove(pinfo->frags, pinfo->frags + 1, 4908 --pinfo->nr_frags * sizeof(pinfo->frags[0])); 4909 } 4910 } 4911 4912 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 4913 { 4914 struct sk_buff **pp = NULL; 4915 struct packet_offload *ptype; 4916 __be16 type = skb->protocol; 4917 struct list_head *head = &offload_base; 4918 int same_flow; 4919 enum gro_result ret; 4920 int grow; 4921 4922 if (netif_elide_gro(skb->dev)) 4923 goto normal; 4924 4925 gro_list_prepare(napi, skb); 4926 4927 rcu_read_lock(); 4928 list_for_each_entry_rcu(ptype, head, list) { 4929 if (ptype->type != type || !ptype->callbacks.gro_receive) 4930 continue; 4931 4932 skb_set_network_header(skb, skb_gro_offset(skb)); 4933 skb_reset_mac_len(skb); 4934 NAPI_GRO_CB(skb)->same_flow = 0; 4935 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb); 4936 NAPI_GRO_CB(skb)->free = 0; 4937 NAPI_GRO_CB(skb)->encap_mark = 0; 4938 NAPI_GRO_CB(skb)->recursion_counter = 0; 4939 NAPI_GRO_CB(skb)->is_fou = 0; 4940 NAPI_GRO_CB(skb)->is_atomic = 1; 4941 NAPI_GRO_CB(skb)->gro_remcsum_start = 0; 4942 4943 /* Setup for GRO checksum validation */ 4944 switch (skb->ip_summed) { 4945 case CHECKSUM_COMPLETE: 4946 NAPI_GRO_CB(skb)->csum = skb->csum; 4947 NAPI_GRO_CB(skb)->csum_valid = 1; 4948 NAPI_GRO_CB(skb)->csum_cnt = 0; 4949 break; 4950 case CHECKSUM_UNNECESSARY: 4951 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1; 4952 NAPI_GRO_CB(skb)->csum_valid = 0; 4953 break; 4954 default: 4955 NAPI_GRO_CB(skb)->csum_cnt = 0; 4956 NAPI_GRO_CB(skb)->csum_valid = 0; 4957 } 4958 4959 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb); 4960 break; 4961 } 4962 rcu_read_unlock(); 4963 4964 if (&ptype->list == head) 4965 goto normal; 4966 4967 if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) { 4968 ret = GRO_CONSUMED; 4969 goto ok; 4970 } 4971 4972 same_flow = NAPI_GRO_CB(skb)->same_flow; 4973 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED; 4974 4975 if (pp) { 4976 struct sk_buff *nskb = *pp; 4977 4978 *pp = nskb->next; 4979 nskb->next = NULL; 4980 napi_gro_complete(nskb); 4981 napi->gro_count--; 4982 } 4983 4984 if (same_flow) 4985 goto ok; 4986 4987 if (NAPI_GRO_CB(skb)->flush) 4988 goto normal; 4989 4990 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) { 4991 struct sk_buff *nskb = napi->gro_list; 4992 4993 /* locate the end of the list to select the 'oldest' flow */ 4994 while (nskb->next) { 4995 pp = &nskb->next; 4996 nskb = *pp; 4997 } 4998 *pp = NULL; 4999 nskb->next = NULL; 5000 napi_gro_complete(nskb); 5001 } else { 5002 napi->gro_count++; 5003 } 5004 NAPI_GRO_CB(skb)->count = 1; 5005 NAPI_GRO_CB(skb)->age = jiffies; 5006 NAPI_GRO_CB(skb)->last = skb; 5007 skb_shinfo(skb)->gso_size = skb_gro_len(skb); 5008 skb->next = napi->gro_list; 5009 napi->gro_list = skb; 5010 ret = GRO_HELD; 5011 5012 pull: 5013 grow = skb_gro_offset(skb) - skb_headlen(skb); 5014 if (grow > 0) 5015 gro_pull_from_frag0(skb, grow); 5016 ok: 5017 return ret; 5018 5019 normal: 5020 ret = GRO_NORMAL; 5021 goto pull; 5022 } 5023 5024 struct packet_offload *gro_find_receive_by_type(__be16 type) 5025 { 5026 struct list_head *offload_head = &offload_base; 5027 struct packet_offload *ptype; 5028 5029 list_for_each_entry_rcu(ptype, offload_head, list) { 5030 if (ptype->type != type || !ptype->callbacks.gro_receive) 5031 continue; 5032 return ptype; 5033 } 5034 return NULL; 5035 } 5036 EXPORT_SYMBOL(gro_find_receive_by_type); 5037 5038 struct packet_offload *gro_find_complete_by_type(__be16 type) 5039 { 5040 struct list_head *offload_head = &offload_base; 5041 struct packet_offload *ptype; 5042 5043 list_for_each_entry_rcu(ptype, offload_head, list) { 5044 if (ptype->type != type || !ptype->callbacks.gro_complete) 5045 continue; 5046 return ptype; 5047 } 5048 return NULL; 5049 } 5050 EXPORT_SYMBOL(gro_find_complete_by_type); 5051 5052 static void napi_skb_free_stolen_head(struct sk_buff *skb) 5053 { 5054 skb_dst_drop(skb); 5055 secpath_reset(skb); 5056 kmem_cache_free(skbuff_head_cache, skb); 5057 } 5058 5059 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb) 5060 { 5061 switch (ret) { 5062 case GRO_NORMAL: 5063 if (netif_receive_skb_internal(skb)) 5064 ret = GRO_DROP; 5065 break; 5066 5067 case GRO_DROP: 5068 kfree_skb(skb); 5069 break; 5070 5071 case GRO_MERGED_FREE: 5072 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) 5073 napi_skb_free_stolen_head(skb); 5074 else 5075 __kfree_skb(skb); 5076 break; 5077 5078 case GRO_HELD: 5079 case GRO_MERGED: 5080 case GRO_CONSUMED: 5081 break; 5082 } 5083 5084 return ret; 5085 } 5086 5087 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 5088 { 5089 skb_mark_napi_id(skb, napi); 5090 trace_napi_gro_receive_entry(skb); 5091 5092 skb_gro_reset_offset(skb); 5093 5094 return napi_skb_finish(dev_gro_receive(napi, skb), skb); 5095 } 5096 EXPORT_SYMBOL(napi_gro_receive); 5097 5098 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb) 5099 { 5100 if (unlikely(skb->pfmemalloc)) { 5101 consume_skb(skb); 5102 return; 5103 } 5104 __skb_pull(skb, skb_headlen(skb)); 5105 /* restore the reserve we had after netdev_alloc_skb_ip_align() */ 5106 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb)); 5107 skb->vlan_tci = 0; 5108 skb->dev = napi->dev; 5109 skb->skb_iif = 0; 5110 skb->encapsulation = 0; 5111 skb_shinfo(skb)->gso_type = 0; 5112 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 5113 secpath_reset(skb); 5114 5115 napi->skb = skb; 5116 } 5117 5118 struct sk_buff *napi_get_frags(struct napi_struct *napi) 5119 { 5120 struct sk_buff *skb = napi->skb; 5121 5122 if (!skb) { 5123 skb = napi_alloc_skb(napi, GRO_MAX_HEAD); 5124 if (skb) { 5125 napi->skb = skb; 5126 skb_mark_napi_id(skb, napi); 5127 } 5128 } 5129 return skb; 5130 } 5131 EXPORT_SYMBOL(napi_get_frags); 5132 5133 static gro_result_t napi_frags_finish(struct napi_struct *napi, 5134 struct sk_buff *skb, 5135 gro_result_t ret) 5136 { 5137 switch (ret) { 5138 case GRO_NORMAL: 5139 case GRO_HELD: 5140 __skb_push(skb, ETH_HLEN); 5141 skb->protocol = eth_type_trans(skb, skb->dev); 5142 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb)) 5143 ret = GRO_DROP; 5144 break; 5145 5146 case GRO_DROP: 5147 napi_reuse_skb(napi, skb); 5148 break; 5149 5150 case GRO_MERGED_FREE: 5151 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) 5152 napi_skb_free_stolen_head(skb); 5153 else 5154 napi_reuse_skb(napi, skb); 5155 break; 5156 5157 case GRO_MERGED: 5158 case GRO_CONSUMED: 5159 break; 5160 } 5161 5162 return ret; 5163 } 5164 5165 /* Upper GRO stack assumes network header starts at gro_offset=0 5166 * Drivers could call both napi_gro_frags() and napi_gro_receive() 5167 * We copy ethernet header into skb->data to have a common layout. 5168 */ 5169 static struct sk_buff *napi_frags_skb(struct napi_struct *napi) 5170 { 5171 struct sk_buff *skb = napi->skb; 5172 const struct ethhdr *eth; 5173 unsigned int hlen = sizeof(*eth); 5174 5175 napi->skb = NULL; 5176 5177 skb_reset_mac_header(skb); 5178 skb_gro_reset_offset(skb); 5179 5180 eth = skb_gro_header_fast(skb, 0); 5181 if (unlikely(skb_gro_header_hard(skb, hlen))) { 5182 eth = skb_gro_header_slow(skb, hlen, 0); 5183 if (unlikely(!eth)) { 5184 net_warn_ratelimited("%s: dropping impossible skb from %s\n", 5185 __func__, napi->dev->name); 5186 napi_reuse_skb(napi, skb); 5187 return NULL; 5188 } 5189 } else { 5190 gro_pull_from_frag0(skb, hlen); 5191 NAPI_GRO_CB(skb)->frag0 += hlen; 5192 NAPI_GRO_CB(skb)->frag0_len -= hlen; 5193 } 5194 __skb_pull(skb, hlen); 5195 5196 /* 5197 * This works because the only protocols we care about don't require 5198 * special handling. 5199 * We'll fix it up properly in napi_frags_finish() 5200 */ 5201 skb->protocol = eth->h_proto; 5202 5203 return skb; 5204 } 5205 5206 gro_result_t napi_gro_frags(struct napi_struct *napi) 5207 { 5208 struct sk_buff *skb = napi_frags_skb(napi); 5209 5210 if (!skb) 5211 return GRO_DROP; 5212 5213 trace_napi_gro_frags_entry(skb); 5214 5215 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb)); 5216 } 5217 EXPORT_SYMBOL(napi_gro_frags); 5218 5219 /* Compute the checksum from gro_offset and return the folded value 5220 * after adding in any pseudo checksum. 5221 */ 5222 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb) 5223 { 5224 __wsum wsum; 5225 __sum16 sum; 5226 5227 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0); 5228 5229 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */ 5230 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum)); 5231 if (likely(!sum)) { 5232 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 5233 !skb->csum_complete_sw) 5234 netdev_rx_csum_fault(skb->dev); 5235 } 5236 5237 NAPI_GRO_CB(skb)->csum = wsum; 5238 NAPI_GRO_CB(skb)->csum_valid = 1; 5239 5240 return sum; 5241 } 5242 EXPORT_SYMBOL(__skb_gro_checksum_complete); 5243 5244 static void net_rps_send_ipi(struct softnet_data *remsd) 5245 { 5246 #ifdef CONFIG_RPS 5247 while (remsd) { 5248 struct softnet_data *next = remsd->rps_ipi_next; 5249 5250 if (cpu_online(remsd->cpu)) 5251 smp_call_function_single_async(remsd->cpu, &remsd->csd); 5252 remsd = next; 5253 } 5254 #endif 5255 } 5256 5257 /* 5258 * net_rps_action_and_irq_enable sends any pending IPI's for rps. 5259 * Note: called with local irq disabled, but exits with local irq enabled. 5260 */ 5261 static void net_rps_action_and_irq_enable(struct softnet_data *sd) 5262 { 5263 #ifdef CONFIG_RPS 5264 struct softnet_data *remsd = sd->rps_ipi_list; 5265 5266 if (remsd) { 5267 sd->rps_ipi_list = NULL; 5268 5269 local_irq_enable(); 5270 5271 /* Send pending IPI's to kick RPS processing on remote cpus. */ 5272 net_rps_send_ipi(remsd); 5273 } else 5274 #endif 5275 local_irq_enable(); 5276 } 5277 5278 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd) 5279 { 5280 #ifdef CONFIG_RPS 5281 return sd->rps_ipi_list != NULL; 5282 #else 5283 return false; 5284 #endif 5285 } 5286 5287 static int process_backlog(struct napi_struct *napi, int quota) 5288 { 5289 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 5290 bool again = true; 5291 int work = 0; 5292 5293 /* Check if we have pending ipi, its better to send them now, 5294 * not waiting net_rx_action() end. 5295 */ 5296 if (sd_has_rps_ipi_waiting(sd)) { 5297 local_irq_disable(); 5298 net_rps_action_and_irq_enable(sd); 5299 } 5300 5301 napi->weight = dev_rx_weight; 5302 while (again) { 5303 struct sk_buff *skb; 5304 5305 while ((skb = __skb_dequeue(&sd->process_queue))) { 5306 rcu_read_lock(); 5307 __netif_receive_skb(skb); 5308 rcu_read_unlock(); 5309 input_queue_head_incr(sd); 5310 if (++work >= quota) 5311 return work; 5312 5313 } 5314 5315 local_irq_disable(); 5316 rps_lock(sd); 5317 if (skb_queue_empty(&sd->input_pkt_queue)) { 5318 /* 5319 * Inline a custom version of __napi_complete(). 5320 * only current cpu owns and manipulates this napi, 5321 * and NAPI_STATE_SCHED is the only possible flag set 5322 * on backlog. 5323 * We can use a plain write instead of clear_bit(), 5324 * and we dont need an smp_mb() memory barrier. 5325 */ 5326 napi->state = 0; 5327 again = false; 5328 } else { 5329 skb_queue_splice_tail_init(&sd->input_pkt_queue, 5330 &sd->process_queue); 5331 } 5332 rps_unlock(sd); 5333 local_irq_enable(); 5334 } 5335 5336 return work; 5337 } 5338 5339 /** 5340 * __napi_schedule - schedule for receive 5341 * @n: entry to schedule 5342 * 5343 * The entry's receive function will be scheduled to run. 5344 * Consider using __napi_schedule_irqoff() if hard irqs are masked. 5345 */ 5346 void __napi_schedule(struct napi_struct *n) 5347 { 5348 unsigned long flags; 5349 5350 local_irq_save(flags); 5351 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 5352 local_irq_restore(flags); 5353 } 5354 EXPORT_SYMBOL(__napi_schedule); 5355 5356 /** 5357 * napi_schedule_prep - check if napi can be scheduled 5358 * @n: napi context 5359 * 5360 * Test if NAPI routine is already running, and if not mark 5361 * it as running. This is used as a condition variable 5362 * insure only one NAPI poll instance runs. We also make 5363 * sure there is no pending NAPI disable. 5364 */ 5365 bool napi_schedule_prep(struct napi_struct *n) 5366 { 5367 unsigned long val, new; 5368 5369 do { 5370 val = READ_ONCE(n->state); 5371 if (unlikely(val & NAPIF_STATE_DISABLE)) 5372 return false; 5373 new = val | NAPIF_STATE_SCHED; 5374 5375 /* Sets STATE_MISSED bit if STATE_SCHED was already set 5376 * This was suggested by Alexander Duyck, as compiler 5377 * emits better code than : 5378 * if (val & NAPIF_STATE_SCHED) 5379 * new |= NAPIF_STATE_MISSED; 5380 */ 5381 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED * 5382 NAPIF_STATE_MISSED; 5383 } while (cmpxchg(&n->state, val, new) != val); 5384 5385 return !(val & NAPIF_STATE_SCHED); 5386 } 5387 EXPORT_SYMBOL(napi_schedule_prep); 5388 5389 /** 5390 * __napi_schedule_irqoff - schedule for receive 5391 * @n: entry to schedule 5392 * 5393 * Variant of __napi_schedule() assuming hard irqs are masked 5394 */ 5395 void __napi_schedule_irqoff(struct napi_struct *n) 5396 { 5397 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 5398 } 5399 EXPORT_SYMBOL(__napi_schedule_irqoff); 5400 5401 bool napi_complete_done(struct napi_struct *n, int work_done) 5402 { 5403 unsigned long flags, val, new; 5404 5405 /* 5406 * 1) Don't let napi dequeue from the cpu poll list 5407 * just in case its running on a different cpu. 5408 * 2) If we are busy polling, do nothing here, we have 5409 * the guarantee we will be called later. 5410 */ 5411 if (unlikely(n->state & (NAPIF_STATE_NPSVC | 5412 NAPIF_STATE_IN_BUSY_POLL))) 5413 return false; 5414 5415 if (n->gro_list) { 5416 unsigned long timeout = 0; 5417 5418 if (work_done) 5419 timeout = n->dev->gro_flush_timeout; 5420 5421 if (timeout) 5422 hrtimer_start(&n->timer, ns_to_ktime(timeout), 5423 HRTIMER_MODE_REL_PINNED); 5424 else 5425 napi_gro_flush(n, false); 5426 } 5427 if (unlikely(!list_empty(&n->poll_list))) { 5428 /* If n->poll_list is not empty, we need to mask irqs */ 5429 local_irq_save(flags); 5430 list_del_init(&n->poll_list); 5431 local_irq_restore(flags); 5432 } 5433 5434 do { 5435 val = READ_ONCE(n->state); 5436 5437 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED)); 5438 5439 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED); 5440 5441 /* If STATE_MISSED was set, leave STATE_SCHED set, 5442 * because we will call napi->poll() one more time. 5443 * This C code was suggested by Alexander Duyck to help gcc. 5444 */ 5445 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED * 5446 NAPIF_STATE_SCHED; 5447 } while (cmpxchg(&n->state, val, new) != val); 5448 5449 if (unlikely(val & NAPIF_STATE_MISSED)) { 5450 __napi_schedule(n); 5451 return false; 5452 } 5453 5454 return true; 5455 } 5456 EXPORT_SYMBOL(napi_complete_done); 5457 5458 /* must be called under rcu_read_lock(), as we dont take a reference */ 5459 static struct napi_struct *napi_by_id(unsigned int napi_id) 5460 { 5461 unsigned int hash = napi_id % HASH_SIZE(napi_hash); 5462 struct napi_struct *napi; 5463 5464 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node) 5465 if (napi->napi_id == napi_id) 5466 return napi; 5467 5468 return NULL; 5469 } 5470 5471 #if defined(CONFIG_NET_RX_BUSY_POLL) 5472 5473 #define BUSY_POLL_BUDGET 8 5474 5475 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock) 5476 { 5477 int rc; 5478 5479 /* Busy polling means there is a high chance device driver hard irq 5480 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was 5481 * set in napi_schedule_prep(). 5482 * Since we are about to call napi->poll() once more, we can safely 5483 * clear NAPI_STATE_MISSED. 5484 * 5485 * Note: x86 could use a single "lock and ..." instruction 5486 * to perform these two clear_bit() 5487 */ 5488 clear_bit(NAPI_STATE_MISSED, &napi->state); 5489 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state); 5490 5491 local_bh_disable(); 5492 5493 /* All we really want here is to re-enable device interrupts. 5494 * Ideally, a new ndo_busy_poll_stop() could avoid another round. 5495 */ 5496 rc = napi->poll(napi, BUSY_POLL_BUDGET); 5497 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET); 5498 netpoll_poll_unlock(have_poll_lock); 5499 if (rc == BUSY_POLL_BUDGET) 5500 __napi_schedule(napi); 5501 local_bh_enable(); 5502 } 5503 5504 void napi_busy_loop(unsigned int napi_id, 5505 bool (*loop_end)(void *, unsigned long), 5506 void *loop_end_arg) 5507 { 5508 unsigned long start_time = loop_end ? busy_loop_current_time() : 0; 5509 int (*napi_poll)(struct napi_struct *napi, int budget); 5510 void *have_poll_lock = NULL; 5511 struct napi_struct *napi; 5512 5513 restart: 5514 napi_poll = NULL; 5515 5516 rcu_read_lock(); 5517 5518 napi = napi_by_id(napi_id); 5519 if (!napi) 5520 goto out; 5521 5522 preempt_disable(); 5523 for (;;) { 5524 int work = 0; 5525 5526 local_bh_disable(); 5527 if (!napi_poll) { 5528 unsigned long val = READ_ONCE(napi->state); 5529 5530 /* If multiple threads are competing for this napi, 5531 * we avoid dirtying napi->state as much as we can. 5532 */ 5533 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED | 5534 NAPIF_STATE_IN_BUSY_POLL)) 5535 goto count; 5536 if (cmpxchg(&napi->state, val, 5537 val | NAPIF_STATE_IN_BUSY_POLL | 5538 NAPIF_STATE_SCHED) != val) 5539 goto count; 5540 have_poll_lock = netpoll_poll_lock(napi); 5541 napi_poll = napi->poll; 5542 } 5543 work = napi_poll(napi, BUSY_POLL_BUDGET); 5544 trace_napi_poll(napi, work, BUSY_POLL_BUDGET); 5545 count: 5546 if (work > 0) 5547 __NET_ADD_STATS(dev_net(napi->dev), 5548 LINUX_MIB_BUSYPOLLRXPACKETS, work); 5549 local_bh_enable(); 5550 5551 if (!loop_end || loop_end(loop_end_arg, start_time)) 5552 break; 5553 5554 if (unlikely(need_resched())) { 5555 if (napi_poll) 5556 busy_poll_stop(napi, have_poll_lock); 5557 preempt_enable(); 5558 rcu_read_unlock(); 5559 cond_resched(); 5560 if (loop_end(loop_end_arg, start_time)) 5561 return; 5562 goto restart; 5563 } 5564 cpu_relax(); 5565 } 5566 if (napi_poll) 5567 busy_poll_stop(napi, have_poll_lock); 5568 preempt_enable(); 5569 out: 5570 rcu_read_unlock(); 5571 } 5572 EXPORT_SYMBOL(napi_busy_loop); 5573 5574 #endif /* CONFIG_NET_RX_BUSY_POLL */ 5575 5576 static void napi_hash_add(struct napi_struct *napi) 5577 { 5578 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) || 5579 test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) 5580 return; 5581 5582 spin_lock(&napi_hash_lock); 5583 5584 /* 0..NR_CPUS range is reserved for sender_cpu use */ 5585 do { 5586 if (unlikely(++napi_gen_id < MIN_NAPI_ID)) 5587 napi_gen_id = MIN_NAPI_ID; 5588 } while (napi_by_id(napi_gen_id)); 5589 napi->napi_id = napi_gen_id; 5590 5591 hlist_add_head_rcu(&napi->napi_hash_node, 5592 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]); 5593 5594 spin_unlock(&napi_hash_lock); 5595 } 5596 5597 /* Warning : caller is responsible to make sure rcu grace period 5598 * is respected before freeing memory containing @napi 5599 */ 5600 bool napi_hash_del(struct napi_struct *napi) 5601 { 5602 bool rcu_sync_needed = false; 5603 5604 spin_lock(&napi_hash_lock); 5605 5606 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) { 5607 rcu_sync_needed = true; 5608 hlist_del_rcu(&napi->napi_hash_node); 5609 } 5610 spin_unlock(&napi_hash_lock); 5611 return rcu_sync_needed; 5612 } 5613 EXPORT_SYMBOL_GPL(napi_hash_del); 5614 5615 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer) 5616 { 5617 struct napi_struct *napi; 5618 5619 napi = container_of(timer, struct napi_struct, timer); 5620 5621 /* Note : we use a relaxed variant of napi_schedule_prep() not setting 5622 * NAPI_STATE_MISSED, since we do not react to a device IRQ. 5623 */ 5624 if (napi->gro_list && !napi_disable_pending(napi) && 5625 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) 5626 __napi_schedule_irqoff(napi); 5627 5628 return HRTIMER_NORESTART; 5629 } 5630 5631 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 5632 int (*poll)(struct napi_struct *, int), int weight) 5633 { 5634 INIT_LIST_HEAD(&napi->poll_list); 5635 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED); 5636 napi->timer.function = napi_watchdog; 5637 napi->gro_count = 0; 5638 napi->gro_list = NULL; 5639 napi->skb = NULL; 5640 napi->poll = poll; 5641 if (weight > NAPI_POLL_WEIGHT) 5642 pr_err_once("netif_napi_add() called with weight %d on device %s\n", 5643 weight, dev->name); 5644 napi->weight = weight; 5645 list_add(&napi->dev_list, &dev->napi_list); 5646 napi->dev = dev; 5647 #ifdef CONFIG_NETPOLL 5648 napi->poll_owner = -1; 5649 #endif 5650 set_bit(NAPI_STATE_SCHED, &napi->state); 5651 napi_hash_add(napi); 5652 } 5653 EXPORT_SYMBOL(netif_napi_add); 5654 5655 void napi_disable(struct napi_struct *n) 5656 { 5657 might_sleep(); 5658 set_bit(NAPI_STATE_DISABLE, &n->state); 5659 5660 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state)) 5661 msleep(1); 5662 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state)) 5663 msleep(1); 5664 5665 hrtimer_cancel(&n->timer); 5666 5667 clear_bit(NAPI_STATE_DISABLE, &n->state); 5668 } 5669 EXPORT_SYMBOL(napi_disable); 5670 5671 /* Must be called in process context */ 5672 void netif_napi_del(struct napi_struct *napi) 5673 { 5674 might_sleep(); 5675 if (napi_hash_del(napi)) 5676 synchronize_net(); 5677 list_del_init(&napi->dev_list); 5678 napi_free_frags(napi); 5679 5680 kfree_skb_list(napi->gro_list); 5681 napi->gro_list = NULL; 5682 napi->gro_count = 0; 5683 } 5684 EXPORT_SYMBOL(netif_napi_del); 5685 5686 static int napi_poll(struct napi_struct *n, struct list_head *repoll) 5687 { 5688 void *have; 5689 int work, weight; 5690 5691 list_del_init(&n->poll_list); 5692 5693 have = netpoll_poll_lock(n); 5694 5695 weight = n->weight; 5696 5697 /* This NAPI_STATE_SCHED test is for avoiding a race 5698 * with netpoll's poll_napi(). Only the entity which 5699 * obtains the lock and sees NAPI_STATE_SCHED set will 5700 * actually make the ->poll() call. Therefore we avoid 5701 * accidentally calling ->poll() when NAPI is not scheduled. 5702 */ 5703 work = 0; 5704 if (test_bit(NAPI_STATE_SCHED, &n->state)) { 5705 work = n->poll(n, weight); 5706 trace_napi_poll(n, work, weight); 5707 } 5708 5709 WARN_ON_ONCE(work > weight); 5710 5711 if (likely(work < weight)) 5712 goto out_unlock; 5713 5714 /* Drivers must not modify the NAPI state if they 5715 * consume the entire weight. In such cases this code 5716 * still "owns" the NAPI instance and therefore can 5717 * move the instance around on the list at-will. 5718 */ 5719 if (unlikely(napi_disable_pending(n))) { 5720 napi_complete(n); 5721 goto out_unlock; 5722 } 5723 5724 if (n->gro_list) { 5725 /* flush too old packets 5726 * If HZ < 1000, flush all packets. 5727 */ 5728 napi_gro_flush(n, HZ >= 1000); 5729 } 5730 5731 /* Some drivers may have called napi_schedule 5732 * prior to exhausting their budget. 5733 */ 5734 if (unlikely(!list_empty(&n->poll_list))) { 5735 pr_warn_once("%s: Budget exhausted after napi rescheduled\n", 5736 n->dev ? n->dev->name : "backlog"); 5737 goto out_unlock; 5738 } 5739 5740 list_add_tail(&n->poll_list, repoll); 5741 5742 out_unlock: 5743 netpoll_poll_unlock(have); 5744 5745 return work; 5746 } 5747 5748 static __latent_entropy void net_rx_action(struct softirq_action *h) 5749 { 5750 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 5751 unsigned long time_limit = jiffies + 5752 usecs_to_jiffies(netdev_budget_usecs); 5753 int budget = netdev_budget; 5754 LIST_HEAD(list); 5755 LIST_HEAD(repoll); 5756 5757 local_irq_disable(); 5758 list_splice_init(&sd->poll_list, &list); 5759 local_irq_enable(); 5760 5761 for (;;) { 5762 struct napi_struct *n; 5763 5764 if (list_empty(&list)) { 5765 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll)) 5766 goto out; 5767 break; 5768 } 5769 5770 n = list_first_entry(&list, struct napi_struct, poll_list); 5771 budget -= napi_poll(n, &repoll); 5772 5773 /* If softirq window is exhausted then punt. 5774 * Allow this to run for 2 jiffies since which will allow 5775 * an average latency of 1.5/HZ. 5776 */ 5777 if (unlikely(budget <= 0 || 5778 time_after_eq(jiffies, time_limit))) { 5779 sd->time_squeeze++; 5780 break; 5781 } 5782 } 5783 5784 local_irq_disable(); 5785 5786 list_splice_tail_init(&sd->poll_list, &list); 5787 list_splice_tail(&repoll, &list); 5788 list_splice(&list, &sd->poll_list); 5789 if (!list_empty(&sd->poll_list)) 5790 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 5791 5792 net_rps_action_and_irq_enable(sd); 5793 out: 5794 __kfree_skb_flush(); 5795 } 5796 5797 struct netdev_adjacent { 5798 struct net_device *dev; 5799 5800 /* upper master flag, there can only be one master device per list */ 5801 bool master; 5802 5803 /* counter for the number of times this device was added to us */ 5804 u16 ref_nr; 5805 5806 /* private field for the users */ 5807 void *private; 5808 5809 struct list_head list; 5810 struct rcu_head rcu; 5811 }; 5812 5813 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev, 5814 struct list_head *adj_list) 5815 { 5816 struct netdev_adjacent *adj; 5817 5818 list_for_each_entry(adj, adj_list, list) { 5819 if (adj->dev == adj_dev) 5820 return adj; 5821 } 5822 return NULL; 5823 } 5824 5825 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data) 5826 { 5827 struct net_device *dev = data; 5828 5829 return upper_dev == dev; 5830 } 5831 5832 /** 5833 * netdev_has_upper_dev - Check if device is linked to an upper device 5834 * @dev: device 5835 * @upper_dev: upper device to check 5836 * 5837 * Find out if a device is linked to specified upper device and return true 5838 * in case it is. Note that this checks only immediate upper device, 5839 * not through a complete stack of devices. The caller must hold the RTNL lock. 5840 */ 5841 bool netdev_has_upper_dev(struct net_device *dev, 5842 struct net_device *upper_dev) 5843 { 5844 ASSERT_RTNL(); 5845 5846 return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev, 5847 upper_dev); 5848 } 5849 EXPORT_SYMBOL(netdev_has_upper_dev); 5850 5851 /** 5852 * netdev_has_upper_dev_all - Check if device is linked to an upper device 5853 * @dev: device 5854 * @upper_dev: upper device to check 5855 * 5856 * Find out if a device is linked to specified upper device and return true 5857 * in case it is. Note that this checks the entire upper device chain. 5858 * The caller must hold rcu lock. 5859 */ 5860 5861 bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 5862 struct net_device *upper_dev) 5863 { 5864 return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev, 5865 upper_dev); 5866 } 5867 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu); 5868 5869 /** 5870 * netdev_has_any_upper_dev - Check if device is linked to some device 5871 * @dev: device 5872 * 5873 * Find out if a device is linked to an upper device and return true in case 5874 * it is. The caller must hold the RTNL lock. 5875 */ 5876 bool netdev_has_any_upper_dev(struct net_device *dev) 5877 { 5878 ASSERT_RTNL(); 5879 5880 return !list_empty(&dev->adj_list.upper); 5881 } 5882 EXPORT_SYMBOL(netdev_has_any_upper_dev); 5883 5884 /** 5885 * netdev_master_upper_dev_get - Get master upper device 5886 * @dev: device 5887 * 5888 * Find a master upper device and return pointer to it or NULL in case 5889 * it's not there. The caller must hold the RTNL lock. 5890 */ 5891 struct net_device *netdev_master_upper_dev_get(struct net_device *dev) 5892 { 5893 struct netdev_adjacent *upper; 5894 5895 ASSERT_RTNL(); 5896 5897 if (list_empty(&dev->adj_list.upper)) 5898 return NULL; 5899 5900 upper = list_first_entry(&dev->adj_list.upper, 5901 struct netdev_adjacent, list); 5902 if (likely(upper->master)) 5903 return upper->dev; 5904 return NULL; 5905 } 5906 EXPORT_SYMBOL(netdev_master_upper_dev_get); 5907 5908 /** 5909 * netdev_has_any_lower_dev - Check if device is linked to some device 5910 * @dev: device 5911 * 5912 * Find out if a device is linked to a lower device and return true in case 5913 * it is. The caller must hold the RTNL lock. 5914 */ 5915 static bool netdev_has_any_lower_dev(struct net_device *dev) 5916 { 5917 ASSERT_RTNL(); 5918 5919 return !list_empty(&dev->adj_list.lower); 5920 } 5921 5922 void *netdev_adjacent_get_private(struct list_head *adj_list) 5923 { 5924 struct netdev_adjacent *adj; 5925 5926 adj = list_entry(adj_list, struct netdev_adjacent, list); 5927 5928 return adj->private; 5929 } 5930 EXPORT_SYMBOL(netdev_adjacent_get_private); 5931 5932 /** 5933 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list 5934 * @dev: device 5935 * @iter: list_head ** of the current position 5936 * 5937 * Gets the next device from the dev's upper list, starting from iter 5938 * position. The caller must hold RCU read lock. 5939 */ 5940 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 5941 struct list_head **iter) 5942 { 5943 struct netdev_adjacent *upper; 5944 5945 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 5946 5947 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 5948 5949 if (&upper->list == &dev->adj_list.upper) 5950 return NULL; 5951 5952 *iter = &upper->list; 5953 5954 return upper->dev; 5955 } 5956 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu); 5957 5958 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev, 5959 struct list_head **iter) 5960 { 5961 struct netdev_adjacent *upper; 5962 5963 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 5964 5965 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 5966 5967 if (&upper->list == &dev->adj_list.upper) 5968 return NULL; 5969 5970 *iter = &upper->list; 5971 5972 return upper->dev; 5973 } 5974 5975 int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 5976 int (*fn)(struct net_device *dev, 5977 void *data), 5978 void *data) 5979 { 5980 struct net_device *udev; 5981 struct list_head *iter; 5982 int ret; 5983 5984 for (iter = &dev->adj_list.upper, 5985 udev = netdev_next_upper_dev_rcu(dev, &iter); 5986 udev; 5987 udev = netdev_next_upper_dev_rcu(dev, &iter)) { 5988 /* first is the upper device itself */ 5989 ret = fn(udev, data); 5990 if (ret) 5991 return ret; 5992 5993 /* then look at all of its upper devices */ 5994 ret = netdev_walk_all_upper_dev_rcu(udev, fn, data); 5995 if (ret) 5996 return ret; 5997 } 5998 5999 return 0; 6000 } 6001 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu); 6002 6003 /** 6004 * netdev_lower_get_next_private - Get the next ->private from the 6005 * lower neighbour list 6006 * @dev: device 6007 * @iter: list_head ** of the current position 6008 * 6009 * Gets the next netdev_adjacent->private from the dev's lower neighbour 6010 * list, starting from iter position. The caller must hold either hold the 6011 * RTNL lock or its own locking that guarantees that the neighbour lower 6012 * list will remain unchanged. 6013 */ 6014 void *netdev_lower_get_next_private(struct net_device *dev, 6015 struct list_head **iter) 6016 { 6017 struct netdev_adjacent *lower; 6018 6019 lower = list_entry(*iter, struct netdev_adjacent, list); 6020 6021 if (&lower->list == &dev->adj_list.lower) 6022 return NULL; 6023 6024 *iter = lower->list.next; 6025 6026 return lower->private; 6027 } 6028 EXPORT_SYMBOL(netdev_lower_get_next_private); 6029 6030 /** 6031 * netdev_lower_get_next_private_rcu - Get the next ->private from the 6032 * lower neighbour list, RCU 6033 * variant 6034 * @dev: device 6035 * @iter: list_head ** of the current position 6036 * 6037 * Gets the next netdev_adjacent->private from the dev's lower neighbour 6038 * list, starting from iter position. The caller must hold RCU read lock. 6039 */ 6040 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 6041 struct list_head **iter) 6042 { 6043 struct netdev_adjacent *lower; 6044 6045 WARN_ON_ONCE(!rcu_read_lock_held()); 6046 6047 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 6048 6049 if (&lower->list == &dev->adj_list.lower) 6050 return NULL; 6051 6052 *iter = &lower->list; 6053 6054 return lower->private; 6055 } 6056 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu); 6057 6058 /** 6059 * netdev_lower_get_next - Get the next device from the lower neighbour 6060 * list 6061 * @dev: device 6062 * @iter: list_head ** of the current position 6063 * 6064 * Gets the next netdev_adjacent from the dev's lower neighbour 6065 * list, starting from iter position. The caller must hold RTNL lock or 6066 * its own locking that guarantees that the neighbour lower 6067 * list will remain unchanged. 6068 */ 6069 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter) 6070 { 6071 struct netdev_adjacent *lower; 6072 6073 lower = list_entry(*iter, struct netdev_adjacent, list); 6074 6075 if (&lower->list == &dev->adj_list.lower) 6076 return NULL; 6077 6078 *iter = lower->list.next; 6079 6080 return lower->dev; 6081 } 6082 EXPORT_SYMBOL(netdev_lower_get_next); 6083 6084 static struct net_device *netdev_next_lower_dev(struct net_device *dev, 6085 struct list_head **iter) 6086 { 6087 struct netdev_adjacent *lower; 6088 6089 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 6090 6091 if (&lower->list == &dev->adj_list.lower) 6092 return NULL; 6093 6094 *iter = &lower->list; 6095 6096 return lower->dev; 6097 } 6098 6099 int netdev_walk_all_lower_dev(struct net_device *dev, 6100 int (*fn)(struct net_device *dev, 6101 void *data), 6102 void *data) 6103 { 6104 struct net_device *ldev; 6105 struct list_head *iter; 6106 int ret; 6107 6108 for (iter = &dev->adj_list.lower, 6109 ldev = netdev_next_lower_dev(dev, &iter); 6110 ldev; 6111 ldev = netdev_next_lower_dev(dev, &iter)) { 6112 /* first is the lower device itself */ 6113 ret = fn(ldev, data); 6114 if (ret) 6115 return ret; 6116 6117 /* then look at all of its lower devices */ 6118 ret = netdev_walk_all_lower_dev(ldev, fn, data); 6119 if (ret) 6120 return ret; 6121 } 6122 6123 return 0; 6124 } 6125 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev); 6126 6127 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev, 6128 struct list_head **iter) 6129 { 6130 struct netdev_adjacent *lower; 6131 6132 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 6133 if (&lower->list == &dev->adj_list.lower) 6134 return NULL; 6135 6136 *iter = &lower->list; 6137 6138 return lower->dev; 6139 } 6140 6141 int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 6142 int (*fn)(struct net_device *dev, 6143 void *data), 6144 void *data) 6145 { 6146 struct net_device *ldev; 6147 struct list_head *iter; 6148 int ret; 6149 6150 for (iter = &dev->adj_list.lower, 6151 ldev = netdev_next_lower_dev_rcu(dev, &iter); 6152 ldev; 6153 ldev = netdev_next_lower_dev_rcu(dev, &iter)) { 6154 /* first is the lower device itself */ 6155 ret = fn(ldev, data); 6156 if (ret) 6157 return ret; 6158 6159 /* then look at all of its lower devices */ 6160 ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data); 6161 if (ret) 6162 return ret; 6163 } 6164 6165 return 0; 6166 } 6167 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu); 6168 6169 /** 6170 * netdev_lower_get_first_private_rcu - Get the first ->private from the 6171 * lower neighbour list, RCU 6172 * variant 6173 * @dev: device 6174 * 6175 * Gets the first netdev_adjacent->private from the dev's lower neighbour 6176 * list. The caller must hold RCU read lock. 6177 */ 6178 void *netdev_lower_get_first_private_rcu(struct net_device *dev) 6179 { 6180 struct netdev_adjacent *lower; 6181 6182 lower = list_first_or_null_rcu(&dev->adj_list.lower, 6183 struct netdev_adjacent, list); 6184 if (lower) 6185 return lower->private; 6186 return NULL; 6187 } 6188 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu); 6189 6190 /** 6191 * netdev_master_upper_dev_get_rcu - Get master upper device 6192 * @dev: device 6193 * 6194 * Find a master upper device and return pointer to it or NULL in case 6195 * it's not there. The caller must hold the RCU read lock. 6196 */ 6197 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev) 6198 { 6199 struct netdev_adjacent *upper; 6200 6201 upper = list_first_or_null_rcu(&dev->adj_list.upper, 6202 struct netdev_adjacent, list); 6203 if (upper && likely(upper->master)) 6204 return upper->dev; 6205 return NULL; 6206 } 6207 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu); 6208 6209 static int netdev_adjacent_sysfs_add(struct net_device *dev, 6210 struct net_device *adj_dev, 6211 struct list_head *dev_list) 6212 { 6213 char linkname[IFNAMSIZ+7]; 6214 6215 sprintf(linkname, dev_list == &dev->adj_list.upper ? 6216 "upper_%s" : "lower_%s", adj_dev->name); 6217 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj), 6218 linkname); 6219 } 6220 static void netdev_adjacent_sysfs_del(struct net_device *dev, 6221 char *name, 6222 struct list_head *dev_list) 6223 { 6224 char linkname[IFNAMSIZ+7]; 6225 6226 sprintf(linkname, dev_list == &dev->adj_list.upper ? 6227 "upper_%s" : "lower_%s", name); 6228 sysfs_remove_link(&(dev->dev.kobj), linkname); 6229 } 6230 6231 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev, 6232 struct net_device *adj_dev, 6233 struct list_head *dev_list) 6234 { 6235 return (dev_list == &dev->adj_list.upper || 6236 dev_list == &dev->adj_list.lower) && 6237 net_eq(dev_net(dev), dev_net(adj_dev)); 6238 } 6239 6240 static int __netdev_adjacent_dev_insert(struct net_device *dev, 6241 struct net_device *adj_dev, 6242 struct list_head *dev_list, 6243 void *private, bool master) 6244 { 6245 struct netdev_adjacent *adj; 6246 int ret; 6247 6248 adj = __netdev_find_adj(adj_dev, dev_list); 6249 6250 if (adj) { 6251 adj->ref_nr += 1; 6252 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n", 6253 dev->name, adj_dev->name, adj->ref_nr); 6254 6255 return 0; 6256 } 6257 6258 adj = kmalloc(sizeof(*adj), GFP_KERNEL); 6259 if (!adj) 6260 return -ENOMEM; 6261 6262 adj->dev = adj_dev; 6263 adj->master = master; 6264 adj->ref_nr = 1; 6265 adj->private = private; 6266 dev_hold(adj_dev); 6267 6268 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n", 6269 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name); 6270 6271 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) { 6272 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list); 6273 if (ret) 6274 goto free_adj; 6275 } 6276 6277 /* Ensure that master link is always the first item in list. */ 6278 if (master) { 6279 ret = sysfs_create_link(&(dev->dev.kobj), 6280 &(adj_dev->dev.kobj), "master"); 6281 if (ret) 6282 goto remove_symlinks; 6283 6284 list_add_rcu(&adj->list, dev_list); 6285 } else { 6286 list_add_tail_rcu(&adj->list, dev_list); 6287 } 6288 6289 return 0; 6290 6291 remove_symlinks: 6292 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 6293 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 6294 free_adj: 6295 kfree(adj); 6296 dev_put(adj_dev); 6297 6298 return ret; 6299 } 6300 6301 static void __netdev_adjacent_dev_remove(struct net_device *dev, 6302 struct net_device *adj_dev, 6303 u16 ref_nr, 6304 struct list_head *dev_list) 6305 { 6306 struct netdev_adjacent *adj; 6307 6308 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n", 6309 dev->name, adj_dev->name, ref_nr); 6310 6311 adj = __netdev_find_adj(adj_dev, dev_list); 6312 6313 if (!adj) { 6314 pr_err("Adjacency does not exist for device %s from %s\n", 6315 dev->name, adj_dev->name); 6316 WARN_ON(1); 6317 return; 6318 } 6319 6320 if (adj->ref_nr > ref_nr) { 6321 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n", 6322 dev->name, adj_dev->name, ref_nr, 6323 adj->ref_nr - ref_nr); 6324 adj->ref_nr -= ref_nr; 6325 return; 6326 } 6327 6328 if (adj->master) 6329 sysfs_remove_link(&(dev->dev.kobj), "master"); 6330 6331 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 6332 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 6333 6334 list_del_rcu(&adj->list); 6335 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n", 6336 adj_dev->name, dev->name, adj_dev->name); 6337 dev_put(adj_dev); 6338 kfree_rcu(adj, rcu); 6339 } 6340 6341 static int __netdev_adjacent_dev_link_lists(struct net_device *dev, 6342 struct net_device *upper_dev, 6343 struct list_head *up_list, 6344 struct list_head *down_list, 6345 void *private, bool master) 6346 { 6347 int ret; 6348 6349 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, 6350 private, master); 6351 if (ret) 6352 return ret; 6353 6354 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, 6355 private, false); 6356 if (ret) { 6357 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list); 6358 return ret; 6359 } 6360 6361 return 0; 6362 } 6363 6364 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev, 6365 struct net_device *upper_dev, 6366 u16 ref_nr, 6367 struct list_head *up_list, 6368 struct list_head *down_list) 6369 { 6370 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list); 6371 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list); 6372 } 6373 6374 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev, 6375 struct net_device *upper_dev, 6376 void *private, bool master) 6377 { 6378 return __netdev_adjacent_dev_link_lists(dev, upper_dev, 6379 &dev->adj_list.upper, 6380 &upper_dev->adj_list.lower, 6381 private, master); 6382 } 6383 6384 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev, 6385 struct net_device *upper_dev) 6386 { 6387 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1, 6388 &dev->adj_list.upper, 6389 &upper_dev->adj_list.lower); 6390 } 6391 6392 static int __netdev_upper_dev_link(struct net_device *dev, 6393 struct net_device *upper_dev, bool master, 6394 void *upper_priv, void *upper_info, 6395 struct netlink_ext_ack *extack) 6396 { 6397 struct netdev_notifier_changeupper_info changeupper_info = { 6398 .info = { 6399 .dev = dev, 6400 .extack = extack, 6401 }, 6402 .upper_dev = upper_dev, 6403 .master = master, 6404 .linking = true, 6405 .upper_info = upper_info, 6406 }; 6407 struct net_device *master_dev; 6408 int ret = 0; 6409 6410 ASSERT_RTNL(); 6411 6412 if (dev == upper_dev) 6413 return -EBUSY; 6414 6415 /* To prevent loops, check if dev is not upper device to upper_dev. */ 6416 if (netdev_has_upper_dev(upper_dev, dev)) 6417 return -EBUSY; 6418 6419 if (!master) { 6420 if (netdev_has_upper_dev(dev, upper_dev)) 6421 return -EEXIST; 6422 } else { 6423 master_dev = netdev_master_upper_dev_get(dev); 6424 if (master_dev) 6425 return master_dev == upper_dev ? -EEXIST : -EBUSY; 6426 } 6427 6428 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 6429 &changeupper_info.info); 6430 ret = notifier_to_errno(ret); 6431 if (ret) 6432 return ret; 6433 6434 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv, 6435 master); 6436 if (ret) 6437 return ret; 6438 6439 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 6440 &changeupper_info.info); 6441 ret = notifier_to_errno(ret); 6442 if (ret) 6443 goto rollback; 6444 6445 return 0; 6446 6447 rollback: 6448 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 6449 6450 return ret; 6451 } 6452 6453 /** 6454 * netdev_upper_dev_link - Add a link to the upper device 6455 * @dev: device 6456 * @upper_dev: new upper device 6457 * @extack: netlink extended ack 6458 * 6459 * Adds a link to device which is upper to this one. The caller must hold 6460 * the RTNL lock. On a failure a negative errno code is returned. 6461 * On success the reference counts are adjusted and the function 6462 * returns zero. 6463 */ 6464 int netdev_upper_dev_link(struct net_device *dev, 6465 struct net_device *upper_dev, 6466 struct netlink_ext_ack *extack) 6467 { 6468 return __netdev_upper_dev_link(dev, upper_dev, false, 6469 NULL, NULL, extack); 6470 } 6471 EXPORT_SYMBOL(netdev_upper_dev_link); 6472 6473 /** 6474 * netdev_master_upper_dev_link - Add a master link to the upper device 6475 * @dev: device 6476 * @upper_dev: new upper device 6477 * @upper_priv: upper device private 6478 * @upper_info: upper info to be passed down via notifier 6479 * @extack: netlink extended ack 6480 * 6481 * Adds a link to device which is upper to this one. In this case, only 6482 * one master upper device can be linked, although other non-master devices 6483 * might be linked as well. The caller must hold the RTNL lock. 6484 * On a failure a negative errno code is returned. On success the reference 6485 * counts are adjusted and the function returns zero. 6486 */ 6487 int netdev_master_upper_dev_link(struct net_device *dev, 6488 struct net_device *upper_dev, 6489 void *upper_priv, void *upper_info, 6490 struct netlink_ext_ack *extack) 6491 { 6492 return __netdev_upper_dev_link(dev, upper_dev, true, 6493 upper_priv, upper_info, extack); 6494 } 6495 EXPORT_SYMBOL(netdev_master_upper_dev_link); 6496 6497 /** 6498 * netdev_upper_dev_unlink - Removes a link to upper device 6499 * @dev: device 6500 * @upper_dev: new upper device 6501 * 6502 * Removes a link to device which is upper to this one. The caller must hold 6503 * the RTNL lock. 6504 */ 6505 void netdev_upper_dev_unlink(struct net_device *dev, 6506 struct net_device *upper_dev) 6507 { 6508 struct netdev_notifier_changeupper_info changeupper_info = { 6509 .info = { 6510 .dev = dev, 6511 }, 6512 .upper_dev = upper_dev, 6513 .linking = false, 6514 }; 6515 6516 ASSERT_RTNL(); 6517 6518 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev; 6519 6520 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 6521 &changeupper_info.info); 6522 6523 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 6524 6525 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 6526 &changeupper_info.info); 6527 } 6528 EXPORT_SYMBOL(netdev_upper_dev_unlink); 6529 6530 /** 6531 * netdev_bonding_info_change - Dispatch event about slave change 6532 * @dev: device 6533 * @bonding_info: info to dispatch 6534 * 6535 * Send NETDEV_BONDING_INFO to netdev notifiers with info. 6536 * The caller must hold the RTNL lock. 6537 */ 6538 void netdev_bonding_info_change(struct net_device *dev, 6539 struct netdev_bonding_info *bonding_info) 6540 { 6541 struct netdev_notifier_bonding_info info = { 6542 .info.dev = dev, 6543 }; 6544 6545 memcpy(&info.bonding_info, bonding_info, 6546 sizeof(struct netdev_bonding_info)); 6547 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, 6548 &info.info); 6549 } 6550 EXPORT_SYMBOL(netdev_bonding_info_change); 6551 6552 static void netdev_adjacent_add_links(struct net_device *dev) 6553 { 6554 struct netdev_adjacent *iter; 6555 6556 struct net *net = dev_net(dev); 6557 6558 list_for_each_entry(iter, &dev->adj_list.upper, list) { 6559 if (!net_eq(net, dev_net(iter->dev))) 6560 continue; 6561 netdev_adjacent_sysfs_add(iter->dev, dev, 6562 &iter->dev->adj_list.lower); 6563 netdev_adjacent_sysfs_add(dev, iter->dev, 6564 &dev->adj_list.upper); 6565 } 6566 6567 list_for_each_entry(iter, &dev->adj_list.lower, list) { 6568 if (!net_eq(net, dev_net(iter->dev))) 6569 continue; 6570 netdev_adjacent_sysfs_add(iter->dev, dev, 6571 &iter->dev->adj_list.upper); 6572 netdev_adjacent_sysfs_add(dev, iter->dev, 6573 &dev->adj_list.lower); 6574 } 6575 } 6576 6577 static void netdev_adjacent_del_links(struct net_device *dev) 6578 { 6579 struct netdev_adjacent *iter; 6580 6581 struct net *net = dev_net(dev); 6582 6583 list_for_each_entry(iter, &dev->adj_list.upper, list) { 6584 if (!net_eq(net, dev_net(iter->dev))) 6585 continue; 6586 netdev_adjacent_sysfs_del(iter->dev, dev->name, 6587 &iter->dev->adj_list.lower); 6588 netdev_adjacent_sysfs_del(dev, iter->dev->name, 6589 &dev->adj_list.upper); 6590 } 6591 6592 list_for_each_entry(iter, &dev->adj_list.lower, list) { 6593 if (!net_eq(net, dev_net(iter->dev))) 6594 continue; 6595 netdev_adjacent_sysfs_del(iter->dev, dev->name, 6596 &iter->dev->adj_list.upper); 6597 netdev_adjacent_sysfs_del(dev, iter->dev->name, 6598 &dev->adj_list.lower); 6599 } 6600 } 6601 6602 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname) 6603 { 6604 struct netdev_adjacent *iter; 6605 6606 struct net *net = dev_net(dev); 6607 6608 list_for_each_entry(iter, &dev->adj_list.upper, list) { 6609 if (!net_eq(net, dev_net(iter->dev))) 6610 continue; 6611 netdev_adjacent_sysfs_del(iter->dev, oldname, 6612 &iter->dev->adj_list.lower); 6613 netdev_adjacent_sysfs_add(iter->dev, dev, 6614 &iter->dev->adj_list.lower); 6615 } 6616 6617 list_for_each_entry(iter, &dev->adj_list.lower, list) { 6618 if (!net_eq(net, dev_net(iter->dev))) 6619 continue; 6620 netdev_adjacent_sysfs_del(iter->dev, oldname, 6621 &iter->dev->adj_list.upper); 6622 netdev_adjacent_sysfs_add(iter->dev, dev, 6623 &iter->dev->adj_list.upper); 6624 } 6625 } 6626 6627 void *netdev_lower_dev_get_private(struct net_device *dev, 6628 struct net_device *lower_dev) 6629 { 6630 struct netdev_adjacent *lower; 6631 6632 if (!lower_dev) 6633 return NULL; 6634 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower); 6635 if (!lower) 6636 return NULL; 6637 6638 return lower->private; 6639 } 6640 EXPORT_SYMBOL(netdev_lower_dev_get_private); 6641 6642 6643 int dev_get_nest_level(struct net_device *dev) 6644 { 6645 struct net_device *lower = NULL; 6646 struct list_head *iter; 6647 int max_nest = -1; 6648 int nest; 6649 6650 ASSERT_RTNL(); 6651 6652 netdev_for_each_lower_dev(dev, lower, iter) { 6653 nest = dev_get_nest_level(lower); 6654 if (max_nest < nest) 6655 max_nest = nest; 6656 } 6657 6658 return max_nest + 1; 6659 } 6660 EXPORT_SYMBOL(dev_get_nest_level); 6661 6662 /** 6663 * netdev_lower_change - Dispatch event about lower device state change 6664 * @lower_dev: device 6665 * @lower_state_info: state to dispatch 6666 * 6667 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info. 6668 * The caller must hold the RTNL lock. 6669 */ 6670 void netdev_lower_state_changed(struct net_device *lower_dev, 6671 void *lower_state_info) 6672 { 6673 struct netdev_notifier_changelowerstate_info changelowerstate_info = { 6674 .info.dev = lower_dev, 6675 }; 6676 6677 ASSERT_RTNL(); 6678 changelowerstate_info.lower_state_info = lower_state_info; 6679 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, 6680 &changelowerstate_info.info); 6681 } 6682 EXPORT_SYMBOL(netdev_lower_state_changed); 6683 6684 static void dev_change_rx_flags(struct net_device *dev, int flags) 6685 { 6686 const struct net_device_ops *ops = dev->netdev_ops; 6687 6688 if (ops->ndo_change_rx_flags) 6689 ops->ndo_change_rx_flags(dev, flags); 6690 } 6691 6692 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify) 6693 { 6694 unsigned int old_flags = dev->flags; 6695 kuid_t uid; 6696 kgid_t gid; 6697 6698 ASSERT_RTNL(); 6699 6700 dev->flags |= IFF_PROMISC; 6701 dev->promiscuity += inc; 6702 if (dev->promiscuity == 0) { 6703 /* 6704 * Avoid overflow. 6705 * If inc causes overflow, untouch promisc and return error. 6706 */ 6707 if (inc < 0) 6708 dev->flags &= ~IFF_PROMISC; 6709 else { 6710 dev->promiscuity -= inc; 6711 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n", 6712 dev->name); 6713 return -EOVERFLOW; 6714 } 6715 } 6716 if (dev->flags != old_flags) { 6717 pr_info("device %s %s promiscuous mode\n", 6718 dev->name, 6719 dev->flags & IFF_PROMISC ? "entered" : "left"); 6720 if (audit_enabled) { 6721 current_uid_gid(&uid, &gid); 6722 audit_log(current->audit_context, GFP_ATOMIC, 6723 AUDIT_ANOM_PROMISCUOUS, 6724 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 6725 dev->name, (dev->flags & IFF_PROMISC), 6726 (old_flags & IFF_PROMISC), 6727 from_kuid(&init_user_ns, audit_get_loginuid(current)), 6728 from_kuid(&init_user_ns, uid), 6729 from_kgid(&init_user_ns, gid), 6730 audit_get_sessionid(current)); 6731 } 6732 6733 dev_change_rx_flags(dev, IFF_PROMISC); 6734 } 6735 if (notify) 6736 __dev_notify_flags(dev, old_flags, IFF_PROMISC); 6737 return 0; 6738 } 6739 6740 /** 6741 * dev_set_promiscuity - update promiscuity count on a device 6742 * @dev: device 6743 * @inc: modifier 6744 * 6745 * Add or remove promiscuity from a device. While the count in the device 6746 * remains above zero the interface remains promiscuous. Once it hits zero 6747 * the device reverts back to normal filtering operation. A negative inc 6748 * value is used to drop promiscuity on the device. 6749 * Return 0 if successful or a negative errno code on error. 6750 */ 6751 int dev_set_promiscuity(struct net_device *dev, int inc) 6752 { 6753 unsigned int old_flags = dev->flags; 6754 int err; 6755 6756 err = __dev_set_promiscuity(dev, inc, true); 6757 if (err < 0) 6758 return err; 6759 if (dev->flags != old_flags) 6760 dev_set_rx_mode(dev); 6761 return err; 6762 } 6763 EXPORT_SYMBOL(dev_set_promiscuity); 6764 6765 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify) 6766 { 6767 unsigned int old_flags = dev->flags, old_gflags = dev->gflags; 6768 6769 ASSERT_RTNL(); 6770 6771 dev->flags |= IFF_ALLMULTI; 6772 dev->allmulti += inc; 6773 if (dev->allmulti == 0) { 6774 /* 6775 * Avoid overflow. 6776 * If inc causes overflow, untouch allmulti and return error. 6777 */ 6778 if (inc < 0) 6779 dev->flags &= ~IFF_ALLMULTI; 6780 else { 6781 dev->allmulti -= inc; 6782 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n", 6783 dev->name); 6784 return -EOVERFLOW; 6785 } 6786 } 6787 if (dev->flags ^ old_flags) { 6788 dev_change_rx_flags(dev, IFF_ALLMULTI); 6789 dev_set_rx_mode(dev); 6790 if (notify) 6791 __dev_notify_flags(dev, old_flags, 6792 dev->gflags ^ old_gflags); 6793 } 6794 return 0; 6795 } 6796 6797 /** 6798 * dev_set_allmulti - update allmulti count on a device 6799 * @dev: device 6800 * @inc: modifier 6801 * 6802 * Add or remove reception of all multicast frames to a device. While the 6803 * count in the device remains above zero the interface remains listening 6804 * to all interfaces. Once it hits zero the device reverts back to normal 6805 * filtering operation. A negative @inc value is used to drop the counter 6806 * when releasing a resource needing all multicasts. 6807 * Return 0 if successful or a negative errno code on error. 6808 */ 6809 6810 int dev_set_allmulti(struct net_device *dev, int inc) 6811 { 6812 return __dev_set_allmulti(dev, inc, true); 6813 } 6814 EXPORT_SYMBOL(dev_set_allmulti); 6815 6816 /* 6817 * Upload unicast and multicast address lists to device and 6818 * configure RX filtering. When the device doesn't support unicast 6819 * filtering it is put in promiscuous mode while unicast addresses 6820 * are present. 6821 */ 6822 void __dev_set_rx_mode(struct net_device *dev) 6823 { 6824 const struct net_device_ops *ops = dev->netdev_ops; 6825 6826 /* dev_open will call this function so the list will stay sane. */ 6827 if (!(dev->flags&IFF_UP)) 6828 return; 6829 6830 if (!netif_device_present(dev)) 6831 return; 6832 6833 if (!(dev->priv_flags & IFF_UNICAST_FLT)) { 6834 /* Unicast addresses changes may only happen under the rtnl, 6835 * therefore calling __dev_set_promiscuity here is safe. 6836 */ 6837 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 6838 __dev_set_promiscuity(dev, 1, false); 6839 dev->uc_promisc = true; 6840 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 6841 __dev_set_promiscuity(dev, -1, false); 6842 dev->uc_promisc = false; 6843 } 6844 } 6845 6846 if (ops->ndo_set_rx_mode) 6847 ops->ndo_set_rx_mode(dev); 6848 } 6849 6850 void dev_set_rx_mode(struct net_device *dev) 6851 { 6852 netif_addr_lock_bh(dev); 6853 __dev_set_rx_mode(dev); 6854 netif_addr_unlock_bh(dev); 6855 } 6856 6857 /** 6858 * dev_get_flags - get flags reported to userspace 6859 * @dev: device 6860 * 6861 * Get the combination of flag bits exported through APIs to userspace. 6862 */ 6863 unsigned int dev_get_flags(const struct net_device *dev) 6864 { 6865 unsigned int flags; 6866 6867 flags = (dev->flags & ~(IFF_PROMISC | 6868 IFF_ALLMULTI | 6869 IFF_RUNNING | 6870 IFF_LOWER_UP | 6871 IFF_DORMANT)) | 6872 (dev->gflags & (IFF_PROMISC | 6873 IFF_ALLMULTI)); 6874 6875 if (netif_running(dev)) { 6876 if (netif_oper_up(dev)) 6877 flags |= IFF_RUNNING; 6878 if (netif_carrier_ok(dev)) 6879 flags |= IFF_LOWER_UP; 6880 if (netif_dormant(dev)) 6881 flags |= IFF_DORMANT; 6882 } 6883 6884 return flags; 6885 } 6886 EXPORT_SYMBOL(dev_get_flags); 6887 6888 int __dev_change_flags(struct net_device *dev, unsigned int flags) 6889 { 6890 unsigned int old_flags = dev->flags; 6891 int ret; 6892 6893 ASSERT_RTNL(); 6894 6895 /* 6896 * Set the flags on our device. 6897 */ 6898 6899 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 6900 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 6901 IFF_AUTOMEDIA)) | 6902 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 6903 IFF_ALLMULTI)); 6904 6905 /* 6906 * Load in the correct multicast list now the flags have changed. 6907 */ 6908 6909 if ((old_flags ^ flags) & IFF_MULTICAST) 6910 dev_change_rx_flags(dev, IFF_MULTICAST); 6911 6912 dev_set_rx_mode(dev); 6913 6914 /* 6915 * Have we downed the interface. We handle IFF_UP ourselves 6916 * according to user attempts to set it, rather than blindly 6917 * setting it. 6918 */ 6919 6920 ret = 0; 6921 if ((old_flags ^ flags) & IFF_UP) { 6922 if (old_flags & IFF_UP) 6923 __dev_close(dev); 6924 else 6925 ret = __dev_open(dev); 6926 } 6927 6928 if ((flags ^ dev->gflags) & IFF_PROMISC) { 6929 int inc = (flags & IFF_PROMISC) ? 1 : -1; 6930 unsigned int old_flags = dev->flags; 6931 6932 dev->gflags ^= IFF_PROMISC; 6933 6934 if (__dev_set_promiscuity(dev, inc, false) >= 0) 6935 if (dev->flags != old_flags) 6936 dev_set_rx_mode(dev); 6937 } 6938 6939 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 6940 * is important. Some (broken) drivers set IFF_PROMISC, when 6941 * IFF_ALLMULTI is requested not asking us and not reporting. 6942 */ 6943 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 6944 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 6945 6946 dev->gflags ^= IFF_ALLMULTI; 6947 __dev_set_allmulti(dev, inc, false); 6948 } 6949 6950 return ret; 6951 } 6952 6953 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags, 6954 unsigned int gchanges) 6955 { 6956 unsigned int changes = dev->flags ^ old_flags; 6957 6958 if (gchanges) 6959 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC); 6960 6961 if (changes & IFF_UP) { 6962 if (dev->flags & IFF_UP) 6963 call_netdevice_notifiers(NETDEV_UP, dev); 6964 else 6965 call_netdevice_notifiers(NETDEV_DOWN, dev); 6966 } 6967 6968 if (dev->flags & IFF_UP && 6969 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) { 6970 struct netdev_notifier_change_info change_info = { 6971 .info = { 6972 .dev = dev, 6973 }, 6974 .flags_changed = changes, 6975 }; 6976 6977 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info); 6978 } 6979 } 6980 6981 /** 6982 * dev_change_flags - change device settings 6983 * @dev: device 6984 * @flags: device state flags 6985 * 6986 * Change settings on device based state flags. The flags are 6987 * in the userspace exported format. 6988 */ 6989 int dev_change_flags(struct net_device *dev, unsigned int flags) 6990 { 6991 int ret; 6992 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags; 6993 6994 ret = __dev_change_flags(dev, flags); 6995 if (ret < 0) 6996 return ret; 6997 6998 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags); 6999 __dev_notify_flags(dev, old_flags, changes); 7000 return ret; 7001 } 7002 EXPORT_SYMBOL(dev_change_flags); 7003 7004 int __dev_set_mtu(struct net_device *dev, int new_mtu) 7005 { 7006 const struct net_device_ops *ops = dev->netdev_ops; 7007 7008 if (ops->ndo_change_mtu) 7009 return ops->ndo_change_mtu(dev, new_mtu); 7010 7011 dev->mtu = new_mtu; 7012 return 0; 7013 } 7014 EXPORT_SYMBOL(__dev_set_mtu); 7015 7016 /** 7017 * dev_set_mtu - Change maximum transfer unit 7018 * @dev: device 7019 * @new_mtu: new transfer unit 7020 * 7021 * Change the maximum transfer size of the network device. 7022 */ 7023 int dev_set_mtu(struct net_device *dev, int new_mtu) 7024 { 7025 int err, orig_mtu; 7026 7027 if (new_mtu == dev->mtu) 7028 return 0; 7029 7030 /* MTU must be positive, and in range */ 7031 if (new_mtu < 0 || new_mtu < dev->min_mtu) { 7032 net_err_ratelimited("%s: Invalid MTU %d requested, hw min %d\n", 7033 dev->name, new_mtu, dev->min_mtu); 7034 return -EINVAL; 7035 } 7036 7037 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) { 7038 net_err_ratelimited("%s: Invalid MTU %d requested, hw max %d\n", 7039 dev->name, new_mtu, dev->max_mtu); 7040 return -EINVAL; 7041 } 7042 7043 if (!netif_device_present(dev)) 7044 return -ENODEV; 7045 7046 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev); 7047 err = notifier_to_errno(err); 7048 if (err) 7049 return err; 7050 7051 orig_mtu = dev->mtu; 7052 err = __dev_set_mtu(dev, new_mtu); 7053 7054 if (!err) { 7055 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 7056 err = notifier_to_errno(err); 7057 if (err) { 7058 /* setting mtu back and notifying everyone again, 7059 * so that they have a chance to revert changes. 7060 */ 7061 __dev_set_mtu(dev, orig_mtu); 7062 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 7063 } 7064 } 7065 return err; 7066 } 7067 EXPORT_SYMBOL(dev_set_mtu); 7068 7069 /** 7070 * dev_change_tx_queue_len - Change TX queue length of a netdevice 7071 * @dev: device 7072 * @new_len: new tx queue length 7073 */ 7074 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len) 7075 { 7076 unsigned int orig_len = dev->tx_queue_len; 7077 int res; 7078 7079 if (new_len != (unsigned int)new_len) 7080 return -ERANGE; 7081 7082 if (new_len != orig_len) { 7083 dev->tx_queue_len = new_len; 7084 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev); 7085 res = notifier_to_errno(res); 7086 if (res) { 7087 netdev_err(dev, 7088 "refused to change device tx_queue_len\n"); 7089 dev->tx_queue_len = orig_len; 7090 return res; 7091 } 7092 return dev_qdisc_change_tx_queue_len(dev); 7093 } 7094 7095 return 0; 7096 } 7097 7098 /** 7099 * dev_set_group - Change group this device belongs to 7100 * @dev: device 7101 * @new_group: group this device should belong to 7102 */ 7103 void dev_set_group(struct net_device *dev, int new_group) 7104 { 7105 dev->group = new_group; 7106 } 7107 EXPORT_SYMBOL(dev_set_group); 7108 7109 /** 7110 * dev_set_mac_address - Change Media Access Control Address 7111 * @dev: device 7112 * @sa: new address 7113 * 7114 * Change the hardware (MAC) address of the device 7115 */ 7116 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa) 7117 { 7118 const struct net_device_ops *ops = dev->netdev_ops; 7119 int err; 7120 7121 if (!ops->ndo_set_mac_address) 7122 return -EOPNOTSUPP; 7123 if (sa->sa_family != dev->type) 7124 return -EINVAL; 7125 if (!netif_device_present(dev)) 7126 return -ENODEV; 7127 err = ops->ndo_set_mac_address(dev, sa); 7128 if (err) 7129 return err; 7130 dev->addr_assign_type = NET_ADDR_SET; 7131 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 7132 add_device_randomness(dev->dev_addr, dev->addr_len); 7133 return 0; 7134 } 7135 EXPORT_SYMBOL(dev_set_mac_address); 7136 7137 /** 7138 * dev_change_carrier - Change device carrier 7139 * @dev: device 7140 * @new_carrier: new value 7141 * 7142 * Change device carrier 7143 */ 7144 int dev_change_carrier(struct net_device *dev, bool new_carrier) 7145 { 7146 const struct net_device_ops *ops = dev->netdev_ops; 7147 7148 if (!ops->ndo_change_carrier) 7149 return -EOPNOTSUPP; 7150 if (!netif_device_present(dev)) 7151 return -ENODEV; 7152 return ops->ndo_change_carrier(dev, new_carrier); 7153 } 7154 EXPORT_SYMBOL(dev_change_carrier); 7155 7156 /** 7157 * dev_get_phys_port_id - Get device physical port ID 7158 * @dev: device 7159 * @ppid: port ID 7160 * 7161 * Get device physical port ID 7162 */ 7163 int dev_get_phys_port_id(struct net_device *dev, 7164 struct netdev_phys_item_id *ppid) 7165 { 7166 const struct net_device_ops *ops = dev->netdev_ops; 7167 7168 if (!ops->ndo_get_phys_port_id) 7169 return -EOPNOTSUPP; 7170 return ops->ndo_get_phys_port_id(dev, ppid); 7171 } 7172 EXPORT_SYMBOL(dev_get_phys_port_id); 7173 7174 /** 7175 * dev_get_phys_port_name - Get device physical port name 7176 * @dev: device 7177 * @name: port name 7178 * @len: limit of bytes to copy to name 7179 * 7180 * Get device physical port name 7181 */ 7182 int dev_get_phys_port_name(struct net_device *dev, 7183 char *name, size_t len) 7184 { 7185 const struct net_device_ops *ops = dev->netdev_ops; 7186 7187 if (!ops->ndo_get_phys_port_name) 7188 return -EOPNOTSUPP; 7189 return ops->ndo_get_phys_port_name(dev, name, len); 7190 } 7191 EXPORT_SYMBOL(dev_get_phys_port_name); 7192 7193 /** 7194 * dev_change_proto_down - update protocol port state information 7195 * @dev: device 7196 * @proto_down: new value 7197 * 7198 * This info can be used by switch drivers to set the phys state of the 7199 * port. 7200 */ 7201 int dev_change_proto_down(struct net_device *dev, bool proto_down) 7202 { 7203 const struct net_device_ops *ops = dev->netdev_ops; 7204 7205 if (!ops->ndo_change_proto_down) 7206 return -EOPNOTSUPP; 7207 if (!netif_device_present(dev)) 7208 return -ENODEV; 7209 return ops->ndo_change_proto_down(dev, proto_down); 7210 } 7211 EXPORT_SYMBOL(dev_change_proto_down); 7212 7213 void __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op, 7214 struct netdev_bpf *xdp) 7215 { 7216 memset(xdp, 0, sizeof(*xdp)); 7217 xdp->command = XDP_QUERY_PROG; 7218 7219 /* Query must always succeed. */ 7220 WARN_ON(bpf_op(dev, xdp) < 0); 7221 } 7222 7223 static u8 __dev_xdp_attached(struct net_device *dev, bpf_op_t bpf_op) 7224 { 7225 struct netdev_bpf xdp; 7226 7227 __dev_xdp_query(dev, bpf_op, &xdp); 7228 7229 return xdp.prog_attached; 7230 } 7231 7232 static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op, 7233 struct netlink_ext_ack *extack, u32 flags, 7234 struct bpf_prog *prog) 7235 { 7236 struct netdev_bpf xdp; 7237 7238 memset(&xdp, 0, sizeof(xdp)); 7239 if (flags & XDP_FLAGS_HW_MODE) 7240 xdp.command = XDP_SETUP_PROG_HW; 7241 else 7242 xdp.command = XDP_SETUP_PROG; 7243 xdp.extack = extack; 7244 xdp.flags = flags; 7245 xdp.prog = prog; 7246 7247 return bpf_op(dev, &xdp); 7248 } 7249 7250 static void dev_xdp_uninstall(struct net_device *dev) 7251 { 7252 struct netdev_bpf xdp; 7253 bpf_op_t ndo_bpf; 7254 7255 /* Remove generic XDP */ 7256 WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL)); 7257 7258 /* Remove from the driver */ 7259 ndo_bpf = dev->netdev_ops->ndo_bpf; 7260 if (!ndo_bpf) 7261 return; 7262 7263 __dev_xdp_query(dev, ndo_bpf, &xdp); 7264 if (xdp.prog_attached == XDP_ATTACHED_NONE) 7265 return; 7266 7267 /* Program removal should always succeed */ 7268 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags, NULL)); 7269 } 7270 7271 /** 7272 * dev_change_xdp_fd - set or clear a bpf program for a device rx path 7273 * @dev: device 7274 * @extack: netlink extended ack 7275 * @fd: new program fd or negative value to clear 7276 * @flags: xdp-related flags 7277 * 7278 * Set or clear a bpf program for a device 7279 */ 7280 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack, 7281 int fd, u32 flags) 7282 { 7283 const struct net_device_ops *ops = dev->netdev_ops; 7284 struct bpf_prog *prog = NULL; 7285 bpf_op_t bpf_op, bpf_chk; 7286 int err; 7287 7288 ASSERT_RTNL(); 7289 7290 bpf_op = bpf_chk = ops->ndo_bpf; 7291 if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE))) 7292 return -EOPNOTSUPP; 7293 if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE)) 7294 bpf_op = generic_xdp_install; 7295 if (bpf_op == bpf_chk) 7296 bpf_chk = generic_xdp_install; 7297 7298 if (fd >= 0) { 7299 if (bpf_chk && __dev_xdp_attached(dev, bpf_chk)) 7300 return -EEXIST; 7301 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && 7302 __dev_xdp_attached(dev, bpf_op)) 7303 return -EBUSY; 7304 7305 prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP, 7306 bpf_op == ops->ndo_bpf); 7307 if (IS_ERR(prog)) 7308 return PTR_ERR(prog); 7309 7310 if (!(flags & XDP_FLAGS_HW_MODE) && 7311 bpf_prog_is_dev_bound(prog->aux)) { 7312 NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported"); 7313 bpf_prog_put(prog); 7314 return -EINVAL; 7315 } 7316 } 7317 7318 err = dev_xdp_install(dev, bpf_op, extack, flags, prog); 7319 if (err < 0 && prog) 7320 bpf_prog_put(prog); 7321 7322 return err; 7323 } 7324 7325 /** 7326 * dev_new_index - allocate an ifindex 7327 * @net: the applicable net namespace 7328 * 7329 * Returns a suitable unique value for a new device interface 7330 * number. The caller must hold the rtnl semaphore or the 7331 * dev_base_lock to be sure it remains unique. 7332 */ 7333 static int dev_new_index(struct net *net) 7334 { 7335 int ifindex = net->ifindex; 7336 7337 for (;;) { 7338 if (++ifindex <= 0) 7339 ifindex = 1; 7340 if (!__dev_get_by_index(net, ifindex)) 7341 return net->ifindex = ifindex; 7342 } 7343 } 7344 7345 /* Delayed registration/unregisteration */ 7346 static LIST_HEAD(net_todo_list); 7347 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq); 7348 7349 static void net_set_todo(struct net_device *dev) 7350 { 7351 list_add_tail(&dev->todo_list, &net_todo_list); 7352 dev_net(dev)->dev_unreg_count++; 7353 } 7354 7355 static void rollback_registered_many(struct list_head *head) 7356 { 7357 struct net_device *dev, *tmp; 7358 LIST_HEAD(close_head); 7359 7360 BUG_ON(dev_boot_phase); 7361 ASSERT_RTNL(); 7362 7363 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 7364 /* Some devices call without registering 7365 * for initialization unwind. Remove those 7366 * devices and proceed with the remaining. 7367 */ 7368 if (dev->reg_state == NETREG_UNINITIALIZED) { 7369 pr_debug("unregister_netdevice: device %s/%p never was registered\n", 7370 dev->name, dev); 7371 7372 WARN_ON(1); 7373 list_del(&dev->unreg_list); 7374 continue; 7375 } 7376 dev->dismantle = true; 7377 BUG_ON(dev->reg_state != NETREG_REGISTERED); 7378 } 7379 7380 /* If device is running, close it first. */ 7381 list_for_each_entry(dev, head, unreg_list) 7382 list_add_tail(&dev->close_list, &close_head); 7383 dev_close_many(&close_head, true); 7384 7385 list_for_each_entry(dev, head, unreg_list) { 7386 /* And unlink it from device chain. */ 7387 unlist_netdevice(dev); 7388 7389 dev->reg_state = NETREG_UNREGISTERING; 7390 } 7391 flush_all_backlogs(); 7392 7393 synchronize_net(); 7394 7395 list_for_each_entry(dev, head, unreg_list) { 7396 struct sk_buff *skb = NULL; 7397 7398 /* Shutdown queueing discipline. */ 7399 dev_shutdown(dev); 7400 7401 dev_xdp_uninstall(dev); 7402 7403 /* Notify protocols, that we are about to destroy 7404 * this device. They should clean all the things. 7405 */ 7406 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 7407 7408 if (!dev->rtnl_link_ops || 7409 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 7410 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0, 7411 GFP_KERNEL, NULL, 0); 7412 7413 /* 7414 * Flush the unicast and multicast chains 7415 */ 7416 dev_uc_flush(dev); 7417 dev_mc_flush(dev); 7418 7419 if (dev->netdev_ops->ndo_uninit) 7420 dev->netdev_ops->ndo_uninit(dev); 7421 7422 if (skb) 7423 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL); 7424 7425 /* Notifier chain MUST detach us all upper devices. */ 7426 WARN_ON(netdev_has_any_upper_dev(dev)); 7427 WARN_ON(netdev_has_any_lower_dev(dev)); 7428 7429 /* Remove entries from kobject tree */ 7430 netdev_unregister_kobject(dev); 7431 #ifdef CONFIG_XPS 7432 /* Remove XPS queueing entries */ 7433 netif_reset_xps_queues_gt(dev, 0); 7434 #endif 7435 } 7436 7437 synchronize_net(); 7438 7439 list_for_each_entry(dev, head, unreg_list) 7440 dev_put(dev); 7441 } 7442 7443 static void rollback_registered(struct net_device *dev) 7444 { 7445 LIST_HEAD(single); 7446 7447 list_add(&dev->unreg_list, &single); 7448 rollback_registered_many(&single); 7449 list_del(&single); 7450 } 7451 7452 static netdev_features_t netdev_sync_upper_features(struct net_device *lower, 7453 struct net_device *upper, netdev_features_t features) 7454 { 7455 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 7456 netdev_features_t feature; 7457 int feature_bit; 7458 7459 for_each_netdev_feature(&upper_disables, feature_bit) { 7460 feature = __NETIF_F_BIT(feature_bit); 7461 if (!(upper->wanted_features & feature) 7462 && (features & feature)) { 7463 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n", 7464 &feature, upper->name); 7465 features &= ~feature; 7466 } 7467 } 7468 7469 return features; 7470 } 7471 7472 static void netdev_sync_lower_features(struct net_device *upper, 7473 struct net_device *lower, netdev_features_t features) 7474 { 7475 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 7476 netdev_features_t feature; 7477 int feature_bit; 7478 7479 for_each_netdev_feature(&upper_disables, feature_bit) { 7480 feature = __NETIF_F_BIT(feature_bit); 7481 if (!(features & feature) && (lower->features & feature)) { 7482 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n", 7483 &feature, lower->name); 7484 lower->wanted_features &= ~feature; 7485 netdev_update_features(lower); 7486 7487 if (unlikely(lower->features & feature)) 7488 netdev_WARN(upper, "failed to disable %pNF on %s!\n", 7489 &feature, lower->name); 7490 } 7491 } 7492 } 7493 7494 static netdev_features_t netdev_fix_features(struct net_device *dev, 7495 netdev_features_t features) 7496 { 7497 /* Fix illegal checksum combinations */ 7498 if ((features & NETIF_F_HW_CSUM) && 7499 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 7500 netdev_warn(dev, "mixed HW and IP checksum settings.\n"); 7501 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 7502 } 7503 7504 /* TSO requires that SG is present as well. */ 7505 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { 7506 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); 7507 features &= ~NETIF_F_ALL_TSO; 7508 } 7509 7510 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) && 7511 !(features & NETIF_F_IP_CSUM)) { 7512 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n"); 7513 features &= ~NETIF_F_TSO; 7514 features &= ~NETIF_F_TSO_ECN; 7515 } 7516 7517 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) && 7518 !(features & NETIF_F_IPV6_CSUM)) { 7519 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n"); 7520 features &= ~NETIF_F_TSO6; 7521 } 7522 7523 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */ 7524 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO)) 7525 features &= ~NETIF_F_TSO_MANGLEID; 7526 7527 /* TSO ECN requires that TSO is present as well. */ 7528 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) 7529 features &= ~NETIF_F_TSO_ECN; 7530 7531 /* Software GSO depends on SG. */ 7532 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 7533 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 7534 features &= ~NETIF_F_GSO; 7535 } 7536 7537 /* GSO partial features require GSO partial be set */ 7538 if ((features & dev->gso_partial_features) && 7539 !(features & NETIF_F_GSO_PARTIAL)) { 7540 netdev_dbg(dev, 7541 "Dropping partially supported GSO features since no GSO partial.\n"); 7542 features &= ~dev->gso_partial_features; 7543 } 7544 7545 if (!(features & NETIF_F_RXCSUM)) { 7546 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet 7547 * successfully merged by hardware must also have the 7548 * checksum verified by hardware. If the user does not 7549 * want to enable RXCSUM, logically, we should disable GRO_HW. 7550 */ 7551 if (features & NETIF_F_GRO_HW) { 7552 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n"); 7553 features &= ~NETIF_F_GRO_HW; 7554 } 7555 } 7556 7557 return features; 7558 } 7559 7560 int __netdev_update_features(struct net_device *dev) 7561 { 7562 struct net_device *upper, *lower; 7563 netdev_features_t features; 7564 struct list_head *iter; 7565 int err = -1; 7566 7567 ASSERT_RTNL(); 7568 7569 features = netdev_get_wanted_features(dev); 7570 7571 if (dev->netdev_ops->ndo_fix_features) 7572 features = dev->netdev_ops->ndo_fix_features(dev, features); 7573 7574 /* driver might be less strict about feature dependencies */ 7575 features = netdev_fix_features(dev, features); 7576 7577 /* some features can't be enabled if they're off an an upper device */ 7578 netdev_for_each_upper_dev_rcu(dev, upper, iter) 7579 features = netdev_sync_upper_features(dev, upper, features); 7580 7581 if (dev->features == features) 7582 goto sync_lower; 7583 7584 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n", 7585 &dev->features, &features); 7586 7587 if (dev->netdev_ops->ndo_set_features) 7588 err = dev->netdev_ops->ndo_set_features(dev, features); 7589 else 7590 err = 0; 7591 7592 if (unlikely(err < 0)) { 7593 netdev_err(dev, 7594 "set_features() failed (%d); wanted %pNF, left %pNF\n", 7595 err, &features, &dev->features); 7596 /* return non-0 since some features might have changed and 7597 * it's better to fire a spurious notification than miss it 7598 */ 7599 return -1; 7600 } 7601 7602 sync_lower: 7603 /* some features must be disabled on lower devices when disabled 7604 * on an upper device (think: bonding master or bridge) 7605 */ 7606 netdev_for_each_lower_dev(dev, lower, iter) 7607 netdev_sync_lower_features(dev, lower, features); 7608 7609 if (!err) { 7610 netdev_features_t diff = features ^ dev->features; 7611 7612 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) { 7613 /* udp_tunnel_{get,drop}_rx_info both need 7614 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the 7615 * device, or they won't do anything. 7616 * Thus we need to update dev->features 7617 * *before* calling udp_tunnel_get_rx_info, 7618 * but *after* calling udp_tunnel_drop_rx_info. 7619 */ 7620 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) { 7621 dev->features = features; 7622 udp_tunnel_get_rx_info(dev); 7623 } else { 7624 udp_tunnel_drop_rx_info(dev); 7625 } 7626 } 7627 7628 dev->features = features; 7629 } 7630 7631 return err < 0 ? 0 : 1; 7632 } 7633 7634 /** 7635 * netdev_update_features - recalculate device features 7636 * @dev: the device to check 7637 * 7638 * Recalculate dev->features set and send notifications if it 7639 * has changed. Should be called after driver or hardware dependent 7640 * conditions might have changed that influence the features. 7641 */ 7642 void netdev_update_features(struct net_device *dev) 7643 { 7644 if (__netdev_update_features(dev)) 7645 netdev_features_change(dev); 7646 } 7647 EXPORT_SYMBOL(netdev_update_features); 7648 7649 /** 7650 * netdev_change_features - recalculate device features 7651 * @dev: the device to check 7652 * 7653 * Recalculate dev->features set and send notifications even 7654 * if they have not changed. Should be called instead of 7655 * netdev_update_features() if also dev->vlan_features might 7656 * have changed to allow the changes to be propagated to stacked 7657 * VLAN devices. 7658 */ 7659 void netdev_change_features(struct net_device *dev) 7660 { 7661 __netdev_update_features(dev); 7662 netdev_features_change(dev); 7663 } 7664 EXPORT_SYMBOL(netdev_change_features); 7665 7666 /** 7667 * netif_stacked_transfer_operstate - transfer operstate 7668 * @rootdev: the root or lower level device to transfer state from 7669 * @dev: the device to transfer operstate to 7670 * 7671 * Transfer operational state from root to device. This is normally 7672 * called when a stacking relationship exists between the root 7673 * device and the device(a leaf device). 7674 */ 7675 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 7676 struct net_device *dev) 7677 { 7678 if (rootdev->operstate == IF_OPER_DORMANT) 7679 netif_dormant_on(dev); 7680 else 7681 netif_dormant_off(dev); 7682 7683 if (netif_carrier_ok(rootdev)) 7684 netif_carrier_on(dev); 7685 else 7686 netif_carrier_off(dev); 7687 } 7688 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 7689 7690 static int netif_alloc_rx_queues(struct net_device *dev) 7691 { 7692 unsigned int i, count = dev->num_rx_queues; 7693 struct netdev_rx_queue *rx; 7694 size_t sz = count * sizeof(*rx); 7695 int err = 0; 7696 7697 BUG_ON(count < 1); 7698 7699 rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 7700 if (!rx) 7701 return -ENOMEM; 7702 7703 dev->_rx = rx; 7704 7705 for (i = 0; i < count; i++) { 7706 rx[i].dev = dev; 7707 7708 /* XDP RX-queue setup */ 7709 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i); 7710 if (err < 0) 7711 goto err_rxq_info; 7712 } 7713 return 0; 7714 7715 err_rxq_info: 7716 /* Rollback successful reg's and free other resources */ 7717 while (i--) 7718 xdp_rxq_info_unreg(&rx[i].xdp_rxq); 7719 kvfree(dev->_rx); 7720 dev->_rx = NULL; 7721 return err; 7722 } 7723 7724 static void netif_free_rx_queues(struct net_device *dev) 7725 { 7726 unsigned int i, count = dev->num_rx_queues; 7727 7728 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */ 7729 if (!dev->_rx) 7730 return; 7731 7732 for (i = 0; i < count; i++) 7733 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq); 7734 7735 kvfree(dev->_rx); 7736 } 7737 7738 static void netdev_init_one_queue(struct net_device *dev, 7739 struct netdev_queue *queue, void *_unused) 7740 { 7741 /* Initialize queue lock */ 7742 spin_lock_init(&queue->_xmit_lock); 7743 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); 7744 queue->xmit_lock_owner = -1; 7745 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 7746 queue->dev = dev; 7747 #ifdef CONFIG_BQL 7748 dql_init(&queue->dql, HZ); 7749 #endif 7750 } 7751 7752 static void netif_free_tx_queues(struct net_device *dev) 7753 { 7754 kvfree(dev->_tx); 7755 } 7756 7757 static int netif_alloc_netdev_queues(struct net_device *dev) 7758 { 7759 unsigned int count = dev->num_tx_queues; 7760 struct netdev_queue *tx; 7761 size_t sz = count * sizeof(*tx); 7762 7763 if (count < 1 || count > 0xffff) 7764 return -EINVAL; 7765 7766 tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 7767 if (!tx) 7768 return -ENOMEM; 7769 7770 dev->_tx = tx; 7771 7772 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 7773 spin_lock_init(&dev->tx_global_lock); 7774 7775 return 0; 7776 } 7777 7778 void netif_tx_stop_all_queues(struct net_device *dev) 7779 { 7780 unsigned int i; 7781 7782 for (i = 0; i < dev->num_tx_queues; i++) { 7783 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 7784 7785 netif_tx_stop_queue(txq); 7786 } 7787 } 7788 EXPORT_SYMBOL(netif_tx_stop_all_queues); 7789 7790 /** 7791 * register_netdevice - register a network device 7792 * @dev: device to register 7793 * 7794 * Take a completed network device structure and add it to the kernel 7795 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 7796 * chain. 0 is returned on success. A negative errno code is returned 7797 * on a failure to set up the device, or if the name is a duplicate. 7798 * 7799 * Callers must hold the rtnl semaphore. You may want 7800 * register_netdev() instead of this. 7801 * 7802 * BUGS: 7803 * The locking appears insufficient to guarantee two parallel registers 7804 * will not get the same name. 7805 */ 7806 7807 int register_netdevice(struct net_device *dev) 7808 { 7809 int ret; 7810 struct net *net = dev_net(dev); 7811 7812 BUG_ON(dev_boot_phase); 7813 ASSERT_RTNL(); 7814 7815 might_sleep(); 7816 7817 /* When net_device's are persistent, this will be fatal. */ 7818 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 7819 BUG_ON(!net); 7820 7821 spin_lock_init(&dev->addr_list_lock); 7822 netdev_set_addr_lockdep_class(dev); 7823 7824 ret = dev_get_valid_name(net, dev, dev->name); 7825 if (ret < 0) 7826 goto out; 7827 7828 /* Init, if this function is available */ 7829 if (dev->netdev_ops->ndo_init) { 7830 ret = dev->netdev_ops->ndo_init(dev); 7831 if (ret) { 7832 if (ret > 0) 7833 ret = -EIO; 7834 goto out; 7835 } 7836 } 7837 7838 if (((dev->hw_features | dev->features) & 7839 NETIF_F_HW_VLAN_CTAG_FILTER) && 7840 (!dev->netdev_ops->ndo_vlan_rx_add_vid || 7841 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) { 7842 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n"); 7843 ret = -EINVAL; 7844 goto err_uninit; 7845 } 7846 7847 ret = -EBUSY; 7848 if (!dev->ifindex) 7849 dev->ifindex = dev_new_index(net); 7850 else if (__dev_get_by_index(net, dev->ifindex)) 7851 goto err_uninit; 7852 7853 /* Transfer changeable features to wanted_features and enable 7854 * software offloads (GSO and GRO). 7855 */ 7856 dev->hw_features |= NETIF_F_SOFT_FEATURES; 7857 dev->features |= NETIF_F_SOFT_FEATURES; 7858 7859 if (dev->netdev_ops->ndo_udp_tunnel_add) { 7860 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT; 7861 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT; 7862 } 7863 7864 dev->wanted_features = dev->features & dev->hw_features; 7865 7866 if (!(dev->flags & IFF_LOOPBACK)) 7867 dev->hw_features |= NETIF_F_NOCACHE_COPY; 7868 7869 /* If IPv4 TCP segmentation offload is supported we should also 7870 * allow the device to enable segmenting the frame with the option 7871 * of ignoring a static IP ID value. This doesn't enable the 7872 * feature itself but allows the user to enable it later. 7873 */ 7874 if (dev->hw_features & NETIF_F_TSO) 7875 dev->hw_features |= NETIF_F_TSO_MANGLEID; 7876 if (dev->vlan_features & NETIF_F_TSO) 7877 dev->vlan_features |= NETIF_F_TSO_MANGLEID; 7878 if (dev->mpls_features & NETIF_F_TSO) 7879 dev->mpls_features |= NETIF_F_TSO_MANGLEID; 7880 if (dev->hw_enc_features & NETIF_F_TSO) 7881 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 7882 7883 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. 7884 */ 7885 dev->vlan_features |= NETIF_F_HIGHDMA; 7886 7887 /* Make NETIF_F_SG inheritable to tunnel devices. 7888 */ 7889 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL; 7890 7891 /* Make NETIF_F_SG inheritable to MPLS. 7892 */ 7893 dev->mpls_features |= NETIF_F_SG; 7894 7895 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 7896 ret = notifier_to_errno(ret); 7897 if (ret) 7898 goto err_uninit; 7899 7900 ret = netdev_register_kobject(dev); 7901 if (ret) 7902 goto err_uninit; 7903 dev->reg_state = NETREG_REGISTERED; 7904 7905 __netdev_update_features(dev); 7906 7907 /* 7908 * Default initial state at registry is that the 7909 * device is present. 7910 */ 7911 7912 set_bit(__LINK_STATE_PRESENT, &dev->state); 7913 7914 linkwatch_init_dev(dev); 7915 7916 dev_init_scheduler(dev); 7917 dev_hold(dev); 7918 list_netdevice(dev); 7919 add_device_randomness(dev->dev_addr, dev->addr_len); 7920 7921 /* If the device has permanent device address, driver should 7922 * set dev_addr and also addr_assign_type should be set to 7923 * NET_ADDR_PERM (default value). 7924 */ 7925 if (dev->addr_assign_type == NET_ADDR_PERM) 7926 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); 7927 7928 /* Notify protocols, that a new device appeared. */ 7929 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 7930 ret = notifier_to_errno(ret); 7931 if (ret) { 7932 rollback_registered(dev); 7933 dev->reg_state = NETREG_UNREGISTERED; 7934 } 7935 /* 7936 * Prevent userspace races by waiting until the network 7937 * device is fully setup before sending notifications. 7938 */ 7939 if (!dev->rtnl_link_ops || 7940 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 7941 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 7942 7943 out: 7944 return ret; 7945 7946 err_uninit: 7947 if (dev->netdev_ops->ndo_uninit) 7948 dev->netdev_ops->ndo_uninit(dev); 7949 if (dev->priv_destructor) 7950 dev->priv_destructor(dev); 7951 goto out; 7952 } 7953 EXPORT_SYMBOL(register_netdevice); 7954 7955 /** 7956 * init_dummy_netdev - init a dummy network device for NAPI 7957 * @dev: device to init 7958 * 7959 * This takes a network device structure and initialize the minimum 7960 * amount of fields so it can be used to schedule NAPI polls without 7961 * registering a full blown interface. This is to be used by drivers 7962 * that need to tie several hardware interfaces to a single NAPI 7963 * poll scheduler due to HW limitations. 7964 */ 7965 int init_dummy_netdev(struct net_device *dev) 7966 { 7967 /* Clear everything. Note we don't initialize spinlocks 7968 * are they aren't supposed to be taken by any of the 7969 * NAPI code and this dummy netdev is supposed to be 7970 * only ever used for NAPI polls 7971 */ 7972 memset(dev, 0, sizeof(struct net_device)); 7973 7974 /* make sure we BUG if trying to hit standard 7975 * register/unregister code path 7976 */ 7977 dev->reg_state = NETREG_DUMMY; 7978 7979 /* NAPI wants this */ 7980 INIT_LIST_HEAD(&dev->napi_list); 7981 7982 /* a dummy interface is started by default */ 7983 set_bit(__LINK_STATE_PRESENT, &dev->state); 7984 set_bit(__LINK_STATE_START, &dev->state); 7985 7986 /* Note : We dont allocate pcpu_refcnt for dummy devices, 7987 * because users of this 'device' dont need to change 7988 * its refcount. 7989 */ 7990 7991 return 0; 7992 } 7993 EXPORT_SYMBOL_GPL(init_dummy_netdev); 7994 7995 7996 /** 7997 * register_netdev - register a network device 7998 * @dev: device to register 7999 * 8000 * Take a completed network device structure and add it to the kernel 8001 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 8002 * chain. 0 is returned on success. A negative errno code is returned 8003 * on a failure to set up the device, or if the name is a duplicate. 8004 * 8005 * This is a wrapper around register_netdevice that takes the rtnl semaphore 8006 * and expands the device name if you passed a format string to 8007 * alloc_netdev. 8008 */ 8009 int register_netdev(struct net_device *dev) 8010 { 8011 int err; 8012 8013 rtnl_lock(); 8014 err = register_netdevice(dev); 8015 rtnl_unlock(); 8016 return err; 8017 } 8018 EXPORT_SYMBOL(register_netdev); 8019 8020 int netdev_refcnt_read(const struct net_device *dev) 8021 { 8022 int i, refcnt = 0; 8023 8024 for_each_possible_cpu(i) 8025 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 8026 return refcnt; 8027 } 8028 EXPORT_SYMBOL(netdev_refcnt_read); 8029 8030 /** 8031 * netdev_wait_allrefs - wait until all references are gone. 8032 * @dev: target net_device 8033 * 8034 * This is called when unregistering network devices. 8035 * 8036 * Any protocol or device that holds a reference should register 8037 * for netdevice notification, and cleanup and put back the 8038 * reference if they receive an UNREGISTER event. 8039 * We can get stuck here if buggy protocols don't correctly 8040 * call dev_put. 8041 */ 8042 static void netdev_wait_allrefs(struct net_device *dev) 8043 { 8044 unsigned long rebroadcast_time, warning_time; 8045 int refcnt; 8046 8047 linkwatch_forget_dev(dev); 8048 8049 rebroadcast_time = warning_time = jiffies; 8050 refcnt = netdev_refcnt_read(dev); 8051 8052 while (refcnt != 0) { 8053 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 8054 rtnl_lock(); 8055 8056 /* Rebroadcast unregister notification */ 8057 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 8058 8059 __rtnl_unlock(); 8060 rcu_barrier(); 8061 rtnl_lock(); 8062 8063 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 8064 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 8065 &dev->state)) { 8066 /* We must not have linkwatch events 8067 * pending on unregister. If this 8068 * happens, we simply run the queue 8069 * unscheduled, resulting in a noop 8070 * for this device. 8071 */ 8072 linkwatch_run_queue(); 8073 } 8074 8075 __rtnl_unlock(); 8076 8077 rebroadcast_time = jiffies; 8078 } 8079 8080 msleep(250); 8081 8082 refcnt = netdev_refcnt_read(dev); 8083 8084 if (time_after(jiffies, warning_time + 10 * HZ)) { 8085 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n", 8086 dev->name, refcnt); 8087 warning_time = jiffies; 8088 } 8089 } 8090 } 8091 8092 /* The sequence is: 8093 * 8094 * rtnl_lock(); 8095 * ... 8096 * register_netdevice(x1); 8097 * register_netdevice(x2); 8098 * ... 8099 * unregister_netdevice(y1); 8100 * unregister_netdevice(y2); 8101 * ... 8102 * rtnl_unlock(); 8103 * free_netdev(y1); 8104 * free_netdev(y2); 8105 * 8106 * We are invoked by rtnl_unlock(). 8107 * This allows us to deal with problems: 8108 * 1) We can delete sysfs objects which invoke hotplug 8109 * without deadlocking with linkwatch via keventd. 8110 * 2) Since we run with the RTNL semaphore not held, we can sleep 8111 * safely in order to wait for the netdev refcnt to drop to zero. 8112 * 8113 * We must not return until all unregister events added during 8114 * the interval the lock was held have been completed. 8115 */ 8116 void netdev_run_todo(void) 8117 { 8118 struct list_head list; 8119 8120 /* Snapshot list, allow later requests */ 8121 list_replace_init(&net_todo_list, &list); 8122 8123 __rtnl_unlock(); 8124 8125 8126 /* Wait for rcu callbacks to finish before next phase */ 8127 if (!list_empty(&list)) 8128 rcu_barrier(); 8129 8130 while (!list_empty(&list)) { 8131 struct net_device *dev 8132 = list_first_entry(&list, struct net_device, todo_list); 8133 list_del(&dev->todo_list); 8134 8135 rtnl_lock(); 8136 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 8137 __rtnl_unlock(); 8138 8139 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 8140 pr_err("network todo '%s' but state %d\n", 8141 dev->name, dev->reg_state); 8142 dump_stack(); 8143 continue; 8144 } 8145 8146 dev->reg_state = NETREG_UNREGISTERED; 8147 8148 netdev_wait_allrefs(dev); 8149 8150 /* paranoia */ 8151 BUG_ON(netdev_refcnt_read(dev)); 8152 BUG_ON(!list_empty(&dev->ptype_all)); 8153 BUG_ON(!list_empty(&dev->ptype_specific)); 8154 WARN_ON(rcu_access_pointer(dev->ip_ptr)); 8155 WARN_ON(rcu_access_pointer(dev->ip6_ptr)); 8156 WARN_ON(dev->dn_ptr); 8157 8158 if (dev->priv_destructor) 8159 dev->priv_destructor(dev); 8160 if (dev->needs_free_netdev) 8161 free_netdev(dev); 8162 8163 /* Report a network device has been unregistered */ 8164 rtnl_lock(); 8165 dev_net(dev)->dev_unreg_count--; 8166 __rtnl_unlock(); 8167 wake_up(&netdev_unregistering_wq); 8168 8169 /* Free network device */ 8170 kobject_put(&dev->dev.kobj); 8171 } 8172 } 8173 8174 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has 8175 * all the same fields in the same order as net_device_stats, with only 8176 * the type differing, but rtnl_link_stats64 may have additional fields 8177 * at the end for newer counters. 8178 */ 8179 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 8180 const struct net_device_stats *netdev_stats) 8181 { 8182 #if BITS_PER_LONG == 64 8183 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats)); 8184 memcpy(stats64, netdev_stats, sizeof(*netdev_stats)); 8185 /* zero out counters that only exist in rtnl_link_stats64 */ 8186 memset((char *)stats64 + sizeof(*netdev_stats), 0, 8187 sizeof(*stats64) - sizeof(*netdev_stats)); 8188 #else 8189 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long); 8190 const unsigned long *src = (const unsigned long *)netdev_stats; 8191 u64 *dst = (u64 *)stats64; 8192 8193 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64)); 8194 for (i = 0; i < n; i++) 8195 dst[i] = src[i]; 8196 /* zero out counters that only exist in rtnl_link_stats64 */ 8197 memset((char *)stats64 + n * sizeof(u64), 0, 8198 sizeof(*stats64) - n * sizeof(u64)); 8199 #endif 8200 } 8201 EXPORT_SYMBOL(netdev_stats_to_stats64); 8202 8203 /** 8204 * dev_get_stats - get network device statistics 8205 * @dev: device to get statistics from 8206 * @storage: place to store stats 8207 * 8208 * Get network statistics from device. Return @storage. 8209 * The device driver may provide its own method by setting 8210 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 8211 * otherwise the internal statistics structure is used. 8212 */ 8213 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 8214 struct rtnl_link_stats64 *storage) 8215 { 8216 const struct net_device_ops *ops = dev->netdev_ops; 8217 8218 if (ops->ndo_get_stats64) { 8219 memset(storage, 0, sizeof(*storage)); 8220 ops->ndo_get_stats64(dev, storage); 8221 } else if (ops->ndo_get_stats) { 8222 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 8223 } else { 8224 netdev_stats_to_stats64(storage, &dev->stats); 8225 } 8226 storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped); 8227 storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped); 8228 storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler); 8229 return storage; 8230 } 8231 EXPORT_SYMBOL(dev_get_stats); 8232 8233 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 8234 { 8235 struct netdev_queue *queue = dev_ingress_queue(dev); 8236 8237 #ifdef CONFIG_NET_CLS_ACT 8238 if (queue) 8239 return queue; 8240 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 8241 if (!queue) 8242 return NULL; 8243 netdev_init_one_queue(dev, queue, NULL); 8244 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc); 8245 queue->qdisc_sleeping = &noop_qdisc; 8246 rcu_assign_pointer(dev->ingress_queue, queue); 8247 #endif 8248 return queue; 8249 } 8250 8251 static const struct ethtool_ops default_ethtool_ops; 8252 8253 void netdev_set_default_ethtool_ops(struct net_device *dev, 8254 const struct ethtool_ops *ops) 8255 { 8256 if (dev->ethtool_ops == &default_ethtool_ops) 8257 dev->ethtool_ops = ops; 8258 } 8259 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops); 8260 8261 void netdev_freemem(struct net_device *dev) 8262 { 8263 char *addr = (char *)dev - dev->padded; 8264 8265 kvfree(addr); 8266 } 8267 8268 /** 8269 * alloc_netdev_mqs - allocate network device 8270 * @sizeof_priv: size of private data to allocate space for 8271 * @name: device name format string 8272 * @name_assign_type: origin of device name 8273 * @setup: callback to initialize device 8274 * @txqs: the number of TX subqueues to allocate 8275 * @rxqs: the number of RX subqueues to allocate 8276 * 8277 * Allocates a struct net_device with private data area for driver use 8278 * and performs basic initialization. Also allocates subqueue structs 8279 * for each queue on the device. 8280 */ 8281 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 8282 unsigned char name_assign_type, 8283 void (*setup)(struct net_device *), 8284 unsigned int txqs, unsigned int rxqs) 8285 { 8286 struct net_device *dev; 8287 unsigned int alloc_size; 8288 struct net_device *p; 8289 8290 BUG_ON(strlen(name) >= sizeof(dev->name)); 8291 8292 if (txqs < 1) { 8293 pr_err("alloc_netdev: Unable to allocate device with zero queues\n"); 8294 return NULL; 8295 } 8296 8297 if (rxqs < 1) { 8298 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n"); 8299 return NULL; 8300 } 8301 8302 alloc_size = sizeof(struct net_device); 8303 if (sizeof_priv) { 8304 /* ensure 32-byte alignment of private area */ 8305 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); 8306 alloc_size += sizeof_priv; 8307 } 8308 /* ensure 32-byte alignment of whole construct */ 8309 alloc_size += NETDEV_ALIGN - 1; 8310 8311 p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 8312 if (!p) 8313 return NULL; 8314 8315 dev = PTR_ALIGN(p, NETDEV_ALIGN); 8316 dev->padded = (char *)dev - (char *)p; 8317 8318 dev->pcpu_refcnt = alloc_percpu(int); 8319 if (!dev->pcpu_refcnt) 8320 goto free_dev; 8321 8322 if (dev_addr_init(dev)) 8323 goto free_pcpu; 8324 8325 dev_mc_init(dev); 8326 dev_uc_init(dev); 8327 8328 dev_net_set(dev, &init_net); 8329 8330 dev->gso_max_size = GSO_MAX_SIZE; 8331 dev->gso_max_segs = GSO_MAX_SEGS; 8332 8333 INIT_LIST_HEAD(&dev->napi_list); 8334 INIT_LIST_HEAD(&dev->unreg_list); 8335 INIT_LIST_HEAD(&dev->close_list); 8336 INIT_LIST_HEAD(&dev->link_watch_list); 8337 INIT_LIST_HEAD(&dev->adj_list.upper); 8338 INIT_LIST_HEAD(&dev->adj_list.lower); 8339 INIT_LIST_HEAD(&dev->ptype_all); 8340 INIT_LIST_HEAD(&dev->ptype_specific); 8341 #ifdef CONFIG_NET_SCHED 8342 hash_init(dev->qdisc_hash); 8343 #endif 8344 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM; 8345 setup(dev); 8346 8347 if (!dev->tx_queue_len) { 8348 dev->priv_flags |= IFF_NO_QUEUE; 8349 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN; 8350 } 8351 8352 dev->num_tx_queues = txqs; 8353 dev->real_num_tx_queues = txqs; 8354 if (netif_alloc_netdev_queues(dev)) 8355 goto free_all; 8356 8357 dev->num_rx_queues = rxqs; 8358 dev->real_num_rx_queues = rxqs; 8359 if (netif_alloc_rx_queues(dev)) 8360 goto free_all; 8361 8362 strcpy(dev->name, name); 8363 dev->name_assign_type = name_assign_type; 8364 dev->group = INIT_NETDEV_GROUP; 8365 if (!dev->ethtool_ops) 8366 dev->ethtool_ops = &default_ethtool_ops; 8367 8368 nf_hook_ingress_init(dev); 8369 8370 return dev; 8371 8372 free_all: 8373 free_netdev(dev); 8374 return NULL; 8375 8376 free_pcpu: 8377 free_percpu(dev->pcpu_refcnt); 8378 free_dev: 8379 netdev_freemem(dev); 8380 return NULL; 8381 } 8382 EXPORT_SYMBOL(alloc_netdev_mqs); 8383 8384 /** 8385 * free_netdev - free network device 8386 * @dev: device 8387 * 8388 * This function does the last stage of destroying an allocated device 8389 * interface. The reference to the device object is released. If this 8390 * is the last reference then it will be freed.Must be called in process 8391 * context. 8392 */ 8393 void free_netdev(struct net_device *dev) 8394 { 8395 struct napi_struct *p, *n; 8396 8397 might_sleep(); 8398 netif_free_tx_queues(dev); 8399 netif_free_rx_queues(dev); 8400 8401 kfree(rcu_dereference_protected(dev->ingress_queue, 1)); 8402 8403 /* Flush device addresses */ 8404 dev_addr_flush(dev); 8405 8406 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 8407 netif_napi_del(p); 8408 8409 free_percpu(dev->pcpu_refcnt); 8410 dev->pcpu_refcnt = NULL; 8411 8412 /* Compatibility with error handling in drivers */ 8413 if (dev->reg_state == NETREG_UNINITIALIZED) { 8414 netdev_freemem(dev); 8415 return; 8416 } 8417 8418 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 8419 dev->reg_state = NETREG_RELEASED; 8420 8421 /* will free via device release */ 8422 put_device(&dev->dev); 8423 } 8424 EXPORT_SYMBOL(free_netdev); 8425 8426 /** 8427 * synchronize_net - Synchronize with packet receive processing 8428 * 8429 * Wait for packets currently being received to be done. 8430 * Does not block later packets from starting. 8431 */ 8432 void synchronize_net(void) 8433 { 8434 might_sleep(); 8435 if (rtnl_is_locked()) 8436 synchronize_rcu_expedited(); 8437 else 8438 synchronize_rcu(); 8439 } 8440 EXPORT_SYMBOL(synchronize_net); 8441 8442 /** 8443 * unregister_netdevice_queue - remove device from the kernel 8444 * @dev: device 8445 * @head: list 8446 * 8447 * This function shuts down a device interface and removes it 8448 * from the kernel tables. 8449 * If head not NULL, device is queued to be unregistered later. 8450 * 8451 * Callers must hold the rtnl semaphore. You may want 8452 * unregister_netdev() instead of this. 8453 */ 8454 8455 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 8456 { 8457 ASSERT_RTNL(); 8458 8459 if (head) { 8460 list_move_tail(&dev->unreg_list, head); 8461 } else { 8462 rollback_registered(dev); 8463 /* Finish processing unregister after unlock */ 8464 net_set_todo(dev); 8465 } 8466 } 8467 EXPORT_SYMBOL(unregister_netdevice_queue); 8468 8469 /** 8470 * unregister_netdevice_many - unregister many devices 8471 * @head: list of devices 8472 * 8473 * Note: As most callers use a stack allocated list_head, 8474 * we force a list_del() to make sure stack wont be corrupted later. 8475 */ 8476 void unregister_netdevice_many(struct list_head *head) 8477 { 8478 struct net_device *dev; 8479 8480 if (!list_empty(head)) { 8481 rollback_registered_many(head); 8482 list_for_each_entry(dev, head, unreg_list) 8483 net_set_todo(dev); 8484 list_del(head); 8485 } 8486 } 8487 EXPORT_SYMBOL(unregister_netdevice_many); 8488 8489 /** 8490 * unregister_netdev - remove device from the kernel 8491 * @dev: device 8492 * 8493 * This function shuts down a device interface and removes it 8494 * from the kernel tables. 8495 * 8496 * This is just a wrapper for unregister_netdevice that takes 8497 * the rtnl semaphore. In general you want to use this and not 8498 * unregister_netdevice. 8499 */ 8500 void unregister_netdev(struct net_device *dev) 8501 { 8502 rtnl_lock(); 8503 unregister_netdevice(dev); 8504 rtnl_unlock(); 8505 } 8506 EXPORT_SYMBOL(unregister_netdev); 8507 8508 /** 8509 * dev_change_net_namespace - move device to different nethost namespace 8510 * @dev: device 8511 * @net: network namespace 8512 * @pat: If not NULL name pattern to try if the current device name 8513 * is already taken in the destination network namespace. 8514 * 8515 * This function shuts down a device interface and moves it 8516 * to a new network namespace. On success 0 is returned, on 8517 * a failure a netagive errno code is returned. 8518 * 8519 * Callers must hold the rtnl semaphore. 8520 */ 8521 8522 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 8523 { 8524 int err, new_nsid, new_ifindex; 8525 8526 ASSERT_RTNL(); 8527 8528 /* Don't allow namespace local devices to be moved. */ 8529 err = -EINVAL; 8530 if (dev->features & NETIF_F_NETNS_LOCAL) 8531 goto out; 8532 8533 /* Ensure the device has been registrered */ 8534 if (dev->reg_state != NETREG_REGISTERED) 8535 goto out; 8536 8537 /* Get out if there is nothing todo */ 8538 err = 0; 8539 if (net_eq(dev_net(dev), net)) 8540 goto out; 8541 8542 /* Pick the destination device name, and ensure 8543 * we can use it in the destination network namespace. 8544 */ 8545 err = -EEXIST; 8546 if (__dev_get_by_name(net, dev->name)) { 8547 /* We get here if we can't use the current device name */ 8548 if (!pat) 8549 goto out; 8550 if (dev_get_valid_name(net, dev, pat) < 0) 8551 goto out; 8552 } 8553 8554 /* 8555 * And now a mini version of register_netdevice unregister_netdevice. 8556 */ 8557 8558 /* If device is running close it first. */ 8559 dev_close(dev); 8560 8561 /* And unlink it from device chain */ 8562 err = -ENODEV; 8563 unlist_netdevice(dev); 8564 8565 synchronize_net(); 8566 8567 /* Shutdown queueing discipline. */ 8568 dev_shutdown(dev); 8569 8570 /* Notify protocols, that we are about to destroy 8571 * this device. They should clean all the things. 8572 * 8573 * Note that dev->reg_state stays at NETREG_REGISTERED. 8574 * This is wanted because this way 8021q and macvlan know 8575 * the device is just moving and can keep their slaves up. 8576 */ 8577 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 8578 rcu_barrier(); 8579 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 8580 8581 new_nsid = peernet2id_alloc(dev_net(dev), net); 8582 /* If there is an ifindex conflict assign a new one */ 8583 if (__dev_get_by_index(net, dev->ifindex)) 8584 new_ifindex = dev_new_index(net); 8585 else 8586 new_ifindex = dev->ifindex; 8587 8588 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid, 8589 new_ifindex); 8590 8591 /* 8592 * Flush the unicast and multicast chains 8593 */ 8594 dev_uc_flush(dev); 8595 dev_mc_flush(dev); 8596 8597 /* Send a netdev-removed uevent to the old namespace */ 8598 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE); 8599 netdev_adjacent_del_links(dev); 8600 8601 /* Actually switch the network namespace */ 8602 dev_net_set(dev, net); 8603 dev->ifindex = new_ifindex; 8604 8605 /* Send a netdev-add uevent to the new namespace */ 8606 kobject_uevent(&dev->dev.kobj, KOBJ_ADD); 8607 netdev_adjacent_add_links(dev); 8608 8609 /* Fixup kobjects */ 8610 err = device_rename(&dev->dev, dev->name); 8611 WARN_ON(err); 8612 8613 /* Add the device back in the hashes */ 8614 list_netdevice(dev); 8615 8616 /* Notify protocols, that a new device appeared. */ 8617 call_netdevice_notifiers(NETDEV_REGISTER, dev); 8618 8619 /* 8620 * Prevent userspace races by waiting until the network 8621 * device is fully setup before sending notifications. 8622 */ 8623 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 8624 8625 synchronize_net(); 8626 err = 0; 8627 out: 8628 return err; 8629 } 8630 EXPORT_SYMBOL_GPL(dev_change_net_namespace); 8631 8632 static int dev_cpu_dead(unsigned int oldcpu) 8633 { 8634 struct sk_buff **list_skb; 8635 struct sk_buff *skb; 8636 unsigned int cpu; 8637 struct softnet_data *sd, *oldsd, *remsd = NULL; 8638 8639 local_irq_disable(); 8640 cpu = smp_processor_id(); 8641 sd = &per_cpu(softnet_data, cpu); 8642 oldsd = &per_cpu(softnet_data, oldcpu); 8643 8644 /* Find end of our completion_queue. */ 8645 list_skb = &sd->completion_queue; 8646 while (*list_skb) 8647 list_skb = &(*list_skb)->next; 8648 /* Append completion queue from offline CPU. */ 8649 *list_skb = oldsd->completion_queue; 8650 oldsd->completion_queue = NULL; 8651 8652 /* Append output queue from offline CPU. */ 8653 if (oldsd->output_queue) { 8654 *sd->output_queue_tailp = oldsd->output_queue; 8655 sd->output_queue_tailp = oldsd->output_queue_tailp; 8656 oldsd->output_queue = NULL; 8657 oldsd->output_queue_tailp = &oldsd->output_queue; 8658 } 8659 /* Append NAPI poll list from offline CPU, with one exception : 8660 * process_backlog() must be called by cpu owning percpu backlog. 8661 * We properly handle process_queue & input_pkt_queue later. 8662 */ 8663 while (!list_empty(&oldsd->poll_list)) { 8664 struct napi_struct *napi = list_first_entry(&oldsd->poll_list, 8665 struct napi_struct, 8666 poll_list); 8667 8668 list_del_init(&napi->poll_list); 8669 if (napi->poll == process_backlog) 8670 napi->state = 0; 8671 else 8672 ____napi_schedule(sd, napi); 8673 } 8674 8675 raise_softirq_irqoff(NET_TX_SOFTIRQ); 8676 local_irq_enable(); 8677 8678 #ifdef CONFIG_RPS 8679 remsd = oldsd->rps_ipi_list; 8680 oldsd->rps_ipi_list = NULL; 8681 #endif 8682 /* send out pending IPI's on offline CPU */ 8683 net_rps_send_ipi(remsd); 8684 8685 /* Process offline CPU's input_pkt_queue */ 8686 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 8687 netif_rx_ni(skb); 8688 input_queue_head_incr(oldsd); 8689 } 8690 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) { 8691 netif_rx_ni(skb); 8692 input_queue_head_incr(oldsd); 8693 } 8694 8695 return 0; 8696 } 8697 8698 /** 8699 * netdev_increment_features - increment feature set by one 8700 * @all: current feature set 8701 * @one: new feature set 8702 * @mask: mask feature set 8703 * 8704 * Computes a new feature set after adding a device with feature set 8705 * @one to the master device with current feature set @all. Will not 8706 * enable anything that is off in @mask. Returns the new feature set. 8707 */ 8708 netdev_features_t netdev_increment_features(netdev_features_t all, 8709 netdev_features_t one, netdev_features_t mask) 8710 { 8711 if (mask & NETIF_F_HW_CSUM) 8712 mask |= NETIF_F_CSUM_MASK; 8713 mask |= NETIF_F_VLAN_CHALLENGED; 8714 8715 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask; 8716 all &= one | ~NETIF_F_ALL_FOR_ALL; 8717 8718 /* If one device supports hw checksumming, set for all. */ 8719 if (all & NETIF_F_HW_CSUM) 8720 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM); 8721 8722 return all; 8723 } 8724 EXPORT_SYMBOL(netdev_increment_features); 8725 8726 static struct hlist_head * __net_init netdev_create_hash(void) 8727 { 8728 int i; 8729 struct hlist_head *hash; 8730 8731 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL); 8732 if (hash != NULL) 8733 for (i = 0; i < NETDEV_HASHENTRIES; i++) 8734 INIT_HLIST_HEAD(&hash[i]); 8735 8736 return hash; 8737 } 8738 8739 /* Initialize per network namespace state */ 8740 static int __net_init netdev_init(struct net *net) 8741 { 8742 if (net != &init_net) 8743 INIT_LIST_HEAD(&net->dev_base_head); 8744 8745 net->dev_name_head = netdev_create_hash(); 8746 if (net->dev_name_head == NULL) 8747 goto err_name; 8748 8749 net->dev_index_head = netdev_create_hash(); 8750 if (net->dev_index_head == NULL) 8751 goto err_idx; 8752 8753 return 0; 8754 8755 err_idx: 8756 kfree(net->dev_name_head); 8757 err_name: 8758 return -ENOMEM; 8759 } 8760 8761 /** 8762 * netdev_drivername - network driver for the device 8763 * @dev: network device 8764 * 8765 * Determine network driver for device. 8766 */ 8767 const char *netdev_drivername(const struct net_device *dev) 8768 { 8769 const struct device_driver *driver; 8770 const struct device *parent; 8771 const char *empty = ""; 8772 8773 parent = dev->dev.parent; 8774 if (!parent) 8775 return empty; 8776 8777 driver = parent->driver; 8778 if (driver && driver->name) 8779 return driver->name; 8780 return empty; 8781 } 8782 8783 static void __netdev_printk(const char *level, const struct net_device *dev, 8784 struct va_format *vaf) 8785 { 8786 if (dev && dev->dev.parent) { 8787 dev_printk_emit(level[1] - '0', 8788 dev->dev.parent, 8789 "%s %s %s%s: %pV", 8790 dev_driver_string(dev->dev.parent), 8791 dev_name(dev->dev.parent), 8792 netdev_name(dev), netdev_reg_state(dev), 8793 vaf); 8794 } else if (dev) { 8795 printk("%s%s%s: %pV", 8796 level, netdev_name(dev), netdev_reg_state(dev), vaf); 8797 } else { 8798 printk("%s(NULL net_device): %pV", level, vaf); 8799 } 8800 } 8801 8802 void netdev_printk(const char *level, const struct net_device *dev, 8803 const char *format, ...) 8804 { 8805 struct va_format vaf; 8806 va_list args; 8807 8808 va_start(args, format); 8809 8810 vaf.fmt = format; 8811 vaf.va = &args; 8812 8813 __netdev_printk(level, dev, &vaf); 8814 8815 va_end(args); 8816 } 8817 EXPORT_SYMBOL(netdev_printk); 8818 8819 #define define_netdev_printk_level(func, level) \ 8820 void func(const struct net_device *dev, const char *fmt, ...) \ 8821 { \ 8822 struct va_format vaf; \ 8823 va_list args; \ 8824 \ 8825 va_start(args, fmt); \ 8826 \ 8827 vaf.fmt = fmt; \ 8828 vaf.va = &args; \ 8829 \ 8830 __netdev_printk(level, dev, &vaf); \ 8831 \ 8832 va_end(args); \ 8833 } \ 8834 EXPORT_SYMBOL(func); 8835 8836 define_netdev_printk_level(netdev_emerg, KERN_EMERG); 8837 define_netdev_printk_level(netdev_alert, KERN_ALERT); 8838 define_netdev_printk_level(netdev_crit, KERN_CRIT); 8839 define_netdev_printk_level(netdev_err, KERN_ERR); 8840 define_netdev_printk_level(netdev_warn, KERN_WARNING); 8841 define_netdev_printk_level(netdev_notice, KERN_NOTICE); 8842 define_netdev_printk_level(netdev_info, KERN_INFO); 8843 8844 static void __net_exit netdev_exit(struct net *net) 8845 { 8846 kfree(net->dev_name_head); 8847 kfree(net->dev_index_head); 8848 if (net != &init_net) 8849 WARN_ON_ONCE(!list_empty(&net->dev_base_head)); 8850 } 8851 8852 static struct pernet_operations __net_initdata netdev_net_ops = { 8853 .init = netdev_init, 8854 .exit = netdev_exit, 8855 }; 8856 8857 static void __net_exit default_device_exit(struct net *net) 8858 { 8859 struct net_device *dev, *aux; 8860 /* 8861 * Push all migratable network devices back to the 8862 * initial network namespace 8863 */ 8864 rtnl_lock(); 8865 for_each_netdev_safe(net, dev, aux) { 8866 int err; 8867 char fb_name[IFNAMSIZ]; 8868 8869 /* Ignore unmoveable devices (i.e. loopback) */ 8870 if (dev->features & NETIF_F_NETNS_LOCAL) 8871 continue; 8872 8873 /* Leave virtual devices for the generic cleanup */ 8874 if (dev->rtnl_link_ops) 8875 continue; 8876 8877 /* Push remaining network devices to init_net */ 8878 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 8879 err = dev_change_net_namespace(dev, &init_net, fb_name); 8880 if (err) { 8881 pr_emerg("%s: failed to move %s to init_net: %d\n", 8882 __func__, dev->name, err); 8883 BUG(); 8884 } 8885 } 8886 rtnl_unlock(); 8887 } 8888 8889 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list) 8890 { 8891 /* Return with the rtnl_lock held when there are no network 8892 * devices unregistering in any network namespace in net_list. 8893 */ 8894 struct net *net; 8895 bool unregistering; 8896 DEFINE_WAIT_FUNC(wait, woken_wake_function); 8897 8898 add_wait_queue(&netdev_unregistering_wq, &wait); 8899 for (;;) { 8900 unregistering = false; 8901 rtnl_lock(); 8902 list_for_each_entry(net, net_list, exit_list) { 8903 if (net->dev_unreg_count > 0) { 8904 unregistering = true; 8905 break; 8906 } 8907 } 8908 if (!unregistering) 8909 break; 8910 __rtnl_unlock(); 8911 8912 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); 8913 } 8914 remove_wait_queue(&netdev_unregistering_wq, &wait); 8915 } 8916 8917 static void __net_exit default_device_exit_batch(struct list_head *net_list) 8918 { 8919 /* At exit all network devices most be removed from a network 8920 * namespace. Do this in the reverse order of registration. 8921 * Do this across as many network namespaces as possible to 8922 * improve batching efficiency. 8923 */ 8924 struct net_device *dev; 8925 struct net *net; 8926 LIST_HEAD(dev_kill_list); 8927 8928 /* To prevent network device cleanup code from dereferencing 8929 * loopback devices or network devices that have been freed 8930 * wait here for all pending unregistrations to complete, 8931 * before unregistring the loopback device and allowing the 8932 * network namespace be freed. 8933 * 8934 * The netdev todo list containing all network devices 8935 * unregistrations that happen in default_device_exit_batch 8936 * will run in the rtnl_unlock() at the end of 8937 * default_device_exit_batch. 8938 */ 8939 rtnl_lock_unregistering(net_list); 8940 list_for_each_entry(net, net_list, exit_list) { 8941 for_each_netdev_reverse(net, dev) { 8942 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) 8943 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 8944 else 8945 unregister_netdevice_queue(dev, &dev_kill_list); 8946 } 8947 } 8948 unregister_netdevice_many(&dev_kill_list); 8949 rtnl_unlock(); 8950 } 8951 8952 static struct pernet_operations __net_initdata default_device_ops = { 8953 .exit = default_device_exit, 8954 .exit_batch = default_device_exit_batch, 8955 }; 8956 8957 /* 8958 * Initialize the DEV module. At boot time this walks the device list and 8959 * unhooks any devices that fail to initialise (normally hardware not 8960 * present) and leaves us with a valid list of present and active devices. 8961 * 8962 */ 8963 8964 /* 8965 * This is called single threaded during boot, so no need 8966 * to take the rtnl semaphore. 8967 */ 8968 static int __init net_dev_init(void) 8969 { 8970 int i, rc = -ENOMEM; 8971 8972 BUG_ON(!dev_boot_phase); 8973 8974 if (dev_proc_init()) 8975 goto out; 8976 8977 if (netdev_kobject_init()) 8978 goto out; 8979 8980 INIT_LIST_HEAD(&ptype_all); 8981 for (i = 0; i < PTYPE_HASH_SIZE; i++) 8982 INIT_LIST_HEAD(&ptype_base[i]); 8983 8984 INIT_LIST_HEAD(&offload_base); 8985 8986 if (register_pernet_subsys(&netdev_net_ops)) 8987 goto out; 8988 8989 /* 8990 * Initialise the packet receive queues. 8991 */ 8992 8993 for_each_possible_cpu(i) { 8994 struct work_struct *flush = per_cpu_ptr(&flush_works, i); 8995 struct softnet_data *sd = &per_cpu(softnet_data, i); 8996 8997 INIT_WORK(flush, flush_backlog); 8998 8999 skb_queue_head_init(&sd->input_pkt_queue); 9000 skb_queue_head_init(&sd->process_queue); 9001 #ifdef CONFIG_XFRM_OFFLOAD 9002 skb_queue_head_init(&sd->xfrm_backlog); 9003 #endif 9004 INIT_LIST_HEAD(&sd->poll_list); 9005 sd->output_queue_tailp = &sd->output_queue; 9006 #ifdef CONFIG_RPS 9007 sd->csd.func = rps_trigger_softirq; 9008 sd->csd.info = sd; 9009 sd->cpu = i; 9010 #endif 9011 9012 sd->backlog.poll = process_backlog; 9013 sd->backlog.weight = weight_p; 9014 } 9015 9016 dev_boot_phase = 0; 9017 9018 /* The loopback device is special if any other network devices 9019 * is present in a network namespace the loopback device must 9020 * be present. Since we now dynamically allocate and free the 9021 * loopback device ensure this invariant is maintained by 9022 * keeping the loopback device as the first device on the 9023 * list of network devices. Ensuring the loopback devices 9024 * is the first device that appears and the last network device 9025 * that disappears. 9026 */ 9027 if (register_pernet_device(&loopback_net_ops)) 9028 goto out; 9029 9030 if (register_pernet_device(&default_device_ops)) 9031 goto out; 9032 9033 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 9034 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 9035 9036 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead", 9037 NULL, dev_cpu_dead); 9038 WARN_ON(rc < 0); 9039 rc = 0; 9040 out: 9041 return rc; 9042 } 9043 9044 subsys_initcall(net_dev_init); 9045