1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * NET3 Protocol independent device support routines. 4 * 5 * Derived from the non IP parts of dev.c 1.0.19 6 * Authors: Ross Biro 7 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 8 * Mark Evans, <evansmp@uhura.aston.ac.uk> 9 * 10 * Additional Authors: 11 * Florian la Roche <rzsfl@rz.uni-sb.de> 12 * Alan Cox <gw4pts@gw4pts.ampr.org> 13 * David Hinds <dahinds@users.sourceforge.net> 14 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 15 * Adam Sulmicki <adam@cfar.umd.edu> 16 * Pekka Riikonen <priikone@poesidon.pspt.fi> 17 * 18 * Changes: 19 * D.J. Barrow : Fixed bug where dev->refcnt gets set 20 * to 2 if register_netdev gets called 21 * before net_dev_init & also removed a 22 * few lines of code in the process. 23 * Alan Cox : device private ioctl copies fields back. 24 * Alan Cox : Transmit queue code does relevant 25 * stunts to keep the queue safe. 26 * Alan Cox : Fixed double lock. 27 * Alan Cox : Fixed promisc NULL pointer trap 28 * ???????? : Support the full private ioctl range 29 * Alan Cox : Moved ioctl permission check into 30 * drivers 31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 32 * Alan Cox : 100 backlog just doesn't cut it when 33 * you start doing multicast video 8) 34 * Alan Cox : Rewrote net_bh and list manager. 35 * Alan Cox : Fix ETH_P_ALL echoback lengths. 36 * Alan Cox : Took out transmit every packet pass 37 * Saved a few bytes in the ioctl handler 38 * Alan Cox : Network driver sets packet type before 39 * calling netif_rx. Saves a function 40 * call a packet. 41 * Alan Cox : Hashed net_bh() 42 * Richard Kooijman: Timestamp fixes. 43 * Alan Cox : Wrong field in SIOCGIFDSTADDR 44 * Alan Cox : Device lock protection. 45 * Alan Cox : Fixed nasty side effect of device close 46 * changes. 47 * Rudi Cilibrasi : Pass the right thing to 48 * set_mac_address() 49 * Dave Miller : 32bit quantity for the device lock to 50 * make it work out on a Sparc. 51 * Bjorn Ekwall : Added KERNELD hack. 52 * Alan Cox : Cleaned up the backlog initialise. 53 * Craig Metz : SIOCGIFCONF fix if space for under 54 * 1 device. 55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 56 * is no device open function. 57 * Andi Kleen : Fix error reporting for SIOCGIFCONF 58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 59 * Cyrus Durgin : Cleaned for KMOD 60 * Adam Sulmicki : Bug Fix : Network Device Unload 61 * A network device unload needs to purge 62 * the backlog queue. 63 * Paul Rusty Russell : SIOCSIFNAME 64 * Pekka Riikonen : Netdev boot-time settings code 65 * Andrew Morton : Make unregister_netdevice wait 66 * indefinitely on dev->refcnt 67 * J Hadi Salim : - Backlog queue sampling 68 * - netif_rx() feedback 69 */ 70 71 #include <linux/uaccess.h> 72 #include <linux/bitmap.h> 73 #include <linux/capability.h> 74 #include <linux/cpu.h> 75 #include <linux/types.h> 76 #include <linux/kernel.h> 77 #include <linux/hash.h> 78 #include <linux/slab.h> 79 #include <linux/sched.h> 80 #include <linux/sched/isolation.h> 81 #include <linux/sched/mm.h> 82 #include <linux/smpboot.h> 83 #include <linux/mutex.h> 84 #include <linux/rwsem.h> 85 #include <linux/string.h> 86 #include <linux/mm.h> 87 #include <linux/socket.h> 88 #include <linux/sockios.h> 89 #include <linux/errno.h> 90 #include <linux/interrupt.h> 91 #include <linux/if_ether.h> 92 #include <linux/netdevice.h> 93 #include <linux/etherdevice.h> 94 #include <linux/ethtool.h> 95 #include <linux/ethtool_netlink.h> 96 #include <linux/skbuff.h> 97 #include <linux/kthread.h> 98 #include <linux/bpf.h> 99 #include <linux/bpf_trace.h> 100 #include <net/net_namespace.h> 101 #include <net/sock.h> 102 #include <net/busy_poll.h> 103 #include <linux/rtnetlink.h> 104 #include <linux/stat.h> 105 #include <net/dsa.h> 106 #include <net/dst.h> 107 #include <net/dst_metadata.h> 108 #include <net/gro.h> 109 #include <net/netdev_queues.h> 110 #include <net/pkt_sched.h> 111 #include <net/pkt_cls.h> 112 #include <net/checksum.h> 113 #include <net/xfrm.h> 114 #include <net/tcx.h> 115 #include <linux/highmem.h> 116 #include <linux/init.h> 117 #include <linux/module.h> 118 #include <linux/netpoll.h> 119 #include <linux/rcupdate.h> 120 #include <linux/delay.h> 121 #include <net/iw_handler.h> 122 #include <asm/current.h> 123 #include <linux/audit.h> 124 #include <linux/dmaengine.h> 125 #include <linux/err.h> 126 #include <linux/ctype.h> 127 #include <linux/if_arp.h> 128 #include <linux/if_vlan.h> 129 #include <linux/ip.h> 130 #include <net/ip.h> 131 #include <net/mpls.h> 132 #include <linux/ipv6.h> 133 #include <linux/in.h> 134 #include <linux/jhash.h> 135 #include <linux/random.h> 136 #include <trace/events/napi.h> 137 #include <trace/events/net.h> 138 #include <trace/events/skb.h> 139 #include <trace/events/qdisc.h> 140 #include <trace/events/xdp.h> 141 #include <linux/inetdevice.h> 142 #include <linux/cpu_rmap.h> 143 #include <linux/static_key.h> 144 #include <linux/hashtable.h> 145 #include <linux/vmalloc.h> 146 #include <linux/if_macvlan.h> 147 #include <linux/errqueue.h> 148 #include <linux/hrtimer.h> 149 #include <linux/netfilter_netdev.h> 150 #include <linux/crash_dump.h> 151 #include <linux/sctp.h> 152 #include <net/udp_tunnel.h> 153 #include <linux/net_namespace.h> 154 #include <linux/indirect_call_wrapper.h> 155 #include <net/devlink.h> 156 #include <linux/pm_runtime.h> 157 #include <linux/prandom.h> 158 #include <linux/once_lite.h> 159 #include <net/netdev_lock.h> 160 #include <net/netdev_rx_queue.h> 161 #include <net/page_pool/types.h> 162 #include <net/page_pool/helpers.h> 163 #include <net/page_pool/memory_provider.h> 164 #include <net/rps.h> 165 #include <linux/phy_link_topology.h> 166 167 #include "dev.h" 168 #include "devmem.h" 169 #include "net-sysfs.h" 170 171 static DEFINE_SPINLOCK(ptype_lock); 172 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 173 174 static int netif_rx_internal(struct sk_buff *skb); 175 static int call_netdevice_notifiers_extack(unsigned long val, 176 struct net_device *dev, 177 struct netlink_ext_ack *extack); 178 179 static DEFINE_MUTEX(ifalias_mutex); 180 181 /* protects napi_hash addition/deletion and napi_gen_id */ 182 static DEFINE_SPINLOCK(napi_hash_lock); 183 184 static unsigned int napi_gen_id = NR_CPUS; 185 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8); 186 187 static inline void dev_base_seq_inc(struct net *net) 188 { 189 unsigned int val = net->dev_base_seq + 1; 190 191 WRITE_ONCE(net->dev_base_seq, val ?: 1); 192 } 193 194 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 195 { 196 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ)); 197 198 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 199 } 200 201 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 202 { 203 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 204 } 205 206 #ifndef CONFIG_PREEMPT_RT 207 208 static DEFINE_STATIC_KEY_FALSE(use_backlog_threads_key); 209 210 static int __init setup_backlog_napi_threads(char *arg) 211 { 212 static_branch_enable(&use_backlog_threads_key); 213 return 0; 214 } 215 early_param("thread_backlog_napi", setup_backlog_napi_threads); 216 217 static bool use_backlog_threads(void) 218 { 219 return static_branch_unlikely(&use_backlog_threads_key); 220 } 221 222 #else 223 224 static bool use_backlog_threads(void) 225 { 226 return true; 227 } 228 229 #endif 230 231 static inline void backlog_lock_irq_save(struct softnet_data *sd, 232 unsigned long *flags) 233 { 234 if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads()) 235 spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags); 236 else 237 local_irq_save(*flags); 238 } 239 240 static inline void backlog_lock_irq_disable(struct softnet_data *sd) 241 { 242 if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads()) 243 spin_lock_irq(&sd->input_pkt_queue.lock); 244 else 245 local_irq_disable(); 246 } 247 248 static inline void backlog_unlock_irq_restore(struct softnet_data *sd, 249 unsigned long *flags) 250 { 251 if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads()) 252 spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags); 253 else 254 local_irq_restore(*flags); 255 } 256 257 static inline void backlog_unlock_irq_enable(struct softnet_data *sd) 258 { 259 if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads()) 260 spin_unlock_irq(&sd->input_pkt_queue.lock); 261 else 262 local_irq_enable(); 263 } 264 265 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev, 266 const char *name) 267 { 268 struct netdev_name_node *name_node; 269 270 name_node = kmalloc(sizeof(*name_node), GFP_KERNEL); 271 if (!name_node) 272 return NULL; 273 INIT_HLIST_NODE(&name_node->hlist); 274 name_node->dev = dev; 275 name_node->name = name; 276 return name_node; 277 } 278 279 static struct netdev_name_node * 280 netdev_name_node_head_alloc(struct net_device *dev) 281 { 282 struct netdev_name_node *name_node; 283 284 name_node = netdev_name_node_alloc(dev, dev->name); 285 if (!name_node) 286 return NULL; 287 INIT_LIST_HEAD(&name_node->list); 288 return name_node; 289 } 290 291 static void netdev_name_node_free(struct netdev_name_node *name_node) 292 { 293 kfree(name_node); 294 } 295 296 static void netdev_name_node_add(struct net *net, 297 struct netdev_name_node *name_node) 298 { 299 hlist_add_head_rcu(&name_node->hlist, 300 dev_name_hash(net, name_node->name)); 301 } 302 303 static void netdev_name_node_del(struct netdev_name_node *name_node) 304 { 305 hlist_del_rcu(&name_node->hlist); 306 } 307 308 static struct netdev_name_node *netdev_name_node_lookup(struct net *net, 309 const char *name) 310 { 311 struct hlist_head *head = dev_name_hash(net, name); 312 struct netdev_name_node *name_node; 313 314 hlist_for_each_entry(name_node, head, hlist) 315 if (!strcmp(name_node->name, name)) 316 return name_node; 317 return NULL; 318 } 319 320 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net, 321 const char *name) 322 { 323 struct hlist_head *head = dev_name_hash(net, name); 324 struct netdev_name_node *name_node; 325 326 hlist_for_each_entry_rcu(name_node, head, hlist) 327 if (!strcmp(name_node->name, name)) 328 return name_node; 329 return NULL; 330 } 331 332 bool netdev_name_in_use(struct net *net, const char *name) 333 { 334 return netdev_name_node_lookup(net, name); 335 } 336 EXPORT_SYMBOL(netdev_name_in_use); 337 338 int netdev_name_node_alt_create(struct net_device *dev, const char *name) 339 { 340 struct netdev_name_node *name_node; 341 struct net *net = dev_net(dev); 342 343 name_node = netdev_name_node_lookup(net, name); 344 if (name_node) 345 return -EEXIST; 346 name_node = netdev_name_node_alloc(dev, name); 347 if (!name_node) 348 return -ENOMEM; 349 netdev_name_node_add(net, name_node); 350 /* The node that holds dev->name acts as a head of per-device list. */ 351 list_add_tail_rcu(&name_node->list, &dev->name_node->list); 352 353 return 0; 354 } 355 356 static void netdev_name_node_alt_free(struct rcu_head *head) 357 { 358 struct netdev_name_node *name_node = 359 container_of(head, struct netdev_name_node, rcu); 360 361 kfree(name_node->name); 362 netdev_name_node_free(name_node); 363 } 364 365 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node) 366 { 367 netdev_name_node_del(name_node); 368 list_del(&name_node->list); 369 call_rcu(&name_node->rcu, netdev_name_node_alt_free); 370 } 371 372 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name) 373 { 374 struct netdev_name_node *name_node; 375 struct net *net = dev_net(dev); 376 377 name_node = netdev_name_node_lookup(net, name); 378 if (!name_node) 379 return -ENOENT; 380 /* lookup might have found our primary name or a name belonging 381 * to another device. 382 */ 383 if (name_node == dev->name_node || name_node->dev != dev) 384 return -EINVAL; 385 386 __netdev_name_node_alt_destroy(name_node); 387 return 0; 388 } 389 390 static void netdev_name_node_alt_flush(struct net_device *dev) 391 { 392 struct netdev_name_node *name_node, *tmp; 393 394 list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list) { 395 list_del(&name_node->list); 396 netdev_name_node_alt_free(&name_node->rcu); 397 } 398 } 399 400 /* Device list insertion */ 401 static void list_netdevice(struct net_device *dev) 402 { 403 struct netdev_name_node *name_node; 404 struct net *net = dev_net(dev); 405 406 ASSERT_RTNL(); 407 408 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 409 netdev_name_node_add(net, dev->name_node); 410 hlist_add_head_rcu(&dev->index_hlist, 411 dev_index_hash(net, dev->ifindex)); 412 413 netdev_for_each_altname(dev, name_node) 414 netdev_name_node_add(net, name_node); 415 416 /* We reserved the ifindex, this can't fail */ 417 WARN_ON(xa_store(&net->dev_by_index, dev->ifindex, dev, GFP_KERNEL)); 418 419 dev_base_seq_inc(net); 420 } 421 422 /* Device list removal 423 * caller must respect a RCU grace period before freeing/reusing dev 424 */ 425 static void unlist_netdevice(struct net_device *dev) 426 { 427 struct netdev_name_node *name_node; 428 struct net *net = dev_net(dev); 429 430 ASSERT_RTNL(); 431 432 xa_erase(&net->dev_by_index, dev->ifindex); 433 434 netdev_for_each_altname(dev, name_node) 435 netdev_name_node_del(name_node); 436 437 /* Unlink dev from the device chain */ 438 list_del_rcu(&dev->dev_list); 439 netdev_name_node_del(dev->name_node); 440 hlist_del_rcu(&dev->index_hlist); 441 442 dev_base_seq_inc(dev_net(dev)); 443 } 444 445 /* 446 * Our notifier list 447 */ 448 449 static RAW_NOTIFIER_HEAD(netdev_chain); 450 451 /* 452 * Device drivers call our routines to queue packets here. We empty the 453 * queue in the local softnet handler. 454 */ 455 456 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data) = { 457 .process_queue_bh_lock = INIT_LOCAL_LOCK(process_queue_bh_lock), 458 }; 459 EXPORT_PER_CPU_SYMBOL(softnet_data); 460 461 /* Page_pool has a lockless array/stack to alloc/recycle pages. 462 * PP consumers must pay attention to run APIs in the appropriate context 463 * (e.g. NAPI context). 464 */ 465 DEFINE_PER_CPU(struct page_pool_bh, system_page_pool) = { 466 .bh_lock = INIT_LOCAL_LOCK(bh_lock), 467 }; 468 469 #ifdef CONFIG_LOCKDEP 470 /* 471 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 472 * according to dev->type 473 */ 474 static const unsigned short netdev_lock_type[] = { 475 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 476 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 477 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 478 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 479 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 480 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 481 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 482 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 483 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 484 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 485 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 486 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 487 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM, 488 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE, 489 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE}; 490 491 static const char *const netdev_lock_name[] = { 492 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 493 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 494 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 495 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 496 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 497 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 498 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 499 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 500 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 501 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 502 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 503 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 504 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM", 505 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE", 506 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"}; 507 508 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 509 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 510 511 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 512 { 513 int i; 514 515 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 516 if (netdev_lock_type[i] == dev_type) 517 return i; 518 /* the last key is used by default */ 519 return ARRAY_SIZE(netdev_lock_type) - 1; 520 } 521 522 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 523 unsigned short dev_type) 524 { 525 int i; 526 527 i = netdev_lock_pos(dev_type); 528 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 529 netdev_lock_name[i]); 530 } 531 532 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 533 { 534 int i; 535 536 i = netdev_lock_pos(dev->type); 537 lockdep_set_class_and_name(&dev->addr_list_lock, 538 &netdev_addr_lock_key[i], 539 netdev_lock_name[i]); 540 } 541 #else 542 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 543 unsigned short dev_type) 544 { 545 } 546 547 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 548 { 549 } 550 #endif 551 552 /******************************************************************************* 553 * 554 * Protocol management and registration routines 555 * 556 *******************************************************************************/ 557 558 559 /* 560 * Add a protocol ID to the list. Now that the input handler is 561 * smarter we can dispense with all the messy stuff that used to be 562 * here. 563 * 564 * BEWARE!!! Protocol handlers, mangling input packets, 565 * MUST BE last in hash buckets and checking protocol handlers 566 * MUST start from promiscuous ptype_all chain in net_bh. 567 * It is true now, do not change it. 568 * Explanation follows: if protocol handler, mangling packet, will 569 * be the first on list, it is not able to sense, that packet 570 * is cloned and should be copied-on-write, so that it will 571 * change it and subsequent readers will get broken packet. 572 * --ANK (980803) 573 */ 574 575 static inline struct list_head *ptype_head(const struct packet_type *pt) 576 { 577 if (pt->type == htons(ETH_P_ALL)) { 578 if (!pt->af_packet_net && !pt->dev) 579 return NULL; 580 581 return pt->dev ? &pt->dev->ptype_all : 582 &pt->af_packet_net->ptype_all; 583 } 584 585 if (pt->dev) 586 return &pt->dev->ptype_specific; 587 588 return pt->af_packet_net ? &pt->af_packet_net->ptype_specific : 589 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 590 } 591 592 /** 593 * dev_add_pack - add packet handler 594 * @pt: packet type declaration 595 * 596 * Add a protocol handler to the networking stack. The passed &packet_type 597 * is linked into kernel lists and may not be freed until it has been 598 * removed from the kernel lists. 599 * 600 * This call does not sleep therefore it can not 601 * guarantee all CPU's that are in middle of receiving packets 602 * will see the new packet type (until the next received packet). 603 */ 604 605 void dev_add_pack(struct packet_type *pt) 606 { 607 struct list_head *head = ptype_head(pt); 608 609 if (WARN_ON_ONCE(!head)) 610 return; 611 612 spin_lock(&ptype_lock); 613 list_add_rcu(&pt->list, head); 614 spin_unlock(&ptype_lock); 615 } 616 EXPORT_SYMBOL(dev_add_pack); 617 618 /** 619 * __dev_remove_pack - remove packet handler 620 * @pt: packet type declaration 621 * 622 * Remove a protocol handler that was previously added to the kernel 623 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 624 * from the kernel lists and can be freed or reused once this function 625 * returns. 626 * 627 * The packet type might still be in use by receivers 628 * and must not be freed until after all the CPU's have gone 629 * through a quiescent state. 630 */ 631 void __dev_remove_pack(struct packet_type *pt) 632 { 633 struct list_head *head = ptype_head(pt); 634 struct packet_type *pt1; 635 636 if (!head) 637 return; 638 639 spin_lock(&ptype_lock); 640 641 list_for_each_entry(pt1, head, list) { 642 if (pt == pt1) { 643 list_del_rcu(&pt->list); 644 goto out; 645 } 646 } 647 648 pr_warn("dev_remove_pack: %p not found\n", pt); 649 out: 650 spin_unlock(&ptype_lock); 651 } 652 EXPORT_SYMBOL(__dev_remove_pack); 653 654 /** 655 * dev_remove_pack - remove packet handler 656 * @pt: packet type declaration 657 * 658 * Remove a protocol handler that was previously added to the kernel 659 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 660 * from the kernel lists and can be freed or reused once this function 661 * returns. 662 * 663 * This call sleeps to guarantee that no CPU is looking at the packet 664 * type after return. 665 */ 666 void dev_remove_pack(struct packet_type *pt) 667 { 668 __dev_remove_pack(pt); 669 670 synchronize_net(); 671 } 672 EXPORT_SYMBOL(dev_remove_pack); 673 674 675 /******************************************************************************* 676 * 677 * Device Interface Subroutines 678 * 679 *******************************************************************************/ 680 681 /** 682 * dev_get_iflink - get 'iflink' value of a interface 683 * @dev: targeted interface 684 * 685 * Indicates the ifindex the interface is linked to. 686 * Physical interfaces have the same 'ifindex' and 'iflink' values. 687 */ 688 689 int dev_get_iflink(const struct net_device *dev) 690 { 691 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink) 692 return dev->netdev_ops->ndo_get_iflink(dev); 693 694 return READ_ONCE(dev->ifindex); 695 } 696 EXPORT_SYMBOL(dev_get_iflink); 697 698 /** 699 * dev_fill_metadata_dst - Retrieve tunnel egress information. 700 * @dev: targeted interface 701 * @skb: The packet. 702 * 703 * For better visibility of tunnel traffic OVS needs to retrieve 704 * egress tunnel information for a packet. Following API allows 705 * user to get this info. 706 */ 707 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb) 708 { 709 struct ip_tunnel_info *info; 710 711 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst) 712 return -EINVAL; 713 714 info = skb_tunnel_info_unclone(skb); 715 if (!info) 716 return -ENOMEM; 717 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX))) 718 return -EINVAL; 719 720 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb); 721 } 722 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst); 723 724 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack) 725 { 726 int k = stack->num_paths++; 727 728 if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX)) 729 return NULL; 730 731 return &stack->path[k]; 732 } 733 734 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr, 735 struct net_device_path_stack *stack) 736 { 737 const struct net_device *last_dev; 738 struct net_device_path_ctx ctx = { 739 .dev = dev, 740 }; 741 struct net_device_path *path; 742 int ret = 0; 743 744 memcpy(ctx.daddr, daddr, sizeof(ctx.daddr)); 745 stack->num_paths = 0; 746 while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) { 747 last_dev = ctx.dev; 748 path = dev_fwd_path(stack); 749 if (!path) 750 return -1; 751 752 memset(path, 0, sizeof(struct net_device_path)); 753 ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path); 754 if (ret < 0) 755 return -1; 756 757 if (WARN_ON_ONCE(last_dev == ctx.dev)) 758 return -1; 759 } 760 761 if (!ctx.dev) 762 return ret; 763 764 path = dev_fwd_path(stack); 765 if (!path) 766 return -1; 767 path->type = DEV_PATH_ETHERNET; 768 path->dev = ctx.dev; 769 770 return ret; 771 } 772 EXPORT_SYMBOL_GPL(dev_fill_forward_path); 773 774 /* must be called under rcu_read_lock(), as we dont take a reference */ 775 static struct napi_struct *napi_by_id(unsigned int napi_id) 776 { 777 unsigned int hash = napi_id % HASH_SIZE(napi_hash); 778 struct napi_struct *napi; 779 780 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node) 781 if (napi->napi_id == napi_id) 782 return napi; 783 784 return NULL; 785 } 786 787 /* must be called under rcu_read_lock(), as we dont take a reference */ 788 static struct napi_struct * 789 netdev_napi_by_id(struct net *net, unsigned int napi_id) 790 { 791 struct napi_struct *napi; 792 793 napi = napi_by_id(napi_id); 794 if (!napi) 795 return NULL; 796 797 if (WARN_ON_ONCE(!napi->dev)) 798 return NULL; 799 if (!net_eq(net, dev_net(napi->dev))) 800 return NULL; 801 802 return napi; 803 } 804 805 /** 806 * netdev_napi_by_id_lock() - find a device by NAPI ID and lock it 807 * @net: the applicable net namespace 808 * @napi_id: ID of a NAPI of a target device 809 * 810 * Find a NAPI instance with @napi_id. Lock its device. 811 * The device must be in %NETREG_REGISTERED state for lookup to succeed. 812 * netdev_unlock() must be called to release it. 813 * 814 * Return: pointer to NAPI, its device with lock held, NULL if not found. 815 */ 816 struct napi_struct * 817 netdev_napi_by_id_lock(struct net *net, unsigned int napi_id) 818 { 819 struct napi_struct *napi; 820 struct net_device *dev; 821 822 rcu_read_lock(); 823 napi = netdev_napi_by_id(net, napi_id); 824 if (!napi || READ_ONCE(napi->dev->reg_state) != NETREG_REGISTERED) { 825 rcu_read_unlock(); 826 return NULL; 827 } 828 829 dev = napi->dev; 830 dev_hold(dev); 831 rcu_read_unlock(); 832 833 dev = __netdev_put_lock(dev, net); 834 if (!dev) 835 return NULL; 836 837 rcu_read_lock(); 838 napi = netdev_napi_by_id(net, napi_id); 839 if (napi && napi->dev != dev) 840 napi = NULL; 841 rcu_read_unlock(); 842 843 if (!napi) 844 netdev_unlock(dev); 845 return napi; 846 } 847 848 /** 849 * __dev_get_by_name - find a device by its name 850 * @net: the applicable net namespace 851 * @name: name to find 852 * 853 * Find an interface by name. Must be called under RTNL semaphore. 854 * If the name is found a pointer to the device is returned. 855 * If the name is not found then %NULL is returned. The 856 * reference counters are not incremented so the caller must be 857 * careful with locks. 858 */ 859 860 struct net_device *__dev_get_by_name(struct net *net, const char *name) 861 { 862 struct netdev_name_node *node_name; 863 864 node_name = netdev_name_node_lookup(net, name); 865 return node_name ? node_name->dev : NULL; 866 } 867 EXPORT_SYMBOL(__dev_get_by_name); 868 869 /** 870 * dev_get_by_name_rcu - find a device by its name 871 * @net: the applicable net namespace 872 * @name: name to find 873 * 874 * Find an interface by name. 875 * If the name is found a pointer to the device is returned. 876 * If the name is not found then %NULL is returned. 877 * The reference counters are not incremented so the caller must be 878 * careful with locks. The caller must hold RCU lock. 879 */ 880 881 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 882 { 883 struct netdev_name_node *node_name; 884 885 node_name = netdev_name_node_lookup_rcu(net, name); 886 return node_name ? node_name->dev : NULL; 887 } 888 EXPORT_SYMBOL(dev_get_by_name_rcu); 889 890 /* Deprecated for new users, call netdev_get_by_name() instead */ 891 struct net_device *dev_get_by_name(struct net *net, const char *name) 892 { 893 struct net_device *dev; 894 895 rcu_read_lock(); 896 dev = dev_get_by_name_rcu(net, name); 897 dev_hold(dev); 898 rcu_read_unlock(); 899 return dev; 900 } 901 EXPORT_SYMBOL(dev_get_by_name); 902 903 /** 904 * netdev_get_by_name() - find a device by its name 905 * @net: the applicable net namespace 906 * @name: name to find 907 * @tracker: tracking object for the acquired reference 908 * @gfp: allocation flags for the tracker 909 * 910 * Find an interface by name. This can be called from any 911 * context and does its own locking. The returned handle has 912 * the usage count incremented and the caller must use netdev_put() to 913 * release it when it is no longer needed. %NULL is returned if no 914 * matching device is found. 915 */ 916 struct net_device *netdev_get_by_name(struct net *net, const char *name, 917 netdevice_tracker *tracker, gfp_t gfp) 918 { 919 struct net_device *dev; 920 921 dev = dev_get_by_name(net, name); 922 if (dev) 923 netdev_tracker_alloc(dev, tracker, gfp); 924 return dev; 925 } 926 EXPORT_SYMBOL(netdev_get_by_name); 927 928 /** 929 * __dev_get_by_index - find a device by its ifindex 930 * @net: the applicable net namespace 931 * @ifindex: index of device 932 * 933 * Search for an interface by index. Returns %NULL if the device 934 * is not found or a pointer to the device. The device has not 935 * had its reference counter increased so the caller must be careful 936 * about locking. The caller must hold the RTNL semaphore. 937 */ 938 939 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 940 { 941 struct net_device *dev; 942 struct hlist_head *head = dev_index_hash(net, ifindex); 943 944 hlist_for_each_entry(dev, head, index_hlist) 945 if (dev->ifindex == ifindex) 946 return dev; 947 948 return NULL; 949 } 950 EXPORT_SYMBOL(__dev_get_by_index); 951 952 /** 953 * dev_get_by_index_rcu - find a device by its ifindex 954 * @net: the applicable net namespace 955 * @ifindex: index of device 956 * 957 * Search for an interface by index. Returns %NULL if the device 958 * is not found or a pointer to the device. The device has not 959 * had its reference counter increased so the caller must be careful 960 * about locking. The caller must hold RCU lock. 961 */ 962 963 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 964 { 965 struct net_device *dev; 966 struct hlist_head *head = dev_index_hash(net, ifindex); 967 968 hlist_for_each_entry_rcu(dev, head, index_hlist) 969 if (dev->ifindex == ifindex) 970 return dev; 971 972 return NULL; 973 } 974 EXPORT_SYMBOL(dev_get_by_index_rcu); 975 976 /* Deprecated for new users, call netdev_get_by_index() instead */ 977 struct net_device *dev_get_by_index(struct net *net, int ifindex) 978 { 979 struct net_device *dev; 980 981 rcu_read_lock(); 982 dev = dev_get_by_index_rcu(net, ifindex); 983 dev_hold(dev); 984 rcu_read_unlock(); 985 return dev; 986 } 987 EXPORT_SYMBOL(dev_get_by_index); 988 989 /** 990 * netdev_get_by_index() - find a device by its ifindex 991 * @net: the applicable net namespace 992 * @ifindex: index of device 993 * @tracker: tracking object for the acquired reference 994 * @gfp: allocation flags for the tracker 995 * 996 * Search for an interface by index. Returns NULL if the device 997 * is not found or a pointer to the device. The device returned has 998 * had a reference added and the pointer is safe until the user calls 999 * netdev_put() to indicate they have finished with it. 1000 */ 1001 struct net_device *netdev_get_by_index(struct net *net, int ifindex, 1002 netdevice_tracker *tracker, gfp_t gfp) 1003 { 1004 struct net_device *dev; 1005 1006 dev = dev_get_by_index(net, ifindex); 1007 if (dev) 1008 netdev_tracker_alloc(dev, tracker, gfp); 1009 return dev; 1010 } 1011 EXPORT_SYMBOL(netdev_get_by_index); 1012 1013 /** 1014 * dev_get_by_napi_id - find a device by napi_id 1015 * @napi_id: ID of the NAPI struct 1016 * 1017 * Search for an interface by NAPI ID. Returns %NULL if the device 1018 * is not found or a pointer to the device. The device has not had 1019 * its reference counter increased so the caller must be careful 1020 * about locking. The caller must hold RCU lock. 1021 */ 1022 struct net_device *dev_get_by_napi_id(unsigned int napi_id) 1023 { 1024 struct napi_struct *napi; 1025 1026 WARN_ON_ONCE(!rcu_read_lock_held()); 1027 1028 if (!napi_id_valid(napi_id)) 1029 return NULL; 1030 1031 napi = napi_by_id(napi_id); 1032 1033 return napi ? napi->dev : NULL; 1034 } 1035 1036 /* Release the held reference on the net_device, and if the net_device 1037 * is still registered try to lock the instance lock. If device is being 1038 * unregistered NULL will be returned (but the reference has been released, 1039 * either way!) 1040 * 1041 * This helper is intended for locking net_device after it has been looked up 1042 * using a lockless lookup helper. Lock prevents the instance from going away. 1043 */ 1044 struct net_device *__netdev_put_lock(struct net_device *dev, struct net *net) 1045 { 1046 netdev_lock(dev); 1047 if (dev->reg_state > NETREG_REGISTERED || 1048 dev->moving_ns || !net_eq(dev_net(dev), net)) { 1049 netdev_unlock(dev); 1050 dev_put(dev); 1051 return NULL; 1052 } 1053 dev_put(dev); 1054 return dev; 1055 } 1056 1057 static struct net_device * 1058 __netdev_put_lock_ops_compat(struct net_device *dev, struct net *net) 1059 { 1060 netdev_lock_ops_compat(dev); 1061 if (dev->reg_state > NETREG_REGISTERED || 1062 dev->moving_ns || !net_eq(dev_net(dev), net)) { 1063 netdev_unlock_ops_compat(dev); 1064 dev_put(dev); 1065 return NULL; 1066 } 1067 dev_put(dev); 1068 return dev; 1069 } 1070 1071 /** 1072 * netdev_get_by_index_lock() - find a device by its ifindex 1073 * @net: the applicable net namespace 1074 * @ifindex: index of device 1075 * 1076 * Search for an interface by index. If a valid device 1077 * with @ifindex is found it will be returned with netdev->lock held. 1078 * netdev_unlock() must be called to release it. 1079 * 1080 * Return: pointer to a device with lock held, NULL if not found. 1081 */ 1082 struct net_device *netdev_get_by_index_lock(struct net *net, int ifindex) 1083 { 1084 struct net_device *dev; 1085 1086 dev = dev_get_by_index(net, ifindex); 1087 if (!dev) 1088 return NULL; 1089 1090 return __netdev_put_lock(dev, net); 1091 } 1092 1093 struct net_device * 1094 netdev_get_by_index_lock_ops_compat(struct net *net, int ifindex) 1095 { 1096 struct net_device *dev; 1097 1098 dev = dev_get_by_index(net, ifindex); 1099 if (!dev) 1100 return NULL; 1101 1102 return __netdev_put_lock_ops_compat(dev, net); 1103 } 1104 1105 struct net_device * 1106 netdev_xa_find_lock(struct net *net, struct net_device *dev, 1107 unsigned long *index) 1108 { 1109 if (dev) 1110 netdev_unlock(dev); 1111 1112 do { 1113 rcu_read_lock(); 1114 dev = xa_find(&net->dev_by_index, index, ULONG_MAX, XA_PRESENT); 1115 if (!dev) { 1116 rcu_read_unlock(); 1117 return NULL; 1118 } 1119 dev_hold(dev); 1120 rcu_read_unlock(); 1121 1122 dev = __netdev_put_lock(dev, net); 1123 if (dev) 1124 return dev; 1125 1126 (*index)++; 1127 } while (true); 1128 } 1129 1130 struct net_device * 1131 netdev_xa_find_lock_ops_compat(struct net *net, struct net_device *dev, 1132 unsigned long *index) 1133 { 1134 if (dev) 1135 netdev_unlock_ops_compat(dev); 1136 1137 do { 1138 rcu_read_lock(); 1139 dev = xa_find(&net->dev_by_index, index, ULONG_MAX, XA_PRESENT); 1140 if (!dev) { 1141 rcu_read_unlock(); 1142 return NULL; 1143 } 1144 dev_hold(dev); 1145 rcu_read_unlock(); 1146 1147 dev = __netdev_put_lock_ops_compat(dev, net); 1148 if (dev) 1149 return dev; 1150 1151 (*index)++; 1152 } while (true); 1153 } 1154 1155 static DEFINE_SEQLOCK(netdev_rename_lock); 1156 1157 void netdev_copy_name(struct net_device *dev, char *name) 1158 { 1159 unsigned int seq; 1160 1161 do { 1162 seq = read_seqbegin(&netdev_rename_lock); 1163 strscpy(name, dev->name, IFNAMSIZ); 1164 } while (read_seqretry(&netdev_rename_lock, seq)); 1165 } 1166 1167 /** 1168 * netdev_get_name - get a netdevice name, knowing its ifindex. 1169 * @net: network namespace 1170 * @name: a pointer to the buffer where the name will be stored. 1171 * @ifindex: the ifindex of the interface to get the name from. 1172 */ 1173 int netdev_get_name(struct net *net, char *name, int ifindex) 1174 { 1175 struct net_device *dev; 1176 int ret; 1177 1178 rcu_read_lock(); 1179 1180 dev = dev_get_by_index_rcu(net, ifindex); 1181 if (!dev) { 1182 ret = -ENODEV; 1183 goto out; 1184 } 1185 1186 netdev_copy_name(dev, name); 1187 1188 ret = 0; 1189 out: 1190 rcu_read_unlock(); 1191 return ret; 1192 } 1193 1194 static bool dev_addr_cmp(struct net_device *dev, unsigned short type, 1195 const char *ha) 1196 { 1197 return dev->type == type && !memcmp(dev->dev_addr, ha, dev->addr_len); 1198 } 1199 1200 /** 1201 * dev_getbyhwaddr_rcu - find a device by its hardware address 1202 * @net: the applicable net namespace 1203 * @type: media type of device 1204 * @ha: hardware address 1205 * 1206 * Search for an interface by MAC address. Returns NULL if the device 1207 * is not found or a pointer to the device. 1208 * The caller must hold RCU. 1209 * The returned device has not had its ref count increased 1210 * and the caller must therefore be careful about locking 1211 * 1212 */ 1213 1214 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 1215 const char *ha) 1216 { 1217 struct net_device *dev; 1218 1219 for_each_netdev_rcu(net, dev) 1220 if (dev_addr_cmp(dev, type, ha)) 1221 return dev; 1222 1223 return NULL; 1224 } 1225 EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 1226 1227 /** 1228 * dev_getbyhwaddr() - find a device by its hardware address 1229 * @net: the applicable net namespace 1230 * @type: media type of device 1231 * @ha: hardware address 1232 * 1233 * Similar to dev_getbyhwaddr_rcu(), but the owner needs to hold 1234 * rtnl_lock. 1235 * 1236 * Context: rtnl_lock() must be held. 1237 * Return: pointer to the net_device, or NULL if not found 1238 */ 1239 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, 1240 const char *ha) 1241 { 1242 struct net_device *dev; 1243 1244 ASSERT_RTNL(); 1245 for_each_netdev(net, dev) 1246 if (dev_addr_cmp(dev, type, ha)) 1247 return dev; 1248 1249 return NULL; 1250 } 1251 EXPORT_SYMBOL(dev_getbyhwaddr); 1252 1253 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 1254 { 1255 struct net_device *dev, *ret = NULL; 1256 1257 rcu_read_lock(); 1258 for_each_netdev_rcu(net, dev) 1259 if (dev->type == type) { 1260 dev_hold(dev); 1261 ret = dev; 1262 break; 1263 } 1264 rcu_read_unlock(); 1265 return ret; 1266 } 1267 EXPORT_SYMBOL(dev_getfirstbyhwtype); 1268 1269 /** 1270 * netdev_get_by_flags_rcu - find any device with given flags 1271 * @net: the applicable net namespace 1272 * @tracker: tracking object for the acquired reference 1273 * @if_flags: IFF_* values 1274 * @mask: bitmask of bits in if_flags to check 1275 * 1276 * Search for any interface with the given flags. 1277 * 1278 * Context: rcu_read_lock() must be held. 1279 * Returns: NULL if a device is not found or a pointer to the device. 1280 */ 1281 struct net_device *netdev_get_by_flags_rcu(struct net *net, netdevice_tracker *tracker, 1282 unsigned short if_flags, unsigned short mask) 1283 { 1284 struct net_device *dev; 1285 1286 for_each_netdev_rcu(net, dev) { 1287 if (((READ_ONCE(dev->flags) ^ if_flags) & mask) == 0) { 1288 netdev_hold(dev, tracker, GFP_ATOMIC); 1289 return dev; 1290 } 1291 } 1292 1293 return NULL; 1294 } 1295 EXPORT_IPV6_MOD(netdev_get_by_flags_rcu); 1296 1297 /** 1298 * dev_valid_name - check if name is okay for network device 1299 * @name: name string 1300 * 1301 * Network device names need to be valid file names to 1302 * allow sysfs to work. We also disallow any kind of 1303 * whitespace. 1304 */ 1305 bool dev_valid_name(const char *name) 1306 { 1307 if (*name == '\0') 1308 return false; 1309 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ) 1310 return false; 1311 if (!strcmp(name, ".") || !strcmp(name, "..")) 1312 return false; 1313 1314 while (*name) { 1315 if (*name == '/' || *name == ':' || isspace(*name)) 1316 return false; 1317 name++; 1318 } 1319 return true; 1320 } 1321 EXPORT_SYMBOL(dev_valid_name); 1322 1323 /** 1324 * __dev_alloc_name - allocate a name for a device 1325 * @net: network namespace to allocate the device name in 1326 * @name: name format string 1327 * @res: result name string 1328 * 1329 * Passed a format string - eg "lt%d" it will try and find a suitable 1330 * id. It scans list of devices to build up a free map, then chooses 1331 * the first empty slot. The caller must hold the dev_base or rtnl lock 1332 * while allocating the name and adding the device in order to avoid 1333 * duplicates. 1334 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1335 * Returns the number of the unit assigned or a negative errno code. 1336 */ 1337 1338 static int __dev_alloc_name(struct net *net, const char *name, char *res) 1339 { 1340 int i = 0; 1341 const char *p; 1342 const int max_netdevices = 8*PAGE_SIZE; 1343 unsigned long *inuse; 1344 struct net_device *d; 1345 char buf[IFNAMSIZ]; 1346 1347 /* Verify the string as this thing may have come from the user. 1348 * There must be one "%d" and no other "%" characters. 1349 */ 1350 p = strchr(name, '%'); 1351 if (!p || p[1] != 'd' || strchr(p + 2, '%')) 1352 return -EINVAL; 1353 1354 /* Use one page as a bit array of possible slots */ 1355 inuse = bitmap_zalloc(max_netdevices, GFP_ATOMIC); 1356 if (!inuse) 1357 return -ENOMEM; 1358 1359 for_each_netdev(net, d) { 1360 struct netdev_name_node *name_node; 1361 1362 netdev_for_each_altname(d, name_node) { 1363 if (!sscanf(name_node->name, name, &i)) 1364 continue; 1365 if (i < 0 || i >= max_netdevices) 1366 continue; 1367 1368 /* avoid cases where sscanf is not exact inverse of printf */ 1369 snprintf(buf, IFNAMSIZ, name, i); 1370 if (!strncmp(buf, name_node->name, IFNAMSIZ)) 1371 __set_bit(i, inuse); 1372 } 1373 if (!sscanf(d->name, name, &i)) 1374 continue; 1375 if (i < 0 || i >= max_netdevices) 1376 continue; 1377 1378 /* avoid cases where sscanf is not exact inverse of printf */ 1379 snprintf(buf, IFNAMSIZ, name, i); 1380 if (!strncmp(buf, d->name, IFNAMSIZ)) 1381 __set_bit(i, inuse); 1382 } 1383 1384 i = find_first_zero_bit(inuse, max_netdevices); 1385 bitmap_free(inuse); 1386 if (i == max_netdevices) 1387 return -ENFILE; 1388 1389 /* 'res' and 'name' could overlap, use 'buf' as an intermediate buffer */ 1390 strscpy(buf, name, IFNAMSIZ); 1391 snprintf(res, IFNAMSIZ, buf, i); 1392 return i; 1393 } 1394 1395 /* Returns negative errno or allocated unit id (see __dev_alloc_name()) */ 1396 static int dev_prep_valid_name(struct net *net, struct net_device *dev, 1397 const char *want_name, char *out_name, 1398 int dup_errno) 1399 { 1400 if (!dev_valid_name(want_name)) 1401 return -EINVAL; 1402 1403 if (strchr(want_name, '%')) 1404 return __dev_alloc_name(net, want_name, out_name); 1405 1406 if (netdev_name_in_use(net, want_name)) 1407 return -dup_errno; 1408 if (out_name != want_name) 1409 strscpy(out_name, want_name, IFNAMSIZ); 1410 return 0; 1411 } 1412 1413 /** 1414 * dev_alloc_name - allocate a name for a device 1415 * @dev: device 1416 * @name: name format string 1417 * 1418 * Passed a format string - eg "lt%d" it will try and find a suitable 1419 * id. It scans list of devices to build up a free map, then chooses 1420 * the first empty slot. The caller must hold the dev_base or rtnl lock 1421 * while allocating the name and adding the device in order to avoid 1422 * duplicates. 1423 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1424 * Returns the number of the unit assigned or a negative errno code. 1425 */ 1426 1427 int dev_alloc_name(struct net_device *dev, const char *name) 1428 { 1429 return dev_prep_valid_name(dev_net(dev), dev, name, dev->name, ENFILE); 1430 } 1431 EXPORT_SYMBOL(dev_alloc_name); 1432 1433 static int dev_get_valid_name(struct net *net, struct net_device *dev, 1434 const char *name) 1435 { 1436 int ret; 1437 1438 ret = dev_prep_valid_name(net, dev, name, dev->name, EEXIST); 1439 return ret < 0 ? ret : 0; 1440 } 1441 1442 int netif_change_name(struct net_device *dev, const char *newname) 1443 { 1444 struct net *net = dev_net(dev); 1445 unsigned char old_assign_type; 1446 char oldname[IFNAMSIZ]; 1447 int err = 0; 1448 int ret; 1449 1450 ASSERT_RTNL_NET(net); 1451 1452 if (!strncmp(newname, dev->name, IFNAMSIZ)) 1453 return 0; 1454 1455 memcpy(oldname, dev->name, IFNAMSIZ); 1456 1457 write_seqlock_bh(&netdev_rename_lock); 1458 err = dev_get_valid_name(net, dev, newname); 1459 write_sequnlock_bh(&netdev_rename_lock); 1460 1461 if (err < 0) 1462 return err; 1463 1464 if (oldname[0] && !strchr(oldname, '%')) 1465 netdev_info(dev, "renamed from %s%s\n", oldname, 1466 dev->flags & IFF_UP ? " (while UP)" : ""); 1467 1468 old_assign_type = dev->name_assign_type; 1469 WRITE_ONCE(dev->name_assign_type, NET_NAME_RENAMED); 1470 1471 rollback: 1472 ret = device_rename(&dev->dev, dev->name); 1473 if (ret) { 1474 write_seqlock_bh(&netdev_rename_lock); 1475 memcpy(dev->name, oldname, IFNAMSIZ); 1476 write_sequnlock_bh(&netdev_rename_lock); 1477 WRITE_ONCE(dev->name_assign_type, old_assign_type); 1478 return ret; 1479 } 1480 1481 netdev_adjacent_rename_links(dev, oldname); 1482 1483 netdev_name_node_del(dev->name_node); 1484 1485 synchronize_net(); 1486 1487 netdev_name_node_add(net, dev->name_node); 1488 1489 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1490 ret = notifier_to_errno(ret); 1491 1492 if (ret) { 1493 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1494 if (err >= 0) { 1495 err = ret; 1496 write_seqlock_bh(&netdev_rename_lock); 1497 memcpy(dev->name, oldname, IFNAMSIZ); 1498 write_sequnlock_bh(&netdev_rename_lock); 1499 memcpy(oldname, newname, IFNAMSIZ); 1500 WRITE_ONCE(dev->name_assign_type, old_assign_type); 1501 old_assign_type = NET_NAME_RENAMED; 1502 goto rollback; 1503 } else { 1504 netdev_err(dev, "name change rollback failed: %d\n", 1505 ret); 1506 } 1507 } 1508 1509 return err; 1510 } 1511 1512 int netif_set_alias(struct net_device *dev, const char *alias, size_t len) 1513 { 1514 struct dev_ifalias *new_alias = NULL; 1515 1516 if (len >= IFALIASZ) 1517 return -EINVAL; 1518 1519 if (len) { 1520 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL); 1521 if (!new_alias) 1522 return -ENOMEM; 1523 1524 memcpy(new_alias->ifalias, alias, len); 1525 new_alias->ifalias[len] = 0; 1526 } 1527 1528 mutex_lock(&ifalias_mutex); 1529 new_alias = rcu_replace_pointer(dev->ifalias, new_alias, 1530 mutex_is_locked(&ifalias_mutex)); 1531 mutex_unlock(&ifalias_mutex); 1532 1533 if (new_alias) 1534 kfree_rcu(new_alias, rcuhead); 1535 1536 return len; 1537 } 1538 1539 /** 1540 * dev_get_alias - get ifalias of a device 1541 * @dev: device 1542 * @name: buffer to store name of ifalias 1543 * @len: size of buffer 1544 * 1545 * get ifalias for a device. Caller must make sure dev cannot go 1546 * away, e.g. rcu read lock or own a reference count to device. 1547 */ 1548 int dev_get_alias(const struct net_device *dev, char *name, size_t len) 1549 { 1550 const struct dev_ifalias *alias; 1551 int ret = 0; 1552 1553 rcu_read_lock(); 1554 alias = rcu_dereference(dev->ifalias); 1555 if (alias) 1556 ret = snprintf(name, len, "%s", alias->ifalias); 1557 rcu_read_unlock(); 1558 1559 return ret; 1560 } 1561 1562 /** 1563 * netdev_features_change - device changes features 1564 * @dev: device to cause notification 1565 * 1566 * Called to indicate a device has changed features. 1567 */ 1568 void netdev_features_change(struct net_device *dev) 1569 { 1570 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1571 } 1572 EXPORT_SYMBOL(netdev_features_change); 1573 1574 void netif_state_change(struct net_device *dev) 1575 { 1576 netdev_ops_assert_locked_or_invisible(dev); 1577 1578 if (dev->flags & IFF_UP) { 1579 struct netdev_notifier_change_info change_info = { 1580 .info.dev = dev, 1581 }; 1582 1583 call_netdevice_notifiers_info(NETDEV_CHANGE, 1584 &change_info.info); 1585 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL, 0, NULL); 1586 } 1587 } 1588 1589 /** 1590 * __netdev_notify_peers - notify network peers about existence of @dev, 1591 * to be called when rtnl lock is already held. 1592 * @dev: network device 1593 * 1594 * Generate traffic such that interested network peers are aware of 1595 * @dev, such as by generating a gratuitous ARP. This may be used when 1596 * a device wants to inform the rest of the network about some sort of 1597 * reconfiguration such as a failover event or virtual machine 1598 * migration. 1599 */ 1600 void __netdev_notify_peers(struct net_device *dev) 1601 { 1602 ASSERT_RTNL(); 1603 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev); 1604 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev); 1605 } 1606 EXPORT_SYMBOL(__netdev_notify_peers); 1607 1608 /** 1609 * netdev_notify_peers - notify network peers about existence of @dev 1610 * @dev: network device 1611 * 1612 * Generate traffic such that interested network peers are aware of 1613 * @dev, such as by generating a gratuitous ARP. This may be used when 1614 * a device wants to inform the rest of the network about some sort of 1615 * reconfiguration such as a failover event or virtual machine 1616 * migration. 1617 */ 1618 void netdev_notify_peers(struct net_device *dev) 1619 { 1620 rtnl_lock(); 1621 __netdev_notify_peers(dev); 1622 rtnl_unlock(); 1623 } 1624 EXPORT_SYMBOL(netdev_notify_peers); 1625 1626 static int napi_threaded_poll(void *data); 1627 1628 static int napi_kthread_create(struct napi_struct *n) 1629 { 1630 int err = 0; 1631 1632 /* Create and wake up the kthread once to put it in 1633 * TASK_INTERRUPTIBLE mode to avoid the blocked task 1634 * warning and work with loadavg. 1635 */ 1636 n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d", 1637 n->dev->name, n->napi_id); 1638 if (IS_ERR(n->thread)) { 1639 err = PTR_ERR(n->thread); 1640 pr_err("kthread_run failed with err %d\n", err); 1641 n->thread = NULL; 1642 } 1643 1644 return err; 1645 } 1646 1647 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack) 1648 { 1649 const struct net_device_ops *ops = dev->netdev_ops; 1650 int ret; 1651 1652 ASSERT_RTNL(); 1653 dev_addr_check(dev); 1654 1655 if (!netif_device_present(dev)) { 1656 /* may be detached because parent is runtime-suspended */ 1657 if (dev->dev.parent) 1658 pm_runtime_resume(dev->dev.parent); 1659 if (!netif_device_present(dev)) 1660 return -ENODEV; 1661 } 1662 1663 /* Block netpoll from trying to do any rx path servicing. 1664 * If we don't do this there is a chance ndo_poll_controller 1665 * or ndo_poll may be running while we open the device 1666 */ 1667 netpoll_poll_disable(dev); 1668 1669 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack); 1670 ret = notifier_to_errno(ret); 1671 if (ret) 1672 return ret; 1673 1674 set_bit(__LINK_STATE_START, &dev->state); 1675 1676 netdev_ops_assert_locked(dev); 1677 1678 if (ops->ndo_validate_addr) 1679 ret = ops->ndo_validate_addr(dev); 1680 1681 if (!ret && ops->ndo_open) 1682 ret = ops->ndo_open(dev); 1683 1684 netpoll_poll_enable(dev); 1685 1686 if (ret) 1687 clear_bit(__LINK_STATE_START, &dev->state); 1688 else { 1689 netif_set_up(dev, true); 1690 dev_set_rx_mode(dev); 1691 dev_activate(dev); 1692 add_device_randomness(dev->dev_addr, dev->addr_len); 1693 } 1694 1695 return ret; 1696 } 1697 1698 int netif_open(struct net_device *dev, struct netlink_ext_ack *extack) 1699 { 1700 int ret; 1701 1702 if (dev->flags & IFF_UP) 1703 return 0; 1704 1705 ret = __dev_open(dev, extack); 1706 if (ret < 0) 1707 return ret; 1708 1709 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL); 1710 call_netdevice_notifiers(NETDEV_UP, dev); 1711 1712 return ret; 1713 } 1714 1715 static void __dev_close_many(struct list_head *head) 1716 { 1717 struct net_device *dev; 1718 1719 ASSERT_RTNL(); 1720 might_sleep(); 1721 1722 list_for_each_entry(dev, head, close_list) { 1723 /* Temporarily disable netpoll until the interface is down */ 1724 netpoll_poll_disable(dev); 1725 1726 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1727 1728 clear_bit(__LINK_STATE_START, &dev->state); 1729 1730 /* Synchronize to scheduled poll. We cannot touch poll list, it 1731 * can be even on different cpu. So just clear netif_running(). 1732 * 1733 * dev->stop() will invoke napi_disable() on all of it's 1734 * napi_struct instances on this device. 1735 */ 1736 smp_mb__after_atomic(); /* Commit netif_running(). */ 1737 } 1738 1739 dev_deactivate_many(head); 1740 1741 list_for_each_entry(dev, head, close_list) { 1742 const struct net_device_ops *ops = dev->netdev_ops; 1743 1744 /* 1745 * Call the device specific close. This cannot fail. 1746 * Only if device is UP 1747 * 1748 * We allow it to be called even after a DETACH hot-plug 1749 * event. 1750 */ 1751 1752 netdev_ops_assert_locked(dev); 1753 1754 if (ops->ndo_stop) 1755 ops->ndo_stop(dev); 1756 1757 netif_set_up(dev, false); 1758 netpoll_poll_enable(dev); 1759 } 1760 } 1761 1762 static void __dev_close(struct net_device *dev) 1763 { 1764 LIST_HEAD(single); 1765 1766 list_add(&dev->close_list, &single); 1767 __dev_close_many(&single); 1768 list_del(&single); 1769 } 1770 1771 void netif_close_many(struct list_head *head, bool unlink) 1772 { 1773 struct net_device *dev, *tmp; 1774 1775 /* Remove the devices that don't need to be closed */ 1776 list_for_each_entry_safe(dev, tmp, head, close_list) 1777 if (!(dev->flags & IFF_UP)) 1778 list_del_init(&dev->close_list); 1779 1780 __dev_close_many(head); 1781 1782 list_for_each_entry_safe(dev, tmp, head, close_list) { 1783 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL); 1784 call_netdevice_notifiers(NETDEV_DOWN, dev); 1785 if (unlink) 1786 list_del_init(&dev->close_list); 1787 } 1788 } 1789 EXPORT_SYMBOL_NS_GPL(netif_close_many, "NETDEV_INTERNAL"); 1790 1791 void netif_close(struct net_device *dev) 1792 { 1793 if (dev->flags & IFF_UP) { 1794 LIST_HEAD(single); 1795 1796 list_add(&dev->close_list, &single); 1797 netif_close_many(&single, true); 1798 list_del(&single); 1799 } 1800 } 1801 EXPORT_SYMBOL(netif_close); 1802 1803 void netif_disable_lro(struct net_device *dev) 1804 { 1805 struct net_device *lower_dev; 1806 struct list_head *iter; 1807 1808 dev->wanted_features &= ~NETIF_F_LRO; 1809 netdev_update_features(dev); 1810 1811 if (unlikely(dev->features & NETIF_F_LRO)) 1812 netdev_WARN(dev, "failed to disable LRO!\n"); 1813 1814 netdev_for_each_lower_dev(dev, lower_dev, iter) { 1815 netdev_lock_ops(lower_dev); 1816 netif_disable_lro(lower_dev); 1817 netdev_unlock_ops(lower_dev); 1818 } 1819 } 1820 EXPORT_IPV6_MOD(netif_disable_lro); 1821 1822 /** 1823 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device 1824 * @dev: device 1825 * 1826 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be 1827 * called under RTNL. This is needed if Generic XDP is installed on 1828 * the device. 1829 */ 1830 static void dev_disable_gro_hw(struct net_device *dev) 1831 { 1832 dev->wanted_features &= ~NETIF_F_GRO_HW; 1833 netdev_update_features(dev); 1834 1835 if (unlikely(dev->features & NETIF_F_GRO_HW)) 1836 netdev_WARN(dev, "failed to disable GRO_HW!\n"); 1837 } 1838 1839 const char *netdev_cmd_to_name(enum netdev_cmd cmd) 1840 { 1841 #define N(val) \ 1842 case NETDEV_##val: \ 1843 return "NETDEV_" __stringify(val); 1844 switch (cmd) { 1845 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER) 1846 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE) 1847 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE) 1848 N(POST_INIT) N(PRE_UNINIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) 1849 N(CHANGEUPPER) N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) 1850 N(BONDING_INFO) N(PRECHANGEUPPER) N(CHANGELOWERSTATE) 1851 N(UDP_TUNNEL_PUSH_INFO) N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN) 1852 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO) 1853 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO) 1854 N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE) 1855 N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA) 1856 N(XDP_FEAT_CHANGE) 1857 } 1858 #undef N 1859 return "UNKNOWN_NETDEV_EVENT"; 1860 } 1861 EXPORT_SYMBOL_GPL(netdev_cmd_to_name); 1862 1863 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val, 1864 struct net_device *dev) 1865 { 1866 struct netdev_notifier_info info = { 1867 .dev = dev, 1868 }; 1869 1870 return nb->notifier_call(nb, val, &info); 1871 } 1872 1873 static int call_netdevice_register_notifiers(struct notifier_block *nb, 1874 struct net_device *dev) 1875 { 1876 int err; 1877 1878 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev); 1879 err = notifier_to_errno(err); 1880 if (err) 1881 return err; 1882 1883 if (!(dev->flags & IFF_UP)) 1884 return 0; 1885 1886 call_netdevice_notifier(nb, NETDEV_UP, dev); 1887 return 0; 1888 } 1889 1890 static void call_netdevice_unregister_notifiers(struct notifier_block *nb, 1891 struct net_device *dev) 1892 { 1893 if (dev->flags & IFF_UP) { 1894 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1895 dev); 1896 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1897 } 1898 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1899 } 1900 1901 static int call_netdevice_register_net_notifiers(struct notifier_block *nb, 1902 struct net *net) 1903 { 1904 struct net_device *dev; 1905 int err; 1906 1907 for_each_netdev(net, dev) { 1908 netdev_lock_ops(dev); 1909 err = call_netdevice_register_notifiers(nb, dev); 1910 netdev_unlock_ops(dev); 1911 if (err) 1912 goto rollback; 1913 } 1914 return 0; 1915 1916 rollback: 1917 for_each_netdev_continue_reverse(net, dev) 1918 call_netdevice_unregister_notifiers(nb, dev); 1919 return err; 1920 } 1921 1922 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb, 1923 struct net *net) 1924 { 1925 struct net_device *dev; 1926 1927 for_each_netdev(net, dev) 1928 call_netdevice_unregister_notifiers(nb, dev); 1929 } 1930 1931 static int dev_boot_phase = 1; 1932 1933 /** 1934 * register_netdevice_notifier - register a network notifier block 1935 * @nb: notifier 1936 * 1937 * Register a notifier to be called when network device events occur. 1938 * The notifier passed is linked into the kernel structures and must 1939 * not be reused until it has been unregistered. A negative errno code 1940 * is returned on a failure. 1941 * 1942 * When registered all registration and up events are replayed 1943 * to the new notifier to allow device to have a race free 1944 * view of the network device list. 1945 */ 1946 1947 int register_netdevice_notifier(struct notifier_block *nb) 1948 { 1949 struct net *net; 1950 int err; 1951 1952 /* Close race with setup_net() and cleanup_net() */ 1953 down_write(&pernet_ops_rwsem); 1954 1955 /* When RTNL is removed, we need protection for netdev_chain. */ 1956 rtnl_lock(); 1957 1958 err = raw_notifier_chain_register(&netdev_chain, nb); 1959 if (err) 1960 goto unlock; 1961 if (dev_boot_phase) 1962 goto unlock; 1963 for_each_net(net) { 1964 __rtnl_net_lock(net); 1965 err = call_netdevice_register_net_notifiers(nb, net); 1966 __rtnl_net_unlock(net); 1967 if (err) 1968 goto rollback; 1969 } 1970 1971 unlock: 1972 rtnl_unlock(); 1973 up_write(&pernet_ops_rwsem); 1974 return err; 1975 1976 rollback: 1977 for_each_net_continue_reverse(net) { 1978 __rtnl_net_lock(net); 1979 call_netdevice_unregister_net_notifiers(nb, net); 1980 __rtnl_net_unlock(net); 1981 } 1982 1983 raw_notifier_chain_unregister(&netdev_chain, nb); 1984 goto unlock; 1985 } 1986 EXPORT_SYMBOL(register_netdevice_notifier); 1987 1988 /** 1989 * unregister_netdevice_notifier - unregister a network notifier block 1990 * @nb: notifier 1991 * 1992 * Unregister a notifier previously registered by 1993 * register_netdevice_notifier(). The notifier is unlinked into the 1994 * kernel structures and may then be reused. A negative errno code 1995 * is returned on a failure. 1996 * 1997 * After unregistering unregister and down device events are synthesized 1998 * for all devices on the device list to the removed notifier to remove 1999 * the need for special case cleanup code. 2000 */ 2001 2002 int unregister_netdevice_notifier(struct notifier_block *nb) 2003 { 2004 struct net *net; 2005 int err; 2006 2007 /* Close race with setup_net() and cleanup_net() */ 2008 down_write(&pernet_ops_rwsem); 2009 rtnl_lock(); 2010 err = raw_notifier_chain_unregister(&netdev_chain, nb); 2011 if (err) 2012 goto unlock; 2013 2014 for_each_net(net) { 2015 __rtnl_net_lock(net); 2016 call_netdevice_unregister_net_notifiers(nb, net); 2017 __rtnl_net_unlock(net); 2018 } 2019 2020 unlock: 2021 rtnl_unlock(); 2022 up_write(&pernet_ops_rwsem); 2023 return err; 2024 } 2025 EXPORT_SYMBOL(unregister_netdevice_notifier); 2026 2027 static int __register_netdevice_notifier_net(struct net *net, 2028 struct notifier_block *nb, 2029 bool ignore_call_fail) 2030 { 2031 int err; 2032 2033 err = raw_notifier_chain_register(&net->netdev_chain, nb); 2034 if (err) 2035 return err; 2036 if (dev_boot_phase) 2037 return 0; 2038 2039 err = call_netdevice_register_net_notifiers(nb, net); 2040 if (err && !ignore_call_fail) 2041 goto chain_unregister; 2042 2043 return 0; 2044 2045 chain_unregister: 2046 raw_notifier_chain_unregister(&net->netdev_chain, nb); 2047 return err; 2048 } 2049 2050 static int __unregister_netdevice_notifier_net(struct net *net, 2051 struct notifier_block *nb) 2052 { 2053 int err; 2054 2055 err = raw_notifier_chain_unregister(&net->netdev_chain, nb); 2056 if (err) 2057 return err; 2058 2059 call_netdevice_unregister_net_notifiers(nb, net); 2060 return 0; 2061 } 2062 2063 /** 2064 * register_netdevice_notifier_net - register a per-netns network notifier block 2065 * @net: network namespace 2066 * @nb: notifier 2067 * 2068 * Register a notifier to be called when network device events occur. 2069 * The notifier passed is linked into the kernel structures and must 2070 * not be reused until it has been unregistered. A negative errno code 2071 * is returned on a failure. 2072 * 2073 * When registered all registration and up events are replayed 2074 * to the new notifier to allow device to have a race free 2075 * view of the network device list. 2076 */ 2077 2078 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb) 2079 { 2080 int err; 2081 2082 rtnl_net_lock(net); 2083 err = __register_netdevice_notifier_net(net, nb, false); 2084 rtnl_net_unlock(net); 2085 2086 return err; 2087 } 2088 EXPORT_SYMBOL(register_netdevice_notifier_net); 2089 2090 /** 2091 * unregister_netdevice_notifier_net - unregister a per-netns 2092 * network notifier block 2093 * @net: network namespace 2094 * @nb: notifier 2095 * 2096 * Unregister a notifier previously registered by 2097 * register_netdevice_notifier_net(). The notifier is unlinked from the 2098 * kernel structures and may then be reused. A negative errno code 2099 * is returned on a failure. 2100 * 2101 * After unregistering unregister and down device events are synthesized 2102 * for all devices on the device list to the removed notifier to remove 2103 * the need for special case cleanup code. 2104 */ 2105 2106 int unregister_netdevice_notifier_net(struct net *net, 2107 struct notifier_block *nb) 2108 { 2109 int err; 2110 2111 rtnl_net_lock(net); 2112 err = __unregister_netdevice_notifier_net(net, nb); 2113 rtnl_net_unlock(net); 2114 2115 return err; 2116 } 2117 EXPORT_SYMBOL(unregister_netdevice_notifier_net); 2118 2119 static void __move_netdevice_notifier_net(struct net *src_net, 2120 struct net *dst_net, 2121 struct notifier_block *nb) 2122 { 2123 __unregister_netdevice_notifier_net(src_net, nb); 2124 __register_netdevice_notifier_net(dst_net, nb, true); 2125 } 2126 2127 static void rtnl_net_dev_lock(struct net_device *dev) 2128 { 2129 bool again; 2130 2131 do { 2132 struct net *net; 2133 2134 again = false; 2135 2136 /* netns might be being dismantled. */ 2137 rcu_read_lock(); 2138 net = dev_net_rcu(dev); 2139 net_passive_inc(net); 2140 rcu_read_unlock(); 2141 2142 rtnl_net_lock(net); 2143 2144 #ifdef CONFIG_NET_NS 2145 /* dev might have been moved to another netns. */ 2146 if (!net_eq(net, rcu_access_pointer(dev->nd_net.net))) { 2147 rtnl_net_unlock(net); 2148 net_passive_dec(net); 2149 again = true; 2150 } 2151 #endif 2152 } while (again); 2153 } 2154 2155 static void rtnl_net_dev_unlock(struct net_device *dev) 2156 { 2157 struct net *net = dev_net(dev); 2158 2159 rtnl_net_unlock(net); 2160 net_passive_dec(net); 2161 } 2162 2163 int register_netdevice_notifier_dev_net(struct net_device *dev, 2164 struct notifier_block *nb, 2165 struct netdev_net_notifier *nn) 2166 { 2167 int err; 2168 2169 rtnl_net_dev_lock(dev); 2170 err = __register_netdevice_notifier_net(dev_net(dev), nb, false); 2171 if (!err) { 2172 nn->nb = nb; 2173 list_add(&nn->list, &dev->net_notifier_list); 2174 } 2175 rtnl_net_dev_unlock(dev); 2176 2177 return err; 2178 } 2179 EXPORT_SYMBOL(register_netdevice_notifier_dev_net); 2180 2181 int unregister_netdevice_notifier_dev_net(struct net_device *dev, 2182 struct notifier_block *nb, 2183 struct netdev_net_notifier *nn) 2184 { 2185 int err; 2186 2187 rtnl_net_dev_lock(dev); 2188 list_del(&nn->list); 2189 err = __unregister_netdevice_notifier_net(dev_net(dev), nb); 2190 rtnl_net_dev_unlock(dev); 2191 2192 return err; 2193 } 2194 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net); 2195 2196 static void move_netdevice_notifiers_dev_net(struct net_device *dev, 2197 struct net *net) 2198 { 2199 struct netdev_net_notifier *nn; 2200 2201 list_for_each_entry(nn, &dev->net_notifier_list, list) 2202 __move_netdevice_notifier_net(dev_net(dev), net, nn->nb); 2203 } 2204 2205 /** 2206 * call_netdevice_notifiers_info - call all network notifier blocks 2207 * @val: value passed unmodified to notifier function 2208 * @info: notifier information data 2209 * 2210 * Call all network notifier blocks. Parameters and return value 2211 * are as for raw_notifier_call_chain(). 2212 */ 2213 2214 int call_netdevice_notifiers_info(unsigned long val, 2215 struct netdev_notifier_info *info) 2216 { 2217 struct net *net = dev_net(info->dev); 2218 int ret; 2219 2220 ASSERT_RTNL(); 2221 2222 /* Run per-netns notifier block chain first, then run the global one. 2223 * Hopefully, one day, the global one is going to be removed after 2224 * all notifier block registrators get converted to be per-netns. 2225 */ 2226 ret = raw_notifier_call_chain(&net->netdev_chain, val, info); 2227 if (ret & NOTIFY_STOP_MASK) 2228 return ret; 2229 return raw_notifier_call_chain(&netdev_chain, val, info); 2230 } 2231 2232 /** 2233 * call_netdevice_notifiers_info_robust - call per-netns notifier blocks 2234 * for and rollback on error 2235 * @val_up: value passed unmodified to notifier function 2236 * @val_down: value passed unmodified to the notifier function when 2237 * recovering from an error on @val_up 2238 * @info: notifier information data 2239 * 2240 * Call all per-netns network notifier blocks, but not notifier blocks on 2241 * the global notifier chain. Parameters and return value are as for 2242 * raw_notifier_call_chain_robust(). 2243 */ 2244 2245 static int 2246 call_netdevice_notifiers_info_robust(unsigned long val_up, 2247 unsigned long val_down, 2248 struct netdev_notifier_info *info) 2249 { 2250 struct net *net = dev_net(info->dev); 2251 2252 ASSERT_RTNL(); 2253 2254 return raw_notifier_call_chain_robust(&net->netdev_chain, 2255 val_up, val_down, info); 2256 } 2257 2258 static int call_netdevice_notifiers_extack(unsigned long val, 2259 struct net_device *dev, 2260 struct netlink_ext_ack *extack) 2261 { 2262 struct netdev_notifier_info info = { 2263 .dev = dev, 2264 .extack = extack, 2265 }; 2266 2267 return call_netdevice_notifiers_info(val, &info); 2268 } 2269 2270 /** 2271 * call_netdevice_notifiers - call all network notifier blocks 2272 * @val: value passed unmodified to notifier function 2273 * @dev: net_device pointer passed unmodified to notifier function 2274 * 2275 * Call all network notifier blocks. Parameters and return value 2276 * are as for raw_notifier_call_chain(). 2277 */ 2278 2279 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 2280 { 2281 return call_netdevice_notifiers_extack(val, dev, NULL); 2282 } 2283 EXPORT_SYMBOL(call_netdevice_notifiers); 2284 2285 /** 2286 * call_netdevice_notifiers_mtu - call all network notifier blocks 2287 * @val: value passed unmodified to notifier function 2288 * @dev: net_device pointer passed unmodified to notifier function 2289 * @arg: additional u32 argument passed to the notifier function 2290 * 2291 * Call all network notifier blocks. Parameters and return value 2292 * are as for raw_notifier_call_chain(). 2293 */ 2294 static int call_netdevice_notifiers_mtu(unsigned long val, 2295 struct net_device *dev, u32 arg) 2296 { 2297 struct netdev_notifier_info_ext info = { 2298 .info.dev = dev, 2299 .ext.mtu = arg, 2300 }; 2301 2302 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0); 2303 2304 return call_netdevice_notifiers_info(val, &info.info); 2305 } 2306 2307 #ifdef CONFIG_NET_INGRESS 2308 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key); 2309 2310 void net_inc_ingress_queue(void) 2311 { 2312 static_branch_inc(&ingress_needed_key); 2313 } 2314 EXPORT_SYMBOL_GPL(net_inc_ingress_queue); 2315 2316 void net_dec_ingress_queue(void) 2317 { 2318 static_branch_dec(&ingress_needed_key); 2319 } 2320 EXPORT_SYMBOL_GPL(net_dec_ingress_queue); 2321 #endif 2322 2323 #ifdef CONFIG_NET_EGRESS 2324 static DEFINE_STATIC_KEY_FALSE(egress_needed_key); 2325 2326 void net_inc_egress_queue(void) 2327 { 2328 static_branch_inc(&egress_needed_key); 2329 } 2330 EXPORT_SYMBOL_GPL(net_inc_egress_queue); 2331 2332 void net_dec_egress_queue(void) 2333 { 2334 static_branch_dec(&egress_needed_key); 2335 } 2336 EXPORT_SYMBOL_GPL(net_dec_egress_queue); 2337 #endif 2338 2339 #ifdef CONFIG_NET_CLS_ACT 2340 DEFINE_STATIC_KEY_FALSE(tcf_sw_enabled_key); 2341 EXPORT_SYMBOL(tcf_sw_enabled_key); 2342 #endif 2343 2344 DEFINE_STATIC_KEY_FALSE(netstamp_needed_key); 2345 EXPORT_SYMBOL(netstamp_needed_key); 2346 #ifdef CONFIG_JUMP_LABEL 2347 static atomic_t netstamp_needed_deferred; 2348 static atomic_t netstamp_wanted; 2349 static void netstamp_clear(struct work_struct *work) 2350 { 2351 int deferred = atomic_xchg(&netstamp_needed_deferred, 0); 2352 int wanted; 2353 2354 wanted = atomic_add_return(deferred, &netstamp_wanted); 2355 if (wanted > 0) 2356 static_branch_enable(&netstamp_needed_key); 2357 else 2358 static_branch_disable(&netstamp_needed_key); 2359 } 2360 static DECLARE_WORK(netstamp_work, netstamp_clear); 2361 #endif 2362 2363 void net_enable_timestamp(void) 2364 { 2365 #ifdef CONFIG_JUMP_LABEL 2366 int wanted = atomic_read(&netstamp_wanted); 2367 2368 while (wanted > 0) { 2369 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted + 1)) 2370 return; 2371 } 2372 atomic_inc(&netstamp_needed_deferred); 2373 schedule_work(&netstamp_work); 2374 #else 2375 static_branch_inc(&netstamp_needed_key); 2376 #endif 2377 } 2378 EXPORT_SYMBOL(net_enable_timestamp); 2379 2380 void net_disable_timestamp(void) 2381 { 2382 #ifdef CONFIG_JUMP_LABEL 2383 int wanted = atomic_read(&netstamp_wanted); 2384 2385 while (wanted > 1) { 2386 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted - 1)) 2387 return; 2388 } 2389 atomic_dec(&netstamp_needed_deferred); 2390 schedule_work(&netstamp_work); 2391 #else 2392 static_branch_dec(&netstamp_needed_key); 2393 #endif 2394 } 2395 EXPORT_SYMBOL(net_disable_timestamp); 2396 2397 static inline void net_timestamp_set(struct sk_buff *skb) 2398 { 2399 skb->tstamp = 0; 2400 skb->tstamp_type = SKB_CLOCK_REALTIME; 2401 if (static_branch_unlikely(&netstamp_needed_key)) 2402 skb->tstamp = ktime_get_real(); 2403 } 2404 2405 #define net_timestamp_check(COND, SKB) \ 2406 if (static_branch_unlikely(&netstamp_needed_key)) { \ 2407 if ((COND) && !(SKB)->tstamp) \ 2408 (SKB)->tstamp = ktime_get_real(); \ 2409 } \ 2410 2411 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb) 2412 { 2413 return __is_skb_forwardable(dev, skb, true); 2414 } 2415 EXPORT_SYMBOL_GPL(is_skb_forwardable); 2416 2417 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb, 2418 bool check_mtu) 2419 { 2420 int ret = ____dev_forward_skb(dev, skb, check_mtu); 2421 2422 if (likely(!ret)) { 2423 skb->protocol = eth_type_trans(skb, dev); 2424 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN); 2425 } 2426 2427 return ret; 2428 } 2429 2430 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 2431 { 2432 return __dev_forward_skb2(dev, skb, true); 2433 } 2434 EXPORT_SYMBOL_GPL(__dev_forward_skb); 2435 2436 /** 2437 * dev_forward_skb - loopback an skb to another netif 2438 * 2439 * @dev: destination network device 2440 * @skb: buffer to forward 2441 * 2442 * return values: 2443 * NET_RX_SUCCESS (no congestion) 2444 * NET_RX_DROP (packet was dropped, but freed) 2445 * 2446 * dev_forward_skb can be used for injecting an skb from the 2447 * start_xmit function of one device into the receive queue 2448 * of another device. 2449 * 2450 * The receiving device may be in another namespace, so 2451 * we have to clear all information in the skb that could 2452 * impact namespace isolation. 2453 */ 2454 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 2455 { 2456 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb); 2457 } 2458 EXPORT_SYMBOL_GPL(dev_forward_skb); 2459 2460 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb) 2461 { 2462 return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb); 2463 } 2464 2465 static inline int deliver_skb(struct sk_buff *skb, 2466 struct packet_type *pt_prev, 2467 struct net_device *orig_dev) 2468 { 2469 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 2470 return -ENOMEM; 2471 refcount_inc(&skb->users); 2472 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 2473 } 2474 2475 static inline void deliver_ptype_list_skb(struct sk_buff *skb, 2476 struct packet_type **pt, 2477 struct net_device *orig_dev, 2478 __be16 type, 2479 struct list_head *ptype_list) 2480 { 2481 struct packet_type *ptype, *pt_prev = *pt; 2482 2483 list_for_each_entry_rcu(ptype, ptype_list, list) { 2484 if (ptype->type != type) 2485 continue; 2486 if (pt_prev) 2487 deliver_skb(skb, pt_prev, orig_dev); 2488 pt_prev = ptype; 2489 } 2490 *pt = pt_prev; 2491 } 2492 2493 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb) 2494 { 2495 if (!ptype->af_packet_priv || !skb->sk) 2496 return false; 2497 2498 if (ptype->id_match) 2499 return ptype->id_match(ptype, skb->sk); 2500 else if ((struct sock *)ptype->af_packet_priv == skb->sk) 2501 return true; 2502 2503 return false; 2504 } 2505 2506 /** 2507 * dev_nit_active_rcu - return true if any network interface taps are in use 2508 * 2509 * The caller must hold the RCU lock 2510 * 2511 * @dev: network device to check for the presence of taps 2512 */ 2513 bool dev_nit_active_rcu(const struct net_device *dev) 2514 { 2515 /* Callers may hold either RCU or RCU BH lock */ 2516 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); 2517 2518 return !list_empty(&dev_net(dev)->ptype_all) || 2519 !list_empty(&dev->ptype_all); 2520 } 2521 EXPORT_SYMBOL_GPL(dev_nit_active_rcu); 2522 2523 /* 2524 * Support routine. Sends outgoing frames to any network 2525 * taps currently in use. 2526 */ 2527 2528 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 2529 { 2530 struct packet_type *ptype, *pt_prev = NULL; 2531 struct list_head *ptype_list; 2532 struct sk_buff *skb2 = NULL; 2533 2534 rcu_read_lock(); 2535 ptype_list = &dev_net_rcu(dev)->ptype_all; 2536 again: 2537 list_for_each_entry_rcu(ptype, ptype_list, list) { 2538 if (READ_ONCE(ptype->ignore_outgoing)) 2539 continue; 2540 2541 /* Never send packets back to the socket 2542 * they originated from - MvS (miquels@drinkel.ow.org) 2543 */ 2544 if (skb_loop_sk(ptype, skb)) 2545 continue; 2546 2547 if (pt_prev) { 2548 deliver_skb(skb2, pt_prev, skb->dev); 2549 pt_prev = ptype; 2550 continue; 2551 } 2552 2553 /* need to clone skb, done only once */ 2554 skb2 = skb_clone(skb, GFP_ATOMIC); 2555 if (!skb2) 2556 goto out_unlock; 2557 2558 net_timestamp_set(skb2); 2559 2560 /* skb->nh should be correctly 2561 * set by sender, so that the second statement is 2562 * just protection against buggy protocols. 2563 */ 2564 skb_reset_mac_header(skb2); 2565 2566 if (skb_network_header(skb2) < skb2->data || 2567 skb_network_header(skb2) > skb_tail_pointer(skb2)) { 2568 net_crit_ratelimited("protocol %04x is buggy, dev %s\n", 2569 ntohs(skb2->protocol), 2570 dev->name); 2571 skb_reset_network_header(skb2); 2572 } 2573 2574 skb2->transport_header = skb2->network_header; 2575 skb2->pkt_type = PACKET_OUTGOING; 2576 pt_prev = ptype; 2577 } 2578 2579 if (ptype_list != &dev->ptype_all) { 2580 ptype_list = &dev->ptype_all; 2581 goto again; 2582 } 2583 out_unlock: 2584 if (pt_prev) { 2585 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC)) 2586 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 2587 else 2588 kfree_skb(skb2); 2589 } 2590 rcu_read_unlock(); 2591 } 2592 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit); 2593 2594 /** 2595 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change 2596 * @dev: Network device 2597 * @txq: number of queues available 2598 * 2599 * If real_num_tx_queues is changed the tc mappings may no longer be 2600 * valid. To resolve this verify the tc mapping remains valid and if 2601 * not NULL the mapping. With no priorities mapping to this 2602 * offset/count pair it will no longer be used. In the worst case TC0 2603 * is invalid nothing can be done so disable priority mappings. If is 2604 * expected that drivers will fix this mapping if they can before 2605 * calling netif_set_real_num_tx_queues. 2606 */ 2607 static void netif_setup_tc(struct net_device *dev, unsigned int txq) 2608 { 2609 int i; 2610 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2611 2612 /* If TC0 is invalidated disable TC mapping */ 2613 if (tc->offset + tc->count > txq) { 2614 netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n"); 2615 dev->num_tc = 0; 2616 return; 2617 } 2618 2619 /* Invalidated prio to tc mappings set to TC0 */ 2620 for (i = 1; i < TC_BITMASK + 1; i++) { 2621 int q = netdev_get_prio_tc_map(dev, i); 2622 2623 tc = &dev->tc_to_txq[q]; 2624 if (tc->offset + tc->count > txq) { 2625 netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n", 2626 i, q); 2627 netdev_set_prio_tc_map(dev, i, 0); 2628 } 2629 } 2630 } 2631 2632 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq) 2633 { 2634 if (dev->num_tc) { 2635 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2636 int i; 2637 2638 /* walk through the TCs and see if it falls into any of them */ 2639 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) { 2640 if ((txq - tc->offset) < tc->count) 2641 return i; 2642 } 2643 2644 /* didn't find it, just return -1 to indicate no match */ 2645 return -1; 2646 } 2647 2648 return 0; 2649 } 2650 EXPORT_SYMBOL(netdev_txq_to_tc); 2651 2652 #ifdef CONFIG_XPS 2653 static struct static_key xps_needed __read_mostly; 2654 static struct static_key xps_rxqs_needed __read_mostly; 2655 static DEFINE_MUTEX(xps_map_mutex); 2656 #define xmap_dereference(P) \ 2657 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex)) 2658 2659 static bool remove_xps_queue(struct xps_dev_maps *dev_maps, 2660 struct xps_dev_maps *old_maps, int tci, u16 index) 2661 { 2662 struct xps_map *map = NULL; 2663 int pos; 2664 2665 map = xmap_dereference(dev_maps->attr_map[tci]); 2666 if (!map) 2667 return false; 2668 2669 for (pos = map->len; pos--;) { 2670 if (map->queues[pos] != index) 2671 continue; 2672 2673 if (map->len > 1) { 2674 map->queues[pos] = map->queues[--map->len]; 2675 break; 2676 } 2677 2678 if (old_maps) 2679 RCU_INIT_POINTER(old_maps->attr_map[tci], NULL); 2680 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL); 2681 kfree_rcu(map, rcu); 2682 return false; 2683 } 2684 2685 return true; 2686 } 2687 2688 static bool remove_xps_queue_cpu(struct net_device *dev, 2689 struct xps_dev_maps *dev_maps, 2690 int cpu, u16 offset, u16 count) 2691 { 2692 int num_tc = dev_maps->num_tc; 2693 bool active = false; 2694 int tci; 2695 2696 for (tci = cpu * num_tc; num_tc--; tci++) { 2697 int i, j; 2698 2699 for (i = count, j = offset; i--; j++) { 2700 if (!remove_xps_queue(dev_maps, NULL, tci, j)) 2701 break; 2702 } 2703 2704 active |= i < 0; 2705 } 2706 2707 return active; 2708 } 2709 2710 static void reset_xps_maps(struct net_device *dev, 2711 struct xps_dev_maps *dev_maps, 2712 enum xps_map_type type) 2713 { 2714 static_key_slow_dec_cpuslocked(&xps_needed); 2715 if (type == XPS_RXQS) 2716 static_key_slow_dec_cpuslocked(&xps_rxqs_needed); 2717 2718 RCU_INIT_POINTER(dev->xps_maps[type], NULL); 2719 2720 kfree_rcu(dev_maps, rcu); 2721 } 2722 2723 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type, 2724 u16 offset, u16 count) 2725 { 2726 struct xps_dev_maps *dev_maps; 2727 bool active = false; 2728 int i, j; 2729 2730 dev_maps = xmap_dereference(dev->xps_maps[type]); 2731 if (!dev_maps) 2732 return; 2733 2734 for (j = 0; j < dev_maps->nr_ids; j++) 2735 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count); 2736 if (!active) 2737 reset_xps_maps(dev, dev_maps, type); 2738 2739 if (type == XPS_CPUS) { 2740 for (i = offset + (count - 1); count--; i--) 2741 netdev_queue_numa_node_write( 2742 netdev_get_tx_queue(dev, i), NUMA_NO_NODE); 2743 } 2744 } 2745 2746 static void netif_reset_xps_queues(struct net_device *dev, u16 offset, 2747 u16 count) 2748 { 2749 if (!static_key_false(&xps_needed)) 2750 return; 2751 2752 cpus_read_lock(); 2753 mutex_lock(&xps_map_mutex); 2754 2755 if (static_key_false(&xps_rxqs_needed)) 2756 clean_xps_maps(dev, XPS_RXQS, offset, count); 2757 2758 clean_xps_maps(dev, XPS_CPUS, offset, count); 2759 2760 mutex_unlock(&xps_map_mutex); 2761 cpus_read_unlock(); 2762 } 2763 2764 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index) 2765 { 2766 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index); 2767 } 2768 2769 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index, 2770 u16 index, bool is_rxqs_map) 2771 { 2772 struct xps_map *new_map; 2773 int alloc_len = XPS_MIN_MAP_ALLOC; 2774 int i, pos; 2775 2776 for (pos = 0; map && pos < map->len; pos++) { 2777 if (map->queues[pos] != index) 2778 continue; 2779 return map; 2780 } 2781 2782 /* Need to add tx-queue to this CPU's/rx-queue's existing map */ 2783 if (map) { 2784 if (pos < map->alloc_len) 2785 return map; 2786 2787 alloc_len = map->alloc_len * 2; 2788 } 2789 2790 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's 2791 * map 2792 */ 2793 if (is_rxqs_map) 2794 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL); 2795 else 2796 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL, 2797 cpu_to_node(attr_index)); 2798 if (!new_map) 2799 return NULL; 2800 2801 for (i = 0; i < pos; i++) 2802 new_map->queues[i] = map->queues[i]; 2803 new_map->alloc_len = alloc_len; 2804 new_map->len = pos; 2805 2806 return new_map; 2807 } 2808 2809 /* Copy xps maps at a given index */ 2810 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps, 2811 struct xps_dev_maps *new_dev_maps, int index, 2812 int tc, bool skip_tc) 2813 { 2814 int i, tci = index * dev_maps->num_tc; 2815 struct xps_map *map; 2816 2817 /* copy maps belonging to foreign traffic classes */ 2818 for (i = 0; i < dev_maps->num_tc; i++, tci++) { 2819 if (i == tc && skip_tc) 2820 continue; 2821 2822 /* fill in the new device map from the old device map */ 2823 map = xmap_dereference(dev_maps->attr_map[tci]); 2824 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2825 } 2826 } 2827 2828 /* Must be called under cpus_read_lock */ 2829 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask, 2830 u16 index, enum xps_map_type type) 2831 { 2832 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL; 2833 const unsigned long *online_mask = NULL; 2834 bool active = false, copy = false; 2835 int i, j, tci, numa_node_id = -2; 2836 int maps_sz, num_tc = 1, tc = 0; 2837 struct xps_map *map, *new_map; 2838 unsigned int nr_ids; 2839 2840 WARN_ON_ONCE(index >= dev->num_tx_queues); 2841 2842 if (dev->num_tc) { 2843 /* Do not allow XPS on subordinate device directly */ 2844 num_tc = dev->num_tc; 2845 if (num_tc < 0) 2846 return -EINVAL; 2847 2848 /* If queue belongs to subordinate dev use its map */ 2849 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev; 2850 2851 tc = netdev_txq_to_tc(dev, index); 2852 if (tc < 0) 2853 return -EINVAL; 2854 } 2855 2856 mutex_lock(&xps_map_mutex); 2857 2858 dev_maps = xmap_dereference(dev->xps_maps[type]); 2859 if (type == XPS_RXQS) { 2860 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues); 2861 nr_ids = dev->num_rx_queues; 2862 } else { 2863 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc); 2864 if (num_possible_cpus() > 1) 2865 online_mask = cpumask_bits(cpu_online_mask); 2866 nr_ids = nr_cpu_ids; 2867 } 2868 2869 if (maps_sz < L1_CACHE_BYTES) 2870 maps_sz = L1_CACHE_BYTES; 2871 2872 /* The old dev_maps could be larger or smaller than the one we're 2873 * setting up now, as dev->num_tc or nr_ids could have been updated in 2874 * between. We could try to be smart, but let's be safe instead and only 2875 * copy foreign traffic classes if the two map sizes match. 2876 */ 2877 if (dev_maps && 2878 dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids) 2879 copy = true; 2880 2881 /* allocate memory for queue storage */ 2882 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids), 2883 j < nr_ids;) { 2884 if (!new_dev_maps) { 2885 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL); 2886 if (!new_dev_maps) { 2887 mutex_unlock(&xps_map_mutex); 2888 return -ENOMEM; 2889 } 2890 2891 new_dev_maps->nr_ids = nr_ids; 2892 new_dev_maps->num_tc = num_tc; 2893 } 2894 2895 tci = j * num_tc + tc; 2896 map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL; 2897 2898 map = expand_xps_map(map, j, index, type == XPS_RXQS); 2899 if (!map) 2900 goto error; 2901 2902 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2903 } 2904 2905 if (!new_dev_maps) 2906 goto out_no_new_maps; 2907 2908 if (!dev_maps) { 2909 /* Increment static keys at most once per type */ 2910 static_key_slow_inc_cpuslocked(&xps_needed); 2911 if (type == XPS_RXQS) 2912 static_key_slow_inc_cpuslocked(&xps_rxqs_needed); 2913 } 2914 2915 for (j = 0; j < nr_ids; j++) { 2916 bool skip_tc = false; 2917 2918 tci = j * num_tc + tc; 2919 if (netif_attr_test_mask(j, mask, nr_ids) && 2920 netif_attr_test_online(j, online_mask, nr_ids)) { 2921 /* add tx-queue to CPU/rx-queue maps */ 2922 int pos = 0; 2923 2924 skip_tc = true; 2925 2926 map = xmap_dereference(new_dev_maps->attr_map[tci]); 2927 while ((pos < map->len) && (map->queues[pos] != index)) 2928 pos++; 2929 2930 if (pos == map->len) 2931 map->queues[map->len++] = index; 2932 #ifdef CONFIG_NUMA 2933 if (type == XPS_CPUS) { 2934 if (numa_node_id == -2) 2935 numa_node_id = cpu_to_node(j); 2936 else if (numa_node_id != cpu_to_node(j)) 2937 numa_node_id = -1; 2938 } 2939 #endif 2940 } 2941 2942 if (copy) 2943 xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc, 2944 skip_tc); 2945 } 2946 2947 rcu_assign_pointer(dev->xps_maps[type], new_dev_maps); 2948 2949 /* Cleanup old maps */ 2950 if (!dev_maps) 2951 goto out_no_old_maps; 2952 2953 for (j = 0; j < dev_maps->nr_ids; j++) { 2954 for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) { 2955 map = xmap_dereference(dev_maps->attr_map[tci]); 2956 if (!map) 2957 continue; 2958 2959 if (copy) { 2960 new_map = xmap_dereference(new_dev_maps->attr_map[tci]); 2961 if (map == new_map) 2962 continue; 2963 } 2964 2965 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL); 2966 kfree_rcu(map, rcu); 2967 } 2968 } 2969 2970 old_dev_maps = dev_maps; 2971 2972 out_no_old_maps: 2973 dev_maps = new_dev_maps; 2974 active = true; 2975 2976 out_no_new_maps: 2977 if (type == XPS_CPUS) 2978 /* update Tx queue numa node */ 2979 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index), 2980 (numa_node_id >= 0) ? 2981 numa_node_id : NUMA_NO_NODE); 2982 2983 if (!dev_maps) 2984 goto out_no_maps; 2985 2986 /* removes tx-queue from unused CPUs/rx-queues */ 2987 for (j = 0; j < dev_maps->nr_ids; j++) { 2988 tci = j * dev_maps->num_tc; 2989 2990 for (i = 0; i < dev_maps->num_tc; i++, tci++) { 2991 if (i == tc && 2992 netif_attr_test_mask(j, mask, dev_maps->nr_ids) && 2993 netif_attr_test_online(j, online_mask, dev_maps->nr_ids)) 2994 continue; 2995 2996 active |= remove_xps_queue(dev_maps, 2997 copy ? old_dev_maps : NULL, 2998 tci, index); 2999 } 3000 } 3001 3002 if (old_dev_maps) 3003 kfree_rcu(old_dev_maps, rcu); 3004 3005 /* free map if not active */ 3006 if (!active) 3007 reset_xps_maps(dev, dev_maps, type); 3008 3009 out_no_maps: 3010 mutex_unlock(&xps_map_mutex); 3011 3012 return 0; 3013 error: 3014 /* remove any maps that we added */ 3015 for (j = 0; j < nr_ids; j++) { 3016 for (i = num_tc, tci = j * num_tc; i--; tci++) { 3017 new_map = xmap_dereference(new_dev_maps->attr_map[tci]); 3018 map = copy ? 3019 xmap_dereference(dev_maps->attr_map[tci]) : 3020 NULL; 3021 if (new_map && new_map != map) 3022 kfree(new_map); 3023 } 3024 } 3025 3026 mutex_unlock(&xps_map_mutex); 3027 3028 kfree(new_dev_maps); 3029 return -ENOMEM; 3030 } 3031 EXPORT_SYMBOL_GPL(__netif_set_xps_queue); 3032 3033 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 3034 u16 index) 3035 { 3036 int ret; 3037 3038 cpus_read_lock(); 3039 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS); 3040 cpus_read_unlock(); 3041 3042 return ret; 3043 } 3044 EXPORT_SYMBOL(netif_set_xps_queue); 3045 3046 #endif 3047 static void netdev_unbind_all_sb_channels(struct net_device *dev) 3048 { 3049 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues]; 3050 3051 /* Unbind any subordinate channels */ 3052 while (txq-- != &dev->_tx[0]) { 3053 if (txq->sb_dev) 3054 netdev_unbind_sb_channel(dev, txq->sb_dev); 3055 } 3056 } 3057 3058 void netdev_reset_tc(struct net_device *dev) 3059 { 3060 #ifdef CONFIG_XPS 3061 netif_reset_xps_queues_gt(dev, 0); 3062 #endif 3063 netdev_unbind_all_sb_channels(dev); 3064 3065 /* Reset TC configuration of device */ 3066 dev->num_tc = 0; 3067 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq)); 3068 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map)); 3069 } 3070 EXPORT_SYMBOL(netdev_reset_tc); 3071 3072 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset) 3073 { 3074 if (tc >= dev->num_tc) 3075 return -EINVAL; 3076 3077 #ifdef CONFIG_XPS 3078 netif_reset_xps_queues(dev, offset, count); 3079 #endif 3080 dev->tc_to_txq[tc].count = count; 3081 dev->tc_to_txq[tc].offset = offset; 3082 return 0; 3083 } 3084 EXPORT_SYMBOL(netdev_set_tc_queue); 3085 3086 int netdev_set_num_tc(struct net_device *dev, u8 num_tc) 3087 { 3088 if (num_tc > TC_MAX_QUEUE) 3089 return -EINVAL; 3090 3091 #ifdef CONFIG_XPS 3092 netif_reset_xps_queues_gt(dev, 0); 3093 #endif 3094 netdev_unbind_all_sb_channels(dev); 3095 3096 dev->num_tc = num_tc; 3097 return 0; 3098 } 3099 EXPORT_SYMBOL(netdev_set_num_tc); 3100 3101 void netdev_unbind_sb_channel(struct net_device *dev, 3102 struct net_device *sb_dev) 3103 { 3104 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues]; 3105 3106 #ifdef CONFIG_XPS 3107 netif_reset_xps_queues_gt(sb_dev, 0); 3108 #endif 3109 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq)); 3110 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map)); 3111 3112 while (txq-- != &dev->_tx[0]) { 3113 if (txq->sb_dev == sb_dev) 3114 txq->sb_dev = NULL; 3115 } 3116 } 3117 EXPORT_SYMBOL(netdev_unbind_sb_channel); 3118 3119 int netdev_bind_sb_channel_queue(struct net_device *dev, 3120 struct net_device *sb_dev, 3121 u8 tc, u16 count, u16 offset) 3122 { 3123 /* Make certain the sb_dev and dev are already configured */ 3124 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc) 3125 return -EINVAL; 3126 3127 /* We cannot hand out queues we don't have */ 3128 if ((offset + count) > dev->real_num_tx_queues) 3129 return -EINVAL; 3130 3131 /* Record the mapping */ 3132 sb_dev->tc_to_txq[tc].count = count; 3133 sb_dev->tc_to_txq[tc].offset = offset; 3134 3135 /* Provide a way for Tx queue to find the tc_to_txq map or 3136 * XPS map for itself. 3137 */ 3138 while (count--) 3139 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev; 3140 3141 return 0; 3142 } 3143 EXPORT_SYMBOL(netdev_bind_sb_channel_queue); 3144 3145 int netdev_set_sb_channel(struct net_device *dev, u16 channel) 3146 { 3147 /* Do not use a multiqueue device to represent a subordinate channel */ 3148 if (netif_is_multiqueue(dev)) 3149 return -ENODEV; 3150 3151 /* We allow channels 1 - 32767 to be used for subordinate channels. 3152 * Channel 0 is meant to be "native" mode and used only to represent 3153 * the main root device. We allow writing 0 to reset the device back 3154 * to normal mode after being used as a subordinate channel. 3155 */ 3156 if (channel > S16_MAX) 3157 return -EINVAL; 3158 3159 dev->num_tc = -channel; 3160 3161 return 0; 3162 } 3163 EXPORT_SYMBOL(netdev_set_sb_channel); 3164 3165 /* 3166 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 3167 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed. 3168 */ 3169 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 3170 { 3171 bool disabling; 3172 int rc; 3173 3174 disabling = txq < dev->real_num_tx_queues; 3175 3176 if (txq < 1 || txq > dev->num_tx_queues) 3177 return -EINVAL; 3178 3179 if (dev->reg_state == NETREG_REGISTERED || 3180 dev->reg_state == NETREG_UNREGISTERING) { 3181 netdev_ops_assert_locked(dev); 3182 3183 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 3184 txq); 3185 if (rc) 3186 return rc; 3187 3188 if (dev->num_tc) 3189 netif_setup_tc(dev, txq); 3190 3191 net_shaper_set_real_num_tx_queues(dev, txq); 3192 3193 dev_qdisc_change_real_num_tx(dev, txq); 3194 3195 dev->real_num_tx_queues = txq; 3196 3197 if (disabling) { 3198 synchronize_net(); 3199 qdisc_reset_all_tx_gt(dev, txq); 3200 #ifdef CONFIG_XPS 3201 netif_reset_xps_queues_gt(dev, txq); 3202 #endif 3203 } 3204 } else { 3205 dev->real_num_tx_queues = txq; 3206 } 3207 3208 return 0; 3209 } 3210 EXPORT_SYMBOL(netif_set_real_num_tx_queues); 3211 3212 /** 3213 * netif_set_real_num_rx_queues - set actual number of RX queues used 3214 * @dev: Network device 3215 * @rxq: Actual number of RX queues 3216 * 3217 * This must be called either with the rtnl_lock held or before 3218 * registration of the net device. Returns 0 on success, or a 3219 * negative error code. If called before registration, it always 3220 * succeeds. 3221 */ 3222 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 3223 { 3224 int rc; 3225 3226 if (rxq < 1 || rxq > dev->num_rx_queues) 3227 return -EINVAL; 3228 3229 if (dev->reg_state == NETREG_REGISTERED) { 3230 netdev_ops_assert_locked(dev); 3231 3232 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 3233 rxq); 3234 if (rc) 3235 return rc; 3236 } 3237 3238 dev->real_num_rx_queues = rxq; 3239 return 0; 3240 } 3241 EXPORT_SYMBOL(netif_set_real_num_rx_queues); 3242 3243 /** 3244 * netif_set_real_num_queues - set actual number of RX and TX queues used 3245 * @dev: Network device 3246 * @txq: Actual number of TX queues 3247 * @rxq: Actual number of RX queues 3248 * 3249 * Set the real number of both TX and RX queues. 3250 * Does nothing if the number of queues is already correct. 3251 */ 3252 int netif_set_real_num_queues(struct net_device *dev, 3253 unsigned int txq, unsigned int rxq) 3254 { 3255 unsigned int old_rxq = dev->real_num_rx_queues; 3256 int err; 3257 3258 if (txq < 1 || txq > dev->num_tx_queues || 3259 rxq < 1 || rxq > dev->num_rx_queues) 3260 return -EINVAL; 3261 3262 /* Start from increases, so the error path only does decreases - 3263 * decreases can't fail. 3264 */ 3265 if (rxq > dev->real_num_rx_queues) { 3266 err = netif_set_real_num_rx_queues(dev, rxq); 3267 if (err) 3268 return err; 3269 } 3270 if (txq > dev->real_num_tx_queues) { 3271 err = netif_set_real_num_tx_queues(dev, txq); 3272 if (err) 3273 goto undo_rx; 3274 } 3275 if (rxq < dev->real_num_rx_queues) 3276 WARN_ON(netif_set_real_num_rx_queues(dev, rxq)); 3277 if (txq < dev->real_num_tx_queues) 3278 WARN_ON(netif_set_real_num_tx_queues(dev, txq)); 3279 3280 return 0; 3281 undo_rx: 3282 WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq)); 3283 return err; 3284 } 3285 EXPORT_SYMBOL(netif_set_real_num_queues); 3286 3287 /** 3288 * netif_set_tso_max_size() - set the max size of TSO frames supported 3289 * @dev: netdev to update 3290 * @size: max skb->len of a TSO frame 3291 * 3292 * Set the limit on the size of TSO super-frames the device can handle. 3293 * Unless explicitly set the stack will assume the value of 3294 * %GSO_LEGACY_MAX_SIZE. 3295 */ 3296 void netif_set_tso_max_size(struct net_device *dev, unsigned int size) 3297 { 3298 dev->tso_max_size = min(GSO_MAX_SIZE, size); 3299 if (size < READ_ONCE(dev->gso_max_size)) 3300 netif_set_gso_max_size(dev, size); 3301 if (size < READ_ONCE(dev->gso_ipv4_max_size)) 3302 netif_set_gso_ipv4_max_size(dev, size); 3303 } 3304 EXPORT_SYMBOL(netif_set_tso_max_size); 3305 3306 /** 3307 * netif_set_tso_max_segs() - set the max number of segs supported for TSO 3308 * @dev: netdev to update 3309 * @segs: max number of TCP segments 3310 * 3311 * Set the limit on the number of TCP segments the device can generate from 3312 * a single TSO super-frame. 3313 * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS. 3314 */ 3315 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs) 3316 { 3317 dev->tso_max_segs = segs; 3318 if (segs < READ_ONCE(dev->gso_max_segs)) 3319 netif_set_gso_max_segs(dev, segs); 3320 } 3321 EXPORT_SYMBOL(netif_set_tso_max_segs); 3322 3323 /** 3324 * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper 3325 * @to: netdev to update 3326 * @from: netdev from which to copy the limits 3327 */ 3328 void netif_inherit_tso_max(struct net_device *to, const struct net_device *from) 3329 { 3330 netif_set_tso_max_size(to, from->tso_max_size); 3331 netif_set_tso_max_segs(to, from->tso_max_segs); 3332 } 3333 EXPORT_SYMBOL(netif_inherit_tso_max); 3334 3335 /** 3336 * netif_get_num_default_rss_queues - default number of RSS queues 3337 * 3338 * Default value is the number of physical cores if there are only 1 or 2, or 3339 * divided by 2 if there are more. 3340 */ 3341 int netif_get_num_default_rss_queues(void) 3342 { 3343 cpumask_var_t cpus; 3344 int cpu, count = 0; 3345 3346 if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL))) 3347 return 1; 3348 3349 cpumask_copy(cpus, cpu_online_mask); 3350 for_each_cpu(cpu, cpus) { 3351 ++count; 3352 cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu)); 3353 } 3354 free_cpumask_var(cpus); 3355 3356 return count > 2 ? DIV_ROUND_UP(count, 2) : count; 3357 } 3358 EXPORT_SYMBOL(netif_get_num_default_rss_queues); 3359 3360 static void __netif_reschedule(struct Qdisc *q) 3361 { 3362 struct softnet_data *sd; 3363 unsigned long flags; 3364 3365 local_irq_save(flags); 3366 sd = this_cpu_ptr(&softnet_data); 3367 q->next_sched = NULL; 3368 *sd->output_queue_tailp = q; 3369 sd->output_queue_tailp = &q->next_sched; 3370 raise_softirq_irqoff(NET_TX_SOFTIRQ); 3371 local_irq_restore(flags); 3372 } 3373 3374 void __netif_schedule(struct Qdisc *q) 3375 { 3376 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 3377 __netif_reschedule(q); 3378 } 3379 EXPORT_SYMBOL(__netif_schedule); 3380 3381 struct dev_kfree_skb_cb { 3382 enum skb_drop_reason reason; 3383 }; 3384 3385 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb) 3386 { 3387 return (struct dev_kfree_skb_cb *)skb->cb; 3388 } 3389 3390 void netif_schedule_queue(struct netdev_queue *txq) 3391 { 3392 rcu_read_lock(); 3393 if (!netif_xmit_stopped(txq)) { 3394 struct Qdisc *q = rcu_dereference(txq->qdisc); 3395 3396 __netif_schedule(q); 3397 } 3398 rcu_read_unlock(); 3399 } 3400 EXPORT_SYMBOL(netif_schedule_queue); 3401 3402 void netif_tx_wake_queue(struct netdev_queue *dev_queue) 3403 { 3404 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) { 3405 struct Qdisc *q; 3406 3407 rcu_read_lock(); 3408 q = rcu_dereference(dev_queue->qdisc); 3409 __netif_schedule(q); 3410 rcu_read_unlock(); 3411 } 3412 } 3413 EXPORT_SYMBOL(netif_tx_wake_queue); 3414 3415 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason) 3416 { 3417 unsigned long flags; 3418 3419 if (unlikely(!skb)) 3420 return; 3421 3422 if (likely(refcount_read(&skb->users) == 1)) { 3423 smp_rmb(); 3424 refcount_set(&skb->users, 0); 3425 } else if (likely(!refcount_dec_and_test(&skb->users))) { 3426 return; 3427 } 3428 get_kfree_skb_cb(skb)->reason = reason; 3429 local_irq_save(flags); 3430 skb->next = __this_cpu_read(softnet_data.completion_queue); 3431 __this_cpu_write(softnet_data.completion_queue, skb); 3432 raise_softirq_irqoff(NET_TX_SOFTIRQ); 3433 local_irq_restore(flags); 3434 } 3435 EXPORT_SYMBOL(dev_kfree_skb_irq_reason); 3436 3437 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason) 3438 { 3439 if (in_hardirq() || irqs_disabled()) 3440 dev_kfree_skb_irq_reason(skb, reason); 3441 else 3442 kfree_skb_reason(skb, reason); 3443 } 3444 EXPORT_SYMBOL(dev_kfree_skb_any_reason); 3445 3446 3447 /** 3448 * netif_device_detach - mark device as removed 3449 * @dev: network device 3450 * 3451 * Mark device as removed from system and therefore no longer available. 3452 */ 3453 void netif_device_detach(struct net_device *dev) 3454 { 3455 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 3456 netif_running(dev)) { 3457 netif_tx_stop_all_queues(dev); 3458 } 3459 } 3460 EXPORT_SYMBOL(netif_device_detach); 3461 3462 /** 3463 * netif_device_attach - mark device as attached 3464 * @dev: network device 3465 * 3466 * Mark device as attached from system and restart if needed. 3467 */ 3468 void netif_device_attach(struct net_device *dev) 3469 { 3470 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 3471 netif_running(dev)) { 3472 netif_tx_wake_all_queues(dev); 3473 netdev_watchdog_up(dev); 3474 } 3475 } 3476 EXPORT_SYMBOL(netif_device_attach); 3477 3478 /* 3479 * Returns a Tx hash based on the given packet descriptor a Tx queues' number 3480 * to be used as a distribution range. 3481 */ 3482 static u16 skb_tx_hash(const struct net_device *dev, 3483 const struct net_device *sb_dev, 3484 struct sk_buff *skb) 3485 { 3486 u32 hash; 3487 u16 qoffset = 0; 3488 u16 qcount = dev->real_num_tx_queues; 3489 3490 if (dev->num_tc) { 3491 u8 tc = netdev_get_prio_tc_map(dev, skb->priority); 3492 3493 qoffset = sb_dev->tc_to_txq[tc].offset; 3494 qcount = sb_dev->tc_to_txq[tc].count; 3495 if (unlikely(!qcount)) { 3496 net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n", 3497 sb_dev->name, qoffset, tc); 3498 qoffset = 0; 3499 qcount = dev->real_num_tx_queues; 3500 } 3501 } 3502 3503 if (skb_rx_queue_recorded(skb)) { 3504 DEBUG_NET_WARN_ON_ONCE(qcount == 0); 3505 hash = skb_get_rx_queue(skb); 3506 if (hash >= qoffset) 3507 hash -= qoffset; 3508 while (unlikely(hash >= qcount)) 3509 hash -= qcount; 3510 return hash + qoffset; 3511 } 3512 3513 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset; 3514 } 3515 3516 void skb_warn_bad_offload(const struct sk_buff *skb) 3517 { 3518 static const netdev_features_t null_features; 3519 struct net_device *dev = skb->dev; 3520 const char *name = ""; 3521 3522 if (!net_ratelimit()) 3523 return; 3524 3525 if (dev) { 3526 if (dev->dev.parent) 3527 name = dev_driver_string(dev->dev.parent); 3528 else 3529 name = netdev_name(dev); 3530 } 3531 skb_dump(KERN_WARNING, skb, false); 3532 WARN(1, "%s: caps=(%pNF, %pNF)\n", 3533 name, dev ? &dev->features : &null_features, 3534 skb->sk ? &skb->sk->sk_route_caps : &null_features); 3535 } 3536 3537 /* 3538 * Invalidate hardware checksum when packet is to be mangled, and 3539 * complete checksum manually on outgoing path. 3540 */ 3541 int skb_checksum_help(struct sk_buff *skb) 3542 { 3543 __wsum csum; 3544 int ret = 0, offset; 3545 3546 if (skb->ip_summed == CHECKSUM_COMPLETE) 3547 goto out_set_summed; 3548 3549 if (unlikely(skb_is_gso(skb))) { 3550 skb_warn_bad_offload(skb); 3551 return -EINVAL; 3552 } 3553 3554 if (!skb_frags_readable(skb)) { 3555 return -EFAULT; 3556 } 3557 3558 /* Before computing a checksum, we should make sure no frag could 3559 * be modified by an external entity : checksum could be wrong. 3560 */ 3561 if (skb_has_shared_frag(skb)) { 3562 ret = __skb_linearize(skb); 3563 if (ret) 3564 goto out; 3565 } 3566 3567 offset = skb_checksum_start_offset(skb); 3568 ret = -EINVAL; 3569 if (unlikely(offset >= skb_headlen(skb))) { 3570 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false); 3571 WARN_ONCE(true, "offset (%d) >= skb_headlen() (%u)\n", 3572 offset, skb_headlen(skb)); 3573 goto out; 3574 } 3575 csum = skb_checksum(skb, offset, skb->len - offset, 0); 3576 3577 offset += skb->csum_offset; 3578 if (unlikely(offset + sizeof(__sum16) > skb_headlen(skb))) { 3579 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false); 3580 WARN_ONCE(true, "offset+2 (%zu) > skb_headlen() (%u)\n", 3581 offset + sizeof(__sum16), skb_headlen(skb)); 3582 goto out; 3583 } 3584 ret = skb_ensure_writable(skb, offset + sizeof(__sum16)); 3585 if (ret) 3586 goto out; 3587 3588 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0; 3589 out_set_summed: 3590 skb->ip_summed = CHECKSUM_NONE; 3591 out: 3592 return ret; 3593 } 3594 EXPORT_SYMBOL(skb_checksum_help); 3595 3596 #ifdef CONFIG_NET_CRC32C 3597 int skb_crc32c_csum_help(struct sk_buff *skb) 3598 { 3599 u32 crc; 3600 int ret = 0, offset, start; 3601 3602 if (skb->ip_summed != CHECKSUM_PARTIAL) 3603 goto out; 3604 3605 if (unlikely(skb_is_gso(skb))) 3606 goto out; 3607 3608 /* Before computing a checksum, we should make sure no frag could 3609 * be modified by an external entity : checksum could be wrong. 3610 */ 3611 if (unlikely(skb_has_shared_frag(skb))) { 3612 ret = __skb_linearize(skb); 3613 if (ret) 3614 goto out; 3615 } 3616 start = skb_checksum_start_offset(skb); 3617 offset = start + offsetof(struct sctphdr, checksum); 3618 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) { 3619 ret = -EINVAL; 3620 goto out; 3621 } 3622 3623 ret = skb_ensure_writable(skb, offset + sizeof(__le32)); 3624 if (ret) 3625 goto out; 3626 3627 crc = ~skb_crc32c(skb, start, skb->len - start, ~0); 3628 *(__le32 *)(skb->data + offset) = cpu_to_le32(crc); 3629 skb_reset_csum_not_inet(skb); 3630 out: 3631 return ret; 3632 } 3633 EXPORT_SYMBOL(skb_crc32c_csum_help); 3634 #endif /* CONFIG_NET_CRC32C */ 3635 3636 __be16 skb_network_protocol(struct sk_buff *skb, int *depth) 3637 { 3638 __be16 type = skb->protocol; 3639 3640 /* Tunnel gso handlers can set protocol to ethernet. */ 3641 if (type == htons(ETH_P_TEB)) { 3642 struct ethhdr *eth; 3643 3644 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr)))) 3645 return 0; 3646 3647 eth = (struct ethhdr *)skb->data; 3648 type = eth->h_proto; 3649 } 3650 3651 return vlan_get_protocol_and_depth(skb, type, depth); 3652 } 3653 3654 3655 /* Take action when hardware reception checksum errors are detected. */ 3656 #ifdef CONFIG_BUG 3657 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb) 3658 { 3659 netdev_err(dev, "hw csum failure\n"); 3660 skb_dump(KERN_ERR, skb, true); 3661 dump_stack(); 3662 } 3663 3664 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb) 3665 { 3666 DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb); 3667 } 3668 EXPORT_SYMBOL(netdev_rx_csum_fault); 3669 #endif 3670 3671 /* XXX: check that highmem exists at all on the given machine. */ 3672 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 3673 { 3674 #ifdef CONFIG_HIGHMEM 3675 int i; 3676 3677 if (!(dev->features & NETIF_F_HIGHDMA)) { 3678 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3679 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3680 struct page *page = skb_frag_page(frag); 3681 3682 if (page && PageHighMem(page)) 3683 return 1; 3684 } 3685 } 3686 #endif 3687 return 0; 3688 } 3689 3690 /* If MPLS offload request, verify we are testing hardware MPLS features 3691 * instead of standard features for the netdev. 3692 */ 3693 #if IS_ENABLED(CONFIG_NET_MPLS_GSO) 3694 static netdev_features_t net_mpls_features(struct sk_buff *skb, 3695 netdev_features_t features, 3696 __be16 type) 3697 { 3698 if (eth_p_mpls(type)) 3699 features &= skb->dev->mpls_features; 3700 3701 return features; 3702 } 3703 #else 3704 static netdev_features_t net_mpls_features(struct sk_buff *skb, 3705 netdev_features_t features, 3706 __be16 type) 3707 { 3708 return features; 3709 } 3710 #endif 3711 3712 static netdev_features_t harmonize_features(struct sk_buff *skb, 3713 netdev_features_t features) 3714 { 3715 __be16 type; 3716 3717 type = skb_network_protocol(skb, NULL); 3718 features = net_mpls_features(skb, features, type); 3719 3720 if (skb->ip_summed != CHECKSUM_NONE && 3721 !can_checksum_protocol(features, type)) { 3722 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 3723 } 3724 if (illegal_highdma(skb->dev, skb)) 3725 features &= ~NETIF_F_SG; 3726 3727 return features; 3728 } 3729 3730 netdev_features_t passthru_features_check(struct sk_buff *skb, 3731 struct net_device *dev, 3732 netdev_features_t features) 3733 { 3734 return features; 3735 } 3736 EXPORT_SYMBOL(passthru_features_check); 3737 3738 static netdev_features_t dflt_features_check(struct sk_buff *skb, 3739 struct net_device *dev, 3740 netdev_features_t features) 3741 { 3742 return vlan_features_check(skb, features); 3743 } 3744 3745 static netdev_features_t gso_features_check(const struct sk_buff *skb, 3746 struct net_device *dev, 3747 netdev_features_t features) 3748 { 3749 u16 gso_segs = skb_shinfo(skb)->gso_segs; 3750 3751 if (gso_segs > READ_ONCE(dev->gso_max_segs)) 3752 return features & ~NETIF_F_GSO_MASK; 3753 3754 if (unlikely(skb->len >= netif_get_gso_max_size(dev, skb))) 3755 return features & ~NETIF_F_GSO_MASK; 3756 3757 if (!skb_shinfo(skb)->gso_type) { 3758 skb_warn_bad_offload(skb); 3759 return features & ~NETIF_F_GSO_MASK; 3760 } 3761 3762 /* Support for GSO partial features requires software 3763 * intervention before we can actually process the packets 3764 * so we need to strip support for any partial features now 3765 * and we can pull them back in after we have partially 3766 * segmented the frame. 3767 */ 3768 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL)) 3769 features &= ~dev->gso_partial_features; 3770 3771 /* Make sure to clear the IPv4 ID mangling feature if the 3772 * IPv4 header has the potential to be fragmented. 3773 */ 3774 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) { 3775 struct iphdr *iph = skb->encapsulation ? 3776 inner_ip_hdr(skb) : ip_hdr(skb); 3777 3778 if (!(iph->frag_off & htons(IP_DF))) 3779 features &= ~NETIF_F_TSO_MANGLEID; 3780 } 3781 3782 return features; 3783 } 3784 3785 netdev_features_t netif_skb_features(struct sk_buff *skb) 3786 { 3787 struct net_device *dev = skb->dev; 3788 netdev_features_t features = dev->features; 3789 3790 if (skb_is_gso(skb)) 3791 features = gso_features_check(skb, dev, features); 3792 3793 /* If encapsulation offload request, verify we are testing 3794 * hardware encapsulation features instead of standard 3795 * features for the netdev 3796 */ 3797 if (skb->encapsulation) 3798 features &= dev->hw_enc_features; 3799 3800 if (skb_vlan_tagged(skb)) 3801 features = netdev_intersect_features(features, 3802 dev->vlan_features | 3803 NETIF_F_HW_VLAN_CTAG_TX | 3804 NETIF_F_HW_VLAN_STAG_TX); 3805 3806 if (dev->netdev_ops->ndo_features_check) 3807 features &= dev->netdev_ops->ndo_features_check(skb, dev, 3808 features); 3809 else 3810 features &= dflt_features_check(skb, dev, features); 3811 3812 return harmonize_features(skb, features); 3813 } 3814 EXPORT_SYMBOL(netif_skb_features); 3815 3816 static int xmit_one(struct sk_buff *skb, struct net_device *dev, 3817 struct netdev_queue *txq, bool more) 3818 { 3819 unsigned int len; 3820 int rc; 3821 3822 if (dev_nit_active_rcu(dev)) 3823 dev_queue_xmit_nit(skb, dev); 3824 3825 len = skb->len; 3826 trace_net_dev_start_xmit(skb, dev); 3827 rc = netdev_start_xmit(skb, dev, txq, more); 3828 trace_net_dev_xmit(skb, rc, dev, len); 3829 3830 return rc; 3831 } 3832 3833 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev, 3834 struct netdev_queue *txq, int *ret) 3835 { 3836 struct sk_buff *skb = first; 3837 int rc = NETDEV_TX_OK; 3838 3839 while (skb) { 3840 struct sk_buff *next = skb->next; 3841 3842 skb_mark_not_on_list(skb); 3843 rc = xmit_one(skb, dev, txq, next != NULL); 3844 if (unlikely(!dev_xmit_complete(rc))) { 3845 skb->next = next; 3846 goto out; 3847 } 3848 3849 skb = next; 3850 if (netif_tx_queue_stopped(txq) && skb) { 3851 rc = NETDEV_TX_BUSY; 3852 break; 3853 } 3854 } 3855 3856 out: 3857 *ret = rc; 3858 return skb; 3859 } 3860 3861 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb, 3862 netdev_features_t features) 3863 { 3864 if (skb_vlan_tag_present(skb) && 3865 !vlan_hw_offload_capable(features, skb->vlan_proto)) 3866 skb = __vlan_hwaccel_push_inside(skb); 3867 return skb; 3868 } 3869 3870 int skb_csum_hwoffload_help(struct sk_buff *skb, 3871 const netdev_features_t features) 3872 { 3873 if (unlikely(skb_csum_is_sctp(skb))) 3874 return !!(features & NETIF_F_SCTP_CRC) ? 0 : 3875 skb_crc32c_csum_help(skb); 3876 3877 if (features & NETIF_F_HW_CSUM) 3878 return 0; 3879 3880 if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) { 3881 if (vlan_get_protocol(skb) == htons(ETH_P_IPV6) && 3882 skb_network_header_len(skb) != sizeof(struct ipv6hdr) && 3883 !ipv6_has_hopopt_jumbo(skb)) 3884 goto sw_checksum; 3885 3886 switch (skb->csum_offset) { 3887 case offsetof(struct tcphdr, check): 3888 case offsetof(struct udphdr, check): 3889 return 0; 3890 } 3891 } 3892 3893 sw_checksum: 3894 return skb_checksum_help(skb); 3895 } 3896 EXPORT_SYMBOL(skb_csum_hwoffload_help); 3897 3898 static struct sk_buff *validate_xmit_unreadable_skb(struct sk_buff *skb, 3899 struct net_device *dev) 3900 { 3901 struct skb_shared_info *shinfo; 3902 struct net_iov *niov; 3903 3904 if (likely(skb_frags_readable(skb))) 3905 goto out; 3906 3907 if (!dev->netmem_tx) 3908 goto out_free; 3909 3910 shinfo = skb_shinfo(skb); 3911 3912 if (shinfo->nr_frags > 0) { 3913 niov = netmem_to_net_iov(skb_frag_netmem(&shinfo->frags[0])); 3914 if (net_is_devmem_iov(niov) && 3915 net_devmem_iov_binding(niov)->dev != dev) 3916 goto out_free; 3917 } 3918 3919 out: 3920 return skb; 3921 3922 out_free: 3923 kfree_skb(skb); 3924 return NULL; 3925 } 3926 3927 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again) 3928 { 3929 netdev_features_t features; 3930 3931 skb = validate_xmit_unreadable_skb(skb, dev); 3932 if (unlikely(!skb)) 3933 goto out_null; 3934 3935 features = netif_skb_features(skb); 3936 skb = validate_xmit_vlan(skb, features); 3937 if (unlikely(!skb)) 3938 goto out_null; 3939 3940 skb = sk_validate_xmit_skb(skb, dev); 3941 if (unlikely(!skb)) 3942 goto out_null; 3943 3944 if (netif_needs_gso(skb, features)) { 3945 struct sk_buff *segs; 3946 3947 segs = skb_gso_segment(skb, features); 3948 if (IS_ERR(segs)) { 3949 goto out_kfree_skb; 3950 } else if (segs) { 3951 consume_skb(skb); 3952 skb = segs; 3953 } 3954 } else { 3955 if (skb_needs_linearize(skb, features) && 3956 __skb_linearize(skb)) 3957 goto out_kfree_skb; 3958 3959 /* If packet is not checksummed and device does not 3960 * support checksumming for this protocol, complete 3961 * checksumming here. 3962 */ 3963 if (skb->ip_summed == CHECKSUM_PARTIAL) { 3964 if (skb->encapsulation) 3965 skb_set_inner_transport_header(skb, 3966 skb_checksum_start_offset(skb)); 3967 else 3968 skb_set_transport_header(skb, 3969 skb_checksum_start_offset(skb)); 3970 if (skb_csum_hwoffload_help(skb, features)) 3971 goto out_kfree_skb; 3972 } 3973 } 3974 3975 skb = validate_xmit_xfrm(skb, features, again); 3976 3977 return skb; 3978 3979 out_kfree_skb: 3980 kfree_skb(skb); 3981 out_null: 3982 dev_core_stats_tx_dropped_inc(dev); 3983 return NULL; 3984 } 3985 3986 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again) 3987 { 3988 struct sk_buff *next, *head = NULL, *tail; 3989 3990 for (; skb != NULL; skb = next) { 3991 next = skb->next; 3992 skb_mark_not_on_list(skb); 3993 3994 /* in case skb won't be segmented, point to itself */ 3995 skb->prev = skb; 3996 3997 skb = validate_xmit_skb(skb, dev, again); 3998 if (!skb) 3999 continue; 4000 4001 if (!head) 4002 head = skb; 4003 else 4004 tail->next = skb; 4005 /* If skb was segmented, skb->prev points to 4006 * the last segment. If not, it still contains skb. 4007 */ 4008 tail = skb->prev; 4009 } 4010 return head; 4011 } 4012 EXPORT_SYMBOL_GPL(validate_xmit_skb_list); 4013 4014 static void qdisc_pkt_len_init(struct sk_buff *skb) 4015 { 4016 const struct skb_shared_info *shinfo = skb_shinfo(skb); 4017 4018 qdisc_skb_cb(skb)->pkt_len = skb->len; 4019 4020 /* To get more precise estimation of bytes sent on wire, 4021 * we add to pkt_len the headers size of all segments 4022 */ 4023 if (shinfo->gso_size && skb_transport_header_was_set(skb)) { 4024 u16 gso_segs = shinfo->gso_segs; 4025 unsigned int hdr_len; 4026 4027 /* mac layer + network layer */ 4028 if (!skb->encapsulation) 4029 hdr_len = skb_transport_offset(skb); 4030 else 4031 hdr_len = skb_inner_transport_offset(skb); 4032 4033 /* + transport layer */ 4034 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) { 4035 const struct tcphdr *th; 4036 struct tcphdr _tcphdr; 4037 4038 th = skb_header_pointer(skb, hdr_len, 4039 sizeof(_tcphdr), &_tcphdr); 4040 if (likely(th)) 4041 hdr_len += __tcp_hdrlen(th); 4042 } else if (shinfo->gso_type & SKB_GSO_UDP_L4) { 4043 struct udphdr _udphdr; 4044 4045 if (skb_header_pointer(skb, hdr_len, 4046 sizeof(_udphdr), &_udphdr)) 4047 hdr_len += sizeof(struct udphdr); 4048 } 4049 4050 if (unlikely(shinfo->gso_type & SKB_GSO_DODGY)) { 4051 int payload = skb->len - hdr_len; 4052 4053 /* Malicious packet. */ 4054 if (payload <= 0) 4055 return; 4056 gso_segs = DIV_ROUND_UP(payload, shinfo->gso_size); 4057 } 4058 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len; 4059 } 4060 } 4061 4062 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q, 4063 struct sk_buff **to_free, 4064 struct netdev_queue *txq) 4065 { 4066 int rc; 4067 4068 rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK; 4069 if (rc == NET_XMIT_SUCCESS) 4070 trace_qdisc_enqueue(q, txq, skb); 4071 return rc; 4072 } 4073 4074 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 4075 struct net_device *dev, 4076 struct netdev_queue *txq) 4077 { 4078 spinlock_t *root_lock = qdisc_lock(q); 4079 struct sk_buff *to_free = NULL; 4080 bool contended; 4081 int rc; 4082 4083 qdisc_calculate_pkt_len(skb, q); 4084 4085 tcf_set_drop_reason(skb, SKB_DROP_REASON_QDISC_DROP); 4086 4087 if (q->flags & TCQ_F_NOLOCK) { 4088 if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) && 4089 qdisc_run_begin(q)) { 4090 /* Retest nolock_qdisc_is_empty() within the protection 4091 * of q->seqlock to protect from racing with requeuing. 4092 */ 4093 if (unlikely(!nolock_qdisc_is_empty(q))) { 4094 rc = dev_qdisc_enqueue(skb, q, &to_free, txq); 4095 __qdisc_run(q); 4096 qdisc_run_end(q); 4097 4098 goto no_lock_out; 4099 } 4100 4101 qdisc_bstats_cpu_update(q, skb); 4102 if (sch_direct_xmit(skb, q, dev, txq, NULL, true) && 4103 !nolock_qdisc_is_empty(q)) 4104 __qdisc_run(q); 4105 4106 qdisc_run_end(q); 4107 return NET_XMIT_SUCCESS; 4108 } 4109 4110 rc = dev_qdisc_enqueue(skb, q, &to_free, txq); 4111 qdisc_run(q); 4112 4113 no_lock_out: 4114 if (unlikely(to_free)) 4115 kfree_skb_list_reason(to_free, 4116 tcf_get_drop_reason(to_free)); 4117 return rc; 4118 } 4119 4120 if (unlikely(READ_ONCE(q->owner) == smp_processor_id())) { 4121 kfree_skb_reason(skb, SKB_DROP_REASON_TC_RECLASSIFY_LOOP); 4122 return NET_XMIT_DROP; 4123 } 4124 /* 4125 * Heuristic to force contended enqueues to serialize on a 4126 * separate lock before trying to get qdisc main lock. 4127 * This permits qdisc->running owner to get the lock more 4128 * often and dequeue packets faster. 4129 * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit 4130 * and then other tasks will only enqueue packets. The packets will be 4131 * sent after the qdisc owner is scheduled again. To prevent this 4132 * scenario the task always serialize on the lock. 4133 */ 4134 contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT); 4135 if (unlikely(contended)) 4136 spin_lock(&q->busylock); 4137 4138 spin_lock(root_lock); 4139 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 4140 __qdisc_drop(skb, &to_free); 4141 rc = NET_XMIT_DROP; 4142 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 4143 qdisc_run_begin(q)) { 4144 /* 4145 * This is a work-conserving queue; there are no old skbs 4146 * waiting to be sent out; and the qdisc is not running - 4147 * xmit the skb directly. 4148 */ 4149 4150 qdisc_bstats_update(q, skb); 4151 4152 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) { 4153 if (unlikely(contended)) { 4154 spin_unlock(&q->busylock); 4155 contended = false; 4156 } 4157 __qdisc_run(q); 4158 } 4159 4160 qdisc_run_end(q); 4161 rc = NET_XMIT_SUCCESS; 4162 } else { 4163 WRITE_ONCE(q->owner, smp_processor_id()); 4164 rc = dev_qdisc_enqueue(skb, q, &to_free, txq); 4165 WRITE_ONCE(q->owner, -1); 4166 if (qdisc_run_begin(q)) { 4167 if (unlikely(contended)) { 4168 spin_unlock(&q->busylock); 4169 contended = false; 4170 } 4171 __qdisc_run(q); 4172 qdisc_run_end(q); 4173 } 4174 } 4175 spin_unlock(root_lock); 4176 if (unlikely(to_free)) 4177 kfree_skb_list_reason(to_free, 4178 tcf_get_drop_reason(to_free)); 4179 if (unlikely(contended)) 4180 spin_unlock(&q->busylock); 4181 return rc; 4182 } 4183 4184 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 4185 static void skb_update_prio(struct sk_buff *skb) 4186 { 4187 const struct netprio_map *map; 4188 const struct sock *sk; 4189 unsigned int prioidx; 4190 4191 if (skb->priority) 4192 return; 4193 map = rcu_dereference_bh(skb->dev->priomap); 4194 if (!map) 4195 return; 4196 sk = skb_to_full_sk(skb); 4197 if (!sk) 4198 return; 4199 4200 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data); 4201 4202 if (prioidx < map->priomap_len) 4203 skb->priority = map->priomap[prioidx]; 4204 } 4205 #else 4206 #define skb_update_prio(skb) 4207 #endif 4208 4209 /** 4210 * dev_loopback_xmit - loop back @skb 4211 * @net: network namespace this loopback is happening in 4212 * @sk: sk needed to be a netfilter okfn 4213 * @skb: buffer to transmit 4214 */ 4215 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb) 4216 { 4217 skb_reset_mac_header(skb); 4218 __skb_pull(skb, skb_network_offset(skb)); 4219 skb->pkt_type = PACKET_LOOPBACK; 4220 if (skb->ip_summed == CHECKSUM_NONE) 4221 skb->ip_summed = CHECKSUM_UNNECESSARY; 4222 DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb)); 4223 skb_dst_force(skb); 4224 netif_rx(skb); 4225 return 0; 4226 } 4227 EXPORT_SYMBOL(dev_loopback_xmit); 4228 4229 #ifdef CONFIG_NET_EGRESS 4230 static struct netdev_queue * 4231 netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb) 4232 { 4233 int qm = skb_get_queue_mapping(skb); 4234 4235 return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm)); 4236 } 4237 4238 #ifndef CONFIG_PREEMPT_RT 4239 static bool netdev_xmit_txqueue_skipped(void) 4240 { 4241 return __this_cpu_read(softnet_data.xmit.skip_txqueue); 4242 } 4243 4244 void netdev_xmit_skip_txqueue(bool skip) 4245 { 4246 __this_cpu_write(softnet_data.xmit.skip_txqueue, skip); 4247 } 4248 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue); 4249 4250 #else 4251 static bool netdev_xmit_txqueue_skipped(void) 4252 { 4253 return current->net_xmit.skip_txqueue; 4254 } 4255 4256 void netdev_xmit_skip_txqueue(bool skip) 4257 { 4258 current->net_xmit.skip_txqueue = skip; 4259 } 4260 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue); 4261 #endif 4262 #endif /* CONFIG_NET_EGRESS */ 4263 4264 #ifdef CONFIG_NET_XGRESS 4265 static int tc_run(struct tcx_entry *entry, struct sk_buff *skb, 4266 enum skb_drop_reason *drop_reason) 4267 { 4268 int ret = TC_ACT_UNSPEC; 4269 #ifdef CONFIG_NET_CLS_ACT 4270 struct mini_Qdisc *miniq = rcu_dereference_bh(entry->miniq); 4271 struct tcf_result res; 4272 4273 if (!miniq) 4274 return ret; 4275 4276 /* Global bypass */ 4277 if (!static_branch_likely(&tcf_sw_enabled_key)) 4278 return ret; 4279 4280 /* Block-wise bypass */ 4281 if (tcf_block_bypass_sw(miniq->block)) 4282 return ret; 4283 4284 tc_skb_cb(skb)->mru = 0; 4285 tc_skb_cb(skb)->post_ct = false; 4286 tcf_set_drop_reason(skb, *drop_reason); 4287 4288 mini_qdisc_bstats_cpu_update(miniq, skb); 4289 ret = tcf_classify(skb, miniq->block, miniq->filter_list, &res, false); 4290 /* Only tcf related quirks below. */ 4291 switch (ret) { 4292 case TC_ACT_SHOT: 4293 *drop_reason = tcf_get_drop_reason(skb); 4294 mini_qdisc_qstats_cpu_drop(miniq); 4295 break; 4296 case TC_ACT_OK: 4297 case TC_ACT_RECLASSIFY: 4298 skb->tc_index = TC_H_MIN(res.classid); 4299 break; 4300 } 4301 #endif /* CONFIG_NET_CLS_ACT */ 4302 return ret; 4303 } 4304 4305 static DEFINE_STATIC_KEY_FALSE(tcx_needed_key); 4306 4307 void tcx_inc(void) 4308 { 4309 static_branch_inc(&tcx_needed_key); 4310 } 4311 4312 void tcx_dec(void) 4313 { 4314 static_branch_dec(&tcx_needed_key); 4315 } 4316 4317 static __always_inline enum tcx_action_base 4318 tcx_run(const struct bpf_mprog_entry *entry, struct sk_buff *skb, 4319 const bool needs_mac) 4320 { 4321 const struct bpf_mprog_fp *fp; 4322 const struct bpf_prog *prog; 4323 int ret = TCX_NEXT; 4324 4325 if (needs_mac) 4326 __skb_push(skb, skb->mac_len); 4327 bpf_mprog_foreach_prog(entry, fp, prog) { 4328 bpf_compute_data_pointers(skb); 4329 ret = bpf_prog_run(prog, skb); 4330 if (ret != TCX_NEXT) 4331 break; 4332 } 4333 if (needs_mac) 4334 __skb_pull(skb, skb->mac_len); 4335 return tcx_action_code(skb, ret); 4336 } 4337 4338 static __always_inline struct sk_buff * 4339 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret, 4340 struct net_device *orig_dev, bool *another) 4341 { 4342 struct bpf_mprog_entry *entry = rcu_dereference_bh(skb->dev->tcx_ingress); 4343 enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_INGRESS; 4344 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; 4345 int sch_ret; 4346 4347 if (!entry) 4348 return skb; 4349 4350 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx); 4351 if (*pt_prev) { 4352 *ret = deliver_skb(skb, *pt_prev, orig_dev); 4353 *pt_prev = NULL; 4354 } 4355 4356 qdisc_skb_cb(skb)->pkt_len = skb->len; 4357 tcx_set_ingress(skb, true); 4358 4359 if (static_branch_unlikely(&tcx_needed_key)) { 4360 sch_ret = tcx_run(entry, skb, true); 4361 if (sch_ret != TC_ACT_UNSPEC) 4362 goto ingress_verdict; 4363 } 4364 sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason); 4365 ingress_verdict: 4366 switch (sch_ret) { 4367 case TC_ACT_REDIRECT: 4368 /* skb_mac_header check was done by BPF, so we can safely 4369 * push the L2 header back before redirecting to another 4370 * netdev. 4371 */ 4372 __skb_push(skb, skb->mac_len); 4373 if (skb_do_redirect(skb) == -EAGAIN) { 4374 __skb_pull(skb, skb->mac_len); 4375 *another = true; 4376 break; 4377 } 4378 *ret = NET_RX_SUCCESS; 4379 bpf_net_ctx_clear(bpf_net_ctx); 4380 return NULL; 4381 case TC_ACT_SHOT: 4382 kfree_skb_reason(skb, drop_reason); 4383 *ret = NET_RX_DROP; 4384 bpf_net_ctx_clear(bpf_net_ctx); 4385 return NULL; 4386 /* used by tc_run */ 4387 case TC_ACT_STOLEN: 4388 case TC_ACT_QUEUED: 4389 case TC_ACT_TRAP: 4390 consume_skb(skb); 4391 fallthrough; 4392 case TC_ACT_CONSUMED: 4393 *ret = NET_RX_SUCCESS; 4394 bpf_net_ctx_clear(bpf_net_ctx); 4395 return NULL; 4396 } 4397 bpf_net_ctx_clear(bpf_net_ctx); 4398 4399 return skb; 4400 } 4401 4402 static __always_inline struct sk_buff * 4403 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev) 4404 { 4405 struct bpf_mprog_entry *entry = rcu_dereference_bh(dev->tcx_egress); 4406 enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_EGRESS; 4407 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; 4408 int sch_ret; 4409 4410 if (!entry) 4411 return skb; 4412 4413 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx); 4414 4415 /* qdisc_skb_cb(skb)->pkt_len & tcx_set_ingress() was 4416 * already set by the caller. 4417 */ 4418 if (static_branch_unlikely(&tcx_needed_key)) { 4419 sch_ret = tcx_run(entry, skb, false); 4420 if (sch_ret != TC_ACT_UNSPEC) 4421 goto egress_verdict; 4422 } 4423 sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason); 4424 egress_verdict: 4425 switch (sch_ret) { 4426 case TC_ACT_REDIRECT: 4427 /* No need to push/pop skb's mac_header here on egress! */ 4428 skb_do_redirect(skb); 4429 *ret = NET_XMIT_SUCCESS; 4430 bpf_net_ctx_clear(bpf_net_ctx); 4431 return NULL; 4432 case TC_ACT_SHOT: 4433 kfree_skb_reason(skb, drop_reason); 4434 *ret = NET_XMIT_DROP; 4435 bpf_net_ctx_clear(bpf_net_ctx); 4436 return NULL; 4437 /* used by tc_run */ 4438 case TC_ACT_STOLEN: 4439 case TC_ACT_QUEUED: 4440 case TC_ACT_TRAP: 4441 consume_skb(skb); 4442 fallthrough; 4443 case TC_ACT_CONSUMED: 4444 *ret = NET_XMIT_SUCCESS; 4445 bpf_net_ctx_clear(bpf_net_ctx); 4446 return NULL; 4447 } 4448 bpf_net_ctx_clear(bpf_net_ctx); 4449 4450 return skb; 4451 } 4452 #else 4453 static __always_inline struct sk_buff * 4454 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret, 4455 struct net_device *orig_dev, bool *another) 4456 { 4457 return skb; 4458 } 4459 4460 static __always_inline struct sk_buff * 4461 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev) 4462 { 4463 return skb; 4464 } 4465 #endif /* CONFIG_NET_XGRESS */ 4466 4467 #ifdef CONFIG_XPS 4468 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb, 4469 struct xps_dev_maps *dev_maps, unsigned int tci) 4470 { 4471 int tc = netdev_get_prio_tc_map(dev, skb->priority); 4472 struct xps_map *map; 4473 int queue_index = -1; 4474 4475 if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids) 4476 return queue_index; 4477 4478 tci *= dev_maps->num_tc; 4479 tci += tc; 4480 4481 map = rcu_dereference(dev_maps->attr_map[tci]); 4482 if (map) { 4483 if (map->len == 1) 4484 queue_index = map->queues[0]; 4485 else 4486 queue_index = map->queues[reciprocal_scale( 4487 skb_get_hash(skb), map->len)]; 4488 if (unlikely(queue_index >= dev->real_num_tx_queues)) 4489 queue_index = -1; 4490 } 4491 return queue_index; 4492 } 4493 #endif 4494 4495 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev, 4496 struct sk_buff *skb) 4497 { 4498 #ifdef CONFIG_XPS 4499 struct xps_dev_maps *dev_maps; 4500 struct sock *sk = skb->sk; 4501 int queue_index = -1; 4502 4503 if (!static_key_false(&xps_needed)) 4504 return -1; 4505 4506 rcu_read_lock(); 4507 if (!static_key_false(&xps_rxqs_needed)) 4508 goto get_cpus_map; 4509 4510 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]); 4511 if (dev_maps) { 4512 int tci = sk_rx_queue_get(sk); 4513 4514 if (tci >= 0) 4515 queue_index = __get_xps_queue_idx(dev, skb, dev_maps, 4516 tci); 4517 } 4518 4519 get_cpus_map: 4520 if (queue_index < 0) { 4521 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]); 4522 if (dev_maps) { 4523 unsigned int tci = skb->sender_cpu - 1; 4524 4525 queue_index = __get_xps_queue_idx(dev, skb, dev_maps, 4526 tci); 4527 } 4528 } 4529 rcu_read_unlock(); 4530 4531 return queue_index; 4532 #else 4533 return -1; 4534 #endif 4535 } 4536 4537 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb, 4538 struct net_device *sb_dev) 4539 { 4540 return 0; 4541 } 4542 EXPORT_SYMBOL(dev_pick_tx_zero); 4543 4544 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb, 4545 struct net_device *sb_dev) 4546 { 4547 struct sock *sk = skb->sk; 4548 int queue_index = sk_tx_queue_get(sk); 4549 4550 sb_dev = sb_dev ? : dev; 4551 4552 if (queue_index < 0 || skb->ooo_okay || 4553 queue_index >= dev->real_num_tx_queues) { 4554 int new_index = get_xps_queue(dev, sb_dev, skb); 4555 4556 if (new_index < 0) 4557 new_index = skb_tx_hash(dev, sb_dev, skb); 4558 4559 if (queue_index != new_index && sk && 4560 sk_fullsock(sk) && 4561 rcu_access_pointer(sk->sk_dst_cache)) 4562 sk_tx_queue_set(sk, new_index); 4563 4564 queue_index = new_index; 4565 } 4566 4567 return queue_index; 4568 } 4569 EXPORT_SYMBOL(netdev_pick_tx); 4570 4571 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev, 4572 struct sk_buff *skb, 4573 struct net_device *sb_dev) 4574 { 4575 int queue_index = 0; 4576 4577 #ifdef CONFIG_XPS 4578 u32 sender_cpu = skb->sender_cpu - 1; 4579 4580 if (sender_cpu >= (u32)NR_CPUS) 4581 skb->sender_cpu = raw_smp_processor_id() + 1; 4582 #endif 4583 4584 if (dev->real_num_tx_queues != 1) { 4585 const struct net_device_ops *ops = dev->netdev_ops; 4586 4587 if (ops->ndo_select_queue) 4588 queue_index = ops->ndo_select_queue(dev, skb, sb_dev); 4589 else 4590 queue_index = netdev_pick_tx(dev, skb, sb_dev); 4591 4592 queue_index = netdev_cap_txqueue(dev, queue_index); 4593 } 4594 4595 skb_set_queue_mapping(skb, queue_index); 4596 return netdev_get_tx_queue(dev, queue_index); 4597 } 4598 4599 /** 4600 * __dev_queue_xmit() - transmit a buffer 4601 * @skb: buffer to transmit 4602 * @sb_dev: suboordinate device used for L2 forwarding offload 4603 * 4604 * Queue a buffer for transmission to a network device. The caller must 4605 * have set the device and priority and built the buffer before calling 4606 * this function. The function can be called from an interrupt. 4607 * 4608 * When calling this method, interrupts MUST be enabled. This is because 4609 * the BH enable code must have IRQs enabled so that it will not deadlock. 4610 * 4611 * Regardless of the return value, the skb is consumed, so it is currently 4612 * difficult to retry a send to this method. (You can bump the ref count 4613 * before sending to hold a reference for retry if you are careful.) 4614 * 4615 * Return: 4616 * * 0 - buffer successfully transmitted 4617 * * positive qdisc return code - NET_XMIT_DROP etc. 4618 * * negative errno - other errors 4619 */ 4620 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev) 4621 { 4622 struct net_device *dev = skb->dev; 4623 struct netdev_queue *txq = NULL; 4624 struct Qdisc *q; 4625 int rc = -ENOMEM; 4626 bool again = false; 4627 4628 skb_reset_mac_header(skb); 4629 skb_assert_len(skb); 4630 4631 if (unlikely(skb_shinfo(skb)->tx_flags & 4632 (SKBTX_SCHED_TSTAMP | SKBTX_BPF))) 4633 __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED); 4634 4635 /* Disable soft irqs for various locks below. Also 4636 * stops preemption for RCU. 4637 */ 4638 rcu_read_lock_bh(); 4639 4640 skb_update_prio(skb); 4641 4642 qdisc_pkt_len_init(skb); 4643 tcx_set_ingress(skb, false); 4644 #ifdef CONFIG_NET_EGRESS 4645 if (static_branch_unlikely(&egress_needed_key)) { 4646 if (nf_hook_egress_active()) { 4647 skb = nf_hook_egress(skb, &rc, dev); 4648 if (!skb) 4649 goto out; 4650 } 4651 4652 netdev_xmit_skip_txqueue(false); 4653 4654 nf_skip_egress(skb, true); 4655 skb = sch_handle_egress(skb, &rc, dev); 4656 if (!skb) 4657 goto out; 4658 nf_skip_egress(skb, false); 4659 4660 if (netdev_xmit_txqueue_skipped()) 4661 txq = netdev_tx_queue_mapping(dev, skb); 4662 } 4663 #endif 4664 /* If device/qdisc don't need skb->dst, release it right now while 4665 * its hot in this cpu cache. 4666 */ 4667 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 4668 skb_dst_drop(skb); 4669 else 4670 skb_dst_force(skb); 4671 4672 if (!txq) 4673 txq = netdev_core_pick_tx(dev, skb, sb_dev); 4674 4675 q = rcu_dereference_bh(txq->qdisc); 4676 4677 trace_net_dev_queue(skb); 4678 if (q->enqueue) { 4679 rc = __dev_xmit_skb(skb, q, dev, txq); 4680 goto out; 4681 } 4682 4683 /* The device has no queue. Common case for software devices: 4684 * loopback, all the sorts of tunnels... 4685 4686 * Really, it is unlikely that netif_tx_lock protection is necessary 4687 * here. (f.e. loopback and IP tunnels are clean ignoring statistics 4688 * counters.) 4689 * However, it is possible, that they rely on protection 4690 * made by us here. 4691 4692 * Check this and shot the lock. It is not prone from deadlocks. 4693 *Either shot noqueue qdisc, it is even simpler 8) 4694 */ 4695 if (dev->flags & IFF_UP) { 4696 int cpu = smp_processor_id(); /* ok because BHs are off */ 4697 4698 /* Other cpus might concurrently change txq->xmit_lock_owner 4699 * to -1 or to their cpu id, but not to our id. 4700 */ 4701 if (READ_ONCE(txq->xmit_lock_owner) != cpu) { 4702 if (dev_xmit_recursion()) 4703 goto recursion_alert; 4704 4705 skb = validate_xmit_skb(skb, dev, &again); 4706 if (!skb) 4707 goto out; 4708 4709 HARD_TX_LOCK(dev, txq, cpu); 4710 4711 if (!netif_xmit_stopped(txq)) { 4712 dev_xmit_recursion_inc(); 4713 skb = dev_hard_start_xmit(skb, dev, txq, &rc); 4714 dev_xmit_recursion_dec(); 4715 if (dev_xmit_complete(rc)) { 4716 HARD_TX_UNLOCK(dev, txq); 4717 goto out; 4718 } 4719 } 4720 HARD_TX_UNLOCK(dev, txq); 4721 net_crit_ratelimited("Virtual device %s asks to queue packet!\n", 4722 dev->name); 4723 } else { 4724 /* Recursion is detected! It is possible, 4725 * unfortunately 4726 */ 4727 recursion_alert: 4728 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n", 4729 dev->name); 4730 } 4731 } 4732 4733 rc = -ENETDOWN; 4734 rcu_read_unlock_bh(); 4735 4736 dev_core_stats_tx_dropped_inc(dev); 4737 kfree_skb_list(skb); 4738 return rc; 4739 out: 4740 rcu_read_unlock_bh(); 4741 return rc; 4742 } 4743 EXPORT_SYMBOL(__dev_queue_xmit); 4744 4745 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id) 4746 { 4747 struct net_device *dev = skb->dev; 4748 struct sk_buff *orig_skb = skb; 4749 struct netdev_queue *txq; 4750 int ret = NETDEV_TX_BUSY; 4751 bool again = false; 4752 4753 if (unlikely(!netif_running(dev) || 4754 !netif_carrier_ok(dev))) 4755 goto drop; 4756 4757 skb = validate_xmit_skb_list(skb, dev, &again); 4758 if (skb != orig_skb) 4759 goto drop; 4760 4761 skb_set_queue_mapping(skb, queue_id); 4762 txq = skb_get_tx_queue(dev, skb); 4763 4764 local_bh_disable(); 4765 4766 dev_xmit_recursion_inc(); 4767 HARD_TX_LOCK(dev, txq, smp_processor_id()); 4768 if (!netif_xmit_frozen_or_drv_stopped(txq)) 4769 ret = netdev_start_xmit(skb, dev, txq, false); 4770 HARD_TX_UNLOCK(dev, txq); 4771 dev_xmit_recursion_dec(); 4772 4773 local_bh_enable(); 4774 return ret; 4775 drop: 4776 dev_core_stats_tx_dropped_inc(dev); 4777 kfree_skb_list(skb); 4778 return NET_XMIT_DROP; 4779 } 4780 EXPORT_SYMBOL(__dev_direct_xmit); 4781 4782 /************************************************************************* 4783 * Receiver routines 4784 *************************************************************************/ 4785 static DEFINE_PER_CPU(struct task_struct *, backlog_napi); 4786 4787 int weight_p __read_mostly = 64; /* old backlog weight */ 4788 int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */ 4789 int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */ 4790 4791 /* Called with irq disabled */ 4792 static inline void ____napi_schedule(struct softnet_data *sd, 4793 struct napi_struct *napi) 4794 { 4795 struct task_struct *thread; 4796 4797 lockdep_assert_irqs_disabled(); 4798 4799 if (test_bit(NAPI_STATE_THREADED, &napi->state)) { 4800 /* Paired with smp_mb__before_atomic() in 4801 * napi_enable()/netif_set_threaded(). 4802 * Use READ_ONCE() to guarantee a complete 4803 * read on napi->thread. Only call 4804 * wake_up_process() when it's not NULL. 4805 */ 4806 thread = READ_ONCE(napi->thread); 4807 if (thread) { 4808 if (use_backlog_threads() && thread == raw_cpu_read(backlog_napi)) 4809 goto use_local_napi; 4810 4811 set_bit(NAPI_STATE_SCHED_THREADED, &napi->state); 4812 wake_up_process(thread); 4813 return; 4814 } 4815 } 4816 4817 use_local_napi: 4818 DEBUG_NET_WARN_ON_ONCE(!list_empty(&napi->poll_list)); 4819 list_add_tail(&napi->poll_list, &sd->poll_list); 4820 WRITE_ONCE(napi->list_owner, smp_processor_id()); 4821 /* If not called from net_rx_action() 4822 * we have to raise NET_RX_SOFTIRQ. 4823 */ 4824 if (!sd->in_net_rx_action) 4825 raise_softirq_irqoff(NET_RX_SOFTIRQ); 4826 } 4827 4828 #ifdef CONFIG_RPS 4829 4830 struct static_key_false rps_needed __read_mostly; 4831 EXPORT_SYMBOL(rps_needed); 4832 struct static_key_false rfs_needed __read_mostly; 4833 EXPORT_SYMBOL(rfs_needed); 4834 4835 static u32 rfs_slot(u32 hash, const struct rps_dev_flow_table *flow_table) 4836 { 4837 return hash_32(hash, flow_table->log); 4838 } 4839 4840 static struct rps_dev_flow * 4841 set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 4842 struct rps_dev_flow *rflow, u16 next_cpu) 4843 { 4844 if (next_cpu < nr_cpu_ids) { 4845 u32 head; 4846 #ifdef CONFIG_RFS_ACCEL 4847 struct netdev_rx_queue *rxqueue; 4848 struct rps_dev_flow_table *flow_table; 4849 struct rps_dev_flow *old_rflow; 4850 u16 rxq_index; 4851 u32 flow_id; 4852 int rc; 4853 4854 /* Should we steer this flow to a different hardware queue? */ 4855 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 4856 !(dev->features & NETIF_F_NTUPLE)) 4857 goto out; 4858 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 4859 if (rxq_index == skb_get_rx_queue(skb)) 4860 goto out; 4861 4862 rxqueue = dev->_rx + rxq_index; 4863 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4864 if (!flow_table) 4865 goto out; 4866 flow_id = rfs_slot(skb_get_hash(skb), flow_table); 4867 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 4868 rxq_index, flow_id); 4869 if (rc < 0) 4870 goto out; 4871 old_rflow = rflow; 4872 rflow = &flow_table->flows[flow_id]; 4873 WRITE_ONCE(rflow->filter, rc); 4874 if (old_rflow->filter == rc) 4875 WRITE_ONCE(old_rflow->filter, RPS_NO_FILTER); 4876 out: 4877 #endif 4878 head = READ_ONCE(per_cpu(softnet_data, next_cpu).input_queue_head); 4879 rps_input_queue_tail_save(&rflow->last_qtail, head); 4880 } 4881 4882 WRITE_ONCE(rflow->cpu, next_cpu); 4883 return rflow; 4884 } 4885 4886 /* 4887 * get_rps_cpu is called from netif_receive_skb and returns the target 4888 * CPU from the RPS map of the receiving queue for a given skb. 4889 * rcu_read_lock must be held on entry. 4890 */ 4891 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 4892 struct rps_dev_flow **rflowp) 4893 { 4894 const struct rps_sock_flow_table *sock_flow_table; 4895 struct netdev_rx_queue *rxqueue = dev->_rx; 4896 struct rps_dev_flow_table *flow_table; 4897 struct rps_map *map; 4898 int cpu = -1; 4899 u32 tcpu; 4900 u32 hash; 4901 4902 if (skb_rx_queue_recorded(skb)) { 4903 u16 index = skb_get_rx_queue(skb); 4904 4905 if (unlikely(index >= dev->real_num_rx_queues)) { 4906 WARN_ONCE(dev->real_num_rx_queues > 1, 4907 "%s received packet on queue %u, but number " 4908 "of RX queues is %u\n", 4909 dev->name, index, dev->real_num_rx_queues); 4910 goto done; 4911 } 4912 rxqueue += index; 4913 } 4914 4915 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */ 4916 4917 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4918 map = rcu_dereference(rxqueue->rps_map); 4919 if (!flow_table && !map) 4920 goto done; 4921 4922 skb_reset_network_header(skb); 4923 hash = skb_get_hash(skb); 4924 if (!hash) 4925 goto done; 4926 4927 sock_flow_table = rcu_dereference(net_hotdata.rps_sock_flow_table); 4928 if (flow_table && sock_flow_table) { 4929 struct rps_dev_flow *rflow; 4930 u32 next_cpu; 4931 u32 ident; 4932 4933 /* First check into global flow table if there is a match. 4934 * This READ_ONCE() pairs with WRITE_ONCE() from rps_record_sock_flow(). 4935 */ 4936 ident = READ_ONCE(sock_flow_table->ents[hash & sock_flow_table->mask]); 4937 if ((ident ^ hash) & ~net_hotdata.rps_cpu_mask) 4938 goto try_rps; 4939 4940 next_cpu = ident & net_hotdata.rps_cpu_mask; 4941 4942 /* OK, now we know there is a match, 4943 * we can look at the local (per receive queue) flow table 4944 */ 4945 rflow = &flow_table->flows[rfs_slot(hash, flow_table)]; 4946 tcpu = rflow->cpu; 4947 4948 /* 4949 * If the desired CPU (where last recvmsg was done) is 4950 * different from current CPU (one in the rx-queue flow 4951 * table entry), switch if one of the following holds: 4952 * - Current CPU is unset (>= nr_cpu_ids). 4953 * - Current CPU is offline. 4954 * - The current CPU's queue tail has advanced beyond the 4955 * last packet that was enqueued using this table entry. 4956 * This guarantees that all previous packets for the flow 4957 * have been dequeued, thus preserving in order delivery. 4958 */ 4959 if (unlikely(tcpu != next_cpu) && 4960 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) || 4961 ((int)(READ_ONCE(per_cpu(softnet_data, tcpu).input_queue_head) - 4962 rflow->last_qtail)) >= 0)) { 4963 tcpu = next_cpu; 4964 rflow = set_rps_cpu(dev, skb, rflow, next_cpu); 4965 } 4966 4967 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) { 4968 *rflowp = rflow; 4969 cpu = tcpu; 4970 goto done; 4971 } 4972 } 4973 4974 try_rps: 4975 4976 if (map) { 4977 tcpu = map->cpus[reciprocal_scale(hash, map->len)]; 4978 if (cpu_online(tcpu)) { 4979 cpu = tcpu; 4980 goto done; 4981 } 4982 } 4983 4984 done: 4985 return cpu; 4986 } 4987 4988 #ifdef CONFIG_RFS_ACCEL 4989 4990 /** 4991 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 4992 * @dev: Device on which the filter was set 4993 * @rxq_index: RX queue index 4994 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 4995 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 4996 * 4997 * Drivers that implement ndo_rx_flow_steer() should periodically call 4998 * this function for each installed filter and remove the filters for 4999 * which it returns %true. 5000 */ 5001 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 5002 u32 flow_id, u16 filter_id) 5003 { 5004 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 5005 struct rps_dev_flow_table *flow_table; 5006 struct rps_dev_flow *rflow; 5007 bool expire = true; 5008 unsigned int cpu; 5009 5010 rcu_read_lock(); 5011 flow_table = rcu_dereference(rxqueue->rps_flow_table); 5012 if (flow_table && flow_id < (1UL << flow_table->log)) { 5013 rflow = &flow_table->flows[flow_id]; 5014 cpu = READ_ONCE(rflow->cpu); 5015 if (READ_ONCE(rflow->filter) == filter_id && cpu < nr_cpu_ids && 5016 ((int)(READ_ONCE(per_cpu(softnet_data, cpu).input_queue_head) - 5017 READ_ONCE(rflow->last_qtail)) < 5018 (int)(10 << flow_table->log))) 5019 expire = false; 5020 } 5021 rcu_read_unlock(); 5022 return expire; 5023 } 5024 EXPORT_SYMBOL(rps_may_expire_flow); 5025 5026 #endif /* CONFIG_RFS_ACCEL */ 5027 5028 /* Called from hardirq (IPI) context */ 5029 static void rps_trigger_softirq(void *data) 5030 { 5031 struct softnet_data *sd = data; 5032 5033 ____napi_schedule(sd, &sd->backlog); 5034 /* Pairs with READ_ONCE() in softnet_seq_show() */ 5035 WRITE_ONCE(sd->received_rps, sd->received_rps + 1); 5036 } 5037 5038 #endif /* CONFIG_RPS */ 5039 5040 /* Called from hardirq (IPI) context */ 5041 static void trigger_rx_softirq(void *data) 5042 { 5043 struct softnet_data *sd = data; 5044 5045 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 5046 smp_store_release(&sd->defer_ipi_scheduled, 0); 5047 } 5048 5049 /* 5050 * After we queued a packet into sd->input_pkt_queue, 5051 * we need to make sure this queue is serviced soon. 5052 * 5053 * - If this is another cpu queue, link it to our rps_ipi_list, 5054 * and make sure we will process rps_ipi_list from net_rx_action(). 5055 * 5056 * - If this is our own queue, NAPI schedule our backlog. 5057 * Note that this also raises NET_RX_SOFTIRQ. 5058 */ 5059 static void napi_schedule_rps(struct softnet_data *sd) 5060 { 5061 struct softnet_data *mysd = this_cpu_ptr(&softnet_data); 5062 5063 #ifdef CONFIG_RPS 5064 if (sd != mysd) { 5065 if (use_backlog_threads()) { 5066 __napi_schedule_irqoff(&sd->backlog); 5067 return; 5068 } 5069 5070 sd->rps_ipi_next = mysd->rps_ipi_list; 5071 mysd->rps_ipi_list = sd; 5072 5073 /* If not called from net_rx_action() or napi_threaded_poll() 5074 * we have to raise NET_RX_SOFTIRQ. 5075 */ 5076 if (!mysd->in_net_rx_action && !mysd->in_napi_threaded_poll) 5077 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 5078 return; 5079 } 5080 #endif /* CONFIG_RPS */ 5081 __napi_schedule_irqoff(&mysd->backlog); 5082 } 5083 5084 void kick_defer_list_purge(struct softnet_data *sd, unsigned int cpu) 5085 { 5086 unsigned long flags; 5087 5088 if (use_backlog_threads()) { 5089 backlog_lock_irq_save(sd, &flags); 5090 5091 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) 5092 __napi_schedule_irqoff(&sd->backlog); 5093 5094 backlog_unlock_irq_restore(sd, &flags); 5095 5096 } else if (!cmpxchg(&sd->defer_ipi_scheduled, 0, 1)) { 5097 smp_call_function_single_async(cpu, &sd->defer_csd); 5098 } 5099 } 5100 5101 #ifdef CONFIG_NET_FLOW_LIMIT 5102 int netdev_flow_limit_table_len __read_mostly = (1 << 12); 5103 #endif 5104 5105 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen) 5106 { 5107 #ifdef CONFIG_NET_FLOW_LIMIT 5108 struct sd_flow_limit *fl; 5109 struct softnet_data *sd; 5110 unsigned int old_flow, new_flow; 5111 5112 if (qlen < (READ_ONCE(net_hotdata.max_backlog) >> 1)) 5113 return false; 5114 5115 sd = this_cpu_ptr(&softnet_data); 5116 5117 rcu_read_lock(); 5118 fl = rcu_dereference(sd->flow_limit); 5119 if (fl) { 5120 new_flow = hash_32(skb_get_hash(skb), fl->log_buckets); 5121 old_flow = fl->history[fl->history_head]; 5122 fl->history[fl->history_head] = new_flow; 5123 5124 fl->history_head++; 5125 fl->history_head &= FLOW_LIMIT_HISTORY - 1; 5126 5127 if (likely(fl->buckets[old_flow])) 5128 fl->buckets[old_flow]--; 5129 5130 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) { 5131 /* Pairs with READ_ONCE() in softnet_seq_show() */ 5132 WRITE_ONCE(fl->count, fl->count + 1); 5133 rcu_read_unlock(); 5134 return true; 5135 } 5136 } 5137 rcu_read_unlock(); 5138 #endif 5139 return false; 5140 } 5141 5142 /* 5143 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 5144 * queue (may be a remote CPU queue). 5145 */ 5146 static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 5147 unsigned int *qtail) 5148 { 5149 enum skb_drop_reason reason; 5150 struct softnet_data *sd; 5151 unsigned long flags; 5152 unsigned int qlen; 5153 int max_backlog; 5154 u32 tail; 5155 5156 reason = SKB_DROP_REASON_DEV_READY; 5157 if (!netif_running(skb->dev)) 5158 goto bad_dev; 5159 5160 reason = SKB_DROP_REASON_CPU_BACKLOG; 5161 sd = &per_cpu(softnet_data, cpu); 5162 5163 qlen = skb_queue_len_lockless(&sd->input_pkt_queue); 5164 max_backlog = READ_ONCE(net_hotdata.max_backlog); 5165 if (unlikely(qlen > max_backlog)) 5166 goto cpu_backlog_drop; 5167 backlog_lock_irq_save(sd, &flags); 5168 qlen = skb_queue_len(&sd->input_pkt_queue); 5169 if (qlen <= max_backlog && !skb_flow_limit(skb, qlen)) { 5170 if (!qlen) { 5171 /* Schedule NAPI for backlog device. We can use 5172 * non atomic operation as we own the queue lock. 5173 */ 5174 if (!__test_and_set_bit(NAPI_STATE_SCHED, 5175 &sd->backlog.state)) 5176 napi_schedule_rps(sd); 5177 } 5178 __skb_queue_tail(&sd->input_pkt_queue, skb); 5179 tail = rps_input_queue_tail_incr(sd); 5180 backlog_unlock_irq_restore(sd, &flags); 5181 5182 /* save the tail outside of the critical section */ 5183 rps_input_queue_tail_save(qtail, tail); 5184 return NET_RX_SUCCESS; 5185 } 5186 5187 backlog_unlock_irq_restore(sd, &flags); 5188 5189 cpu_backlog_drop: 5190 atomic_inc(&sd->dropped); 5191 bad_dev: 5192 dev_core_stats_rx_dropped_inc(skb->dev); 5193 kfree_skb_reason(skb, reason); 5194 return NET_RX_DROP; 5195 } 5196 5197 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb) 5198 { 5199 struct net_device *dev = skb->dev; 5200 struct netdev_rx_queue *rxqueue; 5201 5202 rxqueue = dev->_rx; 5203 5204 if (skb_rx_queue_recorded(skb)) { 5205 u16 index = skb_get_rx_queue(skb); 5206 5207 if (unlikely(index >= dev->real_num_rx_queues)) { 5208 WARN_ONCE(dev->real_num_rx_queues > 1, 5209 "%s received packet on queue %u, but number " 5210 "of RX queues is %u\n", 5211 dev->name, index, dev->real_num_rx_queues); 5212 5213 return rxqueue; /* Return first rxqueue */ 5214 } 5215 rxqueue += index; 5216 } 5217 return rxqueue; 5218 } 5219 5220 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp, 5221 const struct bpf_prog *xdp_prog) 5222 { 5223 void *orig_data, *orig_data_end, *hard_start; 5224 struct netdev_rx_queue *rxqueue; 5225 bool orig_bcast, orig_host; 5226 u32 mac_len, frame_sz; 5227 __be16 orig_eth_type; 5228 struct ethhdr *eth; 5229 u32 metalen, act; 5230 int off; 5231 5232 /* The XDP program wants to see the packet starting at the MAC 5233 * header. 5234 */ 5235 mac_len = skb->data - skb_mac_header(skb); 5236 hard_start = skb->data - skb_headroom(skb); 5237 5238 /* SKB "head" area always have tailroom for skb_shared_info */ 5239 frame_sz = (void *)skb_end_pointer(skb) - hard_start; 5240 frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 5241 5242 rxqueue = netif_get_rxqueue(skb); 5243 xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq); 5244 xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len, 5245 skb_headlen(skb) + mac_len, true); 5246 if (skb_is_nonlinear(skb)) { 5247 skb_shinfo(skb)->xdp_frags_size = skb->data_len; 5248 xdp_buff_set_frags_flag(xdp); 5249 } else { 5250 xdp_buff_clear_frags_flag(xdp); 5251 } 5252 5253 orig_data_end = xdp->data_end; 5254 orig_data = xdp->data; 5255 eth = (struct ethhdr *)xdp->data; 5256 orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr); 5257 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest); 5258 orig_eth_type = eth->h_proto; 5259 5260 act = bpf_prog_run_xdp(xdp_prog, xdp); 5261 5262 /* check if bpf_xdp_adjust_head was used */ 5263 off = xdp->data - orig_data; 5264 if (off) { 5265 if (off > 0) 5266 __skb_pull(skb, off); 5267 else if (off < 0) 5268 __skb_push(skb, -off); 5269 5270 skb->mac_header += off; 5271 skb_reset_network_header(skb); 5272 } 5273 5274 /* check if bpf_xdp_adjust_tail was used */ 5275 off = xdp->data_end - orig_data_end; 5276 if (off != 0) { 5277 skb_set_tail_pointer(skb, xdp->data_end - xdp->data); 5278 skb->len += off; /* positive on grow, negative on shrink */ 5279 } 5280 5281 /* XDP frag metadata (e.g. nr_frags) are updated in eBPF helpers 5282 * (e.g. bpf_xdp_adjust_tail), we need to update data_len here. 5283 */ 5284 if (xdp_buff_has_frags(xdp)) 5285 skb->data_len = skb_shinfo(skb)->xdp_frags_size; 5286 else 5287 skb->data_len = 0; 5288 5289 /* check if XDP changed eth hdr such SKB needs update */ 5290 eth = (struct ethhdr *)xdp->data; 5291 if ((orig_eth_type != eth->h_proto) || 5292 (orig_host != ether_addr_equal_64bits(eth->h_dest, 5293 skb->dev->dev_addr)) || 5294 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) { 5295 __skb_push(skb, ETH_HLEN); 5296 skb->pkt_type = PACKET_HOST; 5297 skb->protocol = eth_type_trans(skb, skb->dev); 5298 } 5299 5300 /* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull 5301 * before calling us again on redirect path. We do not call do_redirect 5302 * as we leave that up to the caller. 5303 * 5304 * Caller is responsible for managing lifetime of skb (i.e. calling 5305 * kfree_skb in response to actions it cannot handle/XDP_DROP). 5306 */ 5307 switch (act) { 5308 case XDP_REDIRECT: 5309 case XDP_TX: 5310 __skb_push(skb, mac_len); 5311 break; 5312 case XDP_PASS: 5313 metalen = xdp->data - xdp->data_meta; 5314 if (metalen) 5315 skb_metadata_set(skb, metalen); 5316 break; 5317 } 5318 5319 return act; 5320 } 5321 5322 static int 5323 netif_skb_check_for_xdp(struct sk_buff **pskb, const struct bpf_prog *prog) 5324 { 5325 struct sk_buff *skb = *pskb; 5326 int err, hroom, troom; 5327 5328 local_lock_nested_bh(&system_page_pool.bh_lock); 5329 err = skb_cow_data_for_xdp(this_cpu_read(system_page_pool.pool), pskb, prog); 5330 local_unlock_nested_bh(&system_page_pool.bh_lock); 5331 if (!err) 5332 return 0; 5333 5334 /* In case we have to go down the path and also linearize, 5335 * then lets do the pskb_expand_head() work just once here. 5336 */ 5337 hroom = XDP_PACKET_HEADROOM - skb_headroom(skb); 5338 troom = skb->tail + skb->data_len - skb->end; 5339 err = pskb_expand_head(skb, 5340 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0, 5341 troom > 0 ? troom + 128 : 0, GFP_ATOMIC); 5342 if (err) 5343 return err; 5344 5345 return skb_linearize(skb); 5346 } 5347 5348 static u32 netif_receive_generic_xdp(struct sk_buff **pskb, 5349 struct xdp_buff *xdp, 5350 const struct bpf_prog *xdp_prog) 5351 { 5352 struct sk_buff *skb = *pskb; 5353 u32 mac_len, act = XDP_DROP; 5354 5355 /* Reinjected packets coming from act_mirred or similar should 5356 * not get XDP generic processing. 5357 */ 5358 if (skb_is_redirected(skb)) 5359 return XDP_PASS; 5360 5361 /* XDP packets must have sufficient headroom of XDP_PACKET_HEADROOM 5362 * bytes. This is the guarantee that also native XDP provides, 5363 * thus we need to do it here as well. 5364 */ 5365 mac_len = skb->data - skb_mac_header(skb); 5366 __skb_push(skb, mac_len); 5367 5368 if (skb_cloned(skb) || skb_is_nonlinear(skb) || 5369 skb_headroom(skb) < XDP_PACKET_HEADROOM) { 5370 if (netif_skb_check_for_xdp(pskb, xdp_prog)) 5371 goto do_drop; 5372 } 5373 5374 __skb_pull(*pskb, mac_len); 5375 5376 act = bpf_prog_run_generic_xdp(*pskb, xdp, xdp_prog); 5377 switch (act) { 5378 case XDP_REDIRECT: 5379 case XDP_TX: 5380 case XDP_PASS: 5381 break; 5382 default: 5383 bpf_warn_invalid_xdp_action((*pskb)->dev, xdp_prog, act); 5384 fallthrough; 5385 case XDP_ABORTED: 5386 trace_xdp_exception((*pskb)->dev, xdp_prog, act); 5387 fallthrough; 5388 case XDP_DROP: 5389 do_drop: 5390 kfree_skb(*pskb); 5391 break; 5392 } 5393 5394 return act; 5395 } 5396 5397 /* When doing generic XDP we have to bypass the qdisc layer and the 5398 * network taps in order to match in-driver-XDP behavior. This also means 5399 * that XDP packets are able to starve other packets going through a qdisc, 5400 * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX 5401 * queues, so they do not have this starvation issue. 5402 */ 5403 void generic_xdp_tx(struct sk_buff *skb, const struct bpf_prog *xdp_prog) 5404 { 5405 struct net_device *dev = skb->dev; 5406 struct netdev_queue *txq; 5407 bool free_skb = true; 5408 int cpu, rc; 5409 5410 txq = netdev_core_pick_tx(dev, skb, NULL); 5411 cpu = smp_processor_id(); 5412 HARD_TX_LOCK(dev, txq, cpu); 5413 if (!netif_xmit_frozen_or_drv_stopped(txq)) { 5414 rc = netdev_start_xmit(skb, dev, txq, 0); 5415 if (dev_xmit_complete(rc)) 5416 free_skb = false; 5417 } 5418 HARD_TX_UNLOCK(dev, txq); 5419 if (free_skb) { 5420 trace_xdp_exception(dev, xdp_prog, XDP_TX); 5421 dev_core_stats_tx_dropped_inc(dev); 5422 kfree_skb(skb); 5423 } 5424 } 5425 5426 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key); 5427 5428 int do_xdp_generic(const struct bpf_prog *xdp_prog, struct sk_buff **pskb) 5429 { 5430 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; 5431 5432 if (xdp_prog) { 5433 struct xdp_buff xdp; 5434 u32 act; 5435 int err; 5436 5437 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx); 5438 act = netif_receive_generic_xdp(pskb, &xdp, xdp_prog); 5439 if (act != XDP_PASS) { 5440 switch (act) { 5441 case XDP_REDIRECT: 5442 err = xdp_do_generic_redirect((*pskb)->dev, *pskb, 5443 &xdp, xdp_prog); 5444 if (err) 5445 goto out_redir; 5446 break; 5447 case XDP_TX: 5448 generic_xdp_tx(*pskb, xdp_prog); 5449 break; 5450 } 5451 bpf_net_ctx_clear(bpf_net_ctx); 5452 return XDP_DROP; 5453 } 5454 bpf_net_ctx_clear(bpf_net_ctx); 5455 } 5456 return XDP_PASS; 5457 out_redir: 5458 bpf_net_ctx_clear(bpf_net_ctx); 5459 kfree_skb_reason(*pskb, SKB_DROP_REASON_XDP); 5460 return XDP_DROP; 5461 } 5462 EXPORT_SYMBOL_GPL(do_xdp_generic); 5463 5464 static int netif_rx_internal(struct sk_buff *skb) 5465 { 5466 int ret; 5467 5468 net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb); 5469 5470 trace_netif_rx(skb); 5471 5472 #ifdef CONFIG_RPS 5473 if (static_branch_unlikely(&rps_needed)) { 5474 struct rps_dev_flow voidflow, *rflow = &voidflow; 5475 int cpu; 5476 5477 rcu_read_lock(); 5478 5479 cpu = get_rps_cpu(skb->dev, skb, &rflow); 5480 if (cpu < 0) 5481 cpu = smp_processor_id(); 5482 5483 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 5484 5485 rcu_read_unlock(); 5486 } else 5487 #endif 5488 { 5489 unsigned int qtail; 5490 5491 ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail); 5492 } 5493 return ret; 5494 } 5495 5496 /** 5497 * __netif_rx - Slightly optimized version of netif_rx 5498 * @skb: buffer to post 5499 * 5500 * This behaves as netif_rx except that it does not disable bottom halves. 5501 * As a result this function may only be invoked from the interrupt context 5502 * (either hard or soft interrupt). 5503 */ 5504 int __netif_rx(struct sk_buff *skb) 5505 { 5506 int ret; 5507 5508 lockdep_assert_once(hardirq_count() | softirq_count()); 5509 5510 trace_netif_rx_entry(skb); 5511 ret = netif_rx_internal(skb); 5512 trace_netif_rx_exit(ret); 5513 return ret; 5514 } 5515 EXPORT_SYMBOL(__netif_rx); 5516 5517 /** 5518 * netif_rx - post buffer to the network code 5519 * @skb: buffer to post 5520 * 5521 * This function receives a packet from a device driver and queues it for 5522 * the upper (protocol) levels to process via the backlog NAPI device. It 5523 * always succeeds. The buffer may be dropped during processing for 5524 * congestion control or by the protocol layers. 5525 * The network buffer is passed via the backlog NAPI device. Modern NIC 5526 * driver should use NAPI and GRO. 5527 * This function can used from interrupt and from process context. The 5528 * caller from process context must not disable interrupts before invoking 5529 * this function. 5530 * 5531 * return values: 5532 * NET_RX_SUCCESS (no congestion) 5533 * NET_RX_DROP (packet was dropped) 5534 * 5535 */ 5536 int netif_rx(struct sk_buff *skb) 5537 { 5538 bool need_bh_off = !(hardirq_count() | softirq_count()); 5539 int ret; 5540 5541 if (need_bh_off) 5542 local_bh_disable(); 5543 trace_netif_rx_entry(skb); 5544 ret = netif_rx_internal(skb); 5545 trace_netif_rx_exit(ret); 5546 if (need_bh_off) 5547 local_bh_enable(); 5548 return ret; 5549 } 5550 EXPORT_SYMBOL(netif_rx); 5551 5552 static __latent_entropy void net_tx_action(void) 5553 { 5554 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 5555 5556 if (sd->completion_queue) { 5557 struct sk_buff *clist; 5558 5559 local_irq_disable(); 5560 clist = sd->completion_queue; 5561 sd->completion_queue = NULL; 5562 local_irq_enable(); 5563 5564 while (clist) { 5565 struct sk_buff *skb = clist; 5566 5567 clist = clist->next; 5568 5569 WARN_ON(refcount_read(&skb->users)); 5570 if (likely(get_kfree_skb_cb(skb)->reason == SKB_CONSUMED)) 5571 trace_consume_skb(skb, net_tx_action); 5572 else 5573 trace_kfree_skb(skb, net_tx_action, 5574 get_kfree_skb_cb(skb)->reason, NULL); 5575 5576 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) 5577 __kfree_skb(skb); 5578 else 5579 __napi_kfree_skb(skb, 5580 get_kfree_skb_cb(skb)->reason); 5581 } 5582 } 5583 5584 if (sd->output_queue) { 5585 struct Qdisc *head; 5586 5587 local_irq_disable(); 5588 head = sd->output_queue; 5589 sd->output_queue = NULL; 5590 sd->output_queue_tailp = &sd->output_queue; 5591 local_irq_enable(); 5592 5593 rcu_read_lock(); 5594 5595 while (head) { 5596 struct Qdisc *q = head; 5597 spinlock_t *root_lock = NULL; 5598 5599 head = head->next_sched; 5600 5601 /* We need to make sure head->next_sched is read 5602 * before clearing __QDISC_STATE_SCHED 5603 */ 5604 smp_mb__before_atomic(); 5605 5606 if (!(q->flags & TCQ_F_NOLOCK)) { 5607 root_lock = qdisc_lock(q); 5608 spin_lock(root_lock); 5609 } else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, 5610 &q->state))) { 5611 /* There is a synchronize_net() between 5612 * STATE_DEACTIVATED flag being set and 5613 * qdisc_reset()/some_qdisc_is_busy() in 5614 * dev_deactivate(), so we can safely bail out 5615 * early here to avoid data race between 5616 * qdisc_deactivate() and some_qdisc_is_busy() 5617 * for lockless qdisc. 5618 */ 5619 clear_bit(__QDISC_STATE_SCHED, &q->state); 5620 continue; 5621 } 5622 5623 clear_bit(__QDISC_STATE_SCHED, &q->state); 5624 qdisc_run(q); 5625 if (root_lock) 5626 spin_unlock(root_lock); 5627 } 5628 5629 rcu_read_unlock(); 5630 } 5631 5632 xfrm_dev_backlog(sd); 5633 } 5634 5635 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE) 5636 /* This hook is defined here for ATM LANE */ 5637 int (*br_fdb_test_addr_hook)(struct net_device *dev, 5638 unsigned char *addr) __read_mostly; 5639 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 5640 #endif 5641 5642 /** 5643 * netdev_is_rx_handler_busy - check if receive handler is registered 5644 * @dev: device to check 5645 * 5646 * Check if a receive handler is already registered for a given device. 5647 * Return true if there one. 5648 * 5649 * The caller must hold the rtnl_mutex. 5650 */ 5651 bool netdev_is_rx_handler_busy(struct net_device *dev) 5652 { 5653 ASSERT_RTNL(); 5654 return dev && rtnl_dereference(dev->rx_handler); 5655 } 5656 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy); 5657 5658 /** 5659 * netdev_rx_handler_register - register receive handler 5660 * @dev: device to register a handler for 5661 * @rx_handler: receive handler to register 5662 * @rx_handler_data: data pointer that is used by rx handler 5663 * 5664 * Register a receive handler for a device. This handler will then be 5665 * called from __netif_receive_skb. A negative errno code is returned 5666 * on a failure. 5667 * 5668 * The caller must hold the rtnl_mutex. 5669 * 5670 * For a general description of rx_handler, see enum rx_handler_result. 5671 */ 5672 int netdev_rx_handler_register(struct net_device *dev, 5673 rx_handler_func_t *rx_handler, 5674 void *rx_handler_data) 5675 { 5676 if (netdev_is_rx_handler_busy(dev)) 5677 return -EBUSY; 5678 5679 if (dev->priv_flags & IFF_NO_RX_HANDLER) 5680 return -EINVAL; 5681 5682 /* Note: rx_handler_data must be set before rx_handler */ 5683 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 5684 rcu_assign_pointer(dev->rx_handler, rx_handler); 5685 5686 return 0; 5687 } 5688 EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 5689 5690 /** 5691 * netdev_rx_handler_unregister - unregister receive handler 5692 * @dev: device to unregister a handler from 5693 * 5694 * Unregister a receive handler from a device. 5695 * 5696 * The caller must hold the rtnl_mutex. 5697 */ 5698 void netdev_rx_handler_unregister(struct net_device *dev) 5699 { 5700 5701 ASSERT_RTNL(); 5702 RCU_INIT_POINTER(dev->rx_handler, NULL); 5703 /* a reader seeing a non NULL rx_handler in a rcu_read_lock() 5704 * section has a guarantee to see a non NULL rx_handler_data 5705 * as well. 5706 */ 5707 synchronize_net(); 5708 RCU_INIT_POINTER(dev->rx_handler_data, NULL); 5709 } 5710 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 5711 5712 /* 5713 * Limit the use of PFMEMALLOC reserves to those protocols that implement 5714 * the special handling of PFMEMALLOC skbs. 5715 */ 5716 static bool skb_pfmemalloc_protocol(struct sk_buff *skb) 5717 { 5718 switch (skb->protocol) { 5719 case htons(ETH_P_ARP): 5720 case htons(ETH_P_IP): 5721 case htons(ETH_P_IPV6): 5722 case htons(ETH_P_8021Q): 5723 case htons(ETH_P_8021AD): 5724 return true; 5725 default: 5726 return false; 5727 } 5728 } 5729 5730 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev, 5731 int *ret, struct net_device *orig_dev) 5732 { 5733 if (nf_hook_ingress_active(skb)) { 5734 int ingress_retval; 5735 5736 if (*pt_prev) { 5737 *ret = deliver_skb(skb, *pt_prev, orig_dev); 5738 *pt_prev = NULL; 5739 } 5740 5741 rcu_read_lock(); 5742 ingress_retval = nf_hook_ingress(skb); 5743 rcu_read_unlock(); 5744 return ingress_retval; 5745 } 5746 return 0; 5747 } 5748 5749 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc, 5750 struct packet_type **ppt_prev) 5751 { 5752 enum skb_drop_reason drop_reason = SKB_DROP_REASON_UNHANDLED_PROTO; 5753 struct packet_type *ptype, *pt_prev; 5754 rx_handler_func_t *rx_handler; 5755 struct sk_buff *skb = *pskb; 5756 struct net_device *orig_dev; 5757 bool deliver_exact = false; 5758 int ret = NET_RX_DROP; 5759 __be16 type; 5760 5761 net_timestamp_check(!READ_ONCE(net_hotdata.tstamp_prequeue), skb); 5762 5763 trace_netif_receive_skb(skb); 5764 5765 orig_dev = skb->dev; 5766 5767 skb_reset_network_header(skb); 5768 #if !defined(CONFIG_DEBUG_NET) 5769 /* We plan to no longer reset the transport header here. 5770 * Give some time to fuzzers and dev build to catch bugs 5771 * in network stacks. 5772 */ 5773 if (!skb_transport_header_was_set(skb)) 5774 skb_reset_transport_header(skb); 5775 #endif 5776 skb_reset_mac_len(skb); 5777 5778 pt_prev = NULL; 5779 5780 another_round: 5781 skb->skb_iif = skb->dev->ifindex; 5782 5783 __this_cpu_inc(softnet_data.processed); 5784 5785 if (static_branch_unlikely(&generic_xdp_needed_key)) { 5786 int ret2; 5787 5788 migrate_disable(); 5789 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), 5790 &skb); 5791 migrate_enable(); 5792 5793 if (ret2 != XDP_PASS) { 5794 ret = NET_RX_DROP; 5795 goto out; 5796 } 5797 } 5798 5799 if (eth_type_vlan(skb->protocol)) { 5800 skb = skb_vlan_untag(skb); 5801 if (unlikely(!skb)) 5802 goto out; 5803 } 5804 5805 if (skb_skip_tc_classify(skb)) 5806 goto skip_classify; 5807 5808 if (pfmemalloc) 5809 goto skip_taps; 5810 5811 list_for_each_entry_rcu(ptype, &dev_net_rcu(skb->dev)->ptype_all, 5812 list) { 5813 if (pt_prev) 5814 ret = deliver_skb(skb, pt_prev, orig_dev); 5815 pt_prev = ptype; 5816 } 5817 5818 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) { 5819 if (pt_prev) 5820 ret = deliver_skb(skb, pt_prev, orig_dev); 5821 pt_prev = ptype; 5822 } 5823 5824 skip_taps: 5825 #ifdef CONFIG_NET_INGRESS 5826 if (static_branch_unlikely(&ingress_needed_key)) { 5827 bool another = false; 5828 5829 nf_skip_egress(skb, true); 5830 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev, 5831 &another); 5832 if (another) 5833 goto another_round; 5834 if (!skb) 5835 goto out; 5836 5837 nf_skip_egress(skb, false); 5838 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0) 5839 goto out; 5840 } 5841 #endif 5842 skb_reset_redirect(skb); 5843 skip_classify: 5844 if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) { 5845 drop_reason = SKB_DROP_REASON_PFMEMALLOC; 5846 goto drop; 5847 } 5848 5849 if (skb_vlan_tag_present(skb)) { 5850 if (pt_prev) { 5851 ret = deliver_skb(skb, pt_prev, orig_dev); 5852 pt_prev = NULL; 5853 } 5854 if (vlan_do_receive(&skb)) 5855 goto another_round; 5856 else if (unlikely(!skb)) 5857 goto out; 5858 } 5859 5860 rx_handler = rcu_dereference(skb->dev->rx_handler); 5861 if (rx_handler) { 5862 if (pt_prev) { 5863 ret = deliver_skb(skb, pt_prev, orig_dev); 5864 pt_prev = NULL; 5865 } 5866 switch (rx_handler(&skb)) { 5867 case RX_HANDLER_CONSUMED: 5868 ret = NET_RX_SUCCESS; 5869 goto out; 5870 case RX_HANDLER_ANOTHER: 5871 goto another_round; 5872 case RX_HANDLER_EXACT: 5873 deliver_exact = true; 5874 break; 5875 case RX_HANDLER_PASS: 5876 break; 5877 default: 5878 BUG(); 5879 } 5880 } 5881 5882 if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) { 5883 check_vlan_id: 5884 if (skb_vlan_tag_get_id(skb)) { 5885 /* Vlan id is non 0 and vlan_do_receive() above couldn't 5886 * find vlan device. 5887 */ 5888 skb->pkt_type = PACKET_OTHERHOST; 5889 } else if (eth_type_vlan(skb->protocol)) { 5890 /* Outer header is 802.1P with vlan 0, inner header is 5891 * 802.1Q or 802.1AD and vlan_do_receive() above could 5892 * not find vlan dev for vlan id 0. 5893 */ 5894 __vlan_hwaccel_clear_tag(skb); 5895 skb = skb_vlan_untag(skb); 5896 if (unlikely(!skb)) 5897 goto out; 5898 if (vlan_do_receive(&skb)) 5899 /* After stripping off 802.1P header with vlan 0 5900 * vlan dev is found for inner header. 5901 */ 5902 goto another_round; 5903 else if (unlikely(!skb)) 5904 goto out; 5905 else 5906 /* We have stripped outer 802.1P vlan 0 header. 5907 * But could not find vlan dev. 5908 * check again for vlan id to set OTHERHOST. 5909 */ 5910 goto check_vlan_id; 5911 } 5912 /* Note: we might in the future use prio bits 5913 * and set skb->priority like in vlan_do_receive() 5914 * For the time being, just ignore Priority Code Point 5915 */ 5916 __vlan_hwaccel_clear_tag(skb); 5917 } 5918 5919 type = skb->protocol; 5920 5921 /* deliver only exact match when indicated */ 5922 if (likely(!deliver_exact)) { 5923 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 5924 &ptype_base[ntohs(type) & 5925 PTYPE_HASH_MASK]); 5926 5927 /* orig_dev and skb->dev could belong to different netns; 5928 * Even in such case we need to traverse only the list 5929 * coming from skb->dev, as the ptype owner (packet socket) 5930 * will use dev_net(skb->dev) to do namespace filtering. 5931 */ 5932 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 5933 &dev_net_rcu(skb->dev)->ptype_specific); 5934 } 5935 5936 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 5937 &orig_dev->ptype_specific); 5938 5939 if (unlikely(skb->dev != orig_dev)) { 5940 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 5941 &skb->dev->ptype_specific); 5942 } 5943 5944 if (pt_prev) { 5945 *ppt_prev = pt_prev; 5946 } else { 5947 drop: 5948 if (!deliver_exact) 5949 dev_core_stats_rx_dropped_inc(skb->dev); 5950 else 5951 dev_core_stats_rx_nohandler_inc(skb->dev); 5952 5953 kfree_skb_reason(skb, drop_reason); 5954 /* Jamal, now you will not able to escape explaining 5955 * me how you were going to use this. :-) 5956 */ 5957 ret = NET_RX_DROP; 5958 } 5959 5960 out: 5961 /* The invariant here is that if *ppt_prev is not NULL 5962 * then skb should also be non-NULL. 5963 * 5964 * Apparently *ppt_prev assignment above holds this invariant due to 5965 * skb dereferencing near it. 5966 */ 5967 *pskb = skb; 5968 return ret; 5969 } 5970 5971 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc) 5972 { 5973 struct net_device *orig_dev = skb->dev; 5974 struct packet_type *pt_prev = NULL; 5975 int ret; 5976 5977 ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev); 5978 if (pt_prev) 5979 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb, 5980 skb->dev, pt_prev, orig_dev); 5981 return ret; 5982 } 5983 5984 /** 5985 * netif_receive_skb_core - special purpose version of netif_receive_skb 5986 * @skb: buffer to process 5987 * 5988 * More direct receive version of netif_receive_skb(). It should 5989 * only be used by callers that have a need to skip RPS and Generic XDP. 5990 * Caller must also take care of handling if ``(page_is_)pfmemalloc``. 5991 * 5992 * This function may only be called from softirq context and interrupts 5993 * should be enabled. 5994 * 5995 * Return values (usually ignored): 5996 * NET_RX_SUCCESS: no congestion 5997 * NET_RX_DROP: packet was dropped 5998 */ 5999 int netif_receive_skb_core(struct sk_buff *skb) 6000 { 6001 int ret; 6002 6003 rcu_read_lock(); 6004 ret = __netif_receive_skb_one_core(skb, false); 6005 rcu_read_unlock(); 6006 6007 return ret; 6008 } 6009 EXPORT_SYMBOL(netif_receive_skb_core); 6010 6011 static inline void __netif_receive_skb_list_ptype(struct list_head *head, 6012 struct packet_type *pt_prev, 6013 struct net_device *orig_dev) 6014 { 6015 struct sk_buff *skb, *next; 6016 6017 if (!pt_prev) 6018 return; 6019 if (list_empty(head)) 6020 return; 6021 if (pt_prev->list_func != NULL) 6022 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv, 6023 ip_list_rcv, head, pt_prev, orig_dev); 6024 else 6025 list_for_each_entry_safe(skb, next, head, list) { 6026 skb_list_del_init(skb); 6027 pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 6028 } 6029 } 6030 6031 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc) 6032 { 6033 /* Fast-path assumptions: 6034 * - There is no RX handler. 6035 * - Only one packet_type matches. 6036 * If either of these fails, we will end up doing some per-packet 6037 * processing in-line, then handling the 'last ptype' for the whole 6038 * sublist. This can't cause out-of-order delivery to any single ptype, 6039 * because the 'last ptype' must be constant across the sublist, and all 6040 * other ptypes are handled per-packet. 6041 */ 6042 /* Current (common) ptype of sublist */ 6043 struct packet_type *pt_curr = NULL; 6044 /* Current (common) orig_dev of sublist */ 6045 struct net_device *od_curr = NULL; 6046 struct sk_buff *skb, *next; 6047 LIST_HEAD(sublist); 6048 6049 list_for_each_entry_safe(skb, next, head, list) { 6050 struct net_device *orig_dev = skb->dev; 6051 struct packet_type *pt_prev = NULL; 6052 6053 skb_list_del_init(skb); 6054 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev); 6055 if (!pt_prev) 6056 continue; 6057 if (pt_curr != pt_prev || od_curr != orig_dev) { 6058 /* dispatch old sublist */ 6059 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr); 6060 /* start new sublist */ 6061 INIT_LIST_HEAD(&sublist); 6062 pt_curr = pt_prev; 6063 od_curr = orig_dev; 6064 } 6065 list_add_tail(&skb->list, &sublist); 6066 } 6067 6068 /* dispatch final sublist */ 6069 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr); 6070 } 6071 6072 static int __netif_receive_skb(struct sk_buff *skb) 6073 { 6074 int ret; 6075 6076 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) { 6077 unsigned int noreclaim_flag; 6078 6079 /* 6080 * PFMEMALLOC skbs are special, they should 6081 * - be delivered to SOCK_MEMALLOC sockets only 6082 * - stay away from userspace 6083 * - have bounded memory usage 6084 * 6085 * Use PF_MEMALLOC as this saves us from propagating the allocation 6086 * context down to all allocation sites. 6087 */ 6088 noreclaim_flag = memalloc_noreclaim_save(); 6089 ret = __netif_receive_skb_one_core(skb, true); 6090 memalloc_noreclaim_restore(noreclaim_flag); 6091 } else 6092 ret = __netif_receive_skb_one_core(skb, false); 6093 6094 return ret; 6095 } 6096 6097 static void __netif_receive_skb_list(struct list_head *head) 6098 { 6099 unsigned long noreclaim_flag = 0; 6100 struct sk_buff *skb, *next; 6101 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */ 6102 6103 list_for_each_entry_safe(skb, next, head, list) { 6104 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) { 6105 struct list_head sublist; 6106 6107 /* Handle the previous sublist */ 6108 list_cut_before(&sublist, head, &skb->list); 6109 if (!list_empty(&sublist)) 6110 __netif_receive_skb_list_core(&sublist, pfmemalloc); 6111 pfmemalloc = !pfmemalloc; 6112 /* See comments in __netif_receive_skb */ 6113 if (pfmemalloc) 6114 noreclaim_flag = memalloc_noreclaim_save(); 6115 else 6116 memalloc_noreclaim_restore(noreclaim_flag); 6117 } 6118 } 6119 /* Handle the remaining sublist */ 6120 if (!list_empty(head)) 6121 __netif_receive_skb_list_core(head, pfmemalloc); 6122 /* Restore pflags */ 6123 if (pfmemalloc) 6124 memalloc_noreclaim_restore(noreclaim_flag); 6125 } 6126 6127 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp) 6128 { 6129 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog); 6130 struct bpf_prog *new = xdp->prog; 6131 int ret = 0; 6132 6133 switch (xdp->command) { 6134 case XDP_SETUP_PROG: 6135 rcu_assign_pointer(dev->xdp_prog, new); 6136 if (old) 6137 bpf_prog_put(old); 6138 6139 if (old && !new) { 6140 static_branch_dec(&generic_xdp_needed_key); 6141 } else if (new && !old) { 6142 static_branch_inc(&generic_xdp_needed_key); 6143 netif_disable_lro(dev); 6144 dev_disable_gro_hw(dev); 6145 } 6146 break; 6147 6148 default: 6149 ret = -EINVAL; 6150 break; 6151 } 6152 6153 return ret; 6154 } 6155 6156 static int netif_receive_skb_internal(struct sk_buff *skb) 6157 { 6158 int ret; 6159 6160 net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb); 6161 6162 if (skb_defer_rx_timestamp(skb)) 6163 return NET_RX_SUCCESS; 6164 6165 rcu_read_lock(); 6166 #ifdef CONFIG_RPS 6167 if (static_branch_unlikely(&rps_needed)) { 6168 struct rps_dev_flow voidflow, *rflow = &voidflow; 6169 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 6170 6171 if (cpu >= 0) { 6172 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 6173 rcu_read_unlock(); 6174 return ret; 6175 } 6176 } 6177 #endif 6178 ret = __netif_receive_skb(skb); 6179 rcu_read_unlock(); 6180 return ret; 6181 } 6182 6183 void netif_receive_skb_list_internal(struct list_head *head) 6184 { 6185 struct sk_buff *skb, *next; 6186 LIST_HEAD(sublist); 6187 6188 list_for_each_entry_safe(skb, next, head, list) { 6189 net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), 6190 skb); 6191 skb_list_del_init(skb); 6192 if (!skb_defer_rx_timestamp(skb)) 6193 list_add_tail(&skb->list, &sublist); 6194 } 6195 list_splice_init(&sublist, head); 6196 6197 rcu_read_lock(); 6198 #ifdef CONFIG_RPS 6199 if (static_branch_unlikely(&rps_needed)) { 6200 list_for_each_entry_safe(skb, next, head, list) { 6201 struct rps_dev_flow voidflow, *rflow = &voidflow; 6202 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 6203 6204 if (cpu >= 0) { 6205 /* Will be handled, remove from list */ 6206 skb_list_del_init(skb); 6207 enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 6208 } 6209 } 6210 } 6211 #endif 6212 __netif_receive_skb_list(head); 6213 rcu_read_unlock(); 6214 } 6215 6216 /** 6217 * netif_receive_skb - process receive buffer from network 6218 * @skb: buffer to process 6219 * 6220 * netif_receive_skb() is the main receive data processing function. 6221 * It always succeeds. The buffer may be dropped during processing 6222 * for congestion control or by the protocol layers. 6223 * 6224 * This function may only be called from softirq context and interrupts 6225 * should be enabled. 6226 * 6227 * Return values (usually ignored): 6228 * NET_RX_SUCCESS: no congestion 6229 * NET_RX_DROP: packet was dropped 6230 */ 6231 int netif_receive_skb(struct sk_buff *skb) 6232 { 6233 int ret; 6234 6235 trace_netif_receive_skb_entry(skb); 6236 6237 ret = netif_receive_skb_internal(skb); 6238 trace_netif_receive_skb_exit(ret); 6239 6240 return ret; 6241 } 6242 EXPORT_SYMBOL(netif_receive_skb); 6243 6244 /** 6245 * netif_receive_skb_list - process many receive buffers from network 6246 * @head: list of skbs to process. 6247 * 6248 * Since return value of netif_receive_skb() is normally ignored, and 6249 * wouldn't be meaningful for a list, this function returns void. 6250 * 6251 * This function may only be called from softirq context and interrupts 6252 * should be enabled. 6253 */ 6254 void netif_receive_skb_list(struct list_head *head) 6255 { 6256 struct sk_buff *skb; 6257 6258 if (list_empty(head)) 6259 return; 6260 if (trace_netif_receive_skb_list_entry_enabled()) { 6261 list_for_each_entry(skb, head, list) 6262 trace_netif_receive_skb_list_entry(skb); 6263 } 6264 netif_receive_skb_list_internal(head); 6265 trace_netif_receive_skb_list_exit(0); 6266 } 6267 EXPORT_SYMBOL(netif_receive_skb_list); 6268 6269 /* Network device is going away, flush any packets still pending */ 6270 static void flush_backlog(struct work_struct *work) 6271 { 6272 struct sk_buff *skb, *tmp; 6273 struct sk_buff_head list; 6274 struct softnet_data *sd; 6275 6276 __skb_queue_head_init(&list); 6277 local_bh_disable(); 6278 sd = this_cpu_ptr(&softnet_data); 6279 6280 backlog_lock_irq_disable(sd); 6281 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 6282 if (READ_ONCE(skb->dev->reg_state) == NETREG_UNREGISTERING) { 6283 __skb_unlink(skb, &sd->input_pkt_queue); 6284 __skb_queue_tail(&list, skb); 6285 rps_input_queue_head_incr(sd); 6286 } 6287 } 6288 backlog_unlock_irq_enable(sd); 6289 6290 local_lock_nested_bh(&softnet_data.process_queue_bh_lock); 6291 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 6292 if (READ_ONCE(skb->dev->reg_state) == NETREG_UNREGISTERING) { 6293 __skb_unlink(skb, &sd->process_queue); 6294 __skb_queue_tail(&list, skb); 6295 rps_input_queue_head_incr(sd); 6296 } 6297 } 6298 local_unlock_nested_bh(&softnet_data.process_queue_bh_lock); 6299 local_bh_enable(); 6300 6301 __skb_queue_purge_reason(&list, SKB_DROP_REASON_DEV_READY); 6302 } 6303 6304 static bool flush_required(int cpu) 6305 { 6306 #if IS_ENABLED(CONFIG_RPS) 6307 struct softnet_data *sd = &per_cpu(softnet_data, cpu); 6308 bool do_flush; 6309 6310 backlog_lock_irq_disable(sd); 6311 6312 /* as insertion into process_queue happens with the rps lock held, 6313 * process_queue access may race only with dequeue 6314 */ 6315 do_flush = !skb_queue_empty(&sd->input_pkt_queue) || 6316 !skb_queue_empty_lockless(&sd->process_queue); 6317 backlog_unlock_irq_enable(sd); 6318 6319 return do_flush; 6320 #endif 6321 /* without RPS we can't safely check input_pkt_queue: during a 6322 * concurrent remote skb_queue_splice() we can detect as empty both 6323 * input_pkt_queue and process_queue even if the latter could end-up 6324 * containing a lot of packets. 6325 */ 6326 return true; 6327 } 6328 6329 struct flush_backlogs { 6330 cpumask_t flush_cpus; 6331 struct work_struct w[]; 6332 }; 6333 6334 static struct flush_backlogs *flush_backlogs_alloc(void) 6335 { 6336 return kmalloc(struct_size_t(struct flush_backlogs, w, nr_cpu_ids), 6337 GFP_KERNEL); 6338 } 6339 6340 static struct flush_backlogs *flush_backlogs_fallback; 6341 static DEFINE_MUTEX(flush_backlogs_mutex); 6342 6343 static void flush_all_backlogs(void) 6344 { 6345 struct flush_backlogs *ptr = flush_backlogs_alloc(); 6346 unsigned int cpu; 6347 6348 if (!ptr) { 6349 mutex_lock(&flush_backlogs_mutex); 6350 ptr = flush_backlogs_fallback; 6351 } 6352 cpumask_clear(&ptr->flush_cpus); 6353 6354 cpus_read_lock(); 6355 6356 for_each_online_cpu(cpu) { 6357 if (flush_required(cpu)) { 6358 INIT_WORK(&ptr->w[cpu], flush_backlog); 6359 queue_work_on(cpu, system_highpri_wq, &ptr->w[cpu]); 6360 __cpumask_set_cpu(cpu, &ptr->flush_cpus); 6361 } 6362 } 6363 6364 /* we can have in flight packet[s] on the cpus we are not flushing, 6365 * synchronize_net() in unregister_netdevice_many() will take care of 6366 * them. 6367 */ 6368 for_each_cpu(cpu, &ptr->flush_cpus) 6369 flush_work(&ptr->w[cpu]); 6370 6371 cpus_read_unlock(); 6372 6373 if (ptr != flush_backlogs_fallback) 6374 kfree(ptr); 6375 else 6376 mutex_unlock(&flush_backlogs_mutex); 6377 } 6378 6379 static void net_rps_send_ipi(struct softnet_data *remsd) 6380 { 6381 #ifdef CONFIG_RPS 6382 while (remsd) { 6383 struct softnet_data *next = remsd->rps_ipi_next; 6384 6385 if (cpu_online(remsd->cpu)) 6386 smp_call_function_single_async(remsd->cpu, &remsd->csd); 6387 remsd = next; 6388 } 6389 #endif 6390 } 6391 6392 /* 6393 * net_rps_action_and_irq_enable sends any pending IPI's for rps. 6394 * Note: called with local irq disabled, but exits with local irq enabled. 6395 */ 6396 static void net_rps_action_and_irq_enable(struct softnet_data *sd) 6397 { 6398 #ifdef CONFIG_RPS 6399 struct softnet_data *remsd = sd->rps_ipi_list; 6400 6401 if (!use_backlog_threads() && remsd) { 6402 sd->rps_ipi_list = NULL; 6403 6404 local_irq_enable(); 6405 6406 /* Send pending IPI's to kick RPS processing on remote cpus. */ 6407 net_rps_send_ipi(remsd); 6408 } else 6409 #endif 6410 local_irq_enable(); 6411 } 6412 6413 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd) 6414 { 6415 #ifdef CONFIG_RPS 6416 return !use_backlog_threads() && sd->rps_ipi_list; 6417 #else 6418 return false; 6419 #endif 6420 } 6421 6422 static int process_backlog(struct napi_struct *napi, int quota) 6423 { 6424 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 6425 bool again = true; 6426 int work = 0; 6427 6428 /* Check if we have pending ipi, its better to send them now, 6429 * not waiting net_rx_action() end. 6430 */ 6431 if (sd_has_rps_ipi_waiting(sd)) { 6432 local_irq_disable(); 6433 net_rps_action_and_irq_enable(sd); 6434 } 6435 6436 napi->weight = READ_ONCE(net_hotdata.dev_rx_weight); 6437 while (again) { 6438 struct sk_buff *skb; 6439 6440 local_lock_nested_bh(&softnet_data.process_queue_bh_lock); 6441 while ((skb = __skb_dequeue(&sd->process_queue))) { 6442 local_unlock_nested_bh(&softnet_data.process_queue_bh_lock); 6443 rcu_read_lock(); 6444 __netif_receive_skb(skb); 6445 rcu_read_unlock(); 6446 if (++work >= quota) { 6447 rps_input_queue_head_add(sd, work); 6448 return work; 6449 } 6450 6451 local_lock_nested_bh(&softnet_data.process_queue_bh_lock); 6452 } 6453 local_unlock_nested_bh(&softnet_data.process_queue_bh_lock); 6454 6455 backlog_lock_irq_disable(sd); 6456 if (skb_queue_empty(&sd->input_pkt_queue)) { 6457 /* 6458 * Inline a custom version of __napi_complete(). 6459 * only current cpu owns and manipulates this napi, 6460 * and NAPI_STATE_SCHED is the only possible flag set 6461 * on backlog. 6462 * We can use a plain write instead of clear_bit(), 6463 * and we dont need an smp_mb() memory barrier. 6464 */ 6465 napi->state &= NAPIF_STATE_THREADED; 6466 again = false; 6467 } else { 6468 local_lock_nested_bh(&softnet_data.process_queue_bh_lock); 6469 skb_queue_splice_tail_init(&sd->input_pkt_queue, 6470 &sd->process_queue); 6471 local_unlock_nested_bh(&softnet_data.process_queue_bh_lock); 6472 } 6473 backlog_unlock_irq_enable(sd); 6474 } 6475 6476 if (work) 6477 rps_input_queue_head_add(sd, work); 6478 return work; 6479 } 6480 6481 /** 6482 * __napi_schedule - schedule for receive 6483 * @n: entry to schedule 6484 * 6485 * The entry's receive function will be scheduled to run. 6486 * Consider using __napi_schedule_irqoff() if hard irqs are masked. 6487 */ 6488 void __napi_schedule(struct napi_struct *n) 6489 { 6490 unsigned long flags; 6491 6492 local_irq_save(flags); 6493 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 6494 local_irq_restore(flags); 6495 } 6496 EXPORT_SYMBOL(__napi_schedule); 6497 6498 /** 6499 * napi_schedule_prep - check if napi can be scheduled 6500 * @n: napi context 6501 * 6502 * Test if NAPI routine is already running, and if not mark 6503 * it as running. This is used as a condition variable to 6504 * insure only one NAPI poll instance runs. We also make 6505 * sure there is no pending NAPI disable. 6506 */ 6507 bool napi_schedule_prep(struct napi_struct *n) 6508 { 6509 unsigned long new, val = READ_ONCE(n->state); 6510 6511 do { 6512 if (unlikely(val & NAPIF_STATE_DISABLE)) 6513 return false; 6514 new = val | NAPIF_STATE_SCHED; 6515 6516 /* Sets STATE_MISSED bit if STATE_SCHED was already set 6517 * This was suggested by Alexander Duyck, as compiler 6518 * emits better code than : 6519 * if (val & NAPIF_STATE_SCHED) 6520 * new |= NAPIF_STATE_MISSED; 6521 */ 6522 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED * 6523 NAPIF_STATE_MISSED; 6524 } while (!try_cmpxchg(&n->state, &val, new)); 6525 6526 return !(val & NAPIF_STATE_SCHED); 6527 } 6528 EXPORT_SYMBOL(napi_schedule_prep); 6529 6530 /** 6531 * __napi_schedule_irqoff - schedule for receive 6532 * @n: entry to schedule 6533 * 6534 * Variant of __napi_schedule() assuming hard irqs are masked. 6535 * 6536 * On PREEMPT_RT enabled kernels this maps to __napi_schedule() 6537 * because the interrupt disabled assumption might not be true 6538 * due to force-threaded interrupts and spinlock substitution. 6539 */ 6540 void __napi_schedule_irqoff(struct napi_struct *n) 6541 { 6542 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 6543 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 6544 else 6545 __napi_schedule(n); 6546 } 6547 EXPORT_SYMBOL(__napi_schedule_irqoff); 6548 6549 bool napi_complete_done(struct napi_struct *n, int work_done) 6550 { 6551 unsigned long flags, val, new, timeout = 0; 6552 bool ret = true; 6553 6554 /* 6555 * 1) Don't let napi dequeue from the cpu poll list 6556 * just in case its running on a different cpu. 6557 * 2) If we are busy polling, do nothing here, we have 6558 * the guarantee we will be called later. 6559 */ 6560 if (unlikely(n->state & (NAPIF_STATE_NPSVC | 6561 NAPIF_STATE_IN_BUSY_POLL))) 6562 return false; 6563 6564 if (work_done) { 6565 if (n->gro.bitmask) 6566 timeout = napi_get_gro_flush_timeout(n); 6567 n->defer_hard_irqs_count = napi_get_defer_hard_irqs(n); 6568 } 6569 if (n->defer_hard_irqs_count > 0) { 6570 n->defer_hard_irqs_count--; 6571 timeout = napi_get_gro_flush_timeout(n); 6572 if (timeout) 6573 ret = false; 6574 } 6575 6576 /* 6577 * When the NAPI instance uses a timeout and keeps postponing 6578 * it, we need to bound somehow the time packets are kept in 6579 * the GRO layer. 6580 */ 6581 gro_flush(&n->gro, !!timeout); 6582 gro_normal_list(&n->gro); 6583 6584 if (unlikely(!list_empty(&n->poll_list))) { 6585 /* If n->poll_list is not empty, we need to mask irqs */ 6586 local_irq_save(flags); 6587 list_del_init(&n->poll_list); 6588 local_irq_restore(flags); 6589 } 6590 WRITE_ONCE(n->list_owner, -1); 6591 6592 val = READ_ONCE(n->state); 6593 do { 6594 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED)); 6595 6596 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED | 6597 NAPIF_STATE_SCHED_THREADED | 6598 NAPIF_STATE_PREFER_BUSY_POLL); 6599 6600 /* If STATE_MISSED was set, leave STATE_SCHED set, 6601 * because we will call napi->poll() one more time. 6602 * This C code was suggested by Alexander Duyck to help gcc. 6603 */ 6604 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED * 6605 NAPIF_STATE_SCHED; 6606 } while (!try_cmpxchg(&n->state, &val, new)); 6607 6608 if (unlikely(val & NAPIF_STATE_MISSED)) { 6609 __napi_schedule(n); 6610 return false; 6611 } 6612 6613 if (timeout) 6614 hrtimer_start(&n->timer, ns_to_ktime(timeout), 6615 HRTIMER_MODE_REL_PINNED); 6616 return ret; 6617 } 6618 EXPORT_SYMBOL(napi_complete_done); 6619 6620 static void skb_defer_free_flush(struct softnet_data *sd) 6621 { 6622 struct sk_buff *skb, *next; 6623 6624 /* Paired with WRITE_ONCE() in skb_attempt_defer_free() */ 6625 if (!READ_ONCE(sd->defer_list)) 6626 return; 6627 6628 spin_lock(&sd->defer_lock); 6629 skb = sd->defer_list; 6630 sd->defer_list = NULL; 6631 sd->defer_count = 0; 6632 spin_unlock(&sd->defer_lock); 6633 6634 while (skb != NULL) { 6635 next = skb->next; 6636 napi_consume_skb(skb, 1); 6637 skb = next; 6638 } 6639 } 6640 6641 #if defined(CONFIG_NET_RX_BUSY_POLL) 6642 6643 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule) 6644 { 6645 if (!skip_schedule) { 6646 gro_normal_list(&napi->gro); 6647 __napi_schedule(napi); 6648 return; 6649 } 6650 6651 /* Flush too old packets. If HZ < 1000, flush all packets */ 6652 gro_flush(&napi->gro, HZ >= 1000); 6653 gro_normal_list(&napi->gro); 6654 6655 clear_bit(NAPI_STATE_SCHED, &napi->state); 6656 } 6657 6658 enum { 6659 NAPI_F_PREFER_BUSY_POLL = 1, 6660 NAPI_F_END_ON_RESCHED = 2, 6661 }; 6662 6663 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, 6664 unsigned flags, u16 budget) 6665 { 6666 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; 6667 bool skip_schedule = false; 6668 unsigned long timeout; 6669 int rc; 6670 6671 /* Busy polling means there is a high chance device driver hard irq 6672 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was 6673 * set in napi_schedule_prep(). 6674 * Since we are about to call napi->poll() once more, we can safely 6675 * clear NAPI_STATE_MISSED. 6676 * 6677 * Note: x86 could use a single "lock and ..." instruction 6678 * to perform these two clear_bit() 6679 */ 6680 clear_bit(NAPI_STATE_MISSED, &napi->state); 6681 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state); 6682 6683 local_bh_disable(); 6684 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx); 6685 6686 if (flags & NAPI_F_PREFER_BUSY_POLL) { 6687 napi->defer_hard_irqs_count = napi_get_defer_hard_irqs(napi); 6688 timeout = napi_get_gro_flush_timeout(napi); 6689 if (napi->defer_hard_irqs_count && timeout) { 6690 hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED); 6691 skip_schedule = true; 6692 } 6693 } 6694 6695 /* All we really want here is to re-enable device interrupts. 6696 * Ideally, a new ndo_busy_poll_stop() could avoid another round. 6697 */ 6698 rc = napi->poll(napi, budget); 6699 /* We can't gro_normal_list() here, because napi->poll() might have 6700 * rearmed the napi (napi_complete_done()) in which case it could 6701 * already be running on another CPU. 6702 */ 6703 trace_napi_poll(napi, rc, budget); 6704 netpoll_poll_unlock(have_poll_lock); 6705 if (rc == budget) 6706 __busy_poll_stop(napi, skip_schedule); 6707 bpf_net_ctx_clear(bpf_net_ctx); 6708 local_bh_enable(); 6709 } 6710 6711 static void __napi_busy_loop(unsigned int napi_id, 6712 bool (*loop_end)(void *, unsigned long), 6713 void *loop_end_arg, unsigned flags, u16 budget) 6714 { 6715 unsigned long start_time = loop_end ? busy_loop_current_time() : 0; 6716 int (*napi_poll)(struct napi_struct *napi, int budget); 6717 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; 6718 void *have_poll_lock = NULL; 6719 struct napi_struct *napi; 6720 6721 WARN_ON_ONCE(!rcu_read_lock_held()); 6722 6723 restart: 6724 napi_poll = NULL; 6725 6726 napi = napi_by_id(napi_id); 6727 if (!napi) 6728 return; 6729 6730 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 6731 preempt_disable(); 6732 for (;;) { 6733 int work = 0; 6734 6735 local_bh_disable(); 6736 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx); 6737 if (!napi_poll) { 6738 unsigned long val = READ_ONCE(napi->state); 6739 6740 /* If multiple threads are competing for this napi, 6741 * we avoid dirtying napi->state as much as we can. 6742 */ 6743 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED | 6744 NAPIF_STATE_IN_BUSY_POLL)) { 6745 if (flags & NAPI_F_PREFER_BUSY_POLL) 6746 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state); 6747 goto count; 6748 } 6749 if (cmpxchg(&napi->state, val, 6750 val | NAPIF_STATE_IN_BUSY_POLL | 6751 NAPIF_STATE_SCHED) != val) { 6752 if (flags & NAPI_F_PREFER_BUSY_POLL) 6753 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state); 6754 goto count; 6755 } 6756 have_poll_lock = netpoll_poll_lock(napi); 6757 napi_poll = napi->poll; 6758 } 6759 work = napi_poll(napi, budget); 6760 trace_napi_poll(napi, work, budget); 6761 gro_normal_list(&napi->gro); 6762 count: 6763 if (work > 0) 6764 __NET_ADD_STATS(dev_net(napi->dev), 6765 LINUX_MIB_BUSYPOLLRXPACKETS, work); 6766 skb_defer_free_flush(this_cpu_ptr(&softnet_data)); 6767 bpf_net_ctx_clear(bpf_net_ctx); 6768 local_bh_enable(); 6769 6770 if (!loop_end || loop_end(loop_end_arg, start_time)) 6771 break; 6772 6773 if (unlikely(need_resched())) { 6774 if (flags & NAPI_F_END_ON_RESCHED) 6775 break; 6776 if (napi_poll) 6777 busy_poll_stop(napi, have_poll_lock, flags, budget); 6778 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 6779 preempt_enable(); 6780 rcu_read_unlock(); 6781 cond_resched(); 6782 rcu_read_lock(); 6783 if (loop_end(loop_end_arg, start_time)) 6784 return; 6785 goto restart; 6786 } 6787 cpu_relax(); 6788 } 6789 if (napi_poll) 6790 busy_poll_stop(napi, have_poll_lock, flags, budget); 6791 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 6792 preempt_enable(); 6793 } 6794 6795 void napi_busy_loop_rcu(unsigned int napi_id, 6796 bool (*loop_end)(void *, unsigned long), 6797 void *loop_end_arg, bool prefer_busy_poll, u16 budget) 6798 { 6799 unsigned flags = NAPI_F_END_ON_RESCHED; 6800 6801 if (prefer_busy_poll) 6802 flags |= NAPI_F_PREFER_BUSY_POLL; 6803 6804 __napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget); 6805 } 6806 6807 void napi_busy_loop(unsigned int napi_id, 6808 bool (*loop_end)(void *, unsigned long), 6809 void *loop_end_arg, bool prefer_busy_poll, u16 budget) 6810 { 6811 unsigned flags = prefer_busy_poll ? NAPI_F_PREFER_BUSY_POLL : 0; 6812 6813 rcu_read_lock(); 6814 __napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget); 6815 rcu_read_unlock(); 6816 } 6817 EXPORT_SYMBOL(napi_busy_loop); 6818 6819 void napi_suspend_irqs(unsigned int napi_id) 6820 { 6821 struct napi_struct *napi; 6822 6823 rcu_read_lock(); 6824 napi = napi_by_id(napi_id); 6825 if (napi) { 6826 unsigned long timeout = napi_get_irq_suspend_timeout(napi); 6827 6828 if (timeout) 6829 hrtimer_start(&napi->timer, ns_to_ktime(timeout), 6830 HRTIMER_MODE_REL_PINNED); 6831 } 6832 rcu_read_unlock(); 6833 } 6834 6835 void napi_resume_irqs(unsigned int napi_id) 6836 { 6837 struct napi_struct *napi; 6838 6839 rcu_read_lock(); 6840 napi = napi_by_id(napi_id); 6841 if (napi) { 6842 /* If irq_suspend_timeout is set to 0 between the call to 6843 * napi_suspend_irqs and now, the original value still 6844 * determines the safety timeout as intended and napi_watchdog 6845 * will resume irq processing. 6846 */ 6847 if (napi_get_irq_suspend_timeout(napi)) { 6848 local_bh_disable(); 6849 napi_schedule(napi); 6850 local_bh_enable(); 6851 } 6852 } 6853 rcu_read_unlock(); 6854 } 6855 6856 #endif /* CONFIG_NET_RX_BUSY_POLL */ 6857 6858 static void __napi_hash_add_with_id(struct napi_struct *napi, 6859 unsigned int napi_id) 6860 { 6861 napi->gro.cached_napi_id = napi_id; 6862 6863 WRITE_ONCE(napi->napi_id, napi_id); 6864 hlist_add_head_rcu(&napi->napi_hash_node, 6865 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]); 6866 } 6867 6868 static void napi_hash_add_with_id(struct napi_struct *napi, 6869 unsigned int napi_id) 6870 { 6871 unsigned long flags; 6872 6873 spin_lock_irqsave(&napi_hash_lock, flags); 6874 WARN_ON_ONCE(napi_by_id(napi_id)); 6875 __napi_hash_add_with_id(napi, napi_id); 6876 spin_unlock_irqrestore(&napi_hash_lock, flags); 6877 } 6878 6879 static void napi_hash_add(struct napi_struct *napi) 6880 { 6881 unsigned long flags; 6882 6883 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state)) 6884 return; 6885 6886 spin_lock_irqsave(&napi_hash_lock, flags); 6887 6888 /* 0..NR_CPUS range is reserved for sender_cpu use */ 6889 do { 6890 if (unlikely(!napi_id_valid(++napi_gen_id))) 6891 napi_gen_id = MIN_NAPI_ID; 6892 } while (napi_by_id(napi_gen_id)); 6893 6894 __napi_hash_add_with_id(napi, napi_gen_id); 6895 6896 spin_unlock_irqrestore(&napi_hash_lock, flags); 6897 } 6898 6899 /* Warning : caller is responsible to make sure rcu grace period 6900 * is respected before freeing memory containing @napi 6901 */ 6902 static void napi_hash_del(struct napi_struct *napi) 6903 { 6904 unsigned long flags; 6905 6906 spin_lock_irqsave(&napi_hash_lock, flags); 6907 6908 hlist_del_init_rcu(&napi->napi_hash_node); 6909 6910 spin_unlock_irqrestore(&napi_hash_lock, flags); 6911 } 6912 6913 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer) 6914 { 6915 struct napi_struct *napi; 6916 6917 napi = container_of(timer, struct napi_struct, timer); 6918 6919 /* Note : we use a relaxed variant of napi_schedule_prep() not setting 6920 * NAPI_STATE_MISSED, since we do not react to a device IRQ. 6921 */ 6922 if (!napi_disable_pending(napi) && 6923 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) { 6924 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state); 6925 __napi_schedule_irqoff(napi); 6926 } 6927 6928 return HRTIMER_NORESTART; 6929 } 6930 6931 static void napi_stop_kthread(struct napi_struct *napi) 6932 { 6933 unsigned long val, new; 6934 6935 /* Wait until the napi STATE_THREADED is unset. */ 6936 while (true) { 6937 val = READ_ONCE(napi->state); 6938 6939 /* If napi kthread own this napi or the napi is idle, 6940 * STATE_THREADED can be unset here. 6941 */ 6942 if ((val & NAPIF_STATE_SCHED_THREADED) || 6943 !(val & NAPIF_STATE_SCHED)) { 6944 new = val & (~NAPIF_STATE_THREADED); 6945 } else { 6946 msleep(20); 6947 continue; 6948 } 6949 6950 if (try_cmpxchg(&napi->state, &val, new)) 6951 break; 6952 } 6953 6954 /* Once STATE_THREADED is unset, wait for SCHED_THREADED to be unset by 6955 * the kthread. 6956 */ 6957 while (true) { 6958 if (!test_bit(NAPIF_STATE_SCHED_THREADED, &napi->state)) 6959 break; 6960 6961 msleep(20); 6962 } 6963 6964 kthread_stop(napi->thread); 6965 napi->thread = NULL; 6966 } 6967 6968 int napi_set_threaded(struct napi_struct *napi, bool threaded) 6969 { 6970 if (threaded) { 6971 if (!napi->thread) { 6972 int err = napi_kthread_create(napi); 6973 6974 if (err) 6975 return err; 6976 } 6977 } 6978 6979 if (napi->config) 6980 napi->config->threaded = threaded; 6981 6982 if (!threaded && napi->thread) { 6983 napi_stop_kthread(napi); 6984 } else { 6985 /* Make sure kthread is created before THREADED bit is set. */ 6986 smp_mb__before_atomic(); 6987 assign_bit(NAPI_STATE_THREADED, &napi->state, threaded); 6988 } 6989 6990 return 0; 6991 } 6992 6993 int netif_set_threaded(struct net_device *dev, bool threaded) 6994 { 6995 struct napi_struct *napi; 6996 int err = 0; 6997 6998 netdev_assert_locked_or_invisible(dev); 6999 7000 if (threaded) { 7001 list_for_each_entry(napi, &dev->napi_list, dev_list) { 7002 if (!napi->thread) { 7003 err = napi_kthread_create(napi); 7004 if (err) { 7005 threaded = false; 7006 break; 7007 } 7008 } 7009 } 7010 } 7011 7012 WRITE_ONCE(dev->threaded, threaded); 7013 7014 /* Make sure kthread is created before THREADED bit 7015 * is set. 7016 */ 7017 smp_mb__before_atomic(); 7018 7019 /* Setting/unsetting threaded mode on a napi might not immediately 7020 * take effect, if the current napi instance is actively being 7021 * polled. In this case, the switch between threaded mode and 7022 * softirq mode will happen in the next round of napi_schedule(). 7023 * This should not cause hiccups/stalls to the live traffic. 7024 */ 7025 list_for_each_entry(napi, &dev->napi_list, dev_list) { 7026 if (!threaded && napi->thread) 7027 napi_stop_kthread(napi); 7028 else 7029 assign_bit(NAPI_STATE_THREADED, &napi->state, threaded); 7030 } 7031 7032 return err; 7033 } 7034 EXPORT_SYMBOL(netif_set_threaded); 7035 7036 /** 7037 * netif_queue_set_napi - Associate queue with the napi 7038 * @dev: device to which NAPI and queue belong 7039 * @queue_index: Index of queue 7040 * @type: queue type as RX or TX 7041 * @napi: NAPI context, pass NULL to clear previously set NAPI 7042 * 7043 * Set queue with its corresponding napi context. This should be done after 7044 * registering the NAPI handler for the queue-vector and the queues have been 7045 * mapped to the corresponding interrupt vector. 7046 */ 7047 void netif_queue_set_napi(struct net_device *dev, unsigned int queue_index, 7048 enum netdev_queue_type type, struct napi_struct *napi) 7049 { 7050 struct netdev_rx_queue *rxq; 7051 struct netdev_queue *txq; 7052 7053 if (WARN_ON_ONCE(napi && !napi->dev)) 7054 return; 7055 netdev_ops_assert_locked_or_invisible(dev); 7056 7057 switch (type) { 7058 case NETDEV_QUEUE_TYPE_RX: 7059 rxq = __netif_get_rx_queue(dev, queue_index); 7060 rxq->napi = napi; 7061 return; 7062 case NETDEV_QUEUE_TYPE_TX: 7063 txq = netdev_get_tx_queue(dev, queue_index); 7064 txq->napi = napi; 7065 return; 7066 default: 7067 return; 7068 } 7069 } 7070 EXPORT_SYMBOL(netif_queue_set_napi); 7071 7072 static void 7073 netif_napi_irq_notify(struct irq_affinity_notify *notify, 7074 const cpumask_t *mask) 7075 { 7076 struct napi_struct *napi = 7077 container_of(notify, struct napi_struct, notify); 7078 #ifdef CONFIG_RFS_ACCEL 7079 struct cpu_rmap *rmap = napi->dev->rx_cpu_rmap; 7080 int err; 7081 #endif 7082 7083 if (napi->config && napi->dev->irq_affinity_auto) 7084 cpumask_copy(&napi->config->affinity_mask, mask); 7085 7086 #ifdef CONFIG_RFS_ACCEL 7087 if (napi->dev->rx_cpu_rmap_auto) { 7088 err = cpu_rmap_update(rmap, napi->napi_rmap_idx, mask); 7089 if (err) 7090 netdev_warn(napi->dev, "RMAP update failed (%d)\n", 7091 err); 7092 } 7093 #endif 7094 } 7095 7096 #ifdef CONFIG_RFS_ACCEL 7097 static void netif_napi_affinity_release(struct kref *ref) 7098 { 7099 struct napi_struct *napi = 7100 container_of(ref, struct napi_struct, notify.kref); 7101 struct cpu_rmap *rmap = napi->dev->rx_cpu_rmap; 7102 7103 netdev_assert_locked(napi->dev); 7104 WARN_ON(test_and_clear_bit(NAPI_STATE_HAS_NOTIFIER, 7105 &napi->state)); 7106 7107 if (!napi->dev->rx_cpu_rmap_auto) 7108 return; 7109 rmap->obj[napi->napi_rmap_idx] = NULL; 7110 napi->napi_rmap_idx = -1; 7111 cpu_rmap_put(rmap); 7112 } 7113 7114 int netif_enable_cpu_rmap(struct net_device *dev, unsigned int num_irqs) 7115 { 7116 if (dev->rx_cpu_rmap_auto) 7117 return 0; 7118 7119 dev->rx_cpu_rmap = alloc_irq_cpu_rmap(num_irqs); 7120 if (!dev->rx_cpu_rmap) 7121 return -ENOMEM; 7122 7123 dev->rx_cpu_rmap_auto = true; 7124 return 0; 7125 } 7126 EXPORT_SYMBOL(netif_enable_cpu_rmap); 7127 7128 static void netif_del_cpu_rmap(struct net_device *dev) 7129 { 7130 struct cpu_rmap *rmap = dev->rx_cpu_rmap; 7131 7132 if (!dev->rx_cpu_rmap_auto) 7133 return; 7134 7135 /* Free the rmap */ 7136 cpu_rmap_put(rmap); 7137 dev->rx_cpu_rmap = NULL; 7138 dev->rx_cpu_rmap_auto = false; 7139 } 7140 7141 #else 7142 static void netif_napi_affinity_release(struct kref *ref) 7143 { 7144 } 7145 7146 int netif_enable_cpu_rmap(struct net_device *dev, unsigned int num_irqs) 7147 { 7148 return 0; 7149 } 7150 EXPORT_SYMBOL(netif_enable_cpu_rmap); 7151 7152 static void netif_del_cpu_rmap(struct net_device *dev) 7153 { 7154 } 7155 #endif 7156 7157 void netif_set_affinity_auto(struct net_device *dev) 7158 { 7159 unsigned int i, maxqs, numa; 7160 7161 maxqs = max(dev->num_tx_queues, dev->num_rx_queues); 7162 numa = dev_to_node(&dev->dev); 7163 7164 for (i = 0; i < maxqs; i++) 7165 cpumask_set_cpu(cpumask_local_spread(i, numa), 7166 &dev->napi_config[i].affinity_mask); 7167 7168 dev->irq_affinity_auto = true; 7169 } 7170 EXPORT_SYMBOL(netif_set_affinity_auto); 7171 7172 void netif_napi_set_irq_locked(struct napi_struct *napi, int irq) 7173 { 7174 int rc; 7175 7176 netdev_assert_locked_or_invisible(napi->dev); 7177 7178 if (napi->irq == irq) 7179 return; 7180 7181 /* Remove existing resources */ 7182 if (test_and_clear_bit(NAPI_STATE_HAS_NOTIFIER, &napi->state)) 7183 irq_set_affinity_notifier(napi->irq, NULL); 7184 7185 napi->irq = irq; 7186 if (irq < 0 || 7187 (!napi->dev->rx_cpu_rmap_auto && !napi->dev->irq_affinity_auto)) 7188 return; 7189 7190 /* Abort for buggy drivers */ 7191 if (napi->dev->irq_affinity_auto && WARN_ON_ONCE(!napi->config)) 7192 return; 7193 7194 #ifdef CONFIG_RFS_ACCEL 7195 if (napi->dev->rx_cpu_rmap_auto) { 7196 rc = cpu_rmap_add(napi->dev->rx_cpu_rmap, napi); 7197 if (rc < 0) 7198 return; 7199 7200 cpu_rmap_get(napi->dev->rx_cpu_rmap); 7201 napi->napi_rmap_idx = rc; 7202 } 7203 #endif 7204 7205 /* Use core IRQ notifier */ 7206 napi->notify.notify = netif_napi_irq_notify; 7207 napi->notify.release = netif_napi_affinity_release; 7208 rc = irq_set_affinity_notifier(irq, &napi->notify); 7209 if (rc) { 7210 netdev_warn(napi->dev, "Unable to set IRQ notifier (%d)\n", 7211 rc); 7212 goto put_rmap; 7213 } 7214 7215 set_bit(NAPI_STATE_HAS_NOTIFIER, &napi->state); 7216 return; 7217 7218 put_rmap: 7219 #ifdef CONFIG_RFS_ACCEL 7220 if (napi->dev->rx_cpu_rmap_auto) { 7221 napi->dev->rx_cpu_rmap->obj[napi->napi_rmap_idx] = NULL; 7222 cpu_rmap_put(napi->dev->rx_cpu_rmap); 7223 napi->napi_rmap_idx = -1; 7224 } 7225 #endif 7226 napi->notify.notify = NULL; 7227 napi->notify.release = NULL; 7228 } 7229 EXPORT_SYMBOL(netif_napi_set_irq_locked); 7230 7231 static void napi_restore_config(struct napi_struct *n) 7232 { 7233 n->defer_hard_irqs = n->config->defer_hard_irqs; 7234 n->gro_flush_timeout = n->config->gro_flush_timeout; 7235 n->irq_suspend_timeout = n->config->irq_suspend_timeout; 7236 7237 if (n->dev->irq_affinity_auto && 7238 test_bit(NAPI_STATE_HAS_NOTIFIER, &n->state)) 7239 irq_set_affinity(n->irq, &n->config->affinity_mask); 7240 7241 /* a NAPI ID might be stored in the config, if so use it. if not, use 7242 * napi_hash_add to generate one for us. 7243 */ 7244 if (n->config->napi_id) { 7245 napi_hash_add_with_id(n, n->config->napi_id); 7246 } else { 7247 napi_hash_add(n); 7248 n->config->napi_id = n->napi_id; 7249 } 7250 7251 WARN_ON_ONCE(napi_set_threaded(n, n->config->threaded)); 7252 } 7253 7254 static void napi_save_config(struct napi_struct *n) 7255 { 7256 n->config->defer_hard_irqs = n->defer_hard_irqs; 7257 n->config->gro_flush_timeout = n->gro_flush_timeout; 7258 n->config->irq_suspend_timeout = n->irq_suspend_timeout; 7259 napi_hash_del(n); 7260 } 7261 7262 /* Netlink wants the NAPI list to be sorted by ID, if adding a NAPI which will 7263 * inherit an existing ID try to insert it at the right position. 7264 */ 7265 static void 7266 netif_napi_dev_list_add(struct net_device *dev, struct napi_struct *napi) 7267 { 7268 unsigned int new_id, pos_id; 7269 struct list_head *higher; 7270 struct napi_struct *pos; 7271 7272 new_id = UINT_MAX; 7273 if (napi->config && napi->config->napi_id) 7274 new_id = napi->config->napi_id; 7275 7276 higher = &dev->napi_list; 7277 list_for_each_entry(pos, &dev->napi_list, dev_list) { 7278 if (napi_id_valid(pos->napi_id)) 7279 pos_id = pos->napi_id; 7280 else if (pos->config) 7281 pos_id = pos->config->napi_id; 7282 else 7283 pos_id = UINT_MAX; 7284 7285 if (pos_id <= new_id) 7286 break; 7287 higher = &pos->dev_list; 7288 } 7289 list_add_rcu(&napi->dev_list, higher); /* adds after higher */ 7290 } 7291 7292 /* Double check that napi_get_frags() allocates skbs with 7293 * skb->head being backed by slab, not a page fragment. 7294 * This is to make sure bug fixed in 3226b158e67c 7295 * ("net: avoid 32 x truesize under-estimation for tiny skbs") 7296 * does not accidentally come back. 7297 */ 7298 static void napi_get_frags_check(struct napi_struct *napi) 7299 { 7300 struct sk_buff *skb; 7301 7302 local_bh_disable(); 7303 skb = napi_get_frags(napi); 7304 WARN_ON_ONCE(skb && skb->head_frag); 7305 napi_free_frags(napi); 7306 local_bh_enable(); 7307 } 7308 7309 void netif_napi_add_weight_locked(struct net_device *dev, 7310 struct napi_struct *napi, 7311 int (*poll)(struct napi_struct *, int), 7312 int weight) 7313 { 7314 netdev_assert_locked(dev); 7315 if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state))) 7316 return; 7317 7318 INIT_LIST_HEAD(&napi->poll_list); 7319 INIT_HLIST_NODE(&napi->napi_hash_node); 7320 hrtimer_setup(&napi->timer, napi_watchdog, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED); 7321 gro_init(&napi->gro); 7322 napi->skb = NULL; 7323 napi->poll = poll; 7324 if (weight > NAPI_POLL_WEIGHT) 7325 netdev_err_once(dev, "%s() called with weight %d\n", __func__, 7326 weight); 7327 napi->weight = weight; 7328 napi->dev = dev; 7329 #ifdef CONFIG_NETPOLL 7330 napi->poll_owner = -1; 7331 #endif 7332 napi->list_owner = -1; 7333 set_bit(NAPI_STATE_SCHED, &napi->state); 7334 set_bit(NAPI_STATE_NPSVC, &napi->state); 7335 netif_napi_dev_list_add(dev, napi); 7336 7337 /* default settings from sysfs are applied to all NAPIs. any per-NAPI 7338 * configuration will be loaded in napi_enable 7339 */ 7340 napi_set_defer_hard_irqs(napi, READ_ONCE(dev->napi_defer_hard_irqs)); 7341 napi_set_gro_flush_timeout(napi, READ_ONCE(dev->gro_flush_timeout)); 7342 7343 napi_get_frags_check(napi); 7344 /* Create kthread for this napi if dev->threaded is set. 7345 * Clear dev->threaded if kthread creation failed so that 7346 * threaded mode will not be enabled in napi_enable(). 7347 */ 7348 if (dev->threaded && napi_kthread_create(napi)) 7349 dev->threaded = false; 7350 netif_napi_set_irq_locked(napi, -1); 7351 } 7352 EXPORT_SYMBOL(netif_napi_add_weight_locked); 7353 7354 void napi_disable_locked(struct napi_struct *n) 7355 { 7356 unsigned long val, new; 7357 7358 might_sleep(); 7359 netdev_assert_locked(n->dev); 7360 7361 set_bit(NAPI_STATE_DISABLE, &n->state); 7362 7363 val = READ_ONCE(n->state); 7364 do { 7365 while (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) { 7366 usleep_range(20, 200); 7367 val = READ_ONCE(n->state); 7368 } 7369 7370 new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC; 7371 new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL); 7372 } while (!try_cmpxchg(&n->state, &val, new)); 7373 7374 hrtimer_cancel(&n->timer); 7375 7376 if (n->config) 7377 napi_save_config(n); 7378 else 7379 napi_hash_del(n); 7380 7381 clear_bit(NAPI_STATE_DISABLE, &n->state); 7382 } 7383 EXPORT_SYMBOL(napi_disable_locked); 7384 7385 /** 7386 * napi_disable() - prevent NAPI from scheduling 7387 * @n: NAPI context 7388 * 7389 * Stop NAPI from being scheduled on this context. 7390 * Waits till any outstanding processing completes. 7391 * Takes netdev_lock() for associated net_device. 7392 */ 7393 void napi_disable(struct napi_struct *n) 7394 { 7395 netdev_lock(n->dev); 7396 napi_disable_locked(n); 7397 netdev_unlock(n->dev); 7398 } 7399 EXPORT_SYMBOL(napi_disable); 7400 7401 void napi_enable_locked(struct napi_struct *n) 7402 { 7403 unsigned long new, val = READ_ONCE(n->state); 7404 7405 if (n->config) 7406 napi_restore_config(n); 7407 else 7408 napi_hash_add(n); 7409 7410 do { 7411 BUG_ON(!test_bit(NAPI_STATE_SCHED, &val)); 7412 7413 new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC); 7414 if (n->dev->threaded && n->thread) 7415 new |= NAPIF_STATE_THREADED; 7416 } while (!try_cmpxchg(&n->state, &val, new)); 7417 } 7418 EXPORT_SYMBOL(napi_enable_locked); 7419 7420 /** 7421 * napi_enable() - enable NAPI scheduling 7422 * @n: NAPI context 7423 * 7424 * Enable scheduling of a NAPI instance. 7425 * Must be paired with napi_disable(). 7426 * Takes netdev_lock() for associated net_device. 7427 */ 7428 void napi_enable(struct napi_struct *n) 7429 { 7430 netdev_lock(n->dev); 7431 napi_enable_locked(n); 7432 netdev_unlock(n->dev); 7433 } 7434 EXPORT_SYMBOL(napi_enable); 7435 7436 /* Must be called in process context */ 7437 void __netif_napi_del_locked(struct napi_struct *napi) 7438 { 7439 netdev_assert_locked(napi->dev); 7440 7441 if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state)) 7442 return; 7443 7444 /* Make sure NAPI is disabled (or was never enabled). */ 7445 WARN_ON(!test_bit(NAPI_STATE_SCHED, &napi->state)); 7446 7447 if (test_and_clear_bit(NAPI_STATE_HAS_NOTIFIER, &napi->state)) 7448 irq_set_affinity_notifier(napi->irq, NULL); 7449 7450 if (napi->config) { 7451 napi->index = -1; 7452 napi->config = NULL; 7453 } 7454 7455 list_del_rcu(&napi->dev_list); 7456 napi_free_frags(napi); 7457 7458 gro_cleanup(&napi->gro); 7459 7460 if (napi->thread) { 7461 kthread_stop(napi->thread); 7462 napi->thread = NULL; 7463 } 7464 } 7465 EXPORT_SYMBOL(__netif_napi_del_locked); 7466 7467 static int __napi_poll(struct napi_struct *n, bool *repoll) 7468 { 7469 int work, weight; 7470 7471 weight = n->weight; 7472 7473 /* This NAPI_STATE_SCHED test is for avoiding a race 7474 * with netpoll's poll_napi(). Only the entity which 7475 * obtains the lock and sees NAPI_STATE_SCHED set will 7476 * actually make the ->poll() call. Therefore we avoid 7477 * accidentally calling ->poll() when NAPI is not scheduled. 7478 */ 7479 work = 0; 7480 if (napi_is_scheduled(n)) { 7481 work = n->poll(n, weight); 7482 trace_napi_poll(n, work, weight); 7483 7484 xdp_do_check_flushed(n); 7485 } 7486 7487 if (unlikely(work > weight)) 7488 netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n", 7489 n->poll, work, weight); 7490 7491 if (likely(work < weight)) 7492 return work; 7493 7494 /* Drivers must not modify the NAPI state if they 7495 * consume the entire weight. In such cases this code 7496 * still "owns" the NAPI instance and therefore can 7497 * move the instance around on the list at-will. 7498 */ 7499 if (unlikely(napi_disable_pending(n))) { 7500 napi_complete(n); 7501 return work; 7502 } 7503 7504 /* The NAPI context has more processing work, but busy-polling 7505 * is preferred. Exit early. 7506 */ 7507 if (napi_prefer_busy_poll(n)) { 7508 if (napi_complete_done(n, work)) { 7509 /* If timeout is not set, we need to make sure 7510 * that the NAPI is re-scheduled. 7511 */ 7512 napi_schedule(n); 7513 } 7514 return work; 7515 } 7516 7517 /* Flush too old packets. If HZ < 1000, flush all packets */ 7518 gro_flush(&n->gro, HZ >= 1000); 7519 gro_normal_list(&n->gro); 7520 7521 /* Some drivers may have called napi_schedule 7522 * prior to exhausting their budget. 7523 */ 7524 if (unlikely(!list_empty(&n->poll_list))) { 7525 pr_warn_once("%s: Budget exhausted after napi rescheduled\n", 7526 n->dev ? n->dev->name : "backlog"); 7527 return work; 7528 } 7529 7530 *repoll = true; 7531 7532 return work; 7533 } 7534 7535 static int napi_poll(struct napi_struct *n, struct list_head *repoll) 7536 { 7537 bool do_repoll = false; 7538 void *have; 7539 int work; 7540 7541 list_del_init(&n->poll_list); 7542 7543 have = netpoll_poll_lock(n); 7544 7545 work = __napi_poll(n, &do_repoll); 7546 7547 if (do_repoll) { 7548 #if defined(CONFIG_DEBUG_NET) 7549 if (unlikely(!napi_is_scheduled(n))) 7550 pr_crit("repoll requested for device %s %ps but napi is not scheduled.\n", 7551 n->dev->name, n->poll); 7552 #endif 7553 list_add_tail(&n->poll_list, repoll); 7554 } 7555 netpoll_poll_unlock(have); 7556 7557 return work; 7558 } 7559 7560 static int napi_thread_wait(struct napi_struct *napi) 7561 { 7562 set_current_state(TASK_INTERRUPTIBLE); 7563 7564 while (!kthread_should_stop()) { 7565 /* Testing SCHED_THREADED bit here to make sure the current 7566 * kthread owns this napi and could poll on this napi. 7567 * Testing SCHED bit is not enough because SCHED bit might be 7568 * set by some other busy poll thread or by napi_disable(). 7569 */ 7570 if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state)) { 7571 WARN_ON(!list_empty(&napi->poll_list)); 7572 __set_current_state(TASK_RUNNING); 7573 return 0; 7574 } 7575 7576 schedule(); 7577 set_current_state(TASK_INTERRUPTIBLE); 7578 } 7579 __set_current_state(TASK_RUNNING); 7580 7581 return -1; 7582 } 7583 7584 static void napi_threaded_poll_loop(struct napi_struct *napi) 7585 { 7586 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; 7587 struct softnet_data *sd; 7588 unsigned long last_qs = jiffies; 7589 7590 for (;;) { 7591 bool repoll = false; 7592 void *have; 7593 7594 local_bh_disable(); 7595 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx); 7596 7597 sd = this_cpu_ptr(&softnet_data); 7598 sd->in_napi_threaded_poll = true; 7599 7600 have = netpoll_poll_lock(napi); 7601 __napi_poll(napi, &repoll); 7602 netpoll_poll_unlock(have); 7603 7604 sd->in_napi_threaded_poll = false; 7605 barrier(); 7606 7607 if (sd_has_rps_ipi_waiting(sd)) { 7608 local_irq_disable(); 7609 net_rps_action_and_irq_enable(sd); 7610 } 7611 skb_defer_free_flush(sd); 7612 bpf_net_ctx_clear(bpf_net_ctx); 7613 local_bh_enable(); 7614 7615 if (!repoll) 7616 break; 7617 7618 rcu_softirq_qs_periodic(last_qs); 7619 cond_resched(); 7620 } 7621 } 7622 7623 static int napi_threaded_poll(void *data) 7624 { 7625 struct napi_struct *napi = data; 7626 7627 while (!napi_thread_wait(napi)) 7628 napi_threaded_poll_loop(napi); 7629 7630 return 0; 7631 } 7632 7633 static __latent_entropy void net_rx_action(void) 7634 { 7635 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 7636 unsigned long time_limit = jiffies + 7637 usecs_to_jiffies(READ_ONCE(net_hotdata.netdev_budget_usecs)); 7638 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; 7639 int budget = READ_ONCE(net_hotdata.netdev_budget); 7640 LIST_HEAD(list); 7641 LIST_HEAD(repoll); 7642 7643 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx); 7644 start: 7645 sd->in_net_rx_action = true; 7646 local_irq_disable(); 7647 list_splice_init(&sd->poll_list, &list); 7648 local_irq_enable(); 7649 7650 for (;;) { 7651 struct napi_struct *n; 7652 7653 skb_defer_free_flush(sd); 7654 7655 if (list_empty(&list)) { 7656 if (list_empty(&repoll)) { 7657 sd->in_net_rx_action = false; 7658 barrier(); 7659 /* We need to check if ____napi_schedule() 7660 * had refilled poll_list while 7661 * sd->in_net_rx_action was true. 7662 */ 7663 if (!list_empty(&sd->poll_list)) 7664 goto start; 7665 if (!sd_has_rps_ipi_waiting(sd)) 7666 goto end; 7667 } 7668 break; 7669 } 7670 7671 n = list_first_entry(&list, struct napi_struct, poll_list); 7672 budget -= napi_poll(n, &repoll); 7673 7674 /* If softirq window is exhausted then punt. 7675 * Allow this to run for 2 jiffies since which will allow 7676 * an average latency of 1.5/HZ. 7677 */ 7678 if (unlikely(budget <= 0 || 7679 time_after_eq(jiffies, time_limit))) { 7680 /* Pairs with READ_ONCE() in softnet_seq_show() */ 7681 WRITE_ONCE(sd->time_squeeze, sd->time_squeeze + 1); 7682 break; 7683 } 7684 } 7685 7686 local_irq_disable(); 7687 7688 list_splice_tail_init(&sd->poll_list, &list); 7689 list_splice_tail(&repoll, &list); 7690 list_splice(&list, &sd->poll_list); 7691 if (!list_empty(&sd->poll_list)) 7692 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 7693 else 7694 sd->in_net_rx_action = false; 7695 7696 net_rps_action_and_irq_enable(sd); 7697 end: 7698 bpf_net_ctx_clear(bpf_net_ctx); 7699 } 7700 7701 struct netdev_adjacent { 7702 struct net_device *dev; 7703 netdevice_tracker dev_tracker; 7704 7705 /* upper master flag, there can only be one master device per list */ 7706 bool master; 7707 7708 /* lookup ignore flag */ 7709 bool ignore; 7710 7711 /* counter for the number of times this device was added to us */ 7712 u16 ref_nr; 7713 7714 /* private field for the users */ 7715 void *private; 7716 7717 struct list_head list; 7718 struct rcu_head rcu; 7719 }; 7720 7721 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev, 7722 struct list_head *adj_list) 7723 { 7724 struct netdev_adjacent *adj; 7725 7726 list_for_each_entry(adj, adj_list, list) { 7727 if (adj->dev == adj_dev) 7728 return adj; 7729 } 7730 return NULL; 7731 } 7732 7733 static int ____netdev_has_upper_dev(struct net_device *upper_dev, 7734 struct netdev_nested_priv *priv) 7735 { 7736 struct net_device *dev = (struct net_device *)priv->data; 7737 7738 return upper_dev == dev; 7739 } 7740 7741 /** 7742 * netdev_has_upper_dev - Check if device is linked to an upper device 7743 * @dev: device 7744 * @upper_dev: upper device to check 7745 * 7746 * Find out if a device is linked to specified upper device and return true 7747 * in case it is. Note that this checks only immediate upper device, 7748 * not through a complete stack of devices. The caller must hold the RTNL lock. 7749 */ 7750 bool netdev_has_upper_dev(struct net_device *dev, 7751 struct net_device *upper_dev) 7752 { 7753 struct netdev_nested_priv priv = { 7754 .data = (void *)upper_dev, 7755 }; 7756 7757 ASSERT_RTNL(); 7758 7759 return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev, 7760 &priv); 7761 } 7762 EXPORT_SYMBOL(netdev_has_upper_dev); 7763 7764 /** 7765 * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device 7766 * @dev: device 7767 * @upper_dev: upper device to check 7768 * 7769 * Find out if a device is linked to specified upper device and return true 7770 * in case it is. Note that this checks the entire upper device chain. 7771 * The caller must hold rcu lock. 7772 */ 7773 7774 bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 7775 struct net_device *upper_dev) 7776 { 7777 struct netdev_nested_priv priv = { 7778 .data = (void *)upper_dev, 7779 }; 7780 7781 return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev, 7782 &priv); 7783 } 7784 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu); 7785 7786 /** 7787 * netdev_has_any_upper_dev - Check if device is linked to some device 7788 * @dev: device 7789 * 7790 * Find out if a device is linked to an upper device and return true in case 7791 * it is. The caller must hold the RTNL lock. 7792 */ 7793 bool netdev_has_any_upper_dev(struct net_device *dev) 7794 { 7795 ASSERT_RTNL(); 7796 7797 return !list_empty(&dev->adj_list.upper); 7798 } 7799 EXPORT_SYMBOL(netdev_has_any_upper_dev); 7800 7801 /** 7802 * netdev_master_upper_dev_get - Get master upper device 7803 * @dev: device 7804 * 7805 * Find a master upper device and return pointer to it or NULL in case 7806 * it's not there. The caller must hold the RTNL lock. 7807 */ 7808 struct net_device *netdev_master_upper_dev_get(struct net_device *dev) 7809 { 7810 struct netdev_adjacent *upper; 7811 7812 ASSERT_RTNL(); 7813 7814 if (list_empty(&dev->adj_list.upper)) 7815 return NULL; 7816 7817 upper = list_first_entry(&dev->adj_list.upper, 7818 struct netdev_adjacent, list); 7819 if (likely(upper->master)) 7820 return upper->dev; 7821 return NULL; 7822 } 7823 EXPORT_SYMBOL(netdev_master_upper_dev_get); 7824 7825 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev) 7826 { 7827 struct netdev_adjacent *upper; 7828 7829 ASSERT_RTNL(); 7830 7831 if (list_empty(&dev->adj_list.upper)) 7832 return NULL; 7833 7834 upper = list_first_entry(&dev->adj_list.upper, 7835 struct netdev_adjacent, list); 7836 if (likely(upper->master) && !upper->ignore) 7837 return upper->dev; 7838 return NULL; 7839 } 7840 7841 /** 7842 * netdev_has_any_lower_dev - Check if device is linked to some device 7843 * @dev: device 7844 * 7845 * Find out if a device is linked to a lower device and return true in case 7846 * it is. The caller must hold the RTNL lock. 7847 */ 7848 static bool netdev_has_any_lower_dev(struct net_device *dev) 7849 { 7850 ASSERT_RTNL(); 7851 7852 return !list_empty(&dev->adj_list.lower); 7853 } 7854 7855 void *netdev_adjacent_get_private(struct list_head *adj_list) 7856 { 7857 struct netdev_adjacent *adj; 7858 7859 adj = list_entry(adj_list, struct netdev_adjacent, list); 7860 7861 return adj->private; 7862 } 7863 EXPORT_SYMBOL(netdev_adjacent_get_private); 7864 7865 /** 7866 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list 7867 * @dev: device 7868 * @iter: list_head ** of the current position 7869 * 7870 * Gets the next device from the dev's upper list, starting from iter 7871 * position. The caller must hold RCU read lock. 7872 */ 7873 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 7874 struct list_head **iter) 7875 { 7876 struct netdev_adjacent *upper; 7877 7878 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 7879 7880 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 7881 7882 if (&upper->list == &dev->adj_list.upper) 7883 return NULL; 7884 7885 *iter = &upper->list; 7886 7887 return upper->dev; 7888 } 7889 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu); 7890 7891 static struct net_device *__netdev_next_upper_dev(struct net_device *dev, 7892 struct list_head **iter, 7893 bool *ignore) 7894 { 7895 struct netdev_adjacent *upper; 7896 7897 upper = list_entry((*iter)->next, struct netdev_adjacent, list); 7898 7899 if (&upper->list == &dev->adj_list.upper) 7900 return NULL; 7901 7902 *iter = &upper->list; 7903 *ignore = upper->ignore; 7904 7905 return upper->dev; 7906 } 7907 7908 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev, 7909 struct list_head **iter) 7910 { 7911 struct netdev_adjacent *upper; 7912 7913 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 7914 7915 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 7916 7917 if (&upper->list == &dev->adj_list.upper) 7918 return NULL; 7919 7920 *iter = &upper->list; 7921 7922 return upper->dev; 7923 } 7924 7925 static int __netdev_walk_all_upper_dev(struct net_device *dev, 7926 int (*fn)(struct net_device *dev, 7927 struct netdev_nested_priv *priv), 7928 struct netdev_nested_priv *priv) 7929 { 7930 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7931 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7932 int ret, cur = 0; 7933 bool ignore; 7934 7935 now = dev; 7936 iter = &dev->adj_list.upper; 7937 7938 while (1) { 7939 if (now != dev) { 7940 ret = fn(now, priv); 7941 if (ret) 7942 return ret; 7943 } 7944 7945 next = NULL; 7946 while (1) { 7947 udev = __netdev_next_upper_dev(now, &iter, &ignore); 7948 if (!udev) 7949 break; 7950 if (ignore) 7951 continue; 7952 7953 next = udev; 7954 niter = &udev->adj_list.upper; 7955 dev_stack[cur] = now; 7956 iter_stack[cur++] = iter; 7957 break; 7958 } 7959 7960 if (!next) { 7961 if (!cur) 7962 return 0; 7963 next = dev_stack[--cur]; 7964 niter = iter_stack[cur]; 7965 } 7966 7967 now = next; 7968 iter = niter; 7969 } 7970 7971 return 0; 7972 } 7973 7974 int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 7975 int (*fn)(struct net_device *dev, 7976 struct netdev_nested_priv *priv), 7977 struct netdev_nested_priv *priv) 7978 { 7979 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7980 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7981 int ret, cur = 0; 7982 7983 now = dev; 7984 iter = &dev->adj_list.upper; 7985 7986 while (1) { 7987 if (now != dev) { 7988 ret = fn(now, priv); 7989 if (ret) 7990 return ret; 7991 } 7992 7993 next = NULL; 7994 while (1) { 7995 udev = netdev_next_upper_dev_rcu(now, &iter); 7996 if (!udev) 7997 break; 7998 7999 next = udev; 8000 niter = &udev->adj_list.upper; 8001 dev_stack[cur] = now; 8002 iter_stack[cur++] = iter; 8003 break; 8004 } 8005 8006 if (!next) { 8007 if (!cur) 8008 return 0; 8009 next = dev_stack[--cur]; 8010 niter = iter_stack[cur]; 8011 } 8012 8013 now = next; 8014 iter = niter; 8015 } 8016 8017 return 0; 8018 } 8019 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu); 8020 8021 static bool __netdev_has_upper_dev(struct net_device *dev, 8022 struct net_device *upper_dev) 8023 { 8024 struct netdev_nested_priv priv = { 8025 .flags = 0, 8026 .data = (void *)upper_dev, 8027 }; 8028 8029 ASSERT_RTNL(); 8030 8031 return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev, 8032 &priv); 8033 } 8034 8035 /** 8036 * netdev_lower_get_next_private - Get the next ->private from the 8037 * lower neighbour list 8038 * @dev: device 8039 * @iter: list_head ** of the current position 8040 * 8041 * Gets the next netdev_adjacent->private from the dev's lower neighbour 8042 * list, starting from iter position. The caller must hold either hold the 8043 * RTNL lock or its own locking that guarantees that the neighbour lower 8044 * list will remain unchanged. 8045 */ 8046 void *netdev_lower_get_next_private(struct net_device *dev, 8047 struct list_head **iter) 8048 { 8049 struct netdev_adjacent *lower; 8050 8051 lower = list_entry(*iter, struct netdev_adjacent, list); 8052 8053 if (&lower->list == &dev->adj_list.lower) 8054 return NULL; 8055 8056 *iter = lower->list.next; 8057 8058 return lower->private; 8059 } 8060 EXPORT_SYMBOL(netdev_lower_get_next_private); 8061 8062 /** 8063 * netdev_lower_get_next_private_rcu - Get the next ->private from the 8064 * lower neighbour list, RCU 8065 * variant 8066 * @dev: device 8067 * @iter: list_head ** of the current position 8068 * 8069 * Gets the next netdev_adjacent->private from the dev's lower neighbour 8070 * list, starting from iter position. The caller must hold RCU read lock. 8071 */ 8072 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 8073 struct list_head **iter) 8074 { 8075 struct netdev_adjacent *lower; 8076 8077 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); 8078 8079 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 8080 8081 if (&lower->list == &dev->adj_list.lower) 8082 return NULL; 8083 8084 *iter = &lower->list; 8085 8086 return lower->private; 8087 } 8088 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu); 8089 8090 /** 8091 * netdev_lower_get_next - Get the next device from the lower neighbour 8092 * list 8093 * @dev: device 8094 * @iter: list_head ** of the current position 8095 * 8096 * Gets the next netdev_adjacent from the dev's lower neighbour 8097 * list, starting from iter position. The caller must hold RTNL lock or 8098 * its own locking that guarantees that the neighbour lower 8099 * list will remain unchanged. 8100 */ 8101 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter) 8102 { 8103 struct netdev_adjacent *lower; 8104 8105 lower = list_entry(*iter, struct netdev_adjacent, list); 8106 8107 if (&lower->list == &dev->adj_list.lower) 8108 return NULL; 8109 8110 *iter = lower->list.next; 8111 8112 return lower->dev; 8113 } 8114 EXPORT_SYMBOL(netdev_lower_get_next); 8115 8116 static struct net_device *netdev_next_lower_dev(struct net_device *dev, 8117 struct list_head **iter) 8118 { 8119 struct netdev_adjacent *lower; 8120 8121 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 8122 8123 if (&lower->list == &dev->adj_list.lower) 8124 return NULL; 8125 8126 *iter = &lower->list; 8127 8128 return lower->dev; 8129 } 8130 8131 static struct net_device *__netdev_next_lower_dev(struct net_device *dev, 8132 struct list_head **iter, 8133 bool *ignore) 8134 { 8135 struct netdev_adjacent *lower; 8136 8137 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 8138 8139 if (&lower->list == &dev->adj_list.lower) 8140 return NULL; 8141 8142 *iter = &lower->list; 8143 *ignore = lower->ignore; 8144 8145 return lower->dev; 8146 } 8147 8148 int netdev_walk_all_lower_dev(struct net_device *dev, 8149 int (*fn)(struct net_device *dev, 8150 struct netdev_nested_priv *priv), 8151 struct netdev_nested_priv *priv) 8152 { 8153 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 8154 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 8155 int ret, cur = 0; 8156 8157 now = dev; 8158 iter = &dev->adj_list.lower; 8159 8160 while (1) { 8161 if (now != dev) { 8162 ret = fn(now, priv); 8163 if (ret) 8164 return ret; 8165 } 8166 8167 next = NULL; 8168 while (1) { 8169 ldev = netdev_next_lower_dev(now, &iter); 8170 if (!ldev) 8171 break; 8172 8173 next = ldev; 8174 niter = &ldev->adj_list.lower; 8175 dev_stack[cur] = now; 8176 iter_stack[cur++] = iter; 8177 break; 8178 } 8179 8180 if (!next) { 8181 if (!cur) 8182 return 0; 8183 next = dev_stack[--cur]; 8184 niter = iter_stack[cur]; 8185 } 8186 8187 now = next; 8188 iter = niter; 8189 } 8190 8191 return 0; 8192 } 8193 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev); 8194 8195 static int __netdev_walk_all_lower_dev(struct net_device *dev, 8196 int (*fn)(struct net_device *dev, 8197 struct netdev_nested_priv *priv), 8198 struct netdev_nested_priv *priv) 8199 { 8200 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 8201 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 8202 int ret, cur = 0; 8203 bool ignore; 8204 8205 now = dev; 8206 iter = &dev->adj_list.lower; 8207 8208 while (1) { 8209 if (now != dev) { 8210 ret = fn(now, priv); 8211 if (ret) 8212 return ret; 8213 } 8214 8215 next = NULL; 8216 while (1) { 8217 ldev = __netdev_next_lower_dev(now, &iter, &ignore); 8218 if (!ldev) 8219 break; 8220 if (ignore) 8221 continue; 8222 8223 next = ldev; 8224 niter = &ldev->adj_list.lower; 8225 dev_stack[cur] = now; 8226 iter_stack[cur++] = iter; 8227 break; 8228 } 8229 8230 if (!next) { 8231 if (!cur) 8232 return 0; 8233 next = dev_stack[--cur]; 8234 niter = iter_stack[cur]; 8235 } 8236 8237 now = next; 8238 iter = niter; 8239 } 8240 8241 return 0; 8242 } 8243 8244 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev, 8245 struct list_head **iter) 8246 { 8247 struct netdev_adjacent *lower; 8248 8249 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 8250 if (&lower->list == &dev->adj_list.lower) 8251 return NULL; 8252 8253 *iter = &lower->list; 8254 8255 return lower->dev; 8256 } 8257 EXPORT_SYMBOL(netdev_next_lower_dev_rcu); 8258 8259 static u8 __netdev_upper_depth(struct net_device *dev) 8260 { 8261 struct net_device *udev; 8262 struct list_head *iter; 8263 u8 max_depth = 0; 8264 bool ignore; 8265 8266 for (iter = &dev->adj_list.upper, 8267 udev = __netdev_next_upper_dev(dev, &iter, &ignore); 8268 udev; 8269 udev = __netdev_next_upper_dev(dev, &iter, &ignore)) { 8270 if (ignore) 8271 continue; 8272 if (max_depth < udev->upper_level) 8273 max_depth = udev->upper_level; 8274 } 8275 8276 return max_depth; 8277 } 8278 8279 static u8 __netdev_lower_depth(struct net_device *dev) 8280 { 8281 struct net_device *ldev; 8282 struct list_head *iter; 8283 u8 max_depth = 0; 8284 bool ignore; 8285 8286 for (iter = &dev->adj_list.lower, 8287 ldev = __netdev_next_lower_dev(dev, &iter, &ignore); 8288 ldev; 8289 ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) { 8290 if (ignore) 8291 continue; 8292 if (max_depth < ldev->lower_level) 8293 max_depth = ldev->lower_level; 8294 } 8295 8296 return max_depth; 8297 } 8298 8299 static int __netdev_update_upper_level(struct net_device *dev, 8300 struct netdev_nested_priv *__unused) 8301 { 8302 dev->upper_level = __netdev_upper_depth(dev) + 1; 8303 return 0; 8304 } 8305 8306 #ifdef CONFIG_LOCKDEP 8307 static LIST_HEAD(net_unlink_list); 8308 8309 static void net_unlink_todo(struct net_device *dev) 8310 { 8311 if (list_empty(&dev->unlink_list)) 8312 list_add_tail(&dev->unlink_list, &net_unlink_list); 8313 } 8314 #endif 8315 8316 static int __netdev_update_lower_level(struct net_device *dev, 8317 struct netdev_nested_priv *priv) 8318 { 8319 dev->lower_level = __netdev_lower_depth(dev) + 1; 8320 8321 #ifdef CONFIG_LOCKDEP 8322 if (!priv) 8323 return 0; 8324 8325 if (priv->flags & NESTED_SYNC_IMM) 8326 dev->nested_level = dev->lower_level - 1; 8327 if (priv->flags & NESTED_SYNC_TODO) 8328 net_unlink_todo(dev); 8329 #endif 8330 return 0; 8331 } 8332 8333 int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 8334 int (*fn)(struct net_device *dev, 8335 struct netdev_nested_priv *priv), 8336 struct netdev_nested_priv *priv) 8337 { 8338 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 8339 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 8340 int ret, cur = 0; 8341 8342 now = dev; 8343 iter = &dev->adj_list.lower; 8344 8345 while (1) { 8346 if (now != dev) { 8347 ret = fn(now, priv); 8348 if (ret) 8349 return ret; 8350 } 8351 8352 next = NULL; 8353 while (1) { 8354 ldev = netdev_next_lower_dev_rcu(now, &iter); 8355 if (!ldev) 8356 break; 8357 8358 next = ldev; 8359 niter = &ldev->adj_list.lower; 8360 dev_stack[cur] = now; 8361 iter_stack[cur++] = iter; 8362 break; 8363 } 8364 8365 if (!next) { 8366 if (!cur) 8367 return 0; 8368 next = dev_stack[--cur]; 8369 niter = iter_stack[cur]; 8370 } 8371 8372 now = next; 8373 iter = niter; 8374 } 8375 8376 return 0; 8377 } 8378 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu); 8379 8380 /** 8381 * netdev_lower_get_first_private_rcu - Get the first ->private from the 8382 * lower neighbour list, RCU 8383 * variant 8384 * @dev: device 8385 * 8386 * Gets the first netdev_adjacent->private from the dev's lower neighbour 8387 * list. The caller must hold RCU read lock. 8388 */ 8389 void *netdev_lower_get_first_private_rcu(struct net_device *dev) 8390 { 8391 struct netdev_adjacent *lower; 8392 8393 lower = list_first_or_null_rcu(&dev->adj_list.lower, 8394 struct netdev_adjacent, list); 8395 if (lower) 8396 return lower->private; 8397 return NULL; 8398 } 8399 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu); 8400 8401 /** 8402 * netdev_master_upper_dev_get_rcu - Get master upper device 8403 * @dev: device 8404 * 8405 * Find a master upper device and return pointer to it or NULL in case 8406 * it's not there. The caller must hold the RCU read lock. 8407 */ 8408 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev) 8409 { 8410 struct netdev_adjacent *upper; 8411 8412 upper = list_first_or_null_rcu(&dev->adj_list.upper, 8413 struct netdev_adjacent, list); 8414 if (upper && likely(upper->master)) 8415 return upper->dev; 8416 return NULL; 8417 } 8418 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu); 8419 8420 static int netdev_adjacent_sysfs_add(struct net_device *dev, 8421 struct net_device *adj_dev, 8422 struct list_head *dev_list) 8423 { 8424 char linkname[IFNAMSIZ+7]; 8425 8426 sprintf(linkname, dev_list == &dev->adj_list.upper ? 8427 "upper_%s" : "lower_%s", adj_dev->name); 8428 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj), 8429 linkname); 8430 } 8431 static void netdev_adjacent_sysfs_del(struct net_device *dev, 8432 char *name, 8433 struct list_head *dev_list) 8434 { 8435 char linkname[IFNAMSIZ+7]; 8436 8437 sprintf(linkname, dev_list == &dev->adj_list.upper ? 8438 "upper_%s" : "lower_%s", name); 8439 sysfs_remove_link(&(dev->dev.kobj), linkname); 8440 } 8441 8442 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev, 8443 struct net_device *adj_dev, 8444 struct list_head *dev_list) 8445 { 8446 return (dev_list == &dev->adj_list.upper || 8447 dev_list == &dev->adj_list.lower) && 8448 net_eq(dev_net(dev), dev_net(adj_dev)); 8449 } 8450 8451 static int __netdev_adjacent_dev_insert(struct net_device *dev, 8452 struct net_device *adj_dev, 8453 struct list_head *dev_list, 8454 void *private, bool master) 8455 { 8456 struct netdev_adjacent *adj; 8457 int ret; 8458 8459 adj = __netdev_find_adj(adj_dev, dev_list); 8460 8461 if (adj) { 8462 adj->ref_nr += 1; 8463 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n", 8464 dev->name, adj_dev->name, adj->ref_nr); 8465 8466 return 0; 8467 } 8468 8469 adj = kmalloc(sizeof(*adj), GFP_KERNEL); 8470 if (!adj) 8471 return -ENOMEM; 8472 8473 adj->dev = adj_dev; 8474 adj->master = master; 8475 adj->ref_nr = 1; 8476 adj->private = private; 8477 adj->ignore = false; 8478 netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL); 8479 8480 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n", 8481 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name); 8482 8483 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) { 8484 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list); 8485 if (ret) 8486 goto free_adj; 8487 } 8488 8489 /* Ensure that master link is always the first item in list. */ 8490 if (master) { 8491 ret = sysfs_create_link(&(dev->dev.kobj), 8492 &(adj_dev->dev.kobj), "master"); 8493 if (ret) 8494 goto remove_symlinks; 8495 8496 list_add_rcu(&adj->list, dev_list); 8497 } else { 8498 list_add_tail_rcu(&adj->list, dev_list); 8499 } 8500 8501 return 0; 8502 8503 remove_symlinks: 8504 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 8505 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 8506 free_adj: 8507 netdev_put(adj_dev, &adj->dev_tracker); 8508 kfree(adj); 8509 8510 return ret; 8511 } 8512 8513 static void __netdev_adjacent_dev_remove(struct net_device *dev, 8514 struct net_device *adj_dev, 8515 u16 ref_nr, 8516 struct list_head *dev_list) 8517 { 8518 struct netdev_adjacent *adj; 8519 8520 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n", 8521 dev->name, adj_dev->name, ref_nr); 8522 8523 adj = __netdev_find_adj(adj_dev, dev_list); 8524 8525 if (!adj) { 8526 pr_err("Adjacency does not exist for device %s from %s\n", 8527 dev->name, adj_dev->name); 8528 WARN_ON(1); 8529 return; 8530 } 8531 8532 if (adj->ref_nr > ref_nr) { 8533 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n", 8534 dev->name, adj_dev->name, ref_nr, 8535 adj->ref_nr - ref_nr); 8536 adj->ref_nr -= ref_nr; 8537 return; 8538 } 8539 8540 if (adj->master) 8541 sysfs_remove_link(&(dev->dev.kobj), "master"); 8542 8543 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 8544 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 8545 8546 list_del_rcu(&adj->list); 8547 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n", 8548 adj_dev->name, dev->name, adj_dev->name); 8549 netdev_put(adj_dev, &adj->dev_tracker); 8550 kfree_rcu(adj, rcu); 8551 } 8552 8553 static int __netdev_adjacent_dev_link_lists(struct net_device *dev, 8554 struct net_device *upper_dev, 8555 struct list_head *up_list, 8556 struct list_head *down_list, 8557 void *private, bool master) 8558 { 8559 int ret; 8560 8561 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, 8562 private, master); 8563 if (ret) 8564 return ret; 8565 8566 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, 8567 private, false); 8568 if (ret) { 8569 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list); 8570 return ret; 8571 } 8572 8573 return 0; 8574 } 8575 8576 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev, 8577 struct net_device *upper_dev, 8578 u16 ref_nr, 8579 struct list_head *up_list, 8580 struct list_head *down_list) 8581 { 8582 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list); 8583 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list); 8584 } 8585 8586 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev, 8587 struct net_device *upper_dev, 8588 void *private, bool master) 8589 { 8590 return __netdev_adjacent_dev_link_lists(dev, upper_dev, 8591 &dev->adj_list.upper, 8592 &upper_dev->adj_list.lower, 8593 private, master); 8594 } 8595 8596 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev, 8597 struct net_device *upper_dev) 8598 { 8599 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1, 8600 &dev->adj_list.upper, 8601 &upper_dev->adj_list.lower); 8602 } 8603 8604 static int __netdev_upper_dev_link(struct net_device *dev, 8605 struct net_device *upper_dev, bool master, 8606 void *upper_priv, void *upper_info, 8607 struct netdev_nested_priv *priv, 8608 struct netlink_ext_ack *extack) 8609 { 8610 struct netdev_notifier_changeupper_info changeupper_info = { 8611 .info = { 8612 .dev = dev, 8613 .extack = extack, 8614 }, 8615 .upper_dev = upper_dev, 8616 .master = master, 8617 .linking = true, 8618 .upper_info = upper_info, 8619 }; 8620 struct net_device *master_dev; 8621 int ret = 0; 8622 8623 ASSERT_RTNL(); 8624 8625 if (dev == upper_dev) 8626 return -EBUSY; 8627 8628 /* To prevent loops, check if dev is not upper device to upper_dev. */ 8629 if (__netdev_has_upper_dev(upper_dev, dev)) 8630 return -EBUSY; 8631 8632 if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV) 8633 return -EMLINK; 8634 8635 if (!master) { 8636 if (__netdev_has_upper_dev(dev, upper_dev)) 8637 return -EEXIST; 8638 } else { 8639 master_dev = __netdev_master_upper_dev_get(dev); 8640 if (master_dev) 8641 return master_dev == upper_dev ? -EEXIST : -EBUSY; 8642 } 8643 8644 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 8645 &changeupper_info.info); 8646 ret = notifier_to_errno(ret); 8647 if (ret) 8648 return ret; 8649 8650 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv, 8651 master); 8652 if (ret) 8653 return ret; 8654 8655 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 8656 &changeupper_info.info); 8657 ret = notifier_to_errno(ret); 8658 if (ret) 8659 goto rollback; 8660 8661 __netdev_update_upper_level(dev, NULL); 8662 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL); 8663 8664 __netdev_update_lower_level(upper_dev, priv); 8665 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level, 8666 priv); 8667 8668 return 0; 8669 8670 rollback: 8671 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 8672 8673 return ret; 8674 } 8675 8676 /** 8677 * netdev_upper_dev_link - Add a link to the upper device 8678 * @dev: device 8679 * @upper_dev: new upper device 8680 * @extack: netlink extended ack 8681 * 8682 * Adds a link to device which is upper to this one. The caller must hold 8683 * the RTNL lock. On a failure a negative errno code is returned. 8684 * On success the reference counts are adjusted and the function 8685 * returns zero. 8686 */ 8687 int netdev_upper_dev_link(struct net_device *dev, 8688 struct net_device *upper_dev, 8689 struct netlink_ext_ack *extack) 8690 { 8691 struct netdev_nested_priv priv = { 8692 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO, 8693 .data = NULL, 8694 }; 8695 8696 return __netdev_upper_dev_link(dev, upper_dev, false, 8697 NULL, NULL, &priv, extack); 8698 } 8699 EXPORT_SYMBOL(netdev_upper_dev_link); 8700 8701 /** 8702 * netdev_master_upper_dev_link - Add a master link to the upper device 8703 * @dev: device 8704 * @upper_dev: new upper device 8705 * @upper_priv: upper device private 8706 * @upper_info: upper info to be passed down via notifier 8707 * @extack: netlink extended ack 8708 * 8709 * Adds a link to device which is upper to this one. In this case, only 8710 * one master upper device can be linked, although other non-master devices 8711 * might be linked as well. The caller must hold the RTNL lock. 8712 * On a failure a negative errno code is returned. On success the reference 8713 * counts are adjusted and the function returns zero. 8714 */ 8715 int netdev_master_upper_dev_link(struct net_device *dev, 8716 struct net_device *upper_dev, 8717 void *upper_priv, void *upper_info, 8718 struct netlink_ext_ack *extack) 8719 { 8720 struct netdev_nested_priv priv = { 8721 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO, 8722 .data = NULL, 8723 }; 8724 8725 return __netdev_upper_dev_link(dev, upper_dev, true, 8726 upper_priv, upper_info, &priv, extack); 8727 } 8728 EXPORT_SYMBOL(netdev_master_upper_dev_link); 8729 8730 static void __netdev_upper_dev_unlink(struct net_device *dev, 8731 struct net_device *upper_dev, 8732 struct netdev_nested_priv *priv) 8733 { 8734 struct netdev_notifier_changeupper_info changeupper_info = { 8735 .info = { 8736 .dev = dev, 8737 }, 8738 .upper_dev = upper_dev, 8739 .linking = false, 8740 }; 8741 8742 ASSERT_RTNL(); 8743 8744 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev; 8745 8746 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 8747 &changeupper_info.info); 8748 8749 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 8750 8751 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 8752 &changeupper_info.info); 8753 8754 __netdev_update_upper_level(dev, NULL); 8755 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL); 8756 8757 __netdev_update_lower_level(upper_dev, priv); 8758 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level, 8759 priv); 8760 } 8761 8762 /** 8763 * netdev_upper_dev_unlink - Removes a link to upper device 8764 * @dev: device 8765 * @upper_dev: new upper device 8766 * 8767 * Removes a link to device which is upper to this one. The caller must hold 8768 * the RTNL lock. 8769 */ 8770 void netdev_upper_dev_unlink(struct net_device *dev, 8771 struct net_device *upper_dev) 8772 { 8773 struct netdev_nested_priv priv = { 8774 .flags = NESTED_SYNC_TODO, 8775 .data = NULL, 8776 }; 8777 8778 __netdev_upper_dev_unlink(dev, upper_dev, &priv); 8779 } 8780 EXPORT_SYMBOL(netdev_upper_dev_unlink); 8781 8782 static void __netdev_adjacent_dev_set(struct net_device *upper_dev, 8783 struct net_device *lower_dev, 8784 bool val) 8785 { 8786 struct netdev_adjacent *adj; 8787 8788 adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower); 8789 if (adj) 8790 adj->ignore = val; 8791 8792 adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper); 8793 if (adj) 8794 adj->ignore = val; 8795 } 8796 8797 static void netdev_adjacent_dev_disable(struct net_device *upper_dev, 8798 struct net_device *lower_dev) 8799 { 8800 __netdev_adjacent_dev_set(upper_dev, lower_dev, true); 8801 } 8802 8803 static void netdev_adjacent_dev_enable(struct net_device *upper_dev, 8804 struct net_device *lower_dev) 8805 { 8806 __netdev_adjacent_dev_set(upper_dev, lower_dev, false); 8807 } 8808 8809 int netdev_adjacent_change_prepare(struct net_device *old_dev, 8810 struct net_device *new_dev, 8811 struct net_device *dev, 8812 struct netlink_ext_ack *extack) 8813 { 8814 struct netdev_nested_priv priv = { 8815 .flags = 0, 8816 .data = NULL, 8817 }; 8818 int err; 8819 8820 if (!new_dev) 8821 return 0; 8822 8823 if (old_dev && new_dev != old_dev) 8824 netdev_adjacent_dev_disable(dev, old_dev); 8825 err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv, 8826 extack); 8827 if (err) { 8828 if (old_dev && new_dev != old_dev) 8829 netdev_adjacent_dev_enable(dev, old_dev); 8830 return err; 8831 } 8832 8833 return 0; 8834 } 8835 EXPORT_SYMBOL(netdev_adjacent_change_prepare); 8836 8837 void netdev_adjacent_change_commit(struct net_device *old_dev, 8838 struct net_device *new_dev, 8839 struct net_device *dev) 8840 { 8841 struct netdev_nested_priv priv = { 8842 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO, 8843 .data = NULL, 8844 }; 8845 8846 if (!new_dev || !old_dev) 8847 return; 8848 8849 if (new_dev == old_dev) 8850 return; 8851 8852 netdev_adjacent_dev_enable(dev, old_dev); 8853 __netdev_upper_dev_unlink(old_dev, dev, &priv); 8854 } 8855 EXPORT_SYMBOL(netdev_adjacent_change_commit); 8856 8857 void netdev_adjacent_change_abort(struct net_device *old_dev, 8858 struct net_device *new_dev, 8859 struct net_device *dev) 8860 { 8861 struct netdev_nested_priv priv = { 8862 .flags = 0, 8863 .data = NULL, 8864 }; 8865 8866 if (!new_dev) 8867 return; 8868 8869 if (old_dev && new_dev != old_dev) 8870 netdev_adjacent_dev_enable(dev, old_dev); 8871 8872 __netdev_upper_dev_unlink(new_dev, dev, &priv); 8873 } 8874 EXPORT_SYMBOL(netdev_adjacent_change_abort); 8875 8876 /** 8877 * netdev_bonding_info_change - Dispatch event about slave change 8878 * @dev: device 8879 * @bonding_info: info to dispatch 8880 * 8881 * Send NETDEV_BONDING_INFO to netdev notifiers with info. 8882 * The caller must hold the RTNL lock. 8883 */ 8884 void netdev_bonding_info_change(struct net_device *dev, 8885 struct netdev_bonding_info *bonding_info) 8886 { 8887 struct netdev_notifier_bonding_info info = { 8888 .info.dev = dev, 8889 }; 8890 8891 memcpy(&info.bonding_info, bonding_info, 8892 sizeof(struct netdev_bonding_info)); 8893 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, 8894 &info.info); 8895 } 8896 EXPORT_SYMBOL(netdev_bonding_info_change); 8897 8898 static int netdev_offload_xstats_enable_l3(struct net_device *dev, 8899 struct netlink_ext_ack *extack) 8900 { 8901 struct netdev_notifier_offload_xstats_info info = { 8902 .info.dev = dev, 8903 .info.extack = extack, 8904 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3, 8905 }; 8906 int err; 8907 int rc; 8908 8909 dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3), 8910 GFP_KERNEL); 8911 if (!dev->offload_xstats_l3) 8912 return -ENOMEM; 8913 8914 rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE, 8915 NETDEV_OFFLOAD_XSTATS_DISABLE, 8916 &info.info); 8917 err = notifier_to_errno(rc); 8918 if (err) 8919 goto free_stats; 8920 8921 return 0; 8922 8923 free_stats: 8924 kfree(dev->offload_xstats_l3); 8925 dev->offload_xstats_l3 = NULL; 8926 return err; 8927 } 8928 8929 int netdev_offload_xstats_enable(struct net_device *dev, 8930 enum netdev_offload_xstats_type type, 8931 struct netlink_ext_ack *extack) 8932 { 8933 ASSERT_RTNL(); 8934 8935 if (netdev_offload_xstats_enabled(dev, type)) 8936 return -EALREADY; 8937 8938 switch (type) { 8939 case NETDEV_OFFLOAD_XSTATS_TYPE_L3: 8940 return netdev_offload_xstats_enable_l3(dev, extack); 8941 } 8942 8943 WARN_ON(1); 8944 return -EINVAL; 8945 } 8946 EXPORT_SYMBOL(netdev_offload_xstats_enable); 8947 8948 static void netdev_offload_xstats_disable_l3(struct net_device *dev) 8949 { 8950 struct netdev_notifier_offload_xstats_info info = { 8951 .info.dev = dev, 8952 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3, 8953 }; 8954 8955 call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE, 8956 &info.info); 8957 kfree(dev->offload_xstats_l3); 8958 dev->offload_xstats_l3 = NULL; 8959 } 8960 8961 int netdev_offload_xstats_disable(struct net_device *dev, 8962 enum netdev_offload_xstats_type type) 8963 { 8964 ASSERT_RTNL(); 8965 8966 if (!netdev_offload_xstats_enabled(dev, type)) 8967 return -EALREADY; 8968 8969 switch (type) { 8970 case NETDEV_OFFLOAD_XSTATS_TYPE_L3: 8971 netdev_offload_xstats_disable_l3(dev); 8972 return 0; 8973 } 8974 8975 WARN_ON(1); 8976 return -EINVAL; 8977 } 8978 EXPORT_SYMBOL(netdev_offload_xstats_disable); 8979 8980 static void netdev_offload_xstats_disable_all(struct net_device *dev) 8981 { 8982 netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3); 8983 } 8984 8985 static struct rtnl_hw_stats64 * 8986 netdev_offload_xstats_get_ptr(const struct net_device *dev, 8987 enum netdev_offload_xstats_type type) 8988 { 8989 switch (type) { 8990 case NETDEV_OFFLOAD_XSTATS_TYPE_L3: 8991 return dev->offload_xstats_l3; 8992 } 8993 8994 WARN_ON(1); 8995 return NULL; 8996 } 8997 8998 bool netdev_offload_xstats_enabled(const struct net_device *dev, 8999 enum netdev_offload_xstats_type type) 9000 { 9001 ASSERT_RTNL(); 9002 9003 return netdev_offload_xstats_get_ptr(dev, type); 9004 } 9005 EXPORT_SYMBOL(netdev_offload_xstats_enabled); 9006 9007 struct netdev_notifier_offload_xstats_ru { 9008 bool used; 9009 }; 9010 9011 struct netdev_notifier_offload_xstats_rd { 9012 struct rtnl_hw_stats64 stats; 9013 bool used; 9014 }; 9015 9016 static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest, 9017 const struct rtnl_hw_stats64 *src) 9018 { 9019 dest->rx_packets += src->rx_packets; 9020 dest->tx_packets += src->tx_packets; 9021 dest->rx_bytes += src->rx_bytes; 9022 dest->tx_bytes += src->tx_bytes; 9023 dest->rx_errors += src->rx_errors; 9024 dest->tx_errors += src->tx_errors; 9025 dest->rx_dropped += src->rx_dropped; 9026 dest->tx_dropped += src->tx_dropped; 9027 dest->multicast += src->multicast; 9028 } 9029 9030 static int netdev_offload_xstats_get_used(struct net_device *dev, 9031 enum netdev_offload_xstats_type type, 9032 bool *p_used, 9033 struct netlink_ext_ack *extack) 9034 { 9035 struct netdev_notifier_offload_xstats_ru report_used = {}; 9036 struct netdev_notifier_offload_xstats_info info = { 9037 .info.dev = dev, 9038 .info.extack = extack, 9039 .type = type, 9040 .report_used = &report_used, 9041 }; 9042 int rc; 9043 9044 WARN_ON(!netdev_offload_xstats_enabled(dev, type)); 9045 rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED, 9046 &info.info); 9047 *p_used = report_used.used; 9048 return notifier_to_errno(rc); 9049 } 9050 9051 static int netdev_offload_xstats_get_stats(struct net_device *dev, 9052 enum netdev_offload_xstats_type type, 9053 struct rtnl_hw_stats64 *p_stats, 9054 bool *p_used, 9055 struct netlink_ext_ack *extack) 9056 { 9057 struct netdev_notifier_offload_xstats_rd report_delta = {}; 9058 struct netdev_notifier_offload_xstats_info info = { 9059 .info.dev = dev, 9060 .info.extack = extack, 9061 .type = type, 9062 .report_delta = &report_delta, 9063 }; 9064 struct rtnl_hw_stats64 *stats; 9065 int rc; 9066 9067 stats = netdev_offload_xstats_get_ptr(dev, type); 9068 if (WARN_ON(!stats)) 9069 return -EINVAL; 9070 9071 rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA, 9072 &info.info); 9073 9074 /* Cache whatever we got, even if there was an error, otherwise the 9075 * successful stats retrievals would get lost. 9076 */ 9077 netdev_hw_stats64_add(stats, &report_delta.stats); 9078 9079 if (p_stats) 9080 *p_stats = *stats; 9081 *p_used = report_delta.used; 9082 9083 return notifier_to_errno(rc); 9084 } 9085 9086 int netdev_offload_xstats_get(struct net_device *dev, 9087 enum netdev_offload_xstats_type type, 9088 struct rtnl_hw_stats64 *p_stats, bool *p_used, 9089 struct netlink_ext_ack *extack) 9090 { 9091 ASSERT_RTNL(); 9092 9093 if (p_stats) 9094 return netdev_offload_xstats_get_stats(dev, type, p_stats, 9095 p_used, extack); 9096 else 9097 return netdev_offload_xstats_get_used(dev, type, p_used, 9098 extack); 9099 } 9100 EXPORT_SYMBOL(netdev_offload_xstats_get); 9101 9102 void 9103 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta, 9104 const struct rtnl_hw_stats64 *stats) 9105 { 9106 report_delta->used = true; 9107 netdev_hw_stats64_add(&report_delta->stats, stats); 9108 } 9109 EXPORT_SYMBOL(netdev_offload_xstats_report_delta); 9110 9111 void 9112 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used) 9113 { 9114 report_used->used = true; 9115 } 9116 EXPORT_SYMBOL(netdev_offload_xstats_report_used); 9117 9118 void netdev_offload_xstats_push_delta(struct net_device *dev, 9119 enum netdev_offload_xstats_type type, 9120 const struct rtnl_hw_stats64 *p_stats) 9121 { 9122 struct rtnl_hw_stats64 *stats; 9123 9124 ASSERT_RTNL(); 9125 9126 stats = netdev_offload_xstats_get_ptr(dev, type); 9127 if (WARN_ON(!stats)) 9128 return; 9129 9130 netdev_hw_stats64_add(stats, p_stats); 9131 } 9132 EXPORT_SYMBOL(netdev_offload_xstats_push_delta); 9133 9134 /** 9135 * netdev_get_xmit_slave - Get the xmit slave of master device 9136 * @dev: device 9137 * @skb: The packet 9138 * @all_slaves: assume all the slaves are active 9139 * 9140 * The reference counters are not incremented so the caller must be 9141 * careful with locks. The caller must hold RCU lock. 9142 * %NULL is returned if no slave is found. 9143 */ 9144 9145 struct net_device *netdev_get_xmit_slave(struct net_device *dev, 9146 struct sk_buff *skb, 9147 bool all_slaves) 9148 { 9149 const struct net_device_ops *ops = dev->netdev_ops; 9150 9151 if (!ops->ndo_get_xmit_slave) 9152 return NULL; 9153 return ops->ndo_get_xmit_slave(dev, skb, all_slaves); 9154 } 9155 EXPORT_SYMBOL(netdev_get_xmit_slave); 9156 9157 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev, 9158 struct sock *sk) 9159 { 9160 const struct net_device_ops *ops = dev->netdev_ops; 9161 9162 if (!ops->ndo_sk_get_lower_dev) 9163 return NULL; 9164 return ops->ndo_sk_get_lower_dev(dev, sk); 9165 } 9166 9167 /** 9168 * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket 9169 * @dev: device 9170 * @sk: the socket 9171 * 9172 * %NULL is returned if no lower device is found. 9173 */ 9174 9175 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev, 9176 struct sock *sk) 9177 { 9178 struct net_device *lower; 9179 9180 lower = netdev_sk_get_lower_dev(dev, sk); 9181 while (lower) { 9182 dev = lower; 9183 lower = netdev_sk_get_lower_dev(dev, sk); 9184 } 9185 9186 return dev; 9187 } 9188 EXPORT_SYMBOL(netdev_sk_get_lowest_dev); 9189 9190 static void netdev_adjacent_add_links(struct net_device *dev) 9191 { 9192 struct netdev_adjacent *iter; 9193 9194 struct net *net = dev_net(dev); 9195 9196 list_for_each_entry(iter, &dev->adj_list.upper, list) { 9197 if (!net_eq(net, dev_net(iter->dev))) 9198 continue; 9199 netdev_adjacent_sysfs_add(iter->dev, dev, 9200 &iter->dev->adj_list.lower); 9201 netdev_adjacent_sysfs_add(dev, iter->dev, 9202 &dev->adj_list.upper); 9203 } 9204 9205 list_for_each_entry(iter, &dev->adj_list.lower, list) { 9206 if (!net_eq(net, dev_net(iter->dev))) 9207 continue; 9208 netdev_adjacent_sysfs_add(iter->dev, dev, 9209 &iter->dev->adj_list.upper); 9210 netdev_adjacent_sysfs_add(dev, iter->dev, 9211 &dev->adj_list.lower); 9212 } 9213 } 9214 9215 static void netdev_adjacent_del_links(struct net_device *dev) 9216 { 9217 struct netdev_adjacent *iter; 9218 9219 struct net *net = dev_net(dev); 9220 9221 list_for_each_entry(iter, &dev->adj_list.upper, list) { 9222 if (!net_eq(net, dev_net(iter->dev))) 9223 continue; 9224 netdev_adjacent_sysfs_del(iter->dev, dev->name, 9225 &iter->dev->adj_list.lower); 9226 netdev_adjacent_sysfs_del(dev, iter->dev->name, 9227 &dev->adj_list.upper); 9228 } 9229 9230 list_for_each_entry(iter, &dev->adj_list.lower, list) { 9231 if (!net_eq(net, dev_net(iter->dev))) 9232 continue; 9233 netdev_adjacent_sysfs_del(iter->dev, dev->name, 9234 &iter->dev->adj_list.upper); 9235 netdev_adjacent_sysfs_del(dev, iter->dev->name, 9236 &dev->adj_list.lower); 9237 } 9238 } 9239 9240 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname) 9241 { 9242 struct netdev_adjacent *iter; 9243 9244 struct net *net = dev_net(dev); 9245 9246 list_for_each_entry(iter, &dev->adj_list.upper, list) { 9247 if (!net_eq(net, dev_net(iter->dev))) 9248 continue; 9249 netdev_adjacent_sysfs_del(iter->dev, oldname, 9250 &iter->dev->adj_list.lower); 9251 netdev_adjacent_sysfs_add(iter->dev, dev, 9252 &iter->dev->adj_list.lower); 9253 } 9254 9255 list_for_each_entry(iter, &dev->adj_list.lower, list) { 9256 if (!net_eq(net, dev_net(iter->dev))) 9257 continue; 9258 netdev_adjacent_sysfs_del(iter->dev, oldname, 9259 &iter->dev->adj_list.upper); 9260 netdev_adjacent_sysfs_add(iter->dev, dev, 9261 &iter->dev->adj_list.upper); 9262 } 9263 } 9264 9265 void *netdev_lower_dev_get_private(struct net_device *dev, 9266 struct net_device *lower_dev) 9267 { 9268 struct netdev_adjacent *lower; 9269 9270 if (!lower_dev) 9271 return NULL; 9272 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower); 9273 if (!lower) 9274 return NULL; 9275 9276 return lower->private; 9277 } 9278 EXPORT_SYMBOL(netdev_lower_dev_get_private); 9279 9280 9281 /** 9282 * netdev_lower_state_changed - Dispatch event about lower device state change 9283 * @lower_dev: device 9284 * @lower_state_info: state to dispatch 9285 * 9286 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info. 9287 * The caller must hold the RTNL lock. 9288 */ 9289 void netdev_lower_state_changed(struct net_device *lower_dev, 9290 void *lower_state_info) 9291 { 9292 struct netdev_notifier_changelowerstate_info changelowerstate_info = { 9293 .info.dev = lower_dev, 9294 }; 9295 9296 ASSERT_RTNL(); 9297 changelowerstate_info.lower_state_info = lower_state_info; 9298 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, 9299 &changelowerstate_info.info); 9300 } 9301 EXPORT_SYMBOL(netdev_lower_state_changed); 9302 9303 static void dev_change_rx_flags(struct net_device *dev, int flags) 9304 { 9305 const struct net_device_ops *ops = dev->netdev_ops; 9306 9307 if (ops->ndo_change_rx_flags) 9308 ops->ndo_change_rx_flags(dev, flags); 9309 } 9310 9311 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify) 9312 { 9313 unsigned int old_flags = dev->flags; 9314 unsigned int promiscuity, flags; 9315 kuid_t uid; 9316 kgid_t gid; 9317 9318 ASSERT_RTNL(); 9319 9320 promiscuity = dev->promiscuity + inc; 9321 if (promiscuity == 0) { 9322 /* 9323 * Avoid overflow. 9324 * If inc causes overflow, untouch promisc and return error. 9325 */ 9326 if (unlikely(inc > 0)) { 9327 netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n"); 9328 return -EOVERFLOW; 9329 } 9330 flags = old_flags & ~IFF_PROMISC; 9331 } else { 9332 flags = old_flags | IFF_PROMISC; 9333 } 9334 WRITE_ONCE(dev->promiscuity, promiscuity); 9335 if (flags != old_flags) { 9336 WRITE_ONCE(dev->flags, flags); 9337 netdev_info(dev, "%s promiscuous mode\n", 9338 dev->flags & IFF_PROMISC ? "entered" : "left"); 9339 if (audit_enabled) { 9340 current_uid_gid(&uid, &gid); 9341 audit_log(audit_context(), GFP_ATOMIC, 9342 AUDIT_ANOM_PROMISCUOUS, 9343 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 9344 dev->name, (dev->flags & IFF_PROMISC), 9345 (old_flags & IFF_PROMISC), 9346 from_kuid(&init_user_ns, audit_get_loginuid(current)), 9347 from_kuid(&init_user_ns, uid), 9348 from_kgid(&init_user_ns, gid), 9349 audit_get_sessionid(current)); 9350 } 9351 9352 dev_change_rx_flags(dev, IFF_PROMISC); 9353 } 9354 if (notify) { 9355 /* The ops lock is only required to ensure consistent locking 9356 * for `NETDEV_CHANGE` notifiers. This function is sometimes 9357 * called without the lock, even for devices that are ops 9358 * locked, such as in `dev_uc_sync_multiple` when using 9359 * bonding or teaming. 9360 */ 9361 netdev_ops_assert_locked(dev); 9362 __dev_notify_flags(dev, old_flags, IFF_PROMISC, 0, NULL); 9363 } 9364 return 0; 9365 } 9366 9367 int netif_set_promiscuity(struct net_device *dev, int inc) 9368 { 9369 unsigned int old_flags = dev->flags; 9370 int err; 9371 9372 err = __dev_set_promiscuity(dev, inc, true); 9373 if (err < 0) 9374 return err; 9375 if (dev->flags != old_flags) 9376 dev_set_rx_mode(dev); 9377 return err; 9378 } 9379 9380 int netif_set_allmulti(struct net_device *dev, int inc, bool notify) 9381 { 9382 unsigned int old_flags = dev->flags, old_gflags = dev->gflags; 9383 unsigned int allmulti, flags; 9384 9385 ASSERT_RTNL(); 9386 9387 allmulti = dev->allmulti + inc; 9388 if (allmulti == 0) { 9389 /* 9390 * Avoid overflow. 9391 * If inc causes overflow, untouch allmulti and return error. 9392 */ 9393 if (unlikely(inc > 0)) { 9394 netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n"); 9395 return -EOVERFLOW; 9396 } 9397 flags = old_flags & ~IFF_ALLMULTI; 9398 } else { 9399 flags = old_flags | IFF_ALLMULTI; 9400 } 9401 WRITE_ONCE(dev->allmulti, allmulti); 9402 if (flags != old_flags) { 9403 WRITE_ONCE(dev->flags, flags); 9404 netdev_info(dev, "%s allmulticast mode\n", 9405 dev->flags & IFF_ALLMULTI ? "entered" : "left"); 9406 dev_change_rx_flags(dev, IFF_ALLMULTI); 9407 dev_set_rx_mode(dev); 9408 if (notify) 9409 __dev_notify_flags(dev, old_flags, 9410 dev->gflags ^ old_gflags, 0, NULL); 9411 } 9412 return 0; 9413 } 9414 9415 /* 9416 * Upload unicast and multicast address lists to device and 9417 * configure RX filtering. When the device doesn't support unicast 9418 * filtering it is put in promiscuous mode while unicast addresses 9419 * are present. 9420 */ 9421 void __dev_set_rx_mode(struct net_device *dev) 9422 { 9423 const struct net_device_ops *ops = dev->netdev_ops; 9424 9425 /* dev_open will call this function so the list will stay sane. */ 9426 if (!(dev->flags&IFF_UP)) 9427 return; 9428 9429 if (!netif_device_present(dev)) 9430 return; 9431 9432 if (!(dev->priv_flags & IFF_UNICAST_FLT)) { 9433 /* Unicast addresses changes may only happen under the rtnl, 9434 * therefore calling __dev_set_promiscuity here is safe. 9435 */ 9436 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 9437 __dev_set_promiscuity(dev, 1, false); 9438 dev->uc_promisc = true; 9439 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 9440 __dev_set_promiscuity(dev, -1, false); 9441 dev->uc_promisc = false; 9442 } 9443 } 9444 9445 if (ops->ndo_set_rx_mode) 9446 ops->ndo_set_rx_mode(dev); 9447 } 9448 9449 void dev_set_rx_mode(struct net_device *dev) 9450 { 9451 netif_addr_lock_bh(dev); 9452 __dev_set_rx_mode(dev); 9453 netif_addr_unlock_bh(dev); 9454 } 9455 9456 /** 9457 * netif_get_flags() - get flags reported to userspace 9458 * @dev: device 9459 * 9460 * Get the combination of flag bits exported through APIs to userspace. 9461 */ 9462 unsigned int netif_get_flags(const struct net_device *dev) 9463 { 9464 unsigned int flags; 9465 9466 flags = (READ_ONCE(dev->flags) & ~(IFF_PROMISC | 9467 IFF_ALLMULTI | 9468 IFF_RUNNING | 9469 IFF_LOWER_UP | 9470 IFF_DORMANT)) | 9471 (READ_ONCE(dev->gflags) & (IFF_PROMISC | 9472 IFF_ALLMULTI)); 9473 9474 if (netif_running(dev)) { 9475 if (netif_oper_up(dev)) 9476 flags |= IFF_RUNNING; 9477 if (netif_carrier_ok(dev)) 9478 flags |= IFF_LOWER_UP; 9479 if (netif_dormant(dev)) 9480 flags |= IFF_DORMANT; 9481 } 9482 9483 return flags; 9484 } 9485 EXPORT_SYMBOL(netif_get_flags); 9486 9487 int __dev_change_flags(struct net_device *dev, unsigned int flags, 9488 struct netlink_ext_ack *extack) 9489 { 9490 unsigned int old_flags = dev->flags; 9491 int ret; 9492 9493 ASSERT_RTNL(); 9494 9495 /* 9496 * Set the flags on our device. 9497 */ 9498 9499 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 9500 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 9501 IFF_AUTOMEDIA)) | 9502 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 9503 IFF_ALLMULTI)); 9504 9505 /* 9506 * Load in the correct multicast list now the flags have changed. 9507 */ 9508 9509 if ((old_flags ^ flags) & IFF_MULTICAST) 9510 dev_change_rx_flags(dev, IFF_MULTICAST); 9511 9512 dev_set_rx_mode(dev); 9513 9514 /* 9515 * Have we downed the interface. We handle IFF_UP ourselves 9516 * according to user attempts to set it, rather than blindly 9517 * setting it. 9518 */ 9519 9520 ret = 0; 9521 if ((old_flags ^ flags) & IFF_UP) { 9522 if (old_flags & IFF_UP) 9523 __dev_close(dev); 9524 else 9525 ret = __dev_open(dev, extack); 9526 } 9527 9528 if ((flags ^ dev->gflags) & IFF_PROMISC) { 9529 int inc = (flags & IFF_PROMISC) ? 1 : -1; 9530 old_flags = dev->flags; 9531 9532 dev->gflags ^= IFF_PROMISC; 9533 9534 if (__dev_set_promiscuity(dev, inc, false) >= 0) 9535 if (dev->flags != old_flags) 9536 dev_set_rx_mode(dev); 9537 } 9538 9539 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 9540 * is important. Some (broken) drivers set IFF_PROMISC, when 9541 * IFF_ALLMULTI is requested not asking us and not reporting. 9542 */ 9543 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 9544 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 9545 9546 dev->gflags ^= IFF_ALLMULTI; 9547 netif_set_allmulti(dev, inc, false); 9548 } 9549 9550 return ret; 9551 } 9552 9553 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags, 9554 unsigned int gchanges, u32 portid, 9555 const struct nlmsghdr *nlh) 9556 { 9557 unsigned int changes = dev->flags ^ old_flags; 9558 9559 if (gchanges) 9560 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC, portid, nlh); 9561 9562 if (changes & IFF_UP) { 9563 if (dev->flags & IFF_UP) 9564 call_netdevice_notifiers(NETDEV_UP, dev); 9565 else 9566 call_netdevice_notifiers(NETDEV_DOWN, dev); 9567 } 9568 9569 if (dev->flags & IFF_UP && 9570 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) { 9571 struct netdev_notifier_change_info change_info = { 9572 .info = { 9573 .dev = dev, 9574 }, 9575 .flags_changed = changes, 9576 }; 9577 9578 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info); 9579 } 9580 } 9581 9582 int netif_change_flags(struct net_device *dev, unsigned int flags, 9583 struct netlink_ext_ack *extack) 9584 { 9585 int ret; 9586 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags; 9587 9588 ret = __dev_change_flags(dev, flags, extack); 9589 if (ret < 0) 9590 return ret; 9591 9592 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags); 9593 __dev_notify_flags(dev, old_flags, changes, 0, NULL); 9594 return ret; 9595 } 9596 9597 int __netif_set_mtu(struct net_device *dev, int new_mtu) 9598 { 9599 const struct net_device_ops *ops = dev->netdev_ops; 9600 9601 if (ops->ndo_change_mtu) 9602 return ops->ndo_change_mtu(dev, new_mtu); 9603 9604 /* Pairs with all the lockless reads of dev->mtu in the stack */ 9605 WRITE_ONCE(dev->mtu, new_mtu); 9606 return 0; 9607 } 9608 EXPORT_SYMBOL_NS_GPL(__netif_set_mtu, "NETDEV_INTERNAL"); 9609 9610 int dev_validate_mtu(struct net_device *dev, int new_mtu, 9611 struct netlink_ext_ack *extack) 9612 { 9613 /* MTU must be positive, and in range */ 9614 if (new_mtu < 0 || new_mtu < dev->min_mtu) { 9615 NL_SET_ERR_MSG(extack, "mtu less than device minimum"); 9616 return -EINVAL; 9617 } 9618 9619 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) { 9620 NL_SET_ERR_MSG(extack, "mtu greater than device maximum"); 9621 return -EINVAL; 9622 } 9623 return 0; 9624 } 9625 9626 /** 9627 * netif_set_mtu_ext() - Change maximum transfer unit 9628 * @dev: device 9629 * @new_mtu: new transfer unit 9630 * @extack: netlink extended ack 9631 * 9632 * Change the maximum transfer size of the network device. 9633 * 9634 * Return: 0 on success, -errno on failure. 9635 */ 9636 int netif_set_mtu_ext(struct net_device *dev, int new_mtu, 9637 struct netlink_ext_ack *extack) 9638 { 9639 int err, orig_mtu; 9640 9641 netdev_ops_assert_locked(dev); 9642 9643 if (new_mtu == dev->mtu) 9644 return 0; 9645 9646 err = dev_validate_mtu(dev, new_mtu, extack); 9647 if (err) 9648 return err; 9649 9650 if (!netif_device_present(dev)) 9651 return -ENODEV; 9652 9653 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev); 9654 err = notifier_to_errno(err); 9655 if (err) 9656 return err; 9657 9658 orig_mtu = dev->mtu; 9659 err = __netif_set_mtu(dev, new_mtu); 9660 9661 if (!err) { 9662 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev, 9663 orig_mtu); 9664 err = notifier_to_errno(err); 9665 if (err) { 9666 /* setting mtu back and notifying everyone again, 9667 * so that they have a chance to revert changes. 9668 */ 9669 __netif_set_mtu(dev, orig_mtu); 9670 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev, 9671 new_mtu); 9672 } 9673 } 9674 return err; 9675 } 9676 9677 int netif_set_mtu(struct net_device *dev, int new_mtu) 9678 { 9679 struct netlink_ext_ack extack; 9680 int err; 9681 9682 memset(&extack, 0, sizeof(extack)); 9683 err = netif_set_mtu_ext(dev, new_mtu, &extack); 9684 if (err && extack._msg) 9685 net_err_ratelimited("%s: %s\n", dev->name, extack._msg); 9686 return err; 9687 } 9688 EXPORT_SYMBOL(netif_set_mtu); 9689 9690 int netif_change_tx_queue_len(struct net_device *dev, unsigned long new_len) 9691 { 9692 unsigned int orig_len = dev->tx_queue_len; 9693 int res; 9694 9695 if (new_len != (unsigned int)new_len) 9696 return -ERANGE; 9697 9698 if (new_len != orig_len) { 9699 WRITE_ONCE(dev->tx_queue_len, new_len); 9700 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev); 9701 res = notifier_to_errno(res); 9702 if (res) 9703 goto err_rollback; 9704 res = dev_qdisc_change_tx_queue_len(dev); 9705 if (res) 9706 goto err_rollback; 9707 } 9708 9709 return 0; 9710 9711 err_rollback: 9712 netdev_err(dev, "refused to change device tx_queue_len\n"); 9713 WRITE_ONCE(dev->tx_queue_len, orig_len); 9714 return res; 9715 } 9716 9717 void netif_set_group(struct net_device *dev, int new_group) 9718 { 9719 dev->group = new_group; 9720 } 9721 9722 /** 9723 * netif_pre_changeaddr_notify() - Call NETDEV_PRE_CHANGEADDR. 9724 * @dev: device 9725 * @addr: new address 9726 * @extack: netlink extended ack 9727 * 9728 * Return: 0 on success, -errno on failure. 9729 */ 9730 int netif_pre_changeaddr_notify(struct net_device *dev, const char *addr, 9731 struct netlink_ext_ack *extack) 9732 { 9733 struct netdev_notifier_pre_changeaddr_info info = { 9734 .info.dev = dev, 9735 .info.extack = extack, 9736 .dev_addr = addr, 9737 }; 9738 int rc; 9739 9740 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info); 9741 return notifier_to_errno(rc); 9742 } 9743 EXPORT_SYMBOL_NS_GPL(netif_pre_changeaddr_notify, "NETDEV_INTERNAL"); 9744 9745 int netif_set_mac_address(struct net_device *dev, struct sockaddr_storage *ss, 9746 struct netlink_ext_ack *extack) 9747 { 9748 const struct net_device_ops *ops = dev->netdev_ops; 9749 int err; 9750 9751 if (!ops->ndo_set_mac_address) 9752 return -EOPNOTSUPP; 9753 if (ss->ss_family != dev->type) 9754 return -EINVAL; 9755 if (!netif_device_present(dev)) 9756 return -ENODEV; 9757 err = netif_pre_changeaddr_notify(dev, ss->__data, extack); 9758 if (err) 9759 return err; 9760 if (memcmp(dev->dev_addr, ss->__data, dev->addr_len)) { 9761 err = ops->ndo_set_mac_address(dev, ss); 9762 if (err) 9763 return err; 9764 } 9765 dev->addr_assign_type = NET_ADDR_SET; 9766 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 9767 add_device_randomness(dev->dev_addr, dev->addr_len); 9768 return 0; 9769 } 9770 9771 DECLARE_RWSEM(dev_addr_sem); 9772 9773 /* "sa" is a true struct sockaddr with limited "sa_data" member. */ 9774 int netif_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name) 9775 { 9776 size_t size = sizeof(sa->sa_data_min); 9777 struct net_device *dev; 9778 int ret = 0; 9779 9780 down_read(&dev_addr_sem); 9781 rcu_read_lock(); 9782 9783 dev = dev_get_by_name_rcu(net, dev_name); 9784 if (!dev) { 9785 ret = -ENODEV; 9786 goto unlock; 9787 } 9788 if (!dev->addr_len) 9789 memset(sa->sa_data, 0, size); 9790 else 9791 memcpy(sa->sa_data, dev->dev_addr, 9792 min_t(size_t, size, dev->addr_len)); 9793 sa->sa_family = dev->type; 9794 9795 unlock: 9796 rcu_read_unlock(); 9797 up_read(&dev_addr_sem); 9798 return ret; 9799 } 9800 EXPORT_SYMBOL_NS_GPL(netif_get_mac_address, "NETDEV_INTERNAL"); 9801 9802 int netif_change_carrier(struct net_device *dev, bool new_carrier) 9803 { 9804 const struct net_device_ops *ops = dev->netdev_ops; 9805 9806 if (!ops->ndo_change_carrier) 9807 return -EOPNOTSUPP; 9808 if (!netif_device_present(dev)) 9809 return -ENODEV; 9810 return ops->ndo_change_carrier(dev, new_carrier); 9811 } 9812 9813 /** 9814 * dev_get_phys_port_id - Get device physical port ID 9815 * @dev: device 9816 * @ppid: port ID 9817 * 9818 * Get device physical port ID 9819 */ 9820 int dev_get_phys_port_id(struct net_device *dev, 9821 struct netdev_phys_item_id *ppid) 9822 { 9823 const struct net_device_ops *ops = dev->netdev_ops; 9824 9825 if (!ops->ndo_get_phys_port_id) 9826 return -EOPNOTSUPP; 9827 return ops->ndo_get_phys_port_id(dev, ppid); 9828 } 9829 9830 /** 9831 * dev_get_phys_port_name - Get device physical port name 9832 * @dev: device 9833 * @name: port name 9834 * @len: limit of bytes to copy to name 9835 * 9836 * Get device physical port name 9837 */ 9838 int dev_get_phys_port_name(struct net_device *dev, 9839 char *name, size_t len) 9840 { 9841 const struct net_device_ops *ops = dev->netdev_ops; 9842 int err; 9843 9844 if (ops->ndo_get_phys_port_name) { 9845 err = ops->ndo_get_phys_port_name(dev, name, len); 9846 if (err != -EOPNOTSUPP) 9847 return err; 9848 } 9849 return devlink_compat_phys_port_name_get(dev, name, len); 9850 } 9851 9852 /** 9853 * netif_get_port_parent_id() - Get the device's port parent identifier 9854 * @dev: network device 9855 * @ppid: pointer to a storage for the port's parent identifier 9856 * @recurse: allow/disallow recursion to lower devices 9857 * 9858 * Get the devices's port parent identifier. 9859 * 9860 * Return: 0 on success, -errno on failure. 9861 */ 9862 int netif_get_port_parent_id(struct net_device *dev, 9863 struct netdev_phys_item_id *ppid, bool recurse) 9864 { 9865 const struct net_device_ops *ops = dev->netdev_ops; 9866 struct netdev_phys_item_id first = { }; 9867 struct net_device *lower_dev; 9868 struct list_head *iter; 9869 int err; 9870 9871 if (ops->ndo_get_port_parent_id) { 9872 err = ops->ndo_get_port_parent_id(dev, ppid); 9873 if (err != -EOPNOTSUPP) 9874 return err; 9875 } 9876 9877 err = devlink_compat_switch_id_get(dev, ppid); 9878 if (!recurse || err != -EOPNOTSUPP) 9879 return err; 9880 9881 netdev_for_each_lower_dev(dev, lower_dev, iter) { 9882 err = netif_get_port_parent_id(lower_dev, ppid, true); 9883 if (err) 9884 break; 9885 if (!first.id_len) 9886 first = *ppid; 9887 else if (memcmp(&first, ppid, sizeof(*ppid))) 9888 return -EOPNOTSUPP; 9889 } 9890 9891 return err; 9892 } 9893 EXPORT_SYMBOL(netif_get_port_parent_id); 9894 9895 /** 9896 * netdev_port_same_parent_id - Indicate if two network devices have 9897 * the same port parent identifier 9898 * @a: first network device 9899 * @b: second network device 9900 */ 9901 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b) 9902 { 9903 struct netdev_phys_item_id a_id = { }; 9904 struct netdev_phys_item_id b_id = { }; 9905 9906 if (netif_get_port_parent_id(a, &a_id, true) || 9907 netif_get_port_parent_id(b, &b_id, true)) 9908 return false; 9909 9910 return netdev_phys_item_id_same(&a_id, &b_id); 9911 } 9912 EXPORT_SYMBOL(netdev_port_same_parent_id); 9913 9914 int netif_change_proto_down(struct net_device *dev, bool proto_down) 9915 { 9916 if (!dev->change_proto_down) 9917 return -EOPNOTSUPP; 9918 if (!netif_device_present(dev)) 9919 return -ENODEV; 9920 if (proto_down) 9921 netif_carrier_off(dev); 9922 else 9923 netif_carrier_on(dev); 9924 WRITE_ONCE(dev->proto_down, proto_down); 9925 return 0; 9926 } 9927 9928 /** 9929 * netdev_change_proto_down_reason_locked - proto down reason 9930 * 9931 * @dev: device 9932 * @mask: proto down mask 9933 * @value: proto down value 9934 */ 9935 void netdev_change_proto_down_reason_locked(struct net_device *dev, 9936 unsigned long mask, u32 value) 9937 { 9938 u32 proto_down_reason; 9939 int b; 9940 9941 if (!mask) { 9942 proto_down_reason = value; 9943 } else { 9944 proto_down_reason = dev->proto_down_reason; 9945 for_each_set_bit(b, &mask, 32) { 9946 if (value & (1 << b)) 9947 proto_down_reason |= BIT(b); 9948 else 9949 proto_down_reason &= ~BIT(b); 9950 } 9951 } 9952 WRITE_ONCE(dev->proto_down_reason, proto_down_reason); 9953 } 9954 9955 struct bpf_xdp_link { 9956 struct bpf_link link; 9957 struct net_device *dev; /* protected by rtnl_lock, no refcnt held */ 9958 int flags; 9959 }; 9960 9961 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags) 9962 { 9963 if (flags & XDP_FLAGS_HW_MODE) 9964 return XDP_MODE_HW; 9965 if (flags & XDP_FLAGS_DRV_MODE) 9966 return XDP_MODE_DRV; 9967 if (flags & XDP_FLAGS_SKB_MODE) 9968 return XDP_MODE_SKB; 9969 return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB; 9970 } 9971 9972 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode) 9973 { 9974 switch (mode) { 9975 case XDP_MODE_SKB: 9976 return generic_xdp_install; 9977 case XDP_MODE_DRV: 9978 case XDP_MODE_HW: 9979 return dev->netdev_ops->ndo_bpf; 9980 default: 9981 return NULL; 9982 } 9983 } 9984 9985 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev, 9986 enum bpf_xdp_mode mode) 9987 { 9988 return dev->xdp_state[mode].link; 9989 } 9990 9991 static struct bpf_prog *dev_xdp_prog(struct net_device *dev, 9992 enum bpf_xdp_mode mode) 9993 { 9994 struct bpf_xdp_link *link = dev_xdp_link(dev, mode); 9995 9996 if (link) 9997 return link->link.prog; 9998 return dev->xdp_state[mode].prog; 9999 } 10000 10001 u8 dev_xdp_prog_count(struct net_device *dev) 10002 { 10003 u8 count = 0; 10004 int i; 10005 10006 for (i = 0; i < __MAX_XDP_MODE; i++) 10007 if (dev->xdp_state[i].prog || dev->xdp_state[i].link) 10008 count++; 10009 return count; 10010 } 10011 EXPORT_SYMBOL_GPL(dev_xdp_prog_count); 10012 10013 u8 dev_xdp_sb_prog_count(struct net_device *dev) 10014 { 10015 u8 count = 0; 10016 int i; 10017 10018 for (i = 0; i < __MAX_XDP_MODE; i++) 10019 if (dev->xdp_state[i].prog && 10020 !dev->xdp_state[i].prog->aux->xdp_has_frags) 10021 count++; 10022 return count; 10023 } 10024 10025 int netif_xdp_propagate(struct net_device *dev, struct netdev_bpf *bpf) 10026 { 10027 if (!dev->netdev_ops->ndo_bpf) 10028 return -EOPNOTSUPP; 10029 10030 if (dev->cfg->hds_config == ETHTOOL_TCP_DATA_SPLIT_ENABLED && 10031 bpf->command == XDP_SETUP_PROG && 10032 bpf->prog && !bpf->prog->aux->xdp_has_frags) { 10033 NL_SET_ERR_MSG(bpf->extack, 10034 "unable to propagate XDP to device using tcp-data-split"); 10035 return -EBUSY; 10036 } 10037 10038 if (dev_get_min_mp_channel_count(dev)) { 10039 NL_SET_ERR_MSG(bpf->extack, "unable to propagate XDP to device using memory provider"); 10040 return -EBUSY; 10041 } 10042 10043 return dev->netdev_ops->ndo_bpf(dev, bpf); 10044 } 10045 EXPORT_SYMBOL_GPL(netif_xdp_propagate); 10046 10047 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode) 10048 { 10049 struct bpf_prog *prog = dev_xdp_prog(dev, mode); 10050 10051 return prog ? prog->aux->id : 0; 10052 } 10053 10054 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode, 10055 struct bpf_xdp_link *link) 10056 { 10057 dev->xdp_state[mode].link = link; 10058 dev->xdp_state[mode].prog = NULL; 10059 } 10060 10061 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode, 10062 struct bpf_prog *prog) 10063 { 10064 dev->xdp_state[mode].link = NULL; 10065 dev->xdp_state[mode].prog = prog; 10066 } 10067 10068 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode, 10069 bpf_op_t bpf_op, struct netlink_ext_ack *extack, 10070 u32 flags, struct bpf_prog *prog) 10071 { 10072 struct netdev_bpf xdp; 10073 int err; 10074 10075 netdev_ops_assert_locked(dev); 10076 10077 if (dev->cfg->hds_config == ETHTOOL_TCP_DATA_SPLIT_ENABLED && 10078 prog && !prog->aux->xdp_has_frags) { 10079 NL_SET_ERR_MSG(extack, "unable to install XDP to device using tcp-data-split"); 10080 return -EBUSY; 10081 } 10082 10083 if (dev_get_min_mp_channel_count(dev)) { 10084 NL_SET_ERR_MSG(extack, "unable to install XDP to device using memory provider"); 10085 return -EBUSY; 10086 } 10087 10088 memset(&xdp, 0, sizeof(xdp)); 10089 xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG; 10090 xdp.extack = extack; 10091 xdp.flags = flags; 10092 xdp.prog = prog; 10093 10094 /* Drivers assume refcnt is already incremented (i.e, prog pointer is 10095 * "moved" into driver), so they don't increment it on their own, but 10096 * they do decrement refcnt when program is detached or replaced. 10097 * Given net_device also owns link/prog, we need to bump refcnt here 10098 * to prevent drivers from underflowing it. 10099 */ 10100 if (prog) 10101 bpf_prog_inc(prog); 10102 err = bpf_op(dev, &xdp); 10103 if (err) { 10104 if (prog) 10105 bpf_prog_put(prog); 10106 return err; 10107 } 10108 10109 if (mode != XDP_MODE_HW) 10110 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog); 10111 10112 return 0; 10113 } 10114 10115 static void dev_xdp_uninstall(struct net_device *dev) 10116 { 10117 struct bpf_xdp_link *link; 10118 struct bpf_prog *prog; 10119 enum bpf_xdp_mode mode; 10120 bpf_op_t bpf_op; 10121 10122 ASSERT_RTNL(); 10123 10124 for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) { 10125 prog = dev_xdp_prog(dev, mode); 10126 if (!prog) 10127 continue; 10128 10129 bpf_op = dev_xdp_bpf_op(dev, mode); 10130 if (!bpf_op) 10131 continue; 10132 10133 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL)); 10134 10135 /* auto-detach link from net device */ 10136 link = dev_xdp_link(dev, mode); 10137 if (link) 10138 link->dev = NULL; 10139 else 10140 bpf_prog_put(prog); 10141 10142 dev_xdp_set_link(dev, mode, NULL); 10143 } 10144 } 10145 10146 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack, 10147 struct bpf_xdp_link *link, struct bpf_prog *new_prog, 10148 struct bpf_prog *old_prog, u32 flags) 10149 { 10150 unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES); 10151 struct bpf_prog *cur_prog; 10152 struct net_device *upper; 10153 struct list_head *iter; 10154 enum bpf_xdp_mode mode; 10155 bpf_op_t bpf_op; 10156 int err; 10157 10158 ASSERT_RTNL(); 10159 10160 /* either link or prog attachment, never both */ 10161 if (link && (new_prog || old_prog)) 10162 return -EINVAL; 10163 /* link supports only XDP mode flags */ 10164 if (link && (flags & ~XDP_FLAGS_MODES)) { 10165 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment"); 10166 return -EINVAL; 10167 } 10168 /* just one XDP mode bit should be set, zero defaults to drv/skb mode */ 10169 if (num_modes > 1) { 10170 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set"); 10171 return -EINVAL; 10172 } 10173 /* avoid ambiguity if offload + drv/skb mode progs are both loaded */ 10174 if (!num_modes && dev_xdp_prog_count(dev) > 1) { 10175 NL_SET_ERR_MSG(extack, 10176 "More than one program loaded, unset mode is ambiguous"); 10177 return -EINVAL; 10178 } 10179 /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */ 10180 if (old_prog && !(flags & XDP_FLAGS_REPLACE)) { 10181 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified"); 10182 return -EINVAL; 10183 } 10184 10185 mode = dev_xdp_mode(dev, flags); 10186 /* can't replace attached link */ 10187 if (dev_xdp_link(dev, mode)) { 10188 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link"); 10189 return -EBUSY; 10190 } 10191 10192 /* don't allow if an upper device already has a program */ 10193 netdev_for_each_upper_dev_rcu(dev, upper, iter) { 10194 if (dev_xdp_prog_count(upper) > 0) { 10195 NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program"); 10196 return -EEXIST; 10197 } 10198 } 10199 10200 cur_prog = dev_xdp_prog(dev, mode); 10201 /* can't replace attached prog with link */ 10202 if (link && cur_prog) { 10203 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link"); 10204 return -EBUSY; 10205 } 10206 if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) { 10207 NL_SET_ERR_MSG(extack, "Active program does not match expected"); 10208 return -EEXIST; 10209 } 10210 10211 /* put effective new program into new_prog */ 10212 if (link) 10213 new_prog = link->link.prog; 10214 10215 if (new_prog) { 10216 bool offload = mode == XDP_MODE_HW; 10217 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB 10218 ? XDP_MODE_DRV : XDP_MODE_SKB; 10219 10220 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) { 10221 NL_SET_ERR_MSG(extack, "XDP program already attached"); 10222 return -EBUSY; 10223 } 10224 if (!offload && dev_xdp_prog(dev, other_mode)) { 10225 NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time"); 10226 return -EEXIST; 10227 } 10228 if (!offload && bpf_prog_is_offloaded(new_prog->aux)) { 10229 NL_SET_ERR_MSG(extack, "Using offloaded program without HW_MODE flag is not supported"); 10230 return -EINVAL; 10231 } 10232 if (bpf_prog_is_dev_bound(new_prog->aux) && !bpf_offload_dev_match(new_prog, dev)) { 10233 NL_SET_ERR_MSG(extack, "Program bound to different device"); 10234 return -EINVAL; 10235 } 10236 if (bpf_prog_is_dev_bound(new_prog->aux) && mode == XDP_MODE_SKB) { 10237 NL_SET_ERR_MSG(extack, "Can't attach device-bound programs in generic mode"); 10238 return -EINVAL; 10239 } 10240 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) { 10241 NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device"); 10242 return -EINVAL; 10243 } 10244 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) { 10245 NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device"); 10246 return -EINVAL; 10247 } 10248 } 10249 10250 /* don't call drivers if the effective program didn't change */ 10251 if (new_prog != cur_prog) { 10252 bpf_op = dev_xdp_bpf_op(dev, mode); 10253 if (!bpf_op) { 10254 NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode"); 10255 return -EOPNOTSUPP; 10256 } 10257 10258 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog); 10259 if (err) 10260 return err; 10261 } 10262 10263 if (link) 10264 dev_xdp_set_link(dev, mode, link); 10265 else 10266 dev_xdp_set_prog(dev, mode, new_prog); 10267 if (cur_prog) 10268 bpf_prog_put(cur_prog); 10269 10270 return 0; 10271 } 10272 10273 static int dev_xdp_attach_link(struct net_device *dev, 10274 struct netlink_ext_ack *extack, 10275 struct bpf_xdp_link *link) 10276 { 10277 return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags); 10278 } 10279 10280 static int dev_xdp_detach_link(struct net_device *dev, 10281 struct netlink_ext_ack *extack, 10282 struct bpf_xdp_link *link) 10283 { 10284 enum bpf_xdp_mode mode; 10285 bpf_op_t bpf_op; 10286 10287 ASSERT_RTNL(); 10288 10289 mode = dev_xdp_mode(dev, link->flags); 10290 if (dev_xdp_link(dev, mode) != link) 10291 return -EINVAL; 10292 10293 bpf_op = dev_xdp_bpf_op(dev, mode); 10294 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL)); 10295 dev_xdp_set_link(dev, mode, NULL); 10296 return 0; 10297 } 10298 10299 static void bpf_xdp_link_release(struct bpf_link *link) 10300 { 10301 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 10302 10303 rtnl_lock(); 10304 10305 /* if racing with net_device's tear down, xdp_link->dev might be 10306 * already NULL, in which case link was already auto-detached 10307 */ 10308 if (xdp_link->dev) { 10309 netdev_lock_ops(xdp_link->dev); 10310 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link)); 10311 netdev_unlock_ops(xdp_link->dev); 10312 xdp_link->dev = NULL; 10313 } 10314 10315 rtnl_unlock(); 10316 } 10317 10318 static int bpf_xdp_link_detach(struct bpf_link *link) 10319 { 10320 bpf_xdp_link_release(link); 10321 return 0; 10322 } 10323 10324 static void bpf_xdp_link_dealloc(struct bpf_link *link) 10325 { 10326 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 10327 10328 kfree(xdp_link); 10329 } 10330 10331 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link, 10332 struct seq_file *seq) 10333 { 10334 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 10335 u32 ifindex = 0; 10336 10337 rtnl_lock(); 10338 if (xdp_link->dev) 10339 ifindex = xdp_link->dev->ifindex; 10340 rtnl_unlock(); 10341 10342 seq_printf(seq, "ifindex:\t%u\n", ifindex); 10343 } 10344 10345 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link, 10346 struct bpf_link_info *info) 10347 { 10348 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 10349 u32 ifindex = 0; 10350 10351 rtnl_lock(); 10352 if (xdp_link->dev) 10353 ifindex = xdp_link->dev->ifindex; 10354 rtnl_unlock(); 10355 10356 info->xdp.ifindex = ifindex; 10357 return 0; 10358 } 10359 10360 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog, 10361 struct bpf_prog *old_prog) 10362 { 10363 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 10364 enum bpf_xdp_mode mode; 10365 bpf_op_t bpf_op; 10366 int err = 0; 10367 10368 rtnl_lock(); 10369 10370 /* link might have been auto-released already, so fail */ 10371 if (!xdp_link->dev) { 10372 err = -ENOLINK; 10373 goto out_unlock; 10374 } 10375 10376 if (old_prog && link->prog != old_prog) { 10377 err = -EPERM; 10378 goto out_unlock; 10379 } 10380 old_prog = link->prog; 10381 if (old_prog->type != new_prog->type || 10382 old_prog->expected_attach_type != new_prog->expected_attach_type) { 10383 err = -EINVAL; 10384 goto out_unlock; 10385 } 10386 10387 if (old_prog == new_prog) { 10388 /* no-op, don't disturb drivers */ 10389 bpf_prog_put(new_prog); 10390 goto out_unlock; 10391 } 10392 10393 netdev_lock_ops(xdp_link->dev); 10394 mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags); 10395 bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode); 10396 err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL, 10397 xdp_link->flags, new_prog); 10398 netdev_unlock_ops(xdp_link->dev); 10399 if (err) 10400 goto out_unlock; 10401 10402 old_prog = xchg(&link->prog, new_prog); 10403 bpf_prog_put(old_prog); 10404 10405 out_unlock: 10406 rtnl_unlock(); 10407 return err; 10408 } 10409 10410 static const struct bpf_link_ops bpf_xdp_link_lops = { 10411 .release = bpf_xdp_link_release, 10412 .dealloc = bpf_xdp_link_dealloc, 10413 .detach = bpf_xdp_link_detach, 10414 .show_fdinfo = bpf_xdp_link_show_fdinfo, 10415 .fill_link_info = bpf_xdp_link_fill_link_info, 10416 .update_prog = bpf_xdp_link_update, 10417 }; 10418 10419 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog) 10420 { 10421 struct net *net = current->nsproxy->net_ns; 10422 struct bpf_link_primer link_primer; 10423 struct netlink_ext_ack extack = {}; 10424 struct bpf_xdp_link *link; 10425 struct net_device *dev; 10426 int err, fd; 10427 10428 rtnl_lock(); 10429 dev = dev_get_by_index(net, attr->link_create.target_ifindex); 10430 if (!dev) { 10431 rtnl_unlock(); 10432 return -EINVAL; 10433 } 10434 10435 link = kzalloc(sizeof(*link), GFP_USER); 10436 if (!link) { 10437 err = -ENOMEM; 10438 goto unlock; 10439 } 10440 10441 bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog); 10442 link->dev = dev; 10443 link->flags = attr->link_create.flags; 10444 10445 err = bpf_link_prime(&link->link, &link_primer); 10446 if (err) { 10447 kfree(link); 10448 goto unlock; 10449 } 10450 10451 netdev_lock_ops(dev); 10452 err = dev_xdp_attach_link(dev, &extack, link); 10453 netdev_unlock_ops(dev); 10454 rtnl_unlock(); 10455 10456 if (err) { 10457 link->dev = NULL; 10458 bpf_link_cleanup(&link_primer); 10459 trace_bpf_xdp_link_attach_failed(extack._msg); 10460 goto out_put_dev; 10461 } 10462 10463 fd = bpf_link_settle(&link_primer); 10464 /* link itself doesn't hold dev's refcnt to not complicate shutdown */ 10465 dev_put(dev); 10466 return fd; 10467 10468 unlock: 10469 rtnl_unlock(); 10470 10471 out_put_dev: 10472 dev_put(dev); 10473 return err; 10474 } 10475 10476 /** 10477 * dev_change_xdp_fd - set or clear a bpf program for a device rx path 10478 * @dev: device 10479 * @extack: netlink extended ack 10480 * @fd: new program fd or negative value to clear 10481 * @expected_fd: old program fd that userspace expects to replace or clear 10482 * @flags: xdp-related flags 10483 * 10484 * Set or clear a bpf program for a device 10485 */ 10486 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack, 10487 int fd, int expected_fd, u32 flags) 10488 { 10489 enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags); 10490 struct bpf_prog *new_prog = NULL, *old_prog = NULL; 10491 int err; 10492 10493 ASSERT_RTNL(); 10494 10495 if (fd >= 0) { 10496 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP, 10497 mode != XDP_MODE_SKB); 10498 if (IS_ERR(new_prog)) 10499 return PTR_ERR(new_prog); 10500 } 10501 10502 if (expected_fd >= 0) { 10503 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP, 10504 mode != XDP_MODE_SKB); 10505 if (IS_ERR(old_prog)) { 10506 err = PTR_ERR(old_prog); 10507 old_prog = NULL; 10508 goto err_out; 10509 } 10510 } 10511 10512 err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags); 10513 10514 err_out: 10515 if (err && new_prog) 10516 bpf_prog_put(new_prog); 10517 if (old_prog) 10518 bpf_prog_put(old_prog); 10519 return err; 10520 } 10521 10522 u32 dev_get_min_mp_channel_count(const struct net_device *dev) 10523 { 10524 int i; 10525 10526 netdev_ops_assert_locked(dev); 10527 10528 for (i = dev->real_num_rx_queues - 1; i >= 0; i--) 10529 if (dev->_rx[i].mp_params.mp_priv) 10530 /* The channel count is the idx plus 1. */ 10531 return i + 1; 10532 10533 return 0; 10534 } 10535 10536 /** 10537 * dev_index_reserve() - allocate an ifindex in a namespace 10538 * @net: the applicable net namespace 10539 * @ifindex: requested ifindex, pass %0 to get one allocated 10540 * 10541 * Allocate a ifindex for a new device. Caller must either use the ifindex 10542 * to store the device (via list_netdevice()) or call dev_index_release() 10543 * to give the index up. 10544 * 10545 * Return: a suitable unique value for a new device interface number or -errno. 10546 */ 10547 static int dev_index_reserve(struct net *net, u32 ifindex) 10548 { 10549 int err; 10550 10551 if (ifindex > INT_MAX) { 10552 DEBUG_NET_WARN_ON_ONCE(1); 10553 return -EINVAL; 10554 } 10555 10556 if (!ifindex) 10557 err = xa_alloc_cyclic(&net->dev_by_index, &ifindex, NULL, 10558 xa_limit_31b, &net->ifindex, GFP_KERNEL); 10559 else 10560 err = xa_insert(&net->dev_by_index, ifindex, NULL, GFP_KERNEL); 10561 if (err < 0) 10562 return err; 10563 10564 return ifindex; 10565 } 10566 10567 static void dev_index_release(struct net *net, int ifindex) 10568 { 10569 /* Expect only unused indexes, unlist_netdevice() removes the used */ 10570 WARN_ON(xa_erase(&net->dev_by_index, ifindex)); 10571 } 10572 10573 static bool from_cleanup_net(void) 10574 { 10575 #ifdef CONFIG_NET_NS 10576 return current == READ_ONCE(cleanup_net_task); 10577 #else 10578 return false; 10579 #endif 10580 } 10581 10582 /* Delayed registration/unregisteration */ 10583 LIST_HEAD(net_todo_list); 10584 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq); 10585 atomic_t dev_unreg_count = ATOMIC_INIT(0); 10586 10587 static void net_set_todo(struct net_device *dev) 10588 { 10589 list_add_tail(&dev->todo_list, &net_todo_list); 10590 } 10591 10592 static netdev_features_t netdev_sync_upper_features(struct net_device *lower, 10593 struct net_device *upper, netdev_features_t features) 10594 { 10595 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 10596 netdev_features_t feature; 10597 int feature_bit; 10598 10599 for_each_netdev_feature(upper_disables, feature_bit) { 10600 feature = __NETIF_F_BIT(feature_bit); 10601 if (!(upper->wanted_features & feature) 10602 && (features & feature)) { 10603 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n", 10604 &feature, upper->name); 10605 features &= ~feature; 10606 } 10607 } 10608 10609 return features; 10610 } 10611 10612 static void netdev_sync_lower_features(struct net_device *upper, 10613 struct net_device *lower, netdev_features_t features) 10614 { 10615 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 10616 netdev_features_t feature; 10617 int feature_bit; 10618 10619 for_each_netdev_feature(upper_disables, feature_bit) { 10620 feature = __NETIF_F_BIT(feature_bit); 10621 if (!(features & feature) && (lower->features & feature)) { 10622 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n", 10623 &feature, lower->name); 10624 netdev_lock_ops(lower); 10625 lower->wanted_features &= ~feature; 10626 __netdev_update_features(lower); 10627 10628 if (unlikely(lower->features & feature)) 10629 netdev_WARN(upper, "failed to disable %pNF on %s!\n", 10630 &feature, lower->name); 10631 else 10632 netdev_features_change(lower); 10633 netdev_unlock_ops(lower); 10634 } 10635 } 10636 } 10637 10638 static bool netdev_has_ip_or_hw_csum(netdev_features_t features) 10639 { 10640 netdev_features_t ip_csum_mask = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM; 10641 bool ip_csum = (features & ip_csum_mask) == ip_csum_mask; 10642 bool hw_csum = features & NETIF_F_HW_CSUM; 10643 10644 return ip_csum || hw_csum; 10645 } 10646 10647 static netdev_features_t netdev_fix_features(struct net_device *dev, 10648 netdev_features_t features) 10649 { 10650 /* Fix illegal checksum combinations */ 10651 if ((features & NETIF_F_HW_CSUM) && 10652 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 10653 netdev_warn(dev, "mixed HW and IP checksum settings.\n"); 10654 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 10655 } 10656 10657 /* TSO requires that SG is present as well. */ 10658 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { 10659 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); 10660 features &= ~NETIF_F_ALL_TSO; 10661 } 10662 10663 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) && 10664 !(features & NETIF_F_IP_CSUM)) { 10665 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n"); 10666 features &= ~NETIF_F_TSO; 10667 features &= ~NETIF_F_TSO_ECN; 10668 } 10669 10670 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) && 10671 !(features & NETIF_F_IPV6_CSUM)) { 10672 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n"); 10673 features &= ~NETIF_F_TSO6; 10674 } 10675 10676 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */ 10677 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO)) 10678 features &= ~NETIF_F_TSO_MANGLEID; 10679 10680 /* TSO ECN requires that TSO is present as well. */ 10681 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) 10682 features &= ~NETIF_F_TSO_ECN; 10683 10684 /* Software GSO depends on SG. */ 10685 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 10686 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 10687 features &= ~NETIF_F_GSO; 10688 } 10689 10690 /* GSO partial features require GSO partial be set */ 10691 if ((features & dev->gso_partial_features) && 10692 !(features & NETIF_F_GSO_PARTIAL)) { 10693 netdev_dbg(dev, 10694 "Dropping partially supported GSO features since no GSO partial.\n"); 10695 features &= ~dev->gso_partial_features; 10696 } 10697 10698 if (!(features & NETIF_F_RXCSUM)) { 10699 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet 10700 * successfully merged by hardware must also have the 10701 * checksum verified by hardware. If the user does not 10702 * want to enable RXCSUM, logically, we should disable GRO_HW. 10703 */ 10704 if (features & NETIF_F_GRO_HW) { 10705 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n"); 10706 features &= ~NETIF_F_GRO_HW; 10707 } 10708 } 10709 10710 /* LRO/HW-GRO features cannot be combined with RX-FCS */ 10711 if (features & NETIF_F_RXFCS) { 10712 if (features & NETIF_F_LRO) { 10713 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n"); 10714 features &= ~NETIF_F_LRO; 10715 } 10716 10717 if (features & NETIF_F_GRO_HW) { 10718 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n"); 10719 features &= ~NETIF_F_GRO_HW; 10720 } 10721 } 10722 10723 if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) { 10724 netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n"); 10725 features &= ~NETIF_F_LRO; 10726 } 10727 10728 if ((features & NETIF_F_HW_TLS_TX) && !netdev_has_ip_or_hw_csum(features)) { 10729 netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n"); 10730 features &= ~NETIF_F_HW_TLS_TX; 10731 } 10732 10733 if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) { 10734 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n"); 10735 features &= ~NETIF_F_HW_TLS_RX; 10736 } 10737 10738 if ((features & NETIF_F_GSO_UDP_L4) && !netdev_has_ip_or_hw_csum(features)) { 10739 netdev_dbg(dev, "Dropping USO feature since no CSUM feature.\n"); 10740 features &= ~NETIF_F_GSO_UDP_L4; 10741 } 10742 10743 return features; 10744 } 10745 10746 int __netdev_update_features(struct net_device *dev) 10747 { 10748 struct net_device *upper, *lower; 10749 netdev_features_t features; 10750 struct list_head *iter; 10751 int err = -1; 10752 10753 ASSERT_RTNL(); 10754 netdev_ops_assert_locked(dev); 10755 10756 features = netdev_get_wanted_features(dev); 10757 10758 if (dev->netdev_ops->ndo_fix_features) 10759 features = dev->netdev_ops->ndo_fix_features(dev, features); 10760 10761 /* driver might be less strict about feature dependencies */ 10762 features = netdev_fix_features(dev, features); 10763 10764 /* some features can't be enabled if they're off on an upper device */ 10765 netdev_for_each_upper_dev_rcu(dev, upper, iter) 10766 features = netdev_sync_upper_features(dev, upper, features); 10767 10768 if (dev->features == features) 10769 goto sync_lower; 10770 10771 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n", 10772 &dev->features, &features); 10773 10774 if (dev->netdev_ops->ndo_set_features) 10775 err = dev->netdev_ops->ndo_set_features(dev, features); 10776 else 10777 err = 0; 10778 10779 if (unlikely(err < 0)) { 10780 netdev_err(dev, 10781 "set_features() failed (%d); wanted %pNF, left %pNF\n", 10782 err, &features, &dev->features); 10783 /* return non-0 since some features might have changed and 10784 * it's better to fire a spurious notification than miss it 10785 */ 10786 return -1; 10787 } 10788 10789 sync_lower: 10790 /* some features must be disabled on lower devices when disabled 10791 * on an upper device (think: bonding master or bridge) 10792 */ 10793 netdev_for_each_lower_dev(dev, lower, iter) 10794 netdev_sync_lower_features(dev, lower, features); 10795 10796 if (!err) { 10797 netdev_features_t diff = features ^ dev->features; 10798 10799 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) { 10800 /* udp_tunnel_{get,drop}_rx_info both need 10801 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the 10802 * device, or they won't do anything. 10803 * Thus we need to update dev->features 10804 * *before* calling udp_tunnel_get_rx_info, 10805 * but *after* calling udp_tunnel_drop_rx_info. 10806 */ 10807 udp_tunnel_nic_lock(dev); 10808 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) { 10809 dev->features = features; 10810 udp_tunnel_get_rx_info(dev); 10811 } else { 10812 udp_tunnel_drop_rx_info(dev); 10813 } 10814 udp_tunnel_nic_unlock(dev); 10815 } 10816 10817 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) { 10818 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) { 10819 dev->features = features; 10820 err |= vlan_get_rx_ctag_filter_info(dev); 10821 } else { 10822 vlan_drop_rx_ctag_filter_info(dev); 10823 } 10824 } 10825 10826 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) { 10827 if (features & NETIF_F_HW_VLAN_STAG_FILTER) { 10828 dev->features = features; 10829 err |= vlan_get_rx_stag_filter_info(dev); 10830 } else { 10831 vlan_drop_rx_stag_filter_info(dev); 10832 } 10833 } 10834 10835 dev->features = features; 10836 } 10837 10838 return err < 0 ? 0 : 1; 10839 } 10840 10841 /** 10842 * netdev_update_features - recalculate device features 10843 * @dev: the device to check 10844 * 10845 * Recalculate dev->features set and send notifications if it 10846 * has changed. Should be called after driver or hardware dependent 10847 * conditions might have changed that influence the features. 10848 */ 10849 void netdev_update_features(struct net_device *dev) 10850 { 10851 if (__netdev_update_features(dev)) 10852 netdev_features_change(dev); 10853 } 10854 EXPORT_SYMBOL(netdev_update_features); 10855 10856 /** 10857 * netdev_change_features - recalculate device features 10858 * @dev: the device to check 10859 * 10860 * Recalculate dev->features set and send notifications even 10861 * if they have not changed. Should be called instead of 10862 * netdev_update_features() if also dev->vlan_features might 10863 * have changed to allow the changes to be propagated to stacked 10864 * VLAN devices. 10865 */ 10866 void netdev_change_features(struct net_device *dev) 10867 { 10868 __netdev_update_features(dev); 10869 netdev_features_change(dev); 10870 } 10871 EXPORT_SYMBOL(netdev_change_features); 10872 10873 /** 10874 * netif_stacked_transfer_operstate - transfer operstate 10875 * @rootdev: the root or lower level device to transfer state from 10876 * @dev: the device to transfer operstate to 10877 * 10878 * Transfer operational state from root to device. This is normally 10879 * called when a stacking relationship exists between the root 10880 * device and the device(a leaf device). 10881 */ 10882 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 10883 struct net_device *dev) 10884 { 10885 if (rootdev->operstate == IF_OPER_DORMANT) 10886 netif_dormant_on(dev); 10887 else 10888 netif_dormant_off(dev); 10889 10890 if (rootdev->operstate == IF_OPER_TESTING) 10891 netif_testing_on(dev); 10892 else 10893 netif_testing_off(dev); 10894 10895 if (netif_carrier_ok(rootdev)) 10896 netif_carrier_on(dev); 10897 else 10898 netif_carrier_off(dev); 10899 } 10900 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 10901 10902 static int netif_alloc_rx_queues(struct net_device *dev) 10903 { 10904 unsigned int i, count = dev->num_rx_queues; 10905 struct netdev_rx_queue *rx; 10906 size_t sz = count * sizeof(*rx); 10907 int err = 0; 10908 10909 BUG_ON(count < 1); 10910 10911 rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL); 10912 if (!rx) 10913 return -ENOMEM; 10914 10915 dev->_rx = rx; 10916 10917 for (i = 0; i < count; i++) { 10918 rx[i].dev = dev; 10919 10920 /* XDP RX-queue setup */ 10921 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0); 10922 if (err < 0) 10923 goto err_rxq_info; 10924 } 10925 return 0; 10926 10927 err_rxq_info: 10928 /* Rollback successful reg's and free other resources */ 10929 while (i--) 10930 xdp_rxq_info_unreg(&rx[i].xdp_rxq); 10931 kvfree(dev->_rx); 10932 dev->_rx = NULL; 10933 return err; 10934 } 10935 10936 static void netif_free_rx_queues(struct net_device *dev) 10937 { 10938 unsigned int i, count = dev->num_rx_queues; 10939 10940 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */ 10941 if (!dev->_rx) 10942 return; 10943 10944 for (i = 0; i < count; i++) 10945 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq); 10946 10947 kvfree(dev->_rx); 10948 } 10949 10950 static void netdev_init_one_queue(struct net_device *dev, 10951 struct netdev_queue *queue, void *_unused) 10952 { 10953 /* Initialize queue lock */ 10954 spin_lock_init(&queue->_xmit_lock); 10955 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); 10956 queue->xmit_lock_owner = -1; 10957 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 10958 queue->dev = dev; 10959 #ifdef CONFIG_BQL 10960 dql_init(&queue->dql, HZ); 10961 #endif 10962 } 10963 10964 static void netif_free_tx_queues(struct net_device *dev) 10965 { 10966 kvfree(dev->_tx); 10967 } 10968 10969 static int netif_alloc_netdev_queues(struct net_device *dev) 10970 { 10971 unsigned int count = dev->num_tx_queues; 10972 struct netdev_queue *tx; 10973 size_t sz = count * sizeof(*tx); 10974 10975 if (count < 1 || count > 0xffff) 10976 return -EINVAL; 10977 10978 tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL); 10979 if (!tx) 10980 return -ENOMEM; 10981 10982 dev->_tx = tx; 10983 10984 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 10985 spin_lock_init(&dev->tx_global_lock); 10986 10987 return 0; 10988 } 10989 10990 void netif_tx_stop_all_queues(struct net_device *dev) 10991 { 10992 unsigned int i; 10993 10994 for (i = 0; i < dev->num_tx_queues; i++) { 10995 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 10996 10997 netif_tx_stop_queue(txq); 10998 } 10999 } 11000 EXPORT_SYMBOL(netif_tx_stop_all_queues); 11001 11002 static int netdev_do_alloc_pcpu_stats(struct net_device *dev) 11003 { 11004 void __percpu *v; 11005 11006 /* Drivers implementing ndo_get_peer_dev must support tstat 11007 * accounting, so that skb_do_redirect() can bump the dev's 11008 * RX stats upon network namespace switch. 11009 */ 11010 if (dev->netdev_ops->ndo_get_peer_dev && 11011 dev->pcpu_stat_type != NETDEV_PCPU_STAT_TSTATS) 11012 return -EOPNOTSUPP; 11013 11014 switch (dev->pcpu_stat_type) { 11015 case NETDEV_PCPU_STAT_NONE: 11016 return 0; 11017 case NETDEV_PCPU_STAT_LSTATS: 11018 v = dev->lstats = netdev_alloc_pcpu_stats(struct pcpu_lstats); 11019 break; 11020 case NETDEV_PCPU_STAT_TSTATS: 11021 v = dev->tstats = netdev_alloc_pcpu_stats(struct pcpu_sw_netstats); 11022 break; 11023 case NETDEV_PCPU_STAT_DSTATS: 11024 v = dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats); 11025 break; 11026 default: 11027 return -EINVAL; 11028 } 11029 11030 return v ? 0 : -ENOMEM; 11031 } 11032 11033 static void netdev_do_free_pcpu_stats(struct net_device *dev) 11034 { 11035 switch (dev->pcpu_stat_type) { 11036 case NETDEV_PCPU_STAT_NONE: 11037 return; 11038 case NETDEV_PCPU_STAT_LSTATS: 11039 free_percpu(dev->lstats); 11040 break; 11041 case NETDEV_PCPU_STAT_TSTATS: 11042 free_percpu(dev->tstats); 11043 break; 11044 case NETDEV_PCPU_STAT_DSTATS: 11045 free_percpu(dev->dstats); 11046 break; 11047 } 11048 } 11049 11050 static void netdev_free_phy_link_topology(struct net_device *dev) 11051 { 11052 struct phy_link_topology *topo = dev->link_topo; 11053 11054 if (IS_ENABLED(CONFIG_PHYLIB) && topo) { 11055 xa_destroy(&topo->phys); 11056 kfree(topo); 11057 dev->link_topo = NULL; 11058 } 11059 } 11060 11061 /** 11062 * register_netdevice() - register a network device 11063 * @dev: device to register 11064 * 11065 * Take a prepared network device structure and make it externally accessible. 11066 * A %NETDEV_REGISTER message is sent to the netdev notifier chain. 11067 * Callers must hold the rtnl lock - you may want register_netdev() 11068 * instead of this. 11069 */ 11070 int register_netdevice(struct net_device *dev) 11071 { 11072 int ret; 11073 struct net *net = dev_net(dev); 11074 11075 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE < 11076 NETDEV_FEATURE_COUNT); 11077 BUG_ON(dev_boot_phase); 11078 ASSERT_RTNL(); 11079 11080 might_sleep(); 11081 11082 /* When net_device's are persistent, this will be fatal. */ 11083 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 11084 BUG_ON(!net); 11085 11086 ret = ethtool_check_ops(dev->ethtool_ops); 11087 if (ret) 11088 return ret; 11089 11090 /* rss ctx ID 0 is reserved for the default context, start from 1 */ 11091 xa_init_flags(&dev->ethtool->rss_ctx, XA_FLAGS_ALLOC1); 11092 mutex_init(&dev->ethtool->rss_lock); 11093 11094 spin_lock_init(&dev->addr_list_lock); 11095 netdev_set_addr_lockdep_class(dev); 11096 11097 ret = dev_get_valid_name(net, dev, dev->name); 11098 if (ret < 0) 11099 goto out; 11100 11101 ret = -ENOMEM; 11102 dev->name_node = netdev_name_node_head_alloc(dev); 11103 if (!dev->name_node) 11104 goto out; 11105 11106 /* Init, if this function is available */ 11107 if (dev->netdev_ops->ndo_init) { 11108 ret = dev->netdev_ops->ndo_init(dev); 11109 if (ret) { 11110 if (ret > 0) 11111 ret = -EIO; 11112 goto err_free_name; 11113 } 11114 } 11115 11116 if (((dev->hw_features | dev->features) & 11117 NETIF_F_HW_VLAN_CTAG_FILTER) && 11118 (!dev->netdev_ops->ndo_vlan_rx_add_vid || 11119 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) { 11120 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n"); 11121 ret = -EINVAL; 11122 goto err_uninit; 11123 } 11124 11125 ret = netdev_do_alloc_pcpu_stats(dev); 11126 if (ret) 11127 goto err_uninit; 11128 11129 ret = dev_index_reserve(net, dev->ifindex); 11130 if (ret < 0) 11131 goto err_free_pcpu; 11132 dev->ifindex = ret; 11133 11134 /* Transfer changeable features to wanted_features and enable 11135 * software offloads (GSO and GRO). 11136 */ 11137 dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF); 11138 dev->features |= NETIF_F_SOFT_FEATURES; 11139 11140 if (dev->udp_tunnel_nic_info) { 11141 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT; 11142 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT; 11143 } 11144 11145 dev->wanted_features = dev->features & dev->hw_features; 11146 11147 if (!(dev->flags & IFF_LOOPBACK)) 11148 dev->hw_features |= NETIF_F_NOCACHE_COPY; 11149 11150 /* If IPv4 TCP segmentation offload is supported we should also 11151 * allow the device to enable segmenting the frame with the option 11152 * of ignoring a static IP ID value. This doesn't enable the 11153 * feature itself but allows the user to enable it later. 11154 */ 11155 if (dev->hw_features & NETIF_F_TSO) 11156 dev->hw_features |= NETIF_F_TSO_MANGLEID; 11157 if (dev->vlan_features & NETIF_F_TSO) 11158 dev->vlan_features |= NETIF_F_TSO_MANGLEID; 11159 if (dev->mpls_features & NETIF_F_TSO) 11160 dev->mpls_features |= NETIF_F_TSO_MANGLEID; 11161 if (dev->hw_enc_features & NETIF_F_TSO) 11162 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 11163 11164 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. 11165 */ 11166 dev->vlan_features |= NETIF_F_HIGHDMA; 11167 11168 /* Make NETIF_F_SG inheritable to tunnel devices. 11169 */ 11170 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL; 11171 11172 /* Make NETIF_F_SG inheritable to MPLS. 11173 */ 11174 dev->mpls_features |= NETIF_F_SG; 11175 11176 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 11177 ret = notifier_to_errno(ret); 11178 if (ret) 11179 goto err_ifindex_release; 11180 11181 ret = netdev_register_kobject(dev); 11182 11183 netdev_lock(dev); 11184 WRITE_ONCE(dev->reg_state, ret ? NETREG_UNREGISTERED : NETREG_REGISTERED); 11185 netdev_unlock(dev); 11186 11187 if (ret) 11188 goto err_uninit_notify; 11189 11190 netdev_lock_ops(dev); 11191 __netdev_update_features(dev); 11192 netdev_unlock_ops(dev); 11193 11194 /* 11195 * Default initial state at registry is that the 11196 * device is present. 11197 */ 11198 11199 set_bit(__LINK_STATE_PRESENT, &dev->state); 11200 11201 linkwatch_init_dev(dev); 11202 11203 dev_init_scheduler(dev); 11204 11205 netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL); 11206 list_netdevice(dev); 11207 11208 add_device_randomness(dev->dev_addr, dev->addr_len); 11209 11210 /* If the device has permanent device address, driver should 11211 * set dev_addr and also addr_assign_type should be set to 11212 * NET_ADDR_PERM (default value). 11213 */ 11214 if (dev->addr_assign_type == NET_ADDR_PERM) 11215 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); 11216 11217 /* Notify protocols, that a new device appeared. */ 11218 netdev_lock_ops(dev); 11219 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 11220 netdev_unlock_ops(dev); 11221 ret = notifier_to_errno(ret); 11222 if (ret) { 11223 /* Expect explicit free_netdev() on failure */ 11224 dev->needs_free_netdev = false; 11225 unregister_netdevice_queue(dev, NULL); 11226 goto out; 11227 } 11228 /* 11229 * Prevent userspace races by waiting until the network 11230 * device is fully setup before sending notifications. 11231 */ 11232 if (!(dev->rtnl_link_ops && dev->rtnl_link_initializing)) 11233 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL); 11234 11235 out: 11236 return ret; 11237 11238 err_uninit_notify: 11239 call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev); 11240 err_ifindex_release: 11241 dev_index_release(net, dev->ifindex); 11242 err_free_pcpu: 11243 netdev_do_free_pcpu_stats(dev); 11244 err_uninit: 11245 if (dev->netdev_ops->ndo_uninit) 11246 dev->netdev_ops->ndo_uninit(dev); 11247 if (dev->priv_destructor) 11248 dev->priv_destructor(dev); 11249 err_free_name: 11250 netdev_name_node_free(dev->name_node); 11251 goto out; 11252 } 11253 EXPORT_SYMBOL(register_netdevice); 11254 11255 /* Initialize the core of a dummy net device. 11256 * The setup steps dummy netdevs need which normal netdevs get by going 11257 * through register_netdevice(). 11258 */ 11259 static void init_dummy_netdev(struct net_device *dev) 11260 { 11261 /* make sure we BUG if trying to hit standard 11262 * register/unregister code path 11263 */ 11264 dev->reg_state = NETREG_DUMMY; 11265 11266 /* a dummy interface is started by default */ 11267 set_bit(__LINK_STATE_PRESENT, &dev->state); 11268 set_bit(__LINK_STATE_START, &dev->state); 11269 11270 /* Note : We dont allocate pcpu_refcnt for dummy devices, 11271 * because users of this 'device' dont need to change 11272 * its refcount. 11273 */ 11274 } 11275 11276 /** 11277 * register_netdev - register a network device 11278 * @dev: device to register 11279 * 11280 * Take a completed network device structure and add it to the kernel 11281 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 11282 * chain. 0 is returned on success. A negative errno code is returned 11283 * on a failure to set up the device, or if the name is a duplicate. 11284 * 11285 * This is a wrapper around register_netdevice that takes the rtnl semaphore 11286 * and expands the device name if you passed a format string to 11287 * alloc_netdev. 11288 */ 11289 int register_netdev(struct net_device *dev) 11290 { 11291 struct net *net = dev_net(dev); 11292 int err; 11293 11294 if (rtnl_net_lock_killable(net)) 11295 return -EINTR; 11296 11297 err = register_netdevice(dev); 11298 11299 rtnl_net_unlock(net); 11300 11301 return err; 11302 } 11303 EXPORT_SYMBOL(register_netdev); 11304 11305 int netdev_refcnt_read(const struct net_device *dev) 11306 { 11307 #ifdef CONFIG_PCPU_DEV_REFCNT 11308 int i, refcnt = 0; 11309 11310 for_each_possible_cpu(i) 11311 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 11312 return refcnt; 11313 #else 11314 return refcount_read(&dev->dev_refcnt); 11315 #endif 11316 } 11317 EXPORT_SYMBOL(netdev_refcnt_read); 11318 11319 int netdev_unregister_timeout_secs __read_mostly = 10; 11320 11321 #define WAIT_REFS_MIN_MSECS 1 11322 #define WAIT_REFS_MAX_MSECS 250 11323 /** 11324 * netdev_wait_allrefs_any - wait until all references are gone. 11325 * @list: list of net_devices to wait on 11326 * 11327 * This is called when unregistering network devices. 11328 * 11329 * Any protocol or device that holds a reference should register 11330 * for netdevice notification, and cleanup and put back the 11331 * reference if they receive an UNREGISTER event. 11332 * We can get stuck here if buggy protocols don't correctly 11333 * call dev_put. 11334 */ 11335 static struct net_device *netdev_wait_allrefs_any(struct list_head *list) 11336 { 11337 unsigned long rebroadcast_time, warning_time; 11338 struct net_device *dev; 11339 int wait = 0; 11340 11341 rebroadcast_time = warning_time = jiffies; 11342 11343 list_for_each_entry(dev, list, todo_list) 11344 if (netdev_refcnt_read(dev) == 1) 11345 return dev; 11346 11347 while (true) { 11348 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 11349 rtnl_lock(); 11350 11351 /* Rebroadcast unregister notification */ 11352 list_for_each_entry(dev, list, todo_list) 11353 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 11354 11355 __rtnl_unlock(); 11356 rcu_barrier(); 11357 rtnl_lock(); 11358 11359 list_for_each_entry(dev, list, todo_list) 11360 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 11361 &dev->state)) { 11362 /* We must not have linkwatch events 11363 * pending on unregister. If this 11364 * happens, we simply run the queue 11365 * unscheduled, resulting in a noop 11366 * for this device. 11367 */ 11368 linkwatch_run_queue(); 11369 break; 11370 } 11371 11372 __rtnl_unlock(); 11373 11374 rebroadcast_time = jiffies; 11375 } 11376 11377 rcu_barrier(); 11378 11379 if (!wait) { 11380 wait = WAIT_REFS_MIN_MSECS; 11381 } else { 11382 msleep(wait); 11383 wait = min(wait << 1, WAIT_REFS_MAX_MSECS); 11384 } 11385 11386 list_for_each_entry(dev, list, todo_list) 11387 if (netdev_refcnt_read(dev) == 1) 11388 return dev; 11389 11390 if (time_after(jiffies, warning_time + 11391 READ_ONCE(netdev_unregister_timeout_secs) * HZ)) { 11392 list_for_each_entry(dev, list, todo_list) { 11393 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n", 11394 dev->name, netdev_refcnt_read(dev)); 11395 ref_tracker_dir_print(&dev->refcnt_tracker, 10); 11396 } 11397 11398 warning_time = jiffies; 11399 } 11400 } 11401 } 11402 11403 /* The sequence is: 11404 * 11405 * rtnl_lock(); 11406 * ... 11407 * register_netdevice(x1); 11408 * register_netdevice(x2); 11409 * ... 11410 * unregister_netdevice(y1); 11411 * unregister_netdevice(y2); 11412 * ... 11413 * rtnl_unlock(); 11414 * free_netdev(y1); 11415 * free_netdev(y2); 11416 * 11417 * We are invoked by rtnl_unlock(). 11418 * This allows us to deal with problems: 11419 * 1) We can delete sysfs objects which invoke hotplug 11420 * without deadlocking with linkwatch via keventd. 11421 * 2) Since we run with the RTNL semaphore not held, we can sleep 11422 * safely in order to wait for the netdev refcnt to drop to zero. 11423 * 11424 * We must not return until all unregister events added during 11425 * the interval the lock was held have been completed. 11426 */ 11427 void netdev_run_todo(void) 11428 { 11429 struct net_device *dev, *tmp; 11430 struct list_head list; 11431 int cnt; 11432 #ifdef CONFIG_LOCKDEP 11433 struct list_head unlink_list; 11434 11435 list_replace_init(&net_unlink_list, &unlink_list); 11436 11437 while (!list_empty(&unlink_list)) { 11438 dev = list_first_entry(&unlink_list, struct net_device, 11439 unlink_list); 11440 list_del_init(&dev->unlink_list); 11441 dev->nested_level = dev->lower_level - 1; 11442 } 11443 #endif 11444 11445 /* Snapshot list, allow later requests */ 11446 list_replace_init(&net_todo_list, &list); 11447 11448 __rtnl_unlock(); 11449 11450 /* Wait for rcu callbacks to finish before next phase */ 11451 if (!list_empty(&list)) 11452 rcu_barrier(); 11453 11454 list_for_each_entry_safe(dev, tmp, &list, todo_list) { 11455 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 11456 netdev_WARN(dev, "run_todo but not unregistering\n"); 11457 list_del(&dev->todo_list); 11458 continue; 11459 } 11460 11461 netdev_lock(dev); 11462 WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERED); 11463 netdev_unlock(dev); 11464 linkwatch_sync_dev(dev); 11465 } 11466 11467 cnt = 0; 11468 while (!list_empty(&list)) { 11469 dev = netdev_wait_allrefs_any(&list); 11470 list_del(&dev->todo_list); 11471 11472 /* paranoia */ 11473 BUG_ON(netdev_refcnt_read(dev) != 1); 11474 BUG_ON(!list_empty(&dev->ptype_all)); 11475 BUG_ON(!list_empty(&dev->ptype_specific)); 11476 WARN_ON(rcu_access_pointer(dev->ip_ptr)); 11477 WARN_ON(rcu_access_pointer(dev->ip6_ptr)); 11478 11479 netdev_do_free_pcpu_stats(dev); 11480 if (dev->priv_destructor) 11481 dev->priv_destructor(dev); 11482 if (dev->needs_free_netdev) 11483 free_netdev(dev); 11484 11485 cnt++; 11486 11487 /* Free network device */ 11488 kobject_put(&dev->dev.kobj); 11489 } 11490 if (cnt && atomic_sub_and_test(cnt, &dev_unreg_count)) 11491 wake_up(&netdev_unregistering_wq); 11492 } 11493 11494 /* Collate per-cpu network dstats statistics 11495 * 11496 * Read per-cpu network statistics from dev->dstats and populate the related 11497 * fields in @s. 11498 */ 11499 static void dev_fetch_dstats(struct rtnl_link_stats64 *s, 11500 const struct pcpu_dstats __percpu *dstats) 11501 { 11502 int cpu; 11503 11504 for_each_possible_cpu(cpu) { 11505 u64 rx_packets, rx_bytes, rx_drops; 11506 u64 tx_packets, tx_bytes, tx_drops; 11507 const struct pcpu_dstats *stats; 11508 unsigned int start; 11509 11510 stats = per_cpu_ptr(dstats, cpu); 11511 do { 11512 start = u64_stats_fetch_begin(&stats->syncp); 11513 rx_packets = u64_stats_read(&stats->rx_packets); 11514 rx_bytes = u64_stats_read(&stats->rx_bytes); 11515 rx_drops = u64_stats_read(&stats->rx_drops); 11516 tx_packets = u64_stats_read(&stats->tx_packets); 11517 tx_bytes = u64_stats_read(&stats->tx_bytes); 11518 tx_drops = u64_stats_read(&stats->tx_drops); 11519 } while (u64_stats_fetch_retry(&stats->syncp, start)); 11520 11521 s->rx_packets += rx_packets; 11522 s->rx_bytes += rx_bytes; 11523 s->rx_dropped += rx_drops; 11524 s->tx_packets += tx_packets; 11525 s->tx_bytes += tx_bytes; 11526 s->tx_dropped += tx_drops; 11527 } 11528 } 11529 11530 /* ndo_get_stats64 implementation for dtstats-based accounting. 11531 * 11532 * Populate @s from dev->stats and dev->dstats. This is used internally by the 11533 * core for NETDEV_PCPU_STAT_DSTAT-type stats collection. 11534 */ 11535 static void dev_get_dstats64(const struct net_device *dev, 11536 struct rtnl_link_stats64 *s) 11537 { 11538 netdev_stats_to_stats64(s, &dev->stats); 11539 dev_fetch_dstats(s, dev->dstats); 11540 } 11541 11542 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has 11543 * all the same fields in the same order as net_device_stats, with only 11544 * the type differing, but rtnl_link_stats64 may have additional fields 11545 * at the end for newer counters. 11546 */ 11547 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 11548 const struct net_device_stats *netdev_stats) 11549 { 11550 size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t); 11551 const atomic_long_t *src = (atomic_long_t *)netdev_stats; 11552 u64 *dst = (u64 *)stats64; 11553 11554 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64)); 11555 for (i = 0; i < n; i++) 11556 dst[i] = (unsigned long)atomic_long_read(&src[i]); 11557 /* zero out counters that only exist in rtnl_link_stats64 */ 11558 memset((char *)stats64 + n * sizeof(u64), 0, 11559 sizeof(*stats64) - n * sizeof(u64)); 11560 } 11561 EXPORT_SYMBOL(netdev_stats_to_stats64); 11562 11563 static __cold struct net_device_core_stats __percpu *netdev_core_stats_alloc( 11564 struct net_device *dev) 11565 { 11566 struct net_device_core_stats __percpu *p; 11567 11568 p = alloc_percpu_gfp(struct net_device_core_stats, 11569 GFP_ATOMIC | __GFP_NOWARN); 11570 11571 if (p && cmpxchg(&dev->core_stats, NULL, p)) 11572 free_percpu(p); 11573 11574 /* This READ_ONCE() pairs with the cmpxchg() above */ 11575 return READ_ONCE(dev->core_stats); 11576 } 11577 11578 noinline void netdev_core_stats_inc(struct net_device *dev, u32 offset) 11579 { 11580 /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */ 11581 struct net_device_core_stats __percpu *p = READ_ONCE(dev->core_stats); 11582 unsigned long __percpu *field; 11583 11584 if (unlikely(!p)) { 11585 p = netdev_core_stats_alloc(dev); 11586 if (!p) 11587 return; 11588 } 11589 11590 field = (unsigned long __percpu *)((void __percpu *)p + offset); 11591 this_cpu_inc(*field); 11592 } 11593 EXPORT_SYMBOL_GPL(netdev_core_stats_inc); 11594 11595 /** 11596 * dev_get_stats - get network device statistics 11597 * @dev: device to get statistics from 11598 * @storage: place to store stats 11599 * 11600 * Get network statistics from device. Return @storage. 11601 * The device driver may provide its own method by setting 11602 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 11603 * otherwise the internal statistics structure is used. 11604 */ 11605 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 11606 struct rtnl_link_stats64 *storage) 11607 { 11608 const struct net_device_ops *ops = dev->netdev_ops; 11609 const struct net_device_core_stats __percpu *p; 11610 11611 /* 11612 * IPv{4,6} and udp tunnels share common stat helpers and use 11613 * different stat type (NETDEV_PCPU_STAT_TSTATS vs 11614 * NETDEV_PCPU_STAT_DSTATS). Ensure the accounting is consistent. 11615 */ 11616 BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, rx_bytes) != 11617 offsetof(struct pcpu_dstats, rx_bytes)); 11618 BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, rx_packets) != 11619 offsetof(struct pcpu_dstats, rx_packets)); 11620 BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, tx_bytes) != 11621 offsetof(struct pcpu_dstats, tx_bytes)); 11622 BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, tx_packets) != 11623 offsetof(struct pcpu_dstats, tx_packets)); 11624 11625 if (ops->ndo_get_stats64) { 11626 memset(storage, 0, sizeof(*storage)); 11627 ops->ndo_get_stats64(dev, storage); 11628 } else if (ops->ndo_get_stats) { 11629 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 11630 } else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_TSTATS) { 11631 dev_get_tstats64(dev, storage); 11632 } else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_DSTATS) { 11633 dev_get_dstats64(dev, storage); 11634 } else { 11635 netdev_stats_to_stats64(storage, &dev->stats); 11636 } 11637 11638 /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */ 11639 p = READ_ONCE(dev->core_stats); 11640 if (p) { 11641 const struct net_device_core_stats *core_stats; 11642 int i; 11643 11644 for_each_possible_cpu(i) { 11645 core_stats = per_cpu_ptr(p, i); 11646 storage->rx_dropped += READ_ONCE(core_stats->rx_dropped); 11647 storage->tx_dropped += READ_ONCE(core_stats->tx_dropped); 11648 storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler); 11649 storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped); 11650 } 11651 } 11652 return storage; 11653 } 11654 EXPORT_SYMBOL(dev_get_stats); 11655 11656 /** 11657 * dev_fetch_sw_netstats - get per-cpu network device statistics 11658 * @s: place to store stats 11659 * @netstats: per-cpu network stats to read from 11660 * 11661 * Read per-cpu network statistics and populate the related fields in @s. 11662 */ 11663 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s, 11664 const struct pcpu_sw_netstats __percpu *netstats) 11665 { 11666 int cpu; 11667 11668 for_each_possible_cpu(cpu) { 11669 u64 rx_packets, rx_bytes, tx_packets, tx_bytes; 11670 const struct pcpu_sw_netstats *stats; 11671 unsigned int start; 11672 11673 stats = per_cpu_ptr(netstats, cpu); 11674 do { 11675 start = u64_stats_fetch_begin(&stats->syncp); 11676 rx_packets = u64_stats_read(&stats->rx_packets); 11677 rx_bytes = u64_stats_read(&stats->rx_bytes); 11678 tx_packets = u64_stats_read(&stats->tx_packets); 11679 tx_bytes = u64_stats_read(&stats->tx_bytes); 11680 } while (u64_stats_fetch_retry(&stats->syncp, start)); 11681 11682 s->rx_packets += rx_packets; 11683 s->rx_bytes += rx_bytes; 11684 s->tx_packets += tx_packets; 11685 s->tx_bytes += tx_bytes; 11686 } 11687 } 11688 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats); 11689 11690 /** 11691 * dev_get_tstats64 - ndo_get_stats64 implementation 11692 * @dev: device to get statistics from 11693 * @s: place to store stats 11694 * 11695 * Populate @s from dev->stats and dev->tstats. Can be used as 11696 * ndo_get_stats64() callback. 11697 */ 11698 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s) 11699 { 11700 netdev_stats_to_stats64(s, &dev->stats); 11701 dev_fetch_sw_netstats(s, dev->tstats); 11702 } 11703 EXPORT_SYMBOL_GPL(dev_get_tstats64); 11704 11705 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 11706 { 11707 struct netdev_queue *queue = dev_ingress_queue(dev); 11708 11709 #ifdef CONFIG_NET_CLS_ACT 11710 if (queue) 11711 return queue; 11712 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 11713 if (!queue) 11714 return NULL; 11715 netdev_init_one_queue(dev, queue, NULL); 11716 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc); 11717 RCU_INIT_POINTER(queue->qdisc_sleeping, &noop_qdisc); 11718 rcu_assign_pointer(dev->ingress_queue, queue); 11719 #endif 11720 return queue; 11721 } 11722 11723 static const struct ethtool_ops default_ethtool_ops; 11724 11725 void netdev_set_default_ethtool_ops(struct net_device *dev, 11726 const struct ethtool_ops *ops) 11727 { 11728 if (dev->ethtool_ops == &default_ethtool_ops) 11729 dev->ethtool_ops = ops; 11730 } 11731 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops); 11732 11733 /** 11734 * netdev_sw_irq_coalesce_default_on() - enable SW IRQ coalescing by default 11735 * @dev: netdev to enable the IRQ coalescing on 11736 * 11737 * Sets a conservative default for SW IRQ coalescing. Users can use 11738 * sysfs attributes to override the default values. 11739 */ 11740 void netdev_sw_irq_coalesce_default_on(struct net_device *dev) 11741 { 11742 WARN_ON(dev->reg_state == NETREG_REGISTERED); 11743 11744 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) { 11745 netdev_set_gro_flush_timeout(dev, 20000); 11746 netdev_set_defer_hard_irqs(dev, 1); 11747 } 11748 } 11749 EXPORT_SYMBOL_GPL(netdev_sw_irq_coalesce_default_on); 11750 11751 /** 11752 * alloc_netdev_mqs - allocate network device 11753 * @sizeof_priv: size of private data to allocate space for 11754 * @name: device name format string 11755 * @name_assign_type: origin of device name 11756 * @setup: callback to initialize device 11757 * @txqs: the number of TX subqueues to allocate 11758 * @rxqs: the number of RX subqueues to allocate 11759 * 11760 * Allocates a struct net_device with private data area for driver use 11761 * and performs basic initialization. Also allocates subqueue structs 11762 * for each queue on the device. 11763 */ 11764 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 11765 unsigned char name_assign_type, 11766 void (*setup)(struct net_device *), 11767 unsigned int txqs, unsigned int rxqs) 11768 { 11769 struct net_device *dev; 11770 size_t napi_config_sz; 11771 unsigned int maxqs; 11772 11773 BUG_ON(strlen(name) >= sizeof(dev->name)); 11774 11775 if (txqs < 1) { 11776 pr_err("alloc_netdev: Unable to allocate device with zero queues\n"); 11777 return NULL; 11778 } 11779 11780 if (rxqs < 1) { 11781 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n"); 11782 return NULL; 11783 } 11784 11785 maxqs = max(txqs, rxqs); 11786 11787 dev = kvzalloc(struct_size(dev, priv, sizeof_priv), 11788 GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL); 11789 if (!dev) 11790 return NULL; 11791 11792 dev->priv_len = sizeof_priv; 11793 11794 ref_tracker_dir_init(&dev->refcnt_tracker, 128, "netdev"); 11795 #ifdef CONFIG_PCPU_DEV_REFCNT 11796 dev->pcpu_refcnt = alloc_percpu(int); 11797 if (!dev->pcpu_refcnt) 11798 goto free_dev; 11799 __dev_hold(dev); 11800 #else 11801 refcount_set(&dev->dev_refcnt, 1); 11802 #endif 11803 11804 if (dev_addr_init(dev)) 11805 goto free_pcpu; 11806 11807 dev_mc_init(dev); 11808 dev_uc_init(dev); 11809 11810 dev_net_set(dev, &init_net); 11811 11812 dev->gso_max_size = GSO_LEGACY_MAX_SIZE; 11813 dev->xdp_zc_max_segs = 1; 11814 dev->gso_max_segs = GSO_MAX_SEGS; 11815 dev->gro_max_size = GRO_LEGACY_MAX_SIZE; 11816 dev->gso_ipv4_max_size = GSO_LEGACY_MAX_SIZE; 11817 dev->gro_ipv4_max_size = GRO_LEGACY_MAX_SIZE; 11818 dev->tso_max_size = TSO_LEGACY_MAX_SIZE; 11819 dev->tso_max_segs = TSO_MAX_SEGS; 11820 dev->upper_level = 1; 11821 dev->lower_level = 1; 11822 #ifdef CONFIG_LOCKDEP 11823 dev->nested_level = 0; 11824 INIT_LIST_HEAD(&dev->unlink_list); 11825 #endif 11826 11827 INIT_LIST_HEAD(&dev->napi_list); 11828 INIT_LIST_HEAD(&dev->unreg_list); 11829 INIT_LIST_HEAD(&dev->close_list); 11830 INIT_LIST_HEAD(&dev->link_watch_list); 11831 INIT_LIST_HEAD(&dev->adj_list.upper); 11832 INIT_LIST_HEAD(&dev->adj_list.lower); 11833 INIT_LIST_HEAD(&dev->ptype_all); 11834 INIT_LIST_HEAD(&dev->ptype_specific); 11835 INIT_LIST_HEAD(&dev->net_notifier_list); 11836 #ifdef CONFIG_NET_SCHED 11837 hash_init(dev->qdisc_hash); 11838 #endif 11839 11840 mutex_init(&dev->lock); 11841 11842 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM; 11843 setup(dev); 11844 11845 if (!dev->tx_queue_len) { 11846 dev->priv_flags |= IFF_NO_QUEUE; 11847 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN; 11848 } 11849 11850 dev->num_tx_queues = txqs; 11851 dev->real_num_tx_queues = txqs; 11852 if (netif_alloc_netdev_queues(dev)) 11853 goto free_all; 11854 11855 dev->num_rx_queues = rxqs; 11856 dev->real_num_rx_queues = rxqs; 11857 if (netif_alloc_rx_queues(dev)) 11858 goto free_all; 11859 dev->ethtool = kzalloc(sizeof(*dev->ethtool), GFP_KERNEL_ACCOUNT); 11860 if (!dev->ethtool) 11861 goto free_all; 11862 11863 dev->cfg = kzalloc(sizeof(*dev->cfg), GFP_KERNEL_ACCOUNT); 11864 if (!dev->cfg) 11865 goto free_all; 11866 dev->cfg_pending = dev->cfg; 11867 11868 napi_config_sz = array_size(maxqs, sizeof(*dev->napi_config)); 11869 dev->napi_config = kvzalloc(napi_config_sz, GFP_KERNEL_ACCOUNT); 11870 if (!dev->napi_config) 11871 goto free_all; 11872 11873 strscpy(dev->name, name); 11874 dev->name_assign_type = name_assign_type; 11875 dev->group = INIT_NETDEV_GROUP; 11876 if (!dev->ethtool_ops) 11877 dev->ethtool_ops = &default_ethtool_ops; 11878 11879 nf_hook_netdev_init(dev); 11880 11881 return dev; 11882 11883 free_all: 11884 free_netdev(dev); 11885 return NULL; 11886 11887 free_pcpu: 11888 #ifdef CONFIG_PCPU_DEV_REFCNT 11889 free_percpu(dev->pcpu_refcnt); 11890 free_dev: 11891 #endif 11892 kvfree(dev); 11893 return NULL; 11894 } 11895 EXPORT_SYMBOL(alloc_netdev_mqs); 11896 11897 static void netdev_napi_exit(struct net_device *dev) 11898 { 11899 if (!list_empty(&dev->napi_list)) { 11900 struct napi_struct *p, *n; 11901 11902 netdev_lock(dev); 11903 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 11904 __netif_napi_del_locked(p); 11905 netdev_unlock(dev); 11906 11907 synchronize_net(); 11908 } 11909 11910 kvfree(dev->napi_config); 11911 } 11912 11913 /** 11914 * free_netdev - free network device 11915 * @dev: device 11916 * 11917 * This function does the last stage of destroying an allocated device 11918 * interface. The reference to the device object is released. If this 11919 * is the last reference then it will be freed.Must be called in process 11920 * context. 11921 */ 11922 void free_netdev(struct net_device *dev) 11923 { 11924 might_sleep(); 11925 11926 /* When called immediately after register_netdevice() failed the unwind 11927 * handling may still be dismantling the device. Handle that case by 11928 * deferring the free. 11929 */ 11930 if (dev->reg_state == NETREG_UNREGISTERING) { 11931 ASSERT_RTNL(); 11932 dev->needs_free_netdev = true; 11933 return; 11934 } 11935 11936 WARN_ON(dev->cfg != dev->cfg_pending); 11937 kfree(dev->cfg); 11938 kfree(dev->ethtool); 11939 netif_free_tx_queues(dev); 11940 netif_free_rx_queues(dev); 11941 11942 kfree(rcu_dereference_protected(dev->ingress_queue, 1)); 11943 11944 /* Flush device addresses */ 11945 dev_addr_flush(dev); 11946 11947 netdev_napi_exit(dev); 11948 11949 netif_del_cpu_rmap(dev); 11950 11951 ref_tracker_dir_exit(&dev->refcnt_tracker); 11952 #ifdef CONFIG_PCPU_DEV_REFCNT 11953 free_percpu(dev->pcpu_refcnt); 11954 dev->pcpu_refcnt = NULL; 11955 #endif 11956 free_percpu(dev->core_stats); 11957 dev->core_stats = NULL; 11958 free_percpu(dev->xdp_bulkq); 11959 dev->xdp_bulkq = NULL; 11960 11961 netdev_free_phy_link_topology(dev); 11962 11963 mutex_destroy(&dev->lock); 11964 11965 /* Compatibility with error handling in drivers */ 11966 if (dev->reg_state == NETREG_UNINITIALIZED || 11967 dev->reg_state == NETREG_DUMMY) { 11968 kvfree(dev); 11969 return; 11970 } 11971 11972 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 11973 WRITE_ONCE(dev->reg_state, NETREG_RELEASED); 11974 11975 /* will free via device release */ 11976 put_device(&dev->dev); 11977 } 11978 EXPORT_SYMBOL(free_netdev); 11979 11980 /** 11981 * alloc_netdev_dummy - Allocate and initialize a dummy net device. 11982 * @sizeof_priv: size of private data to allocate space for 11983 * 11984 * Return: the allocated net_device on success, NULL otherwise 11985 */ 11986 struct net_device *alloc_netdev_dummy(int sizeof_priv) 11987 { 11988 return alloc_netdev(sizeof_priv, "dummy#", NET_NAME_UNKNOWN, 11989 init_dummy_netdev); 11990 } 11991 EXPORT_SYMBOL_GPL(alloc_netdev_dummy); 11992 11993 /** 11994 * synchronize_net - Synchronize with packet receive processing 11995 * 11996 * Wait for packets currently being received to be done. 11997 * Does not block later packets from starting. 11998 */ 11999 void synchronize_net(void) 12000 { 12001 might_sleep(); 12002 if (from_cleanup_net() || rtnl_is_locked()) 12003 synchronize_rcu_expedited(); 12004 else 12005 synchronize_rcu(); 12006 } 12007 EXPORT_SYMBOL(synchronize_net); 12008 12009 static void netdev_rss_contexts_free(struct net_device *dev) 12010 { 12011 struct ethtool_rxfh_context *ctx; 12012 unsigned long context; 12013 12014 mutex_lock(&dev->ethtool->rss_lock); 12015 xa_for_each(&dev->ethtool->rss_ctx, context, ctx) { 12016 xa_erase(&dev->ethtool->rss_ctx, context); 12017 dev->ethtool_ops->remove_rxfh_context(dev, ctx, context, NULL); 12018 kfree(ctx); 12019 } 12020 xa_destroy(&dev->ethtool->rss_ctx); 12021 mutex_unlock(&dev->ethtool->rss_lock); 12022 } 12023 12024 /** 12025 * unregister_netdevice_queue - remove device from the kernel 12026 * @dev: device 12027 * @head: list 12028 * 12029 * This function shuts down a device interface and removes it 12030 * from the kernel tables. 12031 * If head not NULL, device is queued to be unregistered later. 12032 * 12033 * Callers must hold the rtnl semaphore. You may want 12034 * unregister_netdev() instead of this. 12035 */ 12036 12037 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 12038 { 12039 ASSERT_RTNL(); 12040 12041 if (head) { 12042 list_move_tail(&dev->unreg_list, head); 12043 } else { 12044 LIST_HEAD(single); 12045 12046 list_add(&dev->unreg_list, &single); 12047 unregister_netdevice_many(&single); 12048 } 12049 } 12050 EXPORT_SYMBOL(unregister_netdevice_queue); 12051 12052 static void dev_memory_provider_uninstall(struct net_device *dev) 12053 { 12054 unsigned int i; 12055 12056 for (i = 0; i < dev->real_num_rx_queues; i++) { 12057 struct netdev_rx_queue *rxq = &dev->_rx[i]; 12058 struct pp_memory_provider_params *p = &rxq->mp_params; 12059 12060 if (p->mp_ops && p->mp_ops->uninstall) 12061 p->mp_ops->uninstall(rxq->mp_params.mp_priv, rxq); 12062 } 12063 } 12064 12065 void unregister_netdevice_many_notify(struct list_head *head, 12066 u32 portid, const struct nlmsghdr *nlh) 12067 { 12068 struct net_device *dev, *tmp; 12069 LIST_HEAD(close_head); 12070 int cnt = 0; 12071 12072 BUG_ON(dev_boot_phase); 12073 ASSERT_RTNL(); 12074 12075 if (list_empty(head)) 12076 return; 12077 12078 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 12079 /* Some devices call without registering 12080 * for initialization unwind. Remove those 12081 * devices and proceed with the remaining. 12082 */ 12083 if (dev->reg_state == NETREG_UNINITIALIZED) { 12084 pr_debug("unregister_netdevice: device %s/%p never was registered\n", 12085 dev->name, dev); 12086 12087 WARN_ON(1); 12088 list_del(&dev->unreg_list); 12089 continue; 12090 } 12091 dev->dismantle = true; 12092 BUG_ON(dev->reg_state != NETREG_REGISTERED); 12093 } 12094 12095 /* If device is running, close it first. Start with ops locked... */ 12096 list_for_each_entry(dev, head, unreg_list) { 12097 if (netdev_need_ops_lock(dev)) { 12098 list_add_tail(&dev->close_list, &close_head); 12099 netdev_lock(dev); 12100 } 12101 } 12102 netif_close_many(&close_head, true); 12103 /* ... now unlock them and go over the rest. */ 12104 list_for_each_entry(dev, head, unreg_list) { 12105 if (netdev_need_ops_lock(dev)) 12106 netdev_unlock(dev); 12107 else 12108 list_add_tail(&dev->close_list, &close_head); 12109 } 12110 netif_close_many(&close_head, true); 12111 12112 list_for_each_entry(dev, head, unreg_list) { 12113 /* And unlink it from device chain. */ 12114 unlist_netdevice(dev); 12115 netdev_lock(dev); 12116 WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERING); 12117 netdev_unlock(dev); 12118 } 12119 flush_all_backlogs(); 12120 12121 synchronize_net(); 12122 12123 list_for_each_entry(dev, head, unreg_list) { 12124 struct sk_buff *skb = NULL; 12125 12126 /* Shutdown queueing discipline. */ 12127 netdev_lock_ops(dev); 12128 dev_shutdown(dev); 12129 dev_tcx_uninstall(dev); 12130 dev_xdp_uninstall(dev); 12131 dev_memory_provider_uninstall(dev); 12132 netdev_unlock_ops(dev); 12133 bpf_dev_bound_netdev_unregister(dev); 12134 12135 netdev_offload_xstats_disable_all(dev); 12136 12137 /* Notify protocols, that we are about to destroy 12138 * this device. They should clean all the things. 12139 */ 12140 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 12141 12142 if (!(dev->rtnl_link_ops && dev->rtnl_link_initializing)) 12143 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0, 12144 GFP_KERNEL, NULL, 0, 12145 portid, nlh); 12146 12147 /* 12148 * Flush the unicast and multicast chains 12149 */ 12150 dev_uc_flush(dev); 12151 dev_mc_flush(dev); 12152 12153 netdev_name_node_alt_flush(dev); 12154 netdev_name_node_free(dev->name_node); 12155 12156 netdev_rss_contexts_free(dev); 12157 12158 call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev); 12159 12160 if (dev->netdev_ops->ndo_uninit) 12161 dev->netdev_ops->ndo_uninit(dev); 12162 12163 mutex_destroy(&dev->ethtool->rss_lock); 12164 12165 net_shaper_flush_netdev(dev); 12166 12167 if (skb) 12168 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL, portid, nlh); 12169 12170 /* Notifier chain MUST detach us all upper devices. */ 12171 WARN_ON(netdev_has_any_upper_dev(dev)); 12172 WARN_ON(netdev_has_any_lower_dev(dev)); 12173 12174 /* Remove entries from kobject tree */ 12175 netdev_unregister_kobject(dev); 12176 #ifdef CONFIG_XPS 12177 /* Remove XPS queueing entries */ 12178 netif_reset_xps_queues_gt(dev, 0); 12179 #endif 12180 } 12181 12182 synchronize_net(); 12183 12184 list_for_each_entry(dev, head, unreg_list) { 12185 netdev_put(dev, &dev->dev_registered_tracker); 12186 net_set_todo(dev); 12187 cnt++; 12188 } 12189 atomic_add(cnt, &dev_unreg_count); 12190 12191 list_del(head); 12192 } 12193 12194 /** 12195 * unregister_netdevice_many - unregister many devices 12196 * @head: list of devices 12197 * 12198 * Note: As most callers use a stack allocated list_head, 12199 * we force a list_del() to make sure stack won't be corrupted later. 12200 */ 12201 void unregister_netdevice_many(struct list_head *head) 12202 { 12203 unregister_netdevice_many_notify(head, 0, NULL); 12204 } 12205 EXPORT_SYMBOL(unregister_netdevice_many); 12206 12207 /** 12208 * unregister_netdev - remove device from the kernel 12209 * @dev: device 12210 * 12211 * This function shuts down a device interface and removes it 12212 * from the kernel tables. 12213 * 12214 * This is just a wrapper for unregister_netdevice that takes 12215 * the rtnl semaphore. In general you want to use this and not 12216 * unregister_netdevice. 12217 */ 12218 void unregister_netdev(struct net_device *dev) 12219 { 12220 rtnl_net_dev_lock(dev); 12221 unregister_netdevice(dev); 12222 rtnl_net_dev_unlock(dev); 12223 } 12224 EXPORT_SYMBOL(unregister_netdev); 12225 12226 int __dev_change_net_namespace(struct net_device *dev, struct net *net, 12227 const char *pat, int new_ifindex, 12228 struct netlink_ext_ack *extack) 12229 { 12230 struct netdev_name_node *name_node; 12231 struct net *net_old = dev_net(dev); 12232 char new_name[IFNAMSIZ] = {}; 12233 int err, new_nsid; 12234 12235 ASSERT_RTNL(); 12236 12237 /* Don't allow namespace local devices to be moved. */ 12238 err = -EINVAL; 12239 if (dev->netns_immutable) { 12240 NL_SET_ERR_MSG(extack, "The interface netns is immutable"); 12241 goto out; 12242 } 12243 12244 /* Ensure the device has been registered */ 12245 if (dev->reg_state != NETREG_REGISTERED) { 12246 NL_SET_ERR_MSG(extack, "The interface isn't registered"); 12247 goto out; 12248 } 12249 12250 /* Get out if there is nothing todo */ 12251 err = 0; 12252 if (net_eq(net_old, net)) 12253 goto out; 12254 12255 /* Pick the destination device name, and ensure 12256 * we can use it in the destination network namespace. 12257 */ 12258 err = -EEXIST; 12259 if (netdev_name_in_use(net, dev->name)) { 12260 /* We get here if we can't use the current device name */ 12261 if (!pat) { 12262 NL_SET_ERR_MSG(extack, 12263 "An interface with the same name exists in the target netns"); 12264 goto out; 12265 } 12266 err = dev_prep_valid_name(net, dev, pat, new_name, EEXIST); 12267 if (err < 0) { 12268 NL_SET_ERR_MSG_FMT(extack, 12269 "Unable to use '%s' for the new interface name in the target netns", 12270 pat); 12271 goto out; 12272 } 12273 } 12274 /* Check that none of the altnames conflicts. */ 12275 err = -EEXIST; 12276 netdev_for_each_altname(dev, name_node) { 12277 if (netdev_name_in_use(net, name_node->name)) { 12278 NL_SET_ERR_MSG_FMT(extack, 12279 "An interface with the altname %s exists in the target netns", 12280 name_node->name); 12281 goto out; 12282 } 12283 } 12284 12285 /* Check that new_ifindex isn't used yet. */ 12286 if (new_ifindex) { 12287 err = dev_index_reserve(net, new_ifindex); 12288 if (err < 0) { 12289 NL_SET_ERR_MSG_FMT(extack, 12290 "The ifindex %d is not available in the target netns", 12291 new_ifindex); 12292 goto out; 12293 } 12294 } else { 12295 /* If there is an ifindex conflict assign a new one */ 12296 err = dev_index_reserve(net, dev->ifindex); 12297 if (err == -EBUSY) 12298 err = dev_index_reserve(net, 0); 12299 if (err < 0) { 12300 NL_SET_ERR_MSG(extack, 12301 "Unable to allocate a new ifindex in the target netns"); 12302 goto out; 12303 } 12304 new_ifindex = err; 12305 } 12306 12307 /* 12308 * And now a mini version of register_netdevice unregister_netdevice. 12309 */ 12310 12311 netdev_lock_ops(dev); 12312 /* If device is running close it first. */ 12313 netif_close(dev); 12314 /* And unlink it from device chain */ 12315 unlist_netdevice(dev); 12316 12317 if (!netdev_need_ops_lock(dev)) 12318 netdev_lock(dev); 12319 dev->moving_ns = true; 12320 netdev_unlock(dev); 12321 12322 synchronize_net(); 12323 12324 /* Shutdown queueing discipline. */ 12325 netdev_lock_ops(dev); 12326 dev_shutdown(dev); 12327 netdev_unlock_ops(dev); 12328 12329 /* Notify protocols, that we are about to destroy 12330 * this device. They should clean all the things. 12331 * 12332 * Note that dev->reg_state stays at NETREG_REGISTERED. 12333 * This is wanted because this way 8021q and macvlan know 12334 * the device is just moving and can keep their slaves up. 12335 */ 12336 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 12337 rcu_barrier(); 12338 12339 new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL); 12340 12341 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid, 12342 new_ifindex); 12343 12344 /* 12345 * Flush the unicast and multicast chains 12346 */ 12347 dev_uc_flush(dev); 12348 dev_mc_flush(dev); 12349 12350 /* Send a netdev-removed uevent to the old namespace */ 12351 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE); 12352 netdev_adjacent_del_links(dev); 12353 12354 /* Move per-net netdevice notifiers that are following the netdevice */ 12355 move_netdevice_notifiers_dev_net(dev, net); 12356 12357 /* Actually switch the network namespace */ 12358 netdev_lock(dev); 12359 dev_net_set(dev, net); 12360 netdev_unlock(dev); 12361 dev->ifindex = new_ifindex; 12362 12363 if (new_name[0]) { 12364 /* Rename the netdev to prepared name */ 12365 write_seqlock_bh(&netdev_rename_lock); 12366 strscpy(dev->name, new_name, IFNAMSIZ); 12367 write_sequnlock_bh(&netdev_rename_lock); 12368 } 12369 12370 /* Fixup kobjects */ 12371 dev_set_uevent_suppress(&dev->dev, 1); 12372 err = device_rename(&dev->dev, dev->name); 12373 dev_set_uevent_suppress(&dev->dev, 0); 12374 WARN_ON(err); 12375 12376 /* Send a netdev-add uevent to the new namespace */ 12377 kobject_uevent(&dev->dev.kobj, KOBJ_ADD); 12378 netdev_adjacent_add_links(dev); 12379 12380 /* Adapt owner in case owning user namespace of target network 12381 * namespace is different from the original one. 12382 */ 12383 err = netdev_change_owner(dev, net_old, net); 12384 WARN_ON(err); 12385 12386 netdev_lock(dev); 12387 dev->moving_ns = false; 12388 if (!netdev_need_ops_lock(dev)) 12389 netdev_unlock(dev); 12390 12391 /* Add the device back in the hashes */ 12392 list_netdevice(dev); 12393 /* Notify protocols, that a new device appeared. */ 12394 call_netdevice_notifiers(NETDEV_REGISTER, dev); 12395 netdev_unlock_ops(dev); 12396 12397 /* 12398 * Prevent userspace races by waiting until the network 12399 * device is fully setup before sending notifications. 12400 */ 12401 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL); 12402 12403 synchronize_net(); 12404 err = 0; 12405 out: 12406 return err; 12407 } 12408 12409 static int dev_cpu_dead(unsigned int oldcpu) 12410 { 12411 struct sk_buff **list_skb; 12412 struct sk_buff *skb; 12413 unsigned int cpu; 12414 struct softnet_data *sd, *oldsd, *remsd = NULL; 12415 12416 local_irq_disable(); 12417 cpu = smp_processor_id(); 12418 sd = &per_cpu(softnet_data, cpu); 12419 oldsd = &per_cpu(softnet_data, oldcpu); 12420 12421 /* Find end of our completion_queue. */ 12422 list_skb = &sd->completion_queue; 12423 while (*list_skb) 12424 list_skb = &(*list_skb)->next; 12425 /* Append completion queue from offline CPU. */ 12426 *list_skb = oldsd->completion_queue; 12427 oldsd->completion_queue = NULL; 12428 12429 /* Append output queue from offline CPU. */ 12430 if (oldsd->output_queue) { 12431 *sd->output_queue_tailp = oldsd->output_queue; 12432 sd->output_queue_tailp = oldsd->output_queue_tailp; 12433 oldsd->output_queue = NULL; 12434 oldsd->output_queue_tailp = &oldsd->output_queue; 12435 } 12436 /* Append NAPI poll list from offline CPU, with one exception : 12437 * process_backlog() must be called by cpu owning percpu backlog. 12438 * We properly handle process_queue & input_pkt_queue later. 12439 */ 12440 while (!list_empty(&oldsd->poll_list)) { 12441 struct napi_struct *napi = list_first_entry(&oldsd->poll_list, 12442 struct napi_struct, 12443 poll_list); 12444 12445 list_del_init(&napi->poll_list); 12446 if (napi->poll == process_backlog) 12447 napi->state &= NAPIF_STATE_THREADED; 12448 else 12449 ____napi_schedule(sd, napi); 12450 } 12451 12452 raise_softirq_irqoff(NET_TX_SOFTIRQ); 12453 local_irq_enable(); 12454 12455 if (!use_backlog_threads()) { 12456 #ifdef CONFIG_RPS 12457 remsd = oldsd->rps_ipi_list; 12458 oldsd->rps_ipi_list = NULL; 12459 #endif 12460 /* send out pending IPI's on offline CPU */ 12461 net_rps_send_ipi(remsd); 12462 } 12463 12464 /* Process offline CPU's input_pkt_queue */ 12465 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 12466 netif_rx(skb); 12467 rps_input_queue_head_incr(oldsd); 12468 } 12469 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) { 12470 netif_rx(skb); 12471 rps_input_queue_head_incr(oldsd); 12472 } 12473 12474 return 0; 12475 } 12476 12477 /** 12478 * netdev_increment_features - increment feature set by one 12479 * @all: current feature set 12480 * @one: new feature set 12481 * @mask: mask feature set 12482 * 12483 * Computes a new feature set after adding a device with feature set 12484 * @one to the master device with current feature set @all. Will not 12485 * enable anything that is off in @mask. Returns the new feature set. 12486 */ 12487 netdev_features_t netdev_increment_features(netdev_features_t all, 12488 netdev_features_t one, netdev_features_t mask) 12489 { 12490 if (mask & NETIF_F_HW_CSUM) 12491 mask |= NETIF_F_CSUM_MASK; 12492 mask |= NETIF_F_VLAN_CHALLENGED; 12493 12494 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask; 12495 all &= one | ~NETIF_F_ALL_FOR_ALL; 12496 12497 /* If one device supports hw checksumming, set for all. */ 12498 if (all & NETIF_F_HW_CSUM) 12499 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM); 12500 12501 return all; 12502 } 12503 EXPORT_SYMBOL(netdev_increment_features); 12504 12505 static struct hlist_head * __net_init netdev_create_hash(void) 12506 { 12507 int i; 12508 struct hlist_head *hash; 12509 12510 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL); 12511 if (hash != NULL) 12512 for (i = 0; i < NETDEV_HASHENTRIES; i++) 12513 INIT_HLIST_HEAD(&hash[i]); 12514 12515 return hash; 12516 } 12517 12518 /* Initialize per network namespace state */ 12519 static int __net_init netdev_init(struct net *net) 12520 { 12521 BUILD_BUG_ON(GRO_HASH_BUCKETS > 12522 BITS_PER_BYTE * sizeof_field(struct gro_node, bitmask)); 12523 12524 INIT_LIST_HEAD(&net->dev_base_head); 12525 12526 net->dev_name_head = netdev_create_hash(); 12527 if (net->dev_name_head == NULL) 12528 goto err_name; 12529 12530 net->dev_index_head = netdev_create_hash(); 12531 if (net->dev_index_head == NULL) 12532 goto err_idx; 12533 12534 xa_init_flags(&net->dev_by_index, XA_FLAGS_ALLOC1); 12535 12536 RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain); 12537 12538 return 0; 12539 12540 err_idx: 12541 kfree(net->dev_name_head); 12542 err_name: 12543 return -ENOMEM; 12544 } 12545 12546 /** 12547 * netdev_drivername - network driver for the device 12548 * @dev: network device 12549 * 12550 * Determine network driver for device. 12551 */ 12552 const char *netdev_drivername(const struct net_device *dev) 12553 { 12554 const struct device_driver *driver; 12555 const struct device *parent; 12556 const char *empty = ""; 12557 12558 parent = dev->dev.parent; 12559 if (!parent) 12560 return empty; 12561 12562 driver = parent->driver; 12563 if (driver && driver->name) 12564 return driver->name; 12565 return empty; 12566 } 12567 12568 static void __netdev_printk(const char *level, const struct net_device *dev, 12569 struct va_format *vaf) 12570 { 12571 if (dev && dev->dev.parent) { 12572 dev_printk_emit(level[1] - '0', 12573 dev->dev.parent, 12574 "%s %s %s%s: %pV", 12575 dev_driver_string(dev->dev.parent), 12576 dev_name(dev->dev.parent), 12577 netdev_name(dev), netdev_reg_state(dev), 12578 vaf); 12579 } else if (dev) { 12580 printk("%s%s%s: %pV", 12581 level, netdev_name(dev), netdev_reg_state(dev), vaf); 12582 } else { 12583 printk("%s(NULL net_device): %pV", level, vaf); 12584 } 12585 } 12586 12587 void netdev_printk(const char *level, const struct net_device *dev, 12588 const char *format, ...) 12589 { 12590 struct va_format vaf; 12591 va_list args; 12592 12593 va_start(args, format); 12594 12595 vaf.fmt = format; 12596 vaf.va = &args; 12597 12598 __netdev_printk(level, dev, &vaf); 12599 12600 va_end(args); 12601 } 12602 EXPORT_SYMBOL(netdev_printk); 12603 12604 #define define_netdev_printk_level(func, level) \ 12605 void func(const struct net_device *dev, const char *fmt, ...) \ 12606 { \ 12607 struct va_format vaf; \ 12608 va_list args; \ 12609 \ 12610 va_start(args, fmt); \ 12611 \ 12612 vaf.fmt = fmt; \ 12613 vaf.va = &args; \ 12614 \ 12615 __netdev_printk(level, dev, &vaf); \ 12616 \ 12617 va_end(args); \ 12618 } \ 12619 EXPORT_SYMBOL(func); 12620 12621 define_netdev_printk_level(netdev_emerg, KERN_EMERG); 12622 define_netdev_printk_level(netdev_alert, KERN_ALERT); 12623 define_netdev_printk_level(netdev_crit, KERN_CRIT); 12624 define_netdev_printk_level(netdev_err, KERN_ERR); 12625 define_netdev_printk_level(netdev_warn, KERN_WARNING); 12626 define_netdev_printk_level(netdev_notice, KERN_NOTICE); 12627 define_netdev_printk_level(netdev_info, KERN_INFO); 12628 12629 static void __net_exit netdev_exit(struct net *net) 12630 { 12631 kfree(net->dev_name_head); 12632 kfree(net->dev_index_head); 12633 xa_destroy(&net->dev_by_index); 12634 if (net != &init_net) 12635 WARN_ON_ONCE(!list_empty(&net->dev_base_head)); 12636 } 12637 12638 static struct pernet_operations __net_initdata netdev_net_ops = { 12639 .init = netdev_init, 12640 .exit = netdev_exit, 12641 }; 12642 12643 static void __net_exit default_device_exit_net(struct net *net) 12644 { 12645 struct netdev_name_node *name_node, *tmp; 12646 struct net_device *dev, *aux; 12647 /* 12648 * Push all migratable network devices back to the 12649 * initial network namespace 12650 */ 12651 ASSERT_RTNL(); 12652 for_each_netdev_safe(net, dev, aux) { 12653 int err; 12654 char fb_name[IFNAMSIZ]; 12655 12656 /* Ignore unmoveable devices (i.e. loopback) */ 12657 if (dev->netns_immutable) 12658 continue; 12659 12660 /* Leave virtual devices for the generic cleanup */ 12661 if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund) 12662 continue; 12663 12664 /* Push remaining network devices to init_net */ 12665 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 12666 if (netdev_name_in_use(&init_net, fb_name)) 12667 snprintf(fb_name, IFNAMSIZ, "dev%%d"); 12668 12669 netdev_for_each_altname_safe(dev, name_node, tmp) 12670 if (netdev_name_in_use(&init_net, name_node->name)) 12671 __netdev_name_node_alt_destroy(name_node); 12672 12673 err = dev_change_net_namespace(dev, &init_net, fb_name); 12674 if (err) { 12675 pr_emerg("%s: failed to move %s to init_net: %d\n", 12676 __func__, dev->name, err); 12677 BUG(); 12678 } 12679 } 12680 } 12681 12682 static void __net_exit default_device_exit_batch(struct list_head *net_list) 12683 { 12684 /* At exit all network devices most be removed from a network 12685 * namespace. Do this in the reverse order of registration. 12686 * Do this across as many network namespaces as possible to 12687 * improve batching efficiency. 12688 */ 12689 struct net_device *dev; 12690 struct net *net; 12691 LIST_HEAD(dev_kill_list); 12692 12693 rtnl_lock(); 12694 list_for_each_entry(net, net_list, exit_list) { 12695 default_device_exit_net(net); 12696 cond_resched(); 12697 } 12698 12699 list_for_each_entry(net, net_list, exit_list) { 12700 for_each_netdev_reverse(net, dev) { 12701 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) 12702 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 12703 else 12704 unregister_netdevice_queue(dev, &dev_kill_list); 12705 } 12706 } 12707 unregister_netdevice_many(&dev_kill_list); 12708 rtnl_unlock(); 12709 } 12710 12711 static struct pernet_operations __net_initdata default_device_ops = { 12712 .exit_batch = default_device_exit_batch, 12713 }; 12714 12715 static void __init net_dev_struct_check(void) 12716 { 12717 /* TX read-mostly hotpath */ 12718 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, priv_flags_fast); 12719 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, netdev_ops); 12720 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, header_ops); 12721 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, _tx); 12722 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, real_num_tx_queues); 12723 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_size); 12724 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_ipv4_max_size); 12725 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_segs); 12726 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_partial_features); 12727 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, num_tc); 12728 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, mtu); 12729 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, needed_headroom); 12730 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tc_to_txq); 12731 #ifdef CONFIG_XPS 12732 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, xps_maps); 12733 #endif 12734 #ifdef CONFIG_NETFILTER_EGRESS 12735 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, nf_hooks_egress); 12736 #endif 12737 #ifdef CONFIG_NET_XGRESS 12738 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tcx_egress); 12739 #endif 12740 CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_tx, 160); 12741 12742 /* TXRX read-mostly hotpath */ 12743 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, lstats); 12744 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, state); 12745 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, flags); 12746 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, hard_header_len); 12747 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, features); 12748 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, ip6_ptr); 12749 CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_txrx, 46); 12750 12751 /* RX read-mostly hotpath */ 12752 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ptype_specific); 12753 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ifindex); 12754 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, real_num_rx_queues); 12755 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, _rx); 12756 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_max_size); 12757 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_ipv4_max_size); 12758 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler); 12759 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler_data); 12760 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, nd_net); 12761 #ifdef CONFIG_NETPOLL 12762 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, npinfo); 12763 #endif 12764 #ifdef CONFIG_NET_XGRESS 12765 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, tcx_ingress); 12766 #endif 12767 CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_rx, 92); 12768 } 12769 12770 /* 12771 * Initialize the DEV module. At boot time this walks the device list and 12772 * unhooks any devices that fail to initialise (normally hardware not 12773 * present) and leaves us with a valid list of present and active devices. 12774 * 12775 */ 12776 12777 /* We allocate 256 pages for each CPU if PAGE_SHIFT is 12 */ 12778 #define SYSTEM_PERCPU_PAGE_POOL_SIZE ((1 << 20) / PAGE_SIZE) 12779 12780 static int net_page_pool_create(int cpuid) 12781 { 12782 #if IS_ENABLED(CONFIG_PAGE_POOL) 12783 struct page_pool_params page_pool_params = { 12784 .pool_size = SYSTEM_PERCPU_PAGE_POOL_SIZE, 12785 .flags = PP_FLAG_SYSTEM_POOL, 12786 .nid = cpu_to_mem(cpuid), 12787 }; 12788 struct page_pool *pp_ptr; 12789 int err; 12790 12791 pp_ptr = page_pool_create_percpu(&page_pool_params, cpuid); 12792 if (IS_ERR(pp_ptr)) 12793 return -ENOMEM; 12794 12795 err = xdp_reg_page_pool(pp_ptr); 12796 if (err) { 12797 page_pool_destroy(pp_ptr); 12798 return err; 12799 } 12800 12801 per_cpu(system_page_pool.pool, cpuid) = pp_ptr; 12802 #endif 12803 return 0; 12804 } 12805 12806 static int backlog_napi_should_run(unsigned int cpu) 12807 { 12808 struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu); 12809 struct napi_struct *napi = &sd->backlog; 12810 12811 return test_bit(NAPI_STATE_SCHED_THREADED, &napi->state); 12812 } 12813 12814 static void run_backlog_napi(unsigned int cpu) 12815 { 12816 struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu); 12817 12818 napi_threaded_poll_loop(&sd->backlog); 12819 } 12820 12821 static void backlog_napi_setup(unsigned int cpu) 12822 { 12823 struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu); 12824 struct napi_struct *napi = &sd->backlog; 12825 12826 napi->thread = this_cpu_read(backlog_napi); 12827 set_bit(NAPI_STATE_THREADED, &napi->state); 12828 } 12829 12830 static struct smp_hotplug_thread backlog_threads = { 12831 .store = &backlog_napi, 12832 .thread_should_run = backlog_napi_should_run, 12833 .thread_fn = run_backlog_napi, 12834 .thread_comm = "backlog_napi/%u", 12835 .setup = backlog_napi_setup, 12836 }; 12837 12838 /* 12839 * This is called single threaded during boot, so no need 12840 * to take the rtnl semaphore. 12841 */ 12842 static int __init net_dev_init(void) 12843 { 12844 int i, rc = -ENOMEM; 12845 12846 BUG_ON(!dev_boot_phase); 12847 12848 net_dev_struct_check(); 12849 12850 if (dev_proc_init()) 12851 goto out; 12852 12853 if (netdev_kobject_init()) 12854 goto out; 12855 12856 for (i = 0; i < PTYPE_HASH_SIZE; i++) 12857 INIT_LIST_HEAD(&ptype_base[i]); 12858 12859 if (register_pernet_subsys(&netdev_net_ops)) 12860 goto out; 12861 12862 /* 12863 * Initialise the packet receive queues. 12864 */ 12865 12866 flush_backlogs_fallback = flush_backlogs_alloc(); 12867 if (!flush_backlogs_fallback) 12868 goto out; 12869 12870 for_each_possible_cpu(i) { 12871 struct softnet_data *sd = &per_cpu(softnet_data, i); 12872 12873 skb_queue_head_init(&sd->input_pkt_queue); 12874 skb_queue_head_init(&sd->process_queue); 12875 #ifdef CONFIG_XFRM_OFFLOAD 12876 skb_queue_head_init(&sd->xfrm_backlog); 12877 #endif 12878 INIT_LIST_HEAD(&sd->poll_list); 12879 sd->output_queue_tailp = &sd->output_queue; 12880 #ifdef CONFIG_RPS 12881 INIT_CSD(&sd->csd, rps_trigger_softirq, sd); 12882 sd->cpu = i; 12883 #endif 12884 INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd); 12885 spin_lock_init(&sd->defer_lock); 12886 12887 gro_init(&sd->backlog.gro); 12888 sd->backlog.poll = process_backlog; 12889 sd->backlog.weight = weight_p; 12890 INIT_LIST_HEAD(&sd->backlog.poll_list); 12891 12892 if (net_page_pool_create(i)) 12893 goto out; 12894 } 12895 if (use_backlog_threads()) 12896 smpboot_register_percpu_thread(&backlog_threads); 12897 12898 dev_boot_phase = 0; 12899 12900 /* The loopback device is special if any other network devices 12901 * is present in a network namespace the loopback device must 12902 * be present. Since we now dynamically allocate and free the 12903 * loopback device ensure this invariant is maintained by 12904 * keeping the loopback device as the first device on the 12905 * list of network devices. Ensuring the loopback devices 12906 * is the first device that appears and the last network device 12907 * that disappears. 12908 */ 12909 if (register_pernet_device(&loopback_net_ops)) 12910 goto out; 12911 12912 if (register_pernet_device(&default_device_ops)) 12913 goto out; 12914 12915 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 12916 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 12917 12918 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead", 12919 NULL, dev_cpu_dead); 12920 WARN_ON(rc < 0); 12921 rc = 0; 12922 12923 /* avoid static key IPIs to isolated CPUs */ 12924 if (housekeeping_enabled(HK_TYPE_MISC)) 12925 net_enable_timestamp(); 12926 out: 12927 if (rc < 0) { 12928 for_each_possible_cpu(i) { 12929 struct page_pool *pp_ptr; 12930 12931 pp_ptr = per_cpu(system_page_pool.pool, i); 12932 if (!pp_ptr) 12933 continue; 12934 12935 xdp_unreg_page_pool(pp_ptr); 12936 page_pool_destroy(pp_ptr); 12937 per_cpu(system_page_pool.pool, i) = NULL; 12938 } 12939 } 12940 12941 return rc; 12942 } 12943 12944 subsys_initcall(net_dev_init); 12945