xref: /linux/net/core/dev.c (revision af2d6148d2a159e1a0862bce5a2c88c1618a2b27)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *	Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:	Ross Biro
7  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *	Additional Authors:
11  *		Florian la Roche <rzsfl@rz.uni-sb.de>
12  *		Alan Cox <gw4pts@gw4pts.ampr.org>
13  *		David Hinds <dahinds@users.sourceforge.net>
14  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *		Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *	Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *		Alan Cox	:	device private ioctl copies fields back.
24  *		Alan Cox	:	Transmit queue code does relevant
25  *					stunts to keep the queue safe.
26  *		Alan Cox	:	Fixed double lock.
27  *		Alan Cox	:	Fixed promisc NULL pointer trap
28  *		????????	:	Support the full private ioctl range
29  *		Alan Cox	:	Moved ioctl permission check into
30  *					drivers
31  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
32  *		Alan Cox	:	100 backlog just doesn't cut it when
33  *					you start doing multicast video 8)
34  *		Alan Cox	:	Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *		Alan Cox	:	Took out transmit every packet pass
37  *					Saved a few bytes in the ioctl handler
38  *		Alan Cox	:	Network driver sets packet type before
39  *					calling netif_rx. Saves a function
40  *					call a packet.
41  *		Alan Cox	:	Hashed net_bh()
42  *		Richard Kooijman:	Timestamp fixes.
43  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
44  *		Alan Cox	:	Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *					changes.
47  *		Rudi Cilibrasi	:	Pass the right thing to
48  *					set_mac_address()
49  *		Dave Miller	:	32bit quantity for the device lock to
50  *					make it work out on a Sparc.
51  *		Bjorn Ekwall	:	Added KERNELD hack.
52  *		Alan Cox	:	Cleaned up the backlog initialise.
53  *		Craig Metz	:	SIOCGIFCONF fix if space for under
54  *					1 device.
55  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
56  *					is no device open function.
57  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
58  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
59  *		Cyrus Durgin	:	Cleaned for KMOD
60  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
61  *					A network device unload needs to purge
62  *					the backlog queue.
63  *	Paul Rusty Russell	:	SIOCSIFNAME
64  *              Pekka Riikonen  :	Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *				        - netif_rx() feedback
69  */
70 
71 #include <linux/uaccess.h>
72 #include <linux/bitmap.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/isolation.h>
81 #include <linux/sched/mm.h>
82 #include <linux/smpboot.h>
83 #include <linux/mutex.h>
84 #include <linux/rwsem.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/ethtool_netlink.h>
96 #include <linux/skbuff.h>
97 #include <linux/kthread.h>
98 #include <linux/bpf.h>
99 #include <linux/bpf_trace.h>
100 #include <net/net_namespace.h>
101 #include <net/sock.h>
102 #include <net/busy_poll.h>
103 #include <linux/rtnetlink.h>
104 #include <linux/stat.h>
105 #include <net/dsa.h>
106 #include <net/dst.h>
107 #include <net/dst_metadata.h>
108 #include <net/gro.h>
109 #include <net/netdev_queues.h>
110 #include <net/pkt_sched.h>
111 #include <net/pkt_cls.h>
112 #include <net/checksum.h>
113 #include <net/xfrm.h>
114 #include <net/tcx.h>
115 #include <linux/highmem.h>
116 #include <linux/init.h>
117 #include <linux/module.h>
118 #include <linux/netpoll.h>
119 #include <linux/rcupdate.h>
120 #include <linux/delay.h>
121 #include <net/iw_handler.h>
122 #include <asm/current.h>
123 #include <linux/audit.h>
124 #include <linux/dmaengine.h>
125 #include <linux/err.h>
126 #include <linux/ctype.h>
127 #include <linux/if_arp.h>
128 #include <linux/if_vlan.h>
129 #include <linux/ip.h>
130 #include <net/ip.h>
131 #include <net/mpls.h>
132 #include <linux/ipv6.h>
133 #include <linux/in.h>
134 #include <linux/jhash.h>
135 #include <linux/random.h>
136 #include <trace/events/napi.h>
137 #include <trace/events/net.h>
138 #include <trace/events/skb.h>
139 #include <trace/events/qdisc.h>
140 #include <trace/events/xdp.h>
141 #include <linux/inetdevice.h>
142 #include <linux/cpu_rmap.h>
143 #include <linux/static_key.h>
144 #include <linux/hashtable.h>
145 #include <linux/vmalloc.h>
146 #include <linux/if_macvlan.h>
147 #include <linux/errqueue.h>
148 #include <linux/hrtimer.h>
149 #include <linux/netfilter_netdev.h>
150 #include <linux/crash_dump.h>
151 #include <linux/sctp.h>
152 #include <net/udp_tunnel.h>
153 #include <linux/net_namespace.h>
154 #include <linux/indirect_call_wrapper.h>
155 #include <net/devlink.h>
156 #include <linux/pm_runtime.h>
157 #include <linux/prandom.h>
158 #include <linux/once_lite.h>
159 #include <net/netdev_lock.h>
160 #include <net/netdev_rx_queue.h>
161 #include <net/page_pool/types.h>
162 #include <net/page_pool/helpers.h>
163 #include <net/page_pool/memory_provider.h>
164 #include <net/rps.h>
165 #include <linux/phy_link_topology.h>
166 
167 #include "dev.h"
168 #include "devmem.h"
169 #include "net-sysfs.h"
170 
171 static DEFINE_SPINLOCK(ptype_lock);
172 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
173 
174 static int netif_rx_internal(struct sk_buff *skb);
175 static int call_netdevice_notifiers_extack(unsigned long val,
176 					   struct net_device *dev,
177 					   struct netlink_ext_ack *extack);
178 
179 static DEFINE_MUTEX(ifalias_mutex);
180 
181 /* protects napi_hash addition/deletion and napi_gen_id */
182 static DEFINE_SPINLOCK(napi_hash_lock);
183 
184 static unsigned int napi_gen_id = NR_CPUS;
185 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
186 
187 static inline void dev_base_seq_inc(struct net *net)
188 {
189 	unsigned int val = net->dev_base_seq + 1;
190 
191 	WRITE_ONCE(net->dev_base_seq, val ?: 1);
192 }
193 
194 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
195 {
196 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
197 
198 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
199 }
200 
201 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
202 {
203 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
204 }
205 
206 #ifndef CONFIG_PREEMPT_RT
207 
208 static DEFINE_STATIC_KEY_FALSE(use_backlog_threads_key);
209 
210 static int __init setup_backlog_napi_threads(char *arg)
211 {
212 	static_branch_enable(&use_backlog_threads_key);
213 	return 0;
214 }
215 early_param("thread_backlog_napi", setup_backlog_napi_threads);
216 
217 static bool use_backlog_threads(void)
218 {
219 	return static_branch_unlikely(&use_backlog_threads_key);
220 }
221 
222 #else
223 
224 static bool use_backlog_threads(void)
225 {
226 	return true;
227 }
228 
229 #endif
230 
231 static inline void backlog_lock_irq_save(struct softnet_data *sd,
232 					 unsigned long *flags)
233 {
234 	if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
235 		spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags);
236 	else
237 		local_irq_save(*flags);
238 }
239 
240 static inline void backlog_lock_irq_disable(struct softnet_data *sd)
241 {
242 	if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
243 		spin_lock_irq(&sd->input_pkt_queue.lock);
244 	else
245 		local_irq_disable();
246 }
247 
248 static inline void backlog_unlock_irq_restore(struct softnet_data *sd,
249 					      unsigned long *flags)
250 {
251 	if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
252 		spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags);
253 	else
254 		local_irq_restore(*flags);
255 }
256 
257 static inline void backlog_unlock_irq_enable(struct softnet_data *sd)
258 {
259 	if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
260 		spin_unlock_irq(&sd->input_pkt_queue.lock);
261 	else
262 		local_irq_enable();
263 }
264 
265 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
266 						       const char *name)
267 {
268 	struct netdev_name_node *name_node;
269 
270 	name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
271 	if (!name_node)
272 		return NULL;
273 	INIT_HLIST_NODE(&name_node->hlist);
274 	name_node->dev = dev;
275 	name_node->name = name;
276 	return name_node;
277 }
278 
279 static struct netdev_name_node *
280 netdev_name_node_head_alloc(struct net_device *dev)
281 {
282 	struct netdev_name_node *name_node;
283 
284 	name_node = netdev_name_node_alloc(dev, dev->name);
285 	if (!name_node)
286 		return NULL;
287 	INIT_LIST_HEAD(&name_node->list);
288 	return name_node;
289 }
290 
291 static void netdev_name_node_free(struct netdev_name_node *name_node)
292 {
293 	kfree(name_node);
294 }
295 
296 static void netdev_name_node_add(struct net *net,
297 				 struct netdev_name_node *name_node)
298 {
299 	hlist_add_head_rcu(&name_node->hlist,
300 			   dev_name_hash(net, name_node->name));
301 }
302 
303 static void netdev_name_node_del(struct netdev_name_node *name_node)
304 {
305 	hlist_del_rcu(&name_node->hlist);
306 }
307 
308 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
309 							const char *name)
310 {
311 	struct hlist_head *head = dev_name_hash(net, name);
312 	struct netdev_name_node *name_node;
313 
314 	hlist_for_each_entry(name_node, head, hlist)
315 		if (!strcmp(name_node->name, name))
316 			return name_node;
317 	return NULL;
318 }
319 
320 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
321 							    const char *name)
322 {
323 	struct hlist_head *head = dev_name_hash(net, name);
324 	struct netdev_name_node *name_node;
325 
326 	hlist_for_each_entry_rcu(name_node, head, hlist)
327 		if (!strcmp(name_node->name, name))
328 			return name_node;
329 	return NULL;
330 }
331 
332 bool netdev_name_in_use(struct net *net, const char *name)
333 {
334 	return netdev_name_node_lookup(net, name);
335 }
336 EXPORT_SYMBOL(netdev_name_in_use);
337 
338 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
339 {
340 	struct netdev_name_node *name_node;
341 	struct net *net = dev_net(dev);
342 
343 	name_node = netdev_name_node_lookup(net, name);
344 	if (name_node)
345 		return -EEXIST;
346 	name_node = netdev_name_node_alloc(dev, name);
347 	if (!name_node)
348 		return -ENOMEM;
349 	netdev_name_node_add(net, name_node);
350 	/* The node that holds dev->name acts as a head of per-device list. */
351 	list_add_tail_rcu(&name_node->list, &dev->name_node->list);
352 
353 	return 0;
354 }
355 
356 static void netdev_name_node_alt_free(struct rcu_head *head)
357 {
358 	struct netdev_name_node *name_node =
359 		container_of(head, struct netdev_name_node, rcu);
360 
361 	kfree(name_node->name);
362 	netdev_name_node_free(name_node);
363 }
364 
365 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
366 {
367 	netdev_name_node_del(name_node);
368 	list_del(&name_node->list);
369 	call_rcu(&name_node->rcu, netdev_name_node_alt_free);
370 }
371 
372 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
373 {
374 	struct netdev_name_node *name_node;
375 	struct net *net = dev_net(dev);
376 
377 	name_node = netdev_name_node_lookup(net, name);
378 	if (!name_node)
379 		return -ENOENT;
380 	/* lookup might have found our primary name or a name belonging
381 	 * to another device.
382 	 */
383 	if (name_node == dev->name_node || name_node->dev != dev)
384 		return -EINVAL;
385 
386 	__netdev_name_node_alt_destroy(name_node);
387 	return 0;
388 }
389 
390 static void netdev_name_node_alt_flush(struct net_device *dev)
391 {
392 	struct netdev_name_node *name_node, *tmp;
393 
394 	list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list) {
395 		list_del(&name_node->list);
396 		netdev_name_node_alt_free(&name_node->rcu);
397 	}
398 }
399 
400 /* Device list insertion */
401 static void list_netdevice(struct net_device *dev)
402 {
403 	struct netdev_name_node *name_node;
404 	struct net *net = dev_net(dev);
405 
406 	ASSERT_RTNL();
407 
408 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
409 	netdev_name_node_add(net, dev->name_node);
410 	hlist_add_head_rcu(&dev->index_hlist,
411 			   dev_index_hash(net, dev->ifindex));
412 
413 	netdev_for_each_altname(dev, name_node)
414 		netdev_name_node_add(net, name_node);
415 
416 	/* We reserved the ifindex, this can't fail */
417 	WARN_ON(xa_store(&net->dev_by_index, dev->ifindex, dev, GFP_KERNEL));
418 
419 	dev_base_seq_inc(net);
420 }
421 
422 /* Device list removal
423  * caller must respect a RCU grace period before freeing/reusing dev
424  */
425 static void unlist_netdevice(struct net_device *dev)
426 {
427 	struct netdev_name_node *name_node;
428 	struct net *net = dev_net(dev);
429 
430 	ASSERT_RTNL();
431 
432 	xa_erase(&net->dev_by_index, dev->ifindex);
433 
434 	netdev_for_each_altname(dev, name_node)
435 		netdev_name_node_del(name_node);
436 
437 	/* Unlink dev from the device chain */
438 	list_del_rcu(&dev->dev_list);
439 	netdev_name_node_del(dev->name_node);
440 	hlist_del_rcu(&dev->index_hlist);
441 
442 	dev_base_seq_inc(dev_net(dev));
443 }
444 
445 /*
446  *	Our notifier list
447  */
448 
449 static RAW_NOTIFIER_HEAD(netdev_chain);
450 
451 /*
452  *	Device drivers call our routines to queue packets here. We empty the
453  *	queue in the local softnet handler.
454  */
455 
456 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data) = {
457 	.process_queue_bh_lock = INIT_LOCAL_LOCK(process_queue_bh_lock),
458 };
459 EXPORT_PER_CPU_SYMBOL(softnet_data);
460 
461 /* Page_pool has a lockless array/stack to alloc/recycle pages.
462  * PP consumers must pay attention to run APIs in the appropriate context
463  * (e.g. NAPI context).
464  */
465 DEFINE_PER_CPU(struct page_pool_bh, system_page_pool) = {
466 	.bh_lock = INIT_LOCAL_LOCK(bh_lock),
467 };
468 
469 #ifdef CONFIG_LOCKDEP
470 /*
471  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
472  * according to dev->type
473  */
474 static const unsigned short netdev_lock_type[] = {
475 	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
476 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
477 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
478 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
479 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
480 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
481 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
482 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
483 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
484 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
485 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
486 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
487 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
488 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
489 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
490 
491 static const char *const netdev_lock_name[] = {
492 	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
493 	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
494 	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
495 	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
496 	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
497 	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
498 	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
499 	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
500 	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
501 	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
502 	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
503 	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
504 	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
505 	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
506 	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
507 
508 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
509 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
510 
511 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
512 {
513 	int i;
514 
515 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
516 		if (netdev_lock_type[i] == dev_type)
517 			return i;
518 	/* the last key is used by default */
519 	return ARRAY_SIZE(netdev_lock_type) - 1;
520 }
521 
522 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
523 						 unsigned short dev_type)
524 {
525 	int i;
526 
527 	i = netdev_lock_pos(dev_type);
528 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
529 				   netdev_lock_name[i]);
530 }
531 
532 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
533 {
534 	int i;
535 
536 	i = netdev_lock_pos(dev->type);
537 	lockdep_set_class_and_name(&dev->addr_list_lock,
538 				   &netdev_addr_lock_key[i],
539 				   netdev_lock_name[i]);
540 }
541 #else
542 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
543 						 unsigned short dev_type)
544 {
545 }
546 
547 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
548 {
549 }
550 #endif
551 
552 /*******************************************************************************
553  *
554  *		Protocol management and registration routines
555  *
556  *******************************************************************************/
557 
558 
559 /*
560  *	Add a protocol ID to the list. Now that the input handler is
561  *	smarter we can dispense with all the messy stuff that used to be
562  *	here.
563  *
564  *	BEWARE!!! Protocol handlers, mangling input packets,
565  *	MUST BE last in hash buckets and checking protocol handlers
566  *	MUST start from promiscuous ptype_all chain in net_bh.
567  *	It is true now, do not change it.
568  *	Explanation follows: if protocol handler, mangling packet, will
569  *	be the first on list, it is not able to sense, that packet
570  *	is cloned and should be copied-on-write, so that it will
571  *	change it and subsequent readers will get broken packet.
572  *							--ANK (980803)
573  */
574 
575 static inline struct list_head *ptype_head(const struct packet_type *pt)
576 {
577 	if (pt->type == htons(ETH_P_ALL)) {
578 		if (!pt->af_packet_net && !pt->dev)
579 			return NULL;
580 
581 		return pt->dev ? &pt->dev->ptype_all :
582 				 &pt->af_packet_net->ptype_all;
583 	}
584 
585 	if (pt->dev)
586 		return &pt->dev->ptype_specific;
587 
588 	return pt->af_packet_net ? &pt->af_packet_net->ptype_specific :
589 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
590 }
591 
592 /**
593  *	dev_add_pack - add packet handler
594  *	@pt: packet type declaration
595  *
596  *	Add a protocol handler to the networking stack. The passed &packet_type
597  *	is linked into kernel lists and may not be freed until it has been
598  *	removed from the kernel lists.
599  *
600  *	This call does not sleep therefore it can not
601  *	guarantee all CPU's that are in middle of receiving packets
602  *	will see the new packet type (until the next received packet).
603  */
604 
605 void dev_add_pack(struct packet_type *pt)
606 {
607 	struct list_head *head = ptype_head(pt);
608 
609 	if (WARN_ON_ONCE(!head))
610 		return;
611 
612 	spin_lock(&ptype_lock);
613 	list_add_rcu(&pt->list, head);
614 	spin_unlock(&ptype_lock);
615 }
616 EXPORT_SYMBOL(dev_add_pack);
617 
618 /**
619  *	__dev_remove_pack	 - remove packet handler
620  *	@pt: packet type declaration
621  *
622  *	Remove a protocol handler that was previously added to the kernel
623  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
624  *	from the kernel lists and can be freed or reused once this function
625  *	returns.
626  *
627  *      The packet type might still be in use by receivers
628  *	and must not be freed until after all the CPU's have gone
629  *	through a quiescent state.
630  */
631 void __dev_remove_pack(struct packet_type *pt)
632 {
633 	struct list_head *head = ptype_head(pt);
634 	struct packet_type *pt1;
635 
636 	if (!head)
637 		return;
638 
639 	spin_lock(&ptype_lock);
640 
641 	list_for_each_entry(pt1, head, list) {
642 		if (pt == pt1) {
643 			list_del_rcu(&pt->list);
644 			goto out;
645 		}
646 	}
647 
648 	pr_warn("dev_remove_pack: %p not found\n", pt);
649 out:
650 	spin_unlock(&ptype_lock);
651 }
652 EXPORT_SYMBOL(__dev_remove_pack);
653 
654 /**
655  *	dev_remove_pack	 - remove packet handler
656  *	@pt: packet type declaration
657  *
658  *	Remove a protocol handler that was previously added to the kernel
659  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
660  *	from the kernel lists and can be freed or reused once this function
661  *	returns.
662  *
663  *	This call sleeps to guarantee that no CPU is looking at the packet
664  *	type after return.
665  */
666 void dev_remove_pack(struct packet_type *pt)
667 {
668 	__dev_remove_pack(pt);
669 
670 	synchronize_net();
671 }
672 EXPORT_SYMBOL(dev_remove_pack);
673 
674 
675 /*******************************************************************************
676  *
677  *			    Device Interface Subroutines
678  *
679  *******************************************************************************/
680 
681 /**
682  *	dev_get_iflink	- get 'iflink' value of a interface
683  *	@dev: targeted interface
684  *
685  *	Indicates the ifindex the interface is linked to.
686  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
687  */
688 
689 int dev_get_iflink(const struct net_device *dev)
690 {
691 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
692 		return dev->netdev_ops->ndo_get_iflink(dev);
693 
694 	return READ_ONCE(dev->ifindex);
695 }
696 EXPORT_SYMBOL(dev_get_iflink);
697 
698 /**
699  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
700  *	@dev: targeted interface
701  *	@skb: The packet.
702  *
703  *	For better visibility of tunnel traffic OVS needs to retrieve
704  *	egress tunnel information for a packet. Following API allows
705  *	user to get this info.
706  */
707 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
708 {
709 	struct ip_tunnel_info *info;
710 
711 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
712 		return -EINVAL;
713 
714 	info = skb_tunnel_info_unclone(skb);
715 	if (!info)
716 		return -ENOMEM;
717 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
718 		return -EINVAL;
719 
720 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
721 }
722 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
723 
724 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
725 {
726 	int k = stack->num_paths++;
727 
728 	if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
729 		return NULL;
730 
731 	return &stack->path[k];
732 }
733 
734 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
735 			  struct net_device_path_stack *stack)
736 {
737 	const struct net_device *last_dev;
738 	struct net_device_path_ctx ctx = {
739 		.dev	= dev,
740 	};
741 	struct net_device_path *path;
742 	int ret = 0;
743 
744 	memcpy(ctx.daddr, daddr, sizeof(ctx.daddr));
745 	stack->num_paths = 0;
746 	while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
747 		last_dev = ctx.dev;
748 		path = dev_fwd_path(stack);
749 		if (!path)
750 			return -1;
751 
752 		memset(path, 0, sizeof(struct net_device_path));
753 		ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
754 		if (ret < 0)
755 			return -1;
756 
757 		if (WARN_ON_ONCE(last_dev == ctx.dev))
758 			return -1;
759 	}
760 
761 	if (!ctx.dev)
762 		return ret;
763 
764 	path = dev_fwd_path(stack);
765 	if (!path)
766 		return -1;
767 	path->type = DEV_PATH_ETHERNET;
768 	path->dev = ctx.dev;
769 
770 	return ret;
771 }
772 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
773 
774 /* must be called under rcu_read_lock(), as we dont take a reference */
775 static struct napi_struct *napi_by_id(unsigned int napi_id)
776 {
777 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
778 	struct napi_struct *napi;
779 
780 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
781 		if (napi->napi_id == napi_id)
782 			return napi;
783 
784 	return NULL;
785 }
786 
787 /* must be called under rcu_read_lock(), as we dont take a reference */
788 static struct napi_struct *
789 netdev_napi_by_id(struct net *net, unsigned int napi_id)
790 {
791 	struct napi_struct *napi;
792 
793 	napi = napi_by_id(napi_id);
794 	if (!napi)
795 		return NULL;
796 
797 	if (WARN_ON_ONCE(!napi->dev))
798 		return NULL;
799 	if (!net_eq(net, dev_net(napi->dev)))
800 		return NULL;
801 
802 	return napi;
803 }
804 
805 /**
806  *	netdev_napi_by_id_lock() - find a device by NAPI ID and lock it
807  *	@net: the applicable net namespace
808  *	@napi_id: ID of a NAPI of a target device
809  *
810  *	Find a NAPI instance with @napi_id. Lock its device.
811  *	The device must be in %NETREG_REGISTERED state for lookup to succeed.
812  *	netdev_unlock() must be called to release it.
813  *
814  *	Return: pointer to NAPI, its device with lock held, NULL if not found.
815  */
816 struct napi_struct *
817 netdev_napi_by_id_lock(struct net *net, unsigned int napi_id)
818 {
819 	struct napi_struct *napi;
820 	struct net_device *dev;
821 
822 	rcu_read_lock();
823 	napi = netdev_napi_by_id(net, napi_id);
824 	if (!napi || READ_ONCE(napi->dev->reg_state) != NETREG_REGISTERED) {
825 		rcu_read_unlock();
826 		return NULL;
827 	}
828 
829 	dev = napi->dev;
830 	dev_hold(dev);
831 	rcu_read_unlock();
832 
833 	dev = __netdev_put_lock(dev, net);
834 	if (!dev)
835 		return NULL;
836 
837 	rcu_read_lock();
838 	napi = netdev_napi_by_id(net, napi_id);
839 	if (napi && napi->dev != dev)
840 		napi = NULL;
841 	rcu_read_unlock();
842 
843 	if (!napi)
844 		netdev_unlock(dev);
845 	return napi;
846 }
847 
848 /**
849  *	__dev_get_by_name	- find a device by its name
850  *	@net: the applicable net namespace
851  *	@name: name to find
852  *
853  *	Find an interface by name. Must be called under RTNL semaphore.
854  *	If the name is found a pointer to the device is returned.
855  *	If the name is not found then %NULL is returned. The
856  *	reference counters are not incremented so the caller must be
857  *	careful with locks.
858  */
859 
860 struct net_device *__dev_get_by_name(struct net *net, const char *name)
861 {
862 	struct netdev_name_node *node_name;
863 
864 	node_name = netdev_name_node_lookup(net, name);
865 	return node_name ? node_name->dev : NULL;
866 }
867 EXPORT_SYMBOL(__dev_get_by_name);
868 
869 /**
870  * dev_get_by_name_rcu	- find a device by its name
871  * @net: the applicable net namespace
872  * @name: name to find
873  *
874  * Find an interface by name.
875  * If the name is found a pointer to the device is returned.
876  * If the name is not found then %NULL is returned.
877  * The reference counters are not incremented so the caller must be
878  * careful with locks. The caller must hold RCU lock.
879  */
880 
881 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
882 {
883 	struct netdev_name_node *node_name;
884 
885 	node_name = netdev_name_node_lookup_rcu(net, name);
886 	return node_name ? node_name->dev : NULL;
887 }
888 EXPORT_SYMBOL(dev_get_by_name_rcu);
889 
890 /* Deprecated for new users, call netdev_get_by_name() instead */
891 struct net_device *dev_get_by_name(struct net *net, const char *name)
892 {
893 	struct net_device *dev;
894 
895 	rcu_read_lock();
896 	dev = dev_get_by_name_rcu(net, name);
897 	dev_hold(dev);
898 	rcu_read_unlock();
899 	return dev;
900 }
901 EXPORT_SYMBOL(dev_get_by_name);
902 
903 /**
904  *	netdev_get_by_name() - find a device by its name
905  *	@net: the applicable net namespace
906  *	@name: name to find
907  *	@tracker: tracking object for the acquired reference
908  *	@gfp: allocation flags for the tracker
909  *
910  *	Find an interface by name. This can be called from any
911  *	context and does its own locking. The returned handle has
912  *	the usage count incremented and the caller must use netdev_put() to
913  *	release it when it is no longer needed. %NULL is returned if no
914  *	matching device is found.
915  */
916 struct net_device *netdev_get_by_name(struct net *net, const char *name,
917 				      netdevice_tracker *tracker, gfp_t gfp)
918 {
919 	struct net_device *dev;
920 
921 	dev = dev_get_by_name(net, name);
922 	if (dev)
923 		netdev_tracker_alloc(dev, tracker, gfp);
924 	return dev;
925 }
926 EXPORT_SYMBOL(netdev_get_by_name);
927 
928 /**
929  *	__dev_get_by_index - find a device by its ifindex
930  *	@net: the applicable net namespace
931  *	@ifindex: index of device
932  *
933  *	Search for an interface by index. Returns %NULL if the device
934  *	is not found or a pointer to the device. The device has not
935  *	had its reference counter increased so the caller must be careful
936  *	about locking. The caller must hold the RTNL semaphore.
937  */
938 
939 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
940 {
941 	struct net_device *dev;
942 	struct hlist_head *head = dev_index_hash(net, ifindex);
943 
944 	hlist_for_each_entry(dev, head, index_hlist)
945 		if (dev->ifindex == ifindex)
946 			return dev;
947 
948 	return NULL;
949 }
950 EXPORT_SYMBOL(__dev_get_by_index);
951 
952 /**
953  *	dev_get_by_index_rcu - find a device by its ifindex
954  *	@net: the applicable net namespace
955  *	@ifindex: index of device
956  *
957  *	Search for an interface by index. Returns %NULL if the device
958  *	is not found or a pointer to the device. The device has not
959  *	had its reference counter increased so the caller must be careful
960  *	about locking. The caller must hold RCU lock.
961  */
962 
963 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
964 {
965 	struct net_device *dev;
966 	struct hlist_head *head = dev_index_hash(net, ifindex);
967 
968 	hlist_for_each_entry_rcu(dev, head, index_hlist)
969 		if (dev->ifindex == ifindex)
970 			return dev;
971 
972 	return NULL;
973 }
974 EXPORT_SYMBOL(dev_get_by_index_rcu);
975 
976 /* Deprecated for new users, call netdev_get_by_index() instead */
977 struct net_device *dev_get_by_index(struct net *net, int ifindex)
978 {
979 	struct net_device *dev;
980 
981 	rcu_read_lock();
982 	dev = dev_get_by_index_rcu(net, ifindex);
983 	dev_hold(dev);
984 	rcu_read_unlock();
985 	return dev;
986 }
987 EXPORT_SYMBOL(dev_get_by_index);
988 
989 /**
990  *	netdev_get_by_index() - find a device by its ifindex
991  *	@net: the applicable net namespace
992  *	@ifindex: index of device
993  *	@tracker: tracking object for the acquired reference
994  *	@gfp: allocation flags for the tracker
995  *
996  *	Search for an interface by index. Returns NULL if the device
997  *	is not found or a pointer to the device. The device returned has
998  *	had a reference added and the pointer is safe until the user calls
999  *	netdev_put() to indicate they have finished with it.
1000  */
1001 struct net_device *netdev_get_by_index(struct net *net, int ifindex,
1002 				       netdevice_tracker *tracker, gfp_t gfp)
1003 {
1004 	struct net_device *dev;
1005 
1006 	dev = dev_get_by_index(net, ifindex);
1007 	if (dev)
1008 		netdev_tracker_alloc(dev, tracker, gfp);
1009 	return dev;
1010 }
1011 EXPORT_SYMBOL(netdev_get_by_index);
1012 
1013 /**
1014  *	dev_get_by_napi_id - find a device by napi_id
1015  *	@napi_id: ID of the NAPI struct
1016  *
1017  *	Search for an interface by NAPI ID. Returns %NULL if the device
1018  *	is not found or a pointer to the device. The device has not had
1019  *	its reference counter increased so the caller must be careful
1020  *	about locking. The caller must hold RCU lock.
1021  */
1022 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
1023 {
1024 	struct napi_struct *napi;
1025 
1026 	WARN_ON_ONCE(!rcu_read_lock_held());
1027 
1028 	if (!napi_id_valid(napi_id))
1029 		return NULL;
1030 
1031 	napi = napi_by_id(napi_id);
1032 
1033 	return napi ? napi->dev : NULL;
1034 }
1035 
1036 /* Release the held reference on the net_device, and if the net_device
1037  * is still registered try to lock the instance lock. If device is being
1038  * unregistered NULL will be returned (but the reference has been released,
1039  * either way!)
1040  *
1041  * This helper is intended for locking net_device after it has been looked up
1042  * using a lockless lookup helper. Lock prevents the instance from going away.
1043  */
1044 struct net_device *__netdev_put_lock(struct net_device *dev, struct net *net)
1045 {
1046 	netdev_lock(dev);
1047 	if (dev->reg_state > NETREG_REGISTERED ||
1048 	    dev->moving_ns || !net_eq(dev_net(dev), net)) {
1049 		netdev_unlock(dev);
1050 		dev_put(dev);
1051 		return NULL;
1052 	}
1053 	dev_put(dev);
1054 	return dev;
1055 }
1056 
1057 static struct net_device *
1058 __netdev_put_lock_ops_compat(struct net_device *dev, struct net *net)
1059 {
1060 	netdev_lock_ops_compat(dev);
1061 	if (dev->reg_state > NETREG_REGISTERED ||
1062 	    dev->moving_ns || !net_eq(dev_net(dev), net)) {
1063 		netdev_unlock_ops_compat(dev);
1064 		dev_put(dev);
1065 		return NULL;
1066 	}
1067 	dev_put(dev);
1068 	return dev;
1069 }
1070 
1071 /**
1072  *	netdev_get_by_index_lock() - find a device by its ifindex
1073  *	@net: the applicable net namespace
1074  *	@ifindex: index of device
1075  *
1076  *	Search for an interface by index. If a valid device
1077  *	with @ifindex is found it will be returned with netdev->lock held.
1078  *	netdev_unlock() must be called to release it.
1079  *
1080  *	Return: pointer to a device with lock held, NULL if not found.
1081  */
1082 struct net_device *netdev_get_by_index_lock(struct net *net, int ifindex)
1083 {
1084 	struct net_device *dev;
1085 
1086 	dev = dev_get_by_index(net, ifindex);
1087 	if (!dev)
1088 		return NULL;
1089 
1090 	return __netdev_put_lock(dev, net);
1091 }
1092 
1093 struct net_device *
1094 netdev_get_by_index_lock_ops_compat(struct net *net, int ifindex)
1095 {
1096 	struct net_device *dev;
1097 
1098 	dev = dev_get_by_index(net, ifindex);
1099 	if (!dev)
1100 		return NULL;
1101 
1102 	return __netdev_put_lock_ops_compat(dev, net);
1103 }
1104 
1105 struct net_device *
1106 netdev_xa_find_lock(struct net *net, struct net_device *dev,
1107 		    unsigned long *index)
1108 {
1109 	if (dev)
1110 		netdev_unlock(dev);
1111 
1112 	do {
1113 		rcu_read_lock();
1114 		dev = xa_find(&net->dev_by_index, index, ULONG_MAX, XA_PRESENT);
1115 		if (!dev) {
1116 			rcu_read_unlock();
1117 			return NULL;
1118 		}
1119 		dev_hold(dev);
1120 		rcu_read_unlock();
1121 
1122 		dev = __netdev_put_lock(dev, net);
1123 		if (dev)
1124 			return dev;
1125 
1126 		(*index)++;
1127 	} while (true);
1128 }
1129 
1130 struct net_device *
1131 netdev_xa_find_lock_ops_compat(struct net *net, struct net_device *dev,
1132 			       unsigned long *index)
1133 {
1134 	if (dev)
1135 		netdev_unlock_ops_compat(dev);
1136 
1137 	do {
1138 		rcu_read_lock();
1139 		dev = xa_find(&net->dev_by_index, index, ULONG_MAX, XA_PRESENT);
1140 		if (!dev) {
1141 			rcu_read_unlock();
1142 			return NULL;
1143 		}
1144 		dev_hold(dev);
1145 		rcu_read_unlock();
1146 
1147 		dev = __netdev_put_lock_ops_compat(dev, net);
1148 		if (dev)
1149 			return dev;
1150 
1151 		(*index)++;
1152 	} while (true);
1153 }
1154 
1155 static DEFINE_SEQLOCK(netdev_rename_lock);
1156 
1157 void netdev_copy_name(struct net_device *dev, char *name)
1158 {
1159 	unsigned int seq;
1160 
1161 	do {
1162 		seq = read_seqbegin(&netdev_rename_lock);
1163 		strscpy(name, dev->name, IFNAMSIZ);
1164 	} while (read_seqretry(&netdev_rename_lock, seq));
1165 }
1166 
1167 /**
1168  *	netdev_get_name - get a netdevice name, knowing its ifindex.
1169  *	@net: network namespace
1170  *	@name: a pointer to the buffer where the name will be stored.
1171  *	@ifindex: the ifindex of the interface to get the name from.
1172  */
1173 int netdev_get_name(struct net *net, char *name, int ifindex)
1174 {
1175 	struct net_device *dev;
1176 	int ret;
1177 
1178 	rcu_read_lock();
1179 
1180 	dev = dev_get_by_index_rcu(net, ifindex);
1181 	if (!dev) {
1182 		ret = -ENODEV;
1183 		goto out;
1184 	}
1185 
1186 	netdev_copy_name(dev, name);
1187 
1188 	ret = 0;
1189 out:
1190 	rcu_read_unlock();
1191 	return ret;
1192 }
1193 
1194 static bool dev_addr_cmp(struct net_device *dev, unsigned short type,
1195 			 const char *ha)
1196 {
1197 	return dev->type == type && !memcmp(dev->dev_addr, ha, dev->addr_len);
1198 }
1199 
1200 /**
1201  *	dev_getbyhwaddr_rcu - find a device by its hardware address
1202  *	@net: the applicable net namespace
1203  *	@type: media type of device
1204  *	@ha: hardware address
1205  *
1206  *	Search for an interface by MAC address. Returns NULL if the device
1207  *	is not found or a pointer to the device.
1208  *	The caller must hold RCU.
1209  *	The returned device has not had its ref count increased
1210  *	and the caller must therefore be careful about locking
1211  *
1212  */
1213 
1214 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1215 				       const char *ha)
1216 {
1217 	struct net_device *dev;
1218 
1219 	for_each_netdev_rcu(net, dev)
1220 		if (dev_addr_cmp(dev, type, ha))
1221 			return dev;
1222 
1223 	return NULL;
1224 }
1225 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
1226 
1227 /**
1228  * dev_getbyhwaddr() - find a device by its hardware address
1229  * @net: the applicable net namespace
1230  * @type: media type of device
1231  * @ha: hardware address
1232  *
1233  * Similar to dev_getbyhwaddr_rcu(), but the owner needs to hold
1234  * rtnl_lock.
1235  *
1236  * Context: rtnl_lock() must be held.
1237  * Return: pointer to the net_device, or NULL if not found
1238  */
1239 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type,
1240 				   const char *ha)
1241 {
1242 	struct net_device *dev;
1243 
1244 	ASSERT_RTNL();
1245 	for_each_netdev(net, dev)
1246 		if (dev_addr_cmp(dev, type, ha))
1247 			return dev;
1248 
1249 	return NULL;
1250 }
1251 EXPORT_SYMBOL(dev_getbyhwaddr);
1252 
1253 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1254 {
1255 	struct net_device *dev, *ret = NULL;
1256 
1257 	rcu_read_lock();
1258 	for_each_netdev_rcu(net, dev)
1259 		if (dev->type == type) {
1260 			dev_hold(dev);
1261 			ret = dev;
1262 			break;
1263 		}
1264 	rcu_read_unlock();
1265 	return ret;
1266 }
1267 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1268 
1269 /**
1270  * netdev_get_by_flags_rcu - find any device with given flags
1271  * @net: the applicable net namespace
1272  * @tracker: tracking object for the acquired reference
1273  * @if_flags: IFF_* values
1274  * @mask: bitmask of bits in if_flags to check
1275  *
1276  * Search for any interface with the given flags.
1277  *
1278  * Context: rcu_read_lock() must be held.
1279  * Returns: NULL if a device is not found or a pointer to the device.
1280  */
1281 struct net_device *netdev_get_by_flags_rcu(struct net *net, netdevice_tracker *tracker,
1282 					   unsigned short if_flags, unsigned short mask)
1283 {
1284 	struct net_device *dev;
1285 
1286 	for_each_netdev_rcu(net, dev) {
1287 		if (((READ_ONCE(dev->flags) ^ if_flags) & mask) == 0) {
1288 			netdev_hold(dev, tracker, GFP_ATOMIC);
1289 			return dev;
1290 		}
1291 	}
1292 
1293 	return NULL;
1294 }
1295 EXPORT_IPV6_MOD(netdev_get_by_flags_rcu);
1296 
1297 /**
1298  *	dev_valid_name - check if name is okay for network device
1299  *	@name: name string
1300  *
1301  *	Network device names need to be valid file names to
1302  *	allow sysfs to work.  We also disallow any kind of
1303  *	whitespace.
1304  */
1305 bool dev_valid_name(const char *name)
1306 {
1307 	if (*name == '\0')
1308 		return false;
1309 	if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1310 		return false;
1311 	if (!strcmp(name, ".") || !strcmp(name, ".."))
1312 		return false;
1313 
1314 	while (*name) {
1315 		if (*name == '/' || *name == ':' || isspace(*name))
1316 			return false;
1317 		name++;
1318 	}
1319 	return true;
1320 }
1321 EXPORT_SYMBOL(dev_valid_name);
1322 
1323 /**
1324  *	__dev_alloc_name - allocate a name for a device
1325  *	@net: network namespace to allocate the device name in
1326  *	@name: name format string
1327  *	@res: result name string
1328  *
1329  *	Passed a format string - eg "lt%d" it will try and find a suitable
1330  *	id. It scans list of devices to build up a free map, then chooses
1331  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1332  *	while allocating the name and adding the device in order to avoid
1333  *	duplicates.
1334  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1335  *	Returns the number of the unit assigned or a negative errno code.
1336  */
1337 
1338 static int __dev_alloc_name(struct net *net, const char *name, char *res)
1339 {
1340 	int i = 0;
1341 	const char *p;
1342 	const int max_netdevices = 8*PAGE_SIZE;
1343 	unsigned long *inuse;
1344 	struct net_device *d;
1345 	char buf[IFNAMSIZ];
1346 
1347 	/* Verify the string as this thing may have come from the user.
1348 	 * There must be one "%d" and no other "%" characters.
1349 	 */
1350 	p = strchr(name, '%');
1351 	if (!p || p[1] != 'd' || strchr(p + 2, '%'))
1352 		return -EINVAL;
1353 
1354 	/* Use one page as a bit array of possible slots */
1355 	inuse = bitmap_zalloc(max_netdevices, GFP_ATOMIC);
1356 	if (!inuse)
1357 		return -ENOMEM;
1358 
1359 	for_each_netdev(net, d) {
1360 		struct netdev_name_node *name_node;
1361 
1362 		netdev_for_each_altname(d, name_node) {
1363 			if (!sscanf(name_node->name, name, &i))
1364 				continue;
1365 			if (i < 0 || i >= max_netdevices)
1366 				continue;
1367 
1368 			/* avoid cases where sscanf is not exact inverse of printf */
1369 			snprintf(buf, IFNAMSIZ, name, i);
1370 			if (!strncmp(buf, name_node->name, IFNAMSIZ))
1371 				__set_bit(i, inuse);
1372 		}
1373 		if (!sscanf(d->name, name, &i))
1374 			continue;
1375 		if (i < 0 || i >= max_netdevices)
1376 			continue;
1377 
1378 		/* avoid cases where sscanf is not exact inverse of printf */
1379 		snprintf(buf, IFNAMSIZ, name, i);
1380 		if (!strncmp(buf, d->name, IFNAMSIZ))
1381 			__set_bit(i, inuse);
1382 	}
1383 
1384 	i = find_first_zero_bit(inuse, max_netdevices);
1385 	bitmap_free(inuse);
1386 	if (i == max_netdevices)
1387 		return -ENFILE;
1388 
1389 	/* 'res' and 'name' could overlap, use 'buf' as an intermediate buffer */
1390 	strscpy(buf, name, IFNAMSIZ);
1391 	snprintf(res, IFNAMSIZ, buf, i);
1392 	return i;
1393 }
1394 
1395 /* Returns negative errno or allocated unit id (see __dev_alloc_name()) */
1396 static int dev_prep_valid_name(struct net *net, struct net_device *dev,
1397 			       const char *want_name, char *out_name,
1398 			       int dup_errno)
1399 {
1400 	if (!dev_valid_name(want_name))
1401 		return -EINVAL;
1402 
1403 	if (strchr(want_name, '%'))
1404 		return __dev_alloc_name(net, want_name, out_name);
1405 
1406 	if (netdev_name_in_use(net, want_name))
1407 		return -dup_errno;
1408 	if (out_name != want_name)
1409 		strscpy(out_name, want_name, IFNAMSIZ);
1410 	return 0;
1411 }
1412 
1413 /**
1414  *	dev_alloc_name - allocate a name for a device
1415  *	@dev: device
1416  *	@name: name format string
1417  *
1418  *	Passed a format string - eg "lt%d" it will try and find a suitable
1419  *	id. It scans list of devices to build up a free map, then chooses
1420  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1421  *	while allocating the name and adding the device in order to avoid
1422  *	duplicates.
1423  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1424  *	Returns the number of the unit assigned or a negative errno code.
1425  */
1426 
1427 int dev_alloc_name(struct net_device *dev, const char *name)
1428 {
1429 	return dev_prep_valid_name(dev_net(dev), dev, name, dev->name, ENFILE);
1430 }
1431 EXPORT_SYMBOL(dev_alloc_name);
1432 
1433 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1434 			      const char *name)
1435 {
1436 	int ret;
1437 
1438 	ret = dev_prep_valid_name(net, dev, name, dev->name, EEXIST);
1439 	return ret < 0 ? ret : 0;
1440 }
1441 
1442 int netif_change_name(struct net_device *dev, const char *newname)
1443 {
1444 	struct net *net = dev_net(dev);
1445 	unsigned char old_assign_type;
1446 	char oldname[IFNAMSIZ];
1447 	int err = 0;
1448 	int ret;
1449 
1450 	ASSERT_RTNL_NET(net);
1451 
1452 	if (!strncmp(newname, dev->name, IFNAMSIZ))
1453 		return 0;
1454 
1455 	memcpy(oldname, dev->name, IFNAMSIZ);
1456 
1457 	write_seqlock_bh(&netdev_rename_lock);
1458 	err = dev_get_valid_name(net, dev, newname);
1459 	write_sequnlock_bh(&netdev_rename_lock);
1460 
1461 	if (err < 0)
1462 		return err;
1463 
1464 	if (oldname[0] && !strchr(oldname, '%'))
1465 		netdev_info(dev, "renamed from %s%s\n", oldname,
1466 			    dev->flags & IFF_UP ? " (while UP)" : "");
1467 
1468 	old_assign_type = dev->name_assign_type;
1469 	WRITE_ONCE(dev->name_assign_type, NET_NAME_RENAMED);
1470 
1471 rollback:
1472 	ret = device_rename(&dev->dev, dev->name);
1473 	if (ret) {
1474 		write_seqlock_bh(&netdev_rename_lock);
1475 		memcpy(dev->name, oldname, IFNAMSIZ);
1476 		write_sequnlock_bh(&netdev_rename_lock);
1477 		WRITE_ONCE(dev->name_assign_type, old_assign_type);
1478 		return ret;
1479 	}
1480 
1481 	netdev_adjacent_rename_links(dev, oldname);
1482 
1483 	netdev_name_node_del(dev->name_node);
1484 
1485 	synchronize_net();
1486 
1487 	netdev_name_node_add(net, dev->name_node);
1488 
1489 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1490 	ret = notifier_to_errno(ret);
1491 
1492 	if (ret) {
1493 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1494 		if (err >= 0) {
1495 			err = ret;
1496 			write_seqlock_bh(&netdev_rename_lock);
1497 			memcpy(dev->name, oldname, IFNAMSIZ);
1498 			write_sequnlock_bh(&netdev_rename_lock);
1499 			memcpy(oldname, newname, IFNAMSIZ);
1500 			WRITE_ONCE(dev->name_assign_type, old_assign_type);
1501 			old_assign_type = NET_NAME_RENAMED;
1502 			goto rollback;
1503 		} else {
1504 			netdev_err(dev, "name change rollback failed: %d\n",
1505 				   ret);
1506 		}
1507 	}
1508 
1509 	return err;
1510 }
1511 
1512 int netif_set_alias(struct net_device *dev, const char *alias, size_t len)
1513 {
1514 	struct dev_ifalias *new_alias = NULL;
1515 
1516 	if (len >= IFALIASZ)
1517 		return -EINVAL;
1518 
1519 	if (len) {
1520 		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1521 		if (!new_alias)
1522 			return -ENOMEM;
1523 
1524 		memcpy(new_alias->ifalias, alias, len);
1525 		new_alias->ifalias[len] = 0;
1526 	}
1527 
1528 	mutex_lock(&ifalias_mutex);
1529 	new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1530 					mutex_is_locked(&ifalias_mutex));
1531 	mutex_unlock(&ifalias_mutex);
1532 
1533 	if (new_alias)
1534 		kfree_rcu(new_alias, rcuhead);
1535 
1536 	return len;
1537 }
1538 
1539 /**
1540  *	dev_get_alias - get ifalias of a device
1541  *	@dev: device
1542  *	@name: buffer to store name of ifalias
1543  *	@len: size of buffer
1544  *
1545  *	get ifalias for a device.  Caller must make sure dev cannot go
1546  *	away,  e.g. rcu read lock or own a reference count to device.
1547  */
1548 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1549 {
1550 	const struct dev_ifalias *alias;
1551 	int ret = 0;
1552 
1553 	rcu_read_lock();
1554 	alias = rcu_dereference(dev->ifalias);
1555 	if (alias)
1556 		ret = snprintf(name, len, "%s", alias->ifalias);
1557 	rcu_read_unlock();
1558 
1559 	return ret;
1560 }
1561 
1562 /**
1563  *	netdev_features_change - device changes features
1564  *	@dev: device to cause notification
1565  *
1566  *	Called to indicate a device has changed features.
1567  */
1568 void netdev_features_change(struct net_device *dev)
1569 {
1570 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1571 }
1572 EXPORT_SYMBOL(netdev_features_change);
1573 
1574 void netif_state_change(struct net_device *dev)
1575 {
1576 	netdev_ops_assert_locked_or_invisible(dev);
1577 
1578 	if (dev->flags & IFF_UP) {
1579 		struct netdev_notifier_change_info change_info = {
1580 			.info.dev = dev,
1581 		};
1582 
1583 		call_netdevice_notifiers_info(NETDEV_CHANGE,
1584 					      &change_info.info);
1585 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL, 0, NULL);
1586 	}
1587 }
1588 
1589 /**
1590  * __netdev_notify_peers - notify network peers about existence of @dev,
1591  * to be called when rtnl lock is already held.
1592  * @dev: network device
1593  *
1594  * Generate traffic such that interested network peers are aware of
1595  * @dev, such as by generating a gratuitous ARP. This may be used when
1596  * a device wants to inform the rest of the network about some sort of
1597  * reconfiguration such as a failover event or virtual machine
1598  * migration.
1599  */
1600 void __netdev_notify_peers(struct net_device *dev)
1601 {
1602 	ASSERT_RTNL();
1603 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1604 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1605 }
1606 EXPORT_SYMBOL(__netdev_notify_peers);
1607 
1608 /**
1609  * netdev_notify_peers - notify network peers about existence of @dev
1610  * @dev: network device
1611  *
1612  * Generate traffic such that interested network peers are aware of
1613  * @dev, such as by generating a gratuitous ARP. This may be used when
1614  * a device wants to inform the rest of the network about some sort of
1615  * reconfiguration such as a failover event or virtual machine
1616  * migration.
1617  */
1618 void netdev_notify_peers(struct net_device *dev)
1619 {
1620 	rtnl_lock();
1621 	__netdev_notify_peers(dev);
1622 	rtnl_unlock();
1623 }
1624 EXPORT_SYMBOL(netdev_notify_peers);
1625 
1626 static int napi_threaded_poll(void *data);
1627 
1628 static int napi_kthread_create(struct napi_struct *n)
1629 {
1630 	int err = 0;
1631 
1632 	/* Create and wake up the kthread once to put it in
1633 	 * TASK_INTERRUPTIBLE mode to avoid the blocked task
1634 	 * warning and work with loadavg.
1635 	 */
1636 	n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1637 				n->dev->name, n->napi_id);
1638 	if (IS_ERR(n->thread)) {
1639 		err = PTR_ERR(n->thread);
1640 		pr_err("kthread_run failed with err %d\n", err);
1641 		n->thread = NULL;
1642 	}
1643 
1644 	return err;
1645 }
1646 
1647 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1648 {
1649 	const struct net_device_ops *ops = dev->netdev_ops;
1650 	int ret;
1651 
1652 	ASSERT_RTNL();
1653 	dev_addr_check(dev);
1654 
1655 	if (!netif_device_present(dev)) {
1656 		/* may be detached because parent is runtime-suspended */
1657 		if (dev->dev.parent)
1658 			pm_runtime_resume(dev->dev.parent);
1659 		if (!netif_device_present(dev))
1660 			return -ENODEV;
1661 	}
1662 
1663 	/* Block netpoll from trying to do any rx path servicing.
1664 	 * If we don't do this there is a chance ndo_poll_controller
1665 	 * or ndo_poll may be running while we open the device
1666 	 */
1667 	netpoll_poll_disable(dev);
1668 
1669 	ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1670 	ret = notifier_to_errno(ret);
1671 	if (ret)
1672 		return ret;
1673 
1674 	set_bit(__LINK_STATE_START, &dev->state);
1675 
1676 	netdev_ops_assert_locked(dev);
1677 
1678 	if (ops->ndo_validate_addr)
1679 		ret = ops->ndo_validate_addr(dev);
1680 
1681 	if (!ret && ops->ndo_open)
1682 		ret = ops->ndo_open(dev);
1683 
1684 	netpoll_poll_enable(dev);
1685 
1686 	if (ret)
1687 		clear_bit(__LINK_STATE_START, &dev->state);
1688 	else {
1689 		netif_set_up(dev, true);
1690 		dev_set_rx_mode(dev);
1691 		dev_activate(dev);
1692 		add_device_randomness(dev->dev_addr, dev->addr_len);
1693 	}
1694 
1695 	return ret;
1696 }
1697 
1698 int netif_open(struct net_device *dev, struct netlink_ext_ack *extack)
1699 {
1700 	int ret;
1701 
1702 	if (dev->flags & IFF_UP)
1703 		return 0;
1704 
1705 	ret = __dev_open(dev, extack);
1706 	if (ret < 0)
1707 		return ret;
1708 
1709 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1710 	call_netdevice_notifiers(NETDEV_UP, dev);
1711 
1712 	return ret;
1713 }
1714 
1715 static void __dev_close_many(struct list_head *head)
1716 {
1717 	struct net_device *dev;
1718 
1719 	ASSERT_RTNL();
1720 	might_sleep();
1721 
1722 	list_for_each_entry(dev, head, close_list) {
1723 		/* Temporarily disable netpoll until the interface is down */
1724 		netpoll_poll_disable(dev);
1725 
1726 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1727 
1728 		clear_bit(__LINK_STATE_START, &dev->state);
1729 
1730 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1731 		 * can be even on different cpu. So just clear netif_running().
1732 		 *
1733 		 * dev->stop() will invoke napi_disable() on all of it's
1734 		 * napi_struct instances on this device.
1735 		 */
1736 		smp_mb__after_atomic(); /* Commit netif_running(). */
1737 	}
1738 
1739 	dev_deactivate_many(head);
1740 
1741 	list_for_each_entry(dev, head, close_list) {
1742 		const struct net_device_ops *ops = dev->netdev_ops;
1743 
1744 		/*
1745 		 *	Call the device specific close. This cannot fail.
1746 		 *	Only if device is UP
1747 		 *
1748 		 *	We allow it to be called even after a DETACH hot-plug
1749 		 *	event.
1750 		 */
1751 
1752 		netdev_ops_assert_locked(dev);
1753 
1754 		if (ops->ndo_stop)
1755 			ops->ndo_stop(dev);
1756 
1757 		netif_set_up(dev, false);
1758 		netpoll_poll_enable(dev);
1759 	}
1760 }
1761 
1762 static void __dev_close(struct net_device *dev)
1763 {
1764 	LIST_HEAD(single);
1765 
1766 	list_add(&dev->close_list, &single);
1767 	__dev_close_many(&single);
1768 	list_del(&single);
1769 }
1770 
1771 void dev_close_many(struct list_head *head, bool unlink)
1772 {
1773 	struct net_device *dev, *tmp;
1774 
1775 	/* Remove the devices that don't need to be closed */
1776 	list_for_each_entry_safe(dev, tmp, head, close_list)
1777 		if (!(dev->flags & IFF_UP))
1778 			list_del_init(&dev->close_list);
1779 
1780 	__dev_close_many(head);
1781 
1782 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1783 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1784 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1785 		if (unlink)
1786 			list_del_init(&dev->close_list);
1787 	}
1788 }
1789 EXPORT_SYMBOL(dev_close_many);
1790 
1791 void netif_close(struct net_device *dev)
1792 {
1793 	if (dev->flags & IFF_UP) {
1794 		LIST_HEAD(single);
1795 
1796 		list_add(&dev->close_list, &single);
1797 		dev_close_many(&single, true);
1798 		list_del(&single);
1799 	}
1800 }
1801 EXPORT_SYMBOL(netif_close);
1802 
1803 void netif_disable_lro(struct net_device *dev)
1804 {
1805 	struct net_device *lower_dev;
1806 	struct list_head *iter;
1807 
1808 	dev->wanted_features &= ~NETIF_F_LRO;
1809 	netdev_update_features(dev);
1810 
1811 	if (unlikely(dev->features & NETIF_F_LRO))
1812 		netdev_WARN(dev, "failed to disable LRO!\n");
1813 
1814 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
1815 		netdev_lock_ops(lower_dev);
1816 		netif_disable_lro(lower_dev);
1817 		netdev_unlock_ops(lower_dev);
1818 	}
1819 }
1820 EXPORT_IPV6_MOD(netif_disable_lro);
1821 
1822 /**
1823  *	dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1824  *	@dev: device
1825  *
1826  *	Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1827  *	called under RTNL.  This is needed if Generic XDP is installed on
1828  *	the device.
1829  */
1830 static void dev_disable_gro_hw(struct net_device *dev)
1831 {
1832 	dev->wanted_features &= ~NETIF_F_GRO_HW;
1833 	netdev_update_features(dev);
1834 
1835 	if (unlikely(dev->features & NETIF_F_GRO_HW))
1836 		netdev_WARN(dev, "failed to disable GRO_HW!\n");
1837 }
1838 
1839 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1840 {
1841 #define N(val) 						\
1842 	case NETDEV_##val:				\
1843 		return "NETDEV_" __stringify(val);
1844 	switch (cmd) {
1845 	N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1846 	N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1847 	N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1848 	N(POST_INIT) N(PRE_UNINIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN)
1849 	N(CHANGEUPPER) N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA)
1850 	N(BONDING_INFO) N(PRECHANGEUPPER) N(CHANGELOWERSTATE)
1851 	N(UDP_TUNNEL_PUSH_INFO) N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1852 	N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1853 	N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1854 	N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE)
1855 	N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA)
1856 	N(XDP_FEAT_CHANGE)
1857 	}
1858 #undef N
1859 	return "UNKNOWN_NETDEV_EVENT";
1860 }
1861 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1862 
1863 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1864 				   struct net_device *dev)
1865 {
1866 	struct netdev_notifier_info info = {
1867 		.dev = dev,
1868 	};
1869 
1870 	return nb->notifier_call(nb, val, &info);
1871 }
1872 
1873 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1874 					     struct net_device *dev)
1875 {
1876 	int err;
1877 
1878 	err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1879 	err = notifier_to_errno(err);
1880 	if (err)
1881 		return err;
1882 
1883 	if (!(dev->flags & IFF_UP))
1884 		return 0;
1885 
1886 	call_netdevice_notifier(nb, NETDEV_UP, dev);
1887 	return 0;
1888 }
1889 
1890 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1891 						struct net_device *dev)
1892 {
1893 	if (dev->flags & IFF_UP) {
1894 		call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1895 					dev);
1896 		call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1897 	}
1898 	call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1899 }
1900 
1901 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1902 						 struct net *net)
1903 {
1904 	struct net_device *dev;
1905 	int err;
1906 
1907 	for_each_netdev(net, dev) {
1908 		netdev_lock_ops(dev);
1909 		err = call_netdevice_register_notifiers(nb, dev);
1910 		netdev_unlock_ops(dev);
1911 		if (err)
1912 			goto rollback;
1913 	}
1914 	return 0;
1915 
1916 rollback:
1917 	for_each_netdev_continue_reverse(net, dev)
1918 		call_netdevice_unregister_notifiers(nb, dev);
1919 	return err;
1920 }
1921 
1922 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1923 						    struct net *net)
1924 {
1925 	struct net_device *dev;
1926 
1927 	for_each_netdev(net, dev)
1928 		call_netdevice_unregister_notifiers(nb, dev);
1929 }
1930 
1931 static int dev_boot_phase = 1;
1932 
1933 /**
1934  * register_netdevice_notifier - register a network notifier block
1935  * @nb: notifier
1936  *
1937  * Register a notifier to be called when network device events occur.
1938  * The notifier passed is linked into the kernel structures and must
1939  * not be reused until it has been unregistered. A negative errno code
1940  * is returned on a failure.
1941  *
1942  * When registered all registration and up events are replayed
1943  * to the new notifier to allow device to have a race free
1944  * view of the network device list.
1945  */
1946 
1947 int register_netdevice_notifier(struct notifier_block *nb)
1948 {
1949 	struct net *net;
1950 	int err;
1951 
1952 	/* Close race with setup_net() and cleanup_net() */
1953 	down_write(&pernet_ops_rwsem);
1954 
1955 	/* When RTNL is removed, we need protection for netdev_chain. */
1956 	rtnl_lock();
1957 
1958 	err = raw_notifier_chain_register(&netdev_chain, nb);
1959 	if (err)
1960 		goto unlock;
1961 	if (dev_boot_phase)
1962 		goto unlock;
1963 	for_each_net(net) {
1964 		__rtnl_net_lock(net);
1965 		err = call_netdevice_register_net_notifiers(nb, net);
1966 		__rtnl_net_unlock(net);
1967 		if (err)
1968 			goto rollback;
1969 	}
1970 
1971 unlock:
1972 	rtnl_unlock();
1973 	up_write(&pernet_ops_rwsem);
1974 	return err;
1975 
1976 rollback:
1977 	for_each_net_continue_reverse(net) {
1978 		__rtnl_net_lock(net);
1979 		call_netdevice_unregister_net_notifiers(nb, net);
1980 		__rtnl_net_unlock(net);
1981 	}
1982 
1983 	raw_notifier_chain_unregister(&netdev_chain, nb);
1984 	goto unlock;
1985 }
1986 EXPORT_SYMBOL(register_netdevice_notifier);
1987 
1988 /**
1989  * unregister_netdevice_notifier - unregister a network notifier block
1990  * @nb: notifier
1991  *
1992  * Unregister a notifier previously registered by
1993  * register_netdevice_notifier(). The notifier is unlinked into the
1994  * kernel structures and may then be reused. A negative errno code
1995  * is returned on a failure.
1996  *
1997  * After unregistering unregister and down device events are synthesized
1998  * for all devices on the device list to the removed notifier to remove
1999  * the need for special case cleanup code.
2000  */
2001 
2002 int unregister_netdevice_notifier(struct notifier_block *nb)
2003 {
2004 	struct net *net;
2005 	int err;
2006 
2007 	/* Close race with setup_net() and cleanup_net() */
2008 	down_write(&pernet_ops_rwsem);
2009 	rtnl_lock();
2010 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
2011 	if (err)
2012 		goto unlock;
2013 
2014 	for_each_net(net) {
2015 		__rtnl_net_lock(net);
2016 		call_netdevice_unregister_net_notifiers(nb, net);
2017 		__rtnl_net_unlock(net);
2018 	}
2019 
2020 unlock:
2021 	rtnl_unlock();
2022 	up_write(&pernet_ops_rwsem);
2023 	return err;
2024 }
2025 EXPORT_SYMBOL(unregister_netdevice_notifier);
2026 
2027 static int __register_netdevice_notifier_net(struct net *net,
2028 					     struct notifier_block *nb,
2029 					     bool ignore_call_fail)
2030 {
2031 	int err;
2032 
2033 	err = raw_notifier_chain_register(&net->netdev_chain, nb);
2034 	if (err)
2035 		return err;
2036 	if (dev_boot_phase)
2037 		return 0;
2038 
2039 	err = call_netdevice_register_net_notifiers(nb, net);
2040 	if (err && !ignore_call_fail)
2041 		goto chain_unregister;
2042 
2043 	return 0;
2044 
2045 chain_unregister:
2046 	raw_notifier_chain_unregister(&net->netdev_chain, nb);
2047 	return err;
2048 }
2049 
2050 static int __unregister_netdevice_notifier_net(struct net *net,
2051 					       struct notifier_block *nb)
2052 {
2053 	int err;
2054 
2055 	err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
2056 	if (err)
2057 		return err;
2058 
2059 	call_netdevice_unregister_net_notifiers(nb, net);
2060 	return 0;
2061 }
2062 
2063 /**
2064  * register_netdevice_notifier_net - register a per-netns network notifier block
2065  * @net: network namespace
2066  * @nb: notifier
2067  *
2068  * Register a notifier to be called when network device events occur.
2069  * The notifier passed is linked into the kernel structures and must
2070  * not be reused until it has been unregistered. A negative errno code
2071  * is returned on a failure.
2072  *
2073  * When registered all registration and up events are replayed
2074  * to the new notifier to allow device to have a race free
2075  * view of the network device list.
2076  */
2077 
2078 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
2079 {
2080 	int err;
2081 
2082 	rtnl_net_lock(net);
2083 	err = __register_netdevice_notifier_net(net, nb, false);
2084 	rtnl_net_unlock(net);
2085 
2086 	return err;
2087 }
2088 EXPORT_SYMBOL(register_netdevice_notifier_net);
2089 
2090 /**
2091  * unregister_netdevice_notifier_net - unregister a per-netns
2092  *                                     network notifier block
2093  * @net: network namespace
2094  * @nb: notifier
2095  *
2096  * Unregister a notifier previously registered by
2097  * register_netdevice_notifier_net(). The notifier is unlinked from the
2098  * kernel structures and may then be reused. A negative errno code
2099  * is returned on a failure.
2100  *
2101  * After unregistering unregister and down device events are synthesized
2102  * for all devices on the device list to the removed notifier to remove
2103  * the need for special case cleanup code.
2104  */
2105 
2106 int unregister_netdevice_notifier_net(struct net *net,
2107 				      struct notifier_block *nb)
2108 {
2109 	int err;
2110 
2111 	rtnl_net_lock(net);
2112 	err = __unregister_netdevice_notifier_net(net, nb);
2113 	rtnl_net_unlock(net);
2114 
2115 	return err;
2116 }
2117 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
2118 
2119 static void __move_netdevice_notifier_net(struct net *src_net,
2120 					  struct net *dst_net,
2121 					  struct notifier_block *nb)
2122 {
2123 	__unregister_netdevice_notifier_net(src_net, nb);
2124 	__register_netdevice_notifier_net(dst_net, nb, true);
2125 }
2126 
2127 static void rtnl_net_dev_lock(struct net_device *dev)
2128 {
2129 	bool again;
2130 
2131 	do {
2132 		struct net *net;
2133 
2134 		again = false;
2135 
2136 		/* netns might be being dismantled. */
2137 		rcu_read_lock();
2138 		net = dev_net_rcu(dev);
2139 		net_passive_inc(net);
2140 		rcu_read_unlock();
2141 
2142 		rtnl_net_lock(net);
2143 
2144 #ifdef CONFIG_NET_NS
2145 		/* dev might have been moved to another netns. */
2146 		if (!net_eq(net, rcu_access_pointer(dev->nd_net.net))) {
2147 			rtnl_net_unlock(net);
2148 			net_passive_dec(net);
2149 			again = true;
2150 		}
2151 #endif
2152 	} while (again);
2153 }
2154 
2155 static void rtnl_net_dev_unlock(struct net_device *dev)
2156 {
2157 	struct net *net = dev_net(dev);
2158 
2159 	rtnl_net_unlock(net);
2160 	net_passive_dec(net);
2161 }
2162 
2163 int register_netdevice_notifier_dev_net(struct net_device *dev,
2164 					struct notifier_block *nb,
2165 					struct netdev_net_notifier *nn)
2166 {
2167 	int err;
2168 
2169 	rtnl_net_dev_lock(dev);
2170 	err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
2171 	if (!err) {
2172 		nn->nb = nb;
2173 		list_add(&nn->list, &dev->net_notifier_list);
2174 	}
2175 	rtnl_net_dev_unlock(dev);
2176 
2177 	return err;
2178 }
2179 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
2180 
2181 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2182 					  struct notifier_block *nb,
2183 					  struct netdev_net_notifier *nn)
2184 {
2185 	int err;
2186 
2187 	rtnl_net_dev_lock(dev);
2188 	list_del(&nn->list);
2189 	err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
2190 	rtnl_net_dev_unlock(dev);
2191 
2192 	return err;
2193 }
2194 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
2195 
2196 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
2197 					     struct net *net)
2198 {
2199 	struct netdev_net_notifier *nn;
2200 
2201 	list_for_each_entry(nn, &dev->net_notifier_list, list)
2202 		__move_netdevice_notifier_net(dev_net(dev), net, nn->nb);
2203 }
2204 
2205 /**
2206  *	call_netdevice_notifiers_info - call all network notifier blocks
2207  *	@val: value passed unmodified to notifier function
2208  *	@info: notifier information data
2209  *
2210  *	Call all network notifier blocks.  Parameters and return value
2211  *	are as for raw_notifier_call_chain().
2212  */
2213 
2214 int call_netdevice_notifiers_info(unsigned long val,
2215 				  struct netdev_notifier_info *info)
2216 {
2217 	struct net *net = dev_net(info->dev);
2218 	int ret;
2219 
2220 	ASSERT_RTNL();
2221 
2222 	/* Run per-netns notifier block chain first, then run the global one.
2223 	 * Hopefully, one day, the global one is going to be removed after
2224 	 * all notifier block registrators get converted to be per-netns.
2225 	 */
2226 	ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
2227 	if (ret & NOTIFY_STOP_MASK)
2228 		return ret;
2229 	return raw_notifier_call_chain(&netdev_chain, val, info);
2230 }
2231 
2232 /**
2233  *	call_netdevice_notifiers_info_robust - call per-netns notifier blocks
2234  *	                                       for and rollback on error
2235  *	@val_up: value passed unmodified to notifier function
2236  *	@val_down: value passed unmodified to the notifier function when
2237  *	           recovering from an error on @val_up
2238  *	@info: notifier information data
2239  *
2240  *	Call all per-netns network notifier blocks, but not notifier blocks on
2241  *	the global notifier chain. Parameters and return value are as for
2242  *	raw_notifier_call_chain_robust().
2243  */
2244 
2245 static int
2246 call_netdevice_notifiers_info_robust(unsigned long val_up,
2247 				     unsigned long val_down,
2248 				     struct netdev_notifier_info *info)
2249 {
2250 	struct net *net = dev_net(info->dev);
2251 
2252 	ASSERT_RTNL();
2253 
2254 	return raw_notifier_call_chain_robust(&net->netdev_chain,
2255 					      val_up, val_down, info);
2256 }
2257 
2258 static int call_netdevice_notifiers_extack(unsigned long val,
2259 					   struct net_device *dev,
2260 					   struct netlink_ext_ack *extack)
2261 {
2262 	struct netdev_notifier_info info = {
2263 		.dev = dev,
2264 		.extack = extack,
2265 	};
2266 
2267 	return call_netdevice_notifiers_info(val, &info);
2268 }
2269 
2270 /**
2271  *	call_netdevice_notifiers - call all network notifier blocks
2272  *      @val: value passed unmodified to notifier function
2273  *      @dev: net_device pointer passed unmodified to notifier function
2274  *
2275  *	Call all network notifier blocks.  Parameters and return value
2276  *	are as for raw_notifier_call_chain().
2277  */
2278 
2279 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2280 {
2281 	return call_netdevice_notifiers_extack(val, dev, NULL);
2282 }
2283 EXPORT_SYMBOL(call_netdevice_notifiers);
2284 
2285 /**
2286  *	call_netdevice_notifiers_mtu - call all network notifier blocks
2287  *	@val: value passed unmodified to notifier function
2288  *	@dev: net_device pointer passed unmodified to notifier function
2289  *	@arg: additional u32 argument passed to the notifier function
2290  *
2291  *	Call all network notifier blocks.  Parameters and return value
2292  *	are as for raw_notifier_call_chain().
2293  */
2294 static int call_netdevice_notifiers_mtu(unsigned long val,
2295 					struct net_device *dev, u32 arg)
2296 {
2297 	struct netdev_notifier_info_ext info = {
2298 		.info.dev = dev,
2299 		.ext.mtu = arg,
2300 	};
2301 
2302 	BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2303 
2304 	return call_netdevice_notifiers_info(val, &info.info);
2305 }
2306 
2307 #ifdef CONFIG_NET_INGRESS
2308 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2309 
2310 void net_inc_ingress_queue(void)
2311 {
2312 	static_branch_inc(&ingress_needed_key);
2313 }
2314 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2315 
2316 void net_dec_ingress_queue(void)
2317 {
2318 	static_branch_dec(&ingress_needed_key);
2319 }
2320 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2321 #endif
2322 
2323 #ifdef CONFIG_NET_EGRESS
2324 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2325 
2326 void net_inc_egress_queue(void)
2327 {
2328 	static_branch_inc(&egress_needed_key);
2329 }
2330 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2331 
2332 void net_dec_egress_queue(void)
2333 {
2334 	static_branch_dec(&egress_needed_key);
2335 }
2336 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2337 #endif
2338 
2339 #ifdef CONFIG_NET_CLS_ACT
2340 DEFINE_STATIC_KEY_FALSE(tcf_sw_enabled_key);
2341 EXPORT_SYMBOL(tcf_sw_enabled_key);
2342 #endif
2343 
2344 DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2345 EXPORT_SYMBOL(netstamp_needed_key);
2346 #ifdef CONFIG_JUMP_LABEL
2347 static atomic_t netstamp_needed_deferred;
2348 static atomic_t netstamp_wanted;
2349 static void netstamp_clear(struct work_struct *work)
2350 {
2351 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2352 	int wanted;
2353 
2354 	wanted = atomic_add_return(deferred, &netstamp_wanted);
2355 	if (wanted > 0)
2356 		static_branch_enable(&netstamp_needed_key);
2357 	else
2358 		static_branch_disable(&netstamp_needed_key);
2359 }
2360 static DECLARE_WORK(netstamp_work, netstamp_clear);
2361 #endif
2362 
2363 void net_enable_timestamp(void)
2364 {
2365 #ifdef CONFIG_JUMP_LABEL
2366 	int wanted = atomic_read(&netstamp_wanted);
2367 
2368 	while (wanted > 0) {
2369 		if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted + 1))
2370 			return;
2371 	}
2372 	atomic_inc(&netstamp_needed_deferred);
2373 	schedule_work(&netstamp_work);
2374 #else
2375 	static_branch_inc(&netstamp_needed_key);
2376 #endif
2377 }
2378 EXPORT_SYMBOL(net_enable_timestamp);
2379 
2380 void net_disable_timestamp(void)
2381 {
2382 #ifdef CONFIG_JUMP_LABEL
2383 	int wanted = atomic_read(&netstamp_wanted);
2384 
2385 	while (wanted > 1) {
2386 		if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted - 1))
2387 			return;
2388 	}
2389 	atomic_dec(&netstamp_needed_deferred);
2390 	schedule_work(&netstamp_work);
2391 #else
2392 	static_branch_dec(&netstamp_needed_key);
2393 #endif
2394 }
2395 EXPORT_SYMBOL(net_disable_timestamp);
2396 
2397 static inline void net_timestamp_set(struct sk_buff *skb)
2398 {
2399 	skb->tstamp = 0;
2400 	skb->tstamp_type = SKB_CLOCK_REALTIME;
2401 	if (static_branch_unlikely(&netstamp_needed_key))
2402 		skb->tstamp = ktime_get_real();
2403 }
2404 
2405 #define net_timestamp_check(COND, SKB)				\
2406 	if (static_branch_unlikely(&netstamp_needed_key)) {	\
2407 		if ((COND) && !(SKB)->tstamp)			\
2408 			(SKB)->tstamp = ktime_get_real();	\
2409 	}							\
2410 
2411 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2412 {
2413 	return __is_skb_forwardable(dev, skb, true);
2414 }
2415 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2416 
2417 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2418 			      bool check_mtu)
2419 {
2420 	int ret = ____dev_forward_skb(dev, skb, check_mtu);
2421 
2422 	if (likely(!ret)) {
2423 		skb->protocol = eth_type_trans(skb, dev);
2424 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2425 	}
2426 
2427 	return ret;
2428 }
2429 
2430 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2431 {
2432 	return __dev_forward_skb2(dev, skb, true);
2433 }
2434 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2435 
2436 /**
2437  * dev_forward_skb - loopback an skb to another netif
2438  *
2439  * @dev: destination network device
2440  * @skb: buffer to forward
2441  *
2442  * return values:
2443  *	NET_RX_SUCCESS	(no congestion)
2444  *	NET_RX_DROP     (packet was dropped, but freed)
2445  *
2446  * dev_forward_skb can be used for injecting an skb from the
2447  * start_xmit function of one device into the receive queue
2448  * of another device.
2449  *
2450  * The receiving device may be in another namespace, so
2451  * we have to clear all information in the skb that could
2452  * impact namespace isolation.
2453  */
2454 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2455 {
2456 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2457 }
2458 EXPORT_SYMBOL_GPL(dev_forward_skb);
2459 
2460 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2461 {
2462 	return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2463 }
2464 
2465 static inline int deliver_skb(struct sk_buff *skb,
2466 			      struct packet_type *pt_prev,
2467 			      struct net_device *orig_dev)
2468 {
2469 	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2470 		return -ENOMEM;
2471 	refcount_inc(&skb->users);
2472 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2473 }
2474 
2475 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2476 					  struct packet_type **pt,
2477 					  struct net_device *orig_dev,
2478 					  __be16 type,
2479 					  struct list_head *ptype_list)
2480 {
2481 	struct packet_type *ptype, *pt_prev = *pt;
2482 
2483 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2484 		if (ptype->type != type)
2485 			continue;
2486 		if (pt_prev)
2487 			deliver_skb(skb, pt_prev, orig_dev);
2488 		pt_prev = ptype;
2489 	}
2490 	*pt = pt_prev;
2491 }
2492 
2493 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2494 {
2495 	if (!ptype->af_packet_priv || !skb->sk)
2496 		return false;
2497 
2498 	if (ptype->id_match)
2499 		return ptype->id_match(ptype, skb->sk);
2500 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2501 		return true;
2502 
2503 	return false;
2504 }
2505 
2506 /**
2507  * dev_nit_active_rcu - return true if any network interface taps are in use
2508  *
2509  * The caller must hold the RCU lock
2510  *
2511  * @dev: network device to check for the presence of taps
2512  */
2513 bool dev_nit_active_rcu(const struct net_device *dev)
2514 {
2515 	/* Callers may hold either RCU or RCU BH lock */
2516 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
2517 
2518 	return !list_empty(&dev_net(dev)->ptype_all) ||
2519 	       !list_empty(&dev->ptype_all);
2520 }
2521 EXPORT_SYMBOL_GPL(dev_nit_active_rcu);
2522 
2523 /*
2524  *	Support routine. Sends outgoing frames to any network
2525  *	taps currently in use.
2526  */
2527 
2528 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2529 {
2530 	struct packet_type *ptype, *pt_prev = NULL;
2531 	struct list_head *ptype_list;
2532 	struct sk_buff *skb2 = NULL;
2533 
2534 	rcu_read_lock();
2535 	ptype_list = &dev_net_rcu(dev)->ptype_all;
2536 again:
2537 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2538 		if (READ_ONCE(ptype->ignore_outgoing))
2539 			continue;
2540 
2541 		/* Never send packets back to the socket
2542 		 * they originated from - MvS (miquels@drinkel.ow.org)
2543 		 */
2544 		if (skb_loop_sk(ptype, skb))
2545 			continue;
2546 
2547 		if (pt_prev) {
2548 			deliver_skb(skb2, pt_prev, skb->dev);
2549 			pt_prev = ptype;
2550 			continue;
2551 		}
2552 
2553 		/* need to clone skb, done only once */
2554 		skb2 = skb_clone(skb, GFP_ATOMIC);
2555 		if (!skb2)
2556 			goto out_unlock;
2557 
2558 		net_timestamp_set(skb2);
2559 
2560 		/* skb->nh should be correctly
2561 		 * set by sender, so that the second statement is
2562 		 * just protection against buggy protocols.
2563 		 */
2564 		skb_reset_mac_header(skb2);
2565 
2566 		if (skb_network_header(skb2) < skb2->data ||
2567 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2568 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2569 					     ntohs(skb2->protocol),
2570 					     dev->name);
2571 			skb_reset_network_header(skb2);
2572 		}
2573 
2574 		skb2->transport_header = skb2->network_header;
2575 		skb2->pkt_type = PACKET_OUTGOING;
2576 		pt_prev = ptype;
2577 	}
2578 
2579 	if (ptype_list != &dev->ptype_all) {
2580 		ptype_list = &dev->ptype_all;
2581 		goto again;
2582 	}
2583 out_unlock:
2584 	if (pt_prev) {
2585 		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2586 			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2587 		else
2588 			kfree_skb(skb2);
2589 	}
2590 	rcu_read_unlock();
2591 }
2592 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2593 
2594 /**
2595  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2596  * @dev: Network device
2597  * @txq: number of queues available
2598  *
2599  * If real_num_tx_queues is changed the tc mappings may no longer be
2600  * valid. To resolve this verify the tc mapping remains valid and if
2601  * not NULL the mapping. With no priorities mapping to this
2602  * offset/count pair it will no longer be used. In the worst case TC0
2603  * is invalid nothing can be done so disable priority mappings. If is
2604  * expected that drivers will fix this mapping if they can before
2605  * calling netif_set_real_num_tx_queues.
2606  */
2607 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2608 {
2609 	int i;
2610 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2611 
2612 	/* If TC0 is invalidated disable TC mapping */
2613 	if (tc->offset + tc->count > txq) {
2614 		netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2615 		dev->num_tc = 0;
2616 		return;
2617 	}
2618 
2619 	/* Invalidated prio to tc mappings set to TC0 */
2620 	for (i = 1; i < TC_BITMASK + 1; i++) {
2621 		int q = netdev_get_prio_tc_map(dev, i);
2622 
2623 		tc = &dev->tc_to_txq[q];
2624 		if (tc->offset + tc->count > txq) {
2625 			netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2626 				    i, q);
2627 			netdev_set_prio_tc_map(dev, i, 0);
2628 		}
2629 	}
2630 }
2631 
2632 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2633 {
2634 	if (dev->num_tc) {
2635 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2636 		int i;
2637 
2638 		/* walk through the TCs and see if it falls into any of them */
2639 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2640 			if ((txq - tc->offset) < tc->count)
2641 				return i;
2642 		}
2643 
2644 		/* didn't find it, just return -1 to indicate no match */
2645 		return -1;
2646 	}
2647 
2648 	return 0;
2649 }
2650 EXPORT_SYMBOL(netdev_txq_to_tc);
2651 
2652 #ifdef CONFIG_XPS
2653 static struct static_key xps_needed __read_mostly;
2654 static struct static_key xps_rxqs_needed __read_mostly;
2655 static DEFINE_MUTEX(xps_map_mutex);
2656 #define xmap_dereference(P)		\
2657 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2658 
2659 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2660 			     struct xps_dev_maps *old_maps, int tci, u16 index)
2661 {
2662 	struct xps_map *map = NULL;
2663 	int pos;
2664 
2665 	map = xmap_dereference(dev_maps->attr_map[tci]);
2666 	if (!map)
2667 		return false;
2668 
2669 	for (pos = map->len; pos--;) {
2670 		if (map->queues[pos] != index)
2671 			continue;
2672 
2673 		if (map->len > 1) {
2674 			map->queues[pos] = map->queues[--map->len];
2675 			break;
2676 		}
2677 
2678 		if (old_maps)
2679 			RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2680 		RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2681 		kfree_rcu(map, rcu);
2682 		return false;
2683 	}
2684 
2685 	return true;
2686 }
2687 
2688 static bool remove_xps_queue_cpu(struct net_device *dev,
2689 				 struct xps_dev_maps *dev_maps,
2690 				 int cpu, u16 offset, u16 count)
2691 {
2692 	int num_tc = dev_maps->num_tc;
2693 	bool active = false;
2694 	int tci;
2695 
2696 	for (tci = cpu * num_tc; num_tc--; tci++) {
2697 		int i, j;
2698 
2699 		for (i = count, j = offset; i--; j++) {
2700 			if (!remove_xps_queue(dev_maps, NULL, tci, j))
2701 				break;
2702 		}
2703 
2704 		active |= i < 0;
2705 	}
2706 
2707 	return active;
2708 }
2709 
2710 static void reset_xps_maps(struct net_device *dev,
2711 			   struct xps_dev_maps *dev_maps,
2712 			   enum xps_map_type type)
2713 {
2714 	static_key_slow_dec_cpuslocked(&xps_needed);
2715 	if (type == XPS_RXQS)
2716 		static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2717 
2718 	RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2719 
2720 	kfree_rcu(dev_maps, rcu);
2721 }
2722 
2723 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2724 			   u16 offset, u16 count)
2725 {
2726 	struct xps_dev_maps *dev_maps;
2727 	bool active = false;
2728 	int i, j;
2729 
2730 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2731 	if (!dev_maps)
2732 		return;
2733 
2734 	for (j = 0; j < dev_maps->nr_ids; j++)
2735 		active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2736 	if (!active)
2737 		reset_xps_maps(dev, dev_maps, type);
2738 
2739 	if (type == XPS_CPUS) {
2740 		for (i = offset + (count - 1); count--; i--)
2741 			netdev_queue_numa_node_write(
2742 				netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2743 	}
2744 }
2745 
2746 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2747 				   u16 count)
2748 {
2749 	if (!static_key_false(&xps_needed))
2750 		return;
2751 
2752 	cpus_read_lock();
2753 	mutex_lock(&xps_map_mutex);
2754 
2755 	if (static_key_false(&xps_rxqs_needed))
2756 		clean_xps_maps(dev, XPS_RXQS, offset, count);
2757 
2758 	clean_xps_maps(dev, XPS_CPUS, offset, count);
2759 
2760 	mutex_unlock(&xps_map_mutex);
2761 	cpus_read_unlock();
2762 }
2763 
2764 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2765 {
2766 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2767 }
2768 
2769 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2770 				      u16 index, bool is_rxqs_map)
2771 {
2772 	struct xps_map *new_map;
2773 	int alloc_len = XPS_MIN_MAP_ALLOC;
2774 	int i, pos;
2775 
2776 	for (pos = 0; map && pos < map->len; pos++) {
2777 		if (map->queues[pos] != index)
2778 			continue;
2779 		return map;
2780 	}
2781 
2782 	/* Need to add tx-queue to this CPU's/rx-queue's existing map */
2783 	if (map) {
2784 		if (pos < map->alloc_len)
2785 			return map;
2786 
2787 		alloc_len = map->alloc_len * 2;
2788 	}
2789 
2790 	/* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2791 	 *  map
2792 	 */
2793 	if (is_rxqs_map)
2794 		new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2795 	else
2796 		new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2797 				       cpu_to_node(attr_index));
2798 	if (!new_map)
2799 		return NULL;
2800 
2801 	for (i = 0; i < pos; i++)
2802 		new_map->queues[i] = map->queues[i];
2803 	new_map->alloc_len = alloc_len;
2804 	new_map->len = pos;
2805 
2806 	return new_map;
2807 }
2808 
2809 /* Copy xps maps at a given index */
2810 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2811 			      struct xps_dev_maps *new_dev_maps, int index,
2812 			      int tc, bool skip_tc)
2813 {
2814 	int i, tci = index * dev_maps->num_tc;
2815 	struct xps_map *map;
2816 
2817 	/* copy maps belonging to foreign traffic classes */
2818 	for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2819 		if (i == tc && skip_tc)
2820 			continue;
2821 
2822 		/* fill in the new device map from the old device map */
2823 		map = xmap_dereference(dev_maps->attr_map[tci]);
2824 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2825 	}
2826 }
2827 
2828 /* Must be called under cpus_read_lock */
2829 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2830 			  u16 index, enum xps_map_type type)
2831 {
2832 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2833 	const unsigned long *online_mask = NULL;
2834 	bool active = false, copy = false;
2835 	int i, j, tci, numa_node_id = -2;
2836 	int maps_sz, num_tc = 1, tc = 0;
2837 	struct xps_map *map, *new_map;
2838 	unsigned int nr_ids;
2839 
2840 	WARN_ON_ONCE(index >= dev->num_tx_queues);
2841 
2842 	if (dev->num_tc) {
2843 		/* Do not allow XPS on subordinate device directly */
2844 		num_tc = dev->num_tc;
2845 		if (num_tc < 0)
2846 			return -EINVAL;
2847 
2848 		/* If queue belongs to subordinate dev use its map */
2849 		dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2850 
2851 		tc = netdev_txq_to_tc(dev, index);
2852 		if (tc < 0)
2853 			return -EINVAL;
2854 	}
2855 
2856 	mutex_lock(&xps_map_mutex);
2857 
2858 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2859 	if (type == XPS_RXQS) {
2860 		maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2861 		nr_ids = dev->num_rx_queues;
2862 	} else {
2863 		maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2864 		if (num_possible_cpus() > 1)
2865 			online_mask = cpumask_bits(cpu_online_mask);
2866 		nr_ids = nr_cpu_ids;
2867 	}
2868 
2869 	if (maps_sz < L1_CACHE_BYTES)
2870 		maps_sz = L1_CACHE_BYTES;
2871 
2872 	/* The old dev_maps could be larger or smaller than the one we're
2873 	 * setting up now, as dev->num_tc or nr_ids could have been updated in
2874 	 * between. We could try to be smart, but let's be safe instead and only
2875 	 * copy foreign traffic classes if the two map sizes match.
2876 	 */
2877 	if (dev_maps &&
2878 	    dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2879 		copy = true;
2880 
2881 	/* allocate memory for queue storage */
2882 	for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2883 	     j < nr_ids;) {
2884 		if (!new_dev_maps) {
2885 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2886 			if (!new_dev_maps) {
2887 				mutex_unlock(&xps_map_mutex);
2888 				return -ENOMEM;
2889 			}
2890 
2891 			new_dev_maps->nr_ids = nr_ids;
2892 			new_dev_maps->num_tc = num_tc;
2893 		}
2894 
2895 		tci = j * num_tc + tc;
2896 		map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2897 
2898 		map = expand_xps_map(map, j, index, type == XPS_RXQS);
2899 		if (!map)
2900 			goto error;
2901 
2902 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2903 	}
2904 
2905 	if (!new_dev_maps)
2906 		goto out_no_new_maps;
2907 
2908 	if (!dev_maps) {
2909 		/* Increment static keys at most once per type */
2910 		static_key_slow_inc_cpuslocked(&xps_needed);
2911 		if (type == XPS_RXQS)
2912 			static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2913 	}
2914 
2915 	for (j = 0; j < nr_ids; j++) {
2916 		bool skip_tc = false;
2917 
2918 		tci = j * num_tc + tc;
2919 		if (netif_attr_test_mask(j, mask, nr_ids) &&
2920 		    netif_attr_test_online(j, online_mask, nr_ids)) {
2921 			/* add tx-queue to CPU/rx-queue maps */
2922 			int pos = 0;
2923 
2924 			skip_tc = true;
2925 
2926 			map = xmap_dereference(new_dev_maps->attr_map[tci]);
2927 			while ((pos < map->len) && (map->queues[pos] != index))
2928 				pos++;
2929 
2930 			if (pos == map->len)
2931 				map->queues[map->len++] = index;
2932 #ifdef CONFIG_NUMA
2933 			if (type == XPS_CPUS) {
2934 				if (numa_node_id == -2)
2935 					numa_node_id = cpu_to_node(j);
2936 				else if (numa_node_id != cpu_to_node(j))
2937 					numa_node_id = -1;
2938 			}
2939 #endif
2940 		}
2941 
2942 		if (copy)
2943 			xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2944 					  skip_tc);
2945 	}
2946 
2947 	rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2948 
2949 	/* Cleanup old maps */
2950 	if (!dev_maps)
2951 		goto out_no_old_maps;
2952 
2953 	for (j = 0; j < dev_maps->nr_ids; j++) {
2954 		for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2955 			map = xmap_dereference(dev_maps->attr_map[tci]);
2956 			if (!map)
2957 				continue;
2958 
2959 			if (copy) {
2960 				new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2961 				if (map == new_map)
2962 					continue;
2963 			}
2964 
2965 			RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2966 			kfree_rcu(map, rcu);
2967 		}
2968 	}
2969 
2970 	old_dev_maps = dev_maps;
2971 
2972 out_no_old_maps:
2973 	dev_maps = new_dev_maps;
2974 	active = true;
2975 
2976 out_no_new_maps:
2977 	if (type == XPS_CPUS)
2978 		/* update Tx queue numa node */
2979 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2980 					     (numa_node_id >= 0) ?
2981 					     numa_node_id : NUMA_NO_NODE);
2982 
2983 	if (!dev_maps)
2984 		goto out_no_maps;
2985 
2986 	/* removes tx-queue from unused CPUs/rx-queues */
2987 	for (j = 0; j < dev_maps->nr_ids; j++) {
2988 		tci = j * dev_maps->num_tc;
2989 
2990 		for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2991 			if (i == tc &&
2992 			    netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2993 			    netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2994 				continue;
2995 
2996 			active |= remove_xps_queue(dev_maps,
2997 						   copy ? old_dev_maps : NULL,
2998 						   tci, index);
2999 		}
3000 	}
3001 
3002 	if (old_dev_maps)
3003 		kfree_rcu(old_dev_maps, rcu);
3004 
3005 	/* free map if not active */
3006 	if (!active)
3007 		reset_xps_maps(dev, dev_maps, type);
3008 
3009 out_no_maps:
3010 	mutex_unlock(&xps_map_mutex);
3011 
3012 	return 0;
3013 error:
3014 	/* remove any maps that we added */
3015 	for (j = 0; j < nr_ids; j++) {
3016 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
3017 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
3018 			map = copy ?
3019 			      xmap_dereference(dev_maps->attr_map[tci]) :
3020 			      NULL;
3021 			if (new_map && new_map != map)
3022 				kfree(new_map);
3023 		}
3024 	}
3025 
3026 	mutex_unlock(&xps_map_mutex);
3027 
3028 	kfree(new_dev_maps);
3029 	return -ENOMEM;
3030 }
3031 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
3032 
3033 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3034 			u16 index)
3035 {
3036 	int ret;
3037 
3038 	cpus_read_lock();
3039 	ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
3040 	cpus_read_unlock();
3041 
3042 	return ret;
3043 }
3044 EXPORT_SYMBOL(netif_set_xps_queue);
3045 
3046 #endif
3047 static void netdev_unbind_all_sb_channels(struct net_device *dev)
3048 {
3049 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
3050 
3051 	/* Unbind any subordinate channels */
3052 	while (txq-- != &dev->_tx[0]) {
3053 		if (txq->sb_dev)
3054 			netdev_unbind_sb_channel(dev, txq->sb_dev);
3055 	}
3056 }
3057 
3058 void netdev_reset_tc(struct net_device *dev)
3059 {
3060 #ifdef CONFIG_XPS
3061 	netif_reset_xps_queues_gt(dev, 0);
3062 #endif
3063 	netdev_unbind_all_sb_channels(dev);
3064 
3065 	/* Reset TC configuration of device */
3066 	dev->num_tc = 0;
3067 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
3068 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
3069 }
3070 EXPORT_SYMBOL(netdev_reset_tc);
3071 
3072 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
3073 {
3074 	if (tc >= dev->num_tc)
3075 		return -EINVAL;
3076 
3077 #ifdef CONFIG_XPS
3078 	netif_reset_xps_queues(dev, offset, count);
3079 #endif
3080 	dev->tc_to_txq[tc].count = count;
3081 	dev->tc_to_txq[tc].offset = offset;
3082 	return 0;
3083 }
3084 EXPORT_SYMBOL(netdev_set_tc_queue);
3085 
3086 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
3087 {
3088 	if (num_tc > TC_MAX_QUEUE)
3089 		return -EINVAL;
3090 
3091 #ifdef CONFIG_XPS
3092 	netif_reset_xps_queues_gt(dev, 0);
3093 #endif
3094 	netdev_unbind_all_sb_channels(dev);
3095 
3096 	dev->num_tc = num_tc;
3097 	return 0;
3098 }
3099 EXPORT_SYMBOL(netdev_set_num_tc);
3100 
3101 void netdev_unbind_sb_channel(struct net_device *dev,
3102 			      struct net_device *sb_dev)
3103 {
3104 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
3105 
3106 #ifdef CONFIG_XPS
3107 	netif_reset_xps_queues_gt(sb_dev, 0);
3108 #endif
3109 	memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
3110 	memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
3111 
3112 	while (txq-- != &dev->_tx[0]) {
3113 		if (txq->sb_dev == sb_dev)
3114 			txq->sb_dev = NULL;
3115 	}
3116 }
3117 EXPORT_SYMBOL(netdev_unbind_sb_channel);
3118 
3119 int netdev_bind_sb_channel_queue(struct net_device *dev,
3120 				 struct net_device *sb_dev,
3121 				 u8 tc, u16 count, u16 offset)
3122 {
3123 	/* Make certain the sb_dev and dev are already configured */
3124 	if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
3125 		return -EINVAL;
3126 
3127 	/* We cannot hand out queues we don't have */
3128 	if ((offset + count) > dev->real_num_tx_queues)
3129 		return -EINVAL;
3130 
3131 	/* Record the mapping */
3132 	sb_dev->tc_to_txq[tc].count = count;
3133 	sb_dev->tc_to_txq[tc].offset = offset;
3134 
3135 	/* Provide a way for Tx queue to find the tc_to_txq map or
3136 	 * XPS map for itself.
3137 	 */
3138 	while (count--)
3139 		netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
3140 
3141 	return 0;
3142 }
3143 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
3144 
3145 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
3146 {
3147 	/* Do not use a multiqueue device to represent a subordinate channel */
3148 	if (netif_is_multiqueue(dev))
3149 		return -ENODEV;
3150 
3151 	/* We allow channels 1 - 32767 to be used for subordinate channels.
3152 	 * Channel 0 is meant to be "native" mode and used only to represent
3153 	 * the main root device. We allow writing 0 to reset the device back
3154 	 * to normal mode after being used as a subordinate channel.
3155 	 */
3156 	if (channel > S16_MAX)
3157 		return -EINVAL;
3158 
3159 	dev->num_tc = -channel;
3160 
3161 	return 0;
3162 }
3163 EXPORT_SYMBOL(netdev_set_sb_channel);
3164 
3165 /*
3166  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
3167  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
3168  */
3169 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
3170 {
3171 	bool disabling;
3172 	int rc;
3173 
3174 	disabling = txq < dev->real_num_tx_queues;
3175 
3176 	if (txq < 1 || txq > dev->num_tx_queues)
3177 		return -EINVAL;
3178 
3179 	if (dev->reg_state == NETREG_REGISTERED ||
3180 	    dev->reg_state == NETREG_UNREGISTERING) {
3181 		netdev_ops_assert_locked(dev);
3182 
3183 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
3184 						  txq);
3185 		if (rc)
3186 			return rc;
3187 
3188 		if (dev->num_tc)
3189 			netif_setup_tc(dev, txq);
3190 
3191 		net_shaper_set_real_num_tx_queues(dev, txq);
3192 
3193 		dev_qdisc_change_real_num_tx(dev, txq);
3194 
3195 		dev->real_num_tx_queues = txq;
3196 
3197 		if (disabling) {
3198 			synchronize_net();
3199 			qdisc_reset_all_tx_gt(dev, txq);
3200 #ifdef CONFIG_XPS
3201 			netif_reset_xps_queues_gt(dev, txq);
3202 #endif
3203 		}
3204 	} else {
3205 		dev->real_num_tx_queues = txq;
3206 	}
3207 
3208 	return 0;
3209 }
3210 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
3211 
3212 /**
3213  *	netif_set_real_num_rx_queues - set actual number of RX queues used
3214  *	@dev: Network device
3215  *	@rxq: Actual number of RX queues
3216  *
3217  *	This must be called either with the rtnl_lock held or before
3218  *	registration of the net device.  Returns 0 on success, or a
3219  *	negative error code.  If called before registration, it always
3220  *	succeeds.
3221  */
3222 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
3223 {
3224 	int rc;
3225 
3226 	if (rxq < 1 || rxq > dev->num_rx_queues)
3227 		return -EINVAL;
3228 
3229 	if (dev->reg_state == NETREG_REGISTERED) {
3230 		netdev_ops_assert_locked(dev);
3231 
3232 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
3233 						  rxq);
3234 		if (rc)
3235 			return rc;
3236 	}
3237 
3238 	dev->real_num_rx_queues = rxq;
3239 	return 0;
3240 }
3241 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
3242 
3243 /**
3244  *	netif_set_real_num_queues - set actual number of RX and TX queues used
3245  *	@dev: Network device
3246  *	@txq: Actual number of TX queues
3247  *	@rxq: Actual number of RX queues
3248  *
3249  *	Set the real number of both TX and RX queues.
3250  *	Does nothing if the number of queues is already correct.
3251  */
3252 int netif_set_real_num_queues(struct net_device *dev,
3253 			      unsigned int txq, unsigned int rxq)
3254 {
3255 	unsigned int old_rxq = dev->real_num_rx_queues;
3256 	int err;
3257 
3258 	if (txq < 1 || txq > dev->num_tx_queues ||
3259 	    rxq < 1 || rxq > dev->num_rx_queues)
3260 		return -EINVAL;
3261 
3262 	/* Start from increases, so the error path only does decreases -
3263 	 * decreases can't fail.
3264 	 */
3265 	if (rxq > dev->real_num_rx_queues) {
3266 		err = netif_set_real_num_rx_queues(dev, rxq);
3267 		if (err)
3268 			return err;
3269 	}
3270 	if (txq > dev->real_num_tx_queues) {
3271 		err = netif_set_real_num_tx_queues(dev, txq);
3272 		if (err)
3273 			goto undo_rx;
3274 	}
3275 	if (rxq < dev->real_num_rx_queues)
3276 		WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
3277 	if (txq < dev->real_num_tx_queues)
3278 		WARN_ON(netif_set_real_num_tx_queues(dev, txq));
3279 
3280 	return 0;
3281 undo_rx:
3282 	WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
3283 	return err;
3284 }
3285 EXPORT_SYMBOL(netif_set_real_num_queues);
3286 
3287 /**
3288  * netif_set_tso_max_size() - set the max size of TSO frames supported
3289  * @dev:	netdev to update
3290  * @size:	max skb->len of a TSO frame
3291  *
3292  * Set the limit on the size of TSO super-frames the device can handle.
3293  * Unless explicitly set the stack will assume the value of
3294  * %GSO_LEGACY_MAX_SIZE.
3295  */
3296 void netif_set_tso_max_size(struct net_device *dev, unsigned int size)
3297 {
3298 	dev->tso_max_size = min(GSO_MAX_SIZE, size);
3299 	if (size < READ_ONCE(dev->gso_max_size))
3300 		netif_set_gso_max_size(dev, size);
3301 	if (size < READ_ONCE(dev->gso_ipv4_max_size))
3302 		netif_set_gso_ipv4_max_size(dev, size);
3303 }
3304 EXPORT_SYMBOL(netif_set_tso_max_size);
3305 
3306 /**
3307  * netif_set_tso_max_segs() - set the max number of segs supported for TSO
3308  * @dev:	netdev to update
3309  * @segs:	max number of TCP segments
3310  *
3311  * Set the limit on the number of TCP segments the device can generate from
3312  * a single TSO super-frame.
3313  * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS.
3314  */
3315 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs)
3316 {
3317 	dev->tso_max_segs = segs;
3318 	if (segs < READ_ONCE(dev->gso_max_segs))
3319 		netif_set_gso_max_segs(dev, segs);
3320 }
3321 EXPORT_SYMBOL(netif_set_tso_max_segs);
3322 
3323 /**
3324  * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper
3325  * @to:		netdev to update
3326  * @from:	netdev from which to copy the limits
3327  */
3328 void netif_inherit_tso_max(struct net_device *to, const struct net_device *from)
3329 {
3330 	netif_set_tso_max_size(to, from->tso_max_size);
3331 	netif_set_tso_max_segs(to, from->tso_max_segs);
3332 }
3333 EXPORT_SYMBOL(netif_inherit_tso_max);
3334 
3335 /**
3336  * netif_get_num_default_rss_queues - default number of RSS queues
3337  *
3338  * Default value is the number of physical cores if there are only 1 or 2, or
3339  * divided by 2 if there are more.
3340  */
3341 int netif_get_num_default_rss_queues(void)
3342 {
3343 	cpumask_var_t cpus;
3344 	int cpu, count = 0;
3345 
3346 	if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL)))
3347 		return 1;
3348 
3349 	cpumask_copy(cpus, cpu_online_mask);
3350 	for_each_cpu(cpu, cpus) {
3351 		++count;
3352 		cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu));
3353 	}
3354 	free_cpumask_var(cpus);
3355 
3356 	return count > 2 ? DIV_ROUND_UP(count, 2) : count;
3357 }
3358 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3359 
3360 static void __netif_reschedule(struct Qdisc *q)
3361 {
3362 	struct softnet_data *sd;
3363 	unsigned long flags;
3364 
3365 	local_irq_save(flags);
3366 	sd = this_cpu_ptr(&softnet_data);
3367 	q->next_sched = NULL;
3368 	*sd->output_queue_tailp = q;
3369 	sd->output_queue_tailp = &q->next_sched;
3370 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3371 	local_irq_restore(flags);
3372 }
3373 
3374 void __netif_schedule(struct Qdisc *q)
3375 {
3376 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3377 		__netif_reschedule(q);
3378 }
3379 EXPORT_SYMBOL(__netif_schedule);
3380 
3381 struct dev_kfree_skb_cb {
3382 	enum skb_drop_reason reason;
3383 };
3384 
3385 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3386 {
3387 	return (struct dev_kfree_skb_cb *)skb->cb;
3388 }
3389 
3390 void netif_schedule_queue(struct netdev_queue *txq)
3391 {
3392 	rcu_read_lock();
3393 	if (!netif_xmit_stopped(txq)) {
3394 		struct Qdisc *q = rcu_dereference(txq->qdisc);
3395 
3396 		__netif_schedule(q);
3397 	}
3398 	rcu_read_unlock();
3399 }
3400 EXPORT_SYMBOL(netif_schedule_queue);
3401 
3402 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3403 {
3404 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3405 		struct Qdisc *q;
3406 
3407 		rcu_read_lock();
3408 		q = rcu_dereference(dev_queue->qdisc);
3409 		__netif_schedule(q);
3410 		rcu_read_unlock();
3411 	}
3412 }
3413 EXPORT_SYMBOL(netif_tx_wake_queue);
3414 
3415 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3416 {
3417 	unsigned long flags;
3418 
3419 	if (unlikely(!skb))
3420 		return;
3421 
3422 	if (likely(refcount_read(&skb->users) == 1)) {
3423 		smp_rmb();
3424 		refcount_set(&skb->users, 0);
3425 	} else if (likely(!refcount_dec_and_test(&skb->users))) {
3426 		return;
3427 	}
3428 	get_kfree_skb_cb(skb)->reason = reason;
3429 	local_irq_save(flags);
3430 	skb->next = __this_cpu_read(softnet_data.completion_queue);
3431 	__this_cpu_write(softnet_data.completion_queue, skb);
3432 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3433 	local_irq_restore(flags);
3434 }
3435 EXPORT_SYMBOL(dev_kfree_skb_irq_reason);
3436 
3437 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3438 {
3439 	if (in_hardirq() || irqs_disabled())
3440 		dev_kfree_skb_irq_reason(skb, reason);
3441 	else
3442 		kfree_skb_reason(skb, reason);
3443 }
3444 EXPORT_SYMBOL(dev_kfree_skb_any_reason);
3445 
3446 
3447 /**
3448  * netif_device_detach - mark device as removed
3449  * @dev: network device
3450  *
3451  * Mark device as removed from system and therefore no longer available.
3452  */
3453 void netif_device_detach(struct net_device *dev)
3454 {
3455 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3456 	    netif_running(dev)) {
3457 		netif_tx_stop_all_queues(dev);
3458 	}
3459 }
3460 EXPORT_SYMBOL(netif_device_detach);
3461 
3462 /**
3463  * netif_device_attach - mark device as attached
3464  * @dev: network device
3465  *
3466  * Mark device as attached from system and restart if needed.
3467  */
3468 void netif_device_attach(struct net_device *dev)
3469 {
3470 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3471 	    netif_running(dev)) {
3472 		netif_tx_wake_all_queues(dev);
3473 		netdev_watchdog_up(dev);
3474 	}
3475 }
3476 EXPORT_SYMBOL(netif_device_attach);
3477 
3478 /*
3479  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3480  * to be used as a distribution range.
3481  */
3482 static u16 skb_tx_hash(const struct net_device *dev,
3483 		       const struct net_device *sb_dev,
3484 		       struct sk_buff *skb)
3485 {
3486 	u32 hash;
3487 	u16 qoffset = 0;
3488 	u16 qcount = dev->real_num_tx_queues;
3489 
3490 	if (dev->num_tc) {
3491 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3492 
3493 		qoffset = sb_dev->tc_to_txq[tc].offset;
3494 		qcount = sb_dev->tc_to_txq[tc].count;
3495 		if (unlikely(!qcount)) {
3496 			net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3497 					     sb_dev->name, qoffset, tc);
3498 			qoffset = 0;
3499 			qcount = dev->real_num_tx_queues;
3500 		}
3501 	}
3502 
3503 	if (skb_rx_queue_recorded(skb)) {
3504 		DEBUG_NET_WARN_ON_ONCE(qcount == 0);
3505 		hash = skb_get_rx_queue(skb);
3506 		if (hash >= qoffset)
3507 			hash -= qoffset;
3508 		while (unlikely(hash >= qcount))
3509 			hash -= qcount;
3510 		return hash + qoffset;
3511 	}
3512 
3513 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3514 }
3515 
3516 void skb_warn_bad_offload(const struct sk_buff *skb)
3517 {
3518 	static const netdev_features_t null_features;
3519 	struct net_device *dev = skb->dev;
3520 	const char *name = "";
3521 
3522 	if (!net_ratelimit())
3523 		return;
3524 
3525 	if (dev) {
3526 		if (dev->dev.parent)
3527 			name = dev_driver_string(dev->dev.parent);
3528 		else
3529 			name = netdev_name(dev);
3530 	}
3531 	skb_dump(KERN_WARNING, skb, false);
3532 	WARN(1, "%s: caps=(%pNF, %pNF)\n",
3533 	     name, dev ? &dev->features : &null_features,
3534 	     skb->sk ? &skb->sk->sk_route_caps : &null_features);
3535 }
3536 
3537 /*
3538  * Invalidate hardware checksum when packet is to be mangled, and
3539  * complete checksum manually on outgoing path.
3540  */
3541 int skb_checksum_help(struct sk_buff *skb)
3542 {
3543 	__wsum csum;
3544 	int ret = 0, offset;
3545 
3546 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3547 		goto out_set_summed;
3548 
3549 	if (unlikely(skb_is_gso(skb))) {
3550 		skb_warn_bad_offload(skb);
3551 		return -EINVAL;
3552 	}
3553 
3554 	if (!skb_frags_readable(skb)) {
3555 		return -EFAULT;
3556 	}
3557 
3558 	/* Before computing a checksum, we should make sure no frag could
3559 	 * be modified by an external entity : checksum could be wrong.
3560 	 */
3561 	if (skb_has_shared_frag(skb)) {
3562 		ret = __skb_linearize(skb);
3563 		if (ret)
3564 			goto out;
3565 	}
3566 
3567 	offset = skb_checksum_start_offset(skb);
3568 	ret = -EINVAL;
3569 	if (unlikely(offset >= skb_headlen(skb))) {
3570 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3571 		WARN_ONCE(true, "offset (%d) >= skb_headlen() (%u)\n",
3572 			  offset, skb_headlen(skb));
3573 		goto out;
3574 	}
3575 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
3576 
3577 	offset += skb->csum_offset;
3578 	if (unlikely(offset + sizeof(__sum16) > skb_headlen(skb))) {
3579 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3580 		WARN_ONCE(true, "offset+2 (%zu) > skb_headlen() (%u)\n",
3581 			  offset + sizeof(__sum16), skb_headlen(skb));
3582 		goto out;
3583 	}
3584 	ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3585 	if (ret)
3586 		goto out;
3587 
3588 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3589 out_set_summed:
3590 	skb->ip_summed = CHECKSUM_NONE;
3591 out:
3592 	return ret;
3593 }
3594 EXPORT_SYMBOL(skb_checksum_help);
3595 
3596 #ifdef CONFIG_NET_CRC32C
3597 int skb_crc32c_csum_help(struct sk_buff *skb)
3598 {
3599 	u32 crc;
3600 	int ret = 0, offset, start;
3601 
3602 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3603 		goto out;
3604 
3605 	if (unlikely(skb_is_gso(skb)))
3606 		goto out;
3607 
3608 	/* Before computing a checksum, we should make sure no frag could
3609 	 * be modified by an external entity : checksum could be wrong.
3610 	 */
3611 	if (unlikely(skb_has_shared_frag(skb))) {
3612 		ret = __skb_linearize(skb);
3613 		if (ret)
3614 			goto out;
3615 	}
3616 	start = skb_checksum_start_offset(skb);
3617 	offset = start + offsetof(struct sctphdr, checksum);
3618 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3619 		ret = -EINVAL;
3620 		goto out;
3621 	}
3622 
3623 	ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3624 	if (ret)
3625 		goto out;
3626 
3627 	crc = ~skb_crc32c(skb, start, skb->len - start, ~0);
3628 	*(__le32 *)(skb->data + offset) = cpu_to_le32(crc);
3629 	skb_reset_csum_not_inet(skb);
3630 out:
3631 	return ret;
3632 }
3633 EXPORT_SYMBOL(skb_crc32c_csum_help);
3634 #endif /* CONFIG_NET_CRC32C */
3635 
3636 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3637 {
3638 	__be16 type = skb->protocol;
3639 
3640 	/* Tunnel gso handlers can set protocol to ethernet. */
3641 	if (type == htons(ETH_P_TEB)) {
3642 		struct ethhdr *eth;
3643 
3644 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3645 			return 0;
3646 
3647 		eth = (struct ethhdr *)skb->data;
3648 		type = eth->h_proto;
3649 	}
3650 
3651 	return vlan_get_protocol_and_depth(skb, type, depth);
3652 }
3653 
3654 
3655 /* Take action when hardware reception checksum errors are detected. */
3656 #ifdef CONFIG_BUG
3657 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3658 {
3659 	netdev_err(dev, "hw csum failure\n");
3660 	skb_dump(KERN_ERR, skb, true);
3661 	dump_stack();
3662 }
3663 
3664 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3665 {
3666 	DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3667 }
3668 EXPORT_SYMBOL(netdev_rx_csum_fault);
3669 #endif
3670 
3671 /* XXX: check that highmem exists at all on the given machine. */
3672 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3673 {
3674 #ifdef CONFIG_HIGHMEM
3675 	int i;
3676 
3677 	if (!(dev->features & NETIF_F_HIGHDMA)) {
3678 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3679 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3680 			struct page *page = skb_frag_page(frag);
3681 
3682 			if (page && PageHighMem(page))
3683 				return 1;
3684 		}
3685 	}
3686 #endif
3687 	return 0;
3688 }
3689 
3690 /* If MPLS offload request, verify we are testing hardware MPLS features
3691  * instead of standard features for the netdev.
3692  */
3693 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3694 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3695 					   netdev_features_t features,
3696 					   __be16 type)
3697 {
3698 	if (eth_p_mpls(type))
3699 		features &= skb->dev->mpls_features;
3700 
3701 	return features;
3702 }
3703 #else
3704 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3705 					   netdev_features_t features,
3706 					   __be16 type)
3707 {
3708 	return features;
3709 }
3710 #endif
3711 
3712 static netdev_features_t harmonize_features(struct sk_buff *skb,
3713 	netdev_features_t features)
3714 {
3715 	__be16 type;
3716 
3717 	type = skb_network_protocol(skb, NULL);
3718 	features = net_mpls_features(skb, features, type);
3719 
3720 	if (skb->ip_summed != CHECKSUM_NONE &&
3721 	    !can_checksum_protocol(features, type)) {
3722 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3723 	}
3724 	if (illegal_highdma(skb->dev, skb))
3725 		features &= ~NETIF_F_SG;
3726 
3727 	return features;
3728 }
3729 
3730 netdev_features_t passthru_features_check(struct sk_buff *skb,
3731 					  struct net_device *dev,
3732 					  netdev_features_t features)
3733 {
3734 	return features;
3735 }
3736 EXPORT_SYMBOL(passthru_features_check);
3737 
3738 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3739 					     struct net_device *dev,
3740 					     netdev_features_t features)
3741 {
3742 	return vlan_features_check(skb, features);
3743 }
3744 
3745 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3746 					    struct net_device *dev,
3747 					    netdev_features_t features)
3748 {
3749 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
3750 
3751 	if (gso_segs > READ_ONCE(dev->gso_max_segs))
3752 		return features & ~NETIF_F_GSO_MASK;
3753 
3754 	if (unlikely(skb->len >= netif_get_gso_max_size(dev, skb)))
3755 		return features & ~NETIF_F_GSO_MASK;
3756 
3757 	if (!skb_shinfo(skb)->gso_type) {
3758 		skb_warn_bad_offload(skb);
3759 		return features & ~NETIF_F_GSO_MASK;
3760 	}
3761 
3762 	/* Support for GSO partial features requires software
3763 	 * intervention before we can actually process the packets
3764 	 * so we need to strip support for any partial features now
3765 	 * and we can pull them back in after we have partially
3766 	 * segmented the frame.
3767 	 */
3768 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3769 		features &= ~dev->gso_partial_features;
3770 
3771 	/* Make sure to clear the IPv4 ID mangling feature if the
3772 	 * IPv4 header has the potential to be fragmented.
3773 	 */
3774 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3775 		struct iphdr *iph = skb->encapsulation ?
3776 				    inner_ip_hdr(skb) : ip_hdr(skb);
3777 
3778 		if (!(iph->frag_off & htons(IP_DF)))
3779 			features &= ~NETIF_F_TSO_MANGLEID;
3780 	}
3781 
3782 	return features;
3783 }
3784 
3785 netdev_features_t netif_skb_features(struct sk_buff *skb)
3786 {
3787 	struct net_device *dev = skb->dev;
3788 	netdev_features_t features = dev->features;
3789 
3790 	if (skb_is_gso(skb))
3791 		features = gso_features_check(skb, dev, features);
3792 
3793 	/* If encapsulation offload request, verify we are testing
3794 	 * hardware encapsulation features instead of standard
3795 	 * features for the netdev
3796 	 */
3797 	if (skb->encapsulation)
3798 		features &= dev->hw_enc_features;
3799 
3800 	if (skb_vlan_tagged(skb))
3801 		features = netdev_intersect_features(features,
3802 						     dev->vlan_features |
3803 						     NETIF_F_HW_VLAN_CTAG_TX |
3804 						     NETIF_F_HW_VLAN_STAG_TX);
3805 
3806 	if (dev->netdev_ops->ndo_features_check)
3807 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
3808 								features);
3809 	else
3810 		features &= dflt_features_check(skb, dev, features);
3811 
3812 	return harmonize_features(skb, features);
3813 }
3814 EXPORT_SYMBOL(netif_skb_features);
3815 
3816 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3817 		    struct netdev_queue *txq, bool more)
3818 {
3819 	unsigned int len;
3820 	int rc;
3821 
3822 	if (dev_nit_active_rcu(dev))
3823 		dev_queue_xmit_nit(skb, dev);
3824 
3825 	len = skb->len;
3826 	trace_net_dev_start_xmit(skb, dev);
3827 	rc = netdev_start_xmit(skb, dev, txq, more);
3828 	trace_net_dev_xmit(skb, rc, dev, len);
3829 
3830 	return rc;
3831 }
3832 
3833 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3834 				    struct netdev_queue *txq, int *ret)
3835 {
3836 	struct sk_buff *skb = first;
3837 	int rc = NETDEV_TX_OK;
3838 
3839 	while (skb) {
3840 		struct sk_buff *next = skb->next;
3841 
3842 		skb_mark_not_on_list(skb);
3843 		rc = xmit_one(skb, dev, txq, next != NULL);
3844 		if (unlikely(!dev_xmit_complete(rc))) {
3845 			skb->next = next;
3846 			goto out;
3847 		}
3848 
3849 		skb = next;
3850 		if (netif_tx_queue_stopped(txq) && skb) {
3851 			rc = NETDEV_TX_BUSY;
3852 			break;
3853 		}
3854 	}
3855 
3856 out:
3857 	*ret = rc;
3858 	return skb;
3859 }
3860 
3861 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3862 					  netdev_features_t features)
3863 {
3864 	if (skb_vlan_tag_present(skb) &&
3865 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3866 		skb = __vlan_hwaccel_push_inside(skb);
3867 	return skb;
3868 }
3869 
3870 int skb_csum_hwoffload_help(struct sk_buff *skb,
3871 			    const netdev_features_t features)
3872 {
3873 	if (unlikely(skb_csum_is_sctp(skb)))
3874 		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3875 			skb_crc32c_csum_help(skb);
3876 
3877 	if (features & NETIF_F_HW_CSUM)
3878 		return 0;
3879 
3880 	if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3881 		if (vlan_get_protocol(skb) == htons(ETH_P_IPV6) &&
3882 		    skb_network_header_len(skb) != sizeof(struct ipv6hdr) &&
3883 		    !ipv6_has_hopopt_jumbo(skb))
3884 			goto sw_checksum;
3885 
3886 		switch (skb->csum_offset) {
3887 		case offsetof(struct tcphdr, check):
3888 		case offsetof(struct udphdr, check):
3889 			return 0;
3890 		}
3891 	}
3892 
3893 sw_checksum:
3894 	return skb_checksum_help(skb);
3895 }
3896 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3897 
3898 static struct sk_buff *validate_xmit_unreadable_skb(struct sk_buff *skb,
3899 						    struct net_device *dev)
3900 {
3901 	struct skb_shared_info *shinfo;
3902 	struct net_iov *niov;
3903 
3904 	if (likely(skb_frags_readable(skb)))
3905 		goto out;
3906 
3907 	if (!dev->netmem_tx)
3908 		goto out_free;
3909 
3910 	shinfo = skb_shinfo(skb);
3911 
3912 	if (shinfo->nr_frags > 0) {
3913 		niov = netmem_to_net_iov(skb_frag_netmem(&shinfo->frags[0]));
3914 		if (net_is_devmem_iov(niov) &&
3915 		    net_devmem_iov_binding(niov)->dev != dev)
3916 			goto out_free;
3917 	}
3918 
3919 out:
3920 	return skb;
3921 
3922 out_free:
3923 	kfree_skb(skb);
3924 	return NULL;
3925 }
3926 
3927 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3928 {
3929 	netdev_features_t features;
3930 
3931 	skb = validate_xmit_unreadable_skb(skb, dev);
3932 	if (unlikely(!skb))
3933 		goto out_null;
3934 
3935 	features = netif_skb_features(skb);
3936 	skb = validate_xmit_vlan(skb, features);
3937 	if (unlikely(!skb))
3938 		goto out_null;
3939 
3940 	skb = sk_validate_xmit_skb(skb, dev);
3941 	if (unlikely(!skb))
3942 		goto out_null;
3943 
3944 	if (netif_needs_gso(skb, features)) {
3945 		struct sk_buff *segs;
3946 
3947 		segs = skb_gso_segment(skb, features);
3948 		if (IS_ERR(segs)) {
3949 			goto out_kfree_skb;
3950 		} else if (segs) {
3951 			consume_skb(skb);
3952 			skb = segs;
3953 		}
3954 	} else {
3955 		if (skb_needs_linearize(skb, features) &&
3956 		    __skb_linearize(skb))
3957 			goto out_kfree_skb;
3958 
3959 		/* If packet is not checksummed and device does not
3960 		 * support checksumming for this protocol, complete
3961 		 * checksumming here.
3962 		 */
3963 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3964 			if (skb->encapsulation)
3965 				skb_set_inner_transport_header(skb,
3966 							       skb_checksum_start_offset(skb));
3967 			else
3968 				skb_set_transport_header(skb,
3969 							 skb_checksum_start_offset(skb));
3970 			if (skb_csum_hwoffload_help(skb, features))
3971 				goto out_kfree_skb;
3972 		}
3973 	}
3974 
3975 	skb = validate_xmit_xfrm(skb, features, again);
3976 
3977 	return skb;
3978 
3979 out_kfree_skb:
3980 	kfree_skb(skb);
3981 out_null:
3982 	dev_core_stats_tx_dropped_inc(dev);
3983 	return NULL;
3984 }
3985 
3986 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3987 {
3988 	struct sk_buff *next, *head = NULL, *tail;
3989 
3990 	for (; skb != NULL; skb = next) {
3991 		next = skb->next;
3992 		skb_mark_not_on_list(skb);
3993 
3994 		/* in case skb won't be segmented, point to itself */
3995 		skb->prev = skb;
3996 
3997 		skb = validate_xmit_skb(skb, dev, again);
3998 		if (!skb)
3999 			continue;
4000 
4001 		if (!head)
4002 			head = skb;
4003 		else
4004 			tail->next = skb;
4005 		/* If skb was segmented, skb->prev points to
4006 		 * the last segment. If not, it still contains skb.
4007 		 */
4008 		tail = skb->prev;
4009 	}
4010 	return head;
4011 }
4012 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
4013 
4014 static void qdisc_pkt_len_init(struct sk_buff *skb)
4015 {
4016 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
4017 
4018 	qdisc_skb_cb(skb)->pkt_len = skb->len;
4019 
4020 	/* To get more precise estimation of bytes sent on wire,
4021 	 * we add to pkt_len the headers size of all segments
4022 	 */
4023 	if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
4024 		u16 gso_segs = shinfo->gso_segs;
4025 		unsigned int hdr_len;
4026 
4027 		/* mac layer + network layer */
4028 		if (!skb->encapsulation)
4029 			hdr_len = skb_transport_offset(skb);
4030 		else
4031 			hdr_len = skb_inner_transport_offset(skb);
4032 
4033 		/* + transport layer */
4034 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
4035 			const struct tcphdr *th;
4036 			struct tcphdr _tcphdr;
4037 
4038 			th = skb_header_pointer(skb, hdr_len,
4039 						sizeof(_tcphdr), &_tcphdr);
4040 			if (likely(th))
4041 				hdr_len += __tcp_hdrlen(th);
4042 		} else if (shinfo->gso_type & SKB_GSO_UDP_L4) {
4043 			struct udphdr _udphdr;
4044 
4045 			if (skb_header_pointer(skb, hdr_len,
4046 					       sizeof(_udphdr), &_udphdr))
4047 				hdr_len += sizeof(struct udphdr);
4048 		}
4049 
4050 		if (unlikely(shinfo->gso_type & SKB_GSO_DODGY)) {
4051 			int payload = skb->len - hdr_len;
4052 
4053 			/* Malicious packet. */
4054 			if (payload <= 0)
4055 				return;
4056 			gso_segs = DIV_ROUND_UP(payload, shinfo->gso_size);
4057 		}
4058 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
4059 	}
4060 }
4061 
4062 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
4063 			     struct sk_buff **to_free,
4064 			     struct netdev_queue *txq)
4065 {
4066 	int rc;
4067 
4068 	rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
4069 	if (rc == NET_XMIT_SUCCESS)
4070 		trace_qdisc_enqueue(q, txq, skb);
4071 	return rc;
4072 }
4073 
4074 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
4075 				 struct net_device *dev,
4076 				 struct netdev_queue *txq)
4077 {
4078 	spinlock_t *root_lock = qdisc_lock(q);
4079 	struct sk_buff *to_free = NULL;
4080 	bool contended;
4081 	int rc;
4082 
4083 	qdisc_calculate_pkt_len(skb, q);
4084 
4085 	tcf_set_drop_reason(skb, SKB_DROP_REASON_QDISC_DROP);
4086 
4087 	if (q->flags & TCQ_F_NOLOCK) {
4088 		if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
4089 		    qdisc_run_begin(q)) {
4090 			/* Retest nolock_qdisc_is_empty() within the protection
4091 			 * of q->seqlock to protect from racing with requeuing.
4092 			 */
4093 			if (unlikely(!nolock_qdisc_is_empty(q))) {
4094 				rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
4095 				__qdisc_run(q);
4096 				qdisc_run_end(q);
4097 
4098 				goto no_lock_out;
4099 			}
4100 
4101 			qdisc_bstats_cpu_update(q, skb);
4102 			if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
4103 			    !nolock_qdisc_is_empty(q))
4104 				__qdisc_run(q);
4105 
4106 			qdisc_run_end(q);
4107 			return NET_XMIT_SUCCESS;
4108 		}
4109 
4110 		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
4111 		qdisc_run(q);
4112 
4113 no_lock_out:
4114 		if (unlikely(to_free))
4115 			kfree_skb_list_reason(to_free,
4116 					      tcf_get_drop_reason(to_free));
4117 		return rc;
4118 	}
4119 
4120 	if (unlikely(READ_ONCE(q->owner) == smp_processor_id())) {
4121 		kfree_skb_reason(skb, SKB_DROP_REASON_TC_RECLASSIFY_LOOP);
4122 		return NET_XMIT_DROP;
4123 	}
4124 	/*
4125 	 * Heuristic to force contended enqueues to serialize on a
4126 	 * separate lock before trying to get qdisc main lock.
4127 	 * This permits qdisc->running owner to get the lock more
4128 	 * often and dequeue packets faster.
4129 	 * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit
4130 	 * and then other tasks will only enqueue packets. The packets will be
4131 	 * sent after the qdisc owner is scheduled again. To prevent this
4132 	 * scenario the task always serialize on the lock.
4133 	 */
4134 	contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT);
4135 	if (unlikely(contended))
4136 		spin_lock(&q->busylock);
4137 
4138 	spin_lock(root_lock);
4139 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
4140 		__qdisc_drop(skb, &to_free);
4141 		rc = NET_XMIT_DROP;
4142 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
4143 		   qdisc_run_begin(q)) {
4144 		/*
4145 		 * This is a work-conserving queue; there are no old skbs
4146 		 * waiting to be sent out; and the qdisc is not running -
4147 		 * xmit the skb directly.
4148 		 */
4149 
4150 		qdisc_bstats_update(q, skb);
4151 
4152 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
4153 			if (unlikely(contended)) {
4154 				spin_unlock(&q->busylock);
4155 				contended = false;
4156 			}
4157 			__qdisc_run(q);
4158 		}
4159 
4160 		qdisc_run_end(q);
4161 		rc = NET_XMIT_SUCCESS;
4162 	} else {
4163 		WRITE_ONCE(q->owner, smp_processor_id());
4164 		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
4165 		WRITE_ONCE(q->owner, -1);
4166 		if (qdisc_run_begin(q)) {
4167 			if (unlikely(contended)) {
4168 				spin_unlock(&q->busylock);
4169 				contended = false;
4170 			}
4171 			__qdisc_run(q);
4172 			qdisc_run_end(q);
4173 		}
4174 	}
4175 	spin_unlock(root_lock);
4176 	if (unlikely(to_free))
4177 		kfree_skb_list_reason(to_free,
4178 				      tcf_get_drop_reason(to_free));
4179 	if (unlikely(contended))
4180 		spin_unlock(&q->busylock);
4181 	return rc;
4182 }
4183 
4184 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
4185 static void skb_update_prio(struct sk_buff *skb)
4186 {
4187 	const struct netprio_map *map;
4188 	const struct sock *sk;
4189 	unsigned int prioidx;
4190 
4191 	if (skb->priority)
4192 		return;
4193 	map = rcu_dereference_bh(skb->dev->priomap);
4194 	if (!map)
4195 		return;
4196 	sk = skb_to_full_sk(skb);
4197 	if (!sk)
4198 		return;
4199 
4200 	prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
4201 
4202 	if (prioidx < map->priomap_len)
4203 		skb->priority = map->priomap[prioidx];
4204 }
4205 #else
4206 #define skb_update_prio(skb)
4207 #endif
4208 
4209 /**
4210  *	dev_loopback_xmit - loop back @skb
4211  *	@net: network namespace this loopback is happening in
4212  *	@sk:  sk needed to be a netfilter okfn
4213  *	@skb: buffer to transmit
4214  */
4215 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
4216 {
4217 	skb_reset_mac_header(skb);
4218 	__skb_pull(skb, skb_network_offset(skb));
4219 	skb->pkt_type = PACKET_LOOPBACK;
4220 	if (skb->ip_summed == CHECKSUM_NONE)
4221 		skb->ip_summed = CHECKSUM_UNNECESSARY;
4222 	DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb));
4223 	skb_dst_force(skb);
4224 	netif_rx(skb);
4225 	return 0;
4226 }
4227 EXPORT_SYMBOL(dev_loopback_xmit);
4228 
4229 #ifdef CONFIG_NET_EGRESS
4230 static struct netdev_queue *
4231 netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb)
4232 {
4233 	int qm = skb_get_queue_mapping(skb);
4234 
4235 	return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm));
4236 }
4237 
4238 #ifndef CONFIG_PREEMPT_RT
4239 static bool netdev_xmit_txqueue_skipped(void)
4240 {
4241 	return __this_cpu_read(softnet_data.xmit.skip_txqueue);
4242 }
4243 
4244 void netdev_xmit_skip_txqueue(bool skip)
4245 {
4246 	__this_cpu_write(softnet_data.xmit.skip_txqueue, skip);
4247 }
4248 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
4249 
4250 #else
4251 static bool netdev_xmit_txqueue_skipped(void)
4252 {
4253 	return current->net_xmit.skip_txqueue;
4254 }
4255 
4256 void netdev_xmit_skip_txqueue(bool skip)
4257 {
4258 	current->net_xmit.skip_txqueue = skip;
4259 }
4260 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
4261 #endif
4262 #endif /* CONFIG_NET_EGRESS */
4263 
4264 #ifdef CONFIG_NET_XGRESS
4265 static int tc_run(struct tcx_entry *entry, struct sk_buff *skb,
4266 		  enum skb_drop_reason *drop_reason)
4267 {
4268 	int ret = TC_ACT_UNSPEC;
4269 #ifdef CONFIG_NET_CLS_ACT
4270 	struct mini_Qdisc *miniq = rcu_dereference_bh(entry->miniq);
4271 	struct tcf_result res;
4272 
4273 	if (!miniq)
4274 		return ret;
4275 
4276 	/* Global bypass */
4277 	if (!static_branch_likely(&tcf_sw_enabled_key))
4278 		return ret;
4279 
4280 	/* Block-wise bypass */
4281 	if (tcf_block_bypass_sw(miniq->block))
4282 		return ret;
4283 
4284 	tc_skb_cb(skb)->mru = 0;
4285 	tc_skb_cb(skb)->post_ct = false;
4286 	tcf_set_drop_reason(skb, *drop_reason);
4287 
4288 	mini_qdisc_bstats_cpu_update(miniq, skb);
4289 	ret = tcf_classify(skb, miniq->block, miniq->filter_list, &res, false);
4290 	/* Only tcf related quirks below. */
4291 	switch (ret) {
4292 	case TC_ACT_SHOT:
4293 		*drop_reason = tcf_get_drop_reason(skb);
4294 		mini_qdisc_qstats_cpu_drop(miniq);
4295 		break;
4296 	case TC_ACT_OK:
4297 	case TC_ACT_RECLASSIFY:
4298 		skb->tc_index = TC_H_MIN(res.classid);
4299 		break;
4300 	}
4301 #endif /* CONFIG_NET_CLS_ACT */
4302 	return ret;
4303 }
4304 
4305 static DEFINE_STATIC_KEY_FALSE(tcx_needed_key);
4306 
4307 void tcx_inc(void)
4308 {
4309 	static_branch_inc(&tcx_needed_key);
4310 }
4311 
4312 void tcx_dec(void)
4313 {
4314 	static_branch_dec(&tcx_needed_key);
4315 }
4316 
4317 static __always_inline enum tcx_action_base
4318 tcx_run(const struct bpf_mprog_entry *entry, struct sk_buff *skb,
4319 	const bool needs_mac)
4320 {
4321 	const struct bpf_mprog_fp *fp;
4322 	const struct bpf_prog *prog;
4323 	int ret = TCX_NEXT;
4324 
4325 	if (needs_mac)
4326 		__skb_push(skb, skb->mac_len);
4327 	bpf_mprog_foreach_prog(entry, fp, prog) {
4328 		bpf_compute_data_pointers(skb);
4329 		ret = bpf_prog_run(prog, skb);
4330 		if (ret != TCX_NEXT)
4331 			break;
4332 	}
4333 	if (needs_mac)
4334 		__skb_pull(skb, skb->mac_len);
4335 	return tcx_action_code(skb, ret);
4336 }
4337 
4338 static __always_inline struct sk_buff *
4339 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4340 		   struct net_device *orig_dev, bool *another)
4341 {
4342 	struct bpf_mprog_entry *entry = rcu_dereference_bh(skb->dev->tcx_ingress);
4343 	enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_INGRESS;
4344 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
4345 	int sch_ret;
4346 
4347 	if (!entry)
4348 		return skb;
4349 
4350 	bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
4351 	if (*pt_prev) {
4352 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
4353 		*pt_prev = NULL;
4354 	}
4355 
4356 	qdisc_skb_cb(skb)->pkt_len = skb->len;
4357 	tcx_set_ingress(skb, true);
4358 
4359 	if (static_branch_unlikely(&tcx_needed_key)) {
4360 		sch_ret = tcx_run(entry, skb, true);
4361 		if (sch_ret != TC_ACT_UNSPEC)
4362 			goto ingress_verdict;
4363 	}
4364 	sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4365 ingress_verdict:
4366 	switch (sch_ret) {
4367 	case TC_ACT_REDIRECT:
4368 		/* skb_mac_header check was done by BPF, so we can safely
4369 		 * push the L2 header back before redirecting to another
4370 		 * netdev.
4371 		 */
4372 		__skb_push(skb, skb->mac_len);
4373 		if (skb_do_redirect(skb) == -EAGAIN) {
4374 			__skb_pull(skb, skb->mac_len);
4375 			*another = true;
4376 			break;
4377 		}
4378 		*ret = NET_RX_SUCCESS;
4379 		bpf_net_ctx_clear(bpf_net_ctx);
4380 		return NULL;
4381 	case TC_ACT_SHOT:
4382 		kfree_skb_reason(skb, drop_reason);
4383 		*ret = NET_RX_DROP;
4384 		bpf_net_ctx_clear(bpf_net_ctx);
4385 		return NULL;
4386 	/* used by tc_run */
4387 	case TC_ACT_STOLEN:
4388 	case TC_ACT_QUEUED:
4389 	case TC_ACT_TRAP:
4390 		consume_skb(skb);
4391 		fallthrough;
4392 	case TC_ACT_CONSUMED:
4393 		*ret = NET_RX_SUCCESS;
4394 		bpf_net_ctx_clear(bpf_net_ctx);
4395 		return NULL;
4396 	}
4397 	bpf_net_ctx_clear(bpf_net_ctx);
4398 
4399 	return skb;
4400 }
4401 
4402 static __always_inline struct sk_buff *
4403 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4404 {
4405 	struct bpf_mprog_entry *entry = rcu_dereference_bh(dev->tcx_egress);
4406 	enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_EGRESS;
4407 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
4408 	int sch_ret;
4409 
4410 	if (!entry)
4411 		return skb;
4412 
4413 	bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
4414 
4415 	/* qdisc_skb_cb(skb)->pkt_len & tcx_set_ingress() was
4416 	 * already set by the caller.
4417 	 */
4418 	if (static_branch_unlikely(&tcx_needed_key)) {
4419 		sch_ret = tcx_run(entry, skb, false);
4420 		if (sch_ret != TC_ACT_UNSPEC)
4421 			goto egress_verdict;
4422 	}
4423 	sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4424 egress_verdict:
4425 	switch (sch_ret) {
4426 	case TC_ACT_REDIRECT:
4427 		/* No need to push/pop skb's mac_header here on egress! */
4428 		skb_do_redirect(skb);
4429 		*ret = NET_XMIT_SUCCESS;
4430 		bpf_net_ctx_clear(bpf_net_ctx);
4431 		return NULL;
4432 	case TC_ACT_SHOT:
4433 		kfree_skb_reason(skb, drop_reason);
4434 		*ret = NET_XMIT_DROP;
4435 		bpf_net_ctx_clear(bpf_net_ctx);
4436 		return NULL;
4437 	/* used by tc_run */
4438 	case TC_ACT_STOLEN:
4439 	case TC_ACT_QUEUED:
4440 	case TC_ACT_TRAP:
4441 		consume_skb(skb);
4442 		fallthrough;
4443 	case TC_ACT_CONSUMED:
4444 		*ret = NET_XMIT_SUCCESS;
4445 		bpf_net_ctx_clear(bpf_net_ctx);
4446 		return NULL;
4447 	}
4448 	bpf_net_ctx_clear(bpf_net_ctx);
4449 
4450 	return skb;
4451 }
4452 #else
4453 static __always_inline struct sk_buff *
4454 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4455 		   struct net_device *orig_dev, bool *another)
4456 {
4457 	return skb;
4458 }
4459 
4460 static __always_inline struct sk_buff *
4461 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4462 {
4463 	return skb;
4464 }
4465 #endif /* CONFIG_NET_XGRESS */
4466 
4467 #ifdef CONFIG_XPS
4468 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
4469 			       struct xps_dev_maps *dev_maps, unsigned int tci)
4470 {
4471 	int tc = netdev_get_prio_tc_map(dev, skb->priority);
4472 	struct xps_map *map;
4473 	int queue_index = -1;
4474 
4475 	if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
4476 		return queue_index;
4477 
4478 	tci *= dev_maps->num_tc;
4479 	tci += tc;
4480 
4481 	map = rcu_dereference(dev_maps->attr_map[tci]);
4482 	if (map) {
4483 		if (map->len == 1)
4484 			queue_index = map->queues[0];
4485 		else
4486 			queue_index = map->queues[reciprocal_scale(
4487 						skb_get_hash(skb), map->len)];
4488 		if (unlikely(queue_index >= dev->real_num_tx_queues))
4489 			queue_index = -1;
4490 	}
4491 	return queue_index;
4492 }
4493 #endif
4494 
4495 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4496 			 struct sk_buff *skb)
4497 {
4498 #ifdef CONFIG_XPS
4499 	struct xps_dev_maps *dev_maps;
4500 	struct sock *sk = skb->sk;
4501 	int queue_index = -1;
4502 
4503 	if (!static_key_false(&xps_needed))
4504 		return -1;
4505 
4506 	rcu_read_lock();
4507 	if (!static_key_false(&xps_rxqs_needed))
4508 		goto get_cpus_map;
4509 
4510 	dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4511 	if (dev_maps) {
4512 		int tci = sk_rx_queue_get(sk);
4513 
4514 		if (tci >= 0)
4515 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4516 							  tci);
4517 	}
4518 
4519 get_cpus_map:
4520 	if (queue_index < 0) {
4521 		dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4522 		if (dev_maps) {
4523 			unsigned int tci = skb->sender_cpu - 1;
4524 
4525 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4526 							  tci);
4527 		}
4528 	}
4529 	rcu_read_unlock();
4530 
4531 	return queue_index;
4532 #else
4533 	return -1;
4534 #endif
4535 }
4536 
4537 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4538 		     struct net_device *sb_dev)
4539 {
4540 	return 0;
4541 }
4542 EXPORT_SYMBOL(dev_pick_tx_zero);
4543 
4544 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4545 		     struct net_device *sb_dev)
4546 {
4547 	struct sock *sk = skb->sk;
4548 	int queue_index = sk_tx_queue_get(sk);
4549 
4550 	sb_dev = sb_dev ? : dev;
4551 
4552 	if (queue_index < 0 || skb->ooo_okay ||
4553 	    queue_index >= dev->real_num_tx_queues) {
4554 		int new_index = get_xps_queue(dev, sb_dev, skb);
4555 
4556 		if (new_index < 0)
4557 			new_index = skb_tx_hash(dev, sb_dev, skb);
4558 
4559 		if (queue_index != new_index && sk &&
4560 		    sk_fullsock(sk) &&
4561 		    rcu_access_pointer(sk->sk_dst_cache))
4562 			sk_tx_queue_set(sk, new_index);
4563 
4564 		queue_index = new_index;
4565 	}
4566 
4567 	return queue_index;
4568 }
4569 EXPORT_SYMBOL(netdev_pick_tx);
4570 
4571 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4572 					 struct sk_buff *skb,
4573 					 struct net_device *sb_dev)
4574 {
4575 	int queue_index = 0;
4576 
4577 #ifdef CONFIG_XPS
4578 	u32 sender_cpu = skb->sender_cpu - 1;
4579 
4580 	if (sender_cpu >= (u32)NR_CPUS)
4581 		skb->sender_cpu = raw_smp_processor_id() + 1;
4582 #endif
4583 
4584 	if (dev->real_num_tx_queues != 1) {
4585 		const struct net_device_ops *ops = dev->netdev_ops;
4586 
4587 		if (ops->ndo_select_queue)
4588 			queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4589 		else
4590 			queue_index = netdev_pick_tx(dev, skb, sb_dev);
4591 
4592 		queue_index = netdev_cap_txqueue(dev, queue_index);
4593 	}
4594 
4595 	skb_set_queue_mapping(skb, queue_index);
4596 	return netdev_get_tx_queue(dev, queue_index);
4597 }
4598 
4599 /**
4600  * __dev_queue_xmit() - transmit a buffer
4601  * @skb:	buffer to transmit
4602  * @sb_dev:	suboordinate device used for L2 forwarding offload
4603  *
4604  * Queue a buffer for transmission to a network device. The caller must
4605  * have set the device and priority and built the buffer before calling
4606  * this function. The function can be called from an interrupt.
4607  *
4608  * When calling this method, interrupts MUST be enabled. This is because
4609  * the BH enable code must have IRQs enabled so that it will not deadlock.
4610  *
4611  * Regardless of the return value, the skb is consumed, so it is currently
4612  * difficult to retry a send to this method. (You can bump the ref count
4613  * before sending to hold a reference for retry if you are careful.)
4614  *
4615  * Return:
4616  * * 0				- buffer successfully transmitted
4617  * * positive qdisc return code	- NET_XMIT_DROP etc.
4618  * * negative errno		- other errors
4619  */
4620 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4621 {
4622 	struct net_device *dev = skb->dev;
4623 	struct netdev_queue *txq = NULL;
4624 	struct Qdisc *q;
4625 	int rc = -ENOMEM;
4626 	bool again = false;
4627 
4628 	skb_reset_mac_header(skb);
4629 	skb_assert_len(skb);
4630 
4631 	if (unlikely(skb_shinfo(skb)->tx_flags &
4632 		     (SKBTX_SCHED_TSTAMP | SKBTX_BPF)))
4633 		__skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4634 
4635 	/* Disable soft irqs for various locks below. Also
4636 	 * stops preemption for RCU.
4637 	 */
4638 	rcu_read_lock_bh();
4639 
4640 	skb_update_prio(skb);
4641 
4642 	qdisc_pkt_len_init(skb);
4643 	tcx_set_ingress(skb, false);
4644 #ifdef CONFIG_NET_EGRESS
4645 	if (static_branch_unlikely(&egress_needed_key)) {
4646 		if (nf_hook_egress_active()) {
4647 			skb = nf_hook_egress(skb, &rc, dev);
4648 			if (!skb)
4649 				goto out;
4650 		}
4651 
4652 		netdev_xmit_skip_txqueue(false);
4653 
4654 		nf_skip_egress(skb, true);
4655 		skb = sch_handle_egress(skb, &rc, dev);
4656 		if (!skb)
4657 			goto out;
4658 		nf_skip_egress(skb, false);
4659 
4660 		if (netdev_xmit_txqueue_skipped())
4661 			txq = netdev_tx_queue_mapping(dev, skb);
4662 	}
4663 #endif
4664 	/* If device/qdisc don't need skb->dst, release it right now while
4665 	 * its hot in this cpu cache.
4666 	 */
4667 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4668 		skb_dst_drop(skb);
4669 	else
4670 		skb_dst_force(skb);
4671 
4672 	if (!txq)
4673 		txq = netdev_core_pick_tx(dev, skb, sb_dev);
4674 
4675 	q = rcu_dereference_bh(txq->qdisc);
4676 
4677 	trace_net_dev_queue(skb);
4678 	if (q->enqueue) {
4679 		rc = __dev_xmit_skb(skb, q, dev, txq);
4680 		goto out;
4681 	}
4682 
4683 	/* The device has no queue. Common case for software devices:
4684 	 * loopback, all the sorts of tunnels...
4685 
4686 	 * Really, it is unlikely that netif_tx_lock protection is necessary
4687 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4688 	 * counters.)
4689 	 * However, it is possible, that they rely on protection
4690 	 * made by us here.
4691 
4692 	 * Check this and shot the lock. It is not prone from deadlocks.
4693 	 *Either shot noqueue qdisc, it is even simpler 8)
4694 	 */
4695 	if (dev->flags & IFF_UP) {
4696 		int cpu = smp_processor_id(); /* ok because BHs are off */
4697 
4698 		/* Other cpus might concurrently change txq->xmit_lock_owner
4699 		 * to -1 or to their cpu id, but not to our id.
4700 		 */
4701 		if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4702 			if (dev_xmit_recursion())
4703 				goto recursion_alert;
4704 
4705 			skb = validate_xmit_skb(skb, dev, &again);
4706 			if (!skb)
4707 				goto out;
4708 
4709 			HARD_TX_LOCK(dev, txq, cpu);
4710 
4711 			if (!netif_xmit_stopped(txq)) {
4712 				dev_xmit_recursion_inc();
4713 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4714 				dev_xmit_recursion_dec();
4715 				if (dev_xmit_complete(rc)) {
4716 					HARD_TX_UNLOCK(dev, txq);
4717 					goto out;
4718 				}
4719 			}
4720 			HARD_TX_UNLOCK(dev, txq);
4721 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4722 					     dev->name);
4723 		} else {
4724 			/* Recursion is detected! It is possible,
4725 			 * unfortunately
4726 			 */
4727 recursion_alert:
4728 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4729 					     dev->name);
4730 		}
4731 	}
4732 
4733 	rc = -ENETDOWN;
4734 	rcu_read_unlock_bh();
4735 
4736 	dev_core_stats_tx_dropped_inc(dev);
4737 	kfree_skb_list(skb);
4738 	return rc;
4739 out:
4740 	rcu_read_unlock_bh();
4741 	return rc;
4742 }
4743 EXPORT_SYMBOL(__dev_queue_xmit);
4744 
4745 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4746 {
4747 	struct net_device *dev = skb->dev;
4748 	struct sk_buff *orig_skb = skb;
4749 	struct netdev_queue *txq;
4750 	int ret = NETDEV_TX_BUSY;
4751 	bool again = false;
4752 
4753 	if (unlikely(!netif_running(dev) ||
4754 		     !netif_carrier_ok(dev)))
4755 		goto drop;
4756 
4757 	skb = validate_xmit_skb_list(skb, dev, &again);
4758 	if (skb != orig_skb)
4759 		goto drop;
4760 
4761 	skb_set_queue_mapping(skb, queue_id);
4762 	txq = skb_get_tx_queue(dev, skb);
4763 
4764 	local_bh_disable();
4765 
4766 	dev_xmit_recursion_inc();
4767 	HARD_TX_LOCK(dev, txq, smp_processor_id());
4768 	if (!netif_xmit_frozen_or_drv_stopped(txq))
4769 		ret = netdev_start_xmit(skb, dev, txq, false);
4770 	HARD_TX_UNLOCK(dev, txq);
4771 	dev_xmit_recursion_dec();
4772 
4773 	local_bh_enable();
4774 	return ret;
4775 drop:
4776 	dev_core_stats_tx_dropped_inc(dev);
4777 	kfree_skb_list(skb);
4778 	return NET_XMIT_DROP;
4779 }
4780 EXPORT_SYMBOL(__dev_direct_xmit);
4781 
4782 /*************************************************************************
4783  *			Receiver routines
4784  *************************************************************************/
4785 static DEFINE_PER_CPU(struct task_struct *, backlog_napi);
4786 
4787 int weight_p __read_mostly = 64;           /* old backlog weight */
4788 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4789 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4790 
4791 /* Called with irq disabled */
4792 static inline void ____napi_schedule(struct softnet_data *sd,
4793 				     struct napi_struct *napi)
4794 {
4795 	struct task_struct *thread;
4796 
4797 	lockdep_assert_irqs_disabled();
4798 
4799 	if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4800 		/* Paired with smp_mb__before_atomic() in
4801 		 * napi_enable()/dev_set_threaded().
4802 		 * Use READ_ONCE() to guarantee a complete
4803 		 * read on napi->thread. Only call
4804 		 * wake_up_process() when it's not NULL.
4805 		 */
4806 		thread = READ_ONCE(napi->thread);
4807 		if (thread) {
4808 			if (use_backlog_threads() && thread == raw_cpu_read(backlog_napi))
4809 				goto use_local_napi;
4810 
4811 			set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4812 			wake_up_process(thread);
4813 			return;
4814 		}
4815 	}
4816 
4817 use_local_napi:
4818 	DEBUG_NET_WARN_ON_ONCE(!list_empty(&napi->poll_list));
4819 	list_add_tail(&napi->poll_list, &sd->poll_list);
4820 	WRITE_ONCE(napi->list_owner, smp_processor_id());
4821 	/* If not called from net_rx_action()
4822 	 * we have to raise NET_RX_SOFTIRQ.
4823 	 */
4824 	if (!sd->in_net_rx_action)
4825 		raise_softirq_irqoff(NET_RX_SOFTIRQ);
4826 }
4827 
4828 #ifdef CONFIG_RPS
4829 
4830 struct static_key_false rps_needed __read_mostly;
4831 EXPORT_SYMBOL(rps_needed);
4832 struct static_key_false rfs_needed __read_mostly;
4833 EXPORT_SYMBOL(rfs_needed);
4834 
4835 static u32 rfs_slot(u32 hash, const struct rps_dev_flow_table *flow_table)
4836 {
4837 	return hash_32(hash, flow_table->log);
4838 }
4839 
4840 static struct rps_dev_flow *
4841 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4842 	    struct rps_dev_flow *rflow, u16 next_cpu)
4843 {
4844 	if (next_cpu < nr_cpu_ids) {
4845 		u32 head;
4846 #ifdef CONFIG_RFS_ACCEL
4847 		struct netdev_rx_queue *rxqueue;
4848 		struct rps_dev_flow_table *flow_table;
4849 		struct rps_dev_flow *old_rflow;
4850 		u16 rxq_index;
4851 		u32 flow_id;
4852 		int rc;
4853 
4854 		/* Should we steer this flow to a different hardware queue? */
4855 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4856 		    !(dev->features & NETIF_F_NTUPLE))
4857 			goto out;
4858 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4859 		if (rxq_index == skb_get_rx_queue(skb))
4860 			goto out;
4861 
4862 		rxqueue = dev->_rx + rxq_index;
4863 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
4864 		if (!flow_table)
4865 			goto out;
4866 		flow_id = rfs_slot(skb_get_hash(skb), flow_table);
4867 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4868 							rxq_index, flow_id);
4869 		if (rc < 0)
4870 			goto out;
4871 		old_rflow = rflow;
4872 		rflow = &flow_table->flows[flow_id];
4873 		WRITE_ONCE(rflow->filter, rc);
4874 		if (old_rflow->filter == rc)
4875 			WRITE_ONCE(old_rflow->filter, RPS_NO_FILTER);
4876 	out:
4877 #endif
4878 		head = READ_ONCE(per_cpu(softnet_data, next_cpu).input_queue_head);
4879 		rps_input_queue_tail_save(&rflow->last_qtail, head);
4880 	}
4881 
4882 	WRITE_ONCE(rflow->cpu, next_cpu);
4883 	return rflow;
4884 }
4885 
4886 /*
4887  * get_rps_cpu is called from netif_receive_skb and returns the target
4888  * CPU from the RPS map of the receiving queue for a given skb.
4889  * rcu_read_lock must be held on entry.
4890  */
4891 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4892 		       struct rps_dev_flow **rflowp)
4893 {
4894 	const struct rps_sock_flow_table *sock_flow_table;
4895 	struct netdev_rx_queue *rxqueue = dev->_rx;
4896 	struct rps_dev_flow_table *flow_table;
4897 	struct rps_map *map;
4898 	int cpu = -1;
4899 	u32 tcpu;
4900 	u32 hash;
4901 
4902 	if (skb_rx_queue_recorded(skb)) {
4903 		u16 index = skb_get_rx_queue(skb);
4904 
4905 		if (unlikely(index >= dev->real_num_rx_queues)) {
4906 			WARN_ONCE(dev->real_num_rx_queues > 1,
4907 				  "%s received packet on queue %u, but number "
4908 				  "of RX queues is %u\n",
4909 				  dev->name, index, dev->real_num_rx_queues);
4910 			goto done;
4911 		}
4912 		rxqueue += index;
4913 	}
4914 
4915 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4916 
4917 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4918 	map = rcu_dereference(rxqueue->rps_map);
4919 	if (!flow_table && !map)
4920 		goto done;
4921 
4922 	skb_reset_network_header(skb);
4923 	hash = skb_get_hash(skb);
4924 	if (!hash)
4925 		goto done;
4926 
4927 	sock_flow_table = rcu_dereference(net_hotdata.rps_sock_flow_table);
4928 	if (flow_table && sock_flow_table) {
4929 		struct rps_dev_flow *rflow;
4930 		u32 next_cpu;
4931 		u32 ident;
4932 
4933 		/* First check into global flow table if there is a match.
4934 		 * This READ_ONCE() pairs with WRITE_ONCE() from rps_record_sock_flow().
4935 		 */
4936 		ident = READ_ONCE(sock_flow_table->ents[hash & sock_flow_table->mask]);
4937 		if ((ident ^ hash) & ~net_hotdata.rps_cpu_mask)
4938 			goto try_rps;
4939 
4940 		next_cpu = ident & net_hotdata.rps_cpu_mask;
4941 
4942 		/* OK, now we know there is a match,
4943 		 * we can look at the local (per receive queue) flow table
4944 		 */
4945 		rflow = &flow_table->flows[rfs_slot(hash, flow_table)];
4946 		tcpu = rflow->cpu;
4947 
4948 		/*
4949 		 * If the desired CPU (where last recvmsg was done) is
4950 		 * different from current CPU (one in the rx-queue flow
4951 		 * table entry), switch if one of the following holds:
4952 		 *   - Current CPU is unset (>= nr_cpu_ids).
4953 		 *   - Current CPU is offline.
4954 		 *   - The current CPU's queue tail has advanced beyond the
4955 		 *     last packet that was enqueued using this table entry.
4956 		 *     This guarantees that all previous packets for the flow
4957 		 *     have been dequeued, thus preserving in order delivery.
4958 		 */
4959 		if (unlikely(tcpu != next_cpu) &&
4960 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4961 		     ((int)(READ_ONCE(per_cpu(softnet_data, tcpu).input_queue_head) -
4962 		      rflow->last_qtail)) >= 0)) {
4963 			tcpu = next_cpu;
4964 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4965 		}
4966 
4967 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4968 			*rflowp = rflow;
4969 			cpu = tcpu;
4970 			goto done;
4971 		}
4972 	}
4973 
4974 try_rps:
4975 
4976 	if (map) {
4977 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4978 		if (cpu_online(tcpu)) {
4979 			cpu = tcpu;
4980 			goto done;
4981 		}
4982 	}
4983 
4984 done:
4985 	return cpu;
4986 }
4987 
4988 #ifdef CONFIG_RFS_ACCEL
4989 
4990 /**
4991  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4992  * @dev: Device on which the filter was set
4993  * @rxq_index: RX queue index
4994  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4995  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4996  *
4997  * Drivers that implement ndo_rx_flow_steer() should periodically call
4998  * this function for each installed filter and remove the filters for
4999  * which it returns %true.
5000  */
5001 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
5002 			 u32 flow_id, u16 filter_id)
5003 {
5004 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
5005 	struct rps_dev_flow_table *flow_table;
5006 	struct rps_dev_flow *rflow;
5007 	bool expire = true;
5008 	unsigned int cpu;
5009 
5010 	rcu_read_lock();
5011 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
5012 	if (flow_table && flow_id < (1UL << flow_table->log)) {
5013 		rflow = &flow_table->flows[flow_id];
5014 		cpu = READ_ONCE(rflow->cpu);
5015 		if (READ_ONCE(rflow->filter) == filter_id && cpu < nr_cpu_ids &&
5016 		    ((int)(READ_ONCE(per_cpu(softnet_data, cpu).input_queue_head) -
5017 			   READ_ONCE(rflow->last_qtail)) <
5018 		     (int)(10 << flow_table->log)))
5019 			expire = false;
5020 	}
5021 	rcu_read_unlock();
5022 	return expire;
5023 }
5024 EXPORT_SYMBOL(rps_may_expire_flow);
5025 
5026 #endif /* CONFIG_RFS_ACCEL */
5027 
5028 /* Called from hardirq (IPI) context */
5029 static void rps_trigger_softirq(void *data)
5030 {
5031 	struct softnet_data *sd = data;
5032 
5033 	____napi_schedule(sd, &sd->backlog);
5034 	/* Pairs with READ_ONCE() in softnet_seq_show() */
5035 	WRITE_ONCE(sd->received_rps, sd->received_rps + 1);
5036 }
5037 
5038 #endif /* CONFIG_RPS */
5039 
5040 /* Called from hardirq (IPI) context */
5041 static void trigger_rx_softirq(void *data)
5042 {
5043 	struct softnet_data *sd = data;
5044 
5045 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
5046 	smp_store_release(&sd->defer_ipi_scheduled, 0);
5047 }
5048 
5049 /*
5050  * After we queued a packet into sd->input_pkt_queue,
5051  * we need to make sure this queue is serviced soon.
5052  *
5053  * - If this is another cpu queue, link it to our rps_ipi_list,
5054  *   and make sure we will process rps_ipi_list from net_rx_action().
5055  *
5056  * - If this is our own queue, NAPI schedule our backlog.
5057  *   Note that this also raises NET_RX_SOFTIRQ.
5058  */
5059 static void napi_schedule_rps(struct softnet_data *sd)
5060 {
5061 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
5062 
5063 #ifdef CONFIG_RPS
5064 	if (sd != mysd) {
5065 		if (use_backlog_threads()) {
5066 			__napi_schedule_irqoff(&sd->backlog);
5067 			return;
5068 		}
5069 
5070 		sd->rps_ipi_next = mysd->rps_ipi_list;
5071 		mysd->rps_ipi_list = sd;
5072 
5073 		/* If not called from net_rx_action() or napi_threaded_poll()
5074 		 * we have to raise NET_RX_SOFTIRQ.
5075 		 */
5076 		if (!mysd->in_net_rx_action && !mysd->in_napi_threaded_poll)
5077 			__raise_softirq_irqoff(NET_RX_SOFTIRQ);
5078 		return;
5079 	}
5080 #endif /* CONFIG_RPS */
5081 	__napi_schedule_irqoff(&mysd->backlog);
5082 }
5083 
5084 void kick_defer_list_purge(struct softnet_data *sd, unsigned int cpu)
5085 {
5086 	unsigned long flags;
5087 
5088 	if (use_backlog_threads()) {
5089 		backlog_lock_irq_save(sd, &flags);
5090 
5091 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state))
5092 			__napi_schedule_irqoff(&sd->backlog);
5093 
5094 		backlog_unlock_irq_restore(sd, &flags);
5095 
5096 	} else if (!cmpxchg(&sd->defer_ipi_scheduled, 0, 1)) {
5097 		smp_call_function_single_async(cpu, &sd->defer_csd);
5098 	}
5099 }
5100 
5101 #ifdef CONFIG_NET_FLOW_LIMIT
5102 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
5103 #endif
5104 
5105 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
5106 {
5107 #ifdef CONFIG_NET_FLOW_LIMIT
5108 	struct sd_flow_limit *fl;
5109 	struct softnet_data *sd;
5110 	unsigned int old_flow, new_flow;
5111 
5112 	if (qlen < (READ_ONCE(net_hotdata.max_backlog) >> 1))
5113 		return false;
5114 
5115 	sd = this_cpu_ptr(&softnet_data);
5116 
5117 	rcu_read_lock();
5118 	fl = rcu_dereference(sd->flow_limit);
5119 	if (fl) {
5120 		new_flow = hash_32(skb_get_hash(skb), fl->log_buckets);
5121 		old_flow = fl->history[fl->history_head];
5122 		fl->history[fl->history_head] = new_flow;
5123 
5124 		fl->history_head++;
5125 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
5126 
5127 		if (likely(fl->buckets[old_flow]))
5128 			fl->buckets[old_flow]--;
5129 
5130 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
5131 			/* Pairs with READ_ONCE() in softnet_seq_show() */
5132 			WRITE_ONCE(fl->count, fl->count + 1);
5133 			rcu_read_unlock();
5134 			return true;
5135 		}
5136 	}
5137 	rcu_read_unlock();
5138 #endif
5139 	return false;
5140 }
5141 
5142 /*
5143  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
5144  * queue (may be a remote CPU queue).
5145  */
5146 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
5147 			      unsigned int *qtail)
5148 {
5149 	enum skb_drop_reason reason;
5150 	struct softnet_data *sd;
5151 	unsigned long flags;
5152 	unsigned int qlen;
5153 	int max_backlog;
5154 	u32 tail;
5155 
5156 	reason = SKB_DROP_REASON_DEV_READY;
5157 	if (!netif_running(skb->dev))
5158 		goto bad_dev;
5159 
5160 	reason = SKB_DROP_REASON_CPU_BACKLOG;
5161 	sd = &per_cpu(softnet_data, cpu);
5162 
5163 	qlen = skb_queue_len_lockless(&sd->input_pkt_queue);
5164 	max_backlog = READ_ONCE(net_hotdata.max_backlog);
5165 	if (unlikely(qlen > max_backlog))
5166 		goto cpu_backlog_drop;
5167 	backlog_lock_irq_save(sd, &flags);
5168 	qlen = skb_queue_len(&sd->input_pkt_queue);
5169 	if (qlen <= max_backlog && !skb_flow_limit(skb, qlen)) {
5170 		if (!qlen) {
5171 			/* Schedule NAPI for backlog device. We can use
5172 			 * non atomic operation as we own the queue lock.
5173 			 */
5174 			if (!__test_and_set_bit(NAPI_STATE_SCHED,
5175 						&sd->backlog.state))
5176 				napi_schedule_rps(sd);
5177 		}
5178 		__skb_queue_tail(&sd->input_pkt_queue, skb);
5179 		tail = rps_input_queue_tail_incr(sd);
5180 		backlog_unlock_irq_restore(sd, &flags);
5181 
5182 		/* save the tail outside of the critical section */
5183 		rps_input_queue_tail_save(qtail, tail);
5184 		return NET_RX_SUCCESS;
5185 	}
5186 
5187 	backlog_unlock_irq_restore(sd, &flags);
5188 
5189 cpu_backlog_drop:
5190 	atomic_inc(&sd->dropped);
5191 bad_dev:
5192 	dev_core_stats_rx_dropped_inc(skb->dev);
5193 	kfree_skb_reason(skb, reason);
5194 	return NET_RX_DROP;
5195 }
5196 
5197 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
5198 {
5199 	struct net_device *dev = skb->dev;
5200 	struct netdev_rx_queue *rxqueue;
5201 
5202 	rxqueue = dev->_rx;
5203 
5204 	if (skb_rx_queue_recorded(skb)) {
5205 		u16 index = skb_get_rx_queue(skb);
5206 
5207 		if (unlikely(index >= dev->real_num_rx_queues)) {
5208 			WARN_ONCE(dev->real_num_rx_queues > 1,
5209 				  "%s received packet on queue %u, but number "
5210 				  "of RX queues is %u\n",
5211 				  dev->name, index, dev->real_num_rx_queues);
5212 
5213 			return rxqueue; /* Return first rxqueue */
5214 		}
5215 		rxqueue += index;
5216 	}
5217 	return rxqueue;
5218 }
5219 
5220 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
5221 			     const struct bpf_prog *xdp_prog)
5222 {
5223 	void *orig_data, *orig_data_end, *hard_start;
5224 	struct netdev_rx_queue *rxqueue;
5225 	bool orig_bcast, orig_host;
5226 	u32 mac_len, frame_sz;
5227 	__be16 orig_eth_type;
5228 	struct ethhdr *eth;
5229 	u32 metalen, act;
5230 	int off;
5231 
5232 	/* The XDP program wants to see the packet starting at the MAC
5233 	 * header.
5234 	 */
5235 	mac_len = skb->data - skb_mac_header(skb);
5236 	hard_start = skb->data - skb_headroom(skb);
5237 
5238 	/* SKB "head" area always have tailroom for skb_shared_info */
5239 	frame_sz = (void *)skb_end_pointer(skb) - hard_start;
5240 	frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
5241 
5242 	rxqueue = netif_get_rxqueue(skb);
5243 	xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
5244 	xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
5245 			 skb_headlen(skb) + mac_len, true);
5246 	if (skb_is_nonlinear(skb)) {
5247 		skb_shinfo(skb)->xdp_frags_size = skb->data_len;
5248 		xdp_buff_set_frags_flag(xdp);
5249 	} else {
5250 		xdp_buff_clear_frags_flag(xdp);
5251 	}
5252 
5253 	orig_data_end = xdp->data_end;
5254 	orig_data = xdp->data;
5255 	eth = (struct ethhdr *)xdp->data;
5256 	orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
5257 	orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
5258 	orig_eth_type = eth->h_proto;
5259 
5260 	act = bpf_prog_run_xdp(xdp_prog, xdp);
5261 
5262 	/* check if bpf_xdp_adjust_head was used */
5263 	off = xdp->data - orig_data;
5264 	if (off) {
5265 		if (off > 0)
5266 			__skb_pull(skb, off);
5267 		else if (off < 0)
5268 			__skb_push(skb, -off);
5269 
5270 		skb->mac_header += off;
5271 		skb_reset_network_header(skb);
5272 	}
5273 
5274 	/* check if bpf_xdp_adjust_tail was used */
5275 	off = xdp->data_end - orig_data_end;
5276 	if (off != 0) {
5277 		skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
5278 		skb->len += off; /* positive on grow, negative on shrink */
5279 	}
5280 
5281 	/* XDP frag metadata (e.g. nr_frags) are updated in eBPF helpers
5282 	 * (e.g. bpf_xdp_adjust_tail), we need to update data_len here.
5283 	 */
5284 	if (xdp_buff_has_frags(xdp))
5285 		skb->data_len = skb_shinfo(skb)->xdp_frags_size;
5286 	else
5287 		skb->data_len = 0;
5288 
5289 	/* check if XDP changed eth hdr such SKB needs update */
5290 	eth = (struct ethhdr *)xdp->data;
5291 	if ((orig_eth_type != eth->h_proto) ||
5292 	    (orig_host != ether_addr_equal_64bits(eth->h_dest,
5293 						  skb->dev->dev_addr)) ||
5294 	    (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
5295 		__skb_push(skb, ETH_HLEN);
5296 		skb->pkt_type = PACKET_HOST;
5297 		skb->protocol = eth_type_trans(skb, skb->dev);
5298 	}
5299 
5300 	/* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
5301 	 * before calling us again on redirect path. We do not call do_redirect
5302 	 * as we leave that up to the caller.
5303 	 *
5304 	 * Caller is responsible for managing lifetime of skb (i.e. calling
5305 	 * kfree_skb in response to actions it cannot handle/XDP_DROP).
5306 	 */
5307 	switch (act) {
5308 	case XDP_REDIRECT:
5309 	case XDP_TX:
5310 		__skb_push(skb, mac_len);
5311 		break;
5312 	case XDP_PASS:
5313 		metalen = xdp->data - xdp->data_meta;
5314 		if (metalen)
5315 			skb_metadata_set(skb, metalen);
5316 		break;
5317 	}
5318 
5319 	return act;
5320 }
5321 
5322 static int
5323 netif_skb_check_for_xdp(struct sk_buff **pskb, const struct bpf_prog *prog)
5324 {
5325 	struct sk_buff *skb = *pskb;
5326 	int err, hroom, troom;
5327 
5328 	local_lock_nested_bh(&system_page_pool.bh_lock);
5329 	err = skb_cow_data_for_xdp(this_cpu_read(system_page_pool.pool), pskb, prog);
5330 	local_unlock_nested_bh(&system_page_pool.bh_lock);
5331 	if (!err)
5332 		return 0;
5333 
5334 	/* In case we have to go down the path and also linearize,
5335 	 * then lets do the pskb_expand_head() work just once here.
5336 	 */
5337 	hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
5338 	troom = skb->tail + skb->data_len - skb->end;
5339 	err = pskb_expand_head(skb,
5340 			       hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
5341 			       troom > 0 ? troom + 128 : 0, GFP_ATOMIC);
5342 	if (err)
5343 		return err;
5344 
5345 	return skb_linearize(skb);
5346 }
5347 
5348 static u32 netif_receive_generic_xdp(struct sk_buff **pskb,
5349 				     struct xdp_buff *xdp,
5350 				     const struct bpf_prog *xdp_prog)
5351 {
5352 	struct sk_buff *skb = *pskb;
5353 	u32 mac_len, act = XDP_DROP;
5354 
5355 	/* Reinjected packets coming from act_mirred or similar should
5356 	 * not get XDP generic processing.
5357 	 */
5358 	if (skb_is_redirected(skb))
5359 		return XDP_PASS;
5360 
5361 	/* XDP packets must have sufficient headroom of XDP_PACKET_HEADROOM
5362 	 * bytes. This is the guarantee that also native XDP provides,
5363 	 * thus we need to do it here as well.
5364 	 */
5365 	mac_len = skb->data - skb_mac_header(skb);
5366 	__skb_push(skb, mac_len);
5367 
5368 	if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
5369 	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
5370 		if (netif_skb_check_for_xdp(pskb, xdp_prog))
5371 			goto do_drop;
5372 	}
5373 
5374 	__skb_pull(*pskb, mac_len);
5375 
5376 	act = bpf_prog_run_generic_xdp(*pskb, xdp, xdp_prog);
5377 	switch (act) {
5378 	case XDP_REDIRECT:
5379 	case XDP_TX:
5380 	case XDP_PASS:
5381 		break;
5382 	default:
5383 		bpf_warn_invalid_xdp_action((*pskb)->dev, xdp_prog, act);
5384 		fallthrough;
5385 	case XDP_ABORTED:
5386 		trace_xdp_exception((*pskb)->dev, xdp_prog, act);
5387 		fallthrough;
5388 	case XDP_DROP:
5389 	do_drop:
5390 		kfree_skb(*pskb);
5391 		break;
5392 	}
5393 
5394 	return act;
5395 }
5396 
5397 /* When doing generic XDP we have to bypass the qdisc layer and the
5398  * network taps in order to match in-driver-XDP behavior. This also means
5399  * that XDP packets are able to starve other packets going through a qdisc,
5400  * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX
5401  * queues, so they do not have this starvation issue.
5402  */
5403 void generic_xdp_tx(struct sk_buff *skb, const struct bpf_prog *xdp_prog)
5404 {
5405 	struct net_device *dev = skb->dev;
5406 	struct netdev_queue *txq;
5407 	bool free_skb = true;
5408 	int cpu, rc;
5409 
5410 	txq = netdev_core_pick_tx(dev, skb, NULL);
5411 	cpu = smp_processor_id();
5412 	HARD_TX_LOCK(dev, txq, cpu);
5413 	if (!netif_xmit_frozen_or_drv_stopped(txq)) {
5414 		rc = netdev_start_xmit(skb, dev, txq, 0);
5415 		if (dev_xmit_complete(rc))
5416 			free_skb = false;
5417 	}
5418 	HARD_TX_UNLOCK(dev, txq);
5419 	if (free_skb) {
5420 		trace_xdp_exception(dev, xdp_prog, XDP_TX);
5421 		dev_core_stats_tx_dropped_inc(dev);
5422 		kfree_skb(skb);
5423 	}
5424 }
5425 
5426 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
5427 
5428 int do_xdp_generic(const struct bpf_prog *xdp_prog, struct sk_buff **pskb)
5429 {
5430 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
5431 
5432 	if (xdp_prog) {
5433 		struct xdp_buff xdp;
5434 		u32 act;
5435 		int err;
5436 
5437 		bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
5438 		act = netif_receive_generic_xdp(pskb, &xdp, xdp_prog);
5439 		if (act != XDP_PASS) {
5440 			switch (act) {
5441 			case XDP_REDIRECT:
5442 				err = xdp_do_generic_redirect((*pskb)->dev, *pskb,
5443 							      &xdp, xdp_prog);
5444 				if (err)
5445 					goto out_redir;
5446 				break;
5447 			case XDP_TX:
5448 				generic_xdp_tx(*pskb, xdp_prog);
5449 				break;
5450 			}
5451 			bpf_net_ctx_clear(bpf_net_ctx);
5452 			return XDP_DROP;
5453 		}
5454 		bpf_net_ctx_clear(bpf_net_ctx);
5455 	}
5456 	return XDP_PASS;
5457 out_redir:
5458 	bpf_net_ctx_clear(bpf_net_ctx);
5459 	kfree_skb_reason(*pskb, SKB_DROP_REASON_XDP);
5460 	return XDP_DROP;
5461 }
5462 EXPORT_SYMBOL_GPL(do_xdp_generic);
5463 
5464 static int netif_rx_internal(struct sk_buff *skb)
5465 {
5466 	int ret;
5467 
5468 	net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb);
5469 
5470 	trace_netif_rx(skb);
5471 
5472 #ifdef CONFIG_RPS
5473 	if (static_branch_unlikely(&rps_needed)) {
5474 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5475 		int cpu;
5476 
5477 		rcu_read_lock();
5478 
5479 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
5480 		if (cpu < 0)
5481 			cpu = smp_processor_id();
5482 
5483 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5484 
5485 		rcu_read_unlock();
5486 	} else
5487 #endif
5488 	{
5489 		unsigned int qtail;
5490 
5491 		ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail);
5492 	}
5493 	return ret;
5494 }
5495 
5496 /**
5497  *	__netif_rx	-	Slightly optimized version of netif_rx
5498  *	@skb: buffer to post
5499  *
5500  *	This behaves as netif_rx except that it does not disable bottom halves.
5501  *	As a result this function may only be invoked from the interrupt context
5502  *	(either hard or soft interrupt).
5503  */
5504 int __netif_rx(struct sk_buff *skb)
5505 {
5506 	int ret;
5507 
5508 	lockdep_assert_once(hardirq_count() | softirq_count());
5509 
5510 	trace_netif_rx_entry(skb);
5511 	ret = netif_rx_internal(skb);
5512 	trace_netif_rx_exit(ret);
5513 	return ret;
5514 }
5515 EXPORT_SYMBOL(__netif_rx);
5516 
5517 /**
5518  *	netif_rx	-	post buffer to the network code
5519  *	@skb: buffer to post
5520  *
5521  *	This function receives a packet from a device driver and queues it for
5522  *	the upper (protocol) levels to process via the backlog NAPI device. It
5523  *	always succeeds. The buffer may be dropped during processing for
5524  *	congestion control or by the protocol layers.
5525  *	The network buffer is passed via the backlog NAPI device. Modern NIC
5526  *	driver should use NAPI and GRO.
5527  *	This function can used from interrupt and from process context. The
5528  *	caller from process context must not disable interrupts before invoking
5529  *	this function.
5530  *
5531  *	return values:
5532  *	NET_RX_SUCCESS	(no congestion)
5533  *	NET_RX_DROP     (packet was dropped)
5534  *
5535  */
5536 int netif_rx(struct sk_buff *skb)
5537 {
5538 	bool need_bh_off = !(hardirq_count() | softirq_count());
5539 	int ret;
5540 
5541 	if (need_bh_off)
5542 		local_bh_disable();
5543 	trace_netif_rx_entry(skb);
5544 	ret = netif_rx_internal(skb);
5545 	trace_netif_rx_exit(ret);
5546 	if (need_bh_off)
5547 		local_bh_enable();
5548 	return ret;
5549 }
5550 EXPORT_SYMBOL(netif_rx);
5551 
5552 static __latent_entropy void net_tx_action(void)
5553 {
5554 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5555 
5556 	if (sd->completion_queue) {
5557 		struct sk_buff *clist;
5558 
5559 		local_irq_disable();
5560 		clist = sd->completion_queue;
5561 		sd->completion_queue = NULL;
5562 		local_irq_enable();
5563 
5564 		while (clist) {
5565 			struct sk_buff *skb = clist;
5566 
5567 			clist = clist->next;
5568 
5569 			WARN_ON(refcount_read(&skb->users));
5570 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_CONSUMED))
5571 				trace_consume_skb(skb, net_tx_action);
5572 			else
5573 				trace_kfree_skb(skb, net_tx_action,
5574 						get_kfree_skb_cb(skb)->reason, NULL);
5575 
5576 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5577 				__kfree_skb(skb);
5578 			else
5579 				__napi_kfree_skb(skb,
5580 						 get_kfree_skb_cb(skb)->reason);
5581 		}
5582 	}
5583 
5584 	if (sd->output_queue) {
5585 		struct Qdisc *head;
5586 
5587 		local_irq_disable();
5588 		head = sd->output_queue;
5589 		sd->output_queue = NULL;
5590 		sd->output_queue_tailp = &sd->output_queue;
5591 		local_irq_enable();
5592 
5593 		rcu_read_lock();
5594 
5595 		while (head) {
5596 			struct Qdisc *q = head;
5597 			spinlock_t *root_lock = NULL;
5598 
5599 			head = head->next_sched;
5600 
5601 			/* We need to make sure head->next_sched is read
5602 			 * before clearing __QDISC_STATE_SCHED
5603 			 */
5604 			smp_mb__before_atomic();
5605 
5606 			if (!(q->flags & TCQ_F_NOLOCK)) {
5607 				root_lock = qdisc_lock(q);
5608 				spin_lock(root_lock);
5609 			} else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5610 						     &q->state))) {
5611 				/* There is a synchronize_net() between
5612 				 * STATE_DEACTIVATED flag being set and
5613 				 * qdisc_reset()/some_qdisc_is_busy() in
5614 				 * dev_deactivate(), so we can safely bail out
5615 				 * early here to avoid data race between
5616 				 * qdisc_deactivate() and some_qdisc_is_busy()
5617 				 * for lockless qdisc.
5618 				 */
5619 				clear_bit(__QDISC_STATE_SCHED, &q->state);
5620 				continue;
5621 			}
5622 
5623 			clear_bit(__QDISC_STATE_SCHED, &q->state);
5624 			qdisc_run(q);
5625 			if (root_lock)
5626 				spin_unlock(root_lock);
5627 		}
5628 
5629 		rcu_read_unlock();
5630 	}
5631 
5632 	xfrm_dev_backlog(sd);
5633 }
5634 
5635 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5636 /* This hook is defined here for ATM LANE */
5637 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5638 			     unsigned char *addr) __read_mostly;
5639 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5640 #endif
5641 
5642 /**
5643  *	netdev_is_rx_handler_busy - check if receive handler is registered
5644  *	@dev: device to check
5645  *
5646  *	Check if a receive handler is already registered for a given device.
5647  *	Return true if there one.
5648  *
5649  *	The caller must hold the rtnl_mutex.
5650  */
5651 bool netdev_is_rx_handler_busy(struct net_device *dev)
5652 {
5653 	ASSERT_RTNL();
5654 	return dev && rtnl_dereference(dev->rx_handler);
5655 }
5656 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5657 
5658 /**
5659  *	netdev_rx_handler_register - register receive handler
5660  *	@dev: device to register a handler for
5661  *	@rx_handler: receive handler to register
5662  *	@rx_handler_data: data pointer that is used by rx handler
5663  *
5664  *	Register a receive handler for a device. This handler will then be
5665  *	called from __netif_receive_skb. A negative errno code is returned
5666  *	on a failure.
5667  *
5668  *	The caller must hold the rtnl_mutex.
5669  *
5670  *	For a general description of rx_handler, see enum rx_handler_result.
5671  */
5672 int netdev_rx_handler_register(struct net_device *dev,
5673 			       rx_handler_func_t *rx_handler,
5674 			       void *rx_handler_data)
5675 {
5676 	if (netdev_is_rx_handler_busy(dev))
5677 		return -EBUSY;
5678 
5679 	if (dev->priv_flags & IFF_NO_RX_HANDLER)
5680 		return -EINVAL;
5681 
5682 	/* Note: rx_handler_data must be set before rx_handler */
5683 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5684 	rcu_assign_pointer(dev->rx_handler, rx_handler);
5685 
5686 	return 0;
5687 }
5688 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5689 
5690 /**
5691  *	netdev_rx_handler_unregister - unregister receive handler
5692  *	@dev: device to unregister a handler from
5693  *
5694  *	Unregister a receive handler from a device.
5695  *
5696  *	The caller must hold the rtnl_mutex.
5697  */
5698 void netdev_rx_handler_unregister(struct net_device *dev)
5699 {
5700 
5701 	ASSERT_RTNL();
5702 	RCU_INIT_POINTER(dev->rx_handler, NULL);
5703 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5704 	 * section has a guarantee to see a non NULL rx_handler_data
5705 	 * as well.
5706 	 */
5707 	synchronize_net();
5708 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5709 }
5710 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5711 
5712 /*
5713  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5714  * the special handling of PFMEMALLOC skbs.
5715  */
5716 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5717 {
5718 	switch (skb->protocol) {
5719 	case htons(ETH_P_ARP):
5720 	case htons(ETH_P_IP):
5721 	case htons(ETH_P_IPV6):
5722 	case htons(ETH_P_8021Q):
5723 	case htons(ETH_P_8021AD):
5724 		return true;
5725 	default:
5726 		return false;
5727 	}
5728 }
5729 
5730 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5731 			     int *ret, struct net_device *orig_dev)
5732 {
5733 	if (nf_hook_ingress_active(skb)) {
5734 		int ingress_retval;
5735 
5736 		if (*pt_prev) {
5737 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
5738 			*pt_prev = NULL;
5739 		}
5740 
5741 		rcu_read_lock();
5742 		ingress_retval = nf_hook_ingress(skb);
5743 		rcu_read_unlock();
5744 		return ingress_retval;
5745 	}
5746 	return 0;
5747 }
5748 
5749 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5750 				    struct packet_type **ppt_prev)
5751 {
5752 	struct packet_type *ptype, *pt_prev;
5753 	rx_handler_func_t *rx_handler;
5754 	struct sk_buff *skb = *pskb;
5755 	struct net_device *orig_dev;
5756 	bool deliver_exact = false;
5757 	int ret = NET_RX_DROP;
5758 	__be16 type;
5759 
5760 	net_timestamp_check(!READ_ONCE(net_hotdata.tstamp_prequeue), skb);
5761 
5762 	trace_netif_receive_skb(skb);
5763 
5764 	orig_dev = skb->dev;
5765 
5766 	skb_reset_network_header(skb);
5767 #if !defined(CONFIG_DEBUG_NET)
5768 	/* We plan to no longer reset the transport header here.
5769 	 * Give some time to fuzzers and dev build to catch bugs
5770 	 * in network stacks.
5771 	 */
5772 	if (!skb_transport_header_was_set(skb))
5773 		skb_reset_transport_header(skb);
5774 #endif
5775 	skb_reset_mac_len(skb);
5776 
5777 	pt_prev = NULL;
5778 
5779 another_round:
5780 	skb->skb_iif = skb->dev->ifindex;
5781 
5782 	__this_cpu_inc(softnet_data.processed);
5783 
5784 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
5785 		int ret2;
5786 
5787 		migrate_disable();
5788 		ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog),
5789 				      &skb);
5790 		migrate_enable();
5791 
5792 		if (ret2 != XDP_PASS) {
5793 			ret = NET_RX_DROP;
5794 			goto out;
5795 		}
5796 	}
5797 
5798 	if (eth_type_vlan(skb->protocol)) {
5799 		skb = skb_vlan_untag(skb);
5800 		if (unlikely(!skb))
5801 			goto out;
5802 	}
5803 
5804 	if (skb_skip_tc_classify(skb))
5805 		goto skip_classify;
5806 
5807 	if (pfmemalloc)
5808 		goto skip_taps;
5809 
5810 	list_for_each_entry_rcu(ptype, &dev_net_rcu(skb->dev)->ptype_all,
5811 				list) {
5812 		if (pt_prev)
5813 			ret = deliver_skb(skb, pt_prev, orig_dev);
5814 		pt_prev = ptype;
5815 	}
5816 
5817 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5818 		if (pt_prev)
5819 			ret = deliver_skb(skb, pt_prev, orig_dev);
5820 		pt_prev = ptype;
5821 	}
5822 
5823 skip_taps:
5824 #ifdef CONFIG_NET_INGRESS
5825 	if (static_branch_unlikely(&ingress_needed_key)) {
5826 		bool another = false;
5827 
5828 		nf_skip_egress(skb, true);
5829 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5830 					 &another);
5831 		if (another)
5832 			goto another_round;
5833 		if (!skb)
5834 			goto out;
5835 
5836 		nf_skip_egress(skb, false);
5837 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5838 			goto out;
5839 	}
5840 #endif
5841 	skb_reset_redirect(skb);
5842 skip_classify:
5843 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5844 		goto drop;
5845 
5846 	if (skb_vlan_tag_present(skb)) {
5847 		if (pt_prev) {
5848 			ret = deliver_skb(skb, pt_prev, orig_dev);
5849 			pt_prev = NULL;
5850 		}
5851 		if (vlan_do_receive(&skb))
5852 			goto another_round;
5853 		else if (unlikely(!skb))
5854 			goto out;
5855 	}
5856 
5857 	rx_handler = rcu_dereference(skb->dev->rx_handler);
5858 	if (rx_handler) {
5859 		if (pt_prev) {
5860 			ret = deliver_skb(skb, pt_prev, orig_dev);
5861 			pt_prev = NULL;
5862 		}
5863 		switch (rx_handler(&skb)) {
5864 		case RX_HANDLER_CONSUMED:
5865 			ret = NET_RX_SUCCESS;
5866 			goto out;
5867 		case RX_HANDLER_ANOTHER:
5868 			goto another_round;
5869 		case RX_HANDLER_EXACT:
5870 			deliver_exact = true;
5871 			break;
5872 		case RX_HANDLER_PASS:
5873 			break;
5874 		default:
5875 			BUG();
5876 		}
5877 	}
5878 
5879 	if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5880 check_vlan_id:
5881 		if (skb_vlan_tag_get_id(skb)) {
5882 			/* Vlan id is non 0 and vlan_do_receive() above couldn't
5883 			 * find vlan device.
5884 			 */
5885 			skb->pkt_type = PACKET_OTHERHOST;
5886 		} else if (eth_type_vlan(skb->protocol)) {
5887 			/* Outer header is 802.1P with vlan 0, inner header is
5888 			 * 802.1Q or 802.1AD and vlan_do_receive() above could
5889 			 * not find vlan dev for vlan id 0.
5890 			 */
5891 			__vlan_hwaccel_clear_tag(skb);
5892 			skb = skb_vlan_untag(skb);
5893 			if (unlikely(!skb))
5894 				goto out;
5895 			if (vlan_do_receive(&skb))
5896 				/* After stripping off 802.1P header with vlan 0
5897 				 * vlan dev is found for inner header.
5898 				 */
5899 				goto another_round;
5900 			else if (unlikely(!skb))
5901 				goto out;
5902 			else
5903 				/* We have stripped outer 802.1P vlan 0 header.
5904 				 * But could not find vlan dev.
5905 				 * check again for vlan id to set OTHERHOST.
5906 				 */
5907 				goto check_vlan_id;
5908 		}
5909 		/* Note: we might in the future use prio bits
5910 		 * and set skb->priority like in vlan_do_receive()
5911 		 * For the time being, just ignore Priority Code Point
5912 		 */
5913 		__vlan_hwaccel_clear_tag(skb);
5914 	}
5915 
5916 	type = skb->protocol;
5917 
5918 	/* deliver only exact match when indicated */
5919 	if (likely(!deliver_exact)) {
5920 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5921 				       &ptype_base[ntohs(type) &
5922 						   PTYPE_HASH_MASK]);
5923 
5924 		/* orig_dev and skb->dev could belong to different netns;
5925 		 * Even in such case we need to traverse only the list
5926 		 * coming from skb->dev, as the ptype owner (packet socket)
5927 		 * will use dev_net(skb->dev) to do namespace filtering.
5928 		 */
5929 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5930 				       &dev_net_rcu(skb->dev)->ptype_specific);
5931 	}
5932 
5933 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5934 			       &orig_dev->ptype_specific);
5935 
5936 	if (unlikely(skb->dev != orig_dev)) {
5937 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5938 				       &skb->dev->ptype_specific);
5939 	}
5940 
5941 	if (pt_prev) {
5942 		*ppt_prev = pt_prev;
5943 	} else {
5944 drop:
5945 		if (!deliver_exact)
5946 			dev_core_stats_rx_dropped_inc(skb->dev);
5947 		else
5948 			dev_core_stats_rx_nohandler_inc(skb->dev);
5949 		kfree_skb_reason(skb, SKB_DROP_REASON_UNHANDLED_PROTO);
5950 		/* Jamal, now you will not able to escape explaining
5951 		 * me how you were going to use this. :-)
5952 		 */
5953 		ret = NET_RX_DROP;
5954 	}
5955 
5956 out:
5957 	/* The invariant here is that if *ppt_prev is not NULL
5958 	 * then skb should also be non-NULL.
5959 	 *
5960 	 * Apparently *ppt_prev assignment above holds this invariant due to
5961 	 * skb dereferencing near it.
5962 	 */
5963 	*pskb = skb;
5964 	return ret;
5965 }
5966 
5967 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5968 {
5969 	struct net_device *orig_dev = skb->dev;
5970 	struct packet_type *pt_prev = NULL;
5971 	int ret;
5972 
5973 	ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5974 	if (pt_prev)
5975 		ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5976 					 skb->dev, pt_prev, orig_dev);
5977 	return ret;
5978 }
5979 
5980 /**
5981  *	netif_receive_skb_core - special purpose version of netif_receive_skb
5982  *	@skb: buffer to process
5983  *
5984  *	More direct receive version of netif_receive_skb().  It should
5985  *	only be used by callers that have a need to skip RPS and Generic XDP.
5986  *	Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5987  *
5988  *	This function may only be called from softirq context and interrupts
5989  *	should be enabled.
5990  *
5991  *	Return values (usually ignored):
5992  *	NET_RX_SUCCESS: no congestion
5993  *	NET_RX_DROP: packet was dropped
5994  */
5995 int netif_receive_skb_core(struct sk_buff *skb)
5996 {
5997 	int ret;
5998 
5999 	rcu_read_lock();
6000 	ret = __netif_receive_skb_one_core(skb, false);
6001 	rcu_read_unlock();
6002 
6003 	return ret;
6004 }
6005 EXPORT_SYMBOL(netif_receive_skb_core);
6006 
6007 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
6008 						  struct packet_type *pt_prev,
6009 						  struct net_device *orig_dev)
6010 {
6011 	struct sk_buff *skb, *next;
6012 
6013 	if (!pt_prev)
6014 		return;
6015 	if (list_empty(head))
6016 		return;
6017 	if (pt_prev->list_func != NULL)
6018 		INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
6019 				   ip_list_rcv, head, pt_prev, orig_dev);
6020 	else
6021 		list_for_each_entry_safe(skb, next, head, list) {
6022 			skb_list_del_init(skb);
6023 			pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
6024 		}
6025 }
6026 
6027 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
6028 {
6029 	/* Fast-path assumptions:
6030 	 * - There is no RX handler.
6031 	 * - Only one packet_type matches.
6032 	 * If either of these fails, we will end up doing some per-packet
6033 	 * processing in-line, then handling the 'last ptype' for the whole
6034 	 * sublist.  This can't cause out-of-order delivery to any single ptype,
6035 	 * because the 'last ptype' must be constant across the sublist, and all
6036 	 * other ptypes are handled per-packet.
6037 	 */
6038 	/* Current (common) ptype of sublist */
6039 	struct packet_type *pt_curr = NULL;
6040 	/* Current (common) orig_dev of sublist */
6041 	struct net_device *od_curr = NULL;
6042 	struct sk_buff *skb, *next;
6043 	LIST_HEAD(sublist);
6044 
6045 	list_for_each_entry_safe(skb, next, head, list) {
6046 		struct net_device *orig_dev = skb->dev;
6047 		struct packet_type *pt_prev = NULL;
6048 
6049 		skb_list_del_init(skb);
6050 		__netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
6051 		if (!pt_prev)
6052 			continue;
6053 		if (pt_curr != pt_prev || od_curr != orig_dev) {
6054 			/* dispatch old sublist */
6055 			__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
6056 			/* start new sublist */
6057 			INIT_LIST_HEAD(&sublist);
6058 			pt_curr = pt_prev;
6059 			od_curr = orig_dev;
6060 		}
6061 		list_add_tail(&skb->list, &sublist);
6062 	}
6063 
6064 	/* dispatch final sublist */
6065 	__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
6066 }
6067 
6068 static int __netif_receive_skb(struct sk_buff *skb)
6069 {
6070 	int ret;
6071 
6072 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
6073 		unsigned int noreclaim_flag;
6074 
6075 		/*
6076 		 * PFMEMALLOC skbs are special, they should
6077 		 * - be delivered to SOCK_MEMALLOC sockets only
6078 		 * - stay away from userspace
6079 		 * - have bounded memory usage
6080 		 *
6081 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
6082 		 * context down to all allocation sites.
6083 		 */
6084 		noreclaim_flag = memalloc_noreclaim_save();
6085 		ret = __netif_receive_skb_one_core(skb, true);
6086 		memalloc_noreclaim_restore(noreclaim_flag);
6087 	} else
6088 		ret = __netif_receive_skb_one_core(skb, false);
6089 
6090 	return ret;
6091 }
6092 
6093 static void __netif_receive_skb_list(struct list_head *head)
6094 {
6095 	unsigned long noreclaim_flag = 0;
6096 	struct sk_buff *skb, *next;
6097 	bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
6098 
6099 	list_for_each_entry_safe(skb, next, head, list) {
6100 		if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
6101 			struct list_head sublist;
6102 
6103 			/* Handle the previous sublist */
6104 			list_cut_before(&sublist, head, &skb->list);
6105 			if (!list_empty(&sublist))
6106 				__netif_receive_skb_list_core(&sublist, pfmemalloc);
6107 			pfmemalloc = !pfmemalloc;
6108 			/* See comments in __netif_receive_skb */
6109 			if (pfmemalloc)
6110 				noreclaim_flag = memalloc_noreclaim_save();
6111 			else
6112 				memalloc_noreclaim_restore(noreclaim_flag);
6113 		}
6114 	}
6115 	/* Handle the remaining sublist */
6116 	if (!list_empty(head))
6117 		__netif_receive_skb_list_core(head, pfmemalloc);
6118 	/* Restore pflags */
6119 	if (pfmemalloc)
6120 		memalloc_noreclaim_restore(noreclaim_flag);
6121 }
6122 
6123 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
6124 {
6125 	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
6126 	struct bpf_prog *new = xdp->prog;
6127 	int ret = 0;
6128 
6129 	switch (xdp->command) {
6130 	case XDP_SETUP_PROG:
6131 		rcu_assign_pointer(dev->xdp_prog, new);
6132 		if (old)
6133 			bpf_prog_put(old);
6134 
6135 		if (old && !new) {
6136 			static_branch_dec(&generic_xdp_needed_key);
6137 		} else if (new && !old) {
6138 			static_branch_inc(&generic_xdp_needed_key);
6139 			netif_disable_lro(dev);
6140 			dev_disable_gro_hw(dev);
6141 		}
6142 		break;
6143 
6144 	default:
6145 		ret = -EINVAL;
6146 		break;
6147 	}
6148 
6149 	return ret;
6150 }
6151 
6152 static int netif_receive_skb_internal(struct sk_buff *skb)
6153 {
6154 	int ret;
6155 
6156 	net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb);
6157 
6158 	if (skb_defer_rx_timestamp(skb))
6159 		return NET_RX_SUCCESS;
6160 
6161 	rcu_read_lock();
6162 #ifdef CONFIG_RPS
6163 	if (static_branch_unlikely(&rps_needed)) {
6164 		struct rps_dev_flow voidflow, *rflow = &voidflow;
6165 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
6166 
6167 		if (cpu >= 0) {
6168 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
6169 			rcu_read_unlock();
6170 			return ret;
6171 		}
6172 	}
6173 #endif
6174 	ret = __netif_receive_skb(skb);
6175 	rcu_read_unlock();
6176 	return ret;
6177 }
6178 
6179 void netif_receive_skb_list_internal(struct list_head *head)
6180 {
6181 	struct sk_buff *skb, *next;
6182 	LIST_HEAD(sublist);
6183 
6184 	list_for_each_entry_safe(skb, next, head, list) {
6185 		net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue),
6186 				    skb);
6187 		skb_list_del_init(skb);
6188 		if (!skb_defer_rx_timestamp(skb))
6189 			list_add_tail(&skb->list, &sublist);
6190 	}
6191 	list_splice_init(&sublist, head);
6192 
6193 	rcu_read_lock();
6194 #ifdef CONFIG_RPS
6195 	if (static_branch_unlikely(&rps_needed)) {
6196 		list_for_each_entry_safe(skb, next, head, list) {
6197 			struct rps_dev_flow voidflow, *rflow = &voidflow;
6198 			int cpu = get_rps_cpu(skb->dev, skb, &rflow);
6199 
6200 			if (cpu >= 0) {
6201 				/* Will be handled, remove from list */
6202 				skb_list_del_init(skb);
6203 				enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
6204 			}
6205 		}
6206 	}
6207 #endif
6208 	__netif_receive_skb_list(head);
6209 	rcu_read_unlock();
6210 }
6211 
6212 /**
6213  *	netif_receive_skb - process receive buffer from network
6214  *	@skb: buffer to process
6215  *
6216  *	netif_receive_skb() is the main receive data processing function.
6217  *	It always succeeds. The buffer may be dropped during processing
6218  *	for congestion control or by the protocol layers.
6219  *
6220  *	This function may only be called from softirq context and interrupts
6221  *	should be enabled.
6222  *
6223  *	Return values (usually ignored):
6224  *	NET_RX_SUCCESS: no congestion
6225  *	NET_RX_DROP: packet was dropped
6226  */
6227 int netif_receive_skb(struct sk_buff *skb)
6228 {
6229 	int ret;
6230 
6231 	trace_netif_receive_skb_entry(skb);
6232 
6233 	ret = netif_receive_skb_internal(skb);
6234 	trace_netif_receive_skb_exit(ret);
6235 
6236 	return ret;
6237 }
6238 EXPORT_SYMBOL(netif_receive_skb);
6239 
6240 /**
6241  *	netif_receive_skb_list - process many receive buffers from network
6242  *	@head: list of skbs to process.
6243  *
6244  *	Since return value of netif_receive_skb() is normally ignored, and
6245  *	wouldn't be meaningful for a list, this function returns void.
6246  *
6247  *	This function may only be called from softirq context and interrupts
6248  *	should be enabled.
6249  */
6250 void netif_receive_skb_list(struct list_head *head)
6251 {
6252 	struct sk_buff *skb;
6253 
6254 	if (list_empty(head))
6255 		return;
6256 	if (trace_netif_receive_skb_list_entry_enabled()) {
6257 		list_for_each_entry(skb, head, list)
6258 			trace_netif_receive_skb_list_entry(skb);
6259 	}
6260 	netif_receive_skb_list_internal(head);
6261 	trace_netif_receive_skb_list_exit(0);
6262 }
6263 EXPORT_SYMBOL(netif_receive_skb_list);
6264 
6265 /* Network device is going away, flush any packets still pending */
6266 static void flush_backlog(struct work_struct *work)
6267 {
6268 	struct sk_buff *skb, *tmp;
6269 	struct sk_buff_head list;
6270 	struct softnet_data *sd;
6271 
6272 	__skb_queue_head_init(&list);
6273 	local_bh_disable();
6274 	sd = this_cpu_ptr(&softnet_data);
6275 
6276 	backlog_lock_irq_disable(sd);
6277 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
6278 		if (READ_ONCE(skb->dev->reg_state) == NETREG_UNREGISTERING) {
6279 			__skb_unlink(skb, &sd->input_pkt_queue);
6280 			__skb_queue_tail(&list, skb);
6281 			rps_input_queue_head_incr(sd);
6282 		}
6283 	}
6284 	backlog_unlock_irq_enable(sd);
6285 
6286 	local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6287 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
6288 		if (READ_ONCE(skb->dev->reg_state) == NETREG_UNREGISTERING) {
6289 			__skb_unlink(skb, &sd->process_queue);
6290 			__skb_queue_tail(&list, skb);
6291 			rps_input_queue_head_incr(sd);
6292 		}
6293 	}
6294 	local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6295 	local_bh_enable();
6296 
6297 	__skb_queue_purge_reason(&list, SKB_DROP_REASON_DEV_READY);
6298 }
6299 
6300 static bool flush_required(int cpu)
6301 {
6302 #if IS_ENABLED(CONFIG_RPS)
6303 	struct softnet_data *sd = &per_cpu(softnet_data, cpu);
6304 	bool do_flush;
6305 
6306 	backlog_lock_irq_disable(sd);
6307 
6308 	/* as insertion into process_queue happens with the rps lock held,
6309 	 * process_queue access may race only with dequeue
6310 	 */
6311 	do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
6312 		   !skb_queue_empty_lockless(&sd->process_queue);
6313 	backlog_unlock_irq_enable(sd);
6314 
6315 	return do_flush;
6316 #endif
6317 	/* without RPS we can't safely check input_pkt_queue: during a
6318 	 * concurrent remote skb_queue_splice() we can detect as empty both
6319 	 * input_pkt_queue and process_queue even if the latter could end-up
6320 	 * containing a lot of packets.
6321 	 */
6322 	return true;
6323 }
6324 
6325 struct flush_backlogs {
6326 	cpumask_t		flush_cpus;
6327 	struct work_struct	w[];
6328 };
6329 
6330 static struct flush_backlogs *flush_backlogs_alloc(void)
6331 {
6332 	return kmalloc(struct_size_t(struct flush_backlogs, w, nr_cpu_ids),
6333 		       GFP_KERNEL);
6334 }
6335 
6336 static struct flush_backlogs *flush_backlogs_fallback;
6337 static DEFINE_MUTEX(flush_backlogs_mutex);
6338 
6339 static void flush_all_backlogs(void)
6340 {
6341 	struct flush_backlogs *ptr = flush_backlogs_alloc();
6342 	unsigned int cpu;
6343 
6344 	if (!ptr) {
6345 		mutex_lock(&flush_backlogs_mutex);
6346 		ptr = flush_backlogs_fallback;
6347 	}
6348 	cpumask_clear(&ptr->flush_cpus);
6349 
6350 	cpus_read_lock();
6351 
6352 	for_each_online_cpu(cpu) {
6353 		if (flush_required(cpu)) {
6354 			INIT_WORK(&ptr->w[cpu], flush_backlog);
6355 			queue_work_on(cpu, system_highpri_wq, &ptr->w[cpu]);
6356 			__cpumask_set_cpu(cpu, &ptr->flush_cpus);
6357 		}
6358 	}
6359 
6360 	/* we can have in flight packet[s] on the cpus we are not flushing,
6361 	 * synchronize_net() in unregister_netdevice_many() will take care of
6362 	 * them.
6363 	 */
6364 	for_each_cpu(cpu, &ptr->flush_cpus)
6365 		flush_work(&ptr->w[cpu]);
6366 
6367 	cpus_read_unlock();
6368 
6369 	if (ptr != flush_backlogs_fallback)
6370 		kfree(ptr);
6371 	else
6372 		mutex_unlock(&flush_backlogs_mutex);
6373 }
6374 
6375 static void net_rps_send_ipi(struct softnet_data *remsd)
6376 {
6377 #ifdef CONFIG_RPS
6378 	while (remsd) {
6379 		struct softnet_data *next = remsd->rps_ipi_next;
6380 
6381 		if (cpu_online(remsd->cpu))
6382 			smp_call_function_single_async(remsd->cpu, &remsd->csd);
6383 		remsd = next;
6384 	}
6385 #endif
6386 }
6387 
6388 /*
6389  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6390  * Note: called with local irq disabled, but exits with local irq enabled.
6391  */
6392 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6393 {
6394 #ifdef CONFIG_RPS
6395 	struct softnet_data *remsd = sd->rps_ipi_list;
6396 
6397 	if (!use_backlog_threads() && remsd) {
6398 		sd->rps_ipi_list = NULL;
6399 
6400 		local_irq_enable();
6401 
6402 		/* Send pending IPI's to kick RPS processing on remote cpus. */
6403 		net_rps_send_ipi(remsd);
6404 	} else
6405 #endif
6406 		local_irq_enable();
6407 }
6408 
6409 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6410 {
6411 #ifdef CONFIG_RPS
6412 	return !use_backlog_threads() && sd->rps_ipi_list;
6413 #else
6414 	return false;
6415 #endif
6416 }
6417 
6418 static int process_backlog(struct napi_struct *napi, int quota)
6419 {
6420 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6421 	bool again = true;
6422 	int work = 0;
6423 
6424 	/* Check if we have pending ipi, its better to send them now,
6425 	 * not waiting net_rx_action() end.
6426 	 */
6427 	if (sd_has_rps_ipi_waiting(sd)) {
6428 		local_irq_disable();
6429 		net_rps_action_and_irq_enable(sd);
6430 	}
6431 
6432 	napi->weight = READ_ONCE(net_hotdata.dev_rx_weight);
6433 	while (again) {
6434 		struct sk_buff *skb;
6435 
6436 		local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6437 		while ((skb = __skb_dequeue(&sd->process_queue))) {
6438 			local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6439 			rcu_read_lock();
6440 			__netif_receive_skb(skb);
6441 			rcu_read_unlock();
6442 			if (++work >= quota) {
6443 				rps_input_queue_head_add(sd, work);
6444 				return work;
6445 			}
6446 
6447 			local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6448 		}
6449 		local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6450 
6451 		backlog_lock_irq_disable(sd);
6452 		if (skb_queue_empty(&sd->input_pkt_queue)) {
6453 			/*
6454 			 * Inline a custom version of __napi_complete().
6455 			 * only current cpu owns and manipulates this napi,
6456 			 * and NAPI_STATE_SCHED is the only possible flag set
6457 			 * on backlog.
6458 			 * We can use a plain write instead of clear_bit(),
6459 			 * and we dont need an smp_mb() memory barrier.
6460 			 */
6461 			napi->state &= NAPIF_STATE_THREADED;
6462 			again = false;
6463 		} else {
6464 			local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6465 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
6466 						   &sd->process_queue);
6467 			local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6468 		}
6469 		backlog_unlock_irq_enable(sd);
6470 	}
6471 
6472 	if (work)
6473 		rps_input_queue_head_add(sd, work);
6474 	return work;
6475 }
6476 
6477 /**
6478  * __napi_schedule - schedule for receive
6479  * @n: entry to schedule
6480  *
6481  * The entry's receive function will be scheduled to run.
6482  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6483  */
6484 void __napi_schedule(struct napi_struct *n)
6485 {
6486 	unsigned long flags;
6487 
6488 	local_irq_save(flags);
6489 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
6490 	local_irq_restore(flags);
6491 }
6492 EXPORT_SYMBOL(__napi_schedule);
6493 
6494 /**
6495  *	napi_schedule_prep - check if napi can be scheduled
6496  *	@n: napi context
6497  *
6498  * Test if NAPI routine is already running, and if not mark
6499  * it as running.  This is used as a condition variable to
6500  * insure only one NAPI poll instance runs.  We also make
6501  * sure there is no pending NAPI disable.
6502  */
6503 bool napi_schedule_prep(struct napi_struct *n)
6504 {
6505 	unsigned long new, val = READ_ONCE(n->state);
6506 
6507 	do {
6508 		if (unlikely(val & NAPIF_STATE_DISABLE))
6509 			return false;
6510 		new = val | NAPIF_STATE_SCHED;
6511 
6512 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
6513 		 * This was suggested by Alexander Duyck, as compiler
6514 		 * emits better code than :
6515 		 * if (val & NAPIF_STATE_SCHED)
6516 		 *     new |= NAPIF_STATE_MISSED;
6517 		 */
6518 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6519 						   NAPIF_STATE_MISSED;
6520 	} while (!try_cmpxchg(&n->state, &val, new));
6521 
6522 	return !(val & NAPIF_STATE_SCHED);
6523 }
6524 EXPORT_SYMBOL(napi_schedule_prep);
6525 
6526 /**
6527  * __napi_schedule_irqoff - schedule for receive
6528  * @n: entry to schedule
6529  *
6530  * Variant of __napi_schedule() assuming hard irqs are masked.
6531  *
6532  * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6533  * because the interrupt disabled assumption might not be true
6534  * due to force-threaded interrupts and spinlock substitution.
6535  */
6536 void __napi_schedule_irqoff(struct napi_struct *n)
6537 {
6538 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6539 		____napi_schedule(this_cpu_ptr(&softnet_data), n);
6540 	else
6541 		__napi_schedule(n);
6542 }
6543 EXPORT_SYMBOL(__napi_schedule_irqoff);
6544 
6545 bool napi_complete_done(struct napi_struct *n, int work_done)
6546 {
6547 	unsigned long flags, val, new, timeout = 0;
6548 	bool ret = true;
6549 
6550 	/*
6551 	 * 1) Don't let napi dequeue from the cpu poll list
6552 	 *    just in case its running on a different cpu.
6553 	 * 2) If we are busy polling, do nothing here, we have
6554 	 *    the guarantee we will be called later.
6555 	 */
6556 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6557 				 NAPIF_STATE_IN_BUSY_POLL)))
6558 		return false;
6559 
6560 	if (work_done) {
6561 		if (n->gro.bitmask)
6562 			timeout = napi_get_gro_flush_timeout(n);
6563 		n->defer_hard_irqs_count = napi_get_defer_hard_irqs(n);
6564 	}
6565 	if (n->defer_hard_irqs_count > 0) {
6566 		n->defer_hard_irqs_count--;
6567 		timeout = napi_get_gro_flush_timeout(n);
6568 		if (timeout)
6569 			ret = false;
6570 	}
6571 
6572 	/*
6573 	 * When the NAPI instance uses a timeout and keeps postponing
6574 	 * it, we need to bound somehow the time packets are kept in
6575 	 * the GRO layer.
6576 	 */
6577 	gro_flush(&n->gro, !!timeout);
6578 	gro_normal_list(&n->gro);
6579 
6580 	if (unlikely(!list_empty(&n->poll_list))) {
6581 		/* If n->poll_list is not empty, we need to mask irqs */
6582 		local_irq_save(flags);
6583 		list_del_init(&n->poll_list);
6584 		local_irq_restore(flags);
6585 	}
6586 	WRITE_ONCE(n->list_owner, -1);
6587 
6588 	val = READ_ONCE(n->state);
6589 	do {
6590 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6591 
6592 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6593 			      NAPIF_STATE_SCHED_THREADED |
6594 			      NAPIF_STATE_PREFER_BUSY_POLL);
6595 
6596 		/* If STATE_MISSED was set, leave STATE_SCHED set,
6597 		 * because we will call napi->poll() one more time.
6598 		 * This C code was suggested by Alexander Duyck to help gcc.
6599 		 */
6600 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6601 						    NAPIF_STATE_SCHED;
6602 	} while (!try_cmpxchg(&n->state, &val, new));
6603 
6604 	if (unlikely(val & NAPIF_STATE_MISSED)) {
6605 		__napi_schedule(n);
6606 		return false;
6607 	}
6608 
6609 	if (timeout)
6610 		hrtimer_start(&n->timer, ns_to_ktime(timeout),
6611 			      HRTIMER_MODE_REL_PINNED);
6612 	return ret;
6613 }
6614 EXPORT_SYMBOL(napi_complete_done);
6615 
6616 static void skb_defer_free_flush(struct softnet_data *sd)
6617 {
6618 	struct sk_buff *skb, *next;
6619 
6620 	/* Paired with WRITE_ONCE() in skb_attempt_defer_free() */
6621 	if (!READ_ONCE(sd->defer_list))
6622 		return;
6623 
6624 	spin_lock(&sd->defer_lock);
6625 	skb = sd->defer_list;
6626 	sd->defer_list = NULL;
6627 	sd->defer_count = 0;
6628 	spin_unlock(&sd->defer_lock);
6629 
6630 	while (skb != NULL) {
6631 		next = skb->next;
6632 		napi_consume_skb(skb, 1);
6633 		skb = next;
6634 	}
6635 }
6636 
6637 #if defined(CONFIG_NET_RX_BUSY_POLL)
6638 
6639 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6640 {
6641 	if (!skip_schedule) {
6642 		gro_normal_list(&napi->gro);
6643 		__napi_schedule(napi);
6644 		return;
6645 	}
6646 
6647 	/* Flush too old packets. If HZ < 1000, flush all packets */
6648 	gro_flush(&napi->gro, HZ >= 1000);
6649 	gro_normal_list(&napi->gro);
6650 
6651 	clear_bit(NAPI_STATE_SCHED, &napi->state);
6652 }
6653 
6654 enum {
6655 	NAPI_F_PREFER_BUSY_POLL	= 1,
6656 	NAPI_F_END_ON_RESCHED	= 2,
6657 };
6658 
6659 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock,
6660 			   unsigned flags, u16 budget)
6661 {
6662 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
6663 	bool skip_schedule = false;
6664 	unsigned long timeout;
6665 	int rc;
6666 
6667 	/* Busy polling means there is a high chance device driver hard irq
6668 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6669 	 * set in napi_schedule_prep().
6670 	 * Since we are about to call napi->poll() once more, we can safely
6671 	 * clear NAPI_STATE_MISSED.
6672 	 *
6673 	 * Note: x86 could use a single "lock and ..." instruction
6674 	 * to perform these two clear_bit()
6675 	 */
6676 	clear_bit(NAPI_STATE_MISSED, &napi->state);
6677 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6678 
6679 	local_bh_disable();
6680 	bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
6681 
6682 	if (flags & NAPI_F_PREFER_BUSY_POLL) {
6683 		napi->defer_hard_irqs_count = napi_get_defer_hard_irqs(napi);
6684 		timeout = napi_get_gro_flush_timeout(napi);
6685 		if (napi->defer_hard_irqs_count && timeout) {
6686 			hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6687 			skip_schedule = true;
6688 		}
6689 	}
6690 
6691 	/* All we really want here is to re-enable device interrupts.
6692 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6693 	 */
6694 	rc = napi->poll(napi, budget);
6695 	/* We can't gro_normal_list() here, because napi->poll() might have
6696 	 * rearmed the napi (napi_complete_done()) in which case it could
6697 	 * already be running on another CPU.
6698 	 */
6699 	trace_napi_poll(napi, rc, budget);
6700 	netpoll_poll_unlock(have_poll_lock);
6701 	if (rc == budget)
6702 		__busy_poll_stop(napi, skip_schedule);
6703 	bpf_net_ctx_clear(bpf_net_ctx);
6704 	local_bh_enable();
6705 }
6706 
6707 static void __napi_busy_loop(unsigned int napi_id,
6708 		      bool (*loop_end)(void *, unsigned long),
6709 		      void *loop_end_arg, unsigned flags, u16 budget)
6710 {
6711 	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6712 	int (*napi_poll)(struct napi_struct *napi, int budget);
6713 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
6714 	void *have_poll_lock = NULL;
6715 	struct napi_struct *napi;
6716 
6717 	WARN_ON_ONCE(!rcu_read_lock_held());
6718 
6719 restart:
6720 	napi_poll = NULL;
6721 
6722 	napi = napi_by_id(napi_id);
6723 	if (!napi)
6724 		return;
6725 
6726 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6727 		preempt_disable();
6728 	for (;;) {
6729 		int work = 0;
6730 
6731 		local_bh_disable();
6732 		bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
6733 		if (!napi_poll) {
6734 			unsigned long val = READ_ONCE(napi->state);
6735 
6736 			/* If multiple threads are competing for this napi,
6737 			 * we avoid dirtying napi->state as much as we can.
6738 			 */
6739 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6740 				   NAPIF_STATE_IN_BUSY_POLL)) {
6741 				if (flags & NAPI_F_PREFER_BUSY_POLL)
6742 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6743 				goto count;
6744 			}
6745 			if (cmpxchg(&napi->state, val,
6746 				    val | NAPIF_STATE_IN_BUSY_POLL |
6747 					  NAPIF_STATE_SCHED) != val) {
6748 				if (flags & NAPI_F_PREFER_BUSY_POLL)
6749 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6750 				goto count;
6751 			}
6752 			have_poll_lock = netpoll_poll_lock(napi);
6753 			napi_poll = napi->poll;
6754 		}
6755 		work = napi_poll(napi, budget);
6756 		trace_napi_poll(napi, work, budget);
6757 		gro_normal_list(&napi->gro);
6758 count:
6759 		if (work > 0)
6760 			__NET_ADD_STATS(dev_net(napi->dev),
6761 					LINUX_MIB_BUSYPOLLRXPACKETS, work);
6762 		skb_defer_free_flush(this_cpu_ptr(&softnet_data));
6763 		bpf_net_ctx_clear(bpf_net_ctx);
6764 		local_bh_enable();
6765 
6766 		if (!loop_end || loop_end(loop_end_arg, start_time))
6767 			break;
6768 
6769 		if (unlikely(need_resched())) {
6770 			if (flags & NAPI_F_END_ON_RESCHED)
6771 				break;
6772 			if (napi_poll)
6773 				busy_poll_stop(napi, have_poll_lock, flags, budget);
6774 			if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6775 				preempt_enable();
6776 			rcu_read_unlock();
6777 			cond_resched();
6778 			rcu_read_lock();
6779 			if (loop_end(loop_end_arg, start_time))
6780 				return;
6781 			goto restart;
6782 		}
6783 		cpu_relax();
6784 	}
6785 	if (napi_poll)
6786 		busy_poll_stop(napi, have_poll_lock, flags, budget);
6787 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6788 		preempt_enable();
6789 }
6790 
6791 void napi_busy_loop_rcu(unsigned int napi_id,
6792 			bool (*loop_end)(void *, unsigned long),
6793 			void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6794 {
6795 	unsigned flags = NAPI_F_END_ON_RESCHED;
6796 
6797 	if (prefer_busy_poll)
6798 		flags |= NAPI_F_PREFER_BUSY_POLL;
6799 
6800 	__napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget);
6801 }
6802 
6803 void napi_busy_loop(unsigned int napi_id,
6804 		    bool (*loop_end)(void *, unsigned long),
6805 		    void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6806 {
6807 	unsigned flags = prefer_busy_poll ? NAPI_F_PREFER_BUSY_POLL : 0;
6808 
6809 	rcu_read_lock();
6810 	__napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget);
6811 	rcu_read_unlock();
6812 }
6813 EXPORT_SYMBOL(napi_busy_loop);
6814 
6815 void napi_suspend_irqs(unsigned int napi_id)
6816 {
6817 	struct napi_struct *napi;
6818 
6819 	rcu_read_lock();
6820 	napi = napi_by_id(napi_id);
6821 	if (napi) {
6822 		unsigned long timeout = napi_get_irq_suspend_timeout(napi);
6823 
6824 		if (timeout)
6825 			hrtimer_start(&napi->timer, ns_to_ktime(timeout),
6826 				      HRTIMER_MODE_REL_PINNED);
6827 	}
6828 	rcu_read_unlock();
6829 }
6830 
6831 void napi_resume_irqs(unsigned int napi_id)
6832 {
6833 	struct napi_struct *napi;
6834 
6835 	rcu_read_lock();
6836 	napi = napi_by_id(napi_id);
6837 	if (napi) {
6838 		/* If irq_suspend_timeout is set to 0 between the call to
6839 		 * napi_suspend_irqs and now, the original value still
6840 		 * determines the safety timeout as intended and napi_watchdog
6841 		 * will resume irq processing.
6842 		 */
6843 		if (napi_get_irq_suspend_timeout(napi)) {
6844 			local_bh_disable();
6845 			napi_schedule(napi);
6846 			local_bh_enable();
6847 		}
6848 	}
6849 	rcu_read_unlock();
6850 }
6851 
6852 #endif /* CONFIG_NET_RX_BUSY_POLL */
6853 
6854 static void __napi_hash_add_with_id(struct napi_struct *napi,
6855 				    unsigned int napi_id)
6856 {
6857 	napi->gro.cached_napi_id = napi_id;
6858 
6859 	WRITE_ONCE(napi->napi_id, napi_id);
6860 	hlist_add_head_rcu(&napi->napi_hash_node,
6861 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6862 }
6863 
6864 static void napi_hash_add_with_id(struct napi_struct *napi,
6865 				  unsigned int napi_id)
6866 {
6867 	unsigned long flags;
6868 
6869 	spin_lock_irqsave(&napi_hash_lock, flags);
6870 	WARN_ON_ONCE(napi_by_id(napi_id));
6871 	__napi_hash_add_with_id(napi, napi_id);
6872 	spin_unlock_irqrestore(&napi_hash_lock, flags);
6873 }
6874 
6875 static void napi_hash_add(struct napi_struct *napi)
6876 {
6877 	unsigned long flags;
6878 
6879 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6880 		return;
6881 
6882 	spin_lock_irqsave(&napi_hash_lock, flags);
6883 
6884 	/* 0..NR_CPUS range is reserved for sender_cpu use */
6885 	do {
6886 		if (unlikely(!napi_id_valid(++napi_gen_id)))
6887 			napi_gen_id = MIN_NAPI_ID;
6888 	} while (napi_by_id(napi_gen_id));
6889 
6890 	__napi_hash_add_with_id(napi, napi_gen_id);
6891 
6892 	spin_unlock_irqrestore(&napi_hash_lock, flags);
6893 }
6894 
6895 /* Warning : caller is responsible to make sure rcu grace period
6896  * is respected before freeing memory containing @napi
6897  */
6898 static void napi_hash_del(struct napi_struct *napi)
6899 {
6900 	unsigned long flags;
6901 
6902 	spin_lock_irqsave(&napi_hash_lock, flags);
6903 
6904 	hlist_del_init_rcu(&napi->napi_hash_node);
6905 
6906 	spin_unlock_irqrestore(&napi_hash_lock, flags);
6907 }
6908 
6909 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6910 {
6911 	struct napi_struct *napi;
6912 
6913 	napi = container_of(timer, struct napi_struct, timer);
6914 
6915 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
6916 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6917 	 */
6918 	if (!napi_disable_pending(napi) &&
6919 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6920 		clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6921 		__napi_schedule_irqoff(napi);
6922 	}
6923 
6924 	return HRTIMER_NORESTART;
6925 }
6926 
6927 static void napi_stop_kthread(struct napi_struct *napi)
6928 {
6929 	unsigned long val, new;
6930 
6931 	/* Wait until the napi STATE_THREADED is unset. */
6932 	while (true) {
6933 		val = READ_ONCE(napi->state);
6934 
6935 		/* If napi kthread own this napi or the napi is idle,
6936 		 * STATE_THREADED can be unset here.
6937 		 */
6938 		if ((val & NAPIF_STATE_SCHED_THREADED) ||
6939 		    !(val & NAPIF_STATE_SCHED)) {
6940 			new = val & (~NAPIF_STATE_THREADED);
6941 		} else {
6942 			msleep(20);
6943 			continue;
6944 		}
6945 
6946 		if (try_cmpxchg(&napi->state, &val, new))
6947 			break;
6948 	}
6949 
6950 	/* Once STATE_THREADED is unset, wait for SCHED_THREADED to be unset by
6951 	 * the kthread.
6952 	 */
6953 	while (true) {
6954 		if (!test_bit(NAPIF_STATE_SCHED_THREADED, &napi->state))
6955 			break;
6956 
6957 		msleep(20);
6958 	}
6959 
6960 	kthread_stop(napi->thread);
6961 	napi->thread = NULL;
6962 }
6963 
6964 int napi_set_threaded(struct napi_struct *napi, bool threaded)
6965 {
6966 	if (threaded) {
6967 		if (!napi->thread) {
6968 			int err = napi_kthread_create(napi);
6969 
6970 			if (err)
6971 				return err;
6972 		}
6973 	}
6974 
6975 	if (napi->config)
6976 		napi->config->threaded = threaded;
6977 
6978 	if (!threaded && napi->thread) {
6979 		napi_stop_kthread(napi);
6980 	} else {
6981 		/* Make sure kthread is created before THREADED bit is set. */
6982 		smp_mb__before_atomic();
6983 		assign_bit(NAPI_STATE_THREADED, &napi->state, threaded);
6984 	}
6985 
6986 	return 0;
6987 }
6988 
6989 int dev_set_threaded(struct net_device *dev, bool threaded)
6990 {
6991 	struct napi_struct *napi;
6992 	int err = 0;
6993 
6994 	netdev_assert_locked_or_invisible(dev);
6995 
6996 	if (threaded) {
6997 		list_for_each_entry(napi, &dev->napi_list, dev_list) {
6998 			if (!napi->thread) {
6999 				err = napi_kthread_create(napi);
7000 				if (err) {
7001 					threaded = false;
7002 					break;
7003 				}
7004 			}
7005 		}
7006 	}
7007 
7008 	WRITE_ONCE(dev->threaded, threaded);
7009 
7010 	/* Make sure kthread is created before THREADED bit
7011 	 * is set.
7012 	 */
7013 	smp_mb__before_atomic();
7014 
7015 	/* Setting/unsetting threaded mode on a napi might not immediately
7016 	 * take effect, if the current napi instance is actively being
7017 	 * polled. In this case, the switch between threaded mode and
7018 	 * softirq mode will happen in the next round of napi_schedule().
7019 	 * This should not cause hiccups/stalls to the live traffic.
7020 	 */
7021 	list_for_each_entry(napi, &dev->napi_list, dev_list) {
7022 		if (!threaded && napi->thread)
7023 			napi_stop_kthread(napi);
7024 		else
7025 			assign_bit(NAPI_STATE_THREADED, &napi->state, threaded);
7026 	}
7027 
7028 	return err;
7029 }
7030 EXPORT_SYMBOL(dev_set_threaded);
7031 
7032 /**
7033  * netif_queue_set_napi - Associate queue with the napi
7034  * @dev: device to which NAPI and queue belong
7035  * @queue_index: Index of queue
7036  * @type: queue type as RX or TX
7037  * @napi: NAPI context, pass NULL to clear previously set NAPI
7038  *
7039  * Set queue with its corresponding napi context. This should be done after
7040  * registering the NAPI handler for the queue-vector and the queues have been
7041  * mapped to the corresponding interrupt vector.
7042  */
7043 void netif_queue_set_napi(struct net_device *dev, unsigned int queue_index,
7044 			  enum netdev_queue_type type, struct napi_struct *napi)
7045 {
7046 	struct netdev_rx_queue *rxq;
7047 	struct netdev_queue *txq;
7048 
7049 	if (WARN_ON_ONCE(napi && !napi->dev))
7050 		return;
7051 	netdev_ops_assert_locked_or_invisible(dev);
7052 
7053 	switch (type) {
7054 	case NETDEV_QUEUE_TYPE_RX:
7055 		rxq = __netif_get_rx_queue(dev, queue_index);
7056 		rxq->napi = napi;
7057 		return;
7058 	case NETDEV_QUEUE_TYPE_TX:
7059 		txq = netdev_get_tx_queue(dev, queue_index);
7060 		txq->napi = napi;
7061 		return;
7062 	default:
7063 		return;
7064 	}
7065 }
7066 EXPORT_SYMBOL(netif_queue_set_napi);
7067 
7068 static void
7069 netif_napi_irq_notify(struct irq_affinity_notify *notify,
7070 		      const cpumask_t *mask)
7071 {
7072 	struct napi_struct *napi =
7073 		container_of(notify, struct napi_struct, notify);
7074 #ifdef CONFIG_RFS_ACCEL
7075 	struct cpu_rmap *rmap = napi->dev->rx_cpu_rmap;
7076 	int err;
7077 #endif
7078 
7079 	if (napi->config && napi->dev->irq_affinity_auto)
7080 		cpumask_copy(&napi->config->affinity_mask, mask);
7081 
7082 #ifdef CONFIG_RFS_ACCEL
7083 	if (napi->dev->rx_cpu_rmap_auto) {
7084 		err = cpu_rmap_update(rmap, napi->napi_rmap_idx, mask);
7085 		if (err)
7086 			netdev_warn(napi->dev, "RMAP update failed (%d)\n",
7087 				    err);
7088 	}
7089 #endif
7090 }
7091 
7092 #ifdef CONFIG_RFS_ACCEL
7093 static void netif_napi_affinity_release(struct kref *ref)
7094 {
7095 	struct napi_struct *napi =
7096 		container_of(ref, struct napi_struct, notify.kref);
7097 	struct cpu_rmap *rmap = napi->dev->rx_cpu_rmap;
7098 
7099 	netdev_assert_locked(napi->dev);
7100 	WARN_ON(test_and_clear_bit(NAPI_STATE_HAS_NOTIFIER,
7101 				   &napi->state));
7102 
7103 	if (!napi->dev->rx_cpu_rmap_auto)
7104 		return;
7105 	rmap->obj[napi->napi_rmap_idx] = NULL;
7106 	napi->napi_rmap_idx = -1;
7107 	cpu_rmap_put(rmap);
7108 }
7109 
7110 int netif_enable_cpu_rmap(struct net_device *dev, unsigned int num_irqs)
7111 {
7112 	if (dev->rx_cpu_rmap_auto)
7113 		return 0;
7114 
7115 	dev->rx_cpu_rmap = alloc_irq_cpu_rmap(num_irqs);
7116 	if (!dev->rx_cpu_rmap)
7117 		return -ENOMEM;
7118 
7119 	dev->rx_cpu_rmap_auto = true;
7120 	return 0;
7121 }
7122 EXPORT_SYMBOL(netif_enable_cpu_rmap);
7123 
7124 static void netif_del_cpu_rmap(struct net_device *dev)
7125 {
7126 	struct cpu_rmap *rmap = dev->rx_cpu_rmap;
7127 
7128 	if (!dev->rx_cpu_rmap_auto)
7129 		return;
7130 
7131 	/* Free the rmap */
7132 	cpu_rmap_put(rmap);
7133 	dev->rx_cpu_rmap = NULL;
7134 	dev->rx_cpu_rmap_auto = false;
7135 }
7136 
7137 #else
7138 static void netif_napi_affinity_release(struct kref *ref)
7139 {
7140 }
7141 
7142 int netif_enable_cpu_rmap(struct net_device *dev, unsigned int num_irqs)
7143 {
7144 	return 0;
7145 }
7146 EXPORT_SYMBOL(netif_enable_cpu_rmap);
7147 
7148 static void netif_del_cpu_rmap(struct net_device *dev)
7149 {
7150 }
7151 #endif
7152 
7153 void netif_set_affinity_auto(struct net_device *dev)
7154 {
7155 	unsigned int i, maxqs, numa;
7156 
7157 	maxqs = max(dev->num_tx_queues, dev->num_rx_queues);
7158 	numa = dev_to_node(&dev->dev);
7159 
7160 	for (i = 0; i < maxqs; i++)
7161 		cpumask_set_cpu(cpumask_local_spread(i, numa),
7162 				&dev->napi_config[i].affinity_mask);
7163 
7164 	dev->irq_affinity_auto = true;
7165 }
7166 EXPORT_SYMBOL(netif_set_affinity_auto);
7167 
7168 void netif_napi_set_irq_locked(struct napi_struct *napi, int irq)
7169 {
7170 	int rc;
7171 
7172 	netdev_assert_locked_or_invisible(napi->dev);
7173 
7174 	if (napi->irq == irq)
7175 		return;
7176 
7177 	/* Remove existing resources */
7178 	if (test_and_clear_bit(NAPI_STATE_HAS_NOTIFIER, &napi->state))
7179 		irq_set_affinity_notifier(napi->irq, NULL);
7180 
7181 	napi->irq = irq;
7182 	if (irq < 0 ||
7183 	    (!napi->dev->rx_cpu_rmap_auto && !napi->dev->irq_affinity_auto))
7184 		return;
7185 
7186 	/* Abort for buggy drivers */
7187 	if (napi->dev->irq_affinity_auto && WARN_ON_ONCE(!napi->config))
7188 		return;
7189 
7190 #ifdef CONFIG_RFS_ACCEL
7191 	if (napi->dev->rx_cpu_rmap_auto) {
7192 		rc = cpu_rmap_add(napi->dev->rx_cpu_rmap, napi);
7193 		if (rc < 0)
7194 			return;
7195 
7196 		cpu_rmap_get(napi->dev->rx_cpu_rmap);
7197 		napi->napi_rmap_idx = rc;
7198 	}
7199 #endif
7200 
7201 	/* Use core IRQ notifier */
7202 	napi->notify.notify = netif_napi_irq_notify;
7203 	napi->notify.release = netif_napi_affinity_release;
7204 	rc = irq_set_affinity_notifier(irq, &napi->notify);
7205 	if (rc) {
7206 		netdev_warn(napi->dev, "Unable to set IRQ notifier (%d)\n",
7207 			    rc);
7208 		goto put_rmap;
7209 	}
7210 
7211 	set_bit(NAPI_STATE_HAS_NOTIFIER, &napi->state);
7212 	return;
7213 
7214 put_rmap:
7215 #ifdef CONFIG_RFS_ACCEL
7216 	if (napi->dev->rx_cpu_rmap_auto) {
7217 		napi->dev->rx_cpu_rmap->obj[napi->napi_rmap_idx] = NULL;
7218 		cpu_rmap_put(napi->dev->rx_cpu_rmap);
7219 		napi->napi_rmap_idx = -1;
7220 	}
7221 #endif
7222 	napi->notify.notify = NULL;
7223 	napi->notify.release = NULL;
7224 }
7225 EXPORT_SYMBOL(netif_napi_set_irq_locked);
7226 
7227 static void napi_restore_config(struct napi_struct *n)
7228 {
7229 	n->defer_hard_irqs = n->config->defer_hard_irqs;
7230 	n->gro_flush_timeout = n->config->gro_flush_timeout;
7231 	n->irq_suspend_timeout = n->config->irq_suspend_timeout;
7232 
7233 	if (n->dev->irq_affinity_auto &&
7234 	    test_bit(NAPI_STATE_HAS_NOTIFIER, &n->state))
7235 		irq_set_affinity(n->irq, &n->config->affinity_mask);
7236 
7237 	/* a NAPI ID might be stored in the config, if so use it. if not, use
7238 	 * napi_hash_add to generate one for us.
7239 	 */
7240 	if (n->config->napi_id) {
7241 		napi_hash_add_with_id(n, n->config->napi_id);
7242 	} else {
7243 		napi_hash_add(n);
7244 		n->config->napi_id = n->napi_id;
7245 	}
7246 
7247 	WARN_ON_ONCE(napi_set_threaded(n, n->config->threaded));
7248 }
7249 
7250 static void napi_save_config(struct napi_struct *n)
7251 {
7252 	n->config->defer_hard_irqs = n->defer_hard_irqs;
7253 	n->config->gro_flush_timeout = n->gro_flush_timeout;
7254 	n->config->irq_suspend_timeout = n->irq_suspend_timeout;
7255 	napi_hash_del(n);
7256 }
7257 
7258 /* Netlink wants the NAPI list to be sorted by ID, if adding a NAPI which will
7259  * inherit an existing ID try to insert it at the right position.
7260  */
7261 static void
7262 netif_napi_dev_list_add(struct net_device *dev, struct napi_struct *napi)
7263 {
7264 	unsigned int new_id, pos_id;
7265 	struct list_head *higher;
7266 	struct napi_struct *pos;
7267 
7268 	new_id = UINT_MAX;
7269 	if (napi->config && napi->config->napi_id)
7270 		new_id = napi->config->napi_id;
7271 
7272 	higher = &dev->napi_list;
7273 	list_for_each_entry(pos, &dev->napi_list, dev_list) {
7274 		if (napi_id_valid(pos->napi_id))
7275 			pos_id = pos->napi_id;
7276 		else if (pos->config)
7277 			pos_id = pos->config->napi_id;
7278 		else
7279 			pos_id = UINT_MAX;
7280 
7281 		if (pos_id <= new_id)
7282 			break;
7283 		higher = &pos->dev_list;
7284 	}
7285 	list_add_rcu(&napi->dev_list, higher); /* adds after higher */
7286 }
7287 
7288 /* Double check that napi_get_frags() allocates skbs with
7289  * skb->head being backed by slab, not a page fragment.
7290  * This is to make sure bug fixed in 3226b158e67c
7291  * ("net: avoid 32 x truesize under-estimation for tiny skbs")
7292  * does not accidentally come back.
7293  */
7294 static void napi_get_frags_check(struct napi_struct *napi)
7295 {
7296 	struct sk_buff *skb;
7297 
7298 	local_bh_disable();
7299 	skb = napi_get_frags(napi);
7300 	WARN_ON_ONCE(skb && skb->head_frag);
7301 	napi_free_frags(napi);
7302 	local_bh_enable();
7303 }
7304 
7305 void netif_napi_add_weight_locked(struct net_device *dev,
7306 				  struct napi_struct *napi,
7307 				  int (*poll)(struct napi_struct *, int),
7308 				  int weight)
7309 {
7310 	netdev_assert_locked(dev);
7311 	if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
7312 		return;
7313 
7314 	INIT_LIST_HEAD(&napi->poll_list);
7315 	INIT_HLIST_NODE(&napi->napi_hash_node);
7316 	hrtimer_setup(&napi->timer, napi_watchdog, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
7317 	gro_init(&napi->gro);
7318 	napi->skb = NULL;
7319 	napi->poll = poll;
7320 	if (weight > NAPI_POLL_WEIGHT)
7321 		netdev_err_once(dev, "%s() called with weight %d\n", __func__,
7322 				weight);
7323 	napi->weight = weight;
7324 	napi->dev = dev;
7325 #ifdef CONFIG_NETPOLL
7326 	napi->poll_owner = -1;
7327 #endif
7328 	napi->list_owner = -1;
7329 	set_bit(NAPI_STATE_SCHED, &napi->state);
7330 	set_bit(NAPI_STATE_NPSVC, &napi->state);
7331 	netif_napi_dev_list_add(dev, napi);
7332 
7333 	/* default settings from sysfs are applied to all NAPIs. any per-NAPI
7334 	 * configuration will be loaded in napi_enable
7335 	 */
7336 	napi_set_defer_hard_irqs(napi, READ_ONCE(dev->napi_defer_hard_irqs));
7337 	napi_set_gro_flush_timeout(napi, READ_ONCE(dev->gro_flush_timeout));
7338 
7339 	napi_get_frags_check(napi);
7340 	/* Create kthread for this napi if dev->threaded is set.
7341 	 * Clear dev->threaded if kthread creation failed so that
7342 	 * threaded mode will not be enabled in napi_enable().
7343 	 */
7344 	if (dev->threaded && napi_kthread_create(napi))
7345 		dev->threaded = false;
7346 	netif_napi_set_irq_locked(napi, -1);
7347 }
7348 EXPORT_SYMBOL(netif_napi_add_weight_locked);
7349 
7350 void napi_disable_locked(struct napi_struct *n)
7351 {
7352 	unsigned long val, new;
7353 
7354 	might_sleep();
7355 	netdev_assert_locked(n->dev);
7356 
7357 	set_bit(NAPI_STATE_DISABLE, &n->state);
7358 
7359 	val = READ_ONCE(n->state);
7360 	do {
7361 		while (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
7362 			usleep_range(20, 200);
7363 			val = READ_ONCE(n->state);
7364 		}
7365 
7366 		new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
7367 		new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL);
7368 	} while (!try_cmpxchg(&n->state, &val, new));
7369 
7370 	hrtimer_cancel(&n->timer);
7371 
7372 	if (n->config)
7373 		napi_save_config(n);
7374 	else
7375 		napi_hash_del(n);
7376 
7377 	clear_bit(NAPI_STATE_DISABLE, &n->state);
7378 }
7379 EXPORT_SYMBOL(napi_disable_locked);
7380 
7381 /**
7382  * napi_disable() - prevent NAPI from scheduling
7383  * @n: NAPI context
7384  *
7385  * Stop NAPI from being scheduled on this context.
7386  * Waits till any outstanding processing completes.
7387  * Takes netdev_lock() for associated net_device.
7388  */
7389 void napi_disable(struct napi_struct *n)
7390 {
7391 	netdev_lock(n->dev);
7392 	napi_disable_locked(n);
7393 	netdev_unlock(n->dev);
7394 }
7395 EXPORT_SYMBOL(napi_disable);
7396 
7397 void napi_enable_locked(struct napi_struct *n)
7398 {
7399 	unsigned long new, val = READ_ONCE(n->state);
7400 
7401 	if (n->config)
7402 		napi_restore_config(n);
7403 	else
7404 		napi_hash_add(n);
7405 
7406 	do {
7407 		BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
7408 
7409 		new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
7410 		if (n->dev->threaded && n->thread)
7411 			new |= NAPIF_STATE_THREADED;
7412 	} while (!try_cmpxchg(&n->state, &val, new));
7413 }
7414 EXPORT_SYMBOL(napi_enable_locked);
7415 
7416 /**
7417  * napi_enable() - enable NAPI scheduling
7418  * @n: NAPI context
7419  *
7420  * Enable scheduling of a NAPI instance.
7421  * Must be paired with napi_disable().
7422  * Takes netdev_lock() for associated net_device.
7423  */
7424 void napi_enable(struct napi_struct *n)
7425 {
7426 	netdev_lock(n->dev);
7427 	napi_enable_locked(n);
7428 	netdev_unlock(n->dev);
7429 }
7430 EXPORT_SYMBOL(napi_enable);
7431 
7432 /* Must be called in process context */
7433 void __netif_napi_del_locked(struct napi_struct *napi)
7434 {
7435 	netdev_assert_locked(napi->dev);
7436 
7437 	if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
7438 		return;
7439 
7440 	/* Make sure NAPI is disabled (or was never enabled). */
7441 	WARN_ON(!test_bit(NAPI_STATE_SCHED, &napi->state));
7442 
7443 	if (test_and_clear_bit(NAPI_STATE_HAS_NOTIFIER, &napi->state))
7444 		irq_set_affinity_notifier(napi->irq, NULL);
7445 
7446 	if (napi->config) {
7447 		napi->index = -1;
7448 		napi->config = NULL;
7449 	}
7450 
7451 	list_del_rcu(&napi->dev_list);
7452 	napi_free_frags(napi);
7453 
7454 	gro_cleanup(&napi->gro);
7455 
7456 	if (napi->thread) {
7457 		kthread_stop(napi->thread);
7458 		napi->thread = NULL;
7459 	}
7460 }
7461 EXPORT_SYMBOL(__netif_napi_del_locked);
7462 
7463 static int __napi_poll(struct napi_struct *n, bool *repoll)
7464 {
7465 	int work, weight;
7466 
7467 	weight = n->weight;
7468 
7469 	/* This NAPI_STATE_SCHED test is for avoiding a race
7470 	 * with netpoll's poll_napi().  Only the entity which
7471 	 * obtains the lock and sees NAPI_STATE_SCHED set will
7472 	 * actually make the ->poll() call.  Therefore we avoid
7473 	 * accidentally calling ->poll() when NAPI is not scheduled.
7474 	 */
7475 	work = 0;
7476 	if (napi_is_scheduled(n)) {
7477 		work = n->poll(n, weight);
7478 		trace_napi_poll(n, work, weight);
7479 
7480 		xdp_do_check_flushed(n);
7481 	}
7482 
7483 	if (unlikely(work > weight))
7484 		netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
7485 				n->poll, work, weight);
7486 
7487 	if (likely(work < weight))
7488 		return work;
7489 
7490 	/* Drivers must not modify the NAPI state if they
7491 	 * consume the entire weight.  In such cases this code
7492 	 * still "owns" the NAPI instance and therefore can
7493 	 * move the instance around on the list at-will.
7494 	 */
7495 	if (unlikely(napi_disable_pending(n))) {
7496 		napi_complete(n);
7497 		return work;
7498 	}
7499 
7500 	/* The NAPI context has more processing work, but busy-polling
7501 	 * is preferred. Exit early.
7502 	 */
7503 	if (napi_prefer_busy_poll(n)) {
7504 		if (napi_complete_done(n, work)) {
7505 			/* If timeout is not set, we need to make sure
7506 			 * that the NAPI is re-scheduled.
7507 			 */
7508 			napi_schedule(n);
7509 		}
7510 		return work;
7511 	}
7512 
7513 	/* Flush too old packets. If HZ < 1000, flush all packets */
7514 	gro_flush(&n->gro, HZ >= 1000);
7515 	gro_normal_list(&n->gro);
7516 
7517 	/* Some drivers may have called napi_schedule
7518 	 * prior to exhausting their budget.
7519 	 */
7520 	if (unlikely(!list_empty(&n->poll_list))) {
7521 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
7522 			     n->dev ? n->dev->name : "backlog");
7523 		return work;
7524 	}
7525 
7526 	*repoll = true;
7527 
7528 	return work;
7529 }
7530 
7531 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
7532 {
7533 	bool do_repoll = false;
7534 	void *have;
7535 	int work;
7536 
7537 	list_del_init(&n->poll_list);
7538 
7539 	have = netpoll_poll_lock(n);
7540 
7541 	work = __napi_poll(n, &do_repoll);
7542 
7543 	if (do_repoll) {
7544 #if defined(CONFIG_DEBUG_NET)
7545 		if (unlikely(!napi_is_scheduled(n)))
7546 			pr_crit("repoll requested for device %s %ps but napi is not scheduled.\n",
7547 				n->dev->name, n->poll);
7548 #endif
7549 		list_add_tail(&n->poll_list, repoll);
7550 	}
7551 	netpoll_poll_unlock(have);
7552 
7553 	return work;
7554 }
7555 
7556 static int napi_thread_wait(struct napi_struct *napi)
7557 {
7558 	set_current_state(TASK_INTERRUPTIBLE);
7559 
7560 	while (!kthread_should_stop()) {
7561 		/* Testing SCHED_THREADED bit here to make sure the current
7562 		 * kthread owns this napi and could poll on this napi.
7563 		 * Testing SCHED bit is not enough because SCHED bit might be
7564 		 * set by some other busy poll thread or by napi_disable().
7565 		 */
7566 		if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state)) {
7567 			WARN_ON(!list_empty(&napi->poll_list));
7568 			__set_current_state(TASK_RUNNING);
7569 			return 0;
7570 		}
7571 
7572 		schedule();
7573 		set_current_state(TASK_INTERRUPTIBLE);
7574 	}
7575 	__set_current_state(TASK_RUNNING);
7576 
7577 	return -1;
7578 }
7579 
7580 static void napi_threaded_poll_loop(struct napi_struct *napi)
7581 {
7582 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
7583 	struct softnet_data *sd;
7584 	unsigned long last_qs = jiffies;
7585 
7586 	for (;;) {
7587 		bool repoll = false;
7588 		void *have;
7589 
7590 		local_bh_disable();
7591 		bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
7592 
7593 		sd = this_cpu_ptr(&softnet_data);
7594 		sd->in_napi_threaded_poll = true;
7595 
7596 		have = netpoll_poll_lock(napi);
7597 		__napi_poll(napi, &repoll);
7598 		netpoll_poll_unlock(have);
7599 
7600 		sd->in_napi_threaded_poll = false;
7601 		barrier();
7602 
7603 		if (sd_has_rps_ipi_waiting(sd)) {
7604 			local_irq_disable();
7605 			net_rps_action_and_irq_enable(sd);
7606 		}
7607 		skb_defer_free_flush(sd);
7608 		bpf_net_ctx_clear(bpf_net_ctx);
7609 		local_bh_enable();
7610 
7611 		if (!repoll)
7612 			break;
7613 
7614 		rcu_softirq_qs_periodic(last_qs);
7615 		cond_resched();
7616 	}
7617 }
7618 
7619 static int napi_threaded_poll(void *data)
7620 {
7621 	struct napi_struct *napi = data;
7622 
7623 	while (!napi_thread_wait(napi))
7624 		napi_threaded_poll_loop(napi);
7625 
7626 	return 0;
7627 }
7628 
7629 static __latent_entropy void net_rx_action(void)
7630 {
7631 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
7632 	unsigned long time_limit = jiffies +
7633 		usecs_to_jiffies(READ_ONCE(net_hotdata.netdev_budget_usecs));
7634 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
7635 	int budget = READ_ONCE(net_hotdata.netdev_budget);
7636 	LIST_HEAD(list);
7637 	LIST_HEAD(repoll);
7638 
7639 	bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
7640 start:
7641 	sd->in_net_rx_action = true;
7642 	local_irq_disable();
7643 	list_splice_init(&sd->poll_list, &list);
7644 	local_irq_enable();
7645 
7646 	for (;;) {
7647 		struct napi_struct *n;
7648 
7649 		skb_defer_free_flush(sd);
7650 
7651 		if (list_empty(&list)) {
7652 			if (list_empty(&repoll)) {
7653 				sd->in_net_rx_action = false;
7654 				barrier();
7655 				/* We need to check if ____napi_schedule()
7656 				 * had refilled poll_list while
7657 				 * sd->in_net_rx_action was true.
7658 				 */
7659 				if (!list_empty(&sd->poll_list))
7660 					goto start;
7661 				if (!sd_has_rps_ipi_waiting(sd))
7662 					goto end;
7663 			}
7664 			break;
7665 		}
7666 
7667 		n = list_first_entry(&list, struct napi_struct, poll_list);
7668 		budget -= napi_poll(n, &repoll);
7669 
7670 		/* If softirq window is exhausted then punt.
7671 		 * Allow this to run for 2 jiffies since which will allow
7672 		 * an average latency of 1.5/HZ.
7673 		 */
7674 		if (unlikely(budget <= 0 ||
7675 			     time_after_eq(jiffies, time_limit))) {
7676 			/* Pairs with READ_ONCE() in softnet_seq_show() */
7677 			WRITE_ONCE(sd->time_squeeze, sd->time_squeeze + 1);
7678 			break;
7679 		}
7680 	}
7681 
7682 	local_irq_disable();
7683 
7684 	list_splice_tail_init(&sd->poll_list, &list);
7685 	list_splice_tail(&repoll, &list);
7686 	list_splice(&list, &sd->poll_list);
7687 	if (!list_empty(&sd->poll_list))
7688 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
7689 	else
7690 		sd->in_net_rx_action = false;
7691 
7692 	net_rps_action_and_irq_enable(sd);
7693 end:
7694 	bpf_net_ctx_clear(bpf_net_ctx);
7695 }
7696 
7697 struct netdev_adjacent {
7698 	struct net_device *dev;
7699 	netdevice_tracker dev_tracker;
7700 
7701 	/* upper master flag, there can only be one master device per list */
7702 	bool master;
7703 
7704 	/* lookup ignore flag */
7705 	bool ignore;
7706 
7707 	/* counter for the number of times this device was added to us */
7708 	u16 ref_nr;
7709 
7710 	/* private field for the users */
7711 	void *private;
7712 
7713 	struct list_head list;
7714 	struct rcu_head rcu;
7715 };
7716 
7717 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
7718 						 struct list_head *adj_list)
7719 {
7720 	struct netdev_adjacent *adj;
7721 
7722 	list_for_each_entry(adj, adj_list, list) {
7723 		if (adj->dev == adj_dev)
7724 			return adj;
7725 	}
7726 	return NULL;
7727 }
7728 
7729 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
7730 				    struct netdev_nested_priv *priv)
7731 {
7732 	struct net_device *dev = (struct net_device *)priv->data;
7733 
7734 	return upper_dev == dev;
7735 }
7736 
7737 /**
7738  * netdev_has_upper_dev - Check if device is linked to an upper device
7739  * @dev: device
7740  * @upper_dev: upper device to check
7741  *
7742  * Find out if a device is linked to specified upper device and return true
7743  * in case it is. Note that this checks only immediate upper device,
7744  * not through a complete stack of devices. The caller must hold the RTNL lock.
7745  */
7746 bool netdev_has_upper_dev(struct net_device *dev,
7747 			  struct net_device *upper_dev)
7748 {
7749 	struct netdev_nested_priv priv = {
7750 		.data = (void *)upper_dev,
7751 	};
7752 
7753 	ASSERT_RTNL();
7754 
7755 	return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7756 					     &priv);
7757 }
7758 EXPORT_SYMBOL(netdev_has_upper_dev);
7759 
7760 /**
7761  * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
7762  * @dev: device
7763  * @upper_dev: upper device to check
7764  *
7765  * Find out if a device is linked to specified upper device and return true
7766  * in case it is. Note that this checks the entire upper device chain.
7767  * The caller must hold rcu lock.
7768  */
7769 
7770 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
7771 				  struct net_device *upper_dev)
7772 {
7773 	struct netdev_nested_priv priv = {
7774 		.data = (void *)upper_dev,
7775 	};
7776 
7777 	return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7778 					       &priv);
7779 }
7780 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
7781 
7782 /**
7783  * netdev_has_any_upper_dev - Check if device is linked to some device
7784  * @dev: device
7785  *
7786  * Find out if a device is linked to an upper device and return true in case
7787  * it is. The caller must hold the RTNL lock.
7788  */
7789 bool netdev_has_any_upper_dev(struct net_device *dev)
7790 {
7791 	ASSERT_RTNL();
7792 
7793 	return !list_empty(&dev->adj_list.upper);
7794 }
7795 EXPORT_SYMBOL(netdev_has_any_upper_dev);
7796 
7797 /**
7798  * netdev_master_upper_dev_get - Get master upper device
7799  * @dev: device
7800  *
7801  * Find a master upper device and return pointer to it or NULL in case
7802  * it's not there. The caller must hold the RTNL lock.
7803  */
7804 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
7805 {
7806 	struct netdev_adjacent *upper;
7807 
7808 	ASSERT_RTNL();
7809 
7810 	if (list_empty(&dev->adj_list.upper))
7811 		return NULL;
7812 
7813 	upper = list_first_entry(&dev->adj_list.upper,
7814 				 struct netdev_adjacent, list);
7815 	if (likely(upper->master))
7816 		return upper->dev;
7817 	return NULL;
7818 }
7819 EXPORT_SYMBOL(netdev_master_upper_dev_get);
7820 
7821 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
7822 {
7823 	struct netdev_adjacent *upper;
7824 
7825 	ASSERT_RTNL();
7826 
7827 	if (list_empty(&dev->adj_list.upper))
7828 		return NULL;
7829 
7830 	upper = list_first_entry(&dev->adj_list.upper,
7831 				 struct netdev_adjacent, list);
7832 	if (likely(upper->master) && !upper->ignore)
7833 		return upper->dev;
7834 	return NULL;
7835 }
7836 
7837 /**
7838  * netdev_has_any_lower_dev - Check if device is linked to some device
7839  * @dev: device
7840  *
7841  * Find out if a device is linked to a lower device and return true in case
7842  * it is. The caller must hold the RTNL lock.
7843  */
7844 static bool netdev_has_any_lower_dev(struct net_device *dev)
7845 {
7846 	ASSERT_RTNL();
7847 
7848 	return !list_empty(&dev->adj_list.lower);
7849 }
7850 
7851 void *netdev_adjacent_get_private(struct list_head *adj_list)
7852 {
7853 	struct netdev_adjacent *adj;
7854 
7855 	adj = list_entry(adj_list, struct netdev_adjacent, list);
7856 
7857 	return adj->private;
7858 }
7859 EXPORT_SYMBOL(netdev_adjacent_get_private);
7860 
7861 /**
7862  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
7863  * @dev: device
7864  * @iter: list_head ** of the current position
7865  *
7866  * Gets the next device from the dev's upper list, starting from iter
7867  * position. The caller must hold RCU read lock.
7868  */
7869 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
7870 						 struct list_head **iter)
7871 {
7872 	struct netdev_adjacent *upper;
7873 
7874 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7875 
7876 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7877 
7878 	if (&upper->list == &dev->adj_list.upper)
7879 		return NULL;
7880 
7881 	*iter = &upper->list;
7882 
7883 	return upper->dev;
7884 }
7885 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
7886 
7887 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
7888 						  struct list_head **iter,
7889 						  bool *ignore)
7890 {
7891 	struct netdev_adjacent *upper;
7892 
7893 	upper = list_entry((*iter)->next, struct netdev_adjacent, list);
7894 
7895 	if (&upper->list == &dev->adj_list.upper)
7896 		return NULL;
7897 
7898 	*iter = &upper->list;
7899 	*ignore = upper->ignore;
7900 
7901 	return upper->dev;
7902 }
7903 
7904 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
7905 						    struct list_head **iter)
7906 {
7907 	struct netdev_adjacent *upper;
7908 
7909 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7910 
7911 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7912 
7913 	if (&upper->list == &dev->adj_list.upper)
7914 		return NULL;
7915 
7916 	*iter = &upper->list;
7917 
7918 	return upper->dev;
7919 }
7920 
7921 static int __netdev_walk_all_upper_dev(struct net_device *dev,
7922 				       int (*fn)(struct net_device *dev,
7923 					 struct netdev_nested_priv *priv),
7924 				       struct netdev_nested_priv *priv)
7925 {
7926 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7927 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7928 	int ret, cur = 0;
7929 	bool ignore;
7930 
7931 	now = dev;
7932 	iter = &dev->adj_list.upper;
7933 
7934 	while (1) {
7935 		if (now != dev) {
7936 			ret = fn(now, priv);
7937 			if (ret)
7938 				return ret;
7939 		}
7940 
7941 		next = NULL;
7942 		while (1) {
7943 			udev = __netdev_next_upper_dev(now, &iter, &ignore);
7944 			if (!udev)
7945 				break;
7946 			if (ignore)
7947 				continue;
7948 
7949 			next = udev;
7950 			niter = &udev->adj_list.upper;
7951 			dev_stack[cur] = now;
7952 			iter_stack[cur++] = iter;
7953 			break;
7954 		}
7955 
7956 		if (!next) {
7957 			if (!cur)
7958 				return 0;
7959 			next = dev_stack[--cur];
7960 			niter = iter_stack[cur];
7961 		}
7962 
7963 		now = next;
7964 		iter = niter;
7965 	}
7966 
7967 	return 0;
7968 }
7969 
7970 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7971 				  int (*fn)(struct net_device *dev,
7972 					    struct netdev_nested_priv *priv),
7973 				  struct netdev_nested_priv *priv)
7974 {
7975 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7976 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7977 	int ret, cur = 0;
7978 
7979 	now = dev;
7980 	iter = &dev->adj_list.upper;
7981 
7982 	while (1) {
7983 		if (now != dev) {
7984 			ret = fn(now, priv);
7985 			if (ret)
7986 				return ret;
7987 		}
7988 
7989 		next = NULL;
7990 		while (1) {
7991 			udev = netdev_next_upper_dev_rcu(now, &iter);
7992 			if (!udev)
7993 				break;
7994 
7995 			next = udev;
7996 			niter = &udev->adj_list.upper;
7997 			dev_stack[cur] = now;
7998 			iter_stack[cur++] = iter;
7999 			break;
8000 		}
8001 
8002 		if (!next) {
8003 			if (!cur)
8004 				return 0;
8005 			next = dev_stack[--cur];
8006 			niter = iter_stack[cur];
8007 		}
8008 
8009 		now = next;
8010 		iter = niter;
8011 	}
8012 
8013 	return 0;
8014 }
8015 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
8016 
8017 static bool __netdev_has_upper_dev(struct net_device *dev,
8018 				   struct net_device *upper_dev)
8019 {
8020 	struct netdev_nested_priv priv = {
8021 		.flags = 0,
8022 		.data = (void *)upper_dev,
8023 	};
8024 
8025 	ASSERT_RTNL();
8026 
8027 	return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
8028 					   &priv);
8029 }
8030 
8031 /**
8032  * netdev_lower_get_next_private - Get the next ->private from the
8033  *				   lower neighbour list
8034  * @dev: device
8035  * @iter: list_head ** of the current position
8036  *
8037  * Gets the next netdev_adjacent->private from the dev's lower neighbour
8038  * list, starting from iter position. The caller must hold either hold the
8039  * RTNL lock or its own locking that guarantees that the neighbour lower
8040  * list will remain unchanged.
8041  */
8042 void *netdev_lower_get_next_private(struct net_device *dev,
8043 				    struct list_head **iter)
8044 {
8045 	struct netdev_adjacent *lower;
8046 
8047 	lower = list_entry(*iter, struct netdev_adjacent, list);
8048 
8049 	if (&lower->list == &dev->adj_list.lower)
8050 		return NULL;
8051 
8052 	*iter = lower->list.next;
8053 
8054 	return lower->private;
8055 }
8056 EXPORT_SYMBOL(netdev_lower_get_next_private);
8057 
8058 /**
8059  * netdev_lower_get_next_private_rcu - Get the next ->private from the
8060  *				       lower neighbour list, RCU
8061  *				       variant
8062  * @dev: device
8063  * @iter: list_head ** of the current position
8064  *
8065  * Gets the next netdev_adjacent->private from the dev's lower neighbour
8066  * list, starting from iter position. The caller must hold RCU read lock.
8067  */
8068 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
8069 					struct list_head **iter)
8070 {
8071 	struct netdev_adjacent *lower;
8072 
8073 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
8074 
8075 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
8076 
8077 	if (&lower->list == &dev->adj_list.lower)
8078 		return NULL;
8079 
8080 	*iter = &lower->list;
8081 
8082 	return lower->private;
8083 }
8084 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
8085 
8086 /**
8087  * netdev_lower_get_next - Get the next device from the lower neighbour
8088  *                         list
8089  * @dev: device
8090  * @iter: list_head ** of the current position
8091  *
8092  * Gets the next netdev_adjacent from the dev's lower neighbour
8093  * list, starting from iter position. The caller must hold RTNL lock or
8094  * its own locking that guarantees that the neighbour lower
8095  * list will remain unchanged.
8096  */
8097 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
8098 {
8099 	struct netdev_adjacent *lower;
8100 
8101 	lower = list_entry(*iter, struct netdev_adjacent, list);
8102 
8103 	if (&lower->list == &dev->adj_list.lower)
8104 		return NULL;
8105 
8106 	*iter = lower->list.next;
8107 
8108 	return lower->dev;
8109 }
8110 EXPORT_SYMBOL(netdev_lower_get_next);
8111 
8112 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
8113 						struct list_head **iter)
8114 {
8115 	struct netdev_adjacent *lower;
8116 
8117 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
8118 
8119 	if (&lower->list == &dev->adj_list.lower)
8120 		return NULL;
8121 
8122 	*iter = &lower->list;
8123 
8124 	return lower->dev;
8125 }
8126 
8127 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
8128 						  struct list_head **iter,
8129 						  bool *ignore)
8130 {
8131 	struct netdev_adjacent *lower;
8132 
8133 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
8134 
8135 	if (&lower->list == &dev->adj_list.lower)
8136 		return NULL;
8137 
8138 	*iter = &lower->list;
8139 	*ignore = lower->ignore;
8140 
8141 	return lower->dev;
8142 }
8143 
8144 int netdev_walk_all_lower_dev(struct net_device *dev,
8145 			      int (*fn)(struct net_device *dev,
8146 					struct netdev_nested_priv *priv),
8147 			      struct netdev_nested_priv *priv)
8148 {
8149 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
8150 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
8151 	int ret, cur = 0;
8152 
8153 	now = dev;
8154 	iter = &dev->adj_list.lower;
8155 
8156 	while (1) {
8157 		if (now != dev) {
8158 			ret = fn(now, priv);
8159 			if (ret)
8160 				return ret;
8161 		}
8162 
8163 		next = NULL;
8164 		while (1) {
8165 			ldev = netdev_next_lower_dev(now, &iter);
8166 			if (!ldev)
8167 				break;
8168 
8169 			next = ldev;
8170 			niter = &ldev->adj_list.lower;
8171 			dev_stack[cur] = now;
8172 			iter_stack[cur++] = iter;
8173 			break;
8174 		}
8175 
8176 		if (!next) {
8177 			if (!cur)
8178 				return 0;
8179 			next = dev_stack[--cur];
8180 			niter = iter_stack[cur];
8181 		}
8182 
8183 		now = next;
8184 		iter = niter;
8185 	}
8186 
8187 	return 0;
8188 }
8189 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
8190 
8191 static int __netdev_walk_all_lower_dev(struct net_device *dev,
8192 				       int (*fn)(struct net_device *dev,
8193 					 struct netdev_nested_priv *priv),
8194 				       struct netdev_nested_priv *priv)
8195 {
8196 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
8197 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
8198 	int ret, cur = 0;
8199 	bool ignore;
8200 
8201 	now = dev;
8202 	iter = &dev->adj_list.lower;
8203 
8204 	while (1) {
8205 		if (now != dev) {
8206 			ret = fn(now, priv);
8207 			if (ret)
8208 				return ret;
8209 		}
8210 
8211 		next = NULL;
8212 		while (1) {
8213 			ldev = __netdev_next_lower_dev(now, &iter, &ignore);
8214 			if (!ldev)
8215 				break;
8216 			if (ignore)
8217 				continue;
8218 
8219 			next = ldev;
8220 			niter = &ldev->adj_list.lower;
8221 			dev_stack[cur] = now;
8222 			iter_stack[cur++] = iter;
8223 			break;
8224 		}
8225 
8226 		if (!next) {
8227 			if (!cur)
8228 				return 0;
8229 			next = dev_stack[--cur];
8230 			niter = iter_stack[cur];
8231 		}
8232 
8233 		now = next;
8234 		iter = niter;
8235 	}
8236 
8237 	return 0;
8238 }
8239 
8240 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
8241 					     struct list_head **iter)
8242 {
8243 	struct netdev_adjacent *lower;
8244 
8245 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
8246 	if (&lower->list == &dev->adj_list.lower)
8247 		return NULL;
8248 
8249 	*iter = &lower->list;
8250 
8251 	return lower->dev;
8252 }
8253 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
8254 
8255 static u8 __netdev_upper_depth(struct net_device *dev)
8256 {
8257 	struct net_device *udev;
8258 	struct list_head *iter;
8259 	u8 max_depth = 0;
8260 	bool ignore;
8261 
8262 	for (iter = &dev->adj_list.upper,
8263 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore);
8264 	     udev;
8265 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
8266 		if (ignore)
8267 			continue;
8268 		if (max_depth < udev->upper_level)
8269 			max_depth = udev->upper_level;
8270 	}
8271 
8272 	return max_depth;
8273 }
8274 
8275 static u8 __netdev_lower_depth(struct net_device *dev)
8276 {
8277 	struct net_device *ldev;
8278 	struct list_head *iter;
8279 	u8 max_depth = 0;
8280 	bool ignore;
8281 
8282 	for (iter = &dev->adj_list.lower,
8283 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
8284 	     ldev;
8285 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
8286 		if (ignore)
8287 			continue;
8288 		if (max_depth < ldev->lower_level)
8289 			max_depth = ldev->lower_level;
8290 	}
8291 
8292 	return max_depth;
8293 }
8294 
8295 static int __netdev_update_upper_level(struct net_device *dev,
8296 				       struct netdev_nested_priv *__unused)
8297 {
8298 	dev->upper_level = __netdev_upper_depth(dev) + 1;
8299 	return 0;
8300 }
8301 
8302 #ifdef CONFIG_LOCKDEP
8303 static LIST_HEAD(net_unlink_list);
8304 
8305 static void net_unlink_todo(struct net_device *dev)
8306 {
8307 	if (list_empty(&dev->unlink_list))
8308 		list_add_tail(&dev->unlink_list, &net_unlink_list);
8309 }
8310 #endif
8311 
8312 static int __netdev_update_lower_level(struct net_device *dev,
8313 				       struct netdev_nested_priv *priv)
8314 {
8315 	dev->lower_level = __netdev_lower_depth(dev) + 1;
8316 
8317 #ifdef CONFIG_LOCKDEP
8318 	if (!priv)
8319 		return 0;
8320 
8321 	if (priv->flags & NESTED_SYNC_IMM)
8322 		dev->nested_level = dev->lower_level - 1;
8323 	if (priv->flags & NESTED_SYNC_TODO)
8324 		net_unlink_todo(dev);
8325 #endif
8326 	return 0;
8327 }
8328 
8329 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
8330 				  int (*fn)(struct net_device *dev,
8331 					    struct netdev_nested_priv *priv),
8332 				  struct netdev_nested_priv *priv)
8333 {
8334 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
8335 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
8336 	int ret, cur = 0;
8337 
8338 	now = dev;
8339 	iter = &dev->adj_list.lower;
8340 
8341 	while (1) {
8342 		if (now != dev) {
8343 			ret = fn(now, priv);
8344 			if (ret)
8345 				return ret;
8346 		}
8347 
8348 		next = NULL;
8349 		while (1) {
8350 			ldev = netdev_next_lower_dev_rcu(now, &iter);
8351 			if (!ldev)
8352 				break;
8353 
8354 			next = ldev;
8355 			niter = &ldev->adj_list.lower;
8356 			dev_stack[cur] = now;
8357 			iter_stack[cur++] = iter;
8358 			break;
8359 		}
8360 
8361 		if (!next) {
8362 			if (!cur)
8363 				return 0;
8364 			next = dev_stack[--cur];
8365 			niter = iter_stack[cur];
8366 		}
8367 
8368 		now = next;
8369 		iter = niter;
8370 	}
8371 
8372 	return 0;
8373 }
8374 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
8375 
8376 /**
8377  * netdev_lower_get_first_private_rcu - Get the first ->private from the
8378  *				       lower neighbour list, RCU
8379  *				       variant
8380  * @dev: device
8381  *
8382  * Gets the first netdev_adjacent->private from the dev's lower neighbour
8383  * list. The caller must hold RCU read lock.
8384  */
8385 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
8386 {
8387 	struct netdev_adjacent *lower;
8388 
8389 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
8390 			struct netdev_adjacent, list);
8391 	if (lower)
8392 		return lower->private;
8393 	return NULL;
8394 }
8395 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
8396 
8397 /**
8398  * netdev_master_upper_dev_get_rcu - Get master upper device
8399  * @dev: device
8400  *
8401  * Find a master upper device and return pointer to it or NULL in case
8402  * it's not there. The caller must hold the RCU read lock.
8403  */
8404 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
8405 {
8406 	struct netdev_adjacent *upper;
8407 
8408 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
8409 				       struct netdev_adjacent, list);
8410 	if (upper && likely(upper->master))
8411 		return upper->dev;
8412 	return NULL;
8413 }
8414 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
8415 
8416 static int netdev_adjacent_sysfs_add(struct net_device *dev,
8417 			      struct net_device *adj_dev,
8418 			      struct list_head *dev_list)
8419 {
8420 	char linkname[IFNAMSIZ+7];
8421 
8422 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
8423 		"upper_%s" : "lower_%s", adj_dev->name);
8424 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
8425 				 linkname);
8426 }
8427 static void netdev_adjacent_sysfs_del(struct net_device *dev,
8428 			       char *name,
8429 			       struct list_head *dev_list)
8430 {
8431 	char linkname[IFNAMSIZ+7];
8432 
8433 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
8434 		"upper_%s" : "lower_%s", name);
8435 	sysfs_remove_link(&(dev->dev.kobj), linkname);
8436 }
8437 
8438 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
8439 						 struct net_device *adj_dev,
8440 						 struct list_head *dev_list)
8441 {
8442 	return (dev_list == &dev->adj_list.upper ||
8443 		dev_list == &dev->adj_list.lower) &&
8444 		net_eq(dev_net(dev), dev_net(adj_dev));
8445 }
8446 
8447 static int __netdev_adjacent_dev_insert(struct net_device *dev,
8448 					struct net_device *adj_dev,
8449 					struct list_head *dev_list,
8450 					void *private, bool master)
8451 {
8452 	struct netdev_adjacent *adj;
8453 	int ret;
8454 
8455 	adj = __netdev_find_adj(adj_dev, dev_list);
8456 
8457 	if (adj) {
8458 		adj->ref_nr += 1;
8459 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
8460 			 dev->name, adj_dev->name, adj->ref_nr);
8461 
8462 		return 0;
8463 	}
8464 
8465 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
8466 	if (!adj)
8467 		return -ENOMEM;
8468 
8469 	adj->dev = adj_dev;
8470 	adj->master = master;
8471 	adj->ref_nr = 1;
8472 	adj->private = private;
8473 	adj->ignore = false;
8474 	netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL);
8475 
8476 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
8477 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
8478 
8479 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
8480 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
8481 		if (ret)
8482 			goto free_adj;
8483 	}
8484 
8485 	/* Ensure that master link is always the first item in list. */
8486 	if (master) {
8487 		ret = sysfs_create_link(&(dev->dev.kobj),
8488 					&(adj_dev->dev.kobj), "master");
8489 		if (ret)
8490 			goto remove_symlinks;
8491 
8492 		list_add_rcu(&adj->list, dev_list);
8493 	} else {
8494 		list_add_tail_rcu(&adj->list, dev_list);
8495 	}
8496 
8497 	return 0;
8498 
8499 remove_symlinks:
8500 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
8501 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
8502 free_adj:
8503 	netdev_put(adj_dev, &adj->dev_tracker);
8504 	kfree(adj);
8505 
8506 	return ret;
8507 }
8508 
8509 static void __netdev_adjacent_dev_remove(struct net_device *dev,
8510 					 struct net_device *adj_dev,
8511 					 u16 ref_nr,
8512 					 struct list_head *dev_list)
8513 {
8514 	struct netdev_adjacent *adj;
8515 
8516 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
8517 		 dev->name, adj_dev->name, ref_nr);
8518 
8519 	adj = __netdev_find_adj(adj_dev, dev_list);
8520 
8521 	if (!adj) {
8522 		pr_err("Adjacency does not exist for device %s from %s\n",
8523 		       dev->name, adj_dev->name);
8524 		WARN_ON(1);
8525 		return;
8526 	}
8527 
8528 	if (adj->ref_nr > ref_nr) {
8529 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
8530 			 dev->name, adj_dev->name, ref_nr,
8531 			 adj->ref_nr - ref_nr);
8532 		adj->ref_nr -= ref_nr;
8533 		return;
8534 	}
8535 
8536 	if (adj->master)
8537 		sysfs_remove_link(&(dev->dev.kobj), "master");
8538 
8539 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
8540 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
8541 
8542 	list_del_rcu(&adj->list);
8543 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
8544 		 adj_dev->name, dev->name, adj_dev->name);
8545 	netdev_put(adj_dev, &adj->dev_tracker);
8546 	kfree_rcu(adj, rcu);
8547 }
8548 
8549 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
8550 					    struct net_device *upper_dev,
8551 					    struct list_head *up_list,
8552 					    struct list_head *down_list,
8553 					    void *private, bool master)
8554 {
8555 	int ret;
8556 
8557 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
8558 					   private, master);
8559 	if (ret)
8560 		return ret;
8561 
8562 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
8563 					   private, false);
8564 	if (ret) {
8565 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
8566 		return ret;
8567 	}
8568 
8569 	return 0;
8570 }
8571 
8572 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
8573 					       struct net_device *upper_dev,
8574 					       u16 ref_nr,
8575 					       struct list_head *up_list,
8576 					       struct list_head *down_list)
8577 {
8578 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
8579 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
8580 }
8581 
8582 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
8583 						struct net_device *upper_dev,
8584 						void *private, bool master)
8585 {
8586 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
8587 						&dev->adj_list.upper,
8588 						&upper_dev->adj_list.lower,
8589 						private, master);
8590 }
8591 
8592 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
8593 						   struct net_device *upper_dev)
8594 {
8595 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
8596 					   &dev->adj_list.upper,
8597 					   &upper_dev->adj_list.lower);
8598 }
8599 
8600 static int __netdev_upper_dev_link(struct net_device *dev,
8601 				   struct net_device *upper_dev, bool master,
8602 				   void *upper_priv, void *upper_info,
8603 				   struct netdev_nested_priv *priv,
8604 				   struct netlink_ext_ack *extack)
8605 {
8606 	struct netdev_notifier_changeupper_info changeupper_info = {
8607 		.info = {
8608 			.dev = dev,
8609 			.extack = extack,
8610 		},
8611 		.upper_dev = upper_dev,
8612 		.master = master,
8613 		.linking = true,
8614 		.upper_info = upper_info,
8615 	};
8616 	struct net_device *master_dev;
8617 	int ret = 0;
8618 
8619 	ASSERT_RTNL();
8620 
8621 	if (dev == upper_dev)
8622 		return -EBUSY;
8623 
8624 	/* To prevent loops, check if dev is not upper device to upper_dev. */
8625 	if (__netdev_has_upper_dev(upper_dev, dev))
8626 		return -EBUSY;
8627 
8628 	if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
8629 		return -EMLINK;
8630 
8631 	if (!master) {
8632 		if (__netdev_has_upper_dev(dev, upper_dev))
8633 			return -EEXIST;
8634 	} else {
8635 		master_dev = __netdev_master_upper_dev_get(dev);
8636 		if (master_dev)
8637 			return master_dev == upper_dev ? -EEXIST : -EBUSY;
8638 	}
8639 
8640 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8641 					    &changeupper_info.info);
8642 	ret = notifier_to_errno(ret);
8643 	if (ret)
8644 		return ret;
8645 
8646 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
8647 						   master);
8648 	if (ret)
8649 		return ret;
8650 
8651 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8652 					    &changeupper_info.info);
8653 	ret = notifier_to_errno(ret);
8654 	if (ret)
8655 		goto rollback;
8656 
8657 	__netdev_update_upper_level(dev, NULL);
8658 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8659 
8660 	__netdev_update_lower_level(upper_dev, priv);
8661 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8662 				    priv);
8663 
8664 	return 0;
8665 
8666 rollback:
8667 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8668 
8669 	return ret;
8670 }
8671 
8672 /**
8673  * netdev_upper_dev_link - Add a link to the upper device
8674  * @dev: device
8675  * @upper_dev: new upper device
8676  * @extack: netlink extended ack
8677  *
8678  * Adds a link to device which is upper to this one. The caller must hold
8679  * the RTNL lock. On a failure a negative errno code is returned.
8680  * On success the reference counts are adjusted and the function
8681  * returns zero.
8682  */
8683 int netdev_upper_dev_link(struct net_device *dev,
8684 			  struct net_device *upper_dev,
8685 			  struct netlink_ext_ack *extack)
8686 {
8687 	struct netdev_nested_priv priv = {
8688 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8689 		.data = NULL,
8690 	};
8691 
8692 	return __netdev_upper_dev_link(dev, upper_dev, false,
8693 				       NULL, NULL, &priv, extack);
8694 }
8695 EXPORT_SYMBOL(netdev_upper_dev_link);
8696 
8697 /**
8698  * netdev_master_upper_dev_link - Add a master link to the upper device
8699  * @dev: device
8700  * @upper_dev: new upper device
8701  * @upper_priv: upper device private
8702  * @upper_info: upper info to be passed down via notifier
8703  * @extack: netlink extended ack
8704  *
8705  * Adds a link to device which is upper to this one. In this case, only
8706  * one master upper device can be linked, although other non-master devices
8707  * might be linked as well. The caller must hold the RTNL lock.
8708  * On a failure a negative errno code is returned. On success the reference
8709  * counts are adjusted and the function returns zero.
8710  */
8711 int netdev_master_upper_dev_link(struct net_device *dev,
8712 				 struct net_device *upper_dev,
8713 				 void *upper_priv, void *upper_info,
8714 				 struct netlink_ext_ack *extack)
8715 {
8716 	struct netdev_nested_priv priv = {
8717 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8718 		.data = NULL,
8719 	};
8720 
8721 	return __netdev_upper_dev_link(dev, upper_dev, true,
8722 				       upper_priv, upper_info, &priv, extack);
8723 }
8724 EXPORT_SYMBOL(netdev_master_upper_dev_link);
8725 
8726 static void __netdev_upper_dev_unlink(struct net_device *dev,
8727 				      struct net_device *upper_dev,
8728 				      struct netdev_nested_priv *priv)
8729 {
8730 	struct netdev_notifier_changeupper_info changeupper_info = {
8731 		.info = {
8732 			.dev = dev,
8733 		},
8734 		.upper_dev = upper_dev,
8735 		.linking = false,
8736 	};
8737 
8738 	ASSERT_RTNL();
8739 
8740 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
8741 
8742 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8743 				      &changeupper_info.info);
8744 
8745 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8746 
8747 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8748 				      &changeupper_info.info);
8749 
8750 	__netdev_update_upper_level(dev, NULL);
8751 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8752 
8753 	__netdev_update_lower_level(upper_dev, priv);
8754 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8755 				    priv);
8756 }
8757 
8758 /**
8759  * netdev_upper_dev_unlink - Removes a link to upper device
8760  * @dev: device
8761  * @upper_dev: new upper device
8762  *
8763  * Removes a link to device which is upper to this one. The caller must hold
8764  * the RTNL lock.
8765  */
8766 void netdev_upper_dev_unlink(struct net_device *dev,
8767 			     struct net_device *upper_dev)
8768 {
8769 	struct netdev_nested_priv priv = {
8770 		.flags = NESTED_SYNC_TODO,
8771 		.data = NULL,
8772 	};
8773 
8774 	__netdev_upper_dev_unlink(dev, upper_dev, &priv);
8775 }
8776 EXPORT_SYMBOL(netdev_upper_dev_unlink);
8777 
8778 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
8779 				      struct net_device *lower_dev,
8780 				      bool val)
8781 {
8782 	struct netdev_adjacent *adj;
8783 
8784 	adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
8785 	if (adj)
8786 		adj->ignore = val;
8787 
8788 	adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
8789 	if (adj)
8790 		adj->ignore = val;
8791 }
8792 
8793 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
8794 					struct net_device *lower_dev)
8795 {
8796 	__netdev_adjacent_dev_set(upper_dev, lower_dev, true);
8797 }
8798 
8799 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
8800 				       struct net_device *lower_dev)
8801 {
8802 	__netdev_adjacent_dev_set(upper_dev, lower_dev, false);
8803 }
8804 
8805 int netdev_adjacent_change_prepare(struct net_device *old_dev,
8806 				   struct net_device *new_dev,
8807 				   struct net_device *dev,
8808 				   struct netlink_ext_ack *extack)
8809 {
8810 	struct netdev_nested_priv priv = {
8811 		.flags = 0,
8812 		.data = NULL,
8813 	};
8814 	int err;
8815 
8816 	if (!new_dev)
8817 		return 0;
8818 
8819 	if (old_dev && new_dev != old_dev)
8820 		netdev_adjacent_dev_disable(dev, old_dev);
8821 	err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
8822 				      extack);
8823 	if (err) {
8824 		if (old_dev && new_dev != old_dev)
8825 			netdev_adjacent_dev_enable(dev, old_dev);
8826 		return err;
8827 	}
8828 
8829 	return 0;
8830 }
8831 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
8832 
8833 void netdev_adjacent_change_commit(struct net_device *old_dev,
8834 				   struct net_device *new_dev,
8835 				   struct net_device *dev)
8836 {
8837 	struct netdev_nested_priv priv = {
8838 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8839 		.data = NULL,
8840 	};
8841 
8842 	if (!new_dev || !old_dev)
8843 		return;
8844 
8845 	if (new_dev == old_dev)
8846 		return;
8847 
8848 	netdev_adjacent_dev_enable(dev, old_dev);
8849 	__netdev_upper_dev_unlink(old_dev, dev, &priv);
8850 }
8851 EXPORT_SYMBOL(netdev_adjacent_change_commit);
8852 
8853 void netdev_adjacent_change_abort(struct net_device *old_dev,
8854 				  struct net_device *new_dev,
8855 				  struct net_device *dev)
8856 {
8857 	struct netdev_nested_priv priv = {
8858 		.flags = 0,
8859 		.data = NULL,
8860 	};
8861 
8862 	if (!new_dev)
8863 		return;
8864 
8865 	if (old_dev && new_dev != old_dev)
8866 		netdev_adjacent_dev_enable(dev, old_dev);
8867 
8868 	__netdev_upper_dev_unlink(new_dev, dev, &priv);
8869 }
8870 EXPORT_SYMBOL(netdev_adjacent_change_abort);
8871 
8872 /**
8873  * netdev_bonding_info_change - Dispatch event about slave change
8874  * @dev: device
8875  * @bonding_info: info to dispatch
8876  *
8877  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
8878  * The caller must hold the RTNL lock.
8879  */
8880 void netdev_bonding_info_change(struct net_device *dev,
8881 				struct netdev_bonding_info *bonding_info)
8882 {
8883 	struct netdev_notifier_bonding_info info = {
8884 		.info.dev = dev,
8885 	};
8886 
8887 	memcpy(&info.bonding_info, bonding_info,
8888 	       sizeof(struct netdev_bonding_info));
8889 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
8890 				      &info.info);
8891 }
8892 EXPORT_SYMBOL(netdev_bonding_info_change);
8893 
8894 static int netdev_offload_xstats_enable_l3(struct net_device *dev,
8895 					   struct netlink_ext_ack *extack)
8896 {
8897 	struct netdev_notifier_offload_xstats_info info = {
8898 		.info.dev = dev,
8899 		.info.extack = extack,
8900 		.type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
8901 	};
8902 	int err;
8903 	int rc;
8904 
8905 	dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3),
8906 					 GFP_KERNEL);
8907 	if (!dev->offload_xstats_l3)
8908 		return -ENOMEM;
8909 
8910 	rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE,
8911 						  NETDEV_OFFLOAD_XSTATS_DISABLE,
8912 						  &info.info);
8913 	err = notifier_to_errno(rc);
8914 	if (err)
8915 		goto free_stats;
8916 
8917 	return 0;
8918 
8919 free_stats:
8920 	kfree(dev->offload_xstats_l3);
8921 	dev->offload_xstats_l3 = NULL;
8922 	return err;
8923 }
8924 
8925 int netdev_offload_xstats_enable(struct net_device *dev,
8926 				 enum netdev_offload_xstats_type type,
8927 				 struct netlink_ext_ack *extack)
8928 {
8929 	ASSERT_RTNL();
8930 
8931 	if (netdev_offload_xstats_enabled(dev, type))
8932 		return -EALREADY;
8933 
8934 	switch (type) {
8935 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8936 		return netdev_offload_xstats_enable_l3(dev, extack);
8937 	}
8938 
8939 	WARN_ON(1);
8940 	return -EINVAL;
8941 }
8942 EXPORT_SYMBOL(netdev_offload_xstats_enable);
8943 
8944 static void netdev_offload_xstats_disable_l3(struct net_device *dev)
8945 {
8946 	struct netdev_notifier_offload_xstats_info info = {
8947 		.info.dev = dev,
8948 		.type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
8949 	};
8950 
8951 	call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE,
8952 				      &info.info);
8953 	kfree(dev->offload_xstats_l3);
8954 	dev->offload_xstats_l3 = NULL;
8955 }
8956 
8957 int netdev_offload_xstats_disable(struct net_device *dev,
8958 				  enum netdev_offload_xstats_type type)
8959 {
8960 	ASSERT_RTNL();
8961 
8962 	if (!netdev_offload_xstats_enabled(dev, type))
8963 		return -EALREADY;
8964 
8965 	switch (type) {
8966 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8967 		netdev_offload_xstats_disable_l3(dev);
8968 		return 0;
8969 	}
8970 
8971 	WARN_ON(1);
8972 	return -EINVAL;
8973 }
8974 EXPORT_SYMBOL(netdev_offload_xstats_disable);
8975 
8976 static void netdev_offload_xstats_disable_all(struct net_device *dev)
8977 {
8978 	netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3);
8979 }
8980 
8981 static struct rtnl_hw_stats64 *
8982 netdev_offload_xstats_get_ptr(const struct net_device *dev,
8983 			      enum netdev_offload_xstats_type type)
8984 {
8985 	switch (type) {
8986 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8987 		return dev->offload_xstats_l3;
8988 	}
8989 
8990 	WARN_ON(1);
8991 	return NULL;
8992 }
8993 
8994 bool netdev_offload_xstats_enabled(const struct net_device *dev,
8995 				   enum netdev_offload_xstats_type type)
8996 {
8997 	ASSERT_RTNL();
8998 
8999 	return netdev_offload_xstats_get_ptr(dev, type);
9000 }
9001 EXPORT_SYMBOL(netdev_offload_xstats_enabled);
9002 
9003 struct netdev_notifier_offload_xstats_ru {
9004 	bool used;
9005 };
9006 
9007 struct netdev_notifier_offload_xstats_rd {
9008 	struct rtnl_hw_stats64 stats;
9009 	bool used;
9010 };
9011 
9012 static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest,
9013 				  const struct rtnl_hw_stats64 *src)
9014 {
9015 	dest->rx_packets	  += src->rx_packets;
9016 	dest->tx_packets	  += src->tx_packets;
9017 	dest->rx_bytes		  += src->rx_bytes;
9018 	dest->tx_bytes		  += src->tx_bytes;
9019 	dest->rx_errors		  += src->rx_errors;
9020 	dest->tx_errors		  += src->tx_errors;
9021 	dest->rx_dropped	  += src->rx_dropped;
9022 	dest->tx_dropped	  += src->tx_dropped;
9023 	dest->multicast		  += src->multicast;
9024 }
9025 
9026 static int netdev_offload_xstats_get_used(struct net_device *dev,
9027 					  enum netdev_offload_xstats_type type,
9028 					  bool *p_used,
9029 					  struct netlink_ext_ack *extack)
9030 {
9031 	struct netdev_notifier_offload_xstats_ru report_used = {};
9032 	struct netdev_notifier_offload_xstats_info info = {
9033 		.info.dev = dev,
9034 		.info.extack = extack,
9035 		.type = type,
9036 		.report_used = &report_used,
9037 	};
9038 	int rc;
9039 
9040 	WARN_ON(!netdev_offload_xstats_enabled(dev, type));
9041 	rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED,
9042 					   &info.info);
9043 	*p_used = report_used.used;
9044 	return notifier_to_errno(rc);
9045 }
9046 
9047 static int netdev_offload_xstats_get_stats(struct net_device *dev,
9048 					   enum netdev_offload_xstats_type type,
9049 					   struct rtnl_hw_stats64 *p_stats,
9050 					   bool *p_used,
9051 					   struct netlink_ext_ack *extack)
9052 {
9053 	struct netdev_notifier_offload_xstats_rd report_delta = {};
9054 	struct netdev_notifier_offload_xstats_info info = {
9055 		.info.dev = dev,
9056 		.info.extack = extack,
9057 		.type = type,
9058 		.report_delta = &report_delta,
9059 	};
9060 	struct rtnl_hw_stats64 *stats;
9061 	int rc;
9062 
9063 	stats = netdev_offload_xstats_get_ptr(dev, type);
9064 	if (WARN_ON(!stats))
9065 		return -EINVAL;
9066 
9067 	rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
9068 					   &info.info);
9069 
9070 	/* Cache whatever we got, even if there was an error, otherwise the
9071 	 * successful stats retrievals would get lost.
9072 	 */
9073 	netdev_hw_stats64_add(stats, &report_delta.stats);
9074 
9075 	if (p_stats)
9076 		*p_stats = *stats;
9077 	*p_used = report_delta.used;
9078 
9079 	return notifier_to_errno(rc);
9080 }
9081 
9082 int netdev_offload_xstats_get(struct net_device *dev,
9083 			      enum netdev_offload_xstats_type type,
9084 			      struct rtnl_hw_stats64 *p_stats, bool *p_used,
9085 			      struct netlink_ext_ack *extack)
9086 {
9087 	ASSERT_RTNL();
9088 
9089 	if (p_stats)
9090 		return netdev_offload_xstats_get_stats(dev, type, p_stats,
9091 						       p_used, extack);
9092 	else
9093 		return netdev_offload_xstats_get_used(dev, type, p_used,
9094 						      extack);
9095 }
9096 EXPORT_SYMBOL(netdev_offload_xstats_get);
9097 
9098 void
9099 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta,
9100 				   const struct rtnl_hw_stats64 *stats)
9101 {
9102 	report_delta->used = true;
9103 	netdev_hw_stats64_add(&report_delta->stats, stats);
9104 }
9105 EXPORT_SYMBOL(netdev_offload_xstats_report_delta);
9106 
9107 void
9108 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used)
9109 {
9110 	report_used->used = true;
9111 }
9112 EXPORT_SYMBOL(netdev_offload_xstats_report_used);
9113 
9114 void netdev_offload_xstats_push_delta(struct net_device *dev,
9115 				      enum netdev_offload_xstats_type type,
9116 				      const struct rtnl_hw_stats64 *p_stats)
9117 {
9118 	struct rtnl_hw_stats64 *stats;
9119 
9120 	ASSERT_RTNL();
9121 
9122 	stats = netdev_offload_xstats_get_ptr(dev, type);
9123 	if (WARN_ON(!stats))
9124 		return;
9125 
9126 	netdev_hw_stats64_add(stats, p_stats);
9127 }
9128 EXPORT_SYMBOL(netdev_offload_xstats_push_delta);
9129 
9130 /**
9131  * netdev_get_xmit_slave - Get the xmit slave of master device
9132  * @dev: device
9133  * @skb: The packet
9134  * @all_slaves: assume all the slaves are active
9135  *
9136  * The reference counters are not incremented so the caller must be
9137  * careful with locks. The caller must hold RCU lock.
9138  * %NULL is returned if no slave is found.
9139  */
9140 
9141 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
9142 					 struct sk_buff *skb,
9143 					 bool all_slaves)
9144 {
9145 	const struct net_device_ops *ops = dev->netdev_ops;
9146 
9147 	if (!ops->ndo_get_xmit_slave)
9148 		return NULL;
9149 	return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
9150 }
9151 EXPORT_SYMBOL(netdev_get_xmit_slave);
9152 
9153 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
9154 						  struct sock *sk)
9155 {
9156 	const struct net_device_ops *ops = dev->netdev_ops;
9157 
9158 	if (!ops->ndo_sk_get_lower_dev)
9159 		return NULL;
9160 	return ops->ndo_sk_get_lower_dev(dev, sk);
9161 }
9162 
9163 /**
9164  * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
9165  * @dev: device
9166  * @sk: the socket
9167  *
9168  * %NULL is returned if no lower device is found.
9169  */
9170 
9171 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
9172 					    struct sock *sk)
9173 {
9174 	struct net_device *lower;
9175 
9176 	lower = netdev_sk_get_lower_dev(dev, sk);
9177 	while (lower) {
9178 		dev = lower;
9179 		lower = netdev_sk_get_lower_dev(dev, sk);
9180 	}
9181 
9182 	return dev;
9183 }
9184 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
9185 
9186 static void netdev_adjacent_add_links(struct net_device *dev)
9187 {
9188 	struct netdev_adjacent *iter;
9189 
9190 	struct net *net = dev_net(dev);
9191 
9192 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
9193 		if (!net_eq(net, dev_net(iter->dev)))
9194 			continue;
9195 		netdev_adjacent_sysfs_add(iter->dev, dev,
9196 					  &iter->dev->adj_list.lower);
9197 		netdev_adjacent_sysfs_add(dev, iter->dev,
9198 					  &dev->adj_list.upper);
9199 	}
9200 
9201 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
9202 		if (!net_eq(net, dev_net(iter->dev)))
9203 			continue;
9204 		netdev_adjacent_sysfs_add(iter->dev, dev,
9205 					  &iter->dev->adj_list.upper);
9206 		netdev_adjacent_sysfs_add(dev, iter->dev,
9207 					  &dev->adj_list.lower);
9208 	}
9209 }
9210 
9211 static void netdev_adjacent_del_links(struct net_device *dev)
9212 {
9213 	struct netdev_adjacent *iter;
9214 
9215 	struct net *net = dev_net(dev);
9216 
9217 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
9218 		if (!net_eq(net, dev_net(iter->dev)))
9219 			continue;
9220 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
9221 					  &iter->dev->adj_list.lower);
9222 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
9223 					  &dev->adj_list.upper);
9224 	}
9225 
9226 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
9227 		if (!net_eq(net, dev_net(iter->dev)))
9228 			continue;
9229 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
9230 					  &iter->dev->adj_list.upper);
9231 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
9232 					  &dev->adj_list.lower);
9233 	}
9234 }
9235 
9236 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
9237 {
9238 	struct netdev_adjacent *iter;
9239 
9240 	struct net *net = dev_net(dev);
9241 
9242 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
9243 		if (!net_eq(net, dev_net(iter->dev)))
9244 			continue;
9245 		netdev_adjacent_sysfs_del(iter->dev, oldname,
9246 					  &iter->dev->adj_list.lower);
9247 		netdev_adjacent_sysfs_add(iter->dev, dev,
9248 					  &iter->dev->adj_list.lower);
9249 	}
9250 
9251 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
9252 		if (!net_eq(net, dev_net(iter->dev)))
9253 			continue;
9254 		netdev_adjacent_sysfs_del(iter->dev, oldname,
9255 					  &iter->dev->adj_list.upper);
9256 		netdev_adjacent_sysfs_add(iter->dev, dev,
9257 					  &iter->dev->adj_list.upper);
9258 	}
9259 }
9260 
9261 void *netdev_lower_dev_get_private(struct net_device *dev,
9262 				   struct net_device *lower_dev)
9263 {
9264 	struct netdev_adjacent *lower;
9265 
9266 	if (!lower_dev)
9267 		return NULL;
9268 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
9269 	if (!lower)
9270 		return NULL;
9271 
9272 	return lower->private;
9273 }
9274 EXPORT_SYMBOL(netdev_lower_dev_get_private);
9275 
9276 
9277 /**
9278  * netdev_lower_state_changed - Dispatch event about lower device state change
9279  * @lower_dev: device
9280  * @lower_state_info: state to dispatch
9281  *
9282  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
9283  * The caller must hold the RTNL lock.
9284  */
9285 void netdev_lower_state_changed(struct net_device *lower_dev,
9286 				void *lower_state_info)
9287 {
9288 	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
9289 		.info.dev = lower_dev,
9290 	};
9291 
9292 	ASSERT_RTNL();
9293 	changelowerstate_info.lower_state_info = lower_state_info;
9294 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
9295 				      &changelowerstate_info.info);
9296 }
9297 EXPORT_SYMBOL(netdev_lower_state_changed);
9298 
9299 static void dev_change_rx_flags(struct net_device *dev, int flags)
9300 {
9301 	const struct net_device_ops *ops = dev->netdev_ops;
9302 
9303 	if (ops->ndo_change_rx_flags)
9304 		ops->ndo_change_rx_flags(dev, flags);
9305 }
9306 
9307 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
9308 {
9309 	unsigned int old_flags = dev->flags;
9310 	unsigned int promiscuity, flags;
9311 	kuid_t uid;
9312 	kgid_t gid;
9313 
9314 	ASSERT_RTNL();
9315 
9316 	promiscuity = dev->promiscuity + inc;
9317 	if (promiscuity == 0) {
9318 		/*
9319 		 * Avoid overflow.
9320 		 * If inc causes overflow, untouch promisc and return error.
9321 		 */
9322 		if (unlikely(inc > 0)) {
9323 			netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
9324 			return -EOVERFLOW;
9325 		}
9326 		flags = old_flags & ~IFF_PROMISC;
9327 	} else {
9328 		flags = old_flags | IFF_PROMISC;
9329 	}
9330 	WRITE_ONCE(dev->promiscuity, promiscuity);
9331 	if (flags != old_flags) {
9332 		WRITE_ONCE(dev->flags, flags);
9333 		netdev_info(dev, "%s promiscuous mode\n",
9334 			    dev->flags & IFF_PROMISC ? "entered" : "left");
9335 		if (audit_enabled) {
9336 			current_uid_gid(&uid, &gid);
9337 			audit_log(audit_context(), GFP_ATOMIC,
9338 				  AUDIT_ANOM_PROMISCUOUS,
9339 				  "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
9340 				  dev->name, (dev->flags & IFF_PROMISC),
9341 				  (old_flags & IFF_PROMISC),
9342 				  from_kuid(&init_user_ns, audit_get_loginuid(current)),
9343 				  from_kuid(&init_user_ns, uid),
9344 				  from_kgid(&init_user_ns, gid),
9345 				  audit_get_sessionid(current));
9346 		}
9347 
9348 		dev_change_rx_flags(dev, IFF_PROMISC);
9349 	}
9350 	if (notify) {
9351 		/* The ops lock is only required to ensure consistent locking
9352 		 * for `NETDEV_CHANGE` notifiers. This function is sometimes
9353 		 * called without the lock, even for devices that are ops
9354 		 * locked, such as in `dev_uc_sync_multiple` when using
9355 		 * bonding or teaming.
9356 		 */
9357 		netdev_ops_assert_locked(dev);
9358 		__dev_notify_flags(dev, old_flags, IFF_PROMISC, 0, NULL);
9359 	}
9360 	return 0;
9361 }
9362 
9363 int netif_set_promiscuity(struct net_device *dev, int inc)
9364 {
9365 	unsigned int old_flags = dev->flags;
9366 	int err;
9367 
9368 	err = __dev_set_promiscuity(dev, inc, true);
9369 	if (err < 0)
9370 		return err;
9371 	if (dev->flags != old_flags)
9372 		dev_set_rx_mode(dev);
9373 	return err;
9374 }
9375 
9376 int netif_set_allmulti(struct net_device *dev, int inc, bool notify)
9377 {
9378 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
9379 	unsigned int allmulti, flags;
9380 
9381 	ASSERT_RTNL();
9382 
9383 	allmulti = dev->allmulti + inc;
9384 	if (allmulti == 0) {
9385 		/*
9386 		 * Avoid overflow.
9387 		 * If inc causes overflow, untouch allmulti and return error.
9388 		 */
9389 		if (unlikely(inc > 0)) {
9390 			netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
9391 			return -EOVERFLOW;
9392 		}
9393 		flags = old_flags & ~IFF_ALLMULTI;
9394 	} else {
9395 		flags = old_flags | IFF_ALLMULTI;
9396 	}
9397 	WRITE_ONCE(dev->allmulti, allmulti);
9398 	if (flags != old_flags) {
9399 		WRITE_ONCE(dev->flags, flags);
9400 		netdev_info(dev, "%s allmulticast mode\n",
9401 			    dev->flags & IFF_ALLMULTI ? "entered" : "left");
9402 		dev_change_rx_flags(dev, IFF_ALLMULTI);
9403 		dev_set_rx_mode(dev);
9404 		if (notify)
9405 			__dev_notify_flags(dev, old_flags,
9406 					   dev->gflags ^ old_gflags, 0, NULL);
9407 	}
9408 	return 0;
9409 }
9410 
9411 /*
9412  *	Upload unicast and multicast address lists to device and
9413  *	configure RX filtering. When the device doesn't support unicast
9414  *	filtering it is put in promiscuous mode while unicast addresses
9415  *	are present.
9416  */
9417 void __dev_set_rx_mode(struct net_device *dev)
9418 {
9419 	const struct net_device_ops *ops = dev->netdev_ops;
9420 
9421 	/* dev_open will call this function so the list will stay sane. */
9422 	if (!(dev->flags&IFF_UP))
9423 		return;
9424 
9425 	if (!netif_device_present(dev))
9426 		return;
9427 
9428 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
9429 		/* Unicast addresses changes may only happen under the rtnl,
9430 		 * therefore calling __dev_set_promiscuity here is safe.
9431 		 */
9432 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
9433 			__dev_set_promiscuity(dev, 1, false);
9434 			dev->uc_promisc = true;
9435 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
9436 			__dev_set_promiscuity(dev, -1, false);
9437 			dev->uc_promisc = false;
9438 		}
9439 	}
9440 
9441 	if (ops->ndo_set_rx_mode)
9442 		ops->ndo_set_rx_mode(dev);
9443 }
9444 
9445 void dev_set_rx_mode(struct net_device *dev)
9446 {
9447 	netif_addr_lock_bh(dev);
9448 	__dev_set_rx_mode(dev);
9449 	netif_addr_unlock_bh(dev);
9450 }
9451 
9452 /**
9453  *	dev_get_flags - get flags reported to userspace
9454  *	@dev: device
9455  *
9456  *	Get the combination of flag bits exported through APIs to userspace.
9457  */
9458 unsigned int dev_get_flags(const struct net_device *dev)
9459 {
9460 	unsigned int flags;
9461 
9462 	flags = (READ_ONCE(dev->flags) & ~(IFF_PROMISC |
9463 				IFF_ALLMULTI |
9464 				IFF_RUNNING |
9465 				IFF_LOWER_UP |
9466 				IFF_DORMANT)) |
9467 		(READ_ONCE(dev->gflags) & (IFF_PROMISC |
9468 				IFF_ALLMULTI));
9469 
9470 	if (netif_running(dev)) {
9471 		if (netif_oper_up(dev))
9472 			flags |= IFF_RUNNING;
9473 		if (netif_carrier_ok(dev))
9474 			flags |= IFF_LOWER_UP;
9475 		if (netif_dormant(dev))
9476 			flags |= IFF_DORMANT;
9477 	}
9478 
9479 	return flags;
9480 }
9481 EXPORT_SYMBOL(dev_get_flags);
9482 
9483 int __dev_change_flags(struct net_device *dev, unsigned int flags,
9484 		       struct netlink_ext_ack *extack)
9485 {
9486 	unsigned int old_flags = dev->flags;
9487 	int ret;
9488 
9489 	ASSERT_RTNL();
9490 
9491 	/*
9492 	 *	Set the flags on our device.
9493 	 */
9494 
9495 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
9496 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
9497 			       IFF_AUTOMEDIA)) |
9498 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
9499 				    IFF_ALLMULTI));
9500 
9501 	/*
9502 	 *	Load in the correct multicast list now the flags have changed.
9503 	 */
9504 
9505 	if ((old_flags ^ flags) & IFF_MULTICAST)
9506 		dev_change_rx_flags(dev, IFF_MULTICAST);
9507 
9508 	dev_set_rx_mode(dev);
9509 
9510 	/*
9511 	 *	Have we downed the interface. We handle IFF_UP ourselves
9512 	 *	according to user attempts to set it, rather than blindly
9513 	 *	setting it.
9514 	 */
9515 
9516 	ret = 0;
9517 	if ((old_flags ^ flags) & IFF_UP) {
9518 		if (old_flags & IFF_UP)
9519 			__dev_close(dev);
9520 		else
9521 			ret = __dev_open(dev, extack);
9522 	}
9523 
9524 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
9525 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
9526 		old_flags = dev->flags;
9527 
9528 		dev->gflags ^= IFF_PROMISC;
9529 
9530 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
9531 			if (dev->flags != old_flags)
9532 				dev_set_rx_mode(dev);
9533 	}
9534 
9535 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
9536 	 * is important. Some (broken) drivers set IFF_PROMISC, when
9537 	 * IFF_ALLMULTI is requested not asking us and not reporting.
9538 	 */
9539 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
9540 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
9541 
9542 		dev->gflags ^= IFF_ALLMULTI;
9543 		netif_set_allmulti(dev, inc, false);
9544 	}
9545 
9546 	return ret;
9547 }
9548 
9549 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
9550 			unsigned int gchanges, u32 portid,
9551 			const struct nlmsghdr *nlh)
9552 {
9553 	unsigned int changes = dev->flags ^ old_flags;
9554 
9555 	if (gchanges)
9556 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC, portid, nlh);
9557 
9558 	if (changes & IFF_UP) {
9559 		if (dev->flags & IFF_UP)
9560 			call_netdevice_notifiers(NETDEV_UP, dev);
9561 		else
9562 			call_netdevice_notifiers(NETDEV_DOWN, dev);
9563 	}
9564 
9565 	if (dev->flags & IFF_UP &&
9566 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
9567 		struct netdev_notifier_change_info change_info = {
9568 			.info = {
9569 				.dev = dev,
9570 			},
9571 			.flags_changed = changes,
9572 		};
9573 
9574 		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
9575 	}
9576 }
9577 
9578 int netif_change_flags(struct net_device *dev, unsigned int flags,
9579 		       struct netlink_ext_ack *extack)
9580 {
9581 	int ret;
9582 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
9583 
9584 	ret = __dev_change_flags(dev, flags, extack);
9585 	if (ret < 0)
9586 		return ret;
9587 
9588 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
9589 	__dev_notify_flags(dev, old_flags, changes, 0, NULL);
9590 	return ret;
9591 }
9592 
9593 int __dev_set_mtu(struct net_device *dev, int new_mtu)
9594 {
9595 	const struct net_device_ops *ops = dev->netdev_ops;
9596 
9597 	if (ops->ndo_change_mtu)
9598 		return ops->ndo_change_mtu(dev, new_mtu);
9599 
9600 	/* Pairs with all the lockless reads of dev->mtu in the stack */
9601 	WRITE_ONCE(dev->mtu, new_mtu);
9602 	return 0;
9603 }
9604 EXPORT_SYMBOL(__dev_set_mtu);
9605 
9606 int dev_validate_mtu(struct net_device *dev, int new_mtu,
9607 		     struct netlink_ext_ack *extack)
9608 {
9609 	/* MTU must be positive, and in range */
9610 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
9611 		NL_SET_ERR_MSG(extack, "mtu less than device minimum");
9612 		return -EINVAL;
9613 	}
9614 
9615 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
9616 		NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
9617 		return -EINVAL;
9618 	}
9619 	return 0;
9620 }
9621 
9622 /**
9623  *	netif_set_mtu_ext - Change maximum transfer unit
9624  *	@dev: device
9625  *	@new_mtu: new transfer unit
9626  *	@extack: netlink extended ack
9627  *
9628  *	Change the maximum transfer size of the network device.
9629  */
9630 int netif_set_mtu_ext(struct net_device *dev, int new_mtu,
9631 		      struct netlink_ext_ack *extack)
9632 {
9633 	int err, orig_mtu;
9634 
9635 	if (new_mtu == dev->mtu)
9636 		return 0;
9637 
9638 	err = dev_validate_mtu(dev, new_mtu, extack);
9639 	if (err)
9640 		return err;
9641 
9642 	if (!netif_device_present(dev))
9643 		return -ENODEV;
9644 
9645 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
9646 	err = notifier_to_errno(err);
9647 	if (err)
9648 		return err;
9649 
9650 	orig_mtu = dev->mtu;
9651 	err = __dev_set_mtu(dev, new_mtu);
9652 
9653 	if (!err) {
9654 		err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
9655 						   orig_mtu);
9656 		err = notifier_to_errno(err);
9657 		if (err) {
9658 			/* setting mtu back and notifying everyone again,
9659 			 * so that they have a chance to revert changes.
9660 			 */
9661 			__dev_set_mtu(dev, orig_mtu);
9662 			call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
9663 						     new_mtu);
9664 		}
9665 	}
9666 	return err;
9667 }
9668 
9669 int netif_set_mtu(struct net_device *dev, int new_mtu)
9670 {
9671 	struct netlink_ext_ack extack;
9672 	int err;
9673 
9674 	memset(&extack, 0, sizeof(extack));
9675 	err = netif_set_mtu_ext(dev, new_mtu, &extack);
9676 	if (err && extack._msg)
9677 		net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
9678 	return err;
9679 }
9680 EXPORT_SYMBOL(netif_set_mtu);
9681 
9682 int netif_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
9683 {
9684 	unsigned int orig_len = dev->tx_queue_len;
9685 	int res;
9686 
9687 	if (new_len != (unsigned int)new_len)
9688 		return -ERANGE;
9689 
9690 	if (new_len != orig_len) {
9691 		WRITE_ONCE(dev->tx_queue_len, new_len);
9692 		res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
9693 		res = notifier_to_errno(res);
9694 		if (res)
9695 			goto err_rollback;
9696 		res = dev_qdisc_change_tx_queue_len(dev);
9697 		if (res)
9698 			goto err_rollback;
9699 	}
9700 
9701 	return 0;
9702 
9703 err_rollback:
9704 	netdev_err(dev, "refused to change device tx_queue_len\n");
9705 	WRITE_ONCE(dev->tx_queue_len, orig_len);
9706 	return res;
9707 }
9708 
9709 void netif_set_group(struct net_device *dev, int new_group)
9710 {
9711 	dev->group = new_group;
9712 }
9713 
9714 /**
9715  *	dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
9716  *	@dev: device
9717  *	@addr: new address
9718  *	@extack: netlink extended ack
9719  */
9720 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
9721 			      struct netlink_ext_ack *extack)
9722 {
9723 	struct netdev_notifier_pre_changeaddr_info info = {
9724 		.info.dev = dev,
9725 		.info.extack = extack,
9726 		.dev_addr = addr,
9727 	};
9728 	int rc;
9729 
9730 	rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
9731 	return notifier_to_errno(rc);
9732 }
9733 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
9734 
9735 int netif_set_mac_address(struct net_device *dev, struct sockaddr_storage *ss,
9736 			  struct netlink_ext_ack *extack)
9737 {
9738 	const struct net_device_ops *ops = dev->netdev_ops;
9739 	int err;
9740 
9741 	if (!ops->ndo_set_mac_address)
9742 		return -EOPNOTSUPP;
9743 	if (ss->ss_family != dev->type)
9744 		return -EINVAL;
9745 	if (!netif_device_present(dev))
9746 		return -ENODEV;
9747 	err = dev_pre_changeaddr_notify(dev, ss->__data, extack);
9748 	if (err)
9749 		return err;
9750 	if (memcmp(dev->dev_addr, ss->__data, dev->addr_len)) {
9751 		err = ops->ndo_set_mac_address(dev, ss);
9752 		if (err)
9753 			return err;
9754 	}
9755 	dev->addr_assign_type = NET_ADDR_SET;
9756 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
9757 	add_device_randomness(dev->dev_addr, dev->addr_len);
9758 	return 0;
9759 }
9760 
9761 DECLARE_RWSEM(dev_addr_sem);
9762 
9763 /* "sa" is a true struct sockaddr with limited "sa_data" member. */
9764 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
9765 {
9766 	size_t size = sizeof(sa->sa_data_min);
9767 	struct net_device *dev;
9768 	int ret = 0;
9769 
9770 	down_read(&dev_addr_sem);
9771 	rcu_read_lock();
9772 
9773 	dev = dev_get_by_name_rcu(net, dev_name);
9774 	if (!dev) {
9775 		ret = -ENODEV;
9776 		goto unlock;
9777 	}
9778 	if (!dev->addr_len)
9779 		memset(sa->sa_data, 0, size);
9780 	else
9781 		memcpy(sa->sa_data, dev->dev_addr,
9782 		       min_t(size_t, size, dev->addr_len));
9783 	sa->sa_family = dev->type;
9784 
9785 unlock:
9786 	rcu_read_unlock();
9787 	up_read(&dev_addr_sem);
9788 	return ret;
9789 }
9790 EXPORT_SYMBOL(dev_get_mac_address);
9791 
9792 int netif_change_carrier(struct net_device *dev, bool new_carrier)
9793 {
9794 	const struct net_device_ops *ops = dev->netdev_ops;
9795 
9796 	if (!ops->ndo_change_carrier)
9797 		return -EOPNOTSUPP;
9798 	if (!netif_device_present(dev))
9799 		return -ENODEV;
9800 	return ops->ndo_change_carrier(dev, new_carrier);
9801 }
9802 
9803 /**
9804  *	dev_get_phys_port_id - Get device physical port ID
9805  *	@dev: device
9806  *	@ppid: port ID
9807  *
9808  *	Get device physical port ID
9809  */
9810 int dev_get_phys_port_id(struct net_device *dev,
9811 			 struct netdev_phys_item_id *ppid)
9812 {
9813 	const struct net_device_ops *ops = dev->netdev_ops;
9814 
9815 	if (!ops->ndo_get_phys_port_id)
9816 		return -EOPNOTSUPP;
9817 	return ops->ndo_get_phys_port_id(dev, ppid);
9818 }
9819 
9820 /**
9821  *	dev_get_phys_port_name - Get device physical port name
9822  *	@dev: device
9823  *	@name: port name
9824  *	@len: limit of bytes to copy to name
9825  *
9826  *	Get device physical port name
9827  */
9828 int dev_get_phys_port_name(struct net_device *dev,
9829 			   char *name, size_t len)
9830 {
9831 	const struct net_device_ops *ops = dev->netdev_ops;
9832 	int err;
9833 
9834 	if (ops->ndo_get_phys_port_name) {
9835 		err = ops->ndo_get_phys_port_name(dev, name, len);
9836 		if (err != -EOPNOTSUPP)
9837 			return err;
9838 	}
9839 	return devlink_compat_phys_port_name_get(dev, name, len);
9840 }
9841 
9842 /**
9843  *	dev_get_port_parent_id - Get the device's port parent identifier
9844  *	@dev: network device
9845  *	@ppid: pointer to a storage for the port's parent identifier
9846  *	@recurse: allow/disallow recursion to lower devices
9847  *
9848  *	Get the devices's port parent identifier
9849  */
9850 int dev_get_port_parent_id(struct net_device *dev,
9851 			   struct netdev_phys_item_id *ppid,
9852 			   bool recurse)
9853 {
9854 	const struct net_device_ops *ops = dev->netdev_ops;
9855 	struct netdev_phys_item_id first = { };
9856 	struct net_device *lower_dev;
9857 	struct list_head *iter;
9858 	int err;
9859 
9860 	if (ops->ndo_get_port_parent_id) {
9861 		err = ops->ndo_get_port_parent_id(dev, ppid);
9862 		if (err != -EOPNOTSUPP)
9863 			return err;
9864 	}
9865 
9866 	err = devlink_compat_switch_id_get(dev, ppid);
9867 	if (!recurse || err != -EOPNOTSUPP)
9868 		return err;
9869 
9870 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
9871 		err = dev_get_port_parent_id(lower_dev, ppid, true);
9872 		if (err)
9873 			break;
9874 		if (!first.id_len)
9875 			first = *ppid;
9876 		else if (memcmp(&first, ppid, sizeof(*ppid)))
9877 			return -EOPNOTSUPP;
9878 	}
9879 
9880 	return err;
9881 }
9882 EXPORT_SYMBOL(dev_get_port_parent_id);
9883 
9884 /**
9885  *	netdev_port_same_parent_id - Indicate if two network devices have
9886  *	the same port parent identifier
9887  *	@a: first network device
9888  *	@b: second network device
9889  */
9890 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
9891 {
9892 	struct netdev_phys_item_id a_id = { };
9893 	struct netdev_phys_item_id b_id = { };
9894 
9895 	if (dev_get_port_parent_id(a, &a_id, true) ||
9896 	    dev_get_port_parent_id(b, &b_id, true))
9897 		return false;
9898 
9899 	return netdev_phys_item_id_same(&a_id, &b_id);
9900 }
9901 EXPORT_SYMBOL(netdev_port_same_parent_id);
9902 
9903 int netif_change_proto_down(struct net_device *dev, bool proto_down)
9904 {
9905 	if (!dev->change_proto_down)
9906 		return -EOPNOTSUPP;
9907 	if (!netif_device_present(dev))
9908 		return -ENODEV;
9909 	if (proto_down)
9910 		netif_carrier_off(dev);
9911 	else
9912 		netif_carrier_on(dev);
9913 	WRITE_ONCE(dev->proto_down, proto_down);
9914 	return 0;
9915 }
9916 
9917 /**
9918  *	netdev_change_proto_down_reason_locked - proto down reason
9919  *
9920  *	@dev: device
9921  *	@mask: proto down mask
9922  *	@value: proto down value
9923  */
9924 void netdev_change_proto_down_reason_locked(struct net_device *dev,
9925 					    unsigned long mask, u32 value)
9926 {
9927 	u32 proto_down_reason;
9928 	int b;
9929 
9930 	if (!mask) {
9931 		proto_down_reason = value;
9932 	} else {
9933 		proto_down_reason = dev->proto_down_reason;
9934 		for_each_set_bit(b, &mask, 32) {
9935 			if (value & (1 << b))
9936 				proto_down_reason |= BIT(b);
9937 			else
9938 				proto_down_reason &= ~BIT(b);
9939 		}
9940 	}
9941 	WRITE_ONCE(dev->proto_down_reason, proto_down_reason);
9942 }
9943 
9944 struct bpf_xdp_link {
9945 	struct bpf_link link;
9946 	struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9947 	int flags;
9948 };
9949 
9950 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9951 {
9952 	if (flags & XDP_FLAGS_HW_MODE)
9953 		return XDP_MODE_HW;
9954 	if (flags & XDP_FLAGS_DRV_MODE)
9955 		return XDP_MODE_DRV;
9956 	if (flags & XDP_FLAGS_SKB_MODE)
9957 		return XDP_MODE_SKB;
9958 	return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9959 }
9960 
9961 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9962 {
9963 	switch (mode) {
9964 	case XDP_MODE_SKB:
9965 		return generic_xdp_install;
9966 	case XDP_MODE_DRV:
9967 	case XDP_MODE_HW:
9968 		return dev->netdev_ops->ndo_bpf;
9969 	default:
9970 		return NULL;
9971 	}
9972 }
9973 
9974 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9975 					 enum bpf_xdp_mode mode)
9976 {
9977 	return dev->xdp_state[mode].link;
9978 }
9979 
9980 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9981 				     enum bpf_xdp_mode mode)
9982 {
9983 	struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9984 
9985 	if (link)
9986 		return link->link.prog;
9987 	return dev->xdp_state[mode].prog;
9988 }
9989 
9990 u8 dev_xdp_prog_count(struct net_device *dev)
9991 {
9992 	u8 count = 0;
9993 	int i;
9994 
9995 	for (i = 0; i < __MAX_XDP_MODE; i++)
9996 		if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9997 			count++;
9998 	return count;
9999 }
10000 EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
10001 
10002 u8 dev_xdp_sb_prog_count(struct net_device *dev)
10003 {
10004 	u8 count = 0;
10005 	int i;
10006 
10007 	for (i = 0; i < __MAX_XDP_MODE; i++)
10008 		if (dev->xdp_state[i].prog &&
10009 		    !dev->xdp_state[i].prog->aux->xdp_has_frags)
10010 			count++;
10011 	return count;
10012 }
10013 
10014 int netif_xdp_propagate(struct net_device *dev, struct netdev_bpf *bpf)
10015 {
10016 	if (!dev->netdev_ops->ndo_bpf)
10017 		return -EOPNOTSUPP;
10018 
10019 	if (dev->cfg->hds_config == ETHTOOL_TCP_DATA_SPLIT_ENABLED &&
10020 	    bpf->command == XDP_SETUP_PROG &&
10021 	    bpf->prog && !bpf->prog->aux->xdp_has_frags) {
10022 		NL_SET_ERR_MSG(bpf->extack,
10023 			       "unable to propagate XDP to device using tcp-data-split");
10024 		return -EBUSY;
10025 	}
10026 
10027 	if (dev_get_min_mp_channel_count(dev)) {
10028 		NL_SET_ERR_MSG(bpf->extack, "unable to propagate XDP to device using memory provider");
10029 		return -EBUSY;
10030 	}
10031 
10032 	return dev->netdev_ops->ndo_bpf(dev, bpf);
10033 }
10034 EXPORT_SYMBOL_GPL(netif_xdp_propagate);
10035 
10036 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
10037 {
10038 	struct bpf_prog *prog = dev_xdp_prog(dev, mode);
10039 
10040 	return prog ? prog->aux->id : 0;
10041 }
10042 
10043 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
10044 			     struct bpf_xdp_link *link)
10045 {
10046 	dev->xdp_state[mode].link = link;
10047 	dev->xdp_state[mode].prog = NULL;
10048 }
10049 
10050 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
10051 			     struct bpf_prog *prog)
10052 {
10053 	dev->xdp_state[mode].link = NULL;
10054 	dev->xdp_state[mode].prog = prog;
10055 }
10056 
10057 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
10058 			   bpf_op_t bpf_op, struct netlink_ext_ack *extack,
10059 			   u32 flags, struct bpf_prog *prog)
10060 {
10061 	struct netdev_bpf xdp;
10062 	int err;
10063 
10064 	netdev_ops_assert_locked(dev);
10065 
10066 	if (dev->cfg->hds_config == ETHTOOL_TCP_DATA_SPLIT_ENABLED &&
10067 	    prog && !prog->aux->xdp_has_frags) {
10068 		NL_SET_ERR_MSG(extack, "unable to install XDP to device using tcp-data-split");
10069 		return -EBUSY;
10070 	}
10071 
10072 	if (dev_get_min_mp_channel_count(dev)) {
10073 		NL_SET_ERR_MSG(extack, "unable to install XDP to device using memory provider");
10074 		return -EBUSY;
10075 	}
10076 
10077 	memset(&xdp, 0, sizeof(xdp));
10078 	xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
10079 	xdp.extack = extack;
10080 	xdp.flags = flags;
10081 	xdp.prog = prog;
10082 
10083 	/* Drivers assume refcnt is already incremented (i.e, prog pointer is
10084 	 * "moved" into driver), so they don't increment it on their own, but
10085 	 * they do decrement refcnt when program is detached or replaced.
10086 	 * Given net_device also owns link/prog, we need to bump refcnt here
10087 	 * to prevent drivers from underflowing it.
10088 	 */
10089 	if (prog)
10090 		bpf_prog_inc(prog);
10091 	err = bpf_op(dev, &xdp);
10092 	if (err) {
10093 		if (prog)
10094 			bpf_prog_put(prog);
10095 		return err;
10096 	}
10097 
10098 	if (mode != XDP_MODE_HW)
10099 		bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
10100 
10101 	return 0;
10102 }
10103 
10104 static void dev_xdp_uninstall(struct net_device *dev)
10105 {
10106 	struct bpf_xdp_link *link;
10107 	struct bpf_prog *prog;
10108 	enum bpf_xdp_mode mode;
10109 	bpf_op_t bpf_op;
10110 
10111 	ASSERT_RTNL();
10112 
10113 	for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
10114 		prog = dev_xdp_prog(dev, mode);
10115 		if (!prog)
10116 			continue;
10117 
10118 		bpf_op = dev_xdp_bpf_op(dev, mode);
10119 		if (!bpf_op)
10120 			continue;
10121 
10122 		WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
10123 
10124 		/* auto-detach link from net device */
10125 		link = dev_xdp_link(dev, mode);
10126 		if (link)
10127 			link->dev = NULL;
10128 		else
10129 			bpf_prog_put(prog);
10130 
10131 		dev_xdp_set_link(dev, mode, NULL);
10132 	}
10133 }
10134 
10135 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
10136 			  struct bpf_xdp_link *link, struct bpf_prog *new_prog,
10137 			  struct bpf_prog *old_prog, u32 flags)
10138 {
10139 	unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
10140 	struct bpf_prog *cur_prog;
10141 	struct net_device *upper;
10142 	struct list_head *iter;
10143 	enum bpf_xdp_mode mode;
10144 	bpf_op_t bpf_op;
10145 	int err;
10146 
10147 	ASSERT_RTNL();
10148 
10149 	/* either link or prog attachment, never both */
10150 	if (link && (new_prog || old_prog))
10151 		return -EINVAL;
10152 	/* link supports only XDP mode flags */
10153 	if (link && (flags & ~XDP_FLAGS_MODES)) {
10154 		NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
10155 		return -EINVAL;
10156 	}
10157 	/* just one XDP mode bit should be set, zero defaults to drv/skb mode */
10158 	if (num_modes > 1) {
10159 		NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
10160 		return -EINVAL;
10161 	}
10162 	/* avoid ambiguity if offload + drv/skb mode progs are both loaded */
10163 	if (!num_modes && dev_xdp_prog_count(dev) > 1) {
10164 		NL_SET_ERR_MSG(extack,
10165 			       "More than one program loaded, unset mode is ambiguous");
10166 		return -EINVAL;
10167 	}
10168 	/* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
10169 	if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
10170 		NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
10171 		return -EINVAL;
10172 	}
10173 
10174 	mode = dev_xdp_mode(dev, flags);
10175 	/* can't replace attached link */
10176 	if (dev_xdp_link(dev, mode)) {
10177 		NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
10178 		return -EBUSY;
10179 	}
10180 
10181 	/* don't allow if an upper device already has a program */
10182 	netdev_for_each_upper_dev_rcu(dev, upper, iter) {
10183 		if (dev_xdp_prog_count(upper) > 0) {
10184 			NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
10185 			return -EEXIST;
10186 		}
10187 	}
10188 
10189 	cur_prog = dev_xdp_prog(dev, mode);
10190 	/* can't replace attached prog with link */
10191 	if (link && cur_prog) {
10192 		NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
10193 		return -EBUSY;
10194 	}
10195 	if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
10196 		NL_SET_ERR_MSG(extack, "Active program does not match expected");
10197 		return -EEXIST;
10198 	}
10199 
10200 	/* put effective new program into new_prog */
10201 	if (link)
10202 		new_prog = link->link.prog;
10203 
10204 	if (new_prog) {
10205 		bool offload = mode == XDP_MODE_HW;
10206 		enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
10207 					       ? XDP_MODE_DRV : XDP_MODE_SKB;
10208 
10209 		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
10210 			NL_SET_ERR_MSG(extack, "XDP program already attached");
10211 			return -EBUSY;
10212 		}
10213 		if (!offload && dev_xdp_prog(dev, other_mode)) {
10214 			NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
10215 			return -EEXIST;
10216 		}
10217 		if (!offload && bpf_prog_is_offloaded(new_prog->aux)) {
10218 			NL_SET_ERR_MSG(extack, "Using offloaded program without HW_MODE flag is not supported");
10219 			return -EINVAL;
10220 		}
10221 		if (bpf_prog_is_dev_bound(new_prog->aux) && !bpf_offload_dev_match(new_prog, dev)) {
10222 			NL_SET_ERR_MSG(extack, "Program bound to different device");
10223 			return -EINVAL;
10224 		}
10225 		if (bpf_prog_is_dev_bound(new_prog->aux) && mode == XDP_MODE_SKB) {
10226 			NL_SET_ERR_MSG(extack, "Can't attach device-bound programs in generic mode");
10227 			return -EINVAL;
10228 		}
10229 		if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
10230 			NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
10231 			return -EINVAL;
10232 		}
10233 		if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
10234 			NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
10235 			return -EINVAL;
10236 		}
10237 	}
10238 
10239 	/* don't call drivers if the effective program didn't change */
10240 	if (new_prog != cur_prog) {
10241 		bpf_op = dev_xdp_bpf_op(dev, mode);
10242 		if (!bpf_op) {
10243 			NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
10244 			return -EOPNOTSUPP;
10245 		}
10246 
10247 		err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
10248 		if (err)
10249 			return err;
10250 	}
10251 
10252 	if (link)
10253 		dev_xdp_set_link(dev, mode, link);
10254 	else
10255 		dev_xdp_set_prog(dev, mode, new_prog);
10256 	if (cur_prog)
10257 		bpf_prog_put(cur_prog);
10258 
10259 	return 0;
10260 }
10261 
10262 static int dev_xdp_attach_link(struct net_device *dev,
10263 			       struct netlink_ext_ack *extack,
10264 			       struct bpf_xdp_link *link)
10265 {
10266 	return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
10267 }
10268 
10269 static int dev_xdp_detach_link(struct net_device *dev,
10270 			       struct netlink_ext_ack *extack,
10271 			       struct bpf_xdp_link *link)
10272 {
10273 	enum bpf_xdp_mode mode;
10274 	bpf_op_t bpf_op;
10275 
10276 	ASSERT_RTNL();
10277 
10278 	mode = dev_xdp_mode(dev, link->flags);
10279 	if (dev_xdp_link(dev, mode) != link)
10280 		return -EINVAL;
10281 
10282 	bpf_op = dev_xdp_bpf_op(dev, mode);
10283 	WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
10284 	dev_xdp_set_link(dev, mode, NULL);
10285 	return 0;
10286 }
10287 
10288 static void bpf_xdp_link_release(struct bpf_link *link)
10289 {
10290 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10291 
10292 	rtnl_lock();
10293 
10294 	/* if racing with net_device's tear down, xdp_link->dev might be
10295 	 * already NULL, in which case link was already auto-detached
10296 	 */
10297 	if (xdp_link->dev) {
10298 		netdev_lock_ops(xdp_link->dev);
10299 		WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
10300 		netdev_unlock_ops(xdp_link->dev);
10301 		xdp_link->dev = NULL;
10302 	}
10303 
10304 	rtnl_unlock();
10305 }
10306 
10307 static int bpf_xdp_link_detach(struct bpf_link *link)
10308 {
10309 	bpf_xdp_link_release(link);
10310 	return 0;
10311 }
10312 
10313 static void bpf_xdp_link_dealloc(struct bpf_link *link)
10314 {
10315 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10316 
10317 	kfree(xdp_link);
10318 }
10319 
10320 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
10321 				     struct seq_file *seq)
10322 {
10323 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10324 	u32 ifindex = 0;
10325 
10326 	rtnl_lock();
10327 	if (xdp_link->dev)
10328 		ifindex = xdp_link->dev->ifindex;
10329 	rtnl_unlock();
10330 
10331 	seq_printf(seq, "ifindex:\t%u\n", ifindex);
10332 }
10333 
10334 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
10335 				       struct bpf_link_info *info)
10336 {
10337 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10338 	u32 ifindex = 0;
10339 
10340 	rtnl_lock();
10341 	if (xdp_link->dev)
10342 		ifindex = xdp_link->dev->ifindex;
10343 	rtnl_unlock();
10344 
10345 	info->xdp.ifindex = ifindex;
10346 	return 0;
10347 }
10348 
10349 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
10350 			       struct bpf_prog *old_prog)
10351 {
10352 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10353 	enum bpf_xdp_mode mode;
10354 	bpf_op_t bpf_op;
10355 	int err = 0;
10356 
10357 	rtnl_lock();
10358 
10359 	/* link might have been auto-released already, so fail */
10360 	if (!xdp_link->dev) {
10361 		err = -ENOLINK;
10362 		goto out_unlock;
10363 	}
10364 
10365 	if (old_prog && link->prog != old_prog) {
10366 		err = -EPERM;
10367 		goto out_unlock;
10368 	}
10369 	old_prog = link->prog;
10370 	if (old_prog->type != new_prog->type ||
10371 	    old_prog->expected_attach_type != new_prog->expected_attach_type) {
10372 		err = -EINVAL;
10373 		goto out_unlock;
10374 	}
10375 
10376 	if (old_prog == new_prog) {
10377 		/* no-op, don't disturb drivers */
10378 		bpf_prog_put(new_prog);
10379 		goto out_unlock;
10380 	}
10381 
10382 	netdev_lock_ops(xdp_link->dev);
10383 	mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
10384 	bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
10385 	err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
10386 			      xdp_link->flags, new_prog);
10387 	netdev_unlock_ops(xdp_link->dev);
10388 	if (err)
10389 		goto out_unlock;
10390 
10391 	old_prog = xchg(&link->prog, new_prog);
10392 	bpf_prog_put(old_prog);
10393 
10394 out_unlock:
10395 	rtnl_unlock();
10396 	return err;
10397 }
10398 
10399 static const struct bpf_link_ops bpf_xdp_link_lops = {
10400 	.release = bpf_xdp_link_release,
10401 	.dealloc = bpf_xdp_link_dealloc,
10402 	.detach = bpf_xdp_link_detach,
10403 	.show_fdinfo = bpf_xdp_link_show_fdinfo,
10404 	.fill_link_info = bpf_xdp_link_fill_link_info,
10405 	.update_prog = bpf_xdp_link_update,
10406 };
10407 
10408 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
10409 {
10410 	struct net *net = current->nsproxy->net_ns;
10411 	struct bpf_link_primer link_primer;
10412 	struct netlink_ext_ack extack = {};
10413 	struct bpf_xdp_link *link;
10414 	struct net_device *dev;
10415 	int err, fd;
10416 
10417 	rtnl_lock();
10418 	dev = dev_get_by_index(net, attr->link_create.target_ifindex);
10419 	if (!dev) {
10420 		rtnl_unlock();
10421 		return -EINVAL;
10422 	}
10423 
10424 	link = kzalloc(sizeof(*link), GFP_USER);
10425 	if (!link) {
10426 		err = -ENOMEM;
10427 		goto unlock;
10428 	}
10429 
10430 	bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
10431 	link->dev = dev;
10432 	link->flags = attr->link_create.flags;
10433 
10434 	err = bpf_link_prime(&link->link, &link_primer);
10435 	if (err) {
10436 		kfree(link);
10437 		goto unlock;
10438 	}
10439 
10440 	netdev_lock_ops(dev);
10441 	err = dev_xdp_attach_link(dev, &extack, link);
10442 	netdev_unlock_ops(dev);
10443 	rtnl_unlock();
10444 
10445 	if (err) {
10446 		link->dev = NULL;
10447 		bpf_link_cleanup(&link_primer);
10448 		trace_bpf_xdp_link_attach_failed(extack._msg);
10449 		goto out_put_dev;
10450 	}
10451 
10452 	fd = bpf_link_settle(&link_primer);
10453 	/* link itself doesn't hold dev's refcnt to not complicate shutdown */
10454 	dev_put(dev);
10455 	return fd;
10456 
10457 unlock:
10458 	rtnl_unlock();
10459 
10460 out_put_dev:
10461 	dev_put(dev);
10462 	return err;
10463 }
10464 
10465 /**
10466  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
10467  *	@dev: device
10468  *	@extack: netlink extended ack
10469  *	@fd: new program fd or negative value to clear
10470  *	@expected_fd: old program fd that userspace expects to replace or clear
10471  *	@flags: xdp-related flags
10472  *
10473  *	Set or clear a bpf program for a device
10474  */
10475 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
10476 		      int fd, int expected_fd, u32 flags)
10477 {
10478 	enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
10479 	struct bpf_prog *new_prog = NULL, *old_prog = NULL;
10480 	int err;
10481 
10482 	ASSERT_RTNL();
10483 
10484 	if (fd >= 0) {
10485 		new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
10486 						 mode != XDP_MODE_SKB);
10487 		if (IS_ERR(new_prog))
10488 			return PTR_ERR(new_prog);
10489 	}
10490 
10491 	if (expected_fd >= 0) {
10492 		old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
10493 						 mode != XDP_MODE_SKB);
10494 		if (IS_ERR(old_prog)) {
10495 			err = PTR_ERR(old_prog);
10496 			old_prog = NULL;
10497 			goto err_out;
10498 		}
10499 	}
10500 
10501 	err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
10502 
10503 err_out:
10504 	if (err && new_prog)
10505 		bpf_prog_put(new_prog);
10506 	if (old_prog)
10507 		bpf_prog_put(old_prog);
10508 	return err;
10509 }
10510 
10511 u32 dev_get_min_mp_channel_count(const struct net_device *dev)
10512 {
10513 	int i;
10514 
10515 	netdev_ops_assert_locked(dev);
10516 
10517 	for (i = dev->real_num_rx_queues - 1; i >= 0; i--)
10518 		if (dev->_rx[i].mp_params.mp_priv)
10519 			/* The channel count is the idx plus 1. */
10520 			return i + 1;
10521 
10522 	return 0;
10523 }
10524 
10525 /**
10526  * dev_index_reserve() - allocate an ifindex in a namespace
10527  * @net: the applicable net namespace
10528  * @ifindex: requested ifindex, pass %0 to get one allocated
10529  *
10530  * Allocate a ifindex for a new device. Caller must either use the ifindex
10531  * to store the device (via list_netdevice()) or call dev_index_release()
10532  * to give the index up.
10533  *
10534  * Return: a suitable unique value for a new device interface number or -errno.
10535  */
10536 static int dev_index_reserve(struct net *net, u32 ifindex)
10537 {
10538 	int err;
10539 
10540 	if (ifindex > INT_MAX) {
10541 		DEBUG_NET_WARN_ON_ONCE(1);
10542 		return -EINVAL;
10543 	}
10544 
10545 	if (!ifindex)
10546 		err = xa_alloc_cyclic(&net->dev_by_index, &ifindex, NULL,
10547 				      xa_limit_31b, &net->ifindex, GFP_KERNEL);
10548 	else
10549 		err = xa_insert(&net->dev_by_index, ifindex, NULL, GFP_KERNEL);
10550 	if (err < 0)
10551 		return err;
10552 
10553 	return ifindex;
10554 }
10555 
10556 static void dev_index_release(struct net *net, int ifindex)
10557 {
10558 	/* Expect only unused indexes, unlist_netdevice() removes the used */
10559 	WARN_ON(xa_erase(&net->dev_by_index, ifindex));
10560 }
10561 
10562 static bool from_cleanup_net(void)
10563 {
10564 #ifdef CONFIG_NET_NS
10565 	return current == READ_ONCE(cleanup_net_task);
10566 #else
10567 	return false;
10568 #endif
10569 }
10570 
10571 /* Delayed registration/unregisteration */
10572 LIST_HEAD(net_todo_list);
10573 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
10574 atomic_t dev_unreg_count = ATOMIC_INIT(0);
10575 
10576 static void net_set_todo(struct net_device *dev)
10577 {
10578 	list_add_tail(&dev->todo_list, &net_todo_list);
10579 }
10580 
10581 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
10582 	struct net_device *upper, netdev_features_t features)
10583 {
10584 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
10585 	netdev_features_t feature;
10586 	int feature_bit;
10587 
10588 	for_each_netdev_feature(upper_disables, feature_bit) {
10589 		feature = __NETIF_F_BIT(feature_bit);
10590 		if (!(upper->wanted_features & feature)
10591 		    && (features & feature)) {
10592 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
10593 				   &feature, upper->name);
10594 			features &= ~feature;
10595 		}
10596 	}
10597 
10598 	return features;
10599 }
10600 
10601 static void netdev_sync_lower_features(struct net_device *upper,
10602 	struct net_device *lower, netdev_features_t features)
10603 {
10604 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
10605 	netdev_features_t feature;
10606 	int feature_bit;
10607 
10608 	for_each_netdev_feature(upper_disables, feature_bit) {
10609 		feature = __NETIF_F_BIT(feature_bit);
10610 		if (!(features & feature) && (lower->features & feature)) {
10611 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
10612 				   &feature, lower->name);
10613 			netdev_lock_ops(lower);
10614 			lower->wanted_features &= ~feature;
10615 			__netdev_update_features(lower);
10616 
10617 			if (unlikely(lower->features & feature))
10618 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
10619 					    &feature, lower->name);
10620 			else
10621 				netdev_features_change(lower);
10622 			netdev_unlock_ops(lower);
10623 		}
10624 	}
10625 }
10626 
10627 static bool netdev_has_ip_or_hw_csum(netdev_features_t features)
10628 {
10629 	netdev_features_t ip_csum_mask = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
10630 	bool ip_csum = (features & ip_csum_mask) == ip_csum_mask;
10631 	bool hw_csum = features & NETIF_F_HW_CSUM;
10632 
10633 	return ip_csum || hw_csum;
10634 }
10635 
10636 static netdev_features_t netdev_fix_features(struct net_device *dev,
10637 	netdev_features_t features)
10638 {
10639 	/* Fix illegal checksum combinations */
10640 	if ((features & NETIF_F_HW_CSUM) &&
10641 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
10642 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
10643 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
10644 	}
10645 
10646 	/* TSO requires that SG is present as well. */
10647 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
10648 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
10649 		features &= ~NETIF_F_ALL_TSO;
10650 	}
10651 
10652 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
10653 					!(features & NETIF_F_IP_CSUM)) {
10654 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
10655 		features &= ~NETIF_F_TSO;
10656 		features &= ~NETIF_F_TSO_ECN;
10657 	}
10658 
10659 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
10660 					 !(features & NETIF_F_IPV6_CSUM)) {
10661 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
10662 		features &= ~NETIF_F_TSO6;
10663 	}
10664 
10665 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
10666 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
10667 		features &= ~NETIF_F_TSO_MANGLEID;
10668 
10669 	/* TSO ECN requires that TSO is present as well. */
10670 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
10671 		features &= ~NETIF_F_TSO_ECN;
10672 
10673 	/* Software GSO depends on SG. */
10674 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
10675 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
10676 		features &= ~NETIF_F_GSO;
10677 	}
10678 
10679 	/* GSO partial features require GSO partial be set */
10680 	if ((features & dev->gso_partial_features) &&
10681 	    !(features & NETIF_F_GSO_PARTIAL)) {
10682 		netdev_dbg(dev,
10683 			   "Dropping partially supported GSO features since no GSO partial.\n");
10684 		features &= ~dev->gso_partial_features;
10685 	}
10686 
10687 	if (!(features & NETIF_F_RXCSUM)) {
10688 		/* NETIF_F_GRO_HW implies doing RXCSUM since every packet
10689 		 * successfully merged by hardware must also have the
10690 		 * checksum verified by hardware.  If the user does not
10691 		 * want to enable RXCSUM, logically, we should disable GRO_HW.
10692 		 */
10693 		if (features & NETIF_F_GRO_HW) {
10694 			netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
10695 			features &= ~NETIF_F_GRO_HW;
10696 		}
10697 	}
10698 
10699 	/* LRO/HW-GRO features cannot be combined with RX-FCS */
10700 	if (features & NETIF_F_RXFCS) {
10701 		if (features & NETIF_F_LRO) {
10702 			netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
10703 			features &= ~NETIF_F_LRO;
10704 		}
10705 
10706 		if (features & NETIF_F_GRO_HW) {
10707 			netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
10708 			features &= ~NETIF_F_GRO_HW;
10709 		}
10710 	}
10711 
10712 	if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
10713 		netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
10714 		features &= ~NETIF_F_LRO;
10715 	}
10716 
10717 	if ((features & NETIF_F_HW_TLS_TX) && !netdev_has_ip_or_hw_csum(features)) {
10718 		netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
10719 		features &= ~NETIF_F_HW_TLS_TX;
10720 	}
10721 
10722 	if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
10723 		netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
10724 		features &= ~NETIF_F_HW_TLS_RX;
10725 	}
10726 
10727 	if ((features & NETIF_F_GSO_UDP_L4) && !netdev_has_ip_or_hw_csum(features)) {
10728 		netdev_dbg(dev, "Dropping USO feature since no CSUM feature.\n");
10729 		features &= ~NETIF_F_GSO_UDP_L4;
10730 	}
10731 
10732 	return features;
10733 }
10734 
10735 int __netdev_update_features(struct net_device *dev)
10736 {
10737 	struct net_device *upper, *lower;
10738 	netdev_features_t features;
10739 	struct list_head *iter;
10740 	int err = -1;
10741 
10742 	ASSERT_RTNL();
10743 	netdev_ops_assert_locked(dev);
10744 
10745 	features = netdev_get_wanted_features(dev);
10746 
10747 	if (dev->netdev_ops->ndo_fix_features)
10748 		features = dev->netdev_ops->ndo_fix_features(dev, features);
10749 
10750 	/* driver might be less strict about feature dependencies */
10751 	features = netdev_fix_features(dev, features);
10752 
10753 	/* some features can't be enabled if they're off on an upper device */
10754 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
10755 		features = netdev_sync_upper_features(dev, upper, features);
10756 
10757 	if (dev->features == features)
10758 		goto sync_lower;
10759 
10760 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
10761 		&dev->features, &features);
10762 
10763 	if (dev->netdev_ops->ndo_set_features)
10764 		err = dev->netdev_ops->ndo_set_features(dev, features);
10765 	else
10766 		err = 0;
10767 
10768 	if (unlikely(err < 0)) {
10769 		netdev_err(dev,
10770 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
10771 			err, &features, &dev->features);
10772 		/* return non-0 since some features might have changed and
10773 		 * it's better to fire a spurious notification than miss it
10774 		 */
10775 		return -1;
10776 	}
10777 
10778 sync_lower:
10779 	/* some features must be disabled on lower devices when disabled
10780 	 * on an upper device (think: bonding master or bridge)
10781 	 */
10782 	netdev_for_each_lower_dev(dev, lower, iter)
10783 		netdev_sync_lower_features(dev, lower, features);
10784 
10785 	if (!err) {
10786 		netdev_features_t diff = features ^ dev->features;
10787 
10788 		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
10789 			/* udp_tunnel_{get,drop}_rx_info both need
10790 			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
10791 			 * device, or they won't do anything.
10792 			 * Thus we need to update dev->features
10793 			 * *before* calling udp_tunnel_get_rx_info,
10794 			 * but *after* calling udp_tunnel_drop_rx_info.
10795 			 */
10796 			udp_tunnel_nic_lock(dev);
10797 			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
10798 				dev->features = features;
10799 				udp_tunnel_get_rx_info(dev);
10800 			} else {
10801 				udp_tunnel_drop_rx_info(dev);
10802 			}
10803 			udp_tunnel_nic_unlock(dev);
10804 		}
10805 
10806 		if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
10807 			if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
10808 				dev->features = features;
10809 				err |= vlan_get_rx_ctag_filter_info(dev);
10810 			} else {
10811 				vlan_drop_rx_ctag_filter_info(dev);
10812 			}
10813 		}
10814 
10815 		if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
10816 			if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
10817 				dev->features = features;
10818 				err |= vlan_get_rx_stag_filter_info(dev);
10819 			} else {
10820 				vlan_drop_rx_stag_filter_info(dev);
10821 			}
10822 		}
10823 
10824 		dev->features = features;
10825 	}
10826 
10827 	return err < 0 ? 0 : 1;
10828 }
10829 
10830 /**
10831  *	netdev_update_features - recalculate device features
10832  *	@dev: the device to check
10833  *
10834  *	Recalculate dev->features set and send notifications if it
10835  *	has changed. Should be called after driver or hardware dependent
10836  *	conditions might have changed that influence the features.
10837  */
10838 void netdev_update_features(struct net_device *dev)
10839 {
10840 	if (__netdev_update_features(dev))
10841 		netdev_features_change(dev);
10842 }
10843 EXPORT_SYMBOL(netdev_update_features);
10844 
10845 /**
10846  *	netdev_change_features - recalculate device features
10847  *	@dev: the device to check
10848  *
10849  *	Recalculate dev->features set and send notifications even
10850  *	if they have not changed. Should be called instead of
10851  *	netdev_update_features() if also dev->vlan_features might
10852  *	have changed to allow the changes to be propagated to stacked
10853  *	VLAN devices.
10854  */
10855 void netdev_change_features(struct net_device *dev)
10856 {
10857 	__netdev_update_features(dev);
10858 	netdev_features_change(dev);
10859 }
10860 EXPORT_SYMBOL(netdev_change_features);
10861 
10862 /**
10863  *	netif_stacked_transfer_operstate -	transfer operstate
10864  *	@rootdev: the root or lower level device to transfer state from
10865  *	@dev: the device to transfer operstate to
10866  *
10867  *	Transfer operational state from root to device. This is normally
10868  *	called when a stacking relationship exists between the root
10869  *	device and the device(a leaf device).
10870  */
10871 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
10872 					struct net_device *dev)
10873 {
10874 	if (rootdev->operstate == IF_OPER_DORMANT)
10875 		netif_dormant_on(dev);
10876 	else
10877 		netif_dormant_off(dev);
10878 
10879 	if (rootdev->operstate == IF_OPER_TESTING)
10880 		netif_testing_on(dev);
10881 	else
10882 		netif_testing_off(dev);
10883 
10884 	if (netif_carrier_ok(rootdev))
10885 		netif_carrier_on(dev);
10886 	else
10887 		netif_carrier_off(dev);
10888 }
10889 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
10890 
10891 static int netif_alloc_rx_queues(struct net_device *dev)
10892 {
10893 	unsigned int i, count = dev->num_rx_queues;
10894 	struct netdev_rx_queue *rx;
10895 	size_t sz = count * sizeof(*rx);
10896 	int err = 0;
10897 
10898 	BUG_ON(count < 1);
10899 
10900 	rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10901 	if (!rx)
10902 		return -ENOMEM;
10903 
10904 	dev->_rx = rx;
10905 
10906 	for (i = 0; i < count; i++) {
10907 		rx[i].dev = dev;
10908 
10909 		/* XDP RX-queue setup */
10910 		err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
10911 		if (err < 0)
10912 			goto err_rxq_info;
10913 	}
10914 	return 0;
10915 
10916 err_rxq_info:
10917 	/* Rollback successful reg's and free other resources */
10918 	while (i--)
10919 		xdp_rxq_info_unreg(&rx[i].xdp_rxq);
10920 	kvfree(dev->_rx);
10921 	dev->_rx = NULL;
10922 	return err;
10923 }
10924 
10925 static void netif_free_rx_queues(struct net_device *dev)
10926 {
10927 	unsigned int i, count = dev->num_rx_queues;
10928 
10929 	/* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
10930 	if (!dev->_rx)
10931 		return;
10932 
10933 	for (i = 0; i < count; i++)
10934 		xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
10935 
10936 	kvfree(dev->_rx);
10937 }
10938 
10939 static void netdev_init_one_queue(struct net_device *dev,
10940 				  struct netdev_queue *queue, void *_unused)
10941 {
10942 	/* Initialize queue lock */
10943 	spin_lock_init(&queue->_xmit_lock);
10944 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
10945 	queue->xmit_lock_owner = -1;
10946 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
10947 	queue->dev = dev;
10948 #ifdef CONFIG_BQL
10949 	dql_init(&queue->dql, HZ);
10950 #endif
10951 }
10952 
10953 static void netif_free_tx_queues(struct net_device *dev)
10954 {
10955 	kvfree(dev->_tx);
10956 }
10957 
10958 static int netif_alloc_netdev_queues(struct net_device *dev)
10959 {
10960 	unsigned int count = dev->num_tx_queues;
10961 	struct netdev_queue *tx;
10962 	size_t sz = count * sizeof(*tx);
10963 
10964 	if (count < 1 || count > 0xffff)
10965 		return -EINVAL;
10966 
10967 	tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10968 	if (!tx)
10969 		return -ENOMEM;
10970 
10971 	dev->_tx = tx;
10972 
10973 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
10974 	spin_lock_init(&dev->tx_global_lock);
10975 
10976 	return 0;
10977 }
10978 
10979 void netif_tx_stop_all_queues(struct net_device *dev)
10980 {
10981 	unsigned int i;
10982 
10983 	for (i = 0; i < dev->num_tx_queues; i++) {
10984 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
10985 
10986 		netif_tx_stop_queue(txq);
10987 	}
10988 }
10989 EXPORT_SYMBOL(netif_tx_stop_all_queues);
10990 
10991 static int netdev_do_alloc_pcpu_stats(struct net_device *dev)
10992 {
10993 	void __percpu *v;
10994 
10995 	/* Drivers implementing ndo_get_peer_dev must support tstat
10996 	 * accounting, so that skb_do_redirect() can bump the dev's
10997 	 * RX stats upon network namespace switch.
10998 	 */
10999 	if (dev->netdev_ops->ndo_get_peer_dev &&
11000 	    dev->pcpu_stat_type != NETDEV_PCPU_STAT_TSTATS)
11001 		return -EOPNOTSUPP;
11002 
11003 	switch (dev->pcpu_stat_type) {
11004 	case NETDEV_PCPU_STAT_NONE:
11005 		return 0;
11006 	case NETDEV_PCPU_STAT_LSTATS:
11007 		v = dev->lstats = netdev_alloc_pcpu_stats(struct pcpu_lstats);
11008 		break;
11009 	case NETDEV_PCPU_STAT_TSTATS:
11010 		v = dev->tstats = netdev_alloc_pcpu_stats(struct pcpu_sw_netstats);
11011 		break;
11012 	case NETDEV_PCPU_STAT_DSTATS:
11013 		v = dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
11014 		break;
11015 	default:
11016 		return -EINVAL;
11017 	}
11018 
11019 	return v ? 0 : -ENOMEM;
11020 }
11021 
11022 static void netdev_do_free_pcpu_stats(struct net_device *dev)
11023 {
11024 	switch (dev->pcpu_stat_type) {
11025 	case NETDEV_PCPU_STAT_NONE:
11026 		return;
11027 	case NETDEV_PCPU_STAT_LSTATS:
11028 		free_percpu(dev->lstats);
11029 		break;
11030 	case NETDEV_PCPU_STAT_TSTATS:
11031 		free_percpu(dev->tstats);
11032 		break;
11033 	case NETDEV_PCPU_STAT_DSTATS:
11034 		free_percpu(dev->dstats);
11035 		break;
11036 	}
11037 }
11038 
11039 static void netdev_free_phy_link_topology(struct net_device *dev)
11040 {
11041 	struct phy_link_topology *topo = dev->link_topo;
11042 
11043 	if (IS_ENABLED(CONFIG_PHYLIB) && topo) {
11044 		xa_destroy(&topo->phys);
11045 		kfree(topo);
11046 		dev->link_topo = NULL;
11047 	}
11048 }
11049 
11050 /**
11051  * register_netdevice() - register a network device
11052  * @dev: device to register
11053  *
11054  * Take a prepared network device structure and make it externally accessible.
11055  * A %NETDEV_REGISTER message is sent to the netdev notifier chain.
11056  * Callers must hold the rtnl lock - you may want register_netdev()
11057  * instead of this.
11058  */
11059 int register_netdevice(struct net_device *dev)
11060 {
11061 	int ret;
11062 	struct net *net = dev_net(dev);
11063 
11064 	BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
11065 		     NETDEV_FEATURE_COUNT);
11066 	BUG_ON(dev_boot_phase);
11067 	ASSERT_RTNL();
11068 
11069 	might_sleep();
11070 
11071 	/* When net_device's are persistent, this will be fatal. */
11072 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
11073 	BUG_ON(!net);
11074 
11075 	ret = ethtool_check_ops(dev->ethtool_ops);
11076 	if (ret)
11077 		return ret;
11078 
11079 	/* rss ctx ID 0 is reserved for the default context, start from 1 */
11080 	xa_init_flags(&dev->ethtool->rss_ctx, XA_FLAGS_ALLOC1);
11081 	mutex_init(&dev->ethtool->rss_lock);
11082 
11083 	spin_lock_init(&dev->addr_list_lock);
11084 	netdev_set_addr_lockdep_class(dev);
11085 
11086 	ret = dev_get_valid_name(net, dev, dev->name);
11087 	if (ret < 0)
11088 		goto out;
11089 
11090 	ret = -ENOMEM;
11091 	dev->name_node = netdev_name_node_head_alloc(dev);
11092 	if (!dev->name_node)
11093 		goto out;
11094 
11095 	/* Init, if this function is available */
11096 	if (dev->netdev_ops->ndo_init) {
11097 		ret = dev->netdev_ops->ndo_init(dev);
11098 		if (ret) {
11099 			if (ret > 0)
11100 				ret = -EIO;
11101 			goto err_free_name;
11102 		}
11103 	}
11104 
11105 	if (((dev->hw_features | dev->features) &
11106 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
11107 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
11108 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
11109 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
11110 		ret = -EINVAL;
11111 		goto err_uninit;
11112 	}
11113 
11114 	ret = netdev_do_alloc_pcpu_stats(dev);
11115 	if (ret)
11116 		goto err_uninit;
11117 
11118 	ret = dev_index_reserve(net, dev->ifindex);
11119 	if (ret < 0)
11120 		goto err_free_pcpu;
11121 	dev->ifindex = ret;
11122 
11123 	/* Transfer changeable features to wanted_features and enable
11124 	 * software offloads (GSO and GRO).
11125 	 */
11126 	dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
11127 	dev->features |= NETIF_F_SOFT_FEATURES;
11128 
11129 	if (dev->udp_tunnel_nic_info) {
11130 		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
11131 		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
11132 	}
11133 
11134 	dev->wanted_features = dev->features & dev->hw_features;
11135 
11136 	if (!(dev->flags & IFF_LOOPBACK))
11137 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
11138 
11139 	/* If IPv4 TCP segmentation offload is supported we should also
11140 	 * allow the device to enable segmenting the frame with the option
11141 	 * of ignoring a static IP ID value.  This doesn't enable the
11142 	 * feature itself but allows the user to enable it later.
11143 	 */
11144 	if (dev->hw_features & NETIF_F_TSO)
11145 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
11146 	if (dev->vlan_features & NETIF_F_TSO)
11147 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
11148 	if (dev->mpls_features & NETIF_F_TSO)
11149 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
11150 	if (dev->hw_enc_features & NETIF_F_TSO)
11151 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
11152 
11153 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
11154 	 */
11155 	dev->vlan_features |= NETIF_F_HIGHDMA;
11156 
11157 	/* Make NETIF_F_SG inheritable to tunnel devices.
11158 	 */
11159 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
11160 
11161 	/* Make NETIF_F_SG inheritable to MPLS.
11162 	 */
11163 	dev->mpls_features |= NETIF_F_SG;
11164 
11165 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
11166 	ret = notifier_to_errno(ret);
11167 	if (ret)
11168 		goto err_ifindex_release;
11169 
11170 	ret = netdev_register_kobject(dev);
11171 
11172 	netdev_lock(dev);
11173 	WRITE_ONCE(dev->reg_state, ret ? NETREG_UNREGISTERED : NETREG_REGISTERED);
11174 	netdev_unlock(dev);
11175 
11176 	if (ret)
11177 		goto err_uninit_notify;
11178 
11179 	netdev_lock_ops(dev);
11180 	__netdev_update_features(dev);
11181 	netdev_unlock_ops(dev);
11182 
11183 	/*
11184 	 *	Default initial state at registry is that the
11185 	 *	device is present.
11186 	 */
11187 
11188 	set_bit(__LINK_STATE_PRESENT, &dev->state);
11189 
11190 	linkwatch_init_dev(dev);
11191 
11192 	dev_init_scheduler(dev);
11193 
11194 	netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL);
11195 	list_netdevice(dev);
11196 
11197 	add_device_randomness(dev->dev_addr, dev->addr_len);
11198 
11199 	/* If the device has permanent device address, driver should
11200 	 * set dev_addr and also addr_assign_type should be set to
11201 	 * NET_ADDR_PERM (default value).
11202 	 */
11203 	if (dev->addr_assign_type == NET_ADDR_PERM)
11204 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
11205 
11206 	/* Notify protocols, that a new device appeared. */
11207 	netdev_lock_ops(dev);
11208 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
11209 	netdev_unlock_ops(dev);
11210 	ret = notifier_to_errno(ret);
11211 	if (ret) {
11212 		/* Expect explicit free_netdev() on failure */
11213 		dev->needs_free_netdev = false;
11214 		unregister_netdevice_queue(dev, NULL);
11215 		goto out;
11216 	}
11217 	/*
11218 	 *	Prevent userspace races by waiting until the network
11219 	 *	device is fully setup before sending notifications.
11220 	 */
11221 	if (!(dev->rtnl_link_ops && dev->rtnl_link_initializing))
11222 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
11223 
11224 out:
11225 	return ret;
11226 
11227 err_uninit_notify:
11228 	call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
11229 err_ifindex_release:
11230 	dev_index_release(net, dev->ifindex);
11231 err_free_pcpu:
11232 	netdev_do_free_pcpu_stats(dev);
11233 err_uninit:
11234 	if (dev->netdev_ops->ndo_uninit)
11235 		dev->netdev_ops->ndo_uninit(dev);
11236 	if (dev->priv_destructor)
11237 		dev->priv_destructor(dev);
11238 err_free_name:
11239 	netdev_name_node_free(dev->name_node);
11240 	goto out;
11241 }
11242 EXPORT_SYMBOL(register_netdevice);
11243 
11244 /* Initialize the core of a dummy net device.
11245  * The setup steps dummy netdevs need which normal netdevs get by going
11246  * through register_netdevice().
11247  */
11248 static void init_dummy_netdev(struct net_device *dev)
11249 {
11250 	/* make sure we BUG if trying to hit standard
11251 	 * register/unregister code path
11252 	 */
11253 	dev->reg_state = NETREG_DUMMY;
11254 
11255 	/* a dummy interface is started by default */
11256 	set_bit(__LINK_STATE_PRESENT, &dev->state);
11257 	set_bit(__LINK_STATE_START, &dev->state);
11258 
11259 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
11260 	 * because users of this 'device' dont need to change
11261 	 * its refcount.
11262 	 */
11263 }
11264 
11265 /**
11266  *	register_netdev	- register a network device
11267  *	@dev: device to register
11268  *
11269  *	Take a completed network device structure and add it to the kernel
11270  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
11271  *	chain. 0 is returned on success. A negative errno code is returned
11272  *	on a failure to set up the device, or if the name is a duplicate.
11273  *
11274  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
11275  *	and expands the device name if you passed a format string to
11276  *	alloc_netdev.
11277  */
11278 int register_netdev(struct net_device *dev)
11279 {
11280 	struct net *net = dev_net(dev);
11281 	int err;
11282 
11283 	if (rtnl_net_lock_killable(net))
11284 		return -EINTR;
11285 
11286 	err = register_netdevice(dev);
11287 
11288 	rtnl_net_unlock(net);
11289 
11290 	return err;
11291 }
11292 EXPORT_SYMBOL(register_netdev);
11293 
11294 int netdev_refcnt_read(const struct net_device *dev)
11295 {
11296 #ifdef CONFIG_PCPU_DEV_REFCNT
11297 	int i, refcnt = 0;
11298 
11299 	for_each_possible_cpu(i)
11300 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
11301 	return refcnt;
11302 #else
11303 	return refcount_read(&dev->dev_refcnt);
11304 #endif
11305 }
11306 EXPORT_SYMBOL(netdev_refcnt_read);
11307 
11308 int netdev_unregister_timeout_secs __read_mostly = 10;
11309 
11310 #define WAIT_REFS_MIN_MSECS 1
11311 #define WAIT_REFS_MAX_MSECS 250
11312 /**
11313  * netdev_wait_allrefs_any - wait until all references are gone.
11314  * @list: list of net_devices to wait on
11315  *
11316  * This is called when unregistering network devices.
11317  *
11318  * Any protocol or device that holds a reference should register
11319  * for netdevice notification, and cleanup and put back the
11320  * reference if they receive an UNREGISTER event.
11321  * We can get stuck here if buggy protocols don't correctly
11322  * call dev_put.
11323  */
11324 static struct net_device *netdev_wait_allrefs_any(struct list_head *list)
11325 {
11326 	unsigned long rebroadcast_time, warning_time;
11327 	struct net_device *dev;
11328 	int wait = 0;
11329 
11330 	rebroadcast_time = warning_time = jiffies;
11331 
11332 	list_for_each_entry(dev, list, todo_list)
11333 		if (netdev_refcnt_read(dev) == 1)
11334 			return dev;
11335 
11336 	while (true) {
11337 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
11338 			rtnl_lock();
11339 
11340 			/* Rebroadcast unregister notification */
11341 			list_for_each_entry(dev, list, todo_list)
11342 				call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11343 
11344 			__rtnl_unlock();
11345 			rcu_barrier();
11346 			rtnl_lock();
11347 
11348 			list_for_each_entry(dev, list, todo_list)
11349 				if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
11350 					     &dev->state)) {
11351 					/* We must not have linkwatch events
11352 					 * pending on unregister. If this
11353 					 * happens, we simply run the queue
11354 					 * unscheduled, resulting in a noop
11355 					 * for this device.
11356 					 */
11357 					linkwatch_run_queue();
11358 					break;
11359 				}
11360 
11361 			__rtnl_unlock();
11362 
11363 			rebroadcast_time = jiffies;
11364 		}
11365 
11366 		rcu_barrier();
11367 
11368 		if (!wait) {
11369 			wait = WAIT_REFS_MIN_MSECS;
11370 		} else {
11371 			msleep(wait);
11372 			wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
11373 		}
11374 
11375 		list_for_each_entry(dev, list, todo_list)
11376 			if (netdev_refcnt_read(dev) == 1)
11377 				return dev;
11378 
11379 		if (time_after(jiffies, warning_time +
11380 			       READ_ONCE(netdev_unregister_timeout_secs) * HZ)) {
11381 			list_for_each_entry(dev, list, todo_list) {
11382 				pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
11383 					 dev->name, netdev_refcnt_read(dev));
11384 				ref_tracker_dir_print(&dev->refcnt_tracker, 10);
11385 			}
11386 
11387 			warning_time = jiffies;
11388 		}
11389 	}
11390 }
11391 
11392 /* The sequence is:
11393  *
11394  *	rtnl_lock();
11395  *	...
11396  *	register_netdevice(x1);
11397  *	register_netdevice(x2);
11398  *	...
11399  *	unregister_netdevice(y1);
11400  *	unregister_netdevice(y2);
11401  *      ...
11402  *	rtnl_unlock();
11403  *	free_netdev(y1);
11404  *	free_netdev(y2);
11405  *
11406  * We are invoked by rtnl_unlock().
11407  * This allows us to deal with problems:
11408  * 1) We can delete sysfs objects which invoke hotplug
11409  *    without deadlocking with linkwatch via keventd.
11410  * 2) Since we run with the RTNL semaphore not held, we can sleep
11411  *    safely in order to wait for the netdev refcnt to drop to zero.
11412  *
11413  * We must not return until all unregister events added during
11414  * the interval the lock was held have been completed.
11415  */
11416 void netdev_run_todo(void)
11417 {
11418 	struct net_device *dev, *tmp;
11419 	struct list_head list;
11420 	int cnt;
11421 #ifdef CONFIG_LOCKDEP
11422 	struct list_head unlink_list;
11423 
11424 	list_replace_init(&net_unlink_list, &unlink_list);
11425 
11426 	while (!list_empty(&unlink_list)) {
11427 		dev = list_first_entry(&unlink_list, struct net_device,
11428 				       unlink_list);
11429 		list_del_init(&dev->unlink_list);
11430 		dev->nested_level = dev->lower_level - 1;
11431 	}
11432 #endif
11433 
11434 	/* Snapshot list, allow later requests */
11435 	list_replace_init(&net_todo_list, &list);
11436 
11437 	__rtnl_unlock();
11438 
11439 	/* Wait for rcu callbacks to finish before next phase */
11440 	if (!list_empty(&list))
11441 		rcu_barrier();
11442 
11443 	list_for_each_entry_safe(dev, tmp, &list, todo_list) {
11444 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
11445 			netdev_WARN(dev, "run_todo but not unregistering\n");
11446 			list_del(&dev->todo_list);
11447 			continue;
11448 		}
11449 
11450 		netdev_lock(dev);
11451 		WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERED);
11452 		netdev_unlock(dev);
11453 		linkwatch_sync_dev(dev);
11454 	}
11455 
11456 	cnt = 0;
11457 	while (!list_empty(&list)) {
11458 		dev = netdev_wait_allrefs_any(&list);
11459 		list_del(&dev->todo_list);
11460 
11461 		/* paranoia */
11462 		BUG_ON(netdev_refcnt_read(dev) != 1);
11463 		BUG_ON(!list_empty(&dev->ptype_all));
11464 		BUG_ON(!list_empty(&dev->ptype_specific));
11465 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
11466 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
11467 
11468 		netdev_do_free_pcpu_stats(dev);
11469 		if (dev->priv_destructor)
11470 			dev->priv_destructor(dev);
11471 		if (dev->needs_free_netdev)
11472 			free_netdev(dev);
11473 
11474 		cnt++;
11475 
11476 		/* Free network device */
11477 		kobject_put(&dev->dev.kobj);
11478 	}
11479 	if (cnt && atomic_sub_and_test(cnt, &dev_unreg_count))
11480 		wake_up(&netdev_unregistering_wq);
11481 }
11482 
11483 /* Collate per-cpu network dstats statistics
11484  *
11485  * Read per-cpu network statistics from dev->dstats and populate the related
11486  * fields in @s.
11487  */
11488 static void dev_fetch_dstats(struct rtnl_link_stats64 *s,
11489 			     const struct pcpu_dstats __percpu *dstats)
11490 {
11491 	int cpu;
11492 
11493 	for_each_possible_cpu(cpu) {
11494 		u64 rx_packets, rx_bytes, rx_drops;
11495 		u64 tx_packets, tx_bytes, tx_drops;
11496 		const struct pcpu_dstats *stats;
11497 		unsigned int start;
11498 
11499 		stats = per_cpu_ptr(dstats, cpu);
11500 		do {
11501 			start = u64_stats_fetch_begin(&stats->syncp);
11502 			rx_packets = u64_stats_read(&stats->rx_packets);
11503 			rx_bytes   = u64_stats_read(&stats->rx_bytes);
11504 			rx_drops   = u64_stats_read(&stats->rx_drops);
11505 			tx_packets = u64_stats_read(&stats->tx_packets);
11506 			tx_bytes   = u64_stats_read(&stats->tx_bytes);
11507 			tx_drops   = u64_stats_read(&stats->tx_drops);
11508 		} while (u64_stats_fetch_retry(&stats->syncp, start));
11509 
11510 		s->rx_packets += rx_packets;
11511 		s->rx_bytes   += rx_bytes;
11512 		s->rx_dropped += rx_drops;
11513 		s->tx_packets += tx_packets;
11514 		s->tx_bytes   += tx_bytes;
11515 		s->tx_dropped += tx_drops;
11516 	}
11517 }
11518 
11519 /* ndo_get_stats64 implementation for dtstats-based accounting.
11520  *
11521  * Populate @s from dev->stats and dev->dstats. This is used internally by the
11522  * core for NETDEV_PCPU_STAT_DSTAT-type stats collection.
11523  */
11524 static void dev_get_dstats64(const struct net_device *dev,
11525 			     struct rtnl_link_stats64 *s)
11526 {
11527 	netdev_stats_to_stats64(s, &dev->stats);
11528 	dev_fetch_dstats(s, dev->dstats);
11529 }
11530 
11531 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
11532  * all the same fields in the same order as net_device_stats, with only
11533  * the type differing, but rtnl_link_stats64 may have additional fields
11534  * at the end for newer counters.
11535  */
11536 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
11537 			     const struct net_device_stats *netdev_stats)
11538 {
11539 	size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t);
11540 	const atomic_long_t *src = (atomic_long_t *)netdev_stats;
11541 	u64 *dst = (u64 *)stats64;
11542 
11543 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
11544 	for (i = 0; i < n; i++)
11545 		dst[i] = (unsigned long)atomic_long_read(&src[i]);
11546 	/* zero out counters that only exist in rtnl_link_stats64 */
11547 	memset((char *)stats64 + n * sizeof(u64), 0,
11548 	       sizeof(*stats64) - n * sizeof(u64));
11549 }
11550 EXPORT_SYMBOL(netdev_stats_to_stats64);
11551 
11552 static __cold struct net_device_core_stats __percpu *netdev_core_stats_alloc(
11553 		struct net_device *dev)
11554 {
11555 	struct net_device_core_stats __percpu *p;
11556 
11557 	p = alloc_percpu_gfp(struct net_device_core_stats,
11558 			     GFP_ATOMIC | __GFP_NOWARN);
11559 
11560 	if (p && cmpxchg(&dev->core_stats, NULL, p))
11561 		free_percpu(p);
11562 
11563 	/* This READ_ONCE() pairs with the cmpxchg() above */
11564 	return READ_ONCE(dev->core_stats);
11565 }
11566 
11567 noinline void netdev_core_stats_inc(struct net_device *dev, u32 offset)
11568 {
11569 	/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
11570 	struct net_device_core_stats __percpu *p = READ_ONCE(dev->core_stats);
11571 	unsigned long __percpu *field;
11572 
11573 	if (unlikely(!p)) {
11574 		p = netdev_core_stats_alloc(dev);
11575 		if (!p)
11576 			return;
11577 	}
11578 
11579 	field = (unsigned long __percpu *)((void __percpu *)p + offset);
11580 	this_cpu_inc(*field);
11581 }
11582 EXPORT_SYMBOL_GPL(netdev_core_stats_inc);
11583 
11584 /**
11585  *	dev_get_stats	- get network device statistics
11586  *	@dev: device to get statistics from
11587  *	@storage: place to store stats
11588  *
11589  *	Get network statistics from device. Return @storage.
11590  *	The device driver may provide its own method by setting
11591  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
11592  *	otherwise the internal statistics structure is used.
11593  */
11594 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
11595 					struct rtnl_link_stats64 *storage)
11596 {
11597 	const struct net_device_ops *ops = dev->netdev_ops;
11598 	const struct net_device_core_stats __percpu *p;
11599 
11600 	/*
11601 	 * IPv{4,6} and udp tunnels share common stat helpers and use
11602 	 * different stat type (NETDEV_PCPU_STAT_TSTATS vs
11603 	 * NETDEV_PCPU_STAT_DSTATS). Ensure the accounting is consistent.
11604 	 */
11605 	BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, rx_bytes) !=
11606 		     offsetof(struct pcpu_dstats, rx_bytes));
11607 	BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, rx_packets) !=
11608 		     offsetof(struct pcpu_dstats, rx_packets));
11609 	BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, tx_bytes) !=
11610 		     offsetof(struct pcpu_dstats, tx_bytes));
11611 	BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, tx_packets) !=
11612 		     offsetof(struct pcpu_dstats, tx_packets));
11613 
11614 	if (ops->ndo_get_stats64) {
11615 		memset(storage, 0, sizeof(*storage));
11616 		ops->ndo_get_stats64(dev, storage);
11617 	} else if (ops->ndo_get_stats) {
11618 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
11619 	} else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_TSTATS) {
11620 		dev_get_tstats64(dev, storage);
11621 	} else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_DSTATS) {
11622 		dev_get_dstats64(dev, storage);
11623 	} else {
11624 		netdev_stats_to_stats64(storage, &dev->stats);
11625 	}
11626 
11627 	/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
11628 	p = READ_ONCE(dev->core_stats);
11629 	if (p) {
11630 		const struct net_device_core_stats *core_stats;
11631 		int i;
11632 
11633 		for_each_possible_cpu(i) {
11634 			core_stats = per_cpu_ptr(p, i);
11635 			storage->rx_dropped += READ_ONCE(core_stats->rx_dropped);
11636 			storage->tx_dropped += READ_ONCE(core_stats->tx_dropped);
11637 			storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler);
11638 			storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped);
11639 		}
11640 	}
11641 	return storage;
11642 }
11643 EXPORT_SYMBOL(dev_get_stats);
11644 
11645 /**
11646  *	dev_fetch_sw_netstats - get per-cpu network device statistics
11647  *	@s: place to store stats
11648  *	@netstats: per-cpu network stats to read from
11649  *
11650  *	Read per-cpu network statistics and populate the related fields in @s.
11651  */
11652 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
11653 			   const struct pcpu_sw_netstats __percpu *netstats)
11654 {
11655 	int cpu;
11656 
11657 	for_each_possible_cpu(cpu) {
11658 		u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
11659 		const struct pcpu_sw_netstats *stats;
11660 		unsigned int start;
11661 
11662 		stats = per_cpu_ptr(netstats, cpu);
11663 		do {
11664 			start = u64_stats_fetch_begin(&stats->syncp);
11665 			rx_packets = u64_stats_read(&stats->rx_packets);
11666 			rx_bytes   = u64_stats_read(&stats->rx_bytes);
11667 			tx_packets = u64_stats_read(&stats->tx_packets);
11668 			tx_bytes   = u64_stats_read(&stats->tx_bytes);
11669 		} while (u64_stats_fetch_retry(&stats->syncp, start));
11670 
11671 		s->rx_packets += rx_packets;
11672 		s->rx_bytes   += rx_bytes;
11673 		s->tx_packets += tx_packets;
11674 		s->tx_bytes   += tx_bytes;
11675 	}
11676 }
11677 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
11678 
11679 /**
11680  *	dev_get_tstats64 - ndo_get_stats64 implementation
11681  *	@dev: device to get statistics from
11682  *	@s: place to store stats
11683  *
11684  *	Populate @s from dev->stats and dev->tstats. Can be used as
11685  *	ndo_get_stats64() callback.
11686  */
11687 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
11688 {
11689 	netdev_stats_to_stats64(s, &dev->stats);
11690 	dev_fetch_sw_netstats(s, dev->tstats);
11691 }
11692 EXPORT_SYMBOL_GPL(dev_get_tstats64);
11693 
11694 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
11695 {
11696 	struct netdev_queue *queue = dev_ingress_queue(dev);
11697 
11698 #ifdef CONFIG_NET_CLS_ACT
11699 	if (queue)
11700 		return queue;
11701 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
11702 	if (!queue)
11703 		return NULL;
11704 	netdev_init_one_queue(dev, queue, NULL);
11705 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
11706 	RCU_INIT_POINTER(queue->qdisc_sleeping, &noop_qdisc);
11707 	rcu_assign_pointer(dev->ingress_queue, queue);
11708 #endif
11709 	return queue;
11710 }
11711 
11712 static const struct ethtool_ops default_ethtool_ops;
11713 
11714 void netdev_set_default_ethtool_ops(struct net_device *dev,
11715 				    const struct ethtool_ops *ops)
11716 {
11717 	if (dev->ethtool_ops == &default_ethtool_ops)
11718 		dev->ethtool_ops = ops;
11719 }
11720 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
11721 
11722 /**
11723  * netdev_sw_irq_coalesce_default_on() - enable SW IRQ coalescing by default
11724  * @dev: netdev to enable the IRQ coalescing on
11725  *
11726  * Sets a conservative default for SW IRQ coalescing. Users can use
11727  * sysfs attributes to override the default values.
11728  */
11729 void netdev_sw_irq_coalesce_default_on(struct net_device *dev)
11730 {
11731 	WARN_ON(dev->reg_state == NETREG_REGISTERED);
11732 
11733 	if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
11734 		netdev_set_gro_flush_timeout(dev, 20000);
11735 		netdev_set_defer_hard_irqs(dev, 1);
11736 	}
11737 }
11738 EXPORT_SYMBOL_GPL(netdev_sw_irq_coalesce_default_on);
11739 
11740 /**
11741  * alloc_netdev_mqs - allocate network device
11742  * @sizeof_priv: size of private data to allocate space for
11743  * @name: device name format string
11744  * @name_assign_type: origin of device name
11745  * @setup: callback to initialize device
11746  * @txqs: the number of TX subqueues to allocate
11747  * @rxqs: the number of RX subqueues to allocate
11748  *
11749  * Allocates a struct net_device with private data area for driver use
11750  * and performs basic initialization.  Also allocates subqueue structs
11751  * for each queue on the device.
11752  */
11753 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
11754 		unsigned char name_assign_type,
11755 		void (*setup)(struct net_device *),
11756 		unsigned int txqs, unsigned int rxqs)
11757 {
11758 	struct net_device *dev;
11759 	size_t napi_config_sz;
11760 	unsigned int maxqs;
11761 
11762 	BUG_ON(strlen(name) >= sizeof(dev->name));
11763 
11764 	if (txqs < 1) {
11765 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
11766 		return NULL;
11767 	}
11768 
11769 	if (rxqs < 1) {
11770 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
11771 		return NULL;
11772 	}
11773 
11774 	maxqs = max(txqs, rxqs);
11775 
11776 	dev = kvzalloc(struct_size(dev, priv, sizeof_priv),
11777 		       GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
11778 	if (!dev)
11779 		return NULL;
11780 
11781 	dev->priv_len = sizeof_priv;
11782 
11783 	ref_tracker_dir_init(&dev->refcnt_tracker, 128, "netdev");
11784 #ifdef CONFIG_PCPU_DEV_REFCNT
11785 	dev->pcpu_refcnt = alloc_percpu(int);
11786 	if (!dev->pcpu_refcnt)
11787 		goto free_dev;
11788 	__dev_hold(dev);
11789 #else
11790 	refcount_set(&dev->dev_refcnt, 1);
11791 #endif
11792 
11793 	if (dev_addr_init(dev))
11794 		goto free_pcpu;
11795 
11796 	dev_mc_init(dev);
11797 	dev_uc_init(dev);
11798 
11799 	dev_net_set(dev, &init_net);
11800 
11801 	dev->gso_max_size = GSO_LEGACY_MAX_SIZE;
11802 	dev->xdp_zc_max_segs = 1;
11803 	dev->gso_max_segs = GSO_MAX_SEGS;
11804 	dev->gro_max_size = GRO_LEGACY_MAX_SIZE;
11805 	dev->gso_ipv4_max_size = GSO_LEGACY_MAX_SIZE;
11806 	dev->gro_ipv4_max_size = GRO_LEGACY_MAX_SIZE;
11807 	dev->tso_max_size = TSO_LEGACY_MAX_SIZE;
11808 	dev->tso_max_segs = TSO_MAX_SEGS;
11809 	dev->upper_level = 1;
11810 	dev->lower_level = 1;
11811 #ifdef CONFIG_LOCKDEP
11812 	dev->nested_level = 0;
11813 	INIT_LIST_HEAD(&dev->unlink_list);
11814 #endif
11815 
11816 	INIT_LIST_HEAD(&dev->napi_list);
11817 	INIT_LIST_HEAD(&dev->unreg_list);
11818 	INIT_LIST_HEAD(&dev->close_list);
11819 	INIT_LIST_HEAD(&dev->link_watch_list);
11820 	INIT_LIST_HEAD(&dev->adj_list.upper);
11821 	INIT_LIST_HEAD(&dev->adj_list.lower);
11822 	INIT_LIST_HEAD(&dev->ptype_all);
11823 	INIT_LIST_HEAD(&dev->ptype_specific);
11824 	INIT_LIST_HEAD(&dev->net_notifier_list);
11825 #ifdef CONFIG_NET_SCHED
11826 	hash_init(dev->qdisc_hash);
11827 #endif
11828 
11829 	mutex_init(&dev->lock);
11830 
11831 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
11832 	setup(dev);
11833 
11834 	if (!dev->tx_queue_len) {
11835 		dev->priv_flags |= IFF_NO_QUEUE;
11836 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
11837 	}
11838 
11839 	dev->num_tx_queues = txqs;
11840 	dev->real_num_tx_queues = txqs;
11841 	if (netif_alloc_netdev_queues(dev))
11842 		goto free_all;
11843 
11844 	dev->num_rx_queues = rxqs;
11845 	dev->real_num_rx_queues = rxqs;
11846 	if (netif_alloc_rx_queues(dev))
11847 		goto free_all;
11848 	dev->ethtool = kzalloc(sizeof(*dev->ethtool), GFP_KERNEL_ACCOUNT);
11849 	if (!dev->ethtool)
11850 		goto free_all;
11851 
11852 	dev->cfg = kzalloc(sizeof(*dev->cfg), GFP_KERNEL_ACCOUNT);
11853 	if (!dev->cfg)
11854 		goto free_all;
11855 	dev->cfg_pending = dev->cfg;
11856 
11857 	napi_config_sz = array_size(maxqs, sizeof(*dev->napi_config));
11858 	dev->napi_config = kvzalloc(napi_config_sz, GFP_KERNEL_ACCOUNT);
11859 	if (!dev->napi_config)
11860 		goto free_all;
11861 
11862 	strscpy(dev->name, name);
11863 	dev->name_assign_type = name_assign_type;
11864 	dev->group = INIT_NETDEV_GROUP;
11865 	if (!dev->ethtool_ops)
11866 		dev->ethtool_ops = &default_ethtool_ops;
11867 
11868 	nf_hook_netdev_init(dev);
11869 
11870 	return dev;
11871 
11872 free_all:
11873 	free_netdev(dev);
11874 	return NULL;
11875 
11876 free_pcpu:
11877 #ifdef CONFIG_PCPU_DEV_REFCNT
11878 	free_percpu(dev->pcpu_refcnt);
11879 free_dev:
11880 #endif
11881 	kvfree(dev);
11882 	return NULL;
11883 }
11884 EXPORT_SYMBOL(alloc_netdev_mqs);
11885 
11886 static void netdev_napi_exit(struct net_device *dev)
11887 {
11888 	if (!list_empty(&dev->napi_list)) {
11889 		struct napi_struct *p, *n;
11890 
11891 		netdev_lock(dev);
11892 		list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
11893 			__netif_napi_del_locked(p);
11894 		netdev_unlock(dev);
11895 
11896 		synchronize_net();
11897 	}
11898 
11899 	kvfree(dev->napi_config);
11900 }
11901 
11902 /**
11903  * free_netdev - free network device
11904  * @dev: device
11905  *
11906  * This function does the last stage of destroying an allocated device
11907  * interface. The reference to the device object is released. If this
11908  * is the last reference then it will be freed.Must be called in process
11909  * context.
11910  */
11911 void free_netdev(struct net_device *dev)
11912 {
11913 	might_sleep();
11914 
11915 	/* When called immediately after register_netdevice() failed the unwind
11916 	 * handling may still be dismantling the device. Handle that case by
11917 	 * deferring the free.
11918 	 */
11919 	if (dev->reg_state == NETREG_UNREGISTERING) {
11920 		ASSERT_RTNL();
11921 		dev->needs_free_netdev = true;
11922 		return;
11923 	}
11924 
11925 	WARN_ON(dev->cfg != dev->cfg_pending);
11926 	kfree(dev->cfg);
11927 	kfree(dev->ethtool);
11928 	netif_free_tx_queues(dev);
11929 	netif_free_rx_queues(dev);
11930 
11931 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
11932 
11933 	/* Flush device addresses */
11934 	dev_addr_flush(dev);
11935 
11936 	netdev_napi_exit(dev);
11937 
11938 	netif_del_cpu_rmap(dev);
11939 
11940 	ref_tracker_dir_exit(&dev->refcnt_tracker);
11941 #ifdef CONFIG_PCPU_DEV_REFCNT
11942 	free_percpu(dev->pcpu_refcnt);
11943 	dev->pcpu_refcnt = NULL;
11944 #endif
11945 	free_percpu(dev->core_stats);
11946 	dev->core_stats = NULL;
11947 	free_percpu(dev->xdp_bulkq);
11948 	dev->xdp_bulkq = NULL;
11949 
11950 	netdev_free_phy_link_topology(dev);
11951 
11952 	mutex_destroy(&dev->lock);
11953 
11954 	/*  Compatibility with error handling in drivers */
11955 	if (dev->reg_state == NETREG_UNINITIALIZED ||
11956 	    dev->reg_state == NETREG_DUMMY) {
11957 		kvfree(dev);
11958 		return;
11959 	}
11960 
11961 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
11962 	WRITE_ONCE(dev->reg_state, NETREG_RELEASED);
11963 
11964 	/* will free via device release */
11965 	put_device(&dev->dev);
11966 }
11967 EXPORT_SYMBOL(free_netdev);
11968 
11969 /**
11970  * alloc_netdev_dummy - Allocate and initialize a dummy net device.
11971  * @sizeof_priv: size of private data to allocate space for
11972  *
11973  * Return: the allocated net_device on success, NULL otherwise
11974  */
11975 struct net_device *alloc_netdev_dummy(int sizeof_priv)
11976 {
11977 	return alloc_netdev(sizeof_priv, "dummy#", NET_NAME_UNKNOWN,
11978 			    init_dummy_netdev);
11979 }
11980 EXPORT_SYMBOL_GPL(alloc_netdev_dummy);
11981 
11982 /**
11983  *	synchronize_net -  Synchronize with packet receive processing
11984  *
11985  *	Wait for packets currently being received to be done.
11986  *	Does not block later packets from starting.
11987  */
11988 void synchronize_net(void)
11989 {
11990 	might_sleep();
11991 	if (from_cleanup_net() || rtnl_is_locked())
11992 		synchronize_rcu_expedited();
11993 	else
11994 		synchronize_rcu();
11995 }
11996 EXPORT_SYMBOL(synchronize_net);
11997 
11998 static void netdev_rss_contexts_free(struct net_device *dev)
11999 {
12000 	struct ethtool_rxfh_context *ctx;
12001 	unsigned long context;
12002 
12003 	mutex_lock(&dev->ethtool->rss_lock);
12004 	xa_for_each(&dev->ethtool->rss_ctx, context, ctx) {
12005 		xa_erase(&dev->ethtool->rss_ctx, context);
12006 		dev->ethtool_ops->remove_rxfh_context(dev, ctx, context, NULL);
12007 		kfree(ctx);
12008 	}
12009 	xa_destroy(&dev->ethtool->rss_ctx);
12010 	mutex_unlock(&dev->ethtool->rss_lock);
12011 }
12012 
12013 /**
12014  *	unregister_netdevice_queue - remove device from the kernel
12015  *	@dev: device
12016  *	@head: list
12017  *
12018  *	This function shuts down a device interface and removes it
12019  *	from the kernel tables.
12020  *	If head not NULL, device is queued to be unregistered later.
12021  *
12022  *	Callers must hold the rtnl semaphore.  You may want
12023  *	unregister_netdev() instead of this.
12024  */
12025 
12026 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
12027 {
12028 	ASSERT_RTNL();
12029 
12030 	if (head) {
12031 		list_move_tail(&dev->unreg_list, head);
12032 	} else {
12033 		LIST_HEAD(single);
12034 
12035 		list_add(&dev->unreg_list, &single);
12036 		unregister_netdevice_many(&single);
12037 	}
12038 }
12039 EXPORT_SYMBOL(unregister_netdevice_queue);
12040 
12041 static void dev_memory_provider_uninstall(struct net_device *dev)
12042 {
12043 	unsigned int i;
12044 
12045 	for (i = 0; i < dev->real_num_rx_queues; i++) {
12046 		struct netdev_rx_queue *rxq = &dev->_rx[i];
12047 		struct pp_memory_provider_params *p = &rxq->mp_params;
12048 
12049 		if (p->mp_ops && p->mp_ops->uninstall)
12050 			p->mp_ops->uninstall(rxq->mp_params.mp_priv, rxq);
12051 	}
12052 }
12053 
12054 void unregister_netdevice_many_notify(struct list_head *head,
12055 				      u32 portid, const struct nlmsghdr *nlh)
12056 {
12057 	struct net_device *dev, *tmp;
12058 	LIST_HEAD(close_head);
12059 	int cnt = 0;
12060 
12061 	BUG_ON(dev_boot_phase);
12062 	ASSERT_RTNL();
12063 
12064 	if (list_empty(head))
12065 		return;
12066 
12067 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
12068 		/* Some devices call without registering
12069 		 * for initialization unwind. Remove those
12070 		 * devices and proceed with the remaining.
12071 		 */
12072 		if (dev->reg_state == NETREG_UNINITIALIZED) {
12073 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
12074 				 dev->name, dev);
12075 
12076 			WARN_ON(1);
12077 			list_del(&dev->unreg_list);
12078 			continue;
12079 		}
12080 		dev->dismantle = true;
12081 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
12082 	}
12083 
12084 	/* If device is running, close it first. Start with ops locked... */
12085 	list_for_each_entry(dev, head, unreg_list) {
12086 		if (netdev_need_ops_lock(dev)) {
12087 			list_add_tail(&dev->close_list, &close_head);
12088 			netdev_lock(dev);
12089 		}
12090 	}
12091 	dev_close_many(&close_head, true);
12092 	/* ... now unlock them and go over the rest. */
12093 	list_for_each_entry(dev, head, unreg_list) {
12094 		if (netdev_need_ops_lock(dev))
12095 			netdev_unlock(dev);
12096 		else
12097 			list_add_tail(&dev->close_list, &close_head);
12098 	}
12099 	dev_close_many(&close_head, true);
12100 
12101 	list_for_each_entry(dev, head, unreg_list) {
12102 		/* And unlink it from device chain. */
12103 		unlist_netdevice(dev);
12104 		netdev_lock(dev);
12105 		WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERING);
12106 		netdev_unlock(dev);
12107 	}
12108 	flush_all_backlogs();
12109 
12110 	synchronize_net();
12111 
12112 	list_for_each_entry(dev, head, unreg_list) {
12113 		struct sk_buff *skb = NULL;
12114 
12115 		/* Shutdown queueing discipline. */
12116 		netdev_lock_ops(dev);
12117 		dev_shutdown(dev);
12118 		dev_tcx_uninstall(dev);
12119 		dev_xdp_uninstall(dev);
12120 		dev_memory_provider_uninstall(dev);
12121 		netdev_unlock_ops(dev);
12122 		bpf_dev_bound_netdev_unregister(dev);
12123 
12124 		netdev_offload_xstats_disable_all(dev);
12125 
12126 		/* Notify protocols, that we are about to destroy
12127 		 * this device. They should clean all the things.
12128 		 */
12129 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
12130 
12131 		if (!(dev->rtnl_link_ops && dev->rtnl_link_initializing))
12132 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
12133 						     GFP_KERNEL, NULL, 0,
12134 						     portid, nlh);
12135 
12136 		/*
12137 		 *	Flush the unicast and multicast chains
12138 		 */
12139 		dev_uc_flush(dev);
12140 		dev_mc_flush(dev);
12141 
12142 		netdev_name_node_alt_flush(dev);
12143 		netdev_name_node_free(dev->name_node);
12144 
12145 		netdev_rss_contexts_free(dev);
12146 
12147 		call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
12148 
12149 		if (dev->netdev_ops->ndo_uninit)
12150 			dev->netdev_ops->ndo_uninit(dev);
12151 
12152 		mutex_destroy(&dev->ethtool->rss_lock);
12153 
12154 		net_shaper_flush_netdev(dev);
12155 
12156 		if (skb)
12157 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL, portid, nlh);
12158 
12159 		/* Notifier chain MUST detach us all upper devices. */
12160 		WARN_ON(netdev_has_any_upper_dev(dev));
12161 		WARN_ON(netdev_has_any_lower_dev(dev));
12162 
12163 		/* Remove entries from kobject tree */
12164 		netdev_unregister_kobject(dev);
12165 #ifdef CONFIG_XPS
12166 		/* Remove XPS queueing entries */
12167 		netif_reset_xps_queues_gt(dev, 0);
12168 #endif
12169 	}
12170 
12171 	synchronize_net();
12172 
12173 	list_for_each_entry(dev, head, unreg_list) {
12174 		netdev_put(dev, &dev->dev_registered_tracker);
12175 		net_set_todo(dev);
12176 		cnt++;
12177 	}
12178 	atomic_add(cnt, &dev_unreg_count);
12179 
12180 	list_del(head);
12181 }
12182 
12183 /**
12184  *	unregister_netdevice_many - unregister many devices
12185  *	@head: list of devices
12186  *
12187  *  Note: As most callers use a stack allocated list_head,
12188  *  we force a list_del() to make sure stack won't be corrupted later.
12189  */
12190 void unregister_netdevice_many(struct list_head *head)
12191 {
12192 	unregister_netdevice_many_notify(head, 0, NULL);
12193 }
12194 EXPORT_SYMBOL(unregister_netdevice_many);
12195 
12196 /**
12197  *	unregister_netdev - remove device from the kernel
12198  *	@dev: device
12199  *
12200  *	This function shuts down a device interface and removes it
12201  *	from the kernel tables.
12202  *
12203  *	This is just a wrapper for unregister_netdevice that takes
12204  *	the rtnl semaphore.  In general you want to use this and not
12205  *	unregister_netdevice.
12206  */
12207 void unregister_netdev(struct net_device *dev)
12208 {
12209 	rtnl_net_dev_lock(dev);
12210 	unregister_netdevice(dev);
12211 	rtnl_net_dev_unlock(dev);
12212 }
12213 EXPORT_SYMBOL(unregister_netdev);
12214 
12215 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
12216 			       const char *pat, int new_ifindex,
12217 			       struct netlink_ext_ack *extack)
12218 {
12219 	struct netdev_name_node *name_node;
12220 	struct net *net_old = dev_net(dev);
12221 	char new_name[IFNAMSIZ] = {};
12222 	int err, new_nsid;
12223 
12224 	ASSERT_RTNL();
12225 
12226 	/* Don't allow namespace local devices to be moved. */
12227 	err = -EINVAL;
12228 	if (dev->netns_immutable) {
12229 		NL_SET_ERR_MSG(extack, "The interface netns is immutable");
12230 		goto out;
12231 	}
12232 
12233 	/* Ensure the device has been registered */
12234 	if (dev->reg_state != NETREG_REGISTERED) {
12235 		NL_SET_ERR_MSG(extack, "The interface isn't registered");
12236 		goto out;
12237 	}
12238 
12239 	/* Get out if there is nothing todo */
12240 	err = 0;
12241 	if (net_eq(net_old, net))
12242 		goto out;
12243 
12244 	/* Pick the destination device name, and ensure
12245 	 * we can use it in the destination network namespace.
12246 	 */
12247 	err = -EEXIST;
12248 	if (netdev_name_in_use(net, dev->name)) {
12249 		/* We get here if we can't use the current device name */
12250 		if (!pat) {
12251 			NL_SET_ERR_MSG(extack,
12252 				       "An interface with the same name exists in the target netns");
12253 			goto out;
12254 		}
12255 		err = dev_prep_valid_name(net, dev, pat, new_name, EEXIST);
12256 		if (err < 0) {
12257 			NL_SET_ERR_MSG_FMT(extack,
12258 					   "Unable to use '%s' for the new interface name in the target netns",
12259 					   pat);
12260 			goto out;
12261 		}
12262 	}
12263 	/* Check that none of the altnames conflicts. */
12264 	err = -EEXIST;
12265 	netdev_for_each_altname(dev, name_node) {
12266 		if (netdev_name_in_use(net, name_node->name)) {
12267 			NL_SET_ERR_MSG_FMT(extack,
12268 					   "An interface with the altname %s exists in the target netns",
12269 					   name_node->name);
12270 			goto out;
12271 		}
12272 	}
12273 
12274 	/* Check that new_ifindex isn't used yet. */
12275 	if (new_ifindex) {
12276 		err = dev_index_reserve(net, new_ifindex);
12277 		if (err < 0) {
12278 			NL_SET_ERR_MSG_FMT(extack,
12279 					   "The ifindex %d is not available in the target netns",
12280 					   new_ifindex);
12281 			goto out;
12282 		}
12283 	} else {
12284 		/* If there is an ifindex conflict assign a new one */
12285 		err = dev_index_reserve(net, dev->ifindex);
12286 		if (err == -EBUSY)
12287 			err = dev_index_reserve(net, 0);
12288 		if (err < 0) {
12289 			NL_SET_ERR_MSG(extack,
12290 				       "Unable to allocate a new ifindex in the target netns");
12291 			goto out;
12292 		}
12293 		new_ifindex = err;
12294 	}
12295 
12296 	/*
12297 	 * And now a mini version of register_netdevice unregister_netdevice.
12298 	 */
12299 
12300 	netdev_lock_ops(dev);
12301 	/* If device is running close it first. */
12302 	netif_close(dev);
12303 	/* And unlink it from device chain */
12304 	unlist_netdevice(dev);
12305 
12306 	if (!netdev_need_ops_lock(dev))
12307 		netdev_lock(dev);
12308 	dev->moving_ns = true;
12309 	netdev_unlock(dev);
12310 
12311 	synchronize_net();
12312 
12313 	/* Shutdown queueing discipline. */
12314 	netdev_lock_ops(dev);
12315 	dev_shutdown(dev);
12316 	netdev_unlock_ops(dev);
12317 
12318 	/* Notify protocols, that we are about to destroy
12319 	 * this device. They should clean all the things.
12320 	 *
12321 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
12322 	 * This is wanted because this way 8021q and macvlan know
12323 	 * the device is just moving and can keep their slaves up.
12324 	 */
12325 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
12326 	rcu_barrier();
12327 
12328 	new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
12329 
12330 	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
12331 			    new_ifindex);
12332 
12333 	/*
12334 	 *	Flush the unicast and multicast chains
12335 	 */
12336 	dev_uc_flush(dev);
12337 	dev_mc_flush(dev);
12338 
12339 	/* Send a netdev-removed uevent to the old namespace */
12340 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
12341 	netdev_adjacent_del_links(dev);
12342 
12343 	/* Move per-net netdevice notifiers that are following the netdevice */
12344 	move_netdevice_notifiers_dev_net(dev, net);
12345 
12346 	/* Actually switch the network namespace */
12347 	netdev_lock(dev);
12348 	dev_net_set(dev, net);
12349 	netdev_unlock(dev);
12350 	dev->ifindex = new_ifindex;
12351 
12352 	if (new_name[0]) {
12353 		/* Rename the netdev to prepared name */
12354 		write_seqlock_bh(&netdev_rename_lock);
12355 		strscpy(dev->name, new_name, IFNAMSIZ);
12356 		write_sequnlock_bh(&netdev_rename_lock);
12357 	}
12358 
12359 	/* Fixup kobjects */
12360 	dev_set_uevent_suppress(&dev->dev, 1);
12361 	err = device_rename(&dev->dev, dev->name);
12362 	dev_set_uevent_suppress(&dev->dev, 0);
12363 	WARN_ON(err);
12364 
12365 	/* Send a netdev-add uevent to the new namespace */
12366 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
12367 	netdev_adjacent_add_links(dev);
12368 
12369 	/* Adapt owner in case owning user namespace of target network
12370 	 * namespace is different from the original one.
12371 	 */
12372 	err = netdev_change_owner(dev, net_old, net);
12373 	WARN_ON(err);
12374 
12375 	netdev_lock(dev);
12376 	dev->moving_ns = false;
12377 	if (!netdev_need_ops_lock(dev))
12378 		netdev_unlock(dev);
12379 
12380 	/* Add the device back in the hashes */
12381 	list_netdevice(dev);
12382 	/* Notify protocols, that a new device appeared. */
12383 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
12384 	netdev_unlock_ops(dev);
12385 
12386 	/*
12387 	 *	Prevent userspace races by waiting until the network
12388 	 *	device is fully setup before sending notifications.
12389 	 */
12390 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
12391 
12392 	synchronize_net();
12393 	err = 0;
12394 out:
12395 	return err;
12396 }
12397 
12398 static int dev_cpu_dead(unsigned int oldcpu)
12399 {
12400 	struct sk_buff **list_skb;
12401 	struct sk_buff *skb;
12402 	unsigned int cpu;
12403 	struct softnet_data *sd, *oldsd, *remsd = NULL;
12404 
12405 	local_irq_disable();
12406 	cpu = smp_processor_id();
12407 	sd = &per_cpu(softnet_data, cpu);
12408 	oldsd = &per_cpu(softnet_data, oldcpu);
12409 
12410 	/* Find end of our completion_queue. */
12411 	list_skb = &sd->completion_queue;
12412 	while (*list_skb)
12413 		list_skb = &(*list_skb)->next;
12414 	/* Append completion queue from offline CPU. */
12415 	*list_skb = oldsd->completion_queue;
12416 	oldsd->completion_queue = NULL;
12417 
12418 	/* Append output queue from offline CPU. */
12419 	if (oldsd->output_queue) {
12420 		*sd->output_queue_tailp = oldsd->output_queue;
12421 		sd->output_queue_tailp = oldsd->output_queue_tailp;
12422 		oldsd->output_queue = NULL;
12423 		oldsd->output_queue_tailp = &oldsd->output_queue;
12424 	}
12425 	/* Append NAPI poll list from offline CPU, with one exception :
12426 	 * process_backlog() must be called by cpu owning percpu backlog.
12427 	 * We properly handle process_queue & input_pkt_queue later.
12428 	 */
12429 	while (!list_empty(&oldsd->poll_list)) {
12430 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
12431 							    struct napi_struct,
12432 							    poll_list);
12433 
12434 		list_del_init(&napi->poll_list);
12435 		if (napi->poll == process_backlog)
12436 			napi->state &= NAPIF_STATE_THREADED;
12437 		else
12438 			____napi_schedule(sd, napi);
12439 	}
12440 
12441 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
12442 	local_irq_enable();
12443 
12444 	if (!use_backlog_threads()) {
12445 #ifdef CONFIG_RPS
12446 		remsd = oldsd->rps_ipi_list;
12447 		oldsd->rps_ipi_list = NULL;
12448 #endif
12449 		/* send out pending IPI's on offline CPU */
12450 		net_rps_send_ipi(remsd);
12451 	}
12452 
12453 	/* Process offline CPU's input_pkt_queue */
12454 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
12455 		netif_rx(skb);
12456 		rps_input_queue_head_incr(oldsd);
12457 	}
12458 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
12459 		netif_rx(skb);
12460 		rps_input_queue_head_incr(oldsd);
12461 	}
12462 
12463 	return 0;
12464 }
12465 
12466 /**
12467  *	netdev_increment_features - increment feature set by one
12468  *	@all: current feature set
12469  *	@one: new feature set
12470  *	@mask: mask feature set
12471  *
12472  *	Computes a new feature set after adding a device with feature set
12473  *	@one to the master device with current feature set @all.  Will not
12474  *	enable anything that is off in @mask. Returns the new feature set.
12475  */
12476 netdev_features_t netdev_increment_features(netdev_features_t all,
12477 	netdev_features_t one, netdev_features_t mask)
12478 {
12479 	if (mask & NETIF_F_HW_CSUM)
12480 		mask |= NETIF_F_CSUM_MASK;
12481 	mask |= NETIF_F_VLAN_CHALLENGED;
12482 
12483 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
12484 	all &= one | ~NETIF_F_ALL_FOR_ALL;
12485 
12486 	/* If one device supports hw checksumming, set for all. */
12487 	if (all & NETIF_F_HW_CSUM)
12488 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
12489 
12490 	return all;
12491 }
12492 EXPORT_SYMBOL(netdev_increment_features);
12493 
12494 static struct hlist_head * __net_init netdev_create_hash(void)
12495 {
12496 	int i;
12497 	struct hlist_head *hash;
12498 
12499 	hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
12500 	if (hash != NULL)
12501 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
12502 			INIT_HLIST_HEAD(&hash[i]);
12503 
12504 	return hash;
12505 }
12506 
12507 /* Initialize per network namespace state */
12508 static int __net_init netdev_init(struct net *net)
12509 {
12510 	BUILD_BUG_ON(GRO_HASH_BUCKETS >
12511 		     BITS_PER_BYTE * sizeof_field(struct gro_node, bitmask));
12512 
12513 	INIT_LIST_HEAD(&net->dev_base_head);
12514 
12515 	net->dev_name_head = netdev_create_hash();
12516 	if (net->dev_name_head == NULL)
12517 		goto err_name;
12518 
12519 	net->dev_index_head = netdev_create_hash();
12520 	if (net->dev_index_head == NULL)
12521 		goto err_idx;
12522 
12523 	xa_init_flags(&net->dev_by_index, XA_FLAGS_ALLOC1);
12524 
12525 	RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
12526 
12527 	return 0;
12528 
12529 err_idx:
12530 	kfree(net->dev_name_head);
12531 err_name:
12532 	return -ENOMEM;
12533 }
12534 
12535 /**
12536  *	netdev_drivername - network driver for the device
12537  *	@dev: network device
12538  *
12539  *	Determine network driver for device.
12540  */
12541 const char *netdev_drivername(const struct net_device *dev)
12542 {
12543 	const struct device_driver *driver;
12544 	const struct device *parent;
12545 	const char *empty = "";
12546 
12547 	parent = dev->dev.parent;
12548 	if (!parent)
12549 		return empty;
12550 
12551 	driver = parent->driver;
12552 	if (driver && driver->name)
12553 		return driver->name;
12554 	return empty;
12555 }
12556 
12557 static void __netdev_printk(const char *level, const struct net_device *dev,
12558 			    struct va_format *vaf)
12559 {
12560 	if (dev && dev->dev.parent) {
12561 		dev_printk_emit(level[1] - '0',
12562 				dev->dev.parent,
12563 				"%s %s %s%s: %pV",
12564 				dev_driver_string(dev->dev.parent),
12565 				dev_name(dev->dev.parent),
12566 				netdev_name(dev), netdev_reg_state(dev),
12567 				vaf);
12568 	} else if (dev) {
12569 		printk("%s%s%s: %pV",
12570 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
12571 	} else {
12572 		printk("%s(NULL net_device): %pV", level, vaf);
12573 	}
12574 }
12575 
12576 void netdev_printk(const char *level, const struct net_device *dev,
12577 		   const char *format, ...)
12578 {
12579 	struct va_format vaf;
12580 	va_list args;
12581 
12582 	va_start(args, format);
12583 
12584 	vaf.fmt = format;
12585 	vaf.va = &args;
12586 
12587 	__netdev_printk(level, dev, &vaf);
12588 
12589 	va_end(args);
12590 }
12591 EXPORT_SYMBOL(netdev_printk);
12592 
12593 #define define_netdev_printk_level(func, level)			\
12594 void func(const struct net_device *dev, const char *fmt, ...)	\
12595 {								\
12596 	struct va_format vaf;					\
12597 	va_list args;						\
12598 								\
12599 	va_start(args, fmt);					\
12600 								\
12601 	vaf.fmt = fmt;						\
12602 	vaf.va = &args;						\
12603 								\
12604 	__netdev_printk(level, dev, &vaf);			\
12605 								\
12606 	va_end(args);						\
12607 }								\
12608 EXPORT_SYMBOL(func);
12609 
12610 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
12611 define_netdev_printk_level(netdev_alert, KERN_ALERT);
12612 define_netdev_printk_level(netdev_crit, KERN_CRIT);
12613 define_netdev_printk_level(netdev_err, KERN_ERR);
12614 define_netdev_printk_level(netdev_warn, KERN_WARNING);
12615 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
12616 define_netdev_printk_level(netdev_info, KERN_INFO);
12617 
12618 static void __net_exit netdev_exit(struct net *net)
12619 {
12620 	kfree(net->dev_name_head);
12621 	kfree(net->dev_index_head);
12622 	xa_destroy(&net->dev_by_index);
12623 	if (net != &init_net)
12624 		WARN_ON_ONCE(!list_empty(&net->dev_base_head));
12625 }
12626 
12627 static struct pernet_operations __net_initdata netdev_net_ops = {
12628 	.init = netdev_init,
12629 	.exit = netdev_exit,
12630 };
12631 
12632 static void __net_exit default_device_exit_net(struct net *net)
12633 {
12634 	struct netdev_name_node *name_node, *tmp;
12635 	struct net_device *dev, *aux;
12636 	/*
12637 	 * Push all migratable network devices back to the
12638 	 * initial network namespace
12639 	 */
12640 	ASSERT_RTNL();
12641 	for_each_netdev_safe(net, dev, aux) {
12642 		int err;
12643 		char fb_name[IFNAMSIZ];
12644 
12645 		/* Ignore unmoveable devices (i.e. loopback) */
12646 		if (dev->netns_immutable)
12647 			continue;
12648 
12649 		/* Leave virtual devices for the generic cleanup */
12650 		if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
12651 			continue;
12652 
12653 		/* Push remaining network devices to init_net */
12654 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
12655 		if (netdev_name_in_use(&init_net, fb_name))
12656 			snprintf(fb_name, IFNAMSIZ, "dev%%d");
12657 
12658 		netdev_for_each_altname_safe(dev, name_node, tmp)
12659 			if (netdev_name_in_use(&init_net, name_node->name))
12660 				__netdev_name_node_alt_destroy(name_node);
12661 
12662 		err = dev_change_net_namespace(dev, &init_net, fb_name);
12663 		if (err) {
12664 			pr_emerg("%s: failed to move %s to init_net: %d\n",
12665 				 __func__, dev->name, err);
12666 			BUG();
12667 		}
12668 	}
12669 }
12670 
12671 static void __net_exit default_device_exit_batch(struct list_head *net_list)
12672 {
12673 	/* At exit all network devices most be removed from a network
12674 	 * namespace.  Do this in the reverse order of registration.
12675 	 * Do this across as many network namespaces as possible to
12676 	 * improve batching efficiency.
12677 	 */
12678 	struct net_device *dev;
12679 	struct net *net;
12680 	LIST_HEAD(dev_kill_list);
12681 
12682 	rtnl_lock();
12683 	list_for_each_entry(net, net_list, exit_list) {
12684 		default_device_exit_net(net);
12685 		cond_resched();
12686 	}
12687 
12688 	list_for_each_entry(net, net_list, exit_list) {
12689 		for_each_netdev_reverse(net, dev) {
12690 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
12691 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
12692 			else
12693 				unregister_netdevice_queue(dev, &dev_kill_list);
12694 		}
12695 	}
12696 	unregister_netdevice_many(&dev_kill_list);
12697 	rtnl_unlock();
12698 }
12699 
12700 static struct pernet_operations __net_initdata default_device_ops = {
12701 	.exit_batch = default_device_exit_batch,
12702 };
12703 
12704 static void __init net_dev_struct_check(void)
12705 {
12706 	/* TX read-mostly hotpath */
12707 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, priv_flags_fast);
12708 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, netdev_ops);
12709 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, header_ops);
12710 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, _tx);
12711 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, real_num_tx_queues);
12712 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_size);
12713 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_ipv4_max_size);
12714 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_segs);
12715 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_partial_features);
12716 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, num_tc);
12717 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, mtu);
12718 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, needed_headroom);
12719 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tc_to_txq);
12720 #ifdef CONFIG_XPS
12721 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, xps_maps);
12722 #endif
12723 #ifdef CONFIG_NETFILTER_EGRESS
12724 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, nf_hooks_egress);
12725 #endif
12726 #ifdef CONFIG_NET_XGRESS
12727 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tcx_egress);
12728 #endif
12729 	CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_tx, 160);
12730 
12731 	/* TXRX read-mostly hotpath */
12732 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, lstats);
12733 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, state);
12734 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, flags);
12735 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, hard_header_len);
12736 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, features);
12737 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, ip6_ptr);
12738 	CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_txrx, 46);
12739 
12740 	/* RX read-mostly hotpath */
12741 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ptype_specific);
12742 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ifindex);
12743 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, real_num_rx_queues);
12744 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, _rx);
12745 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_max_size);
12746 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_ipv4_max_size);
12747 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler);
12748 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler_data);
12749 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, nd_net);
12750 #ifdef CONFIG_NETPOLL
12751 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, npinfo);
12752 #endif
12753 #ifdef CONFIG_NET_XGRESS
12754 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, tcx_ingress);
12755 #endif
12756 	CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_rx, 92);
12757 }
12758 
12759 /*
12760  *	Initialize the DEV module. At boot time this walks the device list and
12761  *	unhooks any devices that fail to initialise (normally hardware not
12762  *	present) and leaves us with a valid list of present and active devices.
12763  *
12764  */
12765 
12766 /* We allocate 256 pages for each CPU if PAGE_SHIFT is 12 */
12767 #define SYSTEM_PERCPU_PAGE_POOL_SIZE	((1 << 20) / PAGE_SIZE)
12768 
12769 static int net_page_pool_create(int cpuid)
12770 {
12771 #if IS_ENABLED(CONFIG_PAGE_POOL)
12772 	struct page_pool_params page_pool_params = {
12773 		.pool_size = SYSTEM_PERCPU_PAGE_POOL_SIZE,
12774 		.flags = PP_FLAG_SYSTEM_POOL,
12775 		.nid = cpu_to_mem(cpuid),
12776 	};
12777 	struct page_pool *pp_ptr;
12778 	int err;
12779 
12780 	pp_ptr = page_pool_create_percpu(&page_pool_params, cpuid);
12781 	if (IS_ERR(pp_ptr))
12782 		return -ENOMEM;
12783 
12784 	err = xdp_reg_page_pool(pp_ptr);
12785 	if (err) {
12786 		page_pool_destroy(pp_ptr);
12787 		return err;
12788 	}
12789 
12790 	per_cpu(system_page_pool.pool, cpuid) = pp_ptr;
12791 #endif
12792 	return 0;
12793 }
12794 
12795 static int backlog_napi_should_run(unsigned int cpu)
12796 {
12797 	struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
12798 	struct napi_struct *napi = &sd->backlog;
12799 
12800 	return test_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
12801 }
12802 
12803 static void run_backlog_napi(unsigned int cpu)
12804 {
12805 	struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
12806 
12807 	napi_threaded_poll_loop(&sd->backlog);
12808 }
12809 
12810 static void backlog_napi_setup(unsigned int cpu)
12811 {
12812 	struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
12813 	struct napi_struct *napi = &sd->backlog;
12814 
12815 	napi->thread = this_cpu_read(backlog_napi);
12816 	set_bit(NAPI_STATE_THREADED, &napi->state);
12817 }
12818 
12819 static struct smp_hotplug_thread backlog_threads = {
12820 	.store			= &backlog_napi,
12821 	.thread_should_run	= backlog_napi_should_run,
12822 	.thread_fn		= run_backlog_napi,
12823 	.thread_comm		= "backlog_napi/%u",
12824 	.setup			= backlog_napi_setup,
12825 };
12826 
12827 /*
12828  *       This is called single threaded during boot, so no need
12829  *       to take the rtnl semaphore.
12830  */
12831 static int __init net_dev_init(void)
12832 {
12833 	int i, rc = -ENOMEM;
12834 
12835 	BUG_ON(!dev_boot_phase);
12836 
12837 	net_dev_struct_check();
12838 
12839 	if (dev_proc_init())
12840 		goto out;
12841 
12842 	if (netdev_kobject_init())
12843 		goto out;
12844 
12845 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
12846 		INIT_LIST_HEAD(&ptype_base[i]);
12847 
12848 	if (register_pernet_subsys(&netdev_net_ops))
12849 		goto out;
12850 
12851 	/*
12852 	 *	Initialise the packet receive queues.
12853 	 */
12854 
12855 	flush_backlogs_fallback = flush_backlogs_alloc();
12856 	if (!flush_backlogs_fallback)
12857 		goto out;
12858 
12859 	for_each_possible_cpu(i) {
12860 		struct softnet_data *sd = &per_cpu(softnet_data, i);
12861 
12862 		skb_queue_head_init(&sd->input_pkt_queue);
12863 		skb_queue_head_init(&sd->process_queue);
12864 #ifdef CONFIG_XFRM_OFFLOAD
12865 		skb_queue_head_init(&sd->xfrm_backlog);
12866 #endif
12867 		INIT_LIST_HEAD(&sd->poll_list);
12868 		sd->output_queue_tailp = &sd->output_queue;
12869 #ifdef CONFIG_RPS
12870 		INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
12871 		sd->cpu = i;
12872 #endif
12873 		INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd);
12874 		spin_lock_init(&sd->defer_lock);
12875 
12876 		gro_init(&sd->backlog.gro);
12877 		sd->backlog.poll = process_backlog;
12878 		sd->backlog.weight = weight_p;
12879 		INIT_LIST_HEAD(&sd->backlog.poll_list);
12880 
12881 		if (net_page_pool_create(i))
12882 			goto out;
12883 	}
12884 	if (use_backlog_threads())
12885 		smpboot_register_percpu_thread(&backlog_threads);
12886 
12887 	dev_boot_phase = 0;
12888 
12889 	/* The loopback device is special if any other network devices
12890 	 * is present in a network namespace the loopback device must
12891 	 * be present. Since we now dynamically allocate and free the
12892 	 * loopback device ensure this invariant is maintained by
12893 	 * keeping the loopback device as the first device on the
12894 	 * list of network devices.  Ensuring the loopback devices
12895 	 * is the first device that appears and the last network device
12896 	 * that disappears.
12897 	 */
12898 	if (register_pernet_device(&loopback_net_ops))
12899 		goto out;
12900 
12901 	if (register_pernet_device(&default_device_ops))
12902 		goto out;
12903 
12904 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
12905 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
12906 
12907 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
12908 				       NULL, dev_cpu_dead);
12909 	WARN_ON(rc < 0);
12910 	rc = 0;
12911 
12912 	/* avoid static key IPIs to isolated CPUs */
12913 	if (housekeeping_enabled(HK_TYPE_MISC))
12914 		net_enable_timestamp();
12915 out:
12916 	if (rc < 0) {
12917 		for_each_possible_cpu(i) {
12918 			struct page_pool *pp_ptr;
12919 
12920 			pp_ptr = per_cpu(system_page_pool.pool, i);
12921 			if (!pp_ptr)
12922 				continue;
12923 
12924 			xdp_unreg_page_pool(pp_ptr);
12925 			page_pool_destroy(pp_ptr);
12926 			per_cpu(system_page_pool.pool, i) = NULL;
12927 		}
12928 	}
12929 
12930 	return rc;
12931 }
12932 
12933 subsys_initcall(net_dev_init);
12934