1 /* 2 * NET3 Protocol independent device support routines. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Derived from the non IP parts of dev.c 1.0.19 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * 14 * Additional Authors: 15 * Florian la Roche <rzsfl@rz.uni-sb.de> 16 * Alan Cox <gw4pts@gw4pts.ampr.org> 17 * David Hinds <dahinds@users.sourceforge.net> 18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 19 * Adam Sulmicki <adam@cfar.umd.edu> 20 * Pekka Riikonen <priikone@poesidon.pspt.fi> 21 * 22 * Changes: 23 * D.J. Barrow : Fixed bug where dev->refcnt gets set 24 * to 2 if register_netdev gets called 25 * before net_dev_init & also removed a 26 * few lines of code in the process. 27 * Alan Cox : device private ioctl copies fields back. 28 * Alan Cox : Transmit queue code does relevant 29 * stunts to keep the queue safe. 30 * Alan Cox : Fixed double lock. 31 * Alan Cox : Fixed promisc NULL pointer trap 32 * ???????? : Support the full private ioctl range 33 * Alan Cox : Moved ioctl permission check into 34 * drivers 35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 36 * Alan Cox : 100 backlog just doesn't cut it when 37 * you start doing multicast video 8) 38 * Alan Cox : Rewrote net_bh and list manager. 39 * Alan Cox : Fix ETH_P_ALL echoback lengths. 40 * Alan Cox : Took out transmit every packet pass 41 * Saved a few bytes in the ioctl handler 42 * Alan Cox : Network driver sets packet type before 43 * calling netif_rx. Saves a function 44 * call a packet. 45 * Alan Cox : Hashed net_bh() 46 * Richard Kooijman: Timestamp fixes. 47 * Alan Cox : Wrong field in SIOCGIFDSTADDR 48 * Alan Cox : Device lock protection. 49 * Alan Cox : Fixed nasty side effect of device close 50 * changes. 51 * Rudi Cilibrasi : Pass the right thing to 52 * set_mac_address() 53 * Dave Miller : 32bit quantity for the device lock to 54 * make it work out on a Sparc. 55 * Bjorn Ekwall : Added KERNELD hack. 56 * Alan Cox : Cleaned up the backlog initialise. 57 * Craig Metz : SIOCGIFCONF fix if space for under 58 * 1 device. 59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 60 * is no device open function. 61 * Andi Kleen : Fix error reporting for SIOCGIFCONF 62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 63 * Cyrus Durgin : Cleaned for KMOD 64 * Adam Sulmicki : Bug Fix : Network Device Unload 65 * A network device unload needs to purge 66 * the backlog queue. 67 * Paul Rusty Russell : SIOCSIFNAME 68 * Pekka Riikonen : Netdev boot-time settings code 69 * Andrew Morton : Make unregister_netdevice wait 70 * indefinitely on dev->refcnt 71 * J Hadi Salim : - Backlog queue sampling 72 * - netif_rx() feedback 73 */ 74 75 #include <asm/uaccess.h> 76 #include <asm/system.h> 77 #include <linux/bitops.h> 78 #include <linux/capability.h> 79 #include <linux/cpu.h> 80 #include <linux/types.h> 81 #include <linux/kernel.h> 82 #include <linux/sched.h> 83 #include <linux/mutex.h> 84 #include <linux/string.h> 85 #include <linux/mm.h> 86 #include <linux/socket.h> 87 #include <linux/sockios.h> 88 #include <linux/errno.h> 89 #include <linux/interrupt.h> 90 #include <linux/if_ether.h> 91 #include <linux/netdevice.h> 92 #include <linux/etherdevice.h> 93 #include <linux/ethtool.h> 94 #include <linux/notifier.h> 95 #include <linux/skbuff.h> 96 #include <net/net_namespace.h> 97 #include <net/sock.h> 98 #include <linux/rtnetlink.h> 99 #include <linux/proc_fs.h> 100 #include <linux/seq_file.h> 101 #include <linux/stat.h> 102 #include <linux/if_bridge.h> 103 #include <linux/if_macvlan.h> 104 #include <net/dst.h> 105 #include <net/pkt_sched.h> 106 #include <net/checksum.h> 107 #include <linux/highmem.h> 108 #include <linux/init.h> 109 #include <linux/kmod.h> 110 #include <linux/module.h> 111 #include <linux/netpoll.h> 112 #include <linux/rcupdate.h> 113 #include <linux/delay.h> 114 #include <net/wext.h> 115 #include <net/iw_handler.h> 116 #include <asm/current.h> 117 #include <linux/audit.h> 118 #include <linux/dmaengine.h> 119 #include <linux/err.h> 120 #include <linux/ctype.h> 121 #include <linux/if_arp.h> 122 #include <linux/if_vlan.h> 123 #include <linux/ip.h> 124 #include <net/ip.h> 125 #include <linux/ipv6.h> 126 #include <linux/in.h> 127 #include <linux/jhash.h> 128 #include <linux/random.h> 129 #include <trace/events/napi.h> 130 131 #include "net-sysfs.h" 132 133 /* Instead of increasing this, you should create a hash table. */ 134 #define MAX_GRO_SKBS 8 135 136 /* This should be increased if a protocol with a bigger head is added. */ 137 #define GRO_MAX_HEAD (MAX_HEADER + 128) 138 139 /* 140 * The list of packet types we will receive (as opposed to discard) 141 * and the routines to invoke. 142 * 143 * Why 16. Because with 16 the only overlap we get on a hash of the 144 * low nibble of the protocol value is RARP/SNAP/X.25. 145 * 146 * NOTE: That is no longer true with the addition of VLAN tags. Not 147 * sure which should go first, but I bet it won't make much 148 * difference if we are running VLANs. The good news is that 149 * this protocol won't be in the list unless compiled in, so 150 * the average user (w/out VLANs) will not be adversely affected. 151 * --BLG 152 * 153 * 0800 IP 154 * 8100 802.1Q VLAN 155 * 0001 802.3 156 * 0002 AX.25 157 * 0004 802.2 158 * 8035 RARP 159 * 0005 SNAP 160 * 0805 X.25 161 * 0806 ARP 162 * 8137 IPX 163 * 0009 Localtalk 164 * 86DD IPv6 165 */ 166 167 #define PTYPE_HASH_SIZE (16) 168 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1) 169 170 static DEFINE_SPINLOCK(ptype_lock); 171 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 172 static struct list_head ptype_all __read_mostly; /* Taps */ 173 174 /* 175 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 176 * semaphore. 177 * 178 * Pure readers hold dev_base_lock for reading. 179 * 180 * Writers must hold the rtnl semaphore while they loop through the 181 * dev_base_head list, and hold dev_base_lock for writing when they do the 182 * actual updates. This allows pure readers to access the list even 183 * while a writer is preparing to update it. 184 * 185 * To put it another way, dev_base_lock is held for writing only to 186 * protect against pure readers; the rtnl semaphore provides the 187 * protection against other writers. 188 * 189 * See, for example usages, register_netdevice() and 190 * unregister_netdevice(), which must be called with the rtnl 191 * semaphore held. 192 */ 193 DEFINE_RWLOCK(dev_base_lock); 194 195 EXPORT_SYMBOL(dev_base_lock); 196 197 #define NETDEV_HASHBITS 8 198 #define NETDEV_HASHENTRIES (1 << NETDEV_HASHBITS) 199 200 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 201 { 202 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ)); 203 return &net->dev_name_head[hash & ((1 << NETDEV_HASHBITS) - 1)]; 204 } 205 206 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 207 { 208 return &net->dev_index_head[ifindex & ((1 << NETDEV_HASHBITS) - 1)]; 209 } 210 211 /* Device list insertion */ 212 static int list_netdevice(struct net_device *dev) 213 { 214 struct net *net = dev_net(dev); 215 216 ASSERT_RTNL(); 217 218 write_lock_bh(&dev_base_lock); 219 list_add_tail(&dev->dev_list, &net->dev_base_head); 220 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name)); 221 hlist_add_head(&dev->index_hlist, dev_index_hash(net, dev->ifindex)); 222 write_unlock_bh(&dev_base_lock); 223 return 0; 224 } 225 226 /* Device list removal */ 227 static void unlist_netdevice(struct net_device *dev) 228 { 229 ASSERT_RTNL(); 230 231 /* Unlink dev from the device chain */ 232 write_lock_bh(&dev_base_lock); 233 list_del(&dev->dev_list); 234 hlist_del(&dev->name_hlist); 235 hlist_del(&dev->index_hlist); 236 write_unlock_bh(&dev_base_lock); 237 } 238 239 /* 240 * Our notifier list 241 */ 242 243 static RAW_NOTIFIER_HEAD(netdev_chain); 244 245 /* 246 * Device drivers call our routines to queue packets here. We empty the 247 * queue in the local softnet handler. 248 */ 249 250 DEFINE_PER_CPU(struct softnet_data, softnet_data); 251 252 #ifdef CONFIG_LOCKDEP 253 /* 254 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 255 * according to dev->type 256 */ 257 static const unsigned short netdev_lock_type[] = 258 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 259 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 260 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 261 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 262 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 263 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 264 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 265 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 266 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 267 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 268 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 269 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 270 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211, 271 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, 272 ARPHRD_PHONET_PIPE, ARPHRD_IEEE802154, ARPHRD_IEEE802154_PHY, 273 ARPHRD_VOID, ARPHRD_NONE}; 274 275 static const char *netdev_lock_name[] = 276 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 277 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 278 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 279 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 280 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 281 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 282 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 283 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 284 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 285 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 286 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 287 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 288 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211", 289 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", 290 "_xmit_PHONET_PIPE", "_xmit_IEEE802154", "_xmit_IEEE802154_PHY", 291 "_xmit_VOID", "_xmit_NONE"}; 292 293 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 294 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 295 296 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 297 { 298 int i; 299 300 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 301 if (netdev_lock_type[i] == dev_type) 302 return i; 303 /* the last key is used by default */ 304 return ARRAY_SIZE(netdev_lock_type) - 1; 305 } 306 307 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 308 unsigned short dev_type) 309 { 310 int i; 311 312 i = netdev_lock_pos(dev_type); 313 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 314 netdev_lock_name[i]); 315 } 316 317 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 318 { 319 int i; 320 321 i = netdev_lock_pos(dev->type); 322 lockdep_set_class_and_name(&dev->addr_list_lock, 323 &netdev_addr_lock_key[i], 324 netdev_lock_name[i]); 325 } 326 #else 327 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 328 unsigned short dev_type) 329 { 330 } 331 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 332 { 333 } 334 #endif 335 336 /******************************************************************************* 337 338 Protocol management and registration routines 339 340 *******************************************************************************/ 341 342 /* 343 * Add a protocol ID to the list. Now that the input handler is 344 * smarter we can dispense with all the messy stuff that used to be 345 * here. 346 * 347 * BEWARE!!! Protocol handlers, mangling input packets, 348 * MUST BE last in hash buckets and checking protocol handlers 349 * MUST start from promiscuous ptype_all chain in net_bh. 350 * It is true now, do not change it. 351 * Explanation follows: if protocol handler, mangling packet, will 352 * be the first on list, it is not able to sense, that packet 353 * is cloned and should be copied-on-write, so that it will 354 * change it and subsequent readers will get broken packet. 355 * --ANK (980803) 356 */ 357 358 /** 359 * dev_add_pack - add packet handler 360 * @pt: packet type declaration 361 * 362 * Add a protocol handler to the networking stack. The passed &packet_type 363 * is linked into kernel lists and may not be freed until it has been 364 * removed from the kernel lists. 365 * 366 * This call does not sleep therefore it can not 367 * guarantee all CPU's that are in middle of receiving packets 368 * will see the new packet type (until the next received packet). 369 */ 370 371 void dev_add_pack(struct packet_type *pt) 372 { 373 int hash; 374 375 spin_lock_bh(&ptype_lock); 376 if (pt->type == htons(ETH_P_ALL)) 377 list_add_rcu(&pt->list, &ptype_all); 378 else { 379 hash = ntohs(pt->type) & PTYPE_HASH_MASK; 380 list_add_rcu(&pt->list, &ptype_base[hash]); 381 } 382 spin_unlock_bh(&ptype_lock); 383 } 384 385 /** 386 * __dev_remove_pack - remove packet handler 387 * @pt: packet type declaration 388 * 389 * Remove a protocol handler that was previously added to the kernel 390 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 391 * from the kernel lists and can be freed or reused once this function 392 * returns. 393 * 394 * The packet type might still be in use by receivers 395 * and must not be freed until after all the CPU's have gone 396 * through a quiescent state. 397 */ 398 void __dev_remove_pack(struct packet_type *pt) 399 { 400 struct list_head *head; 401 struct packet_type *pt1; 402 403 spin_lock_bh(&ptype_lock); 404 405 if (pt->type == htons(ETH_P_ALL)) 406 head = &ptype_all; 407 else 408 head = &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 409 410 list_for_each_entry(pt1, head, list) { 411 if (pt == pt1) { 412 list_del_rcu(&pt->list); 413 goto out; 414 } 415 } 416 417 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt); 418 out: 419 spin_unlock_bh(&ptype_lock); 420 } 421 /** 422 * dev_remove_pack - remove packet handler 423 * @pt: packet type declaration 424 * 425 * Remove a protocol handler that was previously added to the kernel 426 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 427 * from the kernel lists and can be freed or reused once this function 428 * returns. 429 * 430 * This call sleeps to guarantee that no CPU is looking at the packet 431 * type after return. 432 */ 433 void dev_remove_pack(struct packet_type *pt) 434 { 435 __dev_remove_pack(pt); 436 437 synchronize_net(); 438 } 439 440 /****************************************************************************** 441 442 Device Boot-time Settings Routines 443 444 *******************************************************************************/ 445 446 /* Boot time configuration table */ 447 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 448 449 /** 450 * netdev_boot_setup_add - add new setup entry 451 * @name: name of the device 452 * @map: configured settings for the device 453 * 454 * Adds new setup entry to the dev_boot_setup list. The function 455 * returns 0 on error and 1 on success. This is a generic routine to 456 * all netdevices. 457 */ 458 static int netdev_boot_setup_add(char *name, struct ifmap *map) 459 { 460 struct netdev_boot_setup *s; 461 int i; 462 463 s = dev_boot_setup; 464 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 465 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 466 memset(s[i].name, 0, sizeof(s[i].name)); 467 strlcpy(s[i].name, name, IFNAMSIZ); 468 memcpy(&s[i].map, map, sizeof(s[i].map)); 469 break; 470 } 471 } 472 473 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 474 } 475 476 /** 477 * netdev_boot_setup_check - check boot time settings 478 * @dev: the netdevice 479 * 480 * Check boot time settings for the device. 481 * The found settings are set for the device to be used 482 * later in the device probing. 483 * Returns 0 if no settings found, 1 if they are. 484 */ 485 int netdev_boot_setup_check(struct net_device *dev) 486 { 487 struct netdev_boot_setup *s = dev_boot_setup; 488 int i; 489 490 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 491 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 492 !strcmp(dev->name, s[i].name)) { 493 dev->irq = s[i].map.irq; 494 dev->base_addr = s[i].map.base_addr; 495 dev->mem_start = s[i].map.mem_start; 496 dev->mem_end = s[i].map.mem_end; 497 return 1; 498 } 499 } 500 return 0; 501 } 502 503 504 /** 505 * netdev_boot_base - get address from boot time settings 506 * @prefix: prefix for network device 507 * @unit: id for network device 508 * 509 * Check boot time settings for the base address of device. 510 * The found settings are set for the device to be used 511 * later in the device probing. 512 * Returns 0 if no settings found. 513 */ 514 unsigned long netdev_boot_base(const char *prefix, int unit) 515 { 516 const struct netdev_boot_setup *s = dev_boot_setup; 517 char name[IFNAMSIZ]; 518 int i; 519 520 sprintf(name, "%s%d", prefix, unit); 521 522 /* 523 * If device already registered then return base of 1 524 * to indicate not to probe for this interface 525 */ 526 if (__dev_get_by_name(&init_net, name)) 527 return 1; 528 529 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 530 if (!strcmp(name, s[i].name)) 531 return s[i].map.base_addr; 532 return 0; 533 } 534 535 /* 536 * Saves at boot time configured settings for any netdevice. 537 */ 538 int __init netdev_boot_setup(char *str) 539 { 540 int ints[5]; 541 struct ifmap map; 542 543 str = get_options(str, ARRAY_SIZE(ints), ints); 544 if (!str || !*str) 545 return 0; 546 547 /* Save settings */ 548 memset(&map, 0, sizeof(map)); 549 if (ints[0] > 0) 550 map.irq = ints[1]; 551 if (ints[0] > 1) 552 map.base_addr = ints[2]; 553 if (ints[0] > 2) 554 map.mem_start = ints[3]; 555 if (ints[0] > 3) 556 map.mem_end = ints[4]; 557 558 /* Add new entry to the list */ 559 return netdev_boot_setup_add(str, &map); 560 } 561 562 __setup("netdev=", netdev_boot_setup); 563 564 /******************************************************************************* 565 566 Device Interface Subroutines 567 568 *******************************************************************************/ 569 570 /** 571 * __dev_get_by_name - find a device by its name 572 * @net: the applicable net namespace 573 * @name: name to find 574 * 575 * Find an interface by name. Must be called under RTNL semaphore 576 * or @dev_base_lock. If the name is found a pointer to the device 577 * is returned. If the name is not found then %NULL is returned. The 578 * reference counters are not incremented so the caller must be 579 * careful with locks. 580 */ 581 582 struct net_device *__dev_get_by_name(struct net *net, const char *name) 583 { 584 struct hlist_node *p; 585 586 hlist_for_each(p, dev_name_hash(net, name)) { 587 struct net_device *dev 588 = hlist_entry(p, struct net_device, name_hlist); 589 if (!strncmp(dev->name, name, IFNAMSIZ)) 590 return dev; 591 } 592 return NULL; 593 } 594 595 /** 596 * dev_get_by_name - find a device by its name 597 * @net: the applicable net namespace 598 * @name: name to find 599 * 600 * Find an interface by name. This can be called from any 601 * context and does its own locking. The returned handle has 602 * the usage count incremented and the caller must use dev_put() to 603 * release it when it is no longer needed. %NULL is returned if no 604 * matching device is found. 605 */ 606 607 struct net_device *dev_get_by_name(struct net *net, const char *name) 608 { 609 struct net_device *dev; 610 611 read_lock(&dev_base_lock); 612 dev = __dev_get_by_name(net, name); 613 if (dev) 614 dev_hold(dev); 615 read_unlock(&dev_base_lock); 616 return dev; 617 } 618 619 /** 620 * __dev_get_by_index - find a device by its ifindex 621 * @net: the applicable net namespace 622 * @ifindex: index of device 623 * 624 * Search for an interface by index. Returns %NULL if the device 625 * is not found or a pointer to the device. The device has not 626 * had its reference counter increased so the caller must be careful 627 * about locking. The caller must hold either the RTNL semaphore 628 * or @dev_base_lock. 629 */ 630 631 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 632 { 633 struct hlist_node *p; 634 635 hlist_for_each(p, dev_index_hash(net, ifindex)) { 636 struct net_device *dev 637 = hlist_entry(p, struct net_device, index_hlist); 638 if (dev->ifindex == ifindex) 639 return dev; 640 } 641 return NULL; 642 } 643 644 645 /** 646 * dev_get_by_index - find a device by its ifindex 647 * @net: the applicable net namespace 648 * @ifindex: index of device 649 * 650 * Search for an interface by index. Returns NULL if the device 651 * is not found or a pointer to the device. The device returned has 652 * had a reference added and the pointer is safe until the user calls 653 * dev_put to indicate they have finished with it. 654 */ 655 656 struct net_device *dev_get_by_index(struct net *net, int ifindex) 657 { 658 struct net_device *dev; 659 660 read_lock(&dev_base_lock); 661 dev = __dev_get_by_index(net, ifindex); 662 if (dev) 663 dev_hold(dev); 664 read_unlock(&dev_base_lock); 665 return dev; 666 } 667 668 /** 669 * dev_getbyhwaddr - find a device by its hardware address 670 * @net: the applicable net namespace 671 * @type: media type of device 672 * @ha: hardware address 673 * 674 * Search for an interface by MAC address. Returns NULL if the device 675 * is not found or a pointer to the device. The caller must hold the 676 * rtnl semaphore. The returned device has not had its ref count increased 677 * and the caller must therefore be careful about locking 678 * 679 * BUGS: 680 * If the API was consistent this would be __dev_get_by_hwaddr 681 */ 682 683 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha) 684 { 685 struct net_device *dev; 686 687 ASSERT_RTNL(); 688 689 for_each_netdev(net, dev) 690 if (dev->type == type && 691 !memcmp(dev->dev_addr, ha, dev->addr_len)) 692 return dev; 693 694 return NULL; 695 } 696 697 EXPORT_SYMBOL(dev_getbyhwaddr); 698 699 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 700 { 701 struct net_device *dev; 702 703 ASSERT_RTNL(); 704 for_each_netdev(net, dev) 705 if (dev->type == type) 706 return dev; 707 708 return NULL; 709 } 710 711 EXPORT_SYMBOL(__dev_getfirstbyhwtype); 712 713 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 714 { 715 struct net_device *dev; 716 717 rtnl_lock(); 718 dev = __dev_getfirstbyhwtype(net, type); 719 if (dev) 720 dev_hold(dev); 721 rtnl_unlock(); 722 return dev; 723 } 724 725 EXPORT_SYMBOL(dev_getfirstbyhwtype); 726 727 /** 728 * dev_get_by_flags - find any device with given flags 729 * @net: the applicable net namespace 730 * @if_flags: IFF_* values 731 * @mask: bitmask of bits in if_flags to check 732 * 733 * Search for any interface with the given flags. Returns NULL if a device 734 * is not found or a pointer to the device. The device returned has 735 * had a reference added and the pointer is safe until the user calls 736 * dev_put to indicate they have finished with it. 737 */ 738 739 struct net_device * dev_get_by_flags(struct net *net, unsigned short if_flags, unsigned short mask) 740 { 741 struct net_device *dev, *ret; 742 743 ret = NULL; 744 read_lock(&dev_base_lock); 745 for_each_netdev(net, dev) { 746 if (((dev->flags ^ if_flags) & mask) == 0) { 747 dev_hold(dev); 748 ret = dev; 749 break; 750 } 751 } 752 read_unlock(&dev_base_lock); 753 return ret; 754 } 755 756 /** 757 * dev_valid_name - check if name is okay for network device 758 * @name: name string 759 * 760 * Network device names need to be valid file names to 761 * to allow sysfs to work. We also disallow any kind of 762 * whitespace. 763 */ 764 int dev_valid_name(const char *name) 765 { 766 if (*name == '\0') 767 return 0; 768 if (strlen(name) >= IFNAMSIZ) 769 return 0; 770 if (!strcmp(name, ".") || !strcmp(name, "..")) 771 return 0; 772 773 while (*name) { 774 if (*name == '/' || isspace(*name)) 775 return 0; 776 name++; 777 } 778 return 1; 779 } 780 781 /** 782 * __dev_alloc_name - allocate a name for a device 783 * @net: network namespace to allocate the device name in 784 * @name: name format string 785 * @buf: scratch buffer and result name string 786 * 787 * Passed a format string - eg "lt%d" it will try and find a suitable 788 * id. It scans list of devices to build up a free map, then chooses 789 * the first empty slot. The caller must hold the dev_base or rtnl lock 790 * while allocating the name and adding the device in order to avoid 791 * duplicates. 792 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 793 * Returns the number of the unit assigned or a negative errno code. 794 */ 795 796 static int __dev_alloc_name(struct net *net, const char *name, char *buf) 797 { 798 int i = 0; 799 const char *p; 800 const int max_netdevices = 8*PAGE_SIZE; 801 unsigned long *inuse; 802 struct net_device *d; 803 804 p = strnchr(name, IFNAMSIZ-1, '%'); 805 if (p) { 806 /* 807 * Verify the string as this thing may have come from 808 * the user. There must be either one "%d" and no other "%" 809 * characters. 810 */ 811 if (p[1] != 'd' || strchr(p + 2, '%')) 812 return -EINVAL; 813 814 /* Use one page as a bit array of possible slots */ 815 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 816 if (!inuse) 817 return -ENOMEM; 818 819 for_each_netdev(net, d) { 820 if (!sscanf(d->name, name, &i)) 821 continue; 822 if (i < 0 || i >= max_netdevices) 823 continue; 824 825 /* avoid cases where sscanf is not exact inverse of printf */ 826 snprintf(buf, IFNAMSIZ, name, i); 827 if (!strncmp(buf, d->name, IFNAMSIZ)) 828 set_bit(i, inuse); 829 } 830 831 i = find_first_zero_bit(inuse, max_netdevices); 832 free_page((unsigned long) inuse); 833 } 834 835 snprintf(buf, IFNAMSIZ, name, i); 836 if (!__dev_get_by_name(net, buf)) 837 return i; 838 839 /* It is possible to run out of possible slots 840 * when the name is long and there isn't enough space left 841 * for the digits, or if all bits are used. 842 */ 843 return -ENFILE; 844 } 845 846 /** 847 * dev_alloc_name - allocate a name for a device 848 * @dev: device 849 * @name: name format string 850 * 851 * Passed a format string - eg "lt%d" it will try and find a suitable 852 * id. It scans list of devices to build up a free map, then chooses 853 * the first empty slot. The caller must hold the dev_base or rtnl lock 854 * while allocating the name and adding the device in order to avoid 855 * duplicates. 856 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 857 * Returns the number of the unit assigned or a negative errno code. 858 */ 859 860 int dev_alloc_name(struct net_device *dev, const char *name) 861 { 862 char buf[IFNAMSIZ]; 863 struct net *net; 864 int ret; 865 866 BUG_ON(!dev_net(dev)); 867 net = dev_net(dev); 868 ret = __dev_alloc_name(net, name, buf); 869 if (ret >= 0) 870 strlcpy(dev->name, buf, IFNAMSIZ); 871 return ret; 872 } 873 874 875 /** 876 * dev_change_name - change name of a device 877 * @dev: device 878 * @newname: name (or format string) must be at least IFNAMSIZ 879 * 880 * Change name of a device, can pass format strings "eth%d". 881 * for wildcarding. 882 */ 883 int dev_change_name(struct net_device *dev, const char *newname) 884 { 885 char oldname[IFNAMSIZ]; 886 int err = 0; 887 int ret; 888 struct net *net; 889 890 ASSERT_RTNL(); 891 BUG_ON(!dev_net(dev)); 892 893 net = dev_net(dev); 894 if (dev->flags & IFF_UP) 895 return -EBUSY; 896 897 if (!dev_valid_name(newname)) 898 return -EINVAL; 899 900 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) 901 return 0; 902 903 memcpy(oldname, dev->name, IFNAMSIZ); 904 905 if (strchr(newname, '%')) { 906 err = dev_alloc_name(dev, newname); 907 if (err < 0) 908 return err; 909 } 910 else if (__dev_get_by_name(net, newname)) 911 return -EEXIST; 912 else 913 strlcpy(dev->name, newname, IFNAMSIZ); 914 915 rollback: 916 /* For now only devices in the initial network namespace 917 * are in sysfs. 918 */ 919 if (net == &init_net) { 920 ret = device_rename(&dev->dev, dev->name); 921 if (ret) { 922 memcpy(dev->name, oldname, IFNAMSIZ); 923 return ret; 924 } 925 } 926 927 write_lock_bh(&dev_base_lock); 928 hlist_del(&dev->name_hlist); 929 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name)); 930 write_unlock_bh(&dev_base_lock); 931 932 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 933 ret = notifier_to_errno(ret); 934 935 if (ret) { 936 if (err) { 937 printk(KERN_ERR 938 "%s: name change rollback failed: %d.\n", 939 dev->name, ret); 940 } else { 941 err = ret; 942 memcpy(dev->name, oldname, IFNAMSIZ); 943 goto rollback; 944 } 945 } 946 947 return err; 948 } 949 950 /** 951 * dev_set_alias - change ifalias of a device 952 * @dev: device 953 * @alias: name up to IFALIASZ 954 * @len: limit of bytes to copy from info 955 * 956 * Set ifalias for a device, 957 */ 958 int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 959 { 960 ASSERT_RTNL(); 961 962 if (len >= IFALIASZ) 963 return -EINVAL; 964 965 if (!len) { 966 if (dev->ifalias) { 967 kfree(dev->ifalias); 968 dev->ifalias = NULL; 969 } 970 return 0; 971 } 972 973 dev->ifalias = krealloc(dev->ifalias, len+1, GFP_KERNEL); 974 if (!dev->ifalias) 975 return -ENOMEM; 976 977 strlcpy(dev->ifalias, alias, len+1); 978 return len; 979 } 980 981 982 /** 983 * netdev_features_change - device changes features 984 * @dev: device to cause notification 985 * 986 * Called to indicate a device has changed features. 987 */ 988 void netdev_features_change(struct net_device *dev) 989 { 990 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 991 } 992 EXPORT_SYMBOL(netdev_features_change); 993 994 /** 995 * netdev_state_change - device changes state 996 * @dev: device to cause notification 997 * 998 * Called to indicate a device has changed state. This function calls 999 * the notifier chains for netdev_chain and sends a NEWLINK message 1000 * to the routing socket. 1001 */ 1002 void netdev_state_change(struct net_device *dev) 1003 { 1004 if (dev->flags & IFF_UP) { 1005 call_netdevice_notifiers(NETDEV_CHANGE, dev); 1006 rtmsg_ifinfo(RTM_NEWLINK, dev, 0); 1007 } 1008 } 1009 1010 void netdev_bonding_change(struct net_device *dev) 1011 { 1012 call_netdevice_notifiers(NETDEV_BONDING_FAILOVER, dev); 1013 } 1014 EXPORT_SYMBOL(netdev_bonding_change); 1015 1016 /** 1017 * dev_load - load a network module 1018 * @net: the applicable net namespace 1019 * @name: name of interface 1020 * 1021 * If a network interface is not present and the process has suitable 1022 * privileges this function loads the module. If module loading is not 1023 * available in this kernel then it becomes a nop. 1024 */ 1025 1026 void dev_load(struct net *net, const char *name) 1027 { 1028 struct net_device *dev; 1029 1030 read_lock(&dev_base_lock); 1031 dev = __dev_get_by_name(net, name); 1032 read_unlock(&dev_base_lock); 1033 1034 if (!dev && capable(CAP_SYS_MODULE)) 1035 request_module("%s", name); 1036 } 1037 1038 /** 1039 * dev_open - prepare an interface for use. 1040 * @dev: device to open 1041 * 1042 * Takes a device from down to up state. The device's private open 1043 * function is invoked and then the multicast lists are loaded. Finally 1044 * the device is moved into the up state and a %NETDEV_UP message is 1045 * sent to the netdev notifier chain. 1046 * 1047 * Calling this function on an active interface is a nop. On a failure 1048 * a negative errno code is returned. 1049 */ 1050 int dev_open(struct net_device *dev) 1051 { 1052 const struct net_device_ops *ops = dev->netdev_ops; 1053 int ret; 1054 1055 ASSERT_RTNL(); 1056 1057 /* 1058 * Is it already up? 1059 */ 1060 1061 if (dev->flags & IFF_UP) 1062 return 0; 1063 1064 /* 1065 * Is it even present? 1066 */ 1067 if (!netif_device_present(dev)) 1068 return -ENODEV; 1069 1070 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev); 1071 ret = notifier_to_errno(ret); 1072 if (ret) 1073 return ret; 1074 1075 /* 1076 * Call device private open method 1077 */ 1078 set_bit(__LINK_STATE_START, &dev->state); 1079 1080 if (ops->ndo_validate_addr) 1081 ret = ops->ndo_validate_addr(dev); 1082 1083 if (!ret && ops->ndo_open) 1084 ret = ops->ndo_open(dev); 1085 1086 /* 1087 * If it went open OK then: 1088 */ 1089 1090 if (ret) 1091 clear_bit(__LINK_STATE_START, &dev->state); 1092 else { 1093 /* 1094 * Set the flags. 1095 */ 1096 dev->flags |= IFF_UP; 1097 1098 /* 1099 * Enable NET_DMA 1100 */ 1101 net_dmaengine_get(); 1102 1103 /* 1104 * Initialize multicasting status 1105 */ 1106 dev_set_rx_mode(dev); 1107 1108 /* 1109 * Wakeup transmit queue engine 1110 */ 1111 dev_activate(dev); 1112 1113 /* 1114 * ... and announce new interface. 1115 */ 1116 call_netdevice_notifiers(NETDEV_UP, dev); 1117 } 1118 1119 return ret; 1120 } 1121 1122 /** 1123 * dev_close - shutdown an interface. 1124 * @dev: device to shutdown 1125 * 1126 * This function moves an active device into down state. A 1127 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1128 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1129 * chain. 1130 */ 1131 int dev_close(struct net_device *dev) 1132 { 1133 const struct net_device_ops *ops = dev->netdev_ops; 1134 ASSERT_RTNL(); 1135 1136 might_sleep(); 1137 1138 if (!(dev->flags & IFF_UP)) 1139 return 0; 1140 1141 /* 1142 * Tell people we are going down, so that they can 1143 * prepare to death, when device is still operating. 1144 */ 1145 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1146 1147 clear_bit(__LINK_STATE_START, &dev->state); 1148 1149 /* Synchronize to scheduled poll. We cannot touch poll list, 1150 * it can be even on different cpu. So just clear netif_running(). 1151 * 1152 * dev->stop() will invoke napi_disable() on all of it's 1153 * napi_struct instances on this device. 1154 */ 1155 smp_mb__after_clear_bit(); /* Commit netif_running(). */ 1156 1157 dev_deactivate(dev); 1158 1159 /* 1160 * Call the device specific close. This cannot fail. 1161 * Only if device is UP 1162 * 1163 * We allow it to be called even after a DETACH hot-plug 1164 * event. 1165 */ 1166 if (ops->ndo_stop) 1167 ops->ndo_stop(dev); 1168 1169 /* 1170 * Device is now down. 1171 */ 1172 1173 dev->flags &= ~IFF_UP; 1174 1175 /* 1176 * Tell people we are down 1177 */ 1178 call_netdevice_notifiers(NETDEV_DOWN, dev); 1179 1180 /* 1181 * Shutdown NET_DMA 1182 */ 1183 net_dmaengine_put(); 1184 1185 return 0; 1186 } 1187 1188 1189 /** 1190 * dev_disable_lro - disable Large Receive Offload on a device 1191 * @dev: device 1192 * 1193 * Disable Large Receive Offload (LRO) on a net device. Must be 1194 * called under RTNL. This is needed if received packets may be 1195 * forwarded to another interface. 1196 */ 1197 void dev_disable_lro(struct net_device *dev) 1198 { 1199 if (dev->ethtool_ops && dev->ethtool_ops->get_flags && 1200 dev->ethtool_ops->set_flags) { 1201 u32 flags = dev->ethtool_ops->get_flags(dev); 1202 if (flags & ETH_FLAG_LRO) { 1203 flags &= ~ETH_FLAG_LRO; 1204 dev->ethtool_ops->set_flags(dev, flags); 1205 } 1206 } 1207 WARN_ON(dev->features & NETIF_F_LRO); 1208 } 1209 EXPORT_SYMBOL(dev_disable_lro); 1210 1211 1212 static int dev_boot_phase = 1; 1213 1214 /* 1215 * Device change register/unregister. These are not inline or static 1216 * as we export them to the world. 1217 */ 1218 1219 /** 1220 * register_netdevice_notifier - register a network notifier block 1221 * @nb: notifier 1222 * 1223 * Register a notifier to be called when network device events occur. 1224 * The notifier passed is linked into the kernel structures and must 1225 * not be reused until it has been unregistered. A negative errno code 1226 * is returned on a failure. 1227 * 1228 * When registered all registration and up events are replayed 1229 * to the new notifier to allow device to have a race free 1230 * view of the network device list. 1231 */ 1232 1233 int register_netdevice_notifier(struct notifier_block *nb) 1234 { 1235 struct net_device *dev; 1236 struct net_device *last; 1237 struct net *net; 1238 int err; 1239 1240 rtnl_lock(); 1241 err = raw_notifier_chain_register(&netdev_chain, nb); 1242 if (err) 1243 goto unlock; 1244 if (dev_boot_phase) 1245 goto unlock; 1246 for_each_net(net) { 1247 for_each_netdev(net, dev) { 1248 err = nb->notifier_call(nb, NETDEV_REGISTER, dev); 1249 err = notifier_to_errno(err); 1250 if (err) 1251 goto rollback; 1252 1253 if (!(dev->flags & IFF_UP)) 1254 continue; 1255 1256 nb->notifier_call(nb, NETDEV_UP, dev); 1257 } 1258 } 1259 1260 unlock: 1261 rtnl_unlock(); 1262 return err; 1263 1264 rollback: 1265 last = dev; 1266 for_each_net(net) { 1267 for_each_netdev(net, dev) { 1268 if (dev == last) 1269 break; 1270 1271 if (dev->flags & IFF_UP) { 1272 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev); 1273 nb->notifier_call(nb, NETDEV_DOWN, dev); 1274 } 1275 nb->notifier_call(nb, NETDEV_UNREGISTER, dev); 1276 } 1277 } 1278 1279 raw_notifier_chain_unregister(&netdev_chain, nb); 1280 goto unlock; 1281 } 1282 1283 /** 1284 * unregister_netdevice_notifier - unregister a network notifier block 1285 * @nb: notifier 1286 * 1287 * Unregister a notifier previously registered by 1288 * register_netdevice_notifier(). The notifier is unlinked into the 1289 * kernel structures and may then be reused. A negative errno code 1290 * is returned on a failure. 1291 */ 1292 1293 int unregister_netdevice_notifier(struct notifier_block *nb) 1294 { 1295 int err; 1296 1297 rtnl_lock(); 1298 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1299 rtnl_unlock(); 1300 return err; 1301 } 1302 1303 /** 1304 * call_netdevice_notifiers - call all network notifier blocks 1305 * @val: value passed unmodified to notifier function 1306 * @dev: net_device pointer passed unmodified to notifier function 1307 * 1308 * Call all network notifier blocks. Parameters and return value 1309 * are as for raw_notifier_call_chain(). 1310 */ 1311 1312 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 1313 { 1314 return raw_notifier_call_chain(&netdev_chain, val, dev); 1315 } 1316 1317 /* When > 0 there are consumers of rx skb time stamps */ 1318 static atomic_t netstamp_needed = ATOMIC_INIT(0); 1319 1320 void net_enable_timestamp(void) 1321 { 1322 atomic_inc(&netstamp_needed); 1323 } 1324 1325 void net_disable_timestamp(void) 1326 { 1327 atomic_dec(&netstamp_needed); 1328 } 1329 1330 static inline void net_timestamp(struct sk_buff *skb) 1331 { 1332 if (atomic_read(&netstamp_needed)) 1333 __net_timestamp(skb); 1334 else 1335 skb->tstamp.tv64 = 0; 1336 } 1337 1338 /* 1339 * Support routine. Sends outgoing frames to any network 1340 * taps currently in use. 1341 */ 1342 1343 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 1344 { 1345 struct packet_type *ptype; 1346 1347 #ifdef CONFIG_NET_CLS_ACT 1348 if (!(skb->tstamp.tv64 && (G_TC_FROM(skb->tc_verd) & AT_INGRESS))) 1349 net_timestamp(skb); 1350 #else 1351 net_timestamp(skb); 1352 #endif 1353 1354 rcu_read_lock(); 1355 list_for_each_entry_rcu(ptype, &ptype_all, list) { 1356 /* Never send packets back to the socket 1357 * they originated from - MvS (miquels@drinkel.ow.org) 1358 */ 1359 if ((ptype->dev == dev || !ptype->dev) && 1360 (ptype->af_packet_priv == NULL || 1361 (struct sock *)ptype->af_packet_priv != skb->sk)) { 1362 struct sk_buff *skb2= skb_clone(skb, GFP_ATOMIC); 1363 if (!skb2) 1364 break; 1365 1366 /* skb->nh should be correctly 1367 set by sender, so that the second statement is 1368 just protection against buggy protocols. 1369 */ 1370 skb_reset_mac_header(skb2); 1371 1372 if (skb_network_header(skb2) < skb2->data || 1373 skb2->network_header > skb2->tail) { 1374 if (net_ratelimit()) 1375 printk(KERN_CRIT "protocol %04x is " 1376 "buggy, dev %s\n", 1377 skb2->protocol, dev->name); 1378 skb_reset_network_header(skb2); 1379 } 1380 1381 skb2->transport_header = skb2->network_header; 1382 skb2->pkt_type = PACKET_OUTGOING; 1383 ptype->func(skb2, skb->dev, ptype, skb->dev); 1384 } 1385 } 1386 rcu_read_unlock(); 1387 } 1388 1389 1390 static inline void __netif_reschedule(struct Qdisc *q) 1391 { 1392 struct softnet_data *sd; 1393 unsigned long flags; 1394 1395 local_irq_save(flags); 1396 sd = &__get_cpu_var(softnet_data); 1397 q->next_sched = sd->output_queue; 1398 sd->output_queue = q; 1399 raise_softirq_irqoff(NET_TX_SOFTIRQ); 1400 local_irq_restore(flags); 1401 } 1402 1403 void __netif_schedule(struct Qdisc *q) 1404 { 1405 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 1406 __netif_reschedule(q); 1407 } 1408 EXPORT_SYMBOL(__netif_schedule); 1409 1410 void dev_kfree_skb_irq(struct sk_buff *skb) 1411 { 1412 if (atomic_dec_and_test(&skb->users)) { 1413 struct softnet_data *sd; 1414 unsigned long flags; 1415 1416 local_irq_save(flags); 1417 sd = &__get_cpu_var(softnet_data); 1418 skb->next = sd->completion_queue; 1419 sd->completion_queue = skb; 1420 raise_softirq_irqoff(NET_TX_SOFTIRQ); 1421 local_irq_restore(flags); 1422 } 1423 } 1424 EXPORT_SYMBOL(dev_kfree_skb_irq); 1425 1426 void dev_kfree_skb_any(struct sk_buff *skb) 1427 { 1428 if (in_irq() || irqs_disabled()) 1429 dev_kfree_skb_irq(skb); 1430 else 1431 dev_kfree_skb(skb); 1432 } 1433 EXPORT_SYMBOL(dev_kfree_skb_any); 1434 1435 1436 /** 1437 * netif_device_detach - mark device as removed 1438 * @dev: network device 1439 * 1440 * Mark device as removed from system and therefore no longer available. 1441 */ 1442 void netif_device_detach(struct net_device *dev) 1443 { 1444 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 1445 netif_running(dev)) { 1446 netif_tx_stop_all_queues(dev); 1447 } 1448 } 1449 EXPORT_SYMBOL(netif_device_detach); 1450 1451 /** 1452 * netif_device_attach - mark device as attached 1453 * @dev: network device 1454 * 1455 * Mark device as attached from system and restart if needed. 1456 */ 1457 void netif_device_attach(struct net_device *dev) 1458 { 1459 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 1460 netif_running(dev)) { 1461 netif_tx_wake_all_queues(dev); 1462 __netdev_watchdog_up(dev); 1463 } 1464 } 1465 EXPORT_SYMBOL(netif_device_attach); 1466 1467 static bool can_checksum_protocol(unsigned long features, __be16 protocol) 1468 { 1469 return ((features & NETIF_F_GEN_CSUM) || 1470 ((features & NETIF_F_IP_CSUM) && 1471 protocol == htons(ETH_P_IP)) || 1472 ((features & NETIF_F_IPV6_CSUM) && 1473 protocol == htons(ETH_P_IPV6)) || 1474 ((features & NETIF_F_FCOE_CRC) && 1475 protocol == htons(ETH_P_FCOE))); 1476 } 1477 1478 static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb) 1479 { 1480 if (can_checksum_protocol(dev->features, skb->protocol)) 1481 return true; 1482 1483 if (skb->protocol == htons(ETH_P_8021Q)) { 1484 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data; 1485 if (can_checksum_protocol(dev->features & dev->vlan_features, 1486 veh->h_vlan_encapsulated_proto)) 1487 return true; 1488 } 1489 1490 return false; 1491 } 1492 1493 /* 1494 * Invalidate hardware checksum when packet is to be mangled, and 1495 * complete checksum manually on outgoing path. 1496 */ 1497 int skb_checksum_help(struct sk_buff *skb) 1498 { 1499 __wsum csum; 1500 int ret = 0, offset; 1501 1502 if (skb->ip_summed == CHECKSUM_COMPLETE) 1503 goto out_set_summed; 1504 1505 if (unlikely(skb_shinfo(skb)->gso_size)) { 1506 /* Let GSO fix up the checksum. */ 1507 goto out_set_summed; 1508 } 1509 1510 offset = skb->csum_start - skb_headroom(skb); 1511 BUG_ON(offset >= skb_headlen(skb)); 1512 csum = skb_checksum(skb, offset, skb->len - offset, 0); 1513 1514 offset += skb->csum_offset; 1515 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 1516 1517 if (skb_cloned(skb) && 1518 !skb_clone_writable(skb, offset + sizeof(__sum16))) { 1519 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 1520 if (ret) 1521 goto out; 1522 } 1523 1524 *(__sum16 *)(skb->data + offset) = csum_fold(csum); 1525 out_set_summed: 1526 skb->ip_summed = CHECKSUM_NONE; 1527 out: 1528 return ret; 1529 } 1530 1531 /** 1532 * skb_gso_segment - Perform segmentation on skb. 1533 * @skb: buffer to segment 1534 * @features: features for the output path (see dev->features) 1535 * 1536 * This function segments the given skb and returns a list of segments. 1537 * 1538 * It may return NULL if the skb requires no segmentation. This is 1539 * only possible when GSO is used for verifying header integrity. 1540 */ 1541 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features) 1542 { 1543 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 1544 struct packet_type *ptype; 1545 __be16 type = skb->protocol; 1546 int err; 1547 1548 skb_reset_mac_header(skb); 1549 skb->mac_len = skb->network_header - skb->mac_header; 1550 __skb_pull(skb, skb->mac_len); 1551 1552 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) { 1553 struct net_device *dev = skb->dev; 1554 struct ethtool_drvinfo info = {}; 1555 1556 if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo) 1557 dev->ethtool_ops->get_drvinfo(dev, &info); 1558 1559 WARN(1, "%s: caps=(0x%lx, 0x%lx) len=%d data_len=%d " 1560 "ip_summed=%d", 1561 info.driver, dev ? dev->features : 0L, 1562 skb->sk ? skb->sk->sk_route_caps : 0L, 1563 skb->len, skb->data_len, skb->ip_summed); 1564 1565 if (skb_header_cloned(skb) && 1566 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))) 1567 return ERR_PTR(err); 1568 } 1569 1570 rcu_read_lock(); 1571 list_for_each_entry_rcu(ptype, 1572 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) { 1573 if (ptype->type == type && !ptype->dev && ptype->gso_segment) { 1574 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) { 1575 err = ptype->gso_send_check(skb); 1576 segs = ERR_PTR(err); 1577 if (err || skb_gso_ok(skb, features)) 1578 break; 1579 __skb_push(skb, (skb->data - 1580 skb_network_header(skb))); 1581 } 1582 segs = ptype->gso_segment(skb, features); 1583 break; 1584 } 1585 } 1586 rcu_read_unlock(); 1587 1588 __skb_push(skb, skb->data - skb_mac_header(skb)); 1589 1590 return segs; 1591 } 1592 1593 EXPORT_SYMBOL(skb_gso_segment); 1594 1595 /* Take action when hardware reception checksum errors are detected. */ 1596 #ifdef CONFIG_BUG 1597 void netdev_rx_csum_fault(struct net_device *dev) 1598 { 1599 if (net_ratelimit()) { 1600 printk(KERN_ERR "%s: hw csum failure.\n", 1601 dev ? dev->name : "<unknown>"); 1602 dump_stack(); 1603 } 1604 } 1605 EXPORT_SYMBOL(netdev_rx_csum_fault); 1606 #endif 1607 1608 /* Actually, we should eliminate this check as soon as we know, that: 1609 * 1. IOMMU is present and allows to map all the memory. 1610 * 2. No high memory really exists on this machine. 1611 */ 1612 1613 static inline int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 1614 { 1615 #ifdef CONFIG_HIGHMEM 1616 int i; 1617 1618 if (dev->features & NETIF_F_HIGHDMA) 1619 return 0; 1620 1621 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1622 if (PageHighMem(skb_shinfo(skb)->frags[i].page)) 1623 return 1; 1624 1625 #endif 1626 return 0; 1627 } 1628 1629 struct dev_gso_cb { 1630 void (*destructor)(struct sk_buff *skb); 1631 }; 1632 1633 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb) 1634 1635 static void dev_gso_skb_destructor(struct sk_buff *skb) 1636 { 1637 struct dev_gso_cb *cb; 1638 1639 do { 1640 struct sk_buff *nskb = skb->next; 1641 1642 skb->next = nskb->next; 1643 nskb->next = NULL; 1644 kfree_skb(nskb); 1645 } while (skb->next); 1646 1647 cb = DEV_GSO_CB(skb); 1648 if (cb->destructor) 1649 cb->destructor(skb); 1650 } 1651 1652 /** 1653 * dev_gso_segment - Perform emulated hardware segmentation on skb. 1654 * @skb: buffer to segment 1655 * 1656 * This function segments the given skb and stores the list of segments 1657 * in skb->next. 1658 */ 1659 static int dev_gso_segment(struct sk_buff *skb) 1660 { 1661 struct net_device *dev = skb->dev; 1662 struct sk_buff *segs; 1663 int features = dev->features & ~(illegal_highdma(dev, skb) ? 1664 NETIF_F_SG : 0); 1665 1666 segs = skb_gso_segment(skb, features); 1667 1668 /* Verifying header integrity only. */ 1669 if (!segs) 1670 return 0; 1671 1672 if (IS_ERR(segs)) 1673 return PTR_ERR(segs); 1674 1675 skb->next = segs; 1676 DEV_GSO_CB(skb)->destructor = skb->destructor; 1677 skb->destructor = dev_gso_skb_destructor; 1678 1679 return 0; 1680 } 1681 1682 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 1683 struct netdev_queue *txq) 1684 { 1685 const struct net_device_ops *ops = dev->netdev_ops; 1686 int rc; 1687 1688 if (likely(!skb->next)) { 1689 if (!list_empty(&ptype_all)) 1690 dev_queue_xmit_nit(skb, dev); 1691 1692 if (netif_needs_gso(dev, skb)) { 1693 if (unlikely(dev_gso_segment(skb))) 1694 goto out_kfree_skb; 1695 if (skb->next) 1696 goto gso; 1697 } 1698 1699 /* 1700 * If device doesnt need skb->dst, release it right now while 1701 * its hot in this cpu cache 1702 */ 1703 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 1704 skb_dst_drop(skb); 1705 1706 rc = ops->ndo_start_xmit(skb, dev); 1707 if (rc == 0) 1708 txq_trans_update(txq); 1709 /* 1710 * TODO: if skb_orphan() was called by 1711 * dev->hard_start_xmit() (for example, the unmodified 1712 * igb driver does that; bnx2 doesn't), then 1713 * skb_tx_software_timestamp() will be unable to send 1714 * back the time stamp. 1715 * 1716 * How can this be prevented? Always create another 1717 * reference to the socket before calling 1718 * dev->hard_start_xmit()? Prevent that skb_orphan() 1719 * does anything in dev->hard_start_xmit() by clearing 1720 * the skb destructor before the call and restoring it 1721 * afterwards, then doing the skb_orphan() ourselves? 1722 */ 1723 return rc; 1724 } 1725 1726 gso: 1727 do { 1728 struct sk_buff *nskb = skb->next; 1729 1730 skb->next = nskb->next; 1731 nskb->next = NULL; 1732 rc = ops->ndo_start_xmit(nskb, dev); 1733 if (unlikely(rc)) { 1734 nskb->next = skb->next; 1735 skb->next = nskb; 1736 return rc; 1737 } 1738 txq_trans_update(txq); 1739 if (unlikely(netif_tx_queue_stopped(txq) && skb->next)) 1740 return NETDEV_TX_BUSY; 1741 } while (skb->next); 1742 1743 skb->destructor = DEV_GSO_CB(skb)->destructor; 1744 1745 out_kfree_skb: 1746 kfree_skb(skb); 1747 return 0; 1748 } 1749 1750 static u32 skb_tx_hashrnd; 1751 1752 u16 skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb) 1753 { 1754 u32 hash; 1755 1756 if (skb_rx_queue_recorded(skb)) { 1757 hash = skb_get_rx_queue(skb); 1758 while (unlikely (hash >= dev->real_num_tx_queues)) 1759 hash -= dev->real_num_tx_queues; 1760 return hash; 1761 } 1762 1763 if (skb->sk && skb->sk->sk_hash) 1764 hash = skb->sk->sk_hash; 1765 else 1766 hash = skb->protocol; 1767 1768 hash = jhash_1word(hash, skb_tx_hashrnd); 1769 1770 return (u16) (((u64) hash * dev->real_num_tx_queues) >> 32); 1771 } 1772 EXPORT_SYMBOL(skb_tx_hash); 1773 1774 static struct netdev_queue *dev_pick_tx(struct net_device *dev, 1775 struct sk_buff *skb) 1776 { 1777 const struct net_device_ops *ops = dev->netdev_ops; 1778 u16 queue_index = 0; 1779 1780 if (ops->ndo_select_queue) 1781 queue_index = ops->ndo_select_queue(dev, skb); 1782 else if (dev->real_num_tx_queues > 1) 1783 queue_index = skb_tx_hash(dev, skb); 1784 1785 skb_set_queue_mapping(skb, queue_index); 1786 return netdev_get_tx_queue(dev, queue_index); 1787 } 1788 1789 /** 1790 * dev_queue_xmit - transmit a buffer 1791 * @skb: buffer to transmit 1792 * 1793 * Queue a buffer for transmission to a network device. The caller must 1794 * have set the device and priority and built the buffer before calling 1795 * this function. The function can be called from an interrupt. 1796 * 1797 * A negative errno code is returned on a failure. A success does not 1798 * guarantee the frame will be transmitted as it may be dropped due 1799 * to congestion or traffic shaping. 1800 * 1801 * ----------------------------------------------------------------------------------- 1802 * I notice this method can also return errors from the queue disciplines, 1803 * including NET_XMIT_DROP, which is a positive value. So, errors can also 1804 * be positive. 1805 * 1806 * Regardless of the return value, the skb is consumed, so it is currently 1807 * difficult to retry a send to this method. (You can bump the ref count 1808 * before sending to hold a reference for retry if you are careful.) 1809 * 1810 * When calling this method, interrupts MUST be enabled. This is because 1811 * the BH enable code must have IRQs enabled so that it will not deadlock. 1812 * --BLG 1813 */ 1814 int dev_queue_xmit(struct sk_buff *skb) 1815 { 1816 struct net_device *dev = skb->dev; 1817 struct netdev_queue *txq; 1818 struct Qdisc *q; 1819 int rc = -ENOMEM; 1820 1821 /* GSO will handle the following emulations directly. */ 1822 if (netif_needs_gso(dev, skb)) 1823 goto gso; 1824 1825 if (skb_has_frags(skb) && 1826 !(dev->features & NETIF_F_FRAGLIST) && 1827 __skb_linearize(skb)) 1828 goto out_kfree_skb; 1829 1830 /* Fragmented skb is linearized if device does not support SG, 1831 * or if at least one of fragments is in highmem and device 1832 * does not support DMA from it. 1833 */ 1834 if (skb_shinfo(skb)->nr_frags && 1835 (!(dev->features & NETIF_F_SG) || illegal_highdma(dev, skb)) && 1836 __skb_linearize(skb)) 1837 goto out_kfree_skb; 1838 1839 /* If packet is not checksummed and device does not support 1840 * checksumming for this protocol, complete checksumming here. 1841 */ 1842 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1843 skb_set_transport_header(skb, skb->csum_start - 1844 skb_headroom(skb)); 1845 if (!dev_can_checksum(dev, skb) && skb_checksum_help(skb)) 1846 goto out_kfree_skb; 1847 } 1848 1849 gso: 1850 /* Disable soft irqs for various locks below. Also 1851 * stops preemption for RCU. 1852 */ 1853 rcu_read_lock_bh(); 1854 1855 txq = dev_pick_tx(dev, skb); 1856 q = rcu_dereference(txq->qdisc); 1857 1858 #ifdef CONFIG_NET_CLS_ACT 1859 skb->tc_verd = SET_TC_AT(skb->tc_verd,AT_EGRESS); 1860 #endif 1861 if (q->enqueue) { 1862 spinlock_t *root_lock = qdisc_lock(q); 1863 1864 spin_lock(root_lock); 1865 1866 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 1867 kfree_skb(skb); 1868 rc = NET_XMIT_DROP; 1869 } else { 1870 rc = qdisc_enqueue_root(skb, q); 1871 qdisc_run(q); 1872 } 1873 spin_unlock(root_lock); 1874 1875 goto out; 1876 } 1877 1878 /* The device has no queue. Common case for software devices: 1879 loopback, all the sorts of tunnels... 1880 1881 Really, it is unlikely that netif_tx_lock protection is necessary 1882 here. (f.e. loopback and IP tunnels are clean ignoring statistics 1883 counters.) 1884 However, it is possible, that they rely on protection 1885 made by us here. 1886 1887 Check this and shot the lock. It is not prone from deadlocks. 1888 Either shot noqueue qdisc, it is even simpler 8) 1889 */ 1890 if (dev->flags & IFF_UP) { 1891 int cpu = smp_processor_id(); /* ok because BHs are off */ 1892 1893 if (txq->xmit_lock_owner != cpu) { 1894 1895 HARD_TX_LOCK(dev, txq, cpu); 1896 1897 if (!netif_tx_queue_stopped(txq)) { 1898 rc = 0; 1899 if (!dev_hard_start_xmit(skb, dev, txq)) { 1900 HARD_TX_UNLOCK(dev, txq); 1901 goto out; 1902 } 1903 } 1904 HARD_TX_UNLOCK(dev, txq); 1905 if (net_ratelimit()) 1906 printk(KERN_CRIT "Virtual device %s asks to " 1907 "queue packet!\n", dev->name); 1908 } else { 1909 /* Recursion is detected! It is possible, 1910 * unfortunately */ 1911 if (net_ratelimit()) 1912 printk(KERN_CRIT "Dead loop on virtual device " 1913 "%s, fix it urgently!\n", dev->name); 1914 } 1915 } 1916 1917 rc = -ENETDOWN; 1918 rcu_read_unlock_bh(); 1919 1920 out_kfree_skb: 1921 kfree_skb(skb); 1922 return rc; 1923 out: 1924 rcu_read_unlock_bh(); 1925 return rc; 1926 } 1927 1928 1929 /*======================================================================= 1930 Receiver routines 1931 =======================================================================*/ 1932 1933 int netdev_max_backlog __read_mostly = 1000; 1934 int netdev_budget __read_mostly = 300; 1935 int weight_p __read_mostly = 64; /* old backlog weight */ 1936 1937 DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, }; 1938 1939 1940 /** 1941 * netif_rx - post buffer to the network code 1942 * @skb: buffer to post 1943 * 1944 * This function receives a packet from a device driver and queues it for 1945 * the upper (protocol) levels to process. It always succeeds. The buffer 1946 * may be dropped during processing for congestion control or by the 1947 * protocol layers. 1948 * 1949 * return values: 1950 * NET_RX_SUCCESS (no congestion) 1951 * NET_RX_DROP (packet was dropped) 1952 * 1953 */ 1954 1955 int netif_rx(struct sk_buff *skb) 1956 { 1957 struct softnet_data *queue; 1958 unsigned long flags; 1959 1960 /* if netpoll wants it, pretend we never saw it */ 1961 if (netpoll_rx(skb)) 1962 return NET_RX_DROP; 1963 1964 if (!skb->tstamp.tv64) 1965 net_timestamp(skb); 1966 1967 /* 1968 * The code is rearranged so that the path is the most 1969 * short when CPU is congested, but is still operating. 1970 */ 1971 local_irq_save(flags); 1972 queue = &__get_cpu_var(softnet_data); 1973 1974 __get_cpu_var(netdev_rx_stat).total++; 1975 if (queue->input_pkt_queue.qlen <= netdev_max_backlog) { 1976 if (queue->input_pkt_queue.qlen) { 1977 enqueue: 1978 __skb_queue_tail(&queue->input_pkt_queue, skb); 1979 local_irq_restore(flags); 1980 return NET_RX_SUCCESS; 1981 } 1982 1983 napi_schedule(&queue->backlog); 1984 goto enqueue; 1985 } 1986 1987 __get_cpu_var(netdev_rx_stat).dropped++; 1988 local_irq_restore(flags); 1989 1990 kfree_skb(skb); 1991 return NET_RX_DROP; 1992 } 1993 1994 int netif_rx_ni(struct sk_buff *skb) 1995 { 1996 int err; 1997 1998 preempt_disable(); 1999 err = netif_rx(skb); 2000 if (local_softirq_pending()) 2001 do_softirq(); 2002 preempt_enable(); 2003 2004 return err; 2005 } 2006 2007 EXPORT_SYMBOL(netif_rx_ni); 2008 2009 static void net_tx_action(struct softirq_action *h) 2010 { 2011 struct softnet_data *sd = &__get_cpu_var(softnet_data); 2012 2013 if (sd->completion_queue) { 2014 struct sk_buff *clist; 2015 2016 local_irq_disable(); 2017 clist = sd->completion_queue; 2018 sd->completion_queue = NULL; 2019 local_irq_enable(); 2020 2021 while (clist) { 2022 struct sk_buff *skb = clist; 2023 clist = clist->next; 2024 2025 WARN_ON(atomic_read(&skb->users)); 2026 __kfree_skb(skb); 2027 } 2028 } 2029 2030 if (sd->output_queue) { 2031 struct Qdisc *head; 2032 2033 local_irq_disable(); 2034 head = sd->output_queue; 2035 sd->output_queue = NULL; 2036 local_irq_enable(); 2037 2038 while (head) { 2039 struct Qdisc *q = head; 2040 spinlock_t *root_lock; 2041 2042 head = head->next_sched; 2043 2044 root_lock = qdisc_lock(q); 2045 if (spin_trylock(root_lock)) { 2046 smp_mb__before_clear_bit(); 2047 clear_bit(__QDISC_STATE_SCHED, 2048 &q->state); 2049 qdisc_run(q); 2050 spin_unlock(root_lock); 2051 } else { 2052 if (!test_bit(__QDISC_STATE_DEACTIVATED, 2053 &q->state)) { 2054 __netif_reschedule(q); 2055 } else { 2056 smp_mb__before_clear_bit(); 2057 clear_bit(__QDISC_STATE_SCHED, 2058 &q->state); 2059 } 2060 } 2061 } 2062 } 2063 } 2064 2065 static inline int deliver_skb(struct sk_buff *skb, 2066 struct packet_type *pt_prev, 2067 struct net_device *orig_dev) 2068 { 2069 atomic_inc(&skb->users); 2070 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 2071 } 2072 2073 #if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE) 2074 2075 #if defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE) 2076 /* This hook is defined here for ATM LANE */ 2077 int (*br_fdb_test_addr_hook)(struct net_device *dev, 2078 unsigned char *addr) __read_mostly; 2079 EXPORT_SYMBOL(br_fdb_test_addr_hook); 2080 #endif 2081 2082 /* 2083 * If bridge module is loaded call bridging hook. 2084 * returns NULL if packet was consumed. 2085 */ 2086 struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p, 2087 struct sk_buff *skb) __read_mostly; 2088 EXPORT_SYMBOL(br_handle_frame_hook); 2089 2090 static inline struct sk_buff *handle_bridge(struct sk_buff *skb, 2091 struct packet_type **pt_prev, int *ret, 2092 struct net_device *orig_dev) 2093 { 2094 struct net_bridge_port *port; 2095 2096 if (skb->pkt_type == PACKET_LOOPBACK || 2097 (port = rcu_dereference(skb->dev->br_port)) == NULL) 2098 return skb; 2099 2100 if (*pt_prev) { 2101 *ret = deliver_skb(skb, *pt_prev, orig_dev); 2102 *pt_prev = NULL; 2103 } 2104 2105 return br_handle_frame_hook(port, skb); 2106 } 2107 #else 2108 #define handle_bridge(skb, pt_prev, ret, orig_dev) (skb) 2109 #endif 2110 2111 #if defined(CONFIG_MACVLAN) || defined(CONFIG_MACVLAN_MODULE) 2112 struct sk_buff *(*macvlan_handle_frame_hook)(struct sk_buff *skb) __read_mostly; 2113 EXPORT_SYMBOL_GPL(macvlan_handle_frame_hook); 2114 2115 static inline struct sk_buff *handle_macvlan(struct sk_buff *skb, 2116 struct packet_type **pt_prev, 2117 int *ret, 2118 struct net_device *orig_dev) 2119 { 2120 if (skb->dev->macvlan_port == NULL) 2121 return skb; 2122 2123 if (*pt_prev) { 2124 *ret = deliver_skb(skb, *pt_prev, orig_dev); 2125 *pt_prev = NULL; 2126 } 2127 return macvlan_handle_frame_hook(skb); 2128 } 2129 #else 2130 #define handle_macvlan(skb, pt_prev, ret, orig_dev) (skb) 2131 #endif 2132 2133 #ifdef CONFIG_NET_CLS_ACT 2134 /* TODO: Maybe we should just force sch_ingress to be compiled in 2135 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions 2136 * a compare and 2 stores extra right now if we dont have it on 2137 * but have CONFIG_NET_CLS_ACT 2138 * NOTE: This doesnt stop any functionality; if you dont have 2139 * the ingress scheduler, you just cant add policies on ingress. 2140 * 2141 */ 2142 static int ing_filter(struct sk_buff *skb) 2143 { 2144 struct net_device *dev = skb->dev; 2145 u32 ttl = G_TC_RTTL(skb->tc_verd); 2146 struct netdev_queue *rxq; 2147 int result = TC_ACT_OK; 2148 struct Qdisc *q; 2149 2150 if (MAX_RED_LOOP < ttl++) { 2151 printk(KERN_WARNING 2152 "Redir loop detected Dropping packet (%d->%d)\n", 2153 skb->iif, dev->ifindex); 2154 return TC_ACT_SHOT; 2155 } 2156 2157 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl); 2158 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS); 2159 2160 rxq = &dev->rx_queue; 2161 2162 q = rxq->qdisc; 2163 if (q != &noop_qdisc) { 2164 spin_lock(qdisc_lock(q)); 2165 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) 2166 result = qdisc_enqueue_root(skb, q); 2167 spin_unlock(qdisc_lock(q)); 2168 } 2169 2170 return result; 2171 } 2172 2173 static inline struct sk_buff *handle_ing(struct sk_buff *skb, 2174 struct packet_type **pt_prev, 2175 int *ret, struct net_device *orig_dev) 2176 { 2177 if (skb->dev->rx_queue.qdisc == &noop_qdisc) 2178 goto out; 2179 2180 if (*pt_prev) { 2181 *ret = deliver_skb(skb, *pt_prev, orig_dev); 2182 *pt_prev = NULL; 2183 } else { 2184 /* Huh? Why does turning on AF_PACKET affect this? */ 2185 skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd); 2186 } 2187 2188 switch (ing_filter(skb)) { 2189 case TC_ACT_SHOT: 2190 case TC_ACT_STOLEN: 2191 kfree_skb(skb); 2192 return NULL; 2193 } 2194 2195 out: 2196 skb->tc_verd = 0; 2197 return skb; 2198 } 2199 #endif 2200 2201 /* 2202 * netif_nit_deliver - deliver received packets to network taps 2203 * @skb: buffer 2204 * 2205 * This function is used to deliver incoming packets to network 2206 * taps. It should be used when the normal netif_receive_skb path 2207 * is bypassed, for example because of VLAN acceleration. 2208 */ 2209 void netif_nit_deliver(struct sk_buff *skb) 2210 { 2211 struct packet_type *ptype; 2212 2213 if (list_empty(&ptype_all)) 2214 return; 2215 2216 skb_reset_network_header(skb); 2217 skb_reset_transport_header(skb); 2218 skb->mac_len = skb->network_header - skb->mac_header; 2219 2220 rcu_read_lock(); 2221 list_for_each_entry_rcu(ptype, &ptype_all, list) { 2222 if (!ptype->dev || ptype->dev == skb->dev) 2223 deliver_skb(skb, ptype, skb->dev); 2224 } 2225 rcu_read_unlock(); 2226 } 2227 2228 /** 2229 * netif_receive_skb - process receive buffer from network 2230 * @skb: buffer to process 2231 * 2232 * netif_receive_skb() is the main receive data processing function. 2233 * It always succeeds. The buffer may be dropped during processing 2234 * for congestion control or by the protocol layers. 2235 * 2236 * This function may only be called from softirq context and interrupts 2237 * should be enabled. 2238 * 2239 * Return values (usually ignored): 2240 * NET_RX_SUCCESS: no congestion 2241 * NET_RX_DROP: packet was dropped 2242 */ 2243 int netif_receive_skb(struct sk_buff *skb) 2244 { 2245 struct packet_type *ptype, *pt_prev; 2246 struct net_device *orig_dev; 2247 struct net_device *null_or_orig; 2248 int ret = NET_RX_DROP; 2249 __be16 type; 2250 2251 if (skb->vlan_tci && vlan_hwaccel_do_receive(skb)) 2252 return NET_RX_SUCCESS; 2253 2254 /* if we've gotten here through NAPI, check netpoll */ 2255 if (netpoll_receive_skb(skb)) 2256 return NET_RX_DROP; 2257 2258 if (!skb->tstamp.tv64) 2259 net_timestamp(skb); 2260 2261 if (!skb->iif) 2262 skb->iif = skb->dev->ifindex; 2263 2264 null_or_orig = NULL; 2265 orig_dev = skb->dev; 2266 if (orig_dev->master) { 2267 if (skb_bond_should_drop(skb)) 2268 null_or_orig = orig_dev; /* deliver only exact match */ 2269 else 2270 skb->dev = orig_dev->master; 2271 } 2272 2273 __get_cpu_var(netdev_rx_stat).total++; 2274 2275 skb_reset_network_header(skb); 2276 skb_reset_transport_header(skb); 2277 skb->mac_len = skb->network_header - skb->mac_header; 2278 2279 pt_prev = NULL; 2280 2281 rcu_read_lock(); 2282 2283 #ifdef CONFIG_NET_CLS_ACT 2284 if (skb->tc_verd & TC_NCLS) { 2285 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd); 2286 goto ncls; 2287 } 2288 #endif 2289 2290 list_for_each_entry_rcu(ptype, &ptype_all, list) { 2291 if (ptype->dev == null_or_orig || ptype->dev == skb->dev || 2292 ptype->dev == orig_dev) { 2293 if (pt_prev) 2294 ret = deliver_skb(skb, pt_prev, orig_dev); 2295 pt_prev = ptype; 2296 } 2297 } 2298 2299 #ifdef CONFIG_NET_CLS_ACT 2300 skb = handle_ing(skb, &pt_prev, &ret, orig_dev); 2301 if (!skb) 2302 goto out; 2303 ncls: 2304 #endif 2305 2306 skb = handle_bridge(skb, &pt_prev, &ret, orig_dev); 2307 if (!skb) 2308 goto out; 2309 skb = handle_macvlan(skb, &pt_prev, &ret, orig_dev); 2310 if (!skb) 2311 goto out; 2312 2313 type = skb->protocol; 2314 list_for_each_entry_rcu(ptype, 2315 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) { 2316 if (ptype->type == type && 2317 (ptype->dev == null_or_orig || ptype->dev == skb->dev || 2318 ptype->dev == orig_dev)) { 2319 if (pt_prev) 2320 ret = deliver_skb(skb, pt_prev, orig_dev); 2321 pt_prev = ptype; 2322 } 2323 } 2324 2325 if (pt_prev) { 2326 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 2327 } else { 2328 kfree_skb(skb); 2329 /* Jamal, now you will not able to escape explaining 2330 * me how you were going to use this. :-) 2331 */ 2332 ret = NET_RX_DROP; 2333 } 2334 2335 out: 2336 rcu_read_unlock(); 2337 return ret; 2338 } 2339 2340 /* Network device is going away, flush any packets still pending */ 2341 static void flush_backlog(void *arg) 2342 { 2343 struct net_device *dev = arg; 2344 struct softnet_data *queue = &__get_cpu_var(softnet_data); 2345 struct sk_buff *skb, *tmp; 2346 2347 skb_queue_walk_safe(&queue->input_pkt_queue, skb, tmp) 2348 if (skb->dev == dev) { 2349 __skb_unlink(skb, &queue->input_pkt_queue); 2350 kfree_skb(skb); 2351 } 2352 } 2353 2354 static int napi_gro_complete(struct sk_buff *skb) 2355 { 2356 struct packet_type *ptype; 2357 __be16 type = skb->protocol; 2358 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK]; 2359 int err = -ENOENT; 2360 2361 if (NAPI_GRO_CB(skb)->count == 1) { 2362 skb_shinfo(skb)->gso_size = 0; 2363 goto out; 2364 } 2365 2366 rcu_read_lock(); 2367 list_for_each_entry_rcu(ptype, head, list) { 2368 if (ptype->type != type || ptype->dev || !ptype->gro_complete) 2369 continue; 2370 2371 err = ptype->gro_complete(skb); 2372 break; 2373 } 2374 rcu_read_unlock(); 2375 2376 if (err) { 2377 WARN_ON(&ptype->list == head); 2378 kfree_skb(skb); 2379 return NET_RX_SUCCESS; 2380 } 2381 2382 out: 2383 return netif_receive_skb(skb); 2384 } 2385 2386 void napi_gro_flush(struct napi_struct *napi) 2387 { 2388 struct sk_buff *skb, *next; 2389 2390 for (skb = napi->gro_list; skb; skb = next) { 2391 next = skb->next; 2392 skb->next = NULL; 2393 napi_gro_complete(skb); 2394 } 2395 2396 napi->gro_count = 0; 2397 napi->gro_list = NULL; 2398 } 2399 EXPORT_SYMBOL(napi_gro_flush); 2400 2401 int dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 2402 { 2403 struct sk_buff **pp = NULL; 2404 struct packet_type *ptype; 2405 __be16 type = skb->protocol; 2406 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK]; 2407 int same_flow; 2408 int mac_len; 2409 int ret; 2410 2411 if (!(skb->dev->features & NETIF_F_GRO)) 2412 goto normal; 2413 2414 if (skb_is_gso(skb) || skb_has_frags(skb)) 2415 goto normal; 2416 2417 rcu_read_lock(); 2418 list_for_each_entry_rcu(ptype, head, list) { 2419 if (ptype->type != type || ptype->dev || !ptype->gro_receive) 2420 continue; 2421 2422 skb_set_network_header(skb, skb_gro_offset(skb)); 2423 mac_len = skb->network_header - skb->mac_header; 2424 skb->mac_len = mac_len; 2425 NAPI_GRO_CB(skb)->same_flow = 0; 2426 NAPI_GRO_CB(skb)->flush = 0; 2427 NAPI_GRO_CB(skb)->free = 0; 2428 2429 pp = ptype->gro_receive(&napi->gro_list, skb); 2430 break; 2431 } 2432 rcu_read_unlock(); 2433 2434 if (&ptype->list == head) 2435 goto normal; 2436 2437 same_flow = NAPI_GRO_CB(skb)->same_flow; 2438 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED; 2439 2440 if (pp) { 2441 struct sk_buff *nskb = *pp; 2442 2443 *pp = nskb->next; 2444 nskb->next = NULL; 2445 napi_gro_complete(nskb); 2446 napi->gro_count--; 2447 } 2448 2449 if (same_flow) 2450 goto ok; 2451 2452 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS) 2453 goto normal; 2454 2455 napi->gro_count++; 2456 NAPI_GRO_CB(skb)->count = 1; 2457 skb_shinfo(skb)->gso_size = skb_gro_len(skb); 2458 skb->next = napi->gro_list; 2459 napi->gro_list = skb; 2460 ret = GRO_HELD; 2461 2462 pull: 2463 if (skb_headlen(skb) < skb_gro_offset(skb)) { 2464 int grow = skb_gro_offset(skb) - skb_headlen(skb); 2465 2466 BUG_ON(skb->end - skb->tail < grow); 2467 2468 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow); 2469 2470 skb->tail += grow; 2471 skb->data_len -= grow; 2472 2473 skb_shinfo(skb)->frags[0].page_offset += grow; 2474 skb_shinfo(skb)->frags[0].size -= grow; 2475 2476 if (unlikely(!skb_shinfo(skb)->frags[0].size)) { 2477 put_page(skb_shinfo(skb)->frags[0].page); 2478 memmove(skb_shinfo(skb)->frags, 2479 skb_shinfo(skb)->frags + 1, 2480 --skb_shinfo(skb)->nr_frags); 2481 } 2482 } 2483 2484 ok: 2485 return ret; 2486 2487 normal: 2488 ret = GRO_NORMAL; 2489 goto pull; 2490 } 2491 EXPORT_SYMBOL(dev_gro_receive); 2492 2493 static int __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 2494 { 2495 struct sk_buff *p; 2496 2497 if (netpoll_rx_on(skb)) 2498 return GRO_NORMAL; 2499 2500 for (p = napi->gro_list; p; p = p->next) { 2501 NAPI_GRO_CB(p)->same_flow = (p->dev == skb->dev) 2502 && !compare_ether_header(skb_mac_header(p), 2503 skb_gro_mac_header(skb)); 2504 NAPI_GRO_CB(p)->flush = 0; 2505 } 2506 2507 return dev_gro_receive(napi, skb); 2508 } 2509 2510 int napi_skb_finish(int ret, struct sk_buff *skb) 2511 { 2512 int err = NET_RX_SUCCESS; 2513 2514 switch (ret) { 2515 case GRO_NORMAL: 2516 return netif_receive_skb(skb); 2517 2518 case GRO_DROP: 2519 err = NET_RX_DROP; 2520 /* fall through */ 2521 2522 case GRO_MERGED_FREE: 2523 kfree_skb(skb); 2524 break; 2525 } 2526 2527 return err; 2528 } 2529 EXPORT_SYMBOL(napi_skb_finish); 2530 2531 void skb_gro_reset_offset(struct sk_buff *skb) 2532 { 2533 NAPI_GRO_CB(skb)->data_offset = 0; 2534 NAPI_GRO_CB(skb)->frag0 = NULL; 2535 NAPI_GRO_CB(skb)->frag0_len = 0; 2536 2537 if (skb->mac_header == skb->tail && 2538 !PageHighMem(skb_shinfo(skb)->frags[0].page)) { 2539 NAPI_GRO_CB(skb)->frag0 = 2540 page_address(skb_shinfo(skb)->frags[0].page) + 2541 skb_shinfo(skb)->frags[0].page_offset; 2542 NAPI_GRO_CB(skb)->frag0_len = skb_shinfo(skb)->frags[0].size; 2543 } 2544 } 2545 EXPORT_SYMBOL(skb_gro_reset_offset); 2546 2547 int napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 2548 { 2549 skb_gro_reset_offset(skb); 2550 2551 return napi_skb_finish(__napi_gro_receive(napi, skb), skb); 2552 } 2553 EXPORT_SYMBOL(napi_gro_receive); 2554 2555 void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb) 2556 { 2557 __skb_pull(skb, skb_headlen(skb)); 2558 skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb)); 2559 2560 napi->skb = skb; 2561 } 2562 EXPORT_SYMBOL(napi_reuse_skb); 2563 2564 struct sk_buff *napi_get_frags(struct napi_struct *napi) 2565 { 2566 struct net_device *dev = napi->dev; 2567 struct sk_buff *skb = napi->skb; 2568 2569 if (!skb) { 2570 skb = netdev_alloc_skb(dev, GRO_MAX_HEAD + NET_IP_ALIGN); 2571 if (!skb) 2572 goto out; 2573 2574 skb_reserve(skb, NET_IP_ALIGN); 2575 2576 napi->skb = skb; 2577 } 2578 2579 out: 2580 return skb; 2581 } 2582 EXPORT_SYMBOL(napi_get_frags); 2583 2584 int napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb, int ret) 2585 { 2586 int err = NET_RX_SUCCESS; 2587 2588 switch (ret) { 2589 case GRO_NORMAL: 2590 case GRO_HELD: 2591 skb->protocol = eth_type_trans(skb, napi->dev); 2592 2593 if (ret == GRO_NORMAL) 2594 return netif_receive_skb(skb); 2595 2596 skb_gro_pull(skb, -ETH_HLEN); 2597 break; 2598 2599 case GRO_DROP: 2600 err = NET_RX_DROP; 2601 /* fall through */ 2602 2603 case GRO_MERGED_FREE: 2604 napi_reuse_skb(napi, skb); 2605 break; 2606 } 2607 2608 return err; 2609 } 2610 EXPORT_SYMBOL(napi_frags_finish); 2611 2612 struct sk_buff *napi_frags_skb(struct napi_struct *napi) 2613 { 2614 struct sk_buff *skb = napi->skb; 2615 struct ethhdr *eth; 2616 unsigned int hlen; 2617 unsigned int off; 2618 2619 napi->skb = NULL; 2620 2621 skb_reset_mac_header(skb); 2622 skb_gro_reset_offset(skb); 2623 2624 off = skb_gro_offset(skb); 2625 hlen = off + sizeof(*eth); 2626 eth = skb_gro_header_fast(skb, off); 2627 if (skb_gro_header_hard(skb, hlen)) { 2628 eth = skb_gro_header_slow(skb, hlen, off); 2629 if (unlikely(!eth)) { 2630 napi_reuse_skb(napi, skb); 2631 skb = NULL; 2632 goto out; 2633 } 2634 } 2635 2636 skb_gro_pull(skb, sizeof(*eth)); 2637 2638 /* 2639 * This works because the only protocols we care about don't require 2640 * special handling. We'll fix it up properly at the end. 2641 */ 2642 skb->protocol = eth->h_proto; 2643 2644 out: 2645 return skb; 2646 } 2647 EXPORT_SYMBOL(napi_frags_skb); 2648 2649 int napi_gro_frags(struct napi_struct *napi) 2650 { 2651 struct sk_buff *skb = napi_frags_skb(napi); 2652 2653 if (!skb) 2654 return NET_RX_DROP; 2655 2656 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb)); 2657 } 2658 EXPORT_SYMBOL(napi_gro_frags); 2659 2660 static int process_backlog(struct napi_struct *napi, int quota) 2661 { 2662 int work = 0; 2663 struct softnet_data *queue = &__get_cpu_var(softnet_data); 2664 unsigned long start_time = jiffies; 2665 2666 napi->weight = weight_p; 2667 do { 2668 struct sk_buff *skb; 2669 2670 local_irq_disable(); 2671 skb = __skb_dequeue(&queue->input_pkt_queue); 2672 if (!skb) { 2673 __napi_complete(napi); 2674 local_irq_enable(); 2675 break; 2676 } 2677 local_irq_enable(); 2678 2679 netif_receive_skb(skb); 2680 } while (++work < quota && jiffies == start_time); 2681 2682 return work; 2683 } 2684 2685 /** 2686 * __napi_schedule - schedule for receive 2687 * @n: entry to schedule 2688 * 2689 * The entry's receive function will be scheduled to run 2690 */ 2691 void __napi_schedule(struct napi_struct *n) 2692 { 2693 unsigned long flags; 2694 2695 local_irq_save(flags); 2696 list_add_tail(&n->poll_list, &__get_cpu_var(softnet_data).poll_list); 2697 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 2698 local_irq_restore(flags); 2699 } 2700 EXPORT_SYMBOL(__napi_schedule); 2701 2702 void __napi_complete(struct napi_struct *n) 2703 { 2704 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 2705 BUG_ON(n->gro_list); 2706 2707 list_del(&n->poll_list); 2708 smp_mb__before_clear_bit(); 2709 clear_bit(NAPI_STATE_SCHED, &n->state); 2710 } 2711 EXPORT_SYMBOL(__napi_complete); 2712 2713 void napi_complete(struct napi_struct *n) 2714 { 2715 unsigned long flags; 2716 2717 /* 2718 * don't let napi dequeue from the cpu poll list 2719 * just in case its running on a different cpu 2720 */ 2721 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state))) 2722 return; 2723 2724 napi_gro_flush(n); 2725 local_irq_save(flags); 2726 __napi_complete(n); 2727 local_irq_restore(flags); 2728 } 2729 EXPORT_SYMBOL(napi_complete); 2730 2731 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 2732 int (*poll)(struct napi_struct *, int), int weight) 2733 { 2734 INIT_LIST_HEAD(&napi->poll_list); 2735 napi->gro_count = 0; 2736 napi->gro_list = NULL; 2737 napi->skb = NULL; 2738 napi->poll = poll; 2739 napi->weight = weight; 2740 list_add(&napi->dev_list, &dev->napi_list); 2741 napi->dev = dev; 2742 #ifdef CONFIG_NETPOLL 2743 spin_lock_init(&napi->poll_lock); 2744 napi->poll_owner = -1; 2745 #endif 2746 set_bit(NAPI_STATE_SCHED, &napi->state); 2747 } 2748 EXPORT_SYMBOL(netif_napi_add); 2749 2750 void netif_napi_del(struct napi_struct *napi) 2751 { 2752 struct sk_buff *skb, *next; 2753 2754 list_del_init(&napi->dev_list); 2755 napi_free_frags(napi); 2756 2757 for (skb = napi->gro_list; skb; skb = next) { 2758 next = skb->next; 2759 skb->next = NULL; 2760 kfree_skb(skb); 2761 } 2762 2763 napi->gro_list = NULL; 2764 napi->gro_count = 0; 2765 } 2766 EXPORT_SYMBOL(netif_napi_del); 2767 2768 2769 static void net_rx_action(struct softirq_action *h) 2770 { 2771 struct list_head *list = &__get_cpu_var(softnet_data).poll_list; 2772 unsigned long time_limit = jiffies + 2; 2773 int budget = netdev_budget; 2774 void *have; 2775 2776 local_irq_disable(); 2777 2778 while (!list_empty(list)) { 2779 struct napi_struct *n; 2780 int work, weight; 2781 2782 /* If softirq window is exhuasted then punt. 2783 * Allow this to run for 2 jiffies since which will allow 2784 * an average latency of 1.5/HZ. 2785 */ 2786 if (unlikely(budget <= 0 || time_after(jiffies, time_limit))) 2787 goto softnet_break; 2788 2789 local_irq_enable(); 2790 2791 /* Even though interrupts have been re-enabled, this 2792 * access is safe because interrupts can only add new 2793 * entries to the tail of this list, and only ->poll() 2794 * calls can remove this head entry from the list. 2795 */ 2796 n = list_entry(list->next, struct napi_struct, poll_list); 2797 2798 have = netpoll_poll_lock(n); 2799 2800 weight = n->weight; 2801 2802 /* This NAPI_STATE_SCHED test is for avoiding a race 2803 * with netpoll's poll_napi(). Only the entity which 2804 * obtains the lock and sees NAPI_STATE_SCHED set will 2805 * actually make the ->poll() call. Therefore we avoid 2806 * accidently calling ->poll() when NAPI is not scheduled. 2807 */ 2808 work = 0; 2809 if (test_bit(NAPI_STATE_SCHED, &n->state)) { 2810 work = n->poll(n, weight); 2811 trace_napi_poll(n); 2812 } 2813 2814 WARN_ON_ONCE(work > weight); 2815 2816 budget -= work; 2817 2818 local_irq_disable(); 2819 2820 /* Drivers must not modify the NAPI state if they 2821 * consume the entire weight. In such cases this code 2822 * still "owns" the NAPI instance and therefore can 2823 * move the instance around on the list at-will. 2824 */ 2825 if (unlikely(work == weight)) { 2826 if (unlikely(napi_disable_pending(n))) { 2827 local_irq_enable(); 2828 napi_complete(n); 2829 local_irq_disable(); 2830 } else 2831 list_move_tail(&n->poll_list, list); 2832 } 2833 2834 netpoll_poll_unlock(have); 2835 } 2836 out: 2837 local_irq_enable(); 2838 2839 #ifdef CONFIG_NET_DMA 2840 /* 2841 * There may not be any more sk_buffs coming right now, so push 2842 * any pending DMA copies to hardware 2843 */ 2844 dma_issue_pending_all(); 2845 #endif 2846 2847 return; 2848 2849 softnet_break: 2850 __get_cpu_var(netdev_rx_stat).time_squeeze++; 2851 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 2852 goto out; 2853 } 2854 2855 static gifconf_func_t * gifconf_list [NPROTO]; 2856 2857 /** 2858 * register_gifconf - register a SIOCGIF handler 2859 * @family: Address family 2860 * @gifconf: Function handler 2861 * 2862 * Register protocol dependent address dumping routines. The handler 2863 * that is passed must not be freed or reused until it has been replaced 2864 * by another handler. 2865 */ 2866 int register_gifconf(unsigned int family, gifconf_func_t * gifconf) 2867 { 2868 if (family >= NPROTO) 2869 return -EINVAL; 2870 gifconf_list[family] = gifconf; 2871 return 0; 2872 } 2873 2874 2875 /* 2876 * Map an interface index to its name (SIOCGIFNAME) 2877 */ 2878 2879 /* 2880 * We need this ioctl for efficient implementation of the 2881 * if_indextoname() function required by the IPv6 API. Without 2882 * it, we would have to search all the interfaces to find a 2883 * match. --pb 2884 */ 2885 2886 static int dev_ifname(struct net *net, struct ifreq __user *arg) 2887 { 2888 struct net_device *dev; 2889 struct ifreq ifr; 2890 2891 /* 2892 * Fetch the caller's info block. 2893 */ 2894 2895 if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) 2896 return -EFAULT; 2897 2898 read_lock(&dev_base_lock); 2899 dev = __dev_get_by_index(net, ifr.ifr_ifindex); 2900 if (!dev) { 2901 read_unlock(&dev_base_lock); 2902 return -ENODEV; 2903 } 2904 2905 strcpy(ifr.ifr_name, dev->name); 2906 read_unlock(&dev_base_lock); 2907 2908 if (copy_to_user(arg, &ifr, sizeof(struct ifreq))) 2909 return -EFAULT; 2910 return 0; 2911 } 2912 2913 /* 2914 * Perform a SIOCGIFCONF call. This structure will change 2915 * size eventually, and there is nothing I can do about it. 2916 * Thus we will need a 'compatibility mode'. 2917 */ 2918 2919 static int dev_ifconf(struct net *net, char __user *arg) 2920 { 2921 struct ifconf ifc; 2922 struct net_device *dev; 2923 char __user *pos; 2924 int len; 2925 int total; 2926 int i; 2927 2928 /* 2929 * Fetch the caller's info block. 2930 */ 2931 2932 if (copy_from_user(&ifc, arg, sizeof(struct ifconf))) 2933 return -EFAULT; 2934 2935 pos = ifc.ifc_buf; 2936 len = ifc.ifc_len; 2937 2938 /* 2939 * Loop over the interfaces, and write an info block for each. 2940 */ 2941 2942 total = 0; 2943 for_each_netdev(net, dev) { 2944 for (i = 0; i < NPROTO; i++) { 2945 if (gifconf_list[i]) { 2946 int done; 2947 if (!pos) 2948 done = gifconf_list[i](dev, NULL, 0); 2949 else 2950 done = gifconf_list[i](dev, pos + total, 2951 len - total); 2952 if (done < 0) 2953 return -EFAULT; 2954 total += done; 2955 } 2956 } 2957 } 2958 2959 /* 2960 * All done. Write the updated control block back to the caller. 2961 */ 2962 ifc.ifc_len = total; 2963 2964 /* 2965 * Both BSD and Solaris return 0 here, so we do too. 2966 */ 2967 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0; 2968 } 2969 2970 #ifdef CONFIG_PROC_FS 2971 /* 2972 * This is invoked by the /proc filesystem handler to display a device 2973 * in detail. 2974 */ 2975 void *dev_seq_start(struct seq_file *seq, loff_t *pos) 2976 __acquires(dev_base_lock) 2977 { 2978 struct net *net = seq_file_net(seq); 2979 loff_t off; 2980 struct net_device *dev; 2981 2982 read_lock(&dev_base_lock); 2983 if (!*pos) 2984 return SEQ_START_TOKEN; 2985 2986 off = 1; 2987 for_each_netdev(net, dev) 2988 if (off++ == *pos) 2989 return dev; 2990 2991 return NULL; 2992 } 2993 2994 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2995 { 2996 struct net *net = seq_file_net(seq); 2997 ++*pos; 2998 return v == SEQ_START_TOKEN ? 2999 first_net_device(net) : next_net_device((struct net_device *)v); 3000 } 3001 3002 void dev_seq_stop(struct seq_file *seq, void *v) 3003 __releases(dev_base_lock) 3004 { 3005 read_unlock(&dev_base_lock); 3006 } 3007 3008 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev) 3009 { 3010 const struct net_device_stats *stats = dev_get_stats(dev); 3011 3012 seq_printf(seq, "%6s:%8lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu " 3013 "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n", 3014 dev->name, stats->rx_bytes, stats->rx_packets, 3015 stats->rx_errors, 3016 stats->rx_dropped + stats->rx_missed_errors, 3017 stats->rx_fifo_errors, 3018 stats->rx_length_errors + stats->rx_over_errors + 3019 stats->rx_crc_errors + stats->rx_frame_errors, 3020 stats->rx_compressed, stats->multicast, 3021 stats->tx_bytes, stats->tx_packets, 3022 stats->tx_errors, stats->tx_dropped, 3023 stats->tx_fifo_errors, stats->collisions, 3024 stats->tx_carrier_errors + 3025 stats->tx_aborted_errors + 3026 stats->tx_window_errors + 3027 stats->tx_heartbeat_errors, 3028 stats->tx_compressed); 3029 } 3030 3031 /* 3032 * Called from the PROCfs module. This now uses the new arbitrary sized 3033 * /proc/net interface to create /proc/net/dev 3034 */ 3035 static int dev_seq_show(struct seq_file *seq, void *v) 3036 { 3037 if (v == SEQ_START_TOKEN) 3038 seq_puts(seq, "Inter-| Receive " 3039 " | Transmit\n" 3040 " face |bytes packets errs drop fifo frame " 3041 "compressed multicast|bytes packets errs " 3042 "drop fifo colls carrier compressed\n"); 3043 else 3044 dev_seq_printf_stats(seq, v); 3045 return 0; 3046 } 3047 3048 static struct netif_rx_stats *softnet_get_online(loff_t *pos) 3049 { 3050 struct netif_rx_stats *rc = NULL; 3051 3052 while (*pos < nr_cpu_ids) 3053 if (cpu_online(*pos)) { 3054 rc = &per_cpu(netdev_rx_stat, *pos); 3055 break; 3056 } else 3057 ++*pos; 3058 return rc; 3059 } 3060 3061 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos) 3062 { 3063 return softnet_get_online(pos); 3064 } 3065 3066 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3067 { 3068 ++*pos; 3069 return softnet_get_online(pos); 3070 } 3071 3072 static void softnet_seq_stop(struct seq_file *seq, void *v) 3073 { 3074 } 3075 3076 static int softnet_seq_show(struct seq_file *seq, void *v) 3077 { 3078 struct netif_rx_stats *s = v; 3079 3080 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x\n", 3081 s->total, s->dropped, s->time_squeeze, 0, 3082 0, 0, 0, 0, /* was fastroute */ 3083 s->cpu_collision ); 3084 return 0; 3085 } 3086 3087 static const struct seq_operations dev_seq_ops = { 3088 .start = dev_seq_start, 3089 .next = dev_seq_next, 3090 .stop = dev_seq_stop, 3091 .show = dev_seq_show, 3092 }; 3093 3094 static int dev_seq_open(struct inode *inode, struct file *file) 3095 { 3096 return seq_open_net(inode, file, &dev_seq_ops, 3097 sizeof(struct seq_net_private)); 3098 } 3099 3100 static const struct file_operations dev_seq_fops = { 3101 .owner = THIS_MODULE, 3102 .open = dev_seq_open, 3103 .read = seq_read, 3104 .llseek = seq_lseek, 3105 .release = seq_release_net, 3106 }; 3107 3108 static const struct seq_operations softnet_seq_ops = { 3109 .start = softnet_seq_start, 3110 .next = softnet_seq_next, 3111 .stop = softnet_seq_stop, 3112 .show = softnet_seq_show, 3113 }; 3114 3115 static int softnet_seq_open(struct inode *inode, struct file *file) 3116 { 3117 return seq_open(file, &softnet_seq_ops); 3118 } 3119 3120 static const struct file_operations softnet_seq_fops = { 3121 .owner = THIS_MODULE, 3122 .open = softnet_seq_open, 3123 .read = seq_read, 3124 .llseek = seq_lseek, 3125 .release = seq_release, 3126 }; 3127 3128 static void *ptype_get_idx(loff_t pos) 3129 { 3130 struct packet_type *pt = NULL; 3131 loff_t i = 0; 3132 int t; 3133 3134 list_for_each_entry_rcu(pt, &ptype_all, list) { 3135 if (i == pos) 3136 return pt; 3137 ++i; 3138 } 3139 3140 for (t = 0; t < PTYPE_HASH_SIZE; t++) { 3141 list_for_each_entry_rcu(pt, &ptype_base[t], list) { 3142 if (i == pos) 3143 return pt; 3144 ++i; 3145 } 3146 } 3147 return NULL; 3148 } 3149 3150 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos) 3151 __acquires(RCU) 3152 { 3153 rcu_read_lock(); 3154 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN; 3155 } 3156 3157 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3158 { 3159 struct packet_type *pt; 3160 struct list_head *nxt; 3161 int hash; 3162 3163 ++*pos; 3164 if (v == SEQ_START_TOKEN) 3165 return ptype_get_idx(0); 3166 3167 pt = v; 3168 nxt = pt->list.next; 3169 if (pt->type == htons(ETH_P_ALL)) { 3170 if (nxt != &ptype_all) 3171 goto found; 3172 hash = 0; 3173 nxt = ptype_base[0].next; 3174 } else 3175 hash = ntohs(pt->type) & PTYPE_HASH_MASK; 3176 3177 while (nxt == &ptype_base[hash]) { 3178 if (++hash >= PTYPE_HASH_SIZE) 3179 return NULL; 3180 nxt = ptype_base[hash].next; 3181 } 3182 found: 3183 return list_entry(nxt, struct packet_type, list); 3184 } 3185 3186 static void ptype_seq_stop(struct seq_file *seq, void *v) 3187 __releases(RCU) 3188 { 3189 rcu_read_unlock(); 3190 } 3191 3192 static int ptype_seq_show(struct seq_file *seq, void *v) 3193 { 3194 struct packet_type *pt = v; 3195 3196 if (v == SEQ_START_TOKEN) 3197 seq_puts(seq, "Type Device Function\n"); 3198 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) { 3199 if (pt->type == htons(ETH_P_ALL)) 3200 seq_puts(seq, "ALL "); 3201 else 3202 seq_printf(seq, "%04x", ntohs(pt->type)); 3203 3204 seq_printf(seq, " %-8s %pF\n", 3205 pt->dev ? pt->dev->name : "", pt->func); 3206 } 3207 3208 return 0; 3209 } 3210 3211 static const struct seq_operations ptype_seq_ops = { 3212 .start = ptype_seq_start, 3213 .next = ptype_seq_next, 3214 .stop = ptype_seq_stop, 3215 .show = ptype_seq_show, 3216 }; 3217 3218 static int ptype_seq_open(struct inode *inode, struct file *file) 3219 { 3220 return seq_open_net(inode, file, &ptype_seq_ops, 3221 sizeof(struct seq_net_private)); 3222 } 3223 3224 static const struct file_operations ptype_seq_fops = { 3225 .owner = THIS_MODULE, 3226 .open = ptype_seq_open, 3227 .read = seq_read, 3228 .llseek = seq_lseek, 3229 .release = seq_release_net, 3230 }; 3231 3232 3233 static int __net_init dev_proc_net_init(struct net *net) 3234 { 3235 int rc = -ENOMEM; 3236 3237 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops)) 3238 goto out; 3239 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops)) 3240 goto out_dev; 3241 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops)) 3242 goto out_softnet; 3243 3244 if (wext_proc_init(net)) 3245 goto out_ptype; 3246 rc = 0; 3247 out: 3248 return rc; 3249 out_ptype: 3250 proc_net_remove(net, "ptype"); 3251 out_softnet: 3252 proc_net_remove(net, "softnet_stat"); 3253 out_dev: 3254 proc_net_remove(net, "dev"); 3255 goto out; 3256 } 3257 3258 static void __net_exit dev_proc_net_exit(struct net *net) 3259 { 3260 wext_proc_exit(net); 3261 3262 proc_net_remove(net, "ptype"); 3263 proc_net_remove(net, "softnet_stat"); 3264 proc_net_remove(net, "dev"); 3265 } 3266 3267 static struct pernet_operations __net_initdata dev_proc_ops = { 3268 .init = dev_proc_net_init, 3269 .exit = dev_proc_net_exit, 3270 }; 3271 3272 static int __init dev_proc_init(void) 3273 { 3274 return register_pernet_subsys(&dev_proc_ops); 3275 } 3276 #else 3277 #define dev_proc_init() 0 3278 #endif /* CONFIG_PROC_FS */ 3279 3280 3281 /** 3282 * netdev_set_master - set up master/slave pair 3283 * @slave: slave device 3284 * @master: new master device 3285 * 3286 * Changes the master device of the slave. Pass %NULL to break the 3287 * bonding. The caller must hold the RTNL semaphore. On a failure 3288 * a negative errno code is returned. On success the reference counts 3289 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the 3290 * function returns zero. 3291 */ 3292 int netdev_set_master(struct net_device *slave, struct net_device *master) 3293 { 3294 struct net_device *old = slave->master; 3295 3296 ASSERT_RTNL(); 3297 3298 if (master) { 3299 if (old) 3300 return -EBUSY; 3301 dev_hold(master); 3302 } 3303 3304 slave->master = master; 3305 3306 synchronize_net(); 3307 3308 if (old) 3309 dev_put(old); 3310 3311 if (master) 3312 slave->flags |= IFF_SLAVE; 3313 else 3314 slave->flags &= ~IFF_SLAVE; 3315 3316 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE); 3317 return 0; 3318 } 3319 3320 static void dev_change_rx_flags(struct net_device *dev, int flags) 3321 { 3322 const struct net_device_ops *ops = dev->netdev_ops; 3323 3324 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags) 3325 ops->ndo_change_rx_flags(dev, flags); 3326 } 3327 3328 static int __dev_set_promiscuity(struct net_device *dev, int inc) 3329 { 3330 unsigned short old_flags = dev->flags; 3331 uid_t uid; 3332 gid_t gid; 3333 3334 ASSERT_RTNL(); 3335 3336 dev->flags |= IFF_PROMISC; 3337 dev->promiscuity += inc; 3338 if (dev->promiscuity == 0) { 3339 /* 3340 * Avoid overflow. 3341 * If inc causes overflow, untouch promisc and return error. 3342 */ 3343 if (inc < 0) 3344 dev->flags &= ~IFF_PROMISC; 3345 else { 3346 dev->promiscuity -= inc; 3347 printk(KERN_WARNING "%s: promiscuity touches roof, " 3348 "set promiscuity failed, promiscuity feature " 3349 "of device might be broken.\n", dev->name); 3350 return -EOVERFLOW; 3351 } 3352 } 3353 if (dev->flags != old_flags) { 3354 printk(KERN_INFO "device %s %s promiscuous mode\n", 3355 dev->name, (dev->flags & IFF_PROMISC) ? "entered" : 3356 "left"); 3357 if (audit_enabled) { 3358 current_uid_gid(&uid, &gid); 3359 audit_log(current->audit_context, GFP_ATOMIC, 3360 AUDIT_ANOM_PROMISCUOUS, 3361 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 3362 dev->name, (dev->flags & IFF_PROMISC), 3363 (old_flags & IFF_PROMISC), 3364 audit_get_loginuid(current), 3365 uid, gid, 3366 audit_get_sessionid(current)); 3367 } 3368 3369 dev_change_rx_flags(dev, IFF_PROMISC); 3370 } 3371 return 0; 3372 } 3373 3374 /** 3375 * dev_set_promiscuity - update promiscuity count on a device 3376 * @dev: device 3377 * @inc: modifier 3378 * 3379 * Add or remove promiscuity from a device. While the count in the device 3380 * remains above zero the interface remains promiscuous. Once it hits zero 3381 * the device reverts back to normal filtering operation. A negative inc 3382 * value is used to drop promiscuity on the device. 3383 * Return 0 if successful or a negative errno code on error. 3384 */ 3385 int dev_set_promiscuity(struct net_device *dev, int inc) 3386 { 3387 unsigned short old_flags = dev->flags; 3388 int err; 3389 3390 err = __dev_set_promiscuity(dev, inc); 3391 if (err < 0) 3392 return err; 3393 if (dev->flags != old_flags) 3394 dev_set_rx_mode(dev); 3395 return err; 3396 } 3397 3398 /** 3399 * dev_set_allmulti - update allmulti count on a device 3400 * @dev: device 3401 * @inc: modifier 3402 * 3403 * Add or remove reception of all multicast frames to a device. While the 3404 * count in the device remains above zero the interface remains listening 3405 * to all interfaces. Once it hits zero the device reverts back to normal 3406 * filtering operation. A negative @inc value is used to drop the counter 3407 * when releasing a resource needing all multicasts. 3408 * Return 0 if successful or a negative errno code on error. 3409 */ 3410 3411 int dev_set_allmulti(struct net_device *dev, int inc) 3412 { 3413 unsigned short old_flags = dev->flags; 3414 3415 ASSERT_RTNL(); 3416 3417 dev->flags |= IFF_ALLMULTI; 3418 dev->allmulti += inc; 3419 if (dev->allmulti == 0) { 3420 /* 3421 * Avoid overflow. 3422 * If inc causes overflow, untouch allmulti and return error. 3423 */ 3424 if (inc < 0) 3425 dev->flags &= ~IFF_ALLMULTI; 3426 else { 3427 dev->allmulti -= inc; 3428 printk(KERN_WARNING "%s: allmulti touches roof, " 3429 "set allmulti failed, allmulti feature of " 3430 "device might be broken.\n", dev->name); 3431 return -EOVERFLOW; 3432 } 3433 } 3434 if (dev->flags ^ old_flags) { 3435 dev_change_rx_flags(dev, IFF_ALLMULTI); 3436 dev_set_rx_mode(dev); 3437 } 3438 return 0; 3439 } 3440 3441 /* 3442 * Upload unicast and multicast address lists to device and 3443 * configure RX filtering. When the device doesn't support unicast 3444 * filtering it is put in promiscuous mode while unicast addresses 3445 * are present. 3446 */ 3447 void __dev_set_rx_mode(struct net_device *dev) 3448 { 3449 const struct net_device_ops *ops = dev->netdev_ops; 3450 3451 /* dev_open will call this function so the list will stay sane. */ 3452 if (!(dev->flags&IFF_UP)) 3453 return; 3454 3455 if (!netif_device_present(dev)) 3456 return; 3457 3458 if (ops->ndo_set_rx_mode) 3459 ops->ndo_set_rx_mode(dev); 3460 else { 3461 /* Unicast addresses changes may only happen under the rtnl, 3462 * therefore calling __dev_set_promiscuity here is safe. 3463 */ 3464 if (dev->uc.count > 0 && !dev->uc_promisc) { 3465 __dev_set_promiscuity(dev, 1); 3466 dev->uc_promisc = 1; 3467 } else if (dev->uc.count == 0 && dev->uc_promisc) { 3468 __dev_set_promiscuity(dev, -1); 3469 dev->uc_promisc = 0; 3470 } 3471 3472 if (ops->ndo_set_multicast_list) 3473 ops->ndo_set_multicast_list(dev); 3474 } 3475 } 3476 3477 void dev_set_rx_mode(struct net_device *dev) 3478 { 3479 netif_addr_lock_bh(dev); 3480 __dev_set_rx_mode(dev); 3481 netif_addr_unlock_bh(dev); 3482 } 3483 3484 /* hw addresses list handling functions */ 3485 3486 static int __hw_addr_add(struct netdev_hw_addr_list *list, unsigned char *addr, 3487 int addr_len, unsigned char addr_type) 3488 { 3489 struct netdev_hw_addr *ha; 3490 int alloc_size; 3491 3492 if (addr_len > MAX_ADDR_LEN) 3493 return -EINVAL; 3494 3495 list_for_each_entry(ha, &list->list, list) { 3496 if (!memcmp(ha->addr, addr, addr_len) && 3497 ha->type == addr_type) { 3498 ha->refcount++; 3499 return 0; 3500 } 3501 } 3502 3503 3504 alloc_size = sizeof(*ha); 3505 if (alloc_size < L1_CACHE_BYTES) 3506 alloc_size = L1_CACHE_BYTES; 3507 ha = kmalloc(alloc_size, GFP_ATOMIC); 3508 if (!ha) 3509 return -ENOMEM; 3510 memcpy(ha->addr, addr, addr_len); 3511 ha->type = addr_type; 3512 ha->refcount = 1; 3513 ha->synced = false; 3514 list_add_tail_rcu(&ha->list, &list->list); 3515 list->count++; 3516 return 0; 3517 } 3518 3519 static void ha_rcu_free(struct rcu_head *head) 3520 { 3521 struct netdev_hw_addr *ha; 3522 3523 ha = container_of(head, struct netdev_hw_addr, rcu_head); 3524 kfree(ha); 3525 } 3526 3527 static int __hw_addr_del(struct netdev_hw_addr_list *list, unsigned char *addr, 3528 int addr_len, unsigned char addr_type) 3529 { 3530 struct netdev_hw_addr *ha; 3531 3532 list_for_each_entry(ha, &list->list, list) { 3533 if (!memcmp(ha->addr, addr, addr_len) && 3534 (ha->type == addr_type || !addr_type)) { 3535 if (--ha->refcount) 3536 return 0; 3537 list_del_rcu(&ha->list); 3538 call_rcu(&ha->rcu_head, ha_rcu_free); 3539 list->count--; 3540 return 0; 3541 } 3542 } 3543 return -ENOENT; 3544 } 3545 3546 static int __hw_addr_add_multiple(struct netdev_hw_addr_list *to_list, 3547 struct netdev_hw_addr_list *from_list, 3548 int addr_len, 3549 unsigned char addr_type) 3550 { 3551 int err; 3552 struct netdev_hw_addr *ha, *ha2; 3553 unsigned char type; 3554 3555 list_for_each_entry(ha, &from_list->list, list) { 3556 type = addr_type ? addr_type : ha->type; 3557 err = __hw_addr_add(to_list, ha->addr, addr_len, type); 3558 if (err) 3559 goto unroll; 3560 } 3561 return 0; 3562 3563 unroll: 3564 list_for_each_entry(ha2, &from_list->list, list) { 3565 if (ha2 == ha) 3566 break; 3567 type = addr_type ? addr_type : ha2->type; 3568 __hw_addr_del(to_list, ha2->addr, addr_len, type); 3569 } 3570 return err; 3571 } 3572 3573 static void __hw_addr_del_multiple(struct netdev_hw_addr_list *to_list, 3574 struct netdev_hw_addr_list *from_list, 3575 int addr_len, 3576 unsigned char addr_type) 3577 { 3578 struct netdev_hw_addr *ha; 3579 unsigned char type; 3580 3581 list_for_each_entry(ha, &from_list->list, list) { 3582 type = addr_type ? addr_type : ha->type; 3583 __hw_addr_del(to_list, ha->addr, addr_len, addr_type); 3584 } 3585 } 3586 3587 static int __hw_addr_sync(struct netdev_hw_addr_list *to_list, 3588 struct netdev_hw_addr_list *from_list, 3589 int addr_len) 3590 { 3591 int err = 0; 3592 struct netdev_hw_addr *ha, *tmp; 3593 3594 list_for_each_entry_safe(ha, tmp, &from_list->list, list) { 3595 if (!ha->synced) { 3596 err = __hw_addr_add(to_list, ha->addr, 3597 addr_len, ha->type); 3598 if (err) 3599 break; 3600 ha->synced = true; 3601 ha->refcount++; 3602 } else if (ha->refcount == 1) { 3603 __hw_addr_del(to_list, ha->addr, addr_len, ha->type); 3604 __hw_addr_del(from_list, ha->addr, addr_len, ha->type); 3605 } 3606 } 3607 return err; 3608 } 3609 3610 static void __hw_addr_unsync(struct netdev_hw_addr_list *to_list, 3611 struct netdev_hw_addr_list *from_list, 3612 int addr_len) 3613 { 3614 struct netdev_hw_addr *ha, *tmp; 3615 3616 list_for_each_entry_safe(ha, tmp, &from_list->list, list) { 3617 if (ha->synced) { 3618 __hw_addr_del(to_list, ha->addr, 3619 addr_len, ha->type); 3620 ha->synced = false; 3621 __hw_addr_del(from_list, ha->addr, 3622 addr_len, ha->type); 3623 } 3624 } 3625 } 3626 3627 static void __hw_addr_flush(struct netdev_hw_addr_list *list) 3628 { 3629 struct netdev_hw_addr *ha, *tmp; 3630 3631 list_for_each_entry_safe(ha, tmp, &list->list, list) { 3632 list_del_rcu(&ha->list); 3633 call_rcu(&ha->rcu_head, ha_rcu_free); 3634 } 3635 list->count = 0; 3636 } 3637 3638 static void __hw_addr_init(struct netdev_hw_addr_list *list) 3639 { 3640 INIT_LIST_HEAD(&list->list); 3641 list->count = 0; 3642 } 3643 3644 /* Device addresses handling functions */ 3645 3646 static void dev_addr_flush(struct net_device *dev) 3647 { 3648 /* rtnl_mutex must be held here */ 3649 3650 __hw_addr_flush(&dev->dev_addrs); 3651 dev->dev_addr = NULL; 3652 } 3653 3654 static int dev_addr_init(struct net_device *dev) 3655 { 3656 unsigned char addr[MAX_ADDR_LEN]; 3657 struct netdev_hw_addr *ha; 3658 int err; 3659 3660 /* rtnl_mutex must be held here */ 3661 3662 __hw_addr_init(&dev->dev_addrs); 3663 memset(addr, 0, sizeof(addr)); 3664 err = __hw_addr_add(&dev->dev_addrs, addr, sizeof(addr), 3665 NETDEV_HW_ADDR_T_LAN); 3666 if (!err) { 3667 /* 3668 * Get the first (previously created) address from the list 3669 * and set dev_addr pointer to this location. 3670 */ 3671 ha = list_first_entry(&dev->dev_addrs.list, 3672 struct netdev_hw_addr, list); 3673 dev->dev_addr = ha->addr; 3674 } 3675 return err; 3676 } 3677 3678 /** 3679 * dev_addr_add - Add a device address 3680 * @dev: device 3681 * @addr: address to add 3682 * @addr_type: address type 3683 * 3684 * Add a device address to the device or increase the reference count if 3685 * it already exists. 3686 * 3687 * The caller must hold the rtnl_mutex. 3688 */ 3689 int dev_addr_add(struct net_device *dev, unsigned char *addr, 3690 unsigned char addr_type) 3691 { 3692 int err; 3693 3694 ASSERT_RTNL(); 3695 3696 err = __hw_addr_add(&dev->dev_addrs, addr, dev->addr_len, addr_type); 3697 if (!err) 3698 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 3699 return err; 3700 } 3701 EXPORT_SYMBOL(dev_addr_add); 3702 3703 /** 3704 * dev_addr_del - Release a device address. 3705 * @dev: device 3706 * @addr: address to delete 3707 * @addr_type: address type 3708 * 3709 * Release reference to a device address and remove it from the device 3710 * if the reference count drops to zero. 3711 * 3712 * The caller must hold the rtnl_mutex. 3713 */ 3714 int dev_addr_del(struct net_device *dev, unsigned char *addr, 3715 unsigned char addr_type) 3716 { 3717 int err; 3718 struct netdev_hw_addr *ha; 3719 3720 ASSERT_RTNL(); 3721 3722 /* 3723 * We can not remove the first address from the list because 3724 * dev->dev_addr points to that. 3725 */ 3726 ha = list_first_entry(&dev->dev_addrs.list, 3727 struct netdev_hw_addr, list); 3728 if (ha->addr == dev->dev_addr && ha->refcount == 1) 3729 return -ENOENT; 3730 3731 err = __hw_addr_del(&dev->dev_addrs, addr, dev->addr_len, 3732 addr_type); 3733 if (!err) 3734 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 3735 return err; 3736 } 3737 EXPORT_SYMBOL(dev_addr_del); 3738 3739 /** 3740 * dev_addr_add_multiple - Add device addresses from another device 3741 * @to_dev: device to which addresses will be added 3742 * @from_dev: device from which addresses will be added 3743 * @addr_type: address type - 0 means type will be used from from_dev 3744 * 3745 * Add device addresses of the one device to another. 3746 ** 3747 * The caller must hold the rtnl_mutex. 3748 */ 3749 int dev_addr_add_multiple(struct net_device *to_dev, 3750 struct net_device *from_dev, 3751 unsigned char addr_type) 3752 { 3753 int err; 3754 3755 ASSERT_RTNL(); 3756 3757 if (from_dev->addr_len != to_dev->addr_len) 3758 return -EINVAL; 3759 err = __hw_addr_add_multiple(&to_dev->dev_addrs, &from_dev->dev_addrs, 3760 to_dev->addr_len, addr_type); 3761 if (!err) 3762 call_netdevice_notifiers(NETDEV_CHANGEADDR, to_dev); 3763 return err; 3764 } 3765 EXPORT_SYMBOL(dev_addr_add_multiple); 3766 3767 /** 3768 * dev_addr_del_multiple - Delete device addresses by another device 3769 * @to_dev: device where the addresses will be deleted 3770 * @from_dev: device by which addresses the addresses will be deleted 3771 * @addr_type: address type - 0 means type will used from from_dev 3772 * 3773 * Deletes addresses in to device by the list of addresses in from device. 3774 * 3775 * The caller must hold the rtnl_mutex. 3776 */ 3777 int dev_addr_del_multiple(struct net_device *to_dev, 3778 struct net_device *from_dev, 3779 unsigned char addr_type) 3780 { 3781 ASSERT_RTNL(); 3782 3783 if (from_dev->addr_len != to_dev->addr_len) 3784 return -EINVAL; 3785 __hw_addr_del_multiple(&to_dev->dev_addrs, &from_dev->dev_addrs, 3786 to_dev->addr_len, addr_type); 3787 call_netdevice_notifiers(NETDEV_CHANGEADDR, to_dev); 3788 return 0; 3789 } 3790 EXPORT_SYMBOL(dev_addr_del_multiple); 3791 3792 /* multicast addresses handling functions */ 3793 3794 int __dev_addr_delete(struct dev_addr_list **list, int *count, 3795 void *addr, int alen, int glbl) 3796 { 3797 struct dev_addr_list *da; 3798 3799 for (; (da = *list) != NULL; list = &da->next) { 3800 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 && 3801 alen == da->da_addrlen) { 3802 if (glbl) { 3803 int old_glbl = da->da_gusers; 3804 da->da_gusers = 0; 3805 if (old_glbl == 0) 3806 break; 3807 } 3808 if (--da->da_users) 3809 return 0; 3810 3811 *list = da->next; 3812 kfree(da); 3813 (*count)--; 3814 return 0; 3815 } 3816 } 3817 return -ENOENT; 3818 } 3819 3820 int __dev_addr_add(struct dev_addr_list **list, int *count, 3821 void *addr, int alen, int glbl) 3822 { 3823 struct dev_addr_list *da; 3824 3825 for (da = *list; da != NULL; da = da->next) { 3826 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 && 3827 da->da_addrlen == alen) { 3828 if (glbl) { 3829 int old_glbl = da->da_gusers; 3830 da->da_gusers = 1; 3831 if (old_glbl) 3832 return 0; 3833 } 3834 da->da_users++; 3835 return 0; 3836 } 3837 } 3838 3839 da = kzalloc(sizeof(*da), GFP_ATOMIC); 3840 if (da == NULL) 3841 return -ENOMEM; 3842 memcpy(da->da_addr, addr, alen); 3843 da->da_addrlen = alen; 3844 da->da_users = 1; 3845 da->da_gusers = glbl ? 1 : 0; 3846 da->next = *list; 3847 *list = da; 3848 (*count)++; 3849 return 0; 3850 } 3851 3852 /** 3853 * dev_unicast_delete - Release secondary unicast address. 3854 * @dev: device 3855 * @addr: address to delete 3856 * 3857 * Release reference to a secondary unicast address and remove it 3858 * from the device if the reference count drops to zero. 3859 * 3860 * The caller must hold the rtnl_mutex. 3861 */ 3862 int dev_unicast_delete(struct net_device *dev, void *addr) 3863 { 3864 int err; 3865 3866 ASSERT_RTNL(); 3867 3868 netif_addr_lock_bh(dev); 3869 err = __hw_addr_del(&dev->uc, addr, dev->addr_len, 3870 NETDEV_HW_ADDR_T_UNICAST); 3871 if (!err) 3872 __dev_set_rx_mode(dev); 3873 netif_addr_unlock_bh(dev); 3874 return err; 3875 } 3876 EXPORT_SYMBOL(dev_unicast_delete); 3877 3878 /** 3879 * dev_unicast_add - add a secondary unicast address 3880 * @dev: device 3881 * @addr: address to add 3882 * 3883 * Add a secondary unicast address to the device or increase 3884 * the reference count if it already exists. 3885 * 3886 * The caller must hold the rtnl_mutex. 3887 */ 3888 int dev_unicast_add(struct net_device *dev, void *addr) 3889 { 3890 int err; 3891 3892 ASSERT_RTNL(); 3893 3894 netif_addr_lock_bh(dev); 3895 err = __hw_addr_add(&dev->uc, addr, dev->addr_len, 3896 NETDEV_HW_ADDR_T_UNICAST); 3897 if (!err) 3898 __dev_set_rx_mode(dev); 3899 netif_addr_unlock_bh(dev); 3900 return err; 3901 } 3902 EXPORT_SYMBOL(dev_unicast_add); 3903 3904 int __dev_addr_sync(struct dev_addr_list **to, int *to_count, 3905 struct dev_addr_list **from, int *from_count) 3906 { 3907 struct dev_addr_list *da, *next; 3908 int err = 0; 3909 3910 da = *from; 3911 while (da != NULL) { 3912 next = da->next; 3913 if (!da->da_synced) { 3914 err = __dev_addr_add(to, to_count, 3915 da->da_addr, da->da_addrlen, 0); 3916 if (err < 0) 3917 break; 3918 da->da_synced = 1; 3919 da->da_users++; 3920 } else if (da->da_users == 1) { 3921 __dev_addr_delete(to, to_count, 3922 da->da_addr, da->da_addrlen, 0); 3923 __dev_addr_delete(from, from_count, 3924 da->da_addr, da->da_addrlen, 0); 3925 } 3926 da = next; 3927 } 3928 return err; 3929 } 3930 3931 void __dev_addr_unsync(struct dev_addr_list **to, int *to_count, 3932 struct dev_addr_list **from, int *from_count) 3933 { 3934 struct dev_addr_list *da, *next; 3935 3936 da = *from; 3937 while (da != NULL) { 3938 next = da->next; 3939 if (da->da_synced) { 3940 __dev_addr_delete(to, to_count, 3941 da->da_addr, da->da_addrlen, 0); 3942 da->da_synced = 0; 3943 __dev_addr_delete(from, from_count, 3944 da->da_addr, da->da_addrlen, 0); 3945 } 3946 da = next; 3947 } 3948 } 3949 3950 /** 3951 * dev_unicast_sync - Synchronize device's unicast list to another device 3952 * @to: destination device 3953 * @from: source device 3954 * 3955 * Add newly added addresses to the destination device and release 3956 * addresses that have no users left. The source device must be 3957 * locked by netif_tx_lock_bh. 3958 * 3959 * This function is intended to be called from the dev->set_rx_mode 3960 * function of layered software devices. 3961 */ 3962 int dev_unicast_sync(struct net_device *to, struct net_device *from) 3963 { 3964 int err = 0; 3965 3966 if (to->addr_len != from->addr_len) 3967 return -EINVAL; 3968 3969 netif_addr_lock_bh(to); 3970 err = __hw_addr_sync(&to->uc, &from->uc, to->addr_len); 3971 if (!err) 3972 __dev_set_rx_mode(to); 3973 netif_addr_unlock_bh(to); 3974 return err; 3975 } 3976 EXPORT_SYMBOL(dev_unicast_sync); 3977 3978 /** 3979 * dev_unicast_unsync - Remove synchronized addresses from the destination device 3980 * @to: destination device 3981 * @from: source device 3982 * 3983 * Remove all addresses that were added to the destination device by 3984 * dev_unicast_sync(). This function is intended to be called from the 3985 * dev->stop function of layered software devices. 3986 */ 3987 void dev_unicast_unsync(struct net_device *to, struct net_device *from) 3988 { 3989 if (to->addr_len != from->addr_len) 3990 return; 3991 3992 netif_addr_lock_bh(from); 3993 netif_addr_lock(to); 3994 __hw_addr_unsync(&to->uc, &from->uc, to->addr_len); 3995 __dev_set_rx_mode(to); 3996 netif_addr_unlock(to); 3997 netif_addr_unlock_bh(from); 3998 } 3999 EXPORT_SYMBOL(dev_unicast_unsync); 4000 4001 static void dev_unicast_flush(struct net_device *dev) 4002 { 4003 netif_addr_lock_bh(dev); 4004 __hw_addr_flush(&dev->uc); 4005 netif_addr_unlock_bh(dev); 4006 } 4007 4008 static void dev_unicast_init(struct net_device *dev) 4009 { 4010 __hw_addr_init(&dev->uc); 4011 } 4012 4013 4014 static void __dev_addr_discard(struct dev_addr_list **list) 4015 { 4016 struct dev_addr_list *tmp; 4017 4018 while (*list != NULL) { 4019 tmp = *list; 4020 *list = tmp->next; 4021 if (tmp->da_users > tmp->da_gusers) 4022 printk("__dev_addr_discard: address leakage! " 4023 "da_users=%d\n", tmp->da_users); 4024 kfree(tmp); 4025 } 4026 } 4027 4028 static void dev_addr_discard(struct net_device *dev) 4029 { 4030 netif_addr_lock_bh(dev); 4031 4032 __dev_addr_discard(&dev->mc_list); 4033 dev->mc_count = 0; 4034 4035 netif_addr_unlock_bh(dev); 4036 } 4037 4038 /** 4039 * dev_get_flags - get flags reported to userspace 4040 * @dev: device 4041 * 4042 * Get the combination of flag bits exported through APIs to userspace. 4043 */ 4044 unsigned dev_get_flags(const struct net_device *dev) 4045 { 4046 unsigned flags; 4047 4048 flags = (dev->flags & ~(IFF_PROMISC | 4049 IFF_ALLMULTI | 4050 IFF_RUNNING | 4051 IFF_LOWER_UP | 4052 IFF_DORMANT)) | 4053 (dev->gflags & (IFF_PROMISC | 4054 IFF_ALLMULTI)); 4055 4056 if (netif_running(dev)) { 4057 if (netif_oper_up(dev)) 4058 flags |= IFF_RUNNING; 4059 if (netif_carrier_ok(dev)) 4060 flags |= IFF_LOWER_UP; 4061 if (netif_dormant(dev)) 4062 flags |= IFF_DORMANT; 4063 } 4064 4065 return flags; 4066 } 4067 4068 /** 4069 * dev_change_flags - change device settings 4070 * @dev: device 4071 * @flags: device state flags 4072 * 4073 * Change settings on device based state flags. The flags are 4074 * in the userspace exported format. 4075 */ 4076 int dev_change_flags(struct net_device *dev, unsigned flags) 4077 { 4078 int ret, changes; 4079 int old_flags = dev->flags; 4080 4081 ASSERT_RTNL(); 4082 4083 /* 4084 * Set the flags on our device. 4085 */ 4086 4087 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 4088 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 4089 IFF_AUTOMEDIA)) | 4090 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 4091 IFF_ALLMULTI)); 4092 4093 /* 4094 * Load in the correct multicast list now the flags have changed. 4095 */ 4096 4097 if ((old_flags ^ flags) & IFF_MULTICAST) 4098 dev_change_rx_flags(dev, IFF_MULTICAST); 4099 4100 dev_set_rx_mode(dev); 4101 4102 /* 4103 * Have we downed the interface. We handle IFF_UP ourselves 4104 * according to user attempts to set it, rather than blindly 4105 * setting it. 4106 */ 4107 4108 ret = 0; 4109 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */ 4110 ret = ((old_flags & IFF_UP) ? dev_close : dev_open)(dev); 4111 4112 if (!ret) 4113 dev_set_rx_mode(dev); 4114 } 4115 4116 if (dev->flags & IFF_UP && 4117 ((old_flags ^ dev->flags) &~ (IFF_UP | IFF_PROMISC | IFF_ALLMULTI | 4118 IFF_VOLATILE))) 4119 call_netdevice_notifiers(NETDEV_CHANGE, dev); 4120 4121 if ((flags ^ dev->gflags) & IFF_PROMISC) { 4122 int inc = (flags & IFF_PROMISC) ? +1 : -1; 4123 dev->gflags ^= IFF_PROMISC; 4124 dev_set_promiscuity(dev, inc); 4125 } 4126 4127 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 4128 is important. Some (broken) drivers set IFF_PROMISC, when 4129 IFF_ALLMULTI is requested not asking us and not reporting. 4130 */ 4131 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 4132 int inc = (flags & IFF_ALLMULTI) ? +1 : -1; 4133 dev->gflags ^= IFF_ALLMULTI; 4134 dev_set_allmulti(dev, inc); 4135 } 4136 4137 /* Exclude state transition flags, already notified */ 4138 changes = (old_flags ^ dev->flags) & ~(IFF_UP | IFF_RUNNING); 4139 if (changes) 4140 rtmsg_ifinfo(RTM_NEWLINK, dev, changes); 4141 4142 return ret; 4143 } 4144 4145 /** 4146 * dev_set_mtu - Change maximum transfer unit 4147 * @dev: device 4148 * @new_mtu: new transfer unit 4149 * 4150 * Change the maximum transfer size of the network device. 4151 */ 4152 int dev_set_mtu(struct net_device *dev, int new_mtu) 4153 { 4154 const struct net_device_ops *ops = dev->netdev_ops; 4155 int err; 4156 4157 if (new_mtu == dev->mtu) 4158 return 0; 4159 4160 /* MTU must be positive. */ 4161 if (new_mtu < 0) 4162 return -EINVAL; 4163 4164 if (!netif_device_present(dev)) 4165 return -ENODEV; 4166 4167 err = 0; 4168 if (ops->ndo_change_mtu) 4169 err = ops->ndo_change_mtu(dev, new_mtu); 4170 else 4171 dev->mtu = new_mtu; 4172 4173 if (!err && dev->flags & IFF_UP) 4174 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 4175 return err; 4176 } 4177 4178 /** 4179 * dev_set_mac_address - Change Media Access Control Address 4180 * @dev: device 4181 * @sa: new address 4182 * 4183 * Change the hardware (MAC) address of the device 4184 */ 4185 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa) 4186 { 4187 const struct net_device_ops *ops = dev->netdev_ops; 4188 int err; 4189 4190 if (!ops->ndo_set_mac_address) 4191 return -EOPNOTSUPP; 4192 if (sa->sa_family != dev->type) 4193 return -EINVAL; 4194 if (!netif_device_present(dev)) 4195 return -ENODEV; 4196 err = ops->ndo_set_mac_address(dev, sa); 4197 if (!err) 4198 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 4199 return err; 4200 } 4201 4202 /* 4203 * Perform the SIOCxIFxxx calls, inside read_lock(dev_base_lock) 4204 */ 4205 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd) 4206 { 4207 int err; 4208 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name); 4209 4210 if (!dev) 4211 return -ENODEV; 4212 4213 switch (cmd) { 4214 case SIOCGIFFLAGS: /* Get interface flags */ 4215 ifr->ifr_flags = (short) dev_get_flags(dev); 4216 return 0; 4217 4218 case SIOCGIFMETRIC: /* Get the metric on the interface 4219 (currently unused) */ 4220 ifr->ifr_metric = 0; 4221 return 0; 4222 4223 case SIOCGIFMTU: /* Get the MTU of a device */ 4224 ifr->ifr_mtu = dev->mtu; 4225 return 0; 4226 4227 case SIOCGIFHWADDR: 4228 if (!dev->addr_len) 4229 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data); 4230 else 4231 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr, 4232 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len)); 4233 ifr->ifr_hwaddr.sa_family = dev->type; 4234 return 0; 4235 4236 case SIOCGIFSLAVE: 4237 err = -EINVAL; 4238 break; 4239 4240 case SIOCGIFMAP: 4241 ifr->ifr_map.mem_start = dev->mem_start; 4242 ifr->ifr_map.mem_end = dev->mem_end; 4243 ifr->ifr_map.base_addr = dev->base_addr; 4244 ifr->ifr_map.irq = dev->irq; 4245 ifr->ifr_map.dma = dev->dma; 4246 ifr->ifr_map.port = dev->if_port; 4247 return 0; 4248 4249 case SIOCGIFINDEX: 4250 ifr->ifr_ifindex = dev->ifindex; 4251 return 0; 4252 4253 case SIOCGIFTXQLEN: 4254 ifr->ifr_qlen = dev->tx_queue_len; 4255 return 0; 4256 4257 default: 4258 /* dev_ioctl() should ensure this case 4259 * is never reached 4260 */ 4261 WARN_ON(1); 4262 err = -EINVAL; 4263 break; 4264 4265 } 4266 return err; 4267 } 4268 4269 /* 4270 * Perform the SIOCxIFxxx calls, inside rtnl_lock() 4271 */ 4272 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd) 4273 { 4274 int err; 4275 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name); 4276 const struct net_device_ops *ops; 4277 4278 if (!dev) 4279 return -ENODEV; 4280 4281 ops = dev->netdev_ops; 4282 4283 switch (cmd) { 4284 case SIOCSIFFLAGS: /* Set interface flags */ 4285 return dev_change_flags(dev, ifr->ifr_flags); 4286 4287 case SIOCSIFMETRIC: /* Set the metric on the interface 4288 (currently unused) */ 4289 return -EOPNOTSUPP; 4290 4291 case SIOCSIFMTU: /* Set the MTU of a device */ 4292 return dev_set_mtu(dev, ifr->ifr_mtu); 4293 4294 case SIOCSIFHWADDR: 4295 return dev_set_mac_address(dev, &ifr->ifr_hwaddr); 4296 4297 case SIOCSIFHWBROADCAST: 4298 if (ifr->ifr_hwaddr.sa_family != dev->type) 4299 return -EINVAL; 4300 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data, 4301 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len)); 4302 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 4303 return 0; 4304 4305 case SIOCSIFMAP: 4306 if (ops->ndo_set_config) { 4307 if (!netif_device_present(dev)) 4308 return -ENODEV; 4309 return ops->ndo_set_config(dev, &ifr->ifr_map); 4310 } 4311 return -EOPNOTSUPP; 4312 4313 case SIOCADDMULTI: 4314 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) || 4315 ifr->ifr_hwaddr.sa_family != AF_UNSPEC) 4316 return -EINVAL; 4317 if (!netif_device_present(dev)) 4318 return -ENODEV; 4319 return dev_mc_add(dev, ifr->ifr_hwaddr.sa_data, 4320 dev->addr_len, 1); 4321 4322 case SIOCDELMULTI: 4323 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) || 4324 ifr->ifr_hwaddr.sa_family != AF_UNSPEC) 4325 return -EINVAL; 4326 if (!netif_device_present(dev)) 4327 return -ENODEV; 4328 return dev_mc_delete(dev, ifr->ifr_hwaddr.sa_data, 4329 dev->addr_len, 1); 4330 4331 case SIOCSIFTXQLEN: 4332 if (ifr->ifr_qlen < 0) 4333 return -EINVAL; 4334 dev->tx_queue_len = ifr->ifr_qlen; 4335 return 0; 4336 4337 case SIOCSIFNAME: 4338 ifr->ifr_newname[IFNAMSIZ-1] = '\0'; 4339 return dev_change_name(dev, ifr->ifr_newname); 4340 4341 /* 4342 * Unknown or private ioctl 4343 */ 4344 4345 default: 4346 if ((cmd >= SIOCDEVPRIVATE && 4347 cmd <= SIOCDEVPRIVATE + 15) || 4348 cmd == SIOCBONDENSLAVE || 4349 cmd == SIOCBONDRELEASE || 4350 cmd == SIOCBONDSETHWADDR || 4351 cmd == SIOCBONDSLAVEINFOQUERY || 4352 cmd == SIOCBONDINFOQUERY || 4353 cmd == SIOCBONDCHANGEACTIVE || 4354 cmd == SIOCGMIIPHY || 4355 cmd == SIOCGMIIREG || 4356 cmd == SIOCSMIIREG || 4357 cmd == SIOCBRADDIF || 4358 cmd == SIOCBRDELIF || 4359 cmd == SIOCSHWTSTAMP || 4360 cmd == SIOCWANDEV) { 4361 err = -EOPNOTSUPP; 4362 if (ops->ndo_do_ioctl) { 4363 if (netif_device_present(dev)) 4364 err = ops->ndo_do_ioctl(dev, ifr, cmd); 4365 else 4366 err = -ENODEV; 4367 } 4368 } else 4369 err = -EINVAL; 4370 4371 } 4372 return err; 4373 } 4374 4375 /* 4376 * This function handles all "interface"-type I/O control requests. The actual 4377 * 'doing' part of this is dev_ifsioc above. 4378 */ 4379 4380 /** 4381 * dev_ioctl - network device ioctl 4382 * @net: the applicable net namespace 4383 * @cmd: command to issue 4384 * @arg: pointer to a struct ifreq in user space 4385 * 4386 * Issue ioctl functions to devices. This is normally called by the 4387 * user space syscall interfaces but can sometimes be useful for 4388 * other purposes. The return value is the return from the syscall if 4389 * positive or a negative errno code on error. 4390 */ 4391 4392 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg) 4393 { 4394 struct ifreq ifr; 4395 int ret; 4396 char *colon; 4397 4398 /* One special case: SIOCGIFCONF takes ifconf argument 4399 and requires shared lock, because it sleeps writing 4400 to user space. 4401 */ 4402 4403 if (cmd == SIOCGIFCONF) { 4404 rtnl_lock(); 4405 ret = dev_ifconf(net, (char __user *) arg); 4406 rtnl_unlock(); 4407 return ret; 4408 } 4409 if (cmd == SIOCGIFNAME) 4410 return dev_ifname(net, (struct ifreq __user *)arg); 4411 4412 if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) 4413 return -EFAULT; 4414 4415 ifr.ifr_name[IFNAMSIZ-1] = 0; 4416 4417 colon = strchr(ifr.ifr_name, ':'); 4418 if (colon) 4419 *colon = 0; 4420 4421 /* 4422 * See which interface the caller is talking about. 4423 */ 4424 4425 switch (cmd) { 4426 /* 4427 * These ioctl calls: 4428 * - can be done by all. 4429 * - atomic and do not require locking. 4430 * - return a value 4431 */ 4432 case SIOCGIFFLAGS: 4433 case SIOCGIFMETRIC: 4434 case SIOCGIFMTU: 4435 case SIOCGIFHWADDR: 4436 case SIOCGIFSLAVE: 4437 case SIOCGIFMAP: 4438 case SIOCGIFINDEX: 4439 case SIOCGIFTXQLEN: 4440 dev_load(net, ifr.ifr_name); 4441 read_lock(&dev_base_lock); 4442 ret = dev_ifsioc_locked(net, &ifr, cmd); 4443 read_unlock(&dev_base_lock); 4444 if (!ret) { 4445 if (colon) 4446 *colon = ':'; 4447 if (copy_to_user(arg, &ifr, 4448 sizeof(struct ifreq))) 4449 ret = -EFAULT; 4450 } 4451 return ret; 4452 4453 case SIOCETHTOOL: 4454 dev_load(net, ifr.ifr_name); 4455 rtnl_lock(); 4456 ret = dev_ethtool(net, &ifr); 4457 rtnl_unlock(); 4458 if (!ret) { 4459 if (colon) 4460 *colon = ':'; 4461 if (copy_to_user(arg, &ifr, 4462 sizeof(struct ifreq))) 4463 ret = -EFAULT; 4464 } 4465 return ret; 4466 4467 /* 4468 * These ioctl calls: 4469 * - require superuser power. 4470 * - require strict serialization. 4471 * - return a value 4472 */ 4473 case SIOCGMIIPHY: 4474 case SIOCGMIIREG: 4475 case SIOCSIFNAME: 4476 if (!capable(CAP_NET_ADMIN)) 4477 return -EPERM; 4478 dev_load(net, ifr.ifr_name); 4479 rtnl_lock(); 4480 ret = dev_ifsioc(net, &ifr, cmd); 4481 rtnl_unlock(); 4482 if (!ret) { 4483 if (colon) 4484 *colon = ':'; 4485 if (copy_to_user(arg, &ifr, 4486 sizeof(struct ifreq))) 4487 ret = -EFAULT; 4488 } 4489 return ret; 4490 4491 /* 4492 * These ioctl calls: 4493 * - require superuser power. 4494 * - require strict serialization. 4495 * - do not return a value 4496 */ 4497 case SIOCSIFFLAGS: 4498 case SIOCSIFMETRIC: 4499 case SIOCSIFMTU: 4500 case SIOCSIFMAP: 4501 case SIOCSIFHWADDR: 4502 case SIOCSIFSLAVE: 4503 case SIOCADDMULTI: 4504 case SIOCDELMULTI: 4505 case SIOCSIFHWBROADCAST: 4506 case SIOCSIFTXQLEN: 4507 case SIOCSMIIREG: 4508 case SIOCBONDENSLAVE: 4509 case SIOCBONDRELEASE: 4510 case SIOCBONDSETHWADDR: 4511 case SIOCBONDCHANGEACTIVE: 4512 case SIOCBRADDIF: 4513 case SIOCBRDELIF: 4514 case SIOCSHWTSTAMP: 4515 if (!capable(CAP_NET_ADMIN)) 4516 return -EPERM; 4517 /* fall through */ 4518 case SIOCBONDSLAVEINFOQUERY: 4519 case SIOCBONDINFOQUERY: 4520 dev_load(net, ifr.ifr_name); 4521 rtnl_lock(); 4522 ret = dev_ifsioc(net, &ifr, cmd); 4523 rtnl_unlock(); 4524 return ret; 4525 4526 case SIOCGIFMEM: 4527 /* Get the per device memory space. We can add this but 4528 * currently do not support it */ 4529 case SIOCSIFMEM: 4530 /* Set the per device memory buffer space. 4531 * Not applicable in our case */ 4532 case SIOCSIFLINK: 4533 return -EINVAL; 4534 4535 /* 4536 * Unknown or private ioctl. 4537 */ 4538 default: 4539 if (cmd == SIOCWANDEV || 4540 (cmd >= SIOCDEVPRIVATE && 4541 cmd <= SIOCDEVPRIVATE + 15)) { 4542 dev_load(net, ifr.ifr_name); 4543 rtnl_lock(); 4544 ret = dev_ifsioc(net, &ifr, cmd); 4545 rtnl_unlock(); 4546 if (!ret && copy_to_user(arg, &ifr, 4547 sizeof(struct ifreq))) 4548 ret = -EFAULT; 4549 return ret; 4550 } 4551 /* Take care of Wireless Extensions */ 4552 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) 4553 return wext_handle_ioctl(net, &ifr, cmd, arg); 4554 return -EINVAL; 4555 } 4556 } 4557 4558 4559 /** 4560 * dev_new_index - allocate an ifindex 4561 * @net: the applicable net namespace 4562 * 4563 * Returns a suitable unique value for a new device interface 4564 * number. The caller must hold the rtnl semaphore or the 4565 * dev_base_lock to be sure it remains unique. 4566 */ 4567 static int dev_new_index(struct net *net) 4568 { 4569 static int ifindex; 4570 for (;;) { 4571 if (++ifindex <= 0) 4572 ifindex = 1; 4573 if (!__dev_get_by_index(net, ifindex)) 4574 return ifindex; 4575 } 4576 } 4577 4578 /* Delayed registration/unregisteration */ 4579 static LIST_HEAD(net_todo_list); 4580 4581 static void net_set_todo(struct net_device *dev) 4582 { 4583 list_add_tail(&dev->todo_list, &net_todo_list); 4584 } 4585 4586 static void rollback_registered(struct net_device *dev) 4587 { 4588 BUG_ON(dev_boot_phase); 4589 ASSERT_RTNL(); 4590 4591 /* Some devices call without registering for initialization unwind. */ 4592 if (dev->reg_state == NETREG_UNINITIALIZED) { 4593 printk(KERN_DEBUG "unregister_netdevice: device %s/%p never " 4594 "was registered\n", dev->name, dev); 4595 4596 WARN_ON(1); 4597 return; 4598 } 4599 4600 BUG_ON(dev->reg_state != NETREG_REGISTERED); 4601 4602 /* If device is running, close it first. */ 4603 dev_close(dev); 4604 4605 /* And unlink it from device chain. */ 4606 unlist_netdevice(dev); 4607 4608 dev->reg_state = NETREG_UNREGISTERING; 4609 4610 synchronize_net(); 4611 4612 /* Shutdown queueing discipline. */ 4613 dev_shutdown(dev); 4614 4615 4616 /* Notify protocols, that we are about to destroy 4617 this device. They should clean all the things. 4618 */ 4619 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 4620 4621 /* 4622 * Flush the unicast and multicast chains 4623 */ 4624 dev_unicast_flush(dev); 4625 dev_addr_discard(dev); 4626 4627 if (dev->netdev_ops->ndo_uninit) 4628 dev->netdev_ops->ndo_uninit(dev); 4629 4630 /* Notifier chain MUST detach us from master device. */ 4631 WARN_ON(dev->master); 4632 4633 /* Remove entries from kobject tree */ 4634 netdev_unregister_kobject(dev); 4635 4636 synchronize_net(); 4637 4638 dev_put(dev); 4639 } 4640 4641 static void __netdev_init_queue_locks_one(struct net_device *dev, 4642 struct netdev_queue *dev_queue, 4643 void *_unused) 4644 { 4645 spin_lock_init(&dev_queue->_xmit_lock); 4646 netdev_set_xmit_lockdep_class(&dev_queue->_xmit_lock, dev->type); 4647 dev_queue->xmit_lock_owner = -1; 4648 } 4649 4650 static void netdev_init_queue_locks(struct net_device *dev) 4651 { 4652 netdev_for_each_tx_queue(dev, __netdev_init_queue_locks_one, NULL); 4653 __netdev_init_queue_locks_one(dev, &dev->rx_queue, NULL); 4654 } 4655 4656 unsigned long netdev_fix_features(unsigned long features, const char *name) 4657 { 4658 /* Fix illegal SG+CSUM combinations. */ 4659 if ((features & NETIF_F_SG) && 4660 !(features & NETIF_F_ALL_CSUM)) { 4661 if (name) 4662 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no " 4663 "checksum feature.\n", name); 4664 features &= ~NETIF_F_SG; 4665 } 4666 4667 /* TSO requires that SG is present as well. */ 4668 if ((features & NETIF_F_TSO) && !(features & NETIF_F_SG)) { 4669 if (name) 4670 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no " 4671 "SG feature.\n", name); 4672 features &= ~NETIF_F_TSO; 4673 } 4674 4675 if (features & NETIF_F_UFO) { 4676 if (!(features & NETIF_F_GEN_CSUM)) { 4677 if (name) 4678 printk(KERN_ERR "%s: Dropping NETIF_F_UFO " 4679 "since no NETIF_F_HW_CSUM feature.\n", 4680 name); 4681 features &= ~NETIF_F_UFO; 4682 } 4683 4684 if (!(features & NETIF_F_SG)) { 4685 if (name) 4686 printk(KERN_ERR "%s: Dropping NETIF_F_UFO " 4687 "since no NETIF_F_SG feature.\n", name); 4688 features &= ~NETIF_F_UFO; 4689 } 4690 } 4691 4692 return features; 4693 } 4694 EXPORT_SYMBOL(netdev_fix_features); 4695 4696 /** 4697 * register_netdevice - register a network device 4698 * @dev: device to register 4699 * 4700 * Take a completed network device structure and add it to the kernel 4701 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 4702 * chain. 0 is returned on success. A negative errno code is returned 4703 * on a failure to set up the device, or if the name is a duplicate. 4704 * 4705 * Callers must hold the rtnl semaphore. You may want 4706 * register_netdev() instead of this. 4707 * 4708 * BUGS: 4709 * The locking appears insufficient to guarantee two parallel registers 4710 * will not get the same name. 4711 */ 4712 4713 int register_netdevice(struct net_device *dev) 4714 { 4715 struct hlist_head *head; 4716 struct hlist_node *p; 4717 int ret; 4718 struct net *net = dev_net(dev); 4719 4720 BUG_ON(dev_boot_phase); 4721 ASSERT_RTNL(); 4722 4723 might_sleep(); 4724 4725 /* When net_device's are persistent, this will be fatal. */ 4726 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 4727 BUG_ON(!net); 4728 4729 spin_lock_init(&dev->addr_list_lock); 4730 netdev_set_addr_lockdep_class(dev); 4731 netdev_init_queue_locks(dev); 4732 4733 dev->iflink = -1; 4734 4735 /* Init, if this function is available */ 4736 if (dev->netdev_ops->ndo_init) { 4737 ret = dev->netdev_ops->ndo_init(dev); 4738 if (ret) { 4739 if (ret > 0) 4740 ret = -EIO; 4741 goto out; 4742 } 4743 } 4744 4745 if (!dev_valid_name(dev->name)) { 4746 ret = -EINVAL; 4747 goto err_uninit; 4748 } 4749 4750 dev->ifindex = dev_new_index(net); 4751 if (dev->iflink == -1) 4752 dev->iflink = dev->ifindex; 4753 4754 /* Check for existence of name */ 4755 head = dev_name_hash(net, dev->name); 4756 hlist_for_each(p, head) { 4757 struct net_device *d 4758 = hlist_entry(p, struct net_device, name_hlist); 4759 if (!strncmp(d->name, dev->name, IFNAMSIZ)) { 4760 ret = -EEXIST; 4761 goto err_uninit; 4762 } 4763 } 4764 4765 /* Fix illegal checksum combinations */ 4766 if ((dev->features & NETIF_F_HW_CSUM) && 4767 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 4768 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n", 4769 dev->name); 4770 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 4771 } 4772 4773 if ((dev->features & NETIF_F_NO_CSUM) && 4774 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 4775 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n", 4776 dev->name); 4777 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM); 4778 } 4779 4780 dev->features = netdev_fix_features(dev->features, dev->name); 4781 4782 /* Enable software GSO if SG is supported. */ 4783 if (dev->features & NETIF_F_SG) 4784 dev->features |= NETIF_F_GSO; 4785 4786 netdev_initialize_kobject(dev); 4787 ret = netdev_register_kobject(dev); 4788 if (ret) 4789 goto err_uninit; 4790 dev->reg_state = NETREG_REGISTERED; 4791 4792 /* 4793 * Default initial state at registry is that the 4794 * device is present. 4795 */ 4796 4797 set_bit(__LINK_STATE_PRESENT, &dev->state); 4798 4799 dev_init_scheduler(dev); 4800 dev_hold(dev); 4801 list_netdevice(dev); 4802 4803 /* Notify protocols, that a new device appeared. */ 4804 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 4805 ret = notifier_to_errno(ret); 4806 if (ret) { 4807 rollback_registered(dev); 4808 dev->reg_state = NETREG_UNREGISTERED; 4809 } 4810 4811 out: 4812 return ret; 4813 4814 err_uninit: 4815 if (dev->netdev_ops->ndo_uninit) 4816 dev->netdev_ops->ndo_uninit(dev); 4817 goto out; 4818 } 4819 4820 /** 4821 * init_dummy_netdev - init a dummy network device for NAPI 4822 * @dev: device to init 4823 * 4824 * This takes a network device structure and initialize the minimum 4825 * amount of fields so it can be used to schedule NAPI polls without 4826 * registering a full blown interface. This is to be used by drivers 4827 * that need to tie several hardware interfaces to a single NAPI 4828 * poll scheduler due to HW limitations. 4829 */ 4830 int init_dummy_netdev(struct net_device *dev) 4831 { 4832 /* Clear everything. Note we don't initialize spinlocks 4833 * are they aren't supposed to be taken by any of the 4834 * NAPI code and this dummy netdev is supposed to be 4835 * only ever used for NAPI polls 4836 */ 4837 memset(dev, 0, sizeof(struct net_device)); 4838 4839 /* make sure we BUG if trying to hit standard 4840 * register/unregister code path 4841 */ 4842 dev->reg_state = NETREG_DUMMY; 4843 4844 /* initialize the ref count */ 4845 atomic_set(&dev->refcnt, 1); 4846 4847 /* NAPI wants this */ 4848 INIT_LIST_HEAD(&dev->napi_list); 4849 4850 /* a dummy interface is started by default */ 4851 set_bit(__LINK_STATE_PRESENT, &dev->state); 4852 set_bit(__LINK_STATE_START, &dev->state); 4853 4854 return 0; 4855 } 4856 EXPORT_SYMBOL_GPL(init_dummy_netdev); 4857 4858 4859 /** 4860 * register_netdev - register a network device 4861 * @dev: device to register 4862 * 4863 * Take a completed network device structure and add it to the kernel 4864 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 4865 * chain. 0 is returned on success. A negative errno code is returned 4866 * on a failure to set up the device, or if the name is a duplicate. 4867 * 4868 * This is a wrapper around register_netdevice that takes the rtnl semaphore 4869 * and expands the device name if you passed a format string to 4870 * alloc_netdev. 4871 */ 4872 int register_netdev(struct net_device *dev) 4873 { 4874 int err; 4875 4876 rtnl_lock(); 4877 4878 /* 4879 * If the name is a format string the caller wants us to do a 4880 * name allocation. 4881 */ 4882 if (strchr(dev->name, '%')) { 4883 err = dev_alloc_name(dev, dev->name); 4884 if (err < 0) 4885 goto out; 4886 } 4887 4888 err = register_netdevice(dev); 4889 out: 4890 rtnl_unlock(); 4891 return err; 4892 } 4893 EXPORT_SYMBOL(register_netdev); 4894 4895 /* 4896 * netdev_wait_allrefs - wait until all references are gone. 4897 * 4898 * This is called when unregistering network devices. 4899 * 4900 * Any protocol or device that holds a reference should register 4901 * for netdevice notification, and cleanup and put back the 4902 * reference if they receive an UNREGISTER event. 4903 * We can get stuck here if buggy protocols don't correctly 4904 * call dev_put. 4905 */ 4906 static void netdev_wait_allrefs(struct net_device *dev) 4907 { 4908 unsigned long rebroadcast_time, warning_time; 4909 4910 rebroadcast_time = warning_time = jiffies; 4911 while (atomic_read(&dev->refcnt) != 0) { 4912 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 4913 rtnl_lock(); 4914 4915 /* Rebroadcast unregister notification */ 4916 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 4917 4918 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 4919 &dev->state)) { 4920 /* We must not have linkwatch events 4921 * pending on unregister. If this 4922 * happens, we simply run the queue 4923 * unscheduled, resulting in a noop 4924 * for this device. 4925 */ 4926 linkwatch_run_queue(); 4927 } 4928 4929 __rtnl_unlock(); 4930 4931 rebroadcast_time = jiffies; 4932 } 4933 4934 msleep(250); 4935 4936 if (time_after(jiffies, warning_time + 10 * HZ)) { 4937 printk(KERN_EMERG "unregister_netdevice: " 4938 "waiting for %s to become free. Usage " 4939 "count = %d\n", 4940 dev->name, atomic_read(&dev->refcnt)); 4941 warning_time = jiffies; 4942 } 4943 } 4944 } 4945 4946 /* The sequence is: 4947 * 4948 * rtnl_lock(); 4949 * ... 4950 * register_netdevice(x1); 4951 * register_netdevice(x2); 4952 * ... 4953 * unregister_netdevice(y1); 4954 * unregister_netdevice(y2); 4955 * ... 4956 * rtnl_unlock(); 4957 * free_netdev(y1); 4958 * free_netdev(y2); 4959 * 4960 * We are invoked by rtnl_unlock(). 4961 * This allows us to deal with problems: 4962 * 1) We can delete sysfs objects which invoke hotplug 4963 * without deadlocking with linkwatch via keventd. 4964 * 2) Since we run with the RTNL semaphore not held, we can sleep 4965 * safely in order to wait for the netdev refcnt to drop to zero. 4966 * 4967 * We must not return until all unregister events added during 4968 * the interval the lock was held have been completed. 4969 */ 4970 void netdev_run_todo(void) 4971 { 4972 struct list_head list; 4973 4974 /* Snapshot list, allow later requests */ 4975 list_replace_init(&net_todo_list, &list); 4976 4977 __rtnl_unlock(); 4978 4979 while (!list_empty(&list)) { 4980 struct net_device *dev 4981 = list_entry(list.next, struct net_device, todo_list); 4982 list_del(&dev->todo_list); 4983 4984 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 4985 printk(KERN_ERR "network todo '%s' but state %d\n", 4986 dev->name, dev->reg_state); 4987 dump_stack(); 4988 continue; 4989 } 4990 4991 dev->reg_state = NETREG_UNREGISTERED; 4992 4993 on_each_cpu(flush_backlog, dev, 1); 4994 4995 netdev_wait_allrefs(dev); 4996 4997 /* paranoia */ 4998 BUG_ON(atomic_read(&dev->refcnt)); 4999 WARN_ON(dev->ip_ptr); 5000 WARN_ON(dev->ip6_ptr); 5001 WARN_ON(dev->dn_ptr); 5002 5003 if (dev->destructor) 5004 dev->destructor(dev); 5005 5006 /* Free network device */ 5007 kobject_put(&dev->dev.kobj); 5008 } 5009 } 5010 5011 /** 5012 * dev_get_stats - get network device statistics 5013 * @dev: device to get statistics from 5014 * 5015 * Get network statistics from device. The device driver may provide 5016 * its own method by setting dev->netdev_ops->get_stats; otherwise 5017 * the internal statistics structure is used. 5018 */ 5019 const struct net_device_stats *dev_get_stats(struct net_device *dev) 5020 { 5021 const struct net_device_ops *ops = dev->netdev_ops; 5022 5023 if (ops->ndo_get_stats) 5024 return ops->ndo_get_stats(dev); 5025 else { 5026 unsigned long tx_bytes = 0, tx_packets = 0, tx_dropped = 0; 5027 struct net_device_stats *stats = &dev->stats; 5028 unsigned int i; 5029 struct netdev_queue *txq; 5030 5031 for (i = 0; i < dev->num_tx_queues; i++) { 5032 txq = netdev_get_tx_queue(dev, i); 5033 tx_bytes += txq->tx_bytes; 5034 tx_packets += txq->tx_packets; 5035 tx_dropped += txq->tx_dropped; 5036 } 5037 if (tx_bytes || tx_packets || tx_dropped) { 5038 stats->tx_bytes = tx_bytes; 5039 stats->tx_packets = tx_packets; 5040 stats->tx_dropped = tx_dropped; 5041 } 5042 return stats; 5043 } 5044 } 5045 EXPORT_SYMBOL(dev_get_stats); 5046 5047 static void netdev_init_one_queue(struct net_device *dev, 5048 struct netdev_queue *queue, 5049 void *_unused) 5050 { 5051 queue->dev = dev; 5052 } 5053 5054 static void netdev_init_queues(struct net_device *dev) 5055 { 5056 netdev_init_one_queue(dev, &dev->rx_queue, NULL); 5057 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 5058 spin_lock_init(&dev->tx_global_lock); 5059 } 5060 5061 /** 5062 * alloc_netdev_mq - allocate network device 5063 * @sizeof_priv: size of private data to allocate space for 5064 * @name: device name format string 5065 * @setup: callback to initialize device 5066 * @queue_count: the number of subqueues to allocate 5067 * 5068 * Allocates a struct net_device with private data area for driver use 5069 * and performs basic initialization. Also allocates subquue structs 5070 * for each queue on the device at the end of the netdevice. 5071 */ 5072 struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name, 5073 void (*setup)(struct net_device *), unsigned int queue_count) 5074 { 5075 struct netdev_queue *tx; 5076 struct net_device *dev; 5077 size_t alloc_size; 5078 struct net_device *p; 5079 5080 BUG_ON(strlen(name) >= sizeof(dev->name)); 5081 5082 alloc_size = sizeof(struct net_device); 5083 if (sizeof_priv) { 5084 /* ensure 32-byte alignment of private area */ 5085 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); 5086 alloc_size += sizeof_priv; 5087 } 5088 /* ensure 32-byte alignment of whole construct */ 5089 alloc_size += NETDEV_ALIGN - 1; 5090 5091 p = kzalloc(alloc_size, GFP_KERNEL); 5092 if (!p) { 5093 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n"); 5094 return NULL; 5095 } 5096 5097 tx = kcalloc(queue_count, sizeof(struct netdev_queue), GFP_KERNEL); 5098 if (!tx) { 5099 printk(KERN_ERR "alloc_netdev: Unable to allocate " 5100 "tx qdiscs.\n"); 5101 goto free_p; 5102 } 5103 5104 dev = PTR_ALIGN(p, NETDEV_ALIGN); 5105 dev->padded = (char *)dev - (char *)p; 5106 5107 if (dev_addr_init(dev)) 5108 goto free_tx; 5109 5110 dev_unicast_init(dev); 5111 5112 dev_net_set(dev, &init_net); 5113 5114 dev->_tx = tx; 5115 dev->num_tx_queues = queue_count; 5116 dev->real_num_tx_queues = queue_count; 5117 5118 dev->gso_max_size = GSO_MAX_SIZE; 5119 5120 netdev_init_queues(dev); 5121 5122 INIT_LIST_HEAD(&dev->napi_list); 5123 dev->priv_flags = IFF_XMIT_DST_RELEASE; 5124 setup(dev); 5125 strcpy(dev->name, name); 5126 return dev; 5127 5128 free_tx: 5129 kfree(tx); 5130 5131 free_p: 5132 kfree(p); 5133 return NULL; 5134 } 5135 EXPORT_SYMBOL(alloc_netdev_mq); 5136 5137 /** 5138 * free_netdev - free network device 5139 * @dev: device 5140 * 5141 * This function does the last stage of destroying an allocated device 5142 * interface. The reference to the device object is released. 5143 * If this is the last reference then it will be freed. 5144 */ 5145 void free_netdev(struct net_device *dev) 5146 { 5147 struct napi_struct *p, *n; 5148 5149 release_net(dev_net(dev)); 5150 5151 kfree(dev->_tx); 5152 5153 /* Flush device addresses */ 5154 dev_addr_flush(dev); 5155 5156 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 5157 netif_napi_del(p); 5158 5159 /* Compatibility with error handling in drivers */ 5160 if (dev->reg_state == NETREG_UNINITIALIZED) { 5161 kfree((char *)dev - dev->padded); 5162 return; 5163 } 5164 5165 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 5166 dev->reg_state = NETREG_RELEASED; 5167 5168 /* will free via device release */ 5169 put_device(&dev->dev); 5170 } 5171 5172 /** 5173 * synchronize_net - Synchronize with packet receive processing 5174 * 5175 * Wait for packets currently being received to be done. 5176 * Does not block later packets from starting. 5177 */ 5178 void synchronize_net(void) 5179 { 5180 might_sleep(); 5181 synchronize_rcu(); 5182 } 5183 5184 /** 5185 * unregister_netdevice - remove device from the kernel 5186 * @dev: device 5187 * 5188 * This function shuts down a device interface and removes it 5189 * from the kernel tables. 5190 * 5191 * Callers must hold the rtnl semaphore. You may want 5192 * unregister_netdev() instead of this. 5193 */ 5194 5195 void unregister_netdevice(struct net_device *dev) 5196 { 5197 ASSERT_RTNL(); 5198 5199 rollback_registered(dev); 5200 /* Finish processing unregister after unlock */ 5201 net_set_todo(dev); 5202 } 5203 5204 /** 5205 * unregister_netdev - remove device from the kernel 5206 * @dev: device 5207 * 5208 * This function shuts down a device interface and removes it 5209 * from the kernel tables. 5210 * 5211 * This is just a wrapper for unregister_netdevice that takes 5212 * the rtnl semaphore. In general you want to use this and not 5213 * unregister_netdevice. 5214 */ 5215 void unregister_netdev(struct net_device *dev) 5216 { 5217 rtnl_lock(); 5218 unregister_netdevice(dev); 5219 rtnl_unlock(); 5220 } 5221 5222 EXPORT_SYMBOL(unregister_netdev); 5223 5224 /** 5225 * dev_change_net_namespace - move device to different nethost namespace 5226 * @dev: device 5227 * @net: network namespace 5228 * @pat: If not NULL name pattern to try if the current device name 5229 * is already taken in the destination network namespace. 5230 * 5231 * This function shuts down a device interface and moves it 5232 * to a new network namespace. On success 0 is returned, on 5233 * a failure a netagive errno code is returned. 5234 * 5235 * Callers must hold the rtnl semaphore. 5236 */ 5237 5238 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 5239 { 5240 char buf[IFNAMSIZ]; 5241 const char *destname; 5242 int err; 5243 5244 ASSERT_RTNL(); 5245 5246 /* Don't allow namespace local devices to be moved. */ 5247 err = -EINVAL; 5248 if (dev->features & NETIF_F_NETNS_LOCAL) 5249 goto out; 5250 5251 #ifdef CONFIG_SYSFS 5252 /* Don't allow real devices to be moved when sysfs 5253 * is enabled. 5254 */ 5255 err = -EINVAL; 5256 if (dev->dev.parent) 5257 goto out; 5258 #endif 5259 5260 /* Ensure the device has been registrered */ 5261 err = -EINVAL; 5262 if (dev->reg_state != NETREG_REGISTERED) 5263 goto out; 5264 5265 /* Get out if there is nothing todo */ 5266 err = 0; 5267 if (net_eq(dev_net(dev), net)) 5268 goto out; 5269 5270 /* Pick the destination device name, and ensure 5271 * we can use it in the destination network namespace. 5272 */ 5273 err = -EEXIST; 5274 destname = dev->name; 5275 if (__dev_get_by_name(net, destname)) { 5276 /* We get here if we can't use the current device name */ 5277 if (!pat) 5278 goto out; 5279 if (!dev_valid_name(pat)) 5280 goto out; 5281 if (strchr(pat, '%')) { 5282 if (__dev_alloc_name(net, pat, buf) < 0) 5283 goto out; 5284 destname = buf; 5285 } else 5286 destname = pat; 5287 if (__dev_get_by_name(net, destname)) 5288 goto out; 5289 } 5290 5291 /* 5292 * And now a mini version of register_netdevice unregister_netdevice. 5293 */ 5294 5295 /* If device is running close it first. */ 5296 dev_close(dev); 5297 5298 /* And unlink it from device chain */ 5299 err = -ENODEV; 5300 unlist_netdevice(dev); 5301 5302 synchronize_net(); 5303 5304 /* Shutdown queueing discipline. */ 5305 dev_shutdown(dev); 5306 5307 /* Notify protocols, that we are about to destroy 5308 this device. They should clean all the things. 5309 */ 5310 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 5311 5312 /* 5313 * Flush the unicast and multicast chains 5314 */ 5315 dev_unicast_flush(dev); 5316 dev_addr_discard(dev); 5317 5318 netdev_unregister_kobject(dev); 5319 5320 /* Actually switch the network namespace */ 5321 dev_net_set(dev, net); 5322 5323 /* Assign the new device name */ 5324 if (destname != dev->name) 5325 strcpy(dev->name, destname); 5326 5327 /* If there is an ifindex conflict assign a new one */ 5328 if (__dev_get_by_index(net, dev->ifindex)) { 5329 int iflink = (dev->iflink == dev->ifindex); 5330 dev->ifindex = dev_new_index(net); 5331 if (iflink) 5332 dev->iflink = dev->ifindex; 5333 } 5334 5335 /* Fixup kobjects */ 5336 err = netdev_register_kobject(dev); 5337 WARN_ON(err); 5338 5339 /* Add the device back in the hashes */ 5340 list_netdevice(dev); 5341 5342 /* Notify protocols, that a new device appeared. */ 5343 call_netdevice_notifiers(NETDEV_REGISTER, dev); 5344 5345 synchronize_net(); 5346 err = 0; 5347 out: 5348 return err; 5349 } 5350 5351 static int dev_cpu_callback(struct notifier_block *nfb, 5352 unsigned long action, 5353 void *ocpu) 5354 { 5355 struct sk_buff **list_skb; 5356 struct Qdisc **list_net; 5357 struct sk_buff *skb; 5358 unsigned int cpu, oldcpu = (unsigned long)ocpu; 5359 struct softnet_data *sd, *oldsd; 5360 5361 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN) 5362 return NOTIFY_OK; 5363 5364 local_irq_disable(); 5365 cpu = smp_processor_id(); 5366 sd = &per_cpu(softnet_data, cpu); 5367 oldsd = &per_cpu(softnet_data, oldcpu); 5368 5369 /* Find end of our completion_queue. */ 5370 list_skb = &sd->completion_queue; 5371 while (*list_skb) 5372 list_skb = &(*list_skb)->next; 5373 /* Append completion queue from offline CPU. */ 5374 *list_skb = oldsd->completion_queue; 5375 oldsd->completion_queue = NULL; 5376 5377 /* Find end of our output_queue. */ 5378 list_net = &sd->output_queue; 5379 while (*list_net) 5380 list_net = &(*list_net)->next_sched; 5381 /* Append output queue from offline CPU. */ 5382 *list_net = oldsd->output_queue; 5383 oldsd->output_queue = NULL; 5384 5385 raise_softirq_irqoff(NET_TX_SOFTIRQ); 5386 local_irq_enable(); 5387 5388 /* Process offline CPU's input_pkt_queue */ 5389 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) 5390 netif_rx(skb); 5391 5392 return NOTIFY_OK; 5393 } 5394 5395 5396 /** 5397 * netdev_increment_features - increment feature set by one 5398 * @all: current feature set 5399 * @one: new feature set 5400 * @mask: mask feature set 5401 * 5402 * Computes a new feature set after adding a device with feature set 5403 * @one to the master device with current feature set @all. Will not 5404 * enable anything that is off in @mask. Returns the new feature set. 5405 */ 5406 unsigned long netdev_increment_features(unsigned long all, unsigned long one, 5407 unsigned long mask) 5408 { 5409 /* If device needs checksumming, downgrade to it. */ 5410 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM)) 5411 all ^= NETIF_F_NO_CSUM | (one & NETIF_F_ALL_CSUM); 5412 else if (mask & NETIF_F_ALL_CSUM) { 5413 /* If one device supports v4/v6 checksumming, set for all. */ 5414 if (one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM) && 5415 !(all & NETIF_F_GEN_CSUM)) { 5416 all &= ~NETIF_F_ALL_CSUM; 5417 all |= one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM); 5418 } 5419 5420 /* If one device supports hw checksumming, set for all. */ 5421 if (one & NETIF_F_GEN_CSUM && !(all & NETIF_F_GEN_CSUM)) { 5422 all &= ~NETIF_F_ALL_CSUM; 5423 all |= NETIF_F_HW_CSUM; 5424 } 5425 } 5426 5427 one |= NETIF_F_ALL_CSUM; 5428 5429 one |= all & NETIF_F_ONE_FOR_ALL; 5430 all &= one | NETIF_F_LLTX | NETIF_F_GSO; 5431 all |= one & mask & NETIF_F_ONE_FOR_ALL; 5432 5433 return all; 5434 } 5435 EXPORT_SYMBOL(netdev_increment_features); 5436 5437 static struct hlist_head *netdev_create_hash(void) 5438 { 5439 int i; 5440 struct hlist_head *hash; 5441 5442 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL); 5443 if (hash != NULL) 5444 for (i = 0; i < NETDEV_HASHENTRIES; i++) 5445 INIT_HLIST_HEAD(&hash[i]); 5446 5447 return hash; 5448 } 5449 5450 /* Initialize per network namespace state */ 5451 static int __net_init netdev_init(struct net *net) 5452 { 5453 INIT_LIST_HEAD(&net->dev_base_head); 5454 5455 net->dev_name_head = netdev_create_hash(); 5456 if (net->dev_name_head == NULL) 5457 goto err_name; 5458 5459 net->dev_index_head = netdev_create_hash(); 5460 if (net->dev_index_head == NULL) 5461 goto err_idx; 5462 5463 return 0; 5464 5465 err_idx: 5466 kfree(net->dev_name_head); 5467 err_name: 5468 return -ENOMEM; 5469 } 5470 5471 /** 5472 * netdev_drivername - network driver for the device 5473 * @dev: network device 5474 * @buffer: buffer for resulting name 5475 * @len: size of buffer 5476 * 5477 * Determine network driver for device. 5478 */ 5479 char *netdev_drivername(const struct net_device *dev, char *buffer, int len) 5480 { 5481 const struct device_driver *driver; 5482 const struct device *parent; 5483 5484 if (len <= 0 || !buffer) 5485 return buffer; 5486 buffer[0] = 0; 5487 5488 parent = dev->dev.parent; 5489 5490 if (!parent) 5491 return buffer; 5492 5493 driver = parent->driver; 5494 if (driver && driver->name) 5495 strlcpy(buffer, driver->name, len); 5496 return buffer; 5497 } 5498 5499 static void __net_exit netdev_exit(struct net *net) 5500 { 5501 kfree(net->dev_name_head); 5502 kfree(net->dev_index_head); 5503 } 5504 5505 static struct pernet_operations __net_initdata netdev_net_ops = { 5506 .init = netdev_init, 5507 .exit = netdev_exit, 5508 }; 5509 5510 static void __net_exit default_device_exit(struct net *net) 5511 { 5512 struct net_device *dev; 5513 /* 5514 * Push all migratable of the network devices back to the 5515 * initial network namespace 5516 */ 5517 rtnl_lock(); 5518 restart: 5519 for_each_netdev(net, dev) { 5520 int err; 5521 char fb_name[IFNAMSIZ]; 5522 5523 /* Ignore unmoveable devices (i.e. loopback) */ 5524 if (dev->features & NETIF_F_NETNS_LOCAL) 5525 continue; 5526 5527 /* Delete virtual devices */ 5528 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) { 5529 dev->rtnl_link_ops->dellink(dev); 5530 goto restart; 5531 } 5532 5533 /* Push remaing network devices to init_net */ 5534 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 5535 err = dev_change_net_namespace(dev, &init_net, fb_name); 5536 if (err) { 5537 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n", 5538 __func__, dev->name, err); 5539 BUG(); 5540 } 5541 goto restart; 5542 } 5543 rtnl_unlock(); 5544 } 5545 5546 static struct pernet_operations __net_initdata default_device_ops = { 5547 .exit = default_device_exit, 5548 }; 5549 5550 /* 5551 * Initialize the DEV module. At boot time this walks the device list and 5552 * unhooks any devices that fail to initialise (normally hardware not 5553 * present) and leaves us with a valid list of present and active devices. 5554 * 5555 */ 5556 5557 /* 5558 * This is called single threaded during boot, so no need 5559 * to take the rtnl semaphore. 5560 */ 5561 static int __init net_dev_init(void) 5562 { 5563 int i, rc = -ENOMEM; 5564 5565 BUG_ON(!dev_boot_phase); 5566 5567 if (dev_proc_init()) 5568 goto out; 5569 5570 if (netdev_kobject_init()) 5571 goto out; 5572 5573 INIT_LIST_HEAD(&ptype_all); 5574 for (i = 0; i < PTYPE_HASH_SIZE; i++) 5575 INIT_LIST_HEAD(&ptype_base[i]); 5576 5577 if (register_pernet_subsys(&netdev_net_ops)) 5578 goto out; 5579 5580 /* 5581 * Initialise the packet receive queues. 5582 */ 5583 5584 for_each_possible_cpu(i) { 5585 struct softnet_data *queue; 5586 5587 queue = &per_cpu(softnet_data, i); 5588 skb_queue_head_init(&queue->input_pkt_queue); 5589 queue->completion_queue = NULL; 5590 INIT_LIST_HEAD(&queue->poll_list); 5591 5592 queue->backlog.poll = process_backlog; 5593 queue->backlog.weight = weight_p; 5594 queue->backlog.gro_list = NULL; 5595 queue->backlog.gro_count = 0; 5596 } 5597 5598 dev_boot_phase = 0; 5599 5600 /* The loopback device is special if any other network devices 5601 * is present in a network namespace the loopback device must 5602 * be present. Since we now dynamically allocate and free the 5603 * loopback device ensure this invariant is maintained by 5604 * keeping the loopback device as the first device on the 5605 * list of network devices. Ensuring the loopback devices 5606 * is the first device that appears and the last network device 5607 * that disappears. 5608 */ 5609 if (register_pernet_device(&loopback_net_ops)) 5610 goto out; 5611 5612 if (register_pernet_device(&default_device_ops)) 5613 goto out; 5614 5615 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 5616 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 5617 5618 hotcpu_notifier(dev_cpu_callback, 0); 5619 dst_init(); 5620 dev_mcast_init(); 5621 rc = 0; 5622 out: 5623 return rc; 5624 } 5625 5626 subsys_initcall(net_dev_init); 5627 5628 static int __init initialize_hashrnd(void) 5629 { 5630 get_random_bytes(&skb_tx_hashrnd, sizeof(skb_tx_hashrnd)); 5631 return 0; 5632 } 5633 5634 late_initcall_sync(initialize_hashrnd); 5635 5636 EXPORT_SYMBOL(__dev_get_by_index); 5637 EXPORT_SYMBOL(__dev_get_by_name); 5638 EXPORT_SYMBOL(__dev_remove_pack); 5639 EXPORT_SYMBOL(dev_valid_name); 5640 EXPORT_SYMBOL(dev_add_pack); 5641 EXPORT_SYMBOL(dev_alloc_name); 5642 EXPORT_SYMBOL(dev_close); 5643 EXPORT_SYMBOL(dev_get_by_flags); 5644 EXPORT_SYMBOL(dev_get_by_index); 5645 EXPORT_SYMBOL(dev_get_by_name); 5646 EXPORT_SYMBOL(dev_open); 5647 EXPORT_SYMBOL(dev_queue_xmit); 5648 EXPORT_SYMBOL(dev_remove_pack); 5649 EXPORT_SYMBOL(dev_set_allmulti); 5650 EXPORT_SYMBOL(dev_set_promiscuity); 5651 EXPORT_SYMBOL(dev_change_flags); 5652 EXPORT_SYMBOL(dev_set_mtu); 5653 EXPORT_SYMBOL(dev_set_mac_address); 5654 EXPORT_SYMBOL(free_netdev); 5655 EXPORT_SYMBOL(netdev_boot_setup_check); 5656 EXPORT_SYMBOL(netdev_set_master); 5657 EXPORT_SYMBOL(netdev_state_change); 5658 EXPORT_SYMBOL(netif_receive_skb); 5659 EXPORT_SYMBOL(netif_rx); 5660 EXPORT_SYMBOL(register_gifconf); 5661 EXPORT_SYMBOL(register_netdevice); 5662 EXPORT_SYMBOL(register_netdevice_notifier); 5663 EXPORT_SYMBOL(skb_checksum_help); 5664 EXPORT_SYMBOL(synchronize_net); 5665 EXPORT_SYMBOL(unregister_netdevice); 5666 EXPORT_SYMBOL(unregister_netdevice_notifier); 5667 EXPORT_SYMBOL(net_enable_timestamp); 5668 EXPORT_SYMBOL(net_disable_timestamp); 5669 EXPORT_SYMBOL(dev_get_flags); 5670 5671 EXPORT_SYMBOL(dev_load); 5672 5673 EXPORT_PER_CPU_SYMBOL(softnet_data); 5674