xref: /linux/net/core/dev.c (revision a9cb09b7be84a7adc9e6f4aaf8d770933d65f953)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *	Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:	Ross Biro
7  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *	Additional Authors:
11  *		Florian la Roche <rzsfl@rz.uni-sb.de>
12  *		Alan Cox <gw4pts@gw4pts.ampr.org>
13  *		David Hinds <dahinds@users.sourceforge.net>
14  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *		Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *	Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *		Alan Cox	:	device private ioctl copies fields back.
24  *		Alan Cox	:	Transmit queue code does relevant
25  *					stunts to keep the queue safe.
26  *		Alan Cox	:	Fixed double lock.
27  *		Alan Cox	:	Fixed promisc NULL pointer trap
28  *		????????	:	Support the full private ioctl range
29  *		Alan Cox	:	Moved ioctl permission check into
30  *					drivers
31  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
32  *		Alan Cox	:	100 backlog just doesn't cut it when
33  *					you start doing multicast video 8)
34  *		Alan Cox	:	Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *		Alan Cox	:	Took out transmit every packet pass
37  *					Saved a few bytes in the ioctl handler
38  *		Alan Cox	:	Network driver sets packet type before
39  *					calling netif_rx. Saves a function
40  *					call a packet.
41  *		Alan Cox	:	Hashed net_bh()
42  *		Richard Kooijman:	Timestamp fixes.
43  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
44  *		Alan Cox	:	Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *					changes.
47  *		Rudi Cilibrasi	:	Pass the right thing to
48  *					set_mac_address()
49  *		Dave Miller	:	32bit quantity for the device lock to
50  *					make it work out on a Sparc.
51  *		Bjorn Ekwall	:	Added KERNELD hack.
52  *		Alan Cox	:	Cleaned up the backlog initialise.
53  *		Craig Metz	:	SIOCGIFCONF fix if space for under
54  *					1 device.
55  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
56  *					is no device open function.
57  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
58  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
59  *		Cyrus Durgin	:	Cleaned for KMOD
60  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
61  *					A network device unload needs to purge
62  *					the backlog queue.
63  *	Paul Rusty Russell	:	SIOCSIFNAME
64  *              Pekka Riikonen  :	Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *				        - netif_rx() feedback
69  */
70 
71 #include <linux/uaccess.h>
72 #include <linux/bitops.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/rwsem.h>
83 #include <linux/string.h>
84 #include <linux/mm.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/errno.h>
88 #include <linux/interrupt.h>
89 #include <linux/if_ether.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/ethtool.h>
93 #include <linux/skbuff.h>
94 #include <linux/kthread.h>
95 #include <linux/bpf.h>
96 #include <linux/bpf_trace.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <net/busy_poll.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/stat.h>
102 #include <net/dsa.h>
103 #include <net/dst.h>
104 #include <net/dst_metadata.h>
105 #include <net/gro.h>
106 #include <net/pkt_sched.h>
107 #include <net/pkt_cls.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <linux/highmem.h>
111 #include <linux/init.h>
112 #include <linux/module.h>
113 #include <linux/netpoll.h>
114 #include <linux/rcupdate.h>
115 #include <linux/delay.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <net/mpls.h>
127 #include <linux/ipv6.h>
128 #include <linux/in.h>
129 #include <linux/jhash.h>
130 #include <linux/random.h>
131 #include <trace/events/napi.h>
132 #include <trace/events/net.h>
133 #include <trace/events/skb.h>
134 #include <trace/events/qdisc.h>
135 #include <linux/inetdevice.h>
136 #include <linux/cpu_rmap.h>
137 #include <linux/static_key.h>
138 #include <linux/hashtable.h>
139 #include <linux/vmalloc.h>
140 #include <linux/if_macvlan.h>
141 #include <linux/errqueue.h>
142 #include <linux/hrtimer.h>
143 #include <linux/netfilter_ingress.h>
144 #include <linux/crash_dump.h>
145 #include <linux/sctp.h>
146 #include <net/udp_tunnel.h>
147 #include <linux/net_namespace.h>
148 #include <linux/indirect_call_wrapper.h>
149 #include <net/devlink.h>
150 #include <linux/pm_runtime.h>
151 #include <linux/prandom.h>
152 #include <linux/once_lite.h>
153 
154 #include "net-sysfs.h"
155 
156 #define MAX_GRO_SKBS 8
157 
158 /* This should be increased if a protocol with a bigger head is added. */
159 #define GRO_MAX_HEAD (MAX_HEADER + 128)
160 
161 static DEFINE_SPINLOCK(ptype_lock);
162 static DEFINE_SPINLOCK(offload_lock);
163 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
164 struct list_head ptype_all __read_mostly;	/* Taps */
165 static struct list_head offload_base __read_mostly;
166 
167 static int netif_rx_internal(struct sk_buff *skb);
168 static int call_netdevice_notifiers_info(unsigned long val,
169 					 struct netdev_notifier_info *info);
170 static int call_netdevice_notifiers_extack(unsigned long val,
171 					   struct net_device *dev,
172 					   struct netlink_ext_ack *extack);
173 static struct napi_struct *napi_by_id(unsigned int napi_id);
174 
175 /*
176  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
177  * semaphore.
178  *
179  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
180  *
181  * Writers must hold the rtnl semaphore while they loop through the
182  * dev_base_head list, and hold dev_base_lock for writing when they do the
183  * actual updates.  This allows pure readers to access the list even
184  * while a writer is preparing to update it.
185  *
186  * To put it another way, dev_base_lock is held for writing only to
187  * protect against pure readers; the rtnl semaphore provides the
188  * protection against other writers.
189  *
190  * See, for example usages, register_netdevice() and
191  * unregister_netdevice(), which must be called with the rtnl
192  * semaphore held.
193  */
194 DEFINE_RWLOCK(dev_base_lock);
195 EXPORT_SYMBOL(dev_base_lock);
196 
197 static DEFINE_MUTEX(ifalias_mutex);
198 
199 /* protects napi_hash addition/deletion and napi_gen_id */
200 static DEFINE_SPINLOCK(napi_hash_lock);
201 
202 static unsigned int napi_gen_id = NR_CPUS;
203 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
204 
205 static DECLARE_RWSEM(devnet_rename_sem);
206 
207 static inline void dev_base_seq_inc(struct net *net)
208 {
209 	while (++net->dev_base_seq == 0)
210 		;
211 }
212 
213 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
214 {
215 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
216 
217 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
218 }
219 
220 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
221 {
222 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
223 }
224 
225 static inline void rps_lock(struct softnet_data *sd)
226 {
227 #ifdef CONFIG_RPS
228 	spin_lock(&sd->input_pkt_queue.lock);
229 #endif
230 }
231 
232 static inline void rps_unlock(struct softnet_data *sd)
233 {
234 #ifdef CONFIG_RPS
235 	spin_unlock(&sd->input_pkt_queue.lock);
236 #endif
237 }
238 
239 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
240 						       const char *name)
241 {
242 	struct netdev_name_node *name_node;
243 
244 	name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
245 	if (!name_node)
246 		return NULL;
247 	INIT_HLIST_NODE(&name_node->hlist);
248 	name_node->dev = dev;
249 	name_node->name = name;
250 	return name_node;
251 }
252 
253 static struct netdev_name_node *
254 netdev_name_node_head_alloc(struct net_device *dev)
255 {
256 	struct netdev_name_node *name_node;
257 
258 	name_node = netdev_name_node_alloc(dev, dev->name);
259 	if (!name_node)
260 		return NULL;
261 	INIT_LIST_HEAD(&name_node->list);
262 	return name_node;
263 }
264 
265 static void netdev_name_node_free(struct netdev_name_node *name_node)
266 {
267 	kfree(name_node);
268 }
269 
270 static void netdev_name_node_add(struct net *net,
271 				 struct netdev_name_node *name_node)
272 {
273 	hlist_add_head_rcu(&name_node->hlist,
274 			   dev_name_hash(net, name_node->name));
275 }
276 
277 static void netdev_name_node_del(struct netdev_name_node *name_node)
278 {
279 	hlist_del_rcu(&name_node->hlist);
280 }
281 
282 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
283 							const char *name)
284 {
285 	struct hlist_head *head = dev_name_hash(net, name);
286 	struct netdev_name_node *name_node;
287 
288 	hlist_for_each_entry(name_node, head, hlist)
289 		if (!strcmp(name_node->name, name))
290 			return name_node;
291 	return NULL;
292 }
293 
294 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
295 							    const char *name)
296 {
297 	struct hlist_head *head = dev_name_hash(net, name);
298 	struct netdev_name_node *name_node;
299 
300 	hlist_for_each_entry_rcu(name_node, head, hlist)
301 		if (!strcmp(name_node->name, name))
302 			return name_node;
303 	return NULL;
304 }
305 
306 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
307 {
308 	struct netdev_name_node *name_node;
309 	struct net *net = dev_net(dev);
310 
311 	name_node = netdev_name_node_lookup(net, name);
312 	if (name_node)
313 		return -EEXIST;
314 	name_node = netdev_name_node_alloc(dev, name);
315 	if (!name_node)
316 		return -ENOMEM;
317 	netdev_name_node_add(net, name_node);
318 	/* The node that holds dev->name acts as a head of per-device list. */
319 	list_add_tail(&name_node->list, &dev->name_node->list);
320 
321 	return 0;
322 }
323 EXPORT_SYMBOL(netdev_name_node_alt_create);
324 
325 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
326 {
327 	list_del(&name_node->list);
328 	netdev_name_node_del(name_node);
329 	kfree(name_node->name);
330 	netdev_name_node_free(name_node);
331 }
332 
333 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
334 {
335 	struct netdev_name_node *name_node;
336 	struct net *net = dev_net(dev);
337 
338 	name_node = netdev_name_node_lookup(net, name);
339 	if (!name_node)
340 		return -ENOENT;
341 	/* lookup might have found our primary name or a name belonging
342 	 * to another device.
343 	 */
344 	if (name_node == dev->name_node || name_node->dev != dev)
345 		return -EINVAL;
346 
347 	__netdev_name_node_alt_destroy(name_node);
348 
349 	return 0;
350 }
351 EXPORT_SYMBOL(netdev_name_node_alt_destroy);
352 
353 static void netdev_name_node_alt_flush(struct net_device *dev)
354 {
355 	struct netdev_name_node *name_node, *tmp;
356 
357 	list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
358 		__netdev_name_node_alt_destroy(name_node);
359 }
360 
361 /* Device list insertion */
362 static void list_netdevice(struct net_device *dev)
363 {
364 	struct net *net = dev_net(dev);
365 
366 	ASSERT_RTNL();
367 
368 	write_lock_bh(&dev_base_lock);
369 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
370 	netdev_name_node_add(net, dev->name_node);
371 	hlist_add_head_rcu(&dev->index_hlist,
372 			   dev_index_hash(net, dev->ifindex));
373 	write_unlock_bh(&dev_base_lock);
374 
375 	dev_base_seq_inc(net);
376 }
377 
378 /* Device list removal
379  * caller must respect a RCU grace period before freeing/reusing dev
380  */
381 static void unlist_netdevice(struct net_device *dev)
382 {
383 	ASSERT_RTNL();
384 
385 	/* Unlink dev from the device chain */
386 	write_lock_bh(&dev_base_lock);
387 	list_del_rcu(&dev->dev_list);
388 	netdev_name_node_del(dev->name_node);
389 	hlist_del_rcu(&dev->index_hlist);
390 	write_unlock_bh(&dev_base_lock);
391 
392 	dev_base_seq_inc(dev_net(dev));
393 }
394 
395 /*
396  *	Our notifier list
397  */
398 
399 static RAW_NOTIFIER_HEAD(netdev_chain);
400 
401 /*
402  *	Device drivers call our routines to queue packets here. We empty the
403  *	queue in the local softnet handler.
404  */
405 
406 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
407 EXPORT_PER_CPU_SYMBOL(softnet_data);
408 
409 #ifdef CONFIG_LOCKDEP
410 /*
411  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
412  * according to dev->type
413  */
414 static const unsigned short netdev_lock_type[] = {
415 	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
416 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
417 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
418 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
419 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
420 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
421 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
422 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
423 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
424 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
425 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
426 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
427 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
428 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
429 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
430 
431 static const char *const netdev_lock_name[] = {
432 	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
433 	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
434 	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
435 	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
436 	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
437 	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
438 	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
439 	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
440 	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
441 	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
442 	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
443 	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
444 	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
445 	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
446 	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
447 
448 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
449 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
450 
451 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
452 {
453 	int i;
454 
455 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
456 		if (netdev_lock_type[i] == dev_type)
457 			return i;
458 	/* the last key is used by default */
459 	return ARRAY_SIZE(netdev_lock_type) - 1;
460 }
461 
462 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
463 						 unsigned short dev_type)
464 {
465 	int i;
466 
467 	i = netdev_lock_pos(dev_type);
468 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
469 				   netdev_lock_name[i]);
470 }
471 
472 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
473 {
474 	int i;
475 
476 	i = netdev_lock_pos(dev->type);
477 	lockdep_set_class_and_name(&dev->addr_list_lock,
478 				   &netdev_addr_lock_key[i],
479 				   netdev_lock_name[i]);
480 }
481 #else
482 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
483 						 unsigned short dev_type)
484 {
485 }
486 
487 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
488 {
489 }
490 #endif
491 
492 /*******************************************************************************
493  *
494  *		Protocol management and registration routines
495  *
496  *******************************************************************************/
497 
498 
499 /*
500  *	Add a protocol ID to the list. Now that the input handler is
501  *	smarter we can dispense with all the messy stuff that used to be
502  *	here.
503  *
504  *	BEWARE!!! Protocol handlers, mangling input packets,
505  *	MUST BE last in hash buckets and checking protocol handlers
506  *	MUST start from promiscuous ptype_all chain in net_bh.
507  *	It is true now, do not change it.
508  *	Explanation follows: if protocol handler, mangling packet, will
509  *	be the first on list, it is not able to sense, that packet
510  *	is cloned and should be copied-on-write, so that it will
511  *	change it and subsequent readers will get broken packet.
512  *							--ANK (980803)
513  */
514 
515 static inline struct list_head *ptype_head(const struct packet_type *pt)
516 {
517 	if (pt->type == htons(ETH_P_ALL))
518 		return pt->dev ? &pt->dev->ptype_all : &ptype_all;
519 	else
520 		return pt->dev ? &pt->dev->ptype_specific :
521 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
522 }
523 
524 /**
525  *	dev_add_pack - add packet handler
526  *	@pt: packet type declaration
527  *
528  *	Add a protocol handler to the networking stack. The passed &packet_type
529  *	is linked into kernel lists and may not be freed until it has been
530  *	removed from the kernel lists.
531  *
532  *	This call does not sleep therefore it can not
533  *	guarantee all CPU's that are in middle of receiving packets
534  *	will see the new packet type (until the next received packet).
535  */
536 
537 void dev_add_pack(struct packet_type *pt)
538 {
539 	struct list_head *head = ptype_head(pt);
540 
541 	spin_lock(&ptype_lock);
542 	list_add_rcu(&pt->list, head);
543 	spin_unlock(&ptype_lock);
544 }
545 EXPORT_SYMBOL(dev_add_pack);
546 
547 /**
548  *	__dev_remove_pack	 - remove packet handler
549  *	@pt: packet type declaration
550  *
551  *	Remove a protocol handler that was previously added to the kernel
552  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
553  *	from the kernel lists and can be freed or reused once this function
554  *	returns.
555  *
556  *      The packet type might still be in use by receivers
557  *	and must not be freed until after all the CPU's have gone
558  *	through a quiescent state.
559  */
560 void __dev_remove_pack(struct packet_type *pt)
561 {
562 	struct list_head *head = ptype_head(pt);
563 	struct packet_type *pt1;
564 
565 	spin_lock(&ptype_lock);
566 
567 	list_for_each_entry(pt1, head, list) {
568 		if (pt == pt1) {
569 			list_del_rcu(&pt->list);
570 			goto out;
571 		}
572 	}
573 
574 	pr_warn("dev_remove_pack: %p not found\n", pt);
575 out:
576 	spin_unlock(&ptype_lock);
577 }
578 EXPORT_SYMBOL(__dev_remove_pack);
579 
580 /**
581  *	dev_remove_pack	 - remove packet handler
582  *	@pt: packet type declaration
583  *
584  *	Remove a protocol handler that was previously added to the kernel
585  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
586  *	from the kernel lists and can be freed or reused once this function
587  *	returns.
588  *
589  *	This call sleeps to guarantee that no CPU is looking at the packet
590  *	type after return.
591  */
592 void dev_remove_pack(struct packet_type *pt)
593 {
594 	__dev_remove_pack(pt);
595 
596 	synchronize_net();
597 }
598 EXPORT_SYMBOL(dev_remove_pack);
599 
600 
601 /**
602  *	dev_add_offload - register offload handlers
603  *	@po: protocol offload declaration
604  *
605  *	Add protocol offload handlers to the networking stack. The passed
606  *	&proto_offload is linked into kernel lists and may not be freed until
607  *	it has been removed from the kernel lists.
608  *
609  *	This call does not sleep therefore it can not
610  *	guarantee all CPU's that are in middle of receiving packets
611  *	will see the new offload handlers (until the next received packet).
612  */
613 void dev_add_offload(struct packet_offload *po)
614 {
615 	struct packet_offload *elem;
616 
617 	spin_lock(&offload_lock);
618 	list_for_each_entry(elem, &offload_base, list) {
619 		if (po->priority < elem->priority)
620 			break;
621 	}
622 	list_add_rcu(&po->list, elem->list.prev);
623 	spin_unlock(&offload_lock);
624 }
625 EXPORT_SYMBOL(dev_add_offload);
626 
627 /**
628  *	__dev_remove_offload	 - remove offload handler
629  *	@po: packet offload declaration
630  *
631  *	Remove a protocol offload handler that was previously added to the
632  *	kernel offload handlers by dev_add_offload(). The passed &offload_type
633  *	is removed from the kernel lists and can be freed or reused once this
634  *	function returns.
635  *
636  *      The packet type might still be in use by receivers
637  *	and must not be freed until after all the CPU's have gone
638  *	through a quiescent state.
639  */
640 static void __dev_remove_offload(struct packet_offload *po)
641 {
642 	struct list_head *head = &offload_base;
643 	struct packet_offload *po1;
644 
645 	spin_lock(&offload_lock);
646 
647 	list_for_each_entry(po1, head, list) {
648 		if (po == po1) {
649 			list_del_rcu(&po->list);
650 			goto out;
651 		}
652 	}
653 
654 	pr_warn("dev_remove_offload: %p not found\n", po);
655 out:
656 	spin_unlock(&offload_lock);
657 }
658 
659 /**
660  *	dev_remove_offload	 - remove packet offload handler
661  *	@po: packet offload declaration
662  *
663  *	Remove a packet offload handler that was previously added to the kernel
664  *	offload handlers by dev_add_offload(). The passed &offload_type is
665  *	removed from the kernel lists and can be freed or reused once this
666  *	function returns.
667  *
668  *	This call sleeps to guarantee that no CPU is looking at the packet
669  *	type after return.
670  */
671 void dev_remove_offload(struct packet_offload *po)
672 {
673 	__dev_remove_offload(po);
674 
675 	synchronize_net();
676 }
677 EXPORT_SYMBOL(dev_remove_offload);
678 
679 /******************************************************************************
680  *
681  *		      Device Boot-time Settings Routines
682  *
683  ******************************************************************************/
684 
685 /* Boot time configuration table */
686 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
687 
688 /**
689  *	netdev_boot_setup_add	- add new setup entry
690  *	@name: name of the device
691  *	@map: configured settings for the device
692  *
693  *	Adds new setup entry to the dev_boot_setup list.  The function
694  *	returns 0 on error and 1 on success.  This is a generic routine to
695  *	all netdevices.
696  */
697 static int netdev_boot_setup_add(char *name, struct ifmap *map)
698 {
699 	struct netdev_boot_setup *s;
700 	int i;
701 
702 	s = dev_boot_setup;
703 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
704 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
705 			memset(s[i].name, 0, sizeof(s[i].name));
706 			strlcpy(s[i].name, name, IFNAMSIZ);
707 			memcpy(&s[i].map, map, sizeof(s[i].map));
708 			break;
709 		}
710 	}
711 
712 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
713 }
714 
715 /**
716  * netdev_boot_setup_check	- check boot time settings
717  * @dev: the netdevice
718  *
719  * Check boot time settings for the device.
720  * The found settings are set for the device to be used
721  * later in the device probing.
722  * Returns 0 if no settings found, 1 if they are.
723  */
724 int netdev_boot_setup_check(struct net_device *dev)
725 {
726 	struct netdev_boot_setup *s = dev_boot_setup;
727 	int i;
728 
729 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
730 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
731 		    !strcmp(dev->name, s[i].name)) {
732 			dev->irq = s[i].map.irq;
733 			dev->base_addr = s[i].map.base_addr;
734 			dev->mem_start = s[i].map.mem_start;
735 			dev->mem_end = s[i].map.mem_end;
736 			return 1;
737 		}
738 	}
739 	return 0;
740 }
741 EXPORT_SYMBOL(netdev_boot_setup_check);
742 
743 
744 /**
745  * netdev_boot_base	- get address from boot time settings
746  * @prefix: prefix for network device
747  * @unit: id for network device
748  *
749  * Check boot time settings for the base address of device.
750  * The found settings are set for the device to be used
751  * later in the device probing.
752  * Returns 0 if no settings found.
753  */
754 unsigned long netdev_boot_base(const char *prefix, int unit)
755 {
756 	const struct netdev_boot_setup *s = dev_boot_setup;
757 	char name[IFNAMSIZ];
758 	int i;
759 
760 	sprintf(name, "%s%d", prefix, unit);
761 
762 	/*
763 	 * If device already registered then return base of 1
764 	 * to indicate not to probe for this interface
765 	 */
766 	if (__dev_get_by_name(&init_net, name))
767 		return 1;
768 
769 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
770 		if (!strcmp(name, s[i].name))
771 			return s[i].map.base_addr;
772 	return 0;
773 }
774 
775 /*
776  * Saves at boot time configured settings for any netdevice.
777  */
778 int __init netdev_boot_setup(char *str)
779 {
780 	int ints[5];
781 	struct ifmap map;
782 
783 	str = get_options(str, ARRAY_SIZE(ints), ints);
784 	if (!str || !*str)
785 		return 0;
786 
787 	/* Save settings */
788 	memset(&map, 0, sizeof(map));
789 	if (ints[0] > 0)
790 		map.irq = ints[1];
791 	if (ints[0] > 1)
792 		map.base_addr = ints[2];
793 	if (ints[0] > 2)
794 		map.mem_start = ints[3];
795 	if (ints[0] > 3)
796 		map.mem_end = ints[4];
797 
798 	/* Add new entry to the list */
799 	return netdev_boot_setup_add(str, &map);
800 }
801 
802 __setup("netdev=", netdev_boot_setup);
803 
804 /*******************************************************************************
805  *
806  *			    Device Interface Subroutines
807  *
808  *******************************************************************************/
809 
810 /**
811  *	dev_get_iflink	- get 'iflink' value of a interface
812  *	@dev: targeted interface
813  *
814  *	Indicates the ifindex the interface is linked to.
815  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
816  */
817 
818 int dev_get_iflink(const struct net_device *dev)
819 {
820 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
821 		return dev->netdev_ops->ndo_get_iflink(dev);
822 
823 	return dev->ifindex;
824 }
825 EXPORT_SYMBOL(dev_get_iflink);
826 
827 /**
828  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
829  *	@dev: targeted interface
830  *	@skb: The packet.
831  *
832  *	For better visibility of tunnel traffic OVS needs to retrieve
833  *	egress tunnel information for a packet. Following API allows
834  *	user to get this info.
835  */
836 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
837 {
838 	struct ip_tunnel_info *info;
839 
840 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
841 		return -EINVAL;
842 
843 	info = skb_tunnel_info_unclone(skb);
844 	if (!info)
845 		return -ENOMEM;
846 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
847 		return -EINVAL;
848 
849 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
850 }
851 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
852 
853 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
854 {
855 	int k = stack->num_paths++;
856 
857 	if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
858 		return NULL;
859 
860 	return &stack->path[k];
861 }
862 
863 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
864 			  struct net_device_path_stack *stack)
865 {
866 	const struct net_device *last_dev;
867 	struct net_device_path_ctx ctx = {
868 		.dev	= dev,
869 		.daddr	= daddr,
870 	};
871 	struct net_device_path *path;
872 	int ret = 0;
873 
874 	stack->num_paths = 0;
875 	while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
876 		last_dev = ctx.dev;
877 		path = dev_fwd_path(stack);
878 		if (!path)
879 			return -1;
880 
881 		memset(path, 0, sizeof(struct net_device_path));
882 		ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
883 		if (ret < 0)
884 			return -1;
885 
886 		if (WARN_ON_ONCE(last_dev == ctx.dev))
887 			return -1;
888 	}
889 	path = dev_fwd_path(stack);
890 	if (!path)
891 		return -1;
892 	path->type = DEV_PATH_ETHERNET;
893 	path->dev = ctx.dev;
894 
895 	return ret;
896 }
897 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
898 
899 /**
900  *	__dev_get_by_name	- find a device by its name
901  *	@net: the applicable net namespace
902  *	@name: name to find
903  *
904  *	Find an interface by name. Must be called under RTNL semaphore
905  *	or @dev_base_lock. If the name is found a pointer to the device
906  *	is returned. If the name is not found then %NULL is returned. The
907  *	reference counters are not incremented so the caller must be
908  *	careful with locks.
909  */
910 
911 struct net_device *__dev_get_by_name(struct net *net, const char *name)
912 {
913 	struct netdev_name_node *node_name;
914 
915 	node_name = netdev_name_node_lookup(net, name);
916 	return node_name ? node_name->dev : NULL;
917 }
918 EXPORT_SYMBOL(__dev_get_by_name);
919 
920 /**
921  * dev_get_by_name_rcu	- find a device by its name
922  * @net: the applicable net namespace
923  * @name: name to find
924  *
925  * Find an interface by name.
926  * If the name is found a pointer to the device is returned.
927  * If the name is not found then %NULL is returned.
928  * The reference counters are not incremented so the caller must be
929  * careful with locks. The caller must hold RCU lock.
930  */
931 
932 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
933 {
934 	struct netdev_name_node *node_name;
935 
936 	node_name = netdev_name_node_lookup_rcu(net, name);
937 	return node_name ? node_name->dev : NULL;
938 }
939 EXPORT_SYMBOL(dev_get_by_name_rcu);
940 
941 /**
942  *	dev_get_by_name		- find a device by its name
943  *	@net: the applicable net namespace
944  *	@name: name to find
945  *
946  *	Find an interface by name. This can be called from any
947  *	context and does its own locking. The returned handle has
948  *	the usage count incremented and the caller must use dev_put() to
949  *	release it when it is no longer needed. %NULL is returned if no
950  *	matching device is found.
951  */
952 
953 struct net_device *dev_get_by_name(struct net *net, const char *name)
954 {
955 	struct net_device *dev;
956 
957 	rcu_read_lock();
958 	dev = dev_get_by_name_rcu(net, name);
959 	if (dev)
960 		dev_hold(dev);
961 	rcu_read_unlock();
962 	return dev;
963 }
964 EXPORT_SYMBOL(dev_get_by_name);
965 
966 /**
967  *	__dev_get_by_index - find a device by its ifindex
968  *	@net: the applicable net namespace
969  *	@ifindex: index of device
970  *
971  *	Search for an interface by index. Returns %NULL if the device
972  *	is not found or a pointer to the device. The device has not
973  *	had its reference counter increased so the caller must be careful
974  *	about locking. The caller must hold either the RTNL semaphore
975  *	or @dev_base_lock.
976  */
977 
978 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
979 {
980 	struct net_device *dev;
981 	struct hlist_head *head = dev_index_hash(net, ifindex);
982 
983 	hlist_for_each_entry(dev, head, index_hlist)
984 		if (dev->ifindex == ifindex)
985 			return dev;
986 
987 	return NULL;
988 }
989 EXPORT_SYMBOL(__dev_get_by_index);
990 
991 /**
992  *	dev_get_by_index_rcu - find a device by its ifindex
993  *	@net: the applicable net namespace
994  *	@ifindex: index of device
995  *
996  *	Search for an interface by index. Returns %NULL if the device
997  *	is not found or a pointer to the device. The device has not
998  *	had its reference counter increased so the caller must be careful
999  *	about locking. The caller must hold RCU lock.
1000  */
1001 
1002 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
1003 {
1004 	struct net_device *dev;
1005 	struct hlist_head *head = dev_index_hash(net, ifindex);
1006 
1007 	hlist_for_each_entry_rcu(dev, head, index_hlist)
1008 		if (dev->ifindex == ifindex)
1009 			return dev;
1010 
1011 	return NULL;
1012 }
1013 EXPORT_SYMBOL(dev_get_by_index_rcu);
1014 
1015 
1016 /**
1017  *	dev_get_by_index - find a device by its ifindex
1018  *	@net: the applicable net namespace
1019  *	@ifindex: index of device
1020  *
1021  *	Search for an interface by index. Returns NULL if the device
1022  *	is not found or a pointer to the device. The device returned has
1023  *	had a reference added and the pointer is safe until the user calls
1024  *	dev_put to indicate they have finished with it.
1025  */
1026 
1027 struct net_device *dev_get_by_index(struct net *net, int ifindex)
1028 {
1029 	struct net_device *dev;
1030 
1031 	rcu_read_lock();
1032 	dev = dev_get_by_index_rcu(net, ifindex);
1033 	if (dev)
1034 		dev_hold(dev);
1035 	rcu_read_unlock();
1036 	return dev;
1037 }
1038 EXPORT_SYMBOL(dev_get_by_index);
1039 
1040 /**
1041  *	dev_get_by_napi_id - find a device by napi_id
1042  *	@napi_id: ID of the NAPI struct
1043  *
1044  *	Search for an interface by NAPI ID. Returns %NULL if the device
1045  *	is not found or a pointer to the device. The device has not had
1046  *	its reference counter increased so the caller must be careful
1047  *	about locking. The caller must hold RCU lock.
1048  */
1049 
1050 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
1051 {
1052 	struct napi_struct *napi;
1053 
1054 	WARN_ON_ONCE(!rcu_read_lock_held());
1055 
1056 	if (napi_id < MIN_NAPI_ID)
1057 		return NULL;
1058 
1059 	napi = napi_by_id(napi_id);
1060 
1061 	return napi ? napi->dev : NULL;
1062 }
1063 EXPORT_SYMBOL(dev_get_by_napi_id);
1064 
1065 /**
1066  *	netdev_get_name - get a netdevice name, knowing its ifindex.
1067  *	@net: network namespace
1068  *	@name: a pointer to the buffer where the name will be stored.
1069  *	@ifindex: the ifindex of the interface to get the name from.
1070  */
1071 int netdev_get_name(struct net *net, char *name, int ifindex)
1072 {
1073 	struct net_device *dev;
1074 	int ret;
1075 
1076 	down_read(&devnet_rename_sem);
1077 	rcu_read_lock();
1078 
1079 	dev = dev_get_by_index_rcu(net, ifindex);
1080 	if (!dev) {
1081 		ret = -ENODEV;
1082 		goto out;
1083 	}
1084 
1085 	strcpy(name, dev->name);
1086 
1087 	ret = 0;
1088 out:
1089 	rcu_read_unlock();
1090 	up_read(&devnet_rename_sem);
1091 	return ret;
1092 }
1093 
1094 /**
1095  *	dev_getbyhwaddr_rcu - find a device by its hardware address
1096  *	@net: the applicable net namespace
1097  *	@type: media type of device
1098  *	@ha: hardware address
1099  *
1100  *	Search for an interface by MAC address. Returns NULL if the device
1101  *	is not found or a pointer to the device.
1102  *	The caller must hold RCU or RTNL.
1103  *	The returned device has not had its ref count increased
1104  *	and the caller must therefore be careful about locking
1105  *
1106  */
1107 
1108 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1109 				       const char *ha)
1110 {
1111 	struct net_device *dev;
1112 
1113 	for_each_netdev_rcu(net, dev)
1114 		if (dev->type == type &&
1115 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
1116 			return dev;
1117 
1118 	return NULL;
1119 }
1120 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
1121 
1122 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1123 {
1124 	struct net_device *dev, *ret = NULL;
1125 
1126 	rcu_read_lock();
1127 	for_each_netdev_rcu(net, dev)
1128 		if (dev->type == type) {
1129 			dev_hold(dev);
1130 			ret = dev;
1131 			break;
1132 		}
1133 	rcu_read_unlock();
1134 	return ret;
1135 }
1136 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1137 
1138 /**
1139  *	__dev_get_by_flags - find any device with given flags
1140  *	@net: the applicable net namespace
1141  *	@if_flags: IFF_* values
1142  *	@mask: bitmask of bits in if_flags to check
1143  *
1144  *	Search for any interface with the given flags. Returns NULL if a device
1145  *	is not found or a pointer to the device. Must be called inside
1146  *	rtnl_lock(), and result refcount is unchanged.
1147  */
1148 
1149 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1150 				      unsigned short mask)
1151 {
1152 	struct net_device *dev, *ret;
1153 
1154 	ASSERT_RTNL();
1155 
1156 	ret = NULL;
1157 	for_each_netdev(net, dev) {
1158 		if (((dev->flags ^ if_flags) & mask) == 0) {
1159 			ret = dev;
1160 			break;
1161 		}
1162 	}
1163 	return ret;
1164 }
1165 EXPORT_SYMBOL(__dev_get_by_flags);
1166 
1167 /**
1168  *	dev_valid_name - check if name is okay for network device
1169  *	@name: name string
1170  *
1171  *	Network device names need to be valid file names to
1172  *	allow sysfs to work.  We also disallow any kind of
1173  *	whitespace.
1174  */
1175 bool dev_valid_name(const char *name)
1176 {
1177 	if (*name == '\0')
1178 		return false;
1179 	if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1180 		return false;
1181 	if (!strcmp(name, ".") || !strcmp(name, ".."))
1182 		return false;
1183 
1184 	while (*name) {
1185 		if (*name == '/' || *name == ':' || isspace(*name))
1186 			return false;
1187 		name++;
1188 	}
1189 	return true;
1190 }
1191 EXPORT_SYMBOL(dev_valid_name);
1192 
1193 /**
1194  *	__dev_alloc_name - allocate a name for a device
1195  *	@net: network namespace to allocate the device name in
1196  *	@name: name format string
1197  *	@buf:  scratch buffer and result name string
1198  *
1199  *	Passed a format string - eg "lt%d" it will try and find a suitable
1200  *	id. It scans list of devices to build up a free map, then chooses
1201  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1202  *	while allocating the name and adding the device in order to avoid
1203  *	duplicates.
1204  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1205  *	Returns the number of the unit assigned or a negative errno code.
1206  */
1207 
1208 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1209 {
1210 	int i = 0;
1211 	const char *p;
1212 	const int max_netdevices = 8*PAGE_SIZE;
1213 	unsigned long *inuse;
1214 	struct net_device *d;
1215 
1216 	if (!dev_valid_name(name))
1217 		return -EINVAL;
1218 
1219 	p = strchr(name, '%');
1220 	if (p) {
1221 		/*
1222 		 * Verify the string as this thing may have come from
1223 		 * the user.  There must be either one "%d" and no other "%"
1224 		 * characters.
1225 		 */
1226 		if (p[1] != 'd' || strchr(p + 2, '%'))
1227 			return -EINVAL;
1228 
1229 		/* Use one page as a bit array of possible slots */
1230 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1231 		if (!inuse)
1232 			return -ENOMEM;
1233 
1234 		for_each_netdev(net, d) {
1235 			struct netdev_name_node *name_node;
1236 			list_for_each_entry(name_node, &d->name_node->list, list) {
1237 				if (!sscanf(name_node->name, name, &i))
1238 					continue;
1239 				if (i < 0 || i >= max_netdevices)
1240 					continue;
1241 
1242 				/*  avoid cases where sscanf is not exact inverse of printf */
1243 				snprintf(buf, IFNAMSIZ, name, i);
1244 				if (!strncmp(buf, name_node->name, IFNAMSIZ))
1245 					set_bit(i, inuse);
1246 			}
1247 			if (!sscanf(d->name, name, &i))
1248 				continue;
1249 			if (i < 0 || i >= max_netdevices)
1250 				continue;
1251 
1252 			/*  avoid cases where sscanf is not exact inverse of printf */
1253 			snprintf(buf, IFNAMSIZ, name, i);
1254 			if (!strncmp(buf, d->name, IFNAMSIZ))
1255 				set_bit(i, inuse);
1256 		}
1257 
1258 		i = find_first_zero_bit(inuse, max_netdevices);
1259 		free_page((unsigned long) inuse);
1260 	}
1261 
1262 	snprintf(buf, IFNAMSIZ, name, i);
1263 	if (!__dev_get_by_name(net, buf))
1264 		return i;
1265 
1266 	/* It is possible to run out of possible slots
1267 	 * when the name is long and there isn't enough space left
1268 	 * for the digits, or if all bits are used.
1269 	 */
1270 	return -ENFILE;
1271 }
1272 
1273 static int dev_alloc_name_ns(struct net *net,
1274 			     struct net_device *dev,
1275 			     const char *name)
1276 {
1277 	char buf[IFNAMSIZ];
1278 	int ret;
1279 
1280 	BUG_ON(!net);
1281 	ret = __dev_alloc_name(net, name, buf);
1282 	if (ret >= 0)
1283 		strlcpy(dev->name, buf, IFNAMSIZ);
1284 	return ret;
1285 }
1286 
1287 /**
1288  *	dev_alloc_name - allocate a name for a device
1289  *	@dev: device
1290  *	@name: name format string
1291  *
1292  *	Passed a format string - eg "lt%d" it will try and find a suitable
1293  *	id. It scans list of devices to build up a free map, then chooses
1294  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1295  *	while allocating the name and adding the device in order to avoid
1296  *	duplicates.
1297  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1298  *	Returns the number of the unit assigned or a negative errno code.
1299  */
1300 
1301 int dev_alloc_name(struct net_device *dev, const char *name)
1302 {
1303 	return dev_alloc_name_ns(dev_net(dev), dev, name);
1304 }
1305 EXPORT_SYMBOL(dev_alloc_name);
1306 
1307 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1308 			      const char *name)
1309 {
1310 	BUG_ON(!net);
1311 
1312 	if (!dev_valid_name(name))
1313 		return -EINVAL;
1314 
1315 	if (strchr(name, '%'))
1316 		return dev_alloc_name_ns(net, dev, name);
1317 	else if (__dev_get_by_name(net, name))
1318 		return -EEXIST;
1319 	else if (dev->name != name)
1320 		strlcpy(dev->name, name, IFNAMSIZ);
1321 
1322 	return 0;
1323 }
1324 
1325 /**
1326  *	dev_change_name - change name of a device
1327  *	@dev: device
1328  *	@newname: name (or format string) must be at least IFNAMSIZ
1329  *
1330  *	Change name of a device, can pass format strings "eth%d".
1331  *	for wildcarding.
1332  */
1333 int dev_change_name(struct net_device *dev, const char *newname)
1334 {
1335 	unsigned char old_assign_type;
1336 	char oldname[IFNAMSIZ];
1337 	int err = 0;
1338 	int ret;
1339 	struct net *net;
1340 
1341 	ASSERT_RTNL();
1342 	BUG_ON(!dev_net(dev));
1343 
1344 	net = dev_net(dev);
1345 
1346 	/* Some auto-enslaved devices e.g. failover slaves are
1347 	 * special, as userspace might rename the device after
1348 	 * the interface had been brought up and running since
1349 	 * the point kernel initiated auto-enslavement. Allow
1350 	 * live name change even when these slave devices are
1351 	 * up and running.
1352 	 *
1353 	 * Typically, users of these auto-enslaving devices
1354 	 * don't actually care about slave name change, as
1355 	 * they are supposed to operate on master interface
1356 	 * directly.
1357 	 */
1358 	if (dev->flags & IFF_UP &&
1359 	    likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1360 		return -EBUSY;
1361 
1362 	down_write(&devnet_rename_sem);
1363 
1364 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1365 		up_write(&devnet_rename_sem);
1366 		return 0;
1367 	}
1368 
1369 	memcpy(oldname, dev->name, IFNAMSIZ);
1370 
1371 	err = dev_get_valid_name(net, dev, newname);
1372 	if (err < 0) {
1373 		up_write(&devnet_rename_sem);
1374 		return err;
1375 	}
1376 
1377 	if (oldname[0] && !strchr(oldname, '%'))
1378 		netdev_info(dev, "renamed from %s\n", oldname);
1379 
1380 	old_assign_type = dev->name_assign_type;
1381 	dev->name_assign_type = NET_NAME_RENAMED;
1382 
1383 rollback:
1384 	ret = device_rename(&dev->dev, dev->name);
1385 	if (ret) {
1386 		memcpy(dev->name, oldname, IFNAMSIZ);
1387 		dev->name_assign_type = old_assign_type;
1388 		up_write(&devnet_rename_sem);
1389 		return ret;
1390 	}
1391 
1392 	up_write(&devnet_rename_sem);
1393 
1394 	netdev_adjacent_rename_links(dev, oldname);
1395 
1396 	write_lock_bh(&dev_base_lock);
1397 	netdev_name_node_del(dev->name_node);
1398 	write_unlock_bh(&dev_base_lock);
1399 
1400 	synchronize_rcu();
1401 
1402 	write_lock_bh(&dev_base_lock);
1403 	netdev_name_node_add(net, dev->name_node);
1404 	write_unlock_bh(&dev_base_lock);
1405 
1406 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1407 	ret = notifier_to_errno(ret);
1408 
1409 	if (ret) {
1410 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1411 		if (err >= 0) {
1412 			err = ret;
1413 			down_write(&devnet_rename_sem);
1414 			memcpy(dev->name, oldname, IFNAMSIZ);
1415 			memcpy(oldname, newname, IFNAMSIZ);
1416 			dev->name_assign_type = old_assign_type;
1417 			old_assign_type = NET_NAME_RENAMED;
1418 			goto rollback;
1419 		} else {
1420 			pr_err("%s: name change rollback failed: %d\n",
1421 			       dev->name, ret);
1422 		}
1423 	}
1424 
1425 	return err;
1426 }
1427 
1428 /**
1429  *	dev_set_alias - change ifalias of a device
1430  *	@dev: device
1431  *	@alias: name up to IFALIASZ
1432  *	@len: limit of bytes to copy from info
1433  *
1434  *	Set ifalias for a device,
1435  */
1436 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1437 {
1438 	struct dev_ifalias *new_alias = NULL;
1439 
1440 	if (len >= IFALIASZ)
1441 		return -EINVAL;
1442 
1443 	if (len) {
1444 		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1445 		if (!new_alias)
1446 			return -ENOMEM;
1447 
1448 		memcpy(new_alias->ifalias, alias, len);
1449 		new_alias->ifalias[len] = 0;
1450 	}
1451 
1452 	mutex_lock(&ifalias_mutex);
1453 	new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1454 					mutex_is_locked(&ifalias_mutex));
1455 	mutex_unlock(&ifalias_mutex);
1456 
1457 	if (new_alias)
1458 		kfree_rcu(new_alias, rcuhead);
1459 
1460 	return len;
1461 }
1462 EXPORT_SYMBOL(dev_set_alias);
1463 
1464 /**
1465  *	dev_get_alias - get ifalias of a device
1466  *	@dev: device
1467  *	@name: buffer to store name of ifalias
1468  *	@len: size of buffer
1469  *
1470  *	get ifalias for a device.  Caller must make sure dev cannot go
1471  *	away,  e.g. rcu read lock or own a reference count to device.
1472  */
1473 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1474 {
1475 	const struct dev_ifalias *alias;
1476 	int ret = 0;
1477 
1478 	rcu_read_lock();
1479 	alias = rcu_dereference(dev->ifalias);
1480 	if (alias)
1481 		ret = snprintf(name, len, "%s", alias->ifalias);
1482 	rcu_read_unlock();
1483 
1484 	return ret;
1485 }
1486 
1487 /**
1488  *	netdev_features_change - device changes features
1489  *	@dev: device to cause notification
1490  *
1491  *	Called to indicate a device has changed features.
1492  */
1493 void netdev_features_change(struct net_device *dev)
1494 {
1495 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1496 }
1497 EXPORT_SYMBOL(netdev_features_change);
1498 
1499 /**
1500  *	netdev_state_change - device changes state
1501  *	@dev: device to cause notification
1502  *
1503  *	Called to indicate a device has changed state. This function calls
1504  *	the notifier chains for netdev_chain and sends a NEWLINK message
1505  *	to the routing socket.
1506  */
1507 void netdev_state_change(struct net_device *dev)
1508 {
1509 	if (dev->flags & IFF_UP) {
1510 		struct netdev_notifier_change_info change_info = {
1511 			.info.dev = dev,
1512 		};
1513 
1514 		call_netdevice_notifiers_info(NETDEV_CHANGE,
1515 					      &change_info.info);
1516 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1517 	}
1518 }
1519 EXPORT_SYMBOL(netdev_state_change);
1520 
1521 /**
1522  * __netdev_notify_peers - notify network peers about existence of @dev,
1523  * to be called when rtnl lock is already held.
1524  * @dev: network device
1525  *
1526  * Generate traffic such that interested network peers are aware of
1527  * @dev, such as by generating a gratuitous ARP. This may be used when
1528  * a device wants to inform the rest of the network about some sort of
1529  * reconfiguration such as a failover event or virtual machine
1530  * migration.
1531  */
1532 void __netdev_notify_peers(struct net_device *dev)
1533 {
1534 	ASSERT_RTNL();
1535 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1536 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1537 }
1538 EXPORT_SYMBOL(__netdev_notify_peers);
1539 
1540 /**
1541  * netdev_notify_peers - notify network peers about existence of @dev
1542  * @dev: network device
1543  *
1544  * Generate traffic such that interested network peers are aware of
1545  * @dev, such as by generating a gratuitous ARP. This may be used when
1546  * a device wants to inform the rest of the network about some sort of
1547  * reconfiguration such as a failover event or virtual machine
1548  * migration.
1549  */
1550 void netdev_notify_peers(struct net_device *dev)
1551 {
1552 	rtnl_lock();
1553 	__netdev_notify_peers(dev);
1554 	rtnl_unlock();
1555 }
1556 EXPORT_SYMBOL(netdev_notify_peers);
1557 
1558 static int napi_threaded_poll(void *data);
1559 
1560 static int napi_kthread_create(struct napi_struct *n)
1561 {
1562 	int err = 0;
1563 
1564 	/* Create and wake up the kthread once to put it in
1565 	 * TASK_INTERRUPTIBLE mode to avoid the blocked task
1566 	 * warning and work with loadavg.
1567 	 */
1568 	n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1569 				n->dev->name, n->napi_id);
1570 	if (IS_ERR(n->thread)) {
1571 		err = PTR_ERR(n->thread);
1572 		pr_err("kthread_run failed with err %d\n", err);
1573 		n->thread = NULL;
1574 	}
1575 
1576 	return err;
1577 }
1578 
1579 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1580 {
1581 	const struct net_device_ops *ops = dev->netdev_ops;
1582 	int ret;
1583 
1584 	ASSERT_RTNL();
1585 
1586 	if (!netif_device_present(dev)) {
1587 		/* may be detached because parent is runtime-suspended */
1588 		if (dev->dev.parent)
1589 			pm_runtime_resume(dev->dev.parent);
1590 		if (!netif_device_present(dev))
1591 			return -ENODEV;
1592 	}
1593 
1594 	/* Block netpoll from trying to do any rx path servicing.
1595 	 * If we don't do this there is a chance ndo_poll_controller
1596 	 * or ndo_poll may be running while we open the device
1597 	 */
1598 	netpoll_poll_disable(dev);
1599 
1600 	ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1601 	ret = notifier_to_errno(ret);
1602 	if (ret)
1603 		return ret;
1604 
1605 	set_bit(__LINK_STATE_START, &dev->state);
1606 
1607 	if (ops->ndo_validate_addr)
1608 		ret = ops->ndo_validate_addr(dev);
1609 
1610 	if (!ret && ops->ndo_open)
1611 		ret = ops->ndo_open(dev);
1612 
1613 	netpoll_poll_enable(dev);
1614 
1615 	if (ret)
1616 		clear_bit(__LINK_STATE_START, &dev->state);
1617 	else {
1618 		dev->flags |= IFF_UP;
1619 		dev_set_rx_mode(dev);
1620 		dev_activate(dev);
1621 		add_device_randomness(dev->dev_addr, dev->addr_len);
1622 	}
1623 
1624 	return ret;
1625 }
1626 
1627 /**
1628  *	dev_open	- prepare an interface for use.
1629  *	@dev: device to open
1630  *	@extack: netlink extended ack
1631  *
1632  *	Takes a device from down to up state. The device's private open
1633  *	function is invoked and then the multicast lists are loaded. Finally
1634  *	the device is moved into the up state and a %NETDEV_UP message is
1635  *	sent to the netdev notifier chain.
1636  *
1637  *	Calling this function on an active interface is a nop. On a failure
1638  *	a negative errno code is returned.
1639  */
1640 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1641 {
1642 	int ret;
1643 
1644 	if (dev->flags & IFF_UP)
1645 		return 0;
1646 
1647 	ret = __dev_open(dev, extack);
1648 	if (ret < 0)
1649 		return ret;
1650 
1651 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1652 	call_netdevice_notifiers(NETDEV_UP, dev);
1653 
1654 	return ret;
1655 }
1656 EXPORT_SYMBOL(dev_open);
1657 
1658 static void __dev_close_many(struct list_head *head)
1659 {
1660 	struct net_device *dev;
1661 
1662 	ASSERT_RTNL();
1663 	might_sleep();
1664 
1665 	list_for_each_entry(dev, head, close_list) {
1666 		/* Temporarily disable netpoll until the interface is down */
1667 		netpoll_poll_disable(dev);
1668 
1669 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1670 
1671 		clear_bit(__LINK_STATE_START, &dev->state);
1672 
1673 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1674 		 * can be even on different cpu. So just clear netif_running().
1675 		 *
1676 		 * dev->stop() will invoke napi_disable() on all of it's
1677 		 * napi_struct instances on this device.
1678 		 */
1679 		smp_mb__after_atomic(); /* Commit netif_running(). */
1680 	}
1681 
1682 	dev_deactivate_many(head);
1683 
1684 	list_for_each_entry(dev, head, close_list) {
1685 		const struct net_device_ops *ops = dev->netdev_ops;
1686 
1687 		/*
1688 		 *	Call the device specific close. This cannot fail.
1689 		 *	Only if device is UP
1690 		 *
1691 		 *	We allow it to be called even after a DETACH hot-plug
1692 		 *	event.
1693 		 */
1694 		if (ops->ndo_stop)
1695 			ops->ndo_stop(dev);
1696 
1697 		dev->flags &= ~IFF_UP;
1698 		netpoll_poll_enable(dev);
1699 	}
1700 }
1701 
1702 static void __dev_close(struct net_device *dev)
1703 {
1704 	LIST_HEAD(single);
1705 
1706 	list_add(&dev->close_list, &single);
1707 	__dev_close_many(&single);
1708 	list_del(&single);
1709 }
1710 
1711 void dev_close_many(struct list_head *head, bool unlink)
1712 {
1713 	struct net_device *dev, *tmp;
1714 
1715 	/* Remove the devices that don't need to be closed */
1716 	list_for_each_entry_safe(dev, tmp, head, close_list)
1717 		if (!(dev->flags & IFF_UP))
1718 			list_del_init(&dev->close_list);
1719 
1720 	__dev_close_many(head);
1721 
1722 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1723 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1724 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1725 		if (unlink)
1726 			list_del_init(&dev->close_list);
1727 	}
1728 }
1729 EXPORT_SYMBOL(dev_close_many);
1730 
1731 /**
1732  *	dev_close - shutdown an interface.
1733  *	@dev: device to shutdown
1734  *
1735  *	This function moves an active device into down state. A
1736  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1737  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1738  *	chain.
1739  */
1740 void dev_close(struct net_device *dev)
1741 {
1742 	if (dev->flags & IFF_UP) {
1743 		LIST_HEAD(single);
1744 
1745 		list_add(&dev->close_list, &single);
1746 		dev_close_many(&single, true);
1747 		list_del(&single);
1748 	}
1749 }
1750 EXPORT_SYMBOL(dev_close);
1751 
1752 
1753 /**
1754  *	dev_disable_lro - disable Large Receive Offload on a device
1755  *	@dev: device
1756  *
1757  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1758  *	called under RTNL.  This is needed if received packets may be
1759  *	forwarded to another interface.
1760  */
1761 void dev_disable_lro(struct net_device *dev)
1762 {
1763 	struct net_device *lower_dev;
1764 	struct list_head *iter;
1765 
1766 	dev->wanted_features &= ~NETIF_F_LRO;
1767 	netdev_update_features(dev);
1768 
1769 	if (unlikely(dev->features & NETIF_F_LRO))
1770 		netdev_WARN(dev, "failed to disable LRO!\n");
1771 
1772 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1773 		dev_disable_lro(lower_dev);
1774 }
1775 EXPORT_SYMBOL(dev_disable_lro);
1776 
1777 /**
1778  *	dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1779  *	@dev: device
1780  *
1781  *	Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1782  *	called under RTNL.  This is needed if Generic XDP is installed on
1783  *	the device.
1784  */
1785 static void dev_disable_gro_hw(struct net_device *dev)
1786 {
1787 	dev->wanted_features &= ~NETIF_F_GRO_HW;
1788 	netdev_update_features(dev);
1789 
1790 	if (unlikely(dev->features & NETIF_F_GRO_HW))
1791 		netdev_WARN(dev, "failed to disable GRO_HW!\n");
1792 }
1793 
1794 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1795 {
1796 #define N(val) 						\
1797 	case NETDEV_##val:				\
1798 		return "NETDEV_" __stringify(val);
1799 	switch (cmd) {
1800 	N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1801 	N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1802 	N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1803 	N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1804 	N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1805 	N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1806 	N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1807 	N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1808 	N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1809 	N(PRE_CHANGEADDR)
1810 	}
1811 #undef N
1812 	return "UNKNOWN_NETDEV_EVENT";
1813 }
1814 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1815 
1816 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1817 				   struct net_device *dev)
1818 {
1819 	struct netdev_notifier_info info = {
1820 		.dev = dev,
1821 	};
1822 
1823 	return nb->notifier_call(nb, val, &info);
1824 }
1825 
1826 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1827 					     struct net_device *dev)
1828 {
1829 	int err;
1830 
1831 	err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1832 	err = notifier_to_errno(err);
1833 	if (err)
1834 		return err;
1835 
1836 	if (!(dev->flags & IFF_UP))
1837 		return 0;
1838 
1839 	call_netdevice_notifier(nb, NETDEV_UP, dev);
1840 	return 0;
1841 }
1842 
1843 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1844 						struct net_device *dev)
1845 {
1846 	if (dev->flags & IFF_UP) {
1847 		call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1848 					dev);
1849 		call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1850 	}
1851 	call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1852 }
1853 
1854 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1855 						 struct net *net)
1856 {
1857 	struct net_device *dev;
1858 	int err;
1859 
1860 	for_each_netdev(net, dev) {
1861 		err = call_netdevice_register_notifiers(nb, dev);
1862 		if (err)
1863 			goto rollback;
1864 	}
1865 	return 0;
1866 
1867 rollback:
1868 	for_each_netdev_continue_reverse(net, dev)
1869 		call_netdevice_unregister_notifiers(nb, dev);
1870 	return err;
1871 }
1872 
1873 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1874 						    struct net *net)
1875 {
1876 	struct net_device *dev;
1877 
1878 	for_each_netdev(net, dev)
1879 		call_netdevice_unregister_notifiers(nb, dev);
1880 }
1881 
1882 static int dev_boot_phase = 1;
1883 
1884 /**
1885  * register_netdevice_notifier - register a network notifier block
1886  * @nb: notifier
1887  *
1888  * Register a notifier to be called when network device events occur.
1889  * The notifier passed is linked into the kernel structures and must
1890  * not be reused until it has been unregistered. A negative errno code
1891  * is returned on a failure.
1892  *
1893  * When registered all registration and up events are replayed
1894  * to the new notifier to allow device to have a race free
1895  * view of the network device list.
1896  */
1897 
1898 int register_netdevice_notifier(struct notifier_block *nb)
1899 {
1900 	struct net *net;
1901 	int err;
1902 
1903 	/* Close race with setup_net() and cleanup_net() */
1904 	down_write(&pernet_ops_rwsem);
1905 	rtnl_lock();
1906 	err = raw_notifier_chain_register(&netdev_chain, nb);
1907 	if (err)
1908 		goto unlock;
1909 	if (dev_boot_phase)
1910 		goto unlock;
1911 	for_each_net(net) {
1912 		err = call_netdevice_register_net_notifiers(nb, net);
1913 		if (err)
1914 			goto rollback;
1915 	}
1916 
1917 unlock:
1918 	rtnl_unlock();
1919 	up_write(&pernet_ops_rwsem);
1920 	return err;
1921 
1922 rollback:
1923 	for_each_net_continue_reverse(net)
1924 		call_netdevice_unregister_net_notifiers(nb, net);
1925 
1926 	raw_notifier_chain_unregister(&netdev_chain, nb);
1927 	goto unlock;
1928 }
1929 EXPORT_SYMBOL(register_netdevice_notifier);
1930 
1931 /**
1932  * unregister_netdevice_notifier - unregister a network notifier block
1933  * @nb: notifier
1934  *
1935  * Unregister a notifier previously registered by
1936  * register_netdevice_notifier(). The notifier is unlinked into the
1937  * kernel structures and may then be reused. A negative errno code
1938  * is returned on a failure.
1939  *
1940  * After unregistering unregister and down device events are synthesized
1941  * for all devices on the device list to the removed notifier to remove
1942  * the need for special case cleanup code.
1943  */
1944 
1945 int unregister_netdevice_notifier(struct notifier_block *nb)
1946 {
1947 	struct net *net;
1948 	int err;
1949 
1950 	/* Close race with setup_net() and cleanup_net() */
1951 	down_write(&pernet_ops_rwsem);
1952 	rtnl_lock();
1953 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1954 	if (err)
1955 		goto unlock;
1956 
1957 	for_each_net(net)
1958 		call_netdevice_unregister_net_notifiers(nb, net);
1959 
1960 unlock:
1961 	rtnl_unlock();
1962 	up_write(&pernet_ops_rwsem);
1963 	return err;
1964 }
1965 EXPORT_SYMBOL(unregister_netdevice_notifier);
1966 
1967 static int __register_netdevice_notifier_net(struct net *net,
1968 					     struct notifier_block *nb,
1969 					     bool ignore_call_fail)
1970 {
1971 	int err;
1972 
1973 	err = raw_notifier_chain_register(&net->netdev_chain, nb);
1974 	if (err)
1975 		return err;
1976 	if (dev_boot_phase)
1977 		return 0;
1978 
1979 	err = call_netdevice_register_net_notifiers(nb, net);
1980 	if (err && !ignore_call_fail)
1981 		goto chain_unregister;
1982 
1983 	return 0;
1984 
1985 chain_unregister:
1986 	raw_notifier_chain_unregister(&net->netdev_chain, nb);
1987 	return err;
1988 }
1989 
1990 static int __unregister_netdevice_notifier_net(struct net *net,
1991 					       struct notifier_block *nb)
1992 {
1993 	int err;
1994 
1995 	err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1996 	if (err)
1997 		return err;
1998 
1999 	call_netdevice_unregister_net_notifiers(nb, net);
2000 	return 0;
2001 }
2002 
2003 /**
2004  * register_netdevice_notifier_net - register a per-netns network notifier block
2005  * @net: network namespace
2006  * @nb: notifier
2007  *
2008  * Register a notifier to be called when network device events occur.
2009  * The notifier passed is linked into the kernel structures and must
2010  * not be reused until it has been unregistered. A negative errno code
2011  * is returned on a failure.
2012  *
2013  * When registered all registration and up events are replayed
2014  * to the new notifier to allow device to have a race free
2015  * view of the network device list.
2016  */
2017 
2018 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
2019 {
2020 	int err;
2021 
2022 	rtnl_lock();
2023 	err = __register_netdevice_notifier_net(net, nb, false);
2024 	rtnl_unlock();
2025 	return err;
2026 }
2027 EXPORT_SYMBOL(register_netdevice_notifier_net);
2028 
2029 /**
2030  * unregister_netdevice_notifier_net - unregister a per-netns
2031  *                                     network notifier block
2032  * @net: network namespace
2033  * @nb: notifier
2034  *
2035  * Unregister a notifier previously registered by
2036  * register_netdevice_notifier(). The notifier is unlinked into the
2037  * kernel structures and may then be reused. A negative errno code
2038  * is returned on a failure.
2039  *
2040  * After unregistering unregister and down device events are synthesized
2041  * for all devices on the device list to the removed notifier to remove
2042  * the need for special case cleanup code.
2043  */
2044 
2045 int unregister_netdevice_notifier_net(struct net *net,
2046 				      struct notifier_block *nb)
2047 {
2048 	int err;
2049 
2050 	rtnl_lock();
2051 	err = __unregister_netdevice_notifier_net(net, nb);
2052 	rtnl_unlock();
2053 	return err;
2054 }
2055 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
2056 
2057 int register_netdevice_notifier_dev_net(struct net_device *dev,
2058 					struct notifier_block *nb,
2059 					struct netdev_net_notifier *nn)
2060 {
2061 	int err;
2062 
2063 	rtnl_lock();
2064 	err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
2065 	if (!err) {
2066 		nn->nb = nb;
2067 		list_add(&nn->list, &dev->net_notifier_list);
2068 	}
2069 	rtnl_unlock();
2070 	return err;
2071 }
2072 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
2073 
2074 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2075 					  struct notifier_block *nb,
2076 					  struct netdev_net_notifier *nn)
2077 {
2078 	int err;
2079 
2080 	rtnl_lock();
2081 	list_del(&nn->list);
2082 	err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
2083 	rtnl_unlock();
2084 	return err;
2085 }
2086 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
2087 
2088 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
2089 					     struct net *net)
2090 {
2091 	struct netdev_net_notifier *nn;
2092 
2093 	list_for_each_entry(nn, &dev->net_notifier_list, list) {
2094 		__unregister_netdevice_notifier_net(dev_net(dev), nn->nb);
2095 		__register_netdevice_notifier_net(net, nn->nb, true);
2096 	}
2097 }
2098 
2099 /**
2100  *	call_netdevice_notifiers_info - call all network notifier blocks
2101  *	@val: value passed unmodified to notifier function
2102  *	@info: notifier information data
2103  *
2104  *	Call all network notifier blocks.  Parameters and return value
2105  *	are as for raw_notifier_call_chain().
2106  */
2107 
2108 static int call_netdevice_notifiers_info(unsigned long val,
2109 					 struct netdev_notifier_info *info)
2110 {
2111 	struct net *net = dev_net(info->dev);
2112 	int ret;
2113 
2114 	ASSERT_RTNL();
2115 
2116 	/* Run per-netns notifier block chain first, then run the global one.
2117 	 * Hopefully, one day, the global one is going to be removed after
2118 	 * all notifier block registrators get converted to be per-netns.
2119 	 */
2120 	ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
2121 	if (ret & NOTIFY_STOP_MASK)
2122 		return ret;
2123 	return raw_notifier_call_chain(&netdev_chain, val, info);
2124 }
2125 
2126 static int call_netdevice_notifiers_extack(unsigned long val,
2127 					   struct net_device *dev,
2128 					   struct netlink_ext_ack *extack)
2129 {
2130 	struct netdev_notifier_info info = {
2131 		.dev = dev,
2132 		.extack = extack,
2133 	};
2134 
2135 	return call_netdevice_notifiers_info(val, &info);
2136 }
2137 
2138 /**
2139  *	call_netdevice_notifiers - call all network notifier blocks
2140  *      @val: value passed unmodified to notifier function
2141  *      @dev: net_device pointer passed unmodified to notifier function
2142  *
2143  *	Call all network notifier blocks.  Parameters and return value
2144  *	are as for raw_notifier_call_chain().
2145  */
2146 
2147 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2148 {
2149 	return call_netdevice_notifiers_extack(val, dev, NULL);
2150 }
2151 EXPORT_SYMBOL(call_netdevice_notifiers);
2152 
2153 /**
2154  *	call_netdevice_notifiers_mtu - call all network notifier blocks
2155  *	@val: value passed unmodified to notifier function
2156  *	@dev: net_device pointer passed unmodified to notifier function
2157  *	@arg: additional u32 argument passed to the notifier function
2158  *
2159  *	Call all network notifier blocks.  Parameters and return value
2160  *	are as for raw_notifier_call_chain().
2161  */
2162 static int call_netdevice_notifiers_mtu(unsigned long val,
2163 					struct net_device *dev, u32 arg)
2164 {
2165 	struct netdev_notifier_info_ext info = {
2166 		.info.dev = dev,
2167 		.ext.mtu = arg,
2168 	};
2169 
2170 	BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2171 
2172 	return call_netdevice_notifiers_info(val, &info.info);
2173 }
2174 
2175 #ifdef CONFIG_NET_INGRESS
2176 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2177 
2178 void net_inc_ingress_queue(void)
2179 {
2180 	static_branch_inc(&ingress_needed_key);
2181 }
2182 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2183 
2184 void net_dec_ingress_queue(void)
2185 {
2186 	static_branch_dec(&ingress_needed_key);
2187 }
2188 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2189 #endif
2190 
2191 #ifdef CONFIG_NET_EGRESS
2192 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2193 
2194 void net_inc_egress_queue(void)
2195 {
2196 	static_branch_inc(&egress_needed_key);
2197 }
2198 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2199 
2200 void net_dec_egress_queue(void)
2201 {
2202 	static_branch_dec(&egress_needed_key);
2203 }
2204 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2205 #endif
2206 
2207 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2208 #ifdef CONFIG_JUMP_LABEL
2209 static atomic_t netstamp_needed_deferred;
2210 static atomic_t netstamp_wanted;
2211 static void netstamp_clear(struct work_struct *work)
2212 {
2213 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2214 	int wanted;
2215 
2216 	wanted = atomic_add_return(deferred, &netstamp_wanted);
2217 	if (wanted > 0)
2218 		static_branch_enable(&netstamp_needed_key);
2219 	else
2220 		static_branch_disable(&netstamp_needed_key);
2221 }
2222 static DECLARE_WORK(netstamp_work, netstamp_clear);
2223 #endif
2224 
2225 void net_enable_timestamp(void)
2226 {
2227 #ifdef CONFIG_JUMP_LABEL
2228 	int wanted;
2229 
2230 	while (1) {
2231 		wanted = atomic_read(&netstamp_wanted);
2232 		if (wanted <= 0)
2233 			break;
2234 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2235 			return;
2236 	}
2237 	atomic_inc(&netstamp_needed_deferred);
2238 	schedule_work(&netstamp_work);
2239 #else
2240 	static_branch_inc(&netstamp_needed_key);
2241 #endif
2242 }
2243 EXPORT_SYMBOL(net_enable_timestamp);
2244 
2245 void net_disable_timestamp(void)
2246 {
2247 #ifdef CONFIG_JUMP_LABEL
2248 	int wanted;
2249 
2250 	while (1) {
2251 		wanted = atomic_read(&netstamp_wanted);
2252 		if (wanted <= 1)
2253 			break;
2254 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2255 			return;
2256 	}
2257 	atomic_dec(&netstamp_needed_deferred);
2258 	schedule_work(&netstamp_work);
2259 #else
2260 	static_branch_dec(&netstamp_needed_key);
2261 #endif
2262 }
2263 EXPORT_SYMBOL(net_disable_timestamp);
2264 
2265 static inline void net_timestamp_set(struct sk_buff *skb)
2266 {
2267 	skb->tstamp = 0;
2268 	if (static_branch_unlikely(&netstamp_needed_key))
2269 		__net_timestamp(skb);
2270 }
2271 
2272 #define net_timestamp_check(COND, SKB)				\
2273 	if (static_branch_unlikely(&netstamp_needed_key)) {	\
2274 		if ((COND) && !(SKB)->tstamp)			\
2275 			__net_timestamp(SKB);			\
2276 	}							\
2277 
2278 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2279 {
2280 	return __is_skb_forwardable(dev, skb, true);
2281 }
2282 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2283 
2284 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2285 			      bool check_mtu)
2286 {
2287 	int ret = ____dev_forward_skb(dev, skb, check_mtu);
2288 
2289 	if (likely(!ret)) {
2290 		skb->protocol = eth_type_trans(skb, dev);
2291 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2292 	}
2293 
2294 	return ret;
2295 }
2296 
2297 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2298 {
2299 	return __dev_forward_skb2(dev, skb, true);
2300 }
2301 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2302 
2303 /**
2304  * dev_forward_skb - loopback an skb to another netif
2305  *
2306  * @dev: destination network device
2307  * @skb: buffer to forward
2308  *
2309  * return values:
2310  *	NET_RX_SUCCESS	(no congestion)
2311  *	NET_RX_DROP     (packet was dropped, but freed)
2312  *
2313  * dev_forward_skb can be used for injecting an skb from the
2314  * start_xmit function of one device into the receive queue
2315  * of another device.
2316  *
2317  * The receiving device may be in another namespace, so
2318  * we have to clear all information in the skb that could
2319  * impact namespace isolation.
2320  */
2321 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2322 {
2323 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2324 }
2325 EXPORT_SYMBOL_GPL(dev_forward_skb);
2326 
2327 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2328 {
2329 	return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2330 }
2331 
2332 static inline int deliver_skb(struct sk_buff *skb,
2333 			      struct packet_type *pt_prev,
2334 			      struct net_device *orig_dev)
2335 {
2336 	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2337 		return -ENOMEM;
2338 	refcount_inc(&skb->users);
2339 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2340 }
2341 
2342 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2343 					  struct packet_type **pt,
2344 					  struct net_device *orig_dev,
2345 					  __be16 type,
2346 					  struct list_head *ptype_list)
2347 {
2348 	struct packet_type *ptype, *pt_prev = *pt;
2349 
2350 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2351 		if (ptype->type != type)
2352 			continue;
2353 		if (pt_prev)
2354 			deliver_skb(skb, pt_prev, orig_dev);
2355 		pt_prev = ptype;
2356 	}
2357 	*pt = pt_prev;
2358 }
2359 
2360 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2361 {
2362 	if (!ptype->af_packet_priv || !skb->sk)
2363 		return false;
2364 
2365 	if (ptype->id_match)
2366 		return ptype->id_match(ptype, skb->sk);
2367 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2368 		return true;
2369 
2370 	return false;
2371 }
2372 
2373 /**
2374  * dev_nit_active - return true if any network interface taps are in use
2375  *
2376  * @dev: network device to check for the presence of taps
2377  */
2378 bool dev_nit_active(struct net_device *dev)
2379 {
2380 	return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2381 }
2382 EXPORT_SYMBOL_GPL(dev_nit_active);
2383 
2384 /*
2385  *	Support routine. Sends outgoing frames to any network
2386  *	taps currently in use.
2387  */
2388 
2389 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2390 {
2391 	struct packet_type *ptype;
2392 	struct sk_buff *skb2 = NULL;
2393 	struct packet_type *pt_prev = NULL;
2394 	struct list_head *ptype_list = &ptype_all;
2395 
2396 	rcu_read_lock();
2397 again:
2398 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2399 		if (ptype->ignore_outgoing)
2400 			continue;
2401 
2402 		/* Never send packets back to the socket
2403 		 * they originated from - MvS (miquels@drinkel.ow.org)
2404 		 */
2405 		if (skb_loop_sk(ptype, skb))
2406 			continue;
2407 
2408 		if (pt_prev) {
2409 			deliver_skb(skb2, pt_prev, skb->dev);
2410 			pt_prev = ptype;
2411 			continue;
2412 		}
2413 
2414 		/* need to clone skb, done only once */
2415 		skb2 = skb_clone(skb, GFP_ATOMIC);
2416 		if (!skb2)
2417 			goto out_unlock;
2418 
2419 		net_timestamp_set(skb2);
2420 
2421 		/* skb->nh should be correctly
2422 		 * set by sender, so that the second statement is
2423 		 * just protection against buggy protocols.
2424 		 */
2425 		skb_reset_mac_header(skb2);
2426 
2427 		if (skb_network_header(skb2) < skb2->data ||
2428 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2429 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2430 					     ntohs(skb2->protocol),
2431 					     dev->name);
2432 			skb_reset_network_header(skb2);
2433 		}
2434 
2435 		skb2->transport_header = skb2->network_header;
2436 		skb2->pkt_type = PACKET_OUTGOING;
2437 		pt_prev = ptype;
2438 	}
2439 
2440 	if (ptype_list == &ptype_all) {
2441 		ptype_list = &dev->ptype_all;
2442 		goto again;
2443 	}
2444 out_unlock:
2445 	if (pt_prev) {
2446 		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2447 			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2448 		else
2449 			kfree_skb(skb2);
2450 	}
2451 	rcu_read_unlock();
2452 }
2453 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2454 
2455 /**
2456  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2457  * @dev: Network device
2458  * @txq: number of queues available
2459  *
2460  * If real_num_tx_queues is changed the tc mappings may no longer be
2461  * valid. To resolve this verify the tc mapping remains valid and if
2462  * not NULL the mapping. With no priorities mapping to this
2463  * offset/count pair it will no longer be used. In the worst case TC0
2464  * is invalid nothing can be done so disable priority mappings. If is
2465  * expected that drivers will fix this mapping if they can before
2466  * calling netif_set_real_num_tx_queues.
2467  */
2468 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2469 {
2470 	int i;
2471 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2472 
2473 	/* If TC0 is invalidated disable TC mapping */
2474 	if (tc->offset + tc->count > txq) {
2475 		pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2476 		dev->num_tc = 0;
2477 		return;
2478 	}
2479 
2480 	/* Invalidated prio to tc mappings set to TC0 */
2481 	for (i = 1; i < TC_BITMASK + 1; i++) {
2482 		int q = netdev_get_prio_tc_map(dev, i);
2483 
2484 		tc = &dev->tc_to_txq[q];
2485 		if (tc->offset + tc->count > txq) {
2486 			pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2487 				i, q);
2488 			netdev_set_prio_tc_map(dev, i, 0);
2489 		}
2490 	}
2491 }
2492 
2493 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2494 {
2495 	if (dev->num_tc) {
2496 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2497 		int i;
2498 
2499 		/* walk through the TCs and see if it falls into any of them */
2500 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2501 			if ((txq - tc->offset) < tc->count)
2502 				return i;
2503 		}
2504 
2505 		/* didn't find it, just return -1 to indicate no match */
2506 		return -1;
2507 	}
2508 
2509 	return 0;
2510 }
2511 EXPORT_SYMBOL(netdev_txq_to_tc);
2512 
2513 #ifdef CONFIG_XPS
2514 static struct static_key xps_needed __read_mostly;
2515 static struct static_key xps_rxqs_needed __read_mostly;
2516 static DEFINE_MUTEX(xps_map_mutex);
2517 #define xmap_dereference(P)		\
2518 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2519 
2520 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2521 			     struct xps_dev_maps *old_maps, int tci, u16 index)
2522 {
2523 	struct xps_map *map = NULL;
2524 	int pos;
2525 
2526 	if (dev_maps)
2527 		map = xmap_dereference(dev_maps->attr_map[tci]);
2528 	if (!map)
2529 		return false;
2530 
2531 	for (pos = map->len; pos--;) {
2532 		if (map->queues[pos] != index)
2533 			continue;
2534 
2535 		if (map->len > 1) {
2536 			map->queues[pos] = map->queues[--map->len];
2537 			break;
2538 		}
2539 
2540 		if (old_maps)
2541 			RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2542 		RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2543 		kfree_rcu(map, rcu);
2544 		return false;
2545 	}
2546 
2547 	return true;
2548 }
2549 
2550 static bool remove_xps_queue_cpu(struct net_device *dev,
2551 				 struct xps_dev_maps *dev_maps,
2552 				 int cpu, u16 offset, u16 count)
2553 {
2554 	int num_tc = dev_maps->num_tc;
2555 	bool active = false;
2556 	int tci;
2557 
2558 	for (tci = cpu * num_tc; num_tc--; tci++) {
2559 		int i, j;
2560 
2561 		for (i = count, j = offset; i--; j++) {
2562 			if (!remove_xps_queue(dev_maps, NULL, tci, j))
2563 				break;
2564 		}
2565 
2566 		active |= i < 0;
2567 	}
2568 
2569 	return active;
2570 }
2571 
2572 static void reset_xps_maps(struct net_device *dev,
2573 			   struct xps_dev_maps *dev_maps,
2574 			   enum xps_map_type type)
2575 {
2576 	static_key_slow_dec_cpuslocked(&xps_needed);
2577 	if (type == XPS_RXQS)
2578 		static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2579 
2580 	RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2581 
2582 	kfree_rcu(dev_maps, rcu);
2583 }
2584 
2585 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2586 			   u16 offset, u16 count)
2587 {
2588 	struct xps_dev_maps *dev_maps;
2589 	bool active = false;
2590 	int i, j;
2591 
2592 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2593 	if (!dev_maps)
2594 		return;
2595 
2596 	for (j = 0; j < dev_maps->nr_ids; j++)
2597 		active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2598 	if (!active)
2599 		reset_xps_maps(dev, dev_maps, type);
2600 
2601 	if (type == XPS_CPUS) {
2602 		for (i = offset + (count - 1); count--; i--)
2603 			netdev_queue_numa_node_write(
2604 				netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2605 	}
2606 }
2607 
2608 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2609 				   u16 count)
2610 {
2611 	if (!static_key_false(&xps_needed))
2612 		return;
2613 
2614 	cpus_read_lock();
2615 	mutex_lock(&xps_map_mutex);
2616 
2617 	if (static_key_false(&xps_rxqs_needed))
2618 		clean_xps_maps(dev, XPS_RXQS, offset, count);
2619 
2620 	clean_xps_maps(dev, XPS_CPUS, offset, count);
2621 
2622 	mutex_unlock(&xps_map_mutex);
2623 	cpus_read_unlock();
2624 }
2625 
2626 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2627 {
2628 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2629 }
2630 
2631 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2632 				      u16 index, bool is_rxqs_map)
2633 {
2634 	struct xps_map *new_map;
2635 	int alloc_len = XPS_MIN_MAP_ALLOC;
2636 	int i, pos;
2637 
2638 	for (pos = 0; map && pos < map->len; pos++) {
2639 		if (map->queues[pos] != index)
2640 			continue;
2641 		return map;
2642 	}
2643 
2644 	/* Need to add tx-queue to this CPU's/rx-queue's existing map */
2645 	if (map) {
2646 		if (pos < map->alloc_len)
2647 			return map;
2648 
2649 		alloc_len = map->alloc_len * 2;
2650 	}
2651 
2652 	/* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2653 	 *  map
2654 	 */
2655 	if (is_rxqs_map)
2656 		new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2657 	else
2658 		new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2659 				       cpu_to_node(attr_index));
2660 	if (!new_map)
2661 		return NULL;
2662 
2663 	for (i = 0; i < pos; i++)
2664 		new_map->queues[i] = map->queues[i];
2665 	new_map->alloc_len = alloc_len;
2666 	new_map->len = pos;
2667 
2668 	return new_map;
2669 }
2670 
2671 /* Copy xps maps at a given index */
2672 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2673 			      struct xps_dev_maps *new_dev_maps, int index,
2674 			      int tc, bool skip_tc)
2675 {
2676 	int i, tci = index * dev_maps->num_tc;
2677 	struct xps_map *map;
2678 
2679 	/* copy maps belonging to foreign traffic classes */
2680 	for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2681 		if (i == tc && skip_tc)
2682 			continue;
2683 
2684 		/* fill in the new device map from the old device map */
2685 		map = xmap_dereference(dev_maps->attr_map[tci]);
2686 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2687 	}
2688 }
2689 
2690 /* Must be called under cpus_read_lock */
2691 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2692 			  u16 index, enum xps_map_type type)
2693 {
2694 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2695 	const unsigned long *online_mask = NULL;
2696 	bool active = false, copy = false;
2697 	int i, j, tci, numa_node_id = -2;
2698 	int maps_sz, num_tc = 1, tc = 0;
2699 	struct xps_map *map, *new_map;
2700 	unsigned int nr_ids;
2701 
2702 	if (dev->num_tc) {
2703 		/* Do not allow XPS on subordinate device directly */
2704 		num_tc = dev->num_tc;
2705 		if (num_tc < 0)
2706 			return -EINVAL;
2707 
2708 		/* If queue belongs to subordinate dev use its map */
2709 		dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2710 
2711 		tc = netdev_txq_to_tc(dev, index);
2712 		if (tc < 0)
2713 			return -EINVAL;
2714 	}
2715 
2716 	mutex_lock(&xps_map_mutex);
2717 
2718 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2719 	if (type == XPS_RXQS) {
2720 		maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2721 		nr_ids = dev->num_rx_queues;
2722 	} else {
2723 		maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2724 		if (num_possible_cpus() > 1)
2725 			online_mask = cpumask_bits(cpu_online_mask);
2726 		nr_ids = nr_cpu_ids;
2727 	}
2728 
2729 	if (maps_sz < L1_CACHE_BYTES)
2730 		maps_sz = L1_CACHE_BYTES;
2731 
2732 	/* The old dev_maps could be larger or smaller than the one we're
2733 	 * setting up now, as dev->num_tc or nr_ids could have been updated in
2734 	 * between. We could try to be smart, but let's be safe instead and only
2735 	 * copy foreign traffic classes if the two map sizes match.
2736 	 */
2737 	if (dev_maps &&
2738 	    dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2739 		copy = true;
2740 
2741 	/* allocate memory for queue storage */
2742 	for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2743 	     j < nr_ids;) {
2744 		if (!new_dev_maps) {
2745 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2746 			if (!new_dev_maps) {
2747 				mutex_unlock(&xps_map_mutex);
2748 				return -ENOMEM;
2749 			}
2750 
2751 			new_dev_maps->nr_ids = nr_ids;
2752 			new_dev_maps->num_tc = num_tc;
2753 		}
2754 
2755 		tci = j * num_tc + tc;
2756 		map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2757 
2758 		map = expand_xps_map(map, j, index, type == XPS_RXQS);
2759 		if (!map)
2760 			goto error;
2761 
2762 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2763 	}
2764 
2765 	if (!new_dev_maps)
2766 		goto out_no_new_maps;
2767 
2768 	if (!dev_maps) {
2769 		/* Increment static keys at most once per type */
2770 		static_key_slow_inc_cpuslocked(&xps_needed);
2771 		if (type == XPS_RXQS)
2772 			static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2773 	}
2774 
2775 	for (j = 0; j < nr_ids; j++) {
2776 		bool skip_tc = false;
2777 
2778 		tci = j * num_tc + tc;
2779 		if (netif_attr_test_mask(j, mask, nr_ids) &&
2780 		    netif_attr_test_online(j, online_mask, nr_ids)) {
2781 			/* add tx-queue to CPU/rx-queue maps */
2782 			int pos = 0;
2783 
2784 			skip_tc = true;
2785 
2786 			map = xmap_dereference(new_dev_maps->attr_map[tci]);
2787 			while ((pos < map->len) && (map->queues[pos] != index))
2788 				pos++;
2789 
2790 			if (pos == map->len)
2791 				map->queues[map->len++] = index;
2792 #ifdef CONFIG_NUMA
2793 			if (type == XPS_CPUS) {
2794 				if (numa_node_id == -2)
2795 					numa_node_id = cpu_to_node(j);
2796 				else if (numa_node_id != cpu_to_node(j))
2797 					numa_node_id = -1;
2798 			}
2799 #endif
2800 		}
2801 
2802 		if (copy)
2803 			xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2804 					  skip_tc);
2805 	}
2806 
2807 	rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2808 
2809 	/* Cleanup old maps */
2810 	if (!dev_maps)
2811 		goto out_no_old_maps;
2812 
2813 	for (j = 0; j < dev_maps->nr_ids; j++) {
2814 		for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2815 			map = xmap_dereference(dev_maps->attr_map[tci]);
2816 			if (!map)
2817 				continue;
2818 
2819 			if (copy) {
2820 				new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2821 				if (map == new_map)
2822 					continue;
2823 			}
2824 
2825 			RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2826 			kfree_rcu(map, rcu);
2827 		}
2828 	}
2829 
2830 	old_dev_maps = dev_maps;
2831 
2832 out_no_old_maps:
2833 	dev_maps = new_dev_maps;
2834 	active = true;
2835 
2836 out_no_new_maps:
2837 	if (type == XPS_CPUS)
2838 		/* update Tx queue numa node */
2839 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2840 					     (numa_node_id >= 0) ?
2841 					     numa_node_id : NUMA_NO_NODE);
2842 
2843 	if (!dev_maps)
2844 		goto out_no_maps;
2845 
2846 	/* removes tx-queue from unused CPUs/rx-queues */
2847 	for (j = 0; j < dev_maps->nr_ids; j++) {
2848 		tci = j * dev_maps->num_tc;
2849 
2850 		for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2851 			if (i == tc &&
2852 			    netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2853 			    netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2854 				continue;
2855 
2856 			active |= remove_xps_queue(dev_maps,
2857 						   copy ? old_dev_maps : NULL,
2858 						   tci, index);
2859 		}
2860 	}
2861 
2862 	if (old_dev_maps)
2863 		kfree_rcu(old_dev_maps, rcu);
2864 
2865 	/* free map if not active */
2866 	if (!active)
2867 		reset_xps_maps(dev, dev_maps, type);
2868 
2869 out_no_maps:
2870 	mutex_unlock(&xps_map_mutex);
2871 
2872 	return 0;
2873 error:
2874 	/* remove any maps that we added */
2875 	for (j = 0; j < nr_ids; j++) {
2876 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2877 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2878 			map = copy ?
2879 			      xmap_dereference(dev_maps->attr_map[tci]) :
2880 			      NULL;
2881 			if (new_map && new_map != map)
2882 				kfree(new_map);
2883 		}
2884 	}
2885 
2886 	mutex_unlock(&xps_map_mutex);
2887 
2888 	kfree(new_dev_maps);
2889 	return -ENOMEM;
2890 }
2891 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2892 
2893 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2894 			u16 index)
2895 {
2896 	int ret;
2897 
2898 	cpus_read_lock();
2899 	ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2900 	cpus_read_unlock();
2901 
2902 	return ret;
2903 }
2904 EXPORT_SYMBOL(netif_set_xps_queue);
2905 
2906 #endif
2907 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2908 {
2909 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2910 
2911 	/* Unbind any subordinate channels */
2912 	while (txq-- != &dev->_tx[0]) {
2913 		if (txq->sb_dev)
2914 			netdev_unbind_sb_channel(dev, txq->sb_dev);
2915 	}
2916 }
2917 
2918 void netdev_reset_tc(struct net_device *dev)
2919 {
2920 #ifdef CONFIG_XPS
2921 	netif_reset_xps_queues_gt(dev, 0);
2922 #endif
2923 	netdev_unbind_all_sb_channels(dev);
2924 
2925 	/* Reset TC configuration of device */
2926 	dev->num_tc = 0;
2927 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2928 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2929 }
2930 EXPORT_SYMBOL(netdev_reset_tc);
2931 
2932 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2933 {
2934 	if (tc >= dev->num_tc)
2935 		return -EINVAL;
2936 
2937 #ifdef CONFIG_XPS
2938 	netif_reset_xps_queues(dev, offset, count);
2939 #endif
2940 	dev->tc_to_txq[tc].count = count;
2941 	dev->tc_to_txq[tc].offset = offset;
2942 	return 0;
2943 }
2944 EXPORT_SYMBOL(netdev_set_tc_queue);
2945 
2946 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2947 {
2948 	if (num_tc > TC_MAX_QUEUE)
2949 		return -EINVAL;
2950 
2951 #ifdef CONFIG_XPS
2952 	netif_reset_xps_queues_gt(dev, 0);
2953 #endif
2954 	netdev_unbind_all_sb_channels(dev);
2955 
2956 	dev->num_tc = num_tc;
2957 	return 0;
2958 }
2959 EXPORT_SYMBOL(netdev_set_num_tc);
2960 
2961 void netdev_unbind_sb_channel(struct net_device *dev,
2962 			      struct net_device *sb_dev)
2963 {
2964 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2965 
2966 #ifdef CONFIG_XPS
2967 	netif_reset_xps_queues_gt(sb_dev, 0);
2968 #endif
2969 	memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2970 	memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2971 
2972 	while (txq-- != &dev->_tx[0]) {
2973 		if (txq->sb_dev == sb_dev)
2974 			txq->sb_dev = NULL;
2975 	}
2976 }
2977 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2978 
2979 int netdev_bind_sb_channel_queue(struct net_device *dev,
2980 				 struct net_device *sb_dev,
2981 				 u8 tc, u16 count, u16 offset)
2982 {
2983 	/* Make certain the sb_dev and dev are already configured */
2984 	if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2985 		return -EINVAL;
2986 
2987 	/* We cannot hand out queues we don't have */
2988 	if ((offset + count) > dev->real_num_tx_queues)
2989 		return -EINVAL;
2990 
2991 	/* Record the mapping */
2992 	sb_dev->tc_to_txq[tc].count = count;
2993 	sb_dev->tc_to_txq[tc].offset = offset;
2994 
2995 	/* Provide a way for Tx queue to find the tc_to_txq map or
2996 	 * XPS map for itself.
2997 	 */
2998 	while (count--)
2999 		netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
3000 
3001 	return 0;
3002 }
3003 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
3004 
3005 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
3006 {
3007 	/* Do not use a multiqueue device to represent a subordinate channel */
3008 	if (netif_is_multiqueue(dev))
3009 		return -ENODEV;
3010 
3011 	/* We allow channels 1 - 32767 to be used for subordinate channels.
3012 	 * Channel 0 is meant to be "native" mode and used only to represent
3013 	 * the main root device. We allow writing 0 to reset the device back
3014 	 * to normal mode after being used as a subordinate channel.
3015 	 */
3016 	if (channel > S16_MAX)
3017 		return -EINVAL;
3018 
3019 	dev->num_tc = -channel;
3020 
3021 	return 0;
3022 }
3023 EXPORT_SYMBOL(netdev_set_sb_channel);
3024 
3025 /*
3026  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
3027  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
3028  */
3029 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
3030 {
3031 	bool disabling;
3032 	int rc;
3033 
3034 	disabling = txq < dev->real_num_tx_queues;
3035 
3036 	if (txq < 1 || txq > dev->num_tx_queues)
3037 		return -EINVAL;
3038 
3039 	if (dev->reg_state == NETREG_REGISTERED ||
3040 	    dev->reg_state == NETREG_UNREGISTERING) {
3041 		ASSERT_RTNL();
3042 
3043 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
3044 						  txq);
3045 		if (rc)
3046 			return rc;
3047 
3048 		if (dev->num_tc)
3049 			netif_setup_tc(dev, txq);
3050 
3051 		dev->real_num_tx_queues = txq;
3052 
3053 		if (disabling) {
3054 			synchronize_net();
3055 			qdisc_reset_all_tx_gt(dev, txq);
3056 #ifdef CONFIG_XPS
3057 			netif_reset_xps_queues_gt(dev, txq);
3058 #endif
3059 		}
3060 	} else {
3061 		dev->real_num_tx_queues = txq;
3062 	}
3063 
3064 	return 0;
3065 }
3066 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
3067 
3068 #ifdef CONFIG_SYSFS
3069 /**
3070  *	netif_set_real_num_rx_queues - set actual number of RX queues used
3071  *	@dev: Network device
3072  *	@rxq: Actual number of RX queues
3073  *
3074  *	This must be called either with the rtnl_lock held or before
3075  *	registration of the net device.  Returns 0 on success, or a
3076  *	negative error code.  If called before registration, it always
3077  *	succeeds.
3078  */
3079 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
3080 {
3081 	int rc;
3082 
3083 	if (rxq < 1 || rxq > dev->num_rx_queues)
3084 		return -EINVAL;
3085 
3086 	if (dev->reg_state == NETREG_REGISTERED) {
3087 		ASSERT_RTNL();
3088 
3089 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
3090 						  rxq);
3091 		if (rc)
3092 			return rc;
3093 	}
3094 
3095 	dev->real_num_rx_queues = rxq;
3096 	return 0;
3097 }
3098 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
3099 #endif
3100 
3101 /**
3102  * netif_get_num_default_rss_queues - default number of RSS queues
3103  *
3104  * This routine should set an upper limit on the number of RSS queues
3105  * used by default by multiqueue devices.
3106  */
3107 int netif_get_num_default_rss_queues(void)
3108 {
3109 	return is_kdump_kernel() ?
3110 		1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
3111 }
3112 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3113 
3114 static void __netif_reschedule(struct Qdisc *q)
3115 {
3116 	struct softnet_data *sd;
3117 	unsigned long flags;
3118 
3119 	local_irq_save(flags);
3120 	sd = this_cpu_ptr(&softnet_data);
3121 	q->next_sched = NULL;
3122 	*sd->output_queue_tailp = q;
3123 	sd->output_queue_tailp = &q->next_sched;
3124 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3125 	local_irq_restore(flags);
3126 }
3127 
3128 void __netif_schedule(struct Qdisc *q)
3129 {
3130 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3131 		__netif_reschedule(q);
3132 }
3133 EXPORT_SYMBOL(__netif_schedule);
3134 
3135 struct dev_kfree_skb_cb {
3136 	enum skb_free_reason reason;
3137 };
3138 
3139 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3140 {
3141 	return (struct dev_kfree_skb_cb *)skb->cb;
3142 }
3143 
3144 void netif_schedule_queue(struct netdev_queue *txq)
3145 {
3146 	rcu_read_lock();
3147 	if (!netif_xmit_stopped(txq)) {
3148 		struct Qdisc *q = rcu_dereference(txq->qdisc);
3149 
3150 		__netif_schedule(q);
3151 	}
3152 	rcu_read_unlock();
3153 }
3154 EXPORT_SYMBOL(netif_schedule_queue);
3155 
3156 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3157 {
3158 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3159 		struct Qdisc *q;
3160 
3161 		rcu_read_lock();
3162 		q = rcu_dereference(dev_queue->qdisc);
3163 		__netif_schedule(q);
3164 		rcu_read_unlock();
3165 	}
3166 }
3167 EXPORT_SYMBOL(netif_tx_wake_queue);
3168 
3169 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
3170 {
3171 	unsigned long flags;
3172 
3173 	if (unlikely(!skb))
3174 		return;
3175 
3176 	if (likely(refcount_read(&skb->users) == 1)) {
3177 		smp_rmb();
3178 		refcount_set(&skb->users, 0);
3179 	} else if (likely(!refcount_dec_and_test(&skb->users))) {
3180 		return;
3181 	}
3182 	get_kfree_skb_cb(skb)->reason = reason;
3183 	local_irq_save(flags);
3184 	skb->next = __this_cpu_read(softnet_data.completion_queue);
3185 	__this_cpu_write(softnet_data.completion_queue, skb);
3186 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3187 	local_irq_restore(flags);
3188 }
3189 EXPORT_SYMBOL(__dev_kfree_skb_irq);
3190 
3191 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
3192 {
3193 	if (in_irq() || irqs_disabled())
3194 		__dev_kfree_skb_irq(skb, reason);
3195 	else
3196 		dev_kfree_skb(skb);
3197 }
3198 EXPORT_SYMBOL(__dev_kfree_skb_any);
3199 
3200 
3201 /**
3202  * netif_device_detach - mark device as removed
3203  * @dev: network device
3204  *
3205  * Mark device as removed from system and therefore no longer available.
3206  */
3207 void netif_device_detach(struct net_device *dev)
3208 {
3209 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3210 	    netif_running(dev)) {
3211 		netif_tx_stop_all_queues(dev);
3212 	}
3213 }
3214 EXPORT_SYMBOL(netif_device_detach);
3215 
3216 /**
3217  * netif_device_attach - mark device as attached
3218  * @dev: network device
3219  *
3220  * Mark device as attached from system and restart if needed.
3221  */
3222 void netif_device_attach(struct net_device *dev)
3223 {
3224 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3225 	    netif_running(dev)) {
3226 		netif_tx_wake_all_queues(dev);
3227 		__netdev_watchdog_up(dev);
3228 	}
3229 }
3230 EXPORT_SYMBOL(netif_device_attach);
3231 
3232 /*
3233  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3234  * to be used as a distribution range.
3235  */
3236 static u16 skb_tx_hash(const struct net_device *dev,
3237 		       const struct net_device *sb_dev,
3238 		       struct sk_buff *skb)
3239 {
3240 	u32 hash;
3241 	u16 qoffset = 0;
3242 	u16 qcount = dev->real_num_tx_queues;
3243 
3244 	if (dev->num_tc) {
3245 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3246 
3247 		qoffset = sb_dev->tc_to_txq[tc].offset;
3248 		qcount = sb_dev->tc_to_txq[tc].count;
3249 	}
3250 
3251 	if (skb_rx_queue_recorded(skb)) {
3252 		hash = skb_get_rx_queue(skb);
3253 		if (hash >= qoffset)
3254 			hash -= qoffset;
3255 		while (unlikely(hash >= qcount))
3256 			hash -= qcount;
3257 		return hash + qoffset;
3258 	}
3259 
3260 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3261 }
3262 
3263 static void skb_warn_bad_offload(const struct sk_buff *skb)
3264 {
3265 	static const netdev_features_t null_features;
3266 	struct net_device *dev = skb->dev;
3267 	const char *name = "";
3268 
3269 	if (!net_ratelimit())
3270 		return;
3271 
3272 	if (dev) {
3273 		if (dev->dev.parent)
3274 			name = dev_driver_string(dev->dev.parent);
3275 		else
3276 			name = netdev_name(dev);
3277 	}
3278 	skb_dump(KERN_WARNING, skb, false);
3279 	WARN(1, "%s: caps=(%pNF, %pNF)\n",
3280 	     name, dev ? &dev->features : &null_features,
3281 	     skb->sk ? &skb->sk->sk_route_caps : &null_features);
3282 }
3283 
3284 /*
3285  * Invalidate hardware checksum when packet is to be mangled, and
3286  * complete checksum manually on outgoing path.
3287  */
3288 int skb_checksum_help(struct sk_buff *skb)
3289 {
3290 	__wsum csum;
3291 	int ret = 0, offset;
3292 
3293 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3294 		goto out_set_summed;
3295 
3296 	if (unlikely(skb_is_gso(skb))) {
3297 		skb_warn_bad_offload(skb);
3298 		return -EINVAL;
3299 	}
3300 
3301 	/* Before computing a checksum, we should make sure no frag could
3302 	 * be modified by an external entity : checksum could be wrong.
3303 	 */
3304 	if (skb_has_shared_frag(skb)) {
3305 		ret = __skb_linearize(skb);
3306 		if (ret)
3307 			goto out;
3308 	}
3309 
3310 	offset = skb_checksum_start_offset(skb);
3311 	BUG_ON(offset >= skb_headlen(skb));
3312 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
3313 
3314 	offset += skb->csum_offset;
3315 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
3316 
3317 	ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3318 	if (ret)
3319 		goto out;
3320 
3321 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3322 out_set_summed:
3323 	skb->ip_summed = CHECKSUM_NONE;
3324 out:
3325 	return ret;
3326 }
3327 EXPORT_SYMBOL(skb_checksum_help);
3328 
3329 int skb_crc32c_csum_help(struct sk_buff *skb)
3330 {
3331 	__le32 crc32c_csum;
3332 	int ret = 0, offset, start;
3333 
3334 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3335 		goto out;
3336 
3337 	if (unlikely(skb_is_gso(skb)))
3338 		goto out;
3339 
3340 	/* Before computing a checksum, we should make sure no frag could
3341 	 * be modified by an external entity : checksum could be wrong.
3342 	 */
3343 	if (unlikely(skb_has_shared_frag(skb))) {
3344 		ret = __skb_linearize(skb);
3345 		if (ret)
3346 			goto out;
3347 	}
3348 	start = skb_checksum_start_offset(skb);
3349 	offset = start + offsetof(struct sctphdr, checksum);
3350 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3351 		ret = -EINVAL;
3352 		goto out;
3353 	}
3354 
3355 	ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3356 	if (ret)
3357 		goto out;
3358 
3359 	crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3360 						  skb->len - start, ~(__u32)0,
3361 						  crc32c_csum_stub));
3362 	*(__le32 *)(skb->data + offset) = crc32c_csum;
3363 	skb->ip_summed = CHECKSUM_NONE;
3364 	skb->csum_not_inet = 0;
3365 out:
3366 	return ret;
3367 }
3368 
3369 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3370 {
3371 	__be16 type = skb->protocol;
3372 
3373 	/* Tunnel gso handlers can set protocol to ethernet. */
3374 	if (type == htons(ETH_P_TEB)) {
3375 		struct ethhdr *eth;
3376 
3377 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3378 			return 0;
3379 
3380 		eth = (struct ethhdr *)skb->data;
3381 		type = eth->h_proto;
3382 	}
3383 
3384 	return __vlan_get_protocol(skb, type, depth);
3385 }
3386 
3387 /**
3388  *	skb_mac_gso_segment - mac layer segmentation handler.
3389  *	@skb: buffer to segment
3390  *	@features: features for the output path (see dev->features)
3391  */
3392 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3393 				    netdev_features_t features)
3394 {
3395 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3396 	struct packet_offload *ptype;
3397 	int vlan_depth = skb->mac_len;
3398 	__be16 type = skb_network_protocol(skb, &vlan_depth);
3399 
3400 	if (unlikely(!type))
3401 		return ERR_PTR(-EINVAL);
3402 
3403 	__skb_pull(skb, vlan_depth);
3404 
3405 	rcu_read_lock();
3406 	list_for_each_entry_rcu(ptype, &offload_base, list) {
3407 		if (ptype->type == type && ptype->callbacks.gso_segment) {
3408 			segs = ptype->callbacks.gso_segment(skb, features);
3409 			break;
3410 		}
3411 	}
3412 	rcu_read_unlock();
3413 
3414 	__skb_push(skb, skb->data - skb_mac_header(skb));
3415 
3416 	return segs;
3417 }
3418 EXPORT_SYMBOL(skb_mac_gso_segment);
3419 
3420 
3421 /* openvswitch calls this on rx path, so we need a different check.
3422  */
3423 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3424 {
3425 	if (tx_path)
3426 		return skb->ip_summed != CHECKSUM_PARTIAL &&
3427 		       skb->ip_summed != CHECKSUM_UNNECESSARY;
3428 
3429 	return skb->ip_summed == CHECKSUM_NONE;
3430 }
3431 
3432 /**
3433  *	__skb_gso_segment - Perform segmentation on skb.
3434  *	@skb: buffer to segment
3435  *	@features: features for the output path (see dev->features)
3436  *	@tx_path: whether it is called in TX path
3437  *
3438  *	This function segments the given skb and returns a list of segments.
3439  *
3440  *	It may return NULL if the skb requires no segmentation.  This is
3441  *	only possible when GSO is used for verifying header integrity.
3442  *
3443  *	Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
3444  */
3445 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3446 				  netdev_features_t features, bool tx_path)
3447 {
3448 	struct sk_buff *segs;
3449 
3450 	if (unlikely(skb_needs_check(skb, tx_path))) {
3451 		int err;
3452 
3453 		/* We're going to init ->check field in TCP or UDP header */
3454 		err = skb_cow_head(skb, 0);
3455 		if (err < 0)
3456 			return ERR_PTR(err);
3457 	}
3458 
3459 	/* Only report GSO partial support if it will enable us to
3460 	 * support segmentation on this frame without needing additional
3461 	 * work.
3462 	 */
3463 	if (features & NETIF_F_GSO_PARTIAL) {
3464 		netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3465 		struct net_device *dev = skb->dev;
3466 
3467 		partial_features |= dev->features & dev->gso_partial_features;
3468 		if (!skb_gso_ok(skb, features | partial_features))
3469 			features &= ~NETIF_F_GSO_PARTIAL;
3470 	}
3471 
3472 	BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
3473 		     sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3474 
3475 	SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3476 	SKB_GSO_CB(skb)->encap_level = 0;
3477 
3478 	skb_reset_mac_header(skb);
3479 	skb_reset_mac_len(skb);
3480 
3481 	segs = skb_mac_gso_segment(skb, features);
3482 
3483 	if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3484 		skb_warn_bad_offload(skb);
3485 
3486 	return segs;
3487 }
3488 EXPORT_SYMBOL(__skb_gso_segment);
3489 
3490 /* Take action when hardware reception checksum errors are detected. */
3491 #ifdef CONFIG_BUG
3492 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3493 {
3494 	pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3495 	skb_dump(KERN_ERR, skb, true);
3496 	dump_stack();
3497 }
3498 
3499 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3500 {
3501 	DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3502 }
3503 EXPORT_SYMBOL(netdev_rx_csum_fault);
3504 #endif
3505 
3506 /* XXX: check that highmem exists at all on the given machine. */
3507 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3508 {
3509 #ifdef CONFIG_HIGHMEM
3510 	int i;
3511 
3512 	if (!(dev->features & NETIF_F_HIGHDMA)) {
3513 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3514 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3515 
3516 			if (PageHighMem(skb_frag_page(frag)))
3517 				return 1;
3518 		}
3519 	}
3520 #endif
3521 	return 0;
3522 }
3523 
3524 /* If MPLS offload request, verify we are testing hardware MPLS features
3525  * instead of standard features for the netdev.
3526  */
3527 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3528 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3529 					   netdev_features_t features,
3530 					   __be16 type)
3531 {
3532 	if (eth_p_mpls(type))
3533 		features &= skb->dev->mpls_features;
3534 
3535 	return features;
3536 }
3537 #else
3538 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3539 					   netdev_features_t features,
3540 					   __be16 type)
3541 {
3542 	return features;
3543 }
3544 #endif
3545 
3546 static netdev_features_t harmonize_features(struct sk_buff *skb,
3547 	netdev_features_t features)
3548 {
3549 	__be16 type;
3550 
3551 	type = skb_network_protocol(skb, NULL);
3552 	features = net_mpls_features(skb, features, type);
3553 
3554 	if (skb->ip_summed != CHECKSUM_NONE &&
3555 	    !can_checksum_protocol(features, type)) {
3556 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3557 	}
3558 	if (illegal_highdma(skb->dev, skb))
3559 		features &= ~NETIF_F_SG;
3560 
3561 	return features;
3562 }
3563 
3564 netdev_features_t passthru_features_check(struct sk_buff *skb,
3565 					  struct net_device *dev,
3566 					  netdev_features_t features)
3567 {
3568 	return features;
3569 }
3570 EXPORT_SYMBOL(passthru_features_check);
3571 
3572 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3573 					     struct net_device *dev,
3574 					     netdev_features_t features)
3575 {
3576 	return vlan_features_check(skb, features);
3577 }
3578 
3579 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3580 					    struct net_device *dev,
3581 					    netdev_features_t features)
3582 {
3583 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
3584 
3585 	if (gso_segs > dev->gso_max_segs)
3586 		return features & ~NETIF_F_GSO_MASK;
3587 
3588 	if (!skb_shinfo(skb)->gso_type) {
3589 		skb_warn_bad_offload(skb);
3590 		return features & ~NETIF_F_GSO_MASK;
3591 	}
3592 
3593 	/* Support for GSO partial features requires software
3594 	 * intervention before we can actually process the packets
3595 	 * so we need to strip support for any partial features now
3596 	 * and we can pull them back in after we have partially
3597 	 * segmented the frame.
3598 	 */
3599 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3600 		features &= ~dev->gso_partial_features;
3601 
3602 	/* Make sure to clear the IPv4 ID mangling feature if the
3603 	 * IPv4 header has the potential to be fragmented.
3604 	 */
3605 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3606 		struct iphdr *iph = skb->encapsulation ?
3607 				    inner_ip_hdr(skb) : ip_hdr(skb);
3608 
3609 		if (!(iph->frag_off & htons(IP_DF)))
3610 			features &= ~NETIF_F_TSO_MANGLEID;
3611 	}
3612 
3613 	return features;
3614 }
3615 
3616 netdev_features_t netif_skb_features(struct sk_buff *skb)
3617 {
3618 	struct net_device *dev = skb->dev;
3619 	netdev_features_t features = dev->features;
3620 
3621 	if (skb_is_gso(skb))
3622 		features = gso_features_check(skb, dev, features);
3623 
3624 	/* If encapsulation offload request, verify we are testing
3625 	 * hardware encapsulation features instead of standard
3626 	 * features for the netdev
3627 	 */
3628 	if (skb->encapsulation)
3629 		features &= dev->hw_enc_features;
3630 
3631 	if (skb_vlan_tagged(skb))
3632 		features = netdev_intersect_features(features,
3633 						     dev->vlan_features |
3634 						     NETIF_F_HW_VLAN_CTAG_TX |
3635 						     NETIF_F_HW_VLAN_STAG_TX);
3636 
3637 	if (dev->netdev_ops->ndo_features_check)
3638 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
3639 								features);
3640 	else
3641 		features &= dflt_features_check(skb, dev, features);
3642 
3643 	return harmonize_features(skb, features);
3644 }
3645 EXPORT_SYMBOL(netif_skb_features);
3646 
3647 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3648 		    struct netdev_queue *txq, bool more)
3649 {
3650 	unsigned int len;
3651 	int rc;
3652 
3653 	if (dev_nit_active(dev))
3654 		dev_queue_xmit_nit(skb, dev);
3655 
3656 	len = skb->len;
3657 	PRANDOM_ADD_NOISE(skb, dev, txq, len + jiffies);
3658 	trace_net_dev_start_xmit(skb, dev);
3659 	rc = netdev_start_xmit(skb, dev, txq, more);
3660 	trace_net_dev_xmit(skb, rc, dev, len);
3661 
3662 	return rc;
3663 }
3664 
3665 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3666 				    struct netdev_queue *txq, int *ret)
3667 {
3668 	struct sk_buff *skb = first;
3669 	int rc = NETDEV_TX_OK;
3670 
3671 	while (skb) {
3672 		struct sk_buff *next = skb->next;
3673 
3674 		skb_mark_not_on_list(skb);
3675 		rc = xmit_one(skb, dev, txq, next != NULL);
3676 		if (unlikely(!dev_xmit_complete(rc))) {
3677 			skb->next = next;
3678 			goto out;
3679 		}
3680 
3681 		skb = next;
3682 		if (netif_tx_queue_stopped(txq) && skb) {
3683 			rc = NETDEV_TX_BUSY;
3684 			break;
3685 		}
3686 	}
3687 
3688 out:
3689 	*ret = rc;
3690 	return skb;
3691 }
3692 
3693 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3694 					  netdev_features_t features)
3695 {
3696 	if (skb_vlan_tag_present(skb) &&
3697 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3698 		skb = __vlan_hwaccel_push_inside(skb);
3699 	return skb;
3700 }
3701 
3702 int skb_csum_hwoffload_help(struct sk_buff *skb,
3703 			    const netdev_features_t features)
3704 {
3705 	if (unlikely(skb_csum_is_sctp(skb)))
3706 		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3707 			skb_crc32c_csum_help(skb);
3708 
3709 	if (features & NETIF_F_HW_CSUM)
3710 		return 0;
3711 
3712 	if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3713 		switch (skb->csum_offset) {
3714 		case offsetof(struct tcphdr, check):
3715 		case offsetof(struct udphdr, check):
3716 			return 0;
3717 		}
3718 	}
3719 
3720 	return skb_checksum_help(skb);
3721 }
3722 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3723 
3724 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3725 {
3726 	netdev_features_t features;
3727 
3728 	features = netif_skb_features(skb);
3729 	skb = validate_xmit_vlan(skb, features);
3730 	if (unlikely(!skb))
3731 		goto out_null;
3732 
3733 	skb = sk_validate_xmit_skb(skb, dev);
3734 	if (unlikely(!skb))
3735 		goto out_null;
3736 
3737 	if (netif_needs_gso(skb, features)) {
3738 		struct sk_buff *segs;
3739 
3740 		segs = skb_gso_segment(skb, features);
3741 		if (IS_ERR(segs)) {
3742 			goto out_kfree_skb;
3743 		} else if (segs) {
3744 			consume_skb(skb);
3745 			skb = segs;
3746 		}
3747 	} else {
3748 		if (skb_needs_linearize(skb, features) &&
3749 		    __skb_linearize(skb))
3750 			goto out_kfree_skb;
3751 
3752 		/* If packet is not checksummed and device does not
3753 		 * support checksumming for this protocol, complete
3754 		 * checksumming here.
3755 		 */
3756 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3757 			if (skb->encapsulation)
3758 				skb_set_inner_transport_header(skb,
3759 							       skb_checksum_start_offset(skb));
3760 			else
3761 				skb_set_transport_header(skb,
3762 							 skb_checksum_start_offset(skb));
3763 			if (skb_csum_hwoffload_help(skb, features))
3764 				goto out_kfree_skb;
3765 		}
3766 	}
3767 
3768 	skb = validate_xmit_xfrm(skb, features, again);
3769 
3770 	return skb;
3771 
3772 out_kfree_skb:
3773 	kfree_skb(skb);
3774 out_null:
3775 	atomic_long_inc(&dev->tx_dropped);
3776 	return NULL;
3777 }
3778 
3779 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3780 {
3781 	struct sk_buff *next, *head = NULL, *tail;
3782 
3783 	for (; skb != NULL; skb = next) {
3784 		next = skb->next;
3785 		skb_mark_not_on_list(skb);
3786 
3787 		/* in case skb wont be segmented, point to itself */
3788 		skb->prev = skb;
3789 
3790 		skb = validate_xmit_skb(skb, dev, again);
3791 		if (!skb)
3792 			continue;
3793 
3794 		if (!head)
3795 			head = skb;
3796 		else
3797 			tail->next = skb;
3798 		/* If skb was segmented, skb->prev points to
3799 		 * the last segment. If not, it still contains skb.
3800 		 */
3801 		tail = skb->prev;
3802 	}
3803 	return head;
3804 }
3805 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3806 
3807 static void qdisc_pkt_len_init(struct sk_buff *skb)
3808 {
3809 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3810 
3811 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3812 
3813 	/* To get more precise estimation of bytes sent on wire,
3814 	 * we add to pkt_len the headers size of all segments
3815 	 */
3816 	if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3817 		unsigned int hdr_len;
3818 		u16 gso_segs = shinfo->gso_segs;
3819 
3820 		/* mac layer + network layer */
3821 		hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3822 
3823 		/* + transport layer */
3824 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3825 			const struct tcphdr *th;
3826 			struct tcphdr _tcphdr;
3827 
3828 			th = skb_header_pointer(skb, skb_transport_offset(skb),
3829 						sizeof(_tcphdr), &_tcphdr);
3830 			if (likely(th))
3831 				hdr_len += __tcp_hdrlen(th);
3832 		} else {
3833 			struct udphdr _udphdr;
3834 
3835 			if (skb_header_pointer(skb, skb_transport_offset(skb),
3836 					       sizeof(_udphdr), &_udphdr))
3837 				hdr_len += sizeof(struct udphdr);
3838 		}
3839 
3840 		if (shinfo->gso_type & SKB_GSO_DODGY)
3841 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3842 						shinfo->gso_size);
3843 
3844 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3845 	}
3846 }
3847 
3848 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
3849 			     struct sk_buff **to_free,
3850 			     struct netdev_queue *txq)
3851 {
3852 	int rc;
3853 
3854 	rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
3855 	if (rc == NET_XMIT_SUCCESS)
3856 		trace_qdisc_enqueue(q, txq, skb);
3857 	return rc;
3858 }
3859 
3860 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3861 				 struct net_device *dev,
3862 				 struct netdev_queue *txq)
3863 {
3864 	spinlock_t *root_lock = qdisc_lock(q);
3865 	struct sk_buff *to_free = NULL;
3866 	bool contended;
3867 	int rc;
3868 
3869 	qdisc_calculate_pkt_len(skb, q);
3870 
3871 	if (q->flags & TCQ_F_NOLOCK) {
3872 		if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
3873 		    qdisc_run_begin(q)) {
3874 			/* Retest nolock_qdisc_is_empty() within the protection
3875 			 * of q->seqlock to protect from racing with requeuing.
3876 			 */
3877 			if (unlikely(!nolock_qdisc_is_empty(q))) {
3878 				rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3879 				__qdisc_run(q);
3880 				qdisc_run_end(q);
3881 
3882 				goto no_lock_out;
3883 			}
3884 
3885 			qdisc_bstats_cpu_update(q, skb);
3886 			if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
3887 			    !nolock_qdisc_is_empty(q))
3888 				__qdisc_run(q);
3889 
3890 			qdisc_run_end(q);
3891 			return NET_XMIT_SUCCESS;
3892 		}
3893 
3894 		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3895 		qdisc_run(q);
3896 
3897 no_lock_out:
3898 		if (unlikely(to_free))
3899 			kfree_skb_list(to_free);
3900 		return rc;
3901 	}
3902 
3903 	/*
3904 	 * Heuristic to force contended enqueues to serialize on a
3905 	 * separate lock before trying to get qdisc main lock.
3906 	 * This permits qdisc->running owner to get the lock more
3907 	 * often and dequeue packets faster.
3908 	 */
3909 	contended = qdisc_is_running(q);
3910 	if (unlikely(contended))
3911 		spin_lock(&q->busylock);
3912 
3913 	spin_lock(root_lock);
3914 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3915 		__qdisc_drop(skb, &to_free);
3916 		rc = NET_XMIT_DROP;
3917 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3918 		   qdisc_run_begin(q)) {
3919 		/*
3920 		 * This is a work-conserving queue; there are no old skbs
3921 		 * waiting to be sent out; and the qdisc is not running -
3922 		 * xmit the skb directly.
3923 		 */
3924 
3925 		qdisc_bstats_update(q, skb);
3926 
3927 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3928 			if (unlikely(contended)) {
3929 				spin_unlock(&q->busylock);
3930 				contended = false;
3931 			}
3932 			__qdisc_run(q);
3933 		}
3934 
3935 		qdisc_run_end(q);
3936 		rc = NET_XMIT_SUCCESS;
3937 	} else {
3938 		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3939 		if (qdisc_run_begin(q)) {
3940 			if (unlikely(contended)) {
3941 				spin_unlock(&q->busylock);
3942 				contended = false;
3943 			}
3944 			__qdisc_run(q);
3945 			qdisc_run_end(q);
3946 		}
3947 	}
3948 	spin_unlock(root_lock);
3949 	if (unlikely(to_free))
3950 		kfree_skb_list(to_free);
3951 	if (unlikely(contended))
3952 		spin_unlock(&q->busylock);
3953 	return rc;
3954 }
3955 
3956 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3957 static void skb_update_prio(struct sk_buff *skb)
3958 {
3959 	const struct netprio_map *map;
3960 	const struct sock *sk;
3961 	unsigned int prioidx;
3962 
3963 	if (skb->priority)
3964 		return;
3965 	map = rcu_dereference_bh(skb->dev->priomap);
3966 	if (!map)
3967 		return;
3968 	sk = skb_to_full_sk(skb);
3969 	if (!sk)
3970 		return;
3971 
3972 	prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3973 
3974 	if (prioidx < map->priomap_len)
3975 		skb->priority = map->priomap[prioidx];
3976 }
3977 #else
3978 #define skb_update_prio(skb)
3979 #endif
3980 
3981 /**
3982  *	dev_loopback_xmit - loop back @skb
3983  *	@net: network namespace this loopback is happening in
3984  *	@sk:  sk needed to be a netfilter okfn
3985  *	@skb: buffer to transmit
3986  */
3987 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3988 {
3989 	skb_reset_mac_header(skb);
3990 	__skb_pull(skb, skb_network_offset(skb));
3991 	skb->pkt_type = PACKET_LOOPBACK;
3992 	skb->ip_summed = CHECKSUM_UNNECESSARY;
3993 	WARN_ON(!skb_dst(skb));
3994 	skb_dst_force(skb);
3995 	netif_rx_ni(skb);
3996 	return 0;
3997 }
3998 EXPORT_SYMBOL(dev_loopback_xmit);
3999 
4000 #ifdef CONFIG_NET_EGRESS
4001 static struct sk_buff *
4002 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4003 {
4004 	struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
4005 	struct tcf_result cl_res;
4006 
4007 	if (!miniq)
4008 		return skb;
4009 
4010 	/* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
4011 	qdisc_skb_cb(skb)->mru = 0;
4012 	qdisc_skb_cb(skb)->post_ct = false;
4013 	mini_qdisc_bstats_cpu_update(miniq, skb);
4014 
4015 	switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
4016 	case TC_ACT_OK:
4017 	case TC_ACT_RECLASSIFY:
4018 		skb->tc_index = TC_H_MIN(cl_res.classid);
4019 		break;
4020 	case TC_ACT_SHOT:
4021 		mini_qdisc_qstats_cpu_drop(miniq);
4022 		*ret = NET_XMIT_DROP;
4023 		kfree_skb(skb);
4024 		return NULL;
4025 	case TC_ACT_STOLEN:
4026 	case TC_ACT_QUEUED:
4027 	case TC_ACT_TRAP:
4028 		*ret = NET_XMIT_SUCCESS;
4029 		consume_skb(skb);
4030 		return NULL;
4031 	case TC_ACT_REDIRECT:
4032 		/* No need to push/pop skb's mac_header here on egress! */
4033 		skb_do_redirect(skb);
4034 		*ret = NET_XMIT_SUCCESS;
4035 		return NULL;
4036 	default:
4037 		break;
4038 	}
4039 
4040 	return skb;
4041 }
4042 #endif /* CONFIG_NET_EGRESS */
4043 
4044 #ifdef CONFIG_XPS
4045 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
4046 			       struct xps_dev_maps *dev_maps, unsigned int tci)
4047 {
4048 	int tc = netdev_get_prio_tc_map(dev, skb->priority);
4049 	struct xps_map *map;
4050 	int queue_index = -1;
4051 
4052 	if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
4053 		return queue_index;
4054 
4055 	tci *= dev_maps->num_tc;
4056 	tci += tc;
4057 
4058 	map = rcu_dereference(dev_maps->attr_map[tci]);
4059 	if (map) {
4060 		if (map->len == 1)
4061 			queue_index = map->queues[0];
4062 		else
4063 			queue_index = map->queues[reciprocal_scale(
4064 						skb_get_hash(skb), map->len)];
4065 		if (unlikely(queue_index >= dev->real_num_tx_queues))
4066 			queue_index = -1;
4067 	}
4068 	return queue_index;
4069 }
4070 #endif
4071 
4072 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4073 			 struct sk_buff *skb)
4074 {
4075 #ifdef CONFIG_XPS
4076 	struct xps_dev_maps *dev_maps;
4077 	struct sock *sk = skb->sk;
4078 	int queue_index = -1;
4079 
4080 	if (!static_key_false(&xps_needed))
4081 		return -1;
4082 
4083 	rcu_read_lock();
4084 	if (!static_key_false(&xps_rxqs_needed))
4085 		goto get_cpus_map;
4086 
4087 	dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4088 	if (dev_maps) {
4089 		int tci = sk_rx_queue_get(sk);
4090 
4091 		if (tci >= 0)
4092 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4093 							  tci);
4094 	}
4095 
4096 get_cpus_map:
4097 	if (queue_index < 0) {
4098 		dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4099 		if (dev_maps) {
4100 			unsigned int tci = skb->sender_cpu - 1;
4101 
4102 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4103 							  tci);
4104 		}
4105 	}
4106 	rcu_read_unlock();
4107 
4108 	return queue_index;
4109 #else
4110 	return -1;
4111 #endif
4112 }
4113 
4114 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4115 		     struct net_device *sb_dev)
4116 {
4117 	return 0;
4118 }
4119 EXPORT_SYMBOL(dev_pick_tx_zero);
4120 
4121 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
4122 		       struct net_device *sb_dev)
4123 {
4124 	return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4125 }
4126 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4127 
4128 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4129 		     struct net_device *sb_dev)
4130 {
4131 	struct sock *sk = skb->sk;
4132 	int queue_index = sk_tx_queue_get(sk);
4133 
4134 	sb_dev = sb_dev ? : dev;
4135 
4136 	if (queue_index < 0 || skb->ooo_okay ||
4137 	    queue_index >= dev->real_num_tx_queues) {
4138 		int new_index = get_xps_queue(dev, sb_dev, skb);
4139 
4140 		if (new_index < 0)
4141 			new_index = skb_tx_hash(dev, sb_dev, skb);
4142 
4143 		if (queue_index != new_index && sk &&
4144 		    sk_fullsock(sk) &&
4145 		    rcu_access_pointer(sk->sk_dst_cache))
4146 			sk_tx_queue_set(sk, new_index);
4147 
4148 		queue_index = new_index;
4149 	}
4150 
4151 	return queue_index;
4152 }
4153 EXPORT_SYMBOL(netdev_pick_tx);
4154 
4155 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4156 					 struct sk_buff *skb,
4157 					 struct net_device *sb_dev)
4158 {
4159 	int queue_index = 0;
4160 
4161 #ifdef CONFIG_XPS
4162 	u32 sender_cpu = skb->sender_cpu - 1;
4163 
4164 	if (sender_cpu >= (u32)NR_CPUS)
4165 		skb->sender_cpu = raw_smp_processor_id() + 1;
4166 #endif
4167 
4168 	if (dev->real_num_tx_queues != 1) {
4169 		const struct net_device_ops *ops = dev->netdev_ops;
4170 
4171 		if (ops->ndo_select_queue)
4172 			queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4173 		else
4174 			queue_index = netdev_pick_tx(dev, skb, sb_dev);
4175 
4176 		queue_index = netdev_cap_txqueue(dev, queue_index);
4177 	}
4178 
4179 	skb_set_queue_mapping(skb, queue_index);
4180 	return netdev_get_tx_queue(dev, queue_index);
4181 }
4182 
4183 /**
4184  *	__dev_queue_xmit - transmit a buffer
4185  *	@skb: buffer to transmit
4186  *	@sb_dev: suboordinate device used for L2 forwarding offload
4187  *
4188  *	Queue a buffer for transmission to a network device. The caller must
4189  *	have set the device and priority and built the buffer before calling
4190  *	this function. The function can be called from an interrupt.
4191  *
4192  *	A negative errno code is returned on a failure. A success does not
4193  *	guarantee the frame will be transmitted as it may be dropped due
4194  *	to congestion or traffic shaping.
4195  *
4196  * -----------------------------------------------------------------------------------
4197  *      I notice this method can also return errors from the queue disciplines,
4198  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
4199  *      be positive.
4200  *
4201  *      Regardless of the return value, the skb is consumed, so it is currently
4202  *      difficult to retry a send to this method.  (You can bump the ref count
4203  *      before sending to hold a reference for retry if you are careful.)
4204  *
4205  *      When calling this method, interrupts MUST be enabled.  This is because
4206  *      the BH enable code must have IRQs enabled so that it will not deadlock.
4207  *          --BLG
4208  */
4209 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4210 {
4211 	struct net_device *dev = skb->dev;
4212 	struct netdev_queue *txq;
4213 	struct Qdisc *q;
4214 	int rc = -ENOMEM;
4215 	bool again = false;
4216 
4217 	skb_reset_mac_header(skb);
4218 
4219 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4220 		__skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4221 
4222 	/* Disable soft irqs for various locks below. Also
4223 	 * stops preemption for RCU.
4224 	 */
4225 	rcu_read_lock_bh();
4226 
4227 	skb_update_prio(skb);
4228 
4229 	qdisc_pkt_len_init(skb);
4230 #ifdef CONFIG_NET_CLS_ACT
4231 	skb->tc_at_ingress = 0;
4232 # ifdef CONFIG_NET_EGRESS
4233 	if (static_branch_unlikely(&egress_needed_key)) {
4234 		skb = sch_handle_egress(skb, &rc, dev);
4235 		if (!skb)
4236 			goto out;
4237 	}
4238 # endif
4239 #endif
4240 	/* If device/qdisc don't need skb->dst, release it right now while
4241 	 * its hot in this cpu cache.
4242 	 */
4243 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4244 		skb_dst_drop(skb);
4245 	else
4246 		skb_dst_force(skb);
4247 
4248 	txq = netdev_core_pick_tx(dev, skb, sb_dev);
4249 	q = rcu_dereference_bh(txq->qdisc);
4250 
4251 	trace_net_dev_queue(skb);
4252 	if (q->enqueue) {
4253 		rc = __dev_xmit_skb(skb, q, dev, txq);
4254 		goto out;
4255 	}
4256 
4257 	/* The device has no queue. Common case for software devices:
4258 	 * loopback, all the sorts of tunnels...
4259 
4260 	 * Really, it is unlikely that netif_tx_lock protection is necessary
4261 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4262 	 * counters.)
4263 	 * However, it is possible, that they rely on protection
4264 	 * made by us here.
4265 
4266 	 * Check this and shot the lock. It is not prone from deadlocks.
4267 	 *Either shot noqueue qdisc, it is even simpler 8)
4268 	 */
4269 	if (dev->flags & IFF_UP) {
4270 		int cpu = smp_processor_id(); /* ok because BHs are off */
4271 
4272 		if (txq->xmit_lock_owner != cpu) {
4273 			if (dev_xmit_recursion())
4274 				goto recursion_alert;
4275 
4276 			skb = validate_xmit_skb(skb, dev, &again);
4277 			if (!skb)
4278 				goto out;
4279 
4280 			PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4281 			HARD_TX_LOCK(dev, txq, cpu);
4282 
4283 			if (!netif_xmit_stopped(txq)) {
4284 				dev_xmit_recursion_inc();
4285 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4286 				dev_xmit_recursion_dec();
4287 				if (dev_xmit_complete(rc)) {
4288 					HARD_TX_UNLOCK(dev, txq);
4289 					goto out;
4290 				}
4291 			}
4292 			HARD_TX_UNLOCK(dev, txq);
4293 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4294 					     dev->name);
4295 		} else {
4296 			/* Recursion is detected! It is possible,
4297 			 * unfortunately
4298 			 */
4299 recursion_alert:
4300 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4301 					     dev->name);
4302 		}
4303 	}
4304 
4305 	rc = -ENETDOWN;
4306 	rcu_read_unlock_bh();
4307 
4308 	atomic_long_inc(&dev->tx_dropped);
4309 	kfree_skb_list(skb);
4310 	return rc;
4311 out:
4312 	rcu_read_unlock_bh();
4313 	return rc;
4314 }
4315 
4316 int dev_queue_xmit(struct sk_buff *skb)
4317 {
4318 	return __dev_queue_xmit(skb, NULL);
4319 }
4320 EXPORT_SYMBOL(dev_queue_xmit);
4321 
4322 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
4323 {
4324 	return __dev_queue_xmit(skb, sb_dev);
4325 }
4326 EXPORT_SYMBOL(dev_queue_xmit_accel);
4327 
4328 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4329 {
4330 	struct net_device *dev = skb->dev;
4331 	struct sk_buff *orig_skb = skb;
4332 	struct netdev_queue *txq;
4333 	int ret = NETDEV_TX_BUSY;
4334 	bool again = false;
4335 
4336 	if (unlikely(!netif_running(dev) ||
4337 		     !netif_carrier_ok(dev)))
4338 		goto drop;
4339 
4340 	skb = validate_xmit_skb_list(skb, dev, &again);
4341 	if (skb != orig_skb)
4342 		goto drop;
4343 
4344 	skb_set_queue_mapping(skb, queue_id);
4345 	txq = skb_get_tx_queue(dev, skb);
4346 	PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4347 
4348 	local_bh_disable();
4349 
4350 	dev_xmit_recursion_inc();
4351 	HARD_TX_LOCK(dev, txq, smp_processor_id());
4352 	if (!netif_xmit_frozen_or_drv_stopped(txq))
4353 		ret = netdev_start_xmit(skb, dev, txq, false);
4354 	HARD_TX_UNLOCK(dev, txq);
4355 	dev_xmit_recursion_dec();
4356 
4357 	local_bh_enable();
4358 	return ret;
4359 drop:
4360 	atomic_long_inc(&dev->tx_dropped);
4361 	kfree_skb_list(skb);
4362 	return NET_XMIT_DROP;
4363 }
4364 EXPORT_SYMBOL(__dev_direct_xmit);
4365 
4366 /*************************************************************************
4367  *			Receiver routines
4368  *************************************************************************/
4369 
4370 int netdev_max_backlog __read_mostly = 1000;
4371 EXPORT_SYMBOL(netdev_max_backlog);
4372 
4373 int netdev_tstamp_prequeue __read_mostly = 1;
4374 int netdev_budget __read_mostly = 300;
4375 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4376 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4377 int weight_p __read_mostly = 64;           /* old backlog weight */
4378 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4379 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4380 int dev_rx_weight __read_mostly = 64;
4381 int dev_tx_weight __read_mostly = 64;
4382 /* Maximum number of GRO_NORMAL skbs to batch up for list-RX */
4383 int gro_normal_batch __read_mostly = 8;
4384 
4385 /* Called with irq disabled */
4386 static inline void ____napi_schedule(struct softnet_data *sd,
4387 				     struct napi_struct *napi)
4388 {
4389 	struct task_struct *thread;
4390 
4391 	if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4392 		/* Paired with smp_mb__before_atomic() in
4393 		 * napi_enable()/dev_set_threaded().
4394 		 * Use READ_ONCE() to guarantee a complete
4395 		 * read on napi->thread. Only call
4396 		 * wake_up_process() when it's not NULL.
4397 		 */
4398 		thread = READ_ONCE(napi->thread);
4399 		if (thread) {
4400 			/* Avoid doing set_bit() if the thread is in
4401 			 * INTERRUPTIBLE state, cause napi_thread_wait()
4402 			 * makes sure to proceed with napi polling
4403 			 * if the thread is explicitly woken from here.
4404 			 */
4405 			if (READ_ONCE(thread->__state) != TASK_INTERRUPTIBLE)
4406 				set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4407 			wake_up_process(thread);
4408 			return;
4409 		}
4410 	}
4411 
4412 	list_add_tail(&napi->poll_list, &sd->poll_list);
4413 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4414 }
4415 
4416 #ifdef CONFIG_RPS
4417 
4418 /* One global table that all flow-based protocols share. */
4419 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4420 EXPORT_SYMBOL(rps_sock_flow_table);
4421 u32 rps_cpu_mask __read_mostly;
4422 EXPORT_SYMBOL(rps_cpu_mask);
4423 
4424 struct static_key_false rps_needed __read_mostly;
4425 EXPORT_SYMBOL(rps_needed);
4426 struct static_key_false rfs_needed __read_mostly;
4427 EXPORT_SYMBOL(rfs_needed);
4428 
4429 static struct rps_dev_flow *
4430 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4431 	    struct rps_dev_flow *rflow, u16 next_cpu)
4432 {
4433 	if (next_cpu < nr_cpu_ids) {
4434 #ifdef CONFIG_RFS_ACCEL
4435 		struct netdev_rx_queue *rxqueue;
4436 		struct rps_dev_flow_table *flow_table;
4437 		struct rps_dev_flow *old_rflow;
4438 		u32 flow_id;
4439 		u16 rxq_index;
4440 		int rc;
4441 
4442 		/* Should we steer this flow to a different hardware queue? */
4443 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4444 		    !(dev->features & NETIF_F_NTUPLE))
4445 			goto out;
4446 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4447 		if (rxq_index == skb_get_rx_queue(skb))
4448 			goto out;
4449 
4450 		rxqueue = dev->_rx + rxq_index;
4451 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
4452 		if (!flow_table)
4453 			goto out;
4454 		flow_id = skb_get_hash(skb) & flow_table->mask;
4455 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4456 							rxq_index, flow_id);
4457 		if (rc < 0)
4458 			goto out;
4459 		old_rflow = rflow;
4460 		rflow = &flow_table->flows[flow_id];
4461 		rflow->filter = rc;
4462 		if (old_rflow->filter == rflow->filter)
4463 			old_rflow->filter = RPS_NO_FILTER;
4464 	out:
4465 #endif
4466 		rflow->last_qtail =
4467 			per_cpu(softnet_data, next_cpu).input_queue_head;
4468 	}
4469 
4470 	rflow->cpu = next_cpu;
4471 	return rflow;
4472 }
4473 
4474 /*
4475  * get_rps_cpu is called from netif_receive_skb and returns the target
4476  * CPU from the RPS map of the receiving queue for a given skb.
4477  * rcu_read_lock must be held on entry.
4478  */
4479 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4480 		       struct rps_dev_flow **rflowp)
4481 {
4482 	const struct rps_sock_flow_table *sock_flow_table;
4483 	struct netdev_rx_queue *rxqueue = dev->_rx;
4484 	struct rps_dev_flow_table *flow_table;
4485 	struct rps_map *map;
4486 	int cpu = -1;
4487 	u32 tcpu;
4488 	u32 hash;
4489 
4490 	if (skb_rx_queue_recorded(skb)) {
4491 		u16 index = skb_get_rx_queue(skb);
4492 
4493 		if (unlikely(index >= dev->real_num_rx_queues)) {
4494 			WARN_ONCE(dev->real_num_rx_queues > 1,
4495 				  "%s received packet on queue %u, but number "
4496 				  "of RX queues is %u\n",
4497 				  dev->name, index, dev->real_num_rx_queues);
4498 			goto done;
4499 		}
4500 		rxqueue += index;
4501 	}
4502 
4503 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4504 
4505 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4506 	map = rcu_dereference(rxqueue->rps_map);
4507 	if (!flow_table && !map)
4508 		goto done;
4509 
4510 	skb_reset_network_header(skb);
4511 	hash = skb_get_hash(skb);
4512 	if (!hash)
4513 		goto done;
4514 
4515 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
4516 	if (flow_table && sock_flow_table) {
4517 		struct rps_dev_flow *rflow;
4518 		u32 next_cpu;
4519 		u32 ident;
4520 
4521 		/* First check into global flow table if there is a match */
4522 		ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4523 		if ((ident ^ hash) & ~rps_cpu_mask)
4524 			goto try_rps;
4525 
4526 		next_cpu = ident & rps_cpu_mask;
4527 
4528 		/* OK, now we know there is a match,
4529 		 * we can look at the local (per receive queue) flow table
4530 		 */
4531 		rflow = &flow_table->flows[hash & flow_table->mask];
4532 		tcpu = rflow->cpu;
4533 
4534 		/*
4535 		 * If the desired CPU (where last recvmsg was done) is
4536 		 * different from current CPU (one in the rx-queue flow
4537 		 * table entry), switch if one of the following holds:
4538 		 *   - Current CPU is unset (>= nr_cpu_ids).
4539 		 *   - Current CPU is offline.
4540 		 *   - The current CPU's queue tail has advanced beyond the
4541 		 *     last packet that was enqueued using this table entry.
4542 		 *     This guarantees that all previous packets for the flow
4543 		 *     have been dequeued, thus preserving in order delivery.
4544 		 */
4545 		if (unlikely(tcpu != next_cpu) &&
4546 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4547 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4548 		      rflow->last_qtail)) >= 0)) {
4549 			tcpu = next_cpu;
4550 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4551 		}
4552 
4553 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4554 			*rflowp = rflow;
4555 			cpu = tcpu;
4556 			goto done;
4557 		}
4558 	}
4559 
4560 try_rps:
4561 
4562 	if (map) {
4563 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4564 		if (cpu_online(tcpu)) {
4565 			cpu = tcpu;
4566 			goto done;
4567 		}
4568 	}
4569 
4570 done:
4571 	return cpu;
4572 }
4573 
4574 #ifdef CONFIG_RFS_ACCEL
4575 
4576 /**
4577  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4578  * @dev: Device on which the filter was set
4579  * @rxq_index: RX queue index
4580  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4581  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4582  *
4583  * Drivers that implement ndo_rx_flow_steer() should periodically call
4584  * this function for each installed filter and remove the filters for
4585  * which it returns %true.
4586  */
4587 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4588 			 u32 flow_id, u16 filter_id)
4589 {
4590 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4591 	struct rps_dev_flow_table *flow_table;
4592 	struct rps_dev_flow *rflow;
4593 	bool expire = true;
4594 	unsigned int cpu;
4595 
4596 	rcu_read_lock();
4597 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4598 	if (flow_table && flow_id <= flow_table->mask) {
4599 		rflow = &flow_table->flows[flow_id];
4600 		cpu = READ_ONCE(rflow->cpu);
4601 		if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4602 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4603 			   rflow->last_qtail) <
4604 		     (int)(10 * flow_table->mask)))
4605 			expire = false;
4606 	}
4607 	rcu_read_unlock();
4608 	return expire;
4609 }
4610 EXPORT_SYMBOL(rps_may_expire_flow);
4611 
4612 #endif /* CONFIG_RFS_ACCEL */
4613 
4614 /* Called from hardirq (IPI) context */
4615 static void rps_trigger_softirq(void *data)
4616 {
4617 	struct softnet_data *sd = data;
4618 
4619 	____napi_schedule(sd, &sd->backlog);
4620 	sd->received_rps++;
4621 }
4622 
4623 #endif /* CONFIG_RPS */
4624 
4625 /*
4626  * Check if this softnet_data structure is another cpu one
4627  * If yes, queue it to our IPI list and return 1
4628  * If no, return 0
4629  */
4630 static int rps_ipi_queued(struct softnet_data *sd)
4631 {
4632 #ifdef CONFIG_RPS
4633 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4634 
4635 	if (sd != mysd) {
4636 		sd->rps_ipi_next = mysd->rps_ipi_list;
4637 		mysd->rps_ipi_list = sd;
4638 
4639 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4640 		return 1;
4641 	}
4642 #endif /* CONFIG_RPS */
4643 	return 0;
4644 }
4645 
4646 #ifdef CONFIG_NET_FLOW_LIMIT
4647 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4648 #endif
4649 
4650 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4651 {
4652 #ifdef CONFIG_NET_FLOW_LIMIT
4653 	struct sd_flow_limit *fl;
4654 	struct softnet_data *sd;
4655 	unsigned int old_flow, new_flow;
4656 
4657 	if (qlen < (netdev_max_backlog >> 1))
4658 		return false;
4659 
4660 	sd = this_cpu_ptr(&softnet_data);
4661 
4662 	rcu_read_lock();
4663 	fl = rcu_dereference(sd->flow_limit);
4664 	if (fl) {
4665 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4666 		old_flow = fl->history[fl->history_head];
4667 		fl->history[fl->history_head] = new_flow;
4668 
4669 		fl->history_head++;
4670 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4671 
4672 		if (likely(fl->buckets[old_flow]))
4673 			fl->buckets[old_flow]--;
4674 
4675 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4676 			fl->count++;
4677 			rcu_read_unlock();
4678 			return true;
4679 		}
4680 	}
4681 	rcu_read_unlock();
4682 #endif
4683 	return false;
4684 }
4685 
4686 /*
4687  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4688  * queue (may be a remote CPU queue).
4689  */
4690 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4691 			      unsigned int *qtail)
4692 {
4693 	struct softnet_data *sd;
4694 	unsigned long flags;
4695 	unsigned int qlen;
4696 
4697 	sd = &per_cpu(softnet_data, cpu);
4698 
4699 	local_irq_save(flags);
4700 
4701 	rps_lock(sd);
4702 	if (!netif_running(skb->dev))
4703 		goto drop;
4704 	qlen = skb_queue_len(&sd->input_pkt_queue);
4705 	if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4706 		if (qlen) {
4707 enqueue:
4708 			__skb_queue_tail(&sd->input_pkt_queue, skb);
4709 			input_queue_tail_incr_save(sd, qtail);
4710 			rps_unlock(sd);
4711 			local_irq_restore(flags);
4712 			return NET_RX_SUCCESS;
4713 		}
4714 
4715 		/* Schedule NAPI for backlog device
4716 		 * We can use non atomic operation since we own the queue lock
4717 		 */
4718 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4719 			if (!rps_ipi_queued(sd))
4720 				____napi_schedule(sd, &sd->backlog);
4721 		}
4722 		goto enqueue;
4723 	}
4724 
4725 drop:
4726 	sd->dropped++;
4727 	rps_unlock(sd);
4728 
4729 	local_irq_restore(flags);
4730 
4731 	atomic_long_inc(&skb->dev->rx_dropped);
4732 	kfree_skb(skb);
4733 	return NET_RX_DROP;
4734 }
4735 
4736 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4737 {
4738 	struct net_device *dev = skb->dev;
4739 	struct netdev_rx_queue *rxqueue;
4740 
4741 	rxqueue = dev->_rx;
4742 
4743 	if (skb_rx_queue_recorded(skb)) {
4744 		u16 index = skb_get_rx_queue(skb);
4745 
4746 		if (unlikely(index >= dev->real_num_rx_queues)) {
4747 			WARN_ONCE(dev->real_num_rx_queues > 1,
4748 				  "%s received packet on queue %u, but number "
4749 				  "of RX queues is %u\n",
4750 				  dev->name, index, dev->real_num_rx_queues);
4751 
4752 			return rxqueue; /* Return first rxqueue */
4753 		}
4754 		rxqueue += index;
4755 	}
4756 	return rxqueue;
4757 }
4758 
4759 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4760 				     struct xdp_buff *xdp,
4761 				     struct bpf_prog *xdp_prog)
4762 {
4763 	void *orig_data, *orig_data_end, *hard_start;
4764 	struct netdev_rx_queue *rxqueue;
4765 	u32 metalen, act = XDP_DROP;
4766 	bool orig_bcast, orig_host;
4767 	u32 mac_len, frame_sz;
4768 	__be16 orig_eth_type;
4769 	struct ethhdr *eth;
4770 	int off;
4771 
4772 	/* Reinjected packets coming from act_mirred or similar should
4773 	 * not get XDP generic processing.
4774 	 */
4775 	if (skb_is_redirected(skb))
4776 		return XDP_PASS;
4777 
4778 	/* XDP packets must be linear and must have sufficient headroom
4779 	 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4780 	 * native XDP provides, thus we need to do it here as well.
4781 	 */
4782 	if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4783 	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4784 		int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4785 		int troom = skb->tail + skb->data_len - skb->end;
4786 
4787 		/* In case we have to go down the path and also linearize,
4788 		 * then lets do the pskb_expand_head() work just once here.
4789 		 */
4790 		if (pskb_expand_head(skb,
4791 				     hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4792 				     troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4793 			goto do_drop;
4794 		if (skb_linearize(skb))
4795 			goto do_drop;
4796 	}
4797 
4798 	/* The XDP program wants to see the packet starting at the MAC
4799 	 * header.
4800 	 */
4801 	mac_len = skb->data - skb_mac_header(skb);
4802 	hard_start = skb->data - skb_headroom(skb);
4803 
4804 	/* SKB "head" area always have tailroom for skb_shared_info */
4805 	frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4806 	frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4807 
4808 	rxqueue = netif_get_rxqueue(skb);
4809 	xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4810 	xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4811 			 skb_headlen(skb) + mac_len, true);
4812 
4813 	orig_data_end = xdp->data_end;
4814 	orig_data = xdp->data;
4815 	eth = (struct ethhdr *)xdp->data;
4816 	orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
4817 	orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4818 	orig_eth_type = eth->h_proto;
4819 
4820 	act = bpf_prog_run_xdp(xdp_prog, xdp);
4821 
4822 	/* check if bpf_xdp_adjust_head was used */
4823 	off = xdp->data - orig_data;
4824 	if (off) {
4825 		if (off > 0)
4826 			__skb_pull(skb, off);
4827 		else if (off < 0)
4828 			__skb_push(skb, -off);
4829 
4830 		skb->mac_header += off;
4831 		skb_reset_network_header(skb);
4832 	}
4833 
4834 	/* check if bpf_xdp_adjust_tail was used */
4835 	off = xdp->data_end - orig_data_end;
4836 	if (off != 0) {
4837 		skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4838 		skb->len += off; /* positive on grow, negative on shrink */
4839 	}
4840 
4841 	/* check if XDP changed eth hdr such SKB needs update */
4842 	eth = (struct ethhdr *)xdp->data;
4843 	if ((orig_eth_type != eth->h_proto) ||
4844 	    (orig_host != ether_addr_equal_64bits(eth->h_dest,
4845 						  skb->dev->dev_addr)) ||
4846 	    (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4847 		__skb_push(skb, ETH_HLEN);
4848 		skb->pkt_type = PACKET_HOST;
4849 		skb->protocol = eth_type_trans(skb, skb->dev);
4850 	}
4851 
4852 	switch (act) {
4853 	case XDP_REDIRECT:
4854 	case XDP_TX:
4855 		__skb_push(skb, mac_len);
4856 		break;
4857 	case XDP_PASS:
4858 		metalen = xdp->data - xdp->data_meta;
4859 		if (metalen)
4860 			skb_metadata_set(skb, metalen);
4861 		break;
4862 	default:
4863 		bpf_warn_invalid_xdp_action(act);
4864 		fallthrough;
4865 	case XDP_ABORTED:
4866 		trace_xdp_exception(skb->dev, xdp_prog, act);
4867 		fallthrough;
4868 	case XDP_DROP:
4869 	do_drop:
4870 		kfree_skb(skb);
4871 		break;
4872 	}
4873 
4874 	return act;
4875 }
4876 
4877 /* When doing generic XDP we have to bypass the qdisc layer and the
4878  * network taps in order to match in-driver-XDP behavior.
4879  */
4880 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4881 {
4882 	struct net_device *dev = skb->dev;
4883 	struct netdev_queue *txq;
4884 	bool free_skb = true;
4885 	int cpu, rc;
4886 
4887 	txq = netdev_core_pick_tx(dev, skb, NULL);
4888 	cpu = smp_processor_id();
4889 	HARD_TX_LOCK(dev, txq, cpu);
4890 	if (!netif_xmit_stopped(txq)) {
4891 		rc = netdev_start_xmit(skb, dev, txq, 0);
4892 		if (dev_xmit_complete(rc))
4893 			free_skb = false;
4894 	}
4895 	HARD_TX_UNLOCK(dev, txq);
4896 	if (free_skb) {
4897 		trace_xdp_exception(dev, xdp_prog, XDP_TX);
4898 		kfree_skb(skb);
4899 	}
4900 }
4901 
4902 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4903 
4904 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4905 {
4906 	if (xdp_prog) {
4907 		struct xdp_buff xdp;
4908 		u32 act;
4909 		int err;
4910 
4911 		act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4912 		if (act != XDP_PASS) {
4913 			switch (act) {
4914 			case XDP_REDIRECT:
4915 				err = xdp_do_generic_redirect(skb->dev, skb,
4916 							      &xdp, xdp_prog);
4917 				if (err)
4918 					goto out_redir;
4919 				break;
4920 			case XDP_TX:
4921 				generic_xdp_tx(skb, xdp_prog);
4922 				break;
4923 			}
4924 			return XDP_DROP;
4925 		}
4926 	}
4927 	return XDP_PASS;
4928 out_redir:
4929 	kfree_skb(skb);
4930 	return XDP_DROP;
4931 }
4932 EXPORT_SYMBOL_GPL(do_xdp_generic);
4933 
4934 static int netif_rx_internal(struct sk_buff *skb)
4935 {
4936 	int ret;
4937 
4938 	net_timestamp_check(netdev_tstamp_prequeue, skb);
4939 
4940 	trace_netif_rx(skb);
4941 
4942 #ifdef CONFIG_RPS
4943 	if (static_branch_unlikely(&rps_needed)) {
4944 		struct rps_dev_flow voidflow, *rflow = &voidflow;
4945 		int cpu;
4946 
4947 		preempt_disable();
4948 		rcu_read_lock();
4949 
4950 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
4951 		if (cpu < 0)
4952 			cpu = smp_processor_id();
4953 
4954 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4955 
4956 		rcu_read_unlock();
4957 		preempt_enable();
4958 	} else
4959 #endif
4960 	{
4961 		unsigned int qtail;
4962 
4963 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4964 		put_cpu();
4965 	}
4966 	return ret;
4967 }
4968 
4969 /**
4970  *	netif_rx	-	post buffer to the network code
4971  *	@skb: buffer to post
4972  *
4973  *	This function receives a packet from a device driver and queues it for
4974  *	the upper (protocol) levels to process.  It always succeeds. The buffer
4975  *	may be dropped during processing for congestion control or by the
4976  *	protocol layers.
4977  *
4978  *	return values:
4979  *	NET_RX_SUCCESS	(no congestion)
4980  *	NET_RX_DROP     (packet was dropped)
4981  *
4982  */
4983 
4984 int netif_rx(struct sk_buff *skb)
4985 {
4986 	int ret;
4987 
4988 	trace_netif_rx_entry(skb);
4989 
4990 	ret = netif_rx_internal(skb);
4991 	trace_netif_rx_exit(ret);
4992 
4993 	return ret;
4994 }
4995 EXPORT_SYMBOL(netif_rx);
4996 
4997 int netif_rx_ni(struct sk_buff *skb)
4998 {
4999 	int err;
5000 
5001 	trace_netif_rx_ni_entry(skb);
5002 
5003 	preempt_disable();
5004 	err = netif_rx_internal(skb);
5005 	if (local_softirq_pending())
5006 		do_softirq();
5007 	preempt_enable();
5008 	trace_netif_rx_ni_exit(err);
5009 
5010 	return err;
5011 }
5012 EXPORT_SYMBOL(netif_rx_ni);
5013 
5014 int netif_rx_any_context(struct sk_buff *skb)
5015 {
5016 	/*
5017 	 * If invoked from contexts which do not invoke bottom half
5018 	 * processing either at return from interrupt or when softrqs are
5019 	 * reenabled, use netif_rx_ni() which invokes bottomhalf processing
5020 	 * directly.
5021 	 */
5022 	if (in_interrupt())
5023 		return netif_rx(skb);
5024 	else
5025 		return netif_rx_ni(skb);
5026 }
5027 EXPORT_SYMBOL(netif_rx_any_context);
5028 
5029 static __latent_entropy void net_tx_action(struct softirq_action *h)
5030 {
5031 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5032 
5033 	if (sd->completion_queue) {
5034 		struct sk_buff *clist;
5035 
5036 		local_irq_disable();
5037 		clist = sd->completion_queue;
5038 		sd->completion_queue = NULL;
5039 		local_irq_enable();
5040 
5041 		while (clist) {
5042 			struct sk_buff *skb = clist;
5043 
5044 			clist = clist->next;
5045 
5046 			WARN_ON(refcount_read(&skb->users));
5047 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
5048 				trace_consume_skb(skb);
5049 			else
5050 				trace_kfree_skb(skb, net_tx_action);
5051 
5052 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5053 				__kfree_skb(skb);
5054 			else
5055 				__kfree_skb_defer(skb);
5056 		}
5057 	}
5058 
5059 	if (sd->output_queue) {
5060 		struct Qdisc *head;
5061 
5062 		local_irq_disable();
5063 		head = sd->output_queue;
5064 		sd->output_queue = NULL;
5065 		sd->output_queue_tailp = &sd->output_queue;
5066 		local_irq_enable();
5067 
5068 		rcu_read_lock();
5069 
5070 		while (head) {
5071 			struct Qdisc *q = head;
5072 			spinlock_t *root_lock = NULL;
5073 
5074 			head = head->next_sched;
5075 
5076 			/* We need to make sure head->next_sched is read
5077 			 * before clearing __QDISC_STATE_SCHED
5078 			 */
5079 			smp_mb__before_atomic();
5080 
5081 			if (!(q->flags & TCQ_F_NOLOCK)) {
5082 				root_lock = qdisc_lock(q);
5083 				spin_lock(root_lock);
5084 			} else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5085 						     &q->state))) {
5086 				/* There is a synchronize_net() between
5087 				 * STATE_DEACTIVATED flag being set and
5088 				 * qdisc_reset()/some_qdisc_is_busy() in
5089 				 * dev_deactivate(), so we can safely bail out
5090 				 * early here to avoid data race between
5091 				 * qdisc_deactivate() and some_qdisc_is_busy()
5092 				 * for lockless qdisc.
5093 				 */
5094 				clear_bit(__QDISC_STATE_SCHED, &q->state);
5095 				continue;
5096 			}
5097 
5098 			clear_bit(__QDISC_STATE_SCHED, &q->state);
5099 			qdisc_run(q);
5100 			if (root_lock)
5101 				spin_unlock(root_lock);
5102 		}
5103 
5104 		rcu_read_unlock();
5105 	}
5106 
5107 	xfrm_dev_backlog(sd);
5108 }
5109 
5110 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5111 /* This hook is defined here for ATM LANE */
5112 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5113 			     unsigned char *addr) __read_mostly;
5114 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5115 #endif
5116 
5117 static inline struct sk_buff *
5118 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
5119 		   struct net_device *orig_dev, bool *another)
5120 {
5121 #ifdef CONFIG_NET_CLS_ACT
5122 	struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
5123 	struct tcf_result cl_res;
5124 
5125 	/* If there's at least one ingress present somewhere (so
5126 	 * we get here via enabled static key), remaining devices
5127 	 * that are not configured with an ingress qdisc will bail
5128 	 * out here.
5129 	 */
5130 	if (!miniq)
5131 		return skb;
5132 
5133 	if (*pt_prev) {
5134 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
5135 		*pt_prev = NULL;
5136 	}
5137 
5138 	qdisc_skb_cb(skb)->pkt_len = skb->len;
5139 	qdisc_skb_cb(skb)->mru = 0;
5140 	qdisc_skb_cb(skb)->post_ct = false;
5141 	skb->tc_at_ingress = 1;
5142 	mini_qdisc_bstats_cpu_update(miniq, skb);
5143 
5144 	switch (tcf_classify_ingress(skb, miniq->block, miniq->filter_list,
5145 				     &cl_res, false)) {
5146 	case TC_ACT_OK:
5147 	case TC_ACT_RECLASSIFY:
5148 		skb->tc_index = TC_H_MIN(cl_res.classid);
5149 		break;
5150 	case TC_ACT_SHOT:
5151 		mini_qdisc_qstats_cpu_drop(miniq);
5152 		kfree_skb(skb);
5153 		return NULL;
5154 	case TC_ACT_STOLEN:
5155 	case TC_ACT_QUEUED:
5156 	case TC_ACT_TRAP:
5157 		consume_skb(skb);
5158 		return NULL;
5159 	case TC_ACT_REDIRECT:
5160 		/* skb_mac_header check was done by cls/act_bpf, so
5161 		 * we can safely push the L2 header back before
5162 		 * redirecting to another netdev
5163 		 */
5164 		__skb_push(skb, skb->mac_len);
5165 		if (skb_do_redirect(skb) == -EAGAIN) {
5166 			__skb_pull(skb, skb->mac_len);
5167 			*another = true;
5168 			break;
5169 		}
5170 		return NULL;
5171 	case TC_ACT_CONSUMED:
5172 		return NULL;
5173 	default:
5174 		break;
5175 	}
5176 #endif /* CONFIG_NET_CLS_ACT */
5177 	return skb;
5178 }
5179 
5180 /**
5181  *	netdev_is_rx_handler_busy - check if receive handler is registered
5182  *	@dev: device to check
5183  *
5184  *	Check if a receive handler is already registered for a given device.
5185  *	Return true if there one.
5186  *
5187  *	The caller must hold the rtnl_mutex.
5188  */
5189 bool netdev_is_rx_handler_busy(struct net_device *dev)
5190 {
5191 	ASSERT_RTNL();
5192 	return dev && rtnl_dereference(dev->rx_handler);
5193 }
5194 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5195 
5196 /**
5197  *	netdev_rx_handler_register - register receive handler
5198  *	@dev: device to register a handler for
5199  *	@rx_handler: receive handler to register
5200  *	@rx_handler_data: data pointer that is used by rx handler
5201  *
5202  *	Register a receive handler for a device. This handler will then be
5203  *	called from __netif_receive_skb. A negative errno code is returned
5204  *	on a failure.
5205  *
5206  *	The caller must hold the rtnl_mutex.
5207  *
5208  *	For a general description of rx_handler, see enum rx_handler_result.
5209  */
5210 int netdev_rx_handler_register(struct net_device *dev,
5211 			       rx_handler_func_t *rx_handler,
5212 			       void *rx_handler_data)
5213 {
5214 	if (netdev_is_rx_handler_busy(dev))
5215 		return -EBUSY;
5216 
5217 	if (dev->priv_flags & IFF_NO_RX_HANDLER)
5218 		return -EINVAL;
5219 
5220 	/* Note: rx_handler_data must be set before rx_handler */
5221 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5222 	rcu_assign_pointer(dev->rx_handler, rx_handler);
5223 
5224 	return 0;
5225 }
5226 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5227 
5228 /**
5229  *	netdev_rx_handler_unregister - unregister receive handler
5230  *	@dev: device to unregister a handler from
5231  *
5232  *	Unregister a receive handler from a device.
5233  *
5234  *	The caller must hold the rtnl_mutex.
5235  */
5236 void netdev_rx_handler_unregister(struct net_device *dev)
5237 {
5238 
5239 	ASSERT_RTNL();
5240 	RCU_INIT_POINTER(dev->rx_handler, NULL);
5241 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5242 	 * section has a guarantee to see a non NULL rx_handler_data
5243 	 * as well.
5244 	 */
5245 	synchronize_net();
5246 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5247 }
5248 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5249 
5250 /*
5251  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5252  * the special handling of PFMEMALLOC skbs.
5253  */
5254 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5255 {
5256 	switch (skb->protocol) {
5257 	case htons(ETH_P_ARP):
5258 	case htons(ETH_P_IP):
5259 	case htons(ETH_P_IPV6):
5260 	case htons(ETH_P_8021Q):
5261 	case htons(ETH_P_8021AD):
5262 		return true;
5263 	default:
5264 		return false;
5265 	}
5266 }
5267 
5268 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5269 			     int *ret, struct net_device *orig_dev)
5270 {
5271 	if (nf_hook_ingress_active(skb)) {
5272 		int ingress_retval;
5273 
5274 		if (*pt_prev) {
5275 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
5276 			*pt_prev = NULL;
5277 		}
5278 
5279 		rcu_read_lock();
5280 		ingress_retval = nf_hook_ingress(skb);
5281 		rcu_read_unlock();
5282 		return ingress_retval;
5283 	}
5284 	return 0;
5285 }
5286 
5287 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5288 				    struct packet_type **ppt_prev)
5289 {
5290 	struct packet_type *ptype, *pt_prev;
5291 	rx_handler_func_t *rx_handler;
5292 	struct sk_buff *skb = *pskb;
5293 	struct net_device *orig_dev;
5294 	bool deliver_exact = false;
5295 	int ret = NET_RX_DROP;
5296 	__be16 type;
5297 
5298 	net_timestamp_check(!netdev_tstamp_prequeue, skb);
5299 
5300 	trace_netif_receive_skb(skb);
5301 
5302 	orig_dev = skb->dev;
5303 
5304 	skb_reset_network_header(skb);
5305 	if (!skb_transport_header_was_set(skb))
5306 		skb_reset_transport_header(skb);
5307 	skb_reset_mac_len(skb);
5308 
5309 	pt_prev = NULL;
5310 
5311 another_round:
5312 	skb->skb_iif = skb->dev->ifindex;
5313 
5314 	__this_cpu_inc(softnet_data.processed);
5315 
5316 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
5317 		int ret2;
5318 
5319 		migrate_disable();
5320 		ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5321 		migrate_enable();
5322 
5323 		if (ret2 != XDP_PASS) {
5324 			ret = NET_RX_DROP;
5325 			goto out;
5326 		}
5327 		skb_reset_mac_len(skb);
5328 	}
5329 
5330 	if (eth_type_vlan(skb->protocol)) {
5331 		skb = skb_vlan_untag(skb);
5332 		if (unlikely(!skb))
5333 			goto out;
5334 	}
5335 
5336 	if (skb_skip_tc_classify(skb))
5337 		goto skip_classify;
5338 
5339 	if (pfmemalloc)
5340 		goto skip_taps;
5341 
5342 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
5343 		if (pt_prev)
5344 			ret = deliver_skb(skb, pt_prev, orig_dev);
5345 		pt_prev = ptype;
5346 	}
5347 
5348 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5349 		if (pt_prev)
5350 			ret = deliver_skb(skb, pt_prev, orig_dev);
5351 		pt_prev = ptype;
5352 	}
5353 
5354 skip_taps:
5355 #ifdef CONFIG_NET_INGRESS
5356 	if (static_branch_unlikely(&ingress_needed_key)) {
5357 		bool another = false;
5358 
5359 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5360 					 &another);
5361 		if (another)
5362 			goto another_round;
5363 		if (!skb)
5364 			goto out;
5365 
5366 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5367 			goto out;
5368 	}
5369 #endif
5370 	skb_reset_redirect(skb);
5371 skip_classify:
5372 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5373 		goto drop;
5374 
5375 	if (skb_vlan_tag_present(skb)) {
5376 		if (pt_prev) {
5377 			ret = deliver_skb(skb, pt_prev, orig_dev);
5378 			pt_prev = NULL;
5379 		}
5380 		if (vlan_do_receive(&skb))
5381 			goto another_round;
5382 		else if (unlikely(!skb))
5383 			goto out;
5384 	}
5385 
5386 	rx_handler = rcu_dereference(skb->dev->rx_handler);
5387 	if (rx_handler) {
5388 		if (pt_prev) {
5389 			ret = deliver_skb(skb, pt_prev, orig_dev);
5390 			pt_prev = NULL;
5391 		}
5392 		switch (rx_handler(&skb)) {
5393 		case RX_HANDLER_CONSUMED:
5394 			ret = NET_RX_SUCCESS;
5395 			goto out;
5396 		case RX_HANDLER_ANOTHER:
5397 			goto another_round;
5398 		case RX_HANDLER_EXACT:
5399 			deliver_exact = true;
5400 			break;
5401 		case RX_HANDLER_PASS:
5402 			break;
5403 		default:
5404 			BUG();
5405 		}
5406 	}
5407 
5408 	if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5409 check_vlan_id:
5410 		if (skb_vlan_tag_get_id(skb)) {
5411 			/* Vlan id is non 0 and vlan_do_receive() above couldn't
5412 			 * find vlan device.
5413 			 */
5414 			skb->pkt_type = PACKET_OTHERHOST;
5415 		} else if (eth_type_vlan(skb->protocol)) {
5416 			/* Outer header is 802.1P with vlan 0, inner header is
5417 			 * 802.1Q or 802.1AD and vlan_do_receive() above could
5418 			 * not find vlan dev for vlan id 0.
5419 			 */
5420 			__vlan_hwaccel_clear_tag(skb);
5421 			skb = skb_vlan_untag(skb);
5422 			if (unlikely(!skb))
5423 				goto out;
5424 			if (vlan_do_receive(&skb))
5425 				/* After stripping off 802.1P header with vlan 0
5426 				 * vlan dev is found for inner header.
5427 				 */
5428 				goto another_round;
5429 			else if (unlikely(!skb))
5430 				goto out;
5431 			else
5432 				/* We have stripped outer 802.1P vlan 0 header.
5433 				 * But could not find vlan dev.
5434 				 * check again for vlan id to set OTHERHOST.
5435 				 */
5436 				goto check_vlan_id;
5437 		}
5438 		/* Note: we might in the future use prio bits
5439 		 * and set skb->priority like in vlan_do_receive()
5440 		 * For the time being, just ignore Priority Code Point
5441 		 */
5442 		__vlan_hwaccel_clear_tag(skb);
5443 	}
5444 
5445 	type = skb->protocol;
5446 
5447 	/* deliver only exact match when indicated */
5448 	if (likely(!deliver_exact)) {
5449 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5450 				       &ptype_base[ntohs(type) &
5451 						   PTYPE_HASH_MASK]);
5452 	}
5453 
5454 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5455 			       &orig_dev->ptype_specific);
5456 
5457 	if (unlikely(skb->dev != orig_dev)) {
5458 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5459 				       &skb->dev->ptype_specific);
5460 	}
5461 
5462 	if (pt_prev) {
5463 		if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5464 			goto drop;
5465 		*ppt_prev = pt_prev;
5466 	} else {
5467 drop:
5468 		if (!deliver_exact)
5469 			atomic_long_inc(&skb->dev->rx_dropped);
5470 		else
5471 			atomic_long_inc(&skb->dev->rx_nohandler);
5472 		kfree_skb(skb);
5473 		/* Jamal, now you will not able to escape explaining
5474 		 * me how you were going to use this. :-)
5475 		 */
5476 		ret = NET_RX_DROP;
5477 	}
5478 
5479 out:
5480 	/* The invariant here is that if *ppt_prev is not NULL
5481 	 * then skb should also be non-NULL.
5482 	 *
5483 	 * Apparently *ppt_prev assignment above holds this invariant due to
5484 	 * skb dereferencing near it.
5485 	 */
5486 	*pskb = skb;
5487 	return ret;
5488 }
5489 
5490 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5491 {
5492 	struct net_device *orig_dev = skb->dev;
5493 	struct packet_type *pt_prev = NULL;
5494 	int ret;
5495 
5496 	ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5497 	if (pt_prev)
5498 		ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5499 					 skb->dev, pt_prev, orig_dev);
5500 	return ret;
5501 }
5502 
5503 /**
5504  *	netif_receive_skb_core - special purpose version of netif_receive_skb
5505  *	@skb: buffer to process
5506  *
5507  *	More direct receive version of netif_receive_skb().  It should
5508  *	only be used by callers that have a need to skip RPS and Generic XDP.
5509  *	Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5510  *
5511  *	This function may only be called from softirq context and interrupts
5512  *	should be enabled.
5513  *
5514  *	Return values (usually ignored):
5515  *	NET_RX_SUCCESS: no congestion
5516  *	NET_RX_DROP: packet was dropped
5517  */
5518 int netif_receive_skb_core(struct sk_buff *skb)
5519 {
5520 	int ret;
5521 
5522 	rcu_read_lock();
5523 	ret = __netif_receive_skb_one_core(skb, false);
5524 	rcu_read_unlock();
5525 
5526 	return ret;
5527 }
5528 EXPORT_SYMBOL(netif_receive_skb_core);
5529 
5530 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5531 						  struct packet_type *pt_prev,
5532 						  struct net_device *orig_dev)
5533 {
5534 	struct sk_buff *skb, *next;
5535 
5536 	if (!pt_prev)
5537 		return;
5538 	if (list_empty(head))
5539 		return;
5540 	if (pt_prev->list_func != NULL)
5541 		INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5542 				   ip_list_rcv, head, pt_prev, orig_dev);
5543 	else
5544 		list_for_each_entry_safe(skb, next, head, list) {
5545 			skb_list_del_init(skb);
5546 			pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5547 		}
5548 }
5549 
5550 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5551 {
5552 	/* Fast-path assumptions:
5553 	 * - There is no RX handler.
5554 	 * - Only one packet_type matches.
5555 	 * If either of these fails, we will end up doing some per-packet
5556 	 * processing in-line, then handling the 'last ptype' for the whole
5557 	 * sublist.  This can't cause out-of-order delivery to any single ptype,
5558 	 * because the 'last ptype' must be constant across the sublist, and all
5559 	 * other ptypes are handled per-packet.
5560 	 */
5561 	/* Current (common) ptype of sublist */
5562 	struct packet_type *pt_curr = NULL;
5563 	/* Current (common) orig_dev of sublist */
5564 	struct net_device *od_curr = NULL;
5565 	struct list_head sublist;
5566 	struct sk_buff *skb, *next;
5567 
5568 	INIT_LIST_HEAD(&sublist);
5569 	list_for_each_entry_safe(skb, next, head, list) {
5570 		struct net_device *orig_dev = skb->dev;
5571 		struct packet_type *pt_prev = NULL;
5572 
5573 		skb_list_del_init(skb);
5574 		__netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5575 		if (!pt_prev)
5576 			continue;
5577 		if (pt_curr != pt_prev || od_curr != orig_dev) {
5578 			/* dispatch old sublist */
5579 			__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5580 			/* start new sublist */
5581 			INIT_LIST_HEAD(&sublist);
5582 			pt_curr = pt_prev;
5583 			od_curr = orig_dev;
5584 		}
5585 		list_add_tail(&skb->list, &sublist);
5586 	}
5587 
5588 	/* dispatch final sublist */
5589 	__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5590 }
5591 
5592 static int __netif_receive_skb(struct sk_buff *skb)
5593 {
5594 	int ret;
5595 
5596 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5597 		unsigned int noreclaim_flag;
5598 
5599 		/*
5600 		 * PFMEMALLOC skbs are special, they should
5601 		 * - be delivered to SOCK_MEMALLOC sockets only
5602 		 * - stay away from userspace
5603 		 * - have bounded memory usage
5604 		 *
5605 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
5606 		 * context down to all allocation sites.
5607 		 */
5608 		noreclaim_flag = memalloc_noreclaim_save();
5609 		ret = __netif_receive_skb_one_core(skb, true);
5610 		memalloc_noreclaim_restore(noreclaim_flag);
5611 	} else
5612 		ret = __netif_receive_skb_one_core(skb, false);
5613 
5614 	return ret;
5615 }
5616 
5617 static void __netif_receive_skb_list(struct list_head *head)
5618 {
5619 	unsigned long noreclaim_flag = 0;
5620 	struct sk_buff *skb, *next;
5621 	bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5622 
5623 	list_for_each_entry_safe(skb, next, head, list) {
5624 		if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5625 			struct list_head sublist;
5626 
5627 			/* Handle the previous sublist */
5628 			list_cut_before(&sublist, head, &skb->list);
5629 			if (!list_empty(&sublist))
5630 				__netif_receive_skb_list_core(&sublist, pfmemalloc);
5631 			pfmemalloc = !pfmemalloc;
5632 			/* See comments in __netif_receive_skb */
5633 			if (pfmemalloc)
5634 				noreclaim_flag = memalloc_noreclaim_save();
5635 			else
5636 				memalloc_noreclaim_restore(noreclaim_flag);
5637 		}
5638 	}
5639 	/* Handle the remaining sublist */
5640 	if (!list_empty(head))
5641 		__netif_receive_skb_list_core(head, pfmemalloc);
5642 	/* Restore pflags */
5643 	if (pfmemalloc)
5644 		memalloc_noreclaim_restore(noreclaim_flag);
5645 }
5646 
5647 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5648 {
5649 	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5650 	struct bpf_prog *new = xdp->prog;
5651 	int ret = 0;
5652 
5653 	if (new) {
5654 		u32 i;
5655 
5656 		mutex_lock(&new->aux->used_maps_mutex);
5657 
5658 		/* generic XDP does not work with DEVMAPs that can
5659 		 * have a bpf_prog installed on an entry
5660 		 */
5661 		for (i = 0; i < new->aux->used_map_cnt; i++) {
5662 			if (dev_map_can_have_prog(new->aux->used_maps[i]) ||
5663 			    cpu_map_prog_allowed(new->aux->used_maps[i])) {
5664 				mutex_unlock(&new->aux->used_maps_mutex);
5665 				return -EINVAL;
5666 			}
5667 		}
5668 
5669 		mutex_unlock(&new->aux->used_maps_mutex);
5670 	}
5671 
5672 	switch (xdp->command) {
5673 	case XDP_SETUP_PROG:
5674 		rcu_assign_pointer(dev->xdp_prog, new);
5675 		if (old)
5676 			bpf_prog_put(old);
5677 
5678 		if (old && !new) {
5679 			static_branch_dec(&generic_xdp_needed_key);
5680 		} else if (new && !old) {
5681 			static_branch_inc(&generic_xdp_needed_key);
5682 			dev_disable_lro(dev);
5683 			dev_disable_gro_hw(dev);
5684 		}
5685 		break;
5686 
5687 	default:
5688 		ret = -EINVAL;
5689 		break;
5690 	}
5691 
5692 	return ret;
5693 }
5694 
5695 static int netif_receive_skb_internal(struct sk_buff *skb)
5696 {
5697 	int ret;
5698 
5699 	net_timestamp_check(netdev_tstamp_prequeue, skb);
5700 
5701 	if (skb_defer_rx_timestamp(skb))
5702 		return NET_RX_SUCCESS;
5703 
5704 	rcu_read_lock();
5705 #ifdef CONFIG_RPS
5706 	if (static_branch_unlikely(&rps_needed)) {
5707 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5708 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5709 
5710 		if (cpu >= 0) {
5711 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5712 			rcu_read_unlock();
5713 			return ret;
5714 		}
5715 	}
5716 #endif
5717 	ret = __netif_receive_skb(skb);
5718 	rcu_read_unlock();
5719 	return ret;
5720 }
5721 
5722 static void netif_receive_skb_list_internal(struct list_head *head)
5723 {
5724 	struct sk_buff *skb, *next;
5725 	struct list_head sublist;
5726 
5727 	INIT_LIST_HEAD(&sublist);
5728 	list_for_each_entry_safe(skb, next, head, list) {
5729 		net_timestamp_check(netdev_tstamp_prequeue, skb);
5730 		skb_list_del_init(skb);
5731 		if (!skb_defer_rx_timestamp(skb))
5732 			list_add_tail(&skb->list, &sublist);
5733 	}
5734 	list_splice_init(&sublist, head);
5735 
5736 	rcu_read_lock();
5737 #ifdef CONFIG_RPS
5738 	if (static_branch_unlikely(&rps_needed)) {
5739 		list_for_each_entry_safe(skb, next, head, list) {
5740 			struct rps_dev_flow voidflow, *rflow = &voidflow;
5741 			int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5742 
5743 			if (cpu >= 0) {
5744 				/* Will be handled, remove from list */
5745 				skb_list_del_init(skb);
5746 				enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5747 			}
5748 		}
5749 	}
5750 #endif
5751 	__netif_receive_skb_list(head);
5752 	rcu_read_unlock();
5753 }
5754 
5755 /**
5756  *	netif_receive_skb - process receive buffer from network
5757  *	@skb: buffer to process
5758  *
5759  *	netif_receive_skb() is the main receive data processing function.
5760  *	It always succeeds. The buffer may be dropped during processing
5761  *	for congestion control or by the protocol layers.
5762  *
5763  *	This function may only be called from softirq context and interrupts
5764  *	should be enabled.
5765  *
5766  *	Return values (usually ignored):
5767  *	NET_RX_SUCCESS: no congestion
5768  *	NET_RX_DROP: packet was dropped
5769  */
5770 int netif_receive_skb(struct sk_buff *skb)
5771 {
5772 	int ret;
5773 
5774 	trace_netif_receive_skb_entry(skb);
5775 
5776 	ret = netif_receive_skb_internal(skb);
5777 	trace_netif_receive_skb_exit(ret);
5778 
5779 	return ret;
5780 }
5781 EXPORT_SYMBOL(netif_receive_skb);
5782 
5783 /**
5784  *	netif_receive_skb_list - process many receive buffers from network
5785  *	@head: list of skbs to process.
5786  *
5787  *	Since return value of netif_receive_skb() is normally ignored, and
5788  *	wouldn't be meaningful for a list, this function returns void.
5789  *
5790  *	This function may only be called from softirq context and interrupts
5791  *	should be enabled.
5792  */
5793 void netif_receive_skb_list(struct list_head *head)
5794 {
5795 	struct sk_buff *skb;
5796 
5797 	if (list_empty(head))
5798 		return;
5799 	if (trace_netif_receive_skb_list_entry_enabled()) {
5800 		list_for_each_entry(skb, head, list)
5801 			trace_netif_receive_skb_list_entry(skb);
5802 	}
5803 	netif_receive_skb_list_internal(head);
5804 	trace_netif_receive_skb_list_exit(0);
5805 }
5806 EXPORT_SYMBOL(netif_receive_skb_list);
5807 
5808 static DEFINE_PER_CPU(struct work_struct, flush_works);
5809 
5810 /* Network device is going away, flush any packets still pending */
5811 static void flush_backlog(struct work_struct *work)
5812 {
5813 	struct sk_buff *skb, *tmp;
5814 	struct softnet_data *sd;
5815 
5816 	local_bh_disable();
5817 	sd = this_cpu_ptr(&softnet_data);
5818 
5819 	local_irq_disable();
5820 	rps_lock(sd);
5821 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5822 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5823 			__skb_unlink(skb, &sd->input_pkt_queue);
5824 			dev_kfree_skb_irq(skb);
5825 			input_queue_head_incr(sd);
5826 		}
5827 	}
5828 	rps_unlock(sd);
5829 	local_irq_enable();
5830 
5831 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5832 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5833 			__skb_unlink(skb, &sd->process_queue);
5834 			kfree_skb(skb);
5835 			input_queue_head_incr(sd);
5836 		}
5837 	}
5838 	local_bh_enable();
5839 }
5840 
5841 static bool flush_required(int cpu)
5842 {
5843 #if IS_ENABLED(CONFIG_RPS)
5844 	struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5845 	bool do_flush;
5846 
5847 	local_irq_disable();
5848 	rps_lock(sd);
5849 
5850 	/* as insertion into process_queue happens with the rps lock held,
5851 	 * process_queue access may race only with dequeue
5852 	 */
5853 	do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5854 		   !skb_queue_empty_lockless(&sd->process_queue);
5855 	rps_unlock(sd);
5856 	local_irq_enable();
5857 
5858 	return do_flush;
5859 #endif
5860 	/* without RPS we can't safely check input_pkt_queue: during a
5861 	 * concurrent remote skb_queue_splice() we can detect as empty both
5862 	 * input_pkt_queue and process_queue even if the latter could end-up
5863 	 * containing a lot of packets.
5864 	 */
5865 	return true;
5866 }
5867 
5868 static void flush_all_backlogs(void)
5869 {
5870 	static cpumask_t flush_cpus;
5871 	unsigned int cpu;
5872 
5873 	/* since we are under rtnl lock protection we can use static data
5874 	 * for the cpumask and avoid allocating on stack the possibly
5875 	 * large mask
5876 	 */
5877 	ASSERT_RTNL();
5878 
5879 	get_online_cpus();
5880 
5881 	cpumask_clear(&flush_cpus);
5882 	for_each_online_cpu(cpu) {
5883 		if (flush_required(cpu)) {
5884 			queue_work_on(cpu, system_highpri_wq,
5885 				      per_cpu_ptr(&flush_works, cpu));
5886 			cpumask_set_cpu(cpu, &flush_cpus);
5887 		}
5888 	}
5889 
5890 	/* we can have in flight packet[s] on the cpus we are not flushing,
5891 	 * synchronize_net() in unregister_netdevice_many() will take care of
5892 	 * them
5893 	 */
5894 	for_each_cpu(cpu, &flush_cpus)
5895 		flush_work(per_cpu_ptr(&flush_works, cpu));
5896 
5897 	put_online_cpus();
5898 }
5899 
5900 /* Pass the currently batched GRO_NORMAL SKBs up to the stack. */
5901 static void gro_normal_list(struct napi_struct *napi)
5902 {
5903 	if (!napi->rx_count)
5904 		return;
5905 	netif_receive_skb_list_internal(&napi->rx_list);
5906 	INIT_LIST_HEAD(&napi->rx_list);
5907 	napi->rx_count = 0;
5908 }
5909 
5910 /* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded,
5911  * pass the whole batch up to the stack.
5912  */
5913 static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb, int segs)
5914 {
5915 	list_add_tail(&skb->list, &napi->rx_list);
5916 	napi->rx_count += segs;
5917 	if (napi->rx_count >= gro_normal_batch)
5918 		gro_normal_list(napi);
5919 }
5920 
5921 static int napi_gro_complete(struct napi_struct *napi, struct sk_buff *skb)
5922 {
5923 	struct packet_offload *ptype;
5924 	__be16 type = skb->protocol;
5925 	struct list_head *head = &offload_base;
5926 	int err = -ENOENT;
5927 
5928 	BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5929 
5930 	if (NAPI_GRO_CB(skb)->count == 1) {
5931 		skb_shinfo(skb)->gso_size = 0;
5932 		goto out;
5933 	}
5934 
5935 	rcu_read_lock();
5936 	list_for_each_entry_rcu(ptype, head, list) {
5937 		if (ptype->type != type || !ptype->callbacks.gro_complete)
5938 			continue;
5939 
5940 		err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5941 					 ipv6_gro_complete, inet_gro_complete,
5942 					 skb, 0);
5943 		break;
5944 	}
5945 	rcu_read_unlock();
5946 
5947 	if (err) {
5948 		WARN_ON(&ptype->list == head);
5949 		kfree_skb(skb);
5950 		return NET_RX_SUCCESS;
5951 	}
5952 
5953 out:
5954 	gro_normal_one(napi, skb, NAPI_GRO_CB(skb)->count);
5955 	return NET_RX_SUCCESS;
5956 }
5957 
5958 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5959 				   bool flush_old)
5960 {
5961 	struct list_head *head = &napi->gro_hash[index].list;
5962 	struct sk_buff *skb, *p;
5963 
5964 	list_for_each_entry_safe_reverse(skb, p, head, list) {
5965 		if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5966 			return;
5967 		skb_list_del_init(skb);
5968 		napi_gro_complete(napi, skb);
5969 		napi->gro_hash[index].count--;
5970 	}
5971 
5972 	if (!napi->gro_hash[index].count)
5973 		__clear_bit(index, &napi->gro_bitmask);
5974 }
5975 
5976 /* napi->gro_hash[].list contains packets ordered by age.
5977  * youngest packets at the head of it.
5978  * Complete skbs in reverse order to reduce latencies.
5979  */
5980 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5981 {
5982 	unsigned long bitmask = napi->gro_bitmask;
5983 	unsigned int i, base = ~0U;
5984 
5985 	while ((i = ffs(bitmask)) != 0) {
5986 		bitmask >>= i;
5987 		base += i;
5988 		__napi_gro_flush_chain(napi, base, flush_old);
5989 	}
5990 }
5991 EXPORT_SYMBOL(napi_gro_flush);
5992 
5993 static void gro_list_prepare(const struct list_head *head,
5994 			     const struct sk_buff *skb)
5995 {
5996 	unsigned int maclen = skb->dev->hard_header_len;
5997 	u32 hash = skb_get_hash_raw(skb);
5998 	struct sk_buff *p;
5999 
6000 	list_for_each_entry(p, head, list) {
6001 		unsigned long diffs;
6002 
6003 		NAPI_GRO_CB(p)->flush = 0;
6004 
6005 		if (hash != skb_get_hash_raw(p)) {
6006 			NAPI_GRO_CB(p)->same_flow = 0;
6007 			continue;
6008 		}
6009 
6010 		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
6011 		diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
6012 		if (skb_vlan_tag_present(p))
6013 			diffs |= skb_vlan_tag_get(p) ^ skb_vlan_tag_get(skb);
6014 		diffs |= skb_metadata_dst_cmp(p, skb);
6015 		diffs |= skb_metadata_differs(p, skb);
6016 		if (maclen == ETH_HLEN)
6017 			diffs |= compare_ether_header(skb_mac_header(p),
6018 						      skb_mac_header(skb));
6019 		else if (!diffs)
6020 			diffs = memcmp(skb_mac_header(p),
6021 				       skb_mac_header(skb),
6022 				       maclen);
6023 
6024 		diffs |= skb_get_nfct(p) ^ skb_get_nfct(skb);
6025 #if IS_ENABLED(CONFIG_SKB_EXTENSIONS) && IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
6026 		if (!diffs) {
6027 			struct tc_skb_ext *skb_ext = skb_ext_find(skb, TC_SKB_EXT);
6028 			struct tc_skb_ext *p_ext = skb_ext_find(p, TC_SKB_EXT);
6029 
6030 			diffs |= (!!p_ext) ^ (!!skb_ext);
6031 			if (!diffs && unlikely(skb_ext))
6032 				diffs |= p_ext->chain ^ skb_ext->chain;
6033 		}
6034 #endif
6035 
6036 		NAPI_GRO_CB(p)->same_flow = !diffs;
6037 	}
6038 }
6039 
6040 static inline void skb_gro_reset_offset(struct sk_buff *skb, u32 nhoff)
6041 {
6042 	const struct skb_shared_info *pinfo = skb_shinfo(skb);
6043 	const skb_frag_t *frag0 = &pinfo->frags[0];
6044 
6045 	NAPI_GRO_CB(skb)->data_offset = 0;
6046 	NAPI_GRO_CB(skb)->frag0 = NULL;
6047 	NAPI_GRO_CB(skb)->frag0_len = 0;
6048 
6049 	if (!skb_headlen(skb) && pinfo->nr_frags &&
6050 	    !PageHighMem(skb_frag_page(frag0)) &&
6051 	    (!NET_IP_ALIGN || !((skb_frag_off(frag0) + nhoff) & 3))) {
6052 		NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
6053 		NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
6054 						    skb_frag_size(frag0),
6055 						    skb->end - skb->tail);
6056 	}
6057 }
6058 
6059 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
6060 {
6061 	struct skb_shared_info *pinfo = skb_shinfo(skb);
6062 
6063 	BUG_ON(skb->end - skb->tail < grow);
6064 
6065 	memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
6066 
6067 	skb->data_len -= grow;
6068 	skb->tail += grow;
6069 
6070 	skb_frag_off_add(&pinfo->frags[0], grow);
6071 	skb_frag_size_sub(&pinfo->frags[0], grow);
6072 
6073 	if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
6074 		skb_frag_unref(skb, 0);
6075 		memmove(pinfo->frags, pinfo->frags + 1,
6076 			--pinfo->nr_frags * sizeof(pinfo->frags[0]));
6077 	}
6078 }
6079 
6080 static void gro_flush_oldest(struct napi_struct *napi, struct list_head *head)
6081 {
6082 	struct sk_buff *oldest;
6083 
6084 	oldest = list_last_entry(head, struct sk_buff, list);
6085 
6086 	/* We are called with head length >= MAX_GRO_SKBS, so this is
6087 	 * impossible.
6088 	 */
6089 	if (WARN_ON_ONCE(!oldest))
6090 		return;
6091 
6092 	/* Do not adjust napi->gro_hash[].count, caller is adding a new
6093 	 * SKB to the chain.
6094 	 */
6095 	skb_list_del_init(oldest);
6096 	napi_gro_complete(napi, oldest);
6097 }
6098 
6099 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
6100 {
6101 	u32 bucket = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
6102 	struct gro_list *gro_list = &napi->gro_hash[bucket];
6103 	struct list_head *head = &offload_base;
6104 	struct packet_offload *ptype;
6105 	__be16 type = skb->protocol;
6106 	struct sk_buff *pp = NULL;
6107 	enum gro_result ret;
6108 	int same_flow;
6109 	int grow;
6110 
6111 	if (netif_elide_gro(skb->dev))
6112 		goto normal;
6113 
6114 	gro_list_prepare(&gro_list->list, skb);
6115 
6116 	rcu_read_lock();
6117 	list_for_each_entry_rcu(ptype, head, list) {
6118 		if (ptype->type != type || !ptype->callbacks.gro_receive)
6119 			continue;
6120 
6121 		skb_set_network_header(skb, skb_gro_offset(skb));
6122 		skb_reset_mac_len(skb);
6123 		NAPI_GRO_CB(skb)->same_flow = 0;
6124 		NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
6125 		NAPI_GRO_CB(skb)->free = 0;
6126 		NAPI_GRO_CB(skb)->encap_mark = 0;
6127 		NAPI_GRO_CB(skb)->recursion_counter = 0;
6128 		NAPI_GRO_CB(skb)->is_fou = 0;
6129 		NAPI_GRO_CB(skb)->is_atomic = 1;
6130 		NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
6131 
6132 		/* Setup for GRO checksum validation */
6133 		switch (skb->ip_summed) {
6134 		case CHECKSUM_COMPLETE:
6135 			NAPI_GRO_CB(skb)->csum = skb->csum;
6136 			NAPI_GRO_CB(skb)->csum_valid = 1;
6137 			NAPI_GRO_CB(skb)->csum_cnt = 0;
6138 			break;
6139 		case CHECKSUM_UNNECESSARY:
6140 			NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
6141 			NAPI_GRO_CB(skb)->csum_valid = 0;
6142 			break;
6143 		default:
6144 			NAPI_GRO_CB(skb)->csum_cnt = 0;
6145 			NAPI_GRO_CB(skb)->csum_valid = 0;
6146 		}
6147 
6148 		pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
6149 					ipv6_gro_receive, inet_gro_receive,
6150 					&gro_list->list, skb);
6151 		break;
6152 	}
6153 	rcu_read_unlock();
6154 
6155 	if (&ptype->list == head)
6156 		goto normal;
6157 
6158 	if (PTR_ERR(pp) == -EINPROGRESS) {
6159 		ret = GRO_CONSUMED;
6160 		goto ok;
6161 	}
6162 
6163 	same_flow = NAPI_GRO_CB(skb)->same_flow;
6164 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
6165 
6166 	if (pp) {
6167 		skb_list_del_init(pp);
6168 		napi_gro_complete(napi, pp);
6169 		gro_list->count--;
6170 	}
6171 
6172 	if (same_flow)
6173 		goto ok;
6174 
6175 	if (NAPI_GRO_CB(skb)->flush)
6176 		goto normal;
6177 
6178 	if (unlikely(gro_list->count >= MAX_GRO_SKBS))
6179 		gro_flush_oldest(napi, &gro_list->list);
6180 	else
6181 		gro_list->count++;
6182 
6183 	NAPI_GRO_CB(skb)->count = 1;
6184 	NAPI_GRO_CB(skb)->age = jiffies;
6185 	NAPI_GRO_CB(skb)->last = skb;
6186 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
6187 	list_add(&skb->list, &gro_list->list);
6188 	ret = GRO_HELD;
6189 
6190 pull:
6191 	grow = skb_gro_offset(skb) - skb_headlen(skb);
6192 	if (grow > 0)
6193 		gro_pull_from_frag0(skb, grow);
6194 ok:
6195 	if (gro_list->count) {
6196 		if (!test_bit(bucket, &napi->gro_bitmask))
6197 			__set_bit(bucket, &napi->gro_bitmask);
6198 	} else if (test_bit(bucket, &napi->gro_bitmask)) {
6199 		__clear_bit(bucket, &napi->gro_bitmask);
6200 	}
6201 
6202 	return ret;
6203 
6204 normal:
6205 	ret = GRO_NORMAL;
6206 	goto pull;
6207 }
6208 
6209 struct packet_offload *gro_find_receive_by_type(__be16 type)
6210 {
6211 	struct list_head *offload_head = &offload_base;
6212 	struct packet_offload *ptype;
6213 
6214 	list_for_each_entry_rcu(ptype, offload_head, list) {
6215 		if (ptype->type != type || !ptype->callbacks.gro_receive)
6216 			continue;
6217 		return ptype;
6218 	}
6219 	return NULL;
6220 }
6221 EXPORT_SYMBOL(gro_find_receive_by_type);
6222 
6223 struct packet_offload *gro_find_complete_by_type(__be16 type)
6224 {
6225 	struct list_head *offload_head = &offload_base;
6226 	struct packet_offload *ptype;
6227 
6228 	list_for_each_entry_rcu(ptype, offload_head, list) {
6229 		if (ptype->type != type || !ptype->callbacks.gro_complete)
6230 			continue;
6231 		return ptype;
6232 	}
6233 	return NULL;
6234 }
6235 EXPORT_SYMBOL(gro_find_complete_by_type);
6236 
6237 static gro_result_t napi_skb_finish(struct napi_struct *napi,
6238 				    struct sk_buff *skb,
6239 				    gro_result_t ret)
6240 {
6241 	switch (ret) {
6242 	case GRO_NORMAL:
6243 		gro_normal_one(napi, skb, 1);
6244 		break;
6245 
6246 	case GRO_MERGED_FREE:
6247 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6248 			napi_skb_free_stolen_head(skb);
6249 		else if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
6250 			__kfree_skb(skb);
6251 		else
6252 			__kfree_skb_defer(skb);
6253 		break;
6254 
6255 	case GRO_HELD:
6256 	case GRO_MERGED:
6257 	case GRO_CONSUMED:
6258 		break;
6259 	}
6260 
6261 	return ret;
6262 }
6263 
6264 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
6265 {
6266 	gro_result_t ret;
6267 
6268 	skb_mark_napi_id(skb, napi);
6269 	trace_napi_gro_receive_entry(skb);
6270 
6271 	skb_gro_reset_offset(skb, 0);
6272 
6273 	ret = napi_skb_finish(napi, skb, dev_gro_receive(napi, skb));
6274 	trace_napi_gro_receive_exit(ret);
6275 
6276 	return ret;
6277 }
6278 EXPORT_SYMBOL(napi_gro_receive);
6279 
6280 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
6281 {
6282 	if (unlikely(skb->pfmemalloc)) {
6283 		consume_skb(skb);
6284 		return;
6285 	}
6286 	__skb_pull(skb, skb_headlen(skb));
6287 	/* restore the reserve we had after netdev_alloc_skb_ip_align() */
6288 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
6289 	__vlan_hwaccel_clear_tag(skb);
6290 	skb->dev = napi->dev;
6291 	skb->skb_iif = 0;
6292 
6293 	/* eth_type_trans() assumes pkt_type is PACKET_HOST */
6294 	skb->pkt_type = PACKET_HOST;
6295 
6296 	skb->encapsulation = 0;
6297 	skb_shinfo(skb)->gso_type = 0;
6298 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6299 	skb_ext_reset(skb);
6300 	nf_reset_ct(skb);
6301 
6302 	napi->skb = skb;
6303 }
6304 
6305 struct sk_buff *napi_get_frags(struct napi_struct *napi)
6306 {
6307 	struct sk_buff *skb = napi->skb;
6308 
6309 	if (!skb) {
6310 		skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
6311 		if (skb) {
6312 			napi->skb = skb;
6313 			skb_mark_napi_id(skb, napi);
6314 		}
6315 	}
6316 	return skb;
6317 }
6318 EXPORT_SYMBOL(napi_get_frags);
6319 
6320 static gro_result_t napi_frags_finish(struct napi_struct *napi,
6321 				      struct sk_buff *skb,
6322 				      gro_result_t ret)
6323 {
6324 	switch (ret) {
6325 	case GRO_NORMAL:
6326 	case GRO_HELD:
6327 		__skb_push(skb, ETH_HLEN);
6328 		skb->protocol = eth_type_trans(skb, skb->dev);
6329 		if (ret == GRO_NORMAL)
6330 			gro_normal_one(napi, skb, 1);
6331 		break;
6332 
6333 	case GRO_MERGED_FREE:
6334 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6335 			napi_skb_free_stolen_head(skb);
6336 		else
6337 			napi_reuse_skb(napi, skb);
6338 		break;
6339 
6340 	case GRO_MERGED:
6341 	case GRO_CONSUMED:
6342 		break;
6343 	}
6344 
6345 	return ret;
6346 }
6347 
6348 /* Upper GRO stack assumes network header starts at gro_offset=0
6349  * Drivers could call both napi_gro_frags() and napi_gro_receive()
6350  * We copy ethernet header into skb->data to have a common layout.
6351  */
6352 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
6353 {
6354 	struct sk_buff *skb = napi->skb;
6355 	const struct ethhdr *eth;
6356 	unsigned int hlen = sizeof(*eth);
6357 
6358 	napi->skb = NULL;
6359 
6360 	skb_reset_mac_header(skb);
6361 	skb_gro_reset_offset(skb, hlen);
6362 
6363 	if (unlikely(skb_gro_header_hard(skb, hlen))) {
6364 		eth = skb_gro_header_slow(skb, hlen, 0);
6365 		if (unlikely(!eth)) {
6366 			net_warn_ratelimited("%s: dropping impossible skb from %s\n",
6367 					     __func__, napi->dev->name);
6368 			napi_reuse_skb(napi, skb);
6369 			return NULL;
6370 		}
6371 	} else {
6372 		eth = (const struct ethhdr *)skb->data;
6373 		gro_pull_from_frag0(skb, hlen);
6374 		NAPI_GRO_CB(skb)->frag0 += hlen;
6375 		NAPI_GRO_CB(skb)->frag0_len -= hlen;
6376 	}
6377 	__skb_pull(skb, hlen);
6378 
6379 	/*
6380 	 * This works because the only protocols we care about don't require
6381 	 * special handling.
6382 	 * We'll fix it up properly in napi_frags_finish()
6383 	 */
6384 	skb->protocol = eth->h_proto;
6385 
6386 	return skb;
6387 }
6388 
6389 gro_result_t napi_gro_frags(struct napi_struct *napi)
6390 {
6391 	gro_result_t ret;
6392 	struct sk_buff *skb = napi_frags_skb(napi);
6393 
6394 	trace_napi_gro_frags_entry(skb);
6395 
6396 	ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
6397 	trace_napi_gro_frags_exit(ret);
6398 
6399 	return ret;
6400 }
6401 EXPORT_SYMBOL(napi_gro_frags);
6402 
6403 /* Compute the checksum from gro_offset and return the folded value
6404  * after adding in any pseudo checksum.
6405  */
6406 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
6407 {
6408 	__wsum wsum;
6409 	__sum16 sum;
6410 
6411 	wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
6412 
6413 	/* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
6414 	sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
6415 	/* See comments in __skb_checksum_complete(). */
6416 	if (likely(!sum)) {
6417 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
6418 		    !skb->csum_complete_sw)
6419 			netdev_rx_csum_fault(skb->dev, skb);
6420 	}
6421 
6422 	NAPI_GRO_CB(skb)->csum = wsum;
6423 	NAPI_GRO_CB(skb)->csum_valid = 1;
6424 
6425 	return sum;
6426 }
6427 EXPORT_SYMBOL(__skb_gro_checksum_complete);
6428 
6429 static void net_rps_send_ipi(struct softnet_data *remsd)
6430 {
6431 #ifdef CONFIG_RPS
6432 	while (remsd) {
6433 		struct softnet_data *next = remsd->rps_ipi_next;
6434 
6435 		if (cpu_online(remsd->cpu))
6436 			smp_call_function_single_async(remsd->cpu, &remsd->csd);
6437 		remsd = next;
6438 	}
6439 #endif
6440 }
6441 
6442 /*
6443  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6444  * Note: called with local irq disabled, but exits with local irq enabled.
6445  */
6446 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6447 {
6448 #ifdef CONFIG_RPS
6449 	struct softnet_data *remsd = sd->rps_ipi_list;
6450 
6451 	if (remsd) {
6452 		sd->rps_ipi_list = NULL;
6453 
6454 		local_irq_enable();
6455 
6456 		/* Send pending IPI's to kick RPS processing on remote cpus. */
6457 		net_rps_send_ipi(remsd);
6458 	} else
6459 #endif
6460 		local_irq_enable();
6461 }
6462 
6463 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6464 {
6465 #ifdef CONFIG_RPS
6466 	return sd->rps_ipi_list != NULL;
6467 #else
6468 	return false;
6469 #endif
6470 }
6471 
6472 static int process_backlog(struct napi_struct *napi, int quota)
6473 {
6474 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6475 	bool again = true;
6476 	int work = 0;
6477 
6478 	/* Check if we have pending ipi, its better to send them now,
6479 	 * not waiting net_rx_action() end.
6480 	 */
6481 	if (sd_has_rps_ipi_waiting(sd)) {
6482 		local_irq_disable();
6483 		net_rps_action_and_irq_enable(sd);
6484 	}
6485 
6486 	napi->weight = dev_rx_weight;
6487 	while (again) {
6488 		struct sk_buff *skb;
6489 
6490 		while ((skb = __skb_dequeue(&sd->process_queue))) {
6491 			rcu_read_lock();
6492 			__netif_receive_skb(skb);
6493 			rcu_read_unlock();
6494 			input_queue_head_incr(sd);
6495 			if (++work >= quota)
6496 				return work;
6497 
6498 		}
6499 
6500 		local_irq_disable();
6501 		rps_lock(sd);
6502 		if (skb_queue_empty(&sd->input_pkt_queue)) {
6503 			/*
6504 			 * Inline a custom version of __napi_complete().
6505 			 * only current cpu owns and manipulates this napi,
6506 			 * and NAPI_STATE_SCHED is the only possible flag set
6507 			 * on backlog.
6508 			 * We can use a plain write instead of clear_bit(),
6509 			 * and we dont need an smp_mb() memory barrier.
6510 			 */
6511 			napi->state = 0;
6512 			again = false;
6513 		} else {
6514 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
6515 						   &sd->process_queue);
6516 		}
6517 		rps_unlock(sd);
6518 		local_irq_enable();
6519 	}
6520 
6521 	return work;
6522 }
6523 
6524 /**
6525  * __napi_schedule - schedule for receive
6526  * @n: entry to schedule
6527  *
6528  * The entry's receive function will be scheduled to run.
6529  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6530  */
6531 void __napi_schedule(struct napi_struct *n)
6532 {
6533 	unsigned long flags;
6534 
6535 	local_irq_save(flags);
6536 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
6537 	local_irq_restore(flags);
6538 }
6539 EXPORT_SYMBOL(__napi_schedule);
6540 
6541 /**
6542  *	napi_schedule_prep - check if napi can be scheduled
6543  *	@n: napi context
6544  *
6545  * Test if NAPI routine is already running, and if not mark
6546  * it as running.  This is used as a condition variable to
6547  * insure only one NAPI poll instance runs.  We also make
6548  * sure there is no pending NAPI disable.
6549  */
6550 bool napi_schedule_prep(struct napi_struct *n)
6551 {
6552 	unsigned long val, new;
6553 
6554 	do {
6555 		val = READ_ONCE(n->state);
6556 		if (unlikely(val & NAPIF_STATE_DISABLE))
6557 			return false;
6558 		new = val | NAPIF_STATE_SCHED;
6559 
6560 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
6561 		 * This was suggested by Alexander Duyck, as compiler
6562 		 * emits better code than :
6563 		 * if (val & NAPIF_STATE_SCHED)
6564 		 *     new |= NAPIF_STATE_MISSED;
6565 		 */
6566 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6567 						   NAPIF_STATE_MISSED;
6568 	} while (cmpxchg(&n->state, val, new) != val);
6569 
6570 	return !(val & NAPIF_STATE_SCHED);
6571 }
6572 EXPORT_SYMBOL(napi_schedule_prep);
6573 
6574 /**
6575  * __napi_schedule_irqoff - schedule for receive
6576  * @n: entry to schedule
6577  *
6578  * Variant of __napi_schedule() assuming hard irqs are masked.
6579  *
6580  * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6581  * because the interrupt disabled assumption might not be true
6582  * due to force-threaded interrupts and spinlock substitution.
6583  */
6584 void __napi_schedule_irqoff(struct napi_struct *n)
6585 {
6586 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6587 		____napi_schedule(this_cpu_ptr(&softnet_data), n);
6588 	else
6589 		__napi_schedule(n);
6590 }
6591 EXPORT_SYMBOL(__napi_schedule_irqoff);
6592 
6593 bool napi_complete_done(struct napi_struct *n, int work_done)
6594 {
6595 	unsigned long flags, val, new, timeout = 0;
6596 	bool ret = true;
6597 
6598 	/*
6599 	 * 1) Don't let napi dequeue from the cpu poll list
6600 	 *    just in case its running on a different cpu.
6601 	 * 2) If we are busy polling, do nothing here, we have
6602 	 *    the guarantee we will be called later.
6603 	 */
6604 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6605 				 NAPIF_STATE_IN_BUSY_POLL)))
6606 		return false;
6607 
6608 	if (work_done) {
6609 		if (n->gro_bitmask)
6610 			timeout = READ_ONCE(n->dev->gro_flush_timeout);
6611 		n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6612 	}
6613 	if (n->defer_hard_irqs_count > 0) {
6614 		n->defer_hard_irqs_count--;
6615 		timeout = READ_ONCE(n->dev->gro_flush_timeout);
6616 		if (timeout)
6617 			ret = false;
6618 	}
6619 	if (n->gro_bitmask) {
6620 		/* When the NAPI instance uses a timeout and keeps postponing
6621 		 * it, we need to bound somehow the time packets are kept in
6622 		 * the GRO layer
6623 		 */
6624 		napi_gro_flush(n, !!timeout);
6625 	}
6626 
6627 	gro_normal_list(n);
6628 
6629 	if (unlikely(!list_empty(&n->poll_list))) {
6630 		/* If n->poll_list is not empty, we need to mask irqs */
6631 		local_irq_save(flags);
6632 		list_del_init(&n->poll_list);
6633 		local_irq_restore(flags);
6634 	}
6635 
6636 	do {
6637 		val = READ_ONCE(n->state);
6638 
6639 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6640 
6641 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6642 			      NAPIF_STATE_SCHED_THREADED |
6643 			      NAPIF_STATE_PREFER_BUSY_POLL);
6644 
6645 		/* If STATE_MISSED was set, leave STATE_SCHED set,
6646 		 * because we will call napi->poll() one more time.
6647 		 * This C code was suggested by Alexander Duyck to help gcc.
6648 		 */
6649 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6650 						    NAPIF_STATE_SCHED;
6651 	} while (cmpxchg(&n->state, val, new) != val);
6652 
6653 	if (unlikely(val & NAPIF_STATE_MISSED)) {
6654 		__napi_schedule(n);
6655 		return false;
6656 	}
6657 
6658 	if (timeout)
6659 		hrtimer_start(&n->timer, ns_to_ktime(timeout),
6660 			      HRTIMER_MODE_REL_PINNED);
6661 	return ret;
6662 }
6663 EXPORT_SYMBOL(napi_complete_done);
6664 
6665 /* must be called under rcu_read_lock(), as we dont take a reference */
6666 static struct napi_struct *napi_by_id(unsigned int napi_id)
6667 {
6668 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6669 	struct napi_struct *napi;
6670 
6671 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6672 		if (napi->napi_id == napi_id)
6673 			return napi;
6674 
6675 	return NULL;
6676 }
6677 
6678 #if defined(CONFIG_NET_RX_BUSY_POLL)
6679 
6680 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6681 {
6682 	if (!skip_schedule) {
6683 		gro_normal_list(napi);
6684 		__napi_schedule(napi);
6685 		return;
6686 	}
6687 
6688 	if (napi->gro_bitmask) {
6689 		/* flush too old packets
6690 		 * If HZ < 1000, flush all packets.
6691 		 */
6692 		napi_gro_flush(napi, HZ >= 1000);
6693 	}
6694 
6695 	gro_normal_list(napi);
6696 	clear_bit(NAPI_STATE_SCHED, &napi->state);
6697 }
6698 
6699 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll,
6700 			   u16 budget)
6701 {
6702 	bool skip_schedule = false;
6703 	unsigned long timeout;
6704 	int rc;
6705 
6706 	/* Busy polling means there is a high chance device driver hard irq
6707 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6708 	 * set in napi_schedule_prep().
6709 	 * Since we are about to call napi->poll() once more, we can safely
6710 	 * clear NAPI_STATE_MISSED.
6711 	 *
6712 	 * Note: x86 could use a single "lock and ..." instruction
6713 	 * to perform these two clear_bit()
6714 	 */
6715 	clear_bit(NAPI_STATE_MISSED, &napi->state);
6716 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6717 
6718 	local_bh_disable();
6719 
6720 	if (prefer_busy_poll) {
6721 		napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6722 		timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6723 		if (napi->defer_hard_irqs_count && timeout) {
6724 			hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6725 			skip_schedule = true;
6726 		}
6727 	}
6728 
6729 	/* All we really want here is to re-enable device interrupts.
6730 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6731 	 */
6732 	rc = napi->poll(napi, budget);
6733 	/* We can't gro_normal_list() here, because napi->poll() might have
6734 	 * rearmed the napi (napi_complete_done()) in which case it could
6735 	 * already be running on another CPU.
6736 	 */
6737 	trace_napi_poll(napi, rc, budget);
6738 	netpoll_poll_unlock(have_poll_lock);
6739 	if (rc == budget)
6740 		__busy_poll_stop(napi, skip_schedule);
6741 	local_bh_enable();
6742 }
6743 
6744 void napi_busy_loop(unsigned int napi_id,
6745 		    bool (*loop_end)(void *, unsigned long),
6746 		    void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6747 {
6748 	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6749 	int (*napi_poll)(struct napi_struct *napi, int budget);
6750 	void *have_poll_lock = NULL;
6751 	struct napi_struct *napi;
6752 
6753 restart:
6754 	napi_poll = NULL;
6755 
6756 	rcu_read_lock();
6757 
6758 	napi = napi_by_id(napi_id);
6759 	if (!napi)
6760 		goto out;
6761 
6762 	preempt_disable();
6763 	for (;;) {
6764 		int work = 0;
6765 
6766 		local_bh_disable();
6767 		if (!napi_poll) {
6768 			unsigned long val = READ_ONCE(napi->state);
6769 
6770 			/* If multiple threads are competing for this napi,
6771 			 * we avoid dirtying napi->state as much as we can.
6772 			 */
6773 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6774 				   NAPIF_STATE_IN_BUSY_POLL)) {
6775 				if (prefer_busy_poll)
6776 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6777 				goto count;
6778 			}
6779 			if (cmpxchg(&napi->state, val,
6780 				    val | NAPIF_STATE_IN_BUSY_POLL |
6781 					  NAPIF_STATE_SCHED) != val) {
6782 				if (prefer_busy_poll)
6783 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6784 				goto count;
6785 			}
6786 			have_poll_lock = netpoll_poll_lock(napi);
6787 			napi_poll = napi->poll;
6788 		}
6789 		work = napi_poll(napi, budget);
6790 		trace_napi_poll(napi, work, budget);
6791 		gro_normal_list(napi);
6792 count:
6793 		if (work > 0)
6794 			__NET_ADD_STATS(dev_net(napi->dev),
6795 					LINUX_MIB_BUSYPOLLRXPACKETS, work);
6796 		local_bh_enable();
6797 
6798 		if (!loop_end || loop_end(loop_end_arg, start_time))
6799 			break;
6800 
6801 		if (unlikely(need_resched())) {
6802 			if (napi_poll)
6803 				busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6804 			preempt_enable();
6805 			rcu_read_unlock();
6806 			cond_resched();
6807 			if (loop_end(loop_end_arg, start_time))
6808 				return;
6809 			goto restart;
6810 		}
6811 		cpu_relax();
6812 	}
6813 	if (napi_poll)
6814 		busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6815 	preempt_enable();
6816 out:
6817 	rcu_read_unlock();
6818 }
6819 EXPORT_SYMBOL(napi_busy_loop);
6820 
6821 #endif /* CONFIG_NET_RX_BUSY_POLL */
6822 
6823 static void napi_hash_add(struct napi_struct *napi)
6824 {
6825 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6826 		return;
6827 
6828 	spin_lock(&napi_hash_lock);
6829 
6830 	/* 0..NR_CPUS range is reserved for sender_cpu use */
6831 	do {
6832 		if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6833 			napi_gen_id = MIN_NAPI_ID;
6834 	} while (napi_by_id(napi_gen_id));
6835 	napi->napi_id = napi_gen_id;
6836 
6837 	hlist_add_head_rcu(&napi->napi_hash_node,
6838 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6839 
6840 	spin_unlock(&napi_hash_lock);
6841 }
6842 
6843 /* Warning : caller is responsible to make sure rcu grace period
6844  * is respected before freeing memory containing @napi
6845  */
6846 static void napi_hash_del(struct napi_struct *napi)
6847 {
6848 	spin_lock(&napi_hash_lock);
6849 
6850 	hlist_del_init_rcu(&napi->napi_hash_node);
6851 
6852 	spin_unlock(&napi_hash_lock);
6853 }
6854 
6855 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6856 {
6857 	struct napi_struct *napi;
6858 
6859 	napi = container_of(timer, struct napi_struct, timer);
6860 
6861 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
6862 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6863 	 */
6864 	if (!napi_disable_pending(napi) &&
6865 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6866 		clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6867 		__napi_schedule_irqoff(napi);
6868 	}
6869 
6870 	return HRTIMER_NORESTART;
6871 }
6872 
6873 static void init_gro_hash(struct napi_struct *napi)
6874 {
6875 	int i;
6876 
6877 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6878 		INIT_LIST_HEAD(&napi->gro_hash[i].list);
6879 		napi->gro_hash[i].count = 0;
6880 	}
6881 	napi->gro_bitmask = 0;
6882 }
6883 
6884 int dev_set_threaded(struct net_device *dev, bool threaded)
6885 {
6886 	struct napi_struct *napi;
6887 	int err = 0;
6888 
6889 	if (dev->threaded == threaded)
6890 		return 0;
6891 
6892 	if (threaded) {
6893 		list_for_each_entry(napi, &dev->napi_list, dev_list) {
6894 			if (!napi->thread) {
6895 				err = napi_kthread_create(napi);
6896 				if (err) {
6897 					threaded = false;
6898 					break;
6899 				}
6900 			}
6901 		}
6902 	}
6903 
6904 	dev->threaded = threaded;
6905 
6906 	/* Make sure kthread is created before THREADED bit
6907 	 * is set.
6908 	 */
6909 	smp_mb__before_atomic();
6910 
6911 	/* Setting/unsetting threaded mode on a napi might not immediately
6912 	 * take effect, if the current napi instance is actively being
6913 	 * polled. In this case, the switch between threaded mode and
6914 	 * softirq mode will happen in the next round of napi_schedule().
6915 	 * This should not cause hiccups/stalls to the live traffic.
6916 	 */
6917 	list_for_each_entry(napi, &dev->napi_list, dev_list) {
6918 		if (threaded)
6919 			set_bit(NAPI_STATE_THREADED, &napi->state);
6920 		else
6921 			clear_bit(NAPI_STATE_THREADED, &napi->state);
6922 	}
6923 
6924 	return err;
6925 }
6926 EXPORT_SYMBOL(dev_set_threaded);
6927 
6928 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6929 		    int (*poll)(struct napi_struct *, int), int weight)
6930 {
6931 	if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6932 		return;
6933 
6934 	INIT_LIST_HEAD(&napi->poll_list);
6935 	INIT_HLIST_NODE(&napi->napi_hash_node);
6936 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6937 	napi->timer.function = napi_watchdog;
6938 	init_gro_hash(napi);
6939 	napi->skb = NULL;
6940 	INIT_LIST_HEAD(&napi->rx_list);
6941 	napi->rx_count = 0;
6942 	napi->poll = poll;
6943 	if (weight > NAPI_POLL_WEIGHT)
6944 		netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6945 				weight);
6946 	napi->weight = weight;
6947 	napi->dev = dev;
6948 #ifdef CONFIG_NETPOLL
6949 	napi->poll_owner = -1;
6950 #endif
6951 	set_bit(NAPI_STATE_SCHED, &napi->state);
6952 	set_bit(NAPI_STATE_NPSVC, &napi->state);
6953 	list_add_rcu(&napi->dev_list, &dev->napi_list);
6954 	napi_hash_add(napi);
6955 	/* Create kthread for this napi if dev->threaded is set.
6956 	 * Clear dev->threaded if kthread creation failed so that
6957 	 * threaded mode will not be enabled in napi_enable().
6958 	 */
6959 	if (dev->threaded && napi_kthread_create(napi))
6960 		dev->threaded = 0;
6961 }
6962 EXPORT_SYMBOL(netif_napi_add);
6963 
6964 void napi_disable(struct napi_struct *n)
6965 {
6966 	might_sleep();
6967 	set_bit(NAPI_STATE_DISABLE, &n->state);
6968 
6969 	while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6970 		msleep(1);
6971 	while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6972 		msleep(1);
6973 
6974 	hrtimer_cancel(&n->timer);
6975 
6976 	clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state);
6977 	clear_bit(NAPI_STATE_DISABLE, &n->state);
6978 	clear_bit(NAPI_STATE_THREADED, &n->state);
6979 }
6980 EXPORT_SYMBOL(napi_disable);
6981 
6982 /**
6983  *	napi_enable - enable NAPI scheduling
6984  *	@n: NAPI context
6985  *
6986  * Resume NAPI from being scheduled on this context.
6987  * Must be paired with napi_disable.
6988  */
6989 void napi_enable(struct napi_struct *n)
6990 {
6991 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
6992 	smp_mb__before_atomic();
6993 	clear_bit(NAPI_STATE_SCHED, &n->state);
6994 	clear_bit(NAPI_STATE_NPSVC, &n->state);
6995 	if (n->dev->threaded && n->thread)
6996 		set_bit(NAPI_STATE_THREADED, &n->state);
6997 }
6998 EXPORT_SYMBOL(napi_enable);
6999 
7000 static void flush_gro_hash(struct napi_struct *napi)
7001 {
7002 	int i;
7003 
7004 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
7005 		struct sk_buff *skb, *n;
7006 
7007 		list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
7008 			kfree_skb(skb);
7009 		napi->gro_hash[i].count = 0;
7010 	}
7011 }
7012 
7013 /* Must be called in process context */
7014 void __netif_napi_del(struct napi_struct *napi)
7015 {
7016 	if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
7017 		return;
7018 
7019 	napi_hash_del(napi);
7020 	list_del_rcu(&napi->dev_list);
7021 	napi_free_frags(napi);
7022 
7023 	flush_gro_hash(napi);
7024 	napi->gro_bitmask = 0;
7025 
7026 	if (napi->thread) {
7027 		kthread_stop(napi->thread);
7028 		napi->thread = NULL;
7029 	}
7030 }
7031 EXPORT_SYMBOL(__netif_napi_del);
7032 
7033 static int __napi_poll(struct napi_struct *n, bool *repoll)
7034 {
7035 	int work, weight;
7036 
7037 	weight = n->weight;
7038 
7039 	/* This NAPI_STATE_SCHED test is for avoiding a race
7040 	 * with netpoll's poll_napi().  Only the entity which
7041 	 * obtains the lock and sees NAPI_STATE_SCHED set will
7042 	 * actually make the ->poll() call.  Therefore we avoid
7043 	 * accidentally calling ->poll() when NAPI is not scheduled.
7044 	 */
7045 	work = 0;
7046 	if (test_bit(NAPI_STATE_SCHED, &n->state)) {
7047 		work = n->poll(n, weight);
7048 		trace_napi_poll(n, work, weight);
7049 	}
7050 
7051 	if (unlikely(work > weight))
7052 		pr_err_once("NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
7053 			    n->poll, work, weight);
7054 
7055 	if (likely(work < weight))
7056 		return work;
7057 
7058 	/* Drivers must not modify the NAPI state if they
7059 	 * consume the entire weight.  In such cases this code
7060 	 * still "owns" the NAPI instance and therefore can
7061 	 * move the instance around on the list at-will.
7062 	 */
7063 	if (unlikely(napi_disable_pending(n))) {
7064 		napi_complete(n);
7065 		return work;
7066 	}
7067 
7068 	/* The NAPI context has more processing work, but busy-polling
7069 	 * is preferred. Exit early.
7070 	 */
7071 	if (napi_prefer_busy_poll(n)) {
7072 		if (napi_complete_done(n, work)) {
7073 			/* If timeout is not set, we need to make sure
7074 			 * that the NAPI is re-scheduled.
7075 			 */
7076 			napi_schedule(n);
7077 		}
7078 		return work;
7079 	}
7080 
7081 	if (n->gro_bitmask) {
7082 		/* flush too old packets
7083 		 * If HZ < 1000, flush all packets.
7084 		 */
7085 		napi_gro_flush(n, HZ >= 1000);
7086 	}
7087 
7088 	gro_normal_list(n);
7089 
7090 	/* Some drivers may have called napi_schedule
7091 	 * prior to exhausting their budget.
7092 	 */
7093 	if (unlikely(!list_empty(&n->poll_list))) {
7094 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
7095 			     n->dev ? n->dev->name : "backlog");
7096 		return work;
7097 	}
7098 
7099 	*repoll = true;
7100 
7101 	return work;
7102 }
7103 
7104 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
7105 {
7106 	bool do_repoll = false;
7107 	void *have;
7108 	int work;
7109 
7110 	list_del_init(&n->poll_list);
7111 
7112 	have = netpoll_poll_lock(n);
7113 
7114 	work = __napi_poll(n, &do_repoll);
7115 
7116 	if (do_repoll)
7117 		list_add_tail(&n->poll_list, repoll);
7118 
7119 	netpoll_poll_unlock(have);
7120 
7121 	return work;
7122 }
7123 
7124 static int napi_thread_wait(struct napi_struct *napi)
7125 {
7126 	bool woken = false;
7127 
7128 	set_current_state(TASK_INTERRUPTIBLE);
7129 
7130 	while (!kthread_should_stop()) {
7131 		/* Testing SCHED_THREADED bit here to make sure the current
7132 		 * kthread owns this napi and could poll on this napi.
7133 		 * Testing SCHED bit is not enough because SCHED bit might be
7134 		 * set by some other busy poll thread or by napi_disable().
7135 		 */
7136 		if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) {
7137 			WARN_ON(!list_empty(&napi->poll_list));
7138 			__set_current_state(TASK_RUNNING);
7139 			return 0;
7140 		}
7141 
7142 		schedule();
7143 		/* woken being true indicates this thread owns this napi. */
7144 		woken = true;
7145 		set_current_state(TASK_INTERRUPTIBLE);
7146 	}
7147 	__set_current_state(TASK_RUNNING);
7148 
7149 	return -1;
7150 }
7151 
7152 static int napi_threaded_poll(void *data)
7153 {
7154 	struct napi_struct *napi = data;
7155 	void *have;
7156 
7157 	while (!napi_thread_wait(napi)) {
7158 		for (;;) {
7159 			bool repoll = false;
7160 
7161 			local_bh_disable();
7162 
7163 			have = netpoll_poll_lock(napi);
7164 			__napi_poll(napi, &repoll);
7165 			netpoll_poll_unlock(have);
7166 
7167 			local_bh_enable();
7168 
7169 			if (!repoll)
7170 				break;
7171 
7172 			cond_resched();
7173 		}
7174 	}
7175 	return 0;
7176 }
7177 
7178 static __latent_entropy void net_rx_action(struct softirq_action *h)
7179 {
7180 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
7181 	unsigned long time_limit = jiffies +
7182 		usecs_to_jiffies(netdev_budget_usecs);
7183 	int budget = netdev_budget;
7184 	LIST_HEAD(list);
7185 	LIST_HEAD(repoll);
7186 
7187 	local_irq_disable();
7188 	list_splice_init(&sd->poll_list, &list);
7189 	local_irq_enable();
7190 
7191 	for (;;) {
7192 		struct napi_struct *n;
7193 
7194 		if (list_empty(&list)) {
7195 			if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
7196 				return;
7197 			break;
7198 		}
7199 
7200 		n = list_first_entry(&list, struct napi_struct, poll_list);
7201 		budget -= napi_poll(n, &repoll);
7202 
7203 		/* If softirq window is exhausted then punt.
7204 		 * Allow this to run for 2 jiffies since which will allow
7205 		 * an average latency of 1.5/HZ.
7206 		 */
7207 		if (unlikely(budget <= 0 ||
7208 			     time_after_eq(jiffies, time_limit))) {
7209 			sd->time_squeeze++;
7210 			break;
7211 		}
7212 	}
7213 
7214 	local_irq_disable();
7215 
7216 	list_splice_tail_init(&sd->poll_list, &list);
7217 	list_splice_tail(&repoll, &list);
7218 	list_splice(&list, &sd->poll_list);
7219 	if (!list_empty(&sd->poll_list))
7220 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
7221 
7222 	net_rps_action_and_irq_enable(sd);
7223 }
7224 
7225 struct netdev_adjacent {
7226 	struct net_device *dev;
7227 
7228 	/* upper master flag, there can only be one master device per list */
7229 	bool master;
7230 
7231 	/* lookup ignore flag */
7232 	bool ignore;
7233 
7234 	/* counter for the number of times this device was added to us */
7235 	u16 ref_nr;
7236 
7237 	/* private field for the users */
7238 	void *private;
7239 
7240 	struct list_head list;
7241 	struct rcu_head rcu;
7242 };
7243 
7244 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
7245 						 struct list_head *adj_list)
7246 {
7247 	struct netdev_adjacent *adj;
7248 
7249 	list_for_each_entry(adj, adj_list, list) {
7250 		if (adj->dev == adj_dev)
7251 			return adj;
7252 	}
7253 	return NULL;
7254 }
7255 
7256 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
7257 				    struct netdev_nested_priv *priv)
7258 {
7259 	struct net_device *dev = (struct net_device *)priv->data;
7260 
7261 	return upper_dev == dev;
7262 }
7263 
7264 /**
7265  * netdev_has_upper_dev - Check if device is linked to an upper device
7266  * @dev: device
7267  * @upper_dev: upper device to check
7268  *
7269  * Find out if a device is linked to specified upper device and return true
7270  * in case it is. Note that this checks only immediate upper device,
7271  * not through a complete stack of devices. The caller must hold the RTNL lock.
7272  */
7273 bool netdev_has_upper_dev(struct net_device *dev,
7274 			  struct net_device *upper_dev)
7275 {
7276 	struct netdev_nested_priv priv = {
7277 		.data = (void *)upper_dev,
7278 	};
7279 
7280 	ASSERT_RTNL();
7281 
7282 	return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7283 					     &priv);
7284 }
7285 EXPORT_SYMBOL(netdev_has_upper_dev);
7286 
7287 /**
7288  * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
7289  * @dev: device
7290  * @upper_dev: upper device to check
7291  *
7292  * Find out if a device is linked to specified upper device and return true
7293  * in case it is. Note that this checks the entire upper device chain.
7294  * The caller must hold rcu lock.
7295  */
7296 
7297 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
7298 				  struct net_device *upper_dev)
7299 {
7300 	struct netdev_nested_priv priv = {
7301 		.data = (void *)upper_dev,
7302 	};
7303 
7304 	return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7305 					       &priv);
7306 }
7307 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
7308 
7309 /**
7310  * netdev_has_any_upper_dev - Check if device is linked to some device
7311  * @dev: device
7312  *
7313  * Find out if a device is linked to an upper device and return true in case
7314  * it is. The caller must hold the RTNL lock.
7315  */
7316 bool netdev_has_any_upper_dev(struct net_device *dev)
7317 {
7318 	ASSERT_RTNL();
7319 
7320 	return !list_empty(&dev->adj_list.upper);
7321 }
7322 EXPORT_SYMBOL(netdev_has_any_upper_dev);
7323 
7324 /**
7325  * netdev_master_upper_dev_get - Get master upper device
7326  * @dev: device
7327  *
7328  * Find a master upper device and return pointer to it or NULL in case
7329  * it's not there. The caller must hold the RTNL lock.
7330  */
7331 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
7332 {
7333 	struct netdev_adjacent *upper;
7334 
7335 	ASSERT_RTNL();
7336 
7337 	if (list_empty(&dev->adj_list.upper))
7338 		return NULL;
7339 
7340 	upper = list_first_entry(&dev->adj_list.upper,
7341 				 struct netdev_adjacent, list);
7342 	if (likely(upper->master))
7343 		return upper->dev;
7344 	return NULL;
7345 }
7346 EXPORT_SYMBOL(netdev_master_upper_dev_get);
7347 
7348 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
7349 {
7350 	struct netdev_adjacent *upper;
7351 
7352 	ASSERT_RTNL();
7353 
7354 	if (list_empty(&dev->adj_list.upper))
7355 		return NULL;
7356 
7357 	upper = list_first_entry(&dev->adj_list.upper,
7358 				 struct netdev_adjacent, list);
7359 	if (likely(upper->master) && !upper->ignore)
7360 		return upper->dev;
7361 	return NULL;
7362 }
7363 
7364 /**
7365  * netdev_has_any_lower_dev - Check if device is linked to some device
7366  * @dev: device
7367  *
7368  * Find out if a device is linked to a lower device and return true in case
7369  * it is. The caller must hold the RTNL lock.
7370  */
7371 static bool netdev_has_any_lower_dev(struct net_device *dev)
7372 {
7373 	ASSERT_RTNL();
7374 
7375 	return !list_empty(&dev->adj_list.lower);
7376 }
7377 
7378 void *netdev_adjacent_get_private(struct list_head *adj_list)
7379 {
7380 	struct netdev_adjacent *adj;
7381 
7382 	adj = list_entry(adj_list, struct netdev_adjacent, list);
7383 
7384 	return adj->private;
7385 }
7386 EXPORT_SYMBOL(netdev_adjacent_get_private);
7387 
7388 /**
7389  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
7390  * @dev: device
7391  * @iter: list_head ** of the current position
7392  *
7393  * Gets the next device from the dev's upper list, starting from iter
7394  * position. The caller must hold RCU read lock.
7395  */
7396 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
7397 						 struct list_head **iter)
7398 {
7399 	struct netdev_adjacent *upper;
7400 
7401 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7402 
7403 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7404 
7405 	if (&upper->list == &dev->adj_list.upper)
7406 		return NULL;
7407 
7408 	*iter = &upper->list;
7409 
7410 	return upper->dev;
7411 }
7412 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
7413 
7414 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
7415 						  struct list_head **iter,
7416 						  bool *ignore)
7417 {
7418 	struct netdev_adjacent *upper;
7419 
7420 	upper = list_entry((*iter)->next, struct netdev_adjacent, list);
7421 
7422 	if (&upper->list == &dev->adj_list.upper)
7423 		return NULL;
7424 
7425 	*iter = &upper->list;
7426 	*ignore = upper->ignore;
7427 
7428 	return upper->dev;
7429 }
7430 
7431 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
7432 						    struct list_head **iter)
7433 {
7434 	struct netdev_adjacent *upper;
7435 
7436 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7437 
7438 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7439 
7440 	if (&upper->list == &dev->adj_list.upper)
7441 		return NULL;
7442 
7443 	*iter = &upper->list;
7444 
7445 	return upper->dev;
7446 }
7447 
7448 static int __netdev_walk_all_upper_dev(struct net_device *dev,
7449 				       int (*fn)(struct net_device *dev,
7450 					 struct netdev_nested_priv *priv),
7451 				       struct netdev_nested_priv *priv)
7452 {
7453 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7454 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7455 	int ret, cur = 0;
7456 	bool ignore;
7457 
7458 	now = dev;
7459 	iter = &dev->adj_list.upper;
7460 
7461 	while (1) {
7462 		if (now != dev) {
7463 			ret = fn(now, priv);
7464 			if (ret)
7465 				return ret;
7466 		}
7467 
7468 		next = NULL;
7469 		while (1) {
7470 			udev = __netdev_next_upper_dev(now, &iter, &ignore);
7471 			if (!udev)
7472 				break;
7473 			if (ignore)
7474 				continue;
7475 
7476 			next = udev;
7477 			niter = &udev->adj_list.upper;
7478 			dev_stack[cur] = now;
7479 			iter_stack[cur++] = iter;
7480 			break;
7481 		}
7482 
7483 		if (!next) {
7484 			if (!cur)
7485 				return 0;
7486 			next = dev_stack[--cur];
7487 			niter = iter_stack[cur];
7488 		}
7489 
7490 		now = next;
7491 		iter = niter;
7492 	}
7493 
7494 	return 0;
7495 }
7496 
7497 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7498 				  int (*fn)(struct net_device *dev,
7499 					    struct netdev_nested_priv *priv),
7500 				  struct netdev_nested_priv *priv)
7501 {
7502 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7503 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7504 	int ret, cur = 0;
7505 
7506 	now = dev;
7507 	iter = &dev->adj_list.upper;
7508 
7509 	while (1) {
7510 		if (now != dev) {
7511 			ret = fn(now, priv);
7512 			if (ret)
7513 				return ret;
7514 		}
7515 
7516 		next = NULL;
7517 		while (1) {
7518 			udev = netdev_next_upper_dev_rcu(now, &iter);
7519 			if (!udev)
7520 				break;
7521 
7522 			next = udev;
7523 			niter = &udev->adj_list.upper;
7524 			dev_stack[cur] = now;
7525 			iter_stack[cur++] = iter;
7526 			break;
7527 		}
7528 
7529 		if (!next) {
7530 			if (!cur)
7531 				return 0;
7532 			next = dev_stack[--cur];
7533 			niter = iter_stack[cur];
7534 		}
7535 
7536 		now = next;
7537 		iter = niter;
7538 	}
7539 
7540 	return 0;
7541 }
7542 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7543 
7544 static bool __netdev_has_upper_dev(struct net_device *dev,
7545 				   struct net_device *upper_dev)
7546 {
7547 	struct netdev_nested_priv priv = {
7548 		.flags = 0,
7549 		.data = (void *)upper_dev,
7550 	};
7551 
7552 	ASSERT_RTNL();
7553 
7554 	return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7555 					   &priv);
7556 }
7557 
7558 /**
7559  * netdev_lower_get_next_private - Get the next ->private from the
7560  *				   lower neighbour list
7561  * @dev: device
7562  * @iter: list_head ** of the current position
7563  *
7564  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7565  * list, starting from iter position. The caller must hold either hold the
7566  * RTNL lock or its own locking that guarantees that the neighbour lower
7567  * list will remain unchanged.
7568  */
7569 void *netdev_lower_get_next_private(struct net_device *dev,
7570 				    struct list_head **iter)
7571 {
7572 	struct netdev_adjacent *lower;
7573 
7574 	lower = list_entry(*iter, struct netdev_adjacent, list);
7575 
7576 	if (&lower->list == &dev->adj_list.lower)
7577 		return NULL;
7578 
7579 	*iter = lower->list.next;
7580 
7581 	return lower->private;
7582 }
7583 EXPORT_SYMBOL(netdev_lower_get_next_private);
7584 
7585 /**
7586  * netdev_lower_get_next_private_rcu - Get the next ->private from the
7587  *				       lower neighbour list, RCU
7588  *				       variant
7589  * @dev: device
7590  * @iter: list_head ** of the current position
7591  *
7592  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7593  * list, starting from iter position. The caller must hold RCU read lock.
7594  */
7595 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7596 					struct list_head **iter)
7597 {
7598 	struct netdev_adjacent *lower;
7599 
7600 	WARN_ON_ONCE(!rcu_read_lock_held());
7601 
7602 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7603 
7604 	if (&lower->list == &dev->adj_list.lower)
7605 		return NULL;
7606 
7607 	*iter = &lower->list;
7608 
7609 	return lower->private;
7610 }
7611 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7612 
7613 /**
7614  * netdev_lower_get_next - Get the next device from the lower neighbour
7615  *                         list
7616  * @dev: device
7617  * @iter: list_head ** of the current position
7618  *
7619  * Gets the next netdev_adjacent from the dev's lower neighbour
7620  * list, starting from iter position. The caller must hold RTNL lock or
7621  * its own locking that guarantees that the neighbour lower
7622  * list will remain unchanged.
7623  */
7624 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7625 {
7626 	struct netdev_adjacent *lower;
7627 
7628 	lower = list_entry(*iter, struct netdev_adjacent, list);
7629 
7630 	if (&lower->list == &dev->adj_list.lower)
7631 		return NULL;
7632 
7633 	*iter = lower->list.next;
7634 
7635 	return lower->dev;
7636 }
7637 EXPORT_SYMBOL(netdev_lower_get_next);
7638 
7639 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7640 						struct list_head **iter)
7641 {
7642 	struct netdev_adjacent *lower;
7643 
7644 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7645 
7646 	if (&lower->list == &dev->adj_list.lower)
7647 		return NULL;
7648 
7649 	*iter = &lower->list;
7650 
7651 	return lower->dev;
7652 }
7653 
7654 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7655 						  struct list_head **iter,
7656 						  bool *ignore)
7657 {
7658 	struct netdev_adjacent *lower;
7659 
7660 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7661 
7662 	if (&lower->list == &dev->adj_list.lower)
7663 		return NULL;
7664 
7665 	*iter = &lower->list;
7666 	*ignore = lower->ignore;
7667 
7668 	return lower->dev;
7669 }
7670 
7671 int netdev_walk_all_lower_dev(struct net_device *dev,
7672 			      int (*fn)(struct net_device *dev,
7673 					struct netdev_nested_priv *priv),
7674 			      struct netdev_nested_priv *priv)
7675 {
7676 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7677 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7678 	int ret, cur = 0;
7679 
7680 	now = dev;
7681 	iter = &dev->adj_list.lower;
7682 
7683 	while (1) {
7684 		if (now != dev) {
7685 			ret = fn(now, priv);
7686 			if (ret)
7687 				return ret;
7688 		}
7689 
7690 		next = NULL;
7691 		while (1) {
7692 			ldev = netdev_next_lower_dev(now, &iter);
7693 			if (!ldev)
7694 				break;
7695 
7696 			next = ldev;
7697 			niter = &ldev->adj_list.lower;
7698 			dev_stack[cur] = now;
7699 			iter_stack[cur++] = iter;
7700 			break;
7701 		}
7702 
7703 		if (!next) {
7704 			if (!cur)
7705 				return 0;
7706 			next = dev_stack[--cur];
7707 			niter = iter_stack[cur];
7708 		}
7709 
7710 		now = next;
7711 		iter = niter;
7712 	}
7713 
7714 	return 0;
7715 }
7716 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7717 
7718 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7719 				       int (*fn)(struct net_device *dev,
7720 					 struct netdev_nested_priv *priv),
7721 				       struct netdev_nested_priv *priv)
7722 {
7723 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7724 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7725 	int ret, cur = 0;
7726 	bool ignore;
7727 
7728 	now = dev;
7729 	iter = &dev->adj_list.lower;
7730 
7731 	while (1) {
7732 		if (now != dev) {
7733 			ret = fn(now, priv);
7734 			if (ret)
7735 				return ret;
7736 		}
7737 
7738 		next = NULL;
7739 		while (1) {
7740 			ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7741 			if (!ldev)
7742 				break;
7743 			if (ignore)
7744 				continue;
7745 
7746 			next = ldev;
7747 			niter = &ldev->adj_list.lower;
7748 			dev_stack[cur] = now;
7749 			iter_stack[cur++] = iter;
7750 			break;
7751 		}
7752 
7753 		if (!next) {
7754 			if (!cur)
7755 				return 0;
7756 			next = dev_stack[--cur];
7757 			niter = iter_stack[cur];
7758 		}
7759 
7760 		now = next;
7761 		iter = niter;
7762 	}
7763 
7764 	return 0;
7765 }
7766 
7767 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7768 					     struct list_head **iter)
7769 {
7770 	struct netdev_adjacent *lower;
7771 
7772 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7773 	if (&lower->list == &dev->adj_list.lower)
7774 		return NULL;
7775 
7776 	*iter = &lower->list;
7777 
7778 	return lower->dev;
7779 }
7780 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7781 
7782 static u8 __netdev_upper_depth(struct net_device *dev)
7783 {
7784 	struct net_device *udev;
7785 	struct list_head *iter;
7786 	u8 max_depth = 0;
7787 	bool ignore;
7788 
7789 	for (iter = &dev->adj_list.upper,
7790 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7791 	     udev;
7792 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7793 		if (ignore)
7794 			continue;
7795 		if (max_depth < udev->upper_level)
7796 			max_depth = udev->upper_level;
7797 	}
7798 
7799 	return max_depth;
7800 }
7801 
7802 static u8 __netdev_lower_depth(struct net_device *dev)
7803 {
7804 	struct net_device *ldev;
7805 	struct list_head *iter;
7806 	u8 max_depth = 0;
7807 	bool ignore;
7808 
7809 	for (iter = &dev->adj_list.lower,
7810 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7811 	     ldev;
7812 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7813 		if (ignore)
7814 			continue;
7815 		if (max_depth < ldev->lower_level)
7816 			max_depth = ldev->lower_level;
7817 	}
7818 
7819 	return max_depth;
7820 }
7821 
7822 static int __netdev_update_upper_level(struct net_device *dev,
7823 				       struct netdev_nested_priv *__unused)
7824 {
7825 	dev->upper_level = __netdev_upper_depth(dev) + 1;
7826 	return 0;
7827 }
7828 
7829 static int __netdev_update_lower_level(struct net_device *dev,
7830 				       struct netdev_nested_priv *priv)
7831 {
7832 	dev->lower_level = __netdev_lower_depth(dev) + 1;
7833 
7834 #ifdef CONFIG_LOCKDEP
7835 	if (!priv)
7836 		return 0;
7837 
7838 	if (priv->flags & NESTED_SYNC_IMM)
7839 		dev->nested_level = dev->lower_level - 1;
7840 	if (priv->flags & NESTED_SYNC_TODO)
7841 		net_unlink_todo(dev);
7842 #endif
7843 	return 0;
7844 }
7845 
7846 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7847 				  int (*fn)(struct net_device *dev,
7848 					    struct netdev_nested_priv *priv),
7849 				  struct netdev_nested_priv *priv)
7850 {
7851 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7852 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7853 	int ret, cur = 0;
7854 
7855 	now = dev;
7856 	iter = &dev->adj_list.lower;
7857 
7858 	while (1) {
7859 		if (now != dev) {
7860 			ret = fn(now, priv);
7861 			if (ret)
7862 				return ret;
7863 		}
7864 
7865 		next = NULL;
7866 		while (1) {
7867 			ldev = netdev_next_lower_dev_rcu(now, &iter);
7868 			if (!ldev)
7869 				break;
7870 
7871 			next = ldev;
7872 			niter = &ldev->adj_list.lower;
7873 			dev_stack[cur] = now;
7874 			iter_stack[cur++] = iter;
7875 			break;
7876 		}
7877 
7878 		if (!next) {
7879 			if (!cur)
7880 				return 0;
7881 			next = dev_stack[--cur];
7882 			niter = iter_stack[cur];
7883 		}
7884 
7885 		now = next;
7886 		iter = niter;
7887 	}
7888 
7889 	return 0;
7890 }
7891 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7892 
7893 /**
7894  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7895  *				       lower neighbour list, RCU
7896  *				       variant
7897  * @dev: device
7898  *
7899  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7900  * list. The caller must hold RCU read lock.
7901  */
7902 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7903 {
7904 	struct netdev_adjacent *lower;
7905 
7906 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
7907 			struct netdev_adjacent, list);
7908 	if (lower)
7909 		return lower->private;
7910 	return NULL;
7911 }
7912 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7913 
7914 /**
7915  * netdev_master_upper_dev_get_rcu - Get master upper device
7916  * @dev: device
7917  *
7918  * Find a master upper device and return pointer to it or NULL in case
7919  * it's not there. The caller must hold the RCU read lock.
7920  */
7921 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7922 {
7923 	struct netdev_adjacent *upper;
7924 
7925 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
7926 				       struct netdev_adjacent, list);
7927 	if (upper && likely(upper->master))
7928 		return upper->dev;
7929 	return NULL;
7930 }
7931 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7932 
7933 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7934 			      struct net_device *adj_dev,
7935 			      struct list_head *dev_list)
7936 {
7937 	char linkname[IFNAMSIZ+7];
7938 
7939 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7940 		"upper_%s" : "lower_%s", adj_dev->name);
7941 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7942 				 linkname);
7943 }
7944 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7945 			       char *name,
7946 			       struct list_head *dev_list)
7947 {
7948 	char linkname[IFNAMSIZ+7];
7949 
7950 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7951 		"upper_%s" : "lower_%s", name);
7952 	sysfs_remove_link(&(dev->dev.kobj), linkname);
7953 }
7954 
7955 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7956 						 struct net_device *adj_dev,
7957 						 struct list_head *dev_list)
7958 {
7959 	return (dev_list == &dev->adj_list.upper ||
7960 		dev_list == &dev->adj_list.lower) &&
7961 		net_eq(dev_net(dev), dev_net(adj_dev));
7962 }
7963 
7964 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7965 					struct net_device *adj_dev,
7966 					struct list_head *dev_list,
7967 					void *private, bool master)
7968 {
7969 	struct netdev_adjacent *adj;
7970 	int ret;
7971 
7972 	adj = __netdev_find_adj(adj_dev, dev_list);
7973 
7974 	if (adj) {
7975 		adj->ref_nr += 1;
7976 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7977 			 dev->name, adj_dev->name, adj->ref_nr);
7978 
7979 		return 0;
7980 	}
7981 
7982 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7983 	if (!adj)
7984 		return -ENOMEM;
7985 
7986 	adj->dev = adj_dev;
7987 	adj->master = master;
7988 	adj->ref_nr = 1;
7989 	adj->private = private;
7990 	adj->ignore = false;
7991 	dev_hold(adj_dev);
7992 
7993 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7994 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7995 
7996 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7997 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7998 		if (ret)
7999 			goto free_adj;
8000 	}
8001 
8002 	/* Ensure that master link is always the first item in list. */
8003 	if (master) {
8004 		ret = sysfs_create_link(&(dev->dev.kobj),
8005 					&(adj_dev->dev.kobj), "master");
8006 		if (ret)
8007 			goto remove_symlinks;
8008 
8009 		list_add_rcu(&adj->list, dev_list);
8010 	} else {
8011 		list_add_tail_rcu(&adj->list, dev_list);
8012 	}
8013 
8014 	return 0;
8015 
8016 remove_symlinks:
8017 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
8018 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
8019 free_adj:
8020 	kfree(adj);
8021 	dev_put(adj_dev);
8022 
8023 	return ret;
8024 }
8025 
8026 static void __netdev_adjacent_dev_remove(struct net_device *dev,
8027 					 struct net_device *adj_dev,
8028 					 u16 ref_nr,
8029 					 struct list_head *dev_list)
8030 {
8031 	struct netdev_adjacent *adj;
8032 
8033 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
8034 		 dev->name, adj_dev->name, ref_nr);
8035 
8036 	adj = __netdev_find_adj(adj_dev, dev_list);
8037 
8038 	if (!adj) {
8039 		pr_err("Adjacency does not exist for device %s from %s\n",
8040 		       dev->name, adj_dev->name);
8041 		WARN_ON(1);
8042 		return;
8043 	}
8044 
8045 	if (adj->ref_nr > ref_nr) {
8046 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
8047 			 dev->name, adj_dev->name, ref_nr,
8048 			 adj->ref_nr - ref_nr);
8049 		adj->ref_nr -= ref_nr;
8050 		return;
8051 	}
8052 
8053 	if (adj->master)
8054 		sysfs_remove_link(&(dev->dev.kobj), "master");
8055 
8056 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
8057 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
8058 
8059 	list_del_rcu(&adj->list);
8060 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
8061 		 adj_dev->name, dev->name, adj_dev->name);
8062 	dev_put(adj_dev);
8063 	kfree_rcu(adj, rcu);
8064 }
8065 
8066 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
8067 					    struct net_device *upper_dev,
8068 					    struct list_head *up_list,
8069 					    struct list_head *down_list,
8070 					    void *private, bool master)
8071 {
8072 	int ret;
8073 
8074 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
8075 					   private, master);
8076 	if (ret)
8077 		return ret;
8078 
8079 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
8080 					   private, false);
8081 	if (ret) {
8082 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
8083 		return ret;
8084 	}
8085 
8086 	return 0;
8087 }
8088 
8089 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
8090 					       struct net_device *upper_dev,
8091 					       u16 ref_nr,
8092 					       struct list_head *up_list,
8093 					       struct list_head *down_list)
8094 {
8095 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
8096 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
8097 }
8098 
8099 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
8100 						struct net_device *upper_dev,
8101 						void *private, bool master)
8102 {
8103 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
8104 						&dev->adj_list.upper,
8105 						&upper_dev->adj_list.lower,
8106 						private, master);
8107 }
8108 
8109 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
8110 						   struct net_device *upper_dev)
8111 {
8112 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
8113 					   &dev->adj_list.upper,
8114 					   &upper_dev->adj_list.lower);
8115 }
8116 
8117 static int __netdev_upper_dev_link(struct net_device *dev,
8118 				   struct net_device *upper_dev, bool master,
8119 				   void *upper_priv, void *upper_info,
8120 				   struct netdev_nested_priv *priv,
8121 				   struct netlink_ext_ack *extack)
8122 {
8123 	struct netdev_notifier_changeupper_info changeupper_info = {
8124 		.info = {
8125 			.dev = dev,
8126 			.extack = extack,
8127 		},
8128 		.upper_dev = upper_dev,
8129 		.master = master,
8130 		.linking = true,
8131 		.upper_info = upper_info,
8132 	};
8133 	struct net_device *master_dev;
8134 	int ret = 0;
8135 
8136 	ASSERT_RTNL();
8137 
8138 	if (dev == upper_dev)
8139 		return -EBUSY;
8140 
8141 	/* To prevent loops, check if dev is not upper device to upper_dev. */
8142 	if (__netdev_has_upper_dev(upper_dev, dev))
8143 		return -EBUSY;
8144 
8145 	if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
8146 		return -EMLINK;
8147 
8148 	if (!master) {
8149 		if (__netdev_has_upper_dev(dev, upper_dev))
8150 			return -EEXIST;
8151 	} else {
8152 		master_dev = __netdev_master_upper_dev_get(dev);
8153 		if (master_dev)
8154 			return master_dev == upper_dev ? -EEXIST : -EBUSY;
8155 	}
8156 
8157 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8158 					    &changeupper_info.info);
8159 	ret = notifier_to_errno(ret);
8160 	if (ret)
8161 		return ret;
8162 
8163 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
8164 						   master);
8165 	if (ret)
8166 		return ret;
8167 
8168 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8169 					    &changeupper_info.info);
8170 	ret = notifier_to_errno(ret);
8171 	if (ret)
8172 		goto rollback;
8173 
8174 	__netdev_update_upper_level(dev, NULL);
8175 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8176 
8177 	__netdev_update_lower_level(upper_dev, priv);
8178 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8179 				    priv);
8180 
8181 	return 0;
8182 
8183 rollback:
8184 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8185 
8186 	return ret;
8187 }
8188 
8189 /**
8190  * netdev_upper_dev_link - Add a link to the upper device
8191  * @dev: device
8192  * @upper_dev: new upper device
8193  * @extack: netlink extended ack
8194  *
8195  * Adds a link to device which is upper to this one. The caller must hold
8196  * the RTNL lock. On a failure a negative errno code is returned.
8197  * On success the reference counts are adjusted and the function
8198  * returns zero.
8199  */
8200 int netdev_upper_dev_link(struct net_device *dev,
8201 			  struct net_device *upper_dev,
8202 			  struct netlink_ext_ack *extack)
8203 {
8204 	struct netdev_nested_priv priv = {
8205 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8206 		.data = NULL,
8207 	};
8208 
8209 	return __netdev_upper_dev_link(dev, upper_dev, false,
8210 				       NULL, NULL, &priv, extack);
8211 }
8212 EXPORT_SYMBOL(netdev_upper_dev_link);
8213 
8214 /**
8215  * netdev_master_upper_dev_link - Add a master link to the upper device
8216  * @dev: device
8217  * @upper_dev: new upper device
8218  * @upper_priv: upper device private
8219  * @upper_info: upper info to be passed down via notifier
8220  * @extack: netlink extended ack
8221  *
8222  * Adds a link to device which is upper to this one. In this case, only
8223  * one master upper device can be linked, although other non-master devices
8224  * might be linked as well. The caller must hold the RTNL lock.
8225  * On a failure a negative errno code is returned. On success the reference
8226  * counts are adjusted and the function returns zero.
8227  */
8228 int netdev_master_upper_dev_link(struct net_device *dev,
8229 				 struct net_device *upper_dev,
8230 				 void *upper_priv, void *upper_info,
8231 				 struct netlink_ext_ack *extack)
8232 {
8233 	struct netdev_nested_priv priv = {
8234 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8235 		.data = NULL,
8236 	};
8237 
8238 	return __netdev_upper_dev_link(dev, upper_dev, true,
8239 				       upper_priv, upper_info, &priv, extack);
8240 }
8241 EXPORT_SYMBOL(netdev_master_upper_dev_link);
8242 
8243 static void __netdev_upper_dev_unlink(struct net_device *dev,
8244 				      struct net_device *upper_dev,
8245 				      struct netdev_nested_priv *priv)
8246 {
8247 	struct netdev_notifier_changeupper_info changeupper_info = {
8248 		.info = {
8249 			.dev = dev,
8250 		},
8251 		.upper_dev = upper_dev,
8252 		.linking = false,
8253 	};
8254 
8255 	ASSERT_RTNL();
8256 
8257 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
8258 
8259 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8260 				      &changeupper_info.info);
8261 
8262 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8263 
8264 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8265 				      &changeupper_info.info);
8266 
8267 	__netdev_update_upper_level(dev, NULL);
8268 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8269 
8270 	__netdev_update_lower_level(upper_dev, priv);
8271 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8272 				    priv);
8273 }
8274 
8275 /**
8276  * netdev_upper_dev_unlink - Removes a link to upper device
8277  * @dev: device
8278  * @upper_dev: new upper device
8279  *
8280  * Removes a link to device which is upper to this one. The caller must hold
8281  * the RTNL lock.
8282  */
8283 void netdev_upper_dev_unlink(struct net_device *dev,
8284 			     struct net_device *upper_dev)
8285 {
8286 	struct netdev_nested_priv priv = {
8287 		.flags = NESTED_SYNC_TODO,
8288 		.data = NULL,
8289 	};
8290 
8291 	__netdev_upper_dev_unlink(dev, upper_dev, &priv);
8292 }
8293 EXPORT_SYMBOL(netdev_upper_dev_unlink);
8294 
8295 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
8296 				      struct net_device *lower_dev,
8297 				      bool val)
8298 {
8299 	struct netdev_adjacent *adj;
8300 
8301 	adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
8302 	if (adj)
8303 		adj->ignore = val;
8304 
8305 	adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
8306 	if (adj)
8307 		adj->ignore = val;
8308 }
8309 
8310 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
8311 					struct net_device *lower_dev)
8312 {
8313 	__netdev_adjacent_dev_set(upper_dev, lower_dev, true);
8314 }
8315 
8316 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
8317 				       struct net_device *lower_dev)
8318 {
8319 	__netdev_adjacent_dev_set(upper_dev, lower_dev, false);
8320 }
8321 
8322 int netdev_adjacent_change_prepare(struct net_device *old_dev,
8323 				   struct net_device *new_dev,
8324 				   struct net_device *dev,
8325 				   struct netlink_ext_ack *extack)
8326 {
8327 	struct netdev_nested_priv priv = {
8328 		.flags = 0,
8329 		.data = NULL,
8330 	};
8331 	int err;
8332 
8333 	if (!new_dev)
8334 		return 0;
8335 
8336 	if (old_dev && new_dev != old_dev)
8337 		netdev_adjacent_dev_disable(dev, old_dev);
8338 	err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
8339 				      extack);
8340 	if (err) {
8341 		if (old_dev && new_dev != old_dev)
8342 			netdev_adjacent_dev_enable(dev, old_dev);
8343 		return err;
8344 	}
8345 
8346 	return 0;
8347 }
8348 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
8349 
8350 void netdev_adjacent_change_commit(struct net_device *old_dev,
8351 				   struct net_device *new_dev,
8352 				   struct net_device *dev)
8353 {
8354 	struct netdev_nested_priv priv = {
8355 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8356 		.data = NULL,
8357 	};
8358 
8359 	if (!new_dev || !old_dev)
8360 		return;
8361 
8362 	if (new_dev == old_dev)
8363 		return;
8364 
8365 	netdev_adjacent_dev_enable(dev, old_dev);
8366 	__netdev_upper_dev_unlink(old_dev, dev, &priv);
8367 }
8368 EXPORT_SYMBOL(netdev_adjacent_change_commit);
8369 
8370 void netdev_adjacent_change_abort(struct net_device *old_dev,
8371 				  struct net_device *new_dev,
8372 				  struct net_device *dev)
8373 {
8374 	struct netdev_nested_priv priv = {
8375 		.flags = 0,
8376 		.data = NULL,
8377 	};
8378 
8379 	if (!new_dev)
8380 		return;
8381 
8382 	if (old_dev && new_dev != old_dev)
8383 		netdev_adjacent_dev_enable(dev, old_dev);
8384 
8385 	__netdev_upper_dev_unlink(new_dev, dev, &priv);
8386 }
8387 EXPORT_SYMBOL(netdev_adjacent_change_abort);
8388 
8389 /**
8390  * netdev_bonding_info_change - Dispatch event about slave change
8391  * @dev: device
8392  * @bonding_info: info to dispatch
8393  *
8394  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
8395  * The caller must hold the RTNL lock.
8396  */
8397 void netdev_bonding_info_change(struct net_device *dev,
8398 				struct netdev_bonding_info *bonding_info)
8399 {
8400 	struct netdev_notifier_bonding_info info = {
8401 		.info.dev = dev,
8402 	};
8403 
8404 	memcpy(&info.bonding_info, bonding_info,
8405 	       sizeof(struct netdev_bonding_info));
8406 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
8407 				      &info.info);
8408 }
8409 EXPORT_SYMBOL(netdev_bonding_info_change);
8410 
8411 /**
8412  * netdev_get_xmit_slave - Get the xmit slave of master device
8413  * @dev: device
8414  * @skb: The packet
8415  * @all_slaves: assume all the slaves are active
8416  *
8417  * The reference counters are not incremented so the caller must be
8418  * careful with locks. The caller must hold RCU lock.
8419  * %NULL is returned if no slave is found.
8420  */
8421 
8422 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8423 					 struct sk_buff *skb,
8424 					 bool all_slaves)
8425 {
8426 	const struct net_device_ops *ops = dev->netdev_ops;
8427 
8428 	if (!ops->ndo_get_xmit_slave)
8429 		return NULL;
8430 	return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8431 }
8432 EXPORT_SYMBOL(netdev_get_xmit_slave);
8433 
8434 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8435 						  struct sock *sk)
8436 {
8437 	const struct net_device_ops *ops = dev->netdev_ops;
8438 
8439 	if (!ops->ndo_sk_get_lower_dev)
8440 		return NULL;
8441 	return ops->ndo_sk_get_lower_dev(dev, sk);
8442 }
8443 
8444 /**
8445  * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8446  * @dev: device
8447  * @sk: the socket
8448  *
8449  * %NULL is returned if no lower device is found.
8450  */
8451 
8452 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8453 					    struct sock *sk)
8454 {
8455 	struct net_device *lower;
8456 
8457 	lower = netdev_sk_get_lower_dev(dev, sk);
8458 	while (lower) {
8459 		dev = lower;
8460 		lower = netdev_sk_get_lower_dev(dev, sk);
8461 	}
8462 
8463 	return dev;
8464 }
8465 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8466 
8467 static void netdev_adjacent_add_links(struct net_device *dev)
8468 {
8469 	struct netdev_adjacent *iter;
8470 
8471 	struct net *net = dev_net(dev);
8472 
8473 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8474 		if (!net_eq(net, dev_net(iter->dev)))
8475 			continue;
8476 		netdev_adjacent_sysfs_add(iter->dev, dev,
8477 					  &iter->dev->adj_list.lower);
8478 		netdev_adjacent_sysfs_add(dev, iter->dev,
8479 					  &dev->adj_list.upper);
8480 	}
8481 
8482 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8483 		if (!net_eq(net, dev_net(iter->dev)))
8484 			continue;
8485 		netdev_adjacent_sysfs_add(iter->dev, dev,
8486 					  &iter->dev->adj_list.upper);
8487 		netdev_adjacent_sysfs_add(dev, iter->dev,
8488 					  &dev->adj_list.lower);
8489 	}
8490 }
8491 
8492 static void netdev_adjacent_del_links(struct net_device *dev)
8493 {
8494 	struct netdev_adjacent *iter;
8495 
8496 	struct net *net = dev_net(dev);
8497 
8498 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8499 		if (!net_eq(net, dev_net(iter->dev)))
8500 			continue;
8501 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
8502 					  &iter->dev->adj_list.lower);
8503 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
8504 					  &dev->adj_list.upper);
8505 	}
8506 
8507 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8508 		if (!net_eq(net, dev_net(iter->dev)))
8509 			continue;
8510 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
8511 					  &iter->dev->adj_list.upper);
8512 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
8513 					  &dev->adj_list.lower);
8514 	}
8515 }
8516 
8517 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8518 {
8519 	struct netdev_adjacent *iter;
8520 
8521 	struct net *net = dev_net(dev);
8522 
8523 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8524 		if (!net_eq(net, dev_net(iter->dev)))
8525 			continue;
8526 		netdev_adjacent_sysfs_del(iter->dev, oldname,
8527 					  &iter->dev->adj_list.lower);
8528 		netdev_adjacent_sysfs_add(iter->dev, dev,
8529 					  &iter->dev->adj_list.lower);
8530 	}
8531 
8532 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8533 		if (!net_eq(net, dev_net(iter->dev)))
8534 			continue;
8535 		netdev_adjacent_sysfs_del(iter->dev, oldname,
8536 					  &iter->dev->adj_list.upper);
8537 		netdev_adjacent_sysfs_add(iter->dev, dev,
8538 					  &iter->dev->adj_list.upper);
8539 	}
8540 }
8541 
8542 void *netdev_lower_dev_get_private(struct net_device *dev,
8543 				   struct net_device *lower_dev)
8544 {
8545 	struct netdev_adjacent *lower;
8546 
8547 	if (!lower_dev)
8548 		return NULL;
8549 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8550 	if (!lower)
8551 		return NULL;
8552 
8553 	return lower->private;
8554 }
8555 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8556 
8557 
8558 /**
8559  * netdev_lower_state_changed - Dispatch event about lower device state change
8560  * @lower_dev: device
8561  * @lower_state_info: state to dispatch
8562  *
8563  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8564  * The caller must hold the RTNL lock.
8565  */
8566 void netdev_lower_state_changed(struct net_device *lower_dev,
8567 				void *lower_state_info)
8568 {
8569 	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8570 		.info.dev = lower_dev,
8571 	};
8572 
8573 	ASSERT_RTNL();
8574 	changelowerstate_info.lower_state_info = lower_state_info;
8575 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8576 				      &changelowerstate_info.info);
8577 }
8578 EXPORT_SYMBOL(netdev_lower_state_changed);
8579 
8580 static void dev_change_rx_flags(struct net_device *dev, int flags)
8581 {
8582 	const struct net_device_ops *ops = dev->netdev_ops;
8583 
8584 	if (ops->ndo_change_rx_flags)
8585 		ops->ndo_change_rx_flags(dev, flags);
8586 }
8587 
8588 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8589 {
8590 	unsigned int old_flags = dev->flags;
8591 	kuid_t uid;
8592 	kgid_t gid;
8593 
8594 	ASSERT_RTNL();
8595 
8596 	dev->flags |= IFF_PROMISC;
8597 	dev->promiscuity += inc;
8598 	if (dev->promiscuity == 0) {
8599 		/*
8600 		 * Avoid overflow.
8601 		 * If inc causes overflow, untouch promisc and return error.
8602 		 */
8603 		if (inc < 0)
8604 			dev->flags &= ~IFF_PROMISC;
8605 		else {
8606 			dev->promiscuity -= inc;
8607 			pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
8608 				dev->name);
8609 			return -EOVERFLOW;
8610 		}
8611 	}
8612 	if (dev->flags != old_flags) {
8613 		pr_info("device %s %s promiscuous mode\n",
8614 			dev->name,
8615 			dev->flags & IFF_PROMISC ? "entered" : "left");
8616 		if (audit_enabled) {
8617 			current_uid_gid(&uid, &gid);
8618 			audit_log(audit_context(), GFP_ATOMIC,
8619 				  AUDIT_ANOM_PROMISCUOUS,
8620 				  "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8621 				  dev->name, (dev->flags & IFF_PROMISC),
8622 				  (old_flags & IFF_PROMISC),
8623 				  from_kuid(&init_user_ns, audit_get_loginuid(current)),
8624 				  from_kuid(&init_user_ns, uid),
8625 				  from_kgid(&init_user_ns, gid),
8626 				  audit_get_sessionid(current));
8627 		}
8628 
8629 		dev_change_rx_flags(dev, IFF_PROMISC);
8630 	}
8631 	if (notify)
8632 		__dev_notify_flags(dev, old_flags, IFF_PROMISC);
8633 	return 0;
8634 }
8635 
8636 /**
8637  *	dev_set_promiscuity	- update promiscuity count on a device
8638  *	@dev: device
8639  *	@inc: modifier
8640  *
8641  *	Add or remove promiscuity from a device. While the count in the device
8642  *	remains above zero the interface remains promiscuous. Once it hits zero
8643  *	the device reverts back to normal filtering operation. A negative inc
8644  *	value is used to drop promiscuity on the device.
8645  *	Return 0 if successful or a negative errno code on error.
8646  */
8647 int dev_set_promiscuity(struct net_device *dev, int inc)
8648 {
8649 	unsigned int old_flags = dev->flags;
8650 	int err;
8651 
8652 	err = __dev_set_promiscuity(dev, inc, true);
8653 	if (err < 0)
8654 		return err;
8655 	if (dev->flags != old_flags)
8656 		dev_set_rx_mode(dev);
8657 	return err;
8658 }
8659 EXPORT_SYMBOL(dev_set_promiscuity);
8660 
8661 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8662 {
8663 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8664 
8665 	ASSERT_RTNL();
8666 
8667 	dev->flags |= IFF_ALLMULTI;
8668 	dev->allmulti += inc;
8669 	if (dev->allmulti == 0) {
8670 		/*
8671 		 * Avoid overflow.
8672 		 * If inc causes overflow, untouch allmulti and return error.
8673 		 */
8674 		if (inc < 0)
8675 			dev->flags &= ~IFF_ALLMULTI;
8676 		else {
8677 			dev->allmulti -= inc;
8678 			pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
8679 				dev->name);
8680 			return -EOVERFLOW;
8681 		}
8682 	}
8683 	if (dev->flags ^ old_flags) {
8684 		dev_change_rx_flags(dev, IFF_ALLMULTI);
8685 		dev_set_rx_mode(dev);
8686 		if (notify)
8687 			__dev_notify_flags(dev, old_flags,
8688 					   dev->gflags ^ old_gflags);
8689 	}
8690 	return 0;
8691 }
8692 
8693 /**
8694  *	dev_set_allmulti	- update allmulti count on a device
8695  *	@dev: device
8696  *	@inc: modifier
8697  *
8698  *	Add or remove reception of all multicast frames to a device. While the
8699  *	count in the device remains above zero the interface remains listening
8700  *	to all interfaces. Once it hits zero the device reverts back to normal
8701  *	filtering operation. A negative @inc value is used to drop the counter
8702  *	when releasing a resource needing all multicasts.
8703  *	Return 0 if successful or a negative errno code on error.
8704  */
8705 
8706 int dev_set_allmulti(struct net_device *dev, int inc)
8707 {
8708 	return __dev_set_allmulti(dev, inc, true);
8709 }
8710 EXPORT_SYMBOL(dev_set_allmulti);
8711 
8712 /*
8713  *	Upload unicast and multicast address lists to device and
8714  *	configure RX filtering. When the device doesn't support unicast
8715  *	filtering it is put in promiscuous mode while unicast addresses
8716  *	are present.
8717  */
8718 void __dev_set_rx_mode(struct net_device *dev)
8719 {
8720 	const struct net_device_ops *ops = dev->netdev_ops;
8721 
8722 	/* dev_open will call this function so the list will stay sane. */
8723 	if (!(dev->flags&IFF_UP))
8724 		return;
8725 
8726 	if (!netif_device_present(dev))
8727 		return;
8728 
8729 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8730 		/* Unicast addresses changes may only happen under the rtnl,
8731 		 * therefore calling __dev_set_promiscuity here is safe.
8732 		 */
8733 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8734 			__dev_set_promiscuity(dev, 1, false);
8735 			dev->uc_promisc = true;
8736 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8737 			__dev_set_promiscuity(dev, -1, false);
8738 			dev->uc_promisc = false;
8739 		}
8740 	}
8741 
8742 	if (ops->ndo_set_rx_mode)
8743 		ops->ndo_set_rx_mode(dev);
8744 }
8745 
8746 void dev_set_rx_mode(struct net_device *dev)
8747 {
8748 	netif_addr_lock_bh(dev);
8749 	__dev_set_rx_mode(dev);
8750 	netif_addr_unlock_bh(dev);
8751 }
8752 
8753 /**
8754  *	dev_get_flags - get flags reported to userspace
8755  *	@dev: device
8756  *
8757  *	Get the combination of flag bits exported through APIs to userspace.
8758  */
8759 unsigned int dev_get_flags(const struct net_device *dev)
8760 {
8761 	unsigned int flags;
8762 
8763 	flags = (dev->flags & ~(IFF_PROMISC |
8764 				IFF_ALLMULTI |
8765 				IFF_RUNNING |
8766 				IFF_LOWER_UP |
8767 				IFF_DORMANT)) |
8768 		(dev->gflags & (IFF_PROMISC |
8769 				IFF_ALLMULTI));
8770 
8771 	if (netif_running(dev)) {
8772 		if (netif_oper_up(dev))
8773 			flags |= IFF_RUNNING;
8774 		if (netif_carrier_ok(dev))
8775 			flags |= IFF_LOWER_UP;
8776 		if (netif_dormant(dev))
8777 			flags |= IFF_DORMANT;
8778 	}
8779 
8780 	return flags;
8781 }
8782 EXPORT_SYMBOL(dev_get_flags);
8783 
8784 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8785 		       struct netlink_ext_ack *extack)
8786 {
8787 	unsigned int old_flags = dev->flags;
8788 	int ret;
8789 
8790 	ASSERT_RTNL();
8791 
8792 	/*
8793 	 *	Set the flags on our device.
8794 	 */
8795 
8796 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8797 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8798 			       IFF_AUTOMEDIA)) |
8799 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8800 				    IFF_ALLMULTI));
8801 
8802 	/*
8803 	 *	Load in the correct multicast list now the flags have changed.
8804 	 */
8805 
8806 	if ((old_flags ^ flags) & IFF_MULTICAST)
8807 		dev_change_rx_flags(dev, IFF_MULTICAST);
8808 
8809 	dev_set_rx_mode(dev);
8810 
8811 	/*
8812 	 *	Have we downed the interface. We handle IFF_UP ourselves
8813 	 *	according to user attempts to set it, rather than blindly
8814 	 *	setting it.
8815 	 */
8816 
8817 	ret = 0;
8818 	if ((old_flags ^ flags) & IFF_UP) {
8819 		if (old_flags & IFF_UP)
8820 			__dev_close(dev);
8821 		else
8822 			ret = __dev_open(dev, extack);
8823 	}
8824 
8825 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
8826 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
8827 		unsigned int old_flags = dev->flags;
8828 
8829 		dev->gflags ^= IFF_PROMISC;
8830 
8831 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
8832 			if (dev->flags != old_flags)
8833 				dev_set_rx_mode(dev);
8834 	}
8835 
8836 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8837 	 * is important. Some (broken) drivers set IFF_PROMISC, when
8838 	 * IFF_ALLMULTI is requested not asking us and not reporting.
8839 	 */
8840 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8841 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8842 
8843 		dev->gflags ^= IFF_ALLMULTI;
8844 		__dev_set_allmulti(dev, inc, false);
8845 	}
8846 
8847 	return ret;
8848 }
8849 
8850 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8851 			unsigned int gchanges)
8852 {
8853 	unsigned int changes = dev->flags ^ old_flags;
8854 
8855 	if (gchanges)
8856 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
8857 
8858 	if (changes & IFF_UP) {
8859 		if (dev->flags & IFF_UP)
8860 			call_netdevice_notifiers(NETDEV_UP, dev);
8861 		else
8862 			call_netdevice_notifiers(NETDEV_DOWN, dev);
8863 	}
8864 
8865 	if (dev->flags & IFF_UP &&
8866 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8867 		struct netdev_notifier_change_info change_info = {
8868 			.info = {
8869 				.dev = dev,
8870 			},
8871 			.flags_changed = changes,
8872 		};
8873 
8874 		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8875 	}
8876 }
8877 
8878 /**
8879  *	dev_change_flags - change device settings
8880  *	@dev: device
8881  *	@flags: device state flags
8882  *	@extack: netlink extended ack
8883  *
8884  *	Change settings on device based state flags. The flags are
8885  *	in the userspace exported format.
8886  */
8887 int dev_change_flags(struct net_device *dev, unsigned int flags,
8888 		     struct netlink_ext_ack *extack)
8889 {
8890 	int ret;
8891 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8892 
8893 	ret = __dev_change_flags(dev, flags, extack);
8894 	if (ret < 0)
8895 		return ret;
8896 
8897 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8898 	__dev_notify_flags(dev, old_flags, changes);
8899 	return ret;
8900 }
8901 EXPORT_SYMBOL(dev_change_flags);
8902 
8903 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8904 {
8905 	const struct net_device_ops *ops = dev->netdev_ops;
8906 
8907 	if (ops->ndo_change_mtu)
8908 		return ops->ndo_change_mtu(dev, new_mtu);
8909 
8910 	/* Pairs with all the lockless reads of dev->mtu in the stack */
8911 	WRITE_ONCE(dev->mtu, new_mtu);
8912 	return 0;
8913 }
8914 EXPORT_SYMBOL(__dev_set_mtu);
8915 
8916 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8917 		     struct netlink_ext_ack *extack)
8918 {
8919 	/* MTU must be positive, and in range */
8920 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8921 		NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8922 		return -EINVAL;
8923 	}
8924 
8925 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8926 		NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8927 		return -EINVAL;
8928 	}
8929 	return 0;
8930 }
8931 
8932 /**
8933  *	dev_set_mtu_ext - Change maximum transfer unit
8934  *	@dev: device
8935  *	@new_mtu: new transfer unit
8936  *	@extack: netlink extended ack
8937  *
8938  *	Change the maximum transfer size of the network device.
8939  */
8940 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8941 		    struct netlink_ext_ack *extack)
8942 {
8943 	int err, orig_mtu;
8944 
8945 	if (new_mtu == dev->mtu)
8946 		return 0;
8947 
8948 	err = dev_validate_mtu(dev, new_mtu, extack);
8949 	if (err)
8950 		return err;
8951 
8952 	if (!netif_device_present(dev))
8953 		return -ENODEV;
8954 
8955 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8956 	err = notifier_to_errno(err);
8957 	if (err)
8958 		return err;
8959 
8960 	orig_mtu = dev->mtu;
8961 	err = __dev_set_mtu(dev, new_mtu);
8962 
8963 	if (!err) {
8964 		err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8965 						   orig_mtu);
8966 		err = notifier_to_errno(err);
8967 		if (err) {
8968 			/* setting mtu back and notifying everyone again,
8969 			 * so that they have a chance to revert changes.
8970 			 */
8971 			__dev_set_mtu(dev, orig_mtu);
8972 			call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8973 						     new_mtu);
8974 		}
8975 	}
8976 	return err;
8977 }
8978 
8979 int dev_set_mtu(struct net_device *dev, int new_mtu)
8980 {
8981 	struct netlink_ext_ack extack;
8982 	int err;
8983 
8984 	memset(&extack, 0, sizeof(extack));
8985 	err = dev_set_mtu_ext(dev, new_mtu, &extack);
8986 	if (err && extack._msg)
8987 		net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8988 	return err;
8989 }
8990 EXPORT_SYMBOL(dev_set_mtu);
8991 
8992 /**
8993  *	dev_change_tx_queue_len - Change TX queue length of a netdevice
8994  *	@dev: device
8995  *	@new_len: new tx queue length
8996  */
8997 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8998 {
8999 	unsigned int orig_len = dev->tx_queue_len;
9000 	int res;
9001 
9002 	if (new_len != (unsigned int)new_len)
9003 		return -ERANGE;
9004 
9005 	if (new_len != orig_len) {
9006 		dev->tx_queue_len = new_len;
9007 		res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
9008 		res = notifier_to_errno(res);
9009 		if (res)
9010 			goto err_rollback;
9011 		res = dev_qdisc_change_tx_queue_len(dev);
9012 		if (res)
9013 			goto err_rollback;
9014 	}
9015 
9016 	return 0;
9017 
9018 err_rollback:
9019 	netdev_err(dev, "refused to change device tx_queue_len\n");
9020 	dev->tx_queue_len = orig_len;
9021 	return res;
9022 }
9023 
9024 /**
9025  *	dev_set_group - Change group this device belongs to
9026  *	@dev: device
9027  *	@new_group: group this device should belong to
9028  */
9029 void dev_set_group(struct net_device *dev, int new_group)
9030 {
9031 	dev->group = new_group;
9032 }
9033 EXPORT_SYMBOL(dev_set_group);
9034 
9035 /**
9036  *	dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
9037  *	@dev: device
9038  *	@addr: new address
9039  *	@extack: netlink extended ack
9040  */
9041 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
9042 			      struct netlink_ext_ack *extack)
9043 {
9044 	struct netdev_notifier_pre_changeaddr_info info = {
9045 		.info.dev = dev,
9046 		.info.extack = extack,
9047 		.dev_addr = addr,
9048 	};
9049 	int rc;
9050 
9051 	rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
9052 	return notifier_to_errno(rc);
9053 }
9054 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
9055 
9056 /**
9057  *	dev_set_mac_address - Change Media Access Control Address
9058  *	@dev: device
9059  *	@sa: new address
9060  *	@extack: netlink extended ack
9061  *
9062  *	Change the hardware (MAC) address of the device
9063  */
9064 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
9065 			struct netlink_ext_ack *extack)
9066 {
9067 	const struct net_device_ops *ops = dev->netdev_ops;
9068 	int err;
9069 
9070 	if (!ops->ndo_set_mac_address)
9071 		return -EOPNOTSUPP;
9072 	if (sa->sa_family != dev->type)
9073 		return -EINVAL;
9074 	if (!netif_device_present(dev))
9075 		return -ENODEV;
9076 	err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
9077 	if (err)
9078 		return err;
9079 	err = ops->ndo_set_mac_address(dev, sa);
9080 	if (err)
9081 		return err;
9082 	dev->addr_assign_type = NET_ADDR_SET;
9083 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
9084 	add_device_randomness(dev->dev_addr, dev->addr_len);
9085 	return 0;
9086 }
9087 EXPORT_SYMBOL(dev_set_mac_address);
9088 
9089 static DECLARE_RWSEM(dev_addr_sem);
9090 
9091 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
9092 			     struct netlink_ext_ack *extack)
9093 {
9094 	int ret;
9095 
9096 	down_write(&dev_addr_sem);
9097 	ret = dev_set_mac_address(dev, sa, extack);
9098 	up_write(&dev_addr_sem);
9099 	return ret;
9100 }
9101 EXPORT_SYMBOL(dev_set_mac_address_user);
9102 
9103 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
9104 {
9105 	size_t size = sizeof(sa->sa_data);
9106 	struct net_device *dev;
9107 	int ret = 0;
9108 
9109 	down_read(&dev_addr_sem);
9110 	rcu_read_lock();
9111 
9112 	dev = dev_get_by_name_rcu(net, dev_name);
9113 	if (!dev) {
9114 		ret = -ENODEV;
9115 		goto unlock;
9116 	}
9117 	if (!dev->addr_len)
9118 		memset(sa->sa_data, 0, size);
9119 	else
9120 		memcpy(sa->sa_data, dev->dev_addr,
9121 		       min_t(size_t, size, dev->addr_len));
9122 	sa->sa_family = dev->type;
9123 
9124 unlock:
9125 	rcu_read_unlock();
9126 	up_read(&dev_addr_sem);
9127 	return ret;
9128 }
9129 EXPORT_SYMBOL(dev_get_mac_address);
9130 
9131 /**
9132  *	dev_change_carrier - Change device carrier
9133  *	@dev: device
9134  *	@new_carrier: new value
9135  *
9136  *	Change device carrier
9137  */
9138 int dev_change_carrier(struct net_device *dev, bool new_carrier)
9139 {
9140 	const struct net_device_ops *ops = dev->netdev_ops;
9141 
9142 	if (!ops->ndo_change_carrier)
9143 		return -EOPNOTSUPP;
9144 	if (!netif_device_present(dev))
9145 		return -ENODEV;
9146 	return ops->ndo_change_carrier(dev, new_carrier);
9147 }
9148 EXPORT_SYMBOL(dev_change_carrier);
9149 
9150 /**
9151  *	dev_get_phys_port_id - Get device physical port ID
9152  *	@dev: device
9153  *	@ppid: port ID
9154  *
9155  *	Get device physical port ID
9156  */
9157 int dev_get_phys_port_id(struct net_device *dev,
9158 			 struct netdev_phys_item_id *ppid)
9159 {
9160 	const struct net_device_ops *ops = dev->netdev_ops;
9161 
9162 	if (!ops->ndo_get_phys_port_id)
9163 		return -EOPNOTSUPP;
9164 	return ops->ndo_get_phys_port_id(dev, ppid);
9165 }
9166 EXPORT_SYMBOL(dev_get_phys_port_id);
9167 
9168 /**
9169  *	dev_get_phys_port_name - Get device physical port name
9170  *	@dev: device
9171  *	@name: port name
9172  *	@len: limit of bytes to copy to name
9173  *
9174  *	Get device physical port name
9175  */
9176 int dev_get_phys_port_name(struct net_device *dev,
9177 			   char *name, size_t len)
9178 {
9179 	const struct net_device_ops *ops = dev->netdev_ops;
9180 	int err;
9181 
9182 	if (ops->ndo_get_phys_port_name) {
9183 		err = ops->ndo_get_phys_port_name(dev, name, len);
9184 		if (err != -EOPNOTSUPP)
9185 			return err;
9186 	}
9187 	return devlink_compat_phys_port_name_get(dev, name, len);
9188 }
9189 EXPORT_SYMBOL(dev_get_phys_port_name);
9190 
9191 /**
9192  *	dev_get_port_parent_id - Get the device's port parent identifier
9193  *	@dev: network device
9194  *	@ppid: pointer to a storage for the port's parent identifier
9195  *	@recurse: allow/disallow recursion to lower devices
9196  *
9197  *	Get the devices's port parent identifier
9198  */
9199 int dev_get_port_parent_id(struct net_device *dev,
9200 			   struct netdev_phys_item_id *ppid,
9201 			   bool recurse)
9202 {
9203 	const struct net_device_ops *ops = dev->netdev_ops;
9204 	struct netdev_phys_item_id first = { };
9205 	struct net_device *lower_dev;
9206 	struct list_head *iter;
9207 	int err;
9208 
9209 	if (ops->ndo_get_port_parent_id) {
9210 		err = ops->ndo_get_port_parent_id(dev, ppid);
9211 		if (err != -EOPNOTSUPP)
9212 			return err;
9213 	}
9214 
9215 	err = devlink_compat_switch_id_get(dev, ppid);
9216 	if (!err || err != -EOPNOTSUPP)
9217 		return err;
9218 
9219 	if (!recurse)
9220 		return -EOPNOTSUPP;
9221 
9222 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
9223 		err = dev_get_port_parent_id(lower_dev, ppid, recurse);
9224 		if (err)
9225 			break;
9226 		if (!first.id_len)
9227 			first = *ppid;
9228 		else if (memcmp(&first, ppid, sizeof(*ppid)))
9229 			return -EOPNOTSUPP;
9230 	}
9231 
9232 	return err;
9233 }
9234 EXPORT_SYMBOL(dev_get_port_parent_id);
9235 
9236 /**
9237  *	netdev_port_same_parent_id - Indicate if two network devices have
9238  *	the same port parent identifier
9239  *	@a: first network device
9240  *	@b: second network device
9241  */
9242 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
9243 {
9244 	struct netdev_phys_item_id a_id = { };
9245 	struct netdev_phys_item_id b_id = { };
9246 
9247 	if (dev_get_port_parent_id(a, &a_id, true) ||
9248 	    dev_get_port_parent_id(b, &b_id, true))
9249 		return false;
9250 
9251 	return netdev_phys_item_id_same(&a_id, &b_id);
9252 }
9253 EXPORT_SYMBOL(netdev_port_same_parent_id);
9254 
9255 /**
9256  *	dev_change_proto_down - update protocol port state information
9257  *	@dev: device
9258  *	@proto_down: new value
9259  *
9260  *	This info can be used by switch drivers to set the phys state of the
9261  *	port.
9262  */
9263 int dev_change_proto_down(struct net_device *dev, bool proto_down)
9264 {
9265 	const struct net_device_ops *ops = dev->netdev_ops;
9266 
9267 	if (!ops->ndo_change_proto_down)
9268 		return -EOPNOTSUPP;
9269 	if (!netif_device_present(dev))
9270 		return -ENODEV;
9271 	return ops->ndo_change_proto_down(dev, proto_down);
9272 }
9273 EXPORT_SYMBOL(dev_change_proto_down);
9274 
9275 /**
9276  *	dev_change_proto_down_generic - generic implementation for
9277  * 	ndo_change_proto_down that sets carrier according to
9278  * 	proto_down.
9279  *
9280  *	@dev: device
9281  *	@proto_down: new value
9282  */
9283 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
9284 {
9285 	if (proto_down)
9286 		netif_carrier_off(dev);
9287 	else
9288 		netif_carrier_on(dev);
9289 	dev->proto_down = proto_down;
9290 	return 0;
9291 }
9292 EXPORT_SYMBOL(dev_change_proto_down_generic);
9293 
9294 /**
9295  *	dev_change_proto_down_reason - proto down reason
9296  *
9297  *	@dev: device
9298  *	@mask: proto down mask
9299  *	@value: proto down value
9300  */
9301 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
9302 				  u32 value)
9303 {
9304 	int b;
9305 
9306 	if (!mask) {
9307 		dev->proto_down_reason = value;
9308 	} else {
9309 		for_each_set_bit(b, &mask, 32) {
9310 			if (value & (1 << b))
9311 				dev->proto_down_reason |= BIT(b);
9312 			else
9313 				dev->proto_down_reason &= ~BIT(b);
9314 		}
9315 	}
9316 }
9317 EXPORT_SYMBOL(dev_change_proto_down_reason);
9318 
9319 struct bpf_xdp_link {
9320 	struct bpf_link link;
9321 	struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9322 	int flags;
9323 };
9324 
9325 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9326 {
9327 	if (flags & XDP_FLAGS_HW_MODE)
9328 		return XDP_MODE_HW;
9329 	if (flags & XDP_FLAGS_DRV_MODE)
9330 		return XDP_MODE_DRV;
9331 	if (flags & XDP_FLAGS_SKB_MODE)
9332 		return XDP_MODE_SKB;
9333 	return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9334 }
9335 
9336 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9337 {
9338 	switch (mode) {
9339 	case XDP_MODE_SKB:
9340 		return generic_xdp_install;
9341 	case XDP_MODE_DRV:
9342 	case XDP_MODE_HW:
9343 		return dev->netdev_ops->ndo_bpf;
9344 	default:
9345 		return NULL;
9346 	}
9347 }
9348 
9349 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9350 					 enum bpf_xdp_mode mode)
9351 {
9352 	return dev->xdp_state[mode].link;
9353 }
9354 
9355 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9356 				     enum bpf_xdp_mode mode)
9357 {
9358 	struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9359 
9360 	if (link)
9361 		return link->link.prog;
9362 	return dev->xdp_state[mode].prog;
9363 }
9364 
9365 static u8 dev_xdp_prog_count(struct net_device *dev)
9366 {
9367 	u8 count = 0;
9368 	int i;
9369 
9370 	for (i = 0; i < __MAX_XDP_MODE; i++)
9371 		if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9372 			count++;
9373 	return count;
9374 }
9375 
9376 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9377 {
9378 	struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9379 
9380 	return prog ? prog->aux->id : 0;
9381 }
9382 
9383 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9384 			     struct bpf_xdp_link *link)
9385 {
9386 	dev->xdp_state[mode].link = link;
9387 	dev->xdp_state[mode].prog = NULL;
9388 }
9389 
9390 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9391 			     struct bpf_prog *prog)
9392 {
9393 	dev->xdp_state[mode].link = NULL;
9394 	dev->xdp_state[mode].prog = prog;
9395 }
9396 
9397 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9398 			   bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9399 			   u32 flags, struct bpf_prog *prog)
9400 {
9401 	struct netdev_bpf xdp;
9402 	int err;
9403 
9404 	memset(&xdp, 0, sizeof(xdp));
9405 	xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9406 	xdp.extack = extack;
9407 	xdp.flags = flags;
9408 	xdp.prog = prog;
9409 
9410 	/* Drivers assume refcnt is already incremented (i.e, prog pointer is
9411 	 * "moved" into driver), so they don't increment it on their own, but
9412 	 * they do decrement refcnt when program is detached or replaced.
9413 	 * Given net_device also owns link/prog, we need to bump refcnt here
9414 	 * to prevent drivers from underflowing it.
9415 	 */
9416 	if (prog)
9417 		bpf_prog_inc(prog);
9418 	err = bpf_op(dev, &xdp);
9419 	if (err) {
9420 		if (prog)
9421 			bpf_prog_put(prog);
9422 		return err;
9423 	}
9424 
9425 	if (mode != XDP_MODE_HW)
9426 		bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9427 
9428 	return 0;
9429 }
9430 
9431 static void dev_xdp_uninstall(struct net_device *dev)
9432 {
9433 	struct bpf_xdp_link *link;
9434 	struct bpf_prog *prog;
9435 	enum bpf_xdp_mode mode;
9436 	bpf_op_t bpf_op;
9437 
9438 	ASSERT_RTNL();
9439 
9440 	for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9441 		prog = dev_xdp_prog(dev, mode);
9442 		if (!prog)
9443 			continue;
9444 
9445 		bpf_op = dev_xdp_bpf_op(dev, mode);
9446 		if (!bpf_op)
9447 			continue;
9448 
9449 		WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9450 
9451 		/* auto-detach link from net device */
9452 		link = dev_xdp_link(dev, mode);
9453 		if (link)
9454 			link->dev = NULL;
9455 		else
9456 			bpf_prog_put(prog);
9457 
9458 		dev_xdp_set_link(dev, mode, NULL);
9459 	}
9460 }
9461 
9462 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9463 			  struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9464 			  struct bpf_prog *old_prog, u32 flags)
9465 {
9466 	unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9467 	struct bpf_prog *cur_prog;
9468 	enum bpf_xdp_mode mode;
9469 	bpf_op_t bpf_op;
9470 	int err;
9471 
9472 	ASSERT_RTNL();
9473 
9474 	/* either link or prog attachment, never both */
9475 	if (link && (new_prog || old_prog))
9476 		return -EINVAL;
9477 	/* link supports only XDP mode flags */
9478 	if (link && (flags & ~XDP_FLAGS_MODES)) {
9479 		NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9480 		return -EINVAL;
9481 	}
9482 	/* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9483 	if (num_modes > 1) {
9484 		NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9485 		return -EINVAL;
9486 	}
9487 	/* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9488 	if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9489 		NL_SET_ERR_MSG(extack,
9490 			       "More than one program loaded, unset mode is ambiguous");
9491 		return -EINVAL;
9492 	}
9493 	/* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9494 	if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9495 		NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9496 		return -EINVAL;
9497 	}
9498 
9499 	mode = dev_xdp_mode(dev, flags);
9500 	/* can't replace attached link */
9501 	if (dev_xdp_link(dev, mode)) {
9502 		NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9503 		return -EBUSY;
9504 	}
9505 
9506 	cur_prog = dev_xdp_prog(dev, mode);
9507 	/* can't replace attached prog with link */
9508 	if (link && cur_prog) {
9509 		NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9510 		return -EBUSY;
9511 	}
9512 	if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9513 		NL_SET_ERR_MSG(extack, "Active program does not match expected");
9514 		return -EEXIST;
9515 	}
9516 
9517 	/* put effective new program into new_prog */
9518 	if (link)
9519 		new_prog = link->link.prog;
9520 
9521 	if (new_prog) {
9522 		bool offload = mode == XDP_MODE_HW;
9523 		enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9524 					       ? XDP_MODE_DRV : XDP_MODE_SKB;
9525 
9526 		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9527 			NL_SET_ERR_MSG(extack, "XDP program already attached");
9528 			return -EBUSY;
9529 		}
9530 		if (!offload && dev_xdp_prog(dev, other_mode)) {
9531 			NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9532 			return -EEXIST;
9533 		}
9534 		if (!offload && bpf_prog_is_dev_bound(new_prog->aux)) {
9535 			NL_SET_ERR_MSG(extack, "Using device-bound program without HW_MODE flag is not supported");
9536 			return -EINVAL;
9537 		}
9538 		if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9539 			NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9540 			return -EINVAL;
9541 		}
9542 		if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9543 			NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9544 			return -EINVAL;
9545 		}
9546 	}
9547 
9548 	/* don't call drivers if the effective program didn't change */
9549 	if (new_prog != cur_prog) {
9550 		bpf_op = dev_xdp_bpf_op(dev, mode);
9551 		if (!bpf_op) {
9552 			NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9553 			return -EOPNOTSUPP;
9554 		}
9555 
9556 		err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9557 		if (err)
9558 			return err;
9559 	}
9560 
9561 	if (link)
9562 		dev_xdp_set_link(dev, mode, link);
9563 	else
9564 		dev_xdp_set_prog(dev, mode, new_prog);
9565 	if (cur_prog)
9566 		bpf_prog_put(cur_prog);
9567 
9568 	return 0;
9569 }
9570 
9571 static int dev_xdp_attach_link(struct net_device *dev,
9572 			       struct netlink_ext_ack *extack,
9573 			       struct bpf_xdp_link *link)
9574 {
9575 	return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9576 }
9577 
9578 static int dev_xdp_detach_link(struct net_device *dev,
9579 			       struct netlink_ext_ack *extack,
9580 			       struct bpf_xdp_link *link)
9581 {
9582 	enum bpf_xdp_mode mode;
9583 	bpf_op_t bpf_op;
9584 
9585 	ASSERT_RTNL();
9586 
9587 	mode = dev_xdp_mode(dev, link->flags);
9588 	if (dev_xdp_link(dev, mode) != link)
9589 		return -EINVAL;
9590 
9591 	bpf_op = dev_xdp_bpf_op(dev, mode);
9592 	WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9593 	dev_xdp_set_link(dev, mode, NULL);
9594 	return 0;
9595 }
9596 
9597 static void bpf_xdp_link_release(struct bpf_link *link)
9598 {
9599 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9600 
9601 	rtnl_lock();
9602 
9603 	/* if racing with net_device's tear down, xdp_link->dev might be
9604 	 * already NULL, in which case link was already auto-detached
9605 	 */
9606 	if (xdp_link->dev) {
9607 		WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9608 		xdp_link->dev = NULL;
9609 	}
9610 
9611 	rtnl_unlock();
9612 }
9613 
9614 static int bpf_xdp_link_detach(struct bpf_link *link)
9615 {
9616 	bpf_xdp_link_release(link);
9617 	return 0;
9618 }
9619 
9620 static void bpf_xdp_link_dealloc(struct bpf_link *link)
9621 {
9622 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9623 
9624 	kfree(xdp_link);
9625 }
9626 
9627 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9628 				     struct seq_file *seq)
9629 {
9630 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9631 	u32 ifindex = 0;
9632 
9633 	rtnl_lock();
9634 	if (xdp_link->dev)
9635 		ifindex = xdp_link->dev->ifindex;
9636 	rtnl_unlock();
9637 
9638 	seq_printf(seq, "ifindex:\t%u\n", ifindex);
9639 }
9640 
9641 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9642 				       struct bpf_link_info *info)
9643 {
9644 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9645 	u32 ifindex = 0;
9646 
9647 	rtnl_lock();
9648 	if (xdp_link->dev)
9649 		ifindex = xdp_link->dev->ifindex;
9650 	rtnl_unlock();
9651 
9652 	info->xdp.ifindex = ifindex;
9653 	return 0;
9654 }
9655 
9656 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9657 			       struct bpf_prog *old_prog)
9658 {
9659 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9660 	enum bpf_xdp_mode mode;
9661 	bpf_op_t bpf_op;
9662 	int err = 0;
9663 
9664 	rtnl_lock();
9665 
9666 	/* link might have been auto-released already, so fail */
9667 	if (!xdp_link->dev) {
9668 		err = -ENOLINK;
9669 		goto out_unlock;
9670 	}
9671 
9672 	if (old_prog && link->prog != old_prog) {
9673 		err = -EPERM;
9674 		goto out_unlock;
9675 	}
9676 	old_prog = link->prog;
9677 	if (old_prog == new_prog) {
9678 		/* no-op, don't disturb drivers */
9679 		bpf_prog_put(new_prog);
9680 		goto out_unlock;
9681 	}
9682 
9683 	mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9684 	bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9685 	err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9686 			      xdp_link->flags, new_prog);
9687 	if (err)
9688 		goto out_unlock;
9689 
9690 	old_prog = xchg(&link->prog, new_prog);
9691 	bpf_prog_put(old_prog);
9692 
9693 out_unlock:
9694 	rtnl_unlock();
9695 	return err;
9696 }
9697 
9698 static const struct bpf_link_ops bpf_xdp_link_lops = {
9699 	.release = bpf_xdp_link_release,
9700 	.dealloc = bpf_xdp_link_dealloc,
9701 	.detach = bpf_xdp_link_detach,
9702 	.show_fdinfo = bpf_xdp_link_show_fdinfo,
9703 	.fill_link_info = bpf_xdp_link_fill_link_info,
9704 	.update_prog = bpf_xdp_link_update,
9705 };
9706 
9707 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9708 {
9709 	struct net *net = current->nsproxy->net_ns;
9710 	struct bpf_link_primer link_primer;
9711 	struct bpf_xdp_link *link;
9712 	struct net_device *dev;
9713 	int err, fd;
9714 
9715 	rtnl_lock();
9716 	dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9717 	if (!dev) {
9718 		rtnl_unlock();
9719 		return -EINVAL;
9720 	}
9721 
9722 	link = kzalloc(sizeof(*link), GFP_USER);
9723 	if (!link) {
9724 		err = -ENOMEM;
9725 		goto unlock;
9726 	}
9727 
9728 	bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9729 	link->dev = dev;
9730 	link->flags = attr->link_create.flags;
9731 
9732 	err = bpf_link_prime(&link->link, &link_primer);
9733 	if (err) {
9734 		kfree(link);
9735 		goto unlock;
9736 	}
9737 
9738 	err = dev_xdp_attach_link(dev, NULL, link);
9739 	rtnl_unlock();
9740 
9741 	if (err) {
9742 		link->dev = NULL;
9743 		bpf_link_cleanup(&link_primer);
9744 		goto out_put_dev;
9745 	}
9746 
9747 	fd = bpf_link_settle(&link_primer);
9748 	/* link itself doesn't hold dev's refcnt to not complicate shutdown */
9749 	dev_put(dev);
9750 	return fd;
9751 
9752 unlock:
9753 	rtnl_unlock();
9754 
9755 out_put_dev:
9756 	dev_put(dev);
9757 	return err;
9758 }
9759 
9760 /**
9761  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
9762  *	@dev: device
9763  *	@extack: netlink extended ack
9764  *	@fd: new program fd or negative value to clear
9765  *	@expected_fd: old program fd that userspace expects to replace or clear
9766  *	@flags: xdp-related flags
9767  *
9768  *	Set or clear a bpf program for a device
9769  */
9770 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9771 		      int fd, int expected_fd, u32 flags)
9772 {
9773 	enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9774 	struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9775 	int err;
9776 
9777 	ASSERT_RTNL();
9778 
9779 	if (fd >= 0) {
9780 		new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9781 						 mode != XDP_MODE_SKB);
9782 		if (IS_ERR(new_prog))
9783 			return PTR_ERR(new_prog);
9784 	}
9785 
9786 	if (expected_fd >= 0) {
9787 		old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9788 						 mode != XDP_MODE_SKB);
9789 		if (IS_ERR(old_prog)) {
9790 			err = PTR_ERR(old_prog);
9791 			old_prog = NULL;
9792 			goto err_out;
9793 		}
9794 	}
9795 
9796 	err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9797 
9798 err_out:
9799 	if (err && new_prog)
9800 		bpf_prog_put(new_prog);
9801 	if (old_prog)
9802 		bpf_prog_put(old_prog);
9803 	return err;
9804 }
9805 
9806 /**
9807  *	dev_new_index	-	allocate an ifindex
9808  *	@net: the applicable net namespace
9809  *
9810  *	Returns a suitable unique value for a new device interface
9811  *	number.  The caller must hold the rtnl semaphore or the
9812  *	dev_base_lock to be sure it remains unique.
9813  */
9814 static int dev_new_index(struct net *net)
9815 {
9816 	int ifindex = net->ifindex;
9817 
9818 	for (;;) {
9819 		if (++ifindex <= 0)
9820 			ifindex = 1;
9821 		if (!__dev_get_by_index(net, ifindex))
9822 			return net->ifindex = ifindex;
9823 	}
9824 }
9825 
9826 /* Delayed registration/unregisteration */
9827 static LIST_HEAD(net_todo_list);
9828 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9829 
9830 static void net_set_todo(struct net_device *dev)
9831 {
9832 	list_add_tail(&dev->todo_list, &net_todo_list);
9833 	dev_net(dev)->dev_unreg_count++;
9834 }
9835 
9836 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9837 	struct net_device *upper, netdev_features_t features)
9838 {
9839 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9840 	netdev_features_t feature;
9841 	int feature_bit;
9842 
9843 	for_each_netdev_feature(upper_disables, feature_bit) {
9844 		feature = __NETIF_F_BIT(feature_bit);
9845 		if (!(upper->wanted_features & feature)
9846 		    && (features & feature)) {
9847 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9848 				   &feature, upper->name);
9849 			features &= ~feature;
9850 		}
9851 	}
9852 
9853 	return features;
9854 }
9855 
9856 static void netdev_sync_lower_features(struct net_device *upper,
9857 	struct net_device *lower, netdev_features_t features)
9858 {
9859 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9860 	netdev_features_t feature;
9861 	int feature_bit;
9862 
9863 	for_each_netdev_feature(upper_disables, feature_bit) {
9864 		feature = __NETIF_F_BIT(feature_bit);
9865 		if (!(features & feature) && (lower->features & feature)) {
9866 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9867 				   &feature, lower->name);
9868 			lower->wanted_features &= ~feature;
9869 			__netdev_update_features(lower);
9870 
9871 			if (unlikely(lower->features & feature))
9872 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9873 					    &feature, lower->name);
9874 			else
9875 				netdev_features_change(lower);
9876 		}
9877 	}
9878 }
9879 
9880 static netdev_features_t netdev_fix_features(struct net_device *dev,
9881 	netdev_features_t features)
9882 {
9883 	/* Fix illegal checksum combinations */
9884 	if ((features & NETIF_F_HW_CSUM) &&
9885 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9886 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9887 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9888 	}
9889 
9890 	/* TSO requires that SG is present as well. */
9891 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9892 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9893 		features &= ~NETIF_F_ALL_TSO;
9894 	}
9895 
9896 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9897 					!(features & NETIF_F_IP_CSUM)) {
9898 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9899 		features &= ~NETIF_F_TSO;
9900 		features &= ~NETIF_F_TSO_ECN;
9901 	}
9902 
9903 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9904 					 !(features & NETIF_F_IPV6_CSUM)) {
9905 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9906 		features &= ~NETIF_F_TSO6;
9907 	}
9908 
9909 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9910 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9911 		features &= ~NETIF_F_TSO_MANGLEID;
9912 
9913 	/* TSO ECN requires that TSO is present as well. */
9914 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9915 		features &= ~NETIF_F_TSO_ECN;
9916 
9917 	/* Software GSO depends on SG. */
9918 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9919 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9920 		features &= ~NETIF_F_GSO;
9921 	}
9922 
9923 	/* GSO partial features require GSO partial be set */
9924 	if ((features & dev->gso_partial_features) &&
9925 	    !(features & NETIF_F_GSO_PARTIAL)) {
9926 		netdev_dbg(dev,
9927 			   "Dropping partially supported GSO features since no GSO partial.\n");
9928 		features &= ~dev->gso_partial_features;
9929 	}
9930 
9931 	if (!(features & NETIF_F_RXCSUM)) {
9932 		/* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9933 		 * successfully merged by hardware must also have the
9934 		 * checksum verified by hardware.  If the user does not
9935 		 * want to enable RXCSUM, logically, we should disable GRO_HW.
9936 		 */
9937 		if (features & NETIF_F_GRO_HW) {
9938 			netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9939 			features &= ~NETIF_F_GRO_HW;
9940 		}
9941 	}
9942 
9943 	/* LRO/HW-GRO features cannot be combined with RX-FCS */
9944 	if (features & NETIF_F_RXFCS) {
9945 		if (features & NETIF_F_LRO) {
9946 			netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9947 			features &= ~NETIF_F_LRO;
9948 		}
9949 
9950 		if (features & NETIF_F_GRO_HW) {
9951 			netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9952 			features &= ~NETIF_F_GRO_HW;
9953 		}
9954 	}
9955 
9956 	if (features & NETIF_F_HW_TLS_TX) {
9957 		bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9958 			(NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9959 		bool hw_csum = features & NETIF_F_HW_CSUM;
9960 
9961 		if (!ip_csum && !hw_csum) {
9962 			netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9963 			features &= ~NETIF_F_HW_TLS_TX;
9964 		}
9965 	}
9966 
9967 	if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9968 		netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9969 		features &= ~NETIF_F_HW_TLS_RX;
9970 	}
9971 
9972 	return features;
9973 }
9974 
9975 int __netdev_update_features(struct net_device *dev)
9976 {
9977 	struct net_device *upper, *lower;
9978 	netdev_features_t features;
9979 	struct list_head *iter;
9980 	int err = -1;
9981 
9982 	ASSERT_RTNL();
9983 
9984 	features = netdev_get_wanted_features(dev);
9985 
9986 	if (dev->netdev_ops->ndo_fix_features)
9987 		features = dev->netdev_ops->ndo_fix_features(dev, features);
9988 
9989 	/* driver might be less strict about feature dependencies */
9990 	features = netdev_fix_features(dev, features);
9991 
9992 	/* some features can't be enabled if they're off on an upper device */
9993 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
9994 		features = netdev_sync_upper_features(dev, upper, features);
9995 
9996 	if (dev->features == features)
9997 		goto sync_lower;
9998 
9999 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
10000 		&dev->features, &features);
10001 
10002 	if (dev->netdev_ops->ndo_set_features)
10003 		err = dev->netdev_ops->ndo_set_features(dev, features);
10004 	else
10005 		err = 0;
10006 
10007 	if (unlikely(err < 0)) {
10008 		netdev_err(dev,
10009 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
10010 			err, &features, &dev->features);
10011 		/* return non-0 since some features might have changed and
10012 		 * it's better to fire a spurious notification than miss it
10013 		 */
10014 		return -1;
10015 	}
10016 
10017 sync_lower:
10018 	/* some features must be disabled on lower devices when disabled
10019 	 * on an upper device (think: bonding master or bridge)
10020 	 */
10021 	netdev_for_each_lower_dev(dev, lower, iter)
10022 		netdev_sync_lower_features(dev, lower, features);
10023 
10024 	if (!err) {
10025 		netdev_features_t diff = features ^ dev->features;
10026 
10027 		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
10028 			/* udp_tunnel_{get,drop}_rx_info both need
10029 			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
10030 			 * device, or they won't do anything.
10031 			 * Thus we need to update dev->features
10032 			 * *before* calling udp_tunnel_get_rx_info,
10033 			 * but *after* calling udp_tunnel_drop_rx_info.
10034 			 */
10035 			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
10036 				dev->features = features;
10037 				udp_tunnel_get_rx_info(dev);
10038 			} else {
10039 				udp_tunnel_drop_rx_info(dev);
10040 			}
10041 		}
10042 
10043 		if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
10044 			if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
10045 				dev->features = features;
10046 				err |= vlan_get_rx_ctag_filter_info(dev);
10047 			} else {
10048 				vlan_drop_rx_ctag_filter_info(dev);
10049 			}
10050 		}
10051 
10052 		if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
10053 			if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
10054 				dev->features = features;
10055 				err |= vlan_get_rx_stag_filter_info(dev);
10056 			} else {
10057 				vlan_drop_rx_stag_filter_info(dev);
10058 			}
10059 		}
10060 
10061 		dev->features = features;
10062 	}
10063 
10064 	return err < 0 ? 0 : 1;
10065 }
10066 
10067 /**
10068  *	netdev_update_features - recalculate device features
10069  *	@dev: the device to check
10070  *
10071  *	Recalculate dev->features set and send notifications if it
10072  *	has changed. Should be called after driver or hardware dependent
10073  *	conditions might have changed that influence the features.
10074  */
10075 void netdev_update_features(struct net_device *dev)
10076 {
10077 	if (__netdev_update_features(dev))
10078 		netdev_features_change(dev);
10079 }
10080 EXPORT_SYMBOL(netdev_update_features);
10081 
10082 /**
10083  *	netdev_change_features - recalculate device features
10084  *	@dev: the device to check
10085  *
10086  *	Recalculate dev->features set and send notifications even
10087  *	if they have not changed. Should be called instead of
10088  *	netdev_update_features() if also dev->vlan_features might
10089  *	have changed to allow the changes to be propagated to stacked
10090  *	VLAN devices.
10091  */
10092 void netdev_change_features(struct net_device *dev)
10093 {
10094 	__netdev_update_features(dev);
10095 	netdev_features_change(dev);
10096 }
10097 EXPORT_SYMBOL(netdev_change_features);
10098 
10099 /**
10100  *	netif_stacked_transfer_operstate -	transfer operstate
10101  *	@rootdev: the root or lower level device to transfer state from
10102  *	@dev: the device to transfer operstate to
10103  *
10104  *	Transfer operational state from root to device. This is normally
10105  *	called when a stacking relationship exists between the root
10106  *	device and the device(a leaf device).
10107  */
10108 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
10109 					struct net_device *dev)
10110 {
10111 	if (rootdev->operstate == IF_OPER_DORMANT)
10112 		netif_dormant_on(dev);
10113 	else
10114 		netif_dormant_off(dev);
10115 
10116 	if (rootdev->operstate == IF_OPER_TESTING)
10117 		netif_testing_on(dev);
10118 	else
10119 		netif_testing_off(dev);
10120 
10121 	if (netif_carrier_ok(rootdev))
10122 		netif_carrier_on(dev);
10123 	else
10124 		netif_carrier_off(dev);
10125 }
10126 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
10127 
10128 static int netif_alloc_rx_queues(struct net_device *dev)
10129 {
10130 	unsigned int i, count = dev->num_rx_queues;
10131 	struct netdev_rx_queue *rx;
10132 	size_t sz = count * sizeof(*rx);
10133 	int err = 0;
10134 
10135 	BUG_ON(count < 1);
10136 
10137 	rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
10138 	if (!rx)
10139 		return -ENOMEM;
10140 
10141 	dev->_rx = rx;
10142 
10143 	for (i = 0; i < count; i++) {
10144 		rx[i].dev = dev;
10145 
10146 		/* XDP RX-queue setup */
10147 		err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
10148 		if (err < 0)
10149 			goto err_rxq_info;
10150 	}
10151 	return 0;
10152 
10153 err_rxq_info:
10154 	/* Rollback successful reg's and free other resources */
10155 	while (i--)
10156 		xdp_rxq_info_unreg(&rx[i].xdp_rxq);
10157 	kvfree(dev->_rx);
10158 	dev->_rx = NULL;
10159 	return err;
10160 }
10161 
10162 static void netif_free_rx_queues(struct net_device *dev)
10163 {
10164 	unsigned int i, count = dev->num_rx_queues;
10165 
10166 	/* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
10167 	if (!dev->_rx)
10168 		return;
10169 
10170 	for (i = 0; i < count; i++)
10171 		xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
10172 
10173 	kvfree(dev->_rx);
10174 }
10175 
10176 static void netdev_init_one_queue(struct net_device *dev,
10177 				  struct netdev_queue *queue, void *_unused)
10178 {
10179 	/* Initialize queue lock */
10180 	spin_lock_init(&queue->_xmit_lock);
10181 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
10182 	queue->xmit_lock_owner = -1;
10183 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
10184 	queue->dev = dev;
10185 #ifdef CONFIG_BQL
10186 	dql_init(&queue->dql, HZ);
10187 #endif
10188 }
10189 
10190 static void netif_free_tx_queues(struct net_device *dev)
10191 {
10192 	kvfree(dev->_tx);
10193 }
10194 
10195 static int netif_alloc_netdev_queues(struct net_device *dev)
10196 {
10197 	unsigned int count = dev->num_tx_queues;
10198 	struct netdev_queue *tx;
10199 	size_t sz = count * sizeof(*tx);
10200 
10201 	if (count < 1 || count > 0xffff)
10202 		return -EINVAL;
10203 
10204 	tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
10205 	if (!tx)
10206 		return -ENOMEM;
10207 
10208 	dev->_tx = tx;
10209 
10210 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
10211 	spin_lock_init(&dev->tx_global_lock);
10212 
10213 	return 0;
10214 }
10215 
10216 void netif_tx_stop_all_queues(struct net_device *dev)
10217 {
10218 	unsigned int i;
10219 
10220 	for (i = 0; i < dev->num_tx_queues; i++) {
10221 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
10222 
10223 		netif_tx_stop_queue(txq);
10224 	}
10225 }
10226 EXPORT_SYMBOL(netif_tx_stop_all_queues);
10227 
10228 /**
10229  *	register_netdevice	- register a network device
10230  *	@dev: device to register
10231  *
10232  *	Take a completed network device structure and add it to the kernel
10233  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10234  *	chain. 0 is returned on success. A negative errno code is returned
10235  *	on a failure to set up the device, or if the name is a duplicate.
10236  *
10237  *	Callers must hold the rtnl semaphore. You may want
10238  *	register_netdev() instead of this.
10239  *
10240  *	BUGS:
10241  *	The locking appears insufficient to guarantee two parallel registers
10242  *	will not get the same name.
10243  */
10244 
10245 int register_netdevice(struct net_device *dev)
10246 {
10247 	int ret;
10248 	struct net *net = dev_net(dev);
10249 
10250 	BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
10251 		     NETDEV_FEATURE_COUNT);
10252 	BUG_ON(dev_boot_phase);
10253 	ASSERT_RTNL();
10254 
10255 	might_sleep();
10256 
10257 	/* When net_device's are persistent, this will be fatal. */
10258 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
10259 	BUG_ON(!net);
10260 
10261 	ret = ethtool_check_ops(dev->ethtool_ops);
10262 	if (ret)
10263 		return ret;
10264 
10265 	spin_lock_init(&dev->addr_list_lock);
10266 	netdev_set_addr_lockdep_class(dev);
10267 
10268 	ret = dev_get_valid_name(net, dev, dev->name);
10269 	if (ret < 0)
10270 		goto out;
10271 
10272 	ret = -ENOMEM;
10273 	dev->name_node = netdev_name_node_head_alloc(dev);
10274 	if (!dev->name_node)
10275 		goto out;
10276 
10277 	/* Init, if this function is available */
10278 	if (dev->netdev_ops->ndo_init) {
10279 		ret = dev->netdev_ops->ndo_init(dev);
10280 		if (ret) {
10281 			if (ret > 0)
10282 				ret = -EIO;
10283 			goto err_free_name;
10284 		}
10285 	}
10286 
10287 	if (((dev->hw_features | dev->features) &
10288 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
10289 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10290 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10291 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10292 		ret = -EINVAL;
10293 		goto err_uninit;
10294 	}
10295 
10296 	ret = -EBUSY;
10297 	if (!dev->ifindex)
10298 		dev->ifindex = dev_new_index(net);
10299 	else if (__dev_get_by_index(net, dev->ifindex))
10300 		goto err_uninit;
10301 
10302 	/* Transfer changeable features to wanted_features and enable
10303 	 * software offloads (GSO and GRO).
10304 	 */
10305 	dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10306 	dev->features |= NETIF_F_SOFT_FEATURES;
10307 
10308 	if (dev->udp_tunnel_nic_info) {
10309 		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10310 		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10311 	}
10312 
10313 	dev->wanted_features = dev->features & dev->hw_features;
10314 
10315 	if (!(dev->flags & IFF_LOOPBACK))
10316 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
10317 
10318 	/* If IPv4 TCP segmentation offload is supported we should also
10319 	 * allow the device to enable segmenting the frame with the option
10320 	 * of ignoring a static IP ID value.  This doesn't enable the
10321 	 * feature itself but allows the user to enable it later.
10322 	 */
10323 	if (dev->hw_features & NETIF_F_TSO)
10324 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
10325 	if (dev->vlan_features & NETIF_F_TSO)
10326 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10327 	if (dev->mpls_features & NETIF_F_TSO)
10328 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10329 	if (dev->hw_enc_features & NETIF_F_TSO)
10330 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10331 
10332 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10333 	 */
10334 	dev->vlan_features |= NETIF_F_HIGHDMA;
10335 
10336 	/* Make NETIF_F_SG inheritable to tunnel devices.
10337 	 */
10338 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10339 
10340 	/* Make NETIF_F_SG inheritable to MPLS.
10341 	 */
10342 	dev->mpls_features |= NETIF_F_SG;
10343 
10344 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10345 	ret = notifier_to_errno(ret);
10346 	if (ret)
10347 		goto err_uninit;
10348 
10349 	ret = netdev_register_kobject(dev);
10350 	if (ret) {
10351 		dev->reg_state = NETREG_UNREGISTERED;
10352 		goto err_uninit;
10353 	}
10354 	dev->reg_state = NETREG_REGISTERED;
10355 
10356 	__netdev_update_features(dev);
10357 
10358 	/*
10359 	 *	Default initial state at registry is that the
10360 	 *	device is present.
10361 	 */
10362 
10363 	set_bit(__LINK_STATE_PRESENT, &dev->state);
10364 
10365 	linkwatch_init_dev(dev);
10366 
10367 	dev_init_scheduler(dev);
10368 	dev_hold(dev);
10369 	list_netdevice(dev);
10370 	add_device_randomness(dev->dev_addr, dev->addr_len);
10371 
10372 	/* If the device has permanent device address, driver should
10373 	 * set dev_addr and also addr_assign_type should be set to
10374 	 * NET_ADDR_PERM (default value).
10375 	 */
10376 	if (dev->addr_assign_type == NET_ADDR_PERM)
10377 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10378 
10379 	/* Notify protocols, that a new device appeared. */
10380 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10381 	ret = notifier_to_errno(ret);
10382 	if (ret) {
10383 		/* Expect explicit free_netdev() on failure */
10384 		dev->needs_free_netdev = false;
10385 		unregister_netdevice_queue(dev, NULL);
10386 		goto out;
10387 	}
10388 	/*
10389 	 *	Prevent userspace races by waiting until the network
10390 	 *	device is fully setup before sending notifications.
10391 	 */
10392 	if (!dev->rtnl_link_ops ||
10393 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10394 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10395 
10396 out:
10397 	return ret;
10398 
10399 err_uninit:
10400 	if (dev->netdev_ops->ndo_uninit)
10401 		dev->netdev_ops->ndo_uninit(dev);
10402 	if (dev->priv_destructor)
10403 		dev->priv_destructor(dev);
10404 err_free_name:
10405 	netdev_name_node_free(dev->name_node);
10406 	goto out;
10407 }
10408 EXPORT_SYMBOL(register_netdevice);
10409 
10410 /**
10411  *	init_dummy_netdev	- init a dummy network device for NAPI
10412  *	@dev: device to init
10413  *
10414  *	This takes a network device structure and initialize the minimum
10415  *	amount of fields so it can be used to schedule NAPI polls without
10416  *	registering a full blown interface. This is to be used by drivers
10417  *	that need to tie several hardware interfaces to a single NAPI
10418  *	poll scheduler due to HW limitations.
10419  */
10420 int init_dummy_netdev(struct net_device *dev)
10421 {
10422 	/* Clear everything. Note we don't initialize spinlocks
10423 	 * are they aren't supposed to be taken by any of the
10424 	 * NAPI code and this dummy netdev is supposed to be
10425 	 * only ever used for NAPI polls
10426 	 */
10427 	memset(dev, 0, sizeof(struct net_device));
10428 
10429 	/* make sure we BUG if trying to hit standard
10430 	 * register/unregister code path
10431 	 */
10432 	dev->reg_state = NETREG_DUMMY;
10433 
10434 	/* NAPI wants this */
10435 	INIT_LIST_HEAD(&dev->napi_list);
10436 
10437 	/* a dummy interface is started by default */
10438 	set_bit(__LINK_STATE_PRESENT, &dev->state);
10439 	set_bit(__LINK_STATE_START, &dev->state);
10440 
10441 	/* napi_busy_loop stats accounting wants this */
10442 	dev_net_set(dev, &init_net);
10443 
10444 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
10445 	 * because users of this 'device' dont need to change
10446 	 * its refcount.
10447 	 */
10448 
10449 	return 0;
10450 }
10451 EXPORT_SYMBOL_GPL(init_dummy_netdev);
10452 
10453 
10454 /**
10455  *	register_netdev	- register a network device
10456  *	@dev: device to register
10457  *
10458  *	Take a completed network device structure and add it to the kernel
10459  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10460  *	chain. 0 is returned on success. A negative errno code is returned
10461  *	on a failure to set up the device, or if the name is a duplicate.
10462  *
10463  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
10464  *	and expands the device name if you passed a format string to
10465  *	alloc_netdev.
10466  */
10467 int register_netdev(struct net_device *dev)
10468 {
10469 	int err;
10470 
10471 	if (rtnl_lock_killable())
10472 		return -EINTR;
10473 	err = register_netdevice(dev);
10474 	rtnl_unlock();
10475 	return err;
10476 }
10477 EXPORT_SYMBOL(register_netdev);
10478 
10479 int netdev_refcnt_read(const struct net_device *dev)
10480 {
10481 #ifdef CONFIG_PCPU_DEV_REFCNT
10482 	int i, refcnt = 0;
10483 
10484 	for_each_possible_cpu(i)
10485 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10486 	return refcnt;
10487 #else
10488 	return refcount_read(&dev->dev_refcnt);
10489 #endif
10490 }
10491 EXPORT_SYMBOL(netdev_refcnt_read);
10492 
10493 int netdev_unregister_timeout_secs __read_mostly = 10;
10494 
10495 #define WAIT_REFS_MIN_MSECS 1
10496 #define WAIT_REFS_MAX_MSECS 250
10497 /**
10498  * netdev_wait_allrefs - wait until all references are gone.
10499  * @dev: target net_device
10500  *
10501  * This is called when unregistering network devices.
10502  *
10503  * Any protocol or device that holds a reference should register
10504  * for netdevice notification, and cleanup and put back the
10505  * reference if they receive an UNREGISTER event.
10506  * We can get stuck here if buggy protocols don't correctly
10507  * call dev_put.
10508  */
10509 static void netdev_wait_allrefs(struct net_device *dev)
10510 {
10511 	unsigned long rebroadcast_time, warning_time;
10512 	int wait = 0, refcnt;
10513 
10514 	linkwatch_forget_dev(dev);
10515 
10516 	rebroadcast_time = warning_time = jiffies;
10517 	refcnt = netdev_refcnt_read(dev);
10518 
10519 	while (refcnt != 1) {
10520 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10521 			rtnl_lock();
10522 
10523 			/* Rebroadcast unregister notification */
10524 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10525 
10526 			__rtnl_unlock();
10527 			rcu_barrier();
10528 			rtnl_lock();
10529 
10530 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10531 				     &dev->state)) {
10532 				/* We must not have linkwatch events
10533 				 * pending on unregister. If this
10534 				 * happens, we simply run the queue
10535 				 * unscheduled, resulting in a noop
10536 				 * for this device.
10537 				 */
10538 				linkwatch_run_queue();
10539 			}
10540 
10541 			__rtnl_unlock();
10542 
10543 			rebroadcast_time = jiffies;
10544 		}
10545 
10546 		if (!wait) {
10547 			rcu_barrier();
10548 			wait = WAIT_REFS_MIN_MSECS;
10549 		} else {
10550 			msleep(wait);
10551 			wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10552 		}
10553 
10554 		refcnt = netdev_refcnt_read(dev);
10555 
10556 		if (refcnt != 1 &&
10557 		    time_after(jiffies, warning_time +
10558 			       netdev_unregister_timeout_secs * HZ)) {
10559 			pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10560 				 dev->name, refcnt);
10561 			warning_time = jiffies;
10562 		}
10563 	}
10564 }
10565 
10566 /* The sequence is:
10567  *
10568  *	rtnl_lock();
10569  *	...
10570  *	register_netdevice(x1);
10571  *	register_netdevice(x2);
10572  *	...
10573  *	unregister_netdevice(y1);
10574  *	unregister_netdevice(y2);
10575  *      ...
10576  *	rtnl_unlock();
10577  *	free_netdev(y1);
10578  *	free_netdev(y2);
10579  *
10580  * We are invoked by rtnl_unlock().
10581  * This allows us to deal with problems:
10582  * 1) We can delete sysfs objects which invoke hotplug
10583  *    without deadlocking with linkwatch via keventd.
10584  * 2) Since we run with the RTNL semaphore not held, we can sleep
10585  *    safely in order to wait for the netdev refcnt to drop to zero.
10586  *
10587  * We must not return until all unregister events added during
10588  * the interval the lock was held have been completed.
10589  */
10590 void netdev_run_todo(void)
10591 {
10592 	struct list_head list;
10593 #ifdef CONFIG_LOCKDEP
10594 	struct list_head unlink_list;
10595 
10596 	list_replace_init(&net_unlink_list, &unlink_list);
10597 
10598 	while (!list_empty(&unlink_list)) {
10599 		struct net_device *dev = list_first_entry(&unlink_list,
10600 							  struct net_device,
10601 							  unlink_list);
10602 		list_del_init(&dev->unlink_list);
10603 		dev->nested_level = dev->lower_level - 1;
10604 	}
10605 #endif
10606 
10607 	/* Snapshot list, allow later requests */
10608 	list_replace_init(&net_todo_list, &list);
10609 
10610 	__rtnl_unlock();
10611 
10612 
10613 	/* Wait for rcu callbacks to finish before next phase */
10614 	if (!list_empty(&list))
10615 		rcu_barrier();
10616 
10617 	while (!list_empty(&list)) {
10618 		struct net_device *dev
10619 			= list_first_entry(&list, struct net_device, todo_list);
10620 		list_del(&dev->todo_list);
10621 
10622 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10623 			pr_err("network todo '%s' but state %d\n",
10624 			       dev->name, dev->reg_state);
10625 			dump_stack();
10626 			continue;
10627 		}
10628 
10629 		dev->reg_state = NETREG_UNREGISTERED;
10630 
10631 		netdev_wait_allrefs(dev);
10632 
10633 		/* paranoia */
10634 		BUG_ON(netdev_refcnt_read(dev) != 1);
10635 		BUG_ON(!list_empty(&dev->ptype_all));
10636 		BUG_ON(!list_empty(&dev->ptype_specific));
10637 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
10638 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10639 #if IS_ENABLED(CONFIG_DECNET)
10640 		WARN_ON(dev->dn_ptr);
10641 #endif
10642 		if (dev->priv_destructor)
10643 			dev->priv_destructor(dev);
10644 		if (dev->needs_free_netdev)
10645 			free_netdev(dev);
10646 
10647 		/* Report a network device has been unregistered */
10648 		rtnl_lock();
10649 		dev_net(dev)->dev_unreg_count--;
10650 		__rtnl_unlock();
10651 		wake_up(&netdev_unregistering_wq);
10652 
10653 		/* Free network device */
10654 		kobject_put(&dev->dev.kobj);
10655 	}
10656 }
10657 
10658 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10659  * all the same fields in the same order as net_device_stats, with only
10660  * the type differing, but rtnl_link_stats64 may have additional fields
10661  * at the end for newer counters.
10662  */
10663 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10664 			     const struct net_device_stats *netdev_stats)
10665 {
10666 #if BITS_PER_LONG == 64
10667 	BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
10668 	memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
10669 	/* zero out counters that only exist in rtnl_link_stats64 */
10670 	memset((char *)stats64 + sizeof(*netdev_stats), 0,
10671 	       sizeof(*stats64) - sizeof(*netdev_stats));
10672 #else
10673 	size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
10674 	const unsigned long *src = (const unsigned long *)netdev_stats;
10675 	u64 *dst = (u64 *)stats64;
10676 
10677 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10678 	for (i = 0; i < n; i++)
10679 		dst[i] = src[i];
10680 	/* zero out counters that only exist in rtnl_link_stats64 */
10681 	memset((char *)stats64 + n * sizeof(u64), 0,
10682 	       sizeof(*stats64) - n * sizeof(u64));
10683 #endif
10684 }
10685 EXPORT_SYMBOL(netdev_stats_to_stats64);
10686 
10687 /**
10688  *	dev_get_stats	- get network device statistics
10689  *	@dev: device to get statistics from
10690  *	@storage: place to store stats
10691  *
10692  *	Get network statistics from device. Return @storage.
10693  *	The device driver may provide its own method by setting
10694  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10695  *	otherwise the internal statistics structure is used.
10696  */
10697 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10698 					struct rtnl_link_stats64 *storage)
10699 {
10700 	const struct net_device_ops *ops = dev->netdev_ops;
10701 
10702 	if (ops->ndo_get_stats64) {
10703 		memset(storage, 0, sizeof(*storage));
10704 		ops->ndo_get_stats64(dev, storage);
10705 	} else if (ops->ndo_get_stats) {
10706 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10707 	} else {
10708 		netdev_stats_to_stats64(storage, &dev->stats);
10709 	}
10710 	storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
10711 	storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
10712 	storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
10713 	return storage;
10714 }
10715 EXPORT_SYMBOL(dev_get_stats);
10716 
10717 /**
10718  *	dev_fetch_sw_netstats - get per-cpu network device statistics
10719  *	@s: place to store stats
10720  *	@netstats: per-cpu network stats to read from
10721  *
10722  *	Read per-cpu network statistics and populate the related fields in @s.
10723  */
10724 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10725 			   const struct pcpu_sw_netstats __percpu *netstats)
10726 {
10727 	int cpu;
10728 
10729 	for_each_possible_cpu(cpu) {
10730 		const struct pcpu_sw_netstats *stats;
10731 		struct pcpu_sw_netstats tmp;
10732 		unsigned int start;
10733 
10734 		stats = per_cpu_ptr(netstats, cpu);
10735 		do {
10736 			start = u64_stats_fetch_begin_irq(&stats->syncp);
10737 			tmp.rx_packets = stats->rx_packets;
10738 			tmp.rx_bytes   = stats->rx_bytes;
10739 			tmp.tx_packets = stats->tx_packets;
10740 			tmp.tx_bytes   = stats->tx_bytes;
10741 		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
10742 
10743 		s->rx_packets += tmp.rx_packets;
10744 		s->rx_bytes   += tmp.rx_bytes;
10745 		s->tx_packets += tmp.tx_packets;
10746 		s->tx_bytes   += tmp.tx_bytes;
10747 	}
10748 }
10749 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10750 
10751 /**
10752  *	dev_get_tstats64 - ndo_get_stats64 implementation
10753  *	@dev: device to get statistics from
10754  *	@s: place to store stats
10755  *
10756  *	Populate @s from dev->stats and dev->tstats. Can be used as
10757  *	ndo_get_stats64() callback.
10758  */
10759 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10760 {
10761 	netdev_stats_to_stats64(s, &dev->stats);
10762 	dev_fetch_sw_netstats(s, dev->tstats);
10763 }
10764 EXPORT_SYMBOL_GPL(dev_get_tstats64);
10765 
10766 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10767 {
10768 	struct netdev_queue *queue = dev_ingress_queue(dev);
10769 
10770 #ifdef CONFIG_NET_CLS_ACT
10771 	if (queue)
10772 		return queue;
10773 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10774 	if (!queue)
10775 		return NULL;
10776 	netdev_init_one_queue(dev, queue, NULL);
10777 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10778 	queue->qdisc_sleeping = &noop_qdisc;
10779 	rcu_assign_pointer(dev->ingress_queue, queue);
10780 #endif
10781 	return queue;
10782 }
10783 
10784 static const struct ethtool_ops default_ethtool_ops;
10785 
10786 void netdev_set_default_ethtool_ops(struct net_device *dev,
10787 				    const struct ethtool_ops *ops)
10788 {
10789 	if (dev->ethtool_ops == &default_ethtool_ops)
10790 		dev->ethtool_ops = ops;
10791 }
10792 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10793 
10794 void netdev_freemem(struct net_device *dev)
10795 {
10796 	char *addr = (char *)dev - dev->padded;
10797 
10798 	kvfree(addr);
10799 }
10800 
10801 /**
10802  * alloc_netdev_mqs - allocate network device
10803  * @sizeof_priv: size of private data to allocate space for
10804  * @name: device name format string
10805  * @name_assign_type: origin of device name
10806  * @setup: callback to initialize device
10807  * @txqs: the number of TX subqueues to allocate
10808  * @rxqs: the number of RX subqueues to allocate
10809  *
10810  * Allocates a struct net_device with private data area for driver use
10811  * and performs basic initialization.  Also allocates subqueue structs
10812  * for each queue on the device.
10813  */
10814 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10815 		unsigned char name_assign_type,
10816 		void (*setup)(struct net_device *),
10817 		unsigned int txqs, unsigned int rxqs)
10818 {
10819 	struct net_device *dev;
10820 	unsigned int alloc_size;
10821 	struct net_device *p;
10822 
10823 	BUG_ON(strlen(name) >= sizeof(dev->name));
10824 
10825 	if (txqs < 1) {
10826 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10827 		return NULL;
10828 	}
10829 
10830 	if (rxqs < 1) {
10831 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10832 		return NULL;
10833 	}
10834 
10835 	alloc_size = sizeof(struct net_device);
10836 	if (sizeof_priv) {
10837 		/* ensure 32-byte alignment of private area */
10838 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10839 		alloc_size += sizeof_priv;
10840 	}
10841 	/* ensure 32-byte alignment of whole construct */
10842 	alloc_size += NETDEV_ALIGN - 1;
10843 
10844 	p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
10845 	if (!p)
10846 		return NULL;
10847 
10848 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
10849 	dev->padded = (char *)dev - (char *)p;
10850 
10851 #ifdef CONFIG_PCPU_DEV_REFCNT
10852 	dev->pcpu_refcnt = alloc_percpu(int);
10853 	if (!dev->pcpu_refcnt)
10854 		goto free_dev;
10855 	dev_hold(dev);
10856 #else
10857 	refcount_set(&dev->dev_refcnt, 1);
10858 #endif
10859 
10860 	if (dev_addr_init(dev))
10861 		goto free_pcpu;
10862 
10863 	dev_mc_init(dev);
10864 	dev_uc_init(dev);
10865 
10866 	dev_net_set(dev, &init_net);
10867 
10868 	dev->gso_max_size = GSO_MAX_SIZE;
10869 	dev->gso_max_segs = GSO_MAX_SEGS;
10870 	dev->upper_level = 1;
10871 	dev->lower_level = 1;
10872 #ifdef CONFIG_LOCKDEP
10873 	dev->nested_level = 0;
10874 	INIT_LIST_HEAD(&dev->unlink_list);
10875 #endif
10876 
10877 	INIT_LIST_HEAD(&dev->napi_list);
10878 	INIT_LIST_HEAD(&dev->unreg_list);
10879 	INIT_LIST_HEAD(&dev->close_list);
10880 	INIT_LIST_HEAD(&dev->link_watch_list);
10881 	INIT_LIST_HEAD(&dev->adj_list.upper);
10882 	INIT_LIST_HEAD(&dev->adj_list.lower);
10883 	INIT_LIST_HEAD(&dev->ptype_all);
10884 	INIT_LIST_HEAD(&dev->ptype_specific);
10885 	INIT_LIST_HEAD(&dev->net_notifier_list);
10886 #ifdef CONFIG_NET_SCHED
10887 	hash_init(dev->qdisc_hash);
10888 #endif
10889 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10890 	setup(dev);
10891 
10892 	if (!dev->tx_queue_len) {
10893 		dev->priv_flags |= IFF_NO_QUEUE;
10894 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10895 	}
10896 
10897 	dev->num_tx_queues = txqs;
10898 	dev->real_num_tx_queues = txqs;
10899 	if (netif_alloc_netdev_queues(dev))
10900 		goto free_all;
10901 
10902 	dev->num_rx_queues = rxqs;
10903 	dev->real_num_rx_queues = rxqs;
10904 	if (netif_alloc_rx_queues(dev))
10905 		goto free_all;
10906 
10907 	strcpy(dev->name, name);
10908 	dev->name_assign_type = name_assign_type;
10909 	dev->group = INIT_NETDEV_GROUP;
10910 	if (!dev->ethtool_ops)
10911 		dev->ethtool_ops = &default_ethtool_ops;
10912 
10913 	nf_hook_ingress_init(dev);
10914 
10915 	return dev;
10916 
10917 free_all:
10918 	free_netdev(dev);
10919 	return NULL;
10920 
10921 free_pcpu:
10922 #ifdef CONFIG_PCPU_DEV_REFCNT
10923 	free_percpu(dev->pcpu_refcnt);
10924 free_dev:
10925 #endif
10926 	netdev_freemem(dev);
10927 	return NULL;
10928 }
10929 EXPORT_SYMBOL(alloc_netdev_mqs);
10930 
10931 /**
10932  * free_netdev - free network device
10933  * @dev: device
10934  *
10935  * This function does the last stage of destroying an allocated device
10936  * interface. The reference to the device object is released. If this
10937  * is the last reference then it will be freed.Must be called in process
10938  * context.
10939  */
10940 void free_netdev(struct net_device *dev)
10941 {
10942 	struct napi_struct *p, *n;
10943 
10944 	might_sleep();
10945 
10946 	/* When called immediately after register_netdevice() failed the unwind
10947 	 * handling may still be dismantling the device. Handle that case by
10948 	 * deferring the free.
10949 	 */
10950 	if (dev->reg_state == NETREG_UNREGISTERING) {
10951 		ASSERT_RTNL();
10952 		dev->needs_free_netdev = true;
10953 		return;
10954 	}
10955 
10956 	netif_free_tx_queues(dev);
10957 	netif_free_rx_queues(dev);
10958 
10959 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10960 
10961 	/* Flush device addresses */
10962 	dev_addr_flush(dev);
10963 
10964 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10965 		netif_napi_del(p);
10966 
10967 #ifdef CONFIG_PCPU_DEV_REFCNT
10968 	free_percpu(dev->pcpu_refcnt);
10969 	dev->pcpu_refcnt = NULL;
10970 #endif
10971 	free_percpu(dev->xdp_bulkq);
10972 	dev->xdp_bulkq = NULL;
10973 
10974 	/*  Compatibility with error handling in drivers */
10975 	if (dev->reg_state == NETREG_UNINITIALIZED) {
10976 		netdev_freemem(dev);
10977 		return;
10978 	}
10979 
10980 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10981 	dev->reg_state = NETREG_RELEASED;
10982 
10983 	/* will free via device release */
10984 	put_device(&dev->dev);
10985 }
10986 EXPORT_SYMBOL(free_netdev);
10987 
10988 /**
10989  *	synchronize_net -  Synchronize with packet receive processing
10990  *
10991  *	Wait for packets currently being received to be done.
10992  *	Does not block later packets from starting.
10993  */
10994 void synchronize_net(void)
10995 {
10996 	might_sleep();
10997 	if (rtnl_is_locked())
10998 		synchronize_rcu_expedited();
10999 	else
11000 		synchronize_rcu();
11001 }
11002 EXPORT_SYMBOL(synchronize_net);
11003 
11004 /**
11005  *	unregister_netdevice_queue - remove device from the kernel
11006  *	@dev: device
11007  *	@head: list
11008  *
11009  *	This function shuts down a device interface and removes it
11010  *	from the kernel tables.
11011  *	If head not NULL, device is queued to be unregistered later.
11012  *
11013  *	Callers must hold the rtnl semaphore.  You may want
11014  *	unregister_netdev() instead of this.
11015  */
11016 
11017 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
11018 {
11019 	ASSERT_RTNL();
11020 
11021 	if (head) {
11022 		list_move_tail(&dev->unreg_list, head);
11023 	} else {
11024 		LIST_HEAD(single);
11025 
11026 		list_add(&dev->unreg_list, &single);
11027 		unregister_netdevice_many(&single);
11028 	}
11029 }
11030 EXPORT_SYMBOL(unregister_netdevice_queue);
11031 
11032 /**
11033  *	unregister_netdevice_many - unregister many devices
11034  *	@head: list of devices
11035  *
11036  *  Note: As most callers use a stack allocated list_head,
11037  *  we force a list_del() to make sure stack wont be corrupted later.
11038  */
11039 void unregister_netdevice_many(struct list_head *head)
11040 {
11041 	struct net_device *dev, *tmp;
11042 	LIST_HEAD(close_head);
11043 
11044 	BUG_ON(dev_boot_phase);
11045 	ASSERT_RTNL();
11046 
11047 	if (list_empty(head))
11048 		return;
11049 
11050 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
11051 		/* Some devices call without registering
11052 		 * for initialization unwind. Remove those
11053 		 * devices and proceed with the remaining.
11054 		 */
11055 		if (dev->reg_state == NETREG_UNINITIALIZED) {
11056 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
11057 				 dev->name, dev);
11058 
11059 			WARN_ON(1);
11060 			list_del(&dev->unreg_list);
11061 			continue;
11062 		}
11063 		dev->dismantle = true;
11064 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
11065 	}
11066 
11067 	/* If device is running, close it first. */
11068 	list_for_each_entry(dev, head, unreg_list)
11069 		list_add_tail(&dev->close_list, &close_head);
11070 	dev_close_many(&close_head, true);
11071 
11072 	list_for_each_entry(dev, head, unreg_list) {
11073 		/* And unlink it from device chain. */
11074 		unlist_netdevice(dev);
11075 
11076 		dev->reg_state = NETREG_UNREGISTERING;
11077 	}
11078 	flush_all_backlogs();
11079 
11080 	synchronize_net();
11081 
11082 	list_for_each_entry(dev, head, unreg_list) {
11083 		struct sk_buff *skb = NULL;
11084 
11085 		/* Shutdown queueing discipline. */
11086 		dev_shutdown(dev);
11087 
11088 		dev_xdp_uninstall(dev);
11089 
11090 		/* Notify protocols, that we are about to destroy
11091 		 * this device. They should clean all the things.
11092 		 */
11093 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11094 
11095 		if (!dev->rtnl_link_ops ||
11096 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
11097 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
11098 						     GFP_KERNEL, NULL, 0);
11099 
11100 		/*
11101 		 *	Flush the unicast and multicast chains
11102 		 */
11103 		dev_uc_flush(dev);
11104 		dev_mc_flush(dev);
11105 
11106 		netdev_name_node_alt_flush(dev);
11107 		netdev_name_node_free(dev->name_node);
11108 
11109 		if (dev->netdev_ops->ndo_uninit)
11110 			dev->netdev_ops->ndo_uninit(dev);
11111 
11112 		if (skb)
11113 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
11114 
11115 		/* Notifier chain MUST detach us all upper devices. */
11116 		WARN_ON(netdev_has_any_upper_dev(dev));
11117 		WARN_ON(netdev_has_any_lower_dev(dev));
11118 
11119 		/* Remove entries from kobject tree */
11120 		netdev_unregister_kobject(dev);
11121 #ifdef CONFIG_XPS
11122 		/* Remove XPS queueing entries */
11123 		netif_reset_xps_queues_gt(dev, 0);
11124 #endif
11125 	}
11126 
11127 	synchronize_net();
11128 
11129 	list_for_each_entry(dev, head, unreg_list) {
11130 		dev_put(dev);
11131 		net_set_todo(dev);
11132 	}
11133 
11134 	list_del(head);
11135 }
11136 EXPORT_SYMBOL(unregister_netdevice_many);
11137 
11138 /**
11139  *	unregister_netdev - remove device from the kernel
11140  *	@dev: device
11141  *
11142  *	This function shuts down a device interface and removes it
11143  *	from the kernel tables.
11144  *
11145  *	This is just a wrapper for unregister_netdevice that takes
11146  *	the rtnl semaphore.  In general you want to use this and not
11147  *	unregister_netdevice.
11148  */
11149 void unregister_netdev(struct net_device *dev)
11150 {
11151 	rtnl_lock();
11152 	unregister_netdevice(dev);
11153 	rtnl_unlock();
11154 }
11155 EXPORT_SYMBOL(unregister_netdev);
11156 
11157 /**
11158  *	__dev_change_net_namespace - move device to different nethost namespace
11159  *	@dev: device
11160  *	@net: network namespace
11161  *	@pat: If not NULL name pattern to try if the current device name
11162  *	      is already taken in the destination network namespace.
11163  *	@new_ifindex: If not zero, specifies device index in the target
11164  *	              namespace.
11165  *
11166  *	This function shuts down a device interface and moves it
11167  *	to a new network namespace. On success 0 is returned, on
11168  *	a failure a netagive errno code is returned.
11169  *
11170  *	Callers must hold the rtnl semaphore.
11171  */
11172 
11173 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
11174 			       const char *pat, int new_ifindex)
11175 {
11176 	struct net *net_old = dev_net(dev);
11177 	int err, new_nsid;
11178 
11179 	ASSERT_RTNL();
11180 
11181 	/* Don't allow namespace local devices to be moved. */
11182 	err = -EINVAL;
11183 	if (dev->features & NETIF_F_NETNS_LOCAL)
11184 		goto out;
11185 
11186 	/* Ensure the device has been registrered */
11187 	if (dev->reg_state != NETREG_REGISTERED)
11188 		goto out;
11189 
11190 	/* Get out if there is nothing todo */
11191 	err = 0;
11192 	if (net_eq(net_old, net))
11193 		goto out;
11194 
11195 	/* Pick the destination device name, and ensure
11196 	 * we can use it in the destination network namespace.
11197 	 */
11198 	err = -EEXIST;
11199 	if (__dev_get_by_name(net, dev->name)) {
11200 		/* We get here if we can't use the current device name */
11201 		if (!pat)
11202 			goto out;
11203 		err = dev_get_valid_name(net, dev, pat);
11204 		if (err < 0)
11205 			goto out;
11206 	}
11207 
11208 	/* Check that new_ifindex isn't used yet. */
11209 	err = -EBUSY;
11210 	if (new_ifindex && __dev_get_by_index(net, new_ifindex))
11211 		goto out;
11212 
11213 	/*
11214 	 * And now a mini version of register_netdevice unregister_netdevice.
11215 	 */
11216 
11217 	/* If device is running close it first. */
11218 	dev_close(dev);
11219 
11220 	/* And unlink it from device chain */
11221 	unlist_netdevice(dev);
11222 
11223 	synchronize_net();
11224 
11225 	/* Shutdown queueing discipline. */
11226 	dev_shutdown(dev);
11227 
11228 	/* Notify protocols, that we are about to destroy
11229 	 * this device. They should clean all the things.
11230 	 *
11231 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
11232 	 * This is wanted because this way 8021q and macvlan know
11233 	 * the device is just moving and can keep their slaves up.
11234 	 */
11235 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11236 	rcu_barrier();
11237 
11238 	new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
11239 	/* If there is an ifindex conflict assign a new one */
11240 	if (!new_ifindex) {
11241 		if (__dev_get_by_index(net, dev->ifindex))
11242 			new_ifindex = dev_new_index(net);
11243 		else
11244 			new_ifindex = dev->ifindex;
11245 	}
11246 
11247 	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
11248 			    new_ifindex);
11249 
11250 	/*
11251 	 *	Flush the unicast and multicast chains
11252 	 */
11253 	dev_uc_flush(dev);
11254 	dev_mc_flush(dev);
11255 
11256 	/* Send a netdev-removed uevent to the old namespace */
11257 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
11258 	netdev_adjacent_del_links(dev);
11259 
11260 	/* Move per-net netdevice notifiers that are following the netdevice */
11261 	move_netdevice_notifiers_dev_net(dev, net);
11262 
11263 	/* Actually switch the network namespace */
11264 	dev_net_set(dev, net);
11265 	dev->ifindex = new_ifindex;
11266 
11267 	/* Send a netdev-add uevent to the new namespace */
11268 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
11269 	netdev_adjacent_add_links(dev);
11270 
11271 	/* Fixup kobjects */
11272 	err = device_rename(&dev->dev, dev->name);
11273 	WARN_ON(err);
11274 
11275 	/* Adapt owner in case owning user namespace of target network
11276 	 * namespace is different from the original one.
11277 	 */
11278 	err = netdev_change_owner(dev, net_old, net);
11279 	WARN_ON(err);
11280 
11281 	/* Add the device back in the hashes */
11282 	list_netdevice(dev);
11283 
11284 	/* Notify protocols, that a new device appeared. */
11285 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
11286 
11287 	/*
11288 	 *	Prevent userspace races by waiting until the network
11289 	 *	device is fully setup before sending notifications.
11290 	 */
11291 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
11292 
11293 	synchronize_net();
11294 	err = 0;
11295 out:
11296 	return err;
11297 }
11298 EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
11299 
11300 static int dev_cpu_dead(unsigned int oldcpu)
11301 {
11302 	struct sk_buff **list_skb;
11303 	struct sk_buff *skb;
11304 	unsigned int cpu;
11305 	struct softnet_data *sd, *oldsd, *remsd = NULL;
11306 
11307 	local_irq_disable();
11308 	cpu = smp_processor_id();
11309 	sd = &per_cpu(softnet_data, cpu);
11310 	oldsd = &per_cpu(softnet_data, oldcpu);
11311 
11312 	/* Find end of our completion_queue. */
11313 	list_skb = &sd->completion_queue;
11314 	while (*list_skb)
11315 		list_skb = &(*list_skb)->next;
11316 	/* Append completion queue from offline CPU. */
11317 	*list_skb = oldsd->completion_queue;
11318 	oldsd->completion_queue = NULL;
11319 
11320 	/* Append output queue from offline CPU. */
11321 	if (oldsd->output_queue) {
11322 		*sd->output_queue_tailp = oldsd->output_queue;
11323 		sd->output_queue_tailp = oldsd->output_queue_tailp;
11324 		oldsd->output_queue = NULL;
11325 		oldsd->output_queue_tailp = &oldsd->output_queue;
11326 	}
11327 	/* Append NAPI poll list from offline CPU, with one exception :
11328 	 * process_backlog() must be called by cpu owning percpu backlog.
11329 	 * We properly handle process_queue & input_pkt_queue later.
11330 	 */
11331 	while (!list_empty(&oldsd->poll_list)) {
11332 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11333 							    struct napi_struct,
11334 							    poll_list);
11335 
11336 		list_del_init(&napi->poll_list);
11337 		if (napi->poll == process_backlog)
11338 			napi->state = 0;
11339 		else
11340 			____napi_schedule(sd, napi);
11341 	}
11342 
11343 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
11344 	local_irq_enable();
11345 
11346 #ifdef CONFIG_RPS
11347 	remsd = oldsd->rps_ipi_list;
11348 	oldsd->rps_ipi_list = NULL;
11349 #endif
11350 	/* send out pending IPI's on offline CPU */
11351 	net_rps_send_ipi(remsd);
11352 
11353 	/* Process offline CPU's input_pkt_queue */
11354 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11355 		netif_rx_ni(skb);
11356 		input_queue_head_incr(oldsd);
11357 	}
11358 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11359 		netif_rx_ni(skb);
11360 		input_queue_head_incr(oldsd);
11361 	}
11362 
11363 	return 0;
11364 }
11365 
11366 /**
11367  *	netdev_increment_features - increment feature set by one
11368  *	@all: current feature set
11369  *	@one: new feature set
11370  *	@mask: mask feature set
11371  *
11372  *	Computes a new feature set after adding a device with feature set
11373  *	@one to the master device with current feature set @all.  Will not
11374  *	enable anything that is off in @mask. Returns the new feature set.
11375  */
11376 netdev_features_t netdev_increment_features(netdev_features_t all,
11377 	netdev_features_t one, netdev_features_t mask)
11378 {
11379 	if (mask & NETIF_F_HW_CSUM)
11380 		mask |= NETIF_F_CSUM_MASK;
11381 	mask |= NETIF_F_VLAN_CHALLENGED;
11382 
11383 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11384 	all &= one | ~NETIF_F_ALL_FOR_ALL;
11385 
11386 	/* If one device supports hw checksumming, set for all. */
11387 	if (all & NETIF_F_HW_CSUM)
11388 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11389 
11390 	return all;
11391 }
11392 EXPORT_SYMBOL(netdev_increment_features);
11393 
11394 static struct hlist_head * __net_init netdev_create_hash(void)
11395 {
11396 	int i;
11397 	struct hlist_head *hash;
11398 
11399 	hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11400 	if (hash != NULL)
11401 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
11402 			INIT_HLIST_HEAD(&hash[i]);
11403 
11404 	return hash;
11405 }
11406 
11407 /* Initialize per network namespace state */
11408 static int __net_init netdev_init(struct net *net)
11409 {
11410 	BUILD_BUG_ON(GRO_HASH_BUCKETS >
11411 		     8 * sizeof_field(struct napi_struct, gro_bitmask));
11412 
11413 	if (net != &init_net)
11414 		INIT_LIST_HEAD(&net->dev_base_head);
11415 
11416 	net->dev_name_head = netdev_create_hash();
11417 	if (net->dev_name_head == NULL)
11418 		goto err_name;
11419 
11420 	net->dev_index_head = netdev_create_hash();
11421 	if (net->dev_index_head == NULL)
11422 		goto err_idx;
11423 
11424 	RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11425 
11426 	return 0;
11427 
11428 err_idx:
11429 	kfree(net->dev_name_head);
11430 err_name:
11431 	return -ENOMEM;
11432 }
11433 
11434 /**
11435  *	netdev_drivername - network driver for the device
11436  *	@dev: network device
11437  *
11438  *	Determine network driver for device.
11439  */
11440 const char *netdev_drivername(const struct net_device *dev)
11441 {
11442 	const struct device_driver *driver;
11443 	const struct device *parent;
11444 	const char *empty = "";
11445 
11446 	parent = dev->dev.parent;
11447 	if (!parent)
11448 		return empty;
11449 
11450 	driver = parent->driver;
11451 	if (driver && driver->name)
11452 		return driver->name;
11453 	return empty;
11454 }
11455 
11456 static void __netdev_printk(const char *level, const struct net_device *dev,
11457 			    struct va_format *vaf)
11458 {
11459 	if (dev && dev->dev.parent) {
11460 		dev_printk_emit(level[1] - '0',
11461 				dev->dev.parent,
11462 				"%s %s %s%s: %pV",
11463 				dev_driver_string(dev->dev.parent),
11464 				dev_name(dev->dev.parent),
11465 				netdev_name(dev), netdev_reg_state(dev),
11466 				vaf);
11467 	} else if (dev) {
11468 		printk("%s%s%s: %pV",
11469 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
11470 	} else {
11471 		printk("%s(NULL net_device): %pV", level, vaf);
11472 	}
11473 }
11474 
11475 void netdev_printk(const char *level, const struct net_device *dev,
11476 		   const char *format, ...)
11477 {
11478 	struct va_format vaf;
11479 	va_list args;
11480 
11481 	va_start(args, format);
11482 
11483 	vaf.fmt = format;
11484 	vaf.va = &args;
11485 
11486 	__netdev_printk(level, dev, &vaf);
11487 
11488 	va_end(args);
11489 }
11490 EXPORT_SYMBOL(netdev_printk);
11491 
11492 #define define_netdev_printk_level(func, level)			\
11493 void func(const struct net_device *dev, const char *fmt, ...)	\
11494 {								\
11495 	struct va_format vaf;					\
11496 	va_list args;						\
11497 								\
11498 	va_start(args, fmt);					\
11499 								\
11500 	vaf.fmt = fmt;						\
11501 	vaf.va = &args;						\
11502 								\
11503 	__netdev_printk(level, dev, &vaf);			\
11504 								\
11505 	va_end(args);						\
11506 }								\
11507 EXPORT_SYMBOL(func);
11508 
11509 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11510 define_netdev_printk_level(netdev_alert, KERN_ALERT);
11511 define_netdev_printk_level(netdev_crit, KERN_CRIT);
11512 define_netdev_printk_level(netdev_err, KERN_ERR);
11513 define_netdev_printk_level(netdev_warn, KERN_WARNING);
11514 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11515 define_netdev_printk_level(netdev_info, KERN_INFO);
11516 
11517 static void __net_exit netdev_exit(struct net *net)
11518 {
11519 	kfree(net->dev_name_head);
11520 	kfree(net->dev_index_head);
11521 	if (net != &init_net)
11522 		WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11523 }
11524 
11525 static struct pernet_operations __net_initdata netdev_net_ops = {
11526 	.init = netdev_init,
11527 	.exit = netdev_exit,
11528 };
11529 
11530 static void __net_exit default_device_exit(struct net *net)
11531 {
11532 	struct net_device *dev, *aux;
11533 	/*
11534 	 * Push all migratable network devices back to the
11535 	 * initial network namespace
11536 	 */
11537 	rtnl_lock();
11538 	for_each_netdev_safe(net, dev, aux) {
11539 		int err;
11540 		char fb_name[IFNAMSIZ];
11541 
11542 		/* Ignore unmoveable devices (i.e. loopback) */
11543 		if (dev->features & NETIF_F_NETNS_LOCAL)
11544 			continue;
11545 
11546 		/* Leave virtual devices for the generic cleanup */
11547 		if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11548 			continue;
11549 
11550 		/* Push remaining network devices to init_net */
11551 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11552 		if (__dev_get_by_name(&init_net, fb_name))
11553 			snprintf(fb_name, IFNAMSIZ, "dev%%d");
11554 		err = dev_change_net_namespace(dev, &init_net, fb_name);
11555 		if (err) {
11556 			pr_emerg("%s: failed to move %s to init_net: %d\n",
11557 				 __func__, dev->name, err);
11558 			BUG();
11559 		}
11560 	}
11561 	rtnl_unlock();
11562 }
11563 
11564 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
11565 {
11566 	/* Return with the rtnl_lock held when there are no network
11567 	 * devices unregistering in any network namespace in net_list.
11568 	 */
11569 	struct net *net;
11570 	bool unregistering;
11571 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
11572 
11573 	add_wait_queue(&netdev_unregistering_wq, &wait);
11574 	for (;;) {
11575 		unregistering = false;
11576 		rtnl_lock();
11577 		list_for_each_entry(net, net_list, exit_list) {
11578 			if (net->dev_unreg_count > 0) {
11579 				unregistering = true;
11580 				break;
11581 			}
11582 		}
11583 		if (!unregistering)
11584 			break;
11585 		__rtnl_unlock();
11586 
11587 		wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
11588 	}
11589 	remove_wait_queue(&netdev_unregistering_wq, &wait);
11590 }
11591 
11592 static void __net_exit default_device_exit_batch(struct list_head *net_list)
11593 {
11594 	/* At exit all network devices most be removed from a network
11595 	 * namespace.  Do this in the reverse order of registration.
11596 	 * Do this across as many network namespaces as possible to
11597 	 * improve batching efficiency.
11598 	 */
11599 	struct net_device *dev;
11600 	struct net *net;
11601 	LIST_HEAD(dev_kill_list);
11602 
11603 	/* To prevent network device cleanup code from dereferencing
11604 	 * loopback devices or network devices that have been freed
11605 	 * wait here for all pending unregistrations to complete,
11606 	 * before unregistring the loopback device and allowing the
11607 	 * network namespace be freed.
11608 	 *
11609 	 * The netdev todo list containing all network devices
11610 	 * unregistrations that happen in default_device_exit_batch
11611 	 * will run in the rtnl_unlock() at the end of
11612 	 * default_device_exit_batch.
11613 	 */
11614 	rtnl_lock_unregistering(net_list);
11615 	list_for_each_entry(net, net_list, exit_list) {
11616 		for_each_netdev_reverse(net, dev) {
11617 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11618 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11619 			else
11620 				unregister_netdevice_queue(dev, &dev_kill_list);
11621 		}
11622 	}
11623 	unregister_netdevice_many(&dev_kill_list);
11624 	rtnl_unlock();
11625 }
11626 
11627 static struct pernet_operations __net_initdata default_device_ops = {
11628 	.exit = default_device_exit,
11629 	.exit_batch = default_device_exit_batch,
11630 };
11631 
11632 /*
11633  *	Initialize the DEV module. At boot time this walks the device list and
11634  *	unhooks any devices that fail to initialise (normally hardware not
11635  *	present) and leaves us with a valid list of present and active devices.
11636  *
11637  */
11638 
11639 /*
11640  *       This is called single threaded during boot, so no need
11641  *       to take the rtnl semaphore.
11642  */
11643 static int __init net_dev_init(void)
11644 {
11645 	int i, rc = -ENOMEM;
11646 
11647 	BUG_ON(!dev_boot_phase);
11648 
11649 	if (dev_proc_init())
11650 		goto out;
11651 
11652 	if (netdev_kobject_init())
11653 		goto out;
11654 
11655 	INIT_LIST_HEAD(&ptype_all);
11656 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
11657 		INIT_LIST_HEAD(&ptype_base[i]);
11658 
11659 	INIT_LIST_HEAD(&offload_base);
11660 
11661 	if (register_pernet_subsys(&netdev_net_ops))
11662 		goto out;
11663 
11664 	/*
11665 	 *	Initialise the packet receive queues.
11666 	 */
11667 
11668 	for_each_possible_cpu(i) {
11669 		struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11670 		struct softnet_data *sd = &per_cpu(softnet_data, i);
11671 
11672 		INIT_WORK(flush, flush_backlog);
11673 
11674 		skb_queue_head_init(&sd->input_pkt_queue);
11675 		skb_queue_head_init(&sd->process_queue);
11676 #ifdef CONFIG_XFRM_OFFLOAD
11677 		skb_queue_head_init(&sd->xfrm_backlog);
11678 #endif
11679 		INIT_LIST_HEAD(&sd->poll_list);
11680 		sd->output_queue_tailp = &sd->output_queue;
11681 #ifdef CONFIG_RPS
11682 		INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
11683 		sd->cpu = i;
11684 #endif
11685 
11686 		init_gro_hash(&sd->backlog);
11687 		sd->backlog.poll = process_backlog;
11688 		sd->backlog.weight = weight_p;
11689 	}
11690 
11691 	dev_boot_phase = 0;
11692 
11693 	/* The loopback device is special if any other network devices
11694 	 * is present in a network namespace the loopback device must
11695 	 * be present. Since we now dynamically allocate and free the
11696 	 * loopback device ensure this invariant is maintained by
11697 	 * keeping the loopback device as the first device on the
11698 	 * list of network devices.  Ensuring the loopback devices
11699 	 * is the first device that appears and the last network device
11700 	 * that disappears.
11701 	 */
11702 	if (register_pernet_device(&loopback_net_ops))
11703 		goto out;
11704 
11705 	if (register_pernet_device(&default_device_ops))
11706 		goto out;
11707 
11708 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11709 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11710 
11711 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11712 				       NULL, dev_cpu_dead);
11713 	WARN_ON(rc < 0);
11714 	rc = 0;
11715 out:
11716 	return rc;
11717 }
11718 
11719 subsys_initcall(net_dev_init);
11720