1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * NET3 Protocol independent device support routines. 4 * 5 * Derived from the non IP parts of dev.c 1.0.19 6 * Authors: Ross Biro 7 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 8 * Mark Evans, <evansmp@uhura.aston.ac.uk> 9 * 10 * Additional Authors: 11 * Florian la Roche <rzsfl@rz.uni-sb.de> 12 * Alan Cox <gw4pts@gw4pts.ampr.org> 13 * David Hinds <dahinds@users.sourceforge.net> 14 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 15 * Adam Sulmicki <adam@cfar.umd.edu> 16 * Pekka Riikonen <priikone@poesidon.pspt.fi> 17 * 18 * Changes: 19 * D.J. Barrow : Fixed bug where dev->refcnt gets set 20 * to 2 if register_netdev gets called 21 * before net_dev_init & also removed a 22 * few lines of code in the process. 23 * Alan Cox : device private ioctl copies fields back. 24 * Alan Cox : Transmit queue code does relevant 25 * stunts to keep the queue safe. 26 * Alan Cox : Fixed double lock. 27 * Alan Cox : Fixed promisc NULL pointer trap 28 * ???????? : Support the full private ioctl range 29 * Alan Cox : Moved ioctl permission check into 30 * drivers 31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 32 * Alan Cox : 100 backlog just doesn't cut it when 33 * you start doing multicast video 8) 34 * Alan Cox : Rewrote net_bh and list manager. 35 * Alan Cox : Fix ETH_P_ALL echoback lengths. 36 * Alan Cox : Took out transmit every packet pass 37 * Saved a few bytes in the ioctl handler 38 * Alan Cox : Network driver sets packet type before 39 * calling netif_rx. Saves a function 40 * call a packet. 41 * Alan Cox : Hashed net_bh() 42 * Richard Kooijman: Timestamp fixes. 43 * Alan Cox : Wrong field in SIOCGIFDSTADDR 44 * Alan Cox : Device lock protection. 45 * Alan Cox : Fixed nasty side effect of device close 46 * changes. 47 * Rudi Cilibrasi : Pass the right thing to 48 * set_mac_address() 49 * Dave Miller : 32bit quantity for the device lock to 50 * make it work out on a Sparc. 51 * Bjorn Ekwall : Added KERNELD hack. 52 * Alan Cox : Cleaned up the backlog initialise. 53 * Craig Metz : SIOCGIFCONF fix if space for under 54 * 1 device. 55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 56 * is no device open function. 57 * Andi Kleen : Fix error reporting for SIOCGIFCONF 58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 59 * Cyrus Durgin : Cleaned for KMOD 60 * Adam Sulmicki : Bug Fix : Network Device Unload 61 * A network device unload needs to purge 62 * the backlog queue. 63 * Paul Rusty Russell : SIOCSIFNAME 64 * Pekka Riikonen : Netdev boot-time settings code 65 * Andrew Morton : Make unregister_netdevice wait 66 * indefinitely on dev->refcnt 67 * J Hadi Salim : - Backlog queue sampling 68 * - netif_rx() feedback 69 */ 70 71 #include <linux/uaccess.h> 72 #include <linux/bitops.h> 73 #include <linux/capability.h> 74 #include <linux/cpu.h> 75 #include <linux/types.h> 76 #include <linux/kernel.h> 77 #include <linux/hash.h> 78 #include <linux/slab.h> 79 #include <linux/sched.h> 80 #include <linux/sched/mm.h> 81 #include <linux/mutex.h> 82 #include <linux/rwsem.h> 83 #include <linux/string.h> 84 #include <linux/mm.h> 85 #include <linux/socket.h> 86 #include <linux/sockios.h> 87 #include <linux/errno.h> 88 #include <linux/interrupt.h> 89 #include <linux/if_ether.h> 90 #include <linux/netdevice.h> 91 #include <linux/etherdevice.h> 92 #include <linux/ethtool.h> 93 #include <linux/skbuff.h> 94 #include <linux/kthread.h> 95 #include <linux/bpf.h> 96 #include <linux/bpf_trace.h> 97 #include <net/net_namespace.h> 98 #include <net/sock.h> 99 #include <net/busy_poll.h> 100 #include <linux/rtnetlink.h> 101 #include <linux/stat.h> 102 #include <net/dsa.h> 103 #include <net/dst.h> 104 #include <net/dst_metadata.h> 105 #include <net/gro.h> 106 #include <net/pkt_sched.h> 107 #include <net/pkt_cls.h> 108 #include <net/checksum.h> 109 #include <net/xfrm.h> 110 #include <linux/highmem.h> 111 #include <linux/init.h> 112 #include <linux/module.h> 113 #include <linux/netpoll.h> 114 #include <linux/rcupdate.h> 115 #include <linux/delay.h> 116 #include <net/iw_handler.h> 117 #include <asm/current.h> 118 #include <linux/audit.h> 119 #include <linux/dmaengine.h> 120 #include <linux/err.h> 121 #include <linux/ctype.h> 122 #include <linux/if_arp.h> 123 #include <linux/if_vlan.h> 124 #include <linux/ip.h> 125 #include <net/ip.h> 126 #include <net/mpls.h> 127 #include <linux/ipv6.h> 128 #include <linux/in.h> 129 #include <linux/jhash.h> 130 #include <linux/random.h> 131 #include <trace/events/napi.h> 132 #include <trace/events/net.h> 133 #include <trace/events/skb.h> 134 #include <trace/events/qdisc.h> 135 #include <linux/inetdevice.h> 136 #include <linux/cpu_rmap.h> 137 #include <linux/static_key.h> 138 #include <linux/hashtable.h> 139 #include <linux/vmalloc.h> 140 #include <linux/if_macvlan.h> 141 #include <linux/errqueue.h> 142 #include <linux/hrtimer.h> 143 #include <linux/netfilter_netdev.h> 144 #include <linux/crash_dump.h> 145 #include <linux/sctp.h> 146 #include <net/udp_tunnel.h> 147 #include <linux/net_namespace.h> 148 #include <linux/indirect_call_wrapper.h> 149 #include <net/devlink.h> 150 #include <linux/pm_runtime.h> 151 #include <linux/prandom.h> 152 #include <linux/once_lite.h> 153 154 #include "dev.h" 155 #include "net-sysfs.h" 156 157 158 static DEFINE_SPINLOCK(ptype_lock); 159 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 160 struct list_head ptype_all __read_mostly; /* Taps */ 161 162 static int netif_rx_internal(struct sk_buff *skb); 163 static int call_netdevice_notifiers_info(unsigned long val, 164 struct netdev_notifier_info *info); 165 static int call_netdevice_notifiers_extack(unsigned long val, 166 struct net_device *dev, 167 struct netlink_ext_ack *extack); 168 static struct napi_struct *napi_by_id(unsigned int napi_id); 169 170 /* 171 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 172 * semaphore. 173 * 174 * Pure readers hold dev_base_lock for reading, or rcu_read_lock() 175 * 176 * Writers must hold the rtnl semaphore while they loop through the 177 * dev_base_head list, and hold dev_base_lock for writing when they do the 178 * actual updates. This allows pure readers to access the list even 179 * while a writer is preparing to update it. 180 * 181 * To put it another way, dev_base_lock is held for writing only to 182 * protect against pure readers; the rtnl semaphore provides the 183 * protection against other writers. 184 * 185 * See, for example usages, register_netdevice() and 186 * unregister_netdevice(), which must be called with the rtnl 187 * semaphore held. 188 */ 189 DEFINE_RWLOCK(dev_base_lock); 190 EXPORT_SYMBOL(dev_base_lock); 191 192 static DEFINE_MUTEX(ifalias_mutex); 193 194 /* protects napi_hash addition/deletion and napi_gen_id */ 195 static DEFINE_SPINLOCK(napi_hash_lock); 196 197 static unsigned int napi_gen_id = NR_CPUS; 198 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8); 199 200 static DECLARE_RWSEM(devnet_rename_sem); 201 202 static inline void dev_base_seq_inc(struct net *net) 203 { 204 while (++net->dev_base_seq == 0) 205 ; 206 } 207 208 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 209 { 210 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ)); 211 212 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 213 } 214 215 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 216 { 217 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 218 } 219 220 static inline void rps_lock_irqsave(struct softnet_data *sd, 221 unsigned long *flags) 222 { 223 if (IS_ENABLED(CONFIG_RPS)) 224 spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags); 225 else if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 226 local_irq_save(*flags); 227 } 228 229 static inline void rps_lock_irq_disable(struct softnet_data *sd) 230 { 231 if (IS_ENABLED(CONFIG_RPS)) 232 spin_lock_irq(&sd->input_pkt_queue.lock); 233 else if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 234 local_irq_disable(); 235 } 236 237 static inline void rps_unlock_irq_restore(struct softnet_data *sd, 238 unsigned long *flags) 239 { 240 if (IS_ENABLED(CONFIG_RPS)) 241 spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags); 242 else if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 243 local_irq_restore(*flags); 244 } 245 246 static inline void rps_unlock_irq_enable(struct softnet_data *sd) 247 { 248 if (IS_ENABLED(CONFIG_RPS)) 249 spin_unlock_irq(&sd->input_pkt_queue.lock); 250 else if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 251 local_irq_enable(); 252 } 253 254 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev, 255 const char *name) 256 { 257 struct netdev_name_node *name_node; 258 259 name_node = kmalloc(sizeof(*name_node), GFP_KERNEL); 260 if (!name_node) 261 return NULL; 262 INIT_HLIST_NODE(&name_node->hlist); 263 name_node->dev = dev; 264 name_node->name = name; 265 return name_node; 266 } 267 268 static struct netdev_name_node * 269 netdev_name_node_head_alloc(struct net_device *dev) 270 { 271 struct netdev_name_node *name_node; 272 273 name_node = netdev_name_node_alloc(dev, dev->name); 274 if (!name_node) 275 return NULL; 276 INIT_LIST_HEAD(&name_node->list); 277 return name_node; 278 } 279 280 static void netdev_name_node_free(struct netdev_name_node *name_node) 281 { 282 kfree(name_node); 283 } 284 285 static void netdev_name_node_add(struct net *net, 286 struct netdev_name_node *name_node) 287 { 288 hlist_add_head_rcu(&name_node->hlist, 289 dev_name_hash(net, name_node->name)); 290 } 291 292 static void netdev_name_node_del(struct netdev_name_node *name_node) 293 { 294 hlist_del_rcu(&name_node->hlist); 295 } 296 297 static struct netdev_name_node *netdev_name_node_lookup(struct net *net, 298 const char *name) 299 { 300 struct hlist_head *head = dev_name_hash(net, name); 301 struct netdev_name_node *name_node; 302 303 hlist_for_each_entry(name_node, head, hlist) 304 if (!strcmp(name_node->name, name)) 305 return name_node; 306 return NULL; 307 } 308 309 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net, 310 const char *name) 311 { 312 struct hlist_head *head = dev_name_hash(net, name); 313 struct netdev_name_node *name_node; 314 315 hlist_for_each_entry_rcu(name_node, head, hlist) 316 if (!strcmp(name_node->name, name)) 317 return name_node; 318 return NULL; 319 } 320 321 bool netdev_name_in_use(struct net *net, const char *name) 322 { 323 return netdev_name_node_lookup(net, name); 324 } 325 EXPORT_SYMBOL(netdev_name_in_use); 326 327 int netdev_name_node_alt_create(struct net_device *dev, const char *name) 328 { 329 struct netdev_name_node *name_node; 330 struct net *net = dev_net(dev); 331 332 name_node = netdev_name_node_lookup(net, name); 333 if (name_node) 334 return -EEXIST; 335 name_node = netdev_name_node_alloc(dev, name); 336 if (!name_node) 337 return -ENOMEM; 338 netdev_name_node_add(net, name_node); 339 /* The node that holds dev->name acts as a head of per-device list. */ 340 list_add_tail(&name_node->list, &dev->name_node->list); 341 342 return 0; 343 } 344 345 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node) 346 { 347 list_del(&name_node->list); 348 netdev_name_node_del(name_node); 349 kfree(name_node->name); 350 netdev_name_node_free(name_node); 351 } 352 353 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name) 354 { 355 struct netdev_name_node *name_node; 356 struct net *net = dev_net(dev); 357 358 name_node = netdev_name_node_lookup(net, name); 359 if (!name_node) 360 return -ENOENT; 361 /* lookup might have found our primary name or a name belonging 362 * to another device. 363 */ 364 if (name_node == dev->name_node || name_node->dev != dev) 365 return -EINVAL; 366 367 __netdev_name_node_alt_destroy(name_node); 368 369 return 0; 370 } 371 372 static void netdev_name_node_alt_flush(struct net_device *dev) 373 { 374 struct netdev_name_node *name_node, *tmp; 375 376 list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list) 377 __netdev_name_node_alt_destroy(name_node); 378 } 379 380 /* Device list insertion */ 381 static void list_netdevice(struct net_device *dev) 382 { 383 struct net *net = dev_net(dev); 384 385 ASSERT_RTNL(); 386 387 write_lock(&dev_base_lock); 388 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 389 netdev_name_node_add(net, dev->name_node); 390 hlist_add_head_rcu(&dev->index_hlist, 391 dev_index_hash(net, dev->ifindex)); 392 write_unlock(&dev_base_lock); 393 394 dev_base_seq_inc(net); 395 } 396 397 /* Device list removal 398 * caller must respect a RCU grace period before freeing/reusing dev 399 */ 400 static void unlist_netdevice(struct net_device *dev) 401 { 402 ASSERT_RTNL(); 403 404 /* Unlink dev from the device chain */ 405 write_lock(&dev_base_lock); 406 list_del_rcu(&dev->dev_list); 407 netdev_name_node_del(dev->name_node); 408 hlist_del_rcu(&dev->index_hlist); 409 write_unlock(&dev_base_lock); 410 411 dev_base_seq_inc(dev_net(dev)); 412 } 413 414 /* 415 * Our notifier list 416 */ 417 418 static RAW_NOTIFIER_HEAD(netdev_chain); 419 420 /* 421 * Device drivers call our routines to queue packets here. We empty the 422 * queue in the local softnet handler. 423 */ 424 425 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 426 EXPORT_PER_CPU_SYMBOL(softnet_data); 427 428 #ifdef CONFIG_LOCKDEP 429 /* 430 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 431 * according to dev->type 432 */ 433 static const unsigned short netdev_lock_type[] = { 434 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 435 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 436 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 437 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 438 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 439 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 440 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 441 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 442 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 443 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 444 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 445 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 446 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM, 447 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE, 448 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE}; 449 450 static const char *const netdev_lock_name[] = { 451 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 452 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 453 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 454 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 455 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 456 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 457 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 458 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 459 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 460 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 461 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 462 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 463 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM", 464 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE", 465 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"}; 466 467 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 468 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 469 470 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 471 { 472 int i; 473 474 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 475 if (netdev_lock_type[i] == dev_type) 476 return i; 477 /* the last key is used by default */ 478 return ARRAY_SIZE(netdev_lock_type) - 1; 479 } 480 481 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 482 unsigned short dev_type) 483 { 484 int i; 485 486 i = netdev_lock_pos(dev_type); 487 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 488 netdev_lock_name[i]); 489 } 490 491 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 492 { 493 int i; 494 495 i = netdev_lock_pos(dev->type); 496 lockdep_set_class_and_name(&dev->addr_list_lock, 497 &netdev_addr_lock_key[i], 498 netdev_lock_name[i]); 499 } 500 #else 501 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 502 unsigned short dev_type) 503 { 504 } 505 506 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 507 { 508 } 509 #endif 510 511 /******************************************************************************* 512 * 513 * Protocol management and registration routines 514 * 515 *******************************************************************************/ 516 517 518 /* 519 * Add a protocol ID to the list. Now that the input handler is 520 * smarter we can dispense with all the messy stuff that used to be 521 * here. 522 * 523 * BEWARE!!! Protocol handlers, mangling input packets, 524 * MUST BE last in hash buckets and checking protocol handlers 525 * MUST start from promiscuous ptype_all chain in net_bh. 526 * It is true now, do not change it. 527 * Explanation follows: if protocol handler, mangling packet, will 528 * be the first on list, it is not able to sense, that packet 529 * is cloned and should be copied-on-write, so that it will 530 * change it and subsequent readers will get broken packet. 531 * --ANK (980803) 532 */ 533 534 static inline struct list_head *ptype_head(const struct packet_type *pt) 535 { 536 if (pt->type == htons(ETH_P_ALL)) 537 return pt->dev ? &pt->dev->ptype_all : &ptype_all; 538 else 539 return pt->dev ? &pt->dev->ptype_specific : 540 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 541 } 542 543 /** 544 * dev_add_pack - add packet handler 545 * @pt: packet type declaration 546 * 547 * Add a protocol handler to the networking stack. The passed &packet_type 548 * is linked into kernel lists and may not be freed until it has been 549 * removed from the kernel lists. 550 * 551 * This call does not sleep therefore it can not 552 * guarantee all CPU's that are in middle of receiving packets 553 * will see the new packet type (until the next received packet). 554 */ 555 556 void dev_add_pack(struct packet_type *pt) 557 { 558 struct list_head *head = ptype_head(pt); 559 560 spin_lock(&ptype_lock); 561 list_add_rcu(&pt->list, head); 562 spin_unlock(&ptype_lock); 563 } 564 EXPORT_SYMBOL(dev_add_pack); 565 566 /** 567 * __dev_remove_pack - remove packet handler 568 * @pt: packet type declaration 569 * 570 * Remove a protocol handler that was previously added to the kernel 571 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 572 * from the kernel lists and can be freed or reused once this function 573 * returns. 574 * 575 * The packet type might still be in use by receivers 576 * and must not be freed until after all the CPU's have gone 577 * through a quiescent state. 578 */ 579 void __dev_remove_pack(struct packet_type *pt) 580 { 581 struct list_head *head = ptype_head(pt); 582 struct packet_type *pt1; 583 584 spin_lock(&ptype_lock); 585 586 list_for_each_entry(pt1, head, list) { 587 if (pt == pt1) { 588 list_del_rcu(&pt->list); 589 goto out; 590 } 591 } 592 593 pr_warn("dev_remove_pack: %p not found\n", pt); 594 out: 595 spin_unlock(&ptype_lock); 596 } 597 EXPORT_SYMBOL(__dev_remove_pack); 598 599 /** 600 * dev_remove_pack - remove packet handler 601 * @pt: packet type declaration 602 * 603 * Remove a protocol handler that was previously added to the kernel 604 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 605 * from the kernel lists and can be freed or reused once this function 606 * returns. 607 * 608 * This call sleeps to guarantee that no CPU is looking at the packet 609 * type after return. 610 */ 611 void dev_remove_pack(struct packet_type *pt) 612 { 613 __dev_remove_pack(pt); 614 615 synchronize_net(); 616 } 617 EXPORT_SYMBOL(dev_remove_pack); 618 619 620 /******************************************************************************* 621 * 622 * Device Interface Subroutines 623 * 624 *******************************************************************************/ 625 626 /** 627 * dev_get_iflink - get 'iflink' value of a interface 628 * @dev: targeted interface 629 * 630 * Indicates the ifindex the interface is linked to. 631 * Physical interfaces have the same 'ifindex' and 'iflink' values. 632 */ 633 634 int dev_get_iflink(const struct net_device *dev) 635 { 636 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink) 637 return dev->netdev_ops->ndo_get_iflink(dev); 638 639 return dev->ifindex; 640 } 641 EXPORT_SYMBOL(dev_get_iflink); 642 643 /** 644 * dev_fill_metadata_dst - Retrieve tunnel egress information. 645 * @dev: targeted interface 646 * @skb: The packet. 647 * 648 * For better visibility of tunnel traffic OVS needs to retrieve 649 * egress tunnel information for a packet. Following API allows 650 * user to get this info. 651 */ 652 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb) 653 { 654 struct ip_tunnel_info *info; 655 656 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst) 657 return -EINVAL; 658 659 info = skb_tunnel_info_unclone(skb); 660 if (!info) 661 return -ENOMEM; 662 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX))) 663 return -EINVAL; 664 665 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb); 666 } 667 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst); 668 669 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack) 670 { 671 int k = stack->num_paths++; 672 673 if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX)) 674 return NULL; 675 676 return &stack->path[k]; 677 } 678 679 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr, 680 struct net_device_path_stack *stack) 681 { 682 const struct net_device *last_dev; 683 struct net_device_path_ctx ctx = { 684 .dev = dev, 685 .daddr = daddr, 686 }; 687 struct net_device_path *path; 688 int ret = 0; 689 690 stack->num_paths = 0; 691 while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) { 692 last_dev = ctx.dev; 693 path = dev_fwd_path(stack); 694 if (!path) 695 return -1; 696 697 memset(path, 0, sizeof(struct net_device_path)); 698 ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path); 699 if (ret < 0) 700 return -1; 701 702 if (WARN_ON_ONCE(last_dev == ctx.dev)) 703 return -1; 704 } 705 706 if (!ctx.dev) 707 return ret; 708 709 path = dev_fwd_path(stack); 710 if (!path) 711 return -1; 712 path->type = DEV_PATH_ETHERNET; 713 path->dev = ctx.dev; 714 715 return ret; 716 } 717 EXPORT_SYMBOL_GPL(dev_fill_forward_path); 718 719 /** 720 * __dev_get_by_name - find a device by its name 721 * @net: the applicable net namespace 722 * @name: name to find 723 * 724 * Find an interface by name. Must be called under RTNL semaphore 725 * or @dev_base_lock. If the name is found a pointer to the device 726 * is returned. If the name is not found then %NULL is returned. The 727 * reference counters are not incremented so the caller must be 728 * careful with locks. 729 */ 730 731 struct net_device *__dev_get_by_name(struct net *net, const char *name) 732 { 733 struct netdev_name_node *node_name; 734 735 node_name = netdev_name_node_lookup(net, name); 736 return node_name ? node_name->dev : NULL; 737 } 738 EXPORT_SYMBOL(__dev_get_by_name); 739 740 /** 741 * dev_get_by_name_rcu - find a device by its name 742 * @net: the applicable net namespace 743 * @name: name to find 744 * 745 * Find an interface by name. 746 * If the name is found a pointer to the device is returned. 747 * If the name is not found then %NULL is returned. 748 * The reference counters are not incremented so the caller must be 749 * careful with locks. The caller must hold RCU lock. 750 */ 751 752 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 753 { 754 struct netdev_name_node *node_name; 755 756 node_name = netdev_name_node_lookup_rcu(net, name); 757 return node_name ? node_name->dev : NULL; 758 } 759 EXPORT_SYMBOL(dev_get_by_name_rcu); 760 761 /** 762 * dev_get_by_name - find a device by its name 763 * @net: the applicable net namespace 764 * @name: name to find 765 * 766 * Find an interface by name. This can be called from any 767 * context and does its own locking. The returned handle has 768 * the usage count incremented and the caller must use dev_put() to 769 * release it when it is no longer needed. %NULL is returned if no 770 * matching device is found. 771 */ 772 773 struct net_device *dev_get_by_name(struct net *net, const char *name) 774 { 775 struct net_device *dev; 776 777 rcu_read_lock(); 778 dev = dev_get_by_name_rcu(net, name); 779 dev_hold(dev); 780 rcu_read_unlock(); 781 return dev; 782 } 783 EXPORT_SYMBOL(dev_get_by_name); 784 785 /** 786 * __dev_get_by_index - find a device by its ifindex 787 * @net: the applicable net namespace 788 * @ifindex: index of device 789 * 790 * Search for an interface by index. Returns %NULL if the device 791 * is not found or a pointer to the device. The device has not 792 * had its reference counter increased so the caller must be careful 793 * about locking. The caller must hold either the RTNL semaphore 794 * or @dev_base_lock. 795 */ 796 797 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 798 { 799 struct net_device *dev; 800 struct hlist_head *head = dev_index_hash(net, ifindex); 801 802 hlist_for_each_entry(dev, head, index_hlist) 803 if (dev->ifindex == ifindex) 804 return dev; 805 806 return NULL; 807 } 808 EXPORT_SYMBOL(__dev_get_by_index); 809 810 /** 811 * dev_get_by_index_rcu - find a device by its ifindex 812 * @net: the applicable net namespace 813 * @ifindex: index of device 814 * 815 * Search for an interface by index. Returns %NULL if the device 816 * is not found or a pointer to the device. The device has not 817 * had its reference counter increased so the caller must be careful 818 * about locking. The caller must hold RCU lock. 819 */ 820 821 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 822 { 823 struct net_device *dev; 824 struct hlist_head *head = dev_index_hash(net, ifindex); 825 826 hlist_for_each_entry_rcu(dev, head, index_hlist) 827 if (dev->ifindex == ifindex) 828 return dev; 829 830 return NULL; 831 } 832 EXPORT_SYMBOL(dev_get_by_index_rcu); 833 834 835 /** 836 * dev_get_by_index - find a device by its ifindex 837 * @net: the applicable net namespace 838 * @ifindex: index of device 839 * 840 * Search for an interface by index. Returns NULL if the device 841 * is not found or a pointer to the device. The device returned has 842 * had a reference added and the pointer is safe until the user calls 843 * dev_put to indicate they have finished with it. 844 */ 845 846 struct net_device *dev_get_by_index(struct net *net, int ifindex) 847 { 848 struct net_device *dev; 849 850 rcu_read_lock(); 851 dev = dev_get_by_index_rcu(net, ifindex); 852 dev_hold(dev); 853 rcu_read_unlock(); 854 return dev; 855 } 856 EXPORT_SYMBOL(dev_get_by_index); 857 858 /** 859 * dev_get_by_napi_id - find a device by napi_id 860 * @napi_id: ID of the NAPI struct 861 * 862 * Search for an interface by NAPI ID. Returns %NULL if the device 863 * is not found or a pointer to the device. The device has not had 864 * its reference counter increased so the caller must be careful 865 * about locking. The caller must hold RCU lock. 866 */ 867 868 struct net_device *dev_get_by_napi_id(unsigned int napi_id) 869 { 870 struct napi_struct *napi; 871 872 WARN_ON_ONCE(!rcu_read_lock_held()); 873 874 if (napi_id < MIN_NAPI_ID) 875 return NULL; 876 877 napi = napi_by_id(napi_id); 878 879 return napi ? napi->dev : NULL; 880 } 881 EXPORT_SYMBOL(dev_get_by_napi_id); 882 883 /** 884 * netdev_get_name - get a netdevice name, knowing its ifindex. 885 * @net: network namespace 886 * @name: a pointer to the buffer where the name will be stored. 887 * @ifindex: the ifindex of the interface to get the name from. 888 */ 889 int netdev_get_name(struct net *net, char *name, int ifindex) 890 { 891 struct net_device *dev; 892 int ret; 893 894 down_read(&devnet_rename_sem); 895 rcu_read_lock(); 896 897 dev = dev_get_by_index_rcu(net, ifindex); 898 if (!dev) { 899 ret = -ENODEV; 900 goto out; 901 } 902 903 strcpy(name, dev->name); 904 905 ret = 0; 906 out: 907 rcu_read_unlock(); 908 up_read(&devnet_rename_sem); 909 return ret; 910 } 911 912 /** 913 * dev_getbyhwaddr_rcu - find a device by its hardware address 914 * @net: the applicable net namespace 915 * @type: media type of device 916 * @ha: hardware address 917 * 918 * Search for an interface by MAC address. Returns NULL if the device 919 * is not found or a pointer to the device. 920 * The caller must hold RCU or RTNL. 921 * The returned device has not had its ref count increased 922 * and the caller must therefore be careful about locking 923 * 924 */ 925 926 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 927 const char *ha) 928 { 929 struct net_device *dev; 930 931 for_each_netdev_rcu(net, dev) 932 if (dev->type == type && 933 !memcmp(dev->dev_addr, ha, dev->addr_len)) 934 return dev; 935 936 return NULL; 937 } 938 EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 939 940 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 941 { 942 struct net_device *dev, *ret = NULL; 943 944 rcu_read_lock(); 945 for_each_netdev_rcu(net, dev) 946 if (dev->type == type) { 947 dev_hold(dev); 948 ret = dev; 949 break; 950 } 951 rcu_read_unlock(); 952 return ret; 953 } 954 EXPORT_SYMBOL(dev_getfirstbyhwtype); 955 956 /** 957 * __dev_get_by_flags - find any device with given flags 958 * @net: the applicable net namespace 959 * @if_flags: IFF_* values 960 * @mask: bitmask of bits in if_flags to check 961 * 962 * Search for any interface with the given flags. Returns NULL if a device 963 * is not found or a pointer to the device. Must be called inside 964 * rtnl_lock(), and result refcount is unchanged. 965 */ 966 967 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags, 968 unsigned short mask) 969 { 970 struct net_device *dev, *ret; 971 972 ASSERT_RTNL(); 973 974 ret = NULL; 975 for_each_netdev(net, dev) { 976 if (((dev->flags ^ if_flags) & mask) == 0) { 977 ret = dev; 978 break; 979 } 980 } 981 return ret; 982 } 983 EXPORT_SYMBOL(__dev_get_by_flags); 984 985 /** 986 * dev_valid_name - check if name is okay for network device 987 * @name: name string 988 * 989 * Network device names need to be valid file names to 990 * allow sysfs to work. We also disallow any kind of 991 * whitespace. 992 */ 993 bool dev_valid_name(const char *name) 994 { 995 if (*name == '\0') 996 return false; 997 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ) 998 return false; 999 if (!strcmp(name, ".") || !strcmp(name, "..")) 1000 return false; 1001 1002 while (*name) { 1003 if (*name == '/' || *name == ':' || isspace(*name)) 1004 return false; 1005 name++; 1006 } 1007 return true; 1008 } 1009 EXPORT_SYMBOL(dev_valid_name); 1010 1011 /** 1012 * __dev_alloc_name - allocate a name for a device 1013 * @net: network namespace to allocate the device name in 1014 * @name: name format string 1015 * @buf: scratch buffer and result name string 1016 * 1017 * Passed a format string - eg "lt%d" it will try and find a suitable 1018 * id. It scans list of devices to build up a free map, then chooses 1019 * the first empty slot. The caller must hold the dev_base or rtnl lock 1020 * while allocating the name and adding the device in order to avoid 1021 * duplicates. 1022 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1023 * Returns the number of the unit assigned or a negative errno code. 1024 */ 1025 1026 static int __dev_alloc_name(struct net *net, const char *name, char *buf) 1027 { 1028 int i = 0; 1029 const char *p; 1030 const int max_netdevices = 8*PAGE_SIZE; 1031 unsigned long *inuse; 1032 struct net_device *d; 1033 1034 if (!dev_valid_name(name)) 1035 return -EINVAL; 1036 1037 p = strchr(name, '%'); 1038 if (p) { 1039 /* 1040 * Verify the string as this thing may have come from 1041 * the user. There must be either one "%d" and no other "%" 1042 * characters. 1043 */ 1044 if (p[1] != 'd' || strchr(p + 2, '%')) 1045 return -EINVAL; 1046 1047 /* Use one page as a bit array of possible slots */ 1048 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 1049 if (!inuse) 1050 return -ENOMEM; 1051 1052 for_each_netdev(net, d) { 1053 struct netdev_name_node *name_node; 1054 list_for_each_entry(name_node, &d->name_node->list, list) { 1055 if (!sscanf(name_node->name, name, &i)) 1056 continue; 1057 if (i < 0 || i >= max_netdevices) 1058 continue; 1059 1060 /* avoid cases where sscanf is not exact inverse of printf */ 1061 snprintf(buf, IFNAMSIZ, name, i); 1062 if (!strncmp(buf, name_node->name, IFNAMSIZ)) 1063 __set_bit(i, inuse); 1064 } 1065 if (!sscanf(d->name, name, &i)) 1066 continue; 1067 if (i < 0 || i >= max_netdevices) 1068 continue; 1069 1070 /* avoid cases where sscanf is not exact inverse of printf */ 1071 snprintf(buf, IFNAMSIZ, name, i); 1072 if (!strncmp(buf, d->name, IFNAMSIZ)) 1073 __set_bit(i, inuse); 1074 } 1075 1076 i = find_first_zero_bit(inuse, max_netdevices); 1077 free_page((unsigned long) inuse); 1078 } 1079 1080 snprintf(buf, IFNAMSIZ, name, i); 1081 if (!netdev_name_in_use(net, buf)) 1082 return i; 1083 1084 /* It is possible to run out of possible slots 1085 * when the name is long and there isn't enough space left 1086 * for the digits, or if all bits are used. 1087 */ 1088 return -ENFILE; 1089 } 1090 1091 static int dev_alloc_name_ns(struct net *net, 1092 struct net_device *dev, 1093 const char *name) 1094 { 1095 char buf[IFNAMSIZ]; 1096 int ret; 1097 1098 BUG_ON(!net); 1099 ret = __dev_alloc_name(net, name, buf); 1100 if (ret >= 0) 1101 strlcpy(dev->name, buf, IFNAMSIZ); 1102 return ret; 1103 } 1104 1105 /** 1106 * dev_alloc_name - allocate a name for a device 1107 * @dev: device 1108 * @name: name format string 1109 * 1110 * Passed a format string - eg "lt%d" it will try and find a suitable 1111 * id. It scans list of devices to build up a free map, then chooses 1112 * the first empty slot. The caller must hold the dev_base or rtnl lock 1113 * while allocating the name and adding the device in order to avoid 1114 * duplicates. 1115 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1116 * Returns the number of the unit assigned or a negative errno code. 1117 */ 1118 1119 int dev_alloc_name(struct net_device *dev, const char *name) 1120 { 1121 return dev_alloc_name_ns(dev_net(dev), dev, name); 1122 } 1123 EXPORT_SYMBOL(dev_alloc_name); 1124 1125 static int dev_get_valid_name(struct net *net, struct net_device *dev, 1126 const char *name) 1127 { 1128 BUG_ON(!net); 1129 1130 if (!dev_valid_name(name)) 1131 return -EINVAL; 1132 1133 if (strchr(name, '%')) 1134 return dev_alloc_name_ns(net, dev, name); 1135 else if (netdev_name_in_use(net, name)) 1136 return -EEXIST; 1137 else if (dev->name != name) 1138 strlcpy(dev->name, name, IFNAMSIZ); 1139 1140 return 0; 1141 } 1142 1143 /** 1144 * dev_change_name - change name of a device 1145 * @dev: device 1146 * @newname: name (or format string) must be at least IFNAMSIZ 1147 * 1148 * Change name of a device, can pass format strings "eth%d". 1149 * for wildcarding. 1150 */ 1151 int dev_change_name(struct net_device *dev, const char *newname) 1152 { 1153 unsigned char old_assign_type; 1154 char oldname[IFNAMSIZ]; 1155 int err = 0; 1156 int ret; 1157 struct net *net; 1158 1159 ASSERT_RTNL(); 1160 BUG_ON(!dev_net(dev)); 1161 1162 net = dev_net(dev); 1163 1164 /* Some auto-enslaved devices e.g. failover slaves are 1165 * special, as userspace might rename the device after 1166 * the interface had been brought up and running since 1167 * the point kernel initiated auto-enslavement. Allow 1168 * live name change even when these slave devices are 1169 * up and running. 1170 * 1171 * Typically, users of these auto-enslaving devices 1172 * don't actually care about slave name change, as 1173 * they are supposed to operate on master interface 1174 * directly. 1175 */ 1176 if (dev->flags & IFF_UP && 1177 likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK))) 1178 return -EBUSY; 1179 1180 down_write(&devnet_rename_sem); 1181 1182 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) { 1183 up_write(&devnet_rename_sem); 1184 return 0; 1185 } 1186 1187 memcpy(oldname, dev->name, IFNAMSIZ); 1188 1189 err = dev_get_valid_name(net, dev, newname); 1190 if (err < 0) { 1191 up_write(&devnet_rename_sem); 1192 return err; 1193 } 1194 1195 if (oldname[0] && !strchr(oldname, '%')) 1196 netdev_info(dev, "renamed from %s\n", oldname); 1197 1198 old_assign_type = dev->name_assign_type; 1199 dev->name_assign_type = NET_NAME_RENAMED; 1200 1201 rollback: 1202 ret = device_rename(&dev->dev, dev->name); 1203 if (ret) { 1204 memcpy(dev->name, oldname, IFNAMSIZ); 1205 dev->name_assign_type = old_assign_type; 1206 up_write(&devnet_rename_sem); 1207 return ret; 1208 } 1209 1210 up_write(&devnet_rename_sem); 1211 1212 netdev_adjacent_rename_links(dev, oldname); 1213 1214 write_lock(&dev_base_lock); 1215 netdev_name_node_del(dev->name_node); 1216 write_unlock(&dev_base_lock); 1217 1218 synchronize_rcu(); 1219 1220 write_lock(&dev_base_lock); 1221 netdev_name_node_add(net, dev->name_node); 1222 write_unlock(&dev_base_lock); 1223 1224 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1225 ret = notifier_to_errno(ret); 1226 1227 if (ret) { 1228 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1229 if (err >= 0) { 1230 err = ret; 1231 down_write(&devnet_rename_sem); 1232 memcpy(dev->name, oldname, IFNAMSIZ); 1233 memcpy(oldname, newname, IFNAMSIZ); 1234 dev->name_assign_type = old_assign_type; 1235 old_assign_type = NET_NAME_RENAMED; 1236 goto rollback; 1237 } else { 1238 netdev_err(dev, "name change rollback failed: %d\n", 1239 ret); 1240 } 1241 } 1242 1243 return err; 1244 } 1245 1246 /** 1247 * dev_set_alias - change ifalias of a device 1248 * @dev: device 1249 * @alias: name up to IFALIASZ 1250 * @len: limit of bytes to copy from info 1251 * 1252 * Set ifalias for a device, 1253 */ 1254 int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1255 { 1256 struct dev_ifalias *new_alias = NULL; 1257 1258 if (len >= IFALIASZ) 1259 return -EINVAL; 1260 1261 if (len) { 1262 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL); 1263 if (!new_alias) 1264 return -ENOMEM; 1265 1266 memcpy(new_alias->ifalias, alias, len); 1267 new_alias->ifalias[len] = 0; 1268 } 1269 1270 mutex_lock(&ifalias_mutex); 1271 new_alias = rcu_replace_pointer(dev->ifalias, new_alias, 1272 mutex_is_locked(&ifalias_mutex)); 1273 mutex_unlock(&ifalias_mutex); 1274 1275 if (new_alias) 1276 kfree_rcu(new_alias, rcuhead); 1277 1278 return len; 1279 } 1280 EXPORT_SYMBOL(dev_set_alias); 1281 1282 /** 1283 * dev_get_alias - get ifalias of a device 1284 * @dev: device 1285 * @name: buffer to store name of ifalias 1286 * @len: size of buffer 1287 * 1288 * get ifalias for a device. Caller must make sure dev cannot go 1289 * away, e.g. rcu read lock or own a reference count to device. 1290 */ 1291 int dev_get_alias(const struct net_device *dev, char *name, size_t len) 1292 { 1293 const struct dev_ifalias *alias; 1294 int ret = 0; 1295 1296 rcu_read_lock(); 1297 alias = rcu_dereference(dev->ifalias); 1298 if (alias) 1299 ret = snprintf(name, len, "%s", alias->ifalias); 1300 rcu_read_unlock(); 1301 1302 return ret; 1303 } 1304 1305 /** 1306 * netdev_features_change - device changes features 1307 * @dev: device to cause notification 1308 * 1309 * Called to indicate a device has changed features. 1310 */ 1311 void netdev_features_change(struct net_device *dev) 1312 { 1313 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1314 } 1315 EXPORT_SYMBOL(netdev_features_change); 1316 1317 /** 1318 * netdev_state_change - device changes state 1319 * @dev: device to cause notification 1320 * 1321 * Called to indicate a device has changed state. This function calls 1322 * the notifier chains for netdev_chain and sends a NEWLINK message 1323 * to the routing socket. 1324 */ 1325 void netdev_state_change(struct net_device *dev) 1326 { 1327 if (dev->flags & IFF_UP) { 1328 struct netdev_notifier_change_info change_info = { 1329 .info.dev = dev, 1330 }; 1331 1332 call_netdevice_notifiers_info(NETDEV_CHANGE, 1333 &change_info.info); 1334 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL); 1335 } 1336 } 1337 EXPORT_SYMBOL(netdev_state_change); 1338 1339 /** 1340 * __netdev_notify_peers - notify network peers about existence of @dev, 1341 * to be called when rtnl lock is already held. 1342 * @dev: network device 1343 * 1344 * Generate traffic such that interested network peers are aware of 1345 * @dev, such as by generating a gratuitous ARP. This may be used when 1346 * a device wants to inform the rest of the network about some sort of 1347 * reconfiguration such as a failover event or virtual machine 1348 * migration. 1349 */ 1350 void __netdev_notify_peers(struct net_device *dev) 1351 { 1352 ASSERT_RTNL(); 1353 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev); 1354 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev); 1355 } 1356 EXPORT_SYMBOL(__netdev_notify_peers); 1357 1358 /** 1359 * netdev_notify_peers - notify network peers about existence of @dev 1360 * @dev: network device 1361 * 1362 * Generate traffic such that interested network peers are aware of 1363 * @dev, such as by generating a gratuitous ARP. This may be used when 1364 * a device wants to inform the rest of the network about some sort of 1365 * reconfiguration such as a failover event or virtual machine 1366 * migration. 1367 */ 1368 void netdev_notify_peers(struct net_device *dev) 1369 { 1370 rtnl_lock(); 1371 __netdev_notify_peers(dev); 1372 rtnl_unlock(); 1373 } 1374 EXPORT_SYMBOL(netdev_notify_peers); 1375 1376 static int napi_threaded_poll(void *data); 1377 1378 static int napi_kthread_create(struct napi_struct *n) 1379 { 1380 int err = 0; 1381 1382 /* Create and wake up the kthread once to put it in 1383 * TASK_INTERRUPTIBLE mode to avoid the blocked task 1384 * warning and work with loadavg. 1385 */ 1386 n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d", 1387 n->dev->name, n->napi_id); 1388 if (IS_ERR(n->thread)) { 1389 err = PTR_ERR(n->thread); 1390 pr_err("kthread_run failed with err %d\n", err); 1391 n->thread = NULL; 1392 } 1393 1394 return err; 1395 } 1396 1397 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack) 1398 { 1399 const struct net_device_ops *ops = dev->netdev_ops; 1400 int ret; 1401 1402 ASSERT_RTNL(); 1403 dev_addr_check(dev); 1404 1405 if (!netif_device_present(dev)) { 1406 /* may be detached because parent is runtime-suspended */ 1407 if (dev->dev.parent) 1408 pm_runtime_resume(dev->dev.parent); 1409 if (!netif_device_present(dev)) 1410 return -ENODEV; 1411 } 1412 1413 /* Block netpoll from trying to do any rx path servicing. 1414 * If we don't do this there is a chance ndo_poll_controller 1415 * or ndo_poll may be running while we open the device 1416 */ 1417 netpoll_poll_disable(dev); 1418 1419 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack); 1420 ret = notifier_to_errno(ret); 1421 if (ret) 1422 return ret; 1423 1424 set_bit(__LINK_STATE_START, &dev->state); 1425 1426 if (ops->ndo_validate_addr) 1427 ret = ops->ndo_validate_addr(dev); 1428 1429 if (!ret && ops->ndo_open) 1430 ret = ops->ndo_open(dev); 1431 1432 netpoll_poll_enable(dev); 1433 1434 if (ret) 1435 clear_bit(__LINK_STATE_START, &dev->state); 1436 else { 1437 dev->flags |= IFF_UP; 1438 dev_set_rx_mode(dev); 1439 dev_activate(dev); 1440 add_device_randomness(dev->dev_addr, dev->addr_len); 1441 } 1442 1443 return ret; 1444 } 1445 1446 /** 1447 * dev_open - prepare an interface for use. 1448 * @dev: device to open 1449 * @extack: netlink extended ack 1450 * 1451 * Takes a device from down to up state. The device's private open 1452 * function is invoked and then the multicast lists are loaded. Finally 1453 * the device is moved into the up state and a %NETDEV_UP message is 1454 * sent to the netdev notifier chain. 1455 * 1456 * Calling this function on an active interface is a nop. On a failure 1457 * a negative errno code is returned. 1458 */ 1459 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack) 1460 { 1461 int ret; 1462 1463 if (dev->flags & IFF_UP) 1464 return 0; 1465 1466 ret = __dev_open(dev, extack); 1467 if (ret < 0) 1468 return ret; 1469 1470 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1471 call_netdevice_notifiers(NETDEV_UP, dev); 1472 1473 return ret; 1474 } 1475 EXPORT_SYMBOL(dev_open); 1476 1477 static void __dev_close_many(struct list_head *head) 1478 { 1479 struct net_device *dev; 1480 1481 ASSERT_RTNL(); 1482 might_sleep(); 1483 1484 list_for_each_entry(dev, head, close_list) { 1485 /* Temporarily disable netpoll until the interface is down */ 1486 netpoll_poll_disable(dev); 1487 1488 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1489 1490 clear_bit(__LINK_STATE_START, &dev->state); 1491 1492 /* Synchronize to scheduled poll. We cannot touch poll list, it 1493 * can be even on different cpu. So just clear netif_running(). 1494 * 1495 * dev->stop() will invoke napi_disable() on all of it's 1496 * napi_struct instances on this device. 1497 */ 1498 smp_mb__after_atomic(); /* Commit netif_running(). */ 1499 } 1500 1501 dev_deactivate_many(head); 1502 1503 list_for_each_entry(dev, head, close_list) { 1504 const struct net_device_ops *ops = dev->netdev_ops; 1505 1506 /* 1507 * Call the device specific close. This cannot fail. 1508 * Only if device is UP 1509 * 1510 * We allow it to be called even after a DETACH hot-plug 1511 * event. 1512 */ 1513 if (ops->ndo_stop) 1514 ops->ndo_stop(dev); 1515 1516 dev->flags &= ~IFF_UP; 1517 netpoll_poll_enable(dev); 1518 } 1519 } 1520 1521 static void __dev_close(struct net_device *dev) 1522 { 1523 LIST_HEAD(single); 1524 1525 list_add(&dev->close_list, &single); 1526 __dev_close_many(&single); 1527 list_del(&single); 1528 } 1529 1530 void dev_close_many(struct list_head *head, bool unlink) 1531 { 1532 struct net_device *dev, *tmp; 1533 1534 /* Remove the devices that don't need to be closed */ 1535 list_for_each_entry_safe(dev, tmp, head, close_list) 1536 if (!(dev->flags & IFF_UP)) 1537 list_del_init(&dev->close_list); 1538 1539 __dev_close_many(head); 1540 1541 list_for_each_entry_safe(dev, tmp, head, close_list) { 1542 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1543 call_netdevice_notifiers(NETDEV_DOWN, dev); 1544 if (unlink) 1545 list_del_init(&dev->close_list); 1546 } 1547 } 1548 EXPORT_SYMBOL(dev_close_many); 1549 1550 /** 1551 * dev_close - shutdown an interface. 1552 * @dev: device to shutdown 1553 * 1554 * This function moves an active device into down state. A 1555 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1556 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1557 * chain. 1558 */ 1559 void dev_close(struct net_device *dev) 1560 { 1561 if (dev->flags & IFF_UP) { 1562 LIST_HEAD(single); 1563 1564 list_add(&dev->close_list, &single); 1565 dev_close_many(&single, true); 1566 list_del(&single); 1567 } 1568 } 1569 EXPORT_SYMBOL(dev_close); 1570 1571 1572 /** 1573 * dev_disable_lro - disable Large Receive Offload on a device 1574 * @dev: device 1575 * 1576 * Disable Large Receive Offload (LRO) on a net device. Must be 1577 * called under RTNL. This is needed if received packets may be 1578 * forwarded to another interface. 1579 */ 1580 void dev_disable_lro(struct net_device *dev) 1581 { 1582 struct net_device *lower_dev; 1583 struct list_head *iter; 1584 1585 dev->wanted_features &= ~NETIF_F_LRO; 1586 netdev_update_features(dev); 1587 1588 if (unlikely(dev->features & NETIF_F_LRO)) 1589 netdev_WARN(dev, "failed to disable LRO!\n"); 1590 1591 netdev_for_each_lower_dev(dev, lower_dev, iter) 1592 dev_disable_lro(lower_dev); 1593 } 1594 EXPORT_SYMBOL(dev_disable_lro); 1595 1596 /** 1597 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device 1598 * @dev: device 1599 * 1600 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be 1601 * called under RTNL. This is needed if Generic XDP is installed on 1602 * the device. 1603 */ 1604 static void dev_disable_gro_hw(struct net_device *dev) 1605 { 1606 dev->wanted_features &= ~NETIF_F_GRO_HW; 1607 netdev_update_features(dev); 1608 1609 if (unlikely(dev->features & NETIF_F_GRO_HW)) 1610 netdev_WARN(dev, "failed to disable GRO_HW!\n"); 1611 } 1612 1613 const char *netdev_cmd_to_name(enum netdev_cmd cmd) 1614 { 1615 #define N(val) \ 1616 case NETDEV_##val: \ 1617 return "NETDEV_" __stringify(val); 1618 switch (cmd) { 1619 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER) 1620 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE) 1621 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE) 1622 N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER) 1623 N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO) 1624 N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO) 1625 N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN) 1626 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO) 1627 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO) 1628 N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE) 1629 N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA) 1630 } 1631 #undef N 1632 return "UNKNOWN_NETDEV_EVENT"; 1633 } 1634 EXPORT_SYMBOL_GPL(netdev_cmd_to_name); 1635 1636 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val, 1637 struct net_device *dev) 1638 { 1639 struct netdev_notifier_info info = { 1640 .dev = dev, 1641 }; 1642 1643 return nb->notifier_call(nb, val, &info); 1644 } 1645 1646 static int call_netdevice_register_notifiers(struct notifier_block *nb, 1647 struct net_device *dev) 1648 { 1649 int err; 1650 1651 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev); 1652 err = notifier_to_errno(err); 1653 if (err) 1654 return err; 1655 1656 if (!(dev->flags & IFF_UP)) 1657 return 0; 1658 1659 call_netdevice_notifier(nb, NETDEV_UP, dev); 1660 return 0; 1661 } 1662 1663 static void call_netdevice_unregister_notifiers(struct notifier_block *nb, 1664 struct net_device *dev) 1665 { 1666 if (dev->flags & IFF_UP) { 1667 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1668 dev); 1669 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1670 } 1671 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1672 } 1673 1674 static int call_netdevice_register_net_notifiers(struct notifier_block *nb, 1675 struct net *net) 1676 { 1677 struct net_device *dev; 1678 int err; 1679 1680 for_each_netdev(net, dev) { 1681 err = call_netdevice_register_notifiers(nb, dev); 1682 if (err) 1683 goto rollback; 1684 } 1685 return 0; 1686 1687 rollback: 1688 for_each_netdev_continue_reverse(net, dev) 1689 call_netdevice_unregister_notifiers(nb, dev); 1690 return err; 1691 } 1692 1693 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb, 1694 struct net *net) 1695 { 1696 struct net_device *dev; 1697 1698 for_each_netdev(net, dev) 1699 call_netdevice_unregister_notifiers(nb, dev); 1700 } 1701 1702 static int dev_boot_phase = 1; 1703 1704 /** 1705 * register_netdevice_notifier - register a network notifier block 1706 * @nb: notifier 1707 * 1708 * Register a notifier to be called when network device events occur. 1709 * The notifier passed is linked into the kernel structures and must 1710 * not be reused until it has been unregistered. A negative errno code 1711 * is returned on a failure. 1712 * 1713 * When registered all registration and up events are replayed 1714 * to the new notifier to allow device to have a race free 1715 * view of the network device list. 1716 */ 1717 1718 int register_netdevice_notifier(struct notifier_block *nb) 1719 { 1720 struct net *net; 1721 int err; 1722 1723 /* Close race with setup_net() and cleanup_net() */ 1724 down_write(&pernet_ops_rwsem); 1725 rtnl_lock(); 1726 err = raw_notifier_chain_register(&netdev_chain, nb); 1727 if (err) 1728 goto unlock; 1729 if (dev_boot_phase) 1730 goto unlock; 1731 for_each_net(net) { 1732 err = call_netdevice_register_net_notifiers(nb, net); 1733 if (err) 1734 goto rollback; 1735 } 1736 1737 unlock: 1738 rtnl_unlock(); 1739 up_write(&pernet_ops_rwsem); 1740 return err; 1741 1742 rollback: 1743 for_each_net_continue_reverse(net) 1744 call_netdevice_unregister_net_notifiers(nb, net); 1745 1746 raw_notifier_chain_unregister(&netdev_chain, nb); 1747 goto unlock; 1748 } 1749 EXPORT_SYMBOL(register_netdevice_notifier); 1750 1751 /** 1752 * unregister_netdevice_notifier - unregister a network notifier block 1753 * @nb: notifier 1754 * 1755 * Unregister a notifier previously registered by 1756 * register_netdevice_notifier(). The notifier is unlinked into the 1757 * kernel structures and may then be reused. A negative errno code 1758 * is returned on a failure. 1759 * 1760 * After unregistering unregister and down device events are synthesized 1761 * for all devices on the device list to the removed notifier to remove 1762 * the need for special case cleanup code. 1763 */ 1764 1765 int unregister_netdevice_notifier(struct notifier_block *nb) 1766 { 1767 struct net *net; 1768 int err; 1769 1770 /* Close race with setup_net() and cleanup_net() */ 1771 down_write(&pernet_ops_rwsem); 1772 rtnl_lock(); 1773 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1774 if (err) 1775 goto unlock; 1776 1777 for_each_net(net) 1778 call_netdevice_unregister_net_notifiers(nb, net); 1779 1780 unlock: 1781 rtnl_unlock(); 1782 up_write(&pernet_ops_rwsem); 1783 return err; 1784 } 1785 EXPORT_SYMBOL(unregister_netdevice_notifier); 1786 1787 static int __register_netdevice_notifier_net(struct net *net, 1788 struct notifier_block *nb, 1789 bool ignore_call_fail) 1790 { 1791 int err; 1792 1793 err = raw_notifier_chain_register(&net->netdev_chain, nb); 1794 if (err) 1795 return err; 1796 if (dev_boot_phase) 1797 return 0; 1798 1799 err = call_netdevice_register_net_notifiers(nb, net); 1800 if (err && !ignore_call_fail) 1801 goto chain_unregister; 1802 1803 return 0; 1804 1805 chain_unregister: 1806 raw_notifier_chain_unregister(&net->netdev_chain, nb); 1807 return err; 1808 } 1809 1810 static int __unregister_netdevice_notifier_net(struct net *net, 1811 struct notifier_block *nb) 1812 { 1813 int err; 1814 1815 err = raw_notifier_chain_unregister(&net->netdev_chain, nb); 1816 if (err) 1817 return err; 1818 1819 call_netdevice_unregister_net_notifiers(nb, net); 1820 return 0; 1821 } 1822 1823 /** 1824 * register_netdevice_notifier_net - register a per-netns network notifier block 1825 * @net: network namespace 1826 * @nb: notifier 1827 * 1828 * Register a notifier to be called when network device events occur. 1829 * The notifier passed is linked into the kernel structures and must 1830 * not be reused until it has been unregistered. A negative errno code 1831 * is returned on a failure. 1832 * 1833 * When registered all registration and up events are replayed 1834 * to the new notifier to allow device to have a race free 1835 * view of the network device list. 1836 */ 1837 1838 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb) 1839 { 1840 int err; 1841 1842 rtnl_lock(); 1843 err = __register_netdevice_notifier_net(net, nb, false); 1844 rtnl_unlock(); 1845 return err; 1846 } 1847 EXPORT_SYMBOL(register_netdevice_notifier_net); 1848 1849 /** 1850 * unregister_netdevice_notifier_net - unregister a per-netns 1851 * network notifier block 1852 * @net: network namespace 1853 * @nb: notifier 1854 * 1855 * Unregister a notifier previously registered by 1856 * register_netdevice_notifier(). The notifier is unlinked into the 1857 * kernel structures and may then be reused. A negative errno code 1858 * is returned on a failure. 1859 * 1860 * After unregistering unregister and down device events are synthesized 1861 * for all devices on the device list to the removed notifier to remove 1862 * the need for special case cleanup code. 1863 */ 1864 1865 int unregister_netdevice_notifier_net(struct net *net, 1866 struct notifier_block *nb) 1867 { 1868 int err; 1869 1870 rtnl_lock(); 1871 err = __unregister_netdevice_notifier_net(net, nb); 1872 rtnl_unlock(); 1873 return err; 1874 } 1875 EXPORT_SYMBOL(unregister_netdevice_notifier_net); 1876 1877 int register_netdevice_notifier_dev_net(struct net_device *dev, 1878 struct notifier_block *nb, 1879 struct netdev_net_notifier *nn) 1880 { 1881 int err; 1882 1883 rtnl_lock(); 1884 err = __register_netdevice_notifier_net(dev_net(dev), nb, false); 1885 if (!err) { 1886 nn->nb = nb; 1887 list_add(&nn->list, &dev->net_notifier_list); 1888 } 1889 rtnl_unlock(); 1890 return err; 1891 } 1892 EXPORT_SYMBOL(register_netdevice_notifier_dev_net); 1893 1894 int unregister_netdevice_notifier_dev_net(struct net_device *dev, 1895 struct notifier_block *nb, 1896 struct netdev_net_notifier *nn) 1897 { 1898 int err; 1899 1900 rtnl_lock(); 1901 list_del(&nn->list); 1902 err = __unregister_netdevice_notifier_net(dev_net(dev), nb); 1903 rtnl_unlock(); 1904 return err; 1905 } 1906 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net); 1907 1908 static void move_netdevice_notifiers_dev_net(struct net_device *dev, 1909 struct net *net) 1910 { 1911 struct netdev_net_notifier *nn; 1912 1913 list_for_each_entry(nn, &dev->net_notifier_list, list) { 1914 __unregister_netdevice_notifier_net(dev_net(dev), nn->nb); 1915 __register_netdevice_notifier_net(net, nn->nb, true); 1916 } 1917 } 1918 1919 /** 1920 * call_netdevice_notifiers_info - call all network notifier blocks 1921 * @val: value passed unmodified to notifier function 1922 * @info: notifier information data 1923 * 1924 * Call all network notifier blocks. Parameters and return value 1925 * are as for raw_notifier_call_chain(). 1926 */ 1927 1928 static int call_netdevice_notifiers_info(unsigned long val, 1929 struct netdev_notifier_info *info) 1930 { 1931 struct net *net = dev_net(info->dev); 1932 int ret; 1933 1934 ASSERT_RTNL(); 1935 1936 /* Run per-netns notifier block chain first, then run the global one. 1937 * Hopefully, one day, the global one is going to be removed after 1938 * all notifier block registrators get converted to be per-netns. 1939 */ 1940 ret = raw_notifier_call_chain(&net->netdev_chain, val, info); 1941 if (ret & NOTIFY_STOP_MASK) 1942 return ret; 1943 return raw_notifier_call_chain(&netdev_chain, val, info); 1944 } 1945 1946 /** 1947 * call_netdevice_notifiers_info_robust - call per-netns notifier blocks 1948 * for and rollback on error 1949 * @val_up: value passed unmodified to notifier function 1950 * @val_down: value passed unmodified to the notifier function when 1951 * recovering from an error on @val_up 1952 * @info: notifier information data 1953 * 1954 * Call all per-netns network notifier blocks, but not notifier blocks on 1955 * the global notifier chain. Parameters and return value are as for 1956 * raw_notifier_call_chain_robust(). 1957 */ 1958 1959 static int 1960 call_netdevice_notifiers_info_robust(unsigned long val_up, 1961 unsigned long val_down, 1962 struct netdev_notifier_info *info) 1963 { 1964 struct net *net = dev_net(info->dev); 1965 1966 ASSERT_RTNL(); 1967 1968 return raw_notifier_call_chain_robust(&net->netdev_chain, 1969 val_up, val_down, info); 1970 } 1971 1972 static int call_netdevice_notifiers_extack(unsigned long val, 1973 struct net_device *dev, 1974 struct netlink_ext_ack *extack) 1975 { 1976 struct netdev_notifier_info info = { 1977 .dev = dev, 1978 .extack = extack, 1979 }; 1980 1981 return call_netdevice_notifiers_info(val, &info); 1982 } 1983 1984 /** 1985 * call_netdevice_notifiers - call all network notifier blocks 1986 * @val: value passed unmodified to notifier function 1987 * @dev: net_device pointer passed unmodified to notifier function 1988 * 1989 * Call all network notifier blocks. Parameters and return value 1990 * are as for raw_notifier_call_chain(). 1991 */ 1992 1993 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 1994 { 1995 return call_netdevice_notifiers_extack(val, dev, NULL); 1996 } 1997 EXPORT_SYMBOL(call_netdevice_notifiers); 1998 1999 /** 2000 * call_netdevice_notifiers_mtu - call all network notifier blocks 2001 * @val: value passed unmodified to notifier function 2002 * @dev: net_device pointer passed unmodified to notifier function 2003 * @arg: additional u32 argument passed to the notifier function 2004 * 2005 * Call all network notifier blocks. Parameters and return value 2006 * are as for raw_notifier_call_chain(). 2007 */ 2008 static int call_netdevice_notifiers_mtu(unsigned long val, 2009 struct net_device *dev, u32 arg) 2010 { 2011 struct netdev_notifier_info_ext info = { 2012 .info.dev = dev, 2013 .ext.mtu = arg, 2014 }; 2015 2016 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0); 2017 2018 return call_netdevice_notifiers_info(val, &info.info); 2019 } 2020 2021 #ifdef CONFIG_NET_INGRESS 2022 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key); 2023 2024 void net_inc_ingress_queue(void) 2025 { 2026 static_branch_inc(&ingress_needed_key); 2027 } 2028 EXPORT_SYMBOL_GPL(net_inc_ingress_queue); 2029 2030 void net_dec_ingress_queue(void) 2031 { 2032 static_branch_dec(&ingress_needed_key); 2033 } 2034 EXPORT_SYMBOL_GPL(net_dec_ingress_queue); 2035 #endif 2036 2037 #ifdef CONFIG_NET_EGRESS 2038 static DEFINE_STATIC_KEY_FALSE(egress_needed_key); 2039 2040 void net_inc_egress_queue(void) 2041 { 2042 static_branch_inc(&egress_needed_key); 2043 } 2044 EXPORT_SYMBOL_GPL(net_inc_egress_queue); 2045 2046 void net_dec_egress_queue(void) 2047 { 2048 static_branch_dec(&egress_needed_key); 2049 } 2050 EXPORT_SYMBOL_GPL(net_dec_egress_queue); 2051 #endif 2052 2053 DEFINE_STATIC_KEY_FALSE(netstamp_needed_key); 2054 EXPORT_SYMBOL(netstamp_needed_key); 2055 #ifdef CONFIG_JUMP_LABEL 2056 static atomic_t netstamp_needed_deferred; 2057 static atomic_t netstamp_wanted; 2058 static void netstamp_clear(struct work_struct *work) 2059 { 2060 int deferred = atomic_xchg(&netstamp_needed_deferred, 0); 2061 int wanted; 2062 2063 wanted = atomic_add_return(deferred, &netstamp_wanted); 2064 if (wanted > 0) 2065 static_branch_enable(&netstamp_needed_key); 2066 else 2067 static_branch_disable(&netstamp_needed_key); 2068 } 2069 static DECLARE_WORK(netstamp_work, netstamp_clear); 2070 #endif 2071 2072 void net_enable_timestamp(void) 2073 { 2074 #ifdef CONFIG_JUMP_LABEL 2075 int wanted; 2076 2077 while (1) { 2078 wanted = atomic_read(&netstamp_wanted); 2079 if (wanted <= 0) 2080 break; 2081 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted) 2082 return; 2083 } 2084 atomic_inc(&netstamp_needed_deferred); 2085 schedule_work(&netstamp_work); 2086 #else 2087 static_branch_inc(&netstamp_needed_key); 2088 #endif 2089 } 2090 EXPORT_SYMBOL(net_enable_timestamp); 2091 2092 void net_disable_timestamp(void) 2093 { 2094 #ifdef CONFIG_JUMP_LABEL 2095 int wanted; 2096 2097 while (1) { 2098 wanted = atomic_read(&netstamp_wanted); 2099 if (wanted <= 1) 2100 break; 2101 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted) 2102 return; 2103 } 2104 atomic_dec(&netstamp_needed_deferred); 2105 schedule_work(&netstamp_work); 2106 #else 2107 static_branch_dec(&netstamp_needed_key); 2108 #endif 2109 } 2110 EXPORT_SYMBOL(net_disable_timestamp); 2111 2112 static inline void net_timestamp_set(struct sk_buff *skb) 2113 { 2114 skb->tstamp = 0; 2115 skb->mono_delivery_time = 0; 2116 if (static_branch_unlikely(&netstamp_needed_key)) 2117 skb->tstamp = ktime_get_real(); 2118 } 2119 2120 #define net_timestamp_check(COND, SKB) \ 2121 if (static_branch_unlikely(&netstamp_needed_key)) { \ 2122 if ((COND) && !(SKB)->tstamp) \ 2123 (SKB)->tstamp = ktime_get_real(); \ 2124 } \ 2125 2126 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb) 2127 { 2128 return __is_skb_forwardable(dev, skb, true); 2129 } 2130 EXPORT_SYMBOL_GPL(is_skb_forwardable); 2131 2132 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb, 2133 bool check_mtu) 2134 { 2135 int ret = ____dev_forward_skb(dev, skb, check_mtu); 2136 2137 if (likely(!ret)) { 2138 skb->protocol = eth_type_trans(skb, dev); 2139 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN); 2140 } 2141 2142 return ret; 2143 } 2144 2145 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 2146 { 2147 return __dev_forward_skb2(dev, skb, true); 2148 } 2149 EXPORT_SYMBOL_GPL(__dev_forward_skb); 2150 2151 /** 2152 * dev_forward_skb - loopback an skb to another netif 2153 * 2154 * @dev: destination network device 2155 * @skb: buffer to forward 2156 * 2157 * return values: 2158 * NET_RX_SUCCESS (no congestion) 2159 * NET_RX_DROP (packet was dropped, but freed) 2160 * 2161 * dev_forward_skb can be used for injecting an skb from the 2162 * start_xmit function of one device into the receive queue 2163 * of another device. 2164 * 2165 * The receiving device may be in another namespace, so 2166 * we have to clear all information in the skb that could 2167 * impact namespace isolation. 2168 */ 2169 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 2170 { 2171 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb); 2172 } 2173 EXPORT_SYMBOL_GPL(dev_forward_skb); 2174 2175 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb) 2176 { 2177 return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb); 2178 } 2179 2180 static inline int deliver_skb(struct sk_buff *skb, 2181 struct packet_type *pt_prev, 2182 struct net_device *orig_dev) 2183 { 2184 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 2185 return -ENOMEM; 2186 refcount_inc(&skb->users); 2187 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 2188 } 2189 2190 static inline void deliver_ptype_list_skb(struct sk_buff *skb, 2191 struct packet_type **pt, 2192 struct net_device *orig_dev, 2193 __be16 type, 2194 struct list_head *ptype_list) 2195 { 2196 struct packet_type *ptype, *pt_prev = *pt; 2197 2198 list_for_each_entry_rcu(ptype, ptype_list, list) { 2199 if (ptype->type != type) 2200 continue; 2201 if (pt_prev) 2202 deliver_skb(skb, pt_prev, orig_dev); 2203 pt_prev = ptype; 2204 } 2205 *pt = pt_prev; 2206 } 2207 2208 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb) 2209 { 2210 if (!ptype->af_packet_priv || !skb->sk) 2211 return false; 2212 2213 if (ptype->id_match) 2214 return ptype->id_match(ptype, skb->sk); 2215 else if ((struct sock *)ptype->af_packet_priv == skb->sk) 2216 return true; 2217 2218 return false; 2219 } 2220 2221 /** 2222 * dev_nit_active - return true if any network interface taps are in use 2223 * 2224 * @dev: network device to check for the presence of taps 2225 */ 2226 bool dev_nit_active(struct net_device *dev) 2227 { 2228 return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all); 2229 } 2230 EXPORT_SYMBOL_GPL(dev_nit_active); 2231 2232 /* 2233 * Support routine. Sends outgoing frames to any network 2234 * taps currently in use. 2235 */ 2236 2237 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 2238 { 2239 struct packet_type *ptype; 2240 struct sk_buff *skb2 = NULL; 2241 struct packet_type *pt_prev = NULL; 2242 struct list_head *ptype_list = &ptype_all; 2243 2244 rcu_read_lock(); 2245 again: 2246 list_for_each_entry_rcu(ptype, ptype_list, list) { 2247 if (ptype->ignore_outgoing) 2248 continue; 2249 2250 /* Never send packets back to the socket 2251 * they originated from - MvS (miquels@drinkel.ow.org) 2252 */ 2253 if (skb_loop_sk(ptype, skb)) 2254 continue; 2255 2256 if (pt_prev) { 2257 deliver_skb(skb2, pt_prev, skb->dev); 2258 pt_prev = ptype; 2259 continue; 2260 } 2261 2262 /* need to clone skb, done only once */ 2263 skb2 = skb_clone(skb, GFP_ATOMIC); 2264 if (!skb2) 2265 goto out_unlock; 2266 2267 net_timestamp_set(skb2); 2268 2269 /* skb->nh should be correctly 2270 * set by sender, so that the second statement is 2271 * just protection against buggy protocols. 2272 */ 2273 skb_reset_mac_header(skb2); 2274 2275 if (skb_network_header(skb2) < skb2->data || 2276 skb_network_header(skb2) > skb_tail_pointer(skb2)) { 2277 net_crit_ratelimited("protocol %04x is buggy, dev %s\n", 2278 ntohs(skb2->protocol), 2279 dev->name); 2280 skb_reset_network_header(skb2); 2281 } 2282 2283 skb2->transport_header = skb2->network_header; 2284 skb2->pkt_type = PACKET_OUTGOING; 2285 pt_prev = ptype; 2286 } 2287 2288 if (ptype_list == &ptype_all) { 2289 ptype_list = &dev->ptype_all; 2290 goto again; 2291 } 2292 out_unlock: 2293 if (pt_prev) { 2294 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC)) 2295 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 2296 else 2297 kfree_skb(skb2); 2298 } 2299 rcu_read_unlock(); 2300 } 2301 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit); 2302 2303 /** 2304 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change 2305 * @dev: Network device 2306 * @txq: number of queues available 2307 * 2308 * If real_num_tx_queues is changed the tc mappings may no longer be 2309 * valid. To resolve this verify the tc mapping remains valid and if 2310 * not NULL the mapping. With no priorities mapping to this 2311 * offset/count pair it will no longer be used. In the worst case TC0 2312 * is invalid nothing can be done so disable priority mappings. If is 2313 * expected that drivers will fix this mapping if they can before 2314 * calling netif_set_real_num_tx_queues. 2315 */ 2316 static void netif_setup_tc(struct net_device *dev, unsigned int txq) 2317 { 2318 int i; 2319 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2320 2321 /* If TC0 is invalidated disable TC mapping */ 2322 if (tc->offset + tc->count > txq) { 2323 netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n"); 2324 dev->num_tc = 0; 2325 return; 2326 } 2327 2328 /* Invalidated prio to tc mappings set to TC0 */ 2329 for (i = 1; i < TC_BITMASK + 1; i++) { 2330 int q = netdev_get_prio_tc_map(dev, i); 2331 2332 tc = &dev->tc_to_txq[q]; 2333 if (tc->offset + tc->count > txq) { 2334 netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n", 2335 i, q); 2336 netdev_set_prio_tc_map(dev, i, 0); 2337 } 2338 } 2339 } 2340 2341 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq) 2342 { 2343 if (dev->num_tc) { 2344 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2345 int i; 2346 2347 /* walk through the TCs and see if it falls into any of them */ 2348 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) { 2349 if ((txq - tc->offset) < tc->count) 2350 return i; 2351 } 2352 2353 /* didn't find it, just return -1 to indicate no match */ 2354 return -1; 2355 } 2356 2357 return 0; 2358 } 2359 EXPORT_SYMBOL(netdev_txq_to_tc); 2360 2361 #ifdef CONFIG_XPS 2362 static struct static_key xps_needed __read_mostly; 2363 static struct static_key xps_rxqs_needed __read_mostly; 2364 static DEFINE_MUTEX(xps_map_mutex); 2365 #define xmap_dereference(P) \ 2366 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex)) 2367 2368 static bool remove_xps_queue(struct xps_dev_maps *dev_maps, 2369 struct xps_dev_maps *old_maps, int tci, u16 index) 2370 { 2371 struct xps_map *map = NULL; 2372 int pos; 2373 2374 if (dev_maps) 2375 map = xmap_dereference(dev_maps->attr_map[tci]); 2376 if (!map) 2377 return false; 2378 2379 for (pos = map->len; pos--;) { 2380 if (map->queues[pos] != index) 2381 continue; 2382 2383 if (map->len > 1) { 2384 map->queues[pos] = map->queues[--map->len]; 2385 break; 2386 } 2387 2388 if (old_maps) 2389 RCU_INIT_POINTER(old_maps->attr_map[tci], NULL); 2390 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL); 2391 kfree_rcu(map, rcu); 2392 return false; 2393 } 2394 2395 return true; 2396 } 2397 2398 static bool remove_xps_queue_cpu(struct net_device *dev, 2399 struct xps_dev_maps *dev_maps, 2400 int cpu, u16 offset, u16 count) 2401 { 2402 int num_tc = dev_maps->num_tc; 2403 bool active = false; 2404 int tci; 2405 2406 for (tci = cpu * num_tc; num_tc--; tci++) { 2407 int i, j; 2408 2409 for (i = count, j = offset; i--; j++) { 2410 if (!remove_xps_queue(dev_maps, NULL, tci, j)) 2411 break; 2412 } 2413 2414 active |= i < 0; 2415 } 2416 2417 return active; 2418 } 2419 2420 static void reset_xps_maps(struct net_device *dev, 2421 struct xps_dev_maps *dev_maps, 2422 enum xps_map_type type) 2423 { 2424 static_key_slow_dec_cpuslocked(&xps_needed); 2425 if (type == XPS_RXQS) 2426 static_key_slow_dec_cpuslocked(&xps_rxqs_needed); 2427 2428 RCU_INIT_POINTER(dev->xps_maps[type], NULL); 2429 2430 kfree_rcu(dev_maps, rcu); 2431 } 2432 2433 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type, 2434 u16 offset, u16 count) 2435 { 2436 struct xps_dev_maps *dev_maps; 2437 bool active = false; 2438 int i, j; 2439 2440 dev_maps = xmap_dereference(dev->xps_maps[type]); 2441 if (!dev_maps) 2442 return; 2443 2444 for (j = 0; j < dev_maps->nr_ids; j++) 2445 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count); 2446 if (!active) 2447 reset_xps_maps(dev, dev_maps, type); 2448 2449 if (type == XPS_CPUS) { 2450 for (i = offset + (count - 1); count--; i--) 2451 netdev_queue_numa_node_write( 2452 netdev_get_tx_queue(dev, i), NUMA_NO_NODE); 2453 } 2454 } 2455 2456 static void netif_reset_xps_queues(struct net_device *dev, u16 offset, 2457 u16 count) 2458 { 2459 if (!static_key_false(&xps_needed)) 2460 return; 2461 2462 cpus_read_lock(); 2463 mutex_lock(&xps_map_mutex); 2464 2465 if (static_key_false(&xps_rxqs_needed)) 2466 clean_xps_maps(dev, XPS_RXQS, offset, count); 2467 2468 clean_xps_maps(dev, XPS_CPUS, offset, count); 2469 2470 mutex_unlock(&xps_map_mutex); 2471 cpus_read_unlock(); 2472 } 2473 2474 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index) 2475 { 2476 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index); 2477 } 2478 2479 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index, 2480 u16 index, bool is_rxqs_map) 2481 { 2482 struct xps_map *new_map; 2483 int alloc_len = XPS_MIN_MAP_ALLOC; 2484 int i, pos; 2485 2486 for (pos = 0; map && pos < map->len; pos++) { 2487 if (map->queues[pos] != index) 2488 continue; 2489 return map; 2490 } 2491 2492 /* Need to add tx-queue to this CPU's/rx-queue's existing map */ 2493 if (map) { 2494 if (pos < map->alloc_len) 2495 return map; 2496 2497 alloc_len = map->alloc_len * 2; 2498 } 2499 2500 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's 2501 * map 2502 */ 2503 if (is_rxqs_map) 2504 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL); 2505 else 2506 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL, 2507 cpu_to_node(attr_index)); 2508 if (!new_map) 2509 return NULL; 2510 2511 for (i = 0; i < pos; i++) 2512 new_map->queues[i] = map->queues[i]; 2513 new_map->alloc_len = alloc_len; 2514 new_map->len = pos; 2515 2516 return new_map; 2517 } 2518 2519 /* Copy xps maps at a given index */ 2520 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps, 2521 struct xps_dev_maps *new_dev_maps, int index, 2522 int tc, bool skip_tc) 2523 { 2524 int i, tci = index * dev_maps->num_tc; 2525 struct xps_map *map; 2526 2527 /* copy maps belonging to foreign traffic classes */ 2528 for (i = 0; i < dev_maps->num_tc; i++, tci++) { 2529 if (i == tc && skip_tc) 2530 continue; 2531 2532 /* fill in the new device map from the old device map */ 2533 map = xmap_dereference(dev_maps->attr_map[tci]); 2534 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2535 } 2536 } 2537 2538 /* Must be called under cpus_read_lock */ 2539 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask, 2540 u16 index, enum xps_map_type type) 2541 { 2542 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL; 2543 const unsigned long *online_mask = NULL; 2544 bool active = false, copy = false; 2545 int i, j, tci, numa_node_id = -2; 2546 int maps_sz, num_tc = 1, tc = 0; 2547 struct xps_map *map, *new_map; 2548 unsigned int nr_ids; 2549 2550 if (dev->num_tc) { 2551 /* Do not allow XPS on subordinate device directly */ 2552 num_tc = dev->num_tc; 2553 if (num_tc < 0) 2554 return -EINVAL; 2555 2556 /* If queue belongs to subordinate dev use its map */ 2557 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev; 2558 2559 tc = netdev_txq_to_tc(dev, index); 2560 if (tc < 0) 2561 return -EINVAL; 2562 } 2563 2564 mutex_lock(&xps_map_mutex); 2565 2566 dev_maps = xmap_dereference(dev->xps_maps[type]); 2567 if (type == XPS_RXQS) { 2568 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues); 2569 nr_ids = dev->num_rx_queues; 2570 } else { 2571 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc); 2572 if (num_possible_cpus() > 1) 2573 online_mask = cpumask_bits(cpu_online_mask); 2574 nr_ids = nr_cpu_ids; 2575 } 2576 2577 if (maps_sz < L1_CACHE_BYTES) 2578 maps_sz = L1_CACHE_BYTES; 2579 2580 /* The old dev_maps could be larger or smaller than the one we're 2581 * setting up now, as dev->num_tc or nr_ids could have been updated in 2582 * between. We could try to be smart, but let's be safe instead and only 2583 * copy foreign traffic classes if the two map sizes match. 2584 */ 2585 if (dev_maps && 2586 dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids) 2587 copy = true; 2588 2589 /* allocate memory for queue storage */ 2590 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids), 2591 j < nr_ids;) { 2592 if (!new_dev_maps) { 2593 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL); 2594 if (!new_dev_maps) { 2595 mutex_unlock(&xps_map_mutex); 2596 return -ENOMEM; 2597 } 2598 2599 new_dev_maps->nr_ids = nr_ids; 2600 new_dev_maps->num_tc = num_tc; 2601 } 2602 2603 tci = j * num_tc + tc; 2604 map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL; 2605 2606 map = expand_xps_map(map, j, index, type == XPS_RXQS); 2607 if (!map) 2608 goto error; 2609 2610 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2611 } 2612 2613 if (!new_dev_maps) 2614 goto out_no_new_maps; 2615 2616 if (!dev_maps) { 2617 /* Increment static keys at most once per type */ 2618 static_key_slow_inc_cpuslocked(&xps_needed); 2619 if (type == XPS_RXQS) 2620 static_key_slow_inc_cpuslocked(&xps_rxqs_needed); 2621 } 2622 2623 for (j = 0; j < nr_ids; j++) { 2624 bool skip_tc = false; 2625 2626 tci = j * num_tc + tc; 2627 if (netif_attr_test_mask(j, mask, nr_ids) && 2628 netif_attr_test_online(j, online_mask, nr_ids)) { 2629 /* add tx-queue to CPU/rx-queue maps */ 2630 int pos = 0; 2631 2632 skip_tc = true; 2633 2634 map = xmap_dereference(new_dev_maps->attr_map[tci]); 2635 while ((pos < map->len) && (map->queues[pos] != index)) 2636 pos++; 2637 2638 if (pos == map->len) 2639 map->queues[map->len++] = index; 2640 #ifdef CONFIG_NUMA 2641 if (type == XPS_CPUS) { 2642 if (numa_node_id == -2) 2643 numa_node_id = cpu_to_node(j); 2644 else if (numa_node_id != cpu_to_node(j)) 2645 numa_node_id = -1; 2646 } 2647 #endif 2648 } 2649 2650 if (copy) 2651 xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc, 2652 skip_tc); 2653 } 2654 2655 rcu_assign_pointer(dev->xps_maps[type], new_dev_maps); 2656 2657 /* Cleanup old maps */ 2658 if (!dev_maps) 2659 goto out_no_old_maps; 2660 2661 for (j = 0; j < dev_maps->nr_ids; j++) { 2662 for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) { 2663 map = xmap_dereference(dev_maps->attr_map[tci]); 2664 if (!map) 2665 continue; 2666 2667 if (copy) { 2668 new_map = xmap_dereference(new_dev_maps->attr_map[tci]); 2669 if (map == new_map) 2670 continue; 2671 } 2672 2673 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL); 2674 kfree_rcu(map, rcu); 2675 } 2676 } 2677 2678 old_dev_maps = dev_maps; 2679 2680 out_no_old_maps: 2681 dev_maps = new_dev_maps; 2682 active = true; 2683 2684 out_no_new_maps: 2685 if (type == XPS_CPUS) 2686 /* update Tx queue numa node */ 2687 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index), 2688 (numa_node_id >= 0) ? 2689 numa_node_id : NUMA_NO_NODE); 2690 2691 if (!dev_maps) 2692 goto out_no_maps; 2693 2694 /* removes tx-queue from unused CPUs/rx-queues */ 2695 for (j = 0; j < dev_maps->nr_ids; j++) { 2696 tci = j * dev_maps->num_tc; 2697 2698 for (i = 0; i < dev_maps->num_tc; i++, tci++) { 2699 if (i == tc && 2700 netif_attr_test_mask(j, mask, dev_maps->nr_ids) && 2701 netif_attr_test_online(j, online_mask, dev_maps->nr_ids)) 2702 continue; 2703 2704 active |= remove_xps_queue(dev_maps, 2705 copy ? old_dev_maps : NULL, 2706 tci, index); 2707 } 2708 } 2709 2710 if (old_dev_maps) 2711 kfree_rcu(old_dev_maps, rcu); 2712 2713 /* free map if not active */ 2714 if (!active) 2715 reset_xps_maps(dev, dev_maps, type); 2716 2717 out_no_maps: 2718 mutex_unlock(&xps_map_mutex); 2719 2720 return 0; 2721 error: 2722 /* remove any maps that we added */ 2723 for (j = 0; j < nr_ids; j++) { 2724 for (i = num_tc, tci = j * num_tc; i--; tci++) { 2725 new_map = xmap_dereference(new_dev_maps->attr_map[tci]); 2726 map = copy ? 2727 xmap_dereference(dev_maps->attr_map[tci]) : 2728 NULL; 2729 if (new_map && new_map != map) 2730 kfree(new_map); 2731 } 2732 } 2733 2734 mutex_unlock(&xps_map_mutex); 2735 2736 kfree(new_dev_maps); 2737 return -ENOMEM; 2738 } 2739 EXPORT_SYMBOL_GPL(__netif_set_xps_queue); 2740 2741 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 2742 u16 index) 2743 { 2744 int ret; 2745 2746 cpus_read_lock(); 2747 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS); 2748 cpus_read_unlock(); 2749 2750 return ret; 2751 } 2752 EXPORT_SYMBOL(netif_set_xps_queue); 2753 2754 #endif 2755 static void netdev_unbind_all_sb_channels(struct net_device *dev) 2756 { 2757 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues]; 2758 2759 /* Unbind any subordinate channels */ 2760 while (txq-- != &dev->_tx[0]) { 2761 if (txq->sb_dev) 2762 netdev_unbind_sb_channel(dev, txq->sb_dev); 2763 } 2764 } 2765 2766 void netdev_reset_tc(struct net_device *dev) 2767 { 2768 #ifdef CONFIG_XPS 2769 netif_reset_xps_queues_gt(dev, 0); 2770 #endif 2771 netdev_unbind_all_sb_channels(dev); 2772 2773 /* Reset TC configuration of device */ 2774 dev->num_tc = 0; 2775 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq)); 2776 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map)); 2777 } 2778 EXPORT_SYMBOL(netdev_reset_tc); 2779 2780 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset) 2781 { 2782 if (tc >= dev->num_tc) 2783 return -EINVAL; 2784 2785 #ifdef CONFIG_XPS 2786 netif_reset_xps_queues(dev, offset, count); 2787 #endif 2788 dev->tc_to_txq[tc].count = count; 2789 dev->tc_to_txq[tc].offset = offset; 2790 return 0; 2791 } 2792 EXPORT_SYMBOL(netdev_set_tc_queue); 2793 2794 int netdev_set_num_tc(struct net_device *dev, u8 num_tc) 2795 { 2796 if (num_tc > TC_MAX_QUEUE) 2797 return -EINVAL; 2798 2799 #ifdef CONFIG_XPS 2800 netif_reset_xps_queues_gt(dev, 0); 2801 #endif 2802 netdev_unbind_all_sb_channels(dev); 2803 2804 dev->num_tc = num_tc; 2805 return 0; 2806 } 2807 EXPORT_SYMBOL(netdev_set_num_tc); 2808 2809 void netdev_unbind_sb_channel(struct net_device *dev, 2810 struct net_device *sb_dev) 2811 { 2812 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues]; 2813 2814 #ifdef CONFIG_XPS 2815 netif_reset_xps_queues_gt(sb_dev, 0); 2816 #endif 2817 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq)); 2818 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map)); 2819 2820 while (txq-- != &dev->_tx[0]) { 2821 if (txq->sb_dev == sb_dev) 2822 txq->sb_dev = NULL; 2823 } 2824 } 2825 EXPORT_SYMBOL(netdev_unbind_sb_channel); 2826 2827 int netdev_bind_sb_channel_queue(struct net_device *dev, 2828 struct net_device *sb_dev, 2829 u8 tc, u16 count, u16 offset) 2830 { 2831 /* Make certain the sb_dev and dev are already configured */ 2832 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc) 2833 return -EINVAL; 2834 2835 /* We cannot hand out queues we don't have */ 2836 if ((offset + count) > dev->real_num_tx_queues) 2837 return -EINVAL; 2838 2839 /* Record the mapping */ 2840 sb_dev->tc_to_txq[tc].count = count; 2841 sb_dev->tc_to_txq[tc].offset = offset; 2842 2843 /* Provide a way for Tx queue to find the tc_to_txq map or 2844 * XPS map for itself. 2845 */ 2846 while (count--) 2847 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev; 2848 2849 return 0; 2850 } 2851 EXPORT_SYMBOL(netdev_bind_sb_channel_queue); 2852 2853 int netdev_set_sb_channel(struct net_device *dev, u16 channel) 2854 { 2855 /* Do not use a multiqueue device to represent a subordinate channel */ 2856 if (netif_is_multiqueue(dev)) 2857 return -ENODEV; 2858 2859 /* We allow channels 1 - 32767 to be used for subordinate channels. 2860 * Channel 0 is meant to be "native" mode and used only to represent 2861 * the main root device. We allow writing 0 to reset the device back 2862 * to normal mode after being used as a subordinate channel. 2863 */ 2864 if (channel > S16_MAX) 2865 return -EINVAL; 2866 2867 dev->num_tc = -channel; 2868 2869 return 0; 2870 } 2871 EXPORT_SYMBOL(netdev_set_sb_channel); 2872 2873 /* 2874 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 2875 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed. 2876 */ 2877 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 2878 { 2879 bool disabling; 2880 int rc; 2881 2882 disabling = txq < dev->real_num_tx_queues; 2883 2884 if (txq < 1 || txq > dev->num_tx_queues) 2885 return -EINVAL; 2886 2887 if (dev->reg_state == NETREG_REGISTERED || 2888 dev->reg_state == NETREG_UNREGISTERING) { 2889 ASSERT_RTNL(); 2890 2891 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 2892 txq); 2893 if (rc) 2894 return rc; 2895 2896 if (dev->num_tc) 2897 netif_setup_tc(dev, txq); 2898 2899 dev_qdisc_change_real_num_tx(dev, txq); 2900 2901 dev->real_num_tx_queues = txq; 2902 2903 if (disabling) { 2904 synchronize_net(); 2905 qdisc_reset_all_tx_gt(dev, txq); 2906 #ifdef CONFIG_XPS 2907 netif_reset_xps_queues_gt(dev, txq); 2908 #endif 2909 } 2910 } else { 2911 dev->real_num_tx_queues = txq; 2912 } 2913 2914 return 0; 2915 } 2916 EXPORT_SYMBOL(netif_set_real_num_tx_queues); 2917 2918 #ifdef CONFIG_SYSFS 2919 /** 2920 * netif_set_real_num_rx_queues - set actual number of RX queues used 2921 * @dev: Network device 2922 * @rxq: Actual number of RX queues 2923 * 2924 * This must be called either with the rtnl_lock held or before 2925 * registration of the net device. Returns 0 on success, or a 2926 * negative error code. If called before registration, it always 2927 * succeeds. 2928 */ 2929 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 2930 { 2931 int rc; 2932 2933 if (rxq < 1 || rxq > dev->num_rx_queues) 2934 return -EINVAL; 2935 2936 if (dev->reg_state == NETREG_REGISTERED) { 2937 ASSERT_RTNL(); 2938 2939 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 2940 rxq); 2941 if (rc) 2942 return rc; 2943 } 2944 2945 dev->real_num_rx_queues = rxq; 2946 return 0; 2947 } 2948 EXPORT_SYMBOL(netif_set_real_num_rx_queues); 2949 #endif 2950 2951 /** 2952 * netif_set_real_num_queues - set actual number of RX and TX queues used 2953 * @dev: Network device 2954 * @txq: Actual number of TX queues 2955 * @rxq: Actual number of RX queues 2956 * 2957 * Set the real number of both TX and RX queues. 2958 * Does nothing if the number of queues is already correct. 2959 */ 2960 int netif_set_real_num_queues(struct net_device *dev, 2961 unsigned int txq, unsigned int rxq) 2962 { 2963 unsigned int old_rxq = dev->real_num_rx_queues; 2964 int err; 2965 2966 if (txq < 1 || txq > dev->num_tx_queues || 2967 rxq < 1 || rxq > dev->num_rx_queues) 2968 return -EINVAL; 2969 2970 /* Start from increases, so the error path only does decreases - 2971 * decreases can't fail. 2972 */ 2973 if (rxq > dev->real_num_rx_queues) { 2974 err = netif_set_real_num_rx_queues(dev, rxq); 2975 if (err) 2976 return err; 2977 } 2978 if (txq > dev->real_num_tx_queues) { 2979 err = netif_set_real_num_tx_queues(dev, txq); 2980 if (err) 2981 goto undo_rx; 2982 } 2983 if (rxq < dev->real_num_rx_queues) 2984 WARN_ON(netif_set_real_num_rx_queues(dev, rxq)); 2985 if (txq < dev->real_num_tx_queues) 2986 WARN_ON(netif_set_real_num_tx_queues(dev, txq)); 2987 2988 return 0; 2989 undo_rx: 2990 WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq)); 2991 return err; 2992 } 2993 EXPORT_SYMBOL(netif_set_real_num_queues); 2994 2995 /** 2996 * netif_get_num_default_rss_queues - default number of RSS queues 2997 * 2998 * Default value is the number of physical cores if there are only 1 or 2, or 2999 * divided by 2 if there are more. 3000 */ 3001 int netif_get_num_default_rss_queues(void) 3002 { 3003 cpumask_var_t cpus; 3004 int cpu, count = 0; 3005 3006 if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL))) 3007 return 1; 3008 3009 cpumask_copy(cpus, cpu_online_mask); 3010 for_each_cpu(cpu, cpus) { 3011 ++count; 3012 cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu)); 3013 } 3014 free_cpumask_var(cpus); 3015 3016 return count > 2 ? DIV_ROUND_UP(count, 2) : count; 3017 } 3018 EXPORT_SYMBOL(netif_get_num_default_rss_queues); 3019 3020 static void __netif_reschedule(struct Qdisc *q) 3021 { 3022 struct softnet_data *sd; 3023 unsigned long flags; 3024 3025 local_irq_save(flags); 3026 sd = this_cpu_ptr(&softnet_data); 3027 q->next_sched = NULL; 3028 *sd->output_queue_tailp = q; 3029 sd->output_queue_tailp = &q->next_sched; 3030 raise_softirq_irqoff(NET_TX_SOFTIRQ); 3031 local_irq_restore(flags); 3032 } 3033 3034 void __netif_schedule(struct Qdisc *q) 3035 { 3036 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 3037 __netif_reschedule(q); 3038 } 3039 EXPORT_SYMBOL(__netif_schedule); 3040 3041 struct dev_kfree_skb_cb { 3042 enum skb_free_reason reason; 3043 }; 3044 3045 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb) 3046 { 3047 return (struct dev_kfree_skb_cb *)skb->cb; 3048 } 3049 3050 void netif_schedule_queue(struct netdev_queue *txq) 3051 { 3052 rcu_read_lock(); 3053 if (!netif_xmit_stopped(txq)) { 3054 struct Qdisc *q = rcu_dereference(txq->qdisc); 3055 3056 __netif_schedule(q); 3057 } 3058 rcu_read_unlock(); 3059 } 3060 EXPORT_SYMBOL(netif_schedule_queue); 3061 3062 void netif_tx_wake_queue(struct netdev_queue *dev_queue) 3063 { 3064 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) { 3065 struct Qdisc *q; 3066 3067 rcu_read_lock(); 3068 q = rcu_dereference(dev_queue->qdisc); 3069 __netif_schedule(q); 3070 rcu_read_unlock(); 3071 } 3072 } 3073 EXPORT_SYMBOL(netif_tx_wake_queue); 3074 3075 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason) 3076 { 3077 unsigned long flags; 3078 3079 if (unlikely(!skb)) 3080 return; 3081 3082 if (likely(refcount_read(&skb->users) == 1)) { 3083 smp_rmb(); 3084 refcount_set(&skb->users, 0); 3085 } else if (likely(!refcount_dec_and_test(&skb->users))) { 3086 return; 3087 } 3088 get_kfree_skb_cb(skb)->reason = reason; 3089 local_irq_save(flags); 3090 skb->next = __this_cpu_read(softnet_data.completion_queue); 3091 __this_cpu_write(softnet_data.completion_queue, skb); 3092 raise_softirq_irqoff(NET_TX_SOFTIRQ); 3093 local_irq_restore(flags); 3094 } 3095 EXPORT_SYMBOL(__dev_kfree_skb_irq); 3096 3097 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason) 3098 { 3099 if (in_hardirq() || irqs_disabled()) 3100 __dev_kfree_skb_irq(skb, reason); 3101 else 3102 dev_kfree_skb(skb); 3103 } 3104 EXPORT_SYMBOL(__dev_kfree_skb_any); 3105 3106 3107 /** 3108 * netif_device_detach - mark device as removed 3109 * @dev: network device 3110 * 3111 * Mark device as removed from system and therefore no longer available. 3112 */ 3113 void netif_device_detach(struct net_device *dev) 3114 { 3115 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 3116 netif_running(dev)) { 3117 netif_tx_stop_all_queues(dev); 3118 } 3119 } 3120 EXPORT_SYMBOL(netif_device_detach); 3121 3122 /** 3123 * netif_device_attach - mark device as attached 3124 * @dev: network device 3125 * 3126 * Mark device as attached from system and restart if needed. 3127 */ 3128 void netif_device_attach(struct net_device *dev) 3129 { 3130 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 3131 netif_running(dev)) { 3132 netif_tx_wake_all_queues(dev); 3133 __netdev_watchdog_up(dev); 3134 } 3135 } 3136 EXPORT_SYMBOL(netif_device_attach); 3137 3138 /* 3139 * Returns a Tx hash based on the given packet descriptor a Tx queues' number 3140 * to be used as a distribution range. 3141 */ 3142 static u16 skb_tx_hash(const struct net_device *dev, 3143 const struct net_device *sb_dev, 3144 struct sk_buff *skb) 3145 { 3146 u32 hash; 3147 u16 qoffset = 0; 3148 u16 qcount = dev->real_num_tx_queues; 3149 3150 if (dev->num_tc) { 3151 u8 tc = netdev_get_prio_tc_map(dev, skb->priority); 3152 3153 qoffset = sb_dev->tc_to_txq[tc].offset; 3154 qcount = sb_dev->tc_to_txq[tc].count; 3155 if (unlikely(!qcount)) { 3156 net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n", 3157 sb_dev->name, qoffset, tc); 3158 qoffset = 0; 3159 qcount = dev->real_num_tx_queues; 3160 } 3161 } 3162 3163 if (skb_rx_queue_recorded(skb)) { 3164 hash = skb_get_rx_queue(skb); 3165 if (hash >= qoffset) 3166 hash -= qoffset; 3167 while (unlikely(hash >= qcount)) 3168 hash -= qcount; 3169 return hash + qoffset; 3170 } 3171 3172 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset; 3173 } 3174 3175 static void skb_warn_bad_offload(const struct sk_buff *skb) 3176 { 3177 static const netdev_features_t null_features; 3178 struct net_device *dev = skb->dev; 3179 const char *name = ""; 3180 3181 if (!net_ratelimit()) 3182 return; 3183 3184 if (dev) { 3185 if (dev->dev.parent) 3186 name = dev_driver_string(dev->dev.parent); 3187 else 3188 name = netdev_name(dev); 3189 } 3190 skb_dump(KERN_WARNING, skb, false); 3191 WARN(1, "%s: caps=(%pNF, %pNF)\n", 3192 name, dev ? &dev->features : &null_features, 3193 skb->sk ? &skb->sk->sk_route_caps : &null_features); 3194 } 3195 3196 /* 3197 * Invalidate hardware checksum when packet is to be mangled, and 3198 * complete checksum manually on outgoing path. 3199 */ 3200 int skb_checksum_help(struct sk_buff *skb) 3201 { 3202 __wsum csum; 3203 int ret = 0, offset; 3204 3205 if (skb->ip_summed == CHECKSUM_COMPLETE) 3206 goto out_set_summed; 3207 3208 if (unlikely(skb_is_gso(skb))) { 3209 skb_warn_bad_offload(skb); 3210 return -EINVAL; 3211 } 3212 3213 /* Before computing a checksum, we should make sure no frag could 3214 * be modified by an external entity : checksum could be wrong. 3215 */ 3216 if (skb_has_shared_frag(skb)) { 3217 ret = __skb_linearize(skb); 3218 if (ret) 3219 goto out; 3220 } 3221 3222 offset = skb_checksum_start_offset(skb); 3223 BUG_ON(offset >= skb_headlen(skb)); 3224 csum = skb_checksum(skb, offset, skb->len - offset, 0); 3225 3226 offset += skb->csum_offset; 3227 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 3228 3229 ret = skb_ensure_writable(skb, offset + sizeof(__sum16)); 3230 if (ret) 3231 goto out; 3232 3233 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0; 3234 out_set_summed: 3235 skb->ip_summed = CHECKSUM_NONE; 3236 out: 3237 return ret; 3238 } 3239 EXPORT_SYMBOL(skb_checksum_help); 3240 3241 int skb_crc32c_csum_help(struct sk_buff *skb) 3242 { 3243 __le32 crc32c_csum; 3244 int ret = 0, offset, start; 3245 3246 if (skb->ip_summed != CHECKSUM_PARTIAL) 3247 goto out; 3248 3249 if (unlikely(skb_is_gso(skb))) 3250 goto out; 3251 3252 /* Before computing a checksum, we should make sure no frag could 3253 * be modified by an external entity : checksum could be wrong. 3254 */ 3255 if (unlikely(skb_has_shared_frag(skb))) { 3256 ret = __skb_linearize(skb); 3257 if (ret) 3258 goto out; 3259 } 3260 start = skb_checksum_start_offset(skb); 3261 offset = start + offsetof(struct sctphdr, checksum); 3262 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) { 3263 ret = -EINVAL; 3264 goto out; 3265 } 3266 3267 ret = skb_ensure_writable(skb, offset + sizeof(__le32)); 3268 if (ret) 3269 goto out; 3270 3271 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start, 3272 skb->len - start, ~(__u32)0, 3273 crc32c_csum_stub)); 3274 *(__le32 *)(skb->data + offset) = crc32c_csum; 3275 skb->ip_summed = CHECKSUM_NONE; 3276 skb->csum_not_inet = 0; 3277 out: 3278 return ret; 3279 } 3280 3281 __be16 skb_network_protocol(struct sk_buff *skb, int *depth) 3282 { 3283 __be16 type = skb->protocol; 3284 3285 /* Tunnel gso handlers can set protocol to ethernet. */ 3286 if (type == htons(ETH_P_TEB)) { 3287 struct ethhdr *eth; 3288 3289 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr)))) 3290 return 0; 3291 3292 eth = (struct ethhdr *)skb->data; 3293 type = eth->h_proto; 3294 } 3295 3296 return __vlan_get_protocol(skb, type, depth); 3297 } 3298 3299 /* openvswitch calls this on rx path, so we need a different check. 3300 */ 3301 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path) 3302 { 3303 if (tx_path) 3304 return skb->ip_summed != CHECKSUM_PARTIAL && 3305 skb->ip_summed != CHECKSUM_UNNECESSARY; 3306 3307 return skb->ip_summed == CHECKSUM_NONE; 3308 } 3309 3310 /** 3311 * __skb_gso_segment - Perform segmentation on skb. 3312 * @skb: buffer to segment 3313 * @features: features for the output path (see dev->features) 3314 * @tx_path: whether it is called in TX path 3315 * 3316 * This function segments the given skb and returns a list of segments. 3317 * 3318 * It may return NULL if the skb requires no segmentation. This is 3319 * only possible when GSO is used for verifying header integrity. 3320 * 3321 * Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb. 3322 */ 3323 struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 3324 netdev_features_t features, bool tx_path) 3325 { 3326 struct sk_buff *segs; 3327 3328 if (unlikely(skb_needs_check(skb, tx_path))) { 3329 int err; 3330 3331 /* We're going to init ->check field in TCP or UDP header */ 3332 err = skb_cow_head(skb, 0); 3333 if (err < 0) 3334 return ERR_PTR(err); 3335 } 3336 3337 /* Only report GSO partial support if it will enable us to 3338 * support segmentation on this frame without needing additional 3339 * work. 3340 */ 3341 if (features & NETIF_F_GSO_PARTIAL) { 3342 netdev_features_t partial_features = NETIF_F_GSO_ROBUST; 3343 struct net_device *dev = skb->dev; 3344 3345 partial_features |= dev->features & dev->gso_partial_features; 3346 if (!skb_gso_ok(skb, features | partial_features)) 3347 features &= ~NETIF_F_GSO_PARTIAL; 3348 } 3349 3350 BUILD_BUG_ON(SKB_GSO_CB_OFFSET + 3351 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb)); 3352 3353 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb); 3354 SKB_GSO_CB(skb)->encap_level = 0; 3355 3356 skb_reset_mac_header(skb); 3357 skb_reset_mac_len(skb); 3358 3359 segs = skb_mac_gso_segment(skb, features); 3360 3361 if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs))) 3362 skb_warn_bad_offload(skb); 3363 3364 return segs; 3365 } 3366 EXPORT_SYMBOL(__skb_gso_segment); 3367 3368 /* Take action when hardware reception checksum errors are detected. */ 3369 #ifdef CONFIG_BUG 3370 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb) 3371 { 3372 netdev_err(dev, "hw csum failure\n"); 3373 skb_dump(KERN_ERR, skb, true); 3374 dump_stack(); 3375 } 3376 3377 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb) 3378 { 3379 DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb); 3380 } 3381 EXPORT_SYMBOL(netdev_rx_csum_fault); 3382 #endif 3383 3384 /* XXX: check that highmem exists at all on the given machine. */ 3385 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 3386 { 3387 #ifdef CONFIG_HIGHMEM 3388 int i; 3389 3390 if (!(dev->features & NETIF_F_HIGHDMA)) { 3391 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3392 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3393 3394 if (PageHighMem(skb_frag_page(frag))) 3395 return 1; 3396 } 3397 } 3398 #endif 3399 return 0; 3400 } 3401 3402 /* If MPLS offload request, verify we are testing hardware MPLS features 3403 * instead of standard features for the netdev. 3404 */ 3405 #if IS_ENABLED(CONFIG_NET_MPLS_GSO) 3406 static netdev_features_t net_mpls_features(struct sk_buff *skb, 3407 netdev_features_t features, 3408 __be16 type) 3409 { 3410 if (eth_p_mpls(type)) 3411 features &= skb->dev->mpls_features; 3412 3413 return features; 3414 } 3415 #else 3416 static netdev_features_t net_mpls_features(struct sk_buff *skb, 3417 netdev_features_t features, 3418 __be16 type) 3419 { 3420 return features; 3421 } 3422 #endif 3423 3424 static netdev_features_t harmonize_features(struct sk_buff *skb, 3425 netdev_features_t features) 3426 { 3427 __be16 type; 3428 3429 type = skb_network_protocol(skb, NULL); 3430 features = net_mpls_features(skb, features, type); 3431 3432 if (skb->ip_summed != CHECKSUM_NONE && 3433 !can_checksum_protocol(features, type)) { 3434 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 3435 } 3436 if (illegal_highdma(skb->dev, skb)) 3437 features &= ~NETIF_F_SG; 3438 3439 return features; 3440 } 3441 3442 netdev_features_t passthru_features_check(struct sk_buff *skb, 3443 struct net_device *dev, 3444 netdev_features_t features) 3445 { 3446 return features; 3447 } 3448 EXPORT_SYMBOL(passthru_features_check); 3449 3450 static netdev_features_t dflt_features_check(struct sk_buff *skb, 3451 struct net_device *dev, 3452 netdev_features_t features) 3453 { 3454 return vlan_features_check(skb, features); 3455 } 3456 3457 static netdev_features_t gso_features_check(const struct sk_buff *skb, 3458 struct net_device *dev, 3459 netdev_features_t features) 3460 { 3461 u16 gso_segs = skb_shinfo(skb)->gso_segs; 3462 3463 if (gso_segs > READ_ONCE(dev->gso_max_segs)) 3464 return features & ~NETIF_F_GSO_MASK; 3465 3466 if (!skb_shinfo(skb)->gso_type) { 3467 skb_warn_bad_offload(skb); 3468 return features & ~NETIF_F_GSO_MASK; 3469 } 3470 3471 /* Support for GSO partial features requires software 3472 * intervention before we can actually process the packets 3473 * so we need to strip support for any partial features now 3474 * and we can pull them back in after we have partially 3475 * segmented the frame. 3476 */ 3477 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL)) 3478 features &= ~dev->gso_partial_features; 3479 3480 /* Make sure to clear the IPv4 ID mangling feature if the 3481 * IPv4 header has the potential to be fragmented. 3482 */ 3483 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) { 3484 struct iphdr *iph = skb->encapsulation ? 3485 inner_ip_hdr(skb) : ip_hdr(skb); 3486 3487 if (!(iph->frag_off & htons(IP_DF))) 3488 features &= ~NETIF_F_TSO_MANGLEID; 3489 } 3490 3491 return features; 3492 } 3493 3494 netdev_features_t netif_skb_features(struct sk_buff *skb) 3495 { 3496 struct net_device *dev = skb->dev; 3497 netdev_features_t features = dev->features; 3498 3499 if (skb_is_gso(skb)) 3500 features = gso_features_check(skb, dev, features); 3501 3502 /* If encapsulation offload request, verify we are testing 3503 * hardware encapsulation features instead of standard 3504 * features for the netdev 3505 */ 3506 if (skb->encapsulation) 3507 features &= dev->hw_enc_features; 3508 3509 if (skb_vlan_tagged(skb)) 3510 features = netdev_intersect_features(features, 3511 dev->vlan_features | 3512 NETIF_F_HW_VLAN_CTAG_TX | 3513 NETIF_F_HW_VLAN_STAG_TX); 3514 3515 if (dev->netdev_ops->ndo_features_check) 3516 features &= dev->netdev_ops->ndo_features_check(skb, dev, 3517 features); 3518 else 3519 features &= dflt_features_check(skb, dev, features); 3520 3521 return harmonize_features(skb, features); 3522 } 3523 EXPORT_SYMBOL(netif_skb_features); 3524 3525 static int xmit_one(struct sk_buff *skb, struct net_device *dev, 3526 struct netdev_queue *txq, bool more) 3527 { 3528 unsigned int len; 3529 int rc; 3530 3531 if (dev_nit_active(dev)) 3532 dev_queue_xmit_nit(skb, dev); 3533 3534 len = skb->len; 3535 PRANDOM_ADD_NOISE(skb, dev, txq, len + jiffies); 3536 trace_net_dev_start_xmit(skb, dev); 3537 rc = netdev_start_xmit(skb, dev, txq, more); 3538 trace_net_dev_xmit(skb, rc, dev, len); 3539 3540 return rc; 3541 } 3542 3543 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev, 3544 struct netdev_queue *txq, int *ret) 3545 { 3546 struct sk_buff *skb = first; 3547 int rc = NETDEV_TX_OK; 3548 3549 while (skb) { 3550 struct sk_buff *next = skb->next; 3551 3552 skb_mark_not_on_list(skb); 3553 rc = xmit_one(skb, dev, txq, next != NULL); 3554 if (unlikely(!dev_xmit_complete(rc))) { 3555 skb->next = next; 3556 goto out; 3557 } 3558 3559 skb = next; 3560 if (netif_tx_queue_stopped(txq) && skb) { 3561 rc = NETDEV_TX_BUSY; 3562 break; 3563 } 3564 } 3565 3566 out: 3567 *ret = rc; 3568 return skb; 3569 } 3570 3571 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb, 3572 netdev_features_t features) 3573 { 3574 if (skb_vlan_tag_present(skb) && 3575 !vlan_hw_offload_capable(features, skb->vlan_proto)) 3576 skb = __vlan_hwaccel_push_inside(skb); 3577 return skb; 3578 } 3579 3580 int skb_csum_hwoffload_help(struct sk_buff *skb, 3581 const netdev_features_t features) 3582 { 3583 if (unlikely(skb_csum_is_sctp(skb))) 3584 return !!(features & NETIF_F_SCTP_CRC) ? 0 : 3585 skb_crc32c_csum_help(skb); 3586 3587 if (features & NETIF_F_HW_CSUM) 3588 return 0; 3589 3590 if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) { 3591 switch (skb->csum_offset) { 3592 case offsetof(struct tcphdr, check): 3593 case offsetof(struct udphdr, check): 3594 return 0; 3595 } 3596 } 3597 3598 return skb_checksum_help(skb); 3599 } 3600 EXPORT_SYMBOL(skb_csum_hwoffload_help); 3601 3602 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again) 3603 { 3604 netdev_features_t features; 3605 3606 features = netif_skb_features(skb); 3607 skb = validate_xmit_vlan(skb, features); 3608 if (unlikely(!skb)) 3609 goto out_null; 3610 3611 skb = sk_validate_xmit_skb(skb, dev); 3612 if (unlikely(!skb)) 3613 goto out_null; 3614 3615 if (netif_needs_gso(skb, features)) { 3616 struct sk_buff *segs; 3617 3618 segs = skb_gso_segment(skb, features); 3619 if (IS_ERR(segs)) { 3620 goto out_kfree_skb; 3621 } else if (segs) { 3622 consume_skb(skb); 3623 skb = segs; 3624 } 3625 } else { 3626 if (skb_needs_linearize(skb, features) && 3627 __skb_linearize(skb)) 3628 goto out_kfree_skb; 3629 3630 /* If packet is not checksummed and device does not 3631 * support checksumming for this protocol, complete 3632 * checksumming here. 3633 */ 3634 if (skb->ip_summed == CHECKSUM_PARTIAL) { 3635 if (skb->encapsulation) 3636 skb_set_inner_transport_header(skb, 3637 skb_checksum_start_offset(skb)); 3638 else 3639 skb_set_transport_header(skb, 3640 skb_checksum_start_offset(skb)); 3641 if (skb_csum_hwoffload_help(skb, features)) 3642 goto out_kfree_skb; 3643 } 3644 } 3645 3646 skb = validate_xmit_xfrm(skb, features, again); 3647 3648 return skb; 3649 3650 out_kfree_skb: 3651 kfree_skb(skb); 3652 out_null: 3653 dev_core_stats_tx_dropped_inc(dev); 3654 return NULL; 3655 } 3656 3657 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again) 3658 { 3659 struct sk_buff *next, *head = NULL, *tail; 3660 3661 for (; skb != NULL; skb = next) { 3662 next = skb->next; 3663 skb_mark_not_on_list(skb); 3664 3665 /* in case skb wont be segmented, point to itself */ 3666 skb->prev = skb; 3667 3668 skb = validate_xmit_skb(skb, dev, again); 3669 if (!skb) 3670 continue; 3671 3672 if (!head) 3673 head = skb; 3674 else 3675 tail->next = skb; 3676 /* If skb was segmented, skb->prev points to 3677 * the last segment. If not, it still contains skb. 3678 */ 3679 tail = skb->prev; 3680 } 3681 return head; 3682 } 3683 EXPORT_SYMBOL_GPL(validate_xmit_skb_list); 3684 3685 static void qdisc_pkt_len_init(struct sk_buff *skb) 3686 { 3687 const struct skb_shared_info *shinfo = skb_shinfo(skb); 3688 3689 qdisc_skb_cb(skb)->pkt_len = skb->len; 3690 3691 /* To get more precise estimation of bytes sent on wire, 3692 * we add to pkt_len the headers size of all segments 3693 */ 3694 if (shinfo->gso_size && skb_transport_header_was_set(skb)) { 3695 unsigned int hdr_len; 3696 u16 gso_segs = shinfo->gso_segs; 3697 3698 /* mac layer + network layer */ 3699 hdr_len = skb_transport_header(skb) - skb_mac_header(skb); 3700 3701 /* + transport layer */ 3702 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) { 3703 const struct tcphdr *th; 3704 struct tcphdr _tcphdr; 3705 3706 th = skb_header_pointer(skb, skb_transport_offset(skb), 3707 sizeof(_tcphdr), &_tcphdr); 3708 if (likely(th)) 3709 hdr_len += __tcp_hdrlen(th); 3710 } else { 3711 struct udphdr _udphdr; 3712 3713 if (skb_header_pointer(skb, skb_transport_offset(skb), 3714 sizeof(_udphdr), &_udphdr)) 3715 hdr_len += sizeof(struct udphdr); 3716 } 3717 3718 if (shinfo->gso_type & SKB_GSO_DODGY) 3719 gso_segs = DIV_ROUND_UP(skb->len - hdr_len, 3720 shinfo->gso_size); 3721 3722 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len; 3723 } 3724 } 3725 3726 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q, 3727 struct sk_buff **to_free, 3728 struct netdev_queue *txq) 3729 { 3730 int rc; 3731 3732 rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK; 3733 if (rc == NET_XMIT_SUCCESS) 3734 trace_qdisc_enqueue(q, txq, skb); 3735 return rc; 3736 } 3737 3738 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 3739 struct net_device *dev, 3740 struct netdev_queue *txq) 3741 { 3742 spinlock_t *root_lock = qdisc_lock(q); 3743 struct sk_buff *to_free = NULL; 3744 bool contended; 3745 int rc; 3746 3747 qdisc_calculate_pkt_len(skb, q); 3748 3749 if (q->flags & TCQ_F_NOLOCK) { 3750 if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) && 3751 qdisc_run_begin(q)) { 3752 /* Retest nolock_qdisc_is_empty() within the protection 3753 * of q->seqlock to protect from racing with requeuing. 3754 */ 3755 if (unlikely(!nolock_qdisc_is_empty(q))) { 3756 rc = dev_qdisc_enqueue(skb, q, &to_free, txq); 3757 __qdisc_run(q); 3758 qdisc_run_end(q); 3759 3760 goto no_lock_out; 3761 } 3762 3763 qdisc_bstats_cpu_update(q, skb); 3764 if (sch_direct_xmit(skb, q, dev, txq, NULL, true) && 3765 !nolock_qdisc_is_empty(q)) 3766 __qdisc_run(q); 3767 3768 qdisc_run_end(q); 3769 return NET_XMIT_SUCCESS; 3770 } 3771 3772 rc = dev_qdisc_enqueue(skb, q, &to_free, txq); 3773 qdisc_run(q); 3774 3775 no_lock_out: 3776 if (unlikely(to_free)) 3777 kfree_skb_list_reason(to_free, 3778 SKB_DROP_REASON_QDISC_DROP); 3779 return rc; 3780 } 3781 3782 /* 3783 * Heuristic to force contended enqueues to serialize on a 3784 * separate lock before trying to get qdisc main lock. 3785 * This permits qdisc->running owner to get the lock more 3786 * often and dequeue packets faster. 3787 * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit 3788 * and then other tasks will only enqueue packets. The packets will be 3789 * sent after the qdisc owner is scheduled again. To prevent this 3790 * scenario the task always serialize on the lock. 3791 */ 3792 contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT); 3793 if (unlikely(contended)) 3794 spin_lock(&q->busylock); 3795 3796 spin_lock(root_lock); 3797 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 3798 __qdisc_drop(skb, &to_free); 3799 rc = NET_XMIT_DROP; 3800 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 3801 qdisc_run_begin(q)) { 3802 /* 3803 * This is a work-conserving queue; there are no old skbs 3804 * waiting to be sent out; and the qdisc is not running - 3805 * xmit the skb directly. 3806 */ 3807 3808 qdisc_bstats_update(q, skb); 3809 3810 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) { 3811 if (unlikely(contended)) { 3812 spin_unlock(&q->busylock); 3813 contended = false; 3814 } 3815 __qdisc_run(q); 3816 } 3817 3818 qdisc_run_end(q); 3819 rc = NET_XMIT_SUCCESS; 3820 } else { 3821 rc = dev_qdisc_enqueue(skb, q, &to_free, txq); 3822 if (qdisc_run_begin(q)) { 3823 if (unlikely(contended)) { 3824 spin_unlock(&q->busylock); 3825 contended = false; 3826 } 3827 __qdisc_run(q); 3828 qdisc_run_end(q); 3829 } 3830 } 3831 spin_unlock(root_lock); 3832 if (unlikely(to_free)) 3833 kfree_skb_list_reason(to_free, SKB_DROP_REASON_QDISC_DROP); 3834 if (unlikely(contended)) 3835 spin_unlock(&q->busylock); 3836 return rc; 3837 } 3838 3839 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 3840 static void skb_update_prio(struct sk_buff *skb) 3841 { 3842 const struct netprio_map *map; 3843 const struct sock *sk; 3844 unsigned int prioidx; 3845 3846 if (skb->priority) 3847 return; 3848 map = rcu_dereference_bh(skb->dev->priomap); 3849 if (!map) 3850 return; 3851 sk = skb_to_full_sk(skb); 3852 if (!sk) 3853 return; 3854 3855 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data); 3856 3857 if (prioidx < map->priomap_len) 3858 skb->priority = map->priomap[prioidx]; 3859 } 3860 #else 3861 #define skb_update_prio(skb) 3862 #endif 3863 3864 /** 3865 * dev_loopback_xmit - loop back @skb 3866 * @net: network namespace this loopback is happening in 3867 * @sk: sk needed to be a netfilter okfn 3868 * @skb: buffer to transmit 3869 */ 3870 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb) 3871 { 3872 skb_reset_mac_header(skb); 3873 __skb_pull(skb, skb_network_offset(skb)); 3874 skb->pkt_type = PACKET_LOOPBACK; 3875 if (skb->ip_summed == CHECKSUM_NONE) 3876 skb->ip_summed = CHECKSUM_UNNECESSARY; 3877 WARN_ON(!skb_dst(skb)); 3878 skb_dst_force(skb); 3879 netif_rx(skb); 3880 return 0; 3881 } 3882 EXPORT_SYMBOL(dev_loopback_xmit); 3883 3884 #ifdef CONFIG_NET_EGRESS 3885 static struct sk_buff * 3886 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev) 3887 { 3888 #ifdef CONFIG_NET_CLS_ACT 3889 struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress); 3890 struct tcf_result cl_res; 3891 3892 if (!miniq) 3893 return skb; 3894 3895 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */ 3896 tc_skb_cb(skb)->mru = 0; 3897 tc_skb_cb(skb)->post_ct = false; 3898 mini_qdisc_bstats_cpu_update(miniq, skb); 3899 3900 switch (tcf_classify(skb, miniq->block, miniq->filter_list, &cl_res, false)) { 3901 case TC_ACT_OK: 3902 case TC_ACT_RECLASSIFY: 3903 skb->tc_index = TC_H_MIN(cl_res.classid); 3904 break; 3905 case TC_ACT_SHOT: 3906 mini_qdisc_qstats_cpu_drop(miniq); 3907 *ret = NET_XMIT_DROP; 3908 kfree_skb_reason(skb, SKB_DROP_REASON_TC_EGRESS); 3909 return NULL; 3910 case TC_ACT_STOLEN: 3911 case TC_ACT_QUEUED: 3912 case TC_ACT_TRAP: 3913 *ret = NET_XMIT_SUCCESS; 3914 consume_skb(skb); 3915 return NULL; 3916 case TC_ACT_REDIRECT: 3917 /* No need to push/pop skb's mac_header here on egress! */ 3918 skb_do_redirect(skb); 3919 *ret = NET_XMIT_SUCCESS; 3920 return NULL; 3921 default: 3922 break; 3923 } 3924 #endif /* CONFIG_NET_CLS_ACT */ 3925 3926 return skb; 3927 } 3928 #endif /* CONFIG_NET_EGRESS */ 3929 3930 #ifdef CONFIG_XPS 3931 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb, 3932 struct xps_dev_maps *dev_maps, unsigned int tci) 3933 { 3934 int tc = netdev_get_prio_tc_map(dev, skb->priority); 3935 struct xps_map *map; 3936 int queue_index = -1; 3937 3938 if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids) 3939 return queue_index; 3940 3941 tci *= dev_maps->num_tc; 3942 tci += tc; 3943 3944 map = rcu_dereference(dev_maps->attr_map[tci]); 3945 if (map) { 3946 if (map->len == 1) 3947 queue_index = map->queues[0]; 3948 else 3949 queue_index = map->queues[reciprocal_scale( 3950 skb_get_hash(skb), map->len)]; 3951 if (unlikely(queue_index >= dev->real_num_tx_queues)) 3952 queue_index = -1; 3953 } 3954 return queue_index; 3955 } 3956 #endif 3957 3958 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev, 3959 struct sk_buff *skb) 3960 { 3961 #ifdef CONFIG_XPS 3962 struct xps_dev_maps *dev_maps; 3963 struct sock *sk = skb->sk; 3964 int queue_index = -1; 3965 3966 if (!static_key_false(&xps_needed)) 3967 return -1; 3968 3969 rcu_read_lock(); 3970 if (!static_key_false(&xps_rxqs_needed)) 3971 goto get_cpus_map; 3972 3973 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]); 3974 if (dev_maps) { 3975 int tci = sk_rx_queue_get(sk); 3976 3977 if (tci >= 0) 3978 queue_index = __get_xps_queue_idx(dev, skb, dev_maps, 3979 tci); 3980 } 3981 3982 get_cpus_map: 3983 if (queue_index < 0) { 3984 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]); 3985 if (dev_maps) { 3986 unsigned int tci = skb->sender_cpu - 1; 3987 3988 queue_index = __get_xps_queue_idx(dev, skb, dev_maps, 3989 tci); 3990 } 3991 } 3992 rcu_read_unlock(); 3993 3994 return queue_index; 3995 #else 3996 return -1; 3997 #endif 3998 } 3999 4000 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb, 4001 struct net_device *sb_dev) 4002 { 4003 return 0; 4004 } 4005 EXPORT_SYMBOL(dev_pick_tx_zero); 4006 4007 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb, 4008 struct net_device *sb_dev) 4009 { 4010 return (u16)raw_smp_processor_id() % dev->real_num_tx_queues; 4011 } 4012 EXPORT_SYMBOL(dev_pick_tx_cpu_id); 4013 4014 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb, 4015 struct net_device *sb_dev) 4016 { 4017 struct sock *sk = skb->sk; 4018 int queue_index = sk_tx_queue_get(sk); 4019 4020 sb_dev = sb_dev ? : dev; 4021 4022 if (queue_index < 0 || skb->ooo_okay || 4023 queue_index >= dev->real_num_tx_queues) { 4024 int new_index = get_xps_queue(dev, sb_dev, skb); 4025 4026 if (new_index < 0) 4027 new_index = skb_tx_hash(dev, sb_dev, skb); 4028 4029 if (queue_index != new_index && sk && 4030 sk_fullsock(sk) && 4031 rcu_access_pointer(sk->sk_dst_cache)) 4032 sk_tx_queue_set(sk, new_index); 4033 4034 queue_index = new_index; 4035 } 4036 4037 return queue_index; 4038 } 4039 EXPORT_SYMBOL(netdev_pick_tx); 4040 4041 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev, 4042 struct sk_buff *skb, 4043 struct net_device *sb_dev) 4044 { 4045 int queue_index = 0; 4046 4047 #ifdef CONFIG_XPS 4048 u32 sender_cpu = skb->sender_cpu - 1; 4049 4050 if (sender_cpu >= (u32)NR_CPUS) 4051 skb->sender_cpu = raw_smp_processor_id() + 1; 4052 #endif 4053 4054 if (dev->real_num_tx_queues != 1) { 4055 const struct net_device_ops *ops = dev->netdev_ops; 4056 4057 if (ops->ndo_select_queue) 4058 queue_index = ops->ndo_select_queue(dev, skb, sb_dev); 4059 else 4060 queue_index = netdev_pick_tx(dev, skb, sb_dev); 4061 4062 queue_index = netdev_cap_txqueue(dev, queue_index); 4063 } 4064 4065 skb_set_queue_mapping(skb, queue_index); 4066 return netdev_get_tx_queue(dev, queue_index); 4067 } 4068 4069 /** 4070 * __dev_queue_xmit - transmit a buffer 4071 * @skb: buffer to transmit 4072 * @sb_dev: suboordinate device used for L2 forwarding offload 4073 * 4074 * Queue a buffer for transmission to a network device. The caller must 4075 * have set the device and priority and built the buffer before calling 4076 * this function. The function can be called from an interrupt. 4077 * 4078 * A negative errno code is returned on a failure. A success does not 4079 * guarantee the frame will be transmitted as it may be dropped due 4080 * to congestion or traffic shaping. 4081 * 4082 * ----------------------------------------------------------------------------------- 4083 * I notice this method can also return errors from the queue disciplines, 4084 * including NET_XMIT_DROP, which is a positive value. So, errors can also 4085 * be positive. 4086 * 4087 * Regardless of the return value, the skb is consumed, so it is currently 4088 * difficult to retry a send to this method. (You can bump the ref count 4089 * before sending to hold a reference for retry if you are careful.) 4090 * 4091 * When calling this method, interrupts MUST be enabled. This is because 4092 * the BH enable code must have IRQs enabled so that it will not deadlock. 4093 * --BLG 4094 */ 4095 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev) 4096 { 4097 struct net_device *dev = skb->dev; 4098 struct netdev_queue *txq; 4099 struct Qdisc *q; 4100 int rc = -ENOMEM; 4101 bool again = false; 4102 4103 skb_reset_mac_header(skb); 4104 4105 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP)) 4106 __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED); 4107 4108 /* Disable soft irqs for various locks below. Also 4109 * stops preemption for RCU. 4110 */ 4111 rcu_read_lock_bh(); 4112 4113 skb_update_prio(skb); 4114 4115 qdisc_pkt_len_init(skb); 4116 #ifdef CONFIG_NET_CLS_ACT 4117 skb->tc_at_ingress = 0; 4118 #endif 4119 #ifdef CONFIG_NET_EGRESS 4120 if (static_branch_unlikely(&egress_needed_key)) { 4121 if (nf_hook_egress_active()) { 4122 skb = nf_hook_egress(skb, &rc, dev); 4123 if (!skb) 4124 goto out; 4125 } 4126 nf_skip_egress(skb, true); 4127 skb = sch_handle_egress(skb, &rc, dev); 4128 if (!skb) 4129 goto out; 4130 nf_skip_egress(skb, false); 4131 } 4132 #endif 4133 /* If device/qdisc don't need skb->dst, release it right now while 4134 * its hot in this cpu cache. 4135 */ 4136 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 4137 skb_dst_drop(skb); 4138 else 4139 skb_dst_force(skb); 4140 4141 txq = netdev_core_pick_tx(dev, skb, sb_dev); 4142 q = rcu_dereference_bh(txq->qdisc); 4143 4144 trace_net_dev_queue(skb); 4145 if (q->enqueue) { 4146 rc = __dev_xmit_skb(skb, q, dev, txq); 4147 goto out; 4148 } 4149 4150 /* The device has no queue. Common case for software devices: 4151 * loopback, all the sorts of tunnels... 4152 4153 * Really, it is unlikely that netif_tx_lock protection is necessary 4154 * here. (f.e. loopback and IP tunnels are clean ignoring statistics 4155 * counters.) 4156 * However, it is possible, that they rely on protection 4157 * made by us here. 4158 4159 * Check this and shot the lock. It is not prone from deadlocks. 4160 *Either shot noqueue qdisc, it is even simpler 8) 4161 */ 4162 if (dev->flags & IFF_UP) { 4163 int cpu = smp_processor_id(); /* ok because BHs are off */ 4164 4165 /* Other cpus might concurrently change txq->xmit_lock_owner 4166 * to -1 or to their cpu id, but not to our id. 4167 */ 4168 if (READ_ONCE(txq->xmit_lock_owner) != cpu) { 4169 if (dev_xmit_recursion()) 4170 goto recursion_alert; 4171 4172 skb = validate_xmit_skb(skb, dev, &again); 4173 if (!skb) 4174 goto out; 4175 4176 PRANDOM_ADD_NOISE(skb, dev, txq, jiffies); 4177 HARD_TX_LOCK(dev, txq, cpu); 4178 4179 if (!netif_xmit_stopped(txq)) { 4180 dev_xmit_recursion_inc(); 4181 skb = dev_hard_start_xmit(skb, dev, txq, &rc); 4182 dev_xmit_recursion_dec(); 4183 if (dev_xmit_complete(rc)) { 4184 HARD_TX_UNLOCK(dev, txq); 4185 goto out; 4186 } 4187 } 4188 HARD_TX_UNLOCK(dev, txq); 4189 net_crit_ratelimited("Virtual device %s asks to queue packet!\n", 4190 dev->name); 4191 } else { 4192 /* Recursion is detected! It is possible, 4193 * unfortunately 4194 */ 4195 recursion_alert: 4196 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n", 4197 dev->name); 4198 } 4199 } 4200 4201 rc = -ENETDOWN; 4202 rcu_read_unlock_bh(); 4203 4204 dev_core_stats_tx_dropped_inc(dev); 4205 kfree_skb_list(skb); 4206 return rc; 4207 out: 4208 rcu_read_unlock_bh(); 4209 return rc; 4210 } 4211 4212 int dev_queue_xmit(struct sk_buff *skb) 4213 { 4214 return __dev_queue_xmit(skb, NULL); 4215 } 4216 EXPORT_SYMBOL(dev_queue_xmit); 4217 4218 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev) 4219 { 4220 return __dev_queue_xmit(skb, sb_dev); 4221 } 4222 EXPORT_SYMBOL(dev_queue_xmit_accel); 4223 4224 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id) 4225 { 4226 struct net_device *dev = skb->dev; 4227 struct sk_buff *orig_skb = skb; 4228 struct netdev_queue *txq; 4229 int ret = NETDEV_TX_BUSY; 4230 bool again = false; 4231 4232 if (unlikely(!netif_running(dev) || 4233 !netif_carrier_ok(dev))) 4234 goto drop; 4235 4236 skb = validate_xmit_skb_list(skb, dev, &again); 4237 if (skb != orig_skb) 4238 goto drop; 4239 4240 skb_set_queue_mapping(skb, queue_id); 4241 txq = skb_get_tx_queue(dev, skb); 4242 PRANDOM_ADD_NOISE(skb, dev, txq, jiffies); 4243 4244 local_bh_disable(); 4245 4246 dev_xmit_recursion_inc(); 4247 HARD_TX_LOCK(dev, txq, smp_processor_id()); 4248 if (!netif_xmit_frozen_or_drv_stopped(txq)) 4249 ret = netdev_start_xmit(skb, dev, txq, false); 4250 HARD_TX_UNLOCK(dev, txq); 4251 dev_xmit_recursion_dec(); 4252 4253 local_bh_enable(); 4254 return ret; 4255 drop: 4256 dev_core_stats_tx_dropped_inc(dev); 4257 kfree_skb_list(skb); 4258 return NET_XMIT_DROP; 4259 } 4260 EXPORT_SYMBOL(__dev_direct_xmit); 4261 4262 /************************************************************************* 4263 * Receiver routines 4264 *************************************************************************/ 4265 4266 int netdev_max_backlog __read_mostly = 1000; 4267 EXPORT_SYMBOL(netdev_max_backlog); 4268 4269 int netdev_tstamp_prequeue __read_mostly = 1; 4270 int netdev_budget __read_mostly = 300; 4271 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */ 4272 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ; 4273 int weight_p __read_mostly = 64; /* old backlog weight */ 4274 int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */ 4275 int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */ 4276 int dev_rx_weight __read_mostly = 64; 4277 int dev_tx_weight __read_mostly = 64; 4278 4279 /* Called with irq disabled */ 4280 static inline void ____napi_schedule(struct softnet_data *sd, 4281 struct napi_struct *napi) 4282 { 4283 struct task_struct *thread; 4284 4285 lockdep_assert_irqs_disabled(); 4286 4287 if (test_bit(NAPI_STATE_THREADED, &napi->state)) { 4288 /* Paired with smp_mb__before_atomic() in 4289 * napi_enable()/dev_set_threaded(). 4290 * Use READ_ONCE() to guarantee a complete 4291 * read on napi->thread. Only call 4292 * wake_up_process() when it's not NULL. 4293 */ 4294 thread = READ_ONCE(napi->thread); 4295 if (thread) { 4296 /* Avoid doing set_bit() if the thread is in 4297 * INTERRUPTIBLE state, cause napi_thread_wait() 4298 * makes sure to proceed with napi polling 4299 * if the thread is explicitly woken from here. 4300 */ 4301 if (READ_ONCE(thread->__state) != TASK_INTERRUPTIBLE) 4302 set_bit(NAPI_STATE_SCHED_THREADED, &napi->state); 4303 wake_up_process(thread); 4304 return; 4305 } 4306 } 4307 4308 list_add_tail(&napi->poll_list, &sd->poll_list); 4309 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 4310 } 4311 4312 #ifdef CONFIG_RPS 4313 4314 /* One global table that all flow-based protocols share. */ 4315 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly; 4316 EXPORT_SYMBOL(rps_sock_flow_table); 4317 u32 rps_cpu_mask __read_mostly; 4318 EXPORT_SYMBOL(rps_cpu_mask); 4319 4320 struct static_key_false rps_needed __read_mostly; 4321 EXPORT_SYMBOL(rps_needed); 4322 struct static_key_false rfs_needed __read_mostly; 4323 EXPORT_SYMBOL(rfs_needed); 4324 4325 static struct rps_dev_flow * 4326 set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 4327 struct rps_dev_flow *rflow, u16 next_cpu) 4328 { 4329 if (next_cpu < nr_cpu_ids) { 4330 #ifdef CONFIG_RFS_ACCEL 4331 struct netdev_rx_queue *rxqueue; 4332 struct rps_dev_flow_table *flow_table; 4333 struct rps_dev_flow *old_rflow; 4334 u32 flow_id; 4335 u16 rxq_index; 4336 int rc; 4337 4338 /* Should we steer this flow to a different hardware queue? */ 4339 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 4340 !(dev->features & NETIF_F_NTUPLE)) 4341 goto out; 4342 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 4343 if (rxq_index == skb_get_rx_queue(skb)) 4344 goto out; 4345 4346 rxqueue = dev->_rx + rxq_index; 4347 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4348 if (!flow_table) 4349 goto out; 4350 flow_id = skb_get_hash(skb) & flow_table->mask; 4351 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 4352 rxq_index, flow_id); 4353 if (rc < 0) 4354 goto out; 4355 old_rflow = rflow; 4356 rflow = &flow_table->flows[flow_id]; 4357 rflow->filter = rc; 4358 if (old_rflow->filter == rflow->filter) 4359 old_rflow->filter = RPS_NO_FILTER; 4360 out: 4361 #endif 4362 rflow->last_qtail = 4363 per_cpu(softnet_data, next_cpu).input_queue_head; 4364 } 4365 4366 rflow->cpu = next_cpu; 4367 return rflow; 4368 } 4369 4370 /* 4371 * get_rps_cpu is called from netif_receive_skb and returns the target 4372 * CPU from the RPS map of the receiving queue for a given skb. 4373 * rcu_read_lock must be held on entry. 4374 */ 4375 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 4376 struct rps_dev_flow **rflowp) 4377 { 4378 const struct rps_sock_flow_table *sock_flow_table; 4379 struct netdev_rx_queue *rxqueue = dev->_rx; 4380 struct rps_dev_flow_table *flow_table; 4381 struct rps_map *map; 4382 int cpu = -1; 4383 u32 tcpu; 4384 u32 hash; 4385 4386 if (skb_rx_queue_recorded(skb)) { 4387 u16 index = skb_get_rx_queue(skb); 4388 4389 if (unlikely(index >= dev->real_num_rx_queues)) { 4390 WARN_ONCE(dev->real_num_rx_queues > 1, 4391 "%s received packet on queue %u, but number " 4392 "of RX queues is %u\n", 4393 dev->name, index, dev->real_num_rx_queues); 4394 goto done; 4395 } 4396 rxqueue += index; 4397 } 4398 4399 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */ 4400 4401 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4402 map = rcu_dereference(rxqueue->rps_map); 4403 if (!flow_table && !map) 4404 goto done; 4405 4406 skb_reset_network_header(skb); 4407 hash = skb_get_hash(skb); 4408 if (!hash) 4409 goto done; 4410 4411 sock_flow_table = rcu_dereference(rps_sock_flow_table); 4412 if (flow_table && sock_flow_table) { 4413 struct rps_dev_flow *rflow; 4414 u32 next_cpu; 4415 u32 ident; 4416 4417 /* First check into global flow table if there is a match */ 4418 ident = sock_flow_table->ents[hash & sock_flow_table->mask]; 4419 if ((ident ^ hash) & ~rps_cpu_mask) 4420 goto try_rps; 4421 4422 next_cpu = ident & rps_cpu_mask; 4423 4424 /* OK, now we know there is a match, 4425 * we can look at the local (per receive queue) flow table 4426 */ 4427 rflow = &flow_table->flows[hash & flow_table->mask]; 4428 tcpu = rflow->cpu; 4429 4430 /* 4431 * If the desired CPU (where last recvmsg was done) is 4432 * different from current CPU (one in the rx-queue flow 4433 * table entry), switch if one of the following holds: 4434 * - Current CPU is unset (>= nr_cpu_ids). 4435 * - Current CPU is offline. 4436 * - The current CPU's queue tail has advanced beyond the 4437 * last packet that was enqueued using this table entry. 4438 * This guarantees that all previous packets for the flow 4439 * have been dequeued, thus preserving in order delivery. 4440 */ 4441 if (unlikely(tcpu != next_cpu) && 4442 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) || 4443 ((int)(per_cpu(softnet_data, tcpu).input_queue_head - 4444 rflow->last_qtail)) >= 0)) { 4445 tcpu = next_cpu; 4446 rflow = set_rps_cpu(dev, skb, rflow, next_cpu); 4447 } 4448 4449 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) { 4450 *rflowp = rflow; 4451 cpu = tcpu; 4452 goto done; 4453 } 4454 } 4455 4456 try_rps: 4457 4458 if (map) { 4459 tcpu = map->cpus[reciprocal_scale(hash, map->len)]; 4460 if (cpu_online(tcpu)) { 4461 cpu = tcpu; 4462 goto done; 4463 } 4464 } 4465 4466 done: 4467 return cpu; 4468 } 4469 4470 #ifdef CONFIG_RFS_ACCEL 4471 4472 /** 4473 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 4474 * @dev: Device on which the filter was set 4475 * @rxq_index: RX queue index 4476 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 4477 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 4478 * 4479 * Drivers that implement ndo_rx_flow_steer() should periodically call 4480 * this function for each installed filter and remove the filters for 4481 * which it returns %true. 4482 */ 4483 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 4484 u32 flow_id, u16 filter_id) 4485 { 4486 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 4487 struct rps_dev_flow_table *flow_table; 4488 struct rps_dev_flow *rflow; 4489 bool expire = true; 4490 unsigned int cpu; 4491 4492 rcu_read_lock(); 4493 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4494 if (flow_table && flow_id <= flow_table->mask) { 4495 rflow = &flow_table->flows[flow_id]; 4496 cpu = READ_ONCE(rflow->cpu); 4497 if (rflow->filter == filter_id && cpu < nr_cpu_ids && 4498 ((int)(per_cpu(softnet_data, cpu).input_queue_head - 4499 rflow->last_qtail) < 4500 (int)(10 * flow_table->mask))) 4501 expire = false; 4502 } 4503 rcu_read_unlock(); 4504 return expire; 4505 } 4506 EXPORT_SYMBOL(rps_may_expire_flow); 4507 4508 #endif /* CONFIG_RFS_ACCEL */ 4509 4510 /* Called from hardirq (IPI) context */ 4511 static void rps_trigger_softirq(void *data) 4512 { 4513 struct softnet_data *sd = data; 4514 4515 ____napi_schedule(sd, &sd->backlog); 4516 sd->received_rps++; 4517 } 4518 4519 #endif /* CONFIG_RPS */ 4520 4521 /* 4522 * Check if this softnet_data structure is another cpu one 4523 * If yes, queue it to our IPI list and return 1 4524 * If no, return 0 4525 */ 4526 static int napi_schedule_rps(struct softnet_data *sd) 4527 { 4528 struct softnet_data *mysd = this_cpu_ptr(&softnet_data); 4529 4530 #ifdef CONFIG_RPS 4531 if (sd != mysd) { 4532 sd->rps_ipi_next = mysd->rps_ipi_list; 4533 mysd->rps_ipi_list = sd; 4534 4535 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 4536 return 1; 4537 } 4538 #endif /* CONFIG_RPS */ 4539 __napi_schedule_irqoff(&mysd->backlog); 4540 return 0; 4541 } 4542 4543 #ifdef CONFIG_NET_FLOW_LIMIT 4544 int netdev_flow_limit_table_len __read_mostly = (1 << 12); 4545 #endif 4546 4547 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen) 4548 { 4549 #ifdef CONFIG_NET_FLOW_LIMIT 4550 struct sd_flow_limit *fl; 4551 struct softnet_data *sd; 4552 unsigned int old_flow, new_flow; 4553 4554 if (qlen < (netdev_max_backlog >> 1)) 4555 return false; 4556 4557 sd = this_cpu_ptr(&softnet_data); 4558 4559 rcu_read_lock(); 4560 fl = rcu_dereference(sd->flow_limit); 4561 if (fl) { 4562 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1); 4563 old_flow = fl->history[fl->history_head]; 4564 fl->history[fl->history_head] = new_flow; 4565 4566 fl->history_head++; 4567 fl->history_head &= FLOW_LIMIT_HISTORY - 1; 4568 4569 if (likely(fl->buckets[old_flow])) 4570 fl->buckets[old_flow]--; 4571 4572 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) { 4573 fl->count++; 4574 rcu_read_unlock(); 4575 return true; 4576 } 4577 } 4578 rcu_read_unlock(); 4579 #endif 4580 return false; 4581 } 4582 4583 /* 4584 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 4585 * queue (may be a remote CPU queue). 4586 */ 4587 static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 4588 unsigned int *qtail) 4589 { 4590 enum skb_drop_reason reason; 4591 struct softnet_data *sd; 4592 unsigned long flags; 4593 unsigned int qlen; 4594 4595 reason = SKB_DROP_REASON_NOT_SPECIFIED; 4596 sd = &per_cpu(softnet_data, cpu); 4597 4598 rps_lock_irqsave(sd, &flags); 4599 if (!netif_running(skb->dev)) 4600 goto drop; 4601 qlen = skb_queue_len(&sd->input_pkt_queue); 4602 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) { 4603 if (qlen) { 4604 enqueue: 4605 __skb_queue_tail(&sd->input_pkt_queue, skb); 4606 input_queue_tail_incr_save(sd, qtail); 4607 rps_unlock_irq_restore(sd, &flags); 4608 return NET_RX_SUCCESS; 4609 } 4610 4611 /* Schedule NAPI for backlog device 4612 * We can use non atomic operation since we own the queue lock 4613 */ 4614 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) 4615 napi_schedule_rps(sd); 4616 goto enqueue; 4617 } 4618 reason = SKB_DROP_REASON_CPU_BACKLOG; 4619 4620 drop: 4621 sd->dropped++; 4622 rps_unlock_irq_restore(sd, &flags); 4623 4624 dev_core_stats_rx_dropped_inc(skb->dev); 4625 kfree_skb_reason(skb, reason); 4626 return NET_RX_DROP; 4627 } 4628 4629 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb) 4630 { 4631 struct net_device *dev = skb->dev; 4632 struct netdev_rx_queue *rxqueue; 4633 4634 rxqueue = dev->_rx; 4635 4636 if (skb_rx_queue_recorded(skb)) { 4637 u16 index = skb_get_rx_queue(skb); 4638 4639 if (unlikely(index >= dev->real_num_rx_queues)) { 4640 WARN_ONCE(dev->real_num_rx_queues > 1, 4641 "%s received packet on queue %u, but number " 4642 "of RX queues is %u\n", 4643 dev->name, index, dev->real_num_rx_queues); 4644 4645 return rxqueue; /* Return first rxqueue */ 4646 } 4647 rxqueue += index; 4648 } 4649 return rxqueue; 4650 } 4651 4652 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp, 4653 struct bpf_prog *xdp_prog) 4654 { 4655 void *orig_data, *orig_data_end, *hard_start; 4656 struct netdev_rx_queue *rxqueue; 4657 bool orig_bcast, orig_host; 4658 u32 mac_len, frame_sz; 4659 __be16 orig_eth_type; 4660 struct ethhdr *eth; 4661 u32 metalen, act; 4662 int off; 4663 4664 /* The XDP program wants to see the packet starting at the MAC 4665 * header. 4666 */ 4667 mac_len = skb->data - skb_mac_header(skb); 4668 hard_start = skb->data - skb_headroom(skb); 4669 4670 /* SKB "head" area always have tailroom for skb_shared_info */ 4671 frame_sz = (void *)skb_end_pointer(skb) - hard_start; 4672 frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 4673 4674 rxqueue = netif_get_rxqueue(skb); 4675 xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq); 4676 xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len, 4677 skb_headlen(skb) + mac_len, true); 4678 4679 orig_data_end = xdp->data_end; 4680 orig_data = xdp->data; 4681 eth = (struct ethhdr *)xdp->data; 4682 orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr); 4683 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest); 4684 orig_eth_type = eth->h_proto; 4685 4686 act = bpf_prog_run_xdp(xdp_prog, xdp); 4687 4688 /* check if bpf_xdp_adjust_head was used */ 4689 off = xdp->data - orig_data; 4690 if (off) { 4691 if (off > 0) 4692 __skb_pull(skb, off); 4693 else if (off < 0) 4694 __skb_push(skb, -off); 4695 4696 skb->mac_header += off; 4697 skb_reset_network_header(skb); 4698 } 4699 4700 /* check if bpf_xdp_adjust_tail was used */ 4701 off = xdp->data_end - orig_data_end; 4702 if (off != 0) { 4703 skb_set_tail_pointer(skb, xdp->data_end - xdp->data); 4704 skb->len += off; /* positive on grow, negative on shrink */ 4705 } 4706 4707 /* check if XDP changed eth hdr such SKB needs update */ 4708 eth = (struct ethhdr *)xdp->data; 4709 if ((orig_eth_type != eth->h_proto) || 4710 (orig_host != ether_addr_equal_64bits(eth->h_dest, 4711 skb->dev->dev_addr)) || 4712 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) { 4713 __skb_push(skb, ETH_HLEN); 4714 skb->pkt_type = PACKET_HOST; 4715 skb->protocol = eth_type_trans(skb, skb->dev); 4716 } 4717 4718 /* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull 4719 * before calling us again on redirect path. We do not call do_redirect 4720 * as we leave that up to the caller. 4721 * 4722 * Caller is responsible for managing lifetime of skb (i.e. calling 4723 * kfree_skb in response to actions it cannot handle/XDP_DROP). 4724 */ 4725 switch (act) { 4726 case XDP_REDIRECT: 4727 case XDP_TX: 4728 __skb_push(skb, mac_len); 4729 break; 4730 case XDP_PASS: 4731 metalen = xdp->data - xdp->data_meta; 4732 if (metalen) 4733 skb_metadata_set(skb, metalen); 4734 break; 4735 } 4736 4737 return act; 4738 } 4739 4740 static u32 netif_receive_generic_xdp(struct sk_buff *skb, 4741 struct xdp_buff *xdp, 4742 struct bpf_prog *xdp_prog) 4743 { 4744 u32 act = XDP_DROP; 4745 4746 /* Reinjected packets coming from act_mirred or similar should 4747 * not get XDP generic processing. 4748 */ 4749 if (skb_is_redirected(skb)) 4750 return XDP_PASS; 4751 4752 /* XDP packets must be linear and must have sufficient headroom 4753 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also 4754 * native XDP provides, thus we need to do it here as well. 4755 */ 4756 if (skb_cloned(skb) || skb_is_nonlinear(skb) || 4757 skb_headroom(skb) < XDP_PACKET_HEADROOM) { 4758 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb); 4759 int troom = skb->tail + skb->data_len - skb->end; 4760 4761 /* In case we have to go down the path and also linearize, 4762 * then lets do the pskb_expand_head() work just once here. 4763 */ 4764 if (pskb_expand_head(skb, 4765 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0, 4766 troom > 0 ? troom + 128 : 0, GFP_ATOMIC)) 4767 goto do_drop; 4768 if (skb_linearize(skb)) 4769 goto do_drop; 4770 } 4771 4772 act = bpf_prog_run_generic_xdp(skb, xdp, xdp_prog); 4773 switch (act) { 4774 case XDP_REDIRECT: 4775 case XDP_TX: 4776 case XDP_PASS: 4777 break; 4778 default: 4779 bpf_warn_invalid_xdp_action(skb->dev, xdp_prog, act); 4780 fallthrough; 4781 case XDP_ABORTED: 4782 trace_xdp_exception(skb->dev, xdp_prog, act); 4783 fallthrough; 4784 case XDP_DROP: 4785 do_drop: 4786 kfree_skb(skb); 4787 break; 4788 } 4789 4790 return act; 4791 } 4792 4793 /* When doing generic XDP we have to bypass the qdisc layer and the 4794 * network taps in order to match in-driver-XDP behavior. 4795 */ 4796 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog) 4797 { 4798 struct net_device *dev = skb->dev; 4799 struct netdev_queue *txq; 4800 bool free_skb = true; 4801 int cpu, rc; 4802 4803 txq = netdev_core_pick_tx(dev, skb, NULL); 4804 cpu = smp_processor_id(); 4805 HARD_TX_LOCK(dev, txq, cpu); 4806 if (!netif_xmit_stopped(txq)) { 4807 rc = netdev_start_xmit(skb, dev, txq, 0); 4808 if (dev_xmit_complete(rc)) 4809 free_skb = false; 4810 } 4811 HARD_TX_UNLOCK(dev, txq); 4812 if (free_skb) { 4813 trace_xdp_exception(dev, xdp_prog, XDP_TX); 4814 kfree_skb(skb); 4815 } 4816 } 4817 4818 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key); 4819 4820 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb) 4821 { 4822 if (xdp_prog) { 4823 struct xdp_buff xdp; 4824 u32 act; 4825 int err; 4826 4827 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog); 4828 if (act != XDP_PASS) { 4829 switch (act) { 4830 case XDP_REDIRECT: 4831 err = xdp_do_generic_redirect(skb->dev, skb, 4832 &xdp, xdp_prog); 4833 if (err) 4834 goto out_redir; 4835 break; 4836 case XDP_TX: 4837 generic_xdp_tx(skb, xdp_prog); 4838 break; 4839 } 4840 return XDP_DROP; 4841 } 4842 } 4843 return XDP_PASS; 4844 out_redir: 4845 kfree_skb_reason(skb, SKB_DROP_REASON_XDP); 4846 return XDP_DROP; 4847 } 4848 EXPORT_SYMBOL_GPL(do_xdp_generic); 4849 4850 static int netif_rx_internal(struct sk_buff *skb) 4851 { 4852 int ret; 4853 4854 net_timestamp_check(netdev_tstamp_prequeue, skb); 4855 4856 trace_netif_rx(skb); 4857 4858 #ifdef CONFIG_RPS 4859 if (static_branch_unlikely(&rps_needed)) { 4860 struct rps_dev_flow voidflow, *rflow = &voidflow; 4861 int cpu; 4862 4863 rcu_read_lock(); 4864 4865 cpu = get_rps_cpu(skb->dev, skb, &rflow); 4866 if (cpu < 0) 4867 cpu = smp_processor_id(); 4868 4869 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 4870 4871 rcu_read_unlock(); 4872 } else 4873 #endif 4874 { 4875 unsigned int qtail; 4876 4877 ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail); 4878 } 4879 return ret; 4880 } 4881 4882 /** 4883 * __netif_rx - Slightly optimized version of netif_rx 4884 * @skb: buffer to post 4885 * 4886 * This behaves as netif_rx except that it does not disable bottom halves. 4887 * As a result this function may only be invoked from the interrupt context 4888 * (either hard or soft interrupt). 4889 */ 4890 int __netif_rx(struct sk_buff *skb) 4891 { 4892 int ret; 4893 4894 lockdep_assert_once(hardirq_count() | softirq_count()); 4895 4896 trace_netif_rx_entry(skb); 4897 ret = netif_rx_internal(skb); 4898 trace_netif_rx_exit(ret); 4899 return ret; 4900 } 4901 EXPORT_SYMBOL(__netif_rx); 4902 4903 /** 4904 * netif_rx - post buffer to the network code 4905 * @skb: buffer to post 4906 * 4907 * This function receives a packet from a device driver and queues it for 4908 * the upper (protocol) levels to process via the backlog NAPI device. It 4909 * always succeeds. The buffer may be dropped during processing for 4910 * congestion control or by the protocol layers. 4911 * The network buffer is passed via the backlog NAPI device. Modern NIC 4912 * driver should use NAPI and GRO. 4913 * This function can used from interrupt and from process context. The 4914 * caller from process context must not disable interrupts before invoking 4915 * this function. 4916 * 4917 * return values: 4918 * NET_RX_SUCCESS (no congestion) 4919 * NET_RX_DROP (packet was dropped) 4920 * 4921 */ 4922 int netif_rx(struct sk_buff *skb) 4923 { 4924 bool need_bh_off = !(hardirq_count() | softirq_count()); 4925 int ret; 4926 4927 if (need_bh_off) 4928 local_bh_disable(); 4929 trace_netif_rx_entry(skb); 4930 ret = netif_rx_internal(skb); 4931 trace_netif_rx_exit(ret); 4932 if (need_bh_off) 4933 local_bh_enable(); 4934 return ret; 4935 } 4936 EXPORT_SYMBOL(netif_rx); 4937 4938 static __latent_entropy void net_tx_action(struct softirq_action *h) 4939 { 4940 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 4941 4942 if (sd->completion_queue) { 4943 struct sk_buff *clist; 4944 4945 local_irq_disable(); 4946 clist = sd->completion_queue; 4947 sd->completion_queue = NULL; 4948 local_irq_enable(); 4949 4950 while (clist) { 4951 struct sk_buff *skb = clist; 4952 4953 clist = clist->next; 4954 4955 WARN_ON(refcount_read(&skb->users)); 4956 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED)) 4957 trace_consume_skb(skb); 4958 else 4959 trace_kfree_skb(skb, net_tx_action, 4960 SKB_DROP_REASON_NOT_SPECIFIED); 4961 4962 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) 4963 __kfree_skb(skb); 4964 else 4965 __kfree_skb_defer(skb); 4966 } 4967 } 4968 4969 if (sd->output_queue) { 4970 struct Qdisc *head; 4971 4972 local_irq_disable(); 4973 head = sd->output_queue; 4974 sd->output_queue = NULL; 4975 sd->output_queue_tailp = &sd->output_queue; 4976 local_irq_enable(); 4977 4978 rcu_read_lock(); 4979 4980 while (head) { 4981 struct Qdisc *q = head; 4982 spinlock_t *root_lock = NULL; 4983 4984 head = head->next_sched; 4985 4986 /* We need to make sure head->next_sched is read 4987 * before clearing __QDISC_STATE_SCHED 4988 */ 4989 smp_mb__before_atomic(); 4990 4991 if (!(q->flags & TCQ_F_NOLOCK)) { 4992 root_lock = qdisc_lock(q); 4993 spin_lock(root_lock); 4994 } else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, 4995 &q->state))) { 4996 /* There is a synchronize_net() between 4997 * STATE_DEACTIVATED flag being set and 4998 * qdisc_reset()/some_qdisc_is_busy() in 4999 * dev_deactivate(), so we can safely bail out 5000 * early here to avoid data race between 5001 * qdisc_deactivate() and some_qdisc_is_busy() 5002 * for lockless qdisc. 5003 */ 5004 clear_bit(__QDISC_STATE_SCHED, &q->state); 5005 continue; 5006 } 5007 5008 clear_bit(__QDISC_STATE_SCHED, &q->state); 5009 qdisc_run(q); 5010 if (root_lock) 5011 spin_unlock(root_lock); 5012 } 5013 5014 rcu_read_unlock(); 5015 } 5016 5017 xfrm_dev_backlog(sd); 5018 } 5019 5020 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE) 5021 /* This hook is defined here for ATM LANE */ 5022 int (*br_fdb_test_addr_hook)(struct net_device *dev, 5023 unsigned char *addr) __read_mostly; 5024 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 5025 #endif 5026 5027 static inline struct sk_buff * 5028 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret, 5029 struct net_device *orig_dev, bool *another) 5030 { 5031 #ifdef CONFIG_NET_CLS_ACT 5032 struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress); 5033 struct tcf_result cl_res; 5034 5035 /* If there's at least one ingress present somewhere (so 5036 * we get here via enabled static key), remaining devices 5037 * that are not configured with an ingress qdisc will bail 5038 * out here. 5039 */ 5040 if (!miniq) 5041 return skb; 5042 5043 if (*pt_prev) { 5044 *ret = deliver_skb(skb, *pt_prev, orig_dev); 5045 *pt_prev = NULL; 5046 } 5047 5048 qdisc_skb_cb(skb)->pkt_len = skb->len; 5049 tc_skb_cb(skb)->mru = 0; 5050 tc_skb_cb(skb)->post_ct = false; 5051 skb->tc_at_ingress = 1; 5052 mini_qdisc_bstats_cpu_update(miniq, skb); 5053 5054 switch (tcf_classify(skb, miniq->block, miniq->filter_list, &cl_res, false)) { 5055 case TC_ACT_OK: 5056 case TC_ACT_RECLASSIFY: 5057 skb->tc_index = TC_H_MIN(cl_res.classid); 5058 break; 5059 case TC_ACT_SHOT: 5060 mini_qdisc_qstats_cpu_drop(miniq); 5061 kfree_skb_reason(skb, SKB_DROP_REASON_TC_INGRESS); 5062 return NULL; 5063 case TC_ACT_STOLEN: 5064 case TC_ACT_QUEUED: 5065 case TC_ACT_TRAP: 5066 consume_skb(skb); 5067 return NULL; 5068 case TC_ACT_REDIRECT: 5069 /* skb_mac_header check was done by cls/act_bpf, so 5070 * we can safely push the L2 header back before 5071 * redirecting to another netdev 5072 */ 5073 __skb_push(skb, skb->mac_len); 5074 if (skb_do_redirect(skb) == -EAGAIN) { 5075 __skb_pull(skb, skb->mac_len); 5076 *another = true; 5077 break; 5078 } 5079 return NULL; 5080 case TC_ACT_CONSUMED: 5081 return NULL; 5082 default: 5083 break; 5084 } 5085 #endif /* CONFIG_NET_CLS_ACT */ 5086 return skb; 5087 } 5088 5089 /** 5090 * netdev_is_rx_handler_busy - check if receive handler is registered 5091 * @dev: device to check 5092 * 5093 * Check if a receive handler is already registered for a given device. 5094 * Return true if there one. 5095 * 5096 * The caller must hold the rtnl_mutex. 5097 */ 5098 bool netdev_is_rx_handler_busy(struct net_device *dev) 5099 { 5100 ASSERT_RTNL(); 5101 return dev && rtnl_dereference(dev->rx_handler); 5102 } 5103 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy); 5104 5105 /** 5106 * netdev_rx_handler_register - register receive handler 5107 * @dev: device to register a handler for 5108 * @rx_handler: receive handler to register 5109 * @rx_handler_data: data pointer that is used by rx handler 5110 * 5111 * Register a receive handler for a device. This handler will then be 5112 * called from __netif_receive_skb. A negative errno code is returned 5113 * on a failure. 5114 * 5115 * The caller must hold the rtnl_mutex. 5116 * 5117 * For a general description of rx_handler, see enum rx_handler_result. 5118 */ 5119 int netdev_rx_handler_register(struct net_device *dev, 5120 rx_handler_func_t *rx_handler, 5121 void *rx_handler_data) 5122 { 5123 if (netdev_is_rx_handler_busy(dev)) 5124 return -EBUSY; 5125 5126 if (dev->priv_flags & IFF_NO_RX_HANDLER) 5127 return -EINVAL; 5128 5129 /* Note: rx_handler_data must be set before rx_handler */ 5130 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 5131 rcu_assign_pointer(dev->rx_handler, rx_handler); 5132 5133 return 0; 5134 } 5135 EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 5136 5137 /** 5138 * netdev_rx_handler_unregister - unregister receive handler 5139 * @dev: device to unregister a handler from 5140 * 5141 * Unregister a receive handler from a device. 5142 * 5143 * The caller must hold the rtnl_mutex. 5144 */ 5145 void netdev_rx_handler_unregister(struct net_device *dev) 5146 { 5147 5148 ASSERT_RTNL(); 5149 RCU_INIT_POINTER(dev->rx_handler, NULL); 5150 /* a reader seeing a non NULL rx_handler in a rcu_read_lock() 5151 * section has a guarantee to see a non NULL rx_handler_data 5152 * as well. 5153 */ 5154 synchronize_net(); 5155 RCU_INIT_POINTER(dev->rx_handler_data, NULL); 5156 } 5157 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 5158 5159 /* 5160 * Limit the use of PFMEMALLOC reserves to those protocols that implement 5161 * the special handling of PFMEMALLOC skbs. 5162 */ 5163 static bool skb_pfmemalloc_protocol(struct sk_buff *skb) 5164 { 5165 switch (skb->protocol) { 5166 case htons(ETH_P_ARP): 5167 case htons(ETH_P_IP): 5168 case htons(ETH_P_IPV6): 5169 case htons(ETH_P_8021Q): 5170 case htons(ETH_P_8021AD): 5171 return true; 5172 default: 5173 return false; 5174 } 5175 } 5176 5177 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev, 5178 int *ret, struct net_device *orig_dev) 5179 { 5180 if (nf_hook_ingress_active(skb)) { 5181 int ingress_retval; 5182 5183 if (*pt_prev) { 5184 *ret = deliver_skb(skb, *pt_prev, orig_dev); 5185 *pt_prev = NULL; 5186 } 5187 5188 rcu_read_lock(); 5189 ingress_retval = nf_hook_ingress(skb); 5190 rcu_read_unlock(); 5191 return ingress_retval; 5192 } 5193 return 0; 5194 } 5195 5196 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc, 5197 struct packet_type **ppt_prev) 5198 { 5199 struct packet_type *ptype, *pt_prev; 5200 rx_handler_func_t *rx_handler; 5201 struct sk_buff *skb = *pskb; 5202 struct net_device *orig_dev; 5203 bool deliver_exact = false; 5204 int ret = NET_RX_DROP; 5205 __be16 type; 5206 5207 net_timestamp_check(!netdev_tstamp_prequeue, skb); 5208 5209 trace_netif_receive_skb(skb); 5210 5211 orig_dev = skb->dev; 5212 5213 skb_reset_network_header(skb); 5214 if (!skb_transport_header_was_set(skb)) 5215 skb_reset_transport_header(skb); 5216 skb_reset_mac_len(skb); 5217 5218 pt_prev = NULL; 5219 5220 another_round: 5221 skb->skb_iif = skb->dev->ifindex; 5222 5223 __this_cpu_inc(softnet_data.processed); 5224 5225 if (static_branch_unlikely(&generic_xdp_needed_key)) { 5226 int ret2; 5227 5228 migrate_disable(); 5229 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb); 5230 migrate_enable(); 5231 5232 if (ret2 != XDP_PASS) { 5233 ret = NET_RX_DROP; 5234 goto out; 5235 } 5236 } 5237 5238 if (eth_type_vlan(skb->protocol)) { 5239 skb = skb_vlan_untag(skb); 5240 if (unlikely(!skb)) 5241 goto out; 5242 } 5243 5244 if (skb_skip_tc_classify(skb)) 5245 goto skip_classify; 5246 5247 if (pfmemalloc) 5248 goto skip_taps; 5249 5250 list_for_each_entry_rcu(ptype, &ptype_all, list) { 5251 if (pt_prev) 5252 ret = deliver_skb(skb, pt_prev, orig_dev); 5253 pt_prev = ptype; 5254 } 5255 5256 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) { 5257 if (pt_prev) 5258 ret = deliver_skb(skb, pt_prev, orig_dev); 5259 pt_prev = ptype; 5260 } 5261 5262 skip_taps: 5263 #ifdef CONFIG_NET_INGRESS 5264 if (static_branch_unlikely(&ingress_needed_key)) { 5265 bool another = false; 5266 5267 nf_skip_egress(skb, true); 5268 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev, 5269 &another); 5270 if (another) 5271 goto another_round; 5272 if (!skb) 5273 goto out; 5274 5275 nf_skip_egress(skb, false); 5276 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0) 5277 goto out; 5278 } 5279 #endif 5280 skb_reset_redirect(skb); 5281 skip_classify: 5282 if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) 5283 goto drop; 5284 5285 if (skb_vlan_tag_present(skb)) { 5286 if (pt_prev) { 5287 ret = deliver_skb(skb, pt_prev, orig_dev); 5288 pt_prev = NULL; 5289 } 5290 if (vlan_do_receive(&skb)) 5291 goto another_round; 5292 else if (unlikely(!skb)) 5293 goto out; 5294 } 5295 5296 rx_handler = rcu_dereference(skb->dev->rx_handler); 5297 if (rx_handler) { 5298 if (pt_prev) { 5299 ret = deliver_skb(skb, pt_prev, orig_dev); 5300 pt_prev = NULL; 5301 } 5302 switch (rx_handler(&skb)) { 5303 case RX_HANDLER_CONSUMED: 5304 ret = NET_RX_SUCCESS; 5305 goto out; 5306 case RX_HANDLER_ANOTHER: 5307 goto another_round; 5308 case RX_HANDLER_EXACT: 5309 deliver_exact = true; 5310 break; 5311 case RX_HANDLER_PASS: 5312 break; 5313 default: 5314 BUG(); 5315 } 5316 } 5317 5318 if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) { 5319 check_vlan_id: 5320 if (skb_vlan_tag_get_id(skb)) { 5321 /* Vlan id is non 0 and vlan_do_receive() above couldn't 5322 * find vlan device. 5323 */ 5324 skb->pkt_type = PACKET_OTHERHOST; 5325 } else if (eth_type_vlan(skb->protocol)) { 5326 /* Outer header is 802.1P with vlan 0, inner header is 5327 * 802.1Q or 802.1AD and vlan_do_receive() above could 5328 * not find vlan dev for vlan id 0. 5329 */ 5330 __vlan_hwaccel_clear_tag(skb); 5331 skb = skb_vlan_untag(skb); 5332 if (unlikely(!skb)) 5333 goto out; 5334 if (vlan_do_receive(&skb)) 5335 /* After stripping off 802.1P header with vlan 0 5336 * vlan dev is found for inner header. 5337 */ 5338 goto another_round; 5339 else if (unlikely(!skb)) 5340 goto out; 5341 else 5342 /* We have stripped outer 802.1P vlan 0 header. 5343 * But could not find vlan dev. 5344 * check again for vlan id to set OTHERHOST. 5345 */ 5346 goto check_vlan_id; 5347 } 5348 /* Note: we might in the future use prio bits 5349 * and set skb->priority like in vlan_do_receive() 5350 * For the time being, just ignore Priority Code Point 5351 */ 5352 __vlan_hwaccel_clear_tag(skb); 5353 } 5354 5355 type = skb->protocol; 5356 5357 /* deliver only exact match when indicated */ 5358 if (likely(!deliver_exact)) { 5359 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 5360 &ptype_base[ntohs(type) & 5361 PTYPE_HASH_MASK]); 5362 } 5363 5364 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 5365 &orig_dev->ptype_specific); 5366 5367 if (unlikely(skb->dev != orig_dev)) { 5368 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 5369 &skb->dev->ptype_specific); 5370 } 5371 5372 if (pt_prev) { 5373 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 5374 goto drop; 5375 *ppt_prev = pt_prev; 5376 } else { 5377 drop: 5378 if (!deliver_exact) 5379 dev_core_stats_rx_dropped_inc(skb->dev); 5380 else 5381 dev_core_stats_rx_nohandler_inc(skb->dev); 5382 kfree_skb_reason(skb, SKB_DROP_REASON_UNHANDLED_PROTO); 5383 /* Jamal, now you will not able to escape explaining 5384 * me how you were going to use this. :-) 5385 */ 5386 ret = NET_RX_DROP; 5387 } 5388 5389 out: 5390 /* The invariant here is that if *ppt_prev is not NULL 5391 * then skb should also be non-NULL. 5392 * 5393 * Apparently *ppt_prev assignment above holds this invariant due to 5394 * skb dereferencing near it. 5395 */ 5396 *pskb = skb; 5397 return ret; 5398 } 5399 5400 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc) 5401 { 5402 struct net_device *orig_dev = skb->dev; 5403 struct packet_type *pt_prev = NULL; 5404 int ret; 5405 5406 ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev); 5407 if (pt_prev) 5408 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb, 5409 skb->dev, pt_prev, orig_dev); 5410 return ret; 5411 } 5412 5413 /** 5414 * netif_receive_skb_core - special purpose version of netif_receive_skb 5415 * @skb: buffer to process 5416 * 5417 * More direct receive version of netif_receive_skb(). It should 5418 * only be used by callers that have a need to skip RPS and Generic XDP. 5419 * Caller must also take care of handling if ``(page_is_)pfmemalloc``. 5420 * 5421 * This function may only be called from softirq context and interrupts 5422 * should be enabled. 5423 * 5424 * Return values (usually ignored): 5425 * NET_RX_SUCCESS: no congestion 5426 * NET_RX_DROP: packet was dropped 5427 */ 5428 int netif_receive_skb_core(struct sk_buff *skb) 5429 { 5430 int ret; 5431 5432 rcu_read_lock(); 5433 ret = __netif_receive_skb_one_core(skb, false); 5434 rcu_read_unlock(); 5435 5436 return ret; 5437 } 5438 EXPORT_SYMBOL(netif_receive_skb_core); 5439 5440 static inline void __netif_receive_skb_list_ptype(struct list_head *head, 5441 struct packet_type *pt_prev, 5442 struct net_device *orig_dev) 5443 { 5444 struct sk_buff *skb, *next; 5445 5446 if (!pt_prev) 5447 return; 5448 if (list_empty(head)) 5449 return; 5450 if (pt_prev->list_func != NULL) 5451 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv, 5452 ip_list_rcv, head, pt_prev, orig_dev); 5453 else 5454 list_for_each_entry_safe(skb, next, head, list) { 5455 skb_list_del_init(skb); 5456 pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 5457 } 5458 } 5459 5460 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc) 5461 { 5462 /* Fast-path assumptions: 5463 * - There is no RX handler. 5464 * - Only one packet_type matches. 5465 * If either of these fails, we will end up doing some per-packet 5466 * processing in-line, then handling the 'last ptype' for the whole 5467 * sublist. This can't cause out-of-order delivery to any single ptype, 5468 * because the 'last ptype' must be constant across the sublist, and all 5469 * other ptypes are handled per-packet. 5470 */ 5471 /* Current (common) ptype of sublist */ 5472 struct packet_type *pt_curr = NULL; 5473 /* Current (common) orig_dev of sublist */ 5474 struct net_device *od_curr = NULL; 5475 struct list_head sublist; 5476 struct sk_buff *skb, *next; 5477 5478 INIT_LIST_HEAD(&sublist); 5479 list_for_each_entry_safe(skb, next, head, list) { 5480 struct net_device *orig_dev = skb->dev; 5481 struct packet_type *pt_prev = NULL; 5482 5483 skb_list_del_init(skb); 5484 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev); 5485 if (!pt_prev) 5486 continue; 5487 if (pt_curr != pt_prev || od_curr != orig_dev) { 5488 /* dispatch old sublist */ 5489 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr); 5490 /* start new sublist */ 5491 INIT_LIST_HEAD(&sublist); 5492 pt_curr = pt_prev; 5493 od_curr = orig_dev; 5494 } 5495 list_add_tail(&skb->list, &sublist); 5496 } 5497 5498 /* dispatch final sublist */ 5499 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr); 5500 } 5501 5502 static int __netif_receive_skb(struct sk_buff *skb) 5503 { 5504 int ret; 5505 5506 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) { 5507 unsigned int noreclaim_flag; 5508 5509 /* 5510 * PFMEMALLOC skbs are special, they should 5511 * - be delivered to SOCK_MEMALLOC sockets only 5512 * - stay away from userspace 5513 * - have bounded memory usage 5514 * 5515 * Use PF_MEMALLOC as this saves us from propagating the allocation 5516 * context down to all allocation sites. 5517 */ 5518 noreclaim_flag = memalloc_noreclaim_save(); 5519 ret = __netif_receive_skb_one_core(skb, true); 5520 memalloc_noreclaim_restore(noreclaim_flag); 5521 } else 5522 ret = __netif_receive_skb_one_core(skb, false); 5523 5524 return ret; 5525 } 5526 5527 static void __netif_receive_skb_list(struct list_head *head) 5528 { 5529 unsigned long noreclaim_flag = 0; 5530 struct sk_buff *skb, *next; 5531 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */ 5532 5533 list_for_each_entry_safe(skb, next, head, list) { 5534 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) { 5535 struct list_head sublist; 5536 5537 /* Handle the previous sublist */ 5538 list_cut_before(&sublist, head, &skb->list); 5539 if (!list_empty(&sublist)) 5540 __netif_receive_skb_list_core(&sublist, pfmemalloc); 5541 pfmemalloc = !pfmemalloc; 5542 /* See comments in __netif_receive_skb */ 5543 if (pfmemalloc) 5544 noreclaim_flag = memalloc_noreclaim_save(); 5545 else 5546 memalloc_noreclaim_restore(noreclaim_flag); 5547 } 5548 } 5549 /* Handle the remaining sublist */ 5550 if (!list_empty(head)) 5551 __netif_receive_skb_list_core(head, pfmemalloc); 5552 /* Restore pflags */ 5553 if (pfmemalloc) 5554 memalloc_noreclaim_restore(noreclaim_flag); 5555 } 5556 5557 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp) 5558 { 5559 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog); 5560 struct bpf_prog *new = xdp->prog; 5561 int ret = 0; 5562 5563 switch (xdp->command) { 5564 case XDP_SETUP_PROG: 5565 rcu_assign_pointer(dev->xdp_prog, new); 5566 if (old) 5567 bpf_prog_put(old); 5568 5569 if (old && !new) { 5570 static_branch_dec(&generic_xdp_needed_key); 5571 } else if (new && !old) { 5572 static_branch_inc(&generic_xdp_needed_key); 5573 dev_disable_lro(dev); 5574 dev_disable_gro_hw(dev); 5575 } 5576 break; 5577 5578 default: 5579 ret = -EINVAL; 5580 break; 5581 } 5582 5583 return ret; 5584 } 5585 5586 static int netif_receive_skb_internal(struct sk_buff *skb) 5587 { 5588 int ret; 5589 5590 net_timestamp_check(netdev_tstamp_prequeue, skb); 5591 5592 if (skb_defer_rx_timestamp(skb)) 5593 return NET_RX_SUCCESS; 5594 5595 rcu_read_lock(); 5596 #ifdef CONFIG_RPS 5597 if (static_branch_unlikely(&rps_needed)) { 5598 struct rps_dev_flow voidflow, *rflow = &voidflow; 5599 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 5600 5601 if (cpu >= 0) { 5602 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 5603 rcu_read_unlock(); 5604 return ret; 5605 } 5606 } 5607 #endif 5608 ret = __netif_receive_skb(skb); 5609 rcu_read_unlock(); 5610 return ret; 5611 } 5612 5613 void netif_receive_skb_list_internal(struct list_head *head) 5614 { 5615 struct sk_buff *skb, *next; 5616 struct list_head sublist; 5617 5618 INIT_LIST_HEAD(&sublist); 5619 list_for_each_entry_safe(skb, next, head, list) { 5620 net_timestamp_check(netdev_tstamp_prequeue, skb); 5621 skb_list_del_init(skb); 5622 if (!skb_defer_rx_timestamp(skb)) 5623 list_add_tail(&skb->list, &sublist); 5624 } 5625 list_splice_init(&sublist, head); 5626 5627 rcu_read_lock(); 5628 #ifdef CONFIG_RPS 5629 if (static_branch_unlikely(&rps_needed)) { 5630 list_for_each_entry_safe(skb, next, head, list) { 5631 struct rps_dev_flow voidflow, *rflow = &voidflow; 5632 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 5633 5634 if (cpu >= 0) { 5635 /* Will be handled, remove from list */ 5636 skb_list_del_init(skb); 5637 enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 5638 } 5639 } 5640 } 5641 #endif 5642 __netif_receive_skb_list(head); 5643 rcu_read_unlock(); 5644 } 5645 5646 /** 5647 * netif_receive_skb - process receive buffer from network 5648 * @skb: buffer to process 5649 * 5650 * netif_receive_skb() is the main receive data processing function. 5651 * It always succeeds. The buffer may be dropped during processing 5652 * for congestion control or by the protocol layers. 5653 * 5654 * This function may only be called from softirq context and interrupts 5655 * should be enabled. 5656 * 5657 * Return values (usually ignored): 5658 * NET_RX_SUCCESS: no congestion 5659 * NET_RX_DROP: packet was dropped 5660 */ 5661 int netif_receive_skb(struct sk_buff *skb) 5662 { 5663 int ret; 5664 5665 trace_netif_receive_skb_entry(skb); 5666 5667 ret = netif_receive_skb_internal(skb); 5668 trace_netif_receive_skb_exit(ret); 5669 5670 return ret; 5671 } 5672 EXPORT_SYMBOL(netif_receive_skb); 5673 5674 /** 5675 * netif_receive_skb_list - process many receive buffers from network 5676 * @head: list of skbs to process. 5677 * 5678 * Since return value of netif_receive_skb() is normally ignored, and 5679 * wouldn't be meaningful for a list, this function returns void. 5680 * 5681 * This function may only be called from softirq context and interrupts 5682 * should be enabled. 5683 */ 5684 void netif_receive_skb_list(struct list_head *head) 5685 { 5686 struct sk_buff *skb; 5687 5688 if (list_empty(head)) 5689 return; 5690 if (trace_netif_receive_skb_list_entry_enabled()) { 5691 list_for_each_entry(skb, head, list) 5692 trace_netif_receive_skb_list_entry(skb); 5693 } 5694 netif_receive_skb_list_internal(head); 5695 trace_netif_receive_skb_list_exit(0); 5696 } 5697 EXPORT_SYMBOL(netif_receive_skb_list); 5698 5699 static DEFINE_PER_CPU(struct work_struct, flush_works); 5700 5701 /* Network device is going away, flush any packets still pending */ 5702 static void flush_backlog(struct work_struct *work) 5703 { 5704 struct sk_buff *skb, *tmp; 5705 struct softnet_data *sd; 5706 5707 local_bh_disable(); 5708 sd = this_cpu_ptr(&softnet_data); 5709 5710 rps_lock_irq_disable(sd); 5711 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 5712 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 5713 __skb_unlink(skb, &sd->input_pkt_queue); 5714 dev_kfree_skb_irq(skb); 5715 input_queue_head_incr(sd); 5716 } 5717 } 5718 rps_unlock_irq_enable(sd); 5719 5720 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 5721 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 5722 __skb_unlink(skb, &sd->process_queue); 5723 kfree_skb(skb); 5724 input_queue_head_incr(sd); 5725 } 5726 } 5727 local_bh_enable(); 5728 } 5729 5730 static bool flush_required(int cpu) 5731 { 5732 #if IS_ENABLED(CONFIG_RPS) 5733 struct softnet_data *sd = &per_cpu(softnet_data, cpu); 5734 bool do_flush; 5735 5736 rps_lock_irq_disable(sd); 5737 5738 /* as insertion into process_queue happens with the rps lock held, 5739 * process_queue access may race only with dequeue 5740 */ 5741 do_flush = !skb_queue_empty(&sd->input_pkt_queue) || 5742 !skb_queue_empty_lockless(&sd->process_queue); 5743 rps_unlock_irq_enable(sd); 5744 5745 return do_flush; 5746 #endif 5747 /* without RPS we can't safely check input_pkt_queue: during a 5748 * concurrent remote skb_queue_splice() we can detect as empty both 5749 * input_pkt_queue and process_queue even if the latter could end-up 5750 * containing a lot of packets. 5751 */ 5752 return true; 5753 } 5754 5755 static void flush_all_backlogs(void) 5756 { 5757 static cpumask_t flush_cpus; 5758 unsigned int cpu; 5759 5760 /* since we are under rtnl lock protection we can use static data 5761 * for the cpumask and avoid allocating on stack the possibly 5762 * large mask 5763 */ 5764 ASSERT_RTNL(); 5765 5766 cpus_read_lock(); 5767 5768 cpumask_clear(&flush_cpus); 5769 for_each_online_cpu(cpu) { 5770 if (flush_required(cpu)) { 5771 queue_work_on(cpu, system_highpri_wq, 5772 per_cpu_ptr(&flush_works, cpu)); 5773 cpumask_set_cpu(cpu, &flush_cpus); 5774 } 5775 } 5776 5777 /* we can have in flight packet[s] on the cpus we are not flushing, 5778 * synchronize_net() in unregister_netdevice_many() will take care of 5779 * them 5780 */ 5781 for_each_cpu(cpu, &flush_cpus) 5782 flush_work(per_cpu_ptr(&flush_works, cpu)); 5783 5784 cpus_read_unlock(); 5785 } 5786 5787 static void net_rps_send_ipi(struct softnet_data *remsd) 5788 { 5789 #ifdef CONFIG_RPS 5790 while (remsd) { 5791 struct softnet_data *next = remsd->rps_ipi_next; 5792 5793 if (cpu_online(remsd->cpu)) 5794 smp_call_function_single_async(remsd->cpu, &remsd->csd); 5795 remsd = next; 5796 } 5797 #endif 5798 } 5799 5800 /* 5801 * net_rps_action_and_irq_enable sends any pending IPI's for rps. 5802 * Note: called with local irq disabled, but exits with local irq enabled. 5803 */ 5804 static void net_rps_action_and_irq_enable(struct softnet_data *sd) 5805 { 5806 #ifdef CONFIG_RPS 5807 struct softnet_data *remsd = sd->rps_ipi_list; 5808 5809 if (remsd) { 5810 sd->rps_ipi_list = NULL; 5811 5812 local_irq_enable(); 5813 5814 /* Send pending IPI's to kick RPS processing on remote cpus. */ 5815 net_rps_send_ipi(remsd); 5816 } else 5817 #endif 5818 local_irq_enable(); 5819 } 5820 5821 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd) 5822 { 5823 #ifdef CONFIG_RPS 5824 return sd->rps_ipi_list != NULL; 5825 #else 5826 return false; 5827 #endif 5828 } 5829 5830 static int process_backlog(struct napi_struct *napi, int quota) 5831 { 5832 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 5833 bool again = true; 5834 int work = 0; 5835 5836 /* Check if we have pending ipi, its better to send them now, 5837 * not waiting net_rx_action() end. 5838 */ 5839 if (sd_has_rps_ipi_waiting(sd)) { 5840 local_irq_disable(); 5841 net_rps_action_and_irq_enable(sd); 5842 } 5843 5844 napi->weight = dev_rx_weight; 5845 while (again) { 5846 struct sk_buff *skb; 5847 5848 while ((skb = __skb_dequeue(&sd->process_queue))) { 5849 rcu_read_lock(); 5850 __netif_receive_skb(skb); 5851 rcu_read_unlock(); 5852 input_queue_head_incr(sd); 5853 if (++work >= quota) 5854 return work; 5855 5856 } 5857 5858 rps_lock_irq_disable(sd); 5859 if (skb_queue_empty(&sd->input_pkt_queue)) { 5860 /* 5861 * Inline a custom version of __napi_complete(). 5862 * only current cpu owns and manipulates this napi, 5863 * and NAPI_STATE_SCHED is the only possible flag set 5864 * on backlog. 5865 * We can use a plain write instead of clear_bit(), 5866 * and we dont need an smp_mb() memory barrier. 5867 */ 5868 napi->state = 0; 5869 again = false; 5870 } else { 5871 skb_queue_splice_tail_init(&sd->input_pkt_queue, 5872 &sd->process_queue); 5873 } 5874 rps_unlock_irq_enable(sd); 5875 } 5876 5877 return work; 5878 } 5879 5880 /** 5881 * __napi_schedule - schedule for receive 5882 * @n: entry to schedule 5883 * 5884 * The entry's receive function will be scheduled to run. 5885 * Consider using __napi_schedule_irqoff() if hard irqs are masked. 5886 */ 5887 void __napi_schedule(struct napi_struct *n) 5888 { 5889 unsigned long flags; 5890 5891 local_irq_save(flags); 5892 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 5893 local_irq_restore(flags); 5894 } 5895 EXPORT_SYMBOL(__napi_schedule); 5896 5897 /** 5898 * napi_schedule_prep - check if napi can be scheduled 5899 * @n: napi context 5900 * 5901 * Test if NAPI routine is already running, and if not mark 5902 * it as running. This is used as a condition variable to 5903 * insure only one NAPI poll instance runs. We also make 5904 * sure there is no pending NAPI disable. 5905 */ 5906 bool napi_schedule_prep(struct napi_struct *n) 5907 { 5908 unsigned long val, new; 5909 5910 do { 5911 val = READ_ONCE(n->state); 5912 if (unlikely(val & NAPIF_STATE_DISABLE)) 5913 return false; 5914 new = val | NAPIF_STATE_SCHED; 5915 5916 /* Sets STATE_MISSED bit if STATE_SCHED was already set 5917 * This was suggested by Alexander Duyck, as compiler 5918 * emits better code than : 5919 * if (val & NAPIF_STATE_SCHED) 5920 * new |= NAPIF_STATE_MISSED; 5921 */ 5922 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED * 5923 NAPIF_STATE_MISSED; 5924 } while (cmpxchg(&n->state, val, new) != val); 5925 5926 return !(val & NAPIF_STATE_SCHED); 5927 } 5928 EXPORT_SYMBOL(napi_schedule_prep); 5929 5930 /** 5931 * __napi_schedule_irqoff - schedule for receive 5932 * @n: entry to schedule 5933 * 5934 * Variant of __napi_schedule() assuming hard irqs are masked. 5935 * 5936 * On PREEMPT_RT enabled kernels this maps to __napi_schedule() 5937 * because the interrupt disabled assumption might not be true 5938 * due to force-threaded interrupts and spinlock substitution. 5939 */ 5940 void __napi_schedule_irqoff(struct napi_struct *n) 5941 { 5942 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 5943 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 5944 else 5945 __napi_schedule(n); 5946 } 5947 EXPORT_SYMBOL(__napi_schedule_irqoff); 5948 5949 bool napi_complete_done(struct napi_struct *n, int work_done) 5950 { 5951 unsigned long flags, val, new, timeout = 0; 5952 bool ret = true; 5953 5954 /* 5955 * 1) Don't let napi dequeue from the cpu poll list 5956 * just in case its running on a different cpu. 5957 * 2) If we are busy polling, do nothing here, we have 5958 * the guarantee we will be called later. 5959 */ 5960 if (unlikely(n->state & (NAPIF_STATE_NPSVC | 5961 NAPIF_STATE_IN_BUSY_POLL))) 5962 return false; 5963 5964 if (work_done) { 5965 if (n->gro_bitmask) 5966 timeout = READ_ONCE(n->dev->gro_flush_timeout); 5967 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs); 5968 } 5969 if (n->defer_hard_irqs_count > 0) { 5970 n->defer_hard_irqs_count--; 5971 timeout = READ_ONCE(n->dev->gro_flush_timeout); 5972 if (timeout) 5973 ret = false; 5974 } 5975 if (n->gro_bitmask) { 5976 /* When the NAPI instance uses a timeout and keeps postponing 5977 * it, we need to bound somehow the time packets are kept in 5978 * the GRO layer 5979 */ 5980 napi_gro_flush(n, !!timeout); 5981 } 5982 5983 gro_normal_list(n); 5984 5985 if (unlikely(!list_empty(&n->poll_list))) { 5986 /* If n->poll_list is not empty, we need to mask irqs */ 5987 local_irq_save(flags); 5988 list_del_init(&n->poll_list); 5989 local_irq_restore(flags); 5990 } 5991 5992 do { 5993 val = READ_ONCE(n->state); 5994 5995 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED)); 5996 5997 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED | 5998 NAPIF_STATE_SCHED_THREADED | 5999 NAPIF_STATE_PREFER_BUSY_POLL); 6000 6001 /* If STATE_MISSED was set, leave STATE_SCHED set, 6002 * because we will call napi->poll() one more time. 6003 * This C code was suggested by Alexander Duyck to help gcc. 6004 */ 6005 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED * 6006 NAPIF_STATE_SCHED; 6007 } while (cmpxchg(&n->state, val, new) != val); 6008 6009 if (unlikely(val & NAPIF_STATE_MISSED)) { 6010 __napi_schedule(n); 6011 return false; 6012 } 6013 6014 if (timeout) 6015 hrtimer_start(&n->timer, ns_to_ktime(timeout), 6016 HRTIMER_MODE_REL_PINNED); 6017 return ret; 6018 } 6019 EXPORT_SYMBOL(napi_complete_done); 6020 6021 /* must be called under rcu_read_lock(), as we dont take a reference */ 6022 static struct napi_struct *napi_by_id(unsigned int napi_id) 6023 { 6024 unsigned int hash = napi_id % HASH_SIZE(napi_hash); 6025 struct napi_struct *napi; 6026 6027 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node) 6028 if (napi->napi_id == napi_id) 6029 return napi; 6030 6031 return NULL; 6032 } 6033 6034 #if defined(CONFIG_NET_RX_BUSY_POLL) 6035 6036 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule) 6037 { 6038 if (!skip_schedule) { 6039 gro_normal_list(napi); 6040 __napi_schedule(napi); 6041 return; 6042 } 6043 6044 if (napi->gro_bitmask) { 6045 /* flush too old packets 6046 * If HZ < 1000, flush all packets. 6047 */ 6048 napi_gro_flush(napi, HZ >= 1000); 6049 } 6050 6051 gro_normal_list(napi); 6052 clear_bit(NAPI_STATE_SCHED, &napi->state); 6053 } 6054 6055 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll, 6056 u16 budget) 6057 { 6058 bool skip_schedule = false; 6059 unsigned long timeout; 6060 int rc; 6061 6062 /* Busy polling means there is a high chance device driver hard irq 6063 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was 6064 * set in napi_schedule_prep(). 6065 * Since we are about to call napi->poll() once more, we can safely 6066 * clear NAPI_STATE_MISSED. 6067 * 6068 * Note: x86 could use a single "lock and ..." instruction 6069 * to perform these two clear_bit() 6070 */ 6071 clear_bit(NAPI_STATE_MISSED, &napi->state); 6072 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state); 6073 6074 local_bh_disable(); 6075 6076 if (prefer_busy_poll) { 6077 napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs); 6078 timeout = READ_ONCE(napi->dev->gro_flush_timeout); 6079 if (napi->defer_hard_irqs_count && timeout) { 6080 hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED); 6081 skip_schedule = true; 6082 } 6083 } 6084 6085 /* All we really want here is to re-enable device interrupts. 6086 * Ideally, a new ndo_busy_poll_stop() could avoid another round. 6087 */ 6088 rc = napi->poll(napi, budget); 6089 /* We can't gro_normal_list() here, because napi->poll() might have 6090 * rearmed the napi (napi_complete_done()) in which case it could 6091 * already be running on another CPU. 6092 */ 6093 trace_napi_poll(napi, rc, budget); 6094 netpoll_poll_unlock(have_poll_lock); 6095 if (rc == budget) 6096 __busy_poll_stop(napi, skip_schedule); 6097 local_bh_enable(); 6098 } 6099 6100 void napi_busy_loop(unsigned int napi_id, 6101 bool (*loop_end)(void *, unsigned long), 6102 void *loop_end_arg, bool prefer_busy_poll, u16 budget) 6103 { 6104 unsigned long start_time = loop_end ? busy_loop_current_time() : 0; 6105 int (*napi_poll)(struct napi_struct *napi, int budget); 6106 void *have_poll_lock = NULL; 6107 struct napi_struct *napi; 6108 6109 restart: 6110 napi_poll = NULL; 6111 6112 rcu_read_lock(); 6113 6114 napi = napi_by_id(napi_id); 6115 if (!napi) 6116 goto out; 6117 6118 preempt_disable(); 6119 for (;;) { 6120 int work = 0; 6121 6122 local_bh_disable(); 6123 if (!napi_poll) { 6124 unsigned long val = READ_ONCE(napi->state); 6125 6126 /* If multiple threads are competing for this napi, 6127 * we avoid dirtying napi->state as much as we can. 6128 */ 6129 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED | 6130 NAPIF_STATE_IN_BUSY_POLL)) { 6131 if (prefer_busy_poll) 6132 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state); 6133 goto count; 6134 } 6135 if (cmpxchg(&napi->state, val, 6136 val | NAPIF_STATE_IN_BUSY_POLL | 6137 NAPIF_STATE_SCHED) != val) { 6138 if (prefer_busy_poll) 6139 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state); 6140 goto count; 6141 } 6142 have_poll_lock = netpoll_poll_lock(napi); 6143 napi_poll = napi->poll; 6144 } 6145 work = napi_poll(napi, budget); 6146 trace_napi_poll(napi, work, budget); 6147 gro_normal_list(napi); 6148 count: 6149 if (work > 0) 6150 __NET_ADD_STATS(dev_net(napi->dev), 6151 LINUX_MIB_BUSYPOLLRXPACKETS, work); 6152 local_bh_enable(); 6153 6154 if (!loop_end || loop_end(loop_end_arg, start_time)) 6155 break; 6156 6157 if (unlikely(need_resched())) { 6158 if (napi_poll) 6159 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget); 6160 preempt_enable(); 6161 rcu_read_unlock(); 6162 cond_resched(); 6163 if (loop_end(loop_end_arg, start_time)) 6164 return; 6165 goto restart; 6166 } 6167 cpu_relax(); 6168 } 6169 if (napi_poll) 6170 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget); 6171 preempt_enable(); 6172 out: 6173 rcu_read_unlock(); 6174 } 6175 EXPORT_SYMBOL(napi_busy_loop); 6176 6177 #endif /* CONFIG_NET_RX_BUSY_POLL */ 6178 6179 static void napi_hash_add(struct napi_struct *napi) 6180 { 6181 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state)) 6182 return; 6183 6184 spin_lock(&napi_hash_lock); 6185 6186 /* 0..NR_CPUS range is reserved for sender_cpu use */ 6187 do { 6188 if (unlikely(++napi_gen_id < MIN_NAPI_ID)) 6189 napi_gen_id = MIN_NAPI_ID; 6190 } while (napi_by_id(napi_gen_id)); 6191 napi->napi_id = napi_gen_id; 6192 6193 hlist_add_head_rcu(&napi->napi_hash_node, 6194 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]); 6195 6196 spin_unlock(&napi_hash_lock); 6197 } 6198 6199 /* Warning : caller is responsible to make sure rcu grace period 6200 * is respected before freeing memory containing @napi 6201 */ 6202 static void napi_hash_del(struct napi_struct *napi) 6203 { 6204 spin_lock(&napi_hash_lock); 6205 6206 hlist_del_init_rcu(&napi->napi_hash_node); 6207 6208 spin_unlock(&napi_hash_lock); 6209 } 6210 6211 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer) 6212 { 6213 struct napi_struct *napi; 6214 6215 napi = container_of(timer, struct napi_struct, timer); 6216 6217 /* Note : we use a relaxed variant of napi_schedule_prep() not setting 6218 * NAPI_STATE_MISSED, since we do not react to a device IRQ. 6219 */ 6220 if (!napi_disable_pending(napi) && 6221 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) { 6222 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state); 6223 __napi_schedule_irqoff(napi); 6224 } 6225 6226 return HRTIMER_NORESTART; 6227 } 6228 6229 static void init_gro_hash(struct napi_struct *napi) 6230 { 6231 int i; 6232 6233 for (i = 0; i < GRO_HASH_BUCKETS; i++) { 6234 INIT_LIST_HEAD(&napi->gro_hash[i].list); 6235 napi->gro_hash[i].count = 0; 6236 } 6237 napi->gro_bitmask = 0; 6238 } 6239 6240 int dev_set_threaded(struct net_device *dev, bool threaded) 6241 { 6242 struct napi_struct *napi; 6243 int err = 0; 6244 6245 if (dev->threaded == threaded) 6246 return 0; 6247 6248 if (threaded) { 6249 list_for_each_entry(napi, &dev->napi_list, dev_list) { 6250 if (!napi->thread) { 6251 err = napi_kthread_create(napi); 6252 if (err) { 6253 threaded = false; 6254 break; 6255 } 6256 } 6257 } 6258 } 6259 6260 dev->threaded = threaded; 6261 6262 /* Make sure kthread is created before THREADED bit 6263 * is set. 6264 */ 6265 smp_mb__before_atomic(); 6266 6267 /* Setting/unsetting threaded mode on a napi might not immediately 6268 * take effect, if the current napi instance is actively being 6269 * polled. In this case, the switch between threaded mode and 6270 * softirq mode will happen in the next round of napi_schedule(). 6271 * This should not cause hiccups/stalls to the live traffic. 6272 */ 6273 list_for_each_entry(napi, &dev->napi_list, dev_list) { 6274 if (threaded) 6275 set_bit(NAPI_STATE_THREADED, &napi->state); 6276 else 6277 clear_bit(NAPI_STATE_THREADED, &napi->state); 6278 } 6279 6280 return err; 6281 } 6282 EXPORT_SYMBOL(dev_set_threaded); 6283 6284 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 6285 int (*poll)(struct napi_struct *, int), int weight) 6286 { 6287 if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state))) 6288 return; 6289 6290 INIT_LIST_HEAD(&napi->poll_list); 6291 INIT_HLIST_NODE(&napi->napi_hash_node); 6292 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED); 6293 napi->timer.function = napi_watchdog; 6294 init_gro_hash(napi); 6295 napi->skb = NULL; 6296 INIT_LIST_HEAD(&napi->rx_list); 6297 napi->rx_count = 0; 6298 napi->poll = poll; 6299 if (weight > NAPI_POLL_WEIGHT) 6300 netdev_err_once(dev, "%s() called with weight %d\n", __func__, 6301 weight); 6302 napi->weight = weight; 6303 napi->dev = dev; 6304 #ifdef CONFIG_NETPOLL 6305 napi->poll_owner = -1; 6306 #endif 6307 set_bit(NAPI_STATE_SCHED, &napi->state); 6308 set_bit(NAPI_STATE_NPSVC, &napi->state); 6309 list_add_rcu(&napi->dev_list, &dev->napi_list); 6310 napi_hash_add(napi); 6311 /* Create kthread for this napi if dev->threaded is set. 6312 * Clear dev->threaded if kthread creation failed so that 6313 * threaded mode will not be enabled in napi_enable(). 6314 */ 6315 if (dev->threaded && napi_kthread_create(napi)) 6316 dev->threaded = 0; 6317 } 6318 EXPORT_SYMBOL(netif_napi_add); 6319 6320 void napi_disable(struct napi_struct *n) 6321 { 6322 unsigned long val, new; 6323 6324 might_sleep(); 6325 set_bit(NAPI_STATE_DISABLE, &n->state); 6326 6327 for ( ; ; ) { 6328 val = READ_ONCE(n->state); 6329 if (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) { 6330 usleep_range(20, 200); 6331 continue; 6332 } 6333 6334 new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC; 6335 new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL); 6336 6337 if (cmpxchg(&n->state, val, new) == val) 6338 break; 6339 } 6340 6341 hrtimer_cancel(&n->timer); 6342 6343 clear_bit(NAPI_STATE_DISABLE, &n->state); 6344 } 6345 EXPORT_SYMBOL(napi_disable); 6346 6347 /** 6348 * napi_enable - enable NAPI scheduling 6349 * @n: NAPI context 6350 * 6351 * Resume NAPI from being scheduled on this context. 6352 * Must be paired with napi_disable. 6353 */ 6354 void napi_enable(struct napi_struct *n) 6355 { 6356 unsigned long val, new; 6357 6358 do { 6359 val = READ_ONCE(n->state); 6360 BUG_ON(!test_bit(NAPI_STATE_SCHED, &val)); 6361 6362 new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC); 6363 if (n->dev->threaded && n->thread) 6364 new |= NAPIF_STATE_THREADED; 6365 } while (cmpxchg(&n->state, val, new) != val); 6366 } 6367 EXPORT_SYMBOL(napi_enable); 6368 6369 static void flush_gro_hash(struct napi_struct *napi) 6370 { 6371 int i; 6372 6373 for (i = 0; i < GRO_HASH_BUCKETS; i++) { 6374 struct sk_buff *skb, *n; 6375 6376 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list) 6377 kfree_skb(skb); 6378 napi->gro_hash[i].count = 0; 6379 } 6380 } 6381 6382 /* Must be called in process context */ 6383 void __netif_napi_del(struct napi_struct *napi) 6384 { 6385 if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state)) 6386 return; 6387 6388 napi_hash_del(napi); 6389 list_del_rcu(&napi->dev_list); 6390 napi_free_frags(napi); 6391 6392 flush_gro_hash(napi); 6393 napi->gro_bitmask = 0; 6394 6395 if (napi->thread) { 6396 kthread_stop(napi->thread); 6397 napi->thread = NULL; 6398 } 6399 } 6400 EXPORT_SYMBOL(__netif_napi_del); 6401 6402 static int __napi_poll(struct napi_struct *n, bool *repoll) 6403 { 6404 int work, weight; 6405 6406 weight = n->weight; 6407 6408 /* This NAPI_STATE_SCHED test is for avoiding a race 6409 * with netpoll's poll_napi(). Only the entity which 6410 * obtains the lock and sees NAPI_STATE_SCHED set will 6411 * actually make the ->poll() call. Therefore we avoid 6412 * accidentally calling ->poll() when NAPI is not scheduled. 6413 */ 6414 work = 0; 6415 if (test_bit(NAPI_STATE_SCHED, &n->state)) { 6416 work = n->poll(n, weight); 6417 trace_napi_poll(n, work, weight); 6418 } 6419 6420 if (unlikely(work > weight)) 6421 netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n", 6422 n->poll, work, weight); 6423 6424 if (likely(work < weight)) 6425 return work; 6426 6427 /* Drivers must not modify the NAPI state if they 6428 * consume the entire weight. In such cases this code 6429 * still "owns" the NAPI instance and therefore can 6430 * move the instance around on the list at-will. 6431 */ 6432 if (unlikely(napi_disable_pending(n))) { 6433 napi_complete(n); 6434 return work; 6435 } 6436 6437 /* The NAPI context has more processing work, but busy-polling 6438 * is preferred. Exit early. 6439 */ 6440 if (napi_prefer_busy_poll(n)) { 6441 if (napi_complete_done(n, work)) { 6442 /* If timeout is not set, we need to make sure 6443 * that the NAPI is re-scheduled. 6444 */ 6445 napi_schedule(n); 6446 } 6447 return work; 6448 } 6449 6450 if (n->gro_bitmask) { 6451 /* flush too old packets 6452 * If HZ < 1000, flush all packets. 6453 */ 6454 napi_gro_flush(n, HZ >= 1000); 6455 } 6456 6457 gro_normal_list(n); 6458 6459 /* Some drivers may have called napi_schedule 6460 * prior to exhausting their budget. 6461 */ 6462 if (unlikely(!list_empty(&n->poll_list))) { 6463 pr_warn_once("%s: Budget exhausted after napi rescheduled\n", 6464 n->dev ? n->dev->name : "backlog"); 6465 return work; 6466 } 6467 6468 *repoll = true; 6469 6470 return work; 6471 } 6472 6473 static int napi_poll(struct napi_struct *n, struct list_head *repoll) 6474 { 6475 bool do_repoll = false; 6476 void *have; 6477 int work; 6478 6479 list_del_init(&n->poll_list); 6480 6481 have = netpoll_poll_lock(n); 6482 6483 work = __napi_poll(n, &do_repoll); 6484 6485 if (do_repoll) 6486 list_add_tail(&n->poll_list, repoll); 6487 6488 netpoll_poll_unlock(have); 6489 6490 return work; 6491 } 6492 6493 static int napi_thread_wait(struct napi_struct *napi) 6494 { 6495 bool woken = false; 6496 6497 set_current_state(TASK_INTERRUPTIBLE); 6498 6499 while (!kthread_should_stop()) { 6500 /* Testing SCHED_THREADED bit here to make sure the current 6501 * kthread owns this napi and could poll on this napi. 6502 * Testing SCHED bit is not enough because SCHED bit might be 6503 * set by some other busy poll thread or by napi_disable(). 6504 */ 6505 if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) { 6506 WARN_ON(!list_empty(&napi->poll_list)); 6507 __set_current_state(TASK_RUNNING); 6508 return 0; 6509 } 6510 6511 schedule(); 6512 /* woken being true indicates this thread owns this napi. */ 6513 woken = true; 6514 set_current_state(TASK_INTERRUPTIBLE); 6515 } 6516 __set_current_state(TASK_RUNNING); 6517 6518 return -1; 6519 } 6520 6521 static int napi_threaded_poll(void *data) 6522 { 6523 struct napi_struct *napi = data; 6524 void *have; 6525 6526 while (!napi_thread_wait(napi)) { 6527 for (;;) { 6528 bool repoll = false; 6529 6530 local_bh_disable(); 6531 6532 have = netpoll_poll_lock(napi); 6533 __napi_poll(napi, &repoll); 6534 netpoll_poll_unlock(have); 6535 6536 local_bh_enable(); 6537 6538 if (!repoll) 6539 break; 6540 6541 cond_resched(); 6542 } 6543 } 6544 return 0; 6545 } 6546 6547 static __latent_entropy void net_rx_action(struct softirq_action *h) 6548 { 6549 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 6550 unsigned long time_limit = jiffies + 6551 usecs_to_jiffies(netdev_budget_usecs); 6552 int budget = netdev_budget; 6553 LIST_HEAD(list); 6554 LIST_HEAD(repoll); 6555 6556 local_irq_disable(); 6557 list_splice_init(&sd->poll_list, &list); 6558 local_irq_enable(); 6559 6560 for (;;) { 6561 struct napi_struct *n; 6562 6563 if (list_empty(&list)) { 6564 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll)) 6565 return; 6566 break; 6567 } 6568 6569 n = list_first_entry(&list, struct napi_struct, poll_list); 6570 budget -= napi_poll(n, &repoll); 6571 6572 /* If softirq window is exhausted then punt. 6573 * Allow this to run for 2 jiffies since which will allow 6574 * an average latency of 1.5/HZ. 6575 */ 6576 if (unlikely(budget <= 0 || 6577 time_after_eq(jiffies, time_limit))) { 6578 sd->time_squeeze++; 6579 break; 6580 } 6581 } 6582 6583 local_irq_disable(); 6584 6585 list_splice_tail_init(&sd->poll_list, &list); 6586 list_splice_tail(&repoll, &list); 6587 list_splice(&list, &sd->poll_list); 6588 if (!list_empty(&sd->poll_list)) 6589 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 6590 6591 net_rps_action_and_irq_enable(sd); 6592 } 6593 6594 struct netdev_adjacent { 6595 struct net_device *dev; 6596 netdevice_tracker dev_tracker; 6597 6598 /* upper master flag, there can only be one master device per list */ 6599 bool master; 6600 6601 /* lookup ignore flag */ 6602 bool ignore; 6603 6604 /* counter for the number of times this device was added to us */ 6605 u16 ref_nr; 6606 6607 /* private field for the users */ 6608 void *private; 6609 6610 struct list_head list; 6611 struct rcu_head rcu; 6612 }; 6613 6614 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev, 6615 struct list_head *adj_list) 6616 { 6617 struct netdev_adjacent *adj; 6618 6619 list_for_each_entry(adj, adj_list, list) { 6620 if (adj->dev == adj_dev) 6621 return adj; 6622 } 6623 return NULL; 6624 } 6625 6626 static int ____netdev_has_upper_dev(struct net_device *upper_dev, 6627 struct netdev_nested_priv *priv) 6628 { 6629 struct net_device *dev = (struct net_device *)priv->data; 6630 6631 return upper_dev == dev; 6632 } 6633 6634 /** 6635 * netdev_has_upper_dev - Check if device is linked to an upper device 6636 * @dev: device 6637 * @upper_dev: upper device to check 6638 * 6639 * Find out if a device is linked to specified upper device and return true 6640 * in case it is. Note that this checks only immediate upper device, 6641 * not through a complete stack of devices. The caller must hold the RTNL lock. 6642 */ 6643 bool netdev_has_upper_dev(struct net_device *dev, 6644 struct net_device *upper_dev) 6645 { 6646 struct netdev_nested_priv priv = { 6647 .data = (void *)upper_dev, 6648 }; 6649 6650 ASSERT_RTNL(); 6651 6652 return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev, 6653 &priv); 6654 } 6655 EXPORT_SYMBOL(netdev_has_upper_dev); 6656 6657 /** 6658 * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device 6659 * @dev: device 6660 * @upper_dev: upper device to check 6661 * 6662 * Find out if a device is linked to specified upper device and return true 6663 * in case it is. Note that this checks the entire upper device chain. 6664 * The caller must hold rcu lock. 6665 */ 6666 6667 bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 6668 struct net_device *upper_dev) 6669 { 6670 struct netdev_nested_priv priv = { 6671 .data = (void *)upper_dev, 6672 }; 6673 6674 return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev, 6675 &priv); 6676 } 6677 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu); 6678 6679 /** 6680 * netdev_has_any_upper_dev - Check if device is linked to some device 6681 * @dev: device 6682 * 6683 * Find out if a device is linked to an upper device and return true in case 6684 * it is. The caller must hold the RTNL lock. 6685 */ 6686 bool netdev_has_any_upper_dev(struct net_device *dev) 6687 { 6688 ASSERT_RTNL(); 6689 6690 return !list_empty(&dev->adj_list.upper); 6691 } 6692 EXPORT_SYMBOL(netdev_has_any_upper_dev); 6693 6694 /** 6695 * netdev_master_upper_dev_get - Get master upper device 6696 * @dev: device 6697 * 6698 * Find a master upper device and return pointer to it or NULL in case 6699 * it's not there. The caller must hold the RTNL lock. 6700 */ 6701 struct net_device *netdev_master_upper_dev_get(struct net_device *dev) 6702 { 6703 struct netdev_adjacent *upper; 6704 6705 ASSERT_RTNL(); 6706 6707 if (list_empty(&dev->adj_list.upper)) 6708 return NULL; 6709 6710 upper = list_first_entry(&dev->adj_list.upper, 6711 struct netdev_adjacent, list); 6712 if (likely(upper->master)) 6713 return upper->dev; 6714 return NULL; 6715 } 6716 EXPORT_SYMBOL(netdev_master_upper_dev_get); 6717 6718 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev) 6719 { 6720 struct netdev_adjacent *upper; 6721 6722 ASSERT_RTNL(); 6723 6724 if (list_empty(&dev->adj_list.upper)) 6725 return NULL; 6726 6727 upper = list_first_entry(&dev->adj_list.upper, 6728 struct netdev_adjacent, list); 6729 if (likely(upper->master) && !upper->ignore) 6730 return upper->dev; 6731 return NULL; 6732 } 6733 6734 /** 6735 * netdev_has_any_lower_dev - Check if device is linked to some device 6736 * @dev: device 6737 * 6738 * Find out if a device is linked to a lower device and return true in case 6739 * it is. The caller must hold the RTNL lock. 6740 */ 6741 static bool netdev_has_any_lower_dev(struct net_device *dev) 6742 { 6743 ASSERT_RTNL(); 6744 6745 return !list_empty(&dev->adj_list.lower); 6746 } 6747 6748 void *netdev_adjacent_get_private(struct list_head *adj_list) 6749 { 6750 struct netdev_adjacent *adj; 6751 6752 adj = list_entry(adj_list, struct netdev_adjacent, list); 6753 6754 return adj->private; 6755 } 6756 EXPORT_SYMBOL(netdev_adjacent_get_private); 6757 6758 /** 6759 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list 6760 * @dev: device 6761 * @iter: list_head ** of the current position 6762 * 6763 * Gets the next device from the dev's upper list, starting from iter 6764 * position. The caller must hold RCU read lock. 6765 */ 6766 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 6767 struct list_head **iter) 6768 { 6769 struct netdev_adjacent *upper; 6770 6771 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 6772 6773 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 6774 6775 if (&upper->list == &dev->adj_list.upper) 6776 return NULL; 6777 6778 *iter = &upper->list; 6779 6780 return upper->dev; 6781 } 6782 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu); 6783 6784 static struct net_device *__netdev_next_upper_dev(struct net_device *dev, 6785 struct list_head **iter, 6786 bool *ignore) 6787 { 6788 struct netdev_adjacent *upper; 6789 6790 upper = list_entry((*iter)->next, struct netdev_adjacent, list); 6791 6792 if (&upper->list == &dev->adj_list.upper) 6793 return NULL; 6794 6795 *iter = &upper->list; 6796 *ignore = upper->ignore; 6797 6798 return upper->dev; 6799 } 6800 6801 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev, 6802 struct list_head **iter) 6803 { 6804 struct netdev_adjacent *upper; 6805 6806 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 6807 6808 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 6809 6810 if (&upper->list == &dev->adj_list.upper) 6811 return NULL; 6812 6813 *iter = &upper->list; 6814 6815 return upper->dev; 6816 } 6817 6818 static int __netdev_walk_all_upper_dev(struct net_device *dev, 6819 int (*fn)(struct net_device *dev, 6820 struct netdev_nested_priv *priv), 6821 struct netdev_nested_priv *priv) 6822 { 6823 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 6824 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 6825 int ret, cur = 0; 6826 bool ignore; 6827 6828 now = dev; 6829 iter = &dev->adj_list.upper; 6830 6831 while (1) { 6832 if (now != dev) { 6833 ret = fn(now, priv); 6834 if (ret) 6835 return ret; 6836 } 6837 6838 next = NULL; 6839 while (1) { 6840 udev = __netdev_next_upper_dev(now, &iter, &ignore); 6841 if (!udev) 6842 break; 6843 if (ignore) 6844 continue; 6845 6846 next = udev; 6847 niter = &udev->adj_list.upper; 6848 dev_stack[cur] = now; 6849 iter_stack[cur++] = iter; 6850 break; 6851 } 6852 6853 if (!next) { 6854 if (!cur) 6855 return 0; 6856 next = dev_stack[--cur]; 6857 niter = iter_stack[cur]; 6858 } 6859 6860 now = next; 6861 iter = niter; 6862 } 6863 6864 return 0; 6865 } 6866 6867 int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 6868 int (*fn)(struct net_device *dev, 6869 struct netdev_nested_priv *priv), 6870 struct netdev_nested_priv *priv) 6871 { 6872 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 6873 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 6874 int ret, cur = 0; 6875 6876 now = dev; 6877 iter = &dev->adj_list.upper; 6878 6879 while (1) { 6880 if (now != dev) { 6881 ret = fn(now, priv); 6882 if (ret) 6883 return ret; 6884 } 6885 6886 next = NULL; 6887 while (1) { 6888 udev = netdev_next_upper_dev_rcu(now, &iter); 6889 if (!udev) 6890 break; 6891 6892 next = udev; 6893 niter = &udev->adj_list.upper; 6894 dev_stack[cur] = now; 6895 iter_stack[cur++] = iter; 6896 break; 6897 } 6898 6899 if (!next) { 6900 if (!cur) 6901 return 0; 6902 next = dev_stack[--cur]; 6903 niter = iter_stack[cur]; 6904 } 6905 6906 now = next; 6907 iter = niter; 6908 } 6909 6910 return 0; 6911 } 6912 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu); 6913 6914 static bool __netdev_has_upper_dev(struct net_device *dev, 6915 struct net_device *upper_dev) 6916 { 6917 struct netdev_nested_priv priv = { 6918 .flags = 0, 6919 .data = (void *)upper_dev, 6920 }; 6921 6922 ASSERT_RTNL(); 6923 6924 return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev, 6925 &priv); 6926 } 6927 6928 /** 6929 * netdev_lower_get_next_private - Get the next ->private from the 6930 * lower neighbour list 6931 * @dev: device 6932 * @iter: list_head ** of the current position 6933 * 6934 * Gets the next netdev_adjacent->private from the dev's lower neighbour 6935 * list, starting from iter position. The caller must hold either hold the 6936 * RTNL lock or its own locking that guarantees that the neighbour lower 6937 * list will remain unchanged. 6938 */ 6939 void *netdev_lower_get_next_private(struct net_device *dev, 6940 struct list_head **iter) 6941 { 6942 struct netdev_adjacent *lower; 6943 6944 lower = list_entry(*iter, struct netdev_adjacent, list); 6945 6946 if (&lower->list == &dev->adj_list.lower) 6947 return NULL; 6948 6949 *iter = lower->list.next; 6950 6951 return lower->private; 6952 } 6953 EXPORT_SYMBOL(netdev_lower_get_next_private); 6954 6955 /** 6956 * netdev_lower_get_next_private_rcu - Get the next ->private from the 6957 * lower neighbour list, RCU 6958 * variant 6959 * @dev: device 6960 * @iter: list_head ** of the current position 6961 * 6962 * Gets the next netdev_adjacent->private from the dev's lower neighbour 6963 * list, starting from iter position. The caller must hold RCU read lock. 6964 */ 6965 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 6966 struct list_head **iter) 6967 { 6968 struct netdev_adjacent *lower; 6969 6970 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); 6971 6972 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 6973 6974 if (&lower->list == &dev->adj_list.lower) 6975 return NULL; 6976 6977 *iter = &lower->list; 6978 6979 return lower->private; 6980 } 6981 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu); 6982 6983 /** 6984 * netdev_lower_get_next - Get the next device from the lower neighbour 6985 * list 6986 * @dev: device 6987 * @iter: list_head ** of the current position 6988 * 6989 * Gets the next netdev_adjacent from the dev's lower neighbour 6990 * list, starting from iter position. The caller must hold RTNL lock or 6991 * its own locking that guarantees that the neighbour lower 6992 * list will remain unchanged. 6993 */ 6994 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter) 6995 { 6996 struct netdev_adjacent *lower; 6997 6998 lower = list_entry(*iter, struct netdev_adjacent, list); 6999 7000 if (&lower->list == &dev->adj_list.lower) 7001 return NULL; 7002 7003 *iter = lower->list.next; 7004 7005 return lower->dev; 7006 } 7007 EXPORT_SYMBOL(netdev_lower_get_next); 7008 7009 static struct net_device *netdev_next_lower_dev(struct net_device *dev, 7010 struct list_head **iter) 7011 { 7012 struct netdev_adjacent *lower; 7013 7014 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 7015 7016 if (&lower->list == &dev->adj_list.lower) 7017 return NULL; 7018 7019 *iter = &lower->list; 7020 7021 return lower->dev; 7022 } 7023 7024 static struct net_device *__netdev_next_lower_dev(struct net_device *dev, 7025 struct list_head **iter, 7026 bool *ignore) 7027 { 7028 struct netdev_adjacent *lower; 7029 7030 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 7031 7032 if (&lower->list == &dev->adj_list.lower) 7033 return NULL; 7034 7035 *iter = &lower->list; 7036 *ignore = lower->ignore; 7037 7038 return lower->dev; 7039 } 7040 7041 int netdev_walk_all_lower_dev(struct net_device *dev, 7042 int (*fn)(struct net_device *dev, 7043 struct netdev_nested_priv *priv), 7044 struct netdev_nested_priv *priv) 7045 { 7046 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7047 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7048 int ret, cur = 0; 7049 7050 now = dev; 7051 iter = &dev->adj_list.lower; 7052 7053 while (1) { 7054 if (now != dev) { 7055 ret = fn(now, priv); 7056 if (ret) 7057 return ret; 7058 } 7059 7060 next = NULL; 7061 while (1) { 7062 ldev = netdev_next_lower_dev(now, &iter); 7063 if (!ldev) 7064 break; 7065 7066 next = ldev; 7067 niter = &ldev->adj_list.lower; 7068 dev_stack[cur] = now; 7069 iter_stack[cur++] = iter; 7070 break; 7071 } 7072 7073 if (!next) { 7074 if (!cur) 7075 return 0; 7076 next = dev_stack[--cur]; 7077 niter = iter_stack[cur]; 7078 } 7079 7080 now = next; 7081 iter = niter; 7082 } 7083 7084 return 0; 7085 } 7086 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev); 7087 7088 static int __netdev_walk_all_lower_dev(struct net_device *dev, 7089 int (*fn)(struct net_device *dev, 7090 struct netdev_nested_priv *priv), 7091 struct netdev_nested_priv *priv) 7092 { 7093 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7094 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7095 int ret, cur = 0; 7096 bool ignore; 7097 7098 now = dev; 7099 iter = &dev->adj_list.lower; 7100 7101 while (1) { 7102 if (now != dev) { 7103 ret = fn(now, priv); 7104 if (ret) 7105 return ret; 7106 } 7107 7108 next = NULL; 7109 while (1) { 7110 ldev = __netdev_next_lower_dev(now, &iter, &ignore); 7111 if (!ldev) 7112 break; 7113 if (ignore) 7114 continue; 7115 7116 next = ldev; 7117 niter = &ldev->adj_list.lower; 7118 dev_stack[cur] = now; 7119 iter_stack[cur++] = iter; 7120 break; 7121 } 7122 7123 if (!next) { 7124 if (!cur) 7125 return 0; 7126 next = dev_stack[--cur]; 7127 niter = iter_stack[cur]; 7128 } 7129 7130 now = next; 7131 iter = niter; 7132 } 7133 7134 return 0; 7135 } 7136 7137 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev, 7138 struct list_head **iter) 7139 { 7140 struct netdev_adjacent *lower; 7141 7142 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 7143 if (&lower->list == &dev->adj_list.lower) 7144 return NULL; 7145 7146 *iter = &lower->list; 7147 7148 return lower->dev; 7149 } 7150 EXPORT_SYMBOL(netdev_next_lower_dev_rcu); 7151 7152 static u8 __netdev_upper_depth(struct net_device *dev) 7153 { 7154 struct net_device *udev; 7155 struct list_head *iter; 7156 u8 max_depth = 0; 7157 bool ignore; 7158 7159 for (iter = &dev->adj_list.upper, 7160 udev = __netdev_next_upper_dev(dev, &iter, &ignore); 7161 udev; 7162 udev = __netdev_next_upper_dev(dev, &iter, &ignore)) { 7163 if (ignore) 7164 continue; 7165 if (max_depth < udev->upper_level) 7166 max_depth = udev->upper_level; 7167 } 7168 7169 return max_depth; 7170 } 7171 7172 static u8 __netdev_lower_depth(struct net_device *dev) 7173 { 7174 struct net_device *ldev; 7175 struct list_head *iter; 7176 u8 max_depth = 0; 7177 bool ignore; 7178 7179 for (iter = &dev->adj_list.lower, 7180 ldev = __netdev_next_lower_dev(dev, &iter, &ignore); 7181 ldev; 7182 ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) { 7183 if (ignore) 7184 continue; 7185 if (max_depth < ldev->lower_level) 7186 max_depth = ldev->lower_level; 7187 } 7188 7189 return max_depth; 7190 } 7191 7192 static int __netdev_update_upper_level(struct net_device *dev, 7193 struct netdev_nested_priv *__unused) 7194 { 7195 dev->upper_level = __netdev_upper_depth(dev) + 1; 7196 return 0; 7197 } 7198 7199 #ifdef CONFIG_LOCKDEP 7200 static LIST_HEAD(net_unlink_list); 7201 7202 static void net_unlink_todo(struct net_device *dev) 7203 { 7204 if (list_empty(&dev->unlink_list)) 7205 list_add_tail(&dev->unlink_list, &net_unlink_list); 7206 } 7207 #endif 7208 7209 static int __netdev_update_lower_level(struct net_device *dev, 7210 struct netdev_nested_priv *priv) 7211 { 7212 dev->lower_level = __netdev_lower_depth(dev) + 1; 7213 7214 #ifdef CONFIG_LOCKDEP 7215 if (!priv) 7216 return 0; 7217 7218 if (priv->flags & NESTED_SYNC_IMM) 7219 dev->nested_level = dev->lower_level - 1; 7220 if (priv->flags & NESTED_SYNC_TODO) 7221 net_unlink_todo(dev); 7222 #endif 7223 return 0; 7224 } 7225 7226 int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 7227 int (*fn)(struct net_device *dev, 7228 struct netdev_nested_priv *priv), 7229 struct netdev_nested_priv *priv) 7230 { 7231 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7232 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7233 int ret, cur = 0; 7234 7235 now = dev; 7236 iter = &dev->adj_list.lower; 7237 7238 while (1) { 7239 if (now != dev) { 7240 ret = fn(now, priv); 7241 if (ret) 7242 return ret; 7243 } 7244 7245 next = NULL; 7246 while (1) { 7247 ldev = netdev_next_lower_dev_rcu(now, &iter); 7248 if (!ldev) 7249 break; 7250 7251 next = ldev; 7252 niter = &ldev->adj_list.lower; 7253 dev_stack[cur] = now; 7254 iter_stack[cur++] = iter; 7255 break; 7256 } 7257 7258 if (!next) { 7259 if (!cur) 7260 return 0; 7261 next = dev_stack[--cur]; 7262 niter = iter_stack[cur]; 7263 } 7264 7265 now = next; 7266 iter = niter; 7267 } 7268 7269 return 0; 7270 } 7271 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu); 7272 7273 /** 7274 * netdev_lower_get_first_private_rcu - Get the first ->private from the 7275 * lower neighbour list, RCU 7276 * variant 7277 * @dev: device 7278 * 7279 * Gets the first netdev_adjacent->private from the dev's lower neighbour 7280 * list. The caller must hold RCU read lock. 7281 */ 7282 void *netdev_lower_get_first_private_rcu(struct net_device *dev) 7283 { 7284 struct netdev_adjacent *lower; 7285 7286 lower = list_first_or_null_rcu(&dev->adj_list.lower, 7287 struct netdev_adjacent, list); 7288 if (lower) 7289 return lower->private; 7290 return NULL; 7291 } 7292 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu); 7293 7294 /** 7295 * netdev_master_upper_dev_get_rcu - Get master upper device 7296 * @dev: device 7297 * 7298 * Find a master upper device and return pointer to it or NULL in case 7299 * it's not there. The caller must hold the RCU read lock. 7300 */ 7301 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev) 7302 { 7303 struct netdev_adjacent *upper; 7304 7305 upper = list_first_or_null_rcu(&dev->adj_list.upper, 7306 struct netdev_adjacent, list); 7307 if (upper && likely(upper->master)) 7308 return upper->dev; 7309 return NULL; 7310 } 7311 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu); 7312 7313 static int netdev_adjacent_sysfs_add(struct net_device *dev, 7314 struct net_device *adj_dev, 7315 struct list_head *dev_list) 7316 { 7317 char linkname[IFNAMSIZ+7]; 7318 7319 sprintf(linkname, dev_list == &dev->adj_list.upper ? 7320 "upper_%s" : "lower_%s", adj_dev->name); 7321 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj), 7322 linkname); 7323 } 7324 static void netdev_adjacent_sysfs_del(struct net_device *dev, 7325 char *name, 7326 struct list_head *dev_list) 7327 { 7328 char linkname[IFNAMSIZ+7]; 7329 7330 sprintf(linkname, dev_list == &dev->adj_list.upper ? 7331 "upper_%s" : "lower_%s", name); 7332 sysfs_remove_link(&(dev->dev.kobj), linkname); 7333 } 7334 7335 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev, 7336 struct net_device *adj_dev, 7337 struct list_head *dev_list) 7338 { 7339 return (dev_list == &dev->adj_list.upper || 7340 dev_list == &dev->adj_list.lower) && 7341 net_eq(dev_net(dev), dev_net(adj_dev)); 7342 } 7343 7344 static int __netdev_adjacent_dev_insert(struct net_device *dev, 7345 struct net_device *adj_dev, 7346 struct list_head *dev_list, 7347 void *private, bool master) 7348 { 7349 struct netdev_adjacent *adj; 7350 int ret; 7351 7352 adj = __netdev_find_adj(adj_dev, dev_list); 7353 7354 if (adj) { 7355 adj->ref_nr += 1; 7356 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n", 7357 dev->name, adj_dev->name, adj->ref_nr); 7358 7359 return 0; 7360 } 7361 7362 adj = kmalloc(sizeof(*adj), GFP_KERNEL); 7363 if (!adj) 7364 return -ENOMEM; 7365 7366 adj->dev = adj_dev; 7367 adj->master = master; 7368 adj->ref_nr = 1; 7369 adj->private = private; 7370 adj->ignore = false; 7371 dev_hold_track(adj_dev, &adj->dev_tracker, GFP_KERNEL); 7372 7373 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n", 7374 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name); 7375 7376 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) { 7377 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list); 7378 if (ret) 7379 goto free_adj; 7380 } 7381 7382 /* Ensure that master link is always the first item in list. */ 7383 if (master) { 7384 ret = sysfs_create_link(&(dev->dev.kobj), 7385 &(adj_dev->dev.kobj), "master"); 7386 if (ret) 7387 goto remove_symlinks; 7388 7389 list_add_rcu(&adj->list, dev_list); 7390 } else { 7391 list_add_tail_rcu(&adj->list, dev_list); 7392 } 7393 7394 return 0; 7395 7396 remove_symlinks: 7397 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 7398 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 7399 free_adj: 7400 dev_put_track(adj_dev, &adj->dev_tracker); 7401 kfree(adj); 7402 7403 return ret; 7404 } 7405 7406 static void __netdev_adjacent_dev_remove(struct net_device *dev, 7407 struct net_device *adj_dev, 7408 u16 ref_nr, 7409 struct list_head *dev_list) 7410 { 7411 struct netdev_adjacent *adj; 7412 7413 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n", 7414 dev->name, adj_dev->name, ref_nr); 7415 7416 adj = __netdev_find_adj(adj_dev, dev_list); 7417 7418 if (!adj) { 7419 pr_err("Adjacency does not exist for device %s from %s\n", 7420 dev->name, adj_dev->name); 7421 WARN_ON(1); 7422 return; 7423 } 7424 7425 if (adj->ref_nr > ref_nr) { 7426 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n", 7427 dev->name, adj_dev->name, ref_nr, 7428 adj->ref_nr - ref_nr); 7429 adj->ref_nr -= ref_nr; 7430 return; 7431 } 7432 7433 if (adj->master) 7434 sysfs_remove_link(&(dev->dev.kobj), "master"); 7435 7436 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 7437 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 7438 7439 list_del_rcu(&adj->list); 7440 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n", 7441 adj_dev->name, dev->name, adj_dev->name); 7442 dev_put_track(adj_dev, &adj->dev_tracker); 7443 kfree_rcu(adj, rcu); 7444 } 7445 7446 static int __netdev_adjacent_dev_link_lists(struct net_device *dev, 7447 struct net_device *upper_dev, 7448 struct list_head *up_list, 7449 struct list_head *down_list, 7450 void *private, bool master) 7451 { 7452 int ret; 7453 7454 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, 7455 private, master); 7456 if (ret) 7457 return ret; 7458 7459 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, 7460 private, false); 7461 if (ret) { 7462 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list); 7463 return ret; 7464 } 7465 7466 return 0; 7467 } 7468 7469 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev, 7470 struct net_device *upper_dev, 7471 u16 ref_nr, 7472 struct list_head *up_list, 7473 struct list_head *down_list) 7474 { 7475 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list); 7476 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list); 7477 } 7478 7479 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev, 7480 struct net_device *upper_dev, 7481 void *private, bool master) 7482 { 7483 return __netdev_adjacent_dev_link_lists(dev, upper_dev, 7484 &dev->adj_list.upper, 7485 &upper_dev->adj_list.lower, 7486 private, master); 7487 } 7488 7489 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev, 7490 struct net_device *upper_dev) 7491 { 7492 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1, 7493 &dev->adj_list.upper, 7494 &upper_dev->adj_list.lower); 7495 } 7496 7497 static int __netdev_upper_dev_link(struct net_device *dev, 7498 struct net_device *upper_dev, bool master, 7499 void *upper_priv, void *upper_info, 7500 struct netdev_nested_priv *priv, 7501 struct netlink_ext_ack *extack) 7502 { 7503 struct netdev_notifier_changeupper_info changeupper_info = { 7504 .info = { 7505 .dev = dev, 7506 .extack = extack, 7507 }, 7508 .upper_dev = upper_dev, 7509 .master = master, 7510 .linking = true, 7511 .upper_info = upper_info, 7512 }; 7513 struct net_device *master_dev; 7514 int ret = 0; 7515 7516 ASSERT_RTNL(); 7517 7518 if (dev == upper_dev) 7519 return -EBUSY; 7520 7521 /* To prevent loops, check if dev is not upper device to upper_dev. */ 7522 if (__netdev_has_upper_dev(upper_dev, dev)) 7523 return -EBUSY; 7524 7525 if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV) 7526 return -EMLINK; 7527 7528 if (!master) { 7529 if (__netdev_has_upper_dev(dev, upper_dev)) 7530 return -EEXIST; 7531 } else { 7532 master_dev = __netdev_master_upper_dev_get(dev); 7533 if (master_dev) 7534 return master_dev == upper_dev ? -EEXIST : -EBUSY; 7535 } 7536 7537 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 7538 &changeupper_info.info); 7539 ret = notifier_to_errno(ret); 7540 if (ret) 7541 return ret; 7542 7543 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv, 7544 master); 7545 if (ret) 7546 return ret; 7547 7548 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 7549 &changeupper_info.info); 7550 ret = notifier_to_errno(ret); 7551 if (ret) 7552 goto rollback; 7553 7554 __netdev_update_upper_level(dev, NULL); 7555 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL); 7556 7557 __netdev_update_lower_level(upper_dev, priv); 7558 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level, 7559 priv); 7560 7561 return 0; 7562 7563 rollback: 7564 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 7565 7566 return ret; 7567 } 7568 7569 /** 7570 * netdev_upper_dev_link - Add a link to the upper device 7571 * @dev: device 7572 * @upper_dev: new upper device 7573 * @extack: netlink extended ack 7574 * 7575 * Adds a link to device which is upper to this one. The caller must hold 7576 * the RTNL lock. On a failure a negative errno code is returned. 7577 * On success the reference counts are adjusted and the function 7578 * returns zero. 7579 */ 7580 int netdev_upper_dev_link(struct net_device *dev, 7581 struct net_device *upper_dev, 7582 struct netlink_ext_ack *extack) 7583 { 7584 struct netdev_nested_priv priv = { 7585 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO, 7586 .data = NULL, 7587 }; 7588 7589 return __netdev_upper_dev_link(dev, upper_dev, false, 7590 NULL, NULL, &priv, extack); 7591 } 7592 EXPORT_SYMBOL(netdev_upper_dev_link); 7593 7594 /** 7595 * netdev_master_upper_dev_link - Add a master link to the upper device 7596 * @dev: device 7597 * @upper_dev: new upper device 7598 * @upper_priv: upper device private 7599 * @upper_info: upper info to be passed down via notifier 7600 * @extack: netlink extended ack 7601 * 7602 * Adds a link to device which is upper to this one. In this case, only 7603 * one master upper device can be linked, although other non-master devices 7604 * might be linked as well. The caller must hold the RTNL lock. 7605 * On a failure a negative errno code is returned. On success the reference 7606 * counts are adjusted and the function returns zero. 7607 */ 7608 int netdev_master_upper_dev_link(struct net_device *dev, 7609 struct net_device *upper_dev, 7610 void *upper_priv, void *upper_info, 7611 struct netlink_ext_ack *extack) 7612 { 7613 struct netdev_nested_priv priv = { 7614 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO, 7615 .data = NULL, 7616 }; 7617 7618 return __netdev_upper_dev_link(dev, upper_dev, true, 7619 upper_priv, upper_info, &priv, extack); 7620 } 7621 EXPORT_SYMBOL(netdev_master_upper_dev_link); 7622 7623 static void __netdev_upper_dev_unlink(struct net_device *dev, 7624 struct net_device *upper_dev, 7625 struct netdev_nested_priv *priv) 7626 { 7627 struct netdev_notifier_changeupper_info changeupper_info = { 7628 .info = { 7629 .dev = dev, 7630 }, 7631 .upper_dev = upper_dev, 7632 .linking = false, 7633 }; 7634 7635 ASSERT_RTNL(); 7636 7637 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev; 7638 7639 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 7640 &changeupper_info.info); 7641 7642 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 7643 7644 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 7645 &changeupper_info.info); 7646 7647 __netdev_update_upper_level(dev, NULL); 7648 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL); 7649 7650 __netdev_update_lower_level(upper_dev, priv); 7651 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level, 7652 priv); 7653 } 7654 7655 /** 7656 * netdev_upper_dev_unlink - Removes a link to upper device 7657 * @dev: device 7658 * @upper_dev: new upper device 7659 * 7660 * Removes a link to device which is upper to this one. The caller must hold 7661 * the RTNL lock. 7662 */ 7663 void netdev_upper_dev_unlink(struct net_device *dev, 7664 struct net_device *upper_dev) 7665 { 7666 struct netdev_nested_priv priv = { 7667 .flags = NESTED_SYNC_TODO, 7668 .data = NULL, 7669 }; 7670 7671 __netdev_upper_dev_unlink(dev, upper_dev, &priv); 7672 } 7673 EXPORT_SYMBOL(netdev_upper_dev_unlink); 7674 7675 static void __netdev_adjacent_dev_set(struct net_device *upper_dev, 7676 struct net_device *lower_dev, 7677 bool val) 7678 { 7679 struct netdev_adjacent *adj; 7680 7681 adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower); 7682 if (adj) 7683 adj->ignore = val; 7684 7685 adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper); 7686 if (adj) 7687 adj->ignore = val; 7688 } 7689 7690 static void netdev_adjacent_dev_disable(struct net_device *upper_dev, 7691 struct net_device *lower_dev) 7692 { 7693 __netdev_adjacent_dev_set(upper_dev, lower_dev, true); 7694 } 7695 7696 static void netdev_adjacent_dev_enable(struct net_device *upper_dev, 7697 struct net_device *lower_dev) 7698 { 7699 __netdev_adjacent_dev_set(upper_dev, lower_dev, false); 7700 } 7701 7702 int netdev_adjacent_change_prepare(struct net_device *old_dev, 7703 struct net_device *new_dev, 7704 struct net_device *dev, 7705 struct netlink_ext_ack *extack) 7706 { 7707 struct netdev_nested_priv priv = { 7708 .flags = 0, 7709 .data = NULL, 7710 }; 7711 int err; 7712 7713 if (!new_dev) 7714 return 0; 7715 7716 if (old_dev && new_dev != old_dev) 7717 netdev_adjacent_dev_disable(dev, old_dev); 7718 err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv, 7719 extack); 7720 if (err) { 7721 if (old_dev && new_dev != old_dev) 7722 netdev_adjacent_dev_enable(dev, old_dev); 7723 return err; 7724 } 7725 7726 return 0; 7727 } 7728 EXPORT_SYMBOL(netdev_adjacent_change_prepare); 7729 7730 void netdev_adjacent_change_commit(struct net_device *old_dev, 7731 struct net_device *new_dev, 7732 struct net_device *dev) 7733 { 7734 struct netdev_nested_priv priv = { 7735 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO, 7736 .data = NULL, 7737 }; 7738 7739 if (!new_dev || !old_dev) 7740 return; 7741 7742 if (new_dev == old_dev) 7743 return; 7744 7745 netdev_adjacent_dev_enable(dev, old_dev); 7746 __netdev_upper_dev_unlink(old_dev, dev, &priv); 7747 } 7748 EXPORT_SYMBOL(netdev_adjacent_change_commit); 7749 7750 void netdev_adjacent_change_abort(struct net_device *old_dev, 7751 struct net_device *new_dev, 7752 struct net_device *dev) 7753 { 7754 struct netdev_nested_priv priv = { 7755 .flags = 0, 7756 .data = NULL, 7757 }; 7758 7759 if (!new_dev) 7760 return; 7761 7762 if (old_dev && new_dev != old_dev) 7763 netdev_adjacent_dev_enable(dev, old_dev); 7764 7765 __netdev_upper_dev_unlink(new_dev, dev, &priv); 7766 } 7767 EXPORT_SYMBOL(netdev_adjacent_change_abort); 7768 7769 /** 7770 * netdev_bonding_info_change - Dispatch event about slave change 7771 * @dev: device 7772 * @bonding_info: info to dispatch 7773 * 7774 * Send NETDEV_BONDING_INFO to netdev notifiers with info. 7775 * The caller must hold the RTNL lock. 7776 */ 7777 void netdev_bonding_info_change(struct net_device *dev, 7778 struct netdev_bonding_info *bonding_info) 7779 { 7780 struct netdev_notifier_bonding_info info = { 7781 .info.dev = dev, 7782 }; 7783 7784 memcpy(&info.bonding_info, bonding_info, 7785 sizeof(struct netdev_bonding_info)); 7786 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, 7787 &info.info); 7788 } 7789 EXPORT_SYMBOL(netdev_bonding_info_change); 7790 7791 static int netdev_offload_xstats_enable_l3(struct net_device *dev, 7792 struct netlink_ext_ack *extack) 7793 { 7794 struct netdev_notifier_offload_xstats_info info = { 7795 .info.dev = dev, 7796 .info.extack = extack, 7797 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3, 7798 }; 7799 int err; 7800 int rc; 7801 7802 dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3), 7803 GFP_KERNEL); 7804 if (!dev->offload_xstats_l3) 7805 return -ENOMEM; 7806 7807 rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE, 7808 NETDEV_OFFLOAD_XSTATS_DISABLE, 7809 &info.info); 7810 err = notifier_to_errno(rc); 7811 if (err) 7812 goto free_stats; 7813 7814 return 0; 7815 7816 free_stats: 7817 kfree(dev->offload_xstats_l3); 7818 dev->offload_xstats_l3 = NULL; 7819 return err; 7820 } 7821 7822 int netdev_offload_xstats_enable(struct net_device *dev, 7823 enum netdev_offload_xstats_type type, 7824 struct netlink_ext_ack *extack) 7825 { 7826 ASSERT_RTNL(); 7827 7828 if (netdev_offload_xstats_enabled(dev, type)) 7829 return -EALREADY; 7830 7831 switch (type) { 7832 case NETDEV_OFFLOAD_XSTATS_TYPE_L3: 7833 return netdev_offload_xstats_enable_l3(dev, extack); 7834 } 7835 7836 WARN_ON(1); 7837 return -EINVAL; 7838 } 7839 EXPORT_SYMBOL(netdev_offload_xstats_enable); 7840 7841 static void netdev_offload_xstats_disable_l3(struct net_device *dev) 7842 { 7843 struct netdev_notifier_offload_xstats_info info = { 7844 .info.dev = dev, 7845 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3, 7846 }; 7847 7848 call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE, 7849 &info.info); 7850 kfree(dev->offload_xstats_l3); 7851 dev->offload_xstats_l3 = NULL; 7852 } 7853 7854 int netdev_offload_xstats_disable(struct net_device *dev, 7855 enum netdev_offload_xstats_type type) 7856 { 7857 ASSERT_RTNL(); 7858 7859 if (!netdev_offload_xstats_enabled(dev, type)) 7860 return -EALREADY; 7861 7862 switch (type) { 7863 case NETDEV_OFFLOAD_XSTATS_TYPE_L3: 7864 netdev_offload_xstats_disable_l3(dev); 7865 return 0; 7866 } 7867 7868 WARN_ON(1); 7869 return -EINVAL; 7870 } 7871 EXPORT_SYMBOL(netdev_offload_xstats_disable); 7872 7873 static void netdev_offload_xstats_disable_all(struct net_device *dev) 7874 { 7875 netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3); 7876 } 7877 7878 static struct rtnl_hw_stats64 * 7879 netdev_offload_xstats_get_ptr(const struct net_device *dev, 7880 enum netdev_offload_xstats_type type) 7881 { 7882 switch (type) { 7883 case NETDEV_OFFLOAD_XSTATS_TYPE_L3: 7884 return dev->offload_xstats_l3; 7885 } 7886 7887 WARN_ON(1); 7888 return NULL; 7889 } 7890 7891 bool netdev_offload_xstats_enabled(const struct net_device *dev, 7892 enum netdev_offload_xstats_type type) 7893 { 7894 ASSERT_RTNL(); 7895 7896 return netdev_offload_xstats_get_ptr(dev, type); 7897 } 7898 EXPORT_SYMBOL(netdev_offload_xstats_enabled); 7899 7900 struct netdev_notifier_offload_xstats_ru { 7901 bool used; 7902 }; 7903 7904 struct netdev_notifier_offload_xstats_rd { 7905 struct rtnl_hw_stats64 stats; 7906 bool used; 7907 }; 7908 7909 static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest, 7910 const struct rtnl_hw_stats64 *src) 7911 { 7912 dest->rx_packets += src->rx_packets; 7913 dest->tx_packets += src->tx_packets; 7914 dest->rx_bytes += src->rx_bytes; 7915 dest->tx_bytes += src->tx_bytes; 7916 dest->rx_errors += src->rx_errors; 7917 dest->tx_errors += src->tx_errors; 7918 dest->rx_dropped += src->rx_dropped; 7919 dest->tx_dropped += src->tx_dropped; 7920 dest->multicast += src->multicast; 7921 } 7922 7923 static int netdev_offload_xstats_get_used(struct net_device *dev, 7924 enum netdev_offload_xstats_type type, 7925 bool *p_used, 7926 struct netlink_ext_ack *extack) 7927 { 7928 struct netdev_notifier_offload_xstats_ru report_used = {}; 7929 struct netdev_notifier_offload_xstats_info info = { 7930 .info.dev = dev, 7931 .info.extack = extack, 7932 .type = type, 7933 .report_used = &report_used, 7934 }; 7935 int rc; 7936 7937 WARN_ON(!netdev_offload_xstats_enabled(dev, type)); 7938 rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED, 7939 &info.info); 7940 *p_used = report_used.used; 7941 return notifier_to_errno(rc); 7942 } 7943 7944 static int netdev_offload_xstats_get_stats(struct net_device *dev, 7945 enum netdev_offload_xstats_type type, 7946 struct rtnl_hw_stats64 *p_stats, 7947 bool *p_used, 7948 struct netlink_ext_ack *extack) 7949 { 7950 struct netdev_notifier_offload_xstats_rd report_delta = {}; 7951 struct netdev_notifier_offload_xstats_info info = { 7952 .info.dev = dev, 7953 .info.extack = extack, 7954 .type = type, 7955 .report_delta = &report_delta, 7956 }; 7957 struct rtnl_hw_stats64 *stats; 7958 int rc; 7959 7960 stats = netdev_offload_xstats_get_ptr(dev, type); 7961 if (WARN_ON(!stats)) 7962 return -EINVAL; 7963 7964 rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA, 7965 &info.info); 7966 7967 /* Cache whatever we got, even if there was an error, otherwise the 7968 * successful stats retrievals would get lost. 7969 */ 7970 netdev_hw_stats64_add(stats, &report_delta.stats); 7971 7972 if (p_stats) 7973 *p_stats = *stats; 7974 *p_used = report_delta.used; 7975 7976 return notifier_to_errno(rc); 7977 } 7978 7979 int netdev_offload_xstats_get(struct net_device *dev, 7980 enum netdev_offload_xstats_type type, 7981 struct rtnl_hw_stats64 *p_stats, bool *p_used, 7982 struct netlink_ext_ack *extack) 7983 { 7984 ASSERT_RTNL(); 7985 7986 if (p_stats) 7987 return netdev_offload_xstats_get_stats(dev, type, p_stats, 7988 p_used, extack); 7989 else 7990 return netdev_offload_xstats_get_used(dev, type, p_used, 7991 extack); 7992 } 7993 EXPORT_SYMBOL(netdev_offload_xstats_get); 7994 7995 void 7996 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta, 7997 const struct rtnl_hw_stats64 *stats) 7998 { 7999 report_delta->used = true; 8000 netdev_hw_stats64_add(&report_delta->stats, stats); 8001 } 8002 EXPORT_SYMBOL(netdev_offload_xstats_report_delta); 8003 8004 void 8005 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used) 8006 { 8007 report_used->used = true; 8008 } 8009 EXPORT_SYMBOL(netdev_offload_xstats_report_used); 8010 8011 void netdev_offload_xstats_push_delta(struct net_device *dev, 8012 enum netdev_offload_xstats_type type, 8013 const struct rtnl_hw_stats64 *p_stats) 8014 { 8015 struct rtnl_hw_stats64 *stats; 8016 8017 ASSERT_RTNL(); 8018 8019 stats = netdev_offload_xstats_get_ptr(dev, type); 8020 if (WARN_ON(!stats)) 8021 return; 8022 8023 netdev_hw_stats64_add(stats, p_stats); 8024 } 8025 EXPORT_SYMBOL(netdev_offload_xstats_push_delta); 8026 8027 /** 8028 * netdev_get_xmit_slave - Get the xmit slave of master device 8029 * @dev: device 8030 * @skb: The packet 8031 * @all_slaves: assume all the slaves are active 8032 * 8033 * The reference counters are not incremented so the caller must be 8034 * careful with locks. The caller must hold RCU lock. 8035 * %NULL is returned if no slave is found. 8036 */ 8037 8038 struct net_device *netdev_get_xmit_slave(struct net_device *dev, 8039 struct sk_buff *skb, 8040 bool all_slaves) 8041 { 8042 const struct net_device_ops *ops = dev->netdev_ops; 8043 8044 if (!ops->ndo_get_xmit_slave) 8045 return NULL; 8046 return ops->ndo_get_xmit_slave(dev, skb, all_slaves); 8047 } 8048 EXPORT_SYMBOL(netdev_get_xmit_slave); 8049 8050 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev, 8051 struct sock *sk) 8052 { 8053 const struct net_device_ops *ops = dev->netdev_ops; 8054 8055 if (!ops->ndo_sk_get_lower_dev) 8056 return NULL; 8057 return ops->ndo_sk_get_lower_dev(dev, sk); 8058 } 8059 8060 /** 8061 * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket 8062 * @dev: device 8063 * @sk: the socket 8064 * 8065 * %NULL is returned if no lower device is found. 8066 */ 8067 8068 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev, 8069 struct sock *sk) 8070 { 8071 struct net_device *lower; 8072 8073 lower = netdev_sk_get_lower_dev(dev, sk); 8074 while (lower) { 8075 dev = lower; 8076 lower = netdev_sk_get_lower_dev(dev, sk); 8077 } 8078 8079 return dev; 8080 } 8081 EXPORT_SYMBOL(netdev_sk_get_lowest_dev); 8082 8083 static void netdev_adjacent_add_links(struct net_device *dev) 8084 { 8085 struct netdev_adjacent *iter; 8086 8087 struct net *net = dev_net(dev); 8088 8089 list_for_each_entry(iter, &dev->adj_list.upper, list) { 8090 if (!net_eq(net, dev_net(iter->dev))) 8091 continue; 8092 netdev_adjacent_sysfs_add(iter->dev, dev, 8093 &iter->dev->adj_list.lower); 8094 netdev_adjacent_sysfs_add(dev, iter->dev, 8095 &dev->adj_list.upper); 8096 } 8097 8098 list_for_each_entry(iter, &dev->adj_list.lower, list) { 8099 if (!net_eq(net, dev_net(iter->dev))) 8100 continue; 8101 netdev_adjacent_sysfs_add(iter->dev, dev, 8102 &iter->dev->adj_list.upper); 8103 netdev_adjacent_sysfs_add(dev, iter->dev, 8104 &dev->adj_list.lower); 8105 } 8106 } 8107 8108 static void netdev_adjacent_del_links(struct net_device *dev) 8109 { 8110 struct netdev_adjacent *iter; 8111 8112 struct net *net = dev_net(dev); 8113 8114 list_for_each_entry(iter, &dev->adj_list.upper, list) { 8115 if (!net_eq(net, dev_net(iter->dev))) 8116 continue; 8117 netdev_adjacent_sysfs_del(iter->dev, dev->name, 8118 &iter->dev->adj_list.lower); 8119 netdev_adjacent_sysfs_del(dev, iter->dev->name, 8120 &dev->adj_list.upper); 8121 } 8122 8123 list_for_each_entry(iter, &dev->adj_list.lower, list) { 8124 if (!net_eq(net, dev_net(iter->dev))) 8125 continue; 8126 netdev_adjacent_sysfs_del(iter->dev, dev->name, 8127 &iter->dev->adj_list.upper); 8128 netdev_adjacent_sysfs_del(dev, iter->dev->name, 8129 &dev->adj_list.lower); 8130 } 8131 } 8132 8133 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname) 8134 { 8135 struct netdev_adjacent *iter; 8136 8137 struct net *net = dev_net(dev); 8138 8139 list_for_each_entry(iter, &dev->adj_list.upper, list) { 8140 if (!net_eq(net, dev_net(iter->dev))) 8141 continue; 8142 netdev_adjacent_sysfs_del(iter->dev, oldname, 8143 &iter->dev->adj_list.lower); 8144 netdev_adjacent_sysfs_add(iter->dev, dev, 8145 &iter->dev->adj_list.lower); 8146 } 8147 8148 list_for_each_entry(iter, &dev->adj_list.lower, list) { 8149 if (!net_eq(net, dev_net(iter->dev))) 8150 continue; 8151 netdev_adjacent_sysfs_del(iter->dev, oldname, 8152 &iter->dev->adj_list.upper); 8153 netdev_adjacent_sysfs_add(iter->dev, dev, 8154 &iter->dev->adj_list.upper); 8155 } 8156 } 8157 8158 void *netdev_lower_dev_get_private(struct net_device *dev, 8159 struct net_device *lower_dev) 8160 { 8161 struct netdev_adjacent *lower; 8162 8163 if (!lower_dev) 8164 return NULL; 8165 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower); 8166 if (!lower) 8167 return NULL; 8168 8169 return lower->private; 8170 } 8171 EXPORT_SYMBOL(netdev_lower_dev_get_private); 8172 8173 8174 /** 8175 * netdev_lower_state_changed - Dispatch event about lower device state change 8176 * @lower_dev: device 8177 * @lower_state_info: state to dispatch 8178 * 8179 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info. 8180 * The caller must hold the RTNL lock. 8181 */ 8182 void netdev_lower_state_changed(struct net_device *lower_dev, 8183 void *lower_state_info) 8184 { 8185 struct netdev_notifier_changelowerstate_info changelowerstate_info = { 8186 .info.dev = lower_dev, 8187 }; 8188 8189 ASSERT_RTNL(); 8190 changelowerstate_info.lower_state_info = lower_state_info; 8191 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, 8192 &changelowerstate_info.info); 8193 } 8194 EXPORT_SYMBOL(netdev_lower_state_changed); 8195 8196 static void dev_change_rx_flags(struct net_device *dev, int flags) 8197 { 8198 const struct net_device_ops *ops = dev->netdev_ops; 8199 8200 if (ops->ndo_change_rx_flags) 8201 ops->ndo_change_rx_flags(dev, flags); 8202 } 8203 8204 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify) 8205 { 8206 unsigned int old_flags = dev->flags; 8207 kuid_t uid; 8208 kgid_t gid; 8209 8210 ASSERT_RTNL(); 8211 8212 dev->flags |= IFF_PROMISC; 8213 dev->promiscuity += inc; 8214 if (dev->promiscuity == 0) { 8215 /* 8216 * Avoid overflow. 8217 * If inc causes overflow, untouch promisc and return error. 8218 */ 8219 if (inc < 0) 8220 dev->flags &= ~IFF_PROMISC; 8221 else { 8222 dev->promiscuity -= inc; 8223 netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n"); 8224 return -EOVERFLOW; 8225 } 8226 } 8227 if (dev->flags != old_flags) { 8228 pr_info("device %s %s promiscuous mode\n", 8229 dev->name, 8230 dev->flags & IFF_PROMISC ? "entered" : "left"); 8231 if (audit_enabled) { 8232 current_uid_gid(&uid, &gid); 8233 audit_log(audit_context(), GFP_ATOMIC, 8234 AUDIT_ANOM_PROMISCUOUS, 8235 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 8236 dev->name, (dev->flags & IFF_PROMISC), 8237 (old_flags & IFF_PROMISC), 8238 from_kuid(&init_user_ns, audit_get_loginuid(current)), 8239 from_kuid(&init_user_ns, uid), 8240 from_kgid(&init_user_ns, gid), 8241 audit_get_sessionid(current)); 8242 } 8243 8244 dev_change_rx_flags(dev, IFF_PROMISC); 8245 } 8246 if (notify) 8247 __dev_notify_flags(dev, old_flags, IFF_PROMISC); 8248 return 0; 8249 } 8250 8251 /** 8252 * dev_set_promiscuity - update promiscuity count on a device 8253 * @dev: device 8254 * @inc: modifier 8255 * 8256 * Add or remove promiscuity from a device. While the count in the device 8257 * remains above zero the interface remains promiscuous. Once it hits zero 8258 * the device reverts back to normal filtering operation. A negative inc 8259 * value is used to drop promiscuity on the device. 8260 * Return 0 if successful or a negative errno code on error. 8261 */ 8262 int dev_set_promiscuity(struct net_device *dev, int inc) 8263 { 8264 unsigned int old_flags = dev->flags; 8265 int err; 8266 8267 err = __dev_set_promiscuity(dev, inc, true); 8268 if (err < 0) 8269 return err; 8270 if (dev->flags != old_flags) 8271 dev_set_rx_mode(dev); 8272 return err; 8273 } 8274 EXPORT_SYMBOL(dev_set_promiscuity); 8275 8276 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify) 8277 { 8278 unsigned int old_flags = dev->flags, old_gflags = dev->gflags; 8279 8280 ASSERT_RTNL(); 8281 8282 dev->flags |= IFF_ALLMULTI; 8283 dev->allmulti += inc; 8284 if (dev->allmulti == 0) { 8285 /* 8286 * Avoid overflow. 8287 * If inc causes overflow, untouch allmulti and return error. 8288 */ 8289 if (inc < 0) 8290 dev->flags &= ~IFF_ALLMULTI; 8291 else { 8292 dev->allmulti -= inc; 8293 netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n"); 8294 return -EOVERFLOW; 8295 } 8296 } 8297 if (dev->flags ^ old_flags) { 8298 dev_change_rx_flags(dev, IFF_ALLMULTI); 8299 dev_set_rx_mode(dev); 8300 if (notify) 8301 __dev_notify_flags(dev, old_flags, 8302 dev->gflags ^ old_gflags); 8303 } 8304 return 0; 8305 } 8306 8307 /** 8308 * dev_set_allmulti - update allmulti count on a device 8309 * @dev: device 8310 * @inc: modifier 8311 * 8312 * Add or remove reception of all multicast frames to a device. While the 8313 * count in the device remains above zero the interface remains listening 8314 * to all interfaces. Once it hits zero the device reverts back to normal 8315 * filtering operation. A negative @inc value is used to drop the counter 8316 * when releasing a resource needing all multicasts. 8317 * Return 0 if successful or a negative errno code on error. 8318 */ 8319 8320 int dev_set_allmulti(struct net_device *dev, int inc) 8321 { 8322 return __dev_set_allmulti(dev, inc, true); 8323 } 8324 EXPORT_SYMBOL(dev_set_allmulti); 8325 8326 /* 8327 * Upload unicast and multicast address lists to device and 8328 * configure RX filtering. When the device doesn't support unicast 8329 * filtering it is put in promiscuous mode while unicast addresses 8330 * are present. 8331 */ 8332 void __dev_set_rx_mode(struct net_device *dev) 8333 { 8334 const struct net_device_ops *ops = dev->netdev_ops; 8335 8336 /* dev_open will call this function so the list will stay sane. */ 8337 if (!(dev->flags&IFF_UP)) 8338 return; 8339 8340 if (!netif_device_present(dev)) 8341 return; 8342 8343 if (!(dev->priv_flags & IFF_UNICAST_FLT)) { 8344 /* Unicast addresses changes may only happen under the rtnl, 8345 * therefore calling __dev_set_promiscuity here is safe. 8346 */ 8347 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 8348 __dev_set_promiscuity(dev, 1, false); 8349 dev->uc_promisc = true; 8350 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 8351 __dev_set_promiscuity(dev, -1, false); 8352 dev->uc_promisc = false; 8353 } 8354 } 8355 8356 if (ops->ndo_set_rx_mode) 8357 ops->ndo_set_rx_mode(dev); 8358 } 8359 8360 void dev_set_rx_mode(struct net_device *dev) 8361 { 8362 netif_addr_lock_bh(dev); 8363 __dev_set_rx_mode(dev); 8364 netif_addr_unlock_bh(dev); 8365 } 8366 8367 /** 8368 * dev_get_flags - get flags reported to userspace 8369 * @dev: device 8370 * 8371 * Get the combination of flag bits exported through APIs to userspace. 8372 */ 8373 unsigned int dev_get_flags(const struct net_device *dev) 8374 { 8375 unsigned int flags; 8376 8377 flags = (dev->flags & ~(IFF_PROMISC | 8378 IFF_ALLMULTI | 8379 IFF_RUNNING | 8380 IFF_LOWER_UP | 8381 IFF_DORMANT)) | 8382 (dev->gflags & (IFF_PROMISC | 8383 IFF_ALLMULTI)); 8384 8385 if (netif_running(dev)) { 8386 if (netif_oper_up(dev)) 8387 flags |= IFF_RUNNING; 8388 if (netif_carrier_ok(dev)) 8389 flags |= IFF_LOWER_UP; 8390 if (netif_dormant(dev)) 8391 flags |= IFF_DORMANT; 8392 } 8393 8394 return flags; 8395 } 8396 EXPORT_SYMBOL(dev_get_flags); 8397 8398 int __dev_change_flags(struct net_device *dev, unsigned int flags, 8399 struct netlink_ext_ack *extack) 8400 { 8401 unsigned int old_flags = dev->flags; 8402 int ret; 8403 8404 ASSERT_RTNL(); 8405 8406 /* 8407 * Set the flags on our device. 8408 */ 8409 8410 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 8411 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 8412 IFF_AUTOMEDIA)) | 8413 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 8414 IFF_ALLMULTI)); 8415 8416 /* 8417 * Load in the correct multicast list now the flags have changed. 8418 */ 8419 8420 if ((old_flags ^ flags) & IFF_MULTICAST) 8421 dev_change_rx_flags(dev, IFF_MULTICAST); 8422 8423 dev_set_rx_mode(dev); 8424 8425 /* 8426 * Have we downed the interface. We handle IFF_UP ourselves 8427 * according to user attempts to set it, rather than blindly 8428 * setting it. 8429 */ 8430 8431 ret = 0; 8432 if ((old_flags ^ flags) & IFF_UP) { 8433 if (old_flags & IFF_UP) 8434 __dev_close(dev); 8435 else 8436 ret = __dev_open(dev, extack); 8437 } 8438 8439 if ((flags ^ dev->gflags) & IFF_PROMISC) { 8440 int inc = (flags & IFF_PROMISC) ? 1 : -1; 8441 unsigned int old_flags = dev->flags; 8442 8443 dev->gflags ^= IFF_PROMISC; 8444 8445 if (__dev_set_promiscuity(dev, inc, false) >= 0) 8446 if (dev->flags != old_flags) 8447 dev_set_rx_mode(dev); 8448 } 8449 8450 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 8451 * is important. Some (broken) drivers set IFF_PROMISC, when 8452 * IFF_ALLMULTI is requested not asking us and not reporting. 8453 */ 8454 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 8455 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 8456 8457 dev->gflags ^= IFF_ALLMULTI; 8458 __dev_set_allmulti(dev, inc, false); 8459 } 8460 8461 return ret; 8462 } 8463 8464 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags, 8465 unsigned int gchanges) 8466 { 8467 unsigned int changes = dev->flags ^ old_flags; 8468 8469 if (gchanges) 8470 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC); 8471 8472 if (changes & IFF_UP) { 8473 if (dev->flags & IFF_UP) 8474 call_netdevice_notifiers(NETDEV_UP, dev); 8475 else 8476 call_netdevice_notifiers(NETDEV_DOWN, dev); 8477 } 8478 8479 if (dev->flags & IFF_UP && 8480 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) { 8481 struct netdev_notifier_change_info change_info = { 8482 .info = { 8483 .dev = dev, 8484 }, 8485 .flags_changed = changes, 8486 }; 8487 8488 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info); 8489 } 8490 } 8491 8492 /** 8493 * dev_change_flags - change device settings 8494 * @dev: device 8495 * @flags: device state flags 8496 * @extack: netlink extended ack 8497 * 8498 * Change settings on device based state flags. The flags are 8499 * in the userspace exported format. 8500 */ 8501 int dev_change_flags(struct net_device *dev, unsigned int flags, 8502 struct netlink_ext_ack *extack) 8503 { 8504 int ret; 8505 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags; 8506 8507 ret = __dev_change_flags(dev, flags, extack); 8508 if (ret < 0) 8509 return ret; 8510 8511 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags); 8512 __dev_notify_flags(dev, old_flags, changes); 8513 return ret; 8514 } 8515 EXPORT_SYMBOL(dev_change_flags); 8516 8517 int __dev_set_mtu(struct net_device *dev, int new_mtu) 8518 { 8519 const struct net_device_ops *ops = dev->netdev_ops; 8520 8521 if (ops->ndo_change_mtu) 8522 return ops->ndo_change_mtu(dev, new_mtu); 8523 8524 /* Pairs with all the lockless reads of dev->mtu in the stack */ 8525 WRITE_ONCE(dev->mtu, new_mtu); 8526 return 0; 8527 } 8528 EXPORT_SYMBOL(__dev_set_mtu); 8529 8530 int dev_validate_mtu(struct net_device *dev, int new_mtu, 8531 struct netlink_ext_ack *extack) 8532 { 8533 /* MTU must be positive, and in range */ 8534 if (new_mtu < 0 || new_mtu < dev->min_mtu) { 8535 NL_SET_ERR_MSG(extack, "mtu less than device minimum"); 8536 return -EINVAL; 8537 } 8538 8539 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) { 8540 NL_SET_ERR_MSG(extack, "mtu greater than device maximum"); 8541 return -EINVAL; 8542 } 8543 return 0; 8544 } 8545 8546 /** 8547 * dev_set_mtu_ext - Change maximum transfer unit 8548 * @dev: device 8549 * @new_mtu: new transfer unit 8550 * @extack: netlink extended ack 8551 * 8552 * Change the maximum transfer size of the network device. 8553 */ 8554 int dev_set_mtu_ext(struct net_device *dev, int new_mtu, 8555 struct netlink_ext_ack *extack) 8556 { 8557 int err, orig_mtu; 8558 8559 if (new_mtu == dev->mtu) 8560 return 0; 8561 8562 err = dev_validate_mtu(dev, new_mtu, extack); 8563 if (err) 8564 return err; 8565 8566 if (!netif_device_present(dev)) 8567 return -ENODEV; 8568 8569 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev); 8570 err = notifier_to_errno(err); 8571 if (err) 8572 return err; 8573 8574 orig_mtu = dev->mtu; 8575 err = __dev_set_mtu(dev, new_mtu); 8576 8577 if (!err) { 8578 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev, 8579 orig_mtu); 8580 err = notifier_to_errno(err); 8581 if (err) { 8582 /* setting mtu back and notifying everyone again, 8583 * so that they have a chance to revert changes. 8584 */ 8585 __dev_set_mtu(dev, orig_mtu); 8586 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev, 8587 new_mtu); 8588 } 8589 } 8590 return err; 8591 } 8592 8593 int dev_set_mtu(struct net_device *dev, int new_mtu) 8594 { 8595 struct netlink_ext_ack extack; 8596 int err; 8597 8598 memset(&extack, 0, sizeof(extack)); 8599 err = dev_set_mtu_ext(dev, new_mtu, &extack); 8600 if (err && extack._msg) 8601 net_err_ratelimited("%s: %s\n", dev->name, extack._msg); 8602 return err; 8603 } 8604 EXPORT_SYMBOL(dev_set_mtu); 8605 8606 /** 8607 * dev_change_tx_queue_len - Change TX queue length of a netdevice 8608 * @dev: device 8609 * @new_len: new tx queue length 8610 */ 8611 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len) 8612 { 8613 unsigned int orig_len = dev->tx_queue_len; 8614 int res; 8615 8616 if (new_len != (unsigned int)new_len) 8617 return -ERANGE; 8618 8619 if (new_len != orig_len) { 8620 dev->tx_queue_len = new_len; 8621 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev); 8622 res = notifier_to_errno(res); 8623 if (res) 8624 goto err_rollback; 8625 res = dev_qdisc_change_tx_queue_len(dev); 8626 if (res) 8627 goto err_rollback; 8628 } 8629 8630 return 0; 8631 8632 err_rollback: 8633 netdev_err(dev, "refused to change device tx_queue_len\n"); 8634 dev->tx_queue_len = orig_len; 8635 return res; 8636 } 8637 8638 /** 8639 * dev_set_group - Change group this device belongs to 8640 * @dev: device 8641 * @new_group: group this device should belong to 8642 */ 8643 void dev_set_group(struct net_device *dev, int new_group) 8644 { 8645 dev->group = new_group; 8646 } 8647 8648 /** 8649 * dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR. 8650 * @dev: device 8651 * @addr: new address 8652 * @extack: netlink extended ack 8653 */ 8654 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr, 8655 struct netlink_ext_ack *extack) 8656 { 8657 struct netdev_notifier_pre_changeaddr_info info = { 8658 .info.dev = dev, 8659 .info.extack = extack, 8660 .dev_addr = addr, 8661 }; 8662 int rc; 8663 8664 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info); 8665 return notifier_to_errno(rc); 8666 } 8667 EXPORT_SYMBOL(dev_pre_changeaddr_notify); 8668 8669 /** 8670 * dev_set_mac_address - Change Media Access Control Address 8671 * @dev: device 8672 * @sa: new address 8673 * @extack: netlink extended ack 8674 * 8675 * Change the hardware (MAC) address of the device 8676 */ 8677 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa, 8678 struct netlink_ext_ack *extack) 8679 { 8680 const struct net_device_ops *ops = dev->netdev_ops; 8681 int err; 8682 8683 if (!ops->ndo_set_mac_address) 8684 return -EOPNOTSUPP; 8685 if (sa->sa_family != dev->type) 8686 return -EINVAL; 8687 if (!netif_device_present(dev)) 8688 return -ENODEV; 8689 err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack); 8690 if (err) 8691 return err; 8692 err = ops->ndo_set_mac_address(dev, sa); 8693 if (err) 8694 return err; 8695 dev->addr_assign_type = NET_ADDR_SET; 8696 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 8697 add_device_randomness(dev->dev_addr, dev->addr_len); 8698 return 0; 8699 } 8700 EXPORT_SYMBOL(dev_set_mac_address); 8701 8702 static DECLARE_RWSEM(dev_addr_sem); 8703 8704 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa, 8705 struct netlink_ext_ack *extack) 8706 { 8707 int ret; 8708 8709 down_write(&dev_addr_sem); 8710 ret = dev_set_mac_address(dev, sa, extack); 8711 up_write(&dev_addr_sem); 8712 return ret; 8713 } 8714 EXPORT_SYMBOL(dev_set_mac_address_user); 8715 8716 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name) 8717 { 8718 size_t size = sizeof(sa->sa_data); 8719 struct net_device *dev; 8720 int ret = 0; 8721 8722 down_read(&dev_addr_sem); 8723 rcu_read_lock(); 8724 8725 dev = dev_get_by_name_rcu(net, dev_name); 8726 if (!dev) { 8727 ret = -ENODEV; 8728 goto unlock; 8729 } 8730 if (!dev->addr_len) 8731 memset(sa->sa_data, 0, size); 8732 else 8733 memcpy(sa->sa_data, dev->dev_addr, 8734 min_t(size_t, size, dev->addr_len)); 8735 sa->sa_family = dev->type; 8736 8737 unlock: 8738 rcu_read_unlock(); 8739 up_read(&dev_addr_sem); 8740 return ret; 8741 } 8742 EXPORT_SYMBOL(dev_get_mac_address); 8743 8744 /** 8745 * dev_change_carrier - Change device carrier 8746 * @dev: device 8747 * @new_carrier: new value 8748 * 8749 * Change device carrier 8750 */ 8751 int dev_change_carrier(struct net_device *dev, bool new_carrier) 8752 { 8753 const struct net_device_ops *ops = dev->netdev_ops; 8754 8755 if (!ops->ndo_change_carrier) 8756 return -EOPNOTSUPP; 8757 if (!netif_device_present(dev)) 8758 return -ENODEV; 8759 return ops->ndo_change_carrier(dev, new_carrier); 8760 } 8761 8762 /** 8763 * dev_get_phys_port_id - Get device physical port ID 8764 * @dev: device 8765 * @ppid: port ID 8766 * 8767 * Get device physical port ID 8768 */ 8769 int dev_get_phys_port_id(struct net_device *dev, 8770 struct netdev_phys_item_id *ppid) 8771 { 8772 const struct net_device_ops *ops = dev->netdev_ops; 8773 8774 if (!ops->ndo_get_phys_port_id) 8775 return -EOPNOTSUPP; 8776 return ops->ndo_get_phys_port_id(dev, ppid); 8777 } 8778 8779 /** 8780 * dev_get_phys_port_name - Get device physical port name 8781 * @dev: device 8782 * @name: port name 8783 * @len: limit of bytes to copy to name 8784 * 8785 * Get device physical port name 8786 */ 8787 int dev_get_phys_port_name(struct net_device *dev, 8788 char *name, size_t len) 8789 { 8790 const struct net_device_ops *ops = dev->netdev_ops; 8791 int err; 8792 8793 if (ops->ndo_get_phys_port_name) { 8794 err = ops->ndo_get_phys_port_name(dev, name, len); 8795 if (err != -EOPNOTSUPP) 8796 return err; 8797 } 8798 return devlink_compat_phys_port_name_get(dev, name, len); 8799 } 8800 8801 /** 8802 * dev_get_port_parent_id - Get the device's port parent identifier 8803 * @dev: network device 8804 * @ppid: pointer to a storage for the port's parent identifier 8805 * @recurse: allow/disallow recursion to lower devices 8806 * 8807 * Get the devices's port parent identifier 8808 */ 8809 int dev_get_port_parent_id(struct net_device *dev, 8810 struct netdev_phys_item_id *ppid, 8811 bool recurse) 8812 { 8813 const struct net_device_ops *ops = dev->netdev_ops; 8814 struct netdev_phys_item_id first = { }; 8815 struct net_device *lower_dev; 8816 struct list_head *iter; 8817 int err; 8818 8819 if (ops->ndo_get_port_parent_id) { 8820 err = ops->ndo_get_port_parent_id(dev, ppid); 8821 if (err != -EOPNOTSUPP) 8822 return err; 8823 } 8824 8825 err = devlink_compat_switch_id_get(dev, ppid); 8826 if (!recurse || err != -EOPNOTSUPP) 8827 return err; 8828 8829 netdev_for_each_lower_dev(dev, lower_dev, iter) { 8830 err = dev_get_port_parent_id(lower_dev, ppid, true); 8831 if (err) 8832 break; 8833 if (!first.id_len) 8834 first = *ppid; 8835 else if (memcmp(&first, ppid, sizeof(*ppid))) 8836 return -EOPNOTSUPP; 8837 } 8838 8839 return err; 8840 } 8841 EXPORT_SYMBOL(dev_get_port_parent_id); 8842 8843 /** 8844 * netdev_port_same_parent_id - Indicate if two network devices have 8845 * the same port parent identifier 8846 * @a: first network device 8847 * @b: second network device 8848 */ 8849 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b) 8850 { 8851 struct netdev_phys_item_id a_id = { }; 8852 struct netdev_phys_item_id b_id = { }; 8853 8854 if (dev_get_port_parent_id(a, &a_id, true) || 8855 dev_get_port_parent_id(b, &b_id, true)) 8856 return false; 8857 8858 return netdev_phys_item_id_same(&a_id, &b_id); 8859 } 8860 EXPORT_SYMBOL(netdev_port_same_parent_id); 8861 8862 /** 8863 * dev_change_proto_down - set carrier according to proto_down. 8864 * 8865 * @dev: device 8866 * @proto_down: new value 8867 */ 8868 int dev_change_proto_down(struct net_device *dev, bool proto_down) 8869 { 8870 if (!(dev->priv_flags & IFF_CHANGE_PROTO_DOWN)) 8871 return -EOPNOTSUPP; 8872 if (!netif_device_present(dev)) 8873 return -ENODEV; 8874 if (proto_down) 8875 netif_carrier_off(dev); 8876 else 8877 netif_carrier_on(dev); 8878 dev->proto_down = proto_down; 8879 return 0; 8880 } 8881 8882 /** 8883 * dev_change_proto_down_reason - proto down reason 8884 * 8885 * @dev: device 8886 * @mask: proto down mask 8887 * @value: proto down value 8888 */ 8889 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask, 8890 u32 value) 8891 { 8892 int b; 8893 8894 if (!mask) { 8895 dev->proto_down_reason = value; 8896 } else { 8897 for_each_set_bit(b, &mask, 32) { 8898 if (value & (1 << b)) 8899 dev->proto_down_reason |= BIT(b); 8900 else 8901 dev->proto_down_reason &= ~BIT(b); 8902 } 8903 } 8904 } 8905 8906 struct bpf_xdp_link { 8907 struct bpf_link link; 8908 struct net_device *dev; /* protected by rtnl_lock, no refcnt held */ 8909 int flags; 8910 }; 8911 8912 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags) 8913 { 8914 if (flags & XDP_FLAGS_HW_MODE) 8915 return XDP_MODE_HW; 8916 if (flags & XDP_FLAGS_DRV_MODE) 8917 return XDP_MODE_DRV; 8918 if (flags & XDP_FLAGS_SKB_MODE) 8919 return XDP_MODE_SKB; 8920 return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB; 8921 } 8922 8923 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode) 8924 { 8925 switch (mode) { 8926 case XDP_MODE_SKB: 8927 return generic_xdp_install; 8928 case XDP_MODE_DRV: 8929 case XDP_MODE_HW: 8930 return dev->netdev_ops->ndo_bpf; 8931 default: 8932 return NULL; 8933 } 8934 } 8935 8936 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev, 8937 enum bpf_xdp_mode mode) 8938 { 8939 return dev->xdp_state[mode].link; 8940 } 8941 8942 static struct bpf_prog *dev_xdp_prog(struct net_device *dev, 8943 enum bpf_xdp_mode mode) 8944 { 8945 struct bpf_xdp_link *link = dev_xdp_link(dev, mode); 8946 8947 if (link) 8948 return link->link.prog; 8949 return dev->xdp_state[mode].prog; 8950 } 8951 8952 u8 dev_xdp_prog_count(struct net_device *dev) 8953 { 8954 u8 count = 0; 8955 int i; 8956 8957 for (i = 0; i < __MAX_XDP_MODE; i++) 8958 if (dev->xdp_state[i].prog || dev->xdp_state[i].link) 8959 count++; 8960 return count; 8961 } 8962 EXPORT_SYMBOL_GPL(dev_xdp_prog_count); 8963 8964 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode) 8965 { 8966 struct bpf_prog *prog = dev_xdp_prog(dev, mode); 8967 8968 return prog ? prog->aux->id : 0; 8969 } 8970 8971 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode, 8972 struct bpf_xdp_link *link) 8973 { 8974 dev->xdp_state[mode].link = link; 8975 dev->xdp_state[mode].prog = NULL; 8976 } 8977 8978 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode, 8979 struct bpf_prog *prog) 8980 { 8981 dev->xdp_state[mode].link = NULL; 8982 dev->xdp_state[mode].prog = prog; 8983 } 8984 8985 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode, 8986 bpf_op_t bpf_op, struct netlink_ext_ack *extack, 8987 u32 flags, struct bpf_prog *prog) 8988 { 8989 struct netdev_bpf xdp; 8990 int err; 8991 8992 memset(&xdp, 0, sizeof(xdp)); 8993 xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG; 8994 xdp.extack = extack; 8995 xdp.flags = flags; 8996 xdp.prog = prog; 8997 8998 /* Drivers assume refcnt is already incremented (i.e, prog pointer is 8999 * "moved" into driver), so they don't increment it on their own, but 9000 * they do decrement refcnt when program is detached or replaced. 9001 * Given net_device also owns link/prog, we need to bump refcnt here 9002 * to prevent drivers from underflowing it. 9003 */ 9004 if (prog) 9005 bpf_prog_inc(prog); 9006 err = bpf_op(dev, &xdp); 9007 if (err) { 9008 if (prog) 9009 bpf_prog_put(prog); 9010 return err; 9011 } 9012 9013 if (mode != XDP_MODE_HW) 9014 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog); 9015 9016 return 0; 9017 } 9018 9019 static void dev_xdp_uninstall(struct net_device *dev) 9020 { 9021 struct bpf_xdp_link *link; 9022 struct bpf_prog *prog; 9023 enum bpf_xdp_mode mode; 9024 bpf_op_t bpf_op; 9025 9026 ASSERT_RTNL(); 9027 9028 for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) { 9029 prog = dev_xdp_prog(dev, mode); 9030 if (!prog) 9031 continue; 9032 9033 bpf_op = dev_xdp_bpf_op(dev, mode); 9034 if (!bpf_op) 9035 continue; 9036 9037 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL)); 9038 9039 /* auto-detach link from net device */ 9040 link = dev_xdp_link(dev, mode); 9041 if (link) 9042 link->dev = NULL; 9043 else 9044 bpf_prog_put(prog); 9045 9046 dev_xdp_set_link(dev, mode, NULL); 9047 } 9048 } 9049 9050 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack, 9051 struct bpf_xdp_link *link, struct bpf_prog *new_prog, 9052 struct bpf_prog *old_prog, u32 flags) 9053 { 9054 unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES); 9055 struct bpf_prog *cur_prog; 9056 struct net_device *upper; 9057 struct list_head *iter; 9058 enum bpf_xdp_mode mode; 9059 bpf_op_t bpf_op; 9060 int err; 9061 9062 ASSERT_RTNL(); 9063 9064 /* either link or prog attachment, never both */ 9065 if (link && (new_prog || old_prog)) 9066 return -EINVAL; 9067 /* link supports only XDP mode flags */ 9068 if (link && (flags & ~XDP_FLAGS_MODES)) { 9069 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment"); 9070 return -EINVAL; 9071 } 9072 /* just one XDP mode bit should be set, zero defaults to drv/skb mode */ 9073 if (num_modes > 1) { 9074 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set"); 9075 return -EINVAL; 9076 } 9077 /* avoid ambiguity if offload + drv/skb mode progs are both loaded */ 9078 if (!num_modes && dev_xdp_prog_count(dev) > 1) { 9079 NL_SET_ERR_MSG(extack, 9080 "More than one program loaded, unset mode is ambiguous"); 9081 return -EINVAL; 9082 } 9083 /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */ 9084 if (old_prog && !(flags & XDP_FLAGS_REPLACE)) { 9085 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified"); 9086 return -EINVAL; 9087 } 9088 9089 mode = dev_xdp_mode(dev, flags); 9090 /* can't replace attached link */ 9091 if (dev_xdp_link(dev, mode)) { 9092 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link"); 9093 return -EBUSY; 9094 } 9095 9096 /* don't allow if an upper device already has a program */ 9097 netdev_for_each_upper_dev_rcu(dev, upper, iter) { 9098 if (dev_xdp_prog_count(upper) > 0) { 9099 NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program"); 9100 return -EEXIST; 9101 } 9102 } 9103 9104 cur_prog = dev_xdp_prog(dev, mode); 9105 /* can't replace attached prog with link */ 9106 if (link && cur_prog) { 9107 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link"); 9108 return -EBUSY; 9109 } 9110 if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) { 9111 NL_SET_ERR_MSG(extack, "Active program does not match expected"); 9112 return -EEXIST; 9113 } 9114 9115 /* put effective new program into new_prog */ 9116 if (link) 9117 new_prog = link->link.prog; 9118 9119 if (new_prog) { 9120 bool offload = mode == XDP_MODE_HW; 9121 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB 9122 ? XDP_MODE_DRV : XDP_MODE_SKB; 9123 9124 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) { 9125 NL_SET_ERR_MSG(extack, "XDP program already attached"); 9126 return -EBUSY; 9127 } 9128 if (!offload && dev_xdp_prog(dev, other_mode)) { 9129 NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time"); 9130 return -EEXIST; 9131 } 9132 if (!offload && bpf_prog_is_dev_bound(new_prog->aux)) { 9133 NL_SET_ERR_MSG(extack, "Using device-bound program without HW_MODE flag is not supported"); 9134 return -EINVAL; 9135 } 9136 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) { 9137 NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device"); 9138 return -EINVAL; 9139 } 9140 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) { 9141 NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device"); 9142 return -EINVAL; 9143 } 9144 } 9145 9146 /* don't call drivers if the effective program didn't change */ 9147 if (new_prog != cur_prog) { 9148 bpf_op = dev_xdp_bpf_op(dev, mode); 9149 if (!bpf_op) { 9150 NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode"); 9151 return -EOPNOTSUPP; 9152 } 9153 9154 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog); 9155 if (err) 9156 return err; 9157 } 9158 9159 if (link) 9160 dev_xdp_set_link(dev, mode, link); 9161 else 9162 dev_xdp_set_prog(dev, mode, new_prog); 9163 if (cur_prog) 9164 bpf_prog_put(cur_prog); 9165 9166 return 0; 9167 } 9168 9169 static int dev_xdp_attach_link(struct net_device *dev, 9170 struct netlink_ext_ack *extack, 9171 struct bpf_xdp_link *link) 9172 { 9173 return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags); 9174 } 9175 9176 static int dev_xdp_detach_link(struct net_device *dev, 9177 struct netlink_ext_ack *extack, 9178 struct bpf_xdp_link *link) 9179 { 9180 enum bpf_xdp_mode mode; 9181 bpf_op_t bpf_op; 9182 9183 ASSERT_RTNL(); 9184 9185 mode = dev_xdp_mode(dev, link->flags); 9186 if (dev_xdp_link(dev, mode) != link) 9187 return -EINVAL; 9188 9189 bpf_op = dev_xdp_bpf_op(dev, mode); 9190 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL)); 9191 dev_xdp_set_link(dev, mode, NULL); 9192 return 0; 9193 } 9194 9195 static void bpf_xdp_link_release(struct bpf_link *link) 9196 { 9197 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 9198 9199 rtnl_lock(); 9200 9201 /* if racing with net_device's tear down, xdp_link->dev might be 9202 * already NULL, in which case link was already auto-detached 9203 */ 9204 if (xdp_link->dev) { 9205 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link)); 9206 xdp_link->dev = NULL; 9207 } 9208 9209 rtnl_unlock(); 9210 } 9211 9212 static int bpf_xdp_link_detach(struct bpf_link *link) 9213 { 9214 bpf_xdp_link_release(link); 9215 return 0; 9216 } 9217 9218 static void bpf_xdp_link_dealloc(struct bpf_link *link) 9219 { 9220 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 9221 9222 kfree(xdp_link); 9223 } 9224 9225 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link, 9226 struct seq_file *seq) 9227 { 9228 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 9229 u32 ifindex = 0; 9230 9231 rtnl_lock(); 9232 if (xdp_link->dev) 9233 ifindex = xdp_link->dev->ifindex; 9234 rtnl_unlock(); 9235 9236 seq_printf(seq, "ifindex:\t%u\n", ifindex); 9237 } 9238 9239 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link, 9240 struct bpf_link_info *info) 9241 { 9242 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 9243 u32 ifindex = 0; 9244 9245 rtnl_lock(); 9246 if (xdp_link->dev) 9247 ifindex = xdp_link->dev->ifindex; 9248 rtnl_unlock(); 9249 9250 info->xdp.ifindex = ifindex; 9251 return 0; 9252 } 9253 9254 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog, 9255 struct bpf_prog *old_prog) 9256 { 9257 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 9258 enum bpf_xdp_mode mode; 9259 bpf_op_t bpf_op; 9260 int err = 0; 9261 9262 rtnl_lock(); 9263 9264 /* link might have been auto-released already, so fail */ 9265 if (!xdp_link->dev) { 9266 err = -ENOLINK; 9267 goto out_unlock; 9268 } 9269 9270 if (old_prog && link->prog != old_prog) { 9271 err = -EPERM; 9272 goto out_unlock; 9273 } 9274 old_prog = link->prog; 9275 if (old_prog->type != new_prog->type || 9276 old_prog->expected_attach_type != new_prog->expected_attach_type) { 9277 err = -EINVAL; 9278 goto out_unlock; 9279 } 9280 9281 if (old_prog == new_prog) { 9282 /* no-op, don't disturb drivers */ 9283 bpf_prog_put(new_prog); 9284 goto out_unlock; 9285 } 9286 9287 mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags); 9288 bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode); 9289 err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL, 9290 xdp_link->flags, new_prog); 9291 if (err) 9292 goto out_unlock; 9293 9294 old_prog = xchg(&link->prog, new_prog); 9295 bpf_prog_put(old_prog); 9296 9297 out_unlock: 9298 rtnl_unlock(); 9299 return err; 9300 } 9301 9302 static const struct bpf_link_ops bpf_xdp_link_lops = { 9303 .release = bpf_xdp_link_release, 9304 .dealloc = bpf_xdp_link_dealloc, 9305 .detach = bpf_xdp_link_detach, 9306 .show_fdinfo = bpf_xdp_link_show_fdinfo, 9307 .fill_link_info = bpf_xdp_link_fill_link_info, 9308 .update_prog = bpf_xdp_link_update, 9309 }; 9310 9311 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog) 9312 { 9313 struct net *net = current->nsproxy->net_ns; 9314 struct bpf_link_primer link_primer; 9315 struct bpf_xdp_link *link; 9316 struct net_device *dev; 9317 int err, fd; 9318 9319 rtnl_lock(); 9320 dev = dev_get_by_index(net, attr->link_create.target_ifindex); 9321 if (!dev) { 9322 rtnl_unlock(); 9323 return -EINVAL; 9324 } 9325 9326 link = kzalloc(sizeof(*link), GFP_USER); 9327 if (!link) { 9328 err = -ENOMEM; 9329 goto unlock; 9330 } 9331 9332 bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog); 9333 link->dev = dev; 9334 link->flags = attr->link_create.flags; 9335 9336 err = bpf_link_prime(&link->link, &link_primer); 9337 if (err) { 9338 kfree(link); 9339 goto unlock; 9340 } 9341 9342 err = dev_xdp_attach_link(dev, NULL, link); 9343 rtnl_unlock(); 9344 9345 if (err) { 9346 link->dev = NULL; 9347 bpf_link_cleanup(&link_primer); 9348 goto out_put_dev; 9349 } 9350 9351 fd = bpf_link_settle(&link_primer); 9352 /* link itself doesn't hold dev's refcnt to not complicate shutdown */ 9353 dev_put(dev); 9354 return fd; 9355 9356 unlock: 9357 rtnl_unlock(); 9358 9359 out_put_dev: 9360 dev_put(dev); 9361 return err; 9362 } 9363 9364 /** 9365 * dev_change_xdp_fd - set or clear a bpf program for a device rx path 9366 * @dev: device 9367 * @extack: netlink extended ack 9368 * @fd: new program fd or negative value to clear 9369 * @expected_fd: old program fd that userspace expects to replace or clear 9370 * @flags: xdp-related flags 9371 * 9372 * Set or clear a bpf program for a device 9373 */ 9374 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack, 9375 int fd, int expected_fd, u32 flags) 9376 { 9377 enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags); 9378 struct bpf_prog *new_prog = NULL, *old_prog = NULL; 9379 int err; 9380 9381 ASSERT_RTNL(); 9382 9383 if (fd >= 0) { 9384 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP, 9385 mode != XDP_MODE_SKB); 9386 if (IS_ERR(new_prog)) 9387 return PTR_ERR(new_prog); 9388 } 9389 9390 if (expected_fd >= 0) { 9391 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP, 9392 mode != XDP_MODE_SKB); 9393 if (IS_ERR(old_prog)) { 9394 err = PTR_ERR(old_prog); 9395 old_prog = NULL; 9396 goto err_out; 9397 } 9398 } 9399 9400 err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags); 9401 9402 err_out: 9403 if (err && new_prog) 9404 bpf_prog_put(new_prog); 9405 if (old_prog) 9406 bpf_prog_put(old_prog); 9407 return err; 9408 } 9409 9410 /** 9411 * dev_new_index - allocate an ifindex 9412 * @net: the applicable net namespace 9413 * 9414 * Returns a suitable unique value for a new device interface 9415 * number. The caller must hold the rtnl semaphore or the 9416 * dev_base_lock to be sure it remains unique. 9417 */ 9418 static int dev_new_index(struct net *net) 9419 { 9420 int ifindex = net->ifindex; 9421 9422 for (;;) { 9423 if (++ifindex <= 0) 9424 ifindex = 1; 9425 if (!__dev_get_by_index(net, ifindex)) 9426 return net->ifindex = ifindex; 9427 } 9428 } 9429 9430 /* Delayed registration/unregisteration */ 9431 LIST_HEAD(net_todo_list); 9432 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq); 9433 9434 static void net_set_todo(struct net_device *dev) 9435 { 9436 list_add_tail(&dev->todo_list, &net_todo_list); 9437 atomic_inc(&dev_net(dev)->dev_unreg_count); 9438 } 9439 9440 static netdev_features_t netdev_sync_upper_features(struct net_device *lower, 9441 struct net_device *upper, netdev_features_t features) 9442 { 9443 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 9444 netdev_features_t feature; 9445 int feature_bit; 9446 9447 for_each_netdev_feature(upper_disables, feature_bit) { 9448 feature = __NETIF_F_BIT(feature_bit); 9449 if (!(upper->wanted_features & feature) 9450 && (features & feature)) { 9451 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n", 9452 &feature, upper->name); 9453 features &= ~feature; 9454 } 9455 } 9456 9457 return features; 9458 } 9459 9460 static void netdev_sync_lower_features(struct net_device *upper, 9461 struct net_device *lower, netdev_features_t features) 9462 { 9463 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 9464 netdev_features_t feature; 9465 int feature_bit; 9466 9467 for_each_netdev_feature(upper_disables, feature_bit) { 9468 feature = __NETIF_F_BIT(feature_bit); 9469 if (!(features & feature) && (lower->features & feature)) { 9470 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n", 9471 &feature, lower->name); 9472 lower->wanted_features &= ~feature; 9473 __netdev_update_features(lower); 9474 9475 if (unlikely(lower->features & feature)) 9476 netdev_WARN(upper, "failed to disable %pNF on %s!\n", 9477 &feature, lower->name); 9478 else 9479 netdev_features_change(lower); 9480 } 9481 } 9482 } 9483 9484 static netdev_features_t netdev_fix_features(struct net_device *dev, 9485 netdev_features_t features) 9486 { 9487 /* Fix illegal checksum combinations */ 9488 if ((features & NETIF_F_HW_CSUM) && 9489 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 9490 netdev_warn(dev, "mixed HW and IP checksum settings.\n"); 9491 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 9492 } 9493 9494 /* TSO requires that SG is present as well. */ 9495 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { 9496 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); 9497 features &= ~NETIF_F_ALL_TSO; 9498 } 9499 9500 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) && 9501 !(features & NETIF_F_IP_CSUM)) { 9502 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n"); 9503 features &= ~NETIF_F_TSO; 9504 features &= ~NETIF_F_TSO_ECN; 9505 } 9506 9507 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) && 9508 !(features & NETIF_F_IPV6_CSUM)) { 9509 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n"); 9510 features &= ~NETIF_F_TSO6; 9511 } 9512 9513 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */ 9514 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO)) 9515 features &= ~NETIF_F_TSO_MANGLEID; 9516 9517 /* TSO ECN requires that TSO is present as well. */ 9518 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) 9519 features &= ~NETIF_F_TSO_ECN; 9520 9521 /* Software GSO depends on SG. */ 9522 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 9523 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 9524 features &= ~NETIF_F_GSO; 9525 } 9526 9527 /* GSO partial features require GSO partial be set */ 9528 if ((features & dev->gso_partial_features) && 9529 !(features & NETIF_F_GSO_PARTIAL)) { 9530 netdev_dbg(dev, 9531 "Dropping partially supported GSO features since no GSO partial.\n"); 9532 features &= ~dev->gso_partial_features; 9533 } 9534 9535 if (!(features & NETIF_F_RXCSUM)) { 9536 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet 9537 * successfully merged by hardware must also have the 9538 * checksum verified by hardware. If the user does not 9539 * want to enable RXCSUM, logically, we should disable GRO_HW. 9540 */ 9541 if (features & NETIF_F_GRO_HW) { 9542 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n"); 9543 features &= ~NETIF_F_GRO_HW; 9544 } 9545 } 9546 9547 /* LRO/HW-GRO features cannot be combined with RX-FCS */ 9548 if (features & NETIF_F_RXFCS) { 9549 if (features & NETIF_F_LRO) { 9550 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n"); 9551 features &= ~NETIF_F_LRO; 9552 } 9553 9554 if (features & NETIF_F_GRO_HW) { 9555 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n"); 9556 features &= ~NETIF_F_GRO_HW; 9557 } 9558 } 9559 9560 if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) { 9561 netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n"); 9562 features &= ~NETIF_F_LRO; 9563 } 9564 9565 if (features & NETIF_F_HW_TLS_TX) { 9566 bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) == 9567 (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM); 9568 bool hw_csum = features & NETIF_F_HW_CSUM; 9569 9570 if (!ip_csum && !hw_csum) { 9571 netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n"); 9572 features &= ~NETIF_F_HW_TLS_TX; 9573 } 9574 } 9575 9576 if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) { 9577 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n"); 9578 features &= ~NETIF_F_HW_TLS_RX; 9579 } 9580 9581 return features; 9582 } 9583 9584 int __netdev_update_features(struct net_device *dev) 9585 { 9586 struct net_device *upper, *lower; 9587 netdev_features_t features; 9588 struct list_head *iter; 9589 int err = -1; 9590 9591 ASSERT_RTNL(); 9592 9593 features = netdev_get_wanted_features(dev); 9594 9595 if (dev->netdev_ops->ndo_fix_features) 9596 features = dev->netdev_ops->ndo_fix_features(dev, features); 9597 9598 /* driver might be less strict about feature dependencies */ 9599 features = netdev_fix_features(dev, features); 9600 9601 /* some features can't be enabled if they're off on an upper device */ 9602 netdev_for_each_upper_dev_rcu(dev, upper, iter) 9603 features = netdev_sync_upper_features(dev, upper, features); 9604 9605 if (dev->features == features) 9606 goto sync_lower; 9607 9608 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n", 9609 &dev->features, &features); 9610 9611 if (dev->netdev_ops->ndo_set_features) 9612 err = dev->netdev_ops->ndo_set_features(dev, features); 9613 else 9614 err = 0; 9615 9616 if (unlikely(err < 0)) { 9617 netdev_err(dev, 9618 "set_features() failed (%d); wanted %pNF, left %pNF\n", 9619 err, &features, &dev->features); 9620 /* return non-0 since some features might have changed and 9621 * it's better to fire a spurious notification than miss it 9622 */ 9623 return -1; 9624 } 9625 9626 sync_lower: 9627 /* some features must be disabled on lower devices when disabled 9628 * on an upper device (think: bonding master or bridge) 9629 */ 9630 netdev_for_each_lower_dev(dev, lower, iter) 9631 netdev_sync_lower_features(dev, lower, features); 9632 9633 if (!err) { 9634 netdev_features_t diff = features ^ dev->features; 9635 9636 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) { 9637 /* udp_tunnel_{get,drop}_rx_info both need 9638 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the 9639 * device, or they won't do anything. 9640 * Thus we need to update dev->features 9641 * *before* calling udp_tunnel_get_rx_info, 9642 * but *after* calling udp_tunnel_drop_rx_info. 9643 */ 9644 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) { 9645 dev->features = features; 9646 udp_tunnel_get_rx_info(dev); 9647 } else { 9648 udp_tunnel_drop_rx_info(dev); 9649 } 9650 } 9651 9652 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) { 9653 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) { 9654 dev->features = features; 9655 err |= vlan_get_rx_ctag_filter_info(dev); 9656 } else { 9657 vlan_drop_rx_ctag_filter_info(dev); 9658 } 9659 } 9660 9661 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) { 9662 if (features & NETIF_F_HW_VLAN_STAG_FILTER) { 9663 dev->features = features; 9664 err |= vlan_get_rx_stag_filter_info(dev); 9665 } else { 9666 vlan_drop_rx_stag_filter_info(dev); 9667 } 9668 } 9669 9670 dev->features = features; 9671 } 9672 9673 return err < 0 ? 0 : 1; 9674 } 9675 9676 /** 9677 * netdev_update_features - recalculate device features 9678 * @dev: the device to check 9679 * 9680 * Recalculate dev->features set and send notifications if it 9681 * has changed. Should be called after driver or hardware dependent 9682 * conditions might have changed that influence the features. 9683 */ 9684 void netdev_update_features(struct net_device *dev) 9685 { 9686 if (__netdev_update_features(dev)) 9687 netdev_features_change(dev); 9688 } 9689 EXPORT_SYMBOL(netdev_update_features); 9690 9691 /** 9692 * netdev_change_features - recalculate device features 9693 * @dev: the device to check 9694 * 9695 * Recalculate dev->features set and send notifications even 9696 * if they have not changed. Should be called instead of 9697 * netdev_update_features() if also dev->vlan_features might 9698 * have changed to allow the changes to be propagated to stacked 9699 * VLAN devices. 9700 */ 9701 void netdev_change_features(struct net_device *dev) 9702 { 9703 __netdev_update_features(dev); 9704 netdev_features_change(dev); 9705 } 9706 EXPORT_SYMBOL(netdev_change_features); 9707 9708 /** 9709 * netif_stacked_transfer_operstate - transfer operstate 9710 * @rootdev: the root or lower level device to transfer state from 9711 * @dev: the device to transfer operstate to 9712 * 9713 * Transfer operational state from root to device. This is normally 9714 * called when a stacking relationship exists between the root 9715 * device and the device(a leaf device). 9716 */ 9717 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 9718 struct net_device *dev) 9719 { 9720 if (rootdev->operstate == IF_OPER_DORMANT) 9721 netif_dormant_on(dev); 9722 else 9723 netif_dormant_off(dev); 9724 9725 if (rootdev->operstate == IF_OPER_TESTING) 9726 netif_testing_on(dev); 9727 else 9728 netif_testing_off(dev); 9729 9730 if (netif_carrier_ok(rootdev)) 9731 netif_carrier_on(dev); 9732 else 9733 netif_carrier_off(dev); 9734 } 9735 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 9736 9737 static int netif_alloc_rx_queues(struct net_device *dev) 9738 { 9739 unsigned int i, count = dev->num_rx_queues; 9740 struct netdev_rx_queue *rx; 9741 size_t sz = count * sizeof(*rx); 9742 int err = 0; 9743 9744 BUG_ON(count < 1); 9745 9746 rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL); 9747 if (!rx) 9748 return -ENOMEM; 9749 9750 dev->_rx = rx; 9751 9752 for (i = 0; i < count; i++) { 9753 rx[i].dev = dev; 9754 9755 /* XDP RX-queue setup */ 9756 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0); 9757 if (err < 0) 9758 goto err_rxq_info; 9759 } 9760 return 0; 9761 9762 err_rxq_info: 9763 /* Rollback successful reg's and free other resources */ 9764 while (i--) 9765 xdp_rxq_info_unreg(&rx[i].xdp_rxq); 9766 kvfree(dev->_rx); 9767 dev->_rx = NULL; 9768 return err; 9769 } 9770 9771 static void netif_free_rx_queues(struct net_device *dev) 9772 { 9773 unsigned int i, count = dev->num_rx_queues; 9774 9775 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */ 9776 if (!dev->_rx) 9777 return; 9778 9779 for (i = 0; i < count; i++) 9780 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq); 9781 9782 kvfree(dev->_rx); 9783 } 9784 9785 static void netdev_init_one_queue(struct net_device *dev, 9786 struct netdev_queue *queue, void *_unused) 9787 { 9788 /* Initialize queue lock */ 9789 spin_lock_init(&queue->_xmit_lock); 9790 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); 9791 queue->xmit_lock_owner = -1; 9792 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 9793 queue->dev = dev; 9794 #ifdef CONFIG_BQL 9795 dql_init(&queue->dql, HZ); 9796 #endif 9797 } 9798 9799 static void netif_free_tx_queues(struct net_device *dev) 9800 { 9801 kvfree(dev->_tx); 9802 } 9803 9804 static int netif_alloc_netdev_queues(struct net_device *dev) 9805 { 9806 unsigned int count = dev->num_tx_queues; 9807 struct netdev_queue *tx; 9808 size_t sz = count * sizeof(*tx); 9809 9810 if (count < 1 || count > 0xffff) 9811 return -EINVAL; 9812 9813 tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL); 9814 if (!tx) 9815 return -ENOMEM; 9816 9817 dev->_tx = tx; 9818 9819 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 9820 spin_lock_init(&dev->tx_global_lock); 9821 9822 return 0; 9823 } 9824 9825 void netif_tx_stop_all_queues(struct net_device *dev) 9826 { 9827 unsigned int i; 9828 9829 for (i = 0; i < dev->num_tx_queues; i++) { 9830 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 9831 9832 netif_tx_stop_queue(txq); 9833 } 9834 } 9835 EXPORT_SYMBOL(netif_tx_stop_all_queues); 9836 9837 /** 9838 * register_netdevice - register a network device 9839 * @dev: device to register 9840 * 9841 * Take a completed network device structure and add it to the kernel 9842 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 9843 * chain. 0 is returned on success. A negative errno code is returned 9844 * on a failure to set up the device, or if the name is a duplicate. 9845 * 9846 * Callers must hold the rtnl semaphore. You may want 9847 * register_netdev() instead of this. 9848 * 9849 * BUGS: 9850 * The locking appears insufficient to guarantee two parallel registers 9851 * will not get the same name. 9852 */ 9853 9854 int register_netdevice(struct net_device *dev) 9855 { 9856 int ret; 9857 struct net *net = dev_net(dev); 9858 9859 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE < 9860 NETDEV_FEATURE_COUNT); 9861 BUG_ON(dev_boot_phase); 9862 ASSERT_RTNL(); 9863 9864 might_sleep(); 9865 9866 /* When net_device's are persistent, this will be fatal. */ 9867 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 9868 BUG_ON(!net); 9869 9870 ret = ethtool_check_ops(dev->ethtool_ops); 9871 if (ret) 9872 return ret; 9873 9874 spin_lock_init(&dev->addr_list_lock); 9875 netdev_set_addr_lockdep_class(dev); 9876 9877 ret = dev_get_valid_name(net, dev, dev->name); 9878 if (ret < 0) 9879 goto out; 9880 9881 ret = -ENOMEM; 9882 dev->name_node = netdev_name_node_head_alloc(dev); 9883 if (!dev->name_node) 9884 goto out; 9885 9886 /* Init, if this function is available */ 9887 if (dev->netdev_ops->ndo_init) { 9888 ret = dev->netdev_ops->ndo_init(dev); 9889 if (ret) { 9890 if (ret > 0) 9891 ret = -EIO; 9892 goto err_free_name; 9893 } 9894 } 9895 9896 if (((dev->hw_features | dev->features) & 9897 NETIF_F_HW_VLAN_CTAG_FILTER) && 9898 (!dev->netdev_ops->ndo_vlan_rx_add_vid || 9899 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) { 9900 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n"); 9901 ret = -EINVAL; 9902 goto err_uninit; 9903 } 9904 9905 ret = -EBUSY; 9906 if (!dev->ifindex) 9907 dev->ifindex = dev_new_index(net); 9908 else if (__dev_get_by_index(net, dev->ifindex)) 9909 goto err_uninit; 9910 9911 /* Transfer changeable features to wanted_features and enable 9912 * software offloads (GSO and GRO). 9913 */ 9914 dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF); 9915 dev->features |= NETIF_F_SOFT_FEATURES; 9916 9917 if (dev->udp_tunnel_nic_info) { 9918 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT; 9919 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT; 9920 } 9921 9922 dev->wanted_features = dev->features & dev->hw_features; 9923 9924 if (!(dev->flags & IFF_LOOPBACK)) 9925 dev->hw_features |= NETIF_F_NOCACHE_COPY; 9926 9927 /* If IPv4 TCP segmentation offload is supported we should also 9928 * allow the device to enable segmenting the frame with the option 9929 * of ignoring a static IP ID value. This doesn't enable the 9930 * feature itself but allows the user to enable it later. 9931 */ 9932 if (dev->hw_features & NETIF_F_TSO) 9933 dev->hw_features |= NETIF_F_TSO_MANGLEID; 9934 if (dev->vlan_features & NETIF_F_TSO) 9935 dev->vlan_features |= NETIF_F_TSO_MANGLEID; 9936 if (dev->mpls_features & NETIF_F_TSO) 9937 dev->mpls_features |= NETIF_F_TSO_MANGLEID; 9938 if (dev->hw_enc_features & NETIF_F_TSO) 9939 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 9940 9941 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. 9942 */ 9943 dev->vlan_features |= NETIF_F_HIGHDMA; 9944 9945 /* Make NETIF_F_SG inheritable to tunnel devices. 9946 */ 9947 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL; 9948 9949 /* Make NETIF_F_SG inheritable to MPLS. 9950 */ 9951 dev->mpls_features |= NETIF_F_SG; 9952 9953 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 9954 ret = notifier_to_errno(ret); 9955 if (ret) 9956 goto err_uninit; 9957 9958 ret = netdev_register_kobject(dev); 9959 if (ret) { 9960 dev->reg_state = NETREG_UNREGISTERED; 9961 goto err_uninit; 9962 } 9963 dev->reg_state = NETREG_REGISTERED; 9964 9965 __netdev_update_features(dev); 9966 9967 /* 9968 * Default initial state at registry is that the 9969 * device is present. 9970 */ 9971 9972 set_bit(__LINK_STATE_PRESENT, &dev->state); 9973 9974 linkwatch_init_dev(dev); 9975 9976 dev_init_scheduler(dev); 9977 9978 dev_hold_track(dev, &dev->dev_registered_tracker, GFP_KERNEL); 9979 list_netdevice(dev); 9980 9981 add_device_randomness(dev->dev_addr, dev->addr_len); 9982 9983 /* If the device has permanent device address, driver should 9984 * set dev_addr and also addr_assign_type should be set to 9985 * NET_ADDR_PERM (default value). 9986 */ 9987 if (dev->addr_assign_type == NET_ADDR_PERM) 9988 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); 9989 9990 /* Notify protocols, that a new device appeared. */ 9991 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 9992 ret = notifier_to_errno(ret); 9993 if (ret) { 9994 /* Expect explicit free_netdev() on failure */ 9995 dev->needs_free_netdev = false; 9996 unregister_netdevice_queue(dev, NULL); 9997 goto out; 9998 } 9999 /* 10000 * Prevent userspace races by waiting until the network 10001 * device is fully setup before sending notifications. 10002 */ 10003 if (!dev->rtnl_link_ops || 10004 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 10005 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 10006 10007 out: 10008 return ret; 10009 10010 err_uninit: 10011 if (dev->netdev_ops->ndo_uninit) 10012 dev->netdev_ops->ndo_uninit(dev); 10013 if (dev->priv_destructor) 10014 dev->priv_destructor(dev); 10015 err_free_name: 10016 netdev_name_node_free(dev->name_node); 10017 goto out; 10018 } 10019 EXPORT_SYMBOL(register_netdevice); 10020 10021 /** 10022 * init_dummy_netdev - init a dummy network device for NAPI 10023 * @dev: device to init 10024 * 10025 * This takes a network device structure and initialize the minimum 10026 * amount of fields so it can be used to schedule NAPI polls without 10027 * registering a full blown interface. This is to be used by drivers 10028 * that need to tie several hardware interfaces to a single NAPI 10029 * poll scheduler due to HW limitations. 10030 */ 10031 int init_dummy_netdev(struct net_device *dev) 10032 { 10033 /* Clear everything. Note we don't initialize spinlocks 10034 * are they aren't supposed to be taken by any of the 10035 * NAPI code and this dummy netdev is supposed to be 10036 * only ever used for NAPI polls 10037 */ 10038 memset(dev, 0, sizeof(struct net_device)); 10039 10040 /* make sure we BUG if trying to hit standard 10041 * register/unregister code path 10042 */ 10043 dev->reg_state = NETREG_DUMMY; 10044 10045 /* NAPI wants this */ 10046 INIT_LIST_HEAD(&dev->napi_list); 10047 10048 /* a dummy interface is started by default */ 10049 set_bit(__LINK_STATE_PRESENT, &dev->state); 10050 set_bit(__LINK_STATE_START, &dev->state); 10051 10052 /* napi_busy_loop stats accounting wants this */ 10053 dev_net_set(dev, &init_net); 10054 10055 /* Note : We dont allocate pcpu_refcnt for dummy devices, 10056 * because users of this 'device' dont need to change 10057 * its refcount. 10058 */ 10059 10060 return 0; 10061 } 10062 EXPORT_SYMBOL_GPL(init_dummy_netdev); 10063 10064 10065 /** 10066 * register_netdev - register a network device 10067 * @dev: device to register 10068 * 10069 * Take a completed network device structure and add it to the kernel 10070 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 10071 * chain. 0 is returned on success. A negative errno code is returned 10072 * on a failure to set up the device, or if the name is a duplicate. 10073 * 10074 * This is a wrapper around register_netdevice that takes the rtnl semaphore 10075 * and expands the device name if you passed a format string to 10076 * alloc_netdev. 10077 */ 10078 int register_netdev(struct net_device *dev) 10079 { 10080 int err; 10081 10082 if (rtnl_lock_killable()) 10083 return -EINTR; 10084 err = register_netdevice(dev); 10085 rtnl_unlock(); 10086 return err; 10087 } 10088 EXPORT_SYMBOL(register_netdev); 10089 10090 int netdev_refcnt_read(const struct net_device *dev) 10091 { 10092 #ifdef CONFIG_PCPU_DEV_REFCNT 10093 int i, refcnt = 0; 10094 10095 for_each_possible_cpu(i) 10096 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 10097 return refcnt; 10098 #else 10099 return refcount_read(&dev->dev_refcnt); 10100 #endif 10101 } 10102 EXPORT_SYMBOL(netdev_refcnt_read); 10103 10104 int netdev_unregister_timeout_secs __read_mostly = 10; 10105 10106 #define WAIT_REFS_MIN_MSECS 1 10107 #define WAIT_REFS_MAX_MSECS 250 10108 /** 10109 * netdev_wait_allrefs_any - wait until all references are gone. 10110 * @list: list of net_devices to wait on 10111 * 10112 * This is called when unregistering network devices. 10113 * 10114 * Any protocol or device that holds a reference should register 10115 * for netdevice notification, and cleanup and put back the 10116 * reference if they receive an UNREGISTER event. 10117 * We can get stuck here if buggy protocols don't correctly 10118 * call dev_put. 10119 */ 10120 static struct net_device *netdev_wait_allrefs_any(struct list_head *list) 10121 { 10122 unsigned long rebroadcast_time, warning_time; 10123 struct net_device *dev; 10124 int wait = 0; 10125 10126 rebroadcast_time = warning_time = jiffies; 10127 10128 list_for_each_entry(dev, list, todo_list) 10129 if (netdev_refcnt_read(dev) == 1) 10130 return dev; 10131 10132 while (true) { 10133 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 10134 rtnl_lock(); 10135 10136 /* Rebroadcast unregister notification */ 10137 list_for_each_entry(dev, list, todo_list) 10138 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 10139 10140 __rtnl_unlock(); 10141 rcu_barrier(); 10142 rtnl_lock(); 10143 10144 list_for_each_entry(dev, list, todo_list) 10145 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 10146 &dev->state)) { 10147 /* We must not have linkwatch events 10148 * pending on unregister. If this 10149 * happens, we simply run the queue 10150 * unscheduled, resulting in a noop 10151 * for this device. 10152 */ 10153 linkwatch_run_queue(); 10154 break; 10155 } 10156 10157 __rtnl_unlock(); 10158 10159 rebroadcast_time = jiffies; 10160 } 10161 10162 if (!wait) { 10163 rcu_barrier(); 10164 wait = WAIT_REFS_MIN_MSECS; 10165 } else { 10166 msleep(wait); 10167 wait = min(wait << 1, WAIT_REFS_MAX_MSECS); 10168 } 10169 10170 list_for_each_entry(dev, list, todo_list) 10171 if (netdev_refcnt_read(dev) == 1) 10172 return dev; 10173 10174 if (time_after(jiffies, warning_time + 10175 netdev_unregister_timeout_secs * HZ)) { 10176 list_for_each_entry(dev, list, todo_list) { 10177 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n", 10178 dev->name, netdev_refcnt_read(dev)); 10179 ref_tracker_dir_print(&dev->refcnt_tracker, 10); 10180 } 10181 10182 warning_time = jiffies; 10183 } 10184 } 10185 } 10186 10187 /* The sequence is: 10188 * 10189 * rtnl_lock(); 10190 * ... 10191 * register_netdevice(x1); 10192 * register_netdevice(x2); 10193 * ... 10194 * unregister_netdevice(y1); 10195 * unregister_netdevice(y2); 10196 * ... 10197 * rtnl_unlock(); 10198 * free_netdev(y1); 10199 * free_netdev(y2); 10200 * 10201 * We are invoked by rtnl_unlock(). 10202 * This allows us to deal with problems: 10203 * 1) We can delete sysfs objects which invoke hotplug 10204 * without deadlocking with linkwatch via keventd. 10205 * 2) Since we run with the RTNL semaphore not held, we can sleep 10206 * safely in order to wait for the netdev refcnt to drop to zero. 10207 * 10208 * We must not return until all unregister events added during 10209 * the interval the lock was held have been completed. 10210 */ 10211 void netdev_run_todo(void) 10212 { 10213 struct net_device *dev, *tmp; 10214 struct list_head list; 10215 #ifdef CONFIG_LOCKDEP 10216 struct list_head unlink_list; 10217 10218 list_replace_init(&net_unlink_list, &unlink_list); 10219 10220 while (!list_empty(&unlink_list)) { 10221 struct net_device *dev = list_first_entry(&unlink_list, 10222 struct net_device, 10223 unlink_list); 10224 list_del_init(&dev->unlink_list); 10225 dev->nested_level = dev->lower_level - 1; 10226 } 10227 #endif 10228 10229 /* Snapshot list, allow later requests */ 10230 list_replace_init(&net_todo_list, &list); 10231 10232 __rtnl_unlock(); 10233 10234 /* Wait for rcu callbacks to finish before next phase */ 10235 if (!list_empty(&list)) 10236 rcu_barrier(); 10237 10238 list_for_each_entry_safe(dev, tmp, &list, todo_list) { 10239 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 10240 netdev_WARN(dev, "run_todo but not unregistering\n"); 10241 list_del(&dev->todo_list); 10242 continue; 10243 } 10244 10245 dev->reg_state = NETREG_UNREGISTERED; 10246 linkwatch_forget_dev(dev); 10247 } 10248 10249 while (!list_empty(&list)) { 10250 dev = netdev_wait_allrefs_any(&list); 10251 list_del(&dev->todo_list); 10252 10253 /* paranoia */ 10254 BUG_ON(netdev_refcnt_read(dev) != 1); 10255 BUG_ON(!list_empty(&dev->ptype_all)); 10256 BUG_ON(!list_empty(&dev->ptype_specific)); 10257 WARN_ON(rcu_access_pointer(dev->ip_ptr)); 10258 WARN_ON(rcu_access_pointer(dev->ip6_ptr)); 10259 #if IS_ENABLED(CONFIG_DECNET) 10260 WARN_ON(dev->dn_ptr); 10261 #endif 10262 if (dev->priv_destructor) 10263 dev->priv_destructor(dev); 10264 if (dev->needs_free_netdev) 10265 free_netdev(dev); 10266 10267 if (atomic_dec_and_test(&dev_net(dev)->dev_unreg_count)) 10268 wake_up(&netdev_unregistering_wq); 10269 10270 /* Free network device */ 10271 kobject_put(&dev->dev.kobj); 10272 } 10273 } 10274 10275 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has 10276 * all the same fields in the same order as net_device_stats, with only 10277 * the type differing, but rtnl_link_stats64 may have additional fields 10278 * at the end for newer counters. 10279 */ 10280 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 10281 const struct net_device_stats *netdev_stats) 10282 { 10283 #if BITS_PER_LONG == 64 10284 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats)); 10285 memcpy(stats64, netdev_stats, sizeof(*netdev_stats)); 10286 /* zero out counters that only exist in rtnl_link_stats64 */ 10287 memset((char *)stats64 + sizeof(*netdev_stats), 0, 10288 sizeof(*stats64) - sizeof(*netdev_stats)); 10289 #else 10290 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long); 10291 const unsigned long *src = (const unsigned long *)netdev_stats; 10292 u64 *dst = (u64 *)stats64; 10293 10294 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64)); 10295 for (i = 0; i < n; i++) 10296 dst[i] = src[i]; 10297 /* zero out counters that only exist in rtnl_link_stats64 */ 10298 memset((char *)stats64 + n * sizeof(u64), 0, 10299 sizeof(*stats64) - n * sizeof(u64)); 10300 #endif 10301 } 10302 EXPORT_SYMBOL(netdev_stats_to_stats64); 10303 10304 struct net_device_core_stats *netdev_core_stats_alloc(struct net_device *dev) 10305 { 10306 struct net_device_core_stats __percpu *p; 10307 10308 p = alloc_percpu_gfp(struct net_device_core_stats, 10309 GFP_ATOMIC | __GFP_NOWARN); 10310 10311 if (p && cmpxchg(&dev->core_stats, NULL, p)) 10312 free_percpu(p); 10313 10314 /* This READ_ONCE() pairs with the cmpxchg() above */ 10315 p = READ_ONCE(dev->core_stats); 10316 if (!p) 10317 return NULL; 10318 10319 return this_cpu_ptr(p); 10320 } 10321 EXPORT_SYMBOL(netdev_core_stats_alloc); 10322 10323 /** 10324 * dev_get_stats - get network device statistics 10325 * @dev: device to get statistics from 10326 * @storage: place to store stats 10327 * 10328 * Get network statistics from device. Return @storage. 10329 * The device driver may provide its own method by setting 10330 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 10331 * otherwise the internal statistics structure is used. 10332 */ 10333 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 10334 struct rtnl_link_stats64 *storage) 10335 { 10336 const struct net_device_ops *ops = dev->netdev_ops; 10337 const struct net_device_core_stats __percpu *p; 10338 10339 if (ops->ndo_get_stats64) { 10340 memset(storage, 0, sizeof(*storage)); 10341 ops->ndo_get_stats64(dev, storage); 10342 } else if (ops->ndo_get_stats) { 10343 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 10344 } else { 10345 netdev_stats_to_stats64(storage, &dev->stats); 10346 } 10347 10348 /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */ 10349 p = READ_ONCE(dev->core_stats); 10350 if (p) { 10351 const struct net_device_core_stats *core_stats; 10352 int i; 10353 10354 for_each_possible_cpu(i) { 10355 core_stats = per_cpu_ptr(p, i); 10356 storage->rx_dropped += local_read(&core_stats->rx_dropped); 10357 storage->tx_dropped += local_read(&core_stats->tx_dropped); 10358 storage->rx_nohandler += local_read(&core_stats->rx_nohandler); 10359 storage->rx_otherhost_dropped += local_read(&core_stats->rx_otherhost_dropped); 10360 } 10361 } 10362 return storage; 10363 } 10364 EXPORT_SYMBOL(dev_get_stats); 10365 10366 /** 10367 * dev_fetch_sw_netstats - get per-cpu network device statistics 10368 * @s: place to store stats 10369 * @netstats: per-cpu network stats to read from 10370 * 10371 * Read per-cpu network statistics and populate the related fields in @s. 10372 */ 10373 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s, 10374 const struct pcpu_sw_netstats __percpu *netstats) 10375 { 10376 int cpu; 10377 10378 for_each_possible_cpu(cpu) { 10379 const struct pcpu_sw_netstats *stats; 10380 struct pcpu_sw_netstats tmp; 10381 unsigned int start; 10382 10383 stats = per_cpu_ptr(netstats, cpu); 10384 do { 10385 start = u64_stats_fetch_begin_irq(&stats->syncp); 10386 tmp.rx_packets = stats->rx_packets; 10387 tmp.rx_bytes = stats->rx_bytes; 10388 tmp.tx_packets = stats->tx_packets; 10389 tmp.tx_bytes = stats->tx_bytes; 10390 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 10391 10392 s->rx_packets += tmp.rx_packets; 10393 s->rx_bytes += tmp.rx_bytes; 10394 s->tx_packets += tmp.tx_packets; 10395 s->tx_bytes += tmp.tx_bytes; 10396 } 10397 } 10398 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats); 10399 10400 /** 10401 * dev_get_tstats64 - ndo_get_stats64 implementation 10402 * @dev: device to get statistics from 10403 * @s: place to store stats 10404 * 10405 * Populate @s from dev->stats and dev->tstats. Can be used as 10406 * ndo_get_stats64() callback. 10407 */ 10408 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s) 10409 { 10410 netdev_stats_to_stats64(s, &dev->stats); 10411 dev_fetch_sw_netstats(s, dev->tstats); 10412 } 10413 EXPORT_SYMBOL_GPL(dev_get_tstats64); 10414 10415 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 10416 { 10417 struct netdev_queue *queue = dev_ingress_queue(dev); 10418 10419 #ifdef CONFIG_NET_CLS_ACT 10420 if (queue) 10421 return queue; 10422 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 10423 if (!queue) 10424 return NULL; 10425 netdev_init_one_queue(dev, queue, NULL); 10426 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc); 10427 queue->qdisc_sleeping = &noop_qdisc; 10428 rcu_assign_pointer(dev->ingress_queue, queue); 10429 #endif 10430 return queue; 10431 } 10432 10433 static const struct ethtool_ops default_ethtool_ops; 10434 10435 void netdev_set_default_ethtool_ops(struct net_device *dev, 10436 const struct ethtool_ops *ops) 10437 { 10438 if (dev->ethtool_ops == &default_ethtool_ops) 10439 dev->ethtool_ops = ops; 10440 } 10441 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops); 10442 10443 void netdev_freemem(struct net_device *dev) 10444 { 10445 char *addr = (char *)dev - dev->padded; 10446 10447 kvfree(addr); 10448 } 10449 10450 /** 10451 * alloc_netdev_mqs - allocate network device 10452 * @sizeof_priv: size of private data to allocate space for 10453 * @name: device name format string 10454 * @name_assign_type: origin of device name 10455 * @setup: callback to initialize device 10456 * @txqs: the number of TX subqueues to allocate 10457 * @rxqs: the number of RX subqueues to allocate 10458 * 10459 * Allocates a struct net_device with private data area for driver use 10460 * and performs basic initialization. Also allocates subqueue structs 10461 * for each queue on the device. 10462 */ 10463 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 10464 unsigned char name_assign_type, 10465 void (*setup)(struct net_device *), 10466 unsigned int txqs, unsigned int rxqs) 10467 { 10468 struct net_device *dev; 10469 unsigned int alloc_size; 10470 struct net_device *p; 10471 10472 BUG_ON(strlen(name) >= sizeof(dev->name)); 10473 10474 if (txqs < 1) { 10475 pr_err("alloc_netdev: Unable to allocate device with zero queues\n"); 10476 return NULL; 10477 } 10478 10479 if (rxqs < 1) { 10480 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n"); 10481 return NULL; 10482 } 10483 10484 alloc_size = sizeof(struct net_device); 10485 if (sizeof_priv) { 10486 /* ensure 32-byte alignment of private area */ 10487 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); 10488 alloc_size += sizeof_priv; 10489 } 10490 /* ensure 32-byte alignment of whole construct */ 10491 alloc_size += NETDEV_ALIGN - 1; 10492 10493 p = kvzalloc(alloc_size, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL); 10494 if (!p) 10495 return NULL; 10496 10497 dev = PTR_ALIGN(p, NETDEV_ALIGN); 10498 dev->padded = (char *)dev - (char *)p; 10499 10500 ref_tracker_dir_init(&dev->refcnt_tracker, 128); 10501 #ifdef CONFIG_PCPU_DEV_REFCNT 10502 dev->pcpu_refcnt = alloc_percpu(int); 10503 if (!dev->pcpu_refcnt) 10504 goto free_dev; 10505 __dev_hold(dev); 10506 #else 10507 refcount_set(&dev->dev_refcnt, 1); 10508 #endif 10509 10510 if (dev_addr_init(dev)) 10511 goto free_pcpu; 10512 10513 dev_mc_init(dev); 10514 dev_uc_init(dev); 10515 10516 dev_net_set(dev, &init_net); 10517 10518 dev->gso_max_size = GSO_MAX_SIZE; 10519 dev->gso_max_segs = GSO_MAX_SEGS; 10520 dev->gro_max_size = GRO_MAX_SIZE; 10521 dev->upper_level = 1; 10522 dev->lower_level = 1; 10523 #ifdef CONFIG_LOCKDEP 10524 dev->nested_level = 0; 10525 INIT_LIST_HEAD(&dev->unlink_list); 10526 #endif 10527 10528 INIT_LIST_HEAD(&dev->napi_list); 10529 INIT_LIST_HEAD(&dev->unreg_list); 10530 INIT_LIST_HEAD(&dev->close_list); 10531 INIT_LIST_HEAD(&dev->link_watch_list); 10532 INIT_LIST_HEAD(&dev->adj_list.upper); 10533 INIT_LIST_HEAD(&dev->adj_list.lower); 10534 INIT_LIST_HEAD(&dev->ptype_all); 10535 INIT_LIST_HEAD(&dev->ptype_specific); 10536 INIT_LIST_HEAD(&dev->net_notifier_list); 10537 #ifdef CONFIG_NET_SCHED 10538 hash_init(dev->qdisc_hash); 10539 #endif 10540 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM; 10541 setup(dev); 10542 10543 if (!dev->tx_queue_len) { 10544 dev->priv_flags |= IFF_NO_QUEUE; 10545 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN; 10546 } 10547 10548 dev->num_tx_queues = txqs; 10549 dev->real_num_tx_queues = txqs; 10550 if (netif_alloc_netdev_queues(dev)) 10551 goto free_all; 10552 10553 dev->num_rx_queues = rxqs; 10554 dev->real_num_rx_queues = rxqs; 10555 if (netif_alloc_rx_queues(dev)) 10556 goto free_all; 10557 10558 strcpy(dev->name, name); 10559 dev->name_assign_type = name_assign_type; 10560 dev->group = INIT_NETDEV_GROUP; 10561 if (!dev->ethtool_ops) 10562 dev->ethtool_ops = &default_ethtool_ops; 10563 10564 nf_hook_netdev_init(dev); 10565 10566 return dev; 10567 10568 free_all: 10569 free_netdev(dev); 10570 return NULL; 10571 10572 free_pcpu: 10573 #ifdef CONFIG_PCPU_DEV_REFCNT 10574 free_percpu(dev->pcpu_refcnt); 10575 free_dev: 10576 #endif 10577 netdev_freemem(dev); 10578 return NULL; 10579 } 10580 EXPORT_SYMBOL(alloc_netdev_mqs); 10581 10582 /** 10583 * free_netdev - free network device 10584 * @dev: device 10585 * 10586 * This function does the last stage of destroying an allocated device 10587 * interface. The reference to the device object is released. If this 10588 * is the last reference then it will be freed.Must be called in process 10589 * context. 10590 */ 10591 void free_netdev(struct net_device *dev) 10592 { 10593 struct napi_struct *p, *n; 10594 10595 might_sleep(); 10596 10597 /* When called immediately after register_netdevice() failed the unwind 10598 * handling may still be dismantling the device. Handle that case by 10599 * deferring the free. 10600 */ 10601 if (dev->reg_state == NETREG_UNREGISTERING) { 10602 ASSERT_RTNL(); 10603 dev->needs_free_netdev = true; 10604 return; 10605 } 10606 10607 netif_free_tx_queues(dev); 10608 netif_free_rx_queues(dev); 10609 10610 kfree(rcu_dereference_protected(dev->ingress_queue, 1)); 10611 10612 /* Flush device addresses */ 10613 dev_addr_flush(dev); 10614 10615 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 10616 netif_napi_del(p); 10617 10618 ref_tracker_dir_exit(&dev->refcnt_tracker); 10619 #ifdef CONFIG_PCPU_DEV_REFCNT 10620 free_percpu(dev->pcpu_refcnt); 10621 dev->pcpu_refcnt = NULL; 10622 #endif 10623 free_percpu(dev->core_stats); 10624 dev->core_stats = NULL; 10625 free_percpu(dev->xdp_bulkq); 10626 dev->xdp_bulkq = NULL; 10627 10628 /* Compatibility with error handling in drivers */ 10629 if (dev->reg_state == NETREG_UNINITIALIZED) { 10630 netdev_freemem(dev); 10631 return; 10632 } 10633 10634 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 10635 dev->reg_state = NETREG_RELEASED; 10636 10637 /* will free via device release */ 10638 put_device(&dev->dev); 10639 } 10640 EXPORT_SYMBOL(free_netdev); 10641 10642 /** 10643 * synchronize_net - Synchronize with packet receive processing 10644 * 10645 * Wait for packets currently being received to be done. 10646 * Does not block later packets from starting. 10647 */ 10648 void synchronize_net(void) 10649 { 10650 might_sleep(); 10651 if (rtnl_is_locked()) 10652 synchronize_rcu_expedited(); 10653 else 10654 synchronize_rcu(); 10655 } 10656 EXPORT_SYMBOL(synchronize_net); 10657 10658 /** 10659 * unregister_netdevice_queue - remove device from the kernel 10660 * @dev: device 10661 * @head: list 10662 * 10663 * This function shuts down a device interface and removes it 10664 * from the kernel tables. 10665 * If head not NULL, device is queued to be unregistered later. 10666 * 10667 * Callers must hold the rtnl semaphore. You may want 10668 * unregister_netdev() instead of this. 10669 */ 10670 10671 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 10672 { 10673 ASSERT_RTNL(); 10674 10675 if (head) { 10676 list_move_tail(&dev->unreg_list, head); 10677 } else { 10678 LIST_HEAD(single); 10679 10680 list_add(&dev->unreg_list, &single); 10681 unregister_netdevice_many(&single); 10682 } 10683 } 10684 EXPORT_SYMBOL(unregister_netdevice_queue); 10685 10686 /** 10687 * unregister_netdevice_many - unregister many devices 10688 * @head: list of devices 10689 * 10690 * Note: As most callers use a stack allocated list_head, 10691 * we force a list_del() to make sure stack wont be corrupted later. 10692 */ 10693 void unregister_netdevice_many(struct list_head *head) 10694 { 10695 struct net_device *dev, *tmp; 10696 LIST_HEAD(close_head); 10697 10698 BUG_ON(dev_boot_phase); 10699 ASSERT_RTNL(); 10700 10701 if (list_empty(head)) 10702 return; 10703 10704 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 10705 /* Some devices call without registering 10706 * for initialization unwind. Remove those 10707 * devices and proceed with the remaining. 10708 */ 10709 if (dev->reg_state == NETREG_UNINITIALIZED) { 10710 pr_debug("unregister_netdevice: device %s/%p never was registered\n", 10711 dev->name, dev); 10712 10713 WARN_ON(1); 10714 list_del(&dev->unreg_list); 10715 continue; 10716 } 10717 dev->dismantle = true; 10718 BUG_ON(dev->reg_state != NETREG_REGISTERED); 10719 } 10720 10721 /* If device is running, close it first. */ 10722 list_for_each_entry(dev, head, unreg_list) 10723 list_add_tail(&dev->close_list, &close_head); 10724 dev_close_many(&close_head, true); 10725 10726 list_for_each_entry(dev, head, unreg_list) { 10727 /* And unlink it from device chain. */ 10728 unlist_netdevice(dev); 10729 10730 dev->reg_state = NETREG_UNREGISTERING; 10731 } 10732 flush_all_backlogs(); 10733 10734 synchronize_net(); 10735 10736 list_for_each_entry(dev, head, unreg_list) { 10737 struct sk_buff *skb = NULL; 10738 10739 /* Shutdown queueing discipline. */ 10740 dev_shutdown(dev); 10741 10742 dev_xdp_uninstall(dev); 10743 10744 netdev_offload_xstats_disable_all(dev); 10745 10746 /* Notify protocols, that we are about to destroy 10747 * this device. They should clean all the things. 10748 */ 10749 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 10750 10751 if (!dev->rtnl_link_ops || 10752 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 10753 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0, 10754 GFP_KERNEL, NULL, 0); 10755 10756 /* 10757 * Flush the unicast and multicast chains 10758 */ 10759 dev_uc_flush(dev); 10760 dev_mc_flush(dev); 10761 10762 netdev_name_node_alt_flush(dev); 10763 netdev_name_node_free(dev->name_node); 10764 10765 if (dev->netdev_ops->ndo_uninit) 10766 dev->netdev_ops->ndo_uninit(dev); 10767 10768 if (skb) 10769 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL); 10770 10771 /* Notifier chain MUST detach us all upper devices. */ 10772 WARN_ON(netdev_has_any_upper_dev(dev)); 10773 WARN_ON(netdev_has_any_lower_dev(dev)); 10774 10775 /* Remove entries from kobject tree */ 10776 netdev_unregister_kobject(dev); 10777 #ifdef CONFIG_XPS 10778 /* Remove XPS queueing entries */ 10779 netif_reset_xps_queues_gt(dev, 0); 10780 #endif 10781 } 10782 10783 synchronize_net(); 10784 10785 list_for_each_entry(dev, head, unreg_list) { 10786 dev_put_track(dev, &dev->dev_registered_tracker); 10787 net_set_todo(dev); 10788 } 10789 10790 list_del(head); 10791 } 10792 EXPORT_SYMBOL(unregister_netdevice_many); 10793 10794 /** 10795 * unregister_netdev - remove device from the kernel 10796 * @dev: device 10797 * 10798 * This function shuts down a device interface and removes it 10799 * from the kernel tables. 10800 * 10801 * This is just a wrapper for unregister_netdevice that takes 10802 * the rtnl semaphore. In general you want to use this and not 10803 * unregister_netdevice. 10804 */ 10805 void unregister_netdev(struct net_device *dev) 10806 { 10807 rtnl_lock(); 10808 unregister_netdevice(dev); 10809 rtnl_unlock(); 10810 } 10811 EXPORT_SYMBOL(unregister_netdev); 10812 10813 /** 10814 * __dev_change_net_namespace - move device to different nethost namespace 10815 * @dev: device 10816 * @net: network namespace 10817 * @pat: If not NULL name pattern to try if the current device name 10818 * is already taken in the destination network namespace. 10819 * @new_ifindex: If not zero, specifies device index in the target 10820 * namespace. 10821 * 10822 * This function shuts down a device interface and moves it 10823 * to a new network namespace. On success 0 is returned, on 10824 * a failure a netagive errno code is returned. 10825 * 10826 * Callers must hold the rtnl semaphore. 10827 */ 10828 10829 int __dev_change_net_namespace(struct net_device *dev, struct net *net, 10830 const char *pat, int new_ifindex) 10831 { 10832 struct net *net_old = dev_net(dev); 10833 int err, new_nsid; 10834 10835 ASSERT_RTNL(); 10836 10837 /* Don't allow namespace local devices to be moved. */ 10838 err = -EINVAL; 10839 if (dev->features & NETIF_F_NETNS_LOCAL) 10840 goto out; 10841 10842 /* Ensure the device has been registrered */ 10843 if (dev->reg_state != NETREG_REGISTERED) 10844 goto out; 10845 10846 /* Get out if there is nothing todo */ 10847 err = 0; 10848 if (net_eq(net_old, net)) 10849 goto out; 10850 10851 /* Pick the destination device name, and ensure 10852 * we can use it in the destination network namespace. 10853 */ 10854 err = -EEXIST; 10855 if (netdev_name_in_use(net, dev->name)) { 10856 /* We get here if we can't use the current device name */ 10857 if (!pat) 10858 goto out; 10859 err = dev_get_valid_name(net, dev, pat); 10860 if (err < 0) 10861 goto out; 10862 } 10863 10864 /* Check that new_ifindex isn't used yet. */ 10865 err = -EBUSY; 10866 if (new_ifindex && __dev_get_by_index(net, new_ifindex)) 10867 goto out; 10868 10869 /* 10870 * And now a mini version of register_netdevice unregister_netdevice. 10871 */ 10872 10873 /* If device is running close it first. */ 10874 dev_close(dev); 10875 10876 /* And unlink it from device chain */ 10877 unlist_netdevice(dev); 10878 10879 synchronize_net(); 10880 10881 /* Shutdown queueing discipline. */ 10882 dev_shutdown(dev); 10883 10884 /* Notify protocols, that we are about to destroy 10885 * this device. They should clean all the things. 10886 * 10887 * Note that dev->reg_state stays at NETREG_REGISTERED. 10888 * This is wanted because this way 8021q and macvlan know 10889 * the device is just moving and can keep their slaves up. 10890 */ 10891 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 10892 rcu_barrier(); 10893 10894 new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL); 10895 /* If there is an ifindex conflict assign a new one */ 10896 if (!new_ifindex) { 10897 if (__dev_get_by_index(net, dev->ifindex)) 10898 new_ifindex = dev_new_index(net); 10899 else 10900 new_ifindex = dev->ifindex; 10901 } 10902 10903 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid, 10904 new_ifindex); 10905 10906 /* 10907 * Flush the unicast and multicast chains 10908 */ 10909 dev_uc_flush(dev); 10910 dev_mc_flush(dev); 10911 10912 /* Send a netdev-removed uevent to the old namespace */ 10913 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE); 10914 netdev_adjacent_del_links(dev); 10915 10916 /* Move per-net netdevice notifiers that are following the netdevice */ 10917 move_netdevice_notifiers_dev_net(dev, net); 10918 10919 /* Actually switch the network namespace */ 10920 dev_net_set(dev, net); 10921 dev->ifindex = new_ifindex; 10922 10923 /* Send a netdev-add uevent to the new namespace */ 10924 kobject_uevent(&dev->dev.kobj, KOBJ_ADD); 10925 netdev_adjacent_add_links(dev); 10926 10927 /* Fixup kobjects */ 10928 err = device_rename(&dev->dev, dev->name); 10929 WARN_ON(err); 10930 10931 /* Adapt owner in case owning user namespace of target network 10932 * namespace is different from the original one. 10933 */ 10934 err = netdev_change_owner(dev, net_old, net); 10935 WARN_ON(err); 10936 10937 /* Add the device back in the hashes */ 10938 list_netdevice(dev); 10939 10940 /* Notify protocols, that a new device appeared. */ 10941 call_netdevice_notifiers(NETDEV_REGISTER, dev); 10942 10943 /* 10944 * Prevent userspace races by waiting until the network 10945 * device is fully setup before sending notifications. 10946 */ 10947 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 10948 10949 synchronize_net(); 10950 err = 0; 10951 out: 10952 return err; 10953 } 10954 EXPORT_SYMBOL_GPL(__dev_change_net_namespace); 10955 10956 static int dev_cpu_dead(unsigned int oldcpu) 10957 { 10958 struct sk_buff **list_skb; 10959 struct sk_buff *skb; 10960 unsigned int cpu; 10961 struct softnet_data *sd, *oldsd, *remsd = NULL; 10962 10963 local_irq_disable(); 10964 cpu = smp_processor_id(); 10965 sd = &per_cpu(softnet_data, cpu); 10966 oldsd = &per_cpu(softnet_data, oldcpu); 10967 10968 /* Find end of our completion_queue. */ 10969 list_skb = &sd->completion_queue; 10970 while (*list_skb) 10971 list_skb = &(*list_skb)->next; 10972 /* Append completion queue from offline CPU. */ 10973 *list_skb = oldsd->completion_queue; 10974 oldsd->completion_queue = NULL; 10975 10976 /* Append output queue from offline CPU. */ 10977 if (oldsd->output_queue) { 10978 *sd->output_queue_tailp = oldsd->output_queue; 10979 sd->output_queue_tailp = oldsd->output_queue_tailp; 10980 oldsd->output_queue = NULL; 10981 oldsd->output_queue_tailp = &oldsd->output_queue; 10982 } 10983 /* Append NAPI poll list from offline CPU, with one exception : 10984 * process_backlog() must be called by cpu owning percpu backlog. 10985 * We properly handle process_queue & input_pkt_queue later. 10986 */ 10987 while (!list_empty(&oldsd->poll_list)) { 10988 struct napi_struct *napi = list_first_entry(&oldsd->poll_list, 10989 struct napi_struct, 10990 poll_list); 10991 10992 list_del_init(&napi->poll_list); 10993 if (napi->poll == process_backlog) 10994 napi->state = 0; 10995 else 10996 ____napi_schedule(sd, napi); 10997 } 10998 10999 raise_softirq_irqoff(NET_TX_SOFTIRQ); 11000 local_irq_enable(); 11001 11002 #ifdef CONFIG_RPS 11003 remsd = oldsd->rps_ipi_list; 11004 oldsd->rps_ipi_list = NULL; 11005 #endif 11006 /* send out pending IPI's on offline CPU */ 11007 net_rps_send_ipi(remsd); 11008 11009 /* Process offline CPU's input_pkt_queue */ 11010 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 11011 netif_rx(skb); 11012 input_queue_head_incr(oldsd); 11013 } 11014 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) { 11015 netif_rx(skb); 11016 input_queue_head_incr(oldsd); 11017 } 11018 11019 return 0; 11020 } 11021 11022 /** 11023 * netdev_increment_features - increment feature set by one 11024 * @all: current feature set 11025 * @one: new feature set 11026 * @mask: mask feature set 11027 * 11028 * Computes a new feature set after adding a device with feature set 11029 * @one to the master device with current feature set @all. Will not 11030 * enable anything that is off in @mask. Returns the new feature set. 11031 */ 11032 netdev_features_t netdev_increment_features(netdev_features_t all, 11033 netdev_features_t one, netdev_features_t mask) 11034 { 11035 if (mask & NETIF_F_HW_CSUM) 11036 mask |= NETIF_F_CSUM_MASK; 11037 mask |= NETIF_F_VLAN_CHALLENGED; 11038 11039 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask; 11040 all &= one | ~NETIF_F_ALL_FOR_ALL; 11041 11042 /* If one device supports hw checksumming, set for all. */ 11043 if (all & NETIF_F_HW_CSUM) 11044 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM); 11045 11046 return all; 11047 } 11048 EXPORT_SYMBOL(netdev_increment_features); 11049 11050 static struct hlist_head * __net_init netdev_create_hash(void) 11051 { 11052 int i; 11053 struct hlist_head *hash; 11054 11055 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL); 11056 if (hash != NULL) 11057 for (i = 0; i < NETDEV_HASHENTRIES; i++) 11058 INIT_HLIST_HEAD(&hash[i]); 11059 11060 return hash; 11061 } 11062 11063 /* Initialize per network namespace state */ 11064 static int __net_init netdev_init(struct net *net) 11065 { 11066 BUILD_BUG_ON(GRO_HASH_BUCKETS > 11067 8 * sizeof_field(struct napi_struct, gro_bitmask)); 11068 11069 INIT_LIST_HEAD(&net->dev_base_head); 11070 11071 net->dev_name_head = netdev_create_hash(); 11072 if (net->dev_name_head == NULL) 11073 goto err_name; 11074 11075 net->dev_index_head = netdev_create_hash(); 11076 if (net->dev_index_head == NULL) 11077 goto err_idx; 11078 11079 RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain); 11080 11081 return 0; 11082 11083 err_idx: 11084 kfree(net->dev_name_head); 11085 err_name: 11086 return -ENOMEM; 11087 } 11088 11089 /** 11090 * netdev_drivername - network driver for the device 11091 * @dev: network device 11092 * 11093 * Determine network driver for device. 11094 */ 11095 const char *netdev_drivername(const struct net_device *dev) 11096 { 11097 const struct device_driver *driver; 11098 const struct device *parent; 11099 const char *empty = ""; 11100 11101 parent = dev->dev.parent; 11102 if (!parent) 11103 return empty; 11104 11105 driver = parent->driver; 11106 if (driver && driver->name) 11107 return driver->name; 11108 return empty; 11109 } 11110 11111 static void __netdev_printk(const char *level, const struct net_device *dev, 11112 struct va_format *vaf) 11113 { 11114 if (dev && dev->dev.parent) { 11115 dev_printk_emit(level[1] - '0', 11116 dev->dev.parent, 11117 "%s %s %s%s: %pV", 11118 dev_driver_string(dev->dev.parent), 11119 dev_name(dev->dev.parent), 11120 netdev_name(dev), netdev_reg_state(dev), 11121 vaf); 11122 } else if (dev) { 11123 printk("%s%s%s: %pV", 11124 level, netdev_name(dev), netdev_reg_state(dev), vaf); 11125 } else { 11126 printk("%s(NULL net_device): %pV", level, vaf); 11127 } 11128 } 11129 11130 void netdev_printk(const char *level, const struct net_device *dev, 11131 const char *format, ...) 11132 { 11133 struct va_format vaf; 11134 va_list args; 11135 11136 va_start(args, format); 11137 11138 vaf.fmt = format; 11139 vaf.va = &args; 11140 11141 __netdev_printk(level, dev, &vaf); 11142 11143 va_end(args); 11144 } 11145 EXPORT_SYMBOL(netdev_printk); 11146 11147 #define define_netdev_printk_level(func, level) \ 11148 void func(const struct net_device *dev, const char *fmt, ...) \ 11149 { \ 11150 struct va_format vaf; \ 11151 va_list args; \ 11152 \ 11153 va_start(args, fmt); \ 11154 \ 11155 vaf.fmt = fmt; \ 11156 vaf.va = &args; \ 11157 \ 11158 __netdev_printk(level, dev, &vaf); \ 11159 \ 11160 va_end(args); \ 11161 } \ 11162 EXPORT_SYMBOL(func); 11163 11164 define_netdev_printk_level(netdev_emerg, KERN_EMERG); 11165 define_netdev_printk_level(netdev_alert, KERN_ALERT); 11166 define_netdev_printk_level(netdev_crit, KERN_CRIT); 11167 define_netdev_printk_level(netdev_err, KERN_ERR); 11168 define_netdev_printk_level(netdev_warn, KERN_WARNING); 11169 define_netdev_printk_level(netdev_notice, KERN_NOTICE); 11170 define_netdev_printk_level(netdev_info, KERN_INFO); 11171 11172 static void __net_exit netdev_exit(struct net *net) 11173 { 11174 kfree(net->dev_name_head); 11175 kfree(net->dev_index_head); 11176 if (net != &init_net) 11177 WARN_ON_ONCE(!list_empty(&net->dev_base_head)); 11178 } 11179 11180 static struct pernet_operations __net_initdata netdev_net_ops = { 11181 .init = netdev_init, 11182 .exit = netdev_exit, 11183 }; 11184 11185 static void __net_exit default_device_exit_net(struct net *net) 11186 { 11187 struct net_device *dev, *aux; 11188 /* 11189 * Push all migratable network devices back to the 11190 * initial network namespace 11191 */ 11192 ASSERT_RTNL(); 11193 for_each_netdev_safe(net, dev, aux) { 11194 int err; 11195 char fb_name[IFNAMSIZ]; 11196 11197 /* Ignore unmoveable devices (i.e. loopback) */ 11198 if (dev->features & NETIF_F_NETNS_LOCAL) 11199 continue; 11200 11201 /* Leave virtual devices for the generic cleanup */ 11202 if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund) 11203 continue; 11204 11205 /* Push remaining network devices to init_net */ 11206 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 11207 if (netdev_name_in_use(&init_net, fb_name)) 11208 snprintf(fb_name, IFNAMSIZ, "dev%%d"); 11209 err = dev_change_net_namespace(dev, &init_net, fb_name); 11210 if (err) { 11211 pr_emerg("%s: failed to move %s to init_net: %d\n", 11212 __func__, dev->name, err); 11213 BUG(); 11214 } 11215 } 11216 } 11217 11218 static void __net_exit default_device_exit_batch(struct list_head *net_list) 11219 { 11220 /* At exit all network devices most be removed from a network 11221 * namespace. Do this in the reverse order of registration. 11222 * Do this across as many network namespaces as possible to 11223 * improve batching efficiency. 11224 */ 11225 struct net_device *dev; 11226 struct net *net; 11227 LIST_HEAD(dev_kill_list); 11228 11229 rtnl_lock(); 11230 list_for_each_entry(net, net_list, exit_list) { 11231 default_device_exit_net(net); 11232 cond_resched(); 11233 } 11234 11235 list_for_each_entry(net, net_list, exit_list) { 11236 for_each_netdev_reverse(net, dev) { 11237 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) 11238 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 11239 else 11240 unregister_netdevice_queue(dev, &dev_kill_list); 11241 } 11242 } 11243 unregister_netdevice_many(&dev_kill_list); 11244 rtnl_unlock(); 11245 } 11246 11247 static struct pernet_operations __net_initdata default_device_ops = { 11248 .exit_batch = default_device_exit_batch, 11249 }; 11250 11251 /* 11252 * Initialize the DEV module. At boot time this walks the device list and 11253 * unhooks any devices that fail to initialise (normally hardware not 11254 * present) and leaves us with a valid list of present and active devices. 11255 * 11256 */ 11257 11258 /* 11259 * This is called single threaded during boot, so no need 11260 * to take the rtnl semaphore. 11261 */ 11262 static int __init net_dev_init(void) 11263 { 11264 int i, rc = -ENOMEM; 11265 11266 BUG_ON(!dev_boot_phase); 11267 11268 if (dev_proc_init()) 11269 goto out; 11270 11271 if (netdev_kobject_init()) 11272 goto out; 11273 11274 INIT_LIST_HEAD(&ptype_all); 11275 for (i = 0; i < PTYPE_HASH_SIZE; i++) 11276 INIT_LIST_HEAD(&ptype_base[i]); 11277 11278 if (register_pernet_subsys(&netdev_net_ops)) 11279 goto out; 11280 11281 /* 11282 * Initialise the packet receive queues. 11283 */ 11284 11285 for_each_possible_cpu(i) { 11286 struct work_struct *flush = per_cpu_ptr(&flush_works, i); 11287 struct softnet_data *sd = &per_cpu(softnet_data, i); 11288 11289 INIT_WORK(flush, flush_backlog); 11290 11291 skb_queue_head_init(&sd->input_pkt_queue); 11292 skb_queue_head_init(&sd->process_queue); 11293 #ifdef CONFIG_XFRM_OFFLOAD 11294 skb_queue_head_init(&sd->xfrm_backlog); 11295 #endif 11296 INIT_LIST_HEAD(&sd->poll_list); 11297 sd->output_queue_tailp = &sd->output_queue; 11298 #ifdef CONFIG_RPS 11299 INIT_CSD(&sd->csd, rps_trigger_softirq, sd); 11300 sd->cpu = i; 11301 #endif 11302 11303 init_gro_hash(&sd->backlog); 11304 sd->backlog.poll = process_backlog; 11305 sd->backlog.weight = weight_p; 11306 } 11307 11308 dev_boot_phase = 0; 11309 11310 /* The loopback device is special if any other network devices 11311 * is present in a network namespace the loopback device must 11312 * be present. Since we now dynamically allocate and free the 11313 * loopback device ensure this invariant is maintained by 11314 * keeping the loopback device as the first device on the 11315 * list of network devices. Ensuring the loopback devices 11316 * is the first device that appears and the last network device 11317 * that disappears. 11318 */ 11319 if (register_pernet_device(&loopback_net_ops)) 11320 goto out; 11321 11322 if (register_pernet_device(&default_device_ops)) 11323 goto out; 11324 11325 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 11326 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 11327 11328 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead", 11329 NULL, dev_cpu_dead); 11330 WARN_ON(rc < 0); 11331 rc = 0; 11332 out: 11333 return rc; 11334 } 11335 11336 subsys_initcall(net_dev_init); 11337